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Introduction

The discovery of D-branes (1995) [1] radically changed our way of looking at open
strings. As well known, D-branes are defined as hyperplanes on which open strings
are allowed to end. In fact, there is more than this: open strings have to end
on a D-brane: there are no open strings without D-branes where to end, and,
conversely, there always can be open strings attached to a single D—brane and D-
branes interacting among each other via open strings stretched from one brane to
another. Open strings that move across the entire space should be regarded as
strings attached to a brane that fills the entire space: this is the D25-brane. The
target space of bosonic string theory is not empty, it is filled completely by the
D25-brane. Very early was realized in studies of the physics of D-branes that their
low-energy effective field theory has configuration space which is described in terms
of noncommuting, matrix-valued spacetime coordinate fields [2], the entries of these
matrices actually representing open strings stretched among the D-branes. This
entails in particular that at short brane distances space becomes noncommutative.
Noncommutativity shows up from D-branes also in another way: when D-branes
are in presence of a constant NSNS B-field. In this case, the low energy effective
action of the open strings attached to the branes can be represented by a Euclidean
field theory defined on a noncommutative spacetime (noncommutative field theory).
Noncommutative field theories have many novel properties which are not exhibited
by conventional quantum field theories. They should be properly understood as
lying somewhere between ordinary field theory and string theory, and the hope
is that from these models we may learn something about string theory, using the
somewhat simpler techniques of quantum field theory.

There is another place in string theory where the idea of a noncommutative
product is present: it is the Witten’s Open String Field Theory [63]. This is a
second quantized formulation of string theory where the operation of gluing together
open strings is noncommutative. It should be stressed that this is a theory for
open strings, and then D-branes, and we do not have to be surprised if in such a
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Introduction

theory noncommutativity shows up since it is contained in the idea itself of D-brane.
Moreover String Field Theory, being a second quantized theory, is well defined also
off-shell, on the contrary of the usual first quantized string theory where string
amplitudes are computed rigorously on-shell, being defined as 2d conformal field
theory correlators of string vertex operators. This property allows the study of
nonperturbative phenomena like tachyon condensation.

This thesis deals with two problems in string theory characterized by the presence
of noncommutativity and B field. The first problem regards the renormalization
properties of noncommutative field theories, the second one the possibility of defining
Vacuum String Field Theory in the presence of a B field. Let us have a closer look
at these two subjects.

The correspondence between D-branes in the presence of a constant background
B field and noncommutative field theories, summarized by Seiberg and Witten in
[4], was done at tree level: tree amplitudes computed at tree level in string theory
and field theory completely agree. Noncommutative field theories show however a
peculiar behaviour at one loop, known as UV/IR mixing. Also the definition of
noncommutative gauge theories based on groups different than U(NV) is highly non
trivial. It seemed to be important therefore to know exactly what are the properties
of a noncommutative YM theory we can rely on. One of the basic properties is
renormalizability. In Chapter 2, referring ourselves to the works [31, 49] done in
collaboration with L. Bonora, we will explicitly show that noncommutative U(NV)
gauge theory is one-loop renormalizable. Then we will move to the one-loop study of
noncommutative gauge theories based on orthogonal and symplectic groups. These
kind of theories are very difficult to define, both from the field and the string point of
view, even at tree level. Starting from the proposal [29] we investigate the matching
of the string and the field definition of such theories at one loop, concluding that a
satisfactory solution to this problem is far from obvious. Chapter 1 contains an in-
troduction to noncommutative field theory, explaining in details its string origin and
its perturbative properties. Moreover a section is devoted to the study of classical
(solitonic) solution of noncommutative scalar theories, and to its use for describing
D-branes, [92, 94, 95, 96] .

The second part of the thesis deals with the possibility of defining Vacuum String
Field Theory in the presence of a B field. Vacuum String Field Theory (VSFT) is
the guessed form of String Field Theory at the closed string vacuum as proposed by
Rastelli, Sen and Zwiebach [72]. To give an insight of what VSFT is we have to go
back to the D-25 brane. The tachyon field present on its world volume renders the
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Introduction

brane unstable, and the the condensation of the tachyon correspond to the decay
of the D-25 brane. In particular, three conjectures have been made by Ashoke Sen
[53, 54, 55], about how this decay process takes place:

1) the difference in energy between the maximum at the origin, corresponding
to the negative mass? of the tachyon, and the perturbatively stable vacuum should
be equal to the mass of the D25-brane.

This means that after tachyon condensation the D25-brane completely disap-
peared, and then

2) at the perturbatively stable vacuum there are no physical open string excita-
tions: only closed strings are there.

3) Starting from the D25-brane, lower dimensional branes are realized as soliton
configurations of the tachyon and other fields.

At the present moment there is no explicit knowledge of the tachyon potential.
The main difficulty in studying the tachyon potential resides in the fact that the zero
momentum tachyon is far off-shell, and hence unreachable by a description in terms
of first quantized string theory which deals with only on-shell S matrix elements.
Chapters 3 and 4 contain respectively an introduction to String Field Theory and its
use to describe tachyon condensation. Recent reviews of the subject can be found in
59, 60]. Chapter 5 is a review of the works of Rastelli, Sen and Zwiebach that defined
VSFT, [72, 73, 74]. The spirit of their approach was, starting from the guessed form
of the theory at the true vacuum, to try to get back to the perturbative unstable
tachyon vacuum, with the hope of discovering a path connecting the two vacua and
then being able to follow it from the unstable to the stable vacuum and obtain a
closed form for the tachyon potential. The first step was then to construct in VSFT
the D25-brane, the momentum independent vacuum of the bosonic theory, [73].
Also lower dimensional branes have been constructed in VSFT [73] and afterward
systems of multiple branes have been defined [74]. In Chapter 6 we will describe the
works done with L. Bonora and D. Mamone [108, 109, 110], about the possibility
of defining VSFT in the presence of a constant B field. It will be shown not only
that a background B field is not an obstacle in defining lump solutions all with the
correct tensions, but also that in some cases the B field is a useful device. Indeed
in VSFT there arise several singularities. We will show that the known smoothing
out effects of a B field may help in taming some of them [109].

Finally we will deal with question that could spontaneously arise after reading
these few lines: since they are both noncommutative, does it exist any connection
between the Witten star product and the Moyal product? It has been shown that
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a Moyal structure arises form Witten’s star product in the large B field limit (low
energy limit) [66, 67] and that the Witten product can be rewritten as a Moyal
product on an auxiliary non physical space [101]. What we will show is that it
is possible to define a sequence of VSFT D-branes whose low energy limit leads
exactly to a corresponding sequence of GMS (Gopakumar, Minwalla, Strominger)
solitons [110]. GMS solitons are classical solutions of noncommutative scalar field
theories, that do not exist at B = 0, and that show a Laguerre polynomial structure.
The same Laguerre polynomial structure is present in VSEF'T, even without B field,
creating in this way a link between the two noncommutative products.

vi



1.1 Open Strings in a Constant B Field 3

As usual let us perform a Wick rotation on the worldsheet in order to map it onto
the upper half plane: 7 — —i1, z = "1 2 = 77 (0 < o < 7). The boundary
conditions become

E,0.X" = (ET),,0,X" (1.8)

that are imposed on the real axis z = Z. The propagator is

(XH(2,2) X" (2, 2")) = —d [g“” Inlz — 2’| = ¢"'In|z — Z/|
1 z—Zz
uy 2 2| /.w] )
+G* n |z — 7| +2m,9 nZ-Z,JrD (1.9)

where

G = (B g (BT
_ 1 1 -
— \g+2ra/B J g—2na/B

(1.10)
0 = (2ma) (B~ B(ET)THH

— (2 1)2 1 B 1 -
- e g+2ra’B " g —2na/B '

On the upper half plane the mode expansion (1.7) becomes

. a 1 —1\uw I, —1T\pv —-n
+14 32 "[(E ) gupan 2" + (BT ) gupary 2 ] - (11

The indices of p” and of, were lowered by the metric g,, and not by the metric G, .
From the definition of the propagator we can read the commutation rules for o,
To, and p:

(XP(2,2) X" (, 7)) = R(X*(2, 5)X* (2, 7)) — N(X¥(2,2) X" (<, 7)) (1.12)

where R and N stand for the radial ordering and the normal ordering respectively.
We assume that the normal ordering prescription for the product of zff with p, is
: zhp, : = xhp,. The vacuum is then defined as

pul0) =00y =0 (n>0), (Oah=0 (n<0) (1.13)
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From standard calculations of two dimensional conformal field theory, one can obtain
the commutators

[k, k] = nbpnG* [z5,py] = 68 (1.14)

where, as usual, we set ag, = v/2a/p,. The constant D* is written as o/ D* =
—(0|X¥X?|0), that is equivalent to set the normal ordering for zgzg as

s xhxh = zhzy + o/ DM (1.15)

If we fix, as in [4], D" as o/ D* = —%9“”, the coordinates zj become noncommu-
tative :

[zf, zg] = 0" (1.16)

It is important to notice however that the center of mass coordinates
i = + 5 0‘“’py o (1.17)

still commute among each other. In order to understand the physmal meaning of the
parameters G™ and 6" let us restrict the analysis to the boundary of the worldsheet.
On the boundary the propagator is

(XH(r)X* (7)) = —a/G* Inr — 7')? + 6%e(r — 7 (1.18)

where €(7) is the function that is 1 or —1 for positive or negative (7 — 7'). G*” has
then a simple and deep physical interpretation: it is the effective open metric seen
by the open strings. We will then refer to g, as to the closed string metric and
to G, as to the open string metric. To interpret the meaning of 0" is useful to
re-express the string mode expansion in the following way:

XH¥(o,7) = Zo+2d (G””T + 5 0“”(0 - 7r/2)>p,, (1.19)
- —inT v .1 Voo
+iv2a/ :Z;O e [G“ cos(no) — i s sm(na)] Qn
Using the formula
=2 . . T—oc—0o (oc+0 #0,2m)
= = 1.2
Z - sin(n(o + ¢')) { 0 (0 +0' =0,2) (1.20)

n=1



Chapter 1

Open Strings in a Constant B
Field and Noncommutative Field
Theory

1.1 Open Strings in a Constant B Field

In this chapter we want to give a self contained introduction to the link between
string theory in the presence of a B field and noncommutative field theories, in such
a way it could be an introduction to both subjects of renormalization problems in
U(N) and SO(N) noncommutative gauge theories and Vacuum String Field Theory
in the presence of a B field. We will mainly follow the presentation given by [3, 4]

We consider an open string ending on a Dp-brane in the presence of a constant
Neveu-Schwarz B field. Since the components of B outside the brane can always be
gauged away we assume the rank r of B such that 7 < p+ 1. The worldsheet action
is

1
§ = dQJ[gN,,aaX“a"'X”+27Ta'e“bBW8aX“8bX”]
dra’ [
1 , . 1
- v 12 ¢ BLXMOXY, 1.1
T 2d 09 0a XH0p X +2§€2 f s (1.1)

where ¥ is the string worldsheet that we take with Lorentz signature, and &; is the
derivative tangent to the worldsheet boundary X. Since the term proportional to
B,,, can be written as total derivative term, it does not affect the equation of motion
but does the boundary condition, which reads as

GO X" + 2ma! B, 0, X* . 0, (1.2)

1



2 Chapter 1. Open Strings in a Constant B Field and Noncommutative Field
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where 8, is the normal derivative to 0%. A new dimensionless parameter is now
present: o'B,,. The mutual behavior of /By, with respect t0 gu determines
which type of boundary condition, Neumann or Dirichlet, is dominant in (1.2). If
&'Bu > g along the spatial directions of the brane, the boundary conditions
become Dirichlet. Indeed, in this limit, the second term in (1.2) dominates, and,
with B being invertible, (1.2) reduces to 9,X% = 0. Obviously for B = 0 the
boundary conditions in (1.2) are Neumann conditions.

We have to stress that the presence of a B field has a physical effect only along
the brane and not outside it. This is because outside the brane there is always the
possibility of making a ‘gauge transformation’ B — B + dA that sets the condition
B = 0. Along the brane lives also the U(1) gauge field of the string endpoints. It is
described by the action

Sy = ¢ dra, (X8, = —= | PoctFu0. X 0X . (1)

2ol Jox g ! dra! Jx e
Therefore for open strings B and F' always appear together in the combination
F = B—F, and the ‘gatlge transformation’ above, when performed, has now physical
effects on the U(1) gauge field. The combination F = B — F' is indeed invariant
‘under both gauge transformations for the one-form gauge field A :

A—A+d\N, B—B (1.4)
and for the two-form gauge field B
B—B+d\, A—A+A. (1.5)

From now on we will restrict our analysis to the case of the presence of the B field
only.
Boundary condition can be rewritten in the convenient form

E,0_X" = (E")0, X" (1.6)

where E,, = g + 27a'By,, and . are derivatives with respect to the light cone
variables o = 7 4+ 0. The string coordinates X*(o,7) satisfying the boundary
condition (1.6) have the following expansion:

Xt = zh+d [(E’l)“” Gupp’ o + (B~ gy, 0° 0’+]

7 1 N i
—i—’i\/ % Z n {(E—l)w Gup ab e+ (E—lT)ngp o e—za+] (1'7)
n#0



1.1 Open Strings in a Constant B Field 5

we see that the endpoints of the string become noncommutative :

igm (J — g = O)
[X*(r,0), X" (T, N =< - (c=0= )
0 (otherwise)

and, since the the brane is by definition the place where the string endpoints are
forced to belong, the world volume of the brane itself becomes a noncommutative
space. On the other hand the conjugate momenta have the mode expansion identical
with that of the Neumann case:

1
Py = 5= (g0 — 210/Buu o) X*(7,0)
1 1 ~
S S e 1.21
et L (n0) s (1.21)

Now we want to see how the open string tree level amplitudes are changed
by the presence of the B field. The connection between string S-matrix elements
and field theory ones will be our main tool to investigate the links between the. :
two theories. Let us consider an operator on the boundary of the worldsheet (we - -
are interested in the emission of open string states) that is of the general form
P(OX(1),02X(1),...)e"X() where P is a polynomial in the derivatives of X and
X are the coordinates along the Dp-brane. The second term in (1.18) is proportional
to (7 — 7') and does not contribute to contractions of derivatives of X. Then, the
correlation function of a product of k such operators, of momenta pt, ..., p*, satisfies

k
(TLPu0X (), X (1), Je 5 ) (122)
n=1 G,0
i b ‘
= exp [~ 3 32 o0t = 7] [ PLOX (). 02K ), )62
n>m n=1 G,0=0

where (...)g is the expectation value with the propagator (1.18) parametrized by
- G and 0. The exponential prefactor in (1.22) depends only on the cyclic ordering
of the points 74, ..., 7 along the boundary. We see that, when the description of
the theory is given in terms of G, and ##”, rather then in terms of g,, and By, ,
the 6 dependence of the correlators is very simple. G, and 0*” are then the natural
parameters that should be used to describe open strings in the presence of a B field.

We want now to perform the low energy limit on the string amplitudes with B
field. Without B field this limit is done by taking o — 0. With B field we have to
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add to this condition also the request that the natural open strings parameters G
and 0 are kept fixed. By looking at the egs.(1.10) we see that both the requests can
be satisfied by imposing

o =0 (1.23)
in such a way that

/By, ~e—0
g~ =0 for prv=1...,7 (1.24)

with B fixed. In this way egs.(1.10) become

1 1 1\"
G Y 2
G (2mal)? (BgB> (1.25)
G = —(2ma)*(Bg ™' B)w (1.26)

o : (%)W o )

As one can immediately see, G and 6 are finite in this limit. The conditions (1.24)
guarantee that o/ By, > g, and the boundary conditions (1.2) become more and
more Dirichlet. There exists in the literature another form of this limit that is
particularly used in the analysis of noncommutative solitons. It is characterized by
o'By, — © with g, held fixed. o/ can then be taken finite or can be sent to 0 in
such a way still o/B,, — co. In either form of the limit

o (%) " (1.28)

In order to avoid confusion we will always refer to the form (1.24) of the low energy
limit.
In the low energy limit the boundary propagator becomes

(X)) = S6etr =) (129

and the action (1.1) reduces to

[ / B, X*8,X" (1.30)
2 ox

F



1.1 Open Strings in a Constant B Field 7

This action, regarded as a one-dimensional action, describes the motion of a charged
particle in a large magnetic field. Indeed the action for such (nonrelativistic) point

particle is
S = /dt (—;—mxa: +eBij$i§:j> (1.31)
The conjugate momentum II; to z° is
Il; = md; + eBy;z’ (1.32)

In the limit where the energy w < e|B|/m, the canonical commutation relations

become simply
m

(2%, 27] = z'(B‘l)iJ—e—— (1.33)

Thus at energies much less than the cyclotron frequency e|B|/m, when one is in the
lowest Landau level, one effectively has noncommuting coordinates.

With the propagator (1.18), normal ordered operators satisfy

e () L giniai(0) . o= §09pigielr) . gipal(r)+iga(0) . (1.34)
or more generally |
Fam) ;o g(z(0) = T EEBE f(a(r))g(2(0)) - (1.35)
and
Tim : f(w(r) ¢ 9(a(0) = F(a(0)) % g(x(0)) (1.36)
where
£() % g(2) = 8”395 £ + £)g( + Olmemo (1.37)

is the product of functions on a noncommutative space that we will describe in
details in the next section.

To be more specific in the connection with noncommutative field theories let us
consider the three point function for gauge vectors, created by vertex operators

V(p,§)=/§-3Xe"p‘X, Ep=p-p=0, (1.38)
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where the dot product is done with the open string metric G. The three point
function is

(€1 aX P X (M) 2. gx e X)) £3. g elp” X (m))

1

(7’1 - Tz)(T2 - 7’3)(7'3 - Tl)

Y

(é—l . €2p2 . 53 4 61 . §3p1 _52 + 62 . €3p3 . é-l + 2alp3 . glpl . §2p2 . 63)

EXp [“‘ 5(1’“9”’/ e(r — 72) + 0" pre(T2 — T) + 0" pye(Ts — 7’1))]

We still have to fix the SL(2;R) conformal invariance that consists in removing the
denominator (11 — T2)(72 — 73)(73 — 71). At the end we have the amplitude »

(8 &7 €+ @480 £+ 2ap -l O €) e PIT(L39)
The first three terms are the color-ordered three point amplitude as derives from
the noncommutative gauge theory described by the action

495 3

S = ! /TrFW*F"‘“ (1.40)
where g¢%,, is the effective Yang-Mills coupling and the space-time indices are con-
tracted with the open string metric G. The fourth term in (1.39) is a stringy
correction that indeed vanishes for o/ — 0.

The last thing we need to determine is the expression of G; in terms of the closed
string variables g, B and g;. The constant term in the effective lagrangian will do
this job. For slowly varying fields, the effective Lagrangian is the Dirac-Born-Infeld

lagrangian

Lppr = ————-;r\/det B F)) (1.41)
9s(27)% (v
The constant part is
L(F=0)= ~——1————E\/det(g + 2o/ B) (1.42)
go2r)2 ()

On the other side we know that when we describe the effective action in terms of
open string quantities the whole § dependence is contained in the % product. In this
description the correspondent of (1.41) is

L(F)= 3 (27r) @) \/det G+ 2ro/ F) (1.43)
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and the constant term is

L(F=0) = S/ peve (1.44)
G.2n)2 ()

Equating the two constant parts (1.42) and (1.44)

detd 2
Gs = 0: (det(g + 27ro:’B)> (1.45)

that in the o — 0 limit becomes

o=

G = g,det(2ra’Bg™?) (1.46)

where the determinant is calculated only in the dimensions with nonzero B field.

1.2 Noncommutative field theory

In the usual quantum mechanics we have the well known commutation relations:

[i’i,ﬁj] = Zhdb] and
[6:;,05] = [PiBs] =0 (1.47)

However there is no evidence that at very short distances (or very high energies)
these relations should still be true. Then a natural generalization of above is to take
the coordinates which do not commute anymore,

[2:,25] = by, (1.48)

where 0;; is a constant of dimension length®. An immediate remark is that introduc-
ing this kind of commutation relation between coordinates the Lorentz invariance
is spoiled explicitly. We should remember however that we assumed this feature to
appear only at very short distances, i.e. for § — 0 we should recover the Lorentz
symmetry. This is one of the main constraints on our noncommutative field theories:
at least at classical level, in the limit & — 0 we should find a previously known com-
mutative field theory. We will see that at loop level in some cases the limit 0 —0
may be singular. In general (1.48) can be extended to space-time coordinates:

B = G- (1.49)

Hereafter we call a space with the above commutation relations as a noncommutative
space.
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To construct the perturbative field theory formulation, it is more convenient to
use fields which are some functions-and not operator valued objects. To pass to
such fields while keeping (1.49) property one should redefine the multiplication law
of functional (field) space. This new multiplication is induced from (1.49) through
the so called Weyl-Moyal correspondence. Roughly speaking the Weyl-Moyal corre-
spondence means to declare that the product of operators and the product of the
corresponding functions do share the same Fourier transform:

d(z) +— 3(2) ;
o(z) = /ei"‘j () da
bo) = / e~ §(z) dz, (1.50)

where o and z are rgal variables. Then, 4
@:-“(I)" _ iak 4\ iBE da dB
1) 02 [ e ¢l % 9(9) da -

= [ [ etersteneet g a) gy(9) dacdg, (151

af

and hence,

~

&1(2) &(2) ¢— (@1 X @2) (z) (1.52)
with

(81402 @) = [ei 0t 0o +.8) a+n)] - (1.53)
This suggests that we can work on a usual commutative space for which the mul-
tiplication operation is modified to the so called star product. It is easy to check
that the Moyal bracket (the commutator in which the product is modified with a
star product) of two coordinates z, and z, gives exactly the desired commutation
relations,

Zu, 2l = 0w (1.54)

We can summarize some useful identities of the star product algebra.
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. Star product between exponentials:
. . . i
ezk:c % e = ez(k-l—q)le 5(k0q) ,Where

kp = kFp0L (1.55)

. Momentum space representation:

Let f(k) and §(k) be the Fourier components of f and g. Then using (1.55)
(F*9)(z) = / d*k d'q f(k) §lg) e 2®0 FHT - (1.56)

. Associativity:

[(Fxg)xh|(z) = [Fxlgxh)]@), (1.57)

which can be proved immediately going to momentum space.

rhs = /d4k d*q d*p f(k) g(q) ﬁ(p) ¢~ 3 (k09) o= 3((k+a)0p) glktatr)e  and
lhs = /d4k dq d'p f(k) d(q) ?L(p) ¢~ 5(90) =3 (kO(g+P)) gilktatp)e (1.58)
. Stér products under integral sign:

[Groe) de = [@xn@di = [G9E de. (159)

Using (1.56) we can immediately perform the integration over z which will
give a 6*(k + ¢). Due to the antisymmetry of # the exponent vanishes and so:

[uso@as = [dE fwicH
_ /(f.g)(x) diz (1.60)
. Cyclic property (from (1.59)):

/(fl*fz*...fn)(a:) diz = /(fn*fl*...fn_l)(x) d'z. (1.61)

. Complex conjugation:
(fxg) = g"*f". (1.62)

It is obvious that if f is a real function then f« f is also real.
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1.3 Feynman Rules for Noncommutative field the-

ories

As we have seen in the previous section the way to treat the noncommutative theories
is to modify the usual product of fields with the star product. So, for example, the
action for the noncommutative analog of the real ¢3 theory will be:

2
S0l = [n | jognire—Trono- Gowsrs]  0s)

Thanks to (1.59), the quadratic part of the action is the same as the commutative
case:

) ‘
5 / Az 8, % 0" = % / d°z 0,$0"$ (1.64)

2 2
Y Ry R T (1.65)

" Therefore the only thing which is modified is the interaction. This is a very impor-
tant point to keep in mind: the free theory is the same as in the commutative case.
* Writing the interaction part of (1.63) in the momentum space we read the Feynman
rules for the interaction vertex |

S =5 [ dHrdkad ks (2m)5 (ks + bz + ko) B(k1)S(R2) b (Bs)e ™0 (1.66)

Summing over all the inequivalent permutations of the external legs we obtain

i i k
V(ky, ko) = % (e‘i’“‘%? + eﬁkl"’“?) = gcos <7€12 2) (1.67)

Setting § = 0 we obtain the standard commutative vertex. It is also instructive to
explicitly build the interaction vertex for the noncommutative #* theory, in order to
have a deeper feeling of the general rule that we will show in brief

A
S, i droxdkpxd

Il

= 2 [#n o) (6x9)

A | |
—_ —4—E'- d4aj/d4k1d4k2d4k3d4k4 e—§k16k2€—§k39k4
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x  elbrthothetk)z gk VB ko) b (ks) b (kg

A i 1-
- _L_E d4k1d4k2d4k3d4k4 €_§k10k2e—§k39k4

X (2m)*6% (k1 + ko + kg + k4)<5(k1)§5(k2)(/§(k3)§5(k4)

A
= / A4y d ko d kad® s (27)45% (k1 + ko + ks + ka)

34!
cos (P25 cos (4554) 4 cos (1572 cos (2252
-+ cos (klgk4> CoS (kzgk?’)}

It follows that the the vertex in the noncommutative ¢* theory is

V(ky, ko, ks) = —é\~ {cos (k1§k2> Ccos <k3§k4) + cos <k1§k3> cos (kggk4)

4

-+ cos (k1§k4) C0S (kzgk?’)}

Again, for § = 0 we have the commutative vertex. Both the two vertices can be
obtained by multiplying the standard, commutative vertex, by the factor

X

V =exp [—;— Z kiekj] (1.68)

i<j

This phase factor is nothing but the prefactor of (1.22). Due to it the interaction
vertex has only cyclic symmetry, in contrast to the vertex in the ordinary real scalar
field theory which is invariant under the whole permutation group. This is exactly
what happens in the case of matrix field theories; it is then useful, following 't Hooft
[58, 51], to introduce a ‘double line’ notation for the Feynman diagrams. In this
way we can give a precise treatment of the noncommutative phase factor that ac-
companies the most general diagram. In the ’t Hooft formulation of perturbative
expansion of a matrix valued field theory the concept of planarity and non-planarity
of the diagrams is fundamental: in the large N limit planar diagrams dominate. In
noncommutative field theory the phase factor provides a similar matrix structure.
We introduce the ‘double line (ribbon) notation’ writing the momentum flowing in
a propagator as the sum of two momenta ﬂowing in opposite directions belonging




14 Chapter 1. Open Strings in a Constant B Field and Noncommutative Field
Theory

Figure 1.1: The propagator carrying momentum k; in the double line notation;
kl - ll - lg

Figure 1.2: Double line representation for ¢* vertex

to the edges of the now ‘thick’ propagator, see Fig. (1.1). This construction auto-
matically enforces momentum conservation in at each of the vertices, and forces the
vertices to retain only the cyclic symmetry in the external line.

Planar diagrams

For any vertex of the graph, let the momenta entering the vertex through the
n propagators be ki, k2, .. ., kn, in cyclic order. Then we set ky = Ui, — ligy ko =
liy— lig, - - -k = li, — liy, In terms of which ), _; kiOk; = 13,0, + 1, 0l + - - +1;,01;, .
Thus the phase factor at any interaction point may be expressed as the product of
n phase factors, one for each incoming propagator

V= He'%(“ielii“) (1.69)

j=1

With the phase factor written in this way is then easy to see that the phase associated
with any internal propagator is equal and opposite at its two end vertices, and so
cancels. Also tadpole diagrams give no phase factors [5]. We conclude that the



1.3 Feynman Rules for Noncommutative field theories 15

1,

Figure 1.3: A planar graph in the double line notation.

phase factor associated with any planar diagram is indeed

_exp[ S kibk; ] (1.70)

i<J

where the sum is taken over all external momenta in the correct cyclic order.

Non-planar diagrams .

The previous construction is valid only for planar diagrams. Non planar dia-
grams have, by definition, lines that do cross each other, and they give extra phase
factors. Consider for instance two lines, with momenta k;, k; crossing each other.
If, instead of crossing, the two lines had joined at a 4 point vertex, the graph would
have had an additional phase factor of exp[ — %(k;0k; — k;0k; — kifk; + k;0k;)] =
exp [ — ik;0k;]. So, any non-planar diagram have an extra phase

g tikilks (1.71)

for each crossing of momenta k; and k; in addiction to the phase associated with
the ordering of external momenta. We define Cj; as the intersection matrix of an
oriented graph

1 if line j crosses line 4 from right
C;; =14 —1 ifline j crosses line i from left
0 if lines j and ¢ do not cross

An orientation is given by the sign conventions chosen for the momenta in the
conservation conditions. Then the the most general noncommutative diagram is

V = e~ % Tici Pifpsi g5 Li,j Cij kibks (1.72)
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A 4
\ 4

(b)

Figure 1.4: One loop correction to two—point functions in ¢* theory

where the first exponential is the factor associated with the ordering of external
momenta, and the second one takes into account the non-planar intersections.

UV/IR mizing
An intriguing UV/IR mixing is present at one-loop in noncommutative field
theories [20, 22]. Consider ¢* theory in four dimensions with the Euclidean action

1 1 1
S:—./d%(;(aﬂqb)g%—-§m2¢2+-@g2¢*¢*¢*¢). (1.73)
Consider the 1PI two point function, which at lowest order is simply the inverse
propagator
(2) _ .2 2
Iy’ =p"+m°. (1.74)

In the noncommutative theory, this receives corrections at one loop from the two
diagrams in Figure (1.4), one planar and the other non-planar.

The two diagrams (which are identical in the § =0 theory up to a symmetry factor)
give

F(g) . g2 d4k
tplmar = 3(9m)t | k2 m?
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r@ - _ g’ / d*k k0P
1 nonplanar 6(271')4 k?. + m2
The planar diagram is proportional to the one loop mass correction of the com-
mutative theory, and is quadratically divergent at high energies. In order to see the
effect of the phase factor in the second integral we rewrite the expressions for the
two integrals in terms of Schwinger parameters

1 . e d ——a(k2+m2)
m = . Q€ . (175)
The k integrals are now Gaussian, and may be evaluated to yield
2
2 B g da _ m2
I'—‘1 planar T 48’]T2 E{Ee ¢
(1.76)
2
(2) _ g dO{ —a 2_222
F1 nonplanar 9672 / Ez—e i ;
where we have introduced new notation
Poq=—pub = Pub,a (1.77)

(note that p o p has dimension of length squared). In order to regulate the small o
divergence we multiply the integrands in the expressions above by exp(—1/(A%a))
to get

2
9 g do _gm2— 1
F&E)lanar = 28_7}‘5/'&*2‘6 e
| (1.78)
]_"(2) . 92 do -—om'bz—-——-wAb—POJM_I7
1 nonplanar —9—6_77—2 55 ¢ ’
Therefore,
2 2
2 )
e = 13 (22 - (=) +0()
(1.79)
2 A2
2 g If
Fgr)lonplanar = 06772 (Agﬁ_m%n(—;{é“) +O<1))7
where
Apm b (1.80)

 1/A2+pop’
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In the limit A — oo, the nonplanar one loop graph remains finite, effectively reg-
ulated by the noncommutativity of spacetime. In this limit the effective cutoff
A = pop goes to infinity when 0#/p, goes to zero (i.e. when 0 — 0, or ppc — 0,
where py. is the projection of p onto the noncommutative subspace).

The one loop 1PI quadratic effective action is

1 2 92M2 1
@ = / d'p ( M2+ g - 1 )
e e 96m2(pop+ 5z) 9677 H(M2(p0p+x%) *
-+ 0" )$0)o() (1.8)
where M? = m? + f;ﬁz — 481 In ( > ... is the renormalized mass. Consider the

two cases

e pop K % , and in particular the zero momentum limit. Here Aeg ~ A, and
we recover the effective action of the commutative theory,

s = [ a3 P4 M) sor), (182)

where M = M?2 4 3247 _ 3¢m® 1 (T%) ... If M is fine tuned to be cutoff

9672 9672

independent, then M’ and also S1 I diverge as A — oo.

e pop>> % and in particular the limit A — co. Here Ay = -, and
4 2 g
1PI = /d (p + M* + m (1.83)
g*M?> 1
—~ 1 et O(g* -p).
i (e )+t 004 #)O()

The fact that the limit A — co does not commute with the low momentum limit
pnc — 0 demonstrates the interesting mixing of the UV (A — 0) and IR (p — 0) in
this theory.

This UV/IR mixing is one of the most fascinating aspects of noncommutative
quantum field theory. To recapitulate, we have seen that a divergent diagram in the
6 = 0 theory by the noncommutativity at § # 0 which renders it finite, but asp — 0
the phases become ineffective and the diagram diverges at vanishing momentum.
This property will be fundamental for the analysis of renormalization properties
that will be presented in the next chapter, because it will allow us to discard all the
non-planar diagram in the analysis of the UV divergences.
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1.4 Noncommutative solitons

Another very intersting aspect of noncommutative field theories is that thay allow
classical solutions otherwise forbidden in the commutative case [92, 96]. We consider
a theory of a single scalar field in 2 + 1 dimensions with noncommutativity in the
two spatial directions. We parametrize the spatial R? by complex coordinates z, z.
The energy functional is

1
B=3 / 2(0,00:6 + V(9),), (1.84)

where d?z = dxdy. Fields are multiplied using the Moyal star product, that in
complex coordinates is

(f % 9)(22) = €700 =0:0) £ (5 7)g(2/, 7)) (1.85)

z=z'

Before we look for classical solutions to this action, let us recall that the scalar
theory without noncommutativity does not have any lump solutions. This is actually
true for any bounded potential in spatial dimension greater than one, and follows
from a simple scaling argument [50, 51]. Let ¢p(z) be an extremum of the energy
functional (1.84) with & = 0. We consider the energy of the field configurations:

42(2) = o).
1 r o, (1 )
B0 = 5 [ @ (Jom00) + Vi)
1 1 2— 2 —
& [P (P s@r + X PVie))  s6)

Since ¢o(x) is an extremum, we require 9y E(A)|y=1 = 0. This means

[ @5 (50~ 2060 + DV (1le) ) =0 (187

For spatial dimension D > 2, for a potential bounded from below by zero, the only
way this relation can hold is that the kinetic and the potential terms separately
vanish. There are therefore no nontrivial configurations. This argument fails if one
includes higher derivative terms. Instead, for D = 2, only the potential energy
should be zero.

The limit of large noncommutativity is useful to simplify the search for finite
energy (localized) solution of (1.84). We take § — oco. This is exactly the low
energy limit we introduced before, seen from the point of view of the field theory. In
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this simple case we can indeed assume 6 = |§|. It is useful to rescale the coordinates
z = 210, z — 2V0. In this way the commutation relations will not depend on 6.
In the rescaled coordinates the energy functional becomes

1
B=5 / 02(8.90:6 + OV (6).) (1.88)
In the limit # — oo we can consider just the potential term in (1.88), and the energy
7
E= 7 / d* 2V () (1.89)
is extremized by solving the equation
ov
— =0 1.90
= (1.90
We will consider potentials in the polynomial form
V(g) = lm%? + Z @qu (1.91)
’ 2 .J=3 J .

where the product among the fields is understood to be the Moyal one.
If V(¢) were the potential in a commutative scalar field theory, the only solutions
would be the constant configurations

=\ (1.92)

where \; € {\1, A2, -, A} are the various real extrema of the function V'(z). For
V(¢) as in (1.91), \; are the real roots of the equation m?z + Y 7_gb;z7~" = 0. As
we shall see below, the derivatives in the definition of the star product allow for
more interesting solutions of (1.90). The first non-trivial solution to (1.90) can be
constructed starting from a function ¢q that satisfies

(o * go)(z) = do(2) (1.93)
For such a function the two following relation hold
¢ (z) = 6(z), flago(z)) = f(a) do(2) (1.94)

We can solve (1.90) with A\;do(z) where ); is an extremum of V' (z). The problem of
solving (1.90) becomes then that one of finding a function f that squares to itself
under % product. Such a function is

W(r) =2e"

2

(1.95)
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where r2 = 2% 4+ y?. Going to momentum space it is easy to compute

(k) = / 3 (z) 4 = 2me 1 (1.96)

and

(15*15) (p) = 4n’ / (;l:;zﬁ(k)q}(p_k) g3 eurk (p=k)”

— 9ge P/ (1.97)

Going back to coordinate space

2

(Wx)(r) =277 =2(r) (1.98)

and A(z) solves (1.90).

In order to find more general solutions of (1.90) we use again the Weyl-Moyal cor-
respondence. We used it in section (1.2) to pass from the operator space where
the coordinate operators do not commute, to the space of functions endowed with
the x product. Now we want to use it in the opposite direction: starting from the
coordinate R? where the B field is turned on, we want to go to the corresponding
single particle quantum mechanical Hilbert space, H, and find there all the solutions
of (1.90). We recall briefly here the definition of the Weyl-Moyal correspondence
adapted to the present case. Given a C* function f (p,q) on R? (thought of as the
phase space of a one-dimensional particle), we assign to it an operator O¢(p, §) € H:

oo 1 27, 71\ o—ilkqitkpp)
01(.1) = oz [ T )e (1.99)
where
F(k) = / a2 eilaatis®) £(q p) | 6,5 = ¢ (1.100)

The map given by (1.99) can also be inverted. Using
Tryy, e~ kadthod) ilkodthnd) — o §(k, — ki )6 (kyp — ky) (1.101)

we can project f in (1.99) and then perform the Fourier transform to find

flg;p) = / dkle™ " (g + K, /2|05(4, D) |g — ky/2) (1.102)
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Remember that the Moyal product has been transformed into ordinary operator
product: :

O = Oy - O, (1.103)

A useful identity relates the integral of the phase space function to the trace of its
Weyl transform

/ dadpf(p,q) = / dadpdk,, e~ (g + K. /21054, Bla — Ky/2)
— [ dadkg2es(ig)a +K,/2105(a.8)la ~ /2)

= 2W/dq(Q!OfIQ)

= 2Try0; (1.104)

In order to solve any algebraic equation involving the star product, it is thus
sufficient to determine all operator solutions to the equation in H. The functions
on phase space corresponding to each of these operators may then be read off from
(1.102). '

It is easy to see that O = AP is a solution to V'(O) = 0 if P is an arbitrary
projection operator on some subspace of # and if ); is an extremum of V(z). The
energy of this solution is, using (1.104),

2
E= —;;—QTrV(Oqg) - Ql;qv(/\i)TrP (1.105)
g

Thus the energy is finite if P is projector onto a finite dimensional subspace of H.
In fact, the most general solution to (1.90) has the form

O=> a;P (1.106)
)

where {P;} are mutually orthogonal projectors onto one dimensional subspaces

with a; taking values in the set {);} of real extrema of V(z). From now on we will
restrict ourselves to a potential with one nontrivial minimum X other than the one
at the origin. we have a huge infinity of solutions of the form AP. To see what



1.4 Noncommutative solitons 23

they mean, let us translate them into position space. It will be convenient for this
purpose to choose a particular basis in 7. Let |n) represent the energy eigenstates of
the one dimensional harmonic oscillator whose creation and annihilation operators
are defined by

-~

P 1P
V2 V2
where obviously a|n) = +/n|n — 1) and af|n) = v/n+1|n + 1). Any operator may
be written as a linear combination of the basis operators |m)(n/|, that, in turn, may

be expressed in terms of a and a' as
_ (@)™ _are a”
where double dots denote normal ordering. We will first describe operators of
the form (1.106) that correspond to radially symmetric functions in space. As
ata ~ r?/2, operators corresponding to radially symmetric wave functions are func-
tions of afa. From (1.109), the only such operators are linear combinations of the
diagonal projection operators |n)(n| = = : atre=a'ag™ ;. Hence all radially symmet-
ric solutions of (1.90) correspond to operators of the form O =) a,|n)(n|, where
the numbers a,, can take any values in the set {);}.

We now translate these operator solutions back to field space. From the Baker-
Campbell-Hausdorff formula

P (1.108)

(1.109)

[m) (n|

ilkadthep) _ g=i(kzathaat) _ =B . =i(ksothsal) g (1.110)

where

_kekiky ke ik,
vz oo V2o

Any operator O expressed as a normal ordered function of a and af, fy(a,al), can

be rewritten in Weyl ordered form as follows. By definition,

k, k* = 2k, k.

O =: fn(a,d") = @%—)—Q—/d%ﬁv(l@)  gmi(ksatheal) (1.111)

Using (1.110), (1.111) may be rewritten as

0=

1 - k2 M +
Pk oy (k)elr emilksatheal) 1.112
s | Phivibete (1112)
Thus, the momentum space function f associated with the operator O, is

f(k) =e7 fu(k). (1.113)
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For the operator O, = |n)(n| we find, using (1.110) and (1.111), that the corre-
sponding normal ordered function ¢\ (k) = 27re:§;Ln(1“23). (1.113) then becomes

_ 2, =2 (BN i(kzathiat)
In)(n] = (Q_ﬂ/d ket L (5 )e (1.114)
where L, (z) is the n'* Laguerre polynomial. The field ¢,(z,y) that corresponds to
the operator O,, = |n)(n| is, therefore,

2 _ 2 2__}___/2 =2 E—ik.ﬂ:_ iy —r? 2
bulr? =2 +9) = 5 dke4Ln(2)e — 2(—1)"e™" Ln(2r?). (1.115)

Note that @g(r?) is precisely the gaussian solution found in the previous section.
In summary, (1.90) has an infinite number of real radial solutions, given by

Zan¢n(rz) (1116)

n=0
‘ Wbere_¢n (r?) is given by (1.115) and each a,, takes values in {A;}.

- We also see from (1.105) that the action at # — oo has a large symmetry Oy —

UO4U", where U is any unitary operator acting on 7. This U(co) global symmetry -
generates new nonradially symmetric solutions out of the radially symmetric ones.

The most general projection operator O = AP, of rank k, is unitary related to

a projection operator which is diagonal that is of the form A(Zf;ol i)(z]). The

corresponding solutions are all degenerate in energy. In fact, their energy is & times

the energy of the minimal energy soliton £ = 1.

1.5 D-branes as noncommutative solitons

In this section we present the description of D-branes as noncommutative solitons
first proposed by Harvey, Kraus, Larsen and Martinec [94]. As we anticipated in the
Introduction, in the bosonic string theory there are D-branes of all dimensions that
are however unstable: they have a tachyon on their world volume. In particular,
the space filling D25-brane is unstable, and reflects the instability of the bosonic
open string in 26 dimensions. Ashoke Sen has made a series of definite conjectures
about the fate of the tachyon. Firstly, the vacuum that the tachyon rolls down
to, is expected to contain no open strings. Secondly the difference in energy per
unit volume of this vacuum to the original unstable one is expected to be equal to
the tension of the D25~brane. Thirdly, the lower dimensional D-branes are solitonic
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excitations of the tachyon potential. These conjectures will be described and studied
at length in Chapter 4, for ‘the moment we hope what we said is enough for the
subject of noncommutative solitons.

The effective action for the tachyon field, obtained by integrating out the massive
string fields, is expected to take the form

S = %/d26\/§ (—;—f(T)g“”é?#T&,T —U(T) + - ) (1.117)

where the dots stand for omitted higher derivative terms and terms involving
the massless modes. The potential U(T) is a general potential having an unstable
extremum at 7' = T, (the unstable vacuum), and a minimum that we choose at
T = 0. The constant C = g,795 is independent of g;. With these conventions Sen’s
conjecture requires U(T = T,) = 1: in this way S(T = T,) = 7p5Vos. Always
according Sen’s conjecture the whole action should vanish at the local minimum
U(T =0)=0.

Let us turn on a B field in two spatial directions of the theory, say z,,. In the
presence of a B field the action becomes

*

S = Gg / 4*\G (% £(T)G*9,T8,T — U(T) +- ) (1.118)

The advantage of taking the limit of large B field, as we know, is that deriva-
tive terms can be neglected. The soliton solutions of (1.118) are then exactly the
noncommutative solitons we described earlier. According to Sen’s conjecture, these
should be the D-branes of the bosonic string theory. The simplest noncommutative
soliton solution to (1.118) is

T = Togo(r?) = T, 2¢"/° (1.119)

where 72 = 22 + 22 and the dependence on 6 has been reintroduced ( in this section
we do not make the rescaling z — z\/é) This is a codimension two object and a
candidate for the D23-brane. Let us see the energy of such an object. In the large
B field limit the action is

C 26 )
S=~—é—s/d VGU(T) (1.120)

Inserting T' = T.¢o(r?) we have

AS: —Q—(é—(j—lfl /d24m/d2x\/é¢o(r) = 'QWQ)C viL.) /d%:z;\/_@ (1.121)

G,
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Using the relation (1.45) between G, and g,, that for large B field is

__9VG
2ra/B\/g’
and keeping in mind that # = 1/B, and U(T%) = 1, we have
2 O 24
S =—(27)« d*z/g = —(2 7)2a 195 Vau
The tension of the soliton is then

2 0
Teoliton = (27)°0/To5 = To3

(1.122)

(1.123)

(1.124)

that is exactly the right tension of a D23-brane. The only information we needed to
obtain the energy of the noncommutative soliton is the value of U at the extremum
T, that is a part of the potential that we have some information about from Sen’s
conjecture. Using noncommutativity in additional spatial directions, it is also pos-
sible to obtain branes of all even codlmenswn as noncommutative solitons, all of

'them with the rlght tensions.



Chapter 2

Renormalization of
noncommutative gauge theories

In Chapter 1 we saw that for D-branes in the presence of a constant NSNS B-field
the low energy effective action of the open strings attached to the branes can be
represented by a Yang-Mills theory defined on a noncommutative spacetime endowed
with a Moyal bracket.

All this holds at a semlclassmal level (i.e. tree amplitudes computed in the string
theory and in the field theory setting compare well). However one can try to compare
loop amplitudes calculated both in string theory and in the corresponding noncom-
mutative field theory, in order to see how effective the noncommutative effective field
theory is. Several calculations of this type have been carried out [35, 36, 14, 13, 15].
It seems to be important therefore to know exactly on what properties of a noncom-
mutative YM theory we can rely. One of the basic properties is renormalizability.
Works that cover this subject are [6, 7, 8, 9, 10, 11, 12, 19, 21, 33] . In this Chapter
we will study renormalization of different noncommutative gauge field theories. We
first consider the case of a noncommutative YM theory with U(N) gauge group
in 4D without matter and analyze its one loop renormalizability properties. Since
non-planar singularities are rendered harmless by the noncommutative parameter 0,
only planar one-loop contributions are relevant in the UV region. Actually we will
explicitly show that noncommutative gauge theories are one-loop renormalizable,
exactly as ordinary YM theories [31]. Next we consider noncommutative gauge the-
ories whose Lie algebra are determined by orthogonal or symplectic groups. One can
show that these theories can indeed be defined and correspond to the field theory
limit of open string theories attached to D-branes at tree level in the presence of an
orientifold [29]. We show however that the field theory limit of the one-loop string

27
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amplitudes disagree with the one-loop amplitudes calculated from the noncommu-
tative field theory [49].

2.1 One-loop structure of noncommutative U(N)
gauge theories

Our noncommutative theory is specified by the action
— d4. - T 1F % 1 u\2 . m %) n = .
S = zlr| —5 W — 5(8#.4 )2 + (e * §,D¥c — 19, D" cx ¢) (2.1)

where
F,, = 0,A, — 0,A, —ig(Ay A, — A, xA) (2.2)

and we will choose the Feynman gauge o = 1. The action (2.1) is invariant under
~ the gauge transformations ‘ ‘ :

bA, = O+ A x A, — Ax Ay,
§F, = FuxA—AxFu

Tt is possible to see immediately that the potential A, should be valued in the Lie
algebra u(N), i.e. should be an hermitian matrix. Let us suppose that A, = AiT*
is an element of some Lie algebra with basis Te. Then under a noncommutative
gauge transformation

§A, = OA+ALxNTOT? — X0 ATT*
1 a a a 1 a a a
= g +5(Au* AP+ AP ASY[T, T + 5 (45 AP — N AS){T®, T°}(2.3)

The transformed field will belong to the same Lie algebra, only if the anticommutator
i{T*,T*} does, and this happens only for u(N) algebra.

The possibility of defining noncommutative gauge theories corresponding to sub-
group of U(N) and a string/brane configurations that correspond to them, is then
a highly non trivial task [29, 57, 56]. Let us consider for instance the simplest case:
the U(1) part of the p+1 dimensional supersymmetric U(N) gauge theory that
arises as the low energy effective theory of n coincident Dp-branes. At B = 0 this
U(1) part decouples from the open string dynamics and effectively we find an SU(N)
theory. Indeed the U(1) dynamics is a free dynamics since it represents the center
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of mass of the stack of branes. String amplitudes at tree level and one loop take
into account this decoupling (see for instance [14]). When a B field is turned on,
separating the center of mass becomes impossible. Basically this is because the U(1)
part represents the interactions of the (D-brane) open strings with the bulk closed
strings; when B # 0 the open string left and right modes contribute unequally, but
in the closed string sector left and right modes always appear on an equal footing,
see also [23] for a perturbative analysis of the NC U(1) non decoupling.

In the next section we will investigate the one-loop structure of the noncommu-
tative SO(N) gauge theory proposed in [29], so we spend the rest of this section
to show explicitly the one-loop renormalizability of noncommutative U(N) gauge
theory.

For the noncommutative U(N) gauge theory the potential A, is valued in the
Lie algebra u(NN), i.e. is an hermitian matrix. As is customary in dealing with 4D
field theories, throughout the chapter we use a Minkowski formulation of the theory,
although its brane origin is Buclidean.

Since the properties of the Lie algebra u(N) tensors are crucial in our Calculatlon
we devote the rest of this subsection to deriving them.

We use a basis t*, a = 1,..., N? — 1 of traceless hermitean matrices for the L1e

algebra su(N), with normalization

tr(t*) = %5“” (2.4)

and structure constants f.;. defined by
[£%, ¢7] = 4 fapet® - (2.5)

We define also the third order ad-invariant completely symmetric tensor dg. by
means of

{ta: tb} = %6@ + da,bctc . (26)

Next we pass to the Lie algebra u(N) by introducing the additional generator
= 7——1 . Corresponding to any index a for su(lN) we introduce the index
A = (0,a), so that A runs from 0 to N? — 1. We have

[t4,t8] = ifapct®, {t4tP} = dapct® (2.7)

where fapc is completely antisymmetric, fap. is the same as for su(V) and fope = 0,

while dpc is completely symmetric; dgp. is the same as for su(N), dopc = \/—7%;6 BCH
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dOOc =0 and dooo = \/—% We have also

1
TI'(tAtB) ‘: adAB .
The following identities hold and will be extensively used below
fapx fxcp + facx fxpe + fapx fxpc =0
fapx dxcp + facx dxps + fapx dxpc =0

fapx fxBc = dapx dxcp — dacx dxpB

Next we define the matrices Fu, D4 as follows

(Fa)pc = [BACH (Da)Bc = dpac

(2.9)

(2.10)

In the evaluation of Feynman diagrams we need to know traces of two, three and
four such matrices. We borrow from the literature, [26, 27, 28], the corresponding
results for su(N) and extend them to u(N). Denoting by Tr the traces over the

relevant N? x N? space, we obtain

—~

'ATI‘(FAFB) I—NCA5AB, CA=1—5A,0
T\I‘(DADB) :NdAéAB; dA—_—Q—CA
Tr(FaDg) = 0

——~~

N
Tr(FaFpFc) = —= faBc

2
—— N
TI(FAFBDc) = -——i— dABC CaCB dC’
——~— N
Tr(FaDgpDc) = ) faBc
Tr(DaDpDc) = ~ 7NABC daBc

where NABC = dA dB dc - 45A-|~B+C,0- Finally

—~ 1 N
Te(FyFpFcFp) = [55(;135013) + — (dapx dopx + dapx dpcx)

8
N
3 (fapx fBex — faBx fC’DX)}CA CB Cc CD
— N
To(F4FpFeDp) = —— (dapx fopx + fapx dopx) cacscodp

4

(2.11)

(2.12)
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—~ 1
TI‘(FAFBDCDD) : CACp|Cc CD—Z- (5A053D — 6A356'D -+ 5AD(SBC) (2.13)

+"é‘ deodp (faBx fepx — fapx fBex

—dpx depx — dapx dpex) ]

— 1
Tr(FaDpFcDp) = 5 (64B0cp + 04p0pc — 64cOBD) CACB CC CD

+§ (faBx fepx — fapx fBox

—dapxdepx — dapx deex) cadpcodp

— N
Tr(FuDpDeDp) = T (faBx dopx + dapx fepx) cadpdedp
TI(DADBDcDD) = 56(/1]3601)) cAaCpCcCp

N
T3 (fapx fBox — faBx fepx

+dapx depx + dapx deox) NaBep

where apcp = dadp dodp — 8044+B+c+D,0-
~ The Feynman rules we are going to use are collected in Appendix A. Evaluating
the one-loop contributions is lengthy but straightforward. In this section we consider
the planar part of the 2—, 3~ and 4-point functions and, adopting the dimensional
regularization (e = 4 — D, as usual), we extract first the planar part and, out of
it, the divergent part. The relevant results are written down below. The 2— and
3-point functions are exactly parallel to the corresponding ones in ordinary gauge
theories, and some of them are written down below only for the sake of comparison.
Gluons carry Lorentz indices 4, v, ..., color indices A, B, ..., and momentap, g, ... .
Ghosts carry only the last two type of labels. All the momenta are entering, unless
otherwise specified, and we use the notation p X ¢ = %p#(?‘“’q,,.
2—point function. We have two nonvanishing contribution to the UV divergent
part:
— gluons circulating inside the loop:

1 2 19 11
j———==048N | ==g.,0* — =Puby| 2.14
gy 04B [129,#):0 6pﬂpJ (2.14)
— ghosts circulating inside the loop:
1 2 1 1
= Z5.aN | — 24z 2.15
el ngﬂpp + 6pupu} (2.15)

Their sum is:
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1 2 5 5
25N (g, 0% — p.p, 2.16
which entails the usual renormalization constant
5 1 2
To=14+ —0*N z 2.17
3 + 39 (4;71')2 ¢ ( )

3-point function. The external gluons carry labels (A,p,p), (B,q,v) and
(C, k, ) for the Lie algebra, momentum and Lorentz indices. They are ordered in
anticlockwise sense. The triangle diagram gives

—%QSN ( 471T)2% (cos(p x q) fapc + sin(p X ¢)dasc)
0 ) ((p - q))\gw/ + (q - k)ugvA + (k- p)VgAM) (2-18_)

The diagram with one three gluon vertex and one four—gluon vertex gives:

9 1 2 .
—~g3N(47T)22 (cos(p x q)fABc +sin(p X q)dasc)

4

(0~ Daguw + (= Fugir + (k= P)ugin) (2.19)
The contribution of the two ghost cifculating diagrams is:

1 1 2 .
_QSN(47T)2E (cos(p X q)fapc + sin(p X ¢)dasc)

24
(P = aguw + (@ — k) pgor + (k= P)ugun) (2.20)

The sum of the coefficients is

13 9 1 2
139 1 _2 9.91
s Titu "3 (2.21)

Therefore, as in the ordinary YM theory, the renormalization constant 7 is

2 1 2
7, =14 =¢*N - . 2.22
! + 39 (4m)2 € (222)

4—point function. The external gluons carry labels (A, u,p), (B,v,q), (C,p,7)
and (D, 0,s) for Lie algebra, Lorentz index and momentum, as shown in Figure 1.
There are four distinct graphs contributing to the 4-gluon vertex: the gluon
box b, the ghost box g, the gluon triangle ¢ and the gluon candy ¢. There are
two main type of contributions, distinguished by their Lie algebra tensor structure.
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A pp - B,vq A pup B,v,q
.\—\-\l____»_r/f
|
v
rffJ-_<t“__L\1
D,o,s C,p,r D,o,s C,p,r
A, p,p B,v,q A p,p B,v,q
D,o,s C p,r D,o,s C,p,r

Figure 2.1: One loop contributions to the four-point function

The first is characterized by Kronecker delta functions in the Lie algebra indices,
while the second consists of d and f tensors. The first type contributions, which are
potentially dangerous for renormalizability, fortunately vanish.

The second type contributions have the general form

42 1 N N . .
— 4; oL [ (—8— cos(p X s —q x 1) Lapcp + n sin(pXs—gxr) MABCD) Koo

N N . i
+ (—g cos(p X r—¢q x s) Lpacp — T sin(p X 7 — ¢ X s) MBACD) K o

N N . i
+ (—— cos(p X §+qXr)Lacep + —é— sm(p X §+qgX 7") MACBD) K;_Lpua}

8
(2.23)

where

Laipcp = dapxdepx + dapx deex — fasx fepx + fapxfBox

Magep = dapx fopx +dapx feox + fasx depx — fapx dpox  (2.24)
and

. 04 04 34
K,uvpa = '3‘ Juv Gpo + '§“ Gpo Jup + '3— Gup Guo
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1
Kﬁ”PU = _g (gul{gpa + Guo Gup t Gue gud) (2-25)
K:Wpd = —(46 9w Gpo + 46 Guo Gvp — 32 Gup gua)

K;upo' = 16 (7 v Gpo + T Guo Gvp — 8 Jup Gue)

The 4-point vertex is now easily calculated by summing all the contributions
with the appropriate symmetry factors. The contributions (2.23) give rise to

N 2 1

59 % (dr)? [ (ces(p x s —qx7)Lapcp+sin(p xs—qX T) MABCD) Thvpo

+ <cos(p x 1 —qx8)Lpacp — sin(p X r — ¢ X s) MBACD) Toppo
+ (cos(p x s+ qx71)Lacpp +sin(p X s+¢X T) MACBD) Tup!/fr:\
(2.26)

where

.,Tluypgv: g/,w gpa + an gup —vzg/.tp gUO‘ (227)

Comparing (2:26) with eq.(A.5) in Appendix A, we see that the contribution
(2.26) implies that the four—A term in the action is renormalized with a Zy given by
1 1 2

Zy=1—-¢’N
‘ 39 (4m)? €

(2.28)

This is the same renormalization that occurs in ordinary U(N) Yang-Mills theories.
Therefore, the noncommutative U(N) Yang-Mills theories are one—loop renormaliz-
able.

The U(1) case must be treated separately. Using the corresponding Feynman
rules (see Appendix A), one finds the 2- and 3-point contributions evaluated above
with f = 0 and d = 1 and multiplied by 1. As for the 4-point function, the term
corresponding to (2.26) is obtained by setting L = 2 and M = 0 in the latter. There-
fore all the renormalization constants satisty the renormalization conditions, and, as
a consequence, the noncommutative U(1) gauge theory is one-loop renormalizable
too, [9, 11]. ,

Finally let us consider the restriction from the U(NV) to the SU(N) case. It is
still not known what a noncommutative SU(IN) gauge theory is, although attempts
of defining it have been done, [30, 56]. In particular we do not know the explicit
form of the action. Therefore we can only try to guess the relevant Feynman rules.
The most obvious possibility one can envisage is that they are simply obtained from
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the Feynman rules of the noncommutative U(N) theory by restricting everywhere
the U(N) indices A, B, ... to the corresponding SU(N) ones a,b,.... As one can
see in this case the renormalization constants do not coincide with the ones in the
ordinary SU(N) gauge theory. Strictly speaking this is not enough to conclude that
the noncommutative SU(N) theory is nonrenormalizable, unless one assumes that
the § — 0 limit of the quantum theory is smooth.

However, even allowing for such more general possibility, it is easy to show that
the theory defined by such Feynman rules is not one-loop renormalizable, see also
[23]. To this purpose it is sufficient to compare the ratio of the renormalization
constants of gluon propagator, Z3, and the three gluon vertex, 21, with the ratio of
ghost propagator, Zs, and ghost-ghost- gluon vertex, Zy. If the SU(N) theory were
renormalizable, we should find Z5/7, = Zs / Z,. Instead we obtain

a = 1+92(471r)2§ 211 (sz\;Q)
R )
b et
% = '1“92(471r)2§ ; (NQN_2> !

where we used the traces over the SU(NN) indices that can be found in [27].

2.2 One-loop structure of noncommutative SO(NV)
gauge theories

For the noncommutative SO(NN) gauge theory we recall that, even without resorting
to an action, we can extract the gluon Feynman rules for this low energy field
theory from the string tree amplitudes [29, 49]. A natural question that arises is
whether by applying these Feynman rules to compute one-loop amplitudes one gets
a renormalizable theory. The answer is that, if we apply Feynman rules in the
ordinary way, we get a nonrenormalizable theory. ‘

To illustrate the problem the simple NC SO(2) case will do. A brief remark on
NC SO(2) theory is needed in order to show the peculiar behavior a noncommutative
field theories. In the ordinary (commutative) case NC SO(2) and NC U(1) are the
same (free) theory. This is not true anymore in the noncommutative case. This is
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due to the fact that, unlike the u(/N) Lie algebra, so(IN) does not possess a third
order invariant symmetric tensor. In the noncommutative theory this difference is
relevant, because the d®° tensor enters the Feynman rules multiplied by a nonzero
coefficient, i.e. sin(px¢). In the ordinary limit p x ¢ = 0 and we find the equivalence
of the two theories.

The Feynman rules are very simple in the NC SO(2) case since only the four—
point vertex is nonvanishing, see Appendix A where we collected the complete Feyn-
man rules for the noncommutative SO(N) gauge theory. If p,q,7,s and u,v, p,0
are the momenta and the Lorentz indices of the four legs in clockwise order, the
four—point vertex is:

—2ig*> [ cos(p X 1 — q % 8) (girgjt + Gij 9k — 29ujk)
+ cos(p X s+ q X 1) (gugjk + GirGit — 29:59k1) (2.29)
+ cos(p x s — q X 1) (gijgu + 9agix — 29i51) ]

The one-loop correction is infinite. So the theory needs a renormalization. What is
worse is that the divergent part is not of the form (2.29), but
' o
~T [ cos(p x 7 — ¢ x 5) (Tgirgs + Tgijgr — 89ugjx)

© + cos(p x s+ q % 1) (Tgugse + Tgikgst — 89ij ki) - (2.30)
+cos(p x 5 — g X 7) (Tgijgr + Tgugjx — 89irgs) |
In order to eliminate this divergence we need a counterterm of the form
~ (TAg % AP s Ajx AT — 4A; % Ajx At x A7) (2.31)

Therefore the divergent part of the NCSO(2) gauge field theory breaks the gauge
symmetry.

Now let us look at the problem from the string theory point of view. It is well
known that in the limit o/ — 0 string theory reproduces gauge theory amplitudes
(see for instance [45] and refs therein). Then, to try to have an answer to our
problem we have to study the one-loop corrections of unoriented open string theory
with orthogonal Chan—Paton factors in the presence of a background B field. Let us
start without B field. In this case, besides the usual annulus contribution, we have
to take into account the Mobius band amplitude. Both amplitudes have a common
structure which can be written as

wly

1 ‘ gM D M 9 D
AW(py,..,pu) = 3 Xm fp e (Z—%_ (20/)77 / H dv,dre” 772
T r=2
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X H (1 - nne—,‘Zn'r)Z“‘D exp I:Z prG/{,/\/l(Vers}

n=1 r<8

1
X  exp [Z (psarGA,M(Vsr)er + 'Z'EraTasGA,M(VST)€S>:l

TF#S m.l.

where xur = i (1) for M even (odd). fp~*"* is the group theory factor. It
equals Ntr(¢® ...t*) in the annulus case for planar amplitudes and tr(z* ...1%)
in the M&bius strip case. The v coordinates represent the insertion coordinates of
the vertex operator on the boundary of the world-sheet, p G ¢ stands for p; GY 5
Vps = Up — Vg and O, = %. The factor 7, = 1 in the orientable case, and = (—1)" in
the non-orientable case. The suffix m.l. stands for multilinear, meaning that in the
series expansion of the exponential we keep only the terms that are linear in each
polarization. The propagator G4 s is either the annulus (A) or the Mobius strip
(M) propagator. Their explicit expressions are contained in [49].

The integrals over the v variables are evaluated in the appropriate regions of
integration (moduli space), and one can see that a large amount of information
contained in a Mdobius amplitude is captured by doubling the integration region.
Collecting together the planar amplitudes and the Mobius ones one can single out the
divergent parts that corresponds in field theory to one-particle irreducible diagrams.

The result can be written

— 2 111
N2 9 2240, , (2.32)

AD(py, )|, = = 2 (4r)? 3 €

where in the (N — 2) factor the N part comes from the annulus and the —2 comes
from the Mobius strip. Switching on a constant B field amounts to replacing the
propagators G4 m With Gam(p—p') — 209€(p—p'), with p = exp(—2v). Inserting it
into the general formula (2.32) has a simple effect. The addition of the second term
—L0%¢(p — p') does not affect derivatives of propagators, while it modifies the term
I, < ePrGlor=ps)Ps  This modification turns out to be very simple since the insertion
points along the boundary of M are ordered, so that the relevant e function is
always either +1 or —1. As a consequence the corresponding exponential factors can
be extracted from the moduli integral. In other words, the gluon amplitudes are
multiplied by a global (noncommutative ) factor, i.e.

A(l)(ph e 7pm) — H eipq-xpsA(l) (pl; . 7pm) 3 (233)

r<s8
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where AQ(py,...,pm) are the B =10 amplitudes. We can therefore conclude that
the structure of the divergent terms; as well as the renormalization constants, are
the same as in the ordinary SO(N) gauge theories. Therefore, if there exists a
noncommutative gauge field theory that represents the low energy effective action
of open strings with orthogonal CP factors in the presence of a constant B field,
this moncommutative gauge field theory is one—loop renormalizable, see also [61] for
related comments.

Let us come back to the NC .S O(2) case. From the string theory point of view
it is rather easy to argue that this theory should not be UV divergent. The one-
loop contributions to open string amplitudes with S O(N) Chan-Paton factors are
of three types: planar (P) and nonplanar (NP) with the world-sheet of the annulus,
and nonorientable (NO) with the world-sheet of the Mobius strip. Due to the
structure of the string propagators on the annulus and on the Mobius strip, we saw
that the contributions in the presence and in the absence of the B field for P and
NO differ only by overall noncommutative factors of the type cos(p x g) or sin(p x q).
Tt follows that those contributions which become divergent in the field theory limit
are the same whether B is there or not. Now in the ordinary (commutative) SO(N )
case the divergent part comes from the planar contribution with a factor of N in
front, and from the non orientable contribution with a factor of —2. So altogether
‘the divergent field theory part is proportional to N —2, and therefore vanishes in the
case N = 2. This is obvious from the ordinary field theory side, because the theory
is free. However, as we noticed above, this conclusion is also suggested by string
theory in the noncommutative case. Therefore string theory tells us that NCSO(2)
theory should not give rise to UV divergences.

A proposal for solving this puzzle is based on the fact that the element where
field theory and string theory diverge is not the Feynman rules themselves (or the
action they come from) but their application in the one-loop calculation. We have
applied them in the usual way, but that may be too naive. We would need a suitably
modified set of rules, based on a ‘deformation’ of the Lie algebra.
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String Field Theory: a Primer

3.1 The String Field

The first building block of Witten’s Cubic String Field Theory (SFT) is the String
Field. It is defined as the most general state hvmg in the Hilbert space # of the
first-quantized open string theory:

vy = (<>+A<> £ Bu(o)ot oy + . )erl9)

_ /d%k Au(R)aty + Bu(R)ot oty +. . Jarlk)  (31)
where |k) = e*¥X(@]0). |Q) = ¢;|0) is the ghost number 1 vacuum. It is defined by
akl) = 0 (n > 0)
bal2) = 0 (n>0) (3.2)

Q) = 0 (n > 0)
B0 = 0

|0) is the SL(2,R) invariant vacuum, z and k are the center-of-mass coordinate
and momentum. Thinking the coefficients functions in front of the basis states
as spacetime particle fields, we can call |¥) a ‘string field’. We define now some
operation on the string field needed to build the string field action. They are a
kinetic operator @, a multiplication rule (* product),and an inner product (-,-).
They act on H in the following way

Q : H—=H
*x @ HOH—>H (3.3)
() : HOH—=C

39
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The kinetic operator @ is defined to satisfy the following identities

Q*A = 0
Q(AxB) = (QA) * B+ (-1)* A« (@B) (3.4)
(QA,B) = —(-1)*(A,QB) ‘

The first one is the nilpotency condition. The second states that @ is an odd
derivation of the star product. The third declares that Q is self-adjoint. Inner
product and * product should satisfy

(A,B) = (-1)*”(B,4)
(A,BxC) = (AxB,C) (3.5)
Ax(BxC) = (AxB)xC

The first property is a symmetry condition, the second is a cyclicity property anal-
ogous to the similar property of trace operation, the third is the condition of as-
sociativity. Associativity condition is fundamental for the interpretation of string
field theory as a theory of interacting open strings, [63]. We will see it when we will
introduce Witten’s original formulation of SF'T. We equip the string fields with a
Grassmanality through the ghost number. We declare that the string field has ghost
number 1, completely taken into account by the action of ¢; on |0). ' is then an
odd operator of degree 1

gh(QA) = gh(4) +1 (3.6)

and the * product is an even operator of degree zero
gh(A * B) = gh(4) + gh(B) (3.7)
In the properties above (=1)# is +1 when A is Grassman even, and —1 when A is

Grassman odd.

We are now ready to give the string action:

11 1
where g, is the open string coupling constant. Since S(®) should obviously be a real
number, we need also to impose a reality condition on the string field. Unfortunately
at the moment we do not have enough tools to define this condition, we will come
back on it later. The quadratic part of (3.8) is the free part of the action and
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represents an evolving on shell string state from 7 = —co to 7 = +oc0. The cubic
term is the interaction vertex of three string states.

Using the properties (3.4), (3.5) and the ghost numbers assignments, is easy to
see that the action (3.8) is invariant under the gauge transformation

P=QA+PxA-Ax® (3.9)

where A is a Grassman even ghost number zero string field. Variation of the action
(3.8) gives the field equation of motion

QP+2+«d=0 (3.10)
From the second of the equations (3.5) we have
(A,B%C) = (=1)2EB(B,C x A) (3.11)

and, since the string fields are all of ghost number 1, the above equation states that
the cubic term (®,® = ®) in the action (3.8) is cyclic in the permutations of the
fields. In a similar way is possible to show that

(D1, Q) = (22,Q%1) (3.12)

Twist Operator

Twist operation reverses the parametrization of a string. It is realized by an
operator §) satisfying the following properties:

QQ4) = Q(Q4)

(QA,QB) = (A,B) (3.13)

QA% B) = (=1)*PQ(A) xQ(B)
The first property means that the BRST operator has zero twist, the second property
states that the bilinear form is twist invariant, and the third one shows that, up to
signs, twisting the % product of string fields amounts to multiplying the twisted
states in opposite order. For the string field @, that is Grassmann odd, the twist
operator acts as

QD % D) = +(Q3) * (D) (3.14)

with the plus sign. This result, together with the first two equation of (3.14) implies
that the string field action is twist invariant

S(Q3) = S(T) (3.15)
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Identity String Field
The algebra of the * product has an identity element, usually indicated as I
IxA=AxI=A (3.16)

From the above definition follows immediately that [ is a Grassmann even, ghost
number zero string field. Under twist operation is a twist odd state:

QI * A) = (=1)*THQA) * (QI) = —(QA) = (Q) (3.17)
since the last term should simply be (2A4), it follows
QI =-1 . (3.18)
Finally, any derivation D of the * algebra should annihilate the identity:

D(I#A) = (DI)* A+I+DA=(DI)x A+ DA (3.19)

3.2 Conformal Field Theory'{pOin‘t of view

Our main need is to find a way to do actual corriputatibris stai”ting from the string
field action (3.8). The kinetic operator is immediately chosen as the BRST operator
Qp: it satisfies all the properties (3.4) and the variation of the free (quadratic)
part only of (3.8), with @ = Qp is nothing but the physical state condition on the
first-quantized string theory states:

Qpl¥)=0. (3.20)

From now on the kinetic operator will be the BRST operator; without any risk of
confusion we will continue to refer to it as @ instead of Q5.

The action (3.8) can also be written by defining two states

Vsl € H* @ H* (3.21)
and
(leH " QH @ H* (3.22)
such that
11 1
S(®) = 712 12)(V2]|®) () |Q@P) () + 3 (123) (%H@u)l@(al@ha} (3.23)
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where the pedices are introduced to distinguish explicitly among the different copies
of the string Fock space referred to different strings. Our final task will be the
explicit determination of (V5| and (V3|. This will be done using the two dimensional
conformal field theory (CFT) structure that underlines string theory.

First of all we need a recipe to define #*, the dual of the Hilbert space of
first-quantized string states. This is done by means of the internal product defined
through bpz conjugation [52]:

bpz : H — H*
bpz |A) = (bpz (A)] (3.24)

To define bpz conjugation consider a primary field ¢(z) of dimension d with mode
expansion

d
Z Lo b= ). (325)

By the state-operator correspondence ¢(z) creates in the far past (1 — —o0,z — 0) -
the state ‘ '

#) = lim 6()]0) ()
We define
(bpz (8)] = (0] lim 6( - =) (3.27)

The state (0| is the left (out) vacuum defined as the time evoluted |0) at 7 — oo
(z = 00). The transformation

T:zm —-% (3.28)

is a SL(2,C) transformation which sends the origin to infinity while taking the unit
circle to itself. On the modes ¢, the inversion Z acts as

bpz (¢,) = 74 42 a1z o g(2)
27rz e )hé(— %)

f
N .7{27rz e 1Z¢m DA
(-

1), (3.29)
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Bpz conjugated of known operators are
bpz (L,) = (=1)"L_n
bpz(at,) = (=1)""ey

Equipped with bpz conjugation we can now discuss the reality condition on |®).
Hermitian conjugation (hc) just transforms a bra into a ket. Bpz and hc conjugation
are used together to define complex conjugation:

|A*) = bpz "t o hc|A) = he 7 o bpz |A) (3.30)
Reality condition is
|A") = |A) — hc|A) =Dbpz|A) (3.31)

This condition ensures the reality of the fields ¢, A, By, . . . in the expansion (3.1).
The importance of using bpz conjugation instead of hc one, is in the conformal
field theory character of the former. What we want to do now is indeed to give a
conformal field theory prescription for calculating the vertices (Vo] and (V3], and to
be able to do actual computations..
Comparing the two forms (3.8) and (3. 23) of the strmg field action it also follows
that

(4, B) = (bpz(4)|B) = 1) (Vall D w|B) ) (3.32)
and
(A, B +C) = (bpz (A)|B * C) = (23 (VallA) )| B)2)|C)es), (3.33)
this means that the vertex |V3) realizes the * product:
(|14) * |B))s = 1(bpz (A4)|2(bpz (B)||V3)125 (3.34)

We now have a cft definition of {-,-) in terms of bpz conjugation. What we want
is a correspondent cft definition of the x product. It is useful to define the * product
through the interaction term of the action. Consider three generic string states A, B
and C , and their corresponding vertex operators O4(z), Op(2), Oc(z). We define
three conformal transformations f;(z),7 = 1,2, 3 such that

(4,85C) = (FP 2 0A(0) §F 0 05(0) f£ 2 0()), (3.35)
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There is a crucial conceptual difference between the two sides of the above equa-
tion. The left-hand side is an inner product in the product space H; ® Ha @ Hs of
the 3 Fock spaces H;, while the right-hand side is a correlation function of a single
string conformal field theory in the z upper half plane. The index D indicates that
the conformal transformations and the correlation function are defined on the disk
(that is conformally equivalent to the upper half plane).

Remember the time evolution of a single free string when the worldsheet is
parametrized by the upper half plane: in z = 0 the string starts to evolve, the real
positive axis being the boundary o = 7 and the negative one the boundary o = 0.
The front of the evolving string is represented by half circumferences centered in the
origin, all the points belonging to the same radius being points at the same time.
The intersection of the front line of the string with the imaginary positive axis is
the midpoint @ of the string (o = 7/2). ’

The basic idea for defining the conformal transformations f; is then to map three
upper-half disks into a single disk representing the interaction vertex of the three
strings. The operation of * product is then interpreted as a gluing of two string
worldsheets. We start with three upper-half disks parametrized by their own local
coordinates z;. On each half disk we perform the following coordinate transformation

1+1z

3.

h:ziv—>§:

This transformation maps the mid-string point ¢ of each string in the center
¢ = 0 of the unit disk, and the open string boundaries to the boundary of the unit
disk. Then we shrink the half disks obtained by a factor 2/3, and rotate the first
one counterclockwise by a 27 /3 angle, and the third one clockwise by a 27/3 angle.
The three transformations are

_ _amfliz\3
fila) = €73 (1——’4',21)
1'!"222)%
- 3.37
fa(22) (1—2'z2 (3:37)

o omi 1+ iz3>§‘
fa(zs) = e (1 i
The global disk is now constructed gluing together the three world sheets: for
instance the right part (7/2 < o < 7) of the front line of the first string is glued
with the left part (0 < o < 7/2) of the of the front line of the second string and so
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Figure 3.1: Representation of the cubic vertex as the gluing of 3 half-disks.

~ forth. Cyclicity of the cubic term in the action (3.8) is now manifest by construction.
The open string worldsheet is also represented by the upper half plane; the SL(2,C)
transformation that sends the disk in the upper half plane is

C+1

C oz = (3.38)
Of course, since the correlator in (3. 35)‘ is SL(2,C) invariant, computing it on
the disk or on the plane gives the same result.
It is now straightforward to define an arbitrary n-point vertex through the trans-
formations

2 (k) 1) 1 + 'le _72':
fuolz) = 5 ( , ) L 1<k<n (3.39)
1- (Y43
Each f, maps an upper half disk to a 27/n wedge, and n such wedges gather to
make a unit disk.
Also the CFT description of the quadratic term can be encoded in this formula-~
tion, with the n = 2 case of (3.39). Writing explicitly fi and f;

W fy(z) = h—l(ifzz) = 5 = I(z) (3.40)
W fy(m) = h—l(_ijzz) _ f}; = I(z) (3.41)

The quadratic term becomes

(®,Q0) = (f202(0)fio Q‘I’(O»
(h™t o fo0 ®(0 hto f10QP(0))
= (Z0%(0)Q2(0 )> (3.42)
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Figure 3.2: Representation of the cubic vertex as the gluing of 3 semi-infinite strips.

Figure‘ 3.3: The result of gluing the 3 strips of Fig. 3.2.
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Ps

Figure 3.4: Representation of the cubic vertex as a 3-punctured unit disk.

Qe z=i.

Figure 3.5: Representation of the cubic vertex as the upper—half plane with 3 punc-
tures on the real axis.
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The complete action, rewritten in terms of CEF'T correlators, is

§=—= E <Io (0) Q®(0)> + % <f1 0 ®(0) f2 0 ®(0) f5 0 @(0)>} (3.43)

We need the last step: the explicit expression of (Va] and (V| in terms of the
transformations f; and Z. As usual we start with (Va]. The ansatz for this vertex is

(Va] = /d%p(ud%z?(z)d%p(s) (0, pl, ® (0,pl> ® (0, pls
X exp ( — —Z Z T O (T)” N? o 5)”>
rs m,m>0
x exp (0D o) X, ) (3:44)
s m>0
o1
where (0,p); = (pli ® (0lic_1co. We want to find explicit expressions for the coef-

ficients N® and X7$., known as Neumann coefficients, in terms of the functions
f; defining the vertex.- We begin the derivation considering the matter sector and
setting the momenta to zero (m,n > 0); consider the expression

M= (V]i0X0(2)i0X O W) R0 DelDe  (3.45)

We compute it first using the contractions of the conformal fields 190X (z), and
then the oscillator form (3.44) of the vertex. M is rewritten as

M = (W]idXD(2)i0X® (w) ¢P(0) ¢ (0) ¢!(0) [0)(1)|0)(2)0)s)
= (fo (i@X(z)c(O)) f.o (i@X(w)c(O)) feoc(0)) (3.46)

where t # r,s. The ghost part gives a constant that we will not have to calculate
explicitly: (f, 0c(0) f;0¢(0) froc(0)) = N. Being i0X a primary field it transforms
as f 010X (z) = 10X (f(2))L, and we have

M = Nf(2)f ’(w)<i6X(fr(z))i3X(fs(w))>

AW
= NGO = hw)y (8.47)

Using the oscillator form of the vertex

M = 3t el 0K yel el )

= —./\f }: 2" "t mn NS (3.48)
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Comparing the equations (3.47) and (3.48) we have

fl2)fiw) S N
(.(2) = fs(w))> ‘%Z W™ mnNp, (3.49)
that means
W1 pds [dz 1 HELW
Nmn o mn’f() 279 0 A Z2muwn (fr(z) . fs(w))2 (350)

Taking into account also the momenta we have to remember the transformation
aw for the exponentials f o exp(ip - X (2)) = | (2)|P"*/? exp(ip - X(f(2))) and the
fact that the operators 10X can also contract with factors ip- X in the exponentials.
For the part of the vertex bilinear in the momenta we choose, as states in (3.35),
A and B as tachyonic states of momenta p,, ps and C as a tachyonic state of zero
momentum. Consider the expression Moo

Moy = (Vs ePX@ P X0 10) )[Rz |Dea) (3.51)

Evaluated through the oscillator form of the"livertex is

Mo = / 4 p)d™p2ydpe) (0,911 (0, pl2(0, 2ls (3:52)
1 U uy U 3
exp (’ 5 > p“ Ny p )0(11)10,pr>(1)c(12)10,ps>(2)0(1 10,0)s)
U,

Calculated as a correlation function it has the form
M = {fro (7 X0e(0)) fyo (770c(0)) fi0€(0))
_ NP0 | FL0)E exp (r - ps log | £:(0) = £ (O)]) (3.53)

Tt follows that Ngo is

TS __ 1Og‘fv{(0)‘ r=3:8
Noo = { log | £,(0) = fs(0)] + log | £ (O)f; (O} 7 £ s (3.54)

In a similar way it is possible to show that

dw 1 log|f(0)['fi(w)

%5~ 5, i 57 (D) ) (559
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For the ghost sector the coefficients X9, are computed equating two different

ways of calculating the expression
G = (Va] o) (2) ) () &V 0) e 10}y 1”10} (3.56)

Using the mode expansion for ghost and antighost and interpreting G as a correlator
we find

G = (fs0b(z) fr o clw) fr o c(0) fo 0 c(0) fsoc(0) ) (3.57)
(fs(2))? 1
y - p - b( fs(2)) c(fr(w)) e(f1(0)) e(f2(0)) e(f3(0
) TR ) (@) ) el () el 5(0)) )
The simpler way to calculate this correlator is to see its singular structure and derive
its normalization from a special configuration. There must be zeroes when any pair
of ¢ fields approach to each other. This will give a factor (f1(0) — f2(0))(f1(0) —

f3(0))(f2(0) — f3(0)) as for A/. There are also poles when the antighost approaches
any ghost. These considerations imply that

(f(2))? 1 [, (fr(w) = £:(0))
=N ) RO W) T ()~ £0) (3:58)

Using instead the vertex (3.44) we find

1 s T 3
v = Z 742 3 (V3] 6% et 10}y 10}y 10)co

—m—1

W Zz‘““ el X (3.59)

Comparing the two expressions (3.58) and (3.59) we have

dz 1 [fdw 1 (fi(2)? 1 [Tiy (fr (w) = £:(0)) (3.60)

Xem =P 523 P 5 omra fiw)  fo(2) = fr(w) [Ty (fo(2) = £5(0))

The explicit expression for (V5] is found by calculating the product (i0X (z), 10X (w)):
(10X (2),i0X (w)) = —(T 0 8X (2) X (w)) = < 8X (— -—) X (w) > (3.61)

Remembering the transformation law (3.30) of the oscillators o, under the inversion
T, the form of the vertex (V2| is

(Vo] = / d*pMd®p® (0, p|, ® (0,pl2 5(p™ + p®)

X exp <—_71;O‘7(11)Cnma$3) - C,,(-Ll)c'n,mbq(,rzb) - C%Z)Cnmbg)> (362)




52 Chapter 3.  String Field Theory: a Primer

where

is the twist matrix.
Gluing and resmoothing theorem

We have calculated the Neumann vertices N/2, and X]° for the most general
conformal transformation f;. They could be transformation different from (3.37) but
always for the three (Witten’s) vertex, or even for more general vertex for n strings.
Although the presence of an n interaction vertex in the action (3.8) is forbidden by
ghost number conservation, it is possible to give a very important theorem for the
vertex (Vy|, the gluing and resmoothing theorem, that guarantees a rigorous proof of
the gauge invariance of the String Field Theory action (3.8). It states that, given n
states @, Do, ..., P,, then '

(Vall®1)[@2) - | @) = (Vo [|@1) ... (|3) % [5)) - - | D) (3.64)

3.3 Witten’s original formulation

The presentation we gave of String Field Theory respects the need of a pedagogical
introduction that brings the reader to get acquainted with modern techniques of
SFT needed for the study of tachyon condensation, but this was not the historical
developing path of SF'T. In particular the starting point [63] of SF'T dealt with string
functionals instead that with string states. We want to give here a brief introduction
to Witten’s original formulation of SFT. The starting point is the string functional
®[X(0),c(0),b(0)] defined as the Schrédinger representation of the first quantized
string field |®)

B[X (o), c(0), b(0)] = (X(0), ¢(0), b(0)|) (3.65)

In this language the action (3.8) takes the form of a Chern-Simons type action

1 1
S:_?/<§®*Q@+§¢*®*®) (3.66)

o



3.3 Witten's original formulation 53

where the operation f (A * B), ‘integration of a * product’, substitutes the product
(A, B). The Chern-Simons action is defined to be

1 1

S(A):~/ A/\dA+—/A/\A/\A (3.67)
2 Jm 3Jm

where M is a 3-manifold and A a 1-form. This action is invariant under the gauge

transformation

SA=de+ANe—€eNA (3.68)

where ¢ is a O-form. We can write the correspondence between Witten’s Cubic SE'T
and Chern-Simons theory with the help of the following ‘dictionary’:

Chern-Simons Witten’s open SE'T
differential form state in CFT
wedge product A % product

degree of a differential form | ghost number of a state

gauge state A string field ® with ghost number 1
gauge parameter ¢ state in the CFT with ghost number 0
exterior derivative d BRST operator Q

integration [ Witten’s integration

In Witten’s original approach is more manifest the interpretation of the  product
as ‘gluing of strings’. The * product is defined by

(@1 % B2)(Xo(0)) = /DXl(U)DXz(U) ©1(X1(0)) P2(X2(0)) (3.69)

[1 (o) — Xa(m = 0)) 8(Xi(0) = Xo(0)) 6(Xo(r — o) = Xs(m = 9))

0<o<m/2
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and the integration by
/ /DX H §(X (o) — X(m —0)) (3.70)
0<o<m/2

The definition (3.69) of the * product should be interpreted in the following way: the
functional (&, * @) of the strings coordinates X, is given by gluing the left half of
the first string with the right half of the second string (first § function in (3.69)), and
then imposing that the remaining halves of the strings X; and X, constitutes the
whole X string. The integration (3.70) means to take a string and then obtaining
a number from it collapsing the two halves of the string on each other. With the
two definitions (3.69, 3.70) the 3-string interaction vertex can be written as

(@y, By % By) = /@1*@2*@3

- / DX, (0)D X (0)DX3(0) 1 (X1 (0)) Do Xa(0)) B (Xa(0) (3.71)

1 505(0) = Xalr - 0))8(Xs(0) = Xalr = 0)) 6(X(0) — Xs(m = o)

0<o</2

The whole construction of SF'T that we ggive in the previous section can then be
translated in the language of functional integration. Bpz conjugation, that reverses
the o orientation on the boundary of the unit disk, has the Schrédinger representa-
tion

(bpz ()| X (0)) = B[X (7 — 7)] (3.72)
and the reality condition on (®| translates into
B[X (0)] = &*[X (7 — 0)] (3.73)
Using the representation of the identity
1= [ DX(EIX ()X () (3.74)
we have for the quadratic term
(®1,Q3,) = (bpz(®1)|@P2)
= [ DX(0) tra (@)X () (X ()@

_ / DX (0) & (X (7 — 0)) Q5(X (o))
_ /DXl(o)DXz(a)fb (X,(0)) Qs (%a(0)) [ 8(Xal0) — Xa(m o))

0<a’<7r/2
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The cubic term is

(B, @0 % D3) = (bpz (P1)|Dg x P3)
_ / DX (bpz (81)| X (0)) (X (0)] @ * @)

- / DX,(0) DXo(0)D X () B (X1(0)) Ba(Xa(0)) Ba(Xs(0)

I 6Xa(0) = Xu(m = 0)) 8(X3(0) = Xa(m — 0)) 6(Xa(0) — Xa(r — 0))

0<o<m/2

where we used the reality condition on ®[X (¢)]. The above equation is obviously
equal to (3.71).

We end this chapter by writing the String Field Theory action in all the forms
we met

1
S(@) = -7 |
: 1 (1 1 'I
- 212 12)(V2l|®)(1)|QP) ) + 3 (123)(W,ll@)(l)[®>(2)]®>(3)J

1
(®,Q0) +§(@,A<I>*¢'>]

L]
[N R

- _é .}3 (Z02(0)Q2(0)) + % (f 0 ®(0) f202(0) f o@(c))}}

1 1 1
- _g_g/(i@*Q@Jrg@*@*@) (3.75)







Chapter 4

Applications to Tachyon
Condensation

4.1 Sen’s conjectures

Open String Field Théory ;Sresented in the previous chapter is particularly useful,
even fundamental, for the study of tachyon condensation. Is a well known fact
that bosonic D branes are unstable due to the presence of a tachyonic mode in the’
spectrum of the open strings ending on the brane itself. Ashoke Sen made three
very definite conjectures about how the process of tachyon condensation takes place
(53, 54, 55].

e The difference in the potential between the unstable vacuum and the pertur-
batively stable vacuum should be the mass of the D25-brane.

e Lower-dimensional D-branes should be realized as soliton configurations of the
tachyon and other string fields.

e The perturbatively stable vacuum should correspond to the closed string vac-
uum. In particular, there should be no physical open strings excitations around
this vacuum.

Let us see why String Field Theory is suitable for describing such conjectures.
Sen showed that the tachyon potential has a universal form which is independent
of the details of the theory describing the D-brane [55], and he also related, in the
formalism of SF'T, the open string coupling constant g, to the D-brane tension [55].
This ‘universality’ of the tachyon potential means that we can choose the easiest

57
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background for the theory that we want describing the tachyon potential. In par-
ticular, using SFT, one can take the conformal background to be the Boundary
Conformal Field Theory (BCFT) of any bosonic Dp-brane, with the flat 26 dimen-
sional Minkowski space being just the space filling D25-brane. The study of Sen’s
conjectures becomes then the study of the fields at zero momentum, living at the
bottom of the tachyonic potential, which are radically off-shell states. The simplest
of these states is the zero momentum tachyon state. SF'T can describe these states
in a very natural way; moreover zero momentum tachyon is included in a subalgebra
of the string * algebra, thing that gives us a lot of computational advantages. The
tachyon state at zero momentum is te;|0) where ¢ is a constant. It belongs to the
subspace H,; of the whole string Fock space H defined as the space of states of ghost
number one obtained by acting on |0) with oscillators by, ¢, and matter Virasoro
generators L,. The subspace H; of # is a background independent subspace having
the property that we can consistently set the component of the string field along
H — H, to zero in looking for a solution of the equation of motion. H; is back-
ground independent for the simple reason that there is no room in this theory for
containing information on the boundary CFT which describes any brane. Since the
fields in H; have zero momenta, and hence are Iindependent of the coordinates on
the D~brane world-volume, the integration in the string field action over z gives the
(p+1)- dimensional volume factor V,41. So the action can be written as

S(T) = Vpr £(T) = =VpaU(T) (4.1)

where we defined the tachyon potential as the negative of the lagrangian.

The string field [T') = T'(0)|0) includes an infinite collection of variables corre-
sponding to the coefficients of expansion of a state in 7{; in some basis. The tension
Ta5 of the D25—-brane in terms of the open string coupling constant go is

1
2m2g2

What Sen showed in [55] is that we can use the above (4.2) whatever the type
of brane we are considering: the tachyon potential on it has the universal form

Tos = (4.2) |

UT) = M |5 (ZoT(0)QT(0)+ 5 (0 T(0) 0 T(0) fa o T(0)) | (43)

where we set M = V,7, and the time interval over which we integrate is taken of
unit length. Let us evaluate the the tachyon potential for the simplest field, the zero
momentum tachyon tc;|0).
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The quadratic term gives the contribution
(T,QT) = t*{0]c-1Qai[0)
= t*(0]c_1c0Loc1|0)
= _t2<016_1C061l0> .
= (4.4)
The cubic term can be calculated using the cft definition.

(T,T+T) = t*(f{ 0 c(0)f3" 0 c(0)f" 0 c(0))m (4.5)

where ff/ = h™' o fP, and the index H means that we calculate the correlation
function on the upper half plane. The field ¢(z) is primary of dimension —1, so we
have

c(f(0))
10) (4.6)

Using equations (3.37) to read the values of f{7(0) and %(O), we therefore get, for
instance 4

foc(0) =

o c(0) = C(?,, ((8))) _ C;\//Bg) | (4.7)

The other two insertions are dealt with similarly, and we find

(V3) ¢(0) e(=v/3) >

(T,T+T) = t3< ¢

8/3 2/3 8/3
= —t?’((\f)()(\f))zf
3v/3\3 5
- < 4>t

K3t (4.8)

Substituting into eq.(4.3) we get the first approximation to the tachyon potential

sy =TI _pra( _Lp 1(2Y5Y ) (49)

This has a local minimum at

3
—) ~ 0.456 (4.10)
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At this minimum
f(t,) =~ —0.684 (4.11)
Remembering the first Sen’s conjecture
U(To) + 1 =1(1+ f(T0)) =0 (4.12)

we see that the tachyon state alone satisfies the condition (4.12) as much as 68% of
the conjectured value. The tachyon field is said to be of level zero. The level [ of a
state is related to the Ly eigenvalue as

I=Lo+1 (4.13)

State levels are a very efficient criterion to organize an approximate but always
more precise calculation of the tachyon potential. One indeed truncates the string
field |T) at a finite number of terms. The more space-time components one keeps,
the better the approximation. Doing a (m, n) approximation means to keep all fields
up to level m and all interactions up to level n. The level of an interaction is defined
to be the sum of the levels of all fields entering into it. What we just did is the
(0,0) approximation. Next step should be the (1,3) approximation, but we saw
" that string field action is twist invariant. This means that the coefficients of states
at odd levels above ¢;]0) must always enter the action in pairs, and we can satisfy
the equation of motion of these fields by setting them to zero. Thus we look for
solutions where |T') contains only even level states. A further simplification is given
by choosing the Feynman-Siegel gauge

bo|T) =0 (4.14)
The tachyon field up to level two is then given by
|T) = tcy|0) + uc—1]0) + vLacy|0) (4.15)

At level (2,4) we again find a stationary point at ¢, ~ —0.541,u, ~ —0.173,vp =~
0.051 which gives 0.948% of the exact answer.

4.2 Surface states and wedge states: Identity and
Sliver

In this section we want to introduce the new concept of surface states, and by means
of it, to describe from a new point of view the identity state |I), and to define the
new sliver state |Z) that will play a fundamental role in Vacuum String Field Theory.
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ale

(b) (2)

Figure 4.1: A punctured disk D with a local coordinate around the puncture P.
The coordinate is defined through a map m from a canonical half disk Hy to the
disk. The arcs AM and M B in D represent the left half and the right half of the
open string respectively (the present figure and the following two are taken from

[62]).

A surface state (3| is a universal state, that means, independent of any BCFT,
defined in association with a Riemann surface & with the topology of a disk D, with
a marked point P, the puncture, lying on the boundary of D, and a local coordinate
around it. A local coordinate at a puncture is obtained from an analytic map m
taking a canonical half-disk Hy defined as

Hy - {Jg] < 1,Im(€) = 0} (4.16)

into D, where £ = 0 maps to the puncture P, and the image of the real segment
{]€] < 1,3(€) = 0} lies on the boundary of D. The coordinate £ of the half disk is
called the local coordinate. Using any global coordinate u on the disk D, the map
m can be described by some analytic function s:

uw=s(&), uP)= S‘(O) (4.17)

Given this geometrical data, and a BCFT with state space 7, the state (3| € H~
associated to the surface ¥ is defined as follows. For any local operator ¢(§), with
associated state |¢) = limg_,o #(£)|0) we set

(Z|g) = (s 0 6(0))p (4.18)

where ( )p is the correlation function on D and s o ¢(0) is the transform of the
operator by the map s(£). While computations of correlation functions involving
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w = h(§)

N uE
© A (@

Figure 4.2: A punctured disk D with a locél coordinate around the punctﬁre p.
The coordinate is defined through a map m from a canonical half disk Hy to the
disk. The arcs AM and MB in D represent the left half and the right half of the

open string respectively

states in A, requires that the s be defined only locally around the puncture P, more
general constructions, such as gluing of surfaces, requires that the full map of the
half disk Hy into the disk D be well defined. Among all the possible surface states
we define a sub-class of them called wedge states. The identity and the sliver are
particular wedge states.

We start with the map

1 -H'f)?/“

= (4.19)

wo = £a(6) = (€)™ = (

that sends the upper half-disk Hy into a wedge with the angle at w, = 0 equal to
2m /n. The transformation (4.19) can be rewritten as

Wy, = eXP (z% tan™! (5)) (4.20)
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© ' Do ()

Figure 4.3: A punctured disk D with a local coordinate around the puncture P.
The coordinate is defined through a map m from a canonical half disk Hy to the
disk. The arcs AM and M B in D represent the left half and the right half of the
open string respectively.




64 Chapter 4. Applications to Tachyon Condensation

We define (n| such that

(n|¢) = (fn o $(0)) b, (4.21)

The state that we obtain for n = 1 is the identity state, that in the coordinates wy,
is the full unit disk Dy with a cut on the negative real axis. The left-half and the
right-half of the string coincides along this cut. The n = 2 is the vacuum state, and,
in the w, plane, the image of Hy covers the right half of the full unit disk Dy in the
wy, plane. The n — co limit is the sliver. It is an infinitely thin sliver of the disk Dy
around the positive real axis. In the next section we will see that n = 2 is indeed
the vacuum state and that the limit n — oo gives rise to a well-defined state.

We describe now |n) taking back the wedge on the upper half plane. We define

Zn = h7Hwy,) = Zjll ; “n — tan ( = %m wn> (4.22)
, o

Putting together (4.20) and (4.22) we have

2 = tan (-2- tan-1(5)> = 7u(6) | (4.23)

n

and

(nld) = (Fao d(0)p, (4.24)

The two description of the sliver (4.21) and (4.24)seems to be singular, in the sense
that the maps fn(¢) and f,(€) are singular in the n — oo limit. This apparent
singular behaviour is solved by noticing the SL(2,R) invariance of the correlation
functions on the upper half plane. Given any SL(2,R) map R(z) we have the relation

(H Oi(z:))py = (H R o Oi(z:)) py (4.25)

for any set of operators O; and with Dy denoting the upper half plane. Since the
sliver |Z) is defined through a correlation function, we can set

Rn(Z) = —Z (426)
so that

(Elg) = (f © 8(0)) g (4.27)
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where
f(g) = nl_l_{gloRn o fn(§>

~ lim ~tan (E tan‘l(f)) =tan"'¢ (4.28)

700 n .
Since this map is non-singular at & = 0, we have a finite expression for (Z[¢) for
any state |¢). We need now a prescription for * multiplicating the surface states. x
multiplication is better understood in a third representation of the punctured disk
D, where D itself is mapped into a disk D having the special property that the
local coordinate patch, i.e. the image of Hy in 15, is nothing else that the vertical
half-disk. This is done by taking, for £ € Hy

1+

= (4.29)

W = h(£)

It is clear that in this representation the remaining part of D may take a complicated
form. Using eqs. (4.19) and (4.29) we see that

B = (wn)™* | (4.30)

Under this map the unit disk Dy in the w,-coordinates is mapped to a cone in the
@, coordinate, subtending an angle nm at the origin @, = 0. The disk Dy mapped
in this way represents then a wedge |n). We can give now the prescription for the
+ product. Les us consider directly wedge states and remove the local coordinate
patch from the disk Dy in the w, coordinate: the left over region becomes a sector
of angle m(n — 1). If we denote by |R,) a sector state arising from a sector of angle
«, we have the identification of sector states with wedge states

In) = [Ra(n-1)) (4.31)

We declare that the operation of * multiplication of two wedge states [m)  |n) is
given by gluing together the two sector states |Rq(m-1)) and |Rr(n—1)) identifying
the left-hand side of the string front of |m) with the right-hand side of the string
front of |n). With this prescription we obtain the rule

|Ra) * [Rs) = [Ra+s) (4.32)
that means

Im) % |n) = |m+n—1) (4.33)




66 Chapter 4.  Applications to Tachyon Condensation

The sliver state (n — co) is a projector under the * product:

[Roo) * IROO) = |Reo) (4.34)

We said that surface states, and then wedge states, are universal states. We want
to give now an explicit background independent characterization to wedge states.
This means that we want to find an operator U = U(f,,) depending only on matter
Virasoro generators L, and ghost fields b and ¢ such that (n| = (0|U. Remem-
ber that a primary field of conformal weight d transforms under finite conformal
transformation f as

fod(z) = (f'(2))'6(f(2)) (4.35)

we would like to rewrite this transformation rule using the Virasoro generators L,
of the conformal group in the form

(f'(2))%0(f(2) = Usp(2)Uf " (4.36)
with | ‘
Us = explug Lo] exp {Z 'UnLln} A (4.37)

The coefficients v, can be determined recursively from the Taylor expansion of f,
by requiring

e = f'(0)
(4.38)
oxp [T 0am10,] = (FO) () = 2+ ass? +ass ..
n>1
For instance, for the first coefficients one finds
2 3, 95
V1 =02, V2= —0 +az, Uz= —2_0’2 - —2—a2a3 + a4 (439)

One can determine egs.(4.38) in the following way. From the commutation relation
[Lm, ¢n] = ((d — 1) — 1) Pmin (4.40)
follows that

qu')(z:)Uf‘1 = exp[v(2)d, + dv'(2)]¢(2) (4.41)
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This equation is satisfied by a function v(z) such that
%= 5 = £(2) (4.42)

from where follow egs.(4.38). Choosing f,(2) = tan (2 tan~!(z)) to define the wedge
states |n), we have

In) = ex w4 nt =16  (r2—4)(176 +1287° + 117%)
I N 18907
r? — 4)(r? 4 4)(16 + 32r° + %)

Particularly interesting states are

e The Identity State (n = 1):

) = [1)
 exp | Dy St Shgm L 0) (444)
= exp -2 T 54Ty -6 7 13 -8 .
e The Vacuum State (n = 2):
0) = 12) (4.45)
e The Sliver State (n — o0):
2) = [o0)
1 1 11 1
- _z Sy a4 ——L g _
exp | =313 + 3504 =~ Tgap L6+ g L-s | 10) (446)

Before going on and specialize our discussion in the next Chapter to the sliver state,
it is useful to make a few comments about the algebra of the wedge states. We saw
that the universal subspace Huniy of H containing zero momentum scalars

Huniv = Span {Lle e Lr_njpb,_kl R buch_ll - C—lr’0>7 gi > 2, ki > 2, l; > -—1}
defines a subalgebra of the star-algebra of open string fields. Note also that ) :
Huniv — Huniv, since the BRST charge is built from matter Virasoro and ghost
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oscillators. Hyniw Can be splitted into a direct sum of spaces generated by states of
a given ghost number: :

Since the ghost number is additive under star multiplication we have

/H(m) * 'H(n) C /H(m-l-n) (4.48)

univ univ = unwv

It follows then that ’H,ngw is a closed subalgebra of Hyniy. But there is an even
smaller sub-algebra at ghost number zero. Consider indeed

0 _ o o .
HO(L) = Span {17, .. 115, |0), 5i 2 2}

where Lo denotes the combined matter and ghost (¢ = 0) Virasoro operators.
Indeed since |0) * [0) € HO(L) it could be shown by conservation laws that any
product of descendants of the vacuum is a descedant of 0) %]0) € HO(L) and thus
a descendant of the vacuum. This confirms that H(®(L) is a subalgebra. Of course
the space Huyeaqe Of the wedge states is a subalgebra of HO(L). The situation is
summarized by '

Hopedge C HO(L) € HEy C Humiv (4.49)

univ



Chapter 5

Vacuum String Field Theory

The results reported in the previous chapter, although very impressive, ultimately
rely on numerical study of the solutions of the equations of motion using the level
truncation scheme. We want now to propose an analytic approach developed by
Rastelli, Sen and Zwiebach, known under the name of Vacuum String Field Theory
(VSFT). This theory uses the open string tachyon vacuum to formulate the dynam-
ics. Among all possible open string backgrounds the tachyon vacuum is particularly
natural given its physically expected uniqueness as the endpoint of all processes of
tachyon condensation.

5.1 An Ansatz for SFT after condensation

Let ®, be the string field configuration describing the tachyon vacuum, a solution
of the classical field equations following from the action in (3.8):

Q®0+®0*®0 =0. (51)
If & = ® — ®, denotes the shifted open string field, then the cubic string field theory
action expanded around the tachyon vacuum has the form:
~ 171~ A= 1, = = |
5(@0+<p)=5(@0)_§5[5<@,Qq>>+§<<b,¢*@>]. (5.2)

Here S(®,) is a constant, which according to the tachyon conjectures equals the mass
M of the D-brane when the D-brane extends over a space-time of finite volume. As
we saw in the previous chapters, the potential energy V(&) = —5 (@) associated

69
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to this string field configuration should equal minus the mass of the brane. The
kinetic operator @ is given in terms of ) and ®q as:

@5:Q5+®0*5+5*%. (5.3)
More generally, on arbitrary string fields one would define
OA=QA+®yxA—(—1)4Axdy. (5.4)

The consistency of the action (5.2) is guaranteed from the consistency of the one in
(3.8). Since neither the inner product nor the star multiplication have changed, the
identities in (3.5) still hold. One can readily check that the identities in (3.4) hold
when @ is replaced by Q Just as (3.8) is invariant under the gauge trasformations
(3.9), the action in (5.2) is invariant under 63 = QA+ B« A — A= ® for any
Grassmann-even ghost-number zero state A.

Since the energy density of the brane represents a positive cosmological constant,
it is natural to add the constant —M = —S(®;) to (3.8). This will cancel the S(®o)
term in (5.2), and will make manifest the expected zero energy density in the final
vacuum without D-brane. For the analysis around this final vacuum it suffices
therefore to study the action ‘

[5(3.28) %(5{5*@]- (5.5)

If we had a closed form solution ®, available, the problem of formulating SFT
around the tachyon vacuum would be significantly snnphﬁed as we would only have
to understand the properties of the new kinetic operator Q in (5.4). In particular we
would like to confirm that its cohomology vanishes in accordance with the expecta-
tion that all conventional open string excitations disappear in the tachyon vacuum.
Even if we knew ®y explicitly and constructed 50(5) using eq.(5.5), this may not
be the most convenient form of the action. Typically a nontrivial field redefinition
is necessary to bring the shifted SFT action to the canonical form representing the
new background. In fact, in some cases, such as in the formulation of open SFT for
D-branes with various values of magnetic fields, it is simple to formulate the various
SFT’s directly, but the nontrivial classical solution relating theories with different
magnetic fields are not known. This suggests that if a simple form exists for the
SFT action around the tachyon vacuum it might be easier to guess it than to derive
it.

In proposing a simple form of the tachyon action, we have in mind field redef-
initions of the action in (5.5) that leave the cubic term invariant but simplify the
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operator @ in (5.4) by transforming it into a simpler operator Q. To this end we
consider homogeneous field redefinitions of the type

d=eXU, (5.6)

where K is a ghost number zero Grassmann even operator. In addition, we require
K(AxB)=(KA)« B+ Ax(KB),

(KA,B)=—(A,KB). (5.7)

These properties guarantee that the form of the cubic term is unchanged and that
after the field redefinition the action takes the form

5(@)5-—;}% [%<@,Q@>+}é<@,@*@>], (5.8)
where
Q= eXQeX. (5.9)
Again, gauge in{/ariance only requires:
Q> =0, -
Q(AxB) = (QA) % B+ (-1)*4 = (QB), (5.10)

< QA,B) = —(_1)A<A7 QB) :

These identities hold by virtue of (5.7) and (5.9). We will proceed here postulating a
Q that satisfies these identities as well as other conditions, since, lacking knowledge
of &g, the above field redefinitions cannot be attempted.

The choice of Q will be required to satisfy the following properties:

e The operator Q must be of ghost number one and must satisfy the conditions
(5.10) that guarantee gauge invariance of the string action.

e The operator @ must have vanishing cohomology.

e The operator @ must be universal, namely, it must be possible to write without
reference to the brane boundary conformal field theory.

We can satisfy the three requirements by letting @ be constructed purely from
ghost operators. In particular we claim that the ghost number one operators

Ch=cp+(-1)"¢cep, n=0,1,2,--- (5.11)
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satisfy the properties

CnCrn = 0,
Ch(A % B) = (CoA) + B+ (=1)*4x (C,B), (5.12)
(CoA,B) = —(—1)*(A,C,B).

The first property is manifest. The last property follows because under BPZ conju-
gation ¢, — (—1)"*'c_,. The second property follows from the conservation law

Vil +¢cP +c®) =0, (5.13)

on the three string vertex [71]. »

‘Each of the operators C, has vanishing cohomology since for each n the operator
B, = 1(by+(—1)"b_y) satisfies {Cy, B,} = 1. It then follows that whenever C,1p = 0,
we have 1 = {Cn, Ba }% = Cn(Bnt), showing that ¢ is C, trivial. Finally, since they
are built from ghost oscillators, all C,’s are manifestly universal.

Tt is clear from the structure of the conditions (5.10) that they are satisfied for
the general choice:

n=0 '

where the a,’s are constant coefficients.

There may be other choices of Q satisfying all the requirements stated above.
Fortunately, the future analysis will not require the knowledge of the detailed form
of Q, as long as it does not involve any matter operators. To this end, it will be
useful to note that since Q does not involve matter operators, we can fix the gauge
by choosing a gauge fixing condition that also does not involve any matter operator.
In such a gauge, the propagator will factor into a non-trivial operator in the ghost
sector, and the identity operator in the matter sector.

5.1.1 Factorization property of the field equation

If (5.8) really describes the string field theory around the tachyon vacuum, then the
equations of motion of this field theory:

QU =-T T, (5.15)

must have a space-time independent solution describing the D25-brane, and also
lump solutions of all codimensions describing lower dimensional D-branes. We shall
look for solutions of the form:

T=0,07,, (5.16)



5.1 An Ansatz for SFT after condensation 73

where W, denotes a state obtained by acting with the ghost oscillators on the SL(2,R)
invariant vacuum of the ghost CFT, and U,, is a state obtained by acting with matter
oscillators on the SL(2,R) invariant vacuum of the matter CF'T. Let us denote by
«9 and *™ the star product in the ghost and matter sector respectively. Eq.(5.15)
then factorizes as

OV, = -V, 7 ¥,, (5.17)
and
U, =0, «"V,. (5.18)

Such a factorization is possible since Q is made purely of ghost operators. Note that
we have used the freedom of rescaling ¥, and ¥,,, with A and A™" to put eqs.(5.17),
(5.18) in a convenient form.

In looking for the solutions describing D-branes of various dimensions we shall
assume that U, remains the same for all solutions, whereas Wy, is different for
different D-branes. Given two static solutions of this kind, described by ¥,,, and ¥,
the ratio of the energy associated with these two solutions is obtained by taking the
ratio of the actions associated with the two solutions. For a string field configuration :
satisfying the equation of motion (5.15), the action (5.8) is given by

1

Slu =~ 57 (¥, Q). (5.19)

Thus with the ansatz (5.16) the action takes the form:
1
Sly = — o (T, | Q) (T Vi) = K (T T} (5.20)
0

where (|), and (|)m denote BPZ inner products in ghost and matter sectors re-
spectively. K = —(6g2)7*(¥,|Q¥,), is a constant factor calculated from the ghost
sector which remains the same for different solutions. Thus we see that the ratio of
the action associated with the two solutions is

Sly _ (V[T

Tt is worthwhile to notice that the ghost part drops out of this calculation.

(5.21)

What is more important, is that we already know two solutions to the equation
of motion for the matter sector (5.18): they are the matter part of identity state
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|I) and sliver state |Z). Even more important is the fact that the sliver state
is the D25-brane, the unstable vacuum of open strings, as shown by Okawa [107].
Roughly speaking what we do is to ‘build’ on the not yet found closed string vacuum
a state that is the old perturbative vacuum. Furthermore, from the sliver we can
construct lump solutions of arbitrary co-dimension with the correct ratios of tensions
of lower dimensional Dp-branes. The precise identification of |=,,) with the D25-
brane was done by Okawa using the surface state presentation (CFT) of wedge
states that we gave in the previous chapter. We will not give in this thesis the
complete Okawa’s computation for lack of space. What we will treat exhaustively
is the description of the sliver state through the so called ‘operator formalism’ first
proposed by Kostelecky and Potting [70]. In the operator formalism, computations
can be done explicitly and algebraically. This formalism involves, however, infinite
dimensional matrices and their determinants, often making it necessary to rely on
numerical test using level truncation. On the other hand, the CFT formalism gives
a geometrical picture to various aspects of VSFT and often analytical computations
are possible, but techniques are more abstract.

In the next section we will present the solution to \If ", = ¥, given by
Kostelecky and Potting in the form of |¥,,), a squezeed state, that means, an expo-
nential of bilinears of the string creation operators acting on the vacuum. Moreover
Okuda [90] showed analitically that the squeezed state |¥,,) is indeed equal to the
sliver |Z).

5.2 Squeezed state solutions to U, +™ ¥, =V,

5.2.1 A solution for the D25-brane
The three string vertex [63, 68, 69] of the Open String Field Theory is given by

V3) = / d*°pyd°payd**pis) 8% (pay + P2y + Pia)) exp(—E) [0, p)1os  (5.22)

where
(1 1
E=Y (;,; > mwalf Vs a1yl Vay ol + Snwlyy Ve p<s>)
7,5=1 m,n>1 n>1
(5.23)
Summation over the Lorentz indices u,v = 0,...,25 is understood and n denotes

the flat Lorentz metric and the operators a )“ ,(,Z)“ T denote the non—zero modes
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matter oscillators of the r—th string, which satisfy

[CL%)My ala(‘LS)VT] = 77W5mn(5m7 m7 n Z 1 (524)

Py is the momentum of the r—th string and [0,p)ies = |p(r)) @ |p2) @ |p(3)) is
the tensor product of the Fock vacuum states relative to the three strings. |p()) is
annihilated by the annihilation operators a!* and is eigenstate of the momentum

operator ﬁ?r) with eigenvalue pé‘r). The normalization is

(P D)) = 6rs0°° (P + 1)

The coefficients Vify (M (IN) denotes from now on the couple {0, m} ({0,n})) have
been computed in [68, 69]. We will use them in the notation of [73] reported in
Appendix B.

Since we are interested in this section in space-time translational invariant so-
lutions representing the D25-brane, we choose to ignore the momentum dependent
factors in the vertex, and the relevant form of F is:

1 T SV
E = 5 ana( ut L yrs L gls) T, (5.25)
7,8

where the dots represent sums over mode numbers, and VS, for m,n > 1 is written
as the V"¢ matrix. For the analysis of lumps, however, we will need the full vertex.

Some appreciation of the properties reviewed in Appendix C is useful. Equation
(C.15), in particular, gives

1
VT = S(C+w U+ D), (5.26)

where w = €?™/3 U and C are regarded as matrices with indices running over
m,n > 1,

Con = (=1)™0pn, m,n>1, (5.27)
and U satisfies (C.17)
U=U*=cUCc, U*=0%=1 U'=U, U'=U. (5.28)

The superscripts 7, s are defined mod(3), and (5.26) manifestly implements the
cyclicity property V™ = YV +1(s+1) - Also note the transposition property (V)T =
V. Finally, egs.(5.26), (5.28) allow one to show that

[CcVrs,cvT¥=0 Y 15,7, (5.29)
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and

(OV12)(CV21) — (CV21)(OV12) — (Cvll)z . Cvll 7
(CV2P 4+ (CVP)? = 2(CVM1)3 - 3(CVI)? + 1. (5.30)

Equations (5.26) up to (5.30) are all that we shall need to know about the matter
part of the relevant star product to construct the translationally invariant solution.
In fact, since (5.29), (5.30) follow from (5.26) and (5.28), these two equations are
really all that is strictly needed. Such structure will reappear in the next section
with matrices that also include m = 0 and n = 0 entries, and thus will guarantee
the existence of a solution constructed in the same fashion as the solution to be
obtained below.

We are looking for a space-time independent solution of eq.(5.18). The strategy
of Kostelecky and Potting [70] is to take a trial solution of the form:

_ A2 1 ut vt
[Um) =N exp( Qn,w‘z Sran aman;,)jo), (5.31)

m,n>1

where |0) is the SL(2,R) invariant vacuum of the matter CFT, AV is a normalization
factor, and Sy, is an infinite dimensional matrix with indices m,n running from
1 to co. We shall take S, to be twist invariant. Due to this property the BPZ
conjugate of the state |¥y,) is the same as its hermitian conjugate. Otherwise we
need to keep track of extra — signs coming from the fact that the BPZ conjugate
of af is (—1)™*'a,,. This is nothing but the requirement that the string state |¥rm)
be hermitian.

csC=S. (5.32)
We shall check in the end that the solution constructed below is indeed twist invari-
ant.
If we define
S 0 yu oy
2= (50), ve (U V). -
and

1843)nt
X“T — (a(B)m‘V:’»l , q®ntys2 ), P <V23a(3)”> , (5.34)
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then using eqs.(5.22), (5.25) we get
(U % Up)s = N2det{(1 — V)% (5.35)
X exp [——% N {711 = ZV) 7SN + a®kt 38 am”f}} |0)s .

In deriving eq.(5.35) we have used the general formula [70]

1 1
(0] exp ()\iai - —éPijaiaj) exp (uia;[ -~ §Qijaga}> |0) (5.36)
= det(K)"2exp (uT K='h— %)\T QK1) — %MT K“lPu>  K=1-PQ,

that is the multidimensional case of
1
(0] exp(ra + iaSa) exp ua' + %aTVanlO) (5.37)
. 1 1
=(1-SV) " ?exp {A(l —VS)tu+ 5)\(1 —VS)'WVA+ §u(1 - SV)“lsu}
In using the formula (5.35) we took the a; to be the list of oscillators (aﬁ,ll), a$d)

with m > 1. (5.35) then follows from (5.36) by identifying P with ¥, @ with V, p
with x and setting A to 0.

Demanding that the exponents in the expressions for |¥,,) and |¥,, x ¥.,,), given
in eqs.(5.31) and (5.35) respectively, match, we get

V21
S=V14 (V2 Vv (1-5V) s <V12) , (5.38)
where we have used the cyclicity property of the V' matrices and the mod 3 period-
icity of the indices r and s to write the equation in a convenient form. To proceed,
we assume that

[CS,CV™] =0 ¥ rs. (5.39)

We shall check later that the solution obeys these conditions. We can now write
eq.(5.38) in terms of ‘

T=0S=S8C M =CV"™, (5.40)

and because of (5.29), (5.39) we can manipulate the equation as if 7" and M"® are
numbers rather than infinite dimensional matrices. We first multiply (5.38) by C
and write it as:

(5.41)

. T 21
T=X+(M12,M21)(1—2V)‘1( M )

TMlZ




78 Chapter 5. Vacuum String Field Theory

where
X=M*=Cv". (5.42)

We then note that since the submatrices commute:

1-TX —TM2\"!
—_ -1 —_

(1-2V) <—TM21 1— TX)

1-TX TM2

= (1-TX)?-T*M">M*)7 ( Tyt 1 TX) . (5.43)

Finally, we record that
det(1 — BV) = det(1 — 27X +T°X), (5.44)

where use was made the first equation in (5.30) reading M*2M* = X? — X.

Tt is now a simple matter to substitute (5.43) into (5.41) and expand out elimi-
nating all reference of M'2 and M*! in favor of X by use of eqs.(5.30). The result
is the condition:

(T —1)(XT? - (1 + X)T+X)=0. : (5.45)

This gives the solution for S:!

S=CT, T= —2%(—(1+X—\f(1+3X)(1~X)). (5.46)

We can now verify that S obtained this way satisfies equations (5.32) and (5.39).
Indeed, since CS is a function of X, and since X (= CV*) commutes with CV™,
OS also commutes with CV7s. Furthermore, since V! is twist invariant, so is X.
Tt then follows that the inverse of X and any polynomial in X are twist invariant.
Therefore T is twist invariant, and, as desired, S is twist invariant.

Demanding that the normalization factors in |Ur,) and |¥p, * U,,) match gives
N = det(1 — ZV)Y2 = (det(1 — X)det(1 +T))"/?, (5.47)

where we have used eqn.(5.44) and simplified it further using (5.45). Thus the
solution is given by

) = {det(1 — X)/2det(1 + 7)) exp ( - —;-mw S Smatlatt)10) - (5.45)

m,n>1

10f the two other solutions, T' = 1 gives the identity state |In), whereas the third solution has
diverging eigenvalues and hence is badly behaved.
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This is the matter part of the state found in [70] after suitable correction to the
normalization factor. From eq.(5.20) we see that the value of the action associated
with this solution has the form:

S|y = K N®? (0] exp ( - ~77,l w Z S n/am,an,) exp ( 77#,,2 Smata ”T> 0).

m'n'>1 m,n>1
By evaluating the matrix element using eq.(5.36), and using the normalization:

1/(26)
(2m)26”’

(0]0) = 6@9(0) = (5.49)

where V(20 is the volume of the 26-dimensional space-time, we get the value of the
action to be

V26
Slo = K Gy N™ {det(1 = 87745
_ Kﬂ{det(l_X)3/4det(1+3X)1/4}26 (5.50)
@n) | |

In arriving at the right hand side of eq.(5.50) we have made use of eqs.(5.46) and
(5.47). Thus the tension of the D25-brane is given by

1 |
25 = K g {den(1 — X)P/*det(1 + 3)1/4)%6 (5.51)

5.2.2 Lump solutions: lower dimensional branes

We begin by noting that the solution (5.48) representing the D25-brane has the
form of a product over 26 factors, each involving the oscillators associated with a
given direction. This suggests that in order to construct a solution of codimension k&
representing a D(25 — k)-brane, we need to replace k of the factors associated with
directions transverse to the D-brane by a different set of solutions, but the factors
associated with directions tangential to the D-brane remains the same. Suppose we
are interested in a D(25 — k)-brane solution. Let us denote by z# (0 < i < (25—k))
the directions tangential to the brane and by z* ((26 — k) < o < 25) the directions
transverse to the brane. We now use the representation of the vertex in the zero
mode oscillator basis for the directions z%, as given in Appendix C. For this we
define, for each string,

1 1
= Vbt — —=dz®, o' == f + Lo 5.52
2 P Vb Vb ( )
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where b is an arbitrary constant dimensioned as a length, and £ and p are the zero
mode coordinate and momentum operators associated with the direction z. We
also denote by |€%) the normalized state which is annihilated by all the annihilation
operators ag, and by |Q) 123 the direct product of the vacuum [§2;) for each of the
three strings.

The relation between the momentum basis and the new oscillator basis is given
by (for each string)

7)) = (@n/e) oxp -2t + VEaEp - geffal]ion . (559

In the above equatibn {p®} label momentum eigenvalues. Substituting eq.(5.53) into
eq.(5.23), and integrating over pf;), we can express the three string vertex as

Va) = / d%“'“pu)d%*kmz)d26"kp(3>5(‘°‘6"’°) (p) + P2y + P(3)

T rs s) 1 [ rr. D
exp (““— Z mwa( )MV Z nuvp(r) ) = 9 Z nﬁﬂpﬁr)voo P(r)) 10, ) 123
n>1 ) r

m, n>1

—k
* (5 \gm i +3) exp("% Z o Vihel? ) bz (5:54)
M,N>0
In this expression the sums over fi, 7 run from 0 to (25 — k), and sum over o runs
from (26 — k) to 25. Note that in the last line the sums over M, N run from 0 to co.
The coefficients VJ7% have been given in terms of V% in Appendix in C eq.(C. 7).
In Appendix C it is shown that V'*, regarded as matrices with indices running

from 0 to oo, satisfy
1 _
‘r/rs . g(c’ s—rUI + wr-—sUl) 7 (555)

where we have dropped the explicit b dependence from the notation, Cj;y = (=D)Mbprn
with indices M, N now running from 0 to oo, and U’, U’ = U™ viewed as matrices
with M, N > 0 satisfy the relations:

o =cuc, Uu?=0%=1 U=U. C (5.56)

We note now the complete analogy with equations (5.26) and (5.28) [70]. It follows
also that the V'’ matrices, together with C’ will satisfy equations exactly analogous
0 (5.29), (5.30). Thus we can construct a solution of the equations of motion
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(5.18) in an identical manner with the unprimed quantities replaced by the primed
quantities. Taking into account the extra normalization factor appearing in the last
line of eq.(5.54), we get the following form of the solution of eq.(5.18):

) = {det(l — X)"2det(1 + T2}~ kexp(——-n,w > SmnafiaZl)|0)

2
m,n>1

V3 k , n

®<m§)“17z(v )) {det(1 "X)l/Qdet(l—{—T’)l/?}k
exp(5 2 Shleil) 90 (557)

M,N>0
where

SI - C’TI7 T, — 2;_(_/(]_ +X/ —_— \/(1 + 3XI)(1 . X’)) 7 (558)
X' = 'V 5.59)

Using eq.(5.20) we can calculate the value of the action associated with this solution.
It is given by an equation analogous to (5.50):

1/ (26-k) o :
Sw = K gy {det(l = X)det(1 +33) M1y
((2_—62;)1/2 (Vog é)2) {det(1 — X")*/*det(1 +3X")/*}*, (5.60)

where V(26=%) is the D(25 — k)-brane world-volume. This gives the tension of the
D(25 — k)-brane to be

1

Tos—y = K W {det(1 — X)3/4det(1 + 3X)1/4}26—k
_3 b 2 k n3/4 ANYZAY:
((2 sy + + 292) fdet(1 - )/ 4det(1 + XYY (5.61)
Clearly for k = 0 this agrees with (5.51). From eq.(5.61) we get
s 3 (g Dy AR XL
ImTos—r  /2mb3 N 02/ {det(l — X)¥4det(1+3X)V4} T '

Okuyama [88] has been able to prove that R = 1; therefore VSF'T describes the
correct ratios of Dp—brane:
Tod—k

=1.
2T To5 &
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We will not present his exact calculation. What we will present is, instead, the
modified calculation in the presence of a B field as given in [109]. The detailed
calculations are given in Appendix E.1. It is then a quite straightforward exercise
to obtain Okuyama’s result by putting B = 0.

We end this section by noticing that there exist also a consistent boundary CFT
formulation of lower dimensional branes [62]. For lower-dimensional Dp-branes, the
Neumann sliver state |=) is replaced by the sliver state with the Dirichlet boundary
condition for each of the 25 — p transverse directions. It is similarly defined as in
Section 4.2 by a limit of wedge states with the following boundary condition for the
string coordinate X*(z) on the real axis ¢ of the upper-half plane:

: - n i n m
i(4) = g1 ~Dian—— <t < —tan —
0X'(t) =0X'(t)  for 5 tan 5 S t < 5 tan 5

, . n ™ n T
Xift) = d = tan — 5 tan o -
(t)=a for t< 5 tan o, t> Stang -, (5.63)

where o is the position of the D-brane in space-time. It is shown in [62] that ratios
* of tensions of various D-branes are correctly reproduced using this description:

5.2.3 Open String states and the D25-brane tension

In the previous section we saw that the ratios of tensions of D—-branes can be repro-
duced, but we did not say anything about the tension of a single D25-brane. Another
important problem is that we do not completely understand how to describe open
string states around D-branes in the framework of VSFT. In [107] Okawa, following
a path opened by Hata and Kawano [76], and precised by Rastelli, Sen and Zwiebach
[81], provided a resolution to these two problems. The language he used is that one
of Boundary CFT that we introduced in Section 4.2 to describe the surface states. A
complete treatment of this technique goes beyond the purposes of this thesis. Never-
theless we will try to give to the reader an insight of this formulation of VSFT since
it is the only presentation where, up to now, to two above mentioned problems has
been solved. Actually, these two problems are closely related. Since the D25-brane
tension o5 is related to the on-shell three-tachyon coupling gr through the relation

[55] .

= gl (5.64)

T25

the energy density &, of the classical solution corresponding to a single D25-brane
must satisfy

&
2L =gt £, = 1. (5.65)
T25
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However, the on-shell three-tachyon coupling gr based on the earlier proposal for
the tachyon state by Hata and Kawano [76], failed to reproduce the relation (5.64)
(76, 89], and the ratio £ /725 turned out to be [81]

g m? 16 \°
== ~ 2.0558. 5.66
Tos 3 (27111 2) ( )

This was regarded as the most crucial problem with the earlier proposal for the
tachyon state [76). The proposal of [76] was to build a state |¢;) defined as

|¢¢) = exp (Za;&-tn -p>15> (5.67)

n>1

where p is the center-of-mass momentum of the string, and the product over space-
time indices is understood. For this state the linearized field equations around the
D25-background lead to the correct on-shell condition for the tachyon [76]. In
[76] also a proposal for a state |¢y) representing the massless vector state on the
perturbative vacuum was given:

gv)= (> duatl)lo) 6

n=1,3,5,...

Unfortunately, the algebraic definition of such a states, since they involve infinite
dimensional determinants, can lead only to numerical approximations of the values
of the brane tensions. Rastelli, Sen and Zwiebach [81] maneged to re-express the
state |¢;) in terms of boundary CFT, proving the relation (5.66). The CFT de-
scription of |¢;) was found to be the sliver state with the tachyon vertex operator
¢*X inserted at the midpoint of the boundary of the sliver state. The approach
of Okawa for finding the correct boundary CFT formulation of the tachyon state
is the following one. The massless scalar fields on a D-brane describing its fluctu-
ation in the transverse directions are Goldstone modes associated with the broken
translational symmetries, and should be identified with infinitesimal deformations of
the collective coordinates. Since the collective coordinates are encoded as Dirichlet
boundary conditions X* = @’ in (5.63), the massless scalar fields must be identi-
fied with infinitesimal deformations of the boundary condition. It is well-known in
the open string sigma model that such a deformation is realized by an insertion
of an integral of the vertex operator 9, X'e*** of the scalar field, where 9. is the
derivative normal to the boundary. Therefore, the massless scalar field should be
described by the sliver state where the integral of the vertex operator is inserted
along the boundary with the Dirichlet boundary condition. This identification of
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the scalar fields is generalized to other open string states using the relation between
the deformation of the boundary condition and the insertion of an integrated vertex
operator. Let us see how this approach works for the tachyon state. The tachyon
field T(k) on a D25-brane represented by the sliver state |Z) should be described at
the linear order of T'(k) as follows:

&wwwa—/ﬁ%MNMWﬂm» (5.69)

where |xr(k)) is defined for any state in the matter Fock space |¢) b

perle) = i { [ ae X0, 0000)) (5:10)
Zn
Here a combination of a conformal transformation h,(§) and Riemann surface L
should be conformally equivalent to that of f,(£) and the upper-half plane, and the
integral of the tachyon vertex operator e**( is taken along the boundary of the
wedge state from' h,,(1) to h,(—1) along the Dirichlet conditions.

Using this kind of states Okawa has been able to prove in [107] that the matter
sliver |Z) has indeed the'right tension of a D25-brane, and to check that mass of
the state |xr(k)) is that one of the tachjon.

5.3 Multiple D—branes

In this section we show, following [74], how it is possible to construct solutions to the
projection equation (5.17) representing multiple D-branes. These kind of solutions
will be particular important because will be the ‘building blocks’ of that particular
solutions that will reduce to the GMS solitons in the low energy limit.

It is useful to collect a few properties of the matrices M and X:

X+ M2Z+M* =1,

jmeZl — X2 ——X,

(M12)2 + (M21)2 -1 X2,

(M2)33 4+ (M) =2X3 —3X2+1=(1-X)’(1+2X), (571

that gives

(MY — M*)? = (1-X)(1+3X). (5.72)
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Besides we have the following additional relations between 7' and X following
from the form of the solution and the equation that relates them (5.46):

1-TX 1 1-7  [1-X X T (5.73)
1-X  1-T' 147 V143X  1-X (1-T)72 '

We construct now a pair of projectors that will be used in the definition of the
multiple D-branes states. We define the matrices

O G T)l(l — [M”(l ~TX) +T(M21)2} : (5.74)
1 21 12\2
p2 =(1+T)(1_X)[M (1—TX)+T(M )],

That satisfy the following properties:
pl=p, P =p, C;C=npsz, (5.75)
and more importantly

prtp =1, (5.76)
M12 _ M21
pe T X+ X))
From eq.(5.72) we see that the square of the second right hand side is the unit
matrix. Thus (p; — p2)? = 1, and this together with the squared version of the first

equation gives

This equation is also easily verified directly. Multiplying the first equation in (5.76)
by p1 and alternatively by p; we get

pipL=p1,  P2pa = Pa- (5.78)
This shows that p; and py are projection operators into orthogonal subspaces, and

the C exchanges these two subspaces.

5.3.1 Computation of x products of states

As seen earlier, the matter part of the sliver state is given by

E) = A exp (- é—aT 5-al)[0). (5.79)
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Coherent states are defined by letting exponentials of the creation operator act on
the vacuum. Treating the sliver as the vacuum we introduce coherent like states of
the form

28 = exp(3(=)* Bmet ) [E) = exp(-al - CH)IE). (5.80)

As built, the states satisfy a simple BPZ conjugation property:
oo
(Esl = (Elexp(Y_ uut) = (Elexp(5-a). (581
n=1

We compute the * product of two such states using the procedure discussed in
refs.[70, 73]. We begin by writing out the product using two by two matrices encod-
ing the oscillators of strings one and two:

3) (3)

= )(Elexp(B1 - aq)) (2)(Elexp(B2 - agz))|Vizs)
1 1:
= (019 exp(ﬂ a—ga- - a,) exp(—-z-aT V- a —x* - aT> 012)

(Ea) +12a) = (exp(=a!-CB)E) » exp(~al - C)E))

2
1
(-l v )0 o
where a = (aq), a(2)), and
S 0 Vll V12
2:(0 S)’ VZ(V?l v22>’
B = (g:) , X' = (azg)Vlz, aIS)Vm) : (5.83)

Explicit evaluation continues by using the equation
1 1
(0] exp (ﬁiai — §Pijaiaj) exp ( — xial — iQijaIa;) 0) (5.84)
_ - 1 _ 1 -
— det(K) Y2 exp (—XTK - BTQETB - X" K 1PX> K=1-PQ.

At this time we realize that since |Z) % |Z) = |Z) the result of the product is a sliver
with exponentials acting on it; the exponentials that contain 8. This gives

1Z6:) * [Z8,) = exp(—xT K- %ﬂT VK ﬂ) Z), K=(1-%V). (585)
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The expression for =1, needed above is simple to obtain given that all the relevant
submatrices commute. One finds that

Kl=(1-3s9) (5.86)

1 1-TX TM”)
Ta+na-x)\ T™M* 1-TX

We now recognize that the projectors p; and p, defined in (5.74) make an appearance
in the oscillator term of (5.85)

T8 = —at-C (W, MK 18 =—a'-C(p1, )8 (5.87)
= —a'C - (pfr+ p22) -

One can verify that

C(B1, Ba) E % (B1, B2) VK (g:) (5.88)
% B Py +T)1<1 —X) (VH% ! VHKH— T)) (g> |

Since the matrix in between is symmetric we have
C(B1, B2) = C(B2, Br) - (5.89)
Using (5.87) and (5.88) we finally have:
15131) * i5ﬁ2> = exp(——C(Bl, /32)) laplﬁl-i-pzﬁz) : (5'90>

This is a useful relation that allows one to compute *-products of slivers acted by
oscillators by simple differentiation. In particular, using eq.(5.80) we get

(a2l -t 2)) # (@t -l [E)) = (—1)TmamerD Rty (5.91)
(f)ﬁim - aﬂiwk Bﬁim - 3/3;9n,y, (2) *125))),, -y
Since p; + p2 = 1, for By = 2 eq.(5.90) reduces to
Z5) * [25) = exp(—C(6,8) ) IEs) . (59

Using the definition of C in (5.88) one can show that C(5, 8) simplifies down to

C(8,6) = 5 5CL-T)7'8. (5.93)
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Tt follows from (5.92) that by adjusting the normalization of the &g state

Py = exp(C(8,8))I5s), (5.94
we obtain projectors
Ps+ Py =Py, (5.95)
Using eq.(5.84) one can also check that

(Pg|Pg) = (E[=) - - (5.96)

5.3.2 Projection operators

We are now ready to define the multiple D-branes states. We start with the following
ansatz:

P = (—g-afg-aTJr/c) = (5.97)

where ¢ = C¢ in order to guarantee the Hermiticity of |P). ¢ is constrained to
satisfy ‘

p€=0, p&=¢, (5.98)
Since C'p;C = pg we have also
Pl =0, pl=(. (5.99)
We want now to show that the state |P) satisfies the following properties
1. |[P)yx|E)=0
2. |P)*|P)=|P)
3. (P|P) = (E|5)

The first property will be used to fix k, the second will normalize £, and the
third will follow automatically from the first two.

1) The product |P) * |Z) requires multiplying a sliver times a sliver with two
oscillators acting on it. As we saw in the previous section one can obtain this result



5.3 Multiple D-branes 89

by applying the differential operator ﬁm on both sides of eq.(5.90), and then
setting By and B, to zero. One finds

P+E) = [ P) = (k+ T VK OB, (5.100)
Since we require |P) * |Z) = 0, we need to set
k=—T (VK YnE = =TT -T%7'¢, (5.101)

where the last equation in (5.73) was used to simplify the expression for (VIK™1)11.

2) We calculate |P) * |P) by differentiating both sides of eq.(5.90) with respect
t0 Bimy and Bam, appropriate number of times, and then setting 8, and [ to zero.
We get the result for the * product to be:

1Py« |P) = —(T(VK ()¢ al (- al|Z) (5.102)
(VRN E V0 + (€ VKO VK ) =) 5]

Using (5.88), the last equation in (5.73), and (5.101) one finds that
TV e =TT =T =k, (5.103)

Furthermore (VK ™1)11 = (VK ™1)g. Using this and eqs.(5.101), (5.103), we see that
eq.(5.102) can be written as

1P} #P) = (7K )ia0) (€0 ¢l +E) [E). (5.104)
If we now normalize £ such that
VK (=1, (5.105)
then eq.(5.104) reduces to the desired equation:
|P) % |P) =|P). (5.106)

The normalization condition eq.(5.105) can be simplified using the first equation in
(5.73) to obtain:

F-T1%)7¢=1. (5.107)

3) We shall now show that the new solution |P) also represents a single D25
brane. For this we shall calculate the tension associated with this solution and try
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to verify that it agrees with the tension of the brane described by the sliver. Since
the tension of the brane associated to a given state is proportional to the BPZ norm
of the state [73], all we need to show is that (P|P) is equal to (Z[|Z). This is a
straightforward calculation using the formula (5.36), that, rewritten for the present
purposes is

(0] exp ( - —;—a-ScH—)\-a) exp ( - %(I-SCLT-F,B%L)!O) (5.108)

= det(l — 52)“1 exp (,BT . (1 _ 52)—1 N = _;_/BT . S(l . 52)—1 . /8

One then differentiates both sides of this equation with respect to components of A
and S to calculate the required correlator. The final result is

(P|P) = (Z|E). (5.109)

Thus the solution described by |P) has the same tension as the solution described
by |Z). Similar calculation also yields:

(E|P)=0. | © (5.110)

The BPZ norm of |Z) + |P) is 2(Z|Z). This shows that |Z) + |P) represents a
configuration with twice the tension of a single D25-brane.

Consider now another projector |P’) built just as |P) but using a vector £":

P)=(-¢-d §’~af+k')[E), (5.111)
with
p€ =0, pf=¢, (5.112)
k' given as
K =-TT(1-T*1¢, (5.113)

and normalization fixed by
Tl -TH7¢ =1. (5.114)

Thus | P') is a projector orthogonal to |P). We now want to find the condition under
which | P') projects into a subspace orthogonal to |P) as well, i.e. the condition under
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which |P) % |P') vanishes. We can compute |FP) * |P’) in a manner identical to the
one used in computing |P) | P) and find that it vanishes if:

(1 -T%71¢ =0. (5.115)

Since this equation is symmetric in € and &', it is clear that [P') * |P) also vanishes
when eq.(5.115) is satisfied. Given eqgs.(5.114) and (5.115) we also have:

(P'|P'y=1, (P|P")=(E|P)=0. (5.116)

Thus |Z)+|P)+|P’) describes a solution with three D25-branes. This procedure can
be continued indefinitely to generate solutions with arbitrary number of D25-branes.

The same procedure can be applied for the construction of multiple Dp-brane
solutions for p < 25. Indeed we saw that the matrices M 1 VL X!, O and T obey

the same properties of the corresponding unprimed matrices. The procedure of the
previous section can then be applied mutatis mutandis.







Chapter 6

Vacuum String Field Theory with
B Field

Witten’s star product and the Moyal product show both a noncommutative struc-
ture. It is then immediate to ask if there is some connection between the two prod- -
ucts. This question has already been partially answered. Sugino [64] and Kawano
and Takahashi [65], showed that Cubic String Field Theory is compatible with the
introduction of a constant B field. They proved that when a B field is turned on, the
kinetic term of the SFT action (3.8) is modified only by changing the closed string
metric g,, with the open one G, while the three string vertex changes, besides the
substitution g,, — G, being multiplied by the (cyclically invariant) noncommuta-
tive phase factor that we already met in Chapter 1. Then Witten [66] and Schnabl
[67] proved that the two products are indeed compatible, since a Moyal structure
emerges from Witten’s star product in the low energy limit. In this chapter we want
to address our investigations to the effects on the nonperturbative structure of SF'T
of turning on a B field. We will repeat the analysis of the previous chapter with a B
field: exact solutions to VSFT equation of motion can be written down for tachyonic
lumps much in the same way as one finds analogous solutions without B field. Also
wedge-like states and orthogonal projectors will be defined in the presence of a B
field. But what is more important is that a B field can be precious tool to regularize
some of the several singularities that arise in VSF'T. Moreover we saw that solitons
solutions, the GMS solitons, otherwise forbidden, are present in scalar field theo-
ries when noncommutativity is turned on. We will show that the same structure,
mainly given in terms of Laguerre polynomials, arises also in VSF'T, giving a new
perspective under which looking at the connection between Witten star and Moyal
product.

93
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This chapter is organized as follows. First we will write down the SFT vertex
in the presence of a constant B field. This result was first found by Sugino [64]
and Kawano and Takahashi [65], using the overlap conditions as in (68, 69]. We
will give here an alternative derivation of their result, based on the LeClair, Peskin
and Preitshopf construction of the vertex (V3|. Then we will construct squeezed
states solutions with B field, as much as done in the previous chapter. We will show
analogies and differences with the B = 0 case by constructing wedge-like states and
orthogonal projectors, and investigating the behaviour of the string midpoint with
B # 0. Finally we construct a series of orthogonal projectors that in the low energy
limit give exactly the GMS solitons.

6.1 String Field Theory with B field

Tt is useful to recall the form of the propagator and of the string field expansion
when the B field is turned on. They are

(XH(z,2) X" (,2)) = —d {g’“’ In|z — 2| — ¢*Inlz — 7|

1 ~ 7 |
LGP |z~ 7P+ —=0"In 22+ D] (6.)
A

2o’ Z—z

and
Xt = zh+d [(E'l)“"g,,pp” Inz+ (E7T)*g,,p° In z]

e 1 Ay L _ v -
_HV_Z—ZE[(E N g, 0l 7" + (BT g, 002 ”] (6.2)
n#0
where E,, = gu + 2m0/By,. The two and three string vertices were defined as
correlation functions of string fields operators computed on the upper half plane.
For instance the three string vertex was

(A, B*C)=(f{004(0) f 0 O5(0) f5’ © Oc(0) )n (6-3)
Inverting eq.(6.2) to obtain o, as function of X*(z) we find
at :]{—d—z—z*”(E)“”g 0, X*(2) (6.4)
o 2m1 s

The operators O are products of polynomials in the creation operators ot with
exponentials e#X. Under conformal transformations the latter change as

filak,] = 74iz—.z-nma<z>>(E—wﬂ”gupazw(fi(z»

271
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HleP X O = | (0) ) e XU
The contraction of any two o, is then
fil ot Sl
_ dz —n gl dw —my ol
- o’ (fi(2)) il (f;(w))

(BT gup(B7) 900 (0X° (£:(2))0X7 (f3(w)))

dz , dw ,

- —Z;T—Z.Z“”(fi(Z)) ) (B 90 B e

n m —G*
= 2D § o) G ry (6.5)

where the correlation function (9X*0X") is obtained deriving eq.(6.1). We see
that the modification induced by the B field on the part of the vertex with indices
m,n > 0 is completely taken into account by substituting the closed string metric

g with the open string metric G, The same modification occurs in the kinetic
term. Things are different when both the mode indices of the Neumann coefficients
Nyn are zero: Npg. This corresponds to the contraction of two exponentials that
are both forced to belong to the real axis. To do this contraction we need then the
propagator for points belonging to the boundary of the worldsheet. It was given in
(1.18) and is

(XH(R) X (1)) = —a/ G In(r — )P + 50" e(r — 7' (6.6)

With this propagator the matrix element of exponentials becomes, up to normaliza-
tion factors

< Heipi-x<fi<0))>
= exp {prGWpJ’flogm(O)—fj( }exp{ Zp‘ﬂ“ py e(fi(0) — fj(o))J

1<J v 1<J
The B modified |V3) is then
Vi) = (W +p® +p)|0) ® Q) ® [2)

< oo 5 donatmett v 30 it~ o)

MNO m=0,n=1
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6.2 The coefficients Vi, with B field

Our next goal is to find the form of the coefficients Vify when a constant B field is
switched on. We start from the simplest case, i.e. when B is nonvanishing in the
two space directions, say the 94—th and 25-th ones. Let us denote these directions
with the Lorentz indices o and B. Then, as we saw in the first chapter, in these two
directions we have a new effective metric Gp, the open string metric, as well as an
effective antisymmetric parameter fag, given by

oob 1 1 o
B n+27roz’Bnn~27ra’B ’

af
g°f = —(27md)’ ! B =
n+2rae/B N — 2ma/B

The three string vertex is modified only in the 24-th and 25-th direction, which,
in view of the subsequent D-brane interpretation, we call the transverse directions.
We split the three string vertex into the tensor product of the perpendicular part
and the parallel part

|V:3> :~H/3,-L> ® |VZ3,||> (67)

The parallel part is the same as in the ordinary case and will not be re-discussed
here. On the contrary we will describe in detail the perpendicular part of the vertex.
We rewrite the exponent E as E = Ey+EL, according to the above splitting.
will be modified as follows

3
1
B, = Ei=), (5 S Gapal T Vinal” T+ 57 Gagply Vanar !

r,s=1 m,n>1 n>1
1. i
+ 5 Gt Ves Ty + 3 S )9“%3)) (6.8)
r<s

where we set o/ = 1. Next, as far as the zero modes are concerned, we pass from
the momentum to the oscillator basis, [68, 69]. As before we define

)& 1 ~(T) . 1 ~(r)a T 1 = . 1 ~(r)a
ol = —2—\/5p( Jor zﬁaj( e, oot = 5\/51)(”“ + z:/——gx(r) : (6.9)

where pMe, 4 are the zero momentum and position operator of the r—th string,
and we have kept the ‘gauge’ parameter b of ref. (73] (b~ o). Itis understood that
plre = G“‘ﬂpg). We have

[ag‘)a, ag-S)ﬂT] — qoBgTs (6.10)
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Denoting by |Q4) the oscillator vacuum (ag|Q,9) = 0), the relation between the
momentum basis and the oscillator basis is defined by

}p24)123 & 1P25>123 = {p*}izs =

] 3
b ? b T T T 1 T T
(#——% ) exp {Z (~~p£I>G“%§3)+\/5aé>*p&>~—2—aé ”‘fcraﬂaé’“) [C200)

VdetG 4
Now we insert this equation inside E' and try to eliminate the momenta along

the perpendicular directions by integrating them out. To this end we rewrite ' in
the following way and, for simplicity, drop all the labels «, f and 7, s:

1 1 b ) 1
E| = 5 Z al GVipnal + vaonai,, + 5P {G"l(%q + ‘2‘) + %QEX] p — Vbpa} + §Q$Ga$

2
m,n>1 n>1

r=1

where we have set #%f = €% and introduced the matrices ¢ with entries € and y
with entries

Yi=|-1 0 1 (6.11)

At this point we impose momentum conservation. There are three distinct ways
to do that and eventually one has to (multiplicatively) symmetrize with respect to

them. Let us start by setting ps = —p; — po in E’, and obtain an expression of the
form
pXoop + ZPYbN aly + Z aly Zuy aly (6.12)
N>0 M,N>0

where, in particular, X is given by

T8 b T8 9 Q, rs
X8Bms = GO (Voo + =)™ +i— e e (6.13)

—€
2 4
Here the indices r, s take only the values 1,2, and

77:(1}2 1{2)’ 62(—01 é) (6.14)

Now, as usual, we redefine p so as eliminate the linear term in (6.12). At this point
we can easily perform the Gaussian integration over puy,P(2), while the remnant of
(6.12) will be expressed in terms of the inverse of Xoo:

2471 (3

e B (. —I\rs _ o; , 2af T8
pPCR 2G°‘ (n™) 210 % € ) (6.15)

(XEOI) af,rs —
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where

) .
A= Vo + 5 a = 454 DetG, ¢ — \/DetG e*f

Let us use henceforth for the B field the explicit form

0 B
=5 )

so that

' 2
DetG = (1+ (2rB)>)*,  9VDeiG = —(21)?B, a= _%B

(6.16)

(6.17)

(6.18)

Now one has to symmetrize with respect to the three possibilities of imposing
the momentum conservation. Remembering the factors due to integration over the
momenta and collecting the results one gets for the three string vertex in the presence

of a B field
Va)' =1V3,1) ® [Vay)
|V3,) is the samé as in the ordina‘ry ‘case without B field), while
ol

V1) = Ky e 2 |0)

with
2 3
K, = b (DetG)M4,
A%(4a? + 3)
3
1 T)&TA9Ts Bt
Bl Y e el
r,s=1 M,N>0

and [0) = |0) ® |Q4). The coefficients V5r5° are given by

afl,rs af crs 2471 af 4rs T
VOO ZG 0 “m(G ¢ — 1aé X)
T$s 2A~1\/5 3 Q, T sy o
Vet =Gy 2 (G —iadx) Ven
—1
2A 1 S

V%ﬁﬁm Gaﬁvrs

t~1

Z V'rv Gaﬂ¢vt _ iaéaﬁxvt) Vbt;

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)
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where, by definition, V7 = V.7, and

1 =1/2 -1/2
o= -1/2 1 -1/2 (6.26)
~1/2 -1/2 1

while the matrix y has been defined above (6.11). These two matrices satisfy the
algebra

3
=2, gx=xd=3x #=30 (627)

To end this section we would like to notice that the above results can be easily
extended to the case in which the transverse directions are more than two (i.e. the
94-th and 25-th ones) and even. The canonical form of the transverse B field is

Bop = 0 B (6.28)

It is not hard to see that each couple of conjugate transverse directions under this
decomposition, can be treated in a completely independent way. The result is that
each couple of directions (26 — 4,25 — 1), corresponding to the eigenvalue B;, will be
characterized by the same formulas (6.23, 6.24, 6.25) above with B replaced by B;.

«,

The properties of the new coefficients Vi are reported in Appendix D

6.3 The squeezed state solution
A squeezed state in the present context is written as
1S) =1SL) ® |5)) (6.29)

where |S)) has the ordinary form that we presented in the previous chapter, and is
treated in the usual way, while

~ 1 -
<SJ_I = N? <O| exp (——-5 Z CL?\‘/‘, Saﬂ,MN a@) (6.30)

M,N>0

1 . .
’S_L) = NQGXP (——5 Z aA/[TSa'g,MNa'JB\;r) IO) (631)

M,N>0
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where |0) = |Qp) ® |0). Here we have written down both bra and ket in order to
stress the difference with the B = 0 case, which stems from the fact that, in view
of (D.26), we assume C'8*C" = (§*8)* = 8= The * product of two such states,
labeled ; and , is carried out in the same way as in the ordinary case, see Chapter
5. Therefore we limit ourselves to writing down the result

Ky (MN3)? 1 N -
1S1) = [S1,1) * [So,1) = Dmf é_lzi)l 75 exp (_5 > aN}LS;ﬁ’MNa'?\}j 10Y6.32)
M,N>0
where, in matrix notation which includes both the indices N, M and «, B,
) '\721
8 =V 4 (V2 VI -2V)7'E <\712> (6.33)

In RHS of these equations

S 0 iy
2:(01 éo)’ V:<V21 \722)’ (6.34)

and Ig:ﬁN = 05 0mn:0", 7,8 = 1,2. DET is the determinant with respect to all
indices. In order to avoid confusion we remind the reader that we work with three
kind of indices: r,s = 1,2,3 for the three strings, o, § = 24,25 for the space-time
direction where the B field is switched on, and m,n = 1,...00 for the string modes.
We adopt the following notation for different identity operators: |

Ig:ﬁN = (Sg OMN o
15 = 5

To reach the form (6.33) one has to use cyclicity of V™ (see Appendix D). The
expression of & is in fact a series, therefore some kind of condition on the coefficients
8, must be satisfied in order for it to make sense. The squeezed states 8 satisfying
this condition form a subalgebra of the algebra defined by the * product.

Let us now discuss the squeezed state solution of the equation |¥) % |¥) = |¥)
in the matter sector. In order for this to be satisfied with the above states |S), we
must first impose

81‘—:8228’58

and then suitably normalize the resulting state. Then (6.33) becomes an equation
for 8, i.e.

~ 21
S =V 4 (V2 VHI-3Y)'S (Xu) (6.36)
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where ¥,V are the same as above with 8§, = 8, = 8. Eq.(6.36) has an obvious
(formal) solution by iteration. However we saw that it is possible to obtain the
solution in compact form by ‘abelianizing’ the problem. Notwithstanding the differ-
ences with that case, it is possible to reproduce the same trick on eq.(6.36), thanks
to (D.23). We set

C'Vs=X" and C'8§=7T,
and assume that
(X7, T]=0
(of course this has to be checked a posteriori). Notice however that we cannot
assume that C' commutes with §, but we assume that
C'8C" =38 .
By multiplying (6.36) from the left by C' we get:

(6.37)

21
T ="+ (X2, I - 2V)™ (T‘x )

«Txlz

For instance SV'% = §C'C'V2 = TX'2, etc. In the same way,

R 0 R N
— -1 —
(I ZV) < _r_]—le I-— Txll)

where 1% ),y = 65y Now all the entries are commuting matrices, so the inverse
can be calculated straight away.

From now on everything is the same as in [70, 73], therefore we limit ourselves
to a quick exposition. Using (D.24) and (D.25), one arrives at an equation only in
terms of T and X = X

(T-DATP-I+X)T+X)=0 (6.38)
This gives two solutions:

T=1 (6.39)

7= %C- (1+ - V/T+300-)) (6.40)

The third solution, with a -+ sign in front of the square root, is not acceptable. In
both cases we see that the solution commutes with X"°. Naturally we are talking
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about solutions of the abelianized eq.(6.37). The true solution we are looking for is,
in both cases, § = C'T. i

As for (6.39), it is easy to see that it leads to the identity state. Therefore, from
now on we will consider (6.40) alone.

Now, let us deal with the normalization of [S). Imposing |S1) * [S.) = |SL)
we find

N? = K;'DET (I — V)2
Replacing in it the solution one finds
DET(I — V) = Det ((I— X)(I+T)) (6.41)

Det denotes. the determinant with respect to the indices «, 8, M, N. Using this
equation and (6.21), and borrowing from Chapter 3 the expression for |5 ), one -
finally gets for the 23-dimensional tachyonic lump:

1S) = {det(l - X)l/zdet(l + T)1/2}24 exp <~%m—“—, Z aff.menaZT> [0) ® (6.42)
- m,n>1
A?(3 + 4a?) » 1 ‘ _
Det(I — X)?Det(I + T)/*) exp [ —= a8, a1 110,
V2mb3 (DetG) /4 (Det(I =) (7)) exp | =3 MZN:EO wSapavay | 10)

where § = C'T and T is given by (6.40). The quantities in the first line are defined
in ref.[73] with &, 7 = 0,...23 denoting the parallel directions to the lump.
The value of the action corresponding to (6.42) is easily calculated

s = %L 3/4 /)
s = Ko {det(1 — X)**det(1 +3X)"*}
A*(3 + 4a?)? 5
. _ /4 1/4 4
270 (Dt /2 Det(I — X)*/*Det(I + 3X) (6.43)

where V(%) is the volume along the parallel directions and X is the constant of
eq.(E.44).

Finally, let ¢ denote the energy per unit volume, which coincides with the brane
tension when B = 0. Then one can compute the ratio of the D23-brane energy
density eps to the D25-brane energy density egs ;

€93 (271')2
f8 _ : 44
€95 (DetG)1/4 R <6 )

AY(3+ 4a?)? Det(I — X)*/*Det(I+ 3%X)/4

= 2753 (Det@) VA det(1 — X)?2det(1 + 3X) 2 (6.45)
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Since R equals 1 (see Appendix D), this equation is exactly what is expected for
the ratio of a flat static D25-brane action and a D23-brane action per unit volume
in the presence of the B field (6.17). In fact the DBI Lagrangian for a flat static
Dp—brane is,

Lopr = Det(1+ 27 B) | (6.46)

gs(2m)P
where g, is the closed string coupling. Substituting (6.17) and taking the ratio the
claim follows.

Let us briefly discuss the generalization of the above results to lower dimensional
lumps. As remarked at the end of section 2, every couple of transverse directions
corresponding to an eigenvalue B; of the field B can be treated in the same way as
the 24—th and 25-th directions. One has simply to replace in the above formulas B
with B;. The derivation of the above formulas for the case of 25 — 2i dimensional
lumps is straightforward.

Switching on a constant B field on VSFT does not obstruct the possibility to
find exact results. On the contrary, we have found that (matter) squeezed states
representing tachyonic lumps are still solutions of the equations of motion, and that
we can give compact explicit formulas for these solutions, much like in the B = 0
case. Indeed these are still interpretable as (lower dimensional) D—branes.

6.4 Some results in VSFT with B field

In this section we present a couple of results which are natural extensions of anal-
ogous results with B = 0, namely the possibility of defining wedge-like states and
orthogonal projectors. But we investigate also a particular phenomenon, the con-
finement or not of the midpoint of the string, where the presence of the B field
determines makes a strong difference with the B = 0 case.

6.4.1 Wedge-like states

We saw that wedge states are geometrical states in that they can be defined simply
by means of a conformal map of the unit disk to a portion of it. They are spanned
by an integer n: the limit for n — oo is the sliver |Z), which is interpreted as the
D25-brane. Wedge states also admit a representation in terms of oscillators a}, with
n >0,

W) = N2 39 CTne|0) (647
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which is specified by the matrix T,,, n > 1. It can be shown that, see [91], T,, satisfy
a recursive relation which can be solved in terms of the matrix 7' characterizing the
sliver state (T' = CS, S being the sliver matrix). The normalization N can also
be derived from a recursion relation. Since all these results are essentially based on
equations which are generalized to the case when a B-field is present and are in fact
reported in Appendix D, it is easy to deduce that analogous results hold also when
a B field is turned on.

The generalized wedge states will be the tensor product of a factor like (6.47)
for the the 24 directions in which the components of the B field are zero and

(W) = N2 e3¢/ C'Tnel ) (6.48)

for the other two directions. From now on we will be concerned with the determi-
nation of 7, and N,. We start from the hypothesis that

(X7, T, ] =0, C'Tp=T,C" (6.49)

whose consistency we will Verify a posteriori.
Now we define 75 = 0 and the sequence of states

(Whi1) = [Wa) * [Wa) (6.50)
. _ C'T, 0 . .
Using eq.(6.32) and (6.36), with ¥ = o o) Ve find the recursion relation
T X0 T2\ 7 (TR0
_ ll 12 21 [ n n n
1-7
= X n )
o (6.51)

where use has been made of the second equation in (D.27). Solving this recursion
relation, [91], we can write

T+ (=)

%“Tfﬁﬂf (6.52)

Notice that this sequence of states can be extended to [W;) defined by J; = 1. An
analogous recursion relation applies also to the normalization factors. Once solved,
it gives

2 1/2
1-7 > (6.53)

_ 11
Nn = K2 det (T—_———(:T—)?ﬁ
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The constant K, is defined in eq.(2.19) of [108]. The relations (6.49) are now easy
to verify. ~

The limit of T, as n — oo is T (i.e. the deformation of the lump), provided
lim ™ = 0. In turn, the latter holds if the eigenvalues of T are in absolute value
less then 1, as those of T are.

6.4.2 Orthogonal projectors

In the presence of a background B field it is also possible to construct other projec-
tors than the one shown in (6.42). To show this we follow Chapter 5. The treatment
is very close to what can be found there, and the main purpose of this subsection
is to stress some differences with it. As usual we will be concerned only with the
transverse part of the projectors, the parallel being exactly the same as in (5.74),
and will denote the transverse part of the solution (6.42) by [8.).

We start by introducing the projection operators parallel to that ones of eq.(5.74)

1

o= TS [0 (I = TX) + T(X*)?) (6.54)
1 21 12\2
| ~ = Ao [T — TX) + T(X**)?] (6.55)
They satisfy
o= p, P = pa, prt+p=1 (6.56)

i.e. they project onto orthogonal subspaces. Moreover, if we use the superscript ©
to denote transposition with respect to the indices N, M and «, 8, we have

pr=p1=C'pC ps =2 =C';C". (6.57)

Now, in order to find another solution of the equation |¥) x |¥) = |¥), distinct
from |8, ), we make the following ansatz:

PL) = (—€ral ¢ -af +5) S.) (6.58)

where £ = {£%}, ¢ = C'¢ and 7 is the matrix é 1

B. k is a constant to be determined and ¢ is required to satisfy the constraints:
p€=0, pt=¢§ le pi=( =0 (6.59)
Using (6.56,6.59) it is simple to prove that
(T, T)E=0, €M FETTIC=0

acting on the indices a and
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for any function f. Now, imposing |P )  |S1) = 0 we determine x:

1 : 1
K = _——Q—IgTT (V]C“l)llg . _2_§T (V]C_l) . 7_4 (660)
where

(6.61)

11 iz
K=1-7X, V:<\7 M >

Vver o 22
Next we compute |P,) * |P). This gives

|P1) *|P1) = % (fT (V/C_l)m ¢+ (T (VIC_I)21 £) (—a‘tvf al - ¢+ &) |8L) (6.62)

where use has been made of the identities

Fr (), € = Cr(VET),E= ~(Tr (VET),, 6 = §T7']I _ Tzf
(VK ¢ = € (VET),,m¢ = =67 (VET),, 7¢ = (T y—57¢ (6:63)
_ ’ 1 _ 1
& (V) ,7¢ = CTH_rIzTC’ ¢ (VK1) €= gTT]I_rsz
Similarly one can prove that : o
T T 1 1
So, in order for |P,) to be a projector, we have to impose
_ _ 1
(€T (WK) ¢+ T (VET),, 6) = 2§TTI[ - 725 =9 (6.65)
Using this and following [74], it is simple to prove that
1 1
ufs) = (e gt ) Buls = Buls) (609
thanks to (6.64,6.65).
Therefore, under the condition
1
gTTH —5¢ =1 (6.67)

the BPZ norm of |P,) +|8.) is twice the norm of |$1). As a consequence the sum
of these two states, once they are tensored by the corresponding 24-dimensional
complements defined in Chapter 5, represent a couple of parallel D23-branes.

Similarly one can construct the more complicated brane configurations as we saw
at the end of the Chapter 5.
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6.4.3 The string midpoint

It was shown in [78] that, in the absence of a B field, the string midpoint in the lower
dimensional lumps is confined to the hyperplane (D-brane) of vanishing transverse
coordinates. Evaluating the exact string midpoint position in the full VSET is in
fact a nontrivial and interesting problem. We intend to address it in this subsection.

The oscillator expansion for the transverse string coordinates is, (1.20), setting

r 1
04—5,

N ad 68 1
z%(0) = z§ + ————pog(O’ — 5) +2 Z {x cos (no) + = Png sin (na)} (6.68)
Therefore the string midpoint is specified by
o™\ _ o T A
x (2) =z + ﬁ;( 1) {x% o Pen-18 (6.69)

It is more convenient to pass to the operator basis ay, a?\;, which satisfies the algebra

[&g\?a, ag\j’_)ﬁfl Gaﬂ 6MN5TS

and are related to z,,p, by

1.;.{ = \/%2_7% (a‘z - agT) ) Pne = \/gGaﬁ (aﬁ + aﬁf) N (670)

while the analogous relation for zg, pg is given by eq.(6.9) with the specification that
throughout this section, for simplicity, we fix b = 2.
Now, confinement of the string midpoint means

« T —
o (-2—) 18,) =0 (6.71)
Evaluating the LHS we get
afT T BN PR o o DR SR TSy
(5) 182) = (el +at8)ls) z; T (e +a'8)5,18.)
—~1)" 4P
—Z “”‘Gﬁ'y( f—af8)3,_1181) (6.72)

Vvan—1

Confinement requires that this vanish. In order to write this condition in compact
form, we introduce the 2 x 2-matrix—valued vector

= )1+ |p)e (6.73)
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where
_ o1 =
v) = {VoaVQn}; vy = ﬁ’ Von = \/2—?%
) 1)
) = {p2n-1}, pon—1 = im B —(\/277‘2——'—1 (6.74)

Now the confinement condition for the string midpoint can be written as
§C'O = -0, or, equivalently, 0 =-0, ie TO=-0. (6.75)

Due to (6.40) an eigenvalue —1 of T corresponds to an eigenvalue —1 of X with the
same eigenvector. Let us rewrite I+ 3X as

I+3X=Y1+Ze (6.76)

Then eq.(6.75) becomes (I -+ 3X)© = 0, which in turn corresponds to the two
equations

Y[v) +Z ) =0 (6.77)
Zin) =Yl =0 (6.78)

Tt is useful to further split Y as Y = Yo + Y1, where Yo = Y(B = 0). Using (E.7) one

obtains
4(1- A1) —4 A7 (v,
Yy = ( ) (6.79)
—4A ) 143X — 4 A7Y(|ve) (Ve] — |vo) (Vol)

S
Y. =12H (6.80)
|ve) Ive} (Ve] — IU0> <'UO‘

0 (vl
2 = 8/3iaK (6.81)
|vo) |ve) (Vo + [v0) (vel
where H = %gﬁ—;—.
Now let us express the previous equations in a more explicit form.
V) =10 @ |1e),
) = —imB|),),



6.4 Some results in VSFT with B field 109

where

Sl (=1 —1)"/2
|U€>n — :(—)——UTH Z/TL — ( )
2 N
\ \ \ (_1)(n+1)/2 6
l 0>’n» - 2 )y n \/77_’2,— ( 83)
We remark that |v/) is the eigenvector corresponding to the eigenvalue — of X(B =
0), introduced in [78]; and that |),) is the eigenvector with eigenvalue —% of X,
introduced in [82]. As a consequence one has

(6.82)

Yolt)=0,  (143X)A) =0 (6.84)
The first equation can be rewritten as

<UelVe> = Vooro (6.85)
(1+ 3X)|ve) = 4up|ve) (6.86)

Remarkably enough, all the other equations from (6.77, 6.78), after using (6.85) and -
the second equation in (6.84), reduce to a single one
' 2

(IUOP“0> = gﬂ- (687>
Therefore, since eqgs.(6.84) have been proved independently, confinement of the string
midpoint holds or not according to whether eq.(6.87) is true or not. Now, the LHS
of this equation is
Ay
n

(volAo) = Z (—1)(n+1)/2

n odd

(6.88)

The latter series can be summed with standard methods and gives

9 — 2437
6

Therefore (6.87) is definitely not satisfied. So we can conclude that the string
midpoint in the presence of a B field is not confined on the hyperplane that identifies
the D23-brane.

In this section we have shown that the introduction of a B field in VSFT does
not prevent us from obtaining parallel results to those obtained when B = 0. Once
the formalism is set up, the formal complications brought about by the B field are
far from scaring.

(UOI/\0> =
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On the other hand a nonvanishing background B field may have advantageous
aspects. The smoothing out effects of B on the UV divergences of noncommutative
field theories are well-known. We have verified that the singular geometry of the
lump solutions, pointed out in [78], disappears in the presence of a B field, in
particular the string midpoint is not confined any longer to stay on the D-brane.

We remark that this deconfinement might mean also that the left-right factor-
ization characteristic of the sliver solution, [74, 85, 87, is not possible for lump
solutions with B field. However it looks like there are other aspects of VSFT which
may be fruitfully extended to VSFT with B field. For instance, the series of wedge-
like states introduced before seem to suggest that the geometric nature of the wedge
states, [71], persists also in the presence of a B field. This is confirmed by the re-
sults obtained in [97], where the presence of a B field has been dealt with entirely
geometrically.

6.5 VSFT ancestors of the GMS solitons

In this section, starting from the squeezed state, we construct an infinite sequence of
solutions of eq.(6.56), denoted |A,,) for any natural number n. |A,) is generated by
acting on a tachyonic lump solution |Ag) with (—&)"L,(x/k), where Ly, is the n-th
Laguerre polynomial, x is a quadratic expression in the string creation operators,
see below eqs.(6.92, 6.93), and & is an arbitrary constant. These states satisfy the
remarkable properties

An) % [Am) = pm|An) (6.89)
<Aﬂ|Am> = 5n,m<A0lA0> . (690)

Each |A,,) represents a D23-brane, parallel to all the others. The field theory limit
of |A,) factors into the sliver state (D25-brane) and the n-th GMS soliton. The
algebra (6.89) and the property (6.90) exactly reflect isomorphic properties of the
GMS solitons (in terms of Moyal product). In other words, the GMS solitons are
nothing but the relics of the |A,) D23-branes in the low energy limit.

To define the states |A,) we start from the lump solution (6.42). Le. we take
|Ag) = |8). However, in the following, we will limit ourselves only to the transverse
part of it, the parallel one being universal and irrelevant for our construction. We
will denote the transverse part by |S,).

First we introduce two ‘vectors’ £ = {{nq} and ¢ = {({ne}, Which are chosen to
satisfy the conditions

1€ =0, p2€ =&, and p:i( =0, P26 = ¢, (6.91)
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Next we define

x = (7€) (a'C'C) = (aff e €n) (a] ClyasCare) (6.92)
where 7 is the matrix 7 = {7,°} = ( (1) _01 ) , and introduce the Laguerre poly-
nomials L, (x/k). The definition of |A,) is as follows

[An) = (=8)"La(Z) 182) (6.93)

where x is an arbitrary constant. Hermiticity requires that

(7€) (aC'¢") = (a7 C"€)(al) : (6.94)
Finally we impose that the two following conditions be satisfied
1 T
Tt T Y
13 T TT?g 1, 13 T T2C K (6.95)

Let us spend a few words to motivate the definition of the states |A,). The
definition (6.93) is not, as one might suspect, dictated in the first place by the
similarity with the form of the GMS solitons. Rather it has been selected due to its
apparently unique role in the framework of Witten’s star algebra.

In [109], on the wake of [74], starting from the (transverse) lump solution |S ) we
introduced a new lump solution |P,) = (x—x)|8.). Imposing that [P, )*|P,) = |[P,)
and [P )*|S.) = 0 and, moreover, that (P, |P,) = (8.]|8.), we found the conditions
(6.95).

The next most complicated state one is lead to try is of the form

1Py = (o + Bx + yx?)|8L) (6.96)

The conditions this state has to satisfy turn out to be more restrictive than for |P),
but, nevertheless, are satisfied if, besides conditions (6.95), the following relations
hold

1

~2e)=p,  y=; (697)

and then, putting oo = &
) = (2 — 2mx + x )|5J_) (6.98)

The polynomial in the RHS is nothing but the second Laguerre polynomial of x/x
multiplied by k2. We deduce from this that the Laguerre polynomials must play
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a fundamental role in this problem and, as a consequence, put forward the general
ansatz (6.93).

Proving the necessity of the conditions (6.95) for general n is very cumbersome,
so we will limit ourselves to showing that these conditions are sufficient. However
it is instructive and rather easy to see, at least, that the second condition (6.95) is
necessary in general. In fact, by requiring that the state |A,) be orthogonal to the
‘ground state’ | ), we get:

A 18L) = (—n)“i(f?)( P 5,) 0 152)

=0 \J
= (7
j=0 J
A N ~B1 0 9 9
(rC)y .- (¢7C )z,- Gy - Gy 8u o) oup! ”.8,&]9;
exp( (XT]Cl) (V]C )ll/v”)ls-l->l =0
e
= |
= (=&)" <1 i Ilg‘fTTﬂ — ffz§> 81) =0 (6.99)

which is true for the choice x given by the second eq.(6.95).
The complete proof of eqs.(6.89) and (6.90) is presented in appendix D.

6.6 The field theory limit and the GMS solitons

We saw in Chapter 1 that soliton solutions of field theories defined on a noncommu-
tative space describe Dp-branes. It is then interesting to see if we can recover such
solutions using the Seiberg-Witten limit, that gives a noncommutative field theory
from a string theory with a B field turned on.

To discuss this limit we first reintroduce the closed string metric gos as g dagp.
Now we take o/B > ¢, in such a way that G, § and B are kept fixed. The limit is
described by means of a parameter € going to 0. (&’ ~ €). We could also choose to
parametrize the o/ B >> g condition by sending B to infinity, keeping g and o' fixed
and operating a rescaling of the string modes as in [67], of course at the end we get
identical results. By looking at the exponential of the 3-string field theory vertex in
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the presence of a B field
3
Z ( Z G a(r)aTvrs s)f@T + \/_” ZGaﬁp('r)‘/On a(
r,5=1 m,n>1 n>1

+C¥ Ga[;p(r)v + Zpa Gaﬁ ) (6100)

'r<5

we see that the limit is characterized by the rescalings

an _—> an
VmO - \/EVmD (6101)
Voo — Vo

Gop and 0°? are kept fixed. Their explicit dependence on g, o/ and B will be
reintroduced at the end of our calculations in the form

21’ B)? 1

Gap = (—————g——~2~(50/3, 0= z (6.102)
Substituting the leading behaviors of Visy in egs.(6.25), and keeping in mind that
A = Vpo + 2, the coefficients VB hecome

: T8 (87 TS 4 (43 T ~O T8

vaprs . qefgrs — 753 (GoP g — iae® x™) (6.103)
Ve = 0 (6.104)
yedrs . gesyTs (6.105)

We see that the squeezed state (6.42) factorizes in two parts: the coeflicients yap.1l
reconstruct the full 25 dimensional sliver, while the coefficients Vo‘ﬂ 11 take a very
simple form

2ol -1

= of = op 6.10
Sa| T 1 G sG (6.106)

S50 =

af,rs

The soliton lump with this choice of the coefficients V3~ will be called B

18y = {det(l—X)1/2de1:(1—!—T)l/g}24 exp (—% o Z aﬂmTSmnaZT> |0) ® (6.107)

mn>1

1
exp —~2~Gaﬁ Z af;jSmnagﬁ 0) ®

A%(3 + 4a?) (D
V275 (DetG)1/4

1
et(I — X)V?Det (I + T)*/?) exp (——gsaOTGaﬂao ) 1.0),
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where [i,7 =0,...23 and o, f = 24, 25. In the low energy limit we have also

Det(I — X)Y?Det(I+ T)/* = : det(1 — X) 5—— det(1+T) (6.108)

4a?

So the complete lump state becomes

= {det(1— X)Y2det(14T 1/2} exp (———GW Z a“TSmnaVT> 10) ®

m,n>1

4a v?
_ st Q 6.109
2+ 1 /3rb (detG) VA exp( g% it )' ol (0:109

where p,v = 0,...25 and G, = Ny ® Gap. The first line of (6.109) is the usual
25-dimensional shver up to a simple rescaling of a2. The norm of the lump is now

regularized by the presence of a which is directly proportional to B: a = ——-—B
Using
2v/detG [ 1 2 1y
|z) = ——i——— exp [-—~Em°‘Ga5$6 — —\[—biag‘TGngﬂ + §a8‘TGaﬂa0 } 1973 9)

we can calculate the pro jectioh onto the basis of position eigenstates of the transverse
part of the lump state

_sgota oAt 2vVdetG 1 _1-sigaz8c
2% “apf |() T+s b Tof3 6.110
(zle 2,6) o 1+ s € ( )
The transverse part of the lump state in the z representation is then
o 1 1 22zPG
(z]8,) = — e aB ef (6.111)
7
Finally, the lump state projected into the x representation is
s 1 1 1 zozP 4
§) =~ [—————— PGag|IE) = = - “ljgy. (6112
(z]8) — exp 2 lb:z;:J: s|1=Z) — exp 7 1=)) ( )

|Z) is the sliver state (RHS of first line in eq.(6.109)) and 6 = +. We recall that
B has been chosen nonnegative. The coefficient in front of the sliver |Z) is nothing
but the simplest GMS soliton solution (1.95):

Y(r) =27 (6.113)
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which corresponds to the {0)(0| projector in the harmonic oscillator Hilbert space.
Strictly speaking there is a.discrepancy between these coefficients and the corre-
sponding GMS soliton, given by the normalizations which differ by a factor of 2.
This can be traced back to the traditional normalizations used for the eigenstates
|z) and |p) in the SFT theory context and in the Moyal context, respectively. This
discrepancy can be easily dealt with with a simple redefinition.

We notice that the profile and the normalization of (z|$,) do not depend on b.

As compared to [78], the B field provides a natural realization of the regulator
for the tachyonic soliton introduced ad hoc there. This beneficial effect of the B
field is confirmed by the fact that the projector (6.109) is no longer annihilated by
Zg :

1, Vb 1
T exp <-§5aOTGaﬂa€T> o) = i - (ao — ab) exp (—QSCLOTGaﬁCLO ) 197%))
\/E [ da ] 1

a1 a) exp (—5sa0TGaﬁao ) 1Q0)

4

Therefore, also in the low energy limit, the smgular structure found in [78] has
disappeared.

In order to analyze the same limit for any |A,), first of all we have to find the
low energy limit of the projectors p;, p2. Also these two projectors factorize into the
zero mode and non—zero mode part. The former is given by

(00— [0 +ie?],  (p)id - 5[6°7 — ie?], (6.114)

Now, in order to single out the appropriate limit of |A,), we take, in the definition
(6.92), & = £+ ul and C ¢ + 09, where 7,9 vanish in the limit o’ — 0. Then we
make the choice fn Cn =0Vn > 0. We will see that the two zero components 50
and (, are enough to define a consistent low energy limit. In the field theory limit
the defining conditions (6.91) become

50,24 + Z.50,25 =0, 50,24 + ?;50,25 =0, (6.115)

From now on we set fo = é:o,zs = ——’ifo,m and, similarly, fo = 50725 = —ifo,m. The
conditions (6.95) become

1 1 2

T B ———— 3 F T —-
ST T TS e Vg eGgGCO— ! (6:416)
r T s 2
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Compatibility requires

=1- &, k=3 (6.118)

At the same time
5050
v/ detG

Hermiticity (6.94) requires that the product £oCo be real. In order to be able to
compute (z|A,) in the field theory limit, we have to evaluate first

_sgete Bt d* _sgota ot
(ol (51 Gupall ) e 14500 j0y) = (~2pr ((ale 8980 |0g) ) (6.120)

k VapY
— ( 2) d 2 detG 1 e_i% %:L‘O‘ Gaﬂlﬁ
dsk b 1-+s

(erah)(¢Clal) = —Elo((an™h)? + (a3™1)?) = - ag'Gopag’  (6.119)

An explicit calculation gives

dk 1 510 '

dsk< e 1305707 Gap ): - (6.121)
k k-l k+,’] | - —-1 .
=SS gt (er ) e

where we have set
1 272
(7,5) = —a%Gopa” = —2— (6.122)
with 72 = 2°28,5. In this equation it must be understood that, by definition, the
binomial coefficient (ﬁ) equals 1.

Now, inserting (6.121) in the definition of |A,), we obtain after suitably reshuf-
fling the indices:

(oL ()3 00

1

1 aTG Bt
SR ) Ca

- LI () () i

2v/detG
b

(6.123)
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The expression can be evaluated as follows. First one uses the result
"k
— k
Z(l. 1>=<.> (6.124)
I=4 j—1 J

Inserting this into (6.123) one is left with the following summation, which contains
an evident binomial expansion,

OOEY-05 e

k=j

Replacing this result into (6.123) we obtain
(@l (3) €788 o )
K

n 2\ J 5
. 2la| +1 2\/detG(_1)n n 1 (M’Q_ﬁr_) 7
4|al br =\ g! 7

Recalling now that the definition of |8) includes an additional numerical factor (see
eq.(6.109)), we finally obtain

w22 () 5 (-2 g
_ 91%(“1)n L. <2_;f) 7 |2) (6.126)

The coefficient in front of the sliver |=) is the n — th GMS solution.

In Chapter 1 it was shown that a generic noncommutative scalar field theory with
polynomial interaction allows for solitonic solutions in any space dimension. The
solutions are very elegantly constructed in terms of harmonic oscillators eigenstates
" |n). In particular, solitonic solutions correspond to projectors B, = |n)(n|. Via
the Weyl transform these projectors can be mapped to classical functions ¥, (z,y)
of two variables z,y, in such a way that the operator product in the Hilbert space
correspond to the Moyal product in (z,y) space.

This construction is rather universal and does not depend in any essential way
on the form of the potential. Now, as we have noticed in the introduction, the low
energy effective tachyonic field theory derived from SF'T in the presence of a back-
ground B field is a noncommutative scalar field theory of the type described above.
Therefore it is endowed with the GMS noncommutative solitons. It is reasonable to
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expect that these solitons may emerge from soliton-type solutions of the SF'T, which
has the noncommutative scalar tachyonic field theory as its low energy effective ac-
tion. Therefore the low energy GMS solitons we found in the previous sections are no
surprise. What is surprising however is the isomorphism we find between the lurnp
solutions |A,) in VSFT and the correspondmg GMS solitons. Setting r? = z2 + ¢

and ¥ (z,y) = 2(-1)" Ln(2§ ) e~ , we have in fact the following correspondences

|An) s P o hu(z,y)

where * denotes the Moyal product. Moreover
(AnlAn) = Te(PuPy) / dudy n(o, gl (,y)  (6.128)

up to normalization (see (6.90)). This correspondence seems to indicate that the
Laguerre polynomials hide a universal structure of these noncommutative algebras.

Tt is evident from the above that the GMS solitons are the low energy remnants
of corresponding D-branes in ‘SFT. This explains many features of the former: why,
for instance, the energy of the soliton given by D i_ > |k)(k| is n time the energy of
the soliton |0)(0]; this is nothing but a low energy rehc of the same property for the
tensions of the corresponding D-branes.



Appendix A

Feynman rules for
noncommutative gauge theories

A.1 Feynman rules for noncommutative U(N) gauge
theory

In this Appendix we report the Feynman rules for noncommutative gauge theories
defined with groups U(N) and SO(N) [31, 49].

Gluons carry Lorentz indices g, v, ..., color indices A, B, ..., and momenta p, g, ....
Ghosts carry only the last two type of labels. All the momenta are entering unless
otherwise specified.

The propagators are untouched by the noncommutativity as seen in section 1.3.

gluon propagator.

p 7
A,/,[, Y Yava Ve Ve ¥ B,V ~—~52-6A39uy (Al)
ghost propagator.
D .
A---+»—-- B 52—5,4}3 (A.2)

3—gluon vertex. The external gluons carry labels (A4, y, p), (B,v,q) and (C, \, k)
for the Lie algebra, momentum and Lorentz indices and are ordered in anticlockwise

sense:

119
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A, p,p

B,v,q C,\k

—g (fanc cos(p x q) + dapc sin(p x ¢)) (g (0 — Dr + goa (¢ = £)p + gru(k — p)A3)

ghost vertex. The gluon carries label (A, u, k), the ghosts (B, p) and (C, g):

A pk
2
- B,p C.q
—gpu (faBc cos(p x q) — dase sin(p X q)) (A.4)

4—gluon vertex. The gluons carry labels (4, u,p), (B,v,q), (C,p,r) and (D,0,s)
for Lie algebra, Lorentz index and momentum. They are clockwise ordered:

A, 1,p B,v,q

D,o,s C,p,r

—ig® [ (fapx cos(p X q) + dasx sin(p X q))

-(fxcp cos(r x s) + dxop sin(r X ) (Gup Gvo — uo Gvp)
+ (facx cos(p X 1) + dacx sin(p x 1))

(fxpp cos(s x q) +dxpp sin(s X q)) (Juo Jvp — Guv Jpo)
+ (fapx cos(p X 8) + dapx sin(p X s))

-(fxpe cos(g x r) + dxpc sin(g X 7)) (Juv Goo — Gup gva)]
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With elementary manipulations we can rewrite this as follows:

“192 [ (COS(p X s—qXr)Lagop +sin(pxs—qxr) MABC’D) Tyvpo

-+ (cos(pxr—qxS)LBACD—sin(pxr—qxS)MBACD Tyupo

-+ (cos(p X 8+qXr1)Lacpp +sin(pxs+qgxr) MACBD> T,Lp,,gil
(A.5)

The tensors M, L, T are defined in Chapter 2.
The Feynman rules for U(1) are formally obtained from the above ones by setting
0 =0, the tensor f = 0 and d = 1 (therefore, in particular, L = 2, M = 0).

A.2 Feynman rules for noncommutative SO(N) gauge
theory

The free part of NC SO(N) theory is common to that one of NC U(N).

3-gluon vertex. The external gluons carry labels (a,4,p), (b, 7, q) and (c, k,7) for
the Lie algebra, Lorentz indices and momentum and are ordered in anticlockwise
sense:

a,,p

bij?Q c7k7r

—gf* cos(p x q) (g5 (p — Q)& + Gix (@ — )i + Gri(r — P);) (A.6)

4—gluon vertex. The gluons carry labels (a,i,p), (b,4,49), (¢, k,r) and (d,[,s) for
Lie algebra, Lorentz index and momentum. They are clockwise ordered:
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a’7zp b)j’q

d,l, s c, k,r

—ig? {[ £ 7% cos(p x g) cos(r x s)
B ( ggabed _ %( fous pabd | gabe fa:ad)) sin(p x q) sin(r x s)} (9ikgi — gugir)
+[ 7527 cos(p x 1) cos(s x ) (A
= (4dabed - %(f“df“" + f“"f“d)) sin(p x r) sin(s x q)} (ggje = 9ij9n)
+ [f“df”b‘: cos(p x s) cos(g x 7)
B (4 jabed _ % ( fxdb‘ fooe 4 fm; fmdc)> sin(p x s)sin(q x fr)} (9ijgm — gikgjl)}'

We recall that this last vertex can be obtained from the string four—gluon amplitude
only after subtracting two suitable tree one—particle reducible diagrams.

One can verify that the above Feynman diagrams can be obtained from the
action suggested in [29]. From that action, which was called NCSO(X), one can in
addition extract the Feynman rules for the ghost fields.



Appendix B

3 rs
The coefficients V,,

In this Appendix we give the coefficients V% introduced in Chapter 5. These results
are taken from refs.[68, 69, 73]. First we define the coefficients A, and B, forn > 0

through the relations:

(F5)" = T oy ae

n even nodd
1443\ 2/3 _ "
(T5) = Y B +iy B (B.1)
7 even nodd

In terms of A, and B, we define the coefficients N7:** as follows:

1

NPET = St (=1)"(4, By, & B, Ay,) for m-+neven, m#n,
= 0 for m+nodd,
NUErHD) = —6@;—:1}—77—5 (=)™ (A, By, &+ B,A,) for m+neven, m#n,
= m V3 (AnBm T BpAm) for m+n odd,
NTEr-1) g(?z“lq:—rﬁ*) (=1)"*Y(A, By, F Bpdy) for m+neven, m#n,
= —m V3 (A,Bp + ByAy) for m+nodd. (B.2)

The coefficients V% are then given by

Vi = —y/mn (NS + NSy for m#n, mn#0,
Tr 1 - n— n
R Y

123
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T\T T\ 1 n T
Vi = e = L vl for n0.
Vo = —Van(Ngy + No) for n#0,
s = In(27/16). (B.3)
The value of V7 quoted above corrects the result for NI (= =V /n) quoted in

eqn.(1.18) of [69]. In writing down the expressions for Vg, and VJ has been taken
into account the fact that we are using o/ = 1 convention, as opposed to the o =1/2
convention used in refs.[68, 69].
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Conversion from momentum to
oscillator basis

We start with the three string vertex in the matter sector as given in Chapter 5:
|V3) = / d*p1yd®payd*p(3)0% (py + P2y + ) exp(—E)[0, p)i2s (C.1)

where

1 T T 14 T8 S 1 r v
E=5 3 muafM Va3l Vol + 5 3 mwply Varphy - (C:2)

m,1;,21 n:>_1

Note that using the freedom of redefining Vjy using momentum conservation, we
have chosen V¥ to be zero for r # s. Due to the same reason, a redefinition
Vs — Vi + A% by some r independent constant A;, leaves the vertex unchanged.
We shall use this freedom to choose:

> Ver=o0. (C.3)

It can be easily verified that V® given in eq.(B.3) satisfy these conditions.
We now pass to the oscillator basis for a subset of the space-time coordinates z*
((26 — k) < o < 25), by relating the zero mode operators 2% and p* to oscillators

a¢ and af'. For this one writes:
1

1 1
af =5 VhE— —=ia"  ayl =5 Vbpt kit (C.4)

where b is an arbitrary constant. Then af, af;T satisfy the usual commutation rule
[ag, ab1] = 68 (we are assuming that the directions z* are space-like; otherwise we

125
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shall need %), and we can define a new vacuum state |2) such that a§|{2) = 0.
The relation between the momentum basis and the new oscillator basis is given by
(for each string)

— | b (s s’} (o4 N4 1 a Q
1)) = (2n/6) ™M/ exp [~ 20" + VBagp® = Saifag] ). (C.5)

In the above equation {p®} label momentum eigenvalues. Substituting eq.(C.5) into
eq.(C.1), and integrating over p‘(’;), we can express the three string vertex as

Vi) = / 4?5~ %1y A2 p oy AP F p(ay 6P R (pr1y + pra) + Pi3))

eXp(—— Z Moo a(T)MTvrs S)VT Zn__p T)Vrs ()7t _ _Znuyp(r)v&)rp )IO p>123

m, n>1 n>l
V3 e, 007 1 Nt~ s (8)a
® <(27rb3)1/4 (Voo + 5)) exp ( ) Z W TVI/VIN ) T) 12) 123 - (C.6)

7,8
M,N>0

In this expression the sums over fi, 7 run from 0 to (25 — k), and the sum over «
runs from (26 — k) to 25. Note that in the last line the sums over M, N run over 0,

1,2 .... The new b-dependent V' coefficients are given in terms of the V' coefficients
by ‘
Van(®) = Vin = 52r7% VorVons  mmn=1,
VOO 2 t=1
Vlrs(b) — VTZZT = f On , n>1,
V
1 b
V') = zom—g,  TFS,
3Vi + 3
2 b
o) = 1-< : C.7
00 ( ) 3‘/07‘01— +_g_ ( )

In deriving the above relations we have used eq.(C.3). These relations can be readily
inverted to find

V;;l — VT/nT;(b) ,Tr Z V/rt /ts m,n>1,
Vs = 2 \/_Vlrs( ) >1
Oon 3 1 — lrr( ) on ’ ncz-14,
L b143V(
viro= o L+3Ve (). (C.8)

6 1 Vg5 (b)



127

We shall now describe how our variables V¢ and V,7* are related to the variables
introduced in ref.[68]. For this we begin by comparing the variables in the oscillator
representation. Since ref.[68] uses the o/ = 1/2 convention rather than the o' =1
convention used here, every factor of p (z) in [68] should be multiplied (divided) by
v/2¢/, and then o should be set equal to one in order to compare with our equations.
With this prescription eqs.(2.5b) of [68] giving ap = 5p—i% becomes ag = % p— —\%a“:,
which corresponds to (C.4) for b = 2. Thus, we can directly compare our variables
with those of [68] for the case b = 2.

Ref.[68] introduced a matrix U which appears, for example, in their eq.(2.47).
We shall denote this matrix by U%. This matrix appears in the construction of
the vertex in the oscillator basis ([68], eqn.(2.52) and (2.53)). This implies that the
V' coefficients for b = 2 can be expressed in terms of U9 using their results. In
particular, defining V'™¢ to be the matrices V¥ with m,n now running from 0 to
oo, we have (see [68], eqn.(2.53)):!

V/rs(Q) — -:];:(C" L WtTTUY w"*s[—jgj) , (C.9)

where w = exp(27i/3), C" = (=1)™6, with m,n > 0, and the matrix U% satisfies
the relations (eq.(2.51) of [68]):

I

Uit =u%, U%=(UY)"=CUYC, UYUY =1. (C.10)

Eq.(C.9) gives us, Vyi™(2) = 3 (1 + 2U¢). With this result, the last equation in
(C.8) can be used with b = 2 to find

1 Ugj
=0 (C.11)
Similarly, the second equation in (C.8) gives:
1
VS = V2VI(2),  for n>1. C.12
Making use of (C.9) and U = (U$)* we find that we can write, for n > 1:
1
VIS = g(uﬁ‘”‘Wn +w W), (C.13)
where
97
W, = VU (C.14)

“i-ug
1 As explained at the end of appendix E.36, U% should really be identified with U of ref.[68].
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The first equation in (C.8) together with (C.9) gives us [70]
1 ’ _
V= 2(C+ U + 0 D), (C.15)

where V™, U and C are regarded as matrices with indices running over m,n > 1,
Con = (—=1)™0pny, and U is given as
) {99 179
Unn = Uy + 22 I (C.16)
00

By virtue of this relation, and the identities in (C.10) we have that the matrix U
satisfies

U=U*=CUC, U?=0%=1, ut=u, U'=U. (C.17)
It follows from (C.10) and (C.14) that W, satisfies the relations:

Wi=(=1)"Wa, > Walp=W,, > WiWa =2V .  (C.18)

n>1 m>1



Appendix D

The coeflicients V@ﬁ re

In this Appendix we derive the properties of the coefficients Vmﬂ 7 which has been
essential for the definition of lump solutions with B field. These properties are
parallel to those enjoyed by the ordinary coefficients, reported in Appendix B, and
first found in [68, 69, 70, 73].

Let us quote first two straightforward properties of Vb,

e (i) they are symmetric under the simultaneous exchange of all the three couples
of indices;

e (ii) they are endowed with the property of cyclicity in the 7, s indices, i.e.
yrs = Yribstl where 7, s = 4 is identified with 7, s = 1 and we have dropped
the other indices.

The first property is immediate. The second can also be proven directly from
eqs.(6.25). However, since it will be an easy consequence of eq.(D.11) below, we
pass immediately to the derivation of the latter.

To this end we need the following representation of the coefficients Vj;, derived
from [68]:

Zn X"® n odd
Vo = A D.1
on { ~%Zn¢", n  even (D-1)

where

Zn = | = BoA, (D.2)
3n

The numbers By and A, were defined in ref.[68]. Notice that, since we have assumed
Zrs = 757, we must have, by definition, VJ? = V;I§ for n even and Vg7 = —Vj for

n odd. Finally, for convenience, we introduce Zp = \/é
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Substituting (D.1) into egs.(6.25) and using (6.27), we obtain

afrs _ { v?vﬁ]\,f(oo) - 46;%:3 K&B’TSZNZM, N+ M even (D.3)
NM VB (00) + VAL HEBs (—1)N Zn 2w, N+M odd '
In these equations
KoPTs = GoP s — jae®Px"* (D.4)
HeBrs = 3GPN" + 4iae*P ¢™ (D.5)
and V227 (c0) is
Vs (00) = G*P47°
Voo (00) =0 (D.6)
Vo (00) = GV,
The coefficients V'S are the same as in ref.[73] for n,m > 1.
We can also express the V257 in the following way
Vaﬂ,?‘s i { V?Vﬂ]\’/;s (O) + faé;l.?)Kg'B,rsZNZM) N + M even (D 7)
NMCTY o (0) + AP (—1)N ZyZy, N+ M odd '
where
4
g = 20" G +iae " (D.8)
HEP™ = —da?GoP X" + 4iaeP ¢ (D.9)

and V25rs (,0) = GPV,75, are the values taken by VePS for B = 0. As expected, the
symbols V7§, are the same as the coeflicients V.75(b) with n,m > 0, used in [73].
Next we introduce the third root of unity w = ¢i% and notice that
1 7
¢7‘s —_ wr—"s +w5"‘7' , T8 —_ wT”"‘S . wS—T‘ , D.].O

] e ) (D.10)
Inserting these relations into (D.3,D.7) and rearranging the terms we find the basic
relation

Vaﬁ,rs _

NM = (O}VMGGB + W U, + wr_sﬂ?vﬁM> (D.11)

ol —

where

Lof { G Uppr(00) + R Zxn Z, N+ M even

NM = GaﬂuNM(OO) -+ iRaﬁ(—].)NZNZM, N+ M odd (D12)
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Moreover
U = (uby* (D.13)

where * denotes complex conjugation. In (D.11) Cly,, = (—=1)Vdyas and

A—l
R = 422 = (%Gaﬁ + \/§aéa5> (D.14)

Moreover

UgS (00) = G, Uy =0
U (00) = G* Upi (D.15)
In the last equation Uy, coincides with the same symbol used in [73] (see eq.(B.15)

in that reference).
Alternatively one can split U into the B = 0 part and the rest. Then

af _ GaﬁuN]V[(O) —}—TaﬁZNZM, N -+ M  even (D 16)
NM T GoB U (0) + 1T (—~1)N Z Zag, N+M odd |
where
12471 V3
of = | g?GoP 4 T=qe®f D.17
T T 13 (a G + 5 aé > ( )
and US, = G*PUY,,. The coefficients U, Uj,, Uy, are the same as in ref.[73] (see

eq.(B.19) therein).
Let us discuss the properties of U. Since

of \x U, N+ M even
(uNM) = af

it is easy to prove the following properties (where we use the matrix notation for
the indices N, M)

(UFy* = c'u~fc’ (D.18)
and

(uaﬁ)‘f — (uaﬂ)*T — (Cluaﬁcl)T — ua,@ (Dlg)
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Finally, if tilde denotes transposition in the indices ¢, 3, it is possible to prove that
(the proof is rather technical and deferred to the end of this Appendix)

W)L, = (MU, = Gy + <RG +GR+ %ARR) InZy  (D.20)
Now, remembering that é¥7¢,”/ = —G°? | it is elementary to prove that
RG +GR+ %ARR =0 (D.21)
Therefore, finally,
U, = U, = G¥onu (D.22)

Eqs.(D.18,D.19,D.22) are the generalization of the analogous ones in [68, 69, 70,
73]. Using in particular (D.22), it is easy to prove that

[c'vre ¢V = 0. (D.23)
This follows from .
O[CIV™S, V] = w T (CUUC — TU) + w* ™+~ (UU — C'UUC)

and from eq.(D.22). In the two previous equations matrix multiplication is under-
stood both in the indices M, N and a, 8. In the same sense, on the wake of [70, 73],
we can also write down the following identities

Clleoﬂle — Cvalolle — (Ol'\?l1>2 _ C«Ivll (D24)
(C/VIZ)S + (Clv21)3 — 2(0”\711)3 . 3(C’V11)2 4 G (D.25)

which will be needed in the next section.
Notice however that, unlike refs.[68, 69, 70, 73], we have

CcVre = Ve C'xre = X! (D.26)
where tilde denotes transposition with respect to the «, § indices. Finally one can
prove that

X+ X2+ X" =1

x12x21 — x? -

(xl‘z)Z + (:X:21)2 =1— x2

(X12)% 4 (X2 = 2% — 3X* + 1 (D.27)
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In the matrix products of these identities, as well as throughout the paper, the
indices c, 8 must be understood in alternating up/down position: X%g. For instance,
in (D.27) I stands for 6% dprn-

Derivation of (UW)%,

We derive now eq.(D.20). This can be done starting both from the representation
(D.12) and from (D.16). In the first case we need the following identities taken from
the Appendix B of [73].

S Wollnm =W, Y Wil = 2Veo (D.28)

n>1 n>1

The numbers W, are defined via the equation

V3

This allows us to identify W,, and Z,, as follows:

1
Vs = E))-(uﬁ‘TWn +w W) (D.29)
On the other hand we have
Vs = —%(uﬂ—s — W) Z,, o odd
1
Vor = ——=(W' ™ +w’") 2y, n even (D.30)

W, = —iv3Z,, n odd
W, = —/3Z,, n  even (D.31)

In particular, from the second equation in (D.28), we get

2
>z = 5 Vo (D.32)

n>1

Next one has to consider (UU)yys case by case according to the various pos-
sibilities for N, M. As a sample, let us consider N = n odd and M = m odd.
Then

(uu)nm = ru'nOﬂ'Om + Z unkﬂkm =+ Z unkﬂkm
kodd keven
Now we replace on the RHS the values extracted from eq.(D.12). After rearranging
the terms we get

Ul)wm = G + —g-RRZan +RRZ,Zm Y | Z}

k>1
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=GR UniW; Zn + —=RGZy Y Wilkm
\/§ k>l \/5 k>1

= Gbum <RG +GR+ %(%O + g)Rfa) T Zom (D.33)
where use has been made of (D.28) and (D.32). In the same way all other cases of
the identity (D.20) can be proved.

Alternatively one can prove (D.20) by means of the representation (D.16). The
procedure is the same, but the matrix involved is U’ instead of U. For this reason
we need, instead of the second eq.(D.28), the identity

> Wl =

n>1

— Voo
-+ Voo

oo

Wi (D.34)

o



Appendix E

Some proofs

In this Appendix we collect some proofs that otherwise would have uselessy made
heavy the treatment of VSFT with B field. First, we explicitly show that the ratio
R defined in (6.45)

A%(3 + 4a2)? Det(T — X)%/*Det(I + 3X)H*

R =
21b*(DetG) 72 det (1 — X )3/2det(1 + 3X)1/2 7

is indeed equal to 1. Second, we prove the fundamental properties (6.89) and
(6.90) of the states |A,), i.e.

|Ap) * |A) = 5n,MlAn>
<AnlAm> = 5n,m<A01AO>

E.1 Proofthat R=1

This section is devoted to the proof of
R=1 (E.1)

What we need is compute the ratio of Det(I — X) and Det(I 4+ 3X) with respect to
the squares of Det(l — X) and Det(1 4+ 3X), respectively. To this end we follow
the lines of ref.[88]. To start with we rewrite V** = V in a more convenient form.
Following [88], we introduce the vector notation |v.) and |vg) by means of

14+ (=1)™ 4, 1—(=1)" A,
pe= G R =

135
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The constants A, are as in [68]. Now we can write
2A71D
Voo =1{1~- 1
0 < dg? + 3)
ZA 1v2b /2b -1
’\707,, = _1 <’Ue|'n, +Z g 4(1A e (’Uoln, VOn == (—1)”\7n0 (E2)

4a?+3 40 + 3
4A™! 8 adt
vnm: nm " 5 5 1 o \llYe e o ol/nm ——=—————{|Ve ol — Yo el/nm
(Vi = sl ) ) 1+ 7 g (ol = e

where we have understood the indices c, 8. They can be reinserted using

1% =0%, e%p=¢%

Now X = C'V can be written in the following block matrix form

(1—2Kb)1 —2K+/2b1 (ve| + 4mK.\/5—35e (v,]
L=1 _okv2bu.)1 X1 — 4K 1 (Jve) (v — |vo) (vo]) (E3)
+diaK \/%\vo) +fzaK e (|ve){vo| + |’Uo><"Ue|)

where a,H m,n as well as all @, 8 indices are understood, K = 15573 +3
The first determinant we have to compute is the one of the matrix I — X. Using
(E.3) we extract from I — X the factor 20K and represent the rest in the block form

261K(]I_x) - (? zlz)

By a standard formula, the determinant of the RHS is given by the determinant of
D —CA-1B. After some algebra and using the obvious identity (vo|ve) = 0, one gets

aaelp 1—X — A o) (v 0
D-CATB = ( 0 1= X — A ) o]

— (1 ~X - g-A"llvonoi) I

The rest of the computation is straightforward,

Det(I—X) = (26K)? (Det(l X - g—A‘llvO}(voD)Q

— (2bK)? (Det(1 — )) <Det(1 - %A“l : _1X f%)(’Uo]))z

_ (%)4 4@21+3>2(Det(1—X))2 (E4)
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In the last step we have used the identities, see [88],

1

4 1 4
Det — AT =1--A" (v, o :
ot (1= 547 gl ) = 1= 547 el ) (B9)
and
1 3
<7Jo| 1- X lvo> = ZVE)O (E6)

The treatment of Det(I 4 3X) is less trivial. We start again by writing (I + 3X)
in block matrix form '

(4-6KDb)1 —6K/2b1 (v,| + 4ia K\/6be (v, ,
I+80= | _gpyju)1 (14 3X)1— 12K 1 (o] — foob(ool) | BT
+45aK+/6b [vo) € +8v/3iaK e (|ve) (Vo] + |vo) (ve)
and set
_ ~ (A B
H+3X:(4—6bk)<c D) (E.8)
Therefore .
Det(I+3X) = (4 —6bK)*det (D — CA™'B)

= (4 —6bK)? (det(1 + 3X))? det ( (D - CA"18)> (E.9)

1
143X
The last expression is formal. In fact X has an eigenvalue —% which renders the
RHS of (E.9) ill-defined. To avoid this we follow [88] and introduce the regularized
inverse

1
Y. =
143X —e2X

where ¢ is a small parameter, and replace it into (E.9). After some algebra we find

(E.10)

V. (D-CA'B)=A-3B (E.11)
The matrices in the RHS are given by
1+ oY |ve) (ve] + BYz|vo) (Vo 0 )
A = E.12
( 0 L aYofu) ool + Yl o) 5T
where
‘ _ A1
o= 24K b= 12K2 A (E.13)

93K’ 2 — 3bK’
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and
B — ( 1 ) >‘YE|U2><U0| + p¥zelvo) <Ue|>
_AYslve><%| - MYE!'U0> <Ue] 1
where,
8 g 2 4
/\ - 5 - , _|_ aff = ——
1+ alve|Yz|ve) H 1+ B{vo|Yz|vo) i p Vboﬁ

Now, after some computation,

detA = (1 + o Yelve))? (1 + B{wo|Yelvo))?

and
detB

As a consequence

(4. 72 (ve| Yz ve) (v,] Yz vo) 2
B (1 T olvYelue)) (Hﬁ(volYelvo)))

e (l o e{vefYefve) + ﬂ<v0m|vo>.(1 ) %;<vemlve>>>2

Now we can remove the regulator € by using the basic result of [88]:

i (1= A Yoo ) (ol Yilve) = =
— 17 \Velleile VoiLe|Vo) =
e—0 %0 12%0
and
1 Voo
(el gz v = 5
Inserting this result in (E.18) we find
A? or2\?
detA detB = 2,20
WA = (8024 + 6Vip )2 <8a * A2>
As a consequence of egs.(E.9,E.11,E.18,E.20) we find
Det(I+3X) 4 sa? s 2 ?
(Det(1+3X))2  (4a® + 3)? A?

Finally, substituting this and (E.4) into R, we get

A%(3 +4a?)? Det(I — X)**Det(I + 3X)*/*

T 2mb3(DetG) /4 det(1 — X)3/2Det(1 + 3X)1/2 -

(E.14)

(E.15)

(E.16)

(E.17)

(E.18)

(E.19)

(E.20)

(E.22)
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This is what we wanted to show. It implies

€23 (QW)Q
€95 o (I)Gt(;)1/4
which corresponds to the expected result for this ratio, as explained in [108]. We

remark that (E.21) implies that the eigenvalue —1 is also contained in the spectrum
of X with double multiplicity with respect to X.

(E.23)

E.2 Proofs of eqs.(6.89) and (6.90)

The star product |A,) * |A,) can be evaluated by using the explicit expression of
the Laguerre polynomials

et = (S (1) S5 o (- 3 (7))

k=0 p=0

(E.24)

Therefore we need to compute (x*[8,)) * (x?|8,)). According to [74], this is given
by

, g ) o 0 )

IS 1)) * (xP|8L)) = (ErC)™ ... (ErC)x(hr . (P —
(X ] .L)) (X l J—)) (67- )l] (67_ )lk, le CJI\: 8}1:[0;1 a/.,[/lkk Blu,fll a“f:
_ o 5 0 o 0 b,
(ErC® . (erC) P P e —
R A

exp( — XM ~ 1 MTVETM)[8.)) (E.25)
2 p=p=0
where
il 12
K=1-7X, V= (\721 17722) (E.26)
and

M= (M> ;X =(a!V?aV),  XTKTIM = ol O (op+ pep)  (E-27)

The explicit computation, at first sight, looks daunting. However, we may avail
ourselves of the following identities

7
I—7J°2

-
- ‘J'QC = —K (E.28)

ET (VK™ qul = ET7C (VK™Y 0arC'¢ = £1C (=0

70 (VK aal = (VK aarC'( = €77
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for « = 1,2, and

(V) iaC = ET7C (VI arC'¢ = ~€7 0 = 0

€ (VK = €770 (VK ) gr0 = €10 (= 0
gT(V]C"l)mTC’g = §TTC"(VIC_1)21C = 5 7_1[ — T2C =-1

fTTOI(V]C—l)lgC = fT(VK:—_l)leC/C = —-fTT C =K (E29)

I-7J2

Moreover

(X"K™1):€ =0, (K1), 70" = al7¢
(XTI ™1)€ = alC'g, (xTK ) 7C'¢ =0 (E.30)

with analogous equations for (.

In evaluating (E.28, E.29, E.30) we have used the methods of ref.[74] (see also
[109]), together with egs.(6.91, 6.95). These results are all we need to explicitly
compute (E.25). In fact it is easy to verify that the latter can be mapped to a
rather simple combinatorial problem. To show this we introduce generic variables
z,y, %, %, and make the following formal replacements:

A=XTK M — z(al7€) + 5(a’C'¢),

B = MTVK*M — (—kzy + k3§ — Ty — KTY) (E.31)
and
0 ,ong O 5 0
! « — - — , a — = %y - = a", E32
(TC f)l 8#? 0 CJ a/,I,J 8’U (TC f)[ 8/7/? o C] ﬂ? ( )

Then (E.25) is equivalent to

OEOFBEOE ¢~ A 3P

z-y YT

(E.33)

r=F=y=7=0
This in turn can be easily calculated and gives

2 B B\ (o) /]
AL () e

m=0 " l=m
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where [n,m] stands for the minimum between n and m. Now we insert this back
into the original equation (E.24), we find

IM)——ZZZ Z T (E.35)

k=0 p=0 m=0

eI

In order to evaluate these summations we split them as follows

n'  [p,k] [p—m,k—m] ( n' k k-m
P=

Next we replace | — [+ m and (E.36) becomes h
n ko k n' k k p
S (LY 3y e-

k=0 \m=0l=m p=k+1 m=0p=mi=m

L(EE S Ery) -

3

]
M=

(..) (E37)

b
i
(]
3
I
o
i
3
3
il

m=0 l=m p=k+1 -m=0Il=m p=I
Summarizing, we have now to calculate

n k k n p+k+l+m

) # [Aw) = D Y > Z (E.38)

k=0 m=0 l=m p=l

() (Z’) () (120 (1)

n'! n/—1
/ ’ "] n ,
_1p+l<”><p>:<”) —11’(” >=< )1—1”“l E.39
S () (1) =) 2 ") -7 B39)
This vanishes unless [ = n’. In the case n’ > n, [ < n. Inserting this into (E.38),
for n' > n we get 0.

In the case n = n/, | can take the value n'. Thls corresponds to the case k = p =
l=n=n'in eq.(E.38). The result is easily derived

m! m

A i) = 30 C (1) emnls,) = (s (2) 1820 = Al (B0)

m=0
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This proves eq.(6.89).

One could as well derive these results numerically. For instance, in order to
obtain (E.40) one could proceed, alternatively, as follows. After setting n = n' in
(E.35), one realizes that |A,) * |Ay) has the form

x| An) ZFM(ﬁ) 15.) (B.41)

where
o n-m p k ( ]_)P’l‘k“H 2n— l”m(n')
. 2p=0k§§(mz>2(n_k_mw(n—p—m)!mwm)-(k—W*”’
n—m P ( 1)l 2n—l—m(n|)2
=2 2 T = = DN ) .

This corresponds to the desired result if

gy CDTT ( n ) | (E.43)

m m! m

Using Mathematica one can prove (numerically) that this is true for any value of n
and m a computer is able to calculate in a reasonable time.
The value of the SFT action for any solution |A,) is given by

S(An) = K(An|An) (E.44)

where K contains the ghost contribution. As shown in [75], X is infinite unless
it is suitably regularized. Nevertheless, as argued there, |A,), together with the
corresponding ghost solution, can be taken as a representative of a corresponding
class of smooth solutions.

Our task now is to calculate (A,|A,). However it may be important to consider
states which are linear combinations of |A,). In order to evaluate their action we
have to be able to compute (A,|A,). Without loss of generality we can assume
n' > n. By defining % = (a'7C'¢) (a'() we get

(AnlAn) = (—6)™™ (0L, (i//ﬁ)e“%“gaLn,(x/n)eza*s‘“|0>
= L (i‘“(f’f) o B‘iﬁ>L G(ra?(c' i3 5%)

L oEace-pod
det(I— T7)

R e

(E.45)

A=p=0
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For the derivation of this equation, see [73, 70, 74]. Now, let us set

,,',_“,T
H—WC B=2y

and introduce the symbolic notation

A C=u C'u

I— 72

o O
(Tclg)l a)\? = a:ca C]

0 , 0
a)\ﬂ = 0y, (Tg)a——g = O, (C C)féﬂ—f = 55,(]5.46)

Then, using (6.95) and (E.28, E.29), we find

0.0, A =0, O.0A=—1, 0,0,A=—1,  8,0,A=0
0,0,B =0, 0,0,B=-2x,  8,0,B=0, (E.47)

We can therefore make the replacement

1 1
A— —2—B - 56’ — KxY + KTY — Y — TY (E.48)
In (E.45) we have to evaluate such terms as

Ok Ok OROE (kxy + KZY — x — Zy)* P

for any two natural numbers &k and p. It is easy to obtain

[p.k]
6k8k3p§p(/fa:y + kZ] — zf — Ty)" TP = Z (k> (i) k! pl kP25 (E.49)

(p + k) e 5=0 5
Therefore we have
<AM)
-1 k+pl§n+n’—p——k n
= ZZ ) klp! <k> (p ) 8];65858? eA=zB3C N (81181)
pur s Ipl —y=F=f=
[p,k]
S (0) () S (5) (7) e
= Z }: k!p!/ﬁ”*" (8.181) (E.50)
k=0 p=0 k'p’ p 5=0 s §

As in the previous subsection, we can rearrange the summations as follows,

Zj.“) (E.51)
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In conclusion we have to compute

k | n'n'! n+n'—2s
) =33 S e e

k=0 s=0 p=s
Now,
S e S AW G ) e
pz;( Dl st Zﬁ ) ( ) >_——————~—(n,_8>!(1 1) (E.53)

The right end side vanishes if n' # s, which is certainly true if n' > n. Therefore
in such a case, inserting (E.53) into (E.52) we get (An|An) = 0. When s = n,
eq.(E.53) is ambiguous. But this corresponds to p = k=s=n=n'in (E. 52) The
relevant contribution is elementary to compute, and one gets

This completes the proof of (6.90).
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