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Preface

In this thesis I present a summary of the work I have been doing at S.1.5.5.A. After
two chapters that review some necessary preliminaries, the rest of the thesis contains
the material that has been published (or is going to be published) in a series of papers:
Ellis and Bruni [35] (1989, EB from now on); Ellis, Hwang and Bruni [37] (1989, EHB);
Ellis Bruni and Hwang [36] (1990, EBH); Bruni and Ellis [9] (1991, BE); Bruni, Ellis
and Dunsby [10] (1991, BED); Bruni, Dunsby and Ellis [8] (1991, Paper 1); Dunsby,
Bruni and Ellis [22] (1991, Paper II). This series of papers represents a new approach
to the study of cosmological perturbations. The work presented in them, carried out
in collaboration with various colleagues, 1s original. The synthesis presented in this
thesis is new.

We assume that the reader has a basic familiarity with classical general relativ-
ity theory and in particular with the homogeneous isotropic models of Friedman-
Lemaitre—Robertson-Walker and the standard treatment of perturbations in these
models (e.g. see the books of Weinberg [127] and Kolb and Turner [70]).

The notation we use (unless otherwise stated) for vector and tensor is the abstract
index notation: tensor equations look like components equations, except that the basis
is not specified and tensor equations are valid in any basis (see section 2.4 of Wald’s
book [126]).

The bibliography is at the end, in alphabetic order: although references are called

with a number in square brackets, sometime the author’s name appear explicitely.
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Abstract

The aim of this thesis is to present a possible approach to the relativistic theory of
cosmological perturbations and their linear evolution, and also to discuss the relation
this approach has with the standard treatment of the problem.

The first chapter exposes the gauge problem existing in the classical theory of
cosmological perturbations: this somehow motivate the alternative approach to gauge
invariance presented in this thesis, i.e. the covariant, geometrical theory of cosmological
perturbations.

Chapter 2 reviews the covariant approach to general relativity with matter de-
scribed as a fluid: Bianchi identities are regarded as field equations, hydrodynamic
equations follow from the Ricci identities, and Einstein equations algebrically relate
curvature with the matter content at any spacetime point.

Chapter 3 is the core of the thesis, and is devoted to develop the covariant and
gauge - invariant theory of cosmological perturbations. I introduce covariantly defined,
gauge - invariant variables, and present some new exact equations for the most im-
portant of them, firstly derived in EB. Then I discuss a linearization procedure for
the equations previously considered, and present the linear equations for the gauge-
invariant variables as they have been derived in EHB, EBH and Paper L. Finally, I
briefly consider the simplest solutions for the density perturbations derived in EBH.

The fourth chapter of this thesis follows from Paper I, and is devoted to the com-
parison of the covariant approach to gauge- invariant perturbations with the coordinate
based gauge - invariant theory of Bardeen [1] (1980). It is shown how Bardeen’s variables
follow from a first - order expansion of the covariant variable. This give a new physical
or geometrical significance to Bardeen’s variables; at the same time the equations of
Bardeen also follow directly from this expansion.

Chapters 5 and 6 contain two applications: the first is to a universe dominated by
a scalar field (BED), thus is related to perturbations in inflationary models; the second
generalize the theory previously presented to a multi - component fluid, and consider

various applications (Paper II).
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Conventions and abbreviations

Signature: [+, +, +]
Riemann tensor: Voo — Vg = R%qV®

where ; denotes covariant differentiation with respect to the metric;

Ricci tensor: Ry = Reaw
units: c=

gravitational constant: k= 8rG
scale factor: a
energy density: 7
pressure: P

for a tensor T“'“bc__,d,_,e_,_f we have

symmetrization: Tambc...(d...e)..‘f
skew - symmetrization: Ta'"bc...[d...e]...f
respect to the indices d...e, where latin letters denote 4 - dimensional indices, and greek

letters will denotes 3 - dimensional indeces for spatial components;

the completely skew symmetric pseudotensor is defined by OB = —(—g)"?
GI gauge - invariant
FLRW Friedmann - Lemaitre - Robertson - Walker

LRF local rest frame



INTRODUCTION

Since the discovery of the Planckian cosmic microwave background [17, 107] the rela-
tivistic hot Big Bang cosmology has developed into a mature and believable physical
model - actually, the standard model of cosmology - thanks to its many successful pre-
dictions and interpretations of observations.! The fact that this simple model, based on
the homogeneous and isotropic Friedmann- Lemaitre- Robertson - Walker spacetimes
of general relativity (FLRW hereafter), is so successful appears even more remarkable
if we consider that the matter is distributed in structures at each length-scale on
which the universe is observed [48]. However we have good reasons - plus our philo-
sophical prejudice, i.e. the Copernican principle - to believe that the overall structure
of the observable universe is very well described by the FLRW models. In particular,
the extreme degree of isotropy observed in the cosmic microwave background - which
has been confirmed and improved over the years[89] - puts severe limits on the in-
homogeneity of the matter distribution at early epochs. Therefore all the scenarios
advocated to explain the observed large- scale structure? assume that galaxies, clus-
ters, superclusters and voids evolved somehow (either through gravitational instability
or some astrophysical process such as cosmic explosions) from initially small density
perturbations in a FLRW background. These initial fluctuations can be either pri-
mordial (fed in the initial conditions of the classical universe, i.e. at Planck time) or
spontaneous (i.e., they arose inevitably at a very early epoch through some physical
process, such as the quantum fluctuations advocated in the inflationary scenario); in
any case, they evolved linearly for a long while. A basic step towards the understand-
ing of structure formation is therefore the formulation of a relativistic theory of linear
perturbations of the expanding, isotropic and homogeneous FLRW universe models:

this thesis concerns a possible approach to this problem.

I For a recent review of the successes of the hot Big Bang model see Peebles et al. (1991)[106].
2For a classification of the top- five scenarios see Peebles and Silk (1990) [105].

11



12 INTRODUCTION

Press and Vishniac (1980) remind us that the classical relativistic theory of cos-
mological perturbations “springs into existence virtually full- grown with the work of
Lifshitz”[108];® as is well known, this theory has the disadvantage that truly physi-
cal results can be worked out only once a particular correspondence between the real
perturbed universe and the background FLRW spacetime is completely specified, that
is, a definite gauge choice has been made.? If part of this correspondence is left ar-
bitrary, we say that we are left with a remaining gauge freedom: correspondingly, we
are left with some unphysical gauge modes in the evolution of the perturbations. This
arbitrariness is inherent to the gauge-invariance of the linearized Einstein equations
with respect to a gauge transformation (Sachs (1964)[111]), i.e. a change in the cor-
respondence between the perturbed and the background spacetimes: simply because
the equations are linear, for any given physical solution a linear combination of this
latter and a gauge mode is also a mathematically acceptable solution. This prob-
lem was pointed out by Lifshitz himself (see Lifshitz and Khalatnikov 1963) [76]. An
attempt to circumvent it by use of covariant methods is due to Hawking (1966)[55],
and his work was extended by Olson (1976)[98]. These authors based their analysis
on curvature variables rather than on the metric but, although they used to this end
gauge - invariant (often GI in the following) variables, their analysis of density pertur-
bations is based on the gauge- dependent density contrast du/p. A fully GI theory of
cosmological linear perturbations has been developed by Bardeen (1980) in his seminal
paper [1]; unfortunately, most of Bardeen’s GI variables do not have a simple geometri-
cal- physical interpretation, as they are defined with respect to a particular coordinate
chart (Stewart 1990 [117]). This may be seen as a consequence of the fact that in the
standard approach to perturbations (also followed by Bardeen) any tensorial quantity
T is usually split into a background part T, and a perturbation §T: T = T, + 6T,
where the perturbation 67 is treated as a propagating field in the background metric.
However such a splitting is meaningful only with respect to a given coordinate system
(see e.g. Faraoni (1991)[44]), because 6T is not a tensor field with respect to coordi-
nate transformations in the background. Bardeen’s GI variables are thus constructed

as GI linear combinations of gauge- dependent perturbations, knowing the transfor-

3The theory of cosmological perturbations in the Newtonian approximation was developed by
Bonnor (1956) [5].
'Indeed the paper of Press and Vishniac was devoted to the somehow ambiguous synchronous

gauge.
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mation rule of these latter under a gauge transformation: the physical and geometrical
meaning of the resulting quantities is often obscure, unless a particular hypersurface

condition (i.e. a time gauge) is specified (Bardeen (1988) [2]).

In this thesis we shall follow a different approach to gauge-invariant cosmological
perturbations, which in our view provides a clearer picture of the almost FLRW model
we use to describe the real universe. The thesis is organized in six chapters: the first
two review known material, although chapter 1 is partially based on EB [35] and the
whole synthesis given there is original; in chapters 3-6 we present an original synthesis
of the work carried out with various colleagues and that has been published (or is going
to be published) in a series of papers (EB[35], EHB [37], EBH [36], BE[9], BED [10],
Paper 1[8] and Paper 11[22]).

In chapter 1, we shall give a description of the gauge problem existing in cosmologi-
cal perturbations, and we shall provide a brief discussion of the possible gauge choices.
As we shall see in sections 1.1 and 1.3, gauge transformations can be regarded both
from a coordinate and from a geometrical point of view. Here we recall only that the
effect of a gauge transformation induced by an infinitesimal vector field £ on a tensorial

quantity T in the perturbed universe equals the Lie derivative of the background value

Ty of T along ¢:
TI:T-'r,CgTO = 5T,:5T+£5T0, [:ET():O = T =4T.

From this follows the Stewart and Walker [118] (1973) Lemma: perturbations to a ge-
ometrical background quantity T, will be GI if and only if Ty 1s either (1) a constant
scalar, or (2) vanishes, or (3) is a linear combination of products of Kroneker deltas
with constant coefficients. The gauge - invariant formalism we shall introduce is based

on this Lemma.

In chapter 2 we shall review what we can call the covariant fluid approach to general
relativity as is presented for example in the papers of Hawking [55] and Ellis (28, 29].
In this approach Bianchi identities are regarded as field equations, hydrodynamic equa-

tions follow from the Ricci identities, and the Einstein equations algebraically relate

5These papers are in turn based on the work of Ehlers 25, 26]



14 INTRODUCTION

curvature with the matter content at any spacetime point. The presentation given
here is an attempt to satisfy a requirement of self- consistency of this thesis, avoiding

details irrelevant to the content of the following chapters.

Chapter 3 is the core of the thesis: it provides a derivation of the covariant and
gauge - invariant formalism introduced in EB [35], EHB [37] and EBH [36], and extended
to treat viscous fluids in Paper 1[8].°

From the point of view of the Stewart and Walker Lemma quoted above, what
seems unsatisfactory regarding GI variables introduced by Bardeen and other authors”
is that although they are first order GI perturbations by construction, it is often not
clear to which quantity T they correspond. The quoted Lemma suggests however a
different approach (partially considered by Hawking (1966) [55] and extended to density
perturbations in EB [35]) to treat perturbations gauge-invariantly. The basic idea is
to introduce covariantly defined exact variables T' (i.e. these variables are meaningful
in any spacetime) such that their values T, in a FLRW universe vanish. In this way
the quantity itself is a GI perturbation in an almost FLRW universe,® and its physical
significance is apparent through the covariant definition.

We find that the most important of these covariant GI variables is the comoving
fractional density gradient D,, together with the ezpansion gradient Z,: we shall in-
troduce these variables in section 3.1, deriving exact equations for them in section
3.2.

More or less explicitly, Bardeen’s approach is based on a 3+1 (ADM) arbiirary
slicing of spacetime (see Bardeen (1988)[2]), and the resulting description is that of
the Eulerian observers sitting in the slicing (York 1979). Instead we carry out a 1+3

splitting based on the natural threading of the problem,’ i.e. the congruence of world

®Following the work presented in EB [35], Hwang and Vishniac [63] (1990) and Dunsby [18] (1991)
provided exact equations for density inhomogeneities in an imperfect fluid universe. A similar ap-
proach to that of EB, EBH has been followed by Woszczyna and Kulak (1989) with the aim of
extending Olson’s (1976) work to non flat universes. Lyth and Stewart (1990) also used the covariant
approach to derive equations in the comoving gauge.

TAn alternative derivation of Bardeen’s formalism based on a variational principle was provided
by Brandemberger et al.[7] (1983), and Kodama and Sasaki[69] (1984) extended Bardeen’s work to
a multi-component fluid. This latter and the recent paper by Mukhanov et al. (1991)[95] are both
detailed reviews on the construction of the standard gauge-invariant formalism.

8We shall define an almost FLRW universe as a spacetime in which the covariant GI variables do
not vanish, but terms in the equations quadratic in these variables can be neglected (see section 3.5).

9See Jantzen and Carini [66] (1991) for a systematic comparison of threading and slicing.
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lines of matter with tangent u®. Thus the point of view adopted here is that of ob-
servers comoving with matter: since spatial vectors and tensors are defined projecting
orthogonal to u®, we may call this a Lagrangian point of view. As we shall see, for a
viscous fluid the definition adopted for the matter four velocity u® is crucial: different
possible choices leading to GI variables are discussed in section 3.4, and in section
3.5 we introduce a complete set of GI variables, with special emphasis on curvature
variables (which are naturally GI, as opposed to metric perturbations) such as the
3-curvature gradient C,. In section 3.6 we derive linear evolution equations for D,
and Z,, which lead to the analysis of density perturbations. Scalar perturbations are
introduced in section 3.7 through a new local splitting (EBH [36]): we find that the GI
variable that covariantly characterizes matter clumping (i.e. scalar density perturba-
tions) is the divergence A of D,. This variable is, within our formalism, the equivalent
of the variable ¢, of Bardeen[1];'° in the same way, we introduce scalar GI variables
for curvature (C) and expansion (Z) perturbations. In section 3.8.1 we also derive a
Jeans instability criterion. In section 3.8 we derive the large- scale evolution for D,,
in the simple case of a perfect fluid but showing the effect of vorticity on this density
perturbation variable (EBH [36]). Finally, in sections 3.9 we derive the whole set of
covariant linearized hydrodynamical and gravitational equations (Paper I[8]) corre-
sponding to the exact equations of chapter 2 (thus including viscous terms), giving
the evolution and constraints of a full set of GI variables describing the curvature of
the perturbed spacetime and the kinematical behaviour of matter, as well as matter
inhomogeneities. Using the local splitting of section 3.7 we derive in section 3.10 the
equations for our GI scalar variables: in particular we derive a second order equation

for A (Paper I[8]), equivalent to the main equation of Bardeen [1] for his variable ¢,,.

Chapter 4 is devoted to a systematic comparison of the two different approaches
to GI perturbations, i.e. what we can call the Bardeen approach and the geometrical
approach presented in chapter 3.

In section 4.1 we briefly review the Bardeen formalism, introducing explicitly a
perturbed metric and the set of Bardeen’s GI variables. While Bardeen used directly a
harmonic decomposition for every quantity, we systematically decompose each variable

both in the coordinate space, using the non local ADM splitting for 3-vectors and 3-

10This will be explicitely shown in section 4.2.
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tensors [117], and in the Fourier space, using standard harmonics. In our view, although
working in Fourier space has the advantage of reducing equations to algebraic relations,
the presentations of the same equations in the coordinate space simplify somehow the
physical interpretation.

Then, in section 4.2, we systematically expand to first-order the main covariant
variables introduced in chapter 3. Since these variables are GI by themselves because
they vanish in the background, we may expect to recover Bardeen’s variables to first -
order. Indeed, we show that Bardeen’s variables are the first- order - components of the
covariant variables. This gives to all of them a physical or geometrical meaning, with-
out the need to specify a gauge; moreover all the equations of Bardeen are immediately

recovered through this first - order expansion of the covariant variables (section 4.3).

The final two chapters consider applications and further extensions of the formalism
of chapter 3. Although there are many cross - references with the material presented in
the other chapters of this thesis, the presentation given in these two chapter is rather

self - contained.

The aim of chapter 5 is to apply the covariant GI formalism of éhapter 3 to a
FLRW universe dominated by a classical minimally coupled scalar field ¢ (this chapter
is based on Ref.[10] (BED) and [9] (BE)).

Scalar field dominated universes have attained prominence in the last decade
through the Inflationary Universe idea [53, 77, 97|, and perturbations of such uni-
verses are potentially important as seeds of galaxy growth.!!

As in chapter 3, emphasis is given here on curvature perturbations (cf. [55]), which
are naturally GI, rather than metric perturbations (as in [1, 69, 95]) which play no
explicit role.'? The background curvature K is maintained throughout for generality;
moreover the general formalism presented here (cf. [2, 95, 60]) could be extended to

consider situations different from inflation in which a scalar field dominates (see e.g.

[94])-

"'Various authors have applied Bardeen’s formalism to the inflationary universe situation (e.g. [3],
cf. also [95] and references therein), actually working either in the comoving gauge [3, 82, 83] or in
the uniform Hubble constant gauge [3].

2The link between our GI curvature variables and the GI metric potentials of Bardeen is shown in

chapter 4.



INTRODUCTION 17

In sections 5.1 and 5.2.1 we set up the formalism, based on the natural slicing of the
problem {¢ = const.} and on its geometric characterization through the unit vector
u® orthogonal to these surfaces, and we present a set of exact covariant results valid

in any curved spacetime with a minimally coupled scalar field (cf. [86]).

In section 5.2.3 we define the GI dimensionless gradient ¥, of the momentum ¢ = q5
of the field ¢, and its divergence ¥: in our approach these variables incorporate the
whole matter perturbation, because the spatial gradient of ¢ vanishes through our
geometrical choice of the frame u®. Indeed we show that the density perturbation
A is simply proportional to the momentum perturbation ¥ (cf. [3, 81]), and that it
characterizes matter clumping.

In section 5.2.5 we present various possible pairs of equations coupling the evolution
of any of the matter perturbation variables with that of the curvature perturbation C,
or with that of a related quantity, C. We also discuss if and when C or C are conserved
quantities on scales larger than the Hubble horizon (cf. [83, 63] and BE, EBH[9, 36]).
The second order evolution equations equivalent to the above mentioned systems of

first-order equations are also derived at the end of this section.

In section 5.3 we present solutions in simple cases, comparing them with standard
results in the literature [3, 83]. We also examine perturbations in a coasting, scalar field
dominated, FLRW universe with general curvature K. Open models seem particularly
interesting, since any previously existing perturbation is erased during evolution, while
the density parameter {2 stays constant: this could naturally provide the “clean slate”
necessary for a successive “minimal” inflation (not driving Qs = 1) in order to satisfy

constraints from the observed large-scale isotropy of the cosmic microwave background

(cf. [110]).

The purpose of chapter 6 is to extend the formalism of chapter 3 to treat the more
general case of a mixture of interacting viscous fluids (DBE [22]).}® An analysis of such
systems is important in order to have a more realistic picture of matter perturbations.

In such situations, perturbations in the densities and velocities of individual compo-

13Perturbations in multi- component fluid systems have been studied before, indeed a rather com-
plete analysis was presented by Kodama and Sasaki (1984) [69], based on the GI approach of
Bardeen [1]; Dunsby [18] (1991) has considered the case of a mixture of non interacting perfect fluids.
However, it seems beneficial to reformulate the theory using the covariant GI variables introduced in
chapter 3.



18 INTRODUCTION

nents behave differently due to a difference in their dynamical properties, especially
the sound velocities. '

In section 6.1, we define covariant and GI variables that characterize the time
evolution of density and velocity perturbations in a multi- component fluid medium
(including viscous terms). In section 6.2, we derive equations for both the total fluid
and its constituent components. We also present the equations for the relative per-
turbation variables, which are very useful in differentiating between adiabatic and
isothermal perturbations.

In section 6.3, we use harmonic analysis to relate the geometrical variables we use
to those of Bardeen [1] and Kodama and Sasaki[69], concentrating only on the most
important multi- component variables.

In section 6.4, we discuss if and when the curvature variables C' and C are conserved
on scales larger than the Hubble horizon. In particular, we demonstrate that when
the background FLRW model is flat, both these variables are conserved even in the
presence of entropy perturbations and imperfect fluid source terms. We use this result
to write down a general solution for the total energy density perturbation. We also
briefly consider spatially open models.

In section 6.5, we consider the first of three applications. We examine the case
where the background is described by a spatially flat FLRW universe model filled with
a mixture of non-interacting dust and radiation and obtain solutions for density and
velocity perturbations in the small scale limit (cf. Groth and Peebles[52] (1975)). In
section 6.6 we study perturbations in a photon- baryon system, taking explicitly into
account the interaction between components (Thompson scattering), and examining
in detail the coupling between isothermal and adiabatic perturbations (cf. Kodama
and Sasaki[69]). In section 6.7, we briefly consider an application to a system of two
non - interacting scalar fields and obtain the standard results (see Mollerach (1990) (93],
and BED [10]).

Finally, in appendix A we present the tilt angle formalism, following King and
Ellis [67] (1973), and in appendix B we present the definitions and properties of co-
variant harmonic functions, and relate them to the standard harmonics used in the
literature [1, 69].



Chapter 1

PERTURBATIONS: THE
GAUGE DEPENDENCE

The relativistic hot Big Bang cosmology, based on FLRW models, has developed into
a mature and believable physical model, thanks to its successful predictions and in-
terpretations of observations [106]. In particular, the high degree of isotropy observed
in the cosmic microwave background puts severe limits on the inhomogeneity of the
matter distribution at early epochs, therefore all the most important scenarios ad-
vocated to explain the large- scale structure assume that this originated through the
action of gravity from small inhomogeneities in an almost - FLRW universe. A basic
step towards the understanding of such processes is then the formulation of a rela-
tivistic theory of linear perturbations of the expanding, isotropic and homogeneous
Friedmann - Lemaitre - Robertson - Walker models (FLRW from now on).

Such a theory was developed by Lifshits [75], who was mainly interested in the
dynamical stability of FLRW models with respect to perturbations. His theory has be-
come standard and is presented in many text - books on cosmology (e.g. see Borner [6],
Peebles [104], and Weinberg [127]). However, as we shall see, such a theory suffers from
gauge problems, as Lifshits himself[75, 76] and other authors [112] have pointed out.
The usual approach is then to fix a particular gauge, and work within that; however
this procedure is not free of problems, and the literature on the subject is full of ex-
amples of erroneous results or, at least, ambiguous interpretations (for comments on
this point see e.g. [108] and [50]).

Another, different approach to the problem was pioneered by Hawking in 1966 [55].
His approach is fully covariant, but nevertheless gauge - affected [28, 98].

19
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Finally, one can formulate a gauge - invariant theory of cosmological perturbations,
avoiding the gauge problems. This has been accomplished by Bardeen in 1980 (1], who
introduced a set of gauge-invariant quantities describing perturbations in the matter
and in the geometry. However these variables are essentially based on coordinates
(see chapter 4), and therefore their physical interpretation depends on the choice of
one particular hypersurface condition, i.e. most of Bardeen’s variables acquire a clear
physical meaning only in some particular gauge [2].

In this chapter, we shall outline the gauge problem existing in perturbing general
relativistic universe model (section 1.1.1), giving first the usual coordinate - based de-
scription of gauge transformations (section 1.1.2). Then in section 1.2 we give a more
geometrical description of the gauge specification, while in section 1.3 the idea of gauge
invariance is formalized in the Stewart and Walker Lemma [118]. In the final section

we briefly discuss various possible choices of gauge.

1.1 The gauge problem

1.1.1 Perturbations in general relativity

Perturbations in general relativity are usually regarded as a subject that has not
reached the level of sophistication of perturbation theory in, e.g. hydrodynamics.
The first reason for this is technical, and is obviously due to the fact that one has to
deal with ten gravitational potentials, besides matter variables. The second is more
fundamental, and can be referred to as the gauge problem.

General relativity is a theory which is required to be covariant under general changes
of coordinates; using a more geometrical language, this can be stated saying that
general relativity is a theory about differential manifolds with no preferred coordinate
charts [117]. However, in considering a particular class of models we usually use some
preferred coordinates: e.g. FLRW spacetimes are usually introduced in textbooks has

those models for which the metric can be written as!

ds? = —dt* + a2d3? | (1.1)

!We refer to standard text-books on cosmology [6, 127, T0] (see also [109, 79]) for a detailed
presentation of FLRW models. A characterization of FLRW models in the covariant fluid approach
adopted in this thesis is given in section 3.5.1 (see also [28, 29]).
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where d¥? is the line element of the surfaces t = constant, i.e. the 3-spaces of constant

curvature K = 0, £1; in spherical polar coordinates
dx? = dr® + f3(r)(d6* + sin*0d¢?) , (1.2)
and f(r) takes one of the forms

sintr K =+1 (closed)
f(ry=4qr K=0 (flat) (1.3)
sinhr K = —1 (open).

To see what the gauge problem is, let us consider an idealised universe model 5.2 Each
quantity in this model will be indicated with an overbar, e.g. the energy density will
be denoted by fi, the pressure by 5 and the metric by us; then the spacetime S will
be given by the metric g, and the manifold M: S = {gus, M}. We perturb this model
to obtain a “realistic” or “lumpy” universe S, where any quantity will be denoted
by the same symbols as in S but without overbars (e.g. the energy density is y, the
pressure is p and the metric is gu): then S = {gu, M}. The perturbation in each
quantity is then the difference between the value which it has at a given point in the
physical space-time S and the value at the corresponding point in the background S.
Considering all points, the perturbation field is determined. For example, the metric

perturbation is
6gab = Gab — Gab » (14)
while for the perturbation in the energy momentum tensor we have

5Tab = Tab - Tab ) (15)

where the perturbation fields are given respect to the coordinate chart (1.1). Therefore,

adopting Bardeen’s notation [1], we may write the perturbed metric in the form
ds® = a*(n){—(1 + 24)dn* — 2Bndz"dn + [(1 + 2HL )y + 2Hrap)dz*dz"} ,  (1.6)

where 7 is the conformal time, and the spatial coordinates are left arbitrary.” Two

assumptions are implicit in writing the above relations: one is obvious, while the other

?Here this will be a FLRW model, but the following discussion of the gauge problem is valid in
general, for perturbations of any spacetime.

3In section 4.1 we shall outline the significance of the various metric component perturbations in
(1.6); in section 1.4 we shall use these components to characterize the main possible gauge choices.
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is rather obscure. The first is that the unperturbed metric is a solution of the Einstein
equations with the unperturbed energy momentum tensor as the source term (we shall
call this the “zero- order” solution). The second is that the perturbations are “small”.
Following these two assumptions one substitutes g, and Ty, in the Einstein equations,
subtracts the zero-order solution, neglects higher-order terms, and obtains linear
equations for the metric perturbation (1.4) with the energy momentum perturbation
as the source term (1.5). Also, one carries out the same procedure with the energy
momentum conservation equations to obtain equations of motion for the matter field
perturbations.

However, the two assumptions above are typical of any perturbation theory: the
fact that is peculiar to general relativity is that we must perturb spacetime itself, so
that the barred (e.g. i) and unbarred field (e.g. p) are actually defined on different
manifolds M and M. Because of this, the procedure outlined above makes sense only
if the correspondence between points in M and M is fixed, i.e. if we have a point
identification map, so that points in M and M are “the same”, and operations such
subtraction of vectors or tensors (such (1.4)) are well defined. Otherwise, even if we
embed M and M in a higher dimensional manifold N, we would be trying to subtract
vector or tensor defined at different points, an ill - defined operation.

The choice of a particular map between the background spacetime S and the per-
turbed universe S is usually referred to as a choice of gauge. Such a map is in general
completely arbitrary, although particular ones may be suitable for some purposes; this

arbitrariness is the gauge freedom of perturbation theory.

1.1.2 Gauge transformations

The gauge freedom outlined above is usually described in terms of coordinates. Within
this description, the gauge transformations, are represented by infinitesimal coordinate

transformations such that
z° — " =z" —¢(z), (1.7)

where ¢%(z) is an arbitrary infinitesimal vector field. The transformation (1.7) can be
regarded in two ways, usually referred to as: 1) passive and 2) active. The first can be
regarded as a mere relabeling of the point z, and we can compute the change induced

by this in any vector or tensor with the usual transformation rules (neglecting second
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order terms in €%); in the second case, to compute the effect of (1.7) on any quantity
T (scalars, vectors, tensors) we expand it about z. Then we compare the results at
the same coordinate point z; it follows that the gauge transformation (1.7) induces a

change in any tensor 7 such that,
T'(z)=T(z)+ LT (z), (1.8)

where £.7 is the Lie derivative of 7 along € [115]. For scalars, vectors and tensors of

second rank we have?

Lof = fae®, (1.9)
LV, = Ve + Ve, (1.10)
LeTab = 1-,z117;c€C + Tacec;b + chec;a 5 (111)

and analogous expressions hold for tensors of higher rank (cf. Weinberg[127]). Thus
the gauge problem is that, since the transformation (1.7) is a diffeomorfism® the so-
lutions s with source T, and g, with source T/, are physically equivalent, but at
the given coordinate point, they have different values. Consequently, the value of
the perturbation in each quantity is also changed by the transformation (1.7). It is
straightforward to verify that the fictitious perturbation £.g, is a solution of the lin-
earized Einstein equations with source term £.T,s, therefore, because of the linearity of
the equations, we can always find other solutions of the form g, + L. Gas for any given
solution 8g,,. Thus the linearized Einstein equations are said to be gauge - invariant
with respect to the transformation (1.7), and the gauge freedom here is the freedom
we have in choosing coordinates.

Quoting Bardeen [1], it clearly follows from (1.8) and (1.9) that

“ even if a quantity is a scalar under coordinate transformations, the

value of the perturbation in the quantity will not be invariant under gauge
transformations if the quantity is non - zero and position dependent in the

background.”

1We omit the overbar here, since these definitions of Lie derivatives have nothing to do with
the background. However, in the present context, it is clear from (1.8) that we are considering Lie
derivatives of the background guantities.

5 Actually, is an infinitesimal diffeomorfism. See Wald [126], appendix C.
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We already see from (1.8) and (1.10), (1.11) that the perturbation in a tensorial quan-
tity is gauge-invariant only if the unperturbed quantity vanishes in the background,
the same being true for a tensor of any rank: this result will be formally stated through
a Lemma (due to Stewart and Walker [118]) in section 1.3. We have outlined here the
gauge problem within a coordinate approach. However, as we have stated at the end
of the previous section, a gauge choice is a specification of a map of the background
spacetime S into the physical model S: therefore we pass now to consider this map in

greater detail, through a geometrical description.

1.2 Gauge specification

It is very easy to be misled by the “obvious” way of investigating perturbations: fol-

lowing the procedure sketched above the energy density perturbation is
Sp=p— [ , (1.12)

However this approach obscures the real situation. It suggests that there is something
very special about the way the original model S is related to the lumpy model, whereas
in reality this is not so. Suppose we consider the lumpy universe modelk;’S', not knowing
how the model S was used to make the construction; can we uniquely recover § from §
? Without further restriction, the answer is No; for without a specific prescription for
approximating the lumpy model by the smooth one, the quantities in the background
model S are not uniquely determined from the lumpy model S (in equation (1.4), the
only restriction relating the two models is that §g,, is “small” in some suitable sense;
it is far from obvious how one can extract g, from g. in a unique way). In fact
the definition of the background model in S is equivalent to defining a map @ from
S to S, mapping the density in S into a background density z in S (for notational
convenience, we use the same symbol for quantities in S and their images in 5, e.g.
the image ®(j) in S of i in S is simply denoted by ). The perturbations defined
are completely dependent on how that map is chosen (Figure 1.1). This is the gauge
freedom in defining the perturbation.

As delineated in section 1.1.2, the situation is usually expressed in terms of the
coordinate choice in §, it being understood that the coordinates in S correspond to

coordinates chosen in 5, so that a choice of coordinates determines a map from S into
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S g

Figure 1.1: The perturbed density ép is defined by a mapping @
of an idealised world model S into a more accurate world model S;
for ® maps surfaces {i = const} from S into S, where they can be
compared with the actual surfaces {y = const}.

S; thus the gauge freedom is represented as a freedom of coordinate choice in S (see
equation 1.7). However, we want here to specifically consider the map ¢ from S into
S, noting that we have coordinate freedom both in S and in S which we can usefully
adapt to the chosen map &.

Thus the actual situation is that what we are given to study is the real (lumpy)
universe S (this is all we can measure), and we define the perturbed quantities and their
evolution by the way we specify a mapping ® of the (fictitious) idealised space- time S
into S. The determination of the best way to make this correspondence can be called
the “Fitting problem” for cosmology [43, 31]; there are various ways to do this, so the
answer is not unique. Once we completely specify the map ®, there is no arbitrariness
in 8p; insofar as ® is unspecified, that quantity is arbitrary. It is convenient to think
of this map as having four aspects (Figure 1.2):

(A) We define a family of world lines 7 in S and a corresponding family of world
lines 4 in S. This determines the world lines in each space-time along which we will

compare the evolution of density fluctuations. There is an obvious choice in S, namely
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Figure 1.2: The map & has four aspects: (A) choice of a family of
time lines in each space - time; (B) choice of a particular perturbations
in general relativity correspondence of time lines in the family in S
to particular time lines in the family in S; (C) choice of a family
of spacelike surfaces in each space-time; (D) choice of a particular
correspondence of surfaces from the family in S to surfaces in the
family in S.

the fundamental flow lines; this will often be the best choice in S also, but others (e.g.
normals to a chosen set of surfaces) may be convenient.

(B) We define a specific correspondence between individual world lines ¥; in S and
individual world lines 7; in S. This specifies which specific observer’s observations we
shall compare with which. In the case where S is an FLRW universe, this choice does
not matter because of the spatial homogeneity of those models.

(C) We define a family of spacelike surfaces ¥ in S and a corresponding family ¥ in
S; these are the “time surfaces” in each space-time. There is an obvious choice in
S, namely the surfaces of homogeneity {f = const}; this means the image of these
surfaces in S (that is, the surfaces {f = const} in §) are the idealised surfaces of
constant density {ji = const} we use to define the density perturbations. There is a

variety of choice for the surfaces ¥ in S, as discussed in depth by Bardeen [1].
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(D) We define a correspondence between particular surfaces Y; in the family £ in S
and particular surfaces ; in the family ¥ in S, and so assign particular time values ¢ to
each event g in S. This is crucial: this specifies which specific point g in .S corresponds
to a point §in S, and completes the specification of the map ®. In particular, the time
evolution of a density perturbation §u is now defined, because this choice, by assigning
particular values i to each surface ¥; in S (the “unperturbed value” of the density)
defines dp via equation (1.12).

If we follow the normal convention, we understand (C) to define the coordinate
surfaces {¢ = const} in S (taking them as the same as the surfaces {¢ = const}); and
(D) to assign particular values to ¢ at each event g in S by this map: ¢, = ¢,. However
this choice is not forced on us. Note that in general neither ¢ nor ¢ will measure proper

time along the world lines in 5.

1.3 Geometrical description of perturbations of
spacetimes

In section 1.1.1 we have outlined the concept of the choice of gauge as a mapping
between the background model S and the perturbed model S, and in section 1.2 we
have seen various aspect of this mapping. The effect of changing the gauge choice,
i.e. of gauge transformations, on scalar, vectors and tensors has been described in
section 1.1.2 in terms of coordinates; here we shall give a brief coordinate - independent
discussion of perturbing spacetimes, using an index-free notation, following Sachs
(1964)[111], Stewart and Walker (1973)[118] and Stewart (1990)[117]; for a more
formal and complete description see these papers, expecially [118].

Let us consider a ome-parameter family of 4-manifolds A, embedded in a 5-
dimensional manifold N. Each M. represent the corresponding spacetime: therefore
here we shall take M, as being the manifold corresponding to the background space-
time S (previously we denoted this manifold M), and for small value of ¢ the manifold
M, corresponds to the perturbed spacetime S. Consistently, we shall denote with ®.
the pownt identification map

T.: My — M., (1.13)

which says which point in the perturbed manifold M, is the “same” as a given point
in the background M.
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Consider now any smooth, nowhere - vanishing vector field X on the 5-dimensional
manifold N, everywhere transverse (nowhere tangent) to the M,. We will then say
that a point of M, is the same, with respect to X, as a point of My, if they lie on the
same integral curve v of X. The map (1.13) is then the identification map associated
with X (see Fig. 1.3).

We have already said that a choice of gauge is given by the specification of a
particular map: thus now is X that represent an arbitrary gauge choice. We can also
introduce coordinates z* on N (A = 0...4), and parametrize the curves v by e: then

we can set
d:EA

—= X" 1.14
p (1.14)
Now consider a geometrical field in the perturbed spacetime: we can denote it as 7,
a field defined on each M.. For small ¢ we can expand 7, along v,
WA(T) = T + (L5 T)o + O(e) (1.15)

£

where Ly is the Lie derivative along X and A; is the pullback of M, to M;.® It is clear
from (1.15) that the perturbation 67 = 7 — T of section 1.1.2 is given here by

§T = e(LxT ), (1.16)

where now the dependence of this perturbation on the choice of gauge, given here
by X, is made explicit. Since X is completely arbitrary, we could repeat the above
arguments for another vector ¥ on NN, obtaining this time §7 = ¢(LyT )y. Given the
properties of the Lie derivative, is then immediate to get the difference between the
two choices, X and Y, as A8T = e(Lx_yT)y = (LT )y, where ¢ = ¢(X —~Y) is a
vector field in each M..” Finally, we have to take the limit of the difference A§7 for
e — 0, so that on M, we get

AST = L, T, (1.17)

which is equivalent to (1.8). Thus (1.17) is the effect of change of gauge from X to Y
(see Fig. 1.3), i.e. the geometrical equivalent of the gauge transformations described

in coordinates by (1.7)).

6See e.g. Wald (1984) [126], appendix C.
"This can be seen adopting local coordinates z* = (z?,¢), with @ = 0...3: then from X! =¥Y* =1
we get £1 = 0.
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Figure 1.3: The significance of a gauge choice and the effect of gauge
transformations can be visualized embedding the 4-dimensional man-
ifolds M, (the background) and M. (the perturbed universe) in a
5-dimensional manifold N (see text). Here the point P in the back-
ground is identified respectively with Py and Py in the perturbed
universe by the two different gauge choices X and Y. ¢ represent the
effect of the change of gauge.

Taking into account (1.17) (or its equivalent form (1.8)), and the explicit expressions
of the Lie derivative for scalars, vectors and temsors (1.9), (1.10) and (1.11), we may
now state the following Lemma, due to Stewart and Walker (Lemma 2.2)(1973) [118]:

Lemma. The linear perturbation §7 of a quantity 7, on the back-
ground spacetime S = {My, go} is gauge invariant if and only if one of the
following holds:

(1) Ty vanishes;
(11) T; is a constant scalar;

(#3) T, is a constant linear combination of products of Kronecker deltas.

In this thesis, we shall follow the covariant approach outlined here, and we shall use
covariantly defined quantities that vanish in the FLRW background, so that they are

gauge invariant in accordance with the Lemma above.



30 Chapter 1. PERTURBATIONS: THE GAUGE DEPENDENCE

1.4 Gauge choices

1.4.1 The arbitrariness of 6u

Using again the description given in section 1.2, the problem is that the definition of
5p depends both on the choice of the surfaces ¥ in S and on the allocation of density
values to these surfaces. We can for example choose ¢ = ¢ and then set the dependence
of §p on the spatial coordinates to zero through the gauge freedom (C), by choosing the
surfaces ¥ as surfaces of constant density p in S; because these surfaces are regarded as
surfaces of constant reference density, we will then have §y constant on these surfaces
(they will be spacelike if the universe S is sufficiently like a FLRW universe), and as
they are also surfaces of constant #, we will find g = §p(¢t). In many ways this is
an obvious choice for the time surfaces (the constant density surfaces are covariantly
defined in S, and correspond precisely to the surfaces of homogeneity in the idealised
model S, which are also surfaces of constant density).

Furthermore, given a choice of the family of surfaces ¥ in S, we can still assign any
value we like to §p at a particular event through the gauge freedom (D), by changing
the assignation of values fi to the surfaces ¥. Thus in particular, given any choice
whatever of the time surfaces, we can set ép to zero at an event ¢ at £ = ¢, on any
world line «, by choosing fi; = p,; this is a possible assignation of a values of the
“ideal” density i to the event ¢ where ¢t = ¢, intersects v (Figure 1.4).

How this propagates along the chosen time lines then depends on the gauge choice
and the fluid equation of state. We can choose a gauge where §u vanishes at every
point of 4 by assigning the mapping of densities to satisfy the condition u(t) = f(t) on
v. This choice is obtained in Bardeen’s formalism (1] by choosing the arbitrary function

T'(7) (his notation, see his equation (3.1)) to be given (in terms of his variables) by

1)
3(1+w)(5/9)

on v, where the right hand side will only depend on the conformal time 7 along any
chosen world-line 4. Then his equation (3.7) shows § = 0, i.e. the energy density
perturbation vanishes along + in the new gauge.

If we combine these two choices, we will have chosen a gauge where 6 = 0 iden-

tically; we map the FLRW model into the lumpy universes by mapping surfaces of
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Figure 1.4: By varying the assignation (D) of particular surfaces in
S to surfaces in S, we can give the density perturbation §u = p —
at the event g in S (where the world line v intersects the surface
{& = const}) any value we like.

constant density f into surfaces of constant density x with the same numerical values
(Figure 1.5).

We might call this the zero density-perturbation gauge. This possibility will not
of course mean that there are no spatial variations of density; in this gauge, inhomo-
geneities will be represented by the fact that the proper time separating a surface of
coordinate time ¢; from a surface of coordinate time #,, measured along the normals to
these surfaces, varies spatially (corresponding to the normals to these surfaces being
non-geodesic).

The basic problem, then, is this arbitrariness in definition of §u, because §u (a) is
not gauge invariant: it can be assigned any value we like at any event by appropriate
gauge choice; and (b) is not observable even in principle, unless the gauge is fully
specified by an observationally based procedure (as otherwise fi is not an observable
quantity).

As a result, if we are to use du in a satisfactory way to describe density perturba-

tions, we must either leave some gauge freedom, and keep full track of the consequences



32 Chapter 1. PERTURBATIONS: THE GAUGE DEPENDENCE

Figure 1.5: By choosing ® so that the surfaces {i = const} in S
are the same as the surfaces {4 = const}, and then choosing the
correspondence (D) to assign the same numerical values to fi on each
surface as p has on it, we obtain a zero density-perturbation gauge.
Note that the proper time T between any two of these surfaces in S
will vary spatially, in general; the physical density variation is coded
in this spatial variation of dt/dr.

of all this freedom; or find a satisfactory, unique way of making the gauge choices (A)-
(D) discussed above. The alternative is to look for gauge-invariant quantities that

code the information we want.

1.4.2 Fixing a gauge

One way of approaching the problem is to choose a satisfactory specific gauge (speci-
fying completely (A)-(D) above). We mention five possibilities.®

In each case we choose the corresponding world lines in § and S to be the funda-
mental flow lines. The issue then is the choice of time surfaces, i.e. the choice of slicing,

and then a specific correspondence between these surfaces. It is standard to charac-

8We omit one of Bardeen’s option [1], i.e. we do not consider surfaces of simultaneity determined
by radar, because such surfaces in 5 do not coincide with the surfaces {f = const} there [41].
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terize these slicing with conditions on the metric components in (1.6) and on other
perturbation variables such the velocity perturbation v,° and to specify a particular
gauge within the slicing with further conditions; here we give a brief outline of these

gauge specifications, more details can be found in Kodama and Sasaki (1984) [69].

1) Proper time slicing: A =0

One possibility is to define clearly equivalent proper times in the two models. For
example a possible choice (cf. Olson [98]) is to choose proper time along the fluid flow
lines from the big bang in both models. This is conceptually a clean solution to the
problem, provided we can start at the big bang and follow the evolution of each model
from then on.

Within this slicing, two further gauge specification are commonly used in the liter-
ature; both leave the gauge non completely specified.
la) Synchronous gauge: A = B = 0; this is perhaps the most commonly used
gauge [76, 104, 127]; here proper time is measured along the normals of the ¢t = constant
hypersurfaces. The problem here, as pointed out by Bardeen [1], is that the definition
is non-local. If we observe the universe today, this proposal means we cannot define dp
directly from these observations but have to do so by integrating the field equations
all the way back to the big bang and then deducing from this integration what 6y is
today. Apart from issues of practicality, this is clearly an unsatisfactory procedure;
1b) Comoving proper time gauge: A = v = 0; here proper time is measured along

flow lines, which are tilted with respect to the surfaces of ¢ = constant.

2) Flow - orthogonal slicing: v = B

A second possibility is to choose the surfaces of constant time as surfaces orthogonal
to the fluid flow. However this choice (called comoving hypersurfaces by Bardeen) is
only possible if the fluid vorticity is zero, so it is not a generic strategy (it is satisfac-
tory in analyzing purely scalar perturbations, see chapter 4). Typical further gauge

specifications are:

9Here we are necessarily anticipating some of the material presented in chapter 4; in particular,
we denote the gauge specifications using the harmonic component of the metric and of the velocity
variables; a prime indicates derivative with respect to conformal time and k is a wavenumber (for
details, see in particular section 4.1).
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2a) Comoving time orthogonal gauge: v = B = 0 here coordinate time is mea-
sured along the flow lines; there is some gauge freedom left [69)].

2b) Velocity orthogonal isotropic gauge: v = B, Hr = 0 there is no gauge free-
dom left; the formalism in this gauge is the closest to the gauge invariant formalism of

Bardeen.

3) Equivalent scalars

A third possibility is to identify equivalent scalars in S and 5, that define spacelike
surfaces in S. The obvious choices are the energy demsity u (leading to the “zero
density-perturbations” discussed above, with i, = pg) ) or the fluid expansion ©
(giving Bardeen’ s uniform-Hubble-constant hypersurfaces, with @, = ©,). In this

3 Uniform Hubble slicing: §0 = 0 (see Eq. (4.24), (4.25)) there is no residual gauge
freedom in the time coordinate; the gauge is further specified by the two following
conditions.

3a) Time - orthogonal uniform Hubble gauge: B = §0® = 0 with a remaining
gauge freedom, and

3b) Comoving uniform Hubble gauge: v = §0 = 0, again with some gauge

freedom left.

4) Newtonian or zero-shear slicing: o, = (1/k)H;, — B =0

In this slicing !° the perturbation in the expansion is isotropic, and there is no residual
gauge freedom in the time coordinate. Two common further gauge specification are:
4a) Longitudinal gauge: B = H} = 0, a very common gauge in the literature [95];
there is a residual gauge freedom.

4b) Comoving Newtonian gauge: B = (1/k)H/}, v = 0 again, there is a residual

gauge freedom.

5) Spatial averaging

Another approach is to define the ideal density iz in the lumpy model S as a suitable

average densityin S: i =< p >, where < . > denotes some suitable spatial average (cf.

!9This is in a sense quite a controversial slicing, because zero - surfaces are not invariantly defined,
and cannot exist in most space - times; furthermore in general such surfaces in the background S do
not correspond to the surfaces {f = consi} [90].
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Lyth and Mukherjee [83]). This is equivalent to specifying a fitting procedure of the
fictitious model to the real universe based on this averaging. This is indeed a reasonable
thing to do[43, 31], and may be expected to lead to integral conditions such as the
Traschen integral constraints [121, 122, 120], as discussed by Ellis and Jaklitsch [38].

This procedure may well give us the physical information we want. However one
will then have to take seriously the problems associated with averaging in general
relativity, for example the degree to which averaging commutes with the Einstein field
equations [30, 57]. It also demands investigation of how this average depends on the
choice of space - sections over which the average is taken.

The results obtained for the evolution of §u/p from the various gauge choices are
different (see Bardeen’s paper [1] for an extensive discussion; and see also Goode [51]).
In each of the last three cases considered, we have to concern ourselves with the relation
between coordinate time and proper time along the fluid flow lines. In the first three
cases, clearly the definitions are such that they have the correct correspondence limit:
if $ is a FLRW model, they define as surfaces {ji = const} the surfaces {y = const} in
those universes. However the fourth approach is the most fundamental: it tackles the
major issue, on what scale is the real universe approximated by the FLRW model [30].
From the viewpoint adopted here, the averaging implied is a sophisticated way of

comparing evolution along neighbouring world lines in the real fluid.

1.4.3 Gauge invariant variables

We have seen in section 1.3 that the fundamental requirement for a gauge invariant
quantity is that it be invariant under the choice of the mapping ®. The simplest case is
a scalar f that is constant in the unperturbed space-time S (f = const) (see equation
1.9), or any tensor f, that vanishes in S: %4 = 0 (see equations (1.8), (1.10). The
reason is that in each case the mapped quantity f in S will also be constant, so the
choice of correspondence ® does not matter; they will all define the same perturbation
§f = f — f. The only other possibility for gauge invariant quantities is a tensor that
is a constant linear combination of products of Kronecker deltas.

What are the simple covariantly defined gauge invariant quantities in a FLRW
universe? We can easily determine them by writing down a list of all the simple
covariantly defined quantities in a general fluid flow, and then seeing which ones vanish

in a FLRW universe model (the other two options in the Stewart and Walker lemma
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are not useful in our context, as the only invariantly defined constant in the FLRW
universes is the cosmological constant, and no tensors that are constant products of
Kronecker deltas occur naturally).

To carry this out, it is convenient to use the general formalism developed by

Schiicking, Ehlers, and Trimper. We turn to this in the next chapter.



Chapter 2

THE COVARIANT APPROACH
TO COSMOLOGY

The aim of this chapter is to briefly review the covariant fluid approach to cosmology.
It is assumed that the description of the matter content of the universe as a continuous
fluid is a good approximation; this fluid can be thought of as being divided into small
volume elements. At each point of the spacetime we can assign a 4- velocity vector
u® representing the velocity of the volume element of fluid surrounding that point.
This description of matter is complementary to the particle distribution function rep-
resentation (see e.g. Ehlers (1971)[27]), and we can regard the 4 - velocity of the fluid
element as the average velocity of the particles in that volume. However for the viscous
fluid we shall consider the definition of this 4 - velocity is somehow not unique: here

we shall simply assume that some reasonable choice has been made.'

To characterize this fluid we introduce the covariant approach to general relativity
as is presented for example in the papers of Hawking [55] and Ellis [28, 29] (see also
the paper by Ehlers [26]). The presentation given here is an attempt to satisfy a
requirement of self - consistency of this thesis, avoiding details irrelevant to the content
of the following chapters. The unsatisfied reader can refer to the papers quoted above,

and references therein.

'In section 3.4 we will discuss various possible choices and their relations to GI variables.

37
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2.1 Kinematics

2.1.1 Observers

Let n® and u® be two unit future directed timelike smooth vectors fields (n%n, =
u%u, = —1): these can be regarded as the four velocities of two sets of observers O,
and O,. At each point p of the spacetime we have a subspace H, of the tangent space
T, at p which is orthogonal to u® (or to n®); then we can define the projection tensors

into these subspaces

hab = Gab + UgUp hub = Fab + nyny ’ (21)

which define the spatial part of the local rest frames (LRF) of these observers. These
tensors are the metric in the subspaces H, of T, which are orthogonal to the corre-
sponding vector: if this is hypersurface orthogonal, the relative projector is the metric
in the surface. We follow King and Ellis (1973)[67] on characterizing the relation
between n® and u® by the hyperbolic angle of tilt 8

u'n, = —coshfB, (B >0, o (2.2)

and the direction of tilt: this can be specified either by the direction ¢* of the motion of
O, (the projection of u?) in the LRF of O, or by the the direction —c* of the motion
of O, (the projection of n?) in the LRF of O0,.% More details and useful relations are
given in the appendix: what is important to the following discussion is that the tilt

angle [ is related to the relativistic contraction factor v by
v = coshfB = (1 — vz)—§ , v=tanhf, (2.3)

so that @ ~ v < 1 correspond to a non relativistic relative velocity v between O, and
@,,. In this case

d° =u" —n® 2 fE B = VO~V ey = hap + 2ug Vi - (2.4)
From now on, we shall refer to the change between two arbitrary frames u® and n*
with a small relative velocity as a change of first order in J; the tilt angle will turn out
to be particularly useful in chapter 5, in considering single components four - velocities

and their relations with the total fluid velocity.

2For the signs of these directions we conform here to the choice of King and Ellis (1973) [67].
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2.1.2 Kinematical quantities

In the context of cosmology, there will always be a preferred family of world - lines (the

fundamental world lines) representing the motion of observers in the universe (“funda-
‘ mental observers”) which are at rest with respect to our volume element of fluid. We
will often refer to the flow lines as “fluid flow lines”, since we will use the fluid approx-
imation. We may note however that for an imperfect (viscous) fluid the definition of
the fluid 4- velocity is somewhat arbitrary [64]. In this chapter we shall assume that
some reasonable definition of the fluid 4 - velocity has been made, delaying a discussion
of this issue to section 3.4. We shall now define kinematical quantities for the fluid
4 - velocity, but clearly the same definitions could be made for any arbitrary timelike

unit vector n®: when needed, we shall denote such quantities with a tilde.

Let the normalized 4-velocity vector tangent to these world lines be

d a
u® = ;,_ =  u'u, = —1, (2.5)

where 7 is proper time along the fluid flow lines: at any point of the spacetime u® is

the 4 - velocity of the volume - element of fluid surrounding that point. The projection

tensor into H, (the LRF of a comoving observer O,) is
hab = Gab + UgUpy = habhbc = hac s habub =90. (26)

It must be noted that the 3-subspaces H, defined at each point by h, do not in
general mesh together to form 3-surfaces in the spacetime (see section 2.2.5).
The time derivative of any tensor T9®. 4 along the fluid flow lines is simply the

covariant derivative along u®
Ta...b — Ta...b e 2.7
c...d = co.dieth - ( . )

It is important to note that, because of (2.5), this is the derivative with respect to
proper time defined along these lines: in other words T, 4 is the rate of change
of T%b. ; as measured by a fundamental observer. Using h,” we can also define the
spatial derivative in the LRF of O,

Td"bc..d = Ta“bc..d;eue (28)

OV, T8y o = ho' B0y h%hgt R TI s (2.9)
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Thus the )V, operator is a useful tool to avoid a plethora of indices; a certain care
is needed if the tensor T itself is not totally orthogonal to u?, but this will not be a
problem here.

The 4 - acceleration is defined as
a® = 4% = uypu’ | (2.10)

and from the second of (2.5) it follows that a®u, = 0.

A relevant quantity in the fluid - flow picture is the connecting vector 5, joining
any two given flow lines at all time. It can be show that n* is Lze dragged [115] alon
Y g n 99 g

u?, i.e., its Lie derivative along the fluid flow lines vanishes. This implies
7t = n%u’ = uten” (2.11)

so that a significant quantity in our approach is the covariant derivative of the 4-
velocity. Hence it is convenient to split u,;, for which we will need to define new

variables. This we take up next.

The ezpansion scalar (volume ezpansion) © is the trace of u,y
=1y, (2.12)

which represents the isotropic part of the expansion of the fluid. For instance, the
action of © alone during a small time interval on a sphere of fluid changes the latter
in a larger (smaller) sphere with the same orientation.

The shear tensor is the spatial trace-free symmetric part of u,y
Cap = hachde(c;d) - %@hub = Uabub =0 y Oﬂa =0 y (213)

Its action distorts the sphere leaving unchanged its volume and the directions of the

shear principal axis.The shear magnitude is

ot = %O'Gbaab >0, o0=0 & o0,4=0. (2.14)

The vorticity tensor wy, is the skew - symmetric spatial part of u,,

Wap = hachbdu[c;d] = wupu'=0, (2.15)
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with magnitude

w25

%wabwab >0. | (2.16)

Since wyy, is skew - symmetric, all the information contained in it can be put in a

vector, the vorticity vector

— bed d
wt = %7}0 < UpWed p== Wap = nabcdwcu , (217)
weu' =0, w=0 & w'=0 & wu=0,

where 79%°? is the totally skew - symmetric tensor:

abed __

7 77[abca!] , 771234 =(—g)"7, g=det(ga). (2.18)

The action of w® alone rotates the sphere, leaving its shape and volume unchanged.
With the definitions given above, the first covariant derivative of the 4-velocity

vector is completely determined

Ugip = (S)Vbua — QgUp , (B)Vbua = Wap + @ab 3 ®ab - %habG + Tap ) (219)

if the vorticity wap = wyy) vanishes, u® is hypersurface orthogonal (see section 2.2.5) and
—Oq = ——hachbdu(c;d) is the second fundamental form of this surface (i.e., its extrinsic
curvature).

It is convenient to define a representative length scale S(7) by the relation

. 3
S/S=H=160 & 0= 1457 (2.20)

88 dr
which determines S up to a constant factor along each world line, and where H the
familiar Hubble parameter H(7) when we consider a FLRW model. Hence, the volume
of any fluid element varies as S* along the flow lines (this quantity is the generalization
to arbitrary anisotropic flows of the Robertson-Walker scale parameter), so that §
represents the average distance behaviour of the fluid. This can be understood if
we refer to the definition of ® and o, in general a sphere of fluid will expand in
an anisotropic way during each small time interval, but if we average the expansion

along different directions over this time interval the shear effect will cancel out and the
resulting effect is described by © (.9) alone.
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2.2 Geometry and matter

2.2.1 Ricci identities

The Riemann tensor Rgpq (Riemann from now on) describes the curvature of space-
time. It is defined by the commutation relation satisfied by the covariant derivatives of
any arbitrary 4-vector, i.e. by the Ricci identities; for the 4 - velocity vector u” these
are

Uqgidie — Uaic;d = Rabcdub . (221)
Riemann satisfies the symmetry properties
Riajicq) = Raved = Redaby  Rajpea) = 0, (2.22)

giving 20 independent components. Riemann can be decomposed into its “trace”, i.e.,

the Ricci tensor (Ricci, 10 independent components)
Ry = Row (2.23)
and its “trace-free” part, the Weyl tensor Cupeq (Weyl, the remaining 10 components)
C®.,=R%,y— 2g[a[cRb]d} + %Rg[a[cgb]d] = C%,=0, (2.24)

where R = R“, is the Ricci scalar. We can further spit Weyl into its “electric” and
“magnetic” parts,’ respectively defined by

— b, d — 1 h b d .
Eac = Uabed¥ U, Hac = Enabg Cghcdu Uy (225)

Ewp=E@y, Hw=Hguy, E=H'=0, Euu’=Huwu' =0.

Then Weyl can be written as
Cczbcd - (nabpqncdrs + gabpqgcdrs)upurEqs - (nab[)qgcdrs + gabpqncdrs)upuqus ) (226)

Gabed = GacGbd — JadGbe -

The physical interpretation of the gravitational field E,, is clarified by its Newtonian

counterpart *
Eop = bos — shasd” (2.27)

SThe reason for this terminology is that E,, and H,y, satisfy a “Maxwellian form” of the Bianchi’s
identity (see section 2.3.3).

'The Newtonian analogue of the general - relativistic fluid approximation is developed in detail in
Ellis (1971) [28]. The extension of the covariant fluid analysis of cosmological density inhomogeneities
to its Newtonian analogue is given in Ellis (1989)[33].
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where ¢ is the Newtonian potential. thus E,, represents the tidal force, inducing shear

in the fluid flow lines (see equation (2.48)); H,, has no Newtonian counterpart.

2.2.2 Bianchi identities
Riemann satisfies the Bianchi identities
Rapfeare] = 0 5 (2.28)
in 4 dimensions these are equivalent to (see Hawking and Ellis (1973) [56], page 43)
gated , = pefat] _ 1gcla gl (2.29)

Written in this form, they are differential equations relating the components of Ricci
and Weyl. Contraction of (2.29) implies

G5 =0, Gu=Rau—iRguw, (2.30)

where G, is the Einstein tensor.

2.2.3 Einstein equations

Within the covariant approach we are following, Einstein field equations establish at
each spacetime point an algebric relation between curvature and the matter content

represented by the energy momentum tensor T,
Gap + Agab = Rap — %gabR + Agab = £l , (231)

where we include the cosmological constant term A for generality. The cosmological
constant problem is a controversial one, but not at all old - fashioned, see e.g. the recent
review by Weinberg (1989)[128]. If we substitute (2.31) in the Bianchi identities (2.29),
we see that Weyl represents the “free gravitational field”, determined non-locally by

matter and suitable boundary conditions.

2.2.4 Matter: conservation equations

If 7% is the energy momentum stress tensor, the covariant form of the energy momen-

tum conservation equations is

T =0; (2.32)
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within the covariant approach followed here these follows from (2.30) and (2.31). From
now on we will assume a one component imperfect fluid unless otherwise specified; in

this case the decomposition of 7% with respect to u® gives the well- known form

Tap = paup + phap + 2qaus) + Tab » (2.33)

where
i = Topu'ub, p= -;—h“bTab , (2.34)
Ge = —ho’Togut | Tab = ha"hy Tog — (A Te) s (2.35)

are respectively the energy density, the pressure, the energy flux and the anisotropic
pressure in the LRF of O,; in general x and p will be related through an equation of
state. For a perfect fluid the fluid four velocity u® can be uniquely specified: indeed in
this case (2.33) admits the form

T = pu'u’ + ph® = (p + pJuu’ + pg® (2.36)

when it is decomposed with respect to its eigenvector u® = u%; more details will be
given in section 3.4. In section 2.3.1 we will separate equation (2.32) in its time and

space components.

2.2.5 Intrinsic 3 -curvature when w =10

When the fluid vorticity vanishes (and only then) there exists a family of 3-surfaces
Y, everywhere orthogonal to the fluid flow vector u®. Indeed it is possible to show

that
w=0 &  upuyg=0

< 3 locally f,9: uea = fg. - (2.37)

In other words, for the surfaces ¥, to exist, it must be possible to write u, as a
4 -gradient. Then the surfaces X = {g = constant} are instantaneous surfaces of
simultaneity for all the fundamental observers, i.e., the surfaces X, define a cosmic
time. However this can be locally normalized to measure proper time along each flow

line only if a, = 0.
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Since for w = 0 these surfaces exist, one can define an intrinsic curvature tensor for

them from the Ricci identity in X, . For any vector V®in ¥, : V%u, = 0, we have
OV, - vV, = VO R, . (2.38)
Finally, Ricci for these 3 -spaces can be written as
) Rap = ho' hy? (—S—B(SBO'fg) "+ a(f;g)) + aqap+ (2.39)
+ K£Tap + $hap(—30° 4+ 207 + 2rp + 2A — A) .
Now, in a general fluid flow, we can define the quantity
K=2(—10%+0*+ s+ A). (2.40)

Then, when w = 0, this quantity acquires a special significance: it is the Ricci scalar
(3)R of the 3-dimensional spaces T, ; that is, w = 0 = ®JR = K.> We shall introduce
in section 3.3.1 two new tensor that generalize GYRpea and BIR,, to the case of non

vanishing fluid vorticity w # 0.

2.2.6 Spatial gradients

We may define spatial gradients (i.e. orthogonal to u?) in the LRF of the observers

O, for any scalar function f

A (2.41)

5What is the meaning of X when w # 0?7 When w # 0, there are no surfaces orthogonal to the
family of fluid flow lines, but we can find normalised comoving coordinates {¢,y”} (see Ehlers [25]
Treciokas and Ellis [123]). Using such coordinates, the surfaces {t = const} can be set orthogonal to
a particular chosen world line v and almost orthogonal to neighbouring world lines, by the remaining
gauge {reedom (e.g. if we choose an initial surface {t = #o} to be generated by orthogonal geodesics
emanating from v). Then X, given by (2.40), will be nearly the Ricci-scalar of these 3-spaces on and
near 7. Note however these surfaces do not directly correspond to the FLRW surfaces {t = consi}
when there are spatial density gradients, because if X, # 0 the surfaces {u = const} do not lie
orthogonal to the world-lines; similarly if Z, # 0 the surfaces {© = const} do not lie orthogonal to
the world lines.

More generally, if u® is not too different from the normals n® to a family of surfaces, then K will
be not too different from the Ricci scalar of those 3-spaces. The meaning of “not too different” can
be made precise by either using (a) a formalism equivalent to the ADM lapse and shift formalism
(cf. Bardeen [1] section VI and section 4.1), (b) the tilted flow vector formalism of King and Ellis
(1973) [67], or {c) adapted comoving coordinates mentioned above.
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in particular we find useful to define the gradients of energy density, pressure and

expansion

X, =0v,pu, V,=0Cvyp, 2,=0v,0; (2.42)

also

A=ay, A=0V.4, (2.43)
are the acceleration divergence and its gradient, and
K, =0OV,.K (2.44)

is the spatial gradient of the quantity X defined in (2.40), i.e. the 3- curvature gradient
when w = 0. As we shall see in chapter 3, these quantities play a crucial role in the

covariant theory of GI cosmological perturbations.

2.3 Dynamic non- linear equations

2.3.1 Conservation equations

The conservation equations (2.32) can be separated into time (energy conservation)
and space (momentum conservation) components. For an imperfect fluid the energy -
momentum tensor has the form (2.33). Inserting this in equation (2.32) and projecting
along u, gives the

energy conservation equation
At (1 +p)O + 0™ + " + g0 = 0. (2.45)

In the same way, using the projection tensor hg, one has the

momentum conservation equation
(B4 P)aa+ Yo+ ha(7 s + ) + (wa” + 0" + 10k, ), = 0. (2.46)
The time-evolution of p is determined by (2.45) when we specify an equation of state

determining p from p.

2.3.2 Hydrodynamic equations

The evolution equations for the kinematical quantities follow from the Ricci identities
(2.21).
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Raychaudhuri equation

The evolution of © along the fluid flow lines is given by the Raychaudhurt equation:
@+%@2+2(02—w2)—.4+%n(,u%—Bp)—A:O , (2.47)

where A is defined by (2.43). This equation was derived by Raychaudhuri (1955) [109]
in the case of dust and generalized by Ehlers (1961)[26] to the case of non- vanishing
pressure. It is also the trace of the Ricci identity (2.21) (actually it is obtained by
contracting the spatial part of (2.21) projected along u?). The Raychaudhuri equation
is the fundamental equation of gravitational attraction that establishes that in general
relativity (g + 3p) is the active gravitational mass of the fluid.® For p + 3p > 0 we
have from (2.47) a volume contraction; we also see from (2.47) that A contributes as
a constant repulsive force, and a similar repulsive role is played by the acceleration
divergence A and by the vorticity. On the other end the shear term tends to shrink

the volume.

Shear and vorticity equations

Propagation equations for o, and w,, are also obtained via the Ricci identity (2.21).
If we project (2.21) along u? and then we take the spatial part of the resulting
expression, we obtain a tensor (let us call it P,) the symmetric trace-free part of

which is the shear evolution equation:

hafhbg(o-fg) " hafhbga'(f;g) — Qap + Walp + Uafa-fb‘l'

+§®0'ab -+ %hab(}l — (.u2 — 20‘2) + Eab - "{‘%ﬂ'ab . (24.8)
The vorticity evolution equation
hab(wb) = %@wa — g%’ — %nabc‘iubac;d =0 (2.49)

is then the skew symmetric part of FPyp.

8This is the role played by the mass density only in the Newtonian theory: the p term in the active
gravitational mass is responsible for the regeneraiion of pressure enhancing gravitational collapse in
general relativity.
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Contraint equations

Three further equations follow from the Ricci identity (2.21).

They can be regarded as constraint equations, since they do not involve time deriva-

tives:
Ry (W, — ot + %Zb) + (W% + 0%)a” = ¢° (2.50)
w?, = 2w, , (2.51)
H,y = 2a(awd) — hohg? (w(eb:’c -+ O'(Eb;c) ng)fbcuf . (2.52)

2.3.3 Maxwell-like gravitational field equations

We have seen in section 2.2.2 that the Bianchi identities (2.28) obeyed by the Riemann
tensor can be cast in the form (2.29), relating the Weyl tensor components to the
Ricci tensor components. As the Weyl tensor can be decomposed into components
Eq and Hy, (see eq. (2.26)) and the Ricci tensor is related to the energy - momentum
tensor via the Einstein equations (2.31), one can substitute (2.26) and (2.31) in (2.29),
obtaining four tensorial equations for E,; and H,, that are rather similar to the Maxwell

equations. In the perfect fluid case these Mazwell - like Bianchi identities are:

divE :
hta B gh, — nPuyo, Hyg + 3H w’ = 1k X", (2.53)
divH :
htaH“;dh,,d + ntbpqubapqud —3E' W' = k(p+ plw', (2.54)
E
hamhct(Eac) gus ha(’nnt)rSdurHas;d _ 2Hq(tnm)bpqubap + @Emt+
+ hmt(a_abEab) _ 3Es(m0_t)s . Es(mwt)s — —%/{,(IU, +p)0_tm , (255)
H:

hmahtC(Hac) . ha(mnt)rsdurEas;d + 2Eq(tnm)bpqubap+

+ R (o Hyy) + OH™ — 3H, 0" — H,("w)* = 0., (2.56)
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The form of these equations is the reason for calling F.; and Hab the electric and
magnetic component of the Weyl tensor.
If there are imperfect fluid terms in the energy momentum tensor, the right hand

side of the above equations change to

DwE : (2.57)
=K {%Xt — %htcﬂ' b — 3—w 5" + 1 s bg’ + & 7r pab — —@q} , (2.58)
DivH : (2.59)
= & [(p+ P’ + 30" g + 30" (W + 0%)] (2.60)
E (2.61)
=K [——%(,u +p)ot™ — a(tqm) — %htahmcq(a;c) - %htahmcfrac (2.62)
_%Wb(mwbt) - _21_7rb(m0_bt) . %n_tm@ + %(qb;b + abqb + ,/Tcdo,cd)hmt] ) (263)
iy (2.64)

=K [1 oltgm )befubqf — %hc(tnm)befubﬂ' eif + 3(A™weg® — 3w(m ))] . (2.65)

In the next chapter we shall consider a perturbed FLRW model, and we shall linearize

the hydrodynamic and gravitational equations presented so far.






Chapter 3

COVARIANT THEORY

OF GI COSMOLOGICAL
PERTURBATION

This chapter is the core of the thesis: we develop here the covariant theory of gauge-
invariant cosmological perturbations. The first part contains various preliminary (al-
though original) material: I introduce two new inhomogeneity variables (which later
will turn out to be our main GI variables in analyzing density perturbations) and I
present new non- linear equations for them (as they where originally derived in EB).
Then I introduce new tensors that describe the spatial curvature properties in the case
of non - vanishing vorticity, and derive useful commutation rules for the 3-derivative
)V, (EBH). Section 3.4 is devoted to discuss the various possible choices of frame (i.e.
of the fluid 4-velocity) we have when the fluid is described by an energy - momentum
tensor which contain viscous terms, and in section 3.5 the whole set of covariant GI
variables is considered (Paper I). In section 3.6, 3.7 and 3.8 the attention is restricted
to a perfect fluid, for which we derive the linear equations governing the evolution of
our vectorial density perturbation variable D,. We derive a Jeans instability criterion
(EHB), correcting previous result in the literature [65], and we show how vorticity can

affect the evolution of D, (EBH).

In the last part of this chapter we turn to the more general case of an imperfect fluid:
in section 3.9 we derive the whole set of hydrodynamic and gravitational equations
that follow on linearizing the equations presented in chapter 2, and in section 3.10 we

consider the equations for the locally defined GI scalar variables introduced in section
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3.7. In particular, we derive a second order equations for the evolution of our GI scalar
variable A: this equation is the equivalent within our formalism of the main equation
of Bardeen [1] for his for GI density perturbation variable.

The approach to GI perturbations we shall follow is based on the Stewart and
Walker Lemma of chapter 1 (see section (1.3)): from now on, we shall refer to the gauge
invariance of any variable as following from this Lemma. Throughout this chapter, we
shall consider a set of exactly defined covariant quantities which have significance in
any spacetime; unless otherwise specified these vanish in a FLRW model, and therefore

constitute a set of covariant GI quantities in an almost FLRW universe.

3.1 Key GI variables

In the previous chapter we have reviewed the classical covariant hydrodynamical and
gravitational equations 25, 27, 28], and we have explicitely introduced in section 2.2.6
a new notation for spatial (i.e. orthogonal to the fluid flow vector u*) gradients. Since
our goal is to derive a GI theory of cosmological perturbations, with special emphasis
on density inhomogeneities, we wish to complete that set of equations with those
governing the evolution of the density and expansion gradients X, and Z,.

Let us consider the meaning of these variables.!

X, is measurable in the sense that (a) it can be determined from virial theorem
estimates (indeed, dynamical mass estimates determine precisely spatial density gradi-
ents), and (b) the contribution to it from luminous matter can be found by observing
gradients in the numbers of observed sources and estimating the mass to light ratio
(Kristian and Sachs [72], equation (39)). It describes the density inhomogeneities which
we wish to investigate, for if there is an overdensity which is a viable proto- galaxy, this
will be evidenced by a non-zero value of X, (the magnitude of X, directly indicating
how rapid the spatial variation of density is). Thus X, seems to encapsulate much of
the information we want.

However, the usual variable that characterize density perturbation is the dimension-
less §p/p: within the covariant theory, we may expect that a similar quantity should

be employed. Indeed we normally would like to compare the density gradient with

'The density gradient X, naturally arises in the covariant fluid approach (see (1966)[55], and
Olson (1976)[98]) as a term in the equations (see section 2.3). However it was not recognized as the
GI variable in terms of which the whole perturbation problem can be formulated.
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the existing density, to characterize it significance; moreover X, is not dimensionless.
This is essentially related to the fact that when we consider the time evolution of the
fluid, X, represents the change in density to a fized distance, whereas in the context of
considering the growth of proto- fluctuations we want to consider density variations at
a fized comoving scale. Noting these points, we define the comoving fractional density
gradient

a

Da /Ya 3 31
p (3.1)

1]

which is GI and dimensionless. The time variation of this quantity precisely reflects
the relative growth of density in neighbouring fluid comoving volumes, and this is what
we wish to investigate.

While both are observable in principle, it is a moot point whether X, or D, is more
easily observable in practice.?

The vector D, can be separated into a direction e, and magnitude D, where
Dy = Dey, eae” =1, eu® =0 = D= (D"D,)"% (3.2)

Given D,, its magnitude is D the GI variable that most closely corresponds to the
intention of the usual (6p/p) in representing the fractional density increase in a co-
moving density fluctuation. The crucial difference from the usual definition is that D
represents a (real) spatial fluctuation, rather than a (fictitious) time fluctuation.

The vectors X,, Y, and Z, defined in section 2.2.6 are dynamically dependent on
each other, as will be shown in the following section. But we have also defined the
comoving density gradient D,, therefore we find useful to define the comoving ezpansion
gradient

Z, = az, (3.3)

as the natural companion variable of D,. All these variables are GI, and directly

determinable (at any desired scale) from a description of the real (lumpy) universe

2Both these vectors can be used to determine the spatial variation of the energy density p. One
important point should be noticed. In an arbitrary spacetime, in the case where w = 0, they will
characterize the distribution of the density y in the 3-spaces ¥ orthogonal to the fluid flow (which
might naturally be chosen as the surfaces {t = const}). However when w # 0, no such orthogonal
3-surfaces exist. These vectors still characterize the gradient of x orthogonal to u®, but cannot be
immediately integrated to give the distribution of density in the surfaces {t = const} for a suitable
set of coordinates [123, 24] because these surfaces cannot be everywhere orthogonal to the fluid flow
lines. Even if w = 0, the time ¢ such that the surfaces {t = const} are orthogonal to the fluid flow
will not measure proper time r along the fluid flow lines unless the acceleration is zero also, that is,
unless there are no pressure gradients.
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at that scale. Thus our further analysis will concentrate for the moment on these

quantities.

3.2 New non-linear evolution equations

3.2.1 Equations for a,, X, and Z,

We pass now to sketch the derivations of the exact non-linear evolution equations for
the acceleration a,, the density gradient X, and the expansion gradient Z, as they were
originally derived in EB[35]. In this section we assume a perfect fluid for simplicity,
since the derivation of these equation for an imperfect fluid follows exactly the same

line, with only few additional viscous terms.

Acceleration propagation equation

In order to derive an evolution equation for the acceleration we express a® using the
momentum conservation equation (2.46) simplified for a perfect fluid:
Ya

a® = —-m . | (3.4)

Differentiating with respect to the proper time and projecting orthogonally to u® we

have

c . _hac(YrC). a _‘%2_)
haloe) =~y (1+ d#> o (35)

where we substituted for 2 from the energy conservation equation (2.45) and we used
p= j—%/l, with dp/dp taken along the fluid flow lines. Now with the same methods and

after some algebra we can write
R(Y) = (4 p) [ 220 b
dp )’

dp b dp
_ =Y, — kS pufs — ay— )
Q] (1+ du) PcUp—a d#G(,u—l—P)

Using (2.19) to express u®y and substituting in (3.5) we finally obtain

c . dp 1 b dp c c
ho(a;) = a,© (Zi—l; — g) + h, (3;@) b — ae(w + %) . (3.6)
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Density gradient equation :

To obtain a propagation equation for the spatial gradients of the energy density we

could proceed from its definition, X, = h,"uy, differentiating with respect to the proper
P Kby g

time and projecting orthogonally to u®.?

However it is more interesting to proceed directly from (2.45), because the prop-
agation equation we derive for X, is the spatial variation of the energy conservation

equation. Taking the spatial gradient of (2.45) we obtain
ha' (@) + (1 +P) 20+ ©Xa +OY, =0 (3.7)
Now we can write

ha® () = ha(peu®)p =

= habﬂ;b;cuc + hab,u';c(a'cb + wcb + ie)hcb) ’

where we used .y = i, (4 is a scalar) and we substituted for u?, from (2.19). It is

useful to express the first term in the last part of the previous equality as
hab/‘;b;cuc = had(hdb/‘;b);cuc - had(hdb);cuc.uf;b =

= [ha(X3) - Y.0] ,

where in the last step we again used (2.45) and (3.4).
Substituting in (3.7) and using the definitions (2.42), we finally obtain

ha’ (X)) + Xp(0®s + wbs) + 20X, + (p+p)2.=0. (3.8)
We can cast this equation in the following form:
a—”lhca((fXa) ‘= —(p+p)Z — (W' + %)X, , (3.9)

showing that the time variation of X, is determined by the source term Z, and by the

non - linear term coupling X, with the shear and vorticity.

3in this case a key step would be (p,e) = (1), — ,u,,bub;c, followed by the substitution for u%,, from
(2.19), a® from (3.4) and 4 from the energy conservation equation (2.45).
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Expansion gradient equation

We now want to derive an evolution equation for the spatial gradient of the expansion.
As for X,, we could start from the definition Z, = k,’©, and spatially - project its
time derivative. However we proceed from (2.47), because the equation we obtain for
Z, is the spatial variation of the Raychaudhurt equation. Taking the spatial gradient
of (2.47) we have

hat(0) s+ 202, + LaXa + 3V, + ha [2(0%)p — 2(w?)p — Ad] =0, (3.10)
and the first term of this equation can be re-expressed as
hab(®,cuc);b =

had(hdbe),b);cuc - had@,b(hdb);cuC + Zb(o-ba + wba) + %@Za =

hab(Zb) - (;)a'a + Zb(o-ba + wba) < %@Za .

As before we used (2.19) to express u%;, and the definitions (2.42). If now we substitute
the last expression in (3.10), using (2.47) to express ©, we obtain

ha®(Z6) +0 Za—aaRtha’ (16X, + 2(0) p — 2(w?) p — Ab) +Zp(0batwbs) = 0, (3.11)
where we defined

R =-10"-20" + 2w+ A+ p+ A=

=K+ 4-30"+2u%, (3.12)

and K (defined by (2.40)) is the Ricci curvature *) R of the surfaces orthogonal to the
fluid flow when w = 0 (see section 2.2.5).

Equation (3.11) can be put in the form
a"shab(af’Zb) "= a,R+h’ [—~%/$Xb —2(0®)p + 2(w?)p + Ab} — Z[,(O’ba + wba) , (3.13)

with Raa, Xa, Aa, ha’(0?)p, and h%(w?), acting as source terms, while the last

non - linear term couples Z, with the shear and vorticity.



§ 3.2. New non - linear equations 57

Pressure and curvature gradients

We could derive the equation for the evolution of the pressure gradient ¥, proceeding
from its definition, but this would not be an independent equation. Indeed, when the
equation of state of the fluid is known, the evolution of Y, will follow from that for X,,.

We could also derive a propagation equation for X, (2.44); however, the resulting
equation would be rather cumbersome, involving also the time derivative of o. There-
fore, we postpone the derivation of an equation for K, (actually for a related quantity)

to section 3.6.1, where we consider the linear approximation.

3.2.2 Equations D, and Z,

The evolution equations for the comoving fractional density gradient D, could be
derived starting from its definition (3.1), spatially projecting its derivatives with respect
to the proper time.

However, D, is simply related to X,; therefore, it is more convenient to use this
interdependence to express the relation between the time derivative of D, and the time
derivative of X,, since we have already derived the evolution equation for this latter.

We have

D, = X = (D.)
p p
Accordingly, the propagation equation for D, follows from (3.8)

R a

(X.) + (% + g) oD, . (3.14)

he(Dy) "= _z-@pc - (1 + -Z) Z, — Dy(w + 0%,) (3.15)

where we have used Z, = SZ,. The equation for this latter variables can be derived

from that for Z, (3.11) in the same way, and we write it here for completeness:
1
a_Qhab(a2Zb) T= ~-2—/spDa - Zb(crba o wba)+

+a{aiR+ Ag + ha' [2(w?) ) — 2(c)4]} (3.16)

3.2.3 Some remarks on exact equations

It should be emphasized that, given the perfect fluid assumption, the equations pre-
sented in this section are ezact propagation equations, valid in any fluid flow whatever:

they maybe seen as completing the set of equations in section 2.3.
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We see from (3.9), (3.15) and from (3.13), (3.16) that the density gradients X, and
D, are coupled with the expansion gradients Z, and Z,. For example, a significant
feature follows immediately from (3.9): provided (g +p) # 0, Z, # 0 = X, # 0. The
converse tesult (X, # 0 = Z, # 0) will hold in general as well (if X, # 0, Z, = 0
then the right hand side of (3.13) must be zero; this is unlikely to remain true even if
it is true at some initial time). Indeed, the equations for X,,D,, Z, and Z, contain
non - linear terms coupling these quantities with shear, vorticity, acceleration, as well
as the acceleration divergence A and its gradient A,. Therefore, to consider a closed
non - linear system of equations, one should take into account the evolution of all these
quantities. Also, Maxwell - like equations should be included, because E,, appear as a
source term in the shear equation (2.48), and Hyy, is coupled with Eg, in the E equation
(2.55). Finally, the constraint equations (2.50;2.51;2.52) must be satisfied.

It is not surprising that to consider the full non-linear equation for the density
gradient involve taking into account so many other quantities. After all, the full non-
linear system is equivalent to the complete content of Einstein equations. We only
chosen new variables, more suitable for the study of the growth in time of spatial
density inhomogeneities. In order to solve the equations and determine this growth,
one has therefore to adopt some restrictive and physically motivated hypothesis. The
first step in this direction is the linear approximation. Indeed, the two equations for
X, (or D,) and Z, (Z,) decouple from the others for an almost FLRW universe. We

shall consider this case in section 3.6.2.

3.3 Intrinsic 3- curvature when w # 0

In section 2.2.5 we have reviewed some basics about the intrinsic curvature of 3-
hypersurfaces in spacetime, as they arise naturally when the fluid flow vorticity van-
ishes, w = 0, and the flow is therefore hypersurface orthogonal. We wish however
consider the general case of non - vanishing flow vorticity w # 0, continuing to main-
tain our description based on the fluid flow threading (the 1+3 description), rather
than introduce an arbitrary slicing of spacetime as in the 3+1 ADM* formalism. To
this end, we shall introduce here two new tensors which, at each point of spacetime,

generalize the 3 - Riemann and 3 - Ricci tensors of section 2.2.5 to the case when w # 0.

*Acronym for: Arnowitt, Deser, and Misner. See for example: York (1979) [131], Wald (1984) [126].
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3.3.1 Properties of the spatial derivative
Defect tensor

Given the smooth 4-velocity field u® (u®u, = —1) at each point p of the spacetime
we have a subspace H, of the tangent space at p, T}, which is orthogonal to u?, and
hab = gab + uaus is a metric in H,. The collection of these subspace H, can be called a
distribution D (see Crampin and Pirani [14], page 141) or a smooth specification (see
Wald [126], Appendix B.3). When the vorticity is non zero we have, for two vectors
XY*eD

(X, Y]" — B[ X, Y]’ = vwp XPY° (3.17)

where the defect tensor [78]
D% = wwpe (3.18)

expresses the fact that the vector [X,Y]* does not live in D. In this case Frobenius’s
theorem [126] tells us that D does not possess integrable submanifolds, i.e. surfaces

orthogonal to u°.

The spatial derivative

By definition, acting on scalars, vectors orthogonal to u®, and tensors orthogonal to

u®, the orthogonal covariant derivative ®)V, is given by:®

OVof = ke’ Vif = ha’fs (3.19)
OV, Xy = he®h V. Xy = he®h? X ye | (3.20)
OV, The = ha®h®he! ViTos = hohoh ) Te g (3.21)

This compact notation is a convenient way of avoiding a plethora of indices:
IV o §91m, de = ha' B Wby B h™ SRy B RGP RV ST L (3.22)

It follows from the above definition that (*)V, preserves the orthogonal metric hy.: that
is, ®)V ,hy. = 0. Consequently, we can raise and lower indices through equations acted

on by ®)V, by use of Ay, . However we cannot sim ly treat this operator as the
p p

®We can extend the definition to vectors and tensors not orthogonal to u* by projecting them
orthogonal to u® before allowing the derivative to act, see [78].
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standard covariant derivative of a 3-space, because the defect tensor will be non-zero
when w # 0. Thus we cannot assume the usual commutation relations; rather we must

use the expressions given in the following sections.

3.3.2 Commutators and 3 - curvature

From these definitions, we can calculate the commutator of the 3-derivatives when
acting on scalars, vectors, and tensors. The key point in the first case is to note that,

for any function f(z?) :
(S)Va((B)be) = hachbdvc((s)vdf) = hachbdvc(hdevef) 3

and then use Leibniz rule on the last bracket, together with the definition hy =

Jab + Uaup and (2.19) in the form
OVyua = wap + Oap = kap (3.23)
where Oy = o4 + %@hab = Oy, is the expansion tensor (@4u’ = 0). We obtain,
OFLOVyf = —DOV f = —waf . (3.24)

Similarly, totally projecting the derivatives in the vector commutator, we find that for
all vector fields X, orthogonal to u* (X,u® = 0),

OVLOIVeX: + wap(he' X)) = L PRy, X7, (3.25)

1
2
where, using the above defined k&,

®) Raped = (Ravea) s + kadkse — kackoa = PR g = (R4) . — 2kCLkY . (3.26)

When w = 0, k., = Oy and this is the 3-curvature of the spaces orthogonal to u® and
will have the usual curvature tensor symmetries. In the case of non vanishing vorticity

instead we have

®) Rated = O Riagipea) s OV R pea) = 25" poeq (3.27)

and
GV R g — O Ry™ = —8wl* 0 . (3.28)
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Note that other definitions are possible for this ‘3-curvature’; for example (see [78], eq.
2.26, [11, 46, 47] and [66])

O R%eq = OV R yeg — 2k%wed = R%peq) = 0, (3.29)
and the “usual symmetries 3-curvature”
(3—sym)Rabcd — (3)Rabcd + 4w[a[c@b]d] _ 2wabwca’ ’ (3.30)

oo Ry = (R™ca) 1 — {2010} — {2000y + 20w} (3-31)

where each of the terms in curly brackets individually has all of the usual symmetries
of the Riemann tensor.

Here we use the definition (3.25) because of the simple form it gives (3.25) and
(3.32). Further, for each tensor field T, orthogonal to u® (T,pu® = 0 = Tpyub = 0),

(B)V[a(3)vb]Tcd + wab(hcthdsTts) - %((S)RacbaTsd + (3)debaTcs)- (332)
It follows from the above relations that the corresponding “3- Ricci tensor” is
(S)Rac = (B)Rabcb = (B)Rbabc = hbd(Rabcd)J_ - @kac + kabkbc (333)

with skew part
(3)R[cb] - %LU(,(;@ + (wdba-cd - wdco-bd) (334)

and the “Ricci scalar” is

®IR = PR, = R+ 2Rpqubu? — 202 + 207 — 207 (3.35)

3.3.3 Zero-order relations

When (3.25), (3.32) are applied to a first-order quantity, the time-derivative term can
be neglected and we only need the zero- order curvature tensor term in these expressions
to get the correct first-order result. From the field equations, the zero-order expression

for the curvature tensor (see (28) in [43]) is

Rabed = $6{p + p)(%aUeGod + UWpldGac — UalaGbe — UpUcGad)

+;1_3(K’)u' + A)(gacgbd - gadgbc)- (3.36)
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Thus the zero-order version of the 3-curvature quantities (remembering that to zero

order, Uy, = LOh,,) are
) ; 3

(3)Rabcd = %(hachbd - hadhbc)7 (337)
O Roe =28 hee = Rea , PR=6X, (3.38)

where .
£ =1(-10"+ru+A) (3.39)

These expressions can substituted for the 3-curvatures above when performing system-

atic approximations of the equations.

3.3.4 First-order relations

We may note that, for any first-order X, and Y, the right hand side of (3.17) van-
ish, which means that at first-order the commutator [X,Y]* live in the subspace D

orthogonal to u®.
3 - divergences
It follows from (3.32) that ,

Ov, OV, Tl = 0, T + OV Ry T, (3.40)
which shows that in particular

(B)Va(a)vbw“b = —wabd}ab -+ (3)R[ub]wab , (3.41)
is non-zero in general, but vanishes to first - order in an almost-FLRW universe model.

Time derivatives

Calculating
BV (f) = (OVL )L = (feu)phbe — (foh®a)cuh?s (3.42)

we find

(B)Va(]é) - ((3)vaf):l_ = _]éaa + %@(S)Vaf + (B)Vdf(oda + wda) (343)
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where the last two terms are second order if )V, f is first - order, and so can be ignored
to first - order. Similarly, for a first - order vector field orthogonal to u®, we find that

to first - order

OV (X)) - (VX)L =100V, X, = aOV,X, = (aPV,X,),  (3.44)

1
3

where we have used (3.36). Similar results will then hold for a first - order tensor, e.g.

if T} is orthogonal to u® then to first - order
OV o(The) = (OVaThe) L = 100V, T4 = o@DV, Ty = 6DV, Th)L . (3.45)
We can contract this equation to obtain the result for a divergence:

BV Tye) = (OVTye) L = L0OVT, = a®VT, = (aPVT,) L. (3.46)

3.3.5 Curvature gradient

In section 2.2.5 (see EB) we defined the quantity K = ®)R + 2w?, which reduces to
the 3-curvature scalar of the hypersurfaces orthogonal to u® when w = 0. However we
have now defined the new 3-scalar )R (3.35), therefore we may now introduce the
quantity

Co=S*BV,BR = d®K, — 2¢° OV, (u?) (3.47)

where K, = ®)V,K was defined in section 2.2.6. When w = 0, Cq is the (exactly
defined) curvature gradient of the surfaces orthogonal to ©*. However the last term in
the equation above is second order, so C, is the comoving curvature gradient in H, at

linear order.

3.4 Matter description

Up to now we have assumed that some reasonable choice for the 4- velocity u® of our
viscous fluid has been made, although we already pointed out at the beginning of the
previous chapter that this choice is not unique for such a fluid. We shall now discuss
this issue in more details, because -as we shall see in section 3.5.3 -this choice is
crucial in order to find out whether a spatial (i.e. orthogonal to some timelike vector)

1s GI or not.
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In relativistic thermodynamics (Israel 1976 [64], de Groot et al. 1980 [16]) the ar-
bitrary (non equilibrium) state of the fluid is described by the the energy momentum
T, the particle flux N® and the entropy flux S?%; Ty, and S respectively satisfy the

energy - momentum conservation laws and the second law of thermodynamics:

T, =0, S§°,>0; (3.48)

also N® is a conserved current in appropriate circumstances: N%, = 0. With the
assumption that the energy density is non-negative, i.e. T,,V2V® > 0 for all timelike
Ve, T° has a unique timelike and unit eigenvector [119] (Synge 1964 [119])

ul e BT uE =0 ; (3.49)

where, with obvious notation
hE = uluf + g (3.50)

is the projector tensor orthogonal to u%. This latter is not the only unit timelike vector
one can define from the thermodynamic variables: indeed one may define u$, as the
unit timelike vector parallel to V¢, |

Ne

a - 3.51
Un \/W ’ ( )

and
h(jz\/l; = uflvulj;v + gab (352)

will be the relative projector tensor.

3.4.1 The perfect fluid case

When the fluid is in equilibrium or is perfect 5%, u% and u$, are all parallel, defining a
unique hydrodynamical 4-velocity u® for the fluid flow, and an associated local Lorentz
rest frame (LRF), together with the projector tensor hqp = gap + uaus (ho’up = 0). In
this case the decomposition of the three fundamental physical quantities in terms of
u® has a special status, u® being the only timelike vector for which Ty, takes the usual

perfect fluid form:

Ty = HuqUp + ph’ab y N® = nu® ) S = Su® ’ (353)
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where p = Tpu®u® and p = %habT‘lb are the energy density and pressure in the LRF
of O,, and n = —N,u® and S = —S,u® are the particle density and entropy density;
in any other frame n® an energy flux ¢, = —ho'Tyon® and a particle drift ;* = A%, N®
will appear in the above expressions [67] (King and Ellis 1973). It is usually assumed
that (3.53) also hold in standard FLRW spacetimes (but see footnote 7), even if the
fluid is not barotropic,® so that the matter four velocity u® is uniquely defined in these

universe models.

3.4.2 The imperfect fluid case

If the fluid is not perfect, the choice of the hydrodynamical 4-velocity u® is arbitrary.

The decomposition of T,; with respect to this arbitrary u® gives
Tap = puaup + phap + 2q(atis) + Tab , (3.54)

where q, = —h,"Ty.u® is the energy flux in the frame u® (g°uq = 0), map = R hydTog —
%hab(hchCd) is the anisotropic pressure in this frame and p includes here a possible
contribution from bulk viscosity: p = p, + B, B = —{0O (p; is the thermodynamic

pressure). Decomposing N® with respect to u® one has
N® = nu® + 77, (3.55)

where j* = h*,N® (j%u, = 0) is the particle drift in this frame.”

6There can be an entropy production due to a non vanishing bulk viscosity; for a study of this
class of models see e.g. Belinskil et al. (1979)[4]. FLRW inflationary universes with bulk viscosity
have also been considered (Padmanabhan and Chitre 1987 [99], Pacher et al. 1987[100]).

" In a strict interpretation of the cosmological principle the fundamental observers don’t only
measure an isotropic universe using rods (this is the isotropy of the metric), but actually any physical
phenomena must appears isotropic to them (this is the point of view of Weinberg 1973 [127]). However,
even in an exact FLRW universe one can have a particle flux N tilted with respect to the frame uf, of
the fundamental observers, although Ty, still has the perfect fluid form (3.53) (Ellis et al. 1983 [42]).
This effect clearly violates the “strict” cosmological principle, as the fundamental observers in the
EF can pick up a preferred direction through the particle drift j® they measure. It is possible if
the macroscopic quantities (such N®) are derived from kinetic theory: imposing on the distribution
function f only invariance with respect to the quasi-translations of the FLRW metric, one ends up
with an homogeneous but anisotropic f; Einstein’s equations then put constraints on some, but not
all, the moments of f, so that one can have j® # 0. This is an example, in the context of cosmology,
of the known fact that Einstein’s equations must by supplied by prescriptions on the matter content
in order for the solution to be uniquely specified (e.g. see Feinstein et al. 1989 [45], for an example in
a different context). The correct phenomenological description of this effect (which anyhow assumes a
small tilt: B < 1) is not given by the standard phenomenological equations (using which one would
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The two frames uf; and uf, have a special status: from its definition (3.49) in the
frame uf; there is no energy flux (¢% = —AfT°:u$ = 0), while in the frame u% there is
not particle drift (5§ = A%, N® = 0). For this reason the Landau- Lifshitz [74] (1963)
choice of dynamical four velocity u% is dubbed as the energy frame (EF), while the
Eckart [23] (1940) kinematical choice is referred to as the particle frame (PF); hereafter
indices £ and N on a quantity shall mean that that quantity is defined either in the
EF or in the PF.

In general, for an arbitrary non equilibrium state, there is not a relationship which
interrelates the primary variables S%, N* and T%.% Any relativistic thermodynamics -
hydrodynamics theory which attempts to characterize states of the viscous fluid by N°®
and T only is therefore limited to consider small deviations from local equilibrium:
(7&/n, %) ~ O1, which is equivalent to assuming u% —u ~ O, (Israel 1976 [64]); this
latter condition is clearly expressed by B < 1, where BY is the tilt angle between uf
and uy. Asis shown in Israel (1976) [64], it is possible to formulate the thermodynamic
theory in a frame invariant way, i.e. using an arbitrary four velocity u® which has a
small tilt Bz < 1 with the EF u}, such that the variables of the theory are invariant

at first order in B under the change of frame u® — n?®
PR, PP, BT, Mg~ Tap. (3.56)

The energy flux ¢* and the particle drift j° instead change at first order, but one can

use the frame invariant (at first order in 8) combinations
oy = ¢+ (b +p)(u” —uf) = "+ (p+p)(n® —ul), (3.57)
it =3+ n(u® —uf) = "+ n(n® —uf), (3.58)

i.e. the PF energy flux and the EF particle drift. We cannot use this frame freedom in

formulating a GI perturbation theory based on covariant GI variables, since we need

immediately derive j* = 0 from homogeneity), but by causal transport equations such those provided
by Israel (1976) [64] [see equations (8) in his paper]. It follows from these that in general j¢ decay with
time: perhaps this effect can thus be interpreted as a decaying solenoidal (7% = 0) “perturbation”
in the particle motion in a geometrically isotropic FLRW universe, although this “perturbation” will
be very special having a non vanishing spatial average value. We shall in general assume that in our
background uf%, = u%.

8This is clearly seen in the context of kinetic theory: N® and T are the first and second moment
(in the momentum space) of the particle distribution function, and in general two moments only do
not provide enough information to determine S°.
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not an arbitrary matter four velocity, but a four velocity which coincides with uf in
the background (the reason for this will be clarified in next section). Thus natural
choices are either u* = u}, itself, or u* = u}; (if we exclude the models of Ellis et al.,
see footnote 7). We note however that these are not the unique four velocities we can
use to define covariant GI variables; for example we could take u® = cuf;, + (1 — a)u¥
(0 < @ < 1) as the hydrodynamical four velocity of the fluid, and this will again
coincide with the EF in the background. Finally, we want to point out that in certain
cases the preferred four velocity to be used is suggested by the problem itself, while it
could be difficult to find the eigenvector uf, or to define a particle flux N®. An example
of this is given by a scalar field ¢: when ¢ is minimally coupled we can describe it as a
perfect fluid with four velocity Uy = * /1) —@*®, which corresponds to the eigenvector
of 7% (Bruni, Ellis and Dunsby 1991 [10], see chapter 5); this choice is also the simplest
in the case of non- minimal coupling, in which however it no longer coincides with uf;
[although in both cases uf,) = uf in a FLRW universe, (see Madsen 1988 [86]) so that
this is a satisfactory choice in order to define covariant GI variables].

The EF choice was adopted by Bardeen (1980) and (1988)[1, 2], and by Kodama
and Sasaki (1984) [69], while the PF has been used by Hwang and Vishniac (1990) [63]
and by Dunsby (1991a)[18]; Hwang (1990, 1991)[59, 61] also uses the energy frame.

We shall not explicitly explore this possibility here, and we shall in general assume
that the fluid four velocity is u® = u%;, or any other choice such that in the background
u? = u}, unless otherwise specified.

In the following, viscous fluid terms are treated as known functions: they can
be eventually related to kinematical quantities through a phenomenological theory:
within the cosmological perturbation theory the standard first - order theory (see e.g.
Ellis 1971 and 1973[27, 28]) will be usually a sufficient approximation.

3.5 Covariantly defined GI variables

In section 3.1 we have introduced two new GI variables, namely the density and expan-
sion gradients D, and Z,; in section 3.2 we have derived the exact non - linear equations
governing their evolution in a generic spacetime. Our aim is however to restrict our
attention to almost FLRW universes, and to derive linear equations for a larger set of

covariant GI variables we shall consider shortly. We shall now characterize covariantly
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a FLRW model, and shall clarify the linearization procedure we shall apply to the

exact equations presented so far.

3.5.1 Characterization of FLRW models

In order to derive linear equations for GI variables, we have to characterize the back-
ground spacetime we are going to use, i.e. FLRW universe models within the covariant
approach.

Let u* = u% be the fluid flow vector: an exact FLRW is covariantly characterized
by the vanishing of the shear and the vorticity of u® and by the vanishing of the spatial

gradients (i.e. orthogonal to u?) of any scalar f:

c=w=0, OV, f=0; (3.59)
in particular the gradients of energy density, pressure and expansion vanish

X, =0, Y,=0, Z,=0, ~ (3.60)

where Y, = 0 = a, = 0 and these models are spatially homogenedﬁs and isotropic
since there are no directions defined in the 3-space orthogonal to ua.”Then p = u(t),
p = p(t) and © = O(t) = 3H(¢) depend only on the cosmic time ¢ defined (up to a
constant) by the FLRW fluid flow vector v, = —¢,. FLRW models are also conformally
flat (their metric can be written as g = Qn, where 7 is the metric of flat space), i.e.

the Weyl tensor vanishes, so that
Ew=0, Hyp=0. (3.61)

The energy momentum tensor necessarily has the perfect fluid form (3.53), so that the
anisotropic pressure 7, vanishes, the energy flux ¢ identically vanish given our choice
u? = ug; if we exclude the tilted FLRW models of Ellis et al. (1983)[42] (see section
3.4) (3.53) hold, and u$, = u%, so that also g}, = 0 (3.57) and j& = 0 (3.58), and (3.59)
and (3.60) also hold for quantities defined in the PF u%.

It follows that these models are completely determined by an equation of state

p = p(p), the energy conservation

p+3pH(p+p)=0, (3.62)
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and the Friedmann equations

3H +3H? + 1u(p+3p) —A =0, (3.63)
HY 45 = bep+ A (3.64)

where the latter is a first integral of the former (when H # 0); we note that within
the approach to cosmology followed here, (3.63) and (3.64) are respectively (2.47) and
(2.40) (with £ = 6K/a?) for a homogeneous and isotropic spacetime.

Following a now standard notation [1] we define

w=p, d=®ob, (3.65)
=>w=—(l+w)(—-w)oO, (3.66)

where c? is the speed of sound (see also Eq. (3.76)).

If we do assume standard comoving coordinates, the metric of FLRW takes the

form
ds* = —(up)*(dz")? + h,pdz®dz? (3.67)
(w)*(dz®)? = dt? = a’dy® , hag = 0*Yas , (3.68)
where 2" can be either ¢ (proper time, uy = —1) or 7 (conformal time, uy = —a), and

Yop is the metric of the 3-surfaces of constant curvature K = 0, +1.

3.5.2 Linearization procedure

The variables we have been considering so far are exactly defined covariant quantities,
thus they have a physical or geometrical meaning in an arbitrary spacetime. the set
of exact covariant equations governing their evolution have been briefly reviewed in
section 2.3, and in sections 3.1 and 3.2 we have introduced new variables and derived
exact equations for them. However we want now restrict our attention to a real phys-
ical spacetime which is close to a FLRW universe: we shall therefore refer to such a
spacetime as an almost FLRW universe. In other words, instead of starting from an
exact FLRW model and perturb it in the standard way, we want to approach these
universe models from a general spacetime, considering them as defining a subset of the

whole space of solutions of Einstein equations surrounding (or containing) the smaller

set of exact FLRW models.
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How can we make this concept more precise? Following from the Stewart and
Walker Lemma [112] (see section 1.3, page 29) and the covariant characterization of
FLRW models given in the previous section, those of such variables that vanish in a
FLRW model are GI. We can therefore speak of two subset of variables:

zero - order variables such as
b, p, ©=3H; (3.69)

these are the variables that do not vanish in the FLRW background, i.e. in the space-

time that is the the zero- order approximation to the physical almost FLRW universe;

first order GI variables these are the variables that do vanish in the FLRW back-
ground: in considering them as first- order quantities, we automatically define the
almost FLRW universes as the spacetimes in which these variables are non - vanishing,

but terms quadratic in these variables are negligible; for example terms such as
Dbdba ) waba 3 (0'2);b P (370)

occurring in (3.15) and (3.16), and similar terms occurring in the exact equations of
section 2.3.

Our aim is to derive now linear equations for these GI variables, therefore we have to
establish a linearization procedure of the above mentioned exact non - linear equations.
However, given the above characterization of our variables, such a procedure is trivial:
a) variables such p, p and © that always appear in the exact equations of sections 2.3
and 3.2 as coeflicients of GI variables are needed only to zero - order as it is determined
in the background FLRW model: they are treated as known functions in the equations;
b) terms such (3.70) which are quadratic in the GI variables are dropped from the

equations.

3.5.3 Covariant GI variables

We shall now consider in detail the whole set of covariant GI variables, also in the
light of what we said in section 3.4 about the choice of frame, i.e. on the choice of a

4 - velocity for the fluid when this is viscous.
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Spatial gradients and the choice of frame

It follows from (3.59) that the shear and vorticity of u® = u}, are GI variables, together
with the spatial gradients orthogonal to it; in general, shear, vorticity and spatial
gradients defined with respect to any timelike unit vector u® that coincides with u% in
the FLRW spacetime vanish in this background, so they are GI as well. This clarifies
the importance of the choice of the fluid 4-velocity.

In particular are GI the two key variables

D, =20V,n, 2Z,=d0V,0, (3.71)

® IR

i.e. the comoving fractional density gradient and the comoving gradient of expansion;
as we said in section 3.1 these quantities have a direct link with observations (Kristian
and Sachs 1966 [72]). As we shall see, the analysis of density perturbations within the
covariant approach is based on these two variables and their evolution equations.

To fix the ideas, suppose that D, and Z, in (3.71) are defined in the EF: with
obvious notation the gradient in the EF and in the PF at linear order in 3% are

related by

OVEF = OV + Ll (3.72)

on using (2.4); but from (3.57) ¢2/(u +p) = =V, where EVN = Y — u% is the GI

a

relative velocity of the two frames, thus
DE = DN 1+ 3aH(1 +w)EVY (3.73)

and an analogous relation holds for Z,.°

The equations below for D, (3.167) and Z, (3.168) are derived on taking the gra-
dient of the energy conservation (3.152) and Raychaudhuri equation (3.155). In doing
this (more details on the derivation of these equations can be found in EB and EBH)
the momentum equation (3.153) is involved, which implies the appareance of pressure

gradient terms in the equations. However if the equation of state is p = p(g, s), where

9Note that for a general frame n®
Df =D, + 3aH (1 + w)(uf - Ta),

where now ’.75a and 17; = uf — n, are not GI; this relation is an hint to the significance of Bardeen’s
GI variable €, [see Eq. (4.15) in section 4.1].
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s is the entropy density, we can substitute for the pressure gradient Y, in terms of
energy density and entropy gradients.

Defining
(3)Vap ’ ga - % (@)(u)(s)vas 5 (374)

we have

p€a = pP, — D, , (3.75)
where &, is the entropy perturbation. Note that if the background is a standard FLRW

universe with vanishing bulk viscosity B

¢, = l% - (r%)(s) ’ (3.76)

and § = 0 along flow lines [see (3.162)]; however if B # 0 in the FLRW background (see
footnote 6) the second equality in (3.74), (3.76) do not holds, but we can still take (3.75)
as a definition of the entropy perturbation including a bulk viscosity contribution. In

the following &, will be taken in general as defined by (3.75), and ¢} = p/p.

Curvature variables and the choice of frame

In the standard approach to perturbations one looks at the gravitational potentials,
i.e. at metric perturbations (see section 4.1). Following Hawking (1966) [55] we focus
instead on the curvature, i.e. on the Riemann tensor R%py, its trace R,y = R
(Ricci ), and its trace-free part, i.e. the Weyl tensor Cypeq (2.24) representing the
free gravitational field determined non locally by matter (see (2.29) and section 2.2.3).
FLRW spacetimes are conformally flat, Cypeqy = 0, so that the Weyl tensor is GI; we
may note in this respect an interesting difference with spatial gradients, shear and
vorticity: while the latter are GI only when orthogonal to a unit timelike vector that
coincide with u% in the background, the Weyl tensor is GI in any frame. This means
0

that any possible decomposition of Cyp.q gives GI variables:!” in particular the electric

and magnetic parts of the Weyl tensor are covariant GI variables
Eab - Oacbducud ) Hab = %Cacstuc'r]”bdud ) (377)

where u® here is any completely arbitrary timelike unit vector. We now fix u® = u% in
(3.77), so that the above defined E,; and Hy, are the electric and magnetic part of the

19For example, we may consider the Weyl scalars defined in a proper tetrad of vectors (as in the
Newman - Penrose formalism, see Chandrasekhar 1983 [13], Kramer et al. 1980[71]) as GI variables.
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Weyl tensor in the EF: then if Ey, and H,; are defined in any other arbitrary frame

n® (any other timelike unit vector) we get, for a small tilt angle 8
Eab >~ Eab 5 Eab ~ Hab 5 <378)

i.e. these quantities are also frame invariant to first order in 8: while E,;, represents a
purely tidal force, Hy, has not Newtonian counterpart [see Ellis (1971)[27] and section
4.2].

We have already seen in section (3.4) that the anisotropic pressure is frame invari-
ant, T, = Tt vanishing in a FLRW model is also GI. Using the Einstein equations

we have

Kot = ha®hy' Req — thaphea B (3.79)

therefore m,, may be regarded as an anisotropic part of the gravitational field.

Given a unit timelike vector u®, we can define at each point 3-curvature tensor
G Ry and its trace O R,, = G RY,, = BIR,b., as we did in section 3.3. Let u® be
the fluid four velocity: for the purpose of defining GI variables we can split *) R, into
its trace ®) R (3.35) and its GI trace- free part

(S)Rab - _H(O-ab + wab) + Eab + %K’Wab - %hab(o-2 - w'?.) + Qab (380)

where
Qab = 0acO b + Waey + Wac Ty — Wpeo®y (3.81)
Note that the last three relations are exact, i.e. these are definitions valid in any
spacetime; in an almost FLRW universe we shall neglect in these expressions terms
quadratic in the GI variables, i.e. in the shear and vorticity, while we shall retain terms
such as H to zero order (the background value): thus this is an explicit example of the
linearization procedure outlined above.
()R is a GI variable only if the background FLRW is flat: we can define a GI
variable from it on taking its gradient (3.47); after substitution of Ry, with Ty, from

the Einstein equations in (3.35), we get
OIR =2(—10% + 0% —w’ + kpu + A). (3.82)
Thus to linear order we obtain !

Co=a*®V, PR = —44’HZ, + 26pa’D, . (3.83)

!1This is also equivalent to taking the gradient of (3.156).
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Thus C, may be regarded as a supplementary quantity for D, and Z,, and plays in
our formalism the same role that §k does in Lyth and Mukherjee [83] (compare their
equation (23) and (3.96) below).

We find also convenient to define

Ca=Coa—ED, ; (3.84)

this turns out to be conserved at large scales in a more general set of circumstances
than C,, and reduces to this latter for K = 0.
We shall see in the next chapter how the variables presented in this section are

related to Bardeen’s metric potentials ® 4 and ®4.

3.6 Linear evolution equations for spatial gradi-
ents
3.6.1 Linear equations: a first step

Using the linearization procedure outlined in section 3.5.2 we find from (3.15), (3.16)
and (3.83)

D, = wOD, — (1 + w)Z, , (3.85)
Za = _%G)Za - —;—I‘Eﬂ,Da + a (%—I;—:a’a + Aa) 9 (386)
C’a = i—’z( e (%Ca — K,,u,azDa) - %@a:} (%Lg(‘a'a + A-a) ) (3.87)

where the covariant derivatives (implied by the superscript dot) may all be taken in the
background (zero-order) model, and 4, = (S)Va(a”;c) is the gradient of the acceleration
divergence. From the definition (2.43) of A, and the momentum conservation equation
(2.46) we see that to first order
g @y, vy _ OAVRCAvLY >N | (3.88)
v+ 7) ol w)
where we use the notation ®)V?2 = G)V,3)V? the second equality following from (3.66)
and the assumption of adiabatic evolution used throughout this section (which implies
the perturbation is adiabatic).
The dynamics of our basic variable, D,, is given by (3.85) in combination with one

of the two equations (3.86,3.87) (on using (3.87), one should trivially substitute for
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Z, in (3.85) from (3.83)), or by the linear second order equation which follows directly
from (3.85) (3.86) using (3.88). This equation is '

Do+ A(t)Dy — B(t)Da — V(YD) =0, (3.89)

where the coeflicients
A(t) = (2 - 2w + )0, (3.90)
B(t) = (5 +4w — 2w® = 3¢} )rp + (2 — w) 2 + (5w — 3c2)A (3.91)

are determined from the background model. This form of the equations allows for a
variation of w = p/p with time. However if w = const, then from (3.66), ¢? = w, and

the coeflicients simplify to
At) = (2 —w)0, B(t)=1(1—-w)(1l+3w)kp + 2wA . (3.92)
3.6.2 The inhomogeneous equations: the vorticity source
terms

The problem with (3.89) is that although it is a homogeneous equation, the last term
is in an awkward form. We wish to commute the derivatives to bring the equation
to a more standard form, with the spatial Laplacian acting on D,. When the vortic-
ity is non-zero, there are no surfaces in space-time orthogonal to the fluid flow, and

consequently these partial derivatives do not commute; rather, from (3.24) we get
Ov,CV,p - OV, OV,p = 2wep = —2¢3(1 + w)pOuwyy. (3.93)
From this it follows that

OV(OIVD,) = (-2 + OV?) D, +20(1 + w)a O Vbuw,, . (3.94)

First - order equations
The final linear first-order equation we obtain from (3.86) (3.87) are

2= 202, LepDy — 2 (£ +OV?) D, — 2¢200 OVPuy, (3.95)

(14+w) \a?

Co = K071 (4Cs — kpa®D,) + 400> 1% (K + OV2) D, + £c26°02 O Vw,” . (3.96)
The last term on the RIS of (3.95), (3.96) is the (first-order) term (omitted in EHB)

giving the effect of vorticity on the expansion and curvature gradients, and so on the

density gradient, measured by a fundamental observer.
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The second - order equation

The final version of the linearised second order equation (3.89) follows directly from

(3.85), (3.95) or from (3.89), (3.94). We find
Do+ A)Ds —B(t)Dy + L(1)Ds — C(t)POVlwy =0, (3.97)
where the coefficients A(t), B(t) (given by (3.90)-(3.92)),
C(t) = c?2a(1 + w)O (3.98)

and the operator

L(t)= {3 -V (3.99)

are determined from the background model. The last term in (3.97) is the extra term
due to (3.93), (3.94), omitted in EHB. The key point here is that it is the operator
L(t) that determines the effective wavelength of density inhomogeneities through its

eigenvalues and eigenfunctions (unlike the last term on the right hand side of (3.89)).

3.6.3 The interaction

The linking of vorticity to the time-evolution of the density gradient is through the
3-divergence of the vorticity tensor (i.e. the 3-curl of the vorticity vector). The effect
is non-zero provided () Vew,,. # 0; if vorticity is non-zero but this divergence vanishes,
there is necessarily a density gradient associated with the vorticity, but the growth
of this gradient is unaffected by the extra term. The same divergence is related to
the 3-divergence of the shear and the 3-gradient of the expansion through the (0,v)

constraint equation (2.50) in its linearised form
OV Flwey — OVl + 22, = 0. (3.100)

This already shows that the vorticity and density gradients are linked in the linear
approximation, because expansion and density gradients are intimately related (see
(3.85) (3.86) above). Equation (3.100) restricts how initial data can be chosen, while
the extra term in (3.97) shows how (consistent with this) there is a direct effect of
vorticity, in the linear approximation, as a source of growth of density gradients. How-

ever the coefficient C(t) of this extra term vanishes if the speed of sound is zero, or
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2 The term does not occur in the case of Newtonian theory,

the universe is static.!
because in that theory the hyperplanes orthogonal to the fluid flow are always tangent
to hypersurfaces of absolute time, and are therefore integrable; so the equations in [32]
correctly include the case of combined vorticity and density perturbations.

Equation (3.41) show that, to linear order, the total divergence of the extra term
in (3.97) vanishes:

CIg(BIVbuy) = 0. (3.101)

This means that the contribution the extra term induces in the density gradient will
have vanishing spatial divergence: (*)V9D, = 0 (if this divergence and its first deriva-
tive vanish initially, the effect of the vorticity term is to leave it zero, see equation
(3.120) below), so the induced growth of inhomogeneity in one direction will be com-
pensated by a lessening in other directions. The geometric meaning of this result will

be discussed below.

The growth of the vorticity source term

At first glance this extra term seems to imply that the equations do not close at the
second order anymore, because the covariant derivative of the vorticity along the fluid
flow lines involves the shear [111, 49]. However this is not the case because vorticity
propagation decouples in the linear approximation [67], so we can (to this level of
accuracy) determine the evolutionary behaviour of the extra term.'® In more detail,
a perfect fluid with p = wp, w = w(p) (see (3.66)) has an acceleration potential 7

(25, 28], where
P dp

r=exp| ————, 3.102
pi B(1+w) ( )
and the vorticity evolution equation (in the linear approximation) is
Wae + —%@wac = (S)V[CCLQ] = —;}:;(B)V[C(B)Va]p = —’;:wac . (3.103)
* Thus
(a®rwe.) =0 . (3.104)
'20r the universe has the exceptional (inflationary) equation of state w = —1, when a perfect fluid

description is not really valid: see chapter 5.
13This can be extended to the non-linear case if the propagation equation is written in terms of the
Lie-derivative rather than covariant derivative along the fluid flow lines.
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When w = constant, p = M;/a®*¥), M, = p,a30+®) M, = 0, where a, is the

present value of the scale factor, and the acceleration potential is

e Mow)\ &%
P = (!i) = r= ( ‘w) a3, (3.105)

D D

Hence Q
= ) S'zac =0 P Qac - Q[ac] (3106)

W, =
ac al—3w

where all multiplying constants are now included in Q,. = razwac(%’iﬁ)_ﬁ. Finally
the equations (3.43)-(3.46) show that (a ®)V?) is the orthogonal derivative operator
which, acting on a purely spatial first-order tensor that is covariantly constant along
the fluid flow lines, preserves time independence. In particular, to first order, the

divergence term obeys

(a BV ) = a BV (dy) , (3.107)
thus
(a(B)V“Qac)

(3) Vawac _ T
g3(l—w

L (a®Ve) =0, Bve(aPViQ,.) = 0 (3.108)

(the last condition expressing the vanishing-divergence property (3.101)). The nature
of the interaction depends (a) on the equation of state, and (b) on the initial value
(V20 of the spatial vorticity divergence; the interaction term always decays as the
universe expands, if w < 1.

As a simple example, in the case of a flat background with vanishing cosmological

constant (k = 0, A = 0), the scale factor of the background model obeys

a=(B)TF , B=31+ w),/ng (3.109)

where t is proper time along the fluid flow lines, and so the vorticity goes as

22—3w

Wap = ap (ﬂt)_ Mitw) | (3110)

The divergence goes as

B)Vew,e = Q, (Bt) 275 (3.111)

where we defined

0 =a0®vVQ,., Q.=0, OveQ, =0. (3.112)
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3.7 Invariant decomposition

The standard harmonic representation [1, 72|, which combines the ADM tensor de-
composition with a (logically independent) harmonic analysis, should be regarded with
some reservations because it is non-local, whereas the physics we are concerned with
is essentially local. We present an alternative local decomposition and discuss its
geometrical meaning. While it is not necessary to introduce the usual harmonic de-
composition to derive our equations, it is instructive to consider how they relate to

harmonic representations and the ADM decomposition.

3.7.1 The ADM decomposition

This non-local splitting can be applied to vectors and second-rank tensors in a standard
manner [130, 15, 117]. In the case of a vector field V,, independent of any Fourier
analysis, it represents V, in terms of “scalar” and “vector” parts V., B, relative to a

chosen family of 3-surfaces:
Vo=Vep+B,, V°B,=0, (3.113)

where V, is the covariant derivative in these 3-spaces. If appropriate boundary con-
ditions are satisfied [117] (which could be problematic if the background model has
k = 0), and k # —1, then B, is unique and ¢ unique up to a constant [15]. As the
first term has vanishing curl but non-vanishing 3-divergence, whereas the second has
vanishing 3-divergence (it is ‘solenoidal’), if we take the 3-divergence of ¥, we obtain an
equation involving only the first term, while if we take its curl we obtain an equation
involving only the second.

We shall return on this standard way of splitting tensors and its relation with
harmonic analysis in section 4.1. We now turn to an alternative (local) decomposition

whose meaning is more immediate.

3.7.2 A local decomposition

The spatial variation of the density (orthogonal to the fluid flow) is characterised by
D,. A unique local splitting can be attained by considering the spatial derivative of this

vector (multiplied by the scale factor a for convenience), and splitting this derivative
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into parts in analogy with (2.19):
a®VD, = Ay = Wap + Zap + L ARG , (3.114)
where
Wap = Aat) » Bap = A(ap) — %Ahab v Bap=Dar), 2% =0. (3.115)
The skew-symmetric part is
Wap = ‘L—z (S)V[b(s)va]p = %wabﬂ = —a*(1 + w)Ouwg , (3.116)

where we neglect a second order term from (¥)V,a. This skew part by itself represents
spatial variation of D, in which its magnitude is preserved (i.e. rotations of this vector),
e.g. that associated with the “tilt” of the fluid flow vector relative to the surfaces of
constant density in homogeneous universes (i.e. the velocity of the matter relative to
these surfaces). Thus although the associated density gradients exist and are observable
[49, 67, 34] they are essentially dipole-like in character and are not directly associated
with formation of local inhomogeneities.
By contrast, the spatial divergence

a?
u

A=A% =a0VeD, =

1l

SAve (3.117)

by itself is related to spherically symmetric spatial variation of u where density is accu-
mulated, i.e. to spatial aggregation of matter that we might expect to reflect existence

of high-density structures in the universe. Finally, the trace-free symmetric part
Sap = a OV Dy — LA, (3.118)

by itself is associated with spatial variations of D, which do not represent spatial
clumping of matter (as the associated divergence of D, is zero) but rather represent
change in the spatial anisotropy pattern of this gradient field. This seems to be what
one might associate with existence of pancake-like or cigar-like structures.

A general pattern of inhomogeneity will have all the components (3.116)-(3.118)
non-zero, for example implying aggregation (A > 0) in a pancake-like structure (T, #
0) and with turbulence present (Wy, # 0).
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Evolution equations

Now the evolution equations for these quantities follow from (3.97) and their definitions.
(1) Antisymmetric part :
Taking a ®V, of (3.97) and antisymmetrizing over indices [b, a], gives

W — (w@ + g) W =0. (3.119)

Since W,p o< wayp, this is equivalent to the vorticity conservation equation (3.103) (it is
clear this must be so from (3.116)). Thus, we check the consistency of our equations,
and so confirm the form (3.97) of the effect of the vorticity on the density anisotropy.
This equation is the law controlling the dipole part of the observed density gradient,
e.g. through governing the way the tilt angle of the surfaces of constant density in a
Bianchi universe changes with time (see equations (1.17), (1.31) and (1.32) in [67]).
(ii) Symmetric part :
(ii-a) Trace:

Take the divergence of (3.97), keeping only the linear terms that arise. While the
divergence of the vorticity term is non-zero, it is second order (see section 3.3 and

(3.101)), so to linear order we obtain
A+ A()A - B(t)A - 2OVIA =0 . (3.120)

for the scalar A = a ®V*D,. This is like (3.97) except that (a) it is a scalar equation
(for A), (b) the linear operator L(t) is replaced by a simpler Laplacian term, and
(c) the vorticity term does not appear. Thus we attain a “scalar mode” equation
(See Woszczyna and Kulak [129] for a similar result). independent of the vorticity
source term. That part of the density evolution relating to spherical aggregation of
matter (and so to growth of local density inhomogeneities) is expressed in this equation
(equivalent to the Bardeen [1] scalar harmonic equation, see [63]): therefore, there is no
contradiction between the presence of the vorticity source term in equation (3.97) and
the standard results of cosmological perturbation theory in which only scalar modes
contribute to describing density clumping.
(ii-b) Trace - free symmetric part :

We now take the symmetric, trace-free part of the spatial gradient of equation

(3.97), finding
Sap + A(t)Zay — B(t)Zw + L(8)Zas + C(t) IV, Vw, =0, (3.121)
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where

L(t)=c{%-v?}. (3.122)
This equation (similar to (26)) governs the growth of pancake-like or cigar-like density
inhomogeneities, because it will alter X, in time. The effect of vorticity in this equation
will be non-zero provided the initial conditions satisfy (3)V(b(3)VCQa)C # 0; and there
seems to be no reason why this term should vanish, in general.

Alternatively, operating by a ¥}V, on equation (3.89), symmetrizing on the indices

(b,a), and taking the trace-free part, we have
iab + A(t)jab - B(t)zab - C? [(B)V(b(g)va) - %hab(S)VZ] A=0 (3'123)

giving a form of the equations for 3,, that does not explicitly contain the vorticity.
Instead there is an inhomogeneous source term involving gradients of A. This means
that if we know the evolution of A (and its spatial variation) from (3.120), we do not
need to explicitly introduce the vorticity term; we have enough information to find the
evolution of X,,. However it is simpler to use the form (3.121) that explicitly refers
to the vorticity (because of the vorticity conservation equations discussed above). The
kinematic and physical effects described by these two forms of the equation are of
course the same.

We do not necessarily need to specifically consider equations (3.119)-(3.121), for
all the information we needis in the original equation (3.97). However if we do wish
to further reduce our equations, by contrast with applying a non-local decomposition
(3.113) to them, the above procedure is (a) locally well-defined and (b) independent of

large-scale boundary conditions which may or may not be satisfied in the real universe.

3.7.3 Harmonic analysis

If we apply a harmonic analysis, we can do so either to the full equation (3.97) or to the
set of derived equations (3.119)-(3.121). The basic point is to expand every quantity

in terms of eigenfunctions of the Helmholtz equations
®y200 4 & oo @gzom 4 Fom mrgzo® 4 F oo
VR +;3Q =0, “VQ, +EQb =0, YV Q,. +g§ch =0, (3.124)

obtaining effective wavelengths from the eigenvalues. Following BI, superscripts (), (1)

and (?) denote respectively scalar, vector and tensor harmonics; a sum of some kind is
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understood in the Fourier expansion of any quantity. From Q) and Q(!) we can define
in a standard way a vector Q) and tensors QSZ) and Qﬁ)), to be used in decomposing
general vectors and tensors. All these definitions and useful relations for the harmonics
defined by (3.124) are provided in appendix B. The harmonics ) we introduce here
are covariantly defined, using the )V, derivatives, in order to be covariantly constant

along flow lines

OV =0, QW=0, Q¥=0. (3.125)

Instead, the harmonics usually employed (we shall denote them as Y') are independent
of coordinate time (see section 4.1); in appendix B we provide the relationship between
the standard harmonics ¥ and the covariant harmonics @ used here.
If we apply the harmonic analysis to (3.120), we obviously get
A+ A)A-BHA+EEA=0, (3.126)

8

where A(;) denotes the k component of A. A final remark: whatever splitting or
harmonic analysis is applied to the propagation equation (3.97) should also be applied
to the constraint equation (3.100), where the same vorticity term occurs; (indeed the
ADM splitting was precisely developed to analyse the constraint equations [130], see
[15] for the cosmological case). We will again find a linking of vorticity to density

gradients, but this time in terms of initial data.

3.8 Large scale evolution

No difference arises from the vorticity term in the case of pressure-free matter (EB [35]),
rotation-free matter (EHB [37]), or the Newtonian limit [32]. The new term takes
effect when (g + p)c? # 0, © # 0, and the fluid is rotating with (V?uw,, # 0. This
is the generic case for a fluid with non-vanishing pressure; that is, the new term will
almost always have a physical effect. However, the homogeneous (source-free) solutions
are unaltered, so the speed of sound is unaltered. Before to find out the effects of
the vorticity term on the evolution of D, (this term can conceivably dominate the
equations: presumably this will only occur under conditions of extreme turbulence)
we turn now on the the Jeans length criterion of stability we can derive from the

homogeneous part of our second order equation (3.97) for D,.
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3.8.1 Jeans instability

To determine explicitly the solutions of the second - order equations we have obtained,

we have to substitute for g, ® and S from the zero-order equations.

Speed of sound

We can examine solutions in the case where the divergence term is the dominant term,
by examining the case where ©, ku, k/S? and A can be neglected. We see then directly
from (3.97) that c, introduced above is the speed of sound (and that imaginary values
of c,, that is, negative values of dp/du, lead to exponential growth or decay rather

than oscillations).

Instability criterion

The Jeans’ criterion is that gravitational collapse will tend to occur if the combination
of the matter term and the divergence term in (3.97) or (3.120) is positive. Restricting
our attention to the case w = const (¢2 = w) and A = 0, we have from (3.97),

(refeq:coeff3) for D,
101 — 2Kp (g2 -
s(1—w)(1+3w)kpD, > w ( = Da Da> , (3.127)

where we include the curvature term also, because it comes from the divergence term

A,; for A from (3.120) we have
11 —w)(1 + 3w)spd > —w®VIA . (3.128)

Using the harmonic decomposition, both these relations can be expressed in terms of

an equivalent scale: from (3.126), gravitational collapse tends to occur for a mode A*)

if

H1—w)(143w)rp > wh (3.129)
that is »
{G-w) (L+3) 2} > ¢, (3.130)
In terms of wavelengths, the Jeans’ length is defined by
2 .
A= T8 o JACu(1 — w)(1 + 3w)]E (3.131)
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where we have expressed the result in terms of the usual gravitational constant G. Thus
gravitational collapse will occur for small k (wavelengths longer than A,), but not for
sufficiently large k (wavelengths less than A;), for the pressure gradients are then large
enough to resist the collapse and lead to oscillations instead (cf. Jackson [65], but his

answer appears to be in error; we here present a corrected version of his result).

3.8.2 Long-wavelength solutions

Suppose we can ignore the “Laplacian part” of the second-order equation, that is
L(t)D, can be ignored relative to the other terms in (3.97) (and consequently the
Laplacian term in (3.120) can also be ignored). We shall call this the long - wavelength

limat. This does not necessarily mean we can ignore the term A4, in our equations, for
(3.94) (3.99) show that now we can have

BIV,A ~ 20a*(1 4+ w) P Vlwy, , (3.132)

a spatial gradient in A occurring in conjunction with the vorticity source term. Thus
in general we cannot assume we can ignore the latter in the long wave-length limit,
but only ®)V2A. In this limit, (3.120) becomes an ordinary homogeneous differential
equation; with the solution of the latter, we can then consistently integrate (3.89),
(3.123), or use the vorticity law (36) to integrate (3.97), (3.121), neglecting (3.122)
(and so effectively using (3.132)). However in this section we prefer to solve for D,

through the system of first order equations introduced in section 3.6.

A conserved quantity on large scale

While the curvature variable C, introduced previously (see (3.83)) is a geometrically
natural quantity which is useful in discussing the long-wavelength limit, it turns out
63] that C, (3.84) is physically significant because it is conserved in a more general set
of circumstances; in particular it is suited to examining the long-wavelength limit for
general & and A. The dynamics of our basic variable D, can be determined through
the system of two first order linear equations for D, and C, that follows from (3.85)
(3.95) and (3.84):

a’e

Dy = {w0 — [Zrp(l+w) - %] 071} D, + 2LHAC, (3.133)
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.

1 c2a%0 K ] 9
Oa = %('H—w) ((3)V2 - 2;-’_) Da + %Csa’3®2 (B)waab . ] (3134)

In the assumed large scale limit, the first term in (3.134) vanishes; thus if there is no
vorticity term, C, is a conserved quantity on large length scales, for any value of K or
A (and so C, is conserved if K = 0).

A scalar type variable o ®V2(, is a conserved: quantity on the large scale even
considering the vorticity term (in this case, an integral solution in the large scale case
can be found in [63]), so the aggregation of matter to form spherically symmetric high-
density concentrations (proto-structures) is unaffected. Notice that this is valid for
general k£ and A, thus it generalizes the conserved quantity in [83, 3]. However the
vector variable C, can have a contribution from the vorticity even in the large scale
case, as for example when there are homogeneous (Bianchi) perturbations. The effect

of the vorticity is analysed below for the case K = 0 = A.

The evolution of the density gradient

In the case of flat background (K = 0), the above defined variable coincides with
the previously introduced curvature gradient: i.e. C, = C,. In this case equations
(3.133,3.134) coincide with (3.85,3.96) and we can proceed to integrate them, neglect-
ing the Laplacian term. Remembering that %@2 = ku is the zero-order equation when

K =0 = A, the equations for D, and C, become
Do+ (1 - w)0D, = 207 (1 +w)s , (3.135)
Cio= 5225020100, . (3.136)

It is clear from the RHS of equation (3.136) that C, is no longer a constant of motion,
but can be determined from the source term ®)V%w,,. Then it acts as a source for D,.

(following from (3.109)) to rewrite (3.135) as
1—wD, 3(1+w) su

L gsiTw O, (3.138)

D+ — 2=
C T ltw t 8 guww

while from the vorticity equation (34), assuming ¢? = w, equation (3.136) becomes
32 w 2w

. 2
e U — w 7 T+w .
Cra= 3 TayP ot 5 (3.139)
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where (), was defined in (3.112). From the above equation we have
w#l = C,=0C [1 - (f)hj +ci, (3.140)
where we have included an explicit initial time ¢;, and Cc(f) = C4(t;) is the initial value
of C, (the constant of motion when w = 0) and
32 w
0 = 31— w?

is the asymptotic value of C,. Thus equation (3.140) shows how the decaying vorticity

2w —izw
Bitw Qgt; T (3.141)

term in the RHS of (3.139) induces an asymptotically growing mode in C, (for w # 1).
Note that in the dust case (w = 0), C{®) = 0 by the above definition. For w = 1 we

obtain ;
w=1 = C,=28Q, ng In (—) + 0. (3.142)

Using (3.140) and (3.142) we can look at the time behaviour of “curvature perturba-

7

tions”: then we see that for w < 1 the extra mode induced by the vorticity term in
the RHS of (3.139) grows up to an asymptotic value, while for w > 1 (not allowed
physically!) there is a growing mode. Finally, C, grows logarithmically if w = 1.

With (3.140) we can now integrate (3.138) when w # 1. The general solution for
D, is

5 _ﬂ(i)<_§_)~il—$+9(1+w)3 Cli)g? (3)%[1_(%-5?—?% N
e\ 8(5 + 3w) (8¢, )rrer \ti t;
9 () £/t e £~
1 ot l (—) 1— (—) — (3.143
t? (_t_) [ (ﬁ) Skt
2(1 + 3w) \t; t; '
A similar expression can be found for the variable
®, = kpa’D, (3.144)
introduced in EHB in analogy with Bardeen’s variable & [1]; it is
) (ENTIR o 3(1+ w) £\ re
3, = o) (—) (2 211~ (—) 3.14
O\ +Ca 2(5 + 3w) t; i (3.145)

1—

L O 31 tw) [ <3>%—> 3(1+w) (3)— 1_(;_)4&11‘1:"3
2 | (5+3w) t 2(1 + 3w) \t; t; :
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In both of the above expressions, the first term comes from the homogeneous equa-
tion, the second arises from the constant mode in C, (3.140), and the last is due to
the vorticity source term in (3.139). The solution for A is immediately obtained by
applying a®V to (3.143); then the last term disappears, for ®)veC(®) = 0 by defi-
nition (3.141) and (40), and the second term is the term that comes from the scalar
conserved quantity C = a®)V2C(?) which exists in the long-wavelength limit even if
w # 0 (see previous section and [83, 63, 3]). Also we point out that in the very par-
ticular case in which C{") and C{* (thus Q, defined in (3.112)) have values such that
C{) = —C{*®), two of the growing modes in the above equations cancel. For the special
case w = 1, B = /3xM; we obtain from (3.138, 3.142)

|+

5

o2 e () ()" - ()
+ 30,85t (ti) {m (f_) - g [1 - G)_ ” , (3.146)

showing that in this case the vorticity induced mode dominates. For the variable &,

in this case we have

&, = o) (tii)—i 20527 [1 - (;)J] 0.8 {m (f) - -2— {1 - (;-)_é” . (3.147)

Radiation

The case of pure radiation is of particular relevance to the early universe. In this case,

7=14/3, w=1/3 = ¢}, B =2,/5M;; then we find from (3.143)

L 3 L
N2 Y ¢ t\Tz] 2t t\? AN
m-20 (3 oo () - ()] 2o ) - ()
“\t; 95( ) ¢ t; 387" \y t; ’
(3.148)
where we explicitly see that the growing mode induced by C{") and one of those induced
by C{*) (the faster growing mode) can eventually reciprocally cancel if C{) = —C{>),

An analogous expression for ®, can be found from (3.146).

3.9 Dynamic equations for the imperfect fluid

In this section we generalize what we have done so far in this chapter in two directions:

a) we consider the complete set of linear equations following from the covariant exact
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equations reviewed in chapter 2 and &) we include in our equations imperfect fluid
terms, thus we explicitely take into account the discussion on the choice of frame given

in section 3.4.

3.9.1 Hydrodynamic and gravitational equations

Let us briefly recall the covariant theory of chapter 2. Our field equations for the free
gravitational field, the Weyl tensor Cypd, are the Bianchi identities (see page 43)

Rapjedge) =0 & Cade;d = Rel=tl _ %gc{aR;b] . (3.149)
The Einstein equations algebrically determine the Ricci tensor at each spacetime point
Rab = R(Tab - %gabTaa) -+ Agab ) (3150)

thus these latter are used in this approach to substitute for Ricci in the various equa-
tions with the matter tensor T,,: then matter acts as source term in the field equations
(3.149), as well as in the hydrodynamic equations (i.e. the evolution equations for the

kinematical fluid quantities) which comes from the Ricci identities for the 4-velocity

of the fluid

Uaidice — Uased = Rabcdub 3 (3.151)

where from now on the fluid 4-velocity will be taken as any possible u® constrained to
coincide with u% in the background, so that variables and equations are GI in what
follows. In particular, for u® = u} we must set ¢* = 0 in the equations, and for u? = u§,
we have ¢* = ¢%. Finally, the conservation equations 7%, = 0 are regarded in this
context as following from the contraction of (3.149).

The exact equations equivalent to (3.149), (3.150), (3.151) and the contracted
Bianchi identities have been reviewed in chapter 2:'* we shall now consider the co-
variantly expressed general relativistic dynamic equations which come from linearizing
these exact equations about an exact FLRW model: we regard these equations as de-
scribing the evolution of the various covariant GI variables (as well as the constraints

between them) in an almost FLRW universe.

More details can be found in Ellis (1971, 1973)[27, 28]; see also the appendix of Hwang and
Vishniac 1990 [63], for a compact presentation and a comparison with the ADM equations.
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Firstly, we find convenient to rewrite the conservation equations (2.45) (2.46): re-

taining only terms up to the first order we have
L+ 3hH + APV, 0 =0, (3.152)
hae +Y, + h[F, +1,] =0, (3.153)

where for later convenience we define

. 1 a
F,=¥,~ (3 -1)HY,, I, = ZOV, ¥, = ?E . h=(p+p). (3.154)
The first hydrodynamic equation we consider from those following from (3.151) is

the linearized Raychaudhuri equation
3H+3H” —A+1s(p+3p)—A=0 (3.155)

which determines the evolution of the Hubble parameter H along flow lines, where
A = a%, is the divergence of the acceleration.
If we use Einstein’s equations to substitute R, with T, in (3.35) and linearize, we

get the energy constraint

OR= _H? + Loy + 1A (3.156)

1

6

this, together with (3.152) and (3.155) above, becomes the standard set of equations

for homogeneous isotropic FLRW models on dropping the perturbative terms in them
and putting @R = K.

Three other constraints follow from (3.151): these are the (0,v) components of the

field equations, which is conveniently rewritten as

ize+ a®V ;0 — ¥V 0 = kag® (3.157)
the vorticity constraint
CIVew, =0 & OV (gpequ’w™) =0, (3.158)
the H,, constraint
Hiq = h;thy [w(t‘"c + a(t”ﬂ T)abet® - (3.159)

Two other hydrodynamic equations govern the evolution of the shear and the vorticity;

they are:



§ 3.9. Equations for the imperfect fluid 91

(0ab) + Eap + 2Hoay + a(ﬁw) [(B)V(an) - ‘;‘hab(S)VCDc:{ =

o OV a8 — 3halVE]

T a(14w)

— [V (o(Fy + TIy) — Lhat P VE(F, + 10,)] (3.160)

Wap + 2Hwgp = (S)V[baa]

=~ LOV,Ov,p -0V, ( Fy+ Ha])

n+p

— [3c§H - (2) .__} wap = OV (B +11) (3.161)

8/ putp

where we used (3.93); the last line in this equation requires a special comment: the s
term will be usually of second order, 5§ being in general a first order quantity due to
bulk viscosity B

Toé = —(BO + ¢%,) = £0° — ¢°,, (3.162)

it will not be negligible however if the background is a FLRW universe with bulk
viscosity.
Finally, the “Maxwell - like” gravitational field equations for E,, and H,;, following
from (3.149) take the linear form
DivE equation
BV R, = %m,u,Da — %mal’[a — kraHgq, , (3.163)

E equation

Eab +3HE, + h(af’r]b)cdeuchd;e + %K,ho‘ab =

— 15 [V gy — Lhat®V g — L6 (Ha + 7at) (3.164)
DivH equation
CIV Hap = Litlatea [hulw™ + ¢=1] (3.165)
H equation
Ha +3HH,, — h(af"]b)cdeucEfd;e = %K'hc(a"?b)defud'frce;j ; (3.166)

To complete the set of equations, we need to specify how to construct the metric

tensor from the kinematic quantities. We will not pursue the issue further here, simply
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noting that a suitable way to do this is implied by section 3 (see particularly Theorem
2) of Treciokas and Ellis [123].

We may note that, although Hawking considered these equations, he didn’t com-
pletely linearized them, since he didn’t attempt to eliminate acceleration terms from

his equations: in doing this we have explicitly coupled the shear equation to D,.

3.9.2 The structure of the équations

The full set of equations given so far consists of two different kinds: propagation equa-
tions (involving time-derivatives of the kinematic or dynamic quantities) and constraint
equations (involving only their spatial derivatives). An important issue arising is the
consistency of these equations. Consider for example the constraint equation (3.157),
say Cl. We can take the time derivative of this equation, and then (using commu-
tation relations for time and space derivatives where necessary) substitute for all the
time derivatives occurring, from the propagation equations. The result will be a new
constraint equation, say C2 (because we have eliminated all the time derivatives). Now
it may be that C2 is identically satisfied; then the constraint C1 is conserved in time.
On the other hand C2 could be a genuinely new equation; in this case we can take
its time derivative to obtain a further constraint equation C3. This in turn may be
identically satisfied, or may be a further constraint equation that has to be satisfied
in a non-trivial way. If too many non-trivial constraints arise in this way, we will have
proved that the set of equations is inconsistent.

In fact, the set of linear equations above is consistent: that is, the time derivative of
each constraint equation is identically satisfied as a consequence of the other equations
that hold. Thus this is a consistent set of equations, in the sense that once a set of initial
data has been found that satisfies the required initial conditions (the set of constraint
equations), these equations will hold at all later times. This is of course known to be
a property of the full Einstein equations (because of the contracted Bianchi identities
and the conservation of energy and momentum); the linearisation introduced here is
consistent in that it preserves this property.

Because the equations have been obtained by linearisation, we can regard their
solutions as consisting additively of different parts that each themselves solve these
linear equations.

As it is well known, (3.161) shows that rotational perturbations evolve indepen-
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dently of variables other than w,,, which however in general affect the evolution of
other quantities: since the equations are linear, this just means that in the general
case all the vectorial and tensorial variables have a rotational (“vector”) contribution.
Thus the vorticity terms in the above equations can be regarded as known source terms.
Gravitational waves are represented by those parts of the Weyl tensor components £,
and H, which do not arise from rotational (“vector”) and density (“scalar”) perturba-
tions, i.e. by their T'7T (transverse traceless) parts () V°E,, = 0 and ®)VH,, = 0. Both
rotational and gravitational waves perturbations were discussed within the covariant

approach by Hawking [55] (1966); we turn now on density perturbations.

3.9.3 Two alternative pairs of equations
Coupling between density and expansion gradients

In order to investigate density perturbations we need to complete the above set of
equations with an evolution equation for the GI density variable. In Bardeen (1980),[1]
and Kodama and Sasaki (1984)[69] this is coupled with an equation for a variable
associated with the shear of matter. In EB[35] the GI density variable is D,, and its
evolution equation is coupled with an equation for the gradient of expansion Z,. The
equations for D, and Z, for the perfect fluid case have been derived and examined in

section 3.6.2; for an imperfect fluid we obtain

Do—3HwD, +(1 +w) Z, = 3a(1 + w) H [F, + ] —a (1 + w) OV, V0w, | (3.167)

Zo+2HZ, + bapDa + 5 (5 + V) D, + 2 (K 4 OV,

= —a®V,OV (B + L] + a (2h — %) [F, + IL] — 6aHE O Vow,, ,(3.168)

a?

on taking the gradient of the energy conservation (3.152) and Raychaudhuri equation
(3.155).

These equations have already been derived in section 3.5.2 for the case of a per-
fect fluid. If we look at them in the context of the full set of hydrodynamical and
gravitational equations, it should be emphasized that these equations do not contain
new dynamical information (they are implied by those already given). Rather, they
extract the specific information we want (the propagation of the GI variables along the

fluid flow lines) from the full set of equations. We can determine the behaviour we are
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interested in from these new equations alone; they are of course consistent with the
full set of equations.

As was shown previously (see section 3.6.2 and EBH), it follows from these evolution
equations for the density gradient D, that although this is obviously not affected
by gravitational wave (T tensors) contributions, a rotational mode in the density

gradient can be generated by wgp.

Coupling between density gradient and shear

Asin Bl and KS we can also couple the D, evolution equation with an equation for the
shear variable: on taking the divergence of the shear equation and using the following

first - order identities for any vector V, and tensor Ty
a®V,V; = PV, 1), a®V, T = (a®V. T, (3.169)
we obtain

(a(S)Vbaab)'—f— %n,uDa + ZH(a(S)Vbaab) + s(f_fm—) (g— + (3)\72) D,

= e (K + (3)V2) ga + aHa + a'an - a‘H(B)waﬂb; (3170)

T 3(1+w) \a?

—[2 (OV? + 2 (F, + IL) + LOVL(F +1I)]
the equation for D, is then coupled to the above equation for a(®) Vg,

Dy — 3HwD, + 2 (1 +w) (a®¥V’0,)
= a(1+w) [BH(F. + 1L,) + 2. — O V,OV", ]

+3(1 + w)a® Vlwy , (3.171)

where we used the constraint equation (3.157) to substitute for Z, in (3.167).

These equations emphasize that when there is a density gradient there will in
general be distortion taking place, and vice versa. However we do not need to know
the distortion in order to determine the evolution of the density inhomogeneity (because

of the equations derived in the previous subsection).
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3.10 Equations for the scalar variables

3.10.1 Scalar variables

Up to now we have been dealing with true tensors in the real physical almost FLRW
universe. In treating cosmological perturbations it is however standard to split them
into “scalar”, “vector” and “tensor” parts through a non local decomposition (see
Stewart 1990 [117], and section 4.1), where scalar density perturbations are solely re-
sponsible for the formation of structure in the universe.

As we have seen in section 3.7.2 for D,, we may locally decompose the covariant
derivative of any vector V, in analogy with (2.19). For the density perturbations,
A = A", is the scalar GI variable representing the clumping of matter: we shall
explicitly show in section 4.2 that A in the present approach is equivalent to Bardeen’s
Em. More generally, a locally defined scalar variable is obtained from any tensor by
taking its total divergence.

In particular we shall derive equations for the following set of GI scalar variables

A=dPV, D, Z=aB¥V,2°, C=0v,0°, (3.172)

C =a®v,0%, ?PV,0v,0%  €=ad®v,e, (3.173)
that follow from the analogous gradients previously introduced; clearly

C=—4a’HZ +2rua’s, C=0C-2EA. (3.174)

14w

3.10.2 The evolution equations

We pass now to consider the equations for the scalar variables that concern directly

the growth of structures in the universe. Taking the divergence of (3.157) one gets
Z =3BV, 0,0 + BV, ; (3.175)

since the divergence of the vorticity term appearing in (3.157) disappears to linear
order (see EBH)[36], the latter is a constraint between the GI scalar perturbations in
expansion and shear: actually, this is the GI “scalar perturbation” equivalent of the
ADM momentum constraint. Another scalar constraint is provided by (3.174), i.e. the

“scalar perturbation” equivalent of the ADM energy constraint (see York 1979)[131].
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Note that the appearance of the energy flux ¢* on the RHS of (3.157), (3. 175) is due to
our choice of the PF, and it would disappear in the EF.

True density perturbations related with the growth of matter clumping are rep-
resented by A. We could actually consider the scalar equivalent of the whole set of
hydrodynamic and gravitational equations in the previous section on taking their di-
vergences and using (3.169), but this is not directly needed. Indeed it is possible to
show that all the scalar variables we can obtain (on taking divergences of the vector
and tensor variables previously used) are determined to first order by A through the

relative equations:'® thus we concentrate on the evolution equations for A. Defining
I=a®veO,, F=ad®vV°F,, (3.176)
we take the divergence of (3.167), (3.168), using (3.169), to obtain

A-3HwA+(1+w)Z2=3a(l+w)H[F+T]-a(l+w)®V2e,  (3.177)

Z+2HZ + jrph + 55 (V2 4 36) A

1+w)

+ty (V2 4+ 25) £ = —0 (V2 + 35 [F L ] + 2h[F + 1] . (3.178)

From the practical point of view it is however convenient to couple the evolution
of A with that of the variable ', which turns out to be conserved in various cases of

interest;'® C satisfies

= . Ha*Heg (3)r2 1a*Hw [(3)wr2 3K
C = (Hw()vmr(l“[()v + %] ¢

+4a’ HOV? [F + 1] + [4Ka - 24°h] OV?0 (3.179)
and the coupled equation for A is (3.177) on substituting for Z using (3.174):

A—{sﬂw [ﬁ——]H* }A (Ltw) &

2 4a’H

= 3a(l4+w)H[F+1 —a(l+w)V¥. (3.180)

'5The equivalent of this statement within the Bardeen formalism has been proved by Goode: there,
all the scalar perturbation variables are determined once ¢,, is known.

!®We refer to section 6.4 for a discussion of conserved quantities in a general case. See also EBH [36],
Hwang and Vishniac (1990) [63], Hwang (1990, 1991) [59, 62] and references therein, and section refsec-
variables, BE [9] and BED [10] for an application to scalar fields. Dunsby and Brum (1991) [20] discuss

the existence and use of generalized conserved quantities.
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An alternative pair of equations

The scalar counterpart of (3.170), (3.171) are immediately obtained on taking their
divergences, or on using (3.177), (3.178) and (3.175):

A = 3HwA + 2 (1 +w) (a* PVOIVa,)

=3a(1+w) [H(F + 1) + La®Vog] —a(l +w)IVPE,  (3.181)

(@OVIOVrg,) = —LeuA — 2H(*OVOV0,,) — 29 (U 4+ 0V2) A

g (K + O?) £ - 2 (3 + OV?) (F + 1) + all + a*H ) V7g{3.182)

Second order equation

In those cases where a conserved quantity does mot exist, the evolution of A can be
computed directly from a second order equation
A+ <2+3c§—6w) HA
3

- K% +dw — Juw’ — 3c§> ki + (5w — 3C§) A+ (c;’ - w) 1—5—[1] A = EOTIA

—w ((3)V2 + %) E=a(l+w) [—-Bw,u + 3A + ((3)V2 ~ 3k

)] (F + 1]
ta(l+w) 3H (F +10) - 2HOVT + Ov2d)] (3.183)

this follows from any of the above pairs of equations coupling A with either Z, C or
a?B)veB)Ys,, and is equivalent to the equation for €, in BI (see Eq. 4.9 there) and
generalize (3.120) to the imperfect fluid case.

3.10.3 Solutions and harmonic components

We already said that rotational perturbations evolve independently, so that vorticity
terms can be considered as known source terms in the vector and tensor equations
of sections 3.9.1, 3.9.3 producing a rotational mode in the corresponding variable.
Passing to consider scalar equations, we may note that when we take the full divergence
of our equations the gravitational (T'T tensor) and rotational modes disappear, as
() ye(3) Vbw,, = 0 to first order. From the point of view of the initial value problem, this

means that even if the fluid vorticity doesn’t vanish, we can solve the scalar equations
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as if wey = 0: since wy, does not contribute to the scalar initial value constraints
(3.156), (3.174) and (3.175) we can effectively set up initial values even on a comoving
hypersurface orthogonal to u® as if wy, = 0.

To actually solve the equations (unless p = 0) it is standard to assume that time
and spatial dependence in each variable are separable, expanding each quantity in
spatial harmonics @), as we already have seen in section 3.7.3.

The solution of the homogeneous part of (3.183) for a perfect fluid in a flat K = 0
background and for any wavelength can be found in terms of Bessel functions, as
shown by Bardeen [1], who also considered the effect of entropy and anisotropic pressure
perturbations; other solutions can be found in particular cases. Here we remind only

that in a flat universe K = 0 we have:

dust: p=0 =w=c=0

Ay octs, Aloct!; (3.184)

radiation: p=1ily s w=c2= %; in the long wavelength limit
Ay xt, Al ot 7 (3.185)

here A, and A_ represent growing and decaying modes respectively.
We turn now to a systematic comparison between the covariant GI formalism dis-

cussed up to now with that of Bardeen.



Chapter 4

COVARIANT FORMALISM
VERSUS BARDEEN’S
FORMALISM

Up to now we have considered the covariant approach to gauge-invariant cosmological
perturbations. Aim of this chapter is to provide a comparison with the standard
approach to gauge invariant perturbations elaborated by Bardeen [1] (1980) (often BI
in the following), and followed more or less strictly by other authors such as Kodama
and Sasaki [69] (1984), Brandenberger, Kahn and Press [7] (1983), Mukhanov, Feldman
and Brandenberger [95]. Although Brandenberger, Kahn and Press introduced gauge
invariant variables in their own original way (through a variational principle), and
Kodama and Sasaki defined new variables, we assimilate their approach to that of
Bardeen. Indeed the main variables they use are the same, i.e. linear combinations
of gauge-dependent first-order quantities constructed ad hoc to be gauge-invariant
first - order variables. What is important here is to realize that the approach followed
by these authors is based on coordinates, and therefore most of their variables aquire
a physical or geometrical significance only once a specific gauge choice has been made

(see chapter 1).

We first review the Bardeen formalism briefly, introducing explicitely a perturbed
metric and the set of Bardeen’s GI variables. While Bardeen used directly a harmonic
decomposition for every quantity, we systematically decompose each variable both in
the coordinate space, using the non local ADM splitting for 3-vector and 3-tensors [117],

and in the Fourier space, using standard harmonics. In our view, although working
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in Fourier space has the advantage of reducing equations to algebric relations, the
presentations of the same equations in the coordinate space simplify somehow the
physical interpretation.

Then we systematically expand at first - order the main covariant variables used in
the previous chapter. Since these variables are GI by themselves because they vanish
in the background, we may expect to recover Bardeen’s variable at first - order: indeed,
this is the case. Thus Bardeen’s variables are first - order components of the covariant
variables. This gives to all of them a physical or geometrical meaning, without the need
to specify a gauge. Moreover all the equations of Bardeen are immediately recovered

through this first - order expansion of the covariant variables.

4.1 The standard approach to GI perturbations

The role of the gravitational potential is played in general relativity by the metric
tensor g,,. The standard approach to perturbations of FLRW spacetime starts exactly
from gap: if Gup is the background metric in the standard coordinate system (3.67),
Gab = Jab + 8gap defines the metric perturbations §gus in these coordinates.

Following Bardeen’s notation, we may write the perturbed metric in the form [to

be compared with (1.1), (3.67)]
ds* = a’(n){—(1 + 24)dn* — 2Badz®dn + [(1 + 2H }Yas + 2Hrasldede’} ,  (4.1)

where 7 is the conformal time, and the spatial coordinates are left arbitrary.

From the point of view of the 341 (ADM) formalism (York 1979 [131]) the almost
FLRW spacetime (4.1) is described by the foliation {X,} that arises locally as the level
surfaces ¥, of constant time 7, i.e. the normal to ¥, is n, = —N7n, (& Tw = 0),
where N = a(1+ A) is the lapse function measuring the ratio between the proper time
measured along the normal wordlines (with tangent n®) and the coordinate time 7.
Given an initial - data surface X,,, data are propagated along an arbitrary congruence
of curves with tangent 1* threading the slices X,: these worldlines then are the curves

“ = const., and the condition 7%y, = 1 ensures that 5 is the parameter along the

T
curves. Then N® = h%n’ is the shift vector measuring the coordinate velocity of the
eulerian observers O, traveling with four velocity n® and having a LRF coinciding with

X;: in the notation used for the metric (4.1) N, = a’B, (see Fig. 4.1).
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e e — e
p———

Figure 4.1: Illustrated are parts of two nearby slices of the foliation
{Z,}. The time vector is n* = Nn® + N°, where N is the lapse
function, N? is the shift vector, and n® the unit normal (see text).
The dashed figure represent a local light cone. Not shown are: 1)
the acceleration corresponding to the four velocity n* of the Eulerian
observers, which is tangent to the first slice together with N¢, and
i) the four velocity of matter u®, which should appear as a third
distinct vector within the light cone.

Thus A and B, are respectively the perturbation in the lapse function and in the
shift vector, while 2H; v+ 2H7.s is the perturbation in the metric of the ¥, surfaces.

These and the other perturbation quantities (see below) are treated as 3-fields
propagating in the background 3-geometry, as it is specified by the unperturbed metric.
One thus has 3-scalars, 3-vectors and 3-tensors: under appropriate hypotheses on the
boundary conditions they have to satisfy (‘see Stewart 1990[117], and the comments in
section 3.7.1), 3-vectors and 3-tensors such B, and Hr,s can be uniquely decomposed

as

B, = B[a + B(f = B(O)(U)YOEO) + B(l)(T/)Ya(l) , (42)

Hrap = VagHr + Hf o + HFLy = HY()YQ) + BO (YY) + EO )Yy | (4.3)
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where the slash indicates the covariant derivative determined by the metric 7,4, and
Vif =y, Vesf = fioa — VS, (4.4)

are respectively the Laplacian and the trace-free second derivative operator with re-
spect to 7n5. The superscript S on a vector means it is solenoidal (B5l® = 0), and TT
tensors are transverse (H;gﬁm = 0) and trace-free. Accordingly, it is standard to call
scalar perturbations those quantities which are 3-scalars, or are derived from a scalar
through linear operations involving only the metric 7,5 and its | derivative; quantities
derived from similar operations on solenoidal vectors and on T'T tensors are dubbed
vector and tensor perturbations. Scalar perturbations are relevant to matter clump-
ing, i.e. correspond to density perturbations, while vector and tensor perturbations
correspond to rotational perturbations and gravitational waves. Furthermore, given
the homogeneity and isotropy of the background, we have separated in each variable
' the time and spatial dependence, where this latter is given by the spatial harmonics
Y.! It is important to point out that these decompositions are non local, and that
3-scalar fields such B and Hy are defined up to a constant [117]. The key property of
linear perturbation theory arising from the unicity of the splitting (4.2), (4.3) is that
in any vector and tensor equation the scalar, vector and tensor parts on each side are
separately equal.
The minimal set of perturbation variables is completed by the energy density and

velocity perturbations

p=p+op, Sd=du/p, &= o(m)Y, (4.5)
u® =a% + fut, Su* =a%, fu’=-a"4, (4.6)

where
Va = Vjo + vas = U(O)(U)Ka(”) + ”(1)(77)}';(1) ) (47)

'As in BI[1] and Goode (1989)[51] (see also Goode (1983)[50]) these harmonics are defined in
the conformal 3-spaces of constant curvature. They do not depend on coordinate time: u%8,Y = 0.
These authors denote them with Q: here we use Y as in Kodama and Sasaki (1984) [69] and Hwang
and Vishniac (1990)[63], to distinguish them from the covariantly defined harmonics Q; the relations
between the two conformal sets are given in the appendix. Note also the difference between the
Laplacian V? used in this section, determined through the metric 7,4, and the covariant Laplacian
(3)¥2 defined in the real physical space; in practice, in operating on a first order quantity T, (3 V2T =
a~?viT,
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together with the energy flux ¢, and the anisotropic pressure w,, which are GI by
themselves: since a direct check shows they have vanishing time components we may

write

Go = Qo + ¢ = pfOYO) + pfOYH) (4.8)

Top = a° [Vagﬂ' + Tlas) + ng] =a’ [pwgra)Ya(g) + er,})l’:)f}j) + p'lr(Tg)Ya(?] . (4.9)

From the above given gauge dependent 3-fields Bardeen constructed a set of GI
variables. The ad hoc procedure used is to use the gauge transformations rules for
these quantities to construct gauge - independent linear combinations. In other words,
once we know how a given quantity (e.g. du/i) change under gauge transformations,
we can add to it other quantities (such as v®) with an appropriate time- dependent
coefficient (such as ‘—;i), so that the resulting linear combination of first - order quantities

is gauge independent. We give below this set of GI variables.

4.1.1 Scalar - perturbations
These are the GI perturbations fields that can be derived using only the above intro-

duced scalar potentials.

GI metric perturbations As pointed out by Bardeen himself, there are only two

independent GI metric perturbation variables: Bardeen introduced the two metric

potentials
$,=A-(B'+<B) - (H{ + <H}) (4.10)
_ {A + % (B(U)/ + %'B(O)) . k_lz_ (H:(FU)// + %' 7("0)/)}}/* _ %(n)Y : (4_11)
Oy = Hy — IV’Hr — % (B + Hf) (4.12)

(B4 30+ £ (B0 )Y = w )Y 1

where from now on the prime denotes derivative with respect to the conformal time 7.
Kodama and Sasaki[69] introduced other potentials, which are linear combinations of

®, and ®4.
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GI matter perturbations There is one GI velocity perturbation variable, but the

energy density perturbation is not uniquely defined

Vs=v+Hp = Vgo=VinYO® Vil(n) = o™ — LHPY, (4.14)

em=06—3(1+ w)%i(v —B)=e.(n)Y en(n)=86+3(1+ w)%(v(u) — BO)), (4.15)

eg=em +3(L+w)EVs =e(n)Y,  e4(n) = em(n) — 3(1 + w)kﬂéVS(O) . (4.16)

As pointed out by Kodama and Sasaki (1984) [69], there is not a preferred choice of
GI density perturbation in this context, as many other GI combinations are possible:
each of them is constructed in order to reduce to § in a particular time slicing. For
example the above given ¢, reduce to § in the slicing v = B (the velocity orthogonal
slicing [1, 69]), and e, reduce to § in the slicing in which B = H} (the zero-shear
slicing [1, 69]).

4.1.2 GI vector perturbations

GI metric perturbation There is only one GI metric perturbation, the “frame

dragging potential”

U, = BS + H, = ¥(q)yY, (y)=BW - Lgl, (4.17)

[03

the reason for this denomination is that it appears as the potential for the vorticity
variable V¢ in the vector part of the GI version of the ADM momentum constraint

(see section 4.3).

GI matter perturbations There are two GI matter velocity variables, related to

shear and vorticity respectively

Vo = vs + Hy, = V)Y, v(7) =0 - LHI, (4.18)
Vea = v — BS = VoYL, Ve(n) =+ - BO; (4.19)

given the above defined potential ¥,, these two variables are related by

‘I"a = VSa ““ VC'a ) ‘I’(TZ) = VS“) - V(,(l) - (420)
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4.1.3 GI tensor perturbation

The TT part of the metric H%Zﬁ is GI by itself; the TT part of the anisotropic pressure

w11 is the GI matter tensor perturbation.

4.2 Expansion of GI perturbation variables

The variables covariantly defined in section 3.5.3 are, by themselves, exact quantities
(defined in any spacetime) and can of course be expanded in terms of gauge dependent
perturbations; however these variables are GI by themselves, therefore to first order
we expect them to appear as linear combinations of the GI variables above, introduced
by Bardeen. For spatial (i.e. orthogonal to u®) vectors and tensors, it turns out
that (0) and (0,a) components vanish; moreover, for the sake of comparison with
Bardeen’s variables, we want to use here the slash derivative rather than )V, and the
Y harmonics rather than the covariantly constant (in proper time) harmonics @). The
following relations therefore should be taken as expressing the spatial components of
4-vectors and 4-tensors in terms of 3-vectors and 3-tensors in the conformal background
3-space with metric v,p; raising and lowering of indices should be carried out with the

metric kg, giving extra a factors on the right hand sides (see appendix B).

4.2.1 Expansion procedure

To expand at first-order the covariant variables, we have to use their definitions in
terms of basic matter, velocity and metric variables. We don’t give here all the details
of these simple but length and cumbersome calculations: rather we want just to give an
example. The perturbations of the basic curvature variables, i.e. the Christoffel sym-
bols, Riemann and Ricci tensor components can be found in the appendix of Kodama
and Sasaki[69] (1984): our calculations are based on these expressions.

As an example, consider the expansion scalar ©@; we have
0 =uy =u’, + 1%
=a%a+ §u®, + T 6u’ + 76T,

=0 4+ g"6T%, + 9y6u’ + 8,6u™ + §u'T?, + fuT?
al al)

ac )
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1.e.

© = O + 78T, + Bobu’ + 6u°T?, + 6u”, . (4.21)

At this point one has to substitute for the Christoffel symbols and their perturbations
in terms of the metric components, and use du* = a~'v* and §u’ = —a™'A4 from (4.6)
and the fact that we use the conformal time (77) coordinates.

Another important quantity to consider is the projection temsor h,’: at fist order

we have

ho’ = Rl + G.6ub + a8u, ; (4.22)

again, one has to substitute from (4.6). We turn now on the results we get on applying

the first - order expansion procedure sketched here to our set of covariant variables.

4.2.2 Kinematical quantities

The expansion scalar is obviously gauge dependent, as it can be explicitely seen in
(4.21), where there is a non - vanishing background contribution. Acceleration, shear
and vorticity of the fluid flow are GI; expanding them at first-order and expressing

the resulting expressions in terms of Bardeen’s variables we get

©=0+60, (4.23)
50 =2 [H} — 2 A+ 1V (4.24)
=2[H - 24+ 0]y, (4.25)
Go = [Baje + Vija + LVsla| + [Via + £ Vo] (4.26)
= [V + 2V — ko, | YO + [VE + <Ve] v, (4.27)
0us = @ [VagVs + Vi(as) + Hiag' | (4.28)
= a [-kVOYE — vV + BP Y] (4.29)
wap = aVeap = aVe V) - (4.30)

The harmonic parts of these equations have also been obtained by Goode[50, 51].
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4.2.3 Curvature variables

The 3-curvature scalar is GI only for a flat background model; the trace-free part of the
3-Ricci tensor is GI, together with the electric and magnetic part of the Weyl tensor.

For these quantities we obtain

G R =OR+6OR = 4+ 5OR, (4.31)
§OIR = a7 [—4%V2(v — B) — 4(V? + 3K)Hy, + 2(Vag Hr)l*?] (4.32)
= o7 {4 k(v — BO) 4 4(k? - 3K) [Hy + SHP)} ¥ (4.33)
= a2 {-4[(V?+3K) (&5 + 2V5)| + 12K % (v — B)} (4.34)
_ g {4(!& —3K) [@H _ _v(o)] — 12K £ (v®) — B(o))} Y, (4.35)

O Res = —EVosVs + 1 Vas(®s — ) + & Vosr + (2K — VIHE,  (4.36)

, r

Vstals) = 1 ¥lais) + 18 Tlae) — 5 Vel (4.37)

= [kf;—’vs”) +B(®a — @p) + Spri | V) + (B 4+ 2K)HPYE (4.38)

+ (R v + Lew 4 o] v - vyl (4.39)
Eap = 3 {Vas(®4 — &) = Ui,y — [HIL" + (V? = 2K) Hrogl} (4.40)

= L {K (@4~ 3u)Y >+kqf Y“) [HP” — (k + 26)HPYE ), (4.41)
Huyp = — [ T, *n8yors + H:r(a ’wﬂu)o-,a] (4.42)

= { vy 1)7( N8)oys T HT) Y( 2316 18)0+6 ] . (4.43)

4.2.4 GI gradients

As we have seen in the previous chapter, spatial gradients (i.e. orthogonal to u?) have
a particular relevance within the covariant approach to GI perturbations. The spatial
gradient of any scalar function f = f 4 §f with non constant background value f can

be expanded to first order to give

OVof = (6f)a+8"0f 6ua=[6f+F(v—B)la+F Veu (444)

—k[6f(n) = £ = BONYL + v (4.45)



108 Chapter 4. COVARIANT FORMALISM VERSUS BARDEEN’S FORMALISM

In particular we can express in this way the gradients of energy density, expansmn and
3-curvature scalar (h = p + p)

D, = a€mje — 3a’' (1 +w)Ve, (4.46)

= —kaen(n)Y ") - 3a'(1 4+ w)Ve(n)YV | (4.47)

Zo =3[y — L4a| + (V2Vo)ia + [3K — Inha?] Vi + [3K — Skha’| Voo (4.48)

= {3k (8} — £0.) + [3K — £*) - 2k’ VIO Y (4.49)
+ 3K — 2rha?] Vo (n)YY (4.50)
Co=a®*OIV,CIR =Ry, — 12KV, (4.51)
= a{—4[(V?+3K) (& + LV5)]ja — 12K Ve, } (4.52)
= a{—k [4(k* = 3K) (34 — 2VI")] v - 12KV YV} . (4.53)

4.2.5 Viscous fluid terms

We can express the energy flux g, and the anisotropic pressure 7, in terms of the GI
metric and velocity potential introduced in section 4.1; using Einstein’s equations to
substitute the energy momentum tensor 7% with the Ricci tensor in the ¢° and mu

definitions we get

Ko = —he°Requ? | (4.54)
Kga = —a {KhVsn — Z [®h0 — LPuja] + 6hVea + 5(V2 + 2K)¥, } (4.55)
= —a{[shV{” + 2 (3 — 20.)] v - AV — gh(k* — 2K)9] } ¥V, (4.56)
b = hahy?Reg — Lhaphoa R (4.57)
KTap = —Vas(®y + ®4) + [Typ) + 25 T (ay9)] (4.58)
+[Hag + 25 HITs + (2K — V2) HEZ] (4.59)

= {-&@u+ o)} vY +{v+22e} v, (4.60)

+{EP" + 22 BP 1 (k2 1 2K)H } Y2 (4.61)
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4.2.6 Locally defined GI scalar variables

In section 3.5.3 we have introduced locally defined 4-scalar GI variables as nothing but
the divergence of the corresponding spatial GI gradients or the total divergence of the
corresponding GI tensors. Since the solenoidal and 7T parts of the above expressions
have, by definition, vanishing divergences, the expressions of the 4-scalars in terms of
Bardeen’s variables are nothing but the scalar part of the corresponding vectors and
tensors; in Fourier space, their harmonics are just proportional through k factors. For

example

A =aBV'D, = V%, = ~E%.(7)Y , An) = —k%e(n), (4.62)

C =aP®VeC, = a® V?R" = —K2a* R*(n)Y , C(n) = —k*a*R*(7) . (4.63)

4.3 Interpretation of Bardeen’s variables

The relations above can be used to give an intrinsic physical and geometrical meaning
to Bardeen’s variables, and also to recover his equations: indeed, although Bardeen
correctly pointed out that “only gauge - invariant quantities have any inherent physical
meaning”, he was able to interpret most of his variables only within specific gauge
choices. In effect, equations (4.29), (4.30) were presented by Bardeen, thus giving an
intrinsic significance to the variables VS(O), Vs(l) and V¢ as the harmonic components of
the shear and vorticity: in equations (4.28) and (4.30) we have derived these quantities
from the scalar velocity potential Vs and from the vector velocity Vs, and Vi,. In
our view, although working in Fourier space has the advantage of reducing equations
to algebric relations, the presentations of the same equations in the coordinate space
simplify somehow the physical interpretation.

The variable ¥, (4.17) was interpreted by Bardeen as a frame dragging potential
because it appears as the potential for the vorticity variable Vi in the vector part of
the GI version of the ADM momentum constraint, his Eq. (4.12) [the (0, «) Einstein
equation (A2b) in BI]. This appears here directly, as the vector part of the GI energy
flux, Eq. (4.56): in effect, we get exactly his equation if we set to zero the left hand
side (i.e. if we pass from the PF to the EF), and we get the PF version of his equation
on using Eq. (4.8) and equating the vector parts of the resulting equation.

- The variable ¥, (4.17) acquires here new geometrical meaning through Eq. (4.42),
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(4.43): it is the vector part of the magnetic component of the Weyl tensor (this relation
was also derived by Goode 1989 [51], and Hwang and Vishniac 1990 [63]). Note that
an evolution equation for ¥, appears here directly as the vector part of (4.58), (4.60),
on using (4.9) and equating the vector parts of the resulting equation.

Perhaps the more interesting results here are those regarding the GI scalar density
and potential perturbations. The variables ¢,, (4.15), interpreted by Bardeen as the
usual density perturbation §u/u within the comoving gauges v(°) — B() = 0, acquire
a covariant significance as the scalar “potential” for the fractional density gradient
D, (4.46), i.e. its scalar harmonic component, without the need of specifying any
time slicing condition; obviously, it is also the potential for the divergence A (4.62)
of D, (or its harmonic component). We could also expand P, and &, in (3.74), (3.75)
using (4.44), (4.45): clearly, it turns out that £, is analogous to Bardeen’s entropy
perturbation 7.

As we have seen, Bardeen defined two independent GI metric potentials 4 (4.11)
and @ (4.13), for which we give here also the expressions (4.10) and (4.12) in coordi-
nate space (these expressions have been given also by Stewart 1990 {117]); many other
GI combinations are possible (see e.g. Kodama and Sasaki 1984 [69]). For a perfect
fluid (w4 = 0) &4 = —By, but in general, from (4.9), (4.58), (4.60)

aﬂvagﬂ' = —Vag(@]-[ + @4) < agpﬂ’gv)) = —-kQ(@H + @\) , (4.64:)

i.e. Eq. (4.4) in Bl It seems therefore that the two potentials which have a direct

physical interpretation are
(I>,‘- = %(@H + q’.{) y @N = {;(@1 - @1‘1) N (465)

indeed while the former ®, is a stress potential through (4.64), the latter ® plays
exactly the role of a Newtonian gravitational potential. This interpretation follows
directly through (4.40), where the scalar part of E,g has exactly the same form it has
in Newtonian theory E,g5 = V,3®x (see Ellis 1971[27]), independently of any gauge
choice. We may say that (the scalar part of) F,3 is the part of the curvature which
depends purely on ®y and represents a purely tidal force, while in general other parts
such as R,g, B®)R and its gradient C, are also affected by ®, and the shear Vs, as can
be seen directly from (4.36), and from (4.34), (4.52) on using (4.64) and (4.65).
Finally, we note that (4.51), (4.53) give geometrical significance to the variable R~
defined by Goode (1989) [51] as the scalar part of the 3-curvature gradient C,, while
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its variable S,5 appears here as the part of the trace- free 3-Ricci R,g which does not

depend on vector perturbations, without assuming a vanishing fluid vorticity.

4.3.1 DBardeen’s equations

All the equations in BI can be directly derived using the relations in section 4.2 and
remembering that it follows from the unicity of the splitting (4.2), (4.3) that in any

equation the scalar, vector and tensor parts are separately equal. In particular:

scalar equations: we already obtained (BI 4.4), i.e. (4.64); (BI 4.3) follows here
from (the scalar parts of) (4.41), (4.64) and (3.163); (BI 4.5) follows from (4.26) plus
(3.153); (BI 4.7) follows from (4.56) and (4.64); (BI 4.9) can be obtained substituting
(4.62) in (3.183);

vector equations: as we already said (BI 4.12) follows from (the vector part of)
(4.56); (BI 4.13) is obtained substituting (4.30) in (3.161);

tensor equation: there is one tensor equation for the tensor metric potential H§?):
this follows here using the tensor part of (4.9) on the left hand side of (4.61).






Chapter 5

PERTURBATIONS
IN A SCALAR FIELD
DOMINATED UNIVERSE

Aim of this chapter is to apply the covariant Gi formalism of chapter 3 to a FLRW uni-
verse dominated by a classical minimally coupled scalar field ¢.! Scalar field dominated
universes have attained prominence in the last decade through the Inflationary Uni-
verse idea [53, 77, 97], and perturbations of such universes are potentially important
as seeds of galaxy growth. Bardeen’s formalism has been applied to the inflationary
universe situation by various authors (e.g. [3], cf. also [95] and references therein),
actually working either in the comoving gauge [3, 82, 83| or in the uniform Hubble
constant gauge [3].

As in chapter 3, emphasis is given here on curvature perturbations (cf. [55]), which
are naturally GI, rather than metric perturbations (as in [1, 69, 95]) which play no
explicit role.? The background curvature K is maintained throughout: there are indeed
both observational [113, 58, 124] and theoretical arguments [101, 102, 107] in favour of
a density parameter )y < 1, despite the prediction {}y, = 1 of standard inflationary
models [97]. It is therefore in principle interesting to look at “minimal” inflationary
models [80, 125, 31] (see also [116, 39]) in which the inflationary phase do not last

enough to drive to Qy = 1, and curvature effects on the perturbations evolution cannot

!This chapter is based on Ref.[10] (BED) and [9] (BE). Although there are many cross references
with the material presented in the other chapters of this thesis, the presentation given here is rather
self-contained.

2The link between our GI curvature variables and the GI metric potentials of Bardeen has been
shown in chapter 4.

113
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be neglected;® moreover the general formalism presented here (cf. [2, 95, 60]) could be
extended to consider situations different from inflation in which a scalar field dominates

(see e.g. [94]).

In sections 5.1 and 5.2.1 we set up the formalism, based on the natural slicing of the
problem {¢ = const.} and on its geometric characterization through the unit vector
u® orthogonal to these surfaces, and we present a set of exact covariant results valid

in a any curved spacetime with a minimally coupled scalar field (cf. [86]).

In section 5.2.3 we define the GI dimensionless gradient ¥, of the momentum % = ¢
of the field ¢, and its divergence ¥: in our approach these variables incorporate the
whole matter perturbation, because the spatial gradient of ¢ vanishes through our
geometrical choice of the frame u®. We show that the density perturbation A is simply
proportional to the momentum perturbation ¥ (A = ¥, cf. [3, 81]), and that it
characterize matter clumping. We also introduce a variable ® for ease of comparison
with other works [3, 81, 83].

In section 5.2.5 we present various possible pairs of equations coupling the evolution
of any of the matter perturbation variables with that of the curvature perturbation
C, or with that of a related quantity, C. We also discuss if and when C or C are
conserved quantities on scales larger than the Hubble horizon: while in this limit C is
a constant of motion in a flat background [83, 36], none of them is conserved if K # 0 in
general, contrary to what happens for a barotropic fluid (when K # 0, C is conserved
for such a fluid [63, 36]). The second order evolution equations equivalent to the above

mentioned systems of first-order equations are also derived at the end of this section.

In section 5.3 we present solutions in simple cases, comparing them with standard
results in the literature [3, 83]. We also examine perturbations in a coasting, scalar field
dominated, FLRW universe with general curvature K. Open models seem particularly
interesting, since any previously existing perturbation is erased during evolution, while
{1 stay constant: this could naturally provide the “clean slate” necessary for a successive
“minimal” inflation (not driving Qy = 1) in order to satisfy constraints from the

observed large-scale isotropy of the cosmic microwave background [110].

3We do not discuss the probability of an inflationary scenario with £y # 1, but we assume that this
is a possibility.
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5.1 Preliminaries

5.1.1 The scalar field

In a completely general spacetime with metric g,, and signature (— + ++4), let us
consider a minimally coupled scalar field with Lagrangian density (conventions as in
[126])

Lo= /=3 [1VasV8+V(4)] , (5.1)
where V(¢) is a general (effective) potential expressing the self interaction of the scalar
field; V, is the covariant derivative with respect to the metric gg.*

Then the equation of motion for the field ¢ following from L is the Klein- Gordon
equation

Vavaqs - Vl(‘ﬁ) =0 ’ (52)

(from now on the prime indicate a derivative with respect to ¢), and ¢ has an energy -

momentum tensor of the form
Tus = VadVod — gay [VebV6 + V(9)] 5 (5.3)
provided ¢, # 0, equation (5.2) follows from the conservation equation
VyT* =0. (5.4)

We shall now assume that in the open region U of spacetime we consider, the

momentumn density V¢ is temelike:
VapVo < 0. (5.5)

This requirement implies two features: first, ¢ is not constant in U, and so
{¢ = const.} specifies well-defined surfaces in spacetime. When this is not true (i.e.,

¢ is constant in U), then by (5.3) in U,
Vap =0 & Top=—guV(¢) = V = const, (5.6)

(the last being necessarily true due to the conservation law (5.4)), and we have an

effective cosmological constant in U rather than a dynamical scalar field; the equations

1We shall assume in the following that V, acts on the first argument on its right only [e.g.,
VeT“""’c...de Q. = (VBT“"'bC‘..d)(VfQg"'hI...m)]. When V, acts on a group of arguments,
this will enclosed in parenthesis.
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may be handled accordingly.’ In the case considered here, (5.5) implies unique normals
are defined by the surfaces {¢(z’) = const.}. Secondly, (5.5) implies these surfaces
are spacelike. This will be true in scalar-fields dominated exact FLRW models, and
so will remain true in Universes in which the GI variables we use (see section 5.2.3)
are small; we define such a Universe to be almost FLRW, thus (5.5) is a necessary
condition for this latter model to be “close” to a FLRW model.

5.1.2 Kinematical quantities

It is our aim to give a formal description of the scalar field in terms of fluid quantities,
therefore we have to assign a 4-velocity vector u® to the scalar field itself. This will
then define the dot derivative, i.e. the proper time derivative along the flow lines:
Tab, = ueV 7%, 4. Now given the assumption (5.5), we can choose the 4-velocity
field u* as the unique timelike vector with unit magnitude parallel to the normals of
the surfaces {¢ = const.} [86],

= YTV, wu,=—1, P =d=uVed=(-VpVig)/?, (5.7)

where we have defined the field 9 = ¢ to denote the momentum density magnitude
(simply momentum from now on). The choice (5.7) defines u® as the unique timelike
eigenvector of the energy - momentum tensor (5.3).°

The kinematical quantities associated with the “flow vector” u® can then be ob-
tained as in chapter 2. Then the expansion, shear and acceleration are respectively

given by

O = —V.(p V) =" [V(¢) + 9] (5.8)
o = V7 h kY Vo] + Lhan Vel V49) (5.9)
ta = =37 OV = -7 (Vo + uah) (5.10)

Note particularly that in this case there is no preferred timelike vector field in U defined by the
matter stress tensor; so the choice of u® is arbitrary.

8The quantity ¥ will be positive or negative depending on the initial conditions and the potential
V; in general ¢ could oscillate and change sign even in an expanding phase, and the determination
of u® by (5.7) will be ill - defined on those surfaces where V,¢ = 0 = ¢ = 0 (including the surfaces
of maximum expansion in an oscillating Universe). This will not cause us a problem however, as we
assume the solution is differentiable and (5.5) holds almost everywhere, so determination of u® almost
everywhere by this equation will extend (by continuity) to determination of u® everywhere in U.
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where the last equality in (5.8) follows on using the Klein- Gordon equation (5.2). We
can see from (5.10) that v is an acceleration potential for the fluid flow [28]. Note also

that the vorticity vanishes:
wab = —ha* 'V ia ($7'Vg0) =0, (5.11)

an obvious result with the choice (5.7), so that (3)V, is the covariant derivative operator
in the 3-spaces orthogonal to u?, i.e. in the surfaces {¢ = const.}. As usual it is useful

to introduce a scale length factor a along each flow-line by
-=10=H, (5.12)

where H is the usual Hubble parameter if the Universe is homogeneous and isotropic.

Finally, it is important to stress that
CV,p=0 (5.13)

follows from our choice of u® via equation (5.7), a result that will be important for the

choice of GI variables and for the perturbations equations.

5.1.3 Scalar field as a perfect fluid

It follows from our choice of the four velocity (5.7) that we can represent a minimally
coupled scalar field as a perfect fluid; the energy- momentum tensor (5.3) takes the

usual form for perfect fluids
Tap = puqty + phay (5.14)
the energy density u and pressure p of the scalar field “fluid” being respectively:
b= WAV =T+V, (5.15)
p = ¥ -V(g)=T-V, (5.16)
where T denotes the kinetic term, T' = %qb? If the scalar field is not minimally coupled
this simple representation is no longer valid, but it is still possible to have an imperfect
fluid form for the energy - momentum tensor [86].

Using the perfect fluid energy - momentum tensor (5.14) in (5.4) one obtains the

energy and momentum conservation equations
fp+0Op+p) = 0, (5.17)

ao(p+p)+ PV = 0. (5.18)
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If we now substitute p and p from (5.15) and (5.16) in (5.17) we obtain the 1+3 form
of the Klein - Gordon equation (5.2):

¢+ 0+ V(p)=0, (5.19)

an exact ordinary differential equation for ¢ in any space- time with the choice (5.7)
for the four- velocity. With the same substitution, (5.18) becomes an identity for the
acceleration potential . It is convenient to relate p and g by the indez v defined by

p=(y—1)p o y=pm — & (5.20)

I ©

This index would be constant in the case of a simple one-component fluid, but in

general will vary with time in the case of a scalar field:

¥ v

I=0(y—-2)-2. (5.21)
Finally, it is standard to define a speed of sound as [1]

2
Cy

il
TP

:7—1~—g—7. (5.22)

5.2 Gauge-invariant perturbations and their dy-
namics

5.2.1 Exact gravitational equations

As we have seen in chapter 2, Einstein’s field equations are equivalent to a system of
exact evolution and constraint equations for a set of covariantly defined quantities [27]:
these are well defined physical fields in any space-time, and for an almost FLRW
Universe most of them are natural GI variables (see chapter 3, EB, Paperl and [55, 63]).

We shall need here only two of these equations as well as the conservation equa-
tions (5.17) and (5.18). The first is the Raychaudhuri equation (2.47), governing the
evolution of the expansion © (5.8). This exact equation for a scalar field takes the

form

O+102+20° — A+ w2 —V(¢)] =0, (5.23)
where k = 87G = 8w Mp/ is the gravitational constant, and

A= Ve = OV,a" +a,0° = OV OV,9) + 92OV 0v,y, (5.24)
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is the acceleration divergence. Thus the kinetic term t? contributes, with the shear
term, to pulling the flow lines together, while the potential term V (assumed here to
be always V > 0) tends to push them apart. The acceleration term A does not have a
definite sign [but see the comment after (5.40)].

The second is the Gauss- Codacci equation (2.40), showing that the Ricci scalar

()R of the 3-spaces orthogonal to u® is
OR = 2{-10% + o¢” + s[39* + V()]} . (5.25)

It follows from the equations already given that the time derivative of the cosmo-

logical density parameter
Q= rp/3H? =35(3¢* + V(9))/0° (5.26)
is
Q=0(0 - 1)(y - 2)0 +2(20° — 4)Q/0 . (5.27)
We point out that all the equations this far are the exact equations for a classical scalar

field in a curved spacetime, with no restriction on the field or spacetime other than

(5.5).

5.2.2 Background dynamics

The field equations and conservation equations for an isotropic and spatially homo-
geneous cosmological model, whose matter content consists of a classical scalar field
which is also spatially homogeneous, are the specialization of the equations in previous
section to the case 0 = w = ®)V,f = 0, where f is any scalar quantity (see section
3.5.1).

Expressing the equations (5.23), (5.25), (5.19)=(5.17) in terms of the Hubble pa-
rameter H(t), the background (zero- order) equations are [40]

3H +3H® = &[V($)—?, (5.28)
3H® +3%5 = &[0+ V(9), (5.29)
b+ 3HY +V'(¢)=0 < p+3HY*=0, (5.30)

where all variables are a function of cosmic time ¢ only.
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We remind that the curvature parameter K is related to the density parameter 2

by the Friedmann equation (5.29) in the form:
K=HQ-1), e Q=1+HF5 (5.31)

and the density parameter {) obeys the differential equation [87]

0 =(2-37)HQL - Q). (5.32)

5.2.3 Gauge - invariant variables
Spatial gradients

We have seen in chapter 3 that we can define exact variables that characterize inhomo-
geneities in any space- time, and also derive exact non - linear equations for them (EB).
The most important of these variables are the comoving fractional spatial gradient of
the energy density D,, the comoving gradient of expansion Z,, and the comoving 3-
curvature gradient C,. These quantities exactly characterize the inhomogeneity of any
fluid; however we may want specifically characterize the inhomogeneity of the scalar
field: we have already seen that, with our choice (5.7), the spatial gradient ®)V, ¢
identically vanishes in any space-time [eq. (5.13)] (thus is also GI). It follows that in
our approach the inhomogeneities in the matter field are completely incorporated in
the spatial variation of the momentum @, i.e. in the gradient )V 1, which appear
as the natural GI matter perturbation variable. Thus we can define the dimensionless

gradient

U, =20V, (5.33)

"
which is related to D, by
Do =L0, =9Y,, (5.34)

where we have used (5.15) and « is given by (5.20); comparing (5.33) and (5.10) we see
that ¥, is proportional to the acceleration: it is a GI measure of the spatial variation
of proper time along the flow lines of u® between two surfaces ¢ = consts. (cf. [27, 3]).

Up to now we have considered a completely general spacetime the matter content

of which is given by a scalar field: from now on we shall restrict our considerations to

"The same result appears adopting the comoving gauge [3, 81]; our derivation is independent from
any gauge choice, and follows from the geometrical choice of frame (5.7).
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those Universes in which the magnitude of our GI variables is small; this automatically
defines these models to be almost FLRW (see section 3.5.2).

In treating the perturbations evolution problem it is useful to have at hand a
conserved quantity for those wavelengths that are larger than the Hubble radius: in a
flat FLRW background the curvature gradient C, is conserved in this latter limit. If
K # 0 this is no longer true, but as we have seen in section 3.8.2 in certain cases of
interest the related quantity C,

C,= ——%aZQZa + 2xpa*D, (1 — 2K ) , (5.35)

a?kpy

is conserved if the fluid is barotropic and twist - free [36]; when K = 0, this reduces to

C,. We can express the GI variables Z,, C, and C~’a in terms of ¥,: at linear order

Z, = —(0,)+(0+207'VNT,,
o - ton(ny -0 e, (30
C. = 10d*(T,) +4 [ZK —d? (§@¢_1vl + "Vﬂ Yo .

These can be regarded as ordinary linear equations for ¥, with Z,, C, and C, as source
terms, where the first can be also directly derived on taking the spatial gradient of the
equation (5.30).

Scalar gauge - invariant variables

In treating cosmological inhomogeneities, the analysis is commonly restricted to scalar
perturbations, as these are the only relevant to galaxies formation. We have seen in
section 4.1 that this is usually achieved through a non local splitting [117]; instead in
EBH (see section 3.7, Eq. (3.114), (3.116)) we defined a local decomposition for the
gradient of D,. We note here that Wy, (3.117) is proportional to the vorticity, and
therefore identically vanishes in a scalar field dominated universe.

We remind here that applying the operator a(®V, on any of our GI gradients
one obtains in the same way the corresponding decomposition [i.e., the analogue of
(3.114)], the trace of which is a GI scalar variable, namely the comoving divergence of

the gradient itself. Thus we have a set of scalar GI variables

A=d0vep,, z=4dBPvez,, C=d0vC,, (5.37)
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respectively giving the energy density, expansion and 3-curvature scalar perturbations;
these are related by ‘
C=—-30d"Z + 2xpa’A . (5.38)

In the same way the scalar field
¥ =aBVey, (5.39)

is a natural GI scalar variable characterizing the spatial distribution of the momentum
1, and related to A by
A=~T, (5.40)

From this and (5.33), (5.39) we see that A = ¥/S5% = A/(yS?) at first order; this
clarify the gravitational role of A in (5.23): for v > 0, when A < 0 we have a local
energy density enhancement that tends to slow down the expansion, while a local void
(A > 0) has the opposite effect. From this it is clear that the comoving divergence
A of D, is the scalar variable that characterizes matter clumping, therefore we shall

focus here on this quantity and its companion variables
C=adP®¥VeC,=C—-4Kv'A=C - 4KV, (5.41)

and on ¥. Note that C is a conserved quantity for scales larger than Hubble radius
when the fluid is barotropic, even if K # 0 [63, 36] and w # 0[36]; however, as we
shall see, this is no longer true in general for a scalar field.

Expressions for Z,C and C in terms of ¥, analogous to (5.40), can be found, on
taking the comoving divergence of (5.36) and using the relation (see section 3.3 for
details):

a¥V, X, = (e UV, X)), (5.42)

where X, is any first-order vector orthogonal to u*, X,u® = 0.
Finally, we find it useful to define the variable ® for ease of comparison with the

evolution of the Bardeen variable ®°®
® = kpa’A = ka4 T (5.43)

this variable turns out to be particularly useful during epochs in which v ~ const. and
) =~ 1 (see section 5.3.1).

8We defined the vectorial variables ®, = xkuS?D, corresponding to ® in EHB (see section 3.8.2).
Note that the variable ®4 is defined by Bardeen [1] directly in the Fourier space, and has the same
time behaviour as the variable Z used in [3] and [83].
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5.2.4 Entropy perturbations

The minimally coupled scalar field we are examining in this chapter is formally equiva-
lent to a perfect fluid. However the perfect fluid perturbation equations of chapter 3 do
not describe the evolution of perturbations in a scalar field dominated universe, since
they assume the perfect fluid to be barotropic also in the physical perturbed universe,
i.e. they assume adiabatic perturbations. For the scalar field instead one has entropy
perturbations. Although these have been assumed in the equations in section 3.9, it
is worth to explicitely consider the situation for the scalar field case. The entropy

perturbation follows from the perfect fluid equation of state p = p(u, s) from which

a®V.p = (g—g) PV + (%)( a®V,s | (5.44)

(s) #)
where we have the usual thermodynamic partial derivatives at constant density and
entropy. Note that we take advantage of having a perfect fluid, for which entropy s

constant along flow lines® so that
2 (9p _ P . z
c. = (ap>(8) =Ly (5.45)

therefore the usual definition of the speed of sound (5.22) [1] coincide with the standard
thermodynamic definition.
Now we can recall that in section 3.5.3 we defined the comoving fractional pressure

gradient and an entropy perturbation dimensionless variable respectively as

= a(3) = (%r a(3) = _ <
P, =2®V,p, &= (a{;)(#) 8V,s = P, — 2D, , (5.46)
so that we have
pP, = cuD, + p&, . (5.47)

We defined &, in this way to have it as close as possible to the definition of Bardeen

variable 7 [1, 3].!" However for the scalar field we have
Ea=(1-puDs = pPo=pD, & CV.p =0V, (5.48)

an obvious result that can be obtained from the expression of x and p directly, taking
into account that ®)V,¢ = 0.

9This is strictly true only if we can neglect the effect of bulk viscosity, which will be assumed here.
10Tn his paper Bardeen define 7 as the difference between pressure and density perturbation when
the perturbation is not adiabatic, i.e. the second equality in (5.46) is used as a definition.
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Identical relations hold for the scalar variables corresponding to D,, P, and &, and
defined as described in section 5.2.3, i.e. for A, P = a® VP, and £ = aBVveg,.
Thus for the scalar field

E=(1-c)pA, pP=yuA. ' (5.49)

5.2.5 Perturbation equations
First - order linear equations

We shall examine here the linear evolution equations for the scalar our GI variables,
specialized to the scalar field case.

We can determine the evolution of the matter perturbation variables A, ¥ and
® through a system of two first-order (in proper time derivative) linear equations
coupling their evolution to that of C or C.1' The scalar field fluid is vorticity - free,
w = 0: since in the linear approximation the equality (5.42) holds, spatial gradients and
their comoving divergences satisfy the same evolution equations, the only change being
that the operator (¥V? should be substituted by ®)V? — 2K/a? (see section 3.7.2) in
the equation for the spatial gradient. This means that the harmonic components of the
vectorial (e.g., D,) and scalar (e.g., A) variables satisfy the same ordinary differential
equation, because ()V? and ®)V? — 2K/a? have the same eigenvalue —k?/a® acting
on, respectively, a scalar harmonic Q) and its spatial gradient Q(¥) = G)v,Q*),

The equations we obtain for A and C are:

A = %;’g + {(7 ~1)0 - [g—n,u"/ - 3%] @“1} A, (5.50)
¢ = %%ﬁwv?/_\ + 8®TKA (%b-% + 1) : (5.51)
The system for A and C is
A= Z—-;—’?% + {(7 - 1)@ — ;Wy@-l] A (5.52)
¢ = 355 + f;@jz OV2A 44K (% - -‘;i%) A. (5.53)

'"'As we have seen in chapter 3, through the constraint (5.38) and the definition (5.41) one can
alternatively couple the first order evolution equation for any of the matter variables to the equation
for Z. We choose C and C because then we can compare the scalar field case with the barotropic
fluid case for K # 0, discussing conservation of this variable.
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Because of the last term in (5.51), C is not conserved in the long wavelength limit in
the general case. To see this, it is convenient to rewrite the above equations in terms of
the harmonic components of the variables we use. Since the eigenvalue k (introduced
to have a unified notation for different values of K) does not directly correspond to
physical wavelengths (unless K = 0), and the correspondence changes with K, we shall
write here harmonic components equations only for the case K = —1,0. In this case k

is related to physical wavelengths by the time independent wavenumber v:
K =1~ K, (5.54)

where v > 0 is a real number, and physical wavelengths are defined by '?

A= (5.55)
v
Then we have
. H3a% [ v? 6K [ 4 T
= - — I AYS 5
C('/) 4 ~ {Hzaﬂ H2g2 (351/} + 6)} {v) s (5 56)

where K = —1,0; in the long wavelength limit the first term v*/ H?a” in the parenthesis
is negligible, but the second will not be small in general. The latter vanishes however
if K = 0, in which case C reduces to the 3-curvature GI variable C [see (5.37) and
(5.38)], which is then conserved in the long wavelength limit.

In the case K = —1,0, the equation for the harmonic component C(,y of C is

KO, 4H3a2[ v? K (4 7&,&)} A

(5.57)

Cv="pwg 5 |er a2m\' 2E

We can write an equation for ¥ deriving it directly on applying the comoving derivative
operator al®V? on any of the equations (5.36) [using also (5.42)]; an equation for ¥(,,
immediately follows on passing to the Fourier space. For example the equation coupling

¥, to the variable C~’(U) is

é(u) 1 (2K . - -
by = 7 - {H (-{1—2 - w) — 21y ] v, . (5.58)

2Minimum values for k2 are: k2 = 0 for K = 0, k? = 1 for K = —1, k? = 3 for K = 1, where for
this latter k% = v(v +2), v = 1,2...[54], see also [69, 76]. One can however assume the Universe is
homogeneous over a scale L, and divide the space in volumes of this characteristic size; then k is an
integer (e.g., see [83]). Often a factor 27 appears in the definition of A, but this is not really needed
here.
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The companion equation then is (5.56), on substituting A(,) = 7¥(,); we note that

the resulting pair of equations is particularly suited for treating an almost De Sitter

inflationary phase, in which v ~ 0 and (5.53), (5.56) and (5.57) tend to blow up. In

this sense, we may regard ¥ and C [or C, see (5.41)] as the fundamental perturbations

variables, while A =¥ will be correspondingly smaller in a De Sitter like phase.
Finally, the first order equation for @, is

(o4
[

—

- e K REY 5 .
(I)(,,) + [H + H! (5%‘:/1/7 — EE)} @(U) e ZH-*C(U) , ( .99
which follows on substituting (5.43) in (5.58). The equation corresponding to (5.59)
(but for the vectorial variable ¥,) was derived in EHB, where it was coupled to Cy;

(5.59) generalize to non flat universes equation (11) in [83].

Conserved quantities at A > H~!

As we already said, the curvature gradient C, and its divergence C are conserved when
the background universe is flat, K = 0. For K # 0 we can look at the evolution of C,
which is conserved at large scales when the fluid is barotropic [36, 63]. Here we briefly
discuss this point (see BE [9] see also [20, 62]), looking in particular at the two special
cases of slow rolling, and v ~ const.

The slow rolling approzimation is ¥ < 3H+. This can result from the evolution of
the scalar field in certain effective potentials with a plateau; we see from (5.56) that c

is then conserved if
5

7
H2a2 <1 and H2a2

i.e., if the long wavelength limit is valid up to v* < 7. It is immediate from (5.31) that

<1, (5.60)

the second inequality in (5.60) holds only if  is close enough to 1, but then also C' is
approximately conserved.
The second case is when ~ is slowly warying (but not necessarily small):

H~'|%/4] < 1. For simplicity, take v = const. along the flow lines, ie. ¥ = 0."

BHowever v will be not spatially constant:
Io=a®V,y=(2-7)D. T=a®Vr,=(2-7)A, (5.61)

are two GI variables describing the spatial variation of v and simply related to the energy density GI
variables.
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Then it follows that the last term in (5.56) in this case is also a constant:
Vv’ v—2

?]—ﬁ =g (5.62)
Then for those scales v < 1 that never crossed the horizon (i.e. they have been always
larger than H~!) one should have |7 — 37| < 1 to have C conserved in a phase when
1 —Q ~ 1, which is clearly impossible, because the hardest equation of state one can
have is that of stiff matter, obtained when the potential is negligible with respect to
the kinetic term, so p = p. Therefore also in this case C is conserved out of the Hubble
radius only if Q is close enough to unity, and again also C will be conserved.

Note however that in general C (or C for K = 0) will in fact be conserved in the
long wavelength limit only if (CH)™'C ~ —v?/H?a?, a condition of consistency that
must be verified a posteriori once one has derived the mode in ¥ or A related to C (C
for K = 0, see [83]) General conserved quantities related to C, valid for any value of

K and k, can be calculated for particular inflationary models, and will be presented
elsewhere [20].

Second - order linear equations

When there is not a conserved quantity, its useful to derive a second order equation
in order to investigate the evolution of the quantity we are interested in. For A such
an equation would be the equivalent of the system (5.50) and (5.51). In general this

equation has the form

A+ AA - BA-OVIA =0, (5.63)

where
A= (3-7)0-1, (5.64)
B = (1-31)[0*(v-%) +9E&] + 01, (5.65)

and ¥/v is given by (5.21). Then it is immediate to derive the equation for ¥ in a
similar form:

G+ AV — B - OV2y =0, (5.66)

where
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In the next section, we shall look at perturbations evolution in simple cases using @,

which again satisfies an equation similar to (5.63):

b4 Ad_Bo_OVIg =0, (5.69)
where
A= 09(l+y)-1, (5.70)
B = % (1+34y)+92. (5.71)

Passing in the Fourier space, the harmonic components of A, ¥ and ® satisfy the
equations above with the trivial substitution V? — —K?/a?. The resulting equation
for @) generalizes to K # 0 the equations for Z (see footnote 8) (2.20) in [3] and
(8-30) in [83].

Finally we point out that also the evolution of the curvature perturbation variable
C can be decoupled from that of other variables, i.e. a second order equation for C
can be derived. Thus in our approach both matter variables (A, ¥, and ®) and the

geometry-related variable (C) satisfy a second order linear equation (cf. [95]).

5.2.6 Independent variables and equations

In this section we have introduced various GI variables, relations between them, and
equations governing their evolution. It is perhaps worth pointing out again that only
two of these variables are independent: if we take C, and D, as independent variables,
then Z, is determined through the dynamical constraint (3.83), which has been derived
on taking the spatial gradient of the Gauss- Codacci equation (5.25). All other vari-
ables have been introduced for convenience through “kinematical relationships” such
as (5.33), (5.34), (5.35), (5.39) (5.40) and (5.43). Equation (5.38) is the dynamical con-
straint for scalar-type variables. The equations considered are enough to determine
scalar - type perturbations; the whole set of covariant equations equivalent to Einstein

linearized equations has been presented in chapter 3 (and has been derived in BDE[8]).

5.3 Solutions

We sketch here the solutions for the perturbation equations in some very simple cases,

referring to the corresponding solutions for the background given in [40, 39].
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5.3.1 v = constant

In the case v = const. one obviously expects ¥ and A to have the same modes: indeed
in this case A = A from (5.67) (5.64) and B = B from (5.68) and (5.65). The equation

(5.69) takes a particularly simple form if expressed using the conformal time dn = dt/a:
B, + 3ya(n) @y — [2K (1+27) — k] &y =0, (5.72)

where a prime denotes derivative with respect to 7 and we have written the equation
for the harmonic component ®(;) of ®, in order to have an expression valid for any
value of K (for each K, the appropriate substitution for the wavenumber v is needed).

If in addition we have K = 0, it is immediate from (5.72) that @) has a constant
mode in the long wavelength limit (k = v — 0), while the other mode is decaying. In
this case it follows from (5.57) that the curvature perturbation C; is conserved, and
(5.59) is a first integral for (5.72). From this one obtain the constant mode for these
scales larger than the horizon [83, 37]

Ciw
201+ 55) 7

a relation that holds also for barotropic fluids, and thus can be used to connect different

By = (5.73)

epochs (with different v ~ const.) in the history of a perturbation evolution outside

the horizon.

Standard inflation: v ~ 0

The standard inflationary case corresponds to v =~ 0, which provides a De Sitter phase
which lasts long enough to produce €0y = 1 today. In this scenario quantum generation
of fluctuations takes place for wavelengths ‘within the horizon’ during inflation {77, 97];
then all the perturbation scales of interest exit the horizon in the last part of inflation,
when already = 1 is a very good approximation. Thus we may reproduce the usual
results [3, 83], which in the main follow from the conserved quantities discussed above
(5.73) specialized to v =~ 0. Using (5.43) we can eliminate v, ~ 0 from (5.73) (thus
avoiding the consequent blow up) and connect the inflationary phase with a subsequent

epoch characterized by v, ~ const. (e.g. a following radiation dominated era)

@EB (1 + L) =K [uaz\I’(n)](l) (71 + %) ~ 2 [uaz‘?(n)](l) = @Ei% (1 + 5%/;) , (5.74)

371
(1)

where [pa’¥,)](!) is constant when v, and <I>(,1§) are constants.
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v=2/3

For the case v = 2/3 we have coasting solution for any value of K, i.e. the scale factor
a grows linearly: a = At, A = a¢. Since in this case pa® = const., ® has the same
modes as ¥ and A, because of (5.43). Also, it follows from (5.32) that Q = Q¢ is

constant during such a phase, and
A=[K(Qc-1)]"7; (5.75)

for K =0 < Q = 1 Ais arbitrary. A peculiarity of the coasting phase is that the ratio

of physical wavelengths to the Hubble scale Ay = H™!

A aH A

is a constant, given by

==, T
AH k k (5.76)
Equation (5.72) further simplifies to
oy + 24®( — (4K — E*) By =0, (5.77)

which is then immediately solved. We distinguish three cases, where again we think of
k as a label for the corresponding wavenumber v valid for any value of K (k* = v* — K

for K =0,1, and k¥* = v(v + 2) for K =1 [54]):

a) k* < A*+4K; then, defining @ = 4/ 411_2,;2 + 1, we have

N —i+Q N —L1-Q _
@(k) = @&) (Z) + (I)gg) (Z) s (5/8)

where we expressed the solution using proper time (¢; is some initial time), and @‘(‘}c)

@ﬁ) are two constants.
b) k*= A’ + 4K, in this case one has

£y~ :
b= (3) |o+ehain(f)] (5.79)

i.e., only decaying modes.

c) k?> A’ + 4K; these wavelength correspond to damped oscillatory modes:

o= () (s fon (] sbnfon ()]} o
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where we defined Q = kl";;[( —-1.

When K =0 < Q¢ = 1, we have the case b) for the scale A = H~' on the horizon,
thus a) corresponds to purely decaying modes for scales larger than the horizon, while

scales inside it correspond to the damped oscillations of the case c).

When K = —1 < ¢ < 1, we can distinguish two subcases. When Q¢ < 4/5
we have damped oscillations given by (5.80) (with @ = \/(1/2 +5)/A? =1 ) at all

scales, irrespective of what is their ratio to the horizon. For {0 > 4/5 there are

purely decaying modes given by (5.78) in the long wavelength limit »* < A% more
precisely, with @ = \/1 — (v® + 5)/A?, we have the modes (5.78) for scales v* < A*
if Q¢ > (v +4)/(v® + 5), while there are decaying modes (5.79) for the scale v* =
(5Q¢ —4)/(1 — Q¢).

In the case of a closed universe K = 1 < Q¢ > 1 we have k* = v(v + 2), where

v > 11is a positive integer now; as it is intuitive the longest perturbation wavelength
correspond to A = a (for v = 1). To this scale correspond a growing and a decaying
mode, given by (5.78) for £Q, @ = +/Ql¢.!? However the next scale, given by v = 2,
will have the same modes (5.78) only for < 5/4. In general, there will be growing
and decaying modes corresponding to (5.78) with @ = \/1 + (4 — k%)/A? only if Q¢ is
close enough to unity: Q¢ < (k* — 3)/(k* — 4). Thus, given ¢, most of the modes

will have the damped oscillations given by (5.80) also for a closed universe.

The interesting application of these results is to a coasting universe phase with
K = —1, resulting from an exponential potential (see [39]). As we see from the above,
all scales greater than the horizon scale are smoothed out by such an expansion. Thus
such an epoch, while can solve the horizon problem, is also very effective in erasing
previous memory of the universe and creating a ‘clean slate’ for the start of a subsequent
truly inflationary phase. In particular this suggest that in such a scenario, evenif  # 1
today, there will be no problem about large-scale microwave background anisotropy
(as suggested by Rees [110] for a standard but “minimal” inflationary scenario, lasting
not enough to produce {1y = 1), because all perturbation scales during this coasting

epoch will be made very smooth by this expansion [33]

1 The physical reality of the mode v = 1 for closed models is doubtful: see the comments after
equations (4.9) and (6.27) in [1].
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5.3.2 v =7(t)

In this case the second order equation for @) is rather more complicated and cannot

in general be solved analytically:
e - . - 2 <
g+ [H(1+3y) = 2] by — [H (14 37) - &+ HE 3y = 0. (5.81)

As a simple example to illustrate this case, we look at power-law inflation [81] where

the scale factor grows like a(t) = AtP, A =0,p>1 (an extensive analysis of these

models when K # 0 can be found in [22]). In this case v is given by [40]:
2 [t 240

= — 5.82

where 8 = K/(pA?). When p = 1, ¥ = 2/3 and we have the coasting solution discussed

in section 4.1.

5.4 Summary

In the first part of this chapter we have presented a set of exact results (partly given
in [86]) valid in any spacetime dominated by a minimally coupled classical scalar field
¢, formally described as a fluid (on assuming ¢ has a timelike momentum V,¢). From
this, introducing a set of covariantly defined variables, we have worked out a scheme
to describe an almost FLRW universe in which this variables are automatically gauge-
invariant (GI) with respect to an exact FLRW background; for sake of generality this
latter is not assumed to be flat.

In our formalism (cf. [2, 95], see also [59, 60]) a crucial role is played by the surfaces
{¢ = constant} and by their unit normal vector u®, which geometrically characterize
these surfaces and plays the role of the fluid 4-velocity (see section 3.4). As long as we
use a covariant description, this does not necessarily correspond to use the comoving
gauge: indeed the perturbation variables we use are GI and physically meaningful on
their own; however, if we attach spatial coordinates to the surfaces ¢ = const. and we
choose coordinate time to flow along their normals, then our GI variables assume their
values in the comoving time orthogonal gauge [69] (used e.g. in [3, 81]). More generally,
we can as well introduce an arbitrary slicing and attach coordinates to these surfaces

in order to relate our variables to standard GI variables (see chapter 4, Paperl [8] and
63, 62]).
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Given our choice of u?, the inhomogeneities of the matter field are incorporated in
the covariant gradient 2V, of the momentum of the scalar field (¢ = #), while ®)V ¢
vanishes exactly and gauge-invariantly (cf. [3, 81]). Then the dimensionless gradient
T, = ¥~ 'S®)IV, 9 and its comoving divergence ¥ are the natural GI variables of the
problem and the GI density perturbation A that represent matter clumping is simply
proportional to ¥: A = v¥. Rather than metric perturbations, we deal with curvature
perturbations (cf. [55], the relations between GI curvature variables and the GI metric
potentials of Bardeen has been clarified in chapter 4). Thus the spatial gradient C, of
the 3-curvature scalar of the ¢ = const. surfaces and its divergence C are the natural
associated GI variables, together with the related quantity C. We have derived a set of
first order (in time derivative) evolution equations for our variables, showing how the
equation for any of the matter perturbation variables (A, ¥ or the related ® = kuS*A)
is coupled to an equation for C or C; these turn out to be conserved in certain cases
of interest for large scales (0 = C if K = 0), and in this case the evolution of the
matter variable is given directly by its first order equation. In any case, the problem
of the evolution of either the momentum perturbation ¥ or the density perturbation
A (or ®) is closed at second order (in the time derivatives). In the same way, one
can decouple the evolution of the curvature perturbation C (or C) deriving a second
order equation for it. All the equations we derived are valid also for non flat (K # 0)
universes, thus while they generalize equations presented elsewhere [3, 83] (see also [95]
and references therein), they can be used to analyze the behaviour of perturbations in
unconventional scalar - field - dominated universe models (not necessarily inflationary,
e.g. see [94]). When applied to standard inflation, we re-establish known results but in
a covariant and gauge-invariant manner. When applied to K = —1 coasting models,
we establish the decay of perturbations at all scales; this suggests that no problem
should arises concerning large-scale microwave background radiation anisotropy in a
scenario in which a “minimal” inflationary phase (not driving to ), = 1) is preceded

by a coasting era[39].






Chapter 6

PERTURBATIONS
IN A MULTI-FLUID
COSMOLOGICAL MEDIUM

The purpose of the present chapter is to extend the formalism of chapter 3 to treat
multi- component systems of interacting fluids. An analysis of such systems is im-
portant, since during the evolution of the universe there are epochs when the matter
is more accurately described by a mixture of several fluid components, e.g. radia-
tion, baryonic matter and neutrinos. In such situations, perturbations in the densities
and velocities of individual components behave differently due to a difference in their

dynamical properties, especially the sound velocities.

Perturbations in multi- component fluid systems have been studied before, indeed
a rather complete analysis was presented by Kodama and Sasaki (1984) [69] (KS from
now on) based on the GI approach of Bardeen (BI). However, because the physical
and geometrical meaning of the Bardeen variables is rather obscure (see chapter 4), it
seems beneficial to reformulate the theory using the covariant GI variables introduced in
chapter 3. Dunsby (1991a) [18] has considered the case of a mixture of non interacting
perfect fluids: this chapter presents the more general case of a mixture of interacting
viscous fluids considered in DBE [21].

This chapter is organized as follows. In section 6.1.2, we define covariant and GI
variables that characterize the time evolution of density and velocity perturbations in
a multi- component fluid medium (including viscous terms). In section 6.2, we derive

equations for both the total fluid and it’s constituent components. We also present the
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equations for the relative perturbation variables, which are very useful in differentiating
between adiabatic and isothermal perturbations.

In section 6.3, we use harmonic analysis to relate the geometrical variables we use
to those of BI and KS. Comparison of the two methods is discussed is great detail
in Paper I [8], so here we concentrate only on the most important multi- component
variables.

In section 6.4, we discuss if and when the curvature variables C' and C are conserved
on scales larger than the Hubble horizon. In particular, we demonstrate that when
the background FLRW model is flat, both these variables are conserved even in the
presence of entropy perturbations and imperfect fluid source terms. We use this result
to write down a general solution for the total energy density perturbation. We also
briefly consider spatially open models.

In section 6.5, we consider the first of three applications. We examine the case
where the background is described by a spatially flat FLRW universe model filled with
a mixture of non - interacting dust and radiation and obtain solutions for density and
velocity perturbations in the small scale limit. In section 6.6 we study perturbations in
a photon - baryon system, taking explicitly into account the interaction between com-
ponents, which arises through Thompson scattering. We examine in detail the coupling
between isothermal and adiabatic perturbations and correct a number of errors in the
previous literature (KS [69]). In section 6.7, we briefly consider an application to a

system of two non - interacting scalar fields and obtain the standard results (Mollerach,

1990; BED) [93, 10].

6.1 Multi- component fluids

6.1.1 Choice of the frames

In section 3.4 we have seen that a relativistic fluid is described in general by three
main variables: the energy momentum tensor (EMT) T4, the particle flux N® and the
entropy flux S° [64, 16]. If the fluid is imperfect (e.g. when we include non - equilibrium
terms arising from perturbing the fluid), then the fluid hydrodynamic 4- velocity is no
longer unique. In this case, decomposing the EMT and the particle flux with respect

to a general u® we obtain:

Top = puqups + Phap + Gatts + QplUa + Tap (6.1)
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and
N% = nu® + 7%, (6.2)

where ¢, and 7, is the energy flux and anisotropic pressure in this frame and j° is
the particle drift. In this case two frames u} and u$; have a special status: in the
energy frame defined by u® = u}, (Landau and Lifshitz (1963) [74]) there is no energy
flux g, = ¢¥ = 0, while in the particle frame (Eckart (1940) [23]) u® = u% there is
no particle drift j* = j% = 0, and the EMT takes the form of equation (6.1) with
u? = ufy.

When we study multi-component fluids, new degrees of freedom arise in the matter

variables. We assume that the total energy momentum tensor is given by

Ty =Y T% (6.3)
(1)
where, as in equation (6.1), the energy momentum tensor of each component takes the
form
Ty = peul ul? + pohly + auf? + ¢ ul) + xly (6.4)
Here u() is a normalized fluid 4-velocity vector for the i component (ufj)u‘(’i) = -1)

and hg? = Gap + u&”ugi) is the projection tensor into the LRF of an observer (’)u“)

moving with that velocity (u‘(li)hc(fg = 0). We can also define a particle flux N, for the

i** fluid component:

N(“l-) = n(i)u?i) + ]E’l) . (6.5)
As before, we can fix each component velocity ufy by either choosing the energy frame
uly = ugp) = g = gF® = 0 or the particle frame uly = up) = I = Ing = 0 for
that component.

Following King and Ellis (1973) [67] and Dunsby (1991a) [18], we look at the
situation in a frame defined by the hydrodynamic 4 - velocity u®, which we will call the
total fluid 4-velocity, again stressing that at this point we have not fixed u®, which
could for example be u%; or u%.

In this frame the relation between the 4 - velocities u” and ufy is determined by the
hyperbolic angle of tilt B(;y and the direction of tilt is specified, either by the direction
G of the projection of uf;), oT by the direction —cfy of u® perpendicular to uf;). Exact
and linear relations, making this precise are given in the appendix A (see also King and
Ellis (1973) [67], Dunsby (1991a) [18] and Paper I [8]). Here we will restrict ourselves
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to the linear theory by assuming that ;) < 1 which corresponds to looking only at
small deviations from local equilibrium. In this case cosh ;) ~ 1 and sinh Bay = By

and u” and uf;) satisfy the following relations:

’U;a'uft(li) ~ —1 ) (6-6)
Rvuly m —Bachy = cyua =0, ey =1, (6.7)
and
higpub ~ Byl = a;;.)u};? =0, &l =1. (6.8)
These relations yield the following
u(y —ut = Buy = Vi (6.9)

so V() is the velocity of the i** fluid component relative to an observer O0,. We assume

a

that all the fluid components share the same hydrodynamical 4- velocity uf;) = u7y;) in
the background FLRW model. It follows from the Stewart and Walker Lemma (1974)
[118] (see chapter 1) that B(; is GI (see Dunsby, 1991a) [18], and so V{}) is also GI. We
will see later that this is the variable that describes velocity perturbations.

Decomposing the total EMT, equation (6.3), with respect to u®, we find on using
(6.1) and (6.4) the total energy flux is given by

¢ = q", (6.10)
@
3 = ¢l + (o +P))BE) = @ + (pey + PV (6.11)

and the total energy density, pressure and anisotropic pressure are
L= R, P=D D0, Tab= Y T (6.12)
() () (@)
Decomposing the the total particle drift with respect to this arbitrary u® one has
=3 ([ +nev) . (6.13)
()
Now, if we make the Landau and Lifshitz choice, to fix Ul = g and u® = uf;, l.e.

choosing the energy frame for the component and total velocities, then ¢{) = ¢, = 0

and the relative velocities V.(*) satisfy

% (#(i) + P(i)) v =0, (6.14)
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Alternatively, choosing the particle frame which is the Eckart choice, fixes uf;) = ufy(;

and u® = ufy, so jij =7" =0 and in this case the relative velocities V.(*) satisfy
YonpVid=0. (6.15)
(@)
Since we wish to consider interactions between the components we define
ab a
T(i);b = J(al) y %J(l) - 0 3 (616)

where the second relation is just a consequence of the conservation of the total energy
momentum tensor: 7%, = 0. It is convenient to decompose the interaction term JG)

into components parallel and perpendicular to the fluid 4-velocity u,:
T = eyua + £, uaffy =0, h%useq =0. (6.17)

These equations will be used later for determining the behaviour perturbations of the
individual fluid components.

Finally we note that the above choices of u®, either the energy frame or the particle
frame, are not the only choices we could make. What is crucial is that, since we wish
to develop a GI formulation based on gradients orthogonal to the fluid flow, we require
that u® be covariantly defined and coincides with u% in the background; clearly both
u% and uf are natural choices that satisfy this requirement. If a choice of u* was
made such that it didn’t coincide with u% in the background, then gradient variables
defined with respect to u® would NOT be gauge invariant. (See Paper I [8] for further
discussion of this point). In the next section we will define a set of GI variables that

characterize the fluid inhomogeneity.

6.1.2 The inhomogeneity variables

The variables we use that describe the inhomogeneity of the total fluid have been
introduced in chapter 3 (see in particular sections 3.5.3 and 3.10), following the Stewart
and Walker Lemma of chap[ter 1. In the case of a multi-component fluid, we need to
define additional quantities that characterize the spatial variation of the density u;
and the volume expansion ©; of the individual components. We can do this in two
ways, either by defining spatial gradients of each component with respect to the total

matter rest frame, taken to be u® = u%, so the fractional density gradient and the
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comoving gradient of the expansion of the i* component relative to this frame are

given by
. X
D) =a e (6.18)
and
20 =z (6.19)

where X (V) = hbap(i);b and Z{9) = hba@(i);b, or we could define gradients for the individ-
ual components with respect to the matter rest frame of the components themselves,

uf;y) = wjy;), 50 in this case we have

. NX‘(i)
Npl) — g2 (6.20)
K ()
and
Nzl =a"2{, (6.21)

where VX! = hl()i)a#;b and VZ{) = h’(’ O (i)p-

Relations between the various sets of gradients can be obtained using the results

t)a

of section 6.1.1 (see also appendix A), thus for example the linear transformation law
linking DY) to Y DY) is

NDY = DI — 3Ha (1 +wy) VI + eVl . (6.22)

H(i)

It turns out that for most purposes, it is best to use gradients defined with respect to
the total matter rest frame (after all, in this case we have one frame to use for all our
calculations instead of a whole set of frames, one for each fluid component) and in the

next section we will derive a complete set of equations for these variables.

6.2 Equations

6.2.1 Total fluid equations

The equations for the total fluid density perturbation variables D, and the companion
variables Z,, C, and C, have been derived in chapter 3.! Here we recall the main

results: the evolution of D, can be obtained either by a pair of first - order equations

!For the imperfect fluid case, these equations were presented by Dunsby [18].
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for D, and any of the variables Z,, C, and 6', or by a second - order equation for D,.
To derive the large scale evolution, the pair of equations for D, and C, is the most
useful

5 = de?He 2 2K 2 3 Ir2xyb 4a’Huw 2 2K
Ca - (14+w) (V T a2 ) Da -+ 24CSCL H V Wab + (1+w) (V 22 ) Sa.

[

+ LREHwe | 4g3 V.V (F, + 1) + [4Ka — 22°h] V VP8, (6.23)

(14+w)
Do~ {3Hw - [2 - £ H '} D, - LH2C,
=3a(14+w)H[F, + 1] —a(l+w)V, V7, (6.24)

because at large scales C, can be a conserved quantity, so that the evolution of D,
can be obtained directly through (6.24) (see section 6.4). In general however the
dynamics of D, is determined by a second order equation, which follows directly from

the equations above. This equation is

'jja + (2 +3c§ — 6w> H@a

— [(% + 4w — %wz —_ 3c§> Kl + <5w — 305) A+ (cg — w) 12;{(] D,

a

—c2 (< 4+ V) D, —w (& + V?) & — 6a (1 +w) He]Vwa

a?

a?

=a(l+w) [(-—?nuu + 3A — _’iﬁ) [F, +II,)+3H [Fa + Ha]
+V VO [Fy + IL) — 2BV, VP, — VoV, (6.25)

It has the form of a wave equation with exira terms due to the expansion of the
universe, gravity, the spatial curvature, the cosmological constant, the divergence of
the vorticity and imperfect fluid source terms. When F, = ¥, =1II, = 0 and we have a

barotropic equation of state, p = p(g) = & = 0, and this equation reduces to equation

(3.97) in chapter 3 (see also EBH [36]).

6.2.2 Component equations

To study the behaviour of the individual components it suffice to have the linear
conservation equations for energy and momentum for each component in the total
matter rest frame (u® = u%). From equation (6.16) and (6.17) we can derive these as
follows:

,zl(,-) + 3h(i)H + h(i)vaq}f(li) = &) (6'26)
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and

hyaa + Y + hey [Fcfi) + Hgi)] T (1 + Cg(i)) e =, (6.27)
where (analogously to (3.154))
i) _ g i i 1 i
FO =99 — (3¢, — 1) Hel), 1l = mvbmﬁg : (6.28)
é(i) (i)
g = % _ iy (6.29)
o Moo

and

by = () +26) - (6.30)

When we have a perfect fluid ¢{) = 0 and so ¥{) = V() is just the relative velocity of
the 7** fluid component relative to an observer moving with the total fluid (cf. equation
(16)).

We can now use the above equations to calculate an equation for the gradient D)
for each component, defined in section 6.1.2. This is done in the same way as we did
for the total fluid, except that now we will have extra terms due to the presence of

interactions between components. We obtain
DY) — 3Hw DY) + (1+wg) Za = 3a (1 +w) H [FO + 1]

- Safl (1 + cg(i)> e ¥ —a (1 + w(i)) Va V¥,

H(i)
3Ha £z a a ;
_QIJ—(:)—fé ) + e Vaf(,') + He(i)a“ — ;I:T)E(i)’p((]) , (6.31)

where the main difference with the analogous equation for D, is the explicit appearance
of an acceleration term: this term vanishes if there is no interaction (i.e. if €; = 0).
Here f(9) and €(;) represent respectively the perturbation in the mean momentum and
energy transfer rates between components due to interactions (see equations (6.16),
(6.17). If the interactions are specified, fl) can always be written in terms of v,
This will be illustrated in section 6.6, when we study perturbations in a photon - baryon
system. The above equation is coupled to those for the total fluid through the comoving
spatial gradient of the expansion Z,.

An equation for ¥{) in terms of the total fluid quantities follows from equation
(6.27) by substituting for the acceleration a, and using the total momentum conserva-

tion equation (3.153). This momentum equation (relative to the frame u%;) is

B — (3c2,) —1) H®L) + e (1+¢,) ew¥) = Fu+ T, — )
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+ o [y uDa — he? iy D) + hiiyp€a — A EY )] + I (6.32)
where we have used equation (3.74) and its component equivalent given by

oYW = Zyui DY + pp €l (6.33)

a

£ being entropy perturbation of the :** component. Using the momentum equations
(3.153) and (6.27) we can write the first order equation (6.31) for the component

density gradient in the following useful form:

DY 3 (wgy — ) HDY + (1+wey) Zo = 3aH (1 +wpy) [Fo + 1)

a

+e (3Hhg — ) [EpDa + pEa] — a (1 4+ wpy)) Vo V' T

H(iyh
—3Hw) € + 25 Vae) — pigee Fa + 1] — goeDi) (6.34)
where
pEa = (yn DY + pE) — uDa (6-35)
()

and 1

¢ = 372 bl - (6-36)
(1)

In order to see the physical meaning of the variable £,, we can rewrite equation (6.35)

using the expression for c?:

gx h 1
pla = ZP Tt (Z> P (el = ) SE7 (6.37)
i.J
where
Sl = B pl) _ HApG) (6.38)

a hay e h
This shows that the entropy perturbation consists of two parts; a part coming from
the entropy perturbation of each component £{") and a part coming from the difference
of the dynamical behaviour of the components SG1) | This latter part turns out to be
the variable characterizing the time evolution of isothermal perturbations (KS [69]).

When there are no interactions equations (6.32) and (6.34) reduce to

¥ — (3¢ — 1) HYY = Fy + I, — 1Y)

o [ D — heyrDE) + hiypea — hpp €] (6.39)
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and
DY — 3 (wpy — ) HDY + (1 +wipy) Za = 3aH (1 +wgy) [Fa+ L]

+3 (L4 ) [€0Da + pEa] — o (L+wy) VaV*8 — 3Hw £ . (6.40)

6.2.3 Relative equations

In the last section we defined the variable S{'). This is one of a set of relative variables,
that is, variables relating features of pairs of different fluid components, dependent on
the choice of the individual velocities but independent of the choice of the overall frame
(for this choice does not enter their definition), which allows us to clearly distinguish
between isothermal and adiabatic perturbations (KS [69]). It is perhaps worth to point
out again that we assume that the single component fluid 4-velocities u{;) coincide in
the background, so that these relative variables are automatically GI (as for V{, (6.9));

they can be defined in terms of the component variables used in the previous section:

Slr) — fapl) — HApl) - gl = wl) — gl (6.41)
. hy —e heiy a a a
(i) = P e() _ P gl ) = L) L)
2 heiy & - hes >g“ Ja hay — hiy? (6.42)
€)= oy — i, O =10 -1, (6.43)
Va(ij) — Va(i) _ Va(j) ) (6.44)

Using the equations for D{) and DY) derived in the last section, it is straightforward

to find an evolution equation for S{*). After some algebra we find
SO0 4 T (1 ep))egy S + eV VHUEY) + 3HED
= —5€6 [cinDa + pEa] — agqy) [Fa + Ia] + aVaeg)

he; : 2 i
- F(({)l“(i)[h(j)(l + Cj(i))f(i) - h(i)(l + Cs(j))e(j)]plg) . (6-45)

Similarly, the evolution equations for ¥(!) and ¥l give

U _ [(3c3(. 1) B - (14 cy) em] )

- |:3 (cg(i) - Ci(i)) H + h:i) ( 8( 7) + 1) €1 — (1 + ca(] ) €(7) ] \P( J

— s (S — ) po DY — L2, S — Ll — (D 4 f9) . (6.46)
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Using the following relations for the relative variables:

S by =h (¥ -, , (6.47)
0
and
S hpSHY = pEADY — uD, (6.48)

we can write the above equations in terms of just total matter and relative variables:

glid) _ [3 (cz(i) + ci(j)) - 1] HU) ¢ % %} hy [cg(j)‘lf((f” - cg(i)‘l’gﬂ)}

(cg(i) + 1) e(i)\llgil) <1 + c? U )) E(j)‘Ijgﬂ)jl

+ %% A [hzo ’l( i)
= 3H (& — ¢y) Tat [71?17 (14 ) co — i (1 + ) e(,;)} 7,

— e (G — clp) #P — 3 (i — i) I - 7

- ?ilﬁ - by (€S8 — e 587) - T + £ (6.49)

i.e. the relative velocity equation, and

o1 . l. .
S+ & % by i:h_(l_) (1+ ) €S = 55 (L + ) e )5(9”}
= [a—) (14 <) e — 5 (1+ <) fm] #Da — ye(ij) (G Da + pEal
— ey [Fa+ ] + aVaes) — aV, V'Y — 3HEW) (6.50)

i.e. the relative density perturbation equation. These two equations are the most
important in the study of perturbations in multi- component fluids. They show that in
general, adiabatic or total density perturbations are coupled to isothermal perturbations
and that either one can be generated from each other. A nice illustration of this will
be discussed in section 6.6.

When there are no interactions these equations reduce to

S 4+ av, Ve L 3HEM =0, (6.51)
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and
¥ — [3 (el + ciy) — 1 HED + _Zhu [y B8 — 3 28]

= 3H (- Cim) Vo — o () - Cgu)) Dy — 1 (X + ) S

_ g(w) +— Z hay (25 SE0 — 2 SPY) — Tl (6.52)

Two-component fluids

Since it may be useful for many applications, let us write out these equations explicitly

for two components. In this case the relations (6.47) and (6.48) give

Bz
y) =g, 1 Mg (6.53)
and
hey .
pyDE = 2 (Do + by S (6.54)

So equations (6.51) and (6.52) become

S0 4 oV, Ve L 3HEM = 0, (6.55)
and
5 (12 2 12
B — (3¢ — 1) HUL — 3 (el — clz)) H Y
=~ () — ) pDa— 2SI REY T (6.56)
where )
= (Al + b)) - (6-57)
For a mixture of two perfect fluids, II{!*) = ¥, = 0 and ¥{'?) = V(12 50 these equations
further simplify to:
S0 1+ av, vV 1 3 =0, (6.58)

and
V9 — o 1) HVOD =~ (4 - ) D2 — LESE 6 (650

A very important consequence of these two equations is that the concept of adiabatic

perturbations makes sense only if the two components share the same speed of sound
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(Kodama, 1983a [68], KS [69]). For the perturbation to be adiabatic, both £(12) and
S{12) must vanish in general. It follows from equation (6.58) that V(12 must also vanish
and from equation (6.59), this implies that (cg(,) - c§(2)> uD, = 0. Since D, # 0, we
find that ¢,y = cZy)-

6.2.4 Scalar equations

So far we have only considered the evolution of gradient gauge-invariant variables, for
example D, which describes the spatial variation of the density orthogonal to the fluid
flow. A = aV®D, is the part of the density evolution relating to the aggregation of
matter. Since we are interested in matter clumping in this chapter we will concentrate
on this variable and define companion scalar variables by taking divergences as follows:

For the total fluid the scalar variables we need are

Z2=aV"2,, C=avC,, ¥=aV'¥,, (6.60)

F=aV'F,, I =aV"I,. (6.61)
Similarly for the fluid components we have
Ag =aVeD | Ty =averld) | I, =avend), (6.62)
Ewy = aViEY ,  fuy =aVefl), (6.63)
and from these we can construct relative scalar variables:

Sus) = aVeSi Wy =aVie) Ty = a VeI (6.64)

Eiy) = aVEN , fujy = aV D (6.65)
As we already seen in chapter 3, evolution equations for the total perturbation vari-
ables follow by taking the divergence of the corresponding gradient equations (see the
previous sections) and keeping only the linear terms that arise. We repeat here only the
basic equations. Taking the divergence of equation (6.24) we obtain a scalar equation
for A in terms of the curvature variable C:

A—{3Hw—[2 - K| H '} A- (500

2 da?H

= 3a(l+w)H[F+1]-a(l+w)VT, (6.66)
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while the evolution of C itself is governed by

C = WHLOVIA 442 [Ov2 4 K¢

+4a®HOVE[F + 11] + [4Ka — 22°) ©)V*0 . (6.67)

The evolution of A can be also directly determined by the second order equation
(3.183). In addition to the above equations, we need those for the single components
scalar variables. For the fluid components we take the divergence of equations (6.32)
and (6.34), which gives

By — (3¢ — 1) B + 7= (1+ ) e ¥ = F+ T~ Ty
+ G [hoye2pds — heZgymnAg + hepE — hp( €| + + g fo.  (6.68)
and
Ay — 3 (w — ¢4p) HAw + (1 +wg) 2 = 3aH (1 +wg) [F + 1]
+ #()h(SHh() )[cyAerE]—a(l—i-w )V2lI’
+ #“—(:_)-Vze(-) — 3Hw &y — o €0) y[F+10) = mé( RYAVE (6.69)

In the same way, we take the divergence of equations (6.50) and (6.49) for the relative

variables to obtain

S0 4 - Z h 1:71_1— (14 ) e S™ — 5= (1 + ) 6(1)5“')}

= —% [;1(1—‘) (]_ + Cg(i)) €Ly — ;l—(l;; (1 + Cz(]‘)> E(j):l P‘A - 71{5(1’.7) {C:qz/“A + pg]
— CLE(ij) [F + H] + G,VZE(,']') — CLVZ‘I’(I'J') - 3Hg(”) ; (670)

and

1 | |
T %): ha [h:”? (2 +1) @ = 75 (1 + <) E(j)‘l’“”}

= 3H () — ) T+ {h( = (1+ ) e — i (1+ <) €<i>} v
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. L2 ' i) _ Le(is
o ek (Cg(i) B ci(i)) pA - (C.:(i) - Cﬁ(j)) Sta) — Lgld)
1 ; , Iy .
+ ah (Z h(l) (Cg(j)g( - Cg(i)S(ﬂ)) ~ ) 4 f( I, (6.71)
]

In the case when we can neglect interactions and specializing to two components (see

equations (6.55) and (6.56) in the previous section), these equations reduce to
S0 L aV2 1y + 3HELy =0, (6.72)
and

Big) — (362 — 1) HU(1p) — 3 (X — clyy) HY

= % () = ) mA = 12802 — £Eun) — T - (6.73)
Finally for two perfect fluids the above equations reduce to
SUB 1 aV* Vo) + 3HE 2 =0, (6.74)
and
Vi — (362 = 1) HViuoy = = & (¢ — o) O = 562500y — L€z . (6.75)

6.3 Relation to other approaches

In our approach we use a covariant formalism, and geometrically defined variables
which are exactly defined and GI at any order, since they vanish in a FLRW universe
model. In chapter 4 (Paper I, see also Goode 1983, 1989 [50, 51]) we have related these
quantities (in the case of single fluid) to those constructed by Bardeen [1]. Here we will
only consider the most important variables used in the study of multi- components,
for example the component and relative velocity perturbation variables.

Let us first consider the velocity perturbation variable V.(*) for the 1** fluid compo-

nent, which we defined in section 6.1.1):

V) =4 g, . (6.76)

a a

From this we define the scalar velocity perturbation V), simply by taking the diver-

gence
Vi = aV“Va(i) = aV* (u((li) — ua>

= a(0yh-0), (6.77)
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to first order. We therefore have
@(l) = @ + a"lV(i) . (678)

Taking the spatial gradient orthogonal to u{), namely V', we obtain a relation between

Z‘gi) = VQ[@(Z') and Z,:
7 = Zo + [ - 36k VY + a7V Wy (6.79)
where we have used the zero- order relation

0 =3 3uxh. (6.80)

Taking the divergence of (6.79) we obtain
Z0 - 2 =a (V2 + %) V) — IshaV]) . (6.81)

Now, using the Ricci identity for u{!), we can find the (0,v) constraint equation for the

1*f component:

220 + Vool — VPl = kb, — sV (6.82)
while the (0,v) constraint for the total fluid, equation (3.157), can be written as
%Za + V”wab - VbO'ab e lih‘I'a . (683)

Taking the divergence of these two constraint equations and eliminating the energ

flux term ¥, we obtain
2(2 - 2y) - a® [VaVPow — VOVPe)| = arhV],) . (6.84)
Finally, substituting for Z — Z(;) from equation (6.79), we obtain the following relation:
a [V“Vbo'ab — Vavbo'g?] — —% (V2 + .‘i{}_) I/(z) . (685)

This clearly shows that there is a relation between the scalar relative velocity variable
Vi;) and the total divergence of the difference between the shear of the total matter

and the shear of the i** component.
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Harmonic analysis

Let us now harmonically analyse this relation using the covariant harmonics defined

(

in appendix B. The harmonic components of o, a‘al,;) and V{;) are:

ow = 5 (eDQY +o0QL)) (6.86)
0((:2 = (o-r(:t)()i)Q((z(l};) + O'Ei()i)ng)) ) (6.87)
and
_ (k)
Viy = Ve, (5.9
where, following KS [69], we denoted by o, = —Vks the shear harmonic component

(see equation 3.45 in their paper), and we have put the subscript KS to distinguish this
“velocity perturbation” from our V.?> Clearly, the vector parts of the above expressions

do not contribute to scalar perturbations, so substituting the scalar parts into equation
(6.85) and using the identity (6.85) we obtain:

Vi =k (ol —ol))) (6.89)

mz)

The relationship between the two variables is therefore clearly given by:
- ~(7)
Vi =~k (Vs — Vih) (6.90)
and the relative velocity variables are related as follows:

-(k
Vv i

=RV (6.91)

)
We now turn to the density perturbation variables. In chapter 4, (Paper I [8]) we found

that the scalar variable A we use is related to the GI Bardeen variable ¢, (denoted

also by A in KS [69]) as follows:
= ——kz&‘m = —sz[(s y (692)

where again we use the subscript KS to distinguish between Kodama and Sasaki and
us. It follows that the relationship between the relative variable S(;;) we use, defined

in section 3.4 equation (6.2.4) and its equivalent Kodama and Sasaki variable is:

Sy =~k S - (6.93)

2For the total fluid, the variable Vs is nothing but the Bardeen’s variable Véo) introduced in
chapter 4 (Paper I [8]).
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Using the above relations and the ones derived in Paper I [8] (see sections 4.2, 4.3) it is
now straightforward to derive the equations in BI [1] and KS [69] from our equations.
For example, equations 5.53 and 5.57 in KS [69] follow from equations (6.70) and (6.71),

with ¢{) = 0 since Kodama and Sasaki work in the energy frame.

6.4 Conserved quantities

In chapter 3 we introduced two variables, C, and C., and their divergences, C and
C, which are useful in the discussion of the large scale evolution of energy density
perturbations. In this section we will briefly discuss some of their properties and
the equations which they satisfy.®> Such conserved quantities are useful in connecting
different epochs (e.g. radiation dominated and matter dominated eras) in the evolution
of the total density perturbation.
Consider the scalar variables C and C: as we have already seen in section 3.10)
they are related by
C=aV'C,=C—-{EA, (6.94)
so they coincide when K = 0. Writing equation (3.179) in terms of harmonic compo-

nents the evolution equation for C*) is

5®) da’He; (k2 k) o 4a?H'w [3K _ _K? k
C = 4 () AW + e [ - ] W

1a°B® (o) [F® + W] — B [4Ka — 22°h] (=) ¥ (6.95)

a?H?

Now, the eigenvalue k does not directly correspond to physical wavelengths unless
K = 0 and the correspondence changes with different values of K. Considering only
the K = —1, 0 cases, k is related to physical wavelengths by the time independent

wavenumber v:

B =1 - K, (6.96)
where v > 0 is a real number, and physical wavelengths are defined by*

A= (6.97)

il

|8

3These quantities are conserved only at scales larger than the horizon; it is possible however to
derive quantities which are conserved at any scale; details and an application to inflationary universes
will be presented in Dunsby and Bruni (1991) [20]

1We recall that in the K = 1 case k is related to v by k% = v(v +2), v = 1,2... (see Harrison,
1967 [54]). Minimum values for k2 are: k> =0 for K = 0, k* =1 for K = —1 and k? = 3 for K = 1.
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so for a wavenumber v equation (6.95) becomes

6 = S (i) A+ B [ — ] €
— 4PH (B — ) [PV + )]
~ H*[4Ka - 24°h) (0 — i) TV (6.98)

For wavelengths A > H™! = a?UT < 1 this equation reduces to

=) 4a’H3c? K v 1a?H*w [ 4K v
O = +i (QZH.l)A()_;_ — [GYH?]gU

+ 4B () [FY) + 1] + B2 [4Ka - 20°h) () ¥V . (6.99)

Let us now examine the consequences of this equation for a number of different cases.

If the background is flat, K = 0, we immediately see that C = C 1is conserved even
when entropy perturbations and imperfect fluid source terms are present. This is a very
important result, since we can now use this conserved quantity to write down a general

solution of the first order equation for A™), (3.177), in the long wavelength limit:

i t R
AW :/ U e*‘“ﬂdtz] BW(t,)dt, , (6.100)
tp t1
where
A(t) = 3Hw — £+, (6.101)
BY(t) = L3900 4 36 (1 +w) H [FV + 1] (6.102)

and t, is the epoch at which an initial condition for AW is specified.

The conservation of C is also very important in the study of perturbations in
both standard and non-standard inflationary models (based on generalised gravity
theories.”) since it can be used to directly connect the amplitude of present day large
scale structure, which came inside the horizon during the matter dominated era, to

the initial conditions just after horizon - crossing during the inflationary era.

5The fluid flow approach to perturbations can also be used to study perturbations in generalised
gravity theories. The basic idea is to treat all additional contributions to the field equations except,
the Einstein tensor part, as contributions to an effective energy momentum tensor (see [88]) Effective
fluid quantities are then easy to compute and GI quantities based on spatial gradients can be defined
as usual (see Hwang, 1990 [59]).
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We now turn to the case when the background is an open (K = —1) model. Suppose
we can neglect entropy perturbations and the imperfect fluid source terms g, pw)

and I, then C is conserved if the following inequalities hold:

2

-L—<<1 and

1
i S <1 (6.103)

i.e. if the long wavelength limit is valid up to v = 1. However, in an open universe the

cosmological density parameter (1 is given by

1

)
a?H?

Q=1- (6.104)

so the second inequality only holds if § is close enough to 1, but then C is also
approximately conserved. The properties of ' and C are discussed in the context of

scalar field dominated universes in BED [8] (see section 5.2.5).

6.5 Perturbations in a radiation - dust universe

6.5.1 Background model

In this section we will discuss a simple application of the equations presented in the
first part of this chapter. We will assume that the background model is described by a
flat (K = 0) FLRW, containing a mixture of non-interacting dust (pressureless mat-
ter) and radiation with vanishing cosmological constant (A = 0). By non-interacting
we mean that each fluid component satisfies the background or zero-order conserva-
tion equation with vanishing interaction source term. For dust and radiation these

equations are:

gy +3Hp@) =0, (6.105)

and

py +3Hhpy =0, (6.106)

where h() = p) +pr) = %y(r) and the subscripts d and r stand for dust and radiation

3 1

respectively. These two equations integrate to give py = Ma™ and p;) = Ra™", so

the total energy density and presure is given by

p = B%—a_*’ (14 aa) , (6.107)
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and
p=gat, (6.108)
so h is simply
h=ga(4+30a), (6.109)
where M = p(q), a5, M=0R= [h(r), @0 R =0, a = & represents the fraction of dust

to radiation, 8 = \/%- and ay is the present value of the scale factor. The Friedmann

equation is

H? = Ry = 3%&_4(1 + aa) , (6.110)

|

so H is given by
H= 55 (1+aa)?, (6.111)

a?
where we have taken x = 1. Finally ¢ = 7‘:?— is given by

2 4 o
¢ = 3(4+3aa) (0112)

Note, this is not the speed of sound in the fluid mixture since the components are
un - coupled, i.e. there are no interactions. Having derived the background quantities

we now turn to the equations that describe the evolution of fluid inhomogeneities.

6.5.2 Small scale solutions

The study of density perturbations in a radiation- dust universe is very instructive
since, apart from exotic stages, the matter in the universe is well described by such a
mixture. Long wavelength solutions for a dust and radiation background have been
discussed in KS [69] and Dunsby (1991a) [18]. Let us now look at the case where the
characteristic size of the fluid inhomogeneities is much less than the Jeans length for the
radiation but is still larger than the mean free path of the photon enabling us to neglect
interactions between the fluid components. In this limit we can take the radiation
energy density to be approximately homogeneous so we can assume that A,y can be
neglected (Groth and Peebles, 1975 [52], Peebles, 1980 [103]). This reduces the problem
to one of studying the evolution of matter fluctuations on a homogeneous radiation
background. Although the radiation causes negligible gravitational perturbation in the
matter density, it does effect the growth of the matter fluctuations by speeding up the

expansion of the universe.
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Neglecting the interaction and imperfect fluid source terms, and writing in terms of
harmonic components, the basic equations for the matter and velocity perturbations

are (6.69), (3.178) and (6.68):

AR 4 20 = 8L [2uA® 4 pe®] +a (&) V), (6.113)
20 1 ogz® 4 Lua® (B [2ua® 4 pe®] =0, (6.114)

and
T L HVE = 1 [2pat 4 pe®)] (6.115)

where we have used the fact that w(y = 0 and W(d) = V(d) . We can also write down

an equation for the relative velocity V(Eikr) of the dust and radiation. It is:

(k) (k) _ (k)

V(dr) (3C - 1) HV 4y = it = 22 (6.116)
where ¢2, for dust and radiation is given by ¢? = . Now, since Ay can be neglected,
we have the following relationships:

(k (k) ~
ApAE) L pe® i Ay =0, (6.117)
and
k k
Sl ~ Al (6.118)
so the above equations reduce to
(k) k) _ (k)
AR 420 — o (B) VY =0, (6.119)
£+2H2® 1 lp(d)AE’“g =0, (6.120)
V(Ei) +HV (6.121)
and the relative velocity equation becomes
VI i gyE =0 (6.122)

Equations (6.119), (6.120) and (6.121) can be combined to give a second order equation
for AEZ;:

A () A ( (k) _

AW+ 2HA) — Lpw Al = 0. (6.123)
This is simply the equation for the evolution of matter perturbations in a radiation-

dust background.
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Substituting for the background quantities H and p(4) and changing the time vari-

able to a, this equation becomes

ALR) LK)
d2A dagy)

243a 25 3 (k) _
dagd) Za(-li—}—a) da 2a(1+a)A(d) =0. (6124)

where we have taken a = 1, so that a = 1 at dust and radiation equi- density. This

equation was obtained by Mészaros (1974) [91] and has the particular integral

AR =1+ 2a, (6.125)
so the general solution is
(k) _ Ak 3 k 3 VaFi+l 1/2
Al = AW (14 2a) = LBW [(1 + Ya) In () -3(a+1) ] (6.126)

where A%) and B™*) are positive constants. This solution was first obtained by Groth
and Peebles (1975) [52] using the Newtonian approximation. For large values of a,
which corresponds to the dust dominated stage, the growing mode of this solution is
proportional to the scale factor a, which agrees with the Einstein - de Sitter model.
Let us now consider the velocity perturbation equations (6.121) and (6.122). Sub-

stituting for the background quantities and as before changing the time variable to a,

we obtain
A L
2 TV =0, (6.127)
and
N |y g 6.128
da + a(4+3a) (dry — ¥ ( . )
The solutions are
vk Y 6
AR (6.129)
and
Vi) = B[4t (6.130)

where Vo(k) and E®) are constants. These two solutions show that in general for large
values of the scale factor a (normalised here to equi-density) the 4-velocity of matter
will coincide with the total 4-velocity, while the relative velocity V(4 will tend to a

constant value.
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6.6 Perturbations in a photon- baryon system

6.6.1 Assumptions and background evolution

According to the standard model of the universe, between the epochs of cosmological
nuclear synthesis, when the light elements such as deuterium and helium are produced,
and the hydrogen recombination, the cosmic matter can be well described by a mixture
of photons and baryons in the form of nuclei, electrons, and neutrinos with constant rel-
ative abundances. Clearly photons are important since radiation dominates the cosmic
energy density and pressure during this period and baryons are of course responsible
for the large - scale structures we see today (or at least for the luminous part of it). Al-
though the contribution of electrons to the total energy density can be neglected, they
do provide the necessary coupling between photons and baryons through Thompson
scattering. Furthermore, because there is a small neutron - fraction of baryons in the
standard model of the universe, we can regard baryons as being totally composed of

protons. Given these basic assumptions, the total energy density is given by

where
Hr = 40‘bT4, H(m) = By , (6132)

oy is the Stephan- Boltzmann constant and m, is the proton mass; and the total

pressure is
P = Py + Pim) (6.133)
where
P(r) = 5H()  Pmy = (1 +ze)npT (6.134)

Te

and z, = -

is the fractional hydrogen ionization where n. is the number density of
free electrons. Note that in the above equations, unlike the radiation and dust case
discussed in the previous section, we include the pressure of the matter. Although
its contribution to the total pressure is negligible, so in practice we will assume that
P(m) = 0, it does play an important role in the form of the sound speed c(,), defined
by C%m) = gi(%, when one considers matter density perturbations on scales comparable

or less than the matter sound horizon.
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With these arguments in mind, we can now write down the background evolution
equations. These are respectively the energy conservation equations for matter and

radiation:

ﬂ(m) + SH/J,(m) =0, (6.136)

and assuming the background is flat (K = 0), the Friedmann equation:
H* =1p, (6.137)

where p1 = pi(y) + f(m) Is the total cosmic energy density and we have taken & = 1.

6.6.2 Interaction terms

Before we go on to consider energy density and velocity perturbations in photon-
baryon systems, we need to discuss how to treat the interactions between components
which come about through Thompson scattering. Collisions between protons, electrons
and photons result in a transfer of momentum and this is described by including a
source term f;;) in the momentum conservation equation for each component. For

matter and radiation these equations are:
pmya + Y™ 4 gy F™ = f) (6.138)

and

hiryaa + Y7 4 by B = £ (6.139)

where h(;) = p() + P(r) = 34(r) and Fim) 4 £r) = 0 expressing the conservation of total
momentum.

Explicit expressions for f{™ and f(") can be found using relativistic kinetic theory
(see for example the book by De Groot, Van Leeuwen and Van Weert, 1980 [16]). We
will only present the results of this calculation here and refer the interested reader to
appendix E of KS [69] for a detailed derivation.

It is found that the momentum transfer rate for matter and radiation is given by

™ = A HE. (VO - Vi)

a a

— (6.140)

a 7
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and so the relative interaction variable f{™") defined by equation (6.42) is found to be

(mr) L™ A7
fa him)y by
= iR ymn (6.141)
 H(m)
where R, defined by
R.= 54—, (6.142)

is the ratio of the horizon size to the mean free path for photons colliding with electrons
(1. is the mean collision time of photons with electrons). Since we are primarily
interested in scalar perturbations we can simply compute the scalar relative interaction

variable by taking the divergence of equation (6.141):

f(mr) = avafa(mr)

_ _Hh |
= — RV - (6.143)

This 1s the variable we will need for the rest of this section.

6.6.3 Isothermal versus adiabatic perturbations

As we discussed earlier, when one considers the coupling between isothermal and adi-
abatic perturbations, it is much more convenient to use the equations for the relative
variables V;j) and S(;;). Substituting for the background quantities in to equations

(6.71) and (6.70) and writing in terms of harmonic components, we obtain the follow-

ing:
7 (k) 1B (1 ge2 _h_ (k)
Vimn) T H [3 (1= 36m) + 3 >R”] Yimr)
2 1.2 k k
= —# (C;( ) - %) ,U'A(A) - a_lg [%ju'(m) + %cs(m):u’(l‘):l S((m)r) - HErr?r) ’ (6144)
and
£ (k) /
Sty =a (%) Ve, (6.145)

where h = ,u(,) + p(r) + H(m). From these two equations we can derive a second order

equation for S(W)'

(%)
Stor)

50+ H (450 (1 - 3e2,.) +
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+35 ('cfz) [ﬂ(m) + 4C§(m)#(r>] 5((:3r)

= EY AR _ g () e :
=4 (1-32,,) (5)A® - (5) I, . (6.146)
This equation shows how isothermal perturbations are coupled to adiabatic pertur-

bations. To close the system of equations we need an equation for the total density

fluctuation:
A= (M(r Ay + /«L(m)A(m)) : (6.147)

Using equation (3.183) we can write it in form useful for the present case:

(,uaSA(k))' +H (2 + 3c§> (uaSA(k))

+[(&) < 44] (meta®) + 3 (&) =25 (36 — 1) S

a? a? s(m

= ha' [3HI - {py + (&)} 1] (6.148)

where ¢? is the sound velocity in the total fluid (since the fluid is coupled) given by
A1) + 9 ) H(m)
3 (4ur) + 3nem)

CSZ

(6.149)

AL

and we have used equation (6.37) to express the total entropy perturbation &%/ in
terms of S((r];)r):
pE®) = 8ntm (3c2 1) S0 (6.150)

Many authors regard perturbations of the total energy density as purely “adiabatic”,
however thls is not quite correct since we have to separate the contribution of S(fn)r
from A®), This can be done using the relation (6.48). For matter and radiation this
is:

#A(k) ghA(k) +u m)SUf)

o (6.151)
However, since initially radiation is the dominant fluid component, we have A% ~
AEI:;, so during this stage we can take A%) as being the amplitude of the adiabatic
perturbation.

This suggests that it is much more convenient to regard Smr and A%Irfg as the

dynamical variables of the problem, so replacing A®) in equation (6.146) using the

above relation gives

i s m [51 (13 ) + iR+ 1} S+ (5) 2y Sty

m r "l T

=1 (8) (1) B0 o (B 10, 5152

ol

l

[S)
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This equation clearly shows that isothermal perturbations can only have oscillatory
behaviour on scales smaller than the matter sound horizon. We can also substitute for

A™®) in equation (6.148) and this gives

(a2a)" + 7 (24 36) (1e2A3) + 3 (3) - 3] (ha*a3)

a?

— (k) 2 S(k)
= é‘a ( [ hS(mr — H (1 + 3cs(m) - LRC> S(mr)]

H{m)
+ihat [BHITE) — ey — (5) o], (6.153)

where we have substituted for :S;((fn)r) from equation (6.152) and used the following

relations:

k (k) E) _ (k
nf, =1l — ), 18 =L (A, + A1) - (6.154)

Finally, substituting for A(®) in the relative velocity equation (6.144) we obtain
7 (k) dpr (1 _ 9.2 _h (k)
N [;;1 (1—3¢2,) + RC] v,

(mr) H(m)

=11 (1 3¢ (/) 1.2 ok _ (k)
=1L (1-3c%,,) AW = L2 Sinny — Ty - (6.155)

6.6.4 Long wavelength solutions

In this section we will investigate the behaviour of perturbations on scales much larger
than the horizon, i.e. we will assume that a_"k';ﬁ < 1. In this limit we can assume that
the matter sound velocity can be neglected so we can set cg(m) = 0 and the system
becomes essentially equivalent to a radiation- dust universe, the only difference is that
we explicitly take into account the interactions between photons and baryons.

As in KS [69], it is convenient to introduce the following set of variables:

X8 = ha® A = () + wem ) AF) 5 (6.156)
and
Y® = pya®S (6.157)

Using these variables, setting cg(m) = 0 and neglecting the viscosity source terms for
simplicity, equations (6.153), (6.152) and (6.155) become

X(‘“>+H(2+3C)X+[ (5) - Lta] x®

R h * .
=3 [%hY("’) - H (1 - m&) Y(’“)} i, (6.158)
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Y 4 H [5—““ AR+ 1} YW =1 (5) Hmx®) (6.159)
and
i, + B [““ SR Vi = X, (6.160)

Let us first look at the homogeneous part of equation (6.158) by setting it’s right - hand
side to zero. Substituting for the background quantities and changing the time variable

to z = 1 + a we obtain

z—1

d2X(%) 2 dx (k)
e o T A P e B e 2 PO (6.161)
To solve this equation, change the unknown function X to u(*) defined by
X0 = 22 (z - 1), (6.162)

so equation (6.161) can be reduced to a pair of first order equations for

v=2 (6.163)
by lE- 2 -2]v=0, (6.164)
which can easily be integrated to give
u(z) = c1Q(2) + ¢z (6.165)
where
Q(z) = P (23 — 29—5;:2 + %z - §) , (6.166)

and ¢; and ¢, are arbitrary constants. Hence the general solution of equation (6.161)

1s

X® = AP X, (2) + AP Xo(2) | (6.167)

where
Xi(z)=2Y(z-1)"7, (6.168)
Xa(2) = [Q(2) + 2] Xi(2), (6.169)

A&’“) and Agk) are arbitrary constants and z is a constant to be determined (See KS
[69]; Chernin, 1966 [12]; Nariai, Tomita and Kato, 1967 [96]).
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Let us now examine the limiting values of these solutions. For a < 1 & 2z ~ 1,

corresponding to the radiation dominated stage we find

Xi(a)=F+4: -5+ (6.170)
and
Xo(a) = (H+it—t+.) (B+ %) +a(L+it-5+..),  (6171)
so that if we choose the constant z to be z = —19—6, we obtain
Xo(a) = %a, S (6.172)

which is purely growing. So in the radiation dominated era we can write the solution
for X*) as

X® = 104Hg 4 AMg-2 (6.173)

For a > 1 & z>> 1, corresponding to the matter dominated stage we find
Xi(a) ~ a=%?, (6.174)

and

Xo(a) ~a. (6.175)

So in this case the solution for X*) is
X® = 4Wg 4 4372 (6.176)

Turning to the homogeneous parts of equations (6.159) and (6.160), we see that,

because of their simple structure, they can be integrated to give
y® =% 4 W [ e Pda, (6.177)

and

Vi

k ~P(a
) = EWe P, (6.178)

where the function P(a) is given by

P(a) = /_cl; (Et HE‘:) + ”(’;)RC> da , (6.179)
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and E®) is an arbitrary constant. Substituting for the background quantities P(a)

becomes

Pla) = [ (g +42R) da. (6.180)
Now R., the ratio of the horizon size to the photon mean free path, is much greater
than unity at the cosmological stage of our interest, so we have P(a) > 1. This
means that the solution for Y(*) settles down to a constant value immediately after
it is provoked and so the isothermal perturbation has essentially one mode which is
constant with time. The reason for this is that the matter is so tightly coupled with
the radiation that it cannot move relative to the radiation. Indeed, this fact can easily
be seen by looking at the solution for the relative velocity, equation (6.178), which
tends very rapidly to zero. It is also interesting to note that the solution for Y ) s
independent of the scale under consideration so this constant isothermal mode remains
true on almost all scales of interest, provided of course R, > 1.

Consider now the case when Y(¥) is not present from the beginning i.e. there are
initially no isothermal perturbations but X*) is non zero. We then have the interesting
possibility that isothermal perturbations may be generated from adiabatic perturbations.

First consider the equation for Y{*). This can be integrated with the help of the

homogeneous solution to give

YW = g 2 it exp [ o (m +H# R ) day] S (ay) A2 da | (6.181)

where

§)(a) = Mm X W) (g) = 2 XM (q), (6.182)

3+-1

and ’ng = <%‘-) is the ratio of the reduced proper wavelength to the horizon size
a=1

at matter and radiation equi- density. Now since X(¥)(a) is a slowly varying function
of the scale factor (see equations (6.173) and (6.176) ) and R. > 1 the above solution

reduces to

k a 9a? N (g
Y( )((1,) = 2’}-%'{3,] ag (a1+1)(31aL+4)‘~’ Rcc(zll)da’l ) (6183)

Now let us consider the case where X¥)(a) has initially only a growing mode. Then,

in this case, from equations (6.173) and (6.176) we have
x® =140, a<1, (6.184)

and
X® =AWa, a>1. (6.185)
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From equation (6.142) we can express R. in terms of the scale factor a:®

R, = (_I{g_ﬁzzgq : (6.186)

where R, is the value of R, at matter and radiation equi- density. Substituting for R,
and X*) in equation (6.183) we get

k 5 Ag,k)
Y( )(a) = (E) maa y a << 1 ) (6-187)
and
k) g Ak 2
Y(a) = fapre?y e> 1, (6.188)
eqite

and this leads to an expression for S((il)r) in terms of Ay, R, and H = Ha,

n

RO

Sto(a) = e, a<l, (6.189)
and "
Ak .
Sto(a)= 7%=, a>1, | (6.190)

so when the wavelength comes into the horizon (H = 1) we obtain

Al (@)
S((rl;)r)(a’H) = I%_%zc)T,H{I)_aH ) ag K 1 3 (6191)
and
(k) A8 (ag)
Simryan) = Sy aa > 1, (6.192)

where ay is the value of the scale factor when H = 1. These results, although different
to the ones obtained by KS [69], give basically the same physical result, that is that
the generated amplitude of the isothermal perturbation is depressed by a factor of
order 1/R.(ag) compared with the amplitude of the adiabatic perturbation. Since
R.(ap) > 1 this is probably totally negligible, however it is of some conceptual interest.
The generation of isothermal perturbations from adiabatic perturbations has been
discussed in detail in the context of universe models dominated by two scalar fields by

Mollerach (1990) [93].

5Note, there is an error in the expression for R, in Kodama and Sasaki (1984) [69] and this leads
to different expressions for ¥ (¥)(a), S((ﬁl)r)(a) and Séfn)r)(ay).
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6.7 Perturbations in two scalar field systems

In this section we will study the evolution of the fluctuations in a two-component
scalar field system (¢(1), ¢(2)) in a spatially flat (k = 0) universe model (an application
is considered e.g. in Mollerach (1990) [93]). The fluctuations can be characterized in
two different ways; either by using the scalar gauge-invariant variables Ay, (1 = 1,2),
A, which correspond to energy density fluctuations of each component and the total
fluid and V[;), which corresponds to the velocity perturbation of each component, or
by using the relative scalar variables S, and V[;;) defined by (6.41), (6.42), (6.43) and
(6.44). As in the previous example we will concentrate on the relative variables.

For two components the equations we need are (6.74) and (6.75):

Stz) + SV*Viz) + 3HE 2 =0, (6.193)
and
Viigy — (362 — 1) HVj1gy = — 2 (%)) — iy ) A — L3S0y — £€02y . (6.194)
(12) z (12) Sk \Cs(1) a(2)) # $C0(12) — 5C(12)

We will assume that the energy density of each field is dominated by the potential
term, so |1 + w(l)l < 1land |1+ w(g)[ < 1. It is easy to obtain an expression for Ci([)
for the field ¢(,):

2 . BH‘i’(l)+2‘}’L}
(1) T T3HEG, (6.195)

A similar result can be found for ¢(s.

In the slow rolling approximation we have SHd.)(,‘) ~ —V'(¢(1)), so we can take
cz(l) = 05(2) ~ —1. Another very important point is that since we are dealing with
scalar fields, we cannot neglect the individual entropy perturbations &;). For each

component 7z = 1,2 we have
€ = (1= ) wo Do = 260 » (6-196)

where NA(i) is the energy density fluctuation of the 7*" fluid component defined in it’s
own matter rest frame (cf. KS [69] , Mollerach (1990) [93] and BDE [8]). However
what we want to look at are the relative perturbations defined in the total matter rest

frame, so using the linear transformation law

My =Ap —35HV , (6.197)
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we get an expression for the relative entropy perturbation £p9) in terms of V() and
5(12)2
5(12) = 28(12) - 6HSW12) . (6.198)

Changing the time variable to the scale factor a, equations (6.193) and (6.194), in
terms of harmonic components become:

(k)
s50 v osft) = s 18+ ()| v (6.199)

and o
dV; K (k

These two equations can be combined to give a second order differential equation for

k
V((l 2)) :

421 (k) dite) 2
ST+ [- 3+ w)] 2+ [1+30 1w+ ()] v =0 (6201

For scales much larger than the Hubble radius, % < 1, this equation admits power

law solutions. So assuming that |1 + w| < 1, we obtain

V) = y{Pami-ien) Ly gt (6.202)

Sy = = [3+2(1 +w)]| Va0 (6 - 3(1 4+ w)] Va0 (6.203)

where V:Ek) and Vék) are constants.
We can also look at the fluctuations in the total fluid. For constant w in the large

scale limit, equation (3.183) becomes

ST+ [6-3(1+w)| % —[12(1+w)-612=0. (6.204)

da?

The solution is

Ay = AP a2#00%e) L AR =343 (bw) (6.205)

with AFP and Ag) constants. It is also interesting to note that since k = 0, the scalar
curvature variable C is a conserved quantity for scales larger than the Hubble radius.
For details see section 5.

These equations thus lead, using our GI variables, to established results for infla-
tionary universes with two scalar fields (Mollerach, 1990) [93].
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6.8 Summary

In this chapter (mainly based on Paper II [21]) we have developed a theory of cos-
mological density perturbations in a multi- component fluid medium, based on the
GI approach presented in chapter 3 (and derived in EB [35]). We have introduced
here GI variables characterizing density and velocity perturbations in the single fluid
components, and relative perturbations as well. Then we derived a complete set of
linear equations, both for the single fluid components and for relative perturbations
variables.

As we did in chapter 4 for the total fluid perturbation variables, we have show
(using harmonic analysis) that the equations of Kodama and Sasaki (1984) [69] can
be recovered using the fact that their variables are a first order approximation to our
exactly defined covariant variables. In our view, this both clarifies and gives a physical
and geometrical meaning to their variables.

We then applied the theory to three physically interesting examples. First we con-
sidered perturbations in a radiation - dust universe and derived small scale solutions
for both the density and velocity perturbations[52]. We then studied perturbations in
a Baryon - Photon system, taking explicitly into account the interactions between com-
ponents which arise through Thompson scattering. We examined in detail the coupling
between adiabatic and isothermal perturbations in the large scale limit and corrected
a number of errors in the previous literature [69]. Finally we discussed perturbations
in systems dominated by two scalar fields, obtaining standard results [93, 10].

These examples demonstrate the utility of this approach in understanding situations
of importance in cosmology. The equations obtained here can be applied in many
situations of cosmological interest because they are completely general in terms of
fluid properties and interactions; and (by construction) they give a covariant and gauge

invariant description of properties of perturbed FLRW universes.






CONCLUSIONS

In this thesis we have presented a new approach to the relativistic theory of cosmolog-
ical perturbations and their linear evolution, and we have discussed the relation this
approach has with the standard treatment of the problem; finally, we considered some
applications.

The thesis is organized in six chapters: the first two review known material, al-
though chapter 1 is partially based on EB[35] and the whole synthesis given there is
original; in chapters 3-6 we have presented an original synthesis of the work carried
out with various colleagues and that as been published (or is going to be published) in
a series of papers (EB [35], EHB [37], EBH [36], BE [9], BED [10], Paper I[8] and Paper
I1[21)).

Chapter 1 was aimed to provide an introduction to the gauge problems affecting
the standard approach to density perturbations in cosmology. Therefore we discussed
gauge - transformations both from a coordinate point of view (section 1.1), and adopt-
ing a more geometrical approach: in particular in section 1.3 we presented the Stewart
and Walker [118] Lemma, on which we base our definitions of gauge-invariant vari-
ables. In section 1.4 we also provided a brief discussion of the usual gauge choices
made in the literature (cf. [69]).

In chapter 2 we summarized the covariant fluid flow approach to cosmology [27, 28].
In this approach Bianchi identities are regarded as field equations, hydrodynamic equa-
tions follow from the Ricci identities, and Einstein equations algebrically relate cur-
vature with the matter content at any spacetime point. The exact equations of this
chapter provide the framework for the following treatment of cosmological perturba-
tioms.

Indeed in chapter 3 (which is the core of this thesis) we introduced new covariant
and gauge - invariant variables characterizing density inhomogeneities in cosmology

(section 3.1), and derived exact non-linear evolution equations for them (section 3.2),
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coupled with the equations of the previous chapter. These variables have a straightfor-
ward physical gauge-independent interpretation: they represent the spatial variation
of energy density in the real universe [72]. In particular, we have identified the quan-
tity Da, the comoving fractional density gradient as the covariant GI quantities which

embody most closely the intention of the usual (gauge-dependent) variable §p/p.
In section 3.4 we considered the problem of the definition of the 4-velocity of the

fluid when this is imperfect: only an appropriate covariant choice leads to define GI
spatial variables as those introduced in section 3.5. Then we outlined a linearization
procedure in almost Robertson - Walker universes, and applied it to our equations, ob-
taining linear first- order propagation equations for our variables (sections 3.6). In
section 3.7 we introduced a new local decomposition that allows us to define GI scalar
variables, the most important being the divergence A of D,: A represents gauge-
invariantly matter clumping, i.e. scalar density perturbations. In section 3.8 we de-
rive: a) a Jeans criterion for gravitational instability, correcting a previous result by
Jackson [65]; ) the long-wavelength limit of equations, and corresponding first inte-
grals [3, 83] that exist for A = K = w = 0; ¢) the extra mode induced in the density
gradient D, by vorticity (EBH [36]). In the final part of this chapter we derived the
whole set of linear gravitational and hydrodynamic equations corresponding to the ex-
act equations of chapter 2; in section 3.10 we gave the equations for the scalar variables
previously introduced: in particular we derived the second order equation for A, which
corresponds to the main equation given by Bardeen [1] for his GI density perturbation

variable.

Chapter 4 was devote to compare the approach to GI perturbations followed here
with that of Bardeen: after a brief summary of his formalism, we systematically ex-
panded (to first-order) our covariant variables, showing that Bardeen’s variables are
the first- order- components of the covariant variables. From this expansion, we also

get the whole set of Bardeen’s equation.

The last two chapters (5 and 6) have been devoted to further extensions of the for-
malism, considering applications. In chapter 5 we considered the case of a scalar field
dominated universe, which is relevant to an inflationary stage[97]. Contrary to the
usual assumption, we maintained a non vanishing curvature throughout, introducing a
new variable and deriving perturbations equations in full generality: in this way these

equations can be also applied to situations different than the inflationary epoch [94].
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We also derived in a transparent way various results in the literature (cf. [3, 81, 82]).
Finally, in chapter 6, we considered a mixture of interacting, imperfect fluids. We have
introduced a set of variables appropriate for this situation, and derived equations for
them. We applied our formalism to three cases of interest: a mixture of dust and

radiation (cf. [52]), a mixture of baryons and radiation (cf. [69]), and a a pair of scalar

fields (cf. [93]).

There are various topics related to those treated in this thesis that have not been
tackled here, such for example perturbation spectra and the relations between a GI
treatment of perturbations and specific gauge choices. These issues are however treated
extensively in the literature in connection with Bardeen’s formalism (e.g. see [70] and
[1, 3, 61]), and the relations provided in chapter 4 between covariant GI variables and
Bardeen’s variables can be used to obtain e.g., the evolution of one of the covariant GI
variables in a specific gauge. Here the focus was on presenting original material as it
has been obtained in the papers mentioned above, with a resulting inhomogeneity (!)
in the treatment of the various topics related to cosmological perturbations.

There are in our view three main advantages in following the covariant- geometrical
approach presented here: a) it provides a unified treatment for the exact and the lin-
earized theory, thus giving a clearer picture of the almost FLRW model we use to
describe the real universe; b) the Stewart and Walker Lemma is valid for any back-
ground spacetime, so one can often use the same GI variables in perturbing different
universe models: in particular GI variables can be easily identified in perturbing homo-
geneous anisotropic spacetimes, and in this case the geometrical approach can be much
simpler than the standard perturbative technique (Dunsby 1991b)[19]; ¢) as pointed
out by Stewart and Walker themselves and remarked by Mukhanov et al.[95] (1991)
the use of exactly defined covariant variables has the advantage that if they vanish in

the background FLRW universe they are also GI under large gauge transformations.

In conclusion, we point out that the formalism presented here could be easily applied
to different situations, such for example in perturbations of different background mod-
els, or extended to treat perturbations in generalized gravity theories, as these latter

can be formally related to general relativity with viscous fluid source terms [88, 59, 60].






Appendix A

Tilt angle formalism

In section 2.1.1 we have sketched the relation existing between two timelike unit vectors,
as they are expressed using the tilt angle between them. Here we consider these

relations in more details, considering also the case when the tilt is small, § < 1.

A.1 Exact relations

Let n¢ and u® be two unit future directed timelike vectors fields

n’ng = uu, = —1; (A.1)
these can be regarded as the four velocities of two sets of observers @, and O,, and

the projection tensors

hab = Gab + UaUp , hab = Gab + TaTtb (A.2)
define the spatial part of the local rest frames (LRF) of these observers; these ten-
sors are the metric in the subspace of the tangent space which is orthogonal to the
corresponding vector: if this is hypersurface orthogonal, the relative projector is the
metric in the surface. We follow King and Ellis (1973)[67] on characterizing the relation
between n® and u® by the hyperbolic angle of tilt 3

u'ng = —coshB, (>0, (A.3)

and the direction of tilt: this can be specified either by the direction &* of the motion of
O, (the projection of u®) in the LRF of O,, or by the the direction —c* of the motion
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of O, (the projection of n?%) in the LRF of O, (the signs of these directions are chosen
as in King and Ellis [67]). Thus we have ‘

Rl = sinhBe =Ve = Von,=:&n=0, &&=1, (A.4)
Ryn® = —sinhBc? =V® = Vo, =cu =0, cuc® =1, (A.5)

plus the following useful algebric relations

u® = coshfn® + sinhfBc* n® = coshfu” — sinhfc" (A.6)
c® = sinhPBn® + coshBe® ¢ = —sinhBu® + coshfBc” (A.7)
Eou® = sinhf = —c,n° cq¢* = coshf3 , (A.8)
and
Ven, = Vu, = sinh’8 . (A.9)

Note that in (A.4,A.5) we have introduced Ve (V) as the covariantly defined spatial
component of the four velocity u® (n®) of O, (O,) in the LRF of O, (0,). The
physical meaning of the above relations is further clarified introducing the usual special

relativistic contraction factor v (see e.g. [73]), related to 3 by:

. ViE, Ve,
coshB=v=(1-v*)"7, v=tanhf =~ ool e, (A.10)

uin, un,

where v is the magnitude of the three dimensional relative velocities v¢* and —vc®
measured by O, and O, respectively. Then (A.6) are nothing but a compact notation
for the standard splitting of four velocity vectors in a time component plus a spatial

part, e.g.

_n L
ST V1=

except that this is a covariant splitting.

a

ua

(A.11)

We can now define the spacelike difference vector d* satisfying the following rela-

tions:
d*=u*—n*, d%d, =2(coshf8—-1)>0, (A.12

d* = (coshB — 1)n® + sinhB&* = (1 — coshfB)u® + sinhfBc* (
dic, = dG, = sinhB , dng = —dou, = 1 — cosh (A.14)

(

habdd = wh“bnb = -V y flabdb = f‘Labub = VG .
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Finally, the following relations hold between A%, and Ry

]—Zab = hab — Qd(aub) -+ dadb hab = hab -+ 2d(anb) + dadb (Alﬁ)
habiz'bc = hac - V;TLC = I;ac -+ ‘7071,& (Al?)
hachbdilcd = hab - V;VE) il'acil'bdhccl = ilab -+ f}a% (A].S)

Clearly, all the above definitions and relations are valid for any pair of unit timelike
vectors. In particular they hold when we introduce the four velocities uf) of the
fluid components (as in chapter 6), and it is understood that quantities as those in
this section are defined for the relation between u® (intended as the total fluid four

velocity) and uf;), except that the new quantities carry an index (7).

A.2 Linearization with respect to 3

The definitions and relations in the previous section are parametrized by the tilt angle
(3, so they can be linearized in a very precise sense when 3 < 1, i.e. the relative
velocities of O, and O, are not relativistic. If we systematically apply this procedure

we obtain the following set of useful relations:

u'ng ~ —1— 15° v~ (A.19)

htub =V ~ B&° hynb = Ve = —B¢° (A.20)

u ~nt+ B =nt 4+ VO n® ~u® — B =ut + VO (A.21)
¢ >~ fn® +c* ¢t~ —pu’ + " (A.22)

Zau® = —cen® ~ Vin® = Vyu® ~ 3 (A.23)

. = 141 (A.24)

d° ~ BE ~ B ~ —Vi~ Ve (A.25)

dd, ~ p* (A.26)

do, =d¢~ 3 —d'ng = d*u, ~ 16° (A.27)

Reyd® ~ h%Wdb ~ V® ~ —V® o~ Bt~ d° (A.28)
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The relations between k%, and A% reduce to:

hab 2 hap — 2d(qup) > hap + 2V(quy)
hab = hap + 2d(qmp) hab + 2‘7@7%)
habﬁbc = hac - V:xnc = ﬁac + f‘/cua

hachbdﬁcd =~ hab }.Lacil'bdhcd =~ I;'ab

(A.29)
(A.30)
(A.31)

(A.32)



Appendix B

Harmonics

Here we examine the relation between the harmonics Y used in the Bardeen formal-
ism and the harmonics @ used in the covariant formalism, thus providing the proper

foundation for examining the relation between these formalisms.

B.1 Generalities

The standard harmonic decomposition of first-order perturbations is usually carried
out explicitly using harmonic functions defined as eigenfunctions of certain differential
operators on well established spaces. Usually, in cosmology we deal with harmonics
which are eigenfuctions of a Laplace-Beltrami operator on 3-hypersurfaces of constant
curvature, i.e. on the homogeneous spatial sections of FLRW universes with metric
Yas (3.68); e.g. scalar harmonics are defined by (Kodama and Sasaki 1984)[69]

vy ® = _g2y ) (B.1)

where Y *) is the harmonic of order k,! and as in chapter 4 V*Y = YlA";_,, is the Laplacian
in the 3-spaces with metric 7,5. This is because in the standard approach to linear
perturbations one explicitly separates in each physical quantity the zero order part
(the FLRW background value of this quantity) from the first-order perturbative part,
and uses derivatives with respect to the background metric[1, 69, 63]. In the covariant

approach instead we consider, as long as we can, only quantities defined in the real

1%We use this rather standard notation that unifies the three possible different cases; k is however
the wavenumber only when the spatial sections are flat. Minimum values for k% are: k? = 0for K =0,
k? = 1for K = —1, k% = 3 for K = 1 (see Harrison 1967[54])
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almost FLRW universe; in doing this we emphasize the fluid four velocity u® rather
than an arbitrarily chosen spatial slicing, and we define spatial quantities on projecting
orthogonal to u® with A%, In a general spacetime, we have a spatial derivative 3V,
with ®)V k. = 0 (see section 3.3, Wald 1984 [126] and the EBH appendix for details),
which however is not a derivative in a hypersurface, unless w = 0; in addition to this we
have a proper time derivative along flow lines. Accordingly, we want to use harmonics
defined through operators constructed with the (¥)V, derivatives, and constant along
flow lines (i.e. independent of proper time). Here and elsewhere we shall often denote
with @ the whole set of covariant harmonics defined in the next sections: using a
standard but misleading terminology (see chapter 4) we have scalars @, Q(”, QSZ),
vectors Q(1), Q\1), and tensors Q2.2

In dealing with an almost FLRW model, we can use these harmonics in expanding

first-order quantities; for example, for a scalar T'3

T =3 Twe™, (B.2)

where the T4 are the (first order) components of 7. Then we can relate ®)V, and the
stroke derivative when ®)V, acts on a first-order quantity; for the scalar in (3.34) we

have

OV =T, =3 Tn@ . (B.3)

We stress that (3.34) and (B.3) are meaningful and unambiguous only for GI first-order

quantities: in this case one clearly needs the harmonics at zero order only, as the Ty,

*In what follows, we shall omit the type index: for example QEIO) should denote the vector con-
structed with the scalar harmonic @, to distinguish it from the solenoidal vector le) (see below): we
use this index only when we have to use the two vector (or tensor) harmonics together, as in chapter
4. .

SWe use a Y as a symbol for a sum that could actually be a summation over a discrete set or
an integral over a continuously varying index. This will depend both on the curvature of the spatial
slicing and on our choice: for example one can be interested in scales smaller than the curvature radius
and thus consider finite volumes with corresponding discrete sums, or Fourier integrals on spatially
flat sections, or appropriate integrals on a negatively curved slicing as well as a sum on the discrete
set of eigenfunctions in a closed model. As usual, in chapter 4 the summation symbol is understood.

*We are neglecting a term in the expansion (B.3)

@V, Ty =0,

because Tixy = T(4)(t). There is no contradiction with the existence of a non-vanishing vorticity in
the physical universe, as (3)VC,T(k) = 0 only implies @ = 0, (®)V, being the derivative with respect to
the background 3-metric in acting on a first order quantity.
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are unambiguously zero in the background (Hawking 1966) [55] (except Ty, if T is a
constant scalar in the background).

We now look successively at scalar, vector, and tensor harmonics.

B.2 Scalar harmonics

B.2.1 Definitions

As in Hawking (1966) [55] we can therefore take the scalar harmonics as being eigen-

functions of the covariantly defined Laplace-Beltrami operator

2
@WQE@WWW@z—%Q, (B.4)
a

where from now on we drop the index (k) from the @’s. This scalar harmonic can be

used to expand scalars; with this we can however define a vector®

Qu=—7"V.Q (B.5)

and a trace-free symmetric tensor

2
1
Qw:%@wmv&+§mw. (B.6)
—

These harmonics are defined in order to have

Q:Qa:QabZO; (B?)

using this property and applying the commutation relations in the appendix of EBH
[36] we get

BVPVhQ = —we@ =0, (B.8)
(3)V a(g)vb Qc = oﬁf hach - thQa 3 B.9
[ ] 2a
OV OV Qe = L5 [(hacQbd — PocQad) + (haaQbe — 7baQuac)] - (B.10)

5This definition differs from that in EHB; we adopt here definitions that are easily matched with
those in BI[1] and Kodama and Sasaki (1984)[69].
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B.2.2 Properties

Using the derivative )V we derive various properties satisfied by the above defined

scalar harmonics.

a®V,Q* = kQ
a?®v2Q, = —(k? — 2K)Q,
a®VQa = —k(Qub — $hapQ)
Q% =0
aBIVbQqu = —2k71(3K — k*)Q.
a*BIVBIVEQ,, = —-2(3K — k*)Q
?PV,OVQ,, = 2(3K — k2)(Qus — LhaQ)

@’CIV?Qup = —(k* — 6K)Qua

B.3 Vector harmonics

B.3.1 Definitions

These are again defined as eigenfunctions of the Helmholtz equation
aZ(B)vQQa — _k_’lQa ,

. being a solenoidal vector®

Cv,Q*=0.

With this we can construct a symmetric trace-free tensor

a
Qab = “Q’k“((s)van + OI7,Q4) ;

Both these harmonics are covariantly constant along flow lines

Qa:QabZO-

8So we cannot construct a scalar from it, see also (B.24).

(B.19)

(B.20)

(B.21)

(B.22)
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B.3.2 Properties

The following relations hold for the tensor Qq (B.21) defined from the vector Q.

Q% =0 (B.23)

a®VeQu, = 1k (k? — 2K)Q, (B.24)

2@V, BveQ,. + a?PV,BVeQy. = —(k* — 2K)Qu (B.25)
a?CIV2Q, = —(k* — 4K )Qus (B.26)

Q. and Qg also respectively satisfy the relations (B.9),(B.10).

B.4 Tensor harmonics

Again we have

@@V Qu = —K*Qus (B.27)
and
C\?ub =0 ) (B28)
where this tensor is trace-free and divergenceless
Q%=0, (B.29)

(V5 Qu = 0, (B.30)

and satisfies (B.10).

B.5 Relations between the )’s and the Y’s

To obtain the relation between the two sets of harmonics, the above derived relations
for the Q’s can be compared with those in appendix C of Kodama and Sasaki (1984)[69]
for the Y's if we explicitly use comoving coordinates (either ¢ or n time coordinates in
which u® = §3u”). Then the spatial metric hq is conformally related to the 3-metric

v of the constant curvature hypersurfaces by

hay = a26%86096p ,  ha® = 626072, A" = aT6260 (B.31)
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it follows that the spatial derivative operator ®v, (defined with respect to hgp) is

related to the covariant derivative in the 3-surfaces by
OV,T = 6T, , ©OVeT=a26T". (B.32)

The Q’s are defined to be constant with respect to proper time along flow lines: using
the relations above one can immediately show that the requirement for the ¥’s to be
independent of coordinate time is satisfied if the following relations hold between the

two sets of harmonics

Q=Y (B.33)
Qo = 5827, Q* =a'g2y" (B.34)
Qub = a’638 Yap Q% = 828,Y"5 Q% = a *8385Y*7 (B.35)
Using these relations we thus have”
Q=0 & udY =0, (B.36)
Q=0 & udY.=0, (B.37)
Qu=0 & u'8Yas=0. (B.38)

The Y harmonics therefore satisfy the same relations we gave for the Q’s, on dropping

the scale factors a and on substituting (®)V? derivatives with the slash derivatives.

"We also use . .
. O _ a . 0 a

Ve =4 0oVa — ;V;z v Tap = u 0Ty — 2Ty
a

for a vector V, and a tensor Tyy.
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