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Chapter 1
Introduction

String theory represents maybe one of the most attractive scenarios to build suitable
extensions of the Standard Model of high energy physics.

In string theory gauge and gravity interactions are naturally arranged together,
offering one of the most clear examples, maybe the only one, of a finite theory of
quantum gravity. This result has great relevance both from a theoretical and from
a phenomenological point of view, since the importance of its cosmological implica-
tions. It may give the possibility, for example, of analyzing with a unified language
phenomena in which gauge interactions and gravity are both non-negligible, as in the
case of the study of the early universe.

String theory has also become a source of ideas to be extrapolated and used
in other fields of high energy physics. The most evident example is the new interest
observed in the last few years in the so called “physics of extra dimensions”, consisting
in an embedding of the standard model of particle physics, or a suitable extension of
it, in a space-time with one or more extra dimensions.

From the original old idea of Kaluza and Klein [1], revisited after string theory
gave it new resonance, a large class of models were built ([2, 3, 4], for a recent review
see, for example, [5] and references therein), obtaining an answer, for example, to the
so called hierarchy problem, or a way to reduce the huge number of free parameters
of the standard model.

This “bottom-up” approach, due to its nature, has the good feature of being in
strict contact with the observed phenomenology. On the other hand very often it is
not possible to obtain models valid at all energy level, but there exists an energy scale
where some new “new physics” is expected.

In this sense string theory, being naturally a theory of everything, offers a more
effective way to build models valid at every energy scale, free from anomalies and
with a natural coupling to gravity.

String models are obtained from string theory by dimensional reduction, i.e. a
non-trivial choice for the (compact) background geometry of the extra dimensions.
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Since in string theory the target-space coordinates are fields on the world sheet, it
1s equivalent to a non trivial choice for the vacuum expectation values of the extra
dimension fields.

The choice of the background is essential since it defines the main properties of the
final spectrum, such as supersymmetry (SUSY) or the gauge group. Clearly there are
conditions imposed on the background to ensure that it is acceptable, at the lowest
level, for example, it must satisfy the equation imposed by supergravity (SUGRA)
that are an extension of the usual Einstein equations.

One of the most useful and powerful class of backgrounds is given by the orbifolds
of flat trivial spaces. Taken a flat background M it is possible to build an orbifold
modding out M by a symmetry group G of it. The obtained space is locally flat and
the SUGRA e.o.m. are satisfied away from the fixed points of the G-action, but its
topology is non-trivial: depending on the form of the symmetry group, the holon-
omy and homology groups are different from those of the initial space. Quantization
of closed string theory on an orbifold give a model with properties governed by the
topological properties of the orbifold: SUSY is defined by holonomy, the form of the
massless spectrum by homology. Since the first introduction of orbifold compactifi-
cations [6] many orbifold models were built starting from the heterotic theory, some
with interesting phenomenological features (see for example [7]).

The same possibility has been introduced also for open string theory, where things
are more subtle, since in the case of open strings the choice of a non-trivial background
is mapped also in the form of the gauge sector (open sector) in a non trivial way. This
was introduced and developed in [8, 9]. The crucial point can be viewed in different
ways: essentially an open string orbifold can be seen as coming from a closed string but
with the insertion, in the symmetry group G, of the world-sheet orientation reversal
2, and usually the new orbifold is called orientifold. This insertion modifies modular
invariance in the closed loop amplitude and a new open string sector must be inserted
to restore it. The right choice of the open sector makes the model anomaly-free and
acceptable (for a review of the subject see [10]).

Through the introduction of the language of D-branes [11, 12, 13] new open string
models were built (for a review of open string models with 4 extended dimensions
and N=1 SUSY see [14]).

Building string models through orbifold/orientifold compactification spread new
light on the réle played by SUSY in string theory, where its presence is crucial in order
to have theories free from instabilities like tachyons. It was through the introduction
of SUSY by means of the Gliozzi Scherk and Olive (GSO) [15, 16] projection that it
was possible to build a tachyon-free SUSY theory. The orientifold procedure gives
the possibility of breaking some of the them but it is possible to see that no stable
non-SUSY vacuum is achieved if all the operators acts in a non-free way.



SUSY plays an important role also in ordinary field theory, since it provides an
elegant solution to the hierarchy problem if it is broken at a sufficiently low energy
scale (~ TeV) and so a phenomenologically appealing model representing an exten-
sion of the ordinary Standard Model must be non-SUSY at low energy, and some new
technique must be used to obtain a stable non-SUSY model. In this sense a way out
comes from a well-known field theory mechanism, the so-called Scherk-Schwarz (SS)
symmetry-breaking mechanism [17]. It is one of the most interesting and promising
mechanisms of symmetry breaking in theories with compact extra-dimensions, such
as string theory; it consists in suitably twisting the periodicity conditions of each
field along some compact directions. In this way, one obtains a non-local, perturba-
tive and calculable symmetry-breaking mechanism. String models of this type can
be constructed by deforming supersymmetric orbifold [6] models, and a variety of
four-dimensional (4D) closed string models, mainly based on Z, orbifolds, have been
constructed in this way [18, 19, 20].

More in general, SS symmetry breaking can be achieved through a particular
extension of the orientifold procedure described previously, when the symmetry group
contains some freely acting operators, such as translations in some compact direction,
called SS direction. The effects of freely acting orbifold projections [21] has recently
been exploited in [22] to construct a novel class of closed string examples, including
a model based on the Zj3 orbifold. Unfortunately, a low compactification scale is
quite unnatural for closed string models, where the fundamental string scale M, is
tied to the Planck scale, and can be achieved only in very specific situations [23]
(see also [24]). The situation is different for open strings, where M, can be very low
[25], and interesting open string models with SS SUSY breaking have been derived
in [26, 27, 28].

Recently, the SS mechanism has been object of renewed interest also from a more
phenomenological bottom-up viewpoint, where it has been used in combination with
orbifold projections to construct realistic 5D non-SUSY extensions of the SM [29, 4],
confirming how the subject of string phenomenology is active and fruitful also from
other points of view.

Building a non-SUSY model through the compactification on a freely acting orb-
ifold ensures the absence of tachyons and the stability of the model at least at tree
level in perturbation theory. On the other hand the absence of SUSY makes non-zero
most of the loop correction usually taken to be zero and so under control. In par-
ticular loop corrections may generate a non-trivial potential for the compactification
moduli, usually flat direction for the tree-level potential.

Since the value assumed by moduli has great phenomenological relevance it is
crucial to understand if they are stabilized and to which value, or, if not, if there is

some cosmological implication to this.
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This represents a pressing problem in model building since the final task of a
model embedding and reproducing the standard model imposes anyway a complete
SUSY breaking. In a context of non-SUSY models with SUSY broken through the
SS mechanism the relevance of loop corrections is maybe more urgent, since the
dimension of the SS radius is exactly the scale of SUSY breaking and since all these
model have a critical value for the SS radius under which a tachyon is introduced in
the spectrum. It is crucial to understand if the induced potential has a shape leading
to the tachyonic regime [18] or to the decompactification limit [30]".

From another point of view the presence of such a potential for moduli fixes the
open problem of the stabilization of the compactification moduli. The presence of loop
corrections, in some sense, reintroduce predictivity in string model building, since they
give a way to rule out a model, if the correction lead to physically unacceptable values
of the compactification radii, or to accept it fixing the moduli to the “right” value.

It is also of interest to perform a study of the anomaly cancellation in this class of
models. Quantum anomalies represent how quantum effects can spoil some property
of a theory. In particular a failure of gauge symmetry due to quantum corrections
means a failure of unitarity of the theory, making it useless.

Quantum anomalies have played a crucial réle in the story of string theory, since it
has been clear very soon that many low energy spectra are anomalous. In 1984 it was
understood how to take care of them [34], opening the so-called “string revolution’.
The cancellation of anomalies in string theory is guaranteed by the Green Schwarz
(GS) [34] mechanism, ensuring that SO(32) open string and heterotic string are
anomaly-free. This property is reflected also on the string models one can build from
these theories: the GS mechanism ensures in particular that all tadpole-free open
models are also anomaly free.

In some sense this seems to be the end of the story, but it is remarkable that the
mechanism of anomaly cancellation can modify some of the properties of the gauge
group, for example many of the anomalous U(1) bosons of the 4D reduced theory can
take a mass [35], the gauge symmetry being realized in a non-linear way. Moreover,
as said, the last years have witnessed a great interest for the bottom-up approach. A
study of how the anomaly cancellation mechanism acts in string models from the 4D
point of view is of great relevance since it may be exported to take care of the problem
of anomaly cancellation in models built starting from this different approach.

Furthermore the study of the anomaly cancellation in models with extended and
compact dimensions have shown how it can be dangerous to consider “physically
meaningful” only quantities depending on the extended space time dimensions, the

'See [31] for a similar analysis performed in an M-theory context and [32] for a nice general
analysis in non-SUSY heterotic models. See also [33] for an analysis of the stability of a certain class
of non-SUSY 6D orientifolds.



internal ones having been integrated out. The presence of non-zero anomalies localized
in the extra dimensions and such that they are zero if the extra dimensions are
integrated out, as shown, for example, in [36], is dangerous also from the point of view
of an effective 4D field theory, even though they are related to anomalous diagrams
with heavy Kaluza Klein (KK) modes. This has the clear consequence of enhancing
greatly the interest for the study of anomaly cancellation in string models, where
the analysis is always performed starting from the 10D theory to be reduced to four
dimensions, ensuring that also localized 4D anomalies are canceled.

Freely acting orbifolds offer also a new perspective on the study of the quantization
of string theory over background including non-trivial fluxes for the Neveu-Schwarz
Neveu-Schwarz (NSNS) three-form field (torsion). Due to the presence of an operator
acting at the same time as a translation and as a rotation the orbifold shows non-
trivial fibrations between the extra dimensions. It is possible to reparametrize the
manifold introducing new off-diagonal terms for the metric, that have a final form
resembling an extension of the Melvin background [37, 38, 39, 40]. T-duality maps
these terms to a B-field, with non-trivial flux for H = dB [41, 42].

“'The connection with flux-quantization is particularly interesting since the great
revival of the subject in the last few years due to the discovery of its good phe-
nomenological properties. The presence of background fluxes was investigated for the
first time in the heterotic context in [43], where the conditions for N=1 SUSY in 4D
were analyzed in detail after their first introduction in [44], and in [45, 46, 47]. In a
background without torsion and warp these conditions essentially implies that the 4D
space-time is Minkowski, while the internal manifold M admits a covariantly constant
spinor V™ = 0. The existence of such a spinor induces directly the existence of a
complex structure and Kéahler form for M and so the manifold is complex and Kéahler.
Furthermore it implies that the manifold has vanishing Ricci tensor, and this kind of
manifolds are known and classified as Calabi-Yau manifolds.

The presence of warp and torsion modifies this scenario. In particular the new
conditions imply that the 4D space-time manifold has a metric given by the usual
Minkowski metric times the warp factor, to be equal to the dilaton. On the internal
space the conditions allow the existence of a complex structure that now is invariant
under the action of a covariant derivative computed from the usual Christoffel symbols
plus a torsion term. This manifold is no more Ké&hler since the Kéahler form is no
more closed, the measure of the non-Kéahlerity given exactly by the derivative of the
dilaton/warp.

The presence of a warp modifies crucially also the phenomenology of the models.
As pointed out in [3] it can be a solution of the hierarchy problem. Moreover a
quantization of string theory over these backgrounds implies a non-trivial potential
for many of the compactification moduli, stabilizing them and clarifying the strict
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relation with SS compactification, where all the twisted moduli are massive and so
stabilized. The moduli stabilization, together with the presence of the warp, has given
new resonance to this kind of models. The subject has been reanalyzed recently also
in an open/IIB context in [48, 49, 50, 51, 52], and many models have been built
[53, 54, 55, 56, 57].

Also in the M-theory/heterotic context the subject has been revisited [58, 59, 60,
61, 62, 63, 64] and also a deep analysis from a geometric point of view, in order to give
a classification of the new backgrounds, has been performed [65, 66, 67, 68, 69, 70].
Also the approach through the gauged supergravity has been undertaken [71].

In this thesis we study in detail freely acting orbifold /orientifold models of type
IIB string theory. In the second chapter we describe in a review section how an
orbifold of type IIB closed string theory can be built, then we describe briefly the
orientifold procedure, i.e. the orbifold compactification of type I open string theory,
with particular care for the tadpole cancellation conditions. Then we review how
to introduce the SS mechanism as a freely acting orbifold along the lines of [22].
The final part of the chapter, containing the original results of [72], is devoted to
the construction of chiral IIB compact orientifold models with SS supersymmetry
breaking. We derive a new Z3 x Zj orientifold by applying a freely acting Z} projection
defined as a translation of order 3 and a non-SUSY twist to the known SUSY Z,
orientifold [73, 14]. The model turns out to be chiral and extremely simple, since only
D9-branes are present. It exhibits SS SUSY breaking in both the closed and open
string sectors. All the gauginos are massive, but there is an anomalous spectrum of
massless charginos. The model is classically stable, since all massless Neveu-Schwarz—
Neveu-Schwarz (NSNS) and Ramond-Ramond (RR) tadpoles vanish, and potential
tachyons can be avoided by taking a sufficiently large volume for the SS torus, i.e.
the torus where the translation acts. We also rederive from a more geometrical
perspective the Zg x Z; model of [27] (see also [74]), by applying to the SUSY Zi
model of [14] a freely acting Zj projection generated by a translation of order 2 along a
circle combined with a (=) operation, where F is the 4D space-time fermion number
operator. We then discuss in some detail its rich structure involving D9, D5 and D5
branes.

Chapter 3 is devoted to the study of anomaly cancellation in string theory. We
begin with a review section where we describe how the GS mechanism acts in type I
open string theory, we show the anomalous one-loop open-string amplitudes and we
show how they can be canceled through suitable tree-level closed string amplitudes.
Then we show the form of the anomalous couplings between Dirichlet branes (D-
branes) and orientifold planes (O-planes) with closed string Ramond-Ramond (RR)
states, responsible for the cancellation.

Having these, along the path of [75, 76], we show the computation of the cor-
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responding anomalies in orbifold models and the related new anomalous coupling.
Then we introduce localized anomalies following [36]. In the last section containing
the original results of [72] we perform a detailed study of localized anomaly cancel-
lation for the freely acting orbifold models introduced in the second chapter. To this
aim, we will extend the approach that has been followed in [75] for 4D SUSY ori-
entifolds to distinguish between different points in the internal space. We find that
all anomalies cancel locally, thanks to an interesting Green—Schwarz (GS) mechanism
[34] involving twisted RR axions belonging to 4D sectors localized at fixed points or
6D sectors localized at fixed-planes, as found in [75, 77], but also 4-forms coming from
6D sectors localized at fixed planes. The latter effect arises whenever RR tadpoles are
canceled globally but not locally?, and involves only heavy KK modes of the 4-forms.
In non-compact string vacua, such as intersecting branes, this kind of effect is already
included in the usual anomaly inflow of [79]. Global irreducible anomalies can arise
in this case, since there is no constraint on the global RR flux; they are canceled
thanks to RR forms propagating in more than 4D. This shows once again the very
close relation between the GS mechanism and the inflow mechanism of [80], even for
irreducible terms.

...Our results reveal an important distinction between anomalies appearing through
a.6-form in the anomaly polynomial and anomalies appearing through the product
of a 2-form and a 4-form. In the former case, the GS mechanism is mediated by
twisted RR 4-forms and the corresponding symmetry is linearly realized. In the
latter, instead, anomalies are canceled by a GS mechanism mediated by twisted RR
axions, and the symmetry is realized only non-linearly. When applied to a U(1) factor
with an anomaly that is globally but not locally vanishing, these two situations lead
respectively to a massless and massive 4D photon3. This leads to the important
conclusion that the number of spontaneously broken U(1) gauge factors is in general
greater than what is expected from a global analysis of anomalies. This fact, which has
not been appreciated so far in the literature, could have an important impact in the
context of open string phenomenology. The difference between the two mechanisms
involving axions and 4-forms is particularly striking from a 4D low-energy effective
field theory point of view, where heavy KK modes are integrated out. The axions
remain dynamical, but the 4-forms must be integrated out, and we will show that their
net effect then amounts to a local 6D Chern—Simons counterterm with a discontinuous
coefficient, jumping at the fixed points; this counterterm thus occurs in a way that
is manifestly compatible with local supersymmetry and falls in the category of terms
discussed in [81] (see also [82]). This realizes a 6D version of the possibility of canceling

2The global cancellation of RR tadpoles ensures only the global cancellation of cubic irreducible

anomalies; see e.g. [78].
3As in the standard case [35], a pseudo-anomalous photon can become massive by eating an axion

through a Higgs mechanism.
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globally vanishing anomalies through a dynamically generated Chern—Simons term
[36]. It also confirms in a string context that operators that are odd under the orbifold
projection can and do in general occur in the 4D effective theory with odd coefficients,
as emphasized in [83].

In chapter 4, based on the original results of [84], we undertake the task of studying
the quantum stability of non-SUSY string models, with particular attention for the
freely acting orbifolds introduced in chapter 2. Along the lines of [18, 30], we compute
the one-loop induced vacuum energy density (cosmological constant) as a function of
the radius of the twisted direction. This is obtained by computing the one-loop
partition function on the relevant world-sheet surfaces: the torus for IIB orbifolds,
and the torus, Klein bottle, annulus and Mobius strip for IIB orientifolds.

The first model we consider is a simple 9-dimensional (9D) Z, IIB orientifold,
whose vacuum energy density has already been considered in [30]. In agreement with
[30], we show how the cosmological constant of this model crucially depends on the
choice made for the Z, Chan-Paton twist matrix v,. Depending on 7,, the model
evolves either toward the tachyonic regime or to the decompactification limit (see
figure 4.1).

Orbifolds and orientifolds on twisted Asymptotically Locally Euclidean (ALE)
spaces of the form (Cx S')/Zy, where Zy (N odd) acts simultaneously as a rotation
on C and a translation on S', are studied next. Such spaces upon reduction on 3!
give rise to Melvin backgrounds [37], and have recently received renewed interest. We
show that for any N odd, with or without open strings, the vacuum energy density
p" (R) is a negative monotonic function, reaching zero as R — oo. In the orbifold
models we find that o™ (R) > p™(R) for N < M, for any value of R, and for the
lower N, M = 3,5,7,9 considered (see figure 4.2). In the orientifold models, with a
suitable choice of twist matrices, we find the same behavior (see figure 4.3). In both
cases, then, it is reasonable to assume that p" (R) > p™(R) for N < M, YN, M. The
perturbative quantum fate of these models is then clear. For any initial value of R
and N, R will shrink until R = Ry, the critical radius where some twisted string
mode becomes tachyonic. The dynamics is now governed by the classical tachyonic
instability and, according to the analysis of [85, 86, 87], the model will undergo a phase
transition toward another (Cx S')/Z’; model, with N’ < N, with R increasing along
the transition [87]. The Zy model will also undergo a phase transition and so on,
until the twist vanishes and a flat SUSY space-time is recovered. Quite interestingly,
we get exactly the same energy density p™(R) for non-compact (C x S')/Zy or
compact (72 x St)/Zy models?, although the fate of the two twisted directions seem
to crucially depend on whether they are compact or not [85, 88].

The last model we consider is the 4D chiral orientifold model, discussed in chapter

4In the compact case, N has to be odd and has to preserve the lattice structure of the torus.
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2. We first study p as a function of the single modulus R, fixing the remaining 5
other compactified directions. For a proper choice of the Chan-Paton twist matrix
associated to the Z) element in the D9 sector, we find a minimum of p(R) at a
finite value Ry, where p(Rg) < 0, providing in this way an interesting non-trivial
stabilization mechanism for the SS direction R (see figure 4.4). In order to decide
whether this minimum is actually an absolute minimum or not, we also study the
dependence of R on some other compact directions, taken to be equal for simplicity.
We are not able to give a definite answer to whether R, is an absolute minimum or
not, but our analysis seems to suggest that for finite values of the remaining compact
directions, the minimum is always present, but it could run-away to infinity or toward
the tachyonic instability due to the dynamics along the other directions (see figure
4.5).

An interesting by-product of our studies is provided by understanding which string
states contribute to p(R). This is done by generalizing the known technique of un-
folding the fundamental domain of the torus [89, 90], in such a way that it can be
computed as an amplitude over the strip o € [—m, 7], 7 > 0. The technique is de-
veloped in appendix, mainly based on the original results of [91]. It is studied in the
most general case of a closed loop amplitude and then specialized to the case of freely
acting orbifold. The final result, in this case, is that the closed string contribution to
p(R), in both orbifold and orientifolds, can be analytically computed and is given by
untwisted closed strings only, where no winding modes along the SS direction appear.
As'far as the R dependence is concerned, the whole one-loop string partition function
looks effectively like that of a purely quantum field theory. This provides a general-
ization of what is well-known to happen to strings at finite temperature [89, 92] and
to Zy SS twists [93]. For open strings, it is important to distinguish between longitu-
dinal and transverse SS breaking, depending on whether open strings can propagate
or not along the SS direction [26].

In the last chapter we introduce the subject of the compactification of string
theory over backgrounds with non-trivial fluxes. In a review section we show the
main results of [43], where the it has been discovered that a torsionfull background is
admissible if the spacetime metric has a warp factor proportional to the dilaton and

the internal space is no more Kéhler.

In a following section we introduce the relation between freely-acting orbifolds
and a background very similar to Melvin background. Then we show the action of
a T-duality along the SS dimensions. We observe that the duality is acceptable in
the case in which the dimensions where the SS operator acts as a rotation are non-
compact. In the compact case the dimension along which we are going to compactify
is a Killing vector for the metric but is present in a non-trivial way in the periodicity
conditions of the compact dimensions. This seems to be a “global” obstruction to the
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T-duality and the compact case is, at this stage, discarded.

Finally we collect the original results of [94]. We show the duality for a (4D) N=2
heterotic model, built compactifying heterotic string theory on S? x C?/Z,, where
the Z, operator acts as a reflection in the extended dimensions and as a translation
in one of the two circles. We compute the related dual model, building an explicit
example of a background with torsion satisfying the requirements imposed in [43]. A
detailed study of the background geometry is performed, to classify the background
according to [66].



Chapter 2
Orbifold compactifications

Given a smooth manifold M and a discrete symmetry group G with action on M,
the space O obtained modding out G from M, is called “Orbifold”

0 = M/G. (2.1)

If M is a flat n-dimensional compact manifold and G acts non-freely on it, the
resulting orbifold is locally flat with singularities at the fixed points of the action of
G. The presence of these singularities modifies the topology of the original space
depending on the form of G.

Quantization of string theory on an orbifold is always possible since, being locally
flat, it satisfies trivially the equation of motion of the low-energy SUGRA away from
the singularities. On the other hand, the properties of the obtained model, bound to
the topology of the space, can be tuned by choosing suitably G.

In this chapter we show how it is possible to build a model by quantizing string

theory on an orbifold.

2.1 Closed strings

In an orbifold O the symmetry group identifies a a point X with its symmetric X'.
The identification has two effects on closed string theory quantized on O. The first
is that the string wave function must be invariant under the action of G, and so only
invariant states are retained in the spectrum. The second, peculiar of closed strings,
is that a string beginning on X and ending on X" is still a closed string. This implies
that the closed string sector, originally containing only strings beginning and ending
in the same point, must be enlarged to contain also strings beginning in a point and
ending on its symmetric under the action of each of the elements g; of G, namely the
g;-twisted sectors.

These effects have an action essentially on the bosonic degrees of freedom that
identify the position of a string; modular invariance and world-sheet SUSY impose
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Figure 2.1: The Klein bottle (KB), Mdbius strip (MS) and Annulus (A) amplitudes seen
as tree level exchange of closed strings between a crosscap (orientifold) and a crosscap, a
crosscap and a brane, a brane and a brane respectively (left side). The sum of the three
amplitude can be seen as square of the sum of the crosscap plus brane vertez, times the
propagator for the closed state that is the same for all the amplitudes and is dropped (right
side) Tadpole cancellation means that the total charge of the extended objects is zero. (the

sum of the vertezres is zero).

that they are mapped also on the fermionic degrees of freedom in a suitable way. In
the case of type IIB string this is obtained by introducing a projection and a twist on
world sheet fermions that is equal to that introduced for bosons, in the heterotic case
it is necessary to have an embedding of the action of the orbifold group also on the
gauge degrees of freedom. The action is not completely constrained, in particular one
of the most common embeddings, known as standard embedding, is obtained taking
as many “gauge” fermions as the dimension of O and requiring that the action on
them is the same as the action on the world sheet bosons.

2.2 Orbifolds of type I superstring theory

Type I superstring theory contains closed and open strings. The quantization of the
closed sector has already been explained. The open sector case is more subtle, since
the open strings carry also gauge degrees of freedom and the orbifold operators must
have an action also on them. This action modifies the main condition ensuring the
well definition of the model itself, the so called “tadpole cancellation condition”. We
briefly review here the condition in the simplest case of type I theory on a trivial
background, then we see how the condition is modified by the new background and
finally we describe how to work out the main properties of a string model.
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2.2.1 Tadpole cancellation as a constraint on the open spec-

trum of type I theory

As known type I string theory contains a closed sector. It is given by the part of type
IIB spectrum that is invariant under the action of the world-sheet orientation-reversal

operator 2, having the following action on the world sheet coordinates

Q:0—27—o0,

Q:7—=>T

If we take into account the closed string loop amplitude without any insertion, namely
the partition function, the presence of such a projection is mapped in the insertion in
the trace of (1+%2)/2. The term proportional to 1 is half of the usual torus amplitude,
it is modular invariant and the contributions from bosons and fermions are equal to
zero. The term with the insertion of {2, instead, is new, and since 2 acts on the world
sheet in a non trivial way, its insertion in the trace modifies it crucially. As shown
by [9, 13], the amplitude with the 2 insertion is related to a world-sheet having the
shape of a Klein bottle (KB), without edges and without any modular invariance.
Furthermore the presence of {2 has also the effect that only states with the same left
and right part contribute to the amplitude, so that the trace is independent from the
real part of the modular parameter 7. This reflects the fact that the Klein bottle has
only one real modular parameter. It is possible to rearrange the form of the world
sheet as in [9, 13] and read the amplitude as in fig. (2.1): a cylinder with the two
edges replaced by two crosscaps, with the imaginary part of 7 being proportional to
the radius of the cylinder.

~ This amplitude is zero by SUSY, but the bosonic and fermionic modes are not
zero independently, like in the case of the torus amplitude. Moreover in the new
rearrangement the amplitude is the 1-loop one of an open string stretched between
the two crosscaps. Open/closed string duality allows us to read it as a tree level closed
string exchange between two charged space-time objects called Orientifold planes (O-
planes).

The presence of such objects is potentially dangerous, since they are source for
closed particles to be originated from the vacuum. They represent an instability of
the vacuum itself, a tadpole.

The insertion of an open sector can reabsorb the instabilities, since its presence
brings new loop amplitudes in the model. If the open spectrum is chosen in a suitable
way, these amplitudes can cancel the KB amplitude and restore the modular invari-
ance originally spoiled by the Q projection. In another interesting way it is possible
to think the Q projection as a special orbifold of type IIB string theory, the open
strings being the Q-twisted sector.
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Also the open loop amplitude contains a projection (1 + )/2. The term pro-
portional to 1 is the usual annulus/cylinder (A) term (see 2.1), while the other term
can be rearranged obtaining the so called Moébius Strip (MS) amplitude. This last
manifold can be described as a cylinder with one edge replaced by a crosscap as in
fig. (2.1).

At this stage it is easy to interpret the various amplitudes as an exchange of closed
strings between two crosscap (KB), two D-branes (A) a D-brane and a crosscap (MS),
and recognize in the tadpole cancellation the cancellation of the total charge between
the O-planes and the D-branes.

To obtain the conditions on the open spectrum it is necessary to introduce explic-
itly the various traces

14+Q14+ (=D)F1+(=DF o 0 -
ClOSGd : TI'C —g -+ (2 ) + (2 ) eZWZTLo 6——27rz7'Lo :| 7 (22)
1+Q1+(=DF ...,
Open: Tro [ —; + (2 ) gZmitlo® | (2.3)

where F' and F are the left and right fermion numbers and the insertion of (1+(—1)F)
is the usual type IIB GSO projection. Lo® and L, are the generators of translations
along ¢ — 7 and o + 7 in the world sheet of closed strings respectively, while Ly° is
the generator of translations in o — 7, essentially the Hamiltonian, for open strings.

It is not difficult to evaluate the various traces in the case of type I theory, (for a
reference see for example [95, 96]), we review briefly the Chan-Paton sector and then
we give the result.

The gauge degrees of freedom of a generic open string state can be described as
la) = |4, 5)A¢;, where A\¢; is a generic real matrix. The indexes 7, j refers to the two
endpoints of the open string. Since the spectrum contains only Q-even states, the
{2-action imposes a restriction. {2 acts on the Chan-Paton degrees of freedom in the
following way

QA= X5t (2.4)

The exchange of the string endpoints due to the world-sheet reversal is encoded in the
transposition of A\. Furthermore the €2 action on the oscillators is —1 for the massless
excitations. Joining these informations it is easy to see that the allowed )\ matrices
are of the form

A= —yo A Tyqt. (2.5)

The choice of g, fixes the maximal gauge group, the usual choice vq = I, compatible
with tadpole cancellation condition we are going to discuss, imposes SO(n) as gauge
group, n being the dimensions of the original A matrix.
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We can now take in account the amplitude. The Chan-Paton sector for the Mobius
Strip is:

n

> 651906, 5) = G dlvaiarg il k) = T g - (2.6)

1,j=1

The Chan-Paton sector for the annulus, where the identity is acting rather than €,
is instead

n

Z <Z> jl.[l’l,, j) = (izj’fYIi,thS;lj,k’h7 k> = TI‘[’)/]]27 (27>

7,7=1

where ~y; is the embedding of the identity in the Chan-Paton degrees of freedom and
is, usually, the identity matrix.
This concludes the study of the Chan-Paton sector. The study of the zero-modes
part is easily done in the case of n non-compact dimensions with the following result
Un Va

ZO modes - tn/z - (477'2&,'[;)”/2’ (28)

where V;, is the “volume” of the n-dimensional space and ¢ is the modular parameter.
In the case of compact dimensions this term is replaced by a lattice sum, see the
Appendix A for further details. The oscillator part is expressed in terms of the well-
known Dirichlet theta functions defined as in [10, 13]. Combining the various terms

one obtains, in the open channel,

vig [ dt Vs — S5

= 2t 2.
ZK 2 0 2t6 778 ( ? )7 ( 9)
v [0 dt o Vs — Ss .
Zp= —2?/0 ‘2‘;ng[71] o~ (11),
. V1o o dt T —1 Vé - Sg . 1
Zus = =55 i 576 1ma ] e (@ =3),
where
oz — 67 o5 + 07
prmng = . 2-
V’zn 277,1 ) SQn 277n ( 10)

The closed massless tadpole contribution, relevant for the cancellation, is obtained
passing to the closed channel. This is obtained by a simple S transformation (7 —
—1/7)" in the A and KB amplitude, while in the MS case the right transformations
is P = T'ST?ST involving also the operator T : 7 — 7 + 1. In the closed string
channel the corresponding modular parameters are {4 = 1/(2¢), Iys = 1/(8t) and

17 is the complex modular parameter, 7 = it in the annulus case, T = it — -é— in the MS case,
7 = 24t in the KB case.
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lxp = 1/(4t). Given the amplitude in the closed channel the massless contribution is
obtained by taking the [ — oo limit. This gives the result

Z ~ {32% = 64Tr [v§vq'] + Tr[vi)*} . (2.11)
With the choices v; = v = I one obtains
Z ~ {32 —64n+n’}, (2.12)

that is equivalently zero only for n = 32. This means that in the model there are
O9-planes (KB amplitude) with total charge equal to 32 times the charge of a D9-
brane. Their contribution can be canceled introducing in the theory exactly n = 32
D9-branes, and, since no other constraint is present, that the gauge group can be the
maximal one and so SO(32).

2.2.2 Type I theory compactified on orbifolds

Having introduced the concept of orbifold compactification and the condition to have
a well defined open string model we can study type I theory compactified on orbifolds.

Let us reduce our study to the case when the compact manifold M is a 6D torus,
factorisable in the direct product of three 2D tori, namely M = Tg = To@To®T,. We
take the orbifold group G of finite order IV and acting in a diagonal way on the three
tori, namely G C SO(2)3. We take the three tori to be parametrized through three
complex coordinates z;, ¢ € {1,2,3}. With this choice the action of the operator g
that spans the full group G is identified by three angles

gtz — XMy, (2.13)

and can be summarized by the vector v = (a1, as, as).

Supersymmetry

The original type IIB theory has NV = 2 SUSY in ten dimensions. The § projection
selects only one chirality of the original SUSY parameter W14 so that type I theory
has N =1 SUSY in ten dimensions.

The question of the presence of supersymmetries in an orbifold of type I theory
is mapped in the question of the presence of a 4D spinor ¥, built by reduction from
Uyq that is left invariant by the action of g

The original SO(10) Lorentz group is splitted in the usual four dimensional
Lorentz group times the internal SO(6). The reduction of ¥, generates 4 four-
dimensional spinors of SO(6) weights wy = (+,+, +), we = (—, —, +), w3 = (—, +, —)
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and wy = (+,—,—). The action of g on each of the four spinors is summarized by
the phase ¢; = mw; - v. There is some SUSY if
%V ) mod 2 (2.14)
m
for some 1.

The analysis of the residual supersymmetries is interesting since, on a smooth
manifold, it is related to a well defined geometric property: the holonomy group
of the manifold itself. In particular a 6-dimensional torsionless manifold preserving
exactly N = 1 SUSY in 4 dimensions has SU(3) holonomy, and it is a Kahler 3-
fold. A space with these properties is known as a Calabi-Yau space. The case of a
4-dimensional manifold preserving N = 1 in 6 dimensions is also related to a Calabi-
Yau 2-fold. It is possible to show that orbifolds that can be built and preserve the
described number of SUSY are singular limits of the corresponding smooth manifold,
and inherit also the other topological properties of these manifolds.

Closed sector

The closed sector is easily built following the recipe given before. Essentially it is
made of an untwisted part, containing the Q- and g¢- invariant part of the original
type IIB spectrum, and by N — 2 twisted sectors, one for each non-trivial element of
G. The m-th twisted sector can be built quantizing type IIB string theory with the
condition for the world sheet fields

oo+ 2m,7) — g™ (0, T) (2.15)

and taking only the 2- and g¢- invariant states.

Also in this case there is a strict relation with geometry: the number of massless
closed particles of the various kind is related to the homology of the space under
consideration, that can be obtained recognizing the smooth manifold of which the
orbifold is the singular limit.

Some more remarks can be made about closed twisted sectors, in particular the
analysis of the zero-modes gives a way to understand in which dimensions these states
can propagate.

Let us define the torus parameter as usual as a world sheet field z(o,7) =
X;(o,7)+iY;(o, 7) defined with the torus periodicity: z;(o,T) ~ z;(o, T)+Ri(m+n7),
where R; is the radial dimension of the i-th torus and 7; its complex structure.

As said the action of g on z;(o, ) is simply a phase shift. Dropping the ¢ index,
useless for the moment, and taking into account the zero modes z(o, 7) = 2z + pyo +
p.T, where z; and the p’s are complex numbers, we obtain that a g-twisted state is
defined as

20 + Do(0 +27) + D7 = 2™ (29 + PO + PrT). (2.16)
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If the phase is non-trivial the condition is solved only if p, = p, = 0 and if 2y is a fixed
point of the action of g. This simply means that g-twisted states cannot propagate
along dimensions where g acts non-trivially and that they are confined in the fixed
points of g.

Open sector

The open sector deserves more care, since it is not simply the - and g- invariant
part of the original type I open sector, and a new study of tadpole cancellation
must be undertaken. This gives additional constraints on the form of the gauge
group. Following the procedure discussed previously the following amplitudes must
be canceled

N-1 B a
1 1+01 -1 . DL e
Closed . _N E :TI'C’ gm —; -+ (2 ) + (2 ) eZ’IFZ’rLo e-—-QTrZTLo :l , (217)
m=0 L
N-1 B F
1 1+Q1 B LA,
Open : i E Tro | g™ _g + (2 ) g2mitlo } , (2.18)
m=0 L

where the closed trace is performed over untwisted and twisted states. The handling
of these formulas has been studied in different contexts, for example in the case of
N = 1 supersymmetries a good review is [14]. Through the formulas therein it is
possible to compute the modification to the open loop-amplitudes introduced before
in the most simple case. The passage to the closed string channel is done exactly as
before, and so the extraction of the massless contributions. We do not report here
the details of the derivation, we only summarize some model-independent feature.
From the form of the KB amplitude we can extract informations on the kind
and number of D-branes present, since the KB amplitude gives in a unique way the
dimension and number of O-planes present. It is interesting to note that performing
an orbifold of type I theory without an action of the orbifold group in the world
sheet the amplitude will always contain a term Trg [¢°€). . .] that is equal to the term
obtained for type I theory. This term is related to a coupling with a 9-dimensional
O-plane, that is always present. The dimensionality of this O-plane can be deduced
from the fact that in the trace all the directions momenta are switched on, so that the
amplitude itself is proportional to the 10D volume and the amplitude must be read as
an interaction with a 10D object. It is possible to conclude that models of this kind
contain always a D9-brane sector with gauge group being a subgroup of SO(32). The
exact subgroup is obtained from other terms in the amplitude. To avoid the presence
of such objects it is necessary to introduce a new world-sheet parity reversal operator
¥ = Q x g’ where ¢’ is an operator acting on the target space. Taking for example
¢’ to be equal to a reflection in two compact dimensions, the volume dependence is
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reduced to the eight dimensions where ¢’ acts trivially and this means that instead
of O9-planes O7-planes are present.

From the volume-dependence analysis is also possible to realize that in the case
that O9-branes are presents the only other objects that can appear compatible with
unbroken SUSY are O5-planes, and only in the case that the orbifold group is even-
order. In presence of O7-planes, instead, only O3-planes can be present.

The tadpole cancellation conditions fix the number and kind of D-branes present
in the open sector, in the case of interest 32 D9-branes and no Db5-branes if the
orbifold group is odd-order, 32 D9-branes and 32 D5-branes if the orbifold group is
even-order. Moreover the conditions give constraints on the form of vyo and v, the
matrices that embed the action of {2 and g on the Chan-Paton degrees of freedom.
These conditions depends strictly on the form of the orbifold group.

Given the number of D-branes and the matrices 7o and 1, the open bosonic
spectrum is obtained as follows:

99 States The NS spectrum contains only a 10-dim vector that is reduced by the
compactification to a 4-dim vector A and 3 complex scalars S;. The (2 action on these
states is the same and is a phase —1, the g action is trivial on the vector and is a
phase ¢; = v; on the i-th scalar, so the invariant states are those with Chan-Paton

matrices satisfying

A=+ Y0 M Vg (2.19)
A= — 709 X Tas (2.20)
As; = €™ Y59 As; Yy (2.21)
As; = — Yae A5, Tos (2.22)

55 States The NS spectrum has the same content as the 99 sector, the only dif-
ference being that the scalars related to direction transverse to the brane have the
opposite €2 projection due to the boundary conditions that are Dirichlet rather then
Neumann. Taken the complex direction 1 to be parallel and the other to be transverse

one obtains

M=+ Y5 M Vg (2.23)
A=~ Yas A Yas (2.24)
As; = €8T Y5 s, Voo (2.25)
As; = — Yos A5 Yab (2.26)
A,y =+ Yas A5, Mo (2.27)

95 States In this case the ) projection, exchanging the string endpoints, relates
the 95 sector to the 59 one, without any further condition on the A matrices. The
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coordinates orthogonal to the 5-brane obey mixed boundary condition, implying half-
integer modded creation operators, so that the zero modes are fermions in the internal
space and transform under the action of g with a phase ¢ = 27i(as32 + a3s3) and the
invariance condition implies

A=e®v5 X755, (2.28)

2.3 The Scherk-Schwarz mechanism and freely act-

ing orbifolds

The Scherk-Schwarz symmetry breaking mechanism is introduced in a natural way
in field theories with some compact dimensions. Twisting the boundary conditions
for a field along a compact dimension ensures that the dimensionally-reduced theory
shows a breaking of all the symmetries that do not commute with the twist operator,
with a scale of breaking proportional to the length of the compact dimension. The
mechanism can be implemented also to break SUSY. In this case the twist is per-
formed by mean of an R-symmetry, i.e. by imposing different boundary conditions
for bosons and fermions. As an example we can consider a SUSY theory defined on
four extended plus one compact dimensions, where the compact dimension has length
2m R. The theory contains a massless fermion and massless scalars. In the most sim-
ple formulation of the mechanism we can consider the twist to be simply a phase, in
such a way that a given field is identified as

$(at,y + 21 R) = 2™ g(zH, y). (2-29)
The usual Kaluza-Klein reduction for ¢ then reads as

Bz, y) = Zqﬁm” ity (2.30)

where now the ¢(z*) represent a tower of states of mass m2 = (n + «/R)%. Clearly
the reduction is a-dependent and choosing different phases for bosons and fermions
means a SUSY breaking in the reduct 4D theory. The scale of breaking is of order
1/R? and, clearly, SUSY is restored in the decompactification limit.

The Scherk-Schwarz mechanism can be implemented in string theory by means of
the so-called freely-acting orbifolds. A freely acting orbifold is an orbifold with some
of the elements of the orbifold group acting freely, i.e. without fixed points.

It is very useful to explore the possibilities given by the technique by analyzing a
simple toy model, where type I theory is compactified on S* x T?/Z,. The Z, group
is generated by g = 68, with £ acting as a translation of order two along S! and 6
as a rotation of 27 in T2. It is useful to note that 6 has as eigenvalue +1 for bosonic
states —1 for fermionic states, so its action is the same of an operator (—1)%, F' being
the fermion number.
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Supersymmetry Following the procedure described previously it is easy to note
that the vector v has only one non zero component and so the final model is clearly
non-SUSY.

Closed sector The closed untwisted sector contains the g-invariant states of type I
string theory. The action of the translation is read out from the compact momentum
excitations. The operator § is a translation operator

:6 — 6271'1'PR/2 (231)

where P is the generator of translations along S* and R is the radius of S*. The action
on a state |n) of momentum n/R is then diagonal and given by a phase ™. Due to
the phase only the even-m bosonic states survives the projection and so the massless
bosons are present in the final spectrum. The massless fermions are instead projected
out since only the odd-m states survive. In the model, then, SUSY is completely
broken with a scale of breaking proportional to 1/R?.

The twisted sector is given by the the states that are identified through the action
of‘g. The effects of the translation are non-trivial only on the zero-modes of the S*
direction. Called X (o, 7) the compact S* dimension, its zero modes are given by

X(o,7) = o+ po0 + prT. (2.32)

The fact that the S* is compact usually means that X (o,7) ~ X(o,7) 4+ 2mnR, so
the usual boundary condition is

Lo + Po(0 + 27) + p.T = Ty + pe0 + p;7 + 2T R, (2.33)
and implies that p, = mR are the usual winding modes. A g-twist, instead, implies
zo + po (0 + 2m) + p# = T+ ps0 + p, T+ 2mr R+ TR, (2.34)

where the last term is exactly the effect of translation, and the winding modes are
shifted to p, = (m + 1/2)R. This implies that all the twisted states receive a mass
shift. This is clearly understood in the philosophy of a twisted state that closes on
itself after a twist. If the twist is a translation of length submultiple of the lattice
length this means a minimal non-zero length for the string, as shown in fig.(2.2)
The absence of fixed points in the action of the translation ensures that these states
can propagate also along the dimensions in which they are twisted, unlike the states
that are twisted under the action of a rotation or, as we will see, a rototranslation. The
effect of a rotation-twist, or (—1)¥, can be read by modular invariance by the action
of the same operator in a trace, and it is a reversion of the usual GSO projection.
The total effect on fermions is then an inversion of the chirality and a mass shift, so

we can conclude that the theory do not contain any massless fermion.
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Figure 2.2: In the picture, on the left side, the action of an order two translation P
along the coordinate X is shown, and how a point “b” is mapped under the action of the
translation. On the right side, curve I represents an untwisted closed string unwrapped along
the torus and so having winding number 0 along all the dimensions, curve II represents an
untwisted closed string wrapped one time along the X dimension, while curve III represents
a P-twisted closed string, beginning at b and ending in its symmetric b’. As it is easy to

see it is wrapped 1/2 times along the X dimension.

The action of the reversion of the GSO on bosons, instead, project away all the
massless states and produces a potential problem because the closed string tachyon is
reintroduced in the spectrum. This could be a problem and is a quité usual effect of
a mechanism that breaks completely the SUSY of a model. In absence of translation
the simple action of the rotation, in fact, would map the original stable theory to the
well known type 0 theory. The presence of a translation, instead, ensures a mass shift
that makes the tachyon a massive particle for R sufficiently high.

Open sector To analyze the open sector it is necessary to rederive the tadpole
cancellation conditions. It is not difficult to note that all the insertions/twists of g,
due to the action on the lattice, produce tadpoles for massive fields, while the only
massless tadpole to be canceled is exactly 1/2 of the one computed in the case of
type I theory. There are no new conditions, and we are free to choose 7, to be the
identity, so that the spectrum is made of the g-invariant states of type I theory. As
in the closed case all the even-m bosons survive the projection, and so the model has
the same massless content as before, while only odd-m fermions survive and so there
are no massless fermions.

In the most general case we introduce a freely-acting group generated, as in the toy
model, by an operator acting at the same time as a translation along some compact
directions and as a rotation along some other directions. All the computations can
be done as in the case of ordinary orbifold, since the only novelty, the translation,
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Figure 2.3: In the picture, on the left side, the finite order translation that commute with
an order two rotation. The bullets are placed on the fized points of the rotation, while the
three possible translation are given by the translation along the X direction only, Py, the
translation along the Y direction only, Ps, and the diagonal translation. All of them are of
order two. On the right side the same construction in the order three rotation case. Due to
the action of the rotation the torus complez structure is fized to be Ezplin/3] and the torus
itself is given by the sum of two equilateral triangles, the rotation acting by rotating each of
them by 27/3 around its center. The fized points are obviously the centers of the triangles
and the zero point. Due to this the only possible translotion, namely P, is of order three

and is diagonal.

can always be treated separately and its action is non-trivial only on the zero-modes.
In this way the only novelty is a shift in the lattice sums, as shown previously and as

summarized in Appendix A.

2.4 Chiral four dimensional models

We have introduced two ways to compactify open string theory breaking some of the
supersymmetries. Even though they are essentially obtained in the same way, i.e.
compactifying on an orbifold, they have crucial differences in their effects that makes
them complementary on the way of building a suitable phenomenologically appealing
model. In particular a compactification on a non-freely acting orbifold is dangerous
when it breaks SUSY completely, since it introduces tachyons in the spectrum. On
the other hand it offer a way of breaking to NV =1 SUSY in 4 dimensions without
any scale of breaking and with the possibility of a chiral spectrum, that is crucial for
phenomenology. Reference [14] is a good review of all the models that can be built

in this way.
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Since the low-energy physics is non-supersymmetric we need also a mechanism
ensuring a complete SUSY breaking, but with a suitable energy scale. A compactifi-
cation over a freely-acting orbifold gives us the possibility of doing this.

In the next sections we will discuss some examples of orbifold models where both
the mechanisms are used to obtain a chiral spectrum and a complete SUSY breaking
with a given scale of breaking A, in such a way that V =1 SUSY is restored at high
energy.

The models we are going to build are compactification of type I theory on 7 /Zy x
Zys, where Zy an orbifold group that ensures an N = 1 SUSY breaking and 2}, is
the freely acting group ensuring the complete SUSY breaking. It is easy to see from
eq. (2.14) that recognize which are the supersymmetries that survive the projection,
that to have N = 1 is necessary that the rotation operator acts in all the compact
dimensions, in particular also in the dimensions where the translation act. Moreover,
the freely acting operator must contain, together with the translation, a non-susy
rotation in some dimension. In the case of Z, this is essentially a (—1)¥ operator but
in other cases it must be a geometric non-trivial operation. Under these conditions it
is clear that different kind of operators can act in the same space, and it is necessary

to understand if there are constraint on their action.

We require the full group to be Abelian. Since the rotations are in a discrete
subgroup of SO(2)? their combined action is always Abelian. The only point, so, is
- the matching between the translation and the rotation. The two actions commute
only if translation maps fixed point of rotation in fixed points. On the other hand we
demand that the translation is of order greater than 1, and so we require a rotation
having more than one fixed point. This is obtained for non-freely acting orbifold
elements acting as an order two or three rotation in the torus where the translation
acts. Matching an order two rotation with translation means that the translation
must be of order two, in the “three” case the rotation must be diagonal and of order
three. This is summarized in fig (2.3).

All the other orders are excluded. This gives a stringent bound on the range of
orbifold that can be taken in exam. In the next sections we show an order two and
an order three example.

We also note that the possibility of performing in the same time a rotation and
a translation includes in the closed spectrum rototransled-twisted sectors. Since a
rototranslation is not a free operation it has fixed points, the twisted modes are fixed
to live in the fixed points and all the windings must be integer. This means that there
is no mass shift due to the absence of the zero-winding mode. On the other hand
the fact that the freely acting orbifold acts also as a rotation in another torus makes
the new sector to be tachyon free and the model to be stable. These new sectors are
bound to live on the fixed points of the rototranslation and have reversed GSO with
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respect to the usual roto-twisted sectors.

2.4.1 The Z§ x Z5 model

The Z§ x Z}, orientifold of [27] is obtained by applying a SUSY-breaking Z; projection
to the SUSY Zg model of [14]. The Zg group is generated by 6, acting as rotations
of angles 2mv! in the three internal tori T2 (i = 1,2, 3), with v¢ = 1/6(1,—3,2). The
Z, group is exactly that described in the previous toy model, and is generated by
B, acting as a translation of length mR along one of the radii of 75 (that we shall
call SS direction in the following), combined with a sign (—)¥, where F is the 4D
space-time fermion number. Beside the O9-plane, the model contains Ob5-planes at
y = 0 and y = 7R along the SS direction (as the corresponding SUSY model [14])
and O5-planes at y = mR/2 and y = 3mR/2 along the SS direction (see Figs. 2.4 and
2.5), corresponding to the two elements of order 2, 6% and 6°8. These last objects
are a novelty and are related to the rototransled twisted states, that are bound to
live in the fixed points of the rototranslation and have opposite GSO projection. In
order to cancel both NSNS and RR massless tadpoles, D9, D5 and D5-branes must
be introduced.

Figure 2.4: The fized-points structure in the Zg x Zf model. We label the 12 0 fized points with
Pioe and the 12 88 fized points with Py, each index referring to a T2, ordered as in the figure.
Similarly, we denote with Pye. the 9 8% fized planes filling the second T2, and respectively with Pyipe
and Pyye the 16 83 fized and 6% fized planes filling the third T%. The 32 D5-branes and the 32
D5-branes are located at point 1 in the first T?, fill the third T2, and sit at the points 1 and 1’

respectively in the second T7.

Closed string spectrum

The main features of the closed string spectrum of the Zg x Z, model can be deduced
from those of the Zf model, which can be found in [14]. The only SUSY-breaking
generators are 3, #% and 6*3; all the other elements preserve some SUSY (generically
different from sector to sector). The Zf projection acts therefore in a SUSY-breaking
way in the untwisted and #2* twisted sectors, and in a SUSY-preserving way in the
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remaining 6'° and 6 twisted sectors of the Zf model. In addition, we must consider
the new 0% twisted sectors.

Consider first the 6% sectors already present in the Z. model. In the untwisted
sector, one gets a gravitational multiplet and 5 chiral multiplets of N =1 SUSY, and
the Zj projection eliminates all the fermions. In the #** twisted sectors, one gets
9 hypermultiplets of N = 2 SUSY, and the Z; projection again eliminates all the
fermions. Finally, the 6'®° and 6 twisted sectors give each 12 chiral multiplets of
N =1 SUSY, and the Z/ action reduces this number to 6, since it identifies sectors at
fixed points that differ by a 7R shift in the position along the SS direction.

Consider next the new 6% sectors emerging in the Zj x Z, model. The § twisted
sector yields one real would-be tachyon of mass o/'m? = —2 + R?/(2¢/). Similarly,
the 624 sectors yield 6 complex would-be tachyons of mass o/'m? = —2/3+ R?/(2¢/)2.
Finally, the 6°3 twisted and 638 twisted sectors each give 6 chiral multiplets of
N =1'SUSY, which have opposite chirality and a different unbroken SUSY compared
to those arising in the #%° and 63-sectors, because 3 changes the GSO projection due
to the (—1)F operation that it involves.

The closed string spectrum that we have just derived is summarized for conve-
nience in Table 2.1.

Tadpole cancellation

As mentioned above, the (2-projection in the closed string sector introduces 09, O5,
O5 planes and hence a non-vanishing number ng, ns and ng of D9, D5 and D5 branes
is needed to cancel all massless tadpoles.

The computation of the partition functions on the annulus (A), M&bius strip (M)
and Klein bottle (K) surfaces and the extraction of the tadpoles can be done along
the lines of the previous sections. The only novelty with respect to the Z; model are
the non-SUSY sectors that arise when the Zf, generator § enters as twist or insertion
in the trace defining the partition function. The corresponding contributions to the
partition functions can be easily deduced from their analogues in the Zj model. In
the K amplitude, owing to the presence of {2, the insertion of 5 acts only in the lattice
contribution, as reported in eq. (A.13). As a twist, 8 inverts the GSO projection and
acts in the lattice. This implies that the § twisted contribution, after the S modular
transformation, will be the same as the SUSY untwisted sector contribution, but
proportional to (1ysys + 1grr) instead of the usual (1ysys — 1grr), and with some
terms dropped due to the vanishing of the lattice contribution as in (A.13). This
represents a non-vanishing tadpole for the untwisted RR six-form, and reflects the

>These are clearly the lightest would-be tachyons in both the 8 and 628 twisted sectors, but it
should be recalled that there is actually an infinite tower of such states, with increasing winding
mode.
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presence of O5-planes (beside O5-planes) in this model. On the A and M surfaces,
the insertion of 8 acts in the lattices as discussed in Appendix A. Apart from that,
it simply reverts the R contribution to the partition function. This simple sign flip
has, however, different consequences in the two surfaces when analyzing the closed
string channel, because of the two different modular transformations (S and P) that
are involved. For the M amplitude, the result is obtained from its SUSY analogue by
replacing the factor (1ysys — 1rr) by (Ivswys + 1rr), and has a clear interpretation
as D-branes/O-planes and D-branes/O-planes interactions. For the A amplitude, the
action of # in the closed string channel reverses the GSO projection and, depending
on which Zj generator is inserted (and which boundary conditions are considered),
this can lead to an exchange of would-be tachyons.

The group action on the Chan—Paton degrees of freedom is encoded in the twist
matrices v and ¢, respectively for the Z; and Z) generators. The group algebra,
as usual, allows us to write the Chan—Paton contribution of a M amplitude with
the insertion of §"8™ as +Tr(y"6™)?, the freedom of sign being fixed by tadpole
cancellation and by the relative action of {2 on 5 and 9 branes, as studied by Gimon
and Polchinski (see for example [13, 14]). Tadpole cancellation and the 2 action fix
7% = —I in the 9, 5 and 5 sector, as in [14], and 6% = —I in the 5 and 5 sectors, with
the further condition {v,d} = 0. We also impose 6% = I in the 9 sector; the case
52 = —I will be considered later on. To be fully general, we will use, for the twist
matrices v in the 5 and 5 sectors, an extra index that distinguishes between distinct
0% fixed points (or fixed planes). Similarly, an other extra index is needed also for the
matrices 6 in the 5 and 5 sectors, running over the #*3 fixed points.

The final form of the massless tadpoles is most conveniently presented by distin-
guishing the two closed string sectors with a sign 1 equal to +1 for the NSNS sector
and —1 for the RR sector. The result is given by vs/12 [dl times

U1U2U3 2 U3 2
I: s [2° = o] + S0 n[2%6,1 —ns —nng| ", (2.35)
\/g 3 4 ~ )
v TZZW[Q "Tryg — Trys, — nTrog,) (2.36)
c=1 b=1
V3G e
66 "> > n[2 LT 98y — 1 Tr sy 05 — T 7585 (2.37)
c=1 b =1
1 < vy O )
2. — 2% 6,1 Gy + Tr 2 Tr o2 2 23 + Tr2]" (2.
4?)2&0:177[ 2 8g1 + Trody, + 1 Trog, ] +12&§b;ln[ +Try2)% (2.38)
- 2
0% s D> n[27Tryd + Trad, +nTrqd)]” (2.39)
al b=1
. 2
628 : vs Z n [2"’2’]?1'7359 +nTr~s,0s +'I‘1‘7§b,5g]‘ : (2.40)

a'b'=1
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where we denoted by "™ the tadpole contribution of the 8" 8™ twisted closed string
states, summed over the various fixed points or planes; for convenience we have taken
the sums in eqgs. (2.36), (2.37), (2.39) and (2.40) to run over closed string twisted
states and their images under some orbifold elements. Moreover, v, = Vy/(47%a/)?,
v; = V;/ (472} (i = 1,2, 3), with Vj being the volume of the four-dimensional space-
time and V; the volume of the T7.

The NSNS and RR tadpoles differ mainly through relative signs between the
contribution from D5 and D5 branes. In addition, there are cross-cap contributions
to the NSNS tadpoles in the I and 62 sectors that have no analogue in the RR sector
(the terms involving 4y 1).

We also report the lightest massive NSNS tadpoles, where would-be tachyons can

develop:
ViUV _1+ (1
B 161 34 2A (§> [Tr 6o]? (2.41)
3
U ~ (1
0°8 : ﬁq‘%j\ (5) > [Trq2s]” . (2.42)
a,b=1

(N=1") 7R/2 D5-branes
: D5-branes
(N=1) 0 TR (N =1)

3TR/2 (N =1')

Figure 2.5: Brane positions along the SS direction for the Zi x Z model. The different supersym-

metries left unbroken at the massless level in the 55 and 55 sectors are also indicated.

Open string spectrum

We now turn to the determination of a solution for the Chan-Paton matrices satisfying
the above conditions for the global cancellation of massless tadpoles, eqgs. (2.35)-
(2.40). For simplicity, we consider the case of maximal unbroken gauge symmetry
where all D5 and D5 branes are located respectively at Pjj. and Piye (see Fig. 2.4



2.4 Chiral four dimensional models 33

and its caption). The Z) projection then requires that an equal number of image
branes be located respectively at Pjse and Pio,. We do not consider the case in which
branes and antibranes coincide also along the SS direction, since this configuration
is unstable even classically, because of the presence of open string tachyons. On
the other hand, fixing the branes at antipodal points along the SS direction allows a
metastable configuration without open string tachyons for sufficiently large SS radius.

The untwisted tadpoles imply ng = n5 = ng = 32, whereas a definite solution of
the twisted tadpoles is given by

0
Yo =5 = 7305 = < e ) : (2.43)

8o = . 05 =05 = , 2.44
9 ( . I16> 5 =03 (—Im . ) (2.44)

where (¢ = exp(in/6)):
Y16 = diag{¢ls, ¢° I, ¢314,$I27$512;€_53]4} : (2.45)

It is easy to verify that with such a choice all massless tadpoles cancel (although
(2.41) and (2.42) do not vanish). Notice that the above choice for 7q 5 coincides with
that of [14]. The structure of the twist matrices given in (2.43) and (2.44) reflects
our choice for brane positions; in particular, the matrix 0 implements the translation
B in the Chan—Paton degrees of freedom. Hence, as far as the massless spectrum is
concerned, we can effectively restrict our attention to the 16 branes and antibranes
at P11 and Pjyq respectively, and work with 16 x 16 Chan—Paton matrices.

The massless open string spectrum can now be easily derived, and is summarized
in Table 2.2. In the 99 sector, the bosonic spectrum is unaffected by the Z, element
and therefore coincides with that of the Zf orbifold?; all fermions (both gauginos
and charginos) are instead massive. The 55 and 55 sectors are supersymmetric at
the massless level, but with respect to different supersymmetries: V=1 and N =
1. The 55 and 55 gauge groups Gs and G are reduced by the non-trivial action
of the translation in these sectors, and the corresponding states are in conjugate
representations. A similar reasoning also applies for the 95 and 95 sectors. Finally,
the 55 sector does not contain massless states, thanks to the separations between D5-
branes and D5-branes. There are massive scalars and fermions in the bifundamental
of G5 x Gs, and charged would-be tachyons of mass a/'m? = —1/2 + R?/(16a/).

Notice that the above solution of the tadpole cancellation conditions is not unique.
In fact, another interesting and more symmetric solution is obtained by choosing dg
of the same form as d5 = dz in (2.44). This solution is not maximal in the sense that
the resulting Gg gauge group is reduced and equal to Gg = G5 x G = U(4)2 x U(2)*.

3These are as in [75], but differ slightly from [14] and [74].
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However, it has the nice feature that now also the tadpoles (2.41) and (2.42) do
vanish. Clearly, there exist other solutions, which we do not report here. Note for
instance that a non-vanishing twist matrix ¢ in the 9 sector can be considered as a Z,
Wilson line along the SS radius. Since ¢ implements a SS gauge symmetry breaking,
this reflects the close interplay between Wilson line symmetry breaking [97] and SS
gauge symmetry breaking.

Let us now comment on the brane content of this orbifold. From the tadpoles,
we learn that there is no local Zg and Zs twisted RR charge at all in the model
(Try = Try® = 0), but there is a Zs-charge, since Try? # 0, that globally cancels
between D9 and O9-planes, and D5, D5, O5 and O5-planes. On a Zg orbifold, a
regular D-brane must have 5 images. Since we start with 32 branes, it is clear that
the branes in this model cannot all be regular. In fact, the presence of a non-vanishing
Z3; RR (and NSNS) charge suggests that fractional D5 and D5 branes are present at
Z; fixed planes* of the orbifold. The configuration is then the following. We have 2
regular D5 and D5 branes (and 5 images for each) and 2 fractional Zs D5 and D5
branes (and one Z, image for each). In our maximal configuration, they are all located
at Ppi. (D5) and Piy. (D5). Clearly, there are the additional Z), images located at
Py, and Pyo,. Regular branes can move around freely, whereas fractional branes are
stuck at the fixed points. However, one can still shift a fractional brane from one
fixed point to another, suggesting that this freedom represents the T-dual of discrete
Wilson lines in orbifolds. Notice that also D9-branes have Z3 RR charge. Although it
is not appropriate to speak about fractional D9-branes, this kind of object represents
the T'-dual version of the usual lower-dimensional fractional branes. In some sense,
they are stuck in the gauge bundle, and do not admit continuous Wilson lines, but
only discrete ones.

The Z) twist acts trivially in the gauge-bundle of the D9-branes, whereas in the 5
sector it is T-dual to a discrete Wilson line given by the matrix §. More precisely, the
breaking of the gauge group in the 5 and 5 sector is the T-dual version of a Wilson
line symmetry breaking. The additional (—) action is on the other hand responsible
for the D5 — D5 flip for half of the branes.

2.4.2 A Zs x Z5 model

It has been shown in [22] and reviewed in the previous sections that SS symmetry
breaking can be obtained also in Z3 models through a suitable freely acting and SUSY-
breaking Z projection. In this section, we will construct a new Zs x Z§ model, based
on this structure, that will prove to be much simpler than the Z§ x Z model.

“In our case, the Z3 fixed plane is at the origin. However, seen as D7-branes wrapped on vanishing
two-cycles [98], these branes wrap only the Z3 vanishing cycles.
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The Z3 x Zj orbifold group is defined in the following way [22]. The Z; generator ¢
acts as a SUSY-preserving rotation with twist v/ = 1/3(1, 1,0), while the Zj generator
B acts as a SUSY-breaking rotation with v’ = 1/3(0,0,2) and an order-three diagonal

e

Figure 2.6: The fized-point structure in the Zg x Z§ model. We label the 9 0 fized planes with
Pase, the 27 00 fized points with Py, the 27 83 fized points with Pyiy., and the 8 B fized planes

translation ¢ in T7.

with Peec.
Sector Zg x 7, Zs x Zj

Untwisted 1 graviton, 5 scalars 1 graviton, 11 scalars, 141 spinors
0 twisted 6 chiral multiplets 6 hypermultiplets

62 twisted 18 scalars —

03 twisted 6 chiral multiplets -

00 twisted 6 chiral multiplets 9 chiral multiplets

03 twisted 6 chiral multiplets -

05% twisted - 9 chiral multiplets

Table 2.1: Massless closed string spectrum for Zf x Zh and Zs x Z4 models. We used 0 as the
generator of Zf (Zs) and B as the generator of Zjy (Zi). Hypermultiplets are multiplets of N=1
SUSY in 6D, while chiral multiplets are multiplets of N=1 SUSY in 4D. The SUSY generators are

different in the different sectors, as explained in the text. The two spinors in the untwisted sector of

Z3 x Z% have opposite chirality.

Closed string spectrum

It is convenient to consider first the massless closed string spectrum in the parent
Type IIB orbifold, before the 2 projection. In this case, we get an untwisted sector,
and both SUSY-preserving and SUSY-breaking twisted sectors.
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The untwisted sector contains the 4D space-time part of the NSNS spectrum, i.e.
the graviton, the axion and the dilaton; furthermore, there are 10 scalars arising from
fields with internal indices in the NSNS sector, 12 scalars from the RR sector and 2
spinors for each chirality from the NSR+RNS sectors.

The twists 6 and 6% act only on two of the three tori, and their action preserves
N =2 SUSY in 6D. More precisely, they preserve the supercharges Qé R and Qg R in
the 4D notation of [22]. Each twisted sector contains a 6D N =2 tensor multiplet.
The states are located at the Zj fixed points, and are Zs-invariant, while Z§ acts
exchanging states from one fixed point to the other, so that in the first torus the
three Z3 fixed points are identified.

The twists 68 and (88)? act instead on all the compact space, preserving two
supercharges, Qf’R. The twisted spectrum contains a 4D N =2 hypermultiplet. In
these sectors, the elements 6 and 032 act by exchanging states from one fixed point
to the other in the first torus, so that, as before, there is only one physical fixed point
in this torus. The 642 and (88%)? twisted sectors can be treated similarly, the only
difference being the position of the fixed points and the unbroken supercharges Qf i

The twists 8 and 8% are SUSY-breaking, and the corresponding twisted sectors
yield each a real would-be tachyon of mass m? = —4/3 + 273/(3v/3c’) (where T} is
the imaginary part of the Kéhler structure of the SS torus) and 16 massive RR 16
scalars. These states are f-invariant and located at [ fixed points, and again the
remaining elements only switch fixed points.

It is now easy to understand the effect of the Q projection. In the untwisted sector,
{2 removes the axion, half of the NSNS and RR scalars, and half of the fermions. In the
twisted sectors, (2 relates QF to @ and projects away half of the supersymmetries, so
that the surviving states fill supermultiplets of N =1 SUSY in 4D or 6D. Furthermore,
Q relates the twist 05 to (98)%, and only half of the corresponding states survive
the projection. The spectrum is therefore reduced to 2 hypermultiplets of 6D N =1
SUSY from @ twists, for each € fixed point; 1 chiral multiplet of 4D N =1 SUSY
from 00 twists, for each 68 fixed point, and the same for §32 twists; 1 real would-be
tachyon and 16 massive scalars from [ twists. The massless closed string spectrum

1s summarized in Table 2.1.

Tadpole cancellation

The computation of the partition functions on the A, M and K amplitudes and
the extraction of the tadpoles is again standard. The only novelty occurs in the
untwisted sector, with " (n = 1,2) inserted in the trace. In these sectors, the
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Model Zi x 7 Zs x Zj
Gy : U(4)? x U(8) SO(8) x U(8) x U(4)
Gs =G U(‘Z)2 x U(4) -
(4,4,1), (4,4,1), (1,1,28),
99 scalars (E’ 1’28)’ ( Ll’ 1)’ £1’47 8)7 2(8787 1)7 2(17%81 1)7
(4,1,8), (1,6,1), (4,4,1), (8,1,4), (1,1,6)
(4,1,8), (1,4,8)
99 fermions — 2(8,1,4), 2(1 1’ 6),
(1, 8, 4), (1,8,4)
(2,2,1), (_2—,5, 1), (1,1,6)
55 chiral mult. (1,1,6), (1A_’_1’ 1), (1’2’4)’ —
(27194)7 (17 Aal)a (27271):
(2,1,4), (1,2,4)
(47171;27171)7 (1747 1; 1?27 1)7
95 chiral mult. | (4,1,1;1,1,4), (1,1,8;2,1,1), -
(1,4,1;1,1,4), (1,1,8;1,2,1)

Table 2.2: Massless open string spectrum for Z x Z4 and Zs x Z4 models. In the 55 sector, chiral
multiplets in the representation of Gs are reported. The matter content of the 55 sector is the same
as in the 55 sector, but in conjugate representations of Gz = Gs. In the 95 sector, chiral multiplets
are present in representations of Go x Gs. Again, the matter content in the 95 sector is obtained

from that in the 95 sector by conjugation.

oscillator contribution to the partition function is given by

f . 9[a]3( ) (=2sin2mn/3)8], 5 ] (7) (2.46)
ab 1/2 ) =
a,b=0 n°(7) 0[1/2-{-/271/3} ()
and the corresponding partition function on each surface reads:
< dt
1 2irn(§-ma) . 2
Zali] = s | e > M) Ao ], (it) (Tr 6,)
Zu L] = -2 / 4 S gaimn(5ma) (] Agfm]O, (it — 1/2) Tr 6n
hr 8NN Jo 413 &= o
17 _ U4 > di 2imn(§-m1) .
e [ﬂ“] 9NN /0 E — € Al[m/ﬁ] AQ[m/\/i]@%(?%t) ) (2-47)

where NN’ is the total order of the group (i.e. 9 in our case) and A;[m] is the 2D
lattice of the -th torus as defined in (A.3).
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The tadpoles for massless closed string modes are easily computed. We skip the
explicit form of the usual 10D tadpole, arising in all orientifold models, that fixes to
32 the number of D9-branes and requires v, = 5. All other tadpoles are associated
to twisted states occurring only at fixed points or fixed planes. We list them here
using the already introduced notation. We denote the twist matrices associated to the
Z3 and Zj actions by -y and §, and we assume v® = 1,1, 6° = nsI, where n,,7; = £1.
The tadpoles are at the 9 8 fixed planes, the 27 683 fixed points and the 27 652 fixed
points; they are given by (1ysys — 1grr)vs/72 [ dl times:

0 1;—32 [(B—nv’l‘rv)” (8—Tr72)2] )

08 : 3\/_2[4—!—77777{&75) (44 Try?6%)?]

a’\b,c

66° - S [(4 1, Tryd?)? + (4 + 75 Tr 725)2} , (2.48)

3\f e
We wrote explicitly the contributions from the 8* and #¥—* sectors, arising from the
same physical closed string state.

By taking the transverse channel expressions of the amplitudes (2.47) through S
and P modular transformations, the additional tadpoles for the non-SUSY S twisted
sectors arising at the 3 fixed planes P,.. can be derived. They yield the following
result for the massive would-be tachyonic NSNS states:

W’? =Dy Z { (2m+%) (Trd)® + A (2m—%> (Tré%)® + (2.49)

Ay (Zm—g) (16—’I‘r62)2+f\1 <2m—l— )(16 775’{‘1'5)}

where we have retained the lattice sum along the SS directions. These tadpoles are
associated to massive states for sufficiently large radii along the SS torus, and are
therefore irrelevant in that case. They imply that would-be tachyons and massive
RR 7-forms are exchanged between D9-branes and/or O9-planes. Contrarily to the
Zg x Z7 model, there is no choice for the twist matrix ¢ that makes eq. (2.49) vanish.

Open string spectrum

In the following, we take 7, = 75 = 1, because all the other choices lead to equivalent
theories. It is then easy to see that the twisted tadpoles (2.48) are canceled by
choosing (¢ = exp 2i7/3):

v = diag(lis, ¢ Is, ¢ 118)
6= dla‘g(¢ -[47 ¢ I47 I24)‘ (250)
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Notice that the order of the entry in (2.50) is crucial to cancel the tadpoles; the above
choice is such that v6% = v, where «, is the twist matrix of the 4D N =1 Z3 model
constructed in [14].

The massless open string spectrum is easily determined. The maximal gauge
group is SO(8) x U(8) x U(4). The U(8) x U(4) factor comes from the U(12) gauge
factor of the 4D N =1 Z3 model, which is further broken by the Zj projection. As
in the previous model, this can be interpreted as a Wilson line symmetry breaking.
In this perspective, § = I and v as above, and the tadpoles in (2.48) are canceled
thanks to a (discrete) Wilson line W equal to § along the first torus in (2.50). Notice
that all the gauginos are massive. The spectrum of charged massless states is easily
obtained and reported in Table 2.2.
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Chapter 3
Anomalies in orbifold models

Quantum corrections play an important role in quantum field theory. As it is well
known they can modify a theory and, in certain cases, spoil properties of crucial
importance for the consistence of the theory itself, such as unitarity.

Given a theory with a classical lagrangian symmetric under the action of a certain
symmetry group, quantum corrections can spoil the invariance, making the symmetry
anomalous. A classical example of this is the axial symmetry breaking in an effective
theory describing the interaction of a pseudoscalar (7°) with the ordinary quantum
electrodynamic. Even though both axial and vector current are classically conserved
the axial current is anomalous at the quantum level and this ensures the possibility
for the pseudoscalar to decay into two fotons [99, 100].

The failure of a global symmetry is in general a property that modifies the phe-
nomenology of a theory without any other effects on the consistency of the theory
itself, if instead a gauge symmetry is anomalous then the theory becomes inconsis-
tent. Gauge invariance is crucial for a consistent interpretation of a quantum theory
with gauge fields. In particular it ensures that the unphysical degrees of freedom of
the gauge field decouple from the physical spectrum, guaranteeing that the S-matrix
governing the interactions of the physical particles is unitary. In this sense a gauge
anomaly can be computed directly by the inspection of the Feynman graphs having
as external legs a longitudinally polarized and transversally polarized gauge bosons.
If such an amplitude is non-zero then it can be shown that a gauge anomaly is present
and, on the other hand, such an amplitude is exactly a failure of unitarity for the
theory.

A quantum theory of gravity is a special realization of a gauge theory, where the
gauge group is the Lorentz group. In this sense also quantum gravity can be affected
by gauge anomalies, in this case representing a breakdown of general covariance.
Since the current related to this symmetry is the energy-momentum tensor such an
anomaly corresponds to a failure of the conservation of it.

In [101] Alvarez-Gaumé and Witten have shown an effective way to compute gravi-
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tational anomalies showing that it can be done in strict analogy with the computation
undertaken to obtain gauge anomalies in ordinary Yang-Mills theories.

Anomalies can arise also in string theory and they represented the most pressing
problem affecting it until the discovery of the so-called Green-Schwarz (GS) mecha-
nism [34] in 1986. In particular while closed strings are unaffected by anomalies, in
type I and heterotic theory it happens that the spectrum is potentially anomalous.
The anomalies in these last cases are canceled through the GS mechanism, that is cru-
cial also in string model building since its generalizations are responsible for anomaly
cancellation in all the tadpole-free models built from type I string theory [78].

To give a brief sketch of the mechanism we introduce the anomaly computation
for the ten dimensional type I string theory. From a diagrammatic point of view it
is given by the open one-loop amplitudes with the insertion of six vertex operators.
Open string loop-amplitudes involve not only the usual annulus amplitude, with two
edges, but also the MS amplitudes, or unoriented amplitudes, with only one edge, so
that we can distinguish between (I) annulus amplitudes with all the vertexes placed on
the same edge (oriented planar graphs), (II) annulus amplitude with both the edges
supporting some vertex (oriented non-planar graphs) and (III) unoriented amplitudes,
as summarized in fig. (3.1). The oriented planar diagram contains a trace on the gauge
degrees of freedom with all the vertexes inserted and an “empty” trace containing
the identity. The trace is performed in the fundamental representation and so the
empty trace contributes with an n in the case of SO(n) gauge group. The unoriented
diagram is related to the topology of Mébius strip, (fig.(3.1)), that has only one edge
and so there is only one trace, still containing all the vertexes. The other graphs,
related as the first one to the annulus amplitude, have always two nonempty traces.
The open/closed string duality allows us to consider all these amplitudes as a tree
level exchange of closed strings between charged objects (O-planes and D-branes),
exactly as in the case of the computations of tadpoles worked out previously, the only
difference being the presence of the vertexes. From this point of view the anomaly due
to these loop diagrams can be canceled if in the low energy theory some closed string
excitation is coupled in an anomalous way to the O-planes/D-branes, in such a way
that the open loop amplitude is canceled by suitable closed tree-level amplitudes.
Closed tree-level amplitudes cannot cancel all the open string loop-amplitude, in
particular the unoriented and the planar graph are an exchange between a D-brane
and a D-brane/O-plane, with the final state with 0 particles and the initial one with
six particles, and would mean an inconsistency of the theory, so that it is necessary
that the sum of these two amplitudes is zero. All the other amplitudes can instead be
canceled. The cancellation between the unoriented and the planar graph is ensured
by tadpole cancellation condition, with the request that, in type I string case, the
gauge group is SO(32).
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Figure 3.1: On the left side the contribution to the ten dimensional anomaly due to the
planar orientable diagram. In the upper picture the contribution is seen as an open string
loop amplitude, while in the lower picture as a closed string ezchange between a configuration
with siz external entering particles and the vacuum ( brane). In the center the contribution
due to the non-orientable diagram, seen as open and closed string amplitude. This two
amplitudes are proportional to the square root of the amplitude computed in fig. 2.1 so that
the total contribution is zero if the theory is tadpole-free. On the right side one ezample of
cq@tribution due to the non-planar graph (clearly it is not the only one) both in the open

channel (upper picture) and in the closed (lower picture).

This is a general result: as shown in [78] tadpole cancellation is a sufficient condi-
ticén ensuring that all the loop amplitudes that cannot be canceled by closed tree-level
amplitudes are automatically zero. It is also shown that the condition is not in general
a necessary condition.

In the rest of the chapter we show how the anomalies can be computed and which
are the correct anomalous couplings ensuring that the various models are anomaly
free. In a modern notation the tree-level anomalous amplitudes that guarantee the
cancellation are known as “inflow of anomaly”.

3.1 Anomalies and inflow in string models

The characterization of anomalies can be performed in a systematic way knowing the
strict relation with the topology of the manifold (see for example [96, 102, 103]). It
is possible to show that given a theory defined on a D dimensional manifold X the
gauge (gravitational) anomaly of a chiral spinor propagating along a submanifold M
of X and interacting with a gauge field is related to the index of the spinor complex,
namely

A= lim Tr FD“e—(“DM/ﬂ , (3.1)

L—oo
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where the trace is performed over the eigenstates of IDy;, the Dirac operator on the
submanifold M and I'°*! is the chiral matrix over X. The index theorem allows us
to write the anomaly polynomial using topological quantities related to the shape of
the manifold, before of giving the final form is convenient to introduce some notation.
Given a gauge theory with gauge (Lie) group G we have the usual field strength as a
two-form F' that can be decomposed as ) ., F*T* where the F'*’s are two-forms acting
as scalars on the gauge degrees of freedom and the T%’s are the elements of the Lie
algebra of G. We can define, in general, polynomials where a generic term of degree
one is given by F', a term of degree two by F'A F' and so on. In this sense we can also
think a power expansion in F' and define

I = —F - — I :
e 1+27TF 2_(%)21?’/\ A (3.2)

Moreover we can introduce, over each term of the polynomial, a trace over a given
representation of the gauge group

Trg [FAF] =) F*AF'Try [T°T"] . (3.3)
a,b
In this sense it is easy to define the Chern class in the representation 6 of a given field
strength F' as

cho(F) = Try [e-ﬂ . (3.4)

The result is a sum containing a O-form, a 2-form etc. It is possible to introduce
similar polynomials also for the Riemann tensor R, that can be seen as a 2-form with
values in the space of the real D x D matrices, where D is the dimension of the
manifold under consideration. In this sense it is possible to introduce R as a real
matrix of 2-forms and it is always possible to bring it to the skew-symmetric form by
means of an orthogonal transformation

( 0\ . .
M 0
A
0 0 A 0
R= Xy 0 (3.5)
0
0 A
0 0 0 D/2
P

Given this form is possible to introduce the Roof genus, Hirzebruch polynomials and
Fuler class respectively as:

. Nooos py T M
AR =11 o L(R)_Htanh)\i’ R =1lgp (3.6)

A 1 2
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where the \’s are 2-forms and the various functions are always a formal resummation
of the related Taylor expansion. In a more friendly notation it is possible to see that
all these objects are, as in the case of the Chern class, polynomials in R, as shown in
[76].

We introduced a manifold X and splitted it into the sum of the submanifold M
where the chiral spinor propagates plus, roughly speaking, a “complementar” space
(this naive decomposition is formally done passing to the tangent/normal bundle).
This decomposition is reflected also in the curvature and, in particular, having the
Riemann tensor in the skew-symmetric form it is possible to decompose it in the part
related to M, called with abuse of notation R, plus the complementar part called
R'. Clearly this decomposition is reflected in the various polynomials defined before.
With all these objects introduced it is possible to write the anomaly as

A= / en(F) n AE L oimny. (3.7)

M A(R")

Eqg. (3.7) is a formal notation meaning that all the various polynomials must be
expanded and then, of the full sum of forms, must be retained only the form of
_ degree equal to the dimension of M. In this sense the integral is well defined.
| There is an anomaly contribution also form self-dual or anti-self-dual forms present
in the theory. As in the case of fermions the contribution can be obtained from an
index theorem and so related to topological properties of the space. The final form
of the contribution is

1 [ LR
—-/ LB o, (3.8)
8 Ju L(R)
We define the anomaly polynomial for a chiral spinor and a self dual tensor as
A(R)
Is =ch(F)A = Ae(R), 3.9
5 = Ch(F) A o5 NelR) (3.9)
1 L(R)
Iy=—== Ae(R). 3.10
A= 57 o) (3.10)

These anomalies can be related to the loop amplitudes described before, and
are canceled by closed tree level amplitudes where closed RR states are exchanged
between the various extended objects.

To compute the cancellation it is necessary to introduce the couplings between
D-branes and O-planes to closed string modes in the most general way. For this
purpose we recall that the Wess-Zumino coupling in the effective world volume of a
Dp-brane is (see for example [76] and references therein)

_ AR
S_MP/O/\ A AR (3.11)
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where p, is the charge of the brane, C is the formal sum over all the RR form

potentials and F = 2wa/F — B is the difference between the gauge curvature F' and
the NSNS potential B.
We also recall that the coupling for an Op-plane is [76]

B | L(R)
S = up/O A TR (3.12)

These anomalous couplings modifies the usual equation of motion and Bianchi
identity for the RR field strength H, usually bound to be H = dC. On the other
hand, H must be invariant under a gauge variation since it is a physical quantity, so

that new anomalous transformations for C' are imposed, depending exactly on the new
anomalous couplings. Since the potential C is present in the action only through the
terms (3.11) and (3.12) the new anomalous variation is revealed exactly by them. This
means that given the anomalous coupling and dC' the inflow of anomaly is computed
exactly from the anomalous variation of the anomalous couplings.

Since each space-time defect (D-brane or O-plane) contributes independently to
the the new C transformation it follows that 6C is a sum over the various defects
of the various anomalous gauge variation. On the other side the full action itself is
already a sum of anomalous coupling terms, so that the anomaly ¢S is a double sum
over the space-time defects, and one can recognize the D-brane - D-brane, D-brane -
O-plane, O-plane - O-plane contributions independently to be equal to:

1 A(R) AN 1 N7 /
Top = —ynenlF) A7 py Nell) = —g L (B R ), (313)
A(R) 1 on
= Lchugn(2F) A =——= Ae(R') = =I"®"(2F, R, R'),
Ipo = § chpen(2F) AR) e(R') 3 1/2( , R, R)
1 L(R) ) 1 )
= - =—21 :
Too 16L(R’) A C(R) 5 A(R,R)

We can now see how the cancellation works in the most simple case of type I
string theory. The anomaly polynomial is computed given the spectrum. Type I
theory contains a a gravitational multiplet and a vector multiplet. The full anomaly,
so, is exactly

1 1
Ignw = '—}5[1/2(R) + EIB/Q(R); (314)
1
Tyea = ‘;)“I1/2(F7 R) (315)

In the previous equation the I3/5(R) anomaly is due to the presence of a spin 3/2
particle in the gravitational multiplet. Its contribution is computed knowing that

Lja(R) = I35(R) = La(R) = 0. (3.16)
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The vector contribution contains a Chern class of F' computed over the antisymmetric
n(n — 1)/2 representation of the SO(n) group of string theory. Since

hnirys(F) = %(Chm(p) ~ chy (2F)) (3.17)

the anomaly polynomial can be written as
1 1 nen 1 NP
I=SL4(R)+ ;8"(F.F) - ;5M(F, R) (3.18)

and cancellation against the anomaly inflow (3.13) computed previously is straight-
forward

I +1Igp+Igo+ Iog + Ioo =0. (3.19)

Anomaly cancellation in orbifold models

In the previous section we introduced a general way to compute the anomaly poly-
nomial of a theory given the low energy spectrum and how this anomaly is canceled
through a non trivial anomalous coupling between the closed RR form and D-branes
(O-planes). The cancellation is valid also in the case of orbifold models, but, since
the spectrum is modified by the new topological properties of the background, also
the anomaly polynomial is different and so the anomalous couplings. It is possible
to compute the anomaly polynomial exactly as in the previous case, knowing the
contribution of a chiral spinor, Rarita-Schwinger field and antisymmetric tensor and
given the spectrum of the model. On the other hand another technique can be fol-
lowed, taking in account for a moment the anomaly polynomial as computed directly
from the evaluation of the loop amplitudes. Calling [an,, Iys and Ixp the annulus,
Mobius strip and Klein bottle contribution we obtain, in the most trivial case

1
Linn = 7 Tt [(—1)F e tH 7] (3.20)
1
Ings = Trg [Q(=1)" e 0] (3.21)
Igp = %TTRR [Q(—I)FJrFe_tH(R’F)} (3.22)

where H(F,R) contains also the vertex operators of the six external legs and the
traces are performed only on the Ramond excitations with the insertion of the target
space fermion number projector (—1)¥. We are not going to compute directly this
amplitude, we introduce it because in the case of an orbifold with orbifold group of
order N generated by g it is modified in a very simple way, since the only effect is
the insertion of a projector on g-invariant states in the annulus and MS traces and a
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projection and a sum over the twisted states in the KB amplitude

N-1
_ 1 k F _—tH(R,F)
Lann = 35 ; Trg [g°(—1)"e ] (3.23)
] e
Iys = v Trr [ng(—l)Fe_tH(R’F)} , (3.24)
k=0
| No1N )
Ixp= N Trg%) {ng(—l)F+Fe"tH(R’F)] . (3.25)
k=0 m=0

The presence of the twist operator modifies the final formula only by means of an
overall counting of the fixed points, through the action on the zero modes, and with
the insertion of a matrix i, the embedding of the action of g* on the Chan-Paton
degrees of freedom, in the Chern class

ch(F) — ch(yF) = tr [fykeiF/z’r] : (3.26)

The details of these derivation can be found in [76], we collect here a summary of the
final formula valid for K3 orbifolds

N-1 2
1 AN -
1291,355 (R, FQ,S) = 4— (2 sin —N—) ChZ(’Yk; FQ,S) Il/Q(R) y (32 ()
k=1
N-1
1
I¥s (R, Fy, Fs) = N Z ch(ve Fy) ch(yx Fs) I 2(R) | (3.28)
k=0
. 1 N-1 . Tk 2
IBO (R, Fg) = *ﬁ 2 2sin W Ch(")/gk 2Fg) Il/g (R) s (329)
1 = A
IgO(R, F5) = 4— Z (2 COS W‘) Ch(’YQk 2F5) I]_/Q(R) , (330)
k=0
1 N-1 2
Ioo(R) —*W |i(2 sin —) - JV;C IA(R) , (331)
k=0

where N is the order of the orbifold group while Ny, different from zero only for

N/2

even-N, is the number of fixed points of ¢g*'/¢ that are fixed also under the action of

g~

The novelties with respect to the trivial case can be understood easily from a
more physical point of view. In presence of an orbifold some of the states are bound
to live on the fixed points, and there is a copy of each spectrum for each fixed point.
The factor counting the number of fixed points, so, is simply the way in which this
degeneracy is taken into account. The presence of the v matrices, instead, is simply
the remnant that in an orbifold the gauge group is not the most general SO(32) but
is a subgroup of it fixed by the orbifold action, so exactly by the projection through
the v matrices.
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3.2 Localized anomalies

Taking into account a field (string) theory defined on a space-time with the four
standard extended dimensions and extra (compact) ones the analysis of anomalies
becomes more subtle. On one hand from a phenomenological point of view we are
interested in the low energy physics, and so all the relevant “physical” quantities are
integrated over the extra dimensions. This, in some sense, means that we are inter-
ested only in the effects due to the low energy states in the Kaluza-Klein expansion,
since the effects due to the massive excitations are anyway suppressed by their mass.
On the other hand there are effects that, even though are due to heavy states, can
be dangerous for the model itself, and there can be quantities of interest that are
zero if integrated over the extra dimensions while are not zero as a function of the
full space-time. Anomalies show a good example of such quantities. As an example
we will review the model studied in [36], consisting in a field theory defined on a
space time with an extra compact dimension, taken to be a circle modded out by two
reflections S'/Zy x Z,. The theory contains a 5D massless fermion of unit charge
coupled to a U(1) gauge field.

The reduction to four dimensions is straightforward and, since there is no massless
4D chiral fermions, is naively anomaly-free. This means that the triangle diagram
with all massless external legs is zero. A more accurate analysis shows, instead,
that the interaction between massless and massive KK states can produce anomalous
triangle diagrams, with at least one external leg massive, and this is mapped in a 5D
anomaly that is zero if integrated over the extra dimension.

The presence of this anomaly is an effective breakdown both for the full 5D theory
and for the reduced 4D theory, since even though one is interested in the interactions
between the lowest mass KK modes, it is possible to glue together anomalous diagrams
in such a way that all the external legs are massless while the massive states, necessary
to have anomalous triangle diagrams, propagates as internal lines (see for example
fig. 3.2).

3.3 Localized anomalies in orbifold models

In a string model the Green-Schwarz mechanism ensures that all the anomalies are
canceled provided that tadpole cancellation conditions are implemented, but is any-
way of great interest to understand whether an anomaly is not present or it is present
but is canceled by the mechanism. The interest is due to the fact that, as we will show,
the mechanism acting on 4D anomalous U(1) gauge symmetries ensures the anomaly

cancellation but giving a mass to the gauge boson. Moreover, understanding how the
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Figure 3.2: The anomalous diagram for the theory of the ezample given in [86]. On the left
the usual anomaly triangle for a U(1) gauge theory in 4D. In the case of interest the theory
15 a reduction from a 5D theory and so the gauge fields entering as external legs have an
extra KK indez (3, §, k). Due to the fact that the 4D theory has an anomaly-free spectrum
the triangle amplitude is non zero only if the sum i+ j+k is odd, so that at least one of the
external legs must be a massive particle. This is a breakdown also for the 4D physics since
it is possible to glue two triangles as in the right picture in such a way that all the external

legs are massless.

cancellation is obtained in string theory gives an hint about the way in which it is
* possible to add counterterms to a model built from a “bottom-up” approach to take
care of the presence of anomalies. We will study examples of this for models with only
four extended dimensions, with a detailed analysis for the particular models discussed
in the previous chapter.

As said all the anomalies are canceled by the Green-Schwarz mechanism, but
an important novelty occurs for globally vanishing anomalies, that correspond to an
anomaly polynomial I that vanishes when integrated over the orbifold: [ =0. In
this case, the GS mechanism can be mediated not only by RR axions (or their dual 2-
forms), as for globally non-vanishing anomalies, but also by KK modes of RR 4-forms.
The occurrence of one or the other mechanism depends on the way the anomaly is
factorized in terms of forms X, (F, R) of definite even degree n, constructed out of
the gauge and gravitational curvature 2-forms F' and R. If it has the form I ~ X, X},
the GS mechanism will be mediated by twisted RR axions, arising at the fixed points
(or fixed-planes) where the anomaly is distributed. If it has instead the form I ~ X,
the relevant fields are twisted RR 4-forms, arising at fixed planes that contain all
the fixed points where the anomaly is distributed. Notice that localized irreducible
anomalies are always of the second type, whereas mixed U(1) anomalies can be of
both types. As we shall now illustrate with simple and general examples, the fate of
the symmetry suffering from a globally vanishing anomaly is radically different in the
two alternative mechanisms.

Consider first anomalies of the type I ~ X3X,. In this case, the relevant GS
mechanism can be easily understood by distinguishing anomalous couplings localized
at different points in the internal space. The qualitative novelty can be illustrated
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by focusing on the case of a U(1l) gauge anomaly distributed at two distinct fixed
points z = z; 2, corresponding to a term of the type I = XoX4l|,, — XoXu4l;, in the
anomaly polynomial. This anomaly is canceled through a GS mechanism mediated
by two axions, C&’Q , living at the two fixed points z; »'. The action is:

1 1
Sgs = /d% [i;dq} + X1+ 05X4] - /d4x [-2-|dcg + X7 - C§X4} (3.32)
21

22

where the I-form X; denotes the U(1) gauge field associated to the curvature 2-
form X, such that Xy = dX;. The modified kinetic terms in (3.32) require that
603’2 = —Xy(212) under a gauge transformation® with parameter Xo(z,z), under
which 6§ X; = dXy. The variation of the X, terms in (3.32) then provides the required
inflow of anomaly that restores gauge invariance. The form of the action (3.32) is
fixed by the requirement of having full gauge invariance, and implies that the U(1)
field becomes massive, independently of whether the anomaly vanishes or not globally.
Indeed, one can choose a gauge in which C§ = —CZ, where the kinetic terms in (3.32)
are diagonalized and mass terms for the 4D gauge field are generated. This fact has
not been appreciated so far in the literature, where only integrated anomalies were
studied. '

Consider next the case of anomalies of the type I ~ Xg. A globally non-vanishing
aﬁ_omaly of this kind, associated to a global tadpole for a RR 4-form, would lead to
an inconsistency, because it cannot be canceled by a standard GS mechanism; indeed,
the latter should be mediated by a RR 4-form, that in 4D is a non-propagating field,
Whose dual in 4D would be a manifestly non-physical and meaningless (—2)-form
[12] Instead, if the anomaly is globally vanishing, and therefore associated to a local
tadpole for a RR 4-form, the situation is different. The crucial observation is that this
type of anomaly always appears in conjunction with twisted RR states living on fixed
planes rather than fixed points in the internal space. Such states propagate in 6D
rather than 4D, and this opens up new possibilities, since a 4-form is now a physical
propagating field and can mediate a GS mechanism. Moreover a 4-form in 6D is
dual to a 0-form, and not to a meaningless (—2)-form. However, internal derivatives
will play a role and the corresponding states will thus be massive KK modes from
the 4D point of view. The situation is most conveniently illustrated with a simple
example consisting of an irreducible term in the anomaly polynomial of the form
I = Xg|,, — Xz, where the points z; and z, differ only in the fixed-plane direction.
The relevant 6D action for the RR. 4-form C, responsible for the inflow is:

— /d4£l? C4

IThe same basic mechanism works for anomalies localized on fixed-planes, that will thus be

1
SGS = /dGIL' 3[(104 -+ .X5|2 + /d456 04 s (333)

canceled by RR axions propagating in 4 or 6 dimensions.
2In our set-up the gauge fields that can have anomalies localized at distinct fixed points are in

general linear combinations of fields coming from D9, D5 and D5-branes.
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where X5 is the Chern—Simons 5-form associated to Xg, such that X5 = dX5. The
kinetic term in (3.33) requires that §Cy; = —X, under a 10D gauge transformation,
where X, is defined as usual from the gauge variation of X5: 6X5 = dX,. The
variation of the second and third terms in (3.33) then provides the required inflow
of anomaly®. Contrarily to the previous case, no U(1) gauge factor is broken by
(3.33). Since Cy enters in (3.33) only through massive KK states, it is interesting to
understand its effect in the 4D low-energy effective field theory. In order to do that,
notice that the 2-form 6(z—2z1) — 6(2z—22) can be written locally as dn(z) for some
1-form n(z). Equation (3.33) can then be interpreted as a 6D action with Lagrangian
Lgs = %|dC'4 + X5|> — ndCy. We can now integrate out the massive modes of Cy
and evaluate their action on-shell. This is easily done by substituting back into the
Lagrangian the equations of motion for Cy, that imply dCy+ X5 = *n (where * denotes
the 6D Hodge operator); it yields LEy = —1|n|* + nX;. Finally, we obtain the local
6D Chern—Simons term

S = / dSznXs . (3.34)

Note that this gives, at it should, the same gauge variation as the original action, since
0(nXs) = ndX4, which gives —dnXy = —(6(z — z1) — §(z — 22)) X4 after integration
by parts. Moreover, the discontinuous coefficient 7 is achieved exactly as proposed
in [81], the only difference being that the involved 4-form is a dynamical field in the
full 10D theory, which behaves like an auxiliary field only in the 4D effective theory.
Importantly, the results of [81] ensure that the term (3.34) is compatible with local
supersymmetry at the fixed points.

Summarizing, it is clear that there is an important qualitative difference between
anomalies that vanish globally and other that do not. From a purely 4D effective field
theory point of view, the condition [ I = 0 on the anomaly polynomial I guarantees
that the corresponding anomaly can be canceled through the addition of a local
Chern-Simons counterterm with a discontinuous coefficient?. In open string models,
however, anomalies with I ~ X, X, always lead to a spontaneous symmetry breaking,
and only those with I ~ Xj are canceled through a local counterterm. It would be
interesting to understand whether there is some deeper physical principle determining
this distinction, besides factorization properties.

All the above considerations apply qualitatively to any orientifold model. For
6D SUSY models, for instance, part of the GS mechanism is mediated by untwisted

%In short, localized irreducible 6-form terms in the 4D anomaly polynomial look like reducible
terms in a 6D anomaly polynomial, given by the product of the 6-form term and a field-independent
d-function 2-form.

*For example, an orbifold field theory that is globally free of anomalies can be regulated in a gauge-
invariant way by adding heavy Pauli-Villars fields with mass terms that also have a discontinuous
coefficient; the appropriate Chern—-Simons term is then automatically generated when integrating
out the regulator [83, 104].
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RR forms, and these can play the same role as 6D twisted sectors in 4D models. In
particular, we have verified local anomaly cancellation in the SUSY 6D Z; model
of [9, 13]. In the case of maximal unbroken gauge group with all D5-branes at
a same fixed point, irreducible Tr Fy and Tr R* terms in the anomaly polynomial
do not vanish locally and are indeed canceled by a local GS mechanism similar to
that described in (3.33), but mediated by untwisted RR, 6-forms propagating in 10D.
Again, from a 6D effective theory point of view, these amount to a local Chern—Simons
term.

Let us now be more concrete and apply the general arguments outlined above to
the Z§ x Z§, and Zz x Z§ models. We will begin with the Z3 x Z% model, which
does not have irreducible anomalies at all, and then analyse the more complicated
Z§ x Z, model, where some are present. Fortunately, the techniques of [75] can be
easily generalized to study the local structure of anomalies. It is convenient to define
dape a8 a 6D Dirac §-function in the internal orbifold, localized at the fixed point with
positions labeled a, b and c¢ in the three T%’s respectively, as reported in Figs. 2.4
and 2.6. We also define 9,5, as a 4D o-function in the internal space, localized at the
fixed planes with positions a and b in the first two T%s, and similarly for §,.. and
6.{,0. Moreover, we will denote by F;* the field strength of the i-th factor of the gauge
grbup, ordered as in Table 2.2 (+ = 1,2, 3 in all cases), in the a (9, 5 or 5) D-brane
sé{;tor, and with “tr” the traces in fundamental representations of the gauge groups.

3.3.1 Local anomalies in the Zg x Zy and Zg3 x Z5 models

In this subsection we discuss the computation of anomalies for the Zg x Z, and Z3 x Zj
models, and the deduction of anomalous couplings by factorization. We proceed along
the lines of the previous sections. The polynomial are written as function of the full
10D space, so that all the anomalies are taken in account. Since we are interested
only in anomalies that are localized in the extra dimensions we take in account only
loop amplitude with the insertion of the various orbifold operators, moreover, due to
the localization on the fixed points, the various term will be proportional to Dirac
delta functions.

It is useful to define the following field-dependent topological charges for D-branes

and fixed points:

X*(F,,R) = Tr[T% e”=] \/A(R) , (3.35)
Y(F,, R) = Tr[['¢ efe] \/A(R) , (3.36)

Z(R) = VI(R/4) . (3.37)

The labels X and Y distinguish between the two different sectors contributing to the

anomaly in each of the models under analysis. These charges must be intended as
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sums of components with growing degree n, which we shall denote by X, ¥,* and
D

The factorization of the anomaly polynomial will be performed along the lines of

+

[75] and the results will be given in the compact differential form notation where C3_

denotes the formal sum/difference of a RR axion (0-form) X, and its 4D dual 2-form

bave arising at a generic fixed point Puye: C5 = Xabe £ base. The inflows mediated by

abc

these fields can then be schematically written as (C% C% ) = £1. A similar notation
is adopted also for twisted states associated to a fixed plane, say P,., which consist
of an axion xge and its 6D dual 4-form cgpe, and a self-dual 2-form byp.; we define

in this case Dgpe = Xabe + Dape + Cape- Since these fields live in 6D, D5-branes or

9,5

fixed-points and D9-branes or fixed-planes couple to different 4D components D;..

In particular, the 6D 2- and 4-form fields b,pe and cgpe give rise in 4D to 2- and 4-
forms by and cupe When no index is in the fixed-plane direction, but also to 0- and
2-forms X4 and base When 2 indices are in the fixed-plane direction. In this notation,
DS, = Xabe + Xave + bape a0d D2, = Xave + bape + Cape- Since Xape and by, as well
a8 Xape and bgpe, are dual from the 4D point of view, whereas Y. and cgpe are dual
from the 6D point of view, the only non-vanishing inflows mediated by these fields
can be formally summarized in (D2,,D3,.) = 1. This setting allows us to understand
the form of the anomalous couplings in sectors with fixed planes, including those left
unexplained in [75].

Z3 x Z; model

In the Zs x Z4 model, X refers to the 6/ twisted sector, whereas Y refers to the 052
twisted sector, so that 'y = v§ and I'y = 6. The anomaly polynomial is easily

computed and is given by I = I® + I3, where
2

99 _ M~ S XX — 5 VO 9)
19 = ng@mxf X0 — G YO YO (3.38)
I =202 Y (Gwse X° 2 = 6une Y° 7 (3.39)
a,b,c
are the contributions from the annulus and MGdbius strip surfaces respectively, and
b= 3—7/4.
The sum of the two contributions is
1= 2" [Guse X3 (X34+420) — bune¥s (Vi +424) | (3.40)
a,b,c

where the explicit form for the quantities X, ¥,* and Z, are (m; = (1,1,0),
n; = (1,-1,0), s; = (1, -1, ~1)):

X5 =- V3m; trE® Yy = —V3n, trFY (3.41)

1 1 1
Y9 v T | a2 2 _ 2
X =Y =3 [slter + 12trR], Ty = —1o5 R (3.42)
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There are two anomalous combinations of U(1) factors, X7 and Y;?, defined by X3 =
dX?, Yy = dY?. These have opposite anomalies at the two types of fixed points.
This means that the combination X7 — Y} has true 4D anomalies, whereas X7 + Y7’
suffers only from a globally vanishing anomaly of the type corresponding to (3.32).
It can easily be verified that the integrated anomaly coincides with the contribution
of the massless chiral fermions in the representations reported in Table 2.2.

The anomaly polynomial can be easily factorized, and yields the following anoma-
lous couplings:

Spy = / Z <5a’bc Oc;bc X° + Ogrrpe C:;,bc Yg) ) (343)
a,b,c
SF :4u/z (5,1/1,,30;()02-}-5&//1,0 C:;'bc Z) . (3.44)
a,b,c

that is equivalent to

L= uz5a’bc]: - an/bc : Xf - Xa’bc(Xz? + 424)]

ab,c

+ L4 Z 5a”bc l: - an”bc : YEQ + Xa''be (Y;;g +4 Z4>:l ) (345)

a,b,c

The first term in each row corresponds to the cross-term in a mixed kinetic term of
the form (3.32) for the two axions.

7. x 7!, model

In the Z§ x Z} model, X refers to the § and 0/ sectors, whereas Y refers to the 62
and 628 sectors; I'y is defined as 7y in the 9 sector and 76 in the 5 and 5 sectors,
and I'y as 72 in the 9 sector and 7% in the 5 and 5 sectors. The anomaly is given by
I'=3% s I8P 437 I% in terms of the contributions from each sector of the annulus
and Mobius strip, which are given by

nf 3

ap _ K af ayB . afyayB) _ a B aByavyB

I3 = - b}_:l;p [6e (X XP + &7 Yo y?) — gy, (X7 XP + 2 vo Y7 [3.46)
n*® 3

EPZQEE:EZWQMMY“Z—deMZ}, (3.47)
b=1 c=1

where p = 1273/%; for a8 = 99, 55,95, 59, the coefficient p®? is equal to 1,4,2,2, ¢
i50,0.1,1, and n is 4,2,2, 2. |
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The complete anomaly polynomial, so, is

3 2
=2y {2 S 6 [Xg (=2X54+X5) + X35 + Y5 (V2 +870) + VY7 — 4v;)|
b=1

c=1

2
~2Y b [XE (—2X34+X9) + XIXT + YD (VP +82,) + Y2VF — 4Y69]
b=1
4
+ 3 (Buse — G [—/ 3X] + 4V 7, + 47 | } , (3.48)
b=1

in terms of the components of the charges, which read in this case (p; = (1,1, 2),
q; = (17 17 "2)7 T, = (17 "‘17 0))

X¢=—ptrF®, Y2 = —/3rtrF?, (3.49)
. V3 o o 1 a—1 1
X4 = ——2‘— TitI'.Fi 2 ; Y:l = —5 [qitrFf‘Q-l- *Lié—"tI'RZ] R Z4 = *I—g—th’Rz (350)
T5 1
ye—__li [ o3 —tFitR2]. 51
f 2\/§trFZ+36r r (3.51)

When integrated over the internal space, eq. (3.48) is in agreement® with the contri-
bution of the massless chiral fermions in the representations listed in Table 2.2. There
are however additional anomalies (of all types, including irreducible terms) that do
not involve the gauge fields associated to the D5 or D5 branes, which are distributed
with opposite signs at different fixed points and are therefore not detectable in the
4D effective theory. These anomalies are generated by KK modes of charged fields in
the 99 sector. In total, there are 4 truly anomalous U(1)’s, two U(1)’s that have only
localized anomalies, and localized irreducible anomalies.

Written in the form of equation (3.46), the anomaly can be easily factorized, and
we find the following anomalous couplings:

So0 =13 / [i (S10e O X° + 190 O X°) = 5 (daec Danc¥?) |, (3:52)
c=1 b=1 a=1
Sps = —2 ﬂi / i [51bc (c;;,c X5 Dy, YS) + S1pe (c;b,cxs + Dy YS)] (3.53)
c=1 b=1
Sp=4pY / [i (815 D1ve Z = G1re D1uc Z ) = >3 (Gune Danc Z)| . (3:59)
c=1 b=1 a=1

It can also be written as couplings for the two kinds of twisted axions y and ¥ and the
twisted 4-form c¢. Defining for convenience the combination of Kronecker d-functions

5In particular, it reproduces the results of [74] for gauge anomalies, apart from irrelevant chirality
conventions.
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55 = 55,1 -+ 61372, we find:

3 4
L=p) > bue [ — dxre - (X] — 26, X7) + xa0e (X3 — 26, X5)

c=1 b=1

—d¥1ec - (265 YY) + X1ec(4 Za + 26, Y)) + Croc(4 — 8 5b)}

3 4
> Y 5wc[ — dxape(X7 — 28y X7) — xwe( X3 — 26y X))

c=1 b=1
S dTree - (26 VE) = Xreo(d Za + 28y YE) — croo(4 — 8 51,,)}
3 3
+:U'Z Z 5aoc [an,-c ) Y'lg - Xaoc(ng + 8 Z4) - dcaoc ) szg] . (355)
a=1 c=1

The terms relevant to the cancellation of localized irreducible anomalies are the last
terms of each square bracket. The other terms, instead, are relevant to the cancella-
tion of reducible U(1) anomalies.
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Chapter 4

Stability in orbifold models

As explained in the introduction quantum corrections inducing a potential for the
compactification moduli are of crucial importance in the study of freely acting orb-
ifolds. In chapter 1 we showed how a freely acting orbifold model contains a would be
tachyon, of mass m ~ 1 — aR?, with a > 0 being a proper model-dependent constant
and R being the SS radius. The presence of a would-be tachion, unavoidable, gives
a constraint on the moduli space to be fulfilled. Furthermore the SUSY breaking
scale is proportional to 1/R?, so that the moduli space is constrained also from a
phenomenological point of view. Due to these constraints it is clear that the study of
the loop-induced potential is relevant, at least in the restricted case of the SS radius

potential.

In this chapter we introduce how to work out loop computations in order to
compute the vacuum energy of a model, that is exactly the potential for all the
parameters present. The study is completely general, since it is clear that in principle
all non-SUSY models can receive loop corrections to the potential.

Special attention is devoted to the case of closed loop-amplitude, where, due to
the SI(2,Z) invariance of the torus, the computation implies an integral over the
torus fundamental region. We show how to unfold this region to a more suitable
one in order to perform computations in an exact analytic way. The problem of the
unfolding of the fundamental region, studied in [91], is presented in the most general

case in Appendix B.

We take into account the potential in some simple toy model, essentially with
the SS radius as only one modulus, in order to extract the main model-independent
behavior. We obtain that no stabilization is present if the orbifold group is odd-order.
Then we study the chiral N=1 Zg x Z, model of chapter 1, showing that a stabilization
is possible but also that it is necessary to include, in the study, all the moduli in order

to solve a well-defined minimum problem.
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4.1 General form of the vacuum energy

The vacuum energy at one-loop level in any quantum field theory depends simply on
the mass spectrum of the theory and its degeneracy. In D space-time dimensions, in
a Schwinger proper time parametrization, it can be written as

® gt o [ APk o
ED:"VD—l/(; %Zdi(‘) /We ), (4.1)

with J; and m, the spin and mass of the state i, d; its degeneracy, k its euclidean
momentum and Vp_; the volume of the D — 1 spatial dimensions. More succinctly,

*dt i
Ep = —/ — Try e ™", (4.2)
o 2t
where # is the full Hilbert space of our system (including Vp_1) and H = k? + m2.
We are interested in the explicit form of (4.1) for orbifold and orientifold-derived
theories, with the usual tower of massive string states, where supersymmetry is bro-
ken by a SS mechanism. We focus our attention to the case in which the twisted
periodicity conditions defining the SS breaking are taken only along one direction, a
circle of radius R, henceforth denoted SS direction. As we will see shortly, similar
considerations apply also when the SS direction is an S'/Z, orbifold, such as in the
chiral 4D model considered in section 5. More general configurations with two (or

more) SS directions will not be considered here.
It is convenient to treat separately the contribution to the vacuum energy of states
propagating or not along the SS direction. We denote the symmetry breaking in the

two cases respectively as longitudinal and transverse SS breaking.

4.1.1 Longitudinal SS breaking

This is the situation that will concern us mostly, since it applies to all closed strings
and to open strings on D9-branes. In both cases, the vacuum energy can be written
as in (4.1). For open strings this is clear, ¢ being the modulus of the annulus and d;
the string degeneracy of the state. For closed strings the situation is more compli-
cated because the PSL(2,Z) modular invariance of the torus restricts the integration
over the modulus 7 to the fundamental domain. Nevertheless, generalizing standard
techniques (see e.g. [89, 90] and Appendix B) one can unfold the fundamental domain
to the strip and rewrite the whole closed string contribution, including the Klein bot-
tle term, in the form (4.1), where d; is now the string degeneracy of the state, with
the level-matching conditions imposed by means of the 7 integration. Quite inter-
estingly, in this way only untwisted closed string states will explicitly appear in the
computation. Similarly, winding modes along the SS direction will not be present, so
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that as far as the R dependence is concerned, the whole amplitude looks effectively
like that of a purely quantum field theory with an infinite number of states.

It is useful to distinguish closed and open string contributions to the vacuum
energy. Recall that in string theory H¢o%d) = Ly + Ly = o/p?/2 + (N + N) /o' and
Hopen) = [y = o/p?>+ N/o'. Therefore, rescaling t — wa/t and ¢ — 27t respectively
in the two cases, one gets

c < dt c o rtalm?
= —/o 9455 Sl (=) gmmtemi,

o0
Ie) _ dt O . 97rta’ 2
Py = 2 D/z/o Py > diO) (=) gm2rtelmi, (4.3)

172

where (C) and (O) stand respectively for closed and open, and we have defined the

energy densities
D
2

_ ED (47‘(’20{/)
PD = )
Vb1

with Vp_; the (D — 1)-dimensional spatial volume of the non-compact dimensions.

(4.4)

The generic mass of a given closed and open string Kaluza-Klein (KK) state at level
n.along the SS direction is respectively

2(N + N) (n+ q)? (n+q)?

2 —_ 2

mi,nmma, +...+——————R2 :mi—k—————R2 )
) N n+q@PF 5, [+ed@P

where ¢ is the twisted charge given by the SS breaking, N and N are the string
oscillator numbers and the dots stand for the KK and winding mode contributions
along the other compact directions. The index 7 in (4.3) includes thus a sum over
N, N, KK and winding modes over all the compact directions (but the SS direction)
of states of given charge ¢ and then a sum over all possible twists ¢. Since the SS
breaking can (and must) be implemented in the gauge sector as well, for open strings
q depends also on the gauge degrees of freedom, ¢ = ¢(G). The m? mass terms are
typically functions of the geometric moduli of the compactification, except R, but for
simplicity of notation this dependence will be left implicit in the following. Eq.(4.3)

can be rewritten as

© di ; —7ta! (m? —11-—2
= ‘ZZ/ Q—B:-?di(q,F)e’”Fe o (i),

i F=0070 2177
gt , 1 (2 Inta(G)?
pp) =~y Z/ (g, FyemTe e (M EEEE) (4 )
n.i,G F=0,170 2t

where F' is the space-time fermion number operator, G denotes a sum over the gauge
indices and d;(g, F') are the string degeneracy factors, in general depending on ¢
and F', that include also the degeneracy arising from the expansion of the modular
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functions. By a Poisson resummation on the index n and some algebra, it is not
difficult to explicitly compute pg}c) and p(DO). It is convenient to separate the m? = 0
contribution, denoted by pgbo), from the remaining ones. One gets for both closed

and open strings:

Vao! (DJrl i Li e?m) 4 1 g~ 2imq
50—~ (Y2) TR 5 s el i)
2 q;F=0,1
where
o Z,w
Llp(z) = s (4.8)
w=1

are the polylogarithm functions, the sum over the gauge degrees of freedom for open
strings is implicit, and we denoted by dp the degeneracy of states with m? = 0. As
far as the m? # 0 contributions are concerned, we get

D—-1

! P} o 2
pE)C’;O) — __2<\/E) (a m D+1 Z emFd q, z COS ﬁjgw ou (Zﬂ'mei),

¢;F=0,1 w=1

(4.9)
where K, are the modified Bessel functions and again the sum over gauge indices has
been omitted. The full vacuum energy pp is obtained by summing the total closed

and open string energy density contributions, pp = p( )+ p%)), where
P = S+ 3 i) (4.10)
170

and 7 # 0 indicates that states with m? = 0 should not be included in the sum.
Both psjc) and p(DO) are finite, as expected by the non-local nature of the SS breaking.
Potential divergences should be local in space-time, but locally SUSY is preserved
and hence no divergences at all are present. Indeed, in both egs.(4.7) and (4.9) there
would be a potential R-independent UV divergence arising from the w = 0 term,
where the index w, entering in (4.8), is obtained by a Poisson resummation on the
index n of eq.(4.6). This term vanishes because at each mass level ¢ the total number
of bosons, summed over all possible twists g, equal the total number of fermions:

> di(g,0) =) di(g,1) Vi. (4.11)

String models with SS SUSY breaking generically have winding modes that become
tachyonic below certain values of R, where the vacuum energy diverges. Though
the m? mass terms defined in (4.5) are always positive, this divergence appears in
(4.9) from the sum over all massive string states. As is well known, the degeneracy
of massive string states, for large masses, has a leading exponential behavior d; ~
exp(2reyv/a'm), with ¢ a given constant. On the other hand, for large values of
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its argument, the modified Bessel function K,(z) admits an asymptotic expansion
whose leading term is ~ exp(—z). Hence, we see that the infinite sum over 7 in
(4.9) converges only for R > Ry = v/o/c. When the SS twist ¢ = F, one can easily
recognize eqs.(4.7) and (4.9) to be closely related to the free energy of string/field
theory-derived models, with 1/7 = 27 R (see e.g. [105]) and Ty = 1/(27Ry) being
the Hagedorn temperature.

The general form of the vacuum energy for m;R >> 1 is easily extracted. We see
from (4.7) that the m? = 0 contributions is power-like in R, whereas for large R (4.9)
is exponentially suppressed in R. More precisely we get

o ~ 25 2 [dola,1) = do(4,0)] () + 0(;_) (412)

2
q

where do(g,1) and dy(g,0) are the total (closed + open) number of fermionic and
bosonic massless states in D + 1 dimensions (before the SS compactification) with
charge ¢ and Cp(q) are certain functions easily obtained from (4.7). For Z, or Zs
twists, in which we get two independent twists ¢ = 0,1/2 or ¢ = 0, 1/3, the constraint
(4.11) implies that for large R the vacuum energy is dominated by the difference
between the total number of fermionic and bosonic D-dimensional, rather than D+ 1-
dimensional, massless states do(0,1) and do(0,0) [19];

do(0,1) — do(0 iR
pp ~ 0(07 )RD D( ,0)+O<€ = ) (413>

2

In these cases, an exponentially small one-loop cosmological constant requires do(0, 0) =
do(0,1) [19, 23]. However, for more general twists, we notice that the leading power-
like behavior can be vanishing in a non-trivial way, thanks to a compensation between
bosonic and fermionic contributions with different twists, even if do(0,0) # do(0, 1).
It would be quite interesting to fully exploit this observation and see if there exist
string models with a spectrum satisfying this property.

All the above considerations are easily generalized to the case in which the SS
direction is an S!/Zj orbifold. Bulk states propagating along the orbifold are now
classified according to their Z, parities. The massive spectra of Zy-even and Zj-odd
states differ only by the presence or not of a zero mode along the orbifold. Both
contributions can be summed together in the form (4.6), where the KK level runs
over all integers. Possible left-over n = 0 terms in the process of recombining Z,-even
and Z,-odd contributions must vanish, since SUSY is broken by the compactification
and they do not depend on R. Equation (4.6) and all the analysis that follows is then
still valid for the S'/Z, orbifold. The remaining compact directions can be instead

arbitrary, as far as SUSY is broken only by the twist on R. Their structure will affect

2
1

the explicit form of m? as well as the degeneracy factors d;(q, F').
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4.1.2 Transverse SS breaking

States that do not propagate along the SS direction do not have a KK decomposition
along that direction and hence their contribution to the vacuum energy requires a
separate analysis. In string theory, states of this kind can arise either as twisted
closed strings located at fixed points orthogonal to the SS direction or as open strings
on D-branes transverse to the SS direction. In our class of models, the first kind of
states appears always with unbroken tree-level SUSY and hence will never contribute
to the one-loop vacuum energy. The same applies also to open strings on D-branes
transverse to the SS direction, that present unbroken SUSY at the classical level.
The only exception arises for open strings stretched between D5-branes/O5-planes
and D5-branes/O5-planes, where SUSY is broken at tree level, for the 4D model
discussed in section 5. In this case, the one-loop open string amplitude is more
conveniently expressed as a tree-level exchange of closed string states, propagating
from one object to the other. This contribution can be thus summarized as follows:

pp ~ =Va 33 QUQWGHA(w)], (4.14)

where gfj) is the d-dimensional propagator of a particle of mass m; and spin J; and V;,
is the volume of the compact longitudinal directions along which the states can prop-
agate. Az(w) is the transverse D-brane/O-plane-D-brane/O-plane distance modulo
windings, since a given closed string state can wind w times along all transverse di-
rections before ending on a D-brane/O-plane, and Q) = %) / Qg) is the D-brane/O-
plane charge for each state . The same applies to the anti-brane and anti-plane
charges O®. As in last subsection, the sum over i runs over the string and wind-
ing modes along the longitudinal directions, whereas the sum over 1 runs over all
the possible windings along the transverse d dimensions. One should recall that the
subscripts d and n in (4.14) represent the number of space-time directions in which
closed strings propagate and thus it can be different for untwisted and various twisted
closed string states. As in the last subsection, the massless ¢ = 0 contributions in
(4.14) are power-like in R, whereas massive ones give an infinite sum over modified
Bessel functions K, and thus are exponentially suppresed in R, for large R. The
sign of the vacuum energy contribution is now given by the brane/plane charge and
is always negative. This is intuitively clear, since objects with opposite charges feel
an attractive potential between each other. The divergence due to the open string
tachyon arising below a given radius is determined by looking at the asymptotic form
of the modified Bessel functions and at their degeneracies for large masses.
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4.2 A nine-dimensional model

We compute in this section the energy density pg of the simple 9D model introduced
in chapter 2, with Type I string theory compactified on S*/(Q x Zy), where Z, is
generated by g, the product of a 7R translation o along the circle and (=), with F
the space-time fermion number operator; g = o(—)¥. Such a computation has already
been done in [30]; we review it in the following as a simple example of the kind of
computation we are going to perform in the next sections. We are interested in the
radius dependence of pg = pg(R); for simplicity we do not include continuous Wilson
lines but discuss the dependence of pg(R) on the twist matrices 7, that embed the Z,
group in the Chan-Paton degrees of freedom. They can alternatively be considered
as Zs discrete Wilson lines.

The only massless tadpoles are those for the dilaton, graviton (NSNS) and for the
untwisted 10-form (RR), whose cancellation requires the presence of 32 D9-branes.
All neutral fermions are anti-periodic along the circle and thus massive, with a mass
~ 1/R. In the twisted sector we get a tower of real would-be tachyons starting from
o'm? = R?/(40’) — 2. The twist matrix v, is arbitrary and must only satisfy the
group algebra 7 = +I. The gauge group is SO(n) x SO(32 — n), with massless
fermions in the bifundamentals (n, 32 — n), for v, = diag(ln, —I32-5). If 7, is taken
traceless, the twisted tadpoles associated to the above would-be tachyons cancel as
well. From this perspective, such a choice is different from the others. If v, is
chosen antisymmetric, one gets a U(16) group, or subgroups thereof, with massless
fermions in antisymmetric representations’. We focus in the following on symmetric
twist matrices for definiteness, but since the energy density py(R) depends on v, only
through its trace, the analysis applies equally well for other more general choices.

The full energy density of the model is obtained by summing the closed string con-

tribution ng> (torus+Klein bottle) and the open one, pgo) (annulus+Mobius strip).

4.2.1 Closed string contribution

Since the Klein bottle amplitude vanishes identically (the Q-projection acts in a su-
persymmetric manner on the closed string spectrum), the whole contribution is given
by the torus amplitude:

) = _/ 2172 3t |24 2 {‘94 o) 1 Ay + 1R Ay (- >n}’
F 2, n nweZ
(4.15)

Tn this model, local tadpole cancellation for both untwisted NSNS and RR tadpoles cannot be
achieved. By choosing respectively -y, symmetric or antisymmetric one can cancel respectively the
massive NSNS or RR tadpoles.
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where
whR

A =¢ o (R+“Jﬂ>d“q% (%““T)d , (4.16)
and 6; = 0;(0|7) are the usual theta functions. In eq.(4.15) and throughout all the
chapter, we often omit the modular dependence of §; on 7 and always leave implicit
its vanishing argument z = 0. Using the unfolding technique (see Appendix B), (4.15)
can be written as

5 TR?

o _ dT‘) 2 —-47r7‘9N 1—‘ - P il
W= [ s 3 [ R )

0 2 NeN p=€Z

where 1/2 o
1 / |9 2 —drmsN
= d3, e=4m (4.18)
2 o i = 2

Eq.(4.17) can also be written by using a Poisson resummation as

¢S] o (n+1/2)%
p(QC) N _/ 2 11/2 Z d2 il Z [ o (R/°) e T (};;)2 . (4.19)
0 ’T'

NeN nez
Eq.(4.19) is precisely of the general form (4.6) with D = 9, ¢ = F/2, i = N,
o/m3; = 4N, dy(0,0) = dn(1/2,1) = d%, dn(0,1) = dy(1/2,0) = 0, and R/2 — R.
The rescaling of the radius is standard and is due to the identification z ~ z + 7R

induced by the freely acting action. We thus notice, as mentioned in the last section,
that the full string theory contribution to the cosmological constant (all KK, wind-
ing, untwisted and twisted string states) is automatically encoded in a field theory
contribution with only untwisted states, whose KK modes are shifted by the SS mech-
anism (bosons/fermions periodic/anti-periodic along the SS circle R) and a reduced
massive string spectrum, where only the diagonal N = N states contribute [93]. The
integration on 73 in (4.19) can thus be read off directly from (4.7) for N = 0 and (4.9)
for N # 0.

4.2.2 Open string contribution

The annulus and Mébius strip contributions, in the absence of Wilson lines, are

A —(TI‘ )2 < dt ﬁ(”) Z(_)me-Zvrtng—;
Py g o 4(2t)11/2 L2 ’

meZ

o= +32 /oov dt_ % (it — —1—)2( Jme2mim & (4.20)
Py = o 4(2t)1/2 i 2 . : =
The integrations of (4.20) are easily performed and one gets

o+ ath = [p2 - moy?) () 2% " g2 - 279, @21

. Vot . s~ 1— (=) N
P + Py = {32(_)N~(Tr’yg)2} (?> RNty LK, {an ﬂ,
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Figure 4.1: Behavior of the vacuum energy density for different choices of the twist matrix
7¢- The upper line refers to the SO(16) x SO(16) group, the intermediate line to SO(17) x
SO(15) and the lowest one to SO(18) x SO(14). R is in units of &'. The bullet in the solid
line represents the point where a tachyon appears.

with dy as in (4.18). It is not difficult to realize that these expressions are of the
general form (4.6) with D = 9, i = N, o/m% = N and ¢;(G) = F/2+ G + §;,
where 4, 7 run over the fundamental representation of G = SO(32). The parameters
Gi'=0,1/2 are related to the eigenvalues of v, by

21:7ch1, ]

v, = diag (e .., ePimis) (4.22)

As mentioned, the resulting 9D gauge group is SO(n)x SO (32—n) if v, = diag(/n, —Is2-n),
with bosons and fermions in antisymmetric, symmetric and bifundamental represen-
tations, depending on the KK and string mass level N. Notice that the leading open
string contribution to the energy density is positive whenever 14 < n < 18, with a
maximum for n = 16.

The full energy density py = ng> + pgo) = pgc) + pgt + p}f can then be numeri-
cally evaluated as a function of R by truncating the infinite sums of modified Bessel

functions.

The R-dependence of pg crucially depends on v,. Forn < 14 orn > 18, pg < 0
monotonically and leads the system to a tachyonic instability, like in the early work
of [18]. For 15 < n < 17, py can be positive and a mazimum close to Ry is obtained
forn=150rn=1T7.

In figure 4.1 we show these different behaviors plotting pg(R) for n = 16 (blue/solid
line), n = 15 ~ n = 17 (green/dotted-dashed line) and n = 14 ~ n = 18 (red/dashed
line).
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4.3 Strings on twisted ALE spaces

An interesting class of models whose energy density can be studied are orbifold or
orientifold models on Asymptotically Locally Euclidean (ALE) spaces, non-trivially
fibered along an S, of the form (Cx S*)/Zy, or their compact versions (T?x S1)/Zy.
The Zy generator is a product of a 47/N rotation along C and of a translation of
2mR/N along the circle. The rotation is taken to be of angle 47 /N so that g% =1
on spinors. A non-trivial fibration is necessary to implement the Scherk-Schwarz
supersymmetry breaking and to lift the mass of the would-be tachyons. Upon com-
pactification on S, such spaces give rise to a Melvin background [37] (see [106] and
[39, 107] for strings and D-branes on Melvin backgrounds).

Consider then Type IIB string theory on (Cx S')/Zy or (T? x 5')/Zy (as we will
see, our results are the same for the non-compact or compact version). In order to keep
our analysis as simple as possible, we focus on NV odd. Other values of NV would require
the introduction of O7-planes and D7-branes, in addition to D9-branes and the O9-
plane, when considering orientifolds. Moreover, for N odd, would-be tachyons appear
localized in space-time and an understanding of the possible tachyonic instabilities
can be obtained [85, 86, 87, 88].

Uncharged fermions in all these models are massive for IV # 3, with a mass ~ 1/R.
In each k-twisted sector we get a tower of complex would-be tachyons starting from

ao'm? 4k (N)Q%;i‘

4.3.1 Orbifold models

The only relevant one-loop world-sheet surface in this case is the torus. Its contri-
bution to the vacuum energy density p2"’(R) can be written, using the unfolding
technique discussed in Appendix B, as an integral over the strip of the untwisted
sector only

oodT')

“d]\/[ —47r7'2M§ :6 QT,,(“FN
272

k=1 ]\/IEN neZ

7

(4.23)
where we have defined for later convenience the coefficients dy; (B, F)* as

ok, Lo Mas0[5] 05 ] [

dTl )
N n 0 [

Z [dyi(B)F — dag(F)¥] e M = /71—

MeN

sin(

(4.24)

If, similarly to the 9D case of last section, the torus contribution to the vacuum
energy is exactly encoded in a field theory-like contribution with only KK and un-
twisted states, (4.23) should admit a rewriting such as (4.6), where the twist ¢ will be
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Figure 4.2: R-dependence of the torus contribution to the cosmological constant for Zy
orbifolds. R is the radius of the SS circle, in units of /. The bullets represent the points

where tachyons appear.

given by the Lorentz SO(2) charge of the states along the twisted directions, with the
correct degeneracies. It is useful to compute the latter in some detail for the massless
states of IIB string theory.

The above orbifold breaks the Lorentz group SO(10) — SO(8) x SO(2). A generic
field @ will have the following periodicity conditions along S';

d(y + 27 R) = ¥™%P(y), (4.25)

where § is its charge under the SO(2) ~ U(1) internal Lorentz group and a = 2/N is

the twist induced by the Zy action. Upon reduction on S*, a field with charge ¢ will

have a tower of KK states with masses M9 = (n + ¢)/R, where ¢ = jo. Massless

states are not present whenever g ¢ Z.
The U(1) charges of the massless states of IIB string theory are easily obtained.
The Ramond-Ramond (RR) four, two and zero-forms have the following SO(8) x U (1)

decomposition:
35 = 150 @ 101 @ 10_1,
28 = 150 D 61 D 6_1 (&) 10,
where the subscript denotes the U(1) Lorentz charge §. One gets for the Neveu-
Schwarz/Neveu-Schwarz (NSNS) graviton, B-field and dilaton:
35 = 210 @ 61 EB 6_1 @ 12 @ 1_2,
28=15,86,D6_1 D 1o,
1=1,. (4.27)

ZNotice that due to the freely acting action, the radius R entering in (4.25) is N times smaller
than the R appearing in eq.(4.23).
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For generic N # 2,4 we thus get 70 bosonic massless states. For fermions one has
two copies of:

56 =24,/ D24 15 D432 D4_39,
8= 41/2 (&} 4_1/2. (428)

Notice that all fermions are always massive except for the case N = 3, where we get
16 massless states from the decomposition of the two gravitinos.

We are now ready to explicitly show how these massless states and the corre-
sponding twists arise from (4.23). We focus on the N = 3 case, but the analysis can
be generalized to the other cases. Reintroducing also the vanishing & = 0 term in
(4.23) we have (1, — t and R — NR):

R s e )yl

MeNnez

[d.]i\/f (B) - d}V[ (F)] e‘(3n+1)2 7;11 +

27 2
[d3(B) — di(F)]e”Gnt2 o } (4.29)

Notice that the above sums can be rewritten as follows:

2iwn —=2i7Tn

nez neEz 3
[ ~(3nt+1)2 22 _(3n+2)21$3} I et — T —n2zE2
Z € o't + e a’t = Z e alt |
nezZ nez 3

Since dy(B, F)! = dy (B, F)? VM, eq.(4.23) can be rewritten, by performing a
Poisson resummation in n, as

/ 9t‘zz _WM{[ (0,0)—dM(o,l)}e“%"E

n€Z MeN

1 1 rta' (n+1/3)2
+ {dl\/[(_ao) - d]VI("'a 1)] e (Rg . } ’ (431}

3 3
where
(0 0/1) = £ [da(B/F)° + 2ds(B/F)"],
d(3,0/1) = 2 [dse(B/F)° — dag(B/F)'] (432)

are the total number of bosonic and fermionic states at level M with twist 0 and 1/3
respectively. One can easily check that for M = 0 the above coefficients precisely
coincide with the field theory results above. Indeed, from (4.24) one finds dy(B)° =
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Figure 4.3: R-dependence of the cosmological constant for Zy orientifolds. R is the radius
of the SS circle, in units of o/. The bullets represent the points where tachyons appear.

do(F)° = 128, do(B)! = do(B)? = 41, do(F)' = do(F)* = —40 and hence dy(0,0) =
70, dg(0,1) = 16, do(1/3,0) = 58, dp(1/3,1) = 112, as expected. Eq.(4.31) is hence
precisely of the form (4.6) with D =7, 1= M, o/m3; =4M and ¢ = 0,1/3.
Interestingly, even for Zs (and most likely for all Zy, at least with NV odd) the
full string theory computation is encoded in a field theory computation where only
untwisted states with the uncompactified level matching conditions M = M enter.
; The form of p¥ (R) for various Zy orbifold models is reported in figure 4.2. As
anticipated in the introduction, we find that pY (R) > p}(R) for N < M and for all
the values of R for which both energy densities are well defined.

4.3.2 Orientifold models

Orientifold models are obtained as usual by modding out the above orbifolds by the
world-sheet parity operator Q. As in the 9D model discussed in last section, massless
tadpoles are cancelled by introducing 32 D9-branes. We do not include continuous
Wilson lines but consider the dependence of pY (R) on the twist matrices ,, whose
only constraint comes from the group algebra: 75’ = 4J. The resulting gauge group
depends on the precise form of 7,, although the energy density is sensitive only on
its trace. In addition to the torus amplitude (4.23), we have now to consider also the
Klein bottle, annulus and Mobius strip surfaces.

The Klein bottle contribution, pév K s easily obtained and has a form similar to

(4.23). Defining

o] 3 o
4 k Za, 7704;6 9 9 4k
g [DM(B)% — DM(F)%]G-LLWMt = —2sin( ]7; ) 4 [/3} [/3+N]

(2it) ,(4.33)
MeN 2n° 9[%;%]

i
)
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pév * can be in fact nicely combined with pév T above, so that the full closed string
contribution reads exactly as (4.23) with dy/(B, F)* — [diy (B, F)* + Dy(B, F)*]/2.
As expected, the degeneracies of the massless states again agree with the field theory
expectations. This can be easily checked by noting that from (4.33) one gets Dy(B)? =
Dy(B)* =9, Dy(F)? = Do(F)* = 0 and that the RR four and zero-form, the NSNS B
field and half of the fermions are now projected out, leaving the decomposition of the

()

remaining states as above. The open string contribution p:l,v’ is easily computed:

N—-1

N,(O - < dt 2 rink —2mta! 15 —27
o =2 7/2/ 55972 [(Try)” = (=1)"Trym] €27 ™ & Dy e=>7(4.34)
0 MEeN, neZ, k=1

where the coefficients D% are the same as those defined in (4.33) and v, = (7,)*.
Eq.(4.34) is not manifestly in the form (4.6) because the embedding of the SS breaking
in the gauge sector through the twist matrices v, requires a little bit of algebra.
However, we do not need to work out these details, since the vacuum energy depends
only on the trace of v,. The integration in ¢ is by now standard and leads to a power-

like behavior in R for the M = 0 terms and a sum over modified Bessel functions for
M # 0.

The form of pY(R) for various Zy orientifold models is reported in figure 4.3
for a proper choice of v, that maximizes p¥ (R). As can be seen from the figure, the
qualitative structure of p2’ is not modified by the orientifold projection. In particular,
we still find that pY(R) > p}(R) for N < M. For different choices of v,, p¥ has
always the same form as in figure 4.3, but the above ordering of pY can be lost.

The vacuum energy density pY’ (R) receives a non-vanishing contribution only for
states that do not propagate along the two twisted directions for both orbifold and
orientifold models. This implies that the above computation apply equally well for
non-compact (C x S*)/Zy or compact (T2 x S')/Zy models. The energy density is
located at the tip of the cone or at the fixed points of T2, in the two cases. This is

expected since these are precisely the loci where would-be tachyons are localized.

It is interesting to notice that if we plot p as a function of R/N, the effective
radius of the SS direction, we get again the behavior as in figures 4.2 and 4.3, but
now pY (R/N) < p(R/M) for N < M, VN, M and R. It would be interesting to
have some dynamical understanding of this ordering of the energy densities for this
class of models.

The Z, orbifold and orientifold models can also be considered. In this case space-
time is flat with fermions antiperiodic along R and thus we recover exactly the pre-
vious 9D model of section 2 or its compactified version on a 7 torus.
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4.4 A four dimensional model

In this section we study the vacuum energy density of the 4D IIB orientifold model
compactified on 7°/(Z§ x Z}) described in the chapter 1. The complex structure of
the first and second torus is fixed by the Zg action, whereas the third torus can be
taken rectangular, since the action is a Z, reflection. We define P, 5 such that the
volume of the i-th torus equals to 472P?/[3(1 + 4;1)], and R and S to be the radii of
the two circles of T%.

We compute the cosmological constant py as a function of the SS radius and the
other moduli. Contrary to the previous models, ps gets a non-vanishing contribution
both from states with longitudinal and transverse SS SUSY breaking. For simplicity
we do not include continuous Wilson lines.

4.4.1 Longitudinal SS breaking contribution

There are two main longitudinal contributions coming from the torus amplitude and
the open sector of D9-branes.

Closed string contribution. Due to the unfolding technique, the longitudinal

clpsed string contribution to the energy density, denoted by pic’ 2

(C l) (C.g) —ﬂta’mZ(CJ) ——7Tta'&%ﬁ —Trta’Ql‘—"—Tz—lf—
[ X d Sl e (a)

i g=UT nez

, can be written as

where U and T stand for the untwisted and 62 /#*-twisted string sectors—the only
sectors with a non-vanishing contribution—and the index 7 includes the sum over the
string, KK and winding modes over the non-SS directions with the level matching
conditions imposed by means of the 7; integration?.

The masses of the i-th level for the untwisted (j = U) and twisted (j = T') sectors
are given by the following expression:

20/ N? \/§W§Pj
V3 P2 20/

; 2(N+ N ao'n?
mg(C,J) _ ( ) + 1 J,UZ

E 1% S2 a’ , (4:36)

where we have defined the combinations of KK and winding modes N? and W2 as

2 _ .2 2
Na = Tog, + n2a+l =+ TNoaMN2e+1 ,

W2 =ws, + Wa,iq — WaaWagi- (4.37)

3This equals N = N + ZZ:l mgn, in the untwisted sector and N = N + wyn; in the §2/6*
twisted ones.
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The degeneracy of the i-th state is given by dgc’ ) = = &) d’. 75/24, with

. 10512 |n] =24, , I=U
7 7 P2 —
2, WERCT =Y gl elg ) g

N,NeN 1/3 5/6

Once again, eq.(4.35) is of the same form as (4.3).

Open string contribution. The longitudinal open string contribution to the en-

ergy density, denoted by p(o RIT

O — 2(0.7) _ 'QLE_)E s @nt1)?
pl(iO ) -/0 2t)3 Z Z J) 2mta’ m? Z[ Tt 2oy e 7wt ﬁ-—-—-——Rz ]) (439)

i j=UT nEZ

where

. N 1..2 2 2 IN2 '
AL Rl VR J G (4.40)

P Ty s ‘s \/3P2’
with N2 as in (4.37) and:
(0.0) i
d;”" = [(Trop)” = 32(-1)"] ¢, (4.41)
dT .
dio = [(Teo3ye)” - (Tead) (~)Y] 2, (4.42)

with 5 and s the twist matrices associated respectively to the SUSY and non-SUSY
twists 0 and 8, and d%/” defined as in (4.38).

The untwisted contribution is essentially the same as the open contribution (4.20)
of the 9D model, the only difference being an overall factor and the Kaluza-Klein
lattices from the compactified directions. As in the 9D case, yg is unconstrained
(provided that fy/% = +7). The value of Tr+j is fixed to be 8 by tadpole cancellation.

4.4.2 Transverse SS breaking contribution

This contribution arises only when considering D5, D5-branes, as well as O5 and
O5-planes. As shown in section 2, these terms can be written as a sum of propaga-
tors of closed string states with mass m;, propagating along the number of compact
dimensions that are orthogonal to the brane.

Tadpole cancellations are automatically encoded when we add up the Klein bottle,
annulus and Mobius strip contributions in the closed string channel. Notice that the
cancellation is obtained for all the KK modes along the SS direction due to the choice
of the brane positions, ensuring the local tadpole cancellation in that dimension.

In terms of closed string states, the full amplitude is a sum of two contributions,
one coming from the untwisted and one from the 6%/6* twisted string sector.
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Figure 4.4: R-dependence of the cosmological constant for the 4-dimensional model. R
refers to the radius of the Scherk-Schwarz dimension and is in unit of /. The other moduli

are fixed.

Untwisted string contribution This is given by the sum of the relevant Klein

bottle, annulus and M&bius strip amplitudes. Denoting by pflU’t) the contribution to

the vacuum energy of this sector, we get:

(U,t)__gngw2 dV 18 [Az(15)O:D) 1 —2(=1¥ 9 [Az () (EV)
A7 = -2 57 d7 {869 [Az(@) 7] + [1 - 2(-D)V] GF [Aa(@) O] }(4.43)

where ij)(:z:) is the d-dimensional propagator of a scalar particle of mass (a = O/C):

2a,0) _ 4N 2PFW3
(V) = 2 4 (1436, , .
m, — + (14 300,0) 7 (4.44)
and
tapn2 TR 1\? s2 2P2W?
(Az(w) D))" = = (w+§) +(1+35a,o)n2[5,—n2+%]. (4.45)

In eq.(4.43), the three terms in curly brackets are given by the annulus, Klein bot-
tle and Mdbius strip surfaces, respectively. Notice that the two labels O and C' are
needed because the winding and KK modes exchanged between two D-branes (annu-
lus contribution) are not equal to those exchanged between O-planes (Klein bottle)
or an O-plane and a D-brane (M&bius strip). More precisely, O-planes couple only to
even winding modes along the longitudinal directions (second torus) and this explains
the factor (1 + 36, ¢) in (4.44). Similarly, with our choice of D/D5-brane positions,
closed strings exchanged between two branes have an integer winding mode along the
first torus and the S direction, whereas half-windings appear between O-planes. This
explains the factor (1 + 3d,0) in (4.45). The degeneracy is given by dY = d¥%, with
d¥; defined in (4.38).
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Figure 4.5: Dependence of the cosmological constant for the 4-d model on the moduli,
expressed in units of o’. R is the Scherk-Schwarz radius and S is the radius of the other

dimensions.

Twisted string contribution As before, this is given by the sum of the Klein
bottle, annulus and Md&bius strip amplitudes. It is given by

AT = _4_373 > df {268 [Az(@)©T] + [1 - 2(-1)"] G5 [As(@) D]}, (4.46)

where the index 7 runs over NV, the string oscillator number, and hence

e, 1) _ AN
independent of a, whereas w includes the winding modes in the second torus:
2 R2 1\? 22
(Az(@) ™) = T2 (w+ 2 ) + (14 30,0) —w'?, (4.48)
o 2 o
The degeneracy is given by
1/6 1/3
ot [v]e]v]
Sdfent™ =32 o (4.49)
z- o]0 [

All the considerations performed after (4.45) apply also here, in order to understand
the form of (4.46) and (4.48).

It is interesting to note that the transverse contribution is always negative, due
to the fact that the Klein bottle and annulus amplitudes are negative and dominant
over the positive Mdbius strip amplitude.
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4.4.3 Behavior of the cosmological constant

The full 4D cosmological constant is given by adding together all the contributions,
coming from both the longitudinal and the transverse SS breaking sectors:

pa= o0+ o7 {00 4 o0 (4.50)
For generic values of Tr vz # 0, the longitudinal and transverse contributions, both
negative, result in a monotonic ps < 0, leading the system towards the tachyonic in-
stability. The same instability affects the IIB orbifold model before the (2-projection,
as can be seen by studying the torus contribution. Things are more interesting when
Tryg = 0 = Tryzys. In this case, the D9 annulus contribution vanishes and the
longitudinal contribution to py4 is greater than zero and can thus compensate the al-
ways negative transverse contribution. This feature is characteristic of a longitudinal
breaking when the SUSY-breaking operator is of order even. In presence of operators
of order odd, as in section 4, it is not possible to take such a choice for the twist ma-
trices. For this reason, although we have not performed a detailed analysis, we expect
that 4D models with odd SS SUSY twists, such as the model constructed in [72], will
unavoidably have p; < 0 VR, and end up in the tachyonic regime. In the following
we thus focus to the case in which both 75 and 34 are taken to be traceless.

In Fig. 4.4 we present the behavior of the one-loop cosmological constant as a
function of the SS radius where the other radii has been fixedto S =P, =P, ~ 10in
units of o/. We found a minimum for p, which is essentially due to a compensation be-
tween the longitudinal (positive) and transverse (negative) monotonic contributions.

In order to get a better understanding of the fate of this minimum as the other
moduli are varied, we study the behavior of p, as a function of the two parameters
R and S = P, = P,. The numeric result (figure 4.5) shows that the structure of the
minimum in R is still preserved as long as S > 8 but p4(R, S) drives both moduli to
larger values and hence to a decompactification limit.

Other cases similar to the latest one have been considered by studying ps as a
function of two moduli, one of them being the SS circle radius R and the other one
the value of one or more of the extra moduli. In all the studies the scenario with a
minimum in the R direction is preserved, whereas the runaway behavior depends on
how the extra moduli are fixed. As an example, fixing all the moduli in the first and
second torus, ps(R,S) still develops a minimum in R but the behavior along S drives
the system to smaller radii and thus towards the tachyonic instability.




78

4. Stability in orbifold models




Chapter 5

String vacua with torsion from

freely-acting orbifolds

The possibility offered by string quantization on a background space with non-trivial
torsion has been introduced in the heterotic context by Strominger [43], the main
motivation being an enlargement of the class of known string backgrounds.

The starting point is a background spacetime allowing a warp factor and, in
general, non trivial torsion and vacuum for the gauge field. We follow [43] (see also
[66] for a recent review) and take a metric ansatz of the type

d52 = 924Nddea:N = €2A(y) (guudmﬂdfcv + gmndymdyn)v (51)

where as usual greek indexes refers to the 4D spacetime while latin uppercase indexes
to the whole space and latin lowercase indexes to the 6D internal space. Furthermore
we introduce the rescaled metric gy v = e 2%g%,y, where ¢ is the dilaton. The N =1
SUSY variation in the case of heterotic string theory can be written as

1
0t = Ve — ZHMNPFNP‘f

1
5)( = *ZFMNFMNE (52)

1
6y =Vo+ QZHMNPFMNPE

where 1 is the gravitino, x is the gluino, «y is the dilatino and I'**M2--¥n ig the usual
total antisymmetrized product of n - matrices. The covariant derivative is computed
with respect to the rescaled metric gyy.

In the case of trivial warp and backgrounds the conditions implied by equations
(5.2) reduce to Ve = 0. This well-known condition is extremely strong because it
implies the integrability condition [V, Vyle = 0, equivalent to

RurnpolP9% =0, (5.3)
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with Rynypg the usual Riemann tensor. The implications of this equation are re-
viewed, for example, in [102]. In particular, choosing as a background for the 4D
spacetime a maximally symmetric space (de Sitter, anti de-Sitter, Minkowski) the
condition is satisfied only in the Minkowski case. The conditions on the internal space
are instead broader. Essentially we are looking for a covariantly constant spinor, or,
in other words, for a spinor that is mapped on itself after parallel transport along
any contractible closed curve. The symmetry group that is responsible for the trans-
formations of a spinor under such a transport is the so-called Holonomy group, that
is in general a subgroup of the SO(6) group of rotations. If the holonomy group is
the full SO(6) then no spinor is left invariant, since no spinor is a singlet of SO(6).
We need that the holonomy group is reduced to some G admitting invariant spinors.
This is the case of SU(3) € SO(6), who admits exactly one the covariantly constant
spinor.

Moreover, given a manifold with a Riemannian metric g,,, and a covariantly
constant spinor ¢ we can build the form Kj; = €T, the tensor J! = g K}; and the
form wyj, = eTl“,-jke. It can be shown that J is a complex structure for the metric so
that locally the manifold is complex. It can also be shown that the manifold is also
a Kahler manifold, i.e. its metric can be deduced from a scalar potential.

On the other hand the requirement (5.3) implies that I'* R; e = 0, where Ry is the
Ricci tensor. This implies that the Ricci tensor is zero and the manifold is Calabi-Yau.

These well-known deductions are crucially modified if the warp A(y) and a non-
trivial H are allowed. Assuming that the dilaton, warp and torsion depend only on
the internal coordinates and that the components of H tangent to the space-time
vanish, then the equation for the dilatino is splitted in a 4D space-time equation and
an equation for the internal coordinates.

The 4D equation can be written in terms of the the warp-rescaled metric g,, as

e + %f‘;ﬁnm(y) —#)e=0. (5.4)

As in the previous simpler case an integrability equation is implied. Imposing that
the 4D space-time is maximally symmetric we deduce that g,, is the usual Minkowski
metric while the warp factor is equal to the dilaton.

To study the geometric implications offered by the gravitino equation related to
the internal coordinates it is useful to introduce a tensor J from € exactly as in the
previous case.

The gravitino equation is read, in this way, as a condition on this “would be”
complex structure, imposing in particular that it is covariantly constant with respect
to a covariant derivative defined from the usual connection plus a torsion term taken
to be equal to H

sm-n

VP — HP J5 — H*,. JP = 0. (5.5)
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The previous case is clearly obtained imposing H = 0. Also the dilatino equation can
be seen as a constraint, imposing that the Nihenuis tensor computed for J

Npn = Ji(0g 7 — 00 J7) — T8y T, — O JY), (5.6)

is zero. These conditions ensure that the manifold is complex with complex structure
J.

Furthermore these two conditions are solved if the complex structure is related to
the torsion. This relation can be written, introducing complex coordinates, as

Hz%@-@J (5.7)

where now .J is considered a (1,1) form, 0 is the holomorphic part of the usual exterior
derivative and O the antiholomorphic one.

The equation for the dilatino instead is a relation between the dilaton and H. It
can be cast in the following form

d'J = 8i(d — 9)¢, : (5.8)

where d' is defined as the adjoint of the exterior derivative d. It is interesting to note
that the last formula measure exactly the non-Kéhlerity of the new manifold, while
the Kéhler case is reached if the dilaton, i.e. the warp factor, is a constant.

.. Also the gluino equation can be recast in a complex coordinates formalism, be-
coming a condition on the complex form of F"

JOF: =0, (5.9)

We have shown the main properties of an heterotic string background with non-
trivial warp and torsion, obtaining the conditions that the various background fields
must satisfy. In what follow we show an explicit example of such a background, ob-
tained starting from a freely acting orbifold model through a suitable net of dualities.

We start from a simple toy model, with all SUSY broken through the SS mech-
anism. We show how a reparametrization maps it on a modified Melvin background
that is T-dual to a background with non trivial vacuum for the B-field. We establish
the power and the limits of the dualities, then we undertake the study of a SUSY
model to give the explicit example of a non-Kahler background geometry for heterotic
string theory preserving N=2 SUSY.

5.1 A simple toy model

It is well-known the duality between a SS compactification/freely acting orbifold and
the so called “Aux-tube” of [40], a generalization of Melvin backgrounds [37]. To re-
view it take into account the simple freely-acting orbifold introduced in chapter 2, with
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the orbifold group Z, acting as a reflection in a 2D flat space (T or C) parametrized
by z and as a translation in a compact direction z, namely

g iz——z, g:x—2+7R,
where z € [0, 27 R] and the eventual periodicity of z is defined as
z ~z+S(mt+n),

m and n being two integer numbers, 7 the torus modular parameter and S a radial
parameter. For simplicity we take 7 = 7, so that the volume of the torus is S%. With
these choices the metric is diagonal and multiple of the identity

ds? = dz® + dzdz.
It is possible to redefine the parametrization as

iz/R

2=y 1 = 1.

In the new variables the metric is no more trivial
9 9 Z/ z‘l
ds® = dx’ dz' —i—=dz) (dZ + i—=dz),
+ (dz sz)(z-i— R:v)
and while the z' periodicity is the same as before the new 2z’ one is different
2~ 2+ (im + n)e®/E, (5.11)

Passing to orthogonal coordinates 2’ = z;, 2’ = x5 + iz3, we have

Qdilfl

2 2
T2t T T (@3d2; — 22dzs). (5.12)

R2

ds? = (1+ )dm%+dx§+da:§+
The new metric is clearly invariant under a translation along z;, so that the z;
periodicity is easily proved. It is not difficult to prove that also the periodicity along
zo and z3 is still respected, but expressed in the new terms of (5.11).

The presence of non-trivial off-diagonal terms in the metric makes this background
interesting from the point of view of T-duality, since the the off-diagonal terms are
mapped to a non-trivial B-field. This has been introduced in [41, 42]. Let us briefly
review the T-duality along the lines of [110] to understand its power and limits.

Considering the non-linear sigma model associated by string theory to this back-
ground we have

1
 d4med!

/ &0 [/A(P" gab + € hap)(0,2%) (B,2°) + o/ /TR $(2)],  (5.13)

So

where y*” is the inverse of the world sheet metric, g, the target-space metric (5.12),
hay 18 the vacuum expectation value for the antisymmetric B-field, zero in our case,
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R® is the curvature scalar associated to v,, and @(z) is the dilaton field in the
conventions of [95]!.

T-duality along a direction z; is allowed if translation along z; leave S invariant,
in other words if g, and h,, are invariant under a translation along z;.

In our case z; is exactly of this kind, in other words it is a Killing vector for our
metric so the T-duality along it is allowed. The T-dual model is reached following the
world-sheet procedure described in [109, 110]. There it is shown how a new action

can be written by introducing a lagrange multiplier Z;

= I / dg”{ﬁvw’ (91 ViVy + 20uVa(8,3) + 95 (8,2") (By2”)] +  (5.14)

e [hVu(8,2%) + hi(0,2%) (8,27)] + €421 (8,V0) + a'ﬁR@)qs(x)},

SF

where ¢ and 7 are summed only on 2 and 3. This action is equivalent to the first one:
by integrating the Lagrange multiplier the condition €**(9,V,) is obtained, implying
that V, is irrotational and can be written as a differential of a scalar field to be
identified with z;. Replacing V,, with J,z, one obtains Sp. The T-duality is realized
if instead the equation of motion for V' are solved and V is replaced with its solution.
A new action Sp is obtained of the form (5.13), but with new metric and h:

R 1 hi; R G1i91; — hiihi;

gin=—, gu= X i = Gij — 111 2 (5.15)
g11 g11 gi1

R ; . R

hi; = L o hig = hi A+ ity — ST (5.16)
911 g1

The new action is classically equivalent to the original one, from a quantum point of
view this is also true provided that the dilaton is suitably shifted [110], for a review
see [111, 112]

The described duality is essentially equivalent to the procedure described by [113,
114], where the symmetry induced by the Killing vector is gauged in order to obtain
the action (5.14).

In the case of our interest the duality and the results are clear if the z, and
T3 dimensions are non-compact. In the compact case while the original action is
manifestly invariant under a translation along a lattice element the final one does not
show this invariance. In particular already S is not invariant, and an obstruction
to the T-duality seems to be present. From a geometric point of view this is related
to the fact that while z; is a good Killing vector, generating a symmetry group
locally leaving invariant the system, the fact that the new periodicity (5.11) is not

INote that this dilaton field differs from that introduced to study the SUSY equation of motion.
In particular the new dilaton is 4 times the old one
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r1-invariant means that globally the symmetry is not an invariance for our system,
and so the duality cannot be realized in this simple way?.

This does not conclude the discussion in the compact case, since, as shown by
Hassan in [115], it is possible to generalize the duality also to geometries dependent
on the coordinate with respect to which duality is performed. It is possible that,
as SUSY in the case studied therein, also the periodicity can be realized through
a non-trivial non-local fibration of the torus along the new SS variable £; (see also
[116]).

5.2 An heterotic model

Let us consider the heterotic string (SO(32) or Eg X Eg) on R* x S x (T* x S')/Z,,
where Z, acts as z; — exp(2imvg)2z; on the two complex coordinates z;5 of T* =
T2 x T?, where v, = (1/2,—1/2), and at the same time as an half-shift on the circle:
z — z + TR, where R is the radius of the circle. For simplicity, we take the two tori
to be rectangular, with complex structures 7, =4, n = 1, 2.

This model is a simple supersymmetric freely-acting compact orbifold model. It
corresponds to a Scherk-Schwarz compactification, where fields are twisted according
to their SO(4) Lorentz quantum numbers along the direction of 7%. In 4D notation,
the model has NV = 2 supersymmetry. Modular invariance imposes that a rotation
has to be implemented also in the internal lattice sector. In a fermionic world-
sheet formulation in terms of 16 complex fields A4, Zy acts as A — exp(2inV,) 4,
A =1,...,16. Modular invariance imposes that v? — V3 = n, with n any integer
number. For simplicity, we focus in the following on a standard embedding, in which
Va=(1/2,-1/2,0,...,0).

The associated 1+1 dimensional o-model is clearly an exact free super conformal
field theory (SCFT) (in the RNS formalism), with the above identification for the
fields. In an N = 1/2 superspace language [117], the relevant SCFT associated to the
5 directions (z§°), zéo), z) and the A*(¥)’s fields is the following:

16
L=—i / do [DXS)H—% S (020z0+DZ527)~i > AODAO || (5.18)
k=1,2 A=1
where X, Z,EO) are superfields of the form ®* = z* + 0% with ¢* left-moving world-
sheet fermions, and A*(®) superfields A4 = A\ 4 gF40  where M4 are right-
moving world-sheet fermions and F4(®) auxiliary fields. The N = 1/2 covariant
derivative is defined as 9

D= % + 298, (519)

?This seems to have been overlooked in [55] where, however, these vacua have been neglected for

other reasons.
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in complex coordinates, where 8 = 9/0z = 0, + 10,. The Z, action implies that
(Z ,§°), Ag(g, X) ~ (——Z,EO), ——Ag, X 4+ 7R). As in the previous section we define world-
sheet superfields

Zyo= ZO) exp(=iX/R), Zis= Z\)exp(iX/R),

Ir4

1,2 '
Ao = A exp(=iX/R), A7, =AY exp(iX/R), (5.20)

3

so that all fields become single-valued along the SS direction . In this way, integrating
over the Grassmanian variable # and solving for the auxiliary fields Fj and F* one
finds:

£ = guu0r*Be” +igu it 507 + 15,8007 ) + X3 [0X* +idfos™N],  (5.21)
where z# = (z, 2!, 7%, 22, 22), A% = 1/R(4,~i,0,...,0) is a discrete Z, Wilson line?,

and g,, is the metric:

21| + |2)? 1 i )
L}L:REL-?L) dz? -+ —z—dzkdzk -+ ﬁd:ﬁ(zkdzk — dezk) . (522)

As told the metric (5.22) is a generalization of the 4D Melvin background metric for

ds® = g, dztdz’ = (1 +

a compact space, that is known to correspond to a SS dimensional reduction on a
circle of a higher dimensional flat space [37]. As before the periodicity conditions for
the z*'s are z-dependent: if 25® ~ 250 4 1 ~ 2#O) 4 the new coordinates satisfy
the periodicity conditions

k

25~ Zk+e—zx/R

~ 2 4 ie R (5.23)

The T* torus is now non-trivially fibered along the SS direction z. From the con-
struction above, it is clear that such backgrounds are exact classical solutions to all
orders in ¢/, being related by a simple rescaling to a free SCFT. The latter theory has
actually N = (4, 0) world-sheet SUSY and implies that the background manifold is an
hyper-Kéhler manifold, in particular a complex manifold. Since the complex structure
J turns out to play an important role in the following, we explicitly derive its form
for the metric (5.22). The complex structure J associated to the original freely-acting
orbifold S x (T* x S')/Z,, being globally well-defined despite the Z, shift, can be
taken to be the trivial one, as in flat space. After the change of coordinates (5.20), J
takes the form

0 ~1 0 0 0O
-1 0 0 000
= z4/R —z3/R 0 1 0 0 | (5.24)
—23/R —w/R =1 0 0 0
—z¢/R zs/R 0 0 0 1
zs/R zg/R 0 0-1 0

3The factor of ¢ arises because in our conventions the generators of the gauge group are chosen
to be anti-hermitian. This is a non-trivial Wilson line because, due to the shift, the effective radius
of the SS direction is R/2, rather than R.
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where the first two entry in J are taken respectively along the directions of the two
circles where the Z, does not (z; direction) and does act (z; = z direction), and we
have introduced real coordinates defined as zy = Tog1+i%oxk1o. It is straightforward to
verify that J is actually a complex structure, with J? = —I and vanishing associated
Nijenhuis tensor.

5.2.1 Massless spectrum

The massless spectrum of this model is easily obtained, being closely related to that
of the heterotic string on the well-known T*/Zy x T? orbifold. In terms of 4D N = 2
SUSY multiplets, we get one gravitational multiplet, 3 U(1) vector multiplets and
4 hypermultiplets from the gravitational sector, i.e. from the decomposition of the
10D metric, antisymmetric tensor field and dilaton. The gauge sector is also straight-
forward. Focusing on the SO(32) case, we have one vectormultiplet in the adjoint
of the SO(28) x SO(4) group, that is the unbroken gauge group in 4D, and one
hypermultiplet in the bifundamental (28, 4).

Notice that this spectrum is essentially a truncation of that of the SO(32) heterotic
string on T*/Zy x T%.* In the T*/Z, x T? case, we would have obtained all the states
as before, but in addition other states arising from twisted sectors. More precisely,
16 neutral and 16 charged hypermultiplets (one for each of the 16 fixed points of
T*/Z,), the latter in the (28, 4) representation of SO(28) x SO(4), with 4 the spinor
representation of SO(4). In presence of the Zs shift, the twisted vacuum state carries
a non-trivial winding number and is thus massive. We see, then, that compared to
the T*/Z, x T? orbifold case (no shift), many moduli (geometrical and not) have been
lifted, precisely like in presence of fluxes.

5.2.2 The T-dual model

T-duality can be performed exactly as in the simple toy model discussed before. In
order to avoid the problem with periodicity described, we take the non-compact limit
of the above string vacua, where the model looks like R* x S x (C? x T?)/Zs. In this
case, 0/0z defines an isometry and we can perform a T-duality transformation. The
T-duality rules for generic non-flat backgrounds are known [110]°. In the heterotic
case we are considering, they have been derived by [118] at leading order in a derivative
expansion from a low-energy effective action point of view. They recover the usual
T-duality rules of the flat space reviewed, for example, in [111, 112]. As far as we
know, so far there is no a satisfactory world-sheet derivation of such rules®. For our

4This is true only at the massless level.

5In general such T-duality rules get higher-order o' corrections.

SRefs.[119] and [120] discuss a o-model approach to T-duality in heterotic theories, but they do
not seem to recover the usual T-duality rules for simple toroidal compactifications, missing some
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purposes, it will be useful to consider directly the T-dual version of the complex
structure .J. Following [121], simple T-duality rules for the inverse metric g7*, the
complex structure J and the gauge connection A can be written in terms of a matrix
Q*, (see [121] for details),

Q;w - (I - S)uu -+ SﬂeKﬁua (525)

where [ is the identity matrix, S, is a the diagonal matrix 52-“(52-,, 1 is the direction
along which the T-duality is performed, 0;; is the usual Kronecker symbol and

Ky = guv + buv + %ZAZAZ%. (5.26)
a
Defining with abuse of notation the new objects with the same names of the old ones,
J—= QJQ™,
9— QgQT, (5.27)
At o AAQTT.

One obtains the new metric

- 2 - ! 2R
ds* = dz? + —]Lfﬂ——@—ldxg -+ Fda:g(mdmg — z4dz3 + T5dze — TedT5) + (5.28)
6 /
Z dz? — / —;27706 [(z4dzs — z3dzs)? + (35d36 — Tedm5)*—  (5.29)
=3

($4$6d1’3d9§5 - $4I‘5d$3d33‘5 e $3$6d$4d$5 + $3$5d$4d$6)] (530)
Wiiere n=1and fis
f=R?+z5+23+ 22 + 35 + 1. (5.31)

The B-field takes the form

0 0 0 0 O 0
0 0 —T4 T3 Tg —Ts
Ry 0 — 0 0 O 0
B="2 o (5.32)
flo =z 0 0 0 0
0 1z 0 0 O 0
0 —z5 0 0 O 0
The Wilson Lines are mapped to a non trivial background for the gauge field
0
1
1 —2TVT,
A= -4y == . 5.33
' 2T 2TUTs (5:33)
—2mUxg
2muzs

corrections due to Wilson lines.
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The complex structure matrix is

0 R2 ——ZL'4R £C3R ZE@R “935R

—f (14 nd/R?) 0 z3f/R z4f/R —zsf/R —=z6f/R
I 1 T.f /R —z3R :133115‘3 f—z2  —z376 T3 (534)
f —Lng/R —334R —f -+ Ty —T3T4 —X4Tg T4Ts
—zef/R  xsR  —x415  T335 TsTe  f — TP
zsf/R z6R —X4Te T3Ts —f+ $§ —Z5Tg
The form of H is easily given in components, using the notation of [96]:
20 o
Hyap =0, Hype = 77 Z €abed Ld»
d=3
2R 2R
Hozy = ——F(RZ + :1:?5 -+ x%), Hoss = —Hoyg = ‘.‘/_.7(1'4335 + 37s), (5.35)
2R 2R
Hasg = —F(RZ + 25 + z}), Hass = Hous = F(MCUG — T3Ts),

where @ is an index running only in {3,4,5,6} and €,;,; is the usual totally antisym-
metric tensor of the 4D subspace 3. .. g, €3456 = 1.

The description here is valid also in the type IIB string case, provided that one
puts the Wilson line parameter to zero. This is done pﬁtting, in the previous formulas
n = 0.

The dual dilaton is as usual

1

@—%@—Zlog

Det g
Det g

. (5.36)

The background defined by (5.28) corresponds to an heterotic SUSY vacuum on a
non-Kéahler manifold with non-trivial torsion H.

As shown it must satisfy the equations of motion and the relation between the
torsion and the complex structure written in the new conventions of [96]

JPF: =0, (5.37)
Fp=F;=0,
H=1i-98)J, (5.38)

Moreover the torsion H should satisfy also the corrected Bianchi identity, written

with the conventions of [96] as

7

dH =

>~ R

(tr R? — trF2) . (5.39)
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Notice that the equations of motion (5.37), as well as the definition (5.38) for H or the
Bianchi identity (5.39) are local expressions valid for any six-dimensional compactifi-
cation manifold, and hence should be satisfied also in the non-compact limit we are
considering. Starting from the explicit form of (5.28), it is straightforward, although
laborious, to verify that the equations of motion (5.37) are, in fact, exactly verified.
Although in the original model F' = 0, the T-dual field strength is non vanishing and
thus the last two equations in (5.37) are satisfied in a non-trivial way. Notice that
going to complex coordinates is not necessary to check (5.37) or the Bianchi identity
(5.39). For instance, in real coordinates (5.37) read as follow (omitting the tilde for
the T-dual fields):

8, ", = —2J,48,,
T Fly =0, (5.40)
T T Fry = Fo.

On the other hand, the torsion H, as defined in (5.38), does not satisfy the Bianchi
identity (5.39), but only its two-derivative version

o
dH = —Zter . (541)

The reason for this discrepancy can be traced back to the T-duality transformation
rules we have used. The latter, as we said, have been derived from a low-energy
effective action approach, in a derivative expansion. As such, the term tr R?, being
a 4-derivative term, is of higher-order with respect to dH or tr F2 in (5.39). Since
higher-order corrections to the T-duality rules are in general expected for non-trivial
backgrounds, we see that no inconsistency arises. On the contrary, it is somehow un-
expected that the equations of motion (5.37) are satisfied by our background exactly,
and not only at leading order in o’. Although we do not have a full understanding of
this result, we believe it has to do with the higher degree of symmetry we have, in par-
ticular to the fact that our background is actually N = 2 space-time supersymmetric,
with an associated N = (4,0) SCFT.

5.2.3 Geometric description

Supersymmetric string vacua with non-vanishing fluxes are best classified by the
group structures (or G-structures), rather than the holonomy, of the compactification
manifold. Roughly speaking, a d-dimensional manifold admits a group structure G C
SO(d) if all tensors (and spinors) can be decomposed globally into representations
of G. Classifications of a large class of supersymmetric string and M-theory vacua
in terms of G-structures has been derived in [70]. In a 4D heterotic context, it has

been shown in [66] how SU(3)-structures are particularly useful in classifying vacua
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with torsion. The latter can be decomposed into 5 classes, denoted W;, i =1,...,5,
according to their different representations under SU(3). The equations of motion
(5.37) and the relation (5.38) between the complex structure J and the torsion H can
be rephrased as a constraint on the possible torsion classes of H. One finds that [66]
(see also [108]) Wi, W, and the combination 2W; + Ws must vanish, with W, and
Ws real and exact. All the above considerations must hold also in the non-compact
limit and thus apply to our T-dual heterotic configuration. In what follows, along
the lines of [66], we compute W; corresponding to our particular string vacuum and
show that it is actually of the most general form, where all three classes W5, W, and
W; are non-vanishing’.

We introduce a basis of vielbeins et

=(1,0,0,0,0,0),

l

\IHMHMHMH&H;:U

®
TN ’i:'—‘

e
=

y —T4, T3, Tg, —:ES):
2
0 RZL‘4, — Ty, T3T4, T4Zs, --.’L‘4$5) , (542)
0, —Rzs, x f—a2 -
) 3, L3T4, Ty, —T3Te, T3T5)

2
0, —Rxg, Tazs, —%3T6, [ — g, TsTs)

(0 Rzs, —z425, 2375, T5T6, [ — 50%) )
so that the complex structure .J reads
J=e'Ne+e*Net +e’ Neb. (5.43)

It is useful to define a (3,0)-form (with respect to the above defined complex structure)
v

U = (e' +ie?) A (e* +ie*) A (e® +ieb) . (5.44)
The requirement that W; = W, = 0 imply respectively that dJ = d¥ = 0, as can be
easily verified. This is a simple consistency check, since W, = W, = 0 is a necessary
and sufficient condition for the manifold to be complex, a condition that we have

already explicitly checked. The torsion class W, can be directly derived from the
dilaton ®:

Wy = d® = ~—1;(Z z;dz;) . (5.45)

"Since our background has N = 2, rather than N = 1, SUSY, a more refined classification in
terms of SU(2)-structures should be possible. We did not find an easy way to do that, and hence
we restrict our attention to SU(3)-structures.
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On the other hand, W5 can be computed starting from the real part of ¥ (see [66] for
details) and satisfies the relation 2W, + Ws = 0. Finally, Vs is non-vanishing and it
is obtained by taking the (2,1)-form from W = dJ — J A W, that is

6
W = —}%{Rdm A Rzmz dzo A dz; + (2f - SIZ% - Ii)dfl?g A d:U4 +
=3

(2f — 22 — 13)dzs A dzs — (2475 + 7326) (dz3 A dzs — dza A dzg) +

(1133.’]35 - £L'4I6)(d.’L'3 N dﬂ?s + d134 A dCU5) + (546)

2Rd$2 AN (Q?gd.’l?g + Q?4d.’L’4) A ($5d!175 -+ l’@dﬁ?ﬁ) -+
(f — 2(z2 + 22))dx3 A dzy A (T5dT5 + TedTs) +

(f - 2(1’% + Z’é))(ﬂ?gd.’ﬁg, -+ .’,U4dl'4) A d.’175 A dﬂ&’ﬁ}
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Chapter 6
Conclusions

This thesis has been devoted to the study of string models obtained by quantizing
string theory over freely-acting orbifolds. It is based mainly on [72, 84, 91, 94].

We reviewed briefly the definition of an orbifold and how it is possible to compact-
ify open string theory on it. We have shown how freely acting orbifold can be used
to obtain a complete SUSY breaking through the so called SS SUSY breaking mech-
anism obtaining stable anomaly free models. Special attention has been devoted to
two chiral 4D open string model. In this setting, we derived the known Zg x Z5 model
and constructed a new and very simple Zs x Z; model. Both are classically stable,
since all massless NSNS and RR tadpoles vanish. The compactification backgrounds
are non-SUSY deformations of usual Calabi-Yau orbifolds. In the Z3 x Z3 model, the
deformation is induced by the Z§ element, which is a diagonal translation in a torus
together with a non-SUSY rotation along another torus. This deformation is very
similar to the one that gives rise to Melvin space-time backgrounds, where a generic
rotation along a non-compact plane is performed together with a 27 R translation
along a circle [38]!.

A detailed study of anomaly cancellation in orbifold models has been introduced.
We reviewed the well-known GS mechanism in its simple type I string realization
and its generalization to orbifold models. Then we reviewed the relevance of the
analysis of the localized anomalies in models with extra (compact) dimensions and a
detailed study of local anomaly cancellation in the two SS models introduced has been
performed. All pure gauge and mixed gauge-gravitational anomalies cancel, thanks
to a generalized GS mechanism that involves also twisted RR 4-forms, necessary to
cancel localized irreducible 6-form terms in the anomaly polynomial, which vanish
only globally. The 4D remnant of this mechanism is a local Chern-Simons term. The
local (and global) cancellation of reducible anomalies is instead ensured by twisted
RR axions. In the latter case, even U(1) gauge fields affected by anomalies that
vanish only globally in 4D are spontaneously broken by the GS mechanism. Also

1See [39] for a discussion of D-branes on Melvin backgrounds.
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closed string models are free from irreducible anomalies as shown in [122], whereas

reducible ones are canceled.

We showed how one-loop instabilities can affect freely acting orbifolds with com-
plete SUSY breaking and, more in general, non-SUSY string models. We showed how
to compute the instabilities and we obtained that typically in these models the SS
direction tends to shrink and to reach the tachyon instability, as in the early work
of [18]. Ouly for orientifolds with a Zs SS twist and with a proper choice of Chan-
Paton twist matrices this situation is modified. In this case the tachyonic instability
is avoided, but the radius increases with a runaway behavior toward the decompacti-
fication limit in which SUSY is restored. When more geometric moduli are involved,
such as in the 4D model of section 5, the situation is more interesting but less clear.

Our results are preliminary in various respects. First of all the issue of moduli
stabilization should be considered for all moduli at the same time, both geometrical
and not. This approach is clearly tremendously hard unless some other arguments,
like that in [32], can predict the behavior of the vacuum energy density as moduli
are varied. In addition, all our results hold at one-loop level only and thus can be
spoiled by higher loop corrections. It has been shown in [123], for instance, that
higher loop corrections to the vacuum energy density may lead, for large R, to log R
dependencies, in addition to the usual 1/R™ terms. Nevertheless, we think that our
results indicate that the issue of moduli stabilization is somehow more interesting for
models admitting a non-SUSY Z; action and for which the corresponding p(R) > 0 for
large R. Interestingly, models with a Z; non-SUSY action and hence anti-periodic
fermions in the bulk are affected by possible semi-classical instabilities at strong
coupling, where space-time is eaten by a bubble of nothing [124].

We studied simple 7D model with SUSY completely broken through a SS mech-
anism involving a Zy freely acting orbifold. In the context of closed string tachyon
condensation, it would be interesting to see if the jump in the vacuum energy p; when
the Zy — Zy+ (N' < N) transition takes place is exactly accounted for the tachyon
condensation. In this case, assuming that no energy in form of radiation is released
in the transition (like in the above case of the semi-classical false vacuum decay) and
knowing that the final stage is flat space-time vacuum, one could have some hint on
the value of the potential of some twisted closed string tachyon.

In order to compute the closed string loop-amplitudes we introduced and discussed
a technique to unfold the torus fundamental region and simplify the form of the
various integrals. The introduced technique is completely general and it turns out
to be very useful when considering one-loop closed string amplitudes. It has been
applied in more simple cases to compute, for example, threshold corrections to gauge
couplings in heterotic string theory [90, 125, 126], or mass corrections to closed string
states.
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Finally we explored the duality between freely acting orbifolds and quantization of
string theory on backgrounds with torsion. We introduced the subject by reviewing
[43], where it is shown how the presence of a warp factor in the metric and a non-
trivial torsion are responsible for a modification of the usual conditions to have N =1
SUSY in an heterotic string model. We explained the features of the new background
internal geometry, that is no-more a Kéhler space.

We introduced the net of dualities connecting freely acting orbifold models with
torsionfull backgrounds. We explicitly show in a toy model how the duality works,
observing that an obstruction to the T-duality we need is present if the dimensions
z’s along which the SS operators acts as a rotation are compact. The obstruction is
related to the fact that while all the fields are independent of the SS direction z and
T-duality along it is in principle admissible, the periodicity for the z’s is z-dependent
and this seems to spoil the possibility of performing a T-duality. We discarded for the
moment this case, leaving for future work the analysis of the T-duality in that case
along the lines of [115]. In the non-compact case we studied a N = 2 heterotic model
showing explicitly the duality SS/fluxes and giving an explicit example of geometric
background with non-trivial torsion. We analyze the background according to the
classification given in [66], showing that it represents a good example of a non-Kahler
m_amfold with non-vanishing group structure classes Ws, W, and Ws.
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Appendix A

Lattice sums

In this appendix we study the lattice sums related to open string loop amplitudes
with the insertion of a SS operator g acting as a translation. The closed case (torus
amplitude) has already been analyzed, see for instance [21, 22] or Appendix C.

We denote the 2D lattice sum over the i-th torus by:

Lp®i _1pdp2
A(r) = ZAi[m, n)(r) = Z g2l P galPr ) (A.1)

where g = exp[2in7] and the lattice momenta are given by

: 1
PP = [-mU; T, v)]

L ST T Tm U, my U; +mg + (nl + Ny )

R )
P = e | - i Ui by + T, (1 +maUi) ] (A.2)

in terms of the standard dimensionless moduli T; and U;, parametrizing respectively
the Kihler and complex structure of the torus. We also define:

As[m] = Ai[m, 0](it) , AjJw] = [0, w](it) , (A.3)

and denote respectively by A;[m] and A;fw] the corresponding Poisson resummed
lattice sums, where the dependence on the transformed modular parameter [ is un-
derstood.

Annulus It is convenient to define A[N, D|g] as the annulus lattice sum for Neu-
mann (N) and Dirichlet (D) boundary conditions (b.c.) with the insertion of the
operator g. The only non-trivial case to be considered is when g equals the iden-
tity or a translation §. The relevant Poisson resummed lattice sums are found to be
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(omitting the index i in A):

A[N|T] ZA | WS (w1 (A.4)
A[D|I] ZA | W ()1 (A.5)
A[N| 6] :}:Am+5] WS W), (A.6)
AD|6] = o”j (A7)

where WS) encodes the position X; of the i-th brane along the corresponding torus
and Wéﬂf) is a generic Wilson line along the torus, parametrized by the 6; phase factors:

W = expliw - X;/B], WS = explim -0} (48)

The sum (A.7) vanishes because a translation has no fixed points and hence the
operator ¢ is not diagonal on the states. The action of the translation in (A.6)
produces a phase in the KK modes that, in the Poisson resummed lattice sums, gives
a shift on m. Notice that D-branes couple to all KK and winding modes.

Mobius strip In this case, the N b.c. give lattice sums similar to those in the
annulus, since {2 does not act on KK modes. For D b.c., the non-trivial cases are
obtained when ¢ = R and g = R¢, where R and ¢ are respectively a rotation and
a translation of order 2 on the torus (actually only on a circle). Indicating with
A[N, D|Qg] the Mébius strip lattice sum contribution, we therefore get:

A[N | QI Z A2 (A.9)
A[N|Q6] = Z Al2m + 26| W3 | (A.10)
A[D|QR] ZA [2w] W | (A.11)
A[D|QRS] = Z 2w AT W, (A.12)

The fact that only even KK and winding mode appear in the above equations im-
plies that O-planes couple only to even KK momenta and winding modes. Notice,
moreover, that eq. (A.11) represents the interaction of a D5- or D5-brane with O5-
planes in the R fixed points, i.e. ¥y = 0 and y = 7R along the SS direction, whereas
eq. (A.12) represents the interaction of a D5- or D5-brane with the O5-planes (ac-
tually O5-planes due to the (—)F action that comes together with &) located at the
R¢ fixed points, i.e. y = 7R/2 and y = 37R/2 along the SS direction. Similarly,
egs. (A.9) and (A.10) represent respectively the D9 (or D9) interactions with 09 and
O9-planes.
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Klein bottle Define A;[h | Q g] as the Klein bottle lattice sum in the k twisted sector
with the insertion of the operator g in the trace. Since lattice sums can only appear for
the usual untwisted sector or for sectors twisted by a translation of order 2, h = I, 4,
where § is the translation. On the other hand, non-trivial lattice contributions are
obtained when ¢ is a generic translation, as well as a Z, reflection R (aside the
identity). As in the analogue annulus case, the insertion of a translation gives rise
to KK-dependent phases exp (2imd - m), whereas the ¢ twisted sector presents half-
integer winding modes for A;. Therefore, the relevant Poisson resummed lattice sums

are given by:
AlINQ) = ZAZm,
[IlQé]:Zz\[2m+26],
A[I|QR]=Z[I]QR5]=ZA[M,
Als|Q=A[g|Qé8 =0, ’

A6|QR]=A[6|QRS) = Z 2w {[9q] . (A.13)

Notice that (A.13) confirms that O-planes couple only to even K K momenta or even

winding modes, differently from D-branes.
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Appendix B

The unfolding technique

The main aim of this appendix is to describe how the known lattice-reduction
techniques [89, 90, 93, 125, 127] can be modified and applied to amplitudes related
to Z, orbifold to unfold the fundamental region F and, at the same time, to simplify
the structure of the integrand itself. This last task is pursued since, when considering
a theory quantized on an orbifold, the typical one-loop amplitude is given by the sum
of a large finite number of terms. The technique here described allows also a great
reduction of these terms.

The technique, initially studied for Z, orbifolds, is presented in a fully general
way and can be applied to every modular invariant amplitude integrated over the
fundamental region F.

We start reviewing the known lattice reduction technique to unfold the funda-
mental region F to the strip. Then we present the way in which we want to modify
it when the integrand is a finite sum of terms. We start from the generic amplitude

2
A=/dff<r>,
F Ty

where 7 is a complex variable, F is the fundamental region and and /(7) is a modular

invariant function, i.e. a function that is invariant under the transformations

a1 T + Qs

, a; €7Z, aia4— aga3 = 1.
asT + a4

These transformations can be represented via the group PSI(2,Z) of the matrices

a; Qo
, G; €74, ajaq4—asa3 =1,
as Q4

generated by
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UuT

T,

1
ol
N

Figure B.1: The fundamental region F, on the left and the strip S, on the right. The
unfolding technique maps integrals over F into integrals over S.

modded out a Zs group acting as a; — —a;. The fundamental region is taken exactly
to gauge away the modular invariance in a one-loop string amplitude, where the
integrating region was, originally, the full plane C:

C
F= PSI(2,Z)

The integration is difficult due to the form of F but we can use modular invariance
to unfold this region to a more suitable one. In general this is done [89] considering
some special properties of the complex lattice

A= 3 EEE (B.1)

m,n €%

For each m and n in the sum we can compute the maximum common divisor (MCD)
p = (m,n) and write (B.1) as
_p2etdr|®

AD)=>" > e =

PEL N,
deZ]| (cd) =1

now, as shown in [89], given any ¢ and d such that (c,d) = 1, there exists a class of

transformations
ap as
c d
in PSI(2,Z) mapping

e
e T2 — € 2.
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These transformations are related each other by a T transformation so that it is
possible to choose only a couple of a; such that the related transformation maps from
F to S. So, given any c¢, d in the sum, it is possible to choose one and only one
transformation in PSI(2,7)/T mapping from F to S, and, in particular, the lattice
can be written as the orbit under PSI(2,Z)/T of the reduced lattice

Eem.

Noting that the original lattice was modular invariant and so was the integration
measure and I(7), the general amplitude A can be written as

A _ ET 10 A
- 2 oA A<T>}‘gep§2,z>/T/gm 710 Ay B

g€ PSI(2,2))T

where the right side of (B.2) is obtained simply by a change of variables. Now we can
remember the definition of F and note that

C C
g€ PSIR,Z)/T gePSIC, zw PSiz,z)) T

where S, the orbit of F under the action of PSI(2,Z)/T, is simply C/T, i.e. the strip
71 € [~1/2,1/2], 72 > 0, described in the right side of fig. B.1. We obtain

AZL%I(T) x ﬁg (B.3)

This kind of “unfolding technique” (UT) is completely general and can be applied

independently of the form of I(7), that is leaved unchanged. In some sense it closes
the problem of unfolding the fundamental region F. It is also useful to note that the
lattice at the denominator can be written in a simple way through the elliptic theta

functions

A(r) = v/ |0227)[

As introduced this does not conclude our purposes: it is interesting to use modular
invariance of I(7) in a more subtle way to simplify the integration. In general I(7)
is a sum of terms that are not modular invariant but that are in a finite dimensional
representation, or multiplet, of the modular group

I(r) =Y IL(r).

This happens, for example, when considering amplitudes arising from orbifold models.
If N is large calculations can be really cumbersome but it is possible to perform a
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particular UT to simplify it in a large class of cases. Essentially we split the UT
in two steps. In the first step we study the properties of the multiplet, and try to
reduce it as the orbit of a suitable element Iy(7) under the action of a subset G of
the modular group,

a= [T 10 = [ e

Then, noting that [o(7) is left invariant by a subgroup I' of the modular group, we
look for a suitable lattice that is invariant under [ and that can be reduced through
I exactly as A(7) is reduced by PSI(2,Z)/T to A(7)

A0 A
TAm T Z”{A’(r)}'

vyeT

So it is possible to write the integral as

#= (S-S5 % 907{fo<"f>><f§3}-

9€G g€EG,yeT

It is possible to choose I' in such a way that
PSl(2,Z
3oty = 22
geG

so that

A':/S%IO(T) x [/;8 (B.4)

In the next section we describe these two steps for a large class of multiplets,
giving a systematic and general way to unfold this kind of integrals.

B.1 Finite irreducible representation of the mod-

ular group and the unfolding technique

In this section we explain how the ideas presented previously can be applied to var-
ious finite irreducible representations of the modular group. We study the general
properties of the multiplets, we show the connection between the classification of the
infinite dimensional subgroup of the modular group and the possible multiplet. We
describe how the unfolding can be worked out for multiplets related to a large class of
subgroups and we see how this analysis is independent of the details of the multiplets.

A finite-dimensional representation is completely defined when we give the net
of identifications of its elements under the action of the modular group. As in the
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example given in the previous section, given any multiplet {I;(7), i = 1,...,N}
there is an N dimensional subset G of PSI(2,Z), G = {g;, i = 1,..., N} such that
I;(7) = gilo(7). Since we are interested only in the modular properties of the multiplet
all the information we need are contained in G. We have to note also that, given a
multiplet, the classification made with G is not one to one: given G mapping I in all
the multiplet in general it does not map also [; in the multiplet, so that each multiplet
is related to more than one G. Since we are mainly interested in multiplets where at
least one element is 7" invariant we call G the set of elements that maps the generic
T-invariant term in all the others!. Furthermore given G is defined uniquely also the
subgroup I' such that given any v € T', yIo(7) = Io(7) and > . g{I'} = PSI(2, Z).
We classify each multiplet using this last subgroup I

We begin with the class of multiplets relative to I'§[n], the subgroup of PSI(2,Z)
of the matrices of the form:

na + 1 b na — 1 b
ne nd + 1 ne nd — 1

where the identification is due to the equivalence between a matrix A and —A. We
present firstly the example n = 5, then we generalize the result to any prime number
n and then to any n # 4. The n = 4 case is treated separately.

As said we are interested only in the modular properties of the elements and we can
describe completely them, at least at this stage, giving their transformations under
T and S. This means that the net of identifications is important, while the “names”
we use for the elements is not. Nevertheless to simplify the notation we introduce
here the names used to identify the various terms arising from the computation of
the vacuum energy for a Z,, orbifold. We define

i _2_ — 7 Lo zLo — p2miT
[N’N}(T) Tr [9(1 q } g=e

i

where 6 is the Z, generator, Ly and Ly are the Virasoro generators and the trace is
performed over the light-cone degrees of freedom of the ¢ twisted sector of closed
type IIB string theory, i.e. the sector where the world-sheet fields are identified as

®(s + 2m,t) = 0'®(s,1).

The trace contains also the usual GSO projection and a sum over spin structures.

In the n = 5 case we refer to the twelve dimensional multiplet described by the

1As we will show this G is unique also when there are more than one T-invariant terms.
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graph
LW L0 U 210
Lm 2o
52— [0
540 — [210)

14 2 3

(5 3] (™) BRI
where the vertical and horizontal arrows refers to 7' and S transformations respec-
tively, S and 7" being the previously described generators of the modular group. In
this and in all the nets we usually omit the vertical lines connecting [%, %] (1) to
[£, 2] (r) and the horizontal line between [, £] () and [£, %] (7).

As it is clear there are two special T invariant terms that are also invariant under
the action of I'}[5], while the other terms are invariant under a subgroup that comes
directly from T'}[5]. As an example [L, 2] (r) and [2, {] (7) are invariant under the
action of ST§[5]S. Since there is a complete symmetry in the system, the unfolding
can be performed equivalently from one or the other of the two T invariant terms
and as we will see the symmetry between the two sectors is present also in the final
result.

We have described the multiplet and concluded the first step: we take Io(7) to be

[2, 1] (). Now we can introduce the lattice
|5m+1+5n7‘[ _ [.E'm1.-!—4+5'n.'r|2
MO (7)) = E e Bz E e Ba . (B.5)
m,neL m,n€Z

It is invariant under I'j[5] and we can also note that the p = (5m +1,5n) can be 1,
2, 3, 4 mod 5, so that we can write (B.5) as

2 ]5c+1+54'r| 9 [56+3+5d7‘]"
A1(5)(7_) — z : e——(5m+1) BT e + : : —(5m+9) T’rr)_

m,c¢,d€EZ m,c,d€EZL
(5¢+1,5d) = 1 (5¢+3,5d) = 1

Now we can consider the orbit of Fzp(r; ') under the action of I'}[5]/T and obtain
1 ]5c+1+5dr|‘
3 7{6 zsg} N

vETY[5l/T ¢, deT
(5c+1,5d) =1
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We also note that under a ST2ST®S transformation the subgroup T'}[5]/T is
shifted in the subset of all the transformations of the form

na + 3 b na — 3 b
ne nd -+ 2 ne nd—2 |

We call this subset T'2[5], and it is simple to verify that the orbit of Ezp(r; ') under
the action of ['2[5] is -

Z Z 5c+"+5dr
{ } e ?57-2 )

2

veT3El/T c,d€Z
(5c+2,5d) = 1

Now it is clear that the lattice A;®(7) can be written as
MO = 3 {AP ) + s {AP ()}
YETH[E]/T

where

nm+z)‘

E e n“T2 .

meZ

Tiiis allows us to write

[FZlslo-Z LoAF 53] 0)-

> /g v{di I [A@( )+5T25T35{A§>(7—)H}.
.

(8)
e T2 A7)
v € T§[51/T
Now we note that ST2ST3S maps exactly [2, 1] (7) in [2, 2] () and A,®)(7) in
A® (1), where A;®)(7) is a simple extension of the previous definition:

(5) i5m+z+5nr| [5m—z+5nr|2
§ T8 — § 2
A e 2579 e 519 ,

m,n€Z m,n €L
and, furthermore, we note that I'}(5) commutes with ST2ST3S and G o ST?ST3S ~
(G, so that,

2

d*r i g d*r 5, 5 (sm+)?
— - PEES B.
A4 /F—-z[”} [y xZe (B.6)

1=1 meZ

As anticipated the final form is symmetric in the 7T-invariant terms.
The symmetry of the result, that contains all the 7" invariant terms, is encoded in
the fact that the invariance group is not the full subgroup I'¢[5] of the matrices

(o)
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as one can expect generalizing the results of [90], but a subgroup of it, that can be
mapped in the full I'y[5] by the set of transformations {1, ST*ST?S}, where ST?ST*S
maps exactly one T-invariant term in the other. ' '

The extension to a general ['g[n] for a generic prime number 7 is straightforward.
The multiplet contains (n? — 1)/2 terms, joined in (n — 1)/2 sectors of the form

24— [0

n’n n’n

!

|
[ %51 (7)

3=

with (n + 1) elements each.

There are (n — 1)/2 T invariant elements, and we can guess these elements are
invariant under the action of ['}[n], while the other transformations in g[n] \ T'§[n]
exchange the various T invariant terms. So the first step of the unfolding is completed
taking one of the T invariant terms as fundamental element and ['j[n] as unfolding
group. The second step is a generalization of the calculations worked out in the n =5
case, we have only to use Ag”) and the final result is

. (n— 1)/2 2
(G o= [F Y BEE S e
fT?i,jnn zl Aq meZ
Now we can study the case of multiplets relative to arbitrary m’s. In this case
the multiplet contains terms that are invariant under I'}[n], i.e. there are parts of
the multiplet of the form described in the graph (B.7), but in general there are also
different building blocks. This is not a problem and at this stage the full form of the
multiplet is not indispensable. As a general recipe we can say that, given a certain
multiplet, one sees if there exists a T invariant term, then one studies the part of
the multiplet related to this element via S and 7S transformations and finds the
order of the invariance subgroup. Then the unfolding is completed by considering
one of the invariant terms as generator of the full multiplet and the subgroup ['j[n]
as base for the second step. The presence of further T-invariant terms is encoded
in T'§[n], exactly as explained in the I'j[5] case. Formula (B.8) can be applied with
attention to the fact that if n is not a prime number then the index ¢ does not run over
{1,2,...,(n—1)/2} but only on the numbers p previously described. For example in
the n = 9 case, of interest, for example, for the 36-dimensional irreducible multiplet
arising when computing the free energy in a Zg model, the index 4 takes values 1, 2, 4.
The only note is about the identification of the T-invariant terms of the multiplet
0 i

analyzed with the terms [2, £] (7) used in (B.8). This is done by choosing one T-

n’n
invariant term and calling it [2, 1] (7), then one can derive the net of identifications
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for the original multiplet and for [2, 1] (7) knowing that

[(n) —= [£, 2] ()

[ 5 ()
and [, £] (1) ~ [32, 3E] (1) ~ [RE=R, 2H=E] (1), W, p € N. At this point the
identification is easily done by comparing the two nets.

As an example we present the twelve-dimensional multiplet arising from a Zg
orbifold. The full multiplet contains 36 elements, but is not irredu'cible, it is given by
the sum of the usual trivial one-dimensional multiplet, a three-dimensional multiplet
related to ['3[2], two equivalent four-dimensional multiplets related to I'j[3] and two
equivalent twelve-dimensional multiplets related to ['j[6]: 36 =193®2x4®2x 12.
This latter multiplet has the form:

53] () — [5 51 ()

|
[
[« 1
| SRS )
=
p—

pa
A)

—/
—
[ex1] ]
—~
\‘
~—
-

21
[5: 5] (™) 5 8] (1) — [5
where an horizontal line links [, 2] (7) to [2, £] (7). The multiplet contains the
only T invariant term [3, ] (7), as we expect from the fact that 1 is the only integer

satisfying the condition of being at the same time prime with 6 and less than 3.

The integral is:

1 P
A dr (&5 () ~logr
= —_— T2
T s _lemtiiond? Z ¢ '
36
Zm,nEZ € = meL

This concludes the analysis of the multiplets with T-invariant terms, that can be
summarized as follows. For a given I'}[n] multiplet the unfolded integral equals

w= [ G ] 0-[Grlabaarn e

where 4 is in the set of numbers such that (i,n) =1 and i < (n — 1)/2.
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This is not the only one class of multiplets. From Z, x Z, orbifolds one can see
that there are multiplets where all the term are equivalent and where the invariance
subgroup is not based on 7" and ST™S but on T™ and ST™S, the relevant subgroup
being I'[n] made of matrices of the form:

na+1 nb
ne nd+1 )
Due to the fact that is more difficult to take in account I'[n]/T 2, or, equivalently,

that all the terms in the multiplet are equivalent we deduce that the UT useful in
this case is the general formula (B.3) described in the second section.

B.1.1 An exception: I'g[4]

The T'g[4] case represents an exception to the recipe previously given. It is the only

exception suggested by orbifold models, so, if we conjecture the one to one correspon-

dence multiplet/invariance group and note that from orbifold models we have regular

multiplets for all I'g[n] n # 4, than we can guess that all the n # 4 cases are regular.
The T'y[4] case is exceptional because the multiplet

(23] () [55](D)

L |
e
Ll L
[SERT R
—~~
3
N

-
|
NN
TN
\‘
"
L
NN
PN
| -
~
\]
S

55 (™
contains two T-invariant terms even though only 1 respects the conditions (7,4) = 1,
1 < 2. The unfolding is written in the same way as before, but now starting from one
term we do not obtain the second one. This is due to the fact that the contributions
obtained starting from one or the other term are equal, as we will see in the example
in the next section. We can conclude that, even though the multiplet is exceptional,
the unfolding is not and formula (B.9) can be applied as in the other cases.

B.1.2 Two examples

The n = 2 and n = 3 cases have already been taken into consideration in [90, 93]
and in [90] respectively. These are two examples of how the technique can be applied
efficiently in various cases.

2This is due to the fact that ToT ¢ T
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In particular in [90] the authors computed the threshold corrections to gauge cou-
plings in an orbifold compactification of heterotic string. Following [125] they started
from a one-loop amplitude, clearly modular invariant, that, due to the presence of
twisted sectors and projections, is made of a finite sum of elements. In particular
they considered the case of the three and four-dimensional multiplet

| 1
l

3 3] (

V2 (1) — |

L
27

[} fes]

(7)
7)

and

The first step of the unfolding was performed as described here, while the second step
was treated in a modified version to better fit the form of the terms they took into
account.

In [93], instead, the vacuum energy for an orbifold of type IIB string theory was
computed. In particular the authors performed the unfolding in the n = 2 case in the
same way here presented. The result is essentially that given in (B.15). In the next
section we show how the computation can be extended to a generic orbifold through
the UT shown.

B.2 The vacuum energy for a class of seven dimen-

sional orbifold models

In this section we compute the one-loop vacuum energy for the class of models of
chapter 4, where type IIB string theory is compactified over R” x (C x S/Zy). The
group Zy acts as an order /N rotation on C and an order N translation around the
compact circle S, taken to be of radius R. We consider firstly the odd-/V case, then
we extend the result to the even-/V one.

As seen in Appendix C, independently of the details of the action of Zy, the full

amplitude contains N? elements named [W 7{,—] (7), usually in a reducible multiplet:

Z(9).—l/£i_2I§N: voJ (1)
N ]_-2722”:0 N’ N
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where the [ﬁ,«, %] (1) are defined in the previous section and in Appendix C.

The reduction of the multiplet is quite easy. First of all the term [—]%, %} (1)
is a singlet, and is SUSY, so its contribution is zero. Then, due to the periodicity
properties, the (V2 —1)-dimensional multiplet obtained is reduced into two equivalent
(N? — 1)/2-dimensional multiplets. We consider one of them. It contains the (N —
1)/2 T-invariant terms {[2, +] (7),..., [%, i—l\%,ﬂ/—z] (T)}. These terms are the key
ones, being, with the exception of the Z, orbifold, the only T-invariant terms in all
the multiplet. Now the reduction is done by considering the net for each of these
multiplets, or better, some relevant features of the multiplet itself. We consider the
Zy example first, then we see how the final form can be extracted in the general
case without any further analysis. In the Zy case we have the term [2, 5] () that is
left invariant by the action of T'§[9]. The full multiplet, so, contains also two other
T-invariant terms, because the number of p such that (p,9) = 1 and p < 9/2 is
three: p = 1,2,4. Clearly these terms are [g, %] (1) and [9, 9] (1), while the term
[%, 2] (7) is in an independent irreducible multiplet, based on I'g[3]. The reduction is
concluded, now we can apply directly formula (B.9), since the identification between

the elements of our multiplets and those used in the previous section is trivial.

d27- 0 K2 (9m+z)
o=z [T 5 B0, 5 o
2 9
s 72 2124 A( meZ
42T 0, § T (3m+1)?
2/ > s R OTRG | () X Ze R (B.10)
s T2 Al( : T) mezZ
where the overall factor of 2 takes in account the terms [2, 2] (r) with p > 4. Since
(9m+3) (3m+1)2
> o ey o
mEZL meZ

A§3) (r) = Agg) (1) and A(13) (1) = J\§f’> (7) and so there is a more interesting version of
(B.10):

d T (9m+z)
9 . 97 9 2
©) / E A, (9) X E e 9 (B.ll)
1=0

meZ

It is easy to understand that formula (B.11) can be extended to every other case,
independently of the form of the initial multiplet.

1 (Nm+1)"

d*r ~ (7'
N) N’ N T,
ZM) /TQ § NIEE Xy e ¥ (B.12)

=0 mMEZ

We note that while the so-called “first step” is completely general, the “second
step” requires that we take a choice and pick a special object AE") . This does not
spoil the fact that the procedure can be applied to a generic multiplet, independently
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of its origin. Nevertheless it is interesting to note that strictly dependently on the
details of the form of the various terms one can pick a different and more suitable
object to perform the second step. In our case we can specialize (B.12) noting that,
due to the translation action, a lattice term

R‘le+1+NnT|‘

AR T) = Z e Vn

is present in [0 Z] (7). We can use this lattice to perform the second step, in such

N N
a way that the denominator is canceled by the lattice A;") (R, 7), obtaining the final

result, valid for any odd N,

Oode)

1rR2 k 2
. dM(F)k} 6—47m-2MZB—a,T2 (n-l--ﬁ) ’
2 k=1 MEN nez
(B.13)

Z(N) —

where we have defined the coefficients dy, (B, F)* as

a13 a 132
YL 0|5, 2
m(B)® —dy(F)F| e ™" = [—|2sin - ¥ )
, 4 N n? 9[ 5%]

" MeN % +2&
(B.14)
The even-NV case can be easily deduced. The multiplet is reduced in the same
way, the only exception being that the term [%, J—VNQ} () is special, because §V/2 acts

only as (—1)¥ and so while the fermionic part is as in (B.12) the bosonic is different
and, in particular, there is an extra factor from the momentum in the C dimensions.
So, to conclude, the general amplitude is described in (B.13) with k taking values
{1,...,(N=2)/2,(N+2)/2,...,N — 1} and an extra term from the term k = N/2
of the form

U dr ~2E (nrd)”
=12 / ot Z du(B ~dM(F)N/2] 6_4M2M26 i (1) ,(B.15)
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4 MeN nEZ
where
o N Axsnl
> [du(B)YN? = dyr(F)M?] e 2M:/dn 77(1’2 (B.16)
MeN

In (B.15) there is an extra volume v, taking in account the fact that these states
propagates also in the C dimensions.

The Z,4 case is not special, and the formula described above is still valid. The
only remark we can make is the fact that starting from the two different elements we
obtain the same result. This is true because the Scherk-Schwarz present in [2, 1] (7)
case is that used usually, A (R, 7), while [2, 1] (1) there is a lattice that is exactly
ST2S{AM (R, 7)} so that the unfolding for [2, 1] (7) proceed as in [9, 1] (7) but with

47 4
an extra ST>S that transforms [2, 1] (7) in [2, 1] (7).
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Figure B.2: The value of the f[N] function in different cases. As clear f[IN] is a monotonic
function with asymptotic value f[co] ~ 1.16 x 10°.

It is easy to compute the leading term for Z (V)| given by the M = 0 contribution.
It is given by

O!I
70 ()
where the function f[N] contains all the N-dependence in the odd-N case and ¢ ~
322

ESIEN

9
3 1+(—1)N V7U9 o' \? ¢
L (E) o

99 (N-1)/2 si (__10_)8

SN~ % Y —TE———-—

The behavior of f[N] is summarized in fig. B.2, it is essentially monotonic and in the
limit N — oo it approaches the constant value

sin(mz)

1 8
Limy—oo f[N] = floo] = 29/0 da:( > ~ 1.16 * 10°.

x
The monotonic behavior ensures that the one parameter set of functions Z(!") has, at
least at the leading order, a monotonic behavior in N in the odd-N case, as found in
the lowest N case in chapter 4. In the even-N case the extra factor from the term
k = N/2 changes the behavior, that depends also on the ratio between the volume v,
and R2.



Appendix C

One loop closed string amplitudes

In this appendix we describe the one loop closed string amplitudes used to compute
the partition functions of chapter 4. The main task is to obtain the form of the
[z—i,-, Yjv'] (1) objects used in Appendix B an their modular properties, in particular
we give a recipe to study the net of identifications between the [—]’\7, %] (7) under a
modular transformation.

We take the orbifold of the form M = C" x T3~ "/Zy, where Zy is generated by
an order NNV rotation in the various C or T manifold, the rotation angle being 27 x 7.

The vector v is of the form

U= i(a,, b, c)

N

with a, b, ¢ natural numbers. World-sheet supersymmetry impose that the rotation is
applied also on world sheet fermions. In order to have that the action of the rotation
is of order IV also on the fermionic degrees of freedom we require that a + b+ c is an
even number. We do not impose any other constraint since we are interested also in
non-SUSY orbifolds. We take n to be generic, since the difference between C and T2
is revealed only by the zero modes of string theory.
The partition function is given by
1 (&2 & [i
=5 L 2w

where

i _'.]._ — J Lo -Eo} _ 2T
[N’N}(T) Tr [M g°|, g=e

where 0 is the Zy generator and the trace is performed over the light-cone degrees of

freedom of the #° twisted sector.
We can also join the described rotation with a translation in some compact di-

rection where the rotation acts in a suitable way. It is not necessary to impose any
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requirements about the relation between rotation and translation at this stage. We
describe a completely general case giving the building blocks for [+, —Jﬁ] (1), with-
out any constraint. Clearly, when putting together the terms to build the partition
function, the requirements must be fulfilled, as explained in chapter 2.

Since in the theory the fermionic modes are decoupled from the bosonic ones and,
furthermore, the bosonic zero modes are decoupled from the other bosonic modes,
[£, L] (r) factorize in the product of three terms: a term from bosonic non-zero
modes, one from fermionic modes and one from momentum, that is the bosonic zero
mode. This last term contains also a factor arising from the number of fixed points
of the operators # and 67, as described in the appendix of [72].

The fermionic modes give the contribution

2

h k} (—1)20+26+4aB 2 a+ hug
= o |(1) = > [[n ' (r)e ™0 (r)(C.1)
[N Nlir a,€{0,1/2} 2 d=0 B+ kva

where g is taken to be zero while vy, v and w3 are the components of the above
described 7. The 8 functions are the well-known modular functions whose definition
and modular properties are described, for example, in the appendix of [14].

The sum over the spin structure can be simplified using the Jacobi identity de-
scribed in the appendix A of [112], using it (C.1) is written as

5w - dlilon-%ﬂeﬂﬁjzzz] (»r>|2 (©2)

where

1

vy = 5(1)1 +vg +v3), V)= 3(—v1 +v2+v3)
1

’U’2: —2—(1}1-U2+U3), 'Ué-—‘—‘%(’lll-}"l)g——’l)g).

From the modular properties of the 8 functions it is easy to see that 7' maps [jf,—, 7{,—} #(7)
in [, HA_TJ}F (1), while S maps [£, 7{,—]F (1) in [—]”V, ], (7). It is also interesting
to note that, due to the periodicity properties, [%, %,—]F (1) ~ [—;—\%, —WJ]F(T) and

[ 31 )~ (452, 252] (7) for alla, b€ N

The term from the bosonic non-zero modes can be split in the product of four

terms related to the four v;. Each term is of the form

24 :Z)ﬂ = ()l

if hvg, kvg € N or of the form

4l

Ly ho 2
% ] )
5 + kJ'Ud

oo
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in the other cases.

The term from the bosonic zero modes, like the previous one, can be split in the
product of four terms, each of them having a different form depending on the action
of a translation/rotation. Each term equals one if a non-trivial rotation is present, if

no rotation is present it equals

bk
[N N]OB ‘a'nze

1:(G+B)sj [(m+kwg)+(n+hwg)7); (CS)

J—

m,n

if the submanifold is compact and the Zy acts also as a translation of length 14
in this direction. The two dimensional lattice is written in the most general case,
with G and B respectively the metric and antisymmetric field. Also the translation
is generic, we only ask that it is of order N, without any other constraint on the
form of the two-dimensional vector wy. The formula (C.3) is extended in the non-
compact case and resummed to V/4m2a'ry, V being, as usual, the infinite volume
of the two-dimensional non-compact manifold itself. Clearly in presence of a non
compact manifold it is meaningless to introduce an order NV translation.

.. Furthermore there is an overall factor [%, —]’%—] , counting the number of fixed
points.

The full [£, £] (1) is given by

wilo-lo sl Bl I slp e

=0

and it has the same modular and periodicity properties of [—]%.-, —J’f—,] » (7), so that

00— [ #10
Tl (C.5)

and [&, ] () ~ [3, 3] () ~ [282, 252] (1), W, p € N
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