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Abstract

This thesis focusses on three main aspects of the foundations of any theory of
gravity where the gravitational field admits a geometric interpretation: (a) the
principles of equivalence; (b) their role as selection rules in the landscape of
extended theories of gravity; and (c) the possible modifications of the spacetime
structure at a “mesoscopic” scale, due to underlying, microscopic-level, quantum-
gravitational effects.

The first result of the work is the introduction of a formal definition of the
Gravitational Weak Equivalence Principle, which expresses the universality of
free fall of test objects with non-negligible self-gravity, in a matter-free environ-
ment. This principle extends the Galilean universality of free-fall world-lines for
test bodies with negligible self-gravity (Weak Equivalence Principle).

Second, we use the Gravitational Weak Equivalence Principle to build a sieve
for some classes of extended theories of gravity, to rule out all models yielding
non-universal free-fall motion for self-gravitating test bodies. When applied to
metric theories of gravity in four spacetime dimensions, the method singles out
General Relativity (both with and without the cosmological constant term),
whereas in higher-dimensional scenarios the whole class of Lanczos–Lovelock
gravity theories also passes the test.

Finally, we focus on the traditional, manifold-based model of spacetime, and
on how it could be modified, at a “mesoscopic” (experimentally attainable) level,
by the presence of an underlying, sub-Planckian quantum regime. The possible
modifications are examined in terms of their consequences on the hypotheses
at the basis of von Ignatowski’s derivation of the Lorentz transformations. It
results that either such modifications affect sectors already tightly constrained
(e.g. violations of the principle of relativity and/or of spatial isotropy), or they
demand a radical breakdown of the operative interpretation of the coordinates
as readings of clocks and rods.

This thesis is based on the results appeared in the papers:

∗ E. Di Casola, S. Liberati and S. Sonego, “Nonequivalence of equivalence
principles”, (Am. J. Phys. — in press). E-print arXiv:1310.7426 [gr-qc].

∗ E. Di Casola, S. Liberati and S. Sonego, “Weak equivalence principle for
self-gravitating bodies: A sieve for purely metric theories of gravity”, Phys.
Rev. D 89 (2014) 084053. E-print arXiv:1401.0030 [gr-qc].

∗ E. Di Casola, S. Liberati and S. Sonego, “Between quantum and classical
gravity: Is there a mesoscopic spacetime?”, (Found. Phys. — submitted).
E-print arXiv:1405.5085 [gr-qc].
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Preface

All, in the world, exists to lead to, and to
end in, a book.

S. Mallarmé, Poésies.

This thesis at a glance
To sum up a doctoral dissertation in one motto might be a tough task.

Too much content to “squeeze” into a single sentence, too much background
information and supplementary details to account for.

This work tries to make an exception, for once. Indeed, the whole point of
this document can be condensed in the following clause.

This is the story of a free fall.

There are at least two reasons why the line above offers a comprehensive
overview of the meaning of the present work. One is a strictly technical reason;
the other has a broader, more “tangential” goal.

The technical aspect highlighted in the motto is the notion of free fall, which
can be thought of as the main theme for almost two thirds of the thesis. We
shall show how a certain version of the classical notion of Galilean free fall can
be transformed into a set of selection rules for the vast landscape of extended
theories of gravity.

By choosing a simplified — yet, unified — point of view, grounded on the
physical assumptions behind Galileo’s vision of the free fall, it is possible to
sidestep a large class of technical problems and extract a formal sieve, to be used
later as a guiding principle when searching for a viable theoretical description
of gravitational phenomena.

The upshot of the discussion is that the free-fall motion of small bodies
with non-negligible self-gravity exhibits a universal character only in the case
of purely metric theories of gravitation, i.e. theories which encode all the gravi-
tational degrees of freedom in one, and only one, physical field: the metric.

From this result we deduce that General Relativity passes through the sieve
(as expected), whereas all theories with additional gravitational degrees of free-
dom are ruled out. Also, we find that, as soon as the number of dimensions of

ix



the underlying spacetime manifold is allowed to grow above four, a plethora of
concurring theories, named after Lanczos and Lovelock, now pass the test as
well — it is still a small subset of all the theories compatible with other theoret-
ical principles commonly associated with gravitational phenomena, but is large
enough to raise new questions.

In this respect, we shall critically review many aspects of both the “golden-
age” free fall — whose universality has acquired the name of Equivalence Prin-
ciple —, and of its most recent variations.

The thesis will begin with a bird’s eye view of various theories currently chal-
lenging General Relativity as the best explanatory framework for gravitational
phenomena (Chapter 1). Once the landscape is set, we shall provide (Chapter 2)
an examination of Galilean universality of free fall and of the other fundamental
statements shaping the traditional models of gravitation theories — collectively
called “equivalence principles” —. After that, we shall discuss (Chapter 3) a
suitable extension of the free fall motion to self-gravitating systems, denoted
as Gravitational Weak Equivalence Principle. Its features, implementation, and
consequences will be used to build the mentioned sieve for extended theories of
gravity, and to later put it to test on various archetypical models.

Finally (Chapter 4), we shall pursue our examination of extensions of the
general relativistic framework by investigating the possible fate of Local Lorentz
Invariance at scales close to the Planck one. More specifically, we shall discuss
the concept of classical (continuous) spacetime, and how this notion is supposed
to be shaken, changed or even abruptly ruled out by the introduction of quantum
effects propagating up to a “mesoscopic”, observable scale.

Chapter 5 has the office to deliver the concluding remarks.

Behind the motto

The all-encompassing sentence “This is the story of a free fall” also tells
something else. The message does not pertain strictly to Physics or Mathematics
(not at first sight, at least); yet, it is of some significance.

The motto restates, decidedly, that this is a story. In the Readers’ hands
rests a tale, like any other true tale, of life and death, love and hate, success
and failure, tiny sparkles of inspiration and long ages of transpiration.

In the 1940’s, Kurt Vonnegut — at the time, a young Anthropology stu-
dent — suggested an elementary method of graphical representation of all the
archetypical plots underlying the stories in literature, mythology, epic poetry,
etc.

This thesis, being itself a story, could then be denoted by a variously twisted
line laid somewhere between Vonnegut’s curves called Man in Hole, Boy Meets
Girl, Cinderella, and Kafka.1

1One of Vonnegut’s last examples in his list of archetypes was Shakespeare’s Hamlet ; according
to him, an unparalleled masterpiece, and an unsung lesson in telling the truth. Simply juxtaposing
that eminent play to this thesis would have made a horrible service to both us and the Bard, hence
we pityingly omitted the term of comparison. Kafka, on the other hand, deserves an explicit reference
here in view of what David Foster Wallace once pointed out about him: that Kafka was among the
few who could provide true examples of actual funniness (see D. F. Wallace, “Some Remarks on
Kafka’s Funniness from Which Probably Not Enough Has Been Removed”, in Consider the Lobster.
And other essays, 2005).
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The presence of mathematical symbols, bibliographic records, ubiquitous
present tense, and logical explanations ought not to fool the Reader, making
Him or Her think that this document contains anything different from a bare
story. It is true that the narrative techniques adopted herewith try to best fit
the sub-genre of scientific literature; also, and most importantly, when reading
this thesis, the Reader will not allow for a suspension of His or Her disbelief, as
it usually happens with other sorts of narration.

But again, undeniably we daresay, this is a story. We fail at seeing in which
sense it could ever be otherwise.

If the story is sound, it will seamlessly lead the Reader until its natural end.
If not, it will collapse at some point under the burden of its inconsistencies.
Nowhere in the process it will change its innermost nature of a story.

The story of a free fall.
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Notations and Conventions

This system of units [the Planck units, for
which c = G = ~ = 1, Ed.] serves to keep
both classical relativists and particle physi-
cists happy. This system also serves to keep
both classical relativists and particle physi-
cists confused since it is essentially impos-
sible to use dimensional analysis to check
results for consistency.

M. Visser, Lorentzian Wormholes.

We dedicate here a few paragraphs to present and establish the most common
conventions used throughout this work. Other considerations on this crucial
theme have been postponed to the footnotes complementing the text.

Physical conventions

Physical constants; Units. In this thesis, each quantity comes with its own
physical dimensions in terms of the fundamental units (e.g. velocity as [l] [t]

−1,
action as [m] [l]

2
[t]
−1, momentum density as [m] [l]

−2
[t]
−1, and so forth). MKSA

and cgs systems are used in most of the cases.
All the instances of the fundamental constants (c, G, ~) are written down

explicitly to assure consistency of the formulæ and easiness of dimensional check.
The principal physical constants in use are:

c The speed of light in vacuo.

G The gravitational constant (Newton’s constant).

~ The normalised quantum of action (Planck’s constant h over 2π).

Λ The cosmological constant.
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Mathematical notation

Indices; tensor notation. We adopt the abstract index notation as presented
in Refs. [542] and [332]. Symbols denoting geometric objects (“kernels”) are ac-
companied by a varying number of lowercase, latin, italic, superscript/subscript
indices (“dummy”, “slot” indices), to keep track of the covariant and contravari-
ant valence of the tensors involved.

On the other hand, lowercase greek, “coordinate” indices span the values
{1, 2, . . . , n}, with n the number of spacetime dimensions. Coordinates will be
generically denoted χα (mostly in mathematical context, when dealing with
manifolds in general), zα, or yα (in more physical contexts).

On Lorentzian manifolds where an indefinite quadratic form (a metric) is
defined, non-null coordinates are such that the last index denotes the time co-
ordinate. The notation xα will be reserved to pseudo-Cartesian rectangular co-
ordinates (x, y, z, ct) in special relativistic context.

Other indices. Uppercase latin indices act as counting indices, their values
picked within the set of integers. The same counting indices are used sometimes,
with apt placement, when dealing with tetrads, n-beins and objects alike.

Symmetrisation and anti-symmetrisation. Round [respectively, square]
parentheses enclosing sequences of indices denote complete symmetrisation [re-
spectively, anti-symmetrisation] in all the enclosed indices, including the nor-
malisation factors; therefore, it is e.g.

A(ab) :=
1

2
(Aab +Aba) , A[ab] :=

1

2
(Aab −Aba) . (1)

A single-letter index (subscript or superscript) enclosed in round brackets de-
notes the non-tensorial character of that index.

Signature, Riemann, etc. The signature convention for the metric is the
“mostly plus” one, as in Refs. [353] and [250]: the Lorentzian metric on a given
spacetime, when written in locally inertial, pseudo-Cartesian coordinates as-
sumes the form

gµν = diag (+1,+1, . . . ,−1) . (2)

The Riemann curvature tensor R d
abc is defined, in an arbitrary coordinate sys-

tem, as [542]

R δ
αβγ := ∂βΓδαγ − ∂αΓδβγ + ΓλαγΓδλβ − ΓλβγΓδλα . (3)

The Ricci tensor and the scalar curvature are then given by, respectively

Rab := R c
acb , (4)

R := gabRab . (5)

Relativistic spacetimes. Following Ref. [250], a relativistic spacetime is de-
fined here as the pair: (i) manifold (with an atlas of differentiable coordinates),
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and (ii) metric tensor3
M ≡ (M, gab) . (6)

The topology, dimension and signature of the spacetime are considered as non-
dynamical. The spacetime signature is everywhere Lorentzian; that of three-
dimensional “physical” space, always Euclidean. When needed, e.g. in the case
of affine structures decoupled from the metrical ones, the previous definition of
spacetime is extended so as to include also a covariant derivative operator, “D”
or “∇”, characterising the connexion.

The connexion coefficients compatible with the metric (Levi-Civita connex-
ion coefficients) are written as Γabc for sake of uniformity with the abstract index
notation, although it is intended that the indices there are not of the abstract
type — the metric-compatible connexion coefficients are not, in general, tenso-
rial objects — whereas the general affine connexion coefficients are denoted as
∆a

bc (in principle, the indices a, b, c might be abstract indices).

Miscellaneous notations. The calligraphic letter “B ” after a bulk term in
an action functional denotes apt boundary terms necessary to make the varia-
tional problem well-posed, and to extract well-defined field equations.

Script letters such as S, E ,G, . . . found in Chapter 3 refer to the first-order
terms in an ε-series expansion of the corresponding italic letters S,E,G, . . ..

3For the issue of assigning a temporal orientation on a relativistic spacetime see Ref. [470],
or [332].
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Chapter 1

Theories of Gravity: A
Guided Tour

Little is left to tell.

S. Beckett, Ohio Impromptu.

The word gravitation, or gravity, carries quite a wide range of meanings, each
one evoking a cornerstone in the history of physics. At its roots lie concepts
familiar to the layperson, such as the planetary motions, the ebb and flow of
the tides, and the universal attraction between massive bodies (whereupon,
the fall of small objects towards the ground). Nowadays, however, the same
name has stretched its semantic boundaries far beyond the limits of the Earth,
and of the Solar system, to embrace the entire history of the Cosmos, and the
groundbreaking idea that space and time are dynamical entities themselves,
rather than immovable, absolute scaffoldings.

Having found a way to lock such a wealth of diverse observations into a single,
self-consistent framework remains a grand achievement of theoretical physicists.
General Relativity, our current paradigm explaining gravitational phenomena,
is perhaps “the most beautiful theory”: a crown in the regalia of theoretical
physics.

Still, when it comes to gravity, talking about “one” theory, or “the” theory,
is a bit of a misnomer. General Relativity is undoubtedly a queen among its
peers, but it is just one (admittedly outstanding) model within a dense crowd
of other frameworks, each one fighting and racing to dethrone the queen, and
become the next ruler.

Nowadays, to go beyond General Relativity is considered a foreseeable step
towards the ultimate theory-of-everything, and many proposals attempt to ac-
complish the mission. The branches of the resulting “family tree” range from
tiny variations on the main theme, to radical departures, and one needs a clear
understanding of the conceptual and formal aspects of each model to proper
assess it and compare it with the dominant scheme.
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This Chapter is devoted to offer a wide-angle perspective on the landscape
of gravity theories currently challenging General Relativity. We shall keep the
presentation as compact as possible, in agreement with the synthetic approach
pursued in this work; the plan is to offer a minimal description of some essential
elements, highlighting only those aspects which will have an echo in the follow-
ing. To the supporting bibliography is assigned the risky mission of filling in the
numerous blanks.

1.1 Gravitation: the story in a nutshell

A review of the theories of gravitation, however sketchy, cannot dispense
with a short presentation of the milestones. The long and complex history of
gravity is recollected here through three of its main turning points: the initial
sparkle of Newtonian mechanics; the poorly-known, yet crucial contribution
by Gunnar Nordström and Adriaan Fokker; the climatic outburst of Einstein’s
General Relativity.

In this brief sequence, it is tempting to look at the discontinuities, the
paradigmatic shifts, the new ideas outnumbering the old intuitions. Rather,
we would like to highlight the deep sense of seamless continuity driving the evo-
lution of this branch of theoretical physics; which has been much more effective
than any revolutionary afflatus.

Newton recognised the common nature of gravity and of the other mechanical
forces, and placed the world on the absolute stage where all the events unfolded,
for the pleasure of the audience to see them. Nordström and Fokker extended this
notion so as to make it compatible with the relativity of simultaneity. Einstein,
finally, framed the missing link, and understood that, in the grand show of the
Cosmos, the theatre is a mere illusion, and so is the audience: the only surviving
truth, is that there is but one, all-embracing, ever-going performance, and we
are simply a part of it.1

1.1.1 A glance at Newtonian physics

In Newton’s theory [376, 353], the mechanical behaviour of point masses
is governed by the following, fundamental equation (second law of dynamics),
written here in modern vector notation

F = mIa . (1.1)

It is an ordinary differential equation where the force law F (r,v, t), a function
of position, velocity, and eventually time itself, balances the product of the
acceleration a = d2r (t)/dt2, times the inertial mass, symbol mI. The latter is
an intrinsic property of the particle, and its value can be measured e.g. by means
of collision experiments.

All the gravitational phenomena known at Newton’s time, i.e. the planetary
orbits, the fall of bodies towards the ground, the ebb and flow of tides, can be
accounted for by Eq. (1.1), provided that the (always attractive) gravitational

1We leave it to the Reader to further decide whether the piece is a Comedy or a Tragedy, for
this choice largely exceeds the limits of this metaphor.
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force exerted by a point particle “1” on a point particle “2” be of the form

Fgrav = −GmA,1mP,2

r2
12

r2 − r1

r12
, (1.2)

with r12 the mutual distance of the masses, and G = 6.67 · 10−8 cm3 g−1 s−2

a universal coupling constant — Newton’s constant — measuring the strength
of the interaction. The two quantities mA and mP are the active and passive
gravitational masses, respectively — the former refers to the body generating the
gravitational attraction, the latter to the one feeling the force —. In view of the
action-reaction principle (Newton’s third law [94]), they need be proportional
with a universal constant; units are chosen then so that such constant reduces
to one. Hence it suffices to speak about a gravitational mass, mG, which is in
principle different from the inertial one [122, 394].

Gravitational attraction is a conservative force, i.e. the work done by gravity
in moving a particle between two points is independent on the path joining
them; this feature allows to introduce a scalar potential field Ψ (r, t), whose
gradient provides, point by point and for each moment in time, the value of the
gravitational force acting on a test body; in formulæ

Fgrav = −mG∇Ψ (r, t) . (1.3)

By using Gauß’ flux theorem, it is possible to prove that the configurations of the
field Ψ are determined by the distribution of matter — conveniently represented
by a mass density function ρG (r, t) — according to Poisson’s equation

∆Ψ (r, t) = 4πGρG (r, t) , (1.4)

where the Laplacian operator ∆ stands for
∑
i∇i∇i, i = 1, 2, 3. It is worth

pointing out that any variation in the distribution of matter generates a vari-
ation in the gravitational field which propagates instantaneously in space, the
information travelling at infinite speed. Newtonian gravity is thus a theory of
action-at-a-distance, an aspect that Newton himself accepted quite reluctantly.2

Upon substituting Eq. (1.3) in (1.1), and recalling (1.4), Newton’s theory of
gravity can be expressed in terms of the following system of local equations

∆Ψ (r, t) = 4πGρG (r, t)

mI
d2r

dt2
= −mG∇Ψ (r, t)

. (1.5)

This version of Newtonian gravity looks slightly more complicated than the usual
one presented in most textbooks. In particular, we keep track of any reference
to the inertial or gravitational character of the masses/densities, contrary to the
typical cancellation of both mI and mG in the last group of equations above.

The possibility of getting rid of any information about the masses involved is
not something one can draw from theoretical arguments; rather, it is up to the
experiments to show that mI and mG are indeed proportional with a universal
coefficient, so that units can be chosen so to have the proportionality constant
identically equal to one [122, 394].

2See e.g. I. Newton, Letter to Bentley, 25 February 1692/93.
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1.1.2 Relativistic gravity from Nordström to Fokker
Newton’s equations (1.5) are invariant with respect to Galilean transforma-

tions; this translates the idea that any mechanical experiment does not provide a
different outcome when performed within the class of inertial observers (initial
conditions need be transformed accordingly). The same cannot be said when
Lorentz transformations are introduced. The problem arises, then, to find a
suitable relativistic extension of Newtonian gravity [353].

In the complex path leading to this result [386], two contributions stand
out. Nowadays, they are widely overshadowed by the supremacy of General
Relativity; it is instructive, however, to briefly recall them here.

The first step is due to Gunnar Nordström, a relativist based in Helsinki;
around 1913, he built the first self-consistent, “modern” theory of gravity (if
one does not consider some previous preliminary findings by Poincaré, and
the prophetic programme laid down by Clifford). After some failed attempts,
he managed to incorporate Newton’s model into a properly relativistic frame-
work [382, 452, 226].

The starting point is the following action,

SNor =− c3

16πG

ˆ (
ηab∂aΦ ∂bΦ +

+
∑
J

mJG

c2
Φ (xα)

ˆ
δ(4) (xα − zαJ (λ))

√
−ηαβ

dzαJ
dλ

dzβJ
dλ

dλ

d4x . (1.6)

In the formula above, Φ is a gravitational scalar field defined over Minkowski
spacetime, c = 2.99 · 1010 cm s−1 is the invariant value of the speed of light in
vacuum, and zαJ (λ) gives the world-line of the J-th particle particle with rest
mass mJ , referred to a general affine parameter λ. Finally, δ(4) is a Dirac delta
distribution pinpointing the particle’s world-line.

The action (1.6) yields both the field equation for the gravitational degree
of freedom Φ, and those for the world-lines of the particles freely falling in the
gravitational field. The former is extracted upon varying the action with respect
to Φ, whereas the latter emerge when the variation is performed with respect
to the world-line zαJ (λ); the resulting formulæ read, collectively

Φ�Φ = −4πG

c4
T

Φ
dua

dτ
= −c2ηab∂bΦ− ua

dΦ

dτ

, (1.7)

and have to be compared with the system (1.5). The first row contains the field
equation for gravity, and there T := ηabTab is the trace of the stress-energy-
momentum tensor of the matter,3 given by the variation

Tab := − 2√
−η

δSmatter

δηab
, (1.8)

with Smatter given by the second line in the action (1.6), and η := det ηαβ .
The free-fall equation on the second row has been rewritten in terms of the

3Einstein used to call T the von Laue scalar [549, 179].
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proper time τ , defined by dτ2 := −ds2/c2, with ds2 = ηαβdxαdxβ ; finally,
uα := dxα/dτ is the particle’s four-velocity.

Eqs. (1.7) are Lorentz-invariant and, above all, nonlinear, as expected from
a theory of gravity complying with the mass-energy equivalence (the energy
carried by the field Φ ought to gravitate itself, like any other mass).

Nordström’s theory is a praiseworthy proposal; sadly enough, it fails com-
pletely on the experimental side [558]. With reference to a static, spherically
symmetric solution of the field equations (1.7), and to the motion of a test par-
ticle with massm in this environment, the only case in which Nordström’s theory
fares decently is the prediction of the gravitational redshift factor

(
1 +mG/c2r

)
in the classical Pound–Rebka experiment. But, unfortunately, the scalar model
also suggests an unobserved additional contribution to tidal deformations, in
the form of a Coulomb-type interaction

(
m2G2/c4r4

)
diag (−1, 1, 1). On the

other hand, the scalar model does not account at all for the unexplained pe-
riastron advance of the planet Mercury (even worse, it predicts a periastron
lag of −πmG/c2R, with R the radius of the orbit). Likewise, it is incapable
of predicting any bending effect of light rays, in contrast to what was already
believed at the time by a naïve application of the Equivalence Principle. The
expected time delay (Shapiro delay) of signals in a round trip with a source of
gravity in the middle is in slightly better agreement with observation (it gives
a value proportional to 2mG/c3; not enough to pass the test, though), whereas
the results for the radius of a stable circular orbit, and that for the acceleration
of a static test particle do not bring any improvement or correction to the values
expected from Newtonian theory [558].

Nordström’s gravity was quickly dismissed, and as quickly forgotten. Be-
fore leaving the stage, however, it triggered interest on one last aspect — one
matching an old idea fostered by Poincaré. Which leads us to Adriaan Fokker.

Adriaan Fokker was a post-doc working in Prague with Einstein; in 1914, he
proposed a connection between the structure of scalar gravity and the geometry
of curved manifolds [178, 386]. An examination of Eq. (1.7) shows in fact that
the action can be rearranged so as to give, upon varied with respect to the
paths zαJ (λ)’s, the equations of the shortest paths (geodesic lines) on a curved
spacetime. It suffices to introduce the Lorentzian metric tensor gab given by

gab := Φ2 ηab , (1.9)

on a generic, four-dimensional differentiable manifold M with the same topol-
ogy as Minkowski spacetime. Then, the four-velocity Ua gets normalised with
respect to gab, hence defined as Uα := dxα/dτ̃ , with (dτ̃ /dτ)

2
= Φ2. The

Euler–Lagrange derivative of the second line of Eq. (1.6) then yields, for the
freely falling particles,

U b∇bUa = 0 =
dUα

dτ̃
+ ΓαβγU

βUγ , (1.10)

with the coefficients Γαβγ ’s given by,

Γαβγ =
1

Φ

(
δαγ ∂βΦ + δαβ∂γΦ− ηβγ∂αΦ

)
. (1.11)

The introduction of a non-flat geometry allows one to evaluate the rate of
curvature of the spacetime M ≡ (M, gab). The specific form (1.9) of the metric
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then yields, for the scalar curvature R, the expression

R = −6
�Φ

Φ3
, (1.12)

and this last equivalence allows to rewrite the first equation in (1.7) as

R =
24πG

c4
T̃ , (1.13)

where now the stress-energy-momentum tensor is defined as

T̃ab = − 2√
−g

δSmatter

δgab
, (1.14)

with g := det gαβ = Φ2 det ηαβ . Consequently, its trace becomes T̃ = gabT̃ab.
Eq. (1.13) provides a fully geometrical description of gravity. At the same

time, it cancels any information about the underlying presence of the flat metric
ηab.4 The curvature-free character of the non-dynamical background is restored
by introducing an additional field equation: to this office, one uses the Weyl
conformal tensor Cabcd [108, 119], i.e. the traceless part of the Riemann curva-
ture tensor, which vanishes whenever the metric equals Minkowski’s one up to
an overall conformal factor. The complete set of field equations thus reads

R =
24πG

c4
T̃

Cabcd = 0

U b∇bUa = 0

. (1.15)

In this last system, the first two terms are known as the Einstein–Fokker equa-
tions of scalar gravity [386, 147], whereas the third element completes the set
by providing the equations of motion for test particles,

∇bUa = 0 = Φ2 dUa

dτ̃
+ c2gab∂bΦ + 2UaΦ

dΦ

dτ̃
. (1.16)

It is worth stressing that the trajectories of free particles cannot emerge from
the field equations, but must be postulated separately.

1.1.3 General Relativity: gravity, dynamics, and geome-
try

General Relativity is the currently received framework explaining gravita-
tional phenomena on macroscopic scales. It is a classical (i.e. non-quantum)
theory of the gravitational field, whose degrees of freedom are encoded in the
ten components of a rank-2, symmetric, covariant tensor field gab defined on a

4This step is more important than what may be judged on merely formal grounds. As pointed
out in Ref. [226], within a recollection of the genesis of scalar gravity, getting rid of the Minkowski
metric amounts to accepting that the only meaningful notion of distance in space and time is the
one given by clocks and rods — which are connected to gab — rather than that provided by the
background geometric scaffolding. Einstein was aware of the problem, and had coined the two ex-
pressions “coordinate distances” (Koordinatenabstand, from ηab) and “natural distances” (natürliche
Abstände, from gab); Eq. (1.13) decidedly supports the latter concept.
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manifold M . The model reproduces Newton’s scheme in the weak-field, slow-
motion limit; it is non-linear, and relativistic; it emerges from a well-posed vari-
ational principle, and enforces (local) stress-energy-momentum conservation;
passes all the Solar system tests, and accounts for most of the cosmological
phenomena [542, 353, 250, 360, 547, 558].

In a groundbreaking conceptual leap, the theory attacks the monolith of
“absolutism” in physics at the fundamental level, by promoting a fully rela-
tional approach to spacetime [468]. The concept of action-at-a-distance simply
disappears. The gravitational field replaces absolute space(time). The mutual
interaction between acting and back-reacting fields, rather than the arrange-
ment of fields on a fixed scaffolding, becomes the only way in which natural
phenomena can unfold.

The geometric interpretation of the theory still plays a crucial role, in view of
the universal coupling of the gravitational field with matter, but now all these
geometric quantities must exhibit dynamical character. The tensor gab yields
the metric content of a pseudo-Riemannian structure equipping the manifold,
but it evolves in response to the presence of other fields, and reacts upon those
fields, in a constant dialogue.

The theory is formulated in terms of an action, the field equations emerging
upon setting to zero the first variation of the sum of the gravitational and matter
contributions, i.e.

δS = δSGR + δSmatter = 0 . (1.17)

The part describing the gravitational sector is given by [542],5

SGR
[
gab
]

=
c4

16πG

(ˆ
Ω

R
√
−g d4y + 2

˛
∂Ω

K
√
hd3y

)
, (1.18)

where the inverse metric gab has been assumed as the independent field (such
choice is equivalent to that of picking the twice-covariant form gab).

The two terms in Eq. (1.18) are the Einstein–Hilbert term (first piece), and
the Gibbons–Hawking–York boundary term (second piece) [220, 566]. In the
Einstein–Hilbert term, R = gabR c

acb is the scalar curvature, obtained by double
contraction of the Riemann curvature tensor, and g is the metric determinant;
Ω is the coordinate representation of an arbitrary four-dimensional compact
volume U on the manifoldM , with

√
−g d4y standing for the contracted volume

4-form [542]. In the boundary term on the right, which will be often abbreviated
as BGHY, the normal na to the hyper-surface ∂Ω provides the induced metric
hab via the decomposition gab := hab ± nanb, with the sign ambiguity due to
the possible timelike/spacelike character of na; also, h is the determinant of
hab, whereas K is the trace of the extrinsic curvature, K := ∇ana. The overall
multiplying factor c4/16πG is determined by looking at the Newtonian regime
of the model [353].

5This form of the action for gravity is the one needed to guarantee the well-posedness of the
metric variation — i.e., the derivation of the field equations from the first variation of the action with
respect to the inverse metric gab (or, which is the same, the metric gab) —. An alternative route is
to vary the action with respect to both the metric and the connexion (Palatini variation [353, 411]),
considered as separate variables. In this latter case, the presence of the Gibbons–Hawking–York
boundary term becomes unnecessary.
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The matter sector, on the other hand, is provided by the action

Smatter
[
gab, φJ

]
=

1

2

ˆ
Lmatter

(
gab, φJ , ∂

(n)
c φJ , y

α
)√
−g d4y , (1.19)

where φJ denotes any degree of freedom other than the metric, for any counting
index J , and “∂(n)

c ” in front of a field means that the Lagrangian is in general a
function of the field and of all its derivatives. The variation of Eq. (1.19) with
respect to each φJ gives the matter field equations, whereas the variation with
respect to the inverse metric gab gives the stress-energy-momentum tensor Tab,
as in Eq. (1.14) [157, 404, 547],

Tab = − 2√
−g

δSmatter

δgab
. (1.20)

In the expression above, Tab is a symmetric, rank-2, covariant tensor; being
interpreted as the indicator of the (local) content of matter and energy, it is
expected to be covariantly conserved, as it happens in Special Relativity [542,
353]. It is possible to prove that, if the Lagrangian Lmatter does not depend
explicitly on the spacetime event (background independence [227]), and if the
matter field equations δSmatter/δφJ = 0 hold for each index J , then it is

∇aT ab = 0 , (1.21)

hence, the (local) conservation of energy and momentum comes for free in
General Relativity, provided that the theory is formulated in a background-
independent way [424].

The gravitational part of the field equations emerges from the variation of
Eq. (1.18) with respect to the inverse metric [157], and gives

c4

16πG
Gab =

2√
−g

δSGR

δgab
, (1.22)

where Gab is the Einstein tensor, i.e. the combination Rab − Rgab/2 of the
Ricci tensor and scalar curvature (or else, the double-dual of the Riemann ten-
sor [353]). The symmetry properties of the Riemann curvature tensor also en-
forces the conservation equation (second Bianchi identity [353])

∇aGab = 0 . (1.23)

This relation is remarkable, as it allows to conclude that, once the stress-energy-
momentum tensor is assumed to be the source of the gravitational field, its co-
variant conservation emerges independently of the matter field equations. Some
key consequences of this result will come into play in Chapter 3.

Upon assembling the field equations, the result reads

Gab =
8πG

c4
Tab . (1.24)

This is a system of ten second-order, non-linear, hyperbolic partial differential
equations for the gab’s [118], to be compared with Eqs. (1.5) and (1.15). The
differential equations are form-invariant under any arbitrary coordinate transfor-
mations, i.e. they are generally invariant. Given a solution of Eq. (1.24), another
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one physically equivalent to the first can be obtained via arbitrary coordinate
changes. When written explicitly in a particular coordinate chart, the ten field
equations can be split into four constraint equations, and six actual evolution
equations for the degrees of freedom. Among these, four more equations can be
absorbed into apt redefinitions of the coordinates (gauge-fixing [40]); this leaves
two actual degrees of freedom for the gravitational field, traditionally associ-
ated with the massless particle, or field excitation, mediating the gravitational
interaction — the graviton [318].

A final aspect worth a mention is that, differently from what happens in
Newtonian or scalar gravity, in General Relativity the equations of motion for
test particles in a gravitational field (1.10) can be derived from the field equa-
tions, and do not need be postulated separately [274].6 In other words, Eq. (1.24)
already yields the geodesic equations (1.10). This can be considered a significant
improvement of Einstein’s model with respect to the other competing schemes,
as it highlights the intrinsic self-consistency and self-completeness of the theory.

1.1.4 Kurt Gödel versus Mach’s principle
In 1949, a paper by Kurt Gödel [234] forced general relativists to question

severely their theory. Gödel exhibited a new type of cosmological solution of the
strongly homogeneous type, with many impressive and troubling features [332,
250, 537]. His cosmos was compatible with the ubiquitous existence of a perfect
fluid endowed with negative pressure, animated by uniform, constant rotation.
Certainly a quirky spacetime, but not a completely unrealistic one.7

Two main issues, however, were particularly disquieting. First, the causal
structure of Gödel’s universe is completely degenerate: it is possible to trace
closed timelike curves on the manifold, and such curves can be made pass
through each and any point in view of the strong homogeneity: alarming con-
clusions can be drawn from that result.8

Second, Gödel’s universe clashed severely with two formulations of Mach’s
principle [44, 468],9 which stated that (a) there could be no global rotation of
the Universe, and (b) that the local inertial frames were completely determined
by the matter content of the Universe.

The violation of (a) was evident, and Gödel himself underlined it in the
introduction of his paper, eventually providing a very rough estimate for the
rate of constant rotation of his Cosmos, based on data of the average cosmic

6The derivation involves the introduction of another hypothesis, the strengthened dominant en-
ergy condition, which will become of crucial importance in Chapter 3. For a brief mention of the
energy conditions, and for some dedicated references, see the footnotes in the next section.

7Well, at least if compared to the Lanczos–van Stockum machine [307], or to Taub–N.U.T.
universe (aptly defined “a counterexample to almost anything”) [354].

8It seems that the scenario of a globally non-causal spacetime is considered seriously worrying
by general relativists [354, 124]. Indeed, an entire chapter of relativity theory is devoted to find the
conditions preventing its emergence (the so-called energy conditions [537], constraining the physical
plausibility of the tensor Tab on the right side of Eqs. (1.24) so as to avoid closed timelike curves).
Not only that: erasing at once all causally pathological solutions of the field equations for gravity
is even postulated by some, in the form of a principle of causality, and encapsulated into General
Relativity as a supplementary hypothesis [257].

9Ref. [87] lists no less than eleven versions of Mach’s principle. Ref. [468] stops the counter at
eight, underlining the actual absence of “a” single statement, crafted in a precise and unambiguous
sense. Of all these versions, some are even true in General Relativity, some others are false — among
which, those proven invalid by the existence and properties of Gödel’s universe — and some even
depend largely on the details of the setting when dealing with Newton’s bucket experiment.
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matter-energy density; that of (b) added up to many other known violations of
the statement already known at the time — including e.g. Minkowski spacetime,
the Schwarzschild solution, etc. — and showed that, in fact, a single distribution
of matter and energy (a pressure-less fluid/dust, or a perfect fluid endowed
with negative pressure [13]) resulted into two physically different solutions of
Einstein’s field equations, viz. the static model found by Einstein himself, and
Gödel’s solution [13]. This implied that the “distant stars” do not determine
uniquely, as in Mach’s original presentation, the compass of inertia, i.e. the
local inertial reference frame, and on top of that the Universe is free to rotate
globally.

Gödel’s solution was quickly rejected on the basis that its fundamental ref-
erence fluid was devoid of any expansion, whence no gravitational redshift could
be predicted, and was as quickly forgotten (although a corresponding solution,
this time rotating and expanding as requested, was found few years later [513]).
Still, the resulting debate on the foundations of General Relativity opened new
paths, and ultimately ignited the next phase.

Attempts to implement Mach’s ideas directly into the framework of gravi-
tational theories resulted in a proposal initially advanced by Jordan, Fierz, and
Thiery, and later refined by Brans and Dicke [92]. Their solution was to trade
the coupling constant G for a fully dynamical field, acting as a mediator of the
interaction between the local frames and the distant stars, to enforce by hand
Mach’s principle. The age of extended theories of gravity had begun.

1.2 Extended theories of gravity: motivations

Brans’ and Dicke’s model was just the trailblazer of a legion. The landscape
of gravitation paradigms, once a thin line of shore peopled only by few inhabi-
tants, soon became a crowded, intricate jungle.

While the critical examination of standard General Relativity went further
ahead, discovering potentially serious flaws (singularities [542, 250, 123], break-
down at the quantum level, non-renormalisability [77], and so forth), all sorts
of competing proposal revived or flourished, rapidly exhausting the available
stock of physical speculations and formal tools. Every alternative proposal aimed
at overcoming the problems rooted in Einstein’s scheme, predicting new phe-
nomenology, and explaining the ever-increasing amount of observations. Which,
in turn, offered many new riddles to be solved.

The goal of the present section is to offer a concise review of the most promi-
nent physical reasons (experimental and theoretical) to broaden the spectrum
of gravity theories beyond the limits of classical General Relativity.10

1.2.1 Cosmological expansion and large-scale structures

At the time when this work is prepared, the Universe is undergoing a phase
of accelerated expansion [11]. Such behaviour is driven by a repulsive force which
overcomes the gravitational attraction, and whose effects become non-negligible
at the cosmological level, as emerged from many large-scale observations [545].

10Purely formal reasons to look for extended theories of gravity are briefly mentioned in §1.3.3,
and reappraised in §3.4.3.
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The (yet unknown) agent behind this behaviour has been given the evocative
name of dark energy [417, 419].

At the level of an effective, classical description, the essential features of
dark energy can be accounted for by adding a finely-tuned, all-permeating fluid
component which interacts only with the gravitational field; its equation of
state need be given by p = −ρΛc

2 [418]. This model is compatible with a minor
modification of the Einstein–Hilbert Lagrangian, namely

SEHΛ =
c4

16πG

ˆ
(R− 2Λ)

√
−g d4y + BGHY , (1.25)

with BGHY the Gibbons–Hawking–York boundary term, and Λ a constant term
— the cosmological constant, of order 10−54 m−2 — whose value is constrained
by the observations. The field equations (1.24) are thus upgraded as follows

Gab − Λgab =
8πG

c4
Tab . (1.26)

The above, seemingly “harmless” addition of the cosmological constant be-
comes a source of serious issues when put in perspective. If the dark energy
budget is expected to have any sort of connection with micro-physics — and
indeed it is [109, 407] —, than its value can in principle be extrapolated by quan-
tum arguments. Sadly enough, when the value of the cosmological constant is
calculated in this way, the predicted figure ΛQ turns out to be overwhelmingly
greater than the measured one [329]. The discrepancy amounts to an embar-
rassing 120÷122 orders of magnitude, which strongly depletes any credibility of
a “fine-tuning argument”. As a consequence, many have suggested deeper mod-
ifications of General Relativity to avoid the troubling presence of Λ, or to make
it meaningful in a quantum context [47, 287, 243, 315, 125, 381, 500, 29].11

A different class of problems is related to smaller-scale physical systems, and
particularly to galactic and cluster dynamics. In such structures, the dynamical
behaviour is usually modelled and predicted using suitably corrected versions
of Newton’s theory (the latter is assessed as a viable approximation for most
practical purposes). Still, a growing wealth of observations, e.g. those of the
rotation curves of some galaxies, seem to support the evidence that the only
way to fit the current data in terms of Newtonian models is to add a significant
amount of “invisible” matter.

This unobservable dark matter building up the potential wells where ordi-
nary luminous matters sits in (originating proto-clusters and galactic seeds), has
to interact very weakly with the already observed particles, providing essentially
a contribution via its gravitational pull [398, 567, 324].

Once again, at the mere level of an effective description, there are power-
ful tools within General Relativity to account for the presence of dark matter
and its effects, as is typically done in computer-aided simulations of large-scale
structures formation. In the simplest scenario, one adds another contribution to
Tab in Eq. (1.24), and then tunes the equation of state for dark matter to match
the data. The clash arises when one finds out that, to fit the wealth of obser-
vations, complex feedback mechanisms between visible and dark matter must
be plugged in by hand [482, 69]. Such exchanges, however, would imply much

11There are, to be fair, also voices less concerned on the topic; see for instance the plea in Ref. [75].
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stronger interactions between the luminous and dark sector than expected, to
the point that the dark matter particles would become detectable in Earth-based
experiments [68, 286, 31, 70].

The search for dark matter candidates is a branch of (experimental and
theoretical) particle physics of interest per se. So far, none of the proposed
candidates has emerged from direct observations [65, 371]; this, together with the
difficulty to fit the available data with the simplest model possible, has triggered
speculations in other directions, more oriented towards modifications of the
gravitational scheme. The goal is to get rid of the “dark sector” and interpret all
the observations strictly in terms of the mainstream model of particle physics
— which is excellently tested and constrained — and of possible modifications
of the geometric part of Einstein’s theory.

In some of the proposed solutions, the changes to General Relativity propa-
gate up to the weak-field, slow-motion regime, thus inducing modifications (at
large scales) of the Newtonian model as well [63, 347, 345, 348, 52]. The familiar
inverse-square law governing planetary motions gains e.g. Yukawa-like correc-
tions, which could account for the observed behaviour of galaxies and clusters.

1.2.2 Gravity vs the micro-world: dealing with quanta
Our current knowledge of physics up to the Fermi scale can be decidedly

considered robust. The picture of the Standard Model of particle physics has
been recently enriched [1, 2] by the discovery of a new entity fully compatible
with the boson predicted by Brout, Englert and Higgs [184, 258], i.e. the quan-
tised excitation of the field giving mass to the other fundamental particles via a
symmetry breaking mechanism [424]. The dominant scheme stably receives new
confirmations, both formal and experimental, while the competing models get
pushed further and further out of the observable energy window.

With such a stable and successful theory of the micro-world, the next goal
is of course to incorporate gravity in the picture. This means that not only
quantum physics should be formulated consistently in a curved background —
accounting for the interplay between ordinary fields and a non-flat environment
— but our knowledge of gravity itself should find its way into the unified land-
scape of micro-physics, unveiling its hidden, high-energy quantum structure.
Sadly enough, these are precisely the points where “Hell breaks loose”.

Indeed, every time one tries to accommodate some features of quantum me-
chanical origin into the traditional framework of gravitation, Einstein’s scheme
needs radical changes, even if to provide just an effective description. General
Relativity, while versatile enough to account for any sort of bizarre spacetime
configurations and unlikely physical phenomena, offers a strenuous resistance to
new inputs from the micro-world.

The simplest argument in this sense can be stated as follows [77, 103]: to
begin with, one can model first the underlying quantum structure of matter
encoded into Tab, and see how its presence changes the aspect of Einstein’s
equations (1.24). Then, one trades the classical stress-energy-momentum tensor
Tab for an average

〈
T̂ab

〉
of a corresponding quantum operator T̂ab acting on

quantum states |ζ〉. Eqs. (1.24) then read [77]

Gab =
8πG

c4

〈
T̂ab

〉
. (1.27)
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The most relevant feature of this semiclassical, effective description is that,
because of the wide range of interactions of the quantum fields (self-interactions,
exchanges between fields, interactions with gravity), non-vanishing fluctuations
of
〈
T̂ab

〉
exist even when classical matter sources are absent. Even worse, such

fluctuations cannot emerge from the variation of any finite action. To get rid of
all the infinities in

〈
T̂ab

〉
, one has in fact to introduce infinitely many counter-

terms in the Lagrangian for gravity [546, 489].
One can then adopt a perturbative scheme, and look for truncated, yet con-

vergent, versions of semiclassical General Relativity [77]. In this case, the loop
expansion of the matter and gravitational sector is done in terms of the pa-
rameter ~, i.e. Planck’s constant h over 2π, ~ = 6.58 · 10−16 eV s. At the linear
level, the divergencies can be removed by introducing the two running coupling
constants Geff and Λeff, and by rewriting the corrections to

〈
T̂ab

〉
as

〈
T̂ab

〉
=

3∑
I=1

kIH
I
ab , (1.28)

where the three tensor correction to
〈
T̂ab

〉
are of the general type:

HI
ab = HI

ab

(
gab, R,Rab, R

d
abc ,�R,∇a∇bR,∇a∇bRcd

)
. (1.29)

The semiclassical approach to gravity reveals, however, other layers of chal-
lenges: the form of the terms in (1.29), and the presence there of higher deriva-
tive corrections, can provide non-unitary evolution of the fields [512], especially
in the context of a blind, naïve application of the Feynmann protocol. While
some of these issues can be tackled by suitable methods — e.g. the introduction
of Faddeev–Popov ghost particles [187] — the solutions are largely unsatisfac-
tory, for they cannot erase all the singularities and infinities emerging at any
new stage.

On top of that: in four spacetime dimensions, General Relativity (already
without the intervention of the matter sector) is a non-renormalisable the-
ory [546, 489]. Broadly speaking, this means that a perturbative approach at-
tempting to expand the action (1.18) in terms of the parameter c4/8πG gen-
erates uncompensated divergencies at any step of the iteration — i.e. for any
power of the expansion parameter the integration over momenta becomes diver-
gent —. Curing such divergencies demands the introduction of infinitely many
counter-terms, which clashes against the premise is to search for a convergent,
UV-complete model [169].

All the fundamental issues of General Relativity and frameworks for gravity
alike are indeed expected to be solved by a full-fledged theory of quantum gravity.
This, however, elevates the problem onto a completely different level.

In the annotated reprint of Bryce deWitt’s 1978 Cargèse Lectures [151],
G. Esposito states that “so far [November 2007, Ed.], no less than 16 major ap-
proaches to quantum gravity have been proposed in the literature”. The attached
list of references ranges from asymptotic safety to twistors, with contributions
from string theory, loops/spin-foam, causal dynamical triangulations, canoni-
cal and covariant formalism, and so forth; and it could be easily enlarged by
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adding the most recent achievements in causal sets theory [165, 62], AdS/CFT
correspondence [448], group field theory [399, 400, 221].

Since this topic largely exceeds the scope of the thesis, and of this Chapter
in particular, we directly address the Reader towards the main references (also,
to Chapter 4, for a bird’s eye view of few quantum-gravity proposals). That
said, we raise the curtain on the landscape of (classical) gravity theories.

1.3 A glance at the landscape of gravity theo-
ries

Time to open Pandora’s box.12 and dive into the catalogue.
A word of caution here: any classification is, by definition, inevitably incom-

plete, provisional, short-sighted, and arbitrary. The catalogue we are about to
present makes no exception. Many items are missing for sure, and a thorough
search would likely dig out an immense quantity of variations and additions.
Hence, we devote one paragraph to explain the sense of this catalogue.

The results presented in this thesis aim at covering a wide range of theories
without having to deal with too many details, as an extension of the universality
of free fall should be expected to do. This requires, first and foremost, being
aware of what the method can be applied to, what could potentially deal with
(under suitable reformulation), and what will never be able to address. The
catalogue in this section is built with the purpose of highlighting these three
fundamental aspects, and to help the Reader orient Himself in the labyrinth of
gravity theories. In any case, it ought not to be intended as a comprehensive
review.

Before moving on, finally, a due remark on what this catalogue does not
contain. We have left aside almost all quantum-gravity paradigms, as the focus
for the moment is on macroscopic scales, where no micro-structure of spacetime
can play a role; still, many effective descriptions in terms of higher-curvature
corrections, or in higher-dimensional spacetimes (both emerging from funda-
mental approaches, in some cases), are treated as independent, and included
in the catalogue when necessary. Also, all non-geometrical theories of gravity
and standpoints alike have been excluded, for the geometrical interpretation of
gravitational phenomena is a cornerstone of this work.

That said, a tentative classification of the main lines of research in extended
theories of gravity may be sketched as follows:

∗ Theories including additional (dynamical, or non-dynamical) gravitational
degrees of freedom besides the metric — the latter remains the only ge-
ometric degree of freedom in the scheme —. Examples of this category
include scalar-tensor theories, vector-tensor theories, some bimetric mod-
els, scalar and stratified scalar schemes, and any admissible combination
of these basic ingredients.

∗ Theories presenting higher curvature corrections to the action. These are
somewhat “natural” extensions of General Relativity, often emerging from

12The outcome of the operation will be better than the one recorded in the antique myth. Well,
we hope so. The Reader is free to place a bet on which theory will remain at the bottom of this
new box of Pandora’s when all the other ones will have fled out.
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semiclassical quantum-gravitational standpoints; they, however, generally
yield field equations with derivatives of order higher than two. Besides,
they are usually presented as if the only gravitational degree of freedom
be the metric, but from recent results we know that they indeed contain
other dynamical variables related to gravity, which are simply concealed
by the particular way their variational principle is formulated.

∗ Schemes requiring some modification/enrichment of the geometric struc-
ture, as e.g. torsion, non-metricity, bi-metricity, skew-symmetry, inaffinity.
A vast and varied class, in which the addition of other gravitational de-
grees of freedom not only modifies the action and the field equations, but
rather demands a broadening of the geometric notions, to account for the
richer phenomenology in the play.

∗ Gravitational models in higher-dimensional environments, however formu-
lated. Another wide-range category, where it is possible to place not only
many modifications resulting from unification attempts and/or simultane-
ous description of gravity and other fields (e.g. the electromagnetic one),
but also all the counterparts of General Relativity formulated in spacetime
dimensions higher than four.

With this coarse-grained taxonomy in mind, it is now possible to elaborate a
bit on each subset, presenting a few specimen per category, and outlining their
main properties.

1.3.1 Other gravitational degrees of freedom

The simplest choice one can make is to add a scalar field to standard Gen-
eral Relativity. This is the starting point of all the so-called scalar-tensor theo-
ries [191, 103, 204], whose self-explaining name immediately evokes the proce-
dure of the extension. A typical scalar-tensor theory is formulated in terms of
the following action

SST =
c4

16π

ˆ [
φR− ω (φ)

φ
∂αφ∂

αφ− V (φ)

]√
−g d4y + BST , (1.30)

with V, ω general functions of the scalar field. The matter action remains un-
changed with respect to the general relativistic case. A comparison of this last
formula with Eq. (1.18) shows that, in the scalar-tensor proposal, the gravita-
tional constant G is promoted to a field, with full dynamical character. Scalar-
tensor theories are invoked to explain various effects, ranging from primordial
inflation to dark matter and dark energy, and are considered the necessary
classical-limit counterpart of string-theoretical models [473, 531], since in the
latter case the presence of an additional scalar degree of freedom — the dila-
ton [115, 362] — has to be incorporated into the framework together with the
graviton.

The first specimen in the scalar-tensor theories sub-class is the already men-
tioned Brans–Dicke theory [92, 64, 156, 189]. It is a scalar-tensor theory with
vanishing scalar potential and constant dimensionless parameter ω, whose nu-
merical value must be determined so as to fit observations [316, 38, 7]. The in-
troduction of a scalar degree of freedom has interesting physical consequences,
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influencing for instance the motion of extended masses and the behaviour of
self-gravitating systems [455, 487, 485, 303, 117].

Notice that the term φR in Eq. (1.30) is an archetypical example of non-
minimal coupling between (tensorial) gravity and the scalar field. If one abstains
for a moment from the interpretation of φ as a gravitational degree of freedom,
and considers it a matter field coupled in an unusual way to standard Einsten’s
theory, then the entire vault of non-minimally coupled theories [77, 191, 103]
opens up. Motivations to consider non-minimal couplings include: effective de-
scription of first-loop corrections in semiclassical quantum gravity and quantum
field theories on curved spacetimes [77, 200, 374]; approximations of string theo-
retical scenarios and grand unification attempts; fixed points in renormalisation
group approach [416]; justification of inflationary cosmology [191]; classicalisa-
tion of the universe at early stages [103]. Of course, the φR term is just one of
the many possible choices, the most common being polynomial structures such
as

φ2R ,
(
1 + ξφ2 + ζφ4

)
R , e−αφR . . . (1.31)

A more advanced generalisation of the scalar-tensor scheme is then given by
the Horndeski theory [264, 302, 74]. This is the most general four-dimensional
scalar-tensor field theory compatible with the requirement of providing second-
order field equations only, rather than general higher-derivative terms. To write
down its specific action, we define first the shorthand notations ξ := ∂aφ∂aφ

and δa1...anb1...bn
:= n!δ

[a1
b1
δa2b2 . . . δ

an]
bn

, and then compose the following combination

SHD =
c4

16πG

ˆ {
δabcdef

[
k1∇d∇aR ef

bc − 4

3

∂k1

∂ξ
∇d∇aφ∇e∇bφ∇f∇cφ+

+k3∇aφ∇dφR ef
bc − ∂k3

∂ξ
∇aφ∇dφ∇e∇bφ∇f∇cφ

]
+

+δabcd

[
(F + 2W )R cd

ab − 4
∂F

∂ξ
∇c∇aφ∇d∇bφ

+2k8∇aφ∇cφ∇d∇bφ
]
− 3

[
2
∂ (F + 2W )

∂φ
+

+k8ξ

]
+ k9

}√
−g d4x+ BHD , (1.32)

in which k1, k3, k8, k9 are four general functions of both ξ and φ, whereas
F = F (φ, ξ) is an object constrained by the differential equation ∂F/∂ξ =
∂k1/∂φ − k3 − 2ξ∂k3/∂ξ, and finally W depends on φ alone, hence it can be
reabsorbed into a redefinition of F . Horndeski’s theory has been advanced to
solve the problems of classical instabilities in General Relativity, and to get rid of
the ghost fields when trying to accommodate quantum effects in a semiclassical
treatment [112]; the theory also reproduces trivially all the other scalar-tensor
models with second-order field equations — it suffices to fine-tune the func-
tions and constants — and has a straightforward connection with the Galileon
models [144].

Finally, the scalar-tensor paradigm can be further extended to embrace the
case when a single scalar field is not enough to account for the effects one
wants to explain; this opens the doors to the more general scheme of the multi-
scalar tensor theories [135, 541]. In such context, either one builds a model
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containing more than one scalar from scratch, e.g. trying to model at once the
early inflationary phase, and the late-time acceleration of the Universe, or one
falls back into a multi-scalar-tensor theory by suitably massaging the action and
field equation of a higher-curvature model [475, 240, 48].

The scalar field added to the metric is just one possible choice to enrich
the set of gravitational degrees of freedom, and the lowest step of a long lad-
der. Right above it lies the vector term, which gives rise to the sub-class of
the vector-tensor theories [45, 59, 58, 57]. Let then ua be the new object join-
ing the metric in the gravitational sector; typically, one picks a unit timelike
vector field ua (a spacelike vector would generate unexpected and unobserved
spatial anisotropies, much more difficult to justify on observational grounds),
which also becomes immediately a “preferred direction” in spacetime to align
the fundamental reference fluid with [208, 571].

The immediate outcome of this choice is the so-called Einstein–Æther the-
ory [181, 282, 281, 520], in which the “Æther” part of the name comes from the
role of the vector field, which provides a natural “drift” direction. The action
reads, in this case,

SEÆ =
c4

16πG

ˆ (
R+ P ab

mn ∇aum∇bun + λ
(
gabu

aub + 1
))√
−g d4y + BEÆ ,

(1.33)
where λ is a Lagrange multiplier, and the tensor P ab

mn is defined by the relation

Pabmn := C1gabgmn + C2gamgbn + C3gangbm + C4uaubgmn , (1.34)

in terms of four coupling constants C1, . . . , C4. From its very construction, this
theory violates local Lorentz symmetry, for it provides a preferred time direction:
this is encoded in the last term in the sum, which constrains the dynamics of
the vector field by demanding it to be everywhere normalised to −c2, and time-
like. Violations of Lorentz-invariance are severely constrained at particle-physics
level [341, 317], whereas less tight limits exist on effects related to strong-field
regimes and cosmological scales (e.g. strong self-gravity [202, 199, 180]); also,
the model advances a running role for the coupling constant G, and a long list
of physical phenomena contributes to narrow the window for the values of the
four constants CI ’s.

As for another item in this subset, we mention the so-called Hořava–Lifshitz
gravity theory [263, 262, 501]. Such model is an attempt to restore a power-
counting renormalisable theory, starting from earlier results in this direction
achieved by Lifshitz for scalar degrees of freedom. Hořava’s proposal is formu-
lated on a given spatial foliation of the spacetime manifold — obtained via an
Arnowitt–Deser–Misner decomposition of the metric gab — and the resulting
action is given by (i, j = 1, 2, 3)

SHL =
c~
2G

ˆ
dtd3y

√
−g̃N

(
KijKij − λK2 − V [g̃ij , N ]

)
+ BHL , (1.35)

where N is the lapse function, Kij is the spatial extrinsic curvature, g̃ij the
spatial metric on the leaves, λ a dimensionless running coupling constant, and
V the potential. Specifically, the renormalisability is obtained if V contains
terms with at least sixth order spatial derivatives (but does not include any
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time derivative, nor depends on the shift function Ni). The particular form of
V yields different versions of Hořava–Lifshitz gravity, governing the types of
spatial curvature invariants admissible in the action [501, 535]. The resulting
model violates Lorentz symmetry, with propagations also at low energies, and
in view of such property it has been discovered to contain, as an infrared limit of
its projectable version, the Einsten-Æther theory [501, 280] — in this last case,
the vector degree of freedom needs be hypersurface-orthogonal to the leaves of
the foliation.

The juxtaposition of the three types of gravitational degrees of freedom
encountered so far (the scalar field, the unit timelike “æther” vector field, and
the usual metric tensor field), makes it is possible to build even further actions
for gravity theories. An interesting outcome of such protocol is the tensor-vector-
scalar theory [54, 53, 51], also known as “TeVeS”.13 Let then φ and ua be the
usual scalar and vector field defined above. On top of that, one introduces: the
projection tensor hab := gab + uaub, i.e. the metric on the leaves everywhere
perpendicular to the direction of the æther field, ua; the skew-symmetric tensor
Bab := ∂aub − ∂bua, of the electromagnetic type; a second scalar field, σ; a
dimensionless function f ; two dimensionless constants k,K, plus one constant `
with dimensions [l]

1. Then, by putting all together, the action of TeVeS is given
by [54]

STeVeS =

ˆ {
c4

16πG
R+

σ2

2
hab∂aφ∂bφ+

Gσ4

4c4`2
f
(
kGσ2

)
+

+
c4K

32πG

(
BabBab + 2

λ

K

(
gabu

aub + 1
))}√

−g d4y + BTeVeS . (1.36)

TeVeS theory has been considered because it reproduces, in the weak-field limit,
the modifications of Newtonian force needed to fit the observed behaviour of
galaxies, clusters and other large-scale objects, without any addition of dark
components. Still, the model contains instabilities [481], and it is not certain
whether it can account for other observed phenomena, such as gravitational
lensing [195]. An aspect of this theory worth mentioning is that its scalar field σ
is constrained by the field equations only at the kinematical level, yielding the
algebraic relation kGσ2 = F

(
k`2hab∂aφ∂bφ

)
, with F an arbitrary function.

Theories with non-dynamical structures

The presence of physical fields devoid of any dynamical nature at the level
of the action seems quite hard to justify — especially after the lesson learnt
from General Relativity about the essentially dynamical character of Nature
— but is nonetheless recorded in many theoretical approaches (quantum field
theories on Minkowski spacetime, to name the champion in this context), and
even in specific aspects of some otherwise fully dynamical theories (in General
Relativity, topology, dimension and signature are not dynamical). The family of
extended theories of gravity is packed with models presenting non-dynamical,
background scaffoldings, whose ubiquitous coupling with matter and gravity
provides an example of prior geometry [558].

13A different standpoint is offered by the scalar-vector-tensor theory, where the same building
blocks are rearranged in a different configuration; see e.g. [356].

20



Nordström’s scalar theory of gravity (§1.1.2) is a typical example of this
trend: a dynamical quantity — a scalar field, in this case — lives on Minkowski
spacetime: the latter is the fixed landscape in which phenomena occur and
interactions propagate (along and inside the light-cones). In the same direction
goes the proposal by Minkowski himself [349] of a special relativistic theory of
gravity grounded on a four-vectorial degree of freedom; such model was proven
incorrect by Max Abraham [386], who showed that planetary orbits would have
been unstable in the vector framework.14

A variation on this theme is the stratified (multi-) scalar theory, in all its
incarnations [378, 543]. In this case, the single scalar degree of freedom encoding
gravitation is traded for at least a couple of similar functions, such that the
general metric reads, in pseudo-Cartesian coordinates (x, y, z, t)

gab = f1 (daxdbx+ day dby + daz dbz)− f2 datdbt , (1.37)

with f1, f2 arbitrary functions of the scalar field φ, and dax, day,daz the co-
ordinate 1-forms [332]. As a consequence, the spacetime is not conformally flat
anymore — although the spatial slices are still conformally flat — and the local
Lorentz-invariance is lost.

Nothing prevents one from pushing the idea further, and have for instance a
bimetric theory of gravity [277, 518, 461, 346, 347, 345]. Then, in addition to gab
(whose dynamics is provided by the Einstein equations), the model requires the
introduction of a second, symmetric tensor ζab, with (non-) dynamical charac-
ter.15 The presence of two metrics makes it possible to decouple the propagation
of gravitational interaction, encoded in one element of the pair, from that of
all the other interactions. The consequence is that the equation of motion for
test particles (geodesic equation) gets modified in the bimetric scheme; similar
changes apply to the propagation of light signals [518, 219]. On the bright side,
this proposal provides a variational formulation of the stress-energy-momentum
tensor for the gravitational field [461].

Finally, a mention tomassive gravity [533, 568, 107], a classical field theory of
a massive spin-2 field living on Minkowski spacetime. Such proposal sees gravity
as the outcome of the interaction between the spin-2 graviton and ordinary mat-
ter, according the the coupling scheme habTab, where hab encodes the degrees
of freedom of the graviton in the Pauli–Fierz action [196]. The adjective “mas-
sive” refers to the presence, in the Lagrangian density, of the self-interacting
term habhab, which yields the mass of the graviton. One issue with massive
gravity theory is its prediction of light bending, which accounts for only three
quarters of the observed value. To interpret this mismatch, one can notice that
the massive term (absent in General Relativity, where the graviton is massless)
introduces an additional scalar degree of freedom, which interacts with matter
but is transparent to electromagnetic radiation.

1.3.2 Higher curvatures and higher derivatives
This other subset of the family encompasses a wide, yet seemingly more

homogeneous, range of theories. The common feature is a modification of the
14For a recent reappraisal of the model see also [515].
15When the second metric has full dynamical character, it is possible to include the model into the

sub-class of theories with extended geometrical structures (§1.3.3), for doubling the metric content
allows to double the affine structure as well, and this brings the model into that other sub-group.
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Einstein–Hilbert action, and the typical outcome is a system of field equations
of order higher than two in the derivatives — few exceptions are known, and
duly reported in §1.3.4.

Higher-curvature theories emerge quite frequently in the family of extended
theories of gravity; they are often considered as candidates for effective de-
scriptions of quantum corrections to General Relativity (§1.2.2), or as limits of
quantum gravity models accounting for the infinite sum of self-interaction of the
gravitons. Also, they sometimes succeed in explaining observed phenomena at
large and cosmological scales without resorting to the dark sector of matter and
energy, and are hence regarded as possible alternative solutions to the problem
of the missing mass/energy in the Universe.

The entire sub-class can be compressed into a single formula, which reads

SHC =
c4

16πG

ˆ
f
[
R d
abc , gab

] √
−g d4y + BHC , (1.38)

where f
[
R d
abc , gab

]
is a shorthand notation meaning an analytic function of

some scalar invariant built out of the Riemann tensor — or its various contrac-
tions/combinations — and the metric tensor. Finally, BHC denotes apt boundary
terms (if any exist), depending on the choice of the bulk action.

By inspecting Eq. (1.38), an immediate consequence one might draw is that,
contrary to the cases treated in the previous section, the theories considered
here concern the dynamics of the metric field alone, and no other degree of
freedom is involved. Such conclusion, although intuitive, is actually wrong: the
large majority of higher-curvature theories are in fact theories with hidden,
non-metric degrees of freedom in disguise [475, 240, 48].

The simplest case to be discussed is the so-called f(R) gravity theory [101,
140, 505, 126, 67, 259], which requires the introduction, in Eq. (1.38), of a
generic function of the scalar curvature R. The model yields fourth-order field
equations, which admit a scalar mode propagating together with the spin-2
graviton. The f(R) theory is often invoked when dealing with large-scale physics
and cosmological problems, as an alternative to the introduction of the dark
sector [106, 373, 499, 380, 510, 440]. In particular, the fact that the model
admits Friedmann–Lemaître–Robertson–Walker solutions makes it easy to fine-
tune the function f to account for observations and remove singularities —
although this cancellation does not work at any level [269]. Also, there is the
possibility to reformulate the scheme such that Newton’s constant becomes a
running coupling constant, curing the issues with Mach’s principle.

These last properties of f(R) theory ought to ring a bell in the Reader’s
mind, for they are precisely the features typical of a scalar-tensor theory; a
careful examination of this higher-curvature theory, indeed, shows that the only
meaningful formulation of f(R) theory is in terms of a Brans–Dicke scalar-
tensor theory with ω = −3/2, as proven in the context of Palatini variation (see
also [171]).

A second proposal, one slightly expanding the allowed complexity, is called
f(Rab) gravity theory [89, 314, 17, 506]: it involves the introduction of a general
function of the Ricci tensor instead of the curvature scalar. At the lowest level,
one finds an action built out of Ricci squared, which turns out to be that of a
metric theory with an additional vector degree of freedom [89].
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Once again from algebraic manipulations, it is possible to recognise that the
scalar curvature R in the Einstein–Hilbert action (1.18) can be rewritten in the
following form [404, 402, 366]

R = RabcdQabcd , (1.39)

where the tensor Qabcd, equipped with the same symmetries as the Riemann
curvature tensor, and with identically vanishing covariant divergence, is the
combination

Qabcd =
1

2
(gacgbd − gadgbc) . (1.40)

A natural extension of the previous schemes is then given by the f
(
R d
abc

)
gravity

theory, where the linear combination in the curvature tensor is traded for a more
general smooth function. The most basic version yields polynomials made up
from increasing powers of the Kretschmann scalar RabcdRabcd, as in the cases of
f(R) and f(Rab), but of course many more possibilities are permitted.

A nice example in this last sub-class is the Weyl conformal gravity the-
ory [146, 555, 91, 336], whose action is given by the quadratic, scalar combina-
tion of Weyl tensors

SCW =
c4

16πG

ˆ
WabcdW

abcd√−g d4y + BCW . (1.41)

This theory has the relevant advantage of being renormalisable [410, 423, 335];
on the other hand, however, its field equations (Bach equations [237])

∇a∇bW acbd − 1

2
W acbdRab = 0 , (1.42)

are of fourth order in the derivatives, which preludes to non-unitary evolution.
Weyl gravity admits equivalent reformulations in terms of a metric tensor and
a vector degree of freedom, with the latter expressed as the gradient of a scalar
field [554].

Going further ahead, if all three objects R d
abc , Rab, R are present simulta-

neously and quadratically, the outcome to be found in place of f
[
R d
abc , gab

]
is

αRabcdRabcd + βRabRab + γR2 , (1.43)

where α, β, γ are dimensionless parameters. This combination, as anticipated,
will give rise in general to fourth-order field equations.

There is another reason why the expression (1.43) above deserves a mention:
it is possible to show that there exists only one triple of (α, β, γ) such that the
resulting field equations are precisely of order two in the derivatives, hence much
closer to the General Relativistic ones. This case is the so-called Gauß–Bonnet
gravity theory, given by the action [133, 150, 526]

SGB =
αc4

32πG

ˆ (
RabcdRabcd − 4RabRab +R2

) √
−g d4y + BGB . (1.44)

Gauß–Bonnet gravity is a very peculiar complement to General Relativity at
the level of the action and of the field equations; however, in four spacetime
dimensions, δSGB vanishes identically because the integrand is nothing but a
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topological invariant — the Euler characteristic [370] — whose variation is equal
to zero in view of the Gauß–Bonnet theorem [477].

The Gauß–Bonnet term also resurfaces in semiclassical contexts, when one
attempts to renormalise gravity at first order in the loop expansion. Indeed,
a term proportional to the integrand in (1.44) crops up as a correction to the
trace of the averaged quantum operator

〈
T̂ab

〉
and gives non-zero contributions

e.g. in a Friedmann–Lemaître–Robertson–Walker universe. This is part of the
so-called “trace anomaly” problem [364, 363].

Finally, we notice that, if Gauß–Bonnet gravity is trivial in ordinary four-
dimensional spacetimes, the same cannot be said of the further extension given
by the f(LGB) gravity theory [141, 563, 113], where once again one considers a
generic function of the Gauß–Bonnet invariant.

1.3.3 Novel or enriched geometric structures

The common feature of this vast and crowded sub-class of theories is that
not only the gravitational degrees of freedom are encoded in additional objects
of varying valence besides the metric (in this sense, there is a partial overlap
with the content of §1.3.2), but also the new variables are arranged in such a way
that they can be ascribed to the onset of richer geometrical structures defined
on the base manifolds.

Getting back to Einstein’s General Relativity for a moment, the first choice
one can make in this sense is to decouple the affine and the metric content of
gravity, for in principle they can be interpreted as independent structures [191,
103, 212].16 The Einstein–Hilbert action for General Relativity becomes then
a functional of both the tensor gab and the connexion coefficients ∆a

bc, and a
rigorous formulation of the variational principle demands that each object be
treated separately. This way of obtaining the full set of field equations is known
as the Palatini variation [411].

At this point, two possibilities arise, related to the dependence of the matter-
sector Lagrangian on the variables gab, ∆a

bc. If Smatter depends only on gab, and
hence the covariant derivatives in Smatter are built out of the metric alone, then
one selects the Einstein–Palatini metric-affine theories of gravity [242, 252, 254,
322, 253, 540, 426, 441, 337, 534, 105, 104]. If, on the other hand, the affine and
metric structures are treated separately also in the matter sector, and one allows
for dependencies such as Smatter = Smatter

[
gab, ∆

a
bc, ψ

I
]
, then the sub-class is

that of the affine theories of gravity [296, 197, 291, 121, 480, 339, 88, 308].
It is fair to ask whether the Palatini variation and the purely metric variation

coincide for General Relativity and similar metric theories; the answer is positive
in the case of Einstein’s theory, and in the special group of Lanczos–Lovelock
theories (see below), whereas is negative in all the other cases [186, 90]. This
misalignment, together with the well-posedness of the variational formulation,
can be used as a clue that additional degrees of freedom are hidden within a
seemingly purely metric formulation of the action for the gravity theory (see
§3.4.3).

16This is, in essence, the most compelling formal reason to go beyond General Relativity. While
such motivation is rather weak in the case of pure Einstein’s model — the affine structure emerges
uniquely from the metric one —, the same conclusion does not hold for other theories. The force of
the formal motivations comes then entirely from an a posteriori argument.
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Metric-affine and affine theories are complemented by the further class of
Eddington–Einstein–Schrödinger purely affine theories of gravity [479, 173, 434,
439, 294]. In this last group, the metric is completely removed from the action,
and all one is left with is a general, non-symmetrical connexion [111, 437, 438].
The coefficients ∆a

bc, in suitable combinations, replace identically the metric
tensor, and even the determinant

√
−g is traded for a scalar combination of the

connexion quantities [434].
As a further example of a metric-affine theory built out of a general connex-

ion, we can cite the Eddington-inspired Born–Infeld theory [412, 37, 295]. The
model emerges from an old proposal (by Born and Infeld [78]) for non-linear
electrodynamics, later applied to explain the behaviour of galaxies and clus-
ters [472, 565]. Indeed, in the Newtonian limit, the theory yields the modified
Poisson equation

∆φ = 4πGρ+
κ

4
∆ρ . (1.45)

This extension of the weak-field limit equation can be accounted for by picking
a gravitational action of the form

SEiBI =
c4

16πG

ˆ (√∣∣gab + κR(ab)

∣∣− λ√−g)d4y + BEiBI , (1.46)

where R(ab) is the symmetric part of the Ricci tensor constructed out of the
general connexion, and λ is related to the standard cosmological constant Λ by
the relation Λ = (λ− 1) /κ. The matter action, on the other hand, depends on
the metric gab and on the matter fields only [412].

The general affine connexion encountered in the previous items can be used
to construct an independent covariant derivative operator “Da”, with connexion
coefficients given by the ∆a

bc’s; the latter, in turn, can always be decomposed
into the sum of a symmetric and a skew-symmetric part, as in

∆a
bc = ∆a

(bc) +∆a
[bc] . (1.47)

Recalling now that in general Dagbc 6= 0, as opposite to the metric-compatible
Levi-Civita condition ∇agbc = 0, one can further massage Eq. (1.47) to get the
final structure [528, 477]

∆abc = Γa(bc) +
1

2

(
Qa(bc) −Qb(ac) −Qc(ab)

)
+

1

2

(
Ta[bc] + Tbac + Tcab

)
≡ Γa(bc) +Nabc + Cabc , (1.48)

where Γa(bc) are the usual Levi-Civita connexion coefficients, extracted from
gab, whereas Qa(bc) := Dagbc is the non-metricity tensor, T a[bc] := 2∆a

[bc] is the
torsion tensor, the latter composing the contortion tensor, Cabc [528, 343, 370,
477]. The independent affine connexion can be also substituted in the definition
of the Riemann curvature tensor, giving rise once again to an independent object
R̃ d
abc .
Torsion and non-metricity are the major players in this extension of the

geometric structure. The role of non-metricity, although vastly overshadowed
by that of torsion, has been briefly considered initially by Weyl [554, 98, 460,
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276, 442, 476], who first advanced the possibility for Qabc to affect gravitational
phenomena; his specific proposal was to set

Qabc := kagbc , (1.49)

with ka a spacetime vector. Weyl’s model aimed at enforcing the full scale in-
variance of physical laws, implemented via a conformal symmetry working for
gravity as well, whence the need for a non-vanishing non-metricity tensor. While
Einstein quickly proved the model incompatible with the observations (the in-
teraction of the electromagnetic and gravitational field in the interstellar and
intergalactic medium should have been discovered in a non-uniform behaviour
of charged particles from the sky), it opened a new chapter in geometry and
physics, with the introduction of the Weyl structures [476, 432]. The latter have
been later reappraised, and used fruitfully both in the context of particle physics
and gravitational theories [476, 539, 493, 9, 351, 504, 201].

The introduction of torsion in a gravitational setting allows to properly de-
scribe matter with intrinsic angular momentum (spin) [433, 435]: this is the orig-
inal motivation behind the most eminent model involving torsion, namely the
Einstein–Cartan–Sciama–Kibble theory [527, 172, 211, 288, 519]. This proposal
moves from the consideration that, at the quantum level, the representations
of the Poincaré group for stable particles are labelled by mass and spin; also,
already in Special Relativity, once spin enters the game, the resulting stress-
energy-momentum tensor is not symmetric anymore [251].17 Still, thanks to a
procedure due to Belinfante and Rosenfeld [55], it is possible to find a symmetric,
conserved tensor including the usual Tab and the spin tensor S c

[ab] . Such result
can be extended to curved spacetimes via the introduction of tensor-valued dif-
ferential forms [425]. The field equations for Einstein–Cartan–Sciama–Kibble
theory can be extracted from the action

SECSK =
c4

16πG

ˆ
e gabR̃ab

[
gmn, αT kmn

]
d4y + BECSK , (1.50)

which must be varied with respect to both the metric (or rather, the tetrad
field) and the torsion (or the so-called “spin connexion”). In the previous for-
mula, R̃ab denotes the (non-symmetric) Ricci tensor emerging from the general
connexion ∆a

bc (made up of symmetric part and torsional content), while e is
the determinant of the tetrad e h

I such that ghk ≡ ηIJe h
I e

k
J , and α is a suitable

coupling constant. The resulting field equations of the theory can be shown to
be

R̃ab −
gab
2
R̃ =

8πG

c4
T̃ab (1.51)

T a[bc] + δabT
d
[cd] − δ

a
cT

d
[bd] =

8πGα

c3
Sa[bc] (1.52)

where T̃ab is the equally non-symmetrical stress-energy-momentum tensor. Be-
sides its stimulating theoretical aspects [536, 375, 451, 492], the model has in-
teresting cosmological and astrophysical consequences [213, 494, 304, 436], and
there are research projects looking for apt measurements of the torsion compo-
nents [210].

17At this stage, the spin can be introduced in a general relativistic context without invoking
quantum notions, but simplyshaping an apt classical variable; see e.g. [353, 514].
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A second noteworthy application of torsion in the context of extended the-
ories of gravity is Weitzenböck’s teleparallel theory [176, 550, 361, 245, 14, 365,
193]. This model can be considered the antipodal point with respect to the
metric paradigm: one postulates the presence of a general linear connexion on
a manifold, arranged so that the resulting Riemann curvature tensor vanishes
everywhere, but with non-vanishing torsion. If {e a

I } is a basis of the tangent
space TpM at a point on a manifold (I = 1, . . . , 4), and f I are four global func-
tions onM , the Weitzenböckian covariant derivative Dva along the direction va,
is given at p by

Dva
(
f Ie b

I

)
:=
(
va
[
f I
])
e b
I (p) . (1.53)

This implies that, in a given coordinate chart yα onM , the connexion coefficients
∆α

βγ can be represented in terms of the matrix functions kαI such that e a
I =

kαI (∂/∂yα)
a, as in

∆α
βγ = kαI ∂βk

I
γ (1.54)

This last expression is manifestly non-symmetric, and since De a
I
ebJ = 0, the Rie-

mann curvature of the Weitzenböckian connexion vanishes identically, whereas
the torsion is in general non-zero. The latter becomes responsible for gravi-
tational phenomena, and the (flat) metric structure whose metric-compatible
curvature tensor vanishes everywhere can be built out of the connexion and a
fundamental tetrad (i.e., an inertial reference frame). A possible choice of the
action for teleparallel gravity is for instance [14, 194, 15, 16]

SWT =
c3

16πG

ˆ
TabcΣ

abc e d4y + BWT , (1.55)

where, besides the torsion and the tetrad determinant, one introduces as well the
super-potential Σa[bc], defined in terms of the torsion itself and the contortion
tensor as Σa[bc] := Cabc − gacT dbd + gabT

d
cd.

In close analogy with the f(R) theories, there exist various f(T ) theories,
where T denotes the teleparallel connexion, and f a generic scalar function
built out of the possible scalar combinations of the Weitzenböckian “torsional
curvature” [369, 60, 290, 102, 284, 458, 390, 313].

Arbitrary connexions endowed with torsion and non-metricity can often be
decomposed into apt combination of the metric and of other degrees of freedom;
the torsion mentioned above, for instance, can be thought of as the sum of its
irreducible components, namely [528, 119, 477, 478]

Ta[bc] =
1

3
(Tbgac − Tcgab)−

1

6
εabcdS

d +Babc , (1.56)

with Tb = T aba the trace vector, Sa := εabcdTbcd the axial (pseudotrace) vector,
and Babc a traceless tensor. Formulæ like this can be plugged in whenever torsion
is present, and the resulting field equations can be solved separately for the
irreducible components, considered as separate degrees of freedom.

The converse is also true, in a sense: one can build non-standard combi-
nations of the usual metric and other geometric objects, to shape a specific
type of non-symmetric connexion. This is the case, for instance, in the theory
of Lyra manifolds [325, 491, 447, 137]: a Lyra geometry consists of a triple

27



L ≡ (M, gab, ζ), where a scalar field ζ with the dimension of [l]
1 complements

a manifold and a metric on it. The (dimensionless) connexion is given by

∆a
bc :=

1

ζ
Γabc +

k + 1

ζ2
gad (gbd∂aζ − gab∂dζ) , (1.57)

and gives rise to a related Lyra curvature tensor Ξ d
abc . The latter is used to

define an action for a gravitational theory.

SLy = α~
ˆ
ζ4gabΞ c

acb

√
−g d4y + BLy . (1.58)

The main feature of this theory is that it does not contain dimensional couplings,
and it is up to the matter sector of the theory to break the scale invariance [293,
490, 486, 569].

Generically non-symmetric structures can be introduced at an even earlier
stage; for instance, in the case of nonsymmetric gravity [357, 358, 446], the basic
ingredient is a non-symmetric “metric” tensor ĝab, with which to form a general
connexion ∆a

bc, so that the action takes the form

SNS =
c4

16πG

ˆ
ĝabR̂ab

√
−ĝ d4y + BNS . (1.59)

The non-symmetric Ricci tensor R̃ab comes from the composition of at least eight
separate pieces, arranged so that the resulting equations of motion are at most
second order; the model, which is not free from theoretical issues [134, 136], can
be sometimes rewritten in terms of a symmetric metric and of a vector degree of
freedom of the electromagnetic type [446, 285], which emerges from a Proca-like
action.

1.3.4 The higher-dimensional case
Letting the number of dimensions of spacetime grow above the standard

number of four — or letting it decrease, for what it matters — allows for the
onset of another interesting class of extended theories of gravity: in the lower-
dimensional case, the resulting proposals can be used as toy models to test
effects in specific regimes, whereas the higher-dimensional landscapes allow for
attempted unifications of gravitational physics and other fields, or for the emer-
gence of holographic properties of the actions.

A lower-dimensional manifold can usually host only a drastically simplified
gravitational theory, as many geometric objects trivialise and thus reduce the re-
lated phenomenology. The exact opposite happens, on the other hand, in higher-
dimensional cases. In the elementary 2-dimensional spacetime, for instance, the
Jackiw—Teitelboim gravity [279] provides the equivalent of a Brans–Dicke the-
ory, with an action given by

SJT =
c4

16πG

ˆ (
φR+

1

2
∂aφ∂aφ+ Λ

)√
−g d2y + BJT , (1.60)

whence the field equations

R− Λ =
8πG

c4
T , (1.61)
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with T the stress-energy-momentum tensor. An extension to three spacetime
dimensions is currently used to examine the mechanics of black holes [334].

As for the higher-dimensional case, it is worth stressing that, in any space-
time of integer dimension n > 4, it is obviously possible to copycat Einstein’s
General Relativity by simply rewriting Eq. (1.18) in an arbitrary number n of
dimensions; the result reads

SGR,n =
c4

16πGn

(ˆ
Ω

(n)

R

√
−(n)

g dny + 2

ˆ
∂Ω

(n−1)

K

√
(n−1)

h d(n−1)y

)
. (1.62)

The symbols adopted retain the same geometrical meaning and definitions as
in the four-dimensional case, whereas Gn identifies the aptly reformulated value
of Newton’s constant. This means that, for any integer k ≤ n, there is an entire
ladder of “General Relativities” given by

SGR,k,n =
c4

16πGk

(ˆ
Ωk

(k)

R

√
−(k)

g dky + 2

ˆ
∂Ωk−1

(k−1)

K

√
(k−1)

h d(k−1)y

)
. (1.63)

In ordinary four dimensions, then, one can in principle write four-, three-, and
two-dimensional Einstein–Hilbert Lagrangians, modulo the caveat remarked at
the beginning of this section about the trivialisation of many invariants when
the number of dimensions decreases below four.

An example of a higher-dimensional model motivated by the idea of getting
rid of dark energy while still explaining the accelerated state of the Universe
is the so-called DGP gravity [170]. Such proposal advances the existence of
a (4 + 1)-dimensional Minkowski spacetime (the bulk), in which the ordinary
(3 + 1)-dimensional Minkowski spacetime (the brane) is embedded. The result-
ing action principle becomes

SDGP =

(
c~
G

)3/2 ˆ
Ω5

(5)

R

√
−(5)

g d5z +
c4

16πG

ˆ
ω4

R
√
−g d4y + BDGP , (1.64)

with ω4 the intersection of the boundary ∂Ω and the Minkowski brane M4. One
has that the four-dimensional gravity dominates at short range, whereas the
five-dimensional effects emerge at long range. This interplay of different regimes
introduces corrections to the gravitational potential and possibly explains cos-
mic acceleration. DGP gravity has been recently challenged by a new wave of
cosmological observations, and accounting for the available data may need the
re-introduction of the (unwanted) cosmological constant [238, 188, 321].

A similar proposal is provided by the Randall–Sundrum model [449], where
the universe is thought to be a 5-dimensional bulk environment enclosed by two
surfaces (branes) whose position is governed by energy levels. The geometry of
the bulk is highly warped, and gravitational interaction can access all the five
dimensions; on the other hand, matter fields are confined on a 4-dimensional
sub-manifold (specifically, the boundary brane with the lowest energy level).
The metric is given by

gab =
1

ky2

(
day dby +

4∑
I=1

daz
I dbz

I

)
, (1.65)
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and the boundaries are set at the value y = k−1 and y = (Wk)
−1 in the fifth

dimension, with W the “warp factor” such as Wk is of the order of some TeV’s.
The brane on which the Standard Model particles reside is the latter.

Higher-dimensional settings are also a necessity within the attempted uni-
fication of gravity and other physical fields. Usually, one considers the electro-
magnetic field; the simplest choice, however, is a scalar field. This is the point
of view adopted e.g. in Kaluza–Klein theories [289, 525, 359]. In a minimal ex-
ample of a Kaluza–Klein model, one considers a higher-dimensional spacetime
K ≡ (M ×K, ĝAB) for which the manifold is given by the Cartesian product of
a standard four-dimensional Lorentzian manifold M , and a k-dimensional Rie-
mannian (i.e. with a definite metric) manifold K, with k ≥ 1. On the (4 + k)-
dimensional Kaluza–Klein manifold, a metric ĝab is defined, such that its matrix
representation is given in the following block form

ĝAB :=

(
gab 0
0 mhk

)
, (1.66)

with a, b = 1, . . . , 4, and h, k = 5, . . . , 4+k.18 The resulting action for the unified
theory reads [33]

SKK =
ĉ4

16πĜ

ˆ (
R̂− Λ̂

)√
ĝ d(4+k)z , (1.67)

where all the hatted quantities refer to the full Kaluza–Klein manifold. Upon
supposing that the supplementary k dimensions wind up at the level of a mi-
corscopic scale `, the above formula boils down to [33]

SKK =
ĉ4V (`)

16πĜ

ˆ [
φ
(
R+ (k)R+ Λ̂

)
+
k − 1

k

∇aφ∇aφ
φ

]√
−g d4y , (1.68)

in which V (`) is the k-dimensional volume of the compactified submanifold K,
φ :=

√
|detmhk|, and (k)R is the scalar curvature of K. It is not difficult to see

that Eq. (1.68) corresponds to the action for a four-dimensional Brans–Dicke
theory such that ω = −(k − 1)/k [562].

The onset of higher-dimensional landscapes is a common feature of many
approaches to quantum gravity and grand unified theories: models based on
string theory [430, 431, 338] oscillate between 26 and 10-dimensional environ-
ments (in most of the cases, compactification is needed at some stage to recover
the observed four dimensions); the same holds for refined pictures such as M-
theory [338], or various supersymmetric extensions of standard gravity [372, 297].

We conclude the section (and the Chapter) with what has been called “the
most natural extension to General Relativity” [366, 403, 402, 404], because of
the many similarities it carries with respect to Einstein’s theory: the Lanczos–
Lovelock gravity theory [323] — or rather, theories.

The main feature of this class is the fact that it starts as a sub-case of
the higher curvature schemes, as it presents higher curvature corrections in the
action, but in fact the Lagrangian is shaped so as to give only second order field

18The original unification of gravity and electromagnetism required a matrix ĝAB with non-
diagonal terms as well [525].

30



equations. A second reason typically offered to claim the “naturalness” of the
extension is the capability of the action to be decomposed, as it happens with
Einstein’s theory, into a term quadratic in the second derivatives of the metric
(the bulk term), and one which is a total derivative — hence, one leading to a
surface term. Lanczos–Lovelock theories all share this property, often referred
to as holographic [403, 415, 298, 564, 405, 414, 408].

The reason why Lanczos–Lovelock theories are included in the present sec-
tion is the fact that the successive emergence of the elements of the family
is dimensional-dependent: the higher the number of spacetime dimensions, the
larger the class of admissible Lanczos–Lovelock theories becomes. Also, the for-
mulation of its variational problem shows that the only degrees of freedom are
now encoded exclusively into the metric tensor, and no further geometric ob-
ject is concealed somewhere behind the ostensible structure of the action (see
§3.4.4).

The starting point to formulate the model is to consider Lagrangian densities
of the form

SLL = α

ˆ
Q d
abc R

abc
d

√
−g dny + BLL , (1.69)

where the tensor Q d
abc

[
gab, R

d
abc

]
, built out of the metric and the curvature

tensor only, has the same symmetries of the Riemann tensor, and has vanishing
covariant divergence, ∇dQ d

abc = 0. In the simplest case, i.e. when Q d
abc depends

on gab only (in any number of spacetime dimensions), the only possible choice for
it is the form Qabcd ≡ 1

2 (gacgbd − gadgbc) given in Eq. (1.40), and the resulting
theory is precisely General Relativity (in dimension n), which results then a
proper element of the Lanczos–Lovelock class [404].

When Q d
abc can also depend linearly on the Riemann tensor, in addition to

the previous case, one gets the term

Qabcd = Rabcd −Gacgbd +Gbcgad +Radgbc −Rbdgac , (1.70)

and the full contraction of the previous formula with R d
abc gives rise to the

Gauß–Bonnet term in (1.44). This first non-trivial Lanczos–Lovelock extension
of General Relativity becomes a topological invariant in four spacetime dimen-
sions — and thus the action vanishes — but the same does not occur when
n > 4. This is the anticipated dimensional dependence of the Lanczos–Lovelock
models: when n grows, so it does the number of available additional terms in
the action, yet the field equations remain constrained to be of second order.

By prolongation of the construction, it is possible to prove that the m-th
order Lanczos–Lovelock gravity theory has the form [323, 404] (we put k = 2m)

LLL,m = Q d
abc R

abc
d = δ1357...2k−1

2468...2k R24
13R

68
57 . . . R

2k−2 2k
2k−3 2k−1 , (1.71)

which makes use of the completely skew-symmetric, alternating tensor δp1...piq1...qi .
The latter is given by the determinant of an (n×m) matrix, each element in
the table being a Kronecker delta, where the first row is given by the sequence
δp1q1 , . . . , δ

pi
q1 , and so forth, until the last row, made of δp1qj , . . . , δ

pi
qj .

The term on the right in Eq. (1.71) is a homogeneous function of degree m
in the curvature tensor, and hence can be expressed as

LLL,m =
1

m

(
∂LLL,m

∂R d
abc

)
R d
abc =

1

m
P abcdR

d
abc , (1.72)
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where P abcd := mQabcd, and by definition P abcd has as well vanishing covariant
divergence, in any of its indices.

Eq. (1.71) and (1.72) show that it is possible to build the most general
Lanczos–Lovelock gravity theory by simply building an infinite sum of LLL,m’s,
and weighting its terms by apt coupling constants. The symmetry properties of
the alternating tensor, however, limit the number of non-trivial terms in the sum;
indeed, δ1357...2k−1

2468...2k vanishes identically whenever k > n, with n the spacetime
dimension, and reduces the Lanczos–Lovelock term to a topological invariant
whenever k = n, in view of the Gauß–Bonnet theorem. This explains why, for
n = 4, we can in principle build two Lanczos–Lovelock Lagrangians, namely the
Einstein–Hilbert one, and the Gauß–Bonnet one, but only the former will give
non-trivial contributions to the field equations. But if, say, n = 5, the Gauß–
Bonnet gravity will provide an actual contribution to the action and to the field
equations, and so on for growing n.
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Chapter 2

On the Principles of
Equivalence

Since others have explained my theory, I can
no longer understand it myself.

A. Einstein, in Einstein and the Poet.

From the previous Chapter, we inherit the image of a colossal “family tree”
of extended theories of gravity: a flourishing and ever-growing organism, where
new branches and leaves appear every now and then. To avoid an uncontrolled
growth, and the proliferation of ill-formed theories, a Gardener has to take care
of the plant, and a Taxonomist has to trace the mutual relationships among the
various branches.

To this end, i.e. to prune and inspect the family tree of gravity theories,
the Gardener and the Taxonomist will need an appropriate, sharp, and effective
instrumentation. This is where the Principles of Equivalence enter the stage.

The Equivalence Principles are founding pillars for any theory of gravity.
Broadly speaking, they perform three main offices: establishing some very gen-
eral prescriptions on the behaviour of physical systems in a gravitational en-
vironment; acting as bridges between the world of pure physical intuition, and
that of rigorous formalisation; providing neat selection rules to constrain the set
of possible frameworks for gravity.

The present Chapter is devoted to a critical discussion of all the most rele-
vant principles of equivalence. In the following pages, the topics are treated via
a mixture of a review of some well-established notions, and diffuse original con-
tributions to the debate. The main sources for the material presented herewith
are Refs. [388, 558, 557, 155], together with the first sections of [154], and the
literature cited therein.
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2.1 Introductory remarks
The opening of the Chapter is dedicated to three preliminary, basic steps:

framing the general notion of “principle of equivalence”, establishing a convention
about the word usage, and offering the Reader a critical voice against the notion
itself of equivalence principle — with our due, subsequent reply.

In particular, we deem it necessary to detail the different versions of the
principle of equivalence used within the context of this thesis, as some forms of
the statements are non-standard with respect to the literature on the theme,
and some others have been introduced only very recently [155, 154].

2.1.1 Key concepts and milestones
Whenever an experimental campaign finds out that distinct physical quanti-

ties or phenomena (in principle, unrelated) are consistently equivalent, or unfold
in the same way within the best accuracy attainable, a Principle of Equivalence
can be formulated. The different conditions examined can thus be traced back
to a common origin, or a unified language can be adopted to describe them at
once. As a result, different theoretical frameworks can be merged into, or traded
for, a single model.

For example, the common features of the free-fall trajectories of test bod-
ies with negligible self gravity, once elevated to the status of an equivalence
principle, permit to ascribe the universal character to a geometric property of
spacetime, rather than to a property shared by all possible test bodies [244].
Similarly, the numerical equivalence of the gravitational and inertial masses for
all test bodies in Newtonian regime allows to unify mechanical and gravitational
phenomena under a single theory.

Such general definition of “equivalence principle”, however, is quite recent. In
its first incarnation [388], the principle of equivalence was just the outcome of
Einstein’s attempt to widen the validity of his principle of (special) relativity:
having shown that, in dynamical terms, any uniform rectilinear motion has
the same mechanical content as stasis, his next goal was to prove that also
acceleration is relative, and all possible motions, however complicated, are in
principle indistinguishable from stasis.

Such a goal was so crucial in the development of Einstein’s theory of gravity
that he christened the model itself General Relativity precisely to overcome the
“special” character of inertial frames in Special Relativity. “Principle of Equiva-
lence” was then just another name for a generalised principle of relativity [387],
this time one holding for all sorts of accelerated motions.

Einstein’s proposal, however, was “too good to be true”: his pristine identi-
fication of the accelerated reference frame in the absence of gravity, with the
reference frame at rest in a uniform gravitational field had to hold exactly. This
case, however, simply cannot be, for the latter concept — that of a uniform
gravitational field — is chronically ill-defined.1

The missed accomplishment of Einstein’s original program weakened the
theoretical role of the principle of equivalence. Yet, the notion as defined in
the opening of this section never really disappeared: it actually kept resurfacing
again and again, contributing to the construction of the protocols to test the

1This matter is still disputed; for a pair of poles-apart opinions see e.g. [368], and the reply
in [155], footnote 30.
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theories of gravity beyond General Relativity. The results presented in this work
are just the last “rebirth” of the seminal intuition.

2.1.2 A conventional glossary

“Equivalence Principle” is a common expression in gravity theory, found in
the early pages of most textbooks. Unfortunately, the term is applied to a wide
range of different notions, statements, and ideas, too often without any further
specification [524].

Typically, in Newtonian contexts, one speaks of the equivalence principle
in reference to the experimental equivalence of the inertial and gravitational
masses of point particles. In relativistic contexts, “equivalence principle” is used
either as a synonym of universality of free fall for test bodies in a gravitational
field, or as the impossibility to distinguish an accelerated reference frame from
one freely falling in a given gravitational field.

A further layer of confusion is due to the habit of using the same expression,
e.g. “Strong Equivalence Principle”, for at least two very different concepts,
namely what here is called “Einstein’s Equivalence Principle”, and the actual
“Strong Equivalence Principle” [444].

To prevent the Reader from the onset of painful migraines, we think it is
much easier, and more correct, to establish a conventional glossary from afresh,
rather than to resort to mutually contradicting sources. The content of the
various Equivalence Principles about to be discussed can thus be sketched as
follows.

∗ The equivalence of inertial and gravitational masses (whenever the two
concepts make sense) is Newton’s Equivalence Principle.

∗ The universality of free fall for non-self-gravitating test bodies is the Weak
Equivalence Principle.

∗ The universal behaviour of test bodies (self-gravitating or not) in a grav-
itational field is the Gravitational Weak Equivalence Principle.

∗ The local equivalence of fundamental, non-gravitational test physics in the
presence of a gravitational field, and in an accelerated reference frame in
the absence of gravity is Einstein’s Equivalence Principle.

∗ The local equivalence of fundamental test physics (gravitational or not) in
the presence of an external gravitational field, and in an accelerated refer-
ence frame in the absence of gravity is the Strong Equivalence Principle.

2.1.3 John Lighton Synge on the Equivalence Principles

Before moving on to review and discuss the various statements, we deem
it correct to leave a bit of space to the strongest voice against the equivalence
principles themselves, namely, that of John Lighton Synge. In the opening pages
of his book Relativity, The General Theory [517], Synge spends quite disapprov-
ing words for the equivalence principles, their role in theory-building, and their
actual usefulness.
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“When, in a relativistic discussion, I try to make things clearer by a space-
time diagram, the other participants look at it with polite detachment and,
after a pause of embarrassment as if some childish indecency had been ex-
hibited, resume the debate in their own terms. Perhaps they speak of the
Principle of Equivalence. If so, it is my turn to have a blank mind, for I
have never been able to understand this Principle. Does it mean that the
signature of the space-time metric is +2 (or −2 if you prefer the other con-
vention)? If so, it is important, but hardly a Principle. Does it mean that
the effects of a gravitational field are indistinguishable from the effects of
an observer’s acceleration? If so, it is false. In Einstein’s theory, either there
is a gravitational field or there is none, according as the Riemann tensor
does not or does vanish. This is an absolute property; it has nothing to
do with any observer’s world-line. Space-time is either flat or curved [...].
The Principle of Equivalence performed the essential office of midwife at the
birth of general relativity, but, as Einstein remarked, the infant would never
have got beyond its long-clothes had it not been for Minkowski’s concept. I
suggest that the midwife be now buried with appropriate honours and the
facts of absolute space-time faced.”

After pondering on Synge’s opinion, we concluded that his urgency to “bury
the midwife” is slightly excessive. Above all, he seems to grossly underestimate
the remarkable achievements emerged after a keen application of the equivalence
principles to the landscape of gravity theories.

Some elements of his argument are undeniably correct, and ought to be
kept in mind when drafting any theoretical model for gravitational dynamics.2
Yet, his aversion to the Equivalence Principles ends up being ultimately a short-
sighted distaste for the role of physical intuition as the engine of progress within
the boundaries of a well-defined theory.

There is more: Synge closes by urging the community to look at (and for)
the facts of spacetime. The sentence sounds powerful and inspiring, but what
does it really mean? Spacetime is a mathematical concept — a language, ad-
mittedly effective — used to express succinctly a wealth of data and results of
experiments. Such language, however, largely depends on the sort of theory of
gravity one has in mind, and the latter will inevitably constrain the design of
the experiments, and the interpretation of the results.

On top of that, when it comes to General Relativity (or to any background-
independent dynamical theory of gravity with a full geometrical interpretation),
the passage from the experimental results to the corresponding geometric ob-
jects, and vice versa, is often far from obvious, even for very elementary notions,
such as “mass”, or “energy” of a system. The “facts of spacetime” emerging from
neat calculations, in such cases, provide ambiguous answers to elementary phys-
ical questions.

To conclude: Synge’s idea is praiseworthy, and particularly stimulating to
read for anyone working on the principles of equivalence. Sure, the effectiveness
of the geometrical language in relativistic contexts is out of the discussion. Yet,
we politely suggest less haste in “burying the midwife”; for she might still have
something to say about gravity, and the way to build a robust theory of it.

2Not the bit concerning the signature, though. Synge could not be aware that models would have
been built where signature itself is a dynamical entity [391], or where a Lorentzian spacetime model
could emerge from a completely Euclidean underlying background [222].
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2.2 The Principles of Equivalence
We can now proceed to examine the principles in more detail, offering an

overview of their basic traits. Most of the material contained here is a critical
review of notions already widespread in the community, with an apt reformu-
lation of some concepts. The fresh and original content, consisting of an up-
graded definition of the Gravitational Weak Equivalence Principle, is outlined
and discussed only partially, for a full account of its features will be given in the
dedicated Chapter 3.

2.2.1 Newton’s Equivalence Principle
Back to the Newtonian formulation of gravity (§1.1.1), we have concluded

that the active and passive gravitational masses in Eq. (1.2) need be equal if
the action-reaction principle of mechanics holds as well for gravitational phe-
nomena [94]. This allows to consider just one specimen of gravitational mass.

On the other hand, none of the basic laws of dynamics states anything about
the relationship between inertial and gravitational masses, which account for
completely different physical concepts. One can then design experiments to test
the possible discrepancies between the measured values for the two kinds of
mass, and see whether they can be found to be e.g. proportional [376, 557].

While the latter possibility is much less probable than any other experi-
mental outcome, it is now known [122, 394, 66, 558, 557] with extremely high
accuracy and precision that mG and mI are indeed proportional, and the pro-
portionality coefficient is a universal constant. This allows to drastically simplify
Eqs. (1.5), as one can drop all the masses, and get back to the familiar formu-
lation 

∆Ψ (r, t) = 4πGρ (r, t)

d2r

dt2
= −∇Ψ (r, t)

. (2.1)

Notice that the matter density sourcing the scalar potential in Poisson’s equa-
tion also lacks any additional subscript; this reflects the fact that, once inertial
and gravitational masses are equal in suitable units, then every form of matter
gravitates the same way.

It is worth stressing that the experimental equivalence of inertial and gravi-
tational masses can be tested for many theories of gravity, and not only in the
Newtonian case; what must be preserved is the Newtonian regime in which the
tests are performed, for only under those circumstances the concepts of inertial
and gravitational masses make sense — they are decidedly Newtonian quantities
—. One then has to enforce the weak-field, slow-motion limit to compare mG
and mI; possibly, other constraints need be imposed.3

The relation mG = mI can thus be elevated to the level of a principle; for
historical reasons, it is fair to name such principle after Isaac Newton. The

3In all those cases in which the Newtonian regime is an approximation holding up to a certain
scale λ, the laboratory testing the equivalence must of course be confined to regions with radius
smaller than λ. As shown in §1.3, theories exist in which one deals with modified Newtonian dynam-
ics (commonly abbreviated in “MOND” [53]), both at the fundamental level — TeVeS model [54]
—, or as the result of an effective description of large-scale phenomena. Whenever MONDian effects
are forecasted, the equivalence of inertial and gravitational masses can only be an approximation,
valid as long as the scale is such that the modifications remain under the sensitivity threshold.
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resulting statement reads [497]

Newton’s Equivalence Principle — In the Newtonian limit, the iner-
tial and gravitational masses of a particle are equal.

As a final remark, we point out that this principle is often confused with
the universality of free fall (see below). While it is true that the two notions
are tightly bound together and largely overlap, the Reader ought to keep them
separated [497].

2.2.2 The Weak Equivalence Principle
The universal behaviour of particles in the presence of gravity is a property

known and tested since Galileo Galilei’s experiments from the leaning tower
of Pisa.4 The precise statement of such property requires some tuning, but
the resulting principle is a fundamental pillar of all relevant gravity theories
currently available [122, 394, 558, 557, 379].

Weak Equivalence Principle — Test particles with negligible self-
gravity behave, in a gravitational field, independently of their prop-
erties.

The statement of the principle presented here slightly differs from the for-
mulations typically found in the literature; specifically, much emphasis is put
here on the two attributes of the particle, namely its being a test body, and its
negligible self-gravity.

A test body is, by definition, any physical system which can be acted upon by
the surrounding environment, but does not back-react significantly on the envi-
ronment itself. In a sense, a test body is a completely “passive” system, whence
its use to probe the net effects of the presence of any “active” agent in the envi-
ronment. The property of being “test” is highly idealised, as any actual system
can be considered a test one only approximately [155]. So, for instance, a “test
charge” is any system which can feel the presence of a surrounding electromag-
netic field, but cannot influence it to the point that the properties of the field
change significantly because of the presence of the charge.

The definition of “self-gravity” requires even more care [155]. To grasp the
general idea, one can proceed as follows: in the Newtonian regime, introduce
the gravitational (self-) energy of any massive system, given by

EG =
Gm2

G
r

, (2.2)

with mG the gravitational mass, and r an aptly defined measure of the size of
the system. At the same time, consider the inertial energy of the system, namely

EI = mIc
2 , (2.3)

as emerging from the special relativistic prescription. Provided that Newton’s
equivalence principle holds, hence mG = mI, then it is fair to define the ra-
tio [155]

σ :=
EG

EI
=
Gm2

r

1

mc2
=
Gm

rc2
. (2.4)

4Experiments which may or may not have actually occurred [167].
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The scalar σ is a measure of the amount of gravitational binding energy with
respect to the overall inertial energy for the body; the lower its value, the less
significant the self-gravity of the object. In “ordinary” regimes, and for bodies
up to the size and mass of the Sun, σ is very small, whereas it reaches order one
for extremely compact objects, e.g. black holes. The far-right term in Eq. (2.4)
is also proportional to the ratio between the Schwarzschild radius of a body and
its typical size; this justifies the name compactness given sometimes to σ.

Finally, the expression “behave independently of their properties” in the
statement of the principle simply means that the future histories of the par-
ticles will be the same, provided they have the same initial conditions.

The simultaneous presence of the conditions “test body” and “negligible
self-gravity” in the statement of the Weak Equivalence Principle is then nec-
essary [155], because the two notions are logically distinct: there might be in
principle test bodies with very strong self-gravity (for instance, a micro-black
hole in the gravitational field of the Earth), objects with mild self-gravity, but
with non-test characters (for instance, the Moon orbiting around the Earth),
and finally test bodies with irrelevant self-gravity contribution (e.g., a rock or a
pebble freely-falling on the Earth surface, and practically all the systems typi-
cally used to test the Weak Equivalence Principle in Earth-based experiments).
It is only to this last class of objects that the principle applies, and its conclusion
cannot be stretched to cover the other sorts of bodies.

2.2.3 The Gravitational Weak Equivalence Principle
The Gravitational Weak Equivalence Principle builds upon the content of

the previous section, removing the constraint of the negligible self-gravity, and
introducing the request to work in vacuo. The resulting statement reads [155,
154]:

Gravitational Weak Equivalence Principle — Test particles behave,
in a gravitational field and in vacuum, independently of their prop-
erties.

This version of the Weak Equivalence Principle dedicated to systems with
non-negligible self-gravity has been advanced for the first time in Refs. [155, 154].
Some earlier, slightly different versions of the principle date back to Ref. [558],
where the statement is applied to “self-gravitating as well as test bodies”.

Since the presence of self-gravity per se does not necessarily spoil the prop-
erty of being a test body, the condition that the system under consideration
have to remain a test one is preserved in our formulation [155]: this assures
that it is possible to compare the free-fall trajectories of different bodies, with
and without a significant self-gravity, and draw conclusions about a universal
behaviour [154].

Another original contribution to the formulation of the principle is the ex-
plicit assumption of a vacuum environment. In the literature on the topic of
self-gravitating systems, such hypothesis is not implemented systematically ab
initio, yet typically crops up at later stages to drastically simplify the calcula-
tions [350, 427], or to sidestep the complex interpretational issues connected to
“dirty” (i.e., matter-imbibed) surroundings of a massive body [538].

It turns out, however, that if one wants the behaviour of free-fall trajectories
of self-gravitating systems to be universal, the presence of surroundings devoid
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of matter is a necessary pre-requisite, rather than a simplifying add-on [154].

The Gravitational Newton’s Equivalence Principle

As a side remark, we stress here that the Newtonian counterpart of the Grav-
itational Weak Equivalence Principle might as well deserve a separate statement,
thus yielding a Gravitational Newton’s Equivalence Principle, namely [155, 154]:

Gravitational Newton’s Equivalence Principle — In the Newtonian
limit and in a vacuum environment, the inertial and gravitational
masses of a test body with non-negligible self-gravity are equal.

Such further addition might look slightly over-meticulous, but there are good
reasons to speak it out explicitly (see §2.4.3).

2.2.4 Einstein’s Equivalence Principle

The validity of the Weak, Gravitational Weak, and Newton’s Equivalence
Principle is restricted to free-fall experiments of both test and non-test bodies,
i.e. a subset of all possible mechanical experiments. The fourth statement we
introduce covers instead all sorts of non-gravitational physics, provided that the
test character of the systems involved remains untouched.

This equivalence principle is named after Einstein, and lies at the roots of
description of local physics. The statement reads [155, 154, 558, 557]

Einstein’s Equivalence Principle — Non-gravitational, fundamental
test physics is not affected, locally and at any point of spacetime, by
the presence of a gravitational field.

The key idea behind this principle is the correspondence, and physical equiv-
alence, between local frames in a gravitational field, and arbitrarily accelerated
reference frames in the absence of gravity, so that the two can be used inter-
changeably to describe fundamental, non-gravitational test physics.

Once again, the word “test” means that, from the gravitational point of view,
all physical phenomena considered — i.e. thermodynamical, electrodynamical,
and so forth — are such that the surrounding environment can be safely con-
sidered unaffected, whereas of course it acts upon the particle or the continuum
involved. In the same fashion, if the given background is devoid of any gravi-
tational field, the non-gravitational test physics occurring there is intended not
to generate a significant one [155].

Einstein’s Equivalence Principle assures that non-gravitational test physics is
not affected, locally, by the presence of a gravitational field. This translates the
idea that, in principle, it is always possible to find a sufficiently small region in
spacetime (the local laboratory) where gravity is absent, and where an observer
will record the same results for non-gravitational, fundamental test experiments,
as an observer located in another region of spacetime where a gravitational field
is present. In most textbooks, this equivalence is presented to occur between
an inertial frame in an environment where gravity is identically absent (i.e.,
Minkowski spacetime), and a non-rotating, uniformly freely-falling small labo-
ratory in a gravitational field (the latter is sometimes considered uniform, but
this last condition is too restrictive).
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An important comment to be provided at this stage involves the use of the
terms “local” and “fundamental” in reference to the test physics considered. “Lo-
cal” refers to the intuitive idea that, by restricting to a suitably small region in
spacetime, effects due to the presence of a gravitational field become progres-
sively negligible. But this is not true in general: the curvature tensor is a local
object, whose effects cannot vanish, even in the limit where the size of the labo-
ratory decreases to that of a geometric point. Only when the gravitational field is
absent they disappear [394]. In the case e.g. of the motion of a spinning particle,
the equations cannot be reduced to those of a free-fall, even in the (ultra-local)
point particle limit, and a coupling with the curvature is unavoidable, lest the
gravitational field itself be everywhere zero [393, 413, 340, 161].

To be fair, examples like the spinning particle (and many similar cases of
point-particle limits) are just effective descriptions of compound systems, at-
tempting to frame average behaviours, rather than to pinpoint elementary phe-
nomena.5 These approximate descriptions of complex bodies are built out of
the apt addition, to some elementary equations (for which Einstein’s Equiva-
lence Principle does hold), of further couplings with the curvature, which are
requested to model all the unresolved complications of the physics involved.

Therefore, the word “fundamental” in the statement of the principle is the
measure of our ignorance of basic laws of physics, and a warning for the Reader:
the most elementary structures indeed comply with Einstein’s Equivalence Prin-
ciple, and the introduction of interactions, higher multipoles and similar non-
fundamental quantities spoils the symmetry [393].

Two last remarks: first, since the statement holds “at any point of spacetime”,
it also contains the notion of Local Position Invariance, which is an ingredient
traditionally associated with Einstein’s Equivalence Principle in the literature
on the topic [558, 557]. Also, since the fundamental laws of non-gravitational
physics we probe are believed to be Poincaré-invariant in the absence of grav-
ity [341, 317],6 one deduces that the principle embodies as well the notion of
Local Lorentz Invariance, i.e. the form of the local equations need be invariant
after a change of inertial reference frame made of an arbitrary boost and an
arbitrary spatial rotation of the axes [558, 557].

2.2.5 The Strong Equivalence Principle

Einstein’s Equivalence Principle above can be further extended by making
it encompassing gravitational phenomena as well — the latter are explicitly
excluded in the formulation of the principle —. This leads to the so-called Strong
Equivalence Principle, namely [155, 558, 557]

5A due remark: the “spinning particle” mentioned here is intended in its classical, non-quantum
sense — the spin is a purely spatial vector attached to the particle, like the one used in [514] to
explain Thomas’ precession. The quantum notion of spin is not taken here into account, as it does
not comply with the (classical) framework we are building.

6The notion itself of “absence of gravity” is fragile, for it is in principle impossible to deprive
a (realistic model of the) world of its gravitational interactions, and to be still able to do physics
in a meaningful way. At the quantitative level, however, the remarkable agreement of experimental
results of, say, particle-physics experiments, with the theoretical calculations done for the systems
considered in a Riemann-flat spacetime, seem to strongly suggest that, even though exact Poincaré
symmetry might be somehow spoiled by gravity (and of course it is, at least on larger scales), it
remains an excellent approximation in the ultra-local limit and for fundamental test physics. On
this intriguing topic, see e.g. §9.5.1 of Ref. [96].
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Strong equivalence principle — All test fundamental physics (includ-
ing gravitational phenomena) is not affected, locally, by the presence
of a gravitational field.

Having read the above statement, one may easily object that “local gravi-
tational phenomena unaffected by the presence of a gravitational field” sounds
suspicious to say the least. Once again, however, the solution is encoded in the
restrictive clause of dealing only with fundamental and test physical conditions,
i.e. the phenomena under examination should be such that the background en-
vironment be left untouched [155, 154].

In short, the Strong Equivalence Principle establishes the equivalence of local
frames in a gravitational field, and local frames however accelerated in absence
of gravity, even with respect to fundamental and test gravitational phenomena.

The Strong Equivalence Principle marks a huge leap, for its conclusion is far
from being obvious. Gravity is an intrinsically non-linear phenomenon, hence
even distant configurations of matter and energy might considerably affect local
processes. Adopting this principle seriously constrains the type of theory of
gravitation one can build.

The version of this principle one can find in the literature is slightly differ-
ent, and amounts to the combination of the Gravitational Weak Equivalence
Principle, which extends the milder Weak one, plus the local Lorentz Invari-
ance and Local Position Invariance inherited from Einstein’s Equivalence Prin-
ciple [558, 557, 72] — the possibility to adopt the last two invariance conditions
also in the context of gravitational physics is guaranteed by the “testness” of the
systems considered.

2.3 Equivalence Principles in Practice
To appreciate the crucial role played by the equivalence principles in crafting

sound and robust theories of gravity, one has to show them at work. The present
section is thus devoted to present, first, the complex web of relations among the
various formulations, and, second, the consequences of the principles on the
structure of gravity theories. The upshot of the presentation will be the use of
the equivalence principles as selection rules to admit or reject entire classes of
gravity theories.

2.3.1 The network of relationships
The various equivalence principles presented above are all linked by a tight

web of mutual implications, which we outline here to better highlight the simi-
larities, differences, and hierarchical levels among the different statements [155,
154].

To begin with, the Weak Equivalence Principle implies Newton’s Equivalence
Principle [155]. This can be shown by noticing that, once Newton’s Equivalence
Principle does not hold anymore, the universality of free fall for test bodies
cannot occur, not even in the Newtonian regime.

The converse, however, is not true [497, 396]: the universality of free fall
is implied by the equivalence of inertial and gravitational masses only as long
as, in the equations of motion, mI and mG appear in the form of their ratio.
Since this is the case e.g. in Newtonian mechanics and General Relativity, the
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Weak and Newton’s Equivalence Principles are often identified. If, however,
other sorts of combinations of the two masses are allowed, the universality of
free fall is violated even though mI and mG are equal. For instance, in Bohmian
mechanics [82] the equations of motion of a test particle in a gravitational field
read

mI
d2r

dt2
= −mG∇Ψ−∇Q , (2.5)

where the quantum potential Q contains the inertial mass, but is not propor-
tional to it; now, notwithstanding the equivalence mI = mG, the free-fall tra-
jectory of the test particle ends up depending on its mass, which is a severe
violation of the Weak Equivalence Principle.

By the same token, we can say that the Gravitational Weak Equivalence
Principle implies the Gravitational Newton’s Equivalence Principle in an empty
background [155]. We also get that, whenever the inertial and gravitational
masses of a self-gravitating test bodies are not equal, then also the universality
of free fall for self-gravitating test bodies cannot occur. This latter aspect is often
probed in experiments, lying at the roots of the so-called Parametrized Post-
Newtonian formalism — see below —. Indeed, the non-equivalence of inertial
and gravitational mass for two self-gravitating bodies is detected via fractional
differences in the mutual accelerations of two systems, and this test is applicable
whenever the theory admits a Newtonian regime.

Einstein’s Equivalence Principle implies the Weak one. The former guaran-
tees that, locally, the behaviour of a freely-falling (non-spinning, point-wise, non-
compound) particle in a gravitational field cannot be distinguished from that
of a (non-spinning, point-wise, non-compound) free particle in an environment
devoid of gravity. But free particles in absence of gravity behave universally,
whence the universality also for the free-fall motion, and the Weak Equivalence
Principle.

The same argument allows to state that the Strong Equivalence Principle
implies the Gravitational Weak Equivalence Principle, and also Einstein’s one,
which is contained in the definition of the Strong version.

The implication “Weak Equivalence Principle⇒ Einstein’s Equivalence Prin-
ciple” is still debated; it is believed to be essentially true, to the point that it
has been given the status of a conjecture — precisely, Schiff’s conjecture, from
the name of its main standard-bearer [474, 558, 557] — and proofs exist in some
restricted cases [319], but a complete argument has not been provided yet (and
might even be impossible to exhibit one [395, 377, 129]).

Schiff advances the idea that “test” bodies are in fact compound objects made
of elementary building blocks bound together by forces of various nature; this
allows to show, for instance, that the previous implication is true if the leading
binding interaction is electromagnetic, and the given background gravitational
field has spherical symmetry [319]. What is still missing from this proof, for
example, is a full argument that, once the binding forces be sensitive to gravity
(thus providing a violation of Einstein’s Equivalence Principle), also the univer-
sality of free fall would be violated, whence the failure of the Weak Equivalence
Principle. By negating this implication one would obtain the required statement
“Weak Equivalence Principle ⇒ Einstein’s Equivalence Principle”.

A resolution of the conundrum with Schiff’s conjecture would also open
a path towards the implication “Gravitational Weak Equivalence Principle ⇒

43



Einstein’s Equivalence Principle”, stemming from the milder connection “Grav-
itational Weak Equivalence Principle ⇒ Weak Equivalence Principle” [155].

As a final aspect of this tangling network of implications, we conjecture that
the content of the Strong Equivalence Principle may be determined entirely by
the juxtaposition of the Gravitational Weak Equivalence Principle and of Ein-
stein’s Equivalence Principle. This argument would be the natural extension of
Schiff’s idea to gravitational phenomena and, in particular, to self-gravitational
interactions [155].

The simultaneous presence of both the Gravitational Weak Equivalence Prin-
ciple and Einstein’s Equivalence Principle might be necessary because the for-
mer cannot describe anything but the free-fall motion of test objects, whereas
to frame e.g. light gravitational waves another ingredient is required, and that
is precisely Einstein’s Principle.7

In view of these last considerations, we can conclude that the Gravitational
Weak Equivalence Principle is a key step towards a better understanding of the
universal behaviour of self-gravitating bodies, and the possible cornerstone of a
rigorous formulation of the Strong version.

2.3.2 Formal implications of the Equivalence Principles
It is fair to say that, with almost any equivalence principle, comes a leap

ahead in the formalisation of gravity theories. We can now see how this process
works.

To begin with, consider the content of the Weak Equivalence Principle: the
gravitational field, when acting on any type of test body with negligible self-
gravity, always gives the same result (this is precisely the “universality” of the
free-fall), and can thus be ascribed to a geometric property of spacetime itself,
rather than to a characteristic of the physical systems under consideration. The
philosophy behind this logical step is that, any time a universal property emerges
for a class of physical objects, one can trade such property for a properly defined
geometric structure.8

In the specific case of the free-fall world-lines in a gravitational field, this
amounts to say that the spacetime manifold M can be given a set of preferred
curves, which in turn defines a path structure, or rather a projective structure
on M itself [175, 128, 246]. With the introduction of few further, reasonable hy-
potheses,9 the path/projective structure can be massaged into an affine structure

7In the specific example of the light gravitational wave, this is because the wave can be seen as
the propagation of a spin-2 field, to which Einstein’s Equivalence Principle does apply [155].

8Geometry thus becomes nothing but the physical theory of universal phenomena, or of univer-
sally coupling physical agents. In some sense, this is merely the effect of a semantic drift, which drags
physical meaning over geometry every time there seems to be no exception to a given rule [155, 244].

9Namely, the existence of a conformal structure (of the Lorentzian, or normal-hyperbolic type) on
the base manifold. The conformal structure cannot be inferred from the free-fall motions of particles
alone, but has to be postulated in this case, being related to the propagation of e.g. light rays, which
do not enter the discussion of the systems pertaining to the Weak Equivalence Principle. Also, one
has to assume that the path/projective structure and the conformal one are compatible — that is,
every null auto-parallel curve for the conformal structure must be as well an auto-parallel according
to the projective criteria — which in turn equips the manifold M of a so-called Weyl geometry
structure [175, 442, 460, 476]. The required affine structure on the manifold emerges as soon as
one demands the Weyl geometry to be such that any affine auto-parallel curve is itself a projective
auto-parallel line, and the nullity of vectors according to the conformal structure is preserved under
parallel transport [175].
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on spacetime, call the latter “Γ” [497, 175]. Once the affine structure is in place,
the preferred trajectories become nothing but the auto-parallel curves of the
affine connexion, i.e. the lines whose tangent vector ua is parallel-transported
along itself,

ua∇aub = f(λ)ub , (2.6)

with λ a generic parameter along the curve. The association between gravita-
tional field and affine structure becomes perfect when one notices that, in the
absence of a gravitational field, the generic free-fall curves reduce to straight
lines in Minkowski’s spacetime, which themselves are indeed the auto-parallel
curves of a flat connexion, and thus express the inertial motions in both New-
tonian dynamics and special relativistic mechanics.

With introduction of Einstein’s Equivalence Principle, we add the notion
that local fundamental test physics complies with the framework of Special
Relativity [558, 557]. In a system of inertial, pseudo-Cartesian coordinates xµ :=
(x, y, z, ct), the metric ηab reduces to

ηµν ≡ diag (1, 1, 1,−1) , (2.7)

and it is possible to extract from it the only metric-compatible connexion “Γ(η)”,
i.e. the only connexion such that ∇(η)

a ηbc = 0. Γ(η) is flat by the definition of
ηab, i.e. the associated curvature tensor vanishes identically.

The combination of the Weak and Einstein’s Equivalence Principles allows
us to move further: the connexions Γ and Γ(η), which have in principle different
origins, must be locally indistinguishable because of the local equivalence of a
freely-falling reference frame in a gravitational field, and a non-accelerated one
in Minkowski spacetime, whence another daring association: Γ can be thought of
as the curved, metric-compatible connexion associated with a generic, non-flat
metric gab defined over the whole spacetime manifold [155, 154].

Actually, the curved metric gab on M can be introduced at an even earlier
stage, without deploying the full content of Einstein’s Equivalence Principle,
by simply requiring that local chrono-geometric measurements — namely, mea-
surements of spatial and time intervals — be not sensitive to the existence of
a surrounding gravitational field [155]. Einstein’s principle, however, permits to
build upon this conclusion, for it says that the same indifference to the presence
of a gravitational field holds, locally, for all fundamental test physics, and this se-
cures the capability to write the various laws of fundamental physics in a curved
spacetime as soon as their form is known in Minkowski’s one [497, 155, 154].

Notice that, in all this discussion, the notion of “locality” is potentially slip-
pery, and is always intended to be defined once a scale of curvature and a level
of accuracy/sensitivity of the measuring apparatus is provided.10

There is at this stage another important remark about Einstein’s Equivalence
Principle to be made. The statement of the principle is about the behaviour of
systems in presence and in absence of a gravitational field: this clearly concerns
the solutions to the equations of motion and/or field equations, rather than
the equations themselves. Formally, this can be obtained by demanding that

10Also, the laws of physics considered must be only those formulated in an entirely local way;
whenever non-local or global effects enter the game, as e.g. in quantum field theory on curved
spacetime, where there is a dependence on the notion of a global vacuum state, issues of technical
and interpretational character arise [496].
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the local structure of the Green function associated with a physical law be left
untouched when passing from a flat to a curved spacetime environment. This is
the condition to be enforced.

It is worth stressing out this aspect because Einstein’s Equivalence Principle
is often evoked as the rationale behind the “comma-goes-to-semicolon” rule, or
“minimal coupling” prescription, namely the idea that the equations of physics in
a curved background can be obtained by the corresponding ones in Minkowski
spacetime by simply substituting every instance of the metric ηab and of the
partial derivative operator ∂a with the curved metric gab and the covariant
derivative operator ∇a, respectively. This last protocol, however, crashes even in
the simplest case of a scalar field, where minimal coupling allows for the onset of
decidedly queer measurable effects [496, 498], which would immediately signal
the presence or absence of a gravitational field in a tiny region of spacetime.
Rather, the above-mentioned condition on the structure of the Green function
sidesteps this issue at once.

The formal consequences of the Gravitational Weak and Strong Equivalence
Principle are less immediate to define, whence their smaller diffusion in the
community, but particularly the former has a huge impact on the landscape
of gravity theories, thanks to its ability to act as a filter, and rule out a wide
portion of the models.

The Gravitational Weak Equivalence Principle will be given a full account
in Chapter 3; here, we anticipate some key concepts of our main results by
saying the following. In the extension of the universality of free fall to self-
gravitating systems not affecting appreciably the gravitational environment, one
obtains two conditions on the theory as a whole. Of these, one is the explicit
requirement that the environment ought to be empty of matter and fields other
than the gravitational ones, and the other is that the full information about
gravitational phenomena should be entirely and exclusively encoded into the
metric field alone, without other gravitational degrees of freedom [154].

As for the Strong Equivalence Principle, it is usually formulated as another
“impossibility principle”, demanding the presence of the metric field as the sole
responsible for gravitational phenomena.

There is, however, at least one recent proposal attempting to give the Strong
Equivalence Principle a completely new and different formal content; it has been
suggested in Refs. [216, 215], with apparently promising results. For sake of
completeness, we leave here a bird’s eye view of his achievements and potential
pitfalls.

Of gravitons and gluons: a new Strong Equivalence Principle?

Gérard’s idea stems from an old analogy between gravity and non-Abelian
gauge field theories; namely, that between Yang–Mills theory and General Rel-
ativity [216, 215].

To begin with, consider a non-Abelian theory characterised by some Lie alge-
bra with generators qh — the sans-serif superscripts refer to the representation
of the algebra, and are summed whenever repeated in the formulæ, regardless
of their position —. Suppose then that

Tr
(
qhqk

)
=

1

2
δhk ,

[
qh, qk

]
= i cihkqi , (2.8)
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with cihk the structure constants of the theory. A vector gauge potential Ah
k,

with values in the representation of the algebra, whence the sans-serif index,
acts as the Yang–Mills potential in the construction of the skew-symmetric field
strength tensor

F h
ab := ∂aA

h
b − ∂bAh

a + κchijAi
aA

j
b . (2.9)

The latter can be also defined in terms of the commutator

[Da,Da] ≡ − iκqhF h
ab , (2.10)

where in both equations κ is the coupling constant, accounting for the strength
of the interaction, whereas the gauge-covariant derivative Da reads

Da := I∂a + iκqhAh
a , (2.11)

with I the identity in the algebra. The field equations for the theory can thus
be obtained by simply requiring

DaF
hab = κjhb , (2.12)

in which one denotes with jha the four-vector current sourcing the dynamics of
the gauge potential.

Since in such theories the fields carry themselves the charges with which
they interact, a non-linear self-coupling is in general expected. This triggers
the possibility to describe gravity as well in this unified language. When it
comes to gravitational phenomena, the source of self-interaction is mass (and
energy), and the roles of the gauge potential and field strength are played by the
connexion and curvature, respectively [215]. Starting from the usual definition
of the curvature operator11

R d
abc := −[∇a,∇b] dc , (2.13)

it is not difficult to foresee that the new field equations will be [216]

∇dR d
abc = κjabc , (2.14)

where jabc is the new “current” sourcing the gauge potential, and the gravi-
tational self-interaction is encoded into the “ΓΓΓ” term present on the left of
Eq. (2.14).

This proposal drives the attention on the dynamics of the connexion, rather
than that of the metric — Eq. (2.14) is second order in the connexion coefficients
— and, in the proposal of Refs. [216, 215], Eq. (2.14) is advanced to embody
the crucial content of the Strong Equivalence Principle. The non-linearity of
gravitational phenomena is nothing but the reflection of the general arrangement
of Yang–Mills theories, to the point that, as in the words of Ref. [216], “gravitons
gravitate the way gluons glue”.

Condition (2.14) is a first example of a compact formalisation of the Strong
Equivalence Principle, and reproduces some well-known results in the case of

11In this case, the group representation is that of the orthochronous Lorentz group; the connexion
coefficients are thought of as Lie algebra-valued 1-forms, and the Riemann tensor is intended as a
Lie algebra-valued 2-form. In this sense, the indices in the symbols Γabc and R

d
abc have in principle

different status, and one can distinguish spacetime indices (referring to the manifoldM), and Lorentz
indices, defined on the tensor bundle whose base space isM . For an accessible presentation, see [468]
and references therein.
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General Relativity and scalar-tensor theories. It also presents, however, some
delicate issues. For instance, this formulation of the Strong Equivalence Principle
does not imply the Weak one, which must be postulated separately at the level
of the solutions of the field equations, to fix the value of an otherwise free
parameter. This appears odd, for the Strong Equivalence Principle is clearly
supposed to include the Weak one as a proper sub-case, hence the claim of
Refs. [216, 215] may probably need be slightly readjusted [154].

On top of that, when the protocol of Eq. (2.14) is used as a selection rule to
exclude gravity theories other than General Relativity, no general usage prescrip-
tion is provided in the original sources and, apart from the case of scalar-tensor
theories — discussed in some detail, but without any complete derivation of
the resulting constraint equations — no hints are present on how to extend the
procedure to other models.

2.3.3 From Equivalence Principles to selection rules

We have seen how the Equivalence Principles become effective and power-
ful “hooks” to better glue mathematical structures to gravitational phenomena.
This, however, is only one half of the story. The constructive role of the princi-
ples highlighted above is perfectly mirrored by their selective role. We can now
exhibit some examples of the sorts of sieves emerging from a wise application
of the principles of equivalence.

Starting from the basic step of the ladder, and adopting only the Weak
Equivalence Principle, any theory of gravity providing an affine structure on
the spacetime manifold M can be accepted, for the only requirement is that the
framework be able to exhibit a class of preferred world-lines on M .

Up to this point, then, the vast majority of the models listed in §1.3 is
permitted, for the presence of a privileged class of trajectories is quite a recur-
ring feature [155]. General Relativity is of course inside the set, as any other
model admitting a connexion in the base manifold. Interestingly enough, also
the metric-affine, affine, and purely affine theories can pass the sieve, and even
theories where the metric structure is absent at all, yet an affine connexion is
still available, are viable candidates. Finally, a geometrised version of Newto-
nian theory (Newton–Cartan theory, [332, 299, 160]) which includes an affine
structure, enters the roster as well.

The introduction of Einstein’s Equivalence Principle demands the local ex-
istence of a Lorentzian metric on the manifold, and that the affine connexion
be the Levi-Civita one. Also, it exacts the physical laws to locally abide by
the framework of Special Relativity; this greatly constrains not only the family
trees of possible models for gravitational phenomena, but also the entire class of
admissible physical theories, whose local equations need be Lorentz-invariant,
and whose predictions cannot depend on where and when the experiments are
performed. Besides, as stated, the local form of the Green function must be
insensitive to the presence of a gravitational field.

Given these premises, a careful application of the above-mentioned “comma-
goes-to-semicolon” rule permits to select the so-called metric theories of gravity,
i.e. all the theories in which the gravitational content of the model is encoded
at least into a metric tensor gab defined over spacetime, which in turn reduces
locally to the flat metric ηab [558, 557].
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We stress that Einstein’s Equivalence Principle demands the presence of
at least a metric structure incorporating informations about gravitational phe-
nomena, not “at most”; this means that all the theories incorporating other
gravitational degrees of freedom, in any form whatsoever, are not ruled out at
this stage, provided that they also exhibit a metric tensor, and that they guar-
antee Local Lorentz Invariance and Local Position Invariance for fundamental
non-gravitational test physics.

This last statement allows to clarify a final point: as long as the violations
of Local Lorentz Invariance are confined to the gravitational sector, and do
not affect the matter sector — which is the one involved in non-gravitational,
fundamental test physics — also all the theories commonly denoted as “Lorentz-
violating” (Einstein–Æther, or Hořava–Lifshitz) pass the sieve.

Finally, the Gravitational Weak and the Strong Equivalence Principle. His-
torically, both emerge at a much later stage in the process of theory-building,
when the supremacy of General Relativity is already assessed, and essentially
focus on the gravitational degrees of freedom, their type and dynamics, and
their mutual interactions.

Suppose then that a theory is given, in which one has the metric gab, at
least one scalar field φ, and some non-dynamical field Ak (we take momentar-
ily a vector, but any other object would work); the presence of gab is secured
by Einstein’s Equivalence Principle, and one might ask what is the effect of
the presence of φ,Ak. The additional gravitational variables cannot affect local
non-gravitational fundamental test physics (the latter “sees” only the metric,
and generates a gravitational field which is negligible because of the testness
character). At the same time, local gravitational experiments can be influenced
by the presence of φ,Ak by how the two fields couple to the metric; in particular,
the values assumed by the fields φ,Ak at the boundaries can affect the outcome
of some local gravitational experiment by introducing dependencies on the ve-
locity of the laboratory with respect to the environment, or on the position in
space and time.

In their pristine formulation, the Gravitational Weak and Strong Equiva-
lence Principles aim at ruling out the latter effects, and all the theories produc-
ing them. This is the reason why, in the statement of the Strong Equivalence
Principle found in the literature [558, 557], the universality of free fall for self-
gravitating systems — Gravitational Weak form — is accompanied by the re-
quirement of Local Lorentz iInvariance (which prevents velocity-related effects),
and Local Position Invariance (which prevents position-related effects).

Now, since General Relativity is described in terms of the metric field only,
and the local Minkowskian character of gab ensures Lorentz and Position invari-
ance, and since practically all the theories considered for a long time [558, 557]
all induce some preferred-frame or preferred-position effect, the natural result is
that, in four spacetime dimensions, the Strong Equivalence Principle picks Ein-
stein’s theory alone, and hence the conjecture holds that the Strong Principle
implies only General Relativity.12

The point of view we developed in Refs. [155, 154] is slightly different; in-
stead of examining the full content of the Strong Equivalence Principle, we have

12And Nordström’s gravity, actually [147, 147]. If the latter is not recorded in the conjecture,
is because the scalar theory is ruled out at the experimental level — no theoretical, nor formal
obstructions have been exhibited so far.
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focussed on its sub-set dedicated to the free-fall motion of self-gravitating sys-
tems alone, the Gravitational Weak Equivalence Principle. Surprisingly enough,
it seems that this proper part of the original statement is powerful enough to re-
cover the whole content of the selection rule implied by the “traditional” Strong
form, plus novel conclusions in the case of higher-dimensional environments.

If, then, the typical role ascribed to the Strong Principle can be shifted onto
the Gravitational Weak one, the problem arises to understand what further
piece of information this principle actually contains [155, 154]. As remarked
when recording the statement, the Strong Equivalence Principle deals, at least
potentially, with a much ampler class of phenomena than the mere free fall,
hence it should be possible in principle to invent and design tests of funda-
mental physics involving self-gravity (as in the case of gravitational waves, or
in mixed scenarios where e.g. electromagnetism and gravity can interact at the
fundamental level). The door is open on a new path towards a better under-
standing of these high-hierarchy principles of equivalence, and their formal and
experimental consequences.

We conclude this discussion by adding a last remark. At this stage, one usu-
ally introduces two further bottlenecks, by requiring that only “purely dynami-
cal, Lagrangian-based, theories of gravity” be taken into consideration [558].

A Lagrangian-based theory is one whose dynamical field equations emerge
from a (well-posed) variational principle, as the extrema of the first variation
of a given action functional, compatible with the class of assigned boundary
conditions. Such theories enjoy relevant properties, the most important being
the fact that the conservation equation for the stress-energy-momentum ten-
sor associated to the non-gravitational degrees of freedom, ∇aTab = 0, follows
from the gravitational field equations if and only if there are no non-dynamical
variables in the Lagrangian [309].

A purely dynamical theory is one in which all the degrees of freedom, in-
cluding the ones pertaining to gravity, have dynamical status, and no a priori
structures act as a background on which the other physical field live, or with
which they interact.

While these constraints do not emerge from any Principle of Equivalence, the
success of the relational, purely dynamical standpoint in physics is so overwhelm-
ing (General Relativity, Standard Model, path-integral formulation of quantum
field theory), that non-dynamical, “God-given” scaffoldings have been gradually
marginalised, and any true aspect of the world is expected to evolve dynami-
cally. Hence, all theories discussed in the second half of §1.3.1, and presenting
some a priori geometric quantity, should be rejected once and for all.

This request is in fact quite restrictive, and the argument might even be
turned against itself: all in all, even in the most dynamical of all our models,
General Relativity, there are fixed elements (topology, spacetime dimension,
signature), and implementing a dynamical character for any of such elements
can become extremely troublesome. Models exist, anyway, where some of these
remaining background structures are promoted to dynamical fields [421].
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2.4 Testing the Equivalence Principles
The validity of a principle relies on its ability to be reaffirmed by any exper-

iment designed to confirm or disprove it. The Equivalence Principle have lined
up on this righteous trend since their emergence in the debate on General Rel-
ativity and gravity theories, and have offered themselves to any sort of probe.
This has guaranteed a wide flow of data in the last century, with an overall
confirmation of the principles and their current formulation.

An interesting facet of the history of the experimental path to the principles
of equivalence is the fact that, being statements about the most fundamental as-
pects of nature, and their daring interpretations, they have ignited an extremely
rich and diverse pool of possible experiments, ranging from true “classics” (the
Michelson–Morley interferometer, the torsion balance), to unexpected detours
(old meteorites, signals from distant astrophysical sources, rotating compact
objects used as standard clocks).

In the paragraphs below, we have tried to briefly sketch a selection of results
concerning the tests of the Equivalence Principles discussed so far: the topic
is complex, and largely unnecessary for what follows, so we invite the inter-
ested Reader to peruse the vast literature on the topic, starting from the recent
review [557], and then diving in the references therein.

2.4.1 Main achievements in testing the principles
As for the Weak Equivalence Principle, most of the tests actually probe the

equivalence of inertial and gravitational masses; i.e., they are rather tests for
Newton’s Equivalence Principle in the context of free-fall experiments for a pair
of small, light, uncharged bodies.

A test body is an approximation for a compound system. Suppose then that
the gravitational mass mG differs from the inertial one mI because of the details
of the interactions occurring within the system; the result reads

mG = mI +
1

c2

∑
J

ξJEJ , (2.15)

where EJ is the internal energy in the compound body due to the J-th inter-
action, weighted by the coupling constant ξJ . The fractional difference in the
acceleration of two such bodies “1” and “2” would be then given by the so-called
Eötvös ratio

ζ :=
1

c2

∑
J

EJ,1/mI,1 − EJ,2/mI,2

EJ,1/mI,1 + EJ,2/mI,2
. (2.16)

Precision experiments on this tone have been carried around for more than a cen-
tury now [557], mostly involving torsion balances [185]. The settings have been
subsequently ameliorated, to account first for the Earth rotational drag, and
then for similar effects in satellite probes; the precision reached is currently [8]
of the order ζ ∼ 10−13, with a forecasted improvement up to 10−17 ÷ 10−18 for
future test both on Earth and in space [509].

Interestingly enough, an Eötvös-like experiment can be designed for peculiar
stellar configurations involving quickly-rotating compact objects; in 2014, the
discovery of a triple system made up of one pulsar and two companion white
dwarfs has attracted much attention for the possibility to make good use of the
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very different composition of the dwarfs with respect to the pulsar [450]. Other,
soon-to-occur space-based experiments involve drag-corrected satellites orbiting
around the Sun and carrying differential accelerometers with slightly different
internal composition, or sub-orbital rockets [509]. As for the micro-physical test-
benches, experiments with anti-hydrogen are currently under consideration [81].

As a side remark, we notice that probing Newton’s Equivalence Principle
via free-fall experiments, which turn out to be partly also tests for the Weak
Equivalence Principle, is not at all the only possible way; the different character
of inertial and gravitational masses can be inspected accordingly, e.g. by means
of collision experiments to evaluate mI, and by high-precision measurement of
weight to get a number for mG [155].

Einstein’s Equivalence Principle claims the equivalence of local, fundamental
test physics in the presence and in the absence of gravity. In the latter case, the
dominating framework for physical laws is Special Relativity, any test of special-
relativistic effects (and their violations) becomes an indirect confirmation of the
principle itself [557, 224].

What is truly delicate, in all these experiments, is the apt design of a
sufficiently “local” and “fundamental” phenomenon, such that the couplings
with gravity can be safely neglected, or at least flattened below the sensitiv-
ity threshold. Typically, one works with electromagnetic phenomena (recently
extended [131, 130, 300] to the whole Standard Model), or with emissions from
atoms. In either case, a wealth of secondary effects, due to the non-fundamental
nature of the objects involved, must be carefully taken under control.

For example, at low energies, a possible test requires to assume natural
units, then measure the value for the speed of light in vacuum c, and look for
tiny deviations in the parameter

δ :=
∣∣c−2 − 1

∣∣ , (2.17)

which can be obtained by measuring e.g. anisotropies in the hyperfine transitions
of complex nuclei with respect to the corresponding energy levels in standard
atomic clocks (the so-called “clock anisotropies”). In such cases, the precision
reached so far amounts to 10−22 ÷ 10−24 — see [443, 306, 120].

Testing Einstein’s Equivalence Principle also means testing the invariance
of the laws of physics with respect to the position in space and in time of
a local laboratory. A useful tool in this sense turned out to be the classical
Pound–Rebka experiment on the gravitational redshift, i.e. the difference in
wavelength or frequency of two standard clocks placed at different heights in a
static gravitational field [558, 557]. The current bounds on the spatial position
invariance reach 10−5, from comparison of a Hydrogen maser with a Cesium
atomic fountain for over a year’s time [46].

As for the local position invariance in time, its violations can propagate
to a corresponding variation in the fundamental constants [558, 532], as e.g.
the electron-proton mass ratio, the weak interaction constant αw := Gfm

2
pc/~3

(with Gf the Fermi constant), and the fine structure constant αe := e2/~c (e
the elementary electric charge). Then, one follows the evolution of the constants
over time, recording the values α̇/α, and puts the constraints. The accuracy in
this case reaches 10−16 for the fine structure constant from ancient meteorite
remnants filled with debris of 187Re [397].
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Many other options are available [341, 317, 130, 300], based on minimal
extensions of the Standard Model (probed in the infrared regime), or on non-
minimal such extensions (this time in the ultraviolet regime); see §4.3.1 for more
details.

When it comes to tests of the Strong and Gravitational Weak Equivalence
Principles, the issue becomes more delicate than ever. The intrinsically non-
linear character of gravitational interactions, the universal coupling of gravity
to all the other forms of physical agents, and so forth: it all seems to conspire to
make any experimental setting an intricate mess, leaving the researcher hopeless.

In an ironic twist, the classical Solar system tests, initially used to reveal
possible deviations from the Newtonian predictions, have been progressively
refurbished to look for deviations from General Relativity. The main effects
investigated, and the best precisions reached, are:

∗ The deflection of light, as the light rays graze the outer rim of a massive
source of a Schwarzschild-like gravitational field, compatible with the gen-
eral relativistic value within 10−4 from data of the Very Long Baseline
Interferometers [483].

∗ The time delay in a round trip about the above-mentioned mass, compati-
ble with the general relativistic value within 10−5 from data of the Cassini
satellite tracking [71].

∗ The periastron shift in a quasi-Keplerian orbit. In this case the planet
Mercury is still the best source available, and the results are compatible
with the general relativistic value within 10−7 [484].

∗ The Nordtvedt effect [384] (a sort of Eötvös-like effect for large, self-
gravitating extended masses), for which the Lunar Laser Ranging system
is vastly deployed, compatible with the general relativistic value within
10−4 — with some assumptions to get consistent results [384, 560, 559].

∗ The consequences of the existence of preferred frames and preferred loca-
tions, affecting spin polarisation and orbital polarisation; compatible with
the general relativistic value within 10−4 ÷ 10−9 [56, 367, 508].

Basically all these results, and a few others involving the sidereal relative
change of the gravitational constant and the gravitomagnetic effects, are ob-
tained on the basis of a powerful formalism developed to provide a precise —
yet general enough — description of all possible relativistic corrections of the
standard Newtonian formalism, including (but not being limited to) those due
to General Relativity, a possible “fifth force”, and higher-curvature corrections.
The so-called Parametrised Post-Newtonian formalism.

Which leads us to the next section.

2.4.2 The Parametrized Post-Newtonian formalism

The Parametrised Post-Newtonian formalism is a complex computational
algorithm, suitable for testing many types of metric theories of gravity. A fully-
detailed review of its features and achievements is available in Refs. [558, 557].
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Given the purposes of the present thesis, it suffices to provide a bird’s eye view
of some key elements.

The cornerstone of the method is made up of two ingredients: the metric
of spacetime, whose presence and dynamical character is ensured by Einstein’s
principle and by the purely dynamical hypothesis, and the matter fields. The
latter are supposed to be sensitive only to the metric, and not to any other grav-
itational degree of freedom — which they can still source in the field equations,
but without being acted upon.

Metric and matter become the main reference elements, upon which all the
rest of the language is built (including supplementary degrees of freedom ac-
counting for gravity, and non-dynamical geometric quantities). The method fo-
cusses on corrections to the Newtonian regime — i.e., in the weak-field, slow-
motion limit — whence the “post-Newtonian” expression in the name. Various
contributions from the matter terms (density, pressure and anisotropic stress of
a continuous medium) and from the motions (velocity of the fluid in a quasi-
Lorentzian reference frame, and thus derivative operators in space and time)
are recognised to have different orders of “smallness”, so that their effect can be
represented via powers of a small parameter ε in all the expressions.

The formalism then starts with an extremely general form of the metric [384,
383], one accounting for all possible add-ons to the standard Newtonian limit.
The particular shape of gµν is a sum of “metric potentials” built out of the
matter parameters (ρ, p,v, etc.), multiplied by the actual parameters of the
formalism. In particular, the Parametrized Post-Newtonian method works with
ten different parameters, variously interwoven in the expression for the metric,
each one accounting for a different effect.

For instance, the form of the spatial part of the metric, written in the nearly
global pseudo-Cartesian coordinate system xµ ≡ (x, y, z, ct), reads;13

ghk :=

(
1 + 2γ

U

c2

)
δhk +O

(
ε2
)
, (2.18)

where ε := U/c2, and the metric potential U is given by

U :=

ˆ
ρ (x′, t)

|x− x′|
d3x′ . (2.19)

The characteristic parameter γ indicates how much spatial curvature is endowed
by a unit rest mass (its value reduces to 1 in General Relativity, while remaining
unconstrained in other theories). Similar, but much more involved expressions,
are available for gi4 and g44, as functions of the mentioned ten parameters, and
of no less than 19 metric potentials similar to U — see Box 2 in Ref. [557],
and [556].

The PPN parameters account for many possible gravitational effects (pre-
ferred location effects, preferred frame effects, violation of conservation of total
momentum, rate of non-linearity in the laws of gravitational interaction [558]),
and are designed so as to reach their standard values when the theory under
consideration is General Relativity, in four spacetime dimensions. In this sense,
the formalism provides a test for the Strong Equivalence Principle.

13This peculiar choice of coordinate, named “PPN gauge”, removes at once any residual gauge
freedom from the formalism.
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To extract the actual values of the coefficients from a given theory of gravity,
the procedure requires to identify the gravitational degrees of freedom, assign to
them proper boundary/asymptotic values, expand in the post-Newtonian series
around those values, substitute in the field equations, solve iteratively for the
metric coefficients gµν up to order O

(
ε4
)
, compare with the expression (2.18)

and the object alike, and finally read out the values of the requested parame-
ters [558].

The current bounds in the tests for the Strong Equivalence Principle can
be presented as follows: the Eötvös ratio (2.16) applied to macroscopic objects
like the Moon [560, 559] is compatible with zero within one part in 10−4, and
is expected to vanish if the principle actually holds. In this case, the Lunar
Laser Ranging is the state-of-the-art apparatus devoted to this office [557]. No-
tice, however, that tiny deviations might be “effaced” by the cumulation of a
compensating tiny violation of the Weak Equivalence Principle for the micro-
scopic constituents of the extended bodies (tests capable of discriminating and
separating the two contributions are currently under development). Also, data
extracted from observations of compact objects in highly circular systems [508]
support the validity of the principle within 10−3 — recall that binary config-
urations are perfect candidates to confirm or disprove the general relativistic
framework [292, 508].

Finally, the preferred-location and preferred-frame effects in the examination
of the rate of change Ġ/G for Newton’s constant support the Strong Principle
to a remarkable figure of 10−20 [557], with data extracted from Lunar Laser
Ranging, binary pulsars, Solar seismology, and Big Bang nucleosynthesis.

2.4.3 Some remarks on the formalism
There are three fundamental elements to be underlined when it comes to a

critical reexamination of the PPN formalism, especially in relation to its purpose
to test the Strong Equivalence Principle.

First and foremost, a methodological consideration: the protocol lies at the
basis of many experiments involving the laser ranging of a self-gravitating body
like the Moon. A moment’s thought, however, allows to see that what is actually
measured in such cases is the equivalence of the inertial and gravitational masses
for a self-gravitating body, which is the content of the Gravitational Newton’s
Equivalence Principle presented in §2.2.3. As Newton’s Equivalence Principle for
test bodies is linked, but does not coincide necessarily, with the Weak Equiva-
lence Principle, the same difference holds for the Gravitational Weak form and
the Gravitational Newton’s one.

The fact that inertial and gravitational masses be equal, as seen before, does
not prevent the onset of violations of the universality of the free fall, provided
that the underlying theory admits equations of motion where not only the ratio
mG/mI, but also other combinations of the two masses are in principle available.
Whenever the onset of such other equations of motion is rejected ab initio, the
tests for the equivalence of inertial and gravitational mass are also test for the
universality of free fall.

It should be pointed out, however, that passing the test for the equivalence
mG = mI does not prevent completely the emergence of possible violations to
the universality of free fall for self gravitating bodies, which is indeed that Grav-
itational Weak Equivalence Principle we separated from the Strong Equivalence
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Principle for the logical reasons exposed in §2.2.3.14

Another aspect of some relevance concerns spacetime dimensions. As seen in
§1.3.4, there are now sound reasons not to limit one’s perspective to strictly four
dimensions. Higher dimensional environments have gained popularity in recent
years and, thanks to some stimulating proposals (AdS/CFT correspondence,
string theory, braneworld scenarios).

The Parametrized Post-Newtonian formalism, in this sense, needs some re-
furbishing, if it aims at extending its goal to rule out gravity theories on larger
manifold settings. As it stands, indeed, the method is clearly tailored on a four
dimensional spacetime, where probably all the fields present are defined on the
whole structure. Nothing meaningful can be stated in this sense about a model
built on a, say, ten-dimensional brane for which six dimensions wind up at mi-
croscopic scales.

In the same fashion, the tool is ultimately blunt when it comes to judge
e.g. the hierarchy of Lanczos–Lovelock polynomials: those models are precisely
purely dynamical and purely metrical theories [404], exactly as those which
in principle should pass the test of the Strong Equivalence Principle (and its
experimental sieve). It would be interesting to see what the formalism could say
about these theories, but the method ought to be retuned to fit in a higher-
dimensional setting.

While the Parametrised Post-Newtonian formalism remains a milestone in
gravity theories, for its full generality and effectiveness, there might be other
paths, and different strategies, to embrace an even larger, or simply a differ-
ent, subset of the family of extended theories of gravity, and see if, by means of
simpler arguments about the behaviour of physical systems, the Strong, or Grav-
itational Weak Equivalence Principles, may be tested, and used to discriminate
among gravitational theories.

We believe to have found a possible way to do so, and we shall discuss it in
the next Chapter.

14By the same token, also the proposal of Refs [216, 215], in the form implemented in his original
sources, ends up testing nothing but the self-gravitating version of Newton’s Equivalence Principle,
which is a bit less than the expected Strong Equivalence Principle.
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Chapter 3

Geodesic Motion and the
Gravitational Weak
Equivalence Principle

My problem can be formulated as follows:
how is it possible to tell a story, in the pres-
ence of the whole Universe?

I. Calvino, Lezioni Americane.

This is the point of the story where the two worlds collide: the wide landscape
of the extended theories of gravity and the sharp pruning tools of the equivalence
principles meet half way, their resonance generating a set of equivalence-based
selection rules for the family tree.

Our main goal can be summed up as follows: we want to extract, from the
Strong Equivalence Principle, a new principle with a selection power comparable
with that of the Weak and of Einstein’s forms. In Chapter 2, we have advanced
that a minimal sub-statement of the Strong form is the Gravitational Weak
Equivalence Principle, which encodes most of the currently tested features of the
Strong Equivalence Principle, and is generally used to rule out all the theories of
gravity but General Relativity. Still, the assessment of the Gravitational Weak
Principle remains formally unsatisfactory, and lacks a clear roadmap showing
how to impact on the space of theories and sieve it properly. Which leads us
naturally to the content of this chapter.

In the following pages we try to settle the issue, and to build a formal
structure framing the Gravitational Weak Equivalence Principle. The method
proposed here receives inputs from the geometrical interpretation of spacetime
(free-fall trajectories as privileged curves on a manifold), from classical results in
the dynamics of extended, yet small, physical systems (the Geroch–Jang theo-
rem), and from the variational formulation of gravity theories (well-posedness of
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variational problems). This, plus a due dose of inevitable limitations, results in
a pair of conditions to be satisfied for the geodesic motion to occur also for self-
gravitating test bodies. Conditions which can be put to work on the landscape
of extended theories of gravity.

What the Reader will find in this chapter is a refined version of the mate-
rial available in Ref. [154]. The notation has been slightly modified for sake of
consistency with the rest of the thesis.

3.1 Self-gravitating bodies
The very first step in our strategy towards a sieve for extended theories of

gravity is the examination of the notion of “self-gravitating systems”, for on such
concept we shall later pivot, to build the expected selection rule.

The difference between a test body with negligible self-gravity, and one whose
own gravitational field is non-vanishing, is non-trivial, in view of the peculiar
features of gravity (non-linearity, universal coupling, geometric interpretation).
This generates a certain range of technical difficulties and physical conundrums
when dealing with self-gravitating objects. Some issues can be sidestepped by
aptly playing with the relevant scales in the game (§3.1.1); some can be over-
come by restricting the observational windows (§3.1.2); some others, finally, turn
exactly into the keys to the final solution of the riddle.

In this section we provide the basic setup, and reply to some objections
against our proposal for the Gravitational Weak Equivalence Principle.

3.1.1 Apropos of the Gravitational Weak Equivalence
Principle

Since the founding pillar of our method is the Gravitational Weak Equiva-
lence Principle, we begin by restating it from §2.2.3.

Gravitational Weak Equivalence Principle — Test particles (both
self-gravitating and non-self-gravitating) behave, in a gravitational
field and in vacuum, independently of their properties.

This formulation can be considered, basically, qualitative. To build up a
formal sieve we need more precision. As recollected in §2.3.2, the Weak Equiv-
alence Principle serves to single out a family of preferred paths in spacetime,
which turn out to be the auto-parallel curves of a connexion and, later on, the
geodesics of a given (dynamical) metric field. We can now expect that the result
of the Gravitational Weak Equivalence Principle be a much similar statement,
and thus rephrase the version above with the following [154]:

Gravitational Weak Equivalence Principle (geometric version) —
The world lines of small, freely falling test bodies — with, or without
non-negligible self-gravity — do not depend on the peculiar physical
properties of the bodies themselves.

In reference to this “geometric translation” of the equivalence principle, three
aspects need be discussed: the “testness” character of the physical system under
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consideration; the range in which this statement can be applied meaningfully;
the possible physical obstructions preventing its onset.

The hypothesis of working with strictly test bodies cannot be relaxed: since
the Gravitational Weak Equivalence Principle extends the Galilean universal-
ity of free fall to self-gravitating bodies, for this extension to make sense, the
behaviour of the objects must still be universal. This means that the environ-
ment where they live in must remain unchanged when different systems, with
different self-gravitational content, are compared on the basis of their free-fall
motion (see [154], and §3.2.3). Which leads back to the very definition of test
bodies, as provided in §2.2.2.

At the same time, the “testness” required is a highly idealised scenario: even
an extremely tiny object, such as e.g. a micro-black hole orbiting around a
massive, extended body like a planet (or a star), will be far from being a test
particle when inspected from close enough. The overall motion of the micro-black
hole in the gravitational field of the planet might very well approximate that
of a test mass in the same environment, but the strong spacetime curvature in
the surroundings of the object will greatly distort the nearby zone, to the point
that the “test limit” will not be valid anymore.

To overcome this conundrum, we can select a wide enough spacetime re-
gion (a world-tube Abody “sieging” the distribution of self-gravitating matter)
such that the effects of the “non-testness” of the system fall below the sensi-
tivity threshold outside Abody, and can thus be neglected for all practical pur-
poses [154].

As soon as the notion of Abody is introduced, a second issue emerges. In the
geometric version of the Gravitational Weak Equivalence Principle, world-lines
are required, rather than the world tubes. While that of a world-line is a precise
concept from the point of view of its dynamical evolution (one only has to
assign an initial position and a four-velocity, together with the equation (1.10)
for the geodesics — or more general differential equations for other lines), that
of a world-tube is a much more vague concept, and its evolution can only be
sketched, particularly if its internal structure is shadowed.

The solution is to restrict the analysis to the right scales: if the system under
consideration is small enough, its world-tube Abody does not differ substantially
from a world-line Cbody, so that its dynamical evolution becomes better defined,
and the issues associated with the extended character can be sidestepped en-
tirely [154].

Switching from world-tubes to world-lines is not a leap one takes with a light
heart; if we decided for this simplification of the problem was only because we
knew that the essential feature of self-gravitating test bodies — viz., their self-
gravity — could be recovered independently of their geometric representation
as tubes or lines, and because this sort of approximation is supported by a long
series of results in large-scale and cosmological simulations, where immensely
vast physical systems, of the size approaching that of an entire galaxy, are
seamlessly reduced to “point-wise particles” in almost-free-fall motion [344, 214,
507].1

1The gist in this last case is the following: at cosmological scales, the trajectories of particles are
described in terms of the congruence of timelike curves making up the fundamental reference fluid
(and the particles in this case are intended as elementary, infinitesimal, ideal entities). Physical
systems constituted by large aggregations of matter are modelled by “bumps” in a density field
distribution. In particle-based simulations, these bumps are later traded for point particles endowed
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As a second step, we detail on the range of validity of the Gravitational
Weak Equivalence Principle. To this end, suppose for a moment that the self-
gravitating system under consideration can be described exhaustively in terms
of e.g. a point mass equipped with a spin vector, or a quadrupole moment, or any
combination of higher multipoles, as done frequently in the study of extended
masses [249]. Then, the coupling of such additional geometric structures with
the spacetime curvature will in general spoil the “free” character of the free-fall
— in the equations of motion there will emerge force terms proportional to the
curvature — and in general the behaviour will not be universal anymore. The
validity of the Gravitational Weak Equivalence Principle would then disappear.

Such issue, however, only partially overlap with the notion of self-gravity.
In fact, even a non-self-gravitating test object can be equipped forcefully with
additional multipole structure. This means that the sort of violations of the
Gravitational Weak Equivalence Principle expected in this case pertain also
to the Weak Equivalence Principle. To give one example, a spinning particle
(without any contribution from self-gravity) will be governed by the following,
Papapetrou–Mathisson–Dixon equations [353, 413, 340, 161]

ub∇bua = − 1

2m
R a
bcd u

dSbc , (3.1)

where m is the mass, and Sab is the spin tensor.2 Notice that the driving force
on the right-hand side, being dependent on the mass and the spin, makes the
behaviour of the spinning particle non-universal. Similar considerations apply
to a quadrupole tensor, or to any other multipole structure.

The failure of the Weak, and Gravitational Weak, Equivalence Principle in
this case can be attributed entirely to the existence of some sort of spurious
“structure” attached to the system under consideration, be it self-gravitating or
not. A way to restore the original validity is thus to reject the structure-endowed
bodies and focus only on the structure-less ones [154]. While this situation seems
much more detached from the actual experimental conditions in which both the
principles are tested (see §2.4.2), it is also true that, once the rotational status
and internal distribution of the masses of a self-gravitating system has been
assessed, multipole corrections can be properly evaluated and excluded from a
data-set via appropriate filters.

The contribution given by the proper self-gravitational content deserves in-
stead a separate discussion.

3.1.2 Self-gravity and self-force
Back to our self-gravitating body, there will be a certain amount of gravita-

tional radiation emitted by the system as it moves through spacetime. In prin-
ciple, nothing prevents the radiation from back-scattering off the surrounding

with a mass proportional to the over-density, and their evolution is studied once the equations
of motion and the initial conditions are assigned. In a simulation where enough coarse-graining is
present, a single point can be given (very roughly) the mass of a galaxy — which is hardly a small
body, let alone a test system — so that its world-line is able to provide indications on the overall
motion. Much finer-grained simulations use, as “points”, systems whose mass equals millions or
billions of Solar masses. Small corrections are then added to account for the effects of the extended
and self-gravitating character of the systems before their reduction to a point.

2The notion of “spin” used here is strictly classical: the tensor Sab, or the related spatial spin
vector Sa, is an object of non-quantum character [514].
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gravitational field, and impacting the system itself at a later time. The result is
a second contribution, usually extremely tiny, making the motion non-geodesic
and acting as a force not much different from the term on the right in Eq. (3.1).

This contribution is known as the tail term [427, 570, 350, 445, 248], and it is
interesting to sketch the idea behind this further correction to the free-fall mo-
tions.3 One begins with a self-gravitating system and an external background.
The former is chosen so as to be as simple as possible, by both enclosing it in
an aptly-chosen world-tube, and by reducing its intrinsic complexity (broadly
speaking, this amounts to picking a non-rotating, black-hole-like solution for the
self-gravitating body [350]); the latter is equally chosen so as to erase unneces-
sary complexity. The next step is to study, separately, the tidal deformations of
the self-gravitating system due to the interactions with the environment, and
the tidal deformations of the environment due to the self-gravitating system.
To this end, one introduces an “internal zone” where the body dominates and
the background is a perturbation, and an “external zone” where the opposite
conclusion holds.

In the external zone, the presence of the system is treated using linear per-
turbations of the background [350]. One introduces the linearised field equations

� ζab + 2R c d
a b ζbd = −16πG

c4
Tab , (3.2)

with Tab the stress-energy-momentum tensor of the system, expressed in this
case as a Dirac delta function — the self-gravitating body is approximated by
a point particle —, and ζab the small perturbation of the background metric,
call it ḡab (the latter provides in turn the d’Alembertian operator, the curvature
tensor, etc.). The general solution of Eq. (3.2) is the Green functionGab

c′d′
(z, y′)

in its Hadamard form, a two-point tensor (or bi-tensor) [517, 143, 152] which
reads

Gabc′d′ (z, y
′) =

1

4π2

(
Uab

c′d′
(z, y′)

σ (z, y′)
+ V abc′d′ (z, y

′) log |σ|+W ab
c′d′ (z, y

′)

)
,

(3.3)
with σ being Synge’s world-function [142, 143, 517], i.e. one half of the squared
geodesic distance between the points z and y′ — z = z (τ) represents the world-
line of the body, whereas y′ is a generic point in spacetime.

The two-point functions U and V are singular for σ → 0, whereas W is
regular; calculating the explicit form of these functions is complex, but such
result is not required for the evaluation of the tail term. All one has to notice
is that the perturbation ζab of the background in the external zone can be
expressed as

ζab (y) =
4m

r
Uabc′d′ (y, z

′)uc
′
ud
′
+ ζabtail (y) , (3.4)

with the “tail term” ζabtail (y
α) given by [350]

ζabtail (y) = 4m

ˆ τret

−∞
V abc′d′ (y, z

′)uc
′
ud
′
dτ ′ . (3.5)

3The technical details of this treatment of the problem greatly exceed the scope of the thesis.
The interested Reader is invited to peruse the literature on the topic of self-force, which is per se
a source of stimulating questions and challenges [247]. An excellent starting point is e.g. the short
presentation in Ref. [429], and then the thorough review [427]. For an examination of the problem
of self-energy in classical Newtonian gravity see Ref. [230].
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In the previous formula, z′β = z′β (τ ′) is any point on the world-line representing
the system, yα is a generic point in spacetime, τret is the value of the proper
time at a “retarded” point (as in the Liénard–Wiechert potentials), ua

′
is the

value of the four-velocity at the same retarded point.
This result can be now incorporated in the treatment of the internal zone,

where one sets up the equation of motion of the system influenced by the back-
scattering of its own gravitational radiation off the background spacetime; the
final outcome of the calculation (which requires some simplifying assumptions
and a truncation of the series expansion) reads [350]

z̈α (τ) = −Kαβγδ (z (τ))∇δζtailβγ (z (τ)) . (3.6)

Here, zα (τ) — τ the proper time — is the coordinate representation of the
world-line of the self-gravitating system; Kαβγδ is a tensor given by

Kαβγδ =
1

2
żαżβ żγ żδ + gαβ (z (τ)) żγ żδ − 1

2
gαδ (z (τ)) żβ żγ+

− 1

4
gβγ (z (τ)) żαżδ − 1

4
gαδ (z (τ)) gβγ (z (τ)) (3.7)

and ζtailβγ (z (τ)) is the tail term (3.5) itself. The actual determination of the
covariant derivative of ζtailαβ present in Eq. (3.6) needs calculations involving the
higher derivatives of the world-function and of the Green propagator [517, 350,
152].

Since the tail term clearly depends on the self-gravitational interactions oc-
curring in the system, and renders the motion both non-geodesic — hence, not
free — and body-dependent (the mass intervenes in the expression of ζtailαβ ), it
prevents us from implementing the Gravitational Weak Equivalence Principle.
The problem is completely general, and affects any theory of gravity; therefore,
one can conclude that the free-fall motion of self-gravitating bodies does not
happen at all, not even in General Relativity [427] (and yet, as seen in §2.3.3,
Einstein’s theory is supposed to implement the Strong Equivalence Principle,
and thus the Gravitational Weak form as well).

The traditional solution is to sidestep the issue completely; this is done by
introducing first an intermediate “buffering zone”, where the effects of the mu-
tual perturbations in the internal and external zones are both non-negligible;
then, one builds up a suitable metric g̃ab — obtained with the matched asymp-
totic expansion technique [428, 350] — such that the effects of the tail term are
reabsorbed into the dynamics of g̃ab. To this end, one builds the connexion coef-
ficients Γ̃abc corresponding to the metric g̃ab so as to incorporate, at the leading
order in the matched asymptotic expansion, the tail force, and then imposes the
further constraint that g̃ab be a solution of Einstein’s field equations [350]. The
resulting scheme is that of a full-fledged spacetime M ≡ (M, g̃ab), where the
motion of the self-gravitating system becomes once again geodesic [350, 445].

While this solution is in principle acceptable, it has some drawbacks. As for
the tail term (3.5) itself, it requires an integration over the entire history of the
body under consideration — the “−∞” in the integration —, which prevents
any attempt to compare the behaviour of any two systems with non-negligible
self-gravity. Actually, to determine the precise form of ζtailαβ , the entire history of
the self-gravitating system ought to be under control, and this appears quite an
unrealistic possibility.
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Second, the introduction of the metric g̃ab completely decouples the self-
gravitating objects from the non-self-gravitating ones: the latter all live on the
spacetime generated by the background metric, call it ḡab, for which the self-
gravitational phenomena can be neglected, including the tail term. The former,
on the other hand, now live on another spacetime (that where the metric is g̃ab),
which on top of that is body/mass-dependent, therefore the mere experimental
comparison of the free-fall motions becomes impossible [154].

To sum up: at the end of this process, the only “free-falling” property still
holding will be the existence, for a self-gravitating body, of geodesic motion on
some spacetime, but certainly not on the same spacetime as that of all the other
self-gravitating (and non-self-gravitating) systems [154].

To get out of this deadlock, we can proceed as follows: upon noticing that
the contribution from the tail term is usually minuscule, we can agree upon
considering it as it were below the sensitivity threshold for the sorts of free-
fall experiment we are dealing with. Stated otherwise, the Gravitational Weak
Equivalence Principle we are formulating is designed so that the tail contribution
is neglected ab initio.

This slightly “restrained” version of the Gravitational Weak Equivalence
Principle will guarantee that the statement hold true, to begin with, in the
case of General Relativity, as it is generally assumed in the literature [558, 557]
and confirmed in many high-precision experiments.

3.2 Geodesic motion of small bodies

Since the Gravitational Weak Equivalence Principle aims at achieving the
same result as its Weak counterpart, but for the ampler sample of both non-self-
gravitating and self-gravitating test bodies, we need to explore in the physical
and mathematical laws at the roots of the geodesic trajectories, and find an
apt upgrade to the results holding for structureless systems with negligible self-
gravity.

3.2.1 The Geroch–Jang–Malament theorem

The main result in the motion of tiny bodies endowed with non-vanishing
self-gravity dates back to a theorem first proven by Geroch and Jang as early
as 1975 [217]. The proposition has been then ameliorated in 2004 by Ehlers and
Geroch [174], and both the versions have been carefully examined in the 2010’s
by Malament [332], who has settled a few tiny issues and polished the edges.

We begin by establish some warm-up results in the special relativistic case,
which will turn out to be useful in a moment [360, 217]. Consider an extended,
isolated body represented by a stress-energy-momentum tensor Tab, defined over
Minkowski spacetime MSR ≡

(
R4, ηab

)
and with compact support;4 its history

is then represented by a suitable world-tube W spanning a region over MSR.
Suppose furthermore that Tab is divergence-free, i.e. that ∇(η)

b T ab = 0, with
∇(η)
b the affine connexion associated with the flat metric ηab. One can prove

that, for any Killing vector fields ξa on MSR, there exist a vector pa and a

4This last condition characterises the insular systems [360].
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skew-symmetric tensor Jab = J[ab] such that
ˆ

Σ

Tab ξ
bnadΣ = Jab (λ)∇aξb − pa (λ) ξa . (3.8)

The integral is extended to any spacelike three-surface Σ cutting W , and is
independent on the choice of Σ in view of the conservation of Tab and Killing’s
equation ∇(aξb) = 0. The two quantities pa and Jab in Eq. (3.8) depend only on a
generic parameter λ (in view of the integration over Σ), and can be interpreted,
respectively, as the four-momentum, and the (total) angular momentum about a
point, of the system [217]. If one also supposes that the stress-energy-momentum
tensor satisfies the dominant energy condition,5 then the vector pa emerges as
everywhere timelike and future-directed.

Given an arbitrary inertial reference frame in which the isolated system is
described, it is possible to find there the world-line of a point sharing the same
definition and properties as the Newtonian centre of mass [360]. Such a point
is thus called itself centre of mass, yet it is a frame-dependent notion, in the
sense that in each inertial frame it is possible to define a different such centre. A
common feature of all the centres of mass is that they are at rest in the inertial
rest frame of the system itself. Of particular significance is then the centre of
mass evaluated in the inertial rest frame of the body (proper centre of mass).6
One can prove [360, 217, 49] that the coordinates xα0 = xα0 (τ) of the proper
centre of mass are linear functions of the proper time of the point, and that the
world-line of the proper centre of mass is a future-pointing, timelike geodesic.
Also, the four-momentum and four-velocity of the system are connected by the
relation

pα = Muα0 , (3.9)

with M = −pαpα/c2.
That the world-lines of the centres of mass (and, in particular, that of the

proper centre of mass) do not deviate from the “average motion” of the body
can be seen by showing that the curve C0 represented by the xα0 (τ) remains
everywhere inside the convex hull of the body (i.e., the union of all segments of
spacelike geodesics with both endpoints in the world-tube W ).

Hence, in the absence of gravity, there exists a notion of “almost geodesic
motion” of an extended isolated body, which follows from the conservation of
the stress-energy-momentum tensor — and the existence of a certain number of
Killing symmetries of the background spacetime —. As soon as gravity is “turned
on”, however, the resulting spacetime does not possess, in general, enough Killing
fields to preserve the validity of the special relativistic result. This is the point
where the Geroch–Jang Theorem comes handy.

The statement of the Theorem reads

Theorem (Geroch, Jang). Let C be a smooth curve in a spacetime M ≡
(M, gab). Suppose that, given any open subset U of M containing C , there exists
a smooth symmetric field Θab on M such that: (a) Θab satisfies the strengthened

5That is [537], for all points P ∈M , and for all unit time-like vectors ξa at P , it is Tab ξaξb ≥ 0,
and, if Tab 6= 0, then Tab ξb is time-like.

6The fact that the proper centre of mass of a body is the centre of mass of the same body
evaluated in the body’s rest frame is expressed by the relation paJab = 0 [360, 217, 49].
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dominant energy condition; (b) Θab 6= 0 at some point in U ; (c) Θab = 0 outside
of U ; (d) ∇bΘab = 0. Then, C is a timelike geodesic on (M , gab).

Before sketching the proof, we notice that the tensor Θab evoked in the
Theorem shares many properties with the usual stress-energy-momentum tensor
of a matter distribution mentioned in the special relativistic argument above.
This is not a coincidence: the Geroch–Jang result is designed precisely to suit
the needs of describing the almost-geodesic motion of a matter-energy budget
in a curved spacetime.

The proof is based on the ultra-local, special relativistic character of any
curved spacetime: in a neighbourhood of C , one fixes a flat metric ηab and a
corresponding flat derivative operator ∇(η)

a such that the two coincide, on C ,
with gab and ∇a, respectively. The flat structure allows to define the quantities
pa, Jab as in Eq. (3.8). Then one evaluates the difference

∇(η)
a Θab =

(
∇(η)
a −∇a

)
Θab , (3.10)

and discovers that such difference can be made arbitrarily small by suitably
rescaling the size of the support of Θab. Further considerations related to the
intersections of the convex hull of the body with the possible slices Σ allow to
conclude that C must be arbitrarily close to some η-geodesic, which is possible
only if C itself is a geodesic with respect to ∇(η)

a ; but the derivative operators
yield ∇(η)

a = ∇a on C , therefore C must be also a geodesic with respect to the
full metric gab, which concludes the proof.

This result, as said, has been reconsidered later on by Ehlers and Ge-
roch [174]. There, it is remarked that the result of the Geroch–Jang Theorem
strictly refers to extended bodies not equipped with self-gravity — for which
Θab can actually be identified with the stress-energy-momentum tensor of some
matter fields — whereas the (mildly) self-gravitating systems are covered by the
upgraded, version of the theorem. In this latter case, the new statement reads

Theorem (Ehlers, Geroch). Let C be a smooth curve in a spacetime M ≡
(M, gab). Consider a close neighbourhood U of C , and any neighbourhood Û of
gab in C1 (U ). Let there exist, for every such U , if sufficiently small, and every
such Û , a Lorentz-signature metric g̃ab inside Û whose Einstein tensor G̃ab: i)
satisfies the dominant energy condition everywhere in U ; ii) is nonzero in some
neighbourhood of C ; and iii) vanishes on ∂U . Then C is a g-geodesic.

Much emphasis is put on the presence of the Einstein tensor instead of
a generic, symmetric and divergence-free tensor Θab; this substitution allows
Ehlers and Geroch to reduce to C1 the degree of convergence in the space of
metrics used in the proof (with Θab, one requires in general a C2-convergence),
but later in the paper [174] it is specified that the result holds as well if one
considers again the original, generic tensor Θab, as nowhere in the proof appear
the field equations for the metric gab. In this sense, the two theorems by Geroch
and Jang, and by Ehlers and Geroch, can be used interchangeably; we shall
stick to the former for sake of convenience and generality — the presence of the
Einstein tensor in the formulation by Ehlers and Geroch can weaken the future
use of the statement in the landscape of extended theories of gravity.

The importance of the result by Geroch and Jang for our specific purposes
can be understood after highlighting the following elements. To begin with, if
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the world-tube U where Θab is non-zero can be approximated, for all prac-
tical purposes, by a world-line, then the theorem assures that the world-line
itself will be a geodesic for the spacetime M . This is desirable, as in §3.1.1 we
have established that the test bodies with non-negligible self gravity to which
the Gravitational Weak Equivalence Principle applies are described in terms of
curves on the spacetime manifold.

Second, in view of the remarks by Ehlers and Geroch, the statement of the
theorem is completely general, and does not make any distinction between self-
gravitating and non-self gravitating bodies [154]. As long as a Θab satisfying
properties (a)–(d) of the theorem exists, there will be a world-line within the
world-tube which turns out to be a geodesic for the metric gab.

While this conclusion might seem encouraging, a moment’s reflection shows
that it is actually worrisome: if two different bodies, a non-self-gravitating test
one, and one with non-negligible self gravity, both travel along geodesics, then
the Gravitational Weak Equivalence Principle is hardly a principle (its entire
content duplicates that of the Weak Equivalence Principle), and most likely not
a selection rule, for it singles out all the theories already permitted by the Weak
form.

The point here lies in the metric we are dealing with when considering a
test body without self-gravity, and one endowed with some self-gravitational
content. The problem is the same as the one explored in §3.1.2, only rephrased
here in the light of Geroch’s and Jang’s theorem.

In the former case (non-self-gravitating system), the body does not back-
react on the given environment, so it moves along the geodesics of the back-
ground metric, call it ḡab from now on. The spacetime M̄ on which the test
particle lives is thus M̄ = (M, ḡab).

In the latter case (self-gravitating body), the self-gravity of the system is
actually sourcing the overall gravitational field, for the Θab of the body also
accounts for its self-gravity, and this contributes to the field equations generating
the metric of the compound, non-linearly interacting pair “background plus self-
gravitating body”. Hence, the particle now lives on the spacetime M̃ = (M, g̃ab)
with g̃ab 6= ḡab, and it is along the geodesics of this second spacetime that it
moves, as per the Geroch–Jang theorem.

This, however, looks like an equally worrisome conclusion, for the presence
of two different spacetimes makes the possibility of testing the Gravitational
Weak Equivalence Principle hopeless: the two gravitational arrangements do
not communicate, and the very idea of comparison a the roots of our strategy
falls apart.

From this reexamination of the theorem we extract that the test bodies with
negligible self gravity will all follow geodesics of the background metric field,
hence will determine a subset of preferred trajectories on M̄ ; in this sense,
Geroch’s and Jang’s theorem provides an independent argument in favour of
the Weak Equivalence Principle. Such conclusion, however, does not extend to
self-gravitating small bodies, for their world-lines will in general depend on the
the bodies themselves, and will unwind on a body-dependent spacetime; which
violates the supposed universality of free fall for test particles endowed with
non-negligible self-gravitation.
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3.2.2 A geodesic for self-gravity
There is a way out. Basically, it amounts to incorporating the intuition by

Ehlers and Geroch into that by Geroch and Jang. Suppose that we identify Θab

in the Geroch–Jang theorem with the stress-energy-momentum tensor Tab of
some matter field without self gravity; then, suppose to find another symmetric
tensor Θ′ab, satisfying conditions (a)–(d) of the theorem, which is still divergence-
free with respect to the same background metric, i.e.

∇̄bΘ′ab = 0 , (3.11)

where the symbol ∇̄a denotes the covariant derivative built out of the back-
ground metric alone (and the indices are raised and lowered with ḡab). If this
new tensor accounts also for the self-gravity content of a small body, then, by
the statement of Geroch’s and Jang’s proposition, the world-lines of the physical
system represented by Θ′ab will still be the geodesics of the background space-
time — i.e., the lines along which the bodies satisfying the Weak Equivalence
Principle move.7

Another element to consider is that, if we want to compare the trajectories
of the self-gravitating system with those of test particles with negligible self-
gravity, the condition of being test has to be retained for the self-gravitating
systems as well.

Stated otherwise, the self-gravitating system represented by Θ′ab must be
such that its self-gravity represents only a small perturbation of the overall
gravitational field (of which it will be a non-negligible source, however tiny).
Once this further assumption is introduced, finding the correct form of Θ′ab
reduces to a matter of suitable series expansions in an apt parameter.

Before moving on, a few remarks on some aspects of the Geroch–Jang The-
orem which are of great helpfulness when extended theories of gravity come
into play. First, the theorem does not say anything about the detailed form of
the field equations involved, requiring only the existence of the tensor Θab —
or of the alternative candidate Θ′ab, as just seen —. At the same time, when
self-gravity is “switched off”, or when the whole gravitational phenomenon is
neglected, Θab reduces to the usual stress-energy-momentum tensor Tab, so it
appears quite natural to consider any theory of gravity such that its field equa-
tions can be cast in the form

Eab = Tab , (3.12)

In this sense, Eq. (3.12) naturally encompasses all metric theories of gravity
with full dynamical character, i.e. theories in which the gravitational degrees of
freedom are encoded at least in a symmetric, rank-2, covariant tensor gab. On
the left side of Eq. (3.12), there appears the generalised Einstein tensor [154],
which is itself symmetric and divergence-free with respect to the full metric
gab for consistency with the conservation of Tab. Eab draws its name from the
archetypical case of General Relativity, in which it is

Eab =
c4

8πG
Gab , (3.13)

7Θ′ab cannot reduce to the stress-energy-momentum tensor Tab of the system, as the latter does
not involve the self-gravity [154].
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with Gab the usual Einstein tensor.
Also, the result of the theorem is not influenced by the presence of other

gravitational degrees of freedom: as long as the field equations can be reshuffled
so as to appear as in Eq. (3.12), nothing in Geroch’s and Jang’s statement
forbids the presence of more dynamical gravitational variables. From the simple
scalar field in Brans–Dicke theory in the Jordan representation, to the wildest
proliferation of tensors in multi-metric theories, many frameworks outlined in
§1.3 can be considered seamlessly.

Finally, the result is dimensional-independent, i.e. it can be exported to any
number of spacetime dimensions compatible with the Lorentzian signature of
the metric. This as well is an advantage, for it permits us to work with all
sorts of lower-dimensional and higher-dimensional schemes, as those presented
in §1.3.4.

3.2.3 Limits, boundaries, and constraints
In §3.1 above, we have sketched some issues affecting the overall validity of

the Gravitational Weak Equivalence Principle. Here, we discuss a few other tech-
nical aspects concerning, and potentially threatening, the construction achieved
so far.

In the statement of the Geroch–Jang theorem, the conditions (a)–(d) are
sufficient, but not necessary, to assure the existence of the geodesic path for
the self-gravitating body. Suppose then that assumption (d) is violated by some
tensor Θ′ab for which instead hypotheses (a)–(c) hold; we can prove that the lack
of a covariant conservation of Θ′ab implies a non-geodesic motion.

To this end, we adapt a passage from the argument in [445]. Suppose that Θ′ab
is a good representative of the stress-energy-momentum of the system (including
its self-gravitational content), in the sense that the overall four-momentum of
the body can be expressed as the integral

pa =

ˆ
Σ

Θ′
a
bn
b
√
hd3y , (3.14)

extended to a spatial slice Σ, with na aligned with the “four-velocity” vector ua
providing, point by point of spacetime, the tangent to the world-line representing
the body. The force acting on the system is given by

fa = ub∇bpa =

ˆ
Σ(τ)

£wa

(
Θ′

a
bn
b
√
h
)

d3y , (3.15)

where the Lie derivative £wa is taken along the vector wa generating the passage
from one spatial sheet Σ (τ) to another (the lapse function in an Arnowitt–
Deser–Misner split). The expression above further reduces to [445]

fa =

ˆ
Σ(τ)

∇bΘ′
ab
wcnc

√
hd3y . (3.16)

If the tensor Θ′ab is not covariantly conserved, nor is trivially proportional to
the four-velocity ua, then a non-zero force emerges along its trajectory, and the
latter ceases to be a geodesic, i.e. the required equivalence principle cannot hold
anymore.
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We can then conclude that the Gravitational Weak Equivalence Principle
holds for a self-gravitating test body if and only if condition (3.11) is satisfied, by
a tensor Θ′ab also abiding by conditions (a)–(c), with Θ′ab such that the difference
Θ′ab − Tab accounts for the self-gravitational content of the system [154].

Another issue concerns hypothesis (c) in the theorem above. Indeed, an
isolated body represented by a stress-energy-momentum tensor can certainly be
arranged so that Tab has compact support, or is even confined entirely on the
world-line of the system; the same cannot be said, however for the tensor Θ′ab;
the latter includes the contributions from the gravitational field, which extends
all over the manifold M .

A detailed analysis shows [79] that the leading contributions come from the
radiative corrections (due to the gravitational self-radiation, as explained in
§3.1.2), and from the static gravitational field of the body. If r denotes a radial
coordinate on the spacetime, then the radiation terms fall off as r−2, whereas
the static field drops as r−4; neither function has compact support. Of the two,
however, the radiation corrections can be neglected, in view of the argument
provided in §3.1.2.

As for the static field, we remark that the role of hypothesis (c) in the
Geroch–Jang theorem is to allow for an integral of a function proportional to
Θab, performed on a spacelike sub-manifold, to be traded for an integral over a
domain coincident only with the volume of the body.

Now, if we call R a variable denoting the average size of the world-tube
associated with the self-gravitating system, and M the overall mass enclosed
in the tube, then the correction due to the external static gravitational field
will be of order GM2/R. Upon comparing this value with the inertial energy
Mc2, we usually find that only a tiny fraction of the proper energy comes from
self-gravity, even in the case of extremely compact objects. All we have to do,
then, is to choose R such that the world-tube can still be approximated by a
single line, and yet R be significantly larger than the Schwarzschild radius of the
system under consideration, so that the fractional energy budget reserved for
the higher corrections is negligible. If we manage to set the value of R properly,
the integration required by the theorem can be truncated at R, which becomes
the boundary of the domain of spacetime outside which the self-gravity can be
thought to have compact support for all practical purposes.

Nordström’s scalar theory and the Geroch–Jang theorem

We conclude this part with a short remark concerning Nordström’s theory
(§1.1.2), and models alike. The discussion is quite “raw”, and its purpose is just
to convey a qualitative idea of the argument.

At first glance, Eq. (3.12) seems to exclude scalar theories from the game,
for it strictly requires field equations in a symmetric tensor form; a moment’s
pondering, however, shows that all is required by the Geroch–Jang theorem is
the existence of a certain tensor satisfying specific conditions, regardless of the
field equations.

In Nordström’s theory such a tensor exists for the matter — it is precisely the
tensor whose trace enters the field equations (1.15) — and it satisfies the required
conditions, including the conservation equation, which has to be referred to the
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connexion compatible with the metric gab = Φ2 ηab (problems with condition
(c) can be sidestepped via the same, general argument provided above).

This symmetric tensor contributes to the construction, in Nordström’s the-
ory, of the analogue of the object Θ′ab of Eq. (3.11), with the inclusion of a (tiny)
self-gravitational contribution depending on the gravitational potential Φ. On
the other hand, the covariant derivative ∇̄a used to take the divergence of Θ′ab
must be built out of a background metric ḡab, which in this case will be given
by

ḡab = Φ̄2 ηab , (3.17)

with Φ̄ the background gravitational scalar field.
If the protocol just outlined does not clog along its setup, the conclusion

will be that the Gravitational Weak Equivalence Principle will be validated in
Nordström’s theory as well.8

3.3 Locking the conditions for geodesic motion

We can now sew together all the ideas gleaned so far. The path is structured
in three stages. First, we introduce a perturbative expansion accounting for the
idea of the self-gravitating small systems as being still “test” objects with respect
to a (dynamical) background; the upshot is the form for the tensor Θ′ab around
which the application of the Geroch–Jang theorem pivots. Second, we exhibit
a link between Eq. (3.11) and the variational formulation of the general field
equations (3.12) for a given theory of gravity, whereupon a formula emerges,
unlocking the actual conditions to have Eq. (3.11) satisfied. Finally, we discuss
the main aspects, implications, and interpretations of these conditions.

3.3.1 Perturbative expansions

Our proposal is intrinsically perturbative in nature, as it must account for
the notion of “testness” of the small, self-gravitating masses. This means that
the gravitational degrees of freedom need be split into a background part and a
(small) perturbation [154]; to this end, we begin by defining the metric tensor
expansion as

gab := ḡab + ε γab , (3.18)

where the background is denoted by an over-bar, and ε is a bookkeeping parame-
ter embodying the small effect of the perturbation. From now on, any geometric
or physical quantity referring to the background will be equally denoted by an
over-bar, and the study of only leading-order terms of the perturbation series
will demand us to neglect any contribution from ε2 onwards (ε2-terms included).

The decomposition (3.18) propagates up to the field equations, where any

8This is comforting; indeed, Nordström’s theory is known to abide by the Strong Equivalence
Principle, as proven with different methods (PPN expansion [557], and Katz super-potentials [149,
147, 148]). Actually, what both the methods offer is a proof that inertial and gravitational masses
are equal in Nordström’s scheme for self-gravitating systems as well, but this is a result validating
the Gravitational Newton’s Equivalence Principle rather than the Gravitational Weak form (let
alone the Strong principle, which encompasses an even broader range of physical phenomena).
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term can be expanded into a series of ε, giving

Eab = Ēab + ε Eab + E
(2+)
ab , (3.19)

Tab = T̄ab + ε Tab + T
(2+)
ab . (3.20)

where the script letters denote linear terms in the series, whereas the superscript
“(2+)” denotes all the higher-order terms.

Whenever the perturbation is “switched off”, the field equations reduce to
the zeroth-order term, which reads

Ēab = T̄ab . (3.21)

At this point, we make the further assumption T̄ab = 0, i.e. we imagine that the
self-gravitating system is freely falling in a matter-free background spacetime.
Such hypothesis complies with the usual treatment of the problem [350]. This
assures that the stress-energy-momentum tensor reduces to the small contribu-
tion of the self-gravitating particle alone — call it T (p)

ab — so that the general
field equations (3.12) become

ε Eab = T
(p)
ab − E

(2+)
ab . (3.22)

If we can prove that the background covariant divergence of the tensor Eab
vanishes identically (“background covariant divergence” means the covariant di-
vergence built out of the background metric alone), then the right-hand side of
Eq. (3.22) can be assumed as a new stress-energy-momentum tensor, including
the self-gravity of the small body, to which the Geroch–Jang theorem applies.
The body will thus move along geodesic lines of the background spacetime. In
other words, if

∇̄bEab = 0 , (3.23)

we are allowed to define an effective stress-energy-momentum tensor

Θ′ab := T
(p)
ab − E

(2+)
ab , (3.24)

to which the content of Geroch–Jang Theorem applies9. In Θ′ab, indeed, the
tensor T (p)

ab satisfies all the hypotheses of the proposition by definition, whereas
E

(2+)
ab is such that its addition to the ordinary stress-energy-momentum tensor

does not make condition (a) fail, and such that condition (c), as seen in §3.2.3,
can be mildly relaxed without spoiling the net result [154].

Therefore, the line C on which the self-gravitating system moves will be a
geodesic of the background metric ḡab. Notice that, since ḡab is the same metric
on whose geodesics the body moves when the self gravity is switched off, it
behaves like a non-self-gravitating test body. We have then proper terms for
comparison, as both the self-gravitating and non-self-gravitating systems are
now moving on the same spacetime.

9In particular, Θ′ab is symmetric by construction, is non-zero on the curve approximating the
world-tube of the self-gravitating system, and falls off sufficiently rapidly outside it (for any given
experimental sensitivity λ, one can find a region outside the curve where

∣∣Θ′ab∣∣ < Cλ2, with C a
positive constant); also, the strengthened dominant energy condition is satisfied at the leading order
because T (p)

ab complies with it, and all the contributions in E(2+)
ab are at least of order ε2, whereas

T
(p)
ab is of order ε.
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In view of these conclusions, Eq. (3.23) gains the status of necessary and suf-
ficient condition to formalise the content of the Gravitational Weak Equivalence
Principle [154].

To sum up, condition (3.23) is the one to be checked in order for a given
theory of gravity to satisfy the Gravitational Weak Equivalence Principle. We
are now in the position of verifying it for a wide class of theories, i.e. those with
field equations in tensor form emerging from a well-posed variational principle
— which we need to get Eqs. (3.12) and (3.23).

This method to confirm or disprove the validity of the equivalence principle,
however, can be further refined. Given an action for a gravitational theory, we
shall show now how to establish a connection between the variational formu-
lation leading to the field equations, and condition (3.23). A connection which
makes checking the equivalence principle a matter of inspecting the action itself,
without varying it, or perform any ε-series expansion.

3.3.2 Variational arguments

Let S be an action for a physical theory involving both gravitational and
non-gravitational degrees of freedom, which decouples in the sum

S := Sgrav
[
gab,ΠJ

]
+ Smatter

[
gab, ψK

]
, (3.25)

where the inverse metric gab is assumed as the independent variable. The term
Sgrav encodes all the gravitational variables, denoted here by the pair

(
gab,ΠJ

)
,

with {ΠJ} a collection of all the other gravitational degrees of freedom besides
the metric. Without loss of generality, we can think for the moment that {ΠJ} is
made of a single scalar field φ [154]. The term Smatter, on the other hand, encodes
the non-gravitational dynamical variables, represented here by the collection
{ψK} (from now on, a single field ψ will be used). The universal coupling of the
gravitational phenomena also demands that Smatter depend on gab, but not on
φ.

The field equations for all the dynamical variables emerge upon varying the
action S with respect to all the degrees of freedom, provided that the variational
problem be well-posed. To this end, we notice that, in general, Eq. (3.25) is
written explicitly as

S =

ˆ
Ω

(Lgrav + Lmatter)
√
−g dny , (3.26)

where Ω is the coordinate representation of a region in spacetime, and the
Lagrangian densities L ’s are functions of the fields, and their derivatives of
arbitrary order. The variational problem thus reads

δS = 0 , (3.27)

Upon switching the variation δ and the integral in (3.26), and extracting the
various functional dependencies, it is

δS =

ˆ
Ω

(
δSgrav

δgab
δgab +

δSgrav

δφ
δφ+

δSmatter

δgab
δgab +

δSmatter

δψK
δψK

)
dny , (3.28)
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provided that all the functional derivatives in round brackets exist — to this
end, apt boundary terms might need to be deployed —. The field equations are
finally found from Eq. (3.27), upon imposing the condition that the variation of
the dynamical fields vanishes on the boundary ∂Ω.

By incorporating the perturbative approach developed in the last section
with the variational formalism outlined above, we get that, in general, if the
fields admit a decomposition of the type (3.18), then the same will hold for the
action. Specifically, the gravitational sector will be written as [154]

Sgrav = S̄grav + εSgrav + S(2+)
grav , (3.29)

where S̄grav = Sgrav
[
ḡab, φ̄

]
, i.e. it is the original action evaluated in the back-

ground fields only, whereas the linear part S is given in general by

Sgrav := Sgrav
[
ḡab, γab, φ̄, χ

]
, (3.30)

where we have set, following (3.18),

φ = φ̄+ ε χ+ φ(2+) . (3.31)

We now vary the action (3.29) with respect to the dynamical variables —
notice that ḡab and γab are independent degrees of freedom —. The variation of
Eq. (3.29) with respect to ḡab gives

δS̄grav

δḡab
+ ε

δSgrav
δḡab

+
δS

(2+)
grav

δḡab
=
δSgrav

δḡab
=
δSgrav

δgcd
∂gcd

∂ḡab
=
δSgrav

δgab
. (3.32)

Since it is, by definition, Eab = (2/
√
−g) δSgrav/δg

ab, at first order in ε it is also

δSgrav

δgab
=

√
−g
2

Eab =

√
−ḡ
2

Ēab + ε

√
−ḡ
2

(γ
2
Ēab + Eab

)
, (3.33)

where we have used the expansion (3.19) for the generalised Einstein tensor,
and Eq. (B.3) for the expansion of the determinant; also, it is γ := ḡabγ

ab. A
comparison of the relation above with Eq. (3.32) allows to separate the two
contributions Ēab and Eab, given by, respectively [154]

Ēab =
2√
−ḡ

δS̄grav

δḡab
, (3.34)

Eab =
2√
−ḡ

δSgrav
δḡab

− γ

2
Ēab . (3.35)

We can also observe that, since the matter action Smatter does not depend on
the additional gravitational degrees of freedom, it will be, at the zeroth order,

δS̄grav

δφ̄
= 0 . (3.36)

Two other relevant relations we need, emerge from the variation of the first-
order action Sgrav. We begin by rewriting Sgrav as the derivative of the gravita-
tional action with respect to the small parameter ε; we set dV :=

√
−g dny,10

10The symbol “V” is a Gothic — or “Blackletter” — capital “V”, a reference to the (hyper-)
volume of the spacetime region. The old convention of denoting the tensor densities with Gothic
letters is now fading away; once it was common ([360, 479, 477, 478]) to take a general expression
such as

√
−gAabc...lmno...z , and denote it with the corresponding Gothic symbol Aabc...lmno...z , but habits

are dynamical, and trends rise and fall.

73



and get

Sgrav
[
ḡab, γab, φ̄, χ

]
=

(
dSgrav

[
gab, φ

]
dε

)
ε=0

=

ˆ
Ω

dny

[(
δSgrav

δgab

)(
dgab

dε

)
+

(
δSgrav

δφ

)(
dφ

dε

)]
ε=0

=

ˆ
Ω

dny

(
−δS̄grav

δḡab
γab +

δS̄grav

δφ̄
χ

)
=

ˆ
Ω

dV̄

(
−1

2
Ēab γ

ab +
1√
−ḡ

δS̄grav

δφ̄
χ

)
. (3.37)

In the above formula, the expression “ε = 0” on the second line refers to each
term in the sum of the products, hence the fields in the functional derivatives
reduce to their background terms, whereas the minus sign in the third and
fourth line comes from the usage of γab. Upon performing the further variation
of Eq. (3.37) with respect to the independent variables γab and χ, by comparison
one gets the relations [154]

δSgrav
δγab

= −
√
−g
2

Ēab , (3.38)

δSgrav
δχ

=
δS̄grav

δφ̄
, (3.39)

which we could have already guessed by noticing that εSgrav corresponds to the
first-order variation of the whole gravitational action in terms of the varied fields
δgab = −ε γab and δφ = ε χ.

The results in Eq. (3.37) are valid as long as the functional derivatives exist,
i.e. as long as the variational problem is well-posed. This can be achieved only
upon fixing some boundary conditions on the dynamical variables and their
derivatives on the boundary ∂Ω, to get rid of spurious instances of terms like
δ∇Ψ for some arbitrary field Ψ. Such consideration is relevant for our work,
but has general validity: if the variational principle of a physical theory is not
well-posed, the theory itself (or, rather, its representation in terms of the given
dynamical variables) is intrinsically flawed [171].

All the formal structure for gravity theories built so far is to be background
independent [227], i.e. it has to be invariant under arbitrary diffeomorphisms of
the coordinates. This means that, if ξa is an infinitesimal vector generating the
diffeomorphism, order by order in the ε-expansion we must have [542]

δS̄grav = δSgrav = · · · = 0 . (3.40)

The second condition in the list translates intoˆ
Ω

dmy

(
δSG
δḡab

δḡab +
δSG
δγab

δγab +
δSG
δφ̄

δφ̄+
δSG
δχ

δχ

)
= 0 , (3.41)

where Eq. (3.39) can be used, together with the zeroth-order condition (3.36),
to get rid of the last term in the sum. It is also δḡab = ∇̄(bξa) and δφ̄ = ξa∇̄aφ̄,
with ∇̄a built out of the background metric only. It follows, then,ˆ

Ω

(
−2 ∇̄bξa√

−ḡ
δSG
δḡab

+
δγab√
−ḡ

δSG
δγab

+
ξa ∇̄aφ̄√
−ḡ

δSG
δφ̄

)
dV̄ = 0 , (3.42)
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We can integrate by part the first term, erasing a total divergence by demanding
that ξa vanish on ∂Ω; it results
ˆ

U

dV̄

[(
∇̄b
(

2√
−ḡ

δSG
δḡab

)
+

1√
−ḡ

δSG
δφ̄
∇̄aφ̄

)
ξa +

1√
−ḡ

δSG
δγab

δγab
]

= 0 .

(3.43)
Under a diffeomorphism, δγab is given by

δγab = ξc∇̄cγab − γcb∇̄c ξa − γac∇̄c ξb , (3.44)

and this can be substituted in Eq. (3.43), yielding the expression
ˆ

Ω

dV̄

(
∇̄bEab +

∇̄aφ̄√
−ḡ

δSG
δφ̄
− 1

2
Ēbc∇̄aγbc − ∇̄c(Ēab γcb) +

1

2
∇̄b(γ Ēab)

)
ξa = 0 ,

(3.45)
The diffeomorphism-invariance of the theory demands that this expression

vanish for any arbitrary ξa, hence we arrive at the final formula [154]

∇̄bEab = − 1√
−ḡ

δSG
δφ̄
∇̄aφ̄+

1

2
Ēbc∇̄aγbc + ∇̄b(Ēacγbc)−

1

2
Ēab∇̄bγ , (3.46)

where we have used the conservation equation ∇̄aĒab = 0 emerging from the
diffeomorphism-invariance of S̄grav, together with the zeroth-order field equa-
tions on φ̄, Eq. (3.36).

Eq. (3.46) above is the result we were looking for, i.e. a general condition
relating the background covariant divergence of the first-order generalised Ein-
stein tensor, and the gravitational content of an arbitrarily assigned theory of
gravity with metric and non-metric gravitational degrees of freedom.

We can now elaborate on the obtained result, and link it with the general
picture of a test for the Gravitational Weak Equivalence Principle.

3.3.3 Results, comments, and interpretation
To sum up: the search for a test of the Gravitational Weak Equivalence

Principle points at the geodesic character of the spacetime trajectories of small,
self-gravitating, yet test bodies on a dynamical background. This specific type
of motion is achieved once one finds a suitable tensor, covariantly conserved
with respect to the background in which both the self- and non-self-gravitating
test bodies move (this comparison is necessary for the result to be physically
meaningful). The “testness” of the systems forces this tensor to be the first-order
perturbation of the generalised Einstein tensor, i.e. the non-matter contribution
to the gravitational field equations of a theory of gravity. Finally, variational
arguments allow to find a relationship, given in Eq. (3.46), between ∇̄bEab and
other constituents of the theory examined.

Back to Eq. (3.46), by comparing it with the necessary and sufficient con-
dition for the equivalence principle to hold — Eq. (3.23) — we find that the
Gravitational Weak Equivalence Principle is satisfied if and only if [154]

Ēab = 0 , (3.47)
δSG
δφ̄

= 0 . (3.48)
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These are the two necessary and sufficient conditions to implement the geodesic
motion of self-gravitating small bodies in a given theory of gravity. Being quite
different, the two relations deserve a separate analysis.

Eq. (3.47) demands that, in view of the field equations (3.12), the back-
ground surrounding the self-gravitating system be devoid of matter. This is a
common assumption when dealing with tests of the Gravitational Weak (and
Strong) Equivalence Principle, usually introduced for sake of simplicity and eas-
iness of calculation. In this approach, however, the presence of a matter-empty
environment emerges as a fundamental condition to have almost-geodesic mo-
tion. That something like this had to crop up can be understood also from the
following argument, related to what we have said in §3.1.1.

In the Newtonian regime, consider a self-gravitating body with gravitational
potential Ψ, placed in a background with matter distribution represented by
the Newtonian density ρ̄; the density of the potential energy associated with
the combined system is given by ρ̄Ψ — the analogue of “mM/r” for point
masses — and the body exerts a gravitational pull on the background. At the
same time, because of the action-reaction principle, the background acts on
the body by means of the same force, hence the body gets a non-vanishing
force contribution and its motion cannot be anymore “free” in any sense [154].
The general relativistic analogue of ρ̄Φ is the combination T̄acγcb, which is an
indicator of some sort of potential; the presence of the covariant derivative is
then related in a way to a “force”, and this is ultimately the reason behind the
last three terms in the sum (3.46).

Eq. (3.48), on the other hand, accounts for a condition on the nature of the
gravitational degrees of freedom involved; it states that, in a matter-free environ-
ment, the theory will abide by the Gravitational Weak Equivalence Principle if
and only if the gravitational degrees of freedom are solely encoded in the metric
structure, and no other variables are bound to gravity. Hence, in the sub-class
of the purely dynamical theories of gravity, it singles out only the purely metric
ones, i.e. the theories of gravity in which gab alone is in charge of gravitational
phenomena.

This result echoes the Strong Equivalence Principle [558, 557], whose main
role is generally thought to be the selection of General Relativity only — plus,
in four dimensions, Nordström’s scalar gravity (but the latter is ruled out at the
experimental level).

We have shown, then, that the goal of the Strong Equivalence Principle, i.e.
singling out Einstein’s theory in the crowd of the extended theories of gravity,
can be achieved already at the lower level of the Gravitational Weak Equiva-
lence Principle, which deals with the restricted subset of phenomena involving
massive, self-gravitating test bodies, and not the whole category of gravitational
physics (which encompasses also e.g. gravitational radiation).

A a final remark: if we suppose that a purely metric theory of gravity is
assigned, so that condition (3.48) is satisfied, we may conjecture that the other
condition, (3.47), could be sidestepped by deploying an apt gauge transforma-
tion, one making the terms involving the γab’s disappear. The starting point
would be the transformation

γab 7→ γ′ab = γab + 2∇̄(aζb) . (3.49)
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This step, however, would not be effective. The vector ζa generating the gauge
transformation has four independent degrees of freedom, which are not enough
to kill out all the independent variables. On top of that, a change in γab would
result in a subsequent change of Eab, which in turn would give more terms in
the transformed version of Eq. (3.46).

A few remarks on the Yang–Mills-inspired proposal for the Strong
Equivalence Principle

The above results allow us to say something more on the “non Abelian Strong
Equivalence Principle” of Refs. [216, 215]. There, one adopts the field equa-
tions (2.14) in view of the analogy between General Relativity and non-Abelian
Yang–Mills field theories. A further simplification proposed (but not thoroughly
justified) is to work in vacuo, in the sense that the current jabc sourcing the
dynamics of the connexion is set to zero identically. At any rate, it follows that
the actual equations embodying the Strong Equivalence Principle become [216]

∇dR d
abc = 0 , (3.50)

and must be assumed as the formal translation of the equivalence principle in
Strong form. The proposal is then checked by imposing (3.50) as a set of con-
straints on a metric of the type used in the Parametrised Post-Newtonian for-
malism and indeed recovers independently the two conditions on the parameters
pointing at General Relativity. In [216] it is also advanced that the condition to
be checked in the case of e.g. a scalar-tensor theory with additional gravitational
variable φ is

∇d
(
φR d

abc

)
= 0 , (3.51)

instead of (3.50).
It has been already pointed out in §2.3.2 that, in this framework, the Weak

Equivalence Principle is implemented as a separate condition (its role being
to set to 1 the value of one post-Newtonian coefficient). Whatever is at stake
in this case, then, is neither exactly the Gravitational Weak Equivalence Prin-
ciple (which includes the Weak form), nor the Strong Equivalence Principle
(which builds upon the Weak form). At the very best, we can conclude that
condition (3.50) is the other element forming the Strong Equivalence Principle
together with the separately postulated Weak one.

The situation becomes even less clear when extended theories of gravity are
considered. Eq. (3.50) may still be tracked back to a Yang–Mills approach to
gravity. What to say, however, about the emergence of Eq. (3.51)? The scalar
field and the connexion there appear with different orders of derivations in the
same conservation equation, and no Lagrangian leading to the dynamical struc-
ture (3.51) is provided. This somewhat weakens the suggested full generality
and validity of the condition.

In conclusion, while this alternative formulation of the Strong Equivalence
Principle might present interesting aspects in view of its unorthodox point of
view, and may have dug out some new hints towards a better understanding
of the nature of gravity, it seems that it deserves further study to be brought
to its full maturity, so that a complete pattern can emerge — one leading to
conditions (3.50) from first principles, possibly incapsulating the add-on for the
Weak Equivalence Principle to hold, and providing a full dynamical character
to its equation (3.51), or one alike for extended models.
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3.4 Sieving the landscape
Now that the sieve has been set up, it is time to let the stream of gravity

theories try to pass it, and reject those which do not comply with the require-
ments.

Indeed, there is something more: the various passages leading to Eq. (3.46)
— and conditions (3.47)–(3.48), for the theories abiding by the principle —
permit to have the landscape of gravity theories unveil some hidden aspects
about the “true” nature of some proposals.

3.4.1 Acid test: General Relativity
To begin with, we check the validity and consistency of our method by

applying it to General Relativity. Einstein’s theory is of course expected to pass
the test, being precisely the framework upon which the Gravitational Weak
Equivalence Principle has been originally tailored.

Therefore, we rewrite the action (1.25) (General Relativity, plus cosmological
constant and boundary counter-term), and get

SGR =
c4

16πG(n)

ˆ
Ω

(R− 2Λ)
√
−g dny + BGHY . (3.52)

For later convenience, we have already chosen a generic n-dimensional spacetime
(no result will be affected by this). The action is supplemented by the matter-
sector action (1.19), which will provide the stress-energy-momentum tensor Tab
via Eq. (1.14).

Upon varying Eq. (3.52) with respect to the inverse metric gab, with bound-
ary conditions δgab = 0 on ∂Ω, we are left with what we have called the gener-
alised Einstein tensor; in this specific case it is

Eab :=
c4

8πG(n)
(Gab + Λgab) , (3.53)

and it reduces to the ordinary Einstein tensor Gab when the cosmological con-
stant vanishes.

Condition (3.48) holds for General Relativity: this can be seen by noticing
that, by construction, the theory is purely metric — in the metric-variation
approach —. Then, whenever the model is considered in a matter-vacuum back-
ground, T̄ab = 0, whence Ēab = 0, and Eq. (3.47) is satisfied identically.

This last statement can be proven independently, via a full calculation of
the background-covariant divergence of the first-order generalised Einstein ten-
sor [556], i.e. ∇̄aEab; to this end, we first notice that it is, at first order in the
ε-expansion,

ε Eab =
εc4

8πG(n)
(Gab − Λγab) , (3.54)

with εGab the linear term of Gab, and γab from decomposition (3.18). In detail,
one has

Gab =
1

2

[ (
∇̄c∇̄aγbc + ∇̄c∇̄bγac

)
− ∇̄c∇̄cγab − ∇̄a∇̄bγ

− ḡab
(
∇̄c∇̄dγcd − ∇̄c∇̄cγ

)
+ ḡabγ

cdR̄cd − γab R̄
]
, (3.55)
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(the full derivation of the above formula is available in Appendix B), and evalu-
ating the background-covariant derivative of Eq. (3.55) is an instructive exercise
in differential geometry and index gymnastics. The resulting formula is given in
Eq. (B.17).

Upon noticing that, in a vacuum background T̄ab = 0, the vacuum field
equations become

Ḡab = −Λḡab , (3.56)

whence, always in dimension n,

R̄ab =
2Λ

n− 2
ḡab , (3.57)

R̄ =
2nΛ

n− 2
. (3.58)

The substitution of these two terms in the covariant divergence of Eq. (3.55)
leads, after some passages, to the formula

∇̄bGab = −Λ∇̄bγab , (3.59)

and this result can be introduced in ∇̄bEab to find,

∇̄bEab = 0 , (3.60)

as expected. General Relativity hence complies with the test of the Gravita-
tional Weak Equivalence Principle [154]. In Einstein’s framework, small, self-
gravitating bodies without further multipole structure move on geodesics of the
background metric (provided that all the caveats listed in §§3.1.2, 3.2.3 are taken
into account).

While this result was somehow expected to emerge, a new feature is that
the validity of the principle holds even when the cosmological constant is non-
zero, and this is a scenario not so often considered in the literature. Indeed, the
Parametrised Post-Newtonian formalism described in §2.4.2 for four-dimensional
spacetimes traditionally focusses only on the case Λ = 0.11

3.4.2 Other warm-up case studies
For the next step, we move to another classical model where the behaviour of

self-gravitating test bodies is well known— in this case, it is known to violate the
Gravitational Weak Equivalence Principle, hence also the Strong form —. We
refer to the class of scalar-tensor theories (in four spacetime dimensions) [191,
103, 204].

With reference to §1.3.1, the action in this case is given by

SST =
c4

16π

ˆ [
φR− ω (φ)

φ
∇aφ∇aφ− V (φ)

]√
−g d4y + BST . (3.61)

Since, however, we look for violations of the principle, we can restrict to a
slightly simpler sub-case, and consider the Brans–Dicke proposal obtained from

11Most likely, because of the extremely tiny value of Λ, but also because the protocol is designed
to build Solar-system experiments, where Λ can be safely neglected for all practical purposes —
and thus cannot account properly for a more cosmologically-oriented setting.
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the general form above by reducing the function ω (φ) to a constant, and the
potential V (φ) to zero. We are thus left with

SBD =
c4

16π

ˆ [
φR− ω

φ
∇aφ∇aφ

]√
−g d4y + BBD . (3.62)

The idea behind Brans’ and Dicke’s model is to promote the gravitational
coupling constant G to a field over spacetime, so that the “distant masses” (in
the Machian sense) can in a way affect the local inertial frames by inducing a
change in the way gravity couples universally to matter and to itself. Variation
of Eq. (3.62) with respect to gab yields the new tensor Eab, namely

Eab =
1

8π

[
φGab −

ω

φ

(
∇aφ∇bφ−

gab
2
∇cφ∇cφ

)
−∇a∇bφ+ gab�φ

]
, (3.63)

which equals the source Tab emerging from the matter sector. In addition to
this, one has to vary Eq. (3.62) with respect to the scalar field φ, to account for
the dynamical behaviour of the long-range scalar field; the result is

R− ω

φ2
∇aφ∇aφ+

2ω

φ
�φ = 0 . (3.64)

By taking the trace of Eq. (3.63), which equals T := gabTab from Eq. (3.12), and
substituting this result in the formula above, one gets the other field equation

�φ =
8π

3 + 2ω
T , (3.65)

and the two, (3.64) and (3.65) can be used interchangeably.

By comparing the action (3.62) with condition (3.48), we get that Brans–
Dicke theory does not comply with the Gravitational Weak Equivalence Prin-
ciple, for it is not a purely metric theory of gravity. Even in a matter-vacuum
background environment, the non-zero term δS/δφ̄ will prevent the onset of the
geodesic motion. We have then to expect that Eq. (3.48) has a non-vanishing
term on the right-hand side, and this can be seen explicitly by extracting the
background-covariant divergence of the tensor Eab, which in this case is given
by [154]

Eab =
1

8π

(
φ̄ Gab + χ Ḡab −

ω

φ̄

(
∇̄aφ̄ ∇̄bχ+ ∇̄aχ ∇̄bφ̄

)
+
ω χ

φ̄2
∇̄aφ̄ ∇̄bφ̄

− ω

2φ̄
ḡab γ

cd∇̄cφ̄ ∇̄dφ̄+
ω

2φ̄
γab ḡ

cd ∇̄cφ̄ ∇̄dφ̄+
ω

φ̄
ḡab ḡ

cd ∇̄cφ̄ ∇̄dχ

− ω χ

2φ̄2
ḡab ḡ

cd ∇̄cφ̄ ∇̄dφ̄− ḡabγcd ∇̄c∇̄dφ̄− ḡab ḡcd Ξecd∇̄eφ̄

+Ξcab∇̄cφ̄+ ḡab ḡ
cd ∇̄c∇̄dχ+ γab ḡ

cd ∇̄c∇̄dφ̄− ∇̄a∇̄bχ
)
, (3.66)

with Ξabc defined in (B.5), and Gab as in (3.55).
This expression looks intimidating, and its manipulation can become unman-

ageable. Before even starting turning the crank, we notice that there is another
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way to look at the situation. Consider the background equations in vacuum,
namely

Ēab = 0 , (3.67)

and rewrite them, thanks to (3.63), in the equivalent form

Ḡab = κT̄
(φ)
ab , (3.68)

where the new “stress-energy-momentum” contribution associated to the scalar
field φ is given by

T̄
(φ)
ab =

ω

φ̄2

(
∇̄aφ̄ ∇̄bφ̄−

1

2
ḡab ∇̄cφ̄ ∇̄cφ̄

)
+
∇̄a∇̄bφ̄
φ̄

− ḡab
�̄φ̄

φ̄
, (3.69)

(we suppose of course that φ̄ 6= 0 everywhere). We have now a condition in which
we are basically dealing with General Relativity — hence, condition (3.48) is
satisfied — in the presence of a non-vanishing background matter contribution,
which in turn spoils condition (3.47).

We can then see the Brans–Dicke theory either as a framework with an
additional scalar degree of freedom, or as a purely metric theory of gravity
where one cannot get rid of the zeroth-order stress-energy-momentum tensor.
In either case, the Gravitational Weak Equivalence Principle is not satisfied,
and from the point of view of our sieve, the model is to be rejected [154].

Passing from the sub-case of Brans–Dicke theory to the entire class of scalar-
tensor models represented by the general action (1.30) does not alter the con-
clusion: the presence of the additional gravitational (scalar) degree of freedom
remains, and so it does the possibility to rewrite the background field equa-
tions in the form (3.68). The only difference is the level of complication of an
expression such as (3.69), or the explicit form of conditions (3.47), (3.48).

With a further step, we can easily rule out the entire family of multi-scalar-
tensor theories, for the same reasons expressed above, and all the theories which
can be remapped into scalar-tensor theories [154].

Vector-tensor theories, scalar-vector-tensor models, bi-metric frameworks,
and so forth: every time gravitational degrees of freedom other than the metric
are explicitly encoded in the specific form of the action, we can be sure that the
sieve will rule them out. As soon as we demand that the Gravitational Weak
Equivalence Principle be enforced, Einstein–Æther theory (1.33) fades out, and
so it does Hořava–Lifshits (1.35), the general Horndeski model (1.32), and many
non-minimally coupled variations on these themes.

The only abiguity at this stage is represented by those theories which appear,
from the formulation of their action, as purely metric, for in this case the mere
inspection of the form of S cannot help to fathom the existence of additional
gravitational dynamical variables besides those inside gab [154].

3.4.3 More findings, and “theories in disguise”
Consider a higher-curvature theory like those discussed in §1.3.2 — without

loss of generality, we can start with an f(R) model —. The action in the bulk,
as emerging from the general prototype (1.38), is

Sf(R) =
c4

16πG

ˆ
Ω

f(R)
√
−g d4y , (3.70)
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with f a general function, analytic in its argument, and R the curvature scalar
of the metric connexion. The resulting field equations read

df(R)

dR
Rab−

1

2
f(R) gab−∇a∇b

(
df(R)

dR

)
+gab�

(
df(R)

dR

)
=

8πG

c4
Tab . (3.71)

To obtain the latter, as customary, one introduces a boundary term juxtaposing
the action (3.70); for f(R) theories the boundary contribution is given by

Bf(φ) = 2

˛
∂Ω

df(R)

dR
K
√
hd3y , (3.72)

with the same symbols used in Eq. (1.18) for boundary, induced metric, and
trace of the extrinsic curvature.

In Eqs. (3.70) and (3.72), the integrand looks like a function of the metric
field alone (and of its derivatives), which would imply that both conditions (3.47)
and (3.48) are automatically satisfied in a matter-free environment, provided
that the variational principle for the theory be well-defined. We should hence
conclude that f(R) theories, and in general all gravity theories with higher-
curvature corrections, pass the test for the Gravitational Weak Equivalence
Principle as soon as the matter is removed from the physical environment sur-
rounding a self-gravitating test body.

This conclusion, however, is wrong.
In fact, f(R) theories, and all theories alike (with only one exception, dis-

cussed in §3.4.4), are indeed frameworks with additional gravitational degrees of
freedom besides the metric, and thus cannot pass the test, as condition (3.48) is
never satisfied, even in a matter-vacuum environment. The problem in this case
is that such dynamical variables are hidden underneath the surface of seemingly
purely metric actions, therefore they are hard to spot at first glance.

Luckily enough, the existence of a well-formulated variational principle for
a theory of gravity needed to enforce the two conditions is precisely the aspect
which allows to dig out the hidden variables and restore the correct answer to
the test for the Gravitational Weak Equivalence Principle.

Starting with a semi-heuristic argument, we can observe that, in higher-
curvature theories where the integrand in Eq. (1.38) is of the general form

f
(
gab, R

d
abc , Rab, R, . . . ,∇R d

abc ,�R
d

abc , . . . , R�R, . . .
)
, (3.73)

one usually finds that additional gravitational modes (scalar, vector, tensor,
spinor, and so forth) can emerge besides the massless spin-2 graviton. In the
specific case of the f(R) theory under discussion, the supplementary mode is a
scalar one with non-vanishing mass.

Then the question arises: if f(R) theory is a purely metric one, where does
the scalar mode hide, if the only dynamical variables are those within gab, in
principle providing the graviton alone? To answer this question, one usually
rewrites the action (3.70) in terms of the metric and an additional, auxiliary
scalar field, introduced via a Lagrange-multiplier technique; the new action reads

Sf(φ) =
κc4

16πG

ˆ
Ω

[
f(φ) +

df(φ)

dφ
(R− φ)

]√
−g d4y , (3.74)
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with the same function f as in (3.70). Upon variation with respect to φ, from
Eq. (3.74) we get the field equation

d2f

dφ2
(R− φ) = 0 , (3.75)

and this last one assures that, if f ′′ 6= 0, the new degree of freedom can be
identified with the scalar curvature R.

The resulting scheme changes drastically, for we have now a scalar-tensor
theory written in terms of the variables gab, φ; in particular, the theory is of the
Brans–Dicke type (3.62), with vanishing constant ω, and a potential depending
on the specific form of f ; the scalar is massive — whereas the graviton remains
massless — with the mass related to the second derivative of the potential
V (f). Such remapping also allows to identify the boundary term (3.72) with
the corresponding one

Bf(φ) = 2

˛
∂Ω

df(φ)

dφ
K
√
hd3y , (3.76)

which renders the variational problem well-posed for the scalar-tensor theory as
well, in the sense that now all one has to impose is the condition

δgab = δφ = 0 , (3.77)

at the boundary ∂Ω.
This last statement, however, ought to ring a bell: if the variational problem

for (3.70) has to be well-defined with the boundary terms (3.72), and if the
auxiliary variable φ coincides with R, then the boundary conditions to impose
on an f(R) theory in its “purely metric look” should be

δgab = δR = 0 , (3.78)

but this is an odd conclusion, as R ∝ ∂c∂dg
ab, hence setting δR = 0 would

require demanding the trivialisation of ∂c∂dδgab on the boundary. While it is
true that, in general, f(R) theories have fourth-order field equations (hence, the
initial-value formulation requires to define the values of derivatives up to the
third order on a given Cauchy surface), still a well-posed variational principle
demands to have only the variation of the actual dynamical fields set identically
to zero at the boundaries, and not their derivatives.12

This last statement leads to the following conclusion: the remapping from
higher-curvature gravity theories into purely metric ones with additional gravi-
tational degrees of freedom is not a mere technical tool to simplify the picture
or reduce the mathematical efforts required: it is actually a meaningful way to
look at higher-curvature corrections, as it is only when the metric and the other
variables are decoupled and treated separately, that the variational problem for
the actions makes sense [154].

The argument given above for the f(R) theories can be extended to other
models; for instance, the class of frameworks where f is a function of R, �R,

12As an aside, it is possible to prove [171, 327] that, if one wants to preserve the equivalence
between f(R) theories and scalar-tensor theories also at the boundary (as reasonably expected from
a faithful remapping), there is no “purely metric” formulation of f(R) theory for which it suffices
to set δgab = 0 on ∂Ω, even after having rewritten the boundary term (3.72) in a different way.
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�2R, and so forth, boils down to a multi-scalar-tensor theory, where one addi-
tional scalar degree of freedom can replace a pair of derivatives [475, 240, 48];
therefore, fourth-order gravity is equivalent to metric General Relativity plus
one scalar field, sixth-order gravity equals General Relativity plus two scalar
fields, eighth-order gravity demands three scalar fields besides the metric, and
so forth.

The situation gets slightly more complicated with actions where one consid-
ers also the Ricci and Riemann tensors, plus their derivatives. In this case, a
help comes from the alternative Palatini formalism [411, 530, 192] widely used
in metric-affine, affine, and purely affine theories of gravity.

In the Palatini formalism for the gravitational action, the connexion and
the metric are treated as independent variables, and the action is varied with
respect to both gab and a general ∆a

bc; it results a pair of sets of equations,
namely those for the metric and those for the affine structure. In theories of the
type described at the beginning of §1.3.3, the connexion is entirely in charge of
the pieces involving the curvature tensor and the Ricci tensor (where the metric
is absent), whereas the bits containing R can be reduced to contracted products
of the type gabRab, where once again the dynamical variables get decoupled.

If one supposes that the theory admits more degrees of freedom than those
accounted for by the metric alone, decoupling the metric from the curvature
is a wise move, as it permits the hidden variables to emerge more easily in
terms of the boundary conditions imposed on δgab, δ∆a

bc and their derivatives.
In the best-case scenario, the two routes — metric and Palatini formalism —
turn out to be equivalent in both the space of field equations and solutions,
which guarantees that ∆a

bc is indeed Γabc, and that the solutions for the metric
variation are also solutions for the Palatini one, and vice versa [90].

On the other hand, it may happen that the field equations for the connexion
do not boil down to the metric-compatibility condition ∇cgab = 0, nor that
the spaces of solutions of the two sets coincide (usually, the metric solutions
are found to be a subset of all possible solutions for the connexion). This can
be taken as an indication that there is a richer structure hidden below the
purely metric appearance of the action, and thus the theory under consideration
must be reformulated in terms of the metric and other gravitational degrees of
freedom [90].

By following this protocol, Vitagliano et al. have found [540], for instance,
that the dynamics of an f

(
R,RabRab

)
theory in Palatini formalism can be

identically reformulated in terms of metric General Relativity plus a vector field
Ac with a Proca-like action given by

SProca = −α
ˆ

Ω

[
1

2
F abFab +m2AcAc

]√
−gd4y , (3.79)

with α an apt coupling constant, and Fab := 2∇[aAb].

The most important lessons learnt from the case of higher-curvature gravity
theories can thus be summed up as follows. First, all these theories cannot pass
the test of the Gravitational Weak Equivalence Principle, for the non-metric
degrees of freedom hidden inside their structure prevents the onset of free-fall
motion for self-gravitating test bodies.

Second, the boundary terms in an action for a dynamical theory crucially
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contribute to a meaningful, sound, and robust construction of the physical pic-
ture, and always ought to be kept under strict control.

In this sense, our construction to test the Gravitational Weak Equivalence
Principle can become an independent source of tests of the actual dynamical
content of extended theories of gravity [154]. Since the protocol strictly requires
a well-defined variational formulation, and the latter demands all the degrees of
freedom to be explicitly exhibited (so that one only has to set δgab = δφ = 0
at the boundaries), then the search for hidden gravitational variables comes
basically for free in the guidelines to our test for the equivalence principle.

3.4.4 An unexpected guest in higher dimensions

Our method tests the Gravitational Weak Equivalence Principle in any
spacetime dimension n ≥ 3.13 The four-dimensional environment remains, so
far, the most interesting to investigate; yet, from the purely “taxonomic” point
of view, it is equally interesting to look at higher and lower n’s, and explore
the effect of the filter in such exotic scenarios, since nothing forbids to do so. In
particular, we focus now on the higher-dimensional gravity theories.

In §1.3.4, we have shown that many models fall back in the category of
“metric theory plus additional degrees of freedom”, hence for them the equiva-
lence principle is destined not to be satisfied, and the test to fail. If we restrict
our study to the case in which the additional dimensions do not wind up or
compactify, but rather remain “open”, then we are left with, among the oth-
ers, General Relativity, DGP gravity, and the family of dimensional-dependent
Lanczos–Lovelock theories.

General Relativity, as seen above, passes the test no matter what the value
of n. DGP gravity, if interpreted as a bi-metric model, will be ruled out, for only
one of the two metrics — that on the bulk, or that on the brane — can be the
“true” one, with the other providing the additional degrees of freedom leading
to the violation of condition (3.48).14

The scenario is far less explored in the case of Lanczos–Lovelock theories.
Lanczos–Lovelock gravity is a higher-curvature theory characterised by the pres-
ence of second-order-only field equations; such peculiarity is obtained, as re-
viewed in §1.3.4, by a carefully chosen (and unique) set of parameters standing
in front of the higher-curvature corrections in the action.

One feature of Lanczos–Lovelock Lagrangian densities is that they can be
always rewritten as a sum of two pieces: one, called the bulk term, is quadratic in
the first derivatives of the metric, whereas the other, called the surface term, is
a total derivative determining a surface term in the action. This result has been
found for the first time in General Relativity itself; indeed, the Einstein–Hilbert

13The 2-dimensional case has to be excluded for the following reason: the stress-energy-momentum
tensor sourcing the field equations for gravity reduces to a scalar function, T , which is not accounted
for in the Geroch–Jang Theorem, based instead on a symmetric tensor. One could still build a
symmetric Tab from T by putting T (2D)

ab := Tgab, but then the condition ∇aTab = 0 would reduce
to ∇bT = 0, i.e. it would demand T to be a constant, which is too restrictive a condition.

14The issue of the boundary terms might also provide some insights on the true nature and
number of the gravitational degrees of freedom in DGP model. Also, a natural choice would seem to
consider the five-dimensional “bulk” term as the fundamental one, and the four-dimensional action
a sort of complement of the boundary term, but the situation is not so clear in this scheme.
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Lagrangian density R
√
−g can be rewritten as

R
√
−g = Q d

abc R
abc

d

√
−g , (3.80)

with the tensor Q d
abc given by

Q d
abc :=

1

2
(gacgbd − gadgbc) . (3.81)

Calculations [404] show that (3.80) splits into the sum

Q d
abc R

abc
d

√
−g = 2Q bcd

a ΓadeΓ
e
bc

√
−g + 2∂c

[
Q bcd
a Γabd

√
−g
]
, (3.82)

where the bulk and surface term get explicitly separated. The bulk term is
nothing but the so-called gamma-gamma Lagrangian used by Einstein himself
to first formulate General Relativity (see §A.2.3). As for the surface term, it
can be rewritten as 2∂α (Hα√−g), where Hα is not a four vector, but rather a
four-component non-vectorial object.

On top of that, it is possible to prove that the surface term can be determined
entirely from the bulk term via the following relation, known as the holographic
property,

Lsurf = − 1

(n/2)− 1
∂a

(
gbc

∂Lbulk

∂ (∂agbc)

)
, (3.83)

valid on spacetimes of dimension n > 2. Such result is non-trivial, and has
gained much attention in the light of a more general renaissance of the con-
cept of holography [403, 405, 366], mostly driven by recent developments in the
AdS/CFT correspondence paradigm [448].

The property extends to the entire class of Lanczos–Lovelock theories. The
point in this case is the fact that, to prove Eq. (3.82), one simply uses the
symmetry and covariant conservation properties of the tensor Qabcd, rather than
its precise form. Therefore, whenever the action of a theory of gravity can be
recast in form (3.82), with Qabcd sharing the symmetries of the curvature tensor
and having ∇aQabcd = 0, then the holographic property will emerge again. This
similarity between General Relativity and the entire Lanczos–Lovelock class,
together with the fact that the resulting field equations for both models only
have second-order derivatives, has led some authors to call the Lanczos–Lovelock
theories “the most natural extension” of Einstein’s scheme [404, 366].

The general Lanczos–Lovelock Lagrangian is a polynomial sum of densities,
which we can write as

SLL =

ˆ
Ω

dny
∑

m≤n/2

α(m) LLL,m + BLL , (3.84)

where the sum is constrained by the dimensionality of spacetime, and the La-
grangian density of order m is given by

LLL,m =
√
−g Q d

abc R
abc

d = δ1357...2k−1
2468...2k R24

13R
68
57 . . . R

2k−2 2k
2k−3 2k−1 . (3.85)

The presence of the alternating tensor δ1357...2k−1
2468...2k guarantees that, when k < n,

the Lanczos–Lovelock density of order k = 2m will give a non-trivial contribu-
tion; when k = n, the resulting term becomes a trivial topological invariant —
the Euler characteristic [119, 370] — and its variation will vanish identically as a
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result of the Gauß–Bonnet theorem [119, 370]. Finally, for k > n, the alternating
tensor trivialises, and no contribution can emerge.

Relation (3.82), together with the condition ∇aQabcd = 0, allows to find
regular patterns also in the field equations. Upon variating the action (3.84), a
series of manipulations give back the general result [366, 414]

Eab = mQ cde
a Rbcde −

1

2
gabLLL,m =

8πG

c4
Tab , (3.86)

with Tab emerging from varying the matter action, and LLL,m =
√
−gLLL,m. For

m = 1, the previous formula yields the general relativistic case, because (3.81)
implies that Q cde

a Rbcde = Rab, and on the left-hand side one is left with the
Einstein tensor.

Given this due introduction to the framework, we can now see what our
test of the Gravitational Weak Equivalence Principle can say about Lanczos–
Lovelock gravity theories.

In the simplest non-trivial case, i.e. Gauß–Bonnet gravity (which gives non-
zero contributions from dimension 5 onwards), the combination (3.84) is given
by

SGB =
αc4

32πG

ˆ (
RabcdRabcd − 4RabRab +R2

) √
−g d4y + BGB , (3.87)

to which one usually adds the Einstein–Hilbert term (with, or without, the
cosmological constant). The metric variation provides the field equations [404]

Gab + αHab =
8πG

c4
Tab , (3.88)

where the symmetric, covariantly conserved tensor Hab is given by

Hab = 2
[
RRab − 2RacR

c
b − 2RcdRacbd +R cde

a Rbcde
]
− 1

2
gabLGB . (3.89)

In a vacuum background environment we have Ēab = Ḡab + αH̄ab = 0, and all
it remains to check is that the theory itself is a purely metric one. So to do, we
can refer to the argument in §3.4.3 on the higher-curvature gravity models and
their boundary terms. If such terms are nowhere to be found, the theory will
not be purely metric, hence will violate the equivalence principle via a failure
of condition (3.48).

It turns out, however, that boundary terms for Gauß–Bonnet theory do
exist [404], and they are given by [139]

BGB = 2

ˆ
∂Ω

[
K + 4α

(
J + 2KabG̃

ab
)]√

hdn−1y , (3.90)

with G̃ab the (n− 1)-dimensional Einstein tensor built out of the induced metric
hab, and J the trace of the tensor Jab given by

J = gabJab = gab · 1

3

(
2KKacK

c
b +KcdKcdKab − 2KacK

cdKbd −K2Kab

)
.

(3.91)

87



The boundary term (3.90) allows to avoid the use of additional degrees of free-
dom, so that the only condition to be set is to have δgab at the boundaries.
Therefore, we can conclude that Gauß–Bonnet gravity is indeed a purely metric
theory of gravity,15 and passes through the sieve, joining General Relativity (the
latter, in any number of dimension) in the group of theories implementing the
free-fall motion for self-gravitating bodies as well.

The next step is to check whether the result holds for the whole class of
Lanczos–Lovelock theories. Once again, for a given number of dimensions n,
and in a vacuum background, all the non-trivial terms in the polynomial (3.84)
will pass the test if proper boundary terms can be introduced in the action; this
is indeed the case, for the general expression of such terms is given by [352, 404]

BLL =

˛
∂Ω

Cp
√
hdn−1y , (3.92)

with Cp reading

Cp = 2p

ˆ 1

0

dλ δ
h1h2...h2p−1

k1k2...k2p−1
Kh1

k1

(
1

2
Rh2h3

k2k3
− λ2Kh2

k2
Kh3

k3

)
× . . .

· · · ×
(

1

2
R
h2p−2h2p−1

k2p−2k2p−1
− λ2K

h2p−2

k2p−2
K
h2p−1

k2p−1

)
. (3.93)

We have thus proven that all the non-trivial Lanczos–Lovelock models for gravity
comply with the geodesic motion on a background of a self-gravitating test body;
this guarantees that the Gravitational Weak Equivalence Principle is satisfied
in this class of extended theories of gravitation [154].

3.5 Wrap-up
The almost-geodesic motion for self-gravitating, extended masses is an ex-

perimental fact, verified with remarkable accuracy in the Solar system, and val-
idated (with a lower confidence level) also in large-scale observations and at the
cosmological level. The Weak and Einstein’s Equivalence Principle cannot say
much on this topic, for they pertain either to a different sort of physical system
(Weak form, dealing with non-self-gravitating test particles only), or to a dif-
ferent phenomenology (Einstein’s form, governing ultra-local, non-gravitational
test physics). Since many available models for gravity forecast corrections to
the geodesic motion which are not observed, this regularity of Nature might be
elevated to the level of another equivalence principle.

The Strong Equivalence Principle is designed precisely to meet this need,
but it presents some intrinsic issues: first, it draws conclusions on a wide range
of phenomena (e.g. the gravitational radiation) for which no reliable data is
currently available; second, its practical implementation (via the Parametrised

15This conclusion has been recently challenged (see [100]). The authors rewrite the action and
field equations of Gauß–Bonnet–Lanczos–Lovelock theories in terms of the metric tensor, plus a
number of differential 3-form fields. While this reformulation of the model is legitimate, it does not
disprove our conclusions about the purely metric character of the Lanczos–Lovelock models. The
point is that the differential 3-forms introduced in the paper are non-dynamical, for their variation
is identically vanishing — see their Eq. (21) — and thus are merely auxiliary fields, encoding no
information about the gravitational content of the theory (the latter remains entirely and uniquely
confined in the metric degrees of freedom).
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Post-Newtonian formalism) basically tests the equivalence of inertial and grav-
itational masses for extended bodies like the Moon or the Sun, possibly due to
a Machian-induced variation of the constant G. This, however, is a test for the
Gravitational Newton’s Equivalence Principle, rather than of the extension of
the Weak form to self-gravitating bodies.

Upon extracting, from the Strong form, a suitable sub-statement, called here
“Gravitational Weak Equivalence Principle”, we have framed the prolongation
of the Galilean universality of free-fall to self-gravitating test bodies. The Grav-
itational Weak Principle is a proper part of the Strong principle, yet the two do
not coincide (unless the gravitational extension of Schiff’s conjecture proves to
be true).

Once the limits and properties of the equivalence principle we are looking for
are finally defined, the goal becomes that of finding an apt formal translation
of the statement; this leads to consider the almost-geodesic world-tubes of self-
gravitating bodies on a manifold equipped with a metric (at the very least).

The Geroch–Jang theorem points in this sense at a specific tensor, closely
resembling the stress-energy-momentum one, whose vanishing covariant diver-
gence locks the geodesic trajectory. Upon finding a tensor of this sort (which
embodys the self-gravity of the system considered), conserved with respect to a
background, the goal of comparing the motion of test bodies with, and without,
negligible self-gravity becomes possible.

Such tensor exists, and emerges from a perturbative expansion of the grav-
itational and matter fields provided by any given purely dynamical theory of
gravity in tensor form. An explicit expression of its divergence can be extracted
from variational arguments, provided that the problem is well-posed. This re-
sults in the necessary and sufficient conditions (3.47) and (3.48).

The two constraints demand that the motion takes place in a vacuum en-
vironment (to prevent the onset of driving forces due to the action-reaction
principle [94] applied to the interaction of the self-gravity with the background
matter), and that the theory of gravity is purely metric, i.e. that it does not
contain gravitational degrees of freedom other than the metric.

With the test ready, we have then applied it on the family tree of the ex-
tended gravity theories, to see which one were able to pass through this sieve.

General Relativity passes the test, as expected, and it does so also in the
presence of a cosmological term. Besides, our method is supported by the in-
dependent results obtained from the Parametrised Post-Newtonian formalism,
which, however, does not cover the cosmological extension.

Scalar-tensor theories, both of the Brans–Dicke type, and of the general type,
fail the test and hence need be rejected if the Gravitational Weak Equivalence
Principle is accepted to hold. This result as well is supported by independent
indirect results from the Parametrised Post-Newtonian expansions, which tend
to rule out theories where G is a function of space and time, on the basis of an
unobserved sidereal variation Ġ/G in time (and also in space).

Higher-curvature theories providing higher-derivative corrections also fail the
test, for they are actually metric theories with additional gravitational degrees
of freedom hidden beneath a seemingly purely metric appearance of the action.
This aspect emerges as well from our method, although as a side-result, for
our protocol requires well-posedness of the variational formulation of the field
equations, and the latter demands all the relevant dynamical fields to be written
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out explicitly. While theories like f(R) models are not addressed by the post-
Newtonian approach, the possibility to remap them consistently into non purely-
metric theories of gravity ultimately supports our findings.

Upon relaxing the constraint of working in four spacetime dimensions, two
results emerge: first, that any n-dimensional version of General Relativity passes
the test, with or without the cosmological constant contribution. Second, that
also any dimension-compatible Lanczos–Lovelock action provides a gravity the-
ory passing through the sieve, hence abiding by the Gravitational Weak Equiv-
alence Principle, and implementing the almost-geodesic motion for test bodies
with non-negligible self-gravity. This result cannot be confirmed by means of
post-Newtonian results, as they are tailored on a strictly four-dimensional ex-
perimental setting; at any rate, independent arguments based on a completely
different approach — Katz super-potentials, see [149, 148] — seem to agree with
our conclusion, at least for what concerns the Gravitational Newton’s Equiva-
lence Principle.
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Chapter 4

“Mesoscopic” Effects of
Quantum Spacetime

We shall treat the steel in the armour plate
as it were a perfect fluid.

Lavrentiev and Shabat, Complex Variables.

So far, we have looked at the landscape of gravity theories from a point of
view centred on macroscopic objects and scales; yet, many recent proposals for
alternative gravitational frameworks arise as attempts to construct an ultravi-
olet completion of the gravitational sector around the Planck scale. To better
pinpoint the viability and mutual relationships of such models, the macroscopic
regime is not the only zone where to look at.

A possible alternative might be to zoom in over the picture of spacetime up
to the Planck scale, or rather, slightly above that threshold, and devote some
pondering to the innermost nature of the notion of spacetime itself. We are led
to look at “spacetime” in the sense of an “umbrella term”, concealing a complex,
perhaps discontinuous microstructure that, once examined, might provide useful
insights and constraints on the type of gravity theories to be expected on larger
scales.

Spacetime, then. Is it ultimately an entity, as believed by Newton, or a
relation, as assumed by Aristotle? The most effective models currently at hand
seems to favour the latter position, space and time being the names we give to
specific relations between the gravitational field and the matter making up our
clocks and rods.

The idea of spacetime as a manifold equipped with a metric structure is
a great tool to describe macroscopic phenomena where quantum effects are
systematically washed out. Yet, such model is likely believed to fail whenever
the interplay of microscopic fluctuations and strong gravity starts to domi-
nate [12, 330] (even though the validity of the smooth spacetime picture is
prolonged at any scale, even the smallest ones, where instead it is reasonable to
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expect the emergence of novel phenomenology). The onset of a different regime
is conjectured to occur at extremely high energies (of the order e.g. of the
Planck scale,1 around E℘ ∼ 12.4 × 1027 eV); this contributes to explain why
no positive detections of any effect have emerged so far in accelerator-based
experiments [267, 34, 50], whose best performance peak around 1012 eV.

More extreme conditions can be found in astrophysical and cosmological
contexts; the energies and densities supposed to have been present during the
earliest phases of the Universe’s life nurture the hope to detect some relic traces
of the “Planck era” imprinted in fossil radiation [10], or else in violations of
fundamental CPT symmetry affecting dispersion relations [342, 223]. Compact
objects also offer energy thresholds much higher than those attainable on Earth,
with effects magnified by the redshift over cosmological distances, and are hence
good candidates where to test the combined effects of quantum mechanics and
general relativity [420, 454, 471, 521]. Yet, “clean” sources offering sharply iden-
tifiable features are hard to find.2

In the following pages, we recap the main points of a critical analysis of the
notion of spacetime motivated by the quest for a “mesoscopic” regime of physical
phenomena [153] in which the quantum effects propagate up to a scale compat-
ible with our observational window (or at least approach it), and intertwine
with classical structure. The kind of argument we pursue needs be general, for
we want it to be compatible with as many quantum gravity proposals as pos-
sible; also, it is constrained by the large wealth of at our disposal, to check for
violations and corrections to the ordinary laws of physics.

The results, finally, fit in a much broader, and more ambitious, research
programme. Understanding something more about the structure of spacetime
on small and “semi-small” scales could indeed shine a light also on the types of
gravity theories one could expect to emerge below a certain threshold, and this
further sews together the conclusions presented here with the findings of the
previous Chapters.

4.1 Space and Time

Like many other fundamental concepts, “space” and “time” seem easy to
define at first glance. The closer we get to the two ideas, however, the more
complex it becomes any attempt to say something meaningful and precise about
them.

The nature and status of space and time have been debated since the earliest
days of philosophical thinking, and are still under scrutiny [43]. Within this
ceaseless re-discussion of the foundations, we are mainly interested in three
aspects.

1Any physical quantity referring to the Planck scale will be denoted here by the subscript “℘”,
as in `℘ for a length, m℘ for a mass, E℘ for an energy, and so forth.

2One can study e.g. high-energy emissions from Gamma-Ray Bursts as possible carriers of infor-
mation about quantum gravity effects — the latter manifesting themselves mainly through violations
of the principle of relativity and, hence, of Lorentz symmetry; see [30, 4, 3, 203] —. An examination
of the time delay of photons with energies in the Gamma-Ray range (MeV–GeV scale) with respect
to photons in the hard X-rays (KeV scale), coming from a sample of five Gamma-Ray Bursts, has
been recently performed by Castignani et al. [110]. The Reader is warmly invited to peruse the
references and the included bibliography.
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∗ The classical, formal definition of spacetime, i.e. the model used in General
Relativity (and most gravitation theories) and also, with minor modifica-
tions, in Special Relativity — and in geometrised Newtonian physics.

∗ The notion of spacetime as an emergent concept, arising from quantum
gravity proposals, i.e. spacetime as a non-fundamental entity, derived from
the interplay and/or evolution of quantum variables.

∗ The operational construction of spacetime, i.e. the scheme in which space,
time, and spacetime (with their formal properties) are built out of the
readings of clocks and rods.

To examine the properties of a “mesoscopic” regime, we need to understand
how the latter can be made fit in one of these frameworks, as a consequence of
which modifications in the construction protocol [153]. Below, we initially focus
on the classical and quantum descriptions of spacetime.

4.1.1 The classical spacetime

A spacetime M is, classically, a smooth, n-dimensional manifold endowed
with a pseudo-Riemannian metric structure and a connexion [542, 332, 470, 250],
which can be denoted by the symbol

M ≡ (M, gab,D) . (4.1)

The smooth manifoldM is a topological space X equipped with a coordinate at-
las.3 On M are then defined: the metric structure gab, represented by a smooth,
rank-2, symmetric, covariant tensor field of Lorentzian signature; and the affine
structure, given in general by the operator D, defined as4

D : X (M)× T rsM 7→ T rsM , (4.2)

with DV a a derivation in the algebra of tensors for all vectors V a.
In General Relativity (and in all metric theories of gravity), D is the Levi-

Civita affine structure ∇, and its properties can be entirely determined from
those of gab, whence the typical omission of the symbol “D” from Eq. (4.1).
In particular, the metric compatibility condition ∇agbc = 0 and the symmetry
property ∆a

bc = ∆a
(bc) for all indices, allows one to identically determine the

connexion coefficients Γabc as linear combinations of the first derivatives of the
metric.5

3I.e. a family of pairs {(UI , χI)}, the charts, in which each UI is an open set, and the union of
the UI covers M . The symbols χI denotes instead a C∞-homeomorphism, for all running indices
I, from UI onto an open subset of Rn (in this sense, each χI is represented by n smooth functions
χαI , the coordinate functions, α = 1, 2, . . . , n). Also, given UI , UJ such that their intersection is
non-empty, the composite map χIJ := χIχ

−1
J is infinitely differentiable.

4The symbol X (M) denotes the (algebra of the) vector fields defined on the manifold; T rsM is
used for the tensor fields of rank (r, s) on M ; see for instance [119, 370, 523, 551].

5General Relativity, being a theory formulated in terms of geometric objects defined on a man-
ifold, enjoys another property: any diffeomorphism ψ acting on M and push-forwarding the struc-
tures gab,D, Υ (with Υ denoting all the other fields defined onM), gives an M ′ which is physically
indistinguishable from M . This is the so-called Leibnitz equivalence, and can be interpreted as a
type of gauge freedom of spacetime theories [385, 552].
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The special relativistic, ultra-local (i.e. point-wise) approximation of the
spacetime M is Minkowski spacetime [470, 225], viz. the one where the curvature
vanishes everywhere, hence M becomes

MSR ≡ (Rn, ηab) , (4.3)

with ηab the flat Minkowski metric. In a system of pseudo-Cartesian, global
coordinates xα (see below, §4.2.2), ηab reduces to a diagonal matrix with en-
tries diag (1, 1, 1,−1). Minkowski spacetime is itself a solution of Einstein’s field
equations for gravity (in the absence of the cosmological constant), rather than
a separate entity defined per se, out of the gravitational framework.

The geometric description of spacetime allows to introduce a well-defined
notion of observer. An observer O is a smooth curve CO on M such that its
tangent vector is everywhere timelike and future-pointing. The notion of locally
inertial reference frame for the observer O is then obtained by erecting, at each
point of CO, a quadruplet e a

α of orthonormal axes (α is here the running index
denoting the specific axis of the frame), in the sense that

gab e
a
α e b

β = ηαβ , (4.4)

with ηαβ the set of scalars arranged in the matrix diag (1, 1, 1,−1). The axes
mirror the physical structure of an ultra-local laboratory where the effects of
gravity and curvature can be safely neglected. The four vectors e a

α form the
observer’s tetrad, or vierbein, and, in reference to the coordinate functions yα,
can be thought of as vector-valued 1-forms e a

α dyα.

Definition (4.1) can be slightly modified to encompass an even wider semantic
range for the term “spacetime”. For example, classical Newtonian mechanics
can be described in an entirely geometrised environment, the Newton–Cartan
spacetime [332, 299, 160], and in that case the analogue of M is represented by
the structure

N :=
(
M, τa, γ

ab,∇
)

(4.5)

whereM is a manifold, τa is a smooth 1-form, γab is a C∞, symmetric tensor field
of signature (1, 1, . . . , 0) — the last two items are such that τbγab = 0 —, and ∇
is a derivative operator compatible with both τa and γab, i.e. ∇aτb = ∇aγbc = 0.

The covector τa is the “temporal metric” providing the measurements of
time intervals, and this induces a proper temporal orientation for all possible
directions ζa via the sign of the contraction τaζa.

While all these definitions work in any number of dimensions greater or equal
than two, observations, experiments, and theoretical arguments point towards
the number four as the one best representing the dimensionality of the spacetime
we have probed so far [522].

As a final remark, we observe that, from the physicist’s point of view,
there is another difference when it comes to the interpretation of the formal
structures associated to the notion of spacetime. Broadly speaking, in a given
M ≡ (M, gab), one can separate a set of “pre-physical” quantities, such as di-
mension, topology, and differentiable structure, from the group of dynamical
objects, such as the metric (or the tetrads), the curvature, all matter fields, and
so forth. The former items are usually encoded into a suitable smooth manifold,
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acting as a background stage “on” which the fields live, whereas the latter terms
are given a proper dynamical evolution via field equations.

Such separation is helpful, yet ought to be taken with a grain of salt: the
topological arrangement of spacetime can greatly influence the physical proper-
ties therein [421], and in a sense so it does the number of dimensions, although
neither concept has a dynamical character — at least in General Relativity.

4.1.2 The quantum world(s)

The smooth model of spacetime is an effective paradigm over many orders
of magnitude, ranging from particle-physics levels to cosmological scales. What
happens, however, when one decreases the size further (or increases the energy),
is not clear yet.

Around the Planck scale, i.e. around 1.6 × 10−33 cm in length (`℘, i.e.√
~G/c3),6 or 12.4 × 1027 eV in energy (E℘, viz.,

√
~c5/G), it is widely be-

lieved that quantum fluctuations and gravitational phenomena merge inextri-
cably, with bizarre effects [409, 158]. The Compton wavelength of a “Planck
particle” coincides with its Schwarzschild radius, and the particle can become
energetic enough to probe the levels which would make it become a black hole
itself. Any hope to measure space and time, or to confirm the smoothness of
the spacetime manifold, would be spoiled by the mixed presence of quantum
uncertainty and strong gravitational pulls.

Such conclusions make it reasonable to advance that, at Planck scales, our
current notion of spacetime should radically change, requiring severe modifica-
tions of Eq. (4.1) [36, 331, 162, 389]. A semi-conservative standpoint tackles
the problem by simply looking for a suitable discretisation of the gravitational
field gab, as in quantum field theory (this time, however, the background is itself
dynamical), with all the related paraphernalia of quantised eigenvalues, com-
mutation relations, S-matrix expansion etc. Such approach naturally leads to
an interpretation in terms of “quantum geometry”, with the discrete eigenval-
ues of quantum operators mirroring some sort of “chunked” geometric objects
recovering the pseudo-Riemannian spacetime in apt limits.

Among the many available proposals [401], we focus here on three main
points of view, namely Causal Dynamical Triangulations, Loop Quantum Grav-
ity, and Causal Sets Theory, as they can be seen as different paradigms for the
possible emergence of the classical spacetime as we know it.

Spacetime from quantum geometry: Causal Dynamical Triangulations

Quantising the gravitational field is an ambitious, yet-uncompleted pro-
gramme [151], which fights against formal subtleties, technical issues, and inter-
pretational problems. To solve the riddle, one direction which has been explored
consists in building a non-perturbative quantum field theory of gravity [20], pro-
vided that in this case there is no fixed background geometry where the fields
live “on” (as is Minkowski spacetime for quantum electrodynamics, or quantum
chromodynamics).

6The concept of “Planck length” is not Lorentz-invariant, hence `℘ is in a way ill-defined. The
issue can be settled by introducing first a Lorentz-invariant notion, such as that of four-volume,
and then extracting from it a length scale. This is the way the future instances of the term “Planck
length” are intended in this work.
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The paradigm is known as Causal Dynamical Triangulations [320, 19], and
it starts from the gravitational path integral, i.e. a sum over all possible ge-
ometries with pseudo-Riemannian signature compatible with given boundary
constraints [23],

Z
(
G(n),Λ

)
:=

ˆ
gab∈{g}

eiSEH[g] Dgab , (4.6)

where G(n) stands for Newton’s constant in any dimension n, {g} denotes the
class of Lorentzian metrics complying with the assigned boundary conditions,
SEH is the Einstein–Hilbert Lagrangian (3.52) equipped as well with the cos-
mological constant term Λ, and Dgab is a proper measure over the space of
attainable geometries.

To evaluate Z , one first performs a Wick-rotation of expression (4.6) — i.e.
introduces the map t 7→ i τ — so that the resulting path integral is momentarily
Euclidean. Then, the class {g} is regularised to a sub-class {g′} by considering
all its possible representations in terms of conjoined, piecewise-flat manifolds, in
a procedure borrowing from Regge’s “skeleton calculus” [353]. The underlying
idea somehow mirrors an exhaustion process in the integration of curved sur-
faces by means of flat facets approximating the actual surface. Notice that the
“discretisation” of geometries is expected to occur at sub-Planckian level, so it is
destined to never be observable [22]. As a further, fundamental hypothesis, one
requires that the geometries under consideration be causally well-behaved [18],
in the sense that spaces with branching causal structure, or singular light-cone
structure, are rejected ab initio and confined to a set of measure zero. A no-
tion of evolution of spatial leaves in a privileged time variable thus naturally
emerges.

The piece-wise flat approximating structure (for which the simplest choice
is to pick 4-simplexes [370]) is later refined by imposing that the edges of the
simplicial complexes all have the same length, a, which acts as an ultravio-
let cut-off. A similar regulator N is applied to the Euclidean volume element.
The integration (4.6) is then performed directly on the regularised domain {g′},
sidestepping the need for gauge freedom appearing in the continuum treatment.
Divergencies of the path integral (4.6) due to the exponential growth of con-
figurations can be tamed by introducing a bare cosmological constant, say ℵ,7
whose run counter-balances the over-population of possible geometries.

The continuum dynamics of the metric field — and, hence, the familiar
spacetime of the type (4.1) — is recovered when the two limits a → 0 and
N → ∞ are taken, which amounts to having the microscopic building blocks
disappear, shrunken to an infinitesimal size [320]. The problem arises, however,
as to whether the continuum limit emerging in this way is truly a macroscopi-
cally extended, four-dimensional, pseudo-Riemannian spacetime as in Eq. (4.1).
The answer is, in general, “no”: even with the causal clause ruling out many
pathological geometries, the theory admits a certain proliferation of “baby uni-
verses” in the spatial directions, with a final picture somewhat differing from
the expected smooth manifold.

Even so, causal dynamical triangulations theory has achieved interesting
results in reconciling the quantisation of the gravitational field and the macro-
scopic manifold model. Numerical Monte-Carlo simulations [320, 21, 22] per-

7Grateful acknowledgements Arletta Nowodworska for kindly suggesting the aleph glyph “ℵ” as
a choice for the bare cosmological constant.
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formed in four spacetime dimensions have recovered a few known geometries of
cosmological interest, e.g. de Sitter or Friedmann–Lemaître–Robertson–Walker
spacetimes.8

More specifically [21, 22], the picture of spacetime emerging from the Causal
Dynamical Triangulations can be represented in terms of a bidimensional phase
diagram where the axes are labelled respectively with the inverse bare cosmo-
logical constant ℵ−1, and an asymmetry parameter δ encoding the dependence
of the action on the lattice spacing a (δ = 0 implies a = 1, and the larger δ, the
finer the lattice spacing). In the plot, three distinct phases emerge, termed A, B,
and C — it reminds a bit the diagram for the aggregation states of water, with a
triple point separating the liquid/solid/gaseous states —. Of these phases, only
C exhibits a well-behaved, spatially extended universe, correctly evolving dy-
namically in the time steps (the simulations point at a de Sitter geometry with
constant scalar curvature R). Phase A, on the other hand, shows a proliferation
of distinct, almost disconnected mini-universes, linked by tiny spacelike tubes,
with size along the time direction close to that of the elementary simplex; this
region is characterised by a series of merging and splitting events as the sim-
ulation progresses, and thus the geometry there is considered as “oscillating”.
Phase B, finally, shows a situation where only one spatial slice has a size large
enough to overcome the cut-off threshold, and hence “time” is completely ab-
sent there, with the resulting, single universe spatially extended, yet “frozen” in
the evolution parameter; in this sense, there is no classical geometry at all, nor
traces of possible classicalisation in phase B.

The phase diagram outlined here has wide similarities with the one exhib-
ited by the Hořava–Lifshitz model of classical gravity (see §1.3.1 and references
therein), to the point that it has been suggested [21, 22] that Hořava gravity
might be the actual classical-limit theory of Causal Dynamical Triangulations,
instead of General Relativity in the ADM decomposition. This conjecture mar-
ries the non-perturbative quantisation program pursued by the causal triangula-
tions, with the power-counting renormalisability of classical gravity guaranteed
by the Lifshitzian model, with the two approaches supporting each other.

Spacetime from quantum operators: Loop Quantum Gravity

The grail of the quantum counterpart of the gravitational field (both at the
kinematical and dynamical level) is pursued as well by the proposal known as
Loop Quantum Gravity [468, 467, 463, 465]. In this case, attention is drawn onto
the relational character of the metric structure, and on the consequences of the
canonical quantisation; the emergence of a spacetime in the form (4.1), although
clearly a goal of the paradigm, is a somewhat secondary task.

The idea, once again, is to construct a non-perturbative quantum theory of
gravity from the ground up, and this requires a Hilbert space equipped with a
Poisson algebra of operators, a set of space states, and the transition amplitudes
yielding the dynamical content [463]. The Hilbert space is a certain sum over a
set of abstract graphs (modulo an equivalence relation singling out redundant
copies); it has combinatorial and separable character. The quantum operators
are associated to quantities with the dimensions of an an area and a volume,

8Besides, an outcome of this programme is the finding that, at the Planckian level around 10−35

m, the spacetime structure undergoes dynamical dimensional reduction and effectively approximates
a 2-dimensional fractal object [320].
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whose discrete eigenvalues read, respectively [464],

AΣ :=
8π=G~

c3

∑
l∈Σ

√
jl (jl + 1) , VR = α=

(
G~
c3

)3/2 ∑
n∈R

Vn , (4.7)

with Σ a collection of links of the graph, jl a half-integer, R a region of space-
time, and Vn related to the “gravitational field operators” Lil, i = 1, 2, 3, the
latter interpreted as the flux of a spatial vector triad across a surface pierced
by the link l. Notice the presence, in both AΣ and Vn, of the Planck length
`℘ =

√
G~/c3, respectively squared and elevated to the third power. While `℘

is not a Lorentz-invariant concept, here it emerges via the discrete eigenvalues
associated to quantum operators with a geometric interpretation, thus recover-
ing a sort of compatibility with the required Lorentz symmetry of the “loopy”
approach [466].9

As it happens in Causal Dynamical Triangulations, the model assumes a
foliation, although a locally Lorentz-invariant one [466], and the dynamics is
that of spatial leaves evolving in a time coordinate. Finally, = is a non-zero real
number, the Immirzi parameter [273, 272, 42, 159], and α is a real number de-
pending on the valence of the nodes considered. The space states of the theory,
called spin network states, are a basis in the Hilbert space, formed by eigenvec-
tors of the area and volume operators; they are characterised by three elements,
namely a graph Γ , and the quantum numbers jl, vn, with vn as emerging from
the diagonalisation of Vn along an orthonormal basis of triads.

This abstract, group-based construction is reconciled with classical spacetime
in the following sense: a spin network state is the representation of a “granular”
space (dynamically evolving in time) in which each node of the graph Γ is
a “seed”, or “grain” of space, with volume given by vn. Given any two such
infinitesimal chunks of space, they are adjacent if they are connected by a link
l; the latter pierces the “surface” between the two, which carries a quantum of
area given by Al =

√
jl (jl + 1)8π=~G/c3. Hence, the Hilbert space given by

the graph can be thought of as describing quantum space at a given moment in
time, or, rather, as a “boundary state” providing the quantum space enclosing
a finite region of a four-dimensional spacetime [463].

A slightly different explanation of the emergence of spacetime in Loop Quan-
tum Gravity goes as follows [270]: the quantum superposition of spin net-
work states (the latter represented by labelled graphs) gives the physical three-
dimensional space, which is itself a dynamical entity, obeying the Wheeler–
DeWitt equation. The spin representations at the vertices of the graphs give a
measure of the “size” of the “atoms of space”, whereas the representations on
the edges provide the corresponding data for the “surface” of the “areas of the
facets” connecting two adjacent chunks of space. The dynamical evolution of the
spin network states, after a suitable combination of limiting and approximation
processes have been put to use, gives back the usual spacetime of General Rel-
ativity, although described in terms of an (arbitrary) Arnowitt–Deser–Misner
decomposition.

Notice at this point that nowhere in the model is explicitly set that the
structures evolving in time are three-dimensional geometries; this conclusion

9There is, however, a residual possibility of violating the Lorentz symmetry also in the context
of Loop Quantum Gravity; for a recent account see [206], and for an earlier analysis extended to
the whole program of canonical quantum gravity see [207].

98



emerges instead from the fact that the relevant group is SU (2), and this — via
Penrose’s spin-geometry theorem [422] — ensures that the spin network states
determine a three-dimensional geometry. By further massaging the equations,
it is possible to prove that, in the given Hilbert space, one has an over-complete
basis of wave packets which can be interpreted as classical geometries with
evolving intrinsic and extrinsic curvatures.

Loop Quantum Gravity has been linked to many other formulations of quan-
tum gravity, e.g. discrete General Relativity on a lattice with a boundary, the
Ashtekar formulation of Einstein’s theory in terms of tetrads and spin connex-
ion [231, 468]. Also Causal Dynamical Triangulations can be harmonised with
the “loopy” scenario; to bridge the gap, one has to assign a symplectic struc-
ture to the quantised simplicial complexes described above. The unit normal
vectors to the facets of the causally evolving polyhedra can then be promoted
to quantum operators, and this glues together the two pictures [467, 463].

If the kinematical picture appears quite settled, at least at the purely formal
level, dynamics still posits serious issues in terms of actually calculating the ob-
servables of interest, and interpreting the available results. The dynamical con-
tent is expected to emerge from the transition amplitudes associated to bound-
ary states, expressed as linear functionals on the Hilbert space [355, 76, 183, 182].
Such amplitudes should yield the probability of passing from one boundary state
to another, i.e. the notion of a dynamical process. It seems possible to recon-
struct the structure of classical General Relativity from the case of a simple
vertex amplitude, via a process called evaluation of the SL (2,C) spin network.
Yet the programme is vastly under construction, and requires the accomplish-
ment of many intermediate goals (Hamiltonian constraint, physical interpreta-
tion [462, 116], etc.).

Spacetime from causal ordering: the theory of Causal Sets

We conclude the section with a glance at the proposal of Causal Sets The-
ory [85, 165, 84, 256]. In this case, one starts from a purely abstract environment
— the Causal Set — equipped with apt properties, and then tries to recover the
usual spacetime structure via a coarse-grained, statistical procedure.10

A causal set C is a set of abstract elements (“points”, whence the discreteness
germane to the model) endowed with a relation of partial ordering satisfying the
properties of reflexivity, anti-symmetry, and transitivity. Also, one assumes that
C is locally finite, in the sense that each Alexandrov neigbourhood has finite
cardinality [84, 165]. The relationship between pairs of points in C can be thought
of as a relation between pairs of causally connected events on a spacetime of
the type (4.1); in this sense, when thought of as a scheme to represent classical
spacetimes, the theory introduces a very high level of non-locality, in the sense
that two connected points on a causal set can correspond to locations on an M
incredibly far from each other, and yet in causal contact [84, 456, 233].11

10Cau-Sets theory fits in the category of the “emergent gravity” models (where the geometrody-
namical structure is the result of an apt limit); its fundamentally discrete standpoint has connections
with some of the fully “quantum” proposals for gravity reviewed above. Still, Causal Sets theory has
not been harmonised yet with quantum mechanics, nor with quantum field theory, and remains to
date a reformulation of classical spacetime.

11Therefore, no comparison with other discrete models such as General Relativity on a lattice,
or Causal Dynamical Triangulations is actually fair: the discreteness in these last models can be
tracked back to the existence of a lattice spacing, which dictates both the type of non-continuity
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The Causal Sets approach is based on the mathematical result [333] that
a conformal isomorphism is the only one-to-one map between two spacetimes
(both distinguishing past from future) which preserves the causal structure of
the two metrics. From the point of view of causal relations, then all possible
“causally reasonable” solutions of the field equations for gravity can be divided
into equivalence classes. The conformal factor left unspecified by the isomor-
phism can then be determined by measurements of spacetime volume, hence
from pure number counting. These results have been distilled into the motto of
the framework, which reads

“Geometry equals Order plus Number.”

The causal sets are, in fact, abstract entities; the problem arises, then, as to
whether they actually represent a spacetime of the type (4.1). As yet, a general
protocol to have a smooth spacetime (rather, a class of conformally isomor-
phic spacetimes) emerge from a causal set is not available. The problem has
been then turned around, and formulated as the search of classes of causal sets
approximating given pseudo-Riemannian manifolds, to determine the geomet-
ric properties of the latter from the characteristics of the former. There exists
a well-defined notion of “faithful” approximation of a spacetime by a causal
set [255]: one embeds a C in a given M and checks that: the partial ordering on
the set mirrors causal relations on the spacetime; the distribution of points in
C brought on M , the sprinkling, is uniform (this is obtained by using a random
Poisson distribution, which ensures that no preferred directions in spacetime
can emerge after the spacetime is locally Lorentz-boosted [83, 166]); the small-
est length scale present in M is no larger than the embedding scale — which is
usually taken of the order of the Planck scale.

The goal of the model is to build up a path-integral formulation for Causal
Sets theory as in Eq. (4.6), recovering the general relativistic case when the
embedding scale goes to zero, i.e. in the continuum limit [163, 256]. The domain
of integration should be given in this case by all possible causal sets compatible
with a faithful embedding, or by all causal sets once the “pathological” ones are
confined into a subset of measure zero.

Causal sets theory is a radical departure from the usual approach to space-
time, and is still an ongoing programme, with many technical and fundamental
aspects waiting to be settled; still, it has offered so far promising results and
insights [86, 457, 61, 62, 93]. For instance, when studying the dynamics of a
scalar field on a given C faithful to a spacetime M , one has to construct the
discrete counterpart of the d’Alembertian operator “�”, named “B” [232, 164];
the latter, however, yields a stochastic character, and thus makes sense only on
a statistical average of realisations (i.e., sprinklings) of the causal set on the
spacetime. To tame the exploding fluctuations of B at a point, which prevent
its comparison with the corresponding continuous d’Alembertian, a non-locality
scale is introduced as a cut-off; such scale `nonloc is different, and greater, than
the embedding one, and introduces a new layer of phenomenology, where the
dynamics of the field gets corrections even though the microscopic structure and
the continuum limits are left unaltered.

and non-locality (via chains of progressively less close neighbourhoods).
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4.1.3 The “mesoscopic” regime

The sub-Planckian world most likely demands the sacrifice of the large-scale
model, but the way this transition from one regime to the other ought to occur
is far from obvious.

If we assume for a moment that the change is not a drastic, abrupt “switch”
occurring at Planck scale, then it is fair to expect that there will be at least a
phase in which the pseudo-Riemannian arrangement is only slightly modified,
with marginal — yet, measurable — corrections from the underlying quantum
structure.

The scenario we must face becomes therefore the following. The pseudo-
Riemannian model of spacetime works fine up to the new, “mesoscopic” scale
`meso, where corrections and modifications of quantum nature cannot be ne-
glected anymore, and gets definitely broken at the Planck scale `℘, where the
strong couplings of gravity and quanta spoils the very notion of space and
time [153].

This phenomenon is known and expected already in some quantum gravity
proposals. The non-locality scale `nonloc demanded by the discrete d’Alembertian
operator B in causal sets theory [232, 164] is precisely the type of mesoscopic
scale one might look for to observe the emergence of tiny corrections to the
ordinary laws of physics, or to the geometric picture. Let us suppose then for
a moment that the transition at the Planck scale is not abrupt, and let us ask
ourselves: what happens around `meso?

Seeing the problem from a different perspective, we can ask: what sorts of
modifications can be imposed, in full generality, upon the pseudo-Riemannian
manifold structure (or upon the laws of physics), to make it account for the
onset of new, quantum-driven phenomenology?

An approach to the mesoscopic regime: Relative Locality

A recent proposal partly addressing the problem of the mesoscopic regime
and of its consequences is known under the name Relative Locality [28, 27,
25]. The leading principles of the theory move from the observation that the
measurements of fundamental, non-gravitational test physics we usually perform
are, in most cases, point-wise coincidences of events in which the outcome is
a measure of energy and direction. Besides, even measurements of length and
duration (which themselves can be realised as point coincidences) are performed
almost ubiquitously in a very limited range of energies, and in principle might
acquire additional contributions as the energy ramps up [203].

In a way, the attention is thus shifted, from the usual local spacetime man-
ifold with coordinates xα ≡ (x, y, z, ct), to the momentum-based quadruplet
pα ≡ (p1, p2, p3, E/c), which is then assumed as the fundamental entity. Physics
is thus supposed to unfold, even at the classical level, on the momentum space
P, with the xα’s becoming themselves functions of the pα’s [27].

Relative Locality demands a full inversion of the logic behind Eq. (4.1): the
base space P is represented by a manifold whose coordinates are the components
of the four-momentum pα, and the co-local inertial reference frame representing
the observer is thus identified with the cotangent space T ∗0 P in the origin of
P. The physical features of such modified version of the phase space is encoded
in its property of being, in general, non-associative and non-commutative.
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One can assign a metric and an affine structure on P: the metric structure
contains information about the dispersion relations of particles, and is in general
represented by a rank-2, symmetric, contravariant tensor kab only at the leading
order in a series expansion in terms of a scale, `, which can be considered either
as the Planck one, or a larger, mesoscopic one.12 It results

ds2
p := kabpapb +

1

`
Υabcpapbpc + . . . (4.8)

In a similar fashion, the connexion is assumed to be generically non-symmetric
(in some versions of the theory, the tensor algebra on T rsP is not only non-
commutative [301], but even non-associative [27]), and at the leading order gets
contributions from the Levi-Civita part Γ bc

a , from the torsion T bc
a , and from

the non-metricity Qabc, with further corrections related to ` as in Eq. (4.8).
In principle, the scale ` can be identified with the Planck one. If, however,

one believes that the Planck regime demands a breakdown even of the Relative
Locality framework — after all, no “atomicity” is expected to emerge in this
scheme —, nothing forbids from advancing that the corrections shown above
could be charged upon a larger scale `meso, sufficiently far from the Planckian
threshold to consider the smooth manifold approximation reliable. As for the ob-
servable effects: the non-metricity provides a delay in the arrival time on Earth
of two signals started simultaneously at the source point and carried by pho-
tons with different energies, whereas torsion accounts for a sort of birefringence
effect in which the mentioned two photons, started along parallel directions, are
detected along two directions with a non-vanishing angle [203].

Many conclusions emerging from the relative locality paradigm are counter-
intuitive, and some results are still debated [26, 266, 265]; the knowledge of the
effects on macroscopic objects, for instance, are far from being settled. On top
of that, an exhaustive mathematical formalisation and physical interpretation
for the model is still missing; the peculiar nature of the “momentum space” P
and its characteristics still need be fully addressed.13

Gravity, geometry, fields, and relativity: our program

After this preparatory review, we can now set the stage for our argument.
A point to stress is that what we want to frame is a statement working at the
fundamental level — in the sense that it touches only founding hypotheses and
pillars of the structure — and being as general as possible, so that the con-
clusion holds independently of the specific quantum gravity model, or effective
description, adopted to accommodate potential effects of `meso

First, a remark on the “orders of magnitude” in the game. The expected meso-
scopic scale needs be much greater than the Planck one. At the same time, `meso
must be much smaller than any possible curvature radius associated with the
gravitational fields generated by macroscopic objects, as the pseudo-Riemannian
model is confirmed with high accuracy in that regime.

12Notice that, being the momentum space the original starting point to build up the geometric
and tensor structures, all the indices need be reversed with respect to the usual placement.

13To give some ideas: the peculiar topology of P, which seems to have a privileged point — the
origin —; the ultimate fate of the symplectic structure of the phase space, which has been so far left
aside; the reasons behind the selection of a non-associative structure over an associative one, and
vice versa; the description of the observers (the tetrads exist on P, or on T ∗0 P?); and so forth.
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We conclude that, whatever it be, the mesoscopic regime must emerge in
regions where, essentially, the spacetime manifold under consideration is the
Minkowskian one for all practical purposes, and where the laws of physics are
described by the framework of Special Relativity. Then, two possibilities arise:
that the quantum-related modifications enter the game as changes in the be-
haviour of physical systems living on MSR; or, that it is the Minkowskian space-
time itself which has to be revised, and modified accordingly [153].

In what follows, we shall adopt the latter point of view. This leads to the
idea of examining the pillars of Special Relativity (which lies at the basis of
Minkowski spacetime), and trying to relax its founding axioms, to accommodate
the possible effects of the propagation of Planckian physics to the mesoscopic
regime. The possibility that the changes occur at the level of physical appara-
tuses and physical laws, on the other hand, is briefly explored at the very end
of the Chapter.

4.2 Space and Time. Again

We have mentioned that Minkowski spacetime is a solution of the field equa-
tions for gravity in General Relativity (the cosmological constant must be set to
zero identically), and so we could in principle start from the general, formal def-
inition of spacetime given so far. Special Relativity, however, can be formulated
in a different, yet equivalent, fashion, one more suitable to study its founding
pillars from the point of view of someone looking for tiny, quantum-driven de-
viations from the ordinary structure. We adopt this second approach here, as
it allows us to better underline the details of the problem, and of a possible
solution.

We shall thus adopt an operational standpoint, as presented e.g. in [96, 453],
and forget for a moment all the formal apparatus presented in §4.1, as we want
to construct a model of space and time from the outset, and explore the resulting
features.

The only two primitive notions we take for granted are those of event and
observer. An event is any physical phenomenon occurring in a sufficiently small
region of space, and lasting shortly enough, to be approximated by a “point-wise”
happening. An observer is e.g. a small computer supposed capable of measuring
intervals of proper time, sending and receiving signals, and time-stamping the
events it, indeed, observes.

4.2.1 The operationalist standpoint

Talking about space and time, in many practical situations, means talking
simply about duration and distance, and about clocks and rods (see the remarks
in e.g. [96, 552, 553]).

It is because of Newton’s approach to time (which he pictured as an ever-
present, immaterial flow, constantly streaming from future to past, like an end-
less river) that we still believe that clocks run after some extra-sensorial, meta-
physical entity, rather than chasing one another [468, 43]. A moment’s reflection,
however, allows us to see that, once two devices measuring time are assigned,
they can be compared with each other, and this erases any link with the absolute
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Newtonian abstract time. A similar argument based on the spatial contiguity of
adjacent objects makes the idea of absolute space superfluous.

Many subtle points in the debate on the ontological status of space and time
can be jumped over by adopting the “operationalist” point of view, and trading
the abstract concepts of space and time (whatever the two words mean) for
the notions of measurements of durations and distances [96].14 The result is an
“paradigmatic overturn”, where e.g. time is what a clock measures, rather than
the opposite.

The point to be kept in mind is that all the properties of the measured enti-
ties are in fact properties of the measuring apparatuses: the geometric features
of distances, i.e. of “space”, are nothing but reflections of the physical character-
istics of the rulers determining those distances, and the same holds for “time”
and the clocks.

A word of caution here. One has to be aware that the operational approach
will never be “fundamental” in the sense of “pertaining to fundamental con-
stituents”, for a ruler is an extremely complex object where atomic, nuclear,
and electromagnetic interactions occur. This implies that conclusions and re-
sults about nature supposed to have general validity might contain, well hidden
inside, dynamical relationships germane to the specific measuring devices.

On the other hand, the operational method has the advantage that the
interpretation comes for free, since the most fundamental quantities — as space
and time — are precisely those which are measured, and the link between theory
and experiment is therefore straightforward.

4.2.2 Observers; time and space
Let O be an Observer.15 The universe of natural phenomena, which exists

regardless the presence of the observer, can be described as set M (the space-
time) of all events an observer can possibly label. Notice that M, differently
from M of Eq. (4.1), is just a collection of physical events, and all its formal
properties have yet to be defined.16

In fact, there are infinite observers: it suffices to postulate that any single
event occurs in the presence of one (and only one) observer. In this sense, the
intuitive notion of “points of space” is traded for the operational one of “infinitely
many observers”. Each observer O records the events by labelling them uniquely
with the time at which they occur, where “time” here means the outcome of a
reading of the observer’s own clock (the proper time).

14Throughout this Chapter, we shall frequently refer to the monograph [96], where a neat and
precise presentation of the operational construction of spacetime can be found. The Reader, however,
ought to be aware that the author of [96] by no means advocates or supports unconditionally the
operational approach, stressing instead the fully dynamical character of the measuring apparatuses
used to determine the length and duration of spacetime intervals.

15Hat tip to Sebastiano Sonego, and to his unpublished Notes on Classical Mechanics.
16The classical spacetime M of Eq.(4.1) is not a collection of events, for events have physical

meaning, whereas the coordinates on M have none. In the language of classical spacetime, the
universe of the events we are building here is the space of point-coincidences, obtained as follows:
rewrite all the physical fields defined on M in terms of a finite number m of scalars ψJ , counting
them with a running index J . Consider then the map Ψ defined by the ordered m-tuple Ψ :=
(ψ1, . . . , ψm), with domain in M and values in Rm. The space of point-coincidences M is then
the sub-domain of Rm spanned by Ψ (M), and is in general a manifold — yet, it is different from
M [553].
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One usually requires that the clock — any clock, for any observer — be
arranged so that the time variable t it provides allows for the simplest description
possible of the elementary laws of physics. In the words of John Archibald
Wheeler, “time is defined so that motion looks simple” [353]. In a similar fashion,
the intuitive notion of “space” (to be defined in a moment) is crafted so that
the local geometric environment looks as simple as possible, i.e. isotropic and
homogeneous.

Both the simplicity assumptions mentioned above about temporal and spa-
tial variables concern essentially the form of the dynamical equations adopted for
the non-gravitational interactions. The actual physical characteristics of space
and time emerge then at the experimental level, confirming or disproving the
adequacy of the simplifications advanced in first place, in a continuous feedback
mechanism.

To relate events and measurements occurring in the presence of different
observers, the first step is to set up a protocol to synchronise the clocks [453].
In this sense, we have first to assume that such synchronisation is possible —
which is not granted; see e.g. [470] —. The details of the particular procedure
are of no interest here; what matters is that any procedure be able to let the
observers deploy a function t, given by

t :M 7→ R , (4.9)

such that the restriction of t to the history of any observer gives the proper time
read off the clock by the observer Himself. The passage in Eq. (4.9) is legitimate
only if we are postulating that the universe of the events form a proper-time-
synchronisable spacetime [470]. The function t can be used to determine the
time interval (“duration”) between any pair of events, simply by subtraction.

Two events P,Q are hence simultaneous if and only if tP = tQ. It is then
possible to define the space of simultaneity, ΣtQ , as the set of all the events
simultaneous with respect to a given one Q occurring at a time tQ.17 In formulæ

ΣtQ := {P ∈ U | tP = tQ} . (4.10)

It results that the only meaningful definition of “space” in the operational ap-
proach is one determined by the observers, and no concept of space independent
of time can exist in physics. The notion of “point of space” is essentially equal
to that of “observer”.

The observers can use the rulers to evaluate the physical properties of the
spatial environment, and describe it accordingly.18 The rulers, which have the
role of units of length, are chosen such that the measured distance d (P,Q)
between pairs of points does not depend on time — i.e., the space is, in a sense,
infinitely “rigid”.

It follows that an effective formal description for the space in the proximity
of any observer is provided by a three-dimensional topological space, equipped
with an affine and an Euclidean metric structure. This reflects the experimental

17For an examination of the general issue of simultaneity in relativistic theories see e.g. [229].
18A possible substitute for the set of rulers is a “standard signal” with known velocity, which is

a natural extension of the former notion, and the most suitable one for large-scale measurements,
where the rulers would fail at remaining undeformed.
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result that the local space is, with excellent approximation, homogenous and
isotropic.19

One can thus erect, at any point of space, a positively-oriented Cartesian
triad of axes (i, j,k) aligned along three non-coplanar directions of the rulers;
on the axes, the observer in the origin can read the values of three coordinates,
(x, y, z), respectively (the units of length on the three axes can be made to
coincide without loss of generality) [459].

The notions of observer, time coordinate (reading on a clock), and spatial
triads of axes (giving the spatial coordinates on each space of simultaneity) can
be fused into the one of reference frame. A reference frame K is an ordered set
(O, i, j,k, t) where O can be identified with any point of space and any moment
in some proper time. The three spatial axes are usually chosen to be orthogonal
with respect to the Euclidean metric on Σt for all t’s, even though this is not a
compulsory step.

4.2.3 Reference frames; relative motion

The reference frameK defined above is not unique: two such reference frames
differing from a spatial rotation of the axes, or by a uniform translation in space
and/or in time, are physically equivalent, where “physically equivalent” has here
an operational characterisation as well.

The kind of idea one ought to have in mind is the following. Suppose to
have a catalogue of possible physical experiments (kinematical, dynamical, elec-
tromagnetic, thermodynamical, etc.); the protocol to build and perform each
experiment is clearly and unambiguously formulated, item by item. Assume
then to have two reference frames, where the same experiment from the cata-
logue is performed. The two frames are then said to be physically equivalent if
the results of the two experiments are the same.

This allows to conclude that there is indeed an equivalence class of refer-
ence frames {K}, whose physically equivalent elements are related by spatial
rotations and spacetime translations.

We can sum up the result in the form of a Postulate, which also contains
the first seed of the “principle of relativity”, i.e. the physical equivalence within
a given class of reference frames. It reads [153]

Postulate “A ”. There exist reference frames constituted by observers, clocks,
rulers (or units for length), and synchronisation procedures, such that the dis-
tance between two arbitrary observers — or points — does not depend on time,
and such that the resulting local spatial geometry is Euclidean. Two reference
frames related by a rotation of the spatial axes, or by a spatial/temporal trans-
lation, are physically equivalent.

Among all reference frames, those in which the motion of an isolated particle
is both rectilinear and uniform are called inertial.

19Although seemingly general, this construction indeed pertains to quite a restricted scale, where
the role of the gravitational field can be safely neglected. An observer might decide to replicate
this construction, identifying however the spatial points with e.g. galaxies. His conclusions about
the geometry of space would be then much different, with the emergence of a “local” environment
changing over time.
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Consider now a reference frame K; let K ′ be another reference frame, in
rectilinear, uniform motion with respect to K, with velocity v. One can com-
pare the outcome of kinematical and mechanical experiments in both reference
frames.

One finds that, upon performing experiments in bothK andK ′, the same re-
sults emerge, provided that the initial and boundary conditions are transformed
appropriately. Notice that the kind of experiments mentioned here do not in-
volve only measurements of durations or distances (geometrical or kinematical
tests), but involve various dynamical phenomena, all confirming the physical
equivalence of the two inertial frames. Such conclusion allows to state that the
class of reference frames in Postulate A also includes all the reference frames of
the type K ′.

This conclusion is logically separate from the ones concerning the frames
who differ from spatial rotations and spacetime translations, and can be given
the status of a separate Postulate, namely [153]

Postulate “B ”. It is inertial any reference frame K ′ moving with translatory,
uniform, rectilinear motion with respect to an inertial reference frame K.

4.2.4 Hypotheses behind Lorentz transformations

Consider now two arbitrary inertial reference frames, K and K ′; call v the
velocity of the second frame as measured in the first one.

In general, since the fundamental quantities to be attached to any event
are its coordinates x, y, z, t, we can expect that physical laws will be generally
expressed as relationships of the form ψ = ψ (x, y, z, t), where ψ is some ob-
servable. Notice that the expression ψ (x, y, z, t) does not represent the value
assumed by ψ at a certain point in space and moment in time; rather, it gives
the coincidence of the outcome of measuring ψ, and reading off the values of the
time and the distances on the observer’s clock and rulers.

It is then fair to ask what is the most general transformation of the coordi-
nates x, y, z, t between inertial frames which complies with postulates A–B. I.e.,
we look for the specific form of the maps

x′α = fα (x, y, z, t;v) , (4.11)

for α = 1, 2, 3, 4.20 Indeed, there are various ways to get the result [96, 198, 360],
and the one relying on the smallest set of assumptions is the derivation from
first principles due to von Ignatowski [271, 495, 96, 317]. In von Ignatowski’s
construction, the transformations can be derived from the following set of hy-
potheses:

1. Spatial and temporal homogeneity — viz., the equivalence of all positions
in space, and moments in time.

2. Spatial isotropy — i.e., the equivalence of all possible directions in space.

3. Principle of relativity — i.e., absence of a preferred frame.

20We are using sets of mutually orthogonal spatial axes in both the inertial reference frames, even
though the triples i, j,k and i′, j′,k′ are in general not aligned with each other.
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4. Pre-causality — viz., irreversibility of the time ordering of two events in
the passage between one frame and another.

The hypothesis of homogeneity in space and time assures that the transfor-
mations (4.11) be linear in their arguments, for the time and spatial intervals
∆x′,∆y′,∆z′,∆t′ measured in K ′ can only depend on the corresponding inter-
vals measured in K, and not on the coordinates. Such result heavily relies on
the operational interpretation of the coordinates.

Spatial isotropy is used, in combination with the principle of relativity, to
prove the principle of reciprocity [73], i.e. the fact that the velocity v′ of K in
the frame K ′ is −v. On the purely computational side, spatial isotropy is also
deployed to simplify the mutual orientation of the two frames, and work with
only two variables, namely t and one spatial coordinate, say x.

The relativity principle demands that the maps fα’s in Eq. (4.11) form a
group. Any violation of such rule would imply the kinematical non-equivalence
of inertial frames.21

Finally, the pre-causality hypothesis further restricts the shape of the trans-
formations, by demanding that the temporal order of events be conserved when
passing from one inertial reference frame to another — viz., ∂t′/∂t > 0.

By massaging the equations, and restoring an arbitrary mutual orientation
of the axes for K and K ′, the coordinate transformations boil down to [360, 35,
96, 228] 

x′i = Rijx
j − vi

(
γ − 1

v2
xkvk − γt

)
t′ = γ

(
t− xkvk

C2

) , (4.12)

where i, j, k ∈ {1, 2, 3}, γ :=
(
1− v2/C2

)−1/2, Rij denotes the entries of an
orthogonal (proper rotation) matrix with constant and velocity-independent
coefficients, and C stands for an invariant velocity [99], i.e. one whose value
remains the same in any inertial reference frame (the numerical value of C,
however, is unspecified, and can be any real value, even infinite).

Eq. (4.12) yields the sought-for coordinate transformations between inertial
frames, viz. the Lorentz transformations. These need be complemented by the
translations in both space and time, which are a direct consequence of the lo-
cal homogeneity of both space and time. As long as gravitational phenomena
and spacetime curvature are not involved, uniform translations are admissi-
ble spacetime transformations leaving the fundamental, non-gravitational test
physics untouched, and must hence be included. The resulting symmetry group
is the Poincaré group [495].

Experimentally, one finds that C equals, with high accuracy, the value of the
speed of light in vacuo, c, hence light signals travel at an invariant speed — and
can thus be used e.g. in one of the many allowed synchronisation procedures for
the clocks —. The limit C → ∞ gives the Galilean transformation of classical,

21In fact, the transformations between inertial frames at the kinematical level are verified or dis-
proved by measurements performed by clocks and rods — we are still playing the game according
to the operationalist’s rules — and those measurements involve for sure the behaviour of com-
plex, dynamical objects. This means that the kinematical equivalence or non-equivalence of inertial
reference frames is tested already at the dynamical level.
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pre-relativistic mechanics.22

Before moving on, a final remark. From the argument above, we see that any
statement or quantity calling itself Lorentz-invariant or Lorentz-symmetric must
comply with all four hypotheses 1.–4. One often finds sources in which “Lorentz
symmetry” simply refers to the principle of relativity, without any reference
(or, with implicit reference) to the other conditions [469, 466, 83]. While it is
true that the relativity principle is a necessary condition to be enforced by a
Lorentz-invariant setting, it is not the only one.

4.3 Mesoscopic effects & Lorentzian structure
We can now look for possible “mesoscopic” effects of a quantum gravitational

infrastructure hidden below the veil of our observable universe. Our idea can be
stated as follows.

If the quantum seeds expected to shatter the fabric of classical spacetime
affect so deeply the basic axioms of pre-general relativistic physics, then their
percolation to a mesoscopic, observable level cannot but be translated into a
modification in the founding pillars and axioms of classical spacetime itself.
Therefore, we can review what happens if we start shaking, one at a time, the
set of postulates contained in the previous section.

We do not look for specific new effects or novel phenomenology: our research
is a matter of principle(s). What we want to identify is the precise step, in the
logical path to Lorentz transformations, where the traditional protocol jams,
and a window opens to the onset of quantum-driven corrections.

4.3.1 Tinkering with the pillars

The analysis we plan to pursue moves from the set of postulates A–B and
hypotheses 1.–4. Since the former are much more general, we proceed in re-
verse order, and work first with the latter, studying the effects of relaxing the
hypotheses.

In the four assumptions underlying Lorentz transformations, pre-causality
appears to be the most robust: relaxing it would seriously prevent any actual
physical investigation. Therefore, we leave it as it stands.

The principle of relativity is a perfect candidate to be abandoned, proba-
bly the easiest to drop out of the series, and the most commonly attacked in
the literature [341, 317, 39, 502, 503, 548]. A common trend is to start with a
Lorentz-symmetric theory, for instance the Standard Model of particle physics,

22To be precise, the Galilean regime of the Lorentz transformations actually requires four condi-
tions to be realised [96, 261]. One is the slow-motion condition v � c (which has a more physical
significance than the limit C → ∞, as the latter indeed clashes against the finite value mea-
sured for the speed of light in vacuo); then, the condition dx/dct � 1, i.e., that only large time
intervals are involved with respect to the spatial ones. Also, one has to require that the spatial
gradients overwhelm the temporal derivatives, ∇i �

(
vi/c2

)
∂/∂t for all i = 1, 2, 3, and, finally,

that bodies all move at non-relativistic speeds, such that the velocity composition law reduces to
ẋ′i ∼ ẋi − vi. If one only sticks to the first two conditions [312], and reverses the second, i.e.
considers the slow-motion regime of large spatial intervals, another, viable group structure emerges,
namely Lévy-Leblond’s Carroll transformations, named after the author of Alice in Wonderland
and Through the Looking-Glass [312, 168]. Carroll’s group, although of somehow littler interest, has
recently provided nice contributions in relativistic electrodynamics [168], and remains an exquisite
tiny deviation of special relativistic physics.
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write down all the operators compatible with the remaining symmetries but the
equivalence of inertial reference frames, and evaluate the resulting phenomenol-
ogy [317]. The expected effects can be probed using both particle-inspired tests,
and astrophysical sources acting as very-high-energy laboratories (supernovæ,
blazars, pulsars, active galactic nuclei and gamma ray bursts).

A violation of the frame-independence of physical laws generates, for in-
stance, shifts in the thresholds for elementary particles reactions — pion produc-
tions from protons — and even permits reactions otherwise forbidden (vacuum
Cherenkov effect [32], photon decay [283]). Anomalous decays such as helicity
flip or photon splitting [260] become possible. Since the violation also affects
the possible maximum velocity of matter and light, it can be found in the peak
of emission from supernova remnants, or Gamma-Ray Bursts [326, 511]. Other
effects encompass vacuum birefringence [6] and time delays on long-baseline
distances (whence the tests on far astrophysical sources).

To date, quite tight experimental constraints have been cast upon possible
violations of the relativity principle, from both the particle-physics side, and
the astrophysical direction. In a rotational-invariant minimal extension of the
Standard Model, such violations are compatible with the null hypothesis, even
though the outcome vastly depends on the sought-for order of the violation, and
on the specific sector of the Standard Model where they are investigated [317].
The strengths of the constraints peak at best somewhere between 10−6 (from
observations of protons in cosmic ray for an order-4 violation, in a neutrino-
flavour independent scenario) and 10−20 (for order-2 violations, again in protons
from cosmic rays) [317]. Results of order 10−16 can emerge from observations of
photons from Gamma-Ray Bursts, or positron-electron pairs (both for order-3
violations in a neutrino-flavour independent setting) [317].

The relaxation of the principle of relativity has also been examined, from a
group-theory perspective, within the programme of Very Special Relativity the-
ory [127]. There, the key role is played by specific sub-symmetries of the Poincaré
and Lorentz groups, with the onset of a preferred, fixed “æther” direction, the
spurion.23 Also in this case, the possible violations are tightly constrained by
experiments and observations [138].

A third hypothesis to play with is spatial isotropy, whence the emergence of a
preferred direction in space, rather than one in spacetime. While the catalogue of
available proposals in this sense is certainly less ample than that embracing vio-
lations of the relativity principle, some conclusions can be drawn [495, 305, 239].
By limiting the analysis of an isotropy breakdown at the kinematical level [495],
one finds out that

∗ Anisotropic kinematics is consistent and theoretically admissible. It can
be made emerge from a slight modification of the general proof to find the
Lorentz transformations.

∗ It is fully compatible with the absence of a preferred frame in spacetime,
thus abides by the principle of relativity. This is reflected by the fact that
the anisotropic transformations still form a group.

∗ In a geometric interpretation based on MSR of Eq. (4.3), it is compatible

23For a geometric reappraisal of Very Special Relativity, see e.g. Ref. [218].
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with the trade of the pseudo-Riemannian structure for a pseudo-Finslerian
one [41, 114, 495].24

The analyses show that part of the problem with anisotropic kinematics can
be traced back to the protocol for clock synchronisation (and can thus be erased
by an apt choice of the method), hence has a purely conventional character,
whereas there is a residual real anisotropy which cannot be gauged away, and
results in measurable effects.25

Finally, we can try to relax homogeneity [153]. It turns out, however, that
this is a much more delicate pillar to play with, for homogeneity intervenes
at two different stages in the proof of the transformations (4.12). At the fun-
damental level, and even before the beginning of the proof itself, it enforces
the operational meaning of the coordinates xα in any inertial reference frame;
this assures that, in both frames K and K ′ considered above, the difference
∆t := tQ − tP [respectively, ∆t′ := t′Q − t′P ] between the time coordinates of
two events P,Q will be interpreted as the (time) interval between the events,
as recorded by a clock attached to the origin of the reference frame; likewise,
the difference ∆x := xQ− xP [resp., ∆x′ := x′Q− x′P ] will be interpreted as the
distance, at a given time in K [resp., in K ′], between the two given points.

Subsequently, homogeneity constraints the maps fα’s to be linear in their
arguments. To see this, consider two events P ≡ (t, x) and Q ≡ (t+ ∆t, x) as
measured at a constant spatial position x in K (without loss of generality, we
can use here only the pair of coordinates x, t); the duration ∆t = (t+ ∆t) − t
between the two is mapped, via Eq. (4.11), into

f (x, tA + ∆t; v)− f (x, tA; v) = F (t,∆t, x; v) , (4.13)

with F a general function. At the same time, the transformed difference on
the left will still be a time interval ∆t′ as measured in K ′ — because of the
operational definition of the coordinates in the class of inertial frames, holding
in view of Postulates A,B — and hence ∆t′ cannot depend on where and when
the interval is measured, again by the homogeneity assumption. Therefore, F
can only be a function of T and v, and dimensional considerations require the
function F to give

∆t′ = F (v) ∆t . (4.14)

It follows, finally
t′ = F (v) t+H (x; v) (4.15)

with H an arbitrary function — which, however, can be proven to be itself
homogeneous in the x-variable by an analogue argument for the the spatial
measurements. This concludes the sketch of the proof.

Now, if homogeneity goes missing, the mentioned differences ∆t,∆x loose
any relationship with actual durations and distances. Even worse, if Postulate B
holds, i.e. if the principle of relativity is adopted, the same loss of meaning oc-
curring in a reference K holds for any other inertial observer, which means that

24I.e., it yields a structure MFinsler ≡ (M,kab) in which the metric kab (xα, va) depends not only
on the coordinates, but also on the velocities. In other words, kab is a rank-2, covariant, symmetric
tensor defined on the tangent bundle TM , rather than on M alone.

25This can be easily seen in a (1 + 1)-setting, where anisotropy in space is reduced to the non-
equivalence of the positive and negative directions along the spatial line [495].
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the pseudo-Cartesian coordinates in any inertial reference frame are deprived of
their operational interpretation.

This fact, however, clashes with assumption A, i.e., it conflicts with one of
the pillars of local physics established, for the class of inertial observers long
before the Lorentz transformations were considered [153]. Stated otherwise: re-
laxing the homogeneity hypothesis affects the innermost structure of classical
spacetime, and demands radical departures from the early roadmap used to
construct the notion of spacetime itself.

4.3.2 A “no-go argument”

What can be noticed by going upstream through the set of hypotheses be-
hind Lorentz transformations, is that the closer we get to the very roots of the
construction of spacetime, the more “rigid” the structure becomes. This is in a
way expected, for the operationalist’s standpoint precisely begins with suppos-
edly robust foundations, and then applies successive layers of looser and looser
ends.

At the same time, the rigidity of the homogeneity assumption prevents the
onset not only of any departure of the spacetime structure from the Minkowskian
one, but also any minimal variation e.g. of the linearity of the coordinate trans-
formations. Where, then, is any room left to accommodate the existence of a
mesoscopic regime? Our answer goes as follows [153]:

If spacetime obeys the complete set of axioms and hypotheses A–B and 1.
to 4., then it must have a full, ordinary Minkowskian structure, and calling the
regime “mesoscopic” makes little sense, for no detectable differences emerge at
the scale `meso, provided that the structure of the field equations and of the
equations of motion do not get any change when approaching the Planck scale..

If one is willing to relax some of the assumptions, the two hypotheses most
reasonable to be changed in the context of coordinate transformations are the
absence of a preferred frame, and spatial isotropy. In either case, tight con-
straints exist on the observable effects.

Very few possibilities remain, then, and all point at a change in postulate
A. This, however, implies severe modifications to the innermost character of
the reference frames, rather than “mild” changes such as those coming from e.g.
allowing for spatial anisotropies [153].

Our “no-go” argument can also be rephrased in terms of physical laws, and
their symmetries [153].

By a rigorous application of the full set of statements A–B, plus 1. to 4., all
the resulting fundamental laws of physics are expected to be strictly Poincaré-
invariant, at any scale up to `℘, and no deviation from the spacetime structure
of standard Special Relativity is forecasted.

When a modification of some of the postulates is allowed around `meso, the
fundamental laws of physics will become no longer Poincaré-invariant. In this
context, whenever spatial isotropy and the absence of a preferred frame are kept
holding, the sorts of expected modifications might be tightly constrained, even
though not necessarily unphysical [153].

Still, we have to stress that the request of exact invariance under Poincaré
maps does not prevent the onset of new phenomenology around the scale `meso,
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for such invariance is only part of the postulates and axioms governing our
description of the local environment.

4.3.3 Results, and some speculations

To conclude: if the spacetime is fully Minkowskian at mesoscopic scales as
well, than any onset of new phenomenology is postponed down to the micro-
scopic, Planck scale only, and its emergence must be abrupt, as it happens in
a second-order phase transition. In the same fashion, one can say that also the
emergence of Poincaré-violating physical laws can only occur from `℘ down-
wards.

If, on the other hand, the modifications proposed pertain to the content of
postulate A, the current interpretation of spacetime gets deeply revolutionised,
and in principle new phenomenology might emerge, via many mechanisms. Yet,
calling this regime “mesoscopic” would once again be a misnomer, for large-scale
effects would be generically expected to manifest.

Finally, imposing exact Poincaré invariance for the local laws of physics
constrains the form of the maps (4.11), but does not rule out a priori the possible
emergence of new, Poincaré-symmetric terms (suppressed by powers of the scale
`meso) accounting for new phenomenology.

The intrinsic rigidity of the Minkowskian structure can still be reconciled
with the onset of a mesoscopic scale if the latter affects the structure of the
physical laws and their field equations — yet, in a Lorentz-invariant way —. In
this sense, non-locality may play an important role.

A word of caution here: in the context of this analysis, the expression non lo-
cality has quite a specific connotation, different from the “mainstream” definition
related e.g. to Bell’s theorem, the Einstein–Podolski–Rosen paradox, and sim-
ilar statements. We refer here mainly to the non-local contributions forecasted
in some quantum-gravity scenarios, such as the “de-coherence scale” needed in
Causal Sets to tame the divergencies of the discrete D’Alembertian operator
B.26

Similar types of non-locality effects — arising in a sense at the semiclassical
level — are a built-in feature of many physical pictures, from non-commutative
quantum field theory to extensions of the Standard Model of particles, spanning
also string theory and Loop Quantum Gravity [205], and this may suggest that
the intrinsic fuzziness of the microscopic sub-Planckian regime may propagate
up to an observable scale precisely through non-local corrections.

A sort of non-locality is also present in the relative locality paradigm, where
the locality condition is indeed “relative” in the sense that only quantities and
measurements performed in the close proximity of an observer (“co-local”) are
truly well-defined; anything occurring far from an assigned origin of a reference
frame gets “smeared” or “blurred” in a fuzzy region where no point-wise coinci-
dences of events are anymore distinguishable — the size of the region turns out
to be proportional to a corresponding volume in the phase space [27, 203].

These conclusions hint at the possibility that the onset of non-locality be
a foreseeable consequence, at the mesoscopic level, of the sub-Planckian break-
down of the classical spacetime model, notwithstanding the fact that none of

26Kudos to D. T. Benincasa and A. Belenchia for some enlightening explanations on this topic.
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such frameworks strictly violates the relativity principle, nor the spatial isotropy,
nor in a sense spacetime homogeneity (the coarse-grained limit fully recovers the
smooth structure M ). What could then be expected is the emergence of non-
local, yet possibly Lorentz-invariant contributions to e.g. the dynamical evolu-
tion of the physical fields, or their interactions. The already vast catalogue of
effects, ranging from modified dispersion relations to superluminal propagation
of modes, might thus be enriched by the emergence of non-locality correction e.g.
to the propagator of the fields, suppressed by apt scales restoring the already-
tested large-scale regime.

A different direction where to look at concerns instead the physical meaning
of coordinates. Back to our first operational definitions, consider two clocks
based on some exponential decay (of the same substance, and in the best possible
equivalence as per construction and calibration), both measuring durations, and,
hence, time. Suppose now to increase the energy of just one of the two clocks,
and follow the evolution of the phenomenon used to define the timepiece as the
energy ramps up.27 It is not obvious that the readings of the two clocks should
entail the same results in terms of resolution, when the energy regime in which
they are operated varies significantly. Nor is assured that any relationship or
regularity could be found, between the resolutions at different energy levels.

But then the question arises [95]: which of the two apparatuses is measuring
the “right” proper time? In the operational approach, the answer is “both”, for no
specification about the energetic environment of the clock was made when the
object was selected to account for the measurements of durations. At the same
time, now we have two different time variables, uncorrelated, and impossible to
synchronise.28

Another aspect involves the breakdown of the operational interpretation
of coordinates: suppose indeed that the xα’s do not account anymore for the
measurements of lengths and time intervals. Then, in the absence of independent
detections, all notions such as velocity, acceleration, momentum etc. become at
once ill-defined, whereupon any hope to recover even the simplest kinematical
laws collapses.

At the same time, if an independent definition of e.g. velocity (or momentum)
is permitted, then the space of degrees of freedom gets inevitably enlarged, with
the vα’s now becoming separate variables with a physical significance — the pα’s
are another legitimate choice —. In this last scenario, a possible consequence is
the need for a suitably extended geometric structure on which to describe the
unfolding of physical phenomena; the relative locality proposal briefly outlined
above suggests to look at a space parametrised by pairs (xα, pβ), but alternatives
exist [24] in which the manifold covered by coordinates

(
xα, vβ

)
is the aptest

direction where to look at.

These “skeletons of examples” tell us two things: first, as already remarked,
that a hidden danger of the operational approach is to adopt complex objects,

27Notice that such proposal does not affect the functioning itself of the clock; rather, it is the
resolution of the timepiece which is at stake in this experiment.

28A similar problem arises when two identical clocks are placed in a gravitational field: one is
kept at a fixed height on the surface of Earth, while the other is abandoned in free fall. Which one
is measuring the “true” time? The answer in this case is “neither”, as time is just a manifestation of
the gravitational field, and it is only the dynamics of the latter which actually matters [468].
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with yet-unspecified dynamics, to represent the fundamental kinematical vari-
ables; second, that the importance of the notion of coordinates might really be
over-estimated, even in a special-relativistic context, and that in principle we
ought not to be afraid of the possibility to adopt a different language, where only
dynamical physical fields exist, and their relational structure gives meaningful
observables.

Acknowledging that coordinates are indeed fields, or at least a complex out-
come of the interaction of many physical fields, would render much less trau-
matic the relaxing of the homogeneity hypothesis, for the latter would become
just a manifestation of some local, and large-scale, configuration of fields whose
dynamics at small scales — mesoscopic or trans-Planckian — remains mostly
unknown. Stated otherwise, the rigidity of the Minkowskian framework would
turn out as the outcome of a particular realisation of a field configuration in
a precise window of energies and other observables, rather than an immovable,
infinitely extendible property constraining the entire realm of physical laws.
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Chapter 5

Upshot / Outlook

Though the truth may vary, this ship will
carry our bodies safe to shore.

Of Monsters and Men, Little Talks.

The “story of a free fall” comes to an end.
As the farewell approaches, we dedicate a few sentences to sum up the

achieved results, at the same time encapsulating our findings in in a broader
perspective. After that, we expand a bit on some possible directions for future
explorations.

5.1 A bird’s eye view at the achievements
This thesis has focussed on the foundations of gravity theories from two,

almost poles-apart standpoints: the “macroscopic” one (equivalence principles,
almost-geodesic motion of self-gravitating test bodies, and related formal selec-
tion rules), and the “microscopic” one (near-Planckian regimes, and axiomati-
sation of local spacetime).

The main findings tend to support the received paradigm of General Rela-
tivity (and its special relativistic, ultra-local limit); still, other conclusions have
emerged, consensed as follows.

5.1.1 Equivalence principles, and conjectures
The Equivalence Principles lying at the foundations of gravity theories have

proven to be effective and sharp tools to establish viable models for gravitational
phenomena, notwithstanding the inevitable limits of their formulation — and
implementation in actual experimental settings.

Sometimes, such principles are regarded as outdated traces of a long-gone
past, when the theory of gravity (and the theory of the theories thereof) had
just entered its early childhood. The end of their “career”, however, might still be
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far ahead. In fact, these statements still work effectively nowadays, and provide
formal descriptions of significant portions of the phenomenology, or sieves to
rule out branches of the “family tree”.

The importance of their selective role has even increased: the remarkable
growth of the landscape of competing theoretical frameworks requires a finer
taxonomy, and the Equivalence Principles come handy when the interwoven
families and sub-groups of theories are to be distinguished.

We have provided an exploration of main aspects — and a few subtleties —
of these statements, putting the network of mutual relationships under the lens.
The puzzle, however, is still missing a closing keystone. The Strong Equivalence
Principle lacks a proper formal counterpart, and in some sense even a concrete
example of its possible experimental validation, besides those already covered
by the Gravitational Weak and the Gravitational Newton’s principles.

5.1.2 Gravitational Weak Equivalence Principle, and its
tests

The version of the Gravitational Weak Equivalence Principle presented in
this thesis has been designed to be an extension of the Galilean free fall for bodies
exhibiting some self-gravitational content. In its formulation, the key ingredients
of the geodesic motion become the cornerstones of the resulting selection rule,
whereas some details of the physical systems under consideration are framed via
suitable approximations — and hence neglected — according to a simplifying
standpoint.

The sieve thus obtained rules out whichever theory admits non-metric, dy-
namical gravitational degrees of freedom, and/or any situation in which the
background stress-energy-momentum distribution does not vanish identically.
While the latter condition can be imposed as an additional hypothesis for many
theories of gravity (it is “environmental”), the former requirement actively filters
the landscape of frameworks.

To spot the presence of non-metric gravitational degrees of freedom, one can
look directly at the action of a theory, provided that the latter is written in
such a way that the variational problem for the action itself is well-posed. This
last condition makes the actual dynamical variables emerge, as it is on them
that one imposes the boundary conditions to ensure the well-posedness of the
variational problem, later extracting the field equations.

In the sample of theories examined (purely dynamical, Lagrangian-based,
metric schemes of gravity), only General Relativity — also in the presence of a
cosmological constant — and Lanczos–Lovelock theories pass through the sieve,
as they are the only purely metric theories complying with the other require-
ments.1 In this sense, our findings confirm the results usually attributed to the
Strong Equivalence Principle (which aims at singling out General Relativity
only, among the experimentally-verified theories in four spacetime dimensions),

1A word at this point on Nordström’s gravity. Although ruled out by experiments and obser-
vations, the model remains theoretically viable. And in fact it passes the PPN-based tests for the
Strong Equivalence Principle; its agreement with the Gravitational Weak and Gravitational New-
ton’s principle is also supported by independent arguments based on Katz super-pontentials. While
the type of sieve developed in this work cannot be applied to Nordström’s gravity (the field equa-
tions need be in tensor form), the underlying necessary and sufficient condition for the Gravitational
Weak Equivalence Principle to hold, Eq. (3.11), might be true for this scalar theory. A full-fledged
examination of the case is under development.
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with the emergence of the higher-dimensional Lanczos–Lovelock models as fur-
ther candidates validating the statement.

In its present form, the selection rule based on the Gravitational Weak Equiv-
alence Principle covers a significant portion of the family tree of extended theo-
ries of gravity, but attempts are ongoing, to expand the formulation even more,
making it embrace larger areas of the landscape.

5.1.3 Classical spacetime structure, and beyond

Zooming from the macroscopic picture into the quantum region, we have also
explored how the different notions of classical spacetime react to the presence
of a “mesoscopic” regime disclosing the critical threshold at the Planck scale.

When one adopts the smooth manifold paradigm, the very existence of the
mesoscopic scale is excluded ab initio. The validity of the continuous geometry
is prolonged at any level and scale. When the operative standpoint is assumed,
instead, it is the founding postulates at the very base of the construction which
limit the possible onset of a mesoscopic regime.

In particular, the homogeneity of space and time permitting an operative in-
terpretation of the coordinates prevents the emergence of near-Planckian modi-
fications. Which might as well be an indication that the operative interpretation
itself is concealing some hidden assumptions, constraining the structure beyond
the pristine intentions.

Inspired by the proof from first principles established by von Ignatowski,
we have thus explored the consequences of a breakdown of the hypotheses be-
hind the Lorentz transformations, obtaining that either what can be relaxed is
already tightly constrained by experiments and observations (violations of spa-
tial isotropy, or of the principle of relativity), or the remaining option seems to
be to decouple the coordinates adopted in an inertial reference frame and the
outcomes of temporal and distance measurements.

This last conclusion admits two interpretations. The “geometric” one, which
charges the onset of the mesoscopic regime onto some universal property of Na-
ture, can suggest e.g. the adoption of richer structures (non-commutative phase
space, non-associative velocity space) where to accommodate the breakdown of
the operative interpretation of the coordinates.

On the other hand, a more “physical” point of view (according to which
the regime is due to non-universal properties) may explain a possible novel
“meso-scale” phenomenology in terms of modifications in the behaviour of dy-
namical fields, perhaps suppressed by apt scales — these fields, then, might
still be defined on some background manifold, remaining unaltered as the dy-
namics change —. An example of this second approach is e.g. the non-locality
scale in the propagator emerging from the Causal Sets Theory approach to the
emergence of gravity.2

Both the answers above may appear radical; to date, however, they seem to
be an acceptable reply to an equally radical attitude reaffirming the invariable
continuation of the “scale-invariant” paradigm in spite of well-known technical
and interpretational issues.

2Acknowledgments to S. Liberati for suggesting this scenario.
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5.2 Some hints and proposals for future work
Because the job is never really done, and any accomplishment is but the

forking point where even more questions arise, and challenges emerge.

5.2.1 Foundations of the Equivalence Principles
In the debate on the Equivalence Principles, two big questions remain unan-

swered: one is the relationship between the Weak Equivalence Principle and
Einstein’s one, which has gained the short-hand name of “Schiff’s Conjecture”;
the other is the extension of the above relationship to the Gravitational Weak
form of the principle.

The best results in proving Schiff’s conjecture are still restricted to very lim-
ited and selected sub-cases, where symmetries and simplifications of different
nature allow to sidestep some of the technical and conceptual difficulties in-
volved. A general proof of the conjecture, or a decided counter-example, might
be a valuable contribution, and a significant milestone towards an understand-
ing of the delicate interplay between ultra-local fundamental test physics, and
gravitational phenomena.

Deeply bound to this problem is the other issue of the true nature (and
formulation) of the Strong Equivalence Principle. Which is made of the Gravi-
tational Weak part — on which we have focussed — plus “something else” which,
however, is seldom (if not ever) considered in the experimental settings or in
the protocols used to design the experiments.

The PPN formalism in fact tests the free-fall of extended, self-gravitating
bodies like the Moon orbiting around the Earth (suitable fine tunings can ac-
commodate some selected features of binary systems in a regime where stronger
gravity is at work), and this phenomenology is entirely covered by the Gravita-
tional Weak form. What else, then, can the Strong Equivalence Principle help
discriminate?

An answer might be: the unfolding of gravitational phenomena other than
the free fall, in theories of gravity beyond General Relativity. In this sense, a
better understanding of the physics of e.g. gravitational waves (and, hopefully,
a direct detection) could open new paths towards the ultimate solution of the
riddle.

The Strong Equivalence Principle might also have something to say on the
true nature of gravity beyond the linear regime, and the way various types of
non-linearities can be discriminated. In this sense, the Lanczos–Lovelock theories
might play a significant role, with theoretical guidelines adapted to the higher-
dimensional spacetimes required for the Lovelock Lagrangians to be non-trivial.

The proposal of Refs. [216, 215] is another source of unanswered questions.
The deep link between General Relativity and non-Abelian Yang–Mills theories
probably deserves a “second chance”. It is true that the analogy requires em-
barking oneself in the analysis of gauge formulations of gravity (a branch of the
“family tree” not explored in detail here), but the preliminary results obtained
so far look somewhat promising, and invite to better understand the role of the
dynamics of the connexion and the curvature in the description of gravitational
phenomena.
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5.2.2 A larger arena. . .
The conditions proposed in this work for the Gravitational Weak Equivalence

Principle have been crafted for metric theories of gravity, in agreement with a
long-standing tradition. The landscape, however, is larger, and more complex
frameworks await their “custom” version of the principle.

Consider for instance a purely affine theory of gravity (§1.3.3), i.e. one where
the action is built out entirely of a skew-symmetric connexion, which gives even
the analogue of the metric determinant

√
−g needed to integrate on a manifold.3

Or a metric-affine and/or affine theory; what matters is the premise that the
affine structure be an independent dynamical field.

Such models might be of some significance because the autoparallel world-
lines and the geodesic curves form, in general, two separate classes of one-
dimensional submanifolds on M . Some questions then arise. For instance: how
to build a proper implementation (if any) of the Gravitational Weak Equivalence
Principle for these theories, and which derivative operator to place in Eq. (3.11)?
Also: if the Gravitational Weak Equivalence Principle is implemented indepen-
dently of the Einstein Principle,4 how many different Gravitational Weak Prin-
ciples can emerge, and what is their mutual relation? And, again: is there a way
to relate this decoupling of affine and metric structure to a formal definition of
the Strong Equivalence Principle?

Finding an extension of the Gravitational Weak principle to a purely affine
setting (and a metric-affine, and an affine one) might teach some lessons, both
at the level of enlarging the knowledge base of the nature of the equivalence
principles, and by establishing a new formulation of the test to check the free
fall of self-gravitating bodies.

5.2.3 . . . For an even finer sieve
In a general, n-dimensional spacetime, two groups of theories pass through

the sieve constructed here: Einstein’s General Relativity (for any n), and all the
dimensionally-compatible Lanczos–Lovelock theories.

In principle, this might be considered a fair performance for a test filtering
all metric theories of gravity. One, however, could want to explain what further
conditions are needed if the goal becomes to select only General Relativity in
the bundle of metric theories, as the Strong Equivalence Principle is conjectured
to do.

The different Lanczos–Lovelock models, although structurally quite similar
to the Einstenian framework, are not precisely identical to it, and one can present
some physically relevant differences. To name two, and by limiting ourselves to
the lowest order of the Lovelock actions: the propagation of the wave fronts and
the critical collapse in Gauß–Bonnet gravity [118, 561, 236, 328].

In the former case, one finds [118] that the wave fronts (defined as the ana-
lytical discontinuities in the highest derivatives of the dynamical variables) are
not anymore tangent to the light-cones of the causal structure governed by gab,

3In this sense, it would be interesting to see whether such models are able to recover the local
Minkowskian structure of spacetime, as an acid test of their physical viability.

4The Gravitational Weak Equivalence Principle, being the extension to self-gravitating bodies of
the Galilean free fall (Weak Equivalence Principle) is independent of the existence and consequences
of Einstein’s Equivalence Principle, even though the former is usually implemented only after the
metric structure has been introduced, as a consequence of the latter principle.
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nor even are tangent to a second-order cone. On top of that, if a coupling be-
tween the homogeneous polynomials in the Riemann tensor and the Einstein
tensor is permitted, the propagation of the wave fronts is not tangent anymore,
in general, to a convex cone.

The reason behind such conclusion seems to be a technical one, related to
the properties of the normal form of the field equations for the metric coeffi-
cients [118, 561]. It may admit, however, a possible physical interpretation in
terms of the graviton propagator, its higher Feynmann graphs, and ultimately
in terms of the way the intrinsic non-linearity of the gravitational phenomena
is described in the Gauß–Bonnet theory.

As for the critical collapse, such phenomenon is prevented in the context of
Gauß–Bonnet gravity by the presence of a second fundamental scale, given by
the coupling constant α in Eq. (3.88), which acts as a regulator and tames the
critical behaviour occurring instead in General Relativity. The argument can be
rephrased in terms of the relative presence of two scales, namely G and α in the
Einstein–Gauß–Bonnet gravity model [236, 328] (the role of a third scale, e.g.
the cosmological constant Λ, might be explored as well).

The upshot of this minimal review is that the family of Lanczos–Lovelock
gravity theories is not as close to General Relativity as one might think by
looking at some literature on the topic. Therefore, it may be possible to find
further criteria, with physical significance — and sufficient generality —, to
highlight in a compact form all the differences in the hierarchy of models, and
trace them back to some structural, fundamental aspect.

A possible answer could be to look once again at the structure of the action,
and notice that, as the number of couplings among the Γαβγ ’s in the polynomials
ramps up, the degree of non-linearity of the gravity theory increases. General
Relativity, being the simplest specimen, offers hence the minimal non-linearity
within the Lanczos–Lovelock class. Such minimal non-linearity is also related to
the absence of supplementary scales, the latter emerging inevitably as the rank
of the Lovelock scalar density progresses.

A formal argument supporting such statement is not available yet, but it
might be a programme where to invest some effort, considering not only the
“taxonomic” relevance of an answer to the question, but also the more general
consequences of a better understanding of non-linear phenomena.

5.2.4 Spacetime/Quantum structure

The operative approach is a useful tool to sketch the description of physical
phenomena, and sidesteps at once the problem of interpreting the experimental
results. Yet, it hides a delicate balance of unspoken details and hidden assump-
tions [98], whose presence ends up constraining the framework to the point
that the Minkowskian outcome (or some of its mild extensions) becomes almost
inevitable.

Above all, it is a standpoint rooted in the “human” perspective on the world,
and it seems hard to adapt it meaningfully to the scales close to the Planckian
sill. The notion of e.g. observer given in this work (a tiny computer made of
a clock, a memory to time-stamp the events, and some transmitter-receiver
to communicate with other observers) is admittedly more versatile than that
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of “human/sentient being seeing things”,5 yet it is possibly of little use at the
scales where the “mesoscopic” regime might emerge.

Also, the simple thought experiment concerning “elementary” clocks at differ-
ent energies shows that, even without abandoning “human” scales, there might
appear tiny deviations from the expected laws of physics — maybe in a Poincaré-
invariant way.

What could then happen at the “mesoscopic” scale? Non-locality might play
a significant role — there are reasonable suspicions that it is already relevant,
at macroscopic scales and in a different meaning, as Bell’s theorem seems to
ultimately suggest —. Or, different formal structures might be needed to account
for the universal deformations of fields and dynamical variables. One way or
another, the infinite prolongation of the continuous paradigm seems destined
to break, with the underlying quantum fabric of spacetime finally becoming
manifest at some point.

Such speculations are perhaps not robust enough to support the forecast of
a “mesoscopic regime” of spacetime, but we deem nonetheless that they could
trigger new questions, and promote a more critical approach to the foundations
of classical spacetime.

Curtain

This was the story of a free fall.
To all those who were there, and supported, helped, gave advise, provided

laughs and desserts, or just shared the tiniest bit of themselves as the world-
lines unwound: thank you. Thank you very much. It has been a pleasure, and
an honour.

Falling is hard, much harder than expected.
Freely falling is exactly as hard. But makes one free.
Take care of yourselves.
Farewell,

— Eolo

5Acknowledgments to S. Sonego for proposing this modification.
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Appendix A

Variational Principles and
Boundary Terms

Our stability is but balance, and wisdom lies
in masterful administration of the unfore-
seen.

R. Bridges, The Testament of Beauty.

The role played in this thesis by the notion of a “well-defined variational
formulation” for a dynamical theory suggested to include a few more details on
the topic. In the following, the basic definitions and results are complemented
by a short discussion of the Einstein–Hilbert action for General Relativity.

A.1 Action functionals and field equations
Let φI (χα) be a collection of fields — i.e., of functions of the coordinates

χα on a manifold M , numbered by a running index I. We introduce the com-
pact notation

{
φI
}

:=
(
φI , ∂αφ

I , ∂α∂βφ
I , . . .

)
to denote the fields and all their

derivatives up to arbitrary order. One can then consider the Lagrangian function

L
({
φI
}
, χα

)
:=
√
−gL

({
φI
}
, χα

)
, (A.1)

where L an ordinary scalar function, and we have used the classical “Gothic”
notation for tensor densities [360, 479, 477, 478], such that, for a general tensor,
it is

Aabc...def... :=
√
−gAabc...def... (A.2)

The quantity in (A.1) can be used to build up an action functional (a function
of the field configurations), given by

S
[
φI , gab

]
:= κ

ˆ
Ω

L
({
φI
}
, χα

)
dnχ (A.3)
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with Ω the coordinate representation of a region over M , gab the inverse met-
ric defined on the manifold, and κ a dimensionful constant accounting for the
correct dimensional arrangement of the right-hand side.

Action functionals, fields, and Lagrangian densities are tools in widespread
use in theoretical physics, for they often represent dynamical models of actual
systems [5, 235, 459, 424]. The behaviour of such systems can be determined
from the field equations, providing the extremal configurations of the action
functional itself. To this end, it is necessary to introduce the notion of differen-
tiability of a functional

For sake of simplicity (but without any loss of generality), consider the case
in which I = 1, and drop the counting index. If φ is a smooth function, then for
all δφ such that φ+ δφ is still a smooth function, the functional S is said to be
differentiable if

S [φ+ δφ] = S [φ] + δS [φ, δφ] + Υ [φ, δφ] , (A.4)

where δS [φ, δφ] is linear in δφ, which means that, for a fixed φ, it is (c is any
number)

δS [φ, δφ1 + δφ2] = δS [φ, δφ1] + δS [φ, δφ2] , (A.5)
δS [φ, cδφ] = cδS [φ, δφ] . (A.6)

As for the term Υ, it must be of order ε2, in the sense that, if |δφ| < ε and
|∇aδφ| < ε, then it is

|Υ [φ, δφ]| < Cε2 , (A.7)

with C a positive real number. The object δS [φ, δφ], when it exists, is called
the variation of the action functional, and is thus the linear part in δφ of the
difference S [φ+ δφ]− S [φ].

The existence of the variation δS, and the possibility to have the decompo-
sition (A.4), are in general not automatically guaranteed; when this occurs, one
says that the variational problem for the action functional is well-posed. The
well-posedness of the variational problem usually requires the introduction of
apt supplementary conditions of regularity for the field φ at the boundary of the
region where the integration is performed, the boundary conditions, which en-
sure that δS exists, it is linear in δφ, and that Υ provides a sufficiently negligible
contribution with respect to δS.

For a given differentiable action functional, any configuration φ̄ for which
the variation vanishes, δS

(
φ̄, δφ

)
= 0, for all field variations δφ, is called an

extremal. Whenever it is possible to write

δS [φ, δφ] =

ˆ
δS

δφ
δφdnχ (A.8)

for some function φ, the term δS/δφ is the functional derivative of the action
with respect to φ.

The field equations, i.e. the equations governing the evolution (dynamical or
kinematical) of the configuration φ, emerge then as the outcome of extremising
the action functionals, that is, implementing the condition

δS = δ

ˆ
Ω

L ({φ} , χα) dnχ = 0 (A.9)
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which reduces to setting to zero the Euler–Lagrange derivative of the Lagrangian
scalar density, viz.

∆φL ([φ] , χα) = 0 , (A.10)

for any possible variation δφ. The symbol ∆φ stands for

∆φ :=
∂

∂φ
− ∂α

∂

∂ (∂αφ)
+ ∂α∂β

s∂

∂ (∂α∂βφ)
− . . . , (A.11)

where the symmetric derivative with respect to the derivatives of the fields in
the formula above equals

s∂

∂ (∂α∂β . . . ∂λφ)
∂γ∂ι . . . ∂ζΞ = δα(γ . . . δ

λ
ζ) , (A.12)

The well-posedness of the variational problem, as said, is related to the
boundary conditions for the dynamical fields. In a pseudo-Riemannian setting,
namely when Ω is the coordinate representation of a region defined over a space-
time M , the boundary ∂Ω can be generally separated into a timelike part (the
spatial boundary), and a pair of spacelike hypersurfaces (the endpoints).

A.2 The Einstein–Hilbert action
We can now apply the considerations of the previous section to the specific

case of General Relativity. The matter is discussed along three main directions:
the pure Einstein–Hilbert Lagrangian, without any additional boundary term;
the same action, but equipped with the Gibbons–Hawking–York boundary term;
the less-known, yet instructive, gamma-gamma Lagrangian.

Before proceeding with the argument, a remark concerning the physical role
of the boundary conditions in this particular case [171]. Broadly speaking, the
choice of the spatial boundary conditions mirrors the choice of a defined “vac-
uum” of the theory under examination (e.g. the asymptotically flat vacuum, with
respect to which many solutions of the field equations are allowed), whereas con-
ditions on the endpoints, or initial data, assign a particular state in the vacuum
(in this way one can discriminate e.g. the Kerr solution from the Schwarzschild,
or Minkowski one, within the class of aymptotically flat spacetimes).

A.2.1 Standard, “naïve” formulation
We start with the pure Einstein–Hilbert Lagrangian, viz.

SEH =
c4

16πG

ˆ
Ω

R
√
−g d4y =

c4

16πG

ˆ
Ω

gαβRαβ
√
−g d4y . (A.13)

The field equations emerge upon setting δSEH = 0, and varying with respect to
the inverse metric gab; in the language of Eq. (A.10), this means

∆ghk

(
R
√
−g
)

= ∆ghk

(
gαβRαβ

√
−g
)

= 0 . (A.14)

The various terms can be found through standard calculations [542, 353, 370].
Two pieces need be evaluated, namely ∆ghk

√
−g, and ∆ghkRαβ . The first is given

by

∆ghk

√
−g = −1

2

√
−g gαβ δgαβ , (A.15)
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and, when grouped together with the term Rabδg
ab, gives the contribution (the

overall coupling constant can be neglected)(
Rαβ −

1

2
Rgαβ

)
δgαβ = Gαβδg

αβ . (A.16)

Forgetting for a second the term gαβ∆ghkRαβ , and focussing on the relation
above, we have that the field equations for the metric will emerge upon setting
to zero the variation of Eq. (A.13) for all possible δgαβ ’s in Ω. A glance at
Eq. (A.16) shows that this is the case if

Gαβ = 0 , (A.17)

i.e., the Einstein field equations in vacuo.
There is a problem, however: the term gαβ∆ghkRαβ still has to be evaluated.

How does it come that we already have the field equations with a piece of the
variation missing?

Let us complete the calculation. The variation of the Ricci tensor gives, after
some rearrangements,

∆ghkRαβ = ∇γδΓγαβ −∇αδΓγγβ . (A.18)

Further manipulations make it possible to show that gαβ∆ghkRαβ amounts to

gαβ∆ghkRαβ =
(
δαγ∇δgδβ −∇γgαβ

)
δΓγαβ +∇γ

(
gαβδΓγαβ − gγβδΓααβ

)
.

(A.19)
Upon substituting this last expression in Eq. (A.13), and using Gauß’ theorem,
we haveˆ

Ω

gαβδRαβ
√
−g d4y =

ˆ
Ω

(
δαγ∇δgδβ −∇γgαβ

)
δΓγαβ

√
−g d4y+

+

˛
∂Ω

(
gαβδΓγαβ − gγβδΓααβ

)
nγdΣ (A.20)

where nγdΣ denotes the oriented 3-volume element on ∂Ω, defined by the normal
vector nγ . In the formula above, the “bulk” four-dimensional term vanishes in
view of the metric-compatibility condition ∇αgβγ = 0, and only the surface term
survives.

Now we can select the boundary conditions. It is reasonable to expect that
the metric field have fixed value at the boundary, which implies a vanishing
variation,

δgαβ = 0 , (A.21)

identically on ∂Ω. This first fixing, however, does not seem to help at this stage,
for the terms in the surface integral in Eq. (A.20) depend on the derivatives of
the variation of the metric at the boundary, since δΓαβγ ∼ ∂αδgβγ . One might
then decide to put, blindly

∂γδg
αβ = 0 , (A.22)

and get rid of the boundary terms. Yet, this would be too restrictive a constraint
on the metric field [171]. Indeed, suppose to accept condition (A.22), as if not
only the value of the field, but also of its first derivative were constant on the
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boundary. This amounts to restricting the class of spacetime geometries over
which one is extremising the action, i.e. reducing the possible “competing paths”
solving the field equations. But then, nothing prevents to require that also the
second derivatives have vanishing variations on the boundary. And the third
derivatives; and the fourth, and so on. In this way, we can constrain the entire
Taylor series representing the metric on the boundary, to the point that there
will be only one geometry compatible with the given boundary conditions, and
the extremisation of the action; this, however, would be hardly a protocol to
find a solution of the field equations: the space of possible configurations among
which to choose via the dynamical equations has become too cramped.

The point is that the class of competing field configurations must be kept
as large as possible, hence the smallest number of constraints on the fields, the
more effective the variational method [171]. Therefore, condition (A.22) must
be rejected, whereas only condition (A.21) must be enforced to derive the form
of the field equations. This implies that there must be other ways to get rid of
the boundary contribution (A.20) in presence of the constraint δgαβ = 0 on ∂Ω
alone.

A.2.2 The Gibbons–Hawking–York counter-term
Let us get back to the non-vanishing boundary term in Eq. (A.20), namely(

gαβδΓγαβ − gγβδΓααβ
)
nγ . (A.23)

This boils down to the expression

gαβnγ (∂βδgαγ + ∂γδgαβ) , (A.24)

and the latter can be further simplified by decomposing the metric into the
orthogonal and parallel parts with respect to the hyper-surface ∂Ω; one has,
indeed

gαβ = hαβ ± nαnβ , (A.25)

with nα the normal to ∂Ω, and hαβ a symmetric tensor normal to nα, the induced
(transverse) metric. The ambiguity of the sign in the formula above is due to
the possible choice of nα as timelike or spacelike. Without loss of generality, we
can suppose that nα is timelike, and pick the minus sign (so the three-surface
where hαβ is defined is spacelike, and hαβ is a positve-definite metric tensor on
∂Ω).

We can now use the condition δgαβ = 0 at the boundary to derive that, in
analogous fashion, the variations δhαβ and δnα will all vanish on the boundary.
Not only that: since the metric is constant on ∂Ω, so is the tangential derivative
of its variation on the boundary, i.e.

hαβ∂αδgβγ = 0 . (A.26)

This allows to conclude that the surface term in Eq. (A.20) amounts to
√
−ggαβδRαβ

∣∣
∂Ω

=
√
|h|hαβnγ∂γδgαβ , (A.27)

and also that any function of the normal vector nα, the induced metric hαβ ,
and of the tangential derivative hαβ∂β will have a vanishing variation on the
boundary ∂Ω.
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We have now to get rid of the term on the right-hand side of Eq. (A.27); to
this end, we begin by introducing the trace of the extrinsic curvature K of the
hyper-surface ∂Ω, which is given by

K := ∇αnα = gαβ∇αnβ = hαβ
(
∂αnβ + Γγαβnγ

)
, (A.28)

and we can get rid of the term nαnβ∇αnβ because nα is perpendicular to its
covariant derivative.

Consider now the variation δK, multiply it by 2, and impose the usual
condition δgαβ = 0 on the boundary; the result reads

2δK = 2δ
(
hαβ

(
∂αnβ − Γγαβnγ

))
= −2hαβnγδΓ

γ
αβ = hαβnγ∂γδgαβ , (A.29)

i.e., precisely the term we are asked to rule out to avoid imposing the unnatural
condition δ∂γgαβ = 0. We can thus conclude that the term to be added to the
Einstein–Hilbert Lagrangian is given by the surface contribution

BGHY = 2

˛
∂Ω

K
√
hd3y , (A.30)

which is indeed the Gibbons–Hawking–York term [220, 566].
Only with the addition of this complement to the Einstein–Hilbert action,

the metric variation for the gravitational Lagrangian becomes well-posed in a
true sense, as it was to prove.

A.2.3 The gamma-gamma Lagrangian
A well-posed metric variation for General Relativity can be formulated as

well in the absence of the Gibbons–Hawking–York fixing term, provided that
the Einstein–Hilbert action is rearranged appropriately.

The idea is to subtract total derivatives from the Lagrangian (A.13), and
deploy the minimal boundary conditions (A.21). This tweak was used by Ein-
stein himself [177] long before the remarks by Gibbons, Hawking, and York, to
exhibit an alternative proposal for his gravitational action.

Einstein suggests to write the Lagrangian function for General Relativity in
the following form, usually known as the gamma-gamma Lagrangian,

LΓΓ =
√
−g gαβ

(
ΓγαδΓ

δ
βγ − ΓγγδΓ

δ
αβ

)
. (A.31)

This scalar density contains only first-order derivatives of the metric, hence does
not require any further fixing of the derivatives at the boundary. One can prove
that (A.31) differs from the Einstein–Hilbert Lagrangian by a pure divergence
term; namely

LΓΓ =
√
−g (R−∇αBα) , (A.32)

with the object Bα — not a vector — given by

Bα = gβγΓαβγ − gαβΓγβγ . (A.33)

Eq. (A.32) shows that the resulting “bulk” field equations for gravity are the
same, no matter if one starts with (A.13) (plus the Gibbons–Hawking–York
boundary term) or with (A.31).
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The gamma-gamma Lagrangian and the Einstein–Hilbert one — the latter
being equipped with the Gibbons–Hawking–York supplementary term — can
be obtained from one another by introducing a boundary term of the form
f
(
gαβ , n

α, hαβ∂β
)
, which vanishes identically on ∂Ω as stated in the previous

section; specifically, it is
ˆ

Ω

LΓΓd4y =

ˆ
Ω

R
√
−g d4y −

˛
∂Ω

Bαnα
√
|h|d3y , (A.34)

and, upon massaging Bα from (A.33), one finds

Bαnα = −2K + 2hαβ∂βnα − nαhβγ∂βgαγ , (A.35)

so that the specific form of the function f
(
gαβ , n

α, hαβ∂β
)
reads

f = 2hαβ∂βnα − nαhβγ∂βgγα . (A.36)

By recalling that the condition δgαβ = 0 on the boundary makes it vanish
any function of the tangential derivatives, normal vector, and metric itself, then
the complete equivalence of the two formulations of the variational problem is
proven.
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Appendix B

First-order perturbations

. . . ma l’Anselmo, previdente, fin le brache
avea d’acciar.

G. Visconti Venosta, Anselmo the Vailant.

In this Appendix, we collect a number of useful expressions for the differ-
ences, to the first order in ε, between the geometric objects built out of two
metrics gab and ḡab connected via the relation (3.18). Thus, all the equations
presented here hold only up to order ε.

B.1 General-use formulæ
First of all, we note that Eq. (3.18) implies [556]

gab = ḡab − ε γab , (B.1)

where ḡab is the inverse of ḡab, and γab := ḡac ḡbd γcd.
To find the relation between the determinants of the metric coefficients, let

us first expand g around the unperturbed metric ḡab:

g = ḡ + ε
∂g

∂gab
γab , (B.2)

where the partial derivatives are evaluated at gab = ḡab. Using the property
∂g/∂gab = g gab, and defining γ := ḡab γab, we find the simple relation

g = ḡ (1 + ε γ) . (B.3)

The Christoffel symbols Γabc and Γ̄abc of the metrics gab and ḡab, respectively,
are related as

Γabc = Γ̄abc + εΞabc , (B.4)
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where Ξabc := ḡad Ξdbc, and the tensor Ξabc is

Ξabc =
1

2

(
∇̄bγca + ∇̄cγba − ∇̄aγbc

)
. (B.5)

This result can be easily obtained using the expression

∇agbc = ∇̄agbc − εΞdab gdc − εΞdac gbd

= ∇̄aḡbc + ε ∇̄aγbc − εΞcab − εΞbac , (B.6)

which follows from Eq. (B.4). Since the covariant derivatives ∇a and ∇̄a are
associated with gab and ḡab, respectively, the compatibility condition for the
Riemannian connection gives ∇agbc = ∇̄aḡbc = 0. Thus,

Ξcab + Ξbac = ∇̄aγbc . (B.7)

Equation (B.5) is then obtained following the same steps by which one finds
the usual expression for the Christoffel symbols in terms of partial derivatives
of the metric.

The first-order difference εRabcd = Rabc
d − R̄ d

abc between the Riemann
curvature tensors follows from Eq. (B.4), and one has

Rabcd = ∇̄bΞdac − ∇̄aΞdbc . (B.8)

This implies, for the difference εRab = Rab − R̄ab between the Ricci tensors,

Rab = Racbc = ∇̄cΞcab − ∇̄aΞccb ; (B.9)

and, for the difference εR = R − R̄ between the curvature scalars R = gabRab
and R̄ = ḡabR̄ab,

R = ḡab ∇̄cΞcab − ḡab ∇̄aΞccb − γabR̄ab , (B.10)

where Eqs. (B.1) and (B.9) have been used.
Finally, for the difference εGab = Gab− Ḡab between the Einstein tensors we

find, defining Ξabb := ḡbc Ξabc:

Gab = Rab −
1

2
ḡabR−

1

2
R̄ γab = ∇̄cΞcab − ∇̄aΞccb

− ḡab
2
∇̄cΞcdd +

ḡab
2
∇̄cΞeec +

ḡab
2
γcdR̄cd −

γab
2
R̄ . (B.11)

B.2 Divergence of the first-order Einstein ten-
sor

The quantity ∇̄bGab intervenes frequently in the calculation of ∇̄bEab —
noticeably, in §§ 3.4.1 , 3.4.2 —, so we evaluate it here in full generality. We
begin by substituting the expression (B.5) for Ξabc into Eq. (B.11), to obtain

Gab =
1

2

[ (
∇̄c∇̄aγbc + ∇̄c∇̄bγac

)
− ∇̄c∇̄cγab − ∇̄a∇̄bγ

− ḡab
(
∇̄c∇̄dγcd − ∇̄c∇̄cγ

)
+ ḡabγ

cdR̄cd − γab R̄
]
. (B.12)
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In a flat background spacetime (a situation common, for instance, in the study
of gravitational radiation [542]), it is a straightforward exercise to show that
∂bGab = 0, the key point in the proof being a heavy use of the commutative
property for partial derivatives. In the case of a non-flat background, on the
other hand, switching covariant derivative operators ∇̄a generates instances of
the Riemann and Ricci tensors. The three terms in ∇̄bGab where this happens
can be written, rearranging the indices and using the property ∇̄aḡcd = 0, as:

∇̄b∇̄c∇̄aγbc − ∇̄a∇̄b∇̄cγbc = R̄abcd ∇̄dγbc

+ 2R̄ab∇̄cγbc + 2∇̄bR̄acγbc − ∇̄aR̄bcγbc ; (B.13)

∇̄b∇̄c∇̄bγac − ∇̄c∇̄b∇̄bγac = −R̄bcda ∇̄bγcd ; (B.14)

∇̄a∇̄b∇̄bγ − ∇̄b∇̄a∇̄bγ = −R̄ab∇̄bγ ; (B.15)

where in Eq. (B.13) we have used the identity, holding in general [542, 250],

∇aR a
bcd = ∇cRbd −∇bRcd (B.16)

but applied here to the background quantities. Using these expressions, we find
at the end

∇̄bGab =
1

2

(
2R̄ab∇̄cγbc + 2γbc∇̄bR̄ac − R̄ab∇̄bγ

+R̄bc∇̄aγbc − R̄∇̄bγab − γab∇̄bR̄
)
, (B.17)

which is the requested result.
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