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Chapter 1

Introduction

In the last years much progresses have been achieved in the theory of quasi-periodic motions for
infinite dimensional Hamiltonian and reversible dynamical systems, that we shall call, in a broad
sense, KAM (Kolmogorov-Arnold-Moser) theory for PDEs (including also the Newton-Nash-Moser
implicit function theorem approach).

A challenging and open question concerns its possible extension to quasi-linear (also called
“strongly nonlinear” in [56]) and fully nonlinear PDEs, namely equations whose nonlinearities
contain derivatives of the same order as the linear operator. Besides its mathematical interest,
this question is also relevant in view of applications to physical real world nonlinear models, for
example in fluid dynamics, water waves and elasticity. This Thesis is a first step in this direction.
In particular we develop KAM theory for both quasi-linear and fully nonlinear forced perturbations
of the Airy equation

ut+umxx+5f(Wt7x7uu uxauxazauxx:c) =0, (101)

and for quasi-linear Hamiltonian autonomous perturbations of KdV
Ut 4 Ugzy — 6y + Ny (T, U, Uy, Uy, Uggr) = 0, (1.0.2)

with periodic boundary conditions z € T := R/277Z.
The main results of this Thesis prove the existence of Cantor families of small amplitude, linearly
stable, quasi-periodic solutions for both the equations (|1.0.1)), (1.0.2), under suitable assumptions

on the nonlinearities f (see for instance ((1.2.6]), (1.2.7)), the reversibility condition (1.2.15))) and Ny
in ((1.3.2]). We recall that a quasi-periodic solution is a function

u(wt, x), u:T"xT—R,

where the frequency vector w := (w1, ws, ...,w,) is rationally independent, namely w - # 0, for all
lez”\{0}.

Note that the equation depends on the frequency vector w. It will be used as an external
parameter in order to impose the non-resonance conditions which naturally appear in KAM theory.
On the other hand, is an autonomous PDE with no external parameters, hence the frequency
of the expected quasi-periodic solution is a-priori unknown. A careful bifurcation analysis has to



be performed, in order to determine how the frequencies depend on the amplitudes of the quasi-
periodic solutions. This is one of the reasons why we have decided to study the forced equation

before the autonomous PDE .

Before describing the main KAM results concerning the equations , , we outline a
short history of the KAM and Nash-Moser theory for PDEs, focusing in particular on the results
which deal with unbounded perturbations.

1.1 Historical preface

The “KAM for PDEs” theory is a generalization of the original KAM theory for quasi integrable
finite dimensional Hamiltonian systems, developed in the sixties by Kolmogorov [52] and Arnold
[2] for analytic Hamiltonian systems and then extended by Moser for only differentiable perturba-
tions and for reversible dynamical systems, see [61], [63]. These results prove that, for Hamiltonian
systems which are small perturbations of an integrable one, under suitable non-degeneracy con-
ditions on the Hamiltonian, the quasi-periodic orbits form a full-measure set of the phase space.
Such quasi-periodic orbits are constructed by means of an iterative scheme. The main difficulty
of this procedure is due to the well-known small-divisors, namely the numbers w -1, | € Z" (w is
the frequency of oscillation of the solution). The small divisors enter at the denominator of the
Fourier coefficients in the Fourier expansion of the approximate solutions defined at each step of
the KAM iteration. They can become arbitrarily small, affecting the convergence of the iterative
scheme, since, for almost every w, the set

{w-l:lGZ”}

accumulates to 0. This difficulty is overcome by imposing non-resonance diophantine conditions of
the form
w1 > ﬁ VI£0,  e(0,1),

which are sufficient to prove the convergence of the scheme. Such non-resonance conditions are
called zero-th order Melnikov conditions.

Later on, KAM theory has been extended by Moser [63], Eliasson [36] and Poschel [64] for
elliptic invariant tori of lower dimension. In these problems, also first and second order Melnikov
non resonance conditions (see (2.1.14)-(2.1.16))) are required along the KAM iterative scheme.

In the ninetiees, it started the investigation concerning the existence of periodic and quasi-
periodic solutions for PDEs. In order to overcome the small divisors difficulty, the two main
approaches which have been developed are:

e normal form KAM methods,

e Newton-Nash-Moser implicit function iterative schemes.

The normal form KAM procedure consists in an iterative super-quadratic scheme, which, by
means of infinitely many canonical transformations, brings the Hamiltonian associated to the PDE
into another one which has an invariant torus at the origin. This method is an infinite dimensional



extension of the KAM theory for lower dimensional elliptic tori in Eliasson [36] and Péschel [64].
The classical KAM procedure for 1-dimensional PDEs with bounded nonlinear perturbations will
be described in Section 2.11

The small divisors arise at each step of the iteration in solving the so-called homological equations
(see ) In the usual KAM framework, such equations are constant coefficients linear PDE,
which can be solved by imposing the Melnikov non resonance conditions on the frequencies (see
—). As a consequence of having solved constant coefficients homological equations
at each step of the iteration, also the linearized equation at the final KAM torus has constant
coefficients (reducible torus). In many cases its Lyapunov exponents are purely imaginary and
therefore the KAM quasi-periodic solutions are linearly stable, see the end of Section 2.1

The KAM theory for PDEs has been developed for the first time in the pioneering works of
Kuksin [53] and Wayne [73] for bounded perturbations of parameter dependent 1-dimensional linear
Schrodinger and wave equations with Dirichlet boundary conditions. Then Kuksin-Poschel [57] and
Poschel [65] extended these results for parameter independent nonlinear Schrodinger (NLS) and
nonlinear wave (NLW) equations like

i — Uge +mu+ f(juHu=0, m>0, (NLS), (1.1.1)
Utp — Uge +mu+au® + f(u), m>0, a#0, flu)=0w"), (NLW), (1.1.2)

where f is an analytic nonlinearity (for more references see also the monograph [56]).

Now we describe the Newton-Nash-Moser implicit function theorem approach for Hamiltonian
PDEs. In this method, the search of periodic and quasi-periodic solutions is reduced to find zeros
of a nonlinear operator by means of an iterative quadratic Newton-type scheme in scales of Banach
spaces of analytic or differentiable functions. The typical framework is the following: one has to
solve a nonlinear functional equation of the form

F(u)=0, (1.1.3)

where F' is a nonlinear operator acting on a scale of Banach spaces. The approximate solutions are
defined iteratively as

ug =0, Unt1 := Up + hpy1, Ryt = —SnF’(un)_lF(un) ,

where S, is a suitable smoothing operator which regularizes the approximate solutions at each step
(this is strictly required only to deal with spaces of differentiable functions).

The main advantage of the Nash-Moser method is to require only the first order Melnikov non-
resonance conditions to invert the linearized operator L,, := F'(u,) at each step of the iteration.
These conditions are essentially the minimal assumptions. On the other hand, the main difficulty
is that the linear operator L, is an operator with variable coefficients; it is represented by a matrix
which is a small perturbation of a diagonal matrix with arbitrarily small eigenvalues and therefore
it is hard to estimate its inverse in high Sobolev norm.

The Newton-Nash-Moser approach has been proposed by Craig-Wayne in [34] (see also the
monograph [31]) to prove the existence of periodic solutions of 1-dimensional nonlinear Klein-
Gordon and Schrodinger equations with periodic boundary conditions. Later on, still for periodic



solutions, it has been extended by Berti-Bolle in [I7], [I8] for completely resonant nonlinear wave
equations both with analytic and differentiable nonlinearities, see also Gentile-Mastropietro-Procesi
[41] and the monograph [13].

For quasi-periodic solutions, the Nash-Moser techniques have been considerably extended by
Bourgain in [25], [27], [29] for analytic NLS and NLW with convolution potential on T¢. We
underline that this approach is especially convenient for PDEs in higher space dimension, because
the second order Melnikov conditions (required in the KAM scheme) are violated due to the high
multiplicity of the eigenvalues. The techniques of Bourgain have been recently extended by Wang
[72] for completely resonant NLS on T? and by Berti-Bolle [21], [20] for forced NLS and NLW
with a multiplicative potential on T¢ and differentiable nonlinearities (see [19], [42] for previous
results about periodic solutions). We mention also the recent paper of Berti-Corsi-Procesi [24]
which contains an abstract Nash-Moser implicit function theorem with applications to NLW and
NLS on compact Lie groups.

As a consequence of having imposed only the first order Melnikov conditions, this method
does not provide information about the linear stability of the quasi-periodic solutions, because the
linearized equations have variable coefficients.

Via KAM methods, existence and stability of quasi-periodic solutions with periodic boundary
conditions have been proved by Chierchia-You in [30] for 1-dimensional NLW equations. For what
concerns PDEs in higher space dimension, the first KAM results have been obtained by Eliasson-
Kuksin [39] for NLS with convolution potential on T¢. The second order Melnikov conditions are
verified by introducing the notion of “T'6plitz-Lipschitz” Hamiltonians. KAM results for completely
resonant NLS in any space dimension have been then obtained by Procesi-Procesi [68], see also
Geng-You-Xu [40] for d = 2.

All the results quoted above, concern PDEs in which the nonlinearity is a bounded nonlinear
differential operator of order 0. Now we start to describe KAM and Nash-Moser results for PDEs
with unbounded nonlinearities. In this case the usual way to construct a bounded transformation
of the phase space at each KAM-step fails. If such a transformation were unbounded (as the
perturbation) then along the iteration the order of unboundedness of the transformed vector fields
would increase quadratically and the scheme would not converge.

The first KAM results for unbounded perturbations have been obtained by Kuksin [55], [56] and
then, Kappeler-Poschel [49] for Hamiltonian, analytic perturbations of KdV

Ut + Uggy — 6UUy, + €0, f(x,u) =0, (1.1.4)

with periodic boundary conditions z € T. Note that the constant coefficients linear operator is
Orzz and the nonlinearity contains one space derivative d,. These results, which we describe in
Section prove the continuation of Cantor families of finite gap solutions of KdV. The main
issue is that the Hamiltonian vector field generated by the perturbation is unbounded of order 1.
In order to overcome this difficulty, the key idea, introduced by Kuksin in [55], is to work with a
variable-coefficients normal form (see ) The frequencies of KAV grow as ~ 53, hence for
j # k (outside the diagonal) the difference |j3—k3| > (j2+k?)/2, so that KAV gains two derivatives.
This smoothing effect of the small divisors is sufficient to produce a bounded transformation of the
phase space at each step of the KAM iteration, since the perturbation is of order 1. On the other



hand for j = k there is no smoothing effect and therefore such diagonal terms cannot be removed in
the homological equations. These angle-dependent terms will be inserted into the normal form. As
a consequence, the homological equations have variable coefficients and they can be solved thanks
to the “Kuksin’s lemma” (see Lemma . Note that such homological equations are scalar and
so they are much easier than the variable coefficients functional equations which appear in the
Newton-Nash-Moser approach of Craig-Wayne-Bourgain.

The proof given in [55] and [49] works also for Hamiltonian analytic pseudo-differential pertur-
bations of order 2 (in space), like

Ut + Ugge — OUUL —|—€0x|0x|%f(x, |81|%u) =0, ze€T,

using an improved version of the Kuksin’s lemma proved by Liu-Yuan in [60] (see also [59] ). Then
in [60] (see also Zhang-Gao-Yuan [75]) Liu-Yuan applied it to 1-dimensional derivative NLS (DNLS)
and Benjamin-Ono equations, where the highest order constant coefficients linear operator is O,
and the nonlinearity contains one derivative d,. These methods apply to dispersive PDEs with
derivatives like KAV, DNLS, the Duffing oscillator (see Bambusi-Graffi [10]), but not to derivative
wave equations (DNLW) which contain first order derivatives 0, 0; in the nonlinearity.

For DNLW Bourgain [28] proved the existence of periodic solutions of

utt—um+mu+ut2:0, m>0, ze€T,

extending the Craig-Wayne approach in [34].
KAM theory for DNLW has been recently developed by Berti-Biasco-Procesi in [I5] for the
Hamiltonian equation

Ut — Uy +mu+g(Du) =0, D:=+/—0p+m, z€T, (1.1.5)
and in [I6] for the reversible equation
Ut — Ugy +mu + g(z,u,up,uy) =0, €T, (1.1.6)
assuming the conditions
g(x,u, g, up) = g, uyug, —ug),  g(x, wyug, uy) = g(—2, uy —ug, uy) ,

where in both the equations , , g is analytic. The key ingredient is an asymptotic
expansion of the perturbed eigenvalues that is sufficiently accurate to impose the second order
Melnikov non-resonance conditions. This is achieved by introducing the notion of “quasi-T6plitz”
vector field developed by Procesi-Xu in [69] (see also Grébert-Thomann [43], Procesi-Procesi [68]).

All the aforementioned results concern “semilinear” PDEs, namely equations in which the non-
linearity contains strictly less derivatives than the constant coefficients linear differential operator.
For quasi-linear or fully nonlinear PDEs (called “strongly non linear” in [56]) the perturbative effect
is much stronger, and the possibility of extending KAM theory in this context is doubtful, see [49],
[31], [60], because of the possible phenomenon of formation of singularities outlined in Lax [5§],
Klainerman and Majda [51]. For example, Kappeler-Poschel [49] (remark 3, page 19) wrote:



“It would be interesting to obtain perturbation results which also include terms of higher order,
at least in the region where the KdV approrimation is valid. However, results of this type are still
out of reach, if true at all’.

The study of this important issue is at its first steps.

For quasi-linear and fully nonlinear PDEs, the literature concerns, before the results [6], [8], [9]
presented in this Thesis, only existence of periodic solutions.

We quote the classical bifurcation results of Rabinowitz [70] for fully nonlinear forced wave
equations with a small dissipation term

Ut — Ugy + Qg + (L, T, U, Up, Uy, Ugt, Utg, Uzy) =0, x €T,

Recently, Baldi, in [3], proved existence of periodic forced vibrations for quasi-linear Kirchhoff
equations

utt—<1+/|Vu|2dx>Au:5f(wt,x), r e
Q

with Dirichlet boundary conditions u|sq = 0 and also for periodic boundary conditions Q = T¢.
Here the quasi-linear perturbation term depends explicitly only on time. Both these results are
proved via Nash-Moser methods.

For the water waves equations (see Section , which are fully nonlinear PDEs, we mention the
pioneering work of Iooss-Plotnikov-Toland [45] about existence of time periodic standing waves,
and of Tooss-Plotnikov [46], [47] for 3-dimensional traveling water waves. The key idea is to use
diffeomorphisms of the torus T? and pseudo-differential operators, in order to conjugate the lin-
earized operator to one with constant coefficients plus a sufficiently smoothing remainder. This is
enough to invert the whole linearized operator by Neumann series. Very recently Baldi [4] has fur-
ther developed the techniques of [45], proving the existence of periodic solutions for fully nonlinear
autonomous, reversible Benjamin-Ono equations

ut + Huge + 00 (u®) + f (2,0, Hu, ug, Hugy) =0, z €T, H(eV") = —isign(j)e’”, jeZ

where H is the Hilbert transform.

We mention also the recent paper of Alazard and Baldi [I] concerning the existence of periodic
standing solutions of the water waves equations with surface tension.

These methods do not work for proving the existence of quasi-periodic solutions and they do
not imply either the linear stability of the solutions.

In the remaining part of this introduction, we shall present in detail the results proved in this
Thesis about the existence and stability of quasi-periodic solutions of the equations ,
and the main ideas of the proofs, see Sections [[.2.1] [I.3.1] To the best of our knowledge, these are
the first KAM results for quasi-linear or fully nonlinear PDEs.

1.2 Main results for forced Airy equation

We now present the results announced in [5] and proved in [6]. The details of the proofs will be
given in Chapter [4]



We consider quasi-linear or fully nonlinear perturbations of Airy equation, namely
Ut + Upgy + Ef (W T, U, Uy, Uy, Uggr) =0, x €T :=R/207Z, (1.2.1)

where ¢ > 0 is a small parameter, the nonlinearity is quasi-periodic in time with diophantine
frequency vector

1 3
272

w=weR, AeA;:[ } |@.z|z?270 Vi e zv\ {0}, (1.2.2)

[
and f(p,2,2), ¢ € TV, z := (20, 21, 22, 23) € R%, is a finitely many times differentiable function,
namely

f e CUT” xT x RLR) (1.2.3)

for some g € N large enough. For simplicity we fix in (1.2.2) the diophantine exponent 7y := v.
The only “external” parameter in (1.2.1]) is A, which is the length of the frequency vector (this
corresponds to a time scaling). We consider the following questions:

e Fore small enough, do there exist quasi-periodic solutions of (1.2.1) for positive measure sets
of \e A?

o Are these solutions linearly stable?

Clearly, if f(p,z,0) is not identically zero, then u = 0 is not a solution of (1.2.1)) for ¢ # 0. Thus
we look for non-trivial (27 )”*!-periodic solutions u(y, z) of the Airy equation

W - Opth + Ugzz + f (@, T, Uy Uz, Ugz, Ugga) = 0 (1.2.4)
in the Sobolev space
H* .= H*(T" x T;R) (1.2.5)
={ulp) = > eI R, wy=u oy, Jul = Y () gl < o)
(L,j)EZ¥ X (Lj)EL¥ X T

where
(L, 3) == max{1,[l,[5]}.

From now on, we fix sp := (v +2)/2 > (v + 1)/2, so that for all s > so the Sobolev space H® is a
Banach algebra, and it is continuously embedded H*(T**1) — C(T**1).

We need some assumptions on the perturbation f(y,x, u, g, Uzy, Uzer). We suppose that

e TyPE (F). The fully nonlinear perturbation has the form

F(o, Ty U5 Ugy U, (1.2.6)

namely it is independent of u,, (note that the dependence on u,,, may be nonlinear). Otherwise,
we require that



e TYPE (Q). The perturbation is quasi-linear, namely

f = fO(SOa I’uyurvuxr) + fl(go,ﬂz,u,ux, U:m:)uxmc

is affine in wug.,, and it satisfies (naming the variables zgp = u, 21 = Uy, 22 = Ugy, 23 = Ugzs)

s f = (@) (Ozpof + 210z f + 22020, f + 2302, ) (1.2.7)
for some function a(y) (independent on z).

The Hamiltonian nonlinearities in (1.2.11)) satisfy the above assumption (Q), see remark [4.1.2, In
comment (3| after Theorem we explain the reason for assuming either condition (F) or (Q).

The following theorem is an existence result of quasi-periodic solutions.

Theorem 1.2.1. (Existence) There exist s := s(v) > 0, q := q(v) € N, such that:

For every quasi-linear nonlinearity f € C? of the form
=0, (g(wt,x, u,ux,um)) (1.2.8)

satisfying the (Q)-condition (1.2.7), for all € € (0,e0), where gy := eo(f,v) is small enough, there
exists a Cantor set C. C A of asymptotically full Lebesgue measure, i.e.

ICcl =1 as e —0, (1.2.9)

such that Y\ € C. the perturbed equation (1.2.4) has a solution u(e, \) € H® with ||u(e,\)||s — 0 as
e —0.

We may ensure the linear stability of the solutions requiring further conditions on the nonlin-
earity, see Theorem for the precise statement. The first case is that of Hamiltonian equations

o = Xpgr(u),
w2
Xg(u) =0, V2H(t,x,u,uy), H(t,x,u,uy) = / ?x + eF(wt, x,u,uy) dx (1.2.10)
T
which have the form ([1.2.1)), (1.2.8) with
flo,z,u, Uy, Upyy Uggr) = —ax{(OZOF)(go,x,u,uz)} + ﬁm{(ﬁle)(go,x,u,uz)} ) (1.2.11)

In this thesis, with a slight abuse of notation, de is short for denoting the average (27)~¢ de. This
notation will be used in all the definitions which will be given, i.e L2-scalar product, symplectic
form, definitions of Hamiltonians etc.

The phase space of (1.2.10]) is
H(T) = {u(a:) e H'(T,R) : /

| u(e)de = 0} (1.2.12)

endowed with the non-degenerate two symplectic form

Qu,v) = /(836111) vdr, Yu,ve Hy(T), (1.2.13)
T

10



where 9, 'u is the periodic primitive of u with zero average (see (4.1.19)).
Notice that the Hamiltonian vector field X g (u) := 0,V H (u) is the unique vector field satisfying
the equality
dH (u)[h] = (VH(u), h)r2my = Q(Xg(u), h), Vu,h € Hy(T),

where for all u,v € L?(T) := L?(T,R), we define
(u,v) 2Ty := / u(z)v(x)de = Zujv,j ,  u(x) = Zujeijw, v(z) = Zvjeijx.
T jez jEL jez

We recall also that the Poisson bracket between two Hamiltonians F, G : H}(T) — R are
(F(u), G(u)} == Q(Xp, X¢) = / VF ()0, VG (u)dz . (1.2.14)
T

As proved in remark the Hamiltonian nonlinearity f in (1.2.11)) satisfies also the (Q)-
condition ([1.2.7). As a consequence, Theorem implies the existence of quasi-periodic solutions
of (1.2.10]). In addition, we also prove their linear stability.

Theorem 1.2.2. (Hamiltonian case) For all Hamiltonian quasi-linear equations (1.2.10) the
quasi-periodic solution u(e,\) found in Theorem is LINEARLY STABLE (see Theorem [1.2.5).

The stability of the quasi-periodic solutions also follows by the reversibility condition

f(=p,—x, 20, —21, 22, —23) = — f (@, x, 20, 21, 22, 23). (1.2.15)
Actually implies that the infinite-dimensional non-autonomous dynamical system
up = V(t,u), V(t,u) = —Upps — f(Wt, T, U, Uy, Uy, Ugza)
is reversible with respect to the involution
S:u(x) = u(—z), S?=1I,
namely
=SV (—t,u) =V (t,Su).
In this case it is natural to look for “reversible” solutions of , that is

u(p, ) = u(—p, —x). (1.2.16)

Theorem 1.2.3. (Reversible case) There exist s := s(v) > 0, q := q(v) € N, such that:
For every nonlinearity f € CY that satisfies

(i) the reversibility condition (1.2.15)),

and

(ii) either the (F)-condition (1.2.6)) or the (Q)-condition (1.2.7)),

for all ¢ € (0,e0), where eg = €o(f,v) is small enough, there exists a Cantor set C. C A with
Lebesgue measure satisfying , such that for all A € C. the perturbed Airy equation has
a solution u(e, \) € H® that satisfies (1.2.16)), with ||u(e,\)||s — 0 as e — 0. In addition, u(e, \) is
LINEARLY STABLE.

11



Let us make some comments on the results.

1. The quasi-periodic solutions of Theorem could be unstable because the nonlinearity f has
no special structure and some eigenvalues of the linearized operator at the solutions could have
non zero real part (partially hyperbolic tori). In any case, we reduce to constant coefficients
the linearized operator (Theorem and we may compute its eigenvalues (i.e. Lyapunov
exponents) with any order of accuracy. With further conditions on the nonlinearity—like
reversibility or in the Hamiltonian case—the eigenvalues are purely imaginary, and the torus
is linearly stable. The present situation is very different with respect to [34], [25]-[29], [21]-
[20] and also [45]-[47], [4], where the lack of stability information is due to the fact that the
linearized equation has variable coefficients.

2. One cannot expect the existence of quasi-periodic solutions of (1.2.4)) for any perturbation
f. Actually, if f = m # 0 is a constant, then, integrating (1.2.4]) in (¢, x) we find the
contradiction em = 0. This is a consequence of the fact that

Ker(w -0y + 01z2) =R (1.2.17)

is non trivial. Both the condition (which is satisfied by the Hamiltonian nonlinearities)
and the reversibility condition allow to overcome this obstruction, working in a space
of functions with zero average. The degeneracy also reflects in the fact that the
solutions of appear as a 1-dimensional family c+u.(e, A) parametrized by the “average”
c € R. We could also avoid this degeneracy by adding a “mass” term +mu in , but it
does not seem to have physical meaning.

3. In Theorem we have not considered the case in which f is fully nonlinear and satisfies
condition (F) in , because any nonlinearity of the form is automatically quasi-
linear (and so the first condition in holds) and trivially implies the second
condition in (|1.2.7) with a(yp) = 0.

4. The solutions u € H® have the same regularity in both variables (¢, ). This functional
setting is convenient when using changes of variables that mix the time and space variables,

like the composition operators A, 7 in Sections

5. In the Hamiltonian case (1.2.10f), the nonlinearity f in (1.2.11)) satisfies the reversibility
condition (|1.2.15)) if and only if F(—p, —z, 29, —21) = F(p,x, 20, 21)-

Theorems [1.2.1}1.2.3] are based on a Nash-Moser iterative scheme. An essential ingredient in
the proof—which also implies the linear stability of the quasi-periodic solutions—is the reducibility
of the linear operator

L:=L(u) =w-0,+ (1+a3(p,x))0pea + a2(p, ©)0pz + a1(p, )0z + ao(p, x) (1.2.18)

obtained by linearizing (|1.2.4) at any approximate (or exact) solution u, where the coefficients
ai(p,x) are defined in (4.1.2)). Let H? := H*(T) denote the usual Sobolev spaces of functions of
x € T only.

12



Theorem 1.2.4. (Reducibility) There exist & > 0, g € N, depending on v, such that:

For every nonlinearity f € CY that satisfies the hypotheses of Theorems or for all
€ (0,e0), where e := eo(f,v) is small enough, for all u in the ball |u||sy+5 < 1, there exists a
Cantor like set Aoo(u) C A such that, for all A € Aoo(u):

i) for all s € (so,q — @), if ||u|ls+6 < +o00 then there exist linear invertible bounded operators Wi,
Wy HS(’]I‘”“) — H(T"*1) (see ([4.2.72))) with bounded inverse, that semi-conjugate the linear
operator L(u) in m ) to the diagonal operator Lo, namely

Lu) = WiLooWy ', Lo :=w- 0y + Do (1.2.19)
where

Do = diagjez{p;}, nj:= i(—m3j® +maj) +r;, mz,m €R, sup |rj| < Ce.  (1.2.20)
j

it) For each ¢ € T" the operators W; are also bounded linear bijections of H; (see notation (3.1.17)))

Wile) , W ) : HS — HS, i=1,2.

(2 x

A curve h(t) = h(t,-) € HE is a solution of the quasi-periodically forced linear equation
Oth + (1 4 as(wt, x))Ozzah + as(wt, £)Ozzh + a1 (wt, ©)Oph + ag(wt, z)h =0 (1.2.21)
if and only if the transformed curve
o(t) = v(t, ) == Wy @)[h()] € H:
s a solution of the constant coefficients dynamical system
0w+ Dov =0, U =—pjvj, VjEL. (1.2.22)
In the reversible or Hamiltonian case all the pj € iR are purely imaginary.

The operator W differs from Wy (see ) only for the multiplication by the function p in
(4.1.26]) which comes from the re-parametrization of time of Section As explained in Section
this does not affect the dynamical consequence of Theorem m)

The exponents j1; can be effectively computed. All the solutions of are

Z v ()T () = e Mt (0)

JEZ

If the p; are purely imaginary—as in the reversible or the Hamiltonian cases—all the solutions of
(1.2.22) are almost periodic in time (in general) and the Sobolev norm

ool = (S 1o =) = (S wor?) Y Ol (1229

is constant in time. As a consequence we have:
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Theorem 1.2.5. (Linear stability) Assume the hypothesis of Theorem and, in addition,
that f is Hamiltonian (see (1.2.11))) or it satisfies the reversibility condition (1.2.15)). Then, Vs €
(80,9 — 7 — 80), ||ullstso+5 < 00, there exists Ko > 0 such that for all A € A (u), € € (0,e9), all

the solutions of (1.2.21)) satisfy
A (8) | zs < Kol|h(0)| as (1.2.24)

and, for some a € (0,1),
12(0)[| g — €*Kol[R(0)[| jys1 < |A(E)][ g < [|R(0) || g 4 €* Kol|(O) || s+ - (1.2.25)

Theorems are proved in Section [£.3.1] collecting all the informations of Sections [4.T}
43

1.2.1 Ideas of the proof

The proof of Theorems 11.2.3]is based on a Nash-Moser iterative scheme in the scale of Sobolev
spaces H®. The main issue concerns the invertibility of the linearized operator £ in , at
each step of the iteration, and the proof of the tame estimates for its right inverse. This
information is obtained in Theorem by conjugating £ to constant coefficients. This is also
the key which implies the stability results for the Hamiltonian and reversible nonlinearities, see

Theorems [[.2.441.2.5]

We now explain the main ideas of the reducibility scheme. The term of £ that produces
the strongest perturbative effect to the spectrum (and eigenfunctions) is a3(y, x)0zzq, and, then
a2(, )0ze. The usual KAM transformations are not able to deal with these terms. The reason is
the following: if in the Homological equation , the operator R were unbounded of order 3,
the solution ¥ defined in , would be unbounded of order 1, thanks to the fact that the small
divisors gain two space derivatives (see ) Hence the iterative scheme would not converge in
any norm, therefore we adopt the following strategy. First, we conjugate the operator £ in
to a constant coefficients third order differential operator plus a bounded remainder

Ls =w-0p + M30pga + mM10z + Rog, mz=1+0(c), my =0(e), mi,m3 €R, (1.2.26)

(see ), via changes of variables induced by diffeomorphisms of the torus, a reparametrization
of time, and pseudo-differential operators. This is the goal of Section[4.I] All these transformations
could be composed into one map, but we find more convenient to split the regularization procedure
into separate steps (Sections , both to highlight the basic ideas, and, especially, in
order to derive estimates on the coefficients in Section [£.1.6l Let us make some comments on this
procedure.

1. Inorder to eliminate the space variable dependence of the highest order perturbation as(y, €)0zzx
(see (4.1.20)) we use, in Section p-dependent changes of variables of the form

(AR)(p, ) == h(p, 2 + B(p,x)) -

These transformations converge pointwise to the identity if 4 — 0 but not in operatorial
norm. If 3 is odd, A preserves the reversible structure, see remark On the other hand
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for the Hamiltonian equation ([1.2.10)) we use the modified transformation

(AR)(p,2) 1= (14 Bulp, ) bl 4 Bl ) = o { (@ W)+ Blp )} (12.27)

for all h(yp,-) € HY(T). This map is canonical, for each ¢ € T”, with respect to the KdV-

symplectic form ([1.2.13]), see remark Thus ([1.2.27)) preserves the Hamiltonian structure
and also eliminates the term of order 0., see remark

. In the second step of Section [4.1.2] we eliminate the time dependence of the coefficients of the
highest order spatial derivative operator 0., by a quasi-periodic time re-parametrization.
This procedure preserves the reversible and the Hamiltonian structure, see remark and

417

. Assumptions (Q) (see (1.2.7))) or (F) (see ([1.2.6])) allow to eliminate terms like a (¢, )0, along
this reduction procedure, see (4.1.41)). This is possible, by a conjugation with multiplication

operators (see (4.1.34])), if (see (4.1.40))

_ae,r) o
/11‘1—|—a3(<p,x> dr =0. (1.2.28)

If (F) holds, then the coefficient as(p, z) = 0 and ([1.2.28)) is satisfied. If (Q) holds, then an
easy computation shows that az(p, z) = a(p) dzas(p, x) (using the explicit expression of the

coefficients in (4.1.2))), and so

az(p,2) o[, ol anlo. M) do —
/THagwdx/T (1) 9z (log[1 + as(p, z)]) dz = 0.

In both cases (Q) and (F), condition ([1.2.28)) is satisfied.

In the Hamiltonian case there is no need of this step because the symplectic transformation
(11.2.27)) also eliminates the term of order 0,5, see remark

We note that without assumptions (Q) or (F) we may always reduce £ to a time dependent
operator with a(¢)0y,. If a(yp) were a constant, then this term would even simplify the
analysis, killing the small divisors. The pathological situation that we avoid by assuming (Q)
or (F) is when a(p) changes sign. In such a case, this term acts as a friction when a(p) < 0
and as an amplifier when a(yp) > 0.

. In Sections [4.1.4] we are finally able to conjugate the linear operator to another one
with a coefficient in front of 9, which is constant, i.e. obtaining . In this step we use
a transformation of the form I + w(p,z)d; ", see (4.1.49). In the Hamiltonian case we use
the symplectic map e™w(:2)9x 1, see remark

. We can iterate the regularization procedure at any finite order k = 0,1, ..., conjugating £ to
an operator of the form ® + R, where

D=w-0,+D, D:m38§—|—m18m+...+m_k6x_k, m; € R,
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has constant coefficients, and the remainder R is arbitrarily regularizing in space, namely
9% o R = bounded . (1.2.29)

However, one cannot iterate this regularization infinitely many times, because it is not a
quadratic scheme, and therefore, because of the small divisors, it does not converge. This
regularization procedure is sufficient to prove the invertibility of £, giving tame estimates for
the inverse, in the periodic case, but it does not work for quasi-periodic solutions. The reason
is the following. In order to use Neumann series, one needs that D~ 'R = (D19,%)(0FR)
is bounded, namely, in view of , that ©719, * is bounded. In the region where the
eigenvalues (iw - [ + D;) of D are small, space and time derivatives are related, |w - 1| ~ |43,
where [ is the Fourier index of time, j is that of space, and D; = —img3 j3 +imyj+ ... are the
eigenvalues of D. Imposing the first order Melnikov conditions [iw - [ + D;| > ~[I{|~7, in that
region, (D719, %) has eigenvalues

L ar
(iw - L+ Dj)j* 7|7 * |w - 1)k/3

In the periodic case, w € R, [ € Z, |w-l| = |w]||l|, and this determines the order of regularization
that is required by the procedure: k > 37. In the quasi-periodic case, instead, |I| is not
controlled by |w -], and the argument fails.

Once has been obtained, we implement a quadratic reducibility KAM scheme a la
Eliasson-Kuksin, in order to diagonalize L5, namely to conjugate L5 to the diagonal operator Lo,
in . Since we work with finite regularity, we perform a Nash-Moser smoothing regularization
(time-Fourier truncation). In order to decrease quadratically the size of the perturbation R, we
use standard KAM transformations of the form

O=1+V, or ® = exp(¥) in Hamiltonian case,
see Section At each step of the iteration we have an operator
L=w-0,+D+R,

where D is a diagonal operator with eigenvalues i, j € Z and R is a bounded linear operator small
in size. If the operator ¥ solves the homological equation

w- 0,0+ [D, V] +TIyR = [R],  [R]:= diag;c,R}(0), (1.2.30)
where Il is the time Fourier truncation operator defined in (3.1.18]), then
Li=01Ld=w 0,+Dy+ Ry,

where

Dy =D+[R], Ri=0"(IHR+RY - V[R]).

The remainder Ry is the sum of a quadratic function of ¥, R and a remainder supported on the
high modes. This iterative scheme will converge (see Theorem [4.2.2)), since the initial remainder
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Ro in is a bounded linear operator (of the space variable x) small in size and this property
is preserved along the iteration passing from R to R. This is the reason why we have performed
the regularization procedure in Sections before starting with the KAM reducibility
scheme. The homological equation may be solved by imposing the second order Melnikov
nonresonance conditions

5% — K|

UL
(see (4.2.17)). We are able to verify that for most parameters A € [1/2,3/2], such non resonance
conditions are satisfied, thanks to the sharp asymptotic expansion of the eigenvalues

pi = i (A) = i(=ma(N) P +mi N+ (), ma(N)=1,mi(N) = 0(e),  supjezlrj(\)| = O(e).

liw - T4 p(A) — pe(A)] = VieZ, [I|<N, jke€zZ,

Remark 1.2.1. We underline that the goal of the Téplitz-Lipschitz [39], [40], [453] and quasi-
Téplitz property [69], [15], [16], [68] is precisely to provide an asymptotic expansion of the perturbed
etgenvalues sharp enough to verify the second order Melnikov conditions.

Note that the above eigenvalues p; could not be purely imaginary, i.e. r; could have a non-
zero real part which depends on the nonlinearity (unlike the reversible or Hamiltonian case, where
r; € iR). In such a case, the invariant torus could be (partially) hyperbolic. Since we do not control
the real part of r; (i.e. the hyperbolicity may vanish), we perform the measure estimates proving
the diophantine lower bounds of the imaginary part of the small divisors.

The final comment concerns the dynamical consequences of Theorem i7). All the above
transformations (both the changes of variables of Sections as well as the KAM matrices
of the reducibility scheme) are time-dependent quasi-periodic maps of the phase space (of functions
of = only), see Section It is thanks to this “Toplitz-in-time” structure that the linear equation
(1.2.21)) is transformed into the dynamical system as explained in Section Note that in
[45] (and also [29], [21],[20]) the analogous transformations have not this Toplitz-in-time structure
and stability informations are not obtained.

1.3 Main results for autonomous KdV

In this section we present the result announced in [7] and proved in [§], concerning the existence and
the stability of Cantor families of quasi-periodic solutions of Hamiltonian quasi-linear perturbations
of the KdV equation

Ut + Uzgr — 6Lz + Ny (2, U, Uy Uy Ugr) = 0, (1.3.1)

under periodic boundary conditions x € T := R/27Z, where
N4(:E, U, Uy, Uz u:c:(;x) = —0y [(8uf)(-737 u, ux) - 8x((auzf)($’ u, ur))] (132)

is the most general quasi-linear Hamiltonian (local) nonlinearity. Note that A contains as many
derivatives as the linear part 0yz,. The equation (1.3.1)) is the Hamiltonian PDE u; = 0,V H (u)
where VH denotes the L?(T) gradient of the Hamiltonian

H(u) = /11‘ u;E +u? 4 f(, u, ug) da (1.3.3)
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on the real phase space H}(T) defined in (1.2.12). We assume that the “Hamiltonian density”
f € CUT x R x R;R) for some ¢ large enough, and that

f = f5(uaum) + fZﬁ(xa u?“%) ; (134)

where f5(u, uy) denotes the homogeneous component of f of degree 5 and f>¢ collects all the higher
order terms. By ([1.3.4) the nonlinearity N vanishes of order 4 at v = 0 and ([1.3.1)) may be seen,
close to the origin, as a “small” perturbation of the KdV equation

Ut + Uggr — 6uug, = 0. (1.3.5)

The KdV equation is completely integrable in the strongest possible sense, namely it may be
described by global analytic action angle variables. This has been proved in a series of works by
Kappeler and collaborators, see [I1], [12], [48] and also the monograph [49].

A natural question is to know whether the periodic, quasi-periodic or almost periodic solutions
of persist under small perturbations. This is the content of KAM theory.

We prove the existence of small amplitude, linearly stable, quasi-periodic solutions of ,
see Theorem Note that does not depend on external parameters. Moreover the KdV
equation is a completely resonant PDE, namely the linearized equation at the origin is the
linear Airy equation u; 4+ %y, = 0, which possesses only the 27-periodic in time solutions

u(t,z) = Z wed’ el (1.3.6)

jez\{o} 7

Thus the existence of quasi-periodic solutions of is a purely nonlinear phenomenon (the
diophantine frequencies in are O(|¢|)-close to integers with £ — 0) and a perturbation
theory is more difficult.

The solutions that we find are localized in Fourier space close to finitely many “tangential sites”

Sti={n,...,}, S=8STUu(-St)={£j:je€5"}, 7eN\{0}, Vi=1,...,v. (1.3.7)

The set S is required to be even because the solutions u of ([1.3.1]) have to be real valued. Moreover,
we also assume the following explicit hypotheses on S

e (81) j1 + j2 +j3 # 0 for all j1,j2,j3 € S.
e (82) Hj1,...,ja € S such that j1 + jo + jz+ja # 0, 55 + 43 + 45 + 43 — (1 + ja + js + ja)® = 0.

Theorem 1.3.1. Given v € N, let f € C? (with q :== q(v) large enough) satisfy . Then, for
all the tangential sites S as in satisfying (S1)-(S2), the KdV equation (1.3.1)) possesses small
amplitude quasi-periodic solutions with diophantine frequency vector w := w(§) = (wj)jes+ € RY,
of the form

. .3 1
u(t,z) = Zj65+2 & cos(wjt + jz) + o(\/[€]),  wj=j" —6&i ", (1.3.8)
for a “Cantor-like” set of small amplitudes & € RY with density 1 at & = 0. The term o(~/[€]) is

small in some H®-Sobolev norm, s < q. These quasi-periodic solutions are linearly stable.
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This theorem is proved in Chapter 5| Let us make some comments.

1. (Tangential sites) The set of tangential sites S satisfying (S1)-(S2) can be iteratively con-
structed in an explicit way, see the end of Section After fixing {71,...,7n}, in the choice
of 7n+1 there are only finitely many forbidden values, while all the other infinitely many values
are good choices for 7,41. In this precise sense the set S is “generic”.

2. (Stability) The linear stability of the quasi-periodic solutions is discussed after (5.7.41)). In a
suitable set of symplectic coordinates (¢, n, w), 1 € T", near the invariant torus, the linearized

equations at the quasi-periodic solutions assume the form (5.7.41), (5.7.42)). Actually there
is a complete KAM normal form near the invariant torus (remark , see also [22].

A similar result holds for perturbed (focusing/defocusing) modified KdV equations (m-KdV)
U+ Uggr £ Opti® + Ny (2, U, Up, U, Ugzz) = O, (1.3.9)
for Hamiltonian quasi-linear nonlinearity Ny as in .
Theorem 1.3.2. Given v € N, let f € C? (with q := q(v) large enough) satisfy
fz,u,ug) = O(|(u, ug)]?) . (1.3.10)

Then, for all the tangential sites S in (1.3.7) satisfying

2
T Ntz (1.3.11)
=1

the m-KdV equation (1.3.9)) possesses small amplitude quasi-periodic solutions with diophantine
frequency vector w := w(§) = (wj)jes+ € R, of the form

U(t,fﬂ)zzjesﬁ & cos(wjt +jz) +o(VIED), wi(€) =77 +0(¢)), Viest, (1312

for a “Cantor-like” set of small amplitudes §& € R with density 1 at & = 0. The term o(r\/[£])
is small in some H®-Sobolev norm, s < q. These quasi-periodic solutions are linearly stable. In
addition, if the Hamiltonian density f = f(u,uy) does not depend on x, the theorem holds for any
choice of the tangential sites S.

We describe how to prove this Theorem in Chapter [ff We remark that the m-KdV equation
U + U = 0z (u®) =0

is completely integrable and the defocusing m-KdV admits global analytic action-angle coordinates,
see Kappeler-Schaad-Topalov [50].

Notice that the Theorem for the KdV equation (1.3.1) is more difficult than Theorem
for the m-KdV (|1.3.9) because the nonlinearity is quadratic and not cubic.

We make some further comments.
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1. It is possible to prove also the existence of quasi-periodic solutions for cubic perturbations of
KdV, namely equations of the form

Ut + Ugza — Ouuy + aaa:us —|—N4(£U, u7ux>u:mv>u:r:px) =0, a 7& 0.

2. A relevant point is that the fourth order Birkhoff normal form of KAV and mKdV is completely
integrable. The present strategy of the proof — that we describe in detail below — is a rather
general approach for constructing small amplitude quasi-periodic solutions of quasi-linear
perturbed KdV equations. For example it could be applied to generalized KdV equations
with leading nonlinearity u?, p > 4, by using the normal form techniques of Procesi-Procesi
[67]-168].

3. A further interesting open question concerns perturbations of the finite gap solutions of KdV.

1.3.1 Ideas of the proof

We now describe the strategy of the proof of Theorem for the KAV equation ([1.3.1). The
small changes required to prove Theorem for the m-KdV equation (1.3.9) are given in Chapter
6l

Weak Birkhoff normal form. We decompose the phase space H&(’]I‘) in the symplectic subspaces
HYT) = Hs® Hg , Hg :=span{e’® : j € S},

and according to the above decomposition, we write u = v+ z, where v € Hg is called the tangential
variable and z € H S+ is called the normal one. The dynamics of these two components is quite
different. The variable v contains the largest oscillations of the quasi-periodic solution ,
while z remains much closer to the origin. We write the Hamiltonian as H = Hy+H3z+ H>s5,
where Ho, H3 are given in and H>5 is defined in . We perform a “weak” Birkhoff
normal form (weak BNF), whose goal is to find an invariant manifold of solutions of the third order
approximate KdV equation , on which the dynamics is completely integrable, see Section
5.1l Thus we need to remove-normalize the monomials of the Hamiltonian H which are linear in z
(this is the reason why we call this BNF only “weak”). Since the KdV nonlinearity is quadratic,
two steps of weak BNF are required. In the first step we remove the cubic terms O(v?), O(v?z2),
and in the second one we remove-normalize the terms O(v*), O(v3z). The present Birkhoff map is
close to the identity up to finite dimensional operators, see Proposition [5.1.1] The key advantage
is that it modifies Ny very mildly, only up to finite dimensional operators (see for example Lemma
, and thus the spectral analysis of the linearized equations (that we shall perform in Section
is essentially the same as if we were in the original coordinates.

The weak normal form does not remove (or normalize) the monomials O(z?). This could
be done. However, we do not perform such stronger normal form (called “partial BNF” in P&schel
[66]) because the corresponding Birkhoff map is close to the identity only up to an operator of
order O(d; '), and so it would produce, in the transformed vector field Ny, terms of order 9., and
0y. A fortiori, we cannot either use the full Birkhoff normal form computed in [49] for KdV, which
completely diagonalizes the fourth order terms, because such Birkhoff map is only close to the
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identity up to a bounded operator. For the same reason, we do not use the global nonlinear Fourier
transform in [49] (Birkhoff coordinates), which is close to the Fourier transform up to smoothing
operators of order O(9;1).

The weak BNF procedure of Section is sufficient to find the first nonlinear (integrable)
approximation of the solutions and to extract the “frequency-to-amplitude” modulation .

In Proposition we also remove the terms O(v®), O(v%z) in order to have sufficiently good
approximate solutions so that the Nash-Moser iteration of Section will converge. This is neces-
sary for KdV whose nonlinearity is quadratic at the origin. These further steps of Birkhoff normal
form are not required if the nonlinearity is yet cubic as for mKdV, see Remark To this aim,
we choose the tangential sites S such that (S2) holds. We also note that we assume because
we use the conservation of momentum up to the homogeneity order 5, see .

Action-angle and rescaling. At this point, in Section [5.2| we introduce the action-angle variables
(5.2.1) on the tangential sites and, after the rescaling (5.2.5)), the Hamiltonian H in ([5.1.5) trans-

forms into the Hamiltonian

1
Ho:=N+P, N:i=af) y+5(N0)22) a0

(see (5.2.9)), where «(&) is the frequency-to-amplitude relation defined in (5.2.10)).
Note that the coefficients of the normal form N in (5.2.11)) depend on the angles 6, unlike the

usual KAM theorems [66], [53], where the whole normal form is reduced to constant coefficients
(see Section . This is because the weak BNF of Section did not normalize the quadratic
terms O(22). These terms are dealt with the “linear Birkhoff normal form” (linear BNF) in Sections
In some sense here the “partial” Birkhoff normal form of [66] is splitted into the weak
BNF of Section [5.1] and the linear BNF of Sections

The action-angle variables are convenient for proving the stability of the solutions.

The nonlinear functional setting. We look for an embedded invariant torus i : TV — TV x R¥ x H 5%,
v —i(p) = (0(p),y(p), 2(¢)) of the Hamiltonian vector field Xy filled by quasi-periodic solutions
with diophantine frequency w. Notice that by , the diophantine frequency w is O(g?) close
to the integer vector & in (5.0.3)), therefore the diophantine constant ~ in satisfies v = o(e?).
Actually, in order to find an invariant torus for Xg_, we look for zeros of the nonlinear operator

F(i,0) 1= F(i,Cuw) 1= w- i — X, (i), (1.3.13)

(see ), where Xp_ . is the Hamiltonian vector field generated by the modified Hamiltonian
H.. := H. + (-0 with ¢ € R”. The unknowns in are the embedded invariant torus ¢
and (, the frequency w plays the role of an “external” parameter. The auxiliary variable { € R”
is introduced in order to control the average in the y-component of the linearized equation (see
(5.4.42), (5.4.43)). By Lemma [5.4.1] if F(i,¢) = 0 then ¢ = 0 and thus ¢ — () is an invariant
torus for the Hamiltonian vector field Xp_. The solution of the functional equation F(i,() =0, is

obtained by a Nash-Moser iterative scheme in Sobolev scales. The key step is to construct (for w
restricted to a suitable Cantor-like set) an approximate inverse (a la Zehnder [76]) of the linearized
operator d; ¢ F (io, o) in at any approximate solution (ig,(p). This means to find a linear
operator T such that

d; ¢ F (o, Co) o To — I = O(v ' F(io, (o)),
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See Theorem Note that the operator Ty is an exact right inverse of the linearized operator,
at an exact solution F (i, (p) = 0.

A major difficulty is that the tangential and the normal dynamics near an invariant torus are
strongly coupled. This difficulty is overcome by implementing the abstract procedure in Berti-Bolle
[22)-[23] developed in order to prove existence of quasi-periodic solutions for autonomous NLW
(and NLS) with a multiplicative potential. This approach reduces the search of an approximate
inverse for to the invertibility of a quasi-periodically forced PDE restricted on the normal
directions. This method approximately decouples the “tangential” and the “normal” dynamics
around an approximate invariant torus, introducing a suitable set of symplectic variables (¢, n, w)
near the torus, see . Note that, in the first line of , 1 is the “natural” angle variable
which coordinates the torus, and, in the third line, the normal variable z is only translated by
the component zp(1)) of the torus. The second line completes this transformation to a symplectic
one. The canonicity of this map is proved in Lemma [5.4.5] using the isotropy of the approximate
invariant torus is, see Lemma The change of variable brings the torus ¢5 “at the
origin”. The advantage is that the second equation in (which corresponds to the action
variables of the torus) can be immediately solved, see . Then it remains to solve the third
equation , i.e. to invert the linear operator £,. This is, up to finite dimensional remainders,
a quasi-periodic Hamiltonian linear Airy equation perturbed by a variable coefficients differential
operator of order O(0.z,). The exact form of L, is obtained in Proposition m

Reduction of the linearized operator in the normal directions. In Section [5.6] we conjugate the
variable coeflicients operator £, in (5.5.34)) to a diagonal operator with constant coefficients which
describes infinitely many harmonic oscillators

b+ vy =0, p=i(—mgi® + mij) +r° €iR, ¢S, (1.3.14)

where the constants m3 — 1, m1 € R and sup; [r§°| are small, see Theorem The main
perturbative effect to the spectrum (and the eigenfunctions) of L, is clearly due to the term
a1 (wt, )Oyee (see (5.5.34)), and it is too strong for the usual reducibility KAM techniques to work
directly. The conjugacy of L, with is obtained in several steps. The first task (obtained
in Sections |5.6.1 D is to conjugate L, to another Hamiltonian operator acting on H § with
constant coefficients

L= II& <w  Op + M3 + mlax>11§ +Rg, mi,mseR, (1.3.15)

up to a small bounded remainder Rg = O(92), see (5.6.113). This expansion of £, in “decreasing
symbols” with constant coefficients is similar to the one explained in Section [I.2.1] for the forced
Airy equation and it is somehow in the spirit of the works of Iooss, Plotnikov and Toland [45]-[47]
in water waves theory, and Baldi [4] for Benjamin-Ono. It is obtained by transformations which are
very different from the usual KAM changes of variables. There are several differences with respect
to the forced case:

1. The first step is to eliminate the z-dependence from the coefficient a; (wt, x)0zy, of the Hamil-
tonian operator £,. We cannot use the symplectic transformation A defined in (5.6.1)), used
in Section because L, acts on the normal subspace H § only, and not on the whole

22



Sobolev space as L in . We can not use the restricted map A, := HéAHé which is
not symplectic. In order to find a symplectic diffeomorphism of H Lé near A, the first ob-
servation is to realize A as the flow map of the time dependent Hamiltonian transport linear
PDE (j5.6.3). Thus we conjugate L, with the flow map of the projected Hamiltonian equation
(5.6.5). In Lemma we prove that it differs from A, up to finite dimensional operators.
A technical, but important, fact is that the remainders produced after this conjugation of L,
remain of the finite dimensional form , see Lemma, m

This step may be seen as a quantitative application of the Egorov theorem, see [71], which
describes how the principal symbol of a pseudo-differential operator (here a;(wt, £)0yz,) trans-
forms under the flow of a linear hyperbolic PDE (here (5.6.5])).

2. Since the weak BNF procedure of Section did not touch the quadratic terms O(22), the
operator L,, has variable coefficients also at the orders O(e) and O(e?), see (5.5.34)-(5.5.35).
These terms cannot be reduced to constants by the perturbative scheme, which applies to
terms R such that Ry~! < 1 where « is the diophantine constant of the frequency vector w.
Here, since KdV is completely resonant, such v = o(g?), see . These terms are reduced
to constant coefficients in Sections by means of purely algebraic arguments (linear
BNF), which, ultimately, stem from the complete integrability of the fourth order BNF of

the KdV equation (1.3.5)), see [49].

The order of the transformations of Sections|5.6.1 used to reduce L, is not accidental. The
first two steps in Sections reduce to constant coefficients the quasi-linear term O(0y41)
and eliminate the term O(0,,), see (the second transformation is a time quasi-periodic
reparametrization of time). Then, in Section we apply the transformation 7 in such
a way that the space average of the coefficient d; (¢, ) in is constant. This is done in view of
the applicability of the descent method in Section All these transformations are composition
operators induced by diffeomorphisms of the torus. Therefore they are well-defined operators of a
Sobolev space into itself, but their decay norm is infinite! We perform the transformation 7" before
the linear Birkhoff normal form steps of Sections because 7 is a change of variable that
preserves the form of the remainders (it is not evident after the Birkhoff normal form). The
Birkhoff transformations are symplectic maps of the form I +e0(d;!). Thanks to this property the
coefficient dq (p, x) obtained in step is not changed by these Birkhoff maps. The transformation
in Section is one step of “descent method” which transforms d; (¢, )0, into a constant m10,.
It is at this point of the regularization procedure that the assumption (S1) on the tangential sites
is used, so that the space average of the function ¢~s is zero, see Lemma Actually we only
need that the average of the function in is zero. If f5 = 0 (see (1.3.4)) then (S1) is not
required. This completes the task of conjugating L, to Lg in .

Finally, in Section [5.6.7] we apply the abstract reducibility Theorem based on a quadratic
KAM scheme, which completely diagonalizes the linearized operator, obtaining . The re-
quired smallness condition for Rg holds. Indeed the biggest term in Rg comes from the
conjugation of £0,v:(0o(¢),ys(¢)) in (5.5.35). The linear BNF procedure of Section had
eliminated its main contribution £9,v.(¢,0). It remains €8, (v (Ao(¢), ys(¢)) — ve(p,0)) which has
size O(e"72471) due to the estimate of the approximate solution. This term enters in the
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variable coefficients of di (o, )0, and do(p,x)0Y. The first one had been reduced to the constant
operator mi10,; by the descent method of Section [5.6.6] The latter term is an operator of order
O(0Y) which satisfies (5.6.115)). Thus L may be diagonalized by the iterative scheme of Theorem
4.2 in which requires the smallness condition O(e7~2%y~2) < 1. This is the content of Section
b6.1

The Nash-Moser iteration. In Section we perform the nonlinear Nash-Moser iteration which
finally proves Theorem and, therefore, Theorem [1.3.1] The optimal smallness condition re-
quired for the convergence of the scheme is e[| F(p,0,0)|/sp+,7 2 < 1, see (5.7.5). It is verified
because || Xp(p,0,0)[s <s €872 (see (5.3.1F)), which, in turn, is a consequence of having elimi-
nated the terms O(v%), O(v*z) from the original Hamiltonian (5.1.1)), see (5.1.5). This requires the
condition (82).
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The Thesis is organized as follows:

In Chapter [2] we present the classical KAM approach for 1-dimensional Hamiltonian PDEs
both for bounded and unbounded perturbations.

More precisely, in Section we describe the classical KAM Theorem of Kuksin [54] and
Poschel [65], for infinite dimensional Hamiltonian systems with bounded nonlinear perturba-
tions. We follow the presentation in [65].

In Section We describe the KAM result obtained by Kuksin [55] and Kappeler and Poschel
[49] for unbounded Hamiltonian perturbations of KdV (equation [2.2.1)).

In Chapter [3] we introduce some definitions and technical tools which will be used in Chapters
[, Bl for the proof of the theorems stated in Sections We collect the properties of
the matrix decay norm for a linear operator (Section and we also define real, reversible
and Hamiltonian operators, see Sections In Section [3.4] we give the dynamical
interpretation of the reduction procedure of Sections

In Chapter [ we prove Theorems [I.2.IHI.2.5| concerning the existence and the stability of
quasi-periodic solutions for the forced quasi-linear and fully nonlinear perturbed Airy equation
[T21).

In Chapter [5] we prove Theorem [1.3.1] concerning the existence and the stability of quasi-
periodic small-amplitude solutions of the quasi-linear Hamiltonian autonomous perturbed

KdV equation (1.3.1)).

In Chapter [6] we explain how to modify the proof given in Chapter [f] for the quasi-linear KdV
equation (|1.3.1)), to prove Theorem for quasi-linear Hamiltonian perturbations of the
modified KdV equation (|1.3.9).

In Chapter [7] we present some future perspectives.

In Appendix [A] we collect classical tame estimates for product, composition of functions and
changes of variables in Sobolev spaces.

25



26



Chapter 2

Classical KAM results for
Hamiltonian PDEs

2.1 The classical KAM approach for Hamiltonian PDEs

As we have already said in Section the normal form KAM approach has been introduced by
Kuksin [53], [54], Wayne [73], Poschel [65], [66] for 1-dimensional nonlinear Schrédinger and wave
equations with bounded perturbations in the case of Dirichlet boundary conditions.

In the KAM framework it is usual to reduce the search of quasi-periodic solutions of param-
eter independent equations to the search of invariant tori for parameter dependent Hamiltonians
which are small perturbations of a quadratic normal form. In the applications to the parameter
independent NLS and NLW equations , , the “unperturbed actions” are introduced as
parameters thanks to the non-degeneracy of the Birkhoff normal form.

Following [65], we consider a ¢-dependent family of real-valued Hamiltonians

H(0,1,2,2,§):=N(I,z,2,¢§)+ P(0,1,2,2,¢), (2.1.1)

defined on the phase space
PYP =T x RY x f¥P x (¥P

where (P is the complex Hilbert space of sequences (wy,)n>1 endowed with the norm || |/,p, where

w2 = [wal*nf*e*.

n>1

The normal form is
N(I,2,%,€) i= w(€) - T+ Q(¢) - 22, (2.1.2)

where

w(§) == (w1(§), ..., wu(§)) ER”

are called the tangential frequencies and

Q) = diagjzlgj(f) )
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1; € R for all j > 1, are called the normal frequencies. We use the notation
Q) - 22:= Y (6)%%; .
Jj=1

The perturbation P is analytic in all its variables and the parameters & are in IT which is a bounded
domain on R”. The symplectic form on the phase space P*P is

W:zid@i/\dfi—iz:dzj/\d,?j.

i=1 j>1
The Hamiltonian vector field generated by the Hamiltonian H : P*? — R is defined as

Xu(0,1,2 %) = (8;H, —0pH,10:H, -0, H) ,

and the Hamilton equations are

%(9,],2,2) =Xpy0,1,2,2).

The Poisson bracket between two Hamiltonians G, F' : P»P — R are defined as

(G, F) = W(Xg, Xr) = Z <69iG81iF - 31iG89iF> _ (azj Go:, F — 0, Gasz) . (2.1.3)

=1 j>1

If in (2.1.1]) the perturbation P = 0, the Hamilton equations become

0 =wl(e)
=0

2 =1Q(§)=
z=—iQ(&)z

This system admits the quasi-periodic solutions
O(t) =0y +w(é)t, I(t) =0, z(t) =0, VE ell,

hence the trivial torus T x {0} x {0} x {0} is invariant for the Hamiltonian vector field Xy.
The purpose of KAM Theory is to prove the persistence of such invariant tori for the perturbed
Hamiltonian H = N + P . In Kuksin [54] and Pdschel [65] the assumptions are the following.

e (H1) Non degeneracy. The map £ — w(§) is a homeomorphism between IT and w(II) and
it is Lipschitz continuous together with its inverse. Moreover for any [ € Z", 7, 7' > 1 the sets

Rij) = {eeiw(e) 1+ 0;() =0},
Ry = {€ € T w(&) - 1+ 94(§) + Qy(¢) = 0}
have zero Lebesgue measure.

Note that this hyphothesis is violated in the presence of frequencies with double multiplicity.
Indeed if Q; = Qs for some j # j', the set Rg? coincides with the whole parameter space 11.
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e (H2) Frequency asymptotics. There exist d > 1, § < d—1 such that the normal frequencies
Q; (&) satisfy
Q) =j+...+0(%, Vi1,

where the dots stand for fixed lower order terms in j. More precisely for all j > 1 there exists
Qj = j% 4+ ..., parameter independent, such that the functions

€ — 010(6) — Q]
are uniformly Lipschitz on II.

e (H3) Regularity. The perturbation P is real analytic on P*P and Lipschitz with respect
to the parameter £ € II, moreover the Hamiltonian vector field

= (91 P, —9yP,19:P, —i9. P)

satisfies
p:PYP — PP p=p. a1 )
pP>p, d=1
and p—p < 0 < d—1. To make this assumption quantitative, we assume that Xp is real
analytic on a complex neighbourhood D(s,r) of T¥ x {0} x {0} x {0} defined as follows:

D(s,r) = {Jmé] < s} x {|7] <} x {2

ap + |Zllap <7}
For W = (0,1, z, z), we introduce the weighted norm
Wl == 161 + 2] + 77 zllap + 77 HIZ
and correspondingly we define
1 XPllr,D(sr) == supp(sm I XpPllr

||X ”iqu (s,r) " Sup&GHHXP('7g)Hr,D(s,r) >

|1 XP(- &) — Xp(, &) lrD(s,m)
X hp = su ) )
H PHTD sr) Pg; £¢&, |€1 _ 52‘
and the weighted norm
L li
IXPIEED) = XIS+ WIXPI e € (0,1).

We remark that the hyphothesis (H3) fails in the case of Hamiltonian systems with un-
bounded perturbations. In the next Section we will explain how to deal with unbounded
perturbations of order 1, in order to develop KAM theory for the semilinear KdV (1.1.4).

Now let us state the KAM theorem of Kuksin [54] and Poschel [65].
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Theorem 2.1.1. Let us suppose that the Hamiltonian H = N + P satisfies the assumptions (H1)-

(H3), and let

Li
e = | XpllU00 .

There exists a small constant 6 := 6(s,v) > 0, such that for
ey 1 <6,
there exists a Cantor set lloo C 11, a Lipschitz continuous family of embedded tori
B : TV x [y — PP,

and a Lipschitz map weo : o — RY such that for all £ € Mo, Poo(+, &) is an invariant torus with
frequency woo (§) for the Hamiltonian H(-,&) = N(-,§) + P(-,§). The frequency map woo satisfies

|lwee — w|HPO) < Ce
The map o is real analytic on the complex neighbourhood |Imb| < 5 and it satisfies
@0 — ol P < Cey ™t

where ®q is the trivial embedding of the torus T x {0} x {0} x {0} into the phase space P*™P. The
Cantor set Iy, satisfies
I\ Ileo| < Cy.

We give a short outline of the proof, following Pdschel [65]. The idea is to construct iteratively a
sequence of symplectic transformations ®1, ®o, ..., P, ..., which transform the Hamiltonian (2.1.1))
into another Hamiltonian which has an invariant torus at the origin. At the k-th step of the

iteration, we have a Hamiltonian
Hy = Ni + Py,

which is a perturbation Pj of a normal form N as in (2.1.2]). We look for a symplectic transfor-
mation ®; such that
Hj 0 @ = N1+ Prya,

where Nj.; has still the form (2.1.2)) and
Xp, = Xp for some o >1,

which implies that the iterative scheme converges super-exponentially fast.
Let us describe the step of this iteration in more details. To simplify notations we drop the
index k and we write + instead of k + 1. First we write

H=N+P=N+R+(P—-R), (2.1.4)
where R is a truncation in the Taylor expansion of P defined as

R :=P%0(9) 4+ PO10(9) - T + (P°1°(0), 2) + (P (0), 2) + (P"*(0)z, 2)
+ (PY1Y(0)z, z) + (P"?z, %) , (2.1.5)
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with

<P010(9), z> — ZP]Qlo(e)zj ’ <P001 = ZPOM
j>1 i>1
(PP0(0)z,2) == > PU(0)ziz, (PUN(0)z,2):= Y PLN0)zzy,
7,3'>1 7,3'>1
(PY%z,2) = Y PP(0)z% .
J.3' =1

The purpose is to remove-normalize the term R. The reason is that if R = 0 the torus T x {0} x
{0} x {0} is invariant for H. To do this, we look for a symplectic transformation ® as the time-1
flow map (®%);=1 of a Hamiltonian F of the form (2.1.5), namely

F :=F%(9) + FO19>) . T + (F°10(0), 2) 4+ (FY1(9), 2) + (F?%°(0)z, 2)
+ (FO1Y(0)z, 2) + (F%z, 2) . (2.1.6)
Using the Lie expansion
adp (H)t"

H o ®% .= exp(adp(H)) = Z ad
n>0

, adp(H):={H,F},

n!
we get
Ho®=No®d+RodP+(P-—R)oP=N+R+{N,F}+Q+ (P—R)o®

where @ is a quadratic term in R and F'. The point is to normalize the linear terms, namely to
solve the homological equation
{N,F}+ R=[R], (2.1.7)

where

[Rl=¢+0-I+Q-22
/e\ = <P000>97 @ = <P100>97 Q - dlag]>1<P01 > ’

and for any function f(6), 6 € T", the notation (f)y stands for the average of f on the torus T".
According to (2.1.3), (2.1.5)), (2.1.6]), the equation (2.1.7)) leads to solve

w-gF0) + PG =€, w-0pF0) + Ph) =5, (2.1.8)

(w-8p + i) F10) + P)1(0) =0, (w-8p — i) F"(0) + P)°'(9) =0, Vj>1, (2.1.9)
(w- 0p +19; +19;) F20(0) + P)20(0) =0, (w- 0p —1Q; — 1Q;) F{p7(0) + P?(0) = 0, (2.1.10)

for all 7,7 > 1,
(w-8p + i — Q) FuH(0) + P (0) =0,  Vj#j, (2.1.11)

w- 0pF(0) + PIIN(O) = (P, Vi>1. (2.1.12)

The equations (2.1.8))-(2.1.12)) are constant coefficients partial differential equations on the torus
T”. They can be solved by expanding the coefficients of F' and P in Fourier series with respect to
f and imposing the following non-resonance conditions:
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e Zero-th order Melnikov conditions

w1 > Vi ez’ \ {0}, (2.1.13)

|l "
to solve the equations in (2.1.8]), (2.1.12)).

e First order Melnikov conditions

v

lw-1+Q; > i

VieZ, j>1, (2.1.14)

to solve the equations in (2.1.9)).
e Second order Melnikov conditions

w14 Q; + Q| >

to solve the equations in (2.1.10) and
w1+ Q5 — Q| >

Il\ viez, j,i >1 (2.1.15)

V(l,4.5") # (0,3,5) (2.1.16)

to solve the equation in ([2.1.11]).

Since the Hamiltonian vector field Xp is a bounded nonlinear operator of the phase space (see
Assumption (H3)), the solution F' of the Homological equation (2.1.7) generates a Hamiltonian
vector field X g which is bounded too, in particular it satisfies the estimate

L - (r, Li
IXEIEY ) < Cr e OO xp| B Vo<o<s.

This implies that the Hamiltonian flow ®% generated by the Hamiltonian vector field Xp is a

bounded symplectic transformation of the phase space P*P onto itself. This is the core of the
iterative procedure.

Actually the previous approach proves also the existence of a KAM normal form nearby the
invariant tori found in Theorem Indeed it is possible to prove that the normal forms

Ni = wi(§) - I+ () - 22
converge on the analytic domain D(s/2,7/2) to a normal form
Noo := woo (&) - T 4+ Qoo(§) - 22,

where the frequencies wqo, (o satisfy the Melnikov non-resonance conditions (2.1.13))-(2.1.16[). The
transformations ®j converge to a symplectic analytic map

b D(s/2,1/2) x g — D(s,7).
Moreover the transformed Hamiltonian Hy : D(s/2,7/2) X IIoc — R is
Hy = Ho®, — Ny + Py, , (2.1.17)

where the perturbation Py, does not contain the monomials of the type (2.1.5)) in its Taylor ex-
pansion, namely according to the splitting (2.1.4)), (2.1.5)), one has R, = 0. For the Hamiltonian
(2.1.17)) the trivial torus T" x {0} x {0} x {0} is an invariant torus with frequency ws (&), for all
§ells
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Remark 2.1.1. In the KAM formulation of Berti-Biasco in [14], the Cantor set Il is defined
(in a more convenient way) only in terms of the final frequencies (Woo, Qo) and not inductively at
each step of the iteration.

(Linear stability) The existence of the KAM normal form H., in implies the linear
stability of the invariant KAM torus. Indeed the linearized equation at the trivial torus ¢ —
(¢,0,0,0) has the form

0 = A(woot)I + Blwoot)u

I=0 (2.1.18)

i = i<ﬂoou + C(woot)l) ,

u:=(z,2), Qo = (QOOO _8 ),

A(woot) : RV = RY | Blweot) : £ x £ - RY  C(weot) : RY — L3P x 4P

Let Z1(p), Za(p), Z3(p) satisfy

where

Woo + OpZ1(p) = 1R Z1 () +iC(p) (2.1.19)
Weo * OpZa(p) = —1Z2(p) Qoo + A(p) , (2.1.20)
woo - 0pZ3(p) = A(p) Z1(p) + B(p) — B, (2.1.21)

where B is the constant coeflicients v x v matrix defined as

B:= - A(p)Z1(p) + B(p) dp .

Notice that the equations (2.1.19)-(2.1.21)) may be solved, since the frequencies (weo, Qo) satisfy
the Melnikov conditions ([2.1.13]), (2.1.14)).

Under the change of coordinates

0 0 4+ Zs(woot) I + Zo(woot)u
I — I
U u+ Z1(weot)I

(see Eliasson-Kuksin [37], Section 1.7) the linearized system (2.1.18]) is reduced to the constant
coefficients linear system

0 =BI
I=0
i = Qoo

whose solutions are
0(t) =60p+ (Blp)t, I(t)=1Iy, u(t)=exp(iot)ug, VteR.

The linear stability follows, since the actions I(t) remain constants and the normal variables u(t)
do not increase their norm || ||4p.
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2.2 KAM for unbounded perturbations

In this section we describe the KAM result proved in Kuksin [55] and Kappeler and Poschel [49]
for analytic Hamiltonian perturbations of the KdV equation

Ut + Uggy — OUUy + €0, f(x,u) =0, z€eT, (2.2.1)

where € > 0 is a small parameter. In the above results the authors develop a perturbation theory
for large finite gap solutions of KdV.
The equation (2.2.1]) is a Hamiltonian PDE of the form 0,u = 0,V H (u), with Hamiltonian

H := Hggy + K, (2.2.2)

where
Hyqy (u) := / UQ?E +uddr, K(u):= / F(z,u)dx, OuF (z,u) = —f(x,u) (2.2.3)
T T

defined on the phase space H{(T).
For € = 0 the equation ({2.2.1)) reduces to the KdV equation

Up + Ugpgy — OBuu, = 0.

The KdV equation is completely integrable and it may be described by global analytic action-angle
coordinates, see Theorem [2.2.1] In order to give a precise statement, we introduce some notations.
For all s > 0, we define the real Hilbert spaces

o= {m,. ) eR Y, a2 = 1P < +oo), (2.2.4)
j>1

and we consider the product % x £* endowed with the symplectic form

wi= Y dz; Ndy; . (2.2.5)
j>1

For all s > 0, we define

HE(T,R) := {u c H*(T,R) : /

i u(x)de = 0}

and we use the notation L3(T) := HJ(T).
The following theorem has been first proved in [I1], [12]. A different proof has been presented
in [48]. Here we report the statement of Theorem 1.1 in Kappeler-Péschel [49).

Theorem 2.2.1 (Global Birkhoff coordinates). There exists a symplectic diffeomorphism
O 02 x (2 — L(T)
which satisfies the following properties:

e O is analytic togheter with its inverse, and it preserves the symplectic forms (1.2.13)), (2.2.5)).
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e For any s >0,
O 05Tz x5t HE(T),

is tnvertible and analytic togheter with its inverse.

e The transformed Hamiltonian

1 1
HKdV(x7y) = (HKdV o (D)(xvy) ) (x7 y) € £8+2 X €S+2 ) r = (xn)n21 ) Yy = (yn)nZl )
depends only on ;1:% + y,%, for all n > 1.
As a consequence the transformed Hamiltonian H g4y depends only on the actions

2 2
I:=(I)n>1, I, ::W, Vn>1,

namely
Hrav = Hiav (1,12, ...).

The Hamilton equations generated by H gy are

{x wn(Dy wn(I) := 0, Hkav (1), Vn > 1,

Un = _Wn(I)xna

whose solutions are

xn(t) = \/2In0cos(bpn0 + wn(lo)t), Yn(t) = \/20y,08I0(0p 0 + wn (Io)t)

forallm > 1and Iy := (I, 0)n>1. This implies that all the solutions of the KAV equation are periodic,
quasi periodic or almost periodic in time. The quasi-periodic solutions of KAV are called finite gap
solutions. In the remaining part of this Chapter, we will explain (following the presentation of
Kappeler and Poschel in [49]) how to prove the persistence of such quasi-periodic solutions for the

perturbed KdV equation .

Remark 2.2.1 (Frequency map). It is proved in [{9]-Section 15, that the frequency map
I —w():= (wa(I))p>1, w:PL— %,

where

0= {I = In)nz1: Mg = Z In|3|1,| < —I—oo}, PA = {I €i:1,>0, VYn> 1},
n>1
= {1 = Lzt [T le, i= supps |0 1| < 400} VAER,

Moreover
w=A+o, A= (")nen, (2.2.6)

(we restricted to the phase space H& (T) and so ¢ = 0 in the definition of A, given in Corollary 15.2
of [49]) and the map
@ PO — 0
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is real analytic (see Theorem 15.4 in [49]).
In addition, close to the origin I = 0, the frequency map has the following expansion

wn(I) =n® — 61, + O(I%), (2.2.7)
where O(I%) denotes the quadratic terms in the actions (see also Corollary 1.5 in [£9)]).
Under the Birkhoff map ®, the Hamiltonian H in transforms into the Hamiltonian
Hrav + €K, (2.2.8)

where H gy is defined in Theorem and K := K o ®.
Let A C N be a finite set with cardinality |A| = v. We introduce the action-angle variables

{xn = /2(&n + yn)cos(0y) ne A
Yn ‘= v/ 2(‘£n + Yn)Sin(en) ’
= Tnt Wn neN\A,

Zp = —————
" V2

where for all n € A, &, > 0 and |y,| < &,. In this coordinates the Hamiltonian H x4y becomes

Hiav = Hiav(E+y,22),

where £ := (§n)nea, ¥ = (Yn)nea and 22 := (2,2n)nen a- Expanding in Taylor series we get

HKdV(€ + Yy, ZE) - HKdV(£7 0) + Z Wn(f)}’n + Z Wn(g)znzn + Q(y7 22) )
neA neN\A

where () stands for the Taylor remainder of second order in y, zZ and

wn(§) =01, Hrav(§,0),  Vn=>1.
Defining

w(§) = (Wn(€))nea, Q&) = (Wnl&))nema,

the Hamiltonian (2.2.8) becomes in the coordinates

0,y,2,2) eU® :=T" x RV x £¢ x {¢ (2.2.9)
(¢% is the complexification of the space £¢ defined in ([2.2.4)))

H:=N+P, N:=ecl)4+w(l&) y+Q&) - zz, P:=Q+¢K. (2.2.10)

Hence one is reduced to study the £&-dependent family of Hamiltonians which are (close to
the origin y = 0, z = 0) small perturbations of isochronous normal forms. Kappeler and P&schel
applied to such Hamiltonian the abstract KAM Theorem 16.1 in [49]. They assume the hyphotheses
(H1) and (H2) (with d > 1) of Section [2.1{and they modify the hyphothesis (H3) in order to deal
with unbounded perturbations of order 1 (see Assumption C, Page 136 in [49]).
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As a consequence of the results recalled in Remark the frequency map

£ —w(é),

is real analytic. Moreover, in Proposition 15.5-[49], it is proved to be non-degenerate, i.e.
det[Oqw] # 0.

This follows by the expansion ([2.2.7) near the origin and analiticity.

The asymptotic expansion of the normal frequencies Q(§) := (wn(§))nena may be proved
thanks to the expansion (2.2.6), thus assumptions (H1), (H2) (with d = 3) of Section are
verified (the proof is given in [49] Page 142).

The main issue in the KAM proof is that the Hamiltonian vector field associated to the pertur-
bation in is unbounded of order 1, namely

Xp:U — Ut

(we recall (2.2.9))). Let us describe how it is possible to overcome this difficulty. The key idea, intro-
duced by Kuksin in [55], is to work at each step of the KAM iteration, with a variable coefficients
normal form, more precisely at the generic step of the KAM iteration we deal with a Hamiltonian

H=N+P,
where the normal form

Ni=w(@) IT+Q00,8) 22, Q0,8 22:=> (0,820 (2.2.11)
neN

depends on the angle 6. The reason is the following: since the normal frequencies grow asimptoti-
cally as ;(§) ~ 43, we are able to impose non resonance conditions of the form

-3
\w-l+(2j127"l]’7|, Viezv, j>1, (2.2.12)
-2 /2
+ .. .
-2 /2
|w-l+Qj+Qj/)|27<‘7mtj), Viezr, j,i>1, (2.2.14)

hence the coefficients of F' in the equations — are bounded because P is unbounded
of order 1 and the small divisors gain at least two space-derivatives thanks to the non resonance
conditions above. The only problem is in the equation . To solve this equation, we require
the zero-th order Melnikov conditions which do not give any smoothing effect, hence

011 AT : 011 .
PJ'J' = 0(j) implies Fj]. = 0(j)

and thus

diangjjn(@) D0 — 5T
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This would produce a vector field X unbounded of order 1. As a consequence, the diagonal angle-
dependent terms P]an(ﬁ), J > 1 cannot be removed in the homological equation and they will give
a contribution to the normal form.

The fact that the normal form has variable coefficients implies that the homological equations are
non-constant coefficients linear equations. The coefficients of the Hamiltonian F' in the homological
equation has to satisfy a first order non-constant coefficients linear PDE on the torus T of
the form

iw - Opu+ Au+b(B)u = f, (2.2.15)

where b, f : TV — R are given functions and u : T — R is the scalar unknown. These kind of
equations can be solved thanks to the Kuksin’s Lemma (see Chapter 5 in [49]).

Lemma 2.2.1 (Kuksin’s Lemma). Let us assume that

e there are some constants y,co > 0, T > v such that |\| > yco and the frequency vector w € R”

satisfies the non resonance conditions

w-uz#, w-zwm%, vl e "\ {0},

e the function b =73, bl is analytic on the strip D(s) := {|Imf| < s} around the torus T"
and

Iblls.r:= > N7 e || < 48
lezv

for some 6 >0,

e the function f is analytic on D(s) and
[flls == NI flls0 < o0,

then for 6/(vyco) small enough there exists a solution u, analytic on the strip D(s — o), 0 < o <s
of the equation (2.2.15)) satisfying the estimate

C
[ulls—o < WHst-

The above method may be adapted also to deal with Hamiltonian perturbations unbounded of
order 2 like the equation

Ut + Uggy — OUUL —|—66x|3x|%f(x, |81|%u) =0, z€T.

The intuitive reason is that if
XP . us N Z/{S*Q7

using that the small divisors (2.2.12))-(2.2.14)) gain two space derivatives, the solution F' of the
equations ([2.1.8))-(2.1.11)) produces a bounded vector field

Xp U - U°.
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The rigorous proof is based on the improved version of the Kuksin’s Lemma proved by Liu-Yuan
in [60].

This method does not certainly work for unbounded perturbations of order 3. Actually, in this
case, the solution of the homological equations generates an unbounded vector field of order 1

XF:Z/{S —>Z/{S_1

which does not define a flow on the same phase space U* (we recall (2.2.9))).
In order to deal with unbounded perturbations of order 3, a sharper perturbative analysis is
required. This is the content of the Chapters [4 and
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Chapter 3

Functional setting

In this Chapter we introduce some notations, definitions and technical tools which will be used
along the proofs of Chapters [6]
Norms. Along this Thesis, we shall use the notation

leals 2= lfall ooy = s, (3.0.1)

to denote the Sobolev norm of functions u = u(p,z) in the Sobolev space H*(T**1). We shall
denote by || ||zs the Sobolev norm in the phase space of functions u := u(x) € H*(T). Moreover
| |z will denote the Sobolev norm of scalar functions, like the Fourier components u; ().

For a function f: A, — E, A — f()), where (E,|| ||g) is a Banach space and A, is a subset of
RY, we define the sup-norm and the Lipschitz semi-norm

su su 1 1 f )‘ _f >‘
LA = AR o= sup [IF e IR o= 12, = sup OV ZTQlE )
AEA, A, A1 — A2

A1FA2

and, for v > 0, the Lipschitz norm

AP = AR = I + A (3.0.3)

If E = H?® we simply denote Hf||Llp Hf||Llp ™) We fix s := (v+2)/2 so that H®(TV*!) —
L>®(T"*1) and the spaces H*(T"*!), s > s¢, are an algebra. As a notation, we write

a<sb <= a<C(s)b

for some constant C(s) and for s = sg := (r+2)/2 we only write a<b. More in general the notation
a < b means a < Cb where the constant C' may depend on the data of the problems and
, namely the nonlinearities f and Ny, the number v of frequencies, the diophantine exponent
7 > 0 in the non-resonance conditions in (4.2.6)), (5.6.120)). Also the small constants § in the sequel

depend on the data of the problems.

3.1 DMatrices with off-diagonal decay

Let b € N and consider the exponential basis {e; : i € Zb} of L?(T?), so that L?(T?) is the vector
space {u = > uie;, 3. Jui|> < oo}, Any linear operator A : L2(T?) — L?(T?) can be represented by
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the infinite dimensional matrix
i i . 2 : i
(Ai )m/ezb, Ai = (Aei/, ei)L2(Tb), Au = Ai Ui €4.
3,4/

We now define the s-norm (introduced in [2I]) of an infinite dimensional matrix.
Definition 3.1.1. The s-decay norm of an infinite dimensional matriz A = (Aff)ihizezb 18
N2
A2 =5 ()% ( sup \A;ﬂ) . (3.1.1)
iezb =

For parameter dependent matrices A := A(N), X € A, C RY, the definitions (3.0.2)) and (3.0.3)
become

. A1) — A\l , .
|A[S™ .= sup [A(N)]s, |A[TP = sup A = AQs)] |A[LPO) .= | A[S™P 4 | AP (3.1.2)
AEA,

A £ A1 — Az ’
Clearly, the matrix decay norm is increasing with respect to the index s, namely
|Als < |Alg, Vs< s

The s-norm is designed to estimate the polynomial off-diagonal decay of matrices, actually it implies

’A ’<<|14|8>87 Vi17i2€Zb7
11 — 12
and, on the diagonal elements,
Al < [Alo, A" < Al (3.1.3)

We now list some properties of the matrix decay norm proved in [21].

Lemma 3.1.1. (Multiplication operator) Let p = Y, pie; € H*(T®). The multiplication oper-
ator h — ph is represented by the Toplitz matriz Tii/ = pi_y and

Tls = llplls- (3.1.4)
Moreover, if p = p(\) is a Lipschitz family of functions,
T3P = p|[ ) (3.1.5)
The s-norm satisfies classical algebra and interpolation inequalities.
Lemma 3.1.2. (Interpolation) For all s > s > b/2 there are C(s) > C(so) > 1 such that
[AB|s < C(s)|Als|Bls + C(s0)[Als|Bls, - (3.1.6)

In particular, the algebra property holds

|AB], < C(s)|Al4|Bl, . (3.1.7)

If A= A(X\) and B = B(\) depend in a Lipschitz way on the parameter A € A, C R, then
|AB|LPO) < O(s5)|ALPO)| B|LPOY) | (3.1.8)
[ABIEP) < O(s) AP BEPE) 1 (o) AP BP0 (3.1.9)
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For all n > 1, using (3.1.7)) with s = s¢, we get

A" < [C(s0)" AL, and  |A"s < n[C(s0)|Als]" ' C(s)|Als, ¥s 250, (3.1.10)

Moreover (§3.1.9) implies that (3.1.10) also holds for Lipschitz norms | ﬂ;ip“)
The s-decay norm controls the Sobolev norm, also for Lipschitz families:

1AR]ls <C(s)(|Also 2]l + |AlslIRlls, )
1AR|FP) <C(s) (JA[GPP R IFPD) 4 ARO[ 5PD). (3.1.11)

Lemma 3.1.3. Let ® =1+ ¥ wzth U := W(\), depending in a Lipschitz way on the parameter
A€ A, CR, such that C(So)|\II|Llp < 1/2. Then ® is invertible and, for all s > sg > b/2,

@7 — 1], S Cl)| W]y, [OTPO) <2, j@T — 170 < CO(s) W[ (3.1.12)
If &, =1+ V;, i =1,2, satisfy C(s0)|¥; \Llp(7 <1/2, then

@51 — @7 < C(s) (182 — W5 + (|T1]s + [Wals) [Ua — T1s,) - (3.1.13)

Proof. Estimates follow by Neumann series and . To prove , observe that

Oyt — 07 =07 (@1 — D)@yt = D7 (U — W)@y

and use (3.1.6)), (3.1.12]). O

Toplitz-in-time matrices
Let now b :=v + 1 and
ei(p,x) =t i.— (L jyenzb, lez’, jelk.

An important sub-algebra of matrices is formed by the matrices Toplitz in time defined by

(l2,52) ._ 73
A = AR (L~ 1), (3.1.14)
whose decay norm is
AZ= > sup [ARO)P(45)%. (3.1.15)

jezjezy 1 I2=]
These matrices are identified with the p-dependent family of operators
. . . o
Alg) = (A2(9)),, sezr AR(0) =D AR (3.1.16)
lezv
which act on functions of the z-variable as
z) =Y hie’" — A = ) AP(p)hj,e". (3.1.17)
JEL J1,§2€Z

We still denote by |A(¢)|s the s-decay norm of the matrix in (3.1.16]).
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Lemma 3.1.4. Let A be a Toplitz matriz as in (3.1.14), and so := (v + 2)/2 (as defined above).

Then
‘A(@)’s < 0(30)"4‘54—80 , VYoeT”.

Proof. For all ¢ € TV we have

A(p))? = Z<j>25 sup Ah <Z 2% gup Z Ajz 1)2%
jeZ jl_jQ j jeZ ]1 ]2 JIEZU
< D sw Y MAROPGT < 30 sw [AROPE
62]1 —J2 ]lEZV EZZEZVJI ]2 ]
(13.1.15))
< ‘ §+807

whence the lemma follows.
Given N € N, we define the smoothing operator Il as

(I2,42) . B
(LyA) (272 = Aggy -kl <N

(I1,91) 0 otherwise.

Lemma 3.1.5. The operator Hﬁ = I — Il satisfies
_ L
N Als < N7P|Alp,  [IRAEPO) < NZOAD g >0,

where in the second inequality A :== A(\) is a Lipschitz family A € A.

3.2 Real and Reversible operators

We consider the space of real functions
Z = {u(@vl‘) = ’LL((,O,?L‘)},
and of even (in space-time), respectively odd, functions
X = {U(QO, :II) = U(—QO, —.’E)}, Y= {u(307$) = —U(—(p, —IL’)}
Definition 3.2.1. An operator R is
1. REAL if R: Z — Z

2. REVERSIBLE if R: X — Y

3. REVERSIBILITY-PRESERVING if R: X — X, R:Y — Y.

The composition of a reversible and a reversibility-preserving operator is reversible.

The above properties may be characterized in terms of matrix elements.

Lemma 3.2.1. We have

R:X -Y <= R(-l)=-RL(), R:X—X < R.(-1)=RL{),

R:Z—7Z <= RL()=RI(-).
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3.3 Linear time-dependent Hamiltonian systems and Hamiltonian
operators

In this Section we give some definitions and properties of the linear time-dependent Hamiltonian
systems which will be used in Sections

Definition 3.3.1. A time dependent linear vector field X (t) : HY(T) — H}(T) is HAMILTONIAN if
X(t) = 0;G(t) for some real linear operator G(t) which is self-adjoint with respect to the L? scalar
product. The vector field X (t) is generated by the quadratic Hamiltonian

H(t,h) = %(G(t)h, h) o) = ;/TG(t)[h] hdx, h € H)(T).

If G(t) = G(wt) is quasi-periodic in time, we say that the associated operator w -0, — 0.G(p) (see

(3.4.4) ) is Hamiltonian.

Definition 3.3.2. A linear operator A : H}(T) — H}(T) is SYMPLECTIC if
Q(Au, Av) = Q(u,v), Yu,v € Hy(T), (3.3.1)

where the symplectic 2-form 0 is defined in (1.2.13). Equivalently ATO 1A = 0,1
If A(p), Yo € TY, is a family of symplectic maps we say that the operator A defined by
Ah(p, z) := A(p)h(p, ), acting on the functions h : T'T1 — R, is symplectic.

Under a time dependent family of symplectic transformations u = ®(¢)v the linear Hamiltonian
equation
u; = 9,G(t)u with Hamiltonian H (¢, u) := 3 (G(t)u,u) 12

transforms into the equation
v = 0, E(t)v, E(t):=®t)TGt)P(t) — d(t)T 0, ®(t)
with Hamiltonian

K(t,v) = 3 (G2 t)v, 2(t)v) ., — & (0,1 @i(t)v, (t)v)

xT

(3.3.2)

L2 L2-

Note that E(t) is self-adjoint with respect to the L? scalar product because ®79; 1®,+®7 9, 1® = 0.
If the operators G(t), ®(t) are quasi-periodic in time, The Hamiltonian operator w - 9, — 0,G(¢p)
transforms into the operator w-d, — 0 E (), which is still Hamiltonian, according to the definition

B3T

3.4 Dynamical reducibility

All the transformations that we construct in Sections and act on functions u(p, z) (of time
and space). They can also be seen as:

(a) transformations of the phase space H? that depend quasi-periodically on time (Sections|4.1.1

F3HITH and [ID):
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(b) quasi-periodic reparametrizations of time (Section 4.1.2)).

This observation allows to interpret the conjugacy procedure from a dynamical point of view.
Consider a quasi-periodic linear dynamical system

Oru = L(wt)u. (3.4.1)

We want to describe how (3.4.1]) changes under the action of a transformation of type (a) or (b).
Let A(wt) be of type (a), and let w = A(wt)v. Then (3.4.1) is transformed into the linear system

Ow = Ly (wt)v where L,(wt)= A(wt) ' L(wt)A(wt) — A(wt) L0,[A(wt)]. (3.4.2)
The transformation A(wt) may be regarded to act on functions u(y, x) as

(Au)(ip,2) == (Alp)ulp, ")) (x) == A(p)ulp, z) (3.4.3)

and one can check that (A=u)(p,z) = A~ ()u(p,z). The operator associated to (3.4.1) (on
quasi-periodic functions)
L:=w-0,— L(yp) (3.4.4)

transforms under the action of A into
AT LA=w 0, — Ly(y),

which is exactly the linear system in (3.4.2)), acting on quasi-periodic functions.

Now consider a transformation of type (b), namely a change of the time variable
Ti=t+a(wt) & t=71+awr); (Bv)t):=v(t+awt), (B 'u)(r)=u(r+a(wr)), (3.4.5)

where a = a(yp), ¢ € T", is a 2w-periodic function of v variables (in other words, ¢t — ¢ + a(wt)
is the diffeomorphism of R induced by the transformation B). If u(t) is a solution of (3.4.1)), then
v(7), defined by u = Buv, solves

L(wt)

Orv(1) = Ly (wr)o(r),  Ly(wT):= (1 T (w- 8¢a)(wt)>|t—r+d(w7').

(3.4.6)

We may regard the associated transformation on quasi-periodic functions defined by

(Bh)(g, @) := h(p +wa(p),x), (B~'h)(p,x) = h(p +walp),z),
as in step where we calculate

BB =p(p)Ls, plp) =B 1+w-0,a),

Lo =0, = Lalg) Lalp) i= —=Llp+wilp). (3.4.7)

(3.4.7)) is nothing but the linear system (3.4.6)), acting on quasi-periodic functions.
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Chapter 4

KAM for quasi-linear and fully
nonlinear forced perturbations of the
Airy equation

In this Chapter we prove the Theorems (1.2.1))-(1.2.5). As we explained in Section the

core of the proof is the analysis of the linearized operator in . In Section we perform
a regularization procedure (using changes of variables induced by diffeomorphisms of the torus
and pseudo-differential operators), which conjugates the linearized operator £ to the operator L
defined in , which is a diagonal operator plus a bounded remainder term. In Section we
perform a Nash-Moser KAM reducibility scheme in Sobolev class, which conjugates the operator
L5 to the diagonal operator L, defined in .

In Section we construct a right inverse for the Linearized operator L satisfying tame
estimates (see Theorem ([4.2.3)) and finally in Section we implement The Nash-Moser scheme,
in order to construct a solution for the problem , concluding the proofs of Theorems (1.2.1)-
(1.2.5).

4.1 Regularization of the linearized operator

Our existence proof is based on a Nash-Moser iterative scheme. The main step concerns the
invertibility of the linearized operator (see ([1.2.18))

Lh =L\ u,e)h :=w - Oph + (1 + a3)0pzah + a20z0h + a10:h + agh (4.1.1)

obtained linearizing ([1.2.4) at any approximate (or exact) solution u. The coefficients a; =
a;(p,x) = a;(u,e)(p,x) are periodic functions of (p,z), depending on u,e. They are explicitly
obtained from the partial derivatives of e f(¢, z, z) as

ai(p, ) = (02, f) (0, 2, ulp, 1), ua (@, ), Uge (0, T), Unwa (0, 2)), i =0,1,2,3. (4.1.2)

The operator £ depends on A because w = Aw. Since ¢ is a (small) fixed parameter, we simply
write £(\, u) instead of L£(A,u,¢), and a;(u) instead of a;(u, ). We emphasize that the coefficients
a; do not depend explicitly on the parameter A (they depend on A only through u()\)).
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In the Hamiltonian case the linearized operator has the form
Lh=w-h+0,(0.{ A1, )0k} — Ao(p, 2)h)
where
A1(p,x) := 14€(0sy 2, F) (0, x,uyuy),  Ao(p, ) i= —0,{(0202, F) (@, T, u, ug) }H€(0s020 F) (0, , uy 1y

and it is generated by the quadratic Hamiltonian

Hr(p,h):= ;/T (Ao(cp,:c)h2 + Al(go,x)hi) de, heH;].

Remark 4.1.1. In the reversible case, i.e. the nonlinearity f satisfies and u € X (see
, ) the coefficients a; satisfy the parity

az,a1 € X, as,ag €Y, (4.1.3)
and L maps X into Y, namely L is reversible, see Definition [3.2.1]
Remark 4.1.2. In the Hamiltonian case , assumption (Q)- is automatically satisfied
(with a(p) = 2) because

F (@, 2, U, U, Uy Uge) = (0, T, U Ug) + b0, T, 1, Uy Ve + (@, T, w, Uz U2, + d(0, T, Uy Ug ) Uy

where

b=2(02 ., F)+2(02 .. F), c¢=0:F  d=0.F

2121T

and so
aZQf =b+2zc= 2(d$ + Zldzo + ZQle) = ( Z3xf + Zlaz;gzof + 228Z3Z1f + Z38Z322f)

The coefficients a;, together with their derivative d,a;(u)[h] with respect to u in the direction
h, satisfy tame estimates:

Lemma 4.1.1. Let f € C9, see (1.2.3). For all so < s < q¢— 2, ||u|lsg+s < 1, we have, for all
i=0,1,2,3,

lai (w)lls < e C(s)(1 + [lulls+s), (4.1.4)
10uai(uw)[h]lls < & C(s) (Alls+3 + lullsssllhllso+3) - (4.1.5)
If, moreover, A\ — w(\) € H® is a Lipschitz family satisfying Hu||f;;i;) <1 (see (3.0.3)), then
i Li
las|5P) < e O(s) (1 + Jull5B) - (4.1.6)

Proof. The tame estimate (4.1.4) follows by Lemma |A.0.8(7) applied to the function 0, f, i =
0,...,3, which is valid for s + 1 < ¢. The tame bound (4.1.5)) for

zkz @ax7u>u:raux:raum:rw)a h, i=0,...,3,

T

follows by (A.0.5) and applying Lemma (z) to the functions 3§k -, /> which gives
H( 2kZi )(‘Pa Ty Uy Ugy U U;r:mc) ls < C()fllcs+2 (1 + [Julls+3),
for s + 2 < g. The Lipschitz bound (4.1.6]) follows similarly. O
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4.1.1 Step 1. Change of the space variable

We consider a ¢-dependent family of diffeomorphisms of the 1-dimensional torus T of the form

y=z+B(p ), (4.1.7)

where (3 is a (small) real-valued function, 27 periodic in all its arguments. The change of variables
(4.1.7) induces on the space of functions the linear operator

(Ah) (@, ) := h(p,z + B(p,x)). (4.1.8)

The operator A is invertible, with inverse

(A ") (e, y) = v,y + Ble.y)), (4.1.9)

where y — y + (g, y) is the inverse diffeomorphism of (#.1.7), namely

r=y+06(p,y) = y=z+pbB(p ). (4.1.10)

Remark 4.1.3. In the Hamiltonian case (1.2.11]) we use, instead of (4.1.8]), the modified change
of variable (1.2.27) which is symplectic, for each ¢ € T. Indeed, setting U := 9, 'u (and neglecting
to write the p-dependence)

Q(Au, Av) :Aa;l(ax{U(x+ﬁ(x))}) (14 Bo(2))o( + B(z)) da

-,

Uz + 8(2)(1+ Bu(2))0(z + B(x))dz — c/(l  Bu(@))o(a + B(z))dx
_ / U(y)o(y)dy = Qu,v), ve HE,

T

where ¢ is the average of U(x + B(z)) in T. The inverse operator of (1.2.27) is (A™1v)(p,y) =
(14 By(2,9)v(y + B(w,y)) which is also symplectic.

Now we calculate the conjugate A~'LA of the linearized operator £ in with A in (4.1.8).

The conjugate A~ 1a.A of any multiplication operator a : h(yp, x) +— a(p, )h(p, x) is the multipli-
cation operator (A~1a) that maps v(p,y) — (A7 a)(v,y) v(p,y). By conjugation, the differential
operators become

AW 0,A=w- 0, + {A Hw-0,0)} 0y,
AT, A = {AT (1 + B2)} Oy,
A7 00 A= {AT (14 8,)7} Oy + {A (Bea)} 0y,
A 0ppn A = {ATH 1+ 82)} Dyyy + {BATH(1 + B2) Bual} Oyy + { A (Bra)} 9y,

where all the coefficients {A~!(...)} are periodic functions of (,%). Thus (recall (4.1.1)))

L1 := A LA =w- Oy + b3 (¢, y)ayyy + b2 (¢, y)ayy + b1 (e, y)ay +bo(p,y) (4.1.11)
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where
bs = A_l[(l + a3)<1 + /Bw)g]v by = -A_l[w : 8g0/8 + (1 + a3)/8$xx + a2 fBez + al(l + ﬁa:)]; (4-1-12>
bo = A~ ao), by = A (1 + a3)3(1 + Bs)Bes + a2(1 + By)?. (4.1.13)

We look for (¢, x) such that the coefficient b3(p,y) of the highest order derivative 0y, in (4.1.11)
does not depend on y, namely

A1+ ag)(1+ B2)%] () = b(%) (4.1.14)

for some function b(p) of ¢ only. Since A changes only the space variable, .Ab = b for every function
b(p) that is independent on y. Hence (4.1.14)) is equivalent to

(1 + as(e,2)) (1 + Bali0.2))” = (), (4.1.15)

b3 (e, )

namely s
By = pos pol(p, ) := b(p)3(1 + az(p, x)) —1. (4.1.16)

The equation (4.1.16) has a solution 3, periodic in w, if and only if [ po(p,x)dz = 0. This
condition uniquely determines

-3
_1
bp) = (/ (1+as(p,2) ® dx) (4.1.17)
T
(we recall that [ stands for (27)~! [1). Then we fix the solution (with zero average) of (4.1.16)),
B(e,x) == (95 po) (s ), (4.1.18)

where 9, ! is defined by linearity as

T

8 tel” = % ViezZ\{0}, o;'1=o0. (4.1.19)

In other words, 9, 1h is the primitive of h with zero average in .
With this choice of 3, we get (see (4.1.11]), (4.1.14]))

Li=ALA=w- 0 + b3(9)Dyyy + b2, y)Oyy + b1, y)0y + bo (0, y), (4.1.20)

where b3(¢) := b(p) is defined in (4.1.17]).

Remark 4.1.4. In the reversible case, 3 € Y because az € X, see (4.1.3). Therefore the operator A
in (A.1.8)), as well as A~" in (&.1.9)), maps X — X andY — Y, namely it is reversibility-preserving,
see Definition[3.2.1. By ([4.1.3) the coefficients of L1 (see ([4.1.12), [A.1.13)) have parity

b3, b1 € X, ba, by €Y, (4.1.21)

and L1 maps X — Y, namely it is reversible.

Remark 4.1.5. In the Hamiltonian case (1.2.11) the resulting operator L1 in (4.1.20) is Hamil-
tonian and ba(p,y) = 20,b3(¢) = 0. Actually, by (3.3.2)), the corresponding Hamiltonian has the

form
1

Kip.o) =5 [ balo) + Bolor)e? dy, (4122

for some function By(p,y).
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4.1.2 Step 2. Time reparametrization

The goal of this Section is to make constant the coefficient of the highest order spatial derivative
operator Oy, of £y in (4.1.20), by a quasi-periodic reparametrization of time. We consider a
diffeomorphism of the torus T" of the form

= etwalp), T’ alp) €R, (4.1.23)

where « is a (small) real valued function, 27-periodic in all its arguments. The induced linear
operator on the space of functions is

(Bh)(¢,y) = h(p +walp), y) (4.1.24)

whose inverse is

(B~)(0,y) == v(9 + wa(¥), y) (4.1.25)

where ¢ = ¥ + wa(¥) is the inverse diffeomorphism of ¥ = ¢ 4+ wa(p). By conjugation, the
differential operators become

B 'w-9,B=p(d)w-0y, B 'oyB=209, p:=B'1+w-0,0q). (4.1.26)
Thus, see (4.1.20),
B™'LiB = pw- 99+ {B 03} 0yyy + {B 02} 0y + {B 01} 0, + {B o} (4.1.27)

We look for a(y) such that the (variable) coefficients of the highest order derivatives (w - 9y and
Oyyy) are proportional, namely

{B7b3}(9) = m3p(¥) = ma{B (1 +w - dpa)}(¥) (4.1.28)

for some constant mg3 € R. Since B is invertible, this is equivalent to require that

bs(p) = m3(1+w - dya(p)). (4.1.29)
Integrating on T determines the value of the constant ms,
mg = /V b3 () de. (4.1.30)
Thus we choose the unique solution of with zero average
a(p) = n; (w-0,) " (bg — m3) () (4.1.31)

where (w - 8,)~1 is defined by linearity

e1l-

, ¢
(w- 0, tel? .= i 1#0, (w-9,) '1=0.

With this choice of o we get (see (4.1.27)), (4.1.28)))

B 'LiB=pLy,  Lo:=w-0y+myzdyyy +ca(d,y) Dy +c1(9,y) 0y +co(®,y),  (4.1.32)

where .
B~
;= L, i=0,1,2. (4.1.33)
P
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Remark 4.1.6. In the reversible case, a is odd because bs is even (see (4.1.21)), and B is re-
versibility preserving. Since p (defined in (4.1.26))) is even, the coefficients c3,c1 € X, ca,c9 € Y
and Lo : X — Y is reversible.

Remark 4.1.7. In the Hamiltonian case, the operator Ly is still Hamiltonian (the new Hamiltonian
is the old one at the new time, divided by the factor p). The coefficient ca(9,y) = 0 because by = 0,

see remark[{.1.5.
4.1.3 Step 3. Descent method: step zero

The aim of this Section is to eliminate the term of order 0y, from Lo in (4.1.32)).
Consider the multiplication operator

Mh :=v(0,y)h (4.1.34)
where the function v is periodic in all its arguments. Calculate the difference
Lo M — M (w - 0y + m30yyy) = To0yy + T10y + To, (4.1.35)
where
Ty = 3mgvy+cov, T 1= 3mavyy+2covy+c1v, Ty 1= w-Ogv+mguyyy+Ccavyy+c1vy+cov. (4.1.36)

To eliminate the factor 15, we need

3mavy + cov = 0. (4.1.37)
Equation (4.1.37)) has the periodic solution
1 -1
o(0,9) =exp{ — 5 - (0, e2)(0,9) (4.1.38)
provided that
/ co (¥, y) dy = 0. (4.1.39)
T
Let us prove (4.1.39). By (4.1.33)), (4.1.26)), for each ¥ = ¢ + wa(yp) we get

1 B 1
ACQ(ﬁay)dy: B0 0 0.0)}0) /T(B Yo) (0, y) dy = 50 0,000 /sz(so,y)dy-

By the definition (4.1.13)) of b and changing variable y = x + (¢, x) in the integral (recall (4.1.8)))
@ET3)
/ ba(p,y) dy —= / ((1 +a3)3(1 + B2) Bea + a2(1 + 61-)2) (1+ ) dx
T T

b(e) {3 Fulp@) g, / e ) dz}. (4.1.40)
T 1+/8z(907x) T 1+a3(907$)

The first integral in is zero because (z5/(1 + Bz) = 0z log(1 + B;). The second one is zero

because of assumptions (Q)-(1.2.7) or (F)-(1.2.6)), see (1.2.28)). As a consequence is proved,

and has the periodic solution v defined in . Note that v is close to 1 for £ small.

Hence the multiplication operator M defined in is invertible and M ™! is the multiplication

operator for 1/v. By and since T = 0, we deduce

Ls:= M LM = w0y + m3Oyyy + di(9,9)0y + do(¥,y),  d; =

T.
= i=0,1.  (4.1.41)
v
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Remark 4.1.8. In the reversible case, since ¢y is odd (see Remark) the function v is even,
then M, M~ are reversibility preserving and by (£.1.36) and (@.1.41)) d; € X and dy € Y, which
implies that L3 : X — Y.

Remark 4.1.9. In the Hamiltonian case, there is no need to perform this step because co =0, see

remark [4.1.7
4.1.4 Step 4. Change of space variable (translation)
Consider the change of the space variable
z=y+p(V)

which induces the operators

Th(¥,y) == h(0,y +p(®)), T v, z) =0, z—p®)). (4.1.42)
The differential operators become

T 'w-09T =w- 0y + {w- dyp(V)} 0., T71'9,7T =0..

Thus, by (4.1.41)),
Ly:= T_1£3T =w -0y +m30... +e1 (197 Z) 0; + 60(797 z)

where
e1(9,2) == w- Ogp(V) + (T 1dy)(9,2), eo(V,2) := (T 1dp) (0, 2). (4.1.43)
Now we look for p(d) such that the average
/ e1(¥,2)dz=mq, VIeT”, (4.1.44)
T
for some constant m; € R (independent of ). Equation is equivalent to
w-Ogp =mq — / di(0,y) dy =: V(9). (4.1.45)
T
The equation ([4.1.45) has a periodic solution p(¥) if and only if [;, V(9)dd = 0. Hence we have
to define
my = / dy (9, y) didy (4.1.46)
’]1‘1/+1
and
p(9) := (w- )V (¥). (4.1.47)

With this choice of p, after renaming the space-time variables z = z and ¥ = ¢, we have

Ly =w-0p +Mm30pza + e1(p, x) Or + eo(p, x), / e1(p,z)de =mq, Yo eT". (4.1.48)
T

Remark 4.1.10. By ([4.1.45)), (4.1.47) and since d € X (see remark[{.1.8), the function p is odd.
Then T and T~' defined in ([#.1.42)) are reversibility preserving and the coefficients e1, ey defined
i (4.1.43) satisfye1 € X, eg €Y. Hence L4 : X — Y 1is reversible.

Remark 4.1.11. In the Hamiltonian case the operator L4 is Hamiltonian, because the operator T in
(4.1.42) is symplectic (it is a particular case of the change of variables (1.2.27)) with 5(p,x) = p(p)).
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4.1.5 Step 5. Descent method: conjugation by pseudo-differential operators

The goal of this Section is to conjugate L4 in (4.1.48)) to an operator of the form w - 0, +m30szs +

m10;+R where the constants mgs, m; are defined in (4.1.30)), (4.1.46)), and R is a pseudo-differential
operator of order 0.

Consider an operator of the form
S:=1+w(p,z)0,* (4.1.49)
where w : T*! — R and the operator 9; ! is defined in (£.1.19). Note that
0,0, =010, =g, mo(u) :=u— /Tu(a:) dx . (4.1.50)
A direct computation shows that the difference
L4S — S(w - 0p + Mm30pze +M10z) =110, + 70 + r_la,;l (4.1.51)

where (using 9,79 = 700z = Oy, Oy *Opex = Orz)

r1 = 3mswy + e1(p,x) —my (4.1.52)
ro = eg-+ (Smgwm + eqw — mlw)wo (4.1.53)
r_1 = W OpW F M3Waype + €1W, + W . (4.1.54)

We look for a periodic function w(p,x) such that r; = 0. By (4.1.52)) and (4.1.44) we take

—_— —eq]. 4.1.
w = 3m38 "my — €] (4.1.55)

For € small enough the operator S is invertible and we obtain, by (4.1.51)),
Ls:=81L4S =w - 0p +mMm30zzz +m10; + R, R = S_l(r0+r,18;1). (4.1.56)

Remark 4.1.12. In the reversible case, the function w € Y, because e; € X, see remark[{.1.10
Then S, S~ are reversibility preserving. By (.1.53)) and [#.1.54), 7o €Y and r_1 € X. Then the
operators R, Ly defined in (4.1.56|) are reversible, namely R,Ls: X — Y.

Remark 4.1.13. In the Hamiltonian case, we consider, instead of (4.1.49)), the modified operator
S = emowlemds T 4 mow(p, )0, + ... (4.1.57)

which, for each @ € TV, is symplectic. Actually S is the time one flow map of the Hamiltonian
vector field mow(p, )0, 1 which is generated by the Hamiltonian

1
Hs(p,u) := —5 /w(gp,x)(@;lu)Zdw , u€H).
T
The corresponding Ls in (4.1.56) is Hamiltonian. Note that the operators ( and m

differ only for pseudo-differential smoothing operators of order O(9,?) and of smaller size O(w?) =
O(g?).
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4.1.6 Estimates on Ls

Summarizing the steps performed in the previous Sections we have (semi)-conjugated
the operator £ defined in (4.1.1)) to the operator L5 defined in (4.1.56)), namely

L=3L50,", & := ABpMTS, &5:= ABMTS (4.1.58)

(where p means the multiplication operator for the function p defined in (4.1.26))).
In the next lemma we give tame estimates for L5 and ®1, ®2. We define the constants

o:=219+2v+17, o =219+v+14 (4.1.59)
where 79 is defined in ([1.2.2)) and v is the number of frequencies.

Lemma 4.1.2. Let f € C9, see (1.2.3)), and so < s < q— 0. There exists 6 > 0 such that, if
5761 < & (the constant ~yy is defined in (1.2.2)), then, for all

[ullso+0 < 1, (4.1.60)
(i) the transformations ®1, ®o defined in ([{.1.58) are invertible operators of H*(T"*1), and satisfy
[:hlls + 197 lly < C () (IAls + lls o Illo). (4.1.61)

fori=1,2. Moreover, if u(\), h(\) are Lipschitz families with

lull 2 < (4.1.62)
then
i — i Li Li L .
|D:AIIEPO) + @7 REPO) < C(s) (IAIIEEY + full 2 ISR, i =12. (4.1.63)

(ii) The constant coefficients mz, my of L5 defined in (4.1.56)) satisfy

Img — 1| + |m1| < eC', (4.1.64)
Bums(@)h]] + (B (w) ]| < =CllAls (4.1.65)
Moreover, if u(X) is a Lipschitz family satisfying (4.1.62)), then
Ims — 1[FPO) 4 |y |UPO) < (4.1.66)
(ii7) The operator R defined in (4.1.56) satisfies:
Rls <eC(s)(1 + [ulls+0), (4.1.67)
0uR(u)[] |5 < eC(5) ([ hllstor + l[ullstollhllsotor) - (4.1.68)

where o > o' are defined in (4.1.59). Moreover, if u()\) is a Lipschitz family satisfying (4.1.62)),
then
RIFPD < e0(s)(1 + [lull 557, (4.1.69)

Finally, in the reversible case, the maps <I>i,(I>;1, 1 = 1,2 are reversibility preserving and R, Ls :
X — Y are reversible. In the Hamiltonian case the operator Ly is Hamiltonian.
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Proof. The proof is elementary. It is based on a repeated use of the tame estimates of the Lemmata
of the Appendix A. For convenience, we split it into many points. We remind that sg := (v + 2)/2
is fixed.

Estimates in Step 1.
1. — We prove that b3 = b defined in (4.1.17)) satisfies the tame estimates

163 = 1lls < e C(s) (1 + [Julls+3), (4.1.70)
18ubs(w)[R[ls < € C(s) (Ihlls+3 + llulls+allhllso+s) (4.1.71)
b3 — 1|50 < & C(s) (1 + [Ju|Z2). (4.1.72)
Proof of ([#.1.70). Write b3 = b (see ([{.1.17)) as
by — 1 =1 (Mlg(az) — g(0)]) — (0), (4.1.73)

where

[

O(t) = (14073, Mh ::/hd:z;, g(t) = (14 1)3.
T

Thus, for € small,

163 = 1lls < C(s)[[M[g(az) = g(0)] ls < C(s)llg(az) — g(0)l[s < C(s)llass-

In the first inequality we have applied Lemma z) to the function v, with v = 0, p = 0,
h = M|g(a3) — ¢(0)]. In the second inequality we have used the trivial fact that |Mh|s < ||h|s for
all A. In the third inequality we have applied again Lemma (z) to the function g, with u = 0,
p =0, h = a3. Finally we estimate ag by with sg = sg, which holds for s + 2 < q.

Proof of . Using , the derivative of b with respect to u in the direction h is

Oubs(u)[h] = o' (Mlg(as) — g(0)]) M (g'(as)duas[h] ).

Then use (A.0.5), Lemma[A.0.8(i) applied to the functions ¢’ and ¢/, and (4.1.5).
Proof of (#.1.72). It follows from ([£.1.70), (4.1.71)) and Lemma[A.0.9

2. — Using the definition of pg, estimates (4.1.70)), (4.1.71)), (4.1.72)) for b3 and estimates
(4.1.4), (4.1.5)), (4.1.6) for az, one proves that py also satisfies the same estimates (4.1.70]), (4.1.71)),

[4.1.72) as (bs — 1). Since 8 = 9, tpy (see (4.1.18))), by Lemma M( ) we get

Bls,c0 < C(8)1Bllstso < Cs)llpolls+so < € C(s)(1+ [[ullsso+3), (4.1.74)

and, with the same chain of inequalities,

|0uB(u)[P]]s,00 < €C(3)(HhHs+80+3 + Hu||s+50+3HhHso+3) . (4.1.75)

Then Lemma implies
Li
1BIE0) < e C(s) (1 + [[ull 220 ). (4.1.76)

for all s + s9 +3 < ¢. Note that x — = + (¢, z) is a well-defined diffeomorphism if ||} o < 1/2,
and, by (5.6.35)), this condition is satisfied provided € C(1 + |[u|so+4) < 1/2.
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Let (¢ y) (¢, y 4+ B(p,y)) be the inverse diffeomorphism of (¢, z) — (¢, + B(¢,z)). By
Lemma 0((7) on the torus T**+!, § satisfies

.
Blace < ClBlase = €C()(1+ fullsrstso)- (4.1.77)

Writing explicitly the dependence on u, we have 3(p,y; u) + B(e, y+ B, y;u); u) = 0. Differen-
tiating the last equality with respect to w in the direction h gives

@31 = -4 (20,

therefore, applying Lemma[A.0.10|(i44) to deal with A~!, (A.0.6) for the product (8,8[h])(1+3:) !,
the estimates (5.6.35), (4.1.75)), (4.1.76) for 3, and (A.0.2) (with ap = so + 3, bp = so +4, p = 1,
qg=s—1), we obtain (for s + s9 +4 < q)

’aué(u)[h”&oo < 50(3)(Hh”s+3+50 + ”UH8+4+So”h”3+50) . (4.1.78)

Then, using Lemma with p = 4 + sg, the bounds (4.1.77)), (4.1.78]) imply

BIEED) < e Cs) (1 + [|ul YE2,).- (4.1.79)

3. — ESTIMATES OF A(u) AND A(u)~!. By (A.0.16), (5.6.35) and (4.1.77),

AR5 + [|A@) " hlls < Cs)(|Plls + [[ullstsors]Blh)- (4.1.80)
Moreover, by (A.0.18)), (4.1.76)) and (4.1.79)),
i — i Li Li Li
LA ) A|[5PO) 4 [ A(u) " AL < () (1R P+ (ful SPO) 1R 5P, (4.1.81)

Since A(u)g(p, ) = g(p, 2+ B(p, x;u)), the derivative of A(u)g with respect to u in the direction

h is the product 9, (A(u)g)[h] = (A(u)gsz) OuB(w)[h]. Then, by (A.0.7), and (4.1.80),
10u(A(w)g)[h] ||s < eC(s) <||9||s+1||h||30+3 + llgll2lPollstso+3 + ||U||s+so+3||g||2thlso+3)- (4.1.82)
Similarly 9, (A(u)"'g)[h] = (A(u)"'g) uB(u)[h], therefore (A.0.7), [A.1.78)), (.1.80) imply that

10,(A7 @ )R ls < eC(5) (llglsallllsgss + Ngllollbllsssoss + lullsrsoalglallPllsgss) . (4.1.83)

4. — The coefficients by, by, by are given in (4.1.12)), (4.1.13). By (A.0.7)), (4.1.80), (4.1.62]),
(5.6.35) and (4.1.4])),

[1bills < eC(s)(1 + [Julls4so+6), ©=0,1,2. (4.1.84)
Moreover, in analogous way, by (A.0.7)), (4.1.81), (4.1.62)), (4.1.76|) and (4.1.6)),
i Li .
Bl < O+ ull 00, i =0.1,2 (4.1.85)

Now we estimate the derivative with respect to u of b;. The estimates for by and by are analogous.

By we write by (u) = A(u) b} (u) where b} := w - 0,0+ (1 + a3)Brzat a2Bzx+ a1(1 + By).
The bounds (4.1.5)), (4.1.75)), (5.6.35), (4.1.62)), and (A.0.7) imply that

10u07 (w)[A]lls < €C () ([Allstso+6 + 1l s+s0+61llso+6) - (4.1.86)
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Now,

b (u)[h] = B (A(u)~167 (w)) [A] = (BuA(w) ™) (07 (w)) ] + A(w) ™ (9ub] (w) [2). (4.1.87)

Then (A.0.5)), (4.1.87), (4.1.80)), (4.1.83), (A.0.2)) (with ap =so+4, Bo=s0+6,p=s—1,¢=1)
(4.1.86)) imply

10uA@) ™ O @)l < 2CC6) (Ihllsssgss + lullssorhlloss) (4.1.88)
JA@ 985 @ s < eCls)(1llssagss + lullsrsyrollllsoss)- (4.1.89)

Finally (4.1.87), (4.1.88) and (4.1.89) imply

10ubr(@)kllls < eC(8) (Illssos6 + llstsorlbllsor). (4.1.90)

which holds for all s +so +7 < q.
Estimates in Step 2.
5. — We prove that the coefficient ms, defined in (4.1.30)), satisfies the following estimates:
Ims — 1], |ms — 1|¥P) < eC (4.1.91)
|Oums(u)[h]] < eClh|sy+3- (4.1.92)

Using (£.1.30) [{£.1.70), (£.1.62)

ims — 1] < / by — 1 dip < Cllby — 1o, < £C.
"H'V
Similarly we get the Lipschitz part of (4.1.91). The estimate (4.1.92)) follows by (4.1.71]), since
|Oums(u)[h] | < /T |0ubs(u)[R]| de < C|8ubs(uw)[h][lsy < eCl|R|so+3.

6. — ESTIMATES OF a. The function a(y), defined in (4.1.31]), satisfies

‘a‘svoo S 670_1 C(S) (1 + |’uHS+T()+So+3) (4193)

i - Li
oMED < ergt C(s) (1 + [Jull RS ) (4.1.94)
[Ouar(u)[h]]s00 < 5'70_1 C(s) (HhHs+To+80+3 + HUHS+70+80+3||h||80+3)- (4.1.95)

Remember that w = A, and |@ - I| > 3yg|l|~™, VI # 0, see (1.2.2). By (4.1.70) and (4.1.91]),

|04|8,oo < lalsyso < 0'70_1”53 —m3||stsp4m < 0(3)70_15(1 + ||ullsro+s0+3)

proving (4.1.93). Then (4.1.94) holds similarly using (4.1.72) and (w - d,)"t = A1 (@ - 9,) L.
Differentiating formula (4.1.31)) with respect to u in the direction h gives

Oubs(u)[hlmsz — b30yma(u)[h] )
m3

dua(u)lh] = (A 9,) 7! (

then, the standard Sobolev embedding, (4.1.70), (4.1.71), (4.1.91), (4.1.92)) imply (4.1.95)). Es-

timates (4.1.94)) and (4.1.95) hold for s + 79 + sg + 3 < ¢. Note that (4.1.23) is a well-defined
diffeomorphism if |a|1. < 1/2, and, by (4.1.94)), this holds by (4.1.60).
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7. — ESTIMATES OF &. Let ¥ — 9 4+ wa(9) be the inverse change of variable of (4.1.23]). The
following estimates hold:

|&|S o = 5761 C(S) (1 + ”uH8+70+50+3) (4'1'96)

_ Li
&L < engt Os) (1 + [l ) (4.1.97)
|0u6e(u) [hHS,oo < 5761 C(s) (Hh||s+7'o+50+3 + HU||S+7'0+80+4||h||7'o+80+3)~ (4.1.98)

The bounds (4.1.96)), (4.1.97) follow by (A.0.14)), (4.1.93)), and (A.0.15), (4.1.94)), respectively. To
estimate the partial derivative of & with respect to u we differentiate the identity &(d;u) + a(d +

wa(¥;u);u) = 0, which gives

Oya[h] )

Bui(u)[h] = —B~ (W :

Then applying Lemma [A.0.10(7ii) to deal with B, for the product d,afh] (1 +w-d,a)~t,
and estimates (4.1.94]), (4.1.95)), (A.0.2), we obtain (4.1.98)).

8. — The transformations B(u) and B(u)~!, defined in (4.1.24) resp. (4.1.25)), satisfy the
following estimates:

1B(w)hl|s + [|B(w) ™ Alls < C(s) (I1hlls + [l srysorsll 1) (4.1.99)

1Bu)R X2 4 || B(w)  AIEP) < O (s) (IR + [ullyP), allally ™) (4.1.100)
10u(B(w)g)[h]ls < C () (Igllss1lPllog + gl lllssoo

1l s 1121l ) (4.1.101)
10u(B(w) " g)[R]]ls < C(s)(Iglls+1l1Bllon + lglallhllstoo

Hletlls oo 1112120, (4.1.102)

where o := 79 + so + 3. Estimates (4.1.99) and (4.1.100) follow by Lemma [A.0.10|(ii) and (4.1.93),
(4.1.96), (4.1.94), (4.1.97). The derivative of B(u)g with respect to w in the direction h is the
product fz where f := B(u)(w - 9,9) and z := dya(u)[h]. By (A.0.7), [|fz]s < C(s)(If|lslz|pe +
| fllo|2|s,00)- Then (4.1.95), (.1.99) imply (4.1.101)). In analogous way, and give
[1102).

9. — ESTIMATES OF p. The function p defined in (4.1.26)), namely p = 1 + B~ (w - d,0),
satisfies

p=1lse < e C)A A+ [[ullsrptsora) (4.1.103)

Li
p = 1RO < eyg Cls) (1 + full )y 15) (4.1.104)
[Oup(u)[h][ls < 57(;1 C(S)(||h||s+7'o+50+4 + ||U||S+To+50+5Hh||‘ro+80+4)- (4.1.105)

The bound (&.1.103) follows by ([#.1.26), (A.0.19), (£.1.93), (@.1.60). Similarly (@.1.104) follows
by (A.0.20)), (4.1.94) and (4.1.62)). Differentiating (4.1.26)) with respect to u in the direction h we
obtain

dup(u)[h] = 9uB(u)~ (W - Bpa)[h] + B(u) ™" (w - 9y (ucx(u)[h])).
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By (4.1.102)), (4.1.93), and (4.1.60)), we get
18uB(w) " (w - p)[h][ls < 75" C(8) (1 hllstmo+s0+3 + [l stro-ts0+5 | allro-t-50+3) - (4.1.106)
Using (4.1.99), (#.1.95), (4.1.60)), and applying (A.0.2)), one has
1B(w) ™! (w - 0 (Bua(w)[P)) lls < &g " C(s) (1hllstrotsora + lullstrrsorallbllmgrsora) - (4.1.107)

Then (4.1.106]) and (4.1.107)) imply (4.1.105)), for all s + 79+ s¢o +5 < q.
10. — The coefficients cg, c1, co defined in (4.1.33)) satisfy the following estimates: for i = 0,1, 2,
s> 50,

leills < eC(s)(1+ [[ullstryrsots), (4.1.108)
i Li
leil5P0) < eCs) (1 + [lu X200, o), (4.1.109)
[Ouci[h]lls < 50(3)(”h”s+m+80+6 + ”uHerTmLSQJr?||h||To+280+6) . (4.1.110)

The definition of ¢; in [@1.33), (A.0.7), (E£1.60), (E1.99), @.1.103), (E.1.84) and vy ' < 1, imply

(@1.108). Similarly (.1.62), (#1.100), (#1.10d) and (@.1.85) imply (£.1.109). Finally (4.1.110)
follows from differentiating the formula of ¢;(u) and using (4.1.60), (4.1.84), (4.1.102), (4.1.99),

(A.0.5)-(A.0.7), (4.1.103), (4.1.105)).
Estimates in the step 3.
11. — The function v defined in (4.1.38]) satisfies the following estimates:

lo =1l < £C()(1+ [ullssrprsore) (4.1.111)
lo = 1[EPO) < eC(s) (1 + JullsET) oo o7) (4.1.112)
louvlhllls < 2C () (1Allst oot + lttllstrosor7llllro20046) (4.1.113)
In order to prove we apply the Lemma[A.0.8|i) with f(¢) := exp(t) (and u =0, p = 0):
102 @191 ([E1108)
o =1l =||f( = F) = FO) "= Clleals ~ < eCE U+ ullsrmrose)

Similarly (4.1.112)) follows. Differentiating formula (4.1.38) we get

ol =~ f'( - 8y102> {1au (051 c2) 0] - 0y c2dums[h] } .

3m3 3m3 3m3

Then using (4.1.60), (A.0.5), Lemma [A.0.8(i) applied to f' = f, and the estimates (4.1.108),
(4.1.110), (4.1.91) and ([4.1.92) we get (4.1.113).

12. — The multiplication operator M defined in and its inverse M~! (which is the
multiplication operator by v~1) both satisfy

IMERIL, < C) (Il + lullsrablls), (4.1.114)
i i Li i
[MEREPD) < C(s) (RSP + ull P37 R]5PO)), (4.1.115)

10uMFH(w)glhllls < eC () (lgllslPllso+e + lgllsolBllste + llullstsrillglsolPllsors),  (4.1.116)

60



with ¢ := 79 + s¢g + 6.
The inequalities (£.1.114)-(A.1.116) follow by (£.1.60), (£.1.62), (A.0.5), (& L.111)-(£.1.113).

13. — The coefficients dy, dy, defined in (4.1.41)), satisfy, for ¢ =0, 1

[dills < eC(s)(1 + [[ulls+ryts0+9)5 (4.1.117)

i Li
s 5P < £C(s) (1 + Jull 2B 410), (4.1.118)
|Oudi(u)[R]||s < EC(S)(HhHS+m+80+9 + Hu||s+T0+80+10HhHTo—i—2so+9): (4.1.119)

by (A.0.5), (£.1.60), (£.1.62), (£.1.108)-(.1.110) and ({.1.111)-(.1.113).
Estimates in the Step 4.
14. — The constant m; defined in (4.1.46)) satisfies

] + [my [MPO) < e, [@uma(w)[h]| < eCAllryrase+9 (4.1.120)

by [@1.62), (A.1.117)-(£.1.119).
15. — The function p(v) defined in (4.1.47)) satisfies the following estimates:

< o9 ' C(s)(1 + [[ullst2m+2s0+9) (4.1.121)

— Li
!p\L‘P“ < e O+ [ull S 5 10) (4.1.122)
|Oup(u)[]s00 < 57610(5)(HhHs+2To+2SO+9+||U”s+2‘ro+280+10||h||fo+280+9)~ (4.1.123)

which follow by (4.1.117)-(4.1.119) and (4.1.120) applying the same argument used in the proof of
(L9,
16. — The operators 7, 7 ! defined in (4.1.42)) satisfy

IT# 0], < C(s)(Ills + lullass 1B]1) (4.1.124)
i Li Li Li
ITEREPO) < C(s) (IRIEET + Il ZE) (1215 (4.1.125)
10u(TE W)kl < e C(s)(llgllssiliBlls + gllibloss
Hlullssarillgl2litls). (4.1.126)

with ¢ := 279 + 2s9 + 9. The estimates (4.1.124) and (4.1.125) follow by (A.0.16]), (A.0.18) and
using (5.6.74) and (4.1.122)). The derivative 0,(7 (u)g)[h] is the product (7 (u)gy) Oup(u)[h]. Hence

(A0.7), (#1.124) and ({.1.123) imply (Z.1.126).
17. — The coefficients eg, e1, defined in (4.1.43)), satisfy the following estimates: for ¢ = 0,1

leills < eC(s) (1 + [lullss2ro+2so+9), (4.1.127)

i Li
les 5P < eC(s) (1 + [[ull 5 200 1 10): (4.1.128)
[Ouei(w)[]lls < eC(s)([|Plls+2m+250+9 + lullst2r+2so+101Pll2m+25040) - (4.1.129)

The estimates ({{.1.127), ([@.1.128) follow by ([@.1.60), (#.1.62), (A.1.45), (1.1.117), (A.1.118), (A.1.124)

and (4.1.125)). The estimate (4.1.129)) follows differentiating the formulae of ey and ey in (4.1.43)),
and applying (4.1.117)), (4.1.119)), (4.1.124)) and (4.1.126).
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Estimates in the Step 5.
18. — The function w defined in (4.1.55)) satisfies the following estimates:

[wlls < eC(s)(1 + ||ul|s+2r0+250+9) (4.1.130)

i Li
[l < eC(s)(1 + lully B 2u10) (4.1.131)
[Ouw(u)[h]]ls < 50(3)(||h||s+27'0+250+9+||u||s+27'o+280+10||h||27'o+250+9) (4.1.132)

which follow by (#.1.91), [#.1.92), [{.1.120), (#.1.127)-({.1.129), (#.1.60), (£.1.62).

19. — The operator S = I + wd; !, defined in ([4.1.49)), and its inverse S~! both satisfy the
following estimates (where the s-decay norm |- |5 is defined in (3.1.1)):

ST =1l < eC(s) (A + [[ullst2ro250+9); (4.1.133)

i Li
[SEL— IEPO) < () (1 + [l 200 410): (4.1.134)
0,5 (W], < eC(s)(|Plls+2rot2s0+9 + lullst2mt2so410lPllar+35040) - (4.1.135)

Thus (4.1.133])-(4.1.135|) for S follow by (4.1.130)-(4.1.132) and the fact that the matrix decay norm
|0;71s < 1,5 >0, using (3.1.4), (3.1.5)), (3.1.7)), (3.1.8)). The operator S~! satisfies the same bounds
(4.1.133)-([4.1.134) by Lemma which may be applied thanks to (4.1.133), (4.1.60)), (4.1.62)
and e small enough.

Finally (4.1.135)) for S~! follows by

and (3.1.6), (4.1.133)) for S~1, and (4.1.135)) for S.

20. — The operatpr R, defined in (4.1.56|) , where rg, r—; are defined in (4.1.53)), (4.1.54),
satisfies the following estimates:

‘R|s < e0(s)(1+ [Jullst2mt250+12) (4.1.136)

Li Li
R < cO() 1+ [[ully2), 500 415) (41.137)
|0.R(w)[h])|, < eC(s)([|hlls+2mor2sor12 + lullsr2rr2sot 13l hll2m8so412).  (4.1.138)

Let T := ro+r_19;'. By (3.1.4), (B.1.5), (A.0.5), (1.130), (E.1.131), (-1.127), (E.1.129), (&.1.120),
(4.1.91)), and using the trivial fact that |9, s < 1 and |m|s < 1 for all s > 0, we get

’T’s < eC(s)(1+ [[ullst2ro+2s0+12) (4.1.139)
Lip(7) Li
‘T‘Slp 7 S C(S)(l + H ||s—lE2T0+230+13) (41140)

Differentiating 7" with respect to w, and using (3.1.4)), (A.0.5), (4.1.132), (4.1.129), (4.1.120),
(4.1.91) and (4.1.92), one has

|0u,T (w)[h]], < eC(s) ([|Pllst2r0+250+12 + ull st 2m+250+13]| P ll27 1350 112) - (4.1.141)

Finally (3.1.6)), (3.1.9) (4.1.133)-(4.1.135)), (4.1.139)-(4.1.141)) imply the estimates (4.1.136)-(4.1.138).
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21. — Using Lemma [A.0.11} (4.1.60) and all the previous estimates on A, B, p, M,7,S, the
operators &1 = ABpMTS and &3 = ABMTS, defined in , satisfy (note that
o > 279+ 259 + 9). Finally, if the condition holds, we get the estimate .

The other estimates (4.1.64)-(4.1.69) follow by (4.1.91)), (4.1.92)), (4.1.120)), (4.1.136))-(4.1.138).
The proof of the Lemma is complete.

O]

In the same way we get the following lemma.

Lemma 4.1.3. In the same hypotheses of Lemmal{.1.3, for all p € T", the operators A(p), M(yp),
T(p), S(p) are invertible operators of the phase space HS := H*(T), with

IAF (@)A1 < Cs) (Ihllzz + lulls+so+3lBllm), (4.1.142)

1(A= () = Dl < €O s) (Il g + Nllsesorsllllaz) (4.1.143)
ML) T (9)S (@) hllz < C(s) (1l g + [l sl 2 ). (4.1.144)
I(M@)T (9)S())* = Dhllmz < evg ' Cs) (10l g + lullso 1Pl 1) (4.1.145)

Proof. For each fixed ¢ € T, A(p)h(x) := h(x+[(p,x)). Apply (A.0.16) to the change of variable
T—T,z— x4+ 6(p x):

ARz < C(s) (1Al + 182, Mooy 1Bl

Since [B(¢, ) |wseo(r) < |Blseo for all ¢ € T, by (5.6.35) we deduce (4.1.142)). Using (A.0.17)),
(4.1.60)), and (5.6.35)),

I(A(e) = Dhllag <s 18]
By (4.1.77)), estimates (4.1.142|) and (4.1.143|) also hold for
Alp)™ = A7) : h(y) = hly + B(e.y))-
The multiplication operator M(p) : HZ — H3, M(p)h = v(p,-)h satisfies

x

s €(Ihll e + Nlullstsorslillz)-

[(M(p) = Dhllag = ll(v(e, ) = Dhllag <s llv(e, ) = Ulmgllbllay + (e, ) = Uz lIhla
<s v = Ulssso 1ol zy + 1 = Uhrgeso 1Bl g <s e (Il + lllstrot2sorsllPllm)  (4.1.146)

by (A.0.5), (3.1.4), Lemma 4.1.111)) and (4.1.60). The same estimate also holds for M ()"

M~ 1( ) Wthh is the multlphcatlon operator by v™!(ip, -). The operators 7*!(p)h(x) = h(x:l:p(cp))
satisfy

1T )l = Ihllag, (T (0) = DAl < evg Cllh] g, (4.1.147)
by (A.0.17)), (4.1.60), (5.6.74) and by the fact that p(y) is independent on the space variable.

By (3.1.11), (4.1.133]), (4.1.60) and Lemma the operator S(¢) = I + w(yp,-)d; ! and its
inverse satisfy

1S*1 (@) — Dhllas <o e(lhllzs + lullsrznaorollallmy). (4.1.148)

Collecting estimates (4.1.146)), (4.1.147)), (4.1.148) we get (4.1.144) and (4.1.145) and the proof
is concluded.

O
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4.2 Reduction of the linearized operator to constant coefficients

The goal of this Section is to diagonalize the linear operator L5 obtained in (4.1.56]), and therefore
to complete the reduction of £ in (4.1.1)) into constant coefficients. For 7 > 7y (see (1.2.2))) we
define the constant

B:=Tr+6. (4.2.1)

Theorem 4.2.1. Let f € C%, see (1.2.3). Let v € (0,1) and sp < s < q— o — [ where o is

defined in (4.1.59)), and (3 in (4.2.1). Let u(X) be a family of functions depending on the parameter
A€ N, CA:=1[1/2,3/2] in a Lipschitz way, with

L
[RUSALTINESY (4.2.2)
Then there exist 0y, C' (depending on the data of the problem) such that, if

ey 1 <6, (4.2.3)

then:
(i) (Eigenvalues) VA € A there exists a sequence
pEA) = p A\ u) = @A) + 750N, J3) = i(—mz(N)i® +mi(N)j), G€Z,  (424)

where mg, m1 coincide with the coefficients of L5 in (4.1.56)) for all A\ € A,, and the corrections e

satisfy
g — 1[MPO) 4 [y [HPO) 4 o0 LPO) < e v ez (4.2.5)

Moreover, in the reversible case (i.e. (1.2.15)) holds) or Hamiltonian case (i.e. (1.2.11)) holds), all
the eigenvalues p3° are purely imaginary.
(ii) (Conjugacy). For all X\ in

A2 = A2 ) =N e Mg A6 -1 () — V)] > 29177 R (4.2.6)
VieZv, jk ez}

there is a bounded, invertible linear operator ®s,()\) : H® — H*, with bounded inverse ® (), that
conjugates Ly in (4.1.56]) to constant coefficients, namely

Loo(N) := BN 0 L5(N) 0 Poo(N) = A - Op + Doo(A);  Deo(A) 1= diagezu°(A) (4.2.7)
The transformations ®o., P are close to the identity in matriz decay norm, with estimates
Li — Li — Li
[@oc(N) = T2 + 102 (N = 1105 < ey Os) (1 + [l 2525 4,)- (4.2.8)

For all ¢ € TV, the operator ®oo(p) : H — HE is invertible (where HS := H*(T)) with inverse
(Poo(0)) ™! = 2} (), and

1@ (9) — Dhllis < ey C(s) (113 + lullssospso 1Bll1) - (4.2.9)

In the reversible case ®oo, P : X — X, Y — Y are reversibility preserving, and Lo : X — Y is
reversible. In the Hamiltonian case the final Lo is Hamiltonian.
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An important point of Theorem is to require only the bound for the low norm of
u, but it provides the estimate for ®X! — I in also for the higher norms |- |5, depending
also on the high norms of u. From Theorem [4.2.1] we shall deduce tame estimates for the inverse
linearized operators in Theorem [4.2.3

Note also that the set A% in depends only of the final eigenvalues, and it is not defined
inductively as in usual KAM theorems. This characterization of the set of parameters which fulfill
all the required Melnikov non-resonance conditions (at any step of the iteration) was first observed
n [I7], [14] in an analytic setting. Theorem extends this property also in a differentiable
setting. A main advantage of this formulation is that it allows to discuss the measure estimates
only once and not inductively: the Cantor set A% in could be empty (actually its measure
IAZ] =1 —0(y) as v — 0) but the functions p3°(A) are anyway well defined for all A € A, see
(4.2.4). In particular we shall perform the measure estimates only along the nonlinear iteration,
see Section

Theorem is deduced from the following iterative Nash-Moser reducibility theorem for a
linear operator of the form
ﬁo ZW'(?@—FD()—FR(), (4.2.10)

where w = A\@,
Do i= ma(\ wN) e+ mi (A u(N)3s, Ro(Au() = RO u(N) (42.11)

the ma(A, u(N)), m1(A, u(A)) € R and u(A) is defined for A € A, C A. Clearly L5 in (4.1.56) has
the form (4.2.10)). Define
N_j:=1, N,:=NX Ww>0, x:=3/2 (4.2.12)
(then N,y1 = N, Vv > 0) and
a:=Tr+4, oy:=0+0 (4.2.13)

where o is defined in (4.1.59)) and 3 is defined in (4.2.1)).

Theorem 4.2.2. (KAM reducibility) Let ¢ > o + so + 3. There exist Cy > 0, Ny € N large,
such that, if

C Lip 7) -1
N Ro[E )y < 1, (4.2.14)
then, for all v > 0:
(S1), There exists an operator
L,:=w-0p,+Dy+ R, where D,=diag;c;{p;(N\)} (4.2.15)

HEO) = W)+ ), 0O = —i(ma(A u(N) — (A uN)), JEZ,  (1216)
defined for all A € A} (u), where AJ(u) := A, (is the domain of u), and, for v > 1,

33 — k3|

A) = A)(u) ::{A €A}y [iw- T+ p ) — ! ) > 7|<z> (4.2.17)

V’l’ < Ny—la jak € Z}
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(52),

(S3),

(S4),

Forv >0, 7"; = Tj, equivalently M]’% = u’ij, and

[ [P0 o= | PO) < e (4.2.18)

The remainder R, is real (Deﬁnition and, Vs € [s0,q — o — f],
R[SPD < [Rol VNS IRUGEES < IR0l Y Noes (4.2.19)
Moreover, forv > 1,
L,=0 0, 10, 1, &, 1:=T+T, , (4.2.20)
where the map V,,_1 is real, Toplitz in time ¥,_1 := V,_1(p) (see ), and satisfies
0,1 [5P0) <R[V INZTHIN S, (4.2.21)

In the reversible case, R, : X —- Y, ¥, 1,P, 1, @;il are reversibility preserving. Moreover,
all the p%(X) are purely imaginary and pi = —pu” ;, Vj € Z.

For all j € Z, there exist Lipschitz extensions ﬁ]”() :A— R of ,u]”() : A} — R satisfying, for
v>1,
7 — R < R,y [P0 (12.22)

Let ui(N), uz(X), be Lipschitz families of Sobolev functions, defined for A € A, and such that
conditions (4.2.2)), (4.2.14) hold with Ry := Ro(u;), i = 1,2, see (4.2.11)).

Then, for v >0, VX € AJ (u1) N AJ* (ug), with v1,72 € [v/2,27],

Ry (u2) = Ry (u1)lsy < eNy G llur —uallsgron, [Ru(u2) =Ry (u1)lsors < eNv—tllur —u2|lsgton -

(4.2.23)
Moreover, for v > 1, Vs € [so,s0 + 0], Vj € Z,
| (% (ug) — 7% (u1)) = (¥ (ug) = v M (u1))| < [Ru—1(ug) = Ry1 ()]s s (4.2.24)
% (ug) — 75 (u1)| < eCllur — uzl|soto, - (4.2.25)
Let uy,ug like in (S3), and 0 < p < /2. For all v > 0 such that
eCON]_qlluy —upl[38,, <p = AJ(u1) C AY P (u2). (4.2.26)

Remark 4.2.1. In the Hamiltonian case V,,_1 is Hamiltonian and, instead of (4.2.20) we consider
the symplectic map

D, 1 :=exp(¥,_1). (4.2.27)

The corresponding operators L,,, R, are Hamiltonian. Note that the operators (4.2.27) and (4.2.20))
differ for an operator of order W2_,

The proof of Theorem is postponed in Subsection We first give some consequences.
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Corollary 4.2.1. (KAM transformation) VA € ﬂyzoAZ the sequence

®, :=Pyodro---0d, (4.2.28)

‘LiP(W)

converges in | - |s to an operator P, and

’® ‘Llp ‘(b 1 I‘Llp

Li
C(s) [Ro[ 1P 771 (4.2.29)

In the reversible case ®o and ® are reversibility preserving.

Proof. To simplify notations we write |- |s for |- Yr™) For all v > 0 we have Dy =P, 0P, =
D, + W, (see ([1.2.20)) and so

_ _ _ _
|(I)1/+1|80 < |<I>Z,|SO—I—C|<I),,|50]\I/V+1|SO < |(I)V‘50(1+6V) (4.2.30)

where ¢, := C'|Rg |£‘$iﬁ fy_lef{lNy_o‘. Iterating (4.2.30]) we get, for all v,

C\Rol Lip(v),,—1

@erlm < @0|50H,,20(1 + &) < [Polsee s0ts T <2 (4.2.31)

using 1) (with v = 1, s = s9) to estimate |<I>0|5O and ([.2.14). The high norm of ®,,, =
<I>,, +d »Wyi1 is estimated by - m (for <I>

|Byils < B, [5(1+ C(s) (Wytils,) + C(8) [Wotalg
@z @z -
< @015 (1 +eP) +el, e = |Rolsorsy Nt €l = [Rolspsy "N, t .

Iterating the above inequality and, using IT;>o(1 + 6§0)) < 2, we get
Dusals <o Y8 + [Bols < O(5) (1 + [Rolsssr™) (4.2.32)
j=0
using |®o|s < 1+ C(s)|Rols+ 5yt Finally, the E’j a Cauchy sequence in norm | - |s because

v4+m—1 (3-1.9) v+m—1

[y — B < SR -l < Y (|213j|s|\1:j+1|50 + |<I>jyso|\1;j+1|s>
Jj=v j=v
(@232), [@.2.21),([@.2.31), (*.2.14) B L
=s > Rolers v "Nt < [Rol g5y N (4.2.33)

j2v

Hence &, u> ®,. The bound for &, — I in (4.2.29)) follows by (4.2.33]) with m = oo, v = 0 and

|9 — I|s = |Wols < 771 Ro|s4+5. Then the estimate for &5} — I follows by (3.1.12).
In the reversible case all the ®, are reversibility preserving and so ®,, ®,, are reversibility
preserving. O

Remark 4.2.2. In the Hamiltonian case, the transformation ®, in (14.2.28)) is symplectic, because
®,, is symplectic for all v (see Remark . Therefore @, is also symplectic.
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Let us define for all j € Z

pP(A) = lim 5(A) = a3 +7r5°(A), rP(A) = lim #(A) VA€A.

v——400 v——400

It could happen that A}, = 0 (see (4.2.17))) for some 1. In such a case the iterative process of
Theorem stops after finitely many steps. However, we can always set ﬁj” = ﬁ;‘), Yv > 1p, and
the functions p5° : A — R are always well defined.

Corollary 4.2.2. (Final eigenvalues) For allv €N, j € Z

~y L ~v L L ~0L L L
i =" = 1 =T < CIROLES NS g = I = P < CIRol 25
(4.2.34)

Proof. The bound (4.2.34)) follows by (4.2.22)) and (4.2.19)) by summing the telescopic series. [

Lemma 4.2.1. (Cantor set)
A% NysoA). (4.2.35)

Proof. Let A € A%. By definition A% C Aj:=A,. Thenforallv >0, |l|<N,, j#k

Jiw - 1+ p — pf| > liw - 1+ p3° = | = | = 5] = 1k — i
E20),[@E2z39) , _ _ . _
> 2y 15° = K| (1) 77 = 2C|Rolse4 8N, 4 = v |77 = K| (D77
. 4214
because |52 — k3|(1)~™" > yN, " 20| Rolsg+8N,. =

Lemma 4.2.2. For all \ € AZZ(u) ,

) = 500, ) = 500, (4.2.36)
and in the reversible case

pe(A) = = (A), (A = —rZ5(A). (4.2.37)

—J

Actually in the reversible case ,u]‘?o()\) are purely imaginary for all A € A.

Proof. Formula (4.2. 36|) and ([1.2.37)) follow because, for all A € A% C Nu>oAy (see (4.2.35))), we
and, in the reversible case, the p are purely imaginary and p¥ = —p?

have = v ],7"3 rv 2

7 = —r”,. The final statement follows because, in the reversible case, the u7()) € iR as well as

r

J
its extension u%(A). O
Remark 4.2.3. In the reversible case, (4.2.37)) tmply that pg® = rg° = 0.

Proof of Theorem We apply Theorem to the linear operator Ly := L5 in (4.1.56)),
where Rg = R defined in (4.2.11)) satisfies

() L5 :
RoleH) = Clso + 8) (14 ullyB0) ) "2 22C(s0 + B). (4.2.38)

Then the smallness condition (4.2.14)) is implied by (4.2.3) taking dg := dp(v) small enough.
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For all A € A% ¢ Nu>oA7 (see (4.2.35))), the operators

Lip(v)
L, m -0, +Dy, + R, SO Op+Doo =t Loo, Do = diag;eczp;” (4.2.39)
because
i Li ‘ Li _ i - Li
1D, Dl70) = sup g — [0 CE 0ol s, ) T g v
J

Applying iteratively we get L, = <l>; llﬁoéy 1 where ®,_1 is defined by (4.2.28) and
<I>,, 11— <I>oo in | | s (Corollary . Passing to the limit we deduce - l\/loreover and
8)) imply - Then (|4.2.29|), (4.1.69) (applied to Ry = R) imply -

Estimate follows from (in Hi(T)), Lemma [3.1.4] and the bound ([.2.8).

In the reversible case, since ®,, @5 are reversibility preserving (see Corollary [4.2.1)), and Lo is
reversible (see Remark [4.1.12| and Lemma , we get that L is reversible too. The eigenvalues
p5° are purely imaginary by Lemma

In the Hamiltonian case, Ly = L5 is Hamiltonian, ®,, is symplectic, and therefore L., =
O LD (see ) is Hamiltonian, namely Do, has the structure Do, = 9,85, where B =
diag;.o{b;} is self-adjoint. This means that b; € R, and therefore p° = ijb; are all purely
imaginary. ®

4.2.1 Proof of Theorem [4.2.2]

PROOF OF (Si)y, i = 1,...,4. Properties (£.2.15)-(E.2.19) in (S1), hold by ([£.2.10)-([@E2.11) with
/L? defined in ((4.2.16)) and r?()\) = 0 (for (4.2.19) recall that N_; := 1, see (4.2.12))). Moreover, since

mq, mg are real functions, ,u? are purely imaginary, ,u? = E and ;L? = —M(lj. In the reversible
case, remark implies that Ry := R, Ly := L5 are reversible operators. Then there is nothing
else to verify.

(S2), holds extending from A} := A, to A the eigenvalues ,u?()\), namely extending the func-
tions mq(A), ms(A) to mi(A), ms(\), preserving the sup norm and the Lipschitz semi-norm, by
Kirszbraun theorem, see e.g. [65]-Lemma A.2, or [57].

(S3), follows by (4.1.68)), for s = sg,s0 + 3, and (4.2.2)), (4.2.13)).
(S4), is trivial because, by definition, Aj(u1) = Ay = A] " (u2).
The reducibility step

We now describe the generic inductive step, showing how to define £,4; (and ®,, ¥,, etc). To
simplify notations, in this Section we drop the index v and we write + for v + 1. We have

LOh = w-0,(B(h)) + DOh+ RO
= w-9sh+ Yw 9yh+ (w-9,¥)h + Dh+ DVYh + Rh + RYA
- @(w : 8<ph+Dh) + (w .9,V + [D, U] +HNR)h+ (H}VRJFR\I/)h (4.2.40)

where [D, U] := DV — ¥D and IINR is defined in (3.1.18)).
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Remark 4.2.4. The application of the smoothing operator Il is necessary since we are performing
a differentiable Nash-Moser scheme. Note also that IIx regularizes only in time (see (3.1.18)))
because the loss of derivatives of the inverse operator is only in ¢ (see (4.2.44]) and the bound on

the small divisors (4.2.17)) ).

We look for a solution of the homological equation
w- 0,0+ [D, U] +TIyR =[R]  where  [R]:= diag;c;R}(0). (4.2.41)

Lemma 4.2.3. (Homological equation) For all \ € AVH, (see (4.2.17))) there exists a unique
solution W := W(p) of the homological equation (4.2.41). The map V satisfies

(W |HPO) < o N2 RILPO) (4.2.42)
Moreover if v/2 < y1,7v2 < 27v and if ui(N), uz(\) are Lipschitz functions, then Vs € [so, so + f],
Ae AL (u)N A311(u2)

A2, < OV (R (u)lsur = gt + 1A12R); ) (4.2.43)

where we define AoV := W(uy) — ¥(uz).
In the reversible case, U is reversibility-preserving.

Proof. Since D := diag;cz(p5) we have [D, \IJ];C = (5 — k) \I'k ) and ( amounts to
w - U5 () + (nj — ) V5 () + RS (9) = [RI;, Vik€Z,

7o

whose solutions are \Iff(w) = e \Ilf(l)eil'w with coefficients

RE(
k J<) lf(j—k‘,l)?é(o,()) and ‘”SN7
N (1) := < bir(N) (4.2.44)
0 otherwise,

where

5ljk(>\) =iw - L+ gy — k-
Note that, for all A € A, by (4.2.17] and (L2.2), if j # k or I # 0 the divisors d;;x(\) # 0.
Recalling the definition of the s-norm in we deduce by (4.2.44)), (4.2.17)), (1.2.2), that

W, < v—lNT\R\S, VAEA],,. (4.2.45)

For A1, A\g € AZ+1,

[R5 (1) (M) = RE(D) (X)) A1) = dijk(A2)]

k gk k |0,k
R ) R A R A W TP oS T
and, since w = A\,
8k — Gk T | = )@ L (g — ) (M) — (g — ) )| (4.2.47)
(4.2.16))

< A= Aol 1+ [ms(Ar) — ma(A2) 5% — K2 + [ma(A) — ma(A2)|l5 — K
+ (A1) =i (A2)| + (A1) — re(A2)|
< A= (!l! +ey i =K ey i — R+ m‘l) (4.2.48)
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because
,Y‘m3’1ip — 7‘m3 _ Hlip < ‘m3 1’L1p <eC, ‘ml‘Llp <eC, ’rj‘Lip(fy) <eC VjeZ.
Hence, for j # k, ey~ ! <1,

Sk (A1) — S (A m . 1)
| l]/f( 1) l]k( 2)| |>\1 A2’<‘l’_’_’j3_k3’> <> 5
101k (A1) |01 (A2)] 72|53 — k3|
< A1 — Ag| N2 Ty 72 (4.2.49)
for |I| < N. Finally, recalling (3.1.1)), the bounds (4.2.46)), (4.2.49) and (4.2.45) imply (4.2.42).
Now we prove (4.2.43)). By (4.2. 44|) for any A€ AL (ur) VAP (ug), L € 27, § # k, we get

A127?' j (l) A125l ik
AUy = —— 22 _ R¥)(u J 4.2.50
12 J( ) 6ljk(u1) _7( )( 2)6ljk(ul)5ljk:(u2) ( )
where
| A1260i| = |A1a (g — i)l < |A1omas] |5 = K 4 [Argma | [§ — k| + [Arar| + [Arary]
(E16E), [@229) .
< eli® = K| llur — | so 1o (4.2.51)

Then ([@2.50), @251), eyt < 1,77, %5 <y~ ! imply

A2 WE )] < N2y~ (JALRE O]+ [REQ) (u2) llur = wllop4o2)
and so (4.2.43) (in fact, (4.2.43)) holds with 27 instead of 27 + 1).

In the reversible case iw - I + pj — py € iR, i = p; and p—j = —p;. Hence Lemma [3.2.1] and

(4.2.44]) imply

_ RE(I RE(
T L | ) | B
! —w- (=) + i~k dw -l —

and so U is real, again by Lemma Moreover, since R : X — Y,

RZK (-1 —RE(1
VT R L) S (U0
! iw - (1) +u—j —podw e (=) =
which implies ¥ : X — X by Lemma [3.2.1] Similarly we get ¥ :Y — Y. O

Remark 4.2.5. In the Hamiltonian case R is Hamiltonian and the solution W in (4.2.44) of the
homological equation is Hamiltonian, because o, = 6_1; and, in terms of matriz elements, an
operator G(p) is self-adjoint if and only if G;?(l) =G (-1).

Let ¥ be the solution of the homological equation (4.2.41)) which has been constructed in Lemma,
4.2.3. By Lemma if C(s0)|¥l]s, < 1/2 then ® := I 4+ ¥ is invertible and by (4.2.40) (and
(4.2.41))) we deduce that

Li=0"Ld=w 0, +Dy+Ry, (4.2.52)
where
Dy =D+ [R], Ry:=0d"" (HﬁR +RU — \IJ[R]). (4.2.53)

Note that £4 has the same form of £, but the remainder R is the sum of a quadratic function of
¥, R and a remainder supported on high modes.
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Lemma 4.2.4. (New diagonal part). The eigenvalues of

Dy =diagjez{pf (\)},  where puf ==+ RI(0) = pS +7r; +RIO0) = p +rF, vl ==r;+R%(0),

satisfy ,uj = /fjj and

=gl = et =P = RO < [RIP, ez (4.2.54)
Moreover if uy (M), uz(\) are Lipschitz functions, then for all X € A (u1) N A (u2)
|Aror] — Aporj| < |A1aR|s, - (4.2.55)
In the reversible case, all the ,u;r are purely imaginary and satisfy u;r = —,uJ_rj for all j € 7.

Proof. The estimates ([4.2.54)-([4.2.55)) follow using (3.1.3) because \RJ 0)[liP = \Rg;;!hp <RI <
IRIZP and
!A127";r — Aqorj| = !A12R;(0)| = !A127—\’/8§;\ < |A12RJp < |A12R s -

Since R is real, by Lemma [3.2.1

RE() = RZE(-1) = RI0)=RI0)

and so uj = TJ_FJ If R is also reversible, by Lemma |3.2.1]

RE(1) = -RN(=1), Ry =RIE(—1) = -RH0).

We deduce that R;(O) = —R:g(O), R; (0) € iR and therefore, p;r ,u - and ,u €iR. O

Remark 4.2.6. In the Hamiltonian case, D, is Hamiltonian, namely D, = 0,B where B =
diagj;,go{bj} is self-adjoint. This means that b; € R, and therefore all ,uJV = igb; are purely imagi-
nary.

The iteration

Let v > 0, and suppose that the statements (Si), are true. We prove (Si), 41, ¢ = 1,...,4. To

simplify notations we write | - |5 instead of | - |Llp( ”)

PROOF OF (S1),41. By (S1),, the eigenvalues pf are defined on Aj. Therefore the set A),; is
well-defined. By Lemma for all A € A, there exists a real solution ¥, of the homological
equation (4.2.41)) which satisfies, Vs € [sg,q — 0 — 3],

{4.2.42) _ (4.2.19) _ .
’\IIV|5 < NV2T+1 |RV|57 ! < |R0|s+ﬁ’y 1N37-+1 Nlj—al (4256)

which is (4.2.21]) at the step v + 1. In particular, for s = sq,

4. 2 56)) (14.2.14)
<

Cls0) [Wul,, < C(s0) [Rolgysgr "N N 1/2 (4.2.57)
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for Ny large enough. Then the map ®, := I + ¥, is invertible and, by (3.1.12)),
@1, =2, @], <1+ C0) Wl (4.2.58)

Hence ([4.2.52)-([4.2.53) imply £,41 := @, 1L, ®, = w- O0p 4+ Dyy1+ Ryy1 where (see Lemma {4.2.4)

Dyi1:="Dy + [R,) = diagen (™), ™= pf + (R)}(0), (4.2.59)

with ij+1 = ’fjr»l and

Ryp1:=0, ' H,, H,:=Tx R, +R, ¥V, — T, [R,]. (4.2.60)
In the reversible case, R, : X — Y, therefore, by Lemma U, ®,, &, are reversibility

preserving, and then, by formula (4.2.60)), also R,+1: X — Y.
Let us prove the estimates (4.2.19)) for R, 4. For all s € [sg,q — 0 — 3] we have

2o 1) )
Ruals <x 195 o (T8, Rl [Rulel Wl + [Roleo o) + 195 s (1118, Rl + [Rulso [ W0l )
(4.2.58) N N
S 2R R + R Lo + [Rulso| @) + (14 1915) (1T, Rolsg + [Ruleal s )
@z
SS |H VRV|S + |RV|S|WV|SO + |RV|SO|\I]V|S
(.242) 1 2741, -1
< MR, Rols + N7 Rl Rulso - (4.2.61)
Hence (4.2.61)) and (3.1.19)) imply

|Ru+1|s§sNu_B|Rl/|s+ﬁ + N37+17_1‘RV|S|RV|80 (4.2.62)

which shows that the iterative scheme is quadratic plus a super-exponentially small term. In

particular
(@E262),@E219) 3 , (E21),@E213), @219 B
Ru+1ls s N, B’R0’s+ﬂNV—1+NVQT+1'Y 1|R0]3+5]R0]30+5Ny_2? < Rols+8N,

(x = 3/2) which is the first inequality of (4.2.19)) at the step v+ 1. The next key step is to control
the divergence of the high norm |R,41]s15. By (4.2.61) (with s+ 3 instead of s) we get

‘RI/+1|8+B Ss+p |Ru|s+ﬁ + N37+17_1|RV|8+,8|RV|80 (4.2.63)

(the difference with respect to (4.2.62)) is that we do not apply to |H]LVVR,,| s+4 any smoothing).
Then (4.2.63), (4.2.19)), (4.2.14)), (4.2.13)) imply the inequality

’Ru—l—l’er,B <C(s+ /3)‘721/|s+67

whence, iterating,
Ru+1ls+5 < Nu[Rols+s

for Ny := Ny(s, 3) large enough, which is the second inequality of (4.2.19) with index v + 1.
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By Lemma [4.2.4| the eigenvalues ,u”H = ,u] + TV+1 defined on A}, satisfy u”“ = ,ul”]’l, nd,
in the reversible case, the u” +1 are purely imaginary and u” ARyl J]rl.

It remains only to prove m ) for v + 1, which is proved below.
PrOOF OF (S2),,,. By (4.2.54),

, ,
W — [0 = [t i) < mu&;f’”) ~ [Roll5 ) N (4:2.64)
By Kirszbraun theorem, we extend the function ,u —pj = r” +l —r7 to the whole A, still satisfying

[@-2:64). In this way we define g1 Finally (4.2.18) follows summing all the terms in (4.2.64]) and
Hj
using (4.1.69).

PROOF OF (S3),,,. Set, for brevity,

R,

= Ry(ui), \I/i_l = \Ill,_l(ui), (I)Iij_l = <I>l,_1(ul-), ll, 1= Hl,_l(ui), 7= 1,2,

which are all operators defined for A € AJ'(u1) N AJ?(ug). By Lemma one can construct
U=, (), B = @y (u;), i = 1,2, for all X € AT (u1) N A% (uz). One has

[4.2.43]
N - NQT“ —1(

R (2) o[z = w10z + [A12Rus, )
ESL Y iE2: TSR

(BECJIBE) N2HLN -

([ Rolse+s + &) lluz — utllso+o

ey 1HU2 U1 || sot0y < [z — Uil so+oo- (4.2.65)

for ey~! small (and m By (3.1.13)), applied to ® := &,,, and (| m, we get

‘A12¢';1‘s <s (|\I’11/’s + ‘\1’3’8)Hu1 - U2”80+02 + ‘A12\I’u|s (4-2-66)

which implies for s = sg, and using (4.2.21)), (4.2.14)), (4.2.65)

|A12®;, sy < [ur — v2]lsp 4o, - (4.2.67)

Let us prove the estimates (4.2.23)) for A19R, 11, which is defined on A € AZﬁrl(ul) mAZj_l(UQ). For
all s € [sg, 50 + (], using the interpolation (3.1.6)) and (4.2.60)),

ARy 115 <slA12®, s | Hy s + [A128,, oo | Hp s+ [(27) 7 [s| AroHy s, (4.2.68)
+’((b?/) 1|SO‘A12HV|S-

We estimate the above terms separately. Set for brevity AY := |R,(u1)|s + [Ry(u2)|s. By (4.2.60)

and (L),

|Ar2Hy s <s ‘HJJ\_ZV v| + |A12\IIV]5]R11,\SO + |A12‘IJV|80‘R11/|8 + ]\1’12,|5|A12RV|50 + |\If,2,]50|A12R,,|5
S

4.2.42),(4.2.4
Ezm.EEm ||
<s Iy,

Vi + N37+1’771AZOAZ‘|U1 - u2||80+02

+ NPT A ARy [y + N2THYTTAY |AR, s (4.2.69)
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Estimating the four terms in the right hand side of (4.2.68)) in the same way, using (4.2.66]), (4.2.60)),
@2.19), (2.43), (#2.21), [@2.67), (1.2.58), ([E2.69), [.2.19), we deduce

[ApRy1ls < ‘HEVAHRVIS + NVQT-H'Y_lAZAZ lur — ual|so+os

- 0

+NZTH YT AY | ARy s + N7 LAY |A1R s - (4.2.70)

v
Specializing (4.2.70)) for s = s¢ and using (4.1.69)), (3.1.19), (4.2.19), (4.2.23)), we deduce
[A12Ry11]sy < CeN,1N, P+ NJTHN 2Ry Jur — wallsgron < €N, ¥ lur — uallsgo

for Ny large and ey~! small. Next by ({#.2.70) with s = sq + 3

E219).E223) @219
|A12RV|So+ﬁ <s0+8 Aso—l-BHul - U2||So+02 + ‘A12RV‘80+B
(4.2.19) (4.2.23)

<

C(so+ B)eNy_1llur — uzllsyro, < eNpllur — uzllsyto,

for Ny large enough. Finally note that (4.2.24)) is nothing but (4.2.55|).

PROOF OF (S4) We have to prove that, if CeNJ||lu; — ual/sgt+0, < p, then

v+1°

AeA) (u) = XeA)T(u).

Let A\ € AZ+1(UI)- Definition and (S4), (see ) imply that AZ+1(“1) C AJ(uy) C
A} 7P(uz). Hence A € A} P(u) € AY*(u). Then, by (S1),, the eigenvalues 15 (X, uz(N)) are
well defined. Now (4.2.16]) and the estimates (4.1.65), (4.2.25) (which holds because A € AJ(uy) N
AZ/Q(UQ)) imply that

(1 = i) O\ ua(N) = (1 = )N ur V)] < (G — ) (A ua (V) — (15 — ) (A, un (V)]
+ 2?25 75 (A u2(A)) = ¥ (A ur(N))]
< eClj® = K |[lug — w308, - (4.2.71)

Then we conclude that for all |I| < N,, j # k, using the definition of A (u1) (which is (4.2.17)
with v + 1 instead of v) and (4.2.71)),

liw - T+ pf(u2) — pi(u)] = fiw - T+ i (ur) — pi(ua)| =[5 — ) (uz) = (5 — pg) (ua)|
> A7 = K077 = Celi® = F|llur — w2l o0,
> (y=p)li® = K0T

provided CeN/ |luy — uzl|so40, < p. Hence A € AJ 7 (uz). This proves (4.2.26) at the step v + 1.

4.2.2 Inversion of L(u)

In (4.1.58) we have conjugated the linearized operator £ to L5 defined in (4.1.56[), namely £ =
D1 L5D, ! In Theorem we have conjugated the operator L5 to the diagonal operator L, in

, namely L5 = oo Lo P!, As a consequence
L=WiL Wyt Wii=®®s, & :=ABpMTS, &y:= ABMTS. (4.2.72)
We first prove that Wi, W5 and their inverses are linear bijections of H®. We take
vy<v/2, T>Tp. (4.2.73)
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Lemma 4.2.5. Let sg < s < q— o0 — 3 — 3 where 8 is defined in (4.2.1) and o in (4.1.59)). Let
u = u(\) satisfy HuHLlp () < 1, and ey~ < 6 be small enough. Then W;, i = 1,2, satisfy,

so+o+5B+3
VA e A2 (v),

[Wibll, + [[W; ]|, < C6) Il + ol o100, ) (4.2.74)
IWRIEP0) 4 WA [P0 < o) (ISR + ul EE D 5 101G (4.2.75)

In the reversible case (i.e. (1.2.15)) holds), Wj, W i=1,2 are reversibility-preserving.

(2

Proof. The bound (4.2.74), resp. (4.2.75)), follows by (4.2.8)), (4.1.61)), resp. (4.1.63)), (3.1.11)

: +1 a1 : +1 g+l
and Lemma |A.0.11] In the reversible case W are reversibility preserving because ®;, ® are
reversibility preserving. O

By (4.2.72)) we are reduced to show that, VA € Agg(u), the operator
Loo := diagez {ido - 1+ p (N}, p3°(N) = =i(m3 (V)i — mi(N)5) +75°(N)

is invertible, assuming ((1.2.8]) or the reversibility condition (|1.2.15)).

We introduce the following notation:

1
Mew = ——— / u(p, z) dedr, Pu:=u—Tcu, Hiy:={uc H (T : Hcu = 0}.
(27T)V+1 Tv+1

(4.2.76)

If (1.2.8)) holds, then the linearized operator £ in (4.1.1]) satisfies
L:H — H, (4.2.77)

(for sp < s < g —1). In the reversible case (1.2.15))

L:XNHT - YNHS C H,. (4.2.78)

Lemma 4.2.6. Assume either (1.2.8)) or the reversibility condition (1.2.15)). Then the eigenvalue
P\ =1\ =0, VA€ AT (u). (4.2.79)

Proof. Assume (|1.2.8)). If r§° # 0 then there exists a solution of Loow = 1, which is w = 1/rg°.

Therefore, by (4.2.72)),

ﬁWQ[l/TSO] = ,CWQU) = Wlﬁoow = Wl[l]

which is a contradiction because IIcW;[1] # 0, for ey~! small enough, but the average [T LW»[1/75°] =

0 by (4.2.77). In the reversible case 75 = 0 was proved in remark O

As a consequence of (4.2.79)), the definition of A% in (4.2.6)) (just specializing (4.2.6) with k& = 0),
and (1.2.2) (with v and 7 as in (4.2.73))), we deduce also the first order Melnikov non-resonance

conditions

YA€ A%, [iIA@ - 1+ p3°(A)] > 2y i?;j Y(1,7) # (0,0). (4.2.80)
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Lemma 4.2.7. (Invertibility of L) For all A € A2 (u), for all g € H§y the equation Loow = g
has the unique solution with zero average

- gij i(l- jx
Lglpx) = Y L elletin) (4.2.81)
aiA0g N LTI

For all Lipschitz family g := g(\) € Hy, we have

Lip(y

Li
V< oyt ||g MR (4.2.82)

HLoo gH s+2r41

In the reversible case, if g €Y then L lg € X.
Proof. For all A € AZ(u), by ([#2.80)), formula is well defined and
125 g, <77 lgM g - (4.2.83)
Now we prove the Lipschitz estimate. For A, Ao € Agg(u)
L A)g() = £ A2)g(A2) = L (A)[g(M) — 9(M2)] + (£ (M) = L5 (h2))9(A2) . (4.2.84)
By ([.2.83)
YEZ [gO) = ga)llls < l90) = gO)llsr <7 gllE A = Aol (4.2.85)

Now we estimate the second term of (4.2.84). We simplify notations writing g := ¢g(\2) and
5lj =1\w -l + ,u;?O.

01:(No) — &7 (N . ‘
P Z(JS( QA) 5 ZJA( 1)gzjel(l‘“"+”). (4.2.86)
(1,5)#(0,0) 15 (A1)d5(A2)

The bound (4.2.5)) imply \,u‘]?"]hp < ey Yj|? <[] and, using also (4.2.80)),

|5l]()‘2) a(A)l U+ 1P 0"

Ao — M| < (D2 HA=1IN, — N\ 4.2.
16,015, o) SGy P AT e Al (4.287)

Then (4.2.86) and (4.2.87) imply v|[(L!(A2) — L (A1))glls < 7_1||g||1;f27+1|)\2 A1| that, finally,
with (4.2.83)), (4.2.85)), prove (4.2.82)). The last statement follows by the property (4.2.37). O

In order to solve the equation Lh = f we first prove the following lemma.

Lemma 4.2.8. Let so+7+3 < s<q—o0— 3 —3. Under the assumption (1.2.8) we have
Wi(Hg) = Ho, Wi (Hgg) = H - (4.2.88)

Proof. 1t is sufficient to prove that Wy (Hg,) = H{, because the second equality of (4.2.88]) follows
applying the isomorphism W~ 1 Let us give the proof of the inclusion
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(which is essentially algebraic). For any g € Hg, let w(p,z) := L3lg € Hyy ™ defined in (4.2.81]).
Then h := Wow € H5™ 7 satisfies

Lh W1LooWy th = W1 Loow = Wig.

By we deduce that Wyg = Lh € HSO_T_?’. Since W1g € H® by Lemma we conclude
Wig € H°N HSO_T_g = H§y. The proof of is complete.

It remains to prove that Hg, \ Wi(H,) = 0. By contradiction, let f € H§, \ Wi(Hg,). Let
g:=Wlfe Hs by Lemma Since Wig = f ¢ Wi(H§,), it follows that g ¢ Hy, (otherwise it

contradicts (4.2.89), namely ¢ := IIcg # 0. Decomposing g = ¢+ Pg (recall (4.2.76))) and applying
Wi, we get ng = cWi[l] + W1Pg. Hence

Wi[l] = ¢ ' (Wig — WiPg) € H,

because Wig = f € H§, and W1Pg € Wi(H,) € Hy, by (4.2.89). However, IIcW1[1] # 0, a
contradiction. O

Remark 4.2.7. In the Hamiltonian case (which always satisfies (1.2.8))), the Wi(p) are maps of
(a subspace of) H} so that Lemma s automatic, and there is no need of Lemma .

We may now prove the main result of Sections [£.1] and [4.2]

Theorem 4.2.3. (Right inverse of £) Let
T =21+7, p=4r+o0+p3+14, (4.2.90)

where o, B are defined in (4.1.59), (4.2.1) respectively. Let u(\), A € A, C A, be a Lipschitz family
with

Li
lulli) < (4.2.91)

Then there exists 6 (depending on the data of the problem) such that if
ey 1 <6,

and condition , resp. the reversibility condition , holds, then for all A € Agg(u)
defined in ([4.2.6)), the linearized operator £ := L(A,u(X)) (see {A.1.1)) admits a right inverse on
H§y, resp. Y N H®. More precisely, for so < s < q— p, for all Lipschitz family f(\) € H,, resp.
Y N H?, the function

hi=L f = Wol J W (4.2.92)

is a solution of Lh = f. In the reversible case, L~ f € X. Moreover
_ i — Li Li 1
1L AIEPO) < Cshy T (IAIES + Il £ 150 (4.2.93)

Proof. Given f € Hyy, resp. f € Y N H®, with s like in Lemma [£.2.8 the equation Lh = f
can be solved for h because Illgf = 0. Indeed, by (4.2.72)), the equation Lh = f is equivalent
to LooWy th = W f where W' f € Hg, by Lemma resp. Wi lf € Y N H® being W;*
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reversibility-preserving (Lemma [4.2.5). As a consequence, by Lemma all the solutions of
Lh = f are
h=cWo[l] + Wol Wl f, ceR. (4.2.94)

The solution is the one with ¢ = 0. In the reversible case, the fact that £=1f € X follows
by and the fact that W;, Wi_1 are reversibility-preserving and £ : Y — X, see Lemma
427

Finally (1.2.75), (#.2.82), [{.2.91) imply

_ i — L L L
L7 FIEPO) < )y (1l B s + Il 225 o s g ARG )
and m follows using ) with bg = sg, ag :=so+27+0+8+7,q=27+7,p=s5—59. O

In the next Section we apply Theorem to deduce tame estimates for the inverse linearized
operators at any step of the Nash-Moser scheme. The approximate solutions along the iteration

will satisfy (4.2.91)).

4.3 The Nash-Moser iteration

We define the finite-dimensional subspaces of trigonometric polynomials

Hyi={ue XM cu(pa) = > et}
(DN,

where N,, := Ng‘n (see (4.2.12))) and the corresponding orthogonal projectors
Hn = HNn : LQ(TV+1) - an H# =1- H" :
The following smoothing properties hold: for all o, s > 0,

ITull 2 < N2l SP0, vu(h) € B [[IulliP0) < N2 ful S50, Va(h) € B, (4.3.0)

where the function u(\) depends on the parameter \ in a Lipschitz way. The bounds (| are the

classical smoothing estimates for truncated Fourier series, which also hold with the norm H H?lp ™
defined in (3.0.3).
Let
F(u) := F(\u) := Ao - 0ot + Ugze + £ (0, T, U, Ug, Uz, Ugzzr) - (4.3.2)
We define the constants
K= 28 4+ 64, By =50+ 11p, (4.3.3)

where p is the loss of regularity in (4.2.90)).

Theorem 4.3.1. (Nash-Moser) Assume that f € C4, q > so + u+ B1, satisfies the assumptions
of Theorem or Theorem[1.2.3 Let 0 <~ < min{yo,1/48}, 7 > v+ 1. Then there exist § > 0,
C. >0, Ny € N (that may depend also on ) such that, if ey~' < 8, then, for alln > 0:
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(P1),, there exists a function uy, : G, € A — Hy, A — uy(N), with HunHi;Ijr(Z) <1, ug := 0, where G,

are Cantor like subsets of A :=[1/2,3/2] defined inductively by: Gy := A,

Q'Vn‘js - k3‘
<l>T M
VikeZ, le Z”} , (4.3.4)

Gt = {)\Egn i - L 2 () — ()| >

where v, := (1 +27"). In the reversible case, namely (1.2.15)) holds, then u,(\) € X.

The difference hy, := u, — un—_1, where, for convenience, hg := 0, satisfy

R |2 < Cey™INZOY, oy = 18+ 2p. (4.3.5)

(P2)s [|F (un)|[5?7) < CreNy*.
(P3), (High norms). un|553) < Cuey™'Ni and | F(un)|555) < CeeNy.

(P4),, (Measure). The measure of the Cantor like sets satisfy

G0\ Gi| < Cv,  |Gn\ Gns1| SACN, ', n> 1. (4.3.6)

All the Lip norms are defined on Gy.

Proof. The proof of Theorem is split into several steps. For simplicity, we denote || ||*P by

STEP 1: prove (P1,2,3)g. (P1)g and the first inequality of (P3)g are trivial because ug = hy = 0.
(P2)p and the second inequality of (P3)g follow with C\ > max{|| f(0)|lso NG, || f(0)|lso+5 N *}-

STEP 2: assume that (P1,2,3),, hold for some n > 0, and prove (P1,2,3)p+1. By (P1),, we know
that [|un | sg+, < 1, namely condition (4.2.91) is satisfied. Hence, for ey~! small enough, Theorem
applies. Then, for all A € G, defined in (4.3.4)), the linearized operator

La(N) = L un(V) = F' (N, un (M)

(see (4.1.1)) admits a right inverse for all h € H{,, if condition (|1.2.8]) holds, respectively for
h € Y N H? if the reversibility condition (1.2.15)) holds. Moreover (4.2.93)) gives the estimates

125 Rl <o vt (WRllosm, + ltnllssallBlleg ), ¥ROV), (4.3.7)
125 Rl <77 N By s RA) € Hia (4.3.8)

(use (4.3.1) and ||up||sg+u < 1), for all Lipschitz map h(X). Then, for all A € G,11, we define
Upg1 :=Up + Png1 € Hop1y  hpgr = =1 £ L, F(uy), (4.3.9)

which is well defined because, if condition (1.2.8)) holds then II,, 1 F(uy) € H,, and, respectively,
if (1.2.15) holds, then II,,1F (u,) € Y N H* (hence in both cases £, 'T1,,;1F(u,) exists). Note also
that in the reversible case h, 11 € X and so un41 € X.
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Recalling (4.3.2)) and that L, := F'(u,), we write

where

F(unpt1) = Fup) + Lphpt1 +eQ(up, hpt1) (4.3.10)

Q(una hn+1) = N(un + thrl) - N(Un) - N/(un)thrh N(u) = f(QDa TyU, Ugy Ugys uzx:p)

With this definition,

By (4.3.10)

F(unJrl)

F(u) = Lyu+eN(u), F'(u)h = Lyh+eN'(u)h, Ly :=w-0d,+ Opps.

and (4.3.9) we have

= F(up) — Ean+1£r_11Hn+1F(un) + eQ(Un, hny1)

= Wy F(un) + LTl £ M1 F ) + €Qtn, o)

= H#—s—lF(un) + H#—%lﬁnﬁ;lnn—HF(un) + [Ln, Hfﬁ—l]ﬁ;lﬂn—i-lF(“n) +eQ(tn; hnt1)
= H#HF(un) + [N (un), H1J1_+1]£1;1Hn+1F(Un) +eQ(tn, hpy1) (4.3.11)

where we have gained an extra € from the commutator

[Ln, HaJ{-s-l] = [Ly + 5N/(Un)a HaJ{-s-l] = 5[/\//(“71)7 H#—H] .

Lemma 4.3.1. Set

Un = lunllsossn + 7 I @)llsorsr s wn o= 7 1 ) o - (43.12)

There exists Cy := C(11, v, 1) > 0 such that

W1 < CoNp A U (1 + wy) + CoNpi w2, Ungr < CoNpii#(1+wn)? Uy (4.3.13)

Proof. The

n+1 n

operators N’ (u,) and Q(uy, ) satisfy the following tame estimates:
1Q(un; h)|ls <s HhHso+3<|lhlls+3 + Hun||s+3||h||so+3) Vh(A), (4.3.14)
1Q(un, W) lsy < Npyallbl3,  VR(N) € Hpsr, (4.3.15)
N (un)hlls <s [|hlls+3 + llunllstallBllsors VRN, (4.3.16)

where h(\) depends on the parameter A\ in a Lipschitz way. The bounds and
follow by Lemma (1) and Lemma is simply at s = sp, using that
llunllso+s < 1, Un, hnt1 € Hyy1 and the smoothing .

By and (£3.16), the term (in (£:3.11) Ry := [N'(up), I 1)L M1 F (uy) satisfies,
using also that w,, € H, and ,

| Ralls <s 7_1N5+1(”F(Un)||s + Hun”SHF(un)HSO)’ MI =3+ u, (4.3.17)

_ — B4
| Rallso sorsn 7™ Nl (1F ) o0 + Nt 0| () o ) (4.3.18)
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because p > 71 + 3. In proving (4.3.17) and (4.3.18)), we have simply estimated N”(u, )1}, ; and

o +1N (un) separately, Wlthout using the commutator structure.

From the definition of hypy1, using , and ( m, we get

Vonstllsos 1 <soton 7 1N5+1(HF<un>usO+gl + \\un1130+g111F<un>rrSO), (4.3.19)
”hn+1||80 <s0 Y “INE +1||F(Un)||80 (4.3.20)
because p > 7. Then

||un+1||80+ﬁ1 < Huano—I—ﬁl+||hn+1H50+61

(14.3.19)
< st Numllsaon (1477 N I ()l ) (4.3.21)

VN () g1 (4.3.22)
Formula (4.3.11)) for F(uy41), and (#.3.18)), (4.3.15)), (4.3.20), eyt < 1, (4.3.1)), imply

1P (s 1)llso Ssorn Nalt ™ (I n)lso 0 + g1 1 () s )
+ ey 2N T F ()2, (4.3.23)

Similarly, using the “high norm” estimates (4.3.17), (4.3.14), (#.3.19), ([#.3.20), ey~! < 1 and

({3,
1F i) o0 Zsotmn Nt (I ) lso 3, + ltnllsg 1 )l )
942
- NPT ) o (1 Ctn) g+ Nl P (i)l )+ (4:3.:24)

By (4.3.22)), (4.3.23) and (4.3.24) we deduce (4.3.13). O
By (P2),, we deduce, for ey~! small, that (recall the definition on w, in (4.3.12))

wy < ey LOWNF < 1, (4.3.25)

Then, by the second inequality in ([(£.3.13)), (4.3.25)), (P3),, (recall the definition on U, in (4.3.12))
and the choice of x in , we deduce U1 < Cuey INF 1, for Ng large enough. This proves
(P3)n+1-

Next, by the first inequality in (4.3.13)), ([4.3.25), (P2), (recall the definition on w, in (4.3.12)))
and -, we deduce Wpt1 < Cy 57_1]\77’;1, for Ny large, ey~! small. This proves (P2),1.

The bound ( at the step n + 1 follows by (4.3.20) and (P2),, (and (4.3.3)). Then

n+1
luntillso+n < lluollsorn + Z 1Rk llso+n < ZC 5’7_1N <1
k=1 k=1

1

for ey~" small enough. As a consequence (P1,2,3),+1 hold.

STEP 3: prove (P4),, n > 0. For all n > 0,

Gu\Gni1 = |J Rijn(un) (4.3.26)

lezv j,keZ
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where

3 3
Ryji(un) := {)\ €Gy:|idw-1+ 15 (A un(N)) — 12 (A un(N))] < W} . (4.3.27)

Notice that, by the definition (4.3.27), Ry;x(un) = 0 for j = k. Then we can suppose in the sequel
that j # k. We divide the estimate into some lemmata.

Lemma 4.3.2. For ey~! small enough, for alln >0, |I| < N,
Ryji(un) C Ryji(tn—1). (4.3.28)
Proof. We claim that, for all j, k € Z,
(15 = 13°) () — (15° = ) (un—1)| < Celj® = PN, YA€ Gy, (4.3.29)

where £i3°(up) 1= p3°(A, un(A)) and a is defined in (4.2.13). Before proving (4.3.29) we show how
it implies (4.3.28). For all j # k, |I| < N,, X € G, by (4.3.29)

AW - 1+ p5o(un) — pi” (un)| > A0 - 1+ 15 (un—1) — pg” (un—1)| — [(15° — p”) (un) — (157 — p”) (un—1)|
> 29,-1]5° — K1) 7T — Celj® — kYN, * > 2, |5° — KP|(1) ™7

for Cey I NT=* 27+ <1 (recall that 7, := v(1 +27")), which implies (4.3.28).

PRroOOF OF (4.3.29). By (4.2.4)),

(13 = 1) (un) — (15° = 1) (un—1) = —i[ms(un) — m3(un—1)] (5° — k*) + i[m1(un) — m1(un—1)](j — k)
+ 7 (un) = 750 (tn—1) — (12 (un) — 770 (Un-1)) (4.3.30)

where m3(uy) := m3(A, un(N)) and similarly for my,r°. We first apply Theorem (S4)1, with
v=n4+1v="9—-1,7— P = Yn, and u1, us, replaced, respectively, by u,_1, u,, in order to
conclude that

AV (1) S A (un) (4.3.31)

The smallness condition in (4.2.26) is satisfied because o2 < p (see definitions (4.2.13]), (4.2.90))

and so

eONp |lun — un—1l[sotor < €CNyl[un — tn-1llsorp < ey ICCN] ™ <y = =1 p=727"

for ey~! small enough, because o1 > T (see , (4.2.90)). Then, by the definitions (4.3.4) and
(4.2.6), we have

Gn = 0Gn_ 1ﬂA2'yn 1 Un 1 Un 1 CAn+1 (un 1) A?Lil( )

&,
v>0

Next, for all A € G, C A" (up—1) DAY (ur) both rg“rl(un,l) and r?+1(un) are well defined, and
we deduce by Theorem (S3), with v =n + 1, that

(4.2.25)
|7”;L+1 (un) — T?+1(un71)| < ellun—1 — unllsotos - (4.3.32)
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Moreover (4.2.34)) (with v =n 4 1) and (4.1.67)) imply that

1750 (un—1) = 75 wn—)| + 750 (un) = 77 (wn)|] < (U Jun—1llsopo + l[unllsorpro) No @
< eN“ (4.3.33)

because 0+ < p and |[un—1|so+u+ [[Unllso+u < 2 by (S1),,_, and (S1),. Therefore, for all A € G,,,
V) € Z,

|75 () — 75° (Un—1)| < ‘T?H(un) — r?+1(un_1)‘ + |75 (un) — r?+1(un)| + 757 (un—1) — r;?+1(un_1)|

@332), [@3:33) @33)
< €

ltun, — Un—1llsgt+0y + N, ¢ << eN,“ (4.3.34)
because 01 > «a (see (4.2.13), (4.3.5)). Finally (4.3.30), (4.3.34), (4.1.65), ||un|lso+n < 1, imply
@3.29). O

By definition, R, (un) C Gy (see (4.3.27))) and, by (4.3.28)), for all |[| < N,,, we have Ryjx(un,) C
Ryjk(tn—1). On the other hand Ryjx(un—1) N Gy = 0, see ([4.3.4). As a consequence, V|| < Ny,
lek(un) = @, and

(4.3.26)

Gn\Gns1 C U  Ruyew), =1 (4.3.35)
[1|>Nn,j,kEZ
Lemma 4.3.3. Let n > 0. If Ryji(un) # 0, then |53 — k3| < 8| - 1].

Proof. If Ryji(un) # 0 then there exists A € A such that [IA@ -1+ 2 (A, un(N)) — gt (A un(N))] <
27,)5% — K3|(1)~" and, therefore,

1157\ un (V) = 122 (A un (V)] < 27l3® = K207 + 2] - 1] (4.3.36)

Moreover, by (4.2.4), (4.1.64), (4.2.5)), for € small enough,

. . 1, . 1,
1152 =] = Imsl15° =K% = [ma | =kl = [r§°| =[] = 515° = k°|—Celj—k|-Ce > g!]g—k3| (4.3.37)

if j # k. Since 7, < 2y for all n > 0, v < 1/48, by (4.3.36]) and (4.3.37)) we get

1 4y 1
2’-l>(7_ )‘3—k3 > Lis s
proving the Lemma. =
Lemma 4.3.4. For alln > 0,
| Rijie(un)| < Cy ()77 (4.3.38)

Proof. Consider the function ¢ : A — C defined by

B = DGl (V) — ()
B2D @ 1= ima (V)P — B + im (V) (G — k) + 755 (0) — r° ()
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where m3(A), m1(A), 77°(A), u5°(A), are defined for all A € A and satisfy (@.2.5) by HunHI;;iZ)gn <1
(see (P1),). Recalling |- [P < ~71]- |Llp(7 and using

15 — | < g [P — k2| + [ [P — K|+ \T}?"Ihp PP < Cen P - KL (4.3.39)

Moreover Lemma [4.3.3] implies that, VA1, Ag € A,

o | TRY
60 =60 2 (@il 3 (- Cey )R-l 2 Loy
for ey~ small enough. Hence
dyn|f® —K°| 9 72y
Ryjk(un)| < - < ;
Bugelwn)l < = =] =
which is (4.3.38]). O

Now we prove (P4)g. We observe that, for each fixed [, all the indices j, k such that Ry;;(0) # 0
are confined in the ball j2 + k? < 16|0||l|, because

IJS—k3|Z\J—k|!J2+Jk+k2!232+k2—13k!2§(ﬂ+k2), Vi k€Z, j#k,

and |52 — k3| < 8|w||l| by Lemma As a consequence
(@.326) (4.3.38) .
G0\ Gl | U Ry <0 >0 (R0 < 340 =0y
1,5,k leZ¥ j24+Kk2<16|w||!| lezv

if 7 > v + 1. Thus the first estimate in (4.3.6) is proved, taking a larger C, if necessary.
Finally, (P4),, for n > 1, follows by

(. 338 _
G\ Goa| 2 S Ryelun)| S T
|E[> N3,k <Cif*/2 |E]>Nnlsl,| k| <Cli]1/2
< D AT <N, T < OyN, !
|[[> Ny
and (4.3.6) is proved. The proof of Theorem is complete. O

4.3.1 Proof of Theorems [1.2.1], [1.2.2] 1.2.3] 1.2.4] and

PrROOF OF THEOREMS [1.2.1] |1.2.2|, [1.2.3] Assume that f € C? satisfies the assumptions in
Theorem or in Theorem with a smoothness exponent ¢ := q(v) > so+ u + [ Which
depends only on v once we have ﬁxed T := v +2 (recall that sg := (v+2)/2, (1 is defined in
and p in (4.2.90)).

For v = €%, a € (0,1) the smallness condition ey~! = ¢!7% < § of Theorem is satisfied.
Hence on the Cantor set Goo 1= Np>0Gn, the sequence u,(A) is well defined and converges in norm

Il - HI;;iug (see (4.3.5)) to a solution uae(A) of

F(\us(N) =0 with  sup [Jus(N)||sgsp < Cey ™t =Cel™?,
A€Go0
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namely 1o (\) is a solution of the perturbed equation (1.2.4) with w = A@. Moreover, by (4.3.6]),
the measure of the complementary set satisfies

AN Gool €D 1Gn \ Gnga| < Cy+ > ACN, ' < Cy =Ce?,
n>0 n>1
proving (1.2.9). The proof of Theorem is complete. In order to finish the proof of Theorems
1.2.2] or [L.2.3] it remains to prove the linear stability of the solution, namely Theorem [1.2.5

PROOF OF THEOREM [1.2.4] Part (i) follows by (4.2.72)), Lemma Theorem [4.2.1] (applied to
the solution us(\)) with the exponents 6 := o + 8 + 3, Aoo(u) := A2 (u), see (#.2.6). Part (i)
follows by the dynamical interpretation of the conjugation procedure, as explained in Section
Explicitely, in Sections [4.1] and we have proved that

L=ABpWL W IB 1AL W .= MTSD.

By the arguments in Section we deduce that a curve h(t) in the phase space H? is a solution of
the dynamical system (|1.2.21)) if and only if the transformed curve

v(t) ;== W (wt) B~ A (wt)h(t) (4.3.40)

(see notation , Lemma ) is a solution of the constant coefficients dynamical
system .

PROOF OF THEOREM . If all ;15 are purely imaginary, the Sobolev norm of the solution v(t) of
(1.2.22)) is constant in time, see (|1.2.23]). We now show that also the Sobolev norm of the solution
h(t) in does not grow in time. For each ¢t € R, A(wt) and W (wt) are transformations of the
phase space HS that depend quasi-periodically on time, and satisfy, by (4.1.142)), (4.1.144)), (4.2.9)),

A= (@) gl + W (whgllmy < C(s)lgllmy .Vt €R, Vg = g(x) € Hy, (4.3.41)

where the constant C(s) depends on ||u||s+o48+s, < +00. Moreover, the transformation B is a
quasi-periodic reparametrization of the time variable (see (3.4.5))), namely

Bf(t) = f(W(t)) = f(r), B7'f(r)=f( () =f(t) Vf:R— H (4.3.42)
where 7 = (t) :=t + a(wt), t = " 1(7) = 7 + @(w7) and «, & are defined in Section Thus

1) | 115 [ A(wt) BW (wt)o(t)]| g C () BW (wt)v(t)]| C(s) W (wr)o(7)| mg

4.3.41) 3.

< () o) s B2 () o)1z EED ()W (wro) B~ A wro) (o) g
(4.3.41) 14— E332) _

< C(s)| B A wro)h(mo) s EE2 C(s) AT OO s < C(5)]|h(0)]| s

having chosen 79 := 1(0) = «(0) (in the reversible case, « is an odd function, and so a(0) = 0).
Hence (|1.2.24]) is proved. To prove ([1.2.25)), we collect the estimates (4.1.143)), (4.1.145)), (4.2.9)

into

I(AFH (wt) = Dgllus + |(WF (wt) = Dgllms < ey 'C()lgllysrr, VEER, Vg€ Hy,  (4.3.43)
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where the constant C(s) depends on ||u||s4o+48+s,- Thus

IOl =2 JA@OBW @to®)llas < | BW wi)o(t)]ms + | (Awt) — DBW @t)o(#)]|us
) E30)
< W(wn)v(r)llms + ey ' C(s) | BW (wt)v(t) || ot

(4.3.42) _
=2 W (wr)o(n)llmg + ey C) W (wr)o(r) | g
)
< @) + (W (wr) = Do)l + ey O () ][o(m) | o
E3:) _ 223 -
< @l +ev IS o) s —= [[o(ro)llmz + v C(s)[[o(70)|| s 1

||W_1(wTO)B_lA_l(wTo)h(To)HH; + 6’7_10(5)||W_l(wTo)B_lA_l(uJTo)h(To)HH;-H )
Applying the same chain of inequalities at 7 = 79, t = 0, we get that the last term is
< [[PO0) |z + ey C () R(O)]| o+

proving the second inequality in ((1.2.25)) with a := 1 — a. The first one follows similarly.
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Chapter 5

KAM for autonomous quasi-linear
Hamiltonian perturbations of KdV

This Chapter is devoted to the proof of Theorem[1.3.1] stated in Section[I.3] First, in Section[5.1]we
perform three steps of weak Birkhoff normal form, in order to determine the frequency-to-amplitude
modulation (see ) and to provide a sufficiently good approximation of the solution for the
convergence of the Nash-Moser scheme.

In Sections we introduce the action-angle variables (see (5.2.1)) and we reduce the
problem of finding quasi periodic solutions of the equation to the searching of invariant tori
for the Hamiltonian H. in . The existence of invariant tori for H. is stated in Theorem
which is proved in the remaining Sections of the Chapter (Sections .

In Section[5.4] we describe the construction of the approximate inverse for the linearized operator
. As we explained in Section this procedure is inspired to [22], and it reduces the search
of an approximate inverse for to the inversion of the linear operator £, in , acting
on the space of the normal variables H §- In Section Proposition we prove that £, has
the form . Then in Section we reduce L, to constant coefficients, semi-conjugating it to
the operator L, in and in Theorem we prove the invertibility on £, and the tame
estimates for its inverse.

Finally in Section [5.7] we implement the Nash-Moser scheme for the nonlinear operator F in
(5.3.6). This concludes the proof of Theorem [5.3.1]

Now we introduce some notations and we recall some well-known definitions, which will be used
along this Chapter.

Tangential and normal variables. Let 71,...,7, > 1 be v distinct integers, and ST :=
{7n,---,7v}. Let S be the symmetric set in (1.3.7), and S¢ := {j € Z\{0} : j ¢ S} its complementary
set in Z \ {0}. We decompose the phase space as

Hy(T) := Hs ® Hy, Hg:=span{e’”: je€ S}, Hg:={u= Y wue’ € Hy(T)}, (5.0.1)
JES*

and we denote by Ilg, H§ the corresponding orthogonal projectors. Accordingly we decompose

u=uv+z, v=1Igu:= Zjesuj ez =Tlsu = Zjescuj et (5.0.2)
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where v is called the tangential variable and z the normal one. We shall sometimes identify
v = (vj)jes and z = (2j)jese. The subspaces Hg and Hfg- are symplectic. The dynamics of these
two components is quite different. On Hg we shall introduce the action-angle variables, see .
The linear frequencies of oscillations on the tangential sites are

o:=(B,....7) eN. (5.0.3)
We shall also denote

ST = {ue HS(T") : u(p, ) € Hg Yo € T}, (5.0.4)
HE(TY) == {u e H(T"'Y) : u(p, ) € Hs Vp € T"}.

Symplectic transformations. A map
© : Hy(T) — Hy(T)
is symplectic if it preserves the 2-form €2 in , namely
Q(D®(u)[h1], D®(u)[ha]) = Q(h1,ha),  Yu,hy,he € HY(T),
which is equivalent to say that
DO(w)To ' Dd(u) = 0,7,  Vue HH(T).

It is well known that the symplectic maps preserve the Hamiltonian structure. This means that
given a Hamiltonian H : H}(T) — R and a symplectic map ® : H}(T) — H}(T), the push-forward
of the Hamiltonian vector field Xy,

O*Xp(u) := DO (u) 1 Xy (®(u))

is the Hamiltonian vector field X generated by the transformed Hamiltonian K := H o .
Given a Hamiltonian F : H}(T) — R, the time flow map ®%. generated by the Hamiltonian
vector field X g, namely the flow of the PDE

ou = Xp(u),

is a symplectic transformation, moreover for all function H : H(} (T) — R we have the Lie expansion

n H n
Ho(btzzadF(n‘)t, adp(H) :={H, F},
n>0 ’

where the Poisson bracket {H , F'} is defined in ((1.2.14]).

Fourier series representation. It is convenient to regard the equation ((1.3.1)) also in the Fourier
representation

u(z) = Zjez\{o}ujew , u(z) «—— u = (Uj)jeZ\{o} . u—j =1y, (5.0.6)
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where the Fourier indices j € Z \ {0} by the definition of the phase space H{(T) and u_; = u;
because u(x) is real-valued. The symplectic structure writes

1 1 1 1 1
Q= 5 Z i—jduj Ndu_; = Z i—jduj Ndu_j, Qu,v) = Z —ujv_j = Z —u;vj (5.0.7)
Jj#0 j=>1 7#0

the Hamiltonian vector field Xy and the Poisson bracket {F, G} are
[(Xu(u)l; =1j(0u_;H)(u), Vj#0, {F(u),G(u)}= —Zjioij(au_jF)(u)(@ujG)(u). (5.0.8)

Conservation of momentum. A Hamiltonian
H(u) = Z Hj oy ..., u(zr)= Z ujeijm, (5.0.9)
J1y-Jn €Z\{0} JEZ\{0}

homogeneous of degree n, preserves the momentum if the coefficients Hj, ;. are zero for ji +...+
Jn # 0, so that the sum in (5.0.9)) is restricted to integers such that j; + ...+ j, = 0. Equivalently,
H preserves the momentum if {H, M} = 0, where M is the momentum M(u) := [,u’dz =
> jez\{oy Ul—j- The homogeneous components of degree < 5 of the KdV Hamiltonian H in
preserve the momentum because, by , the homogeneous component f5 of degree 5 does not
depend on the space variable x.

5.1 Weak Birkhoff normal form

The Hamiltonian of the perturbed KdV equation (1.3.1)) is H = Ha + Hs+ H>5 (see (1.3.3))) where
1
Hy(u) := 2/u§d:c, Hs(u) ::/u3daj, H>s5(u) ::/f(x,u,um)d:z:, (5.1.1)
T T T

and f satisfies (1.3.4]). According to the splitting (5.0.2) u =v+ 2, v € Hg, z € HSL, we have

2 2
Hy(u) :/%d:v—i—/zxd% Hs(u) :/v3d:v—|—3/1)22d1:—|—3/1)22dm—|—/zgdac. (5.1.2)
T 2 T 2 T T T T

For a finite-dimensional space
E := Ec :=span{e?®:0 < |j| <C}, C >0, (5.1.3)

let IIx denote the corresponding L?-projector on E.
The notation R(v¥~92%) indicates a homogeneous polynomial of degree k in (v, z) of the form
R(vk_qzq):M[v,...,v,z,...,z}, M = k-linear.
—_—— ——
(k—q) times g times
Proposition 5.1.1. (Weak Birkhoff normal form) Assume Hypothesis (S2). Then there ezists
an analytic invertible symplectic transformation of the phase space ®p : Hi(T) — H(T) of the
form
Pp(u) =u+Y(u), Y(u) =IgV(Ilgu), (5.1.4)
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where E is a finite-dimensional space as in (5.1.3)), such that the transformed Hamiltonian is
H:=Ho®p=Hy+H3+Hs+Hs+H>¢, (5.1.5)

where Hy is defined in (5.1.1)),

3 |t °
Hs = / 23 d:c—i—3/ vetdr, Hy:= _,Z ‘UJJ +Ha2+Has, Hs:= ZR(UE’*qzq), (5.1.6)
T T 2 jeSs 7 7 q=2

Hao := 6/ UzHS((Gx_lv)(@C_lz)) dx + 3/ 20y )2 de,  Has = R(v2®), (5.1.7)
T T

and H>¢ collects all the terms of order at least siz in (v, z).

The rest of this section is devoted to the proof of Proposition [5.1.1
First, we remove the cubic terms [ v* + 3 [ v?z from the Hamiltonian Hj defined in (5.1.2).
In the Fourier coordinates (5.0.6)), we have

R
Hy =5 S oSPul Hs= ) ujugug. (5.1.8)
J#0 J1+j2+j3=0

We look for a symplectic transformation ®®) of the phase space which eliminates the monomials
uj, uj,uj, of Hz with at most one index outside S. Note that, by the relation j; + j2 + j3 = 0,
they are finitely many. We look for ®®) := (@%@)‘t:l as the time-1 flow map generated by the
Hamiltonian vector field X (s), with an auxiliary Hamiltonian of the form

3 o (3) s
FO(u):= > Fj i
J1+j2+753=0

The transformed Hamiltonian is

H® =Hoo® = Hy+ B + B + HY)

1
HY = Hy+ {1, FO), - 0 = S {{Hy, FOY FO} 4 (Hy, PO, (5.1.9)
where H (235) collects all the terms of order at least five in (u,u,). By (5.1.8) and (5.0.8]) we calculate
3 o/ . . 3
Hé ) — Z {1fl(]%Jr]S+]??)Fj(13)2j3}uj1uj2uj3'
J1t+j2+73=0

Hence, in order to eliminate the monomials with at most one index outside S, we choose

1
T3 .3 . .3y if (j17j27j3) € -/47
i(j3 + 43 + 73) (5.1.10)

0 otherwise,

e

Jigeds T

where A := {(jl’j27j3) € (Z\{0})3: j1+j2+3j3 =0, 53 + 43+ 73 # 0, and at least 2 among
j1, 2, j3 belong to S}. Note that

A= {(jl,jz,jg) € (Z\{0})3 : j1+j2+j3 = 0, and at least 2 among 7j1, jo, j3 belong to S} (5.1.11)
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because of the elementary relation
tiatis=0 = i +j5+ 5= 3j1jajs #0 (5.1.12)

being j1,72,73 € Z \ {0}. Also note that A is a finite set, actually A C [-2Cg,2Cs]® where the
tangential sites S C [-Cg,Cg]. As a consequence, the Hamiltonian vector field X (s has finite
rank and vanishes outside the finite dimensional subspace E := Esc (see (.1.3)), namely

Xpe (u) =HpXpe (Tpu) .

Hence its flow ®©®) : H}(T) — HA(T) has the form (5.1.4) and it is analytic.
By construction, all the monomials of Hs with at least two indices outside S are not modified
by the transformation ®®). Hence (see (5.1.2)) we have

H?Eg) :/zgdaﬁ—i—S/vz?dm. (5.1.13)
T T

We now compute the fourth order term H ZZ 0 H ) in (5.1.9), where Hﬁ) is of type R(vi~iz?).
Lemma 5.1.1. One has (recall the definition (4.1.50) of m)

Hfo) = g/Tv mo[(0y 'v)?)dx Hfz) = GAUZHS((E)mlv)(azlz)) da:—|—3/Tz mo[(0; 1v)?]dx
(5.1.14)
Proof. We write Hs = H3 <1 + Hé ) where Hj <1(u) := [pv3dx + 3 [y v?zdz. Then, by (5.1.9), we
get
O = %{H&Sl JFO) 4 (g POy (5.1.15)
By (5.1.10)), (5.1.12)), the auxiliary Hamiltonian may be written as
FO) (u) = —% 3 % _ —;/T(axlv)?’dx— A(@xlv)Q(axlz)da:.

(J1,J2,J3) €A

Hence, using that the projectors Ilg, H§ are self-adjoint and 9, ! is skew-selfadjoint,
VF® (u) = 9;1{(0; 'v)? + 2005 [(9;, 1v) (95 '2)] } (5.1.16)

(we have used that 9, ‘7o = 9; ! be the definition of 9, !). Recalling the Poisson bracket definition

(1.2.14)), using that VHsz <1(u) = 3v? + 6ILg(vz) and (5.1.16), we get
{H3 <1, F () = /{31} + 6115 (vz) o { ( (0, 1v) +2H5[(8 L) (o ]}dx
= 3/1} m0(0; ') dr + 12/H5(UZ)HS[(8 Wy0,12)dz + R(v32).  (5.1.17)
T
Similarly, since VH§3)(u) = 322 + 6115 (v2),

{H(3), F®)} = 3/ 22r0(0; 0)? dx + R(v32) + R(v2?). (5.1.18)
T

The lemma follows by (5.1.15), (5.1.17), (5.1.18). O

93



We now construct a symplectic map ®@ such that the Hamiltonian system obtained trans-
forming Hy + H§3) + H ig) possesses the invariant subspace Hg (see (5.0.1)) and its dynamics on
Hyg is integrable and non-isocronous. Hence we have to eliminate the term H ﬁ) (which is linear in

(3)

z), and to normalize Hyy (which is independent of z). We need the following elementary lemma
(Lemma 13.4 in [49]).

Lemma 5.1.2. Let j1, j2,j3,j4 € Z such that j1 + jo + js + jo = 0. Then
.3 .3 .3 .3 . . . . . .
Ji g3 + 75 + i = =301 + J2) (1 + 73) (J2 + J3).

Lemma 5.1.3. There exists a symplectic transformation ®# of the form (5.1.4) such that

14
HY =H® 00® =i+ B +HY + HY), HY = _g 3 |“?2| +HY) + HY), (5.1.19)
JES

where Hég) is defined in (5.1.13]), H£32) in ((5.1.14), Hﬁf = R(vz3) and H(_45) collects all the terms
of degree at least five in (u,uy).

Proof. We look for a map &) := (@%(4))”:1 which is the time 1-flow map of an auxiliary Hamil-
tonian
4
PO (u) = > s Ui

Ji+j2+j3+ja=0
at least 3 indices are in S

with the same form of the Hamiltonian H fo) +H f’l) . The transformed Hamiltonian is
HY :=H®o0W =iy + B + B + HY), H{" = {Hy, FV} + H, (5.1.20)

where H (>4§ collects all the terms of order at least five. We write H, £4) = Z?:o H ii) where each H 4(:1@')
if of type R(v*~%2%). We choose the coefficients
®
« i
FJ'1J'2J'3J'4 = 1(]% +J§ +]§ +Ji)
0 otherwise,

if (j17j27j37j4) € A4’ (5121)

where

s = {(Gr.da.dadn) € @NAOD' v o+ s+ s = 0,1 + 33+ 35 + 51 # 0,

and at most one among j1, j2, J3, j4 outside S} .

By this definition Hfl) = 0 because there exist no integers ji,jo,j3 € S, ju € S¢ satisfying j; +
Jo+ s+ s =0, 3 +j3+ 43 + 73 =0, by Lemma and the fact that S is symmetric. By
construction, the terms Hﬁ) = Hf’i), 1 = 2,3,4, are not changed by oW, Finally, by ((5.1.14])

(4 3 1
Hig =5 > (i) (i) U s s - (5.1.22)
J1,J2,73,J4€S
Ji+j2+i3+ja=0
I35 +i5+5i=0
J1+72,33+747#0
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If j1 + ja +js +ja = 0 and ji +j3 +j§ + j§ = 0, then (j1 + j2) (j1 + j3) (j2 +j3) = 0 by Lemma
We develop the sum in (5.1.22)) with respect to the first index j;. Since j; + j2 # 0 the possible
cases are:

(i) {j2 # —j1, Js=—J1, ja=—Ja} or (i5) {j2 # —j1. J3s # —J1, J3 = —Jo, ja = —Jj1}-
Hence, using u_; = @; (recall (5.0.6])), and since S is symmetric, we have

1 |y |,
Z Uy Ujo Ujs Ujy = Z 7]1. - J2

(7) J3Ja J1,J2€8,J2#— 1
g |y |? |uj| Jus|*
=y N =y (5.1.23)
ses jes
and in the second case (i)

1 1 1, 1, .
Zﬁujluhujiiujzl = > Ty iz tia U :Zﬂug‘l < > j—!uj2| > =0. (5.1.24)
(ig) 7> g 12 - 92

Then (5.1.19) follows by (5.1.22)), (5.1.23), (5.1.24). O

Note that the Hamiltonian Hy + H§3) + H F) (see (5.1.19)) possesses the invariant subspace
{z = 0} and the system restricted to {z = 0} is completely integrable and non-isochronous (actually
it is formed by v decoupled rotators). We shall construct quasi-periodic solutions which bifurcate

from this invariant manifold.

In order to enter in a perturbative regime, we have to eliminate further monomials of H® in
(5.1.19). The minimal requirement for the convergence of the nonlinear Nash-Moser iteration is
to eliminate the monomials R(v®) and R(v*z). Here we need the choice of the sites of Hypothesis
(52).

Remark 5.1.1. In the KAM theorems [56], [66] (and [68], [72]), as well as for the perturbed
mKdV equations , these further steps of Birkhoff normal form are not required because the
nonlinearity of the original PDE is yet cubic. A difficulty of KdV is that the nonlinearity is
quadratic.

We spell out Hypothesis (S2) as follows:

e (82(). There is no choice of 5 integers j,...,j5 € S such that
it 4i5=0, F+...+5=0. (5.1.25)

e (821). There is no choice of 4 integers ji,...,Jjs in S and an integer in the complementary

set js € S¢:= (Z\ {0}) \ S such that (5.1.25) holds.

The homogeneous component of degree 5 of H*) is

4 4
Hé )(u) = Z Hj(l,)...,j5uj1 U
J1+...+55=0
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We want to remove from H é4) the terms with at most one index among ji,...,Jj5 outside S. We
consider the auxiliary Hamiltonian

%)

: .

F® = > FO o wjy gy, FY = el 5.1.26
]l++]5:0 Sl a 7 e 1(-713 ]g) ( )

at most one index outside S

By Hypotheses (S2)o, (S2)1, if j1+. . .+j5 = 0 with at most one index outside S then j$+...+j3 # 0
and F©®) is well defined. Let ®®) be the time 1-flow generated by X ). The new Hamiltonian is

H® =Y 000 = iy + B + HY + {Hy, FO} + HY 1+ HY) (5.1.27)

where, by (5.1.26)),
5 4 5 _
Hé )= {H2,P(5)} +Hé ) — g . QR(UE’ a29) .

Renaming H := H®), namely H,, := Hfln), n = 3,4,5, and setting &5 = ®®) o d™) o ),
formula (5.1.5)) follows.

The homogeneous component H, E(>4) preserves the momentum, see (5.0.9). Hence F©® also pre-

(5)

serves the momentum. As a consequence, also H k5 , k <5, preserve the momentum.
Finally, since F®) is Fourier-supported on a finite set, the transformation ®®) is of type (5.1.4)
(and analytic), and therefore also the composition @5 is of type (5.1.4) (and analytic).

5.2 Action-angle variables

We now introduce action-angle variables on the tangential directions by the change of coordinates

{uj = /& + [j]y; €, ifjes, (52.1)

uj 1= zj, if j € 5°,
where (recall u_; = ;)
f_j=§j, §j>0, Y—j = Y5, 9_j=—9j, Hj,ijR, Vjes. (5.2.2)

For the tangential sites ST := {71,...,7,} we shall also denote 0j, := 0;, y;, = v, &, = &
1=1,... 1.
The symplectic 2-form 2 in (5.0.7) (i.e. (1.2.13)) becomes

W= "db; Ady; + % > ll dzj Ndz_j = () db; Ady;) & Qgr = dA (5.2.3)
=1 jese\{o} i=1

where g1 denotes the restriction of Q to Hg (see (5.0.I)) and A is the contact 1-form on T” x
R” x Hg defined by A, .y : RY x R” x Hg — R,

~
A~ 7

~ 1 _ .
A(G,y,z) [07 Y, Z] ==y 0+ §(ax 12’, Z)L2(?1‘) . (524)
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Instead of working in a shrinking neighborhood of the origin, it is a convenient devise to rescale
the “unperturbed actions” £ and the action-angle variables as

e, y—ely, 2z (5.2.5)

Then the symplectic 2-form in (5.2.3) transforms into €2°)). Hence the Hamiltonian system gen-
erated by H in (5.1.5)) transforms into the new Hamiltonian system

0= OyH:(0,y,2), y=—0pH:(0,y,2), 2t =0, V.H:(0,y,2), H.:= e 2 o A, (5.2.6)

where

A(0,y,2) == eve(0,y) + 2 == 52 ‘eS\/gj + e200-1)| 5|y, elligiz | gby (5.2.7)
j

We shall still denote by Xg, = (0yH., —0pH., 0,V ,H,) the Hamiltonian vector field in the variables
(0,y,2) € TV x RV x Hg.
We now write explicitly the Hamiltonian H.(0,y, z) in (5.2.6). The quadratic Hamiltonian Hs

in (5.1.1)) transforms into
1
—2b _ 3 L 2
e “Hyo A, = const + E jesid Y + 5 /szdac, (5.2.8)

and, recalling (|5.1.6} , - the Hamiltonian H in ) transforms into (shortly writing v, :=
Ve (07 y) )

H.(0,y,2) =e(&) + a(§) -y + % /11‘Z£dx + 6b/Tz3d:c + 35/1Tvgz2d:c (5.2.9)
2 2 1,32 3 2 2
+e {6/EUEZH5((8 10.)(0;12)) d:c+3/Tz 70(05 ve) dm} — 3¢ Zjesyj

5
+ " R(v.23) + 3R(v22?) + 210 2 e@=O=D) R(1P=29) 4 =P H 4 (cv, + £%2)
q=3

where e(§) is a constant, and the frequency-amplitude map is
a(f) =w+e?A¢, A= —6diag{l/j};cs+ - (5.2.10)

We write the Hamiltonian in (5.2.9) as

1
H.=N+P, NGOy, z)=al&) - -y+ §(N(0)z, z)LQ(T) , (5.2.11)
where
1 1 1
5(N(@)z z)LQ(T) = 5((azwqg)(a,o,0)[z],z)L2(T) = 2/ 2dx+3€/Tv5 )22 dx (5.2.12)
+€2{6/Tv5(0,0)zl_[5((8 Lo (8,0))(07 dx—l—S/TzQﬂO (97 ve(6 0))2dx}

and P:= H, — N.
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5.3 The nonlinear functional setting

We look for an embedded invariant torus

i: T T xR x Hg, ¢ i(p):=(0(p),4(p),2(¢)) (5.3.1)

of the Hamiltonian vector field Xy filled by quasi-periodic solutions with diophantine frequency
w. We require that w belongs to the set

Q= a([1,2]") = {a(§) : € € [1,2]"} (5.3.2)
where « is the diffeomorphism ([5.2.10)), and, in the Hamiltonian H. in (5.2.11)), we choose
t=alw) =c?A T (w-). (5.3.3)

Since any w € Q. is e2-close to the integer vector @ (see (5.0.3))), we require that the constant + in
the diophantine inequality

w1 >y(1)"", VlezZ"\ {0}, satisfies yv=¢e?T" for somea > 0. (5.3.4)

We remark that the definition of v in is slightly stronger than the minimal condition, which
is 7 < ce? with ¢ small enough. In addition to we shall also require that w satisfies the first
and second order Melnikov-non-resonance conditions ([5.6.120)).

We look for an embedded invariant torus of the modified Hamiltonian vector field Xy, . =
Xm. +(0,¢,0) which is generated by the Hamiltonian

H.:(0,y,2) == H.(0,y,2) +(-0, (e€R". (5.3.5)

Note that Xp, . is periodic in ¢ (unlike Hc¢). It turns out that an invariant torus for Xp_ . is
actually invariant for Xp_, see Lemma [5.4.1] We introduce the parameter ¢ € R” in order to
control the average in the y-component of the linearized equations. Thus we look for zeros of the
nonlinear operator

f(Z’C) = f(i7<aw75) = Dwz(@) - XHg,g (1(90))

= Dui(p) — Xn(i(e)) — Xp(i(¥)) + (0,¢,0) (5.3.6)
Dub(p) — 9y H(i(p)) LO(p) — 0, P(i(#))
= | Duy(p) +pH:(i(¢)) + ¢ [=| Duy(w) + 506(N ( ( )2(#), 2(#)) 21y + 0o P(i9)) + ¢
Duz(p) — 0:VHe(i(p)) Doz(p) — 0N (0())2() — 82V P(i(p))

where O(p) := 0(¢) — ¢ is (2m)"-periodic and we use the short notation
Dy, :=w-0,. (5.3.7)
The Sobolev norm of the periodic component of the embedded torus

I(p) =i(p) — (¢,0,0) == (O(¢),y(9), 2(¢)), O(p) :=0(p) —p, (5.3.8)
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is
13115 = 11®ll s + Iyl ms + lI21ls (5.3.9)

where [|z[|s = ||z[[n3, is defined in (3.0.1). We link the rescaling (5.2.5) with the diophantine
constant v = £27% by choosing

y=e? b=1+(a/2). (5.3.10)
Other choices are possible, see Remark

Theorem 5.3.1. Let the tangential sites S in (1.3.7) satisfy (81),(82). Then, for all € € (0,&p),
where gq is small enough, there exists a Cantor-like set Co C g, with asympotically full measure
as € — 0, namely

lim C| =
e—0 ’95’

1, (5.3.11)

such that, for allw € C., there exists a solution i (P) = ioo(w,€)(¢) 0f Dyioo(p) —XH. (icc(¢)) = 0.
Hence the embedded torus ¢ +— ix(p) is invariant for the Hamiltonian vector field Xp_(.¢) with &
as in (5.3.3), and it is filled by quasi-periodic solutions with frequency w. The torus i salisfies

lise(9) = (,0,0)[[ 5 = O(e5=#47) (5.3.12)

for some p:= p(v) > 0. Moreover, the torus i iS LINEARLY STABLE.

Theorem is proved in Sections It implies Theorem where the &; in ((1.3.12)
are £2¢;, & € [1,2], in (5.3.3). By (5.3.12)), going back to the variables before the rescaling (5.2.5)),

we get On = 057291 yoo = O(5971), 200 = O(570y71), which, as b — 17, tend to the
expected optimal estimates.

Remark 5.3.1. There are other possible ways to link the rescaling with the diophantine
constant v = €2t%. The choice v > €2° reduces to study perturbations of an isochronous system
(as in [53], [56], [66]), and it is convenient to introduce &(w) as a variable. The case €2 > 7,
in particular b = 1, has to be dealt with a perturbation approach of a mon-isochronous system a la
Arnold-Kolmogorov.

We now give the tame estimates for the composition operator induced by the Hamiltonian
vector fields X and Xp in , that we shall use in the next Sections.

We first estimate the composition operator induced by v. (6, y) defined in . Since the func-
tions y — /& 4+ 20D |jly,  — € are analytic for € small enough and |y| < C, the composition
Lemma [A.0.8] implies that, for all ©,y € H*(T",R), [O||s,. [lyllsy < 1, setting 0(p) := ¢ + O (),
|v=(0(), y(@)lls <s 1+ [|©]ls + ||ly|ls- Hence, using also (5.3.3), the map A. in satisfies, for
all [|3]5P0) < 1 (see (5.3.9))

14:(8(2), y(9), ()P <5 e+ 13]I5P). (5.3.13)

We now give tame estimates for the Hamiltonian vector fields Xy, Xp, Xg_, see (5.2.11)-(5.2.12)).
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Lemma 5.3.1. Let J(¢) in 8) satisfy HJHL“;I;?) < 052y~ Then

L Li
18, P(i)||[5P0) <, & +52b||a||sfn% 186 P(i)[|5P0) < 5-2(1 4 |3|XP0))  (5.3.14)
IV, P(0)|[5P0) < €570 4 8701 3| M0 1 X p () | LPO) < 62 4 223 0 (5.3.15)
_ L L
1860, P(0)|[5P0) < et + 4 Y 3ERY 119,V P@)|LPO) < e 4 213 H) (5.3.16)
18,y P (i) + 362 I | LPO) < 2420 4 263, =1 3 LR () (5.3.17)

and, for all7:= (0,7,%),

i Li ~ L Li
18ydi X p (i) F) [P < (SR + 131557 555 ) (5.3.18)
i Li ~ 11 Li Li
1 X b1, (D)[F] 4+ (0,0, O 2) [HPD) < 2 (JSE + I31EE 171525)) (5.3.19)
N~ ~1 11 Li Li Li Li Li
102X, ()G TNEPD <, (IR RS + IR (R1LRS)?). (5:3.20)

In the sequel we will also use that, by the diophantine condition (5.3.4)), the operator D! (see
(5.3.7)) is defined for all functions u with zero p-average, and satisfies

_ — i Li
D5 ully < Oy Mullosr, DS ullEP) < Oy lullgB7) - (5.3.21)

5.4 Approximate inverse

In order to implement a convergent Nash-Moser scheme that leads to a solution of F(i,¢{) = 0 our
aim is to construct an approzimate right inverse (which satisfies tame estimates) of the linearized
operator

di ¢ F(i0, )7, ¢] = di ¢ F(i0)[7.{] = Dot~ di X (io(9)) ] + (0.€,0), (5.4.1)

see Theorem Note that d; ¢ F(io, (o) = di¢F(io) is independent of (o (see (5.3.6)).
The notion of approximate right inverse is introduced in [76]. It denotes a linear operator which

is an ezact right inverse at a solution (ig, (o) of F(io, (o) = 0. We want to implement the general
strategy in [22]-[23] which reduces the search of an approximate right inverse of to the search
of a right inverse of the linearized operator L, (see (5.4.45))) on the normal directions only.

It is well known that an invariant torus iy with diophantine flow is isotropic (see e.g. [22]),
namely the pull-back 1-form ijA is closed, where A is the contact 1-form in . This is tan-
tamount to say that the 2-form W (see (5.2.3)) vanishes on the torus io(T”) (i.e. W vanishes on
the tangent space at each point ig(¢) of the manifold io(T")), because ifWVW = ijdA = difA. For
an “approximately invariant” torus ig the 1-form igA is only “approximately closed”. In order to
make this statement quantitative we consider

i = Z @)dor,  ar(®) == —([0,00(0)] vo(9)), + %(%Zo(@),3;120(90))L2(1r) (5.4.2)

and we quantify how small is
W =digh ="

Along this Section we will always assume the following hypothesis (which will be verified at each

Api(@)dor Ndpj,  Apj(p) = 0p,a;(p) — 8@].@;6(4,0) . (5.4.3)

1<k<j<v

step of the Nash-Moser iteration):
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e ASSUMPTION. The map w — ip(w) is a Lipschitz function defined on some subset Q, C €,
where € is defined in (5.3.2), and, for some p := pu(7,v) > 0,

[ IIEJL < CeS Pyl 1 Z]B00) < 06,y = ePa (5.4.4)

b:=1+(a/2), a€(0,1/6),
where Jo(¢) :=io(¢) — (¢,0,0), and

2(p) i= (21, Z2, Z3) () = Flio, Co) () = w - Dpio(p) — X, o (i0(¥)) - (5.4.5)

Lemma 5.4.1. |¢|MP() < C’HZHLlp i If F(io,¢o) = 0 then (o = 0, namely the torus ig is
invariant for Xg_.

Proof. The proof is given in Lemma 3-[22]. We give a more direct proof.
Let
o (0) = (B (0), Yo (), 2900 () 1= 0 (b0 + )

be the translated torus embedding, for all )9 € T". Since the Hamiltonian H. in (5.2.11) is
autonomous, the restricted action functional

(1) i= /T i) Dabin(0) — 5 (07 200(0). Doz (9)) 1oy — Hieliv ()} d

is constant, namely ®(¢) = ®(0), for all 9 € T". Hence 0y, ®(100) = 0, for all ¥y € T, in
particular differentiating at 19 = 0 we get

Ao / A,y0(0)[1)] - Db (e )d(p—l—/y Y0(9) - Do ()] dyp
) /V (8 laapzo(so)[{ﬂaDwZO(SO))Lz(T) dp — ;/V (5;120(@,Dwawzo(SO)[?Z])Lz(T) de

= [ {Buttin(0)) - 0,60(0) 0] + 0, He(in()) - 0,0 (2) (01} o

= [ (Vo). 0,20V g (5.0
By , one has
/ (Dutolp) = 0y He(iol)) - Du0() [ dip = / [Ben (] Za(p) dp 0, (5.4.7)

[ 006) - PO - OHLi() - Dto(@) ) =~ [ (Dol + BoHiol)) - 0,80l

~

__ / [0p00(9)) Za() dip - 0
oD (5.4.8)

where in the last equality we have used that

Lot do =1+ | 000" dp=1.
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since Og(y) is a 2w-periodic in all its components (I : RY — R is the identity).

Moreover since (9; 1) = —9; ! and integrating by parts in dy, we get
_% /T (0 10,20(0) W), Duz0(9)) 1oy + (051 20(9) Do 20 (D) [0]) o ) o
_ /T (01 Duz0(9): 020 (D) o o
- /T [0p20()]" V2 Heliol)) dip -
+ /T [0p20(0))7 0, Za(0) dip - . (5.4.9)

Hence by (5.4.6)-(5.4.9), 0y, ®(0) = 0 we get
o= /TV ~[0590(0))" Z1(9) + [0,00(0)]" Z2(0) — [Dp20())" 85 ' Zs(p) dyp

and the lemma follows by (5.4.4) and usual algebra estimate. O
We now quantify the size of ij)V in terms of Z.
Lemma 5.4.2. The coefficients Ay;(p) in (5.4.3) satisfy
i - L L L L
115D <y (1215001 T0ll50 + 121550 15003557 ) - (5.4.10)

Proof. We estimate the coefficients of the Lie derivative Ly, (igWV) := >y _; DuAkj(@)dpr A dp;.
Denoting by ¢, the k-th versor of R” we have

Do Arj = Lo (igW)(0)lex, €51 = W(0pZ(¢)er, Ogio()e;) + W (dpio(9)er, 0o Z(0)e;)

(see Lemma 5 in [22]). Hence

i Li Li Li Li
DAk 5P <, |1ZIERD 130 ln T + 121D 130 55 (5.4.11)
The bound ([5.4.10]) follows applying D_ ! and using (5.4.3), (5.3.21). O

As in [22] we first modify the approximate torus iy to obtain an isotropic torus iy which is still
approximately invariant.

First we report some basic facts about differential 1-forms on the torus T”. We regard a 1-form
a:= Y, aip(p) dp equivalently as the vector field

a(p) = (ar(p), - an(@)),  p T
We denote the Laplacian A, :=>";_; 9 . The following Lemma is proved in [22]-Lemma 4.

Lemma 5.4.3 (Helmotz decomposition). Let @ be a smooth vector field on the torus T, then
a=VU+c+p, (5.4.12)

where
U:T" - R, ceRY,
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and p(@) == (p1(¢),s - -, pu(@)), ¢ € TV is a smooth vector field on TV satisfying

divp:zzawpk:(), /T plp)dp =0.
k=1

The above decomposition of the vector field d is unique if we impose that le, U(p)de =0. We have

U := A;l(divc_i), forall j =1,...,v, the j-th component p; of the vector field p satisfies

14
pi(p) = A;l(zapkAkj(‘P)) s Apj = 0p a5 — O ar
k=1
and the j-th component c; of vector ¢ satisfies

cj::/ aj(p)de, Vj=1,...,v.

Proof. Note that
div(VU —a) =0 <<= A,U =diva.

Since divd has zero average, the above equation has the solution
S T
U:=A, (diva),
and the decomposition (5.4.12) holds, defining
p:=a—VU-—-c¢c.

Moreover
TrVp(cp)dsoz /Uﬁ(cp)dso—(?:O,

choosing @ = (c1,...,¢,) as in (5.4.14]).
Now let us prove (5.4.13)). By (5.4.15]) we have

O pj = Op;pre = Dppaj — Dp;an =t Ayj

(5.4.13)

(5.4.14)

(5.4.15)

since by the Schwartz Theorem 0, , U = 0y, U. For all j =1,..., v we differentiate with respect

to ¢ and we get
ool = pjio Pk = Oy Ak -

Summing over k =1,...,v we get

14 14
Dopj = Opiopk = 3 0, Akj s
k=1 k=1

but since
14

v
D Opiih =0, Y O pr = 0p,divp =0,
k=1 k=1

we get forall j=1,...,v
12
Appj = Z Do Akj »
k=1

which implies ([5.4.13]), since the right hand side of the above equation has zero average.
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By lemma, we deduce immediately the following corollary.

Corollary 5.4.1. Let a := Y ;_, ap(p) dpy be a smooth differential 1-form on the torus T", and
let p(¢) == (p1(p), ..., pu(p)) be defined by (5.4.13). Then the 1-form a— ;_, pr(p) dey is closed.

In the next Lemma we show how to modify the approximate invariant torus ig, in order to

obtain an isotropic approximate invariant torus is.

Lemma 5.4.4. (Isotropic torus) The torus is(p) := (Oo(v), ys(), z0(p)) defined by

vs = w0+ 00D o). pile) = AT 0, Ak() (54.16)

is isotropic. If (5.4.4) holds, then, for some o = o(v,T),

i — Li Li Li Li
lys — oll5°) <, v 1(|!Z|!sfa 13l1537%5" + 121155 [FollcE ) (5.4.17)
. i Li Li L
17 (s, CIEPD) <o 121520 + 1121155 13025 (5.4.18)
10:lés]]lls <s [lells + [|Folls+o 2]l - (5.4.19)

We denote equivalently the differential by 9; or d;. Moreover we denote by o := o(v, 7) possibly
different (larger) “loss of derivatives” constants.

Proof. In this proof we write || ||s to denote || HLlp ™, By definitions ((5.4.2)), (5.4.3), (5.4.16|) we
have

isA =g\ — Zpk ) doy,
k=1
Applying corollary we get that iJA is closed, which implies the isotropy of the embedded
torus ¢ — i5(¢). The estimate follows by (5.4.16)), (5.4.10), (5.4.4) and the tame bound
for the inverse [|[0,600] 7 ||s <s 1+ [|Jo||s+1. It remains to estimate the difference (see and
note that X does not depend on y)

0

F(is,C0) — F(io: o) = | Dulys —yo) | +Xp(is) — Xp(io). (5.4.20)
0

Using (5.3.16)), (5-3-17)), we get |0, Xp(i)||s <s €% + &%71(|T||s+3. Hence (5.4.17), (5.4:4) imply

[Xp(is) — Xp(io)lls <s [|Follso+olZlls+o + 1 Tollstol|Z]lso+0 - (5.4.21)
Differentiating we have
Du(ys = y0) = [0,00(#)] T Duop(0) + (Pu[0p80(2)] ") p(0) (5.4.22)
and Dy,p;() = AT Y11 8y, DuAkj(). Using (5.4.11)), we deduce that
11080 Puplls <s 1Z]ls+111Tollso+1 + 1 Zlso+1[1Tolls+1 - (5.4.23)
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To estimate the second term in (5.4.22]), we differentiate Z1(¢) = D,0o(p ) —(0yP)(io(p)) (which
is the first component in ([5.3.6))) with respect to p. We get Dy,0,00(¢) = 0, (0yP) (i0(¢)) + 0, Z1 ().

Then, by (5.3.14)),

1Du[0p00]" s <s € + ™| Tollsr2 + 1 Z]|s41 - (5.4.24)

Since Dy [0,00(¢)] ™" = —[0,00(¢)] T (D [0p00(¢)]7) [0,00()] T, the bounds (5.4.24), (5.4.10),
(5.4.4) imply

|(uldpol T)olls <o 27 (I Zlst o 1Follen o + 1 Zllsoso Tl o) (5.4.25)

In conclusion ((5.4.20), (5.4.21), (5.4.22), (5.4.23)), (5.4.25) imply (5.4.18)). The bound (5.4.19)
follows by (5.4.16), (5.4.3), (5.4.2), (5.4.4). O

Note that there is no y~! in the right hand side of . It turns out that an approximate
inverse of d; ¢ F(is) is an approximate inverse of d; +F(ig) as well. In order to find an approximate
inverse of the linearized operator d; F(i5) we introduce a suitable set of symplectic coordinates
nearby the isotropic torus is. We consider the map Gs : (¢, n,w) — (0,y,2) of the phase space
T x R” x Hg defined by

0 W 0o(¥)
y | :=Gs | n| = | ys(¥) +[0s80()] " Tn+ [(Be70) (B0 (¥))] " 05 ' (5.4.26)
z w 20(¢) +w

where Zy(6) := 20(6, *(#)). Now we prove that Gy is symplectic, using the isotropy of the embedded
torus is (Lemma |5.4.4]). This proof is given in [22]-Lemma 2.

Lemma 5.4.5. The transformation Gs defined in ([5.4.26|) is symplectic.

Proof. We may regard G as the composition G5 = G2 o G1 of the diffeomorphisms

(0 to(v)
Gz n|— [[0ubo(¥)] " n (5.4.27)
w w
and
0 0
Ga: Ly | — | us(0) +y+[00200)]7 0, 2 |, (5.4.28)
z Z0(0) + =

where ys5 1= ys o 6 12 =20 N ! We claim that G; and Gy are symplectic and the lemma
follows. To prove this we show that G;A = A, i = 1,2, where A is the contact 1-form defined in
(5.2.4). Since dA =W and the differential commutes with the pull back, we get

GIW = GrdA = d(GIA) =dA =W,

which implies that G; and G5 are symplectic.
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G1 1S SYMPLECTIC. By the definition of the contact 1-form A in ([5.2.4)), one has
x o - ~ Lo
(GlA)(w,n,w) [07 m, U)] = _[81[)90(1/))] TT] : 8¢90(¢)W] + § (az lw) w) L2(T)
~ 1,4
:—771/)—’-5(81 w,w)LQ(T),

hence G7A = A and G is symplectic.

G5 1S SYMPLECTIC. We calculate
(G38)0,(8.3.2] = = (5s(0) +y + [0070(6)" 0,2 ) -0

(9" {20(0) + 1.2+ 0670 (0)6]) 2 -

N | —

+

therefore

o~

(G3A = N)0.160.5,2] = = (5(0) + [0070(0)]70;"2) -8

(95" 20(0), 39 20(0)[6]) 1) +

(8;120 (0)? 2) L2(T)

(a;lz,aezo(e)@)mm. (5.4.29)

N | —
N =+
DN |

_|_

Since

(051 070(0)[0), 2)

N

—([6950(9)]%;12)-5%(8;12,892()(9)[5])L2(T) = —1(8;12,8920((9)[5])%) =

2
(using (0; )T = —0;1) by (5.4.29) we get

~

(G3A = M) g,y,2) 0,7,2] = —ys(0) - 0 +

5 (02720(0),2) oy + 5 (02 20(0), Bp20(0)[0)) 1,

1, B ~
+5 (9, 19920(0)[6], 2) 2y - (5.4.30)

Note that the 1-form
(0.5.2) = (9 20(0),2) jag) + (0 0020 (O)[0), 2) oy = A( (97 20(0),2) o) ) B 5 2] (5.4.31)

is exact. Moreover

1

~ 55(6) -0+ 5 (9 "20(6), Dp20(0)[8]) 12, = (" A)ol6]. (5.4.32)

where

ji=isoby" 0 — (0,55(0),%0(0)) .
Then ([5.4.30))-(5.4.32f) imply

* * -k 1 -1z
(G2A = M) (o,y,2) = H1w (7 A) (9,9,2) + §d<(8w '20(0), Z)L2(1r)) ’

where
Iy : T xRY x Hg — T

is the canonical projection. Since the torus j(T") = is(T") is isotropic (see Lemma [5.4.4]), the
1-form j*A on T” is closed and the lemma follows. O
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In the new coordinates, is is the trivial embedded torus (¢, n,w) = (1,0,0). The transformed
Hamiltonian K := K (¢, n,w,p) is (recall (5.3.5))

1
K = He gy 0 Gs = 00(¥) - Go + Koo () + K10(¥) - 1+ (Ko1(¥), w) 2wy + 5 K20(4)n -1
1
+ (Kll(z/))% w)LZ(’]I‘) + 5 (K02(¢)’U), w)L2(T) + K23(¢7 UR 'UJ) (5433)

where K>3 collects the terms at least cubic in the variables (n,w). At any fixed 1, the Taylor
coefficient Koo(¥) € R, K19(¥) € R, Ko1(1)) € Hg (it is a function of x € T), Ka(¢)) is a v x v
real matrix, Koz (1)) is a linear self-adjoint operator of Hg and Ki1(¢) : R — Hg. Note that the
above Taylor coefficients do not depend on the parameter (.

The Hamilton equations associated to (5.4.33|) are

b = Kio(¢) + Kao () + K} (V)w + 9, K >3(1h, n, w)
1 = —10y00(¥)]" o — OpKoo (1) — [BypK10(¥)]" 0 — [0y Koi (¥)] w

— 8y (5 Ka0(¥)n - + (K11 (¥)n, w) 2y + 5 (Ko2(¥)w, w) 2(py + K>3(¥, 0, w))
i = 0, (Ko1(¢) + K11 (¢)n + Ko2()w + Vo K>3(¢, 1, w))

(5.4.34)

where [0y K10()]? is the v x v transposed matrix and [0y Ko (¢)]T, K1, (¢) : H& — R are defined
by the duality relation (9y Koy (1)[0],w)r2 = 9 - [0y Ko (¥)]Tw, ¥ € RV, w € Hg, and similarly
for Ky1. Explicitly, for all w € H SJ:, and denoting e; the k-th versor of R,

Kh(yw =3 (Kh(@w-e)e, =

o (W K (W)eg) paper €R”. (5.4.35)

In the next lemma we estimate the coefficients Ko, K19, Ko1 in the Taylor expansion ([5.4.33]).
Note that on an exact solution we have Z = 0 and therefore Kyo(1)) = const, K19 = w and Ky = 0.

Lemma 5.4.6. Assume (5.4.4). Then there is o := o(1,v) such that

i i i i Li ~ nLi
18y Koo |[LPO) + || K19 — w][HPO) 4 || Koy L) < || 2] P 4 Z) 500 3| 5RO

s+o so+o s+o

Proof. Let F(is, (o) = Zs := (Z15, 225, Z35). By a direct calculation as in [22] (using (5.4.33)),
6-3.9))

Oy Koo(v) = —[0y00(V)]" (Co — Za.5 — [Oyys][0y00) ' Z1.5 + [(oZ0) (0 (1)) 0; " Z3 5
+[(8020) (0 ()] 85 1 D20 () [Dpbo(¥)) "' Z16)
Kio() = w — [0y00(¥)] 7" Z1,5(¢) ,
Ko (¢) = =0, Z3,5 + 0, 0yp20(4) [000 ()] ™' Z1,5(1) -

Then (5.4.4), (5.4.17), (5.4.18) and Lemma [5.4.1] (using Lemma [A.0.10)) imply the lemma. O

Remark 5.4.1. If F(io, o) = 0 then (o = 0 by Lemmal5.4.1, and Lemmal[5.4.6 implies that (5.4.33)
simplifies to K = const -+ w1+ Koo+ (K11 (0)0, 0) ey + 3 (Koah)w, 0) g + Ko

We now estimate Kop, K11 in (5.4.33]). The norm of Koy is the sum of the norms of its matrix
entries.
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Lemma 5.4.7. Assume (5.4.4). Then

| Koo + 32T [[HP0) < 2 4 230 |[ZE) + 397 |30 || 2 (5.4.36)
K in|[5P0) <, &5y~ ||| Lir) (5.4.37)
+ 2 Tll5E 4 Y| Tol D) 2] R |l )
IEw]|5P0) <, 47 |lw]|FEY (5.4.38)
+ 21Tl 5B 4+ 4Tl LR 21 ZE) ]| 5D

In particular || Koo + 3521’[]]551)(7) < Ceby71, and
1K nl[P® < C5y P, K wl|5P™) < Oy fw|| P
Proof. To shorten the notation, in this proof we write || ||s for || HI;ip(W). We have
Kao(p) = [000(0)) ™ 0y He (i5()) 000 ()] ™" = [0,,00 ()] 8y P(i5()) 0,80 ()] "
Then (5.3.17), (5.4.4), (5.4.17) imply (5.4.36). Now (see also [22])

K1) = 0,V Ha(i5(2))[0,00(2)] ™ — 05 (8070) (00(2)) By Ho) (i5(9)) 0,00 (1)) T
9,V P(i5())[0,00(2)] T — 85 (070)(00(9)) (Byy P) (i5(2)) (0,00 (2)] " .

therefore, using (5.3.16)), (5.3.17)), (5.4.4), we deduce (5.4.37). The bound (5.4.38)) for K7, follows

by (5.4.35). O

Under the linear change of variables

TZ Opbo(p) 0 0 {p\
DGs(¢,0,0) [ 71 | = | dyys(v) [0pb0(0)]™" —[(BeZ0)(Go())] 0" | | 7 (5.4.39)
w 8,/)20(go) 0 1 w

the linearized operator d; ¢ F(is) transforms (approximately, see ((5.4.59))) into the operator obtained
linearizing (5.4.34) at (¢, n,w,¢) = (,0,0,{y) (with 9; ~ D), namely

Do = 9uKio(9)[d] — Keo()ii — KTy ()@
Do) + [0y00(2)]7 ¢ + 0y 0400 (0)] [0, Col + Oy Koo (@) [¥)] + [0p K10(9)] " + [0y Ko (¢)] " @

Doyt — 0p{0pFo1 (0)[0] + K11 ()77 + Koa(0)T}
(5.4.40)

We now estimate the induced composition operator.

Lemma 5.4.8. Assume (5.4.4]) and let 7 := (12, n,w). Then

IDG5(0,0,0)dl[ls + [ PG50, 0,0) " fllls <s [[2lls + (1Tollso +7 1 Tollso+o | Zllso) @l »
(5.4.41)

1D*Gs(0,0,0) (i1, 2]lls <s 7 llslfE2llso + 171 llso [ 72lls + ([Tolls+o + 7 1 Tollso+all Zlls+o) 71 ]ls0 721150
”)

for some o := o(v,T). Moreover the same estimates hold if we replace the norm || ||s with || ||Llp
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Proof. The estimate (5.4.41)) for DGs(¢, 0, 0) follows by (5.4.39) and (5.4.17). By (5.4.4)), ||(DGs(¢,0,0)—
Dlsy < Ce8722 7 13lsy < |[2llsy /2. Therefore DGs(,0,0) is invertible and, by Neumann series,
the inverse satisfies (5.4.41]). The bound for D?Gj follows by differentiating DGs. O

In order to construct an approximate inverse of ([5.4.40)) it is sufficient to solve the equation

R ~ Dutb — Kao() — K1) ()@ 9
D[, 7, @, (] := D7 + [0p00()] T ¢ = | g (5.4.42)
D, — 0, K11(p)n — 0 Ko2(p)w g3

which is obtained by neglecting in the terms 0y K10, Oy Koo, Op Koo, Oy Ko and Oy [8¢90(4p)]T[-, Co]
(which are naught at a solution by Lemmata and .

First we solve the second equation in , namely D,n = go — [8¢00(@)]T§ We choose E
so that the p-average of the right hand side is zero, namely

~

¢ =(92) (5.4.43)

(we denote (g) := [, g(¢)dp). Note that the p-averaged matrix ([0y60]") = (I + [04,00]7) = I
because 6y (¢ ) © + Op(p) and Oy(p) is a periodic function. Therefore

7 =D, (92 — [0ubo(p)]" (g2)) + (@), (M) €R”, (5.4.44)

where the average (1) will be fixed below. Then we consider the third equation
Lo = g3+ 0:K1(p), Lu=w-0p—0:Kop). (5.4.45)

e INVERSION ASSUMPTION. There exists a set Qoo C o such that for all w € Q, for every
function g € H;t“(?l””“) there exists a solution h := L;'g € HE, (T**Y) of the linear
equation L, h = g which satisfies

L L —11~ nLi L
12521570 < C(s)y  (IlgIEE + ey {11Fo |5 + 4 Y[ To 1520 Z||5R 0 V| g LiPO))
(5.4.46)

for some p = p(r,v) > 0.

Remark 5.4.2. The term ey 1{HJOHI;IZE7 +7*1||30H£J;Ijr(z HZHI;EL } arises because the remainder

Rg in Section |5.6.6 contains the term E(||@o||1;fu + HyaH?f,ﬂ)) < e||3s ||I;fuy), see Lemma |5.6.14).
By the above assumption there exists a solution
W= ﬁ;l[gg + 0. K11(p)7] (5.4.47)

of (5.4.45)). Finally, we solve the first equation in (5.4.42), which, substituting (5.4.44)), (5.4.47)),
becomes

Do) = g1+ Mi(9) (i) + Ma(p) g2 + Ms(p)gs — Ma(0)[0y0] " (g2) . (5.4.48)

where

M () := Kaolp) + Kiy () L5 0. K11(p),  Ma(p) := Mi(@)D;",  Ms(p) := K{1()L5".
(5.4.49)
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In order to solve the equation ([5.4.48)) we have to choose (1) such that the right hand side in ([5.4.48|)
has zero average. By Lemma|5.4.7|and (5.4.4)), the p-averaged matrix (M;) = —32°T +O(e'%973).
Therefore, for e small, (M) is invertible and (M)~ = O(e=?") = O(y™!) (recall (5.3.10)). Thus
we define

() == (M)~ [(g1) + (Mago) + (Mzgs) — (M2[y00] ") (g2)]- (5.4.50)

With this choice of (77) the equation ([5.4.48)) has the solution

~

b =D g1 + Mi(p) () + Ma()gz2 + Ms(0)gs — Ma()[0y00]" (g2)]- (5.4.51)
In conclusion, we have constructed a solution (J, n, W, Z) of the linear system (|5.4.42)).

Proposition 5.4.1. Assume and m Then, Yw € Qu, Vg := (91, 92,93), the system
(5.4.42) has a solution D~ 1g : (1[) n, W, C) where (11) n, W, C) are defined in (5.4.51)), (5.4.44]),
(5.4.50), (5.4.47), (5.4.43) satisfyz'ng

L
ID~Lg||LPO) <, 47 |gl|5EY (5.4.52)
_ L — Li L Li
+ ey 2 {130l E + v Foll s m P F o, Go) 157 HIall by

Proof. Recalhng ), by Lemma|5 4.7, (5.4.46), (5.4.4) we get || Mahl|s, +||Mshlls, < C||h|lso+o-
Then, by (5.4.50) and (M)~ = O(2) = O(y71), we deduce |(7)|MP() < C’y*IHgHs;ﬂz) and

ETT). 3 21|> imply 715 <o v (IglE + [Tollsrollglss?™). The bound (BAB52) is
sharp for @ because £ 'g3 in 1’ is estimated using (5.4.46)). Finally ¢ satisfies (5.4.52) using
(5.4.51), (5.4.49), (5.4.46)), (5.3-21) and Lemma [5.4.7] O

Finally we prove that the operator
= (DGs)(,0,0) o D" o (DG5)(¢,0,0) " (5.4.53)

is an approximate right inverse for d; ¢ F(ig) where é(g(z/), n,w,() := (G(;(Q/), n,w), C) is the identity
on the ¢-component. We denote the norm [|(, 7, w, ¢)[[§™7 := max{||(x, n, w)|F*, |¢|LP()},

Theorem 5.4.1. (Approximate inverse) Assume and the inversion assumption (5.4.46]).
Then there exists p := p(T,v) > 0 such that, for all w € Qoo, for all g := (g1, g2, 93), the operator

Tq defined in (5.4.53|) satisfies

i Li
I TogllEP0) <4 v~ lg]l k" (5.4.54)

Li — L Li L
oy 2 {130l 4+ 2 130l 1 o, o) 157 g 5 -

It is an approximate inverse of d; ¢ F(io), namely

(i, (ig) © To — I)g[ ;"™ (5.4.55)

— . Li Li Li Li L Li
<o v (1 o, OB g 153087 + {1F o, Go) 15T + &9 1 Go, o)l 130 5™ g2 ).
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Proof. We denote || ||s instead of || HL”D(7 . The bound (5.4.54) follows from (5.4.53)), (5.4.52)),
(5.4.41). By (5.3.6)), since X does not depend on y, and is differs from i only for the y component,

we have

di ¢ F(io)[7,C) — dic Fis)[5C] = di X p(is)[7] — diXp(io)[7) (5.4.56)

_ / 8,4 X p (8o, 0 + 5(y5 — 90), 70)[ys — yo,7)ds =: E[7,C].
0

By (5.3.18]), (5.4.17), (5.4.4)), we estimate

1€0[% C1lls <s 1 Z)lsoo[Tllsto + 1 Z]ls4o[@llsoro + € Zlsoro [T sool|Tolls+s  (5.4.57)

where Z := F(ig, (o) (recall (5.4.5)). Note that SO[ZA,E] is, in fact, independent of (. Denote the
set of variables (¢,n,w) =: u. Under the transformation Gy, the nonlinear operator F in (5.3.6))
transforms into

F(Gs(u(9)), ) = DGs(u(9)) (Duu(p) — Xk (u(p),¢)), K =HecoGs, (5.4.58)

see ((5.4.34)). leferentlatlng (5.4.58) at the trivial torus ug(go) G5 (is) () = (,0,0), at ¢ = (o,

~

in the directions (¥, () = (DGs(us)~1[7],C) = DGs(us)~1[7, (], we get

d; ¢ F(i5)[7,¢] =DGs(us) (Dl — dy ¢ X (15, Co) [@ C]) + 51[7 ¢l, (5.4.59)
&11%,C] :=D?G5(us) [DGs(us) "  F(is, Co), DGs(us) " [7]] , (5.4.60)
where dy ¢ Xk (us, o) is expanded in . In fact, & is independent of Z We split
Dot — du, X (05, Go)[8. ¢ = D8, ] + Rz[8,C],
where D[u, E] is defined in and
. A R — 0y Kio(p )[¥]
Rz[t),0,@,C) = | 04[0y00(D))" [, Go] + Dy Koo () [0)] + [0y Kro ()] + [0y Kon ()] D
—0:{0y Ko1 () [¥]}
(5.4.61)

(Rz is independent of (). By (5.4.56) and (5.4.59)),

di,(f@.o) = DGg(u(;) oDo Dé(g(ug)_l +&+E+E, &= DG(;(U(;) oRy ODég(u(g)_l . (5.4.62)

By Lemmata[5.4.6] [5.4.8, 5.4.1] and (5.4.18)), (5.4.4), the terms &, & (see (5.4.60), (5.4.62)), (5.4.61))
satisfy the same bound as & (in fact even better). Thus the sum & := &y + &1 + &, satisfies
. Applying T defined in to the right in , since DoD~! = I (see Proposition
5.4.1)), we get d; F(ip) o To — I = £ 0 To. Then follows from and the bound
(15.4.57)) for £. ]
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5.5 The linearized operator in the normal directions

The goal of this Section is to write an explicit expression of the linearized operator L, defined
in ([5.4.45)), see Proposition To this aim, we compute %(Koz(q/))w,w)Lz(T), w E Hké, which
collects all the components of (H. o G)(1,0,w) that are quadratic in w, see ((5.4.33)).

We first prove some preliminary lemmata.

Lemma 5.5.1. Let H be a Hamiltonian of class C?(HZ(T),R) and consider a map ®(u) := u+W(u)
satisfying W(u) = UV (Illgu), for all u, where E is a finite dimensional subspace as in (5.1.3)).
Then

0y [V (H o @)} (u)[h] = (0, VH)(D(u))[h] + R(u)[h], (5.5.1)

where R(u) has the “finite dimensional” form
R(u)[h] = ngc(f%gj(u))L2(T)Xj(u) (5.5.2)

with x;(u) = €% or gj(u) = €7%. The remainder R(u) = Ro(u) + R1(u) + Ra(u) with

= (uVH)(®(u)8,¥(u),  Ri(u) := [0u{¥ ()" }][-, VH(D(w))],
= [0, % (u)]T (O, VH)(®(u))d,®(u). (5.5.3)

N
N O
£ &
Il

Proof. By a direct calculation,
V(H o ®)(u) = [®(u)]' VH(®(u)) = VH(®(u)) + [¥ (u)]T VH(®(u)) (5.5.4)

where ®'(u) := (9,®)(u) and [ ]7 denotes the transpose with respect to the L? scalar product.

Differentiating (5.5.4)), we get (5.5.1)) and (5.5.3)).
Let us show that each R,, has the form (5.5.2). We have

U (u) = eV (Hpu)lg , [¥'(u)]" = OV (Tpu)) Hg. (5.5.5)
Hence, setting A := (0, VH)(®(u))IgV' (I1gu), we get
Ro(u)[h] = A[llgh] = ngchjz‘l(ei”) = ZU'SC(h,gj)Lij

with g; := €Y%, y; := A(e"?). Similarly, using (5.5.5)), and setting A := [¥/ (Il gu)]|THg (0, VH)(®(u))®’ (u),
we get

Ro(u)[h] = M p[Ah] = Z|j|<C(Ah, €97 2 )% = Z|j|<c( h, AT€9) L2 gy 9%

which has the form (5.5.2)) with g; :== AT(¢¥%) and x; := €®. Differentiating the second equality
in ((5.5.5)), we see that

Ri(u)[h] = ME[Ah], Ah = 8,{V (Ugu)" }[Iph, Dp(VH)(®(w))],

which has the same form of R2 and so (5.5.2)). O
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Lemma 5.5.2. Let H(u) := [ f( u)dx where X (u) = HpX(Mgu) and f(u)(z) := f(u(z)) is
the composition operator f07" a functwn of class C%. Then

(0 VH)(u)[h] = f”(u)X(u) h+ R(u) [h] (5.5.6)
where R(u) has the form with xj(u) = or gj(u) =
Proof. A direct calculation proves that VH (u) = f'(u) X (u)+X'(u) ], and ( - ) follows with
[f

R(u)[h] = f'(u) X' (w) 2]+ 0u{ X" ()"}, f(u)]+ X' (w)T [ (w)hl], Whlch has the form (£.5.2). O

We conclude this Section with a technical lemma used from the end of Section [(.6.3 about the
decay norms of “ﬁnite dimensional operators” Note that operators of the form (5.5.7) (that will

appear in Section reduce to those in when the functions g;(7), x;(7) are independent
of T

Lemma 5.5.3. Let R be an operator of the form
Rh= / (B 95(7)) oy xs(T) dr s (5.5.7)
lil<C

where the functions g;(7), x;(1) € H*, 7 € [0,1] depend in a Lipschitz way on the parameter w.

Then its matriz s-decay norm (see (3.1.1))-(3.1.2)) ) satisfies

RIP <0 37 e5Prena (NGOl (DI + I (11 g5 (1) 170}

Proof. For each 7 € [0,1], the operator h — (h, g;(7))x;(7) is the composition x;(7) oIy o g;(7) of
the multiplication operators for g;(7), x;(7) and h +— Ilgh := [; hdx. Hence the lemma follows by
the interpolation estimate (3.1.9)) and (3.1.5). O

5.5.1 Composition with the map Gy
In the sequel we shall use that Js5 := J5(¢;w) 1= is(p;w) — (¢, 0,0) satisfies, by Lemma and

ELD).

195152 < Ceb-2n L (5.5.8)

We now study the Hamiltonian K := H, o G5 = e 2*H o A, o G5 defined in (5.4.33)), (5.2.6).
Recalling ((5.2.7) and (5.4.26)) the map A, o G has the form

Ac 0 Gs(th,m,w) = £ 37 \/& + 20D jllys(w) + Li () + Loyl e 4 eb(z0(0) + w)
jES

(5.5.9)

where

Ly(¥) = [0u00(¥)] T, La(v) = [(8p20)(B0(¥))] 05" (5.5.10)
By Taylor’s formula, we develop inwatn =0, w=0, and we get A. o G5(¢,0,w) =
Ts(¢) + Th (Y)w + To(¢) [w, w]+ T>3(¢,w), where

Ts(¢)) := (Ae 0 G5)(1,0,0) = cvs(h) + °20(1) Z \/g + 20| |[ys (1)) elP )l i
< (5.5.11)
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is the approximate isotropic torus in phase space (it corresponds to i5 in Lemma |5 ,

20| [La(¢h)w]; Pl
jes zﬁj + 2201 [ys ()]
401 52[ Lo (4p)w) ? ellfo(¥)];
8{&; + 2= [ys ()], }3/2

T'(Y)w=¢e €% 4 ey = 271U (W) w + ebw (5.5.12)

To(¢)[w,w] = =& ) eI =: 73Uy (¢) [w, w] (5.5.13)

JjeS
and T>3(1, w) collects all the terms of order at least cubic in w. In the notation of (5.2.7)), the
function wvs(¢) in (5.5.11) is v5(¢)) = ve(6o(¢), ys(v)). The terms Ui, Us = O(1) in €. Moreover,
using that Lo(v) in (5.5.10]) vanishes as zp = 0, they satisfy

lUrwlls < 13sllslwllso + s llsollwlls s 10w, w]lls < 1351l Tslso lwllZ, + 13615 lwllso lllls
(5.5.14)
and also in the || HLIP(V) -norm.
By Taylor’s formula H(u + h) = H(u) + (VH)(u), h) 2y + 5((8.VH)(w)[h], h) 2y + O(h?).
Specifying at v = T5(¢)) and h = T ()w + T2 () [w, w] + T>3(¢, w), we obtain that the sum of all
the components of K = ¢~ 2*(H o A, o G5)(v,0,w) that are quadratic in w is

1 _ o1
5 (Ko2w, w)2(n) = € 2(VH)(T5), Talw, w]) p2(r) + € ng((auVH)(Td)[le]yle)m(m-

Inserting the expressions (5.5.12)), (5.5.13) we get

Koa(W)w = (8, VH)(Ty)[w] + 2* 10, VH)(Ts) [Urw] + 20~ DUT (8, VH) (T5)[Uyw]
+ 2627305 [w, T (VH)(T). (5.5.15)

Lemma 5.5.4.
(Koz(¥)w, w)p2(r) = ((OuVH)(Ts)[w], w) L2y + (R(¥)w, w) 2T (5.5.16)

where R(1)w has the “finite dimensional” form
Rpyw =3 (w,9;(®) 2y X (¥) (5.5.17)
where, for some o :=o(v,7) >0,

Li Li Li Li b Li
g5 1P 5P + g5 PO [5PO) <, 21351200

(5.5.18)

HaigijSHXjHSo + ”E)igjmuso”Xsz + ||9sz0||3in[7]”5 + HQJ'HSHainmHSO <s 5b+1‘m’s+a (5.5.19)
+ 275 | st [Tl so+o

and, as usual, i = (0,y,z) (see (5.3.1)), 7= ( 0.9,%

Proof. Since Uy = HSU1 and Us; = IIgU,, the last three terms in ) have all the form (5.5.17])
(argue as in Lemma . We now prove that they are also small in size.
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The contributions in (5.5.15]) from Hs are better analyzed by the expression

e Hy 0 Az 0 Gs(h,n,w) = const + 3 [ys(¥) + L) + La(¥)w]; + % /T (20() + w); dz
jest

which follows by (5.2.8), (5.4.26)), (5.5.10). Hence the only contribution to (Koow,w) is [, w2 dz.
Now we consider the cubic term Hs in (5.1.6). A direct calculation shows that for u = v + z,
VHs(u) = 322 + 611& (vz), and 9, VHs(u)[Uyw] = 6115 (2Uw) (since Uyw € Hg). Therefore

VH3(Ts) = 362022 + 6" TS (v520) . 0w VH3(T5)[Urw] = 6e°TI5 (20 Uyw) . (5.5.20)
By (5.5.20) one has ((8UVH3)(T5)[U1w],Ulw)L2(T) = 0, and since also Uy = I1g5Us,

710, VH3(Ts) [Uyw] + €2 3Us w, JTVH3(Ts) = 62T (20U w) + 36*3Us[w, ]T 22 . (5.5.21)

These terms have the form (5.5.17) and, using (5.5.14), (5.4.4), they satisfy (5.5.18).

Finally we consider all the terms which arise from H>4 = O(u*). The operators e=19 VH>4(T5)U 1,
20-HyT (o, V'H>4)(T5)U1, e273UT V'H>4(Ts5) have the form (5.5.17) and, using HT5||Llp <

e(1 + HJ(5||Llp ™) ), (5.5.14), (5.4.4]), the bound ([5.5.18)) holds. Notice that the biggest term is
10, VH>4(T5)Us.

By (5.4.19)) and using explicit formulae ([5.5.10])-([5.5.13]) we get estimate ([5.5.19)). ]

The conclusion of this Section is that, after the composition with the action-angle variables,
the rescaling (5.2.5)), and the transformation Gy, the linearized operator to analyze is H Sl Sw—
(0, VH)(Ts)[w], up to finite dimensional operators which have the form (5.5.17) and size (5.5.18)).

5.5.2 The linearized operator in the normal directions

In view of (5.5.16) we now compute ((9, VH)(Ts)[w], w)r2(T), w € Hg, where H = Ho®p and &5
is the Birkhoff map of Proposition It is convenient to estimate separately the terms in

HZHO@BZ(HQ+H3)O(I)B+H25OCI)B (5.5.22)

where Ho, H3, H>5 are defined in ([5.1.1)).
We first consider H>50®p. By (5.1.1) we get VH>s5(u) = mo[(Ouf)(x, w, Uz )| —0u{ (O, f)(z,u, ug) },
see (4.1.50). Since the Birkhoff transformation ®p has the form (5.1.4), Lemma (at u = Ty,

see (5.5.11))) implies that

OV (Hz5 0 ®p)(Ts)[h] = (0uVH>5)(P5(Ts))[h] + Ru.s (T5)[h]
— 0,(r1(T5)0sh) + ro(Ts)h + Rz, (T5) 1] (5.5.23)

where the multiplicative functions r¢(Ty), r1(T5) are

ro(Ts) := oo(®p(Ts)), oo(u) = (Ouuf)(x, uyug) — Op{ (Ouuy f)(z, uy usp) }, (5.5.24)
r1(Ty) := o1(Pp(Ts)), o1(u) := —(Oupu, ) (T, uy uy), (5.5.25)
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the remainder Ry, (u) has the form (5.5.2) with x; = € or g; = €Y% and, using (5.5.3), it
satisfies, for some o := o(v,7) > 0,

i i i i ~ L
g5 1P 5200 + 1|5 1P s [P < e4(1 + 35155 7)

4 ~
19:9; [1]lls 151150 + 19ig5 el llso x5 1ls + llgsllso 190X [l + [1951ls10ix; [2]lls0 <s €™ (ellsto + [1Tslls+2l[2llso+2)-

Now we consider the contributions from (Hy + H3) o ®p5. By Lemma and the expressions of
Hy, H3 in (5.1.1)) we deduce that

8UV(H2 o @B)(Tg)[h] = —0Ogh + RH2 (Tg)[h] s 8UV(H3 o (I)B)(Tg)[h] = G@B(Tg)h + RH3 (T(;)[h] ,

where ®5(T5) is a function with zero space average, because ®p : H}(T) — HZ(T) (Proposition

5.1.1) and Ru,(u), Ru,(uw) have the form (5.5.2). By (5.5.3), the size (Ru, + Ru;)(Ts) = O(e).
We expand

(R, + Ri,)(T5) = Ry + €?Ra + R,

where 7~€>2 has size o(e?), and we get, Vh € Hé-,
I1$0,V((Hy + H3) 0 ®5)(Ts)[h] = —0puh + I (60 5(Ts)h) + I (eR1 + 2Ry + R2)[h] . (5.5.26)

We also develop the function ®(75) is powers of €. Expand ®p(u) = u + ¥Y(u) + U>3(u), where
Ws(u) is quadratic, Us3(u) = O(u?), and both map HZ(T) — H}(T). At u = Ty = cvs + %2 we
get

Dp(Ts) = Ts + Ua(Ts) + Us3(Ts) = cvs + 2 Wq(vs) + § (5.5.27)
where § := 20 + Wo(Ts) — e2Wa(vs) + U>3(Ts) has zero space average and it satisfies

1115 < & + (1 T5[15P, 0dlillls <s € (Ills + [13s1sllso ) -

In particular, its low norm H(j||£fép(7) <go €570y = 0(2).
We need an exact expression of the terms of order ¢ and €% in (5.5.26). We compare the

Hamiltonian (5.1.5) with (5.5.22), noting that (Hs5 0 ®5)(u) = O(u’) because f satisfies (1.3.4)
and ®p(u) = O(u). Therefore

(Hy + H3) o ®p = Hy + Hz + Hy + O(u),

and the homogeneous terms of (Hy + H3) o ®p of degree 2,3,4 in u are Ho, Hs, Hy4 respectively.
As a consequence, the terms of order € and €2 in (5.5.26)) (both in the function ®5(7Ts) and in the
remainders R, R2) come only from Hy + Hsz + Hy. Actually they come from Hy, Hz and Hy o (see

(5.1.6), (5.1.7)) because, at u = Ts = evs + £z, for all h € Hz,
115 (9. V' Ha)(T5)[h] = g (8. VH12)(T5) [h] + o(<”).
A direct calculation based on the expressions (5.1.6), (5.1.7) shows that, for all h € Hg,

15 (0,V(Ha + Hs + Ha))(T5)[h] = —uzh + 6¢1I5 (vsh) + 6e°T15 (20h) + 2115 {6m0[(9; Lvs) ]

+ 60sTTs[(05 Mvs) (95 1)) — 605 (05 vs)TIs[vsh]}} + o(c2).
(5.5.28)
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Thus, comparing the terms of order ¢, €2 in ((5.5.26)) (using (5.5.27))) with those in (5.5.28)) we deduce

that the operators R1, Ro and the function Wy (vs) are

R =0, Rg[h] = 6usllg [(6;105)(6;1h)] — 66;1{(8;105)H5[05h]} , ‘1/2(’1)5) = Wo[(ax_l’l)(;)Q].

(5.5.29)
In conclusion, by (5.5.22)), (5.5.26)), (5.5.23)), (5.5.27)), (5.5.29)), we get, for all h € Hg.,
50, VH(T5)[h] = —0uoh + g [(£6v5 + e26m0[(9; 'v5)*] + g2 + p>a)h]
+ 1150, (11 (T5)9:h) + eTIER[h] + TS Ro[h] (5.5.30)

where 71 is defined in (5.5.24), Ry in (5.5.29), the remainder Rsy := Rwo + Ru.;(Ts) and the
functions (using also (5.5.24), (5.5.25)), (1.3.4))),

g>2 = 64 + & ((Duufs5) (vs, (V5)2) — Ou{ (Ouu f5) (v5, (v6)2)}) (5.5.31)
p2a = 10(T5) — € [(Quufs) (vs, (v5)2) — Du{ (O f5) (v, (v5)z) }] - (5.5.32)

Lemma 5.5.5. [¢s2dz = 0.

Proof. We already observed that ¢ has zero z-average as well as the derivative 0;{(Oyu, f5)(v,vz)}.

Finally
(Ouufs)(v,v5) = Z Cj15273 Vi1 V52 Vj3€ R Z UJ (5.5.33)
J1,j2,33€8 jes
for some coefficient c¢;, j,j,, and therefore it has zero average by hypothesis (S1). O

By Lemma and the results of this Section (in particular ((5.5.30])) we deduce:

Proposition 5.5.1. Assume (5.5.8). Then the Hamiltonian operator L, has the form, Vh €
HE (T
SL )

Loh = w-0,h — 0, Kooh = 11§ (w-Oph + 0y (a105h) + Ox(agh) — e20,Roh — 9, R.h)  (5.5.34)

where Ro is defined in (5.5.29)), Ry« := Rs2 + R(¢) (with R(v) defined in Lemma , the
functions

ap:=1—-r1(T5), ao:=—(ep1+e’pa+qs2+p>1), p1:=6vs, pa:=06m0[(d; vs)’], (5.5.35)

the function gso is defined in (5.5.31]) and satisfies fT g>2dx = 0, the function p>4 is defined in

(5.5.32), r1 in (5.5.25), T5 and vs in (5.5.11)). For pr = p1, p2,

Ipl5PO) <, 1+ (|35 5RO, 10pxlillls <s lillssr + [Tsllssllsorr,  (5.5.36)
lgs2 5P < €3 + e¥)|35]| 5P, 10:a>2 (s <s € ([allsst + 1 Tsllss1llEllsos1),  (5.5.37)
lax — 1|EPO) <, &3(1 + ||35]|5E) 10:arfillls <s € (llss1 + [ Tslls1lfElsps1) » (5.5.38)

Ipall BP0 <, et + 235|507 N0wsalillls <s €2 (llsrz + 1T5 ] ss2llillsos2) |
(5.5.39)
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where T5(p) = (6o(v) — ¢, ys(p), 20(p)) corresponds to Ts. The remainder Ro has the form (5.5.2)
with

i i Li
g IEPO) + g 1P <o 1+ 1315, 10ig; s + 100G s <s [Flsor + 1 Tsllsto [lls0+o

(5.5.40)
and also R has the form (5.5.2) with
* i Li
g3 15PN 18P + (g7 1P g [5P0) <, &3 + b 350, (5.5.41)

* * * * * * * * b
1059 s 1 150 + 10593 @150 [0 Wls + 195 1150 100G B s + Mg 1510 W50 <s "M llsyo  (5.5.42)
+ 2|35l 5ol s -

The bounds ([5.5.40), (5.5.41)) imply, by Lemma estimates for the s-decay norms of Ro
and R.. The linearized operator L, := L,(w,is(w)) depends on the parameter w both directly

and also through the dependence on the torus is(w). We have estimated also the partial derivative
0; with respect to the variables i (see ) in order to control, along the nonlinear Nash-Moser
iteration, the Lipschitz variation of the eigenvalues of £, with respect to w and the approximate
solution is.

5.6 Reduction of the linearized operator in the normal directions

The goal of this Section is to conjugate the Hamiltonian operator £, in (5.5.34) to the diagonal
operator L, defined in (5.6.121)). The proof is obtained applying different kind of symplectic
transformations. We shall always assume (5.5.8]).

5.6.1 Change of the space variable

The first task is to conjugate L, in (5.5.34) to £1 in (5.6.31]), which has the coefficient of 0.,
independent on the space variable. We look for a p-dependent family of symplectic diffeomorphisms
® () of Hg which differ from

AL =TgAlly,  (Ah)(p,2) = (1+ Bulp, 2)h(p,z + B(p, 7)), (5.6.1)

up to a small “finite dimensional” remainder, see (5.6.6). Each A(y) is a symplectic map of the
phase space, see Remark If ||B]|y1.00 < 1/2 then A is invertible, see Lemma [A.0.10 and its

inverse and adjoint maps are

(A7) (g, y) = (14 By(e, y) (o, y + Ble,y),  (ATh)(p,y) = h(p.y+ Ble,y))  (5.6.2)

where z = y 4+ 3(p,y) is the inverse diffeomorphism (of T) of y = x + (¢, x).

The restricted maps A, (p) : H § —- H § are not symplectic. In order to find a symplectic
diffeomorphism near A, (¢), the first observation is that each A(¢) can be seen as the time 1-flow
of a time dependent Hamiltonian PDE. Indeed A(¢p) (for simplicity we skip the dependence on ¢)
is homotopic to the identity via the path of symplectic diffeomorphisms

ur— (1+76)u(z +76(x)), 7€]0,1],
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which is the trajectory solution of the time dependent, linear Hamiltonian PDE

Oru = O (b(T,2)u), b(r,2) = HﬂT(;jﬂ(ﬂﬂ) 7

with value u(x) at 7 = 0 and Au = (1 + Bz(x))u(z + 5(z)) at 7 = 1. The equation (5.6.3)) is a
transport equation. Its associated charactheristic ODE is

d
= —b(r, ). (5.6.4)

We denote its flow by 777, namely 777 (y) is the solution of (5.6.4)) with 4™ (y) = y. Each ™7
is a diffeomorphism of the torus T.

(5.6.3)

Remark 5.6.1. Lety — y—f—B(T, y) be the inverse diffeomorpshim of x — x+70(x). Differentiating
the identity B(t,y)+708(y+B3(1,y)) = 0 with respect to T it results that v" (y) == "7 (y) = y+B(7,y).

Then we define a symplectic map ® of H § as the time-1 flow of the Hamiltonian PDE
Or = &0, (b(7, 2)u) = 9, (b(r, x)u) — Ugdy(b(t, x)u), wu€ Hy . (5.6.5)

Note that 19, (b(r, z)u) is the Hamiltonian vector field generated by % Jp b(7, z)uPdx restricted to
H é‘ We denote by &7 the flow of , namely &7 (ug) is the solution of with initial
condition ®70™ (ug) = ug. The flow is well defined in Sobolev spaces Hg, (T) for b(r, ) is smooth
enough (standard theory of linear hyperbolic PDEs, see e.g. Section 0.8 in [71]). It is natural
to expect that the difference between the flow map ® := ®%! and A, is a “finite-dimensional”
remainder of the size of 3.

Lemma 5.6.1. For ||3|jyso+1.0c small, there exists an invertible symplectic transformation ® =

AL +Ro of HY., where A is defined in (5.6.1) and Re is a “finite-dimensional” remainder
1
Roh = Z/ (hy 95(7)) 12my x5 (T)dr + > (B, V5) g2y (5.6.6)
jes 0 j€s
for some functions x;(7), g;(7),v; € H® satisfying
[¥ills > Ng5(T)lls <s [1Bllwsrzee s IxG(T)lls <6 1+ [1Bllwstre, V7 €[0,1]. (5.6.7)
Furthermore, the following tame estimates holds
195" hlls <s [Ihlls + 18llwss2e0 |Bllsg , VR € HE. . (5.6.8)

Proof. Let w(r,z) := (®Tug)(x) denote the solution of ((5.6.5)) with initial condition ®°(w) = ug €
H é The difference

(AL — ®)ug = T Aug — w(l,-) = Aug — w(1,-) — lgAug, Yuo€ Hg, (5.6.9)
and
Mg Aug = Ig(A — DITgup = » _ (uo, Vi) e’ b= (AT — I)eli® (5.6.10)
jes
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We claim that the difference
1
Aug —w(l,z) = (1 + ﬂx(w))/o (14 78:(2)) " [Hg0x (b(T)w ()] (V7 (z + B(x))) dr (5.6.11)

where 77 (y) := "7 (y) is the flow of (5.6.4). Indeed the solution w(r,z) of satisfies
Or{w(r,7"(y)} = ba (1,77 () w (7,77 () — [0 (b(T)w (7)) (V7 (y)) -

Then, by the variation of constant formula, we find

'w(T, ")/T(y)) — efoT bs (8,75 (y)) ds (uo(y) B /OT - fos ba (¢, () d¢ [Hs@;(b(s)w(s))] (,ys<y)) dS) )

Since 9,77 (y) solves the variational equation 9-(9,y7(y)) = —bx (7,7 (¥))(8y7" (v)) with 8,7°(y) =
1 we have that
efoT ba (5,7°(y))ds _ (6y,yr(y))*1 =14 T,Bz(l') (5.6.12)

by remark [5.6.1] and so we derive the expression
w(ri) = (1 78, fuola + 78(0) = [0+ ()~ [MsDa(bls)o(s)] (4o + (e ds}

Evaluating at 7 = 1, formula ([5.6.11]) follows. Next, we develop (recall w(7) = 7 (uyg))

Hsd (b)) = 3 (0, 05(7) oy 95(7) = ~(@) ()], (5.6.13)
JjES
and becomes
1
Aup —w(l,-) = —/ Z (uo gj(T))LZ(T)Xj(T, dr, (5.6.14)
0 jes
where
Xi(T, @) = = (1 + Ba(@)) (1 + 78:(x)) ' @HO@) (5.6.15)

By (5.6.9)), (5.6.10)), (5.6.11)), (5.6.14) we deduce that & = A, + Re as in (5.6.6).
We now prove the estimates (5.6.7). Each function ; in (5.6.10) satisfies [|1;]|s <s [|B]|ws.,

see (5.6.2). The bound |x;(7)||s <s 1+ ||B]|ws+1.0 follows by (5.6.15). The tame estimates for
g;(7) defined in (5.6.13)) are more difficult because require tame estimates for the adjoint (®7)7,

V7 € [0,1]. The adjoint of the flow map can be represented as the flow map of the “adjoint” PDE

Orz = & {b(r, )0, 115 2} = b(1, 2)0pz — s (b(1,2)0,2), z€ Hz, (5.6.16)

where —II$b(7,2)0, is the L2?-adjoint of the Hamiltonian vector field in (5.6.5). We denote

by W7 the flow of (5.6.16), namely ¥ 7(v) is the solution of ([5.6.16) with U™ (v) = v.
Since the derivative 07 (®7(uo), ¥ (v))2(ry = 0, V7, we deduce that (@7 (ug), W7 (v))2(1) =
(®°(uo), \I/TO’O(’U))LZ(T), namely (recall that U7 (y) = v) the adjoint

(@™)" = w0 vy e [0,1]. (5.6.17)
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Thus it is sufficient to prove tame estimates for the flow W7, We first provide a useful expression
for the solution z(7,z) := W7 (v) of (5.6.16|), obtained by the methods of characteristics. Let

477 (y) be the flow of . Since 0;z(7,7™7 (y)) = —[ILg(b(7)02(7)] (™7 (y)) we get
2(1,77 () = v(y) + /TO (g (b(s)0p2(s)] (Y™ (y)) ds, Y7 e 0,1].

Denoting by y = « + o(7, x) the inverse diffeomorphism of z = 47 (y) = y + &(7,y), we get
70
U7 (v) = 2(1,2) = v(z + o(T, 7)) +/ [Ls(b(5)0e2(5)] (7™ (x + o (7, x))) ds
=v(z+o(1,2)) / Z s))kj(s,z)ds

JjeS
=v(x+o(r,z))+R,v, (5.6.18)

where p;(s) := —0;(b(s)€77), k;(s,x) i= 7@+ (1) and
D= [ W) by Dy .2 ds.
T jes

Since ||o (7, ) |[[ws.eo, |6(T,)[[wsee <s ||B|lws+1.00 (recall also (5.6.3)), we derive ||p;|ls <s [|5]lws+2.00,
155lls <s 1+ [[Bllwstr0 and Jlo(z + o (7, 2))lls <s lvlls + [ Blws+1.00l|v]lso, V7 € [0,1]. Moreover

IRrvlls <s suprepo, €™ ()]sl Bllwso 2.0 + supreo [ €77 (0) |0 15l wrs2.00 -

Therefore, for all 7 € [0,1],

N7 Tlls <s [Jolls + 1Bllwssr00[[0]ls

+suprefo, 1 {170 sl Bllwsorzce + U7 0]lsq [ Bllwstace } - (5.6.19)
For s = s¢ it implies
suprefo, 1] V™7 (0)llso <so 1Vllso (14 [[Bllwso+1.00) + supreo, 1 €™ (0) 56 | Bllwrso 2,20
and so, for ||B|yyso+2.0 < c(s0) small enough,

Sup-efo,1] [T (0) 150 <so [|V[lso - (5.6.20)

Finally (5.6.19)), (5.6.20) imply the tame estimate

suprepo, [ €77 (0)[[s <s [[vlls + | Bllws+zeel[v]s - (5.6.21)

By (5.6.17)) and (5.6.21]) we deduce the bound ([5.6.7) for g; defined in ((5.6.13). The tame estimate
- for ® follows by that of A and - (use Lemma [A.0.10). The estimate for @~ follows

in the same way because @1 = ®1.0 is the backward flow. O
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We conjugate L, in (5.5.34]) via the symplectic map ® = A, +Rg of Lemma We compute
(split II& = I —1Ilg)

L,® = D, + g A(b30yyy + b20yy + b10, + bo) g + Ry, (5.6.22)

where the coefficients are

b3(0,y) = Alar (1 + 5)°] ba(p,y) = AT [2(a1)a (1 + B2)? + 6a18ua(1 + B)]  (5.6.23)
2
bl(@a y) = AT [(Dwﬂ) + 3ay 1 ‘:mﬁx + 4a1/8:1:wz + 6(a1)azﬁxx
+ (@1)zz(1 + Bz) + ao(1 + /Bac):| (5.6.24)
bo(p,y) == A [1 e + a1y ey + 2(a1)xm + (al)ml e + a0 e + (ao)x} (5.6.25)

and the remainder

Rp = —T50,(e*Rs + Ru) AL — 5 (a100zs + 2(a1)20sz + ((a1)gz + a0) 0z + (a0)z) s Allg
+ [Dwa R@] + (‘Cw - Dw)R<I> . (5.6.26)

The commutator [D,, Re] has the form (5.6.6) with D,g; or Dyxj, Duv; instead of x;j, g;, ¥
respectively. Also the last term (£, — D,,)Rq in (5.6.26]) has the form (5.6.6) (note that £, — D,
does not contain derivatives with respect to ). By (5.6.22)), and decomposing I = IIg + HJS-, we
get

L,® = (D, + b30yyy + b20yy + 010, + o) + Ryp, (5.6.27)
Rir = {IIg (A — I)ILg — R } (b30yyy + b20yy + b19y + bo)IIg + Ry . (5.6.28)

Now we choose the function 3 = (p, x) such that

ar(,2)(1+ Ba(p,x))* = b3 () (5.6.29)

so that the coefficient b3 in (5.6.23)) depends only on ¢ (note that AT[b3(¢)] = b3(¢)). The only
solution of (5.6.29)) with zero space average is

B:=07"p0, po = ba(@) (@) T =1 by(e) = ( /T <a1<¢,x)>—1/3dx)*3. (5.6.30)

Applying the symplectic map ®~! in (5.6.27) we obtain the Hamiltonian operator (see Definition
3.3.1))
Ly := (I)_I,Cwq) = Hé (w . 6¢ + bg(tp)ayyy + b18y + bo)H§ + Ry (5631)

where PRy := ®'R;;. We used that, by the Hamiltonian nature of £, the coefficient by = 2(b3)y
and so, by the choice ([5.6.30]), we have by = 2(b3), = 0. In the next Lemma we analyse the structure
of the remainder ‘R;.

Lemma 5.6.2. The operator Ry has the form (5.5.7)).
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Proof. The remainders R; and Rj; have the form . Indeed Ro, R4 in have the form
(5.5.2)) (see Proposition and the term IIgAw = Z]-GS(ATeUx, w)Lz(T)eij’” has the same form.
By , the terms of R;, R;; which involves the operator R¢ have the form . All the
operations involved preserve this structure: if R,w = x(7)(w, 9(7))r2(r), T € [0, 1], then

Rellgw = x(r)([gg(r),w)r2er),  ReAw = x(1)(ATg(r), w)ramy . OoRew = xa(7)(g(7), w) 2y |
g Rrw = (Hgx(7))(g(7), w) r2(r) , ARzw = (Ax(7))(9(7), w) 2(r) » ™' Rrw = (@7 x(7))(9(7), w) 2

the last equality holds because ®™ p)w flp)® " (w) for all function f(p)). Hence Ry has
he 1 lity holds b dL(f -1 for all f ion f H R h

the form (5.5.7) where x;(7) € Hg for all T € [ 1]. O
We now put in evidence the terms of order €,¢2, ..., in by, by, Ry, recalling that a; — 1 = O(&3)

(see (5.5.38)), ap = O(¢) (see (5.5.35)-(5.5.39)), and B = O(e?) (proved below in (5.6.35)). We
expand by in (5.6.24)) as

b= —ep1 —€°p2 — g2 + DB + 4Baze + (1) + b124 (5.6.32)
where b1 >4 = O(g?) is defined by difference (the precise estimate is in Lemma .
Remark 5.6.2. The function D, 3 has zero average in x by as well as (a1)zz, Brox-
Similarly, we expand bg in as
bo = —£(p1)z — €2(P2)x — (¢>2)2 + DB + Buwzx + bo >4 (5.6.33)

where by >4 = O(g?) is defined by difference.
Using the equalities (5.6.28)), (5.6.26)) and IIg Al = ITg(A — I)IIE we get

Ry = &Ry = —! 150, Ry + R. (5.6.34)

where Ro is defined in (5.5.29) and we have renamed R, the term of order 0(52) in Ry. The
remainder R, in (5.6.34]) has the form ({5.5.7)).

Lemma 5.6.3. There is 0 = o(7,v) > 0 such that

i Li ~
I1BI15P) <, e3(1 + |75 Hsff))v 10:801ls <s €*(Illsto + 1Tsllstollsore) ,  (5.6.35)
i Li ~
lbs — 1|LPO) < et 4 242 34| 5E, 10:3[llls <s € ([2llsto + [TsllssolTllsoro)  (5.6.36)
b1, 54| EPO) - [[og 54 |[1PO) < et 4 24235 100 (5.6.37)
1051 2400l + 1000 2401ls <o 22 ([Flloso + Psllssollillspso).  (5.6.38)
The transformations ®, ®~1 satisfy
i Li ~ 1 Li Li
[DFAEPO) <[RS + (135120l (5.6.39)
Ha (@ilh)n”s =s ||h”s+a|m|80+o + ||h”80+0||AHS+J + ||J5”S+UHhHSO‘FU”AHSO"FO’ (5-6'40)

Moreover the remainder R, has the form (5.5.7), where the functions x;(7), g;(T) satisfy the

estimates ((5.5.41)-(5.5.42)) uniformly in T € [0, 1].
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Proof. The estimates (5.6.35|) follow by (5.6.30), (5.5.38)), and the usual interpolation and tame

estimates in Lemmata A.0.10] (and Lemma [5.3.13)) and (5.5.8]). For the estimates of b3, by
(5.6.30) and (5.5.35)) we consider the function r; defined in (5.5.25)). Recalling also (5.1.4]) and

(5.5.11)), the function
P1(T3) = & Ou ) s, (05)e) + 11205 112052 11(T5) = & D £5) (05, (05):) -

Hypothesis (S1) implies, as in the proof of Lemma that the space average [1.(Ou,u, f5)(vs, (V5)e)dz =
0. Hence the bound for bz — 1 follows. For the estimates on ®, ®~! we apply Lemma m
and the estimate for 8. We estimate the remainder R, in (5.6.34), using (5.6.26)), (5.6.28)
and (E5A1)-E523), &

5.6.2 Reparametrization of time

The goal of this Section is to make constant the coefficient of the highest order spatial derivative
operator Oy, by a quasi-periodic reparametrization of time. We consider the change of variable

(Bw)(¢,y) == w(e +walp),y), (B 'h)(,y) = h( +wa(?),y),

where ¢ = 9 + wa(9) is the inverse diffeomorphism of ¥ = ¢ + wa(yp) in T. By conjugation, the
differential operators become

B 'w-9,B=p(¥)w-0y, B oyB=209, p:=B11+w-0,q). (5.6.41)
By (5.6.31)), using also that B and B~! commute with HJS-, we get
B7'L1B =& [pw - 9y + (B 1b3)dyyy + (B~ '01)0, + (B 'bo)]II§ + B~'9R B. (5.6.42)

We choose a such that

(B7'03)(¥) = m3p(¥), mz€R, namely b3(p)=ms(l+w-dpa(p)) (5.6.43)
(recall (5.6.41))). The unique solution with zero average of (5.6.43)) is
1 _
alp) = mig(w -0p) M bs —m3) (),  mg3:= / bs(p)de . (5.6.44)

Hence, by (5.6.42)),

B7'LiB = pLsy, Lo := g (w - Dy + m3Byyy + €10y + co)[Ig + Ro (5.6.45)
c1:=p YB7), ¢ :=p (B ), Ry = p 'B7IRB. (5.6.46)

The transformed operator Lo in is still Hamiltonian, since the reparametrization of time
preserves the Hamiltonian structure, see Remark

We now put in evidence the terms of order €,€2,... in ¢1,¢c9. To this aim, we anticipate the
following estimates: p(9) = 1+ O(e?), a = O(e*y™1), m3 = 1+ O(e*), B™' — I = O(a) (in
low norm), which are proved in Lemma below. Then, by -, we expand the
functions cq, ¢y in as

c1 = —ep1—e’pa— B gsa+e(pi— B p1) +2(p2— B pa) + Do B4+4Brsn + (a1 ) gz +c1,54, (5.6.47)
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co = —e(p1)s — 2(P2)e — (B 'g52)s +e(p1 — B~ 'p1)s + €2 (p2 — B 'p2)s + (DuB)a
+ Brozz + €0,>4, (5648)

where ¢ >4,¢0>4 = O(g*) are defined by difference.

Remark 5.6.3. The functions e(p; — B~ 'p1) = O(e5y™1) and €%(p2 — B™1pa) = O(8971), see
(5.6.53|). For the reducibility scheme, the terms of order 80 with size O(>y~1) are perturbative,
since e9y72 <« 1.

The remainder Ry in has still the form and, by ,
Ry = —p BT B = 1150, Ry + R, (5.6.49)
where R is defined in and we have renamed R, the term of order 0(52) in Ro.
Lemma 5.6.4. There is 0 = o(v,7) > 0 (possibly larger than o in Lemmal[5.6.3) such that

Ims — 1P < Cet, |aimsfi]] < CePF2[Tl]syt0 (5.6.50)

. B o . N

laf[BPO) < eyt 2 Y 35|52 asafillls <s €2 ([llsro + 1 Tsllsrolllsoro) o
(5.6.51)
i Li ~

lp = 1EPO) < et 4 8235|1500 9l <o €2 (1llsro + [ TsllstolEllsoro) (5.6.52)
Ik — B~ pr|P0) < eyt 2yt 35 BPO) g — 1,2 (5.6.53)
105 (o — B~ o) [@lls <s 727 (|l stor + 1 T5 |50 2] s0-4r) (5.6.54)
1B gsal|FPO) < 3 4 |75 L, (5.6.55)
10:(B™ g=2)[lls <s €°(I[ells4o + |Ts]lstolllso+o) - (5.6.56)

The terms c1,>4, co >4 satisfy the bounds (5.6.37)-(5.6.38)). The transformations B, B~1 satisfy the
estimates (5.6.39), (5.6.40). The remainder R, has the form (5.5.7), and the functions g;(7), x;(7)

satisfy the estimates (5.5.41)-(5.5.42)) for all T € [0, 1].

Proof. (5.6.50)) follows from (5.6.44),(5.6.36). The estimate ||o||s <s e*y~! 4+ 72971 T5]|s20 and
the inequality for 0;av in ((5.6.51)) follow by (5.6.44)),(5.6.36)),(5.6.50). For the first bound in (5.6.51))
we also differentiate (5.6.44) with respect to the parameter w. The estimates for p follow from
p—lIBfl(b;;—m:g)/m;g. ]

5.6.3 Translation of the space variable

In view of the next linear Birkhoff normal form steps (whose goal is to eliminate the terms of size

e and £2), in the expressions ((5.6.47), (5.6.48)) we split p; = p1 + (p1 — p1), p2 = P2 + (p2 — P2) (see
(5.5.35))), where

pLi=60, Py = 6m[(8;'0)?, =y s gettl)ecli, (5.6.57)

and ¢ : S — Z" is the odd injective map (see ((1.3.7))

0:S—=7" L75):=e, L=3)=—L7)=—e, i=1,...,v, (5.6.58)

denoting by e; = (0,...,1,...,0) the i-th vector of the canonical basis of R”.

125



Remark 5.6.4. All the functions p1, D2, p1 — D1, p2 — D2 have zero average in x.

We write the variable coefficients c¢1, ¢y of the operator Ly in (5.6.45) (see (5.6.47)), (5.6.48)) as

c1 = —€P1 — €°P2 + Gy + €134, co=—e(P1)z — €2(P2)z + Qe + €034 (5.6.59)

where we define
Qe; =4+ 4Byra + (al)xx y  Geg = Qx T+ Bz (5660)
q:=c(p1— B 'p1) +e(Br —p1) +2(p2 — B 'p2) + (P2 — p2) — B lgs2 + DuB. (5.6.61)

Remark 5.6.5. The functions qc,,qc, have zero average in x (see Remarks and Lemma
:

Lemma 5.6.5. The functions pr — px, k= 1,2 and q.,,, m = 0,1, satisfy
1Pk — Pl <o (135150, 10:(Dr — pe) (s <s 2l + 1135l [12llso (5.6.62)

i - Li i ~
e I5PD <, &8+ ellT 557 s 10ien BIEPD <5 e(fillsro + [ TsllstolFlsoro) - (5.6.63)

Proof. The bound (5.6.62)) follows from (5.6.57)), (5.5.35)), (5.5.11), (5.5.8). Then use ([5.6.62)),
(5.6.53)-(5.6.56), (5.6.35), (5.5.38)) to prove (5.6.63)). The biggest term comes from e(p; — p1). O

We now apply the transformation 7 defined in whose goal is to remove the space
average from the coefficient in front of 9,,.
Consider the change of the space variable z = y + p(J) which induces on Hg, (T"*+1) the
operators
(Tw)(¥,y) = w®,y+p@)), (T h)(V,2)=h(0,z—p(9)) (5.6.64)

(which are a particular case of those used in Section [5.6.1). The differential operator becomes
T 1w 0yT = w0y + {w-09p(¥)}0,, T~10,T = 8,. Since 7,7 ~! commute with HJS-, we get

L3 = T_IEQT = H§ (W -0y +m30... +di0, + dO)H§ +Rs, (5665)
dy = (T te))+w-dgp, do:=T 'eg, R3:=T 'NR,7T. (5.6.66)
We choose
my :—/ adddy, p:=(w- 819)_1<m1 — / cldy) , (5.6.67)
Tv+1 T

so that [1di(0,2)dz = m for all ¥ € T". Note that, by (5.6.59),

[awmdr= [ asiu)dy. w-0m0) =m - [ . dy (5.6.68)
T T T

because p1, P2, ¢c, have all zero space-average. Also note that 3 has the form (5.5.7)). Since 7 is
symplectic, the operator L3 in ((5.6.65)) is Hamiltonian.

Remark 5.6.6. We require Hypothesis (S1) so that the function qs2 has zero space average (see

Lemma . If g=2 did not have zero average, then p in (5.6.67) would have size O(e3y~1) (see
(5.5.31))) and, since T~ — I = O(e3y~1), the function do in (5.6.71)) would satisfy dy = O(e*y™1).

Therefore it would remain a term of order 02 which is not perturbative for the reducibility scheme
of Section [5.6.71.
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We put in evidence the terms of size ¢,£? in dp, di, Rs. Recalling (5.6.66)), (5.6.59)), we split

dy = —ep1 — 62;52 + Jl , do= —E(ﬁl)x — 62(]52)1 + Lio , Ry = —52H§6w7?2 + ﬁ* (5.6.69)

where R is obtained replacing vs with ¥ in Ra (see (5.5.29))), and

dy=e(pr—T ')+ (P2 — T 'P2) + T ' (qey + c1,24) +w - yp, (5.6.70)
CZO =e(p1 — 771]51)1» + 82(]32 — Tﬁlﬁg)x + Tﬁl(qc() + co,>4), (5.6.71)
Ro:=T 'R.T + ’IE0,(Ry — T 'RyT) + 21150, (Ry — Ra), (5.6.72)

and R, is defined in (5.6.49). We have also used that 7! commutes with 9, and with Hé.
Remark 5.6.7. The space average [; d(0,2)dz = Jpdi(9,2)dz =my for all ¥ € T".

Lemma 5.6.6. There is 0 := o(v,7) > 0 (possibly larger than in Lemma such that

I [PO) < Cet, 19;ma 1] < CE"*2[[Ellsgso (5.6.73)
L — ~
IplIEPD) <, ety ™t + P23l aipfllle <o €2y ([illero + 1T6llstolEllsoto)
(5.6.74)
L 7 ~
Id PO <, €371+ el|T5 |50 105 [lls <s e([@lls+o + 1Ts]lstolTllso+0)  (5.6.75)

for k =0,1. Moreover the matriz s-decay norm (see (3.1.1)))

~ . ~ Li ~ _ ~
IR PO < &3 4 23|50 1R < 2 [Tllsso + €2 | Tslstolillsoro - (5.6.76)

The transformations T, T~ satisfy (5.6.39), (5.6.40).

Proof. The estimates (5.6.73)), (5.6.74) follow by (5.6.67),(5.6.59),(5.6.68), and the bounds for
C1,>4,C0,>4 in Lemma - The estimates ) follow similarly by (|5 6. 63|) (5.6.68)), (5.6.74]).
The estimates follow because 7~ 1R ’T satlsﬁes the bounds ) like R, does (use
Lemmamand (]56_74[) and 21150, (Rs —R2)|Llp( "<, 2|35 ||I;jrpa . O

It is sufficient to estimate R, (which has the form (5.5.7))) only in the s-decay norm (see (5.6.70)))
because the next transformations will preserve it. Such norms are used in the reducibility scheme

of Section

5.6.4 Linear Birkhoff normal form. Step 1

Now we eliminate the terms of order € and e? of £3. This step is different from the reducibility steps
that we shall perform in Section because the diophantine constant v = o(e?) (see (5.3.4))
and so terms O(g), O(¢?) are not perturbative. This reduction is possible thanks to the special
form of the terms eB;, 2B, defined in : the harmonics of By, and €T in , which
correspond to a possible small divisor are naught, see Corollary and Lemma In this
Section we eliminate the term eB;. In Section we eliminate the terms of order 2.

Note that, since the previous transformations ®, B, T are O(s*y~!)-close to the identity, the
terms of order € and €2 in L3 are the same as in the original linearized operator.
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We first collect all the terms of order € and £ in the operator L3 defined in (5.6.65)). By (5.6.69),
(5.5.29), (5.6.57) we have, renaming ¥ = ¢, z = x,

L3 = HJS_ (w . 8<p + m30sz0 + B + 5282 + Czlau’l? + CZO)HJS_ + ji*

where dy, dy, R are defined in (5.6.70)-(5.6.72) and (recall also (4.1.50))

Bih := —60,(th), Boh := —60,{v1ls[(0,'0) 0, 'h] + hmo[(0, '0)?]} + 6mo{ (0, '0)Is[vh]}.
(5.6.77)
Note that By and By are the linear Hamiltonian vector fields of H § generated, respectively, by the
Hamiltonian z — 3 [, vz? in (5.1.6)), and the fourth order Birkhoff Hamiltonian Hy 2 in (5.1.7) at
v =7.
We transform L3 by a symplectic operator ®; : Hg, (T**') — H, (T**!) of the form

Ek—?) 1

A? ~ ~
®y = exp(ed) = H: T eA1 + 6271 +e34;, A= ka? 1>

(5.6.78)
where Ai(p)h =3, cge (Al)gl(gp)hj/eij’“" is a Hamiltonian vector field. The map ®; is symplectic,
because it is the time-1 flow of a Hamiltonian vector field. Therefore
L3®) — &1L (Dyy + M3dae ) I1E (5.6.79)
= 115 (e{Du A1 + m3[0psz, A1] + B1} + 2 {B1 A1 + By + %m3[8xzxa A7+ %(DwA%)} +d19; + R3)TIE
where
R3 := d10,(®1 — I)+do®1+Ru®1 +&2Bo(® — I)
4 3Dy Ay +m15 (000, Ai] +%BlA%+sBlﬁl} . (5.6.80)

Remark 5.6.8. R3 has no longer the form (5.5.7). However Ry = O(82) because Ay = O(9; 1)

(see Lemma , and therefore ®; — HE = O(0;1). Moreover the matriz decay norm of Rs is
o(e?).

In order to eliminate the order ¢ from (5.6.79)), we choose

(Bl)]l(l) i o -/ .
(Al)zl(l) = _i(w .1 n m3](j/3 7]’3)) ifo-l +j 3 ]3 7& 0’

0 otherwise,

j.j' €S ler’. (5.6.81)

This definition is well posed. Indeed, by (5.6.77)) and (5.6.57]),

61/ ifj-j €S, =07

0 otherwise.

(B! (1) = { (5.6.82)

In particular (Bl)gl (1) = 0 unless |I] < 1. Thus, for @ -1+ j" — j3 # 0, the denominators in (5.6.81))
satisfy

w1+ m3(i"? = 5°) = Img(@ - 1+ § = 5°) + (w — maw) - ]
> |mgl|w -l+j’3 —j3y —|jw—msw||l| >1/2, V|| <1, (5.6.83)
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for e small, because the non zero integer | -1 + 5 — 53| > 1, (5.6.50), and w = @ + O(£?).
Aj defined in (5.6.81) is a Hamiltonian vector field as Bj.

Remark 5.6.9. This is a general fact: the denominators 0y = i(w -1+ ma(k3 — j3)) satisfy

5;4116 = d_y 1, and an operator G(p) is self-adjoint if and only if its matrixz elements satisfy G;‘?(l) =
Gi(—l). In a more intrinsic way, we could solve the homological equation of this Birkhoff step
directly for the Hamiltonian function whose flow generates ®1.

Lemma 5.6.7. Ifj,j' € S¢, j—j' €S,1=4(j —j"), then@ -1+ 5 — 53 = 355" (j' — j) #O.

Proof. We have @ -1 =w-£(j —j') = (j — j')% because j — j' € S (see (5.0.3)) and (5.6.58))). Note
that j, 7' # 0 because 7,7’ € S¢, and j — j' # 0 because j — j' € S. O

Corollary 5.6.1. Let j,j' € S¢. If @ -1+ j — j3 =0 then (Bl)?(l) =0.

Proof. If (B1)? (1) # 0 then j — j'€ 5,1 = £(j — j') by (5.6.82). Hence &- 1+ j® — j3# 0 by Lemma

10.6.7] O
By (5.6.81]) and the previous corollary, the term of order ¢ in ([5.6.79) is
1% (Do A1 + m3[0pga, A1) + B1)1Ig = 0. (5.6.84)

We now estimate the transformation A;.
Lemma 5.6.8. (i) For alll € Z¥, j,j' € S°,

(A} O < CUil+ 1D 1(ADT O < e 25+ 17" (5.6.85)
(i1) (Al)g:/(l) =0 foralll € Z", j,j' € S° such that |j — j'| > Cg, where Cs := max{|j| : j € S}.
Proof. (i) We already noted that (Al)gl(l) =0, V|I] > 1. Since |w| < |@| 4+ 1, one has, for |I| <1,
i# 7,
o Lg% = ) 2 mallf® = )~ 1] 2 (% + ) — ol 2 (2 + ), WGP+ 2,
for some constant C' > 0. Moreover, recalling that also holds, we deduce that for j # 5,

AN M) #£0 = |w-l+ms(i® )] > e(lj] + 15'])?. (5.6.86)

On the other hand, if j = j/, j € S°, the matrix (41)’(I) = 0, VI € Z”, because (B;)() = 0 by
(5.6.82)) (recall that 0 ¢ S). Hence (5.6.86) holds for all j,j". By (5.6.81)), (5.6.86)), (5.6.82) we
deduce the first bound in (5.6.85)). The Lipschitz bound follows similarly (use also |j — j'| < Cyg).

(i) follows by (5.6.81))-(5.6.82)). O

The previous lemma means that A = O(]9,|~!). More precisely we deduce that

Lemma 5.6.9. [A4,0,[5*") +9,4,|5P") < O (s).
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Proof. Recalling the definition of the (space-time) matrix norm in (3.1.15)), since (Al)gf(l) =0
outside the set of indices |I| < 1,[j1 — jo| < Cg, we have

. 2
el = Y (sw Ll (A)EO1) ) < CGs)
<1, ljl<cs I
by Lemma m The estimates for |A10,|s and the Lipschitz bounds follow similarly. O

It follows that the symplectic map ®1 in (5.6.78)) is invertible for ¢ small, with inverse

Enfl

(I’l_l = exp(—sAl) = Hé_ + 61211, Al = Z (—Al)n,

n>1 nl
|A10, [P0 410, A, |HPO) < O (s). (5.6.87)

Since A; solves the homological equation m, the e-term in (5.6.79) is zero, and, with a
straightforward calculation, the e2-term simplifies to By + & [Bl, A1]. We obtain the Hamiltonian

operator
L= &7 LDy = 15(Dey + m3Oaw + d10s + £2{Ba + 5[B1, A1]} + Ra)IIE (5.6.88)
Ry = (®7' — DS [E*(By + LBy, A1]) + d10,] + @7 IS Rs . (5.6.89)

We split A1 defined in (5.6.81)), (5.6.82)) into 4; = A1 + A where, for all 7,7’ € S¢, 1 € Z",

N 67+/&j—j' e . . . o
(A1); (1) ;WM if @-1+5° 5240, j—j €8 I=ji-j),  (56.90)

and (/_11);,(1) := 0 otherwise. By Lemma [5.6.7 for all j,j" € S¢ [ € Z", (Al)gl(l) 2ng7 ]]) if

j—73 €8, 1=4j—-j), and (/_11)?([) = 0 otherwise, namely (recall the definition of v in (5.6.57))

Arh = 20Ig[(0;'0) (9, 'h)],  Vh e HE (T, (5.6.91)
The difference is

AV (1) — v 0VEG W = @) 1 (ms — 17 - 5°)}
(A} () = (A= A} (1) = — @ 1+ ms? =) (@ 1% 7%= ) (5.6.92)

for j,j' € 8¢, j — ' € 8, 1 =L(j — j'), and (A1)} (1) = 0 otherwise. Then, by (5.6.83),

L4 =13 (Dy + m30yue + di10y + 2T + Ry)11g (5.6.93)
where )
=By + = [Bl, Al] R, := %[Bl, Zl] + R4 . (5.6.94)

The operator T is Hamiltonian as Bo, By, A1 (the commutator of two Hamiltonian vector fields is

Hamiltonian).

Lemma 5.6.10. There is 0 = o(v,7) > 0 (possibly larger than in Lemma such that

[Raf5 ™0 < 297! 4 el| TS0 10:Rafills <o e(Flsvo + Tsllstolllsoro) - (5.6.95)
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Proof. We first estimate [Bl,gl] = (B19;1) (0, A1) — (A10,)(0;'B1). By (-6.92), lw — | <

Ce? (as w € Q. in ) and (| m, arguing as in Lemmata |5.6.8) - m, we deduce that

| 410, [FP0) 4 10,4, \L‘W e2. By (5.6.77) the norm |B,3; 1|50 19,18, [HP() < C(s). Hence
\[Bl,Al]yI;”’(” <, &t Fmally 5.6.94), (5.6.89), (5.6.87), (5.6.80), (5.6.75), (5.6.76), and the

interpolation estimate ([3.1.9)) imply m ]

5.6.5 Linear Birkhoff normal form. Step 2

The goal of this Section is to remove the term €27 from the operator £, defined in (5.6.93). We
conjugate the Hamiltonian operator £4 via a symplectic map

R R E2(k—2)
By := exp(e?Ay) = H: T Ay +e'Ay, Ay = Zk>2TA§ (5.6.96)

where As(p) =3, eSC(Az)g/(gp)hj/eijw is a Hamiltonian vector field. We compute

L4®s — o115 (D, + MO0 ) I = 15 (e2{Dy A + m3[Ogas Ao) + T} + d10, + R5)Ilg, (5.6.97)

Ry = & {e* (D As) + ms[0raa, Az]) + (d10y + €2T)(®y — I) + Ry®o}I% . (5.6.98)
We define
. 7 (1) P .
(A2)} (1) == — . — if @l+5% -2 #0;  (A)} (1):=0 otherwise. (5.6.99)

(w14 m3(5 - 5%))

This definition is well posed. Indeed, by (5.6.94), (5.6.82), (5.6.90), (5.6.77), the matrix entries
77 (1) = 0 for all |j — j/| > 2Cs, | € Z”, where Cs := max{|j|,j € S}. Also T7 () = 0 for all
4,j" € 8¢, |I| > 2 (see also (5.6.100), (5.6.103), (5.6.104) below). Thus, arguing as in (5.6.83), if
w1+ j% — 32 #0, then |w- I+ mz(5" — j3)| > 1/2. The operator A is a Hamiltonian vector field
because T' is Hamiltonian and by Remark

Now we prove that the Birkhoff map ®3 removes completely the term £27.

Lemma 5.6.11. Let j,j' € S°. If@ -1+ j — j3 =0, then T/ (i) = 0.

Proof. By (5.6.77), (5.6.91)) we get By A1h = —120,{v11&[(0; 10) (05 1h)]},

A1Bih = —1211% (9, 19)14 (oh)], Vh e HS. ,

whence, recalling (5.6.57)), for all 3,5 € S¢, 1 € Z”,

.. o/ .
yORIVA . JJ1—JJ2
([B1, A1)} (1) = 12i > 6, (5.6.100)
o — ., )12
J1,J2€S, j1t+j2=j—J
3’ +52€8¢, £(j1) (=)=l

If ([Bl,ﬁl])?(l) # 0 there are ji,jo € S such that j; + jo = 7 — ', 5’ + jo € S, £(j1) + £(j2) = L.
Then

_ . . _ . _ . . .2 (5.6.58]) . . ) .
w1+ % =P =0l + @ L) + 57 — 5P =i+ 5+ 57— 50 (5.6.101)
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Thus, if -1+ — 3 = 0, Lemma[5.1.2]implies (j1+j2) (j1+7") (ja+3') = 0. Now ji+7, ja+5' # 0
because ji, j2 € S j' € S¢ and S is symmetric. Hence j; + jo = 0, which implies j = 5 and [ = 0
(the map E in ((5.6.58)) is odd). In conclusion, if @ -1 + j”® — j2 = 0, the only nonzero matrix entry
([B1, A1) (l) is
T 1oy :6.100) . —
([Br, AY5(0) =241 Y &uip" (5.6.102)
J2€S, jo+jESe

Now we consider By in (5.6.77). Split By = By + Bs + Bs, where B1h := —60,{01ls[(0; 'v)0; 1h},
Bsh := —60,{hmo[(0;'19)?]}, Bsh := 6m{Ils(vh)d; 1v}. Their Fourier matrix representation is

BY ) =6ij 3 Venss: (Ba2)] (1) =6ij Vorbe (560

>/

J1,J2€5, j1+j'€S 1 J1,J2€S, j1+j2#0 Jij2
J1+ie=j—3",€(j1)+L(j2)=I Jitga=j—3", (1) +£(j2)=l
B (=6 > @ . giess ez (5.6.104)

= 1j2
J1,J2€5,j1+J'€S
Jrtie=j—3", (1) +L(j2)=l

We study the terms B, By, Bs separately. If (Bl)gl(l) =% 0, there are j;,j2 € S such that
Jil+jo=4—4,j1+35 €8, 1=1_041)+£(2) and (5.6.101)) holds. Thus, if @ -1 + 5" — j3 = 0,
Lemma implies (j1 + j2)(j1 +7")(J2 +4') = 0, and, since j' € S¢ and S is symmetric, the only
possibility is j1 + j2 = 0. Hence j = 5, I = 0. In conclusion, if @ -1+ j"® — 52 = 0, the only nonzero
matrix element (Bl)g- (1) is

(BUj(0)=61 > &t (5.6.105)

NES, 1+j€ES

By the same arguments, if (Bs) ',( ) #0and @-1+ 5" — 3 = 0 we find (j1 +j2)(j1 +j')( a+37') =0,
which is impossible because also j; + j2 # 0. Finally, arguing as for By, if @ -1 + j"3 — 53 = 0, then
the only nonzero matrix element (Bg) (l) is

(Be)i(0)=6i > &t (5.6.106)

J1€S,j1+j€S

From ((5.6.102)), (5.6.105)), (5.6. 106|) we deduce that, if @ -1+ j'3 — 53 = 0, then the only non zero
elements (5[By, A1] + By + Bs)] (l) must be for (1, j,7) = (0, ,7). In this case, we get

1 L :

5 ([B1, A1))j(0) + (B1)j(0) + (Bs)l(0) =121 ) @Hz > 591 = 12i 2591: (5.6.107)
j1€8 j1€8 ]ES
Ji+jese J1+J€S

because the case j; +j = 0 is impossible (j; € S, j/ € S¢ and S is symmetric), and the function

S 3 j1 — &, /71 € Ris odd. The lemma follows by (5.6.94)), (5.6.107). O
The choice of Ay in (5.6.99)) and Lemma [5.6.11| imply that
115 (Do Az + m3[Osga, A2] + T)Ig = 0. (5.6.108)

Lemma 5.6.12. |0, 42|57 4 (4,8,[5P™) < ¢(s).
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Proof. First we prove that the diagonal elements Tj(l) = 0 for all [ € Z". For [ = 0, we have

already proved that T]](O) = 0 (apply Lemma [5.6.11| with j = j/, I = 0). Moreover, in each
term [By, A1], By, Ba, Bs (see (5.6.100), (5.6.103)), (5.6.104)) the sum is over j; + jo = j — j',
I = ((j1) + £(j2). If j = j/, then ji +jo = 0, and | = 0. Thus 77(l) = 77(0) = 0. For the
off-diagonal terms j # j' we argue as in Lemmata using that all the denominators
w1+ ma(5" = 7%)| = el5] + [5'])? 0

For & small, the map ®5 in (5.6.96)) is invertible and ®3 = exp(—e2?A3). Therefore (5.6.97),
(15.6.108)) imply

L5 =0, L4®g = TIg (D + M30pae + d10, + Rs)1g (5.6.109)

Rs = (&' — I)T$d, 0, + ®, ' TIERs . (5.6.110)
Since As is a Hamiltonian vector field, the map ®, is symplectic and so L5 is Hamiltonian.
Lemma 5.6.13. Rj satisfies the same estimates (5.6.95) as Ry (with a possibly larger o).

Proof. Use (5.6.110)), Lemma [5.6.12] (5.6.75)), (5.6.98), (5.6.95) and the interpolation inequalities
B15), B19). 0

5.6.6 Descent method

The goal of this Section is to transform L5 in (5.6.109)) so that the coefficient of 0, becomes constant.
We conjugate L5 via a symplectic map of the form

S = exp(Ilg (wd; NIE = TS (I +wdy IS +S, S:= ka' [I1$ (wo, DTS,  (5.6.111)

where w ']I‘” R R is a function. Note that I (wd; 1)IIE is the Hamiltonian vector field generated

-3 fT 2dx, h € Hg 5 - Recalling (4.1.50), we calculate
L5S — SITE(D,, + m3dpee + m10y) s = IS (3maw, + dy — m1)d,I15 + Ry, (5.6.112)

R := Hké{(?)mgwm + cflﬂﬁw —miw)mo + ((Dyw) + maways + J1H§wx)8;1 + (Dwg\)
+ mg[ag;xx, 3\] + Jlaxg— mlgax + Rg,S}HJS‘

where Rg collects all the terms of order at most dY. By Remark we solve 3mawy +di —my =0
by choosing w := —(3m3)_10;1(a?1 —my). For e small, the operator S is invertible and, by (5.6.112)),

Ls =S 1L5S =115 (Dy, + m30ppe + m10)I5 + R,  Rg:=S 'Rg. (5.6.113)
Since S is symplectic, Lg is Hamiltonian (recall Definition |3.3.1)).
Lemma 5.6.14. There is 0 = o(v,7) > 0 (possibly larger than in Lemma such that
[SEL — I|EP0) <, &5yt 4 | 3|5 IaiSil[ﬂls <s e([[tlls+o + [1Tslls+ol2llsoto)-
The remainder Rg satisfies the same estimates as Ry.

Proof. By (5.6.75),(5.6.73),(5.6.50), [lwl|s™ M <, eyl 4 el|Js ||£f07), and the lemma follows by
(5-6.111). Since S = O(9;2) the commutator [Dyzs, 8] = O(32) and |[Dya, S][57) < w22 ||
O]
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5.6.7 KAM reducibility and inversion of L,

The coefficients ms3, m; of the operator Lg in (5.6.113) are constants, and the remainder Rg is a
bounded operator of order 82 with small matrix decay norm, see (5.6.116)). Then we can diagonalize
Ls by applying the iterative KAM reducibility Theorem [4.2.2] along the sequence of scales

Np:=N)X', n=0,1,2,..., x:=3/2, No>0. (5.6.114)

In Section the initial Ny will (slightly) increase to infinity as e — 0, see ([5.7.5)). The required
smallness condition (4.2.14]) (written in the present notations) is

N§°|Rg|2P Dyt < 1 (5.6.115)

where 3 := 77 4+ 6 (see (4.2.1)), 7 is the dlophantlne exponent in ) and (5.6.120)), and the
constant Cj := Co(7,v) > 0 is fixed in Theorem [4.2.2] By Lem]fnaum7 the remainder Rg satisfies

the bound ([5.6.95)), and using ([5.5.8]) we get (recall (5.3.10))
|R¢ |§;rjr(g < CeT20~1 — o320, | Rg |I;;ig)7—1 < Cel-3a (5.6.116)

We use that p in (5.5.8) is assumed to satisfy pu > o +  where o := o(7,v) is given in Lemma
b6T4

Theorem 5.6.1. (Reducibility) Assume that w — i5(w) is a Lipschitz function defined on some
subset Q, C Q. (recall (5.3.2))), satisfying (5.5.8)) with u > o + 3 where o := o(1,v) is given in
Lemmal5.6.14 and 3 := 7T + 6. Then there exists dy € (0,1) such that, if

NOCOE7_2I’7_2 = Nocosl_?’“ <&, v:=e ac(0,1/6), (5.6.117)

then:
(i) (Eigenvalues). For all w € Q. there exists a sequence

P (w) == p(w,is(w)) == i( — 1h3(w)s® + 1 (w)5) + ri(w), j€Ss, (5.6.118)
where ms, My coincide with the coefficients ms, my of Lg in (5.6.113]) for all w € Q,, and

’Lip(v)

s — 1 + [ |MPO) < get e < cedT ) e ¢ (5.6.119)

for some C > 0. All the eigenvalues w3 are purely imaginary. We define, for convenience,
pg° (w) := 0.
(ii) (Conjugacy). For all w in the set

2|33 — k3
QZ'Y 927(%) {w € |iw- 1+ ,uz?o(w) — X (w)] > M,
Ve, jke s uio} (5.6.120)

there is a real, bounded, invertible linear operator ®o(w) : HE, (TV1) — HE, (TY*), with bounded
inverse ® (w), that conjugates Lg in (5.6.113)) to constant coefficients, namely

Loo(w) 1= Ot (w) 0 L6(w) 0 Poo (W) = w - Dp + Doo(w), Doo(w) := diagjcge{p;"(w)}. (5.6.121)
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The transformations ®o, P51 are close to the identity in matriz decay norm, with

[@o0 — I[2P0) 4 |03 — 1|MP) < 9972 4 ey 7|35 L0 (5.6.122)

5,0% 0% =
Moreover ® o, @} are symplectic, and Lo is a Hamiltonian operator.

Proof. The proof is the same as the one of Theorem which is based on Theorem
Corollaries [4.2.1] and Lemmata [4.2.] A dlfference is that here w € RY, for the
forced Airy equatlon, the parameter A\ € R is one- dlmensmnal. The proof is the same because
Kirszbraun’s Theorem on Lipschitz extension of functions also holds in R” (see, e.g., Lemma A.2 in
[65]). The bound follows by Corollary and the estimate of Rg in Lemma [5.6.14] We
also use the estimates (5.6.50)), (5.6.73)) for 9;ms, d;m;. Another difference is that here the sites
j € 8¢ C Z\ {0} unlike in Chapter 4| where j € Z. We have defined p3® := 0 so that also the first
Melnikov conditions are included in the definition of Q?,z O

Remark 5.6.10. Theorem also provides the Lipschitz dependence of the (approximate) eigen-
values p7 with respect to the unknown io(p), which is used for the measure estimate Lemma .

All the parameters w € 0% satisfy (specialize (5.6.120) for & = 0)
liw - 1+ pP (W) =297, VIeZ, jeSe, (5.6.123)

and the diagonal operator L is invertible.
In the following theorem we finally verify the inversion assumption (5.4.46)) for L.

Theorem 5.6.2. (Inversion of L,) Assume the hypotheses of Theorem |5.6.1 and (5.6.117)).
Then there exists oy := o1(r,v) > 0 such that, Vw € Q2l(is) (see (5.6.120)), for any function
€ H;ial (T*1) the equation L, h = g has a solution h = L1g € HE, (TY*+1), satisfying

- Li Li _ Li Li
uzwlgn;p(”é g + v s lglar ) (5.6.124)
Li L 1y~ L L
<o (gl + e {10l e + 7 130l 1 Z 15T o gl ™)

Proof. Collecting Theorem with the results of Sections [5.6.1}{5.6.6] we have obtained the
(semi)-conjugation of the operator £, (defined in ([5.5.34])) to Lo (defined in (5.6.121))), namely

Lo =M LoM5, M= ®BpT® 8,80, My := PBTD 5,8, , (5.6.125)

where p means the multiplication operator by the function p defined in (5.6.41)). By (5.6.123) and
Lemma we deduce that ||,C§olg”£ip(’y Ss ’Y_ngHISJfQZ-)Q—l In order to estimate Mo, M7, we
recall that the composition of tame maps is tame, see Lemma
Lemma [5.6.3, B, B~! and p in Lemma 7,7 ! in Lemma The decay norms |®q|s
|<I>f1|£fip v, |<1>2|I;ip(7), ]@;HEP(V) < C(s) by Lemmata 2 The decay norm of §,S7!

estimated in Lemma and @, @5 in (5.6.122)). The decay norm controls the Sobolev norm

by (3.1.11)). Thus, by ([5.6.125|),

Li - Li Li — L Li
| MahI[EPO) 4 IMTRIEPO) < [IRfEEY + ey 35l s PO

and (5.6.124)) follows. The last inequality in (5.6.124)) follows by (5.4.17)) and (5.4.4)). O

Now P, P~ L are estimated in
Lip 'y)
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5.7 The Nash-Moser nonlinear iteration

In this Section we prove Theorem It will be a consequence of the Nash-Moser Theorem
below.
Consider the finite-dimensional subspaces

En = {j(gp) = (@,y,Z)(QD) 0= Hn@a Yy = Hny> Z = an}

where N,, := NS‘n are introduced in ((5.6.114]), and II,, are the projectors (which, with a small abuse
of notation, we denote with the same symbol)

= Z 0% Iy(p Z yel?, where O(p Z@lelw y(p) = Zyleilw’

[I|<Nn [l|<Np lezv lezv

I, z(p,z) := Z zljei(l"pﬂx), where z(p,z) = Z zljei(l"”jm). (5.7.1)
[(LA)<Nn lezv jese

We define HL := I —II,,. The classical smoothing properties hold: for all a,s > 0,

ITL, 3520 < N& 3| LP0) | a(w) € B, TES|LP0) < N 3| MR va(w) € B (5.7.2)

We define the constants
p1:=3u+9, a:=3u +1, ag = (a—3p)/2, (5.7.3)
1—3a
01(1 + a) ’
where p := pu(7,v) is the “loss of regularity” defined in Theorem |5.4.1| (see (5.4.54))) and C} is fixed
below.

ki=3(um+p )+1,  Bii=6m+3p ' +3, 0<p< (5.7.4)

Theorem 5.7.1. (Nash-Moser) Assume that f € C? with ¢ > S := so+ (1 + p + 3. Let
T > v+ 2. Then there exist C1 > max{pu + o, Co} (where Cy := Cy(7,v) is the one in Theorem

, 00 := 0o(7,v) > 0 such that, if
]\foclfsb*“v_2 <&y, yi=etr=e®_ Ny:=(ev1, b,:=6-2b, (5.7.5)
then, for alln > 0:

(P1),, there exists a function (J an) Gn C Qe — Ep 1 X RY, w = (Tp(w), Gu(w)), (Jo,C0) :== 0,
By = {0}, satisfying |Gu["*0) < CIF () 2",
Li Li
9alls) < Cubor™ IF @I < Cuc™ (5:76)
where Uy, = (in, Gu) with in(p) = (p,0,0) + T, (). The sets G, are defined inductively by:
Go={weQ: : |w-l|>29()"7,Vl € 2"\ {0} },
29n)5° — K|
0"
where vy, == v(1+27") and p3°(w) = p3°(w,in(w)) are defined in (5.6.118)) (and pg°(w) =0).
The differences :J"\n =T, — Jn—1 (where we set 30 :=0) is defined on G, and satisfy

Grp1 = {w € G ¢ [l IS (i) — 2 ()| > Vi, k€ SCU{0}, 1 € Z”} , (5.7.7)

I3lIE50) < Cug®y™h, Balln ) < Cug®yTINY L V> 1. (5.7.8)
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(P2),, ||F(U, HLIP ") < Cye™ N % where we set N_y := 1.

(P3), (High norms). ||Jn"§$iﬁ1 < CoePyINE | and || F(U, )||£f;3_g) < Ce® NF

(P4),, (Measure). The measure of the “Cantor-like” sets G, satisfies

9\ Go| < C.e® Dy, |G\ Gust| < Cue® VAN (5.7.9)

Lip(y _ H HLIP 7).

All the Lip norms are defined on G, namely || ||s 5Gn

Proof. To simplify notations, in this proof we denote || [|“P(") by || ||. We first prove (P1,2,3),,.

STEP 1: Proof of (P1,2,3)0. Recalling (5.3.6)) we have || F(Up)||s = || F(¢,0,0,0)||s = || Xp(p,0,0)|s <s
£6=20 by (5.3.15). Hence (recall that b, = 6 — 2b) the smallness conditions in (P1)g-(P3)o hold
taking C, := Cy(so + (1) large enough.

STEP 2: Assume that (P1,2,3), hold for some n >0, and prove (P1,2,3)p+1. By (5.7.5)) and

E7D.

NOClEb*Jrl 2 _ N0C'1€173a — Elf3apr1(1+a) <

-
for e small enough and the smallness condition (5.6.117)) holds. Moreover (5.7.6) imply ( -

(and so (5.5.8)) and Theorem [5.6.2) applies. Hence the operator L, := L, (w,zn( )) defined in
(15.4.45] is invertible for all w € G,41 and the last estimate in (5.6.124]) holds. This means that the

assumption ([5.4.46)) of Theorem is verified with Qo = Gp41. By Theorem there exists
an approximate inverse T, (w) := To(w, i, (w)) of the linearized operator L, (w) := d; ¢ F (w, in(w)),

satisfying (5.4.54). Thus, using also (5.7.5)), (5.7.2)), (5.7.6]),

HTngHS s (HgHS*‘# +57_1{||3HHS+M +'7_1||jnH50+uH‘7:(Un)Hs+u}||g||so+u) (5-7-10)
HTngHSO <so YV HgHso-i-u (5.7.11)

and, by (5.4.55)), using also (5.7.6)), (5.7.5)), (5.7.2)),

1(Ln 0 To = D glls <s v (IFUn)lso+ullglls + 1FOn) st ullgllsosn
+ ey Tnllstul FUn) lsoiallgllso+n) (5.7.12)
1(Zn 0 T = Dgllso <so v IFUn)llsorullgllso+n
Sso ’Y_l(Han(Un)Hso-i-u + ||H£L_F(Un)HSO+U)HgHSO‘f‘H
<so NIV (IFOn)llso + Ny HIF O llso-+1) 190+ - (5.7.13)

Then, for all w € G, 11, n > 0, we define
Upir :=Up+ Hpr1, Hns1:= Onits Cng1) = —1L,T,I,F(U,) € E, x R”, (5.7.14)

where I1,,(3,¢) := (11,3, ¢) with IL, in (5.7.1). Since L,, := d; ¢ F(in), we write F(Upy1) = F(Un) +
LoHpi1 4+ Qn, where

Qn = Q(UnaHnJrl) ) Q(UH’H) = I(Un + H) - ]:(Un) —L,H, HeE,xR" (5'7‘15)
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Then, by the definition of H,,,1 in ((5.7.14)), and writing ﬁf;(j, ¢) := (II:7,0), we have

F(Uns1) = F(Up) — LIl Tl F(Uy) + Qn = F(Up) — LnTolly F(Uy) 4 LyIIE T, 1L, F(U,) + Qn
= F(Upn) — I, Ly TWIL, F(Uy) + (LpILE — I L) TR 1L, F(U) + Qn
=ILF(U) 4 Ry + Qn + Q) (5.7.16)

where
Ry = (LpIL — X L) T ILF(U,), Q= —,(L,T, — DIL,F(U,). (5.7.17)
Lemma 5.7.1. Define
wp = ey | FUn)llso»  Bni=ev U Tnllsors +ev 21 F(Un)llsors: - (5.7.18)

Then there exists K := K(sg, 1) > 0 such that, for alln > 0, setting p1 :=3pu+9 (see (5.7.3))),

41 41
wnn < KNP B L KNmW? . B <KENDTB,. (5.7.19)

Proof. We estimate separately the terms @, in (5.7.15) and Q/,, R,, in (5.7.17)).
FEstimate of Q. By (5.7.15)), (5.3.6)), (5.3.20) and (5.7.6)), , we have the quadratic estimates

1QUn, H)lls <s e(ITNls3l1Tllso+3 + 1Tnllst3l13112,43) (5.7.20)
1QUn, H)llsy sy eNp 313, VI € Ey. (5.7.21)

S0 7

Now by the definition of H,,11 in (5.7.14)) and (5.7.2)), (5.7.10)), (5.7.11)), (5.7.6)), we get

”jn—i-lusoﬂ?l <so+B41 Nﬁ(')’ilH]:(Un)”soer + 8772HF(UN)HSO"FN{HJNHSO‘F,BI +771H~7:(Un)‘|80+51})
o8 NE(YHIFUn)llso481 + [Tnllsors) » (5.7.22)
Brtiller oo 7 NENF )l - (5.7.23)

Then the term @, in (5.7.15) satisfies, by (5.7.20), (5.7.21)), (5.7.22)), (5.7.23), (5.7.5), (5.7.6)),
(P2),., (6T3),

1Qullsorsn <sors Not 0y (v HIF(Un)llsorsy + 1Tnllsoss:1) - (5.7.24)
1Qnllso <so Nt H0ey 2| F (U2, - (5.7.25)

FEstimate of Q!,. The bounds (5.7.12)), (5.7.13)), (5.7.2)), (5.7.3)), (5.7.6) imply

1@ llso+81 <so+s Na (IF(Un)llso+1 + [ Fnllsos: IF (Un)lso) (5.7.26)
1Qnllso <so 7 N (IF (Un)llso + No P IF Un) lsg60) 1F (U)o - (5.7.27)

Estimate of R,. For H = (3,() we have (LpIL- — AL, )H = [Dn,HTﬂS = [[,,, D,,]3 where
Dy, = d;i Xp_(in) + (0,0, 0zzz). Thus Lemma [5.3.1, (5.7.6), (5.7.2)) and (5.3.19) imply

H(Lan{ - H#LW)HHSO Sso+61 5N551+N+3(HJHSO+K317“ + Hjn‘|50+51*MHJHSO+3) ) (5.7.28)
N(LaTTE = T L) Hllayi . <o N2 (15 a1 + [Tl 1l Bllos3) - (5.7.29)
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Hence, applying (5.7.10)), (5.7.28), (5.7.29), (5.7.5)), (5.7.6)), (5.7.2), the term R,, defined in (5.7.17))
satisfies

1Rallso <sots Nito 2 (er HIF(Un)lsorpr + €llTnllsorsn) (5.7.30)
1Rnllso+80 <sotsn NA (v HIFUn)llsors + €l Tnllsorsn) - (5.7.31)

Estimate of F(Uy,41). By (5.7.16) and (5.7.24), (5.7.25), (5.7.26), (5.7.27), (5.7.30), (5.7.31), (5.7.5),
(5.7.6)), we get

IFUns)llso Ssorsr NE v IFUn)lsorpn + elTnllsors) + Ny 2 F(U)IIE, . (5.7.32)

S0 ?

IFUns1)lso+80 <sorm NEH €y NFUn)llsorsy + ellTnllsoa) (5.7.33)

where p; :=3u +9.
Estimate of J,11. Using (5.7.22) the term J,,41 = J,, + Tpn+1 is bounded by

||jn+1H80+ﬁ1 Ssot+h N#(”jn||80+ﬁ1 + 771”}—(Un)”80+ﬁ1)' (5.7.34)

Finally, recalling (5.7.18)), the inequalities (5.7.19)) follow by (5.7.32)-(5.7.34), (5.7.6) and ey~ =
1/p L/p

Ny'" < Ni/™ O

Proof of (P3)n+1. By (5.7.19) and (P3),,
pitt bet1_—2 pty bet1,—2 a7k
Bpi1 < KNy 7B, < 20, Kby 2N TP NE | < Oub iy 2N (5.7.35)
1_
provided 2K N: 7 HNT'ffl <1, ¥n > 0. This inequality holds by ([5.7.4)), taking Ny large enough
(i.e £ small enough). By (5.7.18)), the bound By, +1 < Cie®F1y=2N¥ implies (P3),,41.
Proof of (P2)p+1. Using (5.7.19)), (5.7.18) and (P2),, (P3),, we get

41 +1_
wnpt < KNS B 4 KNMw? < KNYT T 00, bty NS KN (et N )2

which is < Cye®T1y=2 N~ provided that

1_
AENS T TOTONE 1 9K O, ENION T2 < 1y > 0, (5.7.36)

The inequalities in (5.7.36]) hold by (5.7.3)-(5.7.4), (5.7.5), C1 > p1 + «, taking dg in (5.7.5]) small
enough. By (5.7.18), the inequality wy, ;1 < Cye® 1y "2N - implies (P2)n 1.

Proof of (P1)p4+1. The bound (j5.7.8]) for 3, follows by (5.7.14), (5.7.10) (for s = sp + ) and
1) sos2p = [F(2.0,0,0) a2 soszp - The bound (B.78) for Ine follows by (B72),
(5.7.23), (P2)n, (5.7.3). It remains to prove that (5.7.6) holds at the step n + 1. We have

~ ntl =~ -
[Tn+1llso4n < Zkzlqu”SOJFM < Cuey IZ

for Ny large enough, i.e. ¢ small. Moreover, using (5.7.2), (P2)n+1, (P3)n+1, (5.7.3), we get

IFOns)lsorpt < NP IFUns)llso + N2 TPNF Uni) o1
< O NE3=a o 0 gbs NiH3=B1tr < 0 gbe

o N < Cebyt (5.7.37)
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which is the second inequality in (5.7.6)) at the step n41. The bound |, 41|%P0) < C||F(Upi1) HI;;”(”
is a consequence of Lemma (it is not inductive).

STEP 3: Prove (P4), for alln > 0. For all n > 0,

Gu\Gnir=|J  Riyn(in) (5.7.38)

lez”, j,keScU{0}

where
Riji(in) = {w € Gn ¢ liw - 14 p5°(in) — > (in)| < 29nl5® — K[ ()77 }. (5.7.39)

Notice that Ry (in) = 0 if j = k, so that we suppose in the sequel that j # k.
Lemma 5.7.2. For alln > 1, |l| < Ny,_1, the set Ry (in) C Rijk(in—1).

Proof. Like Lemma m (with w in the role of A@, and N,,_; instead of N,,). O

By definition, Ryji(in) € Gn (see (5.7.39)) and Lemma implies that, for all n > 1, |I| <
Np—1, the set Ryjx(in) € Ryjk(in—1). On the other hand Ryji(in—1) N Gn = 0 (see (5.7.7)). As a

consequence, for all [I| < Ny,_1, Ry;x(in) = 0 and, by (5.7.38)),

[1|>Nyp—1, 4,k€SeU{0}

Lemma 5.7.3. Let n > 0. If Ry, (in) # 0 then |I| > C|j3 — k3| > 3C(j% + k?) for some C > 0.

Proof. Like Lemmal4.3.3] The only difference is that w is not constrained to a fixed direction. Note
also that |73 — k%] > (j% + k%)/2, Vj # k. O

Lemma 5.7.4. For all n > 0, the measure | Ry, (in)| < Ce2=Dy(1)7T.
Proof. Defining
P(w) i=iw - I+ pg®(w) — pi (@),

*(w,ip(w)) for all j € S¢ we can write

where ,uz?o(w) = U

Riji(in) = {w € Gn : [p(w)] < 2v|i® — KP[(1) "7} .

Let us write
wzz\s—i—v, l:=— veRY, v-1=0
and let us define
U(s) = o(ls+v).
Using Lemma the estimate (5.6.119)), we get (for ¢ small enough)
l
o(s1) — (o) > 2

‘81 - 52’7

which implies
{5+ 05+ v € Ryein)}| < v
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Hence by Fubini’s Theorem (using that G,, C Q. for all n > 0)
[ Rilin)| < diam (@)~ 4 (1) < diam(Q)" "y {1) ™ < C2 Doy (1)~

and the lemma is proved. O

By (5.7.38) and Lemmata we get

1Go \ G1| < Z | Ryjk(i0)| < Z W < (e v.
ZGZDJ]M]C‘SC'”I/Q =y/d
For n > 1, by (5.7.40),
COe2v— )

|gn \ gn+1| < Z |lek(ln)| < Z < Cl 2= l)lyNnifll

1> N1, 3], k| <CJi|1/2 [l>Np—1

1

because 7 > v + 2. The estimate |Q. \ Go| < Ce>* D~ is elementary. Thus (5.7.9) is proved. [

Proof of Theorem concluded. Theorem implies that the sequence (Jy, (,) is well

defined for w € Goo := Np>0Gp, that J, is a Cauchy sequence in || H?gi(l)goo, see (5.7.8), and

|¢u[MP() — 0. Therefore J, converges to a limit Jo, in norm || ||£,‘;3_Z)goo and, by (P2),, for all
W € Goo, Too(p) := (¢,0,0) + Too(), is a solution of

. . L _ _
Flic,0) =0 with [|Too|[100), < B2y

by (5.7.6)) (recall that b, := 6 — 2b). Therefore ¢ — i (¢p) is an invariant torus for the Hamiltonian

vector field Xp_ (see (5.3.5). By (5.7.9),

[\ Gool <19\ Gol + D~ 1Gn \ Gup1| < 20207y + W70y Y N < Oy

n>0 n>1

The set . in has measure |Q.| = O(¢?). Hence | \ Gool|/|2%| — 0 as e — 0 because
v = o(?), and therefore the measure of C. := G, satisfies (5.3.11]).

In order to complete the proof of Theorem [5.3.1] we show the linear stability of the solution
ico(wt). By Section the system obtained linearizing the Hamiltonian vector field Xp_ at a
quasi-periodic solution i (wt) is conjugated to the linear Hamiltonian system

¥ = Kyo(wt)n + K (wt)w
U =0 (5.7.41)
w — 8mK02(wt)w = 81K11(wt)77

(recall that the torus i, is isotropic and the transformed nonlinear Hamiltonian system is (5.4.34)
where Ky, K19, K91 = 0, see Remark [5.4.1)). In Section we have proved the reducibility of the
linear system w — 0, Koz (wt)w, conjugating the last equation in ([5.7.41)) to a diagonal system

vj + p5v; = filwt), j€85° p® €iR, (5.7.42)
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see (5.6.121)), and f(p,x) = ZjeSC fi(p)ei® e HA‘;L(']I‘”“). Thus (5.7.41)) is stable. Indeed the
actions 7n(t) = ny € R, Vt € R. Moreover the solutions of the non-homogeneous equation (5.7.42))

are
B uot | - ~ - fjl elwlt
vj(t) = cjeli " +0;(t), where 0;(t):= Z ol
lezv J
is a quasi-periodic solution (recall that the first Melnikov conditions hold at a solution).
As a consequence (recall also ,ujoo € iR) the Sobolev norm of the solution of with initial
condition v(0) = > gc v;(0)eV* € H*(T), sy < s, does not increase in time. O
Construction of the set S of tangential sites. We finally prove that, for any v > 1, the set S in
satisfying (81)-(S2) can be constructed inductively with only a finite number of restriction
at any step of the induction.

First, fix any integer 71 > 1. Then the set J; := {71} trivially satisfies (S1)-(S2). Then,
assume that we have fixed n distinct positive integers 71,...,7,, n > 1, such that the set J, :=
{£h,..., %7} satisfies (S1)-(52). We describe how to choose another positive integer 7,1, which
is different from all j € J,,, such that Jy41 := J, U {£Jn41} also satisfies (S1), (S2).

Let us begin with analyzing (S1). A set of 3 elements j1, jo, j3 € Jpt+1 can be of these types:
(1) all “old” elements ji, jo,js € Jy; (i7) two “old” elements ji,j2 € J, and one “new” element
Jj3 = 03Jnt+1, 03 = *£1; (ii7) one “old” element j; € J, and two “new” elements jo = o27n+1,
J3 = 03Jn+1, with o9, 03 = £1; (iv) all “new” elements j; = 0;jn+1, 05 = £1, i = 1,2, 3.

In case (i), the sum j; + j2 + js is nonzero by inductive assumption. In case (i7), j1 + j2 + Jjs is
nonzero provided Jn4+1 € {j1 + Jj2 : j1,J2 € Jn}, which is a finite set. In case (¢ii), for o9 + 03 =0
the sum j; + jo + j3 = j1 is trivially nonzero because 0 ¢ J,, while, for o9 + 03 # 0, the sum
Jit+je+iz=g1+ (02+03)Int1 #0if Jpy1 ¢ {%j : j € Jn}, which is a finite set. In case (iv), the
sum ji1 + jo + j3 = (Jl + 09 + Ug)j_n_H 2% 0 because Jp,+1 > 1 and 01 + 09+ 03 € {:l:l, :|:3}.

Now we study (S2) for the set J,,+1. Denote, in short, b := j3 + 53 + 3 + 53 — (j1 + j2 +js +7a)>.

A set of 4 elements j1, j2, j3, ja € Jn+1 can be of 5 types: (i) all “old” elements j1, j2, 73, j4 € Jn;
(ii) three “old” elements ji,j2,73 € J, and one “new” element jy = 04jn4+1, 04 = +1; (idi) two
“old” element ji,72 € J,, and two “new” elements j3 = 037n+1, J4 = O4Jn+1, With 03,04 = £1; (iv)
one “old” element j; € J, and three “new” elements j; = 0;Jn+1, 0 = £1, i = 2,3, 4; (v) all “new”
elements j; = 0;n+1, 03 = 1,1 =1,2,3,4.

In case (i), b # 0 by inductive assumption.

In case (i1), assume that j; + jo + js + ja # 0, and calculate

b= —=3(j1 + jo + 33)Jny1 — 3(j1 + j2 + 33)°0udns1 + [ + 75 + 55 — (1 + J2 + 53)°] =1 iy jorjssoa Tnt1)-

This is nonzero provided pj, j, js.040(Tnt1) # 0 for all ji,j2,j3 € Jp, 04 = £1. The polynomial
Dij1ja,js,0q 18 Never identically zero because either the leading coefficient —3(j1 + j2 + j3) # 0 (and,
if one uses (S3), this is always the case), or, if j1 + jo + j3 = 0, then j3 + j3 + j3 # 0 by
(using also that 0 ¢ J,,).

In case (i7i), assume that j; + ...+ js = j1 + j2 + (03 + 04)Jn+1 # 0, and calculate

b= —3a7 1 —3a2(j1 + j2)72 41 — 3(j1 + j2)%aTnt1 — j1d2(j1 + J2) = @iy jo.a (Gn1),
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where o := o3 + 04. We impose that ¢j, j,.a(Jnt1) # 0 for all ji,jo € J,, a € {£2,0}. The
polynomial gj, j, o is never identically zero because either the leading coefficient —3a # 0, or, for
a = 0, the constant term —j1j2(j1 + j2) # 0 (recall that 0 ¢ J,, and ji + jo + aJn+1 # 0).

In case (iv), assume that j1 + ... 4+ js = j1 + aJnt+1 # 0, where a := 09 + 03 + 04 € {£1,£3},
and calculate

b= ajn+17'j1,a(jn+1)7 le,oé(x) = (1 - a2)x2 —3ajiz — 3]%

The polynomial 7,  is never identically zero because j; # 0. We impose 7, o(Jn+1) # 0 for all
J1 € Jn, o € {£1, +3}.

In case (v), assume that j; + ...+ js = @Jpy1 # 0, with a:= 01 + ... 4+ 04 # 0, and calculate
b=a(l —a?)j2,,. This is nonzero because J,11 > 1 and o € {£2, +4}.

We have proved that, in choosing 7,1, there are only finitely many integers to avoid.
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Chapter 6

Quasi-linear perturbations of m-KdV

In this Chapter we describe how to prove Theorem for the m-KdV equation . All the
details of the proof are given in [9]. The strategy is the same as the one developed in Chapter
to prove Theorem for the KdV equation . We describe below the main differences. To
simplify notations we deal with the focusing m-KdV, namely the equation with the sign +
in front of the term 9, (u3). The arguments are analogous in the defocusing case (we look for small
amplitude solutions).

The Hamiltonian of the focusing perturbed m-KdV equation may be written as H = Ho+ Hy +
H>5, where

1

Hs(u) ::2/Tui dr, Hs(u):= —i/jru‘ldac, H>s5(u) ::/Tf(x,u,ux)dx, (6.0.1)

and f satisfies (1.3.10). According to the splitting (5.0.2) v = v + 2, v € Hg, 2 € Hg, the
Hamiltonian H4 becomes

1 3 1
H, = —/U4dm—/v3zdx—/v2z2d$—/vz3dfc— /z4d:17. (6.0.2)
4 Jr T 2 Jr T 4 Jr

For the cubic nonlinearity it is sufficient to perform only one step of weak Birkhoff normal form in

order to remove-normalize the terms of H, which are linear in z.

Theorem 6.0.2 (Birkhoff normal form). There exists an analytic invertible symplectic trans-
formation of the phase space ® : H}(T) — HZ(T) of the form

O(u)=u+TY(u), Y(u) =Ig¥(llgu), (6.0.3)
where E is a finite-dimensional space as in (5.1.3)), such that the transformed Hamiltonian is
H:=Ho®=Hy+Hs+H>s5, (6.0.4)

with

1 A lugl™) = 5 dr — de — — dx . 6.0.5
Ha= 3 (Sl = 3 gl ) = 5 [ o5 = [ vstar— g [ st (6.05)

jes 73,J'€S

and H>5 collects all the terms of order at least five in w.
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This theorem may be proved following the same method used for Proposition [5.1.1

Remark 6.0.1. In the case in which the Hamiltonian density f does not depend on x, since ||“||%2(11‘)
18 a prime integral, the Hamiltonian system generated by H is equivalent to the Hamiltonian system
generated by

2
H+aG, acR where G(u) := Hu||%2(T) = (/ u? dm) ,
T

hence we deal with the Hamiltonian H 4+ aG. Choosing a = 3/4, the order 4 of the transformed
Hamiltonian under the Birkhoff map ® becomes

3 3 3
= ZZ|UJ"4_ 2/11‘U2Z2dx+2</1rv2dx>(/11‘22dx) _/1rZ3de
/da:+ / de) . (6.0.6)

Introducing the actlon-angle variables (| and after the rescaling (|5 , with b :=4/3, the
Hamiltonian H in (6.0.4]) transforms into the Hamﬂtonlan

1 7
He:=a() -y + 5 (N(0)2,2) o) +5P(0,.2)

2
where the frequency-to-amplitude modulation is
a€) == @+ 2A¢, (6.0.7)
w is defined in and A is the (v X v)-matrix
A= —-3Dghy, Dg := diagjcg+7, Ag:=2U - Id, (6.0.8)

denoting Id the identity matrix on R” and U the (v x v)-matrix with all elements equal to 1. A
direct calculation shows that the matrix A is invertible with inverse

AL ,D 1 #
3 3(2v —1)

Remark 6.0.2. If the Hamiltonian density f does not depend on x, by it turns out that
the matrix

UDg'. (6.0.9)

A =3Dg
is diagonal, since the Birkhoff normal form restricted to the tangential sites S is diagonal.

We look for embedded invariant tori i : ¢ — () = (0(v),y(®), z(p)) for the Hamiltonian
vector field Xp_ filled by quasi-periodic solutions w1th diophantine frequency w as in . We
require that the diophantine constant - satisfies eiw —1 <« 1, so that we are reduced to study
perturbations of an isochronous system. In this case, it is convenient to introduce £ as a variable
(see Remark and to look for zeros of the nonlinear operator

F(i,€,Q) = w- 0pi(p) = X, (i(9),€,C),  Heg:=He+(-0. (6.0.10)

The unknowns of the problem are the embedded invariant torus ¢ and &, (. The variable ¢ has the
same role as in Chapter 5| and the variable ¢ allows to control the average in the #-component of
the linearized equation. The details of these approach are given in [22]. The existence of invariant
tori for the Hamiltonian vector field X, is stated in the following theorem.
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Theorem 6.0.3. Let the tangential sites S in (1.3.7)) satisfy (1.3.11). Then, for all € € (0,&p),
where gg is small enough, there exists a Cantor-like set Co C g, with asympotically full measure
as € — 0, namely

1G]
lim o= L (6.0.11)
such that, for all w € C., there exists
oolw, ) = E(w, ) + O(e3) (6.0.12)

where §& = &(w,¢e) is such that a(§) = w, and a solution ie(p) = ioo(w,€)(p) of Dyiss(p) —
Xu.(ioo(¥),€00) = 0. Hence the embedded torus ¢ — in () is invariant for the Hamiltonian vector
field Xy (. ¢e..) and it is filled by quasi-periodic solutions with frequency w. The torus i satisfies

. i T
lie(2) = (2, 0,0)[[52) = 05471 (6.0.13)

for some p := u(v) > 0. Moreover, the torus i, is LINEARLY STABLE.

This Theorem may be deduced by a Nash-Moser scheme with approximate inverse in Sobolev
class. As we explained in Section the problem of finding an approximate inverse for the

linearized operator

di,f,CF(i07 50’ CO)[/Z:g ] gO/L - 3‘,§XH€ (i07 50)[/2.\7 ] + (Oa 27 O) y

is reduced to invert the linearized operator in the normal directions £, (see (5.4.45)).
Following the strategy of Section one can prove that the linearized operator in the normal
directions has the form

Loy =105 (w-Oph + 0z (a10,h) + €205 (Vo (0o (), 2)h) + Oy(aoh) + 0:Rh), Vh € Hg, (6.0.14)

where
lar — 1|50 [lag|[LPY) = O(e),

7
3

R is a finite rank operator as in (5.5.2)) satisfying \R\Sép M = O(e

Vo(ao(go), 33‘) = 3’[)2(00(@), gj) , U(Q, $) = Z \/gjeiejeijx )

JjeS

) and

We reduce the operator (6.0.14)) to constant coefficients by means of the procedure developed in
Section The smallness condition for the reducibility scheme (see Theorem is

1
Nocosgfayfl <&y, v:=e2" 0O<a< 6’

for some constants Cy := Cy(7,v) > 0 and &g := do(7,v) > 0.
Since

E[Vo(Bo(9),¥) — Vo(p,2)] = €20 (00 () — ¢) = €20(e3771) = O(e37°),
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the only non-perturbative term for the reducibility scheme is €29, (Vo(¢,x)-). This term may be
reduced to the constant coefficient term e2c(€)d,, where

o(€) = / Volgz)de = 622 3 &5, (6.0.15)
T jes+
by means of a linear BNF-step as the one performed in Section [5.6.5

Remark 6.0.3. In the case in which the Hamiltonian density does not depend on x, we can
completely eliminate the order €2, since

Vitora) = 3(e(p0) — [

Tvg(go,x) d:c)

has zero average in x.

After the reduction procedure, we get a diagonal operator L., of the form (5.6.121f), where the
eigenvalues of the diagonal operator D, have the asymptotic expansion
(50 = i(—maj® + maj + e2c(€)j) +r3°, (6.0.16)
where
. . 7 . 7
ma — 14200 iy [5P0) = O(e3),  supjegelr=[H90) = O(c5=). (6.0.17)
The presence of the term £2ic(£)j in the expansion (6.0.16) makes the measure estimates of
the resonant sets Ryji(in) in (5.7.39) more delicate. If 42 + k% > C; for some constant C; > 0
large enough, the estimate of Lemma can be proved with the same argument. To estimate
the measure of the resonant sets Ry;j(in) for j2 + k? < C1, we need the condition (1.3.11]) on the
tangential sites S. Let us give the details of such measure estimate, see Lemma Defining
6(w) = iw - L+ uP(w) — p(w)
where p3°(w) == p3°(w,in(w)) for all j € S the resonant set Rk (in) can be written as
Riji(in) = {w € Gn : [$(w)| < 27al3® = K1) 7}
Using (6.0.16)), , the invertibility of the matrix A and since by (6.0.15])

c(§)=6> ¢&=6£-1, T:=(1,1,...,1)eR”,

jes+
we can write
d(w) = ajr + by - w + qjk(w)
where
ajp = —i(5% — k3 —6i(j — k)T-A7Y@], by =il +6i(5 — k)ATT], (6.0.18)
and
!qu\LHKW)::(D(Eg_a)- (6.0.19)

We prove the following lemma.
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Lemma 6.0.5. Assume (1.3.11). Then for all j # k, j* + k% < Cy, we have aji # 0.

Proof. Using and since Dglw = (7,...,72), one has

2 -
17— —1- —1- -1 - 2 -2
A [W]:*DS(JJ—*UDSW:*DSW—W jl,
jeSt

Thus by (6.0.18)), aj; becomes

ajp = —i<j3 - % 3 j’2) = —i(j - k){f + k2 4k —

9 .
w—1 > 7,2}'

j'lest j'lest
Since j # k, assumption (|1.3.11]) implies the Lemma. O

The previous lemma implies that
6 := min{|a,i| : 52 + k? < Cp} > 0. (6.0.20)
Lemma 6.0.6. If j2 + k% < C4, we have | Ry, (in)| < Ce2=D(1)7T.
Proof. For all j2+ k> < Cy,w € Ryji(in), one has

E020), E019)
> 0

. ., 7,
by - w| > |ajk| = [o(w)] — |qijn(w)] — 29n|® — KP[(1)"T — Ce3™* > 6 — Cy > §/2

for ¢ small enough. Therefore using that w = @ + O(£?)

) 1) ~
|bijre| > o] =1 5>0

|
By (6.0.19)) we have ]quk|hp < ’yfllquk|Lip('7) < C’&?g_a’f1 — Ces— 2, Thus, writing
w = sbjr + vk, bk = bir/ bkl vk bk =0, P(s) == (shyk + vijk) ,

we obtain [¢(s1) — ¥(s2)| > (|bik] — |@x"P)]s1 — s2| > §|81 — $o| for £ small enough (we take
a < 1/6). Hence

s les)] < 23l = K10 7Y < Cr )

and the lemma follows by Fubini’s Theorem. O

In conclusion the measure estimates follow as in Section and Theorem is proved (and
thus also Theorem [1.3.2)).

Remark 6.0.4. In the case in which the Hamiltonian density f = f(u,uy) is independent of x,

there is no need to prove Lemmata . Indeed, in the expansion of the eigenvalues (6.0.16)),
the term ig%c(€)j is zero and the measure estimates follows as in Lemma using that e~ %yt

18 small enough.
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Chapter 7

Future perspectives

The methods developed in Chapters [6] are general techniques to deal with PDEs with quasi-
linear and fully nonlinear perturbations. In this Chapter we mention some natural perspectives.

e Kirchoff equation

We propose to prove existence and stability of quasi-periodic solutions of the forced Kirchoff
equation in 1 space dimension (both with Dirichlet and periodic boundary conditions), namely

Oyt — (1 + / |0y ul? d:c) Orzu = e f(wt, x), (7.0.1)
T

where f is a differentiable forcing term and w € R” is a diophantine frequency vector. The
equation is a quasi-linear wave equation. Lax [58], Klainermann and Majda [51]
found some classes of quasi-linear wave equations for which all solutions become singular
in finite time. Neverthless the existence of periodic solutions of the Kirchoff equation (in
any space dimension) has been proved by Baldi in [3]. Such a method does not work for
quasi-periodic solutions. We plan to follow the strategy developed in Chapter [4| for the
forced equation . The key point concerns the reduction to constant coefficients of the
linearized operator. It is thanks to the special structure of the nonlinearity (it depends only
on time) that we can reduce the linearized equation to constant coefficients up to a zero order
operator. After that, the reducibility scheme will complete the diagonalization.

e Higher order KdV models

The KdV equation arises from fluid dynamics as an approximation of the Euler equation for
the water waves, more precisely KdV is a model equation for long surface waves of water in a
shallow channel. In [32] Craig derived other approximate models of the Euler equation. One
of these models is the higher order KdV equation

Bt + Dyt + D (u2) + 58m{8§u + (Ou)? + 2u(a§u)} —0, zeT, (7.0.2)

where § > 0 is a small parameter. We propose to prove existence and stability of quasi-
periodic small amplitude solutions for this autonomous equation. Notice that, for each § > 0
fixed, the equation ([7.0.2) is not quasi-linear, indeed the highest order constant coefficients
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operator is d0> and the nonlinearity is of order O(93). We propose to study the singular
perturbation problem when the parameter § — 0.

Water waves

One of the main motivations to study KAM theory for quasi-linear and fully nonlinear PDEs
is its possible extension to the water waves equations. The motion of a 2-dimensional perfect,
incompressible, irrotational fluid in infinite depth, with periodic boundary conditions and
which occupies the free boundary region

Sp:={(z,y) eTxR:y<ntx), T:=R/(2rL)},

is described by the system

8t®+%|v¢|2+gnzm(1£]% at y = n(x)

AP =0 in S, (7.0.3)
Vo — 0 as y — —00

O = 0y® — Oy - 0, P at y=mn(z)

where g is the acceleration of gravity, « is the surface tension coefficient and

(L+n2)%2 N1+ 92
is the mean curvature of the free surface. The unknowns of the problem are the free surface

y = n(x) and the velocity potential ® : S, — R, i.e. the irrotational velocity field v = V, ,®
of the fluid.

Following Zakharov [74] and Craig-Sulem [35], the evolution problem (7.0.3) may be written
as the infinite dimensional Hamiltonian system
O = G(n),

LGEMY+ 1)’ e (7.0.4)
2Tl TR

o +n+ %1/1325 -
where ¥(t, ) is the value of the velocity potential on the profile y = n(t, z), namely
P(t,x) = (¢, z,1(t, x))
and G(n) is the so-called Dirichlet-Neumann operator defined by

Gy () == 1+ 03 0n®lymy@) = (0y®)(z, n(x)) — ne() - (0®) (2, n(x)). (7.0.5)

We plan to prove existence of quasi-periodic solutions for the system for both gravity-
capillary water waves (i.e. k # 0) and gravity water waves (i.e. K = 0). The known results
concern so far only the existence of periodic solutions. The existence of periodic travelling
water waves has been proved by Craig-Nicholls [33] for the capillary case and Iooss-Plotnikov
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[47] without capillarity. On the other hand the existence of periodic standing wave solutions
has been proved by looss-Plotnikov-Toland [45] for the non-capillary case and, recently, by
Alazard-Baldi [I] with capillarity.

In order to prove the existence of quasi-periodic solutions we plan to combine the KAM
method developed in Chapter [p| with the theory of pseudo-differential and Fourier integral
operators, for the analysis of the linearized equations.
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Appendix A

Tame and Lipschitz estimates

In this Appendix we present standard tame and Lipschitz estimates for composition of functions

and changes of variables which are used in the Thesis.
Let H® := H*(T¢,C) (with norm || ||s) and W := W*°(T% C), d > 1.

Lemma A.0.7. Let sop > d/2. Then

(i) Embedding. |ullz~ < C(so)|Julls, for all u € H.

(73) Algebra. ||[uv||s, < C(so)||ullsollv]]so for all u,v € H*.

(7i7) Interpolation. For 0 < s; < s <s2, s= As; + (1 — \)sa,
lulls < Hlulld, llulls; s Vu e B

Let ag,by > 0 and p,q > 0. For all u € HW0Ptd o e Hbotrta,

[ellao+pllvllbo+q < l[ellag+ptallvllon + llullas [Vllbo-+p+q -

Similarly, for the |uls,co := 3" 5 < |DBu| e norm,

uls,o0 < Os1,82)|uld, olull s, Vu€ W,

51,00 52,007

b 9
and Yu € Waotp+a:0 ¢ Jbotpaco,

|U|ao+p,00|v|bo+q,oo < C(ao, bo, p, Q)(’U|ao+p+q7oo’7}|bo,oo + ’u|ao700|v‘bo+p+q,oo) .

(iv) Asymmetric tame product. For s > s,

Juvlls < C(so)llullslvllso + Cs)[ullsollvlls  Vu,v € H®.

(v) Asymmetric tame product in W*>. For s >0, s € N,

(U500 < % [u| oo [V]s,00 + C(8)|t]s,00|0| Lo, Yu,v € WS,
(vi) Mixed norms asymmetric tame product. For s >0, s € N,

luvlls < 5 [ulre|lvlls + C(s)|ulscollvllo,  Yue W™, ve H.

(A.0.1)

(A.0.2)

(A.0.3)

(A.0.4)

(A.0.5)

(A.0.6)

(A.0.7)

If u := u(A) and v :=v(\) depend in a Lipschitz way on A € A C R”, all the previous statements

HEP(’Y) _Lip(v) )

hold if we replace the norms || - ||s, | - |s,00 with the norms || - | Iso0
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Proof. The interpolation estimate ([A.0.1)) for the Sobolev norm (1.2.5|) follows by Holder inequality,
see also [62], page 269. Let us prove (A.0.2). Let a = apA+ai1(1—X), b =bo(1 —A)+biA, A € [0,1].
Then (A.0.1]) implies

A 1-X
lullallvlly < (lullagvlls,)” (lulla 1vllbe) " < Mellagl[vlls, + (1= M) lullay [[v]le, (A.0.8)

by Young inequality. Applying (A.0.8) with a =ag+p, b=bo+q, a1 =ap+p+q, by = by +p+q,
then A = ¢/(p + q) and we get (A.0.2). Also the interpolation estimates (A.0.3)) are classical (see

[19]) and (A.0.3) implies (A.0.4) as above.

(tv): see the Appendix of [19]. (v): we write, in the standard multi-index notation,

Y. Copy(DPu)(DT0) =uD®v+ Y Cpo(DPu)(DM0). (A.0.9)
fty=a B+y=0,B#0

Using |(DPu)(D7)|pe < [DPulpee|DY0|pee < Juf|),00|0]jy),00, @nd the interpolation inequality
(A.0.3)) for every 8 # 0 with A := |5]/|c| € (0,1] (where |a] < s), we get, for any K > 0,
A 1-X
Cﬂ7»}/|Dﬁu|Loo|D,Y’U|Loo < Cﬁ7—yc(5)(|U|Loo|u|s7oo) (|U|S’OO|U|LOO)
C(s)

1 A
= 5 [(KC )X [0l oo uls00] " ([0]s,00 |t roe

_ Cls)
- K

)lfA

lof
{(KCp) 1 [v] oo uls,00 + [V]s,00lulzo }- (A.0.10)

Then (A.0.6)) follows by (A.0.9), (A.0.10) taking K := K(s) large enough. (vi): same proof as (v),
using the elementary inequality ||(D%u)(Dv)|lo < |D%u|ps||D7v]|o. O

We now recall classical tame estimates for composition of functions, see [62], Section 2, pages
272-275, and [70]-1, Lemma 7 in the Appendix, pages 202-203.
A function f : T¢ x By — C, where By := {y € R™ : |y| < 1}, induces the composition operator

fw)(x) := f(z,u(x), Du(x), ..., DPu(x)) (A.0.11)

where D*u(z) denotes the partial derivatives 0%u(x) of order |a| = k (the number m of y-variables
depends on p, d).

Lemma A.0.8. (Composition of functions) Assume f € C"(T? x By). Then
(i) For allu € H™P such that |u|peo < 1, the composition operator (A.0.11)) is well defined and

1F@)llr < Cllfler (ullp + 1)

where the constant C depends on r,d,p. If f € C™2, then, for all |u|pco, |h

1F(u
£ (u+h) — flu

poo < 1/2,

poolltllr4p)

+h) = f@)]|, < Cllfllcrs (|Bllrsp + B
) — p,00(||h||r+p+ |h’p700”uHr+p)-

F@h]l, < Clifligra b

(73) The previous statement also holds replacing || ||, with the norms | |, .
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Lemma A.0.9. (Lipschitz estimate on parameters) Let d € N, d/2 < 59 < s, p >0, v> 0.
Let F be a C'-map satisfying the tame estimates: V||ul|sy+p <1, h € H*1P,

[F(u)lls < C(s)(1 + [Jullstp) (A.0.12)
10uF (W) [h]]ls < C(s)([Pllstp + llullstpllhllso+p) - (A.0.13)

For A C RY, let u(X\) be a Lipschitz family of functions with Hu!]?;i(; <1 (see (3.0.3)). Then

IF(u)|[HP0) < O(s) (1 + [[ul 207,

The same statement also holds when all the norms || ||s are replaced by | |5 cc-

Proof. By (A.0.12)) we get sup, [|[F(u(N))]|s < C(s)(1+ ||u H?‘fzf” ). Then, denoting u; := u(A1) and
h:=wu(A2) — u(A1), we have

1
1 (ug) = F(u1)|s < /0 10w F (ur + t(uz — u))[h] || dt

(A.0.13) 1
< s lls+p + Hh||80+p/0 (X =Dl lsp + tlu(2)lls4p) dt

whence
|F () ~ Fu())] Li L
v sup Fo— * <ol lulll) sup (luOllsep + () llar)
AL A2€A AL = Aol Ao
A1#A2

L L L L
< [P 4 [ EPON | EPO) < () [l KR

Lip(y)

sorp <1, and the lemma follows. 0

because ||ull

The next lemma is also classical, see for example [45], Appendix G. The present version is
proved in [4], except for the part on the Lipschitz dependence on a parameter, which is proved here
below.

Lemma A.0.10. (Change of variable) Let p : R? — R? be a 2m-periodic function in W,
s> 1, with |pl1.0o < 1/2. Let f(x) =z + p(x). Then:

(i) f is invertible, its inverse is f~'(y) = g(y) = y + q(y) where q is 2m-periodic, q¢ €
W (T4, RY), and |q|sco < C|pls.co- More precisely,

|q|Loo = ‘p|Loo, |Dq|Loo < 2|Dp|Loo, |Dq’5717oo < C|Dp‘5717oo. (A014)

where the constant C' depends on d, s.
Moreover, suppose that p = py depends in a Lipschitz way by a parameter A € A C R, and
suppose, as above, that |Dypy|r < 1/2 for all \. Then q = qy is also Lipschitz in \, and

g L) < (J(,p|Llp +{ sup [PAls+1.00 ) P72 ) <l (4.0.15)

The constant C' depends on d,s (and is independent of ).
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(ii) If u € H*(T%,C), then uo f(x) = u(x +p(x)) is also in H®, and, with the same C as in (i),

luo flls < C(lulls + | Dpls—1.c0llull), (A.0.16)

Juo f—ulls < C(|plreellullsy1 + [plscollull2), (A.0.17)
i Li i Li

luo £I5PO) < € (|full X2 + /520 a0, (A.0.18)

(A.0.16), (A.0.17) (A.0.18) also hold for wog .

(t3i) Part (ii) also holds with || - || replaced by |- |k 0o, and || - ||£Jip( replaced by |- |L1p(7 , namely
[uo flsoe < Clu 00); (A.0.19)

i Li Li Li
e S < Ol + DAL ), (4.0-20)

Proof. The bounds (A.0.14), (A.0.16) and (A.0.19) are proved in [4], Appendix B. Let us prove

(A.0.15)). Denote py(z) := p(A, x), and similarly for gy, gx, fa. Since y = fa(x) = x + pa(x) if and
only if = gx\(y) =y + qA(y), one has

oY) +pa(ga(y)) =0, VAEA, yeT% (A.0.21)

Let A1, A2 € A, and denote, in short, ¢1 = qz,, g2 = ¢),, and so on. By (A.0.21)),

G —q=p2092—p1ogr=(p20ga—p1oga)+ (pP1og2—p1°4g1)

— Galpr—p1) + / Gy(Dapr) dt (g2 — q1) (A.0.22)

where Goh := ho gy, Gith := ho (91 +(t—1)[g2 — gl]) € [1,2]. By (A.0.22)), the L> norm of
(g2 — q1) satisfies

9
lg2 —q1|re < !Gz(pz—p1)|1;oo+/ |Gt(Dzp1)|Le dt |g2—qi|ree < |p2 —pilree +|Dapi| o g2 — q1| oo
1

whence, using the assumption |D,pi|re < 1/2, we get |qg2 — q1|p~ < 2|p2 — p1|r~. By (A.0.22)),
using (A.0.6)), the W% norm of (g2 — q1), for s > 0, satisfies

3 2 2
01l < Galprp)laoety [ 1GUDap) i dtlga=alotC10) [ G Dup)] o dtlg2—a
1 1

Since |G¢(Dzp1)|r> = |Dapi|r < 1/2,

3
1 7) -
< 1 !CJ2 q1

Using |g2 — q1| 0 < 2|p2 — p1|ree, (A.0.19), (A.0.4) and (A.0.14),

2
< |Ga(ps — p1)lsce + C(s) / (Go(Dapt) oo dt |2 — g1 1
1

lg2 — q1]s,00 < C(S)QPQ = Pils,c0 + { iuR |p>\|s+1,00}|p2 - p1|L°°>
€

and (A.0.15) follows. The proof of (A.0.17)), (A.0.18)), (A.0.20) may be obtained similarly. O
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Lemma A.0.11. (Composition) Suppose that for all ||ul|sy+u;, < 1 the operator Q;(u) satisfies

1Qiklls < C(s) (Illssr + lullstrallllsgsr)s i = 1,2 (A.0.23)
Let 7 := max{11, o}, p:= max{pi, ua}. Then, for all
[ullso+rn <1, (A.0.24)
the composition operator Q := Q1 o Qs satisfies the tame estimate
1115 < () (Ihllssrysrs + tllssrsullbllsosmrms): (A.0.25)

Moreover, if Q1, Qo, w and h depend in a Lipschitz way on a parameter A, then (A.0.25) also holds

with || - ||s replaced by || - ||£ip(7)'

Proof. Apply the estimates for (A.0.23) to Q; first, then to Qs, using condition (A.0.24]). O
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