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Introduction

The present thesis is devoted to the study of a particular decomposition technique for

optimal transportation problems with convex cost. The aim is to find a partition of the space

in indecomposable subsets that ensures the existence of a map.

First of all let us introduce the problem. Consider two positive functions f and g in

Rd such that their integrals evaluated on the whole space coincide. f will be the initial

distribution of mass and g the final. The “optimal transportation problem” consists in

finding the “best way” to move the mass from the initial to the final place.

This problem was introduced in 1781 by Gaspard Monge. He considered a function

t : Rd → Rd for which the local balance of mass holds:
∫

t−1(E)

f(x)dx =

∫

E

g(y)dy, for any E ⊂ Rd Borel. (1)

Such a function is called transport map.

Monge asked to find the best transport map where “best” means solving the following

problem (Monge Problem):

inf
{∫

Rd
|x− t(x)|f(x)dx : t is a transport

}
. (2)

From this idea many developments followed. Two of them are particularly worthy to be

mentioned. The first is due to L. Kantorovich: in 1942 he applied the machinery of linear

programming to the Monge problem to solve economics problems. The second is due to Y.

Brenier: in 1987 he used optimal transportation to prove a new projection theorem on the

set of measure preserving maps. His aim was the application to fluid mechanics. Optimal

transportation theory has been used for a wide number of application later: nonlinear
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partial differential equations (PDEs), calculus of variations, probability, economics, statistical

mechanics, and many other fields. Nevertheless the core of this problem is far from being

trivial.

As we said above, this thesis is devoted to approach the Monge problem by means of a

decomposition argument. This task has been completed successfully for a strictly convex norm

cost by L. Caravenna in [12] and for the case of a general norm cost by S. Bianchini and S.

Daneri in [8]. In this thesis we develop their arguments in order to face lower semicontinuous

and convex cost functions.

Since Monge wrote his “Mémoire sur la théorie des déblais et des remblais” where he

introduced the problem, the original statement has been generalized in many directions.

For instance, the euclidean norm | · | has been replaced by a general cost c and f, g by two

positive probability measures µ, ν for which a local balance condition is required:

ν(E) = µ(t−1(E)), for any E ⊂ Rd measurable.

As we mentioned before, the solution to the Monge problem is far from being trivial even

in Euclidean spaces. Consider for instance as µ a Dirac delta and as ν the sum of two Dirac

deltas. It is immediate to see that in this case the Monge problem does not admit solutions.

Moreorer, looking at (2) it is evident that the constraint on the transport map t is non linear.

This leads to a lot of difficulties in finding solutions.

To avoid this problem, in 1942 L.V. Kantorovich suggested a notion of weak solution to

the Monge problem. His idea consists in looking for transference plans instead of transport

maps (Monge-Kantorovich Problem). A transference plan is a probability measure π in

Rd × Rd such that its first marginal is equal to µ
(
i.e. µ(A) = π(A× Rd) for every A Borel

set
)

and its second marginal is equal to ν
(
i.e. ν(B) = π(Rd × B) for every B Borel set

)
.

Denoting by Π(µ, ν) the class of plans, the problem becomes the following:

min

{∫

Rd×Rd
c(x, y)π(dxdx′) : π ∈ Π(µ, ν)

}
. (3)

Contrary to the original one, the dependence of the new problem from π is linear.

Moreover, since the constraint π ∈ Π(µ, ν) is convex, weak-* topology can be used to provide

existence of solutions in the case c is lower semicontinuous (see [21, 22]). Notice that when a

plan is concentrated on a graph we recover the Monge problem and when t is a solution to

the Monge problem (Id× t)]µ is an admissible plan. In this sense the problem proposed by

Kantorovich is a weak formulation of the original problem.

A key point in the history of the optimal transportation is the duality formulation

suggested by Kantorovich. This formulation is linked to the linear programming and it

starts from an easy idea: consider two functions φ ∈ L1(µ) and ψ ∈ L1(ν) such that

ψ(y)− φ(x) ≤ c(x, y) for π-almost every (x, y) ∈ Rd × Rd, where π ∈ Π(µ, ν) is optimal for

the problem (3). The idea consists in maximizing ψ(y)− φ(x) instead of minimising c(x, y).

This change of point of view is very important because under mild assumption the following

proposition holds:

(0.1) PROPOSITION: Let c be a lower semi-continuous nonnegative function on
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Rd × Rd, and let µ, ν bet two Borel Probability measures on Rd. Then

inf
π

∫

Rd×Rd
c(x, y)dπ = sup

ψ(y)−φ(x)≤c(x,y)

∫

Rd
ψ(y)dν −

∫

Rd
φ(x)dµ.

1. The problem

After this brief introduction to the problem we are ready to state the problem. We

consider a non negative convex l.s.c. function c : Rd → R with superlinear growth and we

are interested in solving the following optimal transportation problem: given µ, ν ∈ P(Rd),
find a minimizer π of the problem

inf

{∫

Rd×Rd
c(x′ − x)π(dxdx′), π ∈ Π(µ, ν)

}
, (4)

where Π(µ, ν) is the set of transference plans π ∈ P(Rd×Rd) with marginals µ, ν respectively.

W.l.o.g. we can assume that the above minimum (the transference cost C(µ, ν)) is not ∞.

It is well known that in this setting the Monge-Kantorovich problem (4) has a solution

(optimal transference plan) and a standard question is whether the Monge Problem admits a

solution (optimal transport map).

In this thesis we prove a decomposition result from which one deduces the existence of an

optimal transport map. The result is actually stronger, showing that for any fixed optimal

plan π̄ it is possible to give a partition of the space Rd into sets Sha which are essentially

indecomposable (a precise definition will be given in the following): it is standard from this

property of the partition to deduce the existence of an optimal map.

In the case of norm cost, there is a large literature on the existence of optimal maps: see

for example [1, 12, 11, 15, 16, 23]. The original Sudakov strategy has been finally implemented

in the norm case in [8]. In the case of convex cost, an attempt to use a similar approach of

decomposing the transport problems can be found in [14].

In order to state the main result, in addition to the standard family of transference

plans Π(µ, ν) we introduce the notion of transference plan subjected to a partition: given

π ∈ Π(µ, ν) and a partition {Sa = f−1(a)}a∈A of Rd, with f : Rd → A Borel, let πa be the

conditional probabilities of the disintegration of π w.r.t. {Sa × Rd}a,

π =

∫
πam(da), m := f]µ.
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Define the family of probabilities νa as the second marginal of πa (the first being the

conditional probability of µ when disintegrated on {Sa}a). Then set

Π(µ, {νa}) :=

{
π : π =

∫
πam(da) with πa ∈ Π(µa, νa)

}
.

Clearly this is a nonempty subset of Π(µ, ν).

A second definition is the notion of cyclically connected sets. We recall that given a cost

c : Rd × Rd → [0,∞] and a set Γ ⊂ {c <∞}, the set S ∈ Rd is c-cyclically connected if for

every couple of point x, x′ ∈ S there are a family (xi, yi) ∈ Γ, i = 0, . . . , N − 1, such that

c(xi+1 mod N , yi) <∞ and x0 = x, x′ = xj for some j ∈ {0, . . . , N − 1}.

When the cost c is clear from the setting, we will only say cyclically connected.

We will need to define the disintegration of the Lebesgue measure on a partition. The

formula of the disintegration of a σ-finite measure $ w.r.t. a partition {Sa = f−1(a)}a is

intended in the following sense: fix a strictly positive function f such that $′ := f$ is a

probability and write

$ = f−1$′ =

∫ (
f−1$′a

)
σ(da), σ = f]$

′.

It clearly depends on the choice of f , but not the property of being absolutely continuous as

stated below.

We say that a set S ⊂ Rd is locally affine if it is open in its affine span aff S. If {Sa}a is

a partition into disjoint locally affine sets, we say that the disintegration is Lebesgue regular

(or for shortness regular) if the disintegration of Ld w.r.t. the partition satisfies

Ldx∪aSa=

∫

A

ξaη(da), ξa � HhxSa
, h = dim aff Sa.

At this point we are able to state the main result.

(1.1) THEOREM: Let π ∈ Π(µ, ν) be an optimal transference plan, with µ� Ld. Then

there exists a family of sets {Sha , Oha}h=0,...,d

a∈Ah
in Rd such that the following holds:

1. Sha is a locally affine set of dimension h;

2. Oha is a h-dimensional convex set contained in an affine subspace parallel to aff Sha and

given by the projection on Rd of a proper extremal face of epi c;

3. Ld(Rd \ ∪h,aSha ) = 0;

4. the partition is Lebesgue regular;

5. if π ∈ Π(µ, {νha}) then optimality in (4) is equivalent to

∑

h

∫ [ ∫
1Oha

(x′ − x)πha (dxdx′)

]
mh(da) <∞, (5)

where π =
∑
h

∫
Ah
πham

h(da) is the disintegration of π w.r.t. the partition {Sha ×Rd}h,a;
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Figure 1: Theorem 1.1 in the plane case, h = 0, 1, 2: the projection Oha of the extremal

face of epi c provides the convex cost 1Oha used in the decomposed transportation problems

πha ∈ P(Zha × Rd).

6. for every carriage Γ of π ∈ Π(µ, {νha}) there exists a µ-negligible set N such that each

Sha \N is 1Oha -cyclically connected.

Using the fact that cxOha is linear, a simple computation allows to write

∫
c(x′ − x)π(dxdx′) =

∑

h

∫

Ah
c(x′ − x)πham

h(da)

=
∑

h

∫

Ah
c(x′ − x)1Oha (x′ − x)πham

h(da)

=
∑

h

∫ [
aha + bha ·

(∫
x′νha −

∫
xµha

)]
mh(da),

(6)

where aha + bha · x is a support plane of the face Oha .

Following the analysis of [8], the decomposition {Sha , Oha}h,a will be called Lyapunov

decomposition subjected to the plan π. Note that the indecomposability of Sha yields a

uniqueness of the decomposition in the following sense: if {Skb , Okb}k,b is another partition,

then by (5) one obtains that Okb ⊂ Oha (or Oha ⊂ Okb) on Skb ∩ Sha (up to µ-negligible sets),

and then Point (6) of the above theorem gives that Skb ⊂ Sha (or Sha ⊂ Skb ). But then the

indecomposability condition for {Sha , Oha}h,a (or {Skb , Okb}k,b) is violated.

We remark again that the indecomposability is valid only in the convex set Π(µ, {νha}) ⊂
Π(µ, ν), in general by changing the plan π one obtains another decomposition. In the case

ν � Ld, this decomposition is independent on π: this is proved at the end of Section I.9,

Theorem I.9.2.
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2. Preliminary results

In order to illustrate the main result, we present some special cases. A common starting

point is the existence of a couple of potentials ϕ, ψ (see [24, Theorem 1.3]) such that

ψ(x′)− ϕ(x) ≤ c(x′ − x) for all x, x′ ∈ Rd

and

ψ(x′)− ϕ(x) = c(x′ − x) for π-a.e. (x, x′) ∈ Rd × Rd, (7)

where π is an arbitrary optimal transference plan. Since µ, ν have compact support and c is

locally Lipschitz, then ϕ, ψ can be taken Lipschitz, in particular Ld-a.e. differentiable. By

(7) and the assumption µ� Ld one obtains that for π-a.e. (x, x′) the gradient ∇ϕ satisfies

the inclusion

∇ϕ(x) ∈ ∂−c(x′ − x), (8)

being ∂−c the subdifferential of the convex function c.

Assume now c strictly convex. Being the proper extremal faces of epi c only points, the

statement of Theorem (1.1) gives that the decomposition is trivially
{
{x}, Ox

}
x
, where Ox

is some vector in Rd. In this case for all p = ∇ϕ(x) there exists a unique q = x′ − x such

that (8) holds. Then one obtains that Ox = {q}.
The second case is when c is a convex norm: in this case the sets Oha become cones Cha . This

case has been studied in [8]: in the next section we will describe this result more deeply,

because our approach is heavily based on their result.

The cases of convex costs with convex constraints or of the form h(‖x′−x‖), with h : R+ → R+

strictly increasing and ‖ · ‖ an arbitrary norm in R2 are studied in [14].

As an application of these reasonings, we show how (8) can be used in order to construct

of an optimal map, i.e. a solution of the Monge transportation problem with convex cost

(see [13]): indeed, one just minimize among π ∈ Π(µ, {νha}) the secondary cost | · |2/2 (| · |
being the standard Euclidean norm), and by the cyclically connectedness of Sha one obtains

potentials {ϕha , φha}h,a. Since µ, ν have compact support, then again these potentials are

µha -a.e. differentiable, and a simple computation shows that x′− x is the unique minimizer of

|p|2
2
−∇φ(x) · p+ 1Oha

(p).

The fact that this construction is Borel regular w.r.t. h, a is standard, and follows by

the regularity properties of the map h, a → Sha , O
h
a in appropriate Polish spaces, see the

definitions at the beginning of Section I.3.

(2.1) COROLLARY: There exists an optimal map T : Rd → Rd such that (I, T)]µ is

an optimal transference plan belonging to Π(µ, {νha}).
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Note that by varying π and the secondary cost one obtains infinitely many different

optimal maps.

(2.2) REMARK: In the proof we will only consider the case of µ, ν compactly supported.

This assumption avoids some technicalities, and it is fairly easy to recover the general case.

Indeed, let Kn ↗ Rd be a countable family of compact sets and consider πn := πxKn×Kn .

Assume that Theorem 1.1 is proved for all πn: let (Sh,na , Oh,na ) be the corresponding decom-

position. Up to reindexing and regrouping the sets, one can take Sh,na ↗ Sha , and since

dimOh,na is increasing with n, then Oh,na = Oha for n sufficiently large. Hence {Sha , Oha}h,a is

the desired decomposition.

3. Description of the approach

The main idea of the proof is to recast the problem in Rd+1 with a 1-homogeneous cost c̄

and use the strategy developed in [8].

Define

µ̄ := (1, I)]µ, ν̄ := (0, I)]ν,

and the cost

c̄(t, x) :=





t c
(
− x

t

)
t > 0,

1(0,0) t = 0,

+∞ otherwise,

(9)

where (t, x) ∈ R+ × Rd. It is clear that the minimisation problem (4) is equivalent to

∫
(
R+×Rd

)
×
(
R+×Rd

) c̄(t− t′, x− x′)π(dtdxdt′dx′), π̄ ∈ Π(µ̄, ν̄). (10)

In particular, every optimal plan π for the problem (4) selects an optimal π̄ :=
(
(1, I)×(0, I)

)
]
π

for the problem (10) and viceversa.

The potentials φ̄, ψ̄ for (10) can be constructed by the Lax formula from the potentials

φ, ψ of the problem (4):

φ̄(t, x) := min
x′∈Rd

{
− ψ(x′) + c̄(t, x− x′)

}
, t ≥ 0 (11)

ψ̄(t, x) := max
x′∈Rd

{
− φ(x′)− c̄(1− t, x′ − x)

}
, t ≤ 1.
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ϕ̄(1, x) = ψ̄(1, x) = −ϕ(x)

ϕ̄(0, x) = ψ̄(0, x) = −ψ(x)

t = 0

c̄(t, x)

c̄(1− t,−x)

t

t = 1

x

Figure 2: The formulation in Rd+1 as a HJ equation: in general in the common region

0 ≤ t ≤ 1 it holds ψ̄ ≤ φ̄, but in the (red) optimal rays and the depicted region the equality

holds.

It clearly holds

φ̄(0, x) = ψ̄(0, x) = −ψ(x) and φ̄(1, x) = ψ̄(1, x) = −φ(x),

so that the function φ̄, ψ̄ are at t = 0, 1 conjugate forward/backward solutions of the

Hamilton-Jacoby equation

∂tu+H(∇u) = 0, (12)

with Hamiltonian H = (c)∗, the Legendre transform of c. (This is actually the reason for

the choice of the minus sign in the definition of (9).)

By standard properties of solutions to (12) one has

φ̄(t, x)− φ̄(t′, x′) ≤ c̄(t− t′, x− x′), for every t ≥ t′ ≥ 0, x, x′ ∈ Rd,

and for all π̄ optimal

φ̄(z)− φ̄(z′) = c̄(z − z′), for π-a.e. z = (t, x), z′ = (t′, x′) ∈ [0,+∞)× Rd.

Being φ̄ a potential, it holds:

φ̄(t, x)− φ̄(t′, x′) ≤ c̄(t− t′, x− x′), for every t > t′ ∈ R+ and x, x′ ∈ Rd.

and for all π̄ optimal

φ̄(z)− φ̄(z′) = c̄(z − z′), π-a.e. z = (t, x), z′ = (t′, x′) ∈ Rd.
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Being c̄ a 1-homogeneous cost, one can use the same approach of [17] in order to obtain a

first directed locally affine partition {Zha , Cha }h,a, where Zha is a relatively open (in its affine

span) set of affine dimension h+ 1, h ∈ {0, . . . , d}, and Cha is a convex extremal face of c̄ (a

cone due to 1-homogeneity) obtained by

Cha = R+ · ∂+φ̄(z), z = (t, x) ∈ Zha .

The definition of ∂+φ̄ is the standard formula

∂+φ̄(z) :=
{
z′ ∈ [0,+∞)× Rd : φ̄(z′)− φ̄(z) = c̄(z′ − z)

}
.

By the results of [8], this first decomposition satisfies already many properties stated in

Theorem 1.1:

1. Zha is locally affine of dimension h+ 1;

2. Cha is an extremal cone of c̄ of dimension h+ 1 parallel to Zha ;

3. µ̄(∪h,aZha ) = 1;

4. π̄′ ∈ Π(µ̄, ν̄) is optimal iff

d∑

h=0

∫ [ ∫
1Cha

(z′ − z)(π̄′)ha
]
m(da) <∞,

begin π̄′ =
∑
h

∫
(π̄′)ham(da) the disintegration of π̄′ w.r.t. {Zha ,×Rd}h,a.

We note here that this decomposition is independent on π̄, because it is only based on

the potentials φ̄, ψ̄. Observe that the choice of the signs in (11) yields that z and z′ are

exchanged w.r.t. x, x′ in (5).

A family of sets {Zha , Cha }h,a satisfying the first two points above (plus some regularity

properties) will be called directed locally affine partition; the precise definition can be found

in Definition I.3.1.

While the indecomposability stated in Point (6) is know to be not true also in the norm

cost case, the main problem we face here is that the regularity of the partition is stated in

terms of the Lebesgue measure Ld+1, and this has no direct implication on the structure of

the disintegration of µ̄, begin the latter supported on {t = 1}.
The first new result is thus the fact that, due to the transversality of the cones Cha w.r.t. the

plane {t = 1}, ∪h,aZha ∩ {t = 1} is Hdx{t=t̄}−conegligible and the disintegration of Hdx{t=t̄}
w.r.t. Zha is regular for all t̄ > 0, i.e.

Hdx{t=t̄}=
d∑

h=0

∫
ξhaη

h(da), ξh � HhxZha∩{t=t̄}.

Note that since Cha is transversal to {t = t̄} by the definition of c̄, then Zha ∩ {t = t̄} has

affine dimension h (and this is actually the reason for the notation). We thus obtain the first

result of the thesis, which is a decomposition into a directed locally affine partition which on

one hand is independent on the optimal transference plan, on the other hand its elements

are not indecomposable in the sense of Point (6) of Theorem 1.1.
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(3.1) THEOREM: There exists a directed locally affine partition {Zha , Cha }h,a such that

1. Hd({t = 1} \ ∪h,aZha ) = 0;

2. the disintegration of Hdx{t=1} w.r.t. the partition {Zha }h,a is regular;

3. π̄ is an optimal plan iff

∑

h

∫
1Cha

(z − z′)πha (dzdz′)mh(da) <∞,

where π =
∑
h

∫
πham

h(da) is the disintegration of π w.r.t. the partition {Zha ×Rd+1}h,a.

Now the technique developed in [8] can be applied to each set Zha with the cost Cha and

marginals µ̄ha and ν̄ha . As it is shown in [8], the next steps depend on the marginal ν̄ha , so

that one need to fix a transference plan π̄ in the theorem. In general this first decomposition

is not 1Cha -cyclically connected in the sense of Point (6), so that further partitioning has to

be performed.

For simplicity we fix here the indexes h, a, while in general in order to obtain a Borel

construction one has to consider also the dependence h, a 7→ Zha , C
h
a .

In each Zha the problem thus becomes a transportation problem with marginals µha , ν̄ha
and cost 1Cha . The analysis of [8] yields a decomposition of Z into locally affine sets Zh

′

β

of affine dimension h′ + 1, together with extremal cones Ch
′

β such that {Zh′β , Ch
′

β }h′,β is a

locally affine directed partition.

The main problem is that the regularity of the partition refers to the Lebesgue measure in

Rh+1, while we need to disintegrate µha � Hhx{t=1}. The novelty is thus that we use the

transversality of the cones C w.r.t. the planes {t = t̄} is order to deduce the regularity of

the partition.

A similar approach is used also in the decomposition with the potentials above.

Refined partition with cone costs

To avoid heavy notations, in this section we set Z̆ = Zha , C̆ = Cha and with a slight abuse

of notation µ̆ = µ̄ha , ν̆ = ν̄ha .

Fix a carriage

Γ̆ ⊂
{
w − w′ ∈ C̆

}
∩
(
{t = 1} × {t = 0}

)

of a transport plan π̆ ∈ Π(µ̆, ν̆) of 1C̆-finite cost, and let wn be countably many points such

that

{wn}n ⊂ p1Γ ⊂ clos{wn}n,
where pi denotes the projection on the i-th component of (w,w′) ∈ Rh × Rh, i = 1, 2.

For each n define the set Hn of points which can be reached from wn with an axial path

of finite cost,

Hn :=
{
w : ∃I ∈ N,

{
(wi, w

′
i)
}I
i=1
⊂ Γ̆

(
w1 = wn ∧ wi+1 − w′i ∈ C̆

)}
,
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and let the function θ′ be given by

θ′(w) :=
∑

n

3−nχHn(w).

Notice that θ′ depends on the set Γ and the family {wn}n.

The fact that C ∩ {t = t̄} is a compact convex set of linear dimension h allows to deduce

that the sets Hn are of finite perimeter, more precisely the topological boundary ∂Hn∩{t = t̄}
is Hh−1-locally finite, and that θ′ is SBV in R+ × Rh.

The first novelty of this thesis is to observe that we can replace θ′ with two functions

which make explicit use of the transversality of C: define indeed

θ(w) := sup
{
θ′(w′), w′ ∈ p2Γ ∩ {w − C}

}
(13)

and let ϑ be the u.s.c. envelope of θ. It is fairly easy to verify that θ′(w) = θ′(w′) = θ(w) =

θ(w′) for (w,w′) ∈ Γ̆ (Lemma I.6.4), and moreover (13) can be seen as a Lax formula for the

HJ equation with Lagrangian 1C .

Again simple computations imply that θ is SBV, and moreover being each level set a union

of cones it follows that ∂{θ ≥ ϑ} ∩ {t = t̄} is of locally finite Hh−1-measure. Hence in each

slice {t = t̄}, ϑ > θ only in Hh-negligible set, and for ϑ the Lax formula becomes

ϑ(w) := max
{
ϑ(w′), w′ ∈ p2Γ ∩ {w − C}

}
.

We now start the analysis of the decomposition induced by the level sets of θ or ϑ. The

analysis of [8] yields that up to a negligible set N there exists a locally affine partition

{Zh′β , Ch
′

β }h′,β : the main point in the proof is to show that the set of the so-called residual

points are Hh-negligible is each plane {t = t̄} and that the disintegration is Hhx{t=1}-regular.

Since the three functions differ only on a µ̆-negligible set, we use θ to construct the partition

and ϑ for the estimate of the residual set and the disintegration: the reason is that if

(w,w′) ∈ Γ̆ then θ(w) = θ(w′), relation which is in general false for ϑ (however they clearly

differ on a π̆-negligible set, because µ̆� Hhx{t=1}).
The strategy we use can be summarized as follows: first prove regularity results for ϑ

and then deduce the same properties for θ up to a Hh{t=t̄}-negligible set. We show how this

reasoning works in order to prove that optimal rays of θ can be prolonged for t > 1: for

Hhx{t=1}-a.e. w there exist ε > 0 and w′′ ∈ w + C̆ ∩ {t = 1 + ε} such that θ(w′′) = θ(w).

This property is known in the case of HJ equations, see for example the analysis in [9] (or

the reasoning in Section I.4.1).

The advantage of having a Lax formula for ϑ is that for every point w ∈ R+ × Rh there

exists at least one optimal ray connecting w to t = 0: the proof follows closely the analysis

for the HJ case. Moreover the non-degeneracy of the cone C implies that it is possible to

make (several) selections of the initial point R+ × Rd 3 w 7→ w′(w) ∈ {t = 0} in such a way

along the optimal ray Jw,w′(w)K the following area estimate holds:

Hh(At) ≥
(
t

t

)h
Hh(At), At =

{(
1− t

t

)
w +

t

t
w′(w), w ∈ At

}
,
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where At ⊂ {t = t} (see [9, 17] for an overview of this estimate). In particular by letting

t↘ t̄ one can deduce that Hhx{t=t̄}-a.e. point w belongs to a ray starting in {t > t̄}. Since

θ differs from ϑ in a Hh{t=t̄}-negligible set, one deduce that the same property holds also for

optimal rays of θ.

The property that the optimal rays can be prolonged is the key point in order to show

that the residual set N is Hhx{t=t̄}-negligible for all t̄ > 0 and that the disintegration is

regular.

The technique to obtain the indecomposability of Point (6) is now completely similar to

the approach in [8]. For every Γ̆, {wn}n one construct the function θΓ,wn and the equivalence

relation

EΓ,wn :=
{
θΓ,wn(w) = θΓ,wn(w′)

}
,

then prove that there is a minimal equivalence relation Ē given again by some function θ̄, and

deduce from the minimality that the sets of positive µ̆-measure are not further decomposable.

Since µ̆� Hhx{t=1}, one can prove that Point (6) of Theorem 1.1 holds.

We thus obtain the following theorem.

(3.2) THEOREM: Given a directed locally affine partition {Zha , Cha }h,a and a transfer-

ence plan π̄ ∈ Π(µ̄, ν̄) such that

π̄ =
∑

h

∫
π̄ham

h(da),

∫
1Cha

(z − z′)π̄ha(dzdz′) <∞, (14)

then there exists a directed locally affine partition {Zh,`a,b, C
h,`
a,b}h,a,`,b such that

1. Zh,`a,b ⊂ Zha has affine dimension `+ 1 and Ch,`a,b is an (`+ 1)-dimensional extremal cone

of Cha ; moreover aff Zha = aff(z + Cha ) for all z ∈ Zha ;

2. Hd({t = 1} \ ∪h,a,`,bZh,`a,b) = 0;

3. the disintegration of Hdx{t=1} w.r.t. the partition {Z`c}`,c, c = (a, b), is regular, i.e.

Hdx{t=1}=
∑

`

∫
ξ`cη

`(dc), ξ`c � H`xZ`c∩{t=1};

4. if π̄ ∈ Π(µ̄, {ν̄ha}) with ν̄ha = (p2)]π̄
h
a , then π̄ satisfies (14) iff

π̄ =
∑

`

∫
π̄`cm

`(dc),

∫
1C`c

(z − z′)π̄`c <∞;

5. if ` = h, then for every carriage Γ of any π̄ ∈ Π(µ̄, {ν̄ha}) there exists a µ̄-negligible set

N such that each Zh,ha,b \N is 1Ch,ha,b
-cyclically connected.

The proof of Theorem 1.1 is now accomplished by repeating the reasoning at most d

times as follows.

First one uses the decomposition of Theorem 3.1 to get a first directed locally affine

partition.
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Then starting with the sets of maximal dimension d, one uses Theorem 3.2 in order to obtain

(countably many) indecomposable sets of affine dimension d+ 1 as in Point (5) of Theorem

3.2. The remaining sets forms a directed locally affine partition with sets of affine dimension

h ≤ d. Note that if Cha is an extremal face of c̄ and Ch,`a,b is an extremal fact of Cha , then

clearly Ch,`a,b is an extremal face of c̄.

Applying Theorem 3.2 to this remaining locally affine partition, one obtains indecomposable

sets of dimension h+ 1 and a new locally affine partition made of sets with affine dimension

≤ h, and so on.

The last step is to project the final locally affine partition {Zha , Cha }h,a of R+ × Rd made

of indecomposable sets (in the sense of Point (5) of Theorem 3.2) in the original setting Rd.
By the definition of c̄ it follows that c(−x) = c̄(1, x), so that any extremal cone Cha of c̄

corresponds to the extremal face Oha = −Cha ∩ {t = 1} of c. Thus the family

Sha := Zha ∩ {t = 1}, Oha := −Cha ∩ {t = 1}

satisfies the statement, because µ̄({t = 1}) = ν̄({t = 0}) = 1.

(3.3) REMARK: As a concluding remark, we observe that similar techniques work also

without the assumption of superlinear growth and allowing c to take infinite values. Indeed,

first of all one decomposes the space Rd into indecomposable sets Sγ w.r.t. the convex cost

C := clos {c <∞},

using the analysis on the cone cost case. Notice that since w.l.o.g. C has dimension d, this

partition is countable.

Next in each of these sets one studies the transportation problem with cost c. Using the

fact that these sets are essentially cyclically connected for all carriages Γ, then one deduces

that there exist potentials φβ , ψβ, and then the proof outlined above can start.

The fact that the intersection of C (or of the cones Cha ) is not compact in {t = t̄} can be

replaced by the compactness of the support of µ, ν, while the regularity of the functions θ′, θ
and ϑ depends only on the fact that C ∩ {t = t̄} is a convex closed set of dimension d (or h

for Cha ).
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4. A case study: the bidimensional case

In the last part of this thesis we consider a special case in order to better explain our

procedure. The bidimensional case of the problem (4) (i.e. when d = 2) is the first case

where the function θ is required in the reduction argument. Similarly to the general case we

consider the embedding in [0,+∞)×R2, the 1-homogenous convex cost c̄, and the potentials

φ̄ and ψ̄.

A first directed locally affine partition {Zha , Cha }h∈{0,1,2},a is given by the existence of

the potentials. We recall that this partition is made of (h + 1)-dimensional subspaces of

[0,+∞)×R2 which their intersection with {t = 1} is a h-dimensional convex set corresponding

to a face of epi c̄.

Then we investigate each subset of the partition according to their dimension: we fix h

and we show how to face each subset.

When h = 0 the subsets {Z0
a , C

0
a}a give naturally a map and ξaa are Dirac deltas in the

disintegration

H2x{t=t̄}∩⋃a Z
0
a
=

∫
ξ0
aη

0(da), where t̄ > 0.

The case h = 1 can be refined directly: with an explicit computation we decompose each

subset in the sum of 1-dimensional subsets in [0,+∞)× R2 and indecomposable subsets as

in point 5 of Theorem 3.2. It remains to prove the regularity of the disintegration: the proof

relies in the following proposition:

(4.1) PROPOSITION: Let t̄ > 0, U be a relative open subset of {t = t̄}, and {Z1
a}a∈a∩

U a family of segments such that for H2-almost every z ∈ U there is a such that z ∈ Z1
a and

for every a, a′ ∈ a, intrelZ
1
a ∩ Z1

a′ 6= ∅ =⇒ a = a′.

Then,

H2x{t=t̄}∩⋃a Z
1
a
=

∫
ξ1
aη

1(da), and ξ1
a � H1.

To conclude we treat the case h = 2. Contrary to the previous case it is not possible to

refine subsets directly and therefore we apply the analysis made with θ in the general case.

Notice that the disintegration in this case is trivial.

By the above procedure we refine the partition given by the potentials as in Theorem

3.2 and therefore we can conclude as in Theorem 1.1. This means that also in this case we

provide a solution to the Monge problem.
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5. Structure of the thesis

The thesis is divided into two main parts: in the first we analyze the general case and in

the second the case study.

5.1. THE GENERAL CASE

In detail the first part is organized as follows.

The problem is defined in Section I.1 and the embedded problem in the Subsection I.1.1.

In Subsection I.1.2 are introduced the potentials for this problem.

In Section I.2 we introduce some notations and tools we use in the next sections. Apart

from standard spaces, we recall some definitions regarding multifunctions and linear/affine

subspaces, adapted to our setting. Finally some basic notions on optimal transportation

are presented. In particular we define the cyclically monotonicity and introduce the linear

preorder.

In Section I.3 we state the fundamental definition of directed locally affine partition

D = {Zha , Cha }h,a: this definition is the natural adaptation of the same definition in [8], with

minor variation due to the presence of the preferential direction t. Proposition I.3.3 shows

how to decompose D into a countable disjoint union of directed locally affine partitions

D(h, n) such that the sets Zha in D(h, n) have fixed affine dimension, are almost parallel to a

given h-dimensional plane V hn , the projections of the Zha on V hn contains a given h-dimensional

cube, and the projection of ChA on V hn is close a given cone Chn . The sets D(h, k) are called

sheaf sets (Definition I.3.4).

As we said in the introduction, the line of the proof is to refine a directed locally affine

partition in order to obtain either indecomposable sets or diminish their dimension of at

least 1: in Section I.4 we show how the potentials φ̄, ψ̄ can be used to construct a directed

locally affine partition. The approach is to associate forward and backward optimal rays

to each point in R+ × Rd, and then define the forward/backward regular transport set : the

precise definition is given in Definition I.4.6, we just want to observe that these points

are in some sense generic. After proving some regularity properties, Theorems (I.4.14),

(I.4.15) and Proposition I.4.16 shows how to construct a directed locally affine partition

Dφ̄ = {Zha , Cha }h,a, formula (I.35).

The second part of the section shows that the partition induced by Zha covers all {t = 1} up

to a Hd-negligible set and that the disintegration of Hd w.r.t. Zha is regular. Here we need to

refine the approach of [8], which gives only the regularity of the disintegration for Ld+1xt>0.

Proposition I.4.21 shows that in Hdx{t=1} is regular and Proposition I.4.22 completes the

analysis proving that the conditional probabilities of the disintegration of Hdx{t=1} are a.c.

with respect to HhxZha∩{t=1}.
The next four sections describe the iterative step: given a directed locally affine partition
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D such that the disintegration of Hdx{t=1} is regular, obtain a refined locally affine partition

D′, again with a regular disintegration, but such that the sets of maximal dimension are

indecomposable in the sense of Point (6) of Theorem 1.1.

First of all in Section I.5 we define the notion of optimal transportation problems in a

sheaf set {Zha , Cha }a, with h-fixed: the key point is that the transport can occur only along

the directions in the cone Cha , see (I.38). For the directed locally affine partition obtained

from φ̄, this property is equivalent to the optimality of the transport plan. We report a

simple example which shows why from this point onward we need to fix a transference plan,

Example I.5.1.

The fact that the elements of a sheaf set are almost parallel to a given plane makes natural

to map them into fibration, which essentially a sheaf set whose elements Zha are parallel.

This is done in Section I.5.1, and Proposition I.5.4 shown the equivalence of the transference

problems.

The proof outlined in Section 3 is developed starting from Section I.6. For any fixed

carriage Γ ⊂ {t = 1} × {t = 0} we construct in Section I.6.1 first the family of sets Hn, and

then the partition functions θ′, θ: the properties we needs (mainly the regularity of the level

sets) are proved in Section I.6.1. In Section I.6.1 we show how by varying Γ we obtain a

family of equivalence relations (whose elements are the level sets of θ) closed under countable

intersections.

The next section (Section I.6.2) uses the techniques developed in [6] in order to get a minimal

equivalence relation: the conclusion is that there exists a function θ̄, constructed with a

particular carriage Γ, which is finer that all other partitions, up to a µ̄-negligible set. The

final example (Example I.6.12) address a technical point: it shows that differently from [8] it

is not possible to identify the sets of cyclically connected points with the Lebesgue points of

the equivalence classes.

Section I.7 strictly follows the approach of [8] in order to obtain from the fibration a

refined locally affine partition. Roughly speaking the construction is very similar to the

construction with the potential φ̄: one defined the optimal directions and the regular points.

After listing the necessary regularity properties of the objects introduced at the beginning of

this section, in Section I.7.2 we give the analog partition function of the potential case and

obtain the refined locally affine partition D̃′ = {Z`a,b, C`a,b}`,a,b.

Section I.8 addresses the regularity problem of the disintegration. As said in the intro-

duction, the main idea is to replace θ̄ with its u.s.c. envelope ϑ̄, which has the property that

its optimal rays reach t = 0 for all point in R+ × Rd. A slight variation of the approach

used with the potential φ̄ gives that Hdx{t=t̄}-a.e. point is regular (Proposition I.8.5) for

the directed locally affine partition given by ϑ̄. Using the fact that θ̄ = ϑ̄ Hhx{t=t̄}-a.e., one

obtains the regularity of Hdx{t=t̄}-a.e. point for the directed locally affine partition induced

by θ̄ (Corollary I.8.6). The area estimate for optimal rays of ϑ̄ (Lemma I.8.3) allows with an

easy argument to prove the regularity of the disintegration, Proposition I.8.7.

The final section (Section I.9 explains how the steps outlined in the last four sections can

be used in order to obtain the proof of Theorem 1.1.
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5.2. A CASE STUDY

The second part is devoted to a case study.

In Section II.1 we state the problem and we find a first directed locally affine partition

using the potential. Then we prove the area estimate for the optimal ray for the potential.

Successively we apply the area estimate to prove the regularity of this partition and in

particular that the residual set is negligible.

An analysis of the first directed locally affine partition with respect to the dimension

of the subsets is given in Section II.2. In this section we explain the particular techniques

used according to the dimension. In particular Subsection II.2.1 is devoted to comment the

case h = 0. Subsection II.2.2 is an explicit computation of the case h = 1: here it is shown

directly how to refine the problem. Subsection II.2.3 introduce the analysis of the case h = 2.

This analysis is developed in Section II.3 where we define θ and use it to refine a Z2
a in

the union of irreducible and lower dimension subsets.

In the last Section II.4 there is a report of the results obtained and the conclusion of the

argument.

5.3. APPENDIX

Finally in Appendix A we recall the result of [7] concerning linear preorders and the

existence of minimal equivalence relations and their application to optimal transference

problems.
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II
The general case

I.1. Setting

The main topic of this Thesis is the Monge problem in Rd. We consider a non negative,

lower semicontinuous, and convex real valued cost function c : Rd → R and the following

problem: ∫

Rd×Rd
c(x− x′)π(dxdx′), π ∈ Π(µ, ν). (I.1)

Moreover, we assume c with superlinear growth and locally bounded. In particular c is locally

Lipschitz and by super linear growth the proper faces of the epigraph of c are bounded.

In this setting it can be proved the existence of a couple of potentials ϕ and ψ (see [24,

Theorem 1.3]) such that:

ψ(x′)− ϕ(x) ≤ c(x− x′) for all x, x′ ∈ Rd

and

ψ(x′)− ϕ(x) = c(x− x′) for π-a.e. x, x′ ∈ Rd × Rd.

I.1.1. EMBEDDING

In the following, we develop the strategy of [8]. To this purpose, we have to highlight an

affine structure that it is not evident in the problem I.1 but it become clear if we recast the

problem in [0,+∞)× Rd.
µ̄ := (1, I)]µ, ν̄ := (0, I)]ν,

and the cost

c̄(t, x) =





t c
(
− x

t

)
if t > 0,

1(0,0) if t = 0,

+∞ otherwise,

where (t, x) ∈ R+ × Rd.
It is straightforward that the minimisation problem (I.1) is equivalent to

∫
(
R+×Rd

)
×
(
R+×Rd

) c̄(t− t′, x− x′)π(dtdxdt′dx′), π̄ ∈ Π(µ̄, ν̄). (I.2)

In particular, every optimal plan π for the problem (I.1) selects an optimal π̄ :=
(
(1, I)×

(0, I)
)
]
π for the problem (I.2).
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I. THE GENERAL CASE

For simplicity, we assume the supports of µ̄ and ν̄ are compact sets as stated in Remark

2.2. The general case can be obtained by considering a countable union of disjoint compact

sets on which these measures are concentrated.

I.1.2. POTENTIALS

A couple of potentials for (I.2) can be constructed by the Lax formula from the potentials

of the problem (I.1):

φ̄(t, x) = min
x′∈Rd

{
− ψ(x′) + c̄(t, x− x′)

}
, t ≥ 0 (I.3)

and

ψ̄(t, x) = max
x′∈Rd

{
− φ(x′)− c̄(1− t, x′ − x)

}
, t ≤ 1.

φ(x′) = −φ(1, x)

ψ(x) = −φ(0, x)

t = 1

t = 0

(z,−φ(z′))

(z,−φ(z))

b

b

Figure I.1: Equation I.3. The potential φ̄ is constructed from the potentials φ and ψ.

Notice that the existence of max and min in our setting is standard since we assumed

growth estimate on c and φ and ψ can be taken to be globally Lipschitz. Moreover:

φ̄(0, x′) = −ψ(x′) and φ̄(1, x) = −ϕ(x).

(I.1.1) REMARK: Being φ̄ a potential, it holds:

φ̄(t, x)− φ̄(t′, x′) ≤ c̄(t− t′, x− x′), for every t > t′ ∈ R+ and x, x′ ∈ Rd.

and

φ̄(z)− φ̄(z′) = c̄(z − z′), for π̄ optimal and π-a.e. z = (t, x), z′ = (t′, x′) ∈ [0,+∞)×Rd.

2



I. THE GENERAL CASE

I.2. General notations and definitions

As standard notation, we will write N for the natural numbers, N0= N ∪ {0}, Q for the

rational numbers, R for the real numbers. The set of positive rational and real numbers

will be denoted by Q+ and R+ respectively. To avoid the analysis of different cases when

parameters are in R or N, we set R0:= N. The first infinite ordinal number will be denoted

by ω, and the first uncountable ordinal number is denoted by Ω.

The d-dimensional real vector space will be denoted by Rd. The euclidian norm in Rd will

be denoted by |·|. For every k ≤ d, the open unit ball in [0,+∞)×Rh with center z and radius

r will be denoted with B(z, r) and for every x ∈ Rh, t̄ ≥ 0, Bh(t̄, x, r):= B(t̄, x, r) ∩ {t = t̄}.
Moreover, for every a, b ∈ [0,+∞)× Rd define the close segment, the open segment, and

the section at t = t̄ respectively as :

Ja, bK := {λa+(1−λ)b : λ ∈ [0, 1]}, Ka, bJ:= {λa+(1−λ)b : λ ∈]0, 1[}, Ja, bK(t̄) := Ja, bK∩{t = t̄}.

The closure of a set A in a topological space X will be written closA, and its interior by

intA. If A ⊂ Y ⊂ X, then the relative interior of A in Y is intrelA: in general the space Y

will be clear from the context. The topological boundary of a set A will be denoted by ∂A,

and the relative boundary is ∂relA. The space Y will be clear from the context.

If A, A′ are subset of a real vector space, we will write

A+A′ :=
{
z + z′, z ∈ A, z′ ∈ A′

}
.

If T ⊂ R, then we will write

TA :=
{
tz, t ∈ T, z ∈ A

}
.

The convex envelope of a set A ⊂ [0,+∞) × Rd will be denoted by convA. If A ⊂
[0,+∞)× Rd, its convex direction envelope is defined as

convdA := {t = 1} ∩
(
R+ · convA

)
.

If x ∈ ∏iXi, where
∏
iXi is the product space of the spaces Xi, we will denote the

projection on the ī-component as pīx or pxīx: in general no ambiguity will occur. Similarly

we will denote the projection of a set A ⊂∏iXi as pīA, pxīA. In particular for every t̄ ≥ 0

and x ∈ Rd, pt(t̄, x) := x.

I.2.1. FUNCTIONS AND MULTIFUNCTIONS

A multifunction f will be considered as a subset of X × Y , and we will write

f(x) =
{
y ∈ Y : (x, y) ∈ f

}
.
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I. THE GENERAL CASE

The inverse will be denoted by

f−1 =
{

(y, x) : (x, y) ∈ f
}
.

With the same spirit, we will not distinguish between a function f and its graph graph f,

in particular we say that the function f is σ-continuous if graph f is σ-compact. Note that

we do not require that its domain is the entire space.

If f, g are two functions, their composition will be denoted by g ◦ f.

The epigraph of a function f : X → R will be denoted by

epi f :=
{

(x, t) : f(x) ≤ t
}
.

The identity map will be written as I, the characteristic function of a set A will be

denoted by

χA(x) :=

{
1 x ∈ A,
0 x /∈ A,

and the indicator function of a set A is defined by

1A(x) :=

{
0 x ∈ A,
∞ x /∈ A.

I.2.2. AFFINE SUBSPACES AND CONES

We now introduce some spaces needed in the next sections: we will consider these spaces

with the topology given by the Hausdorff distance dH of their elements in every closed ball

closB(0, r) of Rd, i.e.

d(A,A′) :=
∑

n

2−ndH

(
A ∩B(0, n), A′ ∩B(0, n)

)
.

for two generic elements A, A′.
We will denote points in [0,+∞)× Rd as z = (t, x).

For h, h′, d ∈ N0, h′ ≤ h ≤ d, define G(h, [0,+∞)×Rd) to be the set of (h+1)-dimensional

subspaces of [0,+∞) × Rd such that their slice at t = 1 is a h-dimensional subspace of

{t = 1}, and let A(h, [0,+∞) × Rd) be the set of (h + 1)-dimensional affine subspaces of

[0,+∞)× Rd such that their slice at t = 1 is a h-dimensional affine subspace of {t = 1}. If

V ∈ A(h, [0,+∞)×Rd), we define A(h′, V ) ⊂ A(h′, [0,+∞)×Rd) as the (h′+1)-dimensional

affine subspaces of V such that their slice at time t = 1 is a h′-dimensional affine subset.

We define the projection on A ∈ A(h, [0,+∞)× Rd) with t̄ fixed as ptA:

ptA(t̄, x) =
(
t̄, pA∩{t=t̄}x

)
.

If A ⊂ [0,+∞)× Rd, then define its affine span as

aff A :=

{∑

i

tizi, i ∈ N, ti ∈ R, zi ∈ A,
∑

i

ti = 1

}
.
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I. THE GENERAL CASE

The linear dimension of the set aff A ⊂ [0,+∞)× Rd is denoted by dim A. The orthogonal

space to spanA := aff(A ∪ {0}) will be denoted by A⊥. For brevity, in the following the

dimension of affA ∩ {t = t̄} will be called dimension at time t̄ (or if there is no ambiguity

time fixed dimension) and denoted by dimt̄A.

Let C(h, [0,+∞)×Rd) be the set of closed convex non degenerate cones in [0,+∞)×Rd

with vertex in (0, 0) and dimension h+1: non degenerate means that their linear dimension is

h+ 1 and their intersection with {t = 1} is a compact convex set of dimension h. Note that if

C ∈ C(h, [0,∞)×Rd), then aff C ∈ A(h, [0,∞)×Rd) and conversely if aff C ∈ A(h, [0,∞)×Rd)
and C ∩ {t = 1} is bounded then C ∈ C(h, [0,∞)× Rd).

Set also for C ∈ C(h, [0,+∞)× Rd)

DC := C ∩ {t = 1},

and

DC(h, [0,+∞)× Rd) :=
{
DC : C ∈ C(h, [0,+∞)× Rd)}

=
{
K ⊂ {t = 1} : K is convex and compact

}
.

The latter set is the set of directions of the cones C ∈ C(h, [0,+∞)×Rd). We will also write

for V ∈ G(h, [0,+∞)× Rd)

C(h′, V ) :=
{
C ∈ C(h′, [0,+∞)× Rd) : aff C ⊂ V

}
, DC(h, V ) :=

{
DC : C ∈ C(h, V )}.

Define K(h) as the set of all h-dimensional compact and convex subset of {t = 1}. If

K ∈ K(h), set the open set

K̊(r) :=
(
K +Bd+1(0, r)

)
∩ aff K. (I.4)

Define K(r):= closK(r) ∈ K(h). Notice that K = ∩nK̊(2−n).

For r < 0 we also define the open set

K̊(−r) :=
{
z ∈ {t = 1} : ∃ε > 0

(
Bd+1(z, r + ε) ∩ aff K ⊂ K

)}
, (I.5)

so that intrelK = ∪nK̊(−2−n): as before K(−r) := clos K̊(−r) ∈ K(h, [0,+∞) × Rd) for

0 < −r � 1.

If V is a h-dimensional subspace of {t = 1}, K ∈ K(h) such that K ⊂ V and given two

real numbers r, λ > 0, consider the subsets Ld(h,K, r, λ) of K defined by

Ld(h,K, r, λ) :=
{
K ′ ∈ K(h) : (i) K(−r) ⊂ pV K̊

′,

(ii) pVK
′ ⊂ K̊,

(iii) dH(pVK
′,K ′) < λ

}
. (I.6)

The subscript d refers to the fact that we are working in {t = 1} × Rd.
Recall that according to the definition of C ∈ C(h, [0,+∞)×Rd), C ∩ {t = 1} is compact.

Define

L(h,C, r, λ) :=
{
C ∈ C(h, [0,+∞)× Rd) : C ∩ {t = 1} ∈ Ld(h,K, r, λ)

}
.
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r

K̊(−r)

K̊(r)

K

b

(a) The sets K̊(−r), K̊(r) for a given K ∈ K(h).

pV K ′

K ′

K(−r)

K̊

V

(b) The set Ld(h,K, r, λ).

Figure I.2: The sets defined in (I.4), (I.5) and (I.6).

It is fairly easy to see that for all r, λ > 0 the family

L(h, r, λ) :=
{
L(h,C, r′, λ′), C ∈ C(h, [0,+∞)× Rd), 0 < r′ < r, 0 < λ′ < λ

}
(I.7)

generates a prebase of neighborhoods of C(h, [0,+∞)× Rd). In particular, being the latter

separable, we can find countably many sets L(h,Cn, rn, λn), n ∈ N, covering C(h, [0,+∞)×
Rd), and such that

(
Cn ∩ {t = 1}

)
(−rn) ∈ K(h).

Let C ∈ C(h, [0,+∞)× Rd) and r > 0. For simplicity, we define

C̊(r) := {0} ∪ R+ ·
((
DC +Bd+1(0, r)

)
∩ aff DC

)
,

C̊(−r) := {0} ∪ R+ ·
{
z ∈ {t = 1} : ∃ε > 0

(
Bd+1(z, r + ε) ∩ aff DC ⊂ DC

)}
,

C(r) := closC(r) and C(−r) := closC(−r).
Notice that (I.7) can be rewritten using these new definitions.

I.2.3. PARTITIONS

We say that a subset Z ⊂ [0,+∞)× Rd is locally affine if there exists h ∈ {0, . . . , d} and

V ∈ A(h, [0,+∞) × Rd) such that Z ⊂ V and Z is relatively open in V , i.e. intrelZ 6= ∅.
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Notice that we are not considering here 0-dimensional sets (points), because we will not use

them in the following.

A partition in [0,+∞)× Rd is a family Z= {Za}a∈A of disjoint subsets of [0,+∞)× Rd.
We do not require that Z is a covering of [0,+∞)× Rd, i.e. ∪aZa = [0,+∞)× Rd.

A locally affine partition Z = {Za}a∈A is a partition such that each Za is locally affine.

We will often write

Z =

d⋃

k=0

Zh, Zh =
{
Za, a ∈ A : dim Za = h+ 1

}
,

and to specify the dimension of Za we will add the superscript (dim Za− 1): thus, the sets in

Zh are written as Zha , and a varies in some set of indexes Ad−h (the reason of this notation

will be clear in the following. In particular Ad−h ⊆ Rd−h).

I.2.4. MEASURES, DISINTEGRATION, AND TRANSFERENCE PLANS

We will denote the Lebesgue measure of [0,+∞)× Rd as Ld+1, and the k-dimensional

Hausdorff measure on an affine k-dimensional subspace V as HhxV . In general, the restriction

of a function/measure to a set A ∈ [0,+∞)×Rd will be denoted by the symbol xA following

the function/measure.

The product of two locally finite Borel measures $0, $1 will be denoted by $0 ⊗$1.

The Lebesgue points Leb(A) of a set A ⊂ [0,+∞)× Rd are the points z ∈ A such that

lim
r→0

Ld+1(A ∩B(z, r))

Ld+1(B(z, r))
= 1.

If $ is a locally bounded Borel measure on [0,+∞)× Rd, we will write $ � Ld+1 if $ is

a.c. w.r.t. Ld+1, and we say that z is a Lebesgue point of $ � Ld+1 if

f(z) > 0 ∧ lim
r→0

1

Ld+1(B(z, r))

∫

B(z,r)

∣∣f(z′)− f(z)
∣∣Ld+1(dz′) = 0,

where we denote by f the Radon-Nikodym derivative of $ w.r.t. Ld+1, i.e. $ = fLd+1. We

will denote this set by Leb$.

For a generic Polish space X (i.e., a separable and complete metric space), the Borel sets

and the set of Borel probability measures will be respectively denoted by B(X) and P(X).

The Souslin sets Σ1
1 of a Polish space X are the projections on X of the Borel sets of X ×X.

The σ-algebra generated by the Souslin sets will be denoted by Θ.

Two Radon measures $0, $1 on X are equivalent if for all B ∈ B(X)

$0(B) = 0 ⇐⇒ $1(B) = 0,

and we denote this property by $0 ' $1.
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If $ is a measure on a measurable space X and f : X → Y is an $-measurable map,

then the push-forward of $ by f is the measure f#$ on Y defined by

f#$(B) = $(f−1(B)), for all B in the σ-algebra of Y .

Finally we briefly recall the concept of disintegration of a measure over a partition.

(I.2.1) DEFINITION: A partition in Rd is a family {Za}a∈A of disjoint subsets of

Rd. We say that {Za}a∈A is a Borel partition if A is a Polish space, ∪
a∈A

Za is Borel and

the quotient map h : ∪
a∈A

Za → A, h : z 7→ h(z) = a such that z ∈ Za, is Borel-measurable.

We say that {Za}a∈A is σ-compact if A ⊂ Rk for some k ∈ N, ∪
a∈A

Za is σ-compact and h is

σ-continuous.

The sets in the σ-algebra {h−1(F ) : F ∈ B(A)} are also called in the literature saturated

sets. Notice that we do not require {Za}a∈A to be a covering of Rd.

(I.2.2) DEFINITION: Given a Borel partition in Rd into sets {Za}a∈A with quotient

map h : ∪
a∈A

Za → A and a probability measure$ ∈ P(Rd) s.t. $
(
∪

a∈A
Za

)
= 1, a disintegration

of $ w.r.t. {Za}a∈A is a family of probability measures {$a}a∈A ⊂ P(Rd) such that

A 3 a 7→ $a(B) is an h#$-measurable map ∀B ∈ B(Rd), (I.8)

$
(
B ∩ h−1(F )

)
=

∫

F

$a(B) dh#$(a), ∀B ∈ B(Rd), F ∈ B(A). (I.9)

As proven in Appendix A of [6] (for a more comprehensive analysis see [19]), we have the

following theorem.

(I.2.3) THEOREM: Under the assumptions of Definition I.2.2, the disintegration

{$a}a∈A is unique and strongly consistent, namely

if a 7→ $1
a, a 7→ $2

a satisfy (I.8)-(I.9) =⇒ $1
a = $2

a for h#$-a.e. a ∈ A;

$a(Za) = 1 for h#$-a.e. a ∈ A.

The measures {$a}a∈A are also called conditional probabilities.

To denote the (strongly consistent) disintegration {$a}a∈A of a probability measure

$ ∈ P(Rd) on a Borel partition {Za}a∈A we will often use the formal notation

$ =

∫

A

$a dm(a), $a(Za) = 1, (I.10)

with m = h#$, h being the quotient map.

Since the conditional probabilities $a are defined m-a.e., many properties (such as

$a(Za) = 1) should be considered as valid only for m-a.e. a ∈ A: for shortness, we will often

consider the $a redefined on m-negligible sets in order to have statements valid ∀a ∈ A.

We also point out the fact that, according to Definition I.2.2, in order that a disintegration

of $ over a partition can be defined, $ has to be concentrated on the union of the sets of
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the partition (which do not necessarily cover the whole Rd). In general, if we remove this

assumption, since the formulas (I.8)-(I.9) make sense nonetheless for B ⊂ ∪
a∈A

Za, by means

of formula (I.10) we “reconstruct” only $x ∪
a∈A

Za
.

Let m′ ∈ P(A), {$′a}a∈A ⊂ P(Rd) such that

A 3 a 7→ $′a(B) is m′-measurable, ∀B ∈ B(Rd).

Then, one can define the probability measure $′ on Rd by

$′(B) =

∫

A

$′a(B) dm′(a), ∀B ∈ B(Rd). (I.11)

The measure defined in (I.11) will be denoted as

$′ =

∫

A

$′a dm
′.

Notice that, despite the notation is the same as in (I.10), the family {$′a}a∈A in the above

definition is not necessarily a disintegration of $′, both because the measure m′ is not

necessarily a quotient measure of a Borel partition and because the measures $′a are not

necessarily concentrated on the sets of a partition. In the rest of the thesis, such an ambiguity

will not occur, since we will always point out whether a measurable family of probability

measures is generated by a disintegration or not.

(I.2.4) REMARK: If instead of $ ∈ P(Rd) we consider the Lebesgue measure Ld (more

generally, a Radon measure) a disintegration {υa}a∈A is to be considered in the following

sense. First choose a partition {Ai}i∈N of Rd into sets with unit Lebesgue measure, then let

LdxAi=
∫
υa,idηi(a), ηi := h#LdxAi ,

be the standard disintegration of the probability measure LdxAi , and finally

υa :=
∑

i

2iυa,i, η :=
∑

i

2−iηi.

Clearly, in this definition the “conditional probabilities” υa and the “image measure” η depend

on the choice of the sets {Ai}i∈N.

I.2.5. OPTIMAL TRANSPORTATION PROBLEMS

For a generic Polish space X, measures µ, ν ∈ P(X) and Borel cost function c : X×X →
[0,∞], we will consider the sets of probability measures

Π(µ, ν) :=
{
π ∈ P(X ×X) : (p1)#π = µ, (p2)#π = ν

}
, (I.12)
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Πf
c (µ, ν) :=

{
π ∈ Π(µ, ν) :

∫

X×X
c dπ < +∞

}
, (I.13)

Πopt
c (µ, ν) :=

{
π ∈ Π(µ, ν) :

∫

X×X
c dπ = inf

π′∈Π(µ,ν)

∫

X×X
c dπ′

}
. (I.14)

The elements of the set defined in (I.12) are called transference or transport plans between µ

and ν, those in (I.13) transference or transport plans with finite cost and the set defined in

(I.14) is the set of optimal plans. The quantity

C(µ, ν) := inf
π∈Π(µ,ν)

∫

X×X
c dπ

is the transportation cost.

In the following we will always consider costs and measures s.t. C(µ, ν) < +∞, thus

Πf
c (µ, ν) 6= ∅.

(I.2.5) REMARK: The Monge-Kantorovich problem can be rephrased in this context

as Πopt
c (µ, ν) 6= ∅.

We recall (see e.g. [6, 20]) that any optimal plan π ∈ Πopt
c (µ, ν) is c-cyclically monotone,

i.e. there exists a σ-compact carriage Γ ⊂ X × X such that π(Γ) = 1 and for all I ∈ N,

{(xi, yi)}Ii=1 ⊂ Γ,
I∑

i=1

c(xi, yi) ≤
I∑

i=1

c(xi+1, yi),

where we set xI+1 := x1. Any such Γ is called c-cyclically monotone carriage. However, in

order to deduce the optimality of a transference plan the c-cyclical monotonicity condition

itself is not sufficient and one has to impose additional conditions. Most of the conditions in

the literature exploit the dual formulation of Monge-Kantorovich problem (see [25]), namely

C(µ, ν) = sup
φ, ψ:X→[−∞,+∞)
φ µ-meas. and ψ ν-meas.

{∫
φ(x) dµ(x) +

∫
ψ(y) dν(y) : φ(x) + ψ(y) ≤ c(x, y)

}
.

For example (see Lemma 5.3 of [6]) if there exists a pair of functions

φ, ψ : X → [−∞,+∞), φ µ-measurable and ψ ν-measurable, (I.15)

ψ(y)− φ(x) ≤ c(x, y), ∀x, y ∈ X,
ψ(y)− φ(x) = c(x, y), π-a.e. for some π ∈ Π(µ, ν), (I.16)

then φ, ψ are optimizers for the dual problem and π ∈ Πopt
c (µ, ν). Conditions on the cost

guaranteeing the existence of such potentials (and indeed of more regular ones) are e.g. the

following ones:

1. c is l.s.c. and satisfies c(x, y) ≤ f(x) + g(y) for some f ∈ L1(µ), g ∈ L1(ν) ([22]);
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2. c is real-valued and satisfies the following assumption ([1])

ν
({
y :

∫
c(x, y) dµ(x) < +∞

})
> 0, µ

({
x :

∫
c(x, y) dν(y) < +∞

})
> 0;

3. {c < +∞} is an open set O minus a µ⊗ ν-negligible set N ([3]).

The weakest sufficient condition for optimality, which does not rely on the existence of

global potentials and implies the results recalled above, has been given in [6].

I.2.6. LINEAR PREORDERS, UNIQUENESS AND OPTIMALITY

Let c : X × X → [0,+∞] be a Borel cost function on a Polish space X such that

c(x, x) = 0 for all x ∈ X, let µ, ν ∈ P(X) be such that Πf
c (µ, ν) 6= ∅ and let Γ ⊂ X ×X be a

c-cyclically monotone carriage of some π ∈ Πf
c (µ, ν) satisfying w.l.o.g. {(x, x) : x ∈ X} ⊂ Γ.

A standard formula for constructing a pair of optimal potentials is the following: for fixed

(x0, y0) ∈ Γ and (x, y) ∈ Γ, define

φ(x) := inf

{ I∑

i=0

c(xi+1, yi)− c(xi, yi) : (xi, yi) ∈ Γ, I ∈ N, xI+1 = x

}
, (I.17)

ψ(y) := c(x, y) + φ(x).

If one of the assumptions (1)-(3) holds, then this φ, ψ satisfy (I.15)-(I.16). However, for

general Borel costs c, the assumptions (1)-(3) are not satisfied. In particular, for any choice

of (x0, y0), there may be a set of positive µ-measure on which φ is not well defined (namely,

the infimum in (I.17) is taken over an empty set) or takes the value −∞ (see the examples

in [6]).

To explain why this can happen and briefly recall the strategy adopted in [6] to overcome

this problem in a more general setting, we need the following definition.

(I.2.6) DEFINITION: An axial path with base points {(xi, yi)}Ii=1 ⊂ Γ, I ∈ N, starting

at x = x1 and ending at x′ is the sequence of points

(x, y1) = (x1, y1), (x2, y1), . . . , (xi, yi−1), (xi, yi), (xi+1, yi), . . . , (xI , yI), (x
′, yI).

We will say that the axial path goes from x to x′: note that x ∈ p1Γ. A closed axial path or

cycle is an axial path with base points in Γ such that x = x′. A (Γ, c)-axial path is an axial

path with base points in Γ whose points are contained in {c <∞} and a (Γ, c)-cycle is a

closed (Γ, c)-axial path.

Notice that, in order that (I.17) is well defined, for µ-a.e. point x ∈ p1Γ there must be a

(Γ, c)-axial path going from x0 to x. Moreover, being Γ c-cyclically monotone, φ is surely

finite valued in the case in which for µ-a.e. point x ∈ p1Γ there exists also a (Γ, c)-axial

path going from x to x0 (and thus to a.a. any other point in Γ). In particular, x and x0 are

connected by a (Γ, c)-cycle.
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The first idea in [6] is then to partition X into the equivalence classes {Za}a∈A induced

by the (Γ, c)-cycle equivalence relation and disintegrate µ, ν over {Za}a∈A and π over

{Za × Zb}a,b∈A.

Since c(x, x) = 0 ∀x ∈ X and Γ ⊃ graph I, then (x, y) ∈ Γ implies that x and y belong

to the same (Γ, c)-cycle (consider the path (x, y), (y, y), (y, y), (x, y)) and in particular that

π

(⋃

a∈A
Za × Za

)
= 1. (I.18)

If the disintegration is strongly consistent (see Theorem I.2.3), we get

µ =

∫
µa dm(a), µa(Za) = 1,

ν =

∫
νa dm(a), νa(Za) = 1,

π =

∫
πaa d(I× I)#m(a), πa(Za × Za) = 1, (I.19)

where m = h#µ = h#ν because there exists at least a plan in Πf
c (µ, ν) –in this case π– such

that (I.18) is satisfied.

Notice that the fact that π is concentrated on the diagonal equivalence classes {Za ×
Za}a∈A, i.e. formula (I.18), is equivalent to say that the quotient measure (h× h)#π satisfies

(h× h)#π = (I× I)#m,

i.e. it is concentrated on the diagonal of A× A (see (I.19)).

Now, as a consequence of the fact that µa-a.a. points in Za can be connected to µa-a.a.

other points in Za by a (Γ ∩ Za × Za, c)-cycle and ∃πaa ∈ Πf
c (µa, νa) c-cyclically monotone

which is concentrated on Γ∩Za×Za, using (I.17) we are able to construct optimal potentials

φa, ψa : Za → [−∞,+∞) for the transportation problem in Π(µa, νa) and conclude that

πaa ∈ Πopt
c (µa, νa), for m-a.e. a.

Let us then consider another π′ ∈ Πf
c (µ, ν). After the disintegration w.r.t. {Za×Zb}a,b∈A

we get

π′ =

∫
π′abdm

′(a, b), π′ab(Za × Zb) = 1,

with

m′ ∈ Πf
(h×h)#c

(m,m), where (h× h)#c(a, b) = inf
Za×Zb

c(x, y).

Hence one has the following theorem, which gives a sufficient condition for optimality

based on behavior of optimal transport plans w.r.t. disintegration on (Γ, c)-cycle equivalence

relations.
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(I.2.7) THEOREM: Let Γ be a c-cyclically monotone carriage of a transference plan

π ∈ Πf
c (µ, ν). If the partition {Za}a∈A w.r.t. the (Γ, c)-cycle equivalence relation satisfies

the disintegration on {Za}a∈A is strongly consistent, (I.20)

π′
(⋃

a

Za × Za

)
= 1, ∀π′ ∈ Πf

c (µ, ν), (I.21)

then π is an optimal transference plan.

Indeed, if (I.20) and (I.21) are satisfied, then π′ =
∫
π′aa d(I × I)#m(a) with π′aa ∈

Πf
c (µa, νa) and one obtains the conclusion by integrating w.r.t. m the optimality of the

conditional plans πaa, namely

∫
c(x, y) dπaa(x, y) ≤

∫
c(x, y) dπ′aa(x, y).

The second crucial point in [6] is then to find weak sufficient conditions such that the

assumptions of Theorem I.2.7 are satisfied.

Before introducing them, we show how the request that the sets of a Borel partition

satisfying (I.21) coincide with the equivalence classes of the (Γ, c)-cycle relation can be

weakened, yet yielding the possibility of constructing optimal potentials on each class –and

then, as a corollary, to prove the optimality of a c-cyclically monotone plan π. First, we

need the following

(I.2.8) DEFINITION: A set E ⊂ p1Γ is (Γ, c)-cyclically connected if ∀x, y ∈ E there

exists a (Γ, c)-cycle connecting x to y.

According to the above definition, the equivalence classes of 4(Γ,c) are maximal (Γ, c)-

cyclically connected sets, namely (Γ, c)-cyclically connected sets which are maximal w.r.t.

set inclusion.

Then notice that, given a Borel partition {Z ′b}b∈B ⊂ Rd such that

π

(⋃

b

Z ′b × Z ′b
)

= 1, ∀π ∈ Πf
c (µ, ν)

and whose sets are (Γ, c)-cyclically connected but not necessarily maximal, then it is still

possible to define on each of them a pair of optimal potentials and prove the optimality of π

such that π(Γ) = 1.

Moreover, one can weaken this condition by removing a µ-negligible set in the following

way. Let µ =
∫
µ′b dm

′(b), µ′b(Zb) = 1.

(I.2.9) DEFINITION: The partition {Z ′b}b∈B is (µ,Γ, c)-cyclically connected if ∃F ⊂
X µ-conegligible s.t. Z ′b ∩ F is (Γ, c)-cyclically connected ∀ b ∈ B. Equivalently, ∃ an

m′-conegligible set B′ ⊂ B s.t. ∀ b′ ∈ B′ ∃N ′b ⊂ Z ′b, with‘ µ′b(N ′b) = 0, s.t. Z ′b \ N ′b is

(Γ, c)-cyclically connected.

13
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When the (µ,Γ, c)-cyclically connectedness property holds for all c-cyclically monotone

carriages of all transport plans of finite cost –hence it is possible to construct optimal

potentials starting from any c-cyclically monotone Γ– we have the following

(I.2.10) DEFINITION: We say that {Z ′b} is Πf
c (µ, ν)-cyclically connected if it is

(µ,Γ, c)-cyclically connected ∀Γ c-cyclically monotone s.t. π(Γ) = 1 for some π ∈ Πf
c (µ, ν).

Notice that the µ-conegligible set F in the definition of (µ,Γ, c)-cyclically connected

partition depends on the set Γ.

In this thesis, in particular for the proof of Theorems 3.2 and to prove the existence of

an optimal map, the importance of Πf
c (µ, ν)-cyclically connected partitions is given by the

following proposition.

(I.2.11) PROPOSITION: Let {Z ′b}b∈B be a Πf
c (µ, ν)-cyclically connected Borel parti-

tion satisfying

π

(⋃

b

Z ′b × Z ′b
)

= 1, ∀π ∈ Πf
c (µ, ν) (I.22)

for a cost function of the form

c(x, y) = 1M (x, y), M ⊃
{

(x, x) : x ∈ X
}
. (I.23)

Let cm : X ×X → [0,+∞] be any secondary cost of the form

cm(x, y) =

{
m(x, y) c(x, y) < +∞,
+∞ otherwise,

where m is l.s.c. and there exist f ∈ L1(µ), g ∈ L1(ν) s.t. m(x, y) ≤ f(x) + g(y). Then,

any cm-cyclically monotone plan πm ∈ Πf
cm

(µ, ν) is optimal for cm. More precisely, for any

cm-cyclically monotone set Γm with πm(Γm) = 1, there exist Borel functions φm, ψm such that

the restrictions

φmb := φmxZ′b , ψm
b := ψmxZ′b (I.24)

are Borel optimal potentials for Πopt
cm

(µ′b, ν
′
b), for all b in an m′-conegligible set B′ ⊂ B.

PROOF. Notice that Πf
cm

(µ, ν) ⊂ Πf
c (µ, ν). Let Γm ⊂ ∪

b
Z ′b × Z ′b be a cm-cyclically monotone

carriage for πm ∈ Πf
cm

(µ, ν). Then, there exists a conegligible set F ⊂ X such that Z ′b ∩ F is

(Γm, c)-cyclically connected for all b ∈ B. Hence, formula (I.17), together with the validity of

the Point (1) at page 10, yields potentials φmb, ψm
b for the transport problem in Πf

cm
(µb, νb)

with cost cm. In particular, the conditional probability πm,bb is optimal in Πf
cm

(µb, νb), and

thus by (I.22) it follows as in Theorem I.2.7 that πm is optimal in Πf
cm

(µ, ν).

The fact that one can find Borel functions φm, ψm such that (I.24) holds is an application

of standard selection principles, and it can be found in [6].

In order to state the main result of [6] which is at the core of their sufficient condition

concerning optimality, we need the concept of (linear) preorder.
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I. THE GENERAL CASE

(I.2.12) DEFINITION: A preorder on X is a set A ⊂ X ×X s.t.

(x, x) ∈ A, ∀x ∈ X
(x, y) ∈ A ∧ (y, z) ∈ A =⇒ (x, z) ∈ A.

A preorder A ⊂ X ×X is linear if

X ×X = A ∪A−1.

The statement (x, y) ∈ A will also be denoted by x 4A y and A is also called the graph

of the (linear) preorder 4A. Any preorder 4A induces the equivalence relation 'A on X

x 'A y ⇐⇒ x 4A y and y 4A x.

We also denote the graph of the equivalence relation 'A by

A ∩A−1 or 4A ∩ (4A)−1.

Going back to our problem, one can see that the (Γ, c)-axial relation gives a Borel preorder

on X, namely

x 4(Γ,c) y if there exists a (Γ, c)-axial path going from y to x.

The reason for introducing (linear) preorders in this context is given by the following

theorem [6].

(I.2.13) THEOREM: Let A ⊂ X ×X be a Borel graph of a linear preorder on X with

equivalence classes {ZAc }c∈C satisfying

{c < +∞} ⊂ A, (I.25)

4(Γ,c)⊂ A, for some c-cyclically monotone set Γ s.t. π(Γ) = 1, π ∈ Πf
c (µ, ν). (I.26)

Then, the disintegration w.r.t. the partition {ZAc }c∈C is strongly consistent and

π′
(⋃

c

ZAc × ZAc
)

= 1, ∀π′ ∈ Πf
c (µ, ν). (I.27)

For future convenience we give the following definition.

(I.2.14) DEFINITION: A preorder 4A on X is c-compatible if (I.25) holds.

(I.2.15) REMARK: Let A be a c-compatible linear preorder. Whenever a carriage Γ

satisfies (I.26) the 4(Γ,c)-equivalence classes are contained in the equivalence classes of 'A
and then, as noticed before, since Γ ⊃ graph I and c(x, x) = 0 for all x,

Γ ⊂
⋃

c

ZAc × ZAc , π

(⋃

c

ZAc × ZAc
)

= 1.
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y

y5

y4

y2

y1

x1 x3 x5 xx2 x4

4A

c(x, y)

'A

Figure I.3: The graph of the cost c is given by the indicator function of the region inside

the blue curve. The graph of a c-compatible linear preorder 4A is given by the union of

the pink and of the red region. The red region corresponds to the graph of the induced

equivalence relation 'A. We draw also an axial path connecting x5 to x3 with base points

(x5, y5), (x4, y4), and a (Γ, c)-cycle connecting (x1, y1) to (x2, y2).
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Viceversa, if π′
(
∪
c
ZAc × ZAc

)
= 1 for some π′ ∈ Πf

c (µ, ν) and π′(Γ′) = 1, then by the c-

compatibility of A

4(Γ′∩∪
c
ZAc ×ZAc ,c)⊂ A

and then also its equivalence classes are contained in the equivalence classes of 'A. In

particular, (I.26) could also be rewritten as π
(
∪
c
ZAc × ZAc

)
= 1.

We point out that, while a c-compatible linear preorder satisfying (I.26) for some Γ can

always be constructed using the axiom of choice, (I.27) may not hold if the linear preorder

is not Borel (see [6]): hence, the main assumption of the theorem is the Borel regularity.

Finally, notice that the partition into equivalence classes of 4(Γ′∩∪
c
ZAc ×ZAc ,c) with Γ′ as above

is (µ,Γ′, c)-cyclically connected in the sense of Definition I.2.9.

To conclude this section we give a last definition:

(I.2.16) DEFINITION: If 4A is c-compatible and (I.26) holds for every π ∈ Πf
c (µ, ν),

then A is called (c, µ, ν)-compatible.

Hence, Theorem I.2.13 can also be restated saying that whenever A is a Borel c-compatible

linear preorder satisfying (I.26) for some Γ of finite cost, then it is (c, µ, ν)-compatible.

According to the terminology used in [6], (c, µ, ν)-compatibility can also be restated

saying that the diagonal in the quotient space

(I× I) ◦ h ◦ p1(A)

is a set of uniqueness for Πf
(h×h)#c

(m,m), where h is the quotient map associated to the

partition 'A: this means that there exists a unique transference plan in Πf
(h×h)#c

(m,m),

namely (I× I)#m.

I.3. Directed locally affine partitions

The key element in our proof is the definition of locally affine partition: this definition is

not exactly the one given given in [8] because we require that if the cone has linear dimension

h+ 1, then its intersection with t = 1 is a compact convex set of linear dimension h.

(I.3.1) DEFINITION: A directed locally affine partition in [0,+∞)×Rd is a partition

into locally affine sets {Zha }h=0,...,d

a∈Ad−h
, Zha ⊂ [0,+∞)× Rd and Ad−h ⊂ Rd−h, together with a

17



I. THE GENERAL CASE

map

d :

d⋃

h=0

{h} × Ad−h →
d⋃

h=0

C(h, [0,+∞)× Rd)

satisfying the following properties:

1. the set

D =

{(
h, a, z,d(h, a)

)
: k ∈ {0, . . . , d}, a ∈ Ad−h, z ∈ Zha

}
,

is σ-compact in ∪h
(
{h}×Rd−h× ([0,+∞)×Rd)×C(h, [0,+∞)×Rd)

)
, i.e. there exists

a family of compact sets

Kn ⊂
⋃

h

(
{h} × Rd−h × ([0,+∞)× Rd)

)

such that Zha ∩ pzKn is compact and

ph,aKn 3 (h, a) 7→ (Zha ∩ pzKn,d(h, a))

is continuous w.r.t. the Hausdorff topology;

2. denoting Cha := d(h, a), then

∀z ∈ Zha
(

aff Zha = aff(z + Cha )
)

;

3. the plane aff Zha satisfies aff Zha ∈ A(h, [0,+∞)× Rd).

(I.3.2) REMARK: Using the fact that Cha is not degenerate, one sees immediately that

Point 3 is unnecessary.

The map d will be called direction map of the partition, or direction vector field for h = 0.

Sometimes in the following we will write

d(z) = d(h, a) for z ∈ Zha ,

being Zha a partition, or we will use also the notation {Zha , Cha }h,a. For shortness we will

write

Zh := pzD(h) =
⋃

a∈Ah
Zha , Z := pzD =

d⋃

h=0

Zh =

d⋃

h=0

⋃

a∈Ah
Zha . (I.28)

For each Chn ∈ C(h, [0,+∞) × Rd), (the index n is because of the proposition below),

consider a family eh(n) of vectors {ehi (n), i = 0, . . . , h} in Rd such that

C(h, [0,+∞)× Rd) 3 C({eh(n)}) :=

{ h∑

i=0

ti(1, e
h
i (n)), ti ∈ [0,∞)

}
⊂ C̊hn(−rn). (I.29)

Define also

U({eh(n)}) := {t = 0} × conv eh(n). (I.30)

18
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eh0

eh1
ehh−1

ehh

(1, 0) + U({eh(n)})

t

U({eh(n)})

eh2

C({eh(n)})

Figure I.4: Definition of C({eh(n)}) and U({eh(n)}), formulas (I.29) and (I.30).

Note that

aff
{

(0, 0), (1, eh0 (n)), . . . , (1, ehh(n))
}
∈ A(h, [0,∞)× Rd),

so that C({eh(n)}) ∈ C(h, [0,+∞)× Rd).
The following proposition is the adaptation of Proposition 3.15 of [8] to the present

situation.

(I.3.3) PROPOSITION: There exists a countable covering of D into disjoint σ-compact

sets D(h, n), h = 0, . . . , d and n ∈ N, with the following properties: there exist

• vectors {ehi (n)}hi=0 ⊂ Rd, with linear span

V hn = span
{

(1, eh0 (n)), . . . , (1, ehh(n))
}
∈ A(h, [0,+∞)× Rd),

• a cone Chn ∈ C(h, V hn ),

• a given point zhn ∈ V hn ,

• constants rhn, λ
h
n ∈ (0,∞),

such that, setting

Ahn := paD(h, n), Cha = pC(h,[0,∞]×Rd)D(h, n)(a),

it holds:

1. p{0,...,d}D(h, n) = {h} for all n ∈ N, i.e. the intersections of the elements Zha , Cha with

{t = 1} have linear dimension h, for a ∈ Ahn;

2. the cone generated by {ehi (n)} is not degenerate and strictly contained in Chn ,

C({ehi (n)}) ∈ C(h, V hn ), C({ehi (n)}) ⊂ C̊hn(−rhn);
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Rd

t

V h
n

eh(n)

{t = 1}

Ch
n

Ch
a

Zh
a

zhn + U({eh(n)})

Ch
n

U({eh(n)})

Figure I.5: The decomposition presented in Proposition I.3.3.

3. the cones Cha , a ∈ Ad−hn , have a uniform opening,

Chn(−rhn) ⊂ pt̄V hn
C̊ha ;

4. the projections of cones Cha , a ∈ Ad−hn , are strictly contained in Chn ,

pt̄V hn
Cha ⊂ C̊hn ;

5. the projection at constant t on V hn is not degenerate: there is a constant κ > 0 such

that
∣∣ptV hn (z − z′)

∣∣ ≥ κ|z − z′| for all z, z′ ∈ Cha ∩ {t = t̄}, a ∈ Ahn, t̄ ≥ 0;

6. the projection at constant t of Zha on V hn contains a given cube,

zhn + U({ehi (n)}) ⊂ pt̄V hn
Zha .

Note that clearly the Zha are transversal to {t = constant}.
PROOF. The only difference w.r.t. the analysis done in [8] is the fact that we are using

projections with t constant, instead of projecting on V hn . However the assumption of Point 3

of Definition I.3.1 gives that the projection of Zha , Cha at t fixed is a set of linear dimension

h, and thus we can take as a base for the partitions sets of the form (I.29), (I.30).

Following the same convention of (I.28), we will use the notation Zhn := pzD(h, n).

By the above proposition and the transversality to {t = t̄}, the sets Ahn can be now chosen

to be

Ahn := Zhn ∩ (ptVh)−1(zn), Ah :=
⋃

n∈N
Ahn. (I.31)
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(I.3.4) DEFINITION: We will call a directed locally affine partition D(h, n) a h-

dimensional directed sheaf set with base directions Chn , Chn(−rn) and base rectangle zn +

λn U(ehi ) if it satisfies the properties listed in Proposition I.3.3 for some {ehi (n)}hi=0 ⊂ Rd,
V hn = span{(1, eh0 ), (1, ehi ), (1, ehn)}, Chn ∈ C(h, V hn ), zn ∈ Rd+1, rn, λn ∈ (0,∞).

(I.3.5) REMARK: In the following we are only interested in the sets Zha such that

Zha ∩{t = 1} 6= ∅. Thus, the definition of D could be restricted to these sets, and the quotient

space Ad−h can be taken to be a subset of an affine subspace {t = 1} × Rd−h.

I.4. Construction of the first directed locally affine

partition

In this section we show how to use the potential φ̄ to find a directed locally affine partition

in the sense of the previous section. The approach follows closely [17]: the main variations

are in proving regularity, Sections I.4.1 and I.4.2.

(I.4.1) DEFINITION: We define the sub-differential of φ̄ at z as

∂−φ̄(z) :=
{
z′ ∈ [0,+∞)× Rd : φ̄(z)− φ̄(z′) = c̄(z − z′)

}
,

and the super-differential of φ̄ at z as

∂+φ̄(z) :=
{
z′ ∈ [0,+∞)× Rd : φ̄(z′)− φ̄(z) = c̄(z′ − z)

}
.

(I.4.2) DEFINITION: We say that a segment Jz, z′K is an optimal ray for φ̄ if

φ̄(z′)− φ̄(z) = c̄(z′ − z).

We say that a segment Jz, z′K is a maximal optimal ray if it is maximal with respect to set

inclusion.

(I.4.3) DEFINITION: The backward direction multifunction is given by

D−φ̄(z) =

{
z − z′

pt(z − z′)
: z′ ∈ ∂−φ̄(z) \ {z}

}
,
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b

c̄(z − z′)

b φ(z)′

∂+φ(z′)

t

Rd

Graph of φ

∂−φ(z′)

−c̄(z′ − z)

Figure I.6: The sets ∂−φ̄(z), ∂+φ̄(z) of Definition I.4.1 are obtained intersecting epi c̄, −epi c̄

with graph φ̄, respectively.
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and forward direction multifunction is given by

D+φ̄(z) =

{
z′ − z

pt(z′ − z)
: z′ ∈ ∂+φ̄(z) \ {z}

}
.

(I.4.4) DEFINITION: The convex cone generated by D−φ̄ (resp. by D+φ̄) is the cone

F−
φ̄

(z) = R+ · convD−φ̄(z)
(
resp. F+

φ̄
(z) = R+ · convD+φ̄(z)

)
.

(I.4.5) DEFINITION: The backward transport set is defined respectively by

T−
φ̄

:=
{
z : ∂−φ̄(z) 6= {z}

}
,

the forward transport set by

T+
φ̄

:=
{
z : ∂+φ̄(z) 6= {z}

}
,

and the transport set by

Tφ̄ = T−
φ̄
∩ T+

φ̄
.

(I.4.6) DEFINITION: The h-dimensional backward/forward regular transport sets are

defined for h = 0, . . . , d respectively as

R−,h
φ̄

:=





(i) D−φ̄(z) = convD−φ̄(z)

z ∈ T−
φ̄

: (ii) dim(convD−φ̄(z)) = h

(iii) ∃z′ ∈ T−
φ̄
∩ (z + intrelF

−
φ̄

(z))

such that φ̄(z) = φ̄(z′) + c̄(z′ − z) and (i), (ii) hold for z′




,

and

R+,h

φ̄
:=





(i) D+φ̄(z) = convD+φ̄(z)

z ∈ T+
φ̄

: (ii) dim(convD+φ̄(z)) = h

(iii) ∃z′ ∈ T+
φ̄
∩ (z − intrelF

+
φ̄

(z))

such that φ̄(z′) = φ̄(z) + c̄(z − z′) and (i), (ii) hold for z′




.

Define the backward (resp. forward) transport regular set as

R−
φ̄

:=

d⋃

h=0

R−,h
φ̄

(
resp. R+

φ̄
:=

d⋃

h=0

R+,h

φ̄

)
,

and the regular transport set as

Rφ̄ := R+
φ̄
∩R−

φ̄
.

Finally define the residual set N by

Nφ̄ := Tφ̄ \Rφ̄.

(I.4.7) PROPOSITION: The set ∂±φ̄, T±
φ̄

, D±φ̄, F±
φ̄

, R±,h
φ̄

, R±
φ̄

, Rφ̄ are σ−compact.
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z

∂−φ(z)

∂−φ(z′)
z + F−

φ
(z)

z′

z

∂+φ(z)

∂+φ(z′)

z − F+

φ
(z)

z′

z ∈ R−,h

φ

z ∈ R+,h

φ

t

RdRd

Figure I.7: The sets R−
φ̄

and R+
φ̄

of Definition I.4.6.

PROOF. ∂±φ̄. The map

(z, z′) 7→ Φ(z, z′) := φ̄(z′)− φ̄(z)− c̄(z′ − z)

is continuous. Therefore, ∂±φ̄ = Φ−1(0) is σ-compact.

T±
φ̄

. The set T−
φ̄

is the projection of the σ-compact set

⋃

n

{
∂−φ̄ ∩

{(
z, z′

)
: |z − z′| ≥ 2−n

}}
,

and hence σ-compact. The same reasoning can be used for T+.

D±φ̄. Since

{(z, z′) : t(z) > t(z′)} 3 (z, z′) 7→ z − z′
t(z)− t(z′) ∈ {t = 1}

is continuous, it follows that D−φ̄ is σ-compact, being the image of a σ-compact set by a

continuous function. The same reasoning holds for D+φ̄.

A similar analysis can be carried out for the σ-compactness of F±
φ̄

.

R±,h
φ̄

. Since the maps A 7→ convA is continuous with respect to the Hausdorff topology,

and the dimension of a convex set is a lower semicontinuous map, the only point to prove is

that the set
{

(z, z′, C) ∈ [0,+∞)× Rh × [0,+∞)× Rh × C(h, [0,+∞)× Rh) : z′ ∈ z − intrelC
}

is σ-compact. This follows by taking considering the cones C(−r) and writing the previous

set as the countable union of σ-compact sets as follows
⋃

n

{
(z, z′, C) ∈ [0,+∞)×Rh×[0,+∞)×Rh×C(h, [0,+∞)×Rh) : z′ ∈ z+C(−2−n)\B(0, 2−n)

}
.
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Hence the set
{

(z, z′, C) : (i) z, z′ ∈ T−
φ̄

(ii) C = F−
φ̄

(z)

(iii) z′ ∈ z + intrelC

(iv) dim (convD−φ̄(z)) = dim (convD−φ̄(z′)) = h

(v) D−φ̄(z) = convD−φ̄(z),D−φ̄(z′) = convD−φ̄(z′)

}

is σ-compact, and thus R−,h is σ-compact, too. The proof for R+
φ̄

is analogous, and hence

the regularity for Rφ̄ follows.

(I.4.8) PROPOSITION: Let z, z′, z′′ ∈ [0,+∞) × Rd, then the following statements

hold:

1. z′ ∈ ∂−φ̄(z) and z ∈ ∂−φ̄(z′′) imply z′ ∈ ∂−φ̄(z′′);

2. z′′ ∈ ∂+φ̄(z) and z ∈ ∂+φ̄(z′) imply z′′ ∈ ∂+φ̄(z′).

PROOF. It easily follows from Definition I.4.1. Moreover, it is easy to prove that:

z′ ∈ ∂±φ̄(z) =⇒ ∂±φ̄(z′) ⊂ ∂±φ̄(z).

(I.4.9) DEFINITION: Let z and z′ such that φ̄(z′)− φ̄(z) = c̄(z′ − z) and define

Qφ̄(z, z′) := p[0,+∞)×Rd
{(

(z, φ̄(z)) + epi c̄
)
∩
(
(z′, φ̄(z′))− epi c̄

)}
. (I.32)

(I.4.10) LEMMA: It holds,

Qφ̄(z, z′) ⊆ ∂−φ̄(z′) ∩ ∂+φ̄(z).

Moreover

R+
(
Qφ̄(z, z′)− z

)
= R+

(
z′ −Qφ̄(z, z′)

)
= F (z, z′). (I.33)

where F (z, z′) is the projection of the minimal extremal face of epi c̄ containing of (z′ −
z, φ̄(z′)− φ̄(z)).

PROOF. Let (z̄, r̄) ∈
(
(z, φ̄(z)) + epi c̄

)
∩
(
(z′, φ̄(z′))− epi c̄

)
: by definition,

r̄ − φ̄(z) ≥ c̄(z − z) and φ̄(z′)− r̄ ≥ c̄(z′ − z).

Hence, from φ̄(z′)− φ̄(z̄) ≤ c̄(z′ − z̄),

φ̄(z̄)− φ̄(z) ≥ φ̄(z̄)− r̄ + c̄(z̄ − z)
≥ φ̄(z̄)− φ̄(z′) + c̄(z′ − z̄) + c̄(z̄ − z) ≥ c̄(z̄ − z).

Then z̄ ∈ ∂+φ̄(z) and similarly one can prove z̄ ∈ ∂−φ̄(z′).
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b

b

(
z, φ̄(z)

)

(
z′, φ̄(z′)

)

z′
zQφ̄(z′, z)

∂−φ̄(z) ∂+φ̄(z′)

epi c̄

(a) The set Q(z, z′) and Lemma I.4.10.

z′ z′′

z′′′

z

Qφ(z, z′)

t

Rd

Qφ(z, z′′)
Qφ(z, z′′′)

b b
b

b

∂+φ(z) = Qφ(z, z′) ∪ Qφ(z, z′′) ∪ Qφ(z, z′′′) ∪ . . .

(b) The representation formula (I.34) for

∂+φ̄(z).

Figure I.8

The second part of the statement is an elementary property of convex sets: if K is a

compact convex set and 0 ∈ K, then

K ∩ span (K ∩ (−K))

is the extremal face of K containing 0 in its relative interior. Since for us K is a cone, the

particular form (I.33) follows.

In particular, one deduces immediately that ∂±φ̄ is the union of sets of the form (I.32),

Figure I.8:

∂−φ̄(z) =
⋃

z′∈∂−φ̄(z)

Qφ̄(z′, z), ∂+φ̄(z) =
⋃

z′∈∂+φ̄(z)

Qφ̄(z, z′). (I.34)

(I.4.11) PROPOSITION: Let F be the projection on [0,+∞)× Rd of an extremal face

of epi c̄. The following holds:

1. F ∩ {t = 1} ⊆ D−φ̄(z) ⇐⇒ ∃δ > 0 such that B(z, δ) ∩ (z − F ) ⊆ ∂−φ̄(z).

2. If F ∩ {t = 1} ⊆ D−φ̄(z) is maximal w.r.t. set inclusion, then

∀z′ ∈ B(z, δ) ∩ (z − intrelF )
(
D−φ̄(z′) = F ∩ {t = 1}

)
,

with δ > 0 given by the previous point.

3. The following conditions are equivalent:

(a) D−φ̄(z) = F−
φ̄

(z) ∩ {t = 1};
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(b) the family of cones

{
R+ ·

(
z −Qφ̄(z′, z)

)
, z′ ∈ ∂−φ̄(z)

}

has a unique maximal element w.r.t. set inclusion, which coincides with F−
φ̄

(z);

(c) ∂−φ̄(z) ∩ intrel(z − F−φ̄ (z)) 6= ∅;
(d) D−φ̄(z) = convD−φ̄(z).

We recall that F−
φ̄

is defined in Definition I.4.4.

PROOF. Point (1). Only the first implication has to be proved. The assumption implies

that there exists a point

z′ ∈
(
z − intrelF

)
∩ ∂−φ̄(z)

and thus ∂−φ̄(z) contains Qφ̄(z′, z) by Lemma I.4.10. It is fairly easy to see that this yields

the conclusion, because there exists δ > 0 such that

B(z, δ) ∩
(
z − F

)
⊆ Qφ̄(z′, z).

Point (2). The transitivity property of Lemma I.4.8 implies one inclusion. The opposite

one follows because z̄ is an inner point of Qφ̄(z′, z).
Point (3). (3b) implies (3a): by Lemma I.4.10 it follows that the set D−φ̄(z) can be

decomposed as the union of extremal faces with inner directions: since the dimension of

extremal faces must increase by one at each strict inclusion, every increasing sequence of

extremal faces has a maximum. If the maximal face Fmax is unique, we apply Lemma I.4.10

to a point z̄ in an inner direction, obtaining that Fmax = F+
φ̄

(z).

(3a) implies (3d) and (3d) implies (3c): these implications follow immediately from the

definition of D−φ̄.

(3c) implies (3b): if there is a direction in the interior of an extremal face, than by Lemma

I.4.10 we conclude that the whole face is contained in D−φ̄(z).

A completely similar proposition can be proved for ∂+φ̄: we state it without proof.

(I.4.12) PROPOSITION: Let F be the projection on [0,+∞)× Rd of an extremal face

of epi c̄. The following holds:

1. F ∩ {t = 1} ⊆ D+φ̄(z) ⇐⇒ ∃δ > 0 such that B(z, δ) ∩ (z + F ) ⊆ ∂+φ̄(z).

2. If F ∩ {t = 1} ⊆ D+φ̄(z) is maximal w.r.t. set inclusion, then

∀z′ ∈ B(z, δ) ∩ (z + intrelF )
(
D+φ̄(z′) = F ∩ {t = 1}

)
,

with δ > 0 given by the previous point.

3. The following conditions are equivalent:

(a) D+φ̄(z) = F+
φ̄

(z) ∩ {t = 1};
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(b) the family of cones

{
R+ ·

(
z +Qφ̄(z′, z)

)
, z′ ∈ ∂+φ̄(z)

}

has a unique maximal element by set inclusion, which coincides with F+
φ̄

(z′);

(c) ∂+φ̄(z) ∩ intrel(z + F+
φ̄

(z)) 6= ∅;
(d) D+φ̄(z) = convD+φ̄(z).

As a consequence of Point (3) of the previous propositions, we will call sometimes F−
φ̄

(z),

F+
φ̄

(z) the maximal backward/forward extremal face.

Now we construct a map which gives a directed affine partition in [0,+∞)× Rd up to a

residual set. Define first

v−
φ̄

: R−
φ̄
→ ∪dh=0A(h, [0,+∞)× Rd)

z 7→ v−
φ̄

(z) := aff ∂−φ̄(z)

(I.4.13) LEMMA: The map v−
φ̄

is σ-continuous.

PROOF. Since ∂−φ̄(z) is σ-continuous by Proposition I.4.7 and the map A 7→ aff A is

σ-continuous in the Hausdorff topology, the conclusion follows.

Notice that we are assuming the convention R0 = N.

(I.4.14) THEOREM: The map v−
φ̄

induces a partition

d⋃

h=0

{
Zh,−a ⊂ [0,+∞)× Rd, a ∈ Rd−h

}

on R−
φ̄

such that the following holds:

1. the sets Zh,−a are locally affine;

2. there exists a projection Fh,−a of an extremal face Fh,−a with dimension h+ 1 of the

cone epi c̄ such that

∀z ∈ Zh,−a , aff Zh,−a = aff(z − Fh,−a ) and D−φ̄(z) = (Fh,−a ) ∩ {t = 1};

3. for all z ∈ T− there exists r > 0, Fh,−a such that

B(z, r) ∩ (z − intrelF
h,−
a ) ⊆ Zh,−a .

The choice of a is in the spirit of Proposition I.31.

PROOF. Being a map, v−
φ̄

induced clearly a partition {Zh,−a , h = 0, . . . , d, a ∈ Rd−h}.
Point (1). Let z ∈ Zh,−a . By assumption, z ∈ R−

φ̄
(or more precisely z ∈ Rh,−

φ̄
for some

h), so that by Point (i) of Definition I.4.6 of R−,h
φ̄

there exists z′ such that

z′ ∈ z − intrel∂
−φ̄(z).
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In the same way, by Point (iii) of Definition I.4.6 of R−,h
φ̄

there exists z′′ such that

z′′ ∈ z + intrel∂
−φ̄(z).

By Lemma I.4.10 we conclude that z is contained in the interior of Qφ̄(z′, z′′), and this is a

relatively open subset of Zh,−a , being of dimension

dim ∂−φ̄(z) = h+ 1.

Point (2). Since z ∈ R−,h(a), then the maximal backward extremal face Fh,−a is given

by F−
φ̄

(z). Using the fact that z is contained in a relatively open set of Zh,+a , the statements

are a consequence of Proposition I.4.11.

Point (3). If z ∈ T−
φ̄

, then ∂−φ̄(z) 6= ∅. We can thus take a maximal cone of the family

{
R+ · Qφ̄(z, z′), z′ ∈ ∂−φ̄(z)

}
,

and the point z′ ∈ ∂−φ̄(z) such that Qφ̄(z, z′) is maximal with respect to the set inclusion:

it is thus fairly simple to verify that

intrelQφ̄(z, z′) ⊂ Zh,−a

for some h ∈ {0, . . . , d}, a ∈ Rd−h. Hence, if Fh,+a is a projection on [0,+∞) × Rd of an

extremal face of a cone for z ∈ intrelQφ̄(z, z′), then from (I.33) the conclusion follows.

A completely similar statement holds for R+, by considering of σ-continuous map

v+
φ̄

: R+
φ̄
→ ∪dh=0A(h, [0,+∞)× Rd)

z 7→ v+
φ̄

(z) := aff ∂+φ̄(z)

(I.4.15) THEOREM: The map v+
φ̄

induces a partition

d⋃

h′=0

{
Zh
′,+

a′ ⊂ [0,+∞)× Rd, a′ ∈ Rd−h
′
}

on R+
φ̄

such that the following holds:

1. the sets Zh
′,+

a′ are locally affine;

2. there exists a projection Fh
′,+

a′ of an extremal face with dimension h′ + 1 of the cone

epi c̄ such that

∀z ∈ Zh
′,+

a′ , aff Zh
′,+

a′ = aff(z + Fh
′,+

a′ ) and D−φ̄(z) = Fh
′,+

a′ ∩ {t = 1};

3. for all z ∈ T+ there exists r > 0, Fh
′,+

a′ such that

B(z, r) ∩ (z + intrelF
h′,+
a′ ) ⊆ Zh

′,+
a′ .
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In general h 6= h′, but on Rφ̄ the two dimensions (and hence the affine spaces aff ∂±φ̄(z))

coincide.

(I.4.16) PROPOSITION: If z ∈ Rφ̄ then

v−
φ̄

(z) = v+
φ̄

(z).

PROOF. By the definition of Rφ̄, it follows that h = h′ because we have inner directions

both forward and backward, and since each z is in the relatively open set

intrel

(
Zh,−a ∩ Zh

′,+
a′

)
,

then aff ∂−φ̄(z) = aff ∂+φ̄(z), i.e. v−
φ̄

(z) = v+
φ̄

(z).

Define thus on Rφ̄
vφ̄ := v−

φ̄
xR= v+

φ̄
xR,

and let {
Zha , a ∈ Rd−h

}

be the partition induced by vφ̄: since Rφ̄ = ∪h(R−,h
φ̄
∩R+,h

φ̄
), it follows that

Zha = Zh,−a ∩ Zh,+a ,

once the parametrization of A(h, aff Zha ) is chosen in a compatible way. We can then introduce

the extremal cones of epi φ̄

Cha := epi φ̄ ∩
(
vφ̄(z)− z

)
= Fh,+a = Fh,−a .

Finally, define the set

Dφ̄ ⊂
⋃

h=0,...,d

(
{h} × Rd−h × Rh × C(h, [0,+∞)× Rd)

)

by

Dφ̄ :=
{(
h, a, z, C

)
: C = Cha , z ∈ Zha

}
. (I.35)

(I.4.17) LEMMA: The set Dφ̄ is σ-compact.

PROOF. Since vφ̄ is σ-continuous, the conclusion follows.

The next two sections will prove that this partition satisfies the condition of Theorem 3.1.

I.4.1. BACKWARD AND FORWARD REGULARITY

The first point we need to prove is that Hd-almost every point in {t = 1} is regular, i.e.

it belongs to Rφ̄.

We recall below the result obtained in [8, 17], rewritten in our settings.
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(I.4.18) PROPOSITION: Ld+1-almost every point in [0,+∞)× Rd is regular.

Next we introduce a key tool for proving the regularity: the area estimate.

(I.4.19) LEMMA: Let t̄ > s > ε > 0, and consider a Borel and bounded subset

S ⊂ {t = t̄} made of backward regular points. Then for every (t̄, x) ∈ S there exists a point

σs(t̄, x) ∈ intrel

(
∂−φ̄(t̄, x) ∩ {t = s}

)
such that

Hd(σs(S)) ≥
(
s− ε
t̄− ε

)d
Hd(S). (I.36)

PROOF. First of all we recall that from (11) every point has always an optimal ray reaching

{t = 0}. Using the assumption that the points in S are backward regular and the transitivity

property stated in Proposition I.4.8, it follows that

dim ∂−φ̄(z) ∩ {t = ε} = h, z ∈ S ∩R−.h
φ̄

.

In particular, it contains a given cone z −K made of inner rays of ∂−φ̄(z).

Using the fact that C(h, [0,+∞)×Rd) is separable and a decomposition analogous to the

one of Proposition I.3.3, we can assume that there is a fixed h-dimensional cone K ′ such that

K ′ ⊂ pt̄spanK′
(
(∂−φ̄(z)− z) ∩ {t = ε}

)
.

Hence we can slice the sets ∂−φ̄(S) by a family of parallel planes in A(d− h, [0,+∞)× Rd)
whose intersection with (a suitable translate of) K ′ is an inner direction of K ′.

In this way, we find a (d− h)-dimensional problem one each affine plane A such that for

every (t̄, x) ∈ S ∩A there exists a unique point in intrel ∂
−φ̄(t̄, x)∩ {t = ε} ∩A. We can now

follow the strategy adopted in [12, Lemma 2.13] and obtain the area formula.

(I.4.20) REMARK: We underline that the dimension of ∂−φ̄(z) is constant along the

inner ray selected in the proof of the previous lemma. A similar property holds along inner

rays of ∂+φ̄(z), z ∈ R+
φ̄

.

We can now prove the regularity of Hdx{t=1}-a.e. point.

(I.4.21) PROPOSITION: Hd−almost every point in {t = 1} is regular for φ̄.

PROOF. By Proposition I.4.18 and Fubini theorem there is ε > 0 arbitrary small such that

Hd-a.e. point z of {t = 1± ε} is a regular point for φ̄.

Let ε′ > 0 be fixed according to Lemma I.4.19. The area estimate I.36 gives that the

measure of points in {t = 1− ε} which belong to an inner ray of a backward regular point in

{t = 1 + ε} is larger than (
1− ε− ε′
1 + ε− ε′

)d
Hd(S).

By assumption these points are also regular (and thus forward regular).
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(t̄, x1)

∂−φ(t̄, x)

b b b b b

b

b

Rd

σs(t̄, x1)

{t = ε}

t

s

Figure I.9: The strategy to prove Lemma I.4.19: the pink plane is the transversal plane

where ∂−φ̄(z) has a unique inner ray.
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t = 1 + ε

t=1

t = 1 − ε

z

∂−φ̄(z)

b

b

b
∂+φ̄(z′)

z′

Figure I.10: If z, z′ are regular points, then also the inner ray Jz, z′K is made of regular points

(proof of Proposition I.4.21).

Observe that an inner optimal ray starting from a backward regular point and arriving in

a regular point is made of regular points, see Figure I.10. Therefore, by the arbitrariness of ε

and ε′ we conclude the proof.

Hence Point 1 of Theorem 3.1 is proved.

I.4.2. REGULARITY OF THE DISINTEGRATION

By [8, (3) of Theorem 1.1] we know that

Ld+1x⋃
a Z

h
a

=

∫
f(a, z)Hh+1xZha (dz)ηh(da).

so that by Fubini Theorem

Hdx{t=1+ε}∩⋃a Z
h
a

=

∫
f(a, x)Hhx{t=1+ε}∩Zha (dx)ηh(da) for a.e. ε > 0.

Recalling the decomposition of Lemma I.4.19, we fix the set of indexes

Ahε,K :=
{
a ∈ Ah : Zha ∩ {t = 1 + ε} 6= ∅ and K ⊂ paff KC

h
a

}
,

with K ∈ C(h, [0,+∞)× Rd) given.

An easy argument based on the push forward of Hd along the rays selected in the proof

of Lemma I.4.19 (see for example [8, Section 5]) gives that there is

c(a, x) ∈
(
(1− ε/2)d, 2d

)
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such that

Hdx{t=1}∩⋃a Z
h
a

=

∫

Ahε,K

c(a, x)f(a, x)Hhx{t=1+ε}∩Zha (dx)ηh(da).

The lower estimate of c is given immediately by Lemma I.8.3 for t̄ = 1 + ε/2, ε′ = ε/2 and

s = 1.

The upper estimate follows by inverting the roles of t̄ = 1 + ε and s = 1: in this case the ray

starts in Zha ∩ {t = 1} and ends in Zha ∩ {t = 1 + ε}, and we are estimating the area between

t = 1 and t = 1 + ε/2. Using the same rays of Lemma I.4.19 in the backward direction and

applying (I.36), one obtains the second bound.

Notice now that in the partition of the proof of Lemma I.4.19 the inner rays are parallel

inside the elements of the partition: once the cone K and the transversal planes VK are

chosen, in each element Zha the rays Zha ∩ VK are parallel, so that the map along

tVK : ∪
Ahε,K

Zha ∩ {t = 1 + ε/2} → ∪
Ahε,K

Zha ∩ {t = 1}

Zha 3 x 7→ tVk(x) := (x+ VK) ∩ Zha ∩ {t = 1}
(I.37)

is just a translation (see Figure I.11). We thus deduce that

(tVk)]HhxZha∩{t=1+ε/2}= HhxtVK (Zha∩{t=1+ε/2},

and that c(a, x) = c(a).

Define

f ′(a, tVK (x)) := c(a)f(a, x),

so that we can write

Hdx{t=1}∩∪
Ah
ε,K

Zha
=

∫

Ahε,K

f ′(a, x)Hhx{t=1}∩Zha (dx)ηh(da).

By the uniqueness of the disintegration, the previous formula gives the regularity of the

disintegration of HdxtVK ( ∪
Ah
ε,K

Zha∩{t=1}). By varying K and ε and using the fact that Zha are

transversal to {t = 1} and relatively open, we obtain the following proposition:

(I.4.22) PROPOSITION: The disintegration

Hdx∪h,aZha∩{t=1}=
∑

h

∫
vhaη

h(da)

w.r.t. the partition {Za
h ∩ {t = 1}}h,a is regular:

vha � HhxZha .

This concludes the proof of Point (2) of Theorem 3.1. The last point of Theorem 3.1 is

an immediate consequence of the fact that φ̄ is a potential, and thus the mass is moving only

along optimal rays graph φ̄ ∩ (z − epi c̄), and for all regular points z

p[0,+∞)×Rd
(
graph φ̄ ∩ (z − epi c̄)

)
⊂ z − Cha .
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t

Rd

K

VK

t = 1

t = ε

t = 1 + ε

Zh
a

Ch
a

Zh
a ∩ {t = ε}

Zh
a ∩ {t = 1}

Zh
a ∩ {t = 1 + ε}

Figure I.11: The parallel translation of (I.37) along the direction Cha ∩ VK .

(I.4.23) REMARK: The fact that ηh ' Hd−hxAh , with Ah chosen as in Remark I.3.5,

is again a simple consequence of the estimate on the push-forward along optimal rays and

Fubini Theorem. This result is exactly the same as the one stated in [8, Theorem 5.18]: we

refer to that paper for the proof, because the form of the image measure is not essential in

the construction and can be seen as an additional regularity of the partition.

I.5. Optimal transport and disintegration of measures on

directed locally affine partitions

In this section and the following three ones we show how to refine a directed locally affine

partition D either to lower the dimension of the sets or to obtain indecomposable sets. This

procedure will then be applied at most d-times in order to obtain the proof of Theorem 1.1.

Following the structure of the first directed locally affine partition Dφ̄ constructed in the

previous section, we will consider the following three measures:

1. the measure Hdx{t=1}, with Hd({t = 1} \ ∪h,aZha ) = 0;
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2. the probability measure µ̄ := δ{t=1} × µ, such that µ � Ld, and thus in particular

µ̄� Hdx{t=1};

3. a probability measure ν̄ supported on {t = 0}.

On Rd+1 × Rd+1 we can define the natural transference cost

cZ(z, z′) :=

{
0 z ∈ Zha , z − z′ ∈ Cha ,
∞ otherwise.

(I.38)

Since

{cZ <∞} =
{

(z, z′) : z ∈ Z, z − z′ ∈ d(z)
}
,

i.e. it coincides with the projection (pz, (pRd+1 ◦ pC))D of D, then it is σ-continuous.

From Point (3) of Theorem 3.1, it follows for D each optimal transference plan π̄ has finite

transference cost w.r.t. cZ, so that the set Πf
cZ

(µ̄, ν̄) is not empty. From the observation (see

Example I.5.1 below) that in general the construction depends on the selected transference

plan π̄ through the marginals {ν̄ha}h,a, we will consider transference plans π̄ ∈ Π(ν̄, {ν̄ha})
such that ∫

cZπ̄ <∞.

i.e. π̄ ∈ Πf
cZ

(µ̄, {ν̄ha}).
Consider the disintegrations on the partition {Zha }h,a: if z 7→ (h(z), a(z)) is the σ-

continuous function whose graph is the projection ph,a,zD, then

µ̄ =

d∑

h=0

∫

Ah
µ̄haξ

h(da), ξh := a]µ̄xZh .

In the same way we can disintegrate π̄ ∈ Π(ν̄, {ν̄ha}) w.r.t. the partition {Zha × Rd+1}h,a,

π̄ =

d∑

h=0

∫

Ah
π̄ha ξ

h(da), µ̄ha = (p1)]π̄
h
a .

Write also

ν̄ =

d∑

h=0

∫

Ah
ν̄haξ

h(da), ν̄ha = (p2)]π̄
h
a ,

even if the above formula does not correspond to a real disintegration.

In the following example we show why in general the partition depends on the plan π̄.

(I.5.1) EXAMPLE: For d = 2 let

µ̄ =
1

8
H2xA, A =

{
(1, x) :

∣∣x− (±2, 0)
∣∣ ≤ 1

}
,

ν̄ =
1

8

(
2− ||x| − 2|

)
H1xB , B =

{
(0, x) : x ∈ {0} × [−4, 4]

}
.
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t = 0

t = 1

µ̄

a

Z1,−
a

ν̄

t

x1

x2C1,−
a

Figure I.12: The transport problem studied in Example I.5.1.

and let the transportation cost c̄ be

c̄(t, x) =





|x|∞ t > 0,

1{0}(x) t = 0,

+∞ t < 0,

|(x1, x2)|∞ = max{|x1|, |x2|}.

An pair of optimal plans π̄± are given by

π̄± = (I, T±)]µ̄, where T±(x) :=
(
0, 0, (x2 ± x1)

)
, x = (x1, x2) ∈ R2,

and, taking as a potential φ̄(t, x) = |x1|, the decomposition obtained by the first step can be

easily checked to be

Z2
a1

=
{

(t, x), x1 < 0
}
, C2

a1
=
{

(t, x), |x2| ≤ −x1

}
,

Z2
a1

=
{

(t, x), x1 > 0
}
, C2

a2
=
{

(t, x), |x2| ≤ +x1

}
.

Being the second marginals of the disintegration of π̄± = π̄2,±
a1

+ π̄2,±
a2

w.r.t. the partition

{Zhai}i=1,2 given by

ν̄2,±
ai = (p2)]π̄

2,±
ai =

1

4

(
2− ||x| − 2|

)
H1xB±i , B±i =

{
(1, 0, x2) : ±(−1)ix2 ∈ [0, 4]

}
,

the sets Π(µ̄, {ν̄h,−ai }), Π(µ̄, {ν̄h,+ai }) are different.

If we further proceed with the decomposition, we will obtain that the indecomposable

partition corresponding to π̄± is

Z1,±
a =

{
(t, x), x2 = a∓ x1,±(sign a)x1 > 0

}
,

C1,±
a =

{
(t, x), x2 = ∓x1,±(sign a)x1 ≥ 0

}
.
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I. THE GENERAL CASE

The parameterization is such that

Z1,±
a ∩ {x1 = 0} = {(0, a)}, a ∈ R.

We conclude with the observation that if instead we consider the transference plan

π̄ = (π̄+ + π̄−)/2, then the first decomposition is already indecomposable in the space

Π(µ̄, {ν̄2
ai}), because ν̄2

ai = ν̄.

Consider now the disintegration of the Hausdorff measure Hdx{t=1} w.r.t. the partition

{Zha }h,a:

Hdx{t=1}=
d∑

h=0

∫

Ah
υhaη

h(da), ηh := a]HdxZh∩{t=1}.

Following Point (2) of Theorem 3.1 on the regularity of the disintegration and taking into

account the choice of the variable a considered in Remark I.3.5, we will recursively assume

that the following

1. the measures υha are equivalent to HhxZha∩{t=1},

2. the measures ηh are equivalent to Hd−hxAh (see Remark I.4.23).

We will write

µ̄ha = faHh, fa Borel.

I.5.1. MAPPING A SHEAF SET TO A FIBRATION

Consider one of the h-dimensional directed sheaf sets D(h, n), h = 0, . . . , d, constructed

in Proposition I.3.3, and define the map

r : D(h, n) → Rd−h ×
(
[0,+∞)× Rh

)
× C(h, [0,+∞)× Rh)

(a, z, Cha ) 7→ r(a, z, Cha ) :=
(
a, ptaff Chn

z, ptaff Chn
Cha
) (I.39)

Remember that Chn is the reference cone for each cone in D(h, n) and aff Chn is the reference

plane for each Zha in this sheaf.

Being the projection of a σ-compact set, r is σ-continuous. Clearly, since z determines a

and a determines Cha , also the maps

r̃ : Zhn → Rd−h ×
(
[0,+∞)× Rh)× C(h, [0,+∞)× Rh)

z 7→ r̃(z) :=
(
a(z), ptaff Chn

z, ptaff Chn
Cha(z)

)

r̂ : Ahn → Rd−h × C(h, [0,+∞)× Rh)

a 7→ r̂(z) :=
(
a, ptaff Chn

Cha
)

are σ-continuous. We will use the notation

w ∈ [0,+∞)× Rh, Z̃ha :=
(
ih ◦ ptaff Chn

)
Zha and C̃ha :=

(
ih ◦ ptaff Chn

)
Cha ,
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ν̄2
a

aff C2
n

a r

C2
n

µ̄2
a

C2
a

Rh

C̃

µ̃2
a

Z2
a

r−1
C̃ ′

ν̃2
a

r(Z2
a) C̃2

a

t

x

Figure I.13: The map r defined in I.39.

where ih : V hn = aff Chn → Rh is the identification map. Moreover set Z̃hn := ∪a{a} × Z̃ha .

From Points (3) and (4) of Proposition I.3.3 we deduce the following result.

(I.5.2) LEMMA: There exists two cones Cn, Cn(−rn) in C(h, [0,+∞)× Rh) such that

∀a ∈ Ahn

(
Cn(−rn) ⊂ ˚̃Cha ∧ C̃ha ⊂ C̊n

)
.

PROOF. Take Cn := (ih ◦ ptaff Chn
)Chn .

(I.5.3) DEFINITION: A σ-compact subset D̃ of Rd−h×([0,+∞)×Rh)×C(h, [0,∞)×
Rh) such that

• the cone D̃(a, w) is independent of w,

• there are two non degenerate cones C̃, C̃ ′ ∈ C(h, [0,+∞)×Rh), C̃ ⊂ C̃ ′, (replacing of

Cn(−rn), Cn) satisfying Lemma I.5.2,

will be called an h-dimensional directed fibration.

In particular we have that r(D(h, n)) is an h-dimensional directed fibration.
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I. THE GENERAL CASE

The fact that we are considering transference problems in Π(µ̄, {ν̄ha}) allows to rewrite

them in the coordinates (a, w) ∈ Rd−h ×
(
[0,+∞)×Rh

)
. Indeed, consider the multifunction

ř whose inverse is the map

ř−1 : Ahn ×
(
[0,+∞)× Rh

)
→ [0,∞)× Rd

(a, w) 7→ ř−1(a, w) := aff Zha ∩ (ik ◦ ptaff Chn
)−1(w)

(I.40)

and define the transport cost

c̃hn
(
a, w, a′, w′) :=

{
0 a = a′, w − w′ ∈ C̃ha ,
∞ otherwise.

(I.41)

It is clear that

cZ
(
ř−1(a, w), ř−1(a′, w′)

)
= c̃hn

(
a, w, a, w′

)
.

Define the measures µ̃, ν̃ ∈ P(Rd+1) by

µ̃ :=

∫

Ahn

µ̃aξ
h(da), µ̃a := (ih ◦ ptaff Chn

)]µ̄
h
a
,

ν̃ :=

∫

Ahn

ν̃aξ
h(da), ν̃a := (ih ◦ ptaff Chn

)]ν̄
h
a .

Since the marginals of the conditional probabilities π̄ha are fixed for all π̄ ∈ Π(µ̄, {ν̄ha }),
then it is fairly easy to deduce the next proposition.

(I.5.4) PROPOSITION: It holds

Πf
cZ

(µ̄, {ν̄ha}) =
(
ř−1 ⊗ ř−1

)
]
Πf

c̃hn
(µ̃, ν̃).

Moreover µ̃({t = 1}) = 1, ν̃({t = 0}) = 1.

By Point (5) of Proposition I.3.3 one deduces that (paff Chn
)]υ

h
a are equivalent toHhxZ̃ha∩{t=1},

being υha the conditional probabilities of the disintegration of Hdx{t=1}, so that in particular

the measure ř]HdxZha∩{t=1} is equivalent to HdxZ̃hn∩{t=1}. We have used the fact that ř is

single valued on Zhn.
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I. THE GENERAL CASE

I.6. Analysis of the cyclical monotone relation on a

fibration

In this section we study the cyclical monotone relation generated by transference plans

with finite cost on a fibration D̃.

We recall that a directed fibration is a σ-compact subset of

{
(a, w, C) ∈ Rd−h ×

(
[0,+∞)× Rh

)
× C(h, [0,+∞)× Rh)

}

with the properties that pa,CD̃ is the graph of a σ-compact map a 7→ Ca ∈ C(h, [0,+∞)×Rh)

and there are two cones C̃, C̃ ′ ∈ C(h, [0,+∞)× Rh) such that

∀a ∈ paD̃
(
C̃ ⊂ ˚̃Ca ∧ C̃a ⊂ ˚̃C ′

)
. (I.42)

We will use the notation Ã := paD̃ ⊂ Rd−h, Z̃a := pwD̃(a), Z̃ := pa,wD̃: essentially the

notation is the same for D(h, n), only neglecting the index h and n.

The properties (I.42) of the two cones C̃, C̃ ′ ∈ C(h, [0,+∞) × Rh) allows us to choose

coordinates w = (t, x) ∈ [0,+∞)× Rh such that

C̃ = epi co, C̃ ′ = epi co′

for two 1-Lipschitz 1-homogeneous convex functions co, co′ : Rh → [0,+∞) such that

co′(x) < co(x) for all x 6= 0. In the same way, let coa : Rh → [0,+∞) be 1-Lipschitz

1-homogeneous convex functions such that

C̃a = epi coa.

Clearly from (I.42) for x 6= 0 it holds co′(x) < coa(x) < co(x). Moreover from the assumption

that C̃ ′ ∩ {t = 1} is bounded, we have that co′(x) > 0 for x 6= 0.

Define the transference cost c̃ as in (I.41)

c̃
(
a, w, a′, w′

)
:=

{
0 a = a′, w − w′ ∈ C̃a,

∞ otherwise.

Since c̃(a, w, a′, w′) <∞ implies a = a′, we will often write

c̃a(w,w′) := c̃
(
a, w, a, w′

)
.

From the straightforward geometric property of a convex cone C

w ∈ C =⇒ w + C ⊂ C, (I.43)
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I. THE GENERAL CASE

one deduces that

c̃(a, w, a′, w′), c̃(a′, w′, a′′, w′′) <∞ =⇒ c̃(a, w, a′′, w′′) <∞.

Note that in particular a = a′ = a′′.
Consider two probability measures µ̃, ν̃ in Ã×([0,+∞)×Rh) such that their disintegrations

µ̃ =

∫

Ã

µ̃aξ̃(da), ξ̃ := (pÃ)]µ̃, ν̃ =

∫

Ã

ν̃aξ̃
′(da), ξ̃′ = (pÃ)]ν̃, (I.44)

satisfy

ξ̃ = ξ̃′ and µ̃a(Z̃a ∩ {t = 1}) = ν̃a(Z̃ha ∩ {t = 0}) = 1.

It is fairly easy to see that if π̃ ∈ Πf (µ, ν), then

π̃ =

∫

Ã

π̃aξ̃(da) with π̃a ∈ Πf (µ̃a, ν̃a), (I.45)

and conversely if a 7→ π̃a ∈ Πf (µ̃a, ν̃a) is an ξ̃-measurable function, then the transference

plan given by the integration in (I.45) is in Πf (µ̃, ν̃).

We denote by Γ (π̃) the family of σ-compact carriages Γ̃ of π̃ ∈ Πf (µ̃, ν̃),

Γ (π̃) :=
{

Γ̃ ⊂ {c̃ <∞} ∩ {t = 1} × {t = 0} : π̃(Γ̃) = 1
}
,

and set

Γ :=
⋃

π̃∈Πf (µ̃,ν̃)

Γ (π̃).

The section of a set Γ̃ ∈ Γ at (a, a) will be denoted by Γ̃(a) ⊂ {t = 1} × {t = 0}.

I.6.1. A LINEAR PREORDER ON Ã× [0,+∞)× Rh

Let Γ̃ ∈ Γ . The following lemma is taken from [8, Lemma 7.3]: we omit the proof because

it is completely similar.

(I.6.1) LEMMA: There exist a ξ̃-conegligible set Ã′ ⊂ Rd−h and a countable family of

σ-continuous functions wn : Ã′ → {t = 1} × Rh, n ∈ N, such that

∀n ∈ N, a ∈ Ã′
(
wn(a) ⊂ p1Γ̃(a) ⊂ clos {wn(a)}n∈N

)
.

Define the set Hn ⊂ Ã× Rh by

Hn :=

{
(a, w) : ∃I ∈ N,

{
(wi, w

′
i)
}I
i=1
⊂ Γ̃(a)

(
w1 = wn(a) ∧ c̃(a, wi+1, a, w

′
i), c̃(a, w, a, w′I) <∞

)}
.

(I.46)

This set represents the points which can be reached from wn(a) by means of axial path of

finite costs (see Definition I.2.6 and Figure I.14).
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b

b b

b

b

−C

C

w′
1

wi

w′
i

w′
i+1

wn = w1

bwwi+1

Hn ∩ {t = 1}

b

Figure I.14: Construction of the set Hn, formula I.46.

(I.6.2) PROPOSITION: The set Hn is σ-compact in Rd−h × ([0,+∞) × Rh), and

moreover, defining the Borel set Ã†n := {a : Hn(a) 6= ∅}, then there exists a Borel function

hn : Ã† × Rh → [0,+∞) such that for all x, x′ ∈ Rh

hn(a, x′) ≤ hn(a, x) + coa(x′ − x)

and {
(a, t, x) : t > hn(a, x)

}
⊂ Hn ⊂

{
(a, t, x) : t ≥ hn(a, x)

}
.

The above statement is the analog of Proposition 7.4 of [8], and we omit the proof. The

function hn is given explicitly by

hn(x) = inf
{
coa(x− y), y ∈ id(Hn ∩ {t = 0})

}

= min
{
coa(x− y), y ∈ clos

(
id(Hn ∩ {t = 0})

)}
.

The separability of Rd and the non degeneracy of the cone C̃a yields the next lemma.

(I.6.3) LEMMA: There exist countably many cones {w′i+C̃a}i∈N, {w′i}i∈N ⊂ ih(p2Γ̃(a)∩
Hn(a)), such that

ih
(
H̊n(a)

)
=
⋃

i∈N
w′i + ˚̃Ca.

Moreover, the set ∂(ih(Hn(a))) ∩ {t = t̄} is (h− 1)-rectifiable for all t̄ > 0.

The estimate given in the proof below is well known, we give it for completeness.

PROOF. We need to prove only the second part. Let K = C̃a ∩ {t = t̄}, and consider in Rh
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∼ t̄

≥ κ2t
O

Figure I.15: We can consider a straight line in {t = t̄} traversal to O. The distance between

two points of (∂Hn)∩Bh(z, r) on this line and belonging to some translations of O is of the

order of t̄. (Lemma I.6.3).

a set H of the form

H =
⋃

i∈N
w′i + K̊.

If a point w belongs to ∂H, then it belongs to the boundary of w′ +K for a suitable w′.
Being K = Ca ∩ {t = 1} a compact convex set, the set ∂K can be divided into finitely

many L-Lipschitz graphs Oi, i = 1, . . . , I. By restricting their domains, for all ī fixed we can

assume that if two points wj , j = 1, 2, are such that

w1 ∈ (w′1 +Oī) \ (w′2 +K) and w2 ∈ (w′2 +Oī) \ (w′1 +K),

then either they belong to a common 2L-Lipschitz graph or their distance is of order

diamK ≈ t̄ (see Figure I.15).

The previous assumption on the sets Oi implies that the points in ∂Hn ∩B(0, R) of the

form w′ +Oī, with ī fixed, can be arranged into at most R
t̄ 2L-Lipschitz graphs: hence we

can estimate

Hh−1
(
∂H ∩B(0, R)

)
≈ max

{
R

t̄
, 1

}
·Rh−1 ≈ Rh

t̄
+Rh−1.

For R� t̄ we made use of the observation that there can be only 1 Lipschitz graph inside

the B(0, R).

Construction of the linear preorder 4W

Denote with W = {wn}n∈N the countable family of functions constructed in Lemma I.6.1.
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Define first the function

θ′
W,Γ̃

: Ã′ × ([0,+∞)× Rh) → Ã′ × [0, 1]

(a, w) 7→ θ′
W,Γ̃

(a, w) :=
(
a,max

{
0,
∑
n 2 · 3−nχHn(a, w)

})

(I.47)

It is fairly easy to show that θ′
W,Γ̃

is Borel. The dependence on Γ̃ occurs because the family W

is chosen once Γ̃ has been selected.

Since we are interested only in the values of the functions on p1Γ̃ and the measure µ̃ is

a.c., then once the function θ′
W,Γ̃

has been computed we define a new function θW,Γ̃ by

{
w : θW,Γ̃(a, w) ≥ θ

}
=

⋃

w′∈p2Γ̃(a)

θ′
W,Γ

(w′)≥θ

w′ + C̃a, θ ∈ [0, 1]. (I.48)

Being p2Γ̃(a) σ-compact and a 7→ C̃a σ-compact, it is standard to prove that θW,Γ̃ is Borel if

θ′
W,Γ̃

is.

The main reason for the introduction of the function θ will be clear in Section I.8: indeed,

θ and its upper semicontinuous envelope ϑ satisfy a Lax representation formula similar to the

Lax formula for HJ equation (Remark I.6.6), so that the techniques used in order to prove

regularity of the disintegration for φ̄ (Sections I.4.1 and I.4.2) can be adapted to this context.

(I.6.4) LEMMA: The functions θW,Γ̃(a), θ′
W,Γ̃

(a) are locally SBV on every section {t = t̄},
and

(w,w′) ∈ Γ̃(a) =⇒ θ′
W,Γ̃

(a, w) = θ′
W,Γ̃

(a, w′) = θW,Γ̃(a, w) = θW,Γ̃(a, w′).

Hence the function θW,Γ̃ has the same values of θ′
W,Γ̃

on p1Γ̃(a) ∪ p2Γ̃(a).

PROOF. From the definition of Hn(a), formula (I.46), it is fairly easy to see that

(w,w′) ∈ Γ̃
(
w ∈ Hn(a) ⇔ w′ ∈ Hn(a)

)
,

hence θ′
W,Γ̃

(a, w) = θ′
W,Γ̃

(a, w′). Moreover

θ′
W,Γ̃

(a, [0,+∞)× Rh) ⊂
{∑

n

sn3−n, sn ∈ {0, 2}
}
,

so that its range in L1-negligible (it is a subset of the ternary Cantor set). By (I.46), the

sets Hn(a) ∩ {t = t̄} is the union of compact convex sets containing a ball of radius O(t̄),

and then by Lemma I.6.3 it is of locally finite perimeter: more precisely, in each ball in Rh

of radius r its perimeter is O(rh/t̄+ rh−1).

Being θ′
W,Γ̃

(a)x{t=t̄} given by the sum of the functions of 3−nχHn∩{t=t̄} with (relative)

perimeter ≈ 3−n(rh/t̄+ rh−1) in each ball of Rh of radius r, it follows that θ′
W,Γ̃

(a)x{t=t̄} is

locally BV with

Tot.Var.(θ′
W,Γ̃

(a)x{t=t̄}, B(x, r)) ≈ rh

t̄
+ rh−1.
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Being a countable sum of rectifiable sets, it is locally SBV in each plane {t = t̄}: more

precisely, only the jump part of Dwθ
′
W,Γ̃

(a) is non zero.

The same analysis can be repeated for θW,Γ̃, using the definition (I.48). This concludes

the proof of the regularity.

The fact that θW,Γ̃(a, w) = θW,Γ̃(a, w′) if (w,w′) ∈ Γ̃(a) is a fairly easy consequence of

θ′
W,Γ̃

(a, w) = θ′
W,Γ̃

(a, w′) and the definition of θ. Indeed, it is clear that θ ≥ θ′; on the other

hand, if w′i ∈ p2Γ̃(a) is a maximizing sequence for w ∈ p1Γ̃(a), then the definition of θ′ gives

θ′(w) ≥ θ′(w′i),

and then θ′(w) = θ′(w′) = θ(w). Since θ(w′) ≤ θ(w) by (I.48), the conclusion follows.

(I.6.5) LEMMA: θW,Γ̃(a) and θ′
W,Γ̃

(a) are SBV in [0,+∞)× Rh.

PROOF. Being every sub levels of θW,Γ̃(a) and θ′
W,Γ̃

(a) the sum of cones w′+C̃a, the boundary

of level sets is locally Lipschitz and the thesis follows.

To estimate the regularity of the disintegration of the locally affine partition generated

by θ (Section I.7), we define the function ϑW,Γ̃(a) as the upper semicontinuous envelope of

θW,Γ̃(a): {
ϑ(a) ≥ θ

}
= clos

{
θ(a) ≥ θ

}
.

Being the topological boundaries of level sets of θW,Γ̃(a) rectifiable, the Hhx{t=t̄}-measure of

the points where ϑW,Γ̃(a) and θW,Γ̃(a) are different is 0.

(I.6.6) REMARK: We observe here the relation with the Lax formula for Hamilton-

Jacoby equation (with inverted time). In fact, if we define the Lagrangian

La(w) = 1C̃a
(w),

then formula (I.48) can be rewritten as

θW,Γ̃(a, w) = sup
{
θ′
W,Γ̃

(a, w′)− La(w − w′), w′ ∈ {t = 0}
}
.

Moreover, the definition of ϑW,Γ̃ yields that

ϑW,Γ̃(a, w) = max
{
ϑW,Γ̃(a, w′)− La(w − w′), w′ ∈ {t = 0}

}
.

Being the maximum reached in some point, it follows that ϑW,Γ̃ in some sense replaces

the potential φ̄. The advantages of using θW,Γ̃ instead of ϑW,Γ̃ will be clear in the following

sections.

We remark here only that the disintegration of the Lebesgue measure Hdx{t=1} on the

sub levels of θ or of ϑ is equivalent, as observed above.
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The space Rd−h × [0, 1] is naturally linearly ordered by the lexicographic ordering E: set

for a = (a1, . . . , ad−h), s ∈ [0, 1],

(a, s) / (a′, s′) ⇐⇒
[
∃i ∈ {1, . . . , d− h}

(
∀j < i

(
aj = a′j

)
∧ ai < a′i

)]

∨
[
ai = a′i ∧ s < s′

]
.

(I.49)

The pull-back of E by θW,Γ̃ is the linear preorder 4W,Γ̃ defined by

4W,Γ̃:=
(
θW,Γ̃ ⊗ θW,Γ̃

)−1
(E−1),

and the corresponding equivalence relation on Ã′ × Rh is

EW,Γ̃ :=4W,Γ̃ ∩ 4−1

W,Γ̃
=
{

(w,w′) : θW,Γ̃(w) = θW,Γ̃(w′)
}
.

By construction (a, w) ∼EW,Γ̃
(a′, w′) implies that a = a′. By convention we will also set

EW,Γ̃(a) =
{

(w,w′) : θW,Γ̃(a, w) = θW,Γ̃(a, w′)
}
.

(I.6.7) LEMMA: Assume that (a, w), (a′′, w′′) ∈ p1Γ̃ can be connected by a closed axial

path of finite cost. Then (a, w) ∼EW,Γ̃
(a′′, w′′).

PROOF. Clearly a = a′′, and thus the condition can be stated as follows: there exist I ∈ N,

(wi, w
′
i) ∈ Γ̃(a), i = 1, . . . , I, such that c̃a(wi+1, w

′
i) <∞, i = 1, . . . , I with wI+1 = w1, and

moreover w = wi1 , w′′ = wi2 for some i1, i2 ∈ I. This implies that

∀n ∈ N
(
w ∈ Hn(a) ⇔ w′′ ∈ Hn(a)

)
,

which proves that θ′
W,Γ̃

(a, w) = θ′
W,Γ̃

(a′′, w′′). From Lemma I.6.4 the conclusion follows.

A consequence of Lemma I.6.4 is thus that Γ̃ ⊂ EW,Γ̃. If Γ′ is another carriage contained

in {c̃ <∞}, then

(w,w′) ∈ Γ′(a) =⇒ w 4W,Γ̃ w
′,

because

θW,Γ′(w
′ + C̃a) ≥ θW,Γ′(w′) (I.50)

by construction. In particular from Theorem A.2.2 we deduce the following proposition.

(I.6.8) PROPOSITION: If π̃′ ∈ Πf (µ̃, ν̃), then π̃′ is concentrated on EW,Γ̃.

Construction of a σ-closed family of equivalence relations

The linear preorder 4W,Γ̃ depends on the family W of functions we choose and on the

carriage Γ̃: by varying the c̃-cyclically monotone carriage Γ̃ ∈ Γ and the family W dense in Γ̃

and we obtain in general different preorders.
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We can easily compose the linear preorders 4Wβ ,Γ̃β
, β < α countable ordinal number, by

using the lexicographic preorder on [0, 1]α: in fact, define the function (recall the notation

(a, s) ∈ Rd−h × [0, 1])

θ{Wβ ,Γ̃β}β<α : Rd−h × [0,+∞)× Rh → Rd−h × [0, 1]α

(a, w) 7→ θ{Wβ ,Γ̃β}β<α(a, w) :=
(
a, {psθWβ ,Γ̃β (a, w)}β<α

)

(I.51)

As in the previous section θ{Wβ ,Γ̃β}β<α is Borel, and the function should be considered defined

in the domain ∩βÃ′β , where Ã′β is the domain of the family of functions Wβ .

If E is the lexicographic preorder in Rd−h × [0, 1]α as in (I.49), then set

4{Wβ ,Γ̃β}β<α :=
(
θ{Wβ ,Γ̃β}β<α⊗θ{Wβ ,Γ̃β}β<α

)−1
(E), E{Wβ ,Γ̃β}β<α :=4{Wβ ,Γ̃β}β<α ∩ 4−1

{Wβ ,Γ̃β}β<α
.

Clearly π̃(E{Wβ ,Γ̃β}β<α) = 1, since π̃(EWβ ,Γ̃β
) = 1 for all β < α. To be an equivalence relation

on Rd−h × [0,+∞)× Rh, we can assume that I ⊂ E{Wβ ,Γ̃β}β<α .

The next lemma is a simple consequence of the fact that a countable union of countable

sets is countable. Its proof can be found in [8, Proposition 7.5].

(I.6.9) LEMMA: The family of equivalence relations

Ẽ :=
{
E{Wβ ,Γ̃β}β<α , Wβ =

{
wn,β

}
n∈N, α ∈ Ω

}

is closed under countable intersection. Moreover, for ever E{Wβ ,Γ̃β}β<α there exists ¯̃Γ ∈ Γ
and W̄ such that

E
W̄,¯̃Γ
⊂ E{Wβ ,Γ̃β}β<α .

I.6.2. PROPERTIES OF THE MINIMAL EQUIVALENCE RELATION

Let Ē{Wβ ,Γ̃β}β<α be the minimal equivalence relation chosen as in Lemma I.6.9 after a

minimal equivalence relation of Theorem A.3.1 in Appendix A.3 has been selected.

Let θ̄′ : Rd−h × ([0,+∞)× Rh)→ Rd−h × [0, 1] be the function obtained through (I.47)

with the set ¯̃Γ and the family of functions W̄, and let θ̄ be the corresponding function given

by (I.48). For shortness in the following we will use only the notation Ē, θ̄ and 4̄, and the

convention is that θ̄ is defined on a σ-compact set Ã′ × ([0,∞) × Rh) as in the discussion

following (I.51).

Let Γ̃ ∈ Γ be a σ-compact cyclically monotone set, and let θW,Γ̃ : Rd−h×([0,+∞)×Rh)→
Rd−h × [0, 1]N be constructed as in Section I.6.1.

By Corollary A.3.2, it follows that there exists a µ̃-conegligible σ-compact set B̃ ⊂
Rd−h × ([0,+∞) × Rh) and a Borel function s : Rd−h × [0, 1] → Rd−h × [0, 1] such that

θW = s ◦ θ̄ on B̃: since

paθ̄ = paθW,Γ̃ = I,
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it follows that we can write s(a, s) = (a, s(a, s)), with a slight abuse of notation. The set B̃

depends on θW,Γ̃.

Applying this result to the equivalence classes of positive µ̃a-measure, where µ̃a are the

conditional probabilities given by (I.44), we obtain the following proposition.

(I.6.10) PROPOSITION: There exists a set Ã′′ ⊂ Ã′ of full ξ̃-measure such that

∀a ∈ Ã′′, θ ∈ [0, 1]

(
µ̃a(θ̄−1(θ)) > 0 =⇒ ∃θ′ ∈ [0, 1]

(
µ̃a

(
θ̄−1(θ) \ θ−1

W,Γ̃
(θ′)
)

= 0
))

.

PROOF. Since the equivalence classes under consideration have positive µ̃a-measure, the

µ̃-negligible set (Ã′ × [0,+∞)× Rh) \ B̃ satisfies

ξ̃
({

a : ∃θ
(
µ̃a(θ̄−1(t) \ B̃) > 0

)})
= 0.

In the remaining ξ̃-conegligible subset Ã′′ of Ã′ the value θ′ = s(θ) satisfies the statement.

The essential cyclical connectedness of θ̄−1(θ) now follows from the following lemma, valid

for a generic θW,Γ̃. This lemma justify the choice of the density properties of the functions

wn, Lemma I.6.1.

(I.6.11) LEMMA: If µ̃a(θ−1

W,Γ̃
(θ)) > 0, a ∈ Ã′, then it is Hh{t=1}-essentially Γ̃-cyclically

connected.

PROOF. Fix a ∈ Ã′ and assume the opposite. Then there are two sets A1, A2 in p1(Γ̃(a)) ∩
θ−1

W,Γ̃
(θ) of positive µ̃a-measure such that each point of A1 cannot reach any point of A2.

If (w̄, w̄′) ∈ Γ̃(a) ∪A1 × {t = 0} is such that w̄ is a Hh{t=1}-Lebesgue points of A1, then

using the non degeneracy of C̃a and the density of W = {wn}n, we obtain that there exists a

wn̄(a) ∈ A1 ∩ (w̄′ + C̃a) with Hn̄ ∩A1 6= ∅.
By the assumption that θW,Γ̃ is constant, we deduce that A2 ∈ Hn̄, so that there is an

axial path connecting w̄ to A2.

The next example shows that, differently from [8, Theorem 7.2], the Lebesgue points of

{θ̄a = t} are not necessarily cyclically connected.

(I.6.12) EXAMPLE: Consider the sets in R2

A0 :=
{
x1 ≥ 0, x2 = 0

}
, A1 := A0 +B(0, 1),

and the map

T : R2 \A0 → R2 \A1, T(x) = x+

(
1− 1

2
dist(x,A0)

)+
x− dist(x,A0)

|x− dist(x,A0)| .

It is immediate to see that T is optimal for the cost c(x−x′) = 1|x|≤1(x) and the measures
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A0

A1

argmin d(x,A0)

x

Figure I.16: Example I.6.12.

µ, T]µ for all µ ∈ P(A1 \A0), and the sets and functions

Γ̃ = graph(T), W ∩ \A0 = ∅ θW,Γ̃(x) =

{
2/3 x /∈ A0,

0 x ∈ A0,

¯̃Γ = Γ̃ ∪
{

(x, x′) : x ∈ A0, x
′ ∈ (x+B(0, 1))

}
, clos(W̄ ∩A0) = A0,

θ̄
W̄,¯̃Γ

(x) = 2
3 ,

satisfy Proposition I.6.10, the equivalence class for θ̄ being R2 but for θ is R2 \A0.

I.7. Decomposition of a fibration into a directed locally

affine partition

In this section we use the function θ̄ constructed in the previous section to obtain a

partition of subsets of Rd−h× [0,+∞)×Rh which is locally affine and satisfies some regularity

properties: these properties are needed to prove the disintegration theorem of the next section.

The decomposition presented in this section can be performed for using any σ-continuous

function with the property (I.50). In particular, in Section I.8 we will use the function ϑ̄.

Using Lusin Theorem (134Yd of [18]) we can assume that θ̄ is σ-continuous up to a

(µ̃+Hdx{t=1})-negligible set.
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I.7.1. DEFINITIONS OF TRANSPORT SETS AND RELATED SETS

We define the following sets: they correspond to the sets used in [8], Section 4, adapted

to the space Rd−h × [0,+∞)× Rh, and are the analog of the sets used in Section I.4 for the

potential φ̄ and the cost c̄, replaced by θ̄ and c̃a.

Sub/super differential of θ̄ we define the cone sub/super-differential of θ̄ at (a, w) as

∂−θ̄(a) :=
{

(w,w′) : c̃a(w,w′) < +∞, θ̄(a, w) = θ̄(a, w′)
}
, (I.52)

∂+θ̄(a) :=
{

(w,w′) : c̃a(w′, w) < +∞, θ̄(a, w) = θ̄(a, w′)
}
.

Note that ∂−θ̄ = (∂+θ̄)−1.

Optimal Ray the optimal rays are the segments whose end points (a, w), (a, w′) satisfy

θ̄(a, w) = θ̄(a′, w′) and w ∈ w′ + C̃a.

Backward/forward transport set the forward/backward transport set are defined by

T−
θ̄

(a) :=
{
w : ∂−θ̄(a, w) 6= {w}

}
= p1

(
∂−θ̄(a) \ I

)
,

T+
θ̄

(a) :=
{
w : ∂+θ̄(a, w) 6= {w}

}
= p1

(
∂+θ̄(a) \ I

)
.

Set of fixed points the set of fixed points is given by

Fθ̄(a) := Rh \
(
T−
θ̄

(a) ∪ T+
θ̄

(a)
)
.

Backward/forward direction multifunction The backward/forward direction multifunc-

tion is given by

D−θ̄(a) :=

{(
w,

w − w′
pt(w − w′)

)
, w = (t, x) ∈ T−

θ̄
(a), w′ = (t′, x′) ∈ ∂−θ̄(a, w) \ {w}

}
,

D+θ̄(a) :=

{(
w,

w′ − w
pt(w′ − w)

)
, w = (t, x) ∈ T+

θ̄
(a), w′ = (t′, x′) ∈ ∂+θ̄(a, w) \ {w}

}
,

normalized such that ptD±θ̄(a, w) = 1.

Convex cone generated by D±θ̄ define

C−
θ̄

(a, w) := R+ · convD−θ̄(a, w), C+
θ̄

(a, w) := R+ · convD+θ̄(a, w).

Backward/forward regular transport set the `-dimensional backward/forward regular

transport sets are defined for ` = 0, . . . , h respectively as

R−,`
θ̄

(a) :=

{
w ∈ T−(a) : (i) D−θ̄(a, w) = convD−θ̄(a, w)

(ii) dim
(
convD−θ̄(a, w)

)
= `

(iii) ∃w′ ∈ T−
θ̄

(a) ∩
(
w + intrel C

−
θ̄

(a, w)
) (

(i), (ii) hold for w′
)}
,
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R+,`

θ̄
(a) :=

{
w ∈ T+(a) : (i) D+θ̄(a, w) = convD+θ̄(a, w)

(ii) dim
(
convD+θ̄(a, w)

)
= `

(iii) ∃w′ ∈ T+
θ̄

(a) ∩
(
w − intrel C

+
θ̄

(a, w)
) (

(i), (ii) hold for z′
)}
.

The backward/forward regular transport sets and the regular transport set are defined

respectively by

R−
θ̄

(a) :=

h⋃

`=0

R−,`
θ̄

(a), R+
θ̄

(a) :=

h⋃

`=0

R−,`
θ̄

and Rθ̄(a) := R−
θ̄

(a) ∩R+
θ̄

(a).

Finally define the residual set Nθ̄ by

Nθ̄(a) := Tθ̄(a) \Rθ̄(a).

The next statements are completely analog to [8, Section 4], and we will omit the proof.

(I.7.1) PROPOSITION: The set ∂±θ̄, T±
θ̄

, Fθ̄, D±θ̄, C±
θ̄

, R±,`
θ̄

, R±
θ̄

, Rθ̄ are σ-compact.

The next lemma follows easily from (I.50): in the language of [8], we can say that the

level sets of θ̄(a) are complete c̃a-Lipschitz graphs ([8, Definition 4.1]).

(I.7.2) LEMMA: If (w,w′) ∈ ∂+θ̄(a), then

Qθ̄,a(w,w′) := (w + C̃a) ∩ (w′ − C̃a) ⊂ ∂+θ̄(a, w). (I.53)

Moreover,

R+ · (Qθ̄,a(w,w′)− w) = R+ · (w′ −Qθ̄,a(w,w′)) =: Oa(w,w′)

where Oa(w,w′) is the minimal extremal face of C̃a containing w′ − w.

In particular, one deduces that as in the potential case

∂−θ̄(a, w) =
⋃

w′∈∂−θ̄(a,w)

Qθ̄,a(w′, w), ∂+θ̄(a, w) =
⋃

w′∈∂+θ̄(a,w)

Qθ̄,a(w,w′).

Moreover, by (I.43),

w′ ∈ ∂±θ̄(a, w) =⇒ ∂±θ̄(a, w′) ⊂ ∂±θ̄(a, w). (I.54)

Using the same ideas of the proof of Proposition I.4.11, we obtain an analogous proposition

for D−θ̄.

(I.7.3) PROPOSITION: Let Oa ⊂ C̃a be an extremal face. Then the following holds.

1. Oa ∩ {t = 1} ⊂ D−θ̄(a, w) ⇐⇒ ∃δ > 0
(
B(w, δ) ∩

(
w −Oa

)
⊂ ∂−θ̄(a, w)

)
.
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2. If Oa ∩ {t = 1} ⊂ D−θ̄(a, w) is maximal w.r.t. set inclusion, then

∀w′ ∈ Bh(w, δ) ∩
(
w − intrelOa

) (
D−θ̄(a, w′) = Oa ∩ {t = 1}

)
,

with δ > 0 given by the previous point.

3. The following conditions are equivalent:

(a) D−θ̄(a, w) = C−
θ̄

(a, w) ∩ {t = 1};
(b) the family of cones {

R+ ·Qa(w′, w), w′ ∈ ∂−θ̄(a, w)
}

has a unique maximum by set inclusion, which coincides with C−
θ̄

(a, w);

(c) ∂−θ̄(a, w) ∩ (z − intrelC
−
θ̄

(a, w)) 6= ∅;
(d) D−θ̄(a, w) = convD−θ̄(a, w).

A completely similar proposition can be proved for D+θ̄.

(I.7.4) PROPOSITION: Let Oa ⊂ C̃a be an extremal face. Then the following holds.

1. Oa ∩ {t = 1} ⊂ D+θ̄(a, w) ⇐⇒ ∃δ > 0
(
B(w, δ) ∩

(
w +Oa

)
⊂ ∂+θ̄(a, w)

)
.

2. If Oa ∩ {t = 1} ⊂ D+θ̄(a, w) is maximal w.r.t. set inclusion, then

∀w′ ∈ B(w, δ) ∩
(
w + intrelOa

) (
D+θ̄(a, w′) = Oa ∩ {t = 1}

)
,

with δ > 0 given by the previous point.

3. The following conditions are equivalent:

(a) D+θ̄(a, w) = C+
θ̄

(a, w) ∩ {t = 1};
(b) the family of cones {

R+ ·Qa(w,w′), w′ ∈ ∂+θ̄(a, w)
}

has a unique maximum by set inclusion, which coincides with C+
θ̄

(a, w);

(c) ∂+θ̄(a, w) ∩ intrel(z + C+
θ̄

(a, w)) 6= ∅;
(d) D+θ̄(a, w) = convD+θ̄(a, w).

As a consequence of Point (3) of the previous propositions, we will call sometimes

C−
θ̄

(a, w), C+
θ̄

(a, w) the maximal backward/forward extremal face.

(I.7.5) REMARK: In Section I.8 we will need to compute the same objects for the

function ϑ̄. The definitions are exactly the same, as well as the statements of Propositions

I.7.1, I.7.3, I.7.4 and Lemma I.7.2, just replacing the function θ̄ with ϑ̄. We thus will

consider the sets

∂±ϑ̄, T±
ϑ̄
, Fϑ̄, D±ϑ̄, C±

ϑ̄
, R±,`

ϑ̄
, R±

ϑ̄
, Rϑ̄, Nϑ̄,

and for the exact definition we refer to the analog for θ̄.
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I.7.2. PARTITION OF THE TRANSPORT SET

In this section we construct a map which give a directed locally affine partition in

Rd−h × [0,+∞) × Rh: more precisely, up to a residual set, we will find a directed locally

affine partition on each fiber {a} × [0,+∞)× Rh, and the dependence of this partition from

the parameter a is σ-continuous.

Define the map

v−
θ̄

: R−
θ̄

→ Rd−h × ∪h`=0A(`,Rh)

(a, w) 7→ v+
θ̄

(a, w) :=
(
a, aff ∂−θ̄(a, w)

)

(I.7.6) LEMMA: The map v−
θ̄

is σ-continuous.

PROOF. Since ∂−θ̄(a, w) is σ-continuous by Proposition I.7.1 and the map A 7→ aff A is

σ-continuous in the Hausdorff topology, the conclusion follows.

We recall the convention R0 = N.

(I.7.7) THEOREM: The map v−
θ̄

induces a partition

h⋃

`′=0

{
Z`
′,−

a,b′ , a ∈ Rd−h, b′ ∈ Rh−`
′
}

on R−
θ̄

such that the following holds:

1. each set Z`
′,−

a,b′ is locally affine;

2. there exists an extremal face O`
′,−

a,b′ with dimension `′ of the cone C̃a such that

∀w ∈ Z`
′,−

a,b′

(
aff Z`

′,−
a,b′ = aff(w +O`

′,−
a,b′ ) ∧ D−θ̄(a, w) = O`

′,−
a,b′ ∩ {t = 1}

)
;

3. for all w ∈ T−
θ̄

(a) there exists r > 0, O`
′,−

a,b′ such that

B(w, r) ∩
(
w − intrelO

`′,−
a,b′

)
⊂ Z`

′,−
a,b′ .

The choice b ∈ Rh−` is in the spirit of Proposition I.3.3.

PROOF. For the proof see [8, Theorem 4.18].

A completely similar statement holds for R+
θ̄

, by means of σ-continuous map

v+
θ̄

: R+
θ̄

→ Rd−h × ∪h`=0A(`, [0,+∞)× Rh)

(a, w) 7→ v+
θ̄

(a, w) :=
(
a, aff ∂+θ̄(a, w)

)

(I.7.8) THEOREM: The map v+
θ̄

induces a partition

h⋃

`=0

{
Z`,+a,b ⊂ [0,+∞)× Rh, a ∈ Rd−h, b ∈ Rh−`

}

on R+
θ̄

such that the following holds:
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1. each set Z`,+a,b is locally affine;

2. there exists an extremal face O`,+a,b with dimension ` of the cone C̃a such that

∀w ∈ Z`,+a,b

(
aff Z`,+a,b = aff(z +O`,+a,b ) ∧ D+θ̄(a, w) = O`,+a,b ∩ {t = 1}

)
;

3. for all w ∈ T+
θ̄

(a) there exists r > 0, O`,+a,b such that

B(w, r) ∩
(
w + intrelO

`,+
a,b

)
⊂ Z`,+a,b .

In general ` 6= `′, but on Rθ̄ the two dimensions (and hence the affine spaces p2 v
±
θ̄

)

coincide.

(I.7.9) PROPOSITION: On the set Rθ̄ one has

v−
θ̄

(a, w) = v+
θ̄

(a, w).

PROOF. For the proof see [8, Corollary 4.19]. Define thus on Rθ̄

vθ̄ := v+
θ̄
xRθ̄= v−

θ̄
xRθ̄ ,

and let {
Z`a,b, (a, b) ∈ Rd−h × Rh−`

}

be the partition induced by vθ̄: since Rθ̄ = ∪`R−,`θ̄
∩R+,`

θ̄
, it follows that

Z`a,b = Z`,−a,b ∩ Z
`,+
a,b ,

once the parametrization of A(`′, aff Z`a) is fixed accordingly.

Finally, define the set D̃′ by

D̃′ :=
{(
`, a, b, w, C

)
: C = p2vθ̄(a, w) ∩ C̃a, w ∈ Z`a,b

}

⊂
h⋃

0

{
{`} × Rd−h × Rh−` × ([0,∞)× R`)× C(`,Rh)

}
.

(I.7.10) LEMMA: The set D̃′ is σ-compact.

PROOF. Since vθ̄, a 7→ C̃a are σ-continuous, the conclusion follows.

We thus conclude that D̃′ corresponds the following directed locally affine partition of

Rd:

D̂′ :=
{

(`, c, z, C), c = (a, b), z = (a, w) : (`, a, b, w, C) ∈ D̃′
}
. (I.55)

We will use the notation c = (a, b) and

Z`c := Z`a,b = pzD̃
′(`, c), C`c := O`a,b = pCD̃′(`, c), Z̃′` := pa,wD̃′(`),

where O`a,b is the extremal fact of C̃a corresponding to the space spanDθ̄(a, w).
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I.8. Disintegration on directed locally affine partitions

In this section we show how to use the function ϑ̄ in order to prove that the directed

locally affine partition D̃ is regular w.r.t. the measure Hdx{t=1}. This is the main difference

w.r.t. the analysis of [8], where the regularity is proved w.r.t. the measure Ld+1.

Let thus ϑ̄ be the upper semi continuous envelope of θ̄.

(I.8.1) LEMMA: For all s ≥ 0, the following holds: if t ≥ s, then

ϑ̄(a, t, x) = max
{
ϑ̄(a, s, y)− 1C̃a

(t− s, x− y), y ∈ Rh
}
.

PROOF. Recalling that θ̄ is defined by

θ̄(a, t, x) = sup
{
θ̄(a, s, y)− 1C̃a

(t− s, x− y) : y ∈ Rh
}
,

the proof follows immediately by considering a sequence of maximizers yn for θ̄(a, t, x).

Since ϑ̄ satisfies

ϑ̄(a, w + C̃a) ≥ ϑ̄(a, w) (I.56)

i.e. it is a complete c̃-Lipschitz foliation according to [8], the same completeness property

(I.53) holds: if (w,w′) ∈ ∂+ϑ̄(a), then

Qϑ̄,a(w,w′) := (w + C̃a) ∩ (w′ − C̃a) ⊂ ∂+ϑ̄(a, w).

Recalling for the notations Remark I.7.5, a first connection between θ̄ and ϑ̄ is shown in

the following lemma.

(I.8.2) LEMMA: If ϑ̄(a, t, x) = θ̄(a, t, x), then ∂−θ̄(a, t, x) ⊂ ∂−ϑ̄(a, t, x).

PROOF. Let (s, y) ∈ ∂−θ̄(a, t, x), so that θ̄(a, s, y) = θ̄(a, t, x). The inclusion ∂−θ̄(a, t, x) ⊂
∂−ϑ̄(a, t, x) follows from the estimate:

θ̄(a, s, y) ≤ ϑ̄(a, s, y) ≤ ϑ̄(a, t, x) = θ̄(a, t, x).

This concludes the proof.

I.8.1. REGULARITY OF THE PARTITION D̃′

The proof to show the regularity of Hdx{t=1}-a.e. point for ϑ̄ is very similar to the

analysis done in Section I.4.1: the two proofs differ because we have now to consider a family

56



I. THE GENERAL CASE

of HJ equations (one for each a ∈ Ã), and that the Lagrangian is the indicator function of a

cone C̃a.

Once we have the regularity for ϑ̄, we use the fact that θ̄(t̄) = ϑ̄(t̄) for Hdx{t=t̄}-a.e. point

in order to deduce that the same regularity holds for θ̄.

Consider a Borel bounded set S ⊂ {t = t̄} made of backward regular points for ϑ̄. Since

by the definition of ϑ̄ each point has an optimal ray reaching t = 0, for all s > 0 we can find

inner optimal rays, i.e. with directions belonging to the interior of C−
ϑ̄

.

(I.8.3) LEMMA: Let t̄ > s > ε > 0. Then for every (t̄, x) ∈ S there exists a point

σs(t̄, x) ∈ intrel

(
∂−ϑ̄(a, t̄, x) ∩ {t = s}

)
such that

Hh(σs(S)) ≥
(
s− ε
t̄− ε

)h
Hh(S).

PROOF. For each fixed a the proof is the same as the one of φ̄, just replacing it with ϑ̄.

In particular we obtain that for each fixed ε > 0 every point z ∈ S has a cone of optimal

backward directions Kz such that

Kz ∈ C(`, [0,+∞)× Rh) and (z −Kz) ∩ {t = ε} ⊂ ∂−ϑ̄(z) ∩ {t = ε},

where ` = dim D−ϑ̄(z).

As in the proof of Lemma I.4.19, we can thus partition the set S according to the

requirement that the projection of K on a (`+ 1)-dimensional reference plane V ′ contains a

reference cone K ′ ∈ C(`, [0,+∞)× Rd).
Slicing the problem on (d− `)-dimensional planes V ′′ transversal to V ′, it follows that

σs(z) := ϑ̄(z) ∩ V ′′ ∩ {t = s}

is singleton for all z ∈ S. We can then use the same approach used in [8, Section 8].

Consider the two measures µ̂ := HdxS and its image measure ν̂ := (σs)]µ̂. By (I.56) and

Proposition I.6.8 applied to ϑ̄, every transport π̂ ∈ Πf
c̃ (µ̂, ν̂) with finite cost w.r.t. c̃ occurs

on the level sets of ϑ̄: in particular, in each plane V ′′ there exists a unique transference plan

with finite cost.

We can then use [8, Lemma 8.4] in order to obtain a family of cone vector fields converging

to σs for Hd-a.e. point. Being the area estimate

Hh(σns (S)) ≥
(
s− ε
t̄− ε

)h
Hh(S)

u.s.c. w.r.t. pointwise convergence σns (z)→ σs(z) [8, Lemma 5.6], we obtain the statement.

We can now repeat the same proof of Proposition I.4.21 in order to obtain the regularity

of H{t=t̄}-a.e. point. The only variation w.r.t. the proof of Proposition I.4.21 is that we have

to use the regularity of the disintegration of Ld+1 on the directed locally affine partition
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D̃ϑ̄ = {Z`a,b(ϑ̄), C`a,b(ϑ̄)}`,a,b induced by ϑ̄ through the map

vϑ̄ : Rϑ̄ → Rd−h × ∪h`=0A(`,Rh)

(a, w) 7→ vϑ̄(a, w) :=
(
a, aff ∂−ϑ̄(a, w)

)

(The fact that vϑ̄ induces a locally affine directed partition is the same statement of Theorem

I.4.14 or Theorem I.4.15, see Remark I.7.5.)

The regularity of D̃ϑ is one of the fundamental results of [8], Theorem 8.1 and Corollary 8.2:

(I.8.4) THEOREM: If {Z`a,b(ϑ̄), C`a,b(ϑ̄)}`,a,b is the locally affine partition induced

by the function ϑ̄, then Ld+1-a.e. point is regular and the disintegration of Ld+1 w.r.t.

{Z`a,b(ϑ̄)}`,a,b is regular.

A similar statement holds for the directed locally affine partition D̃′ = {Z`a,b, C`a,b}`,a,b
obtained through the function θ̄.

Once we are given that Ld+1-a.e. point is regular for ϑ̄, replacing the area estimate

Lemma I.4.19 with Lemma I.8.3 in the proof of Proposition I.4.21 yields the following result.

(I.8.5) PROPOSITION: For all t̄ > 0, the set of regular points for ϑ̄ in {t = t̄} is

Hdx{t=t̄}-conegligible.

We now transfer the regularity w.r.t. ϑ̄ to the regularity w.r.t. θ̄. The sketch of the

proof is as follows: since by Fubini theorem, for H1-a.e. t̄ it holds that Hdx{t=t̄}-a.e. point

is regular for θ̄, and the same occurs for ϑ̄, we can use the fact that θ̄(t, x) = ϑ̄(t, x) for

Hx{t=t̄}-a.e. x and every t̄ > 0 in order to obtain that the points z, σs(z) used in Lemma

I.8.3 are regular points for θ̄. The key observation is that the inner rays for ϑ̄ will be also

inner rays for θ̄.

(I.8.6) PROPOSITION: If t̄ > 0 then Hhx{t=t̄}-a.e. point is regular for θ̄.

PROOF. By Theorem I.8.4 we can fix ε′ > 0 such that Hdt=t̄±ε′ -a.e. point is regular for both

θ̄ and ϑ̄. By the area estimate of Lemma I.8.3, we can also assume that

S ⊂ Rθ̄ ∩Rϑ̄ ∩ {t = t̄+ ε} ∩ {θ̄ = ϑ̄}

and for all z ∈ S
σt̄−ε′(z) ∈ Rθ̄ ∩Rϑ̄ ∩ {t = t̄− ε′} ∩ {θ̄ = ϑ̄}.

In particular we deduce that

σt̄−ε′(z) ∈ ∂−θ̄(z). (I.57)

If z − σs(z) belongs to an inner direction of

Cθ̄(z) = C+
θ̄

(z) = C−
θ̄

(z),

then the same observation at the end of the proof of Proposition I.4.21 will give immediately

the statement: the arbitrariness of ε′ is used as in the proof of the proposition in order to

obtain that Hdx{t=1}-a.e. point is regular.
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We thus left with proving this last property of σs(z), i.e. z − σs(z) ∈ Cθ̄.
Being σs(z)− z an inner ray of −Cϑ̄(z) and Cθ̄(z), Cϑ̄ extremal cones of C̃paz, it follows

that if Cθ̄(z) ( Cϑ̄, by the extremality property then for s < t̄+ ε′

(z − σs(z)) ∩ Cθ̄(z) = ∅,

contradicting (I.57).

The proof of the regularity of the disintegration ofHdx{t=1} w.r.t. the partition {Z`a,b}`,a,b
follows the same line of Section I.4.2: just replace the use of Lemma I.4.19 with Lemma I.8.3.

The statement is analogous.

(I.8.7) PROPOSITION: The disintegration

Hdx∪`,a,bZ`a,b∩{t=1}=
∑

`

∫
v`a,bη

`(dadb)

w.r.t. the partition {Zha,b ∩ {t = 1}}h,a,b is regular:

vha,b � H`xZ`a,b .

I.8.2. PROOF OF THEOREM 3.2

Let D̂′ = {Z`c , C`c}`,c be the directed locally affine given by (I.55). By Corollary I.8.6 we

have that the complement of ∪`,cZ`c is Hdx{t=1}-negligible; Proposition I.4.22 yields that the

disintegration is regular.

Consider now the map ř defined in (I.40): ř is invertible on D̂′ and, as observed at the

end of Section I.5.1, the two measures ř−1H`xZ`c and H`xř−1(Z`c) are equivalent. Hence the

first three points of Theorem 3.2 follows: namely

• the sets

Zh,`a,b := ř−1(Z`c ) ⊂ Zha
has affine dimension `+ 1 and

Ch,`a,b := ř−1(C`c )

is an (`+ 1)-dimensional extremal cone of Cha , ` ≤ h and c = (a, b);

• µ̄(∪h,`,a,bZh,`a,b) = 1;

• the disintegration of Hdx{t=1} w.r.t. the partition {Zh,`a,b}h,`,a,b is regular;

Since the preorder 4̄ induced by θ̄ is Borel and π̃′(4̄) = 1, then by Theorem A.2.2 the

transference plan is concentrated on the diagonal Ē = 4̄ ∩ 4̄−1
. Hence by construction

the transference of mass occurs along the equivalence classes: these directions are exactly

the optimal rays defined by (I.52). On the regular set by definition these directions are the

extremal cone C`c in Z`c :
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• if π̄ ∈ Π(µ̄, {ν̄ha}) with ν̄ha = p2π̄
h
a , then π̄ satisfies (14) iff

π̄ =
∑

h,`

∫
π̄h,`a,bm

h,`(dadb),

∫
1Ch,`a,b

(x− x′)π̄h,`a,b <∞;

The indecomposability of the sets Zh,`a,b with ` = h is a consequence of Proposition I.6.10

and Lemma I.6.11, stating that the function θ constructed by a given Γ is constant on Zh,ha,b

and the sets Zh,ha,b are indecomposable. This proves Point (5) of Theorem 3.2:

• if ` = h, then for every carriage Γ of π̄ ∈ Π(µ̄, {ν̄ha}) there exists a µ̄-negligible set N

such that each Zh,ha,b \N is 1Ch,ha,b
-cyclically connected.

In the next section we will use this theorem in order to prove Theorem 1.1.

I.9. Proof of Theorem 1.1

By Theorem 3.1 we have a first directed locally affine decomposition Dφ̄, and by Theorem

3.2 a method of refining a given locally affine partition in order to obtain indecomposable

sets or lower the dimension of the sets by at least 1. It is thus clear that after at most d

steps we obtain a locally affine decomposition {Zha , Cha } with the properties stated in Point

(5) of Theorem 3.2.

(I.9.1) THEOREM: Given a transference plan π̄ ∈ Π(µ̄, ν̄) optimal w.r.t. the cost c̃,

then there is a directed locally affine partition D̄ = {Zha , Cha }h,a such that

1. Zha has affine dimension h+ 1 and Cha is an (h+ 1)-dimensional proper extremal cone

of epi c̄; moreover aff Zha = aff(z + Cha ) for all z ∈ Zha ;

2. Hd({t = 1} \ ∪h,aZha ) = 0;

3. the disintegration of Hdx{t=1} w.r.t. the partition {Zha }h,a is regular, i.e.

Hdx{t=1}=
∑

h

∫
ξhaη

h(da), ξha � HhxZha∩{t=1};

4. if π̄ ∈ Π(µ̄, {ν̄ha}) with ν̄ha = p2π̄
h
a , then π̄ is optimal iff

π̄ =
∑

h

∫
π̄ham

h(da),

∫
1Cha

(z − z′)π̄ha <∞;
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5. for every carriage Γ of any π̄ ∈ Π(µ̄, {ν̄ha}) there exists a µ̄-negligible set N such that

each Zha,b \N is 1Cha -cyclically connected.

The last step is to project back the decomposition for {t = 1} × Rd to Rd, and cut the

cones Cha at {t = 1}.

• Take Sha := Zha ∩ {t = 1} and Oha = −Cha ∩ {t = 1}: the minus sign is because

of the definition of c̄ in formula (9). By the transversality of Cha if follows that

dim Oha = dim Oha = h. Since Zha is parallel to Cha , then Oha is parallel to Sha . Being Cha
an extremal cone of c̄ and the latter 1-homogeneous, it follows that Oha is an extremal

face of c.

• The fact that the partition cover Ld-a.e. point and that the disintegration is regular

are straightforward.

• Being µ̄({t = 1}) = ν̄({t = 0}) = 1, then it is clear that we can assume that every

carriage Γ is a subset of {t = 1} × {t = 0}. This implies that when computing the

cyclical indecomposability we use only vectors in Oha , and thus the last point of Theorem

1.1 follows from Point (5) of Theorem I.9.1.

This concludes the proof of Theorem 1.1.

I.9.1. THE CASE OF ν � Ld

In general the end points of optimal rays are in Zha + Cha ∩ {t = 1}, which in general

is larger that Zha . As an example, one can consider the case ν = δx=0, and verify that

Zha = Cha \ {0}. However in the case ν � Ld, the partition is independent of π, i.e. following

[8] we call it universal.

The key observation is that we can replace the roles of the measures µ̄, ν̄, obtaining

then a decomposition {Wh′

a′ , C
h′

a′ }h′,a′ for {t = 0}. Now recall that along optimal rays θ̄ is

constant: being inner ray of the cones Cha , Ch
′

a′ , then it follows that Cha = Ch
′

a′ , and from this

it is fairly easy to see that Zha = Wh′

a′ . In particular, for each optimal transference plan π̄ it

follows that its second marginals are given by the disintegration of ν̄ on Zha , i.e. they are

independent of π̄.

Translating this decomposition into the original setting, we can thus strengthen Theorem

1.1 as follows.

(I.9.2) THEOREM: Let µ, ν � Ld. Then there exists a family of sets {Sha , Oha}h=0,...,d

a∈Ah

in Rd such that the following holds:

1. Sha is a locally affine set of dimension h;

2. Oha is a h-dimensional convex set contained in an affine subspace parallel to aff Sha and

given by the projection on Rd of a proper extremal face of epi c;
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3. Ld(Rd \ ∪h,aSha ) = 0;

4. the partition is Lebesgue regular;

5. if π ∈ Π(µ, ν) then optimality in (4) is equivalent to

∑

h

∫ [ ∫
1Oha

(x′ − x)πha (dxdx′)

]
mh(da) <∞,

where π =
∑
h

∫
Ah
πham

h(da) is the disintegration of π w.r.t. the partition {Sha ×Rd}h,a;

6. for every carriage Γ of π ∈ Π(µ, ν) there exists a µ-negligible set N such that each

Sha \N is 1Oha -cyclically connected.
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II.1. Setting

As case study we consider the following Monge problem in R2:

min
{∫

R2×R2

c(x− x′)π(dxdx′) : π ∈ Π(µ, ν)
}
, (II.1)

where µ and ν � L2 are two positive probabilities measure on R2, Π(µ, ν) the set of

probabilities measures on R2 × R2 such that the first marginal is µ, the second ν, and c is

a non negative, lower semicontinuous, and convex real valued cost with the same growth

estimate of the general case.

As before, we consider the embedding in [0,+∞)×R2 and the relative problem associated

to (II.1):

∫
(
R+×R2

)
×
(
R+×R2

) c̄(t− t′, x− x′)π(dtdxdt′dx′), π̄ ∈ Π(µ̄, ν̄). (II.2)

Then we consider the associated potentials:

φ̄(t, x) = min
x′∈R2

{
− ψ(x′) + c̄(t, x− x′)

}
, t ≥ 0,

and

ψ̄(t, x) = max
x′∈R2

{
− φ(x′)− c̄(1− t, x′ − x)

}
, t ≤ 1.

II.1.1. CONSTRUCTION OF THE FIRST DIRECTED LOCALLY AFFINE PARTITION

In the following we adopt the same notation and the results obtained in Section I.4.

By means of the potentials φ̄ we find a directed locally affine partition Dφ̄ ⊂
⋃
h∈{0,1,2}

(
{h}×

R2−h × ([0,+∞)× R2)× C(h, [0,+∞)× R2)
)

,

Dφ̄ :=
{(
h, a, z, C

)
: C = Fha , z ∈ Zha

}
.
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II.1.2. AREA ESTIMATE

The next step is to prove that Dφ̄ is regular enough to be refined.

A powerful tool to prove this kind of regularity is the area estimate that we introduce in

this section.

Let 0 < t1 < t2 be two different real numbers and S a subset of {t = t2} such that

H2(S) < +∞. Let us assume that for every z ∈ S there exists an optimal ray that reaches

t1. This is not restrictive by formula (I.3)

(II.1.1) DEFINITION: Take t ∈]t1, t2[ a real number. With the previous notation we

define the following sets:

Σ−
φ̄,0

(S, t1, t2, t) :=
{
z ∈ S : ∂−φ̄(z) ∩ {t = t̄} does not contain any segment

}
,

Σ−
φ̄,1

(S, t1, t2, t) :=
{
z ∈ S : ∂−φ̄(z)∩{t = t̄} contains a segment but no two dimensional convex

}
,

Σ−
φ̄,2

(S, t1, t2, t) :=
{
z ∈ S : ∂−φ̄(z) ∩ {t = t̄} contains at least a two dimensional convex

}
,

bb b

b

t

R2R2R2

{t = t1}

{t = t2}

{t = t}

Σ−
φ,0

(S, t1, t2, t) Σ−
φ,1

(S, t1, t2, t) Σ−
φ,2

(S, t1, t2, t)

Figure II.1: Definition II.1.1.

First of all we prove that the subset of Σ−
φ̄,0

(S, t2, t2, t̄) made of points z such that there

are z1, z2 ∈ ∂−φ̄(z) and distH([∂c̄(· − z1)](z), [∂c̄(· − z2)](z)) > 0 is rectifiable.

(II.1.2) DEFINITION: Let S ⊂ Rd be an Hk−measurable set. We say that S is

k−countably rectifiable if there exist countable many Lipschitz functions fi : Rk 7→ Rd such

that S ⊂ ∪fi(Rd).
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(II.1.3) THEOREM: Let S ⊆ Rd and assume that for any z ∈ S there exists ρz > 0,

m‘z > 0 and a k−plane L(z) ⊂ Rd such that

S ∩Bρz (z) ⊂ z + {z ∈ Rd : |pL(z)⊥z| ≤ mz|pL(z)z|},

where pL is the orthogonal projection onto L, pL⊥ onto the orthogonal of L. Then S is

contained in the union of countably many Lipschitz k−graph whose Lipschitz constants do

not exceeded 2 supzmz.

As in [4, Section 6] we can argue as following. For every K ⊂ R3 compact set such that

0 6∈ K we can define

G+(K) = {w ∈ R3 : w · k > 0, for every k ∈ K} and G(K) = G+(K) ∩G+(−K).

In the following we will indicate the usual notion of sub-differential with the notation ∂.

(II.1.4) LEMMA: Let z ∈ Dt, z1, z2 ∈ ∂−φ̄(z), and assume that distH([∂c̄(· −
z1)](z), [∂c̄(· − z2)](z)) > 0.

Let (zk)k∈N a sequence of points in Dt converging to z such that there exists zk1 ∈ ∂−φ̄(zk)

with zk1 → z1.

Then, if [0,+∞)× R2 is the derived set of
{
zk−z
|zk−z|

}
k∈N

,

D ∩G+
(
[∂c̄(· − z1)](z)− [∂c̄(· − z2)](z)

)
= ∅.

PROOF. Up to a subsequence
(
zk−z
|zk−z|

)
k∈N converges to some l.

Observe that there exists αk1 ∈ [∂c̄(· − zk1 )](z) and α2 ∈ [∂c̄(· − z2)](z) such that

c̄(zk − zk1 ) = c̄(z − zk1 ) + αk1 · (zk − z)− o(|zk − z)|)

and

c̄(zk − z2) = c̄(z − z2) + α2 · (zk − z)− o(|zk − z)|).
Notice that for every subsequence αk1 converging to some α1, necessarily α1 belongs to

[∂−c̄(· − z1)](z).

Therefore,

φ̄(z) + α2 · (zk − z) + o(|zk − z|) = φ̄(z)− c̄(z − z2) + c̄(zk − z2)

= φ̄(z2) + c̄(zk − z2)

≥ φ̄(zk)

= φ̄(zk1 ) + c̄(zk − zk1 )

= φ̄(zk1 ) + c̄(z − zk1 ) + αk1 · (zk − z) + o(|zk − z|)
≥ φ̄(z) + αk1 · (zk − z) + o(|zk − z|).

Therefore

(α2 − αk1) · (zk − z) ≥ o(|zk − z|).
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Passing to the limit we obtain that:

(α2 − α1) · l ≥ 0.

(II.1.5) PROPOSITION: Fix t > 0. Then, the set

Jt =

{
z ∈ Dt : ∃z1, z2 ∈ T−φ̄ ∩ ∂

−φ̄(z),distH([∂c̄(· − z1)](z), [∂c̄(· − z2)](z)) > 0

}
.

is countably n− 1 rectifiable.

PROOF. It is not restrictive to suppose that there is ρ > 0 and d1, d2 ∈ {t = 1} such that for

every z ∈ Jt there are z1 and z2 in ∂−φ̄(z) such that z−z1
pt(z−z1) ∈ B1(d1, ρ), z−z2

pt(z−z2) ∈ B1(d2, ρ)

and,

distH([∂c̄(· − z1)](z), [∂c̄(· − z2)](z)) > 0.

If there is a sequence zi converging to z such that there are two sequence zi1 and zi2 converging

respectively to z1 and z2 then this sequence must not be in

G([∂c̄(· − z1)](z)− [∂c̄(· − z2)](z)),

according to Lemma II.1.4. In order to get the thesis it is sufficient to applies the Theorem

(II.1.3)

(II.1.6) COROLLARY: Fix t > 0. Then, the set

Jt̄ =

{
z ∈ {t = t̄} : ∃z1, z2 ∈ T+

φ̄
∩ ∂+φ̄(z),distH([∂c̄(· − z1)](z), [∂c̄(· − z2)](z)) > 0

}
.

is countably n− 1 rectifiable.

(II.1.7) REMARK: If we worked with a two dimensional slice of [0,+∞) × R2 the

proof would be easier. For instance, consider a section of [0,+∞)× R2 made with a plane

orthogonal to {t = 1}. Without loss of generality we can identify this section with [0,+∞)×R.

Take 0 < t1 < t2 and let us consider a bounded set S in the real line {t2} × R.

Let us suppose that for every z in S there is a point z′ on {t1} × R such that z′ ∈ ∂−φ̄(z).

Then, for every n ∈ N and t ∈]t1, t2[ the set

{
z ∈ Σ−

φ̄,0
(S, t1, t2, t) : there are z1, z2 ∈ ∂−φ̄(z) ∩ ({t̄} × R) such that |z1 − z2| >

1

n+ 1

}

has only a finite number of points. This is a simple consequence of the boundedness of Rc.

Then, by a covering argument one can prove that
{
z ∈ Σ−

φ̄,0
(S, t1, t2, t) : there are z1, z2 ∈ ∂−φ̄(z) ∩ ({t̄} × R) such that|z1 − z2| > 0

}

is negligible.
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(II.1.8) REMARK: Let z ∈ {t = t2} and z′ ∈ {t1} × R such that

φ̄(z)− φ̄(z′) = c̄(z − z′).

Let us indicate with F the projection on [0,+∞) × R2 of a fixed bi-dimensional or three-

dimensional face of epic̄. Then, if Jz′, zK ∩ (z − intrelF ) is not empty, then z is not in

Σ−
φ̄,0

(S, t1, t2, t)

PROOF. It is a consequence of Lemma I.4.10.

Now we are ready to introduce and prove the formula of the area estimate. The following

lemma is just technical result that will be applied later in the proof of the formula.

(II.1.9) LEMMA: Let C be a cone in C(1, [0,+∞) × R2). Let f be a Borel function

that associates to z ∈ S the segment {t = t̄} ∩ (z − C). Then, for every ε > 0 there exists a

finite family of hyperplanes {αi}i such that the measure of the set

{z ∈ S : there exists j such that f(z) ∩ (z + αj) is an inner relative single point of f(z)}

is H2(S).

PROOF. We can assume that f associates to each point of S a segment which length is l.

Let J > 1 a natural number and consider the vectors

ej :=

(
t, cos

( j
J
π
)
, sin

( j
J
π
))

, j ∈ {0, . . . , J − 1}.

Consider now the set:

S′j :=

{
w ∈ A :

∣∣∣∣
a− b
‖a− b‖ ·ej

∣∣∣∣ ≥ l cos

(
π

2J

)
where a and b are two different points belonging to f(w)

}

Defining {Sj}j∈{0,...,J−1} as the sets:

S0 := S′0,

Sj := S′j \
j−1⋃

0

S′i, j ∈ {1, . . . , J − 1},

we obtain a partition made of disjoint sets.

In the plane ([0,+∞)×R2)∩{t = t̄} for every j let us consider e⊥j a normal vector orthogonal

to ej .

There exists a natural number K such that

S′j,k :=
{
z ∈ Sj :

(
z+
(
t−t2, k cos

( j
J
π
)
, k sin

( j
J
π
))

+Re⊥j
)
∩intrelf(z) 6= ∅

}
, k ∈ {−K, . . . ,K}

made a partition of Sj . As before we can construct from these sets a new disjoint partition

{Sj,k}k of S. This conclude the argument.
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Recall that S is a subset of {t = t2}. The proof of the area estimate is divided into three

streps. First we divide the points of S according to the dimension of the sub differential

and then we prove the formula in each case. Therefore we conclude the argument gluing the

three cases together.

(II.1.10) LEMMA: For any t ∈]t1, t2[ there exists a set S′ ⊆ {t = t̄} such that:

1. there exists a surjective function σ from Σ−
φ̄,0

(S, t1, t2, t) to S′,

2. for every z ∈ Σ−
φ̄,0

(S, t1, t2, t), σ(z) ∈ ∂−φ̄(z)

3. the following formula holds:

H2(S′) ≥
(
t− t1
t2 − t1

)2

H2(Σ−
φ̄,0

(S, t1, t2, t)).

PROOF.

Remarks 2.2 allow us to assume that we are going to consider optimal rays in a bounded

cone.

Remark II.1.8 ensures us that we can avoid to consider directions that are in the relative

inner part of a face of the cost. Proposition II.1.5 let us to consider rays that are on the

same face. This means that we can have two possible cases: fix a point z in Σ−
φ̄,0

(S, t1, t2, t),

[∂−φ̄(z)] ∩ {t = t̄} could be made of one point or of two points in the relative boundary of

the same bi-dimensional face.

In the first case one can argue as following. By the inner regularity of H2, for every

ε1 > 0 there exists K1 compact such that

H2(Σ−
φ̄,0

(S, t1, t2, t)) < H2(K1) + ε1.

Fix a dense sequence {zi}∞i=1 on [S − C] ∩ {t = t1} and consider

σI(z) ∈ arg max{φ̄(z)− c̄(zi − z) : i ∈ {1, . . . , I}}

We can assume σI(z) is equal to z ī where ī is the first i ∈ {1, . . . , I} that achieve the

maximum.

σI converges pointwise to a function σ such that

φ̄(z) = φ̄(σ(z)) + c̄(z − σ(z)).

Let us define σ(z) := Jσ(z), zK(t).
By Egoroff Theorem, for every ε2 > 0 there is a compact K2 such that σI converges uniformly

to the function σ and

H2(K1) < H2(K2) + ε2.

Lusin Theorem ensure us that we can assume the functions continuous.

Uniformly convergences of σI to σ ensure us that

σI(K2)
H−→ σ(K2).
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Therefore, by the upper semicontinuity of the Husdorff distance we have

H2(K2) = lim sup
I

(
t− t1
t2 − t1

)2

H2(σI(K2)) ≤ H2(σ(K2)) ≤ H2(σ(S)).

In the latter case we can associate to each point of S a segment on {t = t̄} that has as

extreme points the intersection of the backward rays and {t = t̄}. Then, one can partition

S according to the Lemma (II.1.9) and using the same notation of this Lemma, obtain the

partition {Ai}i∈I . Without loss of generality we can assume that for each z′ ∈ Ai

z +
(
t− t2, cos

( j
J
π
)
, sin

( j
J
π
))
∩ intrelf(z) 6= ∅.

This means that in Aj we can obtain a selection on the rays considering the new cost:

˜̄c(z − z′) := c̄(z − z′) + (p{t=t̄}(z − z′) · ej)+,

This cost produces new potential ˜̄φ that coincides with φ̄ on one of the two optimal rays. This

means we find a measurable selection on the rays. Reproducing the previous computation

we can obtain the estimate also in this case.

(II.1.11) LEMMA: For any t ∈]t1, t2[ there exists a set S′ ⊆ {t = t̄} such that:

1. there exists a surjective function σ from Σ−
φ̄,1

(S, t1, t2, t) to S′,

2. for every z′ ∈ Σ−
φ̄,1

(S, t1, t2, t) there are two different point z1, z2 ∈ [∂−φ̄(z)] ∩ {t = t̄}
such that

σ(z) ∈ intrelJz1, z2K,

3. the following formula holds:

H2(S′) ≥
(
t− t1
t2 − t1

)2

H2(Σ−
φ̄,1

(S, t1, t2, t)).

PROOF. Partition Σ−2 (S, t1, t2, t) according to Lemma II.1.9. Notice that elements belonging

to different sets of the partition can not cross in a point with time greater than t1, otherwise

they will increase the dimension of ∂−φ̄ evaluated in the two points. In each slice provided

by the LemmaII.1.9 we can prove the thesis reminding Remark II.1.7 and applying the same

technique used for Σ−
φ̄,1

.

(II.1.12) LEMMA: For any t ∈]t1, t2[ there exists a set S′ ⊆ {t = t̄} such that:

1. there exists a surjective function σ from Σ−
φ̄,2

(S, t1, t2, t) to S′,

2. for every z ∈ Σ−
φ̄,2

(S, t1, t2, t) there are three different and non align point z1, z2, and z3 ∈
[∂−φ̄(z)] ∩ {t = t̄} such that

σ(z) ∈ intrelconv{z1, z2, z3},
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3. the following formula holds:

H2(S′) ≥
(
t− t1
t2 − t1

)2

H2(Σ−
φ̄,2

(S, t1, t2, t)).

PROOF. Since the epigraph of c admit at most an countably infinite number of three

dimensional faces, c̄ admit at most a countably infinite number of four dimensional faces. We

will indicate these faces as {Fi}∞i=1 and define Si as the points of Σ−
φ̄,2

(S, t1, t2, t) for which

there exists δ > 0 such that

B(x, δ) ∩ (x− Fi) ⊆ ∂−φ̄(x).

Notice that for every Si we can assume there is S′i contained in Dt̄ such that

1. there exist a surjective function σ from Si to S′i,

2. σ(z) belongs to the internal part of ∂−φ̄(z),

3. |Si| = |S′i|.

In order to obtain the thesis we have to prove that {Si}∞i−1 and {S′i}∞i−1 are two families

made of pairwise disjoint sets. Proposition II.1.5 and Corollary II.1.6 ensure us that this is

the case.

(II.1.13) COROLLARY: For any t ∈]t1, t2[ there exists a set S′ ⊆ {t = t̄} such that:

1. there exists a surjective function σ from S to S′,

2. (a) for every z ∈ Σ−
φ̄,0

(S, t1, t2, t), σ(z) ∈ ∂−φ̄(z),

(b) for every z ∈ Σ−
φ̄,1

(S, t1, t2, t) there are two different point z1, z2 ∈ [∂−φ̄(z)]∩{t =

t̄} such that

σ(z) ∈ intrelJz1, z2K,

(c) for every z ∈ Σ−
φ̄,2

(S, t1, t2, t) there are three different and non align point

z1, z2, and z3 ∈ [∂−φ̄(z)] ∩ {t = t̄} such that

σ(z) ∈ intrelconv{z1, z2, z3},

3. the following formula holds:

H2(S′) ≥
(
t− t1
t2 − t1

)2

H2(S). (II.3)

PROOF. Consequence of previous Lemmas.

When S is a subset of {t = t1} and for every z ∈ S there exists an optimal ray that

reaches t2 we can state the following definition and prove very similar results:
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(II.1.14) DEFINITION: Take t1 < t < t2 a real number. With the previous notation

we define the following sets:

Σ+
φ̄,0

(S, t1, t2, t) :=
{
z ∈ S : ∂+φ̄(z) ∩ {t = t̄} does not contain any segment

}
,

Σ+
φ̄,1

(S, t1, t2, t) :=
{
z ∈ S : ∂+φ̄(z)∩{t = t̄} contains a segment but no two dimensional convex

}
,

Σ+
φ̄,2

(S, t1, t2, t) :=
{
z ∈ S : ∂+φ̄(z) ∩ {t = t̄} contains at least a two dimensional convex

}
,

(II.1.15) PROPOSITION: For any t ∈]t1, t2[ there exists a set S′ ⊆ {t = t̄} such that:

1. there exists a surjective function σ from S to S′,

2. (a) for every z ∈ Σ+
φ̄,0

(S, t1, t2, t), σ(z) ∈ ∂+φ̄(z),

(b) for every z ∈ Σ+
φ̄,1

(S, t1, t2, t) there are two different point z1, z2 ∈ [∂+φ̄(z)]∩{t =

t̄} such that

σ(z) ∈ intrelJz1, z2K,

(c) for every z ∈ Σ+
φ̄,2

(S, t1, t2, t) there are three different and non align point

z1, z2, and z3 ∈ [∂+φ̄(z)] ∩ {t = t̄} such that

σ(z) ∈ intrelconv{z1, z2, z3},

3. the following formula holds:

H2(S′) ≥
(
t2 − t
t2 − t1

)2

H2(S). (II.4)

II.1.3. NEGLIGIBILITY OF NON REGULAR POINTS

Once we have obtained the area estimates (II.3) and (II.4), we apply these formulas to

prove the regularity of the partition. In particular we prove that almost every point in

{t = 1} is regular.

(II.1.16) REMARK: Let us consider z′ ∈ ∂−φ̄(z) such that Kz′, zJ is contained in an

optimal ray in the relative inner part of ∂−φ̄(z). The dimension of ∂−φ̄ is constant along

the open segment Kz′, zJ. Moreover, the respective property holds for ∂+φ̄.

(II.1.17) LEMMA: H2-almost every point of {t = 1} is backward regular.

PROOF. Let τ, ε ∈]0, 1[ and fix a compact subset K ⊆ {t = 1 + ε}. Since the property of

φ̄ ensure us that for every w ∈ K there is an optimal ray for φ̄ that reach D0, there is an

inner optimal ray reaching t = 1− τ as in Corollary II.1.13, and then we can apply the area

estimate of the corollary. It is easy to see that the relative internal part of optimal rays
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involved in the area estimate is made of backward regular points.

Therefore the measure of regular point in {t = 1} is greater or equal than

τ

ε+ τ
H2(K).

By the arbitrariness of ε, the measure of backward regular points is arbitrary near to the

measure of K.

bz

∂−φ(z)

t

R2

b

b
b

K {t = 1}

{t = 1 + ε}

Figure II.2: The red line is the regular ray starting from z and used in the area estimate of

Corollary II.1.13.

(II.1.18) LEMMA: H2-almost every point of {t = 1} is forward regular.

PROOF. Let ε1, ε2 > 0. Similarly to the previous Lemma we can fix a compact K ⊆ {t =

1+ε2} and by means of the area estimate we can find a sub set K ′ ⊆ {t = 1−ε1} of measure

arbitrary close to the measure of K. By the arbitrariness of ε1 and ε2 we can assume that

fixing a subset S ∈ {t = 1− ε1} up to an arbitrary small part of points every point reach

{t = 1 + ε2}. To conclude the proof we want to repeat the same proof as before introducing

the dual potential

φ̄∗(z) := sup
z′∈{t=1+ε2}

{φ̄(z′)− c̄(z − z′)}.

It lacks to prove that the optimal rays for φ̄∗ coincide with the ones of φ̄. Indeed, notice that

the area estimate ensures us that almost every point on {t = 1 − ε1} could be connected

through an optimal ray for φ̄ to a point on {t = 1 + ε2} and these optimal rays are optimal
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also for φ̄∗. Since an analogous of Lemma I.4.10 holds for φ̄∗ and taken two points on the

previous optimal rays Q∗
φ̄

coincides with Q∗
φ̄
, the thesis follows.

(II.1.19) COROLLARY: H2-almost every point of {t = 1} is regular.

PROOF. The proof is straightforward consequence of previous lemmas. Notice that a

point selected by the area estimate has to have the same forward and backward differential

dimension.

b

b

Z1
a

C2
a

Z2
a

C1
a

Z0
a

C0
a

Figure II.3: Zha and Fha
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II.2. Analysis on the first directed locally affine

partition

The previous section provides a first directed locally affine partition

Dφ̄ =
{

(k, a, z, C) : C = Fha , z ∈ Zha
}
.

In this section we show how to refine the partition and reduce our analysis to irreducible

sets. To this purpose we group the sets of the partition according to their dimension and

then we study them case by case.

II.2.1. h = 0 CASE

First of all we have to consider the case h = 0 that correspond to the case where the

subset Z0
a is a single line which intersection with {t = 0} and {t = 1} are two single points.

Moreover, F 0
a is a single vector.

In this case is is naturally to consider the map that associate to Z0
a ∩{t = 1}, Z0

a ∩{t = 1}.
Notice that the disintegration of δ1×H2 on these subsets is made of deltas up to a negligible

set and this conclude the case.

II.2.2. h = 1 CASE

In the case h = 0 the map is found and it is unique, that is not always the case. In

higher dimension we choose to consider a secondary cost. This technique depends on the

existence of a couple of potentials for the secondary cost and a priori they could not exists

(see[13, Example 3.14]). This is the reason why we need a deeper analysis in order to apply

Proposition I.2.11 in this context.

The two dimensional case it is not trivial because the map is not evident as in the previous

case and the regularity of disintegration has to be proved. For the first problem we study

the cyclically connectedness of the sets and for the latter we use the fact that non crossing

segments on a plane can not be disposed too bad.

First we show directly how we can reduce our argument to cyclically connected Z1
a sets

and then we prove the regularity of the disintegration in this case.

Construction of a sheaf
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Define S as the subset of all closed segment contained in {t = 1}. For every L ∈ S and

r > 0 set

L̊(−r) :=
{
z ∈ {t = 1} :

(
B(z, r) ∩ affL

)
⊆ L

}
and L̊ = intrelL.

Let eV ∈ {1} × S1, r > 0, and λ ∈]0, 1[. Consider V = span{eV } and L ∈ S such that

L ⊆ V and define

S(L, r, λ) :=
{
L′ ∈ S : (i) L(−r) ⊂ pV L̊

′,

(ii) pV L
′ ⊂ L̊,

(iii) |(z − z′) · eV | > λ|z − z′| with z 6= z′ ∈ L}.

It is fairly easy to see that for all r, λ the family

S(L, r, λ) :=
{
S(L, r′, λ′), 0 < r′ < r, 0 < λ′ < λ

}

generates a prebase of neighborhoods of S. In particular, we can find a countably many sets

S(Ln, rn, λn), n ∈ N, covering S being the latter separable.

Moreover, define

Dφ̄(1, n) := {(1, a, z, C) ∈ Dφ̄ : C ∩ {t = 1} ∈ S(Ln, rn, λn) and z ∈ Zha )}

Fix n ∈ N and define the map

r : Dφ̄(1, n) → R×
(
[0,+∞)× R

)
× C(1, [0,+∞)× Rh)

(a, z, F 1
a ) 7→ r(a, z, Cka ) :=

(
a, paff F 1

n
z, paff F 1

n
F 1
a

)

Being the projection of a σ-compact set, r is σ-continuous. Clearly, since z determines a

and a determines F 1
a , also the maps

r̃ : Z1
n → R×

(
[0,+∞)× R)× C(1, [0,+∞)× R)

z 7→ r̃(z) :=
(
a(z), paff F 1

n
z, paff F 1

n
F 1
a(z)

)

r̂ : Akn → R× C(1, [0,+∞)× R)

a 7→ r̂(z) :=
(
a, paff F 1

n
C1

a

)

are σ-continuous. We will use the notation w ∈ [0,+∞) × R, Z̃1
a := (i1 ◦ paff C1

n
)Z1

a and

F̃ 1
a := (i1 ◦ paff F 1

n
)F 1

a , where i1 : V kn → Rk is the identification map. Moreover set

Z̃1
n := ∪a

{
{a} × Z̃1

a

}
.

In particular we have that r(D(k, n)) is a k-dimensional directed fibration. Notice that

C̃ is bounded, because the Cha are.

The fact that we are considering transference problems in Π(µ̄, {ν̄ha }) allows to rewrite

them in the coordinates (a, w) ∈ Rd−k ×
(
[0,+∞)×Rh

)
. Indeed, consider the multifunction

ř whose inverse is the map

ř−1 : Ahn ×
(
[0,+∞)× Rh

)
→ [0,∞)× Rd

(a, w) 7→ ř−1(a, w) := aff Zha ∩ (ik ◦ paff Ckn
)−1(w)
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and define the transport cost

c̃kn
(
a, w, a′, w′) :=

{
0 a = a′, w − w′ ∈ C̃ka ,
∞ otherwise.

It is clear that

c
(
ř−1(a, w), ř−1(a′, w′)

)
= c̃hn

(
a, w, a, w′

)
.

In order to precede our analysis in the case h = 1, we fix a ∈ A and consider a couple

(F 1
a , Z

1
a) ∈ Dφ̄. In the following we prove that we can decompose Z1

a in the union of subsets

Γ-cyclically connected and subsets belonging to the previous case h = 0.

(II.2.1) LEMMA: Let (w1, w
′
1) and (w2, w

′
2) be two couples in Γ made of points of

Z1
a .

If Kw1, w
′
1J∩Kw2, w

′
2J 6= ∅, then w1 and w2 are Γ-cyclically connected.

PROOF. It is an easy consequence of the definition of Γ-cyclically connected set.

(II.2.2) COROLLARY: If H1−a.e. point of p1Γ ∩ Z1
a ∩ {t = 1} have just one optimal

ray, they are not Γ-cyclically connected.

PROOF. Consider points with more than one optimal rays. These points can be partitionate

according to the direction of these two rays, without loss of generality we can assume that for

every ε > 0 there are two point d1, d2 ∈ {t = 1} such that for almost every w ∈ Z1
a ∩ {t = 1}

there are w1, w2 ∈ Γ(w) such that

max{|w − w1 − d1|, |w − w1 − d1|} < ε.

Moreover, we can assume |d1 − d2| > 3ρ.

By Lemma II.2.1, it is easy to see that two different points in Z1
a ∩ {t = 1} with more

than one ray can not be closer than ρ without being Γ-cyclically connected.

(II.2.3) LEMMA: Assume that H1−a.e. point in p1Γ ∩ Z1
a ∩ {t = 1} has an relative

inner optimal ray. Then the Lebesgue points of Z1
a ∩ {t = 1} are Γ-cyclically connected.

PROOF. Let us suppose w ∈ Z1
a ∩ {t = 1} and w′∂−φ̄(w) ∩ p2Γ such that Kw,w′J is a

relative internal optimal ray. We claim there is ρw > 0 such that w is Γ-cyclically connected

with every point in B2(w, ρw). By the σ-continuity of Γ there is ρ > 0 such that for almost

every u ∈ B2(w, ρ), Γ(u) ∩ (w − F 1
a ) 6= ∅. On the other hand it is not restrictive to assume(

B2(w, ρ) ∩ {t = 1}
)
⊂ (w′ + intrelC

1
a) and therefore w′ ∈ u− F 1

a .

By the compactness of Z1
a ∩ {t = 1} we obtain the thesis of the Lemma.

It remains to prove that conditional probabilities are absolutely continuous:

(II.2.4) LEMMA: Let
{
Jaα, bαK : α ∈ A

}
be a family of segments in R2 and d ∈ S1 be

a direction such that:
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1. (bα − aα) · d ≤ 1
2 |bα − aα|, for every α ∈ A.

2. there is h > 0 such that aα · d ≤ −h and bα · d ≥ h, for every α ∈ A.

3. Jaα, bαK∩Kaβ , bβJ= ∅, for every distinct α, β ∈ A

Define S := {x ∈ R2 : |x · d| ≤ h} and δ(x) := bα−x
|bα−x| for α ∈ A such that x ∈Kaα, bαJ. Then,

δ is locally Lipschitz on S.

PROOF. Let ε > 0 and consider Sε := {x ∈ R2 : |x · d| ≤ h− ε}.
For every x1, x2 ∈ R2 there are y1, y2,∈ R2 such that

xi + δ(xi) = yi, for i = 1, 2.

|δ(x1)− δ(x2)| ≤ |x1 − x2|+ |y1 − y2|
Since two segment can not cross in Sε it means that there is a constant k depending only

on h and ε such that:

|y1 − y2| ≤ k|x1 − x2|.
This means that in Sε, δ is Lipschitz.

Previous Lemma let us to apply Theorem 9.4 of [1] and prove the following Proposition:

(II.2.5) PROPOSITION: Let U be a relative open subset of {t = 1} and {Z1
a}a∈a a

family of segments in {t = 1} ∩ U such that for H2-almost every z ∈ U there is a such that

z ∈ Z1
a and

for every a, a′ ∈ a, intrelZ
1
a ∩ Z1

a′ 6= ∅ =⇒ a = a′.

Then, H2
xU =

∫
a

∫
Z1

a
ηaξ(da) and for every a ∈ a, ηa � H1.

II.2.3. h = 2 CASE

Now we deal with the case h = 2. In this case the conclusion it is not trivial as in the

case h = 0 and it cannot be done directly as in the case h = 1. Our strategy is to reduce

again our argument the Proposition I.2.11.

Therefore, the key point of this argument will be the analysis of the cyclical monotone

relation generated by transference plans with finite cost. For this purpose and in order to

simplify the notation we will fix a three dimensional subspace of Dφ̄, Z. Since the problem

admits only a countably infinite number of three dimensional subsets, it is not restrictive.
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II.3. Reduction of Z2
a

In this section we apply the theory developed in Section I.6 to refine the sets Z2
a in the

union of irreducible subsets and lower dimension subsets. For the sake of completeness we

repeat the statement without proofs.

By the regularity of Dφ̄ we have proved, we can fix an arbitrary point z in the internal

part of Z and define C := R+ · D+φ̄(z).

Define the transference cost ~c as

~c
(
z, z′) :=

{
0 if z − z′ ∈ C,
∞ otherwise.

From the straightforward geometric property of a convex cone F

z ∈ C ⇒ z + C ⊂ C,
one deduces that

~c(z, z′), ~c(z′, z′′) <∞ =⇒ ~c(z, z′′) <∞.
Consider two probability measures µ and ν in R2 and their relative embedding µ̄ = δ1⊗µ

and ν̄ = δ0 ⊗ ν in D.

We denote by Γ (π̄) be the family of σ-compact carriages Γ of π̄ ∈ Πf (µ̄, ν̄),

Γ (π̄) :=
{

Γ ⊂ {c̄ <∞} ∩
(
{t = 1} × {t = 0}

)
: π̄(Γ) = 1

}
,

and set

Γ :=
⋃

π̄∈Πf (µ̄,ν̄)

Γ (π̄).

II.3.1. A LINEAR PREORDER ON Z

Let Γ ∈ Γ̄ . The following lemma is taken from [8, Lemma 7.3]: we omit the proof because

it is just an easier version.

(II.3.1) LEMMA: There exists a sequence {wn}n∈N in Z such that

∀n ∈ N, wn ∈ p1Γ and clos {wn}n∈N ⊃ p1Γ.

Where p1Γ̄ is the projection of Γ on {t = 1}.

(II.3.2) DEFINITION:

Hn :=

{
w ∈ Z : there are N ∈ N and

{
(wi, w

′
i)
}n
i=0
⊆ Γ such that

(a) w0 = wn

(b) wi+1 ∈ w′i + F

(c) w ∈ w′N + F

}
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II. A STUDY CASE

This set represents the points which can be reached from wn by means of axial path of

finite costs.

(II.3.3) PROPOSITION: The set Hn is σ-compact in [0,+∞) × R2, and moreover,

there exists a Borel function hn : R2 → [0,+∞) such that

∀x, x′ ∈ R2
(
hn(x′) ≤ hn(x) + co(x′ − x)

)

{
(t, x) : t > hn(x)

}
⊂ Hn ⊂

{
(t, x) : t ≥ hn(x)

}
.

The above statement is the analog of Proposition 7.4 of [8], and we omit the proof.

The function hn is given explicitly by

hn(x) = inf
{
coF (x−x′), x′ ∈ i(Hn∩{t = 0})

}
= min

{
coF (x−x′), x′ ∈ clos

(
i(Hn∩{t = 0})

)}
.

The separability of R2 and the non degeneracy of the cone F yields the next lemma.

(II.3.4) LEMMA: There exists countably many cones {w′i+F}i∈N, {w′i}i∈N ⊂ p2Γ∩Hn,

such that

intHn =
⋃

i∈N
w′i + intF,

and the set ∂Hn ∩ {t = t̄} is (k − 1)-rectifiable for all t̄ > 0.

Construction of the linear preorder 4W

Denote with W = {wn}n∈N the sequence constructed in the previous section.

Define first the function

θ′W,Γ : D → [0, 1]

w 7→ θ′W,Γ(w) := max
{

0,
∑
n 2 · 3−(n+1)χHn(w)

}

It is fairly easy to show that θ′W,Γ is Borel. The dependence on Γ occurs because the set W is

chosen once Γ has been selected.

Since we are interested only in the values of the functions on p1Γ, and the measure µ is

a.c., then once the function θ′W,Γ has been computed we define a new function θW,Γ by

{
w : θW,Γ(a, w) ≥ τ

}
=

⋃

w′∈p2Γ

θ′
W,Γ

(w′)≥τ

w′ + F, τ ∈ [0, 1].

Since p2Γ is σ-compact, it is standard to prove that θW,Γ is Borel if θ′W,Γ is.

(II.3.5) LEMMA: The functions θ′W,Γ, θW,Γ are locally SBV on every section {t = t̄},
and

(w,w′) ∈ Γ =⇒ θ′W,Γ(w) = θ′W,Γ(w′) = θW,Γ(w) = θW,Γ(w′).
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II. A STUDY CASE

Hence the function θW,Γ has the same values of θ′W,Γ on p1Γ ∪ p2Γ.

A completely similar argument shows that θ′W,Γ, θW,Γ are SBV also in [0,+∞)× R2.

Define the function ϑW,Γ as the upper semicontinuous envelope of θW,Γ.

(II.3.6) LEMMA: For all t̄ > 0 it holds

H2
({
x : ϑW,Γ(t̄, x) > θW,Γ(t̄, x)

})
= 0.

An analogous computation shows that θ coincides with its l.s.c.-envelope up to a H2-

negligible set in each set {t = t̄}, t̄ > 0.

(II.3.7) COROLLARY: For every t̄ > 0 and τ ∈ [0, 1] the set

∂
{
θW,Γ > τ

}
∩ {t = t̄}

(
∂
{
θW,Γ ≥ τ

}
∩ {t = t̄}

)

is rectifiable, with total variation uniformly locally bounded by r2/t̄+ r in each ball of radius

r.

In particular we deduce that for the level sets of θW,Γ of positive H2-measure satisfies

∂
[
{θW,Γ = τ

}
∩ {t = t̄} ∩B(x, r)

]
≈ r2

t̄
+ r.

(II.3.8) REMARK: We observe here the relation with the Lax formula for Hamilton-

Jacoby equation (with inverted time). In fact, if we define the Lagrangian

L(w) = 1F (w),

then formula (I.48) can be rewritten as

θW,Γ(w) = sup
{
θ′W,Γ(w′)− L(w − w′), w′ ∈ {t = 0}

}
.

Moreover, from the definition of ϑW,Γ yields that

ϑW,Γ(w) = max
{
ϑW,Γ(w′)− L(w − w′), w′ ∈ {t = 0}

}
.

It thus follows that ϑW,Γ in some sense replaces the potentials φ, ψ for a transport problem.

The advantages of using ϑW,Γ instead of θW,Γ will be clear in the following sections.

We notice here only that the disintegration of the Lebesgue measure L3x{t=1} w.r.t. the

equivalence classes of θ or of ϑ are equivalent, because the two functions differ on a negligible

set.

The pull-back of ≤ by θW,Γ is the linear preorder 4W,Γ defined by

4W,Γ:=
(
θW,Γ ⊗ θW,Γ

)−1
(≤−1),

and the equivalence relation on [0,+∞)× R2

EW,Γ :=4W,Γ ∩ 4−1
W,Γ=

{
(w,w′) : θW,Γ(w) = θW,Γ(w′)

}
.
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II. A STUDY CASE

(II.3.9) LEMMA: Assume that w,w′′ ∈ p1Γ can be connected by a closed axial path of

finite cost. Then, w ∼EW,Γ
w′′.

A consequence of Lemma II.3.5 is thus that Γ ⊂ EW,Γ. If Γ′ is another carriage contained

in {c̃ <∞}, then

(w,w′) ∈ Γ′ =⇒ w 4W,Γ w
′,

because

θ′W,Γ(w′ + F ) ≥ θ′W,Γ(w′)

by construction. In particular from Theorem (A.2.2) we deduce the following Proposition.

(II.3.10) PROPOSITION: If π̄ ∈ Πf (µ̄, ν̄), then π̄ is concentrated on EW,Γ.

Construction of a σ-closed family of equivalence relations

The linear preorder 4W,Γ depends on the set W: by changing the cF -cyclically monotone

carriage Γ ∈ Γ and the family W dense in Γ, we obtain in general different preorders.

We can easily compose linear preorders 4Wβ ,Γβ , β < α countable ordinal number, by using

the lexicographic preorder on [0, 1]α: in fact, define the function

θ{Wβ ,Γβ}β<α : D → [0, 1]α

w 7→ θ{Wβ ,Γβ}β<α(w) := {psθWβ ,Γβ (w)}β<α

As in the previous section θ{Wβ ,Γβ}β<α is Borel.

If E is the lexicographic preorder in [0, 1]α, then set

4{Wβ ,Γβ}β<α :=
(
θ{Wβ ,Γβ}β<α⊗θ{Wβ ,Γβ}β<α

)−1
(E), E{Wβ ,Γβ}β<α :=4{Wβ ,Γβ}β<α ∩ 4−1

{Wβ ,Γβ}β<α .

Clearly π̄(E{Wβ ,Γβ}β<α) = 1, since π̄(EWβ ,Γβ ) = 1 for all β < α. To be an equivalence relation

on D, we can assume that I ⊂ E{Wβ ,Γβ}β<α .

The next lemma is a simple consequence of the fact that a countable union of countable

sets is countable. It proof can be found in [8], Proposition 7.5.

(II.3.11) LEMMA: The family of equivalence relations

E :=
{
E{Wβ ,Γβ}β<α , Wβ =

{
wn,β

}
n∈N, α ∈ Ω

}

is closed under countable intersection. Moreover, for ever E{Wβ ,Γβ}β<α there exists Γ̄ ∈ Γ
and W̄ such that

EW̄,Γ̄ ⊂ E{Wβ ,Γβ}β<α .

II.3.2. PROPERTIES OF THE MINIMAL EQUIVALENCE RELATION
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II. A STUDY CASE

Let Ē{Wβ ,Γ̃β}β<α be the minimal equivalence relation chosen as in Lemma II.3.11 after

a minimal equivalence relation of Theorem A.3.1 in Appendix A.3 has been selected. Let

θ̄′ : R2−h × ([0,+∞)×Rh)→ R2−h × [0, 1] be the function obtained through (I.47) with the

set ¯̃Γ and the family of functions W̄, and let θ̄ be the function given by (I.48).

Let Γ ∈ Γ be a σ-compact cyclically monotone set, and let θ̄W,Γ : [0,∞)×R2 → [0, 1]N be

constructed as before.

By Corollary A.3.2, it follows that there exists a µ̄-conegligible σ-compact set B ⊂ D

and a Borel function s : [0, 1]→ [0, 1] such that θ̄W = s ◦ θ̄ on B. The set B depends on θ̄W,Γ.

Applying this result to the equivalence classes of positive µ̄-measure, we obtain the

following proposition.

(II.3.12) PROPOSITION: For all τ ∈ [0, 1], it holds:

µ̄
(
(θ̄′)−1(τ)

)
> 0 ⇒ ∃τ ′ ∈ [0, 1], µ̄

(
(θ̄′)−1(τ) \ θ̄−1

W,Γ(τ ′)
)

= 0.

Notice that by Corollary II.3.7 it follows that the set

int
(
θ̄−1(τ) ∩ θ̄−1

W,Γ(τ ′)
)

has topological boundary rectifiable.

II.3.3. AREA ESTIMATE

We have proved that the sub/super differential of ϑ enjoys of the same property of the

one of φ. In particular every point Since ϑ has the same property of φ, we can repeat the

same analysis made in subsection II.1.2.

Let 0 < t1 < t2 be two different real numbers and S a subset of {t = t2} such that

H2(S) < +∞. Let us assume that for every w ∈ S there exists an optimal ray that reaches

t1.

(II.3.13) DEFINITION: Take t1 < t < t2 a real number. With the previous notation

we define the following sets:

Σ−ϑ,0(S, t1, t2, t) := {w ∈ S : ∂−ϑ(w) ∩ {t = t} does not contain any segment },

Σ−ϑ,1(S, t1, t2, t) := {w ∈ S : ∂−ϑ(w)∩{t = t} contains a segment but any two dimensional convex },
Σ−ϑ,2(S, t1, t2, t) := {w ∈ S : ∂−ϑ(w) ∩ {t = t} contains at least a two dimensional convex },

(II.3.14) DEFINITION: Let w ∈ [0,+∞)×R2 and w′ ∈ ∂−ϑ(w)\{w}. We can define

the time-fixed normal to w − F

Nw,F (w′) :=
{
n ∈ {t = t(w′)} : n ·

(
w′ − e

)
≤ 0 for every e ∈ (w − F ) ∩ {t = t(w′)}

}
.
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II. A STUDY CASE

(II.3.15) LEMMA: Fix w ∈ [0,+∞)×R2. Let assume t̄ ∈]0, t(w)[, h > 0, and assume

there are two points w1 and w2 in ∂−ϑ(w) ∩ (w − ∂F ) ∩ {t = t̄} such that

inf{|n1 − n2| : n1 ∈ Nw,F (w1) and n2 ∈ Nw,F (w2) } > h.

Then, there is δ > 0, h > 0, and a cone C ⊆ {t = t(w)} such that if

1. w′ ∈ B2(w, δ) ∩ (w + intrelC),

2. there exists w′2 ∈ ∂−ϑ(w′) ∩ (w − F ) ∩ {t = t̄},

3. sup{|n− n′| : n ∈ Nw,F (w2) and n′ ∈ Nw′,F (w′2)} < h
3 ,

then w ∈ Σ−ϑ,2(w, t̄, t(w), s) for every s ∈]t̄, t(w)[.

PROOF. Let us assume there is a point {w′2} as in the hypothesis. It is easy to prove that

there are n̄1 ∈ Nw,F (w1) and n̄2 ∈ Nw,F (w2) such that

|n̄1 − n̄2| = inf{|n1 − n2| : n1 ∈ Nw,F (w1) and n2 ∈ Nw,F (w2) }.

Without loss of generality in the following we can assume that

|n̄1 − n̄2| ≤ inf{|n1 − n2| : n1 ∈ Nw,F (w1) and n2 ∈ Nw,F (w′2) }.

Since (II.3.15) there is w̃ ∈ (w − ∂C) ∩ {t = τ} and ñ ∈ Nw,F (w̃) such that

dist
(
w̃, Jw1, w2K

)
> 0 and min{|ñ− n1|, |ñ− n2|} > 0.

Consider C as the cone of {t = 0} generated by the convex combination of the projections

on {t = 0} of w̃ − w2 and w1 − w2.

w

w1

w2

w̃C

Figure II.4: Proposition II.3.15

(II.3.16) COROLLARY: The subset of Σ−ϑ,0(S, t1, t2, t) ∪ Σ−ϑ,1(S, t1, t2, t) made of w

such that

there are w1, w1 ∈ ∂−ϑ(w) ∩ {t = t1} and distH(NC,w(w1),distH(NC,w(w2))) > 0,

is H1-rectifiable.
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II. A STUDY CASE

PROOF. Similarly to Proposition II.1.5 we would like to apply Theorem II.1.3. First of

all we need to partitionate the space according to the distance between the normal in w1

and the normal in w2. Precisely, we can assume that the reference distances w1 and w2 are

greater than h and every optimal ray has direction belonging to a ball centred in w1 − w or

w2 − w and with time-fixed normal near to Nw,F (w1) or Nw,F (w2) less than h
3 in the mean

of Lemma II.3.15.

Once we have partitionate the space we can apply Lemma II.3.15 and obtain the thesis.

(II.3.17) COROLLARY: For any t ∈]t1, t2[ there exists a set S′ ⊆ {t = t̄} such that:

1. there exists a surjective function σ from S to S′,

2. (a) for every w ∈ Σ−ϑ,0(S, t1, t2, t), σ(w) ∈ ∂−ϑ(w),

(b) for every w ∈ Σ−ϑ,1(S, t1, t2, t) there are two different point w1, w2 ∈ ∂−ϑ(w)∩{t =

t} such that

σ(w) ∈ intrelJw1, w2K,

(c) for every w ∈ Σ−ϑ,2(S, t1, t2, t) there are three different and non align point

w1, w2, and u3 ∈ ∂−ϑ(w) ∩ {t = t} such that

σ(w) ∈ intrelconv{w1, w2, u3},

3. the following formula holds:

H2(S′) ≥
(
t− t1
t2 − t1

)2

H2(S).

PROOF. The proof is the same of Corollary II.1.13 of the Subsection II.1.2 except for the

sequence used to prove the area estimate.

Since φ is Lipscitz, a dense sequence is used to approximate the potential and find the

formula. In this setting this is not possible. Therefore, to overcome this difficulty we apply a

very similar analysis applied in [8].

We can find a cone approximation considering the map T that associate to every point in

S the point in S′ founded by the scheme of the Corollary II.1.13. In this way, the map T is

well defined and we can push the mass the measure H2
xS to T]H2

xS supported in {t = 0}. As

in [8] we can find a cone approximation and prove the estimate.

When S is a sub set of {t = t1} and for every w ∈ S there exists an optimal ray that

reaches t2 we can state the following definition and prove very similar results:

(II.3.18) DEFINITION: Take t1 < t < t2 a real number. With the previous notation

we define the following sets:

Σ+
ϑ,0(S, t1, t2, t) := {w ∈ S : ∂+ϑ(w) ∩ {t = t} does not contain any segment },
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Σ+
ϑ,1(S, t1, t2, t) := {w ∈ S : ∂+ϑ(w)∩{t = t} contains a segment but any two dimensional convex },

Σ+
ϑ,2(S, t1, t2, t) := {w ∈ S : ∂+ϑ(w) ∩ {t = t} contains at least a two dimensional convex },

(II.3.19) PROPOSITION: For any t ∈]t1, t2[ there exists a set S′ ⊆ Dt such that:

1. there exists a surjective function σ from S to S′,

2. (a) for every w ∈ Σ+
ϑ,0(S, t1, t2, t), σ(w) ∈ ∂+ϑ(w),

(b) for every w ∈ Σ+
ϑ,1(S, t1, t2, t) there are two different point w1, w2 ∈ [∂+ϑ(w)]t

such that

σ(w) ∈ intrelJw1, w2K,

(c) for every w ∈ Σ+
ϑ,3(S, t1, t2, t) there are three different and non align point

w1, w2, and u3 ∈ [∂+ϑ(w)]t such that

σ(w) ∈ intrelconv{w1, w2, u3},

3. the following formula holds:

H2(S′) ≥
(
t2 − t
t2 − t1

)2

H2(S).

II.3.4. NEGLIGIBILITY OF NON REGULAR POINTS

(II.3.20) LEMMA: If ϑ̄(t, x) = θ̄(t, x), then ∂−θ̄(t, x) ⊂ ∂−ϑ̄(t, x) for t > 0.

PROOF. Let (s, y) ∈ ∂−θ̄(t, x). The inclusion ∂−θ̄(t, x) ⊂ ∂−ϑ̄(t, x) follows from the

estimate:

θ̄(s, y) ≤ ϑ̄(s, y) ≤ ϑ̄(t, x) = θ̄(t, x).

Being θ̄(s, y) = θ̄(t, x) we conclude.

(II.3.21) PROPOSITION: H2−almost every point of {t = 1} is regular for θ.

PROOF. Since ∂±ϑ have the transitive property stated in Proposition I.54 as ∂±φ have and

ϑ reach {t = 0} as φ does, the proof is the same if ϑ coincided with θ.

Therefore notice for instance in the backward regularity that since the area estimate

selects an inner direction in a maximal dimension component, Qθ(w,w′) ⊆ Qϑ(w,w′)and

that the dimension of ∂−ϑ(w) coincides with the dimension of ∂−θ(w), where w is the point

of the optimal ray selected at t = 1 + ε and w′ at t = τ > 0.
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II.4. Translation of the result in the original problem

In this section we state the main Theorem of this work.

The first directed locally affine partition Dφ̄ of Section II.1 has been refined following the

scheme of Section II.2.

In particular in Subsection II.2.1 we noticed Z0
a are irreducible and give naturally a map.

In Subsection II.2.2 we showed how to refine directly each subset in the case h = 1.

The remaining case is described in Subsection II.2.3 and analysed in the Section II.3.

At the end of this procedure we obtain a refinement {Zh,`
′

a,b , C
h,`′

a,b′}h,a,`′,b′ of Dφ̄ where the

subsets {Zh,2a,b′ are cyclically connected. Applying the same argument of Subsection II.2.2 to

each Zh,1a,b′ of this new partition we obtain the following theorem:

(II.4.1) THEOREM: Given a directed locally affine partition {Zha , Cha }h,a and a trans-

ference plan π̄ ∈ Π(µ̄, ν̄) such that

π̄ =
∑

h

∫
π̄ham

h(da),

∫
1Cha

(x− x′)π̄ha <∞,

then there exists a directed locally affine partition {Zh,`a,b, C
h,`
a,b}h,a,`,b such that

1. Zh,`a,b ⊂ Zha has affine dimension `+ 1 and Ch,`a,b is an (`+ 1)-dimensional extremal cone

of Cha ;

2. µ̄(∪h,a,`,bZh,`a,b) = 1;

3. the disintegration of H2x{t=1} w.r.t. the partition {Z`c}`,c is regular, i.e.

H2x{t=1}=
∑

`

∫
ξ`cη

`(dc), ξ`c � H`xZ`c∩{t=1};

4. if π̄ ∈ Π(µ̄, {ν̄ha }) with ν̄ha = p2π̄
h
a , then π̄ satisfies (14) iff

π̄ =
∑

`

∫
π̄`cm

`(dc),

∫
1C`c

(x− x′)π̄`c <∞;

5. if ` = h, then for every carriage Γ of π̄ ∈ Π(µ̄, {ν̄ha }) there exists a µ̄-negligible set N

such that each Zh,ha,b \N is 1Ch,ha,b
-cyclically connected.

Being the problem (4) recasted in [0,+∞)×R2 as (10), we have proved also the following

Theorem:

(II.4.2) THEOREM: Let π ∈ Π(µ, ν) be an optimal transference plan, with µ � L2.

Then there exists a family of sets {Sha , Oha}h=0,...,d

a∈Ah
in R2 such that the following holds:
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1. Sha is a locally affine set of dimension h;

2. Oha is a h-dimensional convex set contained in an affine subspace parallel to aff Sha and

given by the projection on R2 of a proper extremal face of epi c;

3. L2(R2 \ ∪h,aSha ) = 0;

4. the partition is Lebesgue regular;

5. if π ∈ Π(µ, {νha }) then optimality in (4) is equivalent to

∑

h

∫ [ ∫
1Oha

(x′ − x)πha (dxdx′)

]
mh(da) <∞,

where π =
∑
h

∫
Ah
πham

h(da) is the disintegration of π w.r.t. the partition {Sha ×R2}h,a;

6. for every carriage Γ of π ∈ Π(µ, {νha }) there exists a µ-negligible set N such that each

Sha \N is 1Oha -cyclically connected.

Notice this is the Theorem II.4.1 rephrased in the original setting.

By Theorem II.4.2 and Proposition I.2.11 we prove the following Theorem:

(II.4.3) THEOREM: Let µ, ν ∈ P(Rd), µ � Ld. Then, there exists an optimal

transport map T for the Monge problem (II.1).
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AAAppendix - Equivalence relations,
disintegration and uniqueness

The following theorems have been proved in Section 4 of [6]. For a more comprehensive

analysis, see [19].

A.1. Disintegration of measures

Let E be an equivalence relation on X, and let h : X 7→ X/E be the quotient map. The

set A := X/E can be equipped with the σ-algebra

A :=
{
A ⊂ A : h−1(A) ∈ B(X)

}
.

Let µ ∈ P(X), and define ξ := h]µ.

A disintegration of µ consistent with E is a map A 3 a 7→ µa ∈ P(X) such that

1. for all B ∈ B(X) the function a 7→ µa(B) is ξ-measurable,

2. for all B ∈ B(X), A ∈ A

µ(B ∩ h−1(A)) =

∫

A

µa(B)ξ(da).

The disintegration is unique if the conditional probabilities µa are uniquely defined ξ-a.e..

It is strongly consistent if µa(Ea) = 1.

(A.1.1) THEOREM: Under the previous assumptions, there exists a unique consistent

disintegration.

If the image space is a Polish space and h is Borel, then the disintegration is strongly

consistent.
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A.2. Linear preorders and uniqueness of transference

plans

We now recall some results about uniqueness of transference plans. Let A ⊂ X ×X be a

Borel set such that

1. A ∪A−1 = X, where

A−1 =
{

(x, x′) : (x′, x) ∈ A
}

;

2. (x, x′), (x′, x′′) ∈ A ⇒ (x, x′′) ∈ A.

We will say that A is (the graph of) a preorder if Condition (2) holds, and a linear preorder

if all points are comparable (Condition 1). It is easy to see that

E := A ∩A−1

is an equivalence relation. Let h : X 7→ X/E be a quotient map.

(A.2.1) THEOREM: If µ ∈ P(X), then the disintegration of µ w.r.t. E is strongly

consistent:

µ =

∫
µaξ(da), ξ := h]µ, µa(Ea) = 1.

Let π̄ ∈ P(X ×X) such that π̄(E) = 1, and let µ̄ := (p1)]π̄, ν̄ := (p2)]π̄ be its marginals.

Consider the disintegration

π̄ =

∫
π̄aξ̄(da), ξ̄ = (h ◦ p1)]π̄.

Let µ̄a, ν̄a be the conditional probabilities of µ̄, ν̄ w.r.t. E:

µ̄ =

∫
µ̄aξ̄(da) =

∫
(p1)]π̄aξ̄(da), ν̄ =

∫
ν̄aξ̄(da) =

∫
(p2)]π̄aξ̄(da),

(A.2.2) THEOREM: If π ∈ Π(µ̄, ν̄) satisfies

∫
1Aπ < +∞,

then π(E) = 1, and moreover the disintegration of π on E satisfies

π =

∫
πaξ̄(da), πa ∈ Π(µ̄a, ν̄a).
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A.3. Minimality of equivalence relations

Consider a family of equivalence relations on X,

E =
{
Ee ⊂ X ×X, e ∈ E

}
.

Assume that E is closed under countable intersection

{Eei}i∈N ⊂ E ⇒
⋂

i∈N
Eei ∈ E ,

and let µ ∈ P(X).

By Theorem A.1.1, we can construct the family of disintegrations

µ =

∫

Ae

µaξe(da), e ∈ E.

(A.3.1) THEOREM: There exists Eē ∈ E such that for all Ee, e ∈ E, the following

holds:

1. if Ae, Aē are the σ-subalgebras of the Borel sets of X made of the saturated sets for Ee,

Eē respectively, then for all A ∈ Ae there is A′ ∈ Aē s.t. µ(A M A′) = 0;

2. if ξe, ξē are the restrictions of µ to Ae, Aē respectively, then Ae can be embedded (as

measure algebra) in Aē by Point (1): let

ξē =

∫
ξē,aξe(da)

be the disintegration of ξē consistent with the equivalence classes of Ae in Aē.

3. If

µ =

∫
µe,aξe(da), µ =

∫
µē,βξē(dβ)

are the disintegration consistent with Ee, Eē respectively, then

µe,a =

∫
µē,bξē,a(db).

for ξe-.a.e. a.

In particular, assume that each Ee is given by

Ee = {θe(x) = θe(x
′)}, θe : X → X ′, X ′ Polish, θe Borel.

(A.3.2) COROLLARY: There exists a µ-conegligible set F ⊂ X such that θe is constant

on F ∩ θ−1
ē (x′), for all x′ ∈ X ′.
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PROOF. Consider the function ϑ := (θe, θē): by the minimality of θē, it follows that

ξē =

∫
ξē,(x′,x′′)ξϑ(dx′dx′′), ξϑ := ϑ]µ.

Since (p2)]ξϑ = ξē, then also

ξϑ =

∫
ξϑ,x′ξē(dx

′),

and thus

ξē =

∫ [ ∫
ξē,(x′,x′′)ξϑ,x′′(dx

′dx′′)

]
ξē(dx

′).

This implies that ξē-a.e. x′ ∫
ξē,(x′,x′′)ξϑ,x′(dtds) = δx′ ,

or equivalently that

ξϑ,x′′′ = δx(x′′′),x′′(x′′′), ξē,(x′(x′′′),x′′(x′′′)) = δx′′′ .

Hence ξϑ is concentrated on a graph: by choosing x′ = x′′′, there exists s = s(x′) Borel such

that ξϑ = (I, s)]ξē. This is equivalent to say that there exists a µ-conegligible set F such

that θe = s ◦ θē on F .
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