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Introduction

The unification of Quantum Mechanics (QM) and General Relativity (GR)
is still a challenge in contemporary Physics. In spite of the fact that both
theories have been formulated and studied for more than a century and that
a lot of efforts have been made to combine the principles of the two theories,
we do not yet have a consistent Quantum Field Theory (QFT) of Gravitation
that describes Planck scale physics in a satisfactory way.

There are many reasons to believe that gravity should be quantised. First
of all, one sees that the other three known fundamental forces are taken into
account very accurately by quantum theories. In particular, electromag-
netism, like gravity, has a macroscopic manifestation which can be described
accurately by a classical field theory, but at a microscopic level is described
by a QFT. Furthermore, the belief that a unified description of all funda-
mental interactions must exist demands a quantum picture of gravitation
too. Another motivation comes from the existence of spacetime singularities
which make classical GR incomplete; some form of discreteness of spacetime
at the quantum level would eliminate the ultraviolet (UV) divergences that
appear in standard QFTs, providing a physical cutoff for high momenta.

The traditional approach to building a QFT is based on the perturbative
quantization of a classical field theory. The physical quantities are expanded
in power series of ~ or of the coupling constants and in order to reabsorb
the UV divergences in the action the coupling constants have to be suitably
redefined (renormalization). If the attempt is successful a finite, consistent
theory is obtained, which only needs a finite number of parameters to be
fixed experimentally, and therefore is predictive.

This scheme of perturbative renormalizability had a lot of success with
theories that describe physical phenomena in our universe (QED, non-Abelian
gauge theories, scalar theories). The amazing experimental precision of the
Standard Model indeed shows that perturbation theory is a very powerful
tool to solve the problems of a QFT.

Nevertheless, GR does not fit well within this scheme, in fact, it is well-
known that performing a perturbative quantisation of the classical GR action
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does not lead to a satisfactory QFT.
Explicit calculations show that in flat space the theory is finite at one-

loop [1]. However, it was shown in [2], [3] that at the two-loop order appear
infinities that require a cubic terms in the curvature to be cancelled. Such
terms would lead to divergences proportional to higher powers of curvature
and so on, requiring infinitely many renormalisation conditions to be im-
posed, so that the theory cannot be predictive. In the presence of matter
fields, such infinities appear already at the one-loop order.

If a theory is not perturbatively renormalizable, it might be a low-energy
effective approximation of a more fundamental theory. This is exactly what
happened historically with the Fermi theory and subsequently led to the
discovery of the Z and W± bosons. It would be tempting to say that this is
the case of GR, and that the metric is not a fundamental degree of freedom.
The most prominent approach that so far has extended the quantum theory
consistently is String Theory [4].

Another common alternative is to think that the issue does not lie in
GR but rather in the process of applying the perturbative technique to this
theory. The non renormalizability of the theory does not necessarily imply
that GR and QM are incompatible. The line of research that has gone the
farthest in this direction is Loop Quantum Gravity (LQG) along with its
covariant form, the Spin Foam formalism [5].

Before abandoning the QFT picture one should consider whether it is pos-
sible to make sense of quantum gravity within some form of non perturbative
QFT. This is what will be discussed in this Thesis. The issue we would like
to explore here is whether one can give GR the status of a fundamental the-
ory, from which predictions can be extracted for observable quantities at all
energy scales, without encountering UV divergences. Among the approaches
that maintain the formalism of a continuous QFT, the most promising seems
to be Asymptotic Safety, a proposal put forward by S. Weinberg in 1979 [6]
and revived in the last two decades.

The essential ingredient of this approach is the existence of an ultraviolet
interacting Fixed Point (FP) in the Renormalization Group (RG) flow of
gravitational couplings. The existence of the FP guarantees that physical
quantities will not blow up when the energy scale tends to ∞. Moreover
predictivity can be preserved if all but a finite number of couplings are UV-
repulsive at the FP.

In particular in this Thesis some aspects of the renormalization group
flow of gravity in presence of fermions are investigated. In the first part we
will discuss the sign of the fermionic contribution to the running of Newton’s
constant, which depends on details of the cutoff. Then we calculate the
graviton contributions to the beta functions in the tetrad formalism.
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Secondly the compatibility of minimally coupled matter fields with asymp-
totically safe quantum gravity is discussed. The main novelty is the explicit
computation of the graviton and matter anomalous dimension, their inclu-
sion in the beta functions seems to reduce the non-linearity that arises with
the standard identification of the graviton anomalous dimension with the
background one. Finally another step towards the extension of the trunca-
tion to a bimetric computation is taken with the inclusion of the graviton
“mass” term.

Outline of the thesis In Chapter 1 we review the basics of the formalism
used in the Functional Renormalization Group (FRG), in order to set the
notation used throughout this work.

In Chapter 2 the Asymptotic Safety framework is presented and its key
properties are discussed.

In Chapter 3 the techniques of FRG are applied to the case of gravity in
the Einstein-Hilbert truncation.

In Chapter 4 we discuss the minimal coupling of fermions field to tetrad
gravity. We present and solve the sign ambiguity in the choice of the cutoff
for fermion fields and we analyze the properties of the fixed point when the
fundamental degrees of freedom are carried by a tetrad field.

In Chapter 5 we compute the gravitational anomalous dimension we use
them to find constraints on the number of matter fields we can couple to
gravity without spoiling asymptotic safety.
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Chapter 1

Functional Renormalization
Group

In the following we are going to give a very simple introduction to a quan-
tum field theory, through the method of generating functionals. Most of the
subsequent concepts we are going to introduce, can of course be refined de-
pending on the subject under study. Our aim is to fix the notations we will
use and collect the necessary tools and minimal structures needed for the
understanding of the next chapters, avoiding most of the complications.

1.1 Functional formulation of QFT

Let φ be a field that take values on a spacetimeM; we will build our Quantum
Field Theory (QFT) using it as a fundamental building brick. We will assume
from now on that the spacetime M we are working on is Euclidean and in
general a Riemaniann manifold, so a notion of distance among points is
provided.

It is common knowledge that the QFTs that are useful for describing the
physical world are Minkowskian, rather than Euclidean like the one we are
building. For this reason we will also always assume that the things we are
going to compute will admit a translation, or even a direct interpretation, in
terms of some associated Minkowskian field theory. This is generally done in
terms of Wick rotations to imaginary time.

We can think of the physical content of a field theory as encoded in the
n-point correlation functions of the field φ, defined in the following way

G(n)A1,...,An =
〈
φA1 · · ·φAn

〉
, (1.1)

where the labels A summarize any possible internal indices and a point of
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the space-time M. We will assume that when repeated labels (and indices)
are present a summation and integration is implied.

We implicitly assume that there is a way to relate the functions G(n) to
observable quantities. In general a complete knowledge of the correlation
functions imply a complete knowledge of the theory and its physics.

To define the formalism we are still missing the definition of a measure
and a probability density. Formally we will denote the measure as Dφ and
the probability density as P [φ] and we will use them to weight field config-
urations.

In particular we ask for the expectation value of a general field configu-
ration O [φ] to be computed as

〈O [φ]〉 =
1

Z

∫
DφP [φ]O [φ] . (1.2)

Here Z is a normalization factor for our probability, we will come back to
it later. In the same way we can also define the correlation functions〈

φA1 · · ·φAn
〉

=
1

Z

∫
DφP [φ]φA1 · · ·φAn . (1.3)

Here we may also give a distinction between classical and quantum field
theory. In a classical field theory the configuration of φ is known once enough
boundary conditions are specified and the equations of motion are solved and
we call it φcl. In doing so it is obvious that the probability density must be
a delta functional Pcl = δ (φ− φcl) with respect to the measure Dφ. In
the general, quantum, case no particular configuration is picked up by the
measure. In our Euclidean formalism the probability is parametrized as

Pquantum [φ] = e−S[φ]. (1.4)

Here we introduced the action functional S [φ] of our theory.
From now on we will address the quantum case, dropping the distinctive

label. A systematic way to calculate the correlation functions is obtained
introducing a source current J and coupling it to our field φ. We start by
computing the normalization factor, sometimes also called partition function
of the theory

Z =

∫
Dφe−S[φ]. (1.5)

Then we modify the partition function by adding to the action a source
coupling term making it a functional of the current

Z [J ] =

∫
Dφe−S[φ]+JAφ

A
. (1.6)
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If we expand Z [J ] in a Taylor series around J = 0 it becomes obvious that
it is a generating functional for the correlations

Z [J ] /Z = 1 + JA1

〈
φA1
〉

+
1

2
JA1JA2

〈
φA1φA2

〉
+ · · ·

=⇒
〈
φA1 · · ·φAn

〉
=

1

Z

δn

δJA1 · · · δJAn
Z [J ] |J=0. (1.7)

In the rest of the thesis we will call the source dependent functional Z [J ],
the partition function, and Z will be referred just as a normalization factor.
At this point we are ready to define another generating functional, which is
usually called the generator of connected n-point functions

W [J ] = log Z [J ] , (1.8)

and they are generated by taking derivatives respect to J .

G(n)conn, A1,...,An =
δn

δJA1 · · · δJAn
W [J ] |J=0. (1.9)

1.1.1 A useful example

Before going on with the formal construction of our QFT it is useful to look
at an explicit example. Let the action functional be

S [φ] =
1

2
φA∆ABφ

B + V [φ] . (1.10)

These two terms can be seen as a kinetic one plus an interaction via a po-
tential V . In particular we can call S0 [φ] = 1

2
φA∆ABφ

B. On flat space-time
the kernel ∆ represent the propagation of the states of our field. To be
more concrete we can further specify ∆ to be a local differential operator,
say for example −∂µ∂µ or the Dirac operator γµ∂

µ. A general theory with
action S0 [φ] is easily solved if ∆ is invertible. To this end just calculate the
functional

Z0 [J ] =

∫
Dφe−S0[φ]+JAφ

A
= CExp

(
1

2
JA(∆−1)ABJB

)
. (1.11)

where C is a normalization factor that can be neglected because it does not
depend on the current. This can be also taken as the formal definition of the
gaussian integration over the space of fields.

Now we can try to justify the name ”generator of connected n-point
functions”. We introduce a diagrammatic representation of a generic n-point
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function we can derive from (1.11). To do that one has to draw a point
for each label Ai of the field. Having done this, it is sufficient to join a
couple of points (A,B) with a segment any time (∆−1)

AB
appears. The n-

point correlation functions for the free theory are said to be disconnected,
when n is larger than two, because the segments do not join at any point, so
they are all separated. Actually this is rather trivial having introduced no
interactions. The only connected function being〈

φAφB
〉

0
=
(
∆−1

)AB
, (1.12)

that is precisely the building block for all the other correlators. If one looks
at the associated functional

W0 [J ] =
1

2
JA
(
∆−1

)AB
JB, (1.13)

one easily realises that it is the generator of the (only) connected function of
the system.

Next we can try to include interactions via a potential V [φ]. A model
like this is not generally explicitly solvable, but still we can manipulate it a
little bit. Notice that

Z [J ] =

∫
Dφe−V [φ]e−S0[φ]+JAφ

A
= eV [ δδJ ]Z0 [J ] . (1.14)

If the pre-factor e−V is expanded, any term is going to look like a combination
of correlations functions of the free theory. The only modifications being
vertices, whose number of external lines are determined by the characteristics
of V [φ].

This procedure sets the groundwork of what is called perturbative expan-
sion. It is possible to show that the n-point correlation functions generated
by W [J ] are those of Z [J ] provided one removes all the diagrams that some
disconnected segments. This finally explains the reason of the name gener-
ator of connected n-point functions. Before concluding this section we need
to introduce one final, and perhaps more important, functional. We start
considering the J-dependent 1-point function

φ̄A =
〈
φA
〉
J
, (1.15)

that defines the field φ̄A. It is, under some still unspecified meaning, a
quantum “cousin” of φA. Obviously φ̄A is a functional of the sources JA .
We assume it is invertible, leading to JA = JA

[
φ̄
]

and define the Legendre
transform
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Γ
[
φ̄
]

= φ̄AJA −W
[
J
[
φ̄
]]
. (1.16)

The transform Γ
[
φ̄
]

is called effective action (EA). It is also a generating
functional and its correlators are defined as

Γ
(n)
A1,...,An =

δn

δφ̄A1 · · · δφ̄An Γ
[
φ̄
]
. (1.17)

The computation of the effective action is often a really complicated task,
especially if one does not have theories with many symmetries and space-
time is not two dimensional, or both. The purpose of the next sections is to
highlight the technical problems shadowed in the discussion up to now. We
will also further extend our definitions, giving up however to some generality
as a price of clarity.

1.2 Wilson approach

When we deal with perturbative renormalization of a QFT we think about
scale dependent couplings, this is a consequence of the need of renormaliza-
tion of QFT. We would like to address the issue of scale dependence from the
very beginning, introducing scale dependent functionals in such a way this
characteristic is built-in in the formalism. This is quite challenging starting
from perturbation theory, where the scale emerges in the development.

A systematic attempt to introduce scale dependence in the functionals
we constructed before is due to Wilson [7]. For simplicity we begin by con-
sidering spacetime to be a flat d-dimensional Euclidean manifold Rd. We
shall also take the field φ to be a scalar. We have now a natural basis, the
momentum basis, to expand the field

φ (x) =

∫
ddqφqe

iqx, (1.18)

and a natural representation for the measure

Dφ (x) =
∏
q∈Rd

dφq. (1.19)

Therefore following the procedure of the former sections formally the parti-
tion function would be

Z =

∫ ∏
q∈Rd

dφqe
−S[φ]. (1.20)
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This is of course ill defined because in explicit calculations it is generally
divergent, due to the infinitely many modes the field can have. These di-
vergences come from the unbounded integrations in momentum space. We
therefore introduce a cutoff Λ and a certain action SΛ [φ] such that∫ ∏

q∈Rd
dφqe

−S[φ] →
∫ ∏

q∈Rd,
|q|<Λ

dφqe
−SΛ[φ] ≡ Z. (1.21)

We introduced the cutoff to work with finite expressions regularizing the
divergences in the correlations. We modified the action and the measure at
the same time and we further asked that both modifications together match
and reproduce the same partition function.

From the point of view of the interpretation it makes sense to think of
SΛ [φ] as a certain ultraviolet (UV) action that contains the information of
our theory if large energies are addressed (small scales by the dual relation).

If Λ is a very big scale beyond which we do not know the behavior of the
theory, it makes sense to associate it to the UV action of a theory with a
hard cutoff. In general we could pick any scale k and perform the same trick
to write Z and this is precisely what we are going to do now. We define a
new action Sk [φ] as that particular action for which

e−Sk[φ] =

∫ ∏
q∈Rd,
k<|q|<Λ

dφqe
−SΛ[φ]. (1.22)

It is possible to relate Sk [φ] with SΛ [φ] by comparison of the two expressions

Z =

∫ ∏
q∈Rd,
|q|<k<Λ

dφqe
−Sk[φ]. (1.23)

We can interpret SΛ [φ] as the UV action of a theory possessing a hard cutoff
and Sk [φ] as the result of integrating all the modes in the shell k < |q| < Λ
towards IR.

We call Sk [φ] Wilson effective actions. We have constructed a one pa-
rameter family of actions labelled by a scale k. These actions are supposed
to contain a good description of the physics at the associated scale. A good
reason to believe it is that, by definition, only the modes

|q| ≈ k

are active at the given scale and therefore we are, under some approximation,
describing their physics. To understand this more precisely it is necessary to
refine the technique using a blocking procedure to provide us an actual way
to calculate the Wilson effective action.
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1.2.1 Blocking

We start to define our blocking procedure by smearing the field over a dis-
tribution ρk(x). The choice of its shape is not unique. For simplicity we will
chose to smear over a sharp cutoff form

ρk (x) =

∫
q

θ (k − q) eiqx. (1.24)

This choice lets us distinguish between slow (φ−) and fast (φ+) modes

φ− (x) =

∫
y

ρk (x− y)φ (y) and φ+ (x) = φ (x)− φ− (x) . (1.25)

We can now try to evaluate the Wilson effective action Sk [φ−]

e−Sk[φ−] =

∫
Dφ+e

−SΛ[φ−+φ+]. (1.26)

It is sufficient to expand quadratically the action S [φ] in φ+ and perform the
gaussian integration to have an approximate result

Sk [φ−] = S [φ−] +
1

2
Trk<qLog S(2) [φ]

∣∣
φ=φ−

+ · · · , (1.27)

where S(2) is the second functional derivative of S.
As it is indicated the trace, that in this case is essentially an integration

over the Fourier coefficients, has a lower bound k. This essentially means
that we are integrating the fast modes down to the scale we are interested
in.

Unfortunately there is no upper bound and, as always happens in QFT
these unbounded integrals tend to be divergent and we need to regularize it.
For example we may introduce a cutoff Λ and define

Sk,Λ [φ−] = S [φ−] +
1

2
Trk<q<ΛLog S(2) [φ]

∣∣
φ=φ−

+ · · · . (1.28)

We can avoid the regularization procedure deriving an evolution equation for
Sk [φ−]. It is sufficient to perform an infinitesimal step in the integration, to
get a result of the form

k∂kSk [φ−] =
1

2
TrLog

δ2Sk [φ]

δφδφ

∣∣∣∣
φ=φ−

. (1.29)

This is called Wegner-Houghton equation. Once the equation is derived it
is necessary to specify the initial condition of the flow and the integration
towards lower values of k will automatically give regular results for Sk. The
problem of taking the UV limit Λ→∞ is related to the choice of some initial
condition of the flow.
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1.3 Functional Renormalization Group

It is possible to implement the blocking procedure by modifying the partition
function adding an infrared cutoff that depends on some cutoff scale k. In
this context k is generally called sliding cutoff scale. We will also try to
keep the discussion as general as possible, so we restore the abstract index
notation of the field φA. We define

Zk [J ] =

∫
Dφe−S[φ]+JAφ

A−∆Sk[φ], (1.30)

where we artificially added a new term ∆Sk, called cutoff term [8–10]. The
new term is required to vanish for the sliding scale going to zero

∆Sk→0 [φ] = 0, (1.31)

in such a way to restore the standard partition function Zk→0 [J ] = Z [J ]. To
mimic the blocking procedure of the previous section we have to require the
cutoff term to be at most quadratic in the field φA:

∆Sk [φ] =
1

2
φARk,ABφ

B , (1.32)

where Rk,AB is called cutoff function. We will call ∆AB some reference op-

erator, it is not necessary that ∆AB = S
(2)
AB but is fundamental that it will

provide a distinction between slow and fast modes of our field φA as we will
briefly outline. We will assume that the operator ∆AB is diagonalizable with
spectrum {λi}. Eigenvectors corresponding to eigenvalues λi < k are called
“slow” modes while eigenvectors corresponding to eigenvalues λi > k are
called “fast” modes. The kernel Rk,AB of ∆Sk to be a function of ∆AB. The
quadratic kernel of the theory together with the cutoff term is

∆AB +Rk,AB [∆] , (1.33)

and we require to kill mainly the propagation of the slow modes. The sum
of the kinetic operator and the cutoff in the eigenvector base reads

∆AB +Rk,AB [∆] −→ λi +Rk [λi] . (1.34)

Properties of a good cutoff 1. We want Rk [λ] to satisfy the following
basic requirements

(i) it must be continuous and monotonically decreasing in λ and monoton-
ically increasing in k
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(ii) it must go rapidly to zero for λ ≥ k , so fast modes are unaffected
by coarse-graining. Conversely slow modes will acquire a “mass” that
forces their decoupling from spectrum.

(iii) it must tend to a positive (possibly infinite) value for k → ∞ at fixed
λ. This ensures that in this limit no modes are propagating.

(iv) it must tend to zero for k → 0. This ensures the limit Zk→0 [J ] = Z [J ]

In general there is freedom in the choice of the specific shape of Rk and
this reflects in some scheme dependence of our averaging technique.

It is useful at this stage to give some example of the most used cutoff
functions profiles. One is the so called optimized cutoff [11]

Rk(z) = (k2 − z)θ(k2 − z) , (1.35)

It allows to do almost all the integrals in the traces to be performed analyti-
cally. Another one is the exponential cutoff (or more in general a 2 parameter
family of shapes)

Rk(z) =
ze−a(z/k2)b

1− e−a(z/k2)b
. (1.36)

to guarantee that condition (iii) is satisfied, one has to assume b ≥ 1.
We can follow the construction of Section 1.1 using Zk [J ] in exactly the

same way we used Z [J ] previously, although it has a further k dependence.
We first define a modified generator of connected Green’s functions

Wk [J ] = LogZk [J ] , (1.37)

to be compared with (1.8). Both Zk [J ] and Wk [J ] generate n-points corre-
lations, which will differ from those generated by Z [J ] and W [J ] only for a
further k dependence. In particular we have the single point correlation (at
non-zero source)

φ̄A =
〈
φA
〉
k,J

=
δWk [J ]

δJA
. (1.38)

For the “average field” φ̄ we used the same notation that was introduced
when there was no k dependence (1.15). It is interesting to note that this
relation is generally k dependent. This means that when later k derivatives
will be performed, we will have to specify the behavior of J and φ̄ under it.
In particular, we cannot have them simultaneously constant under k, but we
can choose that either the source of the average field are.

We can define a Legendre transform

Γ̃k
[
φ̄
]

= φ̄AJA −Wk

[
J
[
φ̄
]]

, (1.39)
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where again we have to understand J as a function of φ̄. We will call “Effec-
tive Average Action” (EAA) a slight modification of Γ̃k:

Γk
[
φ̄
]

= Γ̃k
[
φ̄
]
−∆Sk

[
φ̄
]

= φ̄AJA −Wk

[
J
[
φ̄
]]
−∆Sk

[
φ̄
]
. (1.40)

This functional will be our main study subject. Notice that in the limit
k → 0 it correspond exactly to the standard Effective Action (1.16).

1.3.1 Functional Equations

The functionals we introduced in the previous section have some interesting
scaling properties respect to the sliding scale k, we can describe these prop-
erties using some equation we are going to derive in the following [8–10].The
first step is to take the derivative of the EAA respect to the renormalization
group time t = Log k/k0.

∂tΓk
[
φ̄
]

= −∂tWk [J ]− δWk [J ]

δJB
∂tJB + φ̄B∂tJB − ∂t∆Sk

[
φ̄
]

= (1.41)

− ∂tWk [J ]− ∂t∆Sk
[
φ̄
]

= −∂tWk [J ]− 1

2
∂tRk,ABφ̄

Aφ̄B . (1.42)

Here we used a derivative respect to the sliding scale respect to which φ̄ is
constant while the current is not. Next we take the derivative of the partition
function

∂te
Wk[J ] =

∫
Dφ (−∂t∆Sk [φ]) e−S[φ]+JAφ

A−∆Sk[φ]

= −1

2

∫
Dφ ∂tRk,ABφ

AφBe−S[φ]+JAφ
A−∆Sk[φ] (1.43)

= −1

2

δ

δJA
∂tRk,AB

δ

δJB

∫
Dφe−S[φ]+JAφ

A−∆Sk[φ]

= −1

2

δ

δJA
∂tRk,AB

δ

δJB
eWk[J ] ,

performing the derivatives explicitly one gets

∂tWk [J ] =− 1

2
∂tRk,AB

(
δ2Wk [J ]

δJAδJB
+
δWk [J ]

δJA

δWk [J ]

δJB

)
= (1.44)

− 1

2
∂tRk,AB

(
δ2Wk [J ]

δJAδJB
+ φ̄Aφ̄B

)
. (1.45)

Substituting into the expression for ∂tΓk we get
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∂tΓk
[
φ̄
]

=
1

2
∂tRk,AB

(
δ2Wk [J ]

δJAδJB
+ φ̄Aφ̄B

)
− ∂t∆Sk

[
φ̄
]

=
1

2
∂tRk,AB

δ2Wk [J ]

δJAδJB
.

(1.46)
The last step we are missing is to re-express this equation in terms of the
EAA itself. The derivative of Γk respect to φ̄ is

δΓk
[
φ̄
]

δφ̄A
= −δWk [J ]

δJB

δJB
δφ̄A

+
δJB
δφ̄A

φ̄B + JA −
δ∆Sk
δφ̄A

= JA −Rk,ABφ̄
B . (1.47)

If we take a second derivative and rearrange the terms in the equation we
get

δJA
δφ̄B

=
δ2Γk

[
φ̄
]

δφ̄Aδφ̄B
+Rk,AB −→ (1.48)

δ2Wk [J ]

δJAδJB
=
δφ̄B

δJA
=

(
δ2Γk

[
φ̄
]

δφ̄Aδφ̄B
+Rk,AB

)−1

≡ Gk,AB
[
φ̄
]
,

finally combining the (1.46) with (1.48) we get the so called Functional Renor-
malization Group Equation (FRGE)

∂tΓk
[
φ̄
]

=
1

2
Tr
[
Gk

[
φ̄
]
∂tRk

]
. (1.49)

The trace is extended to every index, so it includes integrations over contin-
uous indices. It is interesting to notice that Gk

[
φ̄
]

has a role of modified
propagator in which slow modes are suppressed. As we shall see later one
can interpret the FRGE as a 1-loop equation where the modified propagator
performs a loop with a single insertion of the derivative of the cutoff term.
Indeed, this “1-loop like” structure is very useful from the computational
point of view and makes many calculations accessible.

1.3.2 Graphical representation

Before going on with the derivation of the equations for ∂tΓ
(n)
k

[
φ̄
]

it’s useful
to introduce a graphical representation for the FRGE. We associate a straight
line to the propagator Gk,AB and a crossed circle for the cutoff insertion.

Gk,AB −→ A B

Figure 1.1: Graphical representation
of the modified propagator

∂tRk,AB −→ A B

Figure 1.2: Graphical representation
of the cutoff function
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We represent contraction with the connection of the corresponding ele-
ments. With this prescription the FRGE is represented by a loop with a
cutoff insertion.

∂tΓk −→

Figure 1.3: Graphical representation of the FRGE

The FRGE is a functional differential equation, therefore contains an
enormous amount of information. This can be seen by the fact that it leads
to an infinite tower of functional equations for the correlations Γ

(n)
k

[
φ̄
]
. We

start by computing

δGk,AB
[
φ̄
]

δφ̄C
=

δ

δφ̄C

(
δ2Γk

[
φ̄
]

δφ̄Aδφ̄B
+Rk,AB

)−1

= −Gk,AD ·
δ3Γk

[
φ̄
]

δφ̄Dδφ̄Eδφ̄C
Gk,EB .

(1.50)
Taking a functional derivatives of the FRGE generates interaction vertices

like
δ3Γk[φ̄]

δφ̄Aδφ̄Bδφ̄C
or more in general

δnΓk[φ̄]
δφ̄A1 ···δφ̄An

A1

An

δnΓk[φ̄]
δφ̄A1···δφ̄An

−→

Figure 1.4: Graphical representation of a vertex

At this point computing the functional equation for the n-point function
is simple. It is sufficient to take n derivatives of ∂tΓk

[
φ̄
]
. Graphically it is

sufficient to add n external legs to the FRGE loop (grasping on propagators
and vertices) respecting the Leibniz rule and (1.50). We can be more concrete
looking to an example that will be useful later, the 2 point function. Taking
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the first derivative we have to grasp FRGE loop with a single external leg.
Usually we will consider a cutoff function that does not depend on φ̄, the
first grasp will act only on the propagator.

∂t
δΓk

δφ̄A
= A

−

Figure 1.5: Graphical representation of the functional equation for the 1-
point function

Then we need to take a second derivative but now we have 3 options:
acting on the two propagators or on the three valent vertex.

∂t
δ2Γk

δφ̄Aδφ̄B
=

AB
+

BA −
A

B

Figure 1.6: Graphical representation of the functional equation for the 2-
point function

this collection of diagrams correspond to

∂t
δ2Γk

δφ̄Aδφ̄B
=

1

2
Tr

[
Gk ·

δ3Γk
[
φ̄
]

δφ̄Aδφ̄δφ̄
·Gk ·

δ3Γk
[
φ̄
]

δφ̄Bδφ̄δφ̄
·Gk · ∂tRk

]

+
1

2
Tr

[
Gk ·

δ3Γk
[
φ̄
]

δφ̄Bδφ̄δφ̄
·Gk ·

δ3Γk
[
φ̄
]

δφ̄Aδφ̄δφ̄
·Gk · ∂tRk

]
(1.51)

− 1

2
Tr

[
Gk ·

δ4Γk
[
φ̄
]

δφ̄Aδφ̄Bδφ̄δφ̄
·Gk · ∂tRk

]
,

where we omitted contracted indices to simplify the notation (each factor
is a matrix). By taking further functional derivatives we can obtain similar
equations for higher n-point functions.
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Chapter 2

The Asymptotic Safety
framework

Asymptotic safety is a criterion of consistency for a QFT that generalizes the
concepts of perturbative renomalizability and asymptotic freedom.

In this chapter we will define this notion and how practically one studies
whether a theory possesses this feature. The discussion will be carried out
in general, without restricting ourselves to any specific theory.

For gravity the idea was put forward in 1979 by Steven Weinberg [6], but
is well-known in Statistical Mechanics (with the difference that they are not
looking at the UV). In the same period there appeared some encouraging
results in 2 + ε dimensions that showed that the theory of gravity is in-
deed asymptotically safe [12–14], therefore consistent in the UV regime. The
calculations where performed using the standard ε expansion, and therefore
cannot be immediately generalized to four dimensions, which is the physically
interesting case. In the last two decades suitable non-perturbative techniques
like FRGE have been developed that allow to attack the problem.

2.0.3 Asymptotic safety

In QFT the couplings are not really constant rather they “run” as the typical
scale of the process is varied. In perturbation theory this arises as follows. In
order to renormalise the theory one is forced to introduce a mass parameter
which acts as a regulator and has no physical meaning. One then has to define
the physical, i.e. renormalised Green’s functions at a certain renormalisation
point, by defining certain coupling constants relative to specific measurement
conditions (like momenta of external particles).

In perturbation theory, the RG theory is basically a statement about the
independence of physical quantities of the choice of renormalisation point.
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This is the content of the Callan-Symanzik equation.
If one changes the renormalisation prescription, the coupling constants

will change too, in such a way that the value of physical observable quantities
will stay the same. In perturbation theory the RG is mostly used to rearrange
the perturbation series and provide a better expansion, since it allows to
resum large logarithms.

One also has experimental evidence that constants run, for instance look-
ing at the strong interaction coupling constant measured at particle accelera-
tors. Ultimately, by writing down a suitable effective action, one can evaluate
the couplings at the correct energy scale and forget about loop corrections,
which will all be included in the renormalised couplings.

Let us see how the RG theory proves to be a powerful method to search
for UV singularities. The effective action will be a functional of the classical
fields, consisting of a series of monomials, each made up of a combination of
the fields compatible with the symmetries of the theory and multiplied by a
running coupling. Schematically, we may write

Γk
[
φA
]

=

∫
ddx

∑
i

gi (k)Oi

[
φA
]
, (2.1)

where φ represents a generic field (we dropped the bar from the notation
used in the previous chapter), Oi

[
φA
]
, is a generic operator and gi (k) is the

running coupling defined at the energy scale k.
The constant gi (k) will have a certain canonical dimension di; let us then

define the corresponding dimensionless couplings,

g̃i (k) = k−digi (k) . (2.2)

Now, a physical quantity that we want to measure, be it a partial or total
cross section, a decay amplitude, or anything else, will be a function of the
renormalization scale k, the kinematical parameters of the process (like mo-
menta, angles, etc.) and the running coupling constants. By extracting a
suitable power of k, any such on-shell quantity may be written as

F̃ = kDF (X, g̃i (k)) , (2.3)

where X stands generically for dimensionless kinematical quantities and their
ratios and D is the canonical dimension of F (for instance it is −2 for a total
cross section). Equation (2.3) represents the most general expression for a
physical quantity; from a consistent theory, we want all such quantities to be
finite whatever the energy scale is at which we evaluate the process. We see
that, apart from the trivial power like dependence on k, the UV behaviour
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of F is controlled by the UV behaviour of the dimensionless constants g̃i’s.
Therefore, if we impose that they approach a FP at infinite energy scale,

lim
k→∞

g̃i = g̃∗i , (2.4)

we have a reasonable sufficient condition to make sure that our physical
quantities, measured in units of k, will not blow up when the energy scale
tends to ∞.

Before going on, we should mention the distinction between the so called
essential and inessential couplings. In fact, in (2.1) we have a large freedom to
define the coupling constants gi’s. Some of them may be made to disappear
from the action if we perform a suitable redefinition of the fields. Given
a certain choice of a set of couplings a combinations of them that cannot
be eliminated from the action will be called ”essential”, the remaining ones
are ”inessential” (or redundant). Mass-shell matrix elements and reaction
rates do not depend on the definition of the fields. On the contrary, the
off-shell Green’s functions will always reflect the way fields are defined, and
therefore will also depend on inessential couplings. From a physical QFT,
we demand that on-shell quantities possess a good UV behaviour. Since
inessential couplings are absent in the general formula (2.3), to apply the
asymptotic safety criterion one first has to identify a set of essential couplings
and then apply condition (2.4) only to these ones. The focus on on-shell
quantities is needed exactly to get rid of inessential couplings. Since this
issue is very important in the gravitational context, we discuss it separately
in Chapter 3.

The condition that coupling constants approach a FP allow us to make
sense of UV divergences. Yet, we have not seen by how many parameters the
quantum theory is defined. Like in perturbative renormalizability, we want
the theory to be fixed only by a finite number of parameters to be determined
experimentally, so that it is predictive. Therefore, we must add to condition
(2.4) another suitable criterion.

Suppose we have found a UV attractive FP. In the space of all the flowing
actions Γk, which is spanned by the (essential) coupling constants g̃i(k)’s,
there will be a subspace consisting of all the trajectories that hit the FP
when k goes to infinity.

This subspace forms the UV critical surface SUV . By its very definition,
no matter where we start from a specific point in SUV , in the UV regime
the RG flow will always bring the action to the FP. If we start outside SUV ,
instead, the trajectory will in general show divergences (unless we are on
the critical surface of another FP, of course). Therefore, the number of
parameters that we can freely choose to approach the FP is equal to the
dimension of SUV . We must then work out its dimension.
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SUV

Figure 2.1: Pictorial representation of the UV critical surface in the theory
space

2.0.4 Study of the Fixed Point

The easiest way to determine the dimension of SUV is to study the linearised
flow and compute the dimension of the hyperplane tangent to SUV at the FP.
Suppose we have determined the beta functions for the coupling constants:

βi (g̃j) = ∂tg̃i(t) , (2.5)

where t is the RG time we introduced in the previous chapter. We do not
specify here how to compute the beta functions; the following applies both to
perturbative and non-perturbative approaches. The condition (2.4) implies
that at the FP must satisfy

βi
(
g̃∗j
)

= 0 . (2.6)

One can expand the flow equations about the FP

βi (g̃j) = βi
(
g̃∗j
)

+
∂βi
∂g̃j

(
g̃∗j
) (
g̃j − g̃∗j

)
+ · · · . (2.7)

The first term on the right-hand side vanishes by definition of FP, and in
a neighbourhood of it we can neglect second order corrections. Introducing
the stability matrix Bij = ∂βi

∂g̃j

(
g̃∗j
)

we have the linearized flow that reads

βi (g̃j) = Bij

(
g̃j − g̃∗j

)
. (2.8)

It is an infinite system of first-order differential equations which is easily
solved by diagonalizing the stability matrix. Let P be the similarity trans-
formation that diagonalizes it, so that Md ≡ PBP−1 is the matrix of the
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eigenvalues. Introduce the eigenvectors vi = Pij
(
g̃j − g̃∗j

)
, with eigenvalue

λi, we will call in the following θi = −λi critical exponent. In general θi will
be complex, since B is not symmetric a priori. The solution will then be
vi(t) = Ciexp(−θit). Going back to the g̃i’s one finds

g̃i(t) = P−1
ij Cjexp(−θjt) + g̃∗i , (2.9)

where the Cj’s are integration constants which we have to fix so that the
g̃i(t)’s approach the FP in the UV regime, i.e. when t→∞. If the real part
of the critical exponent is negative, the exponential suppresses the contribu-
tion from that eigendirection, which will be UV attractive, and we can leave
Ci free. If the real part of the critical exponent is positive, instead, condition
(2.4) will not be satisfied, so the eigendirection is repulsive and must be elim-
inated by setting Ci = 0. The corresponding operators are named relevant
and irrelevant respectively. If an eigenvalue is zero, one has to go beyond
the linear approximation to study the attractivity of the FP. We shall not
consider this case (as we will see, the non-trivial FP of gravity does not have
zero eigenvalues). All in all we conclude that the dimension of SUV is equal
to the number of eigenvalues of the stability matrix with negative real part,
which we have to impose to come in a finite number to have a predictive
theory. It is easy to see that the existence and attractivity properties of a
FP do not depend on the way in which we choose coordinates in the space of
all action functionals. The eigenvalues of the stability matrix are universal
values representing the critical exponents in Statistical Mechanics.

Now we are in the position of demonstrating the connection between
asymptotic safety and perturbative renormalizability. Consider the theory
renormalised at the Gaussian FP (GFP), i.e. the FP where all essential
couplings vanish. One is then allowed to compute the beta functions pertur-
batively in the coupling constants. Recalling that we are interested in the
dimensionless couplings given by (2.2), one finds

βi = −digi + loop correction Bij = −diδij + loop correction , (2.10)

and evaluated at the GFP it will be diagonal with minus the canonical dimen-
sions as eigenvalues. By the analysis carried out before, we have to rule out
the couplings with negative canonical dimension, whereas those with positive
dimension are allowed. As for the gi’s that are dimensionless, one should look
at the loop corrections (i.e., one has to go beyond the linearised flow) and
they represent attractive directions if and only if they satisfy the condition
βi/gi < 0. But these conditions represent exactly the standard dimensional
arguments for perturbative renormalizability together with asymptotic free-
dom. So we see that asymptotic safety includes perturbative renormalization
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as a very special case. The interesting feature is that when the GFP is not
present or does not possess good features, one may look for a non-Gaussian
FP (NGFP) about which to renormalise the theory. This is what happens
with gravity: the GFP cannot be used because gravity is not perturbatively
renormalizable.
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Chapter 3

RG Equation for Gravity

It is now time to see how the machinery we developed in the previous two
chapter can be applied to the case of gravity. We would like to cast the
equation in a form where only the second derivatives of the effective action
with respect to the argument of Γk are there. We would like to be able to
write down, at least formally, the most general form of the effective action,
based on symmetry principles. Then we will retain only a suitable truncation
thereof in order to perform explicit calculations. Considering the full form
of Γk is exceedingly complicated. One can make a smart choice for the
truncation and try to estimate how accurate are the results by enlarging it.
It is crucial to be able to identify the complete Γk so that in this way one
knows that certain (symmetry-violating) operators are forbidden a priori.
This chapter aims to review results already presents in the literature.

3.1 Fixing the notations

We will describe spacetime as a smooth Riemannian manifold M equipped
with a metric gµν . Since the derivative of a vector field does not transform
covariantly, we introduce a notion of covariant derivative, expressed in terms
of a connection Γ

DµV
ν ≡ ∂µV

ν + ΓνµρV
ρ . (3.1)

In this thesis the connection is considered always to be the Levi-Civita con-
nection

Γνµρ ≡
1

2
gνγ (∂µgρλ + ∂ρgµλ − ∂λgρµ) , (3.2)

where ∂µ are derivative respect to local coordinates, gνγ is the inverse metric,
and indexes are raised and lowered by the metric. The Riemann curvature
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tensor is
Rλ

µνρ ≡ ∂ρΓ
λ
µν − ∂νΓλµρ + ΓαµνΓ

λ
αρ − ΓαµρΓ

λ
αν , (3.3)

whose contractions give the Ricci tensor Rµν = Rλ
µλρ and scalar R = gµνRµν .

3.2 Background field method

The first issue we will be concerned with is local symmetries. Since the theory
we want to deal with is invariant under diffeomorphisms, in order to perform
the path-integral quantisation that leads us to the FRGE we have to gauge
fix the action and add the corresponding ghost terms. If the gauge-fixing
is not carried out in a suitable manner, one may not end up with a gauge
invariant quantum effective action, so that the general form of it includes
a huge amount of terms that we may not be able to identify. In standard
QFT this problem is solved by using a background technique, and this can be
extended to the formalism of the effective average action for gauge theories,
including gravity [14–16].

Next, one of course wants to be able to compute the traces explicitly.
Since now we are interested in curved spaces, the problem is more delicate,
since, in general, analytical techniques are not developed to calculate the
trace of an arbitrary function of a derivative operator in curved space. Nev-
ertheless, if one is able to have all the covariant derivatives contracted with
one another, so that the operators are actually functionals of the Laplacian,
then heat-kernel techniques can be easily applied. In order to achieve this,
one has to decompose the quantum metric in a suitable way, as we will de-
scribe later, and this will restrict the possible projections to a limited class
of metrics. The generalization to more complicated spacetimes in not ob-
vious and quite difficult, in this case. We will be mainly interested in the
Einstein-Hilbert truncation, for which one can use a maximally symmetric
space whose Riemann tensor satisfies

Rµνρσ =
1

d(d− 1)
(gµρgνσ − gµσgνρ)R , (3.4)

corresponding to the metric of a d-dimensional sphere Sd. If one wants to
include higher-derivative terms one should consider different spaces to project
the FRGE onto. The derivation we present here can be easily generalized,
but we specialize our calculations for the Einstein-Hilbert truncation for sake
of simplicity.

SEH =
1

16πG

∫
ddx
√
g (−R + 2Λ) . (3.5)
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In order to achieve general covariance in Γk, it is convenient to use the
background field method [17], splitting the quantum metric gµν , into the sum
of a fixed background ḡµν and a fluctuation hµν .

gµν = ḡµν +
√

32πGkhµν . (3.6)

Indices will always be raised and lowered with ḡµν . We will refer to the field
hµν as the graviton, even though it is not assumed to be a small perturbation.
Next we have to define how background and fluctuation transforms under an
infinitesimal change of coordinates xµ → xµ + εµ(x).

δεhµν = Lεgµν = 2gα(µDν)ε
α δεḡµν = 0 . (3.7)

We will now go through the usual steps of the Faddeev-Popov procedure to
gauge-fix the gravitational action and write down the corresponding ghost
action. The gauge fixing Sgf term and the ghost term Sgh can be generically
written as follows

Sgf = 1
2α

∫
ddx
√
ḡ ḡµνFµ[ḡ, h]Fν [ḡ, h] (3.8)

Sgh = −
∫
ddx
√
ḡ c̄µMµν [ḡ, h]cν . (3.9)

If we specify the form of the functional Fµ we can compute explicitly the
ghost action. We will use an harmonic gauge fixing.

Fµ[ḡ, h] =

(
ḡβµD̄

α − 1 + ρ

4
ḡαβD̄µ

)
hαβ , (3.10)

then following the prescription we have

Mµν [ḡ, h] = 2
δFµ[ḡ, δεh]

δεν
=
δFµ[ḡ, δεh]

δhαβ

δεhαβ
δεν

=

(
ḡβµD̄

α − 1 + ρ

4
ḡαβD̄µ

)
gν(αDβ) .

(3.11)
Finally the ghost term can be rewritten as

Sgh = −
∫
ddx
√
ḡ c̄µ

(
ḡµκD̄ρgκνDρ

+ ḡµκD̄ρgρνDκ −
1 + ρ

2
ḡρσD̄µgρνDσ

)
cν . (3.12)

The parameters α and ρ are called gauge parameters.
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3.3 Evaluation of the beta functions

We will now consider a particular type of truncation, which consists of re-
taining the bare Einstein-Hilbert action, the gauge-fixing, ghost term and
cutoff terms with running coupling constants.

Γk = ΓEHk + Γgfk + Γghk , (3.13)

where Γk looks like exactly the same as their bare counterparts we have
defined in the previous section where we promoted the couplings to running
ones G→ Gk and Λ→ Λk.

Projecting on a maximally symmetric space, it is straightforward to ex-
tract the beta functions for Gk and Λk. The coupling constants can be
extracted as

Λk

16πGk

=
1

2Vol
Γk [ḡ]|R=0 , (3.14)

1

16πGk

= − 1

Vol

∂Γk [ḡ]

∂R

∣∣∣∣
R=0

, (3.15)

and their running by differentiating both sides respect to the RG time t.
Since to order R there is only one invariant, namely the Ricci scalar, the
projection on the spherical background is unambiguous. Suppose we wanted
to consider terms of second order in the curvature; for a general background
there are three such independent terms, namely R2, RµνR

µν , and RµνρσR
µνρσ

(even if one can be eliminated using the Gauss-Bonnet identity) and they
would all give a term proportional to the curvature squared when projected
on the sphere. Therefore, as mentioned before, one must consider more
complicated spaces to disentangle the different contributions coming from
higher-derivative terms.

The first step to compute the EAA is to compute its quadratic part in
the graviton of the (3.13)1.

Γ
(2)
k =

1

2

∫
ddx hµν

[
(1−P)

(
−D̄2 − 2Λk + 4−3d+d2

d(d−1)
R̄
)

−d−2
2

P
(
−D̄2 − 2Λk + d−4

d
R̄
) ]
hρσ (3.16)

Where 1 = 1µνρσ = δµ(ρδσ)ν and P = P µνρσ = 1
d
δµνδρσ, notice that P ·P = P.

The ghost term is already quadratic in the ghost fields, then it is sufficient
to compute it for g = ḡ to find its quadratic part. From now on we will

1For simplicity we set α = 1 and ρ = d/2− 1 which is 1 in d = 4
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drop the bar form the covariant derivative and from the Ricci scalar and we
will always assume they are the one built from the background metric. If
it is necessary to explicitly distinguish the background quantities from the
complete metric ones the bar will be reintroduced.

3.3.1 Cutoff

The following step to compute the FRGE for gravity is the introduction of
the cutoff term

∆Sk =
1

2

∫
ddxhµνR

µνρσ
k hρσ −

∫
ddxc̄µR

ghµν
k cν . (3.17)

The cutoff function Rk appearing here should not be confused with the Rie-
mann tensor. In general we have the freedom to choose the shape and the
operator we want to cutoff. Traditionally if the argument of the cutoff func-
tion is the Laplacian the cutoff is called of type I, if the argument is the
Laplacian plus some multiple of the curvature scalar is called of type II,
lastly if the argument include also other couplings is called of type III. We
will not talk about type III cutoff in this thesis, for more information about
it refer to [18]. Moreover a cutoff is called of type “a” if the graviton is
used as fundamental field and type “b” if the graviton is decomposed in
irreducible representations of SO(d + 1). In the following we will derive ex-
plicitly the gravitational beta function ignoring the graviton wave function
renormalization factor. We will call this “one loop” approximation.

3.3.2 Cutoff of type Ia

In this section we will finally compute the beta function in the type Ia cutoff
case respectively for the graviton and the ghosts.

∆Sgrk =
1

2

∫
ddxhµν

[
(1−P)Rk

(
−D2

)
− d− 2

2
PRk

(
−D2

) ]
hρσ(3.18)

∆Sghk = −
∫
ddxc̄µg

µνRkcν . (3.19)

The following step is to compute the modified proparator Gk, thanks to the
decomposition in projectors the inversion of the quadratic part of the action
is trivial.

Ggr
k =

(
Γ

(2),gr
k +Rk

)−1

= 2 (1−P)
1

−D2 +Rk (−D2)− 2Λk + 4−3d+d2

d(d−1)
R

− 4

d− 2
P

1

−D2 +Rk (−D2)− 2Λk + d−4
d
R
,
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Ggh
k =

(
Γ

(2),gh
k +Rk

)−1

= − 1gh
−D2 +Rk (−D2)−R/d .

Multiplying with the cutoff term and tracing over spacetime indices one ob-
tains the FRGE

d

dt
Γk =

1

2
Tr
[
G−1
k ∂tRk

]
=

1

2
Tr
[
Ggr
k
−1∂tRk

]
− Tr

[
Ggh
k
−1∂tRk

]
=(3.20)

+
1

2
Tr

[
1−P

∂tRk

−D2 +Rk (−D2)− 2Λk + 4−3d+d2

d(d−1)
R

]
(3.21)

+
1

2
Tr

[
P

∂tRk

−D2 +Rk (−D2)− 2Λk + d−4
d
R

]
(3.22)

−Tr

[
1gh

∂tRk

−D2 +Rk (−D2)−R/d

]
. (3.23)

Notice the presence of the total derivative respect to the RG time t instead
of the partial derivative that we used in the previous chapters. This meant
to reabsorb on the left hand side of the equation terms dependent on the
dimension of the fields and Lagrangian. One can now expand to first order
in R, and use a heat kernel expansion2 to obtain

d

dt
Γk =

1

(4π)d/2

∫
dx
√
g

{
d (d+ 1)

4
Q d

2

[
∂tRk

z +Rk − 2Λ

]
− dQ d

2

[
∂tRk

z +Rk

]
+

(
d (d+ 1)

24
Q d

2
−1

[
∂tRk

z +Rk − 2Λ

]
− d

6
Q d

2
−1

[
∂tRk

z +Rk

]
(3.24)

−d (d− 1)

4
Q d

2

[
∂tRk

(z +Rk − 2Λ)2

]
−Q d

2

[
∂tRk

(z +Rk)
2

])
R +O(R2)

}
,

where Qn(W ) = 1
Γ(n)

∫∞
0
dz zn−1W (z) for any function W (z). We are now

ready to extract the beta functions. The first line of (39) gives the beta
function of Λk/Gk, while the other two lines give the beta function of 1/Gk.
The beta functions (3.14) can be written in the form

∂t
Λk

16πGk

=
kd

16π
A1 , (3.25)

−∂t
1

16πGk

=
kd−2

16π
B1 , (3.26)

where A1 , B1 are dimensionless functions of Λ, k and of d. One can solve
these equations for the dimensionless cosmological constant and newton’s
constant (2.2) obtaining

2For additional details look at the appendix 3.A
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∂tΛ̃k = −2Λ̃k +
G̃k

2
A1 + Λ̃kG̃kB1 , (3.27)

∂tG̃k = (d− 2) G̃k +B1G̃
2
k . (3.28)

To get an explicit form of the coefficients A and B we need to specify the
shape of the cutoff function, with the optimized cutoff (1.35), is

A1 =
1

(4π)d/2Γ(d
2
)

16π(d− 3 + 8Λ̃k)

1− 2Λ̃k

, (3.29)

B1 =
1

(4π)d/2Γ(d
2
)

−4π(−d3 + 15d2 − 12d+ 48 + (2d3 − 14d2 − 192)Λ̃k + (16d2 + 192)Λ̃2
k)

3d
(

1− 2Λ̃k

)2 .

3.3.3 Cutoff of type Ib

This type of cutoff was introduced in [19]. The fluctuation hµν and the ghosts
are decomposed into their different spin components according to

hµν = hTµν +Dµξν +Dνξµ +DµDνσ −
1

d
gµνD

2σ +
1

d
gµνh , (3.30)

and
Cµ = cT µ +Dµc , C̄µ = c̄Tµ +Dµc̄ , (3.31)

where hTµν is tranverse and traceless, ξ is a transverse vector, σ and h are
scalars, cT and c̄T are transverse vectors, and c and c̄ are scalars. These fields
are subject to the following differential constraints:

hTµµ = 0 ; DνhTµν = 0 ; Dνξν = 0 ;Dµc̄Tµ = 0 ;Dµc
Tµ = 0 .

Using this decomposition can be advantageous in some cases because it can
lead to a partial diagonalization of the kinetic operator and it allows an exact
inversion. This is the case for example when the background is a maximally
symmetric metric. Then the FRGE can be written down for arbitary gauge
α and ρ. Here for simplicity we still restrict ourself to the gauge α = ρ = 1
and without making any approximation, the quadratic parts of the action
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for each component are

Γ
(2)

hT
=

1

2
hTµν

[
−D2 +

d2 − 3d+ 4

d(d− 1)
R− 2Λk

]
hTµν ;

Γ
(2)
ξ =

(
−D2 − R

d

)
ξµ

[
−D +

d− 3

d
R− 2Λk

]
ξµ ;

Γ
(2)
h = −d− 2

4d
h

[
−D2 +

d− 4

d
R− 2Λk

]
h ;

Γ(2)
σ =

d− 1

2d

(
−D2

)(
−D2 − R

d− 1

)
σ

[
−D2 +

d− 4

d
R− 2Λ

]
σ ;

Γ
(2)

c̄T cT
= c̄Tµ

[
−D2 +

R

d

]
cTµ ;

Γ
(2)
c̄c = −D2c̄

[
−D2 +

2

d
R

]
c . (3.32)

The change of variables (3.30) and (3.31) leads to Jacobian determinants
involving the operators

JV = −D2 − R

d
, JS = −D2

(
−D2 − R

d− 1

)
, Jc = −D2 .

for the vector, scalar and ghost parts. The inverse propagators (3.32) contain
terms with more than two derivatives, we can avoid this by making the field
redefinitions

ξµ →
√
−D2 − R

d
ξµ, σ →

√
−D2

√
−D2 − R

d− 1
σ . (3.33)

At the same time, such redefinitions also eliminate the Jacobians. These
field redefinitions work well for truncations containing up to two powers of
curvature, but cause poles for higher truncations as the heat kernel expansion
will involve derivatives of the trace arguments. To obtain the FRGE we
can now proceed as in the case of cutoff type Ia. Notice that the trace
on constrained fields need some care but we will not enter in the details
here. Expanding the denominators to first order in R, but keeping the exact
dependence on Λk as in the case of a type Ia cutoff, and using the Heat
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Kernel expansion, one obtains

d

dt
Γk =

1

(4π)d/2

∫
dx
√
g

{
d(d+ 1)

4
Q d

2

(
∂tRk

z +Rk − 2Λ

)
− dQ d

2

(
∂tRk

z +Rk

)
(3.34)

+R

[
−d

4 − 2d3 − d2 − 4d+ 2

4d(d− 1)
Q d

2

(
∂tRk

(z +Rk − 2Λ)2

)
− d+ 1

d
Q d

2

(
∂tRk

(z +Rk)
2

)
+
d4 − 13d2 − 24d+ 12

24d(d− 1)
Q d

2
−1

(
∂tRk

Pk − 2Λ

)
− d2 − 6

6d
Q d

2
−1

(
∂tRk

z +Rk

)]
+O(R2)

}
.

The beta functions have again the form (3.25); the coefficient A1 is the same
as for the type Ia cutoff but now the coefficient B1 is

B1 = 4π
(
d(d− 1)(d3 − 15d2 − 36) + 24− 2(d5 − 8d4 − 5d3 − 72d2 − 36d+ 96)Λ̃k

−16(d− 1)(d3 + 6d+ 12)Λ̃2
k

)/
3(4π)

d
2d2(d− 1)Γ

(
d

2

)
(1− 2Λ̃k)

2 (3.35)

3.3.4 Cutoff of type IIa

Let us define the following operators acting on gravitons and on ghosts:

∆h = (1−P)

(
−D2 +

4− 3d+ d2

d(d− 1)
R

)
− d− 2

2
P

(
−D2 +

d− 4

d
R

)
∆gh = −D2gµν − R

d
gµν

The type IIa cutoff is defined by the choice

Rk =

(
1−P− d− 2

2
P

)
Rk(∆h)

R
(gh)
k

µν = gµνRk(∆(gh)) ,

Collecting all terms and evaluating the traces leads to

d

dt
Γk =

1

(4π)d/2

∫
dx
√
g

{
d(d+ 1)

4
Q d

2

(
∂tRk

z +Rk − 2Λk

)
− dQ d

2

(
∂tRk

z +Rk

)
(3.36)

+

[
d(7− 5d)

24
Q d

2
−1

(
∂tRk

z +Rk − 2Λk

)
− d+ 6

6
Q d

2
−1

(
∂tRk

z +Rk

)]
R +O(R2)

}
.

The beta functions are again of the form (3.25), and the coefficient A1 is the
same as in the case of the cutoffs of type I. The coefficients B1 is now

B1 = −4π(5d2 − 3d+ 24− 8(d+ 6)Λ̃k)

3(4π)
d
2 Γ(d

2
)(1− 2 Λ̃k)

. (3.37)
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3.3.5 Cutoff of type IIb

This type of cutoff was introduced in [20]. The fluctuation hµν and the ghosts
are decomposed into their different spin components as in the type Ib case.
We define the cutoff on each component respectively as a function of the
following operators

∆hT = −D2 +
d2 − 3d+ 4

d(d− 1)
R ∆ξ = −D +

d− 3

d
R

∆h = −D2 +
d− 4

d
R ∆σ = −D2 +

d− 4

d
R

∆c̄T cT = −D2 +
R

d
∆c̄c = −D2 +

2

d
R . (3.38)

Collecting all terms and evaluating the traces leads to

d

dt
Γk =

1

(4π)d/2

∫
dx
√
g

{
d(d+ 1)

4
Q d

2

(
∂tRk

z +Rk − 2Λk

)
− dQ d

2

(
∂tRk

z +Rk

)
+

[
−5d4 − 12d3 − 5d2 − 24d+ 12

24(d− 1)d
Q d

2
−1

(
∂tRk

z +Rk − 2Λk

)
(3.39)

−d
2 − 6d− 6

6d
Q d

2
−1

(
∂tRk

z +Rk

)]
R +O(R2)

}
.

The beta functions are again of the form (3.25), and the coefficient A1 is the
same as in the case of the cutoffs of type I. The coefficients B1 is now

B1 = −4π(5d2 − 3d+ 24− 8(d+ 6)Λ̃k)

3(4π)
d
2 Γ(d

2
)(1− 2 Λ̃k)

. (3.40)

Notice that the B1 coefficient is the same as the type IIa case. It is nev-
ertheless interesting to understand the reason for this coincidence, which is
independent of the shape of the cutoff function Rk. We will explore it in
detail in Chapter 4.

3.3.6 Four dimensions

It’s time to be more concrete, let us now consider Einstein’s theory with
cosmological constant in d = 4. The beta functions for Λ̃k and G̃k for various
cutoff types have been given in equations (3.27,3.29,3.35,3.37,3.40).
All of these beta functions admit a Gaussian FP at Λ̃k = 0 and G̃k = 0 and a
nontrivial FP at positive values of Λ̃ and G̃. Let us discuss the Gaussian FP
first. As usual, the critical exponents are equal to 2 and −2, the canonical
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mass dimensions of Λk and Gk. However, the corresponding eigenvectors are
not aligned with the Λ̃k and G̃k axes.
Let us now come to the nontrivial FP. We begin by making for a moment
the drastic approximation of expanding A1 and B1 in Λ̃ and just keeping
the leading term (A1(Λ̃ = 0) and B1(Λ̃ = 0)). We will call this linearized
scheme “perturbative” approximation. Thus we consider again the per-
turbative Einstein–Hilbert flow. The FP would occur at Λ̃∗k = −A1/4B1,
G̃∗k = −2/B1, it has real critical exponents 2 and 4, equal to the canonical
dimensions of the constants g(0) = 2Λk/(16πGk) and g(2) = −1/(16πGk).
This should not come as a surprise, since the linearized flow matrix for the
couplings g(0) and g(2) is diagonal, with eigenvalues equal to their canoni-
cal dimensions, and the eigenvalues are invariant under regular coordinate
transformations in the space of the couplings.
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Figure 3.1: The flow near the perturbative region with cutoffs of type IIa.
The red thick line on the right is a singularity of the beta functions.

So we see that a nontrivial UV–attractive FP in the Λ̃k–G̃k plane appears
already at the lowest level of perturbation theory. All the differences between
the perturbative and the one loop approximation of Einstein–Hilbert flow are
due to the dependence of the constants A1 and B1 on Λ̃k in the one loop one.

In all these calculations the critical exponents at the nontrivial FP al-
ways turn out to be a complex conjugate pair, giving rise to a spiralling flow.
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Scheme Λ̃∗ G̃∗ Λ̃∗G̃∗ ϑ
Ia 0.1213 1.1718 0.1421 1.868±1.398i
Ib 0.1012 1.1209 0.1134 1.903± 1.099 i
IIa 0.0467 0.7745 0.0362 2.310± 0.382 i
IIb 0.0467 0.7745 0.0362 2.310± 0.382 i

Table 3.1: The nontrivial fixed point for Einstein’s theory in d = 4 with
cosmological constant. To compare with literature we have to stress the fact
we are neglecting the graviton anomalous dimensions. This is used called
“one loop” computation.

The real part of these critical exponents is positive, corresponding to eigen-
values of the linearized flow matrix with negative real part. Therefore, the
nontrivial FP is always UV-attractive in the Λ̃k–G̃k plane. Conversely, an
infinitesimal perturbation away from the FP will give rise to a renormaliza-
tion group trajectory that flows towards lower energy scales away from the
nontrivial FP. Among these trajectories there is a unique one that connects
the nontrivial FP in the ultraviolet to the Gaussian FP in the infrared. This
is called the “separatrix”.
One noteworthy aspect of the flow equations in the Einstein–Hilbert trunca-
tion is the existence of a singularity of the beta functions. There are always
choices of Λ̃k and G̃k for which the denominators vanish. The singularities
are the boundaries of the shaded region in figure 3.1. Of course the flow
exists also beyond these singularities but those points cannot be joined con-
tinuously to the flow in the perturbative region near the Gaussian FP, which
we know to be a good description of low energy gravity.

When the trajectories emanating from the nontrivial FP approach these
singularities, they reach it at finite values of t and the flow cannot be extended
to t→ −∞. The presence of these singularities can be interpreted as a failure
of the Einstein–Hilbert truncation to capture all features of infrared physics
and it is believed that they will be avoided by considering a more complete
truncation.

In table 3.1 we collect the main features of the UV–attractive FP for
the Einstein–Hilbert truncation with cosmological constant for the different
cutoff schemes.
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3.A Heat kernel expansion

Here we are going to give a very brief account of the heat kernel expansion
we used in this chapter. The heat kernel (HK) is the study of the flow

(∂z + ∆)K(z) = 0 (3.41)

where ∆ is a covariant differential operator acting on a section of an unspec-
ified vector bundle V . Let the base manifold be a d-dimensional Riemannian
manifold with metric gµν . We restrict our attention to the case in which ∆
is of rank 2 and in particular of the form

∆ = �+ E = −D2 + E . (3.42)

We introduced a covariant derivative D, which contains the connection of
the bundle, and the box operator defined as � = −D2 = −gµνDµDν . E
is a general endomorphism of the bundle. An operator of the form (3.42)
is sometimes called “generalized laplacian”. The connection itself will be a
tensor product of the connection of the bundle and the Christoffel connection
of the base manifold. The formal solution of (3.41) is

K(s) = e−s∆ (3.43)

It is useful to evaluate the functional trace of the heat kernel

TrK(s) = tr

∫
dxK(s;x, x) (3.44)

where tr is the trace over the indices of the bundle and K(s; y, x) solves the
differential equation

(∂s + ∆x)K(s; y, x) = 0 (3.45)

with boundary condition K(0; y, x) = δ(x − y) (the Dirac delta is for the
measure dx =

√
gdx). It turns out that the object TrK(s) possesses an

expansion in powers of s, that relates to a local expansion in curvatures and
powers of the endomorphism E.

This expansion is called Seeley-deWitt expansion and it reads

TrK(z) =
1

(4πz)d/2

∑
n≥0

znB2n[∆] (3.46)

The coefficients B2n[∆] can be written in terms of other functions b2n[∆]
defined as

B2n[∆] = tr

∫
dx
√
g b2n[∆] (3.47)
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The new coefficients take values in the endomorphisms of V . The first two
b’s are

b0[∆] = 1 , (3.48)

b2[∆] = E +R/6 . (3.49)

R is the curvature scalar. All the terms in these two expansion, apart for E,
are proportional to the identity in the bundle. Once traced with “tr”, these
will give a result proportional to the dimensionality of the bundle itself.

The expansion (3.46) can be used to calculate the trace of any function
of an operator ∆. Suppose now we are interested in calculating the general
trace

Trf [∆] (3.50)

for arbitrary f . It is convenient to rewrite f in terms of its inverse Laplace
transform f̃ and insert it in the trace

Trf [∆] = Tr

∫ ∞
0

dzf̃ [z]e−z∆ =

∫ ∞
0

dzf̃ [z]TrK[z] , (3.51)

which shows how to relate any trace with that of the HK.
If we substitute in (3.51) the expansion (3.46), we obtain an expansion

with which evaluate the functional trace of f [∆].

Trf [∆] =
1

(4π)d/2
(
Qd/2(f)B0[∆] +Qd/2−1(f)B2[∆] +Qd/2−2(f)B4[∆] + · · ·

)
,

(3.52)
where

Qm(f) =

∫ ∞
0

dss−mf̃(s) . (3.53)

Using the properties of the Laplace transform we can write the functions
Qm(f) in term of f instead if its transform:

Qm(f) =
1

Γ(m)

∫ ∞
0

dzzm−1f [z] for m ≥ 0 integer . (3.54)
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3.B Spectral geometry of differentially con-

strained fields

In this appendix we specialize the manifold we are working on to be a sphere.
Consider the decomposition of a vector field Aµ into its transverse and lon-
gitudinal parts:

Aµ → ATµ +DµΦ .

The spectrum of −D2 on vectors is the disjoint union of the spectrum on
transverse and longitudinal vectors. The latter can be related to the spectrum
of −D2 − R

d
on scalars using the formula

−D2DµΦ = −Dµ

(
D2 +

R

d

)
Φ . (3.55)

Therefore one can write for the heat kernel

Tre−s(−D
2) |Aµ= Tre−s(−D

2) |ATµ +Tre−s(−D
2−R

d ) |Φ −e(s
R
d ) . (3.56)

The last term has to be subtracted because a constant scalar is an eigen-
function of −D2 − R

d
with negative eigenvalue, but does not correspond to

an eigenfunction of −D2 on vectors. The spectrum of −D2 on scalars and
transverse vectors is obtained from the representation theory of SO(d + 1)
and is reported in table 3.2.

A similar argument works for symmetric tensors, when using the decom-
position (3.30). One can use equation

−D2 (Dµξν +Dνξµ) = Dµ

(
−D2 − d+ 1

d (d− 1)
R

)
ξν+Dν

(
−D2 − d+ 1

d (d− 1)
R

)
ξµ ,

(3.57)
and equation

−D2

(
DµDν −

1

d
gµνD

2

)
σ =

(
DµDν −

1

d
gµνD

2

)(
−D2 − 2

d− 1
R

)
σ ,

(3.58)
to relate the spectrum of various operators on vectors and scalars to the
spectrum of −D2 on tensors. One has to observe that the d(d+ 1)/2 Killing
vectors are eigenvectors of −D2 − d+1

d(d−1)
R on vectors but give a vanishing

tensor hµν , so they do not contribute to the spectrum of −D2 on tensors.
Likewise, a constant scalar and the d + 1 scalars proportional to the Carte-
sian coordinates of the embedding Rn, which correspond to the lowest two
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Spin s Eigenvalue λl(d, s) Multiplicity Dl(d, s)

0 l(l+d−1)
d(d−1)

R; l = 0, 1 . . . (2l+d−1)(l+d−2)!
l!(d−1)!

1 l(l+d−1)−1
d(d−1)

R; l = 1, 2 . . . l(l+d−1)(2l+d−1)(l+d−3)!
(d−2)!(l+1)!

2 l(l+d−1)−2
d(d−1)

R; l = 2, 3 . . . (d+1)(d−2)(l+d)(l−1)(2l+d−1)(l+d−3)!
2(d−1)!(l+1)!

Table 3.2: Eigenvalues of the Laplacian on the d-sphere and their multiplic-
ities

eigenvalues of −D2− 2
d−1

R, also do not contribute to the spectrum of tensors.
So one has for the heat kernel on tensors

Tr e(−s(−D
2))
∣∣∣
hµν

= Tr e(−s(−D
2))
∣∣∣
hTµν

+ Tr e(−s(−D
2− (d+1)R

d(d−1) ))
∣∣∣
ξ

(3.59)

+Tr e(−s(−D
2))
∣∣∣
h

+ Tr e(−s(−D
2− 2

d−1
R)) |σ

−e( 2
d−1

sR) − (d+ 1) e(
1
d−1

sR) − d (d+ 1)

2
e(

2
d(d−1)

sR) .

The last exponentials can be expanded in Taylor series as
∑∞

m=0 cmR
m

and these terms can be viewed as modifications of the heat kernel coefficients
of −D2 acting on the differentially constrained fields. To see where these
modifications enter, recall that the volume of the sphere is

VdS = (4π)
d
2

(
d (d− 1)

R

) d
2 Γ
(
d
2

)
Γ (d)

, (3.60)

so that ∫
ddx
√
gTr bn ∝ R

n−d
2 . (3.61)

This means a coefficient cm from the Taylor series will contribute to a heat
kernel coefficient for which 2m = n−d. So there are contributions to bn only
for n ≥ d.

If a computation involve such coefficients, the negative and zero modes
of constrained scalar and vector fields have to be excluded from the traces
over the constrained fields; this is denoted by one or two primes, depending
on the number of excluded modes.
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Chapter 4

Fermions in Asymptotic Safety

4.1 Coupling spinors to gravity in brief

Some care is required when coupling spinor fields to gravity. The general
procedure involves increasing the number of gravitational degrees of freedom
by introducing a d-bein eaµ, that is a set of one-forms such that

gµν = eaµe
b
νδab . (4.1)

We also require the d-bein to have an inverse, so a set of vectors eµa exist such
that

eµae
b
µ = δba , (4.2)

eµae
a
ν = δµν . (4.3)

(4.4)

These are useful because when adopting them as a basis the metric gets triv-
ialized. The number of degrees of freedom of the d-bein is bigger than that
of the metric and it is easy to see it. The metric is a symmetric tensor that
in four dimensions has ten independent components, while eaµ has sixteen
components. A d-bein is therefore a general linear transformation, one is
allowed to think of it as a basis transformation on the tangent bundle. Al-
ternatively it can be seen as an isomorphism between the tangent bundle and
another bundle with flat metric tensor. Let M be the Euclidean spacetime
manifold and TM its tangent bundle. Before going on we need to fix some
terminology. When resticted to 4 dimensions the d-bein is called vierbain or
tetrad. When we will refer to the general formulation of gravity where the
fundamental field is thee d-bein we will use the name tetrad formulation even
if it is not precise. Further, we call V a vector bundle with fiber R4. In this
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new bundle we can construct a connection Aaµb requiring ∇µe
a
ν = 0 where ∇

is the total covariant derivative on TM⊕ V . This gives its relation to the
Christoffel connection on TM

Aaµb = eaλΓ
λ
µνe

ν
b + eaλ∂µe

λ
b . (4.5)

This new connection can be used to construct a spinor covariant derivative

Dµψ = ∂µψ +
1

2
Aµ,abJ

abψ . (4.6)

where the generators Jab of O(4) rotations in V are obtained from the Clifford
algebra

{
γa, γb

}
= 2δab

Jab =
1

4

[
γa, γb

]
. (4.7)

The O(4) gauge invariance accounts for the additional degrees of freedom
of the d-bein and can be gauge fixed in such a way that the vielbeins are
symmetric. With this choice they essentially maintain only the degrees of
freedom of the metric. Finally we can construct the spinor field action. The
conjugate spinor is introduced as usual ψ̄ = ψ†γ0 and the Lagrangian is

iψ̄γaeµaDµψ = ψ̄i /Dψ . (4.8)

It is easily seen that the metric degrees of freedom will enter in three ways
in the spinor action, namely in the volume element, the covariant derivative
and the inverse d-bein that couples the covariant derivative. This makes the
treatment of spinor field in gravitational settings more complicated than that
of a scalar.

4.2 Noticing an ambiguity

In the first part of this chapter we will focus on solving one ambiguity present
in the literature on the renormalization group for gravity where the scheme
dependence is particularly nasty: it is the contribution of fermion fields to the
beta function of Newton’s constant. This contribution has been computed,
for example, in Sec. III of [18]. If there are ND Dirac fields, it is in 4
dimensions

−ND
1

2(4π)2

∫
d4x
√
g

(
2

3
Q1

(
∂tRk

Pk

)
−Q2

(
∂tRk

P 2
k

))
R , (4.9)

if one uses a type I cutoff and

ND
1

2(4π)2

∫
d4x
√
g

1

3
Q1

(
∂tRk

Pk

)
R , (4.10)
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if one uses a type II cutoff. Here Pk(z) = z+Rk(z) is the modified propagator.
If we use the optimized cutoff (1.35) the contribution of fermions to the
relevant term of the beta functional is

− ND

96π2

∫
d4x
√
g R for the type I cutoff (4.11)

ND

48π2

∫
d4x
√
g R for the type II cutoff. (4.12)

The latter agrees with an earlier independent calculation of the renormaliza-
tion of G in [21]; the former differs not just in the value of the coefficient
but even in the sign. To check that this is not just a quirk of the optimized
cutoff, we considered also an exponential cutoff (1.36) and encountered the
same problem.

This sign ambiguity is puzzling. Since the beta function of G vanishes
for G = 0, the sign of G can never change in the course of the RG flow (we
disregard here as pathological the case when the inverse of G passes through
zero). Therefore, if the physical RG trajectory approaches a fixed point in
the UV, the sign of Newton’s constant at low energy will be the same as that
of Newton’s constant at the fixed point. In a model where gravity is induced
by minimally coupled fermions, the sign of Newton’s constant would depend
on the scheme.

One has to be careful in drawing physical conclusions from these calcula-
tions: the relation between the coupling G appearing in Γk and the physical
Newton’s constant that is measured in the laboratory may not be as simple
as it seems. The functional that obeys an exact RG equation is not a simple
functional of a single metric but rather a functional of a background metric
and (the expectation value of) the fluctuation of the metric. This functional
is not invariant under shifts of the background and fluctuation that keep the
sum constant, and therefore there may be several couplings that one could
legitimately call “Newton’s constant” (for a discussion see [22–24]). The one
that we are discussing here is the one that multiplies the Hilbert action con-
structed from the background metric only, and it is not obvious that the
other ones would behave in the same way. We will come back on this point
in the following chapters. To make a completely well–defined statement one
should really calculate a physical observable and in such a calculation all
ambiguities should disappear. It is therefore possible, in principle, that even
the sign difference between the two calculations discussed above may be re-
solved when one considers physical observables. In this chapter we will argue
for a different and simpler solution of the issue, namely that only the type II
cutoff gives a result with the physically correct sign.

As an aside, we will also calculate the contribution to the beta functions
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of the cosmological constant and Newton constant due to Euclidean Kähler
fermions in four dimensions. Kähler fermions are a way of describing fermion
fields in terms of Grassmann algebra elements, instead of spinors, and it has
the merit that it does not require the use of tetrad fields. We find that one
Kähler fermion gives exactly the same contribution as four Dirac spinors,
and that the same sign issue is present.

4.2.1 Kähler fermions

Before discussing in detail the issue of the cutoff scheme with ordinary spinor
fermions, we would like to point out that precisely the same problem arises
also in another representation of fermionic matter.

As is well known, in any dimension the Grassmann and the Clifford alge-
bras are isomorphic as vector spaces. This is the basis for a representation
of fermion fields as inhomogeneous differential forms [25–27]. Such fields
are called Kähler fermions. In this representation the analogue of the Dirac
operator is the first order operator d + δ, where d is the exterior derivative
and δ is its adjoint. Note that the use of tetrads is not required. We would
like to compare the contribution of Kähler fermions to the gravitational beta
functions to the one of ordinary spinor fermions. In particular we would
like to see whether the same sign issue arises when different cutoff types are
used. Since the details of the calculation are strongly dimension dependent,
we shall restrict our attention to the case d = 4.

An inhomogeneous complex differential form Φ can be expanded as

Φ = ϕ(x) + ϕµ(x)dxµ +
1

2!
ϕµν(x)dxµ ∧ dxν + (4.13)

1

3!
ϕµνρ(x)dxµ ∧ dxν ∧ dxρ +

1

4!
ϕµνρσ(x)dxµ ∧ dxν ∧ dxρ ∧ dxσ .

We can map the 3- and 4-form via Hodge duality into a 1- and 0-form re-
spectively. The field Φ thus describes a scalar, a pseudoscalar, a vector, a
pseudovector and an antisymmetric tensor, for a total of 16 complex compo-
nents. This is an early sign of the fact that one Kähler field is equivalent to
four Dirac fields.

The square of the Kähler operator is the Laplacian on forms: ∆ = (d +
δ)2 = dδ + δd. On forms of degree 0, 1 and 2 it is given explicitly by

∆(0) = −∇2 , (4.14)

∆(1)µ
ν = −∇2δµν +Rµ

ν , (4.15)

∆
(2)
αβ

γσ = −∇21αβ
γσ +R γ

α δ
σ

β −R γ
β δ

σ
α − 2R γ σ

α β . (4.16)
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In a maximally symmetric space (3.4) the operators defined above reduce to

∆(1)µ
ν =

(
−∇2 +

1

4
R

)
δµν , (4.17)

∆
(2)
αβ

γσ =

(
−∇2 +

1

3
R

)
1αβ

γσ . (4.18)

The FRGE for a Kähler fermion within the Einstein-Hilbert truncation
with a type II cutoff is

dΓk
dt

=− 2
1

2
Tr(0)

(
∂tRk(∆

(0))

Pk(∆(0))

)
− 2

1

2
Tr(1)

(
∂tRk(∆

(1))

Pk(∆(1))

)
− 1

2
Tr(2)

(
∂tRk(∆

(2))

Pk(∆(2))

)
=4 · 1

2

1

(4π)2

∫
d4x
√
g

[
−4Q2

(
∂tRk

Pk

)
+

1

3
R ,Q1

(
∂tRk

Pk

)]
. (4.19)

For a type I cutoff we find instead:

dΓk
dt

=− 2 · 1

2
Tr(0)

(
∂tRk(−∇2)

Pk(−∇2)

)
− 2 · 1

2
Tr(1)

(
∂tRk(−∇2)

Pk(−∇2) + R
4

)
− 1

2
Tr(2)

(
∂tRk(−∇2)

Pk(−∇2) + R
3

)

= 4 · 1

2

1

(4π)2

∫
d4x
√
g

[
−4Q2

(
∂tRk

Pk

)
−R

(
2

3
Q1

(
∂tRk

Pk

)
−Q2

(
∂tRk

P 2
k

))]
.

(4.20)

Evaluating the Q functionals (3.54) for the cutoff (1.35) we get

type II:
dΓk
dt

= 4 · 1

2

1

(4π)2

∫
d4x
√
g

[
−4 k4 +

2

3
Rk2

]
(4.21)

type I:
dΓk
dt

= 4 · 1

2

1

(4π)2

∫
d4x
√
g

[
−4 k4 − 1

3
Rk2

]
. (4.22)

In both cases the effect of one Kähler fermion is seen to match exactly the
result of four spinors (ND = 4). This should not induce one to believe that
spinors and Kähler fermions are equivalent: in fact, their contributions to
the curvature squared terms are quite different. Nevertheless, the puzzling
sign issue of the R term that afflicts spinor fermions is present in this case
too.

4.2.2 Cutoff choice for fermions

We now return to ordinary Dirac spinor fields and we reexamine in more
detail their contribution to the gravitational effective action and beta func-
tions. For the sake of generality we will now work in arbitrary dimension
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d. The standard way of defining the effective action for a fermion field that
is minimally coupled to gravity is to exploit the properties of the logarithm
and write

Γ = −Tr log(| /D|) = −1

2
Tr log( /D

2
) = −1

2
Tr log

(
−∇2 +

R

4

)
. (4.23)

The corresponding one-loop EAA can then be defined as

Γk = −1

2
Tr log

(
−∇2 +

R

4
+Rk

)
. (4.24)

In the definition of this functional one encounters the same ambiguities that
we have mentioned in Section 3.3.1 for the gravitational systems. In addition
to the shape of the cutoff function Rk, one seems to also have the freedom
of choosing the argument of this function to be either −∇2 (type I cutoff) or
−∇2 + R

4
(type II cutoff). The former choice has been made in [19, 28–31],

the latter in [32]. Taking the derivative respect to the RG time t and defining
Pk(z) = z +Rk(z), one has

dΓk
dt

= −1

2
Tr

∂tRk(−∇2)

Pk(−∇2) + R
4

for a type I cutoff, (4.25)

dΓk
dt

= −1

2
Tr
∂tRk(−∇2 + R

4
)

Pk(−∇2 + R
4

)
for a type II cutoff. (4.26)

The first few terms in the curvature expansion of these traces can be eval-
uated, for any background, using heat kernel methods (see Appendix 3.A).
However, for a spherical background, the spectrum of the Dirac operator
is known explicitly, and the same traces can also be computed directly as
spectral sums.

4.2.3 Heat kernel evaluation

With a type I cutoff, the trace (4.25) giving contribution of ND Dirac spinors
to the FRGE is

dΓk
dt

= −ND

2

2[d/2]

(4π)d/2

∫
ddx
√
g

[
Q d

2

(
∂tRk

Pk

)
+

(
1

6
Q d

2
−1

(
∂tRk

Pk

)
− 1

4
Q d

2

(
∂tRk

P 2
k

))
R+. . .

]
.

(4.27)
Here 2[d/2] (where [x] is the integer part of x) is the dimension of the rep-
resentation. The first term proportional to R is proportional to the heat
kernel coefficient b2(−∇2), and the second comes from the expansion of the
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denominator in (4.25). Evaluating the Q functionals with the cutoff (1.35)
we obtain

dΓk
dt

= − 1

Γ
(
d
2

+ 1
) 2[d/2]

(4π)d/2
ND

∫
ddx
√
g

[
kd +

d− 3

12
kd−2R

]
. (4.28)

Evaluating (4.26) with the same techniques yields

dΓk
dt

= −ND

2

2[d/2]

(4π)d/2

∫
ddx
√
g

[
Q d

2

(
∂tRk

Pk

)
− 1

12
RQ d

2
−1

(
∂tRk

Pk

)
+ . . .

]
,

(4.29)
where the term proportional to R comes entirely from the heat kernel coef-
ficient b2

(
−∇2 + R

4

)
. Evaluating with the cutoff (1.35) we obtain

dΓk
dt

= − 1

Γ
(
d
2

+ 1
) 2[d/2]

(4π)d/2
ND

∫
ddx
√
g

[
kd − d

24
kd−2R

]
. (4.30)

In d = 4 this yields the results quoted in Sec. I. We see that the sign issue is
present in any dimension d > 3.

4.2.4 Spectral sums on Sd

The heat kernel calculation of the preceding subsection can be done in an
arbitrary background. On the other hand, in the case of the spherical back-
ground we know explicitly the spectrum of the Dirac operator: the eigenval-
ues and multiplicities are

λ±n = ±
√

R

d(d− 1)

(
d

2
+ n

)
, mn = 2[ d2 ]

(
n+ d− 1

n

)
, n = 0, 1, . . . .

(4.31)
With this information one can compute the trace of any function of the Dirac
operator as Tr f( /D) =

∑∞
n=0mnf(λn). We will now evaluate the right hand

side (r.h.s.) of the FRGE by imposing a cutoff on the eigenvalues of the
Dirac operator. The one-loop EAA can be defined directly in terms of the
Dirac operator as

Γk = −tr log
(
| /D|+RD

k (| /D|)
)
, (4.32)

where the cutoff RD
k has to be a function of the modulus of the Dirac operator,

since we want to suppress the modes depending on the wavelength of the
corresponding eigenfunctions. This is also needed for reasons of convergence.
Since the operator is first order, the conditions that RD

k has to satisfy are
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similar to (i) to (iv) of (1), except for the replacement of q2 and k2 by λn and
k respectively. For the explicit evaluation, we will use the optimized profile

RD
k (z) = (k − z)θ(k − z) , (z > 0) . (4.33)

Then we have

Tr

[
∂tR

D
k (| /D|)

PD
k (| /D|)

]
=
∑
n

mn
∂tR

D
k (|λn|)

PD
k (|λn|)

=
∑
±

∑
n

mnθ(k − |λn|) . (4.34)

The sum can be computed using the Euler-Maclaurin formula.

n∑
i=0

F (i) =

∫ n

0

F (x) dx−B1 · (F (n) + F (0)) + (4.35)

p∑
k=1

B2k

(2k)!

(
F (2k−1)(n)− F (2k−1)(0)

)
+ remainder

where Bi are the Bernoulli numbers. After collecting a volume contribution,
the only terms we need to compute are the zeroth and first power of R.

Note that only the integral depends on R, and therefore, in dimensions
d > 2 for the terms that we are interested in it is enough to compute the
integral.

Since the volume of the d sphere is V (d) = 2
d!

Γ
(
d
2

+ 1
)

(4π)d/2
(

(d−1)d
R

)d/2
we only have to isolate the terms in the integral proportional to R−d/2 and
R1−d/2

2 2[ d2 ]
∫ k

√
d(d−1)
R
− d

2

0

dn

(
n+ d− 1

n

)
= 2

2[ d2 ]

(d− 1)!

∫ k
√
d(d−1)
R
− d

2

0

dn (n+ d− 1) · · · (n+ 1) ,

(4.36)
changing variables n→ n′ − d/2

2
2[ d2 ]

(d− 1)!

∫ k
√
d(d−1)
R

d
2

dn′
(
n′ +

d

2
− 1

)
· · ·
(
n′ −

(
d

2
− 1

))
, (4.37)

the terms we are interested in come from the integral of the two highest order
power of n′

(
n′ +

d

2
− 1

)
· · ·
(
n′ −

(
d

2
− 1

))
= n′d−1 − n′d−3

[ d−1
2 ]∑

k=1

(
d

2
− k
)2

+ · · · ,

(4.38)
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we can rewrite the sum
∑[ d−1

2 ]
k=1

(
d
2
− k
)2

= 1
24
d (d− 1) (d − 2), and perform

the integral

Tr

[
∂tRk

Pk

]
= 2

2[ d2 ]

(d− 1)!

1

d

(
k

√
d(d− 1)

R

)d

(4.39)

−2
2[ d2 ]

(d− 1)!

1

d− 2

(
k

√
d(d− 1)

R

)d−2
1

24
d (d− 1) (d− 2) + · · ·

Collecting the volume of Sd we obtain

dΓk
dt

= −Tr

[
∂tRk

Pk

]
= − 1

Γ
(
d
2

+ 1
) 2[ d2 ]

(4π)
d
2

V (d)

(
kd − d

24
kd−2R +O

(
R2
))

.

(4.40)
The result is

dΓk
dt

= −Tr

[
∂tR

D
k

PD
k

]
= − 1

Γ
(
d
2

+ 1
) 2[ d2 ]

(4π)
d
2

V (d)

(
kd − d

24
kd−2R +O

(
R2
))

,

(4.41)
where V (d) is the volume of the d sphere. This agrees exactly with (4.30),
which was obtained with the type II cutoff. It can be checked in the same way
that the agreement extends also to the next order in the curvature expansion.

4.2.5 Solving the ambiguity

Note that computing the r.h.s. of the FRGE with a spectral sum is a much
more direct procedure, since it avoids going through the square root of the
square of the Dirac operator, and also avoids having to use the Laplace
transform and the heat kernel. It is therefore also a more reliable procedure
when there are ambiguities. The agreement of the spectral sum with the type
II heat kernel calculation is a useful consistency check and suggests that the
latter gives the correct result, whereas the type I cutoff does not.

If so, it remains to understand why the type I cutoff should not be ad-
missible in this case. One can get some hint by thinking of what this cutoff
does in terms of eigenvalues of the Dirac operator. We begin by noting that
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(4.32) can be rewritten as follows 1:

Γk = −1

2
tr log

(
| /D|+RD

k (| /D|)
)2

(4.42)

= −1

2
tr log

(
−∇2 +

R

4
+ 2| /D|RD

k (| /D|) +RD
k (| /D|)2

)
.

One can compare this with (4.24). Note that the cutoff Rk in that formula
could be a function of different operators which, on a sphere, differ by a
constant shift. For the present purposes it is convenient to think of it as a
function of /D

2
. Calling R̄k this function and calling z = | /D|, we have

R̄k(z
2) = 2zRD

k (z) +RD
k (z)2 . (4.43)

We can solve this relation to get

RD
k (z) = −z +

√
z2 + R̄k(z2) , (4.44)

so for any cutoff imposed at the level of (4.24) one can reverse engineer an
effective cutoff to be imposed at the level of (4.32) that will give the same
result.

In general, this cutoff may fail to satisfy the required conditions, in partic-
ular condition (iv) of (1). For a type II cutoff, Rk in (4.24) is a function of z2,
so R̄k(z

2) = Rk(z
2). This implies that R̄0(z2) = 0 and thus also RD

0 (z) = 0
for all z > 0. For a type I cutoff, on the other hand, this may not be the
case, as we will show in the following examples.

Consider first the optimized cutoffs. In the type II case one has R̄k(z
2) =

(k2 − z2)θ(k2 − z2) and one finds that in this case the corresponding cutoff
RD
k (z) given by (4.44) is also optimized, and precisely of the form (4.33). This

is a way of understanding why the two calculations give the same result. In
the case of a type I cutoff, we have instead R̄k(z

2) = (k2 − z2 + R/4)θ(k2 −
z2 +R/4), whence one derives

RD
k (z) =

(√
k2 +

R

4
− z
)
θ

(√
k2 +

R

4
− z
)

. (4.45)

This does not tend uniformly to zero when k → 0. In the case of an
exponential type II cutoff with R̄k = Rk given by (1.36), we have

RD
k (z) = −z +

z√
1− e−a(z2/k2)b

, (4.46)

1This is a formal relation because the functional Γk is ill–defined, but one can write a
corresponding relation for d

dtΓk, with the same result.

50



which has all the desired properties. On the other hand for an exponential
type I cutoff with R̄k given by (1.36),

RD
k (z) = −z +

√√√√z2 +

(
z2 − R

4

)
e−a(z

2−R
4 )

b
/k2b

1− e−a(z2−R
4 )

b
/k2b

. (4.47)

For b odd, and in particular for the most natural case b = 1, this function
does not tend uniformly to zero when k → 0 and therefore condition (iv) is
not satisfied. 2

An analogue reasoning can be also made for Kähler fermions, by applying
the cutoff directly on the operator d+δ one recover exactly the type II cutoff
result.

These arguments lend support to the view that only the type II cutoff
gives the physically correct result. Of course not all results obtained from the
type I cutoff have to be wrong; for example, the leading term (renormalizing
the cosmological constant) and, in d = 4, the curvature squared terms are
the same using the two cutoffs. These, however, are just the “universal”
quantities that do not depend on the choice of the cutoff. We believe that
for the generic dimensionful, nonuniversal quantities, the results obtained via
a type I cutoff should not be trusted.

2Note that in the limit k → 0 the function RD
k is nonzero only for z <

√
R/4. Since the

smallest eigenvalue of the Dirac operator is
√
R/3, it remains true that limk→0 Γk = Γ.
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4.3 Tetrad gravity

When spinors are coupled to gravity an additional question arises regarding
the field carrying the gravitational degrees of freedom. In [19, 28, 29], where
the contribution of graviton loops was added to that of matter fields, as well
as in [33–35] where scalars and fermions were interacting with gravity, the
carrier of the gravitational degrees of freedom was the metric. It has been
pointed out in [36] that in the presence of fermions it may be more natural to
use the d-bein. Even if one chooses a Lorentz gauge where the antisymmetric
part of the d-bein fluctuation is suppressed, the two calculations are not
the same, because one has to work off shell and the Hessian in the tetrad
formalism contains some additional terms proportional to the equations of
motion. The calculations in [36], which used a type Ia cutoff in the α = 1
gauge, show that a fixed point is still present, but is less stable than in the
metric formulation. We will very briefly review their result in the following.
In this thesis we present the computation of the gravitational contributions in
the tetrad formalism, using type b cutoffs (both Ib and IIb); this allows us to
analyze the off–shell α dependence. The results will be found to be somewhat
closer to those of the metric formalism than those found in [36] (which we
have independently verified), but they still present a stronger dependence on
the scheme and on the gauge parameter.

4.3.1 Hessian and gauge fixing

The ansatz we make for the effective average action is the standard Einstein–
Hilbert truncation (3.13) where the metric is represented in terms of d-beins
that are considered the fundamental degrees of freedom. If we decompose
in background plus fluctuation both gµν ≡ ḡµν + hµν and eaµ ≡ ēaµ + εaµ we
have the relation

hµν = 2ε(µν) + ε(µ
ρεν)ρ (4.48)

where Latin indices on ε have been transformed to Greek ones by contraction
with ē. Now substituting this formula in the Taylor expansion of the action
in terms of metric fluctuations we find:

ΓEH(e) = ΓEH(ē)+

∫
δΓEH

δgµν
2εµν+ζ

∫
δΓEH

δgµν
εµ

ρενρ+
1

2

∫ ∫
δΓEH

δgµνδgρσ
4 εµνερσ+. . . .

(4.49)
In the third term we have introduced by hand a factor 0 ≤ ζ ≤ 1 that inter-
polates continuously between the pure metric formalism (ζ = 0, hµν = 2ε(µν))
and the tetrad formalism (ζ = 1). We see that the part of the action
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quadratic in ε differs from the one in the metric formalism by terms pro-
portional to the equations of motion. Since in the derivation of the beta
functions it is essential to work off shell, we cannot ignore these terms.

The gauge fixing terms for diffeomorphisms and local Lorentz transfor-
mations are

ΓGFk [e, ē] =
1

2α

∫
ddx
√
ḡḡµνFµFν +

1

2αL

∫
ddx
√
ḡ GabGab . (4.50)

For diffeomorphisms we choose the condition (3.10) while for the internal
O(d) transformation we choose a symmetric vielbein Gab = ε[ab]. We will
choose αL = 0 to simplify the computation. This corresponds to a sharp
implementation of the Lorentz gauge fixing, where one can simply set ε[µν] =
0 and suppress the corresponding rows and columns in the Hessian.

We can compute the ghost action in analogous way we did in Section 3.2,
notice how the action is not diagonal in the ghost fields.

Γghk =

∫
ddx
√
ḡ

[
c̄µ

(
ḡµκD̄ρgκνDρ + ḡµκD̄ρgρνDκ −

1 + ρ

2
ḡρσD̄µgρνDσ

)
cν

+
µ

2
Σ̄µν

(
Dµδ

ρ
ν −Dνδ

ρ
µ − 2ωIJρeµJeνI

)
cρ (4.51)

+2µ2Σ̄µνΣµν

]
,

where the mass scale µ has been introduced, following [36], to compensate
for the fact that the Lorentz ghosts do not have a kinetic term and give them
the same dimension as cµ.

Next we perform the TT decomposition on the symmetric part of the
d-bein fluctuation as we did in Section 3.3.3

ε(µν) = hTTµν +Dµξν +Dνξµ +DµDνσ −
1

d
gµνD

2σ +
1

d
gµνh

2 , (4.52)

and the associated field redefinitions for ξµ and σ.
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With these definitions the quadratic part of the action (3.13) is

Γ
(2)

hT hT
=

1

2

∫ √
g hTµν

[
−D2 +

(
d (d− 3) + 4

d (d− 1)
− ζ d− 2

2d

)
R− (2− ζ)Λ

]
hTµν ;

(4.53)

Γ
(2)
ξξ =

1

α

∫ √
g ξν

[
−D2 +

(
α (d− 2)− 1

d
− ζαd− 2

2d

)
R− α (2− ζ) Λ

]
ξν ;

(4.54)

Γ(2)
σσ =

(d− 1)

2d

2 (d− 1)− α (d− 2)

αd
(4.55)

×
∫ √

g σ

[
−D2 +

(d− 2)(2− ζ)α− 4

2 (d− 1)− α (d− 2)
R− αd (2− ζ)

2 (d− 1)− α (d− 2)
Λ

]
σ ;

Γ
(2)
hh =

d− 2

4d

2 (d2 − 3d+ 2)α− 4ρ2

dα(d− 2)
(4.56)

×
∫ √

g h
[
−D2 +

α(d− 2) (d− 4 + ζ)

2 (d2 − 3d+ 2)α− 4ρ2
R− 2

dα (d− 2 + ζ)

2 (d2 − 3d+ 2)α− 4ρ2
Λ
]
h ;

Γ
(2)
hσ =

−(d− 2)α + 2ρ

dα

(d− 1)

d

∫ √
g h

(
−D2 − R

(d− 1)

)
D2σ . (4.57)

We notice that for ρ = α(d− 2)/2 we can get rid of the mixed term. In the
rest of the chapter we will work in this “diagonal” gauge. In this case the
trace part reduces to

Γ
(2)
hh = −1

2
d−2
2d

∫ √
g h

[
−D2 +

d− 4 + ζ

2(d− 1)− α(d− 2)
R

− 2d

2(d− 1)− α(d− 2)

(
1 +

ζ

d− 2

)
Λ

]
h .

After decomposing the diffeomorphism ghost in its transverse and longitu-
dinal parts, and absorbing

√
−D2 in the latter, the ghost action is the sum

of

Γ
(2)

c̄Tν c
T
µ

=

∫ √
g c̄Tν

(
D2 +

R

d

)
cTµ Γ

(2)
c̄c =

∫ √
g c̄

(
D2 + 2

R

d

)
c . (4.58)

The Lorentz ghosts do not propagate and following standard perturbative
procedure one could neglect them entirely, but we will follow [36] and intro-
duce a cutoff for them too.
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4.3.2 Beta functions

Using the same procedure as in Section 3.3 we can compute the expression for
d
dt

Γk. The main difference between the following and what we presented in
Section 3.3 is the extension of the truncation by the addition of the graviton’s
wave function renormalization. To do that we rescale the graviton hµν →√
Zhµν . Comparing the terms of order zero and one in R in the FRGE yields

d

dt

(
2Λ

16πG

)
=

kd

16π
(A1 + ηA2) , (4.59)

− d

dt

(
1

16πG

)
=
kd−2

16π
(B1 + ηB2) , (4.60)

where η = 1
Z
dZ
dt

and Ai, Bi are in general polynomials in Λ̃ = k−2Λ. To close
the beta functions we further identify η ≡ −1/GdG

dt
. From here one can find

the beta functions of the dimensionless parameters G̃ = kd−2G and Λ̃:

d

dt
G̃ =(d− 2)G̃+

B1G̃
2

1 + G̃B2

(4.61)

d

dt
Λ̃ =− 2Λ̃ + G̃

A1 + 2B1Λ̃ + G̃ (A1B2 − A2B1)

2
(

1 +B2G̃
) . (4.62)

In the following two sections we will give explicit results using specific cutoffs.
For numerical results in d = 4 we will always use the optimized cutoff

(1.35). For a discussion of the dependence on the shape of the function Rk(z)
we refer to [36]. We will instead concentrate on the differences between cutoffs
of type I vs II and type “a” vs “b”. We present here a review of the results
the type Ia cutoff, we refer to the extensive discussion in [36] for additional
details. We will report in detail the results for the cases Ib and IIb, and
highlight the differences with the case Ia.

4.3.3 Type Ib cutoff

First we choose as reference operator, in each spin sector, the “bare” Lapla-
cian −D2. The cutoff is a function Rk(−D2). This is called a cutoff of type
Ib. The calculation of the coefficients A1, A2, B1 and B2 for arbitrary di-
mension and cutoff shape is described in Appendix 4.A. Here we just report
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the result in d = 4 and for the cutoff profile (1.35):

A1 =
1

2π

[
5

1− (2− ζ)Λ̃
+

3

1− α(2− ζ)Λ̃
+

1

1− 2α(2−ζ)
3−α Λ̃

+
1

1− 2(2+ζ)
3−α Λ̃

− 8

]
+ AL(µ̃) ,

(4.63)

A2 =
1

12π

[
5

1− (2− ζ)Λ̃
+

3

1− α(2− ζ)Λ̃
+

1

1− 2α(2−ζ)
3−α Λ̃

+
1

1− 2(2+ζ)
3−α Λ̃

]
,

(4.64)

B1 =
1

24π

[
− 20

1− (2− ζ)Λ̃
− 5 (8− 3ζ)

(1− (2− ζ)Λ̃)2
+

6

1− α(2− ζ)Λ̃
(4.65)

+
9(1− α(2− ζ))

4(1− α(2− ζ)Λ̃)2
+

4

1− 2α(2−ζ)Λ̃
3−α

+
12 + 6α(ζ − 2)

(3− α)
(

1− 2α(2−ζ)Λ̃
3−α

)2

+
4

1− 2(ζ+2)Λ̃
3−α

− 6ζ

(3− α)
(

1− 2(ζ+2)Λ̃
3−α

)2 − 50

]
+BL(µ̃) ,

B2 =
1

144π

[
− 30

1− (2− ζ)Λ̃
− 5 (8− 3ζ)

(1− (2− ζ)Λ̃)2
+

9

1− α(2− ζ)Λ̃
(4.66)

+
9(1− α(2− ζ)

(1− α(2− ζ)Λ̃)2
+

6

1− 2α(2−ζ)Λ̃
3−α

+
12 + 6α(ζ − 2)

(3− α)
(

1− 2α(2−ζ)Λ̃
3−α

)2

+
6

1− 2(ζ+2)Λ̃
3−α

− 6ζ

(3− α)
(

1− 2(ζ+2)Λ̃
3−α

)2

]
.

The result is still quite general: it depends on the parameter ζ, which allows
us to interpolate continuously between the purely metric formulation (ζ = 0)
and the purely tetrad formulation (ζ = 1), on the arbitrary gauge parameter
α, which allows us to test the gauge dependence of the results, and on the
dimensionless parameter µ̃ = µ/k that allows us to weigh differently the
contribution of the Lorentz ghosts encoded in the terms AL and BL (see
Appendixes ?? for an explicit expression). Let us now describe the main
features of these flows. Both in the metric and in the tetrad formulations, a
UV attractive fixed point is found for all values of µ and for α not too large.
Its location and the corresponding critical exponents ϑ (which are defined as
minus the eigenvalues of the stability matrix) are given in Table 4.1 in the
metric (ζ = 0) or tetrad (ζ = 1) formalism, in the gauges α = 0, α = 1
and with two different values of the dimensionless Lorentz ghost parameter
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µ̃ = µ/k: µ̃ = ∞, and µ̃ = 1.2. The former corresponds to neglecting
the Lorentz ghosts entirely and the latter is chosen to ease comparison with
[36], who found that this value gives results that are closest to the metric
formalism in the gauge and scheme they use. Note that the case ζ = 0, α = 1
corresponds to the purely metric flow with type Ib cutoff, which had already
been discussed previously in the literature. Indeed the second row in Table
4.1 agrees with the third row in Table II in [18].

Whereas with a type Ia cutoff the fixed point becomes UV repulsive, and a
limit cycle develops, for µ̃ sufficiently large, with the type Ib cutoff it remains
UV attractive for arbitrarily large µ̃. This is a nice feature of this scheme,
because it means that the fixed point can also be found if one adopts the
perturbative prescription of neglecting the Lorentz ghosts entirely. However,
the results in the tetrad formalism match most closely those of the metric
formalism when µ̃ is chosen to be a bit larger than one. As with the type Ia
cutoff, for µ̃ smaller than a critical value µ̃c, the critical exponents become
real. We find µ̃c ≈ 0.705 for α = 0 and µ̃c ≈ 0.715 for α = 1.

The dependence of the critical exponents at the fixed point on the µ̃
parameters in both α = 0 and α = 1 gauge is illustrated in Fig.4.1.

The dependence of the universal quantities on the gauge parameters is
illustrated in Fig. 4.2. The slow decrease of the real part of the critical
exponent for 0 < α < 2 is in agreement with earlier calculations in the
metric formalism (see e.g. Fig. 9 in [37]). The results of different schemes
seem to converge for α→ 0 which, we recall, is believed to give the physically
most reliable picture. On the other hand, when α is greater than some value
of order 2, the fixed point becomes repulsive, reproducing the behavior that
had been observed in [36] for large µ̃. However it should be noted that large
values of the gauge parameter are not expected to yield reliable results since
a large value of α corresponds to relaxing the gauge condition. It is tempting
to conjecture that also in the cutoff scheme Ia used in [36] the fixed point
would have the usual properties, even for large µ̃, if one could choose α closer
to zero. The strong µ̃ dependence that had been observed there may be due
to a particularly strong α dependence. Altogether it appears that with a
type Ib cutoff, the tetrad formalism leads to results that are qualitatively
similar to those of the metric formalism, and that the correspondence is best
when 0 < α < 1 and the Lorentz ghosts are turned on, with a parameter µ̃
that is a little larger than one.
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Scheme Λ̃∗ G̃∗ Λ̃∗G̃∗ ϑ
Ib, ζ = 0, α = 0 0.1569 0.9028 0.1416 2.147± 2.620i
Ib, ζ = 0, α = 1 0.1715 0.7012 0.1203 1.689± 2.486i
Ib, ζ = 1, µ̃ =∞, α = 0 0.2288 1.363 0.3119 2.086± 2.042i
Ib, ζ = 1, µ̃ =∞, α = 1 0.2478 0.9472 0.2347 0.595± 3.753i
Ib, ζ = 1, µ̃ = 1.2, α = 0 0.0691 1.518 0.1050 2.237± 1.248i
Ib, ζ = 1, µ̃ = 1.2, α = 1 0.0798 1.3196 0.1053 1.892± 1.093i

Table 4.1: The nontrivial fixed point in the type Ib cutoff in metric (ζ = 0)
and tetrad (ζ = 1) formalism, in the gauges α = 0 and α = 1 and with
different weights of the Lorentz ghosts. Recall Re(ϑ) > 0 implies that the
fixed point is UV attractive.
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Figure 4.1: Critical Exponents as functions of the µ̃ parameter for type Ib
cutoff. The continuous line is the real part of the critical exponent, the
dashed line the imaginary part of the critical exponent. In red the metric
case is given for reference. In the left panel the α = 0 gauge, in the right
panel the α = 1 gauge.
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Figure 4.2: Universal quantities as functions of the gauge parameter α for
type Ib cutoff. In the left panel the product Λ∗G∗, and in the right panel the
real part of the critical exponent.

4.3.4 Type Ia cutoff

We will summarize here the results for a type Ia cutoff in the α = β = 1
gauge. The cutoff is a function of the “bare” Laplacian −D2. First we need
to compute the Hessian

Γ
(2)
k =

1

2

∫
ddxhµν

[
(1−P)

(
−D2 − (2− ζ)Λk +

(
4−3d+d2

d(d−1)
− d−2

2d
ζ
)
R
)

−d−2
2

P
(
−D2 − 2Λk

(
1 + ζ

d−2

)
+
(
d−4+ζ
d

)
R
) ]
hρσ (4.67)

The we can compute the coefficient As and Bs as for the type Ib case. Here
we just report the result in d = 4 and for the cutoff profile (1.35):

B1 =− (6Λ− 1)(Λ(7Λ− 5) + 1)

6π (3Λ2 − 4Λ + 1)2 +BL(µ̃) , (4.68)

B2 =− Λ(2Λ(63(Λ− 2)Λ + 134)− 113) + 16

6π (3Λ2 − 4Λ + 1)2 .

The coefficient BL is the contribution of the Lorentz ghosts (see Appendixes
?? for an explicit expression).

Fig. 4.3 shows the µ-dependence of the critical exponents at the fixed
point (one might expect them to be universal). We notice that, while the
very existence of the fixed point is indeed universal, its properties heavily
depend on the value of µ̃. For µ . 0.8 a UV attractive FP with two real
critical exponents can be found, which then turn into a complex conjugated
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pair as µ̃ increases and for a critical value of µ̃ ≈ 1.35 the FP changes its
character and becomes UV repulsive in both directions and a limit circle
around the FP is present.
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5

Figure 4.3: Critical Exponents as functions of the µ̃ parameter for type Ia
cutoff. The continuous line is the real part of the critical exponent, the
dashed line the imaginary part of the critical exponent. In red the metric
case is given for reference. In the left panel the α = 0 gauge, in the right
panel the α = 0 gauge.

4.3.5 Type IIb cutoff

We call type IIb a cutoff imposed separately on each spin component of
the graviton, taking as reference operator the Laplace–type operator that
appears in the corresponding Hessian, including the curvature terms, but
not the term proportional to the cosmological constant. The rationale for
excluding the cosmological constant term is that the cosmological constant
is a running coupling and if one included it in the reference operator, it
would not remain fixed in the course of the flow. Here we choose a reference
operator that remains fixed along the flow. 3 As we have already seen in the
case of the fermions, the type II cutoffs tend to give somewhat simpler final
formulas than the corresponding type I cutoffs, because to leading order one
always finds traces of the function ∂tRk/Pk and it is not necessary to expand
the denominators.

The coefficients A1, A2 are the same as with a type Ib cutoff and are given
in (4.63) and (4.64). The coefficients B1 and B2 for arbitrary dimension and

3Cutoffs that depend on the full Hessian, including the terms proportional to the cos-
mological constant, were called of type III in [18], where they have been applied to the
Einstein–Hilbert truncation.
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cutoff shape are given in Appendix 4.B. In d = 4 and for the cutoff profile
(1.35), they become

B1 =
1

12π

[
− 5(10− 3ζ)

1− (2− ζ)Λ̃
+

6(4− 3α(2− ζ))

1− α(2− ζ)Λ̃
+

2− 6ζ
3−α

1− 2 2+ζ
3−αΛ̃

+
14− 64−αζ

3−α

1− 2α 2−ζ
3−αΛ̃

− 40

]
+BL ,

(4.69)

B2 =
1

48π

[
− 5(10− 3ζ)

1− (2− ζ)Λ̃
− 3(4− 3α(2− ζ)

1− α(2− ζ)Λ̃
−

2− 6ζ
3−α)

1− 2 2+ζ
3−αΛ̃

−
14− 64−αζ

3−α

1− 2α 2−ζ
3−αΛ̃

]
.

(4.70)

The coefficient BL is the contribution of the Lorentz ghosts (see Appendixes
?? for an explicit expression).

Table 4.2 gives the UV–attractive fixed point and the corresponding crit-
ical exponents in the metric (ζ = 0) or tetrad (ζ = 1) formalism, in the
gauges α = 0, 1, and with two different values of the Lorentz ghost parame-
ter, µ̃ =∞, and µ̃ = 1.2.

Scheme Λ̃∗ G̃∗ Λ̃∗G̃∗ ϑ
IIb, ζ = 0, α = 0 0.1052 0.7216 0.0759 2.562± 1.566i
IIb, ζ = 0, α = 1 0.0924 0.5557 0.0513 2.424± 1.270i
IIb, ζ = 1, µ̃ =∞, α = 0 0.1406 1.0176 0.1431 2.595± 1.131i
IIb, ζ = 1, µ̃ =∞, α = 1 0.1369 0.8427 0.1154 2.300± 0.991i
IIb, ζ = 1, µ̃ = 1.2, α = 0 0.0394 1.0008 0.0398 2.640± 0.730i
IIb, ζ = 1, µ̃ = 1.2, α = 1 0.0361 0.8299 0.0300 2.547± 0.634i

Table 4.2: The non-trivial fixed point in the type IIb cutoff in metric (ζ = 0)
and tetrad (ζ = 1) formalism, in the gauges α = 0 and α = 1 and with
different weights of the Lorentz ghosts.
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Figure 4.4: Critical Exponents as functions of the µ̃ parameter for type IIb
cutoff. The continuous line is the real part of the critical exponent, the
dashed line the imaginary part of the critical exponent. In red the metric
case is given for reference. In the left panel the α = 0 gauge, in the right
panel the α = 0 gauge.
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Figure 4.5: Universal quantities as functions of the gauge parameter α for
type IIb cutoff. In the left panel the product Λ∗G∗, and in the right panel
the real part of the critical exponent.

The results are qualitatively similar to the ones obtained with the type
Ib cutoff. This is in line with all the results obtained previously in the
Einstein–Hilbert truncation. The nontrivial FP exists and has complex crit-
ical exponents for all values of µ̃ greater than a critical value µ̃c, which is
approximately equal to 0.766 for α = 0 and 0.748 for α = 1. For small µ̃ the
FP moves toward negative values of Λ̃. For large µ̃ the fixed point remains
UV attractive, in contrast to the result found in [36] with the type Ia cutoff
scheme.

In particular, we find that the FP has properties close to the standard
ones of the metric formulation also when the Lorentz ghosts are neglected.
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Fig. 4.5 gives the gauge dependence of the universal quantities ΛG and ϑ.
Note that the real part of the scaling exponent ϑ is particularly stable in this
scheme, for 0 < α < 1.

The dependence of the critical exponents at the fixed point on the µ̃
parameters in both α = 0 and α = 1 gauge is illustrated in Fig.4.4.

4.3.6 Type IIa cutoff

For completeness we mention here also the results for the cutoff of type IIa.
In this scheme only the gauge α = 1 is easily computable. In this gauge
it is enough to split the metric fluctuation into its trace and tracefree parts
to write the Hessian of the Einstein–Hilbert action as two minimal Laplace–
type operators as explained in Section 3.3.4. The cutoff is then defined as a
function of these operators, including the curvature terms but excluding the
cosmological constant term. This prescription leads to particularly simple
expressions.

The coefficients A1, A2 are the same as with the other cutoff types con-
sidered here and are given in (4.63,4.64). The coefficients B1 and B2 in d = 4
and for the cutoff profile (1.35) are simply

B1 =
1

12π

[
2− 3ζ

1− (2 + ζ)Λ̃
− 27(2− ζ)

1− (2− ζ)Λ̃
− 40

]
+BL , (4.71)

B2 =
1

48π

[
2− 3ζ

1− (2 + ζ)Λ̃
− 27(2− ζ)

1− (2− ζ)Λ̃

]
. (4.72)

The coefficient BL is the contribution of the Lorentz ghosts (see Appendixes
?? for an explicit expression).

These expressions coincide with the type IIb ones ((4.69) and (4.70) in
the gauge α = 1 as already noted in Section 3.3.4.

As a consequence, all properties of the flow are the same, and we will not
discuss this case further.

It is nevertheless interesting to understand the reason for this coincidence,
which is not restricted to d = 4 and is also independent of the shape of the
function Rk.

4

For the sake of simplicity we shall discuss here only the case ζ = 0, but
the result is general. Since in all cases the trace field h is treated separately,
and its contribution is the same for type a and b cutoffs, it is enough to
consider the tracefree part of the graviton, namely the components hTTµν , ξµ
and σ.

4The agreement between cutoffs IIa and IIb for α = 1 had been noticed before in [38].
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In the gauge α = 1, the Hessian in the tracefree subsector is a minimal
second order operator of the form

−∇2 + CTR− 2Λ , (4.73)

where CT = d(d−3)+4
d(d−1)

. When one uses a cutoff of type IIa (no further decom-

position) the contribution of this sector to the r.h.s. of the FRGE is∑
n

∂tR(λn) + ηRk(λn)

Pk(λn)− 2Λ
, (4.74)

where λn are the eigenvalues of the operator O = −∇2 + CTR. One can
divide these eigenvalues into three classes, depending on the spin of the
corresponding eigenfunction. Upon using the TT decomposition (4.52) one
finds that the eigenvalues of O on fields of type hTTµν , ∇µξν − ∇νξµ and
∇µ∇νσ− 1

d
∇2σ are equal to the eigenvalues of the operators in square brack-

ets in (4.53),(4.54) and (4.55), stripped of the Λ terms. We denote these
operators OTT = −∇2 +CTR, Oξ = −∇2 +CξR and Oσ = −∇2 +CσR and
the corresponding eigenvalues λTTn , λξn and λσn. So, the trace (4.74) is equal
to∑
n

∂tR(λTTn ) + ηRk(λ
TT
n )

Pk(λTTn )− 2Λ
+
∑
n

∂tR(λξn) + ηRk(λ
ξ
n)

Pk(λ
ξ
n)− 2Λ

+
∑
n

∂tR(λσn) + ηRk(λ
σ
n)

Pk(λσn)− 2Λ
.

(4.75)
Since for α = 1 the coefficients of Λ in (4.53),(4.54) and (4.55) are all the
same and equal to −2, this is recognized as the contribution of the fields hTTµν ,
ξµ and σ to the r.h.s. of the FRGE when one uses a cutoff of type IIb. By a
similar reasoning one also concludes that the ghost contribution is the same
in the IIa and IIb schemes.

Things do not work in the same way for type I cutoffs, i.e. when the
cutoff is a function of −∇2. For a type Ia cutoff the contribution of the
tracefree sector to the r.h.s. of the FRGE is∑

n

∂tR(λn) + ηRk(λn)

Pk(λn) + CTR− 2Λ
, (4.76)

where λn now denote the eigenvalues of −∇2. This can be expanded as

TT∑
n

∂tR(λn) + ηRk(λn)

Pk(λn) + CTR− 2Λ
+

ξ∑
n

∂tR(λn) + ηRk(λn)

Pk(λn) + CTR− 2Λ
+

σ∑
n

∂tR(λn) + ηRk(λn)

Pk(λn) + CTR− 2Λ
,

(4.77)
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where
∑TT ,

∑ξ and
∑σ denote the sum over eigenvalues of −∇2 on hTTµν ,

∇µξν −∇νξµ and ∇µ∇νσ− 1
d
∇2σ respectively. On the other hand for a type

Ib cutoff the same contribution is

TT∑
n

∂tR(λn) + ηRk(λn)

Pk(λn) + CTR− 2Λ
+

ξ∑
n

∂tR(λn) + ηRk(λn)

Pk(λn) + CξR− 2Λ
+
∑
n

∂tR(λn) + ηRk(λn)

Pk(λn) + CσR− 2Λ
.

(4.78)
One clearly sees that the two traces are different.
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4.A Details of type Ib calculation

We report here the detailed computation of the A and B coefficients of (4.59)
and (4.60) for a type Ib cutoff. The FRGE is the sum of traces over the
irreducible components of the metric fluctuation defined in (4.52). They
give:

1

2
Tr(2)

∂tRk + ηRk

Pk +
(
d(d−3)+4
d(d−1) − ζ d−2

2d

)
R− (2− ζ)Λ

= (4.79)

1

2

1

(4π)d/2

∫
dx
√
g

[
(d− 2)(d+ 1)

2
Q d

2

(
∂tRk + ηRk
Pk − (2− ζ)Λ

)

+
(d− 5)(d+ 1)(d+ 2)

12(d− 1)
Q d

2
−1

(
∂tRk + ηRk
Pk − (2− ζ)Λ

)
R

−
(
d (d− 3) + 4

d (d− 1)
− ζ d− 2

2d

)
(d− 2)(d+ 1)

2
Q d

2

(
∂tRk + ηRk

(Pk − (2− ζ)Λ)2

)
R

]

1

2
Tr′(1)

∂tRk + ηRk

Pk +
(
α(d−2)−1

d − ζαd−2
2d

)
R− α (2− ζ) Λ

= (4.80)

1

2

1

(4π)d/2

∫
dx
√
g

[
(d− 1)Q d

2

(
∂tRk + ηRk

Pk − α (2− ζ) Λ

)

+
(d− 3)(d+ 2)

6d
Q d

2
−1

(
∂tRk + ηRk

Pk − α (2− ζ) Λ

)
R

−
(
α (d− 2)− 1

d
− ζαd− 2

2d

)
(d− 1)Q d

2

(
∂tRk + ηRk

(Pk − α (2− ζ) Λ)2

)
R

]

1

2
Tr′′(0)

∂tRk + ηRk

Pk + α(d−2)(2−ζ)−4
2(d−1)−α(d−2)R−

αd(2−ζ)
2(d−1)−α(d−2)Λ

= (4.81)

1

2

1

(4π)d/2

∫
dx
√
g

[
Q d

2

 ∂tRk + ηRk

Pk − αd(2−ζ)
2(d−1)−α(d−2)Λ


+

1

6
Q d

2
−1

 ∂tRk + ηRk

Pk − αd(2−ζ)
2(d−1)−α(d−2)Λ

R

− α(d− 2)(2− ζ)− 4

2(d− 1)− α(d− 2)
Q d

2

 ∂tRk + ηRk(
Pk − αd(2−ζ)

2(d−1)−α(d−2)Λ
)2

R

]
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1

2
Tr(0)

∂tRk + ηRk

Pk + d−4+ζ
2(d−1)−α(d−2)R−

2d(1+ ζ
d−2)

2(d−1)−α(d−2)Λ

= (4.82)

1

2

1

(4π)d/2

∫
dx
√
g

[
Q d

2

 ∂tRk + ηRk

Pk −
2d(1+ ζ

d−2)
2(d−1)−α(d−2)Λ


+

1

6
Q d

2
−1

 ∂tRk + ηRk

Pk −
2d(1+ ζ

d−2)
2(d−1)−α(d−2)Λ

R

− d− 4 + ζ

2(d− 1)− α(d− 2)
Q d

2

 ∂tRk + ηRk(
Pk −

2d(1+ ζ
d−2)

2(d−1)−α(d−2)Λ

)2

R

]

Here a prime or a double prime indicate that the first or the first and the
second eigenvalues have to be omitted from the trace (because ξµ and σ
obey some differential constraints, for more details see Appendix 3.B). The
contribution of the transverse and longitudinal parts of the diffeomorphism
ghosts are

−Tr(1)
∂tRk

Pk − R
d

=− 1

(4π)d/2

∫
dx
√
g

[
(d− 1)Q d

2

(
∂tRk
Pk

)
− d− 1

d
Q d

2

(
∂tRk
P 2
k

)
R

+
(d+ 2) (d− 3)

6d
Q d

2
−1

(
∂tRk
Pk

)
R

]
; (4.83)

−Tr(0)
∂tRk

Pk − 2R
d

=− 1

(4π)d/2

∫
dx
√
g

[
Q d

2

(
∂tRk
Pk

)
− 2

d
Q d

2

(
∂tRk
P 2
k

)
R+

1

6
Q d

2
−1

(
∂tRk
Pk

)
R

]
.

(4.84)

Collecting the coefficients of
∫ √

g and −
∫ √

gR we extract the A and B
coefficients:

A1 =
1

2

16π

(4π)d/2

[
(d− 2)(d+ 1)

2
Q̃ d

2

(
∂tRk

Pk − (2− ζ)Λ

)
+ (d− 1)Q̃ d

2

(
∂tRk

Pk − α(2− ζ)Λ

)

+ Q̃ d
2

 ∂tRk

Pk − αd(2−ζ)
2(d−1)−α(d−2)Λ

+ Q̃ d
2

 ∂tRk

Pk −
2d(1+ ζ

d−2)
2(d−1)−α(d−2)Λ

− 2dQ̃ d
2

(
∂tRk
Pk

)]
(4.85)
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A2 =
1

2

16π

(4π)d/2

[
(d− 2)(d+ 1)

2
Q̃ d

2

(
Rk

Pk − (2− ζ)Λ

)
+ (d− 1)Q̃ d

2

(
Rk

Pk − α(2− ζ)Λ

)

+ Q̃ d
2

 Rk

Pk − αd(2−ζ)
2(d−1)−α(d−2)Λ

+ Q̃ d
2

 Rk

Pk −
2d(1+ ζ

d−2)
2(d−1)−α(d−2)Λ

]
(4.86)

B1 =
1

2

16π

(4π)d/2

[
(d− 5)(d+ 1)(d+ 2)

12(d− 1)
Q̃ d

2
−1

(
∂tRk

Pk − (2− ζ)Λ

)
−
(
d (d− 3) + 4

d (d− 1)
− ζ d− 2

2d

)
(d− 2)(d+ 1)

2
Q̃ d

2

(
∂tRk

(Pk − (2− ζ)Λ)2

)
+

(d− 3)(d+ 2)

6d
Q̃ d

2
−1

(
∂tRk

Pk − α(2− ζ)Λ

)
−
(
α (d− 2)− 1

d
− ζαd− 2

2d

)
(d− 1)Q̃ d

2

(
∂tRk

(Pk − α(2− ζ)Λ)2

)

+
1

6
Q̃ d

2
−1

 ∂tRk

Pk − αd(2−ζ)
2(d−1)−α(d−2)Λ

− α(d− 2)(2− ζ)− 4

2(d− 1)− α(d− 2)
Q̃ d

2

 ∂tRk(
Pk − αd(2−ζ)

2(d−1)−α(d−2)Λ
)2



+
1

6
Q̃ d

2
−1

 ∂tRk

Pk −
2d(1+ ζ

d−2)
2(d−1)−α(d−2)Λ

− d− 4 + ζ

2(d− 1)− α(d− 2)
Q̃ d

2

 ∂tRk(
Pk −

2d(1+ ζ
d−2)

2(d−1)−α(d−2)Λ

)2


− d2 − 6

3d
Q̃ d

2
−1

(
∂tRk
Pk

)
− 2

d+ 1

d
Q̃ d

2

(
∂tRk
P 2
k

)]
(4.87)
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B2 =
1

2

16π

(4π)d/2

[
(d− 5)(d+ 1)(d+ 2)

12(d− 1)
Q̃ d

2
−1

(
Rk

Pk − (2− ζ)Λ

)
−
(
d (d− 3) + 4

d (d− 1)
− ζ d− 2

2d

)
(d− 2)(d+ 1)

2
Q̃ d

2

(
Rk

(Pk − (2− ζ)Λ)2

)
+

(d− 3)(d+ 2)

6d
Q̃ d

2
−1

(
Rk

Pk − α(2− ζ)Λ

)
−
(
α (d− 2)− 1

d
− ζαd− 2

2d

)
(d− 1)Q̃ d

2

(
Rk

(Pk − α(2− ζ)Λ)2

)

+
1

6
Q̃ d

2
−1

 Rk

Pk − αd(2−ζ)
2(d−1)−α(d−2)Λ

− α(d− 2)(2− ζ)− 4

2(d− 1)− α(d− 2)
Q̃ d

2

 Rk(
Pk − αd(2−ζ)

2(d−1)−α(d−2)Λ
)2



+
1

6
Q̃ d

2
−1

 Rk

Pk −
2d(1+ ζ

d−2)
2(d−1)−α(d−2)Λ

− d− 4 + ζ

2(d− 1)− α(d− 2)
Q̃ d

2

 Rk(
Pk −

2d(1+ ζ
d−2)

2(d−1)−α(d−2)Λ

)2


]

(4.88)

Here we have defined the dimensionless versions of the Q functionals: Q̃ d
2

=

k−dQ d
2

and Q̃ d
2
−1 = k2−dQ d

2
−1.

Finally let us consider the contribution of Lorentz ghosts. They do not
propagate and therefore are usually neglected in the evaluation of the effective
action in perturbation theory. Nevertheless if, following [36], we impose a
cutoff on their determinant, they contribute to the r.h.s. of the FRGE an
amount

−Tr
∂tRk

Rk + 2µ2
√
ζ

= − 1

(4π)d/2
d(d− 1)

2

∫
dx
√
g

[
Q d

2

(
∂tRk

Rk + 2µ2
√
ζ

)
+

1

6
Q d

2
−1

(
∂tRk

Rk + 2µ2
√
ζ

)
R

]
(4.89)

Here we have introduced the arbitrary mass parameter µ (denoted µ̄ in [36]).
In particular note that in the limit µ → ∞ the ghost contribution vanishes
and one recovers the standard perturbative result where the Lorentz ghosts
are neglected. Let AL and BL be the contribution of the Lorentz ghosts to
the coefficients A1 and B1, defined in (4.59) and (4.60). From the above we
read off

AL =− 16π

(4π)d/2
d(d− 1)

2
Q̃ d

2

(
∂tRk

Rk + 2µ2
√
ζ

)
; (4.90)

BL =− 16π

(4π)d/2
d(d− 1)

12
Q̃ d

2
−1

(
∂tRk

Rk + 2µ2
√
ζ

)
. (4.91)
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Note the appearance of Rk instead of Pk in the denominators. In general the

Q functionals Qn

(
∂tRk

Rk+2µ2/
√
ζ

)
can be computed explicitly, with cutoff (1.35),

in terms of hypergeometric functions. For the calculations in four dimensions
we only need the following

Q̃1

 ∂tRk

Rk + 2µ2
√
ζ

 = Log

(
1 +

√
ζ

2µ̃2

)
; (4.92)

Q̃2

 ∂tRk

Rk + 2µ2
√
ζ

 = −1 +

(
1 +

2µ̃2

√
ζ

)
Log

(
1 +

√
ζ

2µ̃2

)
. (4.93)
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4.B Details of type IIb calculation

We report here the A and B coefficients of (4.59) and (4.60) for a type
IIb cutoff. The contributions of the irreducible components of the metric
fluctuation to the r.h.s. of the FRGE are

1

2
Tr(2)

∂tRk + ηRk
Pk − (2− ζ)Λ

= (4.94)
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2
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(4π)d/2
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The contribution of the diffeomorphism ghosts is

−Tr(1)
∂tRk
Pk
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(4π)d/2

∫
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(4.98)

−Tr(0)
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(4.99)

The contribution of Lorentz ghosts is the same as in the type Ib case. The
coefficients A1 and A2 are the same as in Eqs. (4.85) and (4.86), whereas

B1 =
1
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16π
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12d
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(4.100)
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4.C The running of µ

We report here the computation of the beta function for the µ parameter.
To do that it is sufficient to compute the FRGE for the O(d) ghost two point
function. Since the part of the action quadratic in Σ is

2µ2Σ̄µνΣµν (4.102)

it is immediate to find (
d

dt
µ2

)
1µνρσ =

1

2

δ2∂tΓk
δΣµνδΣρσ

(4.103)

We can use the computation we already done at the end of Section 1.3.2
in particular (1.51) where the generic field φ can be any component of the
graviton (hTT , ξ, σ or h), c̄µ, cµ, Σ̄µν or Σµν .

It’s easy to compute all the 3 and 4 field vertices involving the field Σµν

since the only non vanishing one is δ3Γk/δhµνδcρδΣ̄αβ where by hµν we intend
any of the graviton component, in particular any vertex with a Σ leg is zero.
This translate into the impossibility of building a diagram with a Σ and a Σ̄
external leg, thus the beta function of µ is zero.

With the definition of µ given in the text, this implies that µ̃ runs like
1/k. For k → 0, which corresponds to the domain where the perturbative
effective field theory of gravity holds, one finds that the contribution of the
Lorentz ghosts becomes negligible.
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Chapter 5

Matter fields coupled to gravity

A quantum theory of gravity that is a viable description of the microscopic
dynamics of our universe must include dynamical matter degrees of freedom.

Nevertheless, matter is often ignored in quantum gravity, or not included
in a fully dynamical way. While this could result in a self-consistent quantum
theory of gravity, it is not clear whether it can yield a model of quantum
gravity applicable to our universe.

As in other settings, where the addition of further degrees of freedom can
fundamentally alter the character of the theory, dynamical matter might not
be easily incorporated into a consistent microscopic description of gravity. As
an example, consider Yang-Mills theory, which is ultraviolet (UV) complete
due to asymptotic freedom. If too many fermions are present, asymptotic
freedom is destroyed. A similar effect could occur in gravity, where too
many matter degrees of freedom could preclude a particular scenario for a
UV completion.

An important technical advantage of the asymptotic safety framework lies
in its formulation as a local continuum quantum field theory. Many powerful
tools, which have been successfully used to describe the other interactions, are
available in this setting. In particular the inclusion of matter is in principle
straightforward, and there is no difficulty in considering, e.g., chiral fermions
[35,39,40], in contrast to several other approaches to quantum gravity.

A complete study may seem to be hopelessly complicated, but there are
several arguments for pursuing it even at this early stage. One is the general
philosophy, which is widely held in the particle physics community, that a
consistent theory of gravity requires the inclusion of matter. We will see that
the available evidence for asymptotic safety is not particularly supportive of
this point of view, in the sense that a fixed point seems to exist also for pure
gravity, but it is still too early to tell.

Then, even assuming that a pure gravity fixed point existed, its appli-
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cability to the real world would require that matter becomes noninteracting
in the ultraviolet, and quantum fluctuations of matter do not change the
microscopic dynamics of gravity.

Within a path-integral approach to quantum gravity, it seems more likely
that quantum fluctuations of all fields determine the microscopic dynamics
and drive the Renormalization Group flow. This view is supported by the
result that quantum gravity fluctuations, parametrized as metric or vielbein
fluctuations in a continuum setting, generate matter interactions even in a
free theory [35,39,41,42].

Other arguments are of a negative character. It is not likely that a firm
proof of (non-)existence of a gravitational fixed point can be reached. By
widening the scope of the exploration one also enhances the chances of dis-
proving this scenario. For example, if standard model matter turned out to
be incompatible with a fixed point within the presently available approxima-
tions, the case for asymptotic safety would be correspondingly weakened.

On the experimental side, barring possible surprises, it does not seem very
likely that we will see signatures of Planck scale physics within the foreseeable
future. On the other hand, much more data is expected to become available
in particle physics, and it is possible that some signs in favor of, or against,
asymptotic safety can be found in them. A striking example is the relatively
successful prediction of the Higgs mass by Shaposhnikov and Wetterich [43].
Putting that prediction on a firm theoretical basis will require much work on
the mutual influence of gravity and matter at high energy.

In the following we will investigate the consistency of the interacting
fixed point in gravity with the existence of minimally coupled matter. While
neglecting matter self-interactions may not be a realistic assumption, it is
enough to give at least some hint of the effect that matter can have. We
find that within our approximations there are strong restrictions on the total
number of matter fields. While the standard model seems to be compatible
with asymptotic safety of gravity, many popular scenarios of BSM physics
are not within the analysis we perform here.

5.1 Computation of the Anomalous Dimen-

sions

In this section we want to compute the effect of minimally coupled matter
on the running of the Newton constant and the Cosmological constant. The
truncation we want to study divides into a gravitational part and a matter
part. For the gravitational part we will use the standard Einstein–Hilbert
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truncation (3.13) that we studied extensively in the previous chapters. As
anticipated we will lift the approximation that consist on identifying the
graviton anomalous dimension with the “background” anomalous dimension
−∂t logG to provide a consistent closure of the flow equation from which we
will extract the β functions of the background field G and Λ. In this chapter
if not specified we will always use an optimized cutoff shape (1.35).

5.1.1 The gravitational sector

The anomalous dimension of the graviton field ηh is extracted from the run-
ning of two point function of the graviton field. Furthermore we can separate
the contribution to ηh due to the matter fields from the one due to the gravi-
ton itself and the diffeomorphism ghosts.

ηh = ηh
∣∣
gravity

+ ηh
∣∣
matter

.

The computation of ηh
∣∣
gravity

was first done in [44] here we basically reproduce

their computation with some technical differences. Following the diagram-
matic notation we introduced in Section 1.3.2 we can compute δ2Γk/δhαβδhρσ

2 −

Figure 5.1: Graviton contribution to the graviton two point function.

−2

Figure 5.2: Ghost contribution to the graviton two point function, springy
lines corresponds to the graviton, dashed lines to the ghost

Notice the factor 2 in front of each of the first diagrams, it comes from
the sum of two equivalent diagrams.
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To evaluate the anomalous dimensions ηh we proceed as in [35, 45], ex-
panding around flat space and extracting from the r.h.s. of the flow equation
terms quadratic in momentum and in the fluctuation field h. The main dif-
ference between the computation we present here and the one in [44] consist
in subtle point, to simplify the computation we contract δ2Γk/δhαβδhρσ with

Kαβρσ =
1

2
(δαρδβσ + δασδβρ − δαβδρσ) , (5.1)

while they use the projector on the spin-2 part of the graviton. Even if this
difference seems innocuous, it leads to different results. We believe that this
difference comes from the fact that each spin component of the graviton have
an independent anomalous dimension and contracting diagrams 5.1 and 5.2
with any tensor select a certain linear combination of them. We opted for the
conservative choice of Kαβρσ which is the structure of the graviton propagator
in the α = 1 gauge that we are using here.

With the same strategy we also computed the anomalous dimension of
the diffeo ghost field ηc.

−

Figure 5.3: Graviton and ghost contribution to the ghost two point function,
curly lines corresponds to the graviton, dashed lines to the ghost

The gravitational contribution to the graviton anomalous dimension can
be written in the form

ηh

∣∣∣
gravity

=
[
a(Λ̃k) + c(Λ̃k)ηh + e(Λ̃k)ηc

]
G̃k . (5.2)

Notice that the ηh that appears in the r.h.s. is the full graviton anomalous
dimension and comes from the computation of diagrams in Figure 5.1, while
ηc comes from the computation of diagrams in Figure 5.2. We have checked
the results of [44] when ηh is defined by projecting on the spin two propagator.
With our definition of ηh, which involves projection on the tensor K the
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coefficients turn out to be:

a(Λ̃) =
a0 + a1Λ̃ + a2Λ̃2 + a3Λ̃3 + a4Λ̃4

(4π)d/2Γ(d/2)d2(d2 − 4)(3d− 2)(1− 2Λ̃)4
, (5.3)

a0 = −4π (d− 2) (−896 + 264 d+ 1076 d2 − 434 d3 + 21 d4 + d5) ,

a1 = 16π (d− 2) (−2048 + 2552 d− 318 d2 − 125 d3 + 2 d4 + d5) ,

a2 = −16π(12544− 25760 d+ 16968 d2 − 4228 d3 + 354 d4 − 17 d5 + d6) ,

a3 = 4096π(d− 2)(−32 + 50 d− 19 d2 + 2 d3) ,

a4 = −2048π(d− 2)(−32 + 50 d− 19 d2 + 2 d3) ;

c(Λ̃) =
8π(d− 1)

[
128 + 720 d− 350 d2 + 29 d3 + 32(d− 2)(d+ 4)Λ̃

]
(4π)d/2Γ(d/2) d2(d+ 2)(d+ 4)(3d− 2)(1− 2Λ̃)3

(5.4)

e(Λ̃) = − 128π (32− 50 d+ 23 d2)

(4π)d/2Γ(d/2)d2(d+ 2)(d+ 4)(3 d− 2)
. (5.5)

The ghost anomalous dimension is computed directly from diagrams in Figure
5.3

ηc =
[
b(Λ̃k) + d(Λ̃k)ηh + f(Λ̃k)ηc

]
G̃k . (5.6)

with

b(Λ̃) =
64π

[
−8 + 4 d+ 18 d2 − 7 d3 + 2(4− 9 d2 + 3 d3)Λ̃

]
(4π)d/2Γ(d/2)d2(d2 − 4)(d+ 4)(1− 2Λ̃)2

(5.7)

d(Λ̃) =
−64π(4− 4 d− 9 d2 + 4 d3)

(4π)d/2Γ(d/2)d2(d2 − 4)(d+ 4)(1− 2Λ̃)2
(5.8)

f(Λ̃) =
−64π(4− 9 d2 + 3 d3)

(4π)d/2Γ(d/2)d2(d2 − 4)(d+ 4)(1− 2Λ̃)2
. (5.9)
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5.1.2 The matter sector

The matter part of the action is given by

Γmatter = SS + SD + SV

SS =
ZS
2

∫
ddx
√
g gµν

NS∑
i=1

∂µφ
i∂νφ

i (5.10)

SD = iZD

∫
ddx
√
g

ND∑
i=1

ψ̄i /∇ψi, (5.11)

SV =
ZV
4

∫
ddx
√
g

NV∑
i=1

gµνgκλF i
µκF

i
νλ (5.12)

+
ZV
2ξ

∫
ddx
√
ḡ

NV∑
i=1

(
ḡµνD̄µA

i
ν

)2

+
1

2

∫
ddx
√
ḡ

NV∑
i=1

C̄i(−D̄2)Ci .

In each case, i is a summation index over matter species (not to be confused
with the representation index of some non-Abelian gauge group). Similar
actions, but without the factors ZΨ (Ψ = S, D, V ), have been considered
before in [19, 28, 29]. Fermions in asymptotically gravity have been further
discussed in [20, 33, 35, 36, 39, 40]. The details of the minimal coupling of
fermion fields have been investigated in the previous chapter, we adopt a
symmetric gauge-fixing of O(d), such that vielbein fluctuations can be re-
expressed completely in terms of the metric fluctuations [40,46,47]. We will
therefore not rewrite the gravitational part of the action in terms of vierbeins,
and consistently with the previous chapter we disregard the O(d) ghosts.

There are no gauge interactions, so the fermions (as well as the scalars)
are uncharged and there are no gauge covariant derivatives.

In the Abelian gauge field action the second term is a gauge fixing term
with gauge-fixing parameter ξ and the third term represents the Abelian
ghosts.

The ghosts are decoupled from the metric and gauge field fluctuations
and therefore do not contribute to the running of Zh and ZV , however they
are coupled to the gravitational background and therefore contribute to the
beta functions of G and Λ.

Concerning the question of the mixing between Abelian and diffeomor-
phism ghosts as addressed in [48], it turns out that there is no contribution
to the running of ZV , if a regulator is chosen that is diagonal in the ghost
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fieds. We do not introduce a wave function renormalization for the abelian
ghosts in this work.

In the following we compute the FRGE for matter fields with type II
cutoff and optimize shape (1.35). The inclusion of scalar fields is trivial. For
each minimally coupled field scalar field (5.10) we will have a contribution

∂tΓk|scalar =
1

2
Tr
∂tRk (∆S)− ηSRk (∆S)

Pk (∆S)
= (5.13)

NS

Γ
(
d
2

+ 1
)

(4π)d/2

∫
ddx
√
g

[
kd
(

1 +
ηS
d+ 2

)
+

1

3
kd−2R

(
1 +

ηS
d

)]
.

where ∆S = −D2.

We extensively discussed the contribution to FRGE of fermion fields
(5.11) in Section 4.2.2 and we found (4.30)

dΓk
dt

= −1

2
Tr
∂tRk(∆D)− ηDRk(∆D)

Pk(∆D)
= (5.14)

− ND2[d/2]

Γ
(
d
2

+ 1
)

(4π)d/2

∫
ddx
√
g

[
kd
(

1 +
ηD
d+ 2

)
− d

24
kd−2R

(
1 +

ηD
d

)]
.

where ∆D = −D2 + R
4

.

We now consider minimally coupled U(1) abelian gauge fields (5.12) their
contribution is the sum of two contributions

dΓk
dt

=
1

2
Tr
∂tRk(∆V )− ηVRk(∆V )

Pk(∆V )
− Tr

∂tRk (∆gh)

Pk (∆gh)
= (5.15)

NV

Γ
(
d
2

+ 1
)

(4π)d/2

∫
ddx
√
g

[
kd
(
d− 2 + d

ηV
d+ 2

)
+

1

3
kd−2R

(
d− 8 + (d− 6)

ηV
d

)]
.

where ∆V = −D2 + Ricci and ∆gh = −D2. Here “Ricci” stands for the Ricci
tensor regarded as a linear operator acting on vectors: Ricci(v)µ = R ν

µ vν .
Finally to compute the contribution of the various matter species to β

functions of the background field G and Λ from the FRGE we can use (3.14).
The calculation of the matter anomalous dimensions and the matter con-

tribution to the graviton anomalous dimension then proceeds as follows. We
choose regulators of type II as defined in Section 3.3.1. Following the com-
putation for ηh|gravity we can compute for each type of matter field its con-
tribution to the graviton two point functional.
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−2

Figure 5.4: The contribution of a scalar field to the graviton two point func-
tion, curly lines corresponds to the graviton, continuous lines to a scalar field.
Similar diagrams are present also for a fermion and vector field.

Then the matter contribution is

ηh

∣∣∣
matter

= −NS
32πG̃

(4π)d/2Γ(d/2)

1

d2(d+ 2)(3d− 2)

[
(d− 2)3 + 2

8− 10 d+ d2

d+ 4
ηS

]
+ND 2[d/2] 16πG̃

(4π)d/2Γ(d/2)

(d− 1)(d− 2)

d3(3d− 2)

[
2 +

d− 2

d+ 1
ηD

]
(5.16)

−NV
32πG̃

(4π)d/2Γ(d/2)

(d− 1)(d− 2)

d2(d+ 2)(3d− 2)

[
d2 − 12 d+ 8− 2

16− d
d+ 4

ηV

]
.

The anomalous dimensions of the matter fields are computed from the
following diagrams

−

Figure 5.5: The computation of the scalar field two point function, curly
lines corresponds to the graviton, continuous lines to a scalar field. Similar
diagrams are there also for a fermion and vector field.
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ηS = − 32πG̃

(4π)d/2Γ(d/2)

[
2

d+ 2

1

(1− 2Λ̃)2

(
1− ηh

d+ 4

)
+

2

d+ 2

1

1− 2Λ̃

(
1− ηS

d+ 4

)
+

(d+ 1)(d− 4)

2d(1− 2Λ̃)2

(
1− ηh

d+ 2

)]
, (5.17)

ηD =
32πG̃

(4π)d/2Γ(d/2)

[
(d− 1)(d2 + 9 d− 8)

8d (d− 2)(d+ 1)(1− 2Λ̃)2

(
1− ηh

d+ 3

)
+

(d− 1)2

2d(d+ 1)(d− 2)

1

1− 2Λ̃

(
1− ηD

d+ 2

)
−(d− 1)(2d2 − 3d− 4)

4d(d− 2)(1− 2Λ̃)2

(
1− ηh

d+ 2

)]
(5.18)

ηV = − 32πG̃

(4π)d/2Γ(d/2)

[
(d− 1)(16 + 10 d− 9 d2 + d3)

2d2(d− 2)(1− 2Λ̃)2

(
1− ηh

d+ 2

)
+

4(d− 1)(2d− 5)

d(d2 − 4)(1− 2Λ̃)

(
1− ηV

d+ 4

)
+

4(d− 1)(2d− 5)

d(d2 − 4)(1− 2Λ̃)2

(
1− ηh

d+ 4

)]
. (5.19)
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5.2 Beta functions

The beta functions for G̃ and Λ̃ have the following form:

dΛ̃

dt
=−2Λ̃ +

8πG̃

(4π)d/2d(d+ 2)Γ[d/2]

[
d(d+ 1)(d+ 2− ηh)

1− 2Λ̃
− 4d(d+ 2− ηc)

+2NS(2 + d− ηS)− 2ND2[d/2](2 + d− ηD) + 2NV (d2 − 4− d ηV )

]

− 4πG̃Λ̃

3d(4π)d/2Γ[d/2]

[
d(5d− 7)(d− ηh)

1− 2Λ̃
+ 4(d+ 6)(d− ηc) (5.20)

−2NS(d− ηS)−ND2[d/2](d− ηD) + 2NV (d (8− d)− (6− d)ηV )

]
dG̃

dt
=(d− 2)G̃− 4πG̃2

3d(4π)d/2Γ(d/2)

[d(5d− 7)(d− ηh)
1− 2Λ̃

+ 4(d+ 6)(d− ηc) (5.21)

−2NS(d− ηS)−ND2[d/2](d− ηD) + 2NV (d(8− d)− (6− d)ηV )

]
.

5.3 Results

5.3.1 Perturbative approximation

In order to get a rough idea of the effect of matter on the RG flow, in a
context where solutions can be found analytically rather than numerically,
it is useful to consider first the perturbative approximation, which consists
of neglecting all anomalous dimensions and expanding the beta functions
to second order in Λ̃ and G̃. This is justified in some neighborhood of the
Gaussian fixed point. In d = 4 the beta functions become

βG̃ = 2G̃+
G̃2

6π
(NS + 2ND − 4NV − 46) , (5.22)

βΛ̃ = −2Λ̃ +
G̃

4π
(NS − 4ND + 2NV + 2)

+
G̃Λ̃

6π
(NS + 2ND − 4NV − 16) . (5.23)

The numbers 46, 2 and 16 represent the contributions of gravitons and ghosts
to the beta functions. These contributions are such that the RG flow admits
a nontrivial fixed point when matter is absent. Let us see what effect matter
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has, in this approximation. The beta function have a nontrivial fixed point
at

Λ̃∗ = −3

4

NS − 4ND + 2NV + 2

NS + 2ND − 4NV − 31
, (5.24)

G̃∗ = − 12π

NS + 2ND − 4NV − 46
. (5.25)

Since the beta functions vanish for G̃ = 0, flow lines cannot cross from nega-
tive to positive G̃. Since the low energy Newton’s coupling is experimentally
bound to be positive, we require that also the fixed point occurs at positive
G̃. This puts a bound on the matter content. In the following we shall find
it convenient to present the results in the NS-ND-plane, treating the number
of gauge fields as a fixed parameter. Positivity of G̃∗ demands that

ND < 23 + 2NV −
1

2
NS . (5.26)

Notice that gauge fields contribute with the same sign as gravity, so they
facilitate the existence of the fixed point, whereas scalars and fermions tend
to destroy it. When their number increases, the fixed-point value of G̃∗
increases and reaches a singularity on the line ND = 11 + 2NV − 1

2
NS. On

the other side of the singularity G̃∗ is negative. Fig. 5.6 shows the existence
region of a positive fixed point for G̃∗ for no gauge fields or 12, 24, 45 gauge
fields. (The significance of these numbers will be discussed later.) We see
that the existence region grows with the number of gauge fields, but most
importantly, for a given number of gauge fields, only a finite number of
combinations of scalar and Dirac fields is allowed.
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Figure 5.6: The thick red lines are the areas in the NS-ND plane compatible
with a gravitational fixed point for NV = 0 (in bottom left corner), NV =
6, 12, 24, 45 (from bottom to top). The colored triangles are the contours of
the function Λ̃∗ for NV = 45.

The cosmological constant has a singularity on the line

ND =
31

2
+ 2NV −

1

2
NS . (5.27)

This singularity in Λ̃∗ is parallel to the singularity in G̃∗ and is shifted down-
wards byND = 7.5. There are fixed points in the intermediate region between
these singularities, but they are disconnected from the one in the origin (i.e.,
with no matter), so we regard them as physically very untrustworthy. For
“phenomenological” applications we will restrict our attention to points that
are below the singularity in the cosmological constant. The allowed region is
therefore somewhat smaller than the one shown in fig. 5.6. In the absence of
gauge fields this leaves only the area ND < 31

2
− 1

2
NS, which means that at

most 31 Weyl spinors or 31 scalars, or a combinations thereof, are admissible.
When we restrict ourselves to the allowed region, the sign of the cosmo-

logical constant at the fixed point is determined by the numerator in (5.24):
above (or left) of the line

ND =
2 + 2NV +NS

4
, (5.28)

the cosmological constant is negative, whereas below (or right) of this line
it is positive. Note that in the beta function for Λ̃ the contribution of each
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field is weighed with the number of degrees of freedom it carries, with a plus
sign for bosons and a minus sign for fermions. The line (5.28) is where any
supersymmetric theory would lie. The contours of constant Λ̃∗ are straight
lines passing through the point (2NV + 20, NV + 11/2), where (5.27) and
(5.28) intersect. The singularity of the cosmological constant on (5.27) is
negative left of this point and positive right of it.

The stability matrix

M =

(
∂βΛ̃

∂Λ̃

∂βΛ̃

∂G̃
∂βG̃
∂Λ̃

∂βG̃
∂G̃

)
, (5.29)

has eigenvalues −2 and −4NS+2ND−4NV −31
NS+2ND−4NV −46

. Below the singularites of Λ̃∗

and G̃∗, the numerator and denominator of this ratio are positive, so both
eigenvalues are negative. In the region between the singularities the second
eigenvalue would be positive.

In this perturbative approximation one can examine effect of matter on
higher gravitational couplings. If we parametrize the curvature squared
terms, up to total derivatives, as∫

d4x
√
g

[
1

2λ
C2 +

1

ξ
R2

]
, , (5.30)

where C is the Weyl tensor, the beta functions of the couplings are

βλ = − 1

(4π)2

133

10
λ2 − 2λ2a

(4)
λ ,

βξ = − 1

(4π)2

(
10λ2 − 5λξ +

5

36
ξ2

)
− ξ2a

(4)
ξ ,

where

a
(4)
λ =

1

2880π2

(
3

2
NS + 9ND + 18NV

)
, (5.31)

a
(4)
ξ =

1

2880π2

5

2
NS . (5.32)

It is remarkable that all types of matter contribute with the same sign to the
running of these couplings, which are always asymptotically free.

In the perturbative approximation it is easy to compute the beta functions
also with other definitions of the cutoff. If we choose the type Ia cutoff on
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gravitons (see Section 3.3.1) the one loop beta functions are given by

βG̃ = 2G̃+
G̃2

6π
(NS + 2ND − 4NV − 22) , (5.33)

βΛ̃ = −2Λ̃ +
G̃

4π
(NS − 4ND + 2NV + 2)

+
G̃Λ̃

6π
(NS + 2ND − 4NV + 8) . (5.34)

Notice that the matter contribution has not changed: for massless scalars the
two types of cutoff are the same, for fermions we must always use the type II
cutoff and for simplicity we have maintained this cutoff also for gauge fields.
The only difference is therefore in the gravitational contribution. One can
repeat the preceding discussion with little changes. The main effect is that
the permitted region is smaller, with the singularities shifted downwards: 23
is replaced by 11 in (5.26) and 31/2 is replaced by 7/2 in (5.27). We can
view these shifts as a measure of the typical theoretical uncertainties in this
approximation.

The coefficients (5.31) are universal and, as noticed in [32], with type II
cutoff and with the shape function (1.35) the contribution of matter to the
running of all couplings multiplying terms with six or more derivatives is
identically zero.

5.3.2 The full system

Anomalous dimensions and RG improvement

Next we want to analyze the fixed point of the full nonlinear system of beta
functions (5.20,5.21), including the anomalous dimensions. The formulas
(??) do not directly give the anomalous dimensions, rather they give a set
of linear equations for the anomalous dimensions. The appearance of the
anomalous dimensions on the r.h.s. of these equations is due to the fact that
couplings that enter the regulator function (in this case, the wave function
renormalizations ZΨ) have to be treated as running parameters. If we denote
~η = (ηh, ηc, ηS, ηD, ηV ), these equations can be written in the form

~η = ~η1(Λ̃, G̃) + A(Λ̃, G̃)~η . (5.35)

where ~η1 is the leading one loop term and A is a matrix of coefficients.
The reason for calling η1 the one loop anomalous dimension is that in the

functional RG the one loop approximation consists precisely of neglecting the
running of the couplings in the r.h.s. of the Wetterich equation. To avoid
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misunderstandings, let us also comment that in a single-field truncation,
where one neglects the terms of order h in (3.13), the anomalous dimension
is identified with

− k d
dk

log (Gk) . (5.36)

This is the origin of the usual statement that the one loop approximation
consists of neglecting the anomalous dimensions. In a two-field truncation,
with independent wave function renormalization for the fluctuation field, this
statement is not true and one can have anomalous dimensions at one loop.

In order to write the anomalous dimensions as functions of G̃ and Λ̃ one
has to solve the system of equations (5.2) (5.6). We refer to this as “the RG
improvement”. The resulting expressions are considerably more complicated
than the ones appearing in eq. (5.2-5.19). In particular they are rational
functions in Λ̃ and G̃ whose numerators and denominators are polynomials
of higher order than the ones appearing in the leading one loop terms. Since
the full equations contain polynomials of higher order than the leading ones,
they will also have more solutions. In general we consider to be reliable those
features of the system that can be seen already in simple approximations and
that persist when more complicated features are taken into account. This
implies that all the additional solutions of the full system that are not present
in the one loop system are suspected to be spurious.

Furthermore, in situations where the anomalous dimensions become large,
the improvement terms can become numerically dominant relative to the
leading one loop terms, in which case also the true solutions may exhibit
features that are non-physical. Clearly this means that the “RG improved”
results have to be taken with great care when the anomalous dimensions
become large. In order to avoid potential pitfalls due to these facts, unless
otherwise stated in what follows we shall present the results taking only
the leading terms of the anomalous dimensions into account. We will discuss
explicitly some cases when the full nonlinear system can be studied and gives
reliable results.

Selection criteria

Even the leading one loop flow equations are very nonlinear, and for any
given triple (ND, NS, NV ), there may be several fixed points. How do we
know whether a fixed point is physically significant or just an artifact of
the truncation? Since the nontrivial fixed point in the absence of matter is
relatively well understood, we try to select among all possible fixed points in
the presence of matter the one that derives from a continuous deformation
of the fixed point without matter.
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We discard those fixed points for which G̃∗ < 0. As already remarked,
although the fixed-point value of G̃ is not restricted by observations, its low-
energy value is. Thus a realistic model of gravity must show an RG flow
towards the IR, such that G̃(kIR) > 0. To the best of our knowledge, no
truncation exists in which G̃ changes sign under the RG flow, thus ruling out
G̃∗ < 0.

We discard fixed points which have less than two relevant directions.
While in principle the low-energy value of the Newton coupling or the cos-
mological constant could be a prediction of the theory, both correspond to
free parameters of the pure-gravity theory. We expect that for a small num-
ber of matter degrees of freedom, the number of critical exponents should not
change, otherwise the truncation would be insufficient. This does not rule
out the possibility that a very large number of matter degrees of freedom
leads to substantial changes in the properties of the theory and a viable fixed
point has only one relevant direction, but we do not consider this possibility
in the following.

Following this procedure, we find severe restrictions on the number of
matter and gauge fields compatible with asymptotically safe gravity. Note
that some of the fixed points found in this way can have rather large critical
exponents. Such large values indicate a huge departure from canonical scal-
ing and imply that quantum fluctuations have a very big effect. Thus our
truncation is presumably insufficient to capture the relevant physics in this
case, and yields unreliable results.

Anomalous dimensions and predictivity

A connection exists between the anomalous dimension of the fields and the
critical exponents at an interacting fixed point, so that we can deduce a bound
on the anomalous dimension by requiring predictivity of the theory: Let us
consider an operator O = Φn, where Φ stands for any of the fluctuation fields
of the theory, e.g., the graviton. The dimensionality of the corresponding
coupling gO is then given by dg = d − n dΦ, where dΦ is the dimensionality
of the field. Accordingly, the dimensionless coupling g̃O is given by

g̃O = gO
k−d+ndΦ

Z
n
2

Φ

. (5.37)

The β function for the coupling g̃O will thus have the following structure

βg̃O =
(
−d+ ndΦ +

n

2
ηΦ

)
g̃O + . . . , (5.38)

where we have introduced the anomalous dimension ηΦ = −∂t lnZΦ. The
additional terms in the β function depend on the particular operator that
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we consider, and are nonzero at an interacting fixed point. Neglecting oper-
ator mixing, they will result in a shift of the critical exponent θO from the
canonical value (which it has at a noninteracting fixed point) to

θO = −∂βg̃O
∂g̃O
|g̃O=g̃O∗ = d− ndΦ −

n

2
ηΦ + . . . . (5.39)

The sign of the critical exponent cannot be determined from general argu-
ments, but must be fixed by an explicit calculation. At an interacting fixed
point, the anomalous dimension constitutes a further departure from canon-
ical scaling, that scales with n. Predictivity demands that at most a finite
number of operators should be shifted into relevance at an interacting fixed
point. This implies that

ηΦ > −2dΦ +
2d

n

n→∞−−−→ −2dΦ. (5.40)

In the case of the graviton, dh = d−2
2

, therefore

ηh > −d+ 2. (5.41)

Considering operators O that contain derivatives will generally give a weaker
bound; here we will consider the strongest possible bound. We will use this
as a fourth criterion to bound the number of matter fields compatible with
asymptotic safety. We will not take into account similar bounds on the matter
anomalous dimension, as we have neglected all matter self-interaction. We
thus assume that our values for the matter anomalous dimensions will change
in a more complete truncation.

In the following, we apply the criteria specified above and discuss the
compatibility of scalars, Dirac fermions and vectors with a viable fixed point
for gravity. All the fixed points we find satisfy also this additional condition.

5.3.3 Fixed points

No matter

The anomalous dimensions of the ghosts had been calculated previously in
[45], [49]. The running of the graviton two point-function had been calculated
also in [50], [51], [52] where it was interpreted as running of the cosmological
and Newton couplings.

At this stage, we ignore the difference between the running of the back-
ground cosmological constant and the “mass” term in the graviton propaga-
tor.
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Our derivation differs from previous ones in the definition of the cutoff
and of the anomalous dimension. We use a type II cutoff, in part for co-
herence with the cutoff in the fermionic sector, but also because it leads to
beta functions containing polynomials of lower order and hence with fewer
spurious solutions.

Furthermore, in the definition of the anomalous dimension η we have
projected the two-point function on the tensor K, which is the structure it
has in the internal lines.

This also has the computational advantage of depending only on the
metric and not on the external momenta. We list the results in the following
table.

1L-II full-II full-Ia Ref. [44]

Λ̃∗ 0.010 0.009 −0.049 −0.008

G̃∗ 0.772 0.776 1.579 1.446
θ1 3.298 3.317 3.991 3.323
θ2 1.954 1.925 1.920 1.954
ηh 0.269 0.299 0.540 0.072
ηc −0.806 −0.814 −1.390 −1.503

Table 5.1

The first two columns give the results of the “one loop” approximation,
as defined in Subsection 3.3, and the “RG improved” equations, both with
the type II cutoff. The difference is very small, in accordance with the fact
that the anomalous dimension of the graviton is small. The third column
gives the result we obtain using a cutoff of type Ia instead of II. The dif-
ference with the first column is not very small quantitatively, in line with
previous discussions of the scheme-dependence in this approach [53, 54]. A
higher order truncation would be needed to improve this aspect. The last
column gives the results of reference [44], who also used a cutoff of type
Ia. The differences that are seen between the last two columns can thus all
be attributed to our different definition of the anomalous dimensions. The
main difference between these results and the earlier literature lies in the
real critical exponents, which are seen to be only weakly dependent on the
technical details. We anticipate that this is mainly due to our identification
of the “graviton mass” (the term quadratic in h and without derivatives in
(5.63)) with the background cosmological constant. When the graviton mass
is allowed to run independently the flow in the Λ̃-G̃ plane has again complex
critical exponents, while the flow in the mass-G̃ plane looks like the one dis-
cussed here. A paper with an improved truncation where mass and higher
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order are included is in preparation.

Scalar matter

Even though physically NS must be an integer, mathematically one can study
the dependence treating NS as a continuous parameter. For NS ≤ 12 the
effect of scalars is to push Λ̃∗ towards larger values, while G̃∗ is almost stable.
The product Λ̃∗G̃∗, which is generally known to be quite independent of tech-
nical details such as gauge and cutoff choice, increases slowly, see fig. 5.7. In
this regime the critical exponents change little while the anomalous dimen-
sions increase in absolute value, maintaining the same sign (ηh > 0, ηc < 0
and ηS < 0). There is a sharp change of behavior of Λ̃∗ for NS ≥ 12. Beyond
this value, the cosmological constant stops growing with NS, while G̃∗ begins
to grow and also the critical exponents become very large (O(103)).
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Figure 5.7: Left and middle: Position of the fixed point as a function of
the number of scalar fields. Right: critical exponents. Note the logarithmic
scales. All with type II cutoff and one loop anomalous dimensions.
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Figure 5.8: The graviton (left), ghost (middle) and scalar (right) anomalous
dimensions as functions of the number of scalar fields.

As far as we could see, the change of behavior occurs smoothly over
the whole range, so one has a continuous deformation of the pure gravity
fixed point up to NS ≈ 27.7 where G̃∗ diverges. As in the perturbative
approximation, there is therefore a maximal number of scalar fields that is
compatible with the existence of a viable fixed point. This is in contrast
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to [28, 29], where the fixed point seemed to exist for any number of scalars.
We believe that fixed point to be an artifact of the identification of ηh with
(5.36) in the single field truncation.

The effect of scalar fields on the position of the fixed point, on the critical
exponents and on the anomalous dimensions is shown in figs. 5.7,5.8, at
one loop and with type II cutoff. Including the RG improvement results in
more complicated behaviour. While the fixed-point value for the Newton
coupling is nearly constant up to NS = 11, it rises sharply thereafter. At
the same time, Λ̃∗ ≈ 0.25 becomes nearly independent of NS. The critical
exponents are complex for 12 ≤ NS ≤ 50 and their real part is negative for
15 ≤ NS ≤ 20. The singularity is deferred to NS ≈ 85.

With a type Ia cutoff the anomalous dimensions remain smaller and the
fixed point becomes complex at NS ≈ 17. This lower limit is in line with
the result of the perturbative approximation. We thus observe a signifi-
cant scheme-dependence for NS > 12. This, together with the fact that the
anomalous dimensions become rather large in that range, makes the full RG
improved equations unreliable. This suggests, that the fixed point beyond
NS = 17 could be a truncation artifact.

In the future we may understand better which truncation gives physically
reliable results but for the time being the scheme dependence has to be taken
as a measure of the theoretical uncertainties. For now we can say with good
confidence that the fixed point ceases to exist when the number of scalars
becomes of the order of 22±5. To sharpen this number, one should study the
behavior of higher background curvature terms, for example repeating the
analysis in [55] under the inclusion of scalars. On the other hand, in order
to understand whether the large negative scalar anomalous dimension could
lead to an increase in the number of relevant directions, one should study
this question in the presence of scalar self-interactions [41].

Fermionic matter

As already observed in [28], the effect of fermions is to push G̃∗ to larger
values and Λ̃∗ to more negative values, cf. fig. 5.9.

At a critical number of fermions ND ≈ 10.1, G̃∗ goes to +∞ and Λ̃∗ goes
to −∞. This is similar to the behavior seen in the perturbative analysis. Ac-
cordingly fermions have a destabilizing effect on asymptotic safety in gravity,
reminiscent of a similar effect of fermions on asymptotic freedom in gauge
theories.
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Figure 5.9: The values of G̃∗ (dots)
and Λ̃∗ (squares) as functions of the
number of Dirac fields, at one loop
with type II cutoff.
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Figure 5.10: The critical exponents
θ1,2 as functions of the number of
Dirac fields.
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Figure 5.11: The graviton (left), ghost (middle) and fermion (right) anoma-
lous dimensions as functions of the number of fermion fields, all at one loop
and with type II cutoff.

Below the critical number the solution to the microscopic equation of
motions at the fixed point – within our truncation – is the Euclidean version
of anti deSitter space. Thus, AdS/CFT-type dualities might be of use to
understand the microscopic gravitational action.

Fermionic fluctuations have only a small effect on the values of the critical
exponents, cf. fig. 5.10. This suggests that fermionic matter does not change
the number of relevant directions of background operators. In contrast, the
graviton anomalous dimension grows, cf. fig. 5.11. These results show only a
very weak scheme-dependence. The main difference in the RG improved case
lies in the fact that the fermionic anomalous dimension remains negative up
to the critical value of ND.

The main result of our analysis up to this point lies in the existence of a
maximum number of fermions and scalars compatible with the gravitational
fixed point within our truncation. This is true also for combinations of scalars
and fermions, as seen in fig. 5.12, which shows the existence region of the fixed
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point in the NS-ND-plane for NV = 0. Note the qualitative agreement with
the analysis of the perturbative approximation in section IV.A. We conclude
that the inclusion of dynamical matter can fundamentally change a quantum
theory of gravity, or even make it inconsistent. It is thus crucial to include
realistic matter degrees of freedom in the investigation of the asymptotic-
safety scenario for quantum gravity.

5 10 15 20 25 30
NS

5

10

15

ND

Figure 5.12: The points in the NS-ND plane compatible with a gravitational
fixed point with two relevant directions for NV = 0. The line represents the
perturbative bound (5.27). Lighter shades of gray mean smaller ηh; black
means ηh > 10.

Vector fields

In contrast to scalars and fermions, we find no bound on the number of
vector fields compatible with a viable gravitational fixed point. The effect
of vector degrees of freedom is always to decrease G̃∗ and to increase Λ̃∗.
The position of the fixed point and the values of the critical exponents and
anomalous dimensions are shown in figs. 5.13,5.14, for 0 ≤ NV ≤ 50, covering
all phenomenologically interesting models. The behavior is very smooth.
From the point of view of the NV -dependence, however, this is still a transient
range. For very large NV all quantities reach the following asymptotic values:

G̃∗ Λ̃∗ θ1 θ2 ηh ηc ηV
limNV→∞ 0 3/8 4 2 9/10 0 0

Table 5.2
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This picture holds with small quantitative changes also when the RG
improvement is taken into account, and with type Ia cutoff. The most sig-
nificant difference lies in the fact that the vector anomalous dimension does
not change sign even for large NV , when the RG improvement is taken into
account. We therefore believe that the existence of the fixed point is a true
feature of gravity coupled to vector fields. It will be interesting to see whether
the gauge coupling remains asymptotically free when Yang-Mills is coupled
to gravity.

As a preliminary step, we consider the effect of gravitational fluctuations
on the beta-function of the gauge coupling in the abelian case. In the context
of asymptotic safety, this has been considered previously in [48, 56, 57]. In
d = 4 the beta function is given by

βg =
1

2
ηV g ≈

g3ND

12π2
− 3

8π
g G̃+

3

2π
g G̃Λ̃2. (5.42)

For a small value of the cosmological constant, we observe that gravitational
fluctuations lead to an asymptotically free fixed point. Whether this behavior
carries over to the QED coupling when defined as in [58], is an open question.
As in [57], there is also a non-Gaußian fixed point, at which the QED coupling
is irrelevant, and its value in the infrared can be predicted. A main difference
to [57] lies in the Λ̃-dependence of our result, which is quadratic, instead of
linear in Λ̃. For |Λ̃| >

√
0.4, the Gaußian and the non-Gaußian fixed point

merge, and only a UV-repulsive Gaußian fixed point remains. For the matter
content of the Standard Model, only the UV-repulsive noninteracting fixed
point remains.
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Figure 5.13: Position of the fixed point (left and middle) and critical expo-
nents (right) as a function of number of vector fields.

Specific matter models

A viable gravitational fixed point exists for a small number of matter fields.
Increasing the number of matter fields, two mechanisms can remove the fixed
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Figure 5.14: The graviton (left), ghost (middle) and vector (right) anomalous
dimensions as functions of the number of vector fields.

point: A first possibility is for G̃∗ and/or Λ̃∗ to diverge. A second mechanism
is the collision of fixed points: The beta functions admit several zeros, which
move in the G̃-Λ̃ plane in dependence of the number of matter fields. These
fixed points can collide, at which point they move off the real axis to complex
values. These mechanisms are responsible for the existence of boundaries in
the (NS, ND, NV ) space.

Before discussing the shape of the boundaries, we will investigate the
compatibility of specific matter models with the asymptotic safety scenario.
Note that our results rely on a particular truncation, thus extended trun-
cations will most certainly result in quantitative changes. Recall also that
we neglect all matter-self-interactions which are present in specific matter
models. In particular we do not distinguish between abelian and non-abelian
gauge bosons.

We begin with the standard model (in its original form excluding right-
handed neutrinos). For reasons that have been discussed earlier, we take as
our benchmark the one-loop results obtained with type II cutoff. These are
reported in the first column of the following table.

1L-II full-II 1L-Ia full-Ia

Λ̃∗ −2.399 −2.348 −3.591 −3.504

G̃∗ 1.762 1.735 2.627 2.580
θ1 3.961 3.922 3.964 3.919
θ2 1.644 1.651 2.178 2.187
ηh 2.983 2.914 4.434 4.319
ηc −0.139 −0.129 −0.137 −0.125
ηS −0.076 −0.072 −0.076 −0.073
ηD −0.015 0.004 −0.004 0.016
ηV −0.133 −0.145 −0.144 −0.158

Table 5.3: Standard model matter
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So the first and most important observation is that the matter content
of the standard model is compatible with the existence of a fixed point.
By first adding, one at the time, the vector fields, then the scalars, then
the fermions, one can convince oneself that this fixed point is a continuous
deformation of the one discussed in section IV.C.1. The second column shows
the properties of the fixed point of the RG improved beta functions. They are
not very different from the one loop results, as expected from the fact that the
anomalous dimensions are not very large. The other two columns show the
properties of the same fixed point when one uses a type Ia cutoff. As observed
earlier, with this cutoff the allowed region is smaller, so the standard model
is closer to the boundary and this explains why the couplings are larger. The
variations are typical for the scheme dependence in this approach. All the
evidence leads us to believe that this fixed point is a genuine feature of the
theory and not an artifact of the truncation.

model NS ND NV G̃∗ Λ̃∗ θ1 θ2 ηh

no matter 0 0 0 0.77 0.01 3.30 1.95 0.27
SM 4 45/2 12 1.76 -2.40 3.96 1.64 2.98

SM +dm scalar 5 45/2 12 1.87 -2.50 3.96 1.63 3.15
SM+ 3 ν’s 4 24 12 2.15 -3.20 3.97 1.65 3.71
SM+3ν’s

+ axion+dm 6 24 12 2.50 -3.62 3.96 1.63 4.28
MSSM 49 61/2 12 - - - - -

SU(5) GUT 124 24 24 - - - - -
SO(10) GUT 97 24 45 - - - - -

Table 5.4: Fixed-point values, critical exponents and anomalous graviton
dimension for specific matter content.

Theories that go beyond the standard model contain more fields. So let
us consider these models, starting from the ones with fewer fields. A very
minimal extension is a single further scalar field, which can be viewed as a
model of dark matter [59–62]. This has a small effect, as seen in the third row
of table 5.4. In the fourth row we consider a model with three right-handed
neutrinos, to account for neutrino masses. This has a somewhat larger effect
but is still clearly compatible with asymptotic safety. In the fifth row we
consider a model with three right-handed neutrinos and two scalars, one of
which can be thought of as the axion [63–66], the other as dark matter. This
model is still in the allowed region with the type II cutoff, but if one were to
use the more stringent type Ia cutoff it would be quite close to the boundary.
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This model is therefore nearly as extended as one can get without adding
further gauge fields. The extent of the allowed region with NV = 12 is shown
in figure 5.15.

One important example of a model that is beyond the boundary is the
MSSM. In the one loop approximation with type II cutoff there is actually
no real solution with the matter content of the MSSM. In the RG improved
equations, two real solutions with positive G̃∗ exist, but they have one pos-
itive and one negative critical exponent and are therefore not a continuous
deformation of the no-matter fixed point. A similar situation holds with
type Ia cutoff. Since they do not appear already in the one loop approxima-
tion they are likely to be truncation artifacts. We conclude that the matter
content of the MSSM, again neglecting the non-abelian nature of the gauge
bosons, is incompatible with the existence of a fixed point.

In the case of GUTs the fermion content is the same as the SM (typically
with right-handed neutrinos included) and there are more gauge fields, so one
may hope that they are compatible with a fixed point. In this case, however,
it is the large number of scalars that poses a severe challenge. As examples we
consider an SU(5) and an SO(10) model, both with minimal scalar sectors.
In both cases the fermionic sector consists of three generations including
right-handed neutrinos, i.e., a total of 48 Weyl spinors, which count like 24
Dirac spinors. In the case of SU(5), we consider three scalar multiplets: one in
the adjoint (24 real fields), one in the fundamental (5 complex fields) and one
in the complex 45-dimensional representation. This sums up to NS = 124.
In the case of SO(10) a minimal scalar sector would contain the adjoint (45
real fields) two fundamental (10 real fields each) and one (complex) 16 [67]
leading to NS = 97.

The SU(5) model actually has one fixed point with large G̃∗ = 37, large
critical exponents −80 and 38 with opposite signs, implying that it is not
connected to the no-matter fixed point. Furthermore it has a huge anomalous
dimension ηh = 84 which makes it rather unreliable. The RG improved beta
functions again have a single real fixed point with positive G̃∗ = 0.21, but
in a very different position and with very different critical exponents −5.3
and 1.4 which make it impossible to identify it with the one of the one loop
approximation. This strengthens the suspicion that they are both truncation
artifacts. So while one cannot strictly exclude the existence of a fixed point
for this particular matter content, it is beyond the boundary of our allowed
region. In the case of the SO(10) model this conclusion is even stronger,
since there is no real nontrivial fixed point. Considering that realistic GUT
models have many more scalars than the minimal models considered here,
one can conclude with good confidence that GUTs with fundamental scalars
are incompatible with a gravitational fixed point.

99



Technicolor-like models [68], which dispense with fundamental scalars,
and instead introduce further fermions and gauge bosons, could very well
be compatible with a fixed-point scenario for gravity, as larger numbers of
vectors also imply a larger number of fermions compatible with the fixed
point.

Fig. 5.15 shows the region in the NS-ND-plane where a fixed point exists
with G̃∗ > 0, θ1, θ2 > 0 for NV = 12, at one loop and with type II cutoff.
In comparison to the perturbative results, the inclusion of the anomalous
dimensions leads to a more complicated shape of the boundary, but it remains
true that continuous deformations of the fixed point without matter are only
possible in a bounded domain of the plane. When one increases the number
of scalars or fermions at fixed NV one encounters a singularity, or the fixed
point becomes complex.

The fixed points in the disconnected island on the right cannot be contin-
uously deformed into the one without matter. Instead, they are the continua-
tion of a fixed point that is complex in the permitted region connected to the
origin, and becomes a pair of real fixed points for larger number of scalars.
For small NV the gap closes and there are combinations of matter fields such
that the two fixed points are both real. This can be see in Fig. 5.16 which
shows the exclusion plot in the plane ND = 0. (No such phenomena occur in
the NS = 0 plane.) Since the second fixed point coexists with the one that
we regard as physically significant in some region of the (NS, ND, NV ) space,
it is probably an artifact of the truncation. Consequently, also in the rest of
the space, its significance is doubtful. More detailed investigations will be
necessary to clarify this point.

The shades of grey in figures 5.12, 5.15, 5.16 are related to the value
of the graviton anomalous dimension, with darker tones indicating a larger
anomalous dimension. We observe that ηh becomes very large (O(103)) at
some points in the horn of fig. 5.12 and near the boundary, at small NS. The
restriction ηh > −2 is automatically satisfied everywhere and does not add
significant restrictions, however the dark dots indicate that the truncation
used is unreliable. Our graphs should therefore be taken with a grain of
salt, as the shape and position of the boundary could change in an extended
truncation.
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Figure 5.15: The region compatible with the existence of a gravitational fixed
point with G̃∗ > 0 and two attractive directions for d = 4, NV = 12. The
line represents the perturbative bound (5.27). Lighter shades of gray mean
smaller ηh; black means ηh > 10.
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Figure 5.16: Left: existence region of the fixed point connected to the one
without matter, in the plane ND = 0. Middle: existence region of a second
real fixed point with two relevant directions, in the same plane. The line
ND = 0 in fig. (5.15 corresponds to the line NV = 12 in these two figures.

The overall conclusion of this brief investigation is that asymptotic safety
puts very strong restrictions on the matter content. It is thus interesting to
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observe that limited, observationally well-motivated extensions of the stan-
dard model are compatible with a fixed point for gravity, while models that
demand a larger number of degrees of freedom for internal consistency rea-
sons (such as supersymmetric models) are incompatible with the fixed-point
scenario. The observation of many more fundamental particles at LHC or
future accelerators could therefore pose a severe challenge to the asymptotic
safety scenario.

5.3.4 The quantum gravity scale with matter

Although the asymptotic safety scenario aims at a construction of a con-
tinuum quantum gravity model, where no fundamental kinematical length
scale exists, a quantum-gravity scale will emerge dynamically. This is very
similar to QCD, where quantum fluctuations lead to the dynamical genera-
tion of ΛQCD, which is a physical scale at which the behavior of the theory
changes drastically. In quantum gravity the transition scale to the fixed-point
regime is the dynamically generated quantum-gravity scale. There, the the-
ory changes from the phase in which the dimensionful Newton coupling is
constant, to a scale-free regime in which G(k2) ∼ 1

k2 , which is conjectured to
become visible, e.g., in graviton-mediated scattering cross sections [69–71].
A priori, this scale could take any value, but has been found to be close to the
Planck scale in previous studies of the Einstein-Hilbert truncation [72]. Note
that this notion of a quantum gravity scale differs from that discussed, e.g.,
in [73], where a quantum gravity scale is defined by G̃ ∼ 1. These two scales
differ. The latter can be understood as a scale where quantum gravity effects
in general become important. The former is a scale pertaining to the notion
of asymptotic safety, and can be thought of as a scale at which predictions
from asymptotic safety will differ from other quantum gravity theories.

Trajectories passing very closely to the Gaußian fixed point before ap-
proaching the UV fixed point [72] exist also under the inclusion of matter.
We thus expect to find a fine-tuned trajectory where the gravitational cou-
plings take on their measured values in the infrared. On trajectories similar
to this highly fine-tuned one, all quantities then clearly show the dynam-
ical emergence of a scale at which the fixed-point regime is reached. We
fix the dimensionless Newton coupling and cosmological constant to fixed
values G̃0, Λ̃0 at a given IR scale, and then numerically integrate the RG
flow towards the UV. We observe that scalars seem to have little effect on
the transition scale, whereas fermions shift this scale towards larger values.
There are two competing effects at work here: If the fixed-point coordi-
nates of the NGFP are further away from the GFP, the flow takes up more
”RG-time” until it reaches the fixed point, if the critical exponents are un-
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changed. If the critical exponents change also, they also alter the amount of
”RG-time” necessary to reach the fixed point. Since the effect of fermions is
to induce a considerable shift in the fixed-point values towards larger G̃ and
more negative Λ̃, they shift the QG scale towards higher values. In the case
of the Standard Model, the effect is less pronounced than in the case with
fermions only. In our evaluation, we found a shift of the transition scale to
the fixed-point regime by a factor of approximately 10.

Our study suggests that the dynamically generated quantum gravity scale
is not independent of the existing matter degrees of freedom, as has also been
observed in [73]. If a shift to higher scales is confirmed beyond our trunca-
tion, discovering phenomenological imprints of asymptotically safe quantum
gravity might become even more challenging. It would be interesting to in-
clude the effect of the running Newton coupling into numerical calculations
in the strong-gravity regime, such as those performed in [74]; see also [75,76]
for the discussion of black-hole production in asymptotic safety.

5.3.5 Higher-dimensional cases

Large extra dimensions have a number of theoretical motivations, and have
been shown to be compatible with asymptotically safe gravity in the Einstein-
Hilbert truncation [77] and under the inclusion of fourth-order derivative op-
erators [78]. While extra dimensions are not necessary for the consistency
of the model, they seem well compatible with it. Phenomenological implica-
tions have been studied in [69–71]. Experimentally, the best upper bounds
on their radius come from recent LHC results, see, e.g., [79, 80].

While the extra dimensions have to be compactified in a realistic setting,
we can neglect the effect of compactifications here: At momentum scales
much higher than the inverse compactification radius, the difference between
a continuum of momentum modes and a discrete set of Kaluza-Klein modes
has no effect.

The allowed regions for d = 5, 6 and NV = 12, at one loop and with type
II cutoff, are shown in fig. 5.17. We see that the standard model would still
be (barely) compatible with a fixed point in d = 5 but it is not in d = 6. It
would be incompatible also in d = 5 if we used the type Ia cutoff. This case
is therefore marginal and needs further investigation.

It appears that the existence of sufficiently many matter fields poses a
new restriction on the number of dimensions compatible with asymptotic
safety. While a pure gravitational fixed point exists in these dimensions,
the observed matter degrees of freedom tend to destroy it, at least within
our truncation. Whether this changes if only gravity can propagate into the
extra dimensions would have to be re-examined.
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Figure 5.17: The region compatible with the existence of a gravitational
fixed point with G̃∗ > 0 and two attractive directions for d = 5 (top) and
d = 6 (bottom) and NV = 12. Lighter shades of gray mean smaller ηh; black
means ηh > 10.

5.3.6 Anomalous dimension

In the scale-free fixed-point regime, the value of the anomalous dimension
can be related to the momentum-dependence of the propagator as follows

P (p) ∼ 1

(p2)1−η/2 . (5.43)

It is interesting to observe that while a negative value of η implies a UV sup-
pression of the propagator, a positive value corresponds to a UV-enhancement.
For the background-field anomalous dimension, ηN = −2 arises as a fixed-
point requirement, and could be read as a UV suppression. In contrast, the
fluctuation field anomalous dimension without matter implies a rather weak
UV enhancement of the graviton propagator. Scalar and fermion fields push
ηh into the large positive region, and vectors also tend to increase it, at least
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as long as NV is not too large. The result is that for the Standard Model we
have a rather large positive anomalous dimension, corresponding to a strong
enhancement.

A large anomalous dimension ηh implies that for a more detailed under-
standing of the imprints of asymptotic safety on scattering cross sections
in graviton-mediated scattering processes, the inclusion of vertex anomalous
dimensions is necessary, as the UV scaling of the propagator alone implies
an increase of the scattering cross section at high energies.

Quantitative changes are expected for ηh, when momentum-dependent
higher-order correlation functions for the graviton are included in the trun-
cation, and it remains to be investigated, whether ηh < 0 then, as one might
naively expect for the unitarization. Making the simplifying assumption
that graviton-matter vertices with one graviton and two matter fields do not
get any explicit renormalization, the quantum-fluctuation-induced scaling
of those vertices is determined purely by the anomalous dimensions. For in-
stance, the dimensionless coupling ghφφ of an operator of the form hµν∂µφ∂νφ,

will then scale as ghφφ ∼ kηS+
ηh
2 . For graviton-mediated scattering processes,

we encounter a divergence of the scattering cross section with the center-of-
mass-energy at tree-level, if quantum-gravity-induced renormalization effects
are not taken into account. Here we observe, that, upon an identification of k2

with the center-of-mass energy s, we would conclude that a negative anoma-
lous dimension for matter and gravity improves the situation, as there is the
additional scaling s2ηS+ηh . Additionally, the graviton propagator scales non-
trivially with an additional 1

p−ηh
. The combined effect could even lead to a

fall-off of the scattering cross-section, depending on the size of the anomalous
dimensions. Matter fluctuations tend to drive ηh to positive values, which is
not the correct sign expected for the unitarization. Note that this expecta-
tion is subject to the scale identification k ∼ √s, which might not capture
the quantum effects correctly [81].
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5.4 Computing the contribution of gravitinos

It is interesting to include also gravitino fields in the analysis of Section 5.3.3
at least a “one loop” level. The Rarita-Schwinger action1 in four dimension
is

SRS =
1

2

∫
d4x
√
gΨ̄µγ

µνρ∇νΨρ , (5.44)

where γµνρ is the full antisymmetric product of three gamma matrices γ[µγνγρ].
It is convenient to decompose Ψµ into irreducible spin representation ((1 ⊕
0)⊗ 1/2 = 3/2⊕ 1/2⊕ 1/2)

Ψµ = ΨT
µ +

(
∇µ −

1

4
γµγ

ν∇ν

)
χ+

1

4
γµψ , (5.45)

where ΨT
µ satisfies γµΨT

µ = ∇µΨT
µ = 0. The decomposed action is

SRS =
1

2

∫
d4x
√
g

(
Ψ̄T
µ
/∇ΨT

ρ +
3

16
χ̄

(
−∇2 +

R

12

)
/∇χ− 3

8
ψ̄

(
−∇2 +

R

12

)
χ+

3

16
ψ̄ /∇ψ

)
.

(5.46)
It’s convenient to choose a gauge condition that eliminate the mixing between
ψ and χ. This is achieved by the gauge fixing term

SGF RS =
3

32α′

∫
d4x
√
gF̄
(
/∇− 2ρ

)
F , (5.47)

where F = α′ψ +
(
/∇+ 2ρ

)
χ and ρ =

√
R/12. The local supersimmetry

transformation that characterize the N = 1 supergravity theory with param-
eter ε is

δeaµ = εγaΨµ , (5.48)

δΨµ = ∇µε , (5.49)

performing the decomposition (5.45) one finds

δψ = /∇ε,
(
−∇2 +

R

12

)
(δχ− ε) = 0 . (5.50)

Therefore the fermionic ghost action is given by

Sgh,F =

∫
d4x
√
gη̄
[
α′ /∇+

(
/∇+ 2ρ

)]
η . (5.51)

1We refer to [82] for a Supergravity review.
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Given that the gauge fixing involves the operator /∇ − 2ρ we should also
include the correspondent ghosts to ensure on-shell gauge independence. To
do so we introduce the couple of ghost fields (Nielsen-Kallosh [83]) ω and γ,
with action

Sgh,NK =

∫
d4x
√
g
[
ω̄
(
/∇− 2ρ

)
ω + γ̄

(
/∇− 2ρ

)
γ
]
. (5.52)

At this point is convenient to perform the redefinition
√
−∇2 + R

12
χ → χ

whose Jacobian cancels that of the transformation (5.45). The total Rarita-
Schwinger action including gauge fixing and ghost terms become

SRS + Sgh,F + Sgh,NK =
1

2

∫
d4x
√
g

(
Ψ̄T
µ∆RSΨT

ρ +
3

16

α′ + 1

α′
χ̄∆χχ (5.53)

+
3

16
(α′ + 1)ψ̄∆ψψ + (α′ + 1)η̄∆ηη

)
,

where the operator ∆s are

∆RS = /∇ ∆2
RS =�+

R

3
, (5.54)

∆χ = /∇+ 2
α′

α′ + 1
ρ ∆2

χ =�+
R

4

(
1 +

4

3

(
α′

α′ + 1

)2
)

, (5.55)

∆ψ = /∇− 2
α′

α′ + 1
ρ ∆2

ψ =�+
R

4

(
1 +

4

3

(
α′

α′ + 1

)2
)

, (5.56)

∆η = /∇+ 2
1

α′ + 1
ρ ∆2

η =�+
R

4

(
1 +

4

3

1

(α′ + 1)2

)
. (5.57)

Finally we can compute the contribution of the fields ΨT
µ , χ, ψ and η and

the Nielsen-Kallosh ghosts to the gravitational beta functions with a type II
cutoff omitting all the anomalous dimensions:

∂tΓk =− 1

2
Tr
∂tRk (∆RS)

Pk (∆RS)
− 1

2
Tr
∂tRk (∆χ)

Pk (∆χ)
− 1

2
Tr
∂tRk (∆ψ)

Pk (∆ψ)
(5.58)

+
1

2
Tr
∂tRk (∆η)

Pk (∆η)
+

1

2
Tr
∂tRk (∆ω)

Pk (∆ω)
+

1

2
Tr
∂tRk (∆γ)

Pk (∆γ)
. (5.59)

In the α′ = 1 gauge all the squared operators becomes equal to �+R/3 then
it is easy to compute

∂tΓk =− NRS

2

1

(4π)2
Tr

[
4k4 − 4

3
k2R

]
. (5.60)
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Moreover we can look at the “perturbative” beta functions to get a grasp
on the effect of adding minimally coupled spin 3/2 fields to the theory.

βG̃ = 2G̃+
G̃2

6π
(NS + 2ND − 4NV + 4NRS − 46) , (5.61)

βΛ̃ = −2Λ̃ +
G̃

4π
(NS − 4ND + 2NV − 4NRS + 2)

+
G̃Λ̃

6π
(NS + 2ND − 4NV + 4NRS − 16) . (5.62)

We can notice the Rarita-Schwinger fields give a contribution similar to the
fermions. Thus we can safely claim that adding too many of these fields can
destroy the gravitational fixed point.

We will limit ourself to a “one loop” computation so we will not compute
the anomalous dimension of the spin 3/2 field. Nevertheless it can be inter-
esting to explore within this approximation some explicit matter models as
we did in Section 5.3.3. In particular we will look at Supergravity models

model NS ND NV NRS G̃∗ Λ̃∗ θ1 θ2 ηh
SUGRA 0 0 0 1 0.758 0.089 -3.18 -2.17 0.411

mSUGRA 49 61/2 12 1 - - - - -

Table 5.5: Fixed-point values, critical exponents and anomalous graviton
dimension for specific matter content.

As we expected from the one loop analysis the minimal SUper GRAvity
model result not compatible within our analysis with the existence of the
gravitational fixed point. The Supergravity model sits near the pure grav-
ity fixed point in the number of fields parameter space thus in this case a
gravitational FP can be found.
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5.5 Running graviton “mass”

In the asymptotic safety framework the effective action at a scale k, where
degrees of freedom of momenta higher than k have been integrated out,
depends on the background metric and the fluctuation metric, i.e., Γk =
Γk[hµν ; ḡµν ]. Crucially, this dependence is such that one cannot recombine
ḡµν and hµν to give the full metric, i.e., the effective action is not symmetric
under the shift ḡµν → ḡµν − γµν , hµν → hµν + γµν .

Two types of terms break this shift symmetry: The first is a regulator
term, that is introduced into the path integral to implement a momentum-
shell-wise integration: It acts as a mass-like term for fluctuations of low
momenta and therefore has the structure hµνR

µνρσ
k

(
∆̄
)
hρσ, where ∆̄ de-

notes an operator constructed with the background metric only that include
the background-covariant Laplacian. The cutoff function Rk appearing here
should not be confused with the Riemann tensor. The second is the gauge
fixing term, where the fluctuations are gauge-fixed with respect to the back-
ground (3.10). Accordingly, couplings of background operators and fluctua-
tion operators do not share the same beta function. For instance, one can
define a Newton coupling from the prefactor of the R̄ term in the effective
action as we did in the previous chapters, or from the momentum-squared
part of the graviton three- or four point function. These three definitions of
the Newton coupling obey a different Renormalization Group running.

First explorations of the bimetric structure in asymptotically safe quan-
tum gravity have indicated that the evidence for asymptotic safety from the
single-metric approximation is still present when resolving this approxima-
tion [22–24, 44, 51]. One should note that at this stage, only few couplings
have been considered in a bimetric setting, and higher-order truncations
could yield different results. In particular, investigations of quantum gravity
coupled to dynamical matter show that significant differences arise between
the two treatments [28, 29, 84]. As discussed in [85] using the example of a
scalar field, a single-metric approximation can result in spurious fixed points,
and a treatment of the full bimetric structure is crucial.

In this Section, we will make a further step forward in disentangling the
running of fluctuation and of background couplings by distinguishing the role
of the cosmological term in the background and in the two point function.
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We will study the following truncation

Γk = ΓEH + Sgf

=
1

16πG

∫
ddx
√
ḡ
(
−R̄ + 2Λ

)
(5.63)

+
Zh
2

∫
ddx
√
ḡ hµνK

µναβ((−D̄2 +M2)1ρσαβ +W ρσ
αβ )hρσ .

Here and elsewhere 1 is the identity in the space of the fields (in this instance,
symmetric tensors), K is given by (5.1).

This truncation goes beyond the approximation −2Λ̄ = M2, that was
used in in the previous chapters.

The appropriate ghost term for the gauge fixing are the same used in
Section 3.2.

Our main new result is the β function for the graviton mass, which reads

βM̃2

= −2M̃2 + ηh M̃
2 − 29−dd π1− d

2 G̃(6 + d− ηc)
(4 + d) (6 + d) (−2 + 3d)Γ(d/2)

+
2−dπ1− d

2 G̃

(d− 2)(−2 + 3d)(1 + M̃2)2Γ(3 + d/2)
·(

Λ̃ · (2 + d− ηh)
[
−16 + d(28 + d(44 + d(−29 + 3d)))

]
+(d− 2) (d(d− 1)(72 + d(−38 + 3d))) (4 + d− ηh)

)
+

2−dπ1− d
2 G̃

(d− 2)(−2 + 3d)(1 + M̃2)3Γ(4 + d/2)
·

·
(

Λ̃2(2 + d− ηh)2(4 + d)(6 + d)(d4 − 19d3 + 40d2 + 12d− 16)

+Λ̃(4 + d− ηh)2(d− 2)(d− 1)d(6 + d) (52 + d(d− 20))

+(6 + d− ηh)
d− 2

2
(d− 1)d(2 + d) (60 + d(d− 22))

)
.

(5.64)

The computation is performed on flat background by setting to zero the
external momenta of diagrams 5.1 and 5.2.

The other beta functions can be deduced from the beta functions and
anomalous dimensions given in [84], with the replacement Λ̃→ −1

2
M̃2. Note

that we make the following approximation here: while all n graviton vertices
and graviton-matter vertices have their own, independent couplings, in a first
step we will identify these with the background couplings. Accordingly, the
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momentum-independent 3- and 4-graviton vertices are ∼ Λ̃, which explains
the occurrence of Λ̃ in the numerator of the β functions.

As a first major result we find that the interacting fixed point found in
previous calculations exists under the extension of the graviton mass: We find
two interacting fixed points, one of which is clearly an extension of the well-
known one. This fixed point (which we call FP1) has three relevant directions,
cf. tab. 5.6, and is connected to the Gaussian fixed point by a separatrix.
The other fixed point has two relevant directions, but is not connected to the
Gaussian fixed point. We conclude that only the first fixed point features
a trajectory emanating from it, which connects this UV-completion to a
classical regime, where G and Λ assume their measured values.

The fixed-point values and critical exponents are close to those reported
in [52].

Here and in the following, we will mainly focus on the “one-loop” form
of the beta functions, which simply implies that we neglect terms ∼ η on
the right-hand-side of the equations for the anomalous dimensions. The
main reason is that the full RG-improved structure of the equations can
induce further fixed points, that are not present in the one-loop equations,
and are induced purely by the RG-improvement. Since the RG-improvement
arises from a particular choice of regulator, where Rk depends on the wave-
function renormalization, any fixed point induced by that particular structure
is presumably spurious. In cases where the fixed point exists in both the one-
loop and the RG-improved equations, and η < 1, the RG-improved result is
expected to be quantitatively more precise.

As is to be expected from the fact that the fixed point called FP2 has
an irrelevant direction, there is a trajectory emanating from FP1 and hitting
FP2 in the infrared. This trajectory is both UV and IR complete, and could
in principle define a complete quantum theory of gravity. However it is easy
to see that it does not feature a semi-classical regime, where both G and Λ
assume their measured value. This complete trajectory is therefore ruled out
experimentally.

G̃∗ Λ̃∗ M̃2
∗ θ1 θ2 θ3 ηh ηc

FP1 full 0.622 0.051 -0.341 3.92 1.37 + i 0.93 1.37 - i 0.93 0.53 -1.26

FP2 full 0.52 0.08 -0.58 4.10 1.71 -3.64 1.30 -2.17

FP1 one-loop 0.62 0.05 -0.33 3.94 1.39 + i 0.91 1.39 - i 0.91 0.50 -1.26

FP2 one-loop 0.52 0.075 -0.56 4.22 1.70 -3.57 1.25 -2.24

Table 5.6: Fixed-point values and critical exponents of the two interacting
fixed points in the one-loop approximation and the full system.

111



- 0.10 - 0.05 0.00 0.05 0.10 0.15 0.20

0.0

0.2

0.4

0.6

0.8

1.0

L
�

G

�

Figure 5.18: The flow near the FP1 in the Λ̃G̃ plane at fixed M̃2 = −0.341.
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Figure 5.19: The flow near FP1 in the M̃2G̃ plane at fixed Λ̃ = 0.05. The
“FP” on the far left is what will become FP2 for Λ̃ = 0.075
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In Fig. 5.18 we can look at the RG flow in the Λ̃-G̃ plane. The critical
exponent in this plane are real similarly of what is seen in [44] while in the
M̃2 − G̃ plane they are complex as often seen in the literature results where
Λ ∼M2.

In comparison to the result in of Section 5.1.1, where the graviton mass
was identified with the background cosmological constant, the fixed-point
values and critical exponents change quantitatively, but not qualitatively.
Lifting the approximation Λ ∼ M2 also implies that there is no longer a
singularity in the Renormalization Group flow at Λ̃ = 1

2
. As for any massive

field, there is now a singularity at M̃2 = −1.
To analyze the RG flow of the mass in the infrared, we can use a pertur-

bative approximation in the vicinity of the Gaussian fixed point:

βM̃2 = −2M̃2 − 87

40π
G̃+

59

30π
G̃ M̃2 +

12

5π
G̃ Λ̃− 27

10π
G̃ Λ̃M̃2 . (5.65)

For the “RG trajectory of our universe” [72], G̃ runs to very small values
in the infrared. Although Λ̃ grows, such that Λ ≈ constant, this running
only has a negligible influence on M2, as all non trivial terms in (5.65) are
proportional to at least one power of G̃. Accordingly we observe that the
running of M̃2 is driven mostly by the term arising from the canonical di-
mensionality, which simply reflects the rescaling of M̃ under a redefinition of
scale. For the separatrix we have correctly that M → 0 in the IR.
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5.6 Tetrad gravity revisited

It is worth now to go back to the analysis of Chapter 4 on the stability of
the gravitational fixed point in the tetrad formalism using the expression of
the gravitational anomalous dimensions computed in Section 5.1.1. Since the
graviton is not decomposed in our previous computations we will look only
at the type Ia cutoff in the α = 1 gauge (analysed in [36]) and at the type
IIa cutoff. Since we are fixing the gauge to a specific value we have to limit
ourselves just to the analysis the dependence of the FP on the O(d) ghost
mass parameter.

In Section 4.3 we reviewed the analysis performed with a type Ia cutoff
and completely neglecting the Lorentz ghosts (µ̃ → ∞). The existence of a
non-Gaussian fixed point for any value of the dimensionless constant µ̃ was
found: for small values of µ̃ the FP is UV attractive with two real critical
exponents, which then turn into a complex conjugated pair as µ̃ increases
and for a critical value of µ̃ ≈ 1.35 the FP changes its character and becomes
UV repulsive in both directions. It was also noted the presence of a limit
circle around the FP [36].

Then we looked at the type IIa case. A nontrivial FP exists and has
complex critical exponents for all values of µ̃ greater than a critical value
µ̃c ≈ 0.748 for α = 1. For small µ̃ the FP moves towards negative values
of Λ̃. For large µ̃ the fixed point remains UV attractive, in contrast to the
result found in [36] with the type Ia cutoff scheme.

It is interesting to check if lifting the approximation ηh = ∂t logGk, using
the prescription presented in Section 5.1.1, we can find a different dependence
on µ̃ of the FP. We performed the computation using (5.2) and (5.6) in the
“one loop” approximation.

The result are more stable with respect to the old “RG-improved” scheme.
A nontrivial FP exists and has real critical exponents for all values of µ̃, the
value of the cosmological constant Λ̃ at the FP is always slightly negative.

In Fig. 5.20 to 5.21 we plot the dependence on the dimensionless parame-
ter µ̃ of the critical exponents. It is interesting to compare these figures with
the corresponding one computed before Fig. 4.3 Fig. 4.4.
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Figure 5.20: Critical Exponents as functions of the µ̃ parameter for type
Ia cutoff. The continuous line is the real part of the critical exponent, the
dashed line the imaginary part of the critical exponent. In red the metric
case is given for reference.
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Figure 5.21: Critical Exponents as functions of the µ̃ parameter for type
IIa cutoff. The continuous line is the real part of the critical exponent, the
dashed line the imaginary part of the critical exponent. In red the metric
case is given for reference.
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Conclusion

In this thesis we have mostly reviewed and extended recent work on the
asymptotic safety approach to quantum gravity coupled to matter fields. In
this approach, the metric (or the d-bein) is taken seriously as the carrier of
the fundamental degrees of freedom and one remains within the well tested
framework of QFT. The central hypothesis to make this procedure work
in spite of the well-known difficulties is the existence of a nontrivial FP
for gravity, having finitely many UV-attractive directions. In this way one
can obtain a well-defined UV scaling limit which is not seen in perturbation
theory and retain predictivity, which is lost in perturbation theory due to the
necessity of introducing an infinite number of counterterms. In particular we
have focussed on three topics.

How to build a good cutoff term for fermion fields. The implemen-
tation of the FRGE in the presence of fermions and gravity presents some
subtleties that had not been fully appreciated until recently. The sign am-
biguity of the fermionic contribution to the running of Newton’s constant
had been known for a while, but it was regarded as just another aspect of
the scheme dependence that is intrinsic to applications of the FRGE, albeit a
particularly worrying one. Although a completely satisfactory understanding
can come only from a treatment of physical observables, we have argued in
the first half of Chapter 4 that the correct treatment of fermion fields, when
the Dirac operator is squared, is to use a cutoff that depends on −D2 + R

4

(type II cutoff). There also follows from our discussion that using a cutoff
that depends on −D2 (type I cutoff) may give physically incorrect results.

What are the correct fundamental degrees of freedom to describe
gravity in presence of fermions? In the second half of Chapter 4 we
studied the RG flow of gravity in the tetrad formulation, extending the anal-
ysis initiated in [36] by using a different cutoff (type Ib and IIb vs. type Ia)
which allowed us to keep the diffeomorphism gauge parameter α arbitrary.
We have found that the results for the running couplings using the tetrad
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formalism are qualitatively similar to those of the metric formalism, with
some quirks.

In the metric formalism the type IIb cutoff with generic α had never been
used before and the results obtained here are new. We have shown that for
α = 1 they coincide with the ones for the type IIa cutoff. For other values
of α they differ only marginally from those obtained with other cutoff types
and confirm the stability of the fixed point in the metric formalism. Type II
cutoffs have the attractive feature that they lead to somewhat more compact
expressions for the beta functions.

In the tetrad formalism a new ambiguity appears in the definition of
the ghost sector: it can be parametrized by a mass µ that appears in the
mixing between diffeomorphism and Lorentz ghosts, or by the corresponding
dimensionless parameter µ̃ = µ/k. This parameter is a priori arbitrary,
but in order not to introduce additional mass scales into the problem it
is natural to assume that it is of order one. On the other hand we recall
that in perturbation theory and in the chosen gauge the Lorentz ghosts are
neglected, since they do not propagate. This corresponds to taking µ̃ = ∞.
It would be natural to treat µ as a running coupling; we show in Appendix
of Chapter 4 that in the approximations used here its beta function vanishes.
Thus µ̃ would tend to infinity for k → 0 (which agrees with the standard
perturbative prescription) and to zero for k →∞. It is conceivable that the
presence of more complicated ghost interactions, whose existence has been
discussed in [42], could generate a nontrivial fixed point for µ̃.

If one uses a type Ia cutoff and completely neglects the Lorentz ghosts,
there is no attractive FP for positive G [36]. Instead, one finds a UV re-
pulsive fixed point surrounded by a UV attractive limit cycle. This is not
the case when one imposes the cutoff separately on each spin component, as
we did here. We find that with both type Ib and IIb cutoffs an attractive
FP with complex critical exponents is present also when Lorentz ghosts are
neglected, for both α = 1 and α = 0. This is reassuring because in the metric
formalism the fixed point can be found even using the perturbative one loop
beta functions.

If the contribution of Lorentz ghosts is added, as advocated in [36], its
effect is weighted by the parameter µ̃: it is strong for small µ̃ and weak
for large µ̃. Since the ghosts are fermions, the fixed point is shifted toward
negative Λ for decreasing µ̃. In addition, they have a systematic effect on
the critical exponents, in the α = 1 gauge the modulus of the imaginary part
decreases with decreasing µ̃ and there is a critical value µ̃c under which the
critical exponents become real, in the α = 0 gauge the real part of the critical
exponents becomes negative for µ̃ ≈ 1.4, and this marks the appearance of
the limit cycle. With the type II cutoffs discussed here the effect is much
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weaker and the fixed point becomes only slightly less attractive even in the
limit µ̃→∞ in both gauges.

Using type b cutoffs has the advantage that one can keep the diffeomor-
phism gauge parameter α arbitrary. The gauge dependence of the critical
exponents is similar to what had been observed previously in the metric
formalism, as long as α is not too much greater than one.

On the other hand for α somewhat larger than one the fixed point becomes
either complex or repulsive. All these phenomena are probably unphysical
artifact of the identification of ηh with ηG. This is supported by the discussion
in Section 5.6 where we have seen that if we use the gravitational anomalous
dimensions computed from the two point functions the interacting FP always
exist and become almost insensitive to the value of µ̃.

In conclusion, let us comment on the use of tetrad versus metric variables.
Since fermions exists in nature, it may seem in principle inevitable that
gravity has to be described by tetrads. This would complicate the theory
significantly. Every diffeomorphism–invariant functional of the metric can
be viewed as a diffeomorphism and local Lorentz–invariant functional of the
tetrad, but in the bimetric formalism there are many functionals of two
tetrads that cannot be viewed as functionals of two metrics. Therefore, as
already noted in [36], the tetrad theory space is much bigger than the metric
theory space.

The necessity of using tetrads should, however, not be taken as a foregone
conclusion. First of all, it is possible that the fermions occurring in nature
are Kähler fermions. This would completely remove the argument for the
use of tetrads, even in principle. Whether this is the case is a difficult issue
that should be answered experimentally.

Using Dirac-Kähler fermions is possible to formulate extension of the
Standard Model based on Dirac-Kähler spinors [86]. One Dirac-Kähler fermion
correspond to the degree of freedom of four Dirac fermion fields. This ex-
tra fermion field is interpreted as a new flavor. The observation of a 4th
generation would boost the prospects of this model. Non-observation pushes
the limits of the masses of the fourth generation. Current observations are
against the realization in Nature of this model.

For the time being one might just consider the use of Kähler fermions as
a computational trick. Second, even if we stick to spinor matter, by squaring
the Dirac operator and using a type II cutoff one can calculate many quantum
effects due to fermions without ever having to use tetrad fields.

Does matter matter in asymptotically safe quantum gravity? In
Chapter 5 of this thesis we have re-examined the compatibility of minimally
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coupled matter degrees of freedom with the asymptotic safety scenario for
gravity. This issue had been addressed before [28, 29], but advances in our
understanding in the intervening ten years lead to corrections and improve-
ments. Our present treatment differs in two crucial ways. One is the way the
cutoff is implemented on fermions: In accord with our discussion in Chapter
4 the cutoff is chosen to be of type II (a function of −�+ R

4
) while in [28,29]

the cutoff was chosen to be a function of −� (so-called type I cutoff).
The second difference is in the treatment of the anomalous dimension

of the graviton. In order to close the flow equations, the approximation
ηh = ηN ≡ ∂tG/G was often made earlier. However, the effective average
action Γk(hµν ; ḡµν) is a functional of two fields: the background metric and
the fluctuation, and the wave function renormalization of the fluctuation
has a different scale dependence from 1/G, which appears as a prefactor in
the background part of the action. We have followed here the calculation
of the graviton anomalous dimension of [44], but adopting a slightly differ-
ent definition of the anomalous dimension. Additionally, we have explicitly
calculated the matter anomalous dimensions, which also enter the gravita-
tional beta functions. As a result of these changes, the allowed region in the
(NS, ND, NV ) space is quite different from that of [28, 29].

Our main finding is that within the Einstein-Hilbert truncation for the
gravitational degrees of freedom, and with minimally coupled matter, there
are upper limits on the allowed number of scalar and fermionic degrees of
freedom. Increasing the number of vector fields leads to weaker bounds.
Focusing on models of particular interest, we find that the standard model
matter content is compatible with an appropriate fixed point.

Small extensions of the SM, e.g., the inclusion of right-handed neutrinos,
an axion and a scalar dark matter particle, are still compatible, but big
enlargements are highly problematic. In spite of the increase in the number
of gauge fields, realistic GUTs have too many scalars. Things would improve
assuming that the gauge symmetry is broken dynamically, but we are not
aware of detailed models of this type. The MSSM does not show a viable
fixed point within our approximations. Models with a larger number of vector
degrees of freedom, such as technicolor models, can accommodate a larger
number of fermions and still be compatible with the existence of the fixed
point.

Including gravitinos does not help the existence of the FP, their effect is
similar to the one of fermion and scalar fields. A suitable fixed point exist in
the simple N = 1 SUGRA, it does not exist in mSUGRA.

Going to a larger number of dimensions, we find that the allowed region
for the matter content shrinks, and there is no viable gravitational fixed point
compatible with the standard model matter content in d = 6, while the case
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d = 5 is in the balance. This indicates that while the gravitational dynamics
allows for a fixed point in any number of dimensions [77,78], matter dynamics
is sensitive to the dimensionality, and tend to destroy the gravitational fixed
point above d = 4. Extrapolating the trend from d=4, 5, 6, we do not
expect that the standard model is compatible with a nontrivial gravitational
fixed point in any number of extra dimensions. Our work thus indicates that
a realistic model of asymptotically safe gravity, which includes dynamical
matter, disfavors scenarios with universal extra dimensions. In the future, it
could be interesting to examine this in extended truncations, and to study
different models for extra dimensions. For instance, our conclusion could
change if only gravity can propagate into the extra dimensions, but matter
fields cannot.

We also examined the effect of matter degrees of freedom on the quantum
gravity scale. In the asymptotic safety scenario this is the dynamically gen-
erated transition scale to the fixed-point regime. Physical observables will
presumably exhibit a change of behavior at this scale, even though there is
not strictly speaking a phase transition. We find that, fixing the IR value of
the Newton coupling and the cosmological constant to small positive values
and integrating toward the UV, the fixed-point scale is moved to higher val-
ues under the inclusion of matter, e.g., in the standard model case. We trace
this back to the fact that for the standard model, the fixed-point coordinates
are further away from the Gaussian fixed point, in the vicinity of which the
RG flow towards the UV starts at low scales. Having a higher transition scale
implies that effects of asymptotic safety might become more challenging to
detect,

We will discuss now what are the limit of our results due to the approxi-
mations we adopted.

First of all, we have restricted ourselves to the cosmological and Newton
coupling. This is partly justified by the fact that in extended truncations
they are confirmed to be the most relevant ones. Perhaps some further
support for this approximation comes from one loop calculations, where the
(universal) four-derivative terms do not yield new constraints on matter, and
where there exists at least one cutoff scheme where the same is true of all
higher derivative terms.

Our calculations involve rather large uncertainties, so most results should
be taken as broad trends rather than precise statements. The beta functions
are obtained by off-shell calculations and are gauge-dependent. We have used
throughout the Feynman-de Donder gauge α = 1. Regarding the “scheme”-
dependence, most results have been given at one loop and with a type II cutoff
on all degrees of freedom, but we have thoroughly studied also the case with
a type Ia cutoff on the gravitons, and (with both cutoffs) the RG-improved
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flow equations.
In the perturbative approximation we have found that using the type Ia

cutoff leads to a restriction of the allowed region by 12 Dirac fields or 24 scalar
fields. This can be taken as a typical theoretical uncertainty in this type of
calculation. Having given the results for the less restrictive type II cutoff, it is
likely that we have erred by allowing models that are forbidden, rather than
the converse. Detailed calculations with different schemes and/or different
gauges will be necessary to sharpen the boundary of the allowed region.

Another strong limitation is the truncation on the gravitational action.
Even within the context of terms with two derivatives only, due to the natural
bi-metric dependence of the effective average action, there is a difference be-
tween the cosmological and Newton couplings that multiply the background
field terms, and the coefficients of the terms involving powers of the fluctu-
ation hµν . In most of the literature, the coefficients of the fluctuation terms
have been treated as in the expansion of the Einstein-Hilbert action, thus
identifying them with the cosmological and Newton coupling. Here we have
made a first distinction between the background Newton coupling and the
coefficient of the p2h2 term, which we called Zh and a distinction between the
background Cosmological constant and the coefficient of the h2 term, which
we called M2 “mass” term.

Perhaps most importantly, we have neglected all matter self-interactions.
From [41] it is known that quantum gravity fluctuations induce momentum-
dependent matter self-interactions, which couple back into the anomalous
dimensions. We expect that our boundaries in the (NS, ND, NV )-space will
change under a corresponding extension of the truncation.

In spite of these limitations, this work clearly shows that “matter mat-
ter” in asymptotically safe quantum gravity. Asymptotic safety might not be
compatible with arbitrary extensions of the Standard Model; e.g., supersym-
metric extensions and higher dimensions seem to be disfavoured. This opens
a new route to obtain experimental guidance in the construction of a viable
model of quantum gravity: The discovery of many new fundamental matter
fields at the LHC or future colliders could potentially lead to a situation that
is theoretically inconsistent with asymptotic safety.

121



Bibliography

[1] G. ’t Hooft and M. J. G. Veltman, Annales Poincare Phys. Theor. A
20 (1974) 69.

[2] M. H. Goroff and A. Sagnotti, Phys. Lett. B 160 (1985) 81.

[3] M. H. Goroff and A. Sagnotti, Nucl. Phys. B 266 (1986) 709.

[4] J. Polchinski, Cambridge, UK: Univ. Pr. (1998) Vol ! and 2

[5] C. Rovelli, Living Rev. Rel. 11 (2008) 5.

[6] S. Weinberg, In *Hawking, S.W., Israel, W.: General Relativity*, 790-
831 (Cambridge University Press, Cambridge, 1980).

[7] K. G. Wilson, Phys. Rev. B 4, 3174 (1971);
K. G. Wilson, Phys. Rev. B 4, 3184 (1971);
K. G. Wilson and J. B. Kogut, Phys. Rept. 12 (1974) 75;
K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).

[8] C. Wetterich, ‘Phys. Lett. B 301, 90 (1993).

[9] T. R. Morris, Int. J. Mod. Phys. A 9 (1994) 2411 [hep-ph/9308265].

[10] B. Delamotte, arXiv:cond-mat/0702365

[11] D. F. Litim, Phys. Rev. D 64, 105007 (2001) [hep-th/0103195].

[12] S.M. Christensen and Michael J. Duff (1978).Phys. Lett. B 79, 213.

[13] R. Gastmans, R. Kallosh and C. Truffin (1978). Nucl. Phys. B 133,
417.

[14] M. Reuter, Phys. Rev. D 57, 971 (1998) [hep-th/9605030].

[15] M. Reuter and C. Wetterich, Nucl. Phys. B 417 (1994) 181.

122



[16] M. Reuter and C. Wetterich, Nucl. Phys. B 427 (1994) 291.

[17] I. L. Buchbinder, S. D. Odintsov and I. L. Shapiro, Bristol, UK: IOP
(1992) 413 p

[18] A. Codello, R. Percacci and C. Rahmede, Annals Phys. 324, 414 (2009)
[arXiv:0805.2909 [hep-th]].

[19] D. Dou and R. Percacci, Class. Quant. Grav. 15 (1998) 3449 [hep-
th/9707239].

[20] P. Donà and R. Percacci, Phys. Rev. D 87, no. 4, 045002 (2013)
[arXiv:1209.3649 [hep-th]].

[21] F. Larsen and F. Wilczek, Nucl. Phys. B 458 (1996) 249 [hep-
th/9506066].

[22] E. Manrique and M. Reuter, Annals Phys. 325, 785 (2010)
[arXiv:0907.2617 [gr-qc]].

[23] E. Manrique, M. Reuter and F. Saueressig, Annals Phys. 326, 440
(2011) [arXiv:1003.5129 [hep-th]].

[24] E. Manrique, M. Reuter and F. Saueressig, Annals Phys. 326, 463
(2011) [arXiv:1006.0099 [hep-th]].

[25] E. Kähler, Rendiconti di Matematica (3-4) 21, 425 (1962).

[26] W. Graf, Annales Poincare Phys. Theor. 29 (1978) 85.

[27] I. M. Benn and R. W. Tucker, Commun. Math. Phys. 89 (1983) 341.

[28] R. Percacci and D. Perini, Phys. Rev. D 67, 081503 (2003) [hep-
th/0207033].

[29] R. Percacci and D. Perini, Phys. Rev. D 68, 044018 (2003) [hep-
th/0304222].

[30] G. Narain and R. Percacci, Classical Quantum Gravity 27, 075001
(2010); G. Narain and C. Rahmede, Classical Quantum Gravity 27,
075002 (2010).

[31] D. Benedetti, P. F. Machado and F. Saueressig, Nucl. Phys. B 824
(2010) 168 [arXiv:0902.4630 [hep-th]].

[32] R. Percacci, Phys. Rev. D 73, 041501 (2006) [hep-th/0511177].

123



[33] O. Zanusso, L. Zambelli, G. P. Vacca and R. Percacci, Phys. Lett. B
689, 90 (2010) [arXiv:0904.0938 [hep-th]].

[34] A. Rodigast and T. Schuster, Phys. Rev. Lett. 104 (2010) 081301
[arXiv:0908.2422 [hep-th]].

[35] G. P. Vacca and O. Zanusso, Phys. Rev. Lett. 105, 231601 (2010)
[arXiv:1009.1735 [hep-th]].

[36] U. Harst and M. Reuter, JHEP 1205, 005 (2012) [arXiv:1203.2158
[hep-th]].

[37] O. Lauscher and M. Reuter, Phys. Rev. D 65, 025013 (2002).

[38] C. Rahmede, Ph.D. thesis, SISSA. 2008.

[39] A. Eichhorn and H. Gies, New J. Phys. 13, 125012 (2011)
[arXiv:1104.5366 [hep-th]].

[40] H. Gies and S. Lippoldt, arXiv:1310.2509 [hep-th].

[41] A. Eichhorn, Phys. Rev. D 86, 105021 (2012) [arXiv:1204.0965 [gr-qc]].

[42] A. Eichhorn, Phys. Rev. D 87, 124016 (2013) [arXiv:1301.0632 [hep-
th]].

[43] M. Shaposhnikov and C. Wetterich, Phys. Lett. B 683, 196 (2010)
[arXiv:0912.0208 [hep-th]].

[44] A. Codello, G. D’Odorico and C. Pagani, arXiv:1304.4777 [gr-qc].

[45] A. Eichhorn and H. Gies, Phys. Rev. D 81, 104010 (2010)
[arXiv:1001.5033 [hep-th]].

[46] R. P. Woodard, Phys. Lett. B 148, 440 (1984).

[47] P. van Nieuwenhuizen, Phys. Rev. D 24, 3315 (1981).

[48] J. -E. Daum, U. Harst and M. Reuter, JHEP 1001, 084 (2010)
[arXiv:0910.4938 [hep-th]].

[49] K. Groh and F. Saueressig, J. Phys. A 43, 365403 (2010)
[arXiv:1001.5032 [hep-th]].

[50] I. Donkin and J. M. Pawlowski, arXiv:1203.4207 [hep-th].

124



[51] N. Christiansen, D. F. Litim, J. M. Pawlowski and A. Rodigast, Phys.
Lett. B 728, 114 (2014) [arXiv:1209.4038 [hep-th]].

[52] N. Christiansen, B. Knorr, J. M. Pawlowski and A. Rodigast,
arXiv:1403.1232 [hep-th].

[53] M. Reuter and F. Saueressig, Phys. Rev. D 65, 065016 (2002) [hep-
th/0110054].

[54] G. Narain and R. Percacci, Acta Phys. Polon. B 40, 3439 (2009)
[arXiv:0910.5390 [hep-th]].

[55] K. Falls, D. F. Litim, K. Nikolakopoulos and C. Rahmede,
arXiv:1301.4191 [hep-th].

[56] S. Folkerts, D. F. Litim and J. M. Pawlowski, Phys. Lett. B 709, 234
(2012) [arXiv:1101.5552 [hep-th]].

[57] U. Harst and M. Reuter, JHEP 1105, 119 (2011) [arXiv:1101.6007
[hep-th]].

[58] D. J. Toms, Phys. Rev. D 84, 084016 (2011).

[59] J. M. Cline, K. Kainulainen, P. Scott and C. Weniger, Phys. Rev. D
88, 055025 (2013) [arXiv:1306.4710 [hep-ph]].

[60] V. Silveira and A. Zee, Phys. Lett. B 161, 136 (1985).

[61] J. McDonald, Phys. Rev. D 50, 3637 (1994) [hep-ph/0702143 [HEP-
PH]].

[62] C. P. Burgess, M. Pospelov and T. ter Veldhuis, Nucl. Phys. B 619,
709 (2001) [hep-ph/0011335].

[63] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977); Phys.
Rev. D 16, 1791 (1977).

[64] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978);

[65] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

[66] R. Essig, J. A. Jaros, W. Wester, P. H. Adrian, S. Andreas, T. Averett,
O. Baker and B. Batell et al., arXiv:1311.0029 [hep-ph].

[67] S. Bertolini, L. Di Luzio and M. Malinsky, Phys. Rev. D 80, 015013
(2009) [arXiv:0903.4049 [hep-ph]].

125



[68] F. Sannino, Acta Phys. Polon. B 40, 3533 (2009) [arXiv:0911.0931
[hep-ph]].

[69] D. F. Litim and T. Plehn, Phys. Rev. Lett. 100, 131301 (2008)
[arXiv:0707.3983 [hep-ph]].

[70] E. Gerwick, D. Litim and T. Plehn, Phys. Rev. D 83, 084048 (2011)
[arXiv:1101.5548 [hep-ph]].

[71] B. Dobrich and A. Eichhorn, JHEP 1206, 156 (2012) [arXiv:1203.6366
[gr-qc]].

[72] M. Reuter and H. Weyer, JCAP 0412, 001 (2004) [hep-th/0410119].

[73] X. Calmet, S. D. H. Hsu and D. Reeb, Phys. Rev. Lett. 101, 171802
(2008) [arXiv:0805.0145 [hep-ph]].

[74] W. E. East and F. Pretorius, Phys. Rev. Lett. 110, no. 10, 101101
(2013) [arXiv:1210.0443 [gr-qc]].

[75] S. Basu and D. Mattingly, Phys. Rev. D 82, 124017 (2010)
[arXiv:1006.0718 [hep-th]].

[76] K. Falls, D. F. Litim and A. Raghuraman, Int. J. Mod. Phys. A 27,
1250019 (2012) [arXiv:1002.0260 [hep-th]].

[77] P. Fischer and D. F. Litim, Phys. Lett. B 638, 497 (2006) [hep-
th/0602203].

[78] N. Ohta and R. Percacci, arXiv:1308.3398 [hep-th].

[79] G. Aad et al. [ATLAS Collaboration], JHEP 1304, 075 (2013)
[arXiv:1210.4491 [hep-ex]].

[80] G. Aad et al. [ATLAS Collaboration], New J. Phys. 15, 043007 (2013)
[arXiv:1210.8389 [hep-ex]].

[81] M. M. Anber and J. F. Donoghue, Phys. Rev. D 85, 104016 (2012)
[arXiv:1111.2875 [hep-th]].

[82] P. Van Nieuwenhuizen, Phys. Rept. 68 (1981) 189.

[83] N. K. Nielsen, Nucl. Phys. B 140 (1978) 499.
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