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Introduction

The main subject of this thesis is the application of the geometric methods, originally
introduced in the framework of the Optimal Control Theory, to the analysis of Hamiltonian
Systems.

After the publication of the celebrated book by L.S.Pontryagin and his colleagues [23],
the analysis of the solutions of certain Hamiltonian equations plays a key role in finding
the extremals of an optimal control problem. From the geometrical view point the solu-
tions of Hamiltonian equations are the integral curves of Hamiltonian vector fields in the
cotangent bundle over the configuration space which is the state-space of the problem. As
the cotangent bundle carries a natural symplectic structure, the language of Symplectic
Geometry turns to be a natural language for the study of the extremals of an optimal
control problem. Let us recall briefly the main idea of the Pontryagin Maximum Principle
and its relation with the problems of classical Calculus of Variations.

Example 0.0.1. On a smooth manifold M consider a control problem

q(t) = fa(t),u(®), g€ M, (L1)

where for the fixed parameter u € U vector fields f(-,u) are smooth, f(g,u) is continuous
w.r.t. the both variables and ¢ — u(t) € U are measurable locally bounded functions. The
Optimal Control Problem with fixed end-points and fixed terminal time consists in finding
the admissible trajectories of (I.1) satisfying the boundary conditions

q(0) =g, ¢(T)=aq (L2)

for some ¢y, q; € M and T € R fixed, and minimizing the cost functional

ATl = [ Dlalt), u(t) de = min (L3)

for some function L : M x U — R, usually satisfying the same regularity assumptions as
vector fields f.
To the problem (I.1)-(I.3) one can associate the following function on 7*M:

hu(p,q) = p(f(q,v)) —vL(q,u), g€ M, peT;M, v=1{0,1} (1.4)

called the Hamiltonian function of the optimal control problem (I.1)-(1.3). Let us denote
by o the canonical symplectic form on T*M, and by h, the Hamiltonian vector field

=

corresponding to the Hamiltonian h,: d,h,(-) = 0,(-, hy) with z € T*M.

7
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According to the Pontryagin Maximum principle (see [1], [23]), if the curve ¢ : [0,T] —
M, satistying (I.2), is an extremal trajectory of the problem (I.1)-(I.3) corresponding to
the control function %(t), then there exists a non-trivial pair (y(¢),v) € T*M x R, where
the curve 7 : [0,T] — T*M, called the extremal of the problem (I.1)-(1.3), is the integral
curve of the Hamiltonian vector field Hﬂ(t), such that §(t) = w(y(t)) with 7 : T*M — M
being the canonical projection of the cotangent bundle to the base manifold, and

haqy (7(t)) = max hy(y(2)), for a.e. t€[0,7].

uelU

The problem of classical Calculus of Variations can be seen as a particular case of
the Optimal Control problem for f(g,u) = w and U = T,M. In this case L : TM —
R, and throughout the thesis we assume that the function L is convex on each fiber.
The Pontryagin Maximum Principle implies that the extremal trajectory ¢ : [0, 7] — M,
satisfying (I.2), is the extremal trajectory of the functional (I.3) if and only if ¢(¢) =
7(7y(t)) with vy : [0,T] — T*M being the integral curve of the Hamiltonian vector field h
corresponding to the Hamiltonian function A, defined as the Legendre transform of L:

h(p7 CI) = (pq - L(q7 q'))|d—>]1:%(llf . (15)
The function L(q, ¢) is called the Lagrangian of the problem (I.1)-(1.3), and the cost func-
tional (L.3) is called the action functional. For the sake of completeness let us remark,
that in the framework of Classical Mechanics this result is also known as the Least Action
Principle.

In this thesis we consider the problems of Calculus of Variations and Classical Mechanics
from the point of view of Optimal Control Theory which we have just described.

The curvature-type invariants related to the extremals of an optimal control problem
were first introduced in the paper of A.Agrachev and R.Gamkrelidze [2]. The theory was
developed then by the same authors [3]-[5] and in the papers by A.Agrachev and I.Zelenko
(8], [9], [27]. These invariants: the generalized curvature operator, generalized Ricci cur-
vature and the curvature form describe the invariant properties of one-parametric families
of Lagrangian subspaces in a symplectic space with respect to the natural action of the
symplectic group. They provide a kind of generalization of the notion of classical curva-
ture tensor of Riemannian Geometry (see Example 1.4.8 in Chapter 1). As in Riemannian
Geometry, the generalized curvature operator and the generalized Ricci curvature contain
the intrinsic information about the extremals of an optimal control problem and describe
the global behavior of such extremals. For example, these invariants can be used to lo-
calize the conjugate points along extremals of the corresponding variational problems (see
Theorem1.3.5 in Chapter 1).

One of the most important examples of one-parametric families of Lagrangian sub-
spaces is provided by a pair (Hamiltonian vector field, Lagrangian distribution), called the
dynamical Lagrangian distributions. It can be described as follows.
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Let W be a symplectic manifold with symplectic form ¢. The Lagrangian distribution
D on W is a smooth vector sub-bundle of the tangent bundle T'W such that each fiber
D, is a Lagrangian subspace of the linear symplectic space T,W, i.e., dimD, = %dimW
and o,(v1,v2) = 0 for all v1,v9 € D,. If h is a smooth function on W and h is a corre-
sponding Hamiltonian vector field, then the pair (fz, D) defines the one-parametric family
of Lagrangian distributions D(t) = eiﬁD in TW. The pair (ﬁ, D) is called the dynamical
Lagrangian distribution.

Dynamical Lagrangian distributions appear in a natural way in the framework of Cal-
culus of Variations and Optimal Control Theory. As one can see from Example 0.0.1, a
particular role is played by the so-called vertical dynamical Lagrangian distribution (ﬁ, 1)
generated by a Hamiltonian vector field on the cotangent bundle 7 M of a smooth manifold
M and the Lagrangian distribution II such that each leaf of this distribution is a tangent
space to the fiber, i.e I, = T,(T}, M) for all z € T*M. Coming back to the situation
described in Example 0.0.1, we say that the vertical dynamical Lagrangian distributions
(h,1I) is generated by the problem (1.1)-(I1.4)(or (I.5)). The point v(7") is conjugate to
v(0) w.r.t. the pair (ﬁ, I)! if and only if ¢, is conjugate to g, along the extremal ¢ (-) in
the classical variational sense for the problem (I.2)-(1.3), i.e. the second variation of the
functional AT[q] is degenerate ([1]).

In this thesis we develop an approach which is intended to be used in the framework of
regular problems of Calculus of Variations and Classical Mechanics. Namely, we restrict our
attention to the various aspects of reduction by first integrals in involution in Hamiltonian
systems and analyze a special class of Hamiltonian systems, the systems with negative
generalized curvature form. The presented material is organized in the following order.

Chapter 1 contains the basic definitions and facts concerning the symplectic invariants
of Dynamical systems that will be used in the sequent chapters. We introduce the notion
of the generalized curvature operator, the generalized Ricci curvature and the curvature
form of a curve in the Lagrange Grassmannian over a linear even-dimensional space and
consider a special class of such curves, the so-called Jacobi curves generated by the vertical
dynamical Lagrangian distribution in the cotangent bundle of a smooth manifold along an
orbit of the corresponding Hamiltonian vector field. We conclude this chapter by some basic
examples of Classical Mechanics and Riemannian Geometry which illustrate the meaning
of the generalized curvatures in classical cases.

In Chapter 2 we study the behavior of the curvature operator, the curvature form and
the conjugate points of a dynamical Lagrangian distribution after its reduction by arbitrary
first integrals in involution.

As it is well known in the theory of Dynamical systems, the existence of first integrals
reduces the analysis of a system of ordinary differential equations to the analysis of a system
of lower order. This is particularly important for the Hamiltonian systems: in this case

!The conjugate points for the dynamical Lagrangian distribution (l_i, D) are also called focal points.
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the existence of one first integral can decrease the order of the system by two. In Section
2.2 we derive the explicit formulas which express the generalized curvature operator and
curvature form of the reduced Hamiltonian system in terms of the Hamiltonian vector
field and the first integrals of the original system (Theorems 2.2.3 and 2.2.6). It turns out
that in the case of systems with Hamiltonians, convex on fibers, the curvature form of the
generated Jacobi curve does not decrease after reduction. It worth to mention also that
our technique avoids the use of any special canonical variables for the reduced system.

In Section 2.3 we study the relation between the conjugate points of some dynamical
Lagrangian distribution and of its reduction by a group of first integrals in involution. Using
the Maslov Index arguments, we prove (Theorem 2.3.1) that in the case of systems with
Hamiltonians, convex on fibers, on every interval of time the number of conjugate points
to the given point for the original problem is non greater than the number of conjugate
points (to the same point) with respect to its reduction. In the case of one first integral
the sets of conjugate points to a given point are alternating. Moreover, the first conjugate
point corresponding to the reduced system comes before any conjugate point related to
the original system. The presented results are contained in the original paper [7].

In Chapter 3 we study the vertical dynamical Lagrangian distribution (71, IT) in the
cotangent bundle over some smooth manifold along integral curves of the generating vec-
tor field h. We consider the case of strictly convex (concave) on fibers Hamiltonians. We
show that, using the notion of the generalized curvature form, the classical results about
the geodesic flows on compact Riemannian manifolds of negative sectional curvature can
be generalized to a much larger class of problems of Hamiltonian Dynamics. Namely, we
prove (Theorem 3.3.1) that any invariant compact subset of the level set of the Hamiltonian
function h with negative-defined reduced curvature is hyperbolic and the corresponding
Hamiltonian flow is an Anosov flow. Moreover, in Theorem 3.4.1 we show that if the cur-
vature form of the distribution (fL, IT) is strictly negative, then the only possible connected
compact invariant subset of such a system is a hyperbolic equilibrium point. This result to
our notion has no analogous in the classical Riemannian case. Both Theorems 3.3.1 and
3.4.1 open a wide possibility for searching of new examples of the hyperbolic dynamical
systems having explicit physical interpretation. These results are published in [6].

In Chapter 4 we consider a survey of examples of the application of the developed
theory to the classical N-body problem. We believe that some of our results can be of
interest non only within the framework of the Geometrical Control Theory. Partly the
results we present in this chapter are contained in [13].

Our interest to the N-body problem was caused by the recent success of variational
methods in finding new periodic solutions of this problem. In the original work of A.Chenciner
and R.Montgomery ( [14]) the authors succeed in finding a periodic orbit of the 3-body
problem with Newton’s potential as a solution of a variational problem for the action func-
tional, subject to some carefully chosen symmetry conditions. This paper was the first one
in a series of papers containing further developments of this technique and plenty of new
periodic solution of the N-body problem for different N. The nature of these new orbits,
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which are the minimizers of the action functional only on a certain part of their period,
leaves without answer the question about their minimality on a bigger interval. In this
thesis we present a technique based on the results of Chapters 1 and 2, which can be used
for testing the minimality property of such orbits by localizing their conjugate points.

In this thesis we study the plane N-body problem with equal masses. First of all,
in Section 4.1 we analyze the structure of the known first integrals of the problem and
calculate the Ricci curvature of its reduction. In Section 4.2 we study in greater detail
the minimality properties of the so-called 8-shaped orbit of the classical 3-body problem
with equal masses. This orbit is the simplest example within the class of orbits mentioned
above. Combining the methods presented in Chapters 1 and 2 with numerical computation
we find conjugate points along this orbit for the original and reduced systems: it turns out
that the first conjugate point (to the starting point) in the original space appears at ~ 0.76
of the period T of the orbit, and at ~ 0.527" in the reduced space. We also find numerically
a new solution for the fixed-end problem in the reduced space having the action smaller
than the 8-shaped orbit.
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Chapter 1

Symplectic invariants of Dynamical
systems

In this chapter we describe the basic objects we will deal with and make a short introduction
to the theory of the curves in the Lagrange Grassmannian that will be our main tool in
the next chapters.

In Section 1.1 we recall some basic facts from Symplectic Geometry and discuss the
properties of curves in the Lagrange Grassmannian following mainly the ideas presented
in [2] and [3].

Section 1.2 contains a short introduction to the Maslov Index Theory for the curves
in the Lagrange Grassmannian in the form which will be used in Chapter 2. We define
the notion of conjugate points for a curve in the Lagrange Grassmannian and discuss the
relations between the Maslov Index of the curve and its conjugate points. For the detailed
exposition on this subject one can consult [4] or [20].

In Section 1.3 we introduce the basic symplectic invariants of regular curves in the
Lagrange Grassmannian: the generalized curvature operator and the generalized Ricci
curvature. We illustrate the intrinsic meaning of these objects using the notion of the
so-called canonical moving frame associated to a curve in the Lagrange Grassmannian.

In Section 1.4 we study the dynamical Lagrangian distributions generated by a Hamil-
tonian vector filed A in the tangent space to the cotangent bundle of a smooth manifold
M. As we saw already (Example 0.0.1), these distributions naturally appear in the study
of the dynamics in the cotangent bundle. As the model example we consider the vertical
dynamical Lagrangian distribution (i_i, IT) and the Jacobi curve in the Lagrange Grassman-
nian generated by such distribution in the tangent spaces attached along an integral curve
of the vector field % in the cotangent bundle. We give the Hamiltonian formulation of the
theory which will be used in the sequent chapters.

13



14 CHAPTER 1. SYMPLECTIC INVARIANTS OF DYNAMICAL SYSTEMS

1.1 Curves in the Lagrange Grassmannian: basic def-
initions and notations

In this thesis all smooth objects are supposed to be C*°. The results remain valid for the
class C* with a finite and not large k but we prefer not to specify the minimal possible k.

Let 3 be a 2n-dimensional linear space endowed with a symplectic form o. The La-
grange Grassmannian L,,(X) of the symplectic space 3 is a set of all Lagrangian subspaces
in X

Ly(Z)={AexT: A=A},

where
AM={veX: ow,w)=0 Yw € A}

is a symplectic complement of A in ¥ w.r.t. the form o.

The symplectic form o is non-degenerate and it vanishes on any Lagrangian subspace
A of 3, hence it induces the canonical isomorphism A* = (3/A) via the linear operator
A —o(-,A), A € A. In particular, it follows that A = (X/A)*.

The tangent space Th(L,(X)) of the Lagrange Grassmannian at every point A has a
natural identification with the space of quadratic forms on A via the following construction.
Let t — A, be a curve in the Lagrange Grassmannian £,,(X) such that Ag = A. Take some
smooth curve A(t) € A, with A(0) € A. We associate with the tangent vector ZA the
quadratic form A : A(0) = o(A(0), A(0)). This form depends only on %At‘t:o and A(0), so
A(X(0)) is correctly defined. This construction leads to the following definition.

Definition 1.1.1. We say that the curve t — A, is a regular curve in L,(X), if for every
t the corresponding quadratic form A, is non-degenerate.

The structure of the tangent space to the Lagrange Grassmannian allows to use the
terms “positive” and “negative” with respect to the derivatives of the curves in the La-
grange Grassmannian. We will call a regular curve increasing (decreasing) if the corre-
sponding quadratic form is positively (negatively) definite.

Actually there exists a canonical isomorphism between spaces T (£, (X)) and the space
of linear self-adjoint operators L(A,3/A). Indeed, let Ay € L,(X), Ao = A and V = Ag.
To any V € Th(L,(X)) one can associate a linear operator

V:iA— Y/A =AY
such that B .
VAO0)=X0)+A €X/A, (1.1)

for any smooth curve A(¢) € A; with initial condition A(0) € A. Since the subspace A is
Lagrangian, the operator V is self -adjoint and V' — V realizes an isomorphism of linear
spaces Ty (L£,(X)) and L(A,X/A).
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Let us now give a coordinate version of the introduced objects. One can choose a basis
in ¥ such that
YR X R ={(z,y) : z,y € R"},
and
o((z1,41), (T2, Y2)) = (21, Y2) — (T2, 1), (1.2)
where (-, -) denotes the standard inner product in R". Such a basis is called symplectic or
Darboux basis.

Let t — A; be a regular curve in £,,(X). Assume that Ag N {(0,y), y € R*} = 0. Then
for any t sufficiently close to 0 there exits an n X n matrix S; such that

x
A= R
! <St33> ’ ve

with Sy = 0. The matrix curve ¢ — S; is called the coordinate representation of the curve
A; w.r.t. the chosen Darboux basis in ¥. Since the subspaces A; are Lagrangian, from
(1.2) it follows that the matrices S; are symmetric.

The regularity of the curve A, is equivalent to the non-degeneracy of the matrix S,.
Indeed, let \; be a smooth curve in A; so that \; = (zy, S;zy)?. Then

At()\t) = U()‘\t, /\t) =

“olan) s (n) () = gmm o

Thus the quadratic form defined by the symmetric matrix -5, corresponds to the derivative
of the curve A;. .
It is easy to see that S; also gives the coordinate representation of the linear operator

A_o defined by (1.1).

1.2 Maslov Index and Conjugate points

Let Ag, A € L,(X) be a pair of transversal Lagrangian subspaces: ¥. = Ag & A. Suppose
that in some local coordinates Ag = {(p,0)”, p € R*} and A = {(0,9)", ¢ € R*}. Then
any A € A™ can be presented as A = {(p, Sp)”, p € R*} with S being a symmetric n x n
matrix, and one can assign to A a quadratic form

ar(p) = (Sp,p) -
To the subspace Ay there corresponds a zero quadratic form.

Definition 1.2.1. The Maslov Index of the triple of the Lagrangian subspaces Ay, A and A
is the signature of the quadratic form q, (i.e the difference between the number of positive
and negative squares in the diagonal form of ¢ ):

:U’(Aa AOa A) = Sgnga -
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Let
A"={AeL,(X): AnA =0}

be a space of all subspaces of £, (X) transversal to A. Denote by M, the following subset
of £,(%):
My = LX)\ A ={A € L,(X): AN Ay #D0}.

Following [10], we will call M, the train of the Lagrangian subspace Ay. Essentially
My, is a hyper-surface in £,(X) consisting of degenerate quadratic forms: to a subspace
A such that dim(A N Ag) = k there corresponds a form with a k-dimensional kernel. The
singularities of M, consist of the Lagrangian subspaces A such that dim (AN Ag) > 2.
The set of singular points has a co-dimension 3 in £, (X).

As we saw already, the tangent space ThL,(X) has a natural identification with the
space of quadratic forms on A. If A is a non-singular point of the train M, then those vec-
tors from T) £, (X) that correspond to positive or negative definite quadratic forms are not
tangent to the train. Hence one can define a canonical co-orientation of the hyper-surface
M,, at a non-singular point A by taking as a positive side the side of M,, containing
positive definite quadratic forms.

This construction leads to the notion of the intersection number of an arbitrary contin-
uous curve in the Lagrange Grassmannian, having endpoints outside of M, : if the smooth
curve A(:) intersects M, transversally at non-singular points, then, as usual, every in-
tersection point A(t) with My, adds +1 or —1 into the value of the intersection number
according to the direction of the vector A(t) w.r.t. to the positive and negative side of
M.

Moreover, the intersection number is invariant w.r.t. any homotopy which leaves the
endpoints of the curve outside of My, (see [4] for details). So an arbitrary continuous
curve A(-) with endpoints outside M,, by a small perturbation can be (homotopically)
transformed into a curve which is smooth and transversally intersects M, in non-singular
points. Since the set of singular points of My, has a co-dimension 3 in £,(X), any two
curves, obtained by such transformation, can be deformed one to another by a homotopy,
which avoids the singularities of M. Hence the intersection number of the curve, obtained
by the small perturbation from the original curve, does not depend on the perturbation
and can be taken as the intersection number of the original curve.

Let t — Ay, t € [to,t1] be a curve in £,(X) such that

Ato §é MAO ) At1 ¢ MAO . (14)

Denote by IndAOAt‘Z) the intersection number of a curve A; with My, on the interval
[to, 1] such that (1.4) holds. If A; € A™ for some A € £,(X), then

w1
Ind oAyl = 5 (s8n 4., — s8R 0A,,) =

= 208, Ao Ay) = (A, Ko, A)). (1.5)
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We will refer to IndAOAt‘z as to the Maslov index related to A of the curve A on [ty, t1].
It turns out that that the right-hand side of (1.5) does not depend on the choice of A.
Moreover, from the homotopy invariance of the intersection number it follows that if the
curve t — A; is monotone increasing on [ty, ;] and satisfy (1.4), then

Indg, Al = Y dim(A, N A). (1.6)

to<t<t:

The proof of these facts can be find in [4].

Definition 1.2.2. The points ty, and t; such that t, # t; are said to be conjugate for the
curve A(-) € L,(X) if A(ty) N A(t1) # 0. The dimension of the intersection A(ty) N A(t1) is
called the multiplicity of the conjugate point t;.

Let ¢ — A; be a curve in £,(X) with the end-points satisfying (1.4). Then from
Definition 1.2.2 it follows that the points conjugate to 0 are exactly the points where the
Maslov index of A; related to Ag changes. If, in addition, A; is a monotone curve, then from
(1.6) it follows that the number of conjugate (to 0) points on the interval [¢o, %], counted

with their multiplicities, coincides with Ind AoAtm-

1.3 Regular curves

Now we are going to introduce the basic symplectic invariants of the curves in the Lagrange
Grassmannian. In this thesis we will deal only with regular curves. Both regular and non-
regular situations were studied in papers [2], [4]-[5], and [8]-[9]. As we will see later, the
problems of Classical Mechanics and Hamiltonian Dynamics produce plenty of examples
of regular curves.

We begin by investigating the intrinsic structural properties of the Lagrange Grass-
mannian.

1.3.1 Affine structures

Definition 1.3.1. The space A is called an affine space over a linear space L if for all
x,y,z € A there defined the operation of subtraction such that x —y € L and the following
axioms hold:

IL.(z—y)+({y—2) =z—2€L,

2. for every y € A and v € L there exists a unique element x € A such that x —y =v.

We say that the function z : R — A has a pole at ¢ = 7 if the function z(¢) — Z has a
pole (as a vector function in the linear space L) at ¢ = 7 for some T € A. Actually this
property does non depend on the choice of Z. Indeed, assume that the function z(¢) has a
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pole at ¢t = 7, and hence it admits a Lorain expansion z(t) — Z = ao(7) + >_ a;(7)(t — 7)".
i#0
Take some other £ € A. Then using the axioms of the affine space we get

r—2=(xlt)—2)+ T —-2) =ay(r)+ (- % -I—ZozZ Yt —T7)

1#£0
=do(r) + Y ai(r)(t— 7).
i#0
By second axion of Definition 1.3.1 there exists a unique Z such that Z — Z = —ao(7).

We will call such & the derivative element of the curve z(t) at t = 7. Directly from the
definition it follows that the derivative element Z is the unique element of A such that the
free term of the Laurent expansion of z(t) — Z at ¢ = 7 vanishes.

1.3.2 Derivative curve

Let A and A be a pair of transversal Lagrangian subspaces such that ¥ = A@ A. Let IIax
be a projector of ¥ onto A parallel to A such that

TAA :0, TAA =1d. (17)
A A

The space {man : A € A"} has a structure of an affine subspace of gI(X): the first axiom
of (1.3.1) is trivially satisfied and for any A;, Ay € A" and o € R

a7TA1A+ (1 —Oé)’iTAZA = TTAA

is again a projector of ¥ onto A along the subspace A = ker(ama,x + (1 — @)ma,n) € AM.

If t — A, is a regular curve, then for any ¢ sufficiently close to zero A; € A, and so the
pair Ay, A; defines a splitting of . As before, we choose some local coordinates such that
Ay = {(z,Sx)", z € R*}, Sy = S} and Sy = 0. Then

Id -5t
7TAtA0 = 0 0 .

By our choice of coordinates Sy = 0. Let us suppose in addition that 0 is a root of
minimal possible order n of the scalar function ¢ — detS,. Then the matrix curve S; ' has
a pole of the first order at zero and one gets the following Laurent expansion:

2

St = (S + %So—f—.--)_l = (Id+ %SalSoJr---)‘lSo‘l =

1 t . . . 1. 1. "o
= ;(Id — 55‘0—150 +...)8;t = zSo—l - 5So—lsoso‘l +0(1).

The Laurent expansion for the corresponding operator-valued function ¢t — 7,5, reads

ThoA = Ztiﬂi + o, (1.8)
i#0
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where

0 0

As we saw, the free term of a power expansion of any function in the affine space behaves
as an element of the affine space while the other terms can be regarded as the elements
of some linear space. Therefore the free term 7y defines a projector onto A; along some
subspace A € A™. In coordinates A reads

et o
A3:< 290 5050 y) y €R" (1.9)

o — < Id 155%88," ) .

It easy to check that m;[5, = 0 for i # 0. The subspace A§ defines the derivative element
to Ay at zero.

An analogous construction applied to A, with 7 > 0 gives a new curve 7 — A? called
the derivative curve of the curve A;.

By construction, A € AQ and we say that the pair Ay, A§ defines the canonical splitting
of 3. We remark that w.r.t. local coordinates such that

) w=()

the regular curve A; = _{(x,Stx)T, x € R"} is represented by the matrix S; such that
S() = 0, S() =0 and det(S()) 7& 0.

From the coordinate representation (1.9) it is easy to see that to a regular curve there
corresponds a smooth derivative curve.

1.3.3 Generalized curvature operator

Definition 1.3.2. The linear operator
Ra(t) = —A% o A,. (1.10)
is called the generalized curvature operator of the curve A; at a point t.

By the isomorphism mentioned above, A; = Y/A; = A}, Ay =& X/A; = A" and

A_t : Ay — A7 is a self-adjoint linear operator. Therefore R, is a linear operator on A;.

Definition 1.3.3. The trace of the generalized curvature operator is called the generalized
Ricci curvature:

pA(t) = tr RA(t) . (1.11)
Definition 1.3.4. The quadratic form
@@ = (Ao Bae) (©), €€ (112)

is called the curvature form of the curve t — A; at a point t.
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In what follows, depending on the context, in order to simplify notations we will use the
same notation A, for the quadratic form, bilinear form and the linear mapping A; — Aj,
corresponding to a curve A;.

The curvature R (t) can be seen as a kind of generalization of the curvature operator
R : & = R(¥(t),€)7(t) that appears in Riemannian geometry and describes the Jacobi
vector fields via the classical Jacobi equation

E+R(E) =0 (1.13)

along any geodesic (), with R being the Riemann’s tensor. We will discuss this point in
details in Chapter 3.

As in Riemannian Geometry, the generalized curvature operator and the generalized
Ricci curvature provide information about the location of the conjugate points of a curve
in the Lagrange Grassmannian. There takes place the following analogous of the classical
Rauch Theorem (see [2]| for the proof):

Theorem 1.3.5. Assume t — A; is a smooth curve in £,(X) and At is a positive - definite
quadratic form for all t > 0. If Ry(t) < C Id for some constant C > 0, then |t; — to| > (o
for every pair of conjugate points ty and t,. In particular, if Ry(t) < 0, then there are no
conjugate points.

If for all t > 0 pp(t) > nC for some C > 0 , then for arbitrary to < t the interval
[t,t+ %] contains a point conjugate to t.

In local coordinates in £,(X) such that A; = {(z,Sx)", = € R"} the generalized
curvature operator has the following representation:

1. . .
R, = 55;15§3> - %(S;lst)? (1.14)

The proof of this formula can be found, for example, in [3]. Here we would like to make
the following remark.

Remark 1.3.6. In the case n = 1 the operator

1. s
8(5) = 557159 — 36718, (1.15)

is just the classical Schwarzian derivative or Schwarzian of the scalar function S;. It is well
known that for scalar functions the Schwarzian satisfies the following remarkable identity:

S <M> =S(¢(t)) (1.16)

cp(t)+d

for any constants a, b, ¢, and d, ad — bec # 0.
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Similarly, if n > 1 by choosing another symplectic basis in X, we obtain a new coordinate
representation ¢ +— S; of the curve A; which is a matrix Mo6bious transformation of S;,

S, = (C + DS,)(A + BS,)™" (1.17)

for some n x n matrices A, B, C, and D. It turns out that the matrix Schwarzian (1.15) is
invariant w.r.t. matrix Mobious transformations (1.17) by analogy with identity (1.16) (the
only difference is that instead of identity we obtain similarity of corresponding matrices).
Therefore formula (1.14) actually does not depend on the choice of local coordinates in
L,(X). This fact shows again the intrinsic meaning of curvature operator.

1.3.4 Canonical moving frame

Let ¢ — A; be a regular curve in the Lagrange Grassmannian £, (X). Consider a family of
Lagrangian subspaces A; € £,(X) such that for any ¢ the pair (A, A;) form a splitting of
X =ADA;. Let {€2,...,e%} be a basis of the space Ag.

Lemma 1.3.7. There exists a unique way to choose the basis {e1(t), ..., e,(t)} of A; such
that e;(0) = €?, é;(t) € A, and {e;(t), é;(t)}"_, form a Darboux basis of ¥ for every t € R.

Proof. Let {e;(t)}"_, be a basis of A; such that ¢;(0) = € and let {f;(¢)}", be the
complementary basis in A;. Denote by E = (ey(t),...,e,(t))T the matrix whose rows are
the vectors e;(t) and similarly let F' = (f1(¢)..., fo(£))TL.

The derivative of E can be presented as E = M, (t)E 4+ My(t)F, where M, M, are
some n X n matrices. Let E = (& (t),...,&,(t))” be another basis of A; such that E =
AyE where Ay @ Ay — Ay is a linear non-degenerate operator depending on ¢. Then the
inverse of its transform defines a new basis in A;, complementary to E: F = (A;)""F,
F = (fi(t),..., fa(t))7, so that the {&(t), fi(t)}™, is a new Darboux basis of . Further,

E = AE + AE = (A, + AL M (t))E + A, M,(t)F .

Hence if the linear operator A, satisfies the matrix ordinary differential equation A, +
A;M;(t) = 0 with some initial condition A,, then the new basis {€;(¢)}!, is the desired
one. For example, one can take Ay = Id. The uniqueness follows from the classical theorem
of existence and uniqueness of the solutions of the ordinary differential equations. O

Any splitting of ¥ generates a moving frame described in Lemma 1.3.7. In particular,
as a complementary space to a regular curve A, one can take its derivative curve A7. To

!We call the basis F' complementary to the basis E, if {e;(t), fi(t)}; form a Darboux basis of the
whole symplectic space X. If (E,F) is some other Darboux basis of X, then the symplectic map & :

(E,F) — (E, F) has the form N
(5)-(&5))

with ATC = CTA, BTD = DTB and ATD — CTB =1d.
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this special splitting there corresponds a moving frame with particular properties which
reflect the intrinsic meaning of the curvature operator of the corresponding curve in the
Lagrange Grassmannian. More precisely, there takes place the following statement.

Lemma 1.3.8. Let {e;(t), fi(t)}?., be the Darboux basis from Lemma 1.3.7: for every
t € R there is a splitting ¥ = A, @ A} and

Ay = span{e;(t),..., e (t)}, A} =span{fi(t)..., fu(t)}.
Then there exist symmetric matrices o(t) = {0 (t)}},;=, and r(t) = {ry(t)}7,=, such that

n

éi(t) = Z oM fi(t),  filt) =D ry(te;(t),  i=1,...,n. (1.18)

7j=1
Moreover, the matrix o(t) is constant: o(t) = p.

Proof. The first statement of the lemma follows from the properties of a Darboux

basis. Indeed, for all ¢ and every 7,7 = 1,...,n we have
o(ei(t), e;(t) =0,
a(fi(8), f;(t)) =0, (1.19)

where d;; is a Kronecker symbol.
From the Lemmal.3.7 we know that the derivatives of e;(t), i = 1,...,n belong to the
subspace A, so there exist g;;(t) such that

() =Y ey 0.

Now we show that the derivatives of f;(t) belong to A,. Indeed, assume that f;(t) =
> i (t) fi(t) +7ij(t)e;(t) with some a(t) € R**™. Then from the last formula of (1.19) we
j=1

get .
0=0(&(), f;(t) + o(e?), f;(t) =

= () (fu(t), fi(t)) + rn(t)o(ei(t), ex(t) + ag(t)o(ei(t), fu(1)) = zi(t).

k=1
Next, differentiating the first formula of (1.19) we get

0= o(&(t), (1) + o(es(t), (1)) =

3

=D (ew(D)o(fi(1) €;(1)) + en(t)o(ei(t), fi(t))) = —ei(t) + 05(t)

k=1
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and so the matrix p(¢) is symmetric. Analogously from the second formula of (1.19) it
follows the symmetry of the matrix ().
Let us show that the matrix o(¢) is actually constant. First of all we observe that

0ij(t) = o(éi(t), e;(t)).

For any ¢ one can choose some local coordinates in £,(X) so that A, = {(z,S,z)’, z €
R} with S; = S, = 0 and det(S;) # 0. In these coordinates every e;(7) € A,,i=1,...,n
admits the following representation:

ei(r) = ( zi(7) ) zi(1) €R",

and by differentiation we get

(1) = (STxi(TfiiTi‘Tii(T)> .

Since é;(1) € A, and S, is non-degenerate, %;(t) = 0. Differentiating again we have

“ln = (stc(T()T)) ’ (ZSx (T)O+ éfxi(r)> ’

So &;|,—s = (i(t),0)T € A; and hence §(t) = 0. O
The basis {e;(t), fi(t)}, satisfying equations (1.18) is called the canonical moving
frame associated with the curve A;. Equations (1.18) are called the structural equations.
From Lemma 1.3.8 and (1.10) it follows immediately that w.r.t. the canonical moving
frame the curvature operator has the form

Rp(t) = —or(t). (1.20)

In particular, for the regular curve one can choose the basis {e;}? ; so that o = Id, then
R(t) = Ra(t) = —r(t). We will call such a basis the special canonical moving frame. With
respect to this frame equations (1.18) take the form

with R;;(t) being the elements of the coordinate representation of the operator Ry (t) w.r.t.
the special canonical moving frame. We also remark that w.r.t. such basis the matrix
representations of the curvature operator and the curvature form coincide.

1.4 Jacobi curves

Let M € R® be a smooth n - dimensional manifold and 7*M be the cotangent bundle
over M. Denote by 7 the canonical projection 7 : T*M — M. Let o be a non-degenerate
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canonical closed 2-form on T*M. The cotangent bundle 7*M endowed with ¢ has a
structure of a symplectic manifold, so that the space ¥, = (T,(T*M), o) attached to any
z € T*M is a 2n-dimensional symplectic space.

Let h € C(T*M) and h be the Hamiltonian vector field associated to h:

o,(nh) =d,h, VzeT*M.

Hereafter we assume that h is a complete vector field, in other words we assume that the
solution of a Cauchy problem # = h(z), 2(0) = zo is well defined for all ¢ € R and all
zo € T*M.

If g = (qi,- .-, qs) are local coordinates in some open subset N of M and p = (p1,...,p,)
are the induced coordinates in the fiber of 7*N, then the canonical symplectic form is given
by

o= Z dp; N\ dg; .
i=1
The last expression allows to identify 7*N with R” x R* = {(p,q), p,q € R"} so that
N =0 x R". Then the tangent space T,(T*N) to T*N at any z € T*N is identified with
R™ x R™. Under this identification

5 <~ (Oh oh
h=>Y" <a_p,-a‘“ - a—qiapi> : (1.22)

i=1

We denote by eth . M — M the Hamiltonian flow induced by h on T*M and by

-

et T,(T*M) - T

eiﬁ(z)

(T"M)
its differential. Being a flow generated by a Hamiltonian vector field, eth preserves the
symplectic structure on 7" M:

and therefore it transforms Lagrangian subspaces of ¥, into Lagrangian subspaces of ¥ _;; .
A Lagrange distribution D C T(T*M) is a smooth vector sub-bundle of T'(T*M) such
that each fiber D, =DNX,, z € T*M is a Lagrange subspace of the symplectic space 3,.
The pair (i_i, D) is called the dynamical Lagrange distribution
The basic example of a Lagrange distribution on T'(T*M) is the so-called vertical dis-
tribution II = |J II, with

2€T*M
I, =T,(T} M), z€ T*M

being the tangent space to the fiber T;(Z)M at the point z € T*M. As we saw in Example
0.0.1, this distribution appears naturally in the problems of classical Calculus of Variations.
It will play a particular role in our further analysis. We will call the pair (E, IT) the vertical
dynamical Lagrangian distribution.
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For any two vector field &, & from the distribution D the number oz([ﬁ, &1, &) depends
only on the vectors & (z) and &(z). Moreover, it defines a symmetric bilinear form on D.
Indeed, since the Hamiltonian flow preserves the symplectic structure,

0=0(&,8&) = (etﬁ*0> (&1,6) = U(eiﬁfb eiﬁ 2) -

Differentiating this equality w.r.t. time and setting ¢ = 0 gives 0 = 0([5,51],{{2) +
o(&1,[h, &)), and since the form o is anti-symmetric,

o([h, &), &) = o([h, &), &) -

Definition 1.4.1. We say that h is regular at z € T*M with respect to the Lagrange
distribution D if the quadratic form

92(6(2),6(x) = 0.([h.€1,€),  €€D
is non-degenerate. In this case the dynamical Lagrange distribution (ﬁ, D) is called regular.

Analogously we say that the vector field & and the dynamical distribution (%, D) are
monotone increasing (decreasing) at z € T*M if the quadratic form g” is positive (negative)
definite.

Definition 1.4.2. The curve in the Lagrange Grassmannian L,(X,) defined by the fol-
lowing expression

T.(t) = ;™11 ; (1.23)

(2)
is called the Jacobi curve of the curve t — ethz attached at the point z € T*M.

Essentially the Jacobi curve is just a family of the vertical Lagrangian subspaces trans-
lated along an integral curve of the field & and collected at a point z. All the information
about the Jacobi curve is encoded in the generating vector field h. Due to the invari-
ance of the symplectic structure with respect to the symplectic transformation, all points
z(t) = ez, t € R are equivalent. Therefore knowing the Jacobi curve and the associated
derivative curve at some instant of time, for example, at ¢ = 0 at any point z of a given
trajectory ¢t — ez, one can reconstruct the whole curves just by translation along the

Hamiltonian flow e**:

Too(t) = ™1, (0),  J2,(t) = e "2 (0). (1.24)

The pair consisting of a Jacobi curve J,(t) and the corresponding derivative curve J2 ()
defines a canonical splitting of 3, at any time ¢. The distribution

is a direct complement to the vertical distribution II, it is called the canonical connection
associated to the field h. The corresponding splitting T(T*M) = II @ = is called the
canonical splitting of T'(T*M). We will call vector fields from = horizontal.
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Proposition 1.4.3. The regular w.r.t. the vertical distribution vector field generates a
regular Jacobi curve.

Proof. Recall that for any vector field ¢ in 7*M one has

% (e7¢) = e, ). (1.25)

Without loss of generality we can choose local coordinates on the cotangent bundle

"M ={z = (p,q), p,qg € R"}

such that IT, = {(p,0)T, p € R*}. Take some A(t) € J,(¢) such that A\(0) = £(z) where
Eelland £ =) &0,,. Then
i=1

A0) = [ﬁ, _Z&ap,-] (2) = = 3 by, (2),(2)0;,  mod 1L,

2,j=1
and recalling the definition of the form ¢g" we get
(o, Xo) = g2 (€(2),€(2)) = (hyp(2), €(2)), (1.26)

where hy, = {hy,p,(2)}i=;. The proposition now follows from the regularity of the field h.
U

Remark 1.4.4. From the last proposition it follows that the Hamiltonial vector field h
is regular w.r.t. vertical distribution II if and only if the Hessian of the restriction of the
corresponding Hamiltonian function h to the fibers is non-degenerate. In particular, A is
monotone increasing (decreasing) if and only if A is strictly convex (concave) on fibers.

—

Definition 1.4.5. The point z; = €'’z is called conjugate to zy w.r.t. the dynamical
Lagrangian distribution (h, D) along the integral curve t — €%z, of the field h if and only
if

"D, ND,, #0. (1.27)

Remark 1.4.6. From the definitions of conjugate points in the Lagrange Grassmannian
(Definition 1.2.2) and Jacobi curve (Definition 1.4.2) it is easy to see that the point z;
is conjugate to zp in the sense of Definition 1.4.5 for the vertical dynamical Lagrangian
distribution (A, IT) if and only if the time #; is conjugate to 0 for the Jacobi curve J,,(-) in
the Lagrange Grassmannian £,,(X,).

One can describe all symplectic invariants associated with a Jacobi curve in terms of the
generating vector field A. Such formulation is particularly useful in practical computations.
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First let us find an explicit expression of the canonical connection = associated to the
field h. Let & be a vertical vector field: &£(z) € II, for all z € T*M. Choose some local
coordinates in £, (X,) such that

J.(0) = (g) J3(0) = (2) 5y ERY,

T

Jz(t)=<Stx), ST =5, So=8 =0, det($)#0.

and

Then any vector ¢ € ¥, can be presented as a sum
C=ct+e,

where (" € J,(0), ¢* € JZ(0) are the horizontal and vertical parts of (. Take now some
A € J,(t) such that \g = (zy,0)T = £(2) where & € II. Then

[ iy 0
M= (Sti‘/\> - (5t33A> -

[7,€]°(2) = @x(0),  [h,€]"(2) = Somx(0). (1.28)

Comparing with (1.25) we get

Differentiating one more time gives
[, [R, €] (2) = 2[h, [R,€]')"(2) ,

and finally o o
[, [, €)1 (2) = [, [, €]")"(2) - (1.29)

If now we assume that the horizontal basis in X, has the form

J;(0) :span{ﬁqi +Zaz~j6pi, i= 1,...,n} ,

=1

where (p, q) are local coordinates in T* M, then substituting this expression into (1.29) we

get the elements of n x n symmetric matrix A(z) = {a;(2)}7,-1:
2hpp A(2) hyp = {h; by} — hpghpp — Bpphap (1.30)
where
hpp = {hpipj (2) Zj:l y o hpg = {hmqj(z) Zj:l , heg = {hQi(Ij (2) Zj:la
and

{h, hpp}ij ={h, hmpj}(z) .
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Here the matrix {h, h,,} is the matrix of Poisson brackets of h with elements of h,.
The similar computation applied to (1.10) (see [3] for the details) gives the formula
for the curvature operator

Ry (0)&(2) = —[h, [h, " (2) (1.31)

We will call the operator RE = Ry, (0) and the quadratic form r?({) = g§(R§§, £), el
the curvature operator and the curvature form of the Hamiltonian vector field h at a point
z € T*M. We say that the field h has a negative (positive) curvature at z € T*M if its
curvature form is negative (positive) definite quadratic form on IT,.

We conclude this chapter with few basic examples.

Example 1.4.7. (Natural Mechanical system) A mechanical system with the Hamiltonian
of the form

h(p,q) = <p’2p> +Ulg), pgeR, (1.32)

U(q) being some function on M = R", is called the natural mechanical system.? It provides
the simplest example of a regular Jacobi curve. In this case h,, = Id and the corresponding
Hamiltonian vector field is monotone increasing (w.r.t. II) together with the generated
Jacobi curve. The splitting defined by (1.30) is trivial: A(z) = 0. Moreover, the curvature
form ’/‘E is just the Hessian of the potential energy U:

r™(Opi, Op;) = 627[](11) z=(pq €T"M. (1.33)

smm e 04;0q; ’ ’

Example 1.4.8. (Riemannian manifold) Let M be a Riemannian manifold endowed with
a Riemannian metric G that defines an inner product Gy(-,-) on each tangent space T,M,
q € M and depends smoothly on q.

There exists a canonical isomorphism between T M and T,M via Gy(-,-). For any
q € M and p € TM we will denote by p' the image of p under this isomorphism, namely,
the vector p' € T, M, satisfying

p=Gqp',"). (1.34)
This operation corresponds to the raising of indexes in the coordinate representation of
co-vectors and vectors.

The standard Legendre transformation ( see (I.5)) leads to the following Hamiltonian
function on T*M: h(p,q) = 3G;'(p,p). The corresponding vector field h is regular pro-
vided the form G is non-degenerate. Note that h generates a geodesic flow on T'M due to
the natural isomorphism defined by (1.34).

It turns out that the generalized curvature operator is exactly the Riemann’s operator
from the Jacobi equation (1.13):

(Rhe()t =R(:1,€N2",  ¢ell, zeT'M.

2Usually the function U represents the potential energy of a mechanical system.
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Here we identified the vertical space II, with T;(Z)M using the fact that the fibers of T* M
are linear spaces.

Example 1.4.9. (Mechanical system with holonomic constrains) The motion of a me-
chanical system subject to some holonomic constrains can be modeled as a motion of a
point on a Riemannian manifold M endowed with the metric G' from the previous example
in the potential filed described by some function U on M. In this case the Hamiltonian
function takes the form

h(p,q) = %Gq_l(p,p) +U(q), (p,q) €T"M, (1.35)

and it can be shown that
(REE(2))! = R(21, €N + Ver(VU)(r(2)), € €T, 2€T"M,  (1.36)

where V, denotes the covariant derivative along some vector field © € T M, defined by the
Levi-Civita connection on the Riemannian manifold M.
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Chapter 2

Reduction by first integrals

In this chapter we study regular dynamical Lagrangian distributions generated by Hamil-
tonian systems with first integrals. Namely, we study the change of curvature operator,
curvature form and the behavior of conjugate points related to the reduction of a dynamical
system by an arbitrary number of first integrals in involution.

The existence of first integrals plays an important role in the analysis of the global
behavior of the solutions of a Hamiltonian system. As it is well known from the course
of Dynamical Systems, the presence of first integrals permits to reduce the number of
degrees of freedom of the system by restriction the original phase space to the level set
of the first integrals. The new reduced dynamical system has less unknown variables and
often it is easier to deal with. The class of systems with first integrals is quite large, for
example, it includes all autonomous Hamiltonian systems: the Hamiltonian function itself
is a first integral. Another classical example are the mechanical systems with rotational
symmetries (so-called cyclic integrals), like the Rigid Body or the system of N bodies
interacting gravitationally.

We start by a short discussion about the geometrical and variational meaning of the
reduction by first integrals. In Section 2.1 we give the definition of a reduced dynamical
Lagrangian distribution and illustrate the variational meaning of conjugate points of a
reduced distribution illustrating our exposition by the most common situations of Hamil-
tonian Dynamics.

In Section 2.2 we derive an explicit formula for the curvature operator and the curvature
form of a reduced dynamical Lagrangian distribution. First we define the reduction of a
curve in the Lagrange Grassmannian and make the proof for this case. Then we reformulate
the results in terms of dynamical Lagrangian distributions. It turns out that reduction in
a monotone increasing Lagrangian dynamical distributions does not decrease its curvature
form. The method of calculation which we use allows to avoid the introduction of the new
canonical variables for the reduced system.

In Section 2.3 we analyze the relative behavior of conjugate points of the original and
reduced systems. An interesting phenomenon that we find is that the sets of conjugate
points to a given point w.r.t. the monotone increasing dynamical Lagrangian distribution
and w.r.t. its reduction by one integral are alternating. Moreover, the first conjugate point
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(to a given point) of the reduced Lagrangian distribution comes before any conjugate point
related to the original dynamical distribution.

2.1 Variational and geometrical aspects of reduction

Consider a dynamical Lagrangian distribution (i_i, D) generated by a regular Hamiltonian
vector field h € T(T*M). Let g1, ..., gs be the first integrals in involution of the Hamilto-
nian h, i.e., s functions on 7*M such that

{hagz}zoa {gz,g]}zoa 17.7:17“9 (21)

Let G = (g1,...,9s) and consider the set

DY = DY +span (§1(2),...,5:(2)), DI = (ﬂ ker dzgi) ND,. (2:2)

=1

It is easy to see that the subspace DY is Lagrangian, dimD¢ = n and D¢ is a Lagrangian
distribution. The pair (ﬁ, DY) is called the reduction by the s-tuple G of first integrals of
in involution or shortly the G-reduction of the dynamical Lagrangian distribution (ﬁ, D).

Let us consider more in detail the geometrical meaning of the reduction in the case
of one first integral. In this case G = g with g € C°(T*M) such that {h,g} = 0. The
following example describes the standard reduction of the Hamiltonian systems on the level
set, of the first integral linear on fibers, commonly used in Mechanics.

Example 2.1.1. Assume that the first integral ¢ is such that the corresponding Hamilto-
nian vector field g preserves the distribution D, namely,

D =D. (2.3)
Fixing some value ¢ of g, one can define (at least locally) the following quotient manifold:
Woe=9"'(0)/C,

where C is the line foliation of the integral curves of the vector field g. It is easy to see
that dimW, . = n —1 and it is a symplectic manifold with the symplectic form induced by
the symplectic form o on T*M. Moreover, if we denote by

P : g_l(c) = W

the canonical projection on the quotient set, then the vector field ®,h is a well defined
Hamiltonian vector field on W, ., because by our assumptions the vector fields h and g
commute. Thus by (2.3), ®,(D?) is well defined Lagrangian distribution on Wy .. So, to
any dynamical Lagrangian distribution (/_i, D) on T*M one can associate the dynamical
Lagrangian distribution (CIJ*E, ®, DY) on the symplectic manifold Wy . of smaller dimension.
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The model example of a first integral satisfying (2.3) is a first integral linear on fibers,
i.e a function g such that

9(p,q) =p(V(g), ¢eM, peT/M (2.4)

with V being a vector field on M. The first integrals satisfying (2.4) are called cyclic.
By the Theorem on the straightening of vector fields ([12]), one can choose the canonical
variables in the phase space T*M is such a way that V = 0g; for some i, then ¢; is a cyclic
variable (i.e. the Lagrangian function and, consequently, the Hamiltonian do not depend
on ¢; explicitly) and the corresponding conjugate impulse p; = g(p, q).

If we denote by V the line foliation of integral curves of the vector field V', then W, . can
be identified with 7*(M/V). So, after reduction we work with the dynamical Lagrangian

distribution (@*E, P) on the reduced phase space T*(M/V) with P = I1¢ being the vertical
sub-bundle of T*(M/V).

In view of the previous example the following analogue of the notion of the conjugate
points along the extremal of the G-reduction of the pair (h, D) is natural: the point z; =
e'thz is called conjugate to z for the G-reduction of the pair (h,D) along the integral

curve t — ez, of the Hamiltonian field A, if

((e""),D% NDY) /span{Gi(z1), .- .,Gs(21)} # 0. (2.5)

-

In the situation, described in Example 2.1.1, the point z; = e""z, is conjugate to z, for

the g-reduction of the pair (fz, D) along the curve t — ez if and only if the points ®(z;)
and ®(zg) are conjugate w.r.t. the the pair (Cb*ﬁ, <D*D9> along the curve ¢ — @(etﬁzo) in
the reduced space W .

We illustrate the variational meaning of the conjugate points of the reduction on the
following two important examples. In both examples L € C*°(T'M) is a given Lagrangian
function convex on T, M for any ¢ € M, and h: T*M — R is the corresponding Hamilto-
nian defined via the Legendre transformation (I.4).

Example 2.1.2. (Reduction by a cyclic integral) Assume that the Hamiltonian h admits a
first integral g satisfying (2.4). The following optimal control problem with fixed terminal
time and free terminal point illustrates the variational meaning of conjugate points of the
reduced problem in this case.

Let V; : R — M be an integral curve of the vector field V' and a(-) be a function on V;
such that

aVi(s)) =s, seR

Fix some constant ¢ € R. Then for a given point gy and time 7" consider the minimizing
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problem

Allq())] /L ) dt —ca(q(T)) — min, (2.6)

q0) =q, ¢(T)eV, uveT,M. (2.7)

The curve ¢ : [0,T] — M, satisfying (2.7), is an extremal of the problem (2.6)-(2.7) if
and only if there exists an integral curve 7 : [0,T] — g~%(c) of k, such that §(t) = 7 (y(t))
for all 0 < ¢ < T. In this case the point v(0) is conjugate to v(T') for the g-reduction of
the pair (ﬁ, IT) if and only if the point gq is conjugate to the point ¢(7") along the extremal
4(+) in the classical variational sense for the problem (2.6)-(2.7), i.e. the second variation
of the functional AZ[g] is degenerate.

The next example shows that actually condition (2.4) is not restrictive and the reduction
makes sense also for the non-cyclic integrals, like the Hamiltonian function itself.

Example 2.1.3. (Reduction by the energy integral) Suppose now that g = h. This case
can be modeled by the following optimal control problem with fixed end-points and free
terminal time : for given real ¢ € R and points qq, g, € M

T
/L ) dt —c¢T' — min, T is free, (2.8)
0
900)=q, ¢T)=q, uveT,M. (2.9)

The curve ¢ : [0,T] — M, satisfying (2.9), is an extremal of the problem (2.8)-(2.9) if
and only if there exists an integral curve v : [0,7] — h~%(c) of the field , such that
G(t) = 7 (y(t)) for all 0 < ¢ < T. In this case the point v(0) is conjugate to v(T") for the
h-reduction of the pair (k,I1) if and only if the point go is conjugate to the point ¢; along
the extremal ¢(-) in the classical variational sense for the problem (2.8)-(2.9).

Note that the present case can be seen as a generalization of the situation considered
in Example 2.1.2: one can pass to the extended configurational space M = M x R instead
of M and take the following function L:TM — R as the new Lagrangian:

L(Gu) =L (q, g) Y.

Here g € M so that Gd=1(g,t),qge M,te Randu € Tins such that u = (u,y), u € T, M,
y € TR =2 R. This construction reflects the well known fact ( [17]) that (¢, H) is the pair
of conjugate variables for the new Lagrangian function Z, so that the vector filed 0; plays
the role of the filed V' of the previous example. !

1 This is the Optimal Control version of the so-called Mopertui Least Action Principle well known is
Classical Mechanics.
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Remark 2.1.4. Observe that in both cases of Examples 2.1.2 and 2.1.3 the number of free
parameters of the variational problem for the reduced system is not less than for the original
system: making reduction together with decreasing the number of degrees of freedom of
the system adds some new free parameters, like the terminal point in the Example 2.1.2
and the terminal time in Example 2.1.3.

2.2 Reduced curvature

2.2.1 Reduction and the curves in the Lagrange Grassmannian

Consider a s-tuple of vectors (l1,...[s) in the 2n-dimensional symplectic space 3 such that
O'(li,lj):(], i,jzl,...,S. (210)
Let ¢ = span{ly,...l;}. For any A € £,,(X) define

A=Anec+e, A=A (2.11)

Actually, A? is a Lagrangian subspace of 2n — 2s dimensional symplectic space S = (¢4 /1)
(with symplectic form induced by o).

Let A() be a regular curve in the Lagrange Grassmannian £, (X). We will call the curve
A(-)¢ the reduction by the s-tuple ¢, satisfying (2.10), or shortly the £-reduction of the curve
A(+). Note that by (2.11) £ C A(¢)* for any t. Therefore the curve A(-)¢ is not regular and
the constructions of Chapter 1 cannot be applied to it directly. Instead, suppose that the
curve W is a regular curve in the Lagrange Grassmannian £, ¢(X). Then the curvature
operator R7(t) of this curve is well-defined linear operator on the space A(t)~.

Denote by ¢ : ¥ — X / £ the canonical projection on the factor-space.

Definition 2.2.1. The curvature operator Ry:(t) of the {-reduction A(-)* at a point t is
the linear operator on A(t)*, satisfying

Rae)(©) = (8lypee) 0 R0 06). €€ AW (2.12)

The curvature form r4:(t) of the f-reduction A(-)¢ at a point t is the quadratic form on
A(t)*, satisfying

d

= — (A®)) (Ra(05,€) . £€AQ). (2.13)

rae(t)(€)

The reduction in the Lagrange Grassmannian is a model of the reduction by first

integrals in the phase space of a dynamical system which we discussed in Section 2.1.

Indeed, let G = (g1, ..., gs) be a set of s involutive first integrals. Then at any z € T*M

the span of the corresponding to G Hamiltonian vector fields ¢i,..., g, is an isotropic
subspace of YJ,, actually it is nothing but the subspace /.
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Summing up we see that to any regular Hamiltonian vector field h one can associate
two Jacobi curves in the Lagrange Grassmannian £,(X,) attached at a point z € T*M:
the curve J,(-) generated by the standard vertical dynamical distribution (,II) and the
curve B

T (t) = e, "7, zeT*M
generated by the pair (k, T19) with I19 defined by (2.2). We will denote by RE’Q, rzﬁ’g and
pf;“g the reduced curvature operator, the reduced curvature form and the reduced Ricci
curvature corresponding to the curve J9(-).

The meaning of the reduced curvature form is particularly clear when the fields g;,
1=1,...,s preserve fibers, i.e. in the situation described in Example 2.1.1. For simplicity
let us consider the case of one first integral g, satisfying (2.3): G = g. Let symplectic
manifold W, . and a mapping ® : g~'(c¢) — W, . be as in this example. Then

rf’g = rng) , where Tg(*f) 1 9,1 —» R, (2.14)

i.e. the curvature form of JI(t) at 2 € g~'(c) is equal to the pull-back by ® of the curvature
form of the curve generates by ®,A in the reduced symplectic space Wy .

The natural question is what is the relation between the curvature forms and operators
of a Jacobi curve J,(-) and it reduction JY(-) on the common space of their definition IT¢.
The following example shows that even in the simplest situation the answer is not obvious.

Example 2.2.2. (Kepler’s problem) Consider a natural mechanical system on M = R?
with the potential energy U = —r~!, where r is the distance between a moving point in a
plane and some fixed point. This system describes the motion of the center of masses of
two gravitationally interacting bodies in the plane of their motion ([11]). Let ¢ = (r, ¢) be
the polar coordinates in R?. Then the Hamiltonian function of the problem takes the form

pot P ]

e _ - 2.15
2+2r2 r’ ( )

where p, and p, are the canonical impulses conjugated to r and ¢. If z = (p,q), where
g€ M, peTrM, then p(z) = p(d,(q)) = dgr, po(2) = 1°p(0,(q)) = r’dgp. Observe
that g = p, is nothing but the angular momentum of the moving point w.r.t. the origin,
and from (2.15) we immediately see that it is a first integral of the system: ¢ is a cyclic
variable. Let us compare the curvature forms r§ and r§79 on the common space of their

definition o
[ =, Nkerd,g = RI,, (2).

First, according to formula (1.33) of Example 1.4.7, the curvature form of J,(-) is equal
to the Hessian of U at ¢. In particular, it implies that

—U(q) = ——. (2.16)
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Now fix some ¢ € R and consider the level set g(z) = c¢. Note that g satisfies the
condition (2.4) of Example 2.1.1 with V = r29,. Let W, . and ® be as in Example 2.1.1.
In the present case W, . = T*R" and the dynamical Lagrangian distribution (q)*i_i, ®,R0,, )
is equivalent (symplectomorphic) to the dynamical Lagrangian distribution associated to
the natural mechanical system with the configurational space R™ and the potential energy

2 1

2

U, is the so - called amended potential energy ( [11]), it comes from the following identity:

2
r

h‘g_l(c) =% + U,(r). Hence by (2.14)
= d? 32 2 = 3c?
A, _ _ R
T2 g(apr) - d7’2 Ua(/") - 7,.4 - 7,._3 =Ty (apr) + 7,.4 . (2'17)

Note that from (2.17) it follows that on the common space of the definition the reduced
curvature form is grater than the curvature form itself. As we will show later (Corollary
2.2.7), it turns out that this is a general fact.

2.2.2 Variation of the curvature after reduction in Lagrange Grass-
mannian

In this subsection we derive the relation between the curvature forms of some regular curve
A(-) and its f-reduction A(+)* in the Lagrange Grassmannian £,(X). As before, denote by
¢ =span{ly,...,ls} the span of s vectors, satisfying (2.10).

First we introduce some more notations. Let By : X — A* be such that for a given
weE Y

By (w)(v) = o(w,v), vEA. (2.18)
Let a;(t) € A(t),i=1,...,s be such that
o(a;(t),v) = o(l;,v), YveA), (2.19)
or, equivalently,
a;(t) =1; mod A(t). (2.20)

Recalling the definition of the linear operator A we notice that actually

.\ -1
a;(t) = (A(t)) o Ba (L) .
Denote by A(t) the s x s matrix such that
A (t) = 0 (lg, apm (1)) , k,km=1,...,s. (2.21)

By (2.20)

Agm(t) = o (ax(t), am(t)) - (2.22)
Notice that the matrix A(¢) is symmetric. Now we are ready to formulate the main result
of the subsection.
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Theorem 2.2.3. Let A(-) be a regular curve in the Lagrange Grassmannian L,,(X) and ¢
be a span of s vectors l; € ¥ such that (2.10) holds and

det A(T) # 0

at some point T.
Then the curvature form r5(7) of the curve A(-) and the curvature form rxe(7) of its
(-reduction A(-)! at the point T satisfy the following identity:

3 < . .
(rac(r) =ra(M) (€)= 7 D (AN ™), 0 (@(7),€) 0 (@m(7),6) . VEEA(T) N L2,
k,m=1
(2.23)
where (A(1)1),,, is the km-element of the matrix A(r) .
Moreover, for the curvature operator Ry (7) of the curve A(-) and the curvature operator

Rac(7) of its f-reduction A(-)! at the point T there holds the following identity?:

-1

[Rac(r) = Ra(7)] =§i(A(ﬂ—l)kmBAmdm(T)@((Am) OBAmdk(T))-

A(T)Ne< —
(2.24)
Proof.
First let us prove identity (2.23). Observe that since det A(7) # 0
span{ai(7),...,a,(7)} N =0. (2.25)

Denote be ¢; the 7-th vector of a standard basis in R®. We can choose a Darboux basis
in ¥ in such a way that ¥ = span{ey,..., ey, f1,---, fn} Where

A(1) = span{e, ..., e},

i 0 .
ei:<i))a fi:(@')’ 7’:1’"'577’,

and the following relations hold

A(T) N ¢4 = span{ey, ..., e, s}, (2.26)
a; € span{e,_si1,---,€n}, (2.27)
li = fasvi- (2.28)
Note that by construction
lé = Span{ela . -aenfsafla ’ et afn} .

2 As usual, for a given linear functional ¢ and a given vector v by £ ® v we denote the following rank 1
linear operator £ ® v(-) = &(-)v.
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Therefore ~
Y =/0“/0 = span{eq,...,en g f1,- s fu_s}-
Since by definition a;(t) € A(t), then there exists p;(t) € R" such that

0= (goy)

Differentiating we get

0= (550) * () = (s ™0

This, together with (2.20) and (2.28), implies that

i = (Stilg (t)>

pz(t) = S’_lenfs—kia

and hence

provided the curve A(:) is regular.
On the other hand, from (2.27) and (2.26), one can obtain that

pz’(T) = ZU (ai(T)a lj) €n—s+j = — ZAij(T)€n—s+j-
j=1 j=1

39

(2.29)

(2.30)

(2.31)

(2.32)

For a given n x n matrix S let us denote by S the (n — s) x (n — s) matrix, obtained
from S by erasing the last s columns and rows. Then from (2.31), (2.32) and symmetry of

S, it follows that S ! has the following blocked form:

( o 0o ... 0\

g-1

-~ 170 ... 0 ’
—A(7)

o o )

(2.33)

Consider now the curve A(-)¢ in the Lagrange Grassmannian £,_¢(X). By construction,
if S; is the coordinate representation of the curve A(t) w.r.t. the chosen symplectic basis,

then S; is a coordinate representation of the curve A(-)¢ w.r.t. the basis of ¥, indicated
in (2.29). Since det A(7) # 0, from (2.33) it follows that the germ at 7 of the curve A(-)¢
is regular. In particular, the curvature form of the f-reduction A(:)¢ is well defined at 7.

Using formula (1.15), we obtain that the quadratic form

(rae(7) = ra(7))

A(T)NE<
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in the basis {e;};’ is represented by the matrix
~5,S(S,) +5,5(5,).

Observing that S, has the same blocks as S, from (1.15) and (2.33) we easily get

3

k,m=n—s+1 ij=1

In order to prove (2.23), it is remains to prove the following technical Lemma.

Lemma 2.2.4. The restriction on A(1) N 14 of the quadratic form

S

£ Y (AM) i (@x(7),) 0 (i (7), €) (2.35)

k,m=1

in the basis {e;};—; is represented by the matrix with ij-entry equal to

n

= > (w5 em (S )mg -

k,m=n—s+1

Proof. From the symmetry of S; and (2.33) it follows that

n n

Z (S )ik (S7 ) km (S )mj = Z (S5 )ik (Sr)km (SrS7 ) jm = (2.36)

k,m=n—s+1 k,m=n—s+1

=~ Z (gTS;l)i,n—H—k (A(T)il)km (STS;I)j,n—H—m-

kym=1
On the other hand, by differentiation of (2.30) we get
. 0 0 pi(t) )
a;(t) =1 - + . + . . 2.37
) (Stpi(t)) <2Stpi(t)) (Stpi(t) (2:37)

Since S, has the same blocked structure as S’T_ 1. (2.31) implies that the second term of
(2.37) belongs to £. From here it follows that

T

o(ai(1), ) = —(Sr S Y jmosriy, VI<j<n—s, 1<i<s. (2.38)

The last identity together with (2.36) implies the statement of the lemma and also formula
(2.23). 0

Finally, identity (2.24) follows directly from the definition of the curvature form. This
completes the proof of the theorem. O
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Note that if the curve A(-) is monotone increasing or decreasing, the definition of vectors
a;(t) implies that condition det A(7) # 0 is equivalent to the following condition

Ar)Ne=0. (2.39)
Taking into account this fact one has the following Corollary of formula (2.23).

Corollary 2.2.5. Let the curve A(-) be monotone increasing and ¢ = span{ly,...,ls} with
l; € X be such that condition (2.39) holds for some t. Then the quadratic form

£ (ract) —mat)) (§),  E€A)NE”,

is a non-negative quadratic form of rank not greater than s.

2.2.3 Variation of the curvature: Hamiltonian setting

Let us now reformulate the results of Theorem 2.2.3 for the Jacobi curves generated by a
regular Hamiltonian vector field A on T*M. Let (p, q) be some local coordinates in T*M
such that o = 3" dp; A dg; and & has the form (1.22).

i=1
Suppose that the Hamiltonian h admits a s-tuple G = (g1, ..., gs) of involutive first

integrals. Similarly to (2.18) denote by B, : X, — II? the linear mapping such that for
given Y € ¥,
B.Y(Z)=0(Y,Z), VZ ell,. (2.40)

Then using regularity of the filed & by analogy with (2.19) we construct s vector fields
X; on T*M:

T
2 = (10) o5 @6 = (1 5E0) @), (2.41)
Actually AX; is a unique vertical vector field such that
[h, X](z) = §i(z) mod II, (2.42)
for all z € T*M. Finally, let Y(z) be the s x s matrix with the entries
Y(2)km = 05 (G, Xm) kkm=1,...s. (2.43)
Now we can reformulate Theorem 2.2.3 in terms of regular Jacobi curves.

Theorem 2.2.6. Let h be a regular Hamiltonian vector field on T* M, and suppose that
the Hamiltonian h admits a s-tuple G = (g, ...,9s) of involutive first integrals such that

-

det Y(z) # 0. Then the curvature form r" of the curve J,(-) and the curvature form Tg’g
of its G-reduction J9(-) for all £ € TIY satisfy the following identity

rhd _ ph (g):§ Z (Y)Y, 0. (|7 (B Xl| . €) o ([ B Xl 1€) , (2.44)
4

k,m=1
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while the curvature operators RE = Ry, (0) and the R’;“g = R;g(0) satisfy the identity

[Rﬁg Rh

- Z o Be Bl 2] (2) © (Bt (2) 0 B[R [, 2] () -

(2.45)
Also, by analogy with Corollary 2.2.5 we have

Corollary 2.2.7. If Hamiltonian vector field h is monotone increasing and the Hamiltonian
h admits a s-tuple G = (g1, - ..,gs) of involutive first integrals such that

IT, Nspan (¢1(2), ..., gs(z)) =0, (2.46)

then the curvature form 3 o
Emr (P9 —rty(e),  €eTE

z

is a non-negative definite quadratic form of rank not greater than s.

Theorem 2.2.6 provides an effective method for the computation of the reduced curva-
ture without introducing any new canonical coordinates in the reduced phase space. This
method is particularly useful when the original system is a natural mechanical system. In
this case, according to Example 1.4.7, T*M = R" x R", the canonical splitting is trivial,
the curvature is defined by the Hessian of the potential energy and the reduced curvature
can be calculated via the formula (2.44) using the Cartesian coordinates on 7*M. We will
illustrate the effectiveness of our method in Chapter 4, where we will discuss in details the
reduction in the classical N-body problem.

2.3 Reduction by first integrals and conjugate points

In the present section we study the relation between the sets of conjugate points to the
given point for a monotone increasing Jacobi curve and for its reduction by first integrals.

Let ¢ — A; be a monotone increasing curve in £,(X) defined on the interval [0, T].
Let I € [0,T]. Denote by #conj At‘[ the number of conjugate to 0 times on the subset I,
counted with their multiplicities:

#conj At Z dimA; N Ay . (2.47)

tel

Since A; is monotone increasing, the conjugate points do not accumulate and this number
is finite. As we saw in Chapterl, the right hand-side of (2.47) is nothing but the Maslov
index of the curve A; related to Ay on the interval I.

Let ¢ = span{l;...,ls} be a span of s linearly independent vectors in X, satisfying
(2.10). The time ¢, is called conjugate to 0 for the f-reduction A% of the curve A;, if

Afl N A§ # £ or, equivalently, ¢, is the conjugate time to 0 for the curve A_f in the Lagrange
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Grassmannian ,C”,S(i) with & = ¢4 /¢. The multiplicity of the conjugate time ¢; to 0 for
the f-reduction Af is equal by definition to

dim (Af N Af) = dim (A, NAf) — s. (2.48)

It follows from the coordinate presentation which we used in the previous section, that
if A; is monotone increasing, then Af is monotone increasing as well. So the number of
conjugate times to 0 for the /-reduction is also finite. Therefore
= #conj Af

#conj A! (2.49)

|I |I'

Now we are ready to formulate the main result of this section.

Theorem 2.3.1. Let A; : [0,7] — L,(X) be a monotone increasing curve and ¢ =
{li...,1s} be a span of s linearly independent vectors in ¥, satisfying (2.10) and (2.39) at
t = 0. Then on the set |0, T] the difference between the number of conjugate times to 0 for
the ¢-reduction A and the number of conjugate times to 0 for the curve A, itself , counted
with their multiplicity, is non-negative and does not exceed s, namely

0 < #conjg Af|y , — #conjo Aef gy < 5. (2.50)

Proof. Since the curves A; and Af are monotone increasing, for sufficiently small & > 0
the set |0, €] does not contain times conjugate to 0 for both of these curves. Also, without
loss of generality, one can assume that the terminal time 7" is not conjugate to 0 for both
of these curves. Otherwise one can extend A; as a monotone increasing curve to a slightly
bigger interval [0, T + £] such that Ay N Ay =0 and A% N A§ = 0. Taking into account
this observation, according to Section 1.2 we have

#conj At|]o,T] = IndAOAtE. (2.51)
Further, from (2.11) it follows that
dim (Af N Af) — s = dim (A] N Ap). (2.52)
Hence, combining (2.47), (2.49) and (1.6) with (2.48) and (2.52), we get
#conjy Afl, 1 = Indp Af; (2.53)

Let us prove the theorem for the case s = 1. In this case £ = [; = [. We will use the
invariance of the intersection number under homotopy, which preserves the end-points.
Let a(t) be as in (2.19):
a(t) =1 mod A(t).

Denote
F(r,t) =span(A, N 1%, (1= 7)a(t) + 71) . (2.54)
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Note that all subspaces F'(7,t) are Lagrangian. Let ®, : [0,T] — L,(X) and I'; : [0,1] —
L,(X2) be the curves, satisfying

(I)'r(') = F(Ta ')7 0

<7<,
Iy()=F(,t), 0<t<T.

’ (2.55)

Then ®y(t) = Ay, ®1(t) = AL, and the curves

kIﬁJ(_FT(”wﬂ)

, and T () U Aé‘[g 7Y (=Tz(-)), preserving the end-

FE()

U Q)T(-)

[0,7]

define the homotopy between A;

e, T
points.® Therefore,

Indp,A|. = Indp,Ie(7)|, + Inda,Al|] — Indp,Dr(7)] -
Using (2.51) and (2.53), the last relation can be presented in the form
. T : 1 1
#conj, AH]O,T] — #conj, At‘]O,T] = IndAOFT(T)‘O — IndAOFE(T)‘O . (2.56)

So, in order to prove the theorem for s = 1 it is sufficient to prove the following two
relations:

0 < Indp Lp(7)| _, <1 (2.57)

1
7=0

Jeo >0 IndAOFS(T)‘;O =0  Ve€]0,g. (2.58)

a) First let us prove (2.57). If [ € A, then by definition I'r(7) = Ap. Since by our
assumptions, A N Ag = 0, we obviously have Inda,I'7(7) ‘(1) =0.
If I € Ay, then dim(Ag+A;NI4) = 2n—1. In particular, it implies that for any 7 € [0, 1]

0 < dim (Ip(1) N Ag) < 1. (2.59)

Further, let
p:EX = S/(Ao+ ArniF)

be the canonical projector on the factor space. Then from (2.54) and (2.55), by standard
arguments of Linear Algebra it follows that I'r(7) N Ag # 0 if and only if

(1 —7)p(a(T)) +7p(l) = 0. (2.60)
Since, by assumptions, I'r(0) N Ag = 0 (recall that I'r(0) = A;), equation (2.60) has at

most one solution on the interval [0, 1]. In other words, the curve I'z(-) intersects the train
M, at most ones and according to (2.59) the point of intersection is non-singular.

3Here by —I'(-) we mean the curve, obtained from a curve I'(-) by inverting orientation.
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Moreover, the curve I'r(-) is monotone non-decreasing, i.e. for any 7 € [0, 1] its veloci-
ties %PT(T) are non-negative definite quadratic forms. Indeed, fix £ = T. Since Ay N 1< is
the common space for all I';(7), we have

d

EPT(T)‘ATOM =0.

On the other hand, if we denote by ¢(7) = (1 — 7)a(t) + 7, then

d d

EPT(T) (c(r)) = U(EC(T), c(r)) =o(l—a(T), (1 —7)a(T) +7l) =

=o(l,a(T)) = o(a(T),a(T)) > 0,

provided A; is monotone increasing.

So, “£I'r(r) are non-negative definite quadratic forms. Hence in the only point of
intersection of I'r(-) with the train M,, the intersection index becomes equal to +1. This
proves (2.57).

b) Let us now prove (2.58). Take a Lagrangian subspace A such that [ € A and
A NAg=0. Then there exists gy such that

th
tlig.eg € A" (2.61)
By the same arguments as in a), for any 0 < £ < g¢ the curve I'.(-) intersects the train Ma
once. But by construction this unique intersection occurs at 7 = 1. Indeed, I'.(1) = AL,
hence [ € T'.(1) N A. In other words,

L()] gy € A, (2.62)

On the other hand one can choose a Darboux basis in ¥ such that ¥ = R* x R”,
where Ay = 0 x R and and A = R” x 0. By (2.61) and (2.62), there exist two one
parametric families of symmetric matrices S;, 0 < t < ¢¢ and C;, 0 < 7 < 1 such that
Ay ={(Siz,z) : x e R*} and I'.(7) = {(Crz,z) : € R*}. Since the curve A; is monotone
increasing and the curve I'.(7) is monotone non-decreasing, for any 0 < 7 < 1 the quadratic
forms z +— (C,x, z) are positive definite, while Sy = 0. This implies that

F.(t)NAy =0, T € [0,1]. (2.63)
Note also that for sufficiently small € > 0
F.(1)NnAy=0. (2.64)

Indeed, T'.(1) = AL and sufficiently small € > 0 is not a conjugate time for the l-reduction
A, which according to (2.52) is equivalent to the fact that Al(e) N Ay = 0 and hence to
(2.64). From (2.63) and (2.64) it follows that for ¢ > 0 sufficiently small the curve I'.(-)
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does not intersect the train M,,. Hence (2.58) is proved, and this completes the proof of
the theorem in the case s = 1.
If s # 1 then obviously

ls
Agll,...,ls) — (Aill,I..,l871)) . (2-65)
So, starting with s = 1 and proceeding by induction we get (2.50) for s > 1 as well. O

Remark 2.3.2. If s = 1 from the sets of conjugate (to 0) times for a monotone increasing
curve in £,(X) and its reduction are alternating.

Moreover, for any s the first conjugate (to 0) time for a reduction precedes the first
conjugate time of the curve itself.

We conclude this section reformulating the statement of Theorem 2.3.1 for a monotone
increasing Jacobi curve and its reduction by first integrals.

Let h be a monotone increasing Hamiltonian vector filed. As before, denote by G =
(g1, -.,9s) the s-tuple of involutive first integrals. Note that z = etlﬁzo is conjugate to 2
for the G-reduction of the pair (ﬁ, IT) along the integral curve t — etﬁzo of h if and only if
t1 is conjugate to 0 for (gi(zo), - - -, gs(20))-reduction of the Jacobi curve J¢ (-) attached at
zp. Translating Theorem 2.3.1 into the terms of Jacobi curves, we have immediately the

following

Corollary 2.3.3. If the convex on fibers Hamiltonian h admits a tuple G = (g1, ...,gs) of s
involutive first integrals satisfying (2.46), then along any segment of the integral curve of h
the difference between the number of conjugate points to the starting point of the segment
w.r.t. the G-reduction of the pair (ﬁ,, IT) and the number of conjugate points to the starting
point of the segment w.r.t. the pair (ﬁ, IT) itself , counted with their multiplicity, is non-
negative and does not exceed s.



Chapter 3

Hamiltonian Systems of Negative
Curvature

In this chapter we generalize the classical result about the geodesic flows on compact
Riemannian manifolds with negative sectional curvature for the case of Hamiltonian flows
with negative-definite curvature form. In the Riemannian case the geodesic flow ¢! : M —
M on a compact manifold M with negative sectional curvature is an Anosov flow, i.e. the
manifold M is a hyperbolic set for the flow ¢'. The detailed proof of this fundamental
result can be found in [16]. The key role in the proof is played by the Jacobi equation
(1.13) which describes the dynamics of the Jacobi field along the geodesic. The negativity
of the curvature provides the existence of invariant expanding and contracting subsets in
the tangent spaces along geodesics.

In the case of Hamiltonian flows the dynamics of the canonical moving frame (see (1.21))
suggests to expect a kind of similar behavior for the orbits of the generating Hamiltonian
vector field. This means that the hyperbolic theory can be applied to a much larger class
of problems of Hamiltonian Dynamics.

This chapter is organized as follows. In Section 3.1 we introduce the basic notions of
Hyperbolic Theory for flows following [16]. We give the definitions of hyperbolic sets,
Anosov flows and state the Cone Criterion which provides the necessary conditions for a
set to be hyperbolic. This criterion is based on the existence of the so-called invariant
expanding and contracting cones.

In Section 3.2 we analyze the structure of the canonical moving frame associated to
a regular Jacobi curve. We show that the analysis of the dynamics in the tangent space
to a manifold along an orbit of a regular Hamiltonian vector field reduces to the study of
the dynamics of the associated special canonical moving frame at any point of the orbit.
Moreover, we show that this dynamics is described by a set of second order equations of
the same type as the Jacobi equations in the classical Riemannian case. This fact creates a
far-going analogy between these two problems and allows to use the classical arguments of
the Hyperbolic Theory for the study of the dynamics generated by a monotone Hamiltonian
vector field in the cotangent bundle.

In Section 3.3 we consider the flow generated by a monotone Hamiltonian flow h on the

47
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level set of the corresponding Hamiltonian function. We prove that the negative definiteness
of the h-reduced curvature implies the existence of the invariant hyperbolic splitting in the
tangent space to any compact connected invariant subset of the level set of the Hamiltonian.
This result generalizes the already mentioned classical theorem for the geodesic flows on
Riemannian manifolds.

In Section 3.4 we show that the only possible compact invariant subset of the Hamil-
tonian flow generated by a monotone Hamiltonian vector field h with negative definite
curvature form is a hyperbolic equilibrium point. To our notion, this fact has no analogous
in the classical Riemannian case.

We give the detailed proofs of the theorems using the classical technique from the
already cited book [16] by A.Katok and B.Hasselblatt.

3.1 Elements of Hyperbolic Theory for flows

Let M be a smooth manifold, V be a smooth vector field on M and ¢' : M — M be a
flow generated by V:

CH0=VE'@),  P)=a

Definition 3.1.1. We say that the point ¢ € M is a hyperbolic equilibrium point for the
vector field V iff V(q) = 0 and D,V has no eigenvalues on the imaginary axis.

Recall that the mapping D,V is nothing but the right-hand side of the linearized (at )
system associated with the dynamical system ¢(¢) = V' (¢(t)) generated by the vector filed
V on M:

v = A(q)v, g€ M, veT,M,
where A(q) = D,V
Let Q € M be a compact invariant subset for ¢’.

Definition 3.1.2. The set € is called a hyperbolic set for the flow ¢' if there exist a
Riemannian metric on an open neighborhood U € ) and A < 1 < yu such that

.M=E/&E; ®E), qeQ,
41, ,9'(q) € ES/{0}, dimE{ =1, and the subspaces EF are invariant w.r.t. Dg¢':

ngt(E;—) = E;—t(q) ) D¢_t(Eq_) = E(;—t(q) .

Moreover,
DGl <A, (1D~ el < 7t (3.1)
q q

If the whole compact manifold M is a hyperbolic set for a C* flow ¢' : M — M, then
the flow ¢! is called an Anosov flow on M.

The following construction provides a useful instrument that helps to distinguish the
hyperbolic sets.
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Definition 3.1.3. For every ¢ € R" the following subsets

H =A{(z,y) e TR" : |lyll <~llll},

q

Vi ={lz,y) e TLR" - l=]] <~llyll}

q
are called the standard horizontal and standard vertical vy-cones.

Any closed convex cone contained in the standard horizontal (vertical) cone and con-
taining the corresponding coordinate neighborhood inside is called the horizontal (vertical)
cone.

There takes place the following criterion which gives a sufficient condition for the in-
variant set to be hyperbolic.

Proposition 3.1.4. (The Cone Criterion) Let ¢' : M — M be a smooth flow on M. A
compact ¢'-invariant set A € M is hyperbolic, if there exist constants A\ < 1 < p such that
for all ¢ € A there exists a decomposition

T,M=E)&5&T,,

a family of invariant horizontal cones H, O S, associated with the decomposition S; ®
(EQ®T,) and a family of invariant vertical cones Vg D T, associated with the decomposition
(Sq @ EJ) ® T, such that for t > 0

D¢'H, C IntHy (g, D¢V, C IntVy—r(y,

and y
EHDaﬁtfll > ||| logp, for &€ Hy,

d _
SDg el > Jilllogh, for €€ V.

The proof of this proposition can be found in [16] (Proposition 17.4.4).

3.2 Hamiltonian flows of negative curvature

3.2.1 Canonical moving frame of a regular Jacobi curve

Let / be a monotone Hamiltonian vector field on 7% M , M, as usual, being a smooth n-
dimensional manifold, and let J,(-), z € T*M be the corresponding monotone Jacobi curve
in the Lagrange Grassmannian £, (3,) over the symplectic space ¥, = T,(T*M).
According to Lemmas 1.3.7 and 1.3.8 of Chapter 1, at any point z € T*M there exists
a canonical moving frame {e(-), fi(-)}™, associated with the curve J,(-) so that J,(t) =
span{el(t),...,e?(t)}, Jo(t) = span{fl(t),..., f*(t)} for any ¢ € R and the structural
equations (1.18) hold. By Definition 1.4.2
et (0) =ee (1), L(0) = e fl (1), i=1,...,n, (3.2)

Zt * Z0 Zt * Z20
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where z, = ez, and (1.25) implies that

fi(t) = (R, e (0)](=).

In particular from (1.18) and (3.2) it follows that the curvature operator satisfy the fol-
lowing identity along an orbit of the field h:

-

Ry, (t) = thRJZt (0)eh. (3.3)

*

By assumption, the generating Hamiltonian vector field k is monotone. Without loss
of generality we can assume that h,, is positive definite. Then it defines a Euclidean
structure on J,(0) via the quadratic form ¢”: it is enough to choose the basis {e’(0)}",
to be orthonormal w.r.t. the form h,,(2):

ez (01 = o(€2(0), €2(0)) = {hpp(2)pi, i) -

The adjoint basis {f;(0)};L; becomes normalized accordingly: [|f;(0)|1Z = (h,, (2)ai, @i)-
Since the field A is regular, the new norm |- ||;;, is smooth in M, while the orthonormal frame
{ei(0), fi(0)}, is smooth along the integral trajectories of the field . By construction the

basis {e’(t), fi(t)}™,, is a special canonical moving frame. So, as we already mentioned

at the end of Section 1.3.4, the matrix representation of the curvature operator w.r.t.
this basis is a symmetric matrix which coincides with the matrix representation of the
corresponding curvature form.

We have defined the l)asis Xy, ..., Xy, of vertical and horizontal vector fields along an
orbit of the vector field h. By definition

X;(z) = €(0), Xin(2) = £40), i=1,...,n.

This basis is orthonormal along the orbit of & w.r.t. the norm || - || 7 In what follows we

o 2n
will consider a matrix I'(t) = {vi;}7;—, such that e;™X; = >~ 7;5(t) X
i=1

Fix now some point z € {etﬁzo,zo € T*M,t € R}. Let Y € ¥, be a constant vector
2n

attached at z so that Y = > y;X;(z). Let n(t),£(t) € R* be the coordinates of ¥ w.r.t.
i=1

the special canonical moving frame {e (), f!(¢)}™, attached at z, i.e. we assume that

z

V= Zm t) + &(6)£2(1)

with y = (n(0),£(0))?. Using (3.2), we have

-

Y = an t) +&l(1) an ( )) + &i(t)es th (Xﬂ_n(ethz)) =
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= Z 1i(£)735(t) + &(1)vi4n 3 (1)) Xj(2) = Z(FT(t)Ja(t))inj(z) = Zini(z),

where
0 -Id
J = < Id 0 )

is the standard unit symplectic 2n x 2n matrix and
t
alt) = —J<”( )> . Ja(0) =y. (3.4)

By definition, the matrix I'(¢) is symplectic, i.e. ['7(¢)JT'(t) = J. Therefore

y=TT{t)Ja(t) = JTHt)a(t),

and hence
a(t) =T'(t)a(0). (3.5)

Equations (3.5) provide the relation between the coordinates of vectors w.r.t. the fixed
and moving frames attached at the same point of the orbit.

Taking into account the structural equations (1.21), one can derive the differential
equations which describe the dynamics of the coordinates a(t) € R*". Indeed,

Zm t)+ &G0 1) + m(t)EL (1) + & f5(t) =

n

=Z(m(t>—2@(t>Rﬁ(t>) L)+ (&0 +n0) 0. (3.

Here we denote by R(t) = {R;;(t)}};-, the matrix representation of the curvature operator
R, (t) w.r.t. the canonical moving frame. Recalling that R(¢) is a symmetric matrix, from
(3.6) we get the following second order differential equation

E(t) + R(HE() = 0. (3.7)

In particular it follows that a(t) = (£(t),€(t))T. Letting Y to be one of the vectors of
the fixed basis {X;(z)}?"; we get 2n copies of equations (3.7) in R" which describe the
dynamics of vectors X;(z) in X, in w.r.t. the moving frame.

Proposition 3.2.1. For any t € R and any z € T*M the coordinates of the vectors in .,
w.r.t. the special canonical moving frame {e(t ), [ 1(t)}™_, are equal to the coordinates of
their images in ¥z, w.r.t. the fixed basis X;(e""z) under the action of the flow e’ th.



52 CHAPTER 3. HAMILTONIAN SYSTEMS OF NEGATIVE CURVATURE

Proof. Fix some point zg € T*M and let a,,(t) satisfying (3.4) be the 2n-tuple
of the coordinates of some vector ¥ € X, w.r.t. the special canonical moving frame
{el (1), fL (t)}i_;. Notice that Jov,(0) = y(z0) are the coordinates of ¥ w.r.t. the fixed
basis {X;(20)}2",. Then

2n 2n
MY =3 pilo)el (Xi(20) = 3 wilzo) (€1 (e20) =
=1 =1

= Zyi(ZO)(Ffl(t))inj(zt) = Z vi(2) Xi(21) -

Therefore
y(z) = Joz, (0) = T77(t)y(20) = D77 (1) Jauzy (0) = JT () (0),

and hence
a,(0) = T'(t)z, (0) - (3.8)

Now the standard theorem of existence and uniqueness of the solutions of ordinary differ-
ential equations implies

Qo (0) = Oy (t) = (g(t),f(t))T (39)

where £(t) € R" satisfies the second order equation (3.7). O
So, it turns out that equations (3.7) describe the transformation of the vector fields X;
along an orbit of the field F under the action of the flow €. In what follows we will use
the same notation «(z;) for the coordinates of the image of some vector Y € ¥, under the

action of the Hamiltonian flow e’ and for its coordinates at the initial point z w.r.t. the
corresponding canonical moving frame:

a(z) = i, (0) = ay(1).

Summing up, we see that the structural equations (1.18), which describe the dynamics
of the vectors of the canonical moving frame along any orbit of the generating field h can
be reduced to the 2n copies of equations (3.7) in R™ for the coordinates of the fields Xj.
Observe that the second order ODE (3.7) have the same form as the Jacobi equations
(1.13) which define the structure of the geodesics on a Riemannian manifold. This obser-
vation creates a far-going analogy between the Riemannian geometry and the Hamiltonian
Dynamics. In the next sections we will see that equations (3.7) play the crucial role in the
analysis of the behavior of the orbits of the generating vector field h.

3.2.2 Existence of invariant cones

Let us consider more in details the second order equations of the form (3.7) in R*".
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Assume 2 € R” is a compact subset of R” and R is a negative-definite quadratic form
on €. Then there exist constants k£, x > 0 such that

1
(RE, &) < k(&€),  |REII” < el for £€R®. (3.10)
Define the following norm on R® x R":

1€, €17 = 1€11° + €lI€l1*,

with some 0 < & < min{+, £}, and || ||> = (-,-) being a standard Euclidean norm in R".
Consider the following subset:

—lEHeR xR : 2 50
{(g O RXR e ap }

Proposition 3.2.2. For any J,¢ > 0 Cs is a horizontal cone in R* x R".

Proof. Since ||€||? + ¢|€]|? < ||€]|? for any € > 0, using Cauchy-Schwartz inequality we
get

L (6d _VEDED 4

‘||§ 5||2‘ 1€, €12 = el

and hence ||€|| > 6]|€]|. Now from (3.4) and Definition 3.1.3 it follows that Cj defines a
horizontal cone. U

Actually one can choose parameters § and ¢ in such a way that the family of cones Cj
is invariant and contains exponentially expanding vectors for ¢ > 0.

Lemma 3.2.3. For ¢ < ; ,3/2 the family of horizontal cones Cj is strictly invariant.

Proof. Let § < 5 and consider the boundary of the cone

w68
B = R . =5 .
‘5 {56 6.2 }

We show that %% is positive whenever £ € B;. Indeed,

dt g €2 le, €1l
_IElP = (R(M1)E€) (6,8 (€—eR()E,E)
e, €112 “ledr ledr

S P+ kligl (5_5<R(t>§,5>) |
. €lP . €1
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Let us estimate the first term of the last expression. To simplify the notations we denote

a = [[¢]I%, b=1|¢|I. Then X
k“+b=k<1+§_€> > k
a—+¢eb + €

b

provided € < % So
~112 2
e, €11 |

VIO VE©OEH _ 1
&€l (€8 +e€ ) ~ 2VE
and applying again the Cauchy-Schwartz inequality we get

) _ e R — ¥
L CROEH oV BwE RO, 8 speVeaes e
1€, €17 1€, €12 £ |1g €l 2

Putting together (3.11) and (3.12) and recalling that § < 2 we have
d (66 Ve L
EW 2k—25(6+%> >k—5<1+ﬁ3/2> >0

: k
prov1ded 5 < 1+Ii7_3/2 O

On the other hand, since

Lemma 3.2.4. For e < 4262 the family of horizontal cones Cj is exponentially expanding.
Proof. Take some (£,€) € Cs. Then

dye : . : :
dt 1€, &Il 1€, €[> 1€, €[> 1€, €112
R — —
L5 NROSFOOEE - Ve e
1€ €117 £ I€€l)? 2
provided & < 4x262. Hence ||£(t),E(t)|| > e#]|€(0), £(0)|| and Cs defines an exponentially
expanding cone for ¢t > 0. (|

Remark 3.2.5. Let a(z) = (£(t),£(t)T with a(z) = (£(0),£(0))7. Then the last in-
equality of Lemma 3.2.4 implies

la(z) | = T ax(z0) | = e[la(z0)ll,  elz0) € Cs, (3.14)

2n

while from (3.13) one can easily see that for any Y in X, such that Y = ) (Ja())iXi(20)
i=1

with a(z) € Cs there takes place the following inequality:

d -
%Hei”Yllg > pet[[Y]l5 - (3.15)
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The analogous construction shows the existence of the invariant cones expanding in
negative time.

3.3 Anosov flows on the level sets of the Hamiltonian

In this section we consider the dynamics induced by a monotone increasing Hamiltonian
vector field & € T(T*M) on the level set of the corresponding Hamiltonian function.
Following the construction presented in Chapter 2, we will consider the reduced Jacobi
curve JI(-) in the Lagrange Grassmannian Gr,_1(X,) over the factor-space ¥, = X, N
h“/Rh. There takes place the following theorem.

Theorem 3.3.1. Let k be a monotone field, S be a compact invariant subset of the flow
e contained in a fix level set of h, S C h™'(c), and d,h # 0 Vz € S. If h has a negative
th

reduced curvature at each point of S, then S is a hyperbolic set of the flow e »
h=1(c

Proof. Without loss of generality one can make the proof for the case S = h™1(c).

Let ¢ € R and denote by H. = h~'(c) the level set of the Hamiltonian h € C*®(T*M).
Since d,h # 0 for all z € "M, H. is a regular hyper-surface in 7*M of dimension 2n — 1
and TH, = T(T*M) N h*.

The vector field & generates the h-reduced Jacobi curve J2(-) in Grn_l(iz). This curve
is monotone and the canonical moving frame associated to J%(-) is well defined on #, at

any z € {etﬁzo : t€R, z € H.}. The corresponding curvature operator R(t) = Rz (t)
is well defined and satisfy a priori bounds (3.10).

First of all we note that since the field h e TH, is invariant w.r.t. the action of the
corresponding Hamiltonian flow (i.e. ei"ﬁ = ﬁ), in order to show that H, is hyperbolic, it
is enough to show that the factor space iz spanned by the vectors of the canonical moving
frame, associated to %, admits a splitting into exponentially contracting and expanding
invariant subspaces.

According to Section 3.2, the special canonical moving frame {e (¢), fi(¢)}?=]' associated
with the reduced Jacobi curve J?(-) satisfy equations (1.21) with ¢ = 1,...,n — 1. Hence
the coordinates of the vectors e(0), f1(0) w.r.t. the basis {e!(t), fi(t)}7=! satisfy the
second order ODE of the form (3.7). Now from Proposition 3.2.1 and Lemmas 3.2.3 and
3.2.4 it follows the existence of the invariant contracting and expanding invariant cones

C¥ in the tangent space T .7, (He) /Rfi along an orbit of the vector field 4. Indeed, for
- 2n—2
any Y € T,(H.)/Rh such that Y = Y (Ja(2));Xi(z) one has ||Y||; = ||a(2)||. So, using

=1

(3.14), one can easily see that

Hz:span{Y+ (T,H.)/Rh : Y+ = Za +(z)ec;},
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szspan{Y € (T, H, /Rh Y™ = Za X ( 0‘_(2)606_}

form a couple of invariant expanding and contracting cones in the tangent space at any
point z € H..

Taking into account the eth_invariance of the field l_i from Proposition 3.1.4 we deduce
now that H. is a hyperbolic set for the Hamiltonian flow eth. Il

Example 3.3.2. ( Mechanical system on a Riemannian manifold) Let us come back to
the situation described in Example 1.4.9. Consider a mechanical system with the potential
energy U on a Riemannian manifold M, endowed with the positive definite quadratic form
G, which defines an inner product G,(-,-) on T,M, ¢ € M. We will denote by || - || the
norm on T'M defined by the inner product G,. The Hamiltonian vector field h defined by
(1.35) is monotone increasing together with the bilinear form g" = G;(lz) which defines a
Euclidean structure on II,.

Let us derive the formula of the curvature form of the field / restricted to the level
set H. = h~!(c). First of all from (2.19) we find X = (h;,}h,,,o)T. Let r,(£T, 21) be the
sectional curvature of the section span{¢', 2’} C T, M. Applying (1.36) and (2.44) to h
and X we find that for all £ € TTh

3G, 1(VU,€)?

rEME) = k€ NI IPIENNP = Gale!, 21)) + GV (VU), €1 + e

(3.16)

where in local coordinates on T, M with ¢ = 7(z) one has 2" = Zp, ii» and G (€1, 21) =

Gqo(VU, &) provided € € T, H,. It turns out that ||2']|* = G, 1( D, D ) =2(c—U(g)).
Let k4 be the maximal sectional curvature of the Riemannian manifold M at ¢ € M.
Then from (3.16) it is easy to see that any compact invariant set S of the flow e'”| N

such that the projection of S to M is contained in the domain

(o)

3
geM:k, <0, ||VU +(/€ _1_7) V,U|? < 2|kq|(c — Ulq }
{ 0 <0 IV3UI+ (15dl + 577y ) VU < 2lsgl(e U a)
is hyperbolic. In particular, if M is a compact Riemannian manifold of a negative sectional

tl-i‘
h=1(c)
classical result on geodesic flows.

curvature, then e is an Anosov flow for any big enough c. This fact generalizes a

3.4 Hyperbolic equilibrium

Now let us consider a Hamiltonian flow on the whole T*M generated by a monotone
increasing vector field h. Assume that the curvature operator R;(-) associated with the

field A is negative. Then there takes place the following statement.
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Theorem 3.4.1. Let h be a monotone field and 2o € T*M. Assume that the semi-
trajectory {e(zg) : t > 0} has a compact closure and h has a negative curvature at each

point of its closure. Then there exists zo, = tlim etﬁ(zo), where h(zse) = 0 and z is a
—+00

hyperbolic equilibrium point for the field h.

Proof. The curvature operator of h satisfy the a priori bounds (3.10) at any point of
the semi-orbit {etﬁ (20) : t > 0} provided it has a compact closure. The same arguments
as in Theorem 3.3.1 show that at any point z € {etﬁ(zo) : t > 0} there exists a splitting of
>, into invariant exponentially expanding and contracting cones Cgc for some 6 > 0.

Now let us analyze more in details the dynamics of the vector field k under the action
of the corresponding Hamiltonian flow e®. According to (3.4)

2n

E(Zt) = Z hi(ze) Xi(2t) = Z(Ja(zt))iXi(Zt)

ip=1 =1

with z; = etﬁzo. Then .

1Pzl = lla(z)| < C (3.17)
for some constant C' > 0, provided the Hamiltonian ~ and the norm || - ||;; are smooth on
the compact set clos{e™ (z) : t > 0}.
. Without loss of generality we can assume that z; is not an equilibrium point for the field
h. Then a(z) # 0 and a(z) = a(z)* + a(z)~ where a(z)* € C5. According to (3.14),
a(z:)* grows exponentially as ¢ — +oo, which contradicts (3.17). Hence a(z)* = 0.

h

Passing to the limit as ¢ — +o00 we get that ||?L(zoo)||ﬁ = 0 with 2z, = tlifrn ez and hence
—+00

h(zx) = 0.

It remains to show that z is a hyperbolic equilibrium point. Observe that the point
Zso is a compact e-invariant subset of T*M. Since the coordinates of the vectors w.r.t.
the special canonical moving frame attached at z,, satisfy equations (3.7), which are au-
tonomous in this case, Lemmas 3.2.2-3.2.4 imply the existence of the invariant splitting of
S, = H,_ @&V, into expanding and contracting subspaces. Therefore D,_h cannot have
any eigenvalue on the imaginary axis, and hence z,, is a hyperbolic equilibrium point in
the sense of Definition 3.1.1. [l

Corollary 3.4.2. Let k be a monotone field, S be a compact eth_invariant sgbset contained
in a fix level set of h, S C h™'(c), and d,h # 0 for all z € S. Assume that h admits a first

integral g € C®(T*M), such that §(z) # 0 and h(z) A §(z) # 0 for all z € S. Then the
h-reduced curvature of h cannot be negative-definite everywhere on S.

Proof. Assume that the h-reduced curvature of % is negative-definite on S. Then
by Theorem 3.3.1, S is a hyperbolic set for the flow etr‘, and in particular there exists a
splitting 7T,(.)/Rh = E} @ E; into exponentially expanding and contracting subspaces.
Since g is a first integral of B, the corresponding Hamiltonian vector field g is invariant
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w.r.t. the action of the Hamiltonian flow e eiﬁﬁ = g. Now the same arguments as in the
proof of Theorem 3.4.1 show the existence of a singular point for the field g, which leads

to a contradiction. O

Example 3.4.3. A natural mechanical system on M = R" (see Example 1.4.7) with a
concave potential energy provides an example of a Hamiltonian system with negative-
definite curvature in 7*R™. In this case if the potential energy has a maximum at some
point gy € M, then the point zy = (0,¢p) € T*R" is a hyperbolic equilibrium point, i.e. 2
is a global saddle for the orbits of the field k. Otherwise e* does not have any compact
invariant subset.



Chapter 4

The N-body problem

In the present chapter we discuss the application of the theory, developed in Chapters 1
and 2, to the classical plane N-body problem. In Section 4.1 we recall briefly the main
facts concerning the known first integrals of the dynamical system which describe the
motion of N particles in R® interacting gravitationally, and calculate the Ricci curvature
of the reduced plane N-body problem with equal masses, applying the method developed
in Chapter 2.

Section 4.2 contains a detailed analysis of the curvatures and the conjugate points
of the so-called 8-shaped solution of the 3-body problem with equal masses, or just the
FEight, discovered in 2000 by A.Chenciner and R.Montgomery (see [14]). The aim of this
study was to test the minimality property of this orbit on the intervals of time bigger
then the fundamental domain of its symmetry group. We begin with discussion about the
geometrical meaning of the reduction by the angular momentum integral in the 3-body
problem and recall briefly the characteristic properties of the 8-shaped orbit on the plane
and in the so-called shape space, which is the configuration space of the 3-body problem
reduced by the triple of first integrals in involution, consisting of the linear and angular
momentum integrals. We present the result of the numerical calculation of the sets of
conjugate points for the Jacobi curve along the Eight and for its reduction, and perform
a detailed analysis of the structure of the projection of the Eight on the shape space. We
find another solution of the reduced problem with fixed end-points which has the value of
the action functional smaller than the Eight.

4.1 First integrals of the classical N-body problem

Let us consider a system of N bodies of unit mass in R® endowed with the standard
Cartesian coordinates, so that r; represents the radius vector of the i-th body with respect
to some inertial frame. We assume that the bodies interact gravitationally according to
Newton’s gravitational low. Then the motion of this system is described by a natural

29
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mechanical system on M = R3" with potential energy
U(Tl,...,T’N):— —, Ty = ||’f‘i—’f'j||. (41)

The general N-body problem possesses three vector and one scalar first integrals ( [15], [26]).
These integrals consist of two vector integrals of center of mass ¢; and ¢y, the angular mo-
mentum integral g and the energy integral h. In the case of unite masses these integrals

take the form
N

N
Z?'"i:cl, Zri—clt:cg, (4.2)
i=1

=1

N
anhzg, (43)
=1

N

1 :

§Z||Ti||2+U(r1,---,rN) =h. (4.4)
=1

It turns out that not all of these integrals are in involution (see [15]). Actually it is
possible to show that in some special canonical coordinates in the configuration space (the

so-called Jacobi coordinates) the integrals of group (4.2) form a pair of conjugate variables
N N
consisting of cyclic integral > 7; and the corresponding state variable > r;. All together

i=1 i=1
first integrals (4.2) -(4.4) permit to reduce the number of degrees of freedom by 6 in the
spatial case and by 4 in the planar case.

In this chapter we will analyze the plane N-body problem with unit masses. In this
case M = RN T*M 2 R?N xR*N = {(p,q), p,q € R?"} and p; ..., poy are the canonical
impulses conjugated to qi,...,qan (P; ~ ¢;), such that r; = (gai_1, q2;)-

The first vector integral of (4.2) reads

N N
g1 = Zp%—l ) g2 = ZPQi, (4-5)
i=1 i=1

We will refer to these first integrals as to the linear momenta integrals. The angular
momentum integral for the planar problem is actually a scalar function. In Cartesian
coordinates on T*M it takes the form
N
9= Z(inQQi—l — P2i-1G2i) -

i=1

The Hamiltonian vector field /4 in the chosen coordinates has the following expression

K3

2N U .
h = Zpialh - 8—Q'8pi = (_U(Np) ) (4'6)
i—1
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and the dynamics of the system is defined by the following system of Hamiltonian equations:

An easy computation shows that the first integrals g;, go and g are in involution. By the
reduced N-body problem we will mean the N-body problem reduced by these three scalar
integrals.

From Example 1.4.7 we know that the generalized curvature form of the dynamical La-
grangian distribution (ﬁ, IT) is just the Hessian of the potential energy U, and consequently
its generalized Ricci curvature is just the Laplacian of U, which can be calculated without
difficulties:

N
; ; 1
pr=tRI=AU(R)=-2) —, z=(p0) (4.8)
i<j U
Now let us compute the Ricci curvature of the reduced N-body problem. First of all we
note that the reduction by the linear momenta integrals (4.5) preserve the Ricci curvature.
Indeed, using (2.41) we compute the vertical vector fields

N N
91 92
XN = E :8102@'—1’ X% = E :apzi
=1 =1

corresponding to the integrals (4.5). These vector fields are constant, hence the additional
term defined by (2.44), related to these integrals, is equal to zero. Moreover, the following
simple computation shows that also the restriction of the curvature operator to the space
I, N kerd,g, N ker,g, does not change the Ricci curvature of the problem:

, h( xon h(x92
tr |:RQ :| =AU — _‘Tz( ) _ _‘Tz( ) —
11, Nkerd, g1 Nker, g2 g?(Xgl’ X.(]l) g?(}(’gQ’ X!Jz)
1 N
=AU - N Z (qui—1q2j—1 + quiq2j) =
ij=1
Il 8 (& R
N ; <3qu_1 (; q2]1) * 0qo; (; QZ])> ’
since by (4.5) and (4.7)

ZUQ2]'—1 =T ZPQ]'—l:O, ZU‘M :—Ezp%:o_
j=1 j=1 j=1 =1

Here we used the fact that by definition of the vectors X;(z), they are orthogonal to the
subspace H_g w.r.t. the inner product defined by the bilinear form gf.

So, it turn out that in order to obtain the Rici curvature of the reduced N-body
problem it is sufficient to calculate the Ricci curvature of the g-reduction of the dynamical
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Lagrangian distribution (ﬁ, IT) by the angular momentum integral g. We will use formula
(2.44). In our case s = 1. Let X be as in (2.41) with g instead of g;. Then

B h(x B} B
P9 = AU(z) — 7]:“( . [(R’;’g ~ Rf)
92(X, X)

. 4.9
1I, ﬂkerd;g:| ( )

The Hamiltonian vector field corresponding to the function g is given by § = (Jp, —Jq)"
with J being the unit symplectic 2N x 2N matrix:

0 1 0 0
-1 0 0 0
J=
0 0 0 1
0 0 -1 0

Applying formula (2.41) we find that
X = (Jg,0)". (4.10)
Denote X = Jgq. Using again (1.33), from(4.1) one can obtain by direct computation that
(X)) = (U X, X) = —U. (4.11)
Further, from (2.44) (or (2.45)) and (4.10), it follows that

tr [(Rf’g - R’j) - (4.12)

II, ﬂkerdzg:|

2N

- 40(379) (Zo([ﬁ, &), 0,2 — 2U 1 XJLXV) -3 <||p||2 _ q>2> |

i=1 (X, X) gl llqll*

Finally, substituting (4.8), (4.11) and (4.12) into (4.9) we have

N
7 1 U 3 1
Pt =—-2) " = - 7+ KI=1{h, 3%, (4.13)

e,
i<j Y

where I = ||q||?, K = %||p||* are the central momentum of inertia and the kinetic energy of
the system of N bodies. The last term in (4.13) contains the right-hand side of the famous
Sundman’s inequality 2K — i{h, I}? > 0. On the other hand, by Corollary 2.2.7 we know
that it has to be non-negative. Actually this term is nothing but the generalized area of
the parallelogram formed by two 2/N-dimensional vectors p and q.
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4.2 The 8-shaped solution of the 3-body problem

Let us consider now the case N = 3. Already in this case the N-body problem is unsolved:
the known first integrals (4.2) - (4.4) are not sufficient for the integrability. Nevertheless
some particular solutions for the 3-body problem were discovered already by Euler(1765)
and Lagrange(1772). Following the classical terminology of Celestial Mechanics we will
refer to them as to the Fuler and Lagrange solutions. Assume that the origin of the
inertial frame is fixed in the common center of mass of the bodies. Then these known
solutions can be briefly described as follows.

The Euler solutions are such that all the bodies are placed on the same straight line
which rotates around the origin so that each of the bodies moves along its own ellipse with
one of the foci in the origin. The ratios of the distances between the bodies and the origin
are defined by the ratios of masses and so remain constant. In the case of equal masses one
of the bodies “sits” in the origin, the other two being placed symmetrically. In particular,
the bodies can collide in the origin.

Along the Lagrange solution the bodies form an equilateral triangle with variable size,
which evolves around the origin so that the orbit of each of the bodies is again a Keplerian
ellipse. The special case of Lagrange solutions is the homothetic triple collision-ejection
when each body moves along the collision-ejection orbit with one of the ends in the origin.

4.2.1 The shape space of the 3-body problem

Hereafter we will suppose that all the bodies have the unite mass. Needless to say that in
the case N = 3 the original configuration space is M = R°.

As it is well known in Celestial Mechanics, the reduction by first integrals (4.2), (4.3)
can be performed in two steps ([11]): first by passing to the barycentric coordinates and
getting rid of translations (reduction on the integrals of group (4.2)), and then by fixing
the value of the angular momentum and making quotient by rotations around the constant
angular momentum vector. In terms of configuration space one has

M — My — M,

with ;
MOZ{QZ(H,TQ,T?,)ERG,ZT,':O}, M = My/S0(2).

i=1

The reduced configuration space M is homeomorphic to R?® ([19]). In what follows we
consider in detail the second step of the reduction: My — M.

Essentially the space M is nothing but the space of congruence classes of triangles and
it is called the shape space. Topologically it is a cone over a 2-sphere I = 1 whose points
correspond to the similarity classes of triangles; the cone point is the point of the triple
collision. This sphere is usually called the shape sphere (see Fig.4.1) 1. The poles of the

!We took this beautiful picture from the article of A.Chenciner and R.Montgomery ( [14]).
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Figure 4.1: The shape space

shape sphere correspond to the Lagrange configurations Lt and L™, and there are three
special meridians M;, i = 1,2, 3 which represent the three different (w.r.t. the order of the
bodies) types of isosceles triangles. Each of these meridians intersects the equator in the
Euler point E; and in its antipodal double-collision point C;. Here we have assumed that
the bodies are numerated and we use E; (M;) for the Euler (isosceles) configuration with
the i-th body in the middle (or, respectively, in the top).

4.2.2 Description of the Eight

In 2000, A. Chenciner and R.Montgomery proved the existence of a new periodic solution
of the planar 3-body problem with equal masses - the 8-shaped orbit or just the Eight
( [14]). Here we give a short description of this orbit.

Let T > 0 be a positive real number and H* ([0, T], M) be the Sobolev space of functions
which are square integrable in the sense of distributions together with their first derivatives.
The orbit of Chenciner and Montgomery is a smooth collision - free curve which consists
of 12 pieces such that each of them minimizes the Lagrangian action functional

AT[y] = / Ko — Udt. (4.14)
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Figure 4.2: The Eight in the Cartesian coordinates in M,

over subspace

on the interval [0,7/12]. Here Kj is the kinetic energy of the system in the space M.
It turns out that the angular momentum g = 0 along the Eight, hence actually it
minimizes the reduced action functional

o\g\q

over the paths lying in the reduced configurational space M. Here K4 is the deformation
part of the kinetic energy K,.q = Ky — ¢g?I~!, it defines a metric structure on the shape
space M.

In the space M, the Eight is a symmetrical planar 8-shaped curve with the intersection
point in the origin (see Fig.4.2). During the full period of motion the bodies six times form
collinear Euler configurations and isosceles triangles so that each body passes through the
origin and the top of each triangle twice.



66 CHAPTER 4. THE N-BODY PROBLEM

The projection of the Eight on the shape sphere (see Fig.4.1) is a closed path consisting
of 12 pieces such that each of them connects an Euler point with an Euler meridian so
that the curve makes a double turn around the equator of the shape sphere. It intersects
each of Euler meridians M; transversally at points Mii, and all the pieces of this orbit are
gluing together smoothly. Anyway it is not clear whether the longer then 1/12-th piece of
the Eight do minimize the action functional.

In the next sections we analyze the minimizing properties of the Eight in the shape
space in details, combining the theory developed in Chapters 1 and 2 with numerical
computations.

4.2.3 Reduced curvatures of the Eight

There are several possibilities to choose coordinates in the reduced space M. Following
[14], we will use the standard spherical coordinates r = VI, 0 and ¢. The advantage of
such a choice is that these coordinates have quite simple physical meaning: by definition,
r? = I is the central momentum of inertia of the bodies, the parallels ¢ = const of the shape
sphere are essentially the similarity classes of triangles with the same ellipse of inertia up
to rotation, they can be characterized by their common area; the meridians # = const are
defined by some linear relations between the squares of the mutual distances ( [18]).

In the spherical coordinates (r, 8, ¢) the potential energy and the reduced kinetic energy
have the following expressions:

U:_%’ UO: 1 + 1
r /(1 + cos 6 cos ¢) \/(1 + cos(6 + 2) cos ¢)

+ : (4.15)

1
\/(1 + cos(f + ) cos ¢)

7'.2 2

Kred = E + %(COS ¢2H.2 + ¢2) .
Here Uy is a scaled potential defined on the shape sphere: Uy = —U|;—;. The singularities
of U are the points of double collision # = +7 /3,7 and the point of total triple collision
r=0.
The Hamiltonian function H = h

7«57 Of the reduced 3-body problem takes the form

2 2 2
H:% TQ(Q:O%JF%—%, (4.16)
where . . 1.
pPL=T, pp= 17”2(3052(/59, ps = ZT2¢
are the canonical impulses conjugated to r, # and ¢. So, the orbits of the reduced 3-body
problem with equal masses satisfy the following Hamiltonian system
4p3 4ps . Uo

P1 = -2 i _—
r3cos?¢ 13 r2’
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. 1aUy . _Apysing 10U, (4.17)
P2 =50 Ps = r2cosd3¢ 1 0p '
. , o Aps . Aps

/r_plﬁ 0_T2C052¢’ ¢_ T2J

with Uy from (4.15).

Note that the reduced 3-body problem in the shape space is not a natural mechanical
system, and in order to compute its curvature operator directly in the shape space one
should first find the canonical splitting using (1.30), and then apply (1.31) to find the
curvature operator related to the Hamiltonian vector field H.

The easier way is to compute everything in the original space T*M applying (2.44) and
(2.45), as we did in section 4.1. Using (4.13) we rewrite the expression for the reduced
Ricci curvature in the polar coordinates (r, 6, ¢):

7 12 p2 12 p2 1
i 2 3
= — = (U +2U 4.18
P = ticos @? r r3 (Lo +200) (4.18)
where . )
U = g+ o 3
(14+cosficosg)z (1 +cos(f+ 5 )cosg)?

1
+ 4m
(14 cos(f + ) cos )

3 -
2

and z = (101,101,173,7:, 0,8).

The function p inherits its singularities at the points of double and triple collisions
from the potential energy U. The direct computation shows that the Euler points and
isosceles configurations are the extrema of function pZ. We omit this simple technical
proof here.

In order to test the minimality of the Eight in the shape space we need to localize
somehow the conjugate (to 0) times for the Jacobi curve JH(.), z € T*M along the pro-
jection of the Eight on M. Note that the result of Chenciner and Montgomery ( [14]) just
guaranties the existence of the 8-shaped orbit. On the other hand, this orbit was already
studied numerically (see, for example [24]). This is why the use of numerical methods

looks quite natural.

4.2.4 Conjugate points: numerical analysis

First of all let us say a couple of words about the algorithms we were using. All the
calculations were made in the double precision standard. Our numerical results are based
on the numerical integration of equations (4.17) and their linearizion along the Eight, for
this we used the standard Runge-Kutta method of 5-th order with accuracy 10~%. For the
calculation of integrals of action we were using the trapezoid method. The initial data for
the Eight are taken from [14] for the period of the Eight T" = 6.32591398.
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Figure 4.3: pX along the Eight for ¢ € [0, T].

2t

In the Fig.4.3 it is shown the graph of the generalized Ricci curvature pf along the
Eight, the horizontal axis represents the time-line. All the symmetries of the Eight are
easily visible: the graph of pf consists of 12 equal pieces, with the extrema in the points
of Euler and isosceles configurations. It turns out that pf < —1.86. On the other hand
the numerical computation of the co-factors of the whole curvature operator Rf’ along
the Eight shows that the corresponding quadratic form is sign - indefinite, so that in the
present case the Theorem 1.3.5 gives no information about the location of conjugate points.

Observe that according to Definition 1.4.5 and Remark 1.4.6, the time ¢ is conjugate
to 0 for the Jacobi curve JZ(-) attached at some point zy € T*M if and only if

YR(t) = det (W*(efﬁa,,l), o (efﬁa,,n)) = 0. (4.19)

Thus in order to find conjugate (to 0) points for the Jacobi curve attached at zy € T*M
and generated by a Hamiltonian vector filed h along some orbit of this field, it is enough to
integrate the linearized system corresponding to the Hamiltonian system generated by h
along the orbit of reference, taking the initial conditions for the linearized system from II,.
Then the zeros of function 1/Jﬁ(t) give the conjugate times for the Jacobi curve generated
by the field h along the orbit of reference. 3

In Fig.4.4 it is shown the graph of function % (¢) along the projection of the Eight
on the shape space. As usual, the horizontal axis corresponds to the time direction. We
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Figure 4.4: ¥ (t) along the Eight on [0, T]

started integration from the point E3 toward the point M;". As it can be seen in Fig.4.4,
the Jacobi curve of the reduced 3-body problem has 3 conjugate to 0 times along the Fight
on [0, 7], the first one occurs after the first half of the period: ¢; ~ 0.52T € [T'/2,7T/12],
it belongs to the piece of the Eight connecting the point E3 with the point M

In view of Theorem 2.3.1 it is interesting to compare the conjugate to 0 times for the
Jacobi curve along the Eight in the space M, generated by the field h defined by (4.6) and
the conjugate to 0 times for the reduced Jacobi curve generated by the field H along the
projection of the Eight on M. It turns out that for the problem in M, the first conjugate to
0 time occurs at 7y & 0.76 of the period. In Fig.4.5 we show the graphs of functions PH (t)
(dashed line) and 9"(7) (continuous line) for ¢,7 € [0, 37] found by numerical integration
of the corresponding Hamiltonian systems.

The table below contains the approximate values of the conjugate (to 0) times. By 7;
we denote the zeros of conjugate (to 0) times along the Eight in My, and by ¢; we denote
the conjugate to 0 times of the reduced problem. It turns out that all this times have
multiplicity 1.

{ 1 2 3 4 ) 6 7 8 9 10 | 11
t;/T ~ |0.52]0.76 | 0.95 | 1.08 | 1.52 | 1.56 | 1.88 | 2.05 | 2.29 | 2.49 | 2.65
/T =~ 0.76 | 0.95 | 1.08 | 1.42 | 1.54 | 1.88 | 2.05 | 2.28 | 2.45 | 2.65
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Figure 4.5: Conjugate to 0 times along the Eight on [0, 37|

Observe that t; <7, < t;101, 1 <17 <10, as it was expected by Theorem 2.3.1, and the set
of conjugate times {t;} and {r;} are alternating.

4.2.5 New orbit in the shape space

Let us analyze more in detail the minimizing properties of the Eight in the shape space
M. The presence of conjugate points along the Eight in M means that after the half of
the period it stops to be a minimizer of the action functional (4.14). The natural question
is whether there exists another curve, which is a solution of equations (4.17), satisfies the
same boundary conditions as the Eight at ¢ = 0 and ¢ = 77/12, and has the action smaller
than the Eight on the interval [0, 77/12], i.e. on the interval containing the first conjugate
(to 0) time for the Jacobi curve along the Eight in the shape space.

In order to answer this question we consider the following boundary value problem.
Denote by vs(t) = (ps(t), gs(t)) € T*M the lifting of the Eight in T*M. Let T = 7T/12,
where T is a period of the Eight. Our aim is to find a curve y(¢) = (p(t), ¢(t)) € T*M such
that

ATy) < A

q(0) = ¢s(0) = F3, q(T) = qs(T) = My . (4.20)
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The problem (4.20) is a standard two point boundary value problem with the restriction
on the functional. The numerical algorithm we were using is based on the standard Newton-
Raphson method (see [22]) with the following modification.

Recall that the standard m-dimensional problem for the Newton-Raphson algorithm
consists of finding a vector x € R™ that solves m equations of the type

F(z)=0, i=1,...,m, (4.21)

where the vector function F' = (F3,..., Fy,,) is supposed to be differentiable such that
det (?3_5) # 0. Usually equations (4.21) represent a discrepancy vector for some boundary
value problem. The Newton - Raphson method solves these equations by the shooting
procedure. The new step is defined via the following linear equations:

Tnew = Told + )\6370 3

oF\ !
- = . F
5.’1)0 (63;) s

so that the direction of the new step is the descent direction of the quadratic functional
fo = 3||F||*. The parameter A is to be chosen such that it brings fo sufficiently close to
zero (we were using the standard back-tracking procedure to detect A on each step of the
algorithm).

In our case m = 3, the unknown variable is z = p(0) € R® and boundary conditions
(4.20) define the discrepancy vector F = q(T) — qs(T).

The main problem of the realization of such method in the present case is to find a
“good” initial shooting direction, i.e. the initial direction such that the algorithm converges
to some solution of (4.17) which gives a value of the action functional smaller than A7 [g].

We start the shooting procedure in the descent direction of AT

OAT
3p0 ’

T1 = — Mo Do = p(0)7

with constant py = 0.01 being chosen experimentally to get the best convergence. The
gradient of the action functional can be calculated via the following formula

oA _ @) (22

Opo B Opo

T
where (%, aa—pqo) is the solution of the linearized (along the Eight) system corresponding

to the Hamiltonian system (4.17).

The idea is to perform the Newton - Raphson algorithm in two steps. First we find
some orbit which comes sufficiently close to the target point on the boundary and has the
value of the action functional smaller than A”[vg]. The problem here is to find a solution
which is really different from the Eight: it was shown numerically that the Eight is stable
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(see [14] and references therein), so the problem of finding a good initial guess for the
new solution is not that trivial. Using the initial data of such intermediate orbit as a
first approximation for the standard Newton-Raphson procedure we hope to find the true
solution of the boundary value problem (4.20).

In order to realize this idea on the first step of the algorithm we consider the following
corrected functional

7
P A - AT

Here «y is the orbit corresponding the current initial data v(0) = (z,¢s(0)), and p is a
correction weight to be chosen experimentally in order to get the best convergence, we
were using g = 0.01. One can see that f is a positive function in the directions we are
interested in, but the exact solutions of the boundary value problem (4.20) do not send it
to zero, moreover, the second term makes it grow in the directions close to the Eight. The
new shooting step corresponding to f is

T =0x9 — a 94 71-:1:_
b =0~ g e om)

We keep going with this step in the descent direction of the functional f as long as it
brings us closer to the target point. In the realization of this algorithm we stopped when
the difference between two consecutive values of f became 107°. Then we were using the
Newton-Raphson procedure with the standard functional f; until f < 10 13.

The presented method allowed us to find an orbit which is quite different from the Eight
(see dashed curve in Fig.4.6 and Fig.4.7 ). The new action is A” [vyew] A 14.2371416, which
is smaller than AT[vg] ~ 14.2491093.



4.2. THE 8-SHAPED SOLUTION OF THE 3-BODY PROBLEM

Figure 4.6: The Eight and the new curve in the shape space
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Figure 4.7: Projections of the Eight and the new curve on the coordinate planes in the
shape space
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