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Introduction

Physics has been traditionally associated with the quest for the fundamental laws govern-
ing the nature; in this direction there have been astonishing progresses, and currently we
have elegant mathematical theories, such as the well-established standard model of particle
physics, which are potentially able to explain “almost all” the fundamental laws governing
the universe, or the promising string theory and m-theory, which may complete that task
(see, for instance, Refs. [1, 2, 3, 4]). On the other hand, physicists have realised that these
ab initio theories alone are not sufficient to give an accessible description of the behavior of
many common real systems (including examples which may appear trivial, but are in fact
complex from the physical point of view, such as a pot of boiling water or the steam in a
steam engine), due to the large number of interacting microscopic entities involved. With
the aim of finding an effective description for these macroscopic systems, new branches of
physics appeared. Thermodynamics, dating back to the 17th century and vigorously devel-
oped during the industrial revolution, is probably the oldest attempt to give a quantitative
description of the behavior of a large complex physical system, and, by considering macro-
scopic average quantities such as the internal energy, the work, and the heat transfer, it
provided valuable insight, in particular in the physics of equilibrium systems (i.e., when
the dynamical condition of detailed balance is satisfied) and their transformations, see for
instance Refs. [5, 6, 7, 8, 9, 10].

Statistical physics was initially developed in the 19th century in order to describe the
same systems considered in thermodynamics but from the microscopic point of view, i.e.,
in terms of the interactions between their constituent atoms and molecules. Its original
purpose was, in fact, to build a bridge between the physics of fundamental interactions
(at that time, primarily mechanics) and thermodynamics, in order to provide a microscopic
justification of the empirical laws which ruled the latter (see for instance Refs. [11, 12, 13, 14]).
During the last century however, statistical physics has become a stand-alone discipline
which has been successfully applied for describing various physical systems composed by a
collection of entities (e.g., atoms, colloids, spins, etc.): see, for instance, Refs. [7, 15, 10, 16].
In the statistical physics approach, a system at equilibrium (i.e., the dynamics of which
satisfies detailed balance) is described in terms of a possibly reduced number of relevant
degrees of freedom x, selected from its microscopic configuration space. The system is then
characterized by the equilibrium probability Peq(x) to find it in the state x, where, as far as
the dynamics is concerned, the remaining non-relevant microscopic degrees of freedom result
in an effective noise for the evolution of x.

For systems at equilibrium, the stationary Gibbs ensemble allows us to determine the
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equilibrium probability distribution Peq(x) in terms of the microscopic Hamiltonian H(x)
which rules the interaction between the microscopic degrees of freedom. Using this Gibbs
distribution, it is formally possible to evaluate the expectation value 〈O〉 =

∑
{x}O(x)Peq(x)

of any quantity of interest O(x) by summing over all the possible configurations of the
system; in some cases (see for instance Refs. [17, 16]) the summation can be done exactly,
while, in general, statistical physicists have developed a set of toolboxes (e.g., mean-field
approximation, series expansion, and renormalization group) which provide approximate
solutions (see, e.g., Refs. [18, 10, 15]).

A phenomenon which challenges the applicability of most of the simplest approximation
schemes and which therefore greatly attracted the attention of statistical physicists is the
so-called criticality, i.e., the emergence of long-range correlations and collective behaviours
typically associated with continuous (i.e., second order) phase transitions. A crucial role
in the appearance of these phenomena is played by fluctuations, which are then typically
relevant, at least in low spatial dimensionality, and cannot be neglected in studying critical
systems. The behavior near critical points turns out to depend only on the gross features
but not on the details of the system, and this theoretical and experimental fact allowed
for a robust classification of the equilibrium continuous phase transitions into universality
classes, each one being characterised by a set of critical exponents; in particular, in two spatial
dimensions, conformal field theory, provides a complete classification (see, e.g., Refs. [19, 20]).

Nonequilibrium statistical physics and absorbing phase transitions

Despite the theoretical interest in equilibrium systems, nonequilibrium ones are much more
common in nature, and for understanding the latter no general principles such as those
leading to the Boltzmann-Gibbs distribution are available. In fact nonequilibrium proper-
ties cannot be directly inferred without solving the dynamics, and in fact the probability
P (x; t) to find a nonequilibrium system in the state x at time t has to be derived case-
by-case from the solution of the so-called master equation, which describes the evolution
of P (x, t); this remarkably difficult challenge led to the development of a variety of (ex-
act or approximate) methods, suited to deal with particular cases and situations (see for
instance Refs. [21, 22, 10]). Since the constraint of detailed balance, which characterises
equilibrium systems, is released, nonequilibrium statistical physics presents a much richer
variety of possible dynamics, compared with the equilibrium case. For instance, the classifi-
cation of nonequilibrium phase transitions is still seeking for a guiding principle, even if some
progress has been made, in particular concerning the so-called absorbing phase transitions,
i.e., transitions occurring between an absorbing phase, in which the system collapses into a
certain which cannot be left state, and an active phase in which several states are explored.
Descriptions based on the generalised Langevin equations (or stochastic differential equa-
tions), which play a primary role in chapters 1 and 2, have been of crucial importance in the
identification of these classes.

One of the first universality classes to be recognised among the large variety of absorbing
phase transitions is the one associated with directed percolation (DP), or, equivalently to
the so-called Reggeon field theory (see, e.g., Refs. [23, 24, 25]). Directed percolation takes



CONTENTS 3

its name from the process of percolation of a liquid in porous media, but it actually models
a number of systems which share the same transitions, as directed random connectivity,
epidemic spreading, forest fires, certain catalytic reactions, synchronisation of maps, sur-
face growth, intermittent turbulence, and even certain hadronic interactions, and it can be
alternatively viewed as a reaction-diffusion model, i.e., as a system of interacting particles
which diffuse in space and which might react according to certain rules (see for instance
Refs. [24, 25]).

A phenomenological Langevin equation can be derived from the master equation of the
microscopic model of DP (see Ref. [26]) and it reads, in the Stratonovich convention (see
App. A.1 for a brief description of Itō and Stratonovich conventions)

ẋ(~r, t) = −ax(~r, t)− bx2(~r, t) +D∇2x(~r, t) + σ
√
x(~r, t) η(~r, t), (1)

where x is a positive-valued real field; in the case of DP interpreted as a reaction-diffusion
model, x represents the coarse-grained density of particles in the point ~r at time t, while
a, b, D, and σ are real-valued coefficients and η(~r, t) is a normalized white Gaussian noise
characterized by 〈η(~r, t)η(~r′, t′)〉 = δd(~r−~r′)δ(t−t′) in d spatial dimensions. It can be noticed
that Eq. (1) is characterized by the so-called multiplicative noise, as the noise amplitude is
proportional to the square root of the field x; this feature is crucial in order to ensure that the
state x = 0 is absorbing (although, as we shall see in Chap. 1, sometimes this requirement
might not be sufficient). Heuristically, in fact, once the state x = 0 is reached, the stochastic
contribution to ẋ vanishes as well as the deterministic one, and therefore the system cannot
leave this state. In chapter 1 we will describe the character of the absorbing state x = 0 for a
Langevin equation similar to Eq. (1) (interpreted à la Itō), but with a generic power y of the
variable x in the noise amplitude, in the zero dimensional case; we will see that systems with
different powers y displays significantly different behaviours and that apparently absorbing
states might not be so because of the strong effect of fluctuations.

Another relevant and well-established universality class is the so-called voter class.The
classical voter model is a lattice model in which each site i represents a voter with opinion
described by the variable xi which takes two possible values (e.g., 0, 1). The process evolves
by randomly selecting a voter who then adopts the opinion of a randomly chosen nearest
neighbour; the model is characterized by the presence of two competing absorbing states,
associated respectively with the convergence of all voters to the opinion 0 or 1. The intro-
duction of interfacial noise in the voter model generates a phase transition whose universality
class can be described in terms of a phenomenological Langevin equation which reads (see
Ref. [27])

ẋ =
[
a+ b(1− 2x)2

]
x(1− x)(1− 2x) +D∇2x+ σ

√
x(1− x) η(~r, t), (2)

where the real field x(~r, t), representing a sort of coarse-grained “density” of opinion, varies
within the interval [0, 1], while a,D, σ and η are analogous to the corresponding quantities
in Eq. (1), and b ≥ 0. Beyond the issue of the nature and features of the possible phase
transition, another relevant problem concerns the so-called fixation, which leads a system to
an absorbing state, and its time scale. It turns out that this issue can be effectively addressed



4 CONTENTS

within the framework of Langevin equations, as we shall see in Chap. 2, where we consider a
system in the context of population genetics which can be described by an equation formally
equivalent to Eq. (2), interpreted within the Itō convention, with b = 0.

Statistical physics applied to biological processes

In the past decades, together with the rise of statistical physics to a prominent role in physical
research, there has been an increasing interest towards its application to other disciplines,
such as biology, ecology, economics, genetics, etc. (see, e.g., Refs. [28, 29]). On the one hand,
this is due to the versatility of the statistical physics approach, which has proven to be very
effective in providing insights and in answering many questions which arise within these
interdisciplinary application, particularly when the number of basic components involved
(e.g., individuals of a population, molecules, etc.) is large and/or when the incomplete
knowledge of the processes at shorter time and length scales can be modeled by an effective
stochastic noise; a paradigmatic example of this approach is provided by the Brownian
motion, i.e., by the motion of a mesoscopic particle (e.g., a micrometer-sized colloid) in
a fluid composed by microscopic molecules, which is described in terms of the position of
the mesoscopic particle alone, while the interaction of the molecules with the particle is
modeled by a stochastic noise which produces random changes in the velocity of the latter
(see for instance Refs. [30, 31]). On the other hand, many biological problems have attracted
the attention of physicists because they are characterised by the formation of spatial or
temporal, highly regular patterns , (non-equilibrium) phase transitions or other features
which are intriguing from the point of view of statistical physics, where they have been
studied at length in the past decades (see, e.g., Ref. [32, 33]).

Fluctuations, known to become relevant near a critical point in equilibrium systems, have
highly non-trivial effects also on the dynamics out of equilibrium (see, e.g., Refs. [34, 35, 24]);
their accurate analysis is therefore of the outmost importance in stochastic systems, and this
is one of the main reasons for the success of statistical physics in the modelling of living
systems, which are generally out of equilibrium and characterized by fluctuating quantities.
In this thesis we focus on the effects of stochastic fluctuations on two relevant paradigmatic
problems in biology, namely population genetics and protein translation; these problems are
strictly related for the following reason. Every living organism is characterized by a genetic
code (the so-called genotype) encoded in the DNA, which, through a process called gene
expression strongly influences the phenotype, i.e., the set of all observable characteristics and
traits (such as the morphology, the biochemical properties, the behavior). Depending on
its phenotype and on the contingent environment in which it is living, each individual has
a certain probability to survive and to reproduce; this determines the Darwinian natural
selection, which favours some genotypes and depresses others, contributing to the (highly
non-trivial) evolutionary rules for the genotypes present in a living population, which are the
object of interest in population genetics. Protein translation, besides being one of the most
common biochemical reaction happening in the living cells, is a fundamental step in gene
expression, and therefore its understanding can help in the explanation of the microscopic
processes by which the genotype of an individual influences its phenotype; in population
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genetics, these processes affect the form of the “forces” which model the Darwinian natural
selection in the effective “macroscopic” equations for the evolution of the genetic composition
of a population, and therefore their knowledge is of primary importance in order to develop
accurate effective equations.

Summary of the thesis

This presentation consists of three main chapters. In the first one we introduce Langevin
equations with multiplicative noise, which are useful tools for describing many stochastic
systems, among which the paradigmatic example in population genetics discussed in Chap. 2;
in particular, we focus here on the generalization of the zero-dimensional version of Eq. (1)
to a generic power-law amplitude of the noise. This equation is characterized by the presence
of a stationary point in x = 0 (i.e., a point in which both the deterministic force and the
amplitude of the noise vanish), whose actual effect on the dynamics of the system depends on
the exponent of the noise amplitude, and which does not necessarily constitutes a separatrix
for the dynamics. This effect is described with the aid of the so-called boundary classification,
which is based on the analysis of three functionals depending on both the deterministic and
the stochastic forces in the Langevin equation, and it allows us to understand the conditions
under which the system is expected to collapse into the stationary state, i.e., to fix.

The second chapter, based on Refs. [36, 37] deals with population genetics, which de-
scribes how the biodiversity and the composition of a population evolve in time due to the
action of evolutionary forces. The simplest models of population genetics focus on one gene
of the genotype (i.e., on one locus in the DNA sequence), and describe the time evolution of
the fractions of the population which carry the various alleles, i.e., the possible different val-
ues of the considered gene. The dynamics of these fractions can be described via an effective
Langevin equation (with multiplicative noise) in the space of allele frequencies, which, as
we anticipated above, closely resemble Eq. (2). In the absence of mutations the dynamics is
characterized by the presence of two absorbing states because, once extinct, an allele cannot
appear again (at least in the absence of mutations); moreover, in a population constituted
by a finite number of individuals, all alleles except one will eventually get extinct due to
stochastic fluctuations, leading to fixation. The mean time needed by a finite population to
reach fixation (mean fixation time) depends on the number of individuals in the population,
on the presence of selective advantage for an allele and on the initial configuration. Actual
populations are typically subdivided and fragmented in space, with the consequence that
migration occurring among subpopulations affects their collective evolution: genetic traits
get locally extinct and recolonized by migration from neighbouring subpopulations. In this
case, fixation happens only when the same allele fixes in all the sub-populations, and the
determination of the mean fixation time becomes a non-trivial problem. With these motiva-
tions in mind, we considered the paradigmatic Island model, which is the simplest possible
setting to study the evolution of a subdivided population: N sub-populations (demes) of
fixed size are located at the sites of a fully connected graph, i.e., every sub-population in-
teracts with all the others, by exchanging individuals. When the selection is constant or
absent, the mean fixation time in the Island model is known to decrease monotonically upon



6 CONTENTS

increasing the migration rate. In Refs. [36, 37], we considered evolutionary forces that favour
the coexistence of different alleles (e.g., balancing selection, which is common in the evolu-
tion of many natural populations), showing that the mean fixation time can actually display
a nonmonotonic dependence on the migration rate. Beyond the nonmonotonicity in the
mean fixation time, our analysis predicts, in the large N limit, a transition between a phase
characterized by coexistence of the two alleles and a phase characterized by fixation of one
of them. The analysis of the metastable dynamics of this subdivided population has been
carried out by combining a self-consistent theoretical analysis of the fluctuations, inspired by
common problems of statistical mechanics, with a numerical analysis of the corresponding
discrete models. Stochastic fluctuations in the microscopic model appear to have non-trivial
effects — qualitatively different depending on the range of parameters — on the macroscopic
behavior of the population, and it would be interesting to investigate the extent to which
this remains true in populations with more realistic and more complex spatial structures.

The third chapter, based on Ref. [38], deals with protein translation, a crucial and only
partly understood step in gene expression and one of the most common biochemical reactions
occurring in the cell: the individual triplets of nucleotides (the codons) composing a messen-
ger RNA (mRNA) are translated into amino acids (the units composing the proteins) by the
ribosomes. This process is biologically and chemically well understood, but the implications
of its intrinsic stochastic nature have not yet been fully elucidated. In particular, we focus on
understanding the effect of fluctuations on protein translation, basing our analysis on meth-
ods which are typically employed in statistical physics in order to describe the stochastic
evolution of physical systems. More in detail we address an intriguing question concerning
the ribosome dwell time distribution, i.e., the distribution of the time intervals between two
subsequent codon translation events. The form of this distribution heavily influences the ri-
bosome traffic along the mRNA sequences and affects the efficiency, accuracy and regulation
of the translation process. The translation of a codon involves several subsequent biochem-
ical steps and one among them (the binding step) requires that the ribosome binds to an
additional molecular species, the transcript RNA (tRNA), which has an internal stochastic
dynamics. The dwell time distribution we are concerned with depends therefore on the bind-
ing time distribution, i.e., on the distribution of the time intervals needed by the ribosome to
bind to a tRNA. The tRNA molecules carry the corresponding amino acid to the ribosome,
and physically recognise the codons, effectively decoding the genetic code. After translation
has occurred and the tRNA molecule has left the ribosome, it must be recharged with the
correct amino acid before it can be used to perform the same task again. The interplay
between these two mechanisms, consumption and recharge, determines the fluctuations of
the fraction of charged tRNAs, which effect combines with the fluctuations (due to diffusion
in the cell) in the number of tRNAs in the neighbourhood of the ribosome. In Ref. [38],
we introduced a stochastic model which mimics the tRNA charging-discharging and diffu-
sive dynamics and we studied its nonequilibrium steady state by solving the corresponding
master equation. This stationary solution allowed us to provide an analytic estimate for the
binding time distribution, which deviates from the exponential distribution expected in the
absence of fluctuations in the number of charged tRNAs around the ribosome. Moreover,
we quantified the way in which the stochasticity in the tRNA dynamics increases the fluctu-
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ations in the binding time distribution and therefore in the dwell time distribution. In our
study we established a relationships between the parameters of the model and measurable
quantities. Since we have considered a simplified case with only one kind of amino acid
and one kind of tRNA in the cell, our model needs to be generalised in order to predict
the dwell time distribution in an actual cell (in vivo); on the other hand, it would be in
principle already possible to test our predictions by experimentally reconstructing in vitro
the simplified situation described by our model.
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Chapter 1

Power-law noise and absorbing states

1.1 A paradigmatic equation from finance
In many fields (ranging from game theory to ecology) one encounters non-equilibrium sys-
tems, characterized by the presence of stochastic fluctuations, which can be effectively mod-
eled by Langevin equations with a so-called multiplicative noise, i.e., a noise the amplitude
of which depends on the state x of the system; x can be, depending on the specific case, a
concentration, a frequency, a velocity, etc. . Very often the quantity x is non-negative and
the state x = 0 is a stationary state of the dynamics, i.e., a state in which the velocity ẋ
of the system in the configuration space vanishes. If the state x = 0 cannot be left, it is
said to be absorbing, and, as it will be clarified in what follows, the stationarity condition
is not sufficient to ensure that a state is absorbing. With the terminology of population
genetics, we will call fixation the evolution of a system that leads it into an absorbing point.
In particular, close to x = 0, one can have a noise with a power-law amplitude:

ẋ = µ(x) + σ xy η(t), (1.1)

where µ(x) is the deterministic force driving the dynamics, which vanishes at x = 0, η
is a normalized Gaussian noise characterized by 〈η(t)η(t′)〉 = δ(t − t′), and σ and y are
positive parameters; in writing this equation we use the Itō interpretation of the Langevin
equation (see App. A.1). The value y = 1/2 appears very frequently in systems with internal
fluctuations, where, because of the central limit theorem, the total amplitude of the noise
(∝ σxy) is proportional to the square root of the number (∝ x) of individuals the fluctuations
of which constitute the source of the noise for the evolution of x.

Equation (1.1) is known in finance as the constant elasticity of variance (CEV) model,
which provides an effective description of the evolution of the price of an option in the
financial market [39, 40]. In this model the exponent y has to be fitted from the data, and,
depending on the option considered and on the historical period, it ranges from y ' 3 to
y ' 0, or even to negative values (see Refs. [41, 42]).

Although in the CEV model the exponent y is not a priori constrained to any particular
value, some possible values deserve particular attention, as they naturally appear in the
description of a variety of statistical physics models. For instance, as anticipated above,

9
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the value y = 1/2 appears very frequently, the most celebrated examples being directed
percolation (see for instance Refs. [26, 43, 25]) and population genetics models with the
so-called genetic drift (an example of which will be studied in detail in Chapter 2).

Another value which is quite common in statistical models is y = 1, as it can be related to
the so-called “external fluctuations”, where the system is coupled to a fluctuating environment
and the coupling is modelled by a term linear in x, with a randomly evolving parameter.
Paradigmatic examples for this case are the KPZ equation1, directed polymers in random
media and population genetics models with fluctuating selection coefficient (see for instance
Refs. [44, 43, 45]).

Other noteworthy values for the noise exponent y are y = 0, which corresponds to the
standard diffusion for the variable x (i.e., to a Langevin equation with constant noise) and
for which x = 0 is no longer a stationary point of the dynamics (although µ(x = 0) = 0),
and y = 2, which has been found in the evolution of the number (∝ x) of parasites in an
ecosystem (see Ref. [46]).

In the following part of the chapter we will see that the values 1/2 and 1 for the noise
exponent y are peculiar also from the strictly mathematical point of view, since they represent
the boundaries between regions in the parameter space in which the addition of the noise
changes qualitatively the behavior of the system close to x = 0 compared to the one dictated
by the deterministic part (i.e., in the absence of noise).

We consider here the simplest deterministic force µ(x) which ensures the stationarity of
the point x = 0, i.e., a linear force µ(x) = −ax and, in order to avoid a possible escape
to x = ∞ in the case of a < 0, we add a confining quadratic term −bx2 with b > 0. The
deterministic force µ(x) can be written in terms of a “potential” V (x) such that µ(x) =
−V ′(x), with

V (x) = ax2/2 + bx3/3. (1.2)

In the absence of noise, with this potential, the point x = 0 is absorbing for the dynamics
described by Eq. (1.1) because µ(x = 0) = 0, and there are two qualitatively different
regimes:

• if a > 0 the potential V (x) has one minimum at x = 0 (red solid curve in Fig. 1.1),
which is reached asymptotically by the dynamics for t → ∞. This is the absorbing
phase, characterized by a vanishing value x = 0.

• If a < 0 the potential has one minimum at x = −a/b (green dashed curve in Fig. 1.1),
which is reached asymptotically for t→∞, unless x(0) = 0 . This is the active phase,
characterized by a positive value x = −a/b > 0.

If we consider the probability P (x, t) to find the system in the configuration x at time
t, in the absence of noise, it relaxes asymptotically to a stationary probability Ps(x), which,

1The KPZ equation is usually written in the form of a Langevin equation describing the evolution of
a height h of an interface, in which the noise is additive (i.e., independent of h) and a deterministic term
exponentially dependent on h is present; however, by means of the inverse of the so-called Cole-Hopf trans-
formation x = exp[h], one obtains an equation describing the evolution of x, which is analogous to Eq. (1.1)
with y = 1.
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Figure 1.1: The potential V (x) for a positive (red, solid line) and negative (green, dashed
line) value of the parameter a.

for any positive initial condition x(0) reads

Ps(x) =

{
δ(x) for a > 0,
δ(x+ a

b
) for a < 0.

(1.3)

The introduction of the noise term in Eq. (1.1) changes qualitatively the behavior of
the system and in particular, for some values of the exponent y, it becomes necessary to
introduce proper boundary conditions in x = 0 in order to preserve the non-negativity of x,
because the deterministic stationarity of x = 0 in Eq. (1.1) is not sufficient to exclude that
the point x = 0 is crossed under the effect of the noise, although the amplitude of the noise
itself (since we assume y > 0) vanishes for x = 0 (see Ref. [42, 47]).

In view of the fact that, contrary to the heuristic expectation, the point x = 0 can be
actually crossed by the dynamics in the presence of the noise (unless suitable boundary
conditions are added), we consider below a symmetric version of Eq. (1.1), in which negative
values for the configuration x are allowed, i.e.,

ẋ = µs(x) + σ |x|y η(t). (1.4)

The stochastic part in Eq. (1.4) is symmetric under x → −x and the deterministic part
µs(x) = −Vs(x) is the derivative of the symmetric version Vs(x) = ax2/2 + b|x3|/3 of the



12 CHAPTER 1. POWER-LAW NOISE AND ABSORBING STATES

potential V (x) in Eq. (1.2). Alternatively, the cubic term in the potential could be replaced
by a quartic one, but this would be inconsequential for the properties discussed below.

1.2 Heuristic analysis of the point x = 0

As anticipated in the previous section, for some values of the parameters (y, a, σ), Eq. (1.4)
allows the system to reach negative values of x, i.e., to cross the point x = 0. In this section
we provide a heuristic explanation of this fact.

The first step is to approximate Eq. (1.4) with a simpler expression. First of all, we
rewrite Eq. (1.4) in its differential form, i.e., dx = µs(x) dt + σ |x|y dW , where dW is the
infinitesimal Wiener process (see for instance Ref. [22]). This equation is in turn defined as
the δt→ 0 limit of a discrete-time process, with time steps of duration δt and characterized
by an increment

δx = µs(x) δt+ σ |x|y
√
δt η̃, (1.5)

where η̃ is a Gaussian-distributed random variable with zero mean and unit variance (see,
e.g., Ref. [22]). For x� |a|/b, we can neglect the quadratic term in µs(x), so that Eq. (1.5)
reduces to

δx = −a x δt+ σ|x|y
√
δt η̃. (1.6)

For a finite small value of δt, depending on the parameter y and on the configuration x,
the largest contribution to the one-step increment δx in Eq. (1.6) can be either due to the
deterministic term or to the stochastic one. More precisely, we can identify a length scale

` =

( |a|
σ

) 1
y−1

δt
1

2(y−1) , (1.7)

at which the deterministic and the stochastic term in Eq. (1.6) give equivalent contributions
to the mean square increment 〈δx2〉 within the time step δt. If y > 1, the noise amplitude
σ|x|y vanishes for x → 0 faster than the deterministic term, and we can identify a region
|x| � ` in which the one-step increment δx is typically dominated by the deterministic term
(i.e., δx ' −a x δt), while in the region |x| � ` it is typically dominated by the stochastic
one (i.e., δx ' σ|x|y

√
δt η̃). Viceversa, if y < 1, the noise amplitude σ|x|y vanishes for x→ 0

more slowly than the deterministic term, and therefore the two regions are interchanged.
The length scale ` represents thus, for y > 1 (y < 1), the minimum (maximum) distance
from x = 0 at which the stochastic force is relevant for a single jump.

1.2.1 Superlinear noise (y > 1)

As anticipated above, for y > 1, in the region |x| � `, i.e., close to the origin, the one-step
increment δx is dominated by the deterministic contribution. If a < 0, the deterministic
contribution pushes the system away from the origin because µs(x) is positive for x > 0
and negative for x < 0, therefore, once x is close to the origin (|x| � `), the system can
neither cross nor reach the point x = 0. As we argue below, the probability that, due to the
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contribution of a fluctuation, the system crosses the origin x = 0 starting from the region
|x| & ` vanishes for δt → 0, so we expect that the origin is a boundary for the dynamics
without the need of introducing additional boundary conditions and that the system will
remain in the active phase (characterized by 〈x〉 6= 0). If a > 0, on the other hand, the
deterministic part pushes the system towards the origin, so we expect that not only the
origin is a boundary for the dynamics without the need for the introduction of boundary
conditions, but it is also an absorbing state into which the system will eventually collapse
(i.e., the system undergoes a fixation process to the state x = 0).

In order to heuristically investigate the possible crossing of the point x = 0, we consider
the discrete-time process in Eq. (1.6). If a trajectory, solution of Eq. (1.6), crosses x = 0,
it has to contain (at least) one step which crosses the origin. Since every step in the region
|x| � ` is dominated by the deterministic force, which does not allow the crossing of x = 0,
this crossing may happen only during a step with initial configuration in the region x & `,
and its probability can be heuristically estimated with the probability Pj that the system
crosses the origin with a single jump starting from x = `. The probability P (x+ δx, δt|x, 0)
to find the system in the configuration x+ δx at time δt, provided that it was in the state x
at time 0, can be obtained by considering Eq. (1.6) as a change of variable from the random
variable η̃ to the variable δx, and it reads

P (x+ δx, δt|x, 0) =
1√

2πs2(x)
e
− (δx−m(x))2

2s2(x) , (1.8)

where m(x) = −a x δt, s(x) = σ |x|y
√
δt, and the prefactor 1/

√
s2(x) comes from the

Jacobian of the change of variable. Accordingly, the probability Pj to jump from x = ` to
x < 0 in the small time δt, reads

Pj(δt) =

∫ 0

−∞
dx′ P (x′, δt|`, 0) =

1√
2π

∫ ∞
`−m(`)
s(`)

dz e−z
2/2. (1.9)

The probability Pj in Eq. (1.9) depends, as expected, on the duration δt of the discrete time
interval (because the length scale ` is a function of δt); therefore, in order to understand the
behavior of the system described by Eq. (1.4), we have to consider the limit δt → 0. For
y > 1, the lower integration extreme [` − m(`)]/s(`) on the r.h.s. of Eq. (1.9) diverges in
this limit, so we heuristically expect that the probability that the system crosses the origin
vanishes, as anticipated.

1.2.2 Sublinear noise (y < 1)

Unlike the case considered in the previous section, for y < 1 the stochastic force vanishes more
slowly then the deterministic one for x→ 0, and thus, in the region |x| � ` (i.e., close to the
origin), the one-step increment δx is dominated by the stochastic contribution. Due to this
fact, the heuristic argument used for discussing the case y > 1 cannot be straightforwardly
applied.
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In order to recover a situation in which the deterministic force dominates near the origin,
we perform here the change of variable2 z = x|x|1−2y/[σ2(1− y)2] in Eq. (1.4), obtaining

ż = −Az −Bz|z|1−d/2 + d z/|z|+ 2|z|1/2 η, (1.10)

with coefficients A = 2a(1 − y), B = 2b(1 − y)[σ(1 − y)]
1

1−y and d = (1 − 2y)/(1 − y),
which depend on the parameters a, b and y of Eq. (1.4). Note that in the range of values of y
considered here, i.e., for y < 1, the point x = 0 is mapped to z = 0 and the term proportional
to B (which prevents the escape of the system to |z| = ∞) in Eq. (1.10) is negligible for
z � (b/a)2/(d−2). Within this region Eq. (1.10) reduces therefore to the so-called square
d-dimensional Bessel process (see Ref. [48])

ż = −Az + d z/|z|+ 2|z|1/2 η, (1.11)

which, for z � d/A, can be further simplified to

ż = d z/|z|+ 2|z|1/2 η. (1.12)

Analogously to Eq. (1.4), also Eq. (1.12) is defined as the limit δt→ 0 of a discrete-time
process with time steps of duration δt and characterized by an increment

δz = d z/|z|δt+ 2|z|1/2δt η̃, (1.13)

where η̃ is again a Gaussian-distributed random variable with zero mean and unit variance.
As for Eq. (1.6), we can define a length scale ˜̀= d2δt/4 at which the deterministic and the
stochastic term in Eq. (1.13) give equivalent contributions to the mean square displacement
〈δz2〉. It can be noticed that the deterministic term dominates Eq. (1.13) for |z| � ˜̀ (i.e.,
near the origin), and viceversa it is negligible for |z| � ˜̀.

Depending on the sign3 of the parameter d (i.e., on the fact that the exponent y in
Eq. (1.4) is larger or smaller than 1/2), the system has a completely different evolution.
For d < 0 (i.e., for 1/2 < y < 1), the deterministic term in Eq. (1.13) pushes the system
towards the point z = 0 (i.e., towards x = 0), so we heuristically expect that the system will
eventually fix to that value.

On the other hand, for d > 0 (i.e., for y < 1/2), the deterministic term in Eq. (1.13)
pushes the system away from the point z = 0, and the probability P̃j(δt) to jump from z = ˜̀

to z < 0, evaluated as in Eq. (1.9), does not vanish for δt → 0. This means that in this
regime we heuristically expect a non-vanishing crossing probability for the point z = 0 (i.e.,
for x = 0).

Summarizing, we heuristically expect qualitatively different scenarios depending on the
exponent y of the noise amplitude. For y < 1/2 the system can cross the point x = 0,
which does not appear to be absorbing, independently of the value of the deterministic force,

2See App. A.1 for details on the change of variables in a Langevin equation.
3In the definition of the Bessel process, d is the dimension of the space in which the process takes place,

so it is constrained to positive integer values. However Eq. (1.11) can be generalized to non-integer and even
to negative values of the “dimension” d (see, e.g., Ref. [48]).
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i.e., of the deterministic “attractive” or “repulsive” character of x = 0. On the contrary,
for 1/2 < y < 1, we expect that x = 0 is absorbing, and the system reaches fixation
independently of the value of a. For y > 1 instead, as argued in the previous subsection,
the system is expected to remain in the active phase if the deterministic force makes x = 0
repulsive (i.e., if a < 0) and to fix to x = 0 in the opposite case. In the following section,
we will study the problem with the well-established boundary classification, which confirms
these heuristic results.

1.3 Boundary classification
The process associated with Eq. (1.1) can be analyzed by means of the relative boundary
classification (see Refs. [49, 50, 51, 28]). This is a method to determine the character of a
point x0 (typically a boundary of the process, hence the name) when the evolution of the
state x ∈ (xl, xr) of a system is described by a Langevin equation of the form (see Ref. [28])

ẋ = f(x) +
√
v(x) η, (1.14)

with suitable smooth functions f(x) and v(x), and a delta-correlated and Gaussian-distributed
noise η(t). More precisely the classification is based on answering the following three ques-
tions:

i) Starting from an initial configuration x 6= x0, can the system reach x0 before all the
rest of the configuration space is visited?

ii) If the answer to the previous question is yes, is x0 reached in a finite expected time?

iii) For t→∞, is the system stuck at x = x0? (i.e., does the system undergo fixation?)

The answers to the questions (i), (ii), and (iii) can be obtained via the analysis of three
functionals L1, L2, and L3, which will be described in the following part of the section and
depend on the behaviour of the functions f(x) and v(x) near the point x = x0.

1.3.1 Attractiveness of the point x0

If the answer to the question (i) is positive, the point x0 is said to be attracting. In order
to investigate the attractiveness of x0, we consider here the probability u(x;x0, x1) that the
system, starting from the initial configuration x, reaches the point x1 6= x0 before x0. This
probability satisfies the homogeneous backward Fokker-Planck equation (see, e.g., Ref. [51])

f(x)∂xu(x;x0, x1) + v(x)∂2
xu(x;x0, x1)/2 = 0 (1.15)

with the boundary conditions u(x0;x0, x1) = 1 and u(x1;x0, x1) = 0. The solution of
Eq. (1.15) is rather straightforward [51]

u(x;x0, x1) =
L1(x0, x)

L1(x0, x1)
, (1.16)
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where

L1(x0, x1) =

∫ x1

x0

dξ exp[−g(ξ)], (1.17a)

g(ξ) =

∫ ξ

ξa

dξ′ 2f(ξ′)/v(ξ′), (1.17b)

while ξa is an arbitrary value of x which does not affect the result in Eq. (1.16). The state
x0 is attracting if u(x;x0, x1) < 1 for at least one value of the initial condition x and one
value of the point x1; the latter can therefore be chosen, for x > x0 (x < x0), as the right
(left) boundary of the process, There are two possible scenarios: either u(x;x0, x1) = 1 for
any choice of the initial condition x, or u(x;x0, x1) < 1 for at least some choice of the initial
condition x. In the latter case the point x0 is attracting, and this happens if and only if the
functional L1(x0, x), defined in Eq. (1.17a), takes a finite value for some x.

1.3.2 Attainability of the point x0

If the answer to both questions (i) and (ii) above is positive, i.e., if the system, starting from
an initial configuration x1 6= x0, can reach x0 in a finite expected time, the point x0 is said
to be attainable. In order to investigate the attainability of x0, we consider here the mean
time T (x;x0, x1) to reach either x0 or x1 starting from the initial condition x, where x1 is
the boundary which is on the same side of x with respect to x0. T satisfies the differential
equation (see, e.g., Ref. [51])

f(x)∂xT (x;x0, x1) + v(x)∂2
xT (x;x0, x1)/2 = −1 (1.18)

with the boundary conditions T (x0;x0, x1) = T (x1;x0, x1) = 0. The solution of Eq. (1.18) is
(see Ref. [51])

T (x;x0, x1) = 2 {u(x;x0, x1)L2(x1, x) + [1− u(x;x0, x1)]L2(x0, x)} , (1.19)

where

L2(x0, x) =

∫ x

x0

dξ L1(x0, ξ)m(ξ), (1.20a)

m(x) = exp[g(x)]/v(x), (1.20b)

while u(x;x0, x1), L1(x0, x1), and g(x) have been defined in Eqs (1.16), (1.17a), and (1.17b)
respectively. According to the previous subsection, the point x0 is attracting if u(x;x0, x1) <
1 for some values of x, x1. In this case, the expected time T (x;x0, x1) in Eq. (1.19) is finite
if and only if the functional L2(x0, x) in Eq. (1.20a) is finite (see Ref. [51]).

1.3.3 Fixation and stationary distribution

In order to investigate whether the system undergoes fixation, i.e., whether it localizes into
an absorbing state, we consider here the probability P (x, t|x′, 0) to find the system at the
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configuration x at time t conditioned to the fact that at time 0 it was at the configuration
x′. This probability satisfies the forward Fokker-Plank equation associated with Eq. (1.14),
which reads (see, e.g., Ref. [22])

∂tP (x, t|x′, 0) = −∂x [f(x)P (x, t|x′, 0)] +
1

2
∂2
x [v(x)P (x, t|x′, 0)] . (1.21)

The long-time behaviour of P can be understood by studying the stationary version of
Eq. (1.21), whose solution does not depend on the initial condition (unless the initial state
is an absorbing one) and can be formally written as

Ps(x) = m(x)/Z (1.22)

where the functionm(x) has been defined in Eq. (1.20b), while Z is a normalization constant.
If the function m(x) is well-defined and normalizable on the whole configuration space,
Eq. (1.22) defines the asymptotic probability distribution of the system, which therefore does
not fix to an absorbing boundary. On the other hand, when the system undergoes fixation to
an absorbing point x0, the function m(x) has a non-normalizable singularity at that point,
and we can introduce the so-called fixation probability p(x0|x), i.e., the probability that the
system reaches the absorbing point x0, starting from the configuration x.

A point x0 is called regular if the function m(x) is normalizable for x → x0, i.e., if the
functional

L3(x0, x) =

∫ x

x0

dξ m(ξ) (1.23)

is finite for some x. As explained in the next subsection, a regular point is not absorbing.

Relation between fixation probability and stationary distribution

For any stochastic process with an absorbing state x0, the fixation probability p(x0|x) to
that point and the stationary distribution Ps(x) have disjoint support on x 6= x0, i.e., at
any point x 6= x0, either the fixation probability p(x0|x) or the stationary distribution Ps(x)
vanishes.

In fact, let us consider a stochastic process with an absorbing state x0 and with a sta-
tionary distribution Ps(x) which does not vanish on a set I (with x0 /∈ I). If we take an
ensemble of N →∞ systems distributed according to Ps and we let them evolve according to
the dynamics, the ensemble is still described by the same stationary distribution Ps (because
Ps is by definition invariant under the dynamics); in particular there cannot be a probability
current from the set I to x0, because, being x0 absorbing, it could not be compensated by
a flow from x0 to I, as required by the condition of stationarity. Therefore the fixation
probability p(x0|x) has to vanish on the whole set I.

To our knowledge, this simple argument has never been presented in the literature.

1.3.4 Boundary classification for the point x = 0 in Eq. (1.4)

The general classification described in the previous sections 1.3.1, 1.3.2, and 1.3.3, can be
straightforwardly applied to Eq. (1.4). We simply use the expressions f(x) = µs(x) and
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v(x) = σ2|x|2y characterizing, respectively, the deterministic part and the variance of the
noise in Eq. (1.4) into the Eqs. (1.17a), (1.20a), and (1.23), defining the functionals L1(x0, x),
L2(x0, x), and L3(x0, x) respectively, the values of which depend on the parameters y, a, and
σ. We summarize here the results of the boundary classification.

(i) Attractivity — The functional L1(0, x) is finite and therefore the point x = 0 is at-
tracting (i.e., it can be reached before all the rest of the configuration space is visited)
for

• y < 1, or

• y = 1 and a > −σ2/2, or

• y > 1 and a > 0.

(ii) Attainability — The functional L2(0, x) is finite and therefore the point x = 0 is
attainable (i.e., it is reached in a finite expected time) if and only if y < 1. This means
in particular that, (I) for y = 1 and a > −σ2/2 or (II) for y > 1 and a > 0, the point
x = 0 is attracting but not attainable, i.e., it can be reached, but with an infinite
expected time.

(iii) Regularity — The functional L3(0, x) is finite and therefore the point x = 0 is regular
(i.e., it is not absorbing), for

• y < 1/2, or

• y = 1 and a < −σ2/2, or

• y > 1 and a < 0.

It can be noticed that for y ≥ 1 the point x = 0 is regular for the same values of
a for which it is not attractive, i.e., for which it can not be reached by the system.
For y < 1/2, instead, the point x = 0 is attainable (i.e., it can be reached in a finite
expected time), but nevertheless it is regular, meaning that it can be left (or crossed),
as expected from the heuristic argument is Sec. 1.2.2. This means that, in order to
have a process constrained to involve only positive values of the variable x, we have
to enforce auxiliary boundary conditions in the point x = 0. In Sec. 1.4.1 we will
describe this fact from the perspective of the probability P (x, t) to find the system in
the configuration x at time t.

1.4 Probability distribution
In order to describe more in detail the potential crossing of the point x = 0 by a system
described by Eq. (1.4), we consider now the probability P (x, t|x′, 0) to find the system in the
configuration x at time t, conditioned to the fact that at time 0 it was in the configuration
x′. We focus here on the case y < 1, i.e., on the case in which the noise vanishes sublinearly
for x → 0. From the boundary classification, we already know that the character of the
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point x = 0 depends on the value of the noise exponent y, but not on the parameters a and
b. We can therefore set a = b = 0 without changing significantly the properties of the point
x = 0. In this case the Fokker-Planck equation describing the evolution of the probability
P (x, t|x′, 0) reduces to

Ṗ (x, t|x′, 0) =
σ2

2
∂2
x

[
|x|2y P (x, t|x′, 0)

]
, (1.24)

where the initial condition is P (x, 0|x′, 0) = δ(x − x′). The solution of Eq. (1.24) can be
written in terms of the modified Bessel functions Kν(z) and Iν(z) of order ν = 1/[2(1− y)]
and depends, as expected, on the value of y (see App. A.3 for more details).

1.4.1 Noise exponent 0 < y < 1/2

For 0 < y < 1/2 (i.e., for 1/2 < ν < 1), the solution of Eq. (1.24) with a positive initial
condition x′ reads (see App. .A.3 for the derivation)

P (x, t|x′, 0) =
σ2νx′1/2

2t
|x| 1ν− 3

2 exp

[
−σ

2 ν2(x′1/ν + |x|1/ν)
2t

]
×
[

sin(πν)Kν(
σ2 ν2 x′

1
2ν |x| 1

2ν

t
) + θ(x) Iν(

σ2 ν2 x′
1
2ν x

1
2ν

t
)

]
.

(1.25)

The probability distribution P (x, t|x′, 0) in Eq. (1.25) is plotted in Fig 1.2 with initial
condition x′ = 1, for σ = 1, ν = 0.25, and for various times t. It can be noticed that the
probability is localized around the initial condition 1 at short times, while it spreads to both
negative and positive values of x at longer times. Note that in the original equation (1.4),
the escape to |x| =∞ of the two pronounced peaks, which move to the right for x > 0 and
to the left for x < 0, would be prevented by the presence of the cubic confining term b|x3|/3
in the deterministic potential Vs, in which case the probability P (x, t|x′, 0) relaxes to the
stationary probability

Ps(x) ∝ 1

|x|2y exp

[
− a

1− y |x|
2−2y − 2b

3− 2y
|x|3−2y

]
. (1.26)

The result of Eq. (1.25), despite the fact that it does not capture the correct long time
behavior of the (confined) solution of Eq. (1.4), is interesting as it shows, in agreement with
the results of Secs. 1.2.2 and 1.3.4, that (i) the point x = 0 can be crossed and (ii) there is
not fixation to x = 0.

1.4.2 Noise exponent 1/2 ≤ y < 1

For 1/2 ≤ y < 1 (i.e., for ν ≥ 1), the solution of Eq. (1.24) with a positive initial condition
x′ reads (see App. A.3)

P (x, t|x′, 0) =
σ2νx′1/2

2t
|x| 1ν− 3

2 exp

[
−σ

2 ν2(x′1/ν + |x|1/ν)
2t

]
θ(x)Iν(

σ2ν2(x′x)
1
2ν

t
)

+ p(0, t|x′, 0)δ(x),

(1.27)
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Figure 1.2: Plot of the probability distribution P (x, t|1, 0) to find the system in the config-
uration x at time t, with the assumption that x = 1 at time t = 0, for various values of t;
P (x, t|x′, 0) is reported in Eq. (1.25) and it has been derived for 0 < y < 1/2 and a = b = 0.
At short times P (x, t|1, 0) is localized around the initial condition 1 and, upon increasing
time, it spreads to both negative and positive values of x, trespassing the point x = 0.

where p(0, t|x′, 0) = 1 − γ(ν, σ2ν2x′
1
ν /(2t))/Γ(ν) is the time-dependent fixation probability

to the state x = 0 and γ(ν, z) =
∫ z

0
dt e−ttν−1 is the (upper) incomplete gamma function. It

can be noticed that the probability p(0, t|x, 0) is an increasing function of time, as depicted
in Fig. 1.4, indicating the presence of an absorbing state in x = 0 and the eventual fixation
of the system. The probability distribution P (x, t|x′, 0) in Eq. (1.27) is plotted in Fig 1.3
with initial condition x′ = 1, for σ = 1, ν = 0.75 and for various values of the time t. At
short times the probability is localized around the initial condition 1, while it spreads to
every positive value of x at longer times. It can be noticed however that the area subtended
by P (x, t|x′, 0) decreases for increasing time, indicating an increasing probability to find the
system in the absorbing state x = 0. This is confirmed by Fig. 1.4, in which we report the
probability p(0, t|1, 0) to find the system in the absorbing state x = 0 at time t, conditioned
to the fact that at the initial time it was in the configuration 1.

1.4.3 Noise exponent y = 1

If the noise decreases linearly as x approaches 0, the solution of the stationary Fokker-Planck
equation (1.24) can be formally written as

Ps(x) ∝ 1

|x|2a/σ2+2
exp[−2b|x|/σ2]. (1.28)
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Figure 1.3: Plot of the probability distribution P (x, t|1, 0) to find the system in the config-
uration x at time t, with the assumption that x = 1 at time t = 0, for various values of t;
P (x, t|x′, 0) is reported in Eq. (1.27) and it has been derived for 1/2 < y < 1 and a = b = 0.
The area subtended by P (x, t|x′, 0) decreases by increasing the time t, indicating that the
probability to find the system in the absorbing state x = 0 is an increasing function of time,
as Fig. 1.4 clearly shows.

The expression reported in Eq. (1.28) is normalizable and represents thus a well-defined
stationary distribution only for a < ac, where ac = −σ2/2 represents a critical value above
which the “order parameter”4 〈x〉 asymptotically5 relaxes to the value 〈x〉 = 0, which identi-
fies the absorbing state, and above which the system is in an active phase characterized by a
stationary value 〈x〉 > 0(6). This is an example of a noise-induced ordering transition (see,
e.g., Refs. [43, 52, 28]), which is controlled by the noise amplitude σ determining whether, for
a certain value a < 0, the system is in an ordered (i.e., active) or disordered (i.e., absorbing)
phase.

4In analogy with equilibrium phase transitions, the expectation value 〈x〉 can be considered as a sort of
order parameter.

5 Note that the point x = 0 is not attainable for y ≥ 1, i.e., it cannot be reached in a finite expected time
(see Sec. 1.3.4). In population genetics, the behavior of a system which reaches asymptotically an absorbing
state is called quasi-fixation (see Ref. [45]).

6If we assume a positive initial condition x(0) > 0.
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Figure 1.4: Time-dependent fixation probability p(0, t|1, 0) to the absorbing state x = 0,
with the assumption that x = 1 at time t = 0; p(0, t|1, 0) has been evaluated for a = b = 0
and for various values if the parameter ν = 1/[2(1− y)].

1.4.4 Noise exponent y > 1

For a noise exponent y > 1 (i.e., when the noise decreases faster than linearly as x approaches
0), the solution of the stationary Fokker-Planck equation (1.24) can be formally written as

Ps(x) ∝


1

|x|2y exp

[
a

y − 1
|x|2−2y − 2b

3− 2y
|x|3−2y

]
, y 6= 3/2,

1

|x|3+2b
exp

[
2a|x|−1

]
, y = 3/2.

(1.29)

As in the case y = 1, also for y > 1 there is a critical value ac of the parameter a —
which in this case is ac = 0 — above which the formal solution reported in Eq. (1.29) is not
normalizable, the system asymptotically7 fixes to the point x = 0, and the order parameter
〈x〉 asymptotically relaxes to 0.

1.5 Summary of results
We have shown that a system described by Eq. (1.4) displays qualitatively different behaviors
depending on the value of the exponent y of the noise. In particular, y = 1/2 and y = 1 —
which, as discussed in Sec. 1.1, are by far the most common in physical systems — represent
the boundaries between the different regions in the phase portrait which are depicted in
Fig. 1.5 and summarized below.

7See footnote 5
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Figure 1.5: “Phase diagram” which summarizes the behavior of the point x = 0 in Eq. (1.4)
in the space of the relevant parameters y and a.

If y > 1, i.e., if the noise vanishes superlinearly for x→ 0, the fate of the system depends
on the value of the coefficient a of the linear term in the deterministic force: similarly to the
solution of the purely deterministic case described in Eq. (1.3), for a > 0 there is asymptotic
fixation to x = 0, while for a < 0 the system remains in the active phase characterized by
〈x〉 > 0. Compared to the deterministic solution in Eq. (1.3), the noise widens the stationary
distribution Ps(x), but it does not allow the system to cross the state x = 0, and this can be
heuristically understood by analyzing the probability for a system, described by the discrete-
time version of Eq. (1.4) (with time step δt), to cross x = 0: this probability turns out to
vanish as δt→ 0.

The value y = 1 for the noise exponent, as anticipated in Sec. 1.1, is associated to a
number of statistical physics systems, as KPZ equation, directed polymers in random me-
dia and population genetics models with fluctuating selection coefficient (see for instance
Refs. [44, 43, 45]). For this particular value of y, the behavior of the system is still quali-
tatively similar to the previous (superlinear) case, but with the crucial difference that the
critical value ac of the coefficient a which separates the “active” from the “absorbing” phase
is now ac = −σ2/2; this produces a so-called noise-induced ordering transition (see, e.g.,
Ref. [43, 52, 28]), because, for a certain value a < 0, the amplitude σ of the noise determines
whether the system is in an ordered (i.e., active) or disordered (i.e., absorbing) phase.

The sublinear noise (i.e., the noise with an exponent y < 1) introduces, instead, signifi-
cant changes compared to the deterministic behavior. For 1/2 ≤ y < 1, the state x = 0 is
absorbing and attainable (i.e., the system is expected to fix to this state in finite time), inde-
pendently of the value of the coefficient a of the deterministic part, i.e., of the deterministic
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“attractive” or “repulsive” character of x = 0. It can be noticed that the smallest exponent y
falling in this class is y = 1/2, which, as anticipated in Sec. 1.1, appears very frequently in
systems with internal fluctuations, as directed percolation (see for instance Refs. [26, 43, 25])
and population genetics models with the so-called genetic drift (an example of which will be
studied in detail in Chapter 2). For y < 1/2 instead, the state x = 0 is a regular point, i.e.,
it is not absorbing. Since we know from the boundary classification that it is also attainable
(i.e., that it can be reached in a finite expected time), this means that it can be leaved and
crossed. In a sense, the separatrix nature of the state x = 0 for Eq. (1.4) — with vanishing
deterministic part and vanishing noise amplitude — is only apparent, and fluctuations close
to x = 0 turn it into a regular point. This is confirmed by the solution of the Fokker-Planck
equation for the probability P (x, t) to find the system in the state x at time t in a simplified
version of Eq. (1.4), i.e., with a = b = 0, which however retains the same behavior for x ' 0.
This means that, in order to describe a system in which the state x is constrained to be non-
negative (as in the case of the CEV model for the price of options on the financial market),
Eq. (1.1) has to be supplemented with proper boundary conditions (see, e.g., Ref. [42]).

The behavior of the system in the presence of sublinear noise can be heuristically under-
stood with the change of variable z = x|x|1−2y/[σ2(1 − y)2] in Eq. (1.4), which renders an
equation of motion for the variable z with a constant term proportional to (1 − 2y)z/|z|,
which strongly pushes the system towards the point z = 0 (i.e., x = 0) for y > 1/2 and away
from this point for y < 1/2. In the latter case, the probability for a system described by
the discrete-time version of Eq. (1.4) to cross the state x = 0 turns out to remain finite as
δt→ 0, and this explains heuristically the crossing of the point x = 0.



Chapter 2

Population genetics in a subdivided
population

This chapter is primarily based on the results originally presented in Refs. [36, 37].

2.1 Introduction

Among the fields in which the approach of statistical physics turns out to be particularly
useful and effective, there is population genetics, which is at the core of a quantitative theory
of evolution. Population genetics can help, for instance, in understanding the origin and
history of species, the migration behavior of animals and microbial, in predicting and control
epidemics or in contrasting diseases with an evolutionary character. An additional reason
of interest lies in the fact that the same mathematical models used in population genetics
can be often applied to other contexts such as ecology, evolutionary game theory, language
competition, learning dynamics, and epidemics (see, for instance, Refs. [53, 54, 55, 56]).

The simplest models of population genetics focus on one gene of the genotype (i.e., on
one locus in the DNA sequence), and describe the time evolution of the fractions {x(i)} of
individual in a population carrying the various alleles, i.e., the different possible “values”
i = 1, ..., Nallele of the gene considered; due to their simplicity, particular attention is devoted
to the diallelic models, in which Nallele = 2 and, if the total number of individuals is constant,
one fraction x is sufficient to describe the state of the population. In asexual populations
(e.g., in bacteria) the dynamics can then be interpreted as a sort of random walk in the space
of the allele frequency x, with state-dependent jump rates.

In a natural population with no structure or subdivision — usually referred to as a well-
mixed population — the temporal evolution of the gene content results from the competition
between the deterministic evolutionary force (selection) which favors “stronger” genotypes
and the stochastic effects generated by the death and reproduction of individuals (genetic
drift). Due to the possibility of errors in the microscopic process involved in the DNA repli-
cation, an allele may occasionally be substituted by a different one during its reproduction
(mutation); however, mutations typically occur on a time scale (τmutation ' 108 generations,
see, e.g., Ref. [57]) much longer than the other forces mentioned above (τmigration ' τselection '

25
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τgenetic drift ' (101÷104) generations, see, e.g., Ref. [58]), and they can be neglected on shorter
time scales.

Because of genetic drift, every finite population in the absence of mutations eventually
reaches an absorbing state (fixation) in which all individuals have the same value of the allele
we are focusing on. Accordingly, biodiversity, defined as the coexistence of various traits, is
lost. When a population presents an internal structure, e.g., it is subdivided in subpopu-
lations, the individuals can move between different subpopulations and this migration acts
together with selection and genetic drift, determining local extinction and recolonization
of genetic traits and influencing relevant long-time properties of the dynamics, such as the
mean fixation time (MFT). The fixation time — which by itself is a stochastic variable —
is defined as the time it takes to a certain population to reach the absorbing state of the
dynamics. It is widely observed that habitat fragmentation and population subdivision play
a major role in the process of ecological change and biodiversity loss. Understanding and
predicting the effects of migration on the collective behavior of a subdivided population is
therefore of primary importance in order to preserve ecosystems and species abundance.

Depending on the specific landscape into which the natural population is embedded,
its spatial structure can be conveniently modeled by means of either one-, two-, three-
dimensional regular lattices or, more generally, by a network with certain connections. Figure
2.1 schematically depicts two opposite cases of spatial arrangement for a subdivided pop-
ulation with (a) high and (b) small connectivity. Subpopulations are represented by green
circles, while the possible migration paths are represented by arrows. If the degree of connec-

(a) (b)

Figure 2.1: Two different spatial arrangements of subdivided populations considered in this
chapter: the fully-connected graph (a) represents the network underlying the island model
described in Sec. 2.2.2, while the one-dimensional regular lattice with periodic boundary
conditions (b) underlies the stepping stone model presented in Sec. 2.6.1. Each node (green
circle) of the graph represents a subpopulation (deme), while the links (arrows) represent
the possible migration paths.

tivity of each node of this network is sufficiently large and the connected subpopulations have
constant and equal sizes, the effects of subdivision typically amounts to a rescaling of the
relevant parameters of the population, such as the effective population size Ne and the effec-
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tive strength se of selection [59, 60]. However, both Ne and se are functions of the rate with
which individuals migrate between subpopulations, therefore both the fixation probability
and the MFT depend on it. For constant or absent selection, the MFT is known to decrease
monotonically upon increasing the migration rate [61, 62, 58, 56]. When evolutionary forces
which favor biodiversity are present, instead, as we will show in the present chapter, the
MFT can surprisingly display a nonmonotonic dependence on the migration rate [36]. Even
in the absence of mutation, this kind of evolutionary forces are common to natural popula-
tions. In particular the balancing selection [63, 64, 65] introduces a selective advantage for
the “weakest” allele, encompassing mechanisms such as over-dominance or heterozygote ad-
vantage, which act in several contexts, most notably mammalian [66, 67] and plants [68, 69].
For example, it has been proposed that some genetic diseases in humans, such as sickle-cell
anemia [70], cystic fibrosis [71], and thalassemia [72] actually persist as a consequence of
balancing selection. Analogous mechanisms are responsible for the emergence of bilingual-
ism in language competition [73] or for cooperative behaviors in ecology and coevolutionary
dynamics [74, 75], such as those recently observed in microbial communities [76].

In this chapter, based primarily on Refs. [36, 37], we consider a group of N equally sized
subpopulations (i.e., forming a metapopulation) which evolve under the effect of balancing
selection, while migration takes place between any pair of subpopulations, such as to form a
fully connected graph with each subpopulation occupying one of its vertices, as schematically
depicted in see Fig. 2.1(a). While balancing selection tends to drive the frequency xi of each
subpopulation towards a certain (common) allele frequency x∗, the random genetic drift
introduces fluctuations around it which possibly lead xi to 0 or 1, corresponding to a uniform
subpopulation composition, and to the absorbing states of the dynamics of the corresponding
isolated subpopulation (no mutation is considered here). However, migration might cause
the introduction of an individual with a different genetic trait compared to the majority of
this subpopulation and therefore renders xi = 0 and 1 no longer absorbing states, unless all
the subpopulations coherently reach the state 0 or 1 under the effect of fluctuations. The
interplay between the time scales which characterize the various processes involved is at the
origin of the rich dynamical behavior we explore in the present chapter, both numerically
and analytically.

In Sec. 2.2.3 we present the approximate description of the dynamics of the system
proposed in Ref. [36], which hinges on the emergence of a separation between the time scale
of the local dynamics occurring at each vertex of the network and that of the global dynamics
at the level of the whole network. The resulting approximation allows us to obtain an analytic
estimate for the MFT of the whole population, and it highlights a nonmonotonicity of the
MFT as a function of the migration rate. This nonmonotonicity is related with a similar
nonmonotonicity in the biodiversity, already observed in the literature, and it appears to
be a quite general feature for subdivided populations with balancing selection, as it is also
present in space embedded populations (discussed in Sec. 2.6). The approximation described
in Sec. 2.2.3 turns out to be accurate when the effective selection strength is sufficiently small
and the number N of subpopulations is sufficiently large. In Sec. 2.3 we show that in the
limit N → ∞, a phase transition takes place between species coexistence and biodiversity
loss. In order to be able to investigate the fixation properties of the system for larger values
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of the selection strength — which are not immediately accessible with the previous approach
— we propose in Sec. 2.5.1 an effective description of the metapopulation in terms of a voter
model, which is generically accurate for small values of the migration rate. This coarser
description applies to a generic metapopulation model, independently of the specific form of
the natural selection; in addition, in the presence of balancing selection, the effective voter
model can be conveniently generalized by introducing an additional intermediate state in its
dynamics, as we discuss in Sec. 2.5.2. This amended model turns out to reproduce accurately
the fixation time of the original metapopulation up to larger values of the migration rate
compared to the standard voter model. In contrast to the latter, the one with the additional
state is actually able to reproduce the distinctive nonmonotonic dependence of the MFT on
the migration rate found in Sec. 2.2.3. Moreover, it provides a semi-quantitative explanation
of a nonmonotonic behavior observed in the MFT as a function of the selection coefficient s,
which appears for small migration rate m in addition to the one discussed above. In Sec. 2.6
we consider a population embedded in one spatial dimension, i.e., arranged along a line with
periodic boundary conditions, as schematically depicted in Fig. 2.1(b): we show that also in
this case the MFT can develop a nonmonotonic behavior as a function of the migration rate,
similarly to the fully-connected case discussed in Sec. 2.2.3.

2.2 The microscopic model

2.2.1 Dynamics of an isolated population

The evolution of finite diallelic (i.e., with Nallele = 2) well-mixed populations is conveniently
described at the microscopic level by the Wright-Fisher model [77, 78], which consists of a
(haploid) population of Ω individuals, each one carrying one of two possible alleles A or B.
At each time step of the dynamics the original population is substituted by a new generation
obtained by a binomial random sampling determined by the features of the previous one:
the allele of each new individual is randomly drawn with a probability which depends on the
frequency of occurrence of A (or, equivalently B) in the older generation. The time interval
τg between two consecutive steps of this dynamics represents the duration of a generation.
In a neutral model, i.e., in the absence of selection, each new individual carries allele A
(respectively B) with probability x = ΩA/Ω (respectively 1 − x), where ΩA is the number
of individuals carrying allele A in the previous generation. In order to mimic the effects
of natural selection, which favors one of the alleles compared to the other, one introduces
different allele fitnesses wA = 1+ s̃ and wB = 1 for alleles A and B, respectively, which affect
the probability pr(x) that a new individual carries allele A after reproduction as

pr(x) =
wAΩA

wAΩA + wBΩB

=
(1 + s̃)x

1 + s̃x
. (2.1)

Alternatively, the dynamics of the same population can be described by the Moran model [79].
At each time step of the dynamics two individuals (not necessarily distinct) are randomly
selected in the population. In the absence of selection, an exact copy of the first one is
introduced in order to replace the second one, which is therefore removed from the population.
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Since individuals are randomly chosen, the probability dA = ΩA/Ω = x of removing an
individual with allele A from the population equals the probability rA of reproducing one of
them. Analogously, for an individual carrying allele B these probabilities are dB = rB = 1−x.
Within the Moran model, a selective advantage can be accounted for by modifying the
reproduction probability rA,B of the alleles with the fitnesses wA and wB specified above,
according to rA(x) = (1 + s̃)x/(1 + s̃x) and rB(x) = x/(1 + s̃x). With these probabilities,
the number of individuals carrying allele A increases/decreases by one at each step of the
dynamics with rates W+1/W−1, respectively, given by

W+1δt = rAdB = (1 + s̃)x(1− x)/(1 + s̃x),

W−1δt = rBdA = x(1− x)/(1 + s̃x),
(2.2)

where δt is the duration of the time step1.
Although the Wright-Fisher and Moran models are implemented with different rules at

the microscopic level, for a wide range of values of the parameters and sufficiently large
populations, they turn out to be effectively described by the same Langevin equation (with
Itō prescription, see App. B.1)

ẋ = µ(x) +
√
v(x) η(t), (2.3)

where the evolution of the frequency x of allele A in the population is driven by the sum
of a deterministic force µ(x) = s̃x(1 − x) generated by selection and of a stochastic term
— referred to as genetic drift in the literature — which is a delta-correlated Gaussian noise
with zero mean and variance v(x) = x(1 − x)/(Ωτg). This noise is conveniently expressed
as
√
v(x) η(t) in terms of the normalized Gaussian noise η with 〈η〉 = 0 and 〈η(t)η(t′)〉 =

δ(t− t′). Note that Eq. (2.3) provides an approximate description of the dynamics in terms
of an effective diffusion process. While this approximation turns out to be accurate for
the Wright-Fisher and Moran models, at least within a certain range of parameters (see
Refs. [80, 81, 82]), it is known to fail in other cases, e.g., in the susceptible-infected-susceptible
(SIS) model of epidemiology [83].

Note also that, differently from Eq. (1.1) considered in Chap. 1, Eq. (2.3) has two station-
ary states, i.e., two states (namely the two boundaries 0 and 1 of the range of the allowed
values of x) characterized by the vanishing of both the deterministic term µ(x) and the
variance v(x) of the noise. According to the boundary classification introduced in Sec. 1.3,
these boundaries are absorbing (i.e., if the system reaches one of them, it cannot escape) and
attainable (i.e., they can be reached in a finite expected time, namely, the MFT described
further below in this section), as long as the size Ω of the population is finite. For finite Ω
indeed, the absorbing properties of each boundary of the system described by Eq. (2.3) are
the same as those of the system described by Eq. (1.1) with noise exponent y = 1/2.

1The Moran and Wright-Fisher models are different microscopic implementations of a dynamics which
is expected to be the same at the mesoscopic level, i.e., for large enough populations (Ω � 1) and at least
within some range of their parameters. In order to recover the same behavior as the Wright-Fisher model,
one has to choose, in the Moran model, a duration δt = 2τg/Ω for the Moran time step and to replace the
rates m and s with 2m and 2s respectively (see App. B.1).
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Without loss of generality, time can be measured in units of generations, so that τg = 1
and the rates become dimensionless quantities. Balancing selection is characterized by a
selective advantage s̃ which favors the evolution towards a state of the population charac-
terized by an optimal frequency x∗ of allele A; in the simplest case one can assume a linear
dependence

s̃ = s(x∗ − x), (2.4)

with a constant s > 0. Note that in an infinitely large population (with Ω → ∞), the fluc-
tuation effects represented by η in Eq. (2.3) are suppressed, and the resulting deterministic
dynamics due to the selection term µ drives the population towards the optimal frequency
x∗ of allele A. In a finite population, instead, the presence of fluctuations due to the random
genetic drift eventually drives x towards one of the two possible absorbing states x = 0 and
1, corresponding to the fixation of allele B and A, respectively.

The time required in order to reach fixation with an initial frequency x is a stochastic
variable; its mean, i.e., the MFT2 Tfix1(x) is determined within the diffusion approximation
by v(x̄)T ′′fix1(x)/2+µ(x)T ′fix1(x) = −1 (see Sec. 1.3.2 and Ref. [84]), and it reads (see App. A.2
for a detailed derivation)

Tfix1(x)

Ω
=

2 [S(x, 1)F (0, x)− S(0, x)F (x, 1)]

S(0, 1)
, (2.5)

where x is the initial condition, while the functions S(a, b) and F (a, b) are defined by

S(a, b) =

∫ b

a

dx exp [−s′x(2x∗ − x)] ,

F (a, b) =

∫ b

a

dz

∫ 1

z

dy
exp {s′ [y(2x∗ − y)− z(2x∗ − z)]}

y(1− y)
,

(2.6)

where we conveniently introduced the rescaled selection coefficient s′ = Ωs(3).
In the symmetric case x∗ = 1/2, Eq. (2.5) reduces to

Tfix1(x)

Ω
=

∫ 1

(1−2x)2

du

∫ 1

0

dz
es
′u(1−z2)/4

1− uz2
. (2.7)

As expected, Tfix1(x) vanishes if the initial condition x corresponds to one of the two absorbing
states, x = 0 or 1, while it reaches smoothly its maximum value as the initial condition
moves towards x = 1/2. In the following we focus on the initial condition x = 1/2, which,
for x∗ ' 1/2 and s large enough, corresponds to a long-lived metastable state promoted by
balancing selection.

Note that starting from an initial value x0, the frequency x does not typically visit the
whole interval of possible values x ∈ (0, 1) during its evolution because of the presence of

2The label 1 in the subscript of Tfix1 is meant to distinguish this MFT, associated with a single well-mixed
population, from the MFT Tfix which will be introduced in Sec. 2.4, associated with the whole subdivided
population.

3In what follows the prime indicates that the corresponding quantity has been rescaled by the population
size Ω.
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absorbing states which cause fixation: in fact, the probability p(x1|x0) that the population
reaches the value x1 during the evolution which precedes fixation can be evaluated via the
procedure described in Sec. 1.3.3 (see also Ref. [85]) and it reads

p(x1|x0) =



∫ x0

0
dy exp [−s′y(2x∗ − y)]∫ x1

0
dy exp [−s′y(2x∗ − y)]

for x1 > x0,∫ 1

x0
dy exp [−s′y(2x∗ − y)]∫ 1

x1
dy exp [−s′y(2x∗ − y)]

for x1 < x0.

(2.8)

These expressions turn out to be useful when discussing the voter model approximation in
Sec. 2.5.

Based on Eq. (2.8) one can read in particular the fixation probability p(1|x), i.e., the
probability that allele A fixes in the whole population starting from the initial frequency
x. In Fig. 2.2 we report the fixation probability evaluated for a population characterized
by Ω = 100, x∗ = 1/2, and by various values of the selection strength s′; it can be noticed
that, as expected, p(1|x) is an increasing function of the initial frequency x. While in the
limit of vanishingly small selection strength the fixation probability coincides with the initial
frequency (p(1|x) ' x for s′ . 1), for large selection strength it develops, in the region
around x = 1/2, a plateau characterized by a probability p(1|x) ' 1/2; this is due to the
fact that the population, for strong balancing selection, and unless it starts very closed to
an absorbing state, reaches almost certainly the state x = x∗ = 1/2, from which it will
eventually relax to the x = 0 or x = 1 absorbing state, with equal probabilities.

2.2.2 Metapopulation models

In the absence of spatial embedding, a celebrated prototypical model of subdivided popula-
tions is the so-called island model, originally proposed by Wright [78] for neutral evolution.
It consists of N interacting subpopulations (called demes) of identical size Ω, labeled by an
integer i = 1, . . . , N and characterized by the frequencies {x1, x2, . . . , xN} for the occurrence
of allele A, with xi ∈ [0, 1]. Within each deme, the internal dynamics (assumed to be the
same for all demes in the absence of migration) proceeds as in either Moran’s or Wright-
Fisher’s stochastic models, while different demes interact by exchanging randomly picked
individuals, such that the sizes Ω of the demes involved in the exchange are not affected.
As schematically depicted in Fig. 2.1(a), migration occurs between any possible pair (i, j)
of demes, and its rate m is defined as m = ni↔jN/Ω, where ni↔j is the mean number of
individuals exchanged between the demes i and j in one generation.

Within the Wright-Fisher model the effect of migration is typically accounted for by
modifying the probability with which a new generation is sampled. In particular, due to
migration, the probability pr(xi, x̄) that a new individual in deme i carries allele A acquires
a dependence on the mean frequency

x̄ =
N∑
i=1

xi/N (2.9)
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Figure 2.2: Fixation probability p(1|x) as a function of the initial frequency x for a well-mixed
population with Ω = 100 individuals the evolution of which is characterized by balancing
selection with optimal frequency x∗ = 1/2 and by various values of the selection strength s′.

(hereafter the bar over a quantity refers to its inter-deme average), and it has the form (see
App. B.2.1)

pr(xi, x̄) =
(1 + s̃i)[mx̄+ (1−m)xi]

1 + s̃i[mx̄+ (1−m)xi]
, (2.10)

where s̃i = s̃(x = mx̄ + (1 − m)xi) is the value of the function s̃(x), defined in Eq. (2.4),
evaluated at the point x = mx̄+ (1−m)xi.

In the Moran model, the migration process affects the rate of increase/decrease of the
fraction xi of A-type individuals in the i-th deme. For Ω� 1 the evolution turns out to be
described by the rates (see App. B.2.2)

W+1 = (1 + s̃)xi(1− xi)/(1 + s̃xi) +mx̄(1− xi),
W−1 = xi(1− xi)/(1 + s̃xi) +m(1− x̄)xi.

(2.11)

Migration is expected to affect the level of biodiversity (i.e., the level of coexistence of
the various alleles) of a population. In diallelic models, this effect is usually studied in terms
of (i) the global heterozygosity

H = 2x̄(1− x̄), (2.12)

which quantifies the diversification of the global population but neglects the possible subdi-
vision in demes, and of (ii) the intra-deme heterozygosity

h = (2/N)
N∑
i=1

xi(1− xi) = 2x(1− x), (2.13)
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which measures the average level of diversification inside each deme. Note that 0 ≤ h ≤
H ≤ 1/2. H = 0 corresponds to the loss of global biodiversity, namely all individuals within
the population have the same genotype; H = 1/2, instead, corresponds to the maximal
possible global biodiversity in which the two genotypes are equally present within the whole
population. Analogous interpretation holds for h = 0 and h = 1/2 at the intra-deme level.
Fig. 2.3 shows the time evolution of the allele frequencies xi(t) in the various demes of a
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Figure 2.3: Time evolution of the frequency xi of allele A in the various demes (represented
by different colors) of a fully-connected population consisting of N = 8 demes with Ω = 100
individuals each (a) in the absence of migration (m = 0) or (b) for small (m′ = 0.05) and
(c) large (m′ = 50) migration rate. The balancing selection is characterized here by x∗ = 0.5
and s′ = 5. At time t = 0, half of the demes have xi = 0.05, while the remaining ones
xi = 0.95. Upon increasing N , the fluctuations of x̄ around x∗ reduce significantly in panel
(c).

population with xi(t = 0) either equal to 0.05 or 0.95, (a) in the absence of migration (m′ = 0)
or for (b) small (m′ = 0.05) and (c) large (m′ = 50) migration rate. The balancing selction
is characterized here by x∗ = 0.5 and s′ = 5. It can be noticed that for large m′ (panel (c))
the local allele frequencies {xi} approach each other for Ωm� 1, with xi ' xj and therefore
h ' H. In the case of moderate migration rate Ωm . 1 of panel (b), instead, different demes
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fix different alleles, causing h ' 0, while H is maintained positive by migration which acts
as a constant source of biodiversity.

2.2.3 Time scale separation

For Ω� 1 and m, s� 1, the evolution of the allele frequency xi ∈ [0, 1] in the i-th deme can
be described, both within the Moran and Wright-Fisher models, by the following Langevin
equation with Itō prescription (see App. B.1)

ẋi = µ(xi) +m(x̄− xi) +
√
v(xi) ηi, (2.14)

where ηi are the independent Gaussian noises which characterize each single deme, with
〈ηi(t)ηj(t′)〉 = δi,jδ(t − t′), while the term m(x̄ − xi) [see Eq. (2.9) for the definition of
x̄] accounts for the migration of individuals between the demes. In fact, the effect of an
exchange between the i-th and a j-th deme (j 6= i) is to increase the fraction xi of allele A by
the amount m(xj − xi) per unit time, which leads to the previous expression upon summing
the contributions coming from the exchanges with all possible demes. In turn, this term
contributes in an approximately additive way to the variation of the single-deme frequency
xi, the dynamics of which is otherwise described by Eq. (2.3).

The mean fixation time Tfix(m) of the population as a whole depends on the initial state
xi of each single deme but, as we argue below and in Sec. 2.5, the mean frequency x̄ provides
an effective description of the state of the system at any time. For simplicity, in the following
we focus primarily on an initial state with x̄ = 1/2: for x∗ ' 1/2 and migration rate m large
enough, it actually corresponds to a metastable state onto which the population quickly
relaxes from its initial state (see Sec. 2.3). Tfix(m) differs from the one of a single deme Tfix1

also in the absence of migration, i.e., for m = 0, when each deme evolves independently of
the others. In this case, the average time Tfix(m = 0) required by the overall population to
reach one of the two absorbing states is given by the average time necessary for all demes
to reach it, after which no evolution occurs within the metapopulation. This is given by the
maximum of the single-deme fixation times calculated over N demes, and it turns out to be
Tfix(m = 0) ' Tfix1 logN (see App. B.6).

In the presence of migration, instead, each deme exchanges individuals with the others,
a process that effectively acts as a source of biodiversity inside each deme, preventing them
from achieving independent fixation. In fact, the single-deme states xi = 0 and 1 are no
longer per se absorbing for m 6= 0 and global fixation requires a coordinate evolution towards
the two global absorbing states X0 ≡ {xi = 0}i=1,...,N or X1 ≡ {xi = 1}i=1,...,N in which all
demes fix the same allele. In this case, the dynamics of the population can be conveniently
described via the evolution equation for the mean frequency x̄, which can be obtained from
Eq. (2.14) by considering the infinitesimal increment of x̄

dx̄ =
N∑
i=1

∂x̄

∂xi
dxi =

s

N

N∑
i=1

xi(1− xi)(x∗ − xi)dt+
1

N

N∑
i=1

√
xi(1− xi)

Ω
dwi, (2.15)

where dwi indicate the increments of the independent Wiener processes driving the dynamics
of each single deme. Since the individual stochastic increments [xi(1 − xi)/Ω]1/2dwi/N are
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independent and Gaussian random variables with variance xi(1 − xi)/(ΩN
2)dt, their sum

is a Gaussian random variable with variance
∑N

i=1 xi(1 − xi)dt/(ΩN2) = (x − x2)/(ΩN)dt,
where the overbar indicates the mean over the demes. Accordingly, we obtain

ẋ = s[x∗x− (1 + x∗)x2 + x3] +

√
x− x2

ΩN
η, (2.16)

where η is a Gaussian noise with 〈η(t)η(t′)〉 = δ(t − t′) and xk =
∑N

i=1 x
k
i /N . Due to the

nonlinear nature of Eq. (2.14), the evolution equation for x̄ involves higher-order moments
x2 and x3 which in principle could be determined by solving a whole hierarchy of coupled
differential equations. For a large number of demes N and small selection strength s however,
as we argue below, a time scale separation emerges between the local dynamics and the global
one, which allows one to express these higher-order moments in terms of x̄.

Indeed, since the global variable x̄ is the average of N local frequencies, it is heuristically
expected to have a dynamics much slower than that of the individual frequencies {xi}. Being
coupled only via the slowly varying quantity x̄, {xi} can be considered as almost independent
random variables, each one described by a conditional quasi-stationary distribution Pqs(xi|x̄).
The latter can be obtained by solving the stationary Fokker-Planck equation associated with
Eq. (2.14), in which x̄ is treated as a constant parameter. Under these assumptions the
population average xk(t) can be approximated, for N � 1, by the corresponding mean∫

dxi x
k
i Pqs(xi|x̄), leading to the effective Langevin equation

˙̄x = M(x̄) +
√
V (x̄) η(t), (2.17)

where the deterministic term and the variance of the noise are respectively given by

M(x̄) = s

∫ 1

0

dx x(1− x)(x∗ − x)Pqs(x|x̄) (2.18a)

and

V (x̄) = (ΩN)−1

∫ 1

0

dx x(1− x)Pqs(x|x̄). (2.18b)

Small selection limit

For s = 0 one obtains the Beta distribution [62, 58]

P (0)
qs (xi|x̄) =

x2m′x̄−1
i (1− xi)2m′(1−x̄)−1

B(2m′x̄, 2m′(1− x̄))
, (2.19)

where B(u, v) in the normalization is the Beta function, which can be expressed in terms of
Euler’s gamma function Γ(u) as B(u, v) = Γ(u)Γ(v)/Γ(u + v). This distribution P (0)

qs (x|x̄)

satisfies the consistency condition x̄ =
∫ 1

0
dx xP

(0)
qs (x|x̄) and it can then be used for evaluating
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x2 and x3 in Eq. (2.16) and for calculating the mean drift M(x̄) and variance V (x̄) in
Eq. (2.18a) and in Eq. (2.18b) respectively (see Refs. [62, 58]):

M (0)(x̄) = sex̄(1− x̄)(xe
∗ − x̄), (2.20a)

V (0)(x̄) = x̄(1− x̄)/Ne, (2.20b)

This implies that at the lowest, nonvanishing order in s, in agreement with the results of
Refs. [59, 60, 62, 58], the subdivided population behaves like a well-mixed one with an
effective selection coefficient se, an effective population size Ne, and an effective optimal
frequency xe

∗ respectively given by [62, 58]

se = s/

[(
1 +

1

m′

)(
1 +

1

2m′

)]
, (2.21a)

Ne = NΩ

(
1 +

1

2m′

)
, (2.21b)

xe
∗ = x∗ + (x∗ − 1/2)/m′. (2.21c)

It is worth noting that as the migration rate m′ increases, the effective parameters se and x∗e
approach the values they have for the isolated demes, while the effective size Ne tends to the
total number NΩ of individuals in the metapopulation; accordingly, in the limit m′ → ∞,
the internal structure of the metapopulation does not affect its dynamics and subdivision
plays no actual role.

For later convenience, let us point out that the time scale Tmigr associated with the local
response of xi to a variation of x̄ can be read from Eq. (2.14) and it is Tmigr ' 1/m. The
typical time scale of the global dynamics of x̄ is determined, instead, either by the time scale
Trel ' 1/se of the drift (see Eq. (2.20a)) or by the time scale Tfluct ' Ne of the stochastic
term (see Eq. (2.20b)). When Trel < Tfluct, i.e., NΩs > 1 + 1/m′, our approximation requires
Trel � Tmigr, i.e., se � m, while in the opposite case, it is accurate whenever N � 1 (see
App. B.5 for a detailed discussion).

Higher order corrections in α = se/m

The approximation in Eqs. (2.20a) and (2.20b) can be generalized to small but nonvanishing
values of α = se/m by accounting (a) for s 6= 0 in the quasi-stationary distribution Pqs

and (b) for the fact that x̄ slowly changes during the fast evolution of xi, which results in
a distribution Pqs(xi|y(t)) where the effective field y(t) ' x̄(t) has to be determined self-
consistently in order to obtain a distribution consistent with the first order average x̄ (i.e.,
such that 〈x〉Pqs = x̄). The single-deme quasi-stationary distribution for s′ ≡ Ωs 6= 0 is

Pqs(x|y) ∝ x2m′y−1(1− x)2m′(1−y)−1es
′x(2x∗−x). (2.22)

Note that in the presence of selection an additional factor es
′xi(2x∗−xi) appears on the r.h.s. of

Eq. (2.22) compared to Eq. (2.19)and the associated normalization constant changes ac-
cordingly. For x∗ = 1/2, the O(α) correction to the quasi-stationary distribution P

(0)
qs in
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Eq. (2.19) reads

P (1)
qs (x|y) =

x2m′y−1(1− x)2m′(1−y)−1

B(2m′y, 2m′(1− y))

{
1 + α(m′ + 1)

[
2m′ + 1

2m′
x(1− x)− y(1− y)

]}
+O(α2),

(2.23)
while the consistency condition

x̄ =

∫ 1

0

dx xPqs(x|y) (2.24)

can in principle be solved numerically. However, in order to obtain analytical approximations
for the effective drift and variance in Eqs. (2.18a) and (2.18b), we proceed to an expansion
in the small parameter α, which gives y = x̄−αx̄(1− x̄)(xe

∗− x̄) +O(α2). This value can be
substituted into Eq. (2.23), which, in turns, allows one to approximate the effective drift and
variance in Eqs. (2.18a) and (2.18b). Neglecting terms of order O(α2), the latters become

M (1)(x̄) = sex̄(1− x̄)

(
1

2
− x̄
){

1 + α[A+Bx̄(1− x̄)]
}

(2.25)

and
V (1)(x̄) =

x̄(1− x̄) {1 + α[C +Dx̄(1− x̄)]}
Ne

, (2.26)

with coefficients

A =
1− 7m′ − 6m′2

4m′(m′ + 1)(2m′ + 3)
, B =

3(4 + 3m′)

(m′ + 2)(2m′ + 3)
, C =

1− 2m′

4m′(2m′ + 3)
, D =

3

2m′ + 3
.

(2.27)
Note that, in order to extend this analysis to larger values of the parameter α, one could either
carry on with the perturbative expansion, or rely on the numerical solution of Eqs. (2.24),
(2.18a), and (2.18b).

In Fig. 2.5 we report the corresponding functions M (1)(x)/se (panel (a)) and NeV
(1)(x)

(panel (b)) as functions of x̄ for m′ = 1 and various values of α. By comparing with the case
α = 0 (solid line) one clearly sees that the first-order correction in α does not introduce new
qualitative features in M and V but is merely responsible for some quantitative changes.

2.3 Phase transition in the infinite island model (N =∞)
In this section we show that balancing selection slows down fixation only if the optimal
frequency x∗ is sufficiently close to the symmetric value 1/2, while it facilitates fixation in
the opposite case. In addition, in the limit N → ∞ this results into a phase transition
between species coexistence and biodiversity loss.

If balancing selection is not symmetric, i.e., x∗ 6= 1/2, the effective drift M (0)(x̄) in
Eq. (2.20a) can be written as the sum of a symmetric term

M (0)
symm(x̄) = sex̄(1− x̄)(1/2− x̄) (2.28)
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Figure 2.4: (a) Mean variation M (1)(x) and (b) variance V (1)(x), reported in Eq. (2.25) and
in Eq. (2.26) respectively, as functions of x̄, for m′ = 1 and for various values of α.

and a directional selection term4

M
(0)
dir (x̄) = σex̄(1− x̄), (2.29)

where
σe = se(x

e
∗ − 1/2) (2.30)

is an effective directional selection coefficient. M (0)
symm promotes coexistence of the two alleles

and therefore it increases the biodiversity of the system, slowing down fixation;M (0)
dir , instead,

4The term in Eq. (2.29) is often referred to as selection term in the literature, since it corresponds to the
simplest possible form of selection, characterized by having a constant s̃ in Eqs. (2.1) and (2.2).
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favors fixation of one of the alleles (depending on the sign of σe). The competition between
these two terms determines whether balancing selection actually slows down or speeds up
fixation of the population as a whole. One can therefore expect that, depending on the
ratio |σe/se| being larger than some threshold θ, M (0)

dir prevails overM (0)
symm, so that balancing

selection eventually accelerates fixation. According to Eqs. (2.30) and (2.21c), this occurs
for

|x∗ − 1/2| > m′θ

m′ + 1
, (2.31)

which provides a heuristic estimate of the region of the parameter space within which balanc-
ing selection should facilitate fixation. The fact that balancing selection slows down fixation
only if the optimal frequency x∗ is far enough from the absorbing boundaries (i.e., if it is
close enough to x∗ = 1/2) was first noticed in Ref. [64] for the case of balancing selection in
well-mixed populations, by analyzing the eigenvalues of the transition matrix of the Moran-
like dynamics. In the following, we argue that this change of behavior becomes an actual
phase transition in the limit N →∞ of subdivided populations.

In the limit of an infinite number of demes, Eq. (2.17) becomes deterministic because the
variance V (x̄) of the noise vanishes; this is not the case for the noise in the single-deme equa-
tion (2.14), which does not vanish as long as Ω is finite and therefore determines a nontrivial
quasi-stationary distribution Pqs(x|y(x̄)) which, in turn, affects Eq. (2.17). Depending on
the values of the parameters s′, m′, and x∗, the internal stochasticity of the demes might
be sufficiently strong to drive the metapopulation to fixation even in the infinite-size limit
N →∞. In fact, the deterministic part of Eq. (2.17) might drive x̄ towards one of the two
absorbing states X0 and X1 corresponding to x̄ = 0 and x̄ = 1, respectively. In addition to
these latter solutions, Eq. (2.17) admits also a stationary state with x̄ = x∞, which can be
determined by requiring that M(x∞) vanishes, i.e., by solving the corresponding condition
[see Eq. (2.18a)] ∫ 1

0

dx x(1− x)(x∗ − x)Pqs(x|y) = 0, (2.32)

where y = y(x∞) is defined by the consistency condition in Eq. (2.24). Figure 2.5 shows the
numerical determination of M(x̄) as a function of x̄ for various values of x∗ in a population
characterized by the parameters reported in the caption. The nontrivial zero x∞ of M
corresponds to an attracting stable state for the deterministic part of Eq. (2.17), which is
asymptotically reached for t → ∞ unless the initial conditions are exactly on a boundary.
The stability of the point x∞ follows from the fact that M ′(x∞) < 0. When x∞ ∈ (0, 1),
it represents a stable “active” state for the infinite population and it corresponds to the
infinite-size limit (N → ∞) of the metastable state in which a finite system (N < ∞)
would spend a long time before fixating [36]. However x∞ might coincide with one of the
two boundaries 0 and 1, depending on the values of the parameters x∗, m′, and s′, and
correspondinglyM(x̄) has the same sign within the whole interval (0, 1): when this happens,
the deterministic part of the dynamics drives the system towards fixation. Note that this
fixation process is deterministic in nature and the system always reaches (asymptotically in
time) the absorbing state determined by x∞, differently from the case with finite N in which
fixation is a stochastic process and both boundaries are attainable.
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Figure 2.5: Drift M(x̄) as a function of x̄, as obtained from the numerical solution of
Eq. (2.32) for m′ = 2, s′ = 1, and for various values of x∗. It can be noticed that, depending
on the value of x∗, a nontrivial zero x∞ of M(x̄) emerges, which is always an attractive state
for the deterministic evolution of x̄.

When computing the stationary value x∞ as a function of the optimal frequency x∗ for
fixed s′ and m′, there exists a critical value xc

∗(s
′,m′), such that for x∗ ∈ (xc

∗, 1 − xc
∗) the

infinite population is in the active phase, i.e., x∞ ∈ (0, 1), while it otherwise reaches one of
the two absorbing states x∞ = 0 or 1. Figure 2.6 shows the dependence of the critical value
xc∗ on the migration rate m′ for several values of selection strength s′. Analytic estimates for
the stationary value x∞ and for the critical value xc

∗ can be easily obtained for small α, in
which case the condition (2.32) reduces to M (0)(x̄) = 0. Using Eq. (2.20a) one gets

x(0)
∞ =


xe
∗ if xe

∗ ∈ [0, 1],
0 if xe

∗ < 0,
1 if xe

∗ > 1,
(2.33)

where xe
∗ is given in Eq. (2.21c), while

xc(0)
∗ =

1

2(m′ + 1)
. (2.34)

Here the superscript (0) denotes that the corresponding quantity has been calculated on the
basis of the zeroth-order approximation M (0)(x̄) for M(x̄) in Eq. (2.17). This expression
agrees with the heuristic estimate of Eq. (2.31) if one sets the numerical threshold θ to
θ = 1/2. The analytic determination of xc(0)

∗ in Eq. (2.34) is reported in Fig. 2.6 as a solid
line and it coincides, as expected, with the estimate based on the numerical solution of
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Eq. (2.32) for small s′ (uppermost dashed line). Within the same approximation, the mean
frequency x̄ evolves according to ∂tx̄(t) = M (0)(x̄(t)); in the active phase, x̄ approaches the
effective optimal frequency xe

∗ exponentially fast in time, i.e., x̄(t)−xe
∗ ∝ exp[−sex

e
∗(1−xe

∗)t].
In the absorbing phase, instead, an equally rapid evolution drives the system to fixation: for
example x̄(t) ∝ exp[−se|xe

∗|t] if the deterministic evolution drives the system towards x̄ = 0
(i.e., for xe

∗ < 0), with an analogous expression holding when the evolution is towards x̄ = 1.
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Figure 2.6: Critical value xc
∗ as a function of m′ for several values of s′. For x∗ < xc

∗ or
x∗ > 1 − xc

∗ the system is driven deterministically to fixation for N → ∞. The sold line
is the estimate in Eq. (2.34), valid for small s, while the dashed lines correspond to the
numerical solution of Eq. (2.32) for larger values of s′.

The global heterozygosity H = 2x̄(1 − x̄) provides an index of the biodiversity of the
population, as it vanishes in the absorbing states X0 and X1, while it does not in the active
phase. In this respect it can be considered as an order parameter for the “phase transition”
occurring at x∗ = xc

∗ and x∗ = 1− xc
∗. Figure 2.7 reports H as a function of x∗, as obtained

from the numerical solution of Eq. (2.32) for s′ = 1 and for two values of m′.
The picture presented above approximately carries over to the case in which the number

of demes N is not infinite but anyhow large. In this case one can heuristically assume that, in
the absorbing phase x∗ < xc∗ or x∗ > 1−xc∗, fixation to a boundary (x̄ = 0 or 1) is effectively
reached when the distance of x̄ to that boundary is smaller than 1/(ΩN) (corresponding to
having in the metapopulation only one individual different from the others) and therefore we
expect the MFT to scale as Tfix ∝ log(ΩN) because of the exponential law with which x̄(t)
approaches the boundary as a function of time. Figure 2.8 reports the MFT as a function
of N for various values of the optimal frequency x∗. It can be noticed that, as expected
from the arguments presented above, Tfix/N increases upon increasing N in the active phase
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Figure 2.7: Global heterozygosity H in the stationary state x̄ = x∞ for N → ∞, as a
function of the optimal frequency x∗ for s′ = 1 and two values of m′. H reported here has
been obtained by the numerical solution of Eq. (2.32).

(red squares), while it decreases in the absorbing phase (blue circles), and this supports the
fact that a bona-fide phase transition should be present in the limit N → ∞. A numerical
interpolation reveals indeed an exponential dependence of Tfix/N (red solid line) as a function
of N in the active phase while a logarithmic one (blue dashed line) of Tfix in the absorbing
phase, in agreement with what anticipated above.

For finite but large N , when the corresponding system with N =∞ is in the active phase,
x∞ effectively becomes a metastable state (with a lifetime of the order of Tfix), in which the
mean frequency x̄ fluctuates around the value x∞ before a random fluctuation eventually
drives the system to fixation. As it can be seen in Fig. 2.9, in the metastable state the
single-deme frequencies xi (solid lines) can be quite different from the metastable frequency
x∞, but the fluctuations of their mean x̄ around the value x∞ are vanishingly small upon
increasing N from panel (a) to panel (c).

2.4 Fixation for finite N

As anticipated in Sec. 2.2.1, every finite population will eventually reach fixation. In this
section we estimate the MFT for the island model with balancing selection, described in
Sec. 2.2.3, on the basis of the approximate description which relies on the time scale sep-
aration between the local and the global dynamics and which we presented in the same
section.

The MFT Tfix(x) for the whole population with an initial mean frequency x̄ is determined
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Figure 2.8: Dependence of the MFT Tfix on the size N of the metapopulation, for Ω = 100,
s′ = 1 and m′ = 1. The MFT has been determined via numerical simulations of the Wright-
Fisher (WF) model. For x∗ = 0.4 (red squares) Tfix/N shows an approximate exponential
increase upon increasing N (red solid line, Tfix/(ΩN) = exp [0.46 + 0.025N ]) while for x∗ =
0.2 (blue circles) Tfix displays an approximate logarithmic dependence on N (blue dashed
line, Tfix/(ΩN) = [−27 + 16 logN ] /N).

within the diffusion approximation by Eq. (1.18), which, on the basis of M(x̄) and V (x̄)
calculated as described in Eqs. (2.18a) and (2.18b), reads (see Ref. [84])

V (x̄)T ′′fix(x̄)/2 +M(x̄)T ′fix(x̄) = −1. (2.35)

2.4.1 Lowest order prediction in the small-α expansion

For x∗ = 1/2, by using the lowest-order approximations [denoted by the superscript (0)] for
M and V in Eqs. (2.20a) and (2.20b) and choosing the state x̄ = 1/2 (corresponding to the
metastable state) as initial condition, we get

T
(0)
fix = Ne

∫ 1

0

dy

∫ 1

0

dz
eseNey(1−z2)/4

1− yz2
, (2.36)

which reaches a constant value for m′ � 1, while T (0)
fix /(NΩ) ' log 2/m′ for m′ � 1. Fig-

ure 2.10 shows T (0)
fix (solid line) as a function of m′ for the population specified in the caption,

together with the prediction (dashed line) which accounts for the first-order correction in
se/m to the mean drift M(x̄) and variance V (x̄) (see next subsection). T (0)

fix shows a marked
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Figure 2.9: Evolution of the frequencies (thin solid lines) of two representative demes and of
the mean frequency x̄ (dashed, thick line), of a metapopulation characterized by Ω = 100,
m′ = 1, s′ = 5, x∗ = 0.5, and by an increasing number of demes: (a) N = 8, (b) N = 30, and
(c) N = 100. It can be noticed that the amplitude of the fluctuations of the mean frequency
x̄ around the value x∞ = 1/2 decreases significantly upon increasing the number of demes.
In addition, the time scale separation between the dynamics of x̄ and of the single-deme
frequencies clearly enlarges for this choice of parameters.

nonmonotonic dependence on the migration rate m′, while complying with the bounds of
Ref. [60] for large and small m′ (dash-dotted lines). In fact, T (0)

fix (m′ � 1) approaches the
value it would have in a well-mixed population of ΩN individuals, whereas for m′ � 1 fixa-
tion — and thus Tfix — is controlled by the growing time scale Tmigr ∝ 1/m′ associated with
migration (c.f., Sec. 2.5 for a detailed analysis of the case of slow migration). In this respect,
the limit m′ → 0 differs essentially from the case m′ = 0, in which Tfix is governed by the



2.4. FIXATION FOR FINITE N 45

10
-2

10
-1

10
0

10
1

10
2

m’

10
1

10
2

T
fi

x /(
Ω

N
)

0
th
-order

1
st
-order

WF model
bounds

Figure 2.10: Mean fixation time Tfix as a function of the migration rate m′ with N = 30,
Ω = 100, s′ = 1, and x∗ = 0.5. The solid line corresponds to Eq. (2.36), while the dashed
line accounts for the first-order correction in α; symbols with errorbars are the results of
numerical simulations of the Wright-Fisher (WF) model. The dash-dotted lines to the left
and to the right of the plot indicate the upper bounds for small and large migration, predicted
in Ref. [60].

single-deme fixation times, is finite, and it scales ∝ logN for large N (see App. B.6 for further
details). In order to demonstrate the accuracy of our analytical predictions, Fig. 2.10 reports
the results (symbols with errorbars) of numerical simulations of the Wright-Fisher (WF) mi-
croscopic model with balancing selection. Their agreement with the analytical prediction of
Eq. (2.36) is very good and further improves upon including the first-order corrections in α
(dashed line).

This nonmonotonic dependence of Tfix on m′ comes actually as a surprise and indeed,
as discussed below, it emerges only within a certain range of parameters. Interestingly
enough, the bounds discussed in Ref. [60] for large and small migration rates were somehow
interpreted in the literature as being lower bounds. Clearly this is not the case. Figure
2.11(a) shows that the nonmonotonicity displayed in Fig. 2.10 is enhanced upon increasing
σ ≡ s′N , while it disappears for σ < σc, where σc is a critical threshold below which the
MFT behaves qualitatively as in a neutral population with s = 0. The value m′min of m′ at
which Tfix is minimum diverges for σ → σc ' 5.2 (see App. B.7 for details on the numerical
estimate of σc) and decreases upon increasing σ > σc, as shown in Fig. 2.11(b). The value
σc slightly depends on α if the corrections to Eqs. (2.20a) and (2.20b) are included. Figure
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2.11(c) shows that the nonmonotonicity of T (0)
fix persists also for x∗ 6= 1/2, but only within an

interval of values of x∗ which depends on σ — as indicated by the shaded area in Fig. 2.11(d)
— and which covers the entire range for σ & 10.
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Figure 2.11: Features of the mean fixation time T (0)
fix in Eq. (2.36) for a population of N = 30

demes with Ω = 100 individuals each: (a) dependence of T (0)
fix on m′ for x∗ = 0.5 and various

values of σ; (b) m′min as a function of σ; (c) T (0)
fix as a function of m′ for σ = 9 and various

x∗; (d) region (gray) of the parameter space (σ, x∗) where T (0)
fix is a nonmonotonic function

of m′. Symbols with errorbars are the results of numerical simulations of the WF model.

2.4.2 Higher-order corrections in α

As a consequence of the corrections O(α) to the Langevin equation for x, the corresponding
mean fixation time (MFT) is modified compared to the value T (0)

fix it has in the absence
of these corrections (see Eq. (2.36)). In order to write the MFT in a compact form, it is
convenient to perform first the change of variable

z = 4x(1− x) (2.37)

in Eqs. (2.25) and (2.26): using the Itō-Lemma (see App. A.1 for details) and neglecting
terms O(α2), we obtain

ż = Ã z(1− z)(1 + C̃z)− B̃z(1 + D̃z) +

√
4B̃ z(1− z)(1 + D̃z) η, (2.38)
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where

Ã = se(1 + αA)/2, B̃ = (1 + αC)/Ne, C̃ = αB/[4(1 + αA)], D̃ = αD/[4(1 + αC)].
(2.39)

The MFT associated with Eq. (2.38) can now be calculated via the method described in
App. A.2 and its specific value depends on the initial condition of the system. When the
metastable state exists (i.e., for (i) x̄ ' 1/2 or m′ � 1, necessary to have x∞ /∈ {0, 1}, and
(ii) Ns′ � 1 + 1/m′, necessary to have x∞ metastable), it is reached within a typical time
Trel which is largely independent of the size N of the population and is much smaller than
the MFT, which increases upon increasing the size N . Accordingly, for N large enough,
the specific choice x̄ = x0 of the initial condition does not influence significantly the total
elapsed time between the initial time of the dynamics and the fixation, provided that x0 is far
enough from the boundaries. Assuming that the system starts from x̄ = 1/2 [corresponding
to z = 1, see Eq. (2.37)], one finds

T
(1)
fix =

1

2B̃

∫ 1

0

dz
e−βz√

1− z (1 + D̃z)γ

∫ 1

z

dξ
eβξ

ξ
√

1− ξ (1 + D̃ξ)1−γ
, (2.40)

where
γ = Ã(D̃ − C̃)/(2B̃D̃2) and β = ÃC̃/(2B̃D̃). (2.41)

The asymptotic behavior of T (1)
fix for s′ → 0 can be easily calculated from the previous

expression
T

(1)
fix

ΩN
' log 2

m′

(
1− s′

3
+O(s′2)

)
, (2.42)

which, for s′ = 0, renders the one found at the lowest nonvanishing order in α, reported
in Eq. (2.36). As it can be noticed in Fig. 2.10, for s′ 6= 0, the negative correction on
the r.h.s. of Eq. (2.42) (red dashed line) improves the agreement with the results of the
simulations of the Wright-Fisher microscopic model (symbols with errorbars) compared to
the theoretical prediction with s′ = 0 (black solid line). The asymptotic expression of T (1)

fix

for large migration rate m → ∞, instead, is the same as the one reported below Eq. (2.36)
at the lowest nonvanishing order in s: the population behaves like a well-mixed one with size
ΩN and selection coefficient s.

2.4.3 Nonmonotonicity and the biodiversity

Global heterozygosity H

In order to understand how migration affects biodiversity before the eventual fixation which
corresponds to H = h = 0 [see the discussion at the end of Sec. 2.2.2 and in particular
Eqs. (2.12) and (2.13)], we assume that the population at time t = 0 is in the metastable
state x̄ = x∞ such that H(0) = 2x∞(1− x∞) and that it persists in this state until fixation
occurs. Under this heuristic assumption, one can approximate H(t) ' [1− pfix(x∞, t)]H(0),
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where pfix(x0, t) is the probability that a population prepared with x̄ = x0 at time t = 0 has
already fixed at time t. pfix satisfies the backward Fokker-Planck equation (see Sec. 1.3.3)

∂tpfix = M(x0)∂x0pfix +
1

2
V (x0)∂2

x0
pfix, (2.43)

which can be integrated numerically. By using the expressions of M and V in Eqs. (2.20a)
and (2.20b), the results of this approximation for H are presented in Fig. 2.12 as functions
of m′ for some values of t and they are compared with those of numerical simulations of
the WF model (symbols with errorbars). Note that the estimate of H(t) is expected to
become less accurate as m′σ is smaller than 1 because, correspondingly, the state x̄ ' x∞
is no longer metastable5 For slow and fast migration H(t) ' H(0) for a rather long time
whereas H(t) rapidly decreases in time for intermediate values of the migration rate. For
a fixed time and as a function of m′, instead, H has a minimum at m′ ' m′min, indicating
that the global biodiversity can be enhanced upon increasing migration [86, 87, 88, 89]. Our
predictions agree rather well with the results of simulations, apart, as expected, from the
region m′ . 1/σ ' 0.03.
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Figure 2.12: Dependence of the global heterozygosity H on the migration rate m′ at various
times, for a subdivided population with Ω = 100, N = 30, s′ = 1, and x∗ = 1/2: the
prediction of the approximation described in the text (solid lines) is compared with the
results of simulations of the WF model (symbols with error-bars).

Intra-deme heterozygosity h

With a procedure analogous to the one described above for the global heterozygosity H,
one can obtain an estimate for the time evolution of the intra-deme heterozygosity h. The
only difference compared to the case of H is that the value of h in the metastable state —

5 For m′σ . 1 indeed, the timescale Trel which controls the relaxation to the metastable state becomes
smaller than the timescale Tfluct associated with the lifetime of that state (see App. B.5).
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which is taken to be the initial condition in our heuristic estimate — is h(0) = ĥ, deter-
mined as follows. We assume that at time t = 0 each deme is distributed according to the
quasi-stationary distribution Pqs(xi|x∞), where x∞ is the value of x in the metastable state
discussed in Sec. 2.3. In the presence of balancing selection with x∗ = 1/2, one has x∞ = 1/2
(independently of the values of m′ and s′) and the value ĥ of the intra-deme heterozygosity
h in the metastable state is reported in Fig. 2.13 as a function of the migration rate m′ for
large N (the actual behavior does not change much for smaller values of N). On the basis of
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Figure 2.13: Intra-deme heterozygosity ĥ within the metastable state xi ' x̄ ' x∞ as a
function of the (rescaled) migration rate m′ and for various values of the (rescaled) selection
rate s′, in a population with N =∞.

this initial value ĥ of h, an estimate of h(t) can be obtained under the same assumption as
the one which was made in order to discuss H(t). The corresponding evolution is reported in
Fig. 2.14. For slow and fast migration, h(t) remains close to h(0) for a long time, whereas it
rapidly decreases in time for intermediate values of the migration rate. For a sufficiently large
time, instead, the profile of h(t) as a function of m′ develops a minimum at m′ ' m′min. Our
predictions agree rather well with the results of simulations, while they become less accurate
for m′ . 1/σ ' 0.03 which, in fact, is outside the range of validity of our approximation6.

6See footnote 5.
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Figure 2.14: Intra-deme heterozygosity h as a function of the migration rate m′ and at
various times during the evolution of the subdivided population with N = 30, s′ = 1, and
x∗ = 0.5. The evolution calculated on the basis of the approximation described in the
main text (continuous lines) is compared with the results of the numerical simulations of the
Wright-Fisher model (symbols with error-bars). The approximation is expected to become
increasingly accurate as Trel � Tfluct, i.e., as m′ � 1/σ ' 0.033.

2.5 The case of slow migration

The effective description of the island model with migration introduced in Section 2.2.3 relies
on a perturbative expansion in the parameter α. The correspondent predictions concerning
the collective behavior of the metapopulation and, in particular, the mean fixation time
have been derived within the region of the parameter space corresponding to small α. If
the migration rate m is large, this region stretches and includes large values of the selection
strength s ' m. Interestingly enough, this case can also be described by using a fast-mode
elimination method recently proposed in Refs. [90, 91]. On the contrary, for small migration
rate m, the approximation discussed in Sec. 2.2.3 is expected to be accurate only for a small
selection coefficient s. In particular, it requires s � 1/Ω for the value m ' 1/(

√
2Ω) of the

migration rate m at which the parameter α reaches its maximum as a function of m [see
Eq. (2.21a) for the dependence of se on m]. However, numerical evidence suggests that the
predictions of this approximation are actually accurate beyond the cases mentioned above;
in order to rationalize this fact, in this Section we develop an alternative description of the
system for small migration rate m.
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2.5.1 Effective voter model

With a small but nonvanishing migration rate m — such that 0 < m′ � T−1
fix1 (7) — each

deme rapidly evolves towards one of the “boundary states” xi = 0 or 1, which are no longer
absorbing due to m′ 6= 0, and it spends most of the time close to it. This is illustrated in
Fig. 2.15 (see also Fig. 2.3) which shows the time evolution of the allele frequencies xi(t)
in the various demes of a population with xi(t = 0) either equal to 0.05 or 0.95, for two
values of migration rate (a) m′ = 0.1 and (b) m′ = 0.01 and some values of selection
strength s′. According to Eq. (2.7) one has m′/T−1

fix1 ' 10−1 and ' 10−2 for panel (a) and
(b), respectively; as anticipated, the demes in panel (b) spend most of their time into the
boundary states. However, sometimes it happens that a different allele is received by a deme
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Figure 2.15: Time evolution of the frequency xi of allele A in the various demes (represented
by different colors) of a fully-connected metapopulation consisting of N = 12 demes with
Ω = 100 individuals each with migratio rate (a) m′ = 0.1 or (b) m′ = 0.01. These curves are
obtained from the numerical simulation of the Wright-Fisher model with balancing selection
characterized by x∗ = 0.5 and (a) s′ = 5, (b) s′ = 1. At time t = 0, half of the demes have
xi = 0.05, while the remaining ones xi = 0.95, which results in the ratio m′/T−1

fix1 ' 10−1 and
' 10−2 for panel (a) and (b), respectively.

7The condition m′ � 1/Tfix1 emerges by comparing the time scale Tfix1 needed by a single deme to
reach fixation in the absence of migration and the typical time scale 1/m′ associated with the occurrence of
migration.
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because of migration and that it rapidly fixes, causing the variable xi to “jump” to the other
boundary state. Accordingly, one can describe this dynamics in terms of an effective voter
model, in which each deme of the metapopulation is mapped onto a voter with one of the
two possible opinions which corresponds to the states xi = 0 or 1. Migration then acts as
an effective interaction among the voters, which can influence and change each other’s state.
More precisely, with a rate8

r = m′N/2 (2.44)

two randomly selected voters interact and, if they are in different states, their interaction
can cause one voter (or both) to change its state. In particular, as a consequence of the
interaction between voters i and j with xi = 0 and xj = 1, they change state with probability
p = p(1|1/Ω) and q = p(0|1− 1/Ω) respectively, where p(x′|x) is the probability for a single
isolated deme to reach the value x′ starting from an initial value x before fixation occurs,
and is reported in Eq. (2.8). Accordingly, p quantifies the probability that an isolated deme
originally in the absorbing state xi = 0 (all individuals carry allele B) fixes to the opposite
boundary xi = 1 when, because of migration, it receives an individual carrying allele A,
such that the ensuing, single-deme fast dynamics of xi starts from the initial value 1/Ω.
An analogous interpretation holds for q. The probability that this interaction increases
(respectively decreases) by one unit the number of individuals in state 1 is therefore p(1− q)
(respectively q(1− p)). Accordingly, the rates W+/− at which the number of voters in state
1 increases (+) or decreases (−) by one unit are, respectively,

W+ = m′Np(1− q)x̄(1− x̄),

W− = m′Nq(1− p)x̄(1− x̄),
(2.45)

where the factors 2x̄(1 − x̄) account for the probability that the interacting voters are in
different states. When the number N of demes is large, the master equation associated with
the rates in Eq. (2.45) can be approximated by a Langevin equation

˙̄x = σvot
e x̄(1− x̄) +

√
x̄(1− x̄)

Nvot
e

η, (2.46)

where σvot
e = m′(p− q) is an effective directional selection coefficient, Nvot

e = N/[m′(p+ q −
2pq)] is an effective population size, and η the normalized Gaussian white noise such as the
one in Eq. (2.3). For small s′,m′ and large Ω, these effective coefficients reduce to

σvot
e = 2m′s(x∗ − 1/2),

Nvot
e =

NΩ

2m′
,

(2.47)

8This is the rate associated with the probability P≥1(δt) that at least one individual is exchanged between
one of the possible N(N−1)/2 pairs of demes of the population in the small time interval δt, thus establishing
an “interaction” between the corresponding voters. In this time interval, each pair of demes exchanges an
average number ε ≡ mΩδt/(N − 1) of individuals and, according to the Poisson counting, the probability
that there is no exchange is e−ε ' 1− ε in that pair and therefore ' (1− ε)N(N−1)/2 ' 1−m′Nδt/2 in all
possible pairs. This probability equals 1− P≥1(δt) and thus P≥1(δt) ' m′Nδt/2, which results in the rate
reported in Eq. (2.44).
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and they coincide with the coefficients σe, Ne evaluated in Eq. (2.30) and (2.21b), respec-
tively. Since the expressions in Eqs. (2.47) and (2.30)-(2.21b) have been obtained via two
different approaches, their agreement in the overlap between the respective regions of va-
lidity demonstrates that both of them correctly capture the dynamics of the system at a
coarser scale. As it was the case in Sec. 2.2.3, the system behaves effectively as a well-mixed
population with rescaled effective coefficients. Note, however, that the deterministic term in
Eq. (2.46) has the same functional form (typical of directional selection) as M (0)

dir (x̄), while
the analogous of M (0)

symm(x̄) — the footprint of balancing selection — is missing completely.
This is due to the fact that the specific form of the selection does not enter into the definition
of the effective voter model; on the one hand, this model provides a viable approximation
for the dynamics of any metapopulation with small enough migration rate but, on the other,
it fails to capture some qualitative features of balancing selection.

The MFT T vot
fix of the voter model can be evaluated from Eq. (2.46) via the method de-

scribed in App. A.2. The result is the same as in Eq. (2.7), where the single-deme parameters
s, Ω have to be replaced by the migration-dependent renormalized parameters σvot

e and Nvot
e ,

while the functions S(a, b) and F (a, b) in Eq. (2.5), associated with balancing selection, have
to be replaced by the corresponding ones for the directional selection

Svot(a, b) =
exp[−2σvot

e Nvot
e a]− exp[−2σvot

e Nvot
e b]

2σvot
e Nvot

e

,

Fvot(a, b) =

∫ b

a

dz

∫ 1

z

dy
exp[2σvot

e Nvot
e (y − z)

y(1− y)
.

(2.48)

In the symmetric case x∗ = 1/2 one eventually finds

T vot
fix =

N log 2

m′p(1− p) . (2.49)

This MFT T vot
fix is reported in Fig. 2.16 (blue dashed line) as a function of m′, for Ω = 100,

N = 30, and s′ = 1. For small values of m′ . 0.03, T vot
fix is in excellent agreement with

the data from numerical simulations of the Wright-Fisher microscopic model (symbols,WF),
with the first-order estimate T (1)

fix described in Ref. [36] (green solid line), and with the MFT
T vi

fix (brown dashed line) obtained by introducing an intermediate state in the voter model,
which we discuss next.

2.5.2 Effective voter model with an intermediate state

In the previous section, the fixation process of the single demes was considered to occur in-
stantaneously and therefore each deme was supposed to be always in one of the two boundary
states xi = 0 or 1. However, the transition from one boundary state to the other — trig-
gered by the exchange of individuals between demes — takes some time and this fact can
be accounted for by introducing in the model an intermediate uncertain voter with no def-
inite opinion. This intermediate state is associated with a single-deme frequency xi = xu,
where xu ' x∗ is an effective parameter, which depends on the optimal frequency x∗ and
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Figure 2.16: Mean fixation time as a function of the migration rate m′, for a metapopulation
consisting of N = 30 demes of Ω = 100 individuals each, with s′ = 1 and x∗ = 1/2. Symbols
correspond to the MFT of the Wright-Fisher (WF) model obtained via numerical simulations.
The red dash-dotted and green solid curves correspond to the analytic prediction T (0)

fix and its
improvement T (1)

fix , respectively, described in Eq. (2.36) and in Eq. (2.40). The blue dashed
line is the MFT T vot

fix [see Eq. (2.49)] of the effective voter model described in the main text.
The brown dashed curve, instead, corresponds to the MFT T vi

fix of the voter model with an
intermediate state (see Sec. 2.5.2), which reproduces qualitatively the nonmonotonic behavior
observed in the numerical data. The “lifetime” Tu of the intermediate state introduced in
Sec. 2.5.2 is estimated as described in App. B.3.

on the rates s′ and m′. This state is supposed to be metastable, with a “lifetime” Tu pro-
portional to the single-deme fixation time Tfix1 reported in Eq. (2.5); this means that the
intermediate state decays with a rate 1/Tu into one with definite opinion xi = 0 or 1. In
App. B.3 we discuss a possible heuristic estimate of the effective parameter Tu, which renders
Tu/Tfix1 ' 0.3. Following the line of argument outlined in the previous subsection, and the
notation introduced there, the state xi = 1 is reached from the intermediate state with prob-
ability p̃ = p(1|xu). The presence of an intermediate state is known to change completely
the nature of the ordering process of the voter model (see for instance Refs. [92, 93, 24]).
Here such a state is introduced in order to mimic the effect of balancing selection and, as we
discuss further below, it is sufficient to cause the emergence of an internal attractive point in
the dynamics of x̄ and nonmonotonic dependences of the MFT on the relevant parameters.

With the same rate as for the effective voter model, given in Eq. (2.44), an interaction
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takes place between any pair of voters. After an interaction with a voter having a different
definite opinion or an indefinite one, a voter with a definite opinion can loose its own, entering
the intermediate state. In order to illustrate this in more detail, consider a voter i in the
state xi = 0: its interaction with a voter j in a different state (xj = 1) consists in exchanging
of one individual between them, which introduces in the i-th deme an individual with allele
A into a background population of individuals with allele B (and viceversa in the deme j).
The probability that the i-th deme, with a frequency xi = 1/Ω after the exchange, reaches
the value xi = xu is given by P = p(xu|1/Ω), which represents the probability that the
i-th voter, initially in the state xi = 0, reaches the intermediate state after the interaction
with the j-th deme. Similarly, the probability that the voter j, initially in the state xj = 1,
reaches the intermediate one due to its interaction with the voter i is Q = p(xu|1 − 1/Ω).
Let us consider now the case of a voter in the state xi = 0 interacting with a voter j in
the intermediate one: due to this interaction, i reaches the value xi = xu with probability
xuP . Indeed, deme i receives from deme j an individual with allele A with probability xu, in
which case the frequency xi of allele A in deme i reaches the value xu with probability P . It
is important to note that we assumed that such an interaction has no effect on the voter in
the intermediate state because, for large Ω, the state xu± 1/Ω has almost the same fixation
probability as xu (i.e., p(0|xu ± 1/Ω) ' p(0|xu)). For later purposes we emphasize here that
generically P increases monotonically upon increasing the selection strength s′, at least for
0.25 . x∗ . 0.75. This feature turns out to be crucial for understanding the nonmonotonic
behavior of the MFT as a function of s′ (for fixed m′), which is discussed in detail further
below in this section.

In the following we denote by N0, N1, and Nu the numbers of voters in states 0, 1, and xu,
respectively. Since N0 + N1 + Nu = N , the state of the metapopulation is fully determined
by N0 and N1. The rates of the possible transitions previously described are, in the (N0, N1)
space,

• (N0, N1)
WA−→ (N0 − 1, N1),

• (N0, N1)
WB−→ (N0, N1 − 1),

• (N0, N1)
WC−→ (N0 − 1, N1 − 1),

• (N0, N1)
WD−→ (N0 + 1, N1),

• (N0, N1)
WE−→ (N0, N1 + 1),
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where

WA =
m′PN0

N
[N1(1−Q) +Nuxu],

WB =
m′QN1

N
[N0(1− P ) +Nu(1− xu)],

WC =
m′PQN0N1

N
,

WD =
1− p̃
Tu

Nu,

WE =
p̃

Tu

Nu.

(2.50)

These rates define the transition matrixW ~N→ ~N ′ of the effective voter model with intermediate
states, the stochastic evolution of which is described by the master equation [22]

∂tP ( ~N, t) =
∑
~N ′

[
P ( ~N ′, t)W ~N ′→ ~N − P ( ~N, t)W ~N→ ~N ′

]
, (2.51)

where P ( ~N, t) is the probability to find the system in the state ~N = (N0, N1) at time t.

Numerical evaluation of the MFT

On the basis of the (forward) master equation (2.51), a backward master equation for the
fixation probability u( ~N, t) = P ((N, 0); t| ~N ; 0) + P ((0, N); t| ~N ; 0) immediately follows [22]

∂tu( ~N ; t) =
∑
~N ′

[
W ~N→ ~N ′u( ~N ′, t)−W ~N→ ~N ′u( ~N, t)

]
. (2.52)

This equation can be solved numerically by introducing a time discretization tn = nδt (where
δt is a time interval chosen to be small enough to ensure that W ~N→ ~N ′δt � 1 for every pair
( ~N, ~N ′)) and by using the finite difference approximation of the time derivative (Euler’s
method). The state is described by an (N + 1) × (N + 1) array un(N0, N1) with N0, N1 =
0, ..., N , whose entries are constrained to vanish for N0 + N1 > N . At each time step, the
entries of un evolve according to the discrete version of Eq. (2.52).

If the system starts from a state different from the absorbing boundaries X1 = (N0 =
0, N1 = N) and X0 = (N0 = N,N1 = 0), the initial condition for the fixation probability
is u0(N0, N1) = δN0,NδN1,0 + δN0,0δN1,N , where δM,N = 1 for M = N , 0 otherwise. Since we
are interested in the determination of the MFT for a system which starts from the state
(N0 = N/2, N1 = N/2)9, we focus on the quantity Un ≡ u((N/2, N/2), tn). The probability

9Since the number of uncertain voters is supposed to be small (Nu � N), the state x̄ = 1/2 of the voter
model can be essentially realized only by having (N0 = N/2, N1 = N/2) as the initial condition, which, for
x∗ ∼ 1/2, is also a good approximation of the metastable state into which the system quickly relaxes.
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density pfix(t) for reaching one of the two absorbing states as a function of the time t is
therefore given by the discrete derivative of U for sufficiently small δt , which reads

pfix
n =

Un − Un−1

tn − tn−1

. (2.53)

In terms of this density, the MFT T vi
fix of the voter model with intermediate state is given,

for δt→ 0, by T vi
fix =

∑∞
n=1 tnp

fix
n , which can be estimated as

T vi
fix '

nmax∑
n=1

tnp
fix
n + Ttail, (2.54)

where the term Ttail is associated with the tail of the distribution pfix(t) for t > tmax = tnmax

and it can be conveniently estimated by fitting u( ~N, t) with an exponential function in the
corresponding range. In fact, Un ' 1− e−µtn for large tn, from which we obtain

Ttail '
(
tmax +

1

µ

)
e−µtmax , (2.55)

where the value of µ is determined from the fit.
Figure 2.16 compares the various estimates of the MFT, as obtained from the simple voter

model (T vot
fix , blue dotted line), the voter model with intermediate states (T vi

fix, brown dashed
line) or from the lowest-order (T (0)

fix , red dash-dotted line) and first-order (T (1)
fix , green solid

line) expansion in the small α parameter described in Section 2.2.3; symbols with errorbars,
instead, correspond to the numerical results of simulations based on the Wright-Fisher model.
For small m, the estimates T vot

fix and T vi
fix agree with the results of simulations and with the

first-order T (1)
fix in the small-s expansion. It can be noticed that the introduction of the

intermediate state extends to larger values of m the range within which the approximation
is accurate and, more importantly, it makes the model able to capture qualitatively the
nonmonotonic behavior of the MFT as a function ofm. This demonstrates that the existence
of the intermediate (metastable) state plays a crucial role in determining the emergence of
the nonmonotonicity in the mean fixation time.

In Fig. 2.17 we report the MFT as a function of the selection rate s′ for a fixed small value
of the migration rate m′ = 0.005. It can be noticed that T vi

fix from Eq. (2.54) is in excellent
agreement with the results of the numerical simulations of the Wright-Fisher model (symbols)
also for quite large values of the selection rate s′; the introduction of the intermediate state
in the voter model significantly improves the accuracy of the approximation compared to
both T (0)

fix and T (1)
fix , reported in Eqs. (2.36) and (2.40) respectively, and to T vot

fix of the voter
model without intermediate state.

Since balancing selection tends to push all the demes towards the configuration with
allele frequency x∗ which is far from the boundaries (at least for x∗ ' 1/2), it is heuristically
expected to cause a slowing down of fixation and therefore to increase the MFT; however,
Fig. 2.17 shows that this is not always the case and in fact the MFT plotted there displays a
nonmonotonic behavior as a function of the selection rate. This nonmonotonicity appears for
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small enough m′ and it can be rationalized on the basis of the equivalent voter model with
intermediate states. In fact, the MFT T vi

fix is expected to be proportional to the mean time
Tchange that a voter needs to change its opinion, which can be estimated as Tchange ' Tint +Tu,
where Tint is the time scale associated with an interaction able to drive a voter initially in
states 0 or 1 into the intermediate one xu with “lifetime” Tu. Since a voter interacts with a
typical ratem′ and, after this interaction, it reaches the intermediate state xu with probability
P , the rate T−1

int associated with the transitions towards the intermediate state is given by
T−1

int ' m′P , so that

Tchange '
1

m′P
+ Tu. (2.56)

For small s′, the mean time Tchange is predominantly determined by the term 1/(m′P ), which
in fact increases upon decreasing s′, while in the opposite limit of large s′ it is actually
determined by Tu, which increases upon increasing s′. The interplay between these two
terms results in the nonmonotonic dependence of Tchange — and therefore of T vi

fix — on s′.
However, upon further increasing s′, it is no longer correct to assume that each deme spends
a large part of its time into a boundary state, and therefore in this regime one cannot expect
T vot

fix and T vi
fix to reproduce accurately the corresponding results of numerical simulations of

the Wright-Fisher model; nonetheless T vi
fix still captures the qualitative behavior of Tfix of such

a model, as it is clearly seen in Fig. 2.17 by comparing the symbols (numerical simulations)
with the dashed line.

Effective equation for the mean frequency x̄

When the migration rate m is small (and therefore the interaction rate r among the voters is
also small — see Eq. (2.44)) only a relatively small fraction of voters is in the intermediate
state, i.e., Nu � N . For large N , the evolution of x̄ is expected to be slow compared to
that of Nu, because every interaction causes a change ∆Nu = ±1 of Nu, but only a change
∆x̄ . 1/N of x̄ ∼ 1, so that the relative variation |∆Nu|/Nu of the former is significantly
larger than that of the latter |∆x̄|/x̄ � |∆Nu|/Nu. This time scale separation allows us to
consider Nu as a fast fluctuating variable on the time scale which characterizes the dynamics
of x̄. Conversely, x̄ can be considered as a slowly varying (or almost constant) parameter on
the time scale of the dynamics of Nu.

For the sake of simplicity, we focus here on the case of symmetric balancing selection
(x∗ = 1/2 and therefore xu = 1/2, p̃ = 1/2, and P = Q), but the discussion below can be
straightforwardly generalized to the nonsymmetric case, with similar conclusions. Consider-
ing the characteristic time scale over which the number Nu of voters in the intermediate state
evolves, one finds an estimate of its average in the large-N and small-m limit by solving the
stationary master equation which describes the evolution of Nu (see App. B.4.1 for details)

〈Nu〉 '
2m′NPTux̄(1− x̄)

1−m′PTu/2
. (2.57)

Note that, as expected, the average number 〈Nu〉 of voters in the intermediate state vanishes
as m′ → 0. On the time scales over which x̄ varies, we can approximate Nu with its average
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Figure 2.17: MFT for a metapopulation of N = 30 demes with Ω = 100 individuals, m′ =
0.005, and x∗ = 1/2. Symbols correspond to the MFT of the Wright-Fisher (WF) model
obtained via numerical simulations. The red dash-dotted and green solid lines correspond
to the analytical predictions T (0)

fix and T (1)
fix described in Eqs. (2.36) and (2.40) respectively.

The blue dashed line is the MFT T vot
fix [see Eq. (2.49)] of the effective voter model described

in the main text. The brown dashed curve, instead, corresponds to the MFT T vi
fix of the

voter model with an intermediate state (see Sec. 2.5.2), which reproduces qualitatively the
nonmonotonic behavior observed in the numerical data. We have estimated the lifetime Tu

of the intermediate state as described in App. B.3. The scenario presented here carries over
to different choices of m′ . 0.05.

〈Nu〉 [see Eq. (2.57)]; this allows us to write an effective Langevin equation for the evolution
of the mean frequency x̄, which reads

˙̄x = svix̄(1− x̄)(1/2− x̄) +

√
x̄(1− x̄)

Nvi

η(t), (2.58)

for large N and Ω and small m (see App. B.4.2 for a detailed derivation), where svi =
m′2P 2Tu/(1−m′PTu/2) is an effective selection coefficient and Nvi = N/(m′P ) is an effective
population size. These effective parameters coincide with se and Ne (see Eqs. (2.21a) and
(2.21b)), respectively, for large Ω and small s′. Since se, Ne and svi, Nvi have been obtained
by following two completely different approaches, their agreement in the overlap between
the respective regions of validity shows the emergence of a coherent effective dynamics at a
coarser scale. Note that the deterministic term in Eq. (2.58) has an internal attractive point
x̄∗ = 1/2, which is the footprint of balancing selection, and this means that the intermediate
state xu is the crucial ingredient in order to capture the main features of balancing selection;
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note also that svi ∝ m′2 for small m′, where indeed the approximation in Eq. (2.46) is
accurate.

2.6 Metapopulations in one spatial dimension

While the fully-connected model considered in the previous part of this chapter can be a
starting point for describing subdivided populations on a network with high connectivity, the
spatial arrangement of many natural populations is better captured by regular lattices. In
particular, the opposite case of low connectivity realized by a quasi-one-dimensional habitat,
could describe a bank of a river, a seacoast, or the front of an expanding two-dimensional
population (see, e.g., Ref. [33]).

In order to investigate the effects of migration on the fixation properties of a popula-
tion embedded in space, we consider here the celebrated stepping stone model [94], which
involves well-mixed demes located on the sites of a regular lattice such as the one depicted
in Fig. 2.1(b). As in the case discussed in the previous sections, each deme is subject to
selection and genetic drift but now migration is possible only between pairs of neighboring
demes.

2.6.1 The stepping-stone model

The one-dimensional stepping stone model [94] consists of N interacting demes of identical
size Ω, labeled by an integer i = 1, . . . , N and characterized by the frequencies {x1, x2, . . . , xN}
for the occurrence of allele A, with xi ∈ [0, 1]. The demes (green circles in Fig. ??) are ar-
ranged on the sites of a regular one-dimensional lattice characterized by lattice spacing a.
For computational convenience, we consider here periodic boundary conditions (xN+1 ≡ x1,
i.e., the demes are regularly spaced along a ring). Within each deme, the internal dynamics
(assumed to be characterized by the same parameters throughout the population) proceeds
as in either Moran’s or Wright-Fisher’s stochastic models, while neighboring demes interact
by exchanging randomly picked individuals, such that the sizes Ω of the demes involved
in the exchange are not affected. The rate m with which migration occurs is defined as
m = 2ni↔i+1/Ω, where ni↔j is the mean number of individuals exchanged between the deme
i and j in one generation. As in Sec. 2.2, we measure time in generation units, so that the
time interval τg between two subsequent generations is set to unity (τg = 1).

Analogously to the island model described in Sec. 2.2.2, within the Wright-Fisher model
the effect of migration in the stepping stone model is typically accounted for by modifying
the probability pr(xi;xi−1, xi+1) that a new individual in deme i carries allele A. In the
absence of migrations, this probability depends only on xi and is given by Eq. (2.1); since
the migration removes on average from deme i a fraction m of its population, while it adds
to it a fraction m/2 of the population of the demes i−1 and i+ 1 each, it effectively changes
the frequency of deme i from xi to m(xi−1 + xi+1)/2 + (1−m)xi, so that pr becomes

pr(xi;xi−1, xi+1) =
(1 + s̃i)[m(xi−1 + xi+1)/2 + (1−m)xi]

1 + s̃i[m(xi−1 + xi+1)/2 + (1−m)xi]
, (2.59)
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where s̃i = s̃(x = m(xi−1 + xi+1)/2 + (1−m)xi) is the value of the function s̃(x), defined in
Eq. (2.4), evaluated at the point x = m(xi−1 + xi+1)/2 + (1−m)xi.

If the single-deme dynamics of the stepping stone model is based on the Moran model, the
migration process affects the rate of increase/decrease of the fraction xi of A-type individuals
in the i-th deme. Similarly to the island model described in Sec. 2.2.2, for Ω� 1 the evolution
turns out to be described by the rates

W+1 = (1 + s̃)xi(1− xi)/(1 + s̃xi) +m [xi−1(1− xi) + xi+1(1− xi)] /2,
W−1 = xi(1− xi)/(1 + s̃xi) +m [(1− xi−1)xi + (1− xi+1)xi] /2,

(2.60)

where the factors xi−1(1− xi) and xi+1(1− xi) on the first line of Eq. (2.60) account for the
probability that, during a migration event, an individual with allele B is removed from the
deme i and is replaced with an individual with allele A chosen from the deme i− 1 and i+ 1
respectively; the terms (1− xi−1)xi and (1− xi+1)xi have an analogous origin.

For Ω� 1 and small m, s� 1, the evolution of the allele frequency xi ∈ [0, 1] of the i-th
deme can be described (independently of the underlying Wright-Fisher or Moran dynamics)
by the following Langevin equation with Itō prescription (see App. B.1)

ẋi = µ(xi) +m [(xi−1 + xi+1)/2− xi] +
√
v(xi) ηi, (2.61)

where the term m [(xi−1 + xi+1)/2− xi] accounts for the migration of individuals between
the demes, while µ(xi) = s̃xi(1 − xi) and v(xi) = xi(1 − xi)/Ω account respectively for
the deterministic part and the variance of the noises of the single-deme dynamics, being ηi
independent Gaussian noises with 〈ηi(t)ηj(t′)〉 = δi,jδ(t− t′).

When the number N of demes is large and the lattice size a is small (so that the size
L = Na of the system is finite), the stepping stone model can be described in the continuum
limit, in which the space coordinate r is defined as ri = ia and Eq. (2.61) becomes

∂tx(r, t) = µ(x(r, t)) +Ds∂
2
rx(r, t) +

√
Dgx(r, t)[1− x(r, t)] η(r, t), (2.62)

where the discrete Laplacian (xi−1 + xi+1 − 2xi) /a
2 in Eq. (2.61) has been replaced by its

continuous version ∂2
rx(r), meaning that migration is described in terms of a diffusion on

the continuum10 with diffusion constant Ds = ma2; the strength of the noise is, instead,
controlled by the constant Dg = a/Ω. Note that the spatial structure of the population
does not allow an effective description of the dynamics in terms of the coupling to a global
(and therefore slow) variable analogous to x̄ (see Eq. (2.14)). Accordingly, we are unable to
introduce an analytic approximation analogous to the one used in Sec. 2.2.3, and we base our
analysis on the numerical simulations of the microscopic models, supplemented by analytical
predictions in the slow and fast migration limits.

10In order to avoid possible confusion, note that the diffusion term Ds∂
2
rx(r, t) acts on the space of the

positions r, i.e., on the physical space in which the population lives, and that the diffusion is due to spatial
migration of the individuals. On the other hand, the diffusion approximation to which we refer in Sec. 2.2.3
concerns the Fokker-Planck equation for the probability P (x, t) of the frequency x in a population, it occurs
in the space of frequencies x and is due to the genetic drift (i.e., to the stochastic effect generated by death
and reproduction of individuals), and is present also in a well-mixed population.
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As it can be seen in Fig. 2.18, for large migration rate m′ (green solid line) the frequencies
of the various demes as functions of their position i along the circle are similar, and, in a first
approximation, the metapopulation can be described as a well-mixed population. When the
migration ratem′ is small, instead, the stepping stone model allows the formation of domains
(black dashed line) within which the demes fix to the same value 0 or 1; the dynamics of
these domains rules the collective fixation process. These two limiting case will be analyzed
in the following subsections.
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Figure 2.18: Snapshots of a one-dimensional stepping stone model with periodic boundary
conditions, in which the deme frequency xi is plotted as a function of the position i along
the chain; the metapopulation is characterized by Ω = 100, N = 120, s′ = 1 and by two
different values of m′. These snapshots have been obtained by evolving the model for ΩN
generations, starting from the uniform initial condition xi = 1/2.

2.6.2 The case of fast migration

The effect of migration is to wipe out possible differences among the frequencies of neigh-
boring demes: in the absence of any other force (i.e., for µ(x) = 0 and Dg = 0), migration
makes the system homogeneous within a distance `diff(t) =

√
2Dst, which increases with

time. When also the genetic drift is present, it competes with migration, acting at the local
level as a source of inhomogeneity. In order to make relevant changes in the local frequencies,
the genetic drift requires a time t & Tfluct, where Tfluct = a/Dg is the time scale associated
to local fluctuations (see App. B.5). We can therefore identify the maximal length at which
the diffusion is expected to make the system homogeneous as `diff(Tfluct) '

√
2DsTfluct; if we

consider a portion of the system of length � `diff(Tfluct), it can be considered as effectively
well-mixed.
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In particular, if the system size L = Na is much smaller than `diff(Tfluct), i.e., if

m� N2/(2Ω), (2.63)

the whole system can be considered well-mixed and it can be described in terms of the mean
frequency x̄ =

∑N
i=1 xi, which evolves according to

˙̄x = µ(x̄) +
√
x̄(1− x̄)/(ΩN) η. (2.64)

The mean fixation time is therefore given by Eqs. (2.5) and (2.7), in which the single deme
population size Ω has to be replaced with the size ΩN of the whole system.

2.6.3 The case of slow migration

As described in Sec. 2.5.1, with a small but nonvanishing migration rate m — such that
0 < mΩ� T−1

fix1(
11) — each deme rapidly evolves towards one of the boundary states xi = 0

or 1 (which are no longer absorbing due to m 6= 0), and it spends most of the time close
to it. However, sometimes it happens that a different allele is received by a deme because
of migration and it rapidly fixes, causing the variable xi to “jump” to the other boundary
state. Accordingly, one can describe this dynamics in terms of an effective voter model, in
which each deme of the metapopulation is represented by a voter with one of the two possible
opinions which corresponds to the states xi = 0 or 1. Migration then acts as an effective
interaction among the voters, which can influence and change each other’s state. Indeed two
neighboring demes exchange an individual with a rate mΩ; if they were in different states
before the interaction, then, as described in Sec. 2.5.1, the deme that was in the state x = 0
(x = 1) reaches the other boundary with probability p = p(1|1/Ω) (q = p(0|1−1/Ω)), where
p(x|x′) is defined in Eq. (2.8).

If the probabilities p, q are sufficiently small, an effective description for the interaction
is the following: a voter in the state x = 0 (x = 1) with a neighbor in a different state,
assumes the opinion of that neighbor with a rate λ = mΩp (λ̃ = mΩq), where the factor mΩ
accounts for the rate at which the corresponding demes exchange an individual, while the
factor p (q) accounts for the probability that the allele of the migrant propagates to all the
other individuals of the same deme. Note that (analogously to Sec. 2.5) the specific form of
selection does not enter in the definition of the effective voter dynamics, so that the latter
can be generalized to any kind of selective force, as long as the single-deme fixation time is
much shorter than the time scale associated with migration.

The probability P ({xj}, t) to find the configuration of states {xj} at time t satisfies the
master equation (see, e.g., Refs. [22, 21])

Ṗ ({xj}, t) = −
∑
{x′j}

W{xj}→{x′j}P ({xj}, t) +
∑
{x′j}

W{x′j}→{xj}P ({x′j}, t), (2.65)

11The condition mΩ� 1/Tfix1 emerges by comparing the time scale Tfix1 needed by a single deme to reach
fixation in the absence of migration and the typical time scale 1/(mΩ) associated with the occurrence of
migration.
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where the sums run over all the possible configurations {x′j}. For later convenience, we
describe the interaction among the voters in terms of the rate wchange according to which a
voter changes its state. This rate depends on the state of the voter and of its two nearest
neighbours, and it reads

wchange(xi;xi−1, xi+1) = λ̃xi (2− xi−1 − xi+1) + λ(1− xi) (xi−1 + xi+1) . (2.66)

We can then rewrite Eq. (2.65) as

Ṗ ({xj}, t) = −
N∑
i=1

wchange(xi;xi−1, xi+1)P ({xj}, t) +
N∑
i=1

wchange(1− xi;xi−1, xi+1)P ({xj}, t),

(2.67)
where we used the fact that the probability that two or more changes of opinion occur at
the same time is zero and the identity

∑N
i=1 wchange(xi;xi−1, xi+1)P ({x1, ...1− xi, ...xN}, t) =∑N

i=1 wchange(1− xi;xi−1, xi+1)P ({xj}, t).

Estimate of the MFT

To understand how consensus is actually achieved in the voter model, we need to quantify
the extent to which two distant voters agree. Such a measure is provided by the two-point
correlation function (see, e.g., Ref. [95]) Gk = 〈gi,i+k〉, where gij = 2xixj−xi−xj+1 equals 1
if the voters i and j have the same opinion and vanishes otherwise . Due to the translational
invariance of the model, the correlator Gk = 〈gi,i+k〉 depends only on the distance k. In
general the evolution equation of Gk(t) involves the three point function 〈xixjxl〉, but in the
case of symmetric balancing selection (i.e., for x∗ = 1/2), it actually reduces to a discrete
diffusion equation (see, e.g., Ref. [95])

∂tGk(t) = 2λ [Gk+1 +Gk−1 − 2Gk] . (2.68)

When the number N of demes is large and the lattice size a is small, Eq. (2.68) can be
rewritten in the continuum limit (analogously to what we discussed above in this section),
and it becomes a diffusion equation

∂tG(r, t) = Dvot∂
2
rG(r, t), (2.69)

where Dvot = 2λa2 is a diffusion constant12. The system is therefore expected to be ho-
mogeneous within a diffusion distance `vot(t) =

√
4Dvott, which is an increasing function of

time. An estimate of the time to reach consensus (i.e., of the MFT) can thus be obtained
by equating the diffusion distance `vot evaluated at the MFT T vot

fix to the size L = Na of the
system (see, e.g., Ref. [95]). This renders

T vot
fix = β

N2

4mΩp
. (2.70)

12Note that the diffusion constant Dvot characterizing the evolution of the correlator G(r, t) in the voter
model approximation differs from but is of the same order as the diffusion constant Ds = ma2 in the original
stepping stone model (see Eq. (2.62)).
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In this expression we introduced a correction factor β in order to account for the fact that,
while this heuristic estimate of the MFT is expected to capture correctly the functional
dependence on m, it is not generally able to predict possible proportionality constants. This
factor can be fixed by comparing with numerical simulations; in the cases considered below
one obtains β ' 0.4.

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ æ
æ

-

-

-

-

-

-
- -

-

-

-

-
- - -

-

-

-

-

-

-
- -

-

-

-

-
- - -

ì

ì

ì

ì

ì

ì

ì

ì
ì

ì

ì

ì

ì
ì

-

-

-

-

-

-

-
- -

-

-

-

- -

-

-

-

-

-

-

-
- -

-

-

-

- -

ô

ô

ô

ô

ô

ô

ô

ô

ô ô

ô

ô

ô

-

-

-

-

-

-

-
-

- -

-

-

-

-

-

-

-

-

-

-
-

- -

-

-

-

0.01 0.1 1 10 100

10

20

50

100

200

500

m'

T
fi

x
�HW

N
L

æ N=30, s=1

ì N=60, s=0.5

ô N=120, s=0.25

Figure 2.19: Mean fixation time as a function of the migration rate m′ for the stepping stone
model with balancing selection, characterized by Ω = 100, x∗ = 1/2, and by various values of
N and s. Symbols with errorbars indicate the results of numerical simulations in which the
single-deme dynamics is based on the Wright-Fisher model; the horizontal dot-dashed line
on the right represent the estimate described in Sec. 2.6.2 for large migration rate m, while
the solid, dashed, and dotted lines on the left represent the estimates for small m, based on
Eq. (2.70) and obtained for N = 30, 60, and 120 respectively.

Figure 2.19 displays the MFT as a function of the migration rate m′, obtained from
numerical simulations (symbols with errorbars) of the stepping stone model in which the
single-deme dynamics is based on the Wright-Fisher model with balancing selection; the
population is characterized by Ω = 100, x∗ = 1/2, and by various values of N and s. The
estimate of Tfix/(ΩN) for large m discussed in Sec. 2.6.2, is represented by a dot-dashed line,
while the one for small m, based on Eq. (2.70), are indicated by a solid, dashed, and dotted
line, for N = 30, N = 60, and N = 120 respectively. A numerical interpolation renders a
corrective factor β ' 0.44, 0.41, and 0.36 for N = 30, 60, and 120 respectively.
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Figure 2.20: Mean fixation time as a function of the migration rate m′ for the stepping stone
model with balancing selection (red circles) and the island model (black triangles); in both
cases the metapopulation is characterized by Ω = 100, x∗ = 1/2, N = 30, and s′ = 1.

Figure 2.20 compares the dependence of the MFT on the migration rate m′, as obtained
from the numerical simulations of the stepping stone model (red circles) described in this
section and of the island model (black triangles) described in Sec. 2.2.2; in both cases the
metapopulation is characterized by Ω = 100, x∗ = 1/2, N = 30, and s′ = 1. This compar-
ison suggests that the differences between the cases of small connectivity (one-dimensional
stepping stone model) and of high connectivity (island model) are quantitative but not
qualitative: in both cases the MFT shows a nonmonotonic behavior, it scales as 1/m for
small migration rate, and it approaches a horizontal plateau for large migration rate. For
this reason one can heuristically expect that the same qualitative behavior carries over to
metapopulations on regular structures in two and three spacial dimension, where the con-
nectivity has intermediate values compared to the cases analyzed here.

2.7 Summary and conclusions

Balancing selection is a major mechanism responsible for promoting and maintaining bio-
diversity, as it favors the coexistence of different alleles in the same population. Under
balancing selection, the evolution of a population might be characterized by the emergence
of a long-lived metastable state (at least for sufficiently strong selection), which is eventually
destabilized by stochasticity (genetic drift). When the population is subdivided in a large
number of subpopulations of equal size and features, migration interacts with balancing selec-
tion and with genetic drift and determines the eventual fate of the population. In Sec. 2.2.3,
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focusing on the island model [78], we have shown that, in the presence of balancing selection,
the mean fixation time of a subdivided population can become a nonmonotonic function of
the migration rate m. The emergence of a minimum depends on both the selection strength
σ ≡ sΩN exceeding a threshold and on the frequency x∗ of coexistence which is promoted
by the selection. While the MFT increases upon decreasing m because of the slowing down
in the migration dynamics, its possible increase for sufficiently large m has a less intuitive
explanation. A posteriori this is due to the formation of a metastable state, the “life time” of
which might increase upon increasing the migration rate. Since the validity of the effective
models presented in Sec. 2.2.3 relies only on the “slowness” of migration compared to the
other forces driving the dynamics, these approximations could be adapted to various net-
works and spatial lattices (see Sec. 2.6), or even to different form of the inter-deme dynamics,
as long as the migration between the demes is sufficiently slow.

In Sec. 2.3, we have shown that, as already observed above, but contrary to the heuristic
expectation, balancing selection actually speeds up fixation with respect to a neutral model
(i.e., a model without selection) if the allele frequency x∗ promoted by balancing selection in
the coexistence state is close to extinction of one of the alleles. This phenomenon, already
observed in Ref. [64] for well-mixed populations, carries over to a subdivided population,
where, in addition, it is responsible for the emergence of a phase transition in the limit of
an infinite number N of subpopulations, each of finite size Ω. We heuristically explain this
behavior in Sec. 2.3 by decomposing the effect of asymmetric balancing selection on the
evolution of the mean allele frequency x̄ as a sum of a symmetric balancing selection term
Msymm(x̄) and a directional term Mdir(x̄), which favor coexistence and fixation, respectively.
In fact, it turns out that Mdir(x̄) becomes stronger than Msymm(x̄) as x∗ approaches one of
the two boundaries x∗ = 0 or 1, corresponding to the extinction of one of the alleles. It
is then possible to characterize in detail the mean fixation time of finite populations as a
function of the migration rate m and of the other relevant parameters, i.e., the selection
strength s′ and the optimal frequency x∗.

While the perturbative results provided in Sec. 2.2.3 are limited either to fast migration
or to moderate balancing selection, we have shown in Sec. 2.5 how to extend them to slow
migration and larger values of selection strength. In fact, a metapopulation with a small
migration rate m can be effectively described at a coarser level by a voter model with an
interaction rate proportional to the migration rate m. In Sec. 2.5.1 we demonstrate that the
MFT of this effective voter model correctly reproduces the one of the original metapopulation
for slow migration. However, the standard voter model fails to reproduce some qualitative
features of the MFT of the subdivided population, which are recovered once we introduce into
the model an additional intermediate state, corresponding to a voter with no definite opinion.
This intermediate state turns out to be crucial for reproducing the nonmonotonic behavior
of the MFT as a function of the migration rate; in addition, this model provides prediction
for the MFT in good quantitative agreement with simulations up to larger values of the
migration rate. We have also shown that an analogous nonmonotonic behavior of the MFT
emerges as a function of the selection strength for a sufficiently small and fixed migration
rate, in qualitative and partially quantitative agreement with numerical simulation of the
microscopic model, as it can be seen in Fig. 2.17. In summary, the three-state effective
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model proposed in Sec. 2.5.2 provides a coarser description of the collective behavior of
the metapopulation that is useful in order to understand the mechanisms underlying the
emerging phenomena observed in the population. Such a description is expected to carry
over to other population models in which it is possible to identify a separation of time scales
between local and global dynamics. In this respect, the metapopulation considered here
has a very simple internal structure (it is a fully-connected graph), therefore it would be
important to investigate whether the features discussed above are present on more general
networked (or even spatially-embedded) systems and to understand their potential interplay
with other dynamical phenomena, such as diffusion and coarsening.

In Sec. 2.6 we have considered a subdivided population with the same dynamics as the
fully-connected model analyzed in the previous part of the chapter, but now spatially ar-
ranged on a finite ring, with migration allowed only between nearest-neighboring demes.
The analysis reveals a nonmonotonicity in the MFT very similar to the one observed in the
fully-connected case, strengthening thus the conclusion that this nonmonotonicity should be
a quite general feature for subdivided populations with balancing selection. While in the
fully connected case we traced back the origin of this nonmonotonicity to the existence of
a metastable state resulting from the simultaneous interaction of a large number of demes,
this behavior in the stepping stone model might be due to the formation of diffusing do-
mains which the slow time scale is associated with. However this aspect deserves further
investigation



Chapter 3

Statistical properties of tRNA binding
time

This chapter is based on the results originally presented in Ref. [38].

3.1 Introduction

Recent advances in experimental physical biology are offering an unprecedented detail in the
observation of the reactions occurring in living systems. In fact, single molecule sensibility
techniques (see Refs. [96, 97, 98, 99, 100, 101]) are beginning to probe and unveil the intrinsic
stochastic nature of life at the microscopic level. Most notably, recent in vitro experiments
(see Refs. [102, 103]) focused on the fundamental aspects of protein translation.

Protein translation is a crucial step in gene expression, which is the process by which
information from a gene in the DNA is used in order to synthetize a functional gene product,
typically a protein; gene expression represents the way in which the genotype of an individual
affects its phenotype (i.e., the set of all its observable characteristics). In addition, protein
translation is one of the most common biochemical reactions occurring in the cell: the
individual triplets of nucleotides (the codons) composing a messenger RNA (mRNA) are
translated into amino acids by the ribosomes (see, for instance, Ref. [104]). This process
is biologically and chemically rather well understood, but the implications of its intrinsic
stochastic nature and of the presence of quantities which strongly fluctuate during the life
of the cell have been not yet fully elucidated.

An intriguing question concerns the ribosome dwell time distribution (DTD), i.e., the
distribution of the time intervals between two subsequent codon translation events. The
form of this distribution and its dependence on the codons heavily influence the ribosome
traffic along the mRNA sequences [105, 106, 107, 108], and affect the efficiency, accuracy
and regulation of translation [109, 110], as well as the process of the so-called cotranslational
folding (i.e., of the folding that occurs during the translation) of the nascent protein [111].
The translation of a codon involves several subsequent biochemical steps (see, e.g., Refs. [103,
112, 113, 114]), and the stochastic duration of each of these sub-steps is typically modeled by
an exponential distribution characterized by the time scale (i.e., by the rate) of that reaction

69
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(see Refs. [112, 114]). However, one among them (i.e., the binding step) requires that the
ribosome binds to an additional molecular species, the transcript RNA (tRNA), which has
an internal stochastic dynamics.

The tRNA molecules carry the corresponding amino acid to the ribosome, and physically
recognise the codons effectively decoding the genetic code. After translation has occurred and
the tRNA molecule has left the ribosome, it must be recharged with the correct amino acid1

before it can be used again. The concurrency between these two mechanisms, consumption
and recharge, determines the global fraction X of charged tRNA in the cell. The value of
X is not constant during the life of the cell, and experimental evidence showed that it can
significantly vary depending on the conditions and on time in a range from less than 1%
up to almost 100% (see Ref. [115]). It was also shown numerically that this fact can have
significant consequences on translation [116, 117]. Furthermore, the tRNA molecules have
low concentrations in the cell (see, for instance, Ref. [118]): in this regime the number of
tRNAs in the neighborhood of the ribosome is small, and the fluctuations in their number are
relevant. The stochastic duration of the binding step (binding time) is directly influenced by
these fluctuations, as it depends on the concentration of charged tRNA in the neighborhood
of the ribosome (see Refs. [102, 119]).

In order to understand how and under which conditions the charging dynamics of tRNA
can affect the binding time distribution (BTD) (i.e., the distribution of the waiting times of
the ribosome for the charged tRNA), and consequently the DTD, we describe here a stochas-
tic model which explicitly incorporates (i) the tRNA charging and discharging dynamics, and
(ii) the spatial inhomogeneity and stochastic fluctuations in the number of charged tRNAs
around the ribosome. This minimal model, originally presented in Ref. [38], captures these
two fundamental aspects of the translation process2and is analytically tractable. Its solution,
validated by using Monte Carlo numerical simulations, shows that the interplay between dif-
fusion, recharging, and translation dynamics induces a coupling between the fluctuations in
the number of charged and uncharged tRNAs. Due to this phenomenon, the BTD, which we
obtain analytically from the model, deviates from a pure exponential, consistently with the
findings in Ref. [119]. Moreover, this model asymptotically reaches a non equilibrium steady
state (NESS). NESSs have attracted a lot of attention since a variety of systems in physics,
chemistry, biology and engineering exhibit them, and their characterization is typically sig-
nificantly more difficult than the equilibrium states (see, e.g., Refs. [120, 121, 122, 123]).

The structure of the chapter is as follows: after defining the model in Sec. 3.2, we char-
acterize the stationary state in Sec. 3.3. The BDT is obtained in Sec. 3.4, where its main
features are analyzed. In the last subsection we show how an additional biochemical step
can be included, in order to get an estimate for the DTD. In Sec. 3.5, we discuss the inter-
pretation of the parameters of the model in terms of measurable quantities and we provide,
when possible, an estimate of their orders of magnitude. We conclude by summarizing and
commenting our results in Sec. 3.6.

1The charged tRNA is a ternary complex, composed by the aminoacylated tRNA, a species-specific
elongation factor, and an energy-carrying molecule (guanosine triphosphate - GTP).

2We did not consider secondary aspects, such as the enzymatic nature of the recharging of the tRNAs,
the continuous spatial dependence of the tRNA density, or the tRNA proofreading.
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3.2 The model

We model a ribosome translating an mRNA (a string of codons) into a protein (a string of
amino acids), with the scope of analyzing the effects of tRNA charging dynamics and its
finite availability on translation dynamics.

The fraction of charged tRNAs in the cell varies within a wide range (up to 2 orders
of magnitude, depending on the tRNA species and growth conditions [115]) and exclusively
affects the binding step. For this reason we focus here on this specific step, neglecting all
the other biochemical reactions, which will be accounted for in Sec. 3.4.3. For simplicity,
each translation event is assumed to be instantaneous: as the charged tRNA binds to the
ribosome, (i) it is uncharged and released in the system, (ii) the codon is translated and
the ribosome translocates to the next codon. Moreover, we treat the special case of a single
tRNA species translating a single type of codons.

The ribosome consumes charged tRNAs during translation. On average, the concentra-
tion of charged tRNAs is lower close to the ribosome and rises upon moving away from it,
as shown in Ref. [119]. In order to model this spatial inhomogeneity, we suppose that the
ribosome can instantaneously recruit the tRNAs within a distance r from it, i.e., within a
volume Vr = 4πr3/3 around it. The tRNAs farther than r from the ribosome are considered
as part of an infinite reservoir, and can diffuse closer to the ribosome. The concentrations
of charged tRNAs within the volume Vr is different from that in the reservoir, and it is
determined by the stochastic translation dynamics.

Let us consider a system which comprises a ribosome (translating an mRNA composed
by several repeats of the same codon), n charged and m uncharged tRNAs within a distance
r from it, as depicted in Fig. 3.1. Each uncharged tRNA can be recharged with rate λR,
while each charged tRNA can bind to the ribosome with rate λB, becoming uncharged. We
also suppose that there is a stochastic flux between the system and the infinite reservoir, i.e.,
that each tRNA can exit the system with rate ρ, while with rate µ (µ̃) a charged (uncharged)
tRNA diffuses from the reservoir into the system. We refer to ρ as the diffusion rate, since
the exit rate from the volume Vr is determined by how fast the Brownian diffusion is (as we
discuss in Sec. 3.5). This subdivision in system and reservoir encodes, in the simplest way,
the spatial inhomogeneity of the charged tRNA fraction close to the ribosome.

Considering an infinitesimal time interval δt, the possible transitions (with the corre-
sponding probabilities) are:

• (n,m)
mλR δt−→ (n+ 1,m− 1); recharge: one uncharged tRNA gets charged.

• (n,m)
nλB δt−→ (n− 1,m+ 1); binding: one charged tRNA gets discharged and one codon

is translated.

• (n,m)
µ δt−→ (n + 1,m) and (n,m)

µ̃ δt−→ (n,m + 1): a tRNA (respectively charged un-
charged) enters the system from the reservoir.

• (n,m)
nρ δt−→ (n − 1,m) and (n,m)

mρδt−→ (n,m − 1): a tRNA (respectively charged
uncharged) leaves the system.
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Figure 3.1: Cartoon of the model representing the possible reaction pathways. Uncharged
tRNAs (blue, on the left) can either be exchanged with the reservoir or be recharged (with
rate λR), illustrated by the addition of an amino acid (red dots). Similarly, the charged
tRNAs can enter in or leave the system (green area), or bind (with rate λB) to the ribosome
(gray), which translates an mRNA (dashed line). In the state represented here, n = 3 and
m = 4.

These rates define, in general, a non-equilibrium system: the stationary state is a function
of all the rates, as we show in the next section.

3.3 Stationary distribution of the number of charged tR-
NAs

The set of rates given in the previous section produces the following master equation for
the probability pn,m(t) of the system being in the state characterized by the presence of n
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charged and m uncharged tRNAs:

ṗn,m = λR(m+ 1)pn−1,m+1] + λB(n+ 1)pn+1,m−1] + µ pn−1,m + µ̃ pn,m−1

+ ρ[(n+ 1)pn+1,m + (m+ 1)pn,m+1]− [λRm+ λBn+ µ+ µ̃+ ρ(n+m)]pn,m.
(3.1)

We focus on the stationary state of the system by setting ṗn,m = 0. Since the system is
ergodic3, the stationary state is unique and it is reached after a relaxation time that will be
discussed further below in this section.

In order to determine the stationary solution of Eq. (3.1), we introduce the generating
function G(z, w) =

∑∞
n,m=0 pn,mz

nwm and we obtain

λR(z−w)∂wG+λB(w−z)∂zG+ρ[(1−z)∂zG+(1−w)∂wG]+µ(z−1)G+ µ̃(w−1)G = 0,
(3.2)

the solution of which can be determined by using the method of characteristics. After
imposing the condition G(1, 1) = 1 (normalization), we have

G(z, w) = exp

[
(z − 1)[λR(µ+ µ̃) + µρ] + (w − 1)[λB(µ+ µ̃) + µ̃ρ]

ρ(λR + λB + ρ)

]
, (3.3)

and by successive differentiation, we obtain the stationary probability

pn,m =

[
(∂z)

n(∂w)m

n!m!
G(z, w)

]
z=0
w=0

=
e−N̄ n̄n m̄m

n!m!
, (3.4)

where n̄, m̄ and N̄ are the mean values of the quantities n, m and N = n+m, respectively
(with n̄+ m̄ = N̄):

n̄ = 〈n〉 =
λR N̄ + µ

λB + λR + ρ
,

m̄ = 〈m〉 =
λB N̄ + µ̃

λB + λR + ρ
,

N̄ = 〈n+m〉 =
µ+ µ̃

ρ
.

(3.5)

The stationary distribution4 Eq. (3.4) is a factorized Poissonian distribution in n and m: the
two variables are uncorrelated at the same time (we anticipate here that this is not true at
different times, as we show in Sec. 3.4).

Using the last of Eqs. (3.5), the parameters µ and µ̃ can be conveniently expressed in
terms of the diffusion parameter ρ and of the mean tRNA number N̄ :

µ = XN̄ρ,

µ̃ = (1−X)N̄ρ,

3According to Eq. (3.1), any state (n,m) can be reached by any other.
4Note that, since detailed balance does not hold in general, the system is out of equilibrium and it is not

obvious how to predict a priori the stationary distribution (see, e.g., Refs. [121, 122]).
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where we introduced the parameter 0 ≤ X ≤ 1 which measures the fraction of charged tRNA
in the reservoir. Note that X was measured in vivo in Ref. [115], and that, depending on
the richness of the growth media, it spans the interval X ' 10−3 ÷ 100.

In order to simplify the notation, let us rescale the time such that λB = 1, and set λR = λ.
Let us also introduce the mean fraction x of charged tRNAs into the system:

x ≡ λ +Xρ

1 + λ+ ρ
. (3.6)

In these terms, the mean values for n and m can be expressed as n̄ = N̄x and m̄ = N̄(1−x).
These quantities and the stationary distribution in Eq. (3.4) behave as expected in the

limit ρ→∞: the system is at equilibrium with the cell and the mean fraction x of charged
tRNA therein coincides with the fraction X in the cell: x = X. On the other hand, if
ρ → 0, the diffusion is much slower than binding, and the mean number of charged tRNAs
is completely determined by the internal dynamics: x = λ(1 +λ)−1. In this case the effect of
diffusion amounts at a slow but not negligible fluctuation of the tRNA number N = n+m.

The exponential relaxation to the stationary distribution is ruled by the two time scales
t1 = ρ−1 and t2 = (λ+ ρ+ 1)−1 (with t1 > t2), which are deduced from the time-dependent
solution of Eq. (3.1) (see App. C.1 for details). The stationary state is reached when the
observation time Tobs is larger than the largest of these time scale: Tobs � ρ−1.

Finally, we observe that the detailed balance condition is satisfied only for ρ = 0 (i.e.,
in the absence of diffusion), or for λ = X/(1 − X) (see App. C.2 for the proof). In the
latter case the stationary mean values for the charged fraction of tRNA of both the internal
and the diffusive dynamics coincide, and x = X. Apart from these two special points, the
stationary state is a non-equilibrium one.

3.4 Statistics of binding times
Since every charged tRNA gives a unitary contribution (remember that we set λB = 1) to
the total binding rate, the mean binding time per codon predicted by this model is simply
1/n̄. In general, however, when the distribution is not exponential, the mean does not fully
characterize the behavior of the random variable. In this section we therefore calculate
analytically the probability density function for the time intervals between two subsequent
binding events.

The derivation is carried out by writing down a master equation which accounts for an
auxiliary variable s which counts the number of time steps elapsed since the last binding
event (see below). This procedure allows the calculation of the cumulative distribution of
the binding times and finally of the binding time distribution.

Let us consider a discrete-time dynamics where δt is the unit time interval. The state of
the system is described by (n,m; s), where the counter s, at each time interval, is either set
to zero if a binding event occurs, or increased by one otherwise. Without loss of generality,
we set λB = 1 from the outset. The possible transitions are:

• (n,m; s)
mλδt−→ (n+ 1,m− 1; s+ 1): one uncharged tRNA gets recharged
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• (n,m; s)
n δt−→ (n − 1,m + 1; 0): one codon is translated and one charged tRNA gets

discharged

• (n,m; s)
µ δt−→ (n+ 1,m; s+ 1) and (n,m; s)

µ̃ δt−→ (n,m+ 1; s+ 1): a tRNA (respectively
charged uncharged) enters the system from the reservoir

• (n,m; s)
nρ δt−→ (n− 1,m; s+ 1) and (n,m; s)

mρδt−→ (n,m− 1; s+ 1): a tRNA (respectively
charged uncharged) leaves the system to the reservoir

• (n,m; s)
1−δt[n+λm+µ+µ̃+ρn+ρm]−→ (n,m; s + 1): nothing happens and the counter s is

increased.

This set of rates leads to the discrete-time master equation for the probability qn,m;s(t) of
being in the state (n,m; s) at time t

qn,m;s(t+ δt)

δt
= λ(m+ 1) qn−1,m+1;s−1(t) + µ qn−1,m;s−1(t) + µ̃ qn,m−1;s−1+

+ ρ(n+ 1)qn+1,m;s−1(t) + ρ(m+ 1)qn,m+1;s−1 +
qn,m;s−1(t)

δt
+

−
[
n+ λm+ µ+ µ̃+ ρn+ ρm

]
qn,m;s−1(t) + δs,0

∞∑
s′=0

(n+ 1)qn+1,m−1;s′(t). (3.7)

In order to obtain a well-defined limit for δt→ 0, we set τ = sδt, such that qn,m;s(t+ δt)→
qn,m(τ, t) + δt∂τqn,m(τ, t), qn,m;s−1(t)→ qn,m(τ, t)− δt∂τqn,m(τ, t) and Eq. (3.7) results in the
following partial differential equation:

∂tqn,m(τ, t) = −∂τqn,m(τ, t) + λ(m+ 1)qn−1,m+1(τ, t)− (n+ λm)qn,m(τ, t)+

+ ρ
[
(n+ 1)qn+1,m(τ, t) + (m+ 1)qn,m+1(τ, t)− (n+m)qn,m(τ, t)

]
+ µ qn−1,m(τ, t)+

+ µ̃ qn,m−1(τ, t)− (µ+ µ̃)qn,m(τ, t) + (n+ 1)δ(τ)pn+1,m−1(t), (3.8)

where pn,m(t) =
∫∞

0
dτ qn,m(τ, t) is the solution of Eq. (3.1). The differential equation for the

stationary probability is obtained by setting ∂tqn,m(τ, t) = 0, and it reads

∂τqn,m(τ) = λ(m+ 1)qn−1,m+1(τ)− (n+ λm) qn,m(τ) + ρ
[
(n+ 1)qn+1,m(τ)+

+ (m+ 1)qn,m+1(τ) +XN̄ qn−1,m(τ) + (1−X)N̄ qn,m−1(τ)+

− (n+m+ N̄)qn,m(τ)
]

+ δ(τ)αn+1,m−1,

(3.9)

where αn,m = n pn,m and pn,m is provided by Eq. (3.4).
Similarly to the previous case, we introduce the generating function

G(z, w; τ) =
∞∑
n=0

∞∑
m=0

qn,m(τ)znwm, (3.10)
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and Eq. (3.9) becomes

∂τG = λ(z − y)∂yG− z∂zG+ ρ
[
(1− z)∂z + (1− w)∂w + N̄X(z − 1)

+ N̄(1−X)(w − 1)
]
G+ δ(τ)f(z, w), (3.11)

where

f(z, w) =
∞∑
n=0

∞∑
m=1

αn+1,m−1z
nwm = n̄ w exp[n̄(z − 1) + m̄(w − 1)]. (3.12)

Although Eq. (3.11) could be solved in full generality, here we are interested in the particular
value G(1, 1, τ∗), because it coincides with the probability density

Q(τ∗) =
∞∑

n,m=0

pn,m(τ∗) (3.13)

to find a value τ∗ for the auxiliary variable τ . This distribution is particularly interesting,
since it is proportional to the probability P (τ∗) for the time interval between two subsequent
binding events to be larger than τ∗. In fact, the probability Q(τ∗) to find a value τ∗ for the
auxiliary variable τ is proportional to the mean number of times the function τ(t) exceeds
the value τ∗ within the observation time, i.e., to the mean number of binding times with a
duration larger than τ∗, as depicted in Fig. 3.2. The fraction Q(τ∗)/Q(0) represents therefore
the mean fraction of binding events with duration larger than τ∗, i.e., P (τ∗) = Q(τ∗)/Q(0).

t

⌧

⌧⇤

Figure 3.2: Schematic representation of the value of the auxiliary variable τ as a function
of the time t. After each binding event (green triangle on the t-axis), τ(t) increases linearly
in time, until another binding occurs. The probability density Q(τ∗) to find the auxiliary
variable with a value τ∗ is proportional to the mean number of binding times with a duration
larger than τ∗.

By solving Eq. (3.11) with w = z, we obtain the generating function G(z, z; τ) and the
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probability P (τ)

P (τ) =

[
R +

λ

λ− 1

(
e−τ(ρ+1)

ρ+ 1
− e−τ(ρ+λ)

ρ+ λ

)]
e−τRN̄x

× exp
[ λN̄x
λ− 1

(
e−τ(ρ+1) − 1

(ρ+ 1)2
− e−τ(ρ+λ) − 1

(ρ+ λ)2

)]
, (3.14)

where
R =

ρ(ρ+ λ+ 1)

(ρ+ 1)(ρ+ λ)
(3.15)

is always smaller than 1, and x is the fraction of charged tRNAs in the system, given by
Eq. (3.6).

For further reference, note that the function P (τ) can be written as P (τ) = ∂τA(τ), with

A(τ) = − 1

N̄x
exp

[
− τRN̄x+

λN̄x

λ− 1

(
e−τ(ρ+1) − 1

(ρ+ 1)2
− e−τ(ρ+λ) − 1

(ρ+ λ)2

)]
. (3.16)

Let us now observe that P (τ) is the complement of the cumulative distribution for the
BTD p(t), which is therefore given by

p(t) = −∂τP (τ)|τ=t. (3.17)

Some realizations of p(t) are shown in Fig. (3.3), where we also compare the analytical predic-
tion of the stationary distribution in Eq. (3.17) with the numerical Monte Carlo simulations
of the dynamics described by Eq. (3.7). We did not observe any significant deviation be-
tween the theoretical results and the simulations. Interestingly enough, for small times and
small values of N̄ , the BTD deviates significantly from an exponential (as highlighted in the
log-plot insets of Fig. 3.3). On the other hand, these deviations are milder for small values
of λ and large values of ρ. The relevant features of p(t) are analyzed in the next section.

3.4.1 Characterization of the binding time distribution

In order to characterize the binding time distribution p(t), we calculate its first two mo-
ments. We compare the second moment of the BTD with that of an exponential distribution
having the same mean, observing that the BTD is overdispersed with respect to the latter
distribution.

The first moment — i.e., the mean of the BTD — is given by

〈t〉 =

∫ ∞
0

dt tp(t) =

∫ ∞
0

dτ P (τ) =
1

N̄x
, (3.18)

and coincides with the inverse of the mean number n̄ of charged tRNAs in the system, as
expected. The second moment is given by

〈t2〉 =

∫ ∞
0

dt t2p(t) = 2

∫ ∞
0

dt tP (t) = −2

∫ ∞
0

dt A(t), (3.19)
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Figure 3.3: Probability density function p(t) of the binding time (BTD) for various choices
of the parameters λ (blue and solid lines for λ = 0.1, red and dashed lines for λ = 1), ρ
(diamonds for ρ = 0.1, squares for ρ = 1) and N̄ (N̄ = 0.5 in the left panel, N̄ = 5 in the
right one). The parameter X is kept fixed to 0.5. The black crosses are the results of Monte
Carlo simulations, and do not show any significant deviation from the theoretical predictions.
As the two log-plot insets show, deviations from a pure exponential (which would correspond
to a straight line) are marked for small N̄ , where the fluctuations play a relevant role.

where A(t) is given by Eq. (3.16), and can be written as

〈t2〉 =
2

N̄x
exp

[
λN̄x

λ− 1

(
1

(ρ+ λ)2
− 1

(ρ+ 1)2

)]
×
∫ 1

0

dy yRN̄x−1 exp

[
λN̄x

λ− 1

(
yρ+1

(ρ+ 1)2
− yρ+λ

(ρ+ λ)2

)]
. (3.20)

Equation (3.20) can be numerically evaluated in order to determine the variance σ2
t = 〈t2〉−

〈t〉2. In Fig. 3.4 we plot the ratio σ2
t /σ

2
exp for various values of the parameters, where σexp is

the variance of the exponential distribution

pexp(t) = xN̄e−xN̄t, (3.21)
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fixed to having the same mean as the BTD. By inspection, we did not find any point in
the parameter space such that σt < σexp: the BTD is overdispersed with respect to the
exponential distribution in Eq. (3.21). This observation can be further characterized by
comparing the small and large t expansions of the two distributions: first, by analyzing
the Taylor expansion around t = 0 of the two probability distributions, we observe that
p(t) − pexp(t) ∼ λt + O(t2). Short binding times are under represented in the exponential
distribution. Also note that for λ = 0 the two distributions coincide and the ratio σt/σexp = 1,
as shown in Fig. 3.4.

The tails of the two distributions also differ at large times. For t→∞, in fact, Eq. (3.17)
behaves as

p(t) ∝ e−RxN̄t. (3.22)

Comparing this expression with Eq. (3.21) and noting that R < 1 (by definition), we see
that large binding times are under represented in the exponential distribution.

Figure 3.4: Ratio between the variances σ2
t of the BTD, and σ2

exp of the exponential with
the same mean Eq. (3.21), as a function of λ, for various values of N̄ and ρ (the specific
value of the parameter X does not change qualitatively the results and is set to X = 1/2).
For λ → 1 the BTD converges to an exponential distribution, as shown by Eq. (3.23), and
the ratio σ2

t /σ
2
exp → 1. In general, however, the BTD is over dispersed with respect to the

exponential distribution.

Finally, the BTD in Eq. (3.17) reduces to an exponential for small recharge rate λ→ 0,
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where
p(t)→ xN̄e−xN̄t, (3.23)

and in the fast diffusion limit ρ→∞:

p(t)→ XN̄e−XN̄t. (3.24)

In the latter case, the charged fraction x of tRNA in the system coincides with the frac-
tion X in the reservoir, consistently with the expectation that in the fast diffusion limit
the fluctuations of charged tRNAs are determined by the exchange with the bath and are
uncorrelated in time. As we show in the next section, these two limits have an interesting
physical interpretation.

3.4.2 Time-correlations of n and m

Here we show that the deviation of the BTD from an exponential arises due to a nontrivial
coupling between the fluctuations of n and m.

First, let us introduce the mean value 〈n(t)〉nb of n at time t after a binding event (the
binding happened at time 0), conditioned to the fact that no other binding events were
recorded up to time t. The BTD is related to 〈n(t)〉nb by

p(t) = 〈n(t)〉nb exp

(
−
∫ t

0

dt′ 〈n(t′)〉nb

)
, (3.25)

as proven in App. C.3. Quite interestingly, Eq. (3.25) shows that the deviations from an
exponential of the BTD appear as soon as 〈n(t)〉nb departs from a constant and acquires a
time dependence.

In the stationary regime, a binding event occurs with probability proportional to npn,
where pn =

∑∞
m=0 pmn is the marginal stationary probability for n, obtained from Eq. (3.4).

More precisely, the distribution for n at the instant before a binding event is:

pb−
n =

n̄n−1

(n− 1)!
e−n̄, (3.26)

with mean n̄b− = n̄ + 1: a binding event typically occurs when a fluctuation increases the
number of charged tRNAs close to the ribosome (i.e., within the volume Vr). Note that the
number m of uncharged tRNAs is not influenced. Because of the translation event n→ n−1
and m → m + 1, and therefore, immediately after translation, n̄b+ = n̄ and m̄b+ = m̄ + 1:
the fluctuation on n has propagated to m. Now, if λ > 0 and ρ < ∞, this fluctuation
can again propagate to n with a characteristic time scale, producing a loop which induces
a time dependence in 〈n(t)〉nb. This mechanism is suppressed if λ = 0 and it is negligible
if ρ → ∞. In the former case, in fact, the dynamics of n is not affected by the dynamics
of m (as it can easily be seen from the rates described at the beginning of Sec. 3.2). This
intuition is confirmed by the numerical simulations in Fig 3.5, where it is shown that the
mean 〈n(t)〉nb reduces to a constant for λ → 0. For ρ → ∞ the fluctuations on m are
immediately dissipated in the thermal bath before they can propagate back to n.
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Figure 3.5: Mean number of charged tRNAs in the system 〈n(t)〉nb conditioned to the fact
that no binding event occurred up to time t after the one at t = 0, plotted for various values
of λ, estimated analytically (see Eq. (C.19), solid lines), and numerically by Monte Carlo
simulations (black crosses). The other parameters were set to N̄ = 1, ρ = 1 and X = 1/2.
As λ approaches 0, the function 〈n(t)〉nb becomes independent of time.

As a further check, we can quantify the influence of m at a given time on the future
dynamics of n — and vice versa — by studying the two-time correlators

Cmn(t) ≡ 〈m(0)n(t)〉 − n̄m̄ = m̄λ
e−ρt − e−t(λ+ρ+1)

λ+ 1
, (3.27)

Cnm(t) ≡ 〈n(0)m(t)〉 − n̄m̄ = n̄
e−ρt − e−t(λ+ρ+1)

λ+ 1
, (3.28)

which are derived in App. C.1.
The correlation between m(τ) and n(τ + t) in Eq. (3.27) vanishes identically for λ = 0

or ρ → ∞. The dynamics of n decouples from that of m because the fluctuations of m
cannot propagate to n. Note, however, that the reverse is not true: the two variables are
not independent when λ = 0, as shown by the fact that the correlator Cnm(t) in Eq. (3.28)
does not vanish. On the other hand, for λ > 0 and ρ < ∞, the correlator Eq. (3.27) is a
linear combination of two exponentials with different decay times. It is not monotonic in
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t, as it vanishes at t = 0 (as expected from the factorisation of the stationary probability)
and has a maximum for t = (1 + λ)−1 log[ρ−1(λ + ρ + 1)]. The fact that Cnm(t) 6= Cmn(t)
implies that time reversal symmetry is broken; this highlights the nonequilibrium nature of
this stationary process, which is further analyzed in App. C.2.

Let us finally observe that the finding of an exponential BTD in the limits λ = 0 and
ρ → ∞ is coherent with the absence of memory in the time series of n in the same limits.
The BTD, indeed, is directly dependent only on the time series of n, and not on m. In the
process in which only the n variable is observed (i.e., the projection of the original process
on the n variable) the information on m is lost. In general, the future evolution of n is
not completely determined by its present state, i.e., the projection on the n variable of the
process is not Markovian. In the two limits λ = 0 and ρ → ∞, however, n is effectively
decoupled from the evolution of m: the time-series of n is Markovian and memoryless, and
the BTD is exponential, as the exponential is the only memoryless continuous distribution
[124]. The complete model, however, is always Markovian, as its time evolution exclusively
depends on the current state (n,m) and not on the past history.

3.4.3 Additional biochemical steps

The derivation of the BDT p(tB) reported in Eq. (3.17) was carried out in the limit where
the binding step is rate limiting, i.e., by neglecting the additional biochemical steps which
are required to translate a codon [112, 114]. Here we show how these additional steps can be
accounted for by using a simple approximation, under the assumption that a time distribution
describing their duration is known.

Let us split the dwell time tD of the ribosome into the binding time tB, and the time
tA taken by the additional biochemical reactions, such that tD = tB + tA, as schematically
depicted in Fig. 3.6. As a first approximation, let us assume that tA is described by a Poisson
process with rate λA, modeling one additional biochemical step. Accordingly, the times tA
are drawn from the exponential distribution

pA(tA) = λAe
−λAtA . (3.29)

During tA the binding is suppressed, while recharge and exchange with the reservoir continue
normally. Since the value of tA influences the tRNA charging level in the binding step, the
two time intervals tA and tB are not independent random variables, and we expect that the
distribution p(tB) is no longer accurately described by Eq. (3.17).

The influence of tA on Eq. (3.17) can be effectively treated by rescaling the rates to the
effective values

λe = γλ, ρe = γρ, (3.30)

with
γ =

t̄A + t̄B
t̄B

, (3.31)

where t̄A and t̄B are the mean values of tA and tB, respectively. This amounts at assuming
that recharge and diffusion occur during the binding step only, with effective rates given by
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Figure 3.6: Schematic representation of the alternation between binding steps (of dura-
tion t

(i)
B ) and “additional steps” (t(i)A ); recharge and diffusion occur with a rate λ and ρ,

respectively, independently of the ribosome being involved in a binding or in an “additional”
process. However, the process can be described in terms of effective recharge and effective
migration, occurring only during the binding process with rates λe and ρe, respectively, given
in Eq. (3.30).

Eq. (3.30), as schematically depicted in Fig. 3.6. This simplified approach is most accurate
if t̄B � t̄A (i.e., when the binding step is rate limiting [125]) or if t̄B � 1/ρ (i.e., when
diffusion is very fast and therefore, after each translation, n(t) quickly reaches its stationary
value).

The mean binding time t̄B in Eq. (3.31) can be calculated by plugging the effective
parameters λe and ρe in Eq. (3.18), and by substituting this value into Eq. (3.31). Then,
solving the equation for γ(λe, ρe), and substituting this value in Eqs. (3.30), we obtain the
bare parameters (ρ, λ) as functions of the rescaled ones (ρe, λe). By inverting these relations,
we calculate the rescaling factor γ as a function of the rate λA and of the bare parameters:

γ =
k +

√
k2 + 4(λ+ ρ)

2(λ+ ρ)
, (3.32)

where k = λ+ ρ− 1 + N̄(λ+ ρX)/λA.
In general, the distribution of the dwell time tD = tA + tB can be obtained by convolv-

ing the probability distributions for tA and tB. Here we use the exponential distribution
Eqs. (3.29) and (3.17), respectively, which produce

pD(tD) =

∫ tD

0

dtB p(tB)pA(tD − tB)

= λA

[
e−λAtD

(
1 + λA

∫ tD

0

dtB e
λAtBP (tB)

)
− P (tD)

] (3.33)
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Table 3.1: Data for E.Coli.

Typical radius of a ribosome [1] LR ' 1× 10−8 m
Molar concentration of the tRNA [2] ct ' (0.3÷ 30)× 10−6 M
Number concentration of the tRNA [2] Ct ' (1.8÷ 180)× 1020 m−3

Diffusion constant of the tRNA [3] D ' (0.2÷ 2)× 10−12 m2s−1

Mean translation rate [4] Θ ' (10÷ 20) codons s−1

Codon length `cod ' 1 nm
Total binding rate [5] λtot

B ' xct × 110 (µM s)−1

[1] From Ref. [126].
[2] Considering a single species of tRNA, from Ref. [118].
[3] From Ref. [127].
[4] From Ref. [128].
[5] From Ref. [112]; note that xct is the molar concentration of a charged tRNAs of a specific species.

where P (t) is the cumulative distribution of binding times provided by Eq. (3.14).
Note that the mean dwell time t̄D is simply the sum of the mean binding time t̄B and

the mean time t̄A for the additional biochemical steps, i.e.,

t̄D =
ρe + λe + 1

N̄(λe + ρeX)
+

1

λA
. (3.34)

This is in agreement with the heuristic intuition based on the fact that tD = tA + tB, as
schematically depicted in Fig. 3.6.

3.5 Discussion and interpretation of the parameters

In order to understand the physical implications of the findings reported in the previous
sections, it is necessary to obtain an estimate of the parameters ρ, N̄ , X, λR and λB in
terms of physical and biological measurable quantities.

Let us first consider the effective volume Vr around the ribosome, introduced in Sec. 3.2.
This volume is delimited by a radius r which corresponds to the maximal distance from the
ribosome such that a tRNA has a non-negligible probability of diffusing towards (and being
captured by) the ribosome. As shown in Ref. [129], the probability of being absorbed by
a target of radius LR centered at the origin, for a point-like random walker starting from
radius r′, is LR/r′. Therefore, we expect that r is of the same order of magnitude as the
ribosome radius LR, i.e., r = ωLR, with 1 < ω < 10.

The mean number of a certain species of tRNAs is found by fixing the concentration in the
volume Vr to be the same as in the cell (Ct). We obtain N̄ = VrCt ' ω3(10−3 ÷ 10−1). The
wide range of variation is due to two facts: first, different species of tRNA have very different
concentrations. Second, the concentration of a given species of tRNA changes accordingly
to the variation in the environmental conditions experienced by the cell.
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The parameterX measures the fraction of charged tRNAs in the cell. Its range, measured
in vivo for E. Coli in Ref. [115], spans the interval X ' 10−3÷100, depending on the richness
of the growth media. A dynamic range was also observed in numerical simulations [116].

The tRNA exchanges between system and reservoir are ruled by ρ, which can be obtained
in terms of the diffusion constant D of the tRNA molecules, the ribosome velocity vrib and
the system size r. Assuming that each tRNA performs a Brownian motion, its mean square
displacement in the time T is `2 = 〈∑i ∆x

2
i 〉 = 6DT , and the typical exit time from the

sphere of radius r is

Texit =
r2

6D
. (3.35)

Neglecting the ribosome motion, we equate Texit to the mean exit time 1/ρ in the stochastic
model, obtaining

ρ =
6D

r2
' ω−2(1÷ 70)× 103 s−1. (3.36)

The motion of the ribosome produces an additional flux5 ρT ' vrib/r. Using the data in
Tab. 3.1, the ribosome speed reads vrib = Θ`cod ' (10 ÷ 20) nm/s. This produces ρT '
ω−1(1÷ 2) s−1, which is negligible compared to the estimate in Eq. (3.36).

The binding rate λB can be obtained by equating the total binding rates in our model
(n̄λB) with the experimental one, adapted from Ref. [112] (λtot

B , in Tab. 3.1). Solving for λB
produces the estimate λB = λtot

B /(xCtVr) ' 4× 104ω−3 s−1.
The rate λA can be readily estimated from the rates of the biochemical steps in Ref. [112]

to be λA ' 1.26 s−1. However, this value is not compatible with the mean translation rate
Θ measured in vivo for E.Coli. In fact, as reported in Tab. 3.1, Θ ' (10÷ 20) cod/s, while
from Eq. (3.34), we expect that 1/Θ = t̄ ≥ 1/λA. This lack of consistency between different
measures (which also affects negatively the estimate of the rescaling factor, which, from
Eq. (3.31), is γ = λA/(λA − Θ)) could be due to the fact that the rates in Ref. [112] were
obtained in vitro.

The last unknown parameter is the recharge rate λR, which can be in principle estimated
by restoring in Eq. (3.34) the λB-dependence and by equating to the inverse of the mean
experimental translation rate Θ:

1

Θ
=

ρe + λe
R + λB

N̄λB(λe
R + ρeX)

+
1

λA
. (3.37)

The estimate obtained with the values in Tab. 3.1, however, is affected by the aforementioned
inconsistency.

By measuring all the involved quantities under the same experimental conditions, it would
instead be possible to consistently estimate all the parameters, and therefore to quantify the
predicted deviation of the BTD from an exponential distribution.

5In the reference frame of the ribosome there is a drift vrib in the tRNAs motion, which determines, in
the small time δt, the exit from the system of an mean number Nexit ' r2vribδtCt ' vribδtN/r of tRNAs
(while, of course, the same mean number of tRNAs is entering in the system). The same mean number Nexit

would be caused by a stochastic flux with individual exit rate ρT ' vrib/r
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The deviation of the BTD from the exponential distribution could be also directly mea-
sured experimentally with the techniques employed in Refs. [102, 103]: it would be necessary
to introduce the tRNA recharging in the experimental setup (by adding the relative enzymes),
and to carefully analyze how and how much the binding time affects the total translation
time. The binding time seems to be rate-limiting in the experimental conditions employed
in Ref. [102], as the mean translation time changes linearly with the inverse of the tRNA
concentration. In this case the BTD should be adequately approximated by Eq. (3.17). The
same does not hold for the experiments in Ref. [103], where several timescales are evidently
present. In this latter case, in order to disentangle the effects due to the binding time from
those due to the additional biochemical steps, it would be particularly useful to run a series
of experiments at different concentrations of tRNA (Ct), because a change in Ct affects only
the binding step, and leaves all the other biochemical steps unchanged. The interpretation of
these results would be potentially possible by refining the framework introduced in Sec. 3.4.3.

3.6 Conclusions
In this chapter we presented a microscopic model which describes the binding of the tRNA
(charged with the proper amino acid) to the ribosome during the translation of an mRNA
sequence into a protein. This fundamental step strongly depends on the conditions in the
cell, and, in particular, on the concentration of charged tRNAs around the ribosome [102,
119, 117]. We consider the recharge dynamics and the diffusion of the tRNA molecules by
assuming that each tRNA can be either charged with the relative amino acid, or uncharged.
The charging occurs with rate λR, and the charged tRNAs can bind to the ribosome with
rate λB. Spatial inhomogeneity and stochastic fluctuations of the number of charged tRNAs
around the ribosome are accounted for, and diffusion-driven exchanges with the reservoir
(representing the rest of the cell) are allowed. This model neglects the additional biochemical
steps which are required to translate a codon, meaning that it is per se valid if the binding
step is rate limiting (i.e., if the mean duration of the binding step is much larger than that
of the other steps). A mean-field approach is introduced in Sec. 3.4.3 in order to estimate
the effect of these additional reactions.

We describe this non-equilibrium system via its master equation, which in fact is not sym-
metric under time-reversal and violates detailed balance. We mainly focus on the stationary
solution, but we also manage to solve the time dependent master equation from which we
extract the relaxation time scales to the stationary solution, and the two-time correlators
for the variables n and m (respectively, the number of charged and uncharged tRNAs in the
system). We are able to obtain the analytical expression of the binding time distribution
(BTD), i.e., the distribution of the time intervals spent by the ribosome waiting for a charged
tRNA. This distribution substantially deviates from the exponential distribution typically
used to model the BDD: specifically, the short and long binding times are under represented
in the exponential estimate. Besides, we numerically checked within a wide range of param-
eters that the BTD is overdispersed with respect to the exponential distribution with the
same mean. This fact could be measured experimentally with the techniques employed in
Refs. [102, 103], by utilizing experimental conditions such that (i) the recharge of the tRNAs



3.6. CONCLUSIONS 87

is allowed and (ii) the binding step is rate limiting (as in Ref. [102]). When the condition
(ii) is not met, it would still be possible to estimate the effects of the binding time on the
total translation time by refining the framework sketched in Sec. 3.4.3; in this case, in order
to study the BTD, it would be particularly useful to repeat the experiment with different
concentrations of tRNA.

We also showed that, from the mathematical point of view, the appearance of a non
exponential BTD is related to the coupling of the fluctuations of m and n. More specifically,
we showed that the qualitative mechanism is as follows: (i) a binding event typically happens
when the number of charged tRNAs is increased due to a fluctuation, on average n̄b− = n̄+1,
(ii) during the binding event, a charged tRNA gets discharged and the fluctuation on n
propagates to m, m̄b+ = m̄+ 1, (iii) if λ > 0, this fluctuation on m can propagate again on
n with a characteristic timescale, producing a “bump” in the time-series of n as in Fig. 3.5.
The size of this effect is larger the smaller the mean number of tRNAs N̄ is, i.e., the larger
the relative size of the fluctuations is.

An interesting direction of investigation could be the generalization of the model pre-
sented in this chapter to the more realistic case in which various different species of tRNA
and codons are present. Concluding, we think that this kind of models, by analytically
dissecting a small set of phenomena, can be very helpful in understanding the quantitative
small scale dynamics of the translation process, and in discriminating the main effects from
the corrections.
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Appendix A

A.1 Langevin equations with multiplicative noise
The Langevin equations with multiplicative noise are a particular instance of stochastic
differential equations which is widely used in many areas of physics and beyond to model a
variety of stochastic processes (see, e.g., Refs. [22, 21]). The Langevin equations considered
in this work are of the form

ẋ(t) = µ(x(t)) + σ(x(t))η(t), (A.1)

where µ(x) and σ(x) are smooth functions, while η(t) is a stochastic noise with zero mean
and characterized by 〈η(t)η(t′)〉 = δ(t− t′). Equation (A.1) is properly defined only after one
specifies its interpretation, i.e., the rules according to which it has to be discretized or, alter-
natively, according to which one has to interpret its integral form. Typically Langevin equa-
tions are interpreted either with the Itō or with the Stratonovich conventions, although dif-
ferent interpretations are in principle possible. Here we summarize how Itō and Stratonovich
Langevin equations are defined.

A.1.1 Itō interpretation

First of all we rewrite Eq. (A.1) in its integral form:

x(t)− x(0) =

∫ t

0

dt′ µ(x(t′)) +

∫ t

0

dW (t′)σ(x(t′)), (A.2)

where dW (t) is the differential Wiener process. The stochastic integral on the r.h.s. of
Eq. (A.2) can now be interpreted (i.e., discretized) in various forms. If this is done à la
Itō, it is understood as the mean-square-limit of the sum performed over the discrete time
intervals (see, e.g., Refs. [22, 21])∫ t

0

dW (t′)σ(x(t′)) = ms lim
n→∞

n∑
k=1

[W (tk)−W (tk−1)]σ(x(tk−1)), (A.3)

where W (t) is the integral Wiener process. The distinctive feature of the Itō definition of
the stochastic integral is the fact that the function σ(x(t)) is evaluated at the earlier time
of every time interval; this specific choice would be inconsequential in the case of a constant
function σ(x) or for an ordinary integral, but it is relevant for a stochastic integral.
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A.1.2 Stratonovich interpretation

In the Stratonovich interpretation, the stochastic integral in Eq. (A.2) is defined as the
mean-square-limit of the sum∫ t

0

dW (t′)σ(x(t′)) = ms lim
n→∞

n∑
k=1

[W (tk)−W (tk−1)]σ

(
x(tk) + x(tk−1)

2

)
. (A.4)

In this case the function σ(x) is evaluated at the arithmetic mean between the values x(tk−1)
and x(tk) that the function x has at the two extremes of each time interval.

Every Itō-interpreted Langevin equation can be translated in the Stratonovich convention,
and vice versa. For instance, if Eq. (A.1) is interpreted in the Itō convention, it is equivalent
to the following Stratonovich-interpreted Langevin equation [22, 21]

ẋ(t) = µ(x(t))− 1

2
σ(x(t))σ′((x(t)) + σ(x(t)) η(t). (A.5)

A.1.3 Change of variable

A change of variable z = z(x) can be implemented in Eq. (A.1) Itō interpreted by using the
so-called Itō lemma (see, e.g., Refs. [22, 21]); the first step consists of writing Eq. (A.1) in
its differential form

dx = µ(x)dt+ σ(x)dW. (A.6)

Heuristically, one has then to consider the second order expansion of dz = ∂z
∂x

dx+ 1
2
∂2z
∂x2 (dx)2

as a function of dx. In fact, according to the Itō lemma, the only relevant contribution
from the second-order term comes from the square of the differential Wiener process, which
gives (dW )2 = dt, so that the relationship between the differentials finally reads (see, e.g.,
Refs. [22, 21])

dz =

[
∂z

∂x
µ(x) +

1

2

∂2z

∂x2
σ2(x)

]
x=x(z)

dt +

[
∂z

∂x
σ(x)

]
x=x(z)

dW , (A.7)

where x(z) is the inverse of the function z(x).

A.2 Derivation of the mean fixation time

If the functions µ(x) and σ(x) in Eq. (A.1) (Itō-interpreted) are such that the states x = 0
and x = 1 are absorbing and that the variable x is confined within the interval x ∈ [0, 1],
one can define the mean fixation time Tfix(x) to reach either of the two absorbing states
starting from the initial condition x. Tfix(x) satisfies the backward Fokker-Planck equation
(see Sec. 1.3.3)

1

2
σ2(x)∂2

xTfix(x) + µ(x)∂xTfix(x) + 1 = 0, (A.8)
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which, in terms of the function f(x) = ∂xTfix(x), takes the simpler form

f ′(x) = −2µ(x)

σ2(x)
f(x)− 2

σ2(x)
. (A.9)

Equation (A.9) can be straightforwardly integrated

f(x) = f(x0) exp

[
−
∫ x

x0

dξ
2µ(ξ)

σ2(ξ)

]
+

∫ x

x0

dy

(
− 2

σ2(y)

)
exp

[
−
∫ x

y

dξ
2µ(ξ)

σ2(ξ)

]
= f(x0)

s(x)

s(x0)
+ 2s(x)

∫ x0

x

dy m(y),

(A.10)

where s(x) = exp
[
−
∫ x

dy 2µ(y)
σ2(y)

]
, m(x) = 1

s(x)σ2(x)
, and x0 is an arbitrary point within the

interval [0, 1]. By setting, e.g., x0 = 1 and by integrating, one obtains (see, e.g., Refs. [84, 51])

Tfix(x) =
f(1)

s(1)

∫ x

0

dz s(z) + 2

∫ x

0

dz s(z)

∫ 1

z

dξ m(ξ), (A.11)

where we used the boundary condition Tfix(0) = 0. The value of f(1) can be obtained by
imposing the remaining boundary condition, i.e., Tfix(1) = 0, which gives

f(1) =
−2s(1)∫ 1

0
dz s(z)

∫ 1

0

dzs(z)

∫ 1

z

dξ m(ξ). (A.12)

By substituting this expression into Eq. (A.11) and after some algebraic manipulations, one
obtains the expression for the MFT

Tfix(x) =
2

S(0, 1)

[
S(x, 1)

∫ x

0

dξ m(ξ)S(0, ξ) + S(0, x)

∫ 1

x

dξ m(ξ)S(ξ, 1)

]
, (A.13)

where S(x1, x2) =
∫ x2

x1
dx s(x) is nothing but Eq. (1.17a) in the main text.

A.3 Solution of Eq. (1.24)

For y < 1, equation (1.24) in the main text can be conveniently rewritten by reabsorbing
the factor σ2/2 via the change of variable

u =

(
2

σ2

) 1
2(1−y)

x, (A.14)

and by defining the function ψ(u, t) = |u|2yP (u, t|u′, 0). In terms of these quantities,
Eq. (1.24) reads

∂tψ(u, t) = |u|2y∂2
uψ(u, t). (A.15)
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By introducing the Laplace transform in time of ψ(u, t), i.e., ψ̃(u, s) =
∫∞

0
dt ψ(u, t)e−st, this

equation can be rewritten as

|u|2y∂2
uψ̃(u, s)− sψ̃(u, s) = −|u|2yδ(u− u′), (A.16)

where u′ = (2/σ2)
1

2(1−y) x′ and we used the initial condition ψ(u, 0) = |u|2yδ(u − u′), which
corresponds to P (x, 0|x′, 0) = δ(x − x′). In terms of the variable z = 1

1−y |u|1−y, Eq. (A.16)
reads [

−(1− 2ν)
1

z
∂z + ∂2

z − s
]
ψ̃(z, s) = −

(
1

2ν

)2ν−1

z2ν−1δ(z − z′), (A.17)

where ν = 1/[2(1 − y)] and z′ = 1
1−yu

′1−y. The homogeneous part of Eq. (A.17) can be
recognized to be a variant of Bessel’s equation; the general solution of this homogeneous
part can therefore be written as a linear combination of the functions

ψ̃
(o)
1 (z, s) = zνKν(

√
sz),

ψ̃
(o)
2 (z, s) = zνIν(

√
sz),

(A.18)

where Iν(w) andKν(w) are the modified Bessel functions of first and second kind, respectively
(see, e.g., Ref. [130]). In order to obtain a smooth probability distribution P (x, t|x′, 0) for
t > 0, we require the continuity of ψ̃(u, s) at the points u = 0 and u = u′; ∂uψ̃(u, s) has to
be continuous at the point u = 0, while it should have a proper discontinuity at the point
u = u′, in order to generate the inhomogeneous term in Eq. (A.17) (see, e.g., Ref. [130]).
The solution of Eq. (A.16) reads then

ψ̃(u, s) = (2ν)νA(s)|u|1/2Kν(2ν
√
s|u| 1

2ν )+2νθ(u)(uu′)1/2Iν(2ν
√
su

1
2ν
< )Kν(2ν

√
su

1
2ν
> ), (A.19)

where u< = min{u, u′} and u> = max{u, u′}. By calculating the inverse Laplace trans-
form and by implementing the inverse of the change of variables in Eq. (A.14), one obtains
Eqs. (1.25) and (1.27).
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B.1 Diffusion approximation for the microscopic models
Given a microscopic model (e.g., Wright-Fisher) with certain transition rates, one can write
the evolution equation for the probability P (x, t) of finding the model in a certain config-
uration x in the form of a master equation. The diffusion approximation then consists in
approximating this equation with a Fokker-Planck (or equivalently, a Langevin) equation,
i.e., with a diffusion equation with suitable x-dependent drift and diffusion coefficients. In
particular, only the mean value 〈∆x〉 and the variance 〈(∆x)2〉 of the change ∆x per unit
time of the variable x resulting from the implementation of these microscopic dynamical
transitions are accounted for in the evolution equation. Although this approach is known
to fail in some cases, for example for the susceptiple-infected-susceptible (SIS) model of epi-
demiology (see e.g., Ref. [83]), it turns out to be quite accurate for the Wright-Fisher and
Moran models discussed in the present work [36, 80, 81, 82].

B.1.1 Wright-Fisher model

For sufficiently large values of the subpopulation size Ω, one can rely on the diffusion ap-
proximation of the Wright-Fisher model defined by the rates discussed in Sec. 2.2. For a
well-mixed population characterized by the binomial sampling with the probability pr(x)
given in Eq. (2.1), one readily finds

µ(x) = 〈∆x〉 = s̃x(1− x) +O(s̃2),

v(x) = 〈(∆x)2〉 =
x(1− x) +O(s̃)

Ω
+O(s̃2).

(B.1)

For a subdivided population characterized by binomial sampling with the probability p(xi, x̄)
given in Eq. (2.10), instead, one finds

µ(xi) = 〈∆xi〉 = s̃xi(1− xi) +m(x̄− xi) +O(s̃2, s̃m),

v(xi) = 〈(∆xi)2〉 =
xi(1− xi) +O(m, s̃)

Ω
+O(s̃2,m2,ms̃).

(B.2)

Accordingly, as anticipated in Sec. 2.2, the dynamics of the Wright-Fisher model within
this diffusion approximation, and for sufficiently small rates s̃ and m, is described by the
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single-deme Langevin equations (2.3) and (2.14) which have to be interpreted with the Itō
prescription.

B.1.2 Moran model

The time evolution of the probability distribution P ({xi}, t) of the deme frequencies {xi}i can
be determined from the corresponding master equation with the rates given by Eq. (2.11).
For large Ω and in the limit of continuous time δt → 0 (where δt denotes the duration of a
step in the dynamics of the Moran model), standard expansions, such as the Kramers-Moyal
expansion [22], lead to the Fokker-Planck equation

∂tP ({xi}, t) = −
N∑
j=1

∂xj [µ(xj)P ({xi}, t)]

+
1

2

N∑
j=1

∂2
xj

[v(xj)P ({xi}, t)],
(B.3)

in which the drift µ and the variance v are given by

µ(xi) =
W1 −W−1

Ω δt
=
s̃

2
xi(1− xi) +

m

2
(x̄− xi) +O(s̃2),

v(xi) =
W1 +W−1

Ω2 δt
=
xi(1− xi) +O(s̃, m)

Ω
,

(B.4)

where we have chosen the temporal step to be δt = 2/Ω. With this choice of time scales, the
resulting genetic drift v(xi) for small s̃ and m is the same as the one of the Wright-Fisher
model for a population of the same size, see Eq. (B.2). Note that, in order to recover the
same expression also for the drift µ(xi), it is necessary to rescale the migration and the
selection coefficients as m → 2m and s̃ → 2s̃, respectively. Equation (B.3) is nothing but
the Fokker-Planck equation associated with the set of N single-deme Langevin equations
(2.14), which, as we argued above, also describe the dynamics of the Wright-Fisher model in
the presence of migration.

B.2 Migration in the microscopic models
While the Wright-Fisher [77, 78] and Moran [79] models are typically employed in order to
describe the single-population dynamics, below we discuss how one can modify their micro-
scopic rules in order to account for the possibility of having migration from one population
to another in the form of exchanges of individuals within different demes of an island model.

B.2.1 Wright-Fisher model

A standard way to introduce migration in the Wright-Fisher model is to modify the prob-
ability with which a new generation is sampled. In the migration process, which occurs
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between two subsequent generations, a mean number mΩ of randomly chosen individuals
leaves each deme and it is then randomly redistributed in the other demes. One can effec-
tively think of all the individuals leaving the N demes as merging in a sort of “reservoir”,
with a mean of mΩN individuals, and a mean fraction of type-A individuals determined by
the inter-deme mean frequency (IDMF) x̄ =

∑N
i=1 xi. Individuals are then randomly chosen

from this reservoir in order to replace those that migrated from each deme. Accordingly, the
mean fraction of type A-individuals arriving in the i-th deme because of this redistribution
is mΩx̄, while the mean fraction of A-type individuals leaving deme i is mΩxi. Accordingly,
the original fraction xi has changed into mx̄ + (1 − m)xi because of migration, with this
process affecting all the demes. This simplified description of the migration process neglects
fluctuations in the number and in the composition of migrants during each generation and
in fact, it accounts for migration only by modifying the probability pr that a new individual
carries allele A [36, 62, 58].

B.2.2 Moran model

Let us consider an island model in which the single deme dynamics is based on the Moran
model. In the absence of migration, because of death and reproduction, each deme evolves
according to the rates in Eq. (2.2) in the main text. Because of migration, during each
step of the evolution, there can be an additional variation of the allele frequency xi. More
precisely, the probability that in the i-th deme the number ΩA of individuals carrying allele
A increases (decreases) by one unit is given by Wm

1 δt (Wm
−1δt), where δt = O(τg/Ω) is the

duration of the evolutionary step and the rates are given by

Wm
1 = mx̄(1− xi),

Wm
−1 = m(1− x̄)xi,

(B.5)

where we neglect the O((mδt)2) probability that more than one individual per deme migrates
within one evolutionary step.

Because of the simultaneous action of death, reproduction, and migration, the probability
Qk to have a change k = ±1,±2 in the number of alleles A in the i-th deme between two
subsequent generations is given by

Q2 = W1δtW
m
1 δt,

Q1 = W1δt
[
1− (Wm

1 +Wm
−1)δt

]
+ [1− (W1 +W−1)δt]Wm

1 δt,

Q−1 = W−1δt
[
1− (Wm

1 +Wm
−1)δt

]
+ [1− (W1 +W−1)δt]Wm

−1δt,

Q−2 = W−1δtW
m
−1δt.

(B.6)

If one neglects the contribution of order O(δt2), these probabilities generate the rates antic-
ipated in Eq. (2.11) in the main text.
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B.3 Estimate of the “lifetime” Tu of the intermediate state
If the migration rate m′ is sufficiently small, such that 0 < m′ < T−1

fix
1 , each deme spends

most of its time into one of the two boundary states, till it receives, due to migration, one
individual different from the majority. In turn, this individual triggers an attempt to leave
the boundary state which leads to the intermediate one xu (and possibly to the opposite
boundary) with an overall rate m′P , as discussed in Sec. 2.5.2. Under our assumption of
small migration rate, this transition takes place before any other individual is exchanged by
the deme with the rest of the population, and therefore it occurs as in an isolated deme, i.e.,
it takes a mean time Tfix1. During this transition, the deme will spend a mean time Tu close to
the intermediate state xu before reaching the final boundary. Figure B.1 provides a schematic
representation of the time evolution of the allele frequencies of the various demes (indicated
by solid and dashed lines of different colors) in the regime described above. In particular,
the deme represented by the solid line has received an individual with allele A from another
deme and has fixed it after a time Tfix1, of which Tu spent close to the intermediate state
promoted by balancing selection. Other demes of the metapopulation (indicated by dashed
lines) evolve similarly, i.e., they move from one boundary state to the other, with possible
unsuccessful attempts.

Figure B.1: Schematic representation of the evolution of the frequencies xi of various demes
(represented by different colors) in a metapopulation with small migration rate m′ � T−1

fix1.
Under this assumption, the possible transition between the two boundary states is triggered
with a typical time scale ∼ 1/m′ which is much longer than the one Tfix1 taken by the
transition itself, where Tfix1 is the single-deme MFT. Part of this time, corresponding to the
“lifetime” Tu, is spent by the various demes in the vicinity of the intermediate state.

In order to estimate Tu, we focus on the ratio ρ = Tu/Tfix1, i.e., on the fraction of the
time spent outside the boundaries in which the deme is actually close to xu; in the quasi-
stationary state associated with a certain value of the mean frequency x̄ (and described by

1The condition m′ � 1/Tfix1 emerges by comparing the time scale Tfix1 needed by a single deme to
reach fixation in the absence of migration and the typical time scale 1/m′ associated with the occurrence of
migration.
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the density Pqs(x|x̄)), ρ can be estimated as the ratio of the corresponding probabilities, i.e.,
of the probability to find a deme close to the intermediate state (that is x ' xu) to the one
of finding it outside the boundaries. In order to specify properly the condition of xi being
“close to” xu, hereafter we focus for simplicity on the symmetric case with x∗ = xu = 1/2.
In the effective voter model with the intermediate state, the continuous interval of states
x ∈ [0, 1] is represented by the three coarse states {0, 1/2, 1}. It is then natural to associate
to every value of x in the interval [0, 1] its closest representative state. With this definition,
the probability Pu to find the deme close to the intermediate state is

Pu(x̄) =

∫ 3/4

1/4

dxPqs(x|x̄). (B.7)

On the other hand, the probability to find the deme outside the boundary states can be
estimated as

Pnon−fix(x̄) =

∫ 1−1/Ω

1/Ω

dxPqs(x|x̄), (B.8)

where a minimal distance 1/Ω of the deme frequency from a boundary corresponds to having
one individual different from the background. The ratio ρ can therefore be approximated as

ρ(x̄, s′,m′) =
Pu(x̄)

Pnon−fix(x̄)
. (B.9)

A numerical study of the estimate of ρ according to Eq. (B.9) is reported in Fig. B.2 as
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Figure B.2: Estimate of the ratio ρ = Tu/Tfix1 as a function of x̄ for m′ = 0.2, xu = x∗ = 1/2,
Ω = 100 and s′ = 0, 4, 8, and 12 from bottom to top, calculated as explained in the main
text on the basis of the quasi-stationary distribution.

a function of x̄ for m′ = 0.2, xu = x∗ = 1/2, Ω = 100, and for various values of s′. It



98 APPENDIX B.

particular ρ turns out to increase uniformly as s′ increases, which indicates that Tu grows
faster than Tfix1 as a function of this parameter. It can be noticed that, while generically
ρ depends on x̄, this dependence becomes increasingly less important as m′ decreases. The
typical x̄-independent estimate of ρ (and therefore of Tu) can be obtained by considering the
mean value

ρ(s′,m′) =

∫ 1

0

dx̄ A(x̄)ρ(x̄, s′,m′), (B.10)

which depends on the a-priori distribution A(x̄) of the frequency x̄. However, as we pointed
out above, ρ(x̄, s′,m′) is approximately independent of x̄ at least for sufficiently small m′
and therefore the specific form of A(x̄) is inconsequential, so that we can set A ≡ 1 in
Eq. (B.10). Figure B.3 shows the dependence of ρ on the migration rate m′, as obtained
from the numerical integration of Eq. (B.10) for various values of the selection coefficient s′.
We note again that ρ is an increasing function of the selection coefficient s′, and this can
be heuristically understood from the fact that balancing selection favors the location of the
deme frequency xi around the optimal frequency x∗. Using Eq. (B.10), it is straightforward
to obtain a numerical estimate for the lifetime of the intermediate state as Tu ' ρTfix1.
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Figure B.3: Mean fraction ρ of time that a deme spends close to the intermediate state xu

as a function of the migration rate m′, for xu = x∗ = 1/2, Ω = 100, and m′ = 0.001, 0.2,
and 0.5 from bottom to top; these values of ρ have been estimated on the basis of Eq. (B.10)
with an uniform a-priori distribution A(x̄) ≡ 1.

B.4 Effective equation for x̄ in the voter model with in-
termediate state

In Sec. 2.5.2 we introduced a simplified description of the metapopulation consisting of N
demes in terms of a voter model with N individuals which can have a definite (0,1) or no
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definite opinion. Each deme of the original island model is represented by a voter, with
opinion 0 or 1 depending on whether the deme has almost fixed at the values x = 0 or 1 of
the frequency x of allele A, while individuals with no definite opinion correspond to demes
with x = xu ' x∗ fluctuating in an intermediate long-lived state. The dynamics of the
island model can therefore be described at this coarser level by following the evolution of
the numbers Nu, N0, and N1 = N − Nu − N0 of individuals with intermediate opinion, or
opinions 0 and 1, respectively.

B.4.1 Evolution of Nu

Under the assumption that x̄ = (N1 +xuNu)/N is constant (or slowly varying), the behavior
of Nu is described by a conditional quasi-stationary distribution Pqs(Nu|x̄); this distribution
is the stationary solution of the master equation

0 =
∑

n=−1,1,2

[WNu−n→NuPNu−n −WNu→Nu+nPNu ] (B.11)

where, for small Nu/N and considering the symmetric case xu = x∗ = 1/2 for simplicity, the
rates in Sec. 2.5.2 can be written as

WNu→Nu+1 = m′P [2N(1− P )x̄(1− x̄) +Nu/2],

WNu→Nu+2 = m′NP 2x̄(1− x̄),

WNu→Nu−1 = Nu/Tu,

(B.12)

where P = p(xu|1/Ω) is the probability that a deme with initial frequency x = 1/Ω reaches
the intermediate state x = xu before fixation. Since the rates WNu→N ′u are linear functions
of Nu, the evolution of the mean value 〈Nu〉 =

∑∞
Nu=0 NuPqs(Nu|x̄) can be written in closed

form:

∂t〈Nu〉 =
∑
n

nWn(〈Nu〉). (B.13)

The approximate expression reported in Eq. (2.57) in the main text can be obtained from
the stationary condition ∂t〈Nu〉 = 0, under the assumption of large N and small m′.

B.4.2 Evolution of x̄

We study here the evolution of x̄ by considering the fluctuations of Nu around its mean
given in Eq. (2.57) in the main text; for the sake of simplicity we focus on the symmetric
case x∗ = 1/2, but the discussion below carries over to a generic value of x∗. Because of
the presence of demes in the intermediate state, the value of x̄ receives a contribution of the
form

x̄ =
N1

N
+
Nu

2N
, (B.14)
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and therefore

N1 = Nx̄−Nu/2,

N0 = N(1− x̄)−Nu/2.
(B.15)

These relations can now be used in order to express the rates WA,...,D in Eq. (2.50) in the
main text as functions of Nu. For large Ω these expressions can be further simplified by
taking into account that P , Q ∝ 1/Ω for s′ not too large (we recall here that P = p(xu|Ω−1),
Q = p(xu|1− Ω−1) — see Sec. 2.5.2 — with p given in Eq. (2.8)), and that Tu ∝ Tfix1 ∝ Ω;
one eventually finds

WA = m′NP

{
x̄(1− x̄)− Nu

N

x̄

2

}
+O(1/Ω2),

WB = m′NP

{
x̄(1− x̄)− Nu

N

1− x̄
2

}
+O(1/Ω2),

WC = O(1/Ω2),

WD = WE = Nu/(2Tu).

(B.16)

As discussed in Sec. 2.5.2, the evolution of x̄ can be described by an effective Langevin
equation (diffusion approximation, see Appendix B.1) in the large N limit,

˙̄x = Mvi(x̄) +
√
Vvi(x̄) η(t), (B.17)

where the drift and variance are given by

Mvi(x̄) =
∑

i=A,B,C,D,E

Wi∆x̄i,

Vvi(x̄) =
∑

i=A,B,C,D,E

Wi(∆x̄i)
2,

(B.18)

and the relevant increments are ∆x̄A = ∆x̄E = 1/(2N) and ∆x̄B = ∆x̄D = −1/(2N). Then,
by replacing Nu with its mean 〈Nu〉 reported in Eq. (2.57), we eventually obtain the result
anticipated in Eq. (2.58) in the main text.

B.5 Time scales associated with Eq. (2.17)
There are two time scales emerging from Eq. (2.17) in the main text: a relaxation time
associated with the deterministic term M(x̄) and a fluctuation time associated with the
stochastic term controlled by V (x̄).

Relaxation time. — By neglecting the stochastic fluctuations in Eq. (2.17) in the main
text one obtains ˙̄x = M(x̄) = sex̄(1− x̄)(x∗− x̄), where we used the expression forM(x̄) from
Eq. (2.20a) in the main text, which is valid under the assumption that the separation of time
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scales discussed above (and in Sec. 2.2.3) holds. This deterministic drift can be expanded
around the metastable value x̄ = x̂ ' x∗ and the linear contribution is responsible for a
relaxation towards the value x̄ = x∗ which occurs exponentially in time, with a time scale

Trel =
1

sex∗(1− x∗)
. (B.19)

Fluctuation time. — Equation (2.17) in the main text can be rewritten as

dx̄ = M(x̄)dt+
√
V (x̄)dw, (B.20)

where dw is a Wiener process with unit variance. In order to associate a time scale Tfluct to
the diffusion-like contribution of fluctuations, we note that the variance V (x̄)dt+O(dt2) of
x resulting from Eq. (B.20) becomes of order unity for

Tfluct ' 1/V (x̄) ' Ne

x∗(1− x∗)
, (B.21)

where we used again Eq. 2.17 in the main text (which is valid if there is a separation of time
scales) and we took the optimal value x∗ as the typical value for the IDMF x̄.

By using the expression for Ne and se reported in Eqs. (2.21b) and (2.21a) in the main
text, the condition Tfluct � Trel becomes (cp. Eqs. (B.21) and (B.19))

s′N � 1 +
1

m′
, (B.22)

which turns into s′m′N = smΩ2N � 1 for m′ � 1. This condition must be satisfied for the
existence of a collective metastable state in the large-N limit.

Separation of time scales. — The separation of time scales assumed in Sec. 2.2.3 in
the main text, which allows one to determine the quasi-stationary distribution of each single
deme and then use it in order to calculate approximate expressions for the higher-order
moments xk — amounts at requiring that the time scale Tmigr ' 1/m, associated with the
response of xi to a change in x̄ is much shorter than the one which characterizes the dynamics
of x̄. Since the latter involves essentially two different time scales, i.e., Tfluct and Trel discussed
above, Tmigr must be much shorter than both of them:

Tmigr � min{Tfluct, Trel}. (B.23)

Under the assumption that this inequality holds — which can be verified a posteriori — Trel

and Tfluct are given by Eq. (B.19) and (B.21), respectively. Accordingly, the minimum on the
r.h.s. of the previous equation is Trel for Ns′ > 1 + 1/m′ and Tfluct otherwise. In the former
instance, Eq. (B.23) becomes Tmigr � Trel, i.e., se/m� 1 (where one can neglect the factor
x∗(1 − x∗), which is ' 1/4 within the range of parameters considered in the main text).
The remaining case Ns′ < 1 + 1/m′ amounts at requiring Nm′[1 + 1/(2m′)] � 1, which is
satisfied whenever N � 1.

In summary, the separation of time scales discussed here requires se/m � 1 for Ns′ >
1 + 1/m′, while it always holds (when N is large) for Ns′ < 1 + 1/m′.
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B.6 Global fixation in the absence of migration
In the absence of migration (m = 0), each deme fixes independently of the others, but global
fixation of the subdivided population occurs only when the last deme has fixed. The fixation
probability p(x0, t) is defined as the probability to have x(t) ∈ {0, 1}, assuming that the
evolution of the stochastic variable x started from x(0) = x0 at time t = 0; accordingly, p is
the cumulative distribution of the fixation times conditioned to the initial condition x(0) = x0

[131]. Here we focus on the initial condition x̄0 = 1/2 (which approximately characterizes
the metastable state), denoting by PN(t) the probability that all N demes have already
reached fixation at time t with xi(0) = 1/2 for all of them. Due to the independence of the
demes (for m = 0), this probability can be expressed in terms of the single-deme fixation
probability P1(t) = pfix1(xi = 1/2, t) as PN(t) = PN

1 (t). The probability density associated
with the global fixation time is then given by ṖN(t) = −Q̇N(t) where QN(t) = 1 − PN(t)
and therefore, the mean global fixation time is

T
(m=0)
fix =

∫ ∞
0

dt t ṖN(t) =

∫ ∞
0

dtQN(t) =
N∑
k=1

(
N

k

)
(−1)k+1

∫ ∞
0

dtQk
1(t), (B.24)

where Q1(t) = 1 − P1(t). Assuming that the large fluctuations which cause fixation are
independent Poisson processes, the probability that the system has not fixed after time t is
exponentially distributed around the mean fixation time Tfix1 of a deme, namely, Q1(t) '
e−t/Tfix1 . We checked numerically that this approximation is quite accurate in practice.
Accordingly, from Eq. (B.24) we find

T
(m=0)
fix ' Tfix1[γ + ψ(1 +N)], (B.25)

where γ is the Euler constant and ψ(z) is the digamma function, with an asymptotic behavior

T
(m=0)
fix ' Tfix1 lnN for N � 1. (B.26)

We point out that the MFT depends logarithmically on N , while in presence of migration
such a dependence is at least linear (or even exponential, in the limit of large N).

B.7 Numerical estimate of σc
The lowest-order estimate T (0)

fix of the MFT (Eq. (2.36) in the main text) can be written in
terms of

T̃
(0)
fix (σ,m′) ≡ T

(0)
fix

NΩ
=

(
1 +

1

2m′

)
f(X), (B.27)

where X = σm′/[4(m′ + 1)] and

f(X) =

∫ 1

0

dy

∫ 1

0

dz
eXy(1−z2)

1− yz2
. (B.28)
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The stationary condition ∂m′T
(0)
fix = 0 = ∂m′T̃

(0)
fix (σ,m′) therefore becomes an implicit equation

in terms of m′
m′ = 2[f(X)−Xf ′(X)]/[2Xf ′(X)− f(X)], (B.29)

which admits m′ = m′min(σ) as a solution. Figure 2.11(b) of the main text shows that, upon
approaching the threshold value σc of σ at which T

(0)
fix (m′) develops a non-monotonicity,

m′min(σ) diverges. By requiring the r.h.s. of Eq. (B.29) to diverge for σ → σc we find
numerically that Xc ' 1.3 and therefore σc = 4Xc ' 5.2.

B.8 Fixation probability
The cumulative distribution of fixation times p(x̄, t), where x̄ indicates the initial value of
the IDMF, satisfies the backward Fokker-Planck (FP) equation

∂tp(x̄, t) = M(x̄)∂x̄p(x̄, t) + V (x̄)∂2
x̄p(x̄, t)/2, (B.30)

where we assume the drift M and variance V given by Eqs. (2.20a) and (2.20b) in the main
text. We have solved a discretized version of Eq. (B.30) on a grid in the (x̄, t) plane with
spacings (∆x̄,∆t) given by ∆x̄ = 1/500 and ∆t ranging from 0.02 to 0.001, depending on
the specific value of m′. We checked numerically that the algorithm we employed for the
solution of the differential equation converges upon decreasing suitably ∆x̄ and ∆t.

Figure B.4 demonstrates that the probability p(x̄ = 1/2, t) to reach fixation starting from
the metastable state x̄ = 1/2 evaluated from the numerical solution of Eq. (B.30) is, as a
function of time t, quite well approximated by an exponential law ' 1− exp(−t/Tfix,fit), for
a suitable choice of Tfix,fit. As a further test of the accuracy of the diffusive approximation
also for determining rare events, we compare the solution of Eq. (B.30) with the results
of numerical simulations of the Wright-Fisher model described in Sec. 2.2.1. In particular,
we computed the fixation time of the model by averaging over about 500 realizations of the
dynamics. The resulting cumulative distribution is reported in Fig. B.4 (red solid line) and it
displays a good agreement with the numerical solution of Eq. (B.30) (blue dotted line). The
decay time Tfix,fit which characterizes the exponential law reported in Fig. B.4 (green dotted
line) is chosen such that to fit the MFT resulting from the simulation of the Wright-Fisher
model. As it can be seen from Fig. 2.10 in the main text, within the range of parameters
considered there, Tfix,fit computed from the WF simulations agrees rather well with T

(0)
fix

determined according to Eq. (2.36) of the main text. We point out that, in the absence
of migration, the single-deme fixation probability (i.e., the cumulative distribution of Tfix1

discussed in Sec. 2.2.1) satisfies Eq. (B.30), where the functions M(x) and V (x) are given by
Eqs. (2.20a) and (2.20b) of the main text in which, however, the effective parameters se and
Ne are replaced by s and Ω, respectively, which refer to the single deme. Accordingly, the
resulting distribution of Tfix1 has the same qualitative behavior as the fixation time discussed
here, though with a different time scale.
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Figure B.4: Fixation probability p(x̄, t) as a function of time, for a population which starts
from the initial value x = 1/2. The numerical solution of Eq. (B.30) (blue, dashed line), is
compared with the results of numerical simulations of the Wright-Fisher model (red, solid
line) and with an exponential law 1 − exp(−t/Tfix,fit) (green dotted). This plot refers to a
population with Ω = 100, N = 30, s′ = 1, m′ = 0.3, and x∗ = 1/2.



Appendix C

C.1 Solution of Eq. (3.1) and two-points correlators
In this appendix we solve the time-dependent master equation, Eq. (3.1), in order to char-
acterize the relaxation dynamics of the model toward the stationary state. Moreover, by
using the properties of the characteristic function, we are able to compute the different-time
correlators between n and m.

In order to simplify the notation, let us first introduce the quantities

E = e−t(λ+ρ+1),

F = e−ρt.
(C.1)

The solution of the differential equation for the generating function G(z, w; t) associated
to Eq. (3.1) can be easily obtained with the method of characteristics. Using the initial
condition pn,m(0) = δn,n0δm,m0 , we have

G(z, w; t) = exp

[
N̄ρ(w − z)[X(λ+ 1)− λ]

(λ+ 1)(λ+ ρ+ 1)
E + N̄

1− w + λ(1− z)

λ+ 1
F

+ N̄
w − 1 + λ(z − 1) + ρ[zX − 1 + w(1−X)]

λ+ ρ+ 1

]
×
(

1 +
z − w
λ+ 1

E +
w − 1 + λ(z − 1)

λ+ 1
F

)n0
(

1 +
λ(w − z)

λ+ 1
E +

w − 1 + λ(z − 1)

λ+ 1
F

)m0

.

(C.2)

By differentiation we obtain the time-dependent probability distribution for (n,m):

pn,m(t) =

[
(∂z)

n

n!

(∂w)m

m!
G(z, w; t)

]
z=w=0

=
eN̄(F−1)

n!m!(λ+ 1)n+m

n∑
r=0

m∑
s=0

An−rBm−s
r∑
j=0

s∑
k=0

(
r

j

)(
s

k

)
(1− F )n0+m0−r−s

× n0!m0!λj(E + λF )r−j(λE + F )k(F − E)s+j−k

(n0 − r + j − s+ k)!(m0 − j − k)!
θ(n0 − r + j − s+ k)θ(m0 − j + k),

(C.3)
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where θ(x) is the Heaviside step function and

A = (λ+ 1)n̄− N̄ρ[X(λ+ 1)− λ]

λ+ ρ+ 1
E − N̄λF,

B = (λ+ 1)m̄+
N̄ρ[X(λ+ 1)− λ]

λ+ ρ+ 1
E − N̄F.

(C.4)

It can be noticed that in the case n0 = m0 = 0, being the exponent linear in z and w,
the time-dependent probability distribution is factorized (like the stationary one): pn,m(t) =
pn(t)pm(t). In this case it reduces to:

pn,m(t) =
1

n!

[
n̄− N̄

λ+ 1

(
ρ
X(λ+ 1)− λ
λ+ ρ+ 1

E + λF

)]n
× 1

m!

[
m̄+

N̄

λ+ 1

(
ρ
X(λ+ 1)− λ
λ+ ρ+ 1

E − λF
)]m

e−N̄(1−F ).

(C.5)

For generic initial conditions we can write a large-t (i.e., a small E,F ) expansion, in order
to see how pn,m(t) relaxes to the stationary value pst

n,m, Eq. (3.4):

pn,m(t) = pst
n,m

[
1 + αE + βF +O(E2, F 2, EF )

]
, (C.6)

where

α =
N̄ρ[X(λ+ 1)− λ]

(λ+ 1)(λ+ ρ+ 1)

(m
m̄
− n

n̄

)
+
n0θ(n0 − 1)− λm0θ(m0 − 1)

λ+ 1

(
1

n̄
− 1

m̄

)
,

β =N̄ − (n0 +m0)− N̄

λ+ 1

(
λn

n̄
+
m

m̄

)
+
n0θ(n0 − 1) +m0θ(m0 − 1)

λ+ 1

(
λ

n̄
+

1

m̄

)
.

(C.7)

The leading term for large times is therefore associated with E and F , i.e., with the
relaxation-times:

t1 =
1

ρ
,

t2 =
1

λ+ ρ+ 1
.

(C.8)

The first time scale t1 is associated with the diffusion process, while the second one is the
inverse of the sum of all rates (if we restore the λB dependence we have 1/t2 = λR +ρ+λB).

Given the analytic expression of the generating function G(z, w; t) in Eq. (C.2), it is
straightforward to evaluate the correlators, for instance:

〈n(0)m(t)〉 =
∑
n0,m0

∑
n,m

n0mpn0,m0 [pn,m(t)] n(0)=n0

m(0)=m0

=
∑
n0,m0

n0 pn0,m0

[
∂wG(z, w; t|n0,m0)

]
z=1
w=1

.

(C.9)
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In particular, we find:

Cnn(t) ≡ 〈n(0)n(t)〉 − n̄2 = n̄
λe−ρt + e−t(λ+ρ+1)

λ+ 1
,

Cmm(t) ≡ 〈m(0)m(t)〉 − m̄2 = m̄
e−ρt + λe−t(λ+ρ+1)

λ+ 1
,

Cnm(t) ≡ 〈n(0)m(t)〉 − n̄m̄ = n̄
e−ρt − e−t(λ+ρ+1)

λ+ 1
,

Cmn(t) ≡ 〈m(0)n(t)〉 − n̄m̄ = m̄λ
e−ρt − e−t(λ+ρ+1)

λ+ 1
.

(C.10)

The first two correlators in (C.10) are monotonically decreasing, as they are linear combi-
nations (with positive coefficients) of the exponentials characterized by the decay times of
Eq. (C.8).

The other two correlators are again linear combinations of the same exponentials, but the
coefficients of such linear combination have different signs, which makes them non-monotonic.
The maximum is at time

tmax =
1

λ+ 1
log

[
λ+ ρ+ 1

ρ

]
. (C.11)

C.2 Violation of detailed balance
The model can be interpreted as a random walk on the two dimensional (n,m) lattice, with
site- and direction-dependent transition rates, as depicted in Fig. C.1.

We use this analogy to check for eventual violation of detailed balance (DB) in the
stationary state described by Eq. (3.4). As it can be seen from Fig. C.1, there are three
directions for the single step jumps:

• Along the vertical direction (n,m)↔ (n,m+ 1) the DB condition is

(1−X)ρN̄ pn,m = (m+ 1)ρ pn,m+1, (C.12)

which is satisfied if
ρ = 0 or ρ→∞ or λ =

X

1−X . (C.13)

• Along the horizontal direction (n,m)↔ (n+ 1,m) the DB condition is

XN̄ρ pn,m = (n+ 1)ρ pn+1,m. (C.14)

Again, its solution is Eq. (C.13).

• Along the diagonal direction (n,m)↔ (n− 1,m+ 1) the DB condition is

n pn,m = λ(m+ 1) pn−1,m+1, (C.15)

whose solution is
ρ = 0 or λ =

X

1−X . (C.16)
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Figure C.1: (Color online) The model as a random walk on the (n,m) lattice. The transition
rates depend on the direction and on the position on the lattice.

We conclude that the only values of the parameters satisfying DB are those in Eq. (C.16),
while for ρ→∞ DB is "almost satisfied", being the violation vanishingly small.

The first value of Eq. (C.16) coincides with the trivial case where diffusion is suppressed,
while the second one is the value where the stationary points of the internal (recharge and
binding) and diffusive dynamics coincide.

In all other cases there are current probability loops and the stationary state is out of
equilibrium [121].

C.3 BTD and mean number of charged tRNAs

Let us consider the time dependent mean of the number of charged tRNAs 〈n(t)〉nb =∑∞
n=0 n pn(t|no binding), where at t = 0− a binding event occurred and no binding events

were recorded between 0 and t.
In discrete time with temporal step δt, we can write the probability that a binding event

happens at time t > τk = kδt as

P (τk) =
k∏
i=0

(1− 〈n(τi)〉nbδt) ∼ exp

(
−

k∑
i=0

〈n(τi)〉nbδt

)
. (C.17)
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In the continuous time limit we obtain

P (τ) = exp

(
−
∫ τ

0

dt 〈n(t)〉nb

)
. (C.18)

By substituting Eq. (C.18) into 3.17, we obtain Eq. (3.25). Furthermore, by inverting
Eq. (C.18), we can write

〈n(t)〉nb = −∂τ logP (τ)|τ=t. (C.19)

This relation is utilised in Fig. 3.5 to plot the theoretical predictions.
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