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“The most beautiful thing we can experience is the mysterious.

It is the source of all true art and science.”

Albert Einstein





Abstract

GRAVITY BEYOND GENERAL RELATIVITY:

NEW PROPOSALS AND THEIR PHENOMENOLOGY

by Daniele Vernieri

This Thesis is devoted to the study of phenomenologically viable gravitational theories,

in order to address the most pressing open issues both at very small and very large energy

scales. Lovelock’s theorem singles out General Relativity as the only theory with second-

order field equations for the metric tensor. So, two possible ways to circumvent it and

modify the gravitational sector are taken into account. The first route consists in giving

up diffeomorphism invariance, which generically leads to extra propagating degrees of

freedom. In this framework Hořava gravity is discussed, presenting two restrictions, called

respectively “projectability” and “detailed balance”, which are imposed in order to reduce

the number of terms in the full theory. We introduce a new version of the theory assuming

detailed balance but not projectability, and we show that such theory is dynamically

consistent as both the spin-0 and spin-2 gravitons have a well behaved dynamics at low-

energy. Moreover three-dimensional rotating black hole solutions are found and fully

studied in the context of Hořava gravity, shedding light on its causal structure. A new

concept of black hole horizon, dubbed “universal horizon”, arises besides the usual event

horizon one, since in Lorentz-violating gravity theories there can be modes propagating

even at infinite speed. The second route which is considered, consists in adding extra

fields to the gravitational action while diffeomorphism invariance is preserved. In this

respect we consider the less explored option that such fields are auxiliary fields, so they

do not satisfy dynamical equations but can be instead algebraically eliminated. A very

general parametrization for these theories is constructed, rendering also possible to put

on them very tight, theory-independent constraints. Some insight about the cosmological

implications of such theories is also given. Finally in the conclusions we discuss about

the future challenges that the aforementioned gravity theories have to face.





Preface

The main goal of this Thesis is to present the research work which has been conducted

mainly in SISSA - International School for Advanced Studies, during the period Novem-

ber 2010 - October 2014. The Thesis is organized as follows.

In the Introduction the foundations of General Relativity are given, and its limitations

and problems are discussed. A first way to modify General Relativity is by considering

theories characterized by the presence of higher-order derivatives. Nevertheless in doing

so, one has to take into account the theorem of Ostrogradski, which highlights from a

very general theoretical perspective why the laws of Nature are expected to contain not

more than second time derivatives of the fundamental fields. In fact, when higher-order

time derivatives are taken into account, the Hamiltonians of the related physical systems

are shown to be unbounded from below, leading to pathological instabilities. If one is

willing to modify the gravitational sector avoiding such instabilities, two choices are left:

breaking diffeomorphism invariance or adding extra fields.

In Chapter 2 the first option is considered. In this context Hořava gravity is discussed

and its connection with Einstein-Æther theory is also shown in the infrared limit, once

the æther vector field is restricted to be hypersurface orthogonal at the level of the ac-

tion.

In Chapter 3, the various restricted versions of Hořava gravity are presented, focusing

on two simplifications, called respectively “projectability” and “detailed balance”, which

have been imposed in order to limit the proliferation of terms which are present in the

full theory. A new version of the theory which assumes detailed balance but not pro-

jectability is introduced, and it is shown to be dynamically consistent.

In Chapter 4, rotating black hole solutions with anti-de Sitter asymptotics are found and

then fully studied in the context of three-dimensional Hořava gravity, shedding light on

the causal structure of the theory. In particular the existence of a new kind of horizon,

named “universal horizon”, is highlighted for Lorentz-violating gravity theories, where

the intrinsic notion of a black hole is modified due to the presence of degrees of freedom

propagating at any speed, even infinite. Then the notion of event horizon relinquishes

its role as an absolute causal boundary.

v
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Chapter 5 is devoted to the exploration of a further possibility to modify General Rela-

tivity, which is to consider extra non-dynamical fields in the gravitational action. A

general parametrization for this class of theories is built through a gradient expansion

up to fourth-order derivatives, and it is shown that only two free parameters control

all the theories within this class. This approach can be used to put very tight, theory-

independent constraints on such theories, as it is demonstrated by using the Newtonian

limit as an example. Particular attention is also paid to the implications they can have at

very large (cosmological) length scales, where these theories generically lead to a modi-

fied phenomenology with respect to General Relativity.

Finally, in Chapter 6 the conclusions of this work are given, with remarks and comments

about the future challenges that the aforementioned gravity theories have to face.
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Chapter 1

Introduction

1.1 Foundations of General Relativity

1.1.1 Lovelock’s Theorem

General Relativity (GR) is the cornerstone of our theoretical knowledge about the gravi-

tational interaction, and its predictions are in excellent agreement with all weak-field

experiments.

In 1915 − 1916 Einstein completed the formulation of GR, whose field equations have

the following form

Gµν = 8πGN Tµν , (1.1)

where

Gµν ≡ Rµν −
1

2
gµνR (1.2)

is the so called “Einstein tensor”, Rµν and R are respectively the Ricci tensor and Ricci

scalar of the metric gµν , GN is the Newton’s constant and Tµν is the matter stress-energy

tensor. Moreover the speed of light c has been set to 1.

In 1922, a theorem developed by Cartan [1], Weyl [2] and Vermeil [3] provided further

motivation for using Gµν as the left-hand side of the gravitational field equations (1.1).

They found that the Einstein tensor of a metric gµν , is the only 2-covariant tensor,

up to the addition of a cosmological constant term Λgµν , which satisfies the following

properties:

1. The components Gµν are functions of the coefficients of the metric tensor gµν , its

first and second derivatives, i.e.,

Gµν = Gµν (gαβ, ∂σgαβ, ∂γ∂σgαβ) ; (1.3)

1
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2. It is divergence-free, i.e.,

∇µGµν = 0 , (1.4)

where ∇µ is the covariant derivative defined as the Levi-Civita connection of the

metric gαβ ;

3. It is symmetric, i.e.,

Gµν = Gνµ ; (1.5)

4. The components Gµν are linear functions in the second derivatives of gαβ .

It is interesting to notice that none of these remarks depend on the dimension n of the

underlying pseudo-Riemannian manifold.

Later on, in 1971, the theorem was revisited and greatly improved by Lovelock [4, 5]

who demonstrated that once the assumption 4 is relaxed, additional terms have to be

considered in higher dimensions [4]. Moreover he also showed that in four dimensions

the assumptions 3 and 4 are unnecessary conditions to prove the theorem [5].

Since the very first days of the theory, this theorem has represented one of the milestones

for the construction and the theoretical justification of the field equations of GR.

1.1.2 Action of General Relativity and Field Equations

With the mild additional requirement that the field equations for the gravitational field

and the matter fields be derived by a diffeomorphism-invariant action, where no fields

other than the metric and the matter are present, the arguments above single out in four

dimensions the action of GR with a cosmological constant term:

SGR =
1

16πGN

∫
d4x
√
−g (R− 2Λ) + SM [gµν , ψM ] , (1.6)

where GN is the Newton’s constant, g the determinant of the spacetime metric gµν , R is

the Ricci scalar of the metric, Λ is the bare cosmological constant and SM is the matter

action. Moreover ψM collectively denotes the matter fields which couple to gµν , so that

SM is understood to reduce to the Standard Model (SM) action in the local frame.

The variation of the action (1.6) with respect to the metric gives rise to the field equations

of GR in presence of matter:

Gµν + Λgµν = 8πGN Tµν , (1.7)

where

Tµν ≡
−2√
−g

δSM
δgµν

. (1.8)
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Using the contracted Bianchi identity one gets from Eq. (1.7) that Tµν has to be

divergence-free, that is

∇µTµν = 0 . (1.9)

1.1.3 Stress-Energy Tensor Conservation and Geodesic Motion

We want to demonstrate now that the conservation of the stress-energy tensor implies

geodesic motion of test particles. For this purpose let us consider for example non-

interacting particles moving in spacetime, whose idealized description is given in terms

of a pressure-less perfect fluid (dust). The stress-energy tensor of such fluid can then be

written as

Tµν = ρuµuν , (1.10)

where ρ is the energy density and uµ the four-velocity of an infinitesimal volume element

of the fluid. Asking that the stress-energy tensor is conserved, i.e., that Eq. (1.9) holds,

one gets

uν∇µ (ρuµ) + ρuµ∇µuν = 0 . (1.11)

Since the two terms in Eq. (1.11) are 4-orthogonal one can deduce the continuity equation

in a general curved background (in analogy with the one for a Newtonian fluid in a flat

spacetime), i.e.,

∇µ (ρuµ) = 0 . (1.12)

We are then left only with the second term in Eq. (1.11). As uµ = dxµ/dτ , where

xµ denote the coordinates and τ is the proper time along the path of the particles, we

immediately get
d2xν

dτ2
+ Γνσµ

dxσ

dτ

dxµ

dτ
= 0 , (1.13)

where Γνσµ are the Christoffel symbols associated to the Levi-Civita connection ∇ν . We

have thus found the geodesic equation describing the free-fall motion of the test particles

constituting the fluid.

This means that the conservation of the stress-energy tensor,∇µTµν = 0, implies that test

particles follow geodesics. It therefore guarantees that the weak equivalence principle,

i.e., the universality of free-fall, holds.

1.1.4 Diffeomorphism Invariance of the Matter Action

The action of GR (1.6) is diffeomorphism invariant when considered in vacuum, where

no matter fields are present. Instead, if we want the whole action to be diffeomorphism

invariant we have to ask the matter action SM to be as well [6]. This will reveal another
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interesting aspect concerning the conservation of the stress-energy tensor, as we shall see

below.

We can write the variation of SM under a diffeomorphism as

δSM =
δSM
δgµν

δgµν +
δSM
δψM

δψM . (1.14)

Assuming the matter fields are on shell, δSM/δψM will vanish for any variation since the

gravitational part of the action doesn’t involve the matter fields. So, in order to have a

diffeomorphism invariant action we must ask that

δSM
δgµν

δgµν = 0 . (1.15)

If the vector field V µ is the diffeomorphism generator, then the infinitesimal change of

the metric is given by the Lie derivative £V acting along V µ. After some manipulations

one gets

δgµν = £V g
µν = 2∇(µV ν) , (1.16)

where the round brackets denote symmetrization.

Then, from Eqs. (1.15)-(1.16), and using the definition (1.8) for the stress-energy tensor

one gets ∫
d4x

δSM
δgµν

∇µV ν = −1

2

∫
d4x
√
−g Tµν∇µV ν = 0 . (1.17)

Finally integrating by parts and asking that V µ vanishes on the boundary yields∫
d4x
√
−g (∇µTµν)V ν = 0 . (1.18)

Demanding that Eq. (1.18) holds for any diffeomorphism generated by an arbitrary

vector field V µ that vanishes on the boundary, one gets exactly the stress-energy tensor

conservation equation ∇µTµν = 0 .

This calculation shows that asking for a diffeomorphism invariant matter action allows

one to link the requirement that the matter fields are on shell with the universality of

free-fall. Moreover the results obtained above rely only on the matter action, so they are

not specific to GR but apply to any theory.

1.2 General Relativity and Quantum Field Theory

The gravitational interaction is so weak compared to the other interactions that the

characteristic energy scale at which one would expect to experience relevant modifications

to the classical gravity picture is the Planck energy scale of 1019 GeV. What happens

to the gravitational interaction at these extremely high energies where we expect that
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quantum effects should become relevant?

One needs a theory which is able to explain these effects and at the same time to recover

the classical results at sufficiently small energies.

However, at the moment, there are many conceptual reasons for which GR and Quantum

Field Theory (QFT) have not been found to merge consistently in an unified picture.

QFT is naturally built on a fixed rigid (flat or curved) spacetime inhabited by quantum

fields. On the other hand GR considers the spacetime as being dynamical, without taking

into account the quantum nature of matter fields.

Another conceptual difference is represented by the Heisenberg uncertainty principle

which is at the basis of any quantum theory while being completely absent in GR which

is instead a classical theory.

It is interesting to note that GR considers the background to be dynamical, but at

the same time, when such a configuration is being determined by the matter content

(for simplicity we can think about a stationary spacetime), then the knowledge of the

spacetime can furnish a detailed record of all the information about past, present and

future.

On the contrary, in QFT, although one works within a fixed background scenario, there

is, for reasons intrinsic to the theory, a degree of uncertainty for the position of any event

in the spacetime.

1.2.1 The Problem of Renormalizability in Gravity

GR, by its own nature, is a classical geometric description of spacetime, and by straight-

forward inspection it reveals all its limits at quantum scales. At such scales it is not

adequate to describe the gravitational interaction or the spacetime itself (depending

on the perspective), and one cannot consistently construct its quantum counterpart by

means of conventional quantization techniques.

In fact, in 1962 Utiyama and De Witt [7] showed that renormalization at one-loop de-

mands that the gravitational action of GR should be supplemented by higher-order

curvature terms, such as R2 and RαβγδR
αβγδ, so that these new actions are indeed

renormalizable.

Later on, in 1977, Stelle [8] showed that higher-order theories are in effect renormalizable

but a very high price must be paid for that: they contain ghost degrees of freedom and

are, therefore, not unitary. This happens because the addition of higher-order curvature

invariants in the action leads to higher-order time derivatives. If one allows the equations

of motion to be higher than second-order partial differential equations, more degrees of

freedom would be generically introduced, and these can be pathological.
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The problem of renormalizability represents a strong motivation to consider modifica-

tions of GR, and the corrections (counter-terms) one adds to let GR be renormalizable

must be such as not to call into play unphysical degrees of freedom.

1.2.2 The Cosmological Constant

It was Einstein who, in 1917, introduced for the first time a cosmological constant term

in his equations. In fact, he was attempting to apply his new theory to the whole Uni-

verse, and his guiding principle was that the universe is static: “The most important fact

that we draw from experience is that the relative velocities of the stars are very small as

compared with the velocity of light” [9].

Soon after Einstein developed his static theory (which is unstable under small pertur-

bations), observations by Edwin Hubble suggested that the Universe was expanding.

These observations were also found to be consistent with a cosmological solution to the

original GR equations that had been discovered by the mathematician Friedmann. Ein-

stein then retracted his proposal of a cosmological constant, referring to it as “biggest

blunder”. However, the cosmological constant remained a subject of theoretical and em-

pirical interest, and it is even more interesting today that we know with certainty that

the Universe is expanding.

If we move the bare cosmological constant term (that we call here Λb) in Eq. (1.7) to

the right-hand side, we can consider it as a kind of energy-momentum tensor given by

T b
µν = −ρΛb

gµν , (1.19)

where

ρΛb
=

Λb

8πGN
. (1.20)

Apart from this bare contribution to the cosmological constant, we also expect another

very large one coming from particles that we know to exist in the SM. In order to

understand this, we can take the simple example of a scalar field φ with potential energy

V (φ). The matter action for such a scalar field can be written as

SφM = −
∫
d4x
√
−g
[

1

2
gµν∂µφ∂νφ− V (φ)

]
, (1.21)

and the corresponding stress-energy tensor, using the definition in Eq. (1.8), is found to

be

T φµν = ∂µφ∂νφ−
[

1

2
gαβ∂αφ∂βφ− V (φ)

]
gµν . (1.22)
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The configuration of minimal energy is the one with no contribution from the kinetic

term, that is when ∂µφ = 0. In such a configuration the stress-energy tensor becomes

T φµν = V (φ0)gµν , (1.23)

where φ0 is the value of the scalar field which minimizes V (φ).

Since there is no reason in principle for which V (φ0) should vanish, one should expect that

matter fields give a non-zero vacuum energy contribution 〈ρ〉 to the effective cosmological

constant. As we know, vacuum carries energy and momentum even in the ground state,

then one can estimate the size of 〈ρ〉 by considering matter fields of the SM as a collection

of harmonic oscillators sitting at their zero-point energy. So, considering the vacuum

energy as the sum of the energies Ek of the ground states oscillations of all these fields,

one gets

〈ρ〉 =

∫ ΛUV

0

d3k

(2π)3

1

2
~Ek ∼

∫ ΛUV

0
dkk2

√
k2 +m2 ∼ Λ4

UV , (1.24)

where ΛUV is the cut-off of the theory. Since the SM is extremely well tested up to the

weak energy scale ΛUV ∼ 1TeV, one finds a theoretical expectation value for the vacuum

energy to be

Λth ∼ (TeV)4 ∼ 10−60M4
pl . (1.25)

On the other side, if we consider the Universe as described by an effective local quantum

field theory down to the Planck energy scale, we would expect the cosmological constant

to have a natural scale of the order of M4
pl.

The observed value for the cosmological constant in terms of Planck units is of the order

of 10−120M4
pl. It differs from both the above estimates and from any estimate provided

with a realistic cut-off, at best for 60 orders of magnitude. This falls off under the name

of “the old cosmological constant problem”: a Universe with a large cosmological constant

would expand too fast, so preventing galaxy formation [10]. However, there is no known

natural way to derive from particle physics the tiny observed value for the cosmological

constant. It could be that the bare cosmological constant Λb appearing in the Einstein’s

field equations gives a contribution that exactly cancels Λth, leaving behind the tiny

residual we currently get from observations. Nevertheless a no-go theorem by Weinberg

proves, under certain assumptions, that it cannot really happen dynamically [9].

In Refs. [11, 12] Weinberg’s no-go theorem is evaded by relaxing the condition of Poincaré

invariance in the scalar sector, and it is shown that the cosmological constant problem

can be solved classically in the context of scalar-tensor theories.

A new promising mechanism which removes the vacuum energy contributions from the

field equations leaving behind a naturally small effective cosmological constant in our

Universe, has been recently provided in Refs. [13, 14]. Moreover, since no new propaga-

ting mode appears in such a theory, the latter looks just like standard GR, but without
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a large cosmological constant.

1.3 General Relativity, Astrophysics and Cosmology

1.3.1 Dark Matter

The theory of Big Bang Nucleosynthesis (BBN) [15–18] and the Cosmic Microwave Back-

ground (CMB) radiation data [19] imply that no more than about 5% of the energy

density of the universe can consist of any material with which we are presently familiar,

and only a fraction of that is observed. What remains is almost the whole part, and

represents the mirror of our ignorance about what’s going on at large length scales.

In order to make GR in agreement with the observed dynamics of galaxies and galactic

clusters we must postulate that about five times the mass of ordinary matter comes in

the form of non-baryonic Cold Dark Matter (CDM).

The first evident proof for the existence of DM dates back to 1933, when Zwicky [20]

observed that the visible mass was not sufficient by its own to explain the individual

dispersion velocity of galaxies in the Coma Cluster. Later on, starting from 1970, the

observations of the rotation curves of the galaxies provided further confirmation for the

existence of this dark component [21, 22]. In particular, according to Newtonian gravity,

it is found that for a galaxy the potential generated by the matter distribution should

have the profile

V (r) = −GN
M(r)

r
, (1.26)

where M(r) is the total mass at a fixed radius r. So we would expect a fall off of the

potential at sufficiently large radii. Nevertheless observations show that well beyond the

galaxy core the potential follows an almost constant profile [23], and such a behaviour

can be explained by taking into account an extra mass contribution

M(r) ∝ r . (1.27)

From this, one obtains the picture of a galaxy as an astrophysical object entirely sur-

rounded by a DM halo and residing in its core, providing a motivation for the existence

of this exotic non-baryonic matter component. Moreover further investigations of the

features of spiral galaxies have also led to a very challenging discovery. In fact the ro-

tation velocity profiles of stars in such galaxies were found to share a universal profile,

leading to the so-called Universal Rotation Curves (URC) paradigm [24, 25].

The candidate particles [26–28] which have been sought for a long time, can be divided

in two main groups: hot DM, made by non-baryonic particles which move (ultra-)rela-

tivistically, and CDM, made by non-baryonic particles which move non-relativistically.
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The most favourite particle belonging to the first class is the neutrino. However, be-

cause strong motivations coming from astrophysical observations suggest that DM has

clumped to form structures on rather small length scales, it cannot consist of particles

moving at very high velocities as they would indeed suppress the clustering [26, 29, 30].

Hence, CDM is currently the most favoured nominee. Its non-baryonic nature seems to

find the perfect candidate in the Super Symmetric (SUSY) extension of the SM. In fact,

the lightest SUSY particle, the neutralino, is stable, weakly interacting with the particles

of the SM, and is able to provide the correct structure formation process and the right

observed DM relic abundance. Although there are several possible candidates for what

DM might be, until now no Earth-bound laboratory has yet succeeded in detecting it,

not even the Large Hadron Collider (LHC), which is at the moment the preferred way to

directly detect DM. In fact, as DM is very weakly interacting, it is very unlikely to detect

it via interaction with SM particles, while one could try to create it directly by means of

high energy collisions between SM particles. Another way to detect DM particles may

be through the detection of the products of their annihilation in high density regions like

the core of the Sun or DM dominated galaxies. But, as already stated, nothing has been

detected until now.

1.3.2 Dark Energy

The mystery of DM is not the only open issue GR has to face. In fact the most challen-

ging problem for which a satisfactory explanation has not yet been found comes at very

large length scales.

In order for GR to be in agreement with the observed ongoing Universe accelerated ex-

pansion, that is the Hubble plots of distant Type Ia supernovae [31–43], with the power

spectrum of anisotropies in the CMB [19, 44–52] and with Large Scale Structure (LSS)

surveys [53–60], one must accept the existence of an additional exotic component, usually

referred to as “Dark Energy” (DE), that must be about fourteen times larger than that

of ordinary matter.

If this picture is accepted to be true, then it would mean that about the 95% of the

current Universe’s energy exists in forms which have so far only been detected gravita-

tionally, but that results to be completely obscure to all the other forms of detection we

have experimented until now.

The standard cosmological model, referred to as ΛCDM, is able to reproduce the ongo-

ing accelerated expansion phase of the Universe in the framework of GR, through the

presence of an effective cosmological constant Λ. The main assumption used to build

up this model, is that at length scales larger than about 100 Mpc, corresponding to the

largest ever observed structures, the Universe is nearly homogeneous and isotropic. This
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assumption at very large scales is confirmed by the high level of isotropy of the CMB

radiation and by the distribution of LSS and it is often referred to as the Copernican or

Cosmological Principle. Moreover these symmetries are only seen by observers who are

at rest with respect to the Universe expansion, otherwise observers who are moving with

respect to this frame would experience a dipolar anisotropy.

The isotropy and homogeneity of the Universe as seen by such a comoving observer, can

be translated into the following ansatz for the metric written in spherical coordinates:

ds2 = dt2 − a(t)2

[
dr2

1− kr2
+ r2

(
dθ2 + sin2θdφ2

)]
. (1.28)

This line-element is known as the Friedmann-Lemaitre-Robertson-Walker (FLRW) me-

tric, where a(t) is the scale factor, which is the only degree of freedom describing the

geometry of the Universe, and k is the spatial curvature, normalized in such a way that

it can take only three values: −1 for an hyperspherical Universe, 0 for a spatially flat

one, and 1 for an hyperbolic one.

The stress-energy tensor for a perfect fluid is written as

Tµν = (P + ρ)uµuν − Pgµν , (1.29)

where uµ is the four-velocity of an observer comoving with the fluid, while P and ρ are

respectively the pressure and density of the fluid. Inserting the metric (1.28) and the

stress-energy tensor (1.29) into Eq. (1.7), one gets the so-called Friedmann equations

H2 =
8πGN

3
ρ+

Λ

3
− k

a2
, (1.30a)

ä

a
=

Λ

3
− 4πGN

3
(ρ+ 3P ) , (1.30b)

where H ≡ ȧ/a is the Hubble function, and the overdot indicates differentiation with

respect to the coordinate time t.

Considering a model for the Universe where the spatial curvature k is zero, and the

matter content is dominated by the cosmological constant, Friedmann equations admit

as solution

a(t) = a0e

√
Λ
3
t
, (1.31)

where a0 is the value of the scale factor at the present time.

This solution describes a Universe undertaking a phase of accelerated expansion since

ä > 0 , (1.32)

and it is usually referred to as de Sitter (dS) Universe. So in the framework of GR

it is possible to get an accelerated expansion of the Universe, as provided by current
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cosmological observations. Nevertheless, as already mentioned in Sec. (1.2.2), there is

a huge discrepancy between the value observed for Λ and the one predicted by particle

physics. So, despite of the success of ΛCDM model, one is brought to explore further

scenarios.

In the absence of a cosmological constant term, one can see from Eq. (1.30b) that the

only way to get a positive acceleration, is to have a perfect fluid for which

(ρ+ 3P ) < 0 =⇒ P < −1

3
ρ . (1.33)

Assuming that the density is positive definite, this implies that the overall pressure of the

fluid must be negative, acting as a repulsive force. Since it is not possible for any kind

of baryonic matter to satisfy Eq. (1.33), the only way to have a period of accelerated

expansion of the Universe in the framework of GR, where the effective value of the

cosmological constant is zero, is to consider some new form of matter fields with very

special characteristics.

Let us consider for example an homogeneous scalar field φ = φ(t), whose dynamics is

described by the action given in Eq. (1.21). By means of the stress-energy tensor (1.22),

one finds that the scalar acts as a perfect fluid with an equation of state Pφ = wφρφ,

where the energy density ρφ and pressure Pφ are respectively given by

ρφ =
1

2
φ̇2 + V (φ) , (1.34a)

Pφ =
1

2
φ̇2 − V (φ) , (1.34b)

and the barotropic index wφ is found to be

wφ =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
, (1.35)

which is generically time varying.

In order to obtain a negative pressure and also to source the observed expansion, we

must have wφ ' −1, which requires a very slowly-rolling field such that φ̇2 � V (φ).

Notice that this condition is very similar to the one required for inflation, even if the

latter also places a constraint for φ̈ which is asked to be negligible.

These dynamical models, dubbed as DE or quintessence models, represent the simplest

extension of ΛCDM and have been extensively studied [61–68]. Their most interesting

feature is that they have a very rich phenomenology. It is indeed possible, by suitably

choosing the potential, that the energy density of the cosmological scalar field is such

that the Universe history during radiation/matter eras is reproduced at early times, then

growing to dominate the energy budget at very late times [69–75].

So, for the DE problem as well some extra mysterious exotic field must be taken into
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account in order to explain the aforementioned accelerated expansion of the Universe.

Anyway this is not the unique possibility one can think about. Indeed one can also

argue that these observed cosmic phenomena constitute further arguments in favour of

a modification of GR, and it is then possible to predict them without the need for DE,

and perhaps even without the need for DM.

1.4 The No-Go Theorem of Ostrogradski

On the way of modifying GR, one has to take into account a very powerful theorem

which constrains fundamental theory: the theorem of Ostrogradski [76].

It essentially shows that Newton was right to expect that the laws of physics involve

no more than two time derivatives of the fundamental dynamical variables. In fact

it is demonstrated that the Hamiltonians associated with Lagrangians depending upon

more than one time derivative have a linear dependence on the momenta. So, one gets

physical systems whose energy states are not bounded from below, and they are therefore

unstable.

The theorem is very general and we can briefly present it in the case of a single, one

dimensional point particle whose position as a function of time is given by q(t), and the

Lagrangian of the system involves N time derivatives [77].

Let us consider a Lagrangian L
(
q, q̇, ..., q(N)

)
, which depends up to the N -th derivative

of q(t). The Euler-Lagrange equations can be written as

N∑
i=0

(
− d

dt

)i ∂L

∂q(i)
= 0 , (1.36)

which in general contains q(2N). The assumption that ∂L/∂q(N) depends upon q(N) is

known as non-degeneracy. So, we need 2N coordinates to build up the canonical phase

space, and we use the ones Ostrogradski singled out:

Qi ≡ q(i−1) , Pi ≡
N∑
j=i

(
− d

dt

)j−i ∂L

∂q(j)
. (1.37)

If the Lagrangian is not degenerate, then we can solve for q(N) in terms of PN and the

Qi’s. This means that there exists a function A(Qi, PN ) such that

∂L

∂q(N)

∣∣∣∣
q(i−1)=Qi; q(N)=A

= PN (Qi,A) , (1.38)

where the existence (locally) of A(Qi, PN ) is justified by the implicit function theorem.

It is now possible to write the Ostrogradski Hamiltonian as obtained by a Legendre
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transformation:

H ≡
N∑
i=1

Piq
(i) − L

= P1Q2 + P2Q3 + ...+ PN−1QN + PNA− L (Q1, ..., QN ,A) . (1.39)

We can immediately observe that the Hamiltonian above is linear in P1, P2, ..., PN−1 and

hence, being not bounded from below, it is obviously unstable.

Notice that GR is not plagued by such instability because its Lagrangian is linear in the

second-order derivatives of the metric, then it violates the non-degeneracy assumption.

This is one way to avoid the Ostrogradski instability, i.e. by considering a degenerate

Lagrangian. However there is also another way to escape such instability, which is e.g.

the case of theories whose action is a general function of the Ricci scalar (i.e. f(R)

theories). In fact these theories, which belong to the most general class of higher-order

theories, can be re-written as second-order derivative theories with an extra scalar field,

as we shall see in the next Section. Theories for which this is possible obviously evade

the Ostrogradski instability as well.

1.4.1 The Exception: f(R) Gravity Theories

Let us consider the theories coming from a straightforward generalization of the GR

action, that is by replacing the Ricci scalar R with a generic function f(R):

S =
1

16πGN

∫
d4x
√
−g f(R) + SM [gµν , ψM ] . (1.40)

These theories, referred to as f(R) gravity theories (see Ref. [78] and references therein),

generically lead to higher-order field equations that can be written as follows:

f ′(R)Rµν −
1

2
f(R)gµν − [∇µ∇ν − gµν�] f ′(R) = 8πGN Tµν , (1.41)

where the prime indicates differentiation with respect to the argument. It is straight-

forward to see from the equation above that these theories involve up to fourth-order

derivatives of the metric, then it seems that they naturally fall in the class of theories

plagued by Ostrogradski instability. Nevertheless, as already anticipated in the previous

Section, this is not the case.

If we introduce an extra field χ, it is possible to write the following dynamically equivalent

action

S =
1

16πGN

∫
d4x
√
−g
[
f(χ) + f ′(χ)(R− χ)

]
+ SM [gµν , ψM ] . (1.42)
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Taking its variation with respect to χ leads to

f ′′(χ)(R− χ) = 0. (1.43)

If f ′′(χ) 6= 0, then χ = R, and the original action (1.40) is indeed recovered.

Through the redefinition of the field χ by φ = f ′(χ), and by defining

V (φ) = χ(φ)φ− f(χ(φ)) , (1.44)

one can rewrite the action (1.42) as

S =
1

16πGN

∫
d4x
√
−g [φR− V (φ)] + SM [gµν , ψM ] . (1.45)

The action above is known as the Jordan frame representation of the action of a Brans–

Dicke theory with Brans–Dicke parameter ω0 = 0.

The field equations coming from the variation of this action with respect to the metric

and the field φ are respectively

Gµν =
8πGN
φ

Tµν −
1

2φ
gµνV (φ) +

1

φ
(∇µ∇ν − gµν�)φ , (1.46a)

R = V ′(φ) . (1.46b)

We can already note that the equations above are second-order field equations both for

the metric and the scalar field.

By taking the trace of Eq. (1.46a), and using it to eliminate R from Eq. (1.46b), one

gets

3�φ+ 2V (φ)− φV ′(φ) = 8πGN T , (1.47)

which is the dynamical equation for φ.

Thus, having started with the action (1.40) leading to fourth-order field equations, we

have ended up with the second-order theory (1.45), containing an extra propagating

scalar degree of freedom. These theories then obviously evade the Ostrogradski instabili-

ty.
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1.5 Beyond General Relativity: Breaking Lorentz Invarian-

ce or Adding Extra Fields?

1.5.1 Higher-Dimensional Spacetimes

How can we modify GR still preserving second-order field equations? Since Lovelock’s

theorem singles out GR as the only theory with second-order field equations for the

metric tensor, in order to circumvent it we necessarily need to violate one of its implicit

assumptions. The first possibility consists in considering more than four dimensions,

though until now we have experimentally detected only four. However, one can expect

that for any higher-dimensional theory, a four-dimensional effective field theory can be

derived at low-energy. Going beyond the four-dimensional effective description will be

a necessary step to fully explain all the characteristics of the theory, and, first of all,

to understand its theoretical motivations. Nevertheless, the four-dimensional effective

description should anyway be adequate to study the low-energy phenomenology and

viability. Since we are only interested in the phenomenological description at low-energy

as given by viable theories in four-dimensions, we shall not consider explicitly higher-

dimensional theories.

1.5.2 Giving Up Diffeomorphism Invariance

Another route we can undertake consists in giving up diffeomorphism invariance, which

generically leads to extra propagating degrees of freedom because of less symmetry. In

fact it is well known that symmetries can be restored by introducing extra fields, and this

procedure is known as the Stueckelberg mechanism (see Ref. [79] for a review). Hence, one

can think of theories that give up diffeomorphism invariance as diffeomorphism invariant

theories with extra Stueckelberg fields. This scenario obviously implies the necessity to

build up specific mechanisms able to hide these extra fields in regimes where GR is well

tested and no extra degrees of freedom have been detected so far. At the same time they

should allow them to exist and lead to different phenomenology in other regimes.

In the next Chapters we will extensively discuss about this possibility. We will consider

theories built within a preferred spacetime foliation, where Lorentz symmetry is broken at

very high energies and the Lorentz violations are instead taken under the experimental

bounds at enough small energies. Moreover it will be shown how these theories are

interestingly able to bridge classical gravity towards a possible quantum renormalizable

theory at Planckian energy scales.
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1.5.3 Adding Extra Fields

The last possibility one can take into account in order to circumvent Lovelock’s theorem,

is to add extra dynamical fields in the gravitational action while preserving diffeomor-

phism invariance. Notice that, instead of adding explicitly extra fields, one may also

consider theories whose field equations are higher than second-order partial differential

equations. This would generically correspond to introducing more degrees of freedom,

as it has been shown for example in the case of f(R) gravity.

In the last decades a plethora of such theories has been proposed in the attempt to give

answers to the most pressing unsolved problems, both at very small and very large energy

scales. In this respect Horndeski, in 1974, found the most general class of theories with

second-order field equations for the metric tensor and an extra scalar field [80]. This

work has been resurrected only some years ago in Ref. [11], and has attracted a lot of

attention, leading to a very quick proliferation of publications about the phenomenology

of this most general class of second-order theories. However, the necessity to tame the

behaviour of the extra fields at low-energies still persists in these theories. This is the

reason why we will finally take into account the possibility to modify the gravitational

action by adding extra fields that are non-dynamical, then called auxiliary fields. After

having implemented such hypothesis, we will study in a very generic fashion the modifi-

cations to the field equations of GR arising once the extra fields are eliminated in favour

of the metric, the matter fields and their derivatives.

In the next Chapter we will start discussing about the former route. We will first show

how Lorentz symmetry breaking can lead to a modification of the graviton propagator,

so rendering the theory power-counting renormalizable. Then we will consider specific

theories which have been proposed so far, Hořava gravity and Einstein-Æther theory,

studying their features and the existing relation between them.
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Hořava Gravity: A Bridge between

Gravity and Quantum Field Theory

2.1 Lorentz Invariance Breaking as Field Theory Regulator

We have already mentioned that theories including invariants quadratic in the curvature

are renormalizable but nevertheless contain ghost degrees of freedom, and are therefore

not unitary. And we have also stated that this is due to the presence of higher-order

time derivatives.

So, one can think to modify the graviton propagator adding only higher-order spatial

derivatives without adding higher-order time derivatives. It is conceivable that this could

lead to a theory with improved ultraviolet (UV) behaviour without the problems related

to the presence of higher-order time derivatives. This procedure intrinsically requires

to treat space and time on different footing and to inevitably break Lorentz invariance.

Nevertheless, because the modified behaviour of the propagator is strictly needed in the

UV where Lorentz symmetry is explicitly broken, one has to ask that Lorentz invariance

is recovered in the infrared (IR), or at least that Lorentz violations in the IR stay below

current experimental bounds.

Let us now consider the simple example of a scalar field theory that explicitly violates

Lorentz symmetry [81, 82]. The theory is said to be “power-counting renormalizable” if

all of its interaction terms scale like momentum to some non-positive power, as in this

case Feynman diagrams are expected to be convergent or have at most a logarithmic

divergence.

We take the scalar field action to be of the following form

Sφ =

∫
dtdxd

[
φ̇2 −

z∑
m=1

amφ(−∆)mφ+

N∑
n=1

bnφ
n

]
, (2.1)

17
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where ˙≡ ∂/∂t, ∆ ≡ ~∇2 is the Laplacian, z and N are positive integers, am and bn are

coupling constants of suitable dimensions.

Moreover the theory is constructed such that space and time scale anisotropically, that

is, measuring canonical dimensions of all objects in the units of spatial momentum k,

space and time coordinates have the following dimensions:

[dt] = [k]−z , [dx] = [k]−1 . (2.2)

In accord with the requirement that the action is dimensionless, we are looking for

the conditions to impose on the constants appearing in the action, so that the theory

results to be power-counting renormalizable. The dimensions for the scalar field are then

immediately derived to be

[φ] = [k](d−z)/2 . (2.3)

Since the action has to be dimensionless, requiring that the interaction terms scale like

momentum to some non-positive power is equivalent to the requirement that the cou-

plings of these interaction terms scale like momentum to some non-negative power.

It can be easily verified that

[am] = [k]2(z−m) , [bn] = [k]d+z−n(d−z)/2 . (2.4)

It follows that am has non-negative momentum dimension for all values of m, while bn
for z ≥ d has non-negative momentum dimensions for all values of n. Moreover, if z < d,

bn has non-negative momentum dimension only when n ≤ [2(d+ z)]/(d− z).
In general the dispersion relation one gets for such a Lorentz violating field theory is of

the following form

ω2 = m2 + k2 +
z∑

n=2

an
k2n

K2n−2
, (2.5)

where K is the momentum-scale suppressing the higher-order operators. The resulting

Quantum Field Theory (QFT) propagator is then

G(ω, k) =
1

ω2 − [m2 + k2 +
∑z

n=2 ank
2n/K2n−2]

. (2.6)

The very rapid fall-off as k →∞ improves the behaviour of the integrals one encounters

in the QFT Feynman diagram calculations.

In any (d+1)-dimensional scalar QFT with z = d, with arbitrary polynomial self-interac-

tions of the scalar field, it is found that this is indeed enough to keep all the Feynman

diagrams finite [81, 83]. We have considered the simple example of a scalar field. But

what happens if instead of a scalar field we wanted to consider a graviton?

In the case of the scalar field, momenta did not enter self-interaction vertices, while
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the graviton self-interaction vertices contain up to 2z factors of momentum (spatial

derivatives) [81]. This introduces some further complication, but it is not enough to

spoil the power-counting renormalizability of the theory as long as z ≥ d, i.e. as long as

the action contains operators with at least 2d spatial derivatives [84].

Although renormalizability in the gravity sector is still an open issue, power-counting

arguments are a strong indication that a gravity theory is indeed renormalizable.

2.2 A Quantum Field Theory of Gravity: Hořava Gravity

2.2.1 Hořava Gravity

In 2009 Hořava put all these arguments in a rigorous framework making it possible to

test whether they are indeed valid for gravity theories. The resulting theory has been

referred to as Hořava gravity [85, 86].

The theory is naturally built within the framework of an Arnowitt–Deser–Misner (ADM)

decomposition,

ds2 = N2dt2 − hij(dxi +N idt)(dxj +N jdt), (2.7)

where N is the lapse, Ni the shift and hij the induced metric on the spacelike hypersur-

faces. Using the ADM decomposition is indeed very natural because of the fundamentally

non-relativistic nature of the theory we are constructing.

The theory is built such as to be compatible with the anisotropic scaling of the coordi-

nates (see Eq. (2.2)). In the case of general z, one can postulate the scaling dimensions

of the fundamental fields to be as follows:

[hij ] = [1] ,
[
N i
]

= [k]z−1 , [N ] = [1] . (2.8)

Since the time dimension plays a privileged role in the anisotropically scaling structure

of the theory, the latter encodes the special role of time by assuming that spacetime

is foliated by a set of constant time hypersurfaces. So, the action of Hořava gravity

is not invariant under diffeomorphisms, but is instead invariant under the subclass of

diffeomorphisms that leave the foliation intact, that is

xi → x̃i(t, xj) , t→ t̃(t) . (2.9)

These coordinate transformations are referred to as foliation-preserving diffeomorphisms.

The most general action of the theory can be written as

SH = SK − SV . (2.10)
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SK is the kinetic term, which is given by the most general expression quadratic in the first-

order time derivatives ḣij of the spatial metric, and invariant under foliation-preserving

diffeomorphisms. It is found to be

SK =
2

k2

∫
dtd3x

√
hN

(
KijK

ij − λK2
)

=
2

k2

∫
dtd3x

√
hNKijG

ijklKkl , (2.11)

where k is a coupling of suitable dimensions, λ is a dimensionless coupling, Kij is the

extrinsic curvature of the spacelike hypersurfaces given by

Kij =
1

2N
(ġij −∇iNj −∇jNi) , (2.12)

K ≡ hijKij is the trace of the extrinsic curvature, ∇i is the covariant derivative associa-
ted with hij , and

Gijkl =
1

2

(
hikhjl + hilhjk

)
− λhijhkl , (2.13)

is the generalized DeWitt “metric on the space of metrics”.

Notice that in GR the invariance under all spacetime diffeomorphisms forces λ = 1, while

here λ is a running coupling constant.

SV is the potential term, which contains all the terms in the action which do not contain

time derivatives but depend on spatial derivatives, and are compatible with the subclass

of diffeomorphisms that leave the foliation intact. One can write it as

SV =
k2

8

∫
dtd3x

√
hN V [hij , N ] . (2.14)

In order to pin down the theory fully, one needs to specify V [hij , N ]. In principle all the

terms compatible with the symmetry of the theory and built with hijand N would have

to be taken into account in V . Moreover the requirement of power-counting renormal-

izability leads to z ≥ d, implying, for d = 3, the presence of operators with at least six

spatial derivatives in the potential term.

This leads to a very large number of terms and an equally large number of independent

couplings (order of magnitude ∼ 102) which are compatible with the symmetry of the

theory and can be therefore included in the potential term. Let us list for example the

sort of terms one can include in the potential [87]:

R, aia
i, RijR

ij , R2, R∇iai, ai∆ai, (∇iRjk)2, (∇iR)2, ∆R∇iai, ai∆2ai, ... , (2.15)

where ai ≡ ∂ilnN , and all the curvature invariants are understood to be the ones induced

on the three-dimensional spacelike hypersurfaces.
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2.2.2 Einstein-Æther Theory

There is also another well studied example of Lorentz-violating gravitational theory.

This theory, referred to as Einstein-Æther theory (Æ-theory) [88, 89], is the most gene-

ral theory one can construct by coupling a dynamical unit timelike vector field to the

metric, with the requirement that the field equations are second-order in derivatives.

The resulting theory is manifestly diffeomorphism invariant and the unit timelike vector

field uα, referred to as the æther, breaks local boost but not local rotation symmetries.

Then Lorentz invariance is explicitly broken and the æther defines a preferred foliation

in every solution.

The most general action for Æ-theory in vacuum, discarding boundary terms, is

Sæ =
1

16πGæ

∫
d4x
√
−g (−R+ Læ) , (2.16)

where Gæ is a coupling constant with dimensions of a length squared, R is the four-

dimensional Ricci scalar of the spacetime metric gµν , g is the determinant of the metric

and

Læ = −Mαβµν∇αuµ∇βuν , (2.17)

with Mαβµν defined as

Mαβµν = c1g
αβgµν + c2g

αµgβν + c3g
ανgβµ + c4u

αuβgµν . (2.18)

The ci are dimensionless coupling constants, and uν is constrained to be a unit timelike

vector, that is

gµνu
µuν = 1 . (2.19)

The constraint on the æther can also be explicitly imposed introducing a Lagrange

multiplier term α (gµνu
µuν − 1) in the action (2.16). Moreover, in the Newtonian limit

it is found [90] that the constant Gæ is related to Newton’s constant GN by

GN =
Gæ

1− (c1 + c4)/2
. (2.20)

Notice that, since the covariant derivative operator involves derivatives of the metric

through the connection components, and since the unit vector cannot vanish anywhere,

the terms quadratic in ∇u also introduce modifications to the kinetic term for the metric.

Varying the action (2.16) with respect to the metric yields

Gαβ = Tæ
αβ , (2.21)
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where Tæ
αβ denotes the æther stress-energy tensor

Tæ
αβ = ∇µ

[
J µ

(α uβ) − J
µ
(αuβ) − J(αβ)u

µ
]

+ c1 [(∇µuα)(∇µuβ)− (∇αuµ)(∇βuµ)]

+
[
uν(∇µJµν)− c4u̇

2
]
uαuβ + c4u̇αu̇β −

1

2
Lægαβ , (2.22)

where

Jαµ = Mαβ
µν∇βuµ , (2.23)

and u̇ν = uµ∇µuν . Finally, variation with respect to uµ yields

(∇αJαν − c4u̇α∇νuα) (gµν − uµuν) = 0 . (2.24)

An interesting property of Æ-theory is that the action is formally invariant under the

following redefinitions of the metric and the æther:

g′αβ = gαβ + (σ − 1)uαuβ ,

u′α =
1√
σ
uα . (2.25)

This redefinition was first considered in Ref. [91], and under such transformation the

action in terms of the primed fields retains its form taking on the coefficients c′i that are

related to the initial ci through the following relations:

c′14 = c14 , (2.26a)

c′123 = σc123 , (2.26b)

c′13 − 1 = σ(c13 − 1) , (2.26c)

c′1 − c′3 − 1 = σ−1(c1 − c3 − 1) , (2.26d)

where cij = ci+cj , cijk = ci+cj+ck, and the analogous holds for the primed coefficients.

In the next Section we will see that Hořava gravity and Æ-theory are equivalent in the

IR limit if the æther is restricted to be hypersurface-orthogonal.

2.2.3 Relation Between Hořava Gravity and Æ-Theory

The action of Hořava gravity in four dimensions,1 can be generically written as follows:

SH =
1

16πGH

∫
dTd3x

√
hN

[
L2 +

1

M2
4

L4 +
1

M4
6

L6

]
, (2.27)

1To write the action we assume there are no parity-violating terms.
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where GH is a coupling constant with dimensions of a length squared, T is the preferred

time,

L2 = KijK
ij − λK2 + ξR+ η aia

i , (2.28)

L4 and L6 collectively denote all possible terms invariant under diffeomorphisms that

leave the foliation untouched with respectively 4th- and 6th-order spatial derivatives,

and M4 and M6 are the scales suppressing the corresponding operators, which do not

coincide a priori with Mpl.

Let us now take into account the IR limit of the theory, that is only the L2 part (2.28)

of the action (2.27), which contains all the operators up to second-order in derivatives.

It has been shown in Ref. [92] that this action is equivalent to the Æ-theory one, once

the æther is restricted to be hypersurface-orthogonal to the constant-T hypersurfaces,

i.e. it can be written as

uα =
∂αT√

gµν∂µT∂νT
, (2.29)

where the unit constraint on the æther has been taken into account.

To show this, let us start with the action (2.27) of Æ-theory. By giving up part of

the gauge freedom and choosing T as the time coordinate, the æther takes the form

uµ = Nδtµ. Decomposing as usual the volume element it follows

√
−g = N

√
h , (2.30)

while decomposing the covariant derivative of uµ yields

∇µuν = Kµν + uµaν , (2.31)

where Kµν is the extrinsic curvature of the surfaces orthogonal to uν , and aν ≡ uµ∇µuν
is the acceleration of the orthogonal curves. Moreover, the extrinsic curvature and the

acceleration satisfy the following conditions:

Kµνu
ν = 0 , aνu

ν = 0 , (2.32)

and they do not have time-components in the preferred foliation.

Using the spatial coordinates xi, the acceleration can be written as ai = ∂ilnN . Then

the lagrangian Læ takes the form

Læ = −c13KijK
ij − c2K

2 + c14aia
i , (2.33)

and, furthermore, the term −R in the action (2.16) can be decomposed as usual

−R = KijK
ij −K2 + (3)R . (2.34)
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Finally, using Eqs. (2.30)-(2.33)-(2.34), the action (2.16) reduces to that of Hořava

gravity (2.27) in the IR limit, with the following correspondence of parameters:

GH
Gæ

= ξ =
1

1− c13
,

λ

ξ
= 1 + c2 ,

η

ξ
= c14 . (2.35)

Æ-theory is well understood and perturbations have been fully studied [89, 93]. Besides

the spin-2 graviton, Æ-theory also propagates spin-1 and spin-0 degrees of freedom. If

hypersurface-orthogonality is imposed at the level of the variation, one gets the IR limit

of Hořava gravity written in a covariant fashion. The spin-1 degree of freedom cannot

still be there because the æther is now written as the gradient of the scalar field T .

The latter can be thought of as the Stueckelberg field one needs to introduce in order

to restore full diffeomorphism invariance in Hořava gravity. In the covariant picture, T

becomes an explicit extra degree of freedom – the scalar mode. It is forced to always have

a non-trivial configuration, as is obvious from Eq. (2.29), and it defines the preferred

foliation in every solution. If one considers the theory written in the preferred foliation,

as in Eq. (2.27), then the scalar degree of freedom is no longer explicit but its existence

can be expected because the theory has now less symmetry, as it is invariant under

foliation-preserving diffeomorphisms only.

It is also interesting to notice that we started with the action (2.16), where the 4 coef-

ficients c1,2,3,4 were present, and we ended up with the action (2.33) with only three

combinations of these coefficients. This is due to the fact that when the æther is restricted

to be hypersurface-orthogonal, there is a relation between three of the terms in the

Lagrangian (2.17). In fact, by defining the dual vector

ωα = εαβµνuβ∇µuν , (2.36)

one finds the identity

ωαω
α = −2(∇βuµ)(∇[βuµ]) + (uµ∇µuβ)(uν∇νuβ) . (2.37)

Since for an hypersurface-orthogonal æther ωα identically vanishes, then the c1, the c3

or the c4 term in the Lagrangian (2.16) can be written in terms of the other two, leading

to three independent combinations of parameters only, as in Eq. (2.33).

2.2.4 Perturbative Dynamics: Degrees of Freedom and Low-Energy
Behaviour

Hořava gravity propagates a spin-2 mode (the usual graviton), and as mentioned earlier,

since less symmetry generically means more degrees of freedom, also an extra scalar
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degree of freedom.

Here we briefly discuss the IR behaviour of the spin-2 and spin-0 gravitons in the most

general version of Hořava gravity, while in the next Chapter we will present extensively

the low-energy dynamics of both the degrees of freedom in some restricted version of the

theory.

One can study the linearized dynamics of the theory at low-energies, by perturbing

the IR part of the action (2.27), i.e. the Lagrangian (2.28), at quadratic order around

Minkowski space-time. It is found that the theory describes healthy excitations provided

that two conditions are satisfied.

First, both the spin-2 and spin-0 gravitons must avoid exponential instabilities so as to

be classically stable. Furthermore, to avoid the presence of ghosts one must require that

their kinetic terms have the same sign. Both requests are satisfied for [87]

λ <
1

3
or λ > 1 , and 0 < η < 2ξ . (2.38)

Since there is a non-empty region of the parameter space where it is possible to satisfy the

conditions above, it follows that the theory describes healthy excitations at low-energies.

2.2.4.1 Strong Coupling

The results discussed in the previous Section are obtained considering the linearized dy-

namics, as described by the part of the IR action quadratic in perturbations. Going to

the next order in perturbation analysis, as given by the cubic interactions, the IR part

of the action (2.27) exhibits strong-coupling for the scalar mode [94–96].

The strong-coupling scale Msc is parametrically smaller than Mpl, and its size is con-

trolled by the parameters λ, ξ and η. Since power-counting renormalizability arguments

are based on the assumption that a perturbative treatment can be used to arbitrarily

high-energies, strong coupling must be avoided. As proposed in Ref. [97], this require-

ment can be satisfied if

Msc > M? , (2.39)

whereM? ∼M4 ∼M6 is the mass scale suppressing the higher-order derivative operators.

One may be tempted to call M? the Lorentz-breaking scale, but the theory exhibits

Lorentz-violations at all scales, as L2 already contains Lorentz-violating operators.

Considering Cherenkov radiation constraints, one gets η ∼ |λ−1|, and the strong coupling

scale is found to be Msc ∼
√
ηMpl ∼

√
|λ− 1|Mpl [95, 96]. Since absence of preferred

frame effects in the Solar system observations requires η, |λ− 1| . 10−7 [98], the strong

coupling scale will be much lower than the Planck scale, i.e. Msc < 1016 GeV.

An important consequence of the effective constraint onM? coming from the requirement
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to avoid strong coupling (first pointed out in Ref. [95]), and of the upper bound on Msc,

is that now M? becomes bound from both above and below.

The lower-bound on M? strongly depends on what observations one intends to use.

Considering the mildest constraints coming from purely gravity-related observations,

one would need M? & few meV for Lorentz violations to have remained undetected in

sub-mm precision tests.

Much more stringent constraints can be obtained if one considers that Lorentz violations

in gravity will percolate the matter sector. However, a strong constraint coming from

synchrotron radiation in the Crab nebula has been recently derived in Ref. [99], which

suffices to exclude the possibility that the scale suppressing the higher-order operators is

of the same order of magnitude as the Lorentz breaking scale in the matter sector. This

highlights the need for a mechanism that suppresses the percolation of Lorentz violations

in the matter sector and is effective for higher-order operators as well (see Ref. [100] and

references therein).

Moreover, if strong coupling is not to be a problem, now one has also an upper bound

for M? . The combined set of constraints would leave a very large window open for

M? within which Hořava gravity avoids strong coupling without exhibiting detectable

Lorentz violations, at least with current experimental accuracy.



Chapter 3

Restricted Versions of Hořava

Gravity

In the previous Chapter we have discussed how to construct the most general action

of Hořava gravity. We have pointed out that it contains a very large number of terms

compatible with the symmetry of the theory, then it seems to be not tractable.

In this Chapter we will discuss two great simplifications, called respectively “projectabili-

ty” and “detailed balance”, which have been proposed in order to limit the proliferation

of terms present in the full theory.

3.1 Projectable Version

Since the most general action of Hořava gravity contains a very large number of terms,

in proposing the theory [85, 86], Hořava imposed a restriction called projectability, which

sums up to the requirement that the lapse is just a function of time, i.e. N = N(t), and

then it is constant throughout each leaf of the foliation.

There is no fundamental principle behind such an assumption. The main motivation

for considering it was that under this assumption one has enough gauge freedom to set

N = 1, as in GR. The same cannot be done without projectability, as the symmetry of

the action allows only space-independent time reparametrizations.

Once projectability is imposed the number of invariants one can include in the potential

is drastically reduced, because now it is no longer possible to use ai = ∂ilnN in order

to construct invariants under foliation-preserving diffeomorphisms. Then the potential

will only depend on the metric and its spatial derivatives and this means that the action

should include all of the curvature invariants constructed with hij and its spatial deriva-

tives (up to six), so as to guarantee power-counting renormalizability. Moreover when

27
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N = N(t) there is another simplification. In fact N can now be pulled out of the integral

over space, thus various invariants constructed with just the metric become related by

total divergences.

The most general action one can write is the following [101, 102]:

Sp =
M2

pl

2

∫
d3xdt

√
hN

[
KijKij − λK2 − d0M

2
pl − d1R− d2M

−2
pl R2 − d3M

−2
pl RijR

ij

−d4M
−4
pl R3 − d5M

−4
pl R(RijR

ij)− d6M
−4
pl RijR

j
kR

k
i − d7M

−4
pl R∇2R

−d8M
−4
pl ∇iRjk∇

iRjk
]
, (3.1)

where di are dimensionless couplings, and d0 controls the value of the (bare) cosmological

constant term.

In absence of matter it is possible to rescale the coordinates in such a way to set d1 = −1,

which is the value it has in GR. Also note that in the action above parity violating terms

have been omitted. We are finally left with 9 free couplings which can be used to tune

accordingly the scales which suppress the higher-order operators.

As we have already discussed, the theory is not fully diffeomorphism invariant, so we

expect that breaking the full diffeomorphism group gives rise to extra propagating degrees

of freedom other than the usual spin-2 graviton. This is indeed the case, and one finds

that the theory propagates an extra scalar degree of freedom.

3.1.1 Dynamics and Low-Energy Behaviour

Let us now discuss the perturbations in order to study the low-energy dynamics of the

theory. Discarding for simplicity the cosmological constant term, one can use flat space

as a suitable background. Then, considering linearized perturbations around flat space

one has

hij = δij + ε pij , Ni = 0 + ε ni , N = 1 + εN(t) . (3.2)

It is useful to define

Pij ≡ pij − λ δijp , (3.3)

where p = δijpij . Then, by adopting the gauge-fixing

∂ipij − λ∂jp = 0 , (3.4)

Pij becomes transverse,

∂iPij = 0 . (3.5)
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In order to separate the individual physical modes, it is possible to decompose Pij into

the transverse traceless part P̃ij and the trace part P :

Pij = P̃ij +
1

2

(
δij −

∂i∂j
∂2

)
P , (3.6)

where

P̃ ii = 0 , ∂iP̃ij = 0 , P = P ii . (3.7)

Then the spin-2 graviton is found to satisfy the following modified dispersion relation

¨̃
P ij = −

[
d1∂

2 + d3M
−2
pl ∂

4 + d8M
−4
pl ∂

6
]
P̃ij . (3.8)

In order to guarantee the stability of the spin-2 graviton at low-energy we have to require

that d1 is negative, as
√
−d1 determines the speed s

(p)
2 of low-energy spin-2 gravitons

[86, 101, 102]. We have already mentioned that, as long as we have not coupled matter

to the theory, we are free to rescale the coordinates in order to set d1 = −1. In this way

we are making the speed s(p)
2 = 1.

Moreover, notice that the couplings d3 and d8 control the scale at which the higher-order

Lorentz-violating terms become important.

As already mentioned there is also a spin-0 graviton which propagates besides the usual

spin-2 graviton. It is found [102] that the linearized dynamics, described by the quadratic

perturbations for the extra scalar degree of freedom, is governed by the action

S(2)
p = −M2

pl

∫
d3xdt

[
1

c2
p

ṗ2 + p∂2p+
8d2 + 3d3

M2
pl

p∂4p− 8d7 − 3d8

M4
pl

p∂6p

]
, (3.9)

where

c2
p =

1− λ
3λ− 1

. (3.10)

Notice that above we have used p instead of P , which by means of Eq. (3.3) are related

as

P = (1− 3λ) p . (3.11)

Given the overall minus sign in Eq. (3.9), as the sign of the kinetic term for the spin-

2 graviton is positive, the scalar mode is a ghost whenever 1/3 < λ < 1, while it is

classically unstable when λ < 1/3 and λ > 1 [102]. It follows that these two conditions

cannot be evaded concurrently, so the theory is pathological at low-energies unless λ is

sufficiently close to 1.
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3.1.2 Strong Coupling

Furthermore, when the linearized action at third-order in the perturbations is taken into

account, such a perturbative treatment breaks down when λ → 1 and the scalar mode

gets strongly coupled [94, 103, 104].

To see how this happens we have to consider the action for the cubic interactions of h,

which is found to be

S(3)
p = M2

pl

∫
dtd3x

{
p(∂p)2 − 2

c4
p

ṗ∂ip
∂i

∂2
ṗ+

3

2

[
1

c4
p

p

(
∂i∂j
∂2

ṗ

)2

−
(2c2

p + 1)

c4
p

pṗ2

]}
.

(3.12)

Notice that in writing this action we have considered only the cubic interactions coming

from the lower-order operators. By performing the redefinitions t̄ = |ch|t and h̄ =

c
−1/2
h Mpl h, which canonically renormalize the lower-order part of the action (3.9), the

cubic action reads

S(3)
p =

1

|cp|3/2Mpl

∫
dt̄d3x

{
c2
p p̄(∂p̄)

2 − 2p̄′∂ip̄
∂i

∂2
p̄′ +

3

2

[
p̄

(
∂i∂j
∂2

p̄′
)2

− (2c2
p + 1)p̄(p̄′)2

]}
.

(3.13)

where ′ = ∂/∂t̄. As we can see from the equation above, the cubic interactions of the

spin-0 graviton are suppressed with respect to the quadratic ones by the scale |cp|3/2Mpl.

Therefore, the theory becomes strongly coupled at the scale

Msc = |cp|3/2Mpl . (3.14)

Given that λ has to approach 1 in order to evade the stability constraints discussed

above, such mass scale results to be phenomenologically unacceptably low (see Refs. [94,

103, 104]), as we know that we can treat gravity perturbatively at enough low-energies.

Furthermore, there is also the issue of renormalizability: the arguments for power-

counting renormalizability are based on the validity of the perturbative treatment at

all energies. If there is strong coupling such arguments simply fail. In Refs. [105–107]

a different position has been advocated regarding whether the strong coupling of the

scalar graviton in the projectable case is truly a problem or an opportunity: it has been

claimed that non-perturbative effects, exactly because of the strong coupling, lead to

phenomenology very close to that of GR via the Vainshtein effect [108].

At the same time, strong coupling might lead to rapid running of the coupling constant

λ and act as a remedy for the instability of the scalar mode.

A possible shortcoming in this way of arguing might be that the arguments used for

power-counting renormalizability are essentially based upon the assumption that pertur-

bative treatment does not break down. In Ref. [107], it has been claimed that it is enough

to solve the momentum constraint non-perturbatively, in which case the power-counting
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renormalizability arguments are still applicable.

3.2 Detailed Balance with Projectability

3.2.1 Superpotential and Action

Working in the projectable version of the theory whereN = N(t), Hořava also imposed an

additional symmetry to the theory called detailed balance [85, 86], inspired by condensed

matter systems, which sums up to the requirement that V should be derivable from a

superpotential W as follows:

V = EijGijklEkl . (3.15)

Eij is given in term of a superpotential W as

Eij =
1√
h

δW

δhij
, (3.16)

Gijkl is the inverse of the DeWitt metric such that

GijmnGmnkl =
1

2

(
δki δ

l
j + δliδ

k
j

)
, (3.17)

and it explicitly reads

Gijkl =
1

2
(hikhjl + hilhjk) +

λ

1− 3λ
hijhkl . (3.18)

The superpotential is supposed to contain all of the possible terms up to a given or-

der in derivatives which are invariant under the symmetry of the theory, i.e. invariant

under foliation-preserving diffeomorphisms. The order in derivatives is dictated by the

requirement that the theory be power-counting renormalizable. Minimally this requires

sixth-order spatial derivatives in the action, which translates to third-order spatial deriva-

tives in the superpotential.

The most general superpotential which satisfies these requirements is

W = µ

∫
d3x
√
h (R− 2ΛW ) +

1

w2

∫
ω3(Γ) , (3.19)

where µ, ΛW and w are couplings of suitable dimensions, and

ω3(Γ) = Tr
(

Γ ∧ dΓ +
2

3
Γ ∧ Γ ∧ Γ

)
≡ εijk

(
Γmi`∂jΓ

`
km +

2

3
Γni`Γ

`
jmΓmkn

)
d3x (3.20)
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is the gravitational Chern-Simons term. The variation with respect to hij of the last

term in Eq. (3.19) yields a contribution to the field equations proportional to the Cotton

tensor Cij which is defined as

Cij ≡ εik`∇k
(
Rj` −

1

4
Rδj`

)
. (3.21)

The Cotton tensor enjoys several symmetry properties: it is symmetric and trace-

less, transverse (i.e. covariantly conserved), and vanishes for conformally flat three-

dimensional spaces.

Using Eqs. (3.15)-(3.16) and the superpotential W in Eq. (3.19), the corresponding

potential V is found to be

V = − µ2

(1− 3λ)

(
1− 4λ

4
R2 + ΛWR− 3Λ2

W

)
+ µ2RijR

ij − 4µ

w2
εijkRil∇jRlk +

4

w4
CijC

ij .

(3.22)

This potential gives rise to the following full action for Hořava gravity, where both

projectability and detailed balance have been implemented:

SH =
2

k2

∫
dtd3x

√
hN

[(
KijK

ij − λK2
)

+
k4µ2

16(1− 3λ)

(
1− 4λ

4
R2 + ΛWR− 3Λ2

W

)
−k

4µ2

16
RijR

ij +
k4µ

4w2
εijkRil∇jRlk −

k4

4w4
CijC

ij

]
. (3.23)

3.2.2 Known Problems and Potential Solutions

The version of the theory with detailed balance and projectability is known to be plagued

by the following shortcomings:

1. There is a parity violating term, namely, the term which is fifth-order in derivatives.

The presence of this term in the action (3.23) is inevitable if the latter has to contain

sixth-order derivatives and come from a superpotential as defined above [101, 102].

2. The only sixth-order term is the square of the Cotton tensor, which vanishes for

conformally flat three-dimensional spaces and, as such, it does not contribute to

the propagator of the scalar graviton that the theory has. Hence, the scalar mode

does not satisfy a sixth-order dispersion relation and is not power-counting renor-

malizable, unlike the spin-2 mode. This spoils the overall UV properties of the

theory [86].

3. The IR behaviour of the scalar mode is plagued by instabilities and strong coupling

at unacceptably low energies [94, 103].
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4. The (bare) cosmological constant has the opposite sign from the observed value

[101, 102].

5. The (bare) cosmological constant has to be large, much larger than the observed

value [109].

The second problem had been already noticed by Hořava in Ref. [86] and a resolution

has been proposed there, that is to add to the superpotential fourth-order terms. These

would lead to eighth-order (super-renormalizable) terms in the action, as well as new

sixth and lower-order operators. These terms would contribute to the propagator of the

scalar mode and power-counting renormalizability would be restored.

In fact there are only two fourth-order terms one could add to the superpotential, RijRij
and R2. That is, the improvement in the UV behaviour of the scalar graviton comes at

a relatively low cost in terms of proliferating the couplings.1

Actually, once one has added these terms to cure the behaviour of the scalar graviton, a

natural resolution to problem 1 emerges: imposing parity invariance explicitly does away

with parity violating terms.

This would not allow for the presence of Cij in Eij , but the renormalizability of the

spin-2 graviton is not compromised since there would be both sixth and eighth-order

terms in V . Of course, one might be content with parity violations provided that they

come at high enough energies to have remained undetectable so far. If this is the case,

provided that the scale of parity violation can be tuned accordingly, problem 1 was not

a problem in the first place.

Problem 3 is not one with an easy remedy. On the other hand, this is not actually a

problem specific to detailed balance. In fact, as already discussed in Sec. (3.1), the

most general action in Hořava gravity with projectability and without detailed balance

exhibits similar problematic behaviour when it comes to the IR dynamics of the scalar

graviton.

Therefore, we consider this problem to be related to projectability and not detailed

balance, and we will argue below, in Sec. (3.3.2), that it can be addressed successfully

in the same manner it has been addressed in the version without detailed balance, i.e.

by doing away with projectability. In other words, we will argue that one needs not

abandon detailed balance in order to resolve this issue, but projectability.

Lastly, there remain problems 4 and 5 regarding the sign and magnitude of the cosmo-

logical constant. We devote the next Section to a discussion of these problems.
1Note that terms with two time and two spatial derivatives of hij , such as (∇µK)(∇µK) appear to

be eighth-order operators with z = 3 scaling but are actually tenth-order with z = 4 scaling.
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3.2.3 The Size of the Cosmological Constant

To get a clearer picture on the various scales involved in the action (3.23), we perform

the following redefinitions of the couplings (see Refs. [110, 111]):

M2
pl =

4

k2
, M2

6 =
w2

2
M2

pl ,

M2
4 =

M4
pl

µ2
, ξ =

ΛW
(1− 3λ)M2

4

, (3.24)

where Mpl, M6 and M4 have dimensions of a mass, whereas ξ is dimensionless. After

these redefinitions the action (3.23) then takes the form

SH =
M2

pl

2

∫
dtd3x

√
hN

[
KijK

ij − λK2 + ξR− 2Λ− 1

M2
4

RijR
ij +

1− 4λ

4(1− 3λ)

1

M2
4

R2

+
2

M2
6M4

εijkRil∇jRlk −
1

M4
6

CijC
ij

]
, (3.25)

where the cosmological constant is

Λ =
3

2
ξ2(1− 3λ)M2

4 . (3.26)

Clearly GR corresponds to ξ = λ = 1 with the higher-order derivative terms being absent.

Instead of being parametrized by k, w, µ and ΛW the theory is now parametrized by

Mpl, M6, M4, and ξ (and of course λ which is the parameter in the kinetic term in both

cases).

On the other hand, the cosmological constant Λ is not a free parameter, but instead it

is fully determined by the dimensionless parameters ξ and λ and the energy scale M4,

which is the scale that suppresses both of the fourth-order operators in the action when

λ ∼ 1.

If we want the theory to be close to GR in the IR, then λ, ξ ∼ 1 to high accuracy. It is

already obvious that Λ has to be negative in this case, as has been pointed out in the

literature (e.g. [101, 102]).

Less attention has been paid to the fact that, what seems to be determining the size of

Λ is really M4. The latter will be the energy M? at which Lorentz-violating effects will

become manifest as higher-order terms in the dispersion relations.

As discussed in Sec. (2.2.4.1) there are two classes of observational constraints on Lorentz

violations that restrict the size of M? ∼M4. Using only the mildest constraints coming

from purely gravitational experiments, the value of the cosmological constant (taking

into account the M2
pl/2 overall factor in the action) would be (roughly) of the order of

10−60M4
pl. If more stringent constraints coming from matter are to be imposed this value
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will get even higher and perhaps larger than M4
pl.

Consequently, the value of the cosmological constant has to be so large that its negative

sign seems to be a secondary problem only: there is at best a 60 orders of magnitude

discrepancy between the value required by detailed balance and the observed value.

Given that this is a bare cosmological constant, were it allowed to have an arbitrarily

small yet negative value, one could just hope for it to be an irrelevant contribution to

the total cosmological constant.

Note that the vacuum energy problem, or the “old cosmological constant problem”, is

anyway still an open problem in Hořava gravity, and in a theory which proposes itself

as a UV completion of GR finding a resolution is pertinent. However, and simply for

comparison, the value of the bare cosmological constant when detailed balance is imposed,

turns out to be at best comparable to the naive estimate of the vacuum energy obtained

with the weak energy scale ΛUV ∼ 1TeV as a cut-off, as given in Eq. (1.25).

The fact that the size of the cosmological constant will be related to the size of the

energy scale suppressing the fourth-order operators has been previously pointed out in

Ref. [109] and it was used there to argue that this leads to a bare cosmological constant

that could potentially cancel out the contribution of an equally large vacuum energy.

The approach followed there was to provide a heuristic estimate for the vacuum energy

and then identify the value that M4 would have to have in order for the aforementioned

cancellation to work. This led to near-Planckian values for M4.

Here we took an orthogonal approach. We discussed the possible constraints on M4

and derived corresponding constraints on the value of the cosmological constant. Our

primary goal was to derive a rough but robust lower limit for the magnitude of the bare

cosmological constant. The reason for this is twofold. First of all there is currently no

precise and convincing argument that such a cancellation can indeed be achieved without

fine tuning. Second, the projectable theory with detailed balance is anyway plagued by

problem 3. Therefore, our main concern here was to argue beyond any doubt that the

size of the cosmological constant is indeed unacceptably large (the lower bounds we have

derived will persist in the non-projectable theory, as we will discuss shortly).

To conclude, the most important problem with the bare cosmological constant in Hořava

gravity with detailed balance is not its sign but its magnitude: it has such a large value

that, unless one is willing to allow a violation of detailed balance, some sort of self-

tuning mechanism along the lines of Ref. [109] would be the only way to achieve sensible

phenomenology.
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3.3 Detailed Balance without Projectability

We have argued above that problems 1 and 2 in the list of Sec. (3.2.2), i.e. parity

violations and the UV behaviour of the scalar mode, are not real problems, in the sense

that they have a straightforward resolution within the framework of projectable Hořava

gravity with detailed balance.

We have also shown that the main problem with the (bare) cosmological constant is

not its sign but its size. Finally, we mentioned already in Sec. (3.2.2) that we consider

problem 3, the IR behaviour of the scalar mode, to not be a problem stemming from

detailed balance but from projectability and we claimed that it can find a resolution once

the latter is abandoned, without having to abandon also the former. We provide support

for this claim below.

3.3.1 Superpotential and Action

To the best of our knowledge there does not exist in the literature a consistent imple-

mentation and consideration of detailed balance without projectability. As has been

pointed out in Ref. [87], having in mind the version of the theory without detailed balan-

ce, once projectability is abandoned one can use not only the Riemann tensor of hij and

its derivatives, but also the vector

ai = ∂ilnN , (3.27)

in order to construct invariants under foliation-preserving diffeomorphisms. In the ver-

sion of the theory without detailed balance this leads to a proliferation of terms ∼ O(102).

In fact all of these terms have to be taken into account as they would anyway be genera-

ted by radiative corrections.

On the other hand, there is, remarkably, only one term one can add to the superpotential

W in the version with detailed balance: aiai. One then has [110, 111]

W =

∫
d3x
√
h
[
µ (R− 2ΛW ) + β ai a

i
]

+
1

w2

∫
ω3(Γ) , (3.28)

where β is the new coupling.

This new term has been repeatedly neglected in the literature and abandoning pro-

jectability within the framework of detailed balance had been restricted to simply allo-

wing N to have a space dependence without modifying the action.

We will show that the presence of this term is crucial when it comes to the low-energy

dynamics of the scalar mode (similarly to the version without detailed balance [87]).

The variation of the superpotential with respect to the metric leads to the following
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additional contribution to Eij ,

Eijextra =
1√
h

δWextra

δhij
= β

(
1

2
hijak a

k − aiaj
)
. (3.29)

Defining the potential in the same way as before (we will return to this subtle issue

shortly), according to Eq. (3.15) one gets the following additional contributions to the

action

Sextra =

∫
dtd3x

√
hN

{
k2µβ

4

[
−Rklakal +

1− 4λ

4(1− 3λ)
Raka

k +
ΛW

2(1− 3λ)
aka

k

]
+
k2β

2w2
Ckla

kal − k2β2

32

3− 8λ

1− 3λ
(aka

k)2

}
. (3.30)

Using the coupling redefinitions of Eq. (3.24) and introducing the extra redefinition

η =
β ξM4

M2
pl

, (3.31)

leads to the total action

SDB =
M2

pl

2

∫
dtd3x

√
hN

{
KijK

ij − λK2 + ξR− 2Λ + η aiai −
1

M2
4

RijR
ij

+
1− 4λ

4(1− 3λ)

1

M2
4

R2 +
2η

ξM2
4

[
1− 4λ

4(1− 3λ)
Raiai −Rijaiaj

]
− η2

4ξ2M2
4

3− 8λ

1− 3λ
(aiai)

2

+
2

M2
6M4

εijkRil∇jRlk +
2η

ξM2
6M4

Cijaiaj −
1

M4
6

CijC
ij

}
. (3.32)

Recovery of Lorentz symmetry would require η → 0, as well as ξ, λ→ 1. The last term

in the first line contributes to the low-energy limit of the theory.

Several comments are in order. First of all, the inclusion of the aiai term in the super-

potential has no effect in the magnitude of the cosmological constant, so this problem

will persist in the theory described by the action in Eq. (3.32).

Secondly, our implementation of detailed balance in the non-projectable version of the

theory might seem too naive or simplistic. Why not generalize the DeWitt metric fur-

ther? And why should one stick with Eq. (3.15)? Actually, there do not seem to be

any terms one can create which are quadratic in time derivatives of N and are invari-

ant under foliation-preserving diffeomorphism. This seems to exclude straightforward

generalizations of the DeWitt metric. Note also that, in principle one could have new

contributions that include one time derivative, such as Kija
iaj . However, they can be

avoided by imposing symmetry under time reversal.

Regarding the generalization of the definition of the potential, indeed a first thing that

comes in mind is that N(
√
−g)−1(δW/δN) ∝ ∇2 lnN is an invariant, which could po-

tentially be used to create (higher-order) contributions to the action. In absence of a
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generalized DeWitt metric an unambiguous generalization is, however, not obvious to

us.

In Ref. [112] a possible generalization of detailed balance is proposed, in a version of

Hořava gravity with an extra symmetry. Besides the usual superpotential W , the au-

thors use an additional superpotential Wa built with ai and its derivatives. But it is not

clear to us what motivates the use of δWa/δai in the construction of the potential, given

that N is actually the fundamental field in the action. On the other hand, in Ref. [113]

generalizations of detailed balance that include the matter fields were considered. We

will not follow this approach here.

Being left without a guiding principle, and in view of the fact that whether or not (any or

which) version of detailed balance is robust against radiative corrections, we will take the

most conservative and simple approach. Note that a generalization of detailed balance

would lead to additional terms (and new couplings), but it is unlikely to exclude any of

the terms already present in Eq. (3.32). So, we will proceed with the action at hand,

considering it to be some sort of minimal consistent implementation of detailed balance

in non-projectable Hořava gravity.

3.3.2 Linearization at Quadratic Order in Perturbations

The question that will be addressed next is whether the theory described by the action

in Eq. (3.32) has improved behaviour when it comes to the dynamics of the scalar mode.

However, the presence of a large cosmological constant continues to be both a practical

complication in this discussion and a phenomenologically undesirable characteristic of

the theory under scrutiny.

So, perhaps a much better motivated question is the following: if some resolution to the

cosmological constant problem were to be found, which would allow one to tune down

its magnitude to an acceptable level, would the theory then be free of pathologies when

it comes to the dynamics of the scalar? If the answer to this question is positive, then

the value of the cosmological constant becomes the only real shortcoming of detailed

balance, and indeed this is what we show next.

Therefore, let us assume a deus ex machina resolution, simply setting Λ = 0 in Eq. (3.32),

and ask again if the theory has improved behaviour when it comes to the dynamics of the

scalar mode. At the low-energy limit, i.e. considering only the second-order operators, the

answer is obviously yes. This is because, up to this order, the action (3.32) actually fully

coincides with the most general action (2.27) considered in Ref. [87], which is known to

have sensible scalar dynamics at low energies as we have briefly discussed in Sec. (2.2.4).

Here we will demonstrate how the results presented back there were derived.

On the other hand, the theory with detailed balance that we are considering here has
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significantly less couplings than the most general theory when it comes to higher-order

terms, and in fact ξ and η do enter the coefficients of these terms as well.

So, in order to disperse all doubt and show that the theory has sensible dynamics at

low-energies, we will linearize it around flat space. We start with the total action given

in Eq. (3.32) and we perturb to quadratic order considering only scalar perturbations,

since the theory does not have vector excitations and, moreover, the analysis of the IR

limit for the spin-2 graviton in our case is already captured in the (well behaved) analysis

of the projectable version as presented in Sec. (3.1.1), since the low-energy dynamics of

the spin-2 mode is not affected by projectability or detailed balance. We, then, have

N = 1 + α , Ni = ∂iy , hij = e2ζδij . (3.33)

Our ansatz for the perturbation for hij differs from the most general scalar perturbation

by the term ∂i∂jE, but one can use part of the available gauge freedom to set E = 0.

One obtains for the Ricci tensor and the Ricci scalar of hij

Rij = −∂i∂jζ − δij∂2ζ + ∂iζ∂jζ − δij∂kζ∂kζ , (3.34)

R = −e−2ζ
(
4∂2ζ + 2(∂ζ)2

)
, (3.35)

where ∂2 = δij∂
i∂j . The quantity Kij appears only quadratically in the action, so we

only need to compute it to first-order:

K
(1)
ij = ζ̇δij − ∂i∂jy , (3.36)

K(1) = 3ζ̇ − ∂2y . (3.37)

The quadratic action then takes the form

S
(2)
DB =

M2
pl

2

∫
dtd3x

{
3(1− 3λ)ζ̇2 − 2(1− 3λ)ζ̇(∂2y) + (1− λ) (∂2y)2 + 2ξ(∂ζ)2

−4ξα∂2ζ + η(∂iα)(∂iα)− 2(1− λ)

1− 3λ

1

M2
4

(∂2ζ)2

}
. (3.38)

The CijCij term does not contribute because of the conformal properties of the Cotton

tensor. The two fifth-order operators and the fourth-order operators that contain ai do

not contribute as well because they are zero to quadratic order.

Variation with respect to y yields

(1− λ)∂4y − (1− 3λ)∂2ζ̇ = 0 , (3.39)
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which, assuming regularity, leads to

∂2y =
1− 3λ

1− λ
ζ̇ . (3.40)

Variation with respect to α yields

η∂2α+ 2ξ∂2ζ = 0 , (3.41)

which, again imposing regularity, can be solved to give

α = −2ξ

η
ζ . (3.42)

We can now use Eqs. (3.40) and (3.42) to integrate out the non-dynamical fields y and

α in favour of the dynamical field ζ. The quadratic action then reads

S
(2)
DB =

M2
pl

2

∫
dtd3x

{
2(1− 3λ)

1− λ
ζ̇2 +2ξ

(
2ξ

η
− 1

)
ζ∂2ζ− 2(1− λ)

1− 3λ

1

M2
4

(∂2ζ)2

}
. (3.43)

The dispersion relation for the scalar is then given by

ω2 = ξ

(
2ξ

η
− 1

)
1− λ
1− 3λ

k2 +
1

M2
4

(
1− λ
1− 3λ

)2

k4 . (3.44)

As expected, the low-energy dynamics of the scalar is satisfactory for a significant part

of the parameter space, which is the same part as in the most general non-projectable

theory [87]. In particular, for the scalar to have positive energy (given the positive sign

of the kinetic term for the spin-2 graviton [86, 102, 114]) one needs

λ <
1

3
or λ > 1 , (3.45)

whereas classical stability requires that

ξ

(
2ξ

η
− 1

)
1− λ
1− 3λ

> 0 . (3.46)

As the low-energy dynamics of the spin-2 graviton is not affected by projectability or

detailed balance, we know from the analysis of the projectable version presented in Sec.

(3.1.1) that the spin-2 graviton is stable if ξ > 0 (notice that the overall coupling of the

Ricci scalar was there called −d1, and the condition to impose was d1 < 0).

Given the constraints in Eqs. (3.45)-(3.46) and the fact that ξ > 0, one has

0 < η < 2ξ . (3.47)
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From the coefficient of the k4-term in the dispersion relation one sees directly that any

choice for λ cannot lead to an instability at higher energies. However, it is also obvious

that the scalar satisfies a fourth, and not a sixth, order dispersion relation. This was

expected given our discussion about which terms have zero contribution to quadratic

order.

So, same as in the projectable case, the arguments on which the discussion about the

renormalizability properties of the theory is based are compromised, unless we actually

go one order higher in the superpotentialW . Adding fourth-order terms inW would lead

to both sixth and eight-order terms for the scalar, rendering the theory power-counting

renormalizable.

The fourth-order terms one could add in the superpotential W are

R2 , RijRij , R∇iai , Rijaiaj ,

R aia
i , (aia

i)2 , (∇iai)2 , aiaj∇iaj . (3.48)

These would add 8 new couplings to the theory.

Strictly speaking, given that how each new coupling will contribute to the coefficients in

the dispersion relation is not obvious once detailed balance has been imposed, one still

needs to calculate the full dispersion relations for both the spin-2 and the spin-0 gravitons

in order to show without doubt that there is no issue with instabilities at high energies.

However, the fairly large number of independent couplings is more than encouraging.

After adding these terms one could also impose parity invariance without compromising

the renormalizability properties of the spin-2 graviton.

In this case one would end up with 7 more couplings than the theory in Eq. (3.32). In

total there would be 12 couplings (not including the coupling to matter). This is roughly

an order of magnitude less than the number of couplings in the theory without detailed

balance (and up to sixth-order operators) [86].

So, even after the addition of the fourth-order operators in W , detailed balance still

provides a significant reduction in the number of couplings.

Let us finally mention that the discussion about strong coupling in the most general

version of the theory, given in Sec. (2.2.4.1), will be qualitatively similar here, since the

version of the theory with detailed balance that we have introduced does not restrict the

low-energy action but only the higher-order operators.

3.4 Summary and Open Problems

We have revisited the idea of detailed balance in Hořava gravity, as a way to restrict

the proliferation of independent couplings. We first considered the projectable version of
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the theory, in which this principle had been initially implemented. We listed the various

shortcomings usually associated with detailed balanced and discussed some potential

resolutions that have been proposed for some of them. The problems that cannot find a

resolution within the framework of projectability and detailed balance were the sign and

magnitude of the bare cosmological constant and the dynamical inconsistencies associated

with the scalar mode.

We have shown that the latter of the two problems is actually related to projectability

and not detailed balance. That is, we have shown that a non-projectable formulation of

the theory with detailed balance would lead to sensible dynamics for the scalar mode and

the same low-energy phenomenology as the version without detailed balance, were the

magnitude problem of the cosmological constant to find a resolution. The theory would

be required to have fourth-order derivative terms in the superpotential, but it would still

have a number of independent couplings which would be roughly an order of magnitude

lower than the version without detailed balance.

Could the magnitude and the sign of the bare cosmological constant, which are the only

shortcomings that persist once projectability is abandoned, be blessings in disguise?

That is, could the bare cosmological constant end up cancelling out the contribution of

the vacuum energy, leaving behind a tiny residual that would account for the observed

value? Certainly at this stage, and with the current poor level of understanding of the

vacuum energy problem in Hořava gravity, such a statement is at the level of wishful

thinking. Nevertheless, one cannot exclude the possibility. This provides some extra

motivation to consider the vacuum energy problem, which is anyway a pressing problem

for a theory that aspires to be a UV completion of GR.

In absence of a miraculous cancellation between bare cosmological constant and vacuum

energy, one could consider the idea that the bare cosmological constant could be tuned

down by a soft breaking of detailed balance, which raises the question whether such a soft

breaking would not affect higher-order terms as well. In fact, this brings one back to the

key issue of whether detailed balance can anyway be robust against radiative corrections.

This question becomes much more interesting in the light of the fact that a dynamically

consistent theory that satisfies detailed balance does indeed exist.



Chapter 4

Rotating Black Holes in

Three-Dimensional Hořava Gravity

4.1 Black Holes in Hořava Gravity

One of the most impressive predictions of GR is the existence of black holes, as its field

equations naturally allow for such solutions. It is also more extraordinary since the exi-

stence of black holes in Nature is provided by strong indications coming from current

astrophysical observations [115–120].

The defining property of a black hole is the presence of an event horizon, that is a causal

boundary separating the interior from the exterior of the black hole, so that any signal

coming from the interior cannot reach the exterior.

The reason why spacetimes that possess an event horizon can exist in GR finds its roots

in the causal structure of the theory. The latter is inherited from Special Relativity, and

confines any signal, irrespective of their nature, to propagate within future-directed light

cones with a velocity that cannot exceed the speed of light. This is a general feature of

any theory for which Lorentz symmetry is respected.

But what happens to horizons and black holes if Lorentz invariance is not an exact sym-

metry of Nature?

Let us consider for example a theory with a preferred frame, but where all excitations

have linear dispersion relations. So, Lorentz symmetry is broken by the existence of a

preferred frame, and some modes may perhaps propagate faster than light there, but any-

how with a finite speed. In such a Lorentz-violating theory the causal structure remains

qualitatively similar to GR and the modification that one may expect at the level of

black holes is the presence of multiple horizons, i.e. modes which propagate at different

43
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speeds can have in general different causal boundaries. However, once Lorentz symme-

try has been given up, there is no particular reason why dispersion relations should be

linear. This is indeed the case of Hořava gravity, as we have seen in the previous Chap-

ters. So, excitations propagating with sufficiently low-momenta would experience the

existence of an event horizon, but more energetic ones would be able to escape it. In a

Lorentz-violating gravitational theory with higher-order dispersion relations, the event

horizon relinquishes then its role as an absolute causal boundary, since modes propaga-

ting infinitely fast will be able to penetrate it. However, this role will be taken over by

the universal horizon [121, 122]. Since in Hořava gravity the preferred foliation takes

a special physical content, the leaves of such a foliation can be chosen as constant-time

hypersurfaces for any solution, and any sort of physical process is presumed to proceed

normally to them. In spherically-symmetric spacetimes, when a constant-time hypersur-

face coincides with a constant-radius hypersurface a universal horizon is indeed present.

Since it can only be crossed in one direction then no signal can escape the interior of

the universal horizon propagating to the exterior, no matter how fast it moves. So, the

existence of a universal horizon is a strong indication that the notion of a black hole still

makes sense in Lorentz-violating gravity theories.

People have tried to find spherically symmetric black hole solutions in four-dimensional

Hořava gravity. The ones found in Ref. [121] are numerical and those of Ref. [122] are

numerical and valid in the small-coupling limit. Explicit solutions in four dimensions

are also known for specific, tuned choices of the parameters of the theory, but they are

all static [123]. The only rotating solutions currently known in four dimensions are not

entirely explicit, and moreover, rely on the assumption of slow rotation [124, 125].

The lack of general exact solutions in four dimensions is certainly due to the complexity

of the field equations. This is the main reason why in what follows we will work in three

dimensions, as working in a lower-dimensional spacetime will allow us to avoid approxi-

mations or numerics. In fact we will be able to find solutions which are explicit and

exact, unlike their four-dimensional counterparts.

Our main goal will be to seek a Lorentz-violating version of the celebrated Banados-

Teitelboim-Zanelli (BTZ) solution [126, 127], which is the unique black hole of GR in

three dimensions, referred to as a solution with a Killing horizon hiding a “causal” singu-

larity at r = 0. Before doing that, in the next Section we will briefly review this famous

result.
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4.2 BTZ Black Hole in Three-Dimensional General Relati-

vity

The action of GR in a three-dimensional spacetime is

SGR =
1

16πGN

∫
d3x
√
−g [−R− 2Λ] , (4.1)

where R is the three-dimensional Ricci scalar of the spacetime metric gµν and Λ is a

negative cosmological constant term, related to the characteristic curvature radius l by

−Λ = l−2. Variation of the action (4.1) with respect to the metric tensor gµν yields the

Einstein field equations

Rµν −
1

2
gµνR− Λgµν = 0 . (4.2)

In three dimensions, by using the symmetry and contraction properties of the Riemann

tensor Rλµνκ, one finds that

Rλµνκ = gλνRµκ − gλκRµν − gµνRλκ + gµκRλν −
1

2
(gλνgµκ − gλκgµν)R . (4.3)

So, by using the field equations (4.2), the Riemann tensor can be written as

Rλµνκ = Λ (gµνgλκ − gµκgλν) , (4.4)

describing a symmetric spacetime of constant positive curvature

R = −6Λ. (4.5)

With the assumptions of stationarity and circular symmetry, that is by restricting the

variational principle to a class of fields which possess a rotational Killing vector ∂/∂φ

and a timelike Killing vector ∂/∂t, the line element can be written as

ds2 = N2(r)dt2 − 1

f2(r)
dr2 − r2(dφ+Nφ(r)dt)2 . (4.6)

It is found [126, 127] that under the assumptions of time independence and circular

symmetry, the field equations (4.2) are solved by

N2(r) = f2(r) = −M +
J2

4r2
− Λr2 , (4.7a)

Nφ(r) = − J

2r2
, (4.7b)

whereM and J are the conserved charges associated respectively with asymptotic invarian-

ce under time displacements (mass) and rotational invariance (angular momentum).
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Since Λ has been assumed to be negative, the BTZ spacetime is then found to be locally

anti-de Sitter (AdS). Note that because of our convention, AdS spacetime gives R > 0.

In stationary spacetimes, horizons are null, stationary surfaces and the normal to any

stationary surface is proportional to ∂αr which is null when

gαβ (∂αr) (∂βr) = grr = −f2 = 0 . (4.8)

The function f(r) vanishes for two values of the radius r given by

r± =

√√√√−M
2Λ

(
1±

√
1 +

J2Λ

M2

)
, (4.9)

while g00 vanishes at

rerg =

√
−M

Λ
. (4.10)

Of these three special values of the radius r, r+ is the black-hole horizon, rerg demarcates

the ergosurface, and the region between r+ and rerg is the ergosphere. They also obey

the relation

r− ≤ r+ ≤ rerg . (4.11)

Notice that, in order for the solution to describe a black hole, from Eq. (4.9) one obtains

the following bounds on the mass and the angular momentum

M > 0 , J2 ≤ M2

|Λ|
, (4.12)

and in the extreme case J2|Λ| = M2, the two roots r+ and r− coincide.

The characterizing feature of such black hole spacetime is that it has a singularity at

r = 0, which is neither a curvature nor a conical singularity, but is instead a “causal”

singularity where the curvature is everywhere finite (and constant). In fact it is shown

[126, 127] that continuing past r = 0 would bring in closed timelike lines.

Moreover, there is also an additional argument for considering the spacetime as ending

at r = 0. In fact, it has been shown in some simple examples that the introduction of

matter leads to a curvature singularity in r = 0. The first case concerns the collapse of

a cloud of dust with J = 0, for which the matter is shown to generically reach infinite

density at r = 0 [128]. In such a scenario, the dust “probes” only part of the spacetime,

because only the part of the surface r = 0 intersecting the history of the dust becomes

singular. However, in the case of a field, such as the electromagnetic field, all the space-

time is probed. As it was indicated in Ref. [126], restricting the electromagnetic field to

depend only on the radial coordinate, the gauge invariant scalar FµνFµν (where Fµν is

the electromagnetic tensor) is found to be proportional to r−2. Then it is singular at all
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points on the surface r = 0. Therefore, considering that these singularities are produced

once matter couplings are turned on, one can generically exclude the region r = 0 from

the spacetime.

For a number of years, such a black hole solution was deemed impossible, and for good

reason. In three-dimensional GR, there are no local gravitational degrees of freedom:

curvature is algebraically fixed by the matter content, which implies that in a true vac-

uum the spacetime can only be flat. With a non-vanishing cosmological constant, the

field equations admit locally dS and AdS solutions, allowing Λ respectively to be posi-

tive or negative, but still preclude solutions with non-trivial curvature, which is indeed

everywhere finite and constant. Hence, one was lead to believe that black hole solutions

in three-dimensional Einstein gravity are impossible.

This argument is evaded by noting that it relies solely on local considerations. Taking

account of its global structure, a spacetime can contain a black hole in spite of being

locally maximally symmetric. The BTZ solution is an example; it is locally AdS, but it is

turned into a black hole spacetime by certain identifications of space-like related events.

Ever since its discovery, the BTZ black hole has generated a considerable amount of

attention, in large part due to its foreseen applications, particularly in addressing con-

ceptual issues of quantum gravity that become more tractable in three dimensions.

4.3 Three-Dimensional Hořava Gravity

We hope that the three-dimensional black hole solutions in the framework of Hořava

gravity presented in the next Sections, can be used as a playground for studying quantum

field theory and quantum gravity effects in black hole spacetimes, as has been the case

for the BTZ black hole. We also hope that we will gain some insight into the causal

structure of black holes in the presence of Lorentz violations – at least the aspects that

do not depend on the dimensionality.

The action of Hořava gravity in three dimensions takes the form:

SH =
1

16πGH

∫
dTd2x

√
hN

[
L2 +

1

M2
4

L4

]
, (4.13)

where

L2 = KijK
ij − λK2 + ξ

(
(2)R− 2Λ

)
+ η aia

i , (4.14)

h is the determinant of the induced metric hij on the constant-T hypersurfaces, and (Kij ,

K,(2)R) are its extrinsic, mean and scalar curvatures, respectively. L4 collectively denotes

a set of all terms with four spatial derivatives that are invariant under diffeomorphisms

that leave the foliation untouched. Note that, because power-counting renormalizability
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requires terms of order 2d in derivatives to be present, when d = 2 we only need terms

with up to four derivatives (the terms collectively denoted as L6 in Eq. (2.27) are not

needed). The full list of such terms for d = 2 is given in Ref. [129] and we write them

explicitly below:

L4 = g1R
2 + g2∇2R+ g3 ai a

i + g4Rai a
i + g5 ai a

i (∇ · a) + g6 (∇ · a)2 + g7

(
∇iaj∇iaj

)
,

(4.15)

where gi are couplings with dimensions of an inverse mass squared.

The theory only propagates a scalar degree of freedom because in three dimensions

there is no spin-2 graviton [129]. In fact applying the uniformization theorem [130],

there is enough gauge freedom to turn the metric tensor hij in the one of a constant

curvature spherical, Euclidean or hyperbolic 2-dimensional space, through a conformal

transformation.

Linearizing the theory around flat space and setting Λ = 0, the dispersion relation for

the scalar is found to be [129]

ω2 =
2 (1− λ)

1− 2λ

{
ξ2k2 − 2 [2ηg1 + ξg2] k4 +

[
g2

2 − 4g1(g6 + g7)
]
k6

2 [η + (g6 + g7) k2]

}
. (4.16)

In the IR limit the latter becomes a standard linear dispersion relation

ω2 =
ξ2

η

1− λ
1− 2λ

k2 , (4.17)

and the low-energy phase velocity of the spin-0 graviton is

c0 =
ξ
√
η

√
1− λ
1− 2λ

. (4.18)

For what follows we will focus on the IR limit of the theory by neglecting the L4 terms.

This is expected to be a good approximation so long as the curvature remains small

enough and the foliation is sufficiently smooth.

It is important to stress that when the L4 terms are ignored, the scalar mode has a

linear dispersion relation in flat space, whereas, in the full theory the dispersion relation

is rational and well approximated by ω2 ∼ k4 for large momenta. So, excitations with

sufficiently high momenta can reach arbitrarily high speeds. Moreover, the theory has

an instantaneous mode even in the low-energy limit (see Ref. [122] for a discussion in

four dimensions). Both of these facts are particularly relevant for black holes spacetimes.

High-energy modes will be able to penetrate surfaces that appear as usual horizons in

the low-energy limit of the theory. More importantly, even within the framework of the

low-energy approximation, the presence of instantaneous, infinite speed, modes means

that information can be transmitted through these horizons.
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In what follows, we will still refer to any solution for which the metric that couples

minimally to matter fields has a Killing horizon, as a black hole. We choose to do so

because, for the matter fields, which we assume to be relativistic, the Killing horizon

will be an event horizon. Hence, the spacetime will be a black hole in the conventional

(GR) sense. It should be clear, however, that this is actually an abuse of terminology

in the context of Hořava gravity, as perturbations that reside in the gravity sector can

propagate infinitely fast. So one could have chosen to reserve the term black hole for

solutions that have a universal horizon.

4.3.1 Reduced Action

We have already seen in Sec. (2.2.3) that the low-energy part of Hořava gravity can

be formulated in a covariant fashion, i.e. Æ-theory, with the æther assumed to be

hypersurface-orthogonal before the variation. We find it convenient to work with such

covariantized version of the theory.

In (2 + 1) dimensions, Æ-theory with a cosmological constant Λ is defined by the action

Sæ =
1

16πGæ

∫
d3x
√
−g (−R− 2Λ + Læ) , (4.19)

where R is the three-dimensional Ricci scalar and Læ is the one in Eq. (2.17).

Assuming stationarity and circular symmetry, let’s write again the most general metric

in (2+1) dimensions as

ds2 = Z2(r)dt2 − 1

F 2(r)
dr2 − r2(dφ+ Ω(r)dt)2 . (4.20)

The æther field is also just a function of r: uα(xβ) = uα(r). We shall refer to these as

BTZ coordinates.

In three dimensions, uα is hypersurface-orthogonal if and only if u[α∇βuγ] = 0 (the square

brackets denote anti-symmetrization), which in BTZ coordinates is explicitly ut∂ruφ =

uφ∂rut. A trivial solution to this is uφ = 0.

More generally, the hypersurface-orthogonality condition can be integrated to give uφ =

Cut, for some constant C. This must hold throughout the spacetime. Since from Eq.

(2.29) we have that

uα =
∂αT√

gµν∂µT∂νT
, (4.21)

if C 6= 0, then T (which is the scalar field defining the preferred foliation in every solution)

will satisfy ∂φT = C∂tT . This means that the dependence of T on t and φ can be only

through the combination ζ = t+ Cφ.

In other words, we have T (t, r, φ) = f(r, ζ) = f(r, t + Cφ), for some arbitrary function
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f(r, ζ). But the coordinate φ runs along orbits of the spacelike axial Killing vector of

the spacetime. Keeping all other coordinates fixed, there must then exist a constant p so

that φ and φ+ p refer to the same spacetime event. This means that f(r, ζ) will either

be multivalued on each spacetime event, or it will have to be periodic in both φ and t.

None of these options seem to be acceptable for a coordinate that is supposed to act as the

preferred time of a global foliation. Hence, we shall only focus on æther configurations

for which C = 0 or uφ = 0.

With uφ = 0, the unit norm constraint allows us to parametrize the æther as

ut = ±
√
Z2(r) (1 + F 2(r)U2(r)) , ur = U(r) , (4.22)

where we denote ur by the function U(r) from now on.

With no loss of generality we shall choose the positive (+) branch for ut, as choosing the

alternative (–) branch yields the same reduced action.

Inserting Eqs. (4.20) and (4.22) into Eq. (4.19), discarding boundary terms, and using

the Hořava parameters {λ, ξ, η}, we arrive at the reduced action [131]

Sr =
1

8GH

∫
dtdrLr , (4.23)

where

Lr =
r3F

2Z
(Ω′)2 − 2ξZ

(
Λ
r

F
+ F ′

)
+
rηFZ ′2

Z
+

(1− λ)F 3ZU2

r

+

rFZ

[
1− λ+ (1 + η − λ)F 2U2

]
1 + F 2U2

(
UF ′ + FU ′

)2
+ r(1 + η − λ)F 2UZ ′

·
[
U

(
2F ′ +

FZ ′

Z

)
+ 2FU ′

]
+ 2(ξ − λ)F 2U

[
FUZ ′ + Z

(
UF ′ + FU ′

)]
.

(4.24)

Requiring stationarity of the reduced action, δSr = 0, then supplies the equations of mo-

tion. These are the Euler-Lagrange (EL) equations with respect to the functions Z,F,Ω

and U .

Results obtained with the reduced action approach should always be treated and inter-

preted with some caution. Critical points with respect to symmetric variations of the

action need not be stationary points with respect to general variations. Therefore, solu-

tions to equations-of-motion that arise from symmetry-reduced actions need not satisfy

the full field equations [132–136]. However, any symmetric solution to the full field equa-

tion ought to be a critical point with respect to symmetric variations. The equations of

motion from symmetric variations then constitute necessary conditions for any solution
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to the full field equations.

If one succeeds in integrating them (or a subset of them), one can simply check if the

solutions indeed satisfy the full field equations [134]. This is the strategy we adopt here.

4.3.2 Ω Equation

From Eq. (4.24), the EL equation with respect to Ω is

Ω′′ +

(
3

r
+
F ′

F
− rFZ ′

)
Ω′ = 0 . (4.25)

This can be integrated to give

Ω(r) = c+ J
∫

Z(r)

r3F (r)
dr , (4.26)

for integration constants J and c. With the coordinate transformation {t → t′, φ →
φ′ − ct′}, we can set c = 0 without loss of generality. Substituting Ω into each of three

remaining EL equations, we are left with a coupled non-linear system in the remaining

unknowns {Z, F, U}, which are too lengthy to be usefully displayed here. In the remain-

der, we refer to the EL equation corresponding to Z as the Z-equation, and likewise for

the others.

4.4 Anti-de Sitter and Asymptotically Anti-de Sitter Solu-

tions

A natural starting point is to look for maximally symmetric solutions in three-dimensional

Hořava gravity. After all, the (BTZ) black hole of three-dimensional GR belongs to this

class of spacetimes (i.e. AdS), and we shall search for solutions that approach BTZ in

the appropriate limit.

We shall discover in this Section that any asymptotically-AdS analogue in Hořava gravity

can only exist in the η = 0 sector of the theory (see also Ref. [137]).

In three dimensions, a spacetime is (locally) maximally symmetric if

Mµν ≡ Rµν −
R

3
gµν = 0 . (4.27)

When F does not vanish identically, one finds that Mrr = 0 and Mφφ = 0 can be

combined to give

Z
(
FZ ′ − ZF ′

)
= 0 , (4.28)
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from which we conclude that Z = κF is necessary for maximal symmetry. κ is some

constant, which we can always set to 1 without loss of generality by a time rescaling.

Now, inserting Z = F into Eq. (4.26), which is one of the EL equations, we get

Ω(r) = − J
2r2

. (4.29)

This in turn reduces all of Mαβ = 0 into a single differential equation, which can be

integrated to give

F 2(r) = Z2(r) =
J 2

4r2
+A+Br2 . (4.30)

For such metrics, the scalar curvature is −6B, and the geometry is either dS, AdS or

flat when B < 0, B > 0, or B = 0, respectively. Note, however, that when A 6= 1,

these spacetimes have a deficit angle. The literature has referred to these as “quasi

asymptotically flat”, but for convenience, we shall call them simply “flat”.

With Eq. (4.26) being a necessary condition, Eq. (4.30) can be taken to be the most

general form of a maximally symmetric spacetime in three-dimensional Hořava gravity.

In what follows, we shall discover black hole solutions very similar in form.

To check whether metrics of this form indeed exist in three-dimensional Hořava gravity

and, if so, to specify their corresponding æther configurations, we return to the EL

equations. Since Z = F , these now form a coupled system of three non-linear differential

equations for {F (r), U(r)}. For a solution to exist, these equations clearly must not all

be independent of each other.

By systematically eliminating terms proportional to ξ and λ in the EL equations, they

can be combined to give the equation

ηu3
t

(
u′t + ru′′t

)
= 0 . (4.31)

If η 6= 0, then we have

ut(r) = c+ d ln r , (4.32)

where c and d are arbitrary integration constants. Using Eq. (4.22), one gets

U(r) = ±

√
(c+ d ln r)2 − F (r)2

F (r)4
. (4.33)

For AdS space, which is our primary interest here, we have F 2 ∼ αr2 with α > 0, which

clearly leads to an ill-defined æther because r2 � ln r as r →∞.

We conclude from all this that AdS is not a solution in three-dimensional Hořava gravity

when η 6= 0.

The restriction Z = F might seem overly restrictive if we only want to require that the

spacetime be AdS only asymptotically. In BTZ coordinates, boundary conditions for
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asymptotically AdS spacetimes in three dimensions were previously identified in [138].

These read

gtt =
r2

L2
+O(1) ,

gtr = O(r−3) ,

gtφ = O(1) ,

grr = −L
2

r2
+O(r−4) ,

grφ = O(r−3) ,

gφφ = r2 +O(1) ,

(4.34)

where L is the length scale associated with the asymptotic curvature, which is specified

by an effective cosmological constant, Λ̄ = −1/L2.

These require that our metric functions behave asymptotically as

Ω = O(r−2) ,

Z =
r

L
+O(r−1) ,

F =
r

L
+O(r−1) .

(4.35)

The solution for Ω in Eq. (4.26) satisfies this. Now if U ∼ U0r
m as r → ∞, for some

unspecified m, then the leading-order terms in the EL equations cannot simultaneously

vanish unless m = −1 or m = −3. More importantly, for either choice of fall-off, it can

be shown that η has to be zero.

A lengthy but straightforward demonstration can be found in Appendix (A.1). Further-

more we show in Appendix (A.2) that when m = −1, the æther is not orthogonal to

constant-t surfaces (i.e. it does not align with the timelike Killing vector) asymptotically,

but this does happen when m = −3.

4.5 Black Hole Solution for η = 0

4.5.1 The Solution

The considerations of the previous Section suggest that, in looking for a BTZ analogue,

we ought to focus on the η = 0 sector of the theory. In this sector, the EL equations

take the generic form

(λ− 1)
(
FUZ ′′ + FZU ′′ + ZUF ′′

)
+H

(
Z,Z ′, F, F ′, U, U ′

)
= 0 , (4.36)

with H being a non-linear algebraic function of the unknowns and their derivatives. One

way to simplify the problem would be to choose U = 0, which would mean choosing a
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configuration in which æther is globally aligned with the timelike Killing vector.

This approach was followed in Ref. [139] and parts of Ref. [140],1 by working directly

in the preferred foliation. (We will discuss the correspondence of the two approaches

in Appendix (A.3)). Imposing global alignment trivializes the U -equation and kills all

second-order derivatives in the remaining EL equations, paving an easier route to exact

solutions. However, it is easy to argue that these solutions cannot represent black holes in

Hořava gravity. The Killing vector (∂t) is null at the Killing horizon (or the ergosurface)

and spacelike inside it, but the æther has to be timelike everywhere if it is to define a

foliation by spacelike hypersurfaces of constant preferred time. Global alignment is thus

kinematically impossible in black hole spacetimes. The details about this are found in

Appendix (A.4).

Without any a priori assumptions about U , the EL equations can nevertheless be com-

bined to give
4ξ

Λ
r3ZF

(
ZF ′ − FZ ′

)
= 0 . (4.37)

Since we wish to keep other coupling constants generic, and since neither Z nor F vanish

identically, we can conclude that η = 0 necessitates Z = κF , where again we shall set

κ = 1 with no loss of generality.

Using this, the U -equation turns into

(λ− 1)

{(
FU ′′ + 2UF ′′

)
+

1

r2F

[
2r2UF ′

2
+ 2rFF ′

(
2rU ′ + U

)
+ F 2

(
rU ′ − U

)]}
= 0 ,

(4.38)

and the Z- and F -equations collapse into a single equation (which we shall not display

here due to its length). The special case λ = 1 is discussed in Appendix (A.5).

If λ 6= 1, with the change of variables

y = UF 2, (4.39)

Eq. (4.38) turns into the simple differential equation

r2d
2y

dr2
+ r

dy

dr
− y = 0 . (4.40)

This turns out to be equivalent to the condition that constant preferred time surfaces

have constant mean curvature.2 (See Appendix (A.6)). The general solution to Eq.
1Ref. [140] contains a collection of static (non-rotating) solutions for special values of the parameters

ξ, λ, and η and/or restrictions in the metric ansatz. These special choices seem to be motivated by the
fact that they simplify the calculations and make it easier to obtain analytic solutions. The diagonal
solutions in the preferred foliation are not black holes for the reasons discussed above while the causal
structure of the non-diagonal solutions and the behaviour of the corresponding foliation is left unexplored.

2The fact that constant preferred time surfaces have constant mean curvature is also a property of
Cuscuton theory, which has been argued to be related to Hořava gravity [141, 142].
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(4.40) is

y = UF 2 =
a

r
+ br , (4.41)

where a and b are integration constants.

Therefore, U and F have to be related in the following way:

U =
1

F 2

(a
r

+ br
)
. (4.42)

Inserting this into either the Z- or F -equation, we get

1

2

d

dr

(
F 2
)

+

[
J 2 + 4a2(1− ξ)

4ξ

]
1

r3
−
[
b2
(

2λ− ξ − 1

ξ

)
− Λ

]
r = 0 . (4.43)

This leads to the metric functions

F 2(r) = Z2(r) = −M+
J̄ 2

4r2
− Λ̄r2 , (4.44a)

Ω(r) = − J
2r2

, (4.44b)

whereM is an integration constant and

J̄ 2 =
J 2 + 4a2(1− ξ)

ξ
, (4.45)

Λ̄ = Λ− b2(2λ− ξ − 1)

ξ
. (4.46)

In the limit to GR (λ→ 1, ξ → 1), Eq. (4.44) gives the familiar BTZ metric. When

ξ = 1, and thus J̄ = J , the solution becomes the BTZ metric with a shifted cosmological

constant, Λ̄ = Λ− 2b2(λ− 1). Note that J̄ 2 can be negative; this happens when either

ξ < 0 or ξ > 1, a2 > J 2/(4(ξ − 1)).

The æther configuration for this metric is

ur =
1

F 2

(a
r

+ br
)
, (4.47a)

ut =

√
F 2 +

(a
r

+ br
)2
. (4.47b)

Since a vanishing ur signifies alignment of the æther with the timelike Killing vector,

the constants a and b can be regarded as measures of æther misalignment. Of these two

æther parameters, b is what dominates asymptotically and is what affects the asymptotic

behaviour of the metric.

As shown in Appendix (A.2), if b 6= 0, then the æther does not align with the timelike

Killing vector asymptotically. Thus, the parameter b can be understood to be a measure

of asymptotic misalignment.
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Taken together, Eqs. (4.44) and (4.47) give the most general metric and æther configu-

ration in the η = 0 sector. It is a four-parameter family of solutions, specified by

{M, J , a, b}.
Unless one imposes restrictions on the parameters, ut can become imaginary in parts of

the spacetime. That would signal a breakdown of the foliation. It is reasonable to restrict

one’s attention to solutions for which a foliation exists all the way to the singularity, as

in Hořava gravity the existence of a spacelike foliation is a fundamental feature. This

can be achieved by imposing the condition F 2 + (a/r + br)2 > 0 or

1

r2

( (
b2 − Λ̄

)
r4 + (2ab−M) r2 +

(
J̄ 2

4
+ a2

))
> 0 . (4.48)

As r → 0, the combination a2 + J̄ 2/4 or
(
J 2/4 + a2

)
/ξ dominates u2

t , and so it must

be positive. Thus, in order to ensure the existence of a foliation close to the singularity,

we are restricted to working in the domain ξ > 0.

At large r, the term whose coefficient is (b2 − Λ̄) dominates instead. This coefficient is

always positive for AdS asymptotics, as Λ̄ < 0. For dS asymptotics one would have to

impose that b2 > Λ̄ in order for the foliation to not end at some finite r.

4.5.2 Curvature Scalars and Asymptotics

A quick calculation of the scalar curvature leads to

R = −6Λ̄ +
1

2r4

(
J̄ 2 − J 2

)
, (4.49)

which is not constant and generically diverges at r = 0. When ξ = 1, we have J̄ = J , so
the Ricci scalar is constant, but it can be of either sign depending on λ, Λ, and b. The

Kretschmann scalar also diverges at r = 0:

RαβγδR
αβγδ = 12Λ̄2 − 2Λ̄

r4

(
J̄ 2 − J 2

)
+

11

4r8

(
J̄ 2 − J 2

)2
. (4.50)

These imply that r = 0 is a curvature singularity, unless J̄2 = J2. This is in contrast to

the BTZ black hole for which r = 0 is neither a curvature nor a conical singularity, but

is instead a “causal” singularity where both the Ricci and Kretschmann scalars are finite

and perfectly smooth.

The metric can be (quasi) asymptotically flat, dS, or AdS, irrespective of the sign of the

(bare) cosmological constant, Λ (which will be negative, Λ = −1/l2, for BTZ). The sign

of the effective cosmological constant,

Λ̄ = Λ− b2(2λ− ξ − 1)

ξ
, (4.51)
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determines the asymptotic behaviour of the metric.

4.5.3 Setting ξ = 1 by Redefinitions

It is clear that ξ = 1 is a special value for the solution we have found. The metric reduces

to the BTZ solution with an effective cosmological constant given by Eq. (4.51), and the

curvature singularity disappears.

However, one can actually set ξ = 1 by means of field redefinitions. In the preferred

frame picture, one can perform a constant rescaling of the lapse function N . If one sets

the new lapse N ′ = σN , action (2.27) (always restricting attention on the L2 part only)

remains invariant apart from an overall factor and after the following parameter rescaling

ξ′ =
ξ

σ
, (4.52a)

η′ =
η

σ
, (4.52b)

λ′ = λ , (4.52c)

Λ′ =
Λ

σ
. (4.52d)

This implies that, with the choice σ = ξ, any theory in the sector {η = 0, ξ > 0} can be

mapped onto {η = 0, ξ = 1}.
In the covariant picture, the corresponding redefinition is the one already presented in

Eq. (2.25) with the same rescaling for Λ (where σ is restricted to be positive so that the

new metric is Lorentzian).

In order to get an equivalent primed action, we only need to consider the first three rela-

tions between the coefficients c′i and ci in Eq. (2.26), because the æther is now restricted

to be hypersurface orthogonal. Using the correspondence in Eq. (2.35) one can verify

that choosing σ = ξ, one can set ξ to 1.

Clearly, using these redefinitions allows one to work with a more familiar spacetime,

since the metric now reduces to the BTZ solution with an effective cosmological con-

stant, which is free of curvature singularities, even if it does not actually simplify the

derivation of the solution significantly.

However, we will choose not to follow this route. Such a redefinition is only allowed in

vacuum. If other fields couple to the lapse, the shift and the induced metric (or the

spacetime metric and the æther), then such a redefinition no longer leaves the action

invariant. Additionally, one might be interested specifically in the spacetime structure

of gµν .

For instance, in four dimensions one can require that gµν couples minimally to the mat-

ter in order for the equivalence principle to be satisfied. This would make this metric
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Case J̄ 2Λ̄ ≥ 0 J̄ 2 = 0 −M2 < J̄ 2Λ̄ < 0 J̄ 2Λ̄ = −M2

M > 0, Λ̄ < 0
horizons r̃+ (b)

√
2r(1/2) (b) r± (b) r(1/2) (b)

singularity spacelike spacelike timelike timelike

M > 0, Λ̄ > 0
horizons r̃− (c) — — —

singularity timelike spacelike spacelike spacelike

M < 0, Λ̄ < 0
horizons r̃− (b) — — —

singularity spacelike timelike timelike timelike

M < 0, Λ̄ > 0
horizons r̃+ (c)

√
2r(1/2) (c) r+ (c), r− (b) r(1/2) (c)

singularity timelike timelike spacelike spacelike

Table 4.1 Killing horizons and the nature of the curvature singularity for var-
ious cases. Each of the Killing horizons is denoted either by a (c) for de
Sitter (cosmological) horizon, or (b) for black hole (event) horizon. Their
locations are specified by: r2± := |M/(2Λ̄)|

[
1± (1− |J̄ 2Λ̄|/M2)1/2

]
, r̃2± :=

|M/(2Λ̄)|
[
(1 + |J̄ 2Λ̄|/M2)1/2 ± 1

]
, r2(1/2) := |M/(2Λ̄)|. Λ̄ = 0 is excluded from this

table, simply because J̄ 2Λ̄ vanishes and the sign of J̄ 2 cannot be immediately inferred.
In this case, an asymptotically flat black hole exists for {M = −1, J̄ 2 < 0} and the
horizon radius is ro :=

√
−J̄ 2/2.

distinct.

Here we are considering three dimensions, but if we want to use our solutions to under-

stand something about four-dimensional black holes it seems prudent to understand the

structure of gµν itself. As we will see later on, the causal structure of the two metrics

can also be different.

4.5.4 Metric Horizons and Causal Structure

In stationary spacetimes, horizons are null, stationary surfaces. The normal to any

stationary surface must be proportional to ∂αr, and this is null when

gαβ (∂αr) (∂βr) = grr = −F 2 = 0 , (4.53)

or

grr =
Λ̄

r2

(
r2 − r2

+

) (
r2 − r2

−
)

= 0 , (4.54)

where

r± =

√√√√−M
2Λ̄

(
1±

√
1 +
J̄ 2Λ̄

M2

)
(4.55)

are the locations of the horizons.

For there to be two horizons (i.e. for both values in Eq. (4.55) to be real), bothM/Λ̄
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and J̄ 2Λ̄ must at least be negative. In which case, we can write

M = −Λ̄
(
r2

+ + r2
−
)
, J̄ 2 = −4Λ̄(r+r−)2. (4.56)

The case {Λ̄ < 0,M > 0, J̄ 2 > 0} corresponds closely to the BTZ solution of GR. (The

reader is referred to Fig. (4.1) for its causal structure).

r
=
r−

r
=
r−

r
=
r+

r
=
r
+

r
=
∞

r
=
∞

r
=

0

r
=

0
r = ru

Figure 4.1 Penrose diagram for M > 0, Λ̄ < 0, J̄ 2 > 0. This is equivalent to the
rotating BTZ case, except for the curvature singularity at r = 0. The dashed lines
represent null leaves of the foliation. Along these surfaces, the æther diverges because
it becomes lightlike. The orange solid curve represents the universal horizon (for choices
of the parameters for which it is present).

For this BTZ-like branch of our solutions, there exists an analogous “angular momentum”

bound

J̄ 2 ≤ M
2

|Λ̄|
, (4.57)

which guarantees that r± are both real. These are the locations of the inner and outer

horizons of the black hole. When the bound is saturated, the horizons coincide at r =

r(1/2) :=
√∣∣M/(2Λ̄)

∣∣. The inner horizon approaches r = 0 when J̄ 2 → 0+, while keeping

a fixed Λ̄ < 0.

As Λ̄ → 0−, while keeping J̄ 2 > 0, r+ gets pushed to infinity so that only the interior
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of the black hole remains. This is similar to the situation in three-dimensional GR,

where the black hole can only be asymptotically AdS, because the relevant parameter is

a strictly non-negative J 2, rather than J̄ 2.

Remarkably, there exist solutions with black hole horizons and dS (Fig. (4.2)) or flat

asymptotics (Fig. (4.3)).

r =∞

r =∞

r
=
r−

r
=
r
+

r
=
r+

r
=
r−

r = 0

r = 0

r = ru

r = ru

Figure 4.2 Penrose diagram for M < 0, Λ̄ > 0, J̄ 2 < 0. This is equivalent to the
Penrose diagram for Schwarzschild-de Sitter spacetime. The dashed lines represent null
leaves of the foliation. The orange solid curves represent universal horizons (for choices
of the parameters for which they are present).

r
=
r o

r
=
r
o

r = 0

r = ru

r = ru

Figure 4.3 Penrose diagram for an asymptotically flat black hole, whose causal struc-
ture is essentially that of the Schwarzschild spacetime. The dashed line represents a null
leaf of the foliation. The orange solid curves represent universal horizons (for choices
of the parameters for which they are present).

In particular, when {Λ̄ > 0,M < 0, J̄ 2 < 0}, r± are both still real and their associated

hypersurfaces are both Killing horizons. But since Λ̄ > 0, r+ corresponds to the dS

horizon, and r− takes the role of the black hole event horizon. For {Λ̄ = 0,M =

−1, J̄ 2 < 0}, one obtains an asymptotically flat black hole with a horizon at r = ro :=√
−J̄ 2/2 (for M 6= −1 the asymptotics would be “quasi asymptotically flat”). In GR

such solutions do not exist because J 2 plays the role of J̄ 2, and J 2 is strictly non-

negative.
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r
=
∞ r

=
r̃±

r
=
r̃±

r
=
∞

r = 0

r = ru

r = ru

Figure 4.4 Penrose diagram for Λ̄ < 0, J̄ 2 < 0, and for either sign ofM (r = r̃+ for
M > 0 and r = r̃− forM < 0). The dashed line represents a null leaf of the foliation.
The orange solid curves represent universal horizons (for choices of the parameters for
which they are present).

r =∞

r
=
r̃±

r
=
r̃±

r
=

0

r
=

0

r = ru

r = ru

Figure 4.5 Penrose diagram for Λ̄ > 0, J̄ 2 > 0 and for either sign of M (r = r̃+ for
M < 0 and r = r̃− forM > 0). The dashed line represents a null leaf of the foliation.
The orange solid curves represent universal horizons (for choices of the parameters for
which they are present).

Other possibilities exist for which there is only one Killing horizon, which can be either

an event horizon or a dS horizon, depending on the sign of the cosmological constant.

Figs. (4.4) and (4.5) are examples of spacetimes with only one Killing horizon, the former

being a black hole horizon and the latter a cosmological horizon. Many of these cases

are summarized in Table (4.1), which also provides the respective positions of the Killing

horizons for convenience.

We note as well that these spacetimes can have ergoregions. These are demarcated by

r = rerg, such that gtt (rerg) = Z2 − r2
erg(Ω)2 = 0. The ergosurfaces are thus located at

rerg
± =

√√√√−M
2Λ̄

(
1±

√
1 +

Λ̄

M2
∆

)
. (4.58)
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This is essentially Eq. (4.55), with the replacement J̄ 2 → ∆ := J̄ 2 − J 2. The key

parameter is then

∆ := J̄ 2 − J 2 =

(
1− ξ
ξ

)(
J 2 + 4a2

)
. (4.59)

When ξ = 1, the ergosurface is uniquely at rerg =
√
M/|Λ̄|. We thus recover the BTZ

case in GR for which r− ≤ r+ ≤ rerg. In the parameter region 0 < ξ ≤ 1 and for the

BTZ-like case {Λ̄ < 0,M > 0, J̄ 2 > 0}, we have J̄ 2 > ∆ ≥ 0, and

rerg
− ≤ r− ≤ r+ ≤ rerg

+ . (4.60)

Outside the parameter region 0 < ξ ≤ 1, ∆ is negative, and rerg
− becomes imaginary and

so there is no “inner” ergosurface. Various other cases can be easily worked out, but they

shall not be our concern for the rest of the solutions analysis.

Our next goal shall be to get a better sense of the spacetime’s causal structure, for which

we shall also need to know the character of its singularity, in addition to identifying its

horizons and the nature of its asymptotic infinities. This is generally controlled by J̄ 2,

whose sign dictates the behaviour of F 2 as r → 0.

Consider first the case J̄ 2 6= 0. Then as r → 0, grr = gµν(∂µr)(∂νr) = −F 2 ∼
−J̄ 2/(4r2). The normal to constant-r surfaces is then spacelike when J̄ 2 > 0 (like

the rotating BTZ black hole) or timelike when J̄ 2 < 0. When J̄ 2 = 0 and J 2 6= 0, there

will still exist a curvature singularity, but whether it is timelike or spacelike now depends

on the sign ofM, since grr →M as r → 0. WhenM > 0 (M < 0), the singularity is

spacelike (timelike). The spacelike nature of r = 0 in the positive-M case corresponds

to the non-rotating BTZ black hole.

We have already mentioned in the previous Section that the causal structure of the rede-

fined metrics that lead to ξ = 1 is different from that of gµν . This should be clear now, as,

in a suitable coordinate system, the redefined metric takes the same form as gµν but with

ξ = 1, so it is always a BTZ spacetime (potentially with different asymptotics than those

of gµν). Consider, for example, the asymptotically flat black holes that were discussed

above and assume J = 0 and b = 0 (to avoid divergence of the æther asymptotically).

The redefinition will lead to flat spacetime with a non-trivial æther.

4.5.5 Energy Conditions

It is now convenient to check energy conditions using the preferred rest frame of the

æther, in order to prove the consistency of our solutions. The weak energy condition
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(WEC) states that the energy density measured by an arbitrary observer must be posi-

tive. Taking this observer to be at rest with respect to the æther, we have

Tæ
αβu

αuβ =
J̄ 2 − J 2 + 4Λ̄r4

4r4
≥ 0 , (4.61)

where Tæ
αβ := Rαβ − (1/2)gαβR, and uα is the æther vector field.

Insisting that this condition is satisfied for all r requires Λ̄ > 0 and J̄ 2 ≥ J 2. AdS

asymptotics thus violates the WEC. On the other hand, in order to have black hole

horizons in solutions with dS or flat asymptotics, J̄ 2 has to be negative.

This means that the WEC is violated in these solutions as well. Hence, all our black hole

solutions violate the WEC. Since the WEC is a necessary condition for the dominant

energy condition (DEC), all our black holes violate the DEC as well.

Violating the DEC is to be expected from the work of Ida [143], which states that if the

DEC is satisfied then the spacetime cannot have apparent horizons. Since apparent hori-

zons are also event horizons in stationary spacetimes, this result precludes the existence

of black holes when the DEC holds.

4.5.6 Foliation and Universal Horizons

4.5.6.1 Regularity of the Æther

In the previous Section, we focused mainly on the geometry of our solution, that is, on

the metric and its properties. The causal structure of this metric is what is relevant to

matter degrees of freedom minimally coupled to it. The second half of the solution is

the æther field, or more precisely, the foliation it specifies.

We shall first look at how the æther behaves along the horizons in the maximal extension.

For this it is sufficient to follow the Kruskal construction that brings the line-element to

the form

ds2 = Ω̄(r)2dUdV − r2(dφ̄2 +Nφ(r)dt2) , (4.62)

in terms of null coordinates U and V , where t = t(U, V ), r = r(U, V ), φ̄ = φ̄(φ, t(U, V )).

Several charts are generally needed to cover the full manifold, depending on how many

Killing horizons the spacetime has. Only one chart is needed for the asymptotically flat

case (M = −1, Λ̄ = 0, J̄ 2 < 0), which in BTZ coordinates has

F 2(r) =
1

r2

(
r2 −R2

0

)
, (4.63)
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where R0 =
√
|J̄ 2|/2. The standard Kruskal coordinates are then

U = ∓e−κu , (4.64a)

V = eκv , (4.64b)

where u = t − r∗, v = t + r∗, r∗ :=
∫
F−2dr, and κ = 1/R0 = 2/

√
|J̄ 2| is the surface

gravity of the horizon. The upper sign (-) is for the region r > R0 and the lower sign

(+) is for r < R0. In this case, r depends on U and V through

e2κr

(
κr − 1

κr + 1

)
= −UV, (4.65)

and Ω̄(r) = (1/κ) (1 + 1/(κr)) exp(−κr). These coordinates are clearly regular through

the Killing horizon.

The æther has components

uU =
1

2κU

[(a
r

+ br
)
∓
√(a

r
+ br

)2
+ F 2

]
, (4.66a)

uV =
1

2κV

[(a
r

+ br
)
±
√(a

r
+ br

)2
+ F 2

]
, (4.66b)

where the upper signs hold for the future-pointing solution, ut > 0, which we have chosen

to work with in the text, while the lower signs hold for the past-pointing solution, ut < 0,

which we have hitherto disregarded.

Close to R0, one can verify that F 2 ' 2κ (r −R0) and r∗ ' (2κ)−1 ln |κ(r −R0)|, which
imply F 2 ' −2UV . Therefore, as U → 0, V → 0 we have

uU '
1

2κU

[
h0 ∓ |h0|

(
1− UV

h2
0

)]
, (4.67a)

uV '
1

2κV

[
h0 ± |h0|

(
1− UV

h2
0

)]
, (4.67b)

where h0 := a/R0 + bR0, which we assume not to vanish. Moreover, we shall assume for

now that h0 > 0.

For the future-pointing solution, we therefore have

uU '
V

2κh0
, (4.68a)

uV '
h0

κV
, (4.68b)

as r → R0. The future-pointing solution is thus regular at the future event horizon

(U = 0), but is divergent at the past event horizon (V = 0). This divergence arises

because the foliation turns null. In the various Penrose diagrams, we mark the singularity
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of the æther with dashed lines.

On the other hand, the past-pointing solution behaves like

uU '
h0

κU
, (4.69a)

uV '
U

2κh0
, (4.69b)

and is thus regular at the past event horizon (V = 0) but divergent at the future event

horizon (U = 0).

This analysis also applies to the AdS case. For this, at least two charts are needed, each

respectively in the neighborhoods of the two Killing horizons. The Kruskal coordinates

for the flat space case carry over exactly to the region containing the outer horizon,

except that the surface gravity is now κ+ := −Λ̄
(
r2

+ − r2
−
)
/r+. Clearly then, the future-

pointing æther field is again regular at the future event horizon and singular at the past

event horizon. Around the inner horizon, one installs the usual coordinates, U− =

∓ exp(κ−u), V− = − exp(−κ−v), where κ− := −Λ̄
(
r2

+ − r2
−
)
/r−.

In these coordinates, the future-pointing æther can be seen to diverge at V− = 0 and

to remain regular at U− = 0. A pattern thus emerges where the future-pointing æther

diverges along past event horizons (V ∗ = 0) and is regular along future event horizons

(U∗ = 0), where {U∗,V ∗} are the outgoing/ingoing Kruskal coordinates adapted to an

arbitrary Killing horizon. This holds for the dS spacetimes as well.

4.5.6.2 Universal Horizons

As already discussed, a universal horizon exists when a constant preferred time (constant-

T ) hypersurface coincides with a constant-r hypersurface. This constant-r hypersurface

will then act as an absolute causal boundary for all the modes, irrespective of their speed,

because any sort of physical process is presumed to proceed in the direction of increasing

T . Therefore, any constant-r hypersurface that happens to coincide with a constant-T

hypersurface (i.e., a leaf of the foliation) can only be crossed in one direction.

Since uφ = 0, there will be a universal horizon when

∂αr ∝ uα , (4.70)

or equivalently, when uαtα = 0, where tα is the timelike Killing vector. For the class of

solutions given by Eq. (4.44), the universal horizon is given by the surface r (xα) = ru,

where ru satisfies

u2
t = F (ru)2 +

(
a

ru
+ bru

)2

= 0 , (4.71)
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or

(b2 − Λ̄)r4 + (2ab−M)r2 +

(
a2 +

J̄ 2

4

)
= 0 . (4.72)

The roots are

(r±u )2 =
M− 2ab

2
(
b2 − Λ̄

) ± 1

2(b2 − Λ̄)

[
(M− 2ab)2 −

(
4a2 + J̄ 2

) (
b2 − Λ̄

)]1/2

. (4.73)

If the discriminant is negative then the roots will be imaginary and there will not be any

universal horizon. If the discriminant is positive both roots in Eq. (4.73) will be real

and distinct. But then there will exist a region, r−u < r < r+
u , where the æther turns

imaginary and the foliation will have to end on that largest of the two roots. So, for the

foliation to extend all the way to the singularity and still have a universal horizon one

needs to require that (
4a2 + J 2

) (
b2 − Λ̄(b)

)
ξ (M− 2ab)2 = 1 . (4.74)

We can use this constraint to express a in terms of the other parameters {M,J , b}, thus
reducing the dimension of the parameter space to three.

Assuming that the resulting r2
u is real (which imposes a further constraint on the parame-

ters), the universal horizon is uniquely located at

r2
u =
M− 2a± (M,J , b) b

2
(
b2 − Λ̄(b)

) , (4.75)

where a is now understood to depend on the other parameters through Eq. (4.74).

Because Eq. (4.74) is quadratic in a, there will generally be two values of a (which

we denote by a±) for every choice of {M, J , b}. Each particular triple {M, J , b} can
represent two distinct solutions, each possibly harboring a universal horizon.

4.5.6.3 Black Holes with Universal Horizons

For a BTZ-like solution with AdS asymptotics, the universal horizon is located between

the outer and inner event horizons. This is illustrated in Fig. (4.6). Note that b and J
are dimensionful quantities ([b] = 1/L, [J ] = L); for the plots we use their dimensionless

versions r̄ := r/l and b̄ := bl, where l is the “bare” cosmological length scale, l := 1/
√
|Λ|.

Fig. (4.6) shows the positions of the horizons as a function of b̄, keeping other parameters

fixed at {M = 10, J /l = 0.1} and with the coupling constants set to be {ξ = 1/2, λ =

1}.
We have also chosen the sign of the bare cosmological constant to be negative, so that

Λ̄(b = 0) < 0. To ensure that the æther represents a well-defined foliation at large r for

any value of b, we need to work within the parameter region {ξ > 0, λ > 1/2}. With



Chapter 4. Rotating Black Holes in Three-Dimensional Hořava Gravity 67

Λ < 0, any choice from this region guarantees that (b2 − Λ̄(b)) = −Λ + b2(2λ− 1)/ξ > 0

is non-negative for any value of b.

Moreover, if one chooses them such that λ ≥ (1 + ξ)/2, then Λ̄ is always negative for any

b. Fig. (4.6) is such a case, where all values of b give regular AdS black holes. Fig. (4.1)

shows the locations of the universal horizon in the Penrose diagram of an AdS black hole

spacetime.

outer horizon

inner horizon

universal horizon

-10 -5 0 5 10
b

0.5

1.0

1.5

2.0

2.5

3.0
r

Figure 4.6 Radial positions of various horizons in a BTZ-like anti-de Sitter black hole.

Now if the coupling constants are such that {ξ > 0, λ > 1/2} and λ < (1 + ξ)/2, then

Λ̄ will switch sign at some value of b. When this happens, the æther charge b radically

changes the causal structure of the spacetime. In Fig. (4.7), we have an example of a

spacetime starting with AdS asymptotics at b = 0 and turning asymptotically dS as b

is increased. This plot is made with the parameters {M = 10, J /l = 0.1}, but with

{ξ = 3/4, λ = 3/4}.
One can verify that the spacetime turns dS at b̄ = ±

√
3. The shaded regions denote

solutions that are asymptotically dS, but these solutions are not black holes sinceM > 0

and J̄ 2 > 0. (For 0 < ξ < 1, J̄ 2 is always positive). Only the unshaded regions – those

with AdS asymptotics – are black holes.

Interestingly, within the AdS region, there is a kink in the curves, r̄±(b̄). For this case, it

occurs around b̄ = −1.2247, which is where 1 + J̄ 2Λ̄/M2 vanishes. We note that while

both curves touch, they do not cross over. At this point, which is also where all horizons

meet, r̄±(b̄) are continuous but not differentiable with respect to the parameter b̄.

As the transition from AdS to dS asymptotics is made, the outer horizon is pushed

to r = ∞, leaving as the “outer” region of the asymptotically dS spacetime what was

formerly the interior of the AdS black hole. At the same time, the inner horizon of
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the AdS black hole turns into the dS event horizon. The universal horizon remains in

between the inner and outer horizons of the AdS black hole, and can be found in the

“outer” region of the dS spacetime.

That the universal horizon tends to be located beyond the dS horizon (i.e. at a larger

value of r) appears to be a generic property of these solutions. Such a horizon can be

thought of as a cosmological universal horizon.

outer horizon

inner horizon

universal horizon

-2 0 2 4 6 8 10
b0

2

4

6

8

r

Figure 4.7 Transitioning from AdS to dS asymptotics. The yellow shaded regions are
asymptotically de Sitter spacetimes, while the unshaded region represents an AdS black
hole.

It is also of interest to look at the case of the dS black hole. Choosing the sign of the

bare cosmological constant to be positive this time (Λ > 0), we now choose the other

parameters to be {M = −10, J = 0.1} and the coupling constants {ξ = 2, λ = 1}.
The coupling constants are chosen so that all values of b lead to dS asymptotics, which

is λ < (1 + ξ)/2 for Λ > 0. However, to guarantee that the æther is real at large r (re:

b2 > Λ̄(b)), we are limited to the region b̄ ≥
√

2. For all values of b̄ shown in Fig. (4.8),

the spacetime is a dS black hole with an event horizon and a dS horizon.

However, for sufficiently large b̄ (not shown in the plot), J̄ 2 becomes positive, and the

event horizon ceases to exist. Again, we see here that the universal horizon is located

beyond the dS horizon. In Fig. (4.2), the universal horizon is displayed in the Penrose

diagram of a dS black hole spacetime. In the asymptotically flat case Λ̄ = 0, the æther

charge b is fixed at a particular value:

b2flat = Λ

(
ξ

2λ− ξ − 1

)
. (4.76)
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de Sitter horizon

event horizon

universal horizon
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Figure 4.8 Radial positions of various horizons in a de Sitter black hole.

It is quite straightforward to choose parameters for which the universal horizon exists.

Asymptotically flat solutions with universal horizons have no extra hair (i.e. independent

æther charge) apart fromM and J .
In Fig. (4.3), the universal horizon is displayed in the Penrose diagram of an asymptoti-

cally flat, black hole spacetime.

4.5.6.4 Black Holes without Universal Horizons

We have implicitly already stated two conditions for universal horizons to not exist at all:

firstly, the discriminant in Eq. (4.73) can be negative, and secondly, r2
u can be negative.

It is worth pointing out that these condition can be satisfied even in black hole solutions

if the parameters are chosen appropriately.

Consider, as an example, the black hole with flat asymptotics, {Λ̄ = 0,M = −1, J̄ 2 <

0}, and assume, additionally, that b = 0 so that the æther asymptotically aligns with

the timelike Killing vector. Eq. (4.76) requires that Λ has to vanish as well. One can

then straightforwardly calculate the root of Eq. (4.72). This is

r2
u = −

(
J2 + 4a2

ξ

)
, (4.77)

and it is negative-definite (J̄2 < 0 requires that ξ > 1). So, no universal horizon exists

for black holes with flat asymptotics and an æther that asymptotically aligns with the

timelike Killing vector.

As another example, let us consider black holes with AdS asymptotics. The negative
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discriminant condition reads

(4a2 + J 2)(b2 − Λ̄(b))

ξ(M− 2ab)2
> 1 , (4.78)

while the black hole bound given in Eq. (4.57) for Λ̄(b) < 0 is

0 ≤M2 + Λ̄(b)J̄ (a)2 . (4.79)

Finally, we also need to require that the æther is real at large r (b2 ≥ Λ̄(b)) and small

r (ξ > 0). All need to be satisfied for the parameters to represent regular black hole

solutions without universal horizons.

We graphically demonstrate that a fairly large region of parameter space satisfies all

these requirements. For the values {M = 1, Λl2 = −1, J /l = 1}, λ = 2 and ξ = 0.9, we

display in Fig. (4.9) the values of {a, b} satisfying (a) Λ̄ < 0, (b) the black hole bound

in Eq. (4.57), (c) the negative discriminant condition in Eq. (4.78), and (d) the æther

regularity constraint at large r. These all correspond to asymptotically AdS black holes

with no universal horizons.

-2 -1 0 1 2
-2

-1

0

1

2

a

b

Figure 4.9 Region of parameter space corresponding to asymptotically anti-de Sitter
black holes without universal horizons. These plots use {M = 1, Λl2 = −1, J /l = 1},
λ = 2, and ξ = 0.9. Here, ā := a/l and b̄ := bl, with l := 1/

√
−Λ.
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4.5.7 Non-Rotating Black Holes

One can choose to focus in the J = 0 case which corresponds to a non-rotating black

hole. In general the spacetime retains most of the features it had when J 6= 0 provided

that a 6= 0. Curvature invariants still diverge at r = 0 and the causal structure remains

largely unaffected. Ergosurfaces now coincide with the metric horizons, as expected.

Nevertheless, it is worth pointing out that one can still have two black hole horizons in

black hole solutions with AdS asymptotics.

As far as universal horizons are concerned, they can be present or absent, depending on

the solutions.

When J = 0, the constraint given by Eq. (4.74) reduces to

4a2(b2 − Λ̄(b))

ξ(M− 2ab)2
= 1 . (4.80)

One can readily identify two characteristic examples of non-rotating black holes that

cannot satisfy this constraint and cannot have a universal horizon. The first is the

asymptotically flat black hole with b = 0 (discussed above) and J = 0. The second is a

black hole with AdS asymptotics and a = 0. This is actually a non-rotating BTZ black

hole with a non-trivial æther configuration.

4.6 Summary of the Results and Some Remarks

Our intention was to find an analogue of the BTZ black hole in three-dimensional Hořava

gravity. To this end we first considered whether AdS space or AdS asymptotics are ad-

missible in this theory. Using the reduced action approach we have shown that this is

only true if η = 0. We subsequently focused on the η = 0 sector of the theory. We

have found the most general class of solutions in this sector, without imposing specific

asymptotics. Remarkably, the black hole solutions in this class do not have exclusively

AdS asymptotics, but there exist instead also black holes with dS and flat asymptotics,

unlike GR.

The black hole solutions we found have very interesting properties. They harbour a cur-

vature singularity, unlike their GR counterparts. They can have an inner and an outer

metric (Killing) horizon and one or two ergosurfaces. But perhaps what is their most

interesting feature within the context of Lorentz-violating gravity theories is that they

can have universal horizons. Rotation does not seem to play a key role in the existence

of these horizons. Depending on the configuration of the preferred foliation, there can

be non-rotating black holes without universal horizons or rapidly rotating black holes

with universal horizons. Some of our solutions also feature the existence of cosmological
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universal horizons. These results demonstrate that the existence of universal horizons

does not seem to depend on spherical symmetry or the number of spacetime dimensions

and it is not specific to black hole spacetimes. At the same time, they also highlight

the importance of the asymptotic behaviour of the foliation for the existence of universal

horizons.

The η = 0 sector of three-dimensional Hořava gravity, to which the requirement of AdS

asymptotics has restricted us, is likely to be a special theory. At the perturbative level

the scalar mode that the theory propagates appears to travel at infinite speed as it is

evident by looking at Eq. (4.18). Furthermore, in four dimensions choosing η = 0 leads

to a physically (but not mathematically) inconsistent theory [144].

Nevertheless, we expect the black hole solutions presented here to be useful tools for ap-

plications such as quantum field theory near horizons in the presence of Lorentz violations

and black hole thermodynamics, so long as one remains cautious about the interpretation

of the results.

Moreover, the existence of black hole solutions with flat or dS asymptotics in the η = 0

sector of the theory suggests that it is likely for black hole solutions with these asymp-

totics to exist also when η 6= 0.



Chapter 5

Gravity with Auxiliary Fields

In the previous Chapters we have considered the option to modify GR by relaxing one

of the implicit assumptions of Lovelock’s theorem, i.e. diffeomorphism invariance. As

we have seen, this procedure inevitably leads to the propagation of extra modes, as

expected due to less symmetry. This is one way to circumvent Lovelock’s theorem.

The most natural and extensively explored one, is to add extra dynamical fields in the

gravitational action while preserving diffeomorphism invariance. This is indeed what

happens in the covariantized version of Hořava gravity in the IR limit, which does not

violate the diffeomorphism invariance assumption any more, but includes explicitly an

extra field (Stueckelberg field).

By doing so, however, one is inevitably introducing again extra propagating degrees of

freedom. Such degrees of freedom remain undetected to date. Hence, a major problem

for alternative theories of gravity has been to tame the behaviour of extra degrees of

freedom, so as to evade current experimental constraints related to their existence [98].

This comes in addition to the fact that it is not at all straightforward to construct theories

with extra fields non-minimally coupled to gravity that avoid instabilities associated to

the new degrees of freedom [77].

What we wish to consider here is the much less explored option of adding non-dynamical

extra fields. This is enough to circumvent Lovelock’s theorem and, at the same time, it

does not add extra propagating degrees of freedom. The extra fields will then have to

be auxiliary, i.e. the field equations should allow them to be determined algebraically.

One might be tempted to consider a modification of GR which is not restricted by

Lovelock’s theorem, as it refers to the right-hand side of the equations. More specifically,

one may add any rank-2 tensor that is solely constructed by the metric and the matter

fields and is identically divergence-free, so as to not compromise the weak equivalence

principle. However, it is unclear if such a tensor actually exists. Additionally it is

reasonable to think that, if this theory is to come from an action, the corresponding

73
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modification would amount to an addition of extra terms including the matter fields,

hence introducing unacceptable modification to the equations of motion of the matter

sector.

In what follows we will start with three specific and very well known examples of theories

where auxiliary fields are present in the action. After that we will develop a very general

framework for theories with auxiliary fields where also the aforementioned special cases

will be captured.

5.1 Three Known Examples

5.1.1 Eddington-Inspired Born-Infeld Gravity

Eddington-inspired Born-Infeld (EiBI) gravity is described by the following action [145]

SEiBI =
2

κ

∫
d4x
(√
|det

(
gµν + κR(µν)

)
| − (1 + κΛ)

√
g
)

+ SM [gµν ,ΨM ] , (5.1)

where κ is the extra EiBI parameter which has dimensions of length squared and Rµν is

the Ricci tensor built with the connection Cσµν . In this Chapter we will work in Planck

units 8πGN = 1.

EiBI gravity is naturally based on the Palatini formulation, so the connection Cσµν is

considered as an independent field and it does not enter the matter action.

Variation of the action (5.1) with respect to the metric and the independent connection

respectively yields

√
qqµν =

√
g ((1 + κΛ)gµν − κTµν) , (5.2a)

∇̃σ[
√
qq(µν)]− ∇̃γ [

√
qq(µγ ]δν)

σ = 0 , (5.2b)

where qµν ≡ gµν + κR(µν), ∇̃µ is the covariant derivative defined with the connection

Cσµν , and Tµν is the stress-energy tensor defined as usual

Tµν =
−2√
−g

δSM
δgµν

. (5.3)

After having manipulated Eq. (5.2b) it takes the form

Cσµν =
1

2
qσγ (∂µqνγ + ∂νqµγ − ∂γqµν) . (5.4)

Moreover, using Eq. (5.2a) one gets

qµν =
(1 + κΛ)gµν − κTµν

√
g
√
| det [(1 + κΛ)gαβ − κTαβ]|

, (5.5)
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which can be rewritten as

κR(µν) =
√
g
√
| det [(1 + κΛ)gαβ − κTαβ]| [(1 + κΛ)gµν − κTµν ]−1 − gµν . (5.6)

It follows that Eq. (5.5) determines qµν algebraically in terms of gµν and Tµν , whereas

Eq. (5.4) determines Cσµν as the Levi-Civita connection of qµν . So, using Eqs. (5.4)-(5.5),

it follows that one can write Cσµν in terms of the metric, the stress-energy tensor and

their derivatives. This means that the C’s are not dynamical fields but rather auxiliary

fields.

Hence, one can use these equations to eliminate Cσµν from Eq. (5.6), which then becomes

a second-order partial differential equation in gµν , and it also contains second-order

derivatives of Tµν .

For what follows, it is also convenient to write below the field equations in the small-

coupling limit, that is by expanding the action (5.1) at first-order in κ.

Using the fact that

qµν = gµν − κτµν +O(κ2) , (5.7)

where τµν ≡ Tµν − 1
2gµνT + Λgµν , the equations for the metric gµν are found to be [146]

Rµν = Λgµν+Tµν−
1

2
Tgµν+κ

[
Sµν −

1

4
Sgµν

]
+
κ

2

[
∇µ∇ντ − 2∇σ∇(µτσν) +�τµν

]
+O(κ2) ,

(5.8)

where Sµν = T σµTσν − 1
2TTµν .

Note that in the equation above Rµν is now constructed with the Levi-Civita connection

of gµν and ∇µ is the covariant derivative associated to it.

GR is automatically recovered for κ = 0, while it is now evident that when κ 6= 0 Eq. (5.8)

contains second derivatives of Tµν , i.e. at least third derivatives of matter fields, unless

we consider a perfect fluid approximation of matter. This is in contrast with GR where

usually only first derivatives appear on the right-hand side of the field equations.

5.1.2 Palatini f(R) Gravity

Let us now consider the case of Palatini f(R) gravity [78, 147], which is perhaps the

most well-known example of a theory with auxiliary fields. Its action is written as

SPal =
1

2

∫
d4x
√
−g f(R) + SM (gµν , ψM ). (5.9)
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Varying it independently with respect to the metric and the independent connection Cσµν ,

yields respectively

f ′(R)R(µν) −
1

2
f(R)gµν = Tµν , (5.10a)

− ∇̄λ
(√
−gf ′(R)gµν

)
+ ∇̄σ

(√
−gf ′(R)gσ(µ

)
δ
ν)
λ = 0 , (5.10b)

where ∇̄µ denotes the covariant derivative defined with the independent connection Cσµν .

Taking the trace of Eq. (5.10b), it can be easily shown that

∇̄σ
(√
−gf ′(R)gσµ

)
= 0 , (5.11)

from which the field equations can be recast in the form

f ′(R)R(µν) −
1

2
f(R)gµν = Tµν , (5.12a)

∇̄λ
(√
−gf ′(R)gµν

)
= 0 . (5.12b)

Notice that if one takes f(R) = R, then trivially f ′(R) = 1, Eq. (5.12b) becomes the

definition of the Levi-Civita connection of gµν and Eq. (5.12a) immediately leads to GR.

This is consistent with the well known result that the Palatini approach for GR yields

Einstein’s equations [148, 149], with the only difference that the connection turns out to

be the Levi-Civita one only dynamically instead of being assumed a priori.

Defining a metric which is conformal to gµν through

hµν ≡ f ′(R)gµν , (5.13)

one finds
√
−hhµν =

√
−g f ′(R)gµν , (5.14)

and Eq. (5.12b) becomes

∇̄λ
(√
−hhµν

)
= 0 , (5.15)

that is the definition of the Levi-Civita connection of hµν . Thus solving it algebraically

one gets

Cσµν =
1

2
hσλ (∂µhνλ + ∂νhµλ − ∂λhµν) , (5.16)

which can be written in terms of gµν as

Cσµν =
1

2

1

f ′(R)
gσλ
[
∂µ
(
f ′(R)gνλ

)
+ ∂ν

(
f ′(R)gµλ

)
− ∂λ

(
f ′(R)gµν

) ]
. (5.17)
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Since taking the trace of Eq. (5.12a) yields

f ′(R)R− 2f(R) = T , (5.18)

which implies that for a given f(R) one gets an algebraic equation relating R to T , it

follows that the independent connection (5.17) can be written in terms of the metric and

the matter fields. So again, since the connection can be algebraically expressed only in

terms of the latter two, it follows that it acts as an auxiliary field.

5.1.3 Brans–Dicke Theory with ω0 = −3/2

In order to see what this implies at the level of the field equations, we find it convenient

and also instructive writing Palatini f(R) gravity as Brans–Dicke theory with ω0 = −3/2,

which is actually dynamically equivalent to Palatini f(R) gravity [78, 147]. To this end,

let us start from Eq. (5.9), and follow exactly the same steps of Sec. (1.4.1) that we

re-propose here for clarity.

Introducing an extra field χ, one gets the following dynamically equivalent action

SPal =
1

2

∫
d4x
√
−g
[
f(χ) + f ′(χ)(R− χ)

]
+ SM [gµν , ψM ] . (5.19)

Taking its variation with respect to χ leads to

f ′′(χ)(R− χ) = 0, (5.20)

and, if f ′′(χ) 6= 0 then χ = R, and the original action (5.19) is recovered.

Through the redefinition of the field χ by φ = f ′(χ), and by defining

V (φ) = χ(φ)φ− f(χ(φ)) , (5.21)

one can rewrite the action (5.19) as

SPal =
1

2

∫
d4x
√
−g [φR− V (φ)] + SM [gµν , ψM ] . (5.22)

Let us now use Eq. (5.17) in order to relate the Ricci tensor Rµν associated to the

connection Cσµν , to the Ricci tensor Rµν associated to the Levi-Civita connection of gµν .

It follows that

Rµν = Rµν +
3

2

1

(f ′(R))2

(
∇µf ′(R)

) (
∇νf ′(R)

)
− 1

f ′(R)

(
∇µ∇ν +

1

2
gµν�

)
f ′(R) ,

(5.23)
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whose contraction with gµν yields

R = R+
3

2(f ′(R))2

(
∇µf ′(R)

) (
∇µf ′(R)

)
− 3

f ′(R)
�f ′(R) , (5.24)

where R ≡ gµνRµν and R ≡ gµνRµν .
Using now Eq. (5.24) in Eq. (5.22) with φ = f ′(R), one finally gets, modulo surface

terms, the action

SBD =
1

2

∫
d4x
√
−g
(
φR+

3

2φ
∇µφ∇µφ− V (φ)

)
+ SM (gµν , ψM ) , (5.25)

which is just the action of Brans–Dicke theory with ω0 = −3/2.

The corresponding field equations coming from the variation of the action (5.25) with

respect to the metric and the scalar field φ, are respectively

Gµν =
1

φ
Tµν −

3

2φ2

(
∇µφ∇νφ−

1

2
gµν∇σφ∇σφ

)
+

1

φ
(∇µ∇ν − gµν�)φ− V

2φ
gµν ,

(5.26a)

�φ =
φ

3
(R− V ′) +

1

2φ
∇σφ∇σφ . (5.26b)

By taking the trace of Eq. (5.26a), and using it to eliminate R from Eq. (5.26b), one gets

2V (φ)− φV ′(φ) = T . (5.27)

So, it is possible to relate φ directly to the matter sources since, once the potential V (φ)

is assigned, the scalar field can be algebraically solved as φ = φ(T ). It directly follows

that it is a non-dynamical field.

Finally substituting φ = φ(T ) back into the field equations (5.26a), one gets higher-order

derivatives of matter fields, as it was also the case for EiBI gravity.

5.2 Higher-Order Derivatives of Matter in the Field Equa-

tions

It has been shown in several works that major problems arise when perfect-fluid equi-

librium structures are considered in the theories discussed above. In Ref. [146], static

and spherically symmetric perfect-fluid stars with polytropic equations of state – where

P = KρΓ
0 , with P being the pressure, ρ0 the rest-mass density and K and Γ constants

– are considered in the context of EiBI gravity. It is found that for any Γ > 3/2 the

theory does not admit any regular solution as the scalar curvature diverges at the surface

of these polytropic matter configurations. At least two physical matter configurations
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are exactly described by a polytropic equation of state with Γ > 3/2: a degenerate

gas of nonrelativistic electrons and a monoatomic isentropic gas, both having Γ = 5/3.

Moreover there are also other examples of stars whose matter configuration resembles a

polytrope, e.g. the atmosphere of white dwarfs is well approximated by a polytrope with

Γ = 10/3 (see Refs. [150, 151]). These perfectly reasonable systems, which can also be

described within Newtonian theory, have no description in EiBI gravity, so the theory is

at best incomplete.

Similar results have also been obtained in the case of Palatini f(R) gravity, in which case

the divergence occurs only for 3/2 < Γ < 2 [152–154], and in theories where matter is

coupled to the Ricci scalar [155].

The key issue is that higher-order derivatives of matter fields, which appear both in the

EiBI and Palatini f(R) Gravity (or Brans–Dicke Theory with ω0 = −3/2) field equa-

tions, as a result of integrating out non-dynamical degrees of freedom, make the geometry

unacceptably sensitive to sharp variations in the matter configuration.

In fact having a higher differential order in the metric than in the matter fields is what

guarantees that the metric depends in a cumulative way on the matter. On the contrary,

if this is not the case, then the metric loses its immunity to rapid changes in matter

gradients since it is directly related to them instead of being an integral over them.

Any matter configuration which is discontinuous or just not smooth enough will pro-

duce discontinuities in the metric and singularities in the curvature invariants, leading

to unacceptable phenomenology.

The same problem should be generically expected for any theory which includes fields

other than the metric for describing the gravitational interaction which are algebraically

related to matter rather than dynamically coupled [156]. In this case one can always

solve the field equations for the extra field and then insert the solution into the field

equations for the metric, inducing a dependence of the metric on higher derivatives of

matter fields, as we have seen in the examples discussed above.

In what follows we will develop a general framework which will indeed show that this

problem appears to be a generic prerogative of gravitational theories which do not propa-

gate any degree of freedom other than the massless spin-2 field, but instead contain auxi-

liary fields. Furthermore, it will also act as a nice parametrization for all such theories,

rendering possible to study their features in full generality without referring to specific

examples.
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5.3 Constructing the Gravitational Field Equations

5.3.1 Hypothesis of the Argument

Keeping in mind what we have learned from the previous examples of theories with

auxiliary fields, we want now to construct a very general parametrization able to include

the entire class of such theories. In particular, our argument will not rely on the specific

form of the auxiliary field appearing in the field equations, because, as seen before, the

auxiliary field can be represented not only by a scalar field, but also by a more general

geometrical object, e.g. the connection. The power of this parametrization lies precisely

on the fact that it remains oblivious to the nature of the auxiliary fields and the way

they enter in the action.

Our general argument [157] is based on the following hypotheses:

i) The theory admits a covariant Lagrangian;

ii) In this formulation any extra field is auxiliary;

iii) The matter fields couple only to the metric in the usual way, so that the matter

Lagrangian LM reduces to that of the Standard Model in the local frame.

For concreteness we will focus on the simplest case of just one auxiliary field. However,

this assumption is not crucial and the generalization to N fields is straightforward. The

theory is described by the Lagrangian

L = Lg[g,φ] + LM [g,ψ] ; (5.28)

Lg is the gravitational part where the metric g is possibly coupled to the extra field φ,

for which the tensorial rank or other characteristics are left unspecified.

5.3.2 Field Equations

Variation with respect to g and φ yields respectively to

Eµν [g,φ] = Tµν , (5.29)

Φ[g,φ] = 0 , (5.30)

where Eµν is a generic rank-2 tensor. Variation with respect to ψ will yield the field equa-

tions for the matter fields. Our requirement that φ be an auxiliary field implies that, by

using Eqs. (5.29) and (5.30) (and possibly their derivatives) in some particular combi-

nation, it is possible to obtain an algebraic equation for φ, which can be schematically
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written as

F [φ, g,T ] = 0 , (5.31)

where φ only appears at zeroth differential order. Note that we do not necessarily require

to solve Eq. (5.31) in closed form. Indeed, it is sufficient to solve for φ implicitly, provided

the implicit relation can be used to obtain a closed set of field equations for g, where

any dependence on φ has been eliminated. It is clear that the matter fields will appear

in Eq. (5.31) only in the specific combination that forms the stress-energy tensor.

Let us assume that F does not depend on the matter fields at all. Then φ can be

algebraically determined in terms of the metric only through F [φ, g] = 0.

Consistency requires that Eq. (5.30) be trivially satisfied, and Eq. (5.29) reduces to

Eµν [g] = Tµν . (5.32)

But then, if Eµν contains up to second derivatives of the metric, Lovelock’s theorem

requires Eµν [g] ≡ Gµν + Λgµν and the theory has to be GR.

The case where Eµν contains more than second derivatives of the metric does not concern

us here, as the scope of adding auxiliary fields instead of dynamical ones was to avoid

extra degrees of freedom.

On the other hand, if F depends on the matter fields, eliminating φ from Eq. (5.29) will

yield

Eµν [g,T ] = Tµν , (5.33)

which can be written without loss of generality as

Gµν + Λgµν = Tµν + Sµν [g,T ] . (5.34)

The precise form of Sµν will obviously depend on the specific form of the auxiliary field

and how it enters the Lagrangian. However, Sµν has to have the following properties:

i) It vanishes when Tµν = 0, as it was previously shown that when F is independent of

the matter fields Eµν = Gµν + Λgµν ;

ii) It is divergence-free, as a consequence of the contracted Bianchi identity and the fact

that Tµν is divergence-free when the matter fields satisfy their field equations.

Note that this latter property should hold identically, modulo the fact that ∇µTµν = 0,

as it should not impose any further restriction to the dynamics. This is consistent with

the fact that Sµν came after eliminating an auxiliary field and that matter is minimally

coupled to g in the Lagrangian (5.28).

Lastly, it is worth mentioning that Λ need not be identified with the cosmological constant
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that was initially present in Lg, as the whole procedure of eliminating the auxiliary field

might possibly affect its value.

5.3.3 Constructing Sµν

We have shown that, in theories with an auxiliary field, eliminating the latter generically

corresponds to modifying Einstein’s equations by adding a divergence-free tensor that

vanishes in vacuum. This tensor depends on the metric, the stress-energy tensor, and

their derivatives. One could now set its origin aside and just attempt to construct it

from its constituents. We proceed by doing so, order by order in the derivatives of the

fields.

The stress-energy tensor is generically second-order in derivative of the matter fields

(fermions being an exception) and this defines the lowest-order.

The only term one could add at the lowest-order is gµνT , where T ≡ Tµµ, so the equations
can take the form

Rµν = Tµν − αgµνT + gµνΛ + . . . , (5.35)

α being an arbitrary coefficient. There are no terms with three derivatives one can

construct. The terms with four derivatives are of three types: T 2, ∇2T , and contractions

between T and the Riemann tensor. The only term that actually involves the Riemann

tensor itself is R(µ|νσ|γ)T
νσ, which can be eliminated without loss of generality in favour

of other terms since ∇σ∇γ Tµσ = RµνσγT νσ +RνγT
µν . Assuming that the perturbative

expansion does not break down (which should be true at least in regimes where one

expects to recover GR), one could use the lowest-order equation (5.35) in order to express

Rµν in terms of Tµν . Hence, up to fourth-order in derivatives, we obtain

Sµν = α1 gµν T + α2 gµν T
2 + α3 T Tµν + α4 gµν Tσγ T

σγ + α5 T
σ
µ Tσν

+β1∇µ∇ν T + β2 gµν �T + β3�Tµν + 2β4∇σ∇(µ Tν)σ + . . . , (5.36)

where αi and βj are coefficients with appropriate dimensions. In the expression above we

are not considering possible parity violating terms which would involve the Levi-Civita

tensor.

We still need to impose that Sµν be divergence free, at least to the required order, and

this condition will impose some bond between the various coefficients. At first it might

seem that the only solution is the trivial one, αi = βj = 0. However, this is not the case,
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as using the relations

(�∇ν −∇ν �)T = Rµν∇µ T , (5.37)

(∇µ∇σ∇µ −∇σ �)Tσν = Rµνσγ∇γ T σµ , (5.38)

∇µRµνσγ = 2∇[σRγ]ν , (5.39)

and the lowest-order Eq. (5.35) leads to cancellations between terms. Indeed, imposing

∇µSµν = 0 we obtain:

α1 = −β1 Λ , 4α2 = (1 + 2α1) (β1 − β4) ,

α3 = β4 (1 + 2α1)− β1 , 2α4 = β4 ,

α5 = −2β4 , β2 = −β1 , β3 = −β4 .

(5.40)

The field equations finally read

Gµν = Tµν − Λgµν − β1Λ gµν T +
1

4
(1− 2β1Λ) (β1 − β4) gµν T

2

+ [β4 (1− 2β1 Λ)− β1] T Tµν +
1

2
β4 gµν Tσγ T

σγ − 2β4 T
σ
µ Tσν + β1∇µ∇ν T

−β1 gµν �T − β4�Tµν + 2β4∇σ∇(µ Tν)σ + . . . ,

(5.41)

where all coefficients are expressed in terms of β1 and β4.

Notice that similar quadratic-in-Tµν terms also arise in so-called brane-world scenarios

(see Ref. [158] for a review).

It is worth pointing out that, although the equations above have been obtained as a

derivative expansion, they could be equivalently obtained as a double expansion in the

small-T and small-∇T limits. More precisely, introducing a further book-keeping param-

eter λ associated to each derivative of the stress-energy tensor, it can be easily verified

that Eq. (5.41) is the most generic field equation which satisfies the aforementioned hy-

potheses to O(T 2) and O(λ2T ). This equivalence hinges on the symmetries and on the

tensorial rank of T . Assigning a derivative order to T itself simply allows one to have a

single book-keeping parameter and simplifies the discussion.

Note also that, when one is working with an effective description of matter, such as

fluids, quantities such as the energy density and pressure will not be of zeroth-order even

though they do not explicitly appear to contain derivatives. That can be understood

intuitively by the fact that a scalar field admits an effective description as a perfect fluid.

Known theories with auxiliary fields do indeed fall within the parametrization devel-

oped above. EiBI gravity in the small coupling limit (see Eq. (5.8)) corresponds to
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β1 = 0 and β4 = −κ/2. Generic Palatini f(R) theories (and also Brans–Dicke theory

with ω0 = −3/2) correspond to β4 = 0, with Λ and β1 being dependent on the model

parameters. Interestingly, these two particular cases are in fact representative of two

“orthogonal” classes of corrections.

Our analysis demonstrates that theories with auxiliary fields, as well as any modification

that does not allow for extra degrees of freedom, inevitably lead to equations with more

than second derivatives of the matter fields. In the absence of extra dynamical fields,

such terms have already been shown to be a major shortcoming in the specific theories we

have presented in Sec. (5.1)-(5.2), leading to curvature singularities when there are sharp

changes in the energy density of matter [146, 152–155]. This problem will generically

persist in the class of corrections we are discussing.

5.4 Newtonian Limit

An analysis of the Newtonian limit is quite illuminating. For simplicity we set Λ = 0. If

the cosmological constant is to have the observed value then it can safely be considered

as a higher post-Newtonian order contribution. In the limit of small velocities and small

matter fields, one has

gµν = ηµν + ε hµν , Tµν = ε ρ δ0
µδ

0
ν , (5.42)

where ε� 1 is a book-keeping parameter.

We define Ψµν = hµν − 1
2ηµνh, and indices are raised and lowered by the Minkowski

metric ηµν . By performing the infinitesimal transformation xµ → xµ + ε ξµ where ξµ

satisfies

ε�ξν = ε ∂µΨµ
ν − ζ∂νT , (5.43)

we can impose a gauge such that ε ∂µΨµ
ν = ζ∂νT .

Here ζ is a numerical coefficient that we shall fix later on. To first-order in ε, and after

some manipulations, the field equations read

∇2h0i = 0 , (5.44a)

−∇
2h00

2
=
ρ

2
+

1

2
β−∇2ρ , (5.44b)

−∇
2hij
2

=
δij
2

[
ρ− β+∇2ρ

]
− [β1 − ζ] ∂i∂jρ , (5.44c)

where β± = β1 ± β4 and i, j = 1, 2, 3. It is now evident that setting ζ = β1 is the gauge

choice that makes the spatial part of the metric diagonal [98].



Chapter 5. Gravity with Auxiliary Fields 85

The solutions of the equations above then are

h0i = 0 , (5.45a)

h00 =

∫
d3x′

ρ

4π|~x− ~x′|
− β−ρ , (5.45b)

hij = δij

∫
d3x′

ρ

4π|~x− ~x′|
+ β+ρ δij . (5.45c)

The last terms in Eqs. (5.45b) and (5.45c) depend on the local value of the density.

Thus, already at first-order, it is evident that such an expansion does not fit into the

standard parametrized post-Newtonian framework [98]. The latter has to be extended

to accommodate such corrections. It is also important to stress that the standard post-

Newtonian expansion does not assume derivatives of the matter fields to be small. There-

fore, a post-Newtonian expansion of Eq. (5.41) would be valid at most to order O(T 2)

and O(λ2T ).

If one considers the metric outside a spherical source, such as the Sun, these local terms

vanish and the metric would be identical to the Newtonian metric in GR. This reflects

the fact that in vacuo Eq. (5.41) reduces to Einstein’s equation. However, when one con-

siders what happens inside matter, and more specifically near the surface of an object,

then the deviation from GR is drastic.

In particular, consider a situation where the density has a discontinuity, as can happen

on the surface of a solid (or even for fluids that are described adequately by polytropic

equations of state near the surface [153]). Then the metric would be discontinuous there

and the corresponding spacetime singular. In fact, the gauge transformation (5.43) would

not even be admissible, as the right-hand side would diverge and it would be impossible

to eliminate the off-diagonal term of the metric. It is worth noting that this is not a

coordinate problem, neither a problem associated with the Newtonian approximation.

One can use Eq. (5.41) to straightforwardly calculate invariants such as R or RabRab and

check that they diverge when T is discontinuous, unlike GR.

One can argue that discontinuities in the density are not really physical and that the

perfect-fluid description of matter would break down at very small densities, rendering

our treatment inadequate. This is in principle true, but in practice it does not allevia-

te the problem. Indeed after introducing some microphysical description, there are no

guaranties that the solution would be regular. Moreover, abandoning the fluid approxi-

mation would just increase the differential order of the field equations in the matter

sector, rendering the curvature even more sensitive to abrupt variations of the matter

fields.
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5.5 Deriving Constraints

We know from everyday experience that very sharp transitions in density do exist in

nature and one needs to go to very small scales to resolve them. This is enough to

impose very tight constraints on β1 and β4. Let us demonstrate this with a simple

example, a calculation of the acceleration ~a = ~∇h00 experienced within a thin layer in

the interior and close to the surface of an object with Newtonian mass M and radius Rs.

The total acceleration reads

~a = ~aN − β−~∇ρ , (5.46)

where ~aN is the standard Newtonian acceleration. We assume spherical symmetry and for

simplicity we take the density of the object to be nearly constant, ρ(r) ∼ ρ0, everywhere

apart from a thin layer of width L� Rs near the surface and the object is otherwise in

vacuum.

If the thin layer were absent and the density had a jump, e.g. ρ(r) = ρ0Θ(Rs − r)

where Θ is the Heaviside function, then the correction ~∇ρ would introduce a Dirac delta

contribution to the acceleration.

This is already indicative of the pathology associated with having higher-order derivatives

of matter in the gravitational field equations. Suppose now that microphysics in the

transition region would allow for a smoother transition that fails to be captured in

the description above. Then one could consider the aforementioned layer to have the

following density profile:

ρ(r) = ρ0 [(Rs − r)/L]n , Rs − L < r < Rs . (5.47)

This can be thought of as an effective description for the smoother transition, where L

is the characteristic length scale at which microphysics would become important and n

parametrizes the slope of the profile.

Using this profile, in the region Rs − L < r < Rs we find:

a

aN
= 1 +

3n

4πRsL
β− [(Rs − r)/L]n−1 , (5.48)

where we have used aN = M/R2
s, which is valid in the L� Rs limit.

To not affect the standard Newtonian force to measurable levels in tabletop experiments,

the last term on the right-hand side of the equation above must be much smaller than

unity. Evaluating the acceleration at r ∼ Rs − L we obtain the constraint

(β1 − β4)� 4πRsL/(3n) . (5.49)
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Note that, once GN is appropriately reinstated, each copy of Tab carries with it a GN ,

as they only appear in this combination before eliminating the auxiliary field. Modulo

fine-tuning, one could think of β1 and β4 as numerical coefficients of order unity times

a characteristic length scale λβ squared. Then, choosing appropriate values for Rs and

L one can turn the constraint above on a constraint on λβ . For instance, if we choose

– quite conservatively – Rs to be of the order of meters and L to be of the order of

microns, then

λβ � n−1/2 mm . (5.50)

Compared to typical astrophysical and cosmological length scales, this is an extremely

tight constraint.

For comparison, the Hubble radius squared is roughly Λ−1 ∼ 1052m2. One could hope

to evade this constraint by fine-tuning the parameters. However, similar arguments can

be made for the stresses ∼ ~∇hij , which would provide a constraint on β+ = β1 + β4 in

Eq. (5.45c). Fine-tuning would not suffice to evade both constraints.

It goes beyond the scope of our analysis to provide precise and exhaustive constraints on

β1 and β4. Our goal is to demonstrate that the theories we are discussing are unlikely

to have any effect at large scales, if they are to be compatible with local experiments.

Our analysis does not actually rule out the possibility that eliminating an auxiliary field

can affect the value of the (effective) cosmological constant, which could perhaps be of

some value in addressing the cosmological constant problem. However, the corresponding

theory would have to accommodate at least two length scales apart from the Planck scale:

λβ and the effective cosmological constant scale. Keeping these scales separated without

fine-tuning would not be an easy task.

5.6 Some Remarks

It is worth to notice that our approach has certain limitations. Sab was constructed

under the assumption that an expansion in derivatives (or, equivalently, a small-T and

a small-∇T expansions) is applicable, which does not have to hold in all regimes.

Our take on this is that such an expansion is expected to be valid in regimes where

experiments verify the predictions of GR already. One could also wonder if going to

the next order in derivatives could help relax the constraints. This is not the case, as

adding more derivatives of T would simply make the metric even more sensitive to abrupt

changes in the energy density.

A subtle point is that coefficients of higher-order terms could “contaminate” the relations

of Eq. (5.40). This is due to the use of the lowest-order Eq. (5.35) in order to express

Rµν in terms of Tµν – and specifically because of the presence of a cosmological constant.
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This is already seen in Eq. (5.40), where higher-order coefficients multiplied by Λ are

added to lower-order coefficients. The presence of Λ in such terms is required for reasons

of dimensionality, and if GN were to be reinstated, all such terms would appear to be

suppressed by ΛGN . This guarantees that their contribution will be negligible.

In summary, we have shown that gravity theories with auxiliary fields effectively lead to

a modification of Einstein’s equations by an addition of a divergence-free second rank

tensor which is constructed solely with the usual stress-energy tensor of matter, the me-

tric, and their derivatives. It would be interesting to interpret these corrections as an

effective stress-energy tensor [159].

In these theories, the presence of higher-order derivatives of the matter fields is inevitable.

We have developed a very general parametrization of auxiliary field theories and showed

that, to next-to-leading order in derivatives of the matter fields, all auxiliary field theories

can be described with only two parameters (apart from the cosmological constant). Fi-

nally, we have shown that these parameters can be severely constrained, as the presence

of higher-order derivatives of the matter fields in the field equations renders the metric

overly sensitive to abrupt changes of the matter energy density. The very tight con-

straint obtained on the length scale characterizing these theories, makes it particularly

challenging to construct theories with auxiliary fields that could have any effect at very

large length scales.

5.7 Cosmological Phenomenology of Gravity with Auxiliary

Fields

We want here to get a deeper insight about the cosmological implications of gravity

theories with auxiliary fields [160]. Let us then consider a FLRW background written in

spherical coordinates in the comoving frame,

ds2 = dt2 − a(t)2

[
dr2

1− kr2
+ r2

(
dθ2 + sin2θdφ2

)]
. (5.51)

Matter is described by a perfect fluid whose stress-energy tensor is of the form

Tµν = [ρ(t) + P (t)]uµuν − P (t)gµν , (5.52)

where uµ = (1, 0, 0, 0) in the comoving frame. The stress-energy tensor conservation

equation, ∇µTµν = 0, reduces to the standard conservation law

ρ̇(t) + 3H(t) [ρ(t) + P (t)] = 0 . (5.53)
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For simplicity, we consider a single fluid, with a barotropic equation of state P (t) = wρ(t).

Then, Eq. (5.53) can be immediately integrated to give

ρ(t) = ρ0

(
a0

a(t)

)3w+3

, (5.54)

where ρ0 and a0 are respectively the values of the density and of the scale factor at the

present time.

Inserting the ansatz (5.51) into the field equations (5.41), and expanding the latter in

terms of ε ≡ βiρ� 1, this reduces to the following modified Friedmann equation:

3H2(t) = Λ− 3k

a(t)2
+ ρ(t)

{
1 + [9w (1 + w)− 4]β1Λ + 3w (1 + w)β4Λ

+
3k (1 + w) (1− 3w) (3β1 + β4)

a(t)2

}
− 3

4
(1 + w) (1− 3w) (3β1 + β4) ρ(t)2

+O
(
ρ3
)
, (5.55)

where we have included terms up to O(βi). It is easy to show that Eqs. (5.53)-(5.55)

completely solve the modified Einstein equations to the same order. This is a check

of our derivation, since in this theory the conservation of the stress-energy tensor is a

consequence of the contracted Bianchi identity, as in GR.

Interestingly, the corrections proportional to ρ2 vanishes when w = 1/3 (radiation-

dominated era), w = −1 (vacuum-dominated era) and for the special combination

β4 = −3β1. Furthermore, when Λ = 0, the coefficients βi appear only in the combi-

nation β ≡ 3β1 +β4. In particular, when Λ = 0 and for a spatially flat Universe (k = 0),

Eq. (5.55) reduces to

3H2(t) = ρ(t)− ρ(t)2

ρc
+O(ρ3) , (5.56)

where

ρc =
4

3 (1 + w) (1− 3w) (3β1 + β4)
. (5.57)

Therefore, following the evolution of the Universe backward in time, one finds that it is

similar to the one of GR when ρ � |ρc|. However, if ρc > 0, as ρ → ρc the scale factor

freezes and the evolution stops at finite time. Clearly, a bounce occurs when ρ = ρc .

Furthermore, in principle the existence of a minimal length scale is guaranteed whenever

w is not exactly 1/3 or −1.

Although in the radiation-dominated era there is no correction to the order we are

considering, it has been discussed in Ref. [145], which is a non-linear completion of

our representation in the case of EiBI gravity, that a correction will be indeed present at

higher-orders.

Moreover, if Λ 6= 0 (as the observations indicate), there are corrections to the coefficient

of ρ, which is essentially the value of GN once the latter is reinstated. For example, in
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the case of a spatially flat Universe (k = 0), filled with dust (w = 0), we get from Eq.

(5.55) a correction to GN given by (1− 4β1Λ).

So, we have obtained an effective modified Friedmann equation without taking into

account extra degrees of freedom, that generically leads to a largest phenomenology with

respect to GR. Interestingly, Eq. (5.56) looks like the modified Friedmann equation

which is obtained in the very different context of Loop Quantum Cosmology [161, 162].

In that scenario, the critical density for the bounce is given by ρc =
√

3/
(
16π2GNγ

3l2p
)
,

where γ is the Barbero-Immirzi parameter and lp is the Planck length.

Moreover, it has been found in Ref. [163] that it is possible to reproduce the same

effective Friedmann equation also in the context of higher-order gravity theories such as

f(R) gravity, using the order reduction technique developed in Refs. [164–166].



Chapter 6

Conclusions and Future Perspectives

6.1 Summary

In this Thesis we have started from the fact that GR plus a cosmological constant term

is elegantly singled out from Lovelock’s theorem. In fact it is the only theory which is

built up solely with the metric tensor and has second order field equations. Nevertheless

it is plagued by some major theoretical and phenomenological problems. On one side,

we have mentioned the problems concerning its (non-)renormalizability and the size of

the cosmological constant predicted by the SM of particle physics, much larger of the

observed value. On the other side, we have discussed the necessity to take into account

DM and DE components in order to match the astrophysical and cosmological obser-

vations at very large scales. The most common road taken in order to go beyond GR

and find a solution to these shortcomings, has been to add extra dynamical fields in the

gravitational action or to consider theories with higher-order derivatives of the metric

tensor which generically corresponds to introduce more degrees of freedom as well. In

fact, considering more propagating modes is the first possibility one can take into ac-

count, hoping that the desired phenomenology can be obtained by adding extra features

to the theory.

However this procedure can lead to shortcomings and instabilities. First one has to be

very careful in order to get a theory which is free of ghosts as dictated by the theorem

of Ostrogradski. The latter demonstrates that theories with higher-order derivatives are

generically plagued by instabilities. However, higher-order theories which can be explici-

tly re-written as second-order theories with more fields evade such instabilities.

Moreover, once stability issues have been addressed and the behaviour of the new de-

grees of freedom has been tamed, the next step is to find a mechanism that hides them in

regimes where GR is well tested and no extra dynamical fields have been detected. Such

91
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mechanisms should still allow them to be present and lead to different phenomenology

in other regimes. In absence of a strong evidence for the existence of these hypothetical

extra fields, it is due to explore further alternatives to GR.

In this respect, we have explored two possible ways to circumvent Lovelock’s theorem

in order to get extra phenomenological features into the game: breaking diffeomorphism

invariance or adding non-dynamical extra fields.

In Chapter 2 we have discussed Hořava gravity, which is a theory built within a preferred

spacetime foliation and so it does not enjoy invariance under full diffeomorphisms. It is

a theory which breaks Lorentz invariance and in the last years has gained a lot of atten-

tion, as Lorentz symmetry breaking has been proven to act as a field theory regulator

leading to improved UV behaviour. The theory also propagates an extra scalar degree

of freedom besides the usual graviton because of less symmetry. Moreover we have also

discussed Æ-theory, and we have shown how the latter is related to Hořava gravity in

the IR limit once the æther vector field is restricted to be hypersurface orthogonal.

In Chapter 3 we have studied the various restricted versions of Hořava gravity, which are

compatible with the symmetry of the theory. In particular we have paid special attention

to the dynamics of the extra propagating scalar degree of freedom, showing that most

of the problems in this respect are caused by the assumption of projectability, i.e. the

requirement that the lapse is just a function of time. We have introduced a new version

of the theory which assumes detailed balance but not projectability, and we have shown

that it enjoys well-behaved dynamics for both the spin-0 and spin-2 gravitons. Moreover

we have shown that in such a version of the theory the bare cosmological constant is

related to the mass scale suppressing the higher-order operators, and we have obtained

some bounds for it. Interestingly such bounds are found to tune with the value of the

vacuum energy contribution gained at the weak energy scale. With this in mind it is

even more pressing to look for a resolution to the vacuum energy problem in the context

of Hořava gravity, where a conclusive answer is still to be found.

We have then moved in Chapter 4 to study the causal properties of Hořava gravity by

looking for three-dimensional rotating black hole solutions. Since in three-dimensional

GR black hole solutions are only found with the presence of a negative cosmological

constant, thus having AdS asymptotics, we have looked for its analogue in the IR limit

of Hořava gravity. We have shown that solutions with AdS asymptotics can only exist

in the η = 0 sector of the theory. So, within this sector we have found the most general

AdS rotating black hole solutions and we have shown that black holes with flat or dS

asymptotics also exist. Moreover, we have studied the properties of these black hole

solutions, such as the singularities and the causal horizons.

In this respect, we have highlighted how in the context of Lorentz-violating gravity theo-

ries the concept of universal horizon arises as an absolute causal boundary for all signals,

no matter how fast they propagate [121, 122].
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Nevertheless we have also found that in three-dimensional Hořava gravity black holes

do not always possess such a universal horizon, as we have pointed out by focusing on

some specific examples. By virtue of this, the problem of defining black holes in Lorentz-

violating gravity theories arises. In fact, black holes which do not possess a universal

horizon are still black holes in the conventional (GR) sense, as the Killing horizon acts

as an absolute causal boundary for all modes which propagate at finite speed. However,

since perturbations that reside in the gravity sector can propagate infinitely fast in such

a theory, the concept of black hole itself must be questioned.

It must be mentioned that, at the moment, the solutions we have found are the most

general and exact rotating black hole solutions with AdS asymptotics existing in the

context of Hořava gravity in a lower-dimensional spacetime.

The last part of this Thesis has been devoted to study another alternative way to modify

the gravitational action of GR. Instead of adding extra dynamical fields, in Chapter 5 we

have considered the less explored possibility of adding fields which are non-dynamical.

We have assumed that matter fields couple only to the metric in the usual way (i.e.

minimally), so the weak equivalence principle is automatically satisfied and the matter

Lagrangian reduces to that of the SM in the local frame.

If the extra fields are not dynamical, they can be algebraically related to the metric,

the matter fields and their derivatives, and then they can be eliminated from the field

equations. Such fields are then called auxiliary fields, and the entire procedure through

which they are eliminated leads to modifications of the field equations of GR.

We have developed in a very generic fashion a parametrization of these theories, irrespec-

tively of the tensorial rank or other characteristics of the auxiliary field, by constructing

the most general field equations up to second-order derivatives of the stress-energy tensor.

The resulting outcome is that these theories generically lead to field equations containing

higher-order derivatives of the matter fields, while the derivatives which act on the me-

tric tensor are still second-order. Moreover we have shown that only two free parameters

distinguish all the possible theories within this class, aside from a cosmological constant

whose final value can be affected by the procedure through which the auxiliary field is

removed from the field equations.

Our approach can be used to put stringent, theory-independent constraints on such theo-

ries, as we demonstrate using the Newtonian limit as an example. In fact we are able to

estimate in a quite conservative way the characteristic length scale at which these theo-

ries are expected to have relevant effects. Such a length scale is found to be 30 orders

of magnitude smaller than the Hubble radius, which is the typical cosmological length

scale. This makes it particularly challenging to construct theories with auxiliary fields

that could have any effect at very large length scales.
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6.2 Remarks and Future Perspectives

As we have discussed, Lorentz invariance breaking can act as a field theory regulator ren-

dering a theory power-counting renormalizable. This is indeed sufficient to keep all the

Feymann diagrams of the graviton finite, even though momenta enter self-interaction ver-

tices. Nevertheless, the issue of renormalizability beyond the power-counting arguments

is still open for a theory like Hořava gravity which is candidate to be a UV completion

of GR. Recently, a work about renormalization in Hořava gravity has appeared [167],

where a one-loop calculation is presented in a toy model of the theory. In fact due to the

complexity of the computation in the full theory, the authors consider the projectable

version of Hořava gravity in 2 + 1 dimensions. It is then claimed that in such a model

the UV limit is singular at one-loop order. However, since in this lower-dimensional toy

model the conformal mode is the only physical degree of freedom, one cannot make any

conclusion about the full theory in higher-dimensional spacetimes and only an explicit

calculation can tell if this picture might change.

Furthermore, in another very recent work [168], the renormalization group flow of pro-

jectable Hořava gravity coupled to n Lifshitz scalars is studied in four dimensions. It is

shown that the theory is asymptotically free in the large-n expansion, providing a strong

indication that it is perturbatively renormalizable.

We have already stated that a shortcoming of the full theory is the very large number

of operators that are allowed by the symmetry. This makes the theory intractable and

compromises predictability in the UV. In order to reduce the number of terms in the

action one is in need of a principle or symmetry and, as discussed previously, the cur-

rent suggestions of projectability and detailed balance do not seem optimal, so further

proposals in this direction are needed.

Moreover, also the issue related to vacuum energy in Hořava gravity deserves further in-

vestigation. Surprisingly, if detailed balance is implemented, the size of the bare cosmo-

logical constant is comparable to the estimate for the vacuum energy obtained by using

the weak energy scale as a cut-off. This may be interesting in the perspective in which

the two contributions can cancel each other. An answer to this issue should be definitely

found as well.

A further open problem in the scenario of Lorentz-violating gravity theories concerns

black holes. Since their thermodynamics is presumed to represent the coarse-grained be-

haviour of the (as yet unknown) microstates of quantum gravity, they have a central role

in the context of quantum gravity phenomenology. Of course, before one can investigate

black hole thermodynamics, one first has to have a black hole solution and then ask if

thermodynamical laws can be ascribed to it. This has been the case for the BTZ solution

in GR. The BTZ solution has been so important for the field because quantizing GR in
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three dimensions is more tractable than in four dimensions. As such, the hope was that

the thermodynamics of the BTZ solution could be directly linked to the quantized ver-

sion of three-dimensional GR, establishing the connection between BH thermodynamics

and quantum gravity on a much more solid foundation. This reasoning carries over to

any alternative theory – and in particular those that possibly possess a UV completion,

such as Hořava gravity.

However, Lorentz-violating gravity presents some challenges to this overarching program.

In GR, thermodynamics is built on the event horizon, but in Lorentz-violating gravity,

it isn’t even clear what the relevant horizon might be. In fact the universal horizon, as a

structure that blocks even arbitrarily fast moving signals, emerges there as a replacement

for the usual event horizon. So, the possibility of constructing a similar thermodynamical

theory on whatever the relevant horizon may be, remains to be seen.

By presenting an exact black hole solution, we pave the way to all these investigations.

Finally, let us just give some remarks about gravity theories with auxiliary fields. Some

shortcomings have been revealed in the context of Palatini f(R) gravity theories, which

are specific theories within the aforementioned class. For example, in [169] potential

conflicts with the SM of particle physics have been pointed out. It is indeed claimed that

integrating out the non-dynamical degree of freedom gives rise to additional interactions

among the matter fields of the SM at unacceptably small energy scales, thus creating

potential conflicts with particle physics experiments. Furthermore, other issues with

averaging matters have also been suggested in [170], where Palatini gravity theories are

indeed proved to affect the propagation of photons, thus changing the cosmic expansion

of the Universe during radiation domination. Observational data on BBN could then

place severe constraints on such models.

All these arguments provide further reasons to carry on a very detailed analysis of the

phenomenology of gravity theories with auxiliary fields, in particular now that a general

parametrization for such theories does indeed exist.

In addition to the issues raised above, an extension of the parametrized post-Newtonian

framework [98], the cosmological applications [171, 172], and the analysis of the gene-

ralized Tolman-Oppenheimer-Volkoff equations for this class of theories deserve some

special investigation in the near future.





Appendix A

Rotating Black Holes in

Three-Dimensional Hořava gravity

A.1 Brown-Henneaux Asymptotic Conditions for Anti-de

Sitter Spacetime

Inserting Brown-Henneaux boundary conditions into the EL equations results in rather

complicated expressions, but our interest here is to investigate only the leading-order

terms. For this it will suffice to consider just the numerators of the expressions. For

example, consider the expression

f :=
ark + br(k−1) + · · ·
crj + dr(j−1) + · · ·

, (A.1)

with k > 0 and j > 0 (for the sake of argument). Then as r → ∞, the leading-order

term of f is
ark + br(k−1) + · · ·
crj + dr(j−1) + · · ·

∼ a

c
r(k−j) . (A.2)

Enforcing that f vanishes asymptotically to leading order requires only that a = 0, so it

is sufficient to focus mainly on the numerator of f . We shall call this the leading-order

coefficient (LOC). The denominator merely rescales the LOC by a constant and so it

shall not play an important role in the leading-order asymptotic analysis.

The LOCs of the asymptotic EL equations will depend on m. For the Z-equation, the

dominant term in the numerator is either ∼ r12 or ∼ r(4m+16). When m < −1, r12

dominates. When m > −1, r(4m+16) dominates. And when m = −1, both terms (along

with several others) scale with r in the same way (i.e., ∼ r12) .

For the F -equation, you get something similar. The dominant term in the numerator is

either ∼ r14 or ∼ r(6m+20). When m < −1, r14 dominates. When m > −1, r(6m+20)

97
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dominates. And when m = −1, both terms (along with several others) scale with r in

the same way (i.e., ∼ r14) .

Finally, for the U -equation, the dominant term in the numerator is either ∼ r(m+14) or

∼ r(5m+18). When m < −1, r(m+14) dominates. When m > −1, r(5m+18) dominates.

And when m = −1, both terms (along with several others) scale with r in the same way

(i.e., ∼ r13) .

Clearly, m = −1 is the critical value for the analysis. We shall investigate each of the

cases in turn: {m > −1,m = −1,m < −1}.

A.1.1 Case I: m > −1

In this case, the LOCs of the U -, F -, and Z-equations (modulo harmless factors) are,

respectively,

(3 + 4η − 3λ) + 4 (1 + η − λ)m+ (1 + η − λ)m2 , (A.3a)

(1 + 4η + 3λ) + [4η − 2(−2 + λ+ ξ)]m+ (1 + η − λ)m2 , (A.3b)(
11

3
+ 4η − 5λ+

4

3
ξ

)
+

2

3
(6 + 6η − 7λ+ ξ)m+ (1 + η − λ)m2 . (A.3c)

These clearly do not vanish simultaneously for generic coupling constants. For them to

vanish simultaneously, the coupling constants will have to be especially chosen. This can

only happen if the expressions are identical. The coefficients of the terms linear in m

have to match. So,

4 (1 + η − λ) = [4η − 2 (−2 + λ+ ξ)] =
2

3
(6 + 6η − 7λ+ ξ) . (A.4)

This is a system of three equations in three unknowns, for which the solution is simply

ξ = λ . (A.5)

The constant terms (i.e. O(m0)) also have to match:

(3 + 4η − 3λ) = (1 + 4η + 3λ) =

(
11

3
+ 4η − 5λ+

4

3
ξ

)
, (A.6)

which gives

ξ = 0 , λ =
1

3
. (A.7)

Because these are incompatible with Eq. (A.5), we conclude that the leading-order

terms of the EL equations cannot simultaneously vanish. This means that for m > −1,

in U ∼ U0r
m, AdS asymptotics for the metric are inadmissible.
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A.1.2 Case II: m = −1

In this case, enforcing that the LOCs of the U -, F -, and Z-equations vanish (respectively),

we have

ηU0

(
L2 + U2

0

)2
= 0 , (A.8a)

2L4ξ + (1/Λ)
[
L2 (η + 2ξ)− (−2 + η + 4λ− 2ξ)U2

0

]
= 0 , (A.8b)

2L4ξ + (1/Λ)
[
L2 (3η + 2ξ) + (2 + 3η − 4λ− 2ξ)U2

0

]
= 0 , (A.8c)

where Λ̄ = −1/L2. The first of these equations demands that η = 0. When this is the

case, the other two equations lead to the same solution

U2
0 = L2

(
1 + ΛL2

) ξ

2λ− ξ − 1
. (A.9)

This we can verify to be the first æther charge of our solution. As r → ∞, our exact

solution behaves like

U ∼ br

F 2
∼ br

r2/L2
=
bL2

r
. (A.10)

Therefore, since in our asymptotic analysis, U ∼ U0/r (for m = −1), we must have

U0 = bL2.

On the other hand, from Eq. (4.46) we have

Λ̄ = Λ− b2 (2λ− ξ − 1)

ξ
, (A.11a)

− 1

L2
= Λ− U2

0

L4

(2λ− ξ − 1)

ξ
, (A.11b)

which is identical to Eq. (A.9). This demonstrates that the asymptotic analysis recovers

one of the æther charges (i.e. b) for the case m = −1. What is most essential, however,

is that m = −1 forces us to set η = 0.

A.1.3 Case III: m < −1

For this final case, the LOCs of the U -, F - and Z- equations give

(3 + η − 3λ) + 4 (1− λ)m+ (1− λ)m2 = 0 , (A.12a)

2L2ξ + (1/Λ) (η + 2ξ) = 0 , (A.12b)

2L2ξ + (1/Λ) (3η + 2ξ) = 0 . (A.12c)
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The second and third of these equations imply again that η has to be zero. Putting this

into the first equation gives

(m+ 1)(m+ 3)(−1 + λ) = 0 . (A.13)

Since m < −1 and since we wish to keep the coupling constants as generic as possible,

we must choose m = −3. Moreover, the second and third equations give

2ξ
(
L2 + 1/Λ

)
= 0 =⇒ L2 = −1/Λ . (A.14)

In other words, the effective cosmological constant must be the bare one: Λ̄ = Λ. Again,

however, this case shows that η = 0 is required.

To summarize, we have demonstrated in this appendix that Brown-Henneaux AdS bounda-

ry conditions forces us into the η = 0 sector. As an added bonus, we see that for AdS

asymptotics, U can only scale as r−1 or r−3 at large values of r, indicating the existence

of two asymptotic æther charges, which is precisely what we find in our exact solution.

A.2 Æther Alignment

Because the timelike Killing vector, tα :=
(
∂
∂t

)α, turns null in black hole spacetimes,

the æther cannot be aligned with it everywhere. In this appendix, we work out how

alignment is realized in terms of our unknown functions, {Z,F, U,Ω}. If uα is aligned

with tα, then tαaα = 0, where aα := uβ∇βuα. Normalizing tα to get t̂α := tα/
√
gµνtµtν ,

alignment is then equivalent to

t̂αaα = −
UF 3

[(
U2F 2 + 1

)
Z2
]′

Z
√
F 2 (1 + U2F 2)

√
Z2 − r2Ω2

= 0 . (A.15)

This is satisfied either when F = 0, U = 0, or

(
U2F 2 + 1

)
Z2 = C2 =⇒ ut = C , (A.16)

for some constant C.

This latter case just corresponds to a zero-acceleration æther, where the foliation is

provided by the Painleve-Gullstrand time. It does not represent alignment between the

æther and the timelike Killing vector. Therefore, since F cannot vanish everywhere, the

timelike Killing vector and the æther are aligned everywhere if and only if U = 0.

Now specializing to our solution, where Z = F , we can use Eq. (A.15) to check for

asymptotic alignment. For AdS asymptotics, F 2 ∼ r2. As we have shown in Sec. (4.4)

and Appendix (A.1), the æther component ur (or U) can then only fall-off as U ∼ r−1
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or U ∼ r−3.

It is easy to check that t̂αaα ∼ r0 or t̂αaα ∼ r−2, respectively. It aligns asymptotically

only for the latter case. Thus, when b 6= 0 in Eq. (4.42), and hence U ∼ r−1, the æther

does not become orthogonal to constant-t surfaces as r → ∞. The parameter b is then

a measure of the asymptotic misalignment of the æther.

A.3 Metric Ansatz in the Preferred Time

The approach in [139] amounts to setting η = 0 and U = 0 in Eq. (4.24). There, also

an R2-term was included in the action but we do not consider this term and work fully

within the IR sector. Doing so gives the much simplified Lagrangian

Lalign =
r3F

2Z
(Ω′)2 − 2ξZ

(
Λ
r

F
+ F ′

)
. (A.17)

However, the metric ansatz given in (4.20) is not the most general stationary metric when

one works within the preferred foliation. In this case the æther is normal to constant-T

hypersurfaces and thus uT will be the only non-vanishing component in the preferred

foliation. To bring the metric ansatz of Eq. (4.20) into the preferred frame, one needs

to perform the coordinate transformation that puts the æther into this form, resulting

in urT = 0.

If the coordinate transformation is given by T = h(t, r), rT = r, φT = j(r, φ), then

urT = 0 or (∂t/∂rT )ut(r) + (∂r/∂rT )ur(r) = 0 can be integrated to give

t = G(T ) +

∫
K(r)dr , (A.18)

where K(r) = −ur(r)/ut(r), and G(T ) is some general function of T .

Thus, T = G−1
(
t−
∫
K(r)dr

)
, and using the fact that T → F (T ) is a symmetry of the

theory, we conclude that T has the general form T = t+ f(r). Explicitly, this is

T = t+

∫
ur(r)

ut(r)
dr , rT = r . (A.19)

In terms of the unknown functions Z,F,Ω and U we use, the full transformation is

dt = dT − U

N
√

1 + F 2U2
drT , (A.20a)

dφ = dφT , (A.20b)

dr = drT , (A.20c)
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and the metric ansatz in the preferred frame is

ds2 = Z2dT 2− 2ZU√
1 + F 2U2

dTdr− 1

F 2 (1 + F 2U2)
dr2−r2

(
dφ+ ΩdT − ΩU

Z
√

1 + F 2U2
dr

)2

.

(A.21)

Inserting this metric ansatz directly into the preferred frame action (2.27), provides an

equivalent strategy to the one we have adopted.

The metric in the preferred foliation will generally have a gTr and a grφ component

because the æther will not be orthogonal to constant-t hypersurfaces, or equivalently,

T and t do not generally coincide. Evidently, an aligned æther configuration is just a

special case, which in our parametrization is U = 0.

A.4 Globally Aligned Æther

As previously mentioned, the case of a globally aligned æther is a significant simplification

in the search for exact solutions. Assuming U = 0, the remaining N - and F -equations

then respectively simplify to

η

[
N ′′ − N ′2

2N
+

(
F ′

F
+

1

r

)
N ′
]
−
(
4r3ξFF ′ + J 2 − 4r4ξΛ

)
4r4F 2

N = 0 , (A.22a)

ηN ′2 +
2ξFF ′

r
+

(
J 2

2r4
+ 2ξΛ

)(
N

F

)2

= 0 . (A.22b)

Assuming N = F Eqs. (A.22a) and (A.22b) turn into

1

F

(
J 2

2r3
+ 2rξΛ

)
+ 2ξF ′ = −η rF

′2

F
− 2η

(
F ′ + rF ′′

)
, (A.23a)

1

F

(
J 2

2r3
+ 2rξΛ

)
+ 2ξF ′ = −η rF

′2

F
. (A.23b)

From these, one can simply pick off the necessary condition

η
(
rF ′′ + F ′

)
= 0 . (A.24)

This is satisfied if either η = 0 or F = A+B ln r. Supposing η 6= 0, so that F = A+B ln r,

we will only have a solution if

− J 2 − 2B (Bη + 2Aξ) r2 − 4ξΛr4 − 4ξB2r2 ln r = 0 . (A.25)

This vanishes identically only if B, J̄ , and Λ are all zero. In other words, the spacetime

has to be static and have zero cosmological constant. In this case, {N = F = A,U = 0}
is a solution, but this is just flat spacetime with an aligned æther.
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To find non-trivial solutions satisfying N = F , we have to require η = 0. In this case,

the F - and N -equations both become

1

2

d

dr

[
F (r)2

]
+
J 2

4r3ξ
+ Λr = 0 , (A.26)

which, by simple inspection, is readily integrated to give

F 2 = N2 = −M+
J 2

4r2ξ
− Λr2 . (A.27)

This, together with Nφ = −J /(2r2), is the pure IR limit of the solution found in [139],

which reduces to the BTZ solution of GR when ξ = 1. It is the unique solution to the

EL equations, assuming U = 0 and N = F .

As noted in Sec. (4.5.1), this solution is problematic from the viewpoint of Hořava

gravity. An æther configuration that becomes null at the event horizon is inadmissible

because then it cannot represent a spacelike foliation, which in Hořava gravity is not

merely a gauge artifact. Because the foliation carries physical content, it is essential to

require its regularity throughout the spacetime manifold, and in particular, at the event

horizon. To enforce this, one first needs to work in coordinates that are regular across

the event horizon. We can easily transform to ingoing Einstein-Finkelstein coordinates,

{v, r̃, φ̃}, with the transformation

dt = dv − 1

NF
dr̃ , (A.28a)

dr = dr̃ , (A.28b)

dφ = dφ̃+
Nφ

NF
dr̃ . (A.28c)

In these coordinates, the metric appears as

ds2 = N2dv2 − 2N

F
dvdr − r2

(
dφ̃+Nφdv

)2
, (A.29)

and the æther components are

uv =
√
N2 (1 + F 2U2) , (A.30a)

ur̃ = U − 1

NF

√
N2 (1 + F 2U2) , (A.30b)

uφ̃ = 0 . (A.30c)

From this we see that, when N = F , a globally aligned æther would have Eddington-

Finkelstein components, uv =
√
F 2 and ur̃ = −1/

√
F 2. The latter component diverges

at the event horizon (where F=0). The requirement of regularity invalidates any such

solution, and therefore, any aligned æther solution (i.e. U = 0) cannot have a black hole.
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In GR, we shrug off the irregularity of the metric at the event horizon as an artifact of the

coordinate system, since there presumably exists a transformation t → t̃ = t̃(t, r), r →
r̃ = r̃(t, r), φ→ φ̃ = φ̃(t, r), such that the metric is regular at the zero of F . But such a

transformation is not part of the symmetry group of Hořava theory. The transformation

t→ t̃ = t̃(t, r) is not foliation-preserving. Hence, the irregularity of the metric therefore

cannot be cured. At best, one can only claim that the solution is valid in the region that

excludes the metric horizon. Either way, it cannot be a black hole spacetime.

We emphasize that N = F is not a crucial assumption for this no-go statement. For

solutions with global alignment, U = 0, the foliation is irregular at the black hole horizon.

Therefore, one must look to misaligned æther configurations in order to find black hole

solutions. As already mentioned in the main text, all of this should be obvious. Since

the æther needs to be timelike everywhere, it cannot always be aligned with the timelike

Killing vector, which turns null at the event horizon.

A.5 Special Choices of Hořava Parameters

Within the η = 0 sector, λ = 1 is special because we lose the constraint provided by

Eq. (4.38) in Sec. (4.5.1). The U -equation is identically satisfied and one is left with an

underdetermined system for the functions U and F .

The Z- and F -equations provide the sole constraint:

(ξ − 1)

[
d

dr

(
U2
)

+ 4

(
F ′

F

)
U2

]
+ 2ξ

F ′

F 3
+

(
J 2

2r3
+ 2rξΛ

)
1

F 4
= 0 , (A.31)

which can be integrated to give

(ξ − 1)U2 =
1

F 2

[
C +
J 2

4r2
− ξ

(
Λr2 + F 2

)]
, (A.32)

for some integration constant C. When ξ = 1, Eq. (A.32) does not depend on U and

becomes purely a condition on F . In this case, it returns for F the BTZ solution of GR,

while U can be any function. This result is not surprising.

For η = 0, λ = ξ = 1 Hořava gravity in its covariant version is equivalent to GR with

a hypersurface-orthogonal æther that only needs to satisfy the unit constraint without

further dynamical restrictions. With our definitions the æther is indeed unit for an

arbitrary U .

When ξ 6= 1, and since there are no more equations to satisfy, the functions F and U

can be chosen so long as they are related according to Eq. (A.32). One can verify that

no extra conditions arise when working with the full set of field equations instead of the

reduced action equations of motion.
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Note that the condition between U and F is different from Eq. (4.42). This result is

consistent with the discussion in Sec. (4.5.3) about metric and æther redefinitions that

set ξ = 1. One could think of generating the solution for an arbitrary ξ from a solution

of the ξ = 1 theory by an inverse redefinition. Then, a suitable choice of U could lead

to the desired F .

A.6 Constant-T Hypersurfaces Have Constant Mean Cur-

vature when η = 0

In this appendix we derive the mean curvature, K, of a constant-T hypersurface. The

extrinsic curvature is defined as

Kαβ := hα
γhβ

δ∇γuδ , (A.33)

where

hα
β := gβδhαδ = gβδ (gαδ − uαuδ) (A.34)

are spatial projectors. Then the extrinsic curvature reads

Kαβ = ∇αuβ − uαuγ∇γuβ , (A.35)

and taking into account that uα is constrained to be a unit vector, the mean curvature,

defined as K := gαβKαβ , reads

K = ∇βuβ . (A.36)

Finally, in terms of the functions {Z,F, U}, the mean curvature can be written as

K = −UF 2

[
d

dr
(lnUZF ) +

1

r

]
. (A.37)

A straightforward calculation then reveals that the æther field in Eq. (4.42) defines a

surface with constant mean curvature K = −2b. This turns out to be a necessary condi-

tion for any η = 0 solution. In fact, because η = 0 implies F = Z, in our parametrization

the mean curvature according to Eq. (A.37) is just

K = −UF 2

[
d

dr

(
lnUF 2

)
+

1

r

]
= −y

(
d

dr
ln y +

1

r

)
= −

(
y′ +

y

r

)
, (A.38)

where again we have used the substitution in Eq. (4.39), y = UF 2. Therefore,

r2K ′ = −
(
r2y′′ + ry′ − y

)
, (A.39)
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so Eq. (4.40) is equivalent to K ′ = 0 or K = constant = −2b. In other words, when

η = 0, the æther defines hypersurfaces of constant mean curvature.
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