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Introduction

1 General Introduction

This thesis consists of two parts. In the first part we study the existence and uniqueness
of Nash equilibrium solutions for a class of infinite horizon, non-cooperative differential
games. The second part is concerned with the construction of nearly-optimal patchy
feedbacks, for problems of optimal control.

To the former is devoted Chapter 1. Postponing to the following Section 2 a com-
plete introduction to this topic, we briefly summarize here the results proven in [10, 27].
We study a non-cooperative differential game for two players, with infinite horizon and
exponentially discounted payoffs. The existing literature on the subject has been mainly
concerned either with zero-sum games, or with a special class of non-zero sum games
having linear dynamics and quadratic cost functionals. In the first case, optimal feed-
back strategies can be found in terms of the viscosity solution of the corresponding scalar
Hamilton-Jacobi equation. In the second (linear-quadratic) case, the corresponding sys-
tem of Hamilton-Jacobi equations for the value functions reduces to a finite-dimensional
system of Riccati equations. Our present goal is to push the analysis a few steps beyond
these two basic cases, and study a more general nonlinear system of H-J equations, de-
scribing non-cooperative Nash equilibrium. The main results refer to a non-cooperative
differential game for two players in one space dimension. Roughly speaking, the following
holds:

• If the cost functions is a smooth and small perturbation of a linear cost, as shown
in [10], then the game admits a Nash equilibrium solution in feedback form. More-
over, if the sum of the derivatives of the two cost functions is bounded away from
zero, these feedback strategies are unique.

• On the other hand, if players’ costs are not smooth, then various instabilities can
arise. This means that some games can have infinitely many Nash equilibria, while
some slightly different games can have no equilibrium at all, as described in [27].

These negative results, in the non-smooth case, indicate that the problem of finding
solutions within the framework of Nash equilibria is not well posed, in general. Similar
results were found in [13], for finite horizon problems. They provide at least a glimpse of
the great complexity of this problem for a general non-cooperative game with nonlinear
costs.

Chapter 2 is devoted to the construction of nearly optimal patchy feedbacks. The
main results presented here first appeared in [11]. We consider a nonlinear control system
of the form

ẋ = f(x, u) ,
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2 Introduction

and a cost functional

J =

∫ τ

0
L(x(t), u(t)) dt + ψ(x(τ)) , (1.1)

which we wish to minimize among all controls t 7→ u(t) taking values in some given set
U ⊂ R

m. In an ideal situation, one can find a terminal set S and a continuous feedback
control x 7→ U(x) defined for x /∈ S, such that every trajectory of the corresponding
O.D.E.

ẋ = f(x,U(x)) (1.2)

is optimal for the cost criterion (1.1). It is well known, however, that in general no
continuous optimal feedback exists. On the other hand, according to the results in [4], it
is possible to construct a piecewise constant feedback which is nearly optimal. As shown
in [1], controls in the class of “patchy feedback” enjoy various useful properties. In
particular, even if the right hand side of (1.2) is discontinuous, the Cauchy problem has
at least one forward solution and at most one backward solution, in Carathéodory sense.
Up to now, patchy feedbacks have been constructed in two different ways. Either, as
in [1], by patching together families of open-loop controls. Or else, as in [4], starting with
a suitable regularization of the value function, which was assumed known a-priori. The
main purpose of the present analysis, taken from [11], is to construct patchy feedback
from scratch, i.e. without a priori knowledge of the value function. Our basic procedure
constructs at the same time a piecewise constant nearly optimal feedback, together with
a piecewise smooth approximation to the value function. The basic step is repeated
inductively on higher and higher level sets, eventually covering the entire domain.

2 Infinite Horizon Noncooperative Differential Games

Problems of optimal control, or zero-sum differential games, have been the topic of an
extensive literature. In both cases, an effective tool for the analysis of optimal solutions
is provided by the value function, which satisfies a scalar Hamilton-Jacobi equation.
Typically, this first order P.D.E. is highly non-linear and solutions may not be smooth.
However, thanks to a very effective comparison principle, the existence and stability of
solutions can be achieved in great generality by the theory of viscosity solutions, see [6]
and references therein.

In comparison, much less is known about non-cooperative differential games. In a
Nash equilibrium solution, the value functions for the various players now satisfy not
a scalar but a system of Hamilton-Jacobi equations [19]. For this type of nonlinear
systems, no general theorems on the existence or uniqueness of solutions are yet known.
A major portion of the literature is concerned with games having linear dynamics and
quadratic costs, see [18] for a comprehensive treatment and a complete bibliography.
In this case, solutions are sought among quadratic functions. This approach effectively
reduces the P.D.E. problem to a quadratic system of O.D.E’s. Well known results on
Riccati equations can then be applied. However, it does not provide any insight on the
stability (or instability) of the solutions w.r.t. small non-linear perturbations.

On the other hand, in the present more general case one has no established tech-
niques to rely on. We recall here some of the few known results.

In [12], a class of non-cooperative games with general terminal payoff was studied,
in one space dimension. Relying on recent advances in the theory of hyperbolic sys-
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tems of conservation laws (see [8]), some results on the existence and stability of Nash
equilibrium solutions could be obtained. On the other hand, for games in several space
dimensions and also in various one-dimensional cases, the analysis in [13] shows that the
corresponding H-J system is not hyperbolic, hence ill posed.

In the present work we begin exploring a class of non-cooperative differential games
in infinite time horizon, with exponentially discounted costs. Namely, we consider a
game with dynamics

ẋ =

m∑

i=1

αi , x(0) = y , (2.1)

where each player acts on his control αi to minimize an exponentially discounted cost of
the form

Ji(αi)
.
=

∫ ∞

0
e−t ψi

(
x(t), αi(t)

)
dt . (2.2)

In one space dimension, the corresponding value functions satisfy a time-independent
system of implicit O.D.E’s. Global solutions are sought within a class of absolutely
continuous functions, imposing certain growth conditions as |x| → ∞, and suitable
admissibility conditions at points where the gradient ux has a jump.

The dynamics of our system is very elementary, and the cost functions we consider
are small perturbations of linear ones. However, already in this simple setting we find
cases where the problem has unique solution, and cases where infinitely many solutions
exist.

This richness of different situations reflects in some sense the results found in [15].
Indeed, the exact same dynamics was studied, in the finite horizon case, with only exit
costs. Main differences between [15] and [10, 12, 13] lay in the concept of solution. The
authors of [15] look for discontinuous feedback controls that not only leads to Nash equi-
libria, but also satisfies a sort of programming principle. This resulted in (uncountable)
infinitely many solutions, at price of stronger assumptions on the final costs.

All these difficulties provide a glimpse of the extreme complexity of the problem,
for general non-cooperative N -player games with non-linear cost functions.

A first attempt to study this problem in the infinite horizon setting, for two players,
was made in [10]. The same simple game was considered, and it was proved that,
depending on the monotonicity of the cost functions, very different situations could
arise. Indeed, the HJ system in this case takes the following form





u1(x) = h1(x) − u′1u
′
2 − (u′1)

2/2 ,

u2(x) = h2(x) − u′1u
′
2 − (u′2)

2/2 .
(2.3)

But with a system of this form, we can end up with too many solutions. We find not
only value functions u that leads to Nash equilibria in feedback form, but also solutions
that does not represent equilibria of the game. It is then necessary to introduce a
suitable concept of admissibility. In particular we say that a solution u is admissible,
if u is a Carathéodory solution of (2.3), which grows at most linearly as |x| → ∞
and satisfies suitable jump conditions in points where its derivatives are discontinuous.
For such a kind of solutions, a verification theorem was proved: given an admissible
solution u and denoted by u′i the components of its derivatives, then αi = −u′i provide
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a Nash equilibrium solution in feedback form. In [10], it turned out that existence and
uniqueness of admissible solution for (2.3) heavily depend on the choice of the costs.

First, suppose that both the cost functionals are increasing (resp. decreasing). This
means that both players would like to steer the game in the same direction, namely the
direction along which their costs decreases. In this case an admissible solution always
exists, and it is also unique, provided a small oscillations assumption is satisfied. This
existence result was in some sense expected, since this case corresponds, in the finite
horizon setting, to the hyperbolic one studied in [12].

Suppose now that the cost functionals have opposite monotonicity. This means
that the players have conflicting interests, since they would like the game to go in
different directions. In this case it is known, see [13], that the finite horizon problem is
in general ill-posed. On the same line, for our game, it is enough to consider two linear
functionals with opposite slopes (say k,−k, for any real number k 6= 0) to find infinitely
many admissible solutions, and hence infinitely many Nash equilibria in feedback form.
Nevertheless, quite surprisingly, it’s still possible to recover existence and uniqueness of
admissible solutions to (2.3) in the case of costs that are small perturbation of linear
ones, but with slopes that are not exactly opposite.

While the cost functionals considered in [10] were a small perturbation of affine
costs, in [27] we studied a wider class of cost functions. Motivated by the theory of
hyperbolic systems [8], we considered piecewise linear cost functionals, whose derivative
has jumps. This setting is a natural first step towards the analysis of existence and
uniqueness of Nash equilibrium solutions for non-linear costs.

Again, as in [10], we reached different results depending on the signs chosen for
h′i. Indeed, as it will be showed in the second part of Chapter 1, if we are in the
cooperative situation for all x, we can still recover a unique admissible solution for (2.3).
On the other hand, any change in the behavior of the costs will translate in some sort of
instability of the game, leading either to infinitely many admissible solutions, or to one
unique admissible solution, or even to no admissible solution at all, only depending on
the particular choices of the slopes h′i.

In conclusion, this great variety of arising situations seems to suggest that the
presented approach is not the most suitable one to deal with the intrinsic issues of the
problem. In particular, we can provide examples of very simple differential games where
no Carathéodory solution with sublinear growth at infinity exists. Recalling that, in the
case of smooth costs (see [10]), this class of solutions was exactly the right one to find
Nash equilibria in feedback form, our study strongly suggest that a different approach is
needed: either to look for Pareto optima, as in [13], or to introduce some other relaxed
concept of equilibrium.

The outline of Chapter 1 is the following. In Section 1, we introduce the class
of differential games we deal with. In Section 2, the concept of admissible solution is
presented and it is proved that to any admissible solution there corresponds a Nash
equilibrium strategy in feedback form. In Section 3 we specialize our study to 2-players
games in order to address, in Sections 4–5, the question of existence and uniqueness of
admissible solutions in the case of smooth cost functionals. In Section 6, we approach
the case of non-smooth costs. Namely, we consider piecewise linear costs, with a finite
number of jumps in their derivatives. Finally, Sections 7–8–9 deal with existence and
uniqueness of admissible solutions in these cases of non-smooth costs.
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3 Nearly optimal patchy controls in feedback form

Consider an optimization problem for a nonlinear control system of the form

ẋ = f(x, u)
x(0) = y

u(t) ∈ U , (3.1)

where x ∈ R
n describes the state of the system, the upper dot denotes a derivative

w.r.t. time, while U ⊂ R
m is the set of admissible control values.

A classical problem is the existence of optimal feedback controls, i.e. if it is possible
to construct a feedback control u = U(x) such that all the trajectories of

ẋ = f(x,U(x)) , (3.2)

are optimal for the problem

min

{
ψ
(
x(T )

)
+

∫ T

0
L
(
x(t), u(t)

)
dt

}
. (3.3)

We assume that f : R
n × R

m → R
n is Lipschitz continuous and satisfies

∣∣f(x, u)
∣∣ ≤ C

(
1 + |x|

)
, ∀u ∈ U , (3.4)

that both the terminal cost ψ : R
n 7→ R and the running cost L : R

n ×U 7→ R are
continuous and strictly positive, say

ψ(x) ≥ c0 > 0 , L(x, u) ≥ c0 > 0 ∀ x ∈ R
n, u ∈ U . (3.5)

Moreover,

lim
|x|→∞

ψ(x) = ∞ . (3.6)

A strategy to attack this optimal control problem (see [24, 32]), is to investigate
an optimal “synthesis”, which is just a collection of optimal trajectories not necessarily
arising from a feedback control. The existence and the structure of an optimal synthesis
has been the subject of a large body of literature on nonlinear control. At present, a
complete description is known for time optimal planar systems of the form

ẋ = f(x) + g(x)u u ∈ [−1, 1] , x ∈ R
2 ,

see [7] and the references therein. For more general classes of optimal control problems,
or in higher space dimensions, the construction of an optimal synthesis faces severe
difficulties.
On one hand, the optimal synthesis can have an extremely complicated structure, and
only few regularity results are presently known (see [21]). Already for systems in two
space dimensions, an accurate description of all generic singularities of a time optimal
synthesis involves the classification of eighteen topological equivalence classes of singular
points [24, 25]. In higher dimensions, an even larger number of different singularities
arises, and the optimal synthesis can exhibit pathological behavior such as the famous
“Fuller phenomenon” (see [22, 33]), where every optimal control has an infinite number
of switchings.
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On the other hand, even in cases where a regular synthesis exists, the performance
achieved by the optimal synthesis may not be robust. In other words, small perturbations
can greatly affect the behavior of the synthesis (e.g. see Example 5.3 in [26]).

Because of the difficulties faced in the construction of an optimal syntheses, it seems
natural to slightly relax our requirements, and look for nearly-optimal feedback controls
instead. Within this wider class, one can hope to find feedback laws with a simpler
structure and better robustness properties than a regular synthesis.

But we immediately face a new theoretical obstacle. Indeed, it is well known that,
in general, it is not possible to construct a nearly-optimal feedback law u = U(x) among
a class of continuous control. As shown in Example 1.1 in [23] or Example 2 in [9],
restricting the study to continuous feedbacks leads to topological obstructions completely
similar to the ones found in controllability problems [31, 30, 14].

Hence, we necessarily have to deal with discontinuous feedbacks U(x) and cor-
responding discontinuous right hand side in (3.2). Therefore, it becomes essential to
provide suitable definitions of “generalized solutions” for discontinuous O.D.E.s. No-
tice that the concepts of Filippov and Krasovskii generalized solutions [5], frequently
encountered in the literature, are not suitable in this setting: indeed, these generalized
solutions form a closed and connected set; thus the same obstructions to the existence
of a continuous feedback are recovered.

Two approaches were followed in the literature to overcome this issue.

1. One can allow any arbitrary feedback control u = U(x). In this case, we cannot be
sure to still have Carathéodory solutions and hence a new concept of generalized
solutions must be introduced for O.D.E.s with an arbitrary measurable right hand
side.

2. Otherwise one can restrict the problem to a particular class of discontinuous feed-
backs so that Carathéodory forward solutions always exist. Then we have to prove
that a nearly-optimal feedback control exists within this class.

The first approach lead, in particular, to the concept of “sample-and-hold” solu-
tions and Euler solutions (limits of sample-and-hold solutions), which were successfully
implemented both within the context of stabilization problems [16, 28, 29] and of nearly-
optimal feedbacks [17, 20, 23]. A drawback of this approach is that, as illustrated by
Example 5.3 and Example 5.4 in [26], arbitrary discontinuous feedback can generate
too many trajectories, some of which fail to be optimal. In fact, Example 5.3 in [26]
shows that the set of Carathéodory solutions of the optimal closed-loop equation (3.2)
contains, in addition to all optimal trajectories, some other arcs that are not optimal.
Moreover, Example 5.4 in [26] exhibits an optimal control problem in which the optimal
trajectories are Euler solutions, but the closed-loop equation (3.2) has many other Euler
solutions which are not optimal.

The second approach was followed in [1, 2, 3, 4], through the introduction of patchy
feedbacks. These controls, that are piecewise constant in the state space R

n, were first
introduced in [1] in order to study asymptotic stabilization problems. It turned out that
the corresponding Cauchy problem always has at least one forward and at most one
backward Carathéodory solutions.

Moreover, these solutions enjoy important robustness properties [2, 3], which are
particularly relevant in many practical situations. Indeed, one of the main reasons for
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using a state feedback is precisely the fact that open loop controls are usually very
sensitive to disturbances. Namely, it was proven in [2] that a patchy feedback is “fully
robust” with respect to perturbation of the external dynamics, and to measurement
errors having sufficiently small total variation, so to avoid the chattering behavior that
may arise at discontinuity points.

Finally, it was proven in [4] that time nearly-optimal patchy feedbacks exist. Indeed,
if we set T (y) the minimum time needed to steer the system from the state y ∈ R

n to the
origin, then every initial state y can be steered inside an ε-neighborhood of the origin
within time T (y) + ε using a patchy feedback, for any fixed ε > 0.

In all previous works, patchy feedbacks were constructed either by patching together
piecewise constant open-loop controls as in [1], or, as in [4], relying on the a-priori
knowledge of the value function V . We recall that this is defined as

V (y)
.
= inf

u(·)

{
ψ
(
x(T )

)
+

∫ T

0
L
(
x(t), u(t)

)
dt

}
,

where the minimization is taken over all T ≥ 0 and all control functions u : [0, T ] 7→ U
such that the trajectory of (3.1) satisfies the terminal constraint |x(T )| < ε.

Aim of [11] and of the results in Chapter 2 is to develop an algorithm that produces
a nearly-optimal patchy feedback “starting from scratch”, i.e. without any a-priori infor-
mation about the optimal trajectories. Both the patchy feedback and an approximate
value function will be constructed simultaneously, working iteratively on higher and
higher level sets.

This provides a very useful construction, that may be used in all those applications
in which it is particularly difficult to derive explicitly the value function of the optimal
control problem.

The outline of Chapter 2 will be the following. In Section 1 we recall the optimality
result from [4] and state our main result on the construction of a general nearly optimal
patchy feedback. Section 2 will be focused on the introduction of the basic concepts of
patchy vector fields and patchy feedback controls, and on a brief overview of the known
robustness results from [1, 2, 3]. Finally, in Section 3 we sketch the proof of the main
result, which is still a work in progress and it will soon appear in [11].





Chapter 1

Infinite Horizon Noncooperative

Differential Games

1 Basic definitions

Consider an m-persons non-cooperative differential game, with dynamics

ẋ =

m∑

i=1

fi(x, αi), αi(t) ∈ Ai , x ∈ R
n. (1.1)

Here t 7→ αi(t) is the control chosen by the i-th player, within a set of admissible control
values Ai ⊆ R

k. We will study the discounted, infinite horizon problem, where
the game takes place on an infinite interval of time [0, ∞[ , and each player has only a
running cost, discounted exponentially in time. More precisely, for a given initial data

x(0) = y ∈ R
n , (1.2)

the goal of the i-th player is to minimize the functional

Ji(αi)
.
=

∫ ∞

0
e−t ψi

(
x(t), αi(t)

)
dt , (1.3)

where t 7→ x(t) is the trajectory of (1.1). By definition, an m-tuple of feedback strategies
αi = α∗

i (x), i = 1, . . . ,m, represents a Nash non-cooperative equilibrium solution for the
differential game (1.1)-(1.2) if the following holds. For every i ∈ {1, . . . ,m}, the feedback
control αi = α∗

i (x) provides a solution to the optimal control problem for the i-th player,

min
αi(·)

Ji(αi) , (1.4)

where the dynamics of the system is

ẋ = fi(x, αi) +
∑

j 6=i

fj(x, α
∗
j (x)), αi(t) ∈ Ai . (1.5)

More precisely, we require that, for every initial data y ∈ R, the Cauchy problem

ẋ =

m∑

j=1

fj

(
x, α∗

j (x)
)
, x(0) = y , (1.6)

9
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should have at least one Carathéodory solution t 7→ x(t), defined for all t ∈ [0,∞[ .
Moreover, for every such solution and each i = 1, . . . ,m, the cost to the i-th player
should provide the minimum for the optimal control problem (1.4)–(1.5). We recall that
a Carathéodory solution is an absolutely continuous function t 7→ x(t) which satisfies
the differential equation in (1.6) at almost every t > 0.

Nash equilibrium solutions in feedback form can be obtained by studying a related
system of P.D.E’s. Assume that a value function u(y) = (u1, . . . , un)(y) exists, so that
ui(y) represents the cost for the i-th player when the initial state of the system is x(0) = y
and the strategies α∗

1, . . . , α
∗
m are implemented. By the theory of optimal control, see for

example [6], on regions where u is smooth, each component ui should provide a solution
to the corresponding scalar Hamilton-Jacobi-Bellman equation. The vector function u
thus satisfies the stationary system of equations

ui(x) = Hi(x, ∇u1, . . . ,∇um), (1.7)

where the Hamiltonian functions Hi are defined as follows. For each p ∈ R
n, assume

that there exists an optimal control value α∗
j (x, p) such that

p · fj

(
x, α∗

j (x, p)
)

+ ψj

(
x, α∗

j (x, p)
)

= min
a∈Aj

{
p · fj(x, a) + ψj(x, a)

}
. (1.8)

Then

Hi(x, p1, . . . , pm)
.
= pi ·

m∑

j=1

fj

(
x, α∗

j (x, pj)
)

+ ψi

(
x, α∗

i (x, pi)
)
. (1.9)

A rich literature is currently available on optimal control problems and on viscosity
solutions to the corresponding scalar H-J equations. However, little is yet known about
non-cooperative differential games, apart from the linear-quadratic case. Here, we begin
a study of this class of differential games, with two players in one space dimension. Our
main interest is in the existence, uniqueness and stability of Nash equilibrium solutions
in feedback form.

When x is a scalar variable, (1.7) reduces to a system of implicit O.D.E’s:

ui = Hi(x, u
′
1, . . . , u

′
m) . (1.10)

In general, this system will have infinitely many solutions defined on the whole R. To
single out a (hopefully unique) admissible solution, corresponding to a Nash equilibrium
for the differential game, additional requirements must be imposed. These are of two
types:

(i) Asymptotic growth conditions as |x| → ∞.

(ii) Jump conditions, at points where the derivative u′ is discontinuous.

To fix the ideas, consider a game with the simple dynamics

ẋ(t) = α1(t) + · · · + αm(t) , (1.11)

and with cost functionals of the form

Ji(α)
.
=

∫ ∞

0
e−t

[
hi

(
x(t)) + ki

(
x(t)

) α2
i (t)

2

]
dt . (1.12)
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We shall assume that the functions hi, ki are smooth and satisfy

∣∣h′i(x)
∣∣ ≤ C ,

1

C
≤ ki(x) ≤ C , (1.13)

for some constant C > 0. Notice that in this case (1.8) yields α∗
i = −pi/ki, hence (1.10)

becomes

ui =


 u′i

2ki(x)
−

m∑

j=1

u′j
kj(x)


u′i + hi(x) . (1.14)

For a globally defined solution to the system of H-J equations (1.14), a natural set
of admissibility conditions is formulated below.

Definition 1.1 A function u : R 7→ R
m is called an admissible solution to the implicit

system of O.D.E’s (1.14) if the following holds.
(A1) u is absolutely continuous. Its derivative u′ satisfies the equations (1.14) at
a.e. point x ∈ R.
(A2) u has sublinear growth at infinity. Namely, there exists a constant C such that,
for all x ∈ R, ∣∣u(x)

∣∣ ≤ C
(
1 + |x|

)
. (1.15)

(A3) At every point y ∈ R, the derivative u′ admits right and left limits u′(y+), u′(y−).
At points where u′ is discontinuous, these limits satisfy at least one of the conditions

m∑

i=1

u′i(y+)

ki(y)
≤ 0 or

m∑

i=1

u′i(y−)

ki(y)
≥ 0 . (1.16)

Because of the assumption (1.13), the cost functions hi are globally Lipschitz contin-
uous. It is thus natural to require that the value functions ui be absolutely continuous,
with sub-linear growth as x → ±∞. The motivation for the assumption (A3) is quite
simple. Recalling that the feedback controls are α∗

i = −u′i/ki, the condition (1.16)
provides the existence of a local solution to the Cauchy problem

ẋ = −
m∑

i=1

u′i(x)
ki(x)

, x(0) = y (1.17)

forward in time. In the opposite case, solutions of the O.D.E. would approach y from
both sides, and be trapped. As will be proved in the next section, the assumptions
(A1)–(A3) together yield the existence of a global solution to (1.17), for every initial
data y ∈ R. Therefore, the functions u1, . . . , um are indeed the costs for the various
players, if the feedback strategies α∗

1, . . . , α
∗
m, are implemented.

Next, call p±i
.
= u′i(y±). By the equations (1.14) and the continuity of the functions

ui, hi, ki, one obtains the identities

(p+
i )2

2ki(y)
+
∑

j 6=i

p+
i p

+
j

kj(y)
=

(p−i )2

2ki(y)
+
∑

j 6=i

p−i p
−
j

kj(y)
i = 1, . . . ,m . (1.18)

These are certainly satisfied when

u′i(y+) + u′i(y−) = 0 i = 1, . . . ,m . (1.19)
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In the case m = 2, it is easy to check that (1.19) yields the only non-trivial solution to
the jump conditions (1.18). In this case, the assumptions (A3) yield

u′1(y+)

k1(y)
+
u′2(y+)

k2(y)
≤ 0 , u′i(y−) = −u′i(y+) (i = 1, 2) . (1.20)

By (A1), the derivatives pi = u′i are defined at a. e. point x ∈ R. The optimal
feedback controls α∗

i = −pi/ki are thus defined almost everywhere. We can use the
further assumption (A3) and extend these functions to the whole real line by taking
limits from the right:

α∗(x)
.
= −u

′
i(x+)

ki(x)
. (1.21)

In this way, all feedback control functions will be right-continuous.

2 Solutions of the differential game

In this Section, we prove a verification theorem, i.e. we show that admissible solutions to
the H-J equations yield a solution to the differential game. Moreover, we give a couple
of examples showing the relevance of the assumptions (A2) and (A3).

Theorem 1.1 Consider the differential game (1.11)–(1.12), with the assumptions (1.13).
Let u : R 7→ R

m be an admissible solution to the systems of H-J equations (1.14), so
that the conditions (A1)–(A3) hold. Then the controls (1.21) provide a Nash equilibrium
solution in feedback form.

Proof. The theorem will be proved in several steps.

1. First of all, setting

g(x)
.
=
∑

i

α∗
i (x) = −

∑

i

u′i(x)
ki(x)

, (2.1)

we need to prove that the Cauchy problem

ẋ(t) = g
(
x(t)

)
, x(0) = y , (2.2)

has a globally defined solution, for every initial data y ∈ R. This is not entirely obvious,
because the function g may be discontinuous. We start by proving the local existence of
solutions.

CASE 1: g(y) = 0. In this trivial case x(t) ≡ y is the required solution.

CASE 2: g(y) > 0. By right continuity, we then have g(x) > 0 for x ∈ [y, y+δ], for some
δ > 0. This implies the existence of a (unique) strictly increasing solution x : [0, ε] 7→ R,
for some ε > 0.

CASE 3: g(y) < 0. By the admissibility conditions (1.16), this implies that g is strictly
negative in a left neighborhood of y. Therefore the Cauchy problem (2.2) admits a
(unique) strictly decreasing solution x : [0, ε] 7→ R, for some ε > 0.
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2. Next, we prove that the local solution can be extended to all positive times. For this
purpose, we need to rule out the possibility that

∣∣x(t)
∣∣ → ∞ in finite time. We first

observe that each trajectory is monotone, i.e., either non-increasing, or non-decreasing,
for t ∈ [0,∞[ . To fix the ideas, let t 7→ x(t) be strictly increasing, with x(t) → ∞ as
t → T− . A contradiction is now obtained as follows. For each τ > 0, using (1.14) we
compute

∑

i

ui

(
x(τ)

)
−
∑

i

ui

(
x(0)

)
=

∫ τ

0

{
d

dt

∑

i

ui

(
x(t)

)
}
dt

=

∫ τ

0
−




∑

i

u′i
(
x(t)

)
·
∑

j

u′j
(
x(t)

)

kj

(
x(t)

)



 dt

=

∫ τ

0

∑

i

{
ui

(
x(t)

)
−
∣∣u′i(x(t))

∣∣2

2ki(x(t))
− hi

(
x(t)

)
}
dt (2.3)

By assumptions, the functions ui and hi have sub-linear growth. Moreover, each ki

is uniformly positive and bounded above. Using the elementary inequality

∣∣x(τ) − x(0)
∣∣ ≤

∫ τ

0
1 ·
∣∣ẋ(t)

∣∣ dt ≤
(∫ τ

0
1 dt

)1/2

·
(∫ τ

0

∣∣ẋ(t)
∣∣2 dt

)1/2

,

from (2.3) we thus obtain

∣∣x(τ) − x(0)
∣∣2

τ
≤
∫ τ

0

∣∣ẋ(t)
∣∣2 dt ≤ 4C

∫ τ

0

∑

i

∣∣u′i(x(t))
∣∣2

2ki(x(t))
dt

≤ 4C

{ ∣∣∣∣∣
∑

i

ui

(
x(τ)

)
−
∑

i

ui

(
x(0)

)
∣∣∣∣∣+
∫ τ

0

∑

i

∣∣ui(x(t))
∣∣ dt

+

∫ τ

0

∑

i

∣∣hi(x(t))
∣∣ dt
}

≤ C0 (1 + τ)
{

2 +
∣∣x(τ)

∣∣+
∣∣x(0)

∣∣
}
,

for some constant C0. Therefore, either
∣∣x(τ)

∣∣ ≤ 2 + 3
∣∣x(0)

∣∣, or else

∣∣x(τ)
∣∣ ≤

∣∣x(0)
∣∣ + 2τ · C0 (1 + τ) . (2.4)

In any case, blow-up cannot occur at any finite time T .
3. To complete the proof, for each fixed i ∈ {1, . . . ,m}, we have to show that the feedback
α∗

i in (1.21) provides solution to the optimal control problem for the i-th player:

min
αi(·)

∫ ∞

0
e−t

[
hi

(
x(t)) + ki

(
x(t)

) α2
i (t)

2

]
dt , (2.5)

where the system has dynamics

ẋ = αi +
∑

j 6=i

α∗
j (x) . (2.6)
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Given an initial state x(0) = y, by the assumptions on u it follows that the feedback
strategy αi = α∗

i (x) achieves a total cost given by ui(y). Now consider any absolutely
continuous trajectory t 7→ x(t), with x(0) = y. Of course, this corresponds to the control

αi(t)
.
= ẋ(t) −

∑

j 6=i

α∗
j (x) (2.7)

implemented by the i-th player. We claim that the corresponding cost satisfies

∫ ∞

0
e−t

[
hi

(
x(t)

)
+
ki

2

(
ẋ(t) −

∑

j 6=i

α∗
j

(
x(t)

))2
]
dt ≥ ui(y) . (2.8)

To prove (2.8), we first observe that (2.4) implies

lim
t→∞

e−tui

(
x(t)

)
= 0 i = 1, . . . , n .

Hence

ui(y) = ui

(
x(0)

)
= −

∫ ∞

0

d

dt

[
e−tui

(
x(t)

)]
dt .

The inequality (2.8) can now be established by checking that

e−t

[
hi

(
x(t)

)
+
ki

2

(
ẋ(t) −

∑

j 6=i

α∗
j

(
x(t)

))2
]
≥ e−tui

(
x(t)

)
− e−tu′i

(
x(t)

)
· ẋ(t) . (2.9)

Equivalently, letting αi be as in (2.7),

ui ≤


αi −

∑

j 6=i

u′j
kj


u′i +

ki

2
α2

i + hi .

This is clearly true because, by (1.8),

ui(x) = min
a




ki

2
a2 + au′i −

∑

j 6=i

u′ju
′
i

kj
+ hi(x)



 .

�

We now give two examples showing that, if the growth assumptions (1.15) or if the
jump conditions (1.16) are not satisfied, then the feedbacks (1.21) may not provide a
Nash equilibrium solution. This situation is already well known in the context of control
problems.

Example 1.1 Consider the game for two players, with dynamics

ẋ = α1 + α2 , (2.10)
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and cost functionals

Ji =

∫ ∞

0
e−t · α

2
i (t)

2
dt .

In this case, if u′i = pi, the optimal control for the i-th player is

α∗
i (pi) = arg min

ω

{
pi ω +

ω2

2

}
= − pi .

The system of H-J takes the simple form





u1 = −
(

u′
1
2 + u′2

)
u′1 ,

u2 = −
(
u′1 +

u′
2
2

)
u′2 .

(2.11)

The obvious admissible solution is u1 ≡ u2 ≡ 0, corresponding to identically zero
controls, and zero cost. We now observe that the functions

u1(x) =

{
0 if |x| ≥ 1 ,

−1
2

(
1 − |x|

)2
if |x| < 1 ,

u2(x) = 0 ,

provide a solution to (2.11), which is not admissible because the conditions (1.16) fail
at x = 0.

Next, the functions

u1(x) = −1

2
x2, u2(x) = 0 ,

provide yet another solution, which does not satisfy the growth conditions (1.15).
In the above two cases, the corresponding feedbacks α∗

i (x) = −u′i(x) do not yield a
solution to the differential game.

3 Two-Players Games

We consider here a game for two players, with dynamics

ẋ = α1 + α2 , x(0) = y , (3.1)

and cost functionals of the form

Ji(αi)
.
=

∫ ∞

0
e−t

[
hi

(
x(t)) +

α2
i (t)

2

]
dt . (3.2)

Notice that, for any positive constants k1, k2, λ, the more general case

Ji(αi)
.
=

∫ ∞

0
e−λt

[
h̃i

(
x(t)) +

α2
i (t)

2ki

]
dt

can be reduced to (3.2) by a linear change of variables.
The system of H-J equations for the value functions now takes the form

{
u1(x) = h1(x) − u′1u

′
2 − (u′1)

2/2 ,
u2(x) = h2(x) − u′1u

′
2 − (u′2)

2/2 ,
(3.3)
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and the optimal feedback controls on the whole R are given by

α∗
i (x) = −u′i(x) . (3.4)

Differentiating (3.3) and setting pi = u′i one obtains the system

{
h′1 − p1 = (p1 + p2)p

′
1 + p1p

′
2 ,

h′2 − p2 = p2p
′
1 + (p1 + p2)p

′
2 .

(3.5)

Set

Λ(p)
.
=

{
p1 + p2 p1

p2 p1 + p2 ,
∆(p)

.
= det Λ(p) .

Notice that

1

2
(p2

1 + p2
2) ≤ ∆(p) ≤ 2(p2

1 + p2
2) . (3.6)

In particular, ∆(p) > 0 for all p = (p1, p2) 6= (0, 0). From (3.5), we can then deduce

{
p′1 = ∆(p)−1

[
− p2

1 + (h′1 − h′2)p1 + h′1p2

]
,

p′2 = ∆(p)−1
[
− p2

2 + (h′2 − h′1)p2 + h′2p1

]
.

(3.7)

We can now simplify the equation by a suitable rescaling of the space variable. Define
a new variable s such that ds/dx = ∆(p)−1. Using s as a new independent variable we
write pi = pi(s) and hi = hi(x(s)) and study the equivalent system

{
d
dsp1 = (h′1 − h′2)p1 + h′1p2 − p2

1 ,
d
dsp2 = (h′2 − h′1)p2 + h′2p1 − p2

2 .
(3.8)

We underline that it is possible to choose the rescaling in order to map 0 to 0. This
choice will be assumed in the following, so that s(0) = 0.

In this case the condition (1.16), coming from (A3) is equivalent to those in (1.19).
Therefore here jumps for piecewise smooth solutions are only allowed from any point
(p−1 , p

−
2 ) with

p−1 + p−2 ≥ 0 (3.9)

to the symmetric point

(p+
1 , p

+
2 ) = (−p−1 , − p−2 ) . (3.10)

4 Smooth costs: cooperative situations

Theorem 1.2 Let the cost functions h1, h2 be smooth, and assume that their derivatives
satisfy

1

C
≤ h′i(x) ≤ C (4.1)

for some constant C > 1 and all x ∈ R. Then the system (3.3) has an admissible
solution. The corresponding functions α∗

i in (3.4) provide a Nash equilibrium solution
to the non-cooperative game.
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Here we talk of cooperative situation because (4.1) implies that both costs have the same
monotone behavior. Hence it’s convenient for both players to push the game in the same
direction, and in this sense they cooperate. Of course a similar theorem can be proved
if there holds

− C ≤ h′i(x) ≤ − 1

C
∀x ∈ R .

Similarly in Section 5, where h′1 and h′2 have opposite signs, we’ll talk of competitive
situation and of players which have conflicting interests, in the sense that it is convenient
for them to push the state of the system in opposite directions.

Proof. Write the O.D.E. (3.7) in the more compact form

dp

dx
= f(p) . (4.2)

To show the existence of at least one admissible solution of (3.3), for every ν ≥ 1 let
p(ν) : [−ν,∞[→ R

2 be the solution of the Cauchy problem

dp(ν)

dx
= f

(
p(ν)

)
, p(ν)(−ν) = (1, 1). (4.3)

It is easy to check that the polygon

Γ
.
=
{

(p1, p2) ; p1, p2 ∈ [0, 2C] , p1 + p2 ≥ 1/2C
}

is positively invariant for the flow of (3.7). Hence p(ν)(x) ∈ Γ for all ν ≥ 1 and x ≥ −ν.
We can extend each function p(ν) to the whole real line by setting

p(ν)(x) = (1, 1) for x < −ν .

By uniform boundedness and equicontinuity, the sequence p(ν) admits a subsequence
converging to a uniformly continuous function p : R 7→ Γ. Clearly this limit function
provides a continuous, globally bounded solution of (3.7). We then define the controls
α∗

i (x)
.
= −pi(x) and the cost functions

ui(y)
.
=

∫ ∞

0
e−t

[
hi

(
x(t, y)) +

1

2

(
α∗

i

(
x(t, y)

))2
]
dt , (4.4)

where t 7→ x(t, y) denotes the solution to the Cauchy problem

ẋ = α∗
1(x) + α∗

2(x) , x(0) = y . (4.5)

This function provides a globally Lipschitz, smooth solution of the system (3.3). �

In the case where the oscillation of the derivatives h′i is sufficiently small, we can
also prove the uniqueness of the Nash feedback solution.

Theorem 1.3 Let the cost functions be smooth, with derivatives satisfying (4.1), for
some constant C. Assume that the oscillation of their derivatives satisfies

sup
x,y∈R

∣∣h′i(x) − h′i(y)
∣∣ ≤ δ i = 1, 2 (4.6)

for some δ > 0 sufficiently small (depending only on C). Then the admissible solution
of the system (3.3) is unique.
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Before giving details of the proof, we sketch the main ideas. In the case of linear
cost functions, where hi(x) = κi x, h

′
i ≡ κi, the phase portrait of the planar O.D.E. (3.8)

is depicted in Figure 1. We observe that

- Unbounded trajectories of (3.8), with
∣∣p(s)

∣∣ → ∞ as s → s̄, correspond to solu-
tions p = p(x) of (3.7) with

∣∣p(x)
∣∣ → ∞,

∣∣p′(x)
∣∣ → ∞ as x → ±∞. Indeed, because

of the rescaling and of (3.6), as the parameter s approaches a finite limit s̄, we have
|x| → ∞. This yields a solution u(x) =

∫ x
∗ p(x) dx which does not satisfy the growth

restrictions (1.15).

- The heteroclinic orbit, joining the origin with the point (κ1, κ2), corresponds to a
trajectory of (3.7) defined on a half line, say [x̄,∞[ . To prolong this solution for x < x̄
one needs a trajectory of (3.8) which approaches the origin as s → ∞. But the two
available solutions are both unbounded, hence not acceptable.

- Finally, one must examine solutions whose gradient has one or more jumps. Re-
calling that (A3) imposes a selection among admissible jumps, here we have to consider
all the discontinuities from a point P = (p1, p2) with p1 + p2 ≥ 0 to its symmetric point
−P = (−p1, −p2). However, a direct inspection shows that, even allowing these jumps,
one still cannot construct any new globally bounded trajectory.

In the end, in the linear case, one finds that the only admissible solution is (p1, p2) ≡
(κ1, κ2). A perturbative argument shows that this conclusion remains valid if a small C 1

perturbation is added to the cost functions.

Proof. First Step. We begin with the case h′i(x) ≡ κi and assume, without any loss of
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generality, that κ1 ≤ κ2.
Let p̃ be a smooth solution of (3.8), as shown in Figure 1.

We observe that the following facts hold (see Figure 2):

1. Both sets A = {(p1, p2) 6= (0, 0) : p1 ≤ 0 , p2 ≤ 0} and {(p1, p2) 6= (0, 0) : p1 ≥
0 , p2 ≥ 0} are positively invariant for the flow of (3.8) and both B = {(p1, p2) : p1 >
0 , p2 < 0} and C = {(p1, p2) : p1 < 0 , p2 > 0} are negatively invariant.

2. If p̃(so) ∈ A = {(p1, p2) 6= (0, 0) : p1 ≤ 0 , p2 ≤ 0} for some so, then |p̃| → +∞ as s
increases. Indeed, since

d

ds
(p̃1 + p̃2) = −p̃2

1 − p̃2
2 + κ1p̃1 + κ2p̃2 ≤ −1

2
(p̃1 + p̃2)

2 < 0 ,

we can assume there exist s̄ ≥ so and ε > 0 such that p̃1(s̄)+ p̃2(s̄) < −ε. Moreover, the
following holds for any σ > s̄:

d

ds
(p̃1+p̃2)(σ) ≤ −1

2
(p̃1(σ)+p̃2(σ))2 < −1

2
(p̃1(s̄)+p̃2(s̄))(p̃1(σ)+p̃2(σ)) <

ε

2
(p̃1(σ)+p̃2(σ)) .

Hence, an integration yields (p̃1 + p̃2)(s) ≤ −ηe ε
2
s for s > s̄ (and η > 0). This means

(p̃1 + p̃2) → −∞ as s increases, eventually reaching +∞.

3. If p̃(so) ∈ B = {(p1, p2) : p1 > 0 , p2 < 0} for some so, then |p̃| → +∞ as s decreases.
Indeed, let ε > 0 such that p̃1(so) > ε. Since

d

ds
p̃1 = −p̃2

1 + (κ1 − κ2)p̃1 + κ1p̃2 ≤ −(p̃1 + κ2 − κ1)p̃1 < 0 ,

it is sufficient to observe that, for σ < so,

d

ds
p̃1(σ) < −(p̃1(so) + κ2 − κ1)p̃1(σ) ≤ −(ε+ κ2 − κ1)p̃1(σ) .

Hence, an integration yields p̃1(s) ≥ ηe−(ε+κ2−κ1)s for s < so (and η > 0) and p̃1 is
bounded below by a term tending to +∞ as s→ −∞.

4. If p̃(so) ∈ C1 = {(p1, p2) : p1 < 0 , p2 > κ2 − κ1} for some so, then |p̃| → +∞ as
s decreases. Here the argument is exactly the same as in the previous case with p̃2 in
place of p̃1.

5. If p̃(so) ∈ C2 = {(p1, p2) : p1 < 0 , 0 < p2 ≤ κ2 − κ1} then there exists s̄ < so such
that p̃(s̄) is in C1 as in case 4. above. Indeed there could be only two situations.
If −p̃1(so)

2 + (κ1 − κ2)p̃1(so) + κ1p̃2(so) ≥ 0, then, by negative invariance, p̃ could only
have reached this region from C1, hence there exists s̄ ≤ so such that p̃(s̄) is as in case
4 above. Otherwise, using again negative invariance and the fact that there are no
equilibria in C2, either there exists s̄ ≤ so such that p̃(s̄) is in case 4 above, or there
exists s1 < so such that −p̃1(s1)

2 + (κ1 − κ2)p̃1(s1) + κ1p̃2(s1) ≥ 0 and then, by the
previous case, the existence of such a s̄ < s1 < so follows.

6. If p̃(so) ∈ D = {(p1, p2) : p1 ≥ 0 , p2 ≥ 0 , p1 + p2 ≥ 2κ2} for some so, then
|p̃| → +∞ as s decreases. Indeed, since

d

ds
(p̃1 + p̃2) = −p̃2

1 − p̃2
2 + κ1p̃1 + κ2p̃2 ≤ −1

2
(p̃1 + p̃2 − 2κ2)(p̃1 + p̃2) ≤ 0



20 Chapter 1. Infinite Horizon Noncooperative Differential Games

PSfrag replacements

A B

C1 ∪ C2

D

E

F

C1

C2

(κ1,κ2)

κ2−κ1

2κ1 2κ2

Figure 2

(and the inequality is actually strict when p1 + p2 = 2κ2), we can assume that there
exist s̄ ≤ so and ε > 0 such that p̃1(s̄) + p̃2(s̄) > 2κ2 + ε. Moreover, the following holds
for any σ < s̄:

d

ds
(p̃1 + p̃2)(σ) < −1

2
(p̃1(s̄) + p̃2(s̄) − 2κ2)(p̃1(σ) + p̃2(σ)) < −ε

2
(p̃1(σ) + p̃2(σ)) .

Hence by integrating we find (p̃1 + p̃2)(s) ≥ ηe−
ε
2
s for s < s̄ and η > 0. Therefore

(p̃1 + p̃2) → +∞ as s decreases, eventually reaching −∞.

7. If p̃(so) ∈ E = {(p1, p2) 6= (0, 0) : p1 ≥ 0 , p2 ≥ 0 , p1 + p2 ≤ 2κ1} for some so, then
from

d

ds
(p̃1 + p̃2) = −p̃2

1 − p̃2
2 + κ1p̃1 + κ2p̃2 ≥ −1

2
(p̃1 + p̃2 − 2κ1)(p̃1 + p̃2) ≥ 0 ,

it follows, as above, that either p̃→ 0 for s→ −∞ or there exists s̄ ≤ so such that p̃(s̄)
satisfies one of the previous cases 3-4-5. While the latter case has already been treated,
we will deal with the former one in 10 .

8. If p̃(so) ∈ F = {(p1, p2) : p1 ≥ 0 , p2 ≥ 0 , 2κ1 < p1 + p2 < 2κ2} for some so and
p 6= p̃, then there exists a small circle V (say with radius smaller than |p̃(so) − p(so)|)
around the stable focus p ≡ (κ1, κ2) such that p̃ /∈ V for s < so. But then, looking at
the signs of the derivatives of p̃i, as s decreases our solution p̃ must go away from the
whole region F and there exists s̄ < so such that p̃(s̄) is in one of the previous cases.

9. We can now provide more accurate estimates on blow-up. Indeed, by previous
analysis, blow-up of |p̃| can occur either because p̃i → −∞ as s increases or p̃i → +∞ as
s decreases, for some index i ∈ {1, 2}. But these results has been obtained by estimating
p̃i with suitable exponential functions, hence it is still not clear whether there exists a
finite so such that the blow-up occurs when s → so or |p̃| → ∞ as |s| → ∞. To fix
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the ideas, assume it holds |p̃1| → ∞, being |p̃2| → ∞ entirely similar. For s sufficiently
large, we have

− p̃
2
1

2
+ (κ1 − κ2)p̃1 + κ1p̃2 < 0 .

Hence, integrating the inequality d
ds p̃1 < − p̃2

1
2 , one can conclude that |p̃| → ∞ as s→ so,

for some finite so. In particular, for this so ∈ R (and η > 0), p̃ satisfies |p̃(s)| ≥ η
|s−so| .

In terms of the original variable x, one may guess that the corresponding function
p̃ = p̃(x) could be as in Figure 3a and that u may be continued beyond the point where
p̃ blows-up (say xo = x(so)). But this is not the case since such a trajectory yields a
solution defined on the whole real line. Indeed by (3.6)

∣∣∣∣
dx

ds

∣∣∣∣ = ∆
(
p̃(s)

)
≥ co

(s−o s)2
. (4.7)

for some co > 0, and therefore either x(s) → +∞ as s → s−o or x(s) → −∞ as
s → s+o . Therefore, the solution ũ(x), corresponding to p̃(x), violates the growth as-
sumptions (1.15) and it is not admissible.

10. We remark that in case 7, the solution p̃ can tend to 0 as s → −∞. But then for
some co > 0

|p̃| ≤ p̃1 + p̃2 ≤ ecos .

Recalling (3.6) we obtain, in terms of the variable x,

∣∣∣∣
dx

ds

∣∣∣∣ = ∆
(
p̃(s)

)
= O(1) · e2cos , (4.8)

lim
s→−∞

x(s) = xo <∞ ,

for some xo ∈ R. Therefore, to the entire trajectory s 7→ p̃(s), there corresponds only a
portion of the trajectory x 7→ p̃(x), namely for x > xo.

To prolong the solution ũ for x < xo, we need to construct another trajectory
s 7→ p(s) such that lims→+∞ p(s) = 0. But this trajectory, by previous analysis (see
3.-4.-5.), will be unbounded for negative s, hence the corresponding ũ(x), will not be
admissible.

11. Next, we consider the case where p̃(s) is a discontinuous solution with admissible
jumps. In this case, first of all we can say that p̃ has no more than 2 jumps. Indeed, the
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set Ξ1 = {(p1, p2) : p2 < 0 , p1+p2 ≤ 0} is positively invariant and Ξ2 = {(p1, p2) : p2 <
0 , p1 + p2 > 0} is negatively invariant. Hence, if a jump occurs at so, either p̃(s+o ) ∈ Ξ1

or p̃(s−o ) ∈ Ξ2. In the former case p̃(s) has no jumps for s > so; in the latter case p̃ has
no jumps for s < so. This means that there could be at most two jumps when there
exist s1 < s2 ≤ s3 such that

• a first jump occurs at s1 and p̃(s1−) ∈ Ξ2,

• p̃ crosses the line p1 + p2 = 0 at s2,

• a last jump occurs at s3 and p̃(s3+) ∈ Ξ1.

In any case, the corresponding solution ũ does not satisfy (1.15) and is not admissible.
Indeed, we can have only three situations for a p̃ with an admissible jump at so:

(a) if p̃(s−o ) ∈ Ξ2, then |p̃| → ∞ as s decreases;

(b) if p̃(s+o ) ∈ Ξ1 and p̃1(s
+
o ) > 0, then either p̃(s) is continuous for s < so (and therefore

|p̃| → ∞ as s decreases) or p̃ has another jump at s̄ such that p̃(s̄−) ∈ Ξ2 (and
therefore again |p̃| → ∞ as s decreases);

(c) if p̃(s+o ) ∈ Ξ1 and p̃1(s
+
o ) ≤ 0, then |p̃| → ∞ as s increases.

Second Step. We now extend the proof, in the presence of a sufficiently small perturba-
tion. By (4.6), there exist constants κ1, κ2 > 0 such that

∣∣h′1(x) − κ1

∣∣ ≤ δ ,
∣∣h′2(x) − κ2

∣∣ ≤ δ for all x ∈ R . (4.9)

Let u(·) be the solution constructed in Theorem 2, and let ũ be any other smooth
solution of (3.8). Call p = u′, p̃ = ũ′ the corresponding gradients, rescaled as before,
and let V be a small open bounded set containing the whole image of p and the point
(κ1, κ2). Of course it is not restrictive to consider V as circular, say with radius ρ > 0.

Now we split the proof in three cases.

CASE 1: p̃(s) ∈ V for every s. In this case we look at the difference w(s) = p̃(s)− p(s).
We can write a linear evolution equation for w:

dw

ds
= A(s)w(s) , (4.10)

where the matrix A is the “average” matrix

A(s) =

∫ 1

0
Df(θp(s) + (1 − θ)p̃(s))dθ , (4.11)

and f is the vector field at (4.2).

Since p, p̃ ∈ V , the matrix A(s) is very close to the Jacobian matrix Df(κ1, κ2).
Therefore

d

ds

∣∣w(s)
∣∣ ≤ −K

∣∣w(s)
∣∣ , (4.12)
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for some constant K > 0. Indeed Df(κ1, κ2) is negative definite and, provided δ (and
then ρ) is small enough, A(s) is negative definite too. Hence

2
∣∣w(s)

∣∣ d
ds

∣∣w(s)
∣∣ =

d

ds

∣∣w(s)
∣∣2 = 2

d

ds
w(s) · w(s) = 2A(s)w(s) · w(s) ≤ −2K

∣∣w(s)
∣∣2 .

Now integrating (4.12), we have for s < 0,

2ρ ≥
∣∣w(s)

∣∣ ≥ e−Ks
∣∣w(0)

∣∣

and, letting s→ −∞, find

∣∣w(0)
∣∣ ≤ lim

s→−∞

∣∣w(s)
∣∣eKs ≤ lim

s→−∞
2ρeKs = 0 . (4.13)

This implies p(0) = p̃(0), hence p = p̃ by the uniqueness of the Cauchy problem.
CASE 2: p̃(so) /∈ V for some so and, in particular, p̃(so) in a small neighborhood W of
the origin. Consider the linearized system near (0, 0)

(
p′1
p′2

)
= H ·

(
p1

p2

)
, H =

(
h′1 − h′2 h′1
h′2 h′2 − h′1

)
,

and notice that the origin is a saddle point for this system. Indeed H has eigenvalues
λ1, λ2 such that

0 <

√
3

4C2
≤ |λi| =

√
(h′1)

2 + (h′2)
2 − h′1h

′
2 ≤

√
2C2 − 1

C2
, (4.14)

where C is the constant in (4.1). Moreover its eigenvectors v1, v2 form angles α1, α2

with the positive direction of the p1-axis such that

0 <
1

C

(√
d2 +

1

C2
− d

)
≤ |tanαi| =

∣∣∣∣
λi + (h′2 − h′1)

h′1

∣∣∣∣ ≤ C
(√

d2 + C2 + d
)
, (4.15)

where d = (C − 1
C ) > 0 and C is again from (4.1).

Hence, exactly as one can do with saddle points in the autonomous case, we can prove
that there exist four sectors Si, i = 1, . . . , 4 (see Figure 4), where the following facts
hold:
(a) If p̃(so) is in S1 or S3, then |p̃(s)| grows for s < so and the solution moves away from
W ;
(b) Both boundaries of S2 and S4 allow orbits to only exit from those sectors for s < so;
(c) If p̃(so) /∈ Si for all i = 1, . . . , 4, then for s < so the angle between the vector (p̃1, p̃2)
and the p1-axis is strictly monotone, forcing the solution either to reach S1 or S3, or to
move away from W ;
(d) Finally, if p̃(so) is in S2 or S4, then for s < so the solution can tend to the origin.
But, since

d

ds
(p̃1 + p̃2) = −p̃2

1 − p̃2
2 + h′1p̃1 + h′2p̃2 ≥ −1

2
(p̃1 + p̃2 − 2C)(p̃1 + p̃2) > 0 ,

as in the constant case, one obtains an estimate of exponential type of the decay of |p̃|.
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CASE 3: p̃(so) /∈ V and p̃(so) not in a neighborhood of the origin. In this case, combin-
ing (4.9) and the continuous dependence of solutions with the estimates of the constant
case (indeed, using (4.1), they remain true), we can prove that |p̃| → ∞ for finite s and
that the rate of blow-up of |p̃| can be estimated in the same way we did in the case of
h′i ≡ κi.

In any case either ũ ≡ u or, in the original coordinates x, ũ fails to satisfy (1.15).

It remains to prove what happens if ũ is an admissible solution with discontinuous
(rescaled) gradient p̃(s). Assume p̃ has an admissible jump at so. Using (4.9) it holds,
for p̃1 > 0,

d

ds
(p̃1 + p̃2)

∣∣∣∣
p̃1+p̃2=0

= −2p̃2
1 + (h′1 − h′2)p̃1 < −2p̃2

1 + (κ1 − κ2 + 2δ)p̃1

and hence, provided δ small enough, the region Ξ1 (resp. Ξ2) defined in the First Step is
positively (resp. negatively) invariant also in this setting. Then conclusions made in the
constant case still hold and ũ corresponding to p̃ is not admissible, since it violates (1.15).
�

5 Smooth costs: players with conflicting interests

We consider here a game for two players, with dynamics (3.1) and cost functionals as
in (3.2). Contrary to the previous section, we now assume that the player have conflicting
interest. Namely, their running costs hi satisfy

h′1(x) ≤ 0 ≤ h′2(x). (5.1)
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We begin with an example showing that in this case the H-J system can have infinitely
many admissible solutions. Each of these determines a different Nash equilibrium solu-
tion to the differential game.

Example 1.2 Consider the game (3.1)–(3.2), with

h1(x) = −κx , h2(x) = κx , (5.2)

for some constant κ > 0 (see Figure 5).
In this special case, the equations (3.8) reduce to

{
p′1 = −2κp1 − κp2 − p2

1 ,
p′2 = κp1 + 2κp2 − p2

2 .
(5.3)

The point P
.
= (−κ, κ) is stationary for the flow of (5.3). Setting q1

.
= p1+κ, q2

.
= p2−κ,

the local behavior of the system near P is described by
{
q′1 = −κq2 − q21 ,
q′2 = κq1 − q22 .

(5.4)

Notice that
dp2

dp1
=
dq2
dq1

= 0 if q1 =
q22
κ
,

dp1

dp2
=
dq1
dq2

= 0 if q2 = −q
2
1

κ
,
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dp1

dp2
=
dq1
dq2

= 1 if p1 = −p2 .

By symmetry across the line p1 + p2 = 0, any trajectory passing through a point Pα
.
=

(−α, α) with 0 < α < κ is a closed orbit. We thus have infinitely many solutions of the
H-J equations (5.3), having bounded, periodic gradients. Therefore, all of these solutions
are globally Lipschitz continuous and satisfy the growth condition (1.15). Notice that
the homoclinic orbit ph(·) starting and ending at the origin also yields a periodic solution
to the original equation (3.7). Indeed, to a solution p = p(s) of (5.3) with

lim
s→−∞

p(s) = lim
s→+∞

p(s) = 0 ,

through the reparametrization x = x(s) there corresponds a solution p = p(x) defined
on some bounded interval ]`o, `1[ . This yields a periodic solution p = p(x) with period
` = `1 − `o.

The main result of this section is concerned with the existence and uniqueness of
admissible solutions.

Theorem 1.4 Let any two constants κ1, κ2 be given, with

κ1 < 0 < κ2 , κ1 + κ2 6= 0 . (5.5)

Then there exists δ > 0 such that the following holds. If h1, h2 are smooth functions
whose derivatives satisfy

∣∣h′1(x) − κ1

∣∣ ≤ δ ,
∣∣h′2(x) − κ2

∣∣ ≤ δ , (5.6)

for all x ∈ R, then the system of H-J equations (3.3) has a unique admissible solution.

The structure of the proof will be the following. We first prove the result in the
case of linear costs: the phase portrait in this case is depicted in Figure 6. We observe
that:

- As in Theorem 1.3, unbounded trajectories of (3.8), with
∣∣p(s)

∣∣→ ∞ as s→ s̄, cor-
respond to solutions p = p(x) of (3.7) with

∣∣p(x)
∣∣→ ∞,

∣∣p′(x)
∣∣→ ∞ as x→ ±∞. This

yields a solution u(x) =
∫ x
∗ p(x) dx which does not satisfy the growth restrictions (1.15).

- The heteroclinic orbit, joining the origin with the point (κ1, κ2), corresponds to a
trajectory of (3.7) defined on a half line, say [x̄,∞[ . As in Theorem 1.3, there exists no
admissible solution to prolong this one for x < x̄.

- Finally, even considering solutions whose gradient has one or more jumps, it is
impossible to find more admissible solutions.

Therefore, in the linear case, one finds that the only admissible solution is (p1, p2) ≡
(κ1, κ2). As in Theorem 1.3, a perturbative argument allows to conclude the same holds
if a small C1 perturbation is added to the cost functions.

Proof. We will first consider the linear case, where h′i ≡ κi is constant. Then we recover
the more general case by a perturbation argument.
Existence. Assume that hi(x) = κi x with κ1 + κ2 > 0, which is not restrictive. The
existence of an admissible solution for (3.8) is trivial, since we have the constant solution
p ≡ (κ1, κ2), which corresponds to

(
u1(x), u2(x)

)
= (κ1x+ κ1κ2 +

κ2
1

2
, κ2x+ κ1κ2 +

κ2
2

2
) . (5.7)
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Consider now the case of h′1, h
′
2 small perturbations of the constants κ1, κ2. Notice

that, in the previous case, every ball B(κ,R) around κ = (κ1, κ2) with radius R <√
2

2 (κ1 + κ2) was positively invariant for the flow of (3.8).

Indeed, setting qi = pi − κi, the system becomes

{
q′1 = −(κ1 + κ2)q1 + κ1q2 − q21 ,
q′2 = κ2q1 − (κ1 + κ2)q2 − q22 .

(5.8)

and it holds

d

ds

|q|2
2

= −q3
1 − q32 − (κ1 + κ2)(q

2
1 + q22 − q1q2) = −(q2

1 + q22 − q1q2)(κ1 + κ2 + q1 + q2) .

Now, since |q| ≤ R <
√

2
2 (κ1 + κ2) ensures κ1 + κ2 + q1 + q2 > 0, one can conclude that

d

ds

|q|2
2

= −(q2
1 + q22 − q1q2)(κ1 + κ2 + q1 + q2) ≤ −|q|2

2
(κ1 + κ2 + q1 + q2) < 0 , (5.9)

and this prove the positively invariance of such a ball B.

Then, provided δ is small enough, we can choose one of these balls as a neighborhood
U of (κ1, κ2) positively invariant also for the perturbed system (i.e. h′

i 6≡ κi). Once we
found such a compact, positively invariant set U , we can repeat the existence proof of
Theorem 2:

a. Consider p(ν) : [−ν,∞[→ R
2 solution of the Cauchy problem with initial datum

p(ν)(−ν) = (κ1, κ2);

b. By positive invariance, p(ν)(x) ∈ U for x > −ν. We then extend the function p(ν)

to the whole real line by setting p(ν)(x) ≡ (κ1, κ2) for x < −ν;

c. By uniform boundedness and equicontinuity, the sequence p(ν) admits a subsequence
converging to a uniformly continuous function p : R 7→ U . Clearly, this limit
function p(·) provides a global, bounded solution to the system (3.8). In turn, this
yields an admissible solution u(·) to (3.7).

Uniqueness. First Step. Let h′i ≡ κi and κ1 + κ2 > 0. In order to prove that the
previously found solution is the only one that satisfies (A1)-(A3), we assume that ũ is
another solution of the system (3.3), whose gradient will be denoted by p̃. Figure 6
depicts possible trajectories s 7→ p̃(s) of the planar system (3.8). We remark that:

1. The regions {(p1, p2) 6= (0, 0) : p1 ≥ 0 , p2 ≤ 0 , p1 + p2 ≤ 0} and {(p1, p2) 6=
(0, 0) : p1 ≥ 0 , p2 ≤ 0 , p1 + p2 ≥ 0} are positively and negatively invariant for the
flow of (3.8), respectively.

2. If p̃(so) ∈ {(p1, p2) 6= (0, 0) : p1 ≥ 0 , p2 ≤ 0 , p1 + p2 ≤ 0} for some so, then
|p̃| → +∞ as s increases. Indeed, since

d

ds
(p̃1 + p̃2) = −p̃2

1 − p̃2
2 + κ1p̃1 + κ2p̃2 < −(p̃1 + p̃2)

2 < 0 ,
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we can assume there exist s̄ ≥ so and ε > 0 such that p̃1(s̄) + p̃2(s̄) < −ε. Moreover, for
any σ > s̄ we have

d

ds
(p̃1+ p̃2)(σ) ≤ −(p̃1(σ)+ p̃2(σ))2 < −(p̃1(s̄)+ p̃2(s̄))(p̃1(σ)+ p̃2(σ)) < ε(p̃1(σ)+ p̃2(σ)) .

After an integration, we find (p̃1 + p̃2)(s) ≤ −ηeεs for s > s̄ (and η > 0) and hence
(p̃1 + p̃2) → −∞ as s increases, eventually reaching +∞.

3. If p̃(so) ∈ {(p1, p2) 6= (0, 0) : p1 ≥ 0 , p2 ≤ 0 , p1 + p2 ≥ 0} for some so, then
|p̃| → +∞ as s decreases. Indeed, reasoning as above, we can assume there exist s̄ ≤ so

and ε > 0 such that p̃1(s̄) + p̃2(s̄) > ε and the following holds for any σ < s̄:

d

ds
(p̃1+p̃2)(σ) ≤ −(p̃1(σ)+p̃2(σ))2 < −(p̃1(s̄)+p̃2(s̄))(p̃1(σ)+p̃2(σ)) < −ε(p̃1(σ)+p̃2(σ)) .

This implies (p̃1 + p̃2)(s) ≥ ηe−εs for s < s̄ (and η > 0), hence (p̃1 + p̃2) → +∞ as s
decreases, eventually reaching −∞.

4. If p̃(so) ∈ {(p1, p2) : p1 > 0 , p2 > 0} for some so, then |p̃| → +∞ as s decreases.
Indeed, let ε > 0 such that p̃1(so) > ε. Since

d

ds
p̃1 = −p̃2

1 + (κ1 − κ2)p̃1 + κ1p̃2 < −p̃2
1 < 0 ,

it is sufficient to observe that for σ < so

d

ds
p̃1(σ) ≤ −p̃1(so)p̃1(σ) < −εp̃1(σ) .
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Hence, integrating, p̃1(s) ≥ ηe−εs for s < so (and η > 0) and either p̃1 → +∞ as s
decreases, or there exists s̄ < so such that p̃ is in the previous case.

5. If p̃(so) ∈ {(p1, p2) : p1 < 0 , p2 < 0} for some so, then |p̃| → +∞ as s increases.
Here we can repeat the argument of 4. with p̃2 in place of p̃1.

6. Let p̃(so) ∈ {(p1, p2) 6= (0, 0) : p1 ≤ 0 , p2 ≥ 0} for some so and set p̂ as the unique
solution in this region that tends to the origin as s→ +∞. Notice that, as s decreases,
either p̂(s) crosses the p2-axis or p̂2 → +∞. Then:

• if p̃ = p̂, then as stated above either there exists s̄ < so such that p̃(s̄) is in the case
4, or p̃2 → ∞ as s→ −∞. In both cases |p̃| → ∞ as s→ −∞.

• if p̃(so) belongs to the region between p̂ and the p2-axis, then there could be only three
possibilities: either p̃ is the unique solution that tends to the origin as s → −∞,
or p̃2 → ∞ as s decreases, but p̃ does not cross the p2-axis (and, of course, this
can only happen if p̂ does not cross it too), or there exists s̄ < so such that p̃(s̄) is
in the case 4. above. In the former case we will estimate the decay of |p̃| in 8; in
the latter ones |p̃| → ∞ as s decreases.

• if p̃(so) doesn’t belong to the region between p̂ and the p2-axis, then either p̃2 → ∞
as s decreases, or there exists s̄ < so such that p̃(s̄) is in case 5 above (and this is
possible only if also p̂(s) crosses the p2-axis). In both situations, again, |p̃| → ∞
as s decreases.

7. We can now provide more accurate estimates on blow-up. Indeed, by previous
analysis, blow-up of |p̃| can occur either because p̃i → −∞ as s increases or p̃i → +∞ as
s decreases, for some index i ∈ {1, 2}. But these results has been obtained by estimating
p̃i with suitable exponential functions, hence it is still not clear whether there exists a
finite so such that the blow-up occurs when s → so or |p̃| → ∞ as |s| → ∞. However,
applying the same ideas used in Theorem 1.3, we can prove that there exists so ∈ R (and
η > 0) such that |p̃(s)| ≥ η

|s−so| . In terms of the original variable x, such a trajectory

yields a solution defined on the whole real line, because by (3.6)

∣∣∣∣
dx

ds

∣∣∣∣ = ∆
(
p̃(s)

)
≥ co

(s−o s)2
. (5.10)

for some co > 0 and therefore either x(s) → +∞ as s → s−o or x(s) → −∞ as s →
s+o . In conclusion, the solution ũ(x) which corresponds to p̃(x) violates the growth
condition (1.15), and hence it is not admissible.

8. Notice that only in case 6-(ii), where p̃ is the unique solution that tends to 0 as
s → −∞, we have a solution that could remain bounded in the whole R. But in this
case, we shall have as s→ −∞

|p̃|(s) ≤ (p̃2 − p̃1)(s) ≤ γecos , (5.11)

for some γ, co > 0. Indeed studying the linearized system near the origin we see that p̃

tends to (0, 0) along the direction (1,
κ2−κ1+

√
κ2
1+κ2

2−κ1κ2

κ1
). Then there exists s̄ such that
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for s < s̄ the following holds:

p̃2(s) > (1 +

√
2

2
)
κ2 − κ1

κ1
p̃1(s) = β

κ2 − κ1 +
√
κ2

1 + κ2
2 − κ1κ2

κ1
p̃1(s) , (5.12)

where

β =
(1 +

√
2

2 )(κ2 − κ1)

κ2 − κ1 +
√
κ2

1 + κ2
2 − κ1κ2

, β ∈ (0, 1) . (5.13)

Notice that, setting

α =
κ1 − 2κ2 − (κ2 − 2κ1)β

κ2−κ1+
√

κ2
1+κ2

2−κ1κ2

κ1

1 − β
κ2−κ1+

√
κ2
1+κ2

2−κ1κ2

κ1

=

=
κ1 − 2κ2 − (κ2 − 2κ1)(1 +

√
2

2 )κ2−κ1
κ1

1 − (1 +
√

2
2 )κ2−κ1

κ1

> 0 ,

we obtain exactly

β
κ2 − κ1 +

√
κ2

1 + κ2
2 − κ1κ2

κ1
=
κ1 − 2κ2 − α

κ2 − 2κ1 − α
. (5.14)

Hence, for s < s̄,

p̃2(s) >
κ1 − 2κ2 − α

κ2 − 2κ1 − α
p̃1(s) , (5.15)

i.e. (κ2 − 2κ1)p̃2 − (κ1 − 2κ2)p̃1 > α(p̃2 − p̃1). Recalling that |p̃| → 0 as s→ −∞, which
implies the existence of co > 0 and ŝ such that α− p̃1(s) − p̃2(s) > co for any s < ŝ, we
find

d

ds
(p̃2− p̃1) = p̃2

1− p̃2
2 +(κ2−2κ1)p̃2− (κ1−2κ2)p̃1 > (α− p̃1− p̃2)(p̃2− p̃1) > co(p̃2− p̃1) ,

for s small enough (namely s < min{s̄, ŝ}). Integrating we find (p̃2 − p̃1)(s) ≤ γecos

(γ > 0) and hence (5.11) is proved. Next, recalling (3.6), in terms of the variable x we
obtain ∣∣∣∣

dx

ds

∣∣∣∣ = ∆
(
p̃(s)

)
= O(1) · e2cos , (5.16)

lim
s→−∞

x(s) = xo <∞ ,

for some xo ∈ R. Therefore, to the entire trajectory s 7→ p̃(s), there corresponds only
a portion of the trajectory x 7→ p̃(x), namely the values for x > xo. To extend this
trajectory also on the half line ] − ∞, xo], we need to construct another trajectory
s 7→ p(s) with lims→+∞ p(s) = 0. But any such trajectory, by previous analysis, will
yield a solution ũ(x), which violates the sublinear growth condition (1.15) as x → −∞
and is not admissible.

Second Step. Next, we prove uniqueness of the admissible solution the case where h ′
i

is not constant. Let u(·) be the solution constructed before, with p = u′ remaining in
a small disc V , centered at (κ1, κ2) with radius ρ > 0, positively invariant for the flow
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of (3.8). Moreover, let ũ be any other smooth solution of (3.3). We split the proof in
three cases.

CASE 1: p̃(s) ∈ V for every s. In this case, as in Theorem 3, we look at the difference
w(s) = p̃(s) − p(s) and at the linear evolution equation for w:

dw

ds
= A(s)w(s) , (5.17)

where A is the averaged matrix

A(s) =

∫ 1

0
Df(θp(s) + (1 − θ)p̃(s))dθ , (5.18)

and f is the vector field describing our system, as in (4.2). Since p, p̃ ∈ V , the matrix
A(s) is very close to the Jacobian matrix Df(κ1, κ2), therefore

d

ds

∣∣w(s)
∣∣ ≤ −K

∣∣w(s)
∣∣ , (5.19)

for some constant K > 0. Indeed,

Df(κ1, κ2)x · x < −κ1 + κ2

2
|x|2. (5.20)

Provided that δ, ρ > 0 are small enough, there will exist K > 0 such that A(s)x · x <
−K|x|2. But then, exactly as in Theorem 3, (5.19) implies p(0) = p̃(0) and hence p = p̃
by the uniqueness of the Cauchy problem.

CASE 2: p̃(so) /∈ V for some so and, in particular, p̃(so) in a small neighborhood W of
the origin. Consider the linearized system

(
p′1
p′2

)
= H ·

(
p1

p2

)
, H =

(
h′1 − h′2 h′1
h′2 h′2 − h′1

)
,

and notice that the origin is again a saddle point for this system. Indeed H has eigen-
values λ1, λ2 such that, recalling (5.6) and provided δ < 1

2 min{−κ1, κ2},

0 <

√
2

2
(κ2 − κ1 − 2δ) ≤ |λi| =

√
(h′1)

2 + (h′2)
2 − h′1h

′
2 ≤ κ2 − κ1 + 2δ . (5.21)

Moreover its eigenvectors v1, v2 form angles α1, α2 with the positive direction of the
p1-axis such that

0 ≥ tanα1 =
λ1 + (h′2 − h′1)

h′1
> tanα2 =

λ2 + (h′2 − h′1)
h′1

.

More precisely, for δ small enough, we have

0 ≥ tanα1 > (1 −
√

2

2
)
κ2 − κ1 + 2δ

κ1 + δ
> (1 +

√
2

2
)
κ2 − κ1 − 2δ

κ1 − δ
> tanα2 . (5.22)

Hence, as in the previous proof of Theorem 3, we show the existence of four sectors Si,
i = 1, . . . , 4 (see Figure 7), where the following holds:
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(a) If p̃(so) is in S1 or S3, then |p̃(s)| grows for s < so and the solution moves away from
W ;

(b) Both boundaries of S2 and S4 allow orbits to only exit from those sectors for s < so;

(c) If p̃(so) /∈ Si for all i = 1, . . . , 4, then for s < so the angle between the vector (p̃1, p̃2)
and the p1-axis is strictly monotone, forcing the solution either to reach S1 or S3, or to
move away from W ;

(d) Finally, if p̃(so) is in S2 or S4, then for s < so the solution can tend to the origin.
But

d

ds
(p̃2 − p̃1) = p̃2

1 − p̃2
2 + (h′2 − 2h′1)p̃2 − (h′1 − 2h′2)p̃1 >

> p̃2
1 − p̃2

2 + (κ2 − 2κ1 − 3δ)p̃2 − (κ1 − 2κ2 − 3δ)p̃1 ,

and, provided δ is small enough, we can use (5.22) to find α > 0 such that

d

ds
(p̃2−p̃1) > p̃2

1−p̃2
2+(κ2−2κ1−3δ)p̃2−(κ1−2κ2−3δ)p̃1 > (α−p̃1−p̃2)(p̃2−p̃1) . (5.23)

Hence an estimate of exponential type of the decay of |p̃| follows as in (5.11).

CASE 3: p̃(so) /∈ V and p̃(so) not in a neighborhood of the origin. In this case, combin-
ing (5.6) and the continuous dependence of solutions with the estimates of the constant
case (indeed they are true also in this more general setting), we can prove that |p̃| → ∞
for finite s and that the rate of blow-up of |p̃| can be estimated in the same way we did
in the First Step.

In any case either ũ ≡ u or, in the original coordinates x, ũ fails to satisfy (1.15).

Finally, we rule out the possibility that the gradient p̃ = ũ′ has jumps. Looking at
the phase portrait in Figure 6, we see that after one or at most two admissible jumps, the
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values of p̃ must fall within the positively invariant region {(p1, p2) : p2 < 0 , p1 + p2 <
0}. It follows that p̃ cannot have any more jumps, and the estimates in 2, 5 and 7
(together with their analogs in the non-constant case) imply that ũ(x) violates (1.15) as
x→ +∞. Therefore, ũ is not an admissible solution. �

6 Towards non-smooth costs

In the remaining part of this Chapter, we want to look for admissible solutions when
smoothness of functions hi is relaxed. Namely we consider functions hi that are piecewise
linear, with a finite number of discontinuity in their derivatives. In other words we require
that there exists a finite subdivision

xo = −∞ < x1 < . . . < xN < xN+1 = +∞

of [−∞,+∞] and two (N + 1)-tuple of constants (κ1
i , . . . , κ

N+1
i ), i = 1, 2, such that

h′i(x) = κj
i if x ∈ ]xj, xj+1[ i = 1, 2, j = 0, . . . , N . (6.1)

Could be of use to remark that this assumption on h′i means that the system (3.8)
follows different dynamics in each interval Ij

.
= ]xj , xj+1[: indeed, in each Ij, (3.8) will

have an equilibrium in (0, 0) and a second one in the point K j = (κj
1, κ

j
2).

We also introduce the following notation (see Figure 8)

Ai =

{
ρ(cos θ, sin θ) ∈ R

2

∣∣∣∣ ρ > 0, θ ∈
]
(i− 1)

π

4
, i
π

4

[ }
, (6.2)

to label regions in R
2, where we put our non-zero equilibria K j = (κj

1, κ
j
2).

Finally, we state a few easy properties we will need in the following. They provide
expressions for both eigenvalues and eigenvectors of the system obtained linearizing (3.8)
around the origin. These expressions were already found in [10], and they follow from
simple linear algebra.
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Proposition 1.1 The linearized system near (0, 0), corresponding to (3.8), has the fol-
lowing form

(
p′1
p′2

)
= H ·

(
p1

p2

)
, H =

(
κ1 − κ2 κ1

κ2 κ2 − κ1

)
. (6.3)

Moreover the eigenvalues of the matrix H are

λ− = −
√

(κ1)2 + (κ2)2 − κ1κ2 , λ+ =
√

(κ1)2 + (κ2)2 − κ1κ2 , (6.4)

with corresponding eigenvectors

v− =

(
1,

κ2 − κ1 −
√

(κ1)2 + (κ2)2 − κ1κ2

κ1

)
,

v+ =

(
1,

κ2 − κ1 +
√

(κ1)2 + (κ2)2 − κ1κ2

κ1

)
.

(6.5)

One can immediately see that the eigenvectors in (6.5) depend actually by the ratio
between κ2 and κ1 only. Moreover it turns out that this kind of dependence is indeed
monotone increasing, as proved in the following Proposition.

Proposition 1.2 Set α = κ2
κ1

. Then the directions corresponding to the eigenvectors v−
and v+ are given (respectively) by the maps

G−(α) :





] 0,∞ [ → ] − 2,−1

2
[

α 7→ α− 1 −
√
α2 − α+ 1

g−(α) :





] −∞, 0 [ → ] −∞,−2 [

α 7→ α− 1 −
√
α2 − α+ 1

G+(α) :





] 0,∞ [ → ] 0,∞ [

α 7→ α− 1 +
√
α2 − α+ 1

g+(α) :





] −∞, 0 [ → ] − 1

2
, 0 [

α 7→ α− 1 +
√
α2 − α+ 1

depending on the sign of α (and hence of κ1 · κ2). These maps satisfy

d
dαG− > 0 , d

dαG+ > 0 ,

d
dαg− > 0 , d

dαg+ > 0 .

(6.6)
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Proof. The properties follow from

G′
−(α) = g′−(α) = 1 − 2α− 1

2
√
α2 − α+ 1

=

√
(2α − 1)2 + 3 − (2α − 1)

2
√
α2 − α+ 1

> 0 ,

G′
+(α) = g′+(α) = 1 +

2α− 1

2
√
α2 − α+ 1

=

√
(2α − 1)2 + 3 + (2α − 1)

2
√
α2 − α+ 1

> 0 ,

and from

lim
α→0+

G−(α) = lim
α→0−

g−(α) = −1 − 1 = −2 ,

lim
α→0+

G+(α) = lim
α→0−

g+(α) = −1 + 1 = 0 ,

lim
α→+∞

G−(α) = lim
α→+∞

− α

α− 1 +
√

(α− 1)2 + α
= −1

2
,

lim
α→−∞

g+(α) = lim
α→−∞

− α

α− 1 −
√

(α− 1)2 + α
= −1

2
,

lim
α→+∞

G+(α) = +∞ ,

lim
α→−∞

g−(α) = −∞ .

�

Next Proposition collects properties of the rescaling s = s(x), introduced in Section
3, which were proved while proving Theorem 1.3 and Theorem 1.4.

Proposition 1.3 In the rescaled variable s = s(x), such that ds/dx = ∆(p)−1, the
following holds.

(i) Every unbounded trajectory p(s) of (3.8) actually blows up at finite so, and it corre-
sponds to an unbounded trajectory p(x) that tends to ∞ as |x| → ∞. Moreover, since

∣∣∣∣
dx

ds

∣∣∣∣ = ∆
(
p(s)

)
≥ co

(so − s)2
,

it follows that u(x) increases more than linearly as x → ∞. Therefore, u is not admis-
sible.

(ii) Trajectories of (3.8) that tend to the origin, i.e. to the point where our change of
variables is singular, satisfy

∣∣∣∣
dx

ds

∣∣∣∣ = ∆
(
p(s)

)
= O(1) · e−2co|s| .

In the original variable x, to the whole trajectory s 7→ p(s) there corresponds only a
portion of trajectory x 7→ p(x), say either for x ∈ ]xo,∞[ or x ∈ ] −∞, xo[. Another
trajectory s 7→ p̂(s) has to be constructed to extend the solution to all x ∈ R.
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7 Non-smooth costs: cooperative situations

We start considering all K j = (κj
1, κ

j
2) in A1 ∪ A2. Notice that a similar analysis, with

straightforward adaptations, can be done if the K j are in A5 ∪A6. This choice implies
that our system follows the dynamics depicted in Figure 9.

Theorem 1.5 Let the cost functions h1, h2 be as in (6.1), and assume that the constants
(κj

1, κ
j
2) are all chosen in A1∪A2. Then the system (3.3) has a unique admissible solution

and the corresponding functions α∗
i = −u′i provide a Nash equilibrium solution to the

non-cooperative game (3.1).

Proof. Existence. The existence of an admissible solution is very easy to prove. In-
deed, it is enough to glue together pieces of admissible solutions in each interval Ij. We
proceed as follows:

• in Io, we set po ≡ Ko = (κo
1, κ

o
2);

• for j ≥ 1, in Ij we set pj the unique solution of the Cauchy problem for (3.8) with
initial datum p(s(xj)) = pj−1(s(xj)). Since the set

Γj =

{
(p1, p2)

∣∣ p1, p2 ∈ [0, 2C1], p1 + p2 ≥ C2

2

}
,

where

C1 = max{κj
1, κ

j
2,
pj−1
1 (s(xj))

2
,
pj−1
2 (s(xj))

2
} ,

C2 = min{κj
1, κ

j
2, p

j−1
1 (s(xj)) + pj−1

2 (s(xj))} ,
is positively invariant for (3.8), each pj will exists up to s(xj+1) without reaching
(0, 0) and remaining bounded;
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Then, it is well defined the continuous function p̄ given by p̄(x) = pj(x) whenever x ∈ Ij.
Its admissibility is an immediate consequence of its continuity and the admissibility of
each pj.

Uniqueness. To prove that the solution built above is the unique admissible solution
to (3.8), we start proving uniqueness on Io.

We know from [10] that, for s negative small enough (eventually for s → −∞),
the only solutions that remain bounded are the equilibrium K o itself and the unstable
orbits exiting from the origin. Therefore, these are the unique possible choices, in order
to retain admissibility. If we choose an unstable orbit in place of K o, in the original
variable x it would correspond to a solution defined only for x > xo (for a suitable xo).
To define the solution also for x < xo, we should need a solution to





p′1 = (κo
1 − κo

2)p1 + κo
1p2 − p2

1 ,

p′2 = (κo
2 − κo

1)p2 + κo
2p1 − p2

2 ,

that tends to the origin as s → +∞ and remains bounded for all negative s. But we
know from [10] that no solution with both these properties exists. Hence the uniqueness
of the solution follows on Io.

For s > s(x1), the smoothness of the right hand side of (3.8) in each interval Ij

ensures that p̄ is the unique continuous solution.
It remains to prove that there exists no solution with admissible jumps in s > s(x1).

But this property follows from (3.9)–(3.10) and from the positive invariance of the sets

Γ+ .
=
{
(p1, p2) ∈ R

2
∣∣p1 ≥ 0, p2 ≥ 0

}
,

Γ− .
=
{
(p1, p2) ∈ R

2
∣∣p1 ≤ 0, p2 ≤ 0

}
.

Indeed, for s > s(x1) a solution can have only jumps from Γ+ to Γ−. Hence, recalling [10],
after a first jump the solution would be forced to remain in Γ− and to tend towards ∞.
In the x variable, this would translate into a solution u(x) that grows more than linearly
as |x| → ∞, and this would contradict admissibility. �

In light of Theorem 1.5, on the same line of [10], it is natural to ask whether the
result still hold for perturbations of (6.1) or it fails. Actually, we can prove the following
Theorem.

Theorem 1.6 Let the cost functions h′1, h
′
2 in (3.2) be smooth in each In, and assume

that:

(1) their derivatives satisfy
1

C
≤ h′i(x) ≤ C

for some constant C > 1 and all x ∈ R;

(2) on Io, the following additional assumption is satisfied

sup
ξ,η∈Io

∣∣h′i(ξ) − h′i(η)
∣∣ ≤ δ i = 1, 2. (7.1)

for some δ > 0 sufficiently small (depending only on C).
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Then the system (3.3) has a unique admissible solution.

Proof. We can proceed as in Theorem 1.5, using Theorem 1.3 to deal with the pertur-
bations. Indeed, for s < s(x1) Theorem 1.3 implies that there exists a unique admissible
solution, say po. Hence, an admissible solution on the whole real line can be built as in
the previous case: for x ∈]xj, xj+1[, j ≥ 1, we define p(x) = pj(x) where pj is the unique
solution to (3.3) with initial datum p(s(xj)) = pj−1(s(xj)). Exactly as in Theorem 1.5,
this function is well defined and is a continuous admissible solution to (3.8). Since the
sets Γ+ and Γ− are still positively invariant, also uniqueness can be proved by means of
the same arguments used in Theorem 1.5. �

Remark 1.1 We underline that the presence of the small oscillations assumption (7.1)
is uniquely motivated by the use of Theorem 1.3, which requires (7.1) to provide a unique
admissible solution for s < s(xo).

8 Non-smooth costs: players with conflicting interests

In this section we assume that the two players have conflicting interests, i.e. their costs
satisfy h′1(x) · h′2(x) < −C < 0 for all x ∈ R. For particular choices of smooth costs, this
situation can produce infinitely many Nash equilibria to the game (see Example 1.2).
Nevertheless Theorem 1.4 shows that, for costs which are not exactly opposite and
under suitable assumptions of small oscillations, it is possible to recover existence and
uniqueness of Nash equilibria. This is not the case for costs as in (6.1).
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8.1 Infinitely many Nash equilibria

Let us consider j = 1 in (6.1), i.e. let us consider cost functionals that have a single
jump in their derivatives. In particular, assume this jump is located at x = s(x) = 0.
Moreover, let us choose the constants K j = (κj

1, κ
j
2), j = 0, 1, so that Ko ∈ A4 and

K1 ∈ A3.

Under these assumptions, the dynamics followed by the system are depicted in Figure 10
(for x < 0) and Figure 11 (for x > 0). We now prove that we could find infinitely many
solutions to our problem. Indeed, consider an initial datum pin = (pin

1 , p
in
2 ) such that

pin
1 + pin

2 = 0 and pin
1 < 0 < pin

2 . Recalling Proposition 1.2 and setting αo =
κo
2

κo
1
, α1 =

κ1
2

κ1
1
,

we have

g−(α1) < −2 < −1 =
pin
2

pin
1

< −1

2
< g+(αo) ,

i.e. pin belongs to the region between the stable orbit for the negative system (say
γ−S ) and the unstable one for the positive system (say γ+

U ), provided it’s been chosen
sufficiently near the origin. Therefore to any choice of pin there corresponds an admissible
solution tending respectively to either K1 or Ko as s→ ±∞.

Moreover, if the unstable orbit for the dynamics in Figure 10 (say γ−
U ) intersects the

stable one for the dynamics in Figure 11 (say γ+
S ), we can obtain an additional solution

considering as initial datum that point of intersection. Indeed the function given by the
juxtaposition of γ−U and γ+

S corresponds, in the original variable x, to a solution defined
on a bounded interval [x−, x+], with x− < 0 < x+ by the choice of the rescaling. This
solution can then be extended to an admissible trajectory defined on the whole real line
by using γ−S for x < x− and γ+

U for x > x+.

Remark 1.2 The same construction can be applied when K o ∈ A8 and K1 ∈ A7.
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8.2 No admissible solutions

Now we want to show, by means of a second example, how a simple change between
the positive and negative behaviors of the costs, can lead to completely different result.
Namely, we consider costs with a single jump in their derivatives, located in x = s(x) = 0,
and Ko ∈ A3, K

1 ∈ A4. This choice produce a game with no admissible solutions
to (3.8).

We proceed by contradiction. Assume that an admissible solution p̃ = (p̃1, p̃2) exists, for
a Cauchy problem with initial datum p̃(0) = pin. Then, recalling the results in [10], we
have that

lim
s→+∞

|p̃(s)| < +∞

actually implies

lim
s→+∞

|p̃(s)| = 0 ,

and hence p̃ is one of the stable orbits of the positive system. Now we underline that
this means pin /∈ γ+

U . Then, we can repeat the proof of Theorem 1.4, given in [10], and
find

lim
s→so+

|p̃(s)| = +∞ ,

for a suitable so < 0, eventually so = −∞. Therefore the solution cannot be admissible,
and we have a contradiction.

Notice that the previous calculations hold even if the unstable orbit for the dynamics in
Figure 10 (say γ−U ) intersects the stable one for the dynamics in Figure 11 (say γ+

S ). This
means there is no solution as the one built in the previous case, using more trajectories
in the s variable: this is obviously due to the fact that we cannot find solutions bounded
at +∞ (resp. −∞) to extend a possible p̃ when x > x+ (resp. x < x−).

Remark 1.3 The same result can be obtained when K o ∈ A7 and K1 ∈ A8.

Remark 1.4 Actually, one can still construct particular cases so that there exist admis-
sible solutions. Fixed Ko,K1 as above, assume that the trajectories γ−U and γ+

S intersect
in a point. Moreover, set x− and x+ the values introduced in the previous example,
` = |x+ − x−| and Jn =]x− + n`, x+ + n`[, n ∈ Z. We can define piecewise linear costs
on the whole R by repeating on each Jn the same 2-value piecewise linear cost. In other
words, ∀n ∈ Z set

h′i(x)
∣∣Jn

=

{
κo

i if x ∈ ]x− + n`, n`[
κ1

i if x ∈ ]n`, x+ + n`[
i = 1, 2, (8.1)

Then, we find a solution by simply gluing together periodically γ−
U and γ+

S . This solution
is admissible, being bounded in the p1, p2 plane.

Anyway no general results as Theorem 1.4 is possible.

9 Non-smooth costs: a mixed case

In this section we end our presentation of ill-posed problems, with a last example pre-
senting costs that can switch from a situation with conflicting interests into a cooperative
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one. More precisely, we consider costs with a single jump in their derivative, located
again in x = s(x) = 0, and Ko ∈ A5 ∪A6, K

1 ∈ A1 ∪A2. Moreover, let us assume

α1 =
κ1

2

κ1
1

6= κo
2

κo
1

= αo . (9.1)

With these assumptions, the system follows the dynamics depicted in Figure 12 (resp.
Figure 9) for x < 0 (resp. x > 0) and Ko,K1 are not on the same line through the
origin.

Again, we observe the existence of infinitely many Nash equilibria. Assume it holds
αo < α1 in (9.1) (the opposite inequality leading to a similar analysis). Then, we can
consider the non-empty region

Ω =

{
(p1, p2) ∈ R

2

∣∣∣∣ p1 < 0 < p2, G−(αo) <
p2

p1
< G−(α1)

}
.

This region is, at least near the origin, say in a neighborhood O, exactly the region
between the stable orbit for the positive system and the unstable one for the negative
system. Taking as initial datum any point pin both in Ω and in O, we can construct
an admissible solution in the following way. We take for s < 0 the unique solution to
the negative system, passing through pin at s = 0 and tending to Ko as s → −∞. In
an analogous way, we take for s > 0 the unique solution to the positive system, passing
through pin at s = 0 and tending to K1 as s → +∞. Every such a solution, being
continuous and bounded in s, corresponds to an admissible solution u(x).





Chapter 2

Nearly Optimal Patchy Feedback

Controls

1 Statement of the main result

We consider a general optimization problem

min

{
ψ
(
x(T )

)
+

∫ T

0
L
(
x(t), u(t)

)
dt

}
, (1.1)

for a nonlinear control system of the form

ẋ = f(x, u) u(t) ∈ U . (1.2)

Here x ∈ R
n describes the state of the system, the upper dot denotes a derivative

w.r.t. time, and U ⊂ R
m is the set of admissible control values.

In the literature, several results are available, which provide the existence of an
optimal control t 7→ uopt(t) in open-loop form, for each initial condition

x(0) = y , (1.3)

On the other hand, the existence and regularity of an optimal control in feedback form is
a far more difficult issue. In an ideal situation, one would like to construct a (sufficiently
regular) feedback u = U(x) such that all trajectories of the corresponding O.D.E.

ẋ = f
(
x,U(x)

)
(1.4)

are optimal w.r.t. the cost criterion (1.1). Only few general results are yet known in this
direction.

A possible strategy (see [24, 32]) is to investigate an optimal “synthesis”, which is
a collection of optimal trajectories not necessarily arising from a feedback control. The
existence and the structure of an optimal synthesis has been the subject of a large body
of literature on nonlinear control. At present, a complete description is known for time
optimal planar systems of the form

ẋ = f(x) + g(x)u u ∈ [−1, 1] , x ∈ R
2 ,

43
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see [7] and the references therein. For more general classes of optimal control problems,
or in higher space dimensions, the construction of an optimal synthesis faces severe diffi-
culties: the optimal synthesis can have an extremely complicated structure and even in
cases where a regular synthesis exists, the performance achieved by the optimal synthesis
may not be robust. About the former, already for systems in two space dimensions, an
accurate description of all generic singularities of a time optimal synthesis involves the
classification of eighteen topological equivalence classes of singular points [24, 25]. In
higher dimensions, an even larger number of different singularities arises, and the opti-
mal synthesis can exhibit pathological behavior such as the famous “Fuller phenomenon”
(see [22, 33]), where every optimal control has an infinite number of switchings. About
the latter, small perturbations can greatly affect the behavior of the synthesis (e.g. see
Example 5.3 in [26]).

An alternative strategy, pursued in [17, 20, 23, 4], is to construct sub-optimal feed-
backs, trading off the full optimality in favor of a simpler structure of the control and
the robustness of the resulting system.

Anyway, this approach has its own difficulties. First of all, it is known that no
continuous optimal feedback can be constructed [23, 9]. Therefore, one has to deal with
a discontinuous right hand side in (1.4) and to introduce a suitable concept of solution
for this kind of ODEs.

In literature, two different attacks to this theoretical obstacle can be found: either to
introduce a new concept of generalized solution without any restriction on the choice of
U(x), or to allow only sufficiently tame discontinuities in U(x), so that one can still have
Carathódory trajectories. The first one was followed in the [16, 17, 20, 23, 28], where
“sample-and-hold” solutions and Euler solutions are used to solve both controllability
and sub-optimality problems. The second approach was studied in [1, 2, 3, 4], choosing
patchy feedbacks as the class of allowed discontinuous controls. A patchy control in
feedback form has a particularly simple structure, since it is a function u = U(x) that
is piecewise constant on the state space R

n. One can prove that, for patchy feedbacks,
forward Carathéodory solutions always exists and that this controls are robust (see [1,
2, 3]). Moreover, the sub-optimal control problem can be solved using these patchy
feedbacks (see [4]).

Indeed, let T (y) ≤ ∞ be the minimum time needed to steer the system (1.2) from
the state y to the origin. Then the analysis in [4] shows that, for every ε > 0, there
exists a patchy feedback which steers any initial state y ∈ R

n to some point inside the
ball B(0, ε) of radius ε around the origin, within time (1 + ε)T (y).

In all cited works, patchy feedbacks were constructed either by patching together
piecewise constant open-loop controls as in [1, 2, 3], or, as in [4], relying on the a-priori
knowledge of the value function V . We recall that this is defined as

V (y)
.
= inf

u(·)

{
ψ
(
x(T )

)
+

∫ T

0
L
(
x(t), u(t)

)
dt

}
, (1.5)

where the minimization is taken over all T ≥ 0 and all control functions u : [0, T ] 7→ U
such that the trajectory of (1.2) reaches a sufficiently small neighborhood of the origin
at time T .

Aim of the present Chapter, based on [11], is to develop an algorithm that produces
a nearly-optimal patchy feedback “starting from scratch”, i.e. without any a-priori infor-
mation about the optimal trajectories. Both the patchy feedback and an approximate
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value function will here be constructed simultaneously, working iteratively on higher and
higher level sets. For convenience, we list here the basic assumptions used throughout
the Chapter.

(H) The set of admissible control values U ⊂ R
m is a compact, the function f :

R
n × U 7→ R

n is Lipschitz continuous and satisfies the sublinear growth condition

∣∣f(x, u)
∣∣ ≤ C

(
1 + |x|

)
∀u ∈ U . (1.6)

Both the terminal cost ψ : R
n 7→ R and the running cost L : R

n×U 7→ R are continuous
and strictly positive, say

ψ(x) ≥ c0 > 0 , L(x, u) ≥ c0 > 0 ∀ x ∈ R
n, u ∈ U . (1.7)

Moreover,
lim

|x|→∞
ψ(x) = ∞ . (1.8)

Our main result can be stated as follows.

Theorem 2.1 Let the system (1.2) satisfy the assumptions (H), and let ε > 0 be given.
Then there exist a closed terminal set S ⊆ R

n, a continuous function W : R
n → R+ and

a patchy feedback u = U(x) defined on the complement R
n \ S such that the following

holds.

(i) For every y ∈ R
n, every Carathéodory solution of

ẋ = f
(
x, U(x)

)
, x(0) = y (1.9)

eventually reaches the set S.

(ii) Calling τ = τ(y) the first time where x(τ) ∈ S, we have

ψ
(
x(τ)

)
+

∫ τ

0
L
(
x(t), U(x(t))

)
dt ≤ (1 + ε)W (y) . (1.10)

(iii) Outside S, one has

−1 − ε ≤ min
ω∈U

∇W (x) · f(x, ω) ≤ ∇W (x) · f(x,U(x)) ≤ −1 + ε . (1.11)

2 Basic definitions

In this Section we recall basic definitions and properties connected to patchy controls,
as introduced in [1, 2, 3, 4].

Definition 2.1 A couple
(
Ω, g

)
is said to be a patch if Ω ⊂ R

n is an open domain with
smooth boundary ∂Ω, and g is a smooth vector field defined on a neighborhood of the
closure Ω of Ω, which points strictly inward at each boundary point x ∈ ∂Ω.

Setting n(x) the outer normal at the boundary point x, we thus require

〈
g(x), n(x)

〉
< 0 ∀t x ∈ ∂Ω. (2.1)
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Definition 2.2 We say that g : Ω 7→ R
n is a patchy vector field on the open domain Ω

if there exists a family of patches
{
(Ωα, gα); α ∈ A

}
such that

- A is a totally ordered set of indices,

- the open sets Ωα form a locally finite covering of Ω,

- the vector field g can be written in the form

g(x) = gα(x) if x ∈ Ωα \
⋃

β>α

Ωβ. (2.2)

We shall occasionally adopt the longer notation
(
Ω, g, (Ωα, gα)

α∈A

)
to indicate a patchy

vector field, when we want to specify both the domain and the single patches.

Setting

α∗(x)
.
= max

{
α ∈ A ; x ∈ Ωα

}
, (2.3)

we can rewrite (2.2) in the following form

g(x) = g
α∗(x)

(x) ∀t x ∈ Ω. (2.4)

Remark 2.1 Notice that the patches (Ωα, gα) are not uniquely determined by a patchy
vector field (Ω, g). Indeed, whenever α < β, by (2.2) the values of gα on the set Ωα ∩Ωβ

are irrelevant. Therefore, whenever we have open sets Ωα which form a locally finite
covering of Ω and vector fields gα so that, for each α ∈ A, (2.1) is satisfied at every point
x ∈ ∂Ωα \⋃β>α Ωβ, then the vector field g defined using (2.2) is again a patchy vector
field.

To see this, it suffices to construct new vector fields g̃α (still defined on a neighborhood
of Ωα as gα) which satisfy the inward pointing property (2.1) at every point x ∈ ∂Ωα

and such that g̃α = gα on Ωα \ ⋃β>α Ωβ (cfr. Remark 2.1 in [1]). In fact, with the
same arguments one deduces that, to guarantee that a vector field g defined on an open
domain Ω according with (2.2) be a patchy vector field, it is sufficient to require that
each vector field gα satisfy (2.1) at every point x ∈ ∂Ωα \

((⋃
β>α Ωβ

)
∪ ∂Ω

)
.

If g is a patchy vector field, the differential equation

ẋ = g(x) (2.5)

has several useful properties. In particular, in [1] it was proved that the set of Carathéodory
solutions of (2.5) is closed (in the topology of uniform convergence) but possibly not
connected. This allows to circumvent the topological obstructions present in [23, 9].
Moreover, given an initial condition

x(t0) = x0, (2.6)

the Cauchy problem (2.5)–(2.6) has at least one forward solution, and at most one
backward solution, in the Carathéodory sense. For every Carathéodory solution x =
x(t) of (2.5), the map t 7→ α∗(x(t)) is left continuous and non-decreasing.

More precisely the following theorem can be proved
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Theorem 2.2 Let
(
Ω, g, (Ωα, gα)

α∈A

)
be a patchy vector field on an open domain Ω.

Then the following holds.

(i) If t 7→ x(t) is a Carathéodory solution of (2.5) on an open interval J , then t 7→ ẋ(t) is
piecewise smooth and has a finite set of jumps on any compact subinterval J ′ ⊂ J .
The function t 7→ α∗(x(t)) defined by (2.3) is piecewise constant, left continuous
and nondecreasing. Moreover, there holds

ẋ(−t) = g(x(t)) for all t ∈ J .

(ii) For each x̄ ∈ Ω, the Cauchy problem for (2.5) with initial condition x(0) = x̄ has
at least one local forward Carathéodory solution and at most one local backward
Carathéodory solution.

(iii) The set of Carathéodory solutions of (2.5) is closed.

Definition 2.3 Let
(
Ω, g, (Ωα, gα)

α∈A

)
be a patchy vector field. Assume that there

exist control values vα ∈ U such that, for each α ∈ A, there holds

gα(x) = f(x, vα) ∀ x ∈ Dα
.
= Ωα \

⋃

β>α

Ωβ. (2.7)

Then, the piecewise constant map

u = U(x)
.
= vα if x ∈ Dα (2.8)

is called a patchy feedback control for the system ẋ = f(x, u) on Ω, and referred to as

(
Ω, U, (Ωα, vα)

α∈A

)

.

Remark 2.2 By Definitions 2.1 and 2.2, the vector field

g(x) = f
(
x, U(x)

)

defined in connection with a given patchy feedback
(
Ω, U, (Ωα, vα)

α∈A

)
is precisely the

patchy vector field
(
Ω, g, (Ωα, gα)

α∈A

)
associated with a family of fields

{
gα : α ∈ A

}

satisfying (2.1). Notice that, recalling the notation (2.3), for all x ∈ Ω we have

U(x) = vα∗(x) . (2.9)

As observed in Remark 2.1, the values of the vector fields f(x, vα) on the set Ωα ∩ Ωβ

are irrelevant whenever α < β, and it is not necessary that f(x, vα) satisfy the inward-
pointing condition (2.1) at the points of ∂Ωα ∩

(⋃
β>α Ωβ

)
. Moreover, all the properties

of a patchy feedback continue to hold even in the case where we assume that the inward-
pointing condition (2.1) fails to be satisfied at the points of (∂Ωα ∩ Σ) \ ⋃β>α Ωβ, for
some region Σ of the boundary ∂Ω. Clearly, in this case every Carathéodory trajectory
of the patchy vector field g can eventually reach the boundary ∂Ω only crossing points
of Σ.
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The following results hold for patchy vector fields and patchy controls.

Theorem 2.3 If the system ẋ = f(x, u) is asymptotically controllable, then it admits
an asymptotically stabilizing patchy feedback.

Theorem 2.4 The patchy feedback control found in Theorem 2.3, is robust with respect
to both external disturbances and measurement errors. Namely, if g is a patchy vec-
tor field on an open domain Ω and w is a left continuous function with bounded total
variation, then for any closed A ⊂ Ω, any compact K ⊂ A and any T, ε there exists
δ = δ(A,K, T, ε) > 0 such that the following holds. If ξ : [0, T ] → A is a solution of the
perturbed system

ξ̇ = g(ξ) + ẇ , (2.10)

with ξ(0) ∈ K and Tot.V ar.{w} < δ, then there exists a solution x : [0, T ] → Ω of
ẋ = g(x) with

||x− y||L∞([0,T ]) < ε . (2.11)

Remark 2.3 Consider a control system where we allow both external disturbance e2

and measurement errors e1, i.e. a system of the form

ẋ = g(x+ e1(t)) + e2(t)

where g is a suitable bounded vector field, in this case a patchy vector field. Then, the
map y(t) = x(t) + e1(t) satisfies

ẏ = g(y) + e2(t) + ė1(t) = g(y) + ẇ ,

setting

w(t) = e1(t) +

∫ t

to

e2(s)ds .

Therefore, any perturbed system can be reduced to an impulsive system as (2.10).
On the other side, the hypothesis of small Tot.V ar.{w} is necessary to avoid chat-

tering behaviors.

Remark 2.4 In some situations it is useful to adopt a more general definition of patchy
vector field than the one formulated in Definition 2.2. Indeed, one can consider patches
(Ωα, gα) where the domain Ωα has a piecewise smooth boundary (see [3]). In this case,
the inward-pointing condition (2.1) can be expressed requiring that

g(x) ∈
◦
TΩ(x) (2.12)

where
◦
TΩ(x) denotes the interior of the tangent cone to Ω at the point x, defined by

TΩ(x)
.
=

{
v ∈ R

n : lim inf
t↓0

d
(
x+ tv, Ω

)

t
= 0

}
. (2.13)

Clearly, at any regular point x ∈ ∂Ω, the interior of the tangent cone TΩ(x) is precisely
the set of all vectors v ∈ R

n that satisfy
〈
v, n(x)

〉
< 0 and hence (2.12) coincides with

the inward-pointing condition (2.1). One can easily see that all the results concerning
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patchy vector fields established in [1, 2] remain true within this more general formulation.
On the other hand this generalization allows to better estimate the rate of convergence
in (2.11). Indeed, for patches with smooth boundary, one would expect nothing more
than an estimate like

||x− y||L∞([0,T ]) < O(1)Tot.V ar.{w}1/ρ ,

for a suitable ρ > 1 (see Example 1.4 in [3]). However, slightly generalizing the defini-
tion of patch in the way above, it is possible to recover patchy vector fields defined on
polyhedral coverings. In this new setting, one can prove a linear estimate. Namely, it
holds

||x− y||L∞([0,T ]) < O(1)Tot.V ar.{w} .

3 Proof of the main result

We are now ready to prove the result stated in Section 1, about the construction of a
nearly optimal patchy feedback control without any use of the value function. Actually,
some part of the construction is still a work in progress, so we sketch here only the main
passages of the proof. For missing details (especially Steps 8. and 15.), we refer to [11].

1. Various reductions can be performed. By approximating the cost functions ψ,L, it is
not restrictive to assume that ψ is piecewise quadratic, while L ∈ C∞. Next, replacing
f(x, u) by

g(x, u)
.
= L−1(x, u) f(x, u) , (3.1)

the problem takes the form

min
τ, u(·)

{
τ + ψ(x(τ))

}
, (3.2)

with dynamics

ẋ = g(x, u) , x(0) = y . (3.3)

In the following, we thus assume without loss of generality that the running cost is
simply L(x, u) ≡ 1.

2. For the problem (3.1)–(3.3) with smooth coefficients, our eventual goal is to construct
a closed terminal set S ⊆ R

n such that

τ(y) = min
{
t ≥ 0 , x(t) ∈ S

}
. (3.4)

In other words, as soon as the system enters S, the evolution stops.

Moreover, we construct a continuous, piecewise smooth, Lyapunov function W :
R

n 7→ R+ and a patchy feedback u = U(x) on the complement R
n \S, with the following

properties.

min
ω∈U

∇W (x) · f(x, ω) ≥ −(1 + ε) . (3.5)

Moreover, if x lies in the interior of a region where U is constant, then

∇W (x) · f
(
x, U(x)

)
≤ −1 + ε . (3.6)
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3. We now sketch the inductive construction procedure, on progressively higher level
sets of the approximate value function. Let

min
x
ψ(x)

.
= m0 > 0 .

Take a set S0 with piecewise smooth boundary such that

S0 = {x ; ψ(x) ≤ λ0} ,

with (
1 +

ε

3

)
m0 ≤ λ0 ≤

(
1 +

2ε

3

)
m0 .

Since ψ is piecewise quadratic, the boundary ∂S0 consists of finitely many portions of
spheres, say Γ0

1, . . . ,Γ
0
N0

. We assume in the following that S0 is connected, being the
general case a simple adaptation of this one (see [11]).

We begin by defining the approximate value function

W (x) = ψ(x) x ∈ S0 .

Starting from ∂S0 we solve the equations for characteristics corresponding to an Hamil-
tonian of the form

Hη(x, p) = max
y∈F (x)

{
− p · y − 1

}
,

where
F (x)

.
=
{
f(x, u) ; u ∈ U

}

is the set of admissible velocities. Unfortunately, the multifunction F (x) could depend in
a non-smooth way from x, therefore we need to change slightly the admissible velocities.
This will be achieved in two steps.

4. First, we replace the velocity sets

F (x)
.
=
{
f(x, u) ; u ∈ U

}

with slightly larger, uniformly convex sets. For this purpose, we call B(z, r) the closed
ball centered at z with radius r, and write B(A, r) for the closed neighborhood of radius
r around the set A ⊂ R

n. For a suitably small constant η > 0, we define

F η(x)
.
=

⋂

B(z,η−1)⊇B(F (x),η)

B(z, η−1) .

In other words, F η(x) is the intersection of all closed balls of radius η−1 which contain
the η-neighborhood B

(
F (x), η

)
.

Claim 1. For any η sufficiently small, we claim that the above definition of the sets F η

yields
F (x) ⊆ F η(x) , (3.7)

dH

(
F (x) , F η(x)

)
≤ C η , (3.8)

dH

(
F η(x) , F η(x′)

)
≤ 2L |x− x′| , (3.9)
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where the constant C depends only on an upper bound for the diameters of the sets
B
(
F (x), η

)
, and L is a Lipschitz constant for the original multifunction F . Moreover, if

p1, p2 are any unit vectors and

y1 = arg max
y∈F η(x)

p1 · y , y2 = arg max
y∈F η(x)

p2 · y ,

we claim that

|y1 − y2| ≤
|p1 − p2|

η
. (3.10)

Notice that (3.10) is obvious if F η is exactly a ball of radius η−1.

5. Proof of Claim 1. We give here a proof of the above claims. Of course, (3.7) is
obvious.

a. Recall that, setting

ψA(p)
.
= sup

y∈A

〈
y, p
〉
,

the Hausdorff distance between two convex sets A,B can be expressed by

dH(A,B) = max
|p|=1

∣∣ψA(p) − ψB(p)
∣∣ . (3.11)

Since

ψB(F (x),η)(p) = ψF (x)(p) + η ,

it is clear that the Lipschitz constant of the map x 7→ F̂ (x)
.
= B

(
F (x), η

)
is the same as

for the original multifunction F .

To establish (3.8), fix any unit vector p ∈ R
n and choose a point y ∈ F (x) such

that ψF (x)(p) =
〈
y, p

〉
. Then F̂ (x) = B

(
F (x), η

)
is contained in the half-ball centered

at y + ηp with radius

R ≥ 2η + diamF (x) ≥ diam F̂ (x).

By Pythagoras’ theorem, the ball with radius η−1 centered at the point y +
(
η −√

η−2 −R2
)
p contains F̂ (x). Therefore, for all η > 0 sufficiently small,

ψF η(x)(p) ≤
〈
y + (η −

√
η−2 −R2)p+ η−1p, p

〉
= ψF (x)(p) + η + η−1 −

√
η−2 −R2

≤ ψF (x)(p) + η +
ηR2

2
√

1 −R2η2
≤ ψF (x)(p) + Cη . (3.12)

Since the unit vector p ∈ R
n is arbitrary, from (3.12) it follows (3.8).

b. To prove (3.9), fix again a unit vector p. Take a ball B(z, η−1) ⊃ F̂ (x) such that

ψF η(x)(p) = ψB(z,η−1)(p) =
〈
z, p
〉

+ η−1 .

For η−1 >> diam F̂ (x), we have

F̂ (x) ⊂ B(z, η−1) ∩
{
y ;

〈
y − z, p

〉
≥ η−1/2

}
.
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Therefore, for r > 0 small

B
(
F̂ (x) ; r

)
⊂ B(z + 2rp ; η−1) .

For x′ close to x, if

dH

(
F (x′), F (x)

)
= dH

(
F̂ (x′), F̂ (x)

)
≤ L |x′ − x| ,

using the above estimate with r = L |x′ − x| we obtain

ψF η(x′)(p) ≤ ψB(F̂ (x), L|x′−x|)(p) ≤ ψB(z+2L|x′−x|p, η−1)(p)

≤
〈
z, p

〉
+ 2L|x′ − x| + η−1 = ψF η(x)(p) + 2L|x′ − x| . (3.13)

Since p is arbitrary, from (3.13) it follows

F η(x′) ⊆ B
(
F η(x) , 2L|x′ − x|

)
.

Reversing the roles of x, x′ we obtain (3.9).

c. Finally, we prove (3.10). Consider any unit vector p1 and let y1 = argmaxy∈F η(x) p1 ·y.
We claim that

F η(x) ⊆ B1
.
= B(y1 − η−1p1, η

−1) (3.14)

Assuming for the time being that (3.14) holds, we easily reach the desired conclusion.
Indeed, consider a second unit vector p2 and let y2 = argmaxy∈F η(x) p2 · y. In particular,
this implies

y2 ∈
{
y ∈ B1 ;

〈
y, p2

〉
≥
〈
y1 , p2

〉}
⊂ B

(
y1 , η

−1|p2 − p1|
)
,

proving (3.10).
It now remains to establish the inclusion (3.14). We argue by contradiction, as-

suming there exists a point ξ ∈ F η(x) \ B1. By assumption, every ball of radius η−1

containing F̂ (x) also contains the two points y1 and ξ. In particular, it must also contain
the arc of circumference γ with radius η−1, with endpoints y1 and ξ, in a two-dimensional
plane Π1 parallel to p1. But then γ is contained in F η. Therefore,

max
y∈F η(x)

〈
y, p1

〉
≥ max

y∈γ

〈
y, p1

〉
>
〈
y1, p1

〉
, (3.15)

obtaining a contradiction. The following computations better explain (3.15). Let π1 be
the hyperplane orthogonal to p1 through y1 and define

π−1
.
= {ζ ∈ R

n | p1 · ζ < p1 · y1} ,

π+
1
.
= {ζ ∈ R

n | p1 · ζ > p1 · y1} .
Then F η(x) ⊂ (π−1 ∪ π1) and B1 is the sphere tangent to π1 through y1. Hence, any
sphere B′ with radius η−1, passing through both y1 and ξ, intersects π1 in more than a
single point. Now if we prove that

Ξ
.
=




⋂

{y1,ξ}⊂B′

B′=B(z,η−1)

B′


 ∩ π+

1 6= ∅ , (3.16)
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then we would have a contradiction. Indeed, for any ζ in that intersection, we would
recover the same inequalities of (3.15) on Ξ.

In order to prove (3.16), we restrict our study to a suitable two-dimensional plane.
We fix a center c of a sphere of radius η−1, passing through y1 and ξ. Clearly c belongs
to the hyperplane

{ζ ∈ R
n | |x− y1| = |x− ξ|}

and the three points y1, ξ and c determine a plane, which we will indicate with Π. Notice
that the circles given by each sphere with radius η−1 through y1 and ξ intersected by

Π, have centers cλ = y1+ξ
2 + λ(c− y1+ξ

2 ) and radii Rλ =
√

( 1
η )2 + (|λ| − 1)|c − y1+ξ

2 |2 for

λ ∈ [−1, 1]. Our goal is to prove that


 ⋂

λ∈[−1,1]

(B(cλ, Rλ) ∩ Π)


 ∩ π+

1 = Ξ ∩ Π 6= ∅ . (3.17)

At this point, we just need to show that any q ∈ γ belongs to
⋂

λ∈[−1,1](B(cλ, Rλ)∩
Π), where γ is the shorter arc of ∂B(c,R1)∩Π, joining y1 and ξ (see Figure 13). Indeed,
near y1, these points q belongs also to π+

1 (due to all B ′ not being tangent to π1) and
hence to Ξ ∩ Π, which results non-empty.

For such a point q and for any λ ∈ [−1, 1], setting q ′ the projection of q on the line on
Π joining c and cλ (we still refer to Figure 13 for a picture of the situation), it holds
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|q − cλ|2 = |q − q′|2 + |q′ − cλ|2 =

= |q − c|2 − (|q′ − cλ| + |cλ − c|)2 + |q′ − cλ|2 =

= η−2 − 2|q′ − cλ| · |cλ − c| − |cλ − c|2 ,

R2
λ = η−2 − |c− y1 + ξ

2
|2 + |cλ − y1 + ξ

2
|2 =

= η−2 − (|c− cλ| + |cλ − y1 + ξ

2
|)2 + |cλ − y1 + ξ

2
|2 =

= η−2 − 2|c − cλ| · |cλ − y1 + ξ

2
| − |c− cλ|2 ,

and finally

|q − cλ|2 = η−2 − 2(|q′ − y1 + ξ

2
| + |y1 + ξ

2
− cλ|) · |cλ − c| − |cλ − c|2 =

= Rλ − 2|q′ − y1 + ξ

2
| · |cλ − c| < Rλ .

Therefore we have (3.16) and the required contradiction.

6. At this point, we have obtained regularity w.r.t. p, and we have sets of admissible
velocity that satisfy both the inner and the outer sphere condition. It is still not clear
the regularity w.r.t. x. Hence, for any fixed x, set

φx(z)
.
= d(z, F η(x)) − d(z,Rn \ F η(x))

i.e. the signed distance from the boundary of F η(x).
The idea is to consider a regularizing functions ρh whose support is contained in

B(0, 1/h), h > η−1, and the set

F η
h (x)

.
= {y ; ρh ∗ φx(y) ≤ 0 } , (3.18)

in place of F η(x). In this way, we will have Hη smooth in both its arguments.

Claim 2. Replacing F η with F η
h , the following properties still hold. F η

h (x) is strictly
convex,

F (x) ⊆ F η
h (x) , (3.19)

dH

(
F (x) , F η

h (x)
)
≤ (C + 1) η , (3.20)

dH

(
F η

h (x) , F η
h (x′)

)
≤ 2L |x− x′| , (3.21)

where the constants C,L are as in (3.8)–(3.9).
Moreover, for any p1, p2 unit vectors and

y1 = arg max
y∈F η

h
(x)
p1 · y , y2 = arg max

y∈F η
h
(x)
p2 · y ,

we still have that

|y1 − y2| ≤
|p1 − p2|

η
. (3.22)
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7. Proof of Claim 2. Strict convexity of F η
h (x) follows from strict convexity of φx.

To prove (3.19), notice that if ξ ∈ F (x), then B(ξ, 1/h) ⊂ F̂ (x) ⊂ F η by choice of
h. Hence, ρh ∗ φx(ξ) ≤ 0 and ξ ∈ F η

h (x).

Now, for any small α > 0, consider ξ ∈ R
n \ B(F η(x), α + 1/h). Then, B

(
ξ, α

2 +
1
h

)
∩ F η(x) = ∅ and ρh ∗ φx(ξ) > α/2 > 0. Therefore, F η

h (x) ⊂ B(F η(x), 1/h) and, for
any unit vector p,

ψF η
h

(x)(p) ≤ ψF η(x)(p) + 1/h .

On the other hand, Gh(x) = {y ∈ R
n ; φx(y) ≤ −1/h} is contained in F η

h (x).
Therefore, for any unit vector p, from ψGh(x)(p) = ψF η(x)(p) + 1/h, it follows

ψF η
h

(x)(p) ≥ ψF η(x)(p) − 1/h .

These two inequalities, since p is arbitrary, imply dH(F η
h (x), F η(x)) ≤ 1/h < η.

Hence,
dH(F η

h (x), F (x)) ≤ (C + 1)η ,

where C is the constant in (3.8), and (3.20) is proved.

To prove (3.21), recalling 1/h < η, one can use B(F (x), 1/h) ⊂ F̂ (x) and repeat the
proof of (3.9) with F (x) in place of F̂ (x). Namely, using a ball of radius η−1 containing
F (x) and passing through yh such that ψF η

h
(x)(p) = p · yh, one can follow the procedure

in Claim 2 to conclude.

Similarly, one can prove (3.22) repeating the step used for (3.10), with simple adap-
tations.

8. Having replaced the sets F (x) with the larger, uniformly convex, sets F η
h (x), the

Hamiltonian function
Hη(x, p) = max

y∈F η
h
(x)

{
− p · y − 1

}
(3.23)

is smooth w.r.t. both its arguments. We now take a look at the equations for the
characteristics.

ẋ =
∂Hη

∂p
= arg max

y∈F η
h

(x)
p · y , (3.24)

ṗ = − ∂Hη

∂x
. (3.25)

Notice that the right hand side of (3.24) is Lipschitz continuous because of (3.22). More-
over, the right hand side of (3.25) is homogeneous of degree one w.r.t. p. We thus have
an estimate ∣∣p(t)

∣∣ ≤
∣∣p(t0)

∣∣ · eκ|t−t0| (3.26)

uniformly valid on compact sets, with κ independent of η.

For each boundary point x̄ ∈ ∂S0, the initial conditions for (3.24)–(3.25) are x(0) =
x̄, while p(0) is a suitable vector perpendicular to ∂S0 at the point x̄. More precisely,
p(0) = α∇ψ(x̄), where the constant α ∈ [0, 1] is such that

max
y∈F η

h
(x̄)

{
− p(0) · y − 1

}
= 0 . (3.27)
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Notice that, if no α ∈ [0, 1] exists such that (3.17) holds, this means that

max
y∈F η

h
(x̄)

{
−∇ψ(x̄) · y − 1

}
< 0 . (3.28)

In this case, in a whole neighborhood of x̄ it is convenient to stop immediately, and pay
the cost ψ, rather than try to move to a point with lower cost. Indeed, in a suitably
small neighborhood N of x̄, we would still have the strict inequality

max
y∈F η

h
(ξ)

{
−∇ψ(ξ) · y − 1

}
< 0 , ξ ∈ N .

and for t < 0 small enough (so that x(t) remains in N) the cost to reach S0, equal to
λ0 − t, would satisfy

λ0 − t− ψ(x(t)) = −t−
(
ψ(x(t)) − ψ(x̄)

)
= −t−

∫ t

0
∇ψ(x(s)) · ẋ(s)ds

≥ −
∫ 0

t
max

y∈F η
h

(x(s))
{−1 −∇ψ(x(s)) · y} ds > 0 .

In other words moving from points of N would cost more than remain there. Charac-
teristics starting at such points need not be constructed.

By choosing a sufficiently short time interval [0, δ], any two trajectories of (3.24)–
(3.25) originating from point on the same sphere Γ0

j will not intersect. Notice that δ
depend on η.

These trajectories, for t ∈ [0, δ], form lens-shaped domains around each Γ0
i ⊂ S0 in

the sense of [4]. Setting Γδ
i these domains, we define

K
.
=
(
∪iΓ

δ
i

)
\

◦
S0 . (3.29)

We underline that K is compact, since the union of Γδ
i is contained in a sufficiently large

sphere. Namely, for any t ∈ [0, δ], we have

|x(t) − x(0)| ≤ C

(
δ +

∫ t

0
|x(s)|ds

)
,

and, therefore, by Gronwall’s Lemma

|x(t) − x(0)| ≤ Cδ(1 + |x(0)|) eCδ .

We can conclude that, if S0 ⊂ B(0, R), then any x(t) will remain in B(0, R + Cδ(1 +
R)eCδ).

By solving (3.24)–(3.25), we obtain a function V η corresponding to

min
τ,x(·)

{
τ + ψ

(
x(τ)

)}

ẋ ∈ F η
h (x) .

Here τ is the first time t where x(t) ∈ S0.
We can recover this value function V η as the minimum among N0 scalar functions.

More precisely, calling t 7→ x(t, x̄) the trajectory of (3.24)–(3.25) starting at x̄, for a
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given point z there will be at most N0 initial points x̄j ∈ Γ0
j and times tj such that

z = x(tj, x̄j). We then set

V η(z) = min
{
λ0 + t1, . . . , λ0 + tN0

}
, (3.30)

where λ0 is the constant value of ψ on the boundary of S0, and

Ṽ η(z) = min
{
ψ(z) , V η(z)

}
. (3.31)

Outside the terminal set S0 the value function V η satisfies

Hη(x, V η) = 0 x /∈ S0 . (3.32)

Notice that, by (3.26) and since along trajectories we have

∇V η = p , (3.33)

the size of the gradient |∇V η| is bounded, uniformly w.r.t. η. This, in particular, implies
that V η is differentiable almost everywhere. The same holds for Ṽ η.

Moreover, we assume V η semiconcave on the same set where the uniform bound on
its gradient holds. Hence, there exists λ > 0 such that for any y where V η is differentiable

V η(x) ≤ V η(y) + ∇V η(y) · (x− y) + λ|x− y|2 . (3.34)

9. As in [4], we now approximate the value function V η with a piecewise quadratic

function W̃ such that

−1 − ε

2
≤ min

y∈F η
h

(x)
∇W̃ · y ≤ −1 +

ε

2
(3.35)

Namely, we set, for any y ∈ K in which V η is differentiable,

V η
y (x) = V η(y) + ∇V η(y) · (x− y) + (1 + λ)|x− y|2 . (3.36)

where λ > 0 comes from the semiconcavity of V η. Therefore we have

V η(x) + |x− y|2 ≤ V η
y (x) . (3.37)

Since min
ζ∈F η

h
(y)

{∇V η(y) · ζ} = −1, for every fixed ε1 > 0, there exists uε1 = u(ε1, y) ∈ U

such that f(y, uε1) ∈ F η
h (y) and

∇V η(y) · f(y, uε1) < −1 + ε1 . (3.38)

Now we claim that there exists ρ > 0 sufficiently small, so that for any z ∈ B(y, ρ) and
ω ∈ U

∇V η
y (z) · f(z, uε1) < −1 + 2ε1 , (3.39)

∇V η
y (z) · f(z, ω) ≥ −1 − 2ε1 . (3.40)



58 Chapter 2. Nearly Optimal Patchy Feedback Controls

This follows from

∇V η
y (z) · f(z, uε1) = ∇V η(y) · f(y, uε1) + ∇V η(y) · [f(z, uε1) − f(y, uε1)]

+ 2(1 + λ)(z − y) · f(z, uε1)

< −1 + ε1 + ||V η||Lip(f)|z − y|

+ 2(1 + λ)

{
sup
K
f · |z − y| + Lip(f)|z − y|2

}
,

and

∇V η
y (z) · f(z, ω) = ∇V η(y) · f(y, ω) + ∇V η(y) · [f(z, ω) − f(y, ω)]

+ 2(1 + λ)(z − y) · f(z, ω)

≥ −1 − ||V η||Lip(f)|z − y|

− 2(1 + λ)

{
sup
K
f · |z − y| + Lip(f)|z − y|2

}
.

We underline that ρ does not depend on y and that we can also assume ρ ≤
||∇V η||∞. Moreover, the first inequality will be crucial in the introduction of the patchy
control, since it will give the inward-pointing condition.

Using notations from 4.-5. and choosing ε1 < ε/4, we can rewrite the previous
inequalities as follow. There exists ρ such that for any y ∈ K in which V η is differentiable,
and any z ∈ B(y, ρ), setting zε1

.
= f(z, uε1), one has

−1 − ε

2
≤ min

ζ∈F η
h
(z)

∇V η
y (z) · ζ ≤ ∇V η

y (z) · zε1 ≤ −1 +
ε

2
. (3.41)

10. Now we consider the compact set K given in 8.. We recall that we defined it as
⋃

i Γ
δ
i \

◦
S0, where Γδ

i were the lens-shaped domain around S0. Let y1, . . . , yN1 be points
of K such that V η is differentiable in yi and the balls B(yi, ρ

′) covers completely K.
Here, we choose the radius ρ′ sufficiently small so that for any x ∈ B(yi, ρ

′) it holds

V η(x) ≤ V η
yi

(x) ≤ V η(x) + ρ2 , (3.42)

where ρ is the value found in 9. In particular ρ′ < ρ. Then, we set Vi
.
= V η

yi , ui = u(ε1, yi)
and finally

W̃ (x) = min
i
Vi(x) , ∀x ∈ K . (3.43)

With this definition, (3.5)–(3.6) easily hold, since each Vi verifies them. Moreover, the

same bounds given above for ||∇V η|| can be achieved also for ||∇W̃ ||.
Indeed, for any x ∈ K in which W̃ is differentiable, if x ∈ K \B(yi, ρ), then there exists
j such that x ∈ B(yj, ρ

′) \B(yi, ρ) and hence, recalling (3.42),

W̃ (x) ≤ Vj(x) ≤ V η(x) + ρ2 < Vi(x) . (3.44)



3. Proof of the main result 59

This implies that W̃ (x) = Vi(x) can hold only if x ∈ B(yi, ρ). Therefore

|∇W̃ (x)| = |∇Vi(x)| = |∇V η(yi)| + 2(1 + λ)|x− yi|
≤ ||∇V η||∞ + 2(1 + λ)ρ ≤ (3 + 2λ) · ||∇V η||∞ .

Assuming |∇W̃ |Cη ≤ ε/2, from (3.8) and (3.35) we deduce

−1 − ε ≤ min
y∈F (x)

∇W̃ · y ≤ −1 + ε . (3.45)

For the suitably small δ > 0 found in , we set

λ1 = λ0 + δ , (3.46)

and we define

W (x)
.
= min{ψ(x) , W̃ (x)} for all x ∈ K ∪ {y ; ψ(y) ≤ λ1} .

We now use this approximate value function W to construct a patchy feedback on a
sub-level set

S1
.
=
{
x ∈ R

n ; W (x) ≤ λ1

}

so that (3.5)–(3.6) hold.

Notice that S1 \
◦
S0 is contained in K ∪ {ψ ≤ λ1}, which represent the sub-level for

min{V η, ψ}, corresponding to λ1. More precisely, S1 \
◦
S0 is contained in the union of

finitely many spheres Γ1
0,Γ

1
1, . . . ,Γ

1
N1

, where Γ1
0 is the sub-level of ψ and each Γ1

i is the
sub-level of Vi.

Observe that, since all functions Vi, 1 ≤ i ≤ N1, have the same coefficient of the quadratic
term, it follows that, for each couple of indices k 6= i, the set

πk,i
.
= πi,k

.
=
{
x ∈ R

n ; Vk(x) = Vi(x)
}

(3.47)

is an hyperplane, and the difference of the gradients ∇Vi(x) − ∇Vk(x) is a constant
vector on πk,i. Then, letting nk,i denote the unit normal to πk,i, pointing towards the
half space

π+
k,i

.
= π−i,k

.
=
{
x ∈ R

n ; Vk(x) > Vi(x)
}
, (3.48)

one has
∇Vi(x) −∇Vk(x) = −cnk,i ∀ x ∈ πk,i , (3.49)

for some constant c = ck,i ≥ 0. Denote as π−k,i the other half space determined by πk,i,
i.e. set

π−k,i
.
= π+

i,k
.
=
{
x ∈ R

n ; Vk(x) < Vi(x)
}
. (3.50)

Now we introduce some more notation, related to the level set of Vi and W
Set

P0
.
=
{
x ∈ R

n ; ψ(x) = W (x)
}
, Pi

.
=
{
x ∈ R

n ; Vi(x) = W (x)
}
, (3.51)

I .
=
{
i ∈ {1, . . . , N1} ;

(
Pi \

⋃

j 6=i

Pj

)
∩ S1 6= ∅ ,

}
, (3.52)
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Σi
.
=
{
x ∈ R

n ; Vi(x) = W (x) ≤ λ0 + δ
}

= Pi ∩ Γ1
i ∀ i ∈ I ∪ {0} . (3.53)

Notice that in P0 the evolution stops. Moreover, this definition of I implies that, in
the following, we ignore any index k̄ such that the sub-level of the corresponding Vk̄ is
completely contained in the sub-levels of other Vi. With these notations, and recalling
the definition of πi,k above,

πk,i ∩ ∂Γ1
k = πk,i ∩ Γ1

i = Γ1
k ∩ Γ1

i ,

Σk ⊂ πk,i ∪ π−k,i , Σi ⊂ πk,i ∪ π+
k,i

∀ k, i ∈ I . (3.54)

Notice, also, that ⋃

i

Σi = S1 =
⋃

i

Γ1
i .

On each Σi we have a constant control ui given in (3.38) such that

∇W (z) · f(z, ui) < −1 + ε

holds for any z ∈ Σi. Indeed Σi ⊂ Pi ⊂ B(yi, ρ).

11. So far we have defined a constant control on S1. Nevertheless, we cannot simply set
U(x)

.
= ui for x ∈ Σi \

(⋃
j>i Σj

)
. Indeed, every trajectory x(t) of ẋ = f(x, ui), passing

only through points of Σi, satisfies ∀ t > s

W
(
x(t)

)
= Vi

(
x(t)

)

= Vi

(
x(s)

)
+

∫ t

s

〈
∇Vi(x(σ)), f(x(σ), ui)

〉
dσ

≤ Vi

(
x(s)

)
+ (−1 + ε) · (t− s)

= W
(
x(s)

)
+ (−1 + ε) · (t− s) (3.55)

However, there may well be points x(t) ∈ Γ1
i where Vi(x(t)) > W (x(t)). Near these

points there is no guarantee that (3.55), and therefore sub-optimality, should hold. To
address this difficulty, we will consider the set of all indices i 6= k such that Vi(x) < Vk(x)
for some x ∈ Γ1

k , and such that

min
x∈Γ1

k

〈
∇Vk(x) −∇Vi(x), f(x, uk)

〉
< 0 . (3.56)

domain
Γ1

k ∩
{
x ∈ R

n ; Vk(x) < Vi(x)
}
.

More rigorously, setting

Jk
.
=
{
i ∈ {1, . . . , N} \ {k} ; Σi ∩ Γ1

k 6= ∅ , min
x∈Γ1

k

〈
∇Vk(x) −∇Vi(x), f(x, uk)

〉
< 0

}
,

(3.57)
we consider the domains

Γ̃1
k
.
=





Γ1
k ∩

⋂

i∈Jk

π−k,i if Jk 6= ∅ ,

Γ1
k otherwise.

(3.58)
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Then we can prove the following.

Claim 3. For any k ∈ I, the domains Γ̃1
k, defined in (3.58), enjoy the inward-pointing

condition. Namely, the vector field f(x, uk) points strictly inward at every point of the
upper boundary

∂−Γ̃1
k
.
= ∂Γ̃1

k \
(
S0 ∪ P0

)
. (3.59)

Moreover, for any y ∈ Γ̃1
k \
(
S0 ∪ P0

)
, there exists a time Tk(y) > 0 so that, letting x(·)

be the solution of ẋ = f(x, uk) through y, one has

x
(
Tk(y); y, uk

)
∈ S0 ∪ P0 , (3.60)

x(t; y, uk) ∈ Γ̃1
k ∀ t ∈ ]0, Tk(y)] , (3.61)

and there holds

W
(
x(t)

)
≤W

(
x(s)) + (−1 + ε) · (t− s) ∀ 0 ≤ s < t ≤ Tk(y) , (3.62)

where ε is the constant satisfying (3.45).

12.Proof of Claim 3. We know that, for every k ∈ I, the vector field f(·, uk) is inward-
pointing on the region ∂− Γ̃1

k ∩
(
∂Γ1

k \
(
S0 ∪ P0

))
. On the other hand, recalling (3.49),

the inequality (3.56) guarantees that f(·, uk) enjoys the inward-pointing condition also

at the boundary points x ∈ ∂− Γ̃1
k ∩

◦
Γ1

k ∩ πk,i, i ∈ Jk. Then, observing that

∂− Γ̃1
k \ ∂− Γ1

k = ∂− Γ̃1
k ∩

◦
Γ1

k ∩
⋃

i∈Jk

πk,i ,

by continuity it follows that f(x, uk) ∈
◦
T eΓ1

k
(x) at every point x ∈ ∂− Γ̃1

k. Here,
◦
T eΓ1

k

denotes the interior of the tangent cone to Γ̃1
k, defined in (2.13). This completes the

proof on ∂− Γ̃1
k.

Moreover, for any x in Γ̃1
k,

〈
ni, f(x, u)

〉
≤
〈
∇Vi(x), f(x, u)

〉

|∇Vi(x)|
≤ −1 + ε

||∇Vi||
< −β < 0 , (3.63)

for a suitable β > 0.
Hence, we have

|f(x, u)| ≥ |
〈
ni, f(x, uk)

〉
| ≥ β > 0 . (3.64)

Therefore, any trajectory starting from a point of Γ̃1
k, cannot remain in Γ̃1

k. At the
same time, due to the inward-pointing condition, it can escape only through ∂

(
S0 ∪P0

)
.

Setting Tk(x) the minimum time to reach S0 ∪ P0, we have (3.60)–(3.61). Finally
we prove (3.62). For any fixed 0 ≤ s < t ≤ Tk(x) there exists i(s) such that W (x(s)) =
Vi(s)(x(s)) and it holds

W (x(t)) ≤ Vi(s)(x(t)) = Vi(s)(x(s)) +

∫ t

s

〈
∇Vi(s)(x(σ)), f

(
x(σ), uk

)〉
dσ

< W (x(s)) + (−1 + ε) · (t− s) .
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13. Relying on the properties in Claim 3, we shall construct now a patchy feedback on
the open region

Ω
.
=

◦
S1 \

(
S0 ∪ P0

)
.

To this end we first need to slightly enlarge some of the domains defined in (3.58).
Namely, for every k ∈ I, consider the set

Ĵk
.
=
{
i ∈ Jk ∩ I ; i > k , k ∈ Ji

}
, (3.65)

fix some positive constant σ � ε, denote by πσ
k,i the hyperplane parallel to πk,i that lies

in the half space π+
k,i = {x ∈ R

n ; Vk(x) > Vi(x)} at a distance σ from πk,i, and call

πσ,−
k,i the half space determined by πσ

k,i that contains πk,i. Then, set

Γ̂1
k
.
=





Γ1
k ∩

⋂

i∈Jk\ bJk

π−k,i ∩
⋂

i∈ bJk

(
πσ,−

k,i ∩ Γi

)
if Jk 6= Ĵk, Ĵk 6= ∅ ,

Γ1
k ∩

⋂

i∈ bJk

(
πσ,−

k,i ∩ Γi

)
if Jk = Ĵk 6= ∅ ,

Γ̃1
k if Ĵk = ∅ ,

(3.66)

Ωk
.
= Γ̂1

k \
(
S0 ∪ P0

)
, (3.67)

and observe that, by definitions (3.58), (3.59), (3.65), (3.66), (3.67), one has

∂ Γ̂1
k \

⋃

h∈I
h>k

Γ̂1
h ⊂ ∂ Γ̃1

k ,

∂ Ωk \
(
S0 ∪ P0 ∪

⋃

h∈I
h>k

Ωh

)
⊂ ∂− Γ̃1

k .

Thus, by choice of σ and Claim 3, it follows that the vector field f(x, uk) still satisfies

the inward-pointing condition at every point x ∈ ∂ Ωk \
(
S0 ∪ P0 ∪

⋃

h∈I
h>k

Ωh

)
. Then, we

can finally setting on S1,

g(x)
.
= f(x, uk) if x ∈ ∆k

.
= Ωk \

⋃

h∈I
h>k

Ωh , (3.68)

and considering the map U : Ω → U defined by

U(x)
.
= uk if x ∈ ∆k , (3.69)

we deduce that the triple
(
Ω, g, (Ωk, gk)k∈I

)
is a patchy vector field on Ω associated to

the patchy feedback
(
Ω, U, (Ωk, uk)k∈I

)
.

Notice that, by definitions (3.58), (3.59), (3.65), (3.66), (3.67), (3.68), one has

∆k ⊂ Γ̃1
k \
(
S0 ∪ P0

)
∀ k ∈ I ,

and hence we may apply Claim 3 to a trajectory of g passing through the domain ∆k.
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Claim 4. The patchy vector field g on the domain Ω, defined in (3.68) enjoys the
following property. For any y ∈ Ω, and for every Carathéodory trajectory γy(·) of

ẋ = g(x) (3.70)

starting at y, there exists a time T (y, γy) > 0 so that one has

γy

(
T (y, γy)

)
∈ S0 ∪ P0 , (3.71)

and there holds

W
(
γy(t)

)
≤W (y) + (−1 + ε) · t ∀ 0 ≤ t ≤ T (y, γy) . (3.72)

14. Proof of Claim 4. We proceed as it was done to prove Claim 3 of Theorem 1 in [4].
Given y ∈ Ω, let γy be a trajectory of (3.70) starting at y, and set

tmax

(
γy

) .
= sup

{
t > 0 ; γy is defined on [0, t]

}
. (3.73)

By the properties of the patchy vector fields and Claim 3 above, one can recursively
construct two increasing sequences of times 0 = t0 < t1 < . . . < tν = tmax, and of indices
i1 < i2 < . . . < iν ∈ I with the following properties:

a. γy is a solution of ẋ = giν (x) taking values in ∆iν for all t ∈ ]tν−1, tν ], 1 ≤ ν ≤ ν;

b. γy(tν) ∈ ∂ Ωiν+1 for all 1 ≤ ν < ν , and γy(tν) ∈ S0 ∪ P0 ;

c. tν − tν−1 < Tiν

(
γy(tν−1)

)
for all 1 ≤ ν < ν , and tν − tν−1 ≤ Tiν

(
γy(tν−1)

)
.

Hence (3.71) is proved. Next, applying repeatedly the estimate (3.62) of Claim 3,
and recalling that γy(0) = y, we derive

W
(
γy(t)

)
≤W

(
γy(tν)

)
+ (−1 + ε) ·

(
t− tν

)

≤W (y) + (−1 + ε) · t ∀ t ∈ ]tν−1, tν ] , 0 < ν ≤ ν̂ ,

which yields (3.72).

15. The inductive step can now be repeated. Assume that a patchy feedback and a
piecewise quadratic value function W has been constructed on a set Sk, with

W (x) = λk = λ0 + kδ ∀ x ∈ ∂Sk . (3.74)

Since the boundary ∂Sk is the union of finitely many spheres, say Γk
1 , . . . ,Γ

k
Nk

, we can
repeat the earlier construction and extend the patchy feedback and the approximate
value function to a larger set Sk+1, etc. . . �

Remark. The upper bounds on the gradients |∇V η|, |∇W | of the value functions do
not depend on η. On the other hand, the step δ in (3.46), (3.74) must be chosen suitably
small, depending on η.
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65



66 BIBLIOGRAPHY

[15] P. Cardaliaguet and S. Plaskacz, Existence and uniqueness of a Nash equilib-

rium feedback for a simple nonzero-sum differential game, Intern. J. Game Theory
32 (2003), 33–71.

[16] F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag and A.I. Subbotin, Asymptotic

controllability implies feedback stabilization, IEEE Trans. Automat. Control 42
(1997), no. 10, 1394–1407.

[17] F.H. Clarke, L. Rifford and R.J. Stern, Feedback in state constrained opti-

mal control, ESAIM - Control, Optimiz. Calc. Var. 7 (2002), 97–134.

[18] J.C. Engwerda, LQ dynamic optimization and differential games, Wiley & Sons,
2005.

[19] A. Friedman, Differential games, Wiley-Interscience, 1971.

[20] H. Ishii and S. Koike, On ε-optimal controls for state constraints problems, Ann.
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