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INTRODUCTION

Let © ¢ RY be a smooth bounded domain and L be a second order elliptic differential

operator on €. Consider the semilinear parabolic equation
(0.0.4) ug = Lu+ f(x,u,Vu), t>0, x €
with Dirichlet boundary condition

(0.0.5) u=20, t >0, ze€ o

or Neumann boundary condition

(0.0.6) % =0, t>0, €.
Here f:(z,5,w) € A x R x RN s f(x,s,w) € R is some nonlinearity.

For p > 1, the operator —L with Dirichlet or Neumann boundary condition on 02
defines a sectorial operator on X = LP(2) with the corresponding family X< of fractional
power spaces. If p > N, then a can be chosen such that X c C1(Q) and then the solutions
of (0.0.4)—(0.0.5) and (0.0.4)—(0.0.6) define a local semiflow on X®.

It is well known that for N = 1 the dynamics of the semiflow generated by (0.0.4)—(0.0.5)
or (0.0.4)-(0.0.6) is fairly simple, as all bounded solutions are convergent [14].

If the nonlinearity f in (0.0.4) is independent of gradient terms (i.e. f = f(z,s)),
then the semiflow generated by (0.0.4)—(0.0.5) or (0.0.4)—(0.0.6) admits a global Ljapunov

functional, namely
V(u) := (1/2)||Vu||%2(9) —/ F(z,u(z))dz, ue X,
Q

where F' is a primitive of f with respect to s, i.e. 9sF = f. In particular, the w-limit set
w(u) of an arbitrary bounded solution u of (0.0.4)—(0.0.5) or (0.0.4)—(0.0.6) consists only
of stationary solutions. Moreover, neither periodic solutions nor homoclinic solutions can
occurr in (0.0.4)—(0.0.5) or (0.0.4)—(0.0.6).

If N > 1 and the nonlinearity f does depend in a nontrivial way on gradient terms, the
situation changes drastically: it has recently been proved that the dynamics of (0.0.4)—
(0.0.5) or (0.0.4)—(0.0.6) can be very complicated, in fact even ’arbitrary’. A first result
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of this kind was given by Polac¢ik in [18]. More specifically, he proved that every finite
jet of a vector field on R™ can be imbedded (realized) on the center manifold of (0.0.4)—
(0.0.5) or (0.0.4)—(0.0.6) with appropriate nonlinearity f provided the kernel of the operator
L (with Dirichlet boundary conditions on 9€2) has dimension n and the corresponding
eigenfunctions satisfy a certain nondegeneracy condition (called Pola¢ik condition). In this
case n = N or n = N + 1 and Polécik also gave examples of operators satisfying this
condition, both with n = N (and Q being the unit ball) and n = N + 1 (with Q being
smooth and smoothly diffeomorphic to the unit ball), and with L of the form L = A+a(x).
In [33] Rybakowski showed that under the Pola¢ik condition actually all sufficiently smooth
and sufficiently small vector fields v on R” can be realized on the center manifold of (0.0.4)—
(0.0.5) or (0.0.4)—(0.0.6) with appropriate nonlinearity f. The method of proof used in [33]
(the Nash-Moser implicit mapping theorem) leads to a typical loss of derivatives: g is less
smooth that v. In [25] Polac¢ik and Rybakowski proved that if L has analytic coefficients
and Polacik condition holds then a vector field realization result holds without loss of
derivatives. They also showed that there are real analytic functions a on RY such that the
operator Lu = Au + a(r)u satisfies the Pola¢ik condition on a ball of RNV with n = N + 1.
These results lead to a restriction in the space dimension of (0.0.4): to get realizability of
any vector field of R” we have to choose n = N or n = N + 1. Therefore the question arises
what is the least possible space dimension that allows arbitrary dynamics in (0.0.4)—(0.0.5)
and (0.0.4)—(0.0.6). In [23] it was shown by P. Polacik that every finite jet of a vector field
on R™ can be realized on the center manifold of (0.0.4)—(0.0.5) or (0.0.4)—(0.0.6) with an
appropriate polynomial nonlinearity f and an appropriate two-dimensional domain (close
to a square). In [23] the form of the nonlinearity f involves high powers of the gradient
of the solution u. By the way, when modelling scientific phenomena by equations (0.0.4)—
(0.0.5) and (0.0.4)—(0.0.6), one usually tries to make the convection terms (i.e. the terms
depending on Vu) as simple as possible. Therefore the question arises if such systems can
also exhibit complex dynamics. An affirmative answer was given by K. Rybakowski and the
author of this thesis in [29], where it is shown that the polynomial f can have prescribed

(e.g. linear) dependence on Vu.

All of the above realization results have been proved only on very particular domains,
diffeomophic to a ball or close to a square, and for operators of the form L = A + a(z).
The natural question therefore arises if one can obtain such realization results on arbitrary
(sufficiently regular) domains, and with general second order elliptic operators which can

be written in divergence form.

A first affirmative answer to this question was given by K. Rybakowski and the author of
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this thesis in [30]. More specifically, in this paper it is shown that the vector field realization
result from [25] is valid on arbitrary bounded domains Q of class C%7, 0 < v < 1. This is
proved by showing that for every such Q there is a polynomial function @ on RY such that
the operator Lu = Au + a(z)u satisfies the Polacik condition on  with n = N + 1. In
[31] the author of this thesis shows that all the above realization results can be generalized
to the case of a general second order elliptic operator in divergence form on an arbitrary
(smooth) spatial domain.

In order to achieve these results, four general results are established, which are of inde-

pendent interest:

(1) a general version of the surjective mapping theorem with all constant made explicit;
(2)
(3) an eigenvalue convergence result;
(4)

the solvability of an abstract inverse eigenvalue problem:;

a “localization” result.

The thesis is organized in the following way:

In Chapter 1 we give a brief survey of the basic facts about semilinear parabolic PDEs,
essentially following [12, Ch. 1-3]. We introduce sectorial operators and their semigroups
in an abstract setting and we give an existence theorem for local solutions of the abstract

semilinear parabolic equation

U= Au+ f(u);

then we come back to concrete equations of the form (0.0.4).

In Chapter 2 we recall some results about global and local invariant (center) manifolds

of semilinear parabolic equations, following the approach of [37], [4] and [32].
In Chapters 3 and 4 we describe the main results contained in [18], [33], [25], [23] and

[29]; we present these result in a slightly more general form and with some necessary
modifications in order to apply the theorems given in the next chapters. We prove that all
the results contained in these papers are true for a general second order elliptic operator

on an arbitrary spatial domain, provided certain conditions are satisfied.

In Chapter 5 we deal with an abstract inverse eigenvalue problem: given a self-adjoint
operator A on a Hilbert space H and a finite number A1 < Npo < oo < Ny of
eigenvalues of A whose eigenvectors satisfy a certain hypothesis there is a constant ag > 0,
which does not depend on the operator A but only on the geometry of the spectrum of A,
such that arbitrary tuples p1, ..., pp lying in the ap-neighborhood of Aj41, ..., A4, can

be realized as eigenvalues of a suitable perturbed operator A + B.



In Chapter 6 we give an eigenvalue convergence result: if D is a subdomain of €2 and the
functions cg (x) satisfy certain assumptions then the eigenvalues of the operators Lu+cg(z)u
on {) converge to the corresponding eigenvalues of L on the smaller domain D. We also

obtain H!-convergence of the corresponding eigenfunctions.

In Chapters 7 and 8, following [18], [25], [23] and [29], we show that the conditions given
in Chapters 3 and 4 are actually satisfied on certain particular domains, with L = A+ a(x)

and with Dirichlet boundary condition.

In Chapter 9 we show that, thanks to the general results obtained in Chapters 5 and
6, the results in Chapters 7 and 8 can be extended to any smooth bounded domain and
to any secon order elliptic operator which can be written in divergence form, both with

Dirichlet and Neumann boundary condition.

In Chapter 10 we make a brief ’excursus’ through other situations in which the technique
of jet and vector field realization can be exploited to give examples of complex dynamics

in various classes of dynamical systems and we address some open problems.



CHAPTER 1

PRELIMINARIES ON SEMILINEAR PARABOLIC PDES

Let Q C RY a bounded domain with smooth boundary 9. Consider the general second
order differential operator
L= Z aq ()0
lor| <2
where the coefficients a, : Q — R are smooth functions. The principal part L’ of L is the
operator
L= Z ao(z)0”
|r|=2
Definition 1.0.1. We say that the operator L is strongly elliptic if there exists a
constant ¢ > 0 such that
Y aa(w)€* > cl¢)?

jal=2

for all ¢ € RN and all x € Q. The formal adjoint of L is the operator

= 3 (~1)lloe (m ) .

lor| <2

We say that L is formally selfadjoint if L = L*. We say that L can be written in divergence

form if there are coefficients a;;(-), i,j = 1,...,IN such that

L= Z 6l(a”(.r)63)

ij=1

Remark. If an operator L has real coefficients and it can be written in divergence form
with a;;(-) = a;i(-), then L is formally selfadjoint.
Consider the following general semilinear parabolic equations with Dirichlet and Neu-

mann boudary condition respectively:
ug = Lu+ g(x,u,Vu), t>0,z €
(1.0.1)
u(z,t) =0, t>0,z€ 09,

uy = Lu+ g(x,u,Vu), t>0,z¢€Q

(1.0.2) 9

a—u(a:,t) =0, t>0,z€ 09,
v



with an appropriate nonlinearity g:(z,s,w) € Q x R x RN + g(z,s,w) € R, and with
initial datum

(0, z) = up(x),

where u: 2 — R is a continuous (resp continuously differentiable up to the boundary)

function satisfying the Dirichlet (resp. Neumann) condition on 9f2.

Definition 1.0.2. We say that a function u:[0,T] x Q — R is a classical solution to
(1.0.1) (respectively to (1.0.2)) with initial value ug if

(1) w is twice continuously differentiable with respect to x € ), for all t €]0,T'[;

(2) w is continuously differentiable with respect to t €]0,T], for all z € §;

(3) w is continuous with respect to (t,z) € [0, T[x$ (resp. continuous with respect to
(t,z) € [0, T[xQ and continuously differentiable up to the boundary with respect
tox € Q for allt € [0,T]);

(4) u(0,z) = ug(z) on Q;

(5) u(t,z) satisties the Dirichlet (resp. Neumann) boundary condition on 92 for all
tel[0,T];

(6) (1.0.1) (resp. (1.0.2)) holds on Q2x]0,T7.

In order to study equations (1.0.1) and (1.0.2), we need to introduce an abstract func-
tional setting. This will be done in the following sections, where we collect some basic facts
about parabolic PDEs. We refer the reader to [12, Ch. 1-3] for a detailed treatment of the

subject.

1. Sectorial Operators and Analytic Semigroups
In what follows we indicate by K both R and C.

Definition 1.1.1. Let X be a Banach space over K; let A:D4 C X — X be a K-
linear, closed, densely defined operator. If K = R, let X¢ and Ac be respectively the
complexification of X and A. We call A a sectorial operator if there exist a € R, ¢ €]0, /2]
and M > 1 such that the sector

Sap={AeC|¢<Jarg(A—a)| <m, XA#a}

is in the resolvent set R(A) of A if K = C, in the resolvent set R(A) of Ac if K =R, and,

for all A € S 4,
M

H()‘_A)_IH < |)\—a|




ifK=C,
M

A —al

|(A=Ac)7H| <
ifK=R.
Remark. If A is sectorial and B is bounded, then A + B is sectorial.

Definition 1.1.2. Let X be a Banach space over K. An analytic semigroup on X is a
family T'(t), t > 0 of continuous linear operators on X satisfying

(1) T(0)=1I1,T(t)T(s) =T(t+s) fort >0, s >0;

(2) T(t)xr — z ast — 0T for each z € X;

(3) t+— T(t)x is a real analytic function on |0, +oo[ for each x € X.

Definition 1.1.3. Let T'(t) be an analytic semigroup of operators on a Banach space
X. The infinitesimal generator of T'(t) is the linear operator A: Dy C X — X defined by
1
Az .= lim — (T(t)x — x),
7= g 3 Tz —a)

whose domain D 4 consists of all v € X for which this limit exists. We write T(t) = e

Theorem 1.1.4. If A is a sectorial operator over K, then —A is the infinitesimal gen-
erator of an analytic semigroup e~4*, t > 0, where e~4? is given by
1
e~ At = — [ A+ A)7teMdA
2w Jp
if K = C and by the real part of
1
e~ Act — /()\ + Ac)terMar
r

271

if K =R, and where T is a contour in R(—A) with arg A — +0 for some 0 €]n/2, 7.
IfReS(A) > a, i.e. if ReA > a whenever ) is in the spectrum S(A) of A, then for t > 0,

=] < e~

and o
e < Dot

for some constant C.

Finally, for t > 0,
d _a At
—e M= —Ae” .
dt
Remark. Conversely, it can be proved that the infinitesimal generator of a semigroup is

a sectorial operator.



2. Fractional Powers of Sectorial Operators

Definition 1.2.1. Let A be a sectorial operator in a Banach space on K, and suppose
ReS(A) > 0; then for every a > 0 define

e 1 oo a—1_—At
A% = —— t* et
0

It is easy to check that actually A~! is the inverse of A in the usual sense.

Theorem 1.2.2. Let A a sectorial operator in a Banach space over K, with ReS(A) > 0;

then, for every a > 0, A% is a one to one bounded linear operator on X ; if a, > 0, then
A=A B = A~ (e+h),
moreover, for 0 < a < 1,

sin T

AT =

™

+oo
/ AT+ A) A
0

Definition 1.2.3. Let A be as above; define A° := Ix and, for o > 0,

DAOz = R(A_a)

A% := inverse of A<,

Proposition 1.2.4.

(1) If « > 0, A* is closed and densely defined;

(2) if > (3 then Dga C D gs;

(3) A‘J‘Aﬁ AP A = A%TP on Dy, where v = max(a, 3, a + 3);
(4) A

4 e~ At A* on D 4.

Theorem 1.2.5. Let A be a sectorial operator and assume ReS(A) > § > 0. Then for
« > 0 there exist constants C,, < +oo such that

HAO‘e_AtH <O t™ %% fot t > 0,
and, if 0 < a <1, z € Dga,

1
H(e_At — Dz < aCl_ata |A%z|| .



Theorem 1.2.6. If0 < a <1,z € Dy, then
1—
[A%| < C'[|Az||® ||~
or equivalently
[A%z|| < e[| Az + C'e= /0= |||

for all e > 0. The constants C, C" are independent of c.

Proposition 1.2.7. Let « = 08+ (1 — )y, where 0 <0 <1, 8> 0~ > 0; then there
exists a constant C such that

|A%z]| < C || 4P| || A7a]

for all x € D 45, where § := max(f3,7).
Corollary 1.2.8. If A is a sectorial operator with ReS(A) > 0 and if B is a linear
operator such that BA™® is bounded on X for some «, 0 < o« < 1, then A+ B is sectorial.
3. Interpolation Spaces

Theorem 1.3.1. Let A, B be sectorial operators in a Banach space X, with D4 = Dp,
with ReS(A) > 0, ReS(B) > 0, and assume, for some « € [0,1[, (A — B)A™* is bounded
on X. Then, for any 3 € [0,1], A°’B=" and BPA=" are bounded.

Definition 1.3.2. Let A be a sectorial operator in a Banach space X; choose a € R so
that ReS(A1) > 0, where A; := A+ al. Define, for each o > 0,

X% := Dga;
X<, endowed with the graph norm
[z]|o := [|AT]
is a Banach space. Different choices of a give equivalent norms on X* by Theorem 1.3.1,

so we can supress the dependence on the choice of a.

Proposition 1.3.3. For o > 8 > 0, X“ is a dense subspace of X? with continuous
inclusion. If A has compact resolvent, the inclusion X* C XP is compact when o > 3 > 0.
If A1, Ao are sectorial operators in X with the same domain and ReS(A;) > 0 for j = 1,2,
and if (Ay — A2)AT® is a bounded operator for some 0 < « < 1, then with Xf = DA?

(j=1,2), Xlﬂ = Xg with equivalent norms for 0 < g < 1.



Proposition 1.3.4. Let A be a sectorial operator in a Banach space X, with ReS(A) >
0; let Y be another Banach space and let

B:DpC X =Y

be a linear map. Assume Dp D D4 and, for some « € [0, 1] and some constants C, K, for
all x € Dy,
1—
|Bz|ly < C[|Az|™ [|z]|"™"

or equivalently
|Bzlly < e[Az| + Ke=®/0m) |z

for all ¢ > 0. Then, for any  €la, 1], B has a unique extension to a continuous linear

operator from XP to Y, i.e. BA~P is continuous.

4. Invariant Subspaces and Exponential Estimates

Definition 1.4.1. Let A be a linear operator with domain and range in a Banach space
X over K; let S(A) be the spectrum of A (of Ac if K =R); a set S C S(A)U{oo} =: S(A)
is a spectral set if both S and S(A)\S are closed in the extended plane C := C U {co}.

Theorem 1.4.2. Let A be a linear closed operator in X and let S; be a bounded
spectral set; let Sy := S(A)\S1, so that Se U oo is another spectral set. Then there are
projections P;: X — X, j = 1,2, such that, if we set X; := P;j(X), j = 1,2, then

(1) X = X1 @ Xo;
(2) X; is A-invariant for j =1,2;
(3) let Aj:DaNX; — X;, j =1,2; then A;: X1 — X5 is bounded, S(A;) = S; and
S(As) = Sy;
the projection Pj is given by

1
Pl=— [ (A—A)"tdx

271 T
if K = C and by the real part of

1
— [ (A= Ac)"tdx
27Ti F( (C)
if K =R, and P, = I — P;. If in addition A is sectorial, then Ay is sectorial on Xs,
X = X*N X, for any o > 0 and HHXg = |||l xa- Finally, if (A — A)~! is compact, X1 is

finite dimensional.
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Theorem 1.4.3. Let A be a sectorial operator, let S1 be a bounded spectral set and
let A, A> be as above. Then

(1) if ReSy < p, then He‘AltH < Ce ™ fort <0;
(2) if ReSy > v, then, for t > 0, He‘AﬂH < Ce "t and HAge_Ath < Ct~le e,

Theorem 1.4.4. Let A be a sectorial operator, let S; be a bounded spectral set for
A, Sy = S(A)\Sy; assume ReSy > p; let Aj, j = 1,2, be as above. Assume also B is a
sectorial operator with Dg = Dy, ReS(B) > 0, (B — A)B~ is bounded for some o < 1.
Then, using the norm ||a:||ﬁ = HB'BI‘H, 0 < B < 1, there exist a constant C such that, for
x € XoNDpgs and t > 0,

(1) He_AztxHﬁ < Oy ||z||t=PeHt;

(2) He_A”a:HIB < C [|z]| g e

5. The Abstract Cauchy Problem

Let A be a sectorial operator in a Banach space X over K; consider the abstract linear
homogeneus equation
dx

(1.5.1) E+A$:O’ 0<t<T,
z(0) = g,

where zg € X is given.

Definition 1.5.1. A solution of (1.5.1) on |0, T is a continuous function x:[0,T[— x
such that

(1) x is continuously differentiable on the open interval |0, T;
(2) z(t) € Dg for 0 <t < T;

(3) z(t) > xoin X ast — 07F;

(4) x(t) satisfies (1.5.1) on |0, T7.

By Theorem 1.1.4 it is clear that z(t) = e~ 4z is a solution of (1.5.1) on [0, +oo[. It is
easy to prove that this is actually the only soution.

Next we consider the nonhomogeneus equation

dx
(1.5.2) EJrAa:_f(t), 0<t<T,
z(0) = xo.

11



Definition 1.5.2. A solution of (1.5.2) on ]0,T] is a continuous function z: [0, T[— X
such that

(1) z is continuously differentiable on the open interval |0, T[;
(2) z(t) € Da for0 <t <T;

(3) z(t) = zo in X ast — 0F;

(4) z(t) satisfies (1.5.2) on 10, T|.

Lemma 1.5.3. Let f:]0,7[— X be locally Hélder continuos, with

p
A|v@mm<+m

for some p > 0. For 0 <t < T, define

F(t) := /Ot e~ A=) £(5)ds.

Then F(-) is continuous on [0, T, continuos differentiable on ]0,T|[, with F(t) € Dy for
0<t<T,F(t)—0inX ast— 0% and

(il—lt?(t) +AF(t) = f(t), 0<t<T.

Theorem 1.5.4. Let A be a sectorial operator in X, let zo € X, f:]0,T[— X be locally

Holder continuous, with
p
[ 1) ds < +oc
0
for some p > 0; then there exists a unique solution z(-) of (1.5.2), namely
t
z(t) = e Al +/ e~ A=) f(s5)ds.
0

Let us consider the nonlinear equation

dx
— + Ax = f(t t>t
(1.5.3) g TAT= ko), t>to
.I'(t()) = To,
where A is a sectorial operator so that the fractional powers of A; := A + al are well

defined, and the spaces X* with the graph norm ||z||, = ||A{«|| are defined for a > 0. We
assume f maps some open set U C R x X into X, for some 0 < o < 1, and f is locally
Hélder continuous in ¢ and locally Lypschitz in = on U; more precisely, if (t1,21) € U,
there exists a neighborhood V' C U of (t1,x1) such that for (t,z) € V, (s,y) € V

£t ) = fls. )l < L (1t = sI” + |z = yll,,) -

for some constants L > 0, 0 < 6 < 1.
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Definition 1.5.5. A solution of the initial value problem (1.5.3) on |tg, t1[ is a continuos
function x: [to, t1[— X such that

(1) z(t) € Dy forty <t < ty;

2) (t,z(t)) €U fortog <t < ty;

3 dx
dt

4) the map t — f(t,x(t)) is locally Holder continuous on ltg, t1;

5 ft°+p||ft$ (t))]| dt < +oo for some p > 0;

6 :E(t()) = T,

7) x(t) satisfies (1.5.3) on |tg, t1].

(t) exists on |tg,t1[;

(2)
(3)
(4)
(5)
(6)
(7)

Lemma 1.5.6. If x is a solution of (1.5.3) on |tg,t1], then = is a continuous function

from |tg,t1[ into X and

(1.5.4) z(t) = e Aty 4 / t e A=) (s, 2(s))ds.

to

Conversely, if = is a continuous function from ltg,t1] into X and from [tg,t1] into X,
f;ﬁp IIf(s,z(s))||ds < +oo for some p > 0 and the integral equation (1.5.4) holds for
to <t < ty1, then z(-) is a solution of the differential equation (1.5.3) on |to, t1].

Theorem 1.5.7. Assume A is a sectorial operator, 0 < o < 1, and f:U — X, where
U C R x X% is an open set, and f is locally Holder continuous in t and locally Lypschitz
in  on U; then for every (to,z¢) € U there exists T = T(tg,xo) such that (1.5.3) has a

unique solution on |tg, to + T[ with initial value x(tg) = xo.

Theorem 1.5.8. Assume A and f are as in Theorem 1.5.6, and assume that for every
closed bounded set B C U the image f(B) is bounded in X. If z is a solution of (1.5.3) on
lto,t1] and t1 is maximal, so that there is no solution of (1.5.3) on ltg,ts| if to > tq,
then either t; = +oc or else there exists a sequence t, — t; as n — oo such that
(tn,x(t,)) — OU (if U is unbounded, the point at infinity is included in OU ).

Corollary 1.5.9. Suppose A is sectorial, U =|1,+oo[x X%, f is locally Héolder contin-

uous in t, locally Lipschitz continuous in x for (t,x) € U, and also

1f (8 o)l < K () (1 +[l]l,)

for all (t,xz) € U, where K(-) is continuous on |1,+oc[. If tg > 7, g € X®, the unique
solution of (1.5.3) through (to, x) exists for all t > t.
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Theorem 1.5.10. Suppose A is a sectorial operator, U C R x X is an open set for
some 0 < a <1, f:U — X is locally Holder continuous in t, locally Lipschitz continuous
in x; let (t,,xz,) be a sequence of points in U, (t,,x,) — (to,zo) in R x X as n — oo,
(to,xo) € U; let ¢n:[tn, tn + Tn[— X* be the maximally defined solution of (1.5.3) with
initial value ¢, (t,,) = @y, and let ¢o: [to, to + To[— X* be the maximally defined solution
of (1.5.3) with initial value ¢o(to) = xo; then Ty > limsup,,_, ., T),, and ¢, (t) — ¢o(t) on
compact subintervals of |to,to + To[ as n — oc; if t, = tg for all n, then ¢,(t) — ¢o(t)

uniformly on compact subintervals of [tg,to + To| as n — oc.

More precise results on continuous and differentiable dependence of solutions can be
found in [12, Sect. 3.4].

Definition 1.5.11. Let Y be a topological space, D an open set in Rt x Y and let
m: D —'Y be a mapping. We write ynt := n(y,t). We call = a local semiflow on Y if the

following properties are satisfied:

(1) = is continuous;

(2) for every y € Y there is an w,, 0 < w, < +o00, such that (t,y) € D if and only if
0 <1< wy;

(3) ynO =y forally € Y;

(4) If (t,y) € D and (s,ynt) € D, then (t + s,y) € D and yrw(t + s) = (ywt)~ws.

If wy = 400 for every y € Y, 7 is called a global semiflow.

Let us consider the autonomous equation

d
(1.5.5) d—f + Az = f(z), t>0,
where A is a sectorial operator, U C X® is an open set and f: U — X is a locally Lipschitz
continuous function; as a consequence of Theorems 1.5.7 and 1.5.10 we have that the map
m:RT x X* — X% which associates to the couple (¢,y) € Rt x U the solution of the initial

value problem

d—$+Aa::f(x), t>0

dt
z(0) =y,
evaluated at the time ¢, is a local semiflow on X®. We refere to this semiflow as the

semiflow defined by the differential equation (1.5.5) .

6. Smoothing

Lemma 1.6.1. Suppose A is sectorial, g:10,T[— X has ||g(t) — g(s)|| < K(s)(t — s)7
for 0 < s <t <T < +oo, where K(-) is continuous on |0, T[ and fOT K(s)ds < +oo. Then
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the function .
G(t) :== / e Atg(s)ds, 0<t<T,
0

is continuously differentiable on the open interval |0, T| into X?, provided 0 < 3 < v, and
G e t y-B-1
O] <M g+ M [ (= K )
B

for 0 <t < T, where M is a constant independent of v, 3 and g(-). Further t — dG(t)/dt
is locally Hélder continuous from ]0, T[ into X#, iffoh K(s)ds = O(h%) as h — 07, for some
d>0.

Theorem 1.6.2. Assume A is sectorial, f:U — X is locally Lipschitzian on an open
set U C R x X, for some 0 < a < 1. Suppose z(-) is a solution on |tg,t1[ of

dx
— 4+ Ax =
o + Az = f(t,x)

.’E(to) =X
and (tg,x9) € U. Then if v < 1, t — dxz(t)/dt is locally Holder continuous from ltg, t1] to
X7 and

7. Back to Semilinear Parabolic PDEs

dx

<Ot —tg)* 77t
| <ot

Y

for some constant C.

Let us come back to equations (1.0.1) and (1.0.2) . We start by considering the second
order strongly elliptic differential operator
(1.7.1) L=- an(z)0"

la| <2
with Dirichlet (resp. Neumann) boundary condition on 2. Assume the coefficients aq/(+)
are of class C%7(Q) and the boundary 99 of Q is of class C*7. For every p > 1, let D,
be the closure in W2P(Q) of the set of all functions u € C2(Q2) that satisfy the Dirichlet
(resp. Neumann) boundary condition on 9f2. In the case of Dirichlet condition, D, =
W22(Q) N W, (), in the case of Neumann condition D, = WxP (), i.e. the space of all
functions in W2P(Q) that satisfy the Neumann condition in the sense of traces. In both
cases, define, for u € D,
(1.7.2) (Apu)(z) = Lu(z) = — Z ao(z)0%u(x).
| <2

Then A,: D, C LP(2) — LP(Q) is a closed operator, and the following theorem holds:
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Theorem 1.7.1. The operator A, is sectorial on X, := LP(S2). Moreover, A, has
compact resolvent and the spectrum S(A,) of A, is independent of p and consists of a
sequence {\i}, k = 0,1,..., with ReAg < ReA; <..., of distinct eigenvalues such that
|Ak| = o0 as k — oo. If Ay is selfadjoint, then each eigenvalue is real and has the same

geometric and algebraic multiplicity.

By Proposition 1.3.4, by the Sobolev imbedding theorems and by Gagliardo-Nirenberg

inequalities the following result obtains:

Theorem 1.7.2. Suppose Q C RY is an open set with smooth boundary, 1 < p < oo,
and A is a sectorial operator in X := LP(Q) with Dy = X' C W?P(Q). Then, for

0<a<ll,
X c WheQ) when k—n/q<2a—n/p, q>p,

X ccWv=Q) when 0<v<2a—n/p.

Let © C RY be an open set with smooth boundary, and let
frt,z,5w) ERXxQAXxRXxRY = f(t,z,s,w) €R

be a map. Let
(u,v):z € Q> (u(z),v(z)) € R x RY
be another map. We can define the Nemitski operator

ft, (u,v))(z) = f(t,z,u(zx),v(zx)).

It is easy to prove that if f is locally Holder continuous in ¢, continuous in x and locally

Lipschitz continuous in (s, w), then
fRx COLR xRY) — CO(Q)

is locally Holder continuous in ¢ and locally Lipschitz continuous in (u,v). This implies

that the operator
f:(t,u) € R x CHQ) = f(t, (u, Vu)) € CO(Q),

that is f(t, u)(z) := f(t, =, u(z), Vu(z)), is locally Holder continuous in ¢ and locally Lip-
schitz in u. Moreover it can be proved that if f has derivatives D{s w)f(t, x,s,w),j = 1,....k,

which are continuous on R x Q x R x RY | then D%f, 7 = 1,...,k, exists and is continuous
on R x C1(Q). By Theorem 1.7.2, it follows that, if p > N and (N + p)/Np < a < 1,
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then, with X = LP(Q), X® C C1(Q) and consequently all the above conclusions hold for
the map f:]R x X — X.

Finally, we come back to the general semilinear parabolic equation
(1.7.3) ur = Lu+ g(z,u,Vu), t>0,z €,

with Dirichlet or Neumann boundary condition on 0€2. We assume L is a second order

strongly elliptic differential operator with smooth coeficients, 9€2 is smooth, f is locally

Holder continuous in ¢, continuous in z, locally Lipschitz continuous in (s, w). We choose

p > N and we set X := LP(Q2). Then the above equation can be rewritten abstractly as
du p

(1.7.4) - + Apu = f(t, u).

It is easy to check that all the hypotheses of Theorem 1.5.7 are satisfied, so that the Cauchy
problem for (1.7.4) with initial datum in X is well posed. Thus we have a solution of
the abstract form of the original equation (1.7.3). Finally, combining Theorem 1.6.2 with
classical results in regularity theory for elliptic equations (see e.g. [10]) and with Sobolev
imbedding theorems, we conclude that the solution of the abstract equation is a solution

of the original equation in the sense of Definition 1.0.1 .
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CHAPTER 1I

GLOBAL AND LOCAL CENTER MANIFOLDS

Let Q@ ¢ RN be a smooth bounded domain and let L be a second order differential

operator of the form

(2.0.1) Lu:= Z 0i(aij(x)0ju) + a(z)u,

,j=1

where a;j,a:Q — R, i,j = 1,...,N are smooth and the matrix (a;j); ; is symmetric and
positive definite. As we have seen in the previous chapter, such an L is strongly elliptic
and formally selfadjoint.

Consider the following general semilinear parabolic equations with Dirichlet and Neu-

mann boundary condition respectively:

ug = Lu+ f(z,u,Vu), t>0,z€Q

(2.0.2)
u(z,t) =0, t>0,x€00.

up = Lu+ f(x,u,Vu), t>0,z¢€Q

2.0.3
( ) %u(a:,t) =0, t>0,xz€ 0.

with a nonlinearity f: (z,s,w) € QxRxRY s f(z,s,w) € R, which we assume to be differ-
entiable with respect to (s,w), with (z,s, w) = f(z,s,w) and (z,s,w) = D4 f (2,5, w)
continuous from Q x Rx RY to R and L(Rx RY R) respectively. We choose p > N, we set
X = L?(Q2) and we consider the sectorial operators A, defined by —L with Dirichlet and
Neumann condition, whose domains are W22 () N W, P (Q) and WP () respectively. We
choose a, (N +p)/2p < a < 1, so that X* C C*(2). We consider the abstract equation

(2.0.4) a(t) + Apu(t) = f(u(t))

defined by (2.0.2) or (2.0.3) . As we have seen in the previous chapter, (2.0.4) defines a local
semiflow 74 in the phase space X®. In the sequel, if it does not generate any ambiguity,

we supress the dependence of A, on the Lebesgue exponent p and we just write A.
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Definition 2.0.1. Let Y and Y be Banach spaces and (resp. 7) be a local semiflow
onY (resp. Y). We say that  imbeds in 7 if there is an imbedding A:Y — Y such that
whenever I is an interval in R and z:1 — Y is an orbit of m, then Ao z:I — Y is an
orbit of w. Here by imbedding we mean that A is injective, of class C, A=1: A(f/) Y
is continuous, and for every §j € Y, DA(§) is injective and its image splits, i.e. admits a

topological complement.

In this case M := A(Y) is a C* submanifold of ¥ which is invariant for the local semiflow
7 and 7 restricted to M is C'-conjugated to 7.
Now suppose Y = X<, m = 7 for some nonlinearity f, Y =R" and 7@ = m, is generated

by an ordinary differential equation

(2.0.5) £=v(f), £€R",

where v: R* — R™ is of class C1.

Definition 2.0.2. If m, imbeds in 7y we say that the ODE (2.1.1) imbeds in the PDE
(2.0.2) (resp. (2.0.3)), or that the PDE (2.0.2) (resp. (2.0.3)) realizes the vector field v (on

the invariant manifold M ).

In this case the qualitative behaviour of the ODE is completely simulated by the abstract
equation (2.0.4) (restricted to the invariant manifold M). An important candidate for the

manifold M is the (global) center manifold.

1. Center Manifolds

Definition 2.1.1. A set S C X© is a local invariant manifold for (2.0.4) provided for
any ug € S there exists a solution u(-) of the differential equation on an open interval
lto, t1[ containing 0 with u(0) = uo and u(t) € S for t1 <t < to. S is a global invariant

manifold if we can always choose |t1,ta[=] — 00, +00]

Remark. Note that S being an invariant manifold implies for all u € S there is at least
one solution of the backward Cauchy problem.
Now define
Xo :=ker 4,

and suppose n := dim Xy > 1. Since A, is selfadjoint, actually, for all p, Xg is the invariant
subspace corresponding to the spectral set {0}; hence, if ¢1,...,¢,, is a L?(£2)-orthonormal

basis of ker Ay, then, for all p, the spectral projection Py on X is given by the formula
Pyu = Zgbj/ u(z)p;(x)d.
j=1 &
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Write
¢(z) := (¢1(2). ..., pn(2)).

Note the assignement

Q:R* = Xo, QE:=¢-¢=) Lig
=1

is a linear isomorphism.

Now, let X, (resp. X_) be the eigenspace of all positive (resp. negative) eigenvalues
of A. As we have seen in the previous chapter, X, and X_ are A invariant, and X =
X_@®Xo® X,. Let Py (resp. X_ ) be the spectral projection onto X (resp. X_), and
let Py := Py + P_, X}, := Py(X). Set

A+ = A|X+ A_ = A|X_

Note X_ is finite dimensional, so —A_ is bounded on X_ and hence it generates a C°-group
e~ 4t t € R, of linear operators. Moreover —A_ is sectorial on X and so it generates an

analytic semigroup e~ 4+t ¢t > 0, of linear operators. Let ¢ be such that
0 < c<min{|ReS(A_)|, ReS(44)};

Then the following estimates hold:

He_AJHL(X_,X_) < Me*, t<0,
“6_A+t“L(X+,X+) < Me™, t=>0,
He < Mt=®e™“ t>0.

_A+tHz:(X+,Xg) =

Definition 2.1.2. The global center manifold My of equation (2.0.4) is the set of all
ug € X for which there exists a solution u: | — 0o, +oo[— X of equation (2.0.4) satisfying
u(0) = uo and such that

Sup [Pru(t)]|, < oc.

Remark. Obviously, the global center manifold of equation (2.0.4) is a global invariant
set.

In this section we state the well known center manifold theorem and give some comments
about the main ideas of its proof. First, we introduce some notations and terminology.

For m € Ny let C}*(R™,R") be the set of all maps

1:R* — R”

21



such that for all 0 < k < m the Frechet derivative D¥v exists and is continuous and bounded
on R*. CI"(R",R") is a linear space which becomes a Banach space when endowed with
the norm

|U|m := sup sup ‘Dkv

Jeln 0<kom (y”c<mm>hmn>'

Furthermore, let Y,,, be the set of all functions
fr(z, s,w) € AXRXRY — f(z,s,w) € R

such that for all 0 < k < m the Frechet derivative Dfs w) f exists and is continuous and
bounded on O x RxR¥. Y,, is a linear space which becomes a Banach space when endowed

with the norm

S lm == sup sup | D, ) f (2,5, 0) :
" s )e@x N 0<kem | T gk (xR

As we have seen in the previous chapter, for f € Y™, the formula

~

fw)(z) =f(x,u(z), Vu(z)), ve X* ze€qQ,

defines the Nemitski operator

fixe s X
of class C}".
For § > 0 and m > 1 define
V((S) = {f S | Sllp ‘D(s,w)f(a:a S’w)‘ﬁ((RxRN),R) < 5}
(z,8,W)EQXRXRN

and
Vi (0) :==V(5) N Yy,.

Now the following result obtains:

Theorem 2.1.3. For every m € N there is a positive constant 6,, and a map
A:(f &) € Vi (0m) X R® = A(f, &) € X*

satisfying the following properties:

(1) PoA(f,€) = Q€ and A(0,€) = Q¢;
(2) A is of class C™;
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(3) For every f € Vp,(0y,) the partial map Ay = A(f,):R* — X is an imbedding and
the set
My ={A(f.§) £ eR"}

is the global center manifold of (2.0.4) . Moreover, if vg: R* — R™ is defined by

vr(€) = QT Rof(A5(€), EER,
then the ODE defined by vy imbeds, via A¢, in (2.0.4) .
We say that an imbedding satisfying property (1) is canonical.

We shall briefly recall the main steps of the proof and we refere the reader to the papers
[37], [4] and [32] for details.
For Y a Banach space, y: R — Y and ¢ > 0, define

lyll; = supe™ <"y (t)]|.
teR

Let BCS(Y) be the set of all continuous y: R — Y such that lylle < oc; BC¢(Y) is a linear
space which becomes a Banach space if endowed with the norm ||-||..
Choose b > 1 and n > 0 such that mbn < c. For y: R — X set

t
—00 [ee]

(2.1.1)  (Ky)(¢) ::/0 Poy(s)ds+/ e_A+(t_s)P+y(s)ds+/ e~ A-t=9P_y(s)ds

whenever the right hand side of (2.1.1) is defined. It is not difficult to show that for
1n < ¢ < mbn the map K restricts to a bounded linear operator

K:BC%(X) — BC*(X?)
with

sup  [|K||, < oo.
N<¢<mbn

The following lemma is cited from [37]:

Lemma 2.1.4. If f € Y7, the following properties are equivalent:
(1) w is a solution of (2.0.4) on R such that

sup || Ppu(t)[| xo < o0;
teR

(2) w is a solution of (2.0.4) on R and u € BC"(X®);
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(3) ue BC"(X®) and for every t € R
u(t) = Pou(0) + Ky(t),
where

y(s):= f(u(s)), seR

Consequently, My is the set of all points w € X such that ¢(f,£)(0) = w, where
o(f, &) € BC"(X*) satisfies the equation

(2.1.2) ¢(f,6)(1) = Q¢+ K (s — f(¢(f,€)(9))(t), teR

We can write (2.1.2) as a fixed point equation in the space BC"(X®), namely

(2.1.3) o(f, &) = F(f,€ 6(f,€)),

where

F(f7§7 ) BCT}(XQ) - BCT}(XQ)
F(f,&y)(t) =+ K(s = fy(s)(1), teR
If 6,, > 0 is small enough, for every f € V,,,(dy,), the Lipshitz constant

~

/ o = sup { Hf(U) _ f(a)HX | u,u € X% u# {L}

||U - {"HXG

satisfies the estimate
K= sup{||K||Sn | s € S} HfH o<1,
Lip

where

S:={1,2,....,m}U{b,2b, ..., mb}.

This implies that F(f,£,-) is a contraction uniformly in (f, &) € Vp,(0,,) so by the contrac-
tion mapping principle for every (f, &) € Vp,(0,,) X R™ there is a unique solution ¢(f, &) of
equation (2.1.3) in BC"(X®). This defines a map

& Vi (6,0) X R — BOT(X).

Define the map

A: (£,€) € Vin(0m) x R™ 15 A(f, ) € X©
A(f,€) == ¢(f,£)(0)
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It follows that A satisfies property (1) of Theorem 2.1.3.

The proof of differentiability of A would follow from differentiability of ¢. However,
in general, F' is not differentiable as a map into BC"(X“) so the conclusion cannot be
achieved via the usual implicit function theorem. In fact F is of class C'! only as a map
into BC?(X®), and of class C? as a map into BC?*"(X®) etc. This observation suggest
that ¢ is of class C™ only as a map into BC™(X®). This is actually the case, but the
proof is far from straightforward; it is based on the tecnique of scales of Banach spaces and
it requires a lot of careful estimates and precise formulas for higher order derivatives of
composite maps. The reader is referred to [37], [4] and [32] for details. Part (3) of Theorem
2.1.3 follows from Lemma 2.1.4.

Remark. If the function f depends smoothly on some parameter ¢ in a normed space
¥, it is very easy to prove, exploiting the abstract arguments contained in [32], that the

map A in Theorem 2.1.3 depends on ¢ with the same degree of smoothness.

2. Local Center Manifolds

In this section we show how Theorem 2.1.3 can be used to prove existence of a local
invariant manifold at an equilibrium of (2.0.4) when the map f is smooth but not globally
bounded.

In the proof of the global center manifold theorem we used the boundedness of f and of
its derivatives to deduce that the Nemitski operator f is in CJ"(X“, X). In the abstract
contest the center manifold theorem holds with an arbitrary nonlinear map g: X* — X
of class C}", provided the Lipschitz constant of g is sufficiently small. If we are given
a nonlinearity f = f(z,s,w) in equation (2.0.2) and we only assume that, for any k,
0 < k < m, the Frechet derivative Dfs’w) f exists and is continuous on Q x R x RY, without
any boundedness assumption, the Nemitski operator f: X* — X is defined as well, and
is of class C™. If f(2,0,0) = 0, Dy f(2,0,0) = 0, then f(0) = 0 and Df(0) =
is a standard argument to modify the abstract equation (2.0.4) by mean of some cut-off
function defined on the finite dimensional space Xy in such a way that the hypothesis of
the abstract center manifold theorem are satisfied by the abstract modified equation (see
e.g. [32]). For our pourposes, however, we are lead to allow Dy, ., f(z,0,0) # 0; what we
need is a slightly different version of the local center manifold theorem in the case when
f(£,0,0) = 0 and Dy, ) f(z,s,w) is small for (z,s,w) € Q x K, where K is a compact
neighborhood of 0 in RN+1,

First, we observe that, since
X*=Xpo Xy cCl(Q),

25



we can find some R > 0 such that, whenever ©v € X“ and

sup {||Phu||a , HQ_lPouHRn} <1,

then
| (w(z), Vu(z)) ||y < R Vz € Q.

Now the following result obtains:

Theorem 2.2.1. For all m € N there is a posittive constant d,, with the following
property: if f:Q x R x RN — R is such that

(1) for allk, 0 < k < m, the Frechet derivative Dé“s’w)f(a:, s, w) exists and is continuous
on 2 x RxRY;

(2) f(2,0,0) =0 on ;

(3) SUD (5,5 w)eQix BN (0) HD(s,w)f(a:, s,w)H < Om, where Bé\gl(()) is the ball of radius
2R centered at 0 in RN*1;

then there is a map
Ap:€ € BY(0) CR" — A(€) € X“

with the following properties:
(1) PoAy(§) = Q€ and Ao(§) = QS;
(2) Ay is of class C™;
the map 1s an 1mpedding and the set
(3) th Afi imbeddi d th
MEFe = {As(€) | € € BY(0)}

is a local invariant manifold of (2.0.4). Moreover, if vs: BY(0) — R™ is defined by

vi(€) == Q7 Pof(As(€)), €€ BY(0),
then the ODE defined by vy imbeds, via Ay, in (2.0.4).
Proof. Take a C™ cut-off function y: R x RN such that

x(s,w)=1, (s,w)€ Bg“Ll(O)
x(s,w) =0, (s,w)€ RNH\BgH(O)'

?

define
9(z,s,w) = x(s,w) f(z,s,w);
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then we have that

(1) g € Yin;
(2) if by, is sufficiently small and

sup HD(s,w)f(*Ta s,w)H < Sma
(z,5,w)ERXx B (0)
then g € Vi, (dm);
(3) §(u) = f(u) for all w € X* such that sup {I|Ppul, . HQ‘lPouHRn} < 1.

We can apply Theorem 2.1.3 to obtain a global center manifold

Mg = {Ay(§) [£ € R}

for equation
u(t) + Au(t) = g(u(t));

moreover, by formula (2.1.2) (with f replaced by g) and by the mean value theorem, we

obtain that, if 6,, is sufficiently small and

sup HD(s’w)f(l‘, s,w)H < b,
(z,5,w)EQX B (0)

then the following esimate holds:
IPaby (), <1. E€R.

We set Ay := Ay|BT(0) and we have concluded. O

Remark. Assume Z is a Banach space of functions f: Q) x R x RY — R, f(x,0,0) = 0,
such that for all k, 0 < k < m, the Frechet derivative Dé“s’w) f exists and is continuous on
Q x R x RY; suppose that the topology of Z is at least as strong as the topology of locally
uniform convergence of all derivatives Dé“syw)f, k=0,...,m, on xR xR"?; then the

map f € Z — g = xf € Y, defined above is linear bounded; let U(d,,) be the set of all
functions f € Z such that

sup HD(s’w)f(:z:, s,w)” < b
(z,5,w)EQXX BT (0)

then, again by Theorem 2.1.3, the assignement (f,§) € U(dp) x BY(0) — Af(€) € X* is
of class C™. An example of a Banach space Z with the above properties is given by the
space of functions f(z,s,w) which are polynomials in (s, w) of degree r for some r € N,
with z-dependent coefficients in C°(Q) and which satisfy f(z,0,0) = 0.
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CHAPTER III

VECTOR FIELD REALIZATIONS

We have seen in the previous chapter that if f € Vp,(d,,) then the ODE

é = vf(£)7 5 € an
where
vi(€) = Q o Pyo foAs (),
imbeds in

via the canonical imbedding A . We shall now study the following inverse problem: given a
vector field v, find a nonlinearity f € V,(6,,) such that v = vy. Thus we want to “realize”
the vector field v on the center manifold of some parabolic equation with Dirichlet or

Neumann Boundary condition. Defining the nonlinear operator
(3.0.1) U(f)=Q toPyofoly

we are therefore looking for solutions of the equation

(3.0.2) U(f) =w.

Since vy is globally small, the problem makes sense only for small vector fields v. Thus
we restrict our problem by looking for small solutions f of (3.0.2). Therefore the first idea

that comes to one’s mind is to apply the surjective mapping theorem:

Theorem 3.0.1. Let X and Y be Banach spaces, U beopenin X,0 € U and V:U — Y
be a C!' map such that ¥(0) = 0 and DU(0): X — Y is surjective. Then U(U) is a
neighborhood of 0 in Y.

1. Vector Field Realizations via the Surjective Mapping Theorem

Let us try to apply Theorem 3.0.1 to equation (3.0.2). Without specifying the spaces X
and Y let us compute the formal derivative DW(0). By calculating directional derivatives

pointwise, we thus obtain:

DU(0) £(¢) = Tim 22 = VO

(3.1.1) = lim(Q " o Poo f)(A(s£,) = (Q7 o Py o f)(A(0,€))
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We know that Ag(¢) = Q€ = & - ¢. Consequently, given a vector field v, the function f

satisfies the equation

DY(0)f =v
if and only if the components v;, 2 = 1, ... ,n, satisfy the equation
(3.1.2) w(©) = [ 5@ (.- 9(0).€- Vola))do.

Now if for every x € Q the linear map

M(z):R* — RNH!
M(z)¢ := (s,w) = (£ ¢(x),€ - V()

were invertible, then we could define, for a given vector field v,

fx,s,w) =) r(@)on(M(2) "} (s,w)).

Then f would satisfy equation (3.1.2).

Now, since ¢(z) = 0 (or g—f = 0) on 9Q, M(x) cannot be invertible at all points of (2.
However, to solve equation (3.1.2), one actually needs only the invertibility of M(z) at
some point z = x¢. Thus we are led to introduce the following concept: let 2 C RY be an

open bounded connected set with smooth boundary, and let

L= 0i(ai;()0;) + a(z)

2,7=1

be a second order strongly elliptic symmetric differential operator with smooth coeficients;
let A, be the sectorial operator in X = LP({2), defined by —L with Dirichlet or Neumann
boundary condition on 9€2. The following definition is independent of p.

Definition 3.1.1. We say that the operator L satisfies the Polacik condition on € if
dimker A = N + 1 and for some (hence every) basis ¢1, ..., ¢ny1 of ker A, R(z) # 0 for

some x € §), where

$1(z) Vi (z)
R(d1,-. ., dn41)(x) := det ., x € Q.
¢nt1(z) Vonyi(z)
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Remark. We have n = N + 1 in case the Polac¢ik condition holds. One can also define a

(weaker and less interesting) version of the Pold¢ik condition with n = N.

Remark. Since R(z) is a continuous function on Q, when the Pol4¢ik condition is satis-
fied, there exists an open set G C 2 such that R(x) # 0 for all z € G.
Now we show how Poldc¢ik condition implies solvability of equation (3.1.2). First we

need a technical result:

Proposition 3.1.2. Let g be an arbitrary open subset of 2. Then there are functions
b; € C§°(R™), suppb; C Qo, i =1, ... ,n, such that

/ b,(x)qb](x)dx = 51']', Z,] = 1, cee g T
Q

Proof. Let us first notice that ¢1|Qq, ... ,¢n|Qo are linearly independent, by the unique

continuation theorem (see e.g. [15]). Consequently, the Green matrix
G = ( qﬁi(x)gbj(.r)dx)
Qo ij

is invertible. It follows that the linear operator
T:L*(9p) — R"

Th = (/Q b)) (2)dz, /Q b(a:)gbn(:z:)da:)

is surjective. Infact, for an arbitrary ¢ € R”, let a := ¢G~!; then b := a - ¢ satisfies Tb = c.
Now, since C§°(Qq) is dense in L?(Qg) and T is bounded, T(C§° (o)) is dense in R™. But
T(C§°(£2)) is a linear subspace of R™, hence it is closed. It follows that T'(C§°(£2)) = R”

and the proposition is proved. [J

Now assume L satisfies the Polacik condition; let G be an open subset of €2 such that
M (x) is invertible on G. Let b;, i = 1, ... ,n satisfy the assertions of proposition 3.1.2 with
Qo replaced by G. With n = N + 1, define

Sor_q bi(z)vg(M(z) (s, w)) if z € G;

0 otherwise;

(3.1.3) flx,s,w):= {

then simple computations show f satisfies equation (3.1.2). Note that, if v € CJ*(R™, R"),
then f € Y,,. Hence, for every m € N, the formal derivative DW(0) is surjective as a

map from Y, to CJ*(R",R™). However, to solve our realization problem we cannot use
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the surjective mapping theorem since, unfortunately, ¥ is not a C!' map from V,,(0,,) to
Ci"(R™,R™). Infact, if we calculate the formal derivative at an arbitrary point fo, then we

obtain

DU(fo) £(£) = lim Lo+ 5F(8) = ¥(fo)()

= Q7 o Pyo f)(A(f0,8) + (@7 o Py) - [Dfo(A(fo,€)) - (DA(fo, €)F)].

Since this formula contains the derivative of fj it will, in general, no longer define a linear
map from Yy, to CJ*(R™,R™) but only from Y, to the larger space C?_I(R" ,R™). Actually,
it is not difficult to prove that ¥ is a C! map from V,,(6,,) to C;"~*(R™, R") with derivative
given by the above expression. However, it is obvious that DW(0) cannot be surjective as
a map from Yy, to ;"' (R, R").

The surjective mapping theorem can still be used to solve a weaker realization result
(see [18]). Let k € Ny and define J} = J¥(R",R") to be the (finite dimensional) Banach
space of all jets in R™ with 0 as target and source, i.e. the linear space of all polynomial

functions h: R™ — R™ of degree < k, with v(0) = 0, endowed with an arbitrary norm |h|.

Theorem 3.1.3. Assume the Polacik condition for L on ). Then for every k € Ny
and every m € N with m > k + 1 there is an € > 0 such that for every k-jet h: R* — R"
of degree k with |h| < e there is a map f € Vy,(0y,) such that h is the k-th order Taylor
polynomial of the vector field vy at 0

Proof. The map

TF: Y (R, R™) — J¥

1. X
(T*0)(€) = Y 5 D'(0)¢', ve G R RY), €R”
i=0

is linear and bounded. Since
U: V0 (0) C Yo — CJHR™,R™)

is of class C!, it follows that

TF 0 U: Vy (0n) — J&

is of class C1. We only need to show that D(T* o ¥)(0):Y,, — J& is surjective, because

then an application of the surjective mapping theorem will conclude the proof. Take an
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arbitrary h € J§. Then choose v € C"(R",R") with T*v = h. Define f as in (3.1.3).
Then f €Y, and D¥(0)f = v. Consequently

D(T* o U)(0)f = T*(DW(0)f) = T*v = h.

This concludes the proof. [

A result of this type is called a jet realization result, since it shows that, for every k& € Ny,
every sufficiently small k-jet of a vector field on R” can be realized on the center manifold

of an appropriate semilinear parabolic equation
ug — Lu = f(x,u, Vu)

with Dirichlet (or Neumann) boundary condition on a bounded domain Q C RY, where
N =n—1, provided the operator L satisfies the Poldc¢ik condition on 0€2. Later on we will
come back to jet realizations to give more precise and satisfactory results.

For the vector field realization problem, a very strong theorem was proved in [33]:

Theorem 3.1.4. Assume the Polacik condition for L on ). Then for every m > 13 there
exists an €,, > 0 such that for every vector field vg € C™L(R™  R™) with |vo|mi11 < €m

there is a nonlinearity fo € Vy,(0m) such that

Q 'Pofo(As,(€) = vo(€), €e€R™.

The proof of Theorem 3.1.4 is very complicated: it is based on Nash-Moser iteration
scheme and involves a loss of derivatives. If we do not require the imbedding to be canonical,

life is considerably simpler. This will be discussed in the next section.

2. Vector Field Realizations via Noncanonical Imbedding

In this section we will prove that, essentially under the same hypotheses of Theorem
3.1.4, it is possible to realize all sufficiently small vector fields on R™ on the center manifold
of an appropriate semilinear parabolic equation, without any loss of derivatives; the price
to pay is that the imbedding is not canonical. The main result is the following theorem,

which is a generalization of Theorem 2 in [25].

Theorem 3.2.1. Let L be as above and let k > 1; assume:

(1) L (with Dirichlet or Neumann boundary condition on 0S2) satisfies the Polacik
codition on €);
(2) G C Q is an open set;
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(3) R(z) #0 for all z € G;
(4) there is a function b € C*°(§Q) with suppb C G such that

A< =K
for every eigenvalue X\ of the operator L + b on Q with Dirichlet (or Neumann)
boundary condition on 0f).
Then there is a d1 > 0 such that for every v € Cy(RN*1, RN*1) with [v|ca < 1 there is a
nonlinearity f = f, € Y, with the property that equation (2.0.4) realizes the vector field
v on an invariant manifold M = M, via an imbedding A = A,:RN*! — X of class C'.
Moreover, for each m > 1 there exists a 6, > 0 such that if v € C/*(RVNT1 RN*T1) and

v|gm < 6,, then f, can be chosen such that f, € Y,, and the imbedding A,: RN*T1 — X
vlcy g

is of class C'™.

In Ch. 9 we will prove that, given an open set {2 and a principal part

> 9i(aij(2)9)),

ij=1
both for Dirichlet and Neumann boundary condition on 0f2, it is possible to construct a

potential a(x) in such a way that the operator

L= 0(aij(x)d;) + a(x)

ij=1
satisfies the Polac¢ik condition and assumption (4) of Theorem 3.2.1.
Before proving Theorem 3.2.1 we state two lemmas. The proof is very simple and is
left to the reader. First, we introduce some notation and terminology. For every globally
Lipschitzian map v: RV ! — RN+ Jet 7,: Rx RV+1 — RN*1 be the global flow generated

by v. By differentiating the equation
§=(¢)
and using Gronwall’s inequality we derive:

Lemma 3.2.2. For every m € N there is a constant ¢,, such that for every vector field
v € CM(RNTL RN+ the flow m, is of class C™ and for every (t,&p) € R x RN+1

‘Dgn”v(tvfO)‘Lm((RNH)m,RNH) < Cm eXp(mL|t|)
where L := |v|cpm.

Applying the higher-order chain rule to the composite map v o m, and using Lemma
3.2.2 we obtain
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Lemma 3.2.3. For every m € N there is a constant c,, such that for every vector field
v € O (RN, RN+ and for every (t,&) € R x RN+1

‘Dén (’U © Wv)(tv 50) ‘Cm((RN+1)m’RN+1) < cemlL exp(mL|t|)

where L := |v|cpm.

Proof of Theorem 3.2.1. Given v: RN*+1 — RN+1 with [v]g; sufficiently small, we have
to find a nonlinearity f and an imbedding A: RM*! — X such that for each solution &(t)
of the ode

(3.2.1) £(t) = v(£(t)

the function u(t,z) = A(&(t))(x) is a solution to equation (2.0.2) (or (2.0.3)). The latter

means (dropping the argument ¢)

(3.2.2) DeA(§)(x)v(€) — LAE) (z) = f (2, A(&)(x), VAE) (2)).

We look for A in the form

(3.2.3) A(§)(z) = ®(x) - £+ T(&)(),

where ®(z) = (¢1(z), ..., dn+1(x)) with ¢1(z), ..., ¢n+1(x) as in Definition 3.1.1, and
[:RY+! — X The construction of f and T is based on the following idea. If T'(¢)
is “sufficiently small” then for each z € G the mapping £ — (A(§)(z), VA(E)(x)) is a
diffeomorphism of RN+, Thus for # € G we can choose f such that f(z, A(&)(z), VA(E)(x))
equals any given function of &; we shall require this function to equal to b(z)T'(£)(x), where
I is still to be found. For z ¢ G we set f(z,s,w) = 0. Substituting this expression for f
and (3.2.3) into (3.2.2), we obtain that I'(£)(z) must satisfy

Del (&) (w)v(§) — LT(E)(z) — b(z)T(§)(x) = ®(2) - v(§)

(we have used the fact that the ¢; are in the kernel of L). Equivalently, we have to find
['(£) such that for each solution £(¢) of (3.2.1) the function u(t, z) = I'({(¢))(x) satisfies

iy — (L + b)i = ®(x) - a(£(t)).

As we also require that @ be defined for each ¢ and bounded, the variation of constant
easily leads to a formula for @, hence for I". This formula is a starting point in the de-
tailed construction that follows next. We verify that it yelds I' and f of class C™ if
v € O (RN, RN+,
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Let v € C"(RNT1, RV*1) be such that [v|cp < 01, where 4y is a constant to be specified

below. Denote L; = |v|s, 7 = 0, ... ;m. Assume L; + 1 < & and mLy, < k. Let T(t),
b

t > 0, be the analytic semigroup on X generated by the operator —(L + b) on 2 with

Dirichlet (or Neumann) boundary condition on 0€2. We have the estimates
(3.2.4) IT(t)u|o < Cout™ e ul, t>0, ue X

Let [®] = [(¢1, ..., dng1)| = St |§t|a. For € € RNH! define

(3.2.5) [(€) = Ty (€) = — / T ()@ - w(r(—s.0))ds

where m = m, is the flow generated by (3.2.1). The integrand in (3.2.4) is continuous into

X< and its X“-norm is bounded by the function
g(s) := Cq|®|Los™ e ",
This latter function is integrable, so the integral in (3.2.5) converges in X*. Thus
RV — X

is defined and bounded globally. Moreover, in view of Lemma 3.2.3, for every j with
1 < j < m and every £ € RN¥*! the j-th order Frechet derivative at & of the integrand in
(3.2.5) is bounded in the £/ ((RV+1)J X *)-norm by the function

95(8) = Cqcy |(I’|Ljs_ae_(”—ij)S_

Since this function is integrable, it follows that T' € Ci*(RN*1, X<). Moreover,

(3.2.6) / 9i(s)ds < Cocs|®|L;(1/(1 —a) + (1/(k = jL;)))-
0
Define the map
A=Ay RVH — x©

by
s &4+ T,(8).

Now let U be an open set with suppb C U C U C G. For every = € G the map

M (z): RV — RNVH!
£ (0(2) £, Ve(2) - )
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is a linear isomorphism. Since U is compact

M = sup |(M(z))"| < oo,
z€U
Using (3.2.6) with j = 1 and the relation x > L; + 1, we see that there is a constant Jy,
0 < 41 < Ly (independent of v) such that whenever |v[c1 < 61
sup  (|DeL(E) (@) + VDL (€) (w)]) < 1/M.
zeU,EeRN+1
For such a v, the contraction mapping principle and the implicit function theorem imply
that, for £ € U the map

g RVTL 5 RN+
£ (A(E)(x), VA(E) (7))

is a diffeomorphism of class C™ and, for all 7 with 0 < 57 < m, the map
(2,2) € U x RV s DI ()71 (2) € L7 ((RVH)T RVHY)

is continuous and bounded. In particular we obtain that £ — A(§) is an imbedding of
RN+ into X <. Define for z = (s,w) € RN and z € Q

0, if x & supp b;
fo.2) = » |
b(@) L ((¢2) " (2))(2), ifx€U;
since supp b C U, the definition of f is unambiguous and the smoothness properties proved
so far imply that f € Y,,. We shall show that f satisfies the assertions of Theorem 3.2.1.
To this end, first note that

LO=Tue) == [ T(-9)8-u(n(s.&)ds

for all £&. Hence for all to,t € R with tg < ¢
0

P(n(t,€)) = - / T(—5)® - v(m(t + 5.€))ds

— o0

S / T(t—s)®-v(r(s,§))ds

—OoQ

:—T(t—to)/o T(to — )@ - v(n (s, £))ds+

— o0

_/ T(t— 8)® - v(n(s, €))ds

to

“T(t — to)T(r(t0, €)) — / T(t— ) - v(n(s, €))ds.

to
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Since the function s — @ - v(7(s,&)) is locally Holder continuous into X it follows by
Theorem 1.5.4 and Lemma 1.6.1 that the function

wteR—D(n(t,¢)) € X
is differentiable and
u(t) = (L +b)u(t) — @ - v(n(t,€)), teR
Therefore the definition of f implies that the function
wt € R A(rw(t,€)) € X
solves the equation
u(t) = Lu(t) + f(-u)(), Vu(t)(-), teR

The theorem is proved. [

It was not realized in [25] that, for §; small enough, the manifold M in the above theorem
is actually the global center manifold of (2.0.4), although the imbedding A, in general, is

not the canonical imbedding; this was proved in [29]:

Theorem 3.2.4. Assume that L is such that all hypotheses of Theorem 3.2.1 are sat-
isfied. Then there is a 61 > 0 such that for every v € Cp(RN*H, RN*T!) with |u|ca < &1
there is a nonlinearity f = f, € Y1 with the property that equation (2.0.4) realizes the
vector field v on its global center manifold My via a (not necessarily canonical) imbedding
A = ARV — X@ of class C'. If in addition v € C/*(RN+1 RN+1) then f, can be
chosen such that f, € Y,, and the imbedding A,:RNT1 — X is of class C™.

Proof. Theorem 3.2.1 implies the present theorem provided that we prove the following

Claim: For 61 > 0 sufficiently small the imbedding A constructed in the proof of Theorem
3.2.1 is an imbedding onto the global center manifold of (2.0.4).

The imbedding A is constructed in the form
A©)(x) = ®(z) -+ T(E)(z), EeRY zeQ

with I' = T,: RVt — X of class C! (and of class C™ if v € C*(RNT1 RV+1)) and

satisfies the estimate

3:27) s (To(©)lxe + PLu(©)leronxe) < Cliley, v e CHRYTLRYS,
= 1
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with some constant C' independent of v € C} (RN, RN*1). Now (3.2.7) and the definition
of the function f given in the proof of Theorem 3.2.1 imply that

fo =0 inYpas|v[g = 0.

Thus the center manifold theorem implies that for §; small enough and [v[g1 < 61 the
global center manifold My, of (2.0.4) is given by
My, = Mg, (RYT)

v

where
Ag :RN*TL 5 X

is the canonical center manifold imbedding. Fix such a v and let f := f,. For £ € RN*!
let t € R~ £(t) be the solution of (2.0.4) through £. Then

Puly (£(2)) = Pul'y(£(1))
so by (3.2.7) t = Py A,({(t)) is bounded in X“. This implies that A(£) € My, so
M, C My, .
Since Ay, is the canonical imbedding,
A7 o Ay(€) =€+ Q7RI (), £ e RV,

If [u|ca is small enough then (3.2.7) implies that the map £ € RN+ s Q7 1P, (¢) € RN+

is a contraction so A;vl o Ay: RN*T 5 RN+ ig surjective. This immediately implies that
M, > M fo

The proof is complete. [J
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CHAPTER 1V

JET REALIZATIONS AND DENSITY RESULTS

In the previous chapter we have proved that all sufficiently small vector fields in R can
be realized on the center manifold of an appropriate semilinear parabolic equation on a
N-dimensional open set €2, in case n = N + 1. We have also given a jet realization result
under the same restriction on the space dimension of the PDE. In this chapter we deal
with the following problem: what can we say if we do not impose any restriction on the

space dimension? It is well known that, if N = 1, equation

up = a(x)uzy + f(x,u,uy,), t>0, z€l0,1];

(4.0.1)

u=0, t>0, x=0,1,
or
: ) up = a(x)uzy + f(x,u,u,), t>0, z€l0,1];
4.0.2

Uy = 0, t>0, =01,

admits a Ljapunov functional, so that the dynamics is far from complicated; in terms of
realizations, the kernel of a strongly elliptic differential operator with Dirichlet or Neumann
boundary condition in one space dimension is necessarily one dimensional, and hence the
same is true for center manifolds of equations like (4.0.1) or (4.0.2). The situation is com-
pletely different as soon as N > 2. In this case it is possible to find operators with kernels
of arbitrarily high dimensions. We will see that, if the eigenfuctions of such an opera-
tor satisfy certain algebraic independence conditions, it is possible to prove realizability
of all sufficiently small jets even in two space dimensions; moreover, again in two space
dimensions, it is possible to prove realizability, up to flow equivalence, of a dense (in the
C! topology) subset of vector fields. We can also impose restrictions on the form of the
nonlinearity and make it as simple as possible (e.g. linear in the gradient), whereas it is
known that, if the nonlinearity does not depend on the gradient at all, again the parabolic

equation admits a Ljapunov functional.

1. Jet Realizations
Let © C R? be a smooth bounded domain. Let
2
L= 0i(ai;()0;) + a(z)
ij=1
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be a strongly elliptic second order differential operator with symmetric smooth coefficients.
Now fix £ € N and arbitrary integers q1, ... .qx such that 1 < ¢ <l forl =1, ... k. Let
E=E&(qu,...,q) be the set of all functions f:R* — R of the form

k
f(xvyv S,U)) - Zal(xuy)sl_qlwau (:Uuy: S,U)) € R47
=1

where a; € H*>(Q) for I =1, ... ,k. For f € £ and @ € R?, consider the equations
up = Lu+ f(x,y,u,ug), t>0, (x,y) €

(4.1.1)
u=0, t>0, (z,y) € 09

and
up = Lu+ f(z,y,u,ug), t>0, (x,y) €

(4.1.2) du

P t Q
9 0, >0, (z,y) € 09,

where 1, 1= w - Vu.
Set X = LP(Q2), p > 2, and let A: D4 C X — X be the sectorial operator induced by
L with Dirichlet or Neumann boundary condtion on 89, where D4 = W22(Q) N W, ()

in the first case, and Dy = WP (Q) in the second case. As usual we rewrite (4.1.1) and

(4.1.2) as abstract equations in X:

(4.1.3) i+ Au = f7(u),

where f@(u)(z) := f(z,u(x), um(z)). Note f@ € C°(X%, X). Assume
dimker A = n.

We can identify £ with (H? (Q))k, with the norm induced by this identification, £ becomes
a Banach space whose topology is stronger than the topology of locally uniform convergence
of all derivatives D?sjw)f(:z:,y, s,w), h =0, ...,k +1on Q x R2 We are exactly in the
situation described in the remark following Theorem 2.2.1, with Z replaced by £ and m
replaced by k£ + 1. Thus we can find an open neighborhood U/ in £, 0 € U, and a map

AU X BY(0) Cc & xR* — X“

with the following properties:
(1) PoA(f,€) = Q€ and A(0. &) = Q¢;
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(2) A is of class C**1;
(3) the map A(:) := A(f,-) is an imbedding and the set

Mge = {A5(€) | € € B} (0))

is a local invariant manifold of (4.1.3). Moreover, if v¢: BY(0) — R" is defined by

vp(€) == Q7 P fT(Ay(€)), &€ BY(0),

then the ODE defined by v; imbeds, via A¢, in (4.1.3).

As in Section 3.1, we define a map

U:U C £ — CEBT(0),R)
U(f)(€)=Q " oPyo fToAs(¢), &€ BY(0).

Simple computation shows that ¥ is of class C'* and

DU(0)f(¢) = (Q " o Pyo f7)(QE).

We are interested in jet realizations. Thus we introduce the linear bounded operator

T": CF(B?(0),R") — J}
(T*0)(€) =3 ~Diw(0), v e CE(BI0),R), £ € BI0).

2!
i=0

Our aim is to find a condition which guarantees that D(T* o ¥)(0) is surjective onto J&¥.

Our starting point is the abstract surjectivity condition

(SC) For every polynomial function h:R" — R™ of degree< k, h(0) = 0, there is an
f€&(q,...,qr) such that

(4.1.4) T*(D¥(0)f) = h.

To give a more explicit expression of this condition, we take an L2(Q2)-orthonormal basis
of ker A, namely ¢1, ..., ¢,. Then (4.1.4) reads

(4.1.5) T’“/Qqu(:v,y)f (1773/7Z§i¢i($ay)725i¢iw($7y)) dxdy = h;(£),
i=1 i=1
j=1,...,n.
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The nonlinearity f has the form

k
(z,y,s,w) E a(x,y)s' M
1=1

and the polynomial vector field h has the form

k
=3 ppe?, j=1,....n

I=1|8|=I

By substituting these expressions into (4.1.5), we finally get

k n l=aq n a k
(4.1.6) / b > (Z €j¢j> (Z €i¢m> dody =" p;pt?,
€ =1 \j=1 i=1 =1 |B|=l
7=1,...n.

Consequently (SC) is satisfied, provided we can find functions ay, ..., a; € H?(Q) such
that (4.1.6) holds for all ({4, ...,&,) € R™. The left hand side of (4.1.6) can be manipulated

in the following way:
k n l—a s aQ
/Q P; Z a (Z §j¢j) <Z &'@@) daxdy =
_ i— i=1

— | |
~ [+ al( %5%‘) ( > %sw;) dady =
=1 la|=l—q; ) '

[7l=a

k l—
Z Z 'ql - qr 5&—{—7/ alqu(,/)aqzﬁ;da:dy:

=1 |a|=l-q |vI=q

I
] =

3 (I—aq) qz/ w061 dudy | €°

aly!
=l a+vy=p8
lel=l=qi|v|=a

l

1p

Equating coefficients we therefore see that (SC) is satisfied if and only if for every | = 1,

ckyforall pjgeR, j=1,...,n, BN}, |3 =1, there is a;(z,y) € H*(2) such that,
forall j=1,...,n, and for all € N} with || =1,
l—a)q!, .
(4.1.7) /al 3 %@qs 62 | dedy = pjp.
Q . .

lel=l=qi,|v|=a
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Using the density of H2(Q) in L?(Q) it is easy to see that this latter condition is satisfied

if and only if for for every [ =1, ..., k the functions

Q@ - .
la|=l—qi,|v|=a j=1,....n

are linearly independent.
Now we introduce the following notations: given v, 3 € Njj, we say that v < giff v; < 3,

1t =1, ..., n. Moreover, set

With these notations, the independence condition reads (cf. [29]):
(IC) For every [ =1, ..., k and for every ¢, 1 < g <, the functions

1
Z P g
(B —~)! @
=5 B=7)! |
Ivl=q j=l,...n

are linearly independent.

Remark. If (IC) is satisfied then the functions a; in (4.1.7) can actually be chosen to
belong to any dense subspace of L2(£2), e.g. they can be chosen as smooth as € is. On the
other hand, these functions cannot be chosen to be constant, in general. The reason for
this is that the subspace of functions in £(q1, ... ,qx) with spatially constant coefficients
has dimension k, while, for dim X; > 1, the space of jets JF(X;) has dimension > k so the
surjectivity condition (SC) is not satisfied in this case.

The above considerations together with the classical surjective mapping theorem yeald

to the following

Theorem 4.1.1. Let n and k € N. Assume dimker A = n and assume there is an
L%(Q)-orthonormal basis ¢1, ... ,¢,, ofker A and a vector w € R? such that (IC) is satisfied
up to the order k. Then there is an open neighborhood B of 0 in J§(R"™) such that every
jet h € B can be realized in (4.1.4) by a a nonlinearity f € &.

Remark. Choosing ¢q; = [ for all [l = 1, ... ,k, we obtain as a particular case Polacik
result ([23, Th. 2.2]. On the other hand, choosing ¢ = 1 for all l = 1, ..., k, we obtain
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a jet realization result for nonlinearities which are polynomials in u and which are linear
functions of Vu: in other words, we obtain a jet realization result in the class of equations
of the form

ug = Lu+ f(z,u)w - Vu

where f(z,u) is a polynomial in u with z-dependent coefficients and @ € R2.
In the next section we will show that condition (IC) can also be used to obtain realiz-

ability of a dense subset of vector fields.

2. Density Results

Let n and k be fixed. Assume ker A is spanned by L2(Q)-orthonormal functions ¢1,

. ,¢n satisfyng (IC) up to the ordr k for some w € R?. Let h: R®™ — R™ be a polynomial
function of degree k, with ~A(0) = 0. Then we have seen that there exists a function f € £
such that

(Q'Pof™)(Q€) = h(€), €E€R".
Keep this f fixed and, for every ¢ > 0, consider equations

up = Lu+ef(x,y,u,uyp), t>0, x €

(4.2.1,)

u =0, t>0, r €0
and

ug = Lu+ef(x,y,u,up), t>0, x €
(4.2.2,) ou

— =0, t>0, xeof
ov

and the corresponding abstract equation

(4.2.3,) i+ Au = ef® (u).

Following the terminology of the previous section, we have that, for all sufficiently small €,
ef € U; then the map Ay: BT(0) C R* — X ¢ is an imbedding and the set

M = {As(€) | € € BY(0)}
is a local invariant manifold of (4.2.3).. Morover, if vc¢: BT (0) — R" is defined by

ver(€) = Q7 P f7(Aes (€)), € € BY(0),
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then the ODE defined by vy imbeds, via A.¢, in (4.2.3).. Observe that the ODE

é = Vef (5)
is equivalent, up to a time rescaling, to the ODE
é = he (5)7

where
he(€) = Q7 Pof™ (Aef(Q€)), € € BY(0).
Now, since the map
AU X BY(0) CcExR* — X“

is of class C**1 and Ag(¢) = Q€, we obtain that
he = Q7' PofZ(Aep(Q) = QM Pof=(Q-) = h() ase—0

in CF(B7(0),R"). Thus we have reached the following result: given a polynomial function
h:R™ — R™ of degree k with h(0) = 0 and given an 1 > 0, we can find a nonlinearity g € £
such that the vector field vy: BT'(0) — R™ is equivalent, up to a time rescaling, to a vector
field hy: BT (0) — R™ such that

sup sup |D'hy(€) — D'h(E)] < n.
0<I<k ¢€ BN (0)

In Chapter 9 we will prove that, given an open set 2 C R2, a principal part

2
> dilai(2)d;),
2,7=1

and numbers n,k € N, both for Dirichlet and Neumann boundary condition on 0 it is

possible to construct a potential a(z) in such a way that the kernel of the operator

2
> di(aij(2)9;) + a(x)
i,j=1
is spanned by L?(2)-orthonormal functions ¢y, ... , ¢, satisfying (IC) up to the order k,
for some w € R2.
Assume for the moment this is true. Let  C R? be a smooth bounded domain, let
a,-j:ﬁ — R be smooth functions, a;; = aj; for all 7,5 =1, ..., 2, and

2

Z aij (2)G¢ > ¢, 7€Q, (e R

i,5=1

for some ¢ > 0. Then the following result obtains:
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Theorem 4.2.1. Let n € N be arbitrary, let B be the unit ball centered at 0 in R” and
let ¢C*(B) be the Banach space of all C* maps h: B — R" with h(0) = 0, endowed with
the C! norm. There is a dense set D in oC'(B) with the property that for every h € D

there is a potential a: Q) — R, a nonlinearity g of the form

k
g(xvyv S,U)) = Zal(xvy)sl_1w7 (a:,y, S,U)) € Qx R2,
=1

for some k € N, and a vector w € R? such that the flow of the equation
§=h(), ¢€B
is C' equivalent to the flow of equation
w4+ A= g% (u)

restricted to some (n-dimensional) local center manifold, where A is the sectorial operator
generated by ,
L= di(ay(2)d;) + a(x)
ij=1
with Dirichlet (or Neumann) condition on 0.

Proof. Let h: B — R™ be a C! vector field. Since polynomial functions are dense in
CY(B), it is not a restriction to assume h is a polynomial, say of degree k. We take a
potential a such that the kernel of the operator L, with Dirichlet (or Neumann) boundary
condition on 99, is spanned by L2(Q)-orthonormal functions ¢1, . .. , ¢, satisfying (IC) up
to the order k for some w € R%2. Choose (qy,.-.,qx) = (1,...,1). Take n > 0; as we have
seen above, we can find a nonlinearity g € £(1,..., 1) such that the vector field vy: B — R™

is equivalent, up to a time rescaling, to a vector field h: B — R” such that

max {Sup |hg(§) = h(&)], sup [Dhy(£) — Dh(€)|} <.

¢€EB ¢eB

This concludes the proof. [

Remark. The results described in this section are essentially a restatement of results
contained in [23] and [29]; however here we have given a much simpler proof, based on a
kind of ”singular perturbation” approach instead of the one contained in [23], based on the
method of realization of C"™-families of jets. The present approch was suggested by Prof.
P. Polacik to the author of this thesis while he was visiting the institute of Mathematics

at Comenius University in Bratislava.

Remark. All results in this chapter remain valid if the space dimension is any N > 2.
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CHAPTER V

PERTURBATION OF EIGENVALUES OF SELFADJOINT OPERATORS

In this chapter we will consider perturbations of a finite number A\j;1 < Ajj0 < -+ <
Ai+p of eigenvalues of a self-adjoint operator A on a Hilbert space. We shall prove in
Theorem 5.2.3 below that if the eigenvectors corresponding to these eigenvalues satisfy a
certain nondegeneracy assumption (part (4) of Definition 5.2.2 below) then for some ag > 0
all tuples p1, ..., p, lying in the ag-neighborhood of A\jy1, ..., A4, can be realized as
eigenvalues of a suitable perturbed operator A + B, B symmetric and bounded. It is an
essential part of this result that the constant ag does not depend on the operator A but
only on a bound for Ay, — Aj41, on the gap between A1, ..., Ay, and the rest of
the spectrum of A and on the constant contained in the above mentioned nondegeneracy
assumption.

Theorem 5.2.3 solves a general, abstract inverse problem. Together with a convergence
result established in the next chapter it will enable us to constuct concrete differential

operators satisfying the assumptions of Theorem 3.2.1 and 4.1.1 above.

1. The Surjective Mapping Theorem

We begin by stating the following general result, which is essentially a version of the

surjective mapping theorem with all constants made explicit.

Theorem 5.1.1. Suppose X is a Banach space, Y is a normed space and «, 0, p are
numbers satisfying o, 6 > 0 and 0 < p < 1. Let ¢ € X and f:B,(c) C X — Y and
S € L(X,Y) be such that and

(5.1.1) S(B1) D Be
and
(5.1.2) |f(b) — f(a) = S(b—a)| < pflb—al|, foralla,be By(c).

Under these assumptions,

f(Bale)) D Bgi—pya(f(c)).

Proof. Replacing f by the map f(- 4 ¢) — f(c) we may assume that ¢ = 0 and f(c) = 0.
Property (5.1.1) and the homogeneity of S imply that for every 8 > 0,

(5.1.3) S(BQ—II@) D) Bg.
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Let y € Bg(1—p)a be arbitrary. Choose § with
lyl <6 <61 —p)a.

We claim that there is a sequence (zy)ren, such that zo = 0 and

x| < 07 1pF 16,
(5.1.4) i
Sep=y— f(x1+---+x-1), forzeN

(here, £y +- - -+x0 := 0.) In fact, set o = 0. By (5.1.3) there is an z; € X with |z1| < 671§
and Sz; = y. Thus z; satisfies (5.1.4) with k£ = 1. Suppose that n > 1 and 2, 1 <k <n
are chosen so that (5.1.4) is satisfied for 1 < k < n. Then

[z + x| <z 4 2] KT —p) T < @
so f(x1+ -+ zy) is defined. Moreover, using (5.1.2) we have

ly—flzi+-ta)|=ly— fl@r+ +2n1)
FH@ e ) = fla )
<|flxr 4+ +axn) — flxr+ -+ xp_1) — Szp| < pbla,| < pmo.

Hence, by (5.1.3), there is an z,,1 € X with |z,,.1| < 071p" with Sz,,.1 =y — f(z1 +
-+ +xy,). Thus (5.1.4) is satisfied with £ = n+ 1. Now obvious recursion proves existence
of a sequence (xg)ken, With the desired properties. These properties and the completeness
of the norm on X imply, on the one hand that the series Y ;- ; zy, is absolutely convergent
and so it has a limit € X, and, on the other hand, that |z| < a and f(z) = y. This
completes the proof. [

Corollary 5.1.2. Suppose X is a Banach space, Y is a normed space and 0, p are
numbers satisfying 0 > 0 and 0 < p < 1. Let S and T € L(X,Y) be such that

S(Bl) D By

and
T — S| < pb.

Then
T(Bl) D B6(1—p)

Proof. Just apply the preceding theorem with @« =1 and f=T|B;. O
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2. The Main Result

In the sequel, following the terminology of [30], we use the following notation: R are
the real numbers, C the complex numbers and K denotes both R and C. Most norms will
be denoted by single bars: |- |, with indices or without. This will not lead to confusion.
If X is a normed space and r > 0, then B,(c) denotes the open ball in X of radius
centered at c. Moreover, B, := B,.(0). Given normed spaces X and Y over the same field
K, we denote by £(X,Y) (resp. by LP(XP,Y)) the space of all bounded K-linear (resp.
K-p-linear) operators from X (resp. from XP) to Y, endowed with the operator norm.
Given a Hilbert space H over K, Lgym(H, H) is the (closed) R-linear subspace of L(H, H)
consisting of all symmetric operators.

By S, we denote the (finite dimensional) space of all real symmetric p x p-matrices,

endowed with an arbitrary norm. The spectrum of A is denoted by spec A.

Definition 5.2.1. We say that the pair (H, A) is K-admissible if and only if the fol-

lowing properties hold:

(1) H is a infinite dimensional Hilbert space over K.
(2) A:domA — H is K-linear, symmetric, bounded below and such that for some
i € R the operator (u — A)~! € L(H, H) exists and is compact.

Note that (H, A) is K-admissible if and only if H is a infinite dimensional Hilbert space
over K and A:dom A — H is K-linear, self-adjoint, bounded below and with compact
resolvent.

If (H, A) is K-admissible then it follows that the spectrum of A is a countable set of real
eigenvalues of finite multiplicity. This set is bounded below. We can therefore uniquely
define a nondecreasing sequence (\,),eny Which contains exactly the eigenvalues of A,
each one repeated according to its multiplicity. We call (A,)nen the repeated sequence
of eigenvalues of A. A pair (H, A) is R-admissible if and only if (Hc, Ac) is C-admissible
where H¢ is the complexification of H and Ac is the complexification of A. Moreover, in
this case the spectra of A and A¢ coincide and the real multiplicity of an eigenvalue A of

A is equal to the complex multiplicity of A as an eigenvalue of Ac.

Definition 5.2.2. We say that the triple (H, G, A) is of type [p, M, n, 0] if and only if
the following properties hold:

(1) the pair (H, A) is R-admissible and G is a closed linear subspace of Lsym (H, H).

(2) pis a positive integer, M, n and 6 are positive reals.

(3) Let (An)nen be the repeated sequence of the eigenvalues of A. There exist real
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numbers y; and 9 and [ € Ny such that, setting \g = —o0,
0<v2—7 <M,

AM<y1—4An <y <A1 < A <2 <2+ 417 < Apgpre

(4) There exists an H-orthonormal set of vectors ¢;, j =1, ..., p, in dom A such that
Adj = My, =1, ..., p, and such that the operator T: G — S,

B ((Boi, ¢5))ij

is such that
T(B1) D By,

i.e. the image of the unit ball (at zero) in G contains the #-ball (at zero) in S,,.

We can now state the main result of this section:

Theorem 5.2.3. For every (p, M,n,0) € N x Ry x Ry x Ry there exists a positive
number ag = ag(p, M, n,6) with the following property:

whenever the triple (H, G, A) is of type [p, M,n, 0], [, v, and 5 are as in Definition 5.2.2
(with respect to the triple (H,G, A)), 0 < a < ap and (p1,... ,pp) € RP is nondecreasing
with |p; — Ayj| < « for j =1, ..., p, and if D is an arbitrary linear dense subspace of G,
then there exists a B € D with |B| < (1/2)0«, such the pair (H, A+ B) is admissible and
if (An(B))nen denotes the repeated sequence of eigenvalues of A + B and \yo(B) := —o0,
then

(5.2.1) M(B) <v1 =30 <71 —n<XN31(B) < Aigp(B) <v2+n < v2+ 31 < Aigpy1(B)

and

)\H—j(B):,uj: jZl,...,p.
We shall obtain the proof of Theorem 5.2.3 as a consequence of a series of lemmas.

Lemma 5.2.4.

Let X be Banach space over K and A : domA C X — X be K-linear and closed.
Suppose ¢ € K is in the resolvent set of A and K is a real number with |(( — A)7!| < K.

Then for every B € L(X, X) the following statements hold:

(1) The map A+ B:dom A — X is closed;
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B, .
(2) If |B| = |Blz(x,x) < 1/K then the number  is in the resolvent set of A+ B and
(5.2.2) (C=A-B)"'=>) ((-A7'B)"(¢-4)"

n=0

with the above series converging in L(X, X ) and
(5.2.3) (((—A-B)™'| < K(B) = K/(1 - K|B|).
(3) Finally,

(5.2.4) (A+ B)((—A-B)'=¢(¢C-A-B) ! -idx.

Proof. All statements are well-known and very easy to prove. [

Lemma 5.2.5. Let X be complex Banach space and A :dom A C X — X be C-linear
and closed. Let I' be simple counterclockwise oriented closed curve in C, parametrized by
some piecewise C1-function v:[0,1] — C. Suppose I' is disjoint from the spectrum of A
and K is a real number with |(( — A)~'| < K for all { Iying on T.

Then:

(1) for every B € L(X,X) with norm |B| < 1/K the function { — ((— A— B)~! from
I' to L(X, X) is continuous and the map P(B) € L(X, X) defined by

P(B)—L/F@—A—B)—ldc

2

is a well-defined projection operator. Morever, P(B) maps X into dom A and

(5.2.5) (A+ B)P(B) = % /P ((¢—A—-DB)~td¢.

(2) For every By € L(X,X) with operator norm |B| < 1/K(B) the following power

series representations hold (with £(X, X )-convergent series):

620 PO =3 o (A= BB A= D)

(52.7) (A+B+B)P(B+B1)=)Y % /F C((C=A=B)"'B))"(( —A-B)~dC.
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(3) The maps Fy:By/x C L(X,X) — L(X,X), k=1, 2, given by
Fi(B) = P(B)
F»(B)=(A+ B)P(B)

are (complex) analytic. The (complex) dimension of the range of P(B) equals the

(complex) dimension of the range of P(0). For every number My with

(1/2m) max{ sup |y(t)|, sup [y(£)[[7'(t)|} < M,
te[0,1] te[0,1]

for every B € By /i and every nonnegative integer n:
(5.2.8) ID"F(B)| < Myn!/(K/(1 - K|B))"*, k=1,2.

Finally, for every B € By )k and By € L(X, X)
1
(5.2.9) DF;(B)B; = (4 A-B)'Bi((-A-B)7'd¢

27r1

and

(5.2.10) DF,(B)B; = (A+ B)(DF,(B)B,) + B.1F,(B).

Proof. Part (1) follows from Lemma 5.2.4. In particular, formula (5.2.5) follows from
(5.2.4) and the closedness of A + B. Formulas (5.2.6) and (5.2.7) follow from part (1),
formula (5.2.2) (with A replaced by A + B and B replaced by B;p) and the dominated
convergence theorem. This proves part (2). The convergent power series expansions (5.2.6)
and (5.2.7) together with the estimate (5.2.3) (with A replaced by A + B and B replaced
by Bi) show that F; and F5 are complex analytic and that (5.2.8) holds. The constancy
of the dimension of P(B) follows from the continuity of Fj. Taking in (5.2.6) and (5.2.7)

the summands corresponding to n = 1 implies formula (5.2.9) and shows that
DRA(B)B = 5 [ (€= A=B) ' Ba(c— A= B)™' e
Thus, by (5.2.4)
DFy(B)B,
— 5 LA+ BYC- A= BB - A= B)Hac+ o [ Bl - A By

271'1 T

1
— oA B) [ A= BB A= B) 5B [ (G- A= BTG

= (A+ B)(DFi(B)B,) + B1Fy(B).

This proves (5.2.10). O
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Lemma 5.2.6. Assume the hypotheses of Lemma 5.2.5. In addition, suppose that X is
a (complex) Hilbert space ((-,-) denoting the corresponding inner product), A is symmetric
and ¢ (resp. 1) is an eigenvector corresponding to an eigenvalue \ (resp. p) of A lying
inside of T'.

Then for every By € L(X, X)

((DF1(0)B1)¢, ) = 0.

Proof. From (5.2.9) and the symmetry of A we obtain

(OFO)Bb6) = 5 [ (BrC=2)0.C= ) M),
Since
C-A)76= (-0
and

C—A=0C-m™ 'y
it follows (assuming, w.l.o.g. that the inner product in H is linear in the first argument)

that
1

2ri

(DF,(0)B1), 1) = /F (€= NN C = w7 dC - (Bug ).

Using our hypothesis and the Residue theorem we easily obtain that

L (=N ac=o.

27
This completes the proof. [

Given a K-admissible pair (H, A) and S C R we denote by mg(A,S) the total multi-
plicity of all the eigenvalues of A lying in S.

Lemma 5.2.7. Let (H, A) be K-admissible and B € L(H, H) be symmetric. Then:
(1) If ( € K and ¢ ¢ spec A then

(¢ — A)™Y =1/ dist(¢,spec A).

(2) The pair (H, A+ B) is K-admissible.
(3) If a, b € R and § > 0 are such that a < b, dist(a,spec A) > 4, dist(b,spec A) > ¢
and |B| < § then a, b ¢ spec A and

mg (A + B, [a, b]) = mg(A4, [a, b)).
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(4) If b € R and § > 0 are such that dist(b,spec A) > § and |B| < 6 then b ¢ spec A
and
mK(A + 37 ]_007 b]) = mK(Av ]—OO, b])

Proof. All the statements are well-known and easy to prove. For instance, in order to
prove part (3), we first assume that K= C. Let I be the rectangle with vertices a +1id and
b + i, parametrized in the obvious way so that it is oriented counterclockwise. Then by
part (1), |(¢(—A)|~! < § for all ¢ lying on T and so an application of part (3) of Lemma 5.2.5
proves part (3) of the present lemma in the complex case. The real case is dealt with by

first complexifying and then using the remarks following Definition 5.2.1. [

Let us note the following obvious consequence of the higher order chain rule for composite

mappings:

Lemma 5.2.8. Assume that X,Y and Z are normed spaces,n € N, f:domf C X - Y
is n-times differentiable at a, g:domg C Y — Z is n-times differentiable at b = f(a),

K eRy,

sup |[DFf(a)| < K and sup |DFg(b)| < K
1<k<n 1<k<n

then

sup [D*(g o f)(a)| < C(n, K)
1<k<n

for some constant C(n, K) depending only on n and K.

Lemma 5.2.9. Let (H,{-,-)) be a Hilbert space over K. For every positive integer p let
Up=A{(z1,....2p) € H? | x1, ..., 2, are K-linearly independent }.

Define the Gram-Schmidt operators

Qp:U, — H?
as follows:
Q1(z1) = z1/|z1], =1 € Ur = H\ {0}
Qpi1(T1, -+ Tpy1) = (Y1, Ypy Up+1)s (@15 - ., Tpt1) € Uppa
where

(yla"' 7yp) = Qp(a:la--- 75610)
p p

Upr1 = (Tps1 = D _(Tp1s Uk)UR) /[ Tpi1 — D (Tps1, Yk
h=1 k=1
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Then for every p the following statements hold

(1) The set U, is open in HP. (U, is empty for p larger than the dimension of H.)
(2) The map Q,:U, — HP is well-defined. Let Q,,:U, — H,r =1, ..., p, be the r-th

component of Q). The vectors Qp,(x1,...,2p), r =1, ..., p, are orthonormal.
There are uniquely determined functions ap,m:U, — K, r =1, ..., p, m =1,
., r, such that
T
Qpr(T1,...,2p) = Aprm (T1, .0y Tp) Ty
m=1
The functions ay rm (and so Q) depend only on the first r vectors (x1,...,2,).

Both @), and all the functions a,, rn, are real analytic on U,. Furthermore, there are

constants €(p) and C(p,n) such that for every n € Ny, every orthonormal p-tuple

(e1,...,ep) € U, and every (z1,...,x,) € HP such that |xy, —eg| < e(p) for k =1,
., p it follows that (z1,... ,zp,) € U, and

|DnQp(x17 s 7$p)| S C(p7 ’I’L),

ID"ap rm(z1,...,2p)| <C(p,n), r=1,...,p,m=1,..., 7.

Proof. A simple argument proves that U, is open in HP.
The map
iz € H\{0} = 1/|z| = ((w,)) 71/

is the composite of the map a;:2 — (z, ) and the real function ag: s € Ry + s~/2. The
function as is real analytic and since the inner product of H is real bilinear and bounded
it follows that «; is real analytic as well. Thus [ is real analytic. Moreover, calculating

the derivatives of a; and a3 and using Lemma, 5.2.8 we obtain that for every n € N and a,

beR,

(5.2.11) ID"B(z)| < Ci(n,a,b) whenever a < |z| <b

for some constant Ci(n,a,b) depending only on n, a and b. These remarks imply all
assertions of part (2) for p = 1. (Take ¢(1) = 1/2.)

For induction, suppose part (2) of the lemma holds for some p. If (21, ... ,2p4+1) € Upy1
then (z1,...,2p) € Uy, so the map
P
a: (T1,. .., Tpy1) € Upp1 = Tpy1 — Z(xp+1, Qpic(x1y. o 2p))Qp (1, ... xp) € H
k=1
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is well-defined and real analytic. Since the vectors y, = Qp (z1,...,2p), k=1,..., p are

linear combinations of the vectors x4, ..., x, with real analytic coefficients it follows that
a(xy,... ,Tpr1) # 080 Qpi1,p+1(Z1, ..., Tpt1) is well-defined and
(5.2.12) Qp+1ptr =a- (foa).

This shows that ()11 is well-defined, real analytic and the vectors

yT:Qp—{—l,r('Tl:-":'Tp—l—l) Tzlu"'7p+17
are orthonormal and that they are linear combinations of the vectors z1, ..., x,41 with
coefficients apy1 pm(%1,...,Tpt1) given by:
pi1om(T1s oo Tptr1) = Qprm(T1,...,2p) T<p,m<r,
Apt1,p+1,m(T15 0 5 Tpg)
P
=—(Boa)(z1,... ,Tps1) Z (Tpt1, Qp (1, oo xp))ap km(T1, ... yxp) m <D,
k=m
and
Op+1p+1,p+1(21, - Tpy1) = (Boa)(@1, ... Tpya).

It follows that these coefficients are real analytic functions on Upyi. Now let eg, k = 1,
., p+1, be orthonormal. Let (z1,...,2,41) € HP*! be such that |z —eg| < e(p+1) for
k=1,....p+1, with e(p+ 1) < e(p) to be determined later. Since Q, x(e1,...,ep) = e

it follows from the mean-value theorem and the induction hypothesis that
1/2

P
Qpr(x1,...,2p) —ex| <C(p,1) Z lzj — ej]? <vpC(p,1)e(p+1), k=1,...,p.
j=1

Using this estimate and setting zx = Qpi(z1,....2p) —ex, k=1, ..., p, and zp41 =

Tpt1 — €py1 We obtain
P
a(zy,. .. 7~Tp+1) = €p+1 T Zp+1 — E thp,k(CUh - 7'Tp)
k=1

where

tk = (Zpy1, ex) + (epy1, 2&) + (Zpr1, 28)-
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Thus

a(T1, ... Tpp1) =€py1 + W

where
jw| < e(p+ 1)+ p(L+ /pC(p, e(p+ 1)) (2e(p + 1) + (e(p + 1))?)

Now choose €(p+ 1) < €(p) such that

e(p+1) +p(1+/pC(p, Ne(p + 1)) (2e(p + 1) + (e(p + 1))*) < 1/2.

Then for all (z1,...,2p41) € HPT! such that |z, —ex| <e(p+ 1) for k=1,...,p+1, it
follows that
1/2 < |a(z1,...,zpy1)| < 1+1/2.

Thus (5.2.12), (5.2.11) and Lemma 5.2.8 together with the induction assumption imply
that

ID"Qpt1(z1,. .., 2p41)| < C(p+ 1, 1)

for some constants C(p + 1,n). By the above formulas for the coefficients ap41,,m we can
choose the constants C(p + 1,n) such that

D"apt1,om (@1, ... ,2p41)| < Clp+1,n), r=1,...,p+1,m=1, ..., r

The lemma is proved. [J

Lemma 5.2.10. Assume the hypotheses of Lemma 5.2.5. Besides assume that X is a
(complex) Hilbert space. Set

c(p,n, My, K) = min{1/(2K), e(p) /(AM, K*) ™'}
Let (¢1,...,¢p) be an orthonormal p-tuple in X such that

P0)g;=¢;j, j=1,....p.

Define the maps aj: Bo(p v, k) C L(X, X) = X, B;: B k) C L(X, X) = X, 5 =1,
., D, as

aj(B) = Qp,j(P(B)¢17 <o 7P(B)¢p)

and
Bj(B) = (A+ B)Qyp;(P(B)$1,...,P(B)¢p) = (A+ B)oy(B).
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Moreover, define the map g: Be(pn,m, k) C L(X, X) — C(p) as

gjk(B):<6j(B)7ak(B)>7 k=1 ..., p

Then:

(1) «j, B; and g are well-defined real analytic maps.

ID"«;(B)| < C(p,n, My, K), |D"B;(B)| <C(p,n, M, K) and
(5.2.13) ID"g(B)| < C(p,n, My, K), B € Bepnn k), €N

for some constants C = C(p,n, My, K) depending only on (p,n, My, K). Further-

more,

(5.2.14)  |g(B1) — g(B2) — Dg(0)(B1 — Bz)| < C(p, 2, My, K) max{|Bi, | B2|}| By — Ba|,

Bl; By € Bc(p,n,Ml,K)

and
(5215) D,B](B)Bl = Bla](B)—I—(A—f-B)(DOAJ(B)Bl), B e Bc(p,n,Ml,K): Bl S ﬁ(X,X)

(2) If, in addition, A is symmetric and there are numbers A\, k =1, ..., p inside of T'
such that

A¢k:)‘k¢k7 kzl::p

then
(5.2.16) (Daj(O)Bl,gbk) =0, Biel(X,X),k=1,...,p
and

(5217) ngk(O)Bl = <Bl¢j7¢k>7 B; € ﬁ(X,X), 5, k=1,...,p

Proof. If |B| < ¢(p,n, My, K) then by Lemma 5.2.5, and the mean-value theorem

|P(B)¢; — ¢51 = [(F1(B) — F1(0))¢;] < sup IDFy(7B)]|B|

< My(K/(1 - K|B|))’|B| < 4AM1K?|B| < €(p).
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Therefore, by Lemma 5.2.9, «;(B) and §;(B) are defined and

Z ap jm(P(B)$1, ..., P(B)dy) Fi(B)dm

m=1

and

Z ap,jm(P(B)d1, - .., P(B)dy)Fa(B)bm

These formulas together with Lemmas 5.2.5 and 5.2.9 prove part (1) of the present lemma.
In particular, (5.2.14) follows from the third estimate in (5.2.13) by twice applying the
mean-value theorem to the map g. Moreover, (5.2.15) follows from (5.2.10).

Let us now prove (5.2.16) by induction on j, j = 1, ..., p. Suppose that 1 < j < p
and (5.2.16) (with j replaced by m) holds for all m < j — 1. Let 8 be as in the proof of
Lemma 5.2.9. Then

a;(B) = (B0&)(B)-&(B),

where .
¢(B) :=Fi(B)p; — > (Fi(B)j. ctm(B))tm(B).
(Here, as usual 22:1 ar, = 0.) It is clear that £(0) = ¢; so, by a straightforward calculation,
(Da;(0) By, ¢r) = B(£(0))(DE(0) By, ¢x) + D(B 0 £)(0)B1((0), dr)
(5.2.18) = (D&(0)B1, ¢x) + 66D (8 0 £)(0) By
= (DE(0) By, ) — 9k Re(DE(0) By, ¢5)-
The definition of ¢ implies that
DE(0) By = DF1(0)B1gj — z_: (((DF1(0)B1bj; ctm (0)) + (F1.(0) 5, Davn (0) B1)) v (0)

Now
(DF1(0)B16;, m(0)) = (DF1(0) Bigy, ) = 0
by Lemma 5.2.6,
(F1(0)¢;, Dy (0) B1) = (¢, Doy (0)B1) = 0

by the induction hypothesis, and

(F1(0)¢5; am(0)) = (bj, pm) = 0
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by orthonormality.
Consequently,
DE(0)By = DF1(0)B1¢;

(DE(0)B1, ¢r) = (DF1(0)B1¢j, pr) =0

by Lemma 5.2.6. Therefore, by (5.2.18)
<DO£]' (O)Bl, ¢k> = 0.

This proves (5.2.16). Using our hypotheses on A, (5.2.15) and (5.2.16) we now easily obtain
(5.2.17). The proof is complete. [

Lemma 5.2.11. Let H be a Hilbert space, Y a normed space of finite dimension q,

T € L(H,Y) and 0, § be arbitrary positive numbers with § < 6. Suppose that
T(B;) O By.

Then for every linear dense subspace D of H there is g-dimensional linear subspace D, of
D such that
T(Bl N Dq) D By_s-

Proof. Let X be the orthogonal complement of the kernel of T'. Since orthogonal pro-

jections have norm 1, it follows that
T(Bl N X) D Byg.

Letting L denote the inverse of T|X we see that L € L(Y, H) and

(5.2.19) \Llgev,ry <1/0 < 1/(0 = 9).
Let zx, k=1, ..., q, be a basis of Hy and set yp = Txy, k=1, ..., q. Then yi, k =1,
., q, is a basis of Y. There are sequences (zgn)nen € D, k=1, ..., q, such that
Tpn — T, k=1,...,q.
Setting yxn = Txrn, n €N, k=1, ..., q, we see that
Ykn — Yk, k=1,...,4q.
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Hence for all n large enough, the vectors zy,, k =1, ..., q, are linearly independent in H

and the vectors yx,, kK =1, ..., ¢, are a basis of Y. Thus there are uniquely determined
scalars by, n € N, k.l =1, ..., q, such that
q
Yk = Zblknyln: k=1,...,4¢
=1

The sequence of matrices (bjgy, )i converges to the identity matrix since its inverse obviously
does. Define X,, to be the subspace of H spanned by zy,, k =1, ..., q. Then T|X,, has

an inverse L,, given by

Lyp(Yin) = Tin, k=1,...,q.

Then L, € £(X,Y) and

q q
Ly, = Z bign Lyin = anlkxln — o = Lyg, as n — oo.
=1 =1

fork=1,...,q. Thus |L, — L| — 0 so by (5.2.19)

|L,| <1/(6 —0) for n large enough.

Choosing such a n and defining D, = X,, we conclude the proof. [
We can finally give a

Proof of Theorem 5.2.3. Assume that the triple (H,G, A) is of type [p, M,n,0]. Let
(Hc, (-, -)c) be the complexification of (H,(-,-)). We use the symbol (-, -) to denote both
the inner product in H and its extension to Hc. Let [ € Ny, 1 and 75 be as in the Defi-
nition 5.2.2 with respect to the triple (H,G, A). Suppose |B| < 1. Applying Lemma 5.2.7,
part (4) with b=~ — 3n and b = 1 + 37 respectively, we obtain that

M(B) <1 —3n  and y1 + 31 < Apypr1(B).
Applying part (3) of this lemma with a = v; —n and b = 1 + 1 we see that
mg (A + B, Jy1 = 0,7 +n]) = mer(A+ B, [v1 —n,71 +n]) = p.
This immediately implies that (5.2.1) holds for all B with |B| < . Assume first that

(5.2.20) v1 — 21 =0.
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Let T' be the rectangle with the vertices +i2n and 5 + 21 + i27. Noting that

Yo+ 20 =72 —y1 +4n

we easily see that there is a constant M, (M, n) depending only on (M, n) and a parametriza-
tion v of I' such that

(1/2m) max{ sup |y(t)|, sup |[v()l|'(t)|} < Mi(M,n).
te[0,1] te[0,1]

Using the notation of Lemma 5.2.10 define
aO(pa M7 7, 0) = mln{ C(p7 27 M17 K)7 0/(40(177 27 M17 K) }

with My = M;(M,n), K = 2n. Then using Lemma 5.2.7 part (1) we see that all hypotheses
of Lemma 5.2.10 hold. For 0 < a < ag(p, M, n,0) define the map f:B, C G — S, by

f(B) = g(Bc)

where ¢ is as in Lemma 5.2.10 and B¢ is the complexification of B. To show that f is
well-defined we must prove that g;; € R for all j, k = 1, ..., p. Now the curve I' is
symmetric with respect to the real axis, so for every ¢ € H it follows that P(B¢)¢ € H.
Therefore by Lemma 5.2.9

a;(Bc) = Qp j(P(Bc)¢1,- .-, P(Be)py) € H
and so

Bi(Bc) = (Ac + Bc)Qp,i(P(Bc)ér, - .- P(Bc)dp)
= (A + B)QPJ(P(B(C)QSM ce 7P(B(C)¢P) € H.

Since H is a real Hilbert space it therefore follows that

gjk(B):</8j(B)7ak(B)>€Rv Jk=1,...,p.

Therefore, indeed, f(B) € Sk and so f is well-defined as a map into Si. We also have, in
view of (5.2.17), that
T(B)=Dg(0)Be, Beg

where T is as in Definition 5.2.2 with respect to the triple (H, G, A). Moreover, given any
linear dense subspace D of G we obtain, in view of Lemma 5.2.11, a finite dimensional

linear subspace D of D such that
T(B1ND) D Byya.
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Finally, we have for By, By € B, C G,

|f(B1) — f(B2) = T(B1 — Ba)| = [g(Bic) — g(Bac) — Dg(0)(Bic — Bac)|
< CO(p, 2, My, K) max{|Bic|, | Bac|}| Bic — Bac| = C(p, 2, My, K) max{|Bi|, | Ba|}| By — Ba|
< (1/2)(6/2)|B1 — Bal.

Now an application of Theorem 5.1.1 implies that whenever (p1,...,pu,) € RP is non-
decreasing and such that [p; — N3] < a for j =1, ..., p, then there exists a B € DcD
with |B| < (1/2)f« such that

f(B) = diag(lu’lv s 7Mp)'

Since
(aj(Be),or(Bc)) =k, o k=1,...,p,
it follows that
fik(B) = pj{e(Be), ax(Bc)), j, k=1,...,p,
or
((A+ B)a;j(Bc) — pjaj(Be),ar(Be)) =0, j,k=1,...,p.
Since the the vectors a;(Bc), j = 1, ..., p, are a basis of the range of P(B¢) and this

range is mapped by Ac + B¢ into itself it follows that
(A+ B)aj(Bc) = pja;(Be), j=1,...,p.
Since a < 7, the inequalities (5.2.1) (proved above) imply that
Myj(B)=pg, j=1,...,p.

Therefore the theorem is proved if v; — 2n = 0. In the general case replace the operator A
by the operator A — (1 — 217) and apply the special case of the theorem just proved. The

proof is complete. [
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CHAPTER VI

AN EIGENVALUE CONVERGENCE RESULT

Let ©Q and D be bounded domains in RN with D C €. Consider a strongly elliptic
second order differential operator L on 2. Define the following sequence of differential

operators on §2:
Liu= Lu+ ﬁkbk(l‘), x € )

u(z) =0, x € 082
or
Lyu = Lu + Brbi(z), =€ Q
%(m) =0, x € OfL.

Here L is a second order symmetric strongly elliptic differential operator, i, £ € N,
are positive real numbers and bg, £ € N, are (coefficient) functions. We shall prove in
Theorem 6.2.2 that under appropriate hypotheses on (3 and by in both cases the eigenvalues
of Ly converge, as k — oo, to the eigenvalues of the following ‘limit’ differential operator

Ly, on D:
Lou=Lu, €D

u(z) =0, x€dD.
We also obtain H!-convergence of the corresponding eigenfunctions. Our hypotheses are,
essentially, that B;by(x) is very small on D but very large outside of D. Since Theorem 6.2.2
holds for both Dirichlet and Neumann boudary condition, and even for general mixed
boundary conditions on 0f2, provided the corresponding operators are self-adjoint, it is
more convenient to work not with differential operators but rather with the corresponding

bilinear forms or even with certain abstract bilinear forms as we shall now explain.

1. Symmetric Bilinear Forms and Their Variational Properties
In this chapter, all vector spaces are over the reals.

Definition 6.1.1. Let V be a vector space and a : V X V — R be symmetric bilinear
formon V. If A € R, u € V'\ {0} satisfy

a(u,v) = Mu,v) forallveV

then we say that X\ is a proper value of a and u is a proper vector of a, corresponding to
A. The dimension of the span of all proper vectors of a corresponding to A is called the

multiplicity of A. If the set of proper values of a is countably infinite and if each proper
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value has finite multiplicity then the repeated sequence of the proper values of a is the
uniquely determined nondecreasing sequence (\,),en which contains exactly the proper
values of a and the number of occurrences of each proper value in this sequence is equal to

its multiplicity.
The following result is well-known and is stated here for easy reference.

Proposition 6.1.2. Let V, H be two infinite dimensional Hilbert spaces. Suppose
V C H with compact inclusion, and V' is dense in H. Let || - || and |- | denote the norms
of V and H respectively, and (-,-) denote the inner product of H. Let a: V XV — R be a
symmetric bilinear form on V. Assume that there are constants d, C, a € R, a > 0, such
that, for all u, v € V,

|au, v)] < Cllullflv]]

a(u,u) > cv||u||2 — d|u|2.

Then the set of proper values of a is countably infinite and each proper value has finite

multiplicity. Let (A,)nen be the repeated sequence of the proper values of a.

(1) There exists an H-orthogonal sequence (uy)nen of corresponding proper vectors.

(2) Whenever (un)nen is an H-orthogonal sequence such that for every n € N, uy, is a
proper vector of a corresponding to A\, then (u,)n,en Is H-complete and for every
ke N:

Me = alug, ug)/|ug|* = min{ a(u,u)/|ul? | u € V\ {0}, (u,u;) =0,j=1,..., k—1}.

(3) Whenever (p,)nen is a nondecreasing sequence of real numbers and (vy,)nen IS an
H-complete and H-orthogonal sequence such that for every n € N, pu,, is a proper
value of a and w,, is a proper vector of a corresponding to p,, then pu, = A\, for
every n € N.

(4) Let k € N and for j € N with j < k let u; be a proper value of a and v; be a
corresponding proper vector. Then there exists vy € V' \ {0} such that

(6.1.1) (vg,vj) =0, forj=1,..., k-1
and
(6.1.2)  a(vk,vg)/|vx* = min{ a(u, u)/|u)® | u € V\ {0}, (u,v;) =0,5=1,..., k—1}.

Whenever vy, € V \ {0} satisfies (6.1.1) and (6.1.2) then py, := a(vk,vi)/|vk|? is a

proper value of a and vy, is a corresponding proper vector.
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(5) Whenever (jip)nen is a sequence of real numbers and (vy,)nen is an H-orthogonal
sequence in V' \ {0} such that for every k € N:

px = a(vg, vg)/|vk| = min{ a(u, w)/|ul® | v € V\ {0}, (u,v;) =0,5=1,..., k—1},

then for every n € N, pu,, = A\, and v,, is a proper vector of a corresponding to i,.

2. The Main Result
We begin by recalling the the following well known fact:

Lemma 6.2.1. Let D be a bounded Lipschitz domain in RN and u € H'(RY) such
that u = 0 a.e. in RN \ D. Then u|D € H}(D).

Proof. Although this result is known and follows from trace theory, it is not easy to
come by a proof in the literature. The quickest way is to follow the proof of the existence
of traces of functions in H!(D) (see e.g. the proof of [1, A 5.7, pp. 190-192]) to show that
under the present assumptions u|0D = 0. This implies the lemma since elements of H} (D)

are exactly those elements of H!(D) whose trace is zero (see e.g. [1, A 5.11, p. 196]).
We can state the main result of this chapter:

Theorem 6.2.2. Assume the following hypotheses:
(1) Q c RY is a bounded domain and D C RY is a Lipschitz domain with D C ).

Given a function u defined on D, u~ denotes the trivial extension of u to €.

(2) b, by:Q — R, k € N, are continuous functions and By, k € N are positive real
numbers. Moreover, b(z) > 0 for z € Q\ D, by — b uniformly on €, B — oc,
infi%%{,@kbk(x)} > —oo and sup e p{Bk|bx(z)|} — 0.

(3) V is a closed linear subspace of H(Q) such that whenever v € H} (D) thenu™ € V.
V is endowed with the scalar product of H'(Q).

(4) || - |lp (resp. || -||) denotes the H(D)- (resp. the H*(2)-) norm, |- |p (resp. |-|)
denotes the L2(D)- (resp. the L?(2)-) norm and {-,-)p (resp. (-,-)) denotes the
L?(D)- (resp. the L?(Q)-) scalar product.

(5) a:V x V — R is a symmetric bilinear form and there are constants d, C, o € R,
«a > 0, such that, for all u, v € V,

|au, v)] < Cllull|lv]]

a(u,u) > cv||u||2 — d|u|2.
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Let as: HY (D) x HY(D) — R be the restriction of a to H}(D). For k € N let (AF),en
be the repeated sequence of proper values of the symmetric bilinear form ay:V xV — R
defined by

ag(u,v) = a(u,v) + ,Bk/ b (z)u(x)v(z) dx

Q
and (uf),en be an L%(2)-orthonormal sequence of corresponding proper vectors of ay.
Moreover, let (un)nen be the repeated sequence of proper values of aoo.
Then there is an increasing function ¢:N — N and a sequence (vy,)nen in Hg (D) such
that for every n € N, v, is a proper vector of a,, corresponding to ., the subsequence
(Ai(k))keN of (\¥)xen converges to pi,, and the subsequence (ui(k))keN of (u¥)ren converges

~

tov,~ inV, as k — oo.

Remark. The forms ap, £ € N and ao, obviously satisfy the hypotheses of Proposi-
tion 6.1.2 so the sequences (AX),cn, k¥ € N and (fin,)nen are well-defined. Moreover, note
that whenever the sequences (bx)ren and (k) ken satisfy the hypotheses of Theorem 6.2.2
then so do the subsequences (byx))ren and (Bgk))ren, where ¢: N — N is an arbitrary

increasing function.

Corollary 6.2.3. Under the assumptions of Theorem 6.2.2 for every n € N, Ak — p,,

as k — oo.

Proof of the corollary. Suppose the corollary does not hold. Then, using the remark
following Theorem 6.2.2 and passing to a subsequence if necessary, we may assume that
there is an m € N and an € > 0 such that

IAY — | >€, for all k € N,

But then no subsequence of ()\ﬁ@)keN can converge to f,,, a contradiction to the statement
of Theorem 6.2.2. [

Proof of Theorem 6.2.2. Using the remark following Theorem 6.2.2 together with in-
duction and Cantor diagonal procedure, we easily see that Theorem 6.2.2 follows from
Lemma 6.2.4 below. [

Lemma 6.2.4. Assume the hypotheses of Theorem 6.2.2. In addition, suppose that
m € N and for every | € N with | < m there is a v; € H}(D) such that v; is a proper vector
of as, corresponding to py, )\f — i and uf — v~ inV, as k — oo.

Then there is an increasing function ¢:N — N and a v,, € H}(D) such that vy, is a
proper vector of ao, corresponding to ji,,, the subsequence ()\%k))keN of (A )xen converges

to p., and the subsequence (u%k))keN of (u¥ )ren converges to v,

~

inV, as k — oc.
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Proof. Define v € R by
- = mlrelg{ﬁkbk (z)}.

kEN
It follows that
(6.2.1) Ay = ar(upy, uk) > a(ul,, ul)) —y > allul [P —d —y > —d — 7.

By Proposition 6.1.2 there exists w € H} (D) with
|w|D:1, <w,’vl>D:0 forlzl,...,m—l
and such that

Hm = aoo(w,w)/|w|%

= min{ ago(u,u)/|ul% | u € HY(D)\ {0}, (u,v)p=0,1=1,..., m—1}.
Let
m—1
eh = w~ — Z(wﬂu{“)uf, ke N
=1

It follows that £¥ € V, k € N. By our assumptions, £¥ — w™ in V as k — oo. In particular,
|€F| — 1. Thus for all k large enough

N < ag(€%,€%) /€52 = al€*, €5) /€% + (B /ﬂ bueher du) /)¢ 2

(6.2.2)

— a(€*, %) /€52 + (B / begke® dz) /€42 + (B / beet ek da)/[€F P
D D

Q\

Now

a(¢¥. ) /I — a(w™ w™)/Jw™? = ao(w.w)/Juld = .

| (Br /Dbkﬁké“k dz)/1€"?] < sgg{,@k|bk(a:)|} — 0, for k — oo,

and, since w™ = 0 on Q\ D, we obtain from the definition of &*

m—1
,Bk/ brekek do = Z (w“‘,u?)(w’“,uf)ﬁk/ bku;“u{C dz.
O\D Q\D

Ji=1

Now, by our assumptions,
Bk /Q bku;“uf dz = )\f(uf, uly — a(u?, uf) = pi(vj, v)p — aeo(vj,v1) = 0.
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Since

ﬂk/l)bkgkgk dz — 0

it follows that
Br / bpékek de — 0.
Q\D

From (6.2.1) and (6.2.2) we now conclude that

(6.2.3) —d—y <A <+ e, kEN, withe — 0.
Thus, passing to a subsequence if necessary we may assume that
(6.2.4) M ¢ as k — oo, where ¢ € R.

Now
{u,v)) = a(u,v) + d{u,v), wu,v €V,

is a scalar product on V' whose corresponding norm || - || is equivalent to || - ||. From (6.2.1)
and (6.2.3) we obtain

(b uk W < NE 4 dty <+ e +d+

i.e. the sequence (({(uk , uk W))ken is bounded. Since (V, {(-,-)) is a Hilbert space which

m?’ 'm

is compactly included in H we may assume, again passing to a subsequence if necessary,
that there is a vector w € V' such that

(6.2.5) b —~w in (V,{(-,-), as k — oo
and

(6.2.6) ub —w in H, as k — occ.
We have

< B / bk ik, dz = N, — (ub,, b ) + d.
Q

Thus

sup Bk|/ bruk vk dz| < oo
keN Q

SO
k., k
/Qbkumumdx—>0 as k — oo.
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However, by (6.2.6) and our hypotheses,

/bkufnufn dzr — / bwwdr as k — oc.
Q Q

Since b(z) > 0 for x € Q\ D it follows that w(z) = 0 a.e. in Q\ D. Let v,, = w|D so
w = v,,"~. Since the trivial extension of w to RY lies in H(RY ), Lemma 6.2.1 implies that
vm € HY(D). From (6.2.6) we obtain

(6.2.7) |vm|p = |w| =1 and (v, v)p=0forl=1,..., m—1.

Now by (6.2.5),

llwoll < Tim inf fju, |
—00

Let € > 0 be arbitrary. It follows that there is kg such that
lwll < fluall + ¢ for k > ko

Therefore we obtain, for k& > ko,

fi = min{ ac (v,v)/|v|% | v € Hy(D)\ {0}, (v,v)p=0,1=1,..., m—1}
< oo (Vm, vm) = a(w,w) = lwll = d < Jlup, | + € = d = alug,, up,) +

= ap(uf  uk) — ,Bk/ bruf ul dz +e = \F, — ,Bk/ bruf uf dz + e
Q Q

(6.2.8)
gA’;L+sup{ﬁk|bk(:U)|}+’y/ uﬁlufndxnte
zeD Q\D
KEN
Sum+ek+sup{ﬁk|bk(x)|}+7/ ufnuﬁldxnte.
zeD Q\D
kEN
Now

/ uk uf dz =0 ask — oo
Q\D

so using (6.2.4), letting k¥ — oo in (6.2.8) and then letting ¢ — 0 we see that

(6.2.9) C=pm = min{aoo(v,v)/|v|% |v e H&(D)\{O}, (v,u)p=0,l=1,..., m—1}
o = Uoo(Vm, Um)-
and
a(uf uF) = a(w,w) ask— oc.
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Thus

(6.2.10) (g up ) = (o, w))  as k — cc.
(6.2.5) and (6.2.10) imply that

(6.2.11) uf —w inV,ask — oo

Now (6.2.4), (6.2.7), (6.2.9) and (6.2.11) together with part (4) of Proposition 6.1.2

imply the assertions of the lemma. [

3. C'-convergence of Eigenfunctions

In this section we prove that, if the bilinear form in Theorem 6.2.2 arises from the
variational formulation of a linear elliptic equation, then, for all n, ud ™ |D — v, in CL (D)

as k — oo:

Theorem 6.3.1. Assume the same hypotheses of Theorem 6.2.2. Moreover, assume

a(u,v) = / A(z)Vu(z) - Vv(a:)da:+/ a(x)u(z)v(z)dz,
Q Q
where A(z) := (a;j()); ; is a symmetric N x N-matrix, A(z)¢-& > c|¢|? for all x € Q and
all ¢ € RN for some ¢ > 0, a;: Q — R are of class C17(Q) and a,b,by: Q — R are of class
C°7(Q2). Then, for all n,

ui’(k) — v, ask — o0
in C'lloc (D)

Before proving Theorem 6.3.1 we need to introduce some notation and to prove a tech-
nical lemma. For N e N, pe R, 1 < p < +o0, p < N, the Sobolev exponent p* is defined

by
pN

For p < N, we define inductively

for all [ such that p—1* < N.
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Lemma 6.3.2. There arel € N and p € R, 1 < p <2 such that

pl* < N <p(l—|—1)*

Proof. First we prove that there exists an / such that 2* > N. Assume by contradiction

that 2* < N for all I; since
1 11
7= W N
then for all [

N =2+ 20-Ux N T 22 N’
a contradiction. So we have proved that there is some [ such that 2* > N. If 2* > N, we

1 1 1 1 1 l
<

have concluded with p = 2. Otherwise we define, for all € > 0, p. := 2 — €. It is clear that,
for all € > 0,
2-e* <2 =N

and that
2—e™ "N ase—0;

This implies that (2 — ¢)(*1* is defined for all € > 0 and

(2—e)*N

A (b K S A
(2—¢) N—(2— o

— +00

as € — 07; we take p := p. with € > 0 sufficiently small and we have concluded. [

Proof of Theorem 6.3.1. Fix n and D’ CC D; it is not a restriction to assume that D’
has smooth boundary. Let M be a positive constant such that
sup  sup |a;;(x)] < M,
i:j:]-:"'zN .'Eeﬁ
sup sup |ag;(x) —ai(y)|/|lz —y|” < M,
17‘7:171N$,y€§
sup |a(z)| < M,
z€EQ
sup sup B |bx(z)| < M,
keNzeD

sup |AF| < M.
kEN

For all k, uﬁ(k) satisfies:

/QA(J:)Vui(k)(x) - Vo(z)dz + /

() + Bowybocs) () = M@ ) uf® (@)o(w)dz = 0
Q

for all v e V.
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In particular,

/D A()Vul® () - Vo(z)ds + /

(a@) + Boybag (@) = M® ) uf® (@)v()dz = 0
D

for all v € Hy (D).
By classical regularity results for elliptic equations (see e.g. [10, Thms. 8.8, 9.16)), it
follows that, for all k,
u® (z) € W2P(D) for all p
and
— div(A(z) Val® (z)) + (a(:v) + Bty b () — Ag@) w$®(z) =0 ae. in D.
Now take p e R, 1 < p <2, and [ € N such that
o < N < plDe

(this is possible thanks to Lemma 6.3.2). Fix open sets with smooth boundary D;, j =0,
..., l, such that

D' :=Dy,,cc D, cCc---CCD;CCDyCcCD=:D_,.

By [10, Th. 9.11], there are constants C; = C(N, M, D, D;,p’*), j =0, ..., L+ 1, such
that, for all k e Nand all j =0, ..., +1,
Y PR
w227 (D;) Lr’*(Dj-1)

moreover, by the Sobolev imbedding theorems, there exist constants K; = K(N, Dj,pj*),
7=0,...,0l+1,such that, forall k e Nand all j =0, ..., 1+ 1,

¢(k)‘ < K. H ¢(k>H
‘ tn Lv* (D 1) K |[en w20 D" (D )
These inequalities together imply that there exists a constant C' such that, for all &,

¢(k) ¢(k)
63 B9l e, =

Lr(D)
Now, since uz(k) — v,~ in H'(Q), we have that the sequence uz(k) is bounded in L?(D);
then, by (6.3.1), we deduce that the sequence uﬁ(k)|D’ is bounded also in Wz’pl+1*(D’).
Since p*+1* > N, the Sobolev imbedding theorem implies that

w2 (D) < YD)
with compact inclusion. Then we conclude that
ub® — v, as k— oo
in C’l(ﬁ,). Since D' was arbitrary, we finally conclude that
ub® — v, as k — oo

in CL (D). O
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CHAPTER VII

THE POLACIK CONDITION FOR THE LAPLACIAN

Let  be the open unit ball centered at 0 in RY. In this chapter, following [18] and
[25], we will construct a potential a: Q2 — R in such a way that the operator A + a(x) on
Q with Dirichlet boundary condition on 0f2 satisfies all the assumptions in Theorem 3.2.1,
that is:

(1) A+ a(x) satisfies the Polacik condition on £

(2) G C Qis an open set and k > 1;

(3) R(z) # 0 for all z € G;

(4) there is a function b € C*°(Q) with supp b C G such that

A< —K

for every eigenvalue A of the operator A+a(x)+b(z) on Q with Dirichlet boundary

condition on 0f).

1. Eigenvalues for Radially Symmetric Potentials on the Ball

In this section we will prove that there is an analitic potential a(z) such that the operator
A + a(z) satisfies the Polac¢ik condition on €.
We take a radially symmetric potential a(z) = a(|z|), where r — a(r) is a a real analytic

function on R. Let us consider the eigenvalue problem
Au(z) + a(|z|)u(z) — pu(z) =0, =€,
(7.1.1)
u(z) =0, =z € 0.

Let S¥=! := {z € RY | |#| = 1}. We introduce the spherical cohordinates in RY by
P:[0,00[xSV~1 — RV | where

x = P(r,o) =ro.
On RM\{0} we have the inverse map
Q(x) = (], z/|2)),

and if 7:U — RN¥~1 is any chart on SV~ then a chart 6 is determined on the open cone
P(]0,00[xU) in RN by the formula

0(x) = (|z], 7(x/]2])) = (r,7(0)).
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Then one has (see e.g. [3, p. 34]) that in spherical cohordinates problem (7.1.1) takes the

form

N -1
u’l"’l"+

1
(7.1.2) Uy + r—2ASN71u +a(r)u — pu =0,

U|r:1 - 07

where Agnv-1 is the Laplacian on SV~! (with respect to the Riemanniann metric induced
by the metric of RY). A standard separation of variables argument (see e.g. [36, p. 257-])

shows that the eigenvalues of (7.1.2) form a sequence
pmi(a), m=0,1,..., 1=1,2,...
and for p = pmi(a) the corresponding eigenspace is spanned by the functions
Wi (r)v(o), wv(o) € Yy,

where wy,;(r) is a nontrivial solution of

N -1 m(m + N — 2
(7.1.3) Wyy + Wy + (a(r) _ ( = ) _ Mml) w=20
(7.1.4) w(l) =0 w regular at 7 =0

and Y, is the space of the spherical harmonics of order m in N variables. By definition,

SN_l

Y, consists of the restrictions to of all harmonic polynomials on RY of degree m.

Any element of Y;,\{0} is an eigenfunction of Agy-1 with the eigenvalue —m(m + N — 2).

Thus, for a fixed m, the sequence

pmi(a) < pma(a) < ...

is the sequence of the eigenvalues of the one dimensional problem (7.1.3). A Sturm com-

parison argument shows that

po1(a) < pi(a) < poi(a) <...

Note that
dimYg=1 and Y= span/(l)

dimY; =m and Y, =span <:1:1|SN_1, e, a:N|SN_1>
So, if we can find a potential a in such a way that
poz2(a) = pa1(a),
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then we have that the eigenvalue i = pga(a) = p11(a) has multiplicity N + 1 and a basis
of the corresponding eigenspace is given (in Cartesian cohordinates) by

Zq .
woa(lz]), wii(|z])—, i=1,...,N.

2|’
We claim that

(1) there exists an analytic potential a(r) such that pga(a) = p11(a);
(2) R(woz(|z|), wir(|z))z1/|zl, ..., wir(lz))zn/|z])e=0 # 0.

In order to find an analytic function a(r) such that pi1(a) = pe2(a), we argue as in
[22]. If a1(r) and as(r) are analytic functions such that pi1(a1) < pe2(a1) and pi1(as) >
toz(az), then, by a standard continuity argument, pq11(a) = poz(a) for some a of the form
a = sa1+(1—s)ay. Smooth functions aq, ay that satisfy the above relations and in addition
are constant near r = 0 were found in [22] (see the proof of proposition 3.2 and Remark
A.2 in [22]). We can approximate a1, as by real analytic radially symmetric functions such
that the inequalities remain unchanged. The resulting function a is then real analytic as
desired.

Finally we have to check that the Polac¢ik condition is satisfied. Analyticity of a(r) and
(7.1.4) imply that wy,;(r) are analytic up to 0. We claim that the following relations are
satisfied:

In fact, if we take m = 0 in (7.1.3)—(7.1.4), multiplying (7.1.3) by r and letting » — 0, we
obtain w(,(0) = 0; if we2(0) = 0, these two equalities together with (7.1.3) imply that all
derivatives of wgs at 0 vanish, hence wpy = 0. But this is impossible for an eigenfunction,
thus wp2(0) # 0. Next, if we take m = 1 in (7.1.3)—(7.1.4), multiplying (7.1.3) by r? and
letting » — 0, we obtain wy; = 0; again, w’;(0) = 0 leads to the contradiction wy; = 0,

and we have proved the claim. Now we can show that

R(wos(|2]), wur(z)z1/lxl; .. s wi([z))en/|2])]e=0 # 0.

o ()
wi(|x .
¢0(.T) = w02(|$|)7 qﬁz(cv) = ITT'TZH 1= 17 .- '7N'
Then, for¢,7 =1, ..., N,
w11 (|z]) wiy ([z])]z] — w1 (J2])
Oidj(x) = ———0dij i
¢J($) |JZ| J + |JZ|3 xr :UJ
wa (o)) o (Wi (l2]) = w3, (0)) 2] +O(|2)?) wiz;
1] 92
|z |z| |z|
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this equality, together with (7.1.5), implies that, for i,57 =1, ..., N,

9i¢;5(0) = w1, (0)ds.
So we obtain

$0(0)  Veo(0) wo2(0) Vo (0)
$1(0)  V¢1(0)

¢n(0) Von(0)
whence R(¢o, @1, ..., on)(0) = wiy(0)Nwea(0) # 0, by (7.1.5).

2. Moving Eigenvalues by Compact Support Perturbations of the Potential

In this section € is the open unit ball in RV, a(r) is the potential constructed in
the previous section, ¢, ..., ¢nyy1 is an L2(Q2)-orthonormal basis of the kernel of the
operator A +a(|z|) on Q with Dirichlet boundary condition on 9 and R(z) is the Poldcik
determinant of ¢1, ..., dn11. As in [25], we begin with the following:

Lemma 7.2.1. Let G be the set of all x € Q) such that R(xz) # 0. Then G is open and

O\G has N-dimensional measure zero.

Proof. Since the eigenfunctions ¢;, ¢ =1, ..., N+1, and hence also R, are real analytic
on  (e.g. by pp.207-210 in [2]), the result follows from the fact that R(z) # 0 and from
the well known general result that the zero set of a nontrivial real analytic function defined

on an open connected subset of RV has measure zero. O

Finally, we can construct a potential b in such a way that property (4) in Theorem 3.2.1

is satisfied:

Lemma 7.2.2. Let G be as in Lemma 7.2.1. For every k € N there is a function

b e C>*(Q) with suppb C G such that
A<k
for every eigenvalue A\ of the operatoor A + a + b on €2 with Dirichlet boundary condition

on 0f).

Proof. Let

¢ := max |a(x)|.
€2
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For € > 0 let G, be the set of all x € Q with dist(z,2\G) > e. Choose a function

b € C*°(€2) with supp b, C G and such that
be(r)=—c—k—-1, z€G,
—c—k—1<b(x)<0, 2€Q.

We shall show that the lemma holds with b replaced by b, for ¢ > 0 sufficiently small.
Suppose the claim is not true. Then there are sequences (A, )nen, (Un)nenNs (€n)nen and

(by)nen such that €, — 0 as n — oo and

(7.2.1) Auy, = —(a+ bp)uy + Apuy,  on )
u, =0 on 99
(7.2.2) An > —k

for all n € N, where b,, := b.,. We may assume that
(Up, | up) =1
where (- | -) denotes the scalar products on both L2(Q,R) and L2(Q,RY). It follows that
(7.2.3) —(Vuy, | Vug) 4+ ((a+by)uy | un) = Ay
for all n € N. Since a + b,, < ¢ on €, this implies that
An <c

for all n € N; so by (7.2.2)
k<, <ec

for all n € N. Thus the right hand side of (7.2.1) is bounded in L2((€2), so (un)nen is
bounded in H2(Q2). Passing to a subsequence if necessary, we may therefore assume that
there is a u € H'(Q) such that

U, — 4 in HY(Q)

as n — oo. In particular,

(7.2.4) (u]u)=1.

Moreover, by Sobolev imbedding theorems, there is a ¢ > 2 such that
U, — 4 in L1(Q).
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Now set
Z_)(a:)E—C—k—l, x e Q.

For every x € G, b, (x) — b(z). Thus, by Lemma 7.2.1, b,, — b a.e. on Q. Since (by)nen is

bounded in L*°(2), it follows from the dominated convergence theorem that
a+b, —a+b in L"(Q)
for every r with 1 < r < oo. Define r such that
(2/q)+ (1/r) = 1.

It follows from Holder’s inequality that

((a+bn)up | up) = ((a+b)a | @)
(Vuy, | Vuy,) — (Vu | Va)

as n — oc. Thus, from (7.2.3) and (7.2.4),
A = —(Va | V) + ((a+b)u|u) < —k—1,

contradicting (7.2.2). The lemma is proved. O
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CHAPTER VIII

THE ALGEBRAIC INDEPENDENCE
CONDITION FOR THE LAPLACIAN

In this chapter we show that, if we are given any smooth domain €2 in R? and numbers
n, k € N, then, both for Dirichlet and Neumann boundary condition on 02, it is possible to
construct a potential a: Q — R such that the operator A+a(x) has an n-dimensional kernel
spanned by L?(2)-orthonormal functions satisfying (IC) in Chapter 4 up to the order k
and with @ = (0,1).

1. A Construction on the Square

As in [23], we begin by considering the eigenvalue problem

Ugg + Uyy + a()u+b(y)u+Au=0 in Q

(8.1.1)
u=0 1in 0f)

on the square Q =0, 7[x]0, 7[. Let p;(a), i € N, be the increasing sequence of the eigen-

values of the problem

Uge + a(x)u+ pu=0 in |0, 7|

(8.1.2) u=0 in {0,7}

and v;(a), i € N, be the corresponding L2(0, 7)-normalized eigenfunctions. Analogously,

let vj(b), j € N, be the increasing sequence of the eigenvalues of the problem

Uyy +b(y)u+rvu=0 in 0, 7|

(8.1.3) u=20 1in {0, 7}

and x;(b), j € N, be the corresponding L?(0, 7)-normalized eigenfunctions. Then the
eigenvalues of (8.1.1) are exactly all the sums \; ; = pi(a) + v;(b), i,j € N, and the
corresponding eigenfunctions are ¢; j(z,y) = ¢i(a)(z)x;(b)(z). We want to adjust a and b
in such a way that p;(a)+vn41-4(b) = 0,9 =1, ..., n, so that problem (8.1.1) has A = 0 as
an eigenvalue of multiplicity n; moreover, we want that the corresponding eigenfunctions
Gint1—i(x,y) = Vi(a)(®)xn+1-i(b)(y), i =1, ..., n, satisfy (IC) in Chapter 4. We procede
as in [23]. First, we recall the following result on inverse eigenvalue problems in one

dimension. The reader is referred to [28] for a detailed treatment of the subject.
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Theorem 8.1.1. The sequence (01,09, ...) is the spectrum of (8.1.2) for some function

a in L?(0,7) if and only if it is real, strictly increasing, and of the form
o; = 0g+ ’527T2 + Ti,

where o9 € R and (11, T2,...) iS a square summable sequence of real numbers. For a €
L%(0,7), and i € N, let

Mi(a) = {a’ € L*(0,7) | pi(a’) = pi(a)};
then every finite intersection
M;, (a) N M;,(a) N ---N M, (a),
i1 <9 < ... < iy, is a real analytic submanifold of L?(0,7) of codimension I.
Now we take positive rationally independent real numbers py, ..., g, and we denote
M'":={ae L*(0,n) | pi(a) = pi, i=1,...,n}

and
M":={be L*(0,7) | vi(b) = —p2 1 sy i=1,...,n}.

By Theorem 8.1.1, both M’ and M" are real analytic submanifolds of L?(0, 7) of codimen-
sion n. Let

Hy :={c e C*([0,7]) | ¢(x) = 0 on some interval [0,0], d > 0};

Hy is dense in L?(0,7) and then, since M’ and M" have finite codimension, both M’ N H,
and M" N Hy are nonempty (see [23], Lemma 4.2). We take a € M'NHy and b € M" N Hy;
with this choice, we obviously get that problem (8.1.1) has 0 as an eigenvalue of multiplicity
n. Now we show that the corresponding eigenfunctions satisfy (IC) in Chapter 4 up to any
order k and with @ = (0,1). First of all, we observe that, since a(x) = 0 on an interval
[0, 4], 6 > 0, then 1;(a) satisfies the equation

Wy + piw =0, z € [0,0]
w(0) = 0.

This implies that, for ¢t =1, ..., n,
i(a)(z) = d;sinh(p;z), =z €]0,4],
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for some d; # 0 (otherwise ¥; = 0 on [0, 7] by the unique continuation theorem). Similarly,

since b(y) = 0 on an interval [0, ], § > 0, then x,41-;(b) satisfies the equation

Wyy — N?w =0, yel0,0]
w(0) = 0.

This implies that, for 2 =1, ..., n,
Xn+1—i(0)(y) = eny1—isin(py), y € [0,0],

for some e, 41—; # 0. So we have that, fort =1, ..., n,

qs%(xvy) = 7)2(17)52(3/)7 ('Tuy) € [076] X [07 6]7

where
¢i(2,y) = bin+1-i(2,y)

and

ni(z) = d; sinh(p;z)

&i(y) = eisin(piy).
Set

¢z, y) = (P1(z,y), ... dnlz,y)

and

n(z) = (m(x),.... ()
§(y) = (&a(y),- -, &nly).
Lemma 8.1.2. Fix q € N; the functions
{n®=m'-mp | e €Ng, fef = q}
are linearly independent on R.

Proof. We have that

d:
= Ele’“w(l — 72T,

Therefore, up to a nonzero constant,
,',,C — eachc(:U)7

where

Qe = Cif41 + *** Cplin
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and
Qula) = (1= 7o)t (1 2y,
Since pi1, ..., pn are rationally independent, we have that, if ¢ # ¢/, then a. # a. and
hence the functions
eacm7 |c| — q
are linearly independent. Since Q.(x) — 1 as x — oo for all ¢, we finally get that the

functions 7., |¢| = n, are linearly independent. [

Lemma 8.1.3. Fix p € N; the functions
& _ &y &y }
= = .. e Ny, =
{é-'y 5?1 £nn | Y 0 |fY| p

are linearly independent on every open interval I C R on which these functions are defined.

Proof. Suppose that

lvI=p
on some open interval I; then, on I, we have

(8.1.4) Z Uy H (cotan (p;y))" = 0.

lvl=p =1
By analyticity of cotan on C\{kw, k € Z}, we have that (8.1.4) actually holds on R\C,
where C := {kn/p;, k € Z, i =1,...,n}. We consider the polynomial z(y1, ..., ym) : R" —
R

Y

Z(y17 7yn) = Z a’yy’y;
lvI=p
we want to prove that z = 0. It is sufficient to show that z vanishes on a dense subset of
R™. We know by hypothesis that z vanishes on the set
G := {(cotan (u1y),...,cotan (u,y)), y € R\C} C R".
The set G is the set G = T (D), where

D := {([pry] modm, ..., [pppy] modr), y € R} N]0, x["C]O, 7["

and
T:10,7["— R"
(w1, ..., wy) — (cotan(wy), ..., cotan(wy,)).
Since g1, ..., p, are rationally independent, D is dense in |0, [, and since T (]0, 7[") =

R™, we conclude that G = 7 (D) is dense in R”. [

We need also the following result of convex analysis:
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Lemma 8.1.4. Ifs € N, p € N and ¢ € N* are such that p < |c| then there exist vectors
zl, ..., 2* € N} such that:

(1) z', ..., 2° are linearly independent;
(2) 2°<ec,i=1,...,s;
(3) |2*|=p,i=1,...,s.

Proof. Define

s
C:={zeR°| |z ::ij:p, and 0 <z <c}.
j=1

C' is convex, closed and bounded, so C' is the convex hull of C*, where C* is the set of the
extremal points of C.

We claim that for every x € C* there is an index ¢ = i(x) such that x; € {0, ¢;} for all j
with 7 # 4 . In fact suppose there is an x € C* and indices 7 and j with i # 7, 0 < z; < ¢;
and 0 < z; < ¢;. Define y, z € R® in the following way:

Yk = 2p =Tk, kFi,j
Yi=Tite€ Y;=1zj—¢€
Zi = XL — €, Zj:l'j—Fé.

We have |y| = |z| = p = |z|, and, if € is sufficiently small, y, z € C; but z = (1/2)(y + 2),
contradicting the fact that € C*. This proves the claim. Since ¢ € Nj, the claim implies
for every x € C* that x; € Ny for all j # 4, where ¢ = i(x). Since |z| = p € N it also
follows that z; € Ny. So we conclude that, if x € C*, then z € Nj. If we show that
dimspan C* = s, then the lemma will be proved. Suppose that dimspan C* = s. Consider

the hyperplane
H:={ze®R |[z|=) z;=0}
j=1

clearly dimH = s — 1. Let A := p/|c| (notice that 0 < A < 1), and set a := A¢; then
la] = p, and, since 0 < a; < ¢; for all 7 it follows that a < ¢, so that a € C. Now write
C* as C* = {z4}aca. Then there are {Ay}aca, Ao > 0 for all a, A, = 0 for almost all «,
>, Aa =1, such that a = Y AaTq. Let yh,...,y*~! € H be linearly independent. Choose
a sufficiently small § > 0, so that 0 < 5yg+ai <gc,forallj=1,...,s—1,1=1, ...,
s. Then §y/ +a€ C forj=1,...,5s—1. Forevery j=1,...,s— 1 there are {\,}4ca
such that A2, > 0 for all o, A, = 0 for almost all o, > M, =1 and 0y’ +a =, M z,.
It follows that

. N, = Aa
yjzz(a(s )-Taa

«
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so that y/ € spanC* for j =1,...,s—1. If a € span{ 4y, ..., ys_1 }, then a € H, and then

la| = 0, but this is impossible since |a| = p > 0. Thus we obtain
span C* = span{ a, y1, ..., ys_1 } = R°.

This concludes the proof. [
Now we can finally prove:

Theorem 8.1.5. Let a and b as above. Then the eigenfunctions

Qsz(xvy) = d)i(a)(x)Xn-l-l—i(b)(y)v i=1,...,n, (xvy) €Q

satisfy the independence condition (IC) up to any order k. Moreover, the functions ¢;¢p;,
1 <1 < j <n are linearly independent.

Proof. Fix | € N and suppose
1
C. 7¢ﬂ v+ej ¢y = 0.
:Z ” Z (B —7)!
1B8]=1 |7| q

Thus

Y X G Y gt ey

ceN™  j=1,...,n

lc|=l+1  |B]|=l Ivl q
ﬂ—f—Ej:C
= Y @) Y. CjﬁZ (ﬂ T WE W =
ceN™ 7=1,...,
lc|=1+1 |B|=l Ivl q

,8—|—6j:C
for (z,y) € [0, 9] x [0, 6].

By Lemma 8.1.2 the functions (1¢)||=4+1 are analytic and linearly independent, so

Z Cjﬁz (ﬂ S WEw)

IBI 7" |7| q

B+ej=c
1 _
= Z ( Z ngm>€c 7(3/)5;](:9) =

Ivl=q \ j=1,.
Iﬂl lﬁ>7
B+ej=c

for |c] =141 and y € R.
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By Lemma 8.1.3 the functions (50_7@ )|y|=q are linearly independent, so

[v|=

1
C =0 for |y|=¢qand |c|[]=1+1.
Z Jﬁ(ﬂ ! el c|

Iﬂliﬂ>7
B+ej=c

Now it is easy to see that

1 1
Z Czﬂmz Z C]ce, .

(c—e€j —)!
Bt e
B+ej=c
= Z Cj,c—ej' ((CJ__’Y;')
j=1,....,n ¢=7)
Yte;<c
SO
(8.1.5) Z Cje—e,(cj—7;) =0 for|y|=qand |c| =1+ 1.

'y+e]<c
Now fix ¢ € NJ, |¢| =1+ 1. If v £ ¢, then the sum in (8.1.5) is over an empty set of
elements; if v < ¢, but vy +¢; £ ¢, then v, +1 £ ¢; and so v; = ¢;. Thus (8.1.5) is
equivalent to the statement that for every ¢ € N§ with |¢| =Y 1 j¢; =1+ 1

(8.1.6) Z Cje—ec;(cj —7;) =0 whenever v < cand |y| = gq.

ej<c
Let ¢ € Ny with |¢| = 141 be arbitrary. We will show that (8.1.6) implies that C}j ., =0
for all j such that ¢ > ¢;. This will conclude the proof of the proposition. Permuting
components, we may assume that, for some 5, 1 <s<n,c; >1if1 <j<sandc; =0if
s+ 1 < j <n. Then whenever v < ¢, we also have ; = 0 for s +1 < 5 < n. Therefore we

only have to prove the following assertion:

(A). IfseN, ge N, ce N* and a € R® are such that ¢ < |c| and
Zaj(cj — ;) =0 whenever y € N}, v < c and |y| =gq,

thenaj =0 forallj=1,...,s

In order to prove (A) we apply Lemma 8.1.4 with p = |c| —q. Let z*, i =1, ..., s, be
as in that lemma, and set 4* :=c—2%, i =1, ..., s. It follows that |y*| = p and 7* < ¢ for
all ©+ and that the matrix (cj —

immediately.

75)151‘,;‘35 = (x;')lgi,jgs is regular. Assertion (A) follows

Finally, the linear independence of the functions ¢;¢;, 1 <7 < j < n is an immediate

consequence of Lemma 8.1.2. The theorem is proved. [
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2. Arbitrary Smooth Domains

The construction on the square, combined with Theorem 6.2.2 and Theorem 5.2.3 yelds

to the following:

Theorem 8.2.1. Let  C R? be an arbitrary bounded domain with smooth (C?7)
boundary, and let n,h € N. Then, both for Dirichlet and Neumann boundary condition
on 0X), there exists a potential c: Q2 — R of class C°(Q) with the following properties:

(1) the operator A + ¢(x) has a n-dimensional kernel;

(2) there exists an L?(2)-orthonormal basis u, ... , u, of the kernel of A + ¢(z) such
that the algebraic independence condition (IC) in section 4.1 is satisfied up to the
order h with w = (0,1); moreover, the functions u;u;, 1 < i < j < n are linearly

independent.

Proof. Let D CC 2 be a square; by the construction in the previous section, it is possible
to find a potential c: D — R such that the assertions of the present theorem are true for

the operator A + ¢(x) on D with Dirichlet boundary condition on dD. In paricular,

(8.2.1) for every basis ¢1, ..., ¢, of the kernel of the operator A+ ¢(z) on D the functions
¢idj, 1 <1i < j <mn, are linearly independent.

Extend ¢ to a continuous function on Q. Let H := L%(Q), V := H(Q) if we are
working with Dirichlet boundary condition on 982, V := H(Q) if we are working with
Neumann boundary condition on 9€; if b: RY — R with b|Q2 € C°(Q) define Ly := A +b
and ap: V XV — R by

ab(u,v):/Vu-Vvda:+/buvda:.
Q Q

If b € C%7(Q), regularity theory of PDEs implies that X is an eigenvalue of Ly on Q and u is
a corresponding eigenvector if and only if A is a proper value of a; and u is a corresponding
proper vector. (In fact, every proper vector of ay lies in C?7(0Q).)

Let b:RY — R be continuous and such that b(z) = 0 for z € D and b(z) > 0 for
x ¢ D. Furthermore, let (0;)ren be an arbitrary sequence of positive numbers tending to
oo. Finally, for k& € N let b;: RN — R be a continuous function such that ¢ + Bibs is a
polynomial function and sup,cq [bx(x) — b(x)| < 1/kBx. The existence of such a function
by 1s obvious.

Let ar := acyp,p, and let as be the restriction of a. to H} (D). We are now in a
position to apply Theorem 6.2.2: for k € N let (A),,cn be the repeated sequence of proper

values aj and (uF),en be an H-orthonormal sequence of corresponding proper vectors of
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ax. Moreover, let (uy,)nen be the repeated sequence of proper values of ao,. Even if the
boundary of D is not of class C?7, separation of variables shows that p is an eigenvalue
of A + ¢(xz) on D with Dirichlet boundary condition on 0D and v is a corresponding
eigenvector if and only if i is a proper value of a,, and v is a corresponding proper vector.

Then, using Theorem 6.2.2 and passing to a subsequence if necessary we may assume
that there is a sequence (v, )nen in HE (D) such that for every n € N, v, is a proper vector
of as corresponding to fin, (AF)ren converges to p, and (uf)ren converges to v,™ in V,
as k — oco. Set p = n. There are numbers v; 72 € R, M, n € Ry and |l € Ny, such that,
setting po = —oo, we have

0 <72 —m7 <M,

pr <1 —4n <71 < 0= 1 = puyp <72 <v2 + 40 < pigpia1-
For h € C°(Q) let By, € Loym(H, H) be the map

(Bu)(z) = h(z)u(z), weH,zeQ.
Note that

Let G be the set of all B, with h € C°(Q). Tt follows that G is a closed linear subspace of
Lsym (H, H).
Now (8.2.1) easily implies that the operator T: G — S,

B ((B(vi™),v;7))i;
is surjective. By the open mapping theorem there is a § > 0 such that
T(B;1) D Bg.
For k € N let T},: G — S, be the map
B+ ((Buf,u?))m
Then T}, — T in £(G, S,) so by Corollary 5.1.2
Tr(B1) D By for k large enough.
Moreover, setting \¥ = —oco, we have
(8.2.3) )\f <v—4dn<m < )\ﬁ_l < )\{:Lp <Y <y 44n < )\{:Lpﬂ, k large enough.
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Let ag = ag(p, M,n,0) be as in Theorem 5.2.3. For all large k, there is an aj > 0 such
that |)\f+j| <ap<agforj=1,...,pand ap — 0 as k — 0. Thus by Theorem 5.2.3
(with A := A+ ¢(z) = Brbr(x), pj := 0, Ayj := )\ﬁ_j for =1, ..., pand D equal to the
set of all By, where h is the restriction of a polynomial function to C°(Q)) there exists, for
each large k, a polynomial function hz: RY — R such that |hk|co@y < (1/2)0cy and such
that if (S\Z)nEN denotes the repeated sequence of eigenvalues of A + ¢+ hy, + Brbr, (4F)nen

is an H-orthogonal sequence of the corresponding eigenfunctions and 5\13 := —o0, then
(8.2.4) 5\? <y =3<y1—n< 5\?+1 < Xﬁp <yo+n<v+3n< Xﬁpﬂ

and

(8.2.5) N=0, j=1,....,p

Now the assumptions of Theorem 6.2.2 are satisfied with b replaced by (1/8x)hy + b.
Therefore using Theorem 6.2.2 again and passing to a subsequence if necessary we may
assume that there is a sequence (0, )nen in Hg (D) such that for every n € N, 4, is a proper
vector of ae, corresponding to fiy,, (Xﬁ)keN converges to fi, and (4¥)en converges to 9,™
in V,as k — oo. Let ¢1, ..., ¢, be the basis of the kernel of A + ¢(z) constructed in the

previous section. Then there exists an orthogonal n x n-matrix (r;;); ; such that

n

¢i: E T,’j’lA]l_i_j, z:l,,n

i=1

Then, for all k,

n

k .__ ~k s
o; .—E Tijlij, t=1,...,n

j=1
is an L?(Q)-orthonormal basis of the kernel of the operator Lein, +g,b,, and (¢F)ren con-
verges to ¢;~ in V. Since V is a closed subspace of H'(), then, up to a subsequence, we
have convergence almost everywhere of ¢¥ to ¢;~ and of V¢ to V;~ as k tends to infinity.
This easily implies that, for sufficiently large k, the eigenfunctions ¢¥, i = 1, ..., n, satisfy
(IC) up to the order h with w = (0,1). Moreover, the functions gbfqﬁ?, 1<i<j<n,are
linearly independent. For every such k, ¢ + hy + [(rbx is a polynomial function and the

conclusion follows with ¢ replaced by ¢ + hy + Bxbr. This proves the theorem. [

3. Generalization to Higher Space Dimension

The results contained in this chapter can be generalized to any space dimension N > 2;

infact, if N > 3, we use the space variable z = (x,y, z3,...,xy); with a(z) and b(y) as in
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Section 4.1, we consider the operator

N —2
A+a(m)+b(y)+672

on the open set
Q =10, 7[x]0, w[x]0, 6[¥ %

separation of variables shows that, for sufficiently small , this operator with Dirichlet

boundary condition on 0€) has an n-dimensional kernel spanned by the functions
¢i(z,y)sin(zg/d) - - -sin(zn/0), i=1,...,n.

It is very easy to see that these functions satisfy (IC) up to any order, with @w = (0, 1, 0).
Finally, the arguments in Section 4.2 extend directly to the present case and we conclude
that, if N > 3 and Q C R? is any smooth bounded domain, then, fixed n, h € N, both for
Dirichlet and Neumann boundary condition on 9 we can construct a potential c: Q2 — R
such that the operator A+c(x) has an n-dimensional kernel spanned by L2(£2)-orthonormal

functions satisfying (IC) up to the order h with @ = (0,1,0).
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CHAPTER IX

GENERAL PRINCIPAL PARTS AND ARBITRARY DOMAINS

In chapters 6 and 7 we have shown that on suitable domains it is possible to find a
potential a in such a way that the operator A+a has a kernel of some prescribed dimension,
spanned by eigenfunctions satisfying the Polac¢ik condition or the algebraic independence
condition. In this chapter we will show that this can be extended to the case of any smooth

bounded domain and any principal part L' =3, 0;(a;j(2)0;).

1. Localization
We begin with the following "localization” result:

Lemma 9.1.1. Let 2, S C RY be open bounded domains; assume S has C%Y boundary.

Let a;;: Q2 = R be of class C*7, 4,5 =1, ..., N, a;; = aj;, i,j =1, ..., N, and
N
D a&i > e, weQ, (eRY
ij=1

for some ¢ > 0. Consider the differential operator
N
— Z 6l(a”(.r)63)

Let us suppose there exists a C7(S) potential ag: S — R such that the operator A + ag(x)
on S with Dirichlet boundary condition on 0S has an n-dimensional kernel, spanned by

L2(S)-orthonormal eigenfunctions ¢1, ... , ¢n, and that the set of functions

{#igj, 1<i<j<mn}

is linearly independent. Then for every € > 0 there exist an invertible affine transformation
W:RN — RY | an open bounded domain D CC ) and a potential a:Q) — R, a € C?(9),
with the following properties:
(1) D =W(S);
(2) L' + a(x) on D with Dirichlet boundary condition on 0D has an n-dimensional
kernel spanned by L?(D)-orthonormal functions 11, ... , ¥n;
(3) [[(det DW) 2 (W () = i ()| gu () < €1 =1, ..., .
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Moreover, if there exists a C7(S) function by: S — R and a positive constant x such that
the operator A + ag(z) + bo(x) on S with Dirichlet boundary condition on 0S has all
eigenvalues < —k, then W, D and a(x) above can be chosen in such a way that, setting
b(z) := p~2bg(W~=1(z)) for an appropriate p > 0, the operator L' + a(x) + b(z) on D with

Dirichlet boundary condition on 0D has all eigenvalues < —k.

Proof. First we introduce some notation; we indicate by A;, i € N, the repeated sequence
of the eigenvalues of the operator A + ag(z) on S with Dirichlet boundary condition on
0S; in the hypothesis, we have assumed that this operator has an n-dimensional kernel, so
there is an [ > 1 such that \j < A\jy1 = ... = X\g4n =0 < Ajgpt1-

We procede in several steps:

150 step: Take T € S and zg € Q; let Gy := G(x¢), where G(z) := (a;j(x))ij; Go is a
symmetric positive definite N x N-matrix, so we can take an invertible N x N-matrix )
such that Go = QQT. We define the affine transformation

Z: RN RN

z— zo+ Q(r — )
and we set Dy := Z(S); finally, we define
a: Dl — R
a(x) :== ao(Z7(z)).

The operator A + ag(x) on S with Dirichlet boundary condition on 9S has the same
repeated sequence of eigenvalues of the operator div(GoV) + a(x) on D; with Dirichlet
boundary condition on dD;. In particular, this last operator has an n-dimensional kernel

spanned by the L2(D;)-orthonormal functions
i(x) = (det Q)~Y2¢;(Z2 Y (x)), i=1,....n.
Obviously, the set of functions
{$idi. 1<i<j<n]
is linearly independent.

274 step: For p > 0 sufficiently small, we consider the differential operators
L, :=div(G(zo+ p(z — z0))V) + a(z)
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on Dy with Dirichlet boundary condition on dD1; note Ly = div(GoV) +a(z). We indicate
by A2, i € N, the repeated sequence of eigenvalues of L,,.
Let A, be the sectorial operator in L?(D;) corresponding to L,; since the boundary of

Dy is of class C?7 and the coefficients a;; are in C'7, it follows that, for all p, the domain
of A, is H*(D1) N H}(D1). Morever, the map

pr A,
[0, po[— L(H?(D1) N Hy(Dy), L*(Dy))

is continuous. This implies that AY — \; as p — 0 for all i; then we can find some 7 > 0

such that, for all sufficiently small p,

AP < = < = < My < S M <0 <A < A

in particular, the set
p p
N A

is a spectral set of A, and we can consider the corresponding spectral projection P, and

the corresponding spectral invariant subspace X,. By the general formula

1
P,=— — A1
14 271_7/ F(C P) dC?

it follows that the map

p— P,
[0, po[— L(L*(D1), H*(D1) N Hy(Dy))

is continuous. By using the spectral projection P, together with the Grahm-Schmidt

orthonormalization algorithm, we can find, for all p, an L?(D;)-orthonormal basis 77, ... ,

£ of X,, with

P = i asp—0

in H?(D1) N H}(D,) for all i = 1, ..., n. In order to apply Theorem 5.2.3, we need a
basis of eigenfunctions; to overcome this difficulty, we procede in the following way: for all

p > 0 we can find an orthogonal n x n-matrix R, = (ripj)ij such that the functions

n

p._ PP i

X; .—E T35 1=1,...n,
j=1

97



are an L?(D;)-orthonormal basis of eigenfunctions of X ,, with
APl =Xx2 i=1,...,n.

By compactness, we can find a sequence (pg)ren, with pr — 0 as k — oc, and an orthogonal
matrix R = (r;;)i;, such that

RPr 5 R as k — oc.

It follows that, for allt =1, ..., n,

n
XE — Zrijqﬁj =:xi ask— o0
j=1

in H?(D1) N Hg(Dy). Of course x1, ..., xn are an orthonormal basis of the n-dimensional
kernel of Lo = div(GoV) + a(x). Moreover the set of functions

{xixj, 1<i<j<n}

is still linearly independent.
For ¢ € C%(Dy) let B, € Lsym(L*(D1), L%(D1)) be the map

(Bu)(z) = ¢(x)u(x), wu€ L*(D;),z € Dy.
Note that
(9.1.1) |Bc|£(L2(D1),L2(D1)) = |C|C’0(D_1)'

Let G be the set of all B, with ¢ € C°(Dy). Tt follows that G is a closed linear subspace
of Lsym(L?*(D1), L*(D1)). Now, since the functions {x;x;, 1 < i < j < n} are linearly
independent, it is easy to see that the operator T: G — S,

B = ({(Bxi, Xj))ij
is surjective. By the open mapping theorem there is a § > 0 such that
T(B;1) D Bg.
For k € N let T},: G — S, be the map

B = ((BX{*, X5*))ij-
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Then T, — T in L£(G,S,) so it is easy to see that
Tx(B1) D By for k large enough.
Moreover we have

(9.1.2) AP < =A< —n < APE < AR

T S AR, <np<dn < N k large enough.

I+n+1>

Let ag = ag(p, M, n, 0) be as in Theorem 5.2.3. For all large k, there is an «j > 0 such that

|Alpjj| <ap<apforj=1,... nand af — 0 as k — 0. Thus by Theorem 5.2.3 (with

A=Ay, py =0, Ay o= A

cis a C7(RY) function) there exists, for each large k, a C7(RY) function cx:RY — R

such that |cx|cop,) < (1/2)0ay and such that if (A26) e denotes the repeated sequence

for y =1, ..., n and D equal to the set of all B. where

of eigenvalues of L, + ¢, then

(9.1.3) AE < =3n < —n < Mh <A <n < 3p < A,
and
(9.1.4) ME=0, j=1,...,n

So we have found a sequence of potentials cx: RY — R, ¢ € CY(RY), ¢ — 0 in C°(Dy)
as k — oo, such that, for all (sufficiently large) k, the operator L, + ci(z) on Dy with

Dirichlet boundary condition on 0D has an n-dimensional kernel.

37 step: For ¢ € C°(Dy) let B, € L(LP(Dy), L?(D1)) be the map
(Bu)(x) = ¢(z)u(z), we€ LP(Dy),z € Dy.
Note that
(9.1.5) | Bele(e (D), Lo(Dy)) = le|gomry-

Let A, be the sectorial operator in LP(D;) corresponding to L,; since the boundary of
D; is of class C?*7 and the coefficients a;; are in C7, it follows that, for all p, for all
¢ € C°(D;) and for all p > 1, the domain of A, + B, is W*? (D) N W, *(D;). Moreover

Ay +Be, > Ay ask — oo

in L(W?2?(Dy) N W,P(Dy), LP(D;)). We choose p > N, so that W2?(D;) ¢ C*(Dy).
Again by using the spectral projection P, on the kernel of A,, + B., in LP(D;) together
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with the Grahm-Schmidt L?(D;)-orthonormalization algorithm, we can find an L?(D;)-

orthonormal basis ¢7*, ..., 2+ of ker(A,, + B.,) with
¢k = i as k — 0o

in CY(Dy) foralli=1, ..., n.
Summarising, we have found a sequence of positive numbers pg, pr — 0 as £ — oo, and
a sequence of C7(RY) functions cx: RY — R, ¢ — 0 in C°(Dy) as k — oo, such that, for

all (sufficiently large) k, the operator
div(G(zo + pr(z — 20))V) + a(x) + cx(z)

on Dy with Dirichlet boundary condition on 0D has an n-dimensional kernel spanned by

L%(D;)-orthonormal functions ¢%*, ..., ¢P*, with
¢F = ¢ as k — oo

in CY(Dy) fori=1,...,n.

4th step: For all p > 0 we define the homothety

0, RY — RV
z — zo + p(z — x0)
and we define
— _ N _
D, .—Op(Dl)—{yGR |y =z + p(x — x0), xGDl}.

If p is sufficiently small, then D—p C Q. So, for sufficiently large k£, we can consider the

operator

div(G(2)V) + (o) 2azo + (o)~ (2 — m0)) + (o) " 2er (@0 + (pr) ™ (@ — 20)) =
(9.1.6) = div(G(2)V) + (pr) "2a((0p,) (@) + () 2er((Op,) " ()

on D,, with Dirichlet boundary condition on 0D,,. This operator has the same repeated

sequence of eigenvalues of the operator

(9.1.7) (pr) ™% div(G (wo + pr(w — 20))V) + (o) ~*a(z) + () "*cr(w)
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on D; with Dirichlet boundary condition on dD;. In particular, the operator (9.1.6) has

an n-dimensional kernel spanned by the L?(D,, )-orthonormal functions
Y () = (o) N2 (2o + (o) (@ — 20))
= (pe) 292 ((0p) (@),
i=1,...,n. Now we define W, := O,, o Z, Dy, := Wy(S) = D,, and
(") 7%a((0p,) " (@) + (0°) 2 er((0p,) ™ ()
(0") " 2ao((Wi) ™ (2)) + (1) e ((O,,) 7 (2)).

We finally estimate, for ¢t =1, ..., n,

ag(x) :

(det DWi) /2% (Wi () = ()|

C'(s)

= [|(det @)1 2(om) M2 (Wi ()) - )|
= ||(aet @)M2* (052 o Wil) = i)
= |[(@es @) 235 (20)) = i),

HZ() - $il2 ()

C'(s)

C'(8)

—0

=(det 1/2‘
(det Q) o3

as k — oo.
Now, fixed € > 0, we choose a sufficiently large £ and we set W := Wy, D := D;, and

a := a; and we have concluded the proof of the first part of the theorem.

5th step: In order to conclude the proof of the theorem, we observe that, for all k, the

operator

(9.1.8)  div(G(z)V) + (pr) 2a((0,,) ' (z))+
+ (k) "2 ((0p,) " H&)) + () b0 (Z7 1 0 (0, ) Hx))

on Dy, with Dirichlet boundary condition on 0Dy has the same repeated sequence of eigen-

values of the operator

(9.1.9) (p) "2 div(G (2o + pr(x — 20))V) + (pr) "2a(x) + (pr) " 2cx(x) + (pr) "2bo(Z 7 ()

on D; with Dirichlet boundary condition on 9Dy, which is obtained multiplying by (px) ™2

the eigenvalues of the operator
(9.1.10) div(G(zo + pr(z — 20))V) + a(z) + e (z) + bo(Z(z))
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on D; with Dirichlet boundary condition on dD;. As k — oo, the first eigenvalue of
(9.1.10) tends to the first eigenvalue of

div(GoV) + a(z) + bo(Z~(z))

on D; with Dirichlet boundary condition on 0D, that is the same as the first eigenvalue

of the operator
A+ a(z) + bo(x)

on S with Dirichlet boundary condition on 9S. So, if k is sufficiently large, the first
eigenvalue of (9.1.10) is < —k, and since (pg)~2 — oo as k — oo, the first eigenvalue of
(9.1.8) is < —k and we have concluded. O

2. The Polacik Condition

Let © C RY be an open bounded connected set with C?” boundary. Let aijzﬁ — R,
i,j=1,..., N, be of class C7, a;; = aj;, i,j =1, ..., N, and

N
Y aij(@)éi; > clé’, z e, ¢eRY
7,7=1
for some ¢ > 0. Let us consider the differential operator
N
(9.2.1) L'=" 0i(ag(2)9)).

In this section we want to prove that, for both Dirichlet and Neumann boundary condition
on 0F), we can construct a potential a: Q — R of class C* such that all assumptions in
Theorem 3.2.1 are satisfied with

(9.2.2) L= 0i(aij(x)9;) + a(x).

2,7=1
We will prove the following:

Theorem 9.2.1. Let L’ as above and let k > 1; then, both for Dirichlet and Neumann
boundary condition on 9%, there exists a potential a:2 — R of class C®°(Q) with the
following properties:

(1) the operator L in (9.2.2) satisfies the Polacik condition on €;
(2) U C Q2 is an open set;
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(3) R(z) #0 for all z € U;
(4) there is a function b € C*° () with suppb C U such that

A< —K

for every eigenvalue A of the operator L + b on Q with Dirichlet (or Neumann)

boundary condition on 0f).

Proof. Our starting point is the existence (extablished in Chapter 7) of such a potential
when Q = B is the unit ball in RV, a;;(x) = §;;, i.e. L’ = A, and we take the Dirichlet

condition on dB. In this case there is a basis of ker L given by functions

w(lz])

]

pi(z) =

z;, T€B,i=1,...,N

and
¢n+1(z) =v(lz]), ze€B

where w, v: R — R are analytic functions such that
(9.2.3) w(0) =0, w'(0) # 0, v(0) # 0, v'(0) = 0.
We claim that
the functions ¢;¢;, 1 <4 < j < N + 1, are linearly independent.

In fact, let p;;, 1 <4 <j < N + 1, be real numbers with

Z pijpi¢; = 0.

1<i<j<N+1

Evaluating this expression at = 0 and using (9.2.3) we obtain py41,nv+1 = 0. Thus

2
R S

1<i<j<N || 1<i<N

Since )
w(|z)

]2

#0 and wilev(l]) #0 for |z| small,

||
it follows that
| Z piN+1zi| = o(|z|) for z — 0.

1<i<N
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However, this implies that p; y41 =0 for ¢ =1, ..., N. Hence

Z Pij il =0

1<i<j<N

which immediately implies that p;; = 0 for 1 < ¢ < j < N. The claim is proved.

Now we can apply Lemma 9.1.1 with S = B, n = N + 1 and ag, by given by the
construction in Chapter 7. We claim that, if we choose a sufficiently small ¢, than the
corresponding operators L, = L' +a and Loyp = L'+ a+ b on D = W(S) with Dirichlet
boundary condition on 9D satisfy properties 1)-4) of the present theorem. First, we observe

that, for a fixed invertible affine transformation W, on S we have

hi(W(z)  Vatr(W(2))

YN (W () Va1 (W(z))
1 (W(x)) (Vipr) (W ()

B . 1 0
- : : ° <0 DW (rc)) '
Y1 (W(z) (Vng)(W(x))

Since DW () is constant and invertible, we have that, if z € D = W(5),

R(¢17 ceey @/)N—}—l)(l') 7£ 0
(9.2.4) if and only if

Rp1(W (), -« ¥ (W() (W) # 0.

Let
Up:={x € B|R(¢1,...,¢n+1)(x) # 0};

Uy is open and by construction supp by C Up; take an open set U], such that supp by C
Uy CC Uy and set U' := W (U))); then U’ C D is open and, since by definition b(z) =
p~2bo(W—1(x)), it follows that suppb C U’. But now property 3) in Lemma 9.1.1 implies
that, if € is sufficiently small, then

R(pr(W()), -, ¥n+1(W()))(x) #0

for all = € U], and hence, by (9.2.4),

R(1,...;¢N+1) #0

104



for all z € U’. This proves the claim. The same argument shows that, if € is sufficiently
small, then the functions ¢;1;, 1 <4 < j < N + 1 are linearly independent.

Summarising, we have obtained the following intermediate result: we have found open
sets U' CC D C Q and two C%7(Q) functions a,b: Q — R, supp b C U’, such that:

(1) the operator L, = L’ + a satisfies the Polacik condition on D, with Dirichlet
boundary condition on dD;

(2) R(t1,...,9Ny1) # 0 forallz € U’, where 11, ... , x4y is any L?(D)-orthonormal
basis of the kernel of L, on D with Dirichlet boundary condition on dD;

(3) A < —& for every eigenvalue X of the operator L, = L'+a+b on D with Dirichlet

boundary condition on dD.
Moreover,

(9.2.5) for every basis 11, ..., ¥n4+1 of the kernel of L, on D with Dirichlet boundary
condition on D the functions 1;1;, 1 <¢ < j < N + 1 are linearly independent.

Now let H := L?(Q2), V := H}(Q) if we are working with Dirichlet boundary condition on
0Q, V := H(Q) if we are working with Neumann boundary condition on 9Q; if d: RY — R
with d|Q € C°(), define g4:V x V — R by

gd(u,v):/G(:U)Vu-Vvdm+/duvdx,
Q Q

where G(z) := (a;j()); ;. If d € C%7(Q), regularity theory of PDEs implies that, both for
Dirichlet and Neumann boundary condition, A is an eigenvalue of Ly = L' +d and u is a
corresponding eigenvector if and only if A is a proper value of g4 and w is a corresponding
proper vector. (In fact, every proper vector of gg lies in C27(Q).) Let c:RY — R be of
class C%7 and such that c¢(z) = 0 for z € D and ¢(z) > 0 for = ¢ D. Furthermore, let
(Bk)ken be an arbitrary sequence of positive numbers tending to oc. Finally, for £ € N let
cx: RY — R be a C%7(Q) function such that a+ Bycy, is the restriction to Q of a polynomial
function and sup,cq |cx(z) —c(z)| < 1/kBr. The existence of such a function ¢y, is obvious.
Let Ly, := Latgicrs 9k = Gatprc, and let goo be the restriction of g, to H} (D). We are
now in a position to apply Theorem 6.2.2: For k € N let (AF),,cn be the repeated sequence
of proper values of gz and (uF),en be an H-orthonormal sequence of corresponding proper
vectors of gi. Moreover, let (1, )nen be the repeated sequence of proper values of gq.
Then, using Theorem 6.2.2 and passing to a subsequence if necessary we may assume
that there is a sequence (vp)nen in HE (D) such that for every n € N, v, is a proper vector
of goo corresponding to pi,, (AF)ren converges to p, and (uf)pen converges to v,~ in V,
as k — oo. Set p = N + 1. There are numbers v; 72 € R, M, n € Ry and | € Ny, such
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that, setting pg = —oo, we have
0<vy2—m <M,

<y —4n <m < 0= pup1 = puyp <v2 <72 +4n < putpta.
For h € C°(Q) let By, € Lsym(H, H) be the map

(Bu)(z) = h(z)u(z), weH,zeQ.
Note that

Let G be the set of all B, with h € C°(Q). Tt follows that G is a closed linear subspace of
Lsym (H, H). Now (9.2.5) easily implies that the operator T:G — S,

B ((B(vi™),v;7))i;
is surjective. By the open mapping theorem there is a # > 0 such that
T(B1) D By.

For k € Nlet T,: G — S, be the map

B ((Bugj,uf))ij-
Then T, — T in £(G, S,) so by Corollary 5.1.2

Tr(B1) D By for k large enough.

Moreover, setting \¥ = —oco, we have
(9.2.7) A<y —4dn <y < )\ﬁ_l < )\{:Lp <vg <y t4dn < )\{:Lpﬂ, k large enough.

Let ag = ag(p, M, n,0) be as in Theorem 5.2.3. For all large k, there is an aj > 0 such that
|)\f+j| <ap<aforj=1,...,pand ay — 0 as k — 0. Thus by Theorem 5.2.3 (with
A= Ly, pj =0, A\jyj = )\ﬁ_j for j =1, ..., p and D equal to the set of all B;, where
h is the restriction of a polynomial function to C°(Q)) there exists, for each large k, a

polynomial function Ag: RY — R such that |hk|co@y < (1/2)8ay and such that if (AR ) pen
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denotes the repeated sequence of eigenvalues of Lgyp, 48, c; s (dﬁ)neN is an H-orthogonal

sequence of the corresponding eigenfunctions and 5\’3 := —o0, then

(9.2.8) Moy —3n<m—n< 5\?+1 < Xﬁp <y 4+n<vy+3n< Xﬁpﬂ
and

(9.2.9) Noi=0, j=1,...,p.

Now the assumptions of Theorem 6.2.2 are satisfied with ¢ replaced by (1/8x)hx + ck.
Therefore using Theorem 6.2.2 again and passing to a subsequence if necessary we may
assume that there is a sequence (9, )nen in Hg (D) such that for every n € N, 9, is a proper
vector of go, corresponding to ,,, (j\ﬁ)keN converges to j, and (4¥),en converges to 1,
in V, as k — oo. Moreover, by Theorem 6.3.1, (4¥|D)ien converges to @, in CL (D) as
k — oc. It follows that, if U C D is an open set, suppb C U CC U’, then, for all k large
enough, R(4f,,,. . .,ﬂf+p)(x) # 0 for all x € U. Finally, again by Theorem 6.2.2, if k is
sufficiently large, all the eigenvalues of L' + a + hy + fBrci + b are < —k. For every such
k, a + hy + Brck is a polynomial function and the conclusion follows with a replaced by

a + hy + Brcr. This proves the theorem. [

3. The Algebraic Independence Condition

Let Q@ C R? be a bounded domain with C?7 boundary. Let a;;: Q — R, i,j = 1,2, be

of class C1+7, a;; = aj;, 4, = 1,2, and
2
Z az](a:)gzzé-] 2 |£|27 HANS Qv 56 RZ
1,j=1
for some ¢ > 0. Let us consider the differential operator

2
(9.3.1) L'= )" 0i(ai(2)d)).
2,7=1
In this section we want to prove that, both for Dirichlet and Neumann boundary condition

on 0f), we can construct a potential a: Q2 — R of class C* such that the operator

2
(9.3.2) L=IL+a(z)= ) 0i(a;(®)d;) + a(x)
ij=1
has a kernel of a prescribed dimension, spanned by eigenfunctions satisfying the algebraic
independence condition (IC) in Section 4.1 up to a prescribed order k£ with an appropriate

w € R?. We will prove the following:
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Theorem 9.3.1. Let L' as above and let n,k € N. then, both for Dirichlet and
Neumann boundary condition on 052, there exists a potential a:Q — R of class C*()

with the following properties:

(1) the operator L in (9.3.2) has an n-dimensional kernel;

(2) there exists a vector w € R? and an L?(2)-orthonormal basis w1, ..., u, of the
kernel of L such that the algebraic independence condition (IC) in Section 4.1 is
satisfied up to the order k.

Proof. As in the proof of Theorem 9.2.1, our starting point is the existence (extablished
in Chapter 8) of such a potential for any smooth bounded domain when a;;(z) = §;;, i.e.
L' = A, and with w = (0,1). So we can always take a bounded smooth domain S and a

smooth potential ag: S — R such that:

(1) the operator A + ag(xz) on S with Dirichlet boundary condition on 9S has an
n-dimensional kernel;

(2) there is an L?(S)-orthonormal basis ¢y, ..., ¢, of the kernel of A + ag(x) such
that (IC) is satisfied up to the order k with @ = (0,1), i.e. foreveryl=1, ...,k
and every ¢, 1 < q <, the functions

are linearly independent.

Moreover, the functions ¢;¢;, 1 <14 < j < n are linearly independent. Now, as in the proof
of Theorem 9.2.1, we apply Lemma 9.1.1; we obtain that, if we choose a sufficiently small
€, then, for some potential a, the kernel of L + a on D with Dirichlet condition on 9D is
spanned by L?(D)-orthonormal functions 1, ..., 1, such that for every I =1, ..., k,
and for every ¢, 1 < g <[, the functions

) — R AR

VB —)!
PrARCRE)
lvI=q i=1...m
1Bl=t
are linearly independent on S. Since, for i =1, ... n,

Pi(W())y = (Vi) (W (")) - @,
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where w is the second column of the (constant) matrix DW(-), we reach that, for every

[=1,..., k and for every q, 1 < g <[, the functions

are linearly independent. Moreover, the functions 1;1;, 1 < ¢ < j < n are linearly
independent on D. Finally, we conclude arguing exactly as in the proof of Theorem 8.2.1,
applying Theorem 6.2.2, Theorem 6.3.1 and Theorem 5.2.3. [J

Remark. The present result generalizes naturally to any space dimension N > 2 (see
Section 8.3).
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CHAPTER X

REMARKS AND PROBLEMS

Vector field and jet realizations are a useful tool for giving examples of complex dynamics
in different classes of dynamical systems. All of them are generated by equations of a very
particular form and presence of complicated dynamics is not obvious.

First, consider the equation
(10.0.1) Up = Ugy + c(x)a(u) + f(z,u), = €]0,1],

where f:R? — R and ¢:[0,1] — R are sufficiently regular functions and u — «(u) is a

nonlocal linear functional on L2(0,1) of the form

1
(10.0.2) a(f) = / o(2)0(x)dz.
0
Equation (10.0.1) under the boundary condition
(10.0.3) w(0,8) = u(1,t) = 0

has been studied in [8], where a jet realization result has been proved. Specifically, any jet
whose linear part has simple eigenvalues can be realized in (10.0.1)—(10.0.3). However, the
restriction on the linear part does not allow to apply the scaling arguments of [23, Sect. 2]
in order to obtain realizability of a dense subset of vector fields. Adding another integral
term d(x)B3(u) to (10.0.1), then any family of small jets in R® can be realized, and this
implies presence of chaos in some equation of this form.

In [27] Polacik and Sosovicka consider a nonlocal equation of the form
(10.0.4) Ut = Ugy + F(u,a(u)), —-1<zx<1, t>0,

where F': R? — R is smooth and

a(u) ::/ u(z)dr, u€ L*(—1,1);

they have proved that, both with Dirichlet and Neumann boundary condition, for any given
set of complex numbers, one can arrange, choosing the equation properly, that this set is
contained in the spectrum of the linearisation. Moreover, they have proved that equations
of the above form can undergo a supercritical Hopf bifurcation to an asymptotically stable

periodic solution.
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Another special class of equations where vector field and jet realizations problems have
been studied is the class of scalar delay equations. In [11] Hale investigated the reduced
equation representing the flow on a p-dimensional center manifold of the equation with

p — 1 delays
(10.0.5) = f(z(t),z(t—7r1),..., 2t —Tp_1).

It is interesting to find what kind of reduced equations can be obtained. As shown by
Hale, this cannot be an arbitrary ODE; it is always a scalar ODE of p-th order. However,
within this limit, the reduced equation can be arbitrary, as shown by Rybakowski in [34].
Several result discussing the numbers of delays needed for realization of certain bifurcation
problems have been obtained by Faria and Magalhaes in [7].

Returning to scalar parabolic PDEs, we briefly discuss some results which are in some
sense related to the subject of this thesis. In the introduction we have pointed out that a
semilinear parabolic equation with a nonlinearity which is independent of gradient terms
admits a global Ljapunov functional. This excludes chaotic behaviour of solutions. However
one can ask whether, as in the one dimensional case, all bounded trajectories converge.
The answer is negative: in [26], Polac¢ik and Rybakowski have shown that a nonlinearity

f = f(z,u) can be found in such a way that the equation
(10.0.6) u = Au+ f(z,u)

on the ball of R? with Dirichlet boundary condition admits a solution whose w-limit is
diffeomorphic to S*.
Another interesting problem deals with equations without explicit x-dependence, that

is
(10.0.7) ur = Au~+ f(u, Vu).

In [6], Dancer and Polacik give a jet realization result for this class of equations.
We obtain another important class of equations if we introduce periodic time dependence
in (10.0.6), that is we consider

(10.0.8) up = Au+ f(t, x,u),

where f(t + 7,-,-) = f(t,-,-) for some 7 > 0. In [5] Dancer proved that, if the space
dimension is larger or equal to 2 or if the space dimension is 1 but we take periodic
boundary conditions, then a nonlinearity f can be found such that (10.0.8) has a two-

dimensional invariant torus which contains no periodic solutions. In [1], Pola¢ik announce
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that arbitrary (chaotic) dynamics can be found in the period map of (10.0.8) by adjusting

the nonlinearity f. For the more general equation
(10.0.9) Up = Ugy + f(E, 2, u, uy),

Fiedler and Sandstede have proved in [9], using a vector field realization result, that shift
dynamics can be found in an appropriate problem (10.0.9) with periodic boundary condi-
tions.

We conclude by discussing some open problems. First, we remark that, since parabolic
equations belong to the class of strongly monotone dynamical systems (see e.g. [17] and

[14]), any interesting invariant set that we find in
(10.0.10) up = Au+ f(z,u, Vu)

is unstable. It would be nice if one could find such invariant sets with the least possible
instability (that is, with unstable manifold of dimension 1). This leads to the problem
of finding an elliptic operator L on some open set {2 whose second eigenvalue has high
multiplicity. None of the methods exploited up to now seems to give any result in this
direction.

A second question is the following: as we have explained in Ch. 4, two space dimensions
are enough to obtain realizability of a dense subset of vector fields in R” for any n. It
seems rather reasonable to conjecture that actually any vector field in R™ can be realized
in an equation of type (10.0.10) on a two-dimensional domain, but up to now a result of

this kind seems to be hardly reachable.
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