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Abstract

We investigate the interplay between frustration and zero-point quantum fluctuations in the
ground state of two spin-half frustrated spin systems: the triangular and the J;—Jy Heisenberg
antiferromagnets. These are the simplest examples of two-dimensional spin models in which
quantum effects may be strong enough to destroy the classical long-range Néel order, thus stabi-
lizing a ground state with symmetries and correlations different from their classical counterparts.

In this thesis the ground-state properties of these frustrated models are studied using finite-
size spin-wave theory, exact diagonalization, and quantum Monte Carlo methods. In particular, in
order to control the sign-problem instability, which affects the numerical simulation of frustrated
spin systems and fermionic models, we have used the recently developed Green function Monte
Carlo with Stochastic Reconfiguration. This technique, which represents the state-of-the-art
among the zero-temperature quantum Monte Carlo methods, has been developed and tested in
detail in the present thesis.

In the triangular Heisenberg antiferromagnet, by performing a systematic size-scaling analy-
sis, we have obtained strong evidences for a gapless spectrum and a finite value of the thermody-
namic order parameter, thus confirming the existence of long-range Néel order. Our best estimate
is that in the thermodynamic limit the antiferromagnetic order parameter m! = 0.41 4+ 0.02 is
reduced by about 59% from its classical value and the ground state energy per site is eg =
—0.5458 + 0.0001 in unit of the exchange coupling. In addition, the good agreement between
the finite-size spin-wave results and the exact and quantum Monte Carlo data supports the re-
liability of the spin-wave expansion to describe both the ground state and the low-energy spin
excitations of the triangular Heisenberg antiferromagnet.

In the J; —J> Heisenberg model, our results indicate the opening of a finite gap in the ther-
modynamic excitation spectrum at Jy/J; ~ 0.4, marking the melting of the antiferromagnetic
Néel order and the onset of a non-magnetic ground state. In order to characterize the nature
of the latter quantum-disordered phase we have computed the susceptibilities for the most im-
portant crystal symmetry breaking operators. A genuine and somehow unexpected ‘plaquette
resonating valence bond’ (RVB), with spontaneously broken translation symmetry and no bro-
ken rotation symmetry, comes out from our numerical simulations as the most plausible ground
state in the regime of strong frustration. In the ordered phase, instead, the effectiveness of the
spin-wave theory in reproducing the low-energy excitation spectrum suggests that the uniform
spin susceptibility of the model is very close to the linear spin-wave prediction.
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| ntroduction

The physics of quantum antiferromagnets is a very old topic, dating back to the early
days of quantum mechanics itself. Nonetheless, after many years of intensive study,
the interest in this research field is still high, with several new problems arising from
the behavior of low-dimensional magnetic materials. This is also due to the existence
of simple toy-models in which the interplay between antiferromagnetism, symmetry,
dimensionality and strong quantum correlations leads to fascinating effects in the low-
temperature physics, often reproducing the behavior of real systems. Among them, the
nearest-neighbor Heisenberg Hamiltonian,

where S; = (5%, 5Y, 57) are spin-s operators and .J is the (positive) exchange integral,
has certainly played a central role as an ideal test ground to investigate the influence
of quantum effects on the mechanism of spontaneous symmetry breaking. In fact, in
contrast to the ferromagnetic state, the classical N "eel state is not an eigenstate of the
Heisenberg Hamiltonian and therefore, in general, the ground state of the latter does
not have a purely classical representation. Hence, quantum effects may play an impor-
tant role in modifying the zero-temperature properties of the model from the classical
(s = oo) limit. In particular, reduced dimensionality and a small spin value might en-
hance zero-point quantum fluctuations up to the point of destroying the classical N eel
order, thus stabilizing a ground state with symmetries and correlations different from its
classical counterpart.

Indeed, in one dimension and for s = 1/2, a famous exact solution found by Bethe
in 1931 [1] showed that quantum effects prevent the onset of true long-range antiferro-
magnetic order, giving instead a power-law decay of the spin-spin correlation functions.
Despite Bethe’s promise to generalize his solution to the two-dimensional square lattice
case, appearing in the conclusions of his paper, this was never done, and the issue of
the existence of long-range order in the ground state of the two-dimensional Heisenberg
model has been left unsolved for many years. The rigorous proof of the ordered nature of
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the ground state of the square Heisenberg antiferromagnet was given in fact, for s > 1,
only in 1986 [2], and has not been extended yet to the spin-half case where zero-point
quantum fluctuations are stronger.

This problem became a hot topic when possible connections between a non-magnetic
ground state and the mechanism of high-T;, superconductivity were put forward by An-
derson in 1987 [3]. In fact, since the stoichiometric compounds of the high-T. super-
conductors are good realizations of a s = 1/2 square Heisenberg antiferromagnet, this
conjecture focused the attention on the properties of this system. Fortunately enough,
at that time the development of modern computers was such that the use of numerical
techniques could compensate for the lack of exact analytical results. In particular, quan-
tum Monte Carlo methods have been of crucial importance, by allowing one to perform
a systematic size-scaling of the physical observables and therefore to reach a definite
conclusion [4]. As a result, even if a rigorous proof is still lacking, there is at present a
general consensus about the ordered nature of the ground state of the spin-half square
Heisenberg antiferromagnet: in two dimensions, reduced dimensionality and a low spin
value do not seem enough to stabilize, within the Heisenberg model, a non-magnetic
ground state.

Better candidates for a realization of disordered ground states in two dimensions are
frustrated spin models. In these systems, in fact, the usual antiferromagnetic alignment
between spins is hindered by the geometry of the lattice or by the presence of competing
interactions. As a result, a general feature introduced by frustration is a less stable
classical minimum energy configuration which is more likely to be destabilized by zero-
point quantum fluctuations for a small spin value. Among this class of systems two
prototypical examples are given by the triangular Heisenberg antiferromagnet, and the
J1—J3 Heisenberg model. The nature of the ground state in these frustrated spin models
represents the main topic of this thesis.

The triangular Heisenberg antiferromagnet is described by the Hamiltonian (1), where
i and j are the sites of a triangular lattice. Due to the geometry of the lattice (see Fig. 1),
the classical minimum energy configuration of this model is not the usual N “eel state with
antiparallel spins on neighboring sites. In fact, if two spins on an elementary triangular
plaguette minimize their exchange energy by aligning antiparallel, the third one cannot
do the same because it cannot be antiparallel to both of them, simultaneously. As a
result, the minimum energy configuration consists of coplanar spins forming 27 /3 an-
gles between nearest-neighbors and this leads to a v/3 x v/3 periodic N “eel state with the
spins ferromagnetically aligned on each of the three sublattices (Fig. 1). The resulting
state, having an energy per bond twice than the optimal one, is far less stable than that
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Figure 1: The classical N eel state consists of coplanar spins forming +27/3 angles
between nearest neighbors. This leads to a v/3 x /3 periodicity with the spins on the
three sublattices A,B,C ferromagnetically aligned.

on the square lattice.

In the .J;—.J; model, instead, frustration arises on the square lattice because of the
presence of competing interactions, the Hamiltonian being

H=71) Si-S;+ 1) S-S5, 2)

where J; and J, are the antiferromagnetic couplings between nearest- and next-nearest-
neighbors, respectively. Classically, the minimum energy configuration has the conven-
tional N “eel order for J/J; < 0.5 [Fig. 2 (a)]. By increasing further the frustrating inter-
action J, this configuration is destabilized and, for .5/.J; > 0.5, the system decouples
into two N “eel ordered sublattices. At the purely classical level, the energy of the latter
configuration is independent of the relative orientations of the staggered magnetizations
on the two sublattices. However, this degeneracy is partially lifted by zero-point quan-
tum fluctuations even at the lowest order in 1/s so that in the s — oo limit the minimum
energy configuration is the so-called collinear state [Fig. 2 (b)] with the spin ferromag-
netically aligned in one direction and antiferromagnetically in the other, corresponding
to a magnetic wavevector Q = (m,0) or Q = (0, ) [5]. Exactly at J,/J; = 0.5 any
classical state having zero total spin on each elementary square plaquette is a minimum
of the total energy. These states include both the N “eel and the collinear states but also
many others with no long-range order. The occurrence of a non-magnetic ground state
in the quantum case, for a small spin value, is therefore likely around this value of the
Jo/ Jy ratio.

The recent experimental finding of real compounds described by the triangular and
the J;—.J, Heisenberg antiferromagnets have renewed the interest in these frustrated
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Figure 2: The two sublattices N "eel (a) and the collinear (b) classical states.

spin systems. In particular the K/Si(111)-v/3 x +/3-B interface [6, 7] has turned out
to be a good experimental realization of a spin-half Heisenberg antiferromagnet on a
triangular lattice. In fact, due to strong electronic correlations, the surfaces states con-
sist of a triangular arrangement of half-filled dangling bonds, which are localized and
carry local s = 1/2 magnetic moments coupled antiferromagnetically. Recent experi-
mental realizations of the spin-half .J; —.J, Heisenberg model have been found instead in
the Li, VOSiO,4 and Li, VOGeO, compounds [8]. These are three-dimensional systems
formed by stacked square planes of V** (s = 1/2) ions with a weak inter-plane inter-
action. The structure of the V** planes suggests that both the superexchange couplings
between first and second neighbors can be significant and indeed, the first experimental
results have indicated that these antiferromagnetic couplings are of the same order of
magnitude [8]. In addition, the possibility of performing measurements under pressure
will also allow one in the near future [9] to tune the .J5/.J; ratio and to investigate the
properties of these systems in various regimes of frustration.

In this work the problem of the nature of the ground state of these frustrated spin sys-
tems is tackled using various techniques, namely: the finite-size spin-wave theory, exact
diagonalization of small clusters by the Lanczos algorithm, and several zero-temperature
guantum Monte Carlo methods. The finite-size spin-wave theory has been recently pro-
posed [10] as a generalization of one of the oldest analytical techniques in the study of
quantum magnetism [11]. In particular, this spin-wave expansion allows one to deal with
finite clusters while avoiding the spurious Goldstone modes divergences in a straightfor-
ward way. Even if these results are biased by the long-range order hypothesis, never-
theless useful information on the thermodynamic ground state can be extracted from
the comparison with the numerical results on finite systems or from the occurrence of a
breakdown of the 1/s expansion.
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The Lanczos method allows the exact evaluation of static and dynamical properties
of the finite-size system and, especially when combined with a careful analysis of the
symmetry of the low-energy excited states [12], can provide clear indications about the
nature of the ground state. However, due to memory constraints, exact diagonalizations
techniques are limited in two dimensions to very small clusters (~ 30 sites) so that
it is in general difficult to perform a systematic size scaling of the important physical
observables. In order to numerically investigate larger systems, different approaches are
therefore necessary.

In the unfrustrated cases, quantum Monte Carlo has turned out to be an essential
instrument for studying both the ground-state and the finite-temperature properties of a
quantum antiferromagnet [13]. Unfortunately, in the frustrated cases standard stochastic
techniques cannot be applied, as their reliability is strongly limited by the well-known
sign problem. This numerical instability originates from the vanishing of the signal-
to-noise ratio in the Monte Carlo sampling which occurs within bosonic models in the
presence of frustration or, in general, in fermionic systems.

Presently, the sign problem can be controlled only at the price of introducing some
kind of approximation. Apart from purely variational calculations, the simplest approx-
imation scheme in the framework of one of the most efficient zero-temperature algo-
rithms — the Green function Monte Carlo [14] — is the fixed-node (FN) technique [15].
This method allows one to obtain variational estimates of the energy by defining an
effective Hamiltonian with no sign problem, depending on a variational guess on the
ground-state wavefunction (the guiding wavefunction). However, the fixed-node results
are usually strongly biased by this ansatz so that it is in general difficult to extract reliable
information about the ground-state correlations whenever they are not well reproduced
by the variational guess. In order to overcome this difficulty, here we have used the re-
cently developed Green function Monte Carlo with Stochastic Reconfiguration [16, 17],
which allows one to release the fixed-node approximation in a controlled way and to
obtain much more accurate estimates of the ground-state correlations, thus reproducing
also ground-state properties that are not contained at the variational level in the guiding
wavefunction.

By using these numerical techniques, in this thesis we provide two clear examples
of systems in which the combined effect of frustration and quantum fluctuations do not
or do change the zero-temperature long-range properties of their classical counterparts.
In particular we find that the thermodynamic ground state of the spin-half triangular
Heisenberg antiferromagnet is most likely long-range ordered although with a remark-
able reduction of the order parameter with respect to the classical case. On the other
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hand, in the J; —.J, Heisenberg model, quantum fluctuations turn out to be strong enough
to melt the antiferromagnetic N “eel order, driving the ground state into a non-magnetic
phase of purely quantum-mechanical nature which we have characterized as a plaquette
RVB.



Chapter 1

Spontaneous symmetry breaking in a
guantum antiferromagnet

In this chapter we will review the basic concepts concerning the mechanism of the spon-
taneous symmetry breaking in a quantum antiferromagnet that will be used in the present
work to investigate the ground-state properties of the triangular and of the .J; —.J, Heisen-
berg models. Starting from the Lieb-Mattis theorem for the bipartite Heisenberg anti-
ferromagnet, we will introduce some general features of the finite-size spectrum of the
Heisenberg Hamiltonian. In particular, we will focus on the importance of the structure
of the low-lying excited states, explaining also how the finite-size ground-state proper-
ties can be consistent with a broken symmetry in the thermodynamic limit.

1.1 The Lieb-Mattis property

One of the few rigorous results on the ground-state properties of the Heisenberg model
on a bipartite lattice is the Lieb-Mattis theorem. Here we will reproduce the demon-
stration of this important result, following the paper by E. Lieb and D. Mattis [18] who
extended and generalized the original results obtained by W. Marshall [19].

Let us consider the Heisenberg Hamiltonian

H=> J;Si-S;, (1.1)
(4.5)

where the sum runs over all the bonds on a d-dimensional bipartite lattice, S; are spin-s
operators; J;; is the (symmetric) exchange matrix such that J;; > 0, if  and j belong
to different sublattices, and J;; < 0, otherwise. We will assume that the Hamiltonian
cannot be split into sets of noninteracting spins, restricting also for simplicity, to the case
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in which the number of sites of the two sublattices is the same. In the following N will
denote the total number of sites of the lattice.
Since the Hamiltonian (1.1) commutes with all the three components of the total spin

operator,
S=>)"s, (1.2)

it is known from the theory of the angular momentum that we can construct two op-
erators which commute with each other and with 7. For example, choosing the quan-
tization axis along the z-direction, we can consider the total spin squared, S2, and its
component along the z-axis, 5%, whose eigenvalues S(S + 1) and M are good quantum
numbers for the eigenstates of the Hamiltonian,

|wn> = ‘n’ S, M, -- > ) (13)

such that #[t,) = E, |1,). If the couplings J;; are translationally or rotationally invari-
ant, also the lattice momentum and the eigenvalues of the generators of the crystal point
group label the eigenstates of the Hamiltonian. However this restriction is not needed to
derive the following results.

1.1.1 Marshall-Peierls sign rule

In the hypothesis stated above, the first strong result one can prove is about the signs
of the coefficients of the expansion of the ground state of (1.1) in the so-called Ising
basis whose states are specified by assigning the value of the S at each lattice site, i.e.,
|2) = [1,—, |ma) with S2|m;) = s(s + 1)|m;) and S?|m;) = m;|m;) where |m;| < s.
Within this basis it is easy to distinguish between the subspaces with different values of
the projection of the total spin on the z-axis, M. In fact, in order to restrict to a particular
M sector, one has to use only the states of the basis, |x), such that >, m; = M. In
addition, sorting the basis in order to group together the states with the same M, the
Hamiltonian matrix assumes a simpler block-diagonal form, i.e., a block for each M
sector. Let us restrict therefore to a particular M subspace.
The first step of the proof is to perform a unitary transformation,
Ut = exp [ —m Z(s + S’f)} , (1.4)
1€B

whose physical meaning is to flip the quantization axis on the B sublattice. This defines
a spatially varying reference frame pointing along the local N “eel direction [Fig. 2 (a)].
The transformed Hamiltonian then results

UHU =Hy+ Ho, (1.5)
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where the diagonal part,
Ho=>_ J;;S:52, (1.6)
(i.9)

is invariant in the new representation, while the off-diagonal spin-flip term,

H, = —% >TSS + b)), (1.7)
(4.5)
acquires instead an overall minus sign. Therefore, in this representation, the Hamiltonian
has non-positive off-diagonal matrix elements. In this case, using the hypothesis that the
Hamiltonian cannot be split into sets of noninteracting spins , one can demonstrate (see
Appendix A) that the ground-state expansion over the chosen basis |,,) = > falT)
has non-vanishing positive amplitudes, i.e., f, > 0.
The latter result has two important consequences: in each M subspace the ground
state of the Hamiltonian (1.1) i) is non-degenerate, and ii) obeys, in the original repre-
sentation, the well-known Marshall-Peierls sign rule, i.e.,

‘¢M> = Z/A{ |77/~JM> = ZeiﬂN(w)‘fw|x> = Z(_l)N(w)fw|x> ) (18)

where N(z) = >, (s + m;), and the sum is restricted to the configurations |x) such
that 3, m; = M. Notice that the unessential constant term s in the definition of 2/
have allowed us to write a real ground-state wavefunction. In particular, for s = 1/2,
N(z) is simply the number of spins up on the B sublattice, say N+(x). In this case, the
ground-state projections on two Ising configurations differing for a single spin flip have
opposite signs. Notice that the rotational invariance of the Hamiltonian has never been
used in the proof so that this result is valid in general even in presence of an easy-plane
anisotropy, i.e., for the more general XXZ Hamiltonian, or in presence of an arbitrary
magnetic field in the z direction.

In contrast, for frustrated spin systems, like the J; — J, model and the Heisenberg
triangular antiferromagnet, the same proof does not hold. In fact, in both systems the
off-diagonal part of the Hamiltonian cannot be made non-positive defined by any known
unitary transformation. In the J; — J, model, the unitary transformation (1.4) does not
change the signs of the next-nearest-neighbors spin-flip term. In the triangular antifer-

1Thisformally meansthat each M block of the Hamiltonian cannot be block diagonalized by perform-
ing a permutation of the vectors of the basis. In this case each block is said irreducible [20] and every
state of the basis spanning the M subspace is connected to all the others by successive application of the
Hamiltonian.
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romagnet, under the transformation corresponding to the one in Eq. (1.4)
~ 271 N N
uf:exp[—7(255—255)] (1.9)
i€B 1€C

where B and C label two of the three sublattices as shown in Fig. 1 2, the Hamiltonian
reads

ngEy J o+ G— Gz Oz
uttu = —ZZ(S;LS]- +he)+JY SiS:
(6:3) (4.3)
+ iy Ci(SFS —hue) (1.10)

(1,3)

with C;; = £+/3/4. The transformed Hamiltonian then displays an extra current-like
term which is off-diagonal and has no definite sign. Therefore for frustrated spin systems
the Marshall-Peierls sign rule cannot be demonstrated and in general it does not hold
exactly. In addition, the impossibility to find a unitary transformation allowing us to map
the Hamiltonian into an operator with non-positive defined off-diagonal matrix elements
has also dramatic consequences on the computability of such frustrated systems with
standard quantum Monte Carlo methods. This is the origin of the so-called sign-problem
instability (see also Sec. 2.4).

However, as originally pointed out by Richter and co-workers [21], the Marshall-
Peierls sign-rule survives in the J; — J, model in very good approximation up to rela-
tively large values of the frustration. By means of the Lanczos technique (see Sec. 2.1),
for s = 1/2, N = 32 and 36, we have calculated the weight of the states satisfying the
Marshall-Peierls sign-rule in the expansion of the (normalized) exact ground state |4,),
namely:

(5) = Y [tho(@)*(=1)M@sgnlyy ()], (1.11)

with ¢(z) = (x[¢) and the notations introduced in this chapter. Our results, shown
in Tab. 1.1, put further evidence to the previous findings of Ref. [21] and indicate that
the Marshall-Peierls sign rule is verified almost exactly up to .5/J; ~ 0.3 + 0.4, even
for N = 36. Moreover, even if the average sign (s) eventually vanishes in the ther-
modynamic limit, its small size dependence suggests that this property is likely to be
conserved also for the lattice sizes (/N ~ 100) presently accessible with the stochas-
tic numerical techniques used in this work (see Chap. 2). As it will be explained in
Sec. 2.4.1, a reasonable guess on the phases of the exact ground state is in general very

2Asthe unitary transformation in Eq. (1.4) this mapping defi nes a spatially varying coordinate system
pointing along the local N”edl direction.



The Lieb-Mattis property 11

Jo/Ji 01 0.2 0.3 0.4 0.5
N=32 1 1 ~(1-1078%) ~0.9998 0.973
N=36 1 1 ~(1-108%) ~009995 0.961

Table 1.1: Weight of the states satisfying the Marshall-Peierls sign-rule, (s), in the
ground state of the J;—.J, Heisenberg model. Data are reported for s = 1/2, N = 32
and N = 36, and various values of the frustration.

useful to improve the efficiency of the approximated quantum Monte Carlo techniques
that have to be used in presence of the sign problem.

In the triangular case, instead, the phases obtained by applying the operator (1.9) to
a state with positive-definite amplitudes on the Ising basis, as in Eq. (1.8), are very far
from being exact, especially in the spin-isotropic limit (see Sec. 3.2.1).

1.1.2 Ordering of the energy levels

It follows from the spin rotational invariance of the Hamiltonian (1.1) that each energy
level, E/(S), belonging to the total spin .S subspace is (25 + 1)-fold degenerate: in any
S sector there is a degenerate level for each value of M in the range —S < M < S.
Therefore, in a given M subspace every energy eigenstate with total spin .S > | M| must
be contained. In the hypothesis stated above, it is possible to prove that the lowest energy
in each M subspace belongsto S = M, i.e., it has the minimum total spin allowed.

In order to prove this result we will show that the ground state of # in an M subspace
is not orthogonal to the ground state of a rotational invariant soluble Hamiltonian, which
is known to belong to the S = M sector. Therefore, so does the former since two
eigenfunctions having different quantum numbers are in general orthogonal. Let us
consider the infinite-range Heisenberg Hamiltonian on a bipartite lattice

Ho=T > S;i-S;, (1.12)
i€A,jEB
with J positive constant. This Hamiltonian is rotationally invariant and exactly soluble
since it is equivalent to a two spin problem:

Hoo = J(S? — 8% — §2) (1.13)

where Si and SQB are the total spin squared on the A and B sublattices, respectively.
The eigenvalues of this special Hamiltonian are

En(S) = %[5(5 +1) = Sa(Sa+1) = Sp(Sp +1)], (1.14)
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and are monotonically increasing with the total spin S. Then, the ground state of .,
in each M subspace, has S = M total spin. Moreover, both # and 7., satisfy the re-
quirements for the Marshall-Peierls sign rule. Hence, their ground state in any M sector
are not orthogonal since their overlap involves the sum of positive numbers. It follows
that they have necessarily the same total spin quantum number S = M. Therefore in a
given M subspace the lowest energy of the Heisenberg Hamiltonian has the minimum
total spin allowed.

This implies in turn that E(S) < E(S+1). Infact, among the degenerate eigenfunc-
tions with E(S + 1), there is a representative in the M = S subspace. The latter has not
the minimum total spin allowed for that subspace and therefore it has an energy higher
than E(S). This proves that the energy levels of the Heisenberg antiferromagnet (1.1)
increase monotonically with the total spin and, in particular, that the absolute ground
state is a singlet and non-degenerate (Lieb-Mattis property) 3.

The above proof on the ordering of the energy levels is a direct consequence of the
Marshall-Peierls sign rule and therefore it breaks in presence of frustration. However
the Lieb-Mattis property turns out to be verified even for frustrated spin systems. In
particular, for symmetry reasons, the ground state on any finite size of the spin-isotropic
Heisenberg antiferromagnet is believed to possess all the symmetries of the Hamiltonian
and in particular to be a singlet, rotationally invariant, and non-degenerate [22]. Even if
there is no rigorous theorem proving this property in general, the latter turns out to be
true on a finite size whenever the cluster is large enough, it has an even number of sites,
and the boundary conditions do no frustrate the antiferromagnetic long-range order [12].
In any case, however, these symmetry properties concern in general the ground states on
finite sizes only. In the thermodynamic limit, the situation can change drastically if there
IS no gap in the excitation spectrum. In this case, in fact, a family of excited states
collapses onto the ground state and may break its symmetric character. This will be
illustrated in the following sections.

1.2 Order parameters and susceptibilities

A zero-temperature spontaneously broken symmetry occurs when the ground state has
a lower degree of symmetry than the corresponding Hamiltonian. In this case, one
can define an extensive operator, O, breaking some symmetry of the Hamiltonian and
such that the so-called order parameter, i.e., the ground-state expectation value m =
(100|O|the) /N, has a finite value. In general, whenever the symmetry-breaking operator

3Infact, having S = 0, it has only arepresentativein the M = 0 subspace



Order parameters and susceptibilities 13

O does not commute with the Hamiltonian, the symmetry breaking can happen only in
the thermodynamic limit. In fact, in that case, the ground-state expectation value of O
is zero on any finite size by symmetry. This will be the case for the symmetry-breaking
operators considered in this thesis.

The occurrence of a spontaneously broken symmetry can be detected by adding to
the Hamiltonian # an ordering field §:

A~ ~

Hs = H — 60. (1.15)

Since on a finite size the ground-state expectation value of O vanishes for § = 0, the
ground-state energy per site has corrections proportional to 42,

e(d) ~ ey — %XO(SQ : (1.16)

Yo being the (positive-definite) generalized susceptibility associated to the operator O,
namely:

Xo =~ (nlO(Ey — H) " Olo) (1.17)

where E, is the ground-state energy of .
If symmetry breaking occurs in the thermodynamic limit then

RV S
lim lim —(4o|Olyo) = m # 0, (1.18)

and the finite-size susceptibility has to diverge with the system size. In fact, by the
Hellmann-Feynman theorem, the ground-state expectation value of O at finite field is
(0)s/N = —de(5)/ds, so that, if symmetry breaking occurs in the thermodynamic limit,

an infinitesimal field § must give a finite({))d/N ~ xo6 implying that the susceptibility

has to diverge in the thermodynamic limit. Moreover, it is possible to show that the

finite-size susceptibility must diverge at least as the volume squared N?. This will be

proven in the next section.

1.2.1 Exact bounds on the susceptibilities

Since on a finite size (5|O1) = 0, it is convenient to introduce as the order parameter

the quantity p = \/(¢0|02|w0)/N2. The latter is finite in general on any finite size
and extrapolate to a finite value in the thermodynamic limit in presence of long-range
order, i.e., whenever m, given by Eq. (1.18), is finite. In this section we will show
that, whenever symmetry breaking occurs in the thermodynamic limit, the corresponding
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susceptibility must diverge as N — oo and, in particular, it is bounded from below by
the order parameter times the system volume squared, namely xo > const p* /N2,
Let us define the following decomposition:

1 A 1 A 1
= alhlOn) = 5 S lOfn)F = Jaosw @
with .
S(w) = 5 D [(%olOn) *6(w — wn) (1.20)
n#0

where we have introduced a complete set of eigenstates of the Hamiltonian |+,,) with
eigenvalues E,,, we have used the symmetry of the ground state (i.e., (¢0|O|1) = 0)
and set w, = E,, — E,. By the Cauchy-Schwartz inequality we have:

/de(w) = /dww1/2S(w)1/2w_1/2S(w)1/2

< [/dw wS(w) /dww‘lS(w)] v : (1.21)
Now,
-1 1 1 A 2 Xo
Jaou15@) = 5 3 - IwalOlm = X2 (1.22)
n#0 n

where o by Eq. (1.17) is the susceptibility associated to the operator O. In addition it
is straightforward to show that

_ 1 S = (10, O] = £
Jawusw) = 5 S anlwlOnnl = pOmOD =g, a2
so that, using Egs. (1.21) and (1.22), we have
1 1
pQZN/de(w) < ﬁ\/x()fo. (1.24)
Hence, we have obtained the following lower bound for the susceptibility:
4
Xo > W e (1.25)
fo

Therefore, if the order parameter is finite in the thermodynamic limit, the susceptibility
must diverge at least as the volume squared, provided f, is a constant. This happens
whenever the commutator of 7 and O is an extensive quantity as it is the case for the
magnetization in the Heisenberg model and for all the symmetry-breaking operators
treated in this work.
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Moreover it is also possible to construct an upper bound for the generalized suscep-
tibility xo associated to a symmetry-breaking operator O. In fact, using Egs. (1.22) and
(1.19), we have

xo 1 1 A 1 Np?

5= W2 Ol < 5 [wos@ ="
where A is the energy gap between the ground state and the first excitation. An energy
gap in the thermodynamic excitation spectrum is therefore incompatible with a spon-
taneously broken symmetry. The physical meaning of this quite general result is the
following: in presence of a gap in the excitation spectrum, the ground state, which has
generally all the symmetries of the Hamiltonian on any finite size, has clearly no mean
to develop a spontaneously broken symmetry in the thermodynamic limit. In this case,
the susceptibility is bounded [Eq. (1.26)]. In contrast, in presence of a gapless excitation
spectrum, a family (or a tower) of excited states can collapse in the thermodynamic limit
onto the ground state and can break its symmetric character. In fact, these states acquire
in general a phase factor under some operation of the symmetry group of the Hamilto-
nian and they can give rise to a symmetry-broken superposition. Whenever this happens,
the related susceptibility must diverge as the volume squared [Eq. (1.25)]. In this case
from Eqgs. (1.25) and (1.26) we get a remarkable relation for the size-dependence of the
spin gap, namely

Jo

A< 2—p2N*1 . (1.27)

The mechanism underlying the spontaneous symmetry breaking leading to the onset
of long-range N “eel order in the thermodynamic ground state of a quantum antiferromag-
net will be discussed in more detail in the following section.

1.3 Neéel order and Anderson’s towers of states

As we have already noticed, the occurrence of a spontaneous symmetry breaking in
the thermodynamic ground state, can be evidenced from the structure of the finite-size
energy spectrum.

On any finite size, the ground state of a quantum antiferromagnet is generally be-
lieved to be a singlet, rotationally invariant and non-degenerate, i.e., non-magnetic. This
is rigorously stated by the Lieb-Mattis theorem (Sec. 1.1) only for the Heisenberg square
antiferromagnet but nonetheless it can be numerically verified on small clusters also in
presence of frustration for the triangular Heisenberg antiferromagnet [12] and for the
J1—J; model itself [23] (see also Sec. 1.2). Therefore, as originally pointed out by
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Anderson [11], the spontaneously symmetry breaking mechanism necessarily involves
the low-energy portion of the excitation spectrum: in particular, a whole tower of states
has to collapse in the thermodynamic limit onto the ground state faster than the low-
lying excitations involving a spatial modulation of the classical N “eel state (the so-called
magnons) . In fact, since in general these states acquire phase factors under rotations in
the spin space, they can sum up to a nontrivial state in which the spins point in a definite
direction, giving rise to N “eel-like long-range order.

In particular, it is well known [24, 25, 26, 27] that in this case the low-lying excited
states of energy E(S) and spin S are predicted to behave as the spectrum of a free
quantum rotator (or quantum top) as long as S < /N,

E(S) — Ey = % : (1.28)

where Ey, = E(0) is the energy of the ground state, |1,), and I is known as the momen-
tum of inertia per site and is an intensive quantity.

This equation, which is in agreement with the bound (1.27), can be justified in a
semiclassical picture of the long-range ordered ground state of a quantum antiferromag-
net. To this purpose, let us consider the nearest-neighbor Heisenberg antiferromagnet
on the square lattice, and separate in the Fourier transformed Hamiltonian the k = 0,
and Q = (m, ) contributions (i.e., the only ones allowed by the sublattice translation
invariance of the classical N “eel state) from the others:

H=Ho+V, (1.29)
where
7 4. &2 &2 &2
Ho= (8 -84 - 83), (1.30)

S? is the total spin square, and S and S% are the total spin square of the A and B
sublattices, respectively;

f) =2J Z Yk Sk : s,k y (131)

where S, = 1/v/N Y, S; exp(k - r;), r; is the position of the site 4, and 7, = (cos k, +
cos k,)/2. For each value of the total spin S the lowest eigenstate of 7, is the classical-
like state fully polarized on each magnetic sublattice with energy:

47S(S +1)
==

Eo(S) =~ (N +4) +

; (1.32)

This is in agreement with the quantum top law (1.28). Of course, since Si and SQB do
not commute with ), such eigenstates are not eigenstates of 7. Nonetheless we can look
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at them as the first approximation to the low-lying excited states in each S sector. The
perturbation V dresses these classical-like states with quantum fluctuations decreasing
the average value of the sublattice magnetization and lowering their energy towards
the exact result. However, as long as the energy scale of these states is well separated
by the low-lying excitations with k # 0, Q such renormalizations are not expected to
modify the behavior (1.28). These excitations are known as magnons or spin-waves (see
Sec. 3.1), and involve a spatial modulation of the classical N “eel state. In the Heisenberg
antiferromagnet the dispersion relation of the softest magnons is linear in the wavevector
so that, in two dimensions, they have an energy scaling as 1/+/N. This implies that the
constraint on the value of S for the validity of Eq. (1.28) is S < V/N.

The quantum top law is similar to the definition of the uniform spin susceptibility
(see Appendix B). The latter, in fact, can be calculated, by taking first the infinite-
volume limit of the energy per site e(m) = E(S)/N at fixed magnetization m = S/N

and then letting m — 0 in the expansion

m2

e(m) = ey + 2 (1.33)
which is quite similar to Eq. (1.28). However an identification between I and y is pos-
sible if the excitation spectrum smoothly connects the low-energy portion which cor-
responds to total spin S ~ O(1), with the regime of macroscopic spin excitations:
S ~ mN (with m < 1) [28]. This is an highly nontrivial statement which is actually
verified by the underlying low-energy effective model of the quantum antiferromagnet,

known as nonlinear o model (NLoM) [26, 27, 29, 28, 22]. Therefore, the quantity

1 E(S) - E
— =2N—F—"F—— 1.34
must approach the inverse of the spin susceptibility for infinite size and for any spin

excitation with S <« N.

1.4 Resonating Valence Bond states

A simple and clear picture of a non-magnetic ground state can be given in terms of
the so-called Resonating Valence Bond (RVB) wavefunctions [30]. Here, for simplicity,
we will restrict ourselves to the case of the spin-half square antiferromagnet even if
these states can be used also for a generic value of the spin s [31] and different lattice
geometries [32].

The RVB wavefunctions are linear superpositions of valence bond states in which
each spin forms a singlet bond with another spin on the opposite sublattice. These
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states form in general a (overcomplete) basis of the S = 0 subspace so that any singlet
wavefunction can be represented in terms of them. In particular, with such RVB wave-
functions it is possible to describe either a long-range ordered or a non-magnetic state by
varying the bond-length distribution [31]. In order to clarify this point, let us consider
the following class of RVB wavefunctions for a system of /V spins:

Wrve)= > h(r1)...h(r) (ir41) - (in,Jn) , (1.35)

10 €A,JgEB

where n = N/2, r,, is the distance between the spins forming the m®™ singlet bond
(tm jm), and h(r,,) is a bond weight factor, function of its length. The latter wavefunc-
tion has no long-range order whenever the short-ranged bonds are the dominant one
in the superposition (1.35). More precisely, it has been numerically shown by Liang,
Doucot and Anderson [33] that the RVB state (1.35) has no long-range antiferromag-
netic order for bonds that decay as rapidly as A(r) ~ =P, with p > 5. Instead, if the
weight functions decay slowly enough with the length of the bond, then the RVB wave-
function has a finite value of the thermodynamic order parameter squared. In particular,
if the weight factors A (r) are independent of the bond length, the RVB wavefunction is
the projection of the N “eel state onto the singlet subspace.

Therefore, the simplest physical picture of a non-magnetic ground state can be given
in terms of a RVB wavefunction with short-ranged bonds. In addition, such bonds can be
either homogeneously spatially distributed on the lattice, with short-range correlations
among each other (spin liquid) [Fig. 1.1 (a)], or they can break some symmetries of the
Hamiltonian, with the dimers frozen in some special patterns [Fig. 1.1 (b)]. In Chap. 4
we will provide an example of the latter situation.



Resonating Valence Bond states 19

< o—o  o6—0
o —o  o6—=0

(@) (b)

Figure 1.1: An example of a spin liquid (a) and of a symmetry-broken (b) non-magnetic
RVB state. Each stick represents a singlet bond.






Chapter 2
Numerical methods

The various numerical methods that allow one to investigate the ground-state proper-
ties of a lattice Hamiltonian can be grossly divided into two main branches: the exact
diagonalizations and the stochastic (Monte Carlo) techniques.

The first family includes all kinds of brute force diagonalizations of the Hamiltonian
matrix, providing the exact physical properties of the finite-size ground state. However,
due to memory limitations, the numerical calculation of the entire spectrum of a matrix
is possible only for very small systems as the linear dimension of this matrix grows
exponentially with the system size. The use of iterative procedures converging to the
ground state of the Hamiltonian, like the power method or the very efficient Lanczos
technique (Sec. 2.1), allows one to study clusters of the order of ~ 30 sites for the
most common strongly correlated models (Heisenberg, t—.J, Hubbard, etc.). However
this is far from being enough for the determination of the physical properties in the
thermodynamic limit.

Recent progress has been made by using exact diagonalization within the so-called
density matrix renormalization group technique (DMRG) [34], which allows one to ob-
tain almost exact — at least in one dimension — large-size ground-state properties. How-
ever, the DMRG results, although quite accurate, are not exact in two dimensions. More-
over, for technical reasons it is possible to consider only particular boundary conditions
(open in one direction and periodic in the other), which certainly make the DMRG cal-
culation still far to be representative of the thermodynamic limit.

The simplest stochastic technique is the variational Monte Carlo (VMC) method
(Sec. 2.3), which is a statistical sampling of a variational wavefunction ¢ ¢(z), defined
on a given basis |z)*. From this point of view, the Green function Monte Carlo (GFMC)

1In the simulations of strongly correlated Hamiltonians each element |z) of the basis set is typically
represented by a simple confi guration, defi ned by the electron positions and spins.
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technique [14] can be considered as a development of the VMC, because it allows one
to sample statistically the exact ground state of a many body Hamiltonian %, instead
of being restricted to a variational wavefunction. In fact, the ground state of a given
Hamiltonian 7 can be obtained by applying the propagator e~ to a trial wavefunction
|¢) and sampling statistically the state [¢,) = e—ﬁTWG) for large imaginary time 7.
As explained in detail in Sec. 2.4, in the GFMC numerical scheme a Markov process
is defined, acting on the elements of a chosen basis |x) such that the ground state is
sampled by a set of random walkers (w;, z;), i.e., a weight w; is associated at each
configuration z; in order to represent the amplitude of the wavefunction on the element
x; of the Hilbert space. The algorithm is efficient even for large system sizes, provided
all the matrix elements of the Hamiltonian in the chosen basis, H, ./, are non-positive;
otherwise the numerical method suffers from the numerical instability known as the sign
problem. Unfortunately, with very few exceptions, this happens in general for fermionic
models and for frustrated spin systems [17].

In this case the imaginary time propagation can still have a statistical meaning at the
price of having walkers with weights w; which are no longer restricted to be positive.
As a result, the average weight sign (s), = (3, wi)n/ >_;{|wi|)» at a Markov iteration
n is exponentially decreasing with n, implying a dramatic decrease of the signal-to-
noise ratio for all correlation functions. Presently, the above mentioned instability can
be avoided only at the price of introducing some kind of approximations. Among them
the fixed-node (FN) GFMC [35], recently extended to lattice Hamiltonians [15], allows
one to handle approximately the negative off-diagonal matrix elements of the Green
function with the introduction of an effective FN Hamiltonian with no sign problem,
depending on a trial state |¢¢). Unfortunately, for strongly frustrated spin systems the
results obtained with the FN GFMC are strongly biased by the choice of the variational
guess |vg) [17, 36, 37].

The Green function Monte Carlo with Stochastic Reconfiguration (GFMCSR) [16,
17] allows one to release the FN approximation in a controlled way and to obtain much
more accurate estimates not only of the energy but also of the ground-state correlation
functions. The idea underlying the Stochastic Reconfiguration (SR) procedure is that,
given a certain state v, (x), its representation in terms of the walkers’ population is
not unique. In particular it is possible to represent statistically the same state with an
ensemble of walkers either with vanishing average sign (s),, or with an average sign
close to 1. Indeed the task accomplished by the SR procedure is to change the walker
population every few iterations in order to stabilize (s),, to a value close to 1. This can be
done in principle without changing the information content of the walkers’ population,
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i.e., the sampled wavefunction. In practice, to limit the numerical effort, the SR is
performed with the constraint that only a certain number p of expectation values of
correlation functions is propagated consistently with the exact dynamics. Of course
this introduces a certain amount of bias that can however be systematically reduced by
increasing the number of reconfigured operators, so that the method becomes exact if all
the correlation functions are included in the SR.

In this chapter the Lanczos method and the mentioned quantum Monte Carlo tech-
niques, will be treated in detail.

2.1 The Lanczos method

From a general point of view, the ground state |1,) of a lattice Hamiltonian # can be
obtained by iterating the well-known power method

o) = (A — H)"|ebg), (2.1)

where |1¢) is a trial wavefunction non-orthogonal to |t/,) and A is a suitable constant,
allowing the convergence to the ground state for large n. In fact, by expanding the trial
state on the basis of eigenstates of the Hamiltonian, |¢,,), such that H|t¢,,) = Eum [tm),
we have

A—FE,

(A - ﬁ)”hﬁc) = (A = Ey)" | coltho) + Z Cm( A_E )n|¢m>] J (2.2)
m#0 0

with ¢,,, = (¥n|tYg); therefore, for large n, the ground-state component is filtered out
from |¢¢) provided |(A — E,,,) /(A — Ey)| < 1 for any m, and ¢y # 0.

Starting from the power method, it is possible to define a much more efficient it-
erative procedure for the determination of the lowest eigenstate of Hermitian matrices,
especially those of very large dimension and sparse character?. The basic idea of this
technique, known as the Lanczos method [38], is that it is in general possible, given an
Hamiltonian, to construct a special orthogonal basis (the Lanczos basis) which is a smart
choice for the expansion of its lowest eigenvector. In particular the Lanczos algorithm
generates a sequence of tridiagonal matrices, representing the Hamiltonian in the trun-
cated Lanczos basis, with the property that their lowest eigenvalues (eigenvectors) are
better and better estimates of the lowest eigenvalue (eigenvector) of the original opera-
tor. In this section we will recall only the essential features of this technique, following
Refs. [39, 40], to which we address the reader for further details.

2A L x L matrix is usually said sparse if the number of nonzero entriesis of order L instead of I.2.
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To illustrate the procedure, let us consider an Hamiltonian 7 and an initial state
|¢po) not orthogonal to the ground state of A, |thg). In practice, this requirement can
be satisfied simply using a state with randomly chosen amplitudes in the chosen basis
set. Of course, if some information is known on physical grounds about the ground-
state quantum numbers, it is convenient to start with a random state in the corresponding
subspace.

A new vector of the Lanczos basis, |¢1), is constructed by applying the operator H
to the initial state and subtracting its projection on the initial state, i.e.,

1) = H|dbo) — aoldo) , (2.3)

with ag = (do|H|do)/(do|de), SO that (¢e|é;) = 0. Similarly, we construct the second
vector of the basis set, |¢,), by applying # to the vector |¢,) and then orthogonalizing
the resulting state to both |@,) and |¢1), namely

‘¢2> = 7:”¢1> - CL1|¢1> - b%‘fﬁo) ) (2.4)
with a; = (1 |H|¢1)/(d1]d1) and b2 = (p1]é1)/{Bo| o)

The key point of the Lanczos procedure turns out in the construction of the third
state of the new basis, |¢3), obtained by the orthogonalization of 7£|¢,) to the previous
states |¢o), |61), and |@2). In fact #|¢,) is by construction orthogonal to |¢) since,
by Eq. (2.3), being (¢2|¢o) = (b1]do) = 0, (¢o|H|¢o) = 0. Therefore, the iteration
procedure leads to a three term relation, i.e., the operator % is represented in the Lanczos
basis by a tridiagonal matrix. Then, the state after n + 1 iteration will be obtained by
orthogonalizing the state 7£|¢,,) only to the two predecessors |¢,,) and |¢y.,1), namely

‘(bn—f-l) = 7:[|(/j)n> - an|¢n> - bi‘(bn—l) 5 (25)
where the coefficients @, and b2 are given by

($u|H|bn) 2 (Buldn)
y = nlTtOn) o (OnlPn) 26
o Gnlbn) Gos[Gns) (2.6)

and by = 0, |¢—_1) = 0. In the Lanczos basis the operator is therefore represented by the
following tridiagonal matrix:

Qg b1 0 0
b1 aq bQ 0 .
H= 0 b2 (5] b3 . . (27)
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At any given iteration n, the diagonalization of the latter matrix leads to the optimal ap-
proximation, in the truncated Lanczos basis {|¢,)}, of the lowest eigenstate of 74, [¢/).
The variational principle® guarantees the monotonic convergence to the exact ground
state for large n.

Therefore, by successive diagonalizations of small order tridiagonal matrices it is
possible to infer the lowest eigenvalue of 7 and the corresponding eigenfunction. In
fact, with a small number of iterations (~ 100) it is typically possible to get practically
exact ground-state energies of lattice Hamiltonians defined on Hilbert spaces of ~ 1(
states. Such large matrices can be diagonalized only by iterative procedures, and the
Lanczos algorithm allows a much faster convergence than ordinary power methods. The
convergence properties of the Lanczos algorithm are discussed in detail in Refs. [41, 42].

The most serious drawback of the Lanczos method, as well as of the other exact
diagonalization algorithms, comes from memory limitations which restricts the applica-
bility of this technique only to small clusters. In fact, for interesting lattice Hamiltonians
the dimension of the associated Hilbert space grows exponentially with the system size.
By using the symmetries of the Hamiltonian it is possible to block diagonalize the cor-
responding matrix, therefore restricting the calculation to smaller subspaces. It is then
possible to evaluate the exact ground state of up ~ 30 electrons in simple strongly cor-
related models like: the Heisenberg, the ¢ — J, the Hubbard models and related ones
[39]. A clear treatment of the group theory underlying the use of the symmetries in the
Lanczos diagonalization can be found in Ref. [43].

2.2 Monte Carlo sampling

In its simplest formulation, the Monte Carlo method is a way to approximate the mean
value of a function f(z) with respect to a probability distribution P(z),

(fy=>_ f(z)P(z), (2.8)

where P(x) satisfies the conditions: P(x) > 0 and)__ P(x) = 1. In order to do so, we
can generate, according to the probability distribution P(z), a sample X of independent
values z, and approximate ( f) as

- 1
()= fx = 5 > f@), (2.9)

3Seedso Sec. 2.3
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where Ny is the number of configurations x in the sample. The Central Limit Theorem
[44] ensures that, for big enough samples, the values fx are normal distributed around
the true value (f), and converge for Nx — oo towards ( f), namely:

1 o
2 —_ 2-10
where o = ({f2) — (f)?)/2 is the variance and can be estimated, using Eq. (2.10), as:
1 1 211/2

Although in principle Eq. (2.10) is valid in general, its practical utility is governed
by the signal-to-noise ratio. In fact, the ratio of the variance to the mean, o/(f), must be
sufficiently small so that the relative error may be controlled with a feasible sample size
(i.e., with a reasonable simulation time). As we will also see later on, for some cases the
integrand in Eq. (2.8) has nearly canceling positive and negative contributions which are
separately very large in magnitude. In this cases standard Monte Carlo methods become
practically useless, and this is known as the sign problem. For problems with dominantly
positive integrands, however, the choice of P(z) in Eq. (2.8) is largely arbitrary, and this
freedom may be effectively exploited to reduce the variance. For example, if we choose
P(z) such that f(z) is almost constant, then the variance will be small and the Monte
Carlo sampling will converge rapidly [44]. The selection of P(z) to reduce the variance
is known as importance sampling.

2.3 Variational Monte Carlo

The Rayleigh-Ritz variational principle is one of the most powerful non-perturbative
method in quantum mechanics: given an Hamiltonian %, its expectation value over any
trial wavefunction |¢¢), Eg, is greater than the ground-state energy, Ey:

(Ve|H|va)
(Yelva)
This important result can be easily derived by expanding the trial state in a complete set

of eigenstates of the Hamiltonian |v,,) with energies F,,. In fact,

(e H|ba) E [{¢n|ta) P [(Pnltbe)|?
(Ya|va) Z (Yalba) (Ya|va)

since E, > FE,. Therefore, among a set of wavefunctions the best approximation to the
ground state is the one with the lowest expectation value of the energy.

Eq = > E. (2.12)

= Ey+ Y _(En — Eo) > Ey, (213)
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In general, variational expectation values cannot be calculated analytically, but they
must be computed introducing a complete set of states, |z), and summing over these
states explicitly,

WelHve)  2pw V6 (@) Hywio(a')

(alva) > Yal(x)? ’
where H, , = (z|H|z"), ¥a(z) = (z]v¢) and we have restricted ourselves to the case
of real wavefunctions, for simplicity. Unfortunately, the dimension of the Hilbert space
grows exponentially with the system size, so that the exact evaluation of variational
expectation values (2.14) is possible only for very small clusters. In order to extend the
variational calculation to large system sizes, one must follow a stochastic approach: the
variational Monte Carlo (VMC).

In the most simple formulation, the Monte Carlo evaluation of the variational expec-
tation values can be done by rearranging Eq. (2.14) as

(We|Hve) Y, ve(z)’E

(2.14)

= 2.15
(Yelva) > e Ya(z)? (215

where FE, is the so-called local energy:
E, = {WelHlz) Z¢ )Hy o/ 10c(z) - (2.16)

¢G|33

Then, as shown in Sec. 2.2, the sum in Eq. (2.15) can be evaluated by choosing a sample
of Nx configurations x according to the distribution P(z) = vx(x)*/ >, ¥¢(x)? and
then averaging the corresponding values of the local energy, namely:

(1/1G|H|T/JG Z
~—> E, (2.17)
(Yelve) T~ Ny =
Similarly, all the other physical expectation values,
Ak 2k

Welve) Y, va(x)?
can be obtained on the given variational wavefunction, provided the local estimator
OF = (1pg|OF|z)/(tbg|x) of the correlation function OF can be computed in an effi-
cient way.

The simplest way to generate samples according to the probability distribution P(z)
is by mean of the Metropolis algorithm [45]: starting from a configuration x, a new
configuration # is accepted if a random number &, between zero and one, satisfies the
condition ¢ < P(z')/P(x) = vg(z')?/va(x)?, otherwise 2’ = z. This simple proce-
dure generates configurations x that, after some equilibration, are distributed statistically
according to the square of the variational wavefunction.
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2.3.1 Variational improvement by Lanczos iteration

As discussed in Sec. 2.1, the Lanczos basis is a smart choice to expand the ground state
of an Hamiltonian 7. Therefore, as originally suggested by Heeb and Rice [46], any
given variational wavefunction |1s) can be improved by applying » times the Hamil-
tonian to it and using the variational principle to optimize the amplitudes, «;, of the
truncated expansion in the Lanczos basis:

a1, g, 0 Q) = Zai’;':[ih/)(;} . (2.19)
i=1

In this work we have used the simplest one Lanczos step (LS) wavefunction,

Ya) = (1 + aH)|ve) (2.20)

where « is a variational parameter. The Monte Carlo sampling of this wavefunction is
particularly easy. In fact,

Vo (z) = (z|(1 + oH) [We) = e(z)(1 + aE,) , (2.21)

where E, is the local energy given by Eq. (2.16), so that at each Monte Carlo step, in
order to evaluate the ratio P(z')/P(x), we have only to calculate the local energy on
both the configurations # and z. Then, the variational expectation value of the Hamil-
tonian over the state [, ) can be obtained by averaging the local energy defined by the
LS wavefunction, namely:

ES = tha(z')Hy o/ ta() . (2.22)

Moreover it turns out that the optimal variational parameter « can be efficiently
determined with only two variational calculations. This is discussed in Appendix F.

2.4 The Green function Monte Carlo

As shown in Sec. 2.1, the simplest algorithm allowing one to converge to the ground
state of a model Hamiltonian is the power method. However, similarly to the variational
or the Lanczos techniques, the exact implementation of the power method clashes with
the difficulties related to the dimensions of the Hilbert space, so that it is limited in
practice to small clusters. A stochastic approach is therefore needed in order to study
large system sizes. This is represented by the Green function Monte Carlo (GFMC).
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The first step along this way is to define an iterative procedure implementing the
power method (2.1):

¢n—|—1 (xl) - ZGw’,wwn (.’L‘) ; (223)

where G, , is the lattice Green function, which is simply related to the Hamiltonian
matrix in the given basis |z)

Goo=Abyo— Hyy. (2.24)

A stochastic approach is therefore possible if one can sample statistically the matrix-
vector iterations (2.23). The property that allows a statistical approach is that physical
lattice Hamiltonians are represented by very sparse matrices: though the total num-
ber of nonzero elements of G , is prohibitive, the number of non-vanishing entries in
each column is a neglectable fraction of the total Hilbert space dimension. Thus all the
nonzero G, for fixed column index x, can be computed even for large size.

In practice, in the statistical implementation of the power method, it is convenient
to consider in the iteration (2.23), in place of the original matrix G, the slightly more
involved non-symmetric one

ém’,z = ,(/)G(xl)Gx’,a:/wG(x) ) (225)

where v is the so-called guiding wavefunction, that has to be as simple as possible to
be efficiently implemented in the calculation of the matrix elements and, as we will see,
as close as possible to the ground state of #. In fact, the power method is not restricted
to symmetric matrices, and G, though non-symmetric, has the same spectrum of G as
for any eigenvector ¢ () of G with energy A — Ej, vg(x)Y, () is a right eigenvector
of G with the same eigenvalue. As shown later on, by sampling statistically the iteration
(2.23) with G instead of G it is possible to reduce the variance of the energy (importance
sampling).
In the following, given any operator O%, we will indicate with

Ok , = a0}, /va(x) (2.26)

its matrix elements transformed according to the guiding wavefunction.

2.4.1 Statistical implementation of the power method

In order to define a statistical implementation of the matrix multiplication (2.23), the
standard approach is first to determine the Green function matrix elements G, , con-
nected to x which are different from zero. These matrix elements can be generally
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written in terms of three factors,

Gm’,a: = Sx’,mpx’,zbm ) (227)

where b, is a positive normalization factor, s, , takes into account the signs of the Green
function and p, , is a stochastic matrix. All these terms will be defined explicitly below.
The basic step of the GFMC method on a lattice is to define properly the matrix py ,,
because it represents the term in the decomposition (2.27) allowing one to select statisti-
cally only one configuration among all the possible ones {#} connected to . Therefore
Par z Nas to represent a probability and is restricted to be i) normalized ) , p,», = 1 and
i) with all positive matrix elements p,. , > 0. This is just the definition of a stochas-
tic matrix (see Appendix C). Since the matrix elements of G are not restricted to be
positive (sign problem) p, , is more clearly defined in terms of an appropriate Green
function G*/7 with all positive matrix elements. G2/7 needs not to be normalized, as its
normalization can be included in the definition of the positive constant
be=> Gt (2:28)
"
so that
Gl = par obs - (2.29)
The typical choice for G¢// is given by the absolute value of the matrix elements of G,
G;ff; = |Gy |, but this is not the optimal choice for our purposes. Here we follow a
recent development of the fixed-node (FN) technique on a lattice [15], and we choose
for G¢// the FN Green function (with importance sampling)
Gl = Noy, — HIL (2.30)
The constant shift A has to be large enough that all the diagonal elements of G¢// are
strictly positive. This is possible in general for the diagonal elements. If H¢/f is ap-
propriately defined [15], one can prove that its ground state is a variational state of H
with an energy better than the guiding wavefunction one. Here we slightly modify this
approach which neglects all the matrix elements of H crossing the nodes of the guiding
wavefunction, namely the ones with H,,, > 0, by defining a matrix element 5/ < 0
even when H,,, > 0 (see below). The generalization of the above ‘FN theorem’ to this
case is straightforward, has been reported in the Appendix A of Ref. [17], and will not
be repeated here.
More in detail, the definition of A¢// is as follows. The off-diagonal matrix elements

are given by
_ Hy, if Hp,<0
sl = e T T = (2.31)
’ ~YHy , it Hyp, >0
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where + is a positive constant, and the diagonal ones are
Hyll = Hyp + (14 7)Vit(2) (2.32)

where the diagonal sign-flip contribution is given by:

V(@)= Y. Hyg,. (2.33)

{Hw/,w >0, o' £z}

Notice that there is no difference between the diagonal elements of the Hamiltonian
HelT (H) and the ones of the transformed matrix H¢// (H), as defined by Eq. (2.26).
With these definitions, the equality (2.27) holds if the factor s, , is given by:

1 if Gpe>0

Swa=4 —l/y if G, <0 . (2.34)
X:gffjc if 2'=x

Then, the appropriate stochastic process relative to the Hamiltonian matrix H can
be defined by introducing the basic element of the statistical approach: the walker. A
walker is defined by an index z corresponding to a given element |z) of the chosen
basis and a weight factor, w, representing the amplitude of the sampled wavefunction
on the element |z) of the Hilbert space. In particular the Markov iteration implementing
statistically the matrix multiplication (2.23) can be defined by the following three steps:

1. Given the walker (w, x), change the weight by scaling it with b,

w — byw .

2. Generate randomly a new configuration # according to the stochastic matrix p, .
3. Finally multiply the weight of the walker by s, ,:

w' = WSy (2.35)

It is clear that, whenever the off-diagonal matrix elements of the importance sampled
Green function (2.27) are non-positive, the walker’s weight has no definite sign. This
is the origin of the well-known sign problem, that will be discussed in detail in the
following. Without the latter step, one is actually sampling the Hamiltonian H¢//, which
we expect (or assume) to have a ground state close to the one of H, for suitably chosen
guiding wavefunction. During the Markov iteration it is straightforward therefore to
update both the weight w associated to the true Hamiltonian, and the positive definite
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one w*/f associated to the approximate FN one, H¢/f. Therefore, from now on the
walker will be therefore characterized by the triad

(w, w7 z) .

Of course, in absence of sign problem, i.e., whenever the off-diagonal matrix elements
of G, . are positive definite, H// = H and s, ,» = 1, so that w®// = w.

The previous Markov iteration allows one to define the evolution of the probability
density for having the walker with weights w and w®// in the configuration z, namely:

, i efft
P (0, wT g pr“” ( wvou x) (2.36)

‘Sm’ x‘ bmsm’,m bw

The first moments of the distribution P over w and uf// give the state v, (z) prop-
agated with the exact Green function G and the state ¢//(z) propagated with the FN
Green function G¢//, respectively. Indeed by defining the propagated wavefunctions as

Yn(z) = /dweff /dwan(w,weff,x), (2.37)
Yl (z) = /dweff /dw w T P, (w, w | x) (2.38)

one can be readily verify, using (2.36), that the above expressions for ,, and 1¢//, sat-
isfy the iteration condition (2.23) with G and G¢/7, respectively. Therefore, after some
equilibration (i.e., for large n) the probability distribution P, will reach its equilibrium
form P, so that ¢, (z) o« th(2)va (), and &7 (z) o< &7 (@)1 (z), where 1y and
Y&l ! are the ground states of H and He//,

As a result, the ground-state energy of H can be expressed as

WG\?%WO) . Zw,w/ I:Ix’,w fdweff fdwao(w,weff,x)
Walbe) o JdweIT [dww Py(w, weil,z)

that is, remembering the definition (2.16) of the local energy, £, = Y, Hy 4, it can be
computed by means of the Monte Carlo sampling as

(WeHlvo) _ Dewex WEa
(Yalo) — Dawex W

where Z(m,w)ex means the sum over independent configurations of the walkers belong-

ing to a sample X, generated according to the three steps of Eq. (2.35). Similarly, for
the ground-state energy of He/f, ES// we have

E():

(2.39)

E():

, (2.40)

etf _ wernex U Es
Ey ~

~ 2.41
Z(w,weff)eX weff ( )
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In addition, within the same Monte Carlo sampling, it is also possible to calculate all the
so-called mixed averages [14] of arbitrary linear operators O,
(¥|O[0)
(1a|0)
where |0) is the ground state of H or H¢//. In fact, such mixed averages can be calcu-
lated using Eq. (2.40) or Eq. (2.41) by substituting the local energy E, with the local
estimator associated to the operator OF, i.e.,

oF=> "0k, (2.43)

(2.42)

where O’;,,z are the operator matrix elements transformed according to the guiding wave-
function, as defined in Eq. (2.26). Of course the mixed average of a correlation function
coincides with its ground-state expectation value only for operators commuting with the
Hamiltonian.

If the guiding wavefunction 1) is exactly equal to the ground state of H, by defini-
tion £, = E,, independent of z, as (vg|H = Ey(1)g| in (2.16). This is the so-called
zero variance property satisfied by the method. Namely if the guiding wavefunction ap-
proaches an exact eigenstate of H, the method is free of statistical fluctuations. Of course
such a fortunate situation is not common at all. However, improving the guiding wave-
function the statistical fluctuations of the energy can be much reduced, leading to more
efficient simulations. Moreover, since the most stable right eigenvector '/ () (x)
of the positive definite Green functionGe// can be chosen positive (see Appendix A), it
is important to implement importance sampling with a guiding wavefunction with signs
as similar as possible to the ones of the ground state of H, so that the Green function
G has its most stable right eigenvector 1y (z)q(x) > 0 for most configurations . In
this case there are good chances that the latter state is well approximated by the positive
vector ¥i// ()1 (z). As we will show later on, this is crucial for the efficiency of the
method in presence of the sign problem.

In the practical implementation of the method, since the walker weights grow ex-
ponentially with the Markov iteration — simply as a result of the independent products
in the steps (1) and (3) of Eq. (2.35) — the procedure for the statistical evaluation of
the mixed averages is slightly different. The configurations z;, that are generated in the
Markov process are distributed after many iterations according to the maximum right
eigenstate of the matrix p,- , [as, if we neglect the weights of the walkers, only the ma-
trix p is effective in the matrix product (2.23)]. This state is in general different from the
state 1 (x)vo(x) we are interested in. So, after many iterations, the sampled configura-
tions x,, are distributed according to an approximate state and we can consider this state
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as a trial state v for the initial iteration in the power method (2.23). At any Markov
iteration n, we can compute the weight of the walker assuming that L iterations before
its value was simply w = 1. In this way it is simple to compute the resulting weight of
the walker with L power Green function G applications:

L
G =] ben;50nsirion; - (2.44)

j=1

Therefore, for instance, in order to compute the ground-state energy of H with a single
Markov chain of many iterations, the following quantity is usually sampled

0~ T~ ~7 =
> G

with L fixed, and as large as possible consistently with the necessity to keep the fluctu-
ations under control [47].

(2.45)

At this stage the algorithm is exact and the Markov iteration allows one to sample
the ground states of H and H¢// within statistical errors, that unfortunately may be very
large, and increasing with the iteration number n, especially when there is sign problem.
In fact, there are two important drawbacks for the single walker formulation that do not
allow one to calculate the averages over the weight variable GL in a stable and controlled
manner. The first one arises because the weight G of the walker grows exponentially
with L and can assume very large values, implying diverging variances in the above
averages. This problem has a very well established solution by generalizing the GFMC
to many walkers and introducing a scheme (branching) that enables to carry out walkers
with reasonable values of the weights, by dropping the irrelevant walkers with small
weights and splitting the ones with large weights. Recently a simple formulation of
this scheme was defined at fixed number of walkers [47] in a way that allows one to
control efficiently the residual bias related to the finite walker population. The second
drawback is the more difficult one and is due to the sign problem. In fact, whenever
the walkers” weights have no definite sign, the average sign (s,) = >, GZ/>" |GE|
vanishes exponentially with L, so that the walkers with positive weight cancel almost
exactly the contribution of the walkers with negative weight, leaving an exponentially
small quality to sample. In the formulation of Ref. [47] this problem looks quite similar
to the first simple one. As we will see later on, some kind of remedy can be defined by a
simple generalization of the Stochastic Reconfiguration (SR) which is useful in the case
with no sign problem. This numerical technique is called Green function Monte Carlo
with Stochastic Reconfiguration (GFMCSR) [16, 17].
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2.4.2 The Stochastic Reconfiguration

Given M walkers we denote the corresponding configurations and weights with two vec-
tors (w, x), where each vector component (w;, wfff, x;) with7 = 1,--- M corresponds
to the 5'® walker. Following Ref. [47], it is easy to generalize Eq. (2.36) to many walkers
by introducing the corresponding probability P, (w,x) of having the M walkers with
weights and configurations (w, x) at the iteration n. Similarly to the single walker for-
mulation, the propagated wavefunctions +,, (z) and ¢/ (z) with the true Green function

G and the approximate one G¢// read

nla) = [law] 33 e P v ) (2.46)
wells, .
vl (a) = [flaw) 030 S P ) @2.47)

where the symbol f[dw] indicates the 2)/ multidimensional integral over the (w;, witl)
variables 7 = 1,---, M ranging from —oc to oo and from 0 to oo, respectively. Equa-
tions (2.46) and (2.47) show that the propagated quantum-mechanical states ¢,, and
el !, which are sampled statistically, do not uniquely determine the walker probability
function P,(w,x). In particular, it is perfectly possible to define a statistical process,
the SR, which changes the probability distribution P,, without changing the exact infor-
mation content, i.e., v, and ¢/, In this way a linear transformation of P,, described
by a simple kernel X (w’, x’; w, x), will be explicitly given:

P (w' x') = /[dw] ZX(W,,XI; w,X)P,(w,x) . (2.48)

When there is no sign problem (w®/f = w) it is possible to define the kernel X[47]
by requiring that the weights wj are all equal to . w;/M after the SR. In this case the
algorithm is exact, and allows one to perform stable simulations by applying the SR each
few k,, iterations. Furthermore, by increasing the number of walkers A/, the exponential
growth in the variance of the weights w; can always be reduced and systematically
controlled. In fact, for large enough M, it is possible to work with L sufficiently large
(L o< M) obtaining results already converged in the power method iteration (2.23), and
with small error bars.

In order to avoid the sign problem instability, at least in an approximate way, we can
follow the previous scheme by using the following kernel X that defines the SR (2.48)

M
X(w xiw,x) = H _Zj P2, 0010,
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W
e (e B
eff1 ’
X 5(w,. —\wi>, (2.49)

where the coefficients p,; will be defined in the following, and

- ZiPu (2.50)

Zj ‘pwj| ‘

The kernel (2.49) has a particularly simple form since the outcoming variables z’; and
w; are completely independent for different values of j. In particular, it is possible to
integrate easily each of the M factors of the kernel in the variables w, w;f’f " and to
sum over the configurations z;, the result being simply one, as it is required by the
normalization condition of the probability density P’ in Eq. (2.48). In general, the SR
defines new states + (z) and ¢}, ¢// () starting from the given states +,,(z) and y¢// ()
at the given Markov iteration n. The new states 1/, () and v!,¢// (z) are simply obtained
by replacing P with P’ in Eqgs. (2.46) and (2.47). The SR will be exact if it does not
affect the evolution of the state 1), (x) during the Markov chain, namely whenever

Un (@) = Yn(z). (2.51)

In the SR, the new configurations # are taken randomly among the old ones {z;},
according to the probability |p.,|/ > |p.,|, defined below in terms of the given weights
{w,}, {w;fff} and configurations {z;}. Moreover, the weights w; are changed consis-
tently to Eq. (2.49) by w! = 3! >_;w;/M sgnp, and the FN weights, restricted to be
positive, are defined by taking their absolute values uf’/" = |w/|.

The coefficient 3, given by Eq. (2.50), guarantees that the normalization is preserved
by the SR, namely >« (z) = ), ¥n(x) (see Appendix D). This coefficient 3 repre-
sents also the expected average walker sign (s)" = . w;/ >, |w;| after the reconfigu-
ration. It is supposed to be much higher than the average sign before the reconfiguration
(s) = >_;w;/ X2 |wj|, so that a stable simulation with approximately constant average
sign (s)’ can be obtained by iteratively applying the SR every few £, steps of the power
method iteration (2.23).

In the actual implementation of this algorithm (see Appendix E for the details) the
weights are reset to unit values after the SR: w} = sgnp,, and w§’/’ = 1, whereas only
the overall constant ﬂ—lzj w;/M, common to all the different walkers, is stored in a
sequential file. As in the single walker formulation we can assume that, at any given
iteration n, L iterations before the trial state 1) is given by the equilibrium distribution
of walkers with unit weights w; = sgnp,;. Therefore, in order to obtain the weights




The Green function Monte Carlo 37

predicted by the Eq. (2.49) for L power method iterations starting from 1 it is enough
to multiply the previous L/k, saved factors f,, = ﬂ*lzj w;/M. This yields a natural
extension of the factors G in Eq. (2.44) to the many walker case

L/kp

GE= 1] farxs, (2.52)
k=1

and the corresponding mixed average correlation functions are obtained by averaging
the local estimators over all the iterations n just before the SR (i.e., n is a multiple of k)

(OF) = S G W, (2.53)

where, in the above equation, the weights w; and the local estimators O’;j are evaluated
only before the SR.

Choice of the coefficients p,;

The only left quantity in the kernel of Eq. (2.49), which we still need to define properly
the whole algorithm, are the coefficients p,; which have not to be assumed positive.
These coefficients may depend on all the weights wj;, the configurations z; and the FN
weights w//.

The choice p,, = w; is exact in the sense that ¢, (z) = ¥, (), and coincides with
the one for the case without sign problem [47]. However this choice is obviously not
convenient, because this reconfiguration will not improve the sign, which will decay
exponentially in the same way.

Instead, in the case with sign problem, we can parameterize the coefficients p,,
by assuming they are close enough to the positive definite weights {u;;iff}, the ones
obtained with the FN Green function G¢//. The rational for this choice is that, though
the weights wjff may be occasionally very different from the exact weights w; — namely
their sign can be wrong —they sample a state +»¢// () which is supposed to be quite close
to the exact propagated state 1/, (x). This condition is clearly verified for an appropriate
choice of the guiding wavefunction v, making the FN accurate. Then, we assume that
small perturbations over the state ¢¢// () may lead to fulfill the equality (2.51) with an
arbitrarily small error. This error will affect the equilibrium walker distribution P, for
large n, but there will be no problem if this error i) is small and ii) can be reduced within
the desired accuracy.
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In the simplest and most practical formulation we require that only the average en-
ergy before and after the SR coincide

S Hoaton() = Y Harat () (2.54)

(the denominators in the mixed averages (2.42) are already equal by definition, as) 1, (z) =
>, ¥r (x) for the chosen 3 in Eq. (2.49)). Then, we define

Py; = w;ffu + By, — Euy))

and

eff
_ w; By w; By
E 205 Py E:ZJ A (2.55)

eff = T off T~ .
3w 2.5
where E is the local energy (2.16) associated to the configuration z;. Thus F repre-
sents the estimate of the average energy correctly sampled with the sign, whereas E.; is
the corresponding FN one. In order to satisfy the requirement (2.54) we just determine
a by
E - Eeff
o= = — (2.56)
EZr; — (Eepy)?

where B2, = S, wi'E2 /37 wi'! is the average square energy over the positive
weights w'/.

A simple calculation shows that with this reconfiguration, that clearly improves the
sign, the value of the energy (the mixed average energy) remains statistically the same
before and after the SR (see Appendix D). It is clear, however, that this is not enough to
guarantee convergence to the exact ground state, because fulfillment of Eq. (2.54) does
not imply the exact equality (2.51). We can improve the definition of the constants p,,

by including an arbitrary number p of parameters with, p < M,

pl‘j = wjeff(l + Otl(Oal;j - O;ff) +e ap(ngj - O_gff)) (257)

proportional to the fluctuations O’;j — Offf of p different operators O* with correspond-
ing local estimators O’;j = (Ya|O|z,)/(¥alz;) (k=1,---,p), and average value over
the positive weights O, = 3~ ws/fO% /3~ w/?. With the more general form (2.57)
for the coefficients p; it is possible to fulfill that all the mixed averages for the chosen
p operators have the same value before and after the SR:

> Ok stb(x) = O () . (2.58)

T’z
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In general, the reference weights w’/ in Eq. (2.57) may be also different from the ones
generated by the FN Green function, the only restriction is that w;fff > ( for each walker
j (see Appendix D).

It can be proven that, in order to fulfill exactly the SR conditions (2.58), it is sufficient
that the coefficients p,; are chosen in a way that

prjOI;j Zw]OILL‘c]
J J
- : (2.59)
Zpivj Zw'
J J !

which can be fulfilled with a solution of a simple linear system for the unknown vari-
ables ay, for k = 1,---, p, as described in the Appendix D. The conditions (2.59) are
much simpler to handle, because they can be satisfied at a given iteration of the Markov
process. A theorem, proven in Appendix D, guarantees indeed that the exact conditions
(2.58) are implied by the constraints (2.59) after the complete statistical average over
the walker probability distribution P,.

Proof of the asymptotical convergence of the GFMCSR to the exact result

Asymptotically, by adding more and more parameters {«;}, we can achieve the exact
SR conditions ¢!, (x) = 1, (z) strictly, since the distribution «,,(z) is completely deter-
mined by its correlation functions. The proof of this important statement is very simple.
Consider first the diagonal operators. All these operators may be written as linear com-
binations of the “elementary” ones O3, = 0. 40,4, acting on a single configuration
xo, plus at most some constants. If conditions (2.58) are satisfied for all the elemen-
tary operators O it immediately follows that !, (zo) = ¥, () for all zo, which is the
exact SR condition (2.51). Then it is simple to show that the coefficients p,,, determin-
ing P! and +!, are invariant for any constant shift of the operators O*. Furthermore
with a little algebra it turns out that these coefficients p,; do not change for any arbi-
trary linear transformation of the chosen operator set: O = 3", L, ,OF (with real L
and det L # 0) (see Appendix D). Thus the proven convergence of the GFMCSR is
obtained for any sequence of diagonal operators, that, with increasing p, becomes com-
plete. For non-diagonal operators O, . we simply note that they assume the same mixed
average values of the equivalent diagonal ones O;‘fffwg = 0y 5 D Op 5. Thus the proof
that GFMCSR converges in principle to the exact solution is valid in general even when
non-diagonal operators, such as the Hamiltonian itself, are included in the conditions
(2.58).
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2.4.3 The limit A — oo for the power method: imaginary time evo-
lution

The constant A, which defines the the Green function(?m,,z = Ay, — ﬁml,m and the FN
one G/ (2.30) has to be taken large enough to determine that all the diagonal elements
of G¢// are nonnegative (by definition the off-diagonal ones of G¢// are always non-
negative). This requirement often determines a very large constant shift which increases
with larger size and is not known a priori. The trouble in the simulation may be quite
tedious, as if for the chosen A a negative diagonal element is found for G¢//, one needs
to increase A and start again with a completely new simulation. The way out is to work
with exceedingly large A, but this may slow down the efficiency of the algorithm as in
the stochastic matrix p, ., the probability to remain in the same configuration p may
become very close to one

pa= A Her = L DIVl) (260)
where V() is given in Eq. (2.33) and E, is the local energy Eqg. (2.16) that do not
depend on A given the configuration z.

Following Ref. [14] the problem of working with large A can be easily solved with
no loss of efficiency. We report this simple idea applied to our particular algorithm at
fixed number of walkers. If A is large it is possible to take a large value of &, (of order
A) iterations between two consecutive reconfigurations, because in most iterations the
configuration z is not changed. The idea is that one can determine a priori, given p,
what is the probability ¢(k) to make & diagonal moves before the first acceptance of a
new configuration with 2 # . This is given by (k) = pk(1 —pg) fork = 0,---,n; — 1
and t(n;) = pj' if no off-diagonal moves are accepted during the n, trials that are left to
complete the loop without reconfigurations.

It is a simple exercise to show that, in order to sample #(k) one needs one random
number 0 < ¢ < 1, so that the stochastic integer number k£ can be computed by the
simple formula

k = min (nl, [ﬁ}) , (2.61)

where the brackets indicate the integer part. During the k,, iterations one can iteratively
apply this formula by bookkeeping the number of iterations n,; that are left to complete
the loop without reconfigurations. At the first iteration » = k,, then £ is extracted using
(2.61), and the weights (w,w®//) of the walker are updated according to % diagonal
moves and if £ < n; a new configuration is extracted at random according to the off-
diagonal matrix elements of p,/ ,. The weights are correspondingly updated for this
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off-diagonal move, and finally, if £ < n, n; is changed to n, — k — 1, so that one can
continue to use Eq. (2.61) until all the &, steps are executed for each walker.

The interesting thing of this method is that it can be readily generalized for A —
oo by increasing k, with A, namely k£, = [AAT], where A7 represents now exactly
the imaginary time difference between two consecutive reconfigurations when the exact
propagator e~ #A7 or ¢=#*/7A7 s applied statistically (see also Appendix E).

2.5 Numerical tests

In this section some general properties of the GFMCSR technique are discussed and
explicitly tested on the models under consideration in this work, namely the spin-half
J1—J5 and triangular Heisenberg antiferromagnets (see Introduction). In the following
we will consider finite clusters of NV sites with periodic boundary conditions. Details on
the guiding wavefunctions used can be found in Chapters 3 and 4.

2.5.1 The limit of small A7 and large number of walkers

We report here some test results useful to understand the crucial dependence of GFM-
CSR on the number of walkers M and the distance in imaginary time A7 between two
consecutive SR. In fact, after the selection of a given number p of correlation functions
in Egs. (2.58), the results depend only on the number of walkers A and the frequency of
reconfiguration A. In the limit of large number of walkers, at fixed p, the algorithm has
the important property that the fluctuations of the coefficients o, and O* in Eq. (2.57)
are obviously vanishing, because they depend on averages of a very large number of
samples of many different walkers, implying that these fluctuations are decreasing with
1/+/M. In this limit it is possible to recover the important zero variance property of the
FN: if the guiding wavefunction is exact, the FN averages are also exact. In fact suppose
we begin to apply the propagator e~ starting at = = 0 from the exact sampling of the
ground state v/, determined by FN with the exact guiding wavefunction v g = 4. Then,
at any Markov iteration n, before the SR is applied, both the mixed average correlation
functions calculated with the FN weights we//, O, = > wi/f Ok /3> ws!!, and the
weights with arbitrary signs w, OF = Zj ij’,;j/Zj w;, sample statistically the true
quantum average (1o|O%|10) /(to|1b0). If, for large M, we can neglect statistical fluc-
tuations of these averages, then by Eq. (2.59) «,, = 0 and the SR algorithm just replace
the weights w; (with sign problem) with the FN weights w;fff, which also sample v,
exactly. This means that the SR approach does not affect this important property of the
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Figure 2.1: Dependence on the number L of correcting factors of the estimated ground-
state energy per site of the .J;—.J, Heisenberg model for N = 64 and J,/J; = 0.5
obtained with the GFMCSR technique (A7 = 0.01) with M = 200 (triangles), 1500
(squares) and 10000 (circles).

FN approach, at least in the limit M — oc.

Another reason to work in the limit M — oo is the following. In this limit it is
not necessary to include in the SR conditions (2.59) operators O* that vanish for some
symmetry that is satisfied both by the true Hamiltonian # and the FN one H¢//. In
fact, if the coefficients p,, are defined in terms of operators (F that conserve the above
mentioned symmetries (e.g., translation invariance, rotation by 90° degree of the lattice,
etc.) by definition Egs. (2.58) are satisfied for all the remaining non-symmetric opera-
tors which have vanishing expectation value due to symmetry constraints (such as, e.g.,
an operator that changes sign for a rotation operation which is a symmetry of H and
He/T), In this case, both sides of Egs. (2.58) are zero by such symmetry constraints.
Moreover, for M — oo the statistical fluctuations are negligible and for the same reason
Egs. (2.59) are also automatically satisfied with vanishing o for the above mentioned
non-symmetric operators. In this limit, it is therefore useless to include non-symmetric
operators in the SR (2.59).

The way the computed results depend on the number of walkers is shown in Fig. 2.1,
as a function of the number of correcting factors. As shown in Ref. [47] these correcting
factors allow one to eliminate the bias due to the finite population of walkers in the
case there is no sign problem. In this case instead the finite population bias cannot be
eliminated even by an infinite number of factors and a properly large number M of
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Figure 2.2: Ground-state energy per site of the J; —.J, Heisenberg model for J,/.J; = 0.5
obtained for different clusters and different number of walkers. Empty dots are data
obtained with zero correcting factors while full dots refer to converged values in L.

walkers has to be taken for unbiased simulations. In fact for M — oo the fluctuations
of the G factors are bounded by the central limit theorem by O(ﬁ). Therefore, for
given L and large enough M, they do not play any role in the average quantities (2.53).

As it is evident, for large number of walkers (M — oo) the correcting factors do
not play any role and the estimate with minimum statistical error is obtained by sim-
ply ignoring the correcting factors. This is actually a common approach in GFMC, to
consider a large number of walkers so that the bias of the finite walker population be-
comes negligible, and typically decreasing as 1/M (see, e.g., Fig. 2.2). However from
the picture it is also evident that, for large enough M, the predicted results obtained by
including or by neglecting the correcting factors are both consistent. The convergence
to the M — oo limit is however faster for the first method. Thus the inclusion of the
correcting factors G in Eq. (2.53), though increasing the error bars, may be useful to
reach the M — oo limit with a smaller number of walkers.

The other parameter affecting the accuracy of the SR approach is the imaginary time
distance A7 between two consecutive SR. It is then natural to ask whether by increasing
the frequency of the reconfigurations, one reaches a well defined dynamical limit for
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Figure 2.3: Dependence of the ground-state energy per site of the J;—.J, Heisenberg
model on the imaginary time step A7 obtained for J,/J;=0.5 and N = 36 with the
GFMCSR technique by using in the SR the energy (full dots), all S*(q), the spin square
and the order parameter m 2 (empty dots). The number of walkers was fixed to M =
10000, so that the finite-A bias can be neglected on this scale. The lower horizontal
axis coincides with the exact diagonalization result.

AT — 0. This is important since, due to the sign problem, for large system size N

the time interval A7 has to be decreased at least by a factor inversely proportional to

N, because the average walker sign vanishes exponentially ~ e~2s™ with an exponent

A, which diverges with N. Different calculations, performed for different sizes can be

compared only when the finite A7 error (the difference between A7 — 0 and finite A7)
is negligible.

As shown in Fig. 2.3, whenever the simulation is stable for A7 — 0, the limit A7 —
0 can be reached with a linear extrapolation. This property can be easily understood
since in the limit of a large number of walkers, the variation of the average correlation
functions Eq. (2.53) both for the FN dynamics and the exact dynamics in a time interval
between two consecutive SR differ clearly by O(AT).

In order to show more clearly how the method is working and systematically correct-
ing the FN we have implemented a slightly different but more straightforward release
node technique [48]. We first apply the standard FN [with v = 0, see Eq. (2.31)] for
a given number of walkers M and for long simulation time. We store the M-walkers
configurations, after some equilibration at time interval large enough to allow uncorre-
lated and independent samples of the FN ground state. In a second step we recover each
of these M -walker configurations and apply GFMCSR for a fixed imaginary time 7, so
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Figure 2.4 Stable (upper curve) and unstable (lower curve) imaginary time evolution
of the GFMCSR estimates of the ground-state energy per site of the .J;—.J; Heisenberg
model for J,/.J; = 0.5 and the N = 36 cluster. The horizontal line indicates the exact
result.

that we can see how the energy expectation value evolves from the FN to a more ac-
curate determination. Typically one obtains a reasonable behavior for these curves that
always coincides with the exact dynamics in the initial part where an exact sampling of
the sign is possible. However, for large imaginary time, exceedingly small A7 and large
number of walkers, some instability may occur leading to results clearly off, as shown
in Fig. 2.4. In this case, the instability is due to the fact that the correlation functions
S*(q) = 1/N?3", ; S7S;€'t9) which we have used in the SR (p = 9) [16], introduce
some uncontrolled fluctuations for the momentum @@ = (w, ) relevant for the antifer-
romagnetic order parameter. If we include in the SR technique also the spin isotropic
operator corresponding to the order parameter m'* = 1/N? 3", . S; - §;e-) and the
total spin square (p = 11) this instability disappears (see Fig. 2.4, stable results, not
shown in the picture, are obtained even without the total spin square, i.e., with p = 10).
This is a reasonable effect, since the order parameter has important fluctuations in all
spin directions.

2.5.2 Convergence to the exact result and size consistency

In principle, within the GFMCSR method, convergence to the exact result can be achieved
with an arbitrary accuracy if a sufficiently large number p of correlation functions are
constrained to be equal before and after the SR. However this is only a theoretical limit
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N  VMC FN SR(p=2) SR(p=17) Exact
eo 12 -05981 -0.6083(1) -0.6085(1) -0.6105(1) -0.6103
36 -0.5396 -0.5469(1) -0.5534(1) -0.5581(1) -0.5604
48 -0.5366(1) -0.5426(1) -0.5495(1) -0.5541(1)
108 -0.5333(1) -0.5387(1) -0.5453(1) -0.5482(1)
S2, 12 0235  00111(2) 0.006(4) -0.002(4)  0.00
36 1.71 120(1)  0.65(1)  0.02(1)  0.00
48 255(1)  212(2)  144(1)  0233)  0.00
108  6.36(4)  566(3)  4.35(4) 2.7(1) 0.00
mt2 12 09241  09286(1) 0.9210(2) 0.9132(6) 0.9109
36 07791  0.7701(4) 0.7659(2) 0.7512(3) 0.7394
48 0.7496(3) 0.7243(5) 0.7177(2) 0.7080(5)
108 0.6338(7) 0.6182(4) 0.6040(3) 0.5836(5)

Table 2.1: Variational estimate (VMC) and mixed averages (FN, SR and Exact) of the
ground-state energy per site, the total spin square and the order parameter for the trian-
gular Heisenberg antiferromagnet for various system sizes. SR data are obtained using
the short-range correlation functions generated by 7 (p = 2) and H2 (p = 7) reported
in Chap. 3. All the values reported in this table are obtained with large enough M and
1/Ar, practically converged in the limit of A7 — 0 and M — oco. Exact results are
obtained using the Lanczos technique.

because the number of correlation functions p required to obtain the exact result scales
exponentially with the system size, yielding a computational effort similar to the exact
diagonalization methods.

In order to minimize the number p of correlation functions used in the SR, one is
limited to use an empirical approach, based on physical intuition, and/or by compari-
son with exact results obtained for small sizes with the exact diagonalization technique.
Typically, the fundamental ingredient that we have found to be important for strongly
correlated Hamiltonians is the locality. The most useful correlation functions are the
short-ranged ones appearing in the Hamiltonian 7. A successful example is the appli-
cation of the method to the Heisenberg model on the triangular lattice [36] (see also
Chap. 3) where a remarkable accuracy is obtained by including also the short-range cor-
relation functions generated by the application of the square of the Hamiltonian. Table
2.1 reports all the values of the ground-state energy per site, the total spin square and
the antiferromagnetic order parameter m'? obtained with VMC, FN and GFMCSR (for
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Figure 2.5: Finite-size scaling of the ground-state energy per site of the J,—.J, Heisen-
berg model for J;/.J; = 0.5 obtained with the FN and GFMCSR technique applied
reconfiguring the Hamiltonian (p = 1).

two different p’s), up to N = 108. However, the method of increasing systematically
p, by including in the SR the short-range correlation functions generated by 7, H2 - - -,
does not seem general enough. For instance, it does not work for the .J; —.J, Heisenberg
model where the inclusion in the SR Egs. (2.58) of long-range operators, such as the
spin-spin correlation function S?S# at large distance |7 — j|, is crucial to improve the
accuracy of the method, whereas the short-range ones generated by 2 do not give any
significant improvement.

Similarly to FN, the GFMCSR turns out to be size-consistent, in the sense that at
fixed p the average correlation functions can be sizeably improved with respect to the
variational guess, even in the thermodynamic limit (see Fig. 2.5). This is a nontrivial
property because, whenever there is sign problem, it is basically impossible to improve
the best variational FN guess by the conventional release node technique [48] since,
for large sizes the variances become intractable even for a very short imaginary time
propagation.

This kind of size consistency is a very important property of the present algorithm
because the stability of the average sign at fixed p allows a polynomial complexity of the
algorithm as a function of the system size.






Chapter 3

Thetriangular Heisenberg
antiferromagnet

Historically the antiferromagnetic spin-1/2 Heisenberg model on the triangular lattice
was the first proposed Hamiltonian for a microscopic realization of a non-magnetic
ground state [30, 49]. This is due to the fact that in this system the usual antiferro-
magnetic alignment between spins is hindered by the geometry of the lattice so that the
minimum energy configuration, the 27 /3 N “eel state (Fig. 1), has an energy twice larger
than that on the square lattice and therefore is far less stable.

However, after many years of intensive study, the question of whether the com-
bined effect of frustration and quantum fluctuations in the ground state of the triangular
Heisenberg antiferromagnet favors a disordered resonating valence bond (RVB) state
(Sec. 1.4) or long-range N “eel type order is still under debate. In fact, there has been con-
siderable effort to elucidate the nature of the ground state and the results of numerical
[12, 32, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], and analytical [62, 63, 64, 65, 22]
works are controversial. In particular, the wide extension of exotic proposed ground
states like spin-nematic [66], chiral [67], and spin liquid of the Kalmayer-Laughlin type
[55, 59] gives an indication that the problem has not been theoretically resolved yet.

Spin-wave calculations [62, 63] predict an important reduction (by about one-half)
of the sublattice magnetization by quantum fluctuations. In addition, perturbation the-
ory [61], series expansions [57], and high-temperature calculations [58] suggest that the
spin-wave calculations possibly underestimate the renormalization of the order param-
eter, but do not come to a definite conclusion about the nature of ground state. From
the numerical point of view, exact diagonalizations (ED) results [50, 51, 52, 53, 54, 12],
which are limited to small lattice sizes, have been interpreted both against [54] and in fa-
vor [12] of the presence of long-range N “eel order in the thermodynamic ground state. In
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any case, this approach, combined with the careful analysis of the symmetry properties
of the low-energy excited states proposed by Bernu and co-workers [12], have provided
very important evidence pointing towards a magnetic ground state: the spectra of the
lowest energy levels order with increasing total spin, a reminiscence of the Lieb-Mattis
theorem (see Sec. 1.1) for bipartite lattices, and are consistent with the symmetry of the
classical order parameter. However, these very clear ED results cannot rule out that for
large sizes quantum fluctuations could drive the system into a non-magnetic phase and
therefore cannot be considered as conclusive. In addition, standard stochastic numerical
methods, which usually allow one to handle large samples, clash with the sign prob-
lem numerical instability so that a definite answer on the ground-state properties of the
triangular Heisenberg antiferromagnet is still lacking.

In this chapter we will tackle the problem of the existence of long-range N “eel order in
the ground state of the triangular Heisenberg antiferromagnet using the finite-size spin-
wave theory [10], exact diagonalization, and several Monte Carlo methods among which
the Green function Monte Carlo with Stochastic Reconfiguration (GFMCSR), recently
developed to keep the sign problem (Sec. 2.4) under control. In the first part we apply the
finite-size spin-wave theory to the triangular Heisenberg antiferromagnet, we then show
how to construct within this framework the low-lying excited states, and finally derive
a simple spin-wave variational wavefunction. The good agreement between the ED
results and the finite-size spin-wave theory will support the reliability of the spin-wave
expansion in describing not only the ground-state properties but also the low-energy
spin excitations of the Heisenberg model even in presence of frustration. The second
part will deal with the quantum Monte Carlo results. Data for the spin gap and for the
antiferromagnetic order parameter will be presented for fairly large system sizes (up to
144 sites), providing a robust evidence for a gapless excitation spectrum and for the
existence of long-range N "eel order in the thermodynamic ground state of the model.

3.1 Finite-size spin-wave theory

Several attempts to generalize spin-wave theory to finite sizes can be found in the liter-
ature [10, 68, 69]. Here we will follow the method proposed by Zhong and Sorella in
Ref. [10] which allows one to deal with finite clusters avoiding the spurious Goldstone
modes divergences in a straightforward way, and, in particular, without imposing any ad
hoc holonomic constraint on the sublattice magnetization [68, 69].
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3.1.1 Application to the triangular antiferromagnet

Assuming the classical Q = (4x/3,0) magnetic structure lying in the zy plane, the first
step of the derivation is to apply the unitary transformation given by Eqg. (1.9), which

defines a spatially varying coordinate system («y'z’) in such a way that the x’-axis points

on each site along the local N eel direction. The transformed Heisenberg Hamiltonian
reads:

UHU = T [cos(Q-riy) (S7S7 +5YSY)
+ sin(Q-ryy) (SFSY — SYSY) + §F S (3.1)
where J is the (positive) exchange constant between nearest neighbors, the indices i, j
label the points r; and r; on the N-site triangular lattice, r; ; = r; — r;, and the quantum
spin operators satisfy |S;|2 = s(s + 1). In the new reference frame the spins in the
classical configuration are ferromagnetically aligned so that, using Holstein-Primakoff
transformation for spin operators to order 1/s,

At N Ao S, . ” A A ~
S =s—ala; SY :\/;(aj—i-ai) SP =1 E(a;'—ai), (3.2)

being & and &' the canonical creation and destruction Bose operators, after some algebra
the Fourier transformed Hamiltonian results:

N 1
How = Ea+3JsY [AkaLak + 5 Bulaal  + aka_k)] (3.3)
k
where E,; = —3Js?N/2 is the classical ground-state energy,
Ax=1+%/2, Bx=-37/2, (3.4)

=2 [cos (k) + 2 cos (k;/2) cos (V3k,/2)] /2 k is a vector varying in the first Bril-
louin zone of the lattice, and z = 6 is the coordination number. The Hamiltonian Hsw,
can be diagonalized for k # 0, +Q introducing the well-known Bogoliubov transforma-

tion, ax = urby + ’UkCAkJLk, with

A 1/2 A, — 1/2
Uk = e T , Uk = —sgn(Bx) Tk ) (3.5)
26k 26k

where ¢, = /A% — B2 is the spin-wave dispersion relation. This diagonalization leads
to:

3Js 3Js At A At oA
Hiw = Ea + N Z (e — Aw) + S (@ +al L a ). (3.6)

k#£0,+Q k#0,£Q
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The Goldstone modes at k = 0 and k = +Q instead are singular, and cannot be
diagonalized with a Bogoliubov transformation. For infinite systems such modes do not
contribute to the integrals in Eq. (3.6), but in the finite-size case they are important and
they must be treated separately. By defining the following Hermitian operators

A T, . . .

QSL‘ = 5(a8+a,Q—aq—a1Q) )

. Loy X t

Qy, = E(aQ +a_qg+aq+ CL_Q) ,

Q. = i@} —ao), (3.7)

such that, [Qa, Q5] = 0 and [Qa, Hsw] = 0 for , = =, v, z, the contribution of the
singular modes, Hs.s, in Eq. (3.3) can be expressed in the form

N A N N ~
Hen = —3JsAg + 3J370 Q+Qr+Q7. (3.8)

Then, taking into account the fact that to the leading order in 1/s, Qo = S‘%/Q/Ns,
where S are the components of the total spin, #.s, may be also rewritten in the more
physical form

N A A N A
Hon = 37540 +3J -2 [(5%)2 +(8v)2 + (sz)Q] , (3.9)

which clearly favors a singlet (S? = 0) ground state (for an even number of sites) be-

ing Ao positive definite. This result is a reminiscence of the Lieb-Mattis property (see
Sec. 1.1) which has not been demonstrated for non-bipartite lattices. Actually, a similar

result is obtained by solving exactly the three Fourier components k = 0, +Q of the

Heisenberg model [12]; however, our treatment allows us to construct a formal expres-

sion for the spin-wave ground state on finite triangular lattices which keeps the correct
singlet behavior. In fact, starting from the usual spin-wave ground state, composed by

the 27 /3 classical N “eel order plus the zero point quantum fluctuations (i.e, zero Bogoli-
ubov quasiparticles),

_ Lok 4,
0= TT w'ew|52alals]iF) (3.10)
k£0,+Q k

with |F) = [[;1S¥ = s), the corresponding singlet wavefunction is obtained by pro-
jecting |0) onto the subspace S = 0:

[hsw) :/ da/ dﬁ/ dry eian+iﬁQy+i’7Qz|0> (3.11)



Finite-size spin-wave theory 53

and reads | ) ~ (%@ at28a)|0) . In particular the singular modes have no con-
tribution to the ground-state energy which reads

3Js
ESW = Ecl + T zk:(€k — ]_) y (312)

while the computation of the order parameter requires their remotion:

mT:\/((S'f')Q):s—% 3 (3.13)

k#£0,£Q

For s = 1/2, the previous spin-wave calculation predicts a very good quantitative
agreement with exact results on small clusters (N < 36) of both ground-state energy
and sublattice magnetization [70]. The agreement is even more remarkable as far as the
low-lying excited states are concerned, as it will be shown in the following section.

3.1.2 Low-energy spin-wave spectrum

In this section, we show how to construct the low-lying energy spectra E(S) for finite
systems where S represents the total spin. So far, we have performed a standard spin-
wave expansion whose relevant quantum number is s. Thus, computing E(S) is not
straightforward and require a little more involved calculation. Following Lavalle, Sorella
and Parola [28], a magnetic field in the z-direction is added to stabilize the desired total
spin excitation S

Hew = Hsw — hs Y _ S7. (3.14)

i

Classically, for magnetic fields not large enough to induce a spin-flop transition, the new
solution is the 27 /3 N “eel order canted by an angle 6 along the direction of the field A. In
order to develop a spin-wave calculation, a new rotation around y’-axis is performed on
the spin operators and it can be proven that 7%, takes the same form of Eq. (3.3) with
renormalized coefficients A, and By:

M=t |p-220p] B=-tu -Gy a9

being 2h/23J = sinf. For h # 0 the only singular mode is k = 0 (associated to the
rotation invariance in the zy plane) and its contribution is given by

3J Al
o= s s o,

which now favors a value of S* consistent with the applied field, at the classical level.
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Figure 3.1: Spin-wave (full dots and continuous line) and exact (empty dots and dashed
lines) low-energy spectra as a function of |[S?| = S(S + 1) for N = 12,27, 36, 144 and
s=1/2.

The Hellmann-Feynman theorem relates the total spin S = N(S?) of the excitation
to the magnetic field A as it follows:

, 1 9 2h Ap+Bp Bh
(57 = =3 9 B0 = 555 (14 Z%\/ (3.17)
where N N 3J
S
E(h)=E, — §(sh) 57 syt > e (3.18)

k

is the spin-wave energy in presence of the field and ¢ = /(A2)2 — (B})2. In partic-
ular, the first term in (sh} in Eq. (3.18) gives the classical uniform spin susceptibility
(Appendix B) x» = 1/9J, while taking the whole expression the known spin-wave
result [64] xsw/xa = 1 — 0.449/2s is recovered. Finally, as suggested by Lavalle and
co-workers [28], given the value S, the corresponding values of h and of E(h) can be
found with Egs. (3.17) and (3.18), and the energy of the spin excitation E(S) can be cal-
culated, at fixed s, with a Legendre transformation E(S) = E(h) + hsS (see Appendix
B).

As explained in Sec. 1.3, the occurrence of a symmetry breaking in the ground state
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Figure 3.2: Size dependence of 1/2x, (a) and of 1/2x1,/,—1/2x, (b) obtained according
to Eq. (3.19) using the (s = 1/2) spin-wave excitation spectra. The continuous line is a
quadratic fit for L < 18 in (a) and a guide for the eye in (b).

for N — oo can be evidenced from the structure of the finite-size energy spectra. In
particular, when long-range order is present in the thermodynamic limit, the low-lying
excited states of energy E(S) and spin S are predicted to behave as the spectrum of
a free quantum rotator (1.28) as long as S < +/N. Actually, on the triangular lattice
the quantum-top effective Hamiltonian displays a correction due to the anisotropy of the
susceptibility tensor [12]. However, in the following we will consider only the leading
contribution (1.28) which depends on the perpendicular susceptibility. Fig. 3.1 shows
E(S) vs S(S+1) calculated within the spin-wave theory compared with the exact diago-
nalization results of Bernu and co-workers [12]. Remarkably the spin-wave theory turns
out to be accurate in reproducing the low-energy spectrum in the whole range of sizes.
Furthermore, we can extend our calculation to the thermodynamic limit and observe eas-
ily the collapse of a macroscopic number of states with different .S to the ground state
as N — oo. This clearly gives rise to a broken SU(2) symmetry ground state (Sec. 1.3),
as expected within the spin-wave framework.
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In addition, as explained in Sec. 1.3, whenever the quantum top law (1.28) is verified,
the quantity
2xs]” = NE(S)[S(S+ 1), (3.19)

should approach the physical inverse susceptibility 1/2xsw for infinite size and for any
spin excitation S < N. This feature is clearly present in the spin-wave theory and
it is shown in Fig. 3.2 (a) where the 1/2xg is plotted for S = L = /N and ap-
proaches the predicted value (1/2xsw = 8.167), even if the correct asymptotic scal-
ing 1/2xz ~ 1/2xsw + a/L + b/L? turns out to be satisfied only for very large sizes
(L > 36). Such feature is also shared by the Heisenberg antiferromagnet on the square
lattice where a similar spin-wave analysis has allowed the authors of Ref. [28] to ac-
count for the anomalous finite-size spectrum resulting from an accurate quantum Monte
Carlo calculation. Furthermore, similarly to the latter case, a non-monotonic behavior
of 1/2xr/2 — 1/2x. [Fig. 3.2 (b)], which should extrapolate to 0 as 1/L according to
the quantum top law, persists also in presence of the frustration within the spin-wave
approximation and is likely to be a genuine feature of the Heisenberg model.

3.1.3 Spin-wave variational wavefunctions

As explained in Sec. 2.4, in a Green function Monte Carlo (GFMC) calculation it is in
general important to start from an accurate variational guess of the ground-state wave-
function. So far, many wavefunctions have been proposed in the literature [32, 55, 56,
59] and the lowest ground-state energy estimation was obtained with the long-range
ordered type [32, 56].

The simplest starting point for constructing a long-range ordered wavefunction is
of course the classical N “eel state. Since on finite-size the ground state is expected to
be rotationally invariant, the N “eel state should be projected onto the S = 0 subspace.
However it is in general numerically very difficult to perform the projection onto a total
spin subspace so that only the projection onto the subspace with S* = 0 (a quantum
number of the states of the chosen basis) is usually performed. Quantum correction to
this classical wavefunction can be introduced by means of a Jastrow factor containing
all the two-spin correlations

ve) = Pyexp (3 D v(i = §)S:5;)IN) | (3:20)

1,

where P, is the projector onto the S# = 0 subspace. Starting from the spin-wave ground
state (3.11) it is possible to derive [71] a simple variational wavefunction which is both
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accurate and easily computable also when used for importance sampling (Sec. 2.4). Such
wavefunction is defined for any s in the correct Hilbert space of the spin operators and
reduces for s — oo to the spin wave form (3.11).

To this purpose let us consider the following variational wavefunction

. 1 .
D) = Poexp [= 3 05287 IF) | (321)
5 k#£0
where Sp = N~'/2% e~ S%  The spin-wave s — oo limit of the wavefunction
(3.21) can be easily carried out by means of a Hubbard-Stratonovich transformation
[71] and leads to (neglecting an unessential normalization)

~ ~ ]_ i
o) = Prexp | — 53— —alal, || F). (322)
120 9k

By requiring that [¢)s) reduces to the spin-wave wavefunction (3.11) for s — oo one

obtains for gy
142
o= — o [ (3.23)
Uk — Uk =

which is singular only for k = 0. This analysis, for the more general XXZ Hamiltonian
with an exchange easy-plane anisotropy « [72], gives

52
Ge=1- ,/%r_ :Z“ . (3.24)

In the original (unrotated) reference frame, the N eel state | V') can be written in terms
of |F) =1], |S#' = s) by applying the inverse of the unitary transformation (1.9)

IN) =U|F) = Zu )= exp |+ 2“(252 ZSZ)]\:U (3.25)

where |z) is an Ising spin configuration specified by assigning the value of § (or equiv-
alently of S7) for each site, and ¢ (x) = («|U|z). Then, introducing a variational pa-
rameter 7 scaling the latter potential, for s = 1/2 and in the original spin representation,
|1) assumes the very simple form of Eq. (3.20), i.e.,

e = Ulda) = Zu yexp |13 v(i - 1)S5S7] lo) (3.26)

Y]

where v(r) = 1/N Y . e """ gq and the summation is restricted only to the Ising
configurations with) . .S? = 0 to enforce the projection onto the S* = 0 subspace. In
contrast to the linear spin-wave ground state (3.11), which does not satisfy the constraint
(&}&i) < 2s, the present variational wavefunction is defined in the correct Hilbert space
of the spin operators.
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3.2 Quantum Monte Carlo calculation

3.2.1 From Marshal-Peierls to Huse-Elser sign rule

According to the Marshall theorem (see Sec. 1.1), for the Heisenberg antiferromagnet
on the square lattice, as well as on any other bipartite lattice, the classical part of the
wavefunction by itself determines exactly the phases of the ground state in the chosen
basis. For the triangular case, instead, the exact phases are unknown and the classical
part is not enough to fix them correctly. In particular, starting from a long-range ordered
wavefunction of the form (3.20), Huse and Elser [56] introduced important three-spin
correlation factors in the wavefunction

T = exp (z 8y %ij‘fS‘jS‘,j) , (3.27)

(6.5,k)

defined by the coefficients 3, = 0,=£1, appropriately chosen so as to preserve the
symmetries of the classical N “eel state, and by an overall factor 5. In particular the sum
in Eq. (3.27) runs over all distinct triplets of sites ¢, j, £ where both 7 and £ are nearest
neighbors of 7, and 7 and & are next-nearest neighbors to one another. The sign factor
Vijk = Ykji = 1 1s invariant under rigid translations and rotations in real space by an
angle of 27 /3 of the three-spin cluster i, j, k, but changes sign under rotations by 7 /3 or
7. The resulting wavefunction reads therefore:

) = Y Qayexp (23 v(i - )5:8;) o) (3.28)
T 2,J
with a phase factor given by
Q) = T(x) exp | + ? (Tsi-Ys7)] (3.29)
i€EB 1€C

where T'(z) = (z|T|z). Finally, since the Hamiltonian is real, a better variational wave-
function on a finite size is obtained by taking the real part of Eq. (3.28).

Although the three-body correlations of Eq. (3.27) do not provide the exact answer,
they allow us to adjust the signs of the wavefunction in a nontrivial way without chang-
ing the underlying classical N “eel order. In this respect it is useful to define an average
sign of the variational wavefunction relative to the normalized exact ground state |1,)
as

()= |tho(@)’sgnvoc ()t ()] , (3.30)

with ¢(x) = (z|). We have compared the variational calculation with the exact ground
state obtained by ED on the N = 36 cluster. For completeness we have considered the



Quantum Monte Carlo calculation 59

1 _J, ....... ' |.||l_

@ 09F ° . E

~ 0.8 = o O—;

0.7 &1 v v v v vy T

o L U LU O

3 LE® . E

sy - o ° ® 7

s 0.5 : b o3

- O C | [ | | L1 1 | [ | | [ | | [ | | T

_0.4 __é T T T | T T T | T T T | T T T | T T T |__

Z —0.45 — g -

~ C ]

= 05 [ K -

r o]

C °

B e R B B A
0 0.2 0.4 0.6 0.8 1

Figure 3.3: Average sign, overlap square and ground-state energy per site obtained for
N = 36 using the variational wavefunction of Eq. (3.28), with (full dots) and without
(empty dots) the triplet term of Eq. (3.27), as a function of the easy-plane anisotropy «a.
The calculations were performed by summing exactly over all the configurations and the
dotted line connects the exact results.
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Figure 3.4: Variational estimate (VMC) and mixed averages (FN, GFMCSR) of the
ground-state energy per site Ey/JN and of the total spin square (§2> for N = 36.
GFMCSR data are obtained using the short-range correlation functions generated by %
(p = 2), and H2 (p = 7) as explained in the text.

more general XXZ Hamiltonian with the exchange easy-plane anisotropy «, ranging
from the XY case (o« = 0) to the standard spin-isotropic case (o = 1). As shown
in Fig. 3.3, the introduction of the three-body correlations of Eg. (3.27), although not
providing the exact answer, improves the overlap square of the variational wavefunction
on the true ground state and the accuracy of the variational estimate of the ground-state
energy as well. In particular the average sign (s) is very much improved by the triplet
term, particularly in the spin-isotropic limit o« — 1. This is crucial when the variational
wavefunction is used for importance sampling within the modifications of the GFMC
technique developed to handle the sign problem instability (Sec. 2.4). In the following
the wavefunction (3.28) will be used as the guiding wavefunction in our qguantum Monte
Carlo calculations.

3.2.2 The reconfiguration scheme

In order to study the ground-state properties we have used the GFMCSR quantum Monte
Carlo technique, which allows one to release the fixed-node (FN) approximation (see
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Sec. 2.4), in a controlled but approximate way. This systematic improvement introduced
by the GFMCSR on the accuracy of the ground-state properties, is illustrated in Fig. 3.4,
where we display a comparison between the estimates of the ground-state energy per
site and of total spin square, for the N = 36, obtained with the stochastic sampling of
the variational wavefunction (3.28), the FN and the GFMCSR techniques. As explained
in Sec. 2.5, in the appropriate limit of large number of walkers and high frequency of
stochastic reconfiguration (SR), the residual bias introduced by the GFMCSR depends
only on the number p of operators used to constrain the GFMC Markov process, al-
lowing simulations without numerical instabilities. In principle the exact answer can be
obtained, within statistical errors, provided p equals the huge Hilbert space dimension.
In practice it is necessary to work with small p and an accurate selection of physically
relevant operators is therefore crucial. As can be easily expected, the short-range corre-
lation functions S7S2 and (S;S;+S;SF) contained in the Hamiltonian (p = 2) give
a sizable improvement of the FN ground-state energy when they are included in the SR
procedure. In order to be systematic, we have included in the SR also the short-range
correlations generated by 72 (p = 7), averaged over all spatial symmetries commuting
with the Hamiltonian. These local correlations (see Fig. 3.5) are particularly important
to obtain quite accurate and reliable estimates not only of the ground-state energy but
also of the mixed average [Eq. (2.42)] of the total spin square S2. In particular it is
interesting that, starting from a variational wavefunction with no definite spin, the spin
rotational invariance of the finite-size ground state is systematically recovered by means
of the GFMCSR technique (see lower panel of Fig. 3.4).

Having obtained an estimate for the ground-state energy, at least an order of magni-
tude more accurate than our best variational guess, it appears possible to obtain physical
features, such as a gap in the spin spectrum, that are not present at the variational level.
For instance in the frustrated .J; —.J, Heisenberg model (see Chap. 4), with the same tech-
nique and a similar accuracy, a gap in the spin spectrum is found in the thermodynamic
limit, starting with a similar ordered and therefore gapless variational wavefunction.

3.2.3 Ground-state energy and spin gap

In presence of N “eel long-range order, being the magnon dispersion relation linear in
the wavevector k, the leading finite-size correction to the ground-state energy per site
is O(N~3/2) [12]: this is clearly shown by the behavior of the finite-size spin-wave
results in Fig. 3.6. In the same figure the size scaling of the estimates of the ground-
state energy per site obtained with the VMC, the FN and the GFMCSR (p = 7) tech-
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Figure 3.5: Short range spin correlation functions generated by # (a,b) and #2 (c-g).

niques is also reported. The predicted size scaling, fulfilled of course by the variational
wavefunction (3.28), is also preserved within the FN and the more accurate GFMCSR
technique, thus providing a first clue on the existence of long-range N “eel order in the
thermodynamic ground state of the model. The quality of our results is similar to the
variational one obtained by Sindzingre and co-workers [32], using a long-range ordered
RVB wavefunction (Sec. 1.4). The latter approach is almost exact for small lattices, but
the sign problem is already present at the variational level, and the calculation has not
been extended to high statistical accuracy or to N > 48. Our best estimate is that in the
thermodynamic limit the ground-state energy per site is e = —0.5458 4 0.0001 in unit
of the exchange coupling.

In the isotropic triangular antiferromagnet, the gap to the first spin excitation is rather
small. Furthermore, for the particular choice of the guiding wavefunction (3.28), the
translational symmetry of the Hamiltonian is preserved only if projected onto subspaces
with total S* multiple of three. Then, we have studied the gap to the spin S = 3
excitation as a function of the system size. Technically, within our numerical framework,
such a spin gap can be evaluated by performing two simulations in the S = 0 and 5% =
3 subspaces. This can be easily done by restricting the sampling to the configurations
|z) in Eq. (3.28) with the desired value of S*. In this case the potential v(r) used was
the same in both subspaces and the variational parameter » was found by optimizing the
energy in the S* = 0 subspace.

As it is shown in Fig. 3.7, for the lattice sizes for which a comparison with ED data
Is possible, the spin gap estimated with the GFMCSR technique is nearly exact. The
importance of extending the numerical investigation to clusters large enough to allow
a more reliable extrapolation is particularly evident in the same figure, in which the
N = 12 and 36 exact data extrapolate linearly to a large finite value. This behavior,
is certainly a finite-size effect and it is corrected by the GFMCSR data for N > 48,
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Figure 3.6: Ground-state energy per site e; = Eg/N, in unit of .J, as a function of the
system size, obtained with VMC (full triangles), FN (empty dots) and GFMCSR with
p = 7 (full dots) techniques. Spin-wave size scaling is assumed and short-dashed lines
are linear fits against 1/N/2. The long-dashed line is the linear spin-wave prediction
(Sec. 3.1), the empty triangle is the V = 36 ED result and the empty squares are data
taken from Ref. [32].

suggesting, strongly, a gapless excitation spectrum [(E5 — Ep)/J = 0.002 + 0.01].

3.2.4 Staggered magnetization

As seen in Sec. 2.4, the GFMC allows us to obtain a very high statistical accuracy on the
ground-state energy, but does not allow us to compute directly ground-state expectation
values (10|O|1). A straightforward way to calculate such expectation values is to use
the Hellmann-Feynman theorem. In fact, if the Hamiltonian is perturbed with a term
—)O the first order correction to the ground-state energy is, by standard perturbation
theory,

E(\) = Ey — Mtho|Olabo) -

As a consequence it is possible to evaluate the ground-state expectation value (i, \OWO) =
—dE())/dA|x=o estimating the limit

(3.31)

(olOliio) = — lim ZA) = Fo (3.32)

B }\l—m A
with few computations at different small A’s.
A further complication for nonexact calculations like the FN or GFMCSR, is that if

the off-diagonal matrix elements O, , of the operator O (in the chosen basis) have signs
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Figure 3.7: Size scaling of the spin gap to the S = 3 excitation obtained with the
GFMCSR (p = 7) technique (full dots). Empty triangles are the ED results, the long-
dashed line is the linear spin-wave prediction (Sec. 3.1), the dotted line is the linear
extrapolation of the NV = 12, 36 exact results and the solid line is the least-squares fit of
the GFMCSR data for N > 36.

which are opposite to those of the product ¢ (z")1 () (so that the importance-sampled
matrix elements O, , are not all negative), they cannot be handled exactly within the
FN because the addition of such a perturbation to the Hamiltonian changes the nodal
surface of the guiding wavefunction (see Sec. 2.4). In that case, in fact, the effective FN
Hamiltonian associated to the unperturbed Hamiltonian is also affected by the presence
of the field and this leads naturally to the breakdown of Eq. (3.31). A way out of this
difficulty if to split the operatorO into three contributions: O = D + Ot + O~, where
O* (O™) is the operator with the same off-diagonal matrix elements of O when they
have the same (opposite) signs of 1q(z')1e(z), and zero otherwise, whereas D is the
diagonal part of O. Then, we can add to the Hamiltonian a contribution that does not
change the nodes: H(\) = H — A(D+20") for A > 0and H(\) = H - A(D+20")
for A < 0. Then the expectation value of the operator O can be written as

A E(—)) —E(\
(o Ol = lim ZENZEX)

With this method, using the FN and GFMCSR techniques, we have calculated the
order parameter

(3.33)

M?
2 =36—— 3.34
N(N+6)’ (3:34)
where M? is the sublattice magnetization squared [12]. Our results are plotted in

Fig. 3.8. For the order parameter the inclusion of many short-range correlations in the

mt
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Figure 3.8: Size scaling of the order parameter: VMC (full triangles), FN (empty dots),
GFMCSR (full dots), exact data (empty triangles) and finite-size linear spin wave theory
[70] (empty squares). The inset displays the A — 0 extrapolation for N > 12. Lines are
quadratic fits in all the plots.

SR is not very important. Then, in order to minimize the numerical effort, we have
chosen to put in the SR conditions the first four correlation functions shown in Fig. 3.6,
the order parameter itself and S2. While the FN data extrapolate to a value not much
lower than the variational result, the GFMCSR calculation provides a much more reli-
able estimate of the order parameter with no apparent loss of accuracy with increasing
sizes. In this way we obtain for ' a value well below the linear and the second order
(which has actually a positive correction [63]) spin-wave predictions. Our best estimate
is that in the thermodynamic limit the order parameter m' = 0.41 4 0.02 is reduced by
about 59% from its classical value. This is partially in agreement with the conclusions
of the finite-temperature calculations [58] suggesting a ground state with a small but
nonzero long-range antiferromagnetic order and with series expansions [57] indicating
the triangular antiferromagnet to be likely ordered but close to a critical point. In our
simulation, however, which to our knowledge represents a first attempt to perform a sys-
tematic size-scaling analysis of the order parameter, the value of /7! remains sizable and
finite, consistent with a gapless spectrum.
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3.3 Conclusions

We have presented analytical and numerical results on the ground-state properties of the
spin-1/2 Heisenberg antiferromagnet on the triangular lattice. The accuracy of the finite-
size spin-wave results indicates that the spin-wave theory is a reliable analytical approx-
imation to describe the ground-state properties of the present model. In particular, the
effectiveness of the spin-wave theory in reproducing on finite sizes the low-energy part
of the excitation spectrum provides support to the existence of long-range N “eel order in
the ground state, suggesting also that the value of the spin susceptibility should be very
close to the spin-wave prediction. On the other hand, our quantum Monte Carlo numer-
ical simulations provide robust evidences for a gapless spectrum and a sizable value of
the order parameter in the thermodynamic limit, in remarkable quantitative agreement
with the spin-wave results. In addition, our numerical simulations have also allowed us
to identify the ground-state correlations that are important at short distances. Both the
VMC and the SR approach show the crucial role of ground-state correlations defined on
the smallest four spin clusters: in the variational calculation they are important to deter-
mine the correct relative phases of the ground-state wavefunction whereas in the latter
more accurate approach this correlations allow one to obtain very accurate results for
the energy and the spin gap and to restore the spin rotational invariance of the finite-size
ground state.

In conclusion all our results, point toward the existence of long-range N “eel order
in the thermodynamic ground state of the spin-1/2 Heisenberg antiferromagnet on the
triangular lattice. Our best estimate for the antiferromagnetic order parameter in the
thermodynamic limit m' = 0.41 + 0.02 is reduced by about 59% from its classical
value. This prediction could be also verified experimentally on the K/Si(111):B interface
[6] which has turned out recently to be the first realization of a really two-dimensional
triangular antiferromagnet [6].



Chapter 4
The J;—J> Heisenberg model

In Chap. 3 we have studied the ground-state properties of a frustrated spin system, the
triangular Heisenberg antiferromagnet, in which frustration is induced by the geometry
of the lattice. The other possible origin of the frustration comes from competing interac-
tions as in the so-called J; —J, Heisenberg model on the square lattice defined in Eq. (2)
of the Introduction.

In the last few years several studies — including exact diagonalizations of small
clusters [23, 73], spin-wave [10, 74, 75] and Schwinger-boson [76] calculations, se-
ries [77, 78, 79] and large- NV [80] expansions — have provided some evidence for the
absence of N eel order in the ground state of the spin-1/2 /—.J, Heisenberg model for
0.38 < Jy/J; < 0.6. However, a systematic size-scaling of the spin gap is still lacking
and no definite conclusion on the nature of the non-magnetic phase has been drawn yet.
In particular, an open question is whether the ground state in the quantum disordered
phase is a resonating valence bond (RVB) spin liquid with no broken symmetry [81], or

if it breaks some crystal symmetries by dimerizing in some special pattern (Sec. 1.4).

In this chapter, we will address the problem of the quantum phase-transition to a non-
magnetic ground state driven by frustration in the spin-1/2 J; —J, Heisenberg model by
means of the finite-size spin-wave theory, exact diagonalization (ED) and Green function
Monte Carlo (GFMC) techniques. We will demonstrate the reliability of the spin-wave
theory as an analytical tool to describe the N “eel ordered phase and we will provide robust
evidence indicating the so-called plaquette RVB — a dimerized state with spontaneously
broken translation symmetry but no broken rotation symmetry — as the most plausible
ground state in the quantum disordered regime.
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4.1 Finite-size spin-wave results

The finite-size spin-wave theory for the spin-s J —.J; Heisenberg model can be derived
along the same lines followed for the triangular Heisenberg antiferromagnet in Sec. 3.1.
In this section we will only show the main results for J,/.J; < 0.5, assuming the two
sublattice classical N “eel order [Fig. 2 (a)] in the xy-plane.

Applying the unitary transformation (1.4) which rotates the spin quantization axis
by a angle 7 about the z-axis on one of the two sublattices, setting the order parameter
along the z-axis, and using the Holstein-Primakoff transformation for spin operators
at the leading order in 1/s (Sec. 3.1), the Fourier transformed spin-wave Hamiltonian
results as in Eq. (3.3) with By = —2Js’N(1 — §)/2, 2z = 4, B = J»/ Ji,

Ac =14+ p(0x — 1), Bx = =, (4.1)

Ye=(cos k; + cos ky)/2, and dx = cos k, cos k.

Similarly to the triangular lattice case, the singular Goldstone modes [k = 0 and
k = (m,m)] cannot be diagonalized by means of the Bogoliubov transformation but can
be recombined to give the total spin squared S2 at the leading order in 1/s:

R A
Hon = —J1sz40 + leﬁ" [(S7)” + (SY)* + (S%)?] - (4.2)

As seen in Sec. 3.1 this term, being Aq positive definite, favors a singlet ground state
and implies the Lieb-Mattis property, which has been demonstrated only for bipartite
Hamiltonians, but nonetheless can be verified numerically on finite sizes for the /—.J5
Heisenberg model (see Sec. 1.1).

As in the triangular case, the above analysis allows one to derive a variational wave-
function which is both accurate and easily computable in a quantum Monte Carlo algo-
rithm. Here we will not repeat the derivation, which follows very closely the one for the
triangular antiferromagnet, and leads to the following result for s = 1/2:

o) =Y Sul@)exp |3 3 (i — )5S |l (43)

i,

where v(r) = 1/N 3, e g, with

e L (180 —0k) + %
gk_Uk—Uk_l \/1—ﬂ(1—5k)—7k’ 44

|z) is an Ising spin configuration specified by assigning the value of § for each site and
Su(z) = (=1)M( represents the so-called Marshall sign (Sec. 1.1.1), depending on
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Jo) Iy VMC VMCLS SRLS Exact
0.0 -0.6695(1.4%) -0.6756 (0.5%) -0.6789 (0.00%) -0.67887
0.1 -0.6287 (1.5%) -0.6352(0.5%) -0.6379 (0.03%) -0.63810
0.2 -0.5898 (1.5%) -0.5963 (0.5%) -0.5988 (0.04%) -0.59905
0.3 -0.5526(1.8%) -0.5599 (0.5%) -0.5619 (0.10%) -0.56246
04 -05112(3.5%) -0.5260 (0.7%) -0.5289 (0.16%) -0.52974
05 -0.4798 (4.8%) -0.4957 (1.6%) -0.5022 (0.32%) -0.50381
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Table 4.1: Estimates of the ground-state energy per site and their relative accuracy (in
brackets) for N = 36 and various values of the J,/J; ratio. VMC: variational Monte
Carlo. VMCLS: variational Monte Carlo with LS wavefunction. SRLS: GFMCSR with
LS wavefunction and p = 8 (see text).

the number N;(x) of spin up on one of the two sublattices. The summation is restricted
only to the Ising configurations with) >, .S? = 0 in order to enforce the projection onto
the S* = 0 subspace. In the following we will use the latter variational wavefunction
as the starting point for more refined quantum Monte Carlo calculations. In particular
for Jo/J; = 0.5 we have chosen to work with 8 = 0.4 in Eq. (4.4). The possibility
to restrict to any total spin projection S* = ). 57 allows one to evaluate the spin gap
by performing two simulations for S* = 0 and S* = 1. As in the triangular case, the
potential v(r) used was the same in both subspaces and the variational parameter  was
found by optimizing the energy in the S* = 0 subspace. The latter spin-wave variational
wavefunction (see Tab. 4.1) provides a rather good estimate of the ground-state energy
for Jy/J; < 0.3. Instead such accuracy abruptly decreases instead in the regime of
strong frustration, suggesting a change in the nature of the ground state.

Within the finite-size spin-wave theory, we can also gain information about the low-
lying excited states. As shown in Sec. 3.1.2, in order to stabilize a low-energy total spin
excitation S a magnetic field A in the z-direction must be added to the spin Hamiltonian.
Keeping into account that, for small fields, the classical minimum energy configuration
is the N “eel order canted by an angle 6 along the direction of A (withsin § = h/2.{z), the
finite-size spin-wave expansion is straightforward and leads to a linearized Hamiltonian
as in Eq. (3.3) with the following field-dependent coefficients

h \2 h \2
h _ _ ho_ _ _
Ag =14 B(0k 1)+7k<2le) , By %[1 <2J1z) }, (4.5)
and with a singular part given by
Hon = —% Ah %(Sg — Ns sinf)2, (4.6)
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favoring a value of S* (in the original spin representation) consistent with the applied
field, at the classical level.

The total spin S = N(S?) of the excitation can be related to the magnetic field 4 by
means of the Hellmann-Feynman theorem

1 0 h 1 Ap + B}
N— L E(h) = 1+—o k- Tk 4.7
(50 = s anE W 52J12[ + s 2k Ab — B (4.7)
k#0
where
N Jisz
2 h
=FE, — - -8 =Y 4,
E(h) = E, — (sh) 17 5 lN(l B) 2 ek] (4.8)
and ef = +/(A})? — (BP)2. The final step in order to evaluate the energy spectrum

E(S) is to perform a Legendre transformation E(S) = E(h) + hsS (see Appendix B).
Finally, the spin-wave uniform susceptibility (Sec. 1.3),

xsw = —1/N 0*E(h)/0R?|h=0 ,

is, at the leading order in 1/s,

1 Ay + By
a=1 —E o 4.9
Xsw/Xel +2Nsk O’Yk Ay — By (4.9)

where xo = 1/2.J; 2.

4.2 Transition to a quantum disordered state induced by
frustration

4.2.1 Spin-wave susceptibilities and low-energy spectra

For the unfrustrated Heisenberg model, even for s = 1/2, the spin-wave predictions are
very accurate as far as the energy, the order parameter and the spin uniform susceptibility
are concerned [10, 28]. Turning on .J; the model is increasingly frustrated and one can
expect the spin-wave theory to remain accurate only in the region where the nature of
the order parameter is the same as in the classical case (S — oco). Within this analytical
approach we can therefore detect a non-magnetic phase by looking for the breakdown
of the spin-wave expansion.

As pointed out by Zhong and Sorella [10], for moderate frustration (J»/.J; < 0.2)
the linear spin-wave predictions on finite sizes are quite accurate for both the energy
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and the antiferromagnetic order parameter. Moreover, in this regime, the second order
correction [10] leads to an almost exact result. For large J,/.J;, instead, the second order
term does not improve the first order estimate and a possible breakdown of the spin-
wave expansion may occur even well below the classical transition point J,/J; = 0.5.
In particular at the leading order in 1/s, and for s = 1/2 the order parameter vanishes at
a critical value (J»/J1). = 0.38 [10, 74].

Analogously, a breakdown of the spin-wave expansion can be evidenced from the
vanishing of the uniform susceptibility, which is always finite when there is long-range
N “eel order in the thermodynamic limit and vanishes instead in presence of a finite triplet
gap (see Sec. 1.3). As it is shown in Fig. 4.1, the classical uniform susceptibility is
strongly renormalized by the quantum fluctuations for s = 1/2 at the spin-wave level
(4.9). As expected, increasing the frustration such reduction is enhanced and leads even-
tually to the vanishing of the susceptibility for J,/J; ~ 0.35. The structure of the finite-
size spin-wave excitation spectrum below and above this critical point is very different
(see the inset of Fig. 4.1) with an evident breakdown of the quantum top law (1.28), as
well as of the spin-wave approximation scheme, in the non-magnetic phase. Below the
critical point, instead, the spin-wave theory reproduces remarkably well the exact and
Green function Monte Carlo with Stochastic Reconfiguration (GFMCSR) results for the
low-energy part of the spectrum in the whole range of sizes (see Fig. 4.2). Furthermore,
as already observed for the triangular antiferromagnet (Sec. 3.1.2), increasing the size,
the slope of E/(S) vs S(S + 1) decreases and gives rise to the collapse of a macroscopic
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Figure 4.2: Low-energy excitation spectra as a function of [S|2 = S(S + 1) for J,/J;, =
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number of states with different S on the ground state as N — oc: i.e., a ground state
with a broken SU(2) symmetry.

4.2.2 Size-scaling of the spin gap

The spin-wave prediction for the occurrence of a non-magnetic region in the phase di-
agram of the J;—.J, Heisenberg model is confirmed by our results for the spin triplet
gap obtained using the GFMCSR. The latter calculation, which extends the recent one
by Sorella [16], has been performed using (4.3) as guiding wavefunction and including
in the SR conditions the energy, all 5752 independent by symmetry, and the antiferro-
magnetic order parameter. The latter, as discussed in Sec. 2.5, though not improving
the accuracy of the calculation, allows a very stable and reliable simulation for large p.
The new results, extended up to N = 144, confirm the previous findings [16] of a finite
spin gap in the thermodynamic limit for .J,/J; 2 0.40 (Fig. 4.3). Remarkably, these
results are not an artifact of the chosen guiding wavefunction: in fact, unlike the FN
approximation, the GFMCSR s able to detect a finite gap in the thermodynamic limit
by starting from a spin-wave like wavefunction (4.3) which is N "eel ordered and there-
fore gapless. This behavior is very different from the one observed in the case of the
s = 1/2 Heisenberg antiferromagnet on the triangular lattice (see Fig. 3.7) where, with
the same numerical scheme, a similar guiding wavefunction and a comparable accuracy
we obtained a gapless excitation spectrum. Therefore the existence of a gapped phase in
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the regime of strong frustration is likely to be a genuine feature of the J; —.J, Heisenberg
model.

4.3 The nature of the non-magnetic phase

In principle either a RVB crystal, with some broken spatial symmetry, or a homoge-
neous spin liquid is compatible with a triplet gap in the excitation spectrum. Among the
dimerized phases proposed in the literature, the so-called columnar and plaquette RvVB
are the states which are the most likely candidates. These kind of states can be thought
of as a collection of valence bond states |« ) = |1])—|]1) between neighboring sites
arranged in the patterns shown in Fig. 4.4, where the plaquettes in (b) are the following
rotationally invariant superpositions:

LD =[—=1 1)

Both the columnar and the plaquette states break the translation invariance along the
x and y directions, but only the latter preserves the symmetry of interchange of the
two axes. In both cases, however, the resulting ground state is fourfold degenerate in
the thermodynamic limit, in agreement with Haldane’s hedgehog argument described in
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Figure 4.4: Columnar (a) and plaquette (b) RVB states.

Ref. [82] and with a suggested, but yet not proven, generalization of the Lieb-Schultz-
Mattis theorem to the two-dimensional case [83].

Read and Sachdev [80] with a field-theoretic large- /N expansion, were the first to
conjecture that quantum fluctuations and a next-nearest-neighbor frustrating interaction
could drive the ground state of the square lattice antiferromagnet into a columnar RVB
state and series expansion studies [77, 78] have supported over the years this prediction.
Recently, Kotov and co-workers [84] with a study that combines an analytic effective
Hamiltonian approach, extended dimer expansions and exact diagonalizations have pre-
sented a body of evidences that has been interpreted as supporting the columnar scenario.
Finally, using the Green function Monte Carlo (GFMC) with Stochastic Reconfiguration
(SR) (Sec. 2.4), du Croo de Jongh and co-workers [85] have proposed a ground state with
intermediate properties between the plaquette and columnar RVB.

4.3.1 The method of generalized susceptibilities

In order to better characterize the nature of the ground state in the gapped phase, we have
checked the occurrence of some kind of crystalline order, by calculating the response of
the system to operators breaking the most important lattice symmetries. As suggested in
Refs. [78, 79, 86], and also shown in Sec. 1.2, the occurence of some kind of crystalline
order in the thermodynamic ground state can be checked by adding to the Hamiltonian
(2) aterm —80, where O is an operator that breaks some symmetry of . In fact, if true
long-range order exists in the thermodynamic ground state, the finite-size susceptibility
xo = (0);/Né has to diverge with the system size and, in particular, it is bounded
from below by the system volume squared [Eq. (1.25)]. Thus susceptibilities are a very
sensitive tool — much more than the square of the order parameter — for detecting the
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occurrence of long-range order.

Within a numerical technique, the susceptibility xo = d?e(8)/dé?|;—o can be calcu-
lated with only energy measurements by computing the ground-state energy per site in
presence of the perturbation for few values of ¢ and by estimating numerically the limit

2e(8) = eo)

5 (4.10)

Xo = (151_{%)(0(5) =-

As we have tested in the one dimensional .J; — .J, model, the numerical study of long-

range order by means of x(0) is very effective and reliable. Here a quantum critical point

at Jo/J1 ~ 0.2412 separating a gapless spin-fluid phase from a gapped dimerized ground

state (which is two-fold degenerate and adiabatically connected to the Majumdar-Ghosh

exact solution for J,/J; = 0.5) is rather well accepted [87, 88, 89]. As shown in Fig. 4.5,
the response of the system to the perturbation §Or, with

Or=>) e*8§;-8;.,, (4.11)
J

breaking the translation invariance with momentum k£ = m, is very different below and
above the dimer-fluid transition point. However it is extremely important to perform
very accurate calculations at small § to detect the divergence of the susceptibilities for
large system sizes.



76 The J;—Jy Heisenberg model

— —
o (@)

(&)

Xc(6)=—2(e(6)—e(0))/6?

0 0.002 0.004 0.006 0.008
52
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4.3.2 Stability of Plaquette vs Columnar RVB

As also suggested in a recent paper by Singh and co-workers [78], the appearance of a
columnar state can be probed by using as order parameter the operator

Oc = Z (Si-Site — Si-Sisy) (4.12)

%

where z = (1,0), y = (0, 1). As shown in Fig. 4.6, the exact diagonalization results for
N =16 and N = 36 indicate that the susceptibility associated with this kind of symme-
try breaking, xc, decreases with the system size. In order to exclude an anomalous size
scaling, with the SR scheme described in Sec. 4.2.2, we have extended the calculation
up to N = 64. Our quantum Monte Carlo results, which reproduce quite well the ED
data, rule out clearly the columnar dimerization.

The above result is in disagreement with the conclusions of several series expansion
studies [77, 78]. However, as stated in Ref. [78], the series for x ¢ are very irregular and
do not allow a meaningful extrapolation to the exact result. In our calculation instead,
even the ED results for V < 36, are already conclusive.

Having established that the columnar susceptibility is bounded, it is now important
to study the response of the J; — J, model to a small field coupled to the perturbation

Or =3 ¢®™S; S, (4.13)

with Qo = (7, 0), explicitly breaking the translation invariance of the Hamiltonian. The
evaluation of xr, with a reasonable accuracy, is a much more difficult task. In fact in
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this case the ED values of the susceptibility for N = 16 and N = 32 increase with the
size and much more effort is then required to distinguish if this behavior corresponds
to a spontaneous symmetry breaking in the thermodynamic limit. As it is shown in
Fig. 4.7 (a), the FN technique, starting from a guiding wavefunction without dimer order,
is not able to reproduce the actual response of the system to Or, even on small sizes.
The GFMCSR technique allows us to get an estimate of the susceptibility which is a
factor of three more accurate, but not satisfactory enough. In order to improve on this
estimate, we have attempted to include in the SR conditions many other, reasonably
simple, correlation functions (such as the spin-spin correlation functions S - Sj for |r; —
i > v/2), but without obtaining a sizable change of the estimate of yr. In fact, the
most effective SR conditions are those obtained with operators more directly related to
the Hamiltonian [17, 36].

After many unsuccessful attempts, we have realized that it is much simpler and
straightforward to improve the accuracy of the guiding wavefunction itself. As dis-
cussed in Sec. 2.3.1, this can be obtained by applying a generalized Lanczos operator
(1 + o) to the variational wavefunction |t);), where o is a variational parameter. This
defines the so-called one Lanczos step (LS) wavefunction, described also in Appendix
F. In the present model by using the LS wavefunction, a clear improvement (by about
a factor of 3) on the variational estimate of the ground-state energy is obtained at all
strengths of frustration (see Tab. 4.1). With this starting point the GFMCSR provides an
estimate of the ground-state energy which is basically exact for moderate frustration and
remarkable accurate for J,/J; = 0.4 and 0.5. More importantly, as shown in Fig. 4.7 (a),
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the LS wavefunction allows a much better estimate of the susceptibility. Remarkably, on
all the finite sizes where ED is possible, the GFMCSR estimate of this important quan-
tity is basically exact within few error bars. This calculation was obtained by including
in the SR conditions the energy, the spin-spin correlation functions up to next-nearest-
neighbors, distinguishing also S7S? and (552 + SYSY) (p = 4). The mixed averages
of these correlation functions can be computed over both the wavefunction |¢¢) and the
LS wavefunction (1 + oH)|1¢) during the same Monte Carlo simulation. Thus with a
LS wavefunction one can also easily double the number of constraints that are effective
to improve the accuracy of the method (p = 8). In this case, we have tested that it is
irrelevant to add further long-range correlation functions in the SR conditions even for
large size.

By increasing the size [see Figs. 4.7, 4.8 (a)], the response of the system is very
strongly enhanced, in very close analogy with the one dimensional model in the dimer-
ized phase [see Fig. 4.5 (b)]. This is obtained only with the GFMCSR technique, since
as shown in Fig. 4.7, the combination of FN and Lanczos step alone, is not capable of
detecting these strongly enhanced correlations. For N = 100 the GFMCSR increases
by more than one order of magnitude the response of the system to the dimerizing field.
This effect is particularly striking, considering that the guiding wavefunction (4.3) is
spin-wave like, i.e., gapless, N “eel ordered and without any dimer long-range order. This
suggests that all our systematic approximations are able to remove almost completely
even a very strong bias present at the variational level. Of course, for a definite con-
clusion, one should check whether the susceptibility diverges as the volume squared,
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as implied by Eq. (1.25). However, in order to obtain quantitatively reliable zero-field
extrapolations (4.10), the limit of very small fields has to be reached. This is in gen-
eral possible within exact diagonalization (see Fig. 4.5) but it is rather difficult within a
stochastic technique like the GFMC which is always affected by a statistical error.

The plaquette state is not the only rotationally invariant RVB crystal having a finite
value of the order parameter O, even if perhaps it is the most plausible one. In order to
corroborate our previous conclusions, we have calculated the generalized susceptibility
associated to the order parameter tailored on the plaquette state, namely

Op=> hi;Si-S;, (4.14)
n.n.

where h; ; = 1 on the solid bonds forming the plaquettes in Fig. 4.4-(b) and -1 oth-
erwisel. As shown in Fig. 4.8, our GFMCSR results indicate that the response of the
system to the plaquette order parameter Op is a factor of two larger than to the one
observed for Or, breaking generically the translation symmetry. Therefore these new
results provide a robust indication for a plaguette RVB ground state in the non-magnetic
phase of the .J; —.J, Heisenberg model.

Recently du Croo de Jongh and co-workers [85], using the GFMCSR technique with
a density matrix renormalization group guiding wavefunction, have observed a pattern
of the spin correlations in the gapped phase which is in-between the columnar and the
plaquette dimerization, with a stronger dimerization on one of the two coordinate axes
(see Fig. 5 of Ref. [85]). However, this conclusion seems to be ruled out by our results
for the susceptibility associated to O since the latter order parameter should be finite
on this kind of state. The plaquette-columnar hybrid is therefore likely to be an artifact
of the chosen guiding wavefunction. Indeed, by construction the latter wavefunction is
not invariant under rotations of the crystal. Instead our guiding wavefunction is both ro-
tationally and translationally invariant so that the observed broken translation symmetry
is likely to be a genuine feature of the model.

4.4 Conclusions

In conclusion we have studied the ground-state properties of the spin-half J; —.J, Heisen-
berg model on the square lattice by means of the finite-size spin-wave theory, exact
diagonalization and quantum Monte Carlo techniques. We have found that the com-
bined effect of frustration and quantum fluctuations is enough to melt the antiferromag-
netic N "eel long-range order, driving the ground state into a quantum disordered phase at

1| am grateful to R. R. P. Singh for suggesting this susceptibility.
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Jo/J1 ~ 0.4. In order to characterize the nature of the latter phase we have studied the
susceptibilities for the most important crystal symmetry breaking operators. Our results,
while ruling out clearly the occurrence of a columnar RVB, indicate the plaquette RVB
as the most plausible ground-state in the nonmagnetic phase. Moreover, the compari-
son between the low-energy part of the spin-wave excitation spectrum and the exact and
quantum Monte Carlo results indicates a remarkable agreement in the ordered phase,
suggesting strongly that the value of the spin susceptibility should be very close to the
spin-wave prediction for J,/J; < 0.30.

Our predictions could be verified experimentally in the recently synthesized com-
pound Li, VOGeO,4 which has been shown recently [8] to be well described by a spin-
half J; —J, Heisenberg model on the square lattice with J,/J; ~ 0.30. Forthcoming
measurements under pressure [9] could also allow one to tune the .J,/J; ratio and to
investigate experimentally also the gapped regime.



Conclusions

In this thesis we have studied the interplay between frustration and zero-point quan-

tum fluctuations in the ground state of the triangular and J; —J, Heisenberg antiferro-

magnets. These frustrated systems are the simplest examples of two-dimensional spin

models in which quantum effects may be strong enough to destroy the classical N “eel or-
der, thus stabilizing a ground state with symmetries and correlations different from their

classical counterparts. For this reason, in the last few years, they have attracted much

theoretical interest even if a general consensus on the nature of their ground state has

not yet been achieved. With this work, by using several techniques including the Green

function Monte Carlo with Stochastic Reconfiguration [16, 17], a quantum Monte Carlo
method recently developed to keep under control the sign problem, we have put on firmer
grounds the conclusions on the ground-state properties of these frustrated models.

Despite the fact that the spin-half Heisenberg antiferromagnet on the triangular lat-
tice was the first historical candidate for a non-magnetic ground state [30, 49], all our
results point toward the existence of zero-temperature long-range N “eel order. In fact, our
quantum Monte Carlo simulations provide robust evidences for a gapless spectrum and
for a value of the order parameter that, although reduced (by about 59%) with respect to
the classical case, remains finite in the thermodynamic limit. This is partially in agree-
ment with the conclusions of finite-temperature calculations [58] suggesting a ground
state with a small but nonzero long-range antiferromagnetic order and with series expan-
sions studies [57] indicating the triangular antiferromagnet to be likely ordered but close
to a critical point. However, in our simulation, which to our knowledge represents the
first attempt to perform a systematic finite-size scaling analysis, the value of the thermo-
dynamic order parameter is sizeable, indicating the presence of stable long-range order.
Moreover, the accuracy of the finite-size spin-wave predictions indicates that the spin-
wave theory is a reliable analytical approximation to describe the ground-state properties
of the present model. In particular, the effectiveness of the spin-wave theory in repro-
ducing on finite sizes the low-energy excitation spectrum provides further support to the
existence of long-range N “eel order in the ground state, suggesting also that the value of
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the uniform spin susceptibility should be very close to the spin-wave result. We believe
that our results, together with the clear indications recently provided by Bernu and co-
workers [12] with a symmetry analysis of the low-energy excitation spectra, finally solve
the issue of the ordered nature of the ground state of the Heisenberg antiferromagnet on
the triangular lattice.

The effects of quantum fluctuations are more remarkable in the J; —.J, Heisenberg
model, where the combined effect of frustration and zero-point motion interferes with
the mechanism of spontaneously broken symmetry, giving rise to a non-magnetic ground
state of purely quantum-mechanical nature. In fact, our spin-wave, exact diagonaliza-
tion, and quantum Monte Carlo results indicate that quantum fluctuations are able to
melt the antiferromagnetic long-range order in the regime of strong frustration, driv-
ing the ground state into a quantum disordered phase at J,/J; ~ 0.4. In addition, our
Lanczos and quantum Monte Carlo calculations of the susceptibilities for the most im-
portant crystal symmetry breaking operators have allowed us to characterize the nature
of the latter phase and have brought us to a novel interpretation of the disordered ground
state of this frustrated model. Our results, in fact, while casting serious doubt on the
conclusions of series expansion studies [78, 84], indicate the plaquette RVB, with spon-
taneously broken translation symmetry and no broken rotation symmetry, as the most
plausible ground state in the non-magnetic phase. In the ordered phase, instead, sim-
ilarly to the triangular case, we find a remarkable agreement between the spin-wave
low-energy excitation spectrum and the exact and quantum Monte Carlo results. This
suggests that the value of the uniform spin susceptibility should be very close to the
spin-wave prediction up to J,/J; ~ 0.30.

Our results could be also verified experimentally on the novel realizations of these
frustrated models, like the triangular K/Si(111):B interface [6], and the Li; VOSiOy,
Li,VOGeO,4 compounds [8], quite recently argued to be well described by a spin-half
J1—Jy Heisenberg model on the square lattice. Forthcoming measurements under pres-
sure [9] could also allow one to tune the .J,/.J; ratio and to investigate the properties of
these systems in various regimes of frustration.
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migliorato molto la qualita della mia vita triestina e la sua amicizia € una delle cose piu belle che
riporto a casa da Trieste.

Un saluto specialissimo anche a Zimone non solo per essere stato il compagno delle gia citate
scorribande ma anche per i preziosi insegnamenti di vita che da lui ho ricevuto. Conservero tra
le cose piu care i fini tatticismi nell’arte della seduzione che ho avuto la fortuna di imparare dal
suo esempio: la tecnica del triste-ma-sensibile con la testa sotto il letto, quella del Re Magio che
reca preziosi doni nel suggestivo scenario dello spazio-porto (il bar ICTP), oppure quella dello
scienziato-poeta che indirizza eleganti versi telematici alla concupita (anche se in questo caso
forse non era proprio tutta farina del suo sacco).

Gabriele & poi il migliore compagno di casa che si possa desiderare. Piu di un caro amico
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e un riservato confidente: una sposa quasit. Di indiscusse doti culinarie, vero virtuoso dell’arte
di cucinare il pollo, premuroso e paziente: sempre pronto a preparare un pranzetto coi fiocchi (a
base di pollo, in genere) anche quando rincasavo all’improvviso, mai una scenata o un broncio
se una sera rientravo a notte fonda o non rientravo affatto. Un rapporto senza vincoli, intenso
e gioioso. Sono felice di avere trovato Gabriele. Grazie Ciccio! (a lui gli piace tanto quando,
nell’intimita, lo chiamo cosi).

Mi sa che in futuro sara parecchio difficile che io torni cosi contento da un congresso come
lo ero il marzo scorso al ritorno da Fai della Paganella. Da quel giorno infatti e per tre mesi
intensissimi, la vitalita partenopea di Francesca ha sconvolto piacevolmente i ritmi della mia
vita triestina, trascinandomi in entusiasmanti maratone automobilistiche, aeree e ferroviarie su
e giu per la penisola, facendomi immergere nell’incredibile universo di Napoli, che ignoravo
completamente e di cui mi sono innamorato a prima vista, e partecipare da vicino (ma proprio
vicino vicino) alla incredibile gioia della promozione della *sua’ squadra. Ma come faccio a
non volere bene alla ragazza che mi ha fatto scoprire il signor Malausséne gustando i baba di
‘Scaturchio’? E infatti gliene voglio. Un bacio.

Ciao e grazie a Mario, mai abbastanza salutato, impareggiabile vicino di stanza con la sua
amabile conversazione e le ottime merende a base di caffé e crostatine. La piu grande simpatia
e i migliori auguri ad Andrea e Janet. Ciao ad Anna (sembra quasi impossibile che una ragazza
cosi bella e simpatica venga da Pisa) e a Biri; ciao a Lorenzo (sorprendente ballerino e mio
pusher personale di psichedelici packages IATEX) e al prestigioso Luigi. Ciao alle due belle
Paole e al trasformista Latitanzi (quando sono triste ti penso in versione ultras sugli spalti ad
urlare ‘orgoglio SISSA’ e subito recupero il buon umore). Ciao a Gianluca I’impavido alpinista e
ciao a Filippo, col suo fascino irresistibile del “bello e dannato’ e il suo gran gusto per le donne:
peccato per Wanda. Ciao alle sue tre ‘zie’ (beato lui!): Cristina, Valeria e Laura. Ciao a Silvia e
Giovanni (e Andrea), e al grande Antonio (vittima privilegiata delle mie gag telefoniche). Ciao
ad Andrea (col quale ultimamente ho scoperto di condividere la passione per quel cinema di
qualita che va da ‘Airforce One’ a ‘Final Destination’) e a Guido. Ciao a Sara e Fabio (che mi
stanno troppo simpatici), e un bacetto alla cara Sonia che per me ha sempre una parolina buona.
Ciao a Mleone (dalle funamboliche esperienze a Hyde Park), e alla bella Sandrine (I’un des plus
beaux sourires disponibles sur le marché). Ciao a Gianni e a Lore, al nobile Stefano e a quel
sorprendente incrocio tra Messner e Topo Gigio che é Leonardo. Ciao e grazie anche a Paul che,
vittima in questi anni del mio improbabile tosco-english, non se I’¢ sentita di lasciare che facessi
scempio della sua lingua anche nella tesi.

Un grazie affettuoso a Franca, Luigi e Giorgio che con la loro presenza solida ma discreta
mi sono stati di grande, grande aiuto. E grazie alla Lella, per essere riuscita — in un modo o
nell’altro — a tirarmi fuori dallo stato di alienazione in cui ero sprofondato dopo un anno di
dottorato, facendomi recuperare il senso della misura e la capacita di distinguere le cose che

!Lato erotico a parte.
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sono pill importanti per una vita completa da quelle che lo sono decisamente meno.

E infine la dedica. Non sapete quanto ho aspettato questo momento. Lo so che & poca cosa,
ma per me ha un significato speciale perché non capita spesso I’occasione giusta per mostrare
ad una persona o ad un gruppo di persone quanto sono importanti per te. E quale migliore
opportunita della dedica di un lavoro che, bello o brutto che sia, ti € comunque costato la fatica
di tre anni? Nessuna, appunto. E allora non la perdo di certo questa occasione e senza indugi
dedico la mia tesi di dottorato al Bete, al Bonzo, al Butco, al Cipo, al Lubos, al Maffo, al Paro,
a Pippio, al Pulce, e al Santo. A loro sono legato da una bellissima amicizia, nata sulla strada
(anzi piu precisamente in Piazza S. Gervasio), che ci unisce fin da quando eravamo poco pil
che bambini. Un’amicizia difficile da descrivere, tra persone che I’una con I’altra ci incastrano
poco o nulla. Un legame inspiegabile fatto di un sentire comune, della stessa voglia e dello
stesso modo di divertirsi, dello stesso gusto di sfottersi a vicenda, magari anche in modo un po’
crudele ma mai con malizia, tanto per non prendersi troppo sul serio. Per me sono un punto di
riferimento importante e la loro amicizia mi fa sentire ricco e fortunato.

Per questo voglio dedicare la mia tesi al ‘Gruppaccio’.

Luca (detto Il Caprio)
Trieste, 22 Settembre 2000






Appendix A

An important property of non-positive
Hamiltonian matrices

Let us consider an Hamiltonian 7 and a basis |a) of the Hilbert space such that H,z =
(a|H|B) < 0 for o # G. In this hypothesis, if every state of the basis is connected to all
the others by successive application of the Hamiltonian, then it is possible to demonstrate
[18] that the (normalized) ground state of H, |t) = Y o fala), 1) has positive-definite
components on the chosen basis (i.e., f, > 0) and therefore ii) is non-degenerate.

The proof of this result, which can be also viewed as a direct consequence of the
Perron-Frobenius theorem [20] for irreducible! nonnegative matrices, is the following.
The matrix H,g can be written as the sum of a diagonal and of an off-diagonal contribu-
tion H,s = Kap + Dyp such that K, = —|Kug|, Koo = 0and D,s = 0,44 €,. In these
notations, the Schrodinger equation for the ground state |1),) reads

~ " [Kaplfs + €afo = Eofa s (A1)
B

where Ej is the ground-state energy. According to the variational principle (Sec. 2.3),
the variational energy on any trial wavefunction exceeds F, unless it is also a ground-
state eigenfunction. This implies that the state [¢)7) = > |fal|c) is a ground-state
eigenfunction. In fact:

(o[ H|pr) = zeaw Z|Kaﬁ|\fa|\f5\

IN

Zeaw - Z |Kaplfafs = By - (A2)

1See the footnote of Sec. 1.1.1.
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Then, being |¢r) a ground-state eigenfunction, it must satisfy the eigenvalue equation

_Z‘K&ﬂ‘|fﬂ‘+ea‘fo¢|:Eo‘fa|- (A.3)
B

Moreover,
o — Ey >0 forall o, (A.4)

otherwise one state of the basis |«)) would be the ground state, which is in general impos-
sible. Therefore, taking the absolute value of (e, — Ey) fo in Eq. (A.1) and combining
with Eq. (A.3), we obtain

‘Z |Kaﬂ|fﬁ‘ = | Kapllfsl, (A.5)
5 5

implying inturn f,, > 0 for all a.. This results has followed from the non-positive defini-
tion of the off-diagonal matrix elements of the Hamiltonian. In the additional hypothesis
that every state of the basis is connected to all the others by successive application of the
Hamiltonian, it is possible to prove the stronger result: f, > 0 for all «. In fact, if some
fo vanished, then Eq. (A.3) would read

> Kaglfs| =0, (A.6)
5

implying fz = 0 for all 8 such that K,g # 0. Then, by succeeding applications of
the Hamiltonian, one could establish that all the amplitudes vanished. Therefore, all the
amplitudes f, of the ground-state expansion [¢g) = > fa|c) are positive and non-
vanishing. Since there cannot be an other state orthogonal to [i) with only positive-
definite coefficients, & is non-degenerate.



Appendix B
The uniform spin susceptibility

The uniform spin susceptibility represents the response of the system to a uniform mag-
netic field. Following the general indications sketched in Sec. 1.2 this quantity can be
calculated for the Heisenberg antiferromagnet by adding to the unperturbed Hamiltonian
# a Zeeman operator favoring the alignment of the spins along the quantization axis:

Hy=H-h)_ 5. (B.1)

By standard perturbation theory, on any finite size IV, the corrections to the ground-state
energy per site are proportional to 42

1
e(h) ~ ey — §Xh2 , (B.2)

where  is the uniform spin susceptibility on that size. The magnetization induced by the
ordering field can be calculated in the thermodynamic limit using the Hellman-Feynman
theorem:

m(h) = ($olS;[tbo) = —de(h)/dh, (B.3)
so that, taking the limit for N — oo of Eq. (B.2), the usual definition of thermodynamic
susceptibility m(h) ~ xh is recovered.

On a finite size, since the Zeeman term is diagonal, the eigenstates of 7 are also
eigenstates of #,,, even if with a different ordering of the energy levels. Hence, the
ground-state energy per site in presence of the field is given by
SZ
¥

e(h) = min [e(S) — h=

B.4
[nin, (B.4)

where S and S* are the total spin and its projection on the quantization axis, and e(S) is
the ground-state energy per site of 7 in the subspace with total spin equal to S. This re-
lation implies S* = S. Therefore, if S is the value of the spin excitation stabilized by the
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ordering field according to Eq. (B.4), the magnetization reads m(h) = /N = S/N.
Moreover, the expectation value of the Heisenberg Hamiltonian % on an eigenstate with
magnetization m = S/N is given by the following Legendre transformation:

e(m) =e(h) + hm. (B.5)

In the thermodynamic limit, the second derivative of the latter expression with respect
to m, calculated for m = h = 0, reads:

d%e(m) d*e(h) ; dh \?2 dh
= ) 2| B.6

dm? ‘m:O [ dh? (dm) + dm} h=0 (8.6)
Therefore, using the relation m(h) = — de(h)/dh and the definition of the spin suscep-
tibility in the thermodynamic limit, xy = limy, o limy_,o — d?e(h)/dh?, the following
expansion of e(m), for small m, is readily obtained:

2

e(m) ~ ey + ZL—X . (B.7)

Hence, the spin susceptibility can be equivalently calculated, by taking first the infinite-
volume limit of the energy per site e(m) = E(S)/N at fixed magnetization m = S/N
and then letting m — 0 in Eq. (B.7).



Appendix C
Properties of a stochastic matrix

In this Appendix we remind some properties of a stochastic matrix p,s ;. The stochastic
matrices are square matrices that have all nonnegative matrix elements p,. , and satisfy
the normalization condition

sz’,a: =1 ) (Cl)

for each column matrix index z. We assume also that the number of row and column
indices is finite and that each index x is connected to any other 2 by at least one sequence
Dot 21Per s - * * P OF NONZETo matrix elements of p .

The stochastic matrices are generally non-symmetric and their eigenvalues may be
also complex. For each eigenvalue there exist a left ) _, ¥ (2")py » = Mpr(z) and a
corresponding right eigenvector ) p, ,%r(z) = Apr(z’). A very simple left eigen-
vector is the constant one ¢, (z) = 1, that by property (C.1) has eigenvalue A = 1. We
will show in the following that this is actually the maximum eigenvalue because: i) to
each right eigenvector vz (x) of p corresponds an eigenvalue A, which is bounded by
one A< 1.

In fact, be v r () a generic (complex or real) right eigenvector of p

A¢R(xl) = Zpa:’,wa(x) ;

by taking the complex modulus of both sides of the previous equation and summing over
x' we obtain

Al Z [Yr(2’)| = Z | pr',xTﬁR(l"” < Zpr',xWR(ffN = Z Yr(2)]

LA matrix satisfying this property is also called irreducible [20].
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where in the above inequality we have interchanged the summation indices and used the
elementary bound for the complex modulus | )" z;| < >°_ |z, for arbitrary numbers
2y = Do zWr(x). This immediately gives:

Al<1.

Obviously the equality sign holds if, for each z, | > z;| = > |2¢|, which implies that,
given a right eigenvector with maximum eigenvalue A = 1, the real positive definite
vector |1 (z)| is also a right eigenvector with maximum eigenvalue.

Now we will show that: ii) the maximum right eigenvector is unique. In fact suppose
that there are two right eigenvectors 1, and v, with A = 1, then by linearity also ¢, —
o), 1S a right eigenvector with A = 1 and the complex constant o can be chosen to
give 11 — apy = 0 for a given index zy. On the other hand using the property derived
previously also |1 (z) — apo()| is a right maximum eigenvector that vanishes for z =
xo. Using iteratively the definition of a right eigenvector

Z L
z

starting from z’ = x4, we arrive easily to derive that for all the index = connected to zq
by nonzero sequence of matrix elements py, 4, Pz, 2o = * " Pon o

Y1 (2) — ava(z)| = [hi(2") — anhp(a’)]

Y1 (x) — arby(z)| = 0.

Since by hypothesis all the possible indices are connected to z, by at least one such a
sequence, we derive 11 = aab,, Which means that +); and 1, are the same eigenvec-
tor, which contradicts the initial hypothesis. Thus the maximum right eigenvector is
unique. This result can also be seen as an application of the Perron-Frobenius theorem
for nonnegative matrices [20].

Collecting the above properties, the maximum right eigenvector of a stochastic ma-
trix, has eigenvalue equal to 1, is unique and can be chosen real and positive. Then it is
simple to show [see e.g., Eq. (2.2)] that the iterated application of a stochastic matrix to
a trial state 1),

pn,wT )
converges for large n to its maximum right eigenvector with an exponentially decreasing

error < ", v < 1 being the modulus of largest eigenvalue of p different from the
maximum one 2,

20f course, the initial state ) must be non-orthogonal to the maximum right eigenvector of p.
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Stochastic Reconfi guration conditions

D.1 Formal proof of the SR conditions
As stated in Sec. 2.4.2, in order to fulfill exactly the SR conditions (2.58),

> Ok (@) =) Ok Wi () , (D.1)

fork =1,---,p, plus the normalizationone > ! (z) = > 1, (z), itis sufficient that
the coefficients p,; are chosen in a way that

prjOI;::j Z w]OIa‘V,‘:J

J —J . D.2
ST (D2)
j J

The wavefunction ¢/ (x) after the SR defined by (2.49) can be explicitly written in
terms of the original walker probability distribution. To this purpose we single out in the
definition of (),

) = [l 3 P ) 22 (03)

a term k in the above summation over j which gives an additive contribution to v/,
namely ¢!, =", {41}, /M with

{)(x)}, = /[dw'] Z/[dw] ZX(W,,XI; W, X) P, (W, X)0g 01 W) (D.4)

where in the above equation we have substituted the definition of P in terms of P given
by Egs. (2.48) and (2.49). In the latter equation it is easy to integrate over all variables

wy, wjff g z; for j # k using the fact that the kernel X is particularly simple as discussed
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in Sec. (2.4.2). Then, the remaining three integrals and summations over w}, w:// ', z
can be easily performed using the simple ¢ functions that appear in the kernel X and the
definition of 3 =3, p;/ >_; [p:;|, so that one easily obtains

i Wy A7 6:c,ccj
W= fiow 3 R = s, 2L (o
x JjEZj

We can replace in general sgnp.>_; [po;[0z,0,/ D25 Py = D2 Pu;Ona;/ D2 Px; €VEN
when, occasionally, more configurations satisfy z; = z *. Thus, we obtain a closed
expression for ¢! (x) after the simple summation on the index k:

- /[dw] > Pu(w,x) (%)Z Pu;O0; ] Z Pa; - (D.6)

Then the normalization condition,

/[dw ZP W, X ( ) Z% , (D.7)

easily follows. On the other hand the left-hand side of Egs. (D.1) can be also computed
easily, yielding

~ ] j ijlaZ-
S0k (x) = /[dw]ZPn(W,X)(Z&w )ijé % o9

where O’;j =y Oml,mj is the mixed estimator of the operator OF.
Finally, by substituting the conditions (D.2) into the previous equation, one obtains

ZO /[dw]ZP wxZ _Zo , (D.9)

which proves the statement at the beginning of this section.

The latter conditions can be fulfilled with a solution of a simple linear system for the
unknown variables ax (k = 1,---,p) in the definition (2.57) of the coefficients p,, as
described in the following section.

D.2 Existence and uniqueness of a solution for the SR

In this section we prove that given the p + 1 SR conditions (D.2) the elements of the
table p,, in Eq. (2.49) are uniquely determined for each walker configuration (w, x).

In fact sgnp, is the same for al the corresponding indices matching z; = z, as implied by the
defi nition (2.57) of p,; and the condition w$?/ > 0 valid for all ;.
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We define here the quantity
vj = (0F - 0}, (D.10)

for each configuration j, where O = 3~ w/O¥ /3~ w! is the average value over
the reference weights, wf, of the operator considered, labeled by the number k. The
reference weights w]f are restricted to be strictly positive but can be in general arbitrary
functions of all the FN weights {w$//}, the exact weights {w;}, and the configurations

{z;}. Itis easy to show that, in order that
Pe; = wf (1 + Z awf) (D.11)
k

satisfy the SR conditions (D.2), it is sufficient that o are determined by the simple linear
equation

ST wvk
Zsk,k'ak’ ==L 'J ) (D.12)
k! Z] w]
where ;
~wlvEu¥
Skk = 727 L (D.13)
) f
2., W;

is the covariance matrix of the operators O* over the reference weights wf . The solution
to (D.12) is possible if the determinant of sy 4 is non-vanishing. Since s represents an
overlap matrix defined with a nonsingular scalar product,

: (D.14)

as w]f are positive, its determinant is always nonzero provided the vectors v* are linearly
independent. Thus, in the latter case, the solution to (D.12) exists and is unique.

On the other hand suppose that among the p vectors v* only p’' < p are linearly
independent. Thus the remaining p — p' vectors can be written as linear combination
of p’ linearly independent ones (henceforth we assume that these linearly independent
vectors are labeled by the consecutive indices k = 1,---,p')

pl
U;“I = Zxﬁlvf , (D.15)
k=1

for k' > p', where x’,g are suitable coefficients. The same previous considerations allow
one to satisfy the first g SR conditions as for Eq. (D.12) a unique solution exists if we
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restrict all the sums for £,k < p, and p,, is determined only by the first p linearly
independent vectors in (D.11). With the determined p,, it is obvious that

2 Pa, V) _ > w;v)

(D.16)

isverifiedfork =1,---,p.

On the other hand we can easily show that all the remaining SR conditions (D.16)
for k' > p’ are identically satisfied. In fact, in this case the left-hand side of Eq. (D.16)
can be manipulated as follows, using definition (D.15)

Z] pa:j Uj’ o 2 1% Z] U;Cpa:j . L &' Z] vfwj . Z] /U‘;?’wj
Y Zxk = Zxk = , (D.17)
ijwj ijzj Zj wj Zj w;

k=1

where in the intermediate steps we have used Eq. (D.16) for £ < p’. Thus the SR
conditions determine uniquely the table p,, .

Invariance of the SR conditions under linear transformations of the set of reconfig-
ured operators

With the above definitions it is also possible to show that p,; remains unchanged for
any linear transformation of the operator set. Namely, suppose we consider the new
operators
OF =" Ly 1 OF + By (D.18)
k

in the SR conditions, where the real matrix L is assumed to have non-vanishing deter-
minant. Within this assumption it is simple to show that p,.; will remain unchanged.

In fact, the new set of operators will define a new covariance matrix between the new
vectors

W =) Lok, (D.19)
k

i.e., o = Lv, 5 = LsL™, where LT is the transposed of L and the set of new equations

L. Zj wj@;‘c
E Sk Ok = =
k! Z] w]

is obviously satisfied by
a=(LHa, (D.20)

where « is the solution of the SR conditions before the transformation (D.18). Whenever
the number p' of linearly independent v* is less than p, also the number of linearly
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independent &% will be p' as L is nonsingular. The solutions o and &, as described
previously, refer therefore to the first § components, and all the matrix involved, such
as L and § are in this case restricted to this subspace.

Then, by Eq. (D.20) and Eq. (D.19), it easily follows that the new coefficients p,, =
w}c(l + > G lF) = w}c(l + ") vF) = pg;, which finally proves the invariance of the
SR conditions under linear transformations of the set of reconfigured operators.

Optimization of the weights

The definition of the weights p;; that satisfy the SR conditions (D.1) is highly arbitrary
because as we have mentioned before the probabilities P, and P! do not uniquely de-
termine the quantum states ,, and ¢}, that are subject to the conditions (D.1). In this
sense there may be different definitions of the weights p,, that may behave differently at
finite p with less or more accuracy. Though Egs. (D.1) are equally satisfied for different
choices of the coefficients p,; the two states ¢, and 1/;, may be much closer (less bias)
for an optimal choice. The optimal choice that minimizes the distance |, — |, at fixed
number p of correlation functions included in the SR, probably has not been found yet.
We have attempted several choices for the reference weights wjf of Eq. (D.11) but until
now no significant improvement of the simplest FN ones has been obtained.






Appendix E

Details of the GFM CSR algorithm

In this Appendix the flow chart of the GFMCSR algorithm is briefly sketched. As de-
scribed in Sec. 2.4.3, it is possible to work without the extra constant shift A and apply
directly e=#7, the usual imaginary time propagator, to filter out the ground state from
the chosen trial wavefunction .

For practical purposes, the algorithm can be divided into three steps: 1) the Green
function (GF) evolution, 2) the SR and 3) the measurements of physical mixed aver-
age correlation functions. These three steps are iterated until a satisfactory statistical
accuracy is obtained for the latter quantities.

The algorithm works with a finite number M of walkers which is kept fixed. Starting
from the first walker (j = 1), the basic steps of the algorithm are described below:

1. In the GF evolution, the exact propagator e=#47 and the FN one e=#*//A7 are
applied statistically for a given imaginary time interval A7. In practice this can
be done by setting initially A7, = A7 and repeating the following steps until
A1 > 0:

(a) Given the configuration of the walker, x;, the quantities E,;, Vi (x;) and
Hg;’j;j Egs. (2.16), (2.33), and (2.32) are evaluated. Then the interval Aty
during which the walker is expected to perform only diagonal moves (see
Sec. 2.4.3) is computed using the relation Ar; = min(A7;,In&/my), where
¢ is a random number between 0 and 1 and 74 = limp o Alnpy = E;; —
H¢JJ according to Eq. (2.60).

(b) A isupdated Ar; — Ar,—A7, and the walker weights (w;, w$’/) are mul-
tiplied respectively by

e(_ij+(1+'7)st(mj))ATd and e_ijATd .
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Thenif A7; > 0anew configuration 24 # z; is chosen according to the prob-
ability table defined only by the normalized off-diagonal matrix elements of

pz’ » L1
pw’,wj

Zw'#wj D!z ’
and the weight w; is multiplied by St @ (2.34). The GF evolution then
restarts from (a). Otherwise, if A7, = 0 the GF evolution for the walker j
terminates and the algorithm proceeds for the next walker starting from step

(1).

2. After all the walkers (w;, w$’/, z;) have been propagated for the total imaginary
time interval A, the SR can be applied. The mixed averages

Oz, = (¥c|Ol;)/ (valw;)

are computed at the end of such propagation for the chosen set of operators OF.
With these quantities both

Zj wJe 1 lecj
eff
> w;

and the covariance matrix sy ;- in Eq. (D.13) are evaluated. By using the latter
quantities in the linear system (D.12), the coefficients ¢, are computed and the
table p,; is determined according to Eq. (D.11). At this stage the reconfiguration
procedure for the walkers can finally be performed, i.e., the new M configura-
tions of the walkers are chosen among the old ones according to the probability

‘pwj |/ Zk ‘pl‘k|

3. The mixed averages of the physical observables O;? and the quantity

Zk W Zk |p$k|
M Zk pzk ’

needed for the calculation of the statistical averages, are stored. The walker
weights are set to w; = sgnp,, and w$’/ = 1, and the GF evolution can con-
tinue from step (1), starting again from the first walker.

Nk
Ocrr =

In the practical implementation of the algorithm the FN dynamic can be worked out
at fixed ~, where « has to be a nonzero number otherwise the exact GF would not be
sampled [see Egs. (2.31), and (2.32)]. On the other hand the FN is more accurate for
~ = 0. A good compromise is to work with v = 0.5 fixed. An alternative choice is to
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perform a few runs with different nonzero -y, and to extrapolate the results for v — 0,
which should represent the most accurate calculation. Typically, this extra effort is not
necessary because there is a very weak dependence of the results upon ~ [90].






Appendix F

Optimization of the one L anczos step
variational parameter

In this Appendix we describe an efficient way to find the optimal one Lanczos step
wavefunction |1,) = (1 +aH) 1) (Sec. 2.3.1), starting from a chosen variational guess
|1}, i.e., to calculate the value of « for which the energy

W1+ aH)H(1 + aH)[¥)

E(a) = - (F1)
([(1 4 aH)?|9)
has a minimum. It is easy to show that
2
E(a) _ h1 + Zahz + o h3 (FZ)

1+ 20,/h1 + 042h2 ’

with h, = (|H"[¥)/(p|), and that the condition dE(a)/da = 0 leads to the solu-
tions:
o = (hihe — hs £ VA)/2(hihg — h2) (F.3)

with A = (hyhy — h3)? —4(h3 — hyhs) (h? — hy). The existence of a minimum o, among
them is guaranteed by the variational principle.

Then, in order to find o, a standard method is to calculate statistically the various
powers of the Hamiltonian A,, using the configurations = generated by the Metropo-
lis algorithm according to the weight v(x)?. This method is however inefficient since
much better importance sampling is obtained when configurations are instead generated
according to the optimal Lanczos wavefunction v, (z) = (1 + agEy(x)) ¥(x), where
Eyu(z) = (Y|H|z)/(|z) is the local energy. This wavefunction maybe much better
leading to much lower variances especially for the higher moments s, and hs.

Then, in order to calculate «y, given an arbitrary value of «, it is convenient first to
compute the energy expectation value A, with the standard statistical method and then,
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in place of the direct calculation of the remaining Hamiltonian higher moments £, and
hs, generate statistically configurations according to |, (z)|? and calculate E () and

(taltha)
E(«) is obtained by averaging over the chosen configurations the local energy corre-
sponding to v, namely (1o |#|z)/(1ba|), whereas x is obtained by averaging over the
same configurations ¢ (z) /(x| (1 + o#)|¢). Given ¥, it is straightforward to compute A,
as

hy = (x'=2)1+ah)+1 | (F5)

042
and finally, using & and hs and E(«), the highest moment A3 can be calculated as

hy = E(a)(1 4 2ah; + o?hy) — hy — 2ahy . (F-6)

o2

Notice that the most difficult energy moment A is given by sampling an energy expec-
tation value, which is by far statistically more accurate compared to the direct determi-
nation of As.

Given the values of x, h; and E(«), Eq. (F.3) provides the exact value of « within
the statistical uncertainties, that are the smaller the nearer is « to the optimal value «.
Typically two or three attempts are enough to reach an accurate determination of

when the condition .

T 1+ aE ()’
which is true in general only for the eigenstates of the Hamiltonian, is exactly fulfilled

X (F.7)

by the optimal one Lanczos step wavefunction.
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