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Chapter 1

Introduction

More than fifty years ago, Yang and Lee [1, 2] showed the importance of
understanding the analytic structure of the free energy in the theory of phase
transitions. They proved that the thermodynamical equation of state is
completely determined by the distribution of roots of the partition function
(or, equivalently, singularities of the free energy). Their papers inspired
several lines of further research. I just note that, as far as the Ising model is
concerned, the task of unveiling the analytic properties of the free energy has
been completed, very recently, by Fonseca and Zamolodchikov [3]. They were
able to substantiate the identification of the Yang—Lee edge singularity with
the spinoidal point, thus unifying the high- and low-temperature descriptions.

The main tool of Fonseca and Zamolodchikov’s analysis is the truncated
free-fermion space approach, that gives numerical access to the lowest energy
levels of the Ising field theory defined on a cylinder. A similar analysis can,
in principle, be performed to study the next-to-the-simplest unitary minimal
model, namely the tricritical Ising model (in the following frequently referred
to by the acronym TIM). Due to the universality principle, the insight gath-
ered by working on this conformal field theory and its perturbations applies
to all tricritical phenomena in dimension two chracterized by the same Zo
symmetry of the order parameter.

In practice, however, the extension of Fonseca—Zamolodchikov’s method
is far by trivial because the tricritical Ising model possesses four primary
fields that are relevant in the renormalization group sense, instead of two like
in the Ising case. On technical ground, moreover, there is no free-fermion
space available, so that one is forced to truncate the conformal space, thus
employing a less powerful approximation. Anyway, some at least qualitative
picture can be outlined: this is the subject of my Ph.D. thesis.

The first chapter is structured as follows: the physics of tricritical points
is introduced by means of a lattice (Sec. 1.1) and a field theoretical (Sec. 1.2)

1



realizations of the TIM universality class. Then the example of the Ising
field theory illustrates why it is interesting to introduce a complex magnetic
field and what kind of results one can expect to obtain (Sec. 1.3). The last
section is devoted to sketch the layout of the following chapters.

1.1 Ising and Blume—Emery—Griffiths models

The Ising model is defined as follows: arrange in some regular lattice N
variables s; called spins allowed to take values 1, then to any given config-
uration {s} = {s;,7 = 1,..., N} associate an energy

N
E{S} = _JZSiSj - HZSZ . (11)
(1,3) =1

The symbol (i, j) means that the first sum is performed over pairs of spins
that are directly linked in the lattice (nearest neighbours). The sign of the
coupling J determines whether neighbouring spins tend to be aligned in the
same direction (J > 0, ferromagnetic Ising model) or in the opposite one
(J < 0, antiferromagnetic case), while H represents an external magnetic
field.

The partition function, from which one can extract all thermodynamic
quantities, is defined by

Zy(B,H) =Y e PPur, (1.2)
{s}

where (3 is the inverse of the absolute temperature and the sum runs over all
possible 2V configurations. The free energy per site is defined according to

F(B, H) = -% lim. %m Zn (B, H), (1.3)
where the limit N — oo is called thermodynamic limit.

An evident feature of the model with H = 0 is its Z, symmetry related to
spin reversal. If the lattice dimension is greater than 1, then this symmetry
is spontaneously broken: when the inverse temperature is greater than the
critical value (., the spontaneous magnetization per site

M= — oF . (1.4)
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is different by zero, signaling that a consistent portion of the spins result
aligned in the same direction. Another less evident symmetry is the Kramers—
Wannier duality [4, 5], relating the high-temperature disordered phase with
the low-temperature ordered one.

A great number of variations have been played over this simple theme.
The one that more concerns this work is due to Blume, Emery and Griffiths [6]
and consists in allowing the spins to take also the value 0 in addition to +£1,
while consistently enlarging the possibility of interaction:

E{s}—_stzsy HZSZ+AZS+
—KZS ngSiSj Si—i‘Sj).

(1,3)

(1.5)

The interpretation of the newly introduced couplings depends on the physi-
cal system one is thinking about: I will have in mind an annealed dilution of
the ferromagnetic (J > 0) Ising model, that is an Ising model with non mag-
netic impurities (vacancies, corresponding to value 0 of the spin variable) in
thermal equilibrium with the spin system. In such a context, A is a chemical
potential enhancing (if A > 0) or depressing (if A < 0) the presence of va-
cancies, Hj is a third-order magnetic field, and K is a biquadratic exchange
interaction. This model, originally designed to describe a multicomponent
fluid mixture, has also been applied to the study of metamagnets, and nowa-
days stands as the paradigmatic example of tricriticality. The special case
H3; = K = 0 deserves particular attention and a name on its own: it is the
Blume-Capel model, independently introduced by Blume [7] and Capel [8]
in 1966.

Also the Blume-Emery-Griffiths model shows a Z, symmetry for H =
Hj3 = 0, but this symmetry can be broken discontinuously (first-order phase
transition) if A > A;. The point (5, A;) lies at the junction of a line of first-
order with a line of second-order phase transitions (see Fig. 1.1), hence enjoys
the coexistence of three phases and is called tricritical. The global phase
diagram in the five dimensional space of couplings is quite complicated [10],
but it is useful to mention the result of the mean field approximation analysis
of its H3 = K = 0 subspace. I will just state the results more useful for my
purpose; a detailed treatment of the Blume—Emery—Griffiths model, together
with a rich bibliography and a review of early studies on tricriticality can be
found in Ref. [9].



Figure 1.1: Qualitative phase diagram of the Blume-Capel model near the
tricritical point P (from Ref. [9]): the lines L, L_, Ly are lines of critical
points, while L, is a line of first-order phase transitions. On the surface Sy
we have coexistence of two ordered phases with opposite magnetization. The
‘wing’ S, (S_) in the same way separates the phase with predominance of
s; = 0 from the phase with positive (negative) magnetization.



1.1.1 Mean field analysis of the Blume—-Capel model

In the mean field approximation, a line of second order phase transitions
(often called A-line in literature) is given by

AN(B) = %ln (2827 - 1))
H)\(8)=0

where z is the coordination number, that is the number of nearest neighbours
each spin interacts with. At the tricritical point

3
b=
the A-line meets two critical lines delimiting a pair of symmetrical coexistence
surfaces (wings, see Fig. 1.1) identified by

s (22)

1< BzJ <3, (1.6)

2
Ay = ngan, (1.7)

2/ 4— BzJ
1 Bzd — 2+ \/BzJ(BzJ — 3) 1 — ’
Hy(8) = 5ln ( e ) ¥ V8827 =)

(1.8)
where 3 < BzJ < 4. In the plane H = 0 the wings intersect in a line of
first order phase transitions called 7-line which cannot be expressed in closed
form.

If we now focus our attention on a small neighbourhood of the tricritical
point, we can define the scaling fields

B 1 ~ H

t="2—1 A= —(A-A)+vt H=—= 1.9
ﬁ ZJ( t) + v ZJ I ( )
where we have introduced the constant v = (1 —51n2) = 0.0379.... In the
scaling limit ¢ — 0, Eq. (1.6) reads
~ 3 ~
Ax(t) = —th +0O(t*)  Hy(t) =0, (1.10)
where ¢ > 0 is understood, while Eq. (1.8) becomes
~ 3 ~ 6
AL(t) = Zt2 + 0@  Hi(t) = ig\t|5/2 + 0, (1.11)
and the 7-line is given by
A (t) = 33—2152 Lo H.()=0. (1.12)

Both Eq. (1.11) and Eq. (1.12) are valid for ¢ < 0.
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1.2 Landau—Ginzburg theory of tricriticality

The essential features of the theory of tricritical points can be qualitatively
understood by considering a Landau—Ginzburg [11] formulation based on a
scalar field ®(z) (called order parameter in the theory of phase transitions).
As to describe an ordinary critical point (like (H = 0,8 = f.) in the Ising
model) we need a quartic potential whose two degenerate vacua accounts for
the two phases, so a tricritical point requires at least a sixth order potential
which may display up to three minima:

1
-ALG = /dDiE |:§ (8,@)2 —+ glfb + 92(1)2 + 93(1)3 + g4<1>4 + (1)6 . (113)

A term of order ®° is absent because it can always be eliminated by a shift
of the field ® — &' + &gy, with a suitable choice of ®.

If we set g; = 0 = g3, thus considering only the Zy-symmetric subspace
of couplings, we can easily realize that:

e if go > 0 and g4 > 0, then there is only one absolute minimum in & = 0
(see Fig. 1.2(b));

e if g < 0, then there are one relative maximum in & = 0 and two

\/qg2— —
absolute minima in ® = + w (see Fig. 1.2(c));

e if g4 < 0, then there are three further possibilities:

— if g > ¢3/3, then there is only one absolute minimum in ® = 0
(see Fig. 1.2(b));

— if g2/4 < gy < g7/3, then there are one absolute minimum in ® = 0

\/q2— —
and two relative minima in ® = £/ W (see Fig. 1.2(e));

— if 0 < go < g3/4, then there are one relative minimum in ® = 0

\/q2— —
and two absolute minima in ® = + w (see Fig. 1.2(d)).

All the above informations are summarized in Fig. 1.2(a): the red line (g4 > 0
while go = 0) denotes second order phase transitions, characterized by the
change of the potential from the shape of Fig. 1.2(b) to the one of Fig. 1.2(c),
while the blue line (g4 < 0 while go = ¢2/4) marks the first order phase
transition, where the shape of the potential, in passing from Fig. 1.2(d) to
Fig. 1.2(e), presents three degenerate minima (see Fig. 1.2(f)). The inter-
section go = 0 = g4 is a tricritical point. The analysis can be extended
to the whole four dimensional space [12]: other critical submanifolds are
found without spoiling the fact that the only tricritical point is defined by

9g1=92=93=9s=0.
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Figure 1.2: Phase diagram of the Ginzburg-Landau model (1.13). The blue
and red lines mark the first- and second-order phase transitions, respectively.
The green dashed line is go = g3/3.



1.3 Complex magnetic field

As I wrote in the introduction, the study of the Ising model in a complex
magnetic field H was introduced by Yang and Lee in 1952. In their first
paper [1] they studied the grand partition function of a lattice gas with
complex fugacity y, proving that the equation of state can be deduced by the
distribution of the singularities of the free energy F. The second paper [2]
established the equivalence between the Ising model and a lattice gas with a
suitable potential. In particular, the fugacity was found to be proportional
to the exponential of the magnetic field:

y o e PH (1.14)

Then a theorem was proved that, for a broad class of potentials (including
the one corresponding to the Ising model), all the zeros of the grand partition
function lie on the unit circle of the complex y-plane (equivalently, all the
poles of the free energy are located on the imaginary axis of the complex
H-plane).

For 8 < f3, (high-temperature regime), the poles accumulate in the ther-
modynamic limit towards the points H = +iHy(3) with real Hy > 0 (see
Fig. 1.3). As accumulation points of poles, +iH, are essential singularities
for the free energy: they are removed from the complex plane by drawing
a cut along the imaginary axis. The cut passes through the point at in-
finity: the free energy is analytic for any real value of H because we know
there is no phase transition. The gap in the distribution of the poles reduces
while lowering the temperature, unless, at the critical point, it happens that
Hy(5.) = 0. Now it is no more possible to analytically continue F'(3, H) from
positive to negative H: this is the signal of the phase transition. Fisher [13]
named Yang-Lee edge singularities the points +iH(/3), and proved that the
accumulation of zeros of the partition function in the thermodynamic limit
is a conventional critical phenomenon, with scaling laws, universality and so
on. In high dimension D, it corresponds to the infrared behaviour of the field
theory with an action

Ay, = /de B(auqb)Q +i(h — ho)d + ivd®| . (1.15)

Note that such a theory is nonunitary because of the imaginary couplings.
The theory of Yang-Lee edge singularity was enriched by Cardy [14] who
showed how it is related to the simplest nonunitary minimal model charac-
terized by central charge ¢ = —22/5. Both Fisher’s and Cardy’s arguments
are reproduced in Sec. B.2.
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Figure 1.3: Ising model: branch cuts of the free energy in the complex H
plane. The magnetic field is measured in units of |27 g,|*/%.

On the other hand, for § > [, (low-temperature regime), if one tries to
continuously change the magnetic field from H > 0 to H < 0, at H = 0 one
enters a metastable phase. Eventually the spinoidal singularity is reached,
when the metastable phase holds no more and the state of the system change
abruptly (see Fig. 1.4). In fact, the above picture must be corrected by
taking into account thermic fluctuations [15]. They make the system start
decaying through nucleation before reaching the spinoidal singularity. A cut
(named Langer’s branch cut) is therefore drawn along the negative H-axis
(see Fig. 1.5), starting from H = 0 where is a weak singularity.

What happens to the spinoidal point when the Langer’s branch cut is
opened? Fonseca and Zamolodchikov answer that it is pushed under the cut
in order to reappear in the high-temperature regime under the name of Yang—
Lee edge singularity. This identification completes! the task of describing the
analytical properties of the free energy in the complex magnetic field plane.

In order to support their claim, Fonseca and Zamolodchikov use the Ising
field theory, formally defined by the action

Arrr = Ae=172) + 01 /a(x)de + g2 /8(:13)6121“. (1.16)

In the above formula A(—1/2) represents the action of the simplest unitary
minimal model, o(z) and £(x) are the primary fields of the theory, that we can
interpret as spin and thermal operators, while g; and g are couplings related

'In fact, the comparison with lattice results (see Ref. [16]) could still hide some tricky
point, as you know far better than me!
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Figure 1.4: Magnetization versus the magnetic field for 8 > (.: appearance
of the spinoidal point.

0.4+

Re(H)

0.4

Figure 1.5: Low-temperature complex H-plane: the Langer’s branch cut
extends along the negative real axis
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to departures from the critical point in the magnetic or in the temperature
direction, respectively. Actually, it is possible to put together the first two
terms on the RHS of Eq. (1.16) and substitute them with the free fermions
action

App = % / [0y + 0 + imypp] &z, (1.17)

where m = 27g,, and v, are the two chiral components of a Majorana
field. Whichever formulation one employs, when the Ising field theory is put
on a cylinder, its radius R acts as an infrared regulator, so that the spectrum
is infrared finite. By means of a suitable truncation of the Hilbert space
the problem of measuring the energy levels is reduced to the diagonalization
of a finite dimensional Hamiltonian. One has access to the free energy by
studying the infrared (that is, R — oo) behavior of the ground state.

1.4 Layout of the paper

The next chapter gives an extremely brief review of topics in conformal and
integrable field theory. The relevant data about the tricritical Ising model
and its various integrable and non-integrable deformations are summarized in
Ch. 3. Finite size effects in conformal and integrable field theory are discussed
in Ch. 4: this is a good introduction to the description of the computational
technique here adopted, based on truncation of conformal space (in the fol-
lowing often abbreviated TCS), that is extensively described in Ch. 5. The
outcome of my research is presented in Ch. 6, where the analytic structure of
the free energy of the tricritical Ising model is numerically investigated. Two
interesting byproducts of my analysis are also reported in the same chapter:
some nice pictures of the evolution of the spectrum under renormalization
group flows, and the numerical determination of some amplitudes useful for
defining universal quantities. The last chapter is devoted to a summary of
results and an outlook on possible future developments.
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Chapter 2

Conformal and Integrable Field
Theory

In this chapter some topics in quantum field theory that are relevant for
this work are sketched. The first section provides a synthetic vocabulary
of conformal field theory. Details and proofs and much more can be found
in the textbook written by Di Francesco, Mathieu and Sénéchal [17]. Other
classical references are the review paper by Ginsparg [18] or the book written
by Itzykson and Drouffe [19].

Conformal field theory in two dimensions is characterized by an infinite
number of conservation laws. Even in the presence of infinitely many con-
served quantities, the task of solving the field theory (that is computing all
correlation functions) is so tough that it can be completely carried on only
for those particularly simple conformal field theories called minimal models
(Sec. 2.2).

A part from their mathematical interest, minimal models are physically
noteworth because they describe the scaling limit of discrete statistical mod-
els at their critical point. A second order phase transition is indeed charac-
terized by the divergence of the correlation length: that is the reason why the
physics of criticality results scale invariant, once the microscopical scale of
the lattice details is eliminated by taking the scaling limit. Systems slightly
off the critical point (see Ref. [20] for an extensive review) are described by
suitable deformations of minimal models. Even if they breaks conformal in-
variance, some of these deformations inherit from the parent conformal field
theory the nice feature of being subject to infinitely many conservation laws:
the corresponding field theories are called integrable (Sec. 2.3). Some tech-
niques peculiar to integrable field theories are mentioned in the last section:
bootstrap approach for the S-matrix and form factors expansion. Another
one, the thermodynamic Bethe Ansatz, is more extensively treated in Sec 4.2.

12



2.1 ABC of conformal field theory

Let us consider an Euclidean space of dimension D. The group of transfor-
mations x — x’ that preserve the metric g,, up to a local rescaling:

I (') = A(x) gy (x) , (2.1)

is called conformal group. Its elements are generated by combinations of the
following transformations:

' =zt + ot (2.2)

" = M*, 2" (2.3)

' = az® (2.4)
2

g v x (2.5)

- 1—2b-x+b2x2’

where p,v =1,...,D and b -x = b’2"g,,. The first two are the familiar
translation and rigid rotation, the third is a dilation, and the last takes
the name of special conformal transformation. An element of the conformal
group is therefore identified by (D + 2)(D + 1) real parameters (in fact the
isomorphism with the group SO(D + 1, 1) can be proved).

In the case D = 2 the group of globally defined conformal transformations
has 6 generators (in fact, it is SL(2, C)), but any holomorphic (or antiholomor-
phic) mapping from the complex plane onto itself can be considered a local
(in the sense that it is not necessarily defined everywhere) conformal trans-
formation. This is easily seen by recognizing that Eq. (2.1) for x = (z', 2?)
is equivalent to the Cauchy—Riemann equations. Hence the local symmetry
group of a two-dimensional conformal field theory possesses infinitely many
generators, that are the coefficients of the Laurent expansion of x'(x) around
X.

It is convenient to define complex variables

1

z=x' +iz’ z=2x"—iz?, (2.6)

so that the holomorphic (antiholomorphic) Cauchy-Riemann equation is
written simply

052'(2,2) =0 (0,2'(2,2) = 0). (2.7)
The fields ¢(z, Z) that under the conformal map z — w(z), Z — @(Z) trans-

13



form as' _
sm = (2)7(22) "otern 29)

are called primary. The real numbers (h
antiholomorphic conformal dimensions, A +
the field and h — h is the spin.

A conformal field ¢(z,%) of dimension (h,h) may be mode expanded as

follows: _
0(2,2) =) > 2" "2 " . (2.9)

MEZ ne€Z

) are called holomorphic and

h
h is called scaling dimension of

If we expand in such a way the holomorphic and antiholomorphic (also called
left and right) components of the energy-momentum tensor, we get

T(z)=)» 2" "L, T(@=)» 7" "Ly, (2.10)

neL neZ

where T = —27T,, and T = —27T};. The coefficients L,, L, can be consid-
ered generators of the local conformal transformations on the Hilbert space.
They obey the Virasoro algebra

[Lna Lm] = ( - m)Ln+m + 2n(n 1)(5n—|—m,0

(L, L] = 0 (2.11)
S - c

[Ln, Lm] = ( — m)Ln+m —+ En(nQ — 1)5n+m,0 .

The central charge c classifies different conformal field theories and has the
physical meaning of Casimir energy for the theory put on a cylinder (see
Sec. 5.1).

2.2 Minimal models of conformal field theory

The minimal models [21] are characterized by a Hilbert space made of a finite
number of representations of the Virasoro algebra (2.11). The first issue to
be addressed is therefore to find irreducible representations of the Virasoro
algebra, then we will be ready to give a very concise summary of minimal
models’ properties (a complete treatment of this subject can be found in
Ref. [17]).

!Note that z and Z are considered independent (this is the same as promoting z!,z?

to complex variables): the physical space can be recovered by selecting the real surface
zZ=2z"

14



2.2.1 Irreducible representations of the Virasoro alge-
bra

Since no pair of generators commute in the Virasoro algebra (2.11), only one
of them (the usual choice is L) can be diagonalized in the representation
space, often called Verma module. The highest-weight states |h) are thus
labelled by the eigenvalues h of Lg

Lolh) = hlh). (2.12)

The raising and lowering operators are all L,, with m negative or positive,
respectively. The highest-weight states are therefore defined also by the
condition

Ln|h) =0 VYm > 0. (2.13)

A basis for the descendant states is obtained by applying the raising operator
in all possible ways:

Lol gy Lo |h) 1<k <ky<---<k, (2.14)

is an eigenstate of Ly with eigenvalue
W=h+k +k+---+k,=h+N, (2.15)

where N is called the level of the state. The fourth level, for example, is the
space spanned by the vectors

L |y L2 L_4h)y L. L_glh) L2,|h) L_4h). (2.16)

The Hermitian conjugation is defined by L! = L_,,, hence the inner
product between two elements

L g ...L_ g |h) Ly ...L_h) (2.17)
belonging to the same Verma module V' (c, h) is simply defined by
(h|Lg,, - - Li,L_y, ... L_y |h). (2.18)

The Verma modules associated with the antiholomorphic generators L,, are
built in the same way. The complete Hilbert space § is in general a direct
sum over all conformal dimensions of tensor products of Verma modules

H=EPVie,h)®V(c,h). (2.19)

h,h
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To a Verma module V' (¢, h) it is possible to associate a generating function
X(e,n)(q) called the character of the module, whose definition is

X(ewy(q) = Trg"om? = " dim(h + n)g" "=/, (2.20)
n=0

where ¢ is a complex variable, and dim(h + n) is the number of linearly
independent states at level n in the Verma module. Each Verma module is
a representation of the Virasoro algebra. In order to obtain an irreducible
representation, one must quotient out the vectors |x) such that (x|x) = 0.
These are called null vectors. The irreducible representations of the Virasoro
algebra are the building blocks of the minimal models.

2.2.2 Unitary and nonunitary minimal models

Any highest-weight state |h, h) can also be seen as an asymptotic (that is,
in the context of radial quantization, z,z — 0) state generated by a primary
field ¢(z, z) of conformal dimensions (h, h) acting on the vacuum:

$(0,0)[0) = |A, h), (2.21)
where the vacuum is defined by the property
L,0)=0 L,0)=0 Vn<-1. (2.22)

As a space of descendant states can be built upon an highest-weight vector,
so a family of descendant fields can be obtained by repeatedly applying suit-
able differential operators. The set comprising a primary field and all of its
descendants is called conformal family. A conformal family is closed under
conformal transformations.

An operator algebra between conformal families can be defined by taking
the short-distance product of their primary fields: this is just another way
of expressing the constraints that the conformal invariance dictates on the
three-point correlation functions. The minimal models are those conformal
field theories whose operator algebra truncates on a finite set of conformal
families. They are completely classified by a pair of positive coprime integers
(p,p') such that p > p'. We will thus indicate with M (p, p’) the conformal
field theory whose central charge is

p—7p
pp’

c=1-6 (2.23)
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and whose Kac table (containing the allowed conformal dimensions) is

(pr —p's)> — (p—p)?
4pp'

hrs:

)

(2.24)

where
1<r<yp 1<s<p. (2.25)

An explicit formula can be given for the Virasoro character x., ,(q) [22]:

ht(1—c)/2a 0 oy , ;
Z qup k (qk(PT*P s) _ qk(pT-HD 5)) (226)

k=—00

q
X(e,hr)\Q) =
(ehe)(0) n(q)

in terms of the Dedekind function

o0

n(g) =g/ JJ00-q¢"). (2:27)

n=1

A representation of the Virasoro algebra is said to be unitary if it contains
no negative-norm states. It turns out that a necessary condition for the
unitarity of a Verma module with highest weight h is h > 0. Therefore we
call unitary the minimal models whose Kac table contains only non-negative
conformal dimensions. These are characterized by the condition p =1 + p'.
The first such non-trivial model is M(4, 3), which describes the class of
universality of the critical point in the Ising model. The next one, M(5,4)
is the tricritical Ising model. On the other hand, the simplest non-unitary
minimal model is M(5, 2), that is related to the description of the Yang—Lee
edge singularity.

2.2.3 Operator content of a minimal model

A relevant property of the Virasoro algebra Eq. (2.11) is that holomorphic
and antiholomorphic generators are completely independent. It could seem
that, in the sum Eq. (2.19) defining the Hilbert space of the theory, we are free
to combine any V (¢, h) with any other V(c, h). In fact, we expect that only
few choices would be physically sensible: the reason is that the decoupling
of left and right modes is destroyed as we move off the critical point, but
on the other hand the spectrum should change continuously. It turns out
that the easiest way to relate left and right components is by changing the
topology of the space where the critical theory is defined, rather than facing
the intricacies of the off-critical theory.

The complex plane is topologically equivalent to a sphere: if we are look-
ing for constraints on the left-right coupling, we need to consider at least a
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torus. In the operator formalism the main role is played by the partition
function [23]

Z(q) = Tr (qLo—c/24qE0—c/24) ’ (2.28)

where g is exactly the same parameter used in writing Eq. (2.20) and is related
to the modular parameter 7 of the torus? by the relation ¢ = exp(27i7). The
request of modular invariance for the partition function severely constraints
the operator content of minimal models: a complete classification was car-
ried over when the one-to-one correspondence between the modular invariant
partition functions of the minimal model M(p,p’) and the pairs of simply
laced Lie algebras (A,, D, Es, E7, Eg) with respective dual Coxeter numbers
p’ and p was conjectured [24] and subsequently proved [25, 26].

2.3 Integrable field theory

A field theory for which we can establish infinitely many conservation laws is
said to be integrable. Any conformal field theory in two dimensions is inte-
grable, because of the infinite dimensionality of the group of local conformal
transformations. Other integrable field theories can be obtained by suitable
deformations of minimal models.

2.3.1 Conserved quantities
In two-dimensional quantum field theory a conservation law takes the form
0:Ts541(2,2) = 0,05_1(2, 2) , (2.29)

where 75,1 and ©,_; are local operators with spin s+1 and s—1, respectively.
The corresponding conserved charge has the form

Cs = /(TS+1dZ - @sfle) . (230)

In the particular case s = 1, T, is the holomorphic component and O is

one fourth of the trace of the energy-momentum tensor. A part from this,

that is common to all field theories, for some theory it is possible to find

other conservation laws. The so-called “counting argument” suggested by

Alexander Zamolodchikov [27, 28] permits to check when this can be done.
Let us consider a theory formally defined by the action

A= Acrr + g/d% o(z), (2.31)

2The torus is defined as the complex plane modulo 7, where 7 is a complex number.
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that is a conformal action perturbed by a relevant (h < 1) operator. A
conservation law like Eq. (2.29) can be found if the dimension of the space
of descendants of the identity operators at level s + 1 is greater than the
dimension of the space of descendants of the perturbing field at level s —
1. Such a condition is promptly checked by using the character formula
Eq. (2.26).

2.3.2 Exact S-matrix

When perturbed in the sense of Eq. (2.31), a conformal field theory in general
develops a finite correlation length A, so therefore it admits a description in
terms of one or more particles of mass greater or equal to m oc 1/\. As it is
natural to expect, the presence of an infinite number of conserved quantities®
severely constraints the possible form of the S-matrix, ultimately permitting
its exact (that is, non-perturbative in the interaction) determination. The
scattering process of an integrable field theory is indeed characterized by
the properties of elasticity and factorization. Elasticity means that the final
set of energies and momenta coincides with the initial one: in particular,
there is no particle production. Factorization means that any n-particle
scattering amplitude factorizes into the product of n(n — 1)/2 two-particle
amplitudes. Factorization is algebraically expressed under the form of Yang—
Baxter equations.

These two simplifications, together with the fact that in 141 dimensions
the particles move on a line, so there are no scattering angles, are powerful
enough to derive the S-matrix from few fundamental principles: unitarity,
crossing symmetry, and the assumption of maximal analiticity. This last
point means that the two-particle S-matrix is an analytic function of the
Mandelstam variable that possesses only those poles which are of physical
origin (i.e. those that signal the occurrence of a bound state). The only
model-dependent input is the assumption of a particle spectrum. The process
of building the whole spectrum from “guessing” the scattering amplitudes of
the lightest particles is called “bootstrap” (a recent review on the bootstrap
program may be found in Ref. [30]).

2.3.3 Correlation functions

Finding the S-matrix is a noteworth achievement, but the real stake are
the correlation functions. In integrable field theory they can be computed by

3In fact, the existence of just one conservation law besides the trivial one with s = 1 is
sufficient to grant the elasticity and factorization properties [29].
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means of an expansion in terms of the matrix elements between multiparticle
states, called form factors. It is convenient to parameterize the on-shell
momentum in terms of the rapidity variable 8 defined by

(p°, p*) = (mcosh®, msinh @), (2.32)

where m is the mass. With this convention, the form factors for an operator
¢ are defined by

Ff o, 01, .., 0,) = 0|¢(0)| Ag, (61) . . . A, (6)) (2.33)

where |0) is the vacuum and A,, (6;) is the creation operator for a particle of
type a; and rapidity 6;. Now any correlation function can be expressed as a
sum over form factors: for example, consider the two-point function

(91(2)92(0)) - (2.34)
by inserting the resolution of the identity

= 1
I= — db, ...do,| A, (01)... A, (0,)){As (6,)... A4, (0
D Gt Ly, B A0 ) - A 5 (e 5) A (8)
(2.35)
it can be expressed in terms of form factors
(¢1(2)92(0)) =
o0 1 / .
dby ...d0,F®  (61...60,) [F?  (6;...6,)] e @B
nz_; (271')” 91>_“9n 1 Leee n( 1 ) [ Lees n( 1 )]
(2.36)
where .
E, = Zmak cosh 0y, . (2.37)

k=1
The properties characterizing the scattering processes in integrable field
theories can be translated into five equations for the form factors [31]: these
equations can be solved?. What is not in general possible is to sum the series
and exactly compute the correlation function. However, Eq. (2.36) can be
considered a long distance (|| > ) expansion, indeed a very effective one
because the first few terms usually give a good approximation. The data
from form factor expansion is complemented by a short distance expansion
obtained by perturbing around the conformal point [33]. By using both ex-
pansions, many correlations functions in integrable models can be computed
with good accuracy.

“The trick called “asymptotic factorization” [32] will in general be needed in order to
distinguish the form factors of different fields.
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Chapter 3

Tricritical Ising model

The class of universality of tricritical points occurring in two-dimensional
statistical models whose order parameter enjoys Z, symmetry, for instance
the Blume-Emery—Griffiths model introduced in Sec. 1.1, is described (in the
scaling limit) by the minimal conformal field theory characterized by central
charge ¢ = 7/10. Due to its various infinite-dimensional symmetries, the
TIM has been defined “a theorist’s ideal playground” [34]. All data about
this minimal model and its deformations relevant for my thesis are collected
in this chapter.

3.1 The minimal model M(5,4)

The Kac table of the minimal model M(5,4), as obtained from Eq. (2.24),
is given in Tab. 3.1. In the framework of radial quantization, it is natural
to define the theory on a cylinder by means of the conformal mapping w =
2 ln< (see Sec. 5.1). The operator content of the theory depends on the
choice of boundary conditions [34] on the coordinate u = R(w).

For periodic boundary conditions, the modular invariant partition func-
tion is diagonal. The corresponding operator content is summarized in

vl SN O
ies oo 2l
2l Beo oo
o G~ vl

Table 3.1: Kac table of the minimal model M(5, 4)
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(0,0) I identity
(83—0, %) o ¢ magnetization )
(&%) € @2 energy L P2
(%, %) o' 3 submagnetization :®3:
(2,8) ¢t 4 chemical potential : ®*:
3,3 & (irrelevant) : 06

Table 3.2: Operators in the TIM with periodic boundary conditions

Tab. 3.2: in the first column there are the conformal dimensions, the sec-
ond and third columns report the symbols I will use in referring to these
fields, while the fourth contains a concise description of their physical mean-
ing. The rightmost column shows the correspondence [35] with the normal
ordered fields of the Landau—Ginzburg formulation. Fusion rules and struc-
ture constants of the operator algebra can be computed in the framework of
the Coulomb gas formalism [36, 37]: the result is summarized in Tab. 3.3.

If the boundary conditions on the u-direction are Zo-twisted, on the other
hand, the partition function is not diagonal: the operator content of the
theory is displayed in Tab. 3.4, while the non-trivial fusion rules can be
found in Tab. 3.5.

The tricritical Ising model exhibits several discrete as well as continuous
symmetries. First of all, there is the Z, symmetry related to the spin-reversal
transformation, that in the Landau—Ginzburg approach corresponds to & —
—®. The fields I, ¢, ¢, " are even with respect to such a transformation, while
o,0" are odd. An inspection of the fusion rules shows that the even operators
form a subalgebra.

Another symmetry mutuated from the lattice model is the Kramers—
Wannier duality, under which the magnetization operators o, ¢’ are mapped
onto their corresponding disorder operators u, p’, while ¢,&"” are odd, and ¢
is even. The behavior of primary operators of TIM under these two discrete
symmetries is summarized in Tab. 3.6.

The tricritical Ising model can also be realized in terms of a coset con-
struction of a Wess—Zumino—-Witten model on the group

(E7)1 @ (E7): .

& (3.1)

(see Ref. [38] where this property is exploited for the computation of the
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even X even

e x e =[] + cf] 6= ([0 + c ]
ext=c[e] +2[] ¢ xe" =[]
even x odd
exo=cllo+3ellol]l  exo'=g[o]
txo= 2N+ gello]  txo' =1 o]
odd x odd
o xo' =M+ L[] o xo=_ [+ (]

7 x o = [T+ Sellell + ellel + o [

Table 3.3: Fusion rules and structure constants for TIM: periodic boundary

conditions

(83—0, %) 7 disorder field
(&, %) 4 subleading disorder field
3,5 v fermion
(11—0, %) Y anti-fermion
3,00 G SuSy generator
0,3 @ SuSy generator

Table 3.4: Operators in the TIM with Z,-twisted boundary conditions
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pxp=gxP=(M+eld]  xd=—Fxp=icle]+ic [']

Table 3.5: Fusion rules and structure constants for TIM: Z,-twisted boundary
conditions

field spin-reversal Kramers—Wannier

€ € —€
t t t
g I _gM
o —0 7
o' — /J/I

Table 3.6: Discrete symmetries of TIM
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matrix elements of the energy-momentum tensor as well as of its two-point
correlation function).

The tricritical Ising model is also the simplest example of superconformal
field theory [39]: its Hilbert space contains a finite number of irreducible
representations of the super-Virasoro algebra (the antiholomorphic part is
omitted)

C. 3

[Liny, Ly = (m —n) Ly + E(m — M), —n (3.2)
(G G} = 2L + g <m2 - %) S (3.3)
[Lin, Gr] = (%m — n) Gmin - (3.4)

As the generators L, arise as coefficients in the expansion of the energy-
momentum tensor, so the G, are Fourier components of the superpartner
of the energy-momentum tensor, the field G(z) with conformal dimensions
(3/2,0). The theory is splitted into two sectors depending on the boundary
conditions imposed on the ¥(w) direction: in the Neveu—Schwarz sector the
even fields can be grouped into a superfield

N(2,2,0,0) =c(z,2) + 0(z,2) + 0(z, 2) + 00t(z, 2), (3.5)

where 6,0 are Grassman variables; in the Ramond sector the magnetic fields
give rise to two irreducible representations.

3.2 Off-critical behaviour

This section contains a brief summary of what happens when we depart
from the fixed point along one of the four relevant directions. The perturbed
theories are formally defined by the actions

Ai = A(e=7/10) + gi/dQ:r vi(z) 1=1,...,4, (3.6)

where g; can be either positive or negative. Since ¢; and (3 are odd under
spin-reversal transformation, a change of the sign of g; or g3 has no effect on
the spectrum: we will simply write A; or Ajz. In a similar way, ¢, is even
with respect to the spin-reversal transformation, but odd under Kramers—
Wannier duality, hence AJ and A, are dual descriptions of the high- and
low-temperature regimes of the same theory. Only ¢, is even with respect to
both the Z; symmetries of TIM: as a consequence, A; and A} represent two
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A, Af Ay As Af A

nonintegr. integr. integr. integr.  integr. integr.
3 masses E-, E-, kinks massless SuSy kinks
high-temp. low-temp.

Table 3.7: Properties of QFTs obtained by deformation of tricritical Ising
model

physically distinct theories. A quick reference to the main features of these
theories is provided by Table 3.7.

The off-critical behavior of the tricritical Ising model is described in great
detail in Ref. [34, 40], from which I borrow all the following data.

3.2.1 Leading magnetic perturbation

The perturbation by the field ¢; = o breaks all the symmetries of the con-
formal theory. For this deformation, Zamolodchikov’s counting argument
doesn’t suggest integrability, moreover a TCS analysis shows that lines repel
each other in the crossover region [34]: for these reasons we are reasonably
confident that the off-critical behavior is not integrable. Because of the lack
of integrability, a numerical approach like the truncation of conformal space
(to be introduced in the next chapter) is the only source of data about this
theory.
The spectrum contains three stable masses below threshold:

m1 mo = 16(2)m1 msg = 19(8)7711, (37)

where the digit between round brackets is affected by error. The relation be-
tween the fundamental mass and the coupling constant g; has been estimated
to be

my & 3.242. .. g0 (3.8)

3.2.2 Leading energy perturbation

The perturbation by ¢y = € with positive coupling constant drives the system
into its high-temperature phase. The off-critical theory is integrable and
related to the Toda field theory based on the exceptional algebra E;: the
conserved currents have spins

s=1,5,7,9,11,13,17 (mod 18), (3.9)
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my 1 odd
me = 2m4 cos(bm/18) 1.2856... even
mg = 2my cos(m/9) 1.8794... odd
my = 2myq cos(m/18 1.9696... even
ms = 4my cos(w/18) cos(bm/18) 2.5321... even
me = 4my cos(27/9) cos(n/9) 2.8794... odd
my = 4my cos(m/18) cos(m/9) 3.7017... even

— e e S

Table 3.8: Spectrum of the theory A5

(these numbers are the Coxeter exponents of the exceptional algebra E;) and
the spectrum is given in Tab. 3.8. The S-matrix, as well as the particle
masses, is known exactly [41, 42] The relationship between the mass gap and
the coupling constant can be exactly computed [43]:

5/18
- ( 2r(3) )(47r2r(§)F3(%))/ 0l
rre) 33T (3)
= |g2|/°3.7453728362 . . . .

(3.10)

Since this theory is integrable, one can exploit the form factor expansion
in order to compute correlation functions. However, as observed in Ref. [40],
an obstacle occurs that drastically reduces the precision one can achieve by
this technique: the asymptotic factorization argument [32] fails to discrimi-
nate between the form factors of ¢; and those of 3. The one-particle form
factors have therefore to be determined by some independent way, like the
truncation of conformal space to be introduced in the next chapter. The low
degree of precision in the determination of the one-particle form factors is
the main obstacle to the evaluation of the three-particle ones.

3.2.3 Subleading magnetic perturbation

Also the perturbation by the field 3 is integrable [44]. The presence of two
degenerate (and asymmetrical) vacua permits the existence of two massive
kink excitations and one breather bound state, all with the same mass. The
S-matrix is exactly known [45], as well as the relationship between the mass
gap and the coupling constant:

REAONG [Hr
T (5)

= ¢%/°4.92779064 . . . .

ma

?PQ(}—)T/Q e

(3.11)
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3.2.4 Subleading energy perturbation

The deformation by the field ¢, is related to the change in the vacancy den-
sity: if we move in the direction g, > 0, then we are increasing the number
of spins that take values 41, while in the direction g, < 0 the spins taking
value 0 are favored. Both the theories are integrable [46]. The g4 > 0 defor-
mation originates a massless renormalization group flow [47] at the ending
point of which there is the Ising field theory M(4,3). Along this flow, the
conformal dimension of the magnetization operator changes from the value
83—0 to %, while the conformal dimension of the energy operator changes from
15 to 5. The exact massless S-matrix [48] and form factors [49] for the theory
Aj are available. If g, < 0, on the other hand, the corresponding Landau—
Ginzburg potential is threefold degenerate: the elementary excitations are
massive kinks [46]. The scattering theory is considered in Ref. [50].
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Chapter 4

Finite size effects

In this chapter two ingredients of the truncation of conformal space recipe, to
be treated in the next chapter, are introduced: the Hamiltonian formalism of
CFT and the dependence of the Hamiltonian’s ground state on the compact
dimension of the cylinder where the theory is defined.

4.1 Transfer matrix and Hamiltonian formal-
i1Ism

In order to motivate the introduction of Hamiltonian formalism in conformal
field theory, let us take one step back to the lattice definition of a statistical
spin system like the Ising or the Blume-Emery-Griffiths models defined in
Sec. 1.1. To focus the ideas, let us consider the case of the Ising model defined
on a square lattice of lattice spacing ¢, with M rows and N columns. Any
spin variable is identified by a pair of integers: s,,,. Moreover, let us fix
periodic boundary conditions spry1, = S1, and sp, N11 = Sp,1. With such
boundary conditions, the model is defined over a torus of dimensions R = N/
and L = M/{. An efficent way to compute the partition function is splitting
the configuration energy Eq. (1.1) into a term that represents the energy of
the m-th row

N N
EXY = —JZ SmnSmn+l — HZ Smn s (4.1)
n=1 n=1
and a term that accounts for the interaction amongst different rows
N
E;;L‘fmﬂ = —JZ SmnSm+1m (4.2)
n=1
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so that the total energy associated to a given spin configuration is

M
By =Y (BX"+ER ). (4.3)
m=1

Let us associate to the configuration of spins in the m-th row a ket symbol

) = {Sm,15 Sm2s -+ > SmN } - (4.4)

In the 2"¥-dimensional vector space of row configurations, the transfer matrix
is formally defined by giving its matrix elements:

int 1 row 1 row
<:U'm|7-‘ru’m+1> = €xXp |:_B <E ;m—+1 + 2Em 2Em—|—1>:| ) (45)

in such a way that the partition function Eq. (1.2) takes the following simple
form:

Z = Z (pa | T \p2) iz | T\ ps) - - - Cpona | T | 1)

A5y “M
2N —1 (4.6)
=Te7T" =) AY
k=0

The last equation is justified by the fact that the transfer matrix is manifestly
symmetric, and therefore diagonalizable. The behavior of the free energy per
spin, defined in Eq. (1.3), is dominated by the largest eigenvalues of T

1 M M
~BF = lim (A A 4 )

1 M
= Jlim o [In(AY) + In(1 + (A1 /A0) +...)] (4.7)

. 1 Ao
:M}I{fgw{ﬁlnAo—l— MNexp( MlnA—l) +. } ,
WhereA0>A1>A2>....

If we identify a row with the ‘space’ and the transverse direction with the
‘time’, we can interpret the transfer matrix as an evolution operator

T =exp (—KPAIR) , (4.8)

where Hp, is the Hamiltonian operator on the circumference. The eigenvalues
of T are equivalent to the energy levels Ex(R) of Hg,
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By using Eq. (4.9) in Eq. (4.7) we find for the free energy density

BF _ . [Eo(R) 1
L,R—00

2 R RL

. Ey(R)
= jim —p—

exp{—L[E\(R) — Ey(R)]} + - .. } w0
4.10

A suitable Hamiltonian for studying the free energy of the tricritical Ising
model will be shown in Sec. 5.1.

4.2 Thermodynamic Bethe Ansatz

We have already seen in Sec. 2.3 some powerful tools that can be applied only
to the study of integrable field theories. Another technique for getting non-
perturbative results goes under the name of thermodynamic Bethe Ansatz. It
was introduced by Alexei Zamolodchikov [51] as a relativistic generalization
of a method originally employed by Yang [52].

The basic idea is quite simple: put a N -particle system on a circle of
length L. The particles may belong to different species, labelled by the index
a. We assign the label ¢ = 1 to the particle species characterized by the
lowest mass. When particles are far apart, that is |z;, — x;,,,| > 1/my, the
state of the system can be described by the wave function

N

@b(%,xiz, cee axi,'\/) = Hexp(ipikxik) ) (4'11)
k=1

where relativistic effects are neglected and an ordering of the particles ac-
cording to their coordinates is assumed:

Ty < Ly - K Lipr - (4.12)

If the theory is integrable, then the only effect of interaction can be an
interchanging of two particle positions accompanied by a phase-shift:

Sab(Ha — 0(,) = exp(iaab(ﬁa — Ob)) . (413)

For the diagonal S-matrix, the unitarity' condition implies SZ,(0) = 1.
If S,0(0) = —1, then the wave function should be antisymmetric under the
exchange of two particles with the same rapidity: this is not compatible with

LThis is the unitarity of the S-matrix, not to be confused with the unitarity of the
conformal field theory.
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the Bose statistics, hence we have a selection rule saying that each value
of rapidity can be occupied by at most one particle. This rule is obviously
absent if the particles are fermions. If S,,(0) = 1, then the exclusion rule
applies to fermions but not to bosons. In the context of thermodynamic
Bethe Ansatz, we will distinguish a ‘fermionic’ and a ‘bosonic’ behavior by
the presence or absence, respectively, of a selection rule on the rapidities:
this depends not only on the particles, but also on the S-matrix.

By imposing periodic or anti-periodic boundary conditions for the wave
function of bosons or fermions, respectively, one gets the following quantiza-
tion rule for the momenta:

exp(ip;L) [ [ S(6; — 0;) = +1 (4.14)
J#i
or equivalently
mZL sinh 0, + Z 7 (91 — GJ) = 27T7’Li y (415)
J#i

where the numbers 7 runs from 1 to N and n; is integer for bosons and
semi-integer for fermions.

While solving the system Eq. (4.14) is hopeless, it turns out that its
thermodynamic limit can be indeed managed. In the thermodynamic limit,
both L and all NV, go to infinity in such a way that the densities N,/L
remain finite. The density of particles of species A, with rapidity between 6
and 6+ A# is indicated by p((f (6). The energy density? can hence be written

Erlp. = Z/ dfp\") (0)m cosh 6, (4.16)

while the Bethe Ansatz equations Eq. (4.15) become
(a)

) a . 2mn,
Mg sinh 61 +Zb:(aa,, xp")(0) = T (4.17)
where the convolution is defined in the usual way
> df S
(fxg)0)= [ 5 f(0-0)g(0). (4.18)

The integer numbers nga) in Eq. 4.16 identify all the physically accessible
levels: some of them, described by the density p((f), are actually occupied

2This energy density is denoted by Er, in order to distinguish it from the energy Eg
defined in the previous section. On the cylinder they correspond to identifying the space
with the non-compact or the compact dimensions, respectively.
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(the corresponding rapidities 0 are called roots of species a), other are free
(holes), and their density is denoted by pa . Obviously,

pa(0) = o) + p{ . (4.19)

By differentiating Eq. (4.17) with respect to 0, we get

pa(B) = —cosh9+z o, (0) % o) (8) (4.20)

where the prime denotes derivation with respect to §. Remember that o(0) is
proportional to the logarithm of the S-matrix (Eq. (4.13)), hence its explicit
expression can be worked out for an integrable theory.

In the thermodynamic limit, to every pair of densities p{"” (6) and p,(6)
correspond a large number of states, whose exact expression depends on the
statistics of the particles:

Q, = [pa(g)LAg]' (4.21)
[0 (6) LABN i (9) LA

in the ‘fermionic’ case, and

o _ [pa(0)LAY + o (O)LAG — 1)) (429
[0a(8)LAG — 1)1 (9) LAG)!

in the ‘bosonic’ one. From these expressions one can estimate the entropy
per unit length
=In([[9), (4.23)
a
and therefore the free energy

Lflp,p] = Bolo®] ~ 281p, 0] (4.24)

To solve the thermodynamics means to minimize the free energy with respect
to p and p("), with the constraint Eq. (4.20). Note that, since we are inter-
preting the compact dimension as time, the inverse radius of the cylinder
plays the role of the temperature. The explicit form of the entropy is

p, ] = Z/ df [pa In Pa — ) In 1051 ) _ (pa _ p((lr)) ln(pa _ pgr))] (425)
in the ‘fermionic’ case and

Slp, p‘”]—Z/ d0 [(pa+ p{) In(pa + o) = paln pa — p In p{7)] (4.26)
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in the ‘bosonic’ one. By using these expression in Eq. (4.24), we can minimize
the free energy obtaining

_
maReosh(9) =In 222 5™ (o, x 1 —2 ) (0). (4.27)
(r) @ NG
Pa b Po — Py
This equation is usually written in terms of the pseudo-energies ¢,(6) defined
by
(0
exp(eq(0)) £ 1 = ’ZT)( ) (4.28)
pa”(0)
and of the dimensionless quantities
L,(0) = £1n[1 + exp(—&4())], (4.29)

where the upper signum is for ‘fermionic’ case and the lower for ‘bosonic’
one. The final form of the TBA equations is

MR cosh 0 = e,(0) + Y (ohy * Lu)(0), (4.30)

where m, = m,/m;.
I spent some pages in the details of the derivation of the TBA equations
because they give a way to exactly evaluate the bulk free energy:

FR) = ——— S, / " L (0) cosh 06 (4.31)

o0
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Chapter 5

Truncation of conformal space

The truncation of conformal space approach has been invented by Yurov and
Alexei Zamolodchikov [53]. It is an approximate method that gives numerical
access to the spectrum of two-dimensional off-critical theories arising from
deformation of minimal models as in Eq. (2.31). Unlike the methods reviewed
in Sec. 2.3, however, the TCS works equally well for integrable and non-
integrable deformations.

5.1 Conformal field theory on a cylinder

Let u,v be Cartesian coordinates on the cylinder: —oo < u < 400, while
0 < v < R. We can save notation by grouping them into the complex
coordinate w = u + ¢v. The cylinder can now be conformally mapped onto
the plane by means of the transformation

2
w— z = Rexp (%z) , (5.1)

that is a shorthand for
27 ) 2T
(u,v) = (z,y) = <Rcosvexp (Eu) , Rsinvexp (Eu)) , (5.2)

where z = x 4+ iy. On the z-plane — indeed, on the Riemann sphere — the
time evolution is radial, with z = 0 representing the far past and the point
at infinity standing for the far future. This particular choice of the time
direction leads to the so-called radial quantization of 2-D conformal field
theory.
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The holomorphic component 7'(w) = —27T,,, of the energy-momentum
tensor under conformal transformations is changed according to the law [21]

T(w) — T'(2) = (%’f})_ T(w) + %{w;z}, (5.3)

where the Schwarzian derivative is defined by

(BPw/dz?) 3 ((dZw/dz2))2 |

~ 2\ (dw/dz)

{w; 2} = (dw/dz) "2 (5.4)

The energy momentum tensor on the cylinder and that on the plane are thus
related by the condition:

Top, (1) = (%”) {210 - 5. 55)

The vacuum energy density of a conformal theory vanishes on the plane,
(2%Ty1.(2)) = 0, as a result of the expansion (2.10) and of the vacuum defini-
tion (2.22). It should be so, as the conformal theory is massless and doesn’t
possess any natural scale. On the cylinder, however, the compactification
radius provides an obvious (inverse) mass unit, and the vacuum expectation
value of the energy momentum tensor is non-zero:

7T2

(T () = —cgs. 5.6

The central charge is therefore interpreted as a Casimir energy [54, 55]: the
shift in the vacuum energy density caused by the finite size of the cylinder.
Actually, the last equation is correct only for unitary minimal models:
the vacuum as defined in Eq. (2.22) is not the lowest energy state if the
theory contains operators with negative conformal dimensions. Indeed, for
any highest-weight vector |h) defined in Egs. (2.12) and (2.13), we have

(h|Z°T(2)|h) = (h] > 2 "Lnlh) = h. (5.7)

neEZ

In writing the first equality we used the mode expansion (2.10), while the
second equality assumes (h|h) = 1. The expectation value (2T (z)) =
(0|2°T(2)|0) must be fixed equal to hpy;y,, that is the lowest conformal weight
of the Kac table (0 if the theory is unitary, negative otherwise). The cen-
tral charge must therefore be replaced by the effective central charge ¢ =
¢ — 24hyi,- For any minimal model the central charge is positive and lesser
than 1.
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In the framework of radial quantization, the time translation on the plane
is just a scale transformation, so its generator is —20, — z05, that corresponds
to Lo + Ly. The transfer matrix on the torus Eq. (4.8) is therefore written

2 -
T = exp (_%(LO —+ LO — 0/12)) y (58)
so that the partition function Eq. (4.6) reads
L —
Z=TcT" =Trexp (—QWE(LO + Ly — c/l2)> : (5.9)

In the last two formulas, the Hamiltonian is normalized in such a way that
the free energy per unit area vanishes in the bulk.

Let us now consider the R-dependence of the free energy. We have to scale
the compact dimension R — R(1+¢) and see the effect of such a rescaling on
the free energy, by means of the definition Eq. (A.6) of the energy-momentum
tensor:

1
W= /du dv /19169, (T") . (5.10)
The variation of the radius is realized by means of the coordinate transfor-
mation
w—uw—w—w=(14e€)(w— ) (5.11)
w+w—ow -+ =w+w. (5.12)

Note that this is not a conformal transformation. The variation of the metric

1S
€ 1 -1

hence about the connected functional we find

W=~ [ dwdo/igl§ (@) + ()

_ OR e

In order to perform the integration it is convenient to convert to real
variables u,v: the integration in v gives a factor R, while the integral in
u is exploited to define a free energy per unit length of the cylinder f =
limy, 0o W/L:

(5.14)

me
0f = —90 1
f = Z50R, (5.15)
that after integration yields
me
R)=——. 5.16
FR)=-22 (5.16)
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5.2 Off-critical theory on a cylinder

We have yet analyzed what happens to the conformal theory when put on a
cylinder. Now we study the effect of deforming the CFT by means of one of
its relevant scalar operators ;. If we assume that the coupling is small, we
can adopt a perturbative viewpoint and let the modified Hamiltonian act on
the unperturbed (conformal) Hilbert space. The perturbed Hamiltonian is

H,=Hy+V;, (5.17)
where Hj is the conformal Hamiltonian on the cylinder
- 2m - c
Hy="7 (Lo+ILo— ) 1
0= 5 (o + Lo 12) (5.18)
and the interaction is formally defined by
R 2h;
N 2 ¢
Vi = gi/ dv (—W) vi(u,v). (5.19)
0 R
Since we choose ¢; to be scalar, the momentum operator on the cylinder
~ 2 _
K= %(LO — L) (5.20)

is preserved by the Hamiltonian evolution.
The matrix elements of V; between conformal states can be reduced to
the evaluation of three-point functions on the plane:

R
(0ilVilor) = 5 (©lei(0,0)|0r)K; k; - (5.21)

2
As we have already seen in Sec. (2.2.1), the Hilbert space is organized in

Verma modules. Once the matrix elements of V; between primary states are
known, any other element is evaluated by means of the relations

[Ln — Lo, ¢;(0)] = nhyp;(0) (5.22)
[La = Lo, 9;(0)] = nhe;(0). (5.23)

The matrix elements between primary fields are just the structure constants
of the operator algebra

o 2h
@lele) = () Copun (5.24

These structure constants for minimal models are calculated in general form
in Ref. [36, 37]. Table 3.3 gives the structure constants for the tricritical
Ising model.
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5.3 Truncated Hamiltonian

The Hamiltonian acting on the Hilbert space is of course infinite dimensional;
we need to truncate the conformal space if we want to be able to compute
anything. In my thesis the truncation is performed by discarding the states
of level 6 or more in each Verma module. For the tricritical Ising model,
this amounts to keep 228 states. The suitable truncated basis of the Hilbert
space and the matrix elements of H, and V; have been computed by means
of a program for Mathematica written by Lissig and Mussardo [56]. The
numerical diagonalization of the Hamiltonians was performed by the NAG
routines of Maple.

This is a good place to say something about the precision of this approach.
There is no theoretical control over the error introduced by the truncation.
In Ref. [3], the ground state energy for fixed R was evaluated at different
truncation levels [ and then axtrapolated to [ — oo by fitting the formula

EY(R) = so(R) + s1(R)I7*2®) . (5.25)

Although this procedure worked well in their case, it must be remarked that
this formula lacks theoretical justification. However, the high precision of
Fonseca and Zamolodchikov’s numerical estimates is due above all to the
fact that, dealing with the Ising model, they can exploit the free fermion
basis, so that one of the two conformal perturbations is treated exactly (see
Eq. (1.17)). This lucky accident is a peculiarity of the Ising model. Since I
could not have reached such high precision anyway, I rather focused on the
objective of gaining a qualitative understanding of the analytic structure of
the free energy.

A typical spectrum obtained by TCS is given in Fig. (5.1). The first
12 levels of the theory Aj (defined in Sec. 3.2) are plotted against r =
R|g2|°/°/(27). The lowest lines correspond to the ground state Ej, and the
four lowest masses. Note how above the threshold £ = 2m; we can find level
crossings, signal of the integrability of the theory. In order to give an idea
of the errors associated to this method, we can compare the exact masses of
Tab. 3.8 with the energy differences AE; = F; — Ey, as in Fig. 5.2. It is quite
evident that the TCS works better for the lowest masses. Another feature of
TCS well exemplified by Fig. 5.2 is the existence of a physical window: we
are interested in infrared data, that is in the limit » — 0o, but as r increases,
the truncation effects become more and more relevant.

The best precision, of course, is achieved when studying the ground state.
In this case, the standard method to choose the physical window is to look
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Figure 5.1: Spectrum of the theory AJ: the first 12 levels.
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Figure 5.2: Spectrum of the theory AJ: the black lines are the exact masses,

the colored ones are energy levels differences AF; = E; — Ey as computed by
TCS.
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at the effective scaling exponent of the ground state energy:

RdE

The physical window is characterized by a ~ 1. For excited levels, « is not
a good indicator because it diverges when E = 0. I found it convenient to
look at the effective scaling exponent of the differences:

o = i db
 E—EydR’

(5.27)

selecting the physical window in the region where o/ ~ 0.
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Chapter 6

Free energy of TIM

This chapter collects the results of my research about the free energy of
the tricritical Ising model. After introducing my notations in the first sec-
tion, I discuss the analytic structure of the theory simultaneously deformed
by the leading magnetic and thermic perturbations (the case more similar
to the Ising field theory) in Secs. 6.2 and 6.3. The effect of turning on
the sub-leading energy perturbation is treated in Sec. 6.4. Some interesting
byproducts of my numerical data are collected in the last section.

6.1 Conventions

In this thesis I am concerned with the quantum field theory formally defined
on a cylinder of circumference R by the action

4 o0 R
Algi, 92, 93, 94] = Ae=7/10) + Zgz/ du/ dv ;i(u,v), (6.1)
i=1 —o0 0

where the fields ¢;(u, v) are defined in Tab. 3.2. I will outline location and
nature of the singularities of the free energy by considering two- or three-
dimensional slices of the total four-dimensional parameter space. When con-
sidering such a slice, I will write explicitly only those couplings that are
different by 0: for instance,

A[gla 92, 0) 0] = A[gla 92] . (62)

Sometimes it is important to stress that, say, g, is negative or g; is imaginary.
In such occasions, |g;| is denoted by the appropriate one among the following
symbols:

h=lg| T = |gs| h = |gs] X = [g4]- (6.3)
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To give an example, A[—7,ih'] means Algs, g3] with g, real and negative, g3
purely imaginary with positive imaginary part.
The same convention applies to the correspondent Hamiltonian:

Hlg1, g2, 93, 94] :]fjo_i_igi/ORdv@(u,v), (6.4)
i=1
where the hat indicates quantities defined on the cylinder:
Hy = % (LO Ly %) (6.5)
;= %T . ©i - (6.6)

Several dimensionless ratios between the coupling constants are used in
this chapter: I think it is useful to collect all the definitions here for a quick
reference:

g1 ’ g2

= Iga|T7/72 nm= g2/ (6.7)
r 94 )
o |91\32/77 n= 9172/77 (6'8)

Throughout this chapter, I assume g¢o,g4 € R: it is sensible to study the
analytic properties of the free energy in complex temperature [57, 58] or
chemical potential, but I don’t want to enter this problem now. The magnetic
field ¢; is assumed to be real in the next section, and complex in Sec. 6.3. It
would have been equally interesting to study the analyticity in the subleading
magnetic field g3, but since hy = 7/16, the ultraviolet divergences quickly
spoils the TCS of any attendibility, at least as far as the evaluation of the
ground state is concerned.

6.2 Free energy of Algy, go]: real couplings

We will in this section begin the systematic exploration of the analytic prop-
erties of the free energy. The Hamiltonian H gy, go] appears to be the best
starting point for at least two reasons: first, the TCS produces the most
accurate results when the most relevant perturbations are present; more-
over, the affinity with the Ising field theory can provide a valuable source of
inspiration. Let us then consider the doubly deformed Hamiltonian

R\ 77/40 R\
Hy+27mg { — Vi+27mgy | — Vs
2T 2T
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- (6.9)

H[gla 92] =




We assume g, # 0 and fix |g,|*/° as the mass unit of measure. Then we

introduce dimensionless Hamiltonian s = H/|g,|?/° and cylinder radius
r = R|gy|>°/(27), so that we can write

1
H(§) = — [Ho+ 2m&r™ OV, £ 2PV (6.10)

where the signum is plus in the high-temperature regime g, > 0 and minus
in the low-temperature one go < 0, while ¢ is defined by Eq. (6.7), with ¢;
real.

The free energy density, that can be extracted from the behavior of the
ground state of the Hamiltonian (6.9) by means of the relation (4.10), having
dimensionality of a squared mass, can be written

F(g1,92) = 92| (& + F(9)), (6.11)

where & is exactly known [43]

o sin(27/9) )
60 =~ Sein(n/3)sin(or /o) 2 22199988 .
U CTL) N PANCTL), (F(4/5)>3 / -

I'(2/3)['(5/9) r'(3/5) \I'(1/5) ;

and F (&) is the dimensionless free energy density.

For practical and conceptual reasons, it is convenient to split the space
of couplings into high- and low-temperature sectors and treat them sepa-
rately. In the region g, > 0, indeed, the keywords are distribution of zeros
of partition function and Yang—Lee (in fact, Yang—Lee-like) edge singularity,
while for g5 < 0 the relevant physical ideas are metastable vacuum decay and
spinoidal singularity. These two regimes, however, are deeply related, and
we will show how one can make full use of this relationship.

In the high-temperature regime, Fnign(§) is even: Fignh(§) = Fhign(—E),
as a consequence of the Z, spin-reversal symmetry. No phase transition
is present for g, > 0, hence we can expand F around ¢ = 0 writing the
convergent series

Frigh(§) = Fol® + Ful* + Fel + ... . (6.13)

The coefficient F; is proportional to the high-temperature susceptibility at
h = 0 that can be estimated either by integrating the two-spin correlation
function

/d% < p1(z)p1(0) >, (6.14)

44



or by using the TCS. My best estimate, obtained by fitting the TCS spectra
for different values of &, is

r2r
Fy= —% = —0.046(9), (6.15)

where the notation I} for the susceptibility is borrowed from Ref. [40]. As
far as I know, no data about higher order coefficients is available at the
moment. In principle, one could use form factor expansion of the four-spin
correlation function in order to determine Fj, like the authors of Ref. [59]
did for the Ising model, but no attempt has been done of computing three-
particle form factors for the tricritical Ising’ model.

In the low-temperature regime, if one tries to smoothly vary the magnetic
field from a positive value to a negative one, at £ = 0 one has residual
magnetization which does not disappear immediately as £ becomes negative.
The system enters a metastable phase in & = 0, where a weak singularity is
predicted by Langer theory. The spin-reversal symmetry being spontaneously
broken, the function Fjoy(€) is not even: its asymptotic expansion reads

Fiow(€) = Fié + Fof? + T+ ... (6.16)

The first coefficient F; is the spontaneous magnetization at g; = 0: it can
be exactly evaluated [60]

Fi=—Bp, = —1.59427. ... (6.17)

Again, the conventions of Ref. [40] are assumed. The second coefficient Fy is
related to the low-temperature susceptibility I'?;. My estimate (see Tab. 6.1
for a comparison with results obtained by means of other approaches) is

~ |
Fy = —% = —0.011(8). (6.18)

No other term is available at the moment. Also in this case, the determina-
tion of further coefficients requires the computation of multi-spin correlation
functions.

I The main obstacle is that the error associated to the one- and two-particle form factors
propagate while solving the system of linear equations needed to build the three-particle
ones. While for the Ising case one can determine the lowest form factors with the desired
precision, this is not possible for TIM [40].
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6.3 Free energy of Algi, go]: complex magnetic
field

In this section we analytically continue the magnetic field g; (and therefore
€) to complex values. The Hamiltonian to be diagonalized is still given by
Eq. (6.10), but its eigenvalues are in general complex numbers. For the
Yang-Lee theorem, we expect the free energy F(£) to be analytic in some
neighborhood of £ = 0 in the high-temperature plane; in the low-temperature
plane, if the analytic continuation starts from the positive real axis, we expect
analyticity at least in the right half-plane. It is useful to keep in mind, for
a comparison, the results of Fonseca—Zamolodchikov’s analysis of the Ising
model, summarized in Figs. (1.3) and (1.5).

6.3.1 High-temperature regime

The first problem to solve is to determine the convergence radius of the ex-
pansion Eq. (6.13), that amounts to locate the essential singularities created
by the accumulation of zeros of the partition function. The distribution of
Yang-Lee zeros in the Blume-Capel model has been studied for the first time
by Suzuki [61] (see also [62, 63]). He proved that all the poles of the free
energy are located on the imaginary axis of the complex H-plane, just like
in the Ising model, provided that SA < In2, that is, loosely speaking, if the
dilute Ising model is not too dilute. For SA > In2, the zeros lie on arcs
that can possibly have no intersection at all with the imaginary axis [64, 65].
In the mean-field approximation, the tricritical point Eq. (1.7) is charac-
terized by 5;A; = 21n 2, hence should be out of the region where Suzuki’s
result is valid. However, the mean-field approximation should not be taken
too seriously in two dimensions, so we have better to guess the position of
the singularities of the free energy by carefully inspecting the TCS results
without prejudices.

If we look back at the Hamiltonian (6.9), we easily realize that £ is not
the only dimensionless ratio between couplings we can define. Indeed, we can
decide to measure the masses in units of |g;|*/"", so that instead of Eq. (6.10)
we get

1

’H;rg (o0 (1 " = = Hy + 2metarelon) /77/40y, + 27n'r /5y, , (6.19)
where
o 92
n= g (6.20)
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Note that with this definition 7’ is always real, even for complex g;. Moreover,
in this variable the high- and low-temperature regimes are analyzed together.
The spectrum obtained by diagonalizing the Hamiltonian (6.19) is obviously
related to the one extracted from Eq. (6.10) by means of the relations

E = En’5/9 r= T'n'5/9 )

(6.21)
The spectrum of the Hamiltonian H g1, go] can thus be studied in terms of £
in the region where |g;| is small, while 7' provides access to the spectrum for
large values of |g;|: by combining the two approaches one can be confident
of not missing relevant phenomena.

Inspired by the Ising case, I looked for the presence of singularities on the
imaginary axis of the £ plane (arg(g;) = 7/2). Figure 6.1 shows the real part
of the three lowest levels of the spectrum of A/ /o for different values of n.
Few explanations are in order here. The analytic continuation of £ to complex
values does not spoil the spin-reversal symmetry, hence the spectrum is still
invariant for the transformation & — —&. When £ is purely imaginary, we
have —§ = £* so the Zs symmetry becomes invariance of the spectrum under
complex conjugation. Therefore the eigenvalues of H /o Must be real, or
come in complex conjugate pairs. It is easy to distinguish the region ' > 7.,
where (for values of R within the physical window) the ground state is real
while the second and third levels form a complex conjugate pair, from the
region 7’ < 7., where the ground state is complex and the third level is real.
The critical value is 0.0419 < 7. < 0.0420. One can check that # (&) shows
the same transition for

29.67i < & < 29.747. (6.22)

Since a careful inspection gives no other singular point (except, of course,
the complex conjugate of &), we can cut the high-temperature £ plane just
in the same fashion of the Ising model (see Fig. 6.3(b)).

Which non-unitary minimal model is related to the edge singularity that
arises in TIM? To my knowledge, the only published paper about this in-
teresting question was authored by von Gehlen [66], who applied finite-size-
scaling methods to a quantum chain which can be defined starting from a
strongly anisotropic Blume-Emery-Griffiths model [67]. At the end of his
analysis, von Gehlen claimed that his data “strongly hint” that the relevant
conformal field theory is the minimal model M(7,2). In principle, TCS gives
direct access to the effective central charge through the relation, valid at the
critical point,

e 1
Ey(R) = FoR — 6R + O <ﬁ) (6.23)
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(more terms can be found in Ref. [3]). In point of fact, a great precision is
needed in order to properly evaluate the subleading behavior of the ground
state energy. At level 5 of truncation, it is not even possible to discriminate
between ¢ = 17/20 as in M(8,5) and the value é = 4/7 characteristic of
M(7,2), let alone the small difference separating the latter and ¢ = 3/5
related to the third candidate M(5,3). As the direct way fails, one can try
to generalize the arguments leading to the identification of the Yang-Lee
edge singularity arising in the Ising model. This smart way too meet some
interesting difficulties. A report of my (unsuccessful) attempt may be found
in App. B.

6.3.2 Low-temperature regime

The functions Frign(§) and Fiew(£) are obviously related one to another. We
already introduced with Eq. (6.20) a variable which describes both the high-
and low-temperature sectors. However, 1’ is a real variable: in order to
connect the analytic structure of the high- and low-temperature & planes we
need a variable which is analytically related to £. It is sufficient to change
the definition of 7’ by removing the modulus in the denominator:

_ 9
n= 72/77 "
91

(6.24)

Now we have a complex variable suitable for describing both the temperature
regimes, and analytically related to &:

1
n= im : (6.25)
where the signum is ‘+’ for the high-temperature sector and ‘-’ for the low-
temperature one.

The 7 plane is graphically represented in Fig. 6.3(c). The right half-plane
of the high-temperature &-plane is mapped by Eq. (6.25) into the corner
— 87 < arg(n) < L, while the image of the right half-plane of the low-
temperature &-plane is the region —?7’—$7r < arg(—n) < %W. The Yang—Lee-
like branching points are mapped into the points n = Y, exp(+i2n), where
Y, = 1/|£.|™/™. From the Fig. 6.3(c) it is evident what we can expect when,
in the low-temperature &-plane, we move from the real positive axis: we have
clear way (that is, the free energy can be safely analytically continued) until
we reach the imaginary axis, where we meet a branch cut that is just what in
the high-temperature £-plane appears as the Yang-Lee-like branch cut (see
Fig. 6.2).
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Figure 6.1: Spectrum of #! /2(7)’ ): real parts of the three lowest eigenvalues.
When two lines overlap because they are forming a conjugate pair, only the
color of the lowest one is showed. The critical value is 0.0419 < 7. < 0.0420.
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Figure 6.2: Spectrum of H_(&): real parts of the three lowest eigenvalues. As
¢ is rotated into the complex plane, the ground state and the false vacuum
line get close, until they eventually form a complex conjugate pair when &

reaches the imaginary axis.
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Indeed, the spectra obtained by means of TCS show that the exponential
splitting amongst the first two levels, that is the effect of the non-zero am-
plitude of tunnelling between the two degenerate vacua, is removed as soon
as an imaginary magnetic field, however small, is turned on. So the ground
state is complex for any imaginary £&. The TCS permits also to determine the
nature of the branch cut: it is sufficient to examine the imaginary part of the
ground state to realize that the values of the free energy on opposite edges
of the cut are complex conjugate. This is exactly the behavior we expect
on the ground of the critical droplets calculations of the metastable vacuum
decay [68, 69].

The position of the singularities has physical meaning, but cutting the
plane is a matter of conventions; in particular, we can, following Fonseca and
Zamolodchikov, draw a cut passing through zero in the high-temperature
& plane, so that in the n plane we have cleared the way for going into the
low temperature sector while remaining close to the real axis, where F(n) is
analytic. On the low-temperature £ plane, this operation removes the branch
cut along the imaginary axis, and we can extend the analytic continuation
into the left half-plane. Note however an interesting difference with respect
to the Ising case: we cannot expect to be able to continue the free energy
until we reach the negative real axis. Due to the larger angle of rotation
(determined by the conformal dimensions of the operators involved), we meet
the edge singularities at the points & = [£.|eT"™/72 where || ~ 29.7.

For the Ising free energy, one knows where the spinoidal point and the
Yang-Lee edge singularities are: the extended analiticity conjecture fills the
gap in between in the 7 plane (see Fig. 4 in Ref. [3]) so that we can state
they are the same singularity. Here, we have no ‘shadow domain’ to make
conjectures upon, the fact that the branching points we meet in the low-
temperature left half-plane are precisely the edge singularities is granted,
what we lack is an interpretation for these points in the context of the low-
temperature physics. It is very appealing to identify them with a pair of
complex conjugate spinoidal points: also the position, with that little nega-
tive real part, conjures in suggesting the picture of the tricritical counterpart
of the spinoidal point on the real axis of the Ising model splitted in two after
somehow being given an imaginary part.

6.4 Free energy of Algy, 9o, 94]
Once the analytic structure is revealed in the g3 = g, = 0 plane, we can try

to explore what happens if one turns on a small perturbation in the chemical
potential. Due to the fact that hy = 3/5 is well above the critical value 1/2
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for the appearance of ultraviolet divergences, the TCS can probe only a small
region around g, = 0. What emerges neatly is the fact that increasing g, the
Lee—Yang-like branch points get closer to the real axis. Actually, this agrees
with the overall picture I presented so far. Let us see why.

The theory A] describes the massless flow between the tricritical and
the usual Ising model. From lattice viewpoint, this is related to the fact
that if in the Blume—Capel model we send A — —oo, then the spin-0 mode
is decoupled and we recover the Ising model. Along this renormalization
group flow, the conformal dimension of the magnetic field changes from 3/80
to 1/16 while the conformal dimension of the thermal perturbation evolves
from 1/10 to 1/2. Hence the dimensionless ratio & = g1/|g2|7"/™ is turned into
its Ising counterpart &nvy = g1/]g2/**/8. This implies that the critical values
of ¢ identifying the position of the edge singularity are comparable, therefore
I expect that along the flow generated by g4 > 0 the value |£| ~ 29.7 is
lowered up to || &~ 0.0060335(7) that is the position of the edge singularity
in the Ising model [3]. By the same token, I expect that as g4 — —oo the
edge singularities are moved more and more far from the real axis, since if I
remove the values £1, no phase transition is possible.

Of course, I cannot claim that the observed behavior, within a range
—0.01 < ¢’ < 0.01 (¢’ is defined by Eq. (6.8)) is a proof of whatsoever: the
best I can say is that it is a step in the expected direction.

6.5 Amplitudes and RG flows

An extensive study about the universal amplitude ratios for the tricritical
Ising model in two dimensions has been recently performed by Fioravanti,
Mussardo, and Simon [40]. In their paper, the truncation of conformal space
is applied to the theories defined by the perturbed actions

.AZ' = .A(c:7/10) -+ g; / dzx QDZ(QI) 1= 1, ceey 4. (626)

Since they use the eigenvectors of the truncated Hamiltonian to determine
the vacuum expectation values of the primary fields [70], the authors of
Ref. [40] are able to evaluate the susceptibilities without introducing a second
perturbation. In my study of the free energy, I computed some of these
susceptibilities by means of the doubly perturbed Hamiltonians

Aij = Ae=7/10) + 9i / &z 0i(z) + g; / d*z pj(z), (6.27)

thus obtaining as a byproduct an internal consistency check of the TCS
approach. The amplitudes I computed are collected in table 6.1 together
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Figure 6.3: The branch cuts of the theory A[g, go]. The high-temperature
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right half-plane is mapped into the corner —Zm < arg(n) < =, while
the low-temperature right half-plane is mapped into the region —%ﬂ' <

arg(—n) < L.
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Figure 6.4: A different convention for the branch cuts of the theory A[g;, gs].
Rotating the cuts permits to analytically continue the definition of the free
energy to the left low-temperature ¢ half-plane, but it is impossible to reach
the real negative axis as happens in Ising.
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Amplitude Integration* TCS'*  TCS? Exact

rzr 0.093(9)  0.093(7) 0.093(8)
r2 0.026(2)  0.026(7) 0.023(7)
By 1.59(0) 1.594(7) 1.59427...
By, 1.35(6)  1.33(5)
Bss, 2.3(8)  2.5(3)  2.45205...
By 3.(4) 3.(4)  3.70708...

* Values taken from Ref. [40].

Table 6.1: Amplitudes related to the measure of the free
energy

with the results coming from integration of the correlation function and TCS
applied to the theory Eq. 6.26.

Another interesting possibility offered by the TCS applied on doubly per-
turbed conformal theories is to follow the renormalization group flow from
one theory to another, as illustrated in Fig. 6.5. By turning on a magnetic
field ¢4, it is possible to see the four particles under threshold of the the-
ory Aj as they gradually become the three particles of the spectrum of A;.
Around the point & = 0.8 the mass m, disappears as it goes above the thresh-
old. Note that for all the levels the leading mass correction is quadratic in the
magnetic field: this is not surprising, since the linear correction to the mass
is related to the two-particle form factor [71] of the field ¢, that vanishes for
symmetry reasons. Another effect of the spin-reversal symmetry is evident
in the different sign that the leading correction has depending on the mass
being even or odd. The ratio between the leading corrections to the masses
my and my is a universal quantity

5m2
e 0.685(8) (6.28)
which would not be easily computed in form factor approach since it involves
three-particles form factors. The other two universal ratios
oms omy

S = 66(4) S = —52(6) (6.29)

are one order of magnitude less precise.
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Figure 6.5: Mass spectrum evolution: from AJ to A;. The black line is the
threshold 2m;. The four coloured lines represents the stable masses.
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Chapter 7

Conclusions

In the spirit of a recent paper by Fonseca and Zamolodchikov [3], I have
studied the analytic properties of the free energy of the tricritical Ising model.
This minimal model of conformal field theory is characterized by four relevant
primary operators, that can be interpreted as a leading and a subleading
magnetic fields, a thermal and a chemical potential perturbations.

The main technical tool of my research is the truncation of conformal
space, an approximate technique that gives access to the spectrum of the
perturbed conformal field theory put on a cylinder. Such a numerical method
is the only way we know to get nonperturbative data about nonintegrable field
theories. The main limitation of TCS is its bad performance when dealing
with perturbations originated by relevant fields whose conformal dimension
is near to or greater than 1/2. This failure is inherent to the approach, so
we cannot expect to be able to probe by means of it the behavior of the free
energy far from the plane g3 = g4 = 0.

Such plane can indeed be studied, and the results of my inspection brings
some expected facts and some surprising ones. The high-temperature sector
exhibits a pair of Lee—Yang-like edge singularities on the imaginary axis of the
magnetic field, like the simpler Ising model. The nonunitary minimal model
related to the critical process of accumulation of the zeros of the partition
function could be M(7,2), as claimed by von Gehlen [66], but I failed in
producing some euristhic theoretical argument in favor of his numerical finite-
size-scaling results. The direct computation of the effective central charge
associated to the renormalization group flow is within the possibility of TCS,
but requires an heavy increase in computational cost that I did not pursue
yet.

On the side of the surprising results, there is an interesting difference with
respect to the Ising prototype. In the low-temperature regime, due to the
different conformal dimensions of the operators involved, it is not possible,
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starting from the positive real magnetic field axis, to analytically continue the
definition of the free energy until reaching the negative real axis. It seems
appealing to identify the two unexpected branching points that appear in
the left half-plane with a pair of complex conjugate spinoidal singularities.
This identification, much in the spirit of the extended analyticity conjec-
ture proposed by Fonseca and Zamolodchikov, opens a problem of physical
interpretation I would like to address in the near future.

I tried to enlarge the analysis by including also the coupling g,. An
euristhic argument, based on the physical interpretation of g, and on the
existence of a massless renormalization group flow from TIM to Ising field
theory along the ¢, perturbation, suggests what may be the extension of
my results to the three dimensional space identified by g3 = 0. As far as
this conjecture can be numerically tested by TCS — that is not very far, to
be honest — it seems to hold. By increasing the level of truncation one can
hope to probe also the g3 direction, but a huge computational effort will be
required.

As a byproduct of my work on the analytic properties, I could compute
some susceptibilities and vacuum expectation values already evaluated by
means of a slightly different use of TCS, thus obtaining an internal consis-
tency check. Moreover, I studied the evolution of the mass spectrum of the
theory deformed by the leading energy perturbation (in the high-temperature
regime) when a small magnetic field is introduced. The universal ratios be-
tween mass corrections have been determined for the first time.
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Appendix A

About the energy-momentum
tensor

Consider a field theory defined by an action A on a D-dimensional manifold
equipped with metric tensor g,,(z). If we perform a general infinitesimal
transformation of the coordinates z# — z# = x* + ¢  the corresponding
change for the metric tensor is g, () — §..(Z), with

oxf 0x°
Juv = == ==Gp0 » Al
In o 07w P (A1)

that to first order in ¢ reads
gull = Guv — (aueu + aueu) . (AQ)

The classical energy-momentum tensor is defined as the functional derivative

of the action with respect to the metric, evaluated in flat space:
1
0A = -3 / dPz T §g,, . (A.3)

The above definition can be generalized to the quantum case in the fol-
lowing way: consider the partition function

Zlg) = [ Dy® exp(=Al.g) = exp(-Wlg). (A.4)

where ® stands for the set of dynamical fields of the theory, and W is the
connected functional, that is the field theory equivalent of the free energy f
defined by Eq. (1.3). Note that the functional integration measure Dy(®P) de-
pends on the metric. Now the quantum energy-momentum tensor is defined
by performing an infinitesimal variation of the metric g,, — 0g,.:

Zlg + dg] = / D,® exp(—A[d, g]) {1 +% / iz \/mégWTW} . (A5)
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where the important point is that the energy-momentum tensor takes care of
the variation of both the action and the integration measure. Equation (A.5)
can be rewritten in the form

SW[g] = —% / AP /916 g (TH) | (A.6)

where the vacuum expectation value is defined as usual

(T (@) = ﬁ [ P @) exn(- A, g). (A7)
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Appendix B

The edge singularity in Ising
and Tricritical Ising

The Yang-Lee edge singularity in the Ising model is described by the con-
formal theory M(5,2). As the tricritical Ising model is the next simplest
unitary minimal model, its edge singularity is expected to be related with
‘the next simplest nonunitary’ minimal model. Which theory deserves such
title, however, is not univocally clear. Keeping one of the labels unchanged,
one could think M(5,3) or M(7,2) to be good candidates. As observed
by von Gehlen [66], M(8,5) too is near the M(5,2) model, at least in the
sense of the renormalization group flow caused by the ¢ 3) perturbation [72].
The main properties of these three candidates are briefly recalled in the next
section.

On the base of his finite-size-scaling study [66] of the Blume—-Capel model,
von Gehlen claims that the correct model should be M(7,2). It would be
quite interesting to be able to confirm (or confute) his identification by in-
dependent methods. As I wrote in Sec. 6.3.1, the direct approach to the
problem is to locate as precisely as possible the critical value of &, then to
study the r-dependence of the lowest eigenvalue of the Hamiltonian H (&.):
the leading term is proportional to r, the subleading one goes like 1/r and
its coeflicient gives the effective central charge of the field theory associated
to the critical point.

This route was followed by Fonseca and Zamolodchikov [3] in studying
the edge singularity of the Ising model. In fact, the precision of the truncated
fermion space approach they used is so high that they were able to estimate
even the coefficient of the sub-subleading term (oc 1/7?)! When trying to
treat in the same way the tricritical Ising, one realizes all the limitations
of TCS: at level 5 of truncation (228 states), the position of the critical
point itself cannot be determined with more than three digits (against the
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Table B.1: Kac table of the minimal model M(5, 3)

B2 X P2y = P1,1) + 0,3 b3 X d13) = P1,1) + 91,3)
ba2) X G,3) = da2) + P14 b3 X de) = a2
Pa2) X a4 = P13) D) X a4 = P,

Table B.2: Fusion rules of the minimal model M (5, 3)

five significant digits of Ref. [3]). In principle, however, there is nothing
to prevent us from truncating at higher levels until we reach the desired
precision.

Instead of pursuing this purely numerical approach, I tried to generalize
the argument originally used by Fisher [13] to guess the correct Landau—
Ginzburg description of the Lee-Yang edge singularity. The effective field
theory can then (hopely) be associated to the correct minimal model by
arguments similar to those employed by Cardy [14]. Actually, my attempt
failed, as it is explained in the second section of this appendix.

However, it must be noticed that the operator algebras of both the models
M(5,3) and M(8,5) exhibit symmetries (see App. B) that one would not
expect to find, since the field ¢, breaks all the symmetries present at the
conformal point.

B.1 Non-unitary minimal models

B.1.1 M(5,3)

This model has central charge ¢ = —3/5 and effective central charge ¢ = 3/5.
Its Kac table is reported in Tab. B.1, and the fusion rules in Tab. B.2. Note
that the fusion rules are compatible with a Z, symmetry: ¢(; 1) and ¢(; 3) are
even, while ¢(; 2y and ¢4y are odd.
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Table B.3: Kac table of the minimal model M(7, 2)

B1,2) X P1,2) = P(1,1) + P1,3) b3 X P1,3) = P1,1) + P1,2)
¢a.2) X Pa3) = 2 + 6.3

Table B.4: Fusion rules of the minimal model M(7,2)

B.1.2 M(7,2)

The minimal model M(7, 2) is characterized by central charge ¢ = —68/7 and
effective central charge é = 4/7. This model has attracted some attention [71]
because of its very simple dynamics: there are only two relevant fields, and
the corresponding perturbations are both integrable. The Kac table is given
in Tab. B.3, and Tab. B.4 shows the fusion rules. It is easy to realize that
the operator algebra of this model doesn’t allow any symmetry among the
fields. This lack of symmetry is just what we expect when using the field o
to go off the critical point in the tricritical Ising model. This argument is not
a proof, but if considered together with the numerical results of Ref. [66],
somewhat supports the hypothesis that M(7,2) is indeed the right ‘next
simplest nonunitary’ minimal model associated with the edge singularity of
TIM.

B.1.3  M(8,5)

The minimal model M (8,5), characterized by central charge ¢ = —7/20 and
effective central charge ¢ = 17/20, is less intuitively ‘simple’, because of its
large Kac table (Tab B.5) and rich operator algebra, which I omit. Also
this model possesses an internal symmetry, as is signaled by the fact that

da,1), (1,3), P(1,5), (1,7) form a subalgebra.

B.2 Effective field theory

Let us first recall how the edge singularity of the Ising model was identified
with the minimal model M(5,2). The argument used by Fisher [13] can be
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32 4 32 4 32 2
72 1 7 9 18T 1
10 160 20 160 20 160 5
u o187 09 7 _1 21 71
5 160 20 160 20 160 10
9 95 7 2 1 _1 |
2 32 4 32 4 32

Table B.5: Kac table of the minimal model M(8,5)

summarized as follows: Let ® be the order parameter for a system whose
free energy admits an effective description in terms of the Landau-Ginzburg

potential
V(®) = g1® + g20* + 3*. (B.1)

The coupling are interpreted as a magnetic field (¢;) and a reduced temper-
ature (g2). A critical point is characterized by the condition g; = g, = 0. If
we now shift the field by an imaginary constant:

®(z) — B(z) + iPq (B.2)
then the effective potential becomes
VI(®) = B + [g1 — 2iPp (D2 — g2)]® + [go — 6B2]D? + 4iB,D° + &*, (B.3)

where ZISO is an unimportant constant factor. We can fix ®; in such a way
that the critical behavior is preserved, that is by requiring that the coefficient
of ¢? vanishes. After the substitution ®y = +4/g,/6, we are left with

V(@) = B + [g1 + i(292/3)*/*]® + 2i(2¢/3)**®° + O* . (B.4)

From this expression Fisher guessed the correct effective theory for the Yang—
Lee singularity:

1 .
Ly, = 5(a,i<1>)2 +i(g1 — he)® + ivy®?, (B.5)
with A, and ~y real.
The last equation is the starting point for the following argument, due to

Cardy [14], which identifies the correct minimal model related to this critical
phenomenon. The classical equation of motion of the Lagrangian (B.5) is

28 — a2 o .
9,® = i3y®" +i(h — h) . (B.6)
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This implies that the composite field ®? is indeed redundant in renormaliza-
tion group sense: it is just a derivative of ® and doesn’t give rise to any new
scaling field. In the language of fusion rules, this is written

PxD=I+®. (B.7)

The only non-unitary minimal model which has just one operator besides the
identity is M(5, 2).

The simplest way to generalize Fisher’s argument is probably too naive:
let’s try to replace the effective potential (B.1) with the ®° potential already
introduced in Sec. 1.2:

V(®) = 1P + g29% + g39° + g, 0" + @°. (B.8)

The tricritical point is characterized by the condition ¢; = g2 = g5 = g4 = 0.
Under the shift (B.2) of the order parameter, the effective potential (B.8) is
rewritten

V!(®) = B + [g1 — 3gsPh + 2iP (g — 2947 + 3P3)|D
+ [g2 — 694D2 + 15D} + 3igs®o| D2 + [gs + 4igs By — 20iD3| D>
+ [g4 — 15¢2)®* 4 6B, ®° + &°, (B.9)
where &)0 is a constant. In order to recover a tricritical behavior, we may
choose ®; in such a way that the coefficient of ®* vanishes, then dispose of

g2 in order to eliminate the coefficient of ®2: one would end up with the
effective Lagrangian for the Lee-Yang-like edge singularity

1
Liy) = §(a,i<1>)2 + (g1 — ihe)® + (g3 — ih)®® + iy®° (B.10)

where both h,, hl, are functions of the coupling ~.

() c

This procedure is quite arbitrary. Why not fixing also g3, thus obtaining
1 . .
1= 5(6“@2 + (g1 — ihe)® + iy @°. (B.11)
In point of fact, these kind of arguments are far by rigorous, and can be useful
only when they inspire a guess that can be verified by other means. In this

case, there seems to be no intuitive way of relating neither Eq. (B.10) nor
Eq. (B.11) to one of the fusion rules sets represented in Tabs. B.4 and B.2.
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