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Introduction

The Standard Model of Electroweak and Strong interactions (SM) is an extremely
successfull theory describing all known processes of high energy physics. Its validity
has been confirmed by a huge amount of experiments, which have tested the SM
predictions at an impressing level of accuracy. Most likely, however, the SM cannot
provide a final description of Nature, and it has to be interpreted as an effective de-
scription, valid up to a certain scale Agy, of a more fundamental (and yet unknown)
theory. Leaving aside the recent developments in neutrino physics and in cosmology,
which however provide very interesting indications of new physics beyond-the-SM,
sthere are several theoretical reasons for which the SM should not be Fundamental.
First of all, it does not incorporate a satisfactory description of Quantum Gravity,
so that its cut-off Agys is upper-bounded by the Planck mass Mp ~ 10°GeV. Sec-
ondly, the origin of its many parameters, such as the Yukawa couplings, with large
hierarchies among each other, is completely unexplained. Moreover, the structure
of SU(2) x U(1)y quantum numbers in the hadronic and leptonic sectors is sug-
gestive of a more fundamental Grand-Unified Theory (GUT) in which quarks and
leptons and their (Strong and Electroweak) interactions are treated on an equal
footing. The occurrence, in the SM, of a rough running coupling unification at a
scale Mgyr ~ 10'%GeV, and of a more precise unification at Mgyr ~ 10GeV in
its Minimally Supersymmetric extention (MSSM) suggest Agsy < 10¥-16GeV.

There is an argument, however, suggesting that the SM cut—off cannot be as high
as the Planck or GUT scale, but it should be at much more low energies, namely
in the TeV range, so that new physics should be discovered in the next—future
experiments to be performed at the LHC collider. This argument can be formulated
as follows. If the SM is seen as an effective field theory, its parameters, though
affected by divergences and therefore not predicted by the model, should satisfy a
naturalness criterion. Namely, their size should be of the same order of magnitude
of the quantum corrections they receive when the divergence is regulated by the
physical cut—off Agpy. This is the same as assuming the theory to become non—
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perturbative at the cut—off scale. Basically, one requires the high energy unknown
physics not to influence too much the low energy one which is described by the
effective theory. If this requirement is not satisfied, an “unnatural” cancellation
should be imposed among high and low energy physics contributions, resulting in
a “fine tuning” of the bare parameter versus its quantum correction, which should
cancel and give rise to the small physical value. In the SM, the one-loop correction
to the squared Higgs mass m?% is given by

om3; = % <m;“) - %m%v — im% — %m%;) Ay, (0.0.1)
in terms of Fermi constant Gr ~ 1075GeV ™2, the W and Z gauge bosons masses and
the mass of the top quark m; ~ 174GeV, which is the only fermion giving a sizable
contribution. Since it receives quadratically divergent one—loop contributions, the
natural size of the Higgs mass is roughly of the order of Ag;;, so that Agys cannot be
as high as Mgyt or Mp. With such an high value of mpg, indeed, the SM would not
be internally consistent, or at least it will become non—perturbative near the TeV
scale. A value of my < TeV is indeed required for the four gluons scattering process
not to violate the Unitarity bound. One then concludes that my ~ Agpy ~ TeV.
The impossibility of Agps to be Mp if my (whose size is in the end fixed by the
Electro-Weak Symmetry Breaking (EWSB) scale v = 246GeV) is in the TeV range
is usually indicated as the “Hierarchy Problem” of the SM. The hierarchy one refers
to is in this case the 15 orders of magnitude difference among my and Mp.

After the completion of the ElectroWeak Precision Test (EWPT) program, a
more modest, but more concrete and experimentally motivated version of the prob-
lem of hierarchies, the so—called “Little Hierarchy Problem” [1] (see also [2]) has been
formulated. From EWPT, in which quantum effects are precisely measured, an up-
per bound for my can be extracted from the contributions of virtual Higgses to the
observables. If data are analyzed in the pure SM, one has 115GeV < my < 250GeV,
the lower bound coming of course from direct production. The same set of data,
however, can also be used to give upper bounds on the scale of new physics A, whose
effects can be parametrized in terms of an effective Lagrangian

G,
Lepr = Lsm + Z K?pO;H—p ,
i,p

containing operators of dimension higher than four whose adimensional coefficients,
as implied by naturalness, are assumed to be of order one and A ~ Agp;. One finds,
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for various dimension six operators, A > 10TeV [1]. ! Assuming my < 200GeV, as
suggested by data, Eq. (0.0.1) can be rewritten as

2
sm2, = (115GeV)? (ﬁ%)

since all the contributions but the top one can be neglected. If Agys is identified
with A, then, one has a one order of magnitude mismatch, a little hierarchy, between
m? and its one-loop correction dm%. Since the hierarchy problem comes in the
Higgs sector, which is responsible for EWSB and, by the way, is still experimentally
unproven, it suggests us to look for an alternative mechanism to break the SM
Electroweak symmetry.

Overcoming the (big or little) hierarchy problem of the SM has been in the last
decades one of the main tasks and guiding lines of model building Beyond-the-SM.
Recent experimental results, however, indicating the cosmological constant A not to
be exactly zero, but 15 orders of magnitudes smaller than mp, seem to demonstrate
that the fine—tuning exists in Nature. It has then been suggested to abandon the
Hierarchy paradigm in favor of an “anthropic” selection [3] of the many vacua the
_»i;heory is assumed to possess [4]. It is commonly believed, however, that explaining
the size of A could be a Quantum Gravity problem, on which few can be said, while
{t*he quantum stability of my should be ensured by some (more experimentally and
theoretically accessible) TeV—energy new physics.

. Clearly, the problem of hierarchies comes into the SM due to the presence of
a fundamental scalar Higgs field. For vector bosons and fermions, indeed, there
are symmetries (respectively, the gauge and the chiral one) protecting their masses
from quadratic divergences. Most of the attempted solutions, indeed, are based on
changing the nature of the Higgs field which may not be fundamental (as in Techni-
color models [5]) or may be part of a multiplet of fields which also contains fermions
(Supersymmetry) or gauge bosons (Gauge-Higgs Unification), so that its mass is
protected by chiral or gauge symmetries. The Higgs has also, more recently, been
supposed to be a pseudo—Goldstone boson [6] which takes mass at two-loop order
only (Little Higgs [7, 8]) or not to exist at all (Higgsless theories [9]). Supersym-
metry (SUSY), and in particular the MSSM, is at present one of the best candidate
for physics beyond-the-SM. It reproduces without problems the EWPT data and,
thanks to the well-known boson—fermion cancellation, the one-loop correction to

!Nothing forbids, in perturbative extensions of the SM, the coeficients ¢; , to be smaller then
one. This is what happens, for instance, in the MSSM, and permits the SUSY scale to evade this
bound.




the lightest Higgs mass mpy reads 2

Grm? Asp
= tmi log === 0.0.2

where mgr is a suitable average of the stop masses and Agp is the supersymmetry

omi ~

breaking scale at which some mechanism of SUSY breaking and transmission gener-
ate the masses of superpartners. Note that the quadratic SM divergence is cut—off
at the stop mass scale mgr and mpy is only logarithmically sensitive to the high
energy physics, so that the hierarchy problem is solved. The problem comes now,
however, from the Higgs being too massive, myg > 115GeV, and not too light as
in the SM. A famous tree—level relation of the MSSM states that the lightest Higgs
should be lighter than the Z boson and to overcome this bound one has to rely
on quantum corrections which increase my as compared to myz. The increasing is
however only logarithmic in mgr while Eq. (0.0.2) is quadratically sensitive to it.
This reintroduces a fine-tuning in Eq. (0.0.2). More detailed analysis confirm this
simple argument and show that a factor 20 cancellation must occur in the Higgs
mass. This is the little hierarchy of the MSSM, whose size is the same as the SM
one. ‘

Motivated by the above considerations, many efforts have been performed in
the last years to find alternatives to supersymmetry for solving the (little or big)
hierarchy problem. In this context, models with large extra dimensions (ED) have
been -extensively studied. In this scenario, as suggested by string theory which
somehow “predicts” ED, extra space-like dimensions are supposed to exist beside
the four ordinary ones. The extra dimensions, clearly, should be small enough
(compactified) or somehow hidden not to conflict with observations. There are
several different ways in which ED can be employed to stabilize the EWSB scale.
In the ADD scenario [10], for instance, flat extra dimensions with sub—millimeter
compactification radiaii, in which gravity only can propagate, were proposed to
explain the weakness of gravity (i.e. the big value of M,) through the fact that it
is “diluted” in the ED. Another intersting possibility is to consider truncated AdSs
spaces [11] and solve the Plank-Weak hierarchy through the exponential red-shift
factors which come from the AdSs metric. Notably, realistic models for EWSB
can be formulated in this set—up [12], which also possess an extremely interesting
interpretation, based on the AdS/CFT correspondence [13], in terms of a strongly-
interacting 40 theory, then realizing a computable version of the composite Higgs

2This an extremely simplified discussion, which can be found in [2}; tan B < 1 is assumed and
the influence on stop masses of gluino exchange have been neglected.
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idea. Large flat ED, but not as large as in the ADD scenario, can be also used for
model-building in a slightly different manner, exploiting the possibility of breaking
symmetries in the compactification. In so doing, the scale of symmetry breaking is
stabilized at the compactification scale 1/R. This possibility [14] (see also [15] for a
simple, interesting, model) was first advocated to break supersymmetery, so that a
compactification scale 1/R ~ TeV was needed. The possibility was also discussed
[16] to use ED, with 1/R ~ Mgyr, for breaking GUT groups.

In the context of TeV Extra—Dimensions, a very interesting possibility for stabi-
lizing the EWSB scale is provided by the so—called Gauge-Higgs Unification (GHU)
mechanism, which was proposed long ago [17, 18, 19] and recently received renewed
interest, in both its non—supersymmetric [7, 20, 21, 22, 23, 24, 25] and supersymmet-
ric [26, 27] versions. In GHU models, the SM scalar Higgs doublet comes from the
extra—dimensional components of the gauge fields associated to an extended elec-
troweak symmetry propagating in the ED. The EWSB scale is stabilized by the ED
gauge invariance or, stated in a different way, by the fact that the scalar Higgs field
is part of the ED gauge multiplet, whose mass is protected from large high energy
contributions. Note that gauge theories in ED have dimensionful couplings, so that
they become non—perturbative at an energy scale A which is typically of the order of
10/:R. The TeV ED models, such as the GHU ones, are then effective descriptions
of a more fundamental (maybe String) theory, and their validity is upper—bounded
from the 10 TeV energy scale. Moreover, they do not include any modified descrip-
tion of gravity, so that they cannot address the Big hierarchy problem. However,
they can solve the little one if, as in the GHU case, the EWSB scale is insensitive
to the high energy cut—off A. Of course, these models are less ambitious then other
extentions of the SM, since their validity is upper—-bounded at a not so high scale.
Note that, however, a realistic model of this kind would contain all the new physics
effects which could be tested with the LHC energies.

The original GHU model [17] was, in modern language, a six dimensional gauge
theory compactified on the 2-sphere S2, with a suitable gauge flux for breaking
the original group down to the SM one. The intent was not only to obtain the
Higgs scalar field from the six dimensional gauge bosons, but also to realize SU(2)
and U(1)y couplings unification, by considering rank two simple Lie groups in six
dimensions. By inspection, the exceptional G, group was found to be the more
realistic possibility, giving rise to a tree-level prediction for the weak mixing angle
sin? Oy = 1/4, which was compatible, at that time, with the experimental results.
At present, of course, such a value of fyy is ruled out, so that one must rely on sizable
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quantum corrections for obtaining Electro—Weak unification in this way. Moreover,
a negative Higgs mass term is present at tree-level in the Manton’s model, so that
the Higgs mass and the EWSB scale are directly related to the inverse radius of
the sphere. This would result, with the present—day experimental data, in an un-
acceptably small compactification scale. Due to the experimental failure (and the
difficulties in obtaining a realistic fermion content), GHU models were abandoned
for a long time. As we will better discuss in the following, the introduction of new
(stringy—inspired) tools in the ED context gave a new twist and perspective to the
GHU construction. At present, the simplest framework in which this idea can be
implemented are five-dimensional (5D) SU(3) gauge theories compactified on the
S'/Zy orbifold [28]. These models have been studied in great detail and shown [24]
to posses all qualitative features which are needed to construct realistic extentions
of SM. They fail, however, at the quantitative level, since they predict too a small
Higgs boson mass, smaller than the W boson one. Basically, this failure is due to
the smallness of the Higgs quartic coupling, which is indeed one—loop generated in
these models.

One of the main topics treated in this thesis, along the lines of [25] (see also [29]),
is the possibility of obtaining realistic values for the Higgs mass from SU(3) GHU
models in 6D, compactified on the 7?/Zy orbifolds. In 6D, indeed, the possibility
opens up of having a tree-level quartic coupling for the Higgs, while in 5D models
it is one—loop generated, so that the Higgs—W mass-ratio is expected to be higher
in the 6D case as compared to the 5D one. In the following, 6D T?/Zy models,
based on an SU(3) gauge group which is broken to SU(2) x U(1)y by the orbifold
projection, are explored. Orbifold projections are found to exist (for the 72/ VAT
cases only) which leave a single Higgs doublet in the low—energy theory. In the single
Higgs cases, the aforementioned tree-level quartic coupling has a very strong effect.
Assuming EWSB to occur, the Higgs mass in these models is predicted at tree—level
to be twice the W-boson one

myg = 2mw,

which is an encouraging result. Differently from the 5D case in which the Higgs
potential is completely finite, however, divergences can be found in the Higgs mass
term, due to the appearance of a “tadpole” operator [23, 30], localized at the orbifold
fixed points, which is proportional to the component of the gauge field—strength
in the hypercharge direction. The appearance in the quadratic part of the field—
strength of a bilinear term in the Higgs field, which is also responsible for the arising
of the quartic coupling in the tree—level action, makes the tadpole contribute to the
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Higgs mass term. Since it is generated at one loop with a quadratically divergent
coefficient, the tadpole operator may destabilize the Higgs mass and reintroduce an
hierarchy problem. It turns out, by performing an explicit one loop calculation, that
the tadpole operator always arises in single-Higgs models and even an accidental
cancellation of the leading divergence in its coefficients cannot be achieved. The
tadpole, then, cannot be locally cancelled, but a global cancellation of its integral
over the ED can be realized in the SU(3) T2%/Z4 model. In this case, similarly to
what happens for a globally vanishing FI term in 5D supersymetric theories [31],
its presence does not trigger EWSB and does not affect the mass of the Higgs field.
In complete analogy with 6D supersymmetric theories with localized FI terms [32],
the Higgs wave function is distorced by the presence of the tadpole and displays
localization or delocalization at the fixed points.

In the framework of GHU models and, more generally, in the context of extra—
dimensional field theories, orbifold compactification [33] is a particularly useful tool.
It provides, indeed, a simple way to get 4D chirality and symmetry breaking. On
orbifolds, moreover, localized 4D fields are commonly introduced in any number
atthe fixed points and this flexibility in the 4D field content is a further reason
fof;,which orbifolds are so popular. Localized 4D states (we will focus on spinors
in the following) are generally thought to have a stringy origin, as twisted states
ariéir;g on a brane located at the fixed point, even though the existence of a stringy
UV completion of the ED model, with the appropriate content of localized states,
is in general doubtful. Alternatively, in a purely field theoretical context, extra—
dimensional fermions with localized profile were shown to arise [34] from topological
defects. More recently, in an higher dimensional field theory context, localization of
fields in both flat and warped space has been considered [35], [31, 32, 36].

In this thesis, the possibility is discussed of getting localized 4D chiral fermions
in a very natural manner, as an effect of the resolution of the orbifold singularities
[37, 38]. Orbifolds, indeed, are singular spaces, the singularities being located at the
orbifold fixed points. As also suggested by string theory, orbifolds should be always
seen as smooth “resolving” spaces, in the particular limit in which the gravity and/or
gauge connection backgrounds approach a singular profile. In [37, 38], resolved
versions of the C/Zy, T?/Zy and S*/Z, orbifolds are constructed and a 6D chiral
fermion field compactified on the resolved space. The wave functions in the internal
space of the 4D chiral zero-modes arising from the 6D fermion (all of them but the
ones which are constant and correspond to the usual orbifold ones) are found to
be peaked around the resolved singularities and to become completely localized in
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the orbifold limit. Moreover, due to an ambiguity in defining the resolving space,
many (but not all) brane fields distributions are found to originate from a single
ED field, so that they have a “unified” origin. In the following, the “allowed”
bulk-brane field distributions one can get in this manner are classified. We believe
that, due to aforementioned interpretation, the brane field spectra we will work
out are distinguished, and “favored”, since they admit such a simple resolution. As
already mentioned, fermion localization have been shown in the literature to arise on
topological defects in various way, so that other localized fermion spectra can clearly
be obtained. The localization phenomenon observed here is somehow analogous, as
it is induced by the presence of a background field with non trivial profile along the
extra dimensions. What is peculiar of our case is that this background is precisely the
one needed for resolving the orbifold singularity and there is no need of introducing
extra fields or extra dynamics.

This thesis is organized as follows. In the first two introductive chapters several
topics on extra dimensional field theories are discussed. The idea is not, of course,
to provide a complete introduction to the subject but, on the contrary, to discuss,
in a hopefully ordered and self-consistent manner, some of the concepts and tech-
nical instruments that will be employed in Chapters 3 and 4. For what concerns
Chapter 1, it is devoted to compactification on smooth spaces, and particularly on
the simple S* circle and 72 torus. Those spaces are defined in Sect. 1.2 and 1.3.
Scherk—-Schwarz compactification and symmetry breaking is also discussed. As an
introduction to the Kaluza-Klein compactification procedure and to fix notations,
complex scalar compactification on a general d—dimensional compact manifold Cy is
studied in Sect. 1.1. When considering GHU models, we will be dealing with gauge
theories in extra dimensions. For this reason, we discuss this subject in detail, fo-
cusing our attention, in particular, on the structure of linearly and non-linearly
realized gauge symmetries which are present in the resulting 4D theory, and on the
gauge-fixing procedure which is required to perform quantum computations. This
is discussed in Sect. 1.4 and 1.5 for the S! and 7™ cases, respectively. Sect. 1.6,
finally, is devoted to fermion fields. When studying spinors on resolved orbifolds, we
will need the general discussion, proposed in Sect. 1.6.2, of fermions compactified
on a general 2D manifold Cy. In chapter 2, orbifold compactification is considered.
After a general discussion of orbifolds and their capability of breaking symmetries,
the simple S!/Zs and T?/Zy orbifolds are introduced, respectively, in Sect. 2.1 and
2.3. Gauge theories on S*/Zy and 7?/Zy are considered in Sect. 2.2 and 2.5. In
Sect. 2.4, the wave function basis on T?/Zy is derived, while Sect. 2.6 contains a
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general discussion of Feynman rules on orbifolds. The prescription is found for ob-
taining orbifold Feynman rules out of the covering space ones. This technique turns
out to be extremely useful when performing quantum computations in orbifold field
theories. Chapter 3 is devoted to the previously discussed 6D GHU models, along
the lines of [25]. Fermion localization from orbifold resolution is discussed, as in
[37, 38], in Chapter 4. Finally, two short technical appendices on Jacobi theta
function and 2D spaces with O(2) isometry are included.
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Chapter 1
Smooth Extra Dimensions

Field theories with more than three spatial dimensions were introduced long ago
[39], as a tool for obtaining an unified description of gravity and gauge interactions.
Many attempts have been performed [40] to make, through compactification, 4D
gauge symmetries arise from the general coordinate transformation invariance of
the parent ED theory. Due to the failure of this original program, ED field theories
were forgotten for many years, until the invention of string theory, which gave a new
perspective, and a renewed interest, to this subject. In string theory, indeed, extra—
dimensions are required by consistency and the existence of an energy range in which
the physics is extra—dimensional and the field theory description still appropriate
seems possible, or even favored. Moreover, several technical tools (like orbifolds),
introduced in the context of string theory, result extremely useful when applied to
the old ED ideas, and permit to obtain (semi-)realistic models. In these first two
chapters, we review several concepts and technical tools which are commonly used
for model-building in ED. In the first one, compactification on smooth spaces is
considered while orbifolds are discussed in the second one.

1.1 Scalar Field

In this chapter we will consider quantum field theories in & D-dimensional (D = 4 + d)
space-time described by the coordinates XM = (z#,9%), with M = 0,...,D, u =
0,...,3and 7 = 1,...,d. We restrict to factorized spaces of the form M, x Cg,
where My is the ordinary 4D Minkowski space-time and C, is a compact orientable
d—dimensional manifold, so that the line element assumes the form

dsh = GundXMdXN = n,,dztdz” — ds?, (1.1.1)
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where ds} = g; ;dy'dy’ is the line element on C;. The D-dimensional metric G
has (+,—,...,—) signature, so that n = diag(+,—, —, —) and g is euclidean. In
the following, we will mainly be dealing with the cases d = 1 and d = 2. As an
example of the compactification procedure, consider a complex scalar field ®(z,y)
in D dimensions, with Lagrangian

Lp(z,y) = VG (D@ DM® — m?@td + £%(®)) ,

where G = |det{Gpn}|, and the indices are raised and lowered with the D-
dimensional metric Gyv. In order to get the effective 4D theory, the field must
be expanded as

®(z,y) = Y bn(@) fnlv), (1.1.2)

where the 4D fields ¢, are the relevant degrees of freedom for the 4 dimensional
effective description and the f,’s are some kind of Fourier basis on Cy. The 4D
effective Lagrangian is obtained by integrating Lp in the extra dimensions. For the
quadratic part, one has:

£4($7$) = de dy’C’D(may) =

, L ) 1.1.3
S [u6409 01 o, duaEL — dhtn i, duE (mofif — £DDg)] Y

where g = |det{g;}|, and the covariant derivative is now the d-dimensional (dD)
one, constructed with the dD Levi-Civita connection. The indices are raised and
lowered with the dD euclidean metric g. The wave functions f, are chosen to be
the solutions to the d—dimensional Klein—Gordon equation

D:D'fy+my fn =0, (1.1.4)

for all allowed values of m,. Note that the f,’s form a complete set for functions
on Cg4, and m2 is never negative, since D; D" is a negative definite hermitean opera-
tor. From Eq. (1.1.4), the orthogonality of two wave functions with different mass
trivially follows, since

(mi —m2) . dy/9f 1 fr = . dy/g [feD:D' fi — £ID;D'fi] = 0,

while independent wave functions with equal mass can always be made orthogonal
since the Klein—Gordon equation is linear. By suitably choosing the normalization,
one has

/C Ay oL fe = 6ok
d
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so that Eq. (1.1.3) assumes the very simple diagonal form

Ly(x) =) [0.010"¢, — (m? +m,2) ¢l o] | (1.1.5)

n

and describes a Kaluza—Klein tower of massive scalars with mass
M2 =m?+ M2 .

The values assumed by m, clearly depend on the detailed form of C,.
With the mode expansion (1.1.2), then, the Feynman propagator in the 4D
momentum space assumes the very simple diagonal form

1

<(¢n(p))T ¢k(P)> =

n,k

P2 —mp2 —m2 + e

which is simply obtained from the scalar propagator on the D~dimensional Minkowski
space by replacing the D-dimensional squared momentum P? = p,p* — p;p* with
pup* — m,>. For what concerns interactions, on the contrary, Feynman rules are
-complicated on our general space Cy. For LT%(®) = —%LQI(I))‘L, for instance, one
~would get
: int AD ot ¢

[:4 (.’,E) = _‘z_ <¢n) (¢k) @l¢'mlcn,k,l,m: (116)

n,k,l,m

.~and the Feynman rule of this quartic vertex is
0Kkt = =00 [ dy/G ()] () ifu]
Cq

which is a complicated tensor to be computed case by case once the explicit form
of f, is known. The above formulas will drastically simplify on flat spaces on which
translational invariance is preserved, such as the circle or the torus we will discuss

below.

1.2 The circle St

The circle S* is simply obtained from the real line R by identifying points connected
by 27 R translations: S* = R/t where t acts as y — y + 2R on the coordinate Y
of R. Clearly, the fundamental domain of S!, i.e. the set of points in R which are
not connected to each other by translations and from which any other point can
be reached, is the line segment [0, 27R). Fields on S' are defined as fields on R
which are left invariant by the translation transformation ®(z,y) — ®(z,y + 27 R).
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Clearly, the ® field does not need to be exactly invariant under ¢, but it can be
invariant up to symmetry transformations. We can have:

O(z,y+27R) =T®(z,y), (1.2.1)

where T belongs to the (global or local) symmetry group acting on ®. This is an
example of the so—called Scherk-Schwarz compactification [41]. Note that periodic-
ity conditions as in Eq. (1.2.1) can be used to break symmetries. It is clear, indeed,
that BEq. (1.2.1) restricts the allowed symmetry transformations which can act on
®, since they must preserve Eq. (1.2.1).

Equivalently, the Scherk—Schwarz twist matrix T in Eq. (1.2.1) comes from the
fact that S is a topologically non—trivial manifold, which, to be precise, needs two
different charts to be described. The first, big one, is described by the segment
y € (0,27 R) while the second is infinitesimal and intersects with the big one at
y = 0 and y = 2rR. Continuity of ® when described in the infinitesimal chart
coordinates implies, in the big—chart description, the field at y = 0 to be related
with the one at y = 27 R. The possibility of choosing different transition functions,
or symmetry transformations, among the charts in the two intersections makes the
arising of 7 in Eq. (1.2.1) possible. A discrete (Zy) version of this argument is used
to define the Mobius strip as the fiber bundle of segment on a circle.

The simplest example of Scherk—Schwarz compactification in which, however,
no symmetries are broken, is when @ is identified with the complex scalar field
considered in the previous section, endowed with an U(1) phase transformation
symmetry. One has:

®(z,y + 27R) = e >™®(z,y), (1.2.2)
where « is, a priori, undetermined. Note that, from the definition, a ~ o+ 1 and,
since & — (®)! is a symmetry, a ~ —a, so that we can restrict to o € [0,1/2]. Let
us now expand the field as in Eq. (1.1.2). Eq. (1.1.4) is trivially solved on R. By
imposing periodicity (1.2.2) and normalizing, one finds the S wave functions

faly) = \/_;ﬁe-i(%%)y, m2 = (% + %)2 , (1.2.3)
with n € Z. The shift n — n -+ o in the mass spectrum is the typical effect of a
Scherk—-Schwarz twist.

Note that a Scherk-Schwarz twist, when it is performed by means of a local
gauge symmetry, can be reabsorbed by a non-periodic gauge transformation [42].
In the abelian case, one has

d(z,y) — ¥(z,y) = Rd(z,y). (1.2.4)
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In so doing, however, the 5th component of the gauge connection Ay also changes
Q;,
b

Ao A=At oy

(1.2.5)
where gs is the 5D gauge coupling constant. A theory with twisted ® asin Eq. (1.2.2)
and zero background for the gauge connection should be then equivalent to a theory
with periodic ® and non trivial background A, = E?E' This is immediately checked
from the general results of the previous section, which also apply when the covariant
derivative has a gauge part also: D = d — igsA. One has a modified Klein—Gordon

equation and
1 a n

2
fnly) = me—%%yv mfz = <—R' + E) :
Note that, since « can be related to the vacuum expectation value (VEV) of A,, its
value is not, as it is in the case of a global symmetry, a free parameter to be chosen
but, on the contrary, it will be fixed by the dynamics of the theory. Moreover,
a constant VEV for A, is a flat (F' = dA = 0) gauge background and the only
(non-local) gauge invariant operator which is sensible to it is the Wilson loop

W = g5 o™ Avdy (1.2.6)

wrapping around the circle. It is easy to generalize the above argument to a non
abelian Scherk-Schwarz twist 7', which is capable to break (non-linearly realize)
part of the gauge group. In that case, a VEV for a non—abelian gauge boson comes
from the gauge transformation which removes T from Eq. (1.2.1), and the gauge
group is broken by this VEV. Again, the background is a Wilson line to be dy-
namically determined and the Scherk—Schwarz symmetry breaking is equivalent to
a Wilson line breaking [43]. As we will better discuss in the following, this Wil-
son line interpretation will provide strong constraints [44] on the dynamics of the
Scherk—-Schwarz twist.

1.3 The 2—Torus T2

In the plane R? ~ C with euclidean metric, consider the translations t;o in the
directions of two non-parallel vectors €1 5. They act as

Y —+y1+61,2:

on the coordinates 3* of R? and, without loss of generality, we can take & = (27 Ry, 0)
and generic €;. The torus 72 is defined from R? by identifying points connected by
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the t; » translations. Its fundamental domain is simply the parallelogram built on the
€12 vectors. It will be useful to introduce a complex coordinate z = %(yl +1iy?) in
which the non-vanishing entries of the metric are g.: = ¢?* = 1 and the translations

112 act as
N 27 R n QWRU
z — 4 — oz — z+ —U,
V2 V2
(e%—l—ie%)

with R = R; and the modular parameter U = . Fields on 7% are subject to

27R
the generalized periodicity

Oy +e1g) = T0(y),
where T} 9 are symmetry transformations and, since
Oy + e +e) = ITHA(Y') = HLT12(y"),

[T1,To) = 0. Tys, clearly, are the equivalent on T2 of the S' Scherk-Schwarz twist
discussed in the previous section. Also in this case, non—abelian Scherk-Schwarz
twists can break symmetries and are equivalent to Wilson line symmetry breaking.
We will neglect this aspect in the following and set 77y = 1. Consider the field
® to be a complex scalar as in Sect. 1.1. The wave functions f, are more easily
found by defining real coordinates w; o as z = %(wl + Uwsy) on which ¢; simply
acts as w; — w; + 2w R. In these coordinates, a basis for periodic functions is, up to
normalization

fi o it B

where 7 = (nj,ng) is a two-dimensional vector of integers labelling the wave func-
tion. When rewritten in complex coordinates using

Uz—-Uz z—Z

W = —=——, Wy=————, 1.3.1
Y V2ImU * T V2imU (181
and normalizing, the wave functions read
L L(az—%s3)
= evalnriad) 1.3.2
where V = (2nR)%ImU is the volume of T2 and
ng —niU - ng — U
A= ——"—, dg=——"—. 3.
RImU RImU (13.3)
According to Eq. (1.1.4), the Kaluza—Klein masses on 7 are given by
m = af? = n2 + n?|UJ? — 2n;nyRell | (1.3.4)

(ImU )2 R?
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As already mentioned, S' and T2 compactifications preserve translation invari-
ance in the extra dimensions. This is the reason why both wave functions in

Eq. (1.2.3,1.3.2) can be rewritten as
1 i
fa= —=eTP 1.3.5
v _—
where V' is the volume of the space and the momentum is p,, = % for the circle (or
Pyn =252 for a # 0) and p, 7 = "%)\ﬁ, Pri = "‘:'/1:—55\713 for the torus. Consequently,

if all ED fields are expanded in the f5 basis as
y) = ¢alx)faly),

Feynman rules for propagators and interactions of the 4D fields ¢z are very eas-
ily extracted from those of the corresponding 5 or 6 dimensional theory on flat
Minkowski space. One simply has to replace the ED component of the momentum
vector Py = (py, ps) with its quantized version p; » and to remember that indices are
raised with the ED (+, —, .. ., —) metric so that P¥ = (p#, —p'). Moreover, a factor
1/+/V must be added for any externctl leg while one V' comes from the integration
in the ED, together with a Kronecker delta imposing ED momentum conservation.
The Feynman rule for the quartic coupling in Eq. (1.1.6), for instance, simply reads

~i)\45 Ak T
with the effective 4D coupling Ay = 5‘% Note that Ap has energy dimension —1 in
D =5and —2 in D = 6 so that A4 is adimensional. Clearly, the fact that Ap has
negative energy dimension means that the theory is not renormalizable, even though

the 4D coupling is adimensional. From the 4D point of view, non-renormalizability
arises as a consequence of the presence of an infinite number of fields.

1.4 Gauge theories on S!

Consider now an abelian 5D gauge theory compactified on My x S*. The Maxwell
5D Lagrangian is
1 1
Ly = _ZFMNFMN ——F S 4 2F’WFV‘y, (1.4.1)
with Fyyy = Oy An — OnvAy and A = (A,, A,) is the 5D gauge connection. The
fields are expanded as
e

1 n —i 2 1 n
Ay = ; ————mAu(x)e K, A= ; mAy(x e (1.4.2)

7
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where the 4D fields A} () are complex but subject to the condition A} = (A’;;)y)T

since the 5D ones are real. By plugging this expansion into the Lagrangian and
integrating on the circle, the effective 4D Lagrangian is found to be

L= o [EEL (B + 30, (A7) 00y
(8)° (4)" 45+ 3470 (47)' (1:43)
= Ez + Z;.zo_—.l Ly,
where we have separated the zero-mode Lagrangian L3, which simply describes a
massless 4D real scalar Ag and an abelian real massless gauge field Ag, from a sum
of terms of the form
Ly =—L1E," (Pt 40, (An)' orAr
+ (ﬁ) (A;LT) A,u. . (1.4.4)
—ig | (4p) oy — nor (47)']

To better interpret the result, define real fields as

n 1 n Ve n
AM=$(XM+ZY#) , Ay =

1, omitting the index n for simplicity, reads

(y" —iz") (1.4.5)

Sl

Ly=—1X,Xm — 1y, yw
+35 (B) X XH + 5 (§) v.Y*
+—é—8ux8“z -+ %auya”y
—-EX, 0tz — FY,00y.

(1.4.6)

The above action is completely symmetric in  «+ vy, let us concentrate on the
z part. It contains a mass term My = n/R for the U(1l) gauge boson and a
quadratic coupling of it with the real scalar z. It is then the action of a non-linearly
realized (so—called spontaneously broken) U(1) gauge symmetry. The field z clearly
represents the pseudo—Goldstone boson which will be eaten by the gauge field when
it will acquire a mass. When considering the simplest 4D abelian Higgs theory of

v

a complex field ¢ which acquires a VEV (¢) = 75 exactly the same action comes
out. If parametrizing ¢ = (% + p)ei% and neglecting the terms in p, we get, from
the kinetic term of ¢

1 2
(8, — igAu) o> — 58#98“9+@AMA#—gvAuaﬂe,
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which exactly matches Eq. (1.4.6) if gv is identified with %. In the 4D Higgs model,
the field 6 transforms non-linearly, as § — 6 + gvf(z) under the U(1) symmetry
transformation A — A + 03. By expanding the 5D gauge parameter

1 )
alz, — a(x e—m,y/R7
which acts on the gauge 50 connection as

AM($7 y) — AM($7y> + a]\/[a(a:ay> 3

the U(1) 5D local symmetry can be rewritten as an infinite product of non-linearly
realized U(1)2 (n=1,...,00) 4D gauge symmetries acting on the fields X" and Y™

as
N n . n n ka3 ,’n»
Xy — X+ 00k, 2" —a2"+ Fak, (1.47)
Yi—=Yl+0u0p, v —y"+ f07,
where a" = %(a’ x +iay). For the zero-modes, we have Ag — Aﬁ + 9,a° while Ag

is invariant. The 4D U(1) associated to o’ is linearly realized and then unbroken.
As for any gauge symmetry, a gauge fixing is required to quantize the theory.
In the 4D Higgs model it is convenient to use the so—called R¢ gauges, in which a

gauge—fixing term
1

g—f — = K 2
L 5 (0, A" + Egub)”
is added to the Lagrangian. Analogously, a gauge-fixing term
1 n \2 1 n \2
g-F — _ . B il _ e il
c 2£<6”X +§Rx) zg(aﬂy +§Ry> ,

will be required by the Lagrangian in Eq. (1.4.6). For Lo, the usual ——51-5-(8#.4“)2
will be added. One can easily check that the sum of all the 4D gauge-fixing terms
which are required to quantize the 4D effective Lagrangian is reproduced by adding
the 5D gauge-fixing term

£t = —5'% (8,A* — €8,A,) , (1.4.8)
to the 5D Lagrangian in Eq. (1.4.1). The unitary gauge is obtained by taking £ — co
in the above equation, which implies gauge—fixing 9,4, = 0. This corresponds to
take 2" = y™ = 0. The physical spectrum is clear from the above discussion, we have
two infinite towers of massive vector bosons of mass m, = & (n = 1,...,00), one
massless gauge fields Aﬂ corresponding to the unbroken 4D U(1) symmetry and one
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real scalar AS. All the Kaluza—Klein tower of A, has been eaten by the vector bosons
which have acquired mass. Note that Ag taking a VEV, (Ag) = —\/—22%—55—, corresponds
to a constant gauge background A, = g—s‘lﬁ which, as in Eq. (1.2.5), is equivalent
to a Scherk—Schwarz twist «e. The dynamical determination of the Scherk-Schwarz
parameter, then, is just the dynamical determination of the VEV of the 4D field
Ag, which is given, as for any scalar field, by the minimum of the effective potential.
Note that the tree—level effective potential of Ag vanishes, so that one has to include
one-loop corrections for « to be fixed. This is a trivial consequence the Wilson loop

interpretation (1.2.6) of the Scherk-Schwarz twist.

The result in Eq. (1.4.8) is easily generalized to non—abelian theories. The gauge—
fixing term

£ = —%TT [(0,4" — €8,A,)] , (1.4.9)

with Ay = Aprqt®, must be added to the Lagrangian. In that case, in order to
perform quantum computations, the appropriate action for ghosts, consistent with
Eq. (1.4.9), must be used. It is easily found to be

where the ghost fields c(z,y) = ¢,t* and &(z,y) = C,t* are anticommuting 5D
fields in the adjoint representation of the gauge group and Dj; is the covariant -
derivative acting on them. From Eq. (1.4.9) and (1.4.10), all Feynman rules for the
non-abelian gauge theory on S* could be derived. In the case € = 1, however, no
additional computation is required. The usual Feynman gauge in D = 5 Minkowski
space is indeed recovered and the Feynman rules on S? are easily extracted in this
gauge from the text-book ones (see e.g. [45], whose conventions we will follow)
by replacing the ED momentum p, — p,, = % and multiplying by the appropriate
power of v/2r R. Note that in any cubic vertex a gs factor appears, while g2 multiplies
quartic verteces, so that all v/27 R factors are reabsorbed if defining the 4D effective
gauge coupling
_ 8
94 = Jork

Note that g, is adimensional while g5 has energy dimension —1/2 and makes the

(1.4.11)

theory non-renormalizable. We will not explicitly discuss here the inclusion of 5D
charged scalars and fermions in the theory, since this is trivial.
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1.5 Gauge theories on 72

Consider now an abelian 6D theory on the torus T2. The gauge connection is
Apn = (A, AL, As), with z, 2 complex coordinates as in Sect. 1.3. The action reads

1 , 1 1
Ls = —ZFMNFMN = —ZFWF“” + F, F* — -2-[Fz5|2. (1.5.1)

The gauge field is expanded as

A“=ZAz(x)fﬁ, AZ=ZAf(a:)fﬁ, A

w

= Al(@)fa, (1.5.2)

with fz as in Eq. (1.3.2). Note that, since the original 6D field A, is real, A;ﬁ =

(Af:)T and, since 4, = —5(A4; —idy) = (4:)!, A7 = (A’;)T. The zero-modes are

a real 4D gauge field A and a complex field A% = (A2)!. For describing the other

modes we use the A7, AT and AT flelds, with 7 positive, as independent degrees of

freedom. ' It will be convenient to define, for each 7 > 0, the complex scalar fields
_ 1 3

. _ 1
G" = AL + A7), St =
V2Ip. 4 ( ) V2|p. 4

The 4D effective Lagrangian is

(p-4AZ — pzzAT) . (1.5.3)

Lo=L{+> Ly, (1.5.4)
>0
where,
L= —éFWOF“”O + (8,49 0442,
and

L5 =3 (Fu™) P 1 (8,67)T 094G + ma? (A7) 4p7
—im, | (47" 8,67 — 4#70, (G7) " (1.5.5)
+(8,57) 9157 — m? (57) 57,

with mz = v/2|ps .| as in Eq. (1.3.4). The zero—modes Lagrangian £) simply de-
scribes an unbroken U(1) gauge theory and one complex massless scalar field. The
massive Lagrangian L7, except for the kinetic term for the complex massive scalars
57 has exactly the same form as Eq. (1.4.4) when replacing A, with G and + with
Mg, so that it can be recast in the form of Eq. (1.4.6) with the suitable field re-
definitions. It then describes two real U(1) gauge bosons of a non-linearly realized

1We will say that 7 = (nq, n2) is positive when its first non—vanishing component is positive.
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symmetry. The complex field G provides, for any 7, the two degrees of freedom
the gauge bosons need to become massive. Note that, indeed, the 61 gauge trans-
formations, having expanded the gauge parameter « as

alz, z) = Z aq(z) falz),

act on the scalars A7, A7 as

7t .
- Az - sz,ﬁaﬁ )

(1.5.6)

o

LU TR ]

— AT —ip; poi .
The scalar S is then invariant while the pseudo—Goldstone boson Gy is shifted as
Gﬁ — Gﬁ - imﬁaﬁ .

By closely following the steps of the previous section, the gauge fixing term required
by each L} is easily derived and the convenient gauge—fixing term to be added to
the 6D Lagrangian is found to be

1

Lif = %

[B,AF — € (8,45 + 0:A.)]7 . (1.5.7)

The result is trivially extended to the non—abelian case and the ghost action to be

used is ‘ -

For ¢ — oo, as in the previous section, the unitary gauge is imposed. It now
correspond to the condition 8,A4; + 0;A, = 0, or Gz = 0. The physical 4D field
content consists on two towers of real vector bosons with mass mz (7 > 0), one
massless vector Ag, one massless complex scalar AY and, differently form the St
case, one tower of massive complex scalars Sz. Clearly, of the two Kaluza—Klein
towers arising from the internal components of the 6D vector, only one has been
eaten by the gauge bosons while the other is left as physical fields. In the following,
¢ = 1 will be chosen, so that the ordinary 6D Feynman gauge is recovered. As
discussed in the previous section, all Feynman rules are simply extracted, in this
gauge, from the ordinary ones by replacing the extra—dimensional components of
the momentum p,: with p.:7 and multiplying by the appropriate power of VV.
The 4D effective gauge coupling is now defined as
95

g4 N2

Again, 6D scalars or fermions can be trivially added to the gauge theory.

(1.5.9)
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1.6 Fermion Field

1.6.1 Fermions on S*!

Be U(x,y) a 5D spinor compactified on My x S, In 5 dimensions, spinors have 4
complex components as in 4D. A basis can be used for the 5D gamma matrices

I‘H’zfyﬂ) Fy:if)/s’

where * are the usual 4D gamma matrices and v5 = i7°. ..~ is the 4D chirality. In
5D, of course, chirality cannot be defined and the minimal spinor to be considered is
the Dirac one. The spinor ¥ can however be decomposed in 4D chiral components

as

1-— 1
U = ( 275)\11+( EVS)WE\I!RJFWL,

where L, R components are defined so that vs¥ 7 r = £V r. The 5D action is

ﬁ f[f— (7,1””6]\[ - ) U =

Uy, (i#8, — m) ¥ + Vg (190, — m) Up (1.6.1)
~\I_f_ (5y——m)\I/R—i—\IIR( 5’y-—m)\I/L.
Trivial periodicity is assumed for ¥ around the circle. When expanding the fields

as

ny
3: TL —"L—R— , a,} 'n -Z-ﬁ
V=2 2% — V=2 =
the 4D effective Lagrangian is found to be, after integration on S*

Lo= 5, [Briv0uup + Vrin" 0,03

=y, (1% +m) VR - Dp (—i% +m) U] =
S [FLiv0uE + i i
n\2 (7. n | =n.n

m? + (%) <¢LXR + XR@Z)L)} ;

(1.6.2)

having defined
1
Gl (m+iD)um
m+ ()
The 4D spectrum simply consists on couples of massive Dirac fermions A" = ¢} +x%

2 .
of mass m,, = 1/m? + ( R) n=1,...,00, plus a zero-mode fermion of mass m.
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Starting from the 5D Feynman propagator on My, the same result could have
been obtained. The (¥™4") (1" = ¥} +w}) correlator is found by replacing Py With
Pyn = 3 and reads

1
r*— (%)
From the above equation, one can extract

(W b p) =SB ) EE = —L——qip, |
p?=(%) -m

(W) =

P 5
; VP + =5 +m| G-

R

— m?

n T 5 no i ‘n (1.63)
(VI pr1) = %lw (0 >l£§75 = e (m+i%),
which matches the above result; one can indeed easily check that
(AMX") = > [V, + ma) (1.6.4)

]92 - My
1.6.2 Fermions on M, x C,

For later pourposes, we will consider in this section 6D fermion fields compactified
on a general smooth 2D manifold Cs, defined as in Sect. 1.1. We will also allow,
in this section, the 6D fermion to be charged under an U(1) gauge symmetry and
a background Ay = (4, = 0,4; # 0) to be present for the gauge connection.
A 6D fermion ¥(z,y) has 8 complex components and the 6D gamma matrices
' = (I'*,T'%) can be written as

M=+"Q1Ly,, I“=iyx®/p*, (1.6.5)

in terms of tensor products of the 4D Minkowskian gamma matrices v and the 2D

Euclidean ones p* we choose to be
pt=01, p=o0y, = py=1ipp’=—03, (1.6.6)

where o; are the standard Pauli matrices. The 6D chirality matrix I =T°...T% is
then the tensor product of the 4D and 2D chiralities:

I'7="7®ps. (1.6.7)

In the following, we will consider a 6D chiral (L-handed) fermion ;. According
to the above equation, it is decomposed in terms of chiral 4D fields as

U, = ( XR ) . (1.6.8)
XL

26



Note that now, since we are considering spinors on a non—flat space, it is important
to distinguish between the ordinary space-time indices, indicated as M ,N,O, ... for
the 6D space, p,v,p,... and 4,4, k,... for the 4D and 2D ones, respectively, and
the Local-Lorentz (LL) ones, on the local tangent frame in which the fermion field
is defined. We use 4,B,C, ..., a,8,7,..., a,b,c, ... to indicate the 6D, 4D and 2D
indices. For changing LL in space-time indices, the 6-bein E 1 must be used which
is defined by
Gun = EEPnap,

with nap = diag(+,—,—,—,—,—). The 6-bein components on our space with

7 ?

factorized metric as in Eq. (1.1.1) can be chosen to be

E/.La' J— 60&

g

where e;%(y) is the 2-bein for the Euclidean space Cs:
9i5 = ei“ejb(Sab .

The 6D Lagrangian for ¥y, is

1

Le =iV TMD) U, =i0,;TM <8M + 5

QAfBEAB +’iA]V[> vy, (169)

where ' = EMTA . Ay is the gauge field background, .5 = 1[4, Tg) is the
generator of the 6-dimensional LL group and Q% = —0,P4 are the spin connection
components. For a Levi-Civita connection, 2,47 can be extracted from the equation

written in terms of the 6-bein 1-form 64 = E,fdX™ and the connection 1-form
Q4% = 0)BdXM. From the above equation, it is clear that Q%% = 0 =  and
that the only non—vanishing components are Q% = w; “b(y)dyi, where w; o5 = W;i€g
(€19 = 1) is the 2 dimensional connection on Cs, defined by

df* +ewn b =0, (1.6.10)
with 0* = e;°dy* and w = w;dy’. Since T% = —11® [p% pt], Eq. (1.6.9) becomes
Lo =10 (v48,) @ 1V, + iV @ (ip'D;) Uy, (1.6.11)

where .
D; =08+ %ani +14;,
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is the 2D covariant derivative on Cy. According to Eq. (1.6.8), we expand the 6D
field as

Up(z,y) = > [X3(2) @ YY) + Xk(z) © YR(Y)],

where ¢}  are the L— and R-handed components of a 2D Dirac fleld Y™ = YT + YR
and x7 p(z) are the 4D chiral degrees of freedom. The functions ¢™ are chosen to
be the solutions of the 2D Dirac equation

o D}, = mtfy

for all possible values of m, real and positive. The 19)™’s form a complete set and,
due to the identities

m2 /C /31 = mamn. | dy/GuRI = m /C dy /UL
2 2 2

i D" = muyp" = { (1.6.12)

which are easily proven by repetitively using Eq. (1.6.12) and integrating by parts,
Y g and U} p are orthogonal if m, # my. For each mass level, degenerate wave
functions can be made orthogonal and one can choose the normalization so that

| duvavgivg = | duyaunivh = ..
Co Co
The 4D effective Lagrangian is then

Ly= 32, X" OuXE + X217 OuXE (1.6.13)

+HMaXEXE — imaXEXE ] '
so that the Dirac fields x* = X% + ix} describe a Kaluza—Klein tower of spinors of
mass My,

In summary, we have shown how the study of 6D chiral fields compactified
on a general 2D smooth manifold Cy can be translated into the study of the 2D
Euclidean Dirac equation (1.6.12) on Cs. This result has particularly important
consequences for what concerns the massless fermion content of the resulting 4D
theory. For m, = 0, Eq. (1.6.12) separates in two independent equations for the L—
and R-handed components of the spinor. In general, one finds n; L-moving and
nr R-moving independent solutions, corresponding to the presence of np g L, R-
handed massless fermions in the effective 4D theory. The asymmetry in the number
of L— and R-handed solutions to Eq. (1.6.12) is given by the Atiyah-Singer index
theorem 1

=T = 1.6.
g, ner o C2F) ( 614)
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with F' = dA. The index only depends, in 2D, on the gauge background A. Ob-
taining a chiral 4D spectrum (i.e. Z # 0) is very important for phenomenological
pourposes, but not so easy. The simple 7° compactification (or the S* one, as we
explicitly checked in the above section) does not lead to a chiral spectrum and one
has to consider, for instance, the 72 torus with a magnetic flux (see e.g. [46]) or
the 52 sphere with monopole background (see e.g. [19]). In both cases, however, it
becomes technically involved to deal with the resulting theory, so that chiral com-
pactifications on smooth spaces are not so commonly employed for model building.
On the contrary, orbifolds are commonly used from which, as we will better discuss
in the following chapter, chiral spectra can be obtained in a very simple way.

1.6.3 Fermions on T2

The torus 72 with no gauge background is a trivial application of the above section.
It will be better, however, to perform a little change in our notations when dealing
with this case. The fields are more conveniently expanded as

XE= Y Xifs, x1= Xifs. (1.6.15)

with fz as in Eq. (1.3.2), so that Feynman rules for X%,R interactions, when the
fermion will be coupled to other fields such as gauge bosons, can be extracted from
the 6 ones with the usual prescription. The wave functions in Eq. (1.6.15) cannot
be matched with those defined by Eq. (1.6.12) by the trivial identification. One has

Y = ( ik ) : (1.6.16)

e—icx fﬁ‘

with e™*\z = €'*|\z|, so that

ip'O" = \/§< (,;)_ % ) ( :_iff’i ) = ma)”, (1.6.17)

where 0, = % (01 — 10s), 05 = % (01 +10;) and myz = |Az|. As expected, the theory
describes a tower of spinors with mass my as in Eq. (1.3.4), with 77 € ZZ2. Clearly,
one L—- and one R-handed zero mode are present, since the index 7 vanishes.
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Chapter 2

Orbifolds

Let us consider a general d-dimensional manifold C; as in Sect. 1.1 and a discrete
N-element group Gy of isometries acting non—freely on it. The C;/Gy orbifold is
obtained by modding out Gy from Cg4, i.e. by identifying points y € Cy connected
by the Gy action: y ~ g -y, with g € Gy. The Gy group acting non—freely on Cg,
i.e. the existence of fixed points y; € C4 such that g - y; = v; for some g, is essential
in the definition. Field theories on My x C4/Gy are obtained from field theories on
My x Cq endowed with Gy invariance. Consider a field ®(z,y) on My x Cqg, the
action of g € Gy on it ?

O(z,y) — D(z,y) = G(9)®(z, 97" y), (2.0.1)

being a symmetry of the My x Cq theory. The orbifold model is defined by gauging
away the Gy action in Eq. (2.0.1), i.e. by eliminating from the theory quantum fluc-
tuations which are not invariant under the symmetry transformations. In practice,
one restricts to field configurations which are invariant under the Gy action:

®(z,9-y) = G(9)®(z,9), (2.0.2)

for any g € Gn. Physically, the above condition is very clear. Since the point ¥ is
really the same point as g - y, flelds at the two points must be equivalent, so that
they must be related by a symmetry transformation as in Eq. (2.0.2). The need for
the transformations (2.0.1) to form a representation of the Gy group, which simply
means G(g) to be a representation, is also clear from Eq. (2.0.2). If g3 = g1 - go,
g1,2,3 € Gy, we get from Eq. (2.0.2),

O(z,95 - y) = G(g3)2(z,y) = @(z, 91 92 - v) = G(g1) - Gg2)®(2,7)
which, in general, would imply ®(z,y) to vanish identically if G(g3) # G(g1)-G(g2).

1'We are neglecting here the case, which however may occur, in which G = G(y) in Eq. (2.0.1).
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2.1 The S'/Z, Orbifold

The simplest orbifold, S'/Zs, is obtained from the circle S* by modding out the
2-element Zy = {11, 25} group of parity, whose only non—trivial element zy (20% = 1)
acts as z -y = —y on the coordinate y € [—wR,7R) which describes the circle.
This is clearly a symmetry operation on S! and it has two fixed points y; = 0
and y, = TR on it. The fundamental domain is the segment [0, 7R] and the two
extremes, the fixed points, are not identified. The S*/Z, orbifold is then just a line
segment, whose boundaries are the fixed points. Consider a field ® on My x S*/Z,
and general Scherk—Schwarz periodicity conditions as in Eq. (1.2.1). If we have to
construct an orbifold theory, an action Zs € Zy (such that Z,% = 1, since it must
provide a representation of Zy) on ® must be defined

O(z,y) — D2(z,y) = Z2P(z, —y), (2.1.1)

so that the S* theory is invariant under it. To this end, we have to ensure the @
Lagrangian to be invariant, but also the transformed field in Eq. (2.1.1) to have
the same boundary conditions (1.2.1) as the original one, so that the z; action in
Eq. (2.1.1) is well defined on the S* fields. This implies the consistency condition

TZT = Zy. (2.1.2)

As already mentioned, S*/Z, is simply the segment [0, 7R]; Eq. (2.1.1) and (1.2.1)
can indeed be translated into boundary conditions. At y = 0, Eq. (2.1.1) implies

(I — Z3)®(z,0) =0, (L+ Z5)8,%(z,0) =0,

so that, since Z, can always be diagonalized as Z, = diag(+1,...,—1,...), we have
Neumann (0% = 0) boundary conditions at 0 when ¢ has parity Zs = 1, Dirichlet
ones (& = 0) when Z; = —1. At y =R, Eq. (2.1.1) and (1.2.1) imply

(1 —TZ)®(z,7R) =0, (1+7TZ)8,%(z, nR)=0.

Since, due to Eq. (2.1.2), (T'Z,)? = 1, Z§ = TZ, can be defined as the effective
orbifold projection matrix at the 7R fixed point. Depending on the sign of 7§ = +1,
Neumann or Dirichlet boundary conditions are given to ® at the second fixed point.

Suppose now ®(z,y) to be a scalar field with Scherk-Schwarz U(1) twist as in
Eq. (1.2.2). On @, Z, simply acts as +1 or —1, so that two inequivalent orbifold

conditions
O(z, —y) = £0(z,vy), (2.1.3)
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can be imposed. In both cases, however, Eq. (2.1.2), as it is always the case when
T and Z, are assumed to commute, implies 72 = 1. Consistency then makes not all
values of o in Eq. (1.2.2) to be allowed, but only o = 0, so that T'=1, or o = 1/2,
so that " = —1. The need for a to be quantized can be also understood from its
Wilson line interpretation, discussed in Sect.1.2. Performing a non—periodic gauge
transformation as in Eq. (1.2.4, 1.2.5), the twist « is removed from the S* periodicity
of @', but it reappears in the orbifold boundary condition of the gauge connection
A, As we will better discuss in Sect. 2.2, A,(—y) = —A, while, from Eq. (1.2.5)

Az, —y) = —A,(z,9) + — . (2.14)

The action of the orbifold z, transformation on A, is then the composition of the
parity operation with a gauge transformation of parameter § = 5725%:‘/' Correspond-
ingly, the same gauge transformation enters in the z, action of ® which indeed

is
'(z,y) — P2(y) = £¥F (2, —y), (2.1.5)

+ which is only compatible with & to be periodic when o =0 or a = 1/2. As for S?,
the Scherk—Schwarz twist on S*/Zy can be interpreted as a Wilson line on the path
connecting the two fixed points, which is however a discrete Wilson line since

W= emios S Avdy = 17

Moreover, as it is possible to see from Eq. (2.1.4) and (2.1.5), the case W = —1
(a=1/2) and W =1 (a = 0) are realized in two “topologically” different theories,
depending on the different choices of the z5 orbifold action on the fields. This is a
crucial difference with the S case, in which all Scherk—Schwarz twists were realized
as different vacua of the same theory and the actual value of o was dynamically
fixed. Since o is a discrete number now, no dynamics can fix it and taking W = +1
ie up to our choice in defining the theory. To conclude, we observe that continuous
Wilson lines also can be present on the S'/Z, orbifold, but only when 7' and Z,
belong to a non-abelian group. The condition (2.1.2) could indeed be satisfied by
& continuous set of transformations 7'(a) which it will be possible to reabsorb, as
usual, with a non—periodic gauge transformation, then resulting in a flat background
for some non-abelian gauge field. Also in this case, the Scherk—Schwarz symmetry
breaking is a Wilson line breaking.

Leaving aside for simplicity the case oo = 1/2, wave functions for ® on S'/Z, are
easily obtained as linear combinations of the S* ones in Eq. (1.2.3) which satisfy the
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orbifold condition (2.1.3). Normalizing, we find
2y — N
y) = 2 (foly) £ ful(— ; 2.1.6
W) = 2 (alw) £ £ul-0) 216

with 7, = 27%0/2, Leaving aside the case n = 0, in which f;" only is non—vanishing
and must be considered, since fn(—y) = f-n(y), we have f£ (y) = £f*(y), so that
independent wave functions in Eq. (2.1.6) are only labelled by n = 1,...,00. The
[F’s are simply given by the usual sine and cosine functions. As an example of
the orbifold compactification procedure, consider the scalar field ®* with orbifold
conditions as in Eq. (2.1.3) and periodic on the circle. It is expanded as

= (z,9) = > _¢n(@)fi(y), (2.1.7)

and this expansion must be inserted in the 5D Lagrangian
Ls = 0y (®)MD +m?(@) D,

and integrated in the extra dimension to get the 4D effective Lagrangian. The result
is immediately found if observing that the orbifold expansion in Eq. (2.1.7) can be
matched with the circle one

(z,9) = > 6u(@)falt) = dofo+ 3 (Bt + bnfn)

n n=1
by constraining the 4D S* fields with the conditions b = +£o_p = %qb:—: and
requiring ¢ = 0 for + = —, bo = ¢§ for £ = +. By imposing this on the 4D
S effective Lagrangian in Eq. (1.1.5), one finds that of the two degenerate massive
scalars of mass M,, = \/W only one survives the orbifold projection while the
other disappears. The massless zero-mode, moreover, only survives when Z = +1.
Note that the presence of two degenerate massive scalars in the S theory, which
the orbifold parity interchanges and which are identified by the orbifold condition,
is due to the parity invariance of the theory itself.

As already mentioned, orbifolds are particularly important for model-building
since they permit to generate a chiral fermion spectrum in 4D starting from a (non—
chiral) ED theory. To see how this happens, consider a 5D fermion ¥ on S'/Zo.
The parity ¥ — —v acts on the spinor representation of the 5D Lorentz group with
the matrix s, so that the orbifold condition on fermions is

W(SC) _y) = i’75‘1’<$, y) )
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where an additional & can be inserted by exploiting the phase transformation invari-
ance of the field. What is important in the above equation is that L— and R—handed
fermions are treated differently by the orbifold projection, so that if + = -+ is cho-
sen, ¥y, is even while Wp is odd. The chiral field are then Fourier-expanded as in
Eq. (2.1.7), with + for ¥y, and — for ¥y, the contrary for + = —. The orbifold
spectrum is immediately found from the circle one described in Sect. 1.6.1, in which
however m = 0 must be set, since a 5D mass—term mU¥ is not invariant under
the orbifold symmetry. Of each couple of fermions with degenerate mass m, = 5
(n=1,...,00), only one survives the orbifold projection and of the massless Dirac
fermion only one chirality (L-handed for = = +, R-handed for & = —) is left.
We have then seen how a chiral spectrum is obtained from the very simple S*/Zs

compactification.

2.2 Gauge theories on S'/Z,

Another reason why orbifolds are so popular is that they can break local or global
symmetries. Non-trivial conditions on the fields such as those given in Eq. (2.0.2)
or (1.2.1), of the form

O(z,9'(y)) = T2(z,y), (2.2.1)

can indeed, in general, restrict the symmetry group of ® since allowed transforma-
tions ® — @ will be required to preserve Eq. (2.2.1) in the sense that

' (z,y'(y)) = TP (z,y). (2.2.2)

In the case of global transformations, ® = g®, only those g will be allowed which
commute with 7', so that the original symmetry group is restricted to its subgroup
which commutes with 7. When dealing with local transformations, ® = g(z,y)®,
the condition coming from Eq. (2.2.2) is

9(z,y' ()T = Ty(z,y), (2.2.3)

and provides a restriction on the allowed local transformations to be performed.
In the case in which the condition (2.2.1) is identified with the general orbifold
condition coming from Eq. (2.1.1) and the local group is a generic non-abelian Lie
group G with generators ¢t* so that

g(z,y) = V™,
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imposing Eq. (2.2.3) means to define the parity of the gauge transformation param-
eters a® under y — —y. One has indeed

o (z, =yt = Zor (2, 9)t* 20" (2.2.4)

and, since Zo2 = 1, the above equation, when it is diagonalized, simply states some
combinations of the a’s to be even and some others to be odd. As we will better
discuss in the following, only the subgroup of G which is generated by the even t*’s
(i.e. the ones which commute with Zy, whose associated transformation parameter
o® is even) will appear as the gauge group of the resulting 4D theory. As we
discussed in Sect. 1.5, indeed, it is the “zero-mode” of the gauge parameter a® which
corresponds to the unbroken 4D U(1) C G which is left by the 51 compactification,
all the others being non-linearly realized.

Consider then, on the orbifold S?/Zy, the gauge connection Ay = Ap .t asso-
ciated to the group G, its components being periodic around the circle. The most
general orbifold condition one can give to A is

Az, —y) = ZoA,(z,9) 270, Aylz,—y)=—ZA (z,9)Z:7", (2.2.5)
: f y y

where the relative minus sign between the p and the y component is due to the
parity action. Note that the matrix Z, does not need to be an element of G for the
Lagrangian to be invariant. Clearly, Eq. (2.2.5) matches Eq. (2.2.4) in the sense
that the condition (2.2.5) is preserved by gauge transformations as in Eq. (2.2.4).
In practice, Eq. (2.2.5) simply states some of the gauge bosons to be even and
some others to be odd. To work out the spectrum and the gauge structure of the
resulting theory we can then simply consider abelian gauge bosons A% with both
possible parities:

Af(z,—y) = 2A%(z,y), Af(z,—y) = FA(,Y). (2.2.6)
When =+ = +, the fields are expanded as

Af(z,y) = ZA+ T Atz = AT,
which matches the S! parametrization (1.4.2) if imposing, for n # 0, A} = AJ" =
(An)T = —A*Z and Ay = A" = (A”)T = 2 A+". This means, with the
definition of Eq. (1.4.5), takmg Y " and y™ to vanish and A“"”’ = X}, AT = —iz™,
For what concerns the zero—modes, the gauge boson Az is left while the scalar Ag is

removed. We then find that of the two non-linearly realized U(1) symmetries we had

36



on St for any n > 0, only one is left, and correspondingly only one massive gauge
boson. The unbroken U(1) associated to the zero—mode of A, remains, so that we
have a massless 4D vector boson, while the extra massless scalar A‘y) is projected
out. When taking + = — in Eq. (2.2.6), fields are expanded as

A7 (z,y) = ZA_Z no ATulzy) = ZA_Z n

and to match Eq. (1.4.2) we have to require AL = AT =~ (AZ P %A'Z
and Ay = A;" = (A7)" = A7, which means A*? = Y7, A*" = y" while X7
and z™ are equal to zero. For what concerns the zero-modes, it is the scalar Ag
which is left now, while Ag is projected out. In this second case, then, there is
no track of the unbroken U(1) 4D gauge symmetry we had on S, which is now
explicitly broken, and just one tower of non-linearly realized U(1)’s is left. We have
then shown that of a 5D non-abelian gauge group G, only its subgroup H which
commutes with the orbifold projection Z, (whose associated gauge bosons have then
+ parities as in Eq. (2.2.6) with + = +) survives the compactification, in the sense
that in the resulting 4D theory we will find only an H linearly realized gauge group.
To conclude, note that all the discussion on the gauge fixing procedure performed in
" Sect. 1.4 for the S* case goes on in the same way for S? /Zs as well. The gauge fixing
term is the same as in Eq. (1.4.9) and the ghost action is given by Eq. (1.4.10). The
ghost fields, clearly, are subjected to the orbifold condition

c(z, —y) = Zye(z,y) 2o, &(x,—y) = Zot(z,y)Za~" .

In this section, we have described 5D scalars, fermion and gauge fields compacti-
fied on S*/Z, and we have shown most of the results to be similar to the S ones, and
easily derived from those. There is a point, however, in which the orbifold theory
appears different, and slightly more complicated then the corresponding flat—space
one. If on S* (and on T2 as well) Feynman rules for interacting theories are easily
extracted from the ones on the ED Mikowski one, essentially because translational
invariance is preserved, this is more difficult on the orbifold, since momentum con-
servation is violated. One can immediately realize that, if plugging a field expansion
like (2.1.7) in any 5D interaction Lagrangian, interactions which do not conserve
the Kaluza—Klein index n will arise. A method for simply obtaining the Feynman
rules on C4/Zy orbifolds from the corresponding ones on C4, which is very useful in
practical computations, is discussed at the end of this chapter.
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2.3 The T?/Zy orbifolds

The T2 torus is defined from the complex plane C with the identifications

27 R 27 R
z~ 2 — z~z+—U. 2.3.1
V2 7z (23.1)

The T?/Zy orbifolds are defined by modding out from the T? space the N—element
Zy group, of elements {1, zn, 2%, .-, ZN7'}, with 2y = 1, of 2w /N rotations
around the origin of the complex plane. On C, zy acts as

z — TZ, (2.3.2)

with 7 = e¥ . For this to be possible, however, the zy action in Eq. (2.3.2) must be
well defined on T2, meaning that points of C which are identified by the Eq. (2.3.1),
so that they are the same T point, must be rotated by (2.3.2) into another couple
of identified points. This requirement translates into the conditions

r=m+nU, tU=m'+n'U, (2.3.3)

with m, n,m/,n integers. It turns out that the only values of IV for which Eq. (2.3.3)
can be satisfied are N = 2,3,4,6. For N = 2, 7 = —1 and Eq. (2.3.3) is trivially
satisfied, for any U, when m = n' = =1, m = n = 0. For N = 3,4,6, on the
contrary, Eq. (2.3.3) only holds when the modular parameter is taken to be equal
to the orbifold twist: U = 7, so that orbifolds with N > 3 are labelled by one
parameter only, the overall radius R. For N = 3, due to the equation 1+7+7 =0,
Eq. (2.3.3) is satisfied for m =0, n =1, m' = n' = —1. For N = 4, 7 = i and
m=0n=1 m =—1andn =0 in Eq. (2.3.3). For N = 6, finally, the identity
1—17+72 =0 can be used to show that Eq. (2.3.3) works for m=0,n=1,n" =1
and m’ = —1. Being an orbifold, 7%/Zy has fixed points, whose structure is however
a bit more complicated then the S*/Zs one. Namely, points exist in the Z, and Zs
cases which are fixed under the action of some element zy' € Zy, but not fixed
under some subgroup of Zy, which interchanges (and then identifies) them. Fixed
points are then labelled as z,; (i = 1,..., F;), where the integer [, which assumes
values in the 1,..., [N/2] range, is the minimum power of 7 for which

!
z1, =T 21 +my +nU

for some couple of integers (m;,m;). In the following, a point z; will be called
an “I-fixed point”. On the fundamental domain of T?/Zs, shown in Fig. 2.1, four
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Figure 2.1: The picture shows the T2/Zy, T?/Zs, T?/Z4 and T2/ Zg orbifolds and their covering
torl. Points of decreasing size indicate the 1-, 2— and 3-fixed points respectively. The Grey
region represents the fundamental domain of the orbifolds, and the segments delimiting it must be
identified according to: A ~ D, B ~ C and, in the T?/Z case, E ~ F.

distinct 1-fixed points are present, with (n;,m;) = (0,0), (1,0), (1,1), (0,1) for
i =1,...,4, respectively. On T?/Zj;, one has three 1—fixed points with (n;, m;) =
(0,0), ( 0), (1,1) while tw 1-fixed ((n;, m:) = (0,0), (1,0)) and one 2-fixed ((n, m) =
(1,0)) points are present on 72/Z4. Finally, T?/Zg has one 1-fixed (0, 0), one 2-fixed
(1,0) and one 3-fixed (0, 1) point. In the following, however, it will be also useful to
define the numbers Ny of points which are fixed under the action of the zx* element
of Zy, which are called zy*~fixed points. In Ny, independent zy*—fixed points in
one fundamental domain of the 72 torus are counted. This number is given by

Np = {2 sin <%k>r : (239

and must not be confused with the number F; of [-fixed points. For N = 4 and
| =k = 2, for instance, F; = 1 while Np = 4, since the single 2-fixed point of T2/Z,
is counted twice in Ny, due to its mirror with which it is identified by the z; action,
and the 2 1-fixed points are also counted, since they are z4>~fixed also.

Consider now a field ® with general periodicity on T2

O(z, z + 2\1;_25) =T1®(z,2z), P(z,z2+ ?g—_@U) T29(z, 2), (2.3.5)

with [T1,T»] = 0, as shown in Sect. 1.3. The zy action on @
O(z,2z) — ®(z,2)N = Zy®(z,7712),
which is taken to be a symmetry of the ® Lagrangian, must also be compatible with
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its periodicity (2.3.5), i.e.

Zn® |z, 77 2+ Z8) | = T1 Zn®(z,7712),
B ( ojr;’{) 1 (2.3.6)
Zy® |z, 77 (2 + BEU } = Ty Zn®(z, 712)
for any ® as in Eq. (2.3.5). For N =2, Eq. (2.3.6) becomes
Zo®(z, —z — ZL) = Z,T710(x, —2) = T1 Zo®(z, —2),
2l 2\/§R> o _1( ) =120z, ~2) (2.3.7)
ZQ@(Q?, —Z — %U) = Z2T2 @(CE, ‘—Z) = TQZQ@(CE, -—-Z) ,
which implies
Zo =T, 2T}, (2.3.8)

for i = 1, 2 or, equivalently, (T; Z2)2 = 1. This condition is analogous to what found
for S'/Zs in Eq. (2.1.2). As for the circle, the general periodicity conditions (Scherk—
Schwarz twists) in Eq. (2.3.5) can be reabsorbed (if the 7;’s belong to some gauged
symmetry group) by local non—periodic transformations, so that they are equivalent
to a flat (Wilson loop) gauge background. We have two independent Wilson loops
on T2, wrapping around the two cycles on the torus, which are equivalent to the two
Scherk-Schwarz parameters which can be introduced in the periodicity conditions.
As for the circle, if 7% and Z, are taken to commute in Eq. (2.3.8), we find T;* = 1
which corresponds the two Wilson lines W; being discrete. Clearly, the two 7;’s can
be independently chosen. We will then say that two (Zg, since T2 = W2 = 1)
discrete Wilson lines are present on 72/Z,. Note that Eq. (2.3.8) does not forbid
Wilson lines to be continuous, when Z; and 7; belong to some non-abelian group.
Also in the continuous case, of course, W o are independent on 72/Zy. On T?/Zs,
on the contrary, Eq. (2.3.6) gives

Z30(z, 72z — 27—T—éi(l + 7)) = ZT7 Ty ®(x, 72) = T1 Z3@(z, 72)

oo _ ) (2.3.9)
Z3®(z, 7z + T5') = Z3T10(z,72) = TnZ3®(z, 72) ,
where the relation 7 = —1 — 7 has been used. The above equation implies the

two conditions ZsT7 1T2" V' = 7175 and Z;Ty = ToZ5;. The two matrices T} 9, then,
cannot be independently chosen, so that there is only one independent Wilson line
on T%/Zs;. When considering abelian groups, [1;,Zs] = 0, we find Th = T = T,
T3 = 1, and T is a discrete (Z3) Wilson line. For 72/Z4, similarly, we find from
Eq. (2.3.6) that Z,7% V=72, and Z,T1 = Ty Z4. Also in this case, then, only one
independent Wilson line is present which in the abelian case becomes a Zy Wilson
line, since T; = T and T2 = 1 when [T}, Z4) = 0. For T?/Zs, making use of the
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relation 7 = 1 — 7, one finds ZGTlTQ“1 = 117 and, as before, ZgT, = ToZs. On
T?/Zs, no discrete Wilson lines are present, since one finds 7} = 75 = 1 in the
abelian case. All the consistency conditions we have derived for N = 3,4, 6 can be

rewritten in the more standard form as
(TiZy)Ne =1,  ZyTy = T2y, (2.3.10)

where ¢ = 1,...,[N/2] is such that N/q is an integer.

2.4 Wave functions on T%/Zy

Suppose now ®9 to be a scalar field on 72 with trivial periodicity conditions around
the cycles of the torus, so that Eq. (2.3.10), since Z VY =1, is automatically satisfied.
The more general orbifold boundary condition is given by

99(rz) = g89(2),

where we have omitted the indication of the coordinate z (and %, as usual) for
simplicity, and ¢ = 1. The wave functions on which ® will be expanded are
linéar combinations of the 77 ones in Eq. (1.3.2). They are more easily found by
emjﬁloying the real coordinates wy; defined in Eq. (1.3.1), which are independently
periodic with period 2mR. For N = 3,4,6, with U = 7, the 2y twist changes the
point (wy,ws) into the point (—ws, w; + 271wsy), where 715 denotes the real and
imaginary parts of 7. For Zy, one has simply (wy,ws) — (—wi, —wy). It will be
convenient in the following to introduce a matrix notation, in which the vector @ is
transformed into the vector Z5w. The matrix Zy is given by

Zy = (_01 2;) (2.4.1)

for N = 3,4, 6, while Z; = —1. By remembering that the basis of periodic functions
on T? is given by the usual exponential functions fz(@) ~ e®" 7 in the 1 coordi-
nates, we find that the effect of rotating o with Z}; is the same as rotating 7 with
Zn so that, going back to complex coordinates

falrh2) = fz';,ﬁ(z) ) )\Zl’fjr‘i =75 (2.4.2)

One can easily verify that Zy7 € Z2 for all allowed values of N and 7. It is now
easy to construct Zy covariant wave functions on 7 by applying to the functions
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(1.3.2) the orbifold projection weighted by the Zy phase g. Defining for convenience
the quantity nz = IV ~375/2 those are given by

N-1

— "t ~k . y
hg (=) = \/7\7;9 fzea(2) (2.4.3)

and, thanks to (2.4.2), satisfy the twisted boundary condition

hi(rz) = ghi(2) .

It is easy to verify that these functions are orthonormal with respect to the Kaluza—
Klein momenta 7 and the twist g. However, the functions hZ(z) are not all indepen-
dent: those with mode vectors connected by the orbifold action are proportional to
each other through a phase:

K. () = g"Rhi(2) . (2.4.4)

ZNn

Correspondingly, the mode vectors 7 are not all independent but restricted to belong
to some fundamental domain, which can be determined as follows. The matrix
(2.4.1) represents the Zy action on the mode vector 7 for the torus wave functions.
For N # 2, it amounts to a rotation with phase 7 on the complex plane u =
—ny +7ny. This means that we can divide the space Z2 of all possible mode vectors
7l into the origin, which is left fixed by Zy, plus N sectors Dy, with k= 0,..., N —1,
mapped into each other by Zy. For N > 2, these domains can all be defined as
Dy = {7t € Z?|(Zk7); < 0,(Z5m)s > 0}, whereas for N = 2, they are given by

={ie Z%n >0®(n=0,n>0)}, Di={i€ Z%nm <0& (ng =0,ny <
0)}. The independent wave functions in (2.4.4) are then associated to 7 € Dy
plus the origin if ¢ = 1, the ones associated to @7 € Dy with k # 0 being the
Z y-transformed of these.

It is now straightforward to characterize the effective 4D theory arising from
T?/Zy compactification of our scalar ®. It can be expanded in KK modes as

®9(z, 2) = 6% 9% (z)hi(2) + Y ¢°x(z)hE(2) , (2.4.5)

AeDop

and, similarly to what done for S'/Z,, the above expansion can be matched with
the T2 one

N-1
®(z,2) = Z $a(2)fa(z) = dofo+ Z Z Ozrrat 2

neDg k=0
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vith the identifications gkéZNkﬁ = qgﬁ = Tlﬁc,bgﬁ and do = o'z for g = 1, qzo =0 in
all other cases. Note that, due to Eq. (2.4.2), since mz = |\z/, all the N 4D fields

Gz k5 (for 7 # 0) which arise from 72 compactification are degenerate in mass, as
a consequence of the Zy invariance of the theory. On the orbifold, all of them are
removed but one combination, so that the massive spectrum, which is independent
on g, consists on a tower of scalars with mass as in Eq. (1.3.4), one for each 7 € D,.

The zero—mode massless scalar, clearly, is present for g = 1 only.

2.5 Fermions and Gauge fields on T?/Zy

Be ¥, with the conventions of Sect. 1.6, a 6D L-handed field on the torus T2, with
trivial periodicities around the cycles. On it, the z) (2 — 72) transformation, which
is a rotation in the 6D Lorentz group, acts as

U(z) — UN(z) = g RU(T712), (2.5.1)

where ¢’ is an arbitrary U(1) phase and R = exp(%%in]m) is (up to a minus sign,
—1 = exp(2miJsg), corresponding to the ambiguity in defining the Lorentz action
on spinors) the representation on ¥ of 27 /N rotations, with Jsg = —%F sl's. Using
Eg. (1.6.5) for gamma matrices, one finds, in the 2 x 2 matrices notation defined by
Eq. (1.6.8)

~1/2

O3 T 0

']56 = -1 ® “‘"2 = R = < 0 T1/2 ) . (252)
Note that, as expected since it represents a 27 rotation on fermions, RN = —1, so

that we must take g’ = g7/2, with ¢V = 1, to ensure (¢’R)" = 1, as required for
Eq. (2.5.1) to be Zy transformation. The orbifold condition on U then reads

U(rz) = ( Xr(T2) ) - ( 9xr(2) ) . (2.5.3)

xL(7z) 97xL(2)
As for scalars, the 4D fermion spectrum arising from ¥ is easily extracted from
the known T2 one. The massive spectrum, again, does not depend on the twist g
and consists on a tower of 4D Dirac fermions with mass as in Eq. (1.3.4), one for
each 77 € Dy, the degeneracy in the spectrum being (partially) removed. For what
concerns zero—modes, one R-handed fermion is left for ¢ = 1, and one L-handed

for g = 7, so that we can have a chiral spectrum. No zero—modes are present for all

other twists.
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Let us now consider non-abelian gauge theories on 7°/Zy. Be @ a field on
T?/Zy transforming in some representation of a non-abelian gauge group §. We
take it to be periodic around the cycles of 7% and with generic orbifold boundary

conditions
O(1z) = ZnD(2).

The above condition, following the general discussion proposed at the beginning
of Sect. 2.2, implies a restriction, summarized in Eq. (2.2.3), on the allowed local
transformations g(z) = e***1** which can act on ®. In our case, Eq. (2.2.3) implies
specific orbifold boundary conditions for the local transformation parameters:

0o (T2)t* = Zyaa(2)t° 25, (2.5.4)

similarly to what found for S*/Z5 in Eq. (2.2.4). Let us now diagonalize Eq. (2.5.4).
Since Zy = 1, we can have a,’s of N different kinds, we call them ¢, with orbifold
condition

ad(1z) = gad(z). (2.5.5)

where ¢ = 7% and k = 0,...,N — 1. It is clear from the above equation that,
in general, of will be a complex transformation parameter obtained as a complex
linear combination of the starting a®’s, which are taken to be real in the standard
notation. Since the “zero-mode” of af is only preserved by Eq. (2.5.5) when g =1,
only the subgroup H of G generated by “untwisted” generators, i.e. the ones which
commute with Zp, whose corresponding a’s have g = 1, will appear unbroken in
the resulting 4D theory. To explicitly check this, consider the 6.0 gauge connection
Apr = Apgot® associated to the group G. Its orbifold boundary condition, compatible
with Eq. (2.5.5), is

Au(rz) = ZNAN(Z)ZKfl )

2.5.6
A (tz) = TZNnAL(2) 25, As(r2) = TZnAs(2)Z5. (2.5.6)

Note the 7 () factor in the twist of A, (A;) coming from the action of 27/IN
Lorentz rotations on the 6D gauge field. As for the transformation parameters,
Eq. (2.5.6) can be diagonalized and gauge bosons Aj,, with IV different twists can
arise, corresponging to the transformation parameter of. We are then lead to the
study of the 1?/Zy compactification of complex gauge bosons A%,

AS(Tz) = gAS(z), Al(rz) =TgA.(2), Al(rz) =T1gAs:(2), (2.5.7)

with all possible twists g = 7*. Note that AS,, being a complex field, is the gauge
connection of an U(1) x U(1) gauge symmetry.
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As usual, orbifold theories are more easily discussed by starting from the cor-
responding theory on the covering space. The results of Sect. 1.5, however, were
derived for a real gauge boson, so that they cannot be directly applied. Consider
then a complex gauge field Ay on T2 To avoid confusion, since we will be using
complex coordinates z and Z, which complex conjugation interchanges, it is better
to define AT = A = %(R +i]) and A~ = —\}—-?:(R —4l), in terms of the real gauge
fields R and I. Note that (A7) = AF, (A7)" = Af and (A7)" = A The Maxwell

z

Lagrangian reads

1 —MN
,CG = —*2‘F+MNF

2.5.8
=—%F+HUF—pV+F+#2F—ME+F+/—"§F—”Z+F+Z’EF.—ZE7 | )

with FEyy = 8MA}‘G - 8NA]T/I. After some trivial algebraic manipulation, removing
in the end all the A™’s in favor of the complex conjugates of the A*’s and omitting
the apex “+”, expanding the fields as

An(z,2) = ZA}?,I(:::)fﬁ(z) , (2.5.9)

the 4D effective Lagrangian can be written in the form
Lo=Ll+> L7,
7is0
with L} as in Eq. (1.5.5), having defined G and S; as in Eq. (1.5.3). The only
difference with Sect. 1.5 is that all A%, fields, and not just those for positive 7, are
independent degrees of freedom now. The theory then describes, for any 7 = 0,
a tower of U(1)? non-linearly realized gauge symmetries, spontaneously broken at
the scale mz. Moreover, one tower of complex massive scalars are present. At the
massless level, we have now two linearly realized U(1)’s, and correspondingly two

massless gauge bosons, and two massless complex scalars.
Consider now the orbifold theory, with orbifold condition (2.5.7). Orbifold fields
will be expanded on the basis of the h% defined in Sect. 2.4 as

Af(,2) = 69 AL (2)hE(2) + Tep, AL (@)RS(2)
AY(z, 2) = 6791 AL (@)hE(2) + Csep, AT (2), (2.5.10)
ALz, z) = 6791 AL (2)hd(2) + Tnep, ALRE (2),
which matches the 7?2 expansion (2.5.9) by identifying, at the massive level,
A A A
(T)FAZN'T = AT = o A9™, (2.5.11)
(Tg) AL = AT

1 49T
\/‘NAZ )
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for k=0,...N — 1. For the scalars defined in Eq. (1.5.3), the above identifications
imply ¢¢cGev" = G = ﬁG? and ghSév" = §7 = —\}——NSQH, which are the same as
for the 4D gauge bosons. For all g, then, of the N “degenerate” (i.e., broken at
the same scale m;;) non-linearly realized U(1)? symmetries, only one survives in the
orbifold theory, so that we have in the spectrum one complex massive gauge boson
only for any 7 € Dy. The same happens for the scalars S7. The big difference among
the various values of g comes however in the massless sector. When g = 1 and just
in that case, the linearly realized U(1) survives, together with its massless gauge
boson, while both scalars are removed from the theory. When g = 7, the zero—mode
scalar associated to A, survives, the one coming from A; when g = 7. For T%/Z,
we have both, and we have no zero-modes at all in the other cases. Note that, for
g # 1, when the 4D gauge boson is absent, the linearly realized U(1) symmetry is

explicitly broken by the orbifold.

For what concerns gauge—fixing problems, all the discussion of Sect. 1.5 can be
applied the same way to the orbifold case. The gauge—fixing Lagrangian reads, as
usual

f,g—f - _%Tr [a,uAM - 5(82145 + aEAZ)] ’ (2'5'12>

and the ghost action is like in Eq. (1.5.8). The ghost fields are subject to the orbifold
condition

o(t2) = ZycZyt, ©(rz) = ZnCZy .

For ¢ = 1, as usual, the 6D Feynman gauge is recovered, but extracting the Feyn-
man rules from the 6D one is not as trivial as in the 72 (or S*) case considered in
the previous section. As already mentioned, this depends on the fact that transla-
tion invariance is broken on the orbifold, so that if 6D fields are expanded on the
basis of orbifold wave functions, their interactions will not, in general, conserve the
Kaluza—Klein index. Propagators are, on the contrary, diagonal. In the following
section, along the lines of [25], a different parametrization of the orbifold fields will
be discussed in which interactions verteces are Kaluza—Klein conserving, while the
propagators are not. A simple prescription will be provided for obtaining orbifold
Feynman rules from the ones on the corresponding covering space. This reveals
to be an extremely useful tool when performing quantum computations in orbifold
theories.
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2.6 Feynman rules on orbifolds

Let us consider, as at the beginning of this chapter, a generic Cy /Gn orbifold, re-
stricting however to the case in which the N—element group Gy is a Zy group. This
is enough to cover all T%/Zy’s and S*/Zy orbifolds we have treated in this chapter.
Be @ a generic field on My x Cy, on which the zy orbifold Zy symmetry acts as

O(z,y) — Zn[®(z,y)] = ZyD(z,2x "1 y),

with ZyN = 1, so that Zy" = 1. The orbifold theory will be obtained from the g
one by restricting ® to be zy—invariant which means

®($7y) = Zy [@(m,y)] :

It is convenient [47] (see also [23]) to express ® in terms of an unconstrained field ®
on Cq with the same quantum numbers as @, so that the above orbifold condition
is automatically satisfied:

2y [«i(z,y)] =P [é(a:,y)] , (2.6.1)

=

1
N

o

i

e

where the P operator is a projector, meaning that P? = 1, from the space of
unconstrained C, field ® on the orbifold subspace. Orbifold correlators are obtained,
in a functional approach, by integrating the C; action on orbifold fields only

1 | .

(®...0" = -——/ DODDI® .. pleiSI®
Z[0] J zy @)=

In perturbation theory, all correlators are obtained from the free propagator through
the Wick theorem, interactions coming from the power—expansion of the exponential
of the action. Note that the action for the orbifold theory in the abaove equation is
equal to the one on the covering space so that the Wick expansion is the same in
the two cases, meaning that we have the same verteces in configuration space. The
difference comes from the free propagator which, on the orbifold, is 2

1

(0T = — / DEDD il (2.6.2)
Z[0] Jzy(@)=0

2We write the propagator in the form of a correlator among ® and its hermitian conjugate &7,
but our formalism clearly applies to real fields as well.
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Figure 2.2: Feynman rule for the propagators on an orbifold. In the figure, A, B are a generic
set of indices labelling the state and k = 0,..., N — 1 is the possible twist of the propagator.

where Sy = (®f, O - @) is the quadratic part of the action. The above equation can
be rewritten as
1 = = o = L b
(@01 = —— / DEDRIP [cp] P M eiSol%] (2.6.3)
Z[0]

where the integration variable d is a field on C4. This is easily proven by changing
variables in the above integral, splitting the ® field as =@+ P, where P[®'] =0
and & =P [@} as in Eq. (2.6.1). By using the fact that, due to the zy invariance

of the Cy4 theory,

the @' integration can be performed and one comes back to Eq. (2.6.2). We have
shown that the propagator of ® can be written in terms of the propagator of ® on
the covering space Cq4, 8s

@) = (P [#)] (P [8)])) (264
N-1
- 7\71—2 ZnM(@(an ™" - 1)@ (2 y2)) (20"
k=0
1 N-1 _ _
=5 2 It (@™ )9 (wa), (2.6.5)
k=0

where the last simplification in the above expression comes form the Zy invariance
of the C; theory.

The previous result is particularly useful when the covering space Cq is a flat
momentum—conserving space such as the circle or the torus. In that case, indeed,
Feynman rules on C4 are easily obtained from the corresponding Minkowski space
ones, as we already discussed in detail, so that the orbifold propagator in Eq. (2.6.5)
can be also obtained. The propagator of ® can be written, in terms of the wave
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functions fz given in Eq. (1.3.5), as

<®(y1)q}T yQ Z Gn fn Y1 — yZ)

where G denotes the standard form of the propagator in momentum space, and
the torus or circle periodicity conditions result only in the quantization of the KK
momenta in the internal directions. For T2/Zs 46, the orbifold transformation acts
on the KK momenta as in Eq. (2.4.2), while on S'/Zy, and on T?%/Z, as well, it
simply changes its sign. In all cases, we find

(®(y1) " (112)) =N ZZ Zn" G fzzva (y1) fi(2) - (2.6.6)
By expanding the orbifold field on the covering space basis
=Y 0 fuly) (2.6.7)
with f, as in Eq. (1.2.3) or Eq. (1.3.2), we find
N1
(D7 P71 Z Zn*Gr by gbs (2.6.8)
k.._O

The above equation shows that the propagator on an orbifold can be written as the
sum of N propagators, of which all but the first violate momentum conservation.
Any internal line of a Feynman diagram is then the sum of the “k” propagators
shown in Fig. 2.2, in which an incoming momentum 7 is changed into an outgoing
one Z}{,’“T’i. When using the Feynman rule shown in Fig. 2.2, an orientation of the
propagator is needed so as to distinguish incoming and outgoing lines. If the field is
complex this orientation is naturally provided; if it is real, one orientation has to be
chosen to apply the rule of Fig. 2.2, but clearly the result does not depend on this
choice. ,
For what concerns interactions, since we have shown configuration space Feyn-
man rules for the verteces to be the same as the covering space ones and the field ®
has been Fourier-transformed with the fz’s, momentum space Feynman rules will
be also equal. In this approach, the Feynman rules on S' or 72 will be used for
verteces and the orbifold propagator shown in Fig. 2.2 will be used for internal lines.
Computations are futher simplified by noting that any interaction vertex has to
be zy-invariant. Its action on a set of K fields, with modes @z, (f = 1,..., K),
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Figure 2.4: Equivalence between interaction vertices on a Zy orbifold.

is @z, — 2 N_I;CD 2k This leads to the following relation, valid for any interaction
vertex V (see Fig. 2.3):

k k
V{B],Z}\}kﬁl},..,,{BK,Z;,k'r-iK} [ZNl:IBlAl e [ZNK] Br Ak - V{Alsﬁl}v---{AI{,ﬁK} 3 (2.6.9)

where Ay, By can represent Lorentz and/or gauge indices of the various fields.
Thanks to (2.6.9), we notice that (see Fig. 2.4) if K propagators are attached to a
vertex, we do not have to sum over all their K independent twists, as one of them
can be set to zero, simply giving an extra factor of N. Notice that there is no need
for the vertex V to be elementary, i.e. to appear in the tree-level action.
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Chapter 3

Gauge—Higgs Unification in
Orbifold models

In this chapter, the possibility is discussed of building realistic models of EWSB
in which the Little Hierarchy Problem is solved through the implementation, in
the framework of flat ED, of the Gauge-Higgs Unification mechanism. ! In the
first paragraph, making also use of explicit simple examples, a short introduction
to the mechanism underlying these constructions is provided and the problems one
encounters when trying to formulate a realistic model are discussed, together with
their solutions. This leads us to a simple interesting model [24], formulated on the
S /Zy orbifold, with all the qualitative features of the SM, which however fails at
the quantitative level being the Higgs mass predicted to be smaller then the W
boson one. In the rest of the chapter, the possibility is discussed [25] of solving
this problem by considering 6D models on the T2/Zy orbifolds. In Sect. 3.2, GHU
models on 72 /Zy, based on an SU(3) gauge group, are discussed. The more general
orbifold projection which realizes the breaking of SU(3) — SU(2) x U(1) is found
and the resulting Higgs fields content of the theory is worked out. Projections giving
rise to a single Higgs doublet are found to exist for N > 2. In the remainder of the
chapter we focus on these single-Higgs projections, which are shown in Sect. 3.3 to
give rise, through the presence of a tree-level quartic Higgs coupling, to an Higgs
mass which is twice the W boson one. As discussed in the Introduction, a dangerous
tadpole operator can arise in 6D and destabilize the EWSB scale. This operator
is discussed in Sect. 3.4 and its one-loop coefficients computed for all orbifolds and
for any content of scalar and fermion fields. The phenomenological possibilities of

'For the warped case see e.g. [12, 48].
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single-Higgs 60 GHU models are discussed in Sect. 3.5. Particular attention is
devoted to the case in which the tadpole operator is globally vanishing and the
EWSB scale and the Higgs mass are not destabilized.

3.1 The Gauge—Higgs Unification mechanism

The Gauge-Higgs unification mechanism consists on identifying the Higgs 4D scalar
field as the components in the internal space of an ED gauge field. At the concep-
tual level, GHU models are very interesting since, through compactification, the
standard 4D electroweak gauge bosons associated to the SU(2) x U(1l)y symme-
try group and the 4D scalar responsible for its breaking both arise from the ED
gauge connection, so that they have a unified origin. At a more practical level,
4D scalars A, coming from an extra—dimensional gauge connection A, have a very
constrained (and protected) quantum dynamics. Infact, they are connected at high
energy, through Lorentz symmetry transformations, to 40D gauge bosons A, with
the same quantum numbers, whose dynamics is strongly constrained by the gauge
symmetry. Quadratic divergences in the one-loop scalar mass terms, for instance,
which are generically expected for 4D scalars, are avoided in these models very
much the same way they are cancelled in supersymmetric models. At energy scales
A above the compactification scale, or the inverse curvature radius in the case of
non-flat compactifications, Lorentz invariance and ED gauge symmetry are locally
restored, so that the high—energy contribution to the 2-point correlator (A,A,) is
part of the (A Ay) Lorentz multiplet. Since ED gauge invariance forbids high en-
ergy contributions to the gauge boson mass term, these are absent from the scalar
correlator as well. The mass term for A, will then in general be insensitive to the
high energy cut—off and its size of the order of the compactification scale, since the
integral on the momenta is naturally cut—off at that scale. At a more technical level,
this depends on the fact that allowed local operators to be used like counter—terms,
in which quantum divergences appear, are strongly constrained by ED gauge invari-
ance. In most cases, local operators which are quadratic in A,, so that they give rise
to scalar mass terms in 4D, are not allowed at all, and the mass term is finite. In the
following, we will show this mechanism to be at work in a simple example if a consis-
tent regularization prescription is employed. Note that, as we will see in an explicit
example, the above argument only applies to compactifications on smooth spaces.
On orbifolds, there are in general curvature and field—strength singularities localized
at the fixed points, so that ED gauge invariance and Lorentz symmetry are never
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restored at those points. This is to say that in an effective field theory approach
to the orbifold model, in which the singularity is unresolved up to the cut—off scale
A, local operators localized at the fixed points can arise, and act as counter—terms,
whose symmetry is reduced w.r.t. the “bulk” ED one. ? Such operators can contain
scalar mass—terms and reintroduce the one-loop quadratic sensitivity to the cut—off.

Let us consider now, along the lines of [20], a 5~dimensional U(1) gauge field A,,
compactified on the S* circle, coupled to a fermion ¥ of mass m and unitary U (1)
charge. As shown in Sect. 1.4, the massless tree—level bosonic spectrum consists on
a 4D U(1) gauge field Ag and one real scalar AJ, while at the massive level we have
a tower of massive gauge bosons corresponding to a tower of non-linearly realized
U(1)’s. The AS field is then massless at the tree-level, its one—loop mass is given by
the (connected, amputated) 2-point function at zero external 4D momentum. As
discussed in the first chapter, Feynman rules for this theory are easily found from
the usual Minkowski ones. Gauge fields do not contribute at one-loop and the only
diagram to be considered is the fermion one. Note that the sum on the internal line
ED momenta p, , = & must be performed, together with the 4D loop integral. One
finds

m2

mi® = —i(A%(0)A°(0)) = 427:12/ Z P (3.1.1)

[p? +p 2erz]

where g5 is the 5D gauge coupling and we have Wick rotated the 4D momentum,
so that p is Euclidean in the above equation. We see that each term in the sum of
Eq. (3.1.1) is quadratically divergent, so that there is no hope to get a finite result
in any regularization in which the Kaluza—Klein sum is truncated at some point
n = N and the d*p integral treated in some other manner. This was to be expected,
since in the truncated 4D effective theory the scalar Ag is Yukawa—coupled to the
N 4D fermions of the Kaluza—Klein tower of ¥, and each fermion contributes to the
loop with a quadratic divergency. There is no apparent reason why a big number of
fermions (for N — o0) should improve the situation. From the general discussion
above, however, it is clear that a cut—off in the Kaulza—Klein sum is not the right
regularization procedure, since the expected finiteness of my is due to the 5D gauge
and Lorentz invariance at hLigh energies. Our regularization, to be compatible with
this, must treat symmetrically, in the UV, all the 5 dimensions so that putting a
cut—off in the ED momentum p, , only is not acceptable. The right regularization

*The .arising, at the quantum level, of localized operator in ED effective field theories was
explicitly shown in [47]. See also [49] for a discussion of the role, in the context of 4D Casimir
effect, of operators localized at the boundaries of a segment.
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prescription, in particular, should make Eq. (3.1.1) vanish as the limit B — oo is
taken, since the 5D Minkowsky space gauge theory is reproduced, on which my
vanishes by gauge invariance. In the limit, the sum is changed in a p, integral and,
exploiting the assumed symmetry in the integration variables, we can change the
p,? term in the numerator in ps2/5, where ps? = p® + p,%. We then get

4 0 d®p 1
2 . 2 2
m (B = 0o) = 545 [3 - 5m2} / (27)° ps? +m?’

which is known to vanish in any gauge invariant regularization, such as the Pauli-
Villard or the lattice ones. ® Having assumed our regularization to be such that the
above integral vanishes, we can subtract it from Eq. (3.1.1) and get

d*p , 1 dp 1
2 2 y
my” = —4 —— (14 pd E —_—— —271R | ——— |, (3.1.2
H 94 ./ (2m)* (1+00,) [ - (%)2 + 02 27 p,? + p? ( )
where g, is the 4D gauge coupling as in Eq. (1.4.11) and p* = p* + m®. Using the
identity
1 d 1 27R
Z —— —27R Py T = z [tanh(27Rp) — 1] ,
- (%) + 02 2T py* + p 2p

we see that the argument of the integral in Eq. (3.1.2) is exponentially suppressed
at large p, like e 2", As expected, then, the mass of the scalar AJ is finite, and
exponentially UV insensitive. Due to the exponential factor, indeed, the integral
does not effectively receives contributions from momenta higher then the inverse
compactification radius, which acts as a cut—off.

As already mentioned, the finiteness of my comes from the fact that local 5D
gauge—invariant operators containing a mass-term for Ag do not exist. This is
particularly clear in the present case, since, as discussed in Sect. 1.4, a constant
background for Ag corresponds to a flat gauge background, so that the only gauge
invariant operator which is sensitive to it is the non—local Wilson loop (1.2.6) wrap-
ping around the circle. Therefore, no local operators exist which can contribute
to the AJ effective potential, which is then completely finite [44] at any order in
perturbation theory. This is a common, and extremely interesting, feature of all
GHU models in which the scalar field can be interpreted as a Wilson line. In these

3The lattice-regularized version of this model, with the appropriate link variables required to
preserve gauge invariance, was considered in [50] and shown to be equivalent to a strongly—coupled
4D Moose theory.
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models, the Higgs mass not only is stabilized, i.e. protected by large quantum cor-
rections, but also predicted in terms of the microscopic parameters of the theory. In
the 6D framework discussed in the following paragraphs, however, this Wilson line
interpretation will be absent.

Of course, 2 lot of work must be done for getting a realistic model of EWSB out
of the simple S* model described above. First of all, for the scalar field to resemble
the Higgs, we want it to be in the right representation (the 21) of the SU(2) xU(1)y
EW gauge group. Therefore, since the Higgs comes from ED fields in the adjoint
representation, enlarged groups must be considered, so that the 2 1 is found when
decomposing the adjoint in representations of the SU(2) x U(1)y subgroup. The
ED gauge group, then, must be broken by compactification, and at the same time
scalar zero-modes in the right representations must be left. One finds that this
cannot be achieved if considering S* or T2 compactifications. In that cases, indeed,
one always find the zero-mode scalars in the adjoint representation of the linearly
realized 4D group. On orbifolds, on the contrary, there is the possibility of building
such a model. Orbifold projections like those in Eq. (2.2.5) can indeed break the ED
gauge group, preserving at the same time scalar zero-modes which are not in the
adjoint of the surviving group, since “4” and “y” components of the gauge bosons
are treated differently by the projection. For example, consider [28, 24] (see [51] for
the study of this model at finite-temperature) an SU(3) gauge theory on S /Zy,
the connection having orbifold parities as in Eq. (2.2.5) with

-1 0 0
Zy=eV3 | o 1 0 |, (3.1.3)
0 0 1

where the t%’s are the usual SU(3) generators in the fundamental representation,
normalized to Tr(t*#) = 15‘11’ The adjoint representation decomposes as 8 —
3001 2¢- D2 _f under the SU(2) x U(1) subgroup and U(1), whose charge is
indicated for the varlous SU(2) representations, is generated by t®. Given Eq. (3.1.3)
and the above decomposition, the orbifold condition (2.2.5) is found to state the 5D
gauge bosons in the adjoint 3o @ 1o of the EW group to be even (i.e. we have
+ in Eq. (2.2.6)) while the other, which form one complex doublet of fields in the
2\/', are odd. At the massless level, then, the EW gauge bosons associated to
the SU (2) x U(1) linearly realized 4D gauge group will survive, together with an
Higgs complex doublet of scalars. There is a point, however, in which the above
construction is not satisfactory. Since the EW symmetry group originates from the
breaking of the simple group SU(3), a single gauge coupling gs is present, so that
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the U(1)y coupling gy is fixed in term of the SU(2) one g. For what concerns the
last one, it is immediately found to be g = gs/V27 R, as it comes from SU(2) gauge
bosons self-interaction diagrams. To determine ¢’, on the contrary, we have to look

at the Higgs interaction with the U(1) boson A% which is proportional to the Higgs

1w
t® charge Ve Having defined the Higgs hypercharge to be % as it should, one finds

2

gy /g = tanfy, = /3, which is clearly wrong. This is a common problem of all GHU
models based on the SU(3) gauge group and it will be also present in the 6D case,
even though in D = 6 the possibility opens up [23] to consider G instead of SU(3),
from which a better prediction [17] for 8y is found. To overcome this difficulty,
however, a very nice mechanism have been proposed [24] in which an extra U(1)" is
included in the 5D gauge group, which is unbroken by the orbifold projection. The
physical U(1)y is taken to be a linear combination of the two 4D surviving U(l)’s
and the weak angle is adjusted by suitably choosing the U(1)' 5D charge g'. Of the
two U(1)’s the hypercharge only is anomaly free and the anomaly of the other must
be cancelled by some generalized version of the Green-Schwarz anomaly cancellation
mechanism (see [52] for a comprehensive review of anomalies in ED field theories),
which also makes the corresponding gauge boson become massive, and decouple from
the theory. Since this mechanism seems to be generalizable to higher dimensions as
well, we will forget about this problem in the following sections.

Having found a realistic content of gauge bosons and Higgses is still not enough
for a realistic model. First of all, we have to ensure the dynamics of the theory to be
such that the Higgs takes a VEV on the vacuum, so that EWSB is achieved. This is
to say that the Higgs potential, which is finite due to the Wilson line interpretation
of its VEV, must have a non—trivial minimum. 4 Explicit one-loop computations
reveal this to be possible. One finds gauge field and ghost contributions to have
minimum at zero, while the fermion ones do not. A non-trivial minimum can then
always be realized when a sufficient (not so high, infact) number of bulk fermions
are present. The Higgs then takes a VEV, and this VEV should, as in the SM,
give rise to mass-matrices for the SM fermions, then breaking the flavor symmetry.
Flavor appears as a big problem in these models, since 4D zero-modes coming from
bulk 5D fermions from compactification have very constrained Yukawa couplings
with the Higgs. These couplings are indeed gauge couplings in 5D, so that they
are completely fixed by the representation of SU(3) in which the SM fermion is

4This is an example in which, as mentioned in Sect. 2.1, the condition (2.1.2) is satisfied by
a continuous T, which is equivalent to a continuous Wilson line. For an Higgs VEV (AZ) =
20/ (gsR)3%" aligned with the down component of the doublet, one finds an equivalent Scherk—
Schwarz twist T'(c) = exp(2mia7), which indeed solves Eq. (2.1.2) with Z» as in Eq. (3.1.3).
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embedded and there is no hope of getting the complicate SM flavor structure in
this way. Also in this case, orbifolds are extremely useful. At the orbifold fixed
points, indeed, the 5D Lorentz invariance is explicitly broken, as well as the gauge
one. Therefore, localized 4D chiral fermion fields in representations of the unbroken
SU(2) x U(1l)y group can be put at the fixed point. As we will better discuss in
the following chapter, such localized fermions which are commonly introduced in
orbifold field theories, can be thought to arise as string theory brane fields, the
brane being located at the fixed point, or to arise from ED “bulk” fields whose
wave function localizes around topological defects [34, 37, 38]. Neglecting for the
moment their origin, localized fields can be introduced in our model to represent
the SM fermions. Having done this, the problem comes of how to couple these fields
to the Higgs, so that they are sensitive to the EWSB. Simple 4D localized Yukawa.
couplings would indeed violate the residual 5D gauge symmetry which survives the
orbifold projection and in turn reintroduce quadratic divergences. In [24], (see [26]
for a different, though substantially equivalent, approach), the problem was solved
by introducing mass—terms mixing the SM fields with the 5D bulk fermions needed
torealize the EWSB. The last ones are taken in pairs of opposite orbifold parities,
so‘that a big bulk mass M can be introduced, which makes them decouple from the
low~energy theory. Bulk fermions are charged under SU (3) and then couple to the
gaige field background and communicate the breaking to the localized fields which
then develop mass—matrices. The many SM parameters for flavor (see [53] for an
interesting flavor model formulated in this set—up) are introduced via the mixing
mass-terms and the masses of the various bulk fermions. Interestingly, since the
EWSB is non-local, the bulk fields have to turn at least ones around the circle for
“feeling” the breaking, so that in the tree-level diagram for the SM masses, in which
they run as internal lines, an exponential suppression factor e=™M appears. Also
this mechanism seems easily generalizable to the 6D case, so that in the following
paragraphs we will not consider flavor problems any more.

The model [24], though extremely successful in reproducing the qualitative fea-
tures of the SM, fails at the quantitative level. In particular, it predicts too a small
Higgs mass, my ~ 30GeV at most, and requires too a low compactification scale,
1/R ~ 500GeV, while the current generical experimental bound on models of this
kind is 1/R > TeV (see e.g. [54]). Both problems come from the smallness of
the predicted Higgs quartic coupling, which is one-loop generated. By consider-
ing a quartic approximation of the Higgs potential, one comes back to the usual
—2|h)? + A|R|* SM potential whose parameters are estimated, from the above num-
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bers, as u ~ 0.156gy /R and A ~ 0.018gw?>. Note the small number in front of A,
which basically comes from a loop factor. Let us now modify the relation among X
and gw in A ~ axgw? One finds now 1/R ~ /ay/(0.156)v (where v = 246GeV
is the Higgs VEV) and mg/mw ~ 2v/2a,, so that both the Higgs mass and the
compactification scale would be raised if increasing «. Note that a ~ 1 would
be realistic. In the following, the possibility is explored to solve this problem by
considering 6 dimensional models, in which, as suggested by several authors [7, 22],
the Higgs field is not a Wilson line and a tree-level quartic coupling arises, so that
the loop factor in « disappears, and its size is increased.

3.2 Gauge—Higgs Unification on T%/Zy

Let us consider, with the notations of Sect.s 2.3, 2.4, 2.5, a 6D gauge theory com-
pactified on the orbifolds 7%/Zy. The Lagrangian of the orbifold theory is the sum
of a bulk contribution, which must be invariant under the full gauge group, and a
set of contributions localized at the fixed points of the orbifold, which have to be
invariant only under the gauge group surviving at these points. Remembering the
definition of zy*—fixed points given in Sect. 2.3, and observing that physically dis-
tinct and relevant sectors are only labelled by k= 1,..., [IN/2], where [...] denotes
the integer part, the general form of the effective Lagrangian can be parametrized

as
N/2] N

[
L=Lo+ > > 6D(z—2,)La,, (3.2.1)
k=1 ix=1
where Lg represents the bulk 6D Lagrangian and L4, the localized Lagrangians at
the N, zy*—fixed points, with N; as in Eq. (2.3.4). Since £ has to be invariant under
the zy orbifold action, and zy acts non-trivially on some fixed points, there are in
general various non-trivial constraints among the Ly; ’s. Moreover, the orbifold
structure respects a discrete translational symmetry mapping zy—fixed points onto
zy—fixed points. ® This implies that the Lagrangians Ly4;, are constrained to be
all equal at fixed & and hence there are only [IN/2] independent localized terms
appearing in (3.2.1).
In the following, we shall restrict our study to the prototype models of gauge—
Higgs unification with a gauge group G = SU(3) that is broken to H = SU(2)x U(1)
by the zy orbifold projection, with the mechanism discussed in Sect. 2.5. We denote

5This is true only in the absence of localized matter that is not uniformly distributed over the
fixed points or of discrete Wilson lines.
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by t* the SU(3) generators with the standard normalization Tr%® = %5“2’ in the
fundamental representation. The unbroken generators in SU(2) and U(1) are t123
and t*. The broken generators in SU(3)/[SU(2) x U(1)] are instead #4567, and
can be conveniently grouped into the usual raising and lowering combinations t*! =
—\}3(754 +it®) and t*? = Z5(t° £ it"). In this basis, the group metric in the sector
+i,+7 is given by hy; _; = h™ ™7 = §%. The most general way to realize the above
breaking is obtained by realizing the orbifold action on the gauge field in Eq. (2.5.6)
through the matrix

1 ™ 0 0
1,8
In = 7.2”p(§+ﬁt ) 0 7% . (322)
0 0 1

The number n, must be an integer and is defined only modulo N, so that there are
a priori N — 1 inequivalent possibilities.

The geometric part of the zy action on a field is fixed, as it clear from Eq.s (2.5.1,
2.5.6), by the decomposition of its representation under the 6D SO(1,5) Lorentz
group in terms of SO(1,3) x SO(2), where SO(1,3) is the 4D Lorentz group and
S@(2) ~ U(1) is the group of internal rotations. The gauge part of the action on
a field in a representation R of SU(3) is instead given by the twist matrix Zy in
Ec (3.2.2) generalized to the representation R. This fixes the zy transformation of
any field, up to an arbitrary overall phase g, such that the N-th power of the zy
action is trivial on all the components of the field. The orbifold boundary condition
of ‘a generic bosonic or fermionic field component ®, with U(1) charge s under
internal rotations and in the representation R of SU(3), is then given by

®(12) = gpr Rs Zr®(2) . (3.2.3)

In this equation, Zx denotes the twist matrix Zpy in the representation R and
Ry = 7° is the Lorentz rotation associated to the geometric action of the twist. The
overall phases gp r are such that gﬁ = 1 for bosons and gf;v = —1 for fermions, since
RY = 41 in the two cases. It is convenient to define gr = gT%, gB = g, so that g is
an N-th root of unity for both bosons and fermions. Correspondingly, there are in
general N different boundary conditions, associated to the N possible choices of g.
The expression of Z% can be conveniently written as

Zp = 2 (F A7) (3.2.4)

?

where % is the Cartan generator 8 in the representation R and ng is an integer
number such that Zz" = 1. It can be written as nRr = N1 — Ny, Where n; and ny are
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the two Dynkin labels of the representation R. Since the canonically normalized (so
that the Higgs field has %— hypercharge) abelian generator surviving the projection
is Qr = %tg , the matrix (3.2.4) gives a phase 72n0(5+9) on a component with
U(1) charge ¢ under the decomposition of the representation R under SU(3) —
SU(2) x U(1). The relevant informations are listed in Table 3.1 for the first few
representations. In the following two subsections, we consider in some more detail

the decomposition of gauge and matter fields, as given by (3.2.3).

R | Decomposition of R | nr
3 |21

6 3
6 3% & 2,_% Bdl_2

8 30@2%@2_%@10
10 4%@30@2_%@1—1

L O

Table 3.1: Decomposition of the most relevant SU(3) representations.

3.2.1 Gauge fields

The gauge fields Ay transform as vectors under SO(1, 5) rotations and in the adjoint
representation under gauge transformations. In complex coordinates, the decompo-
sition of A under SO(1,3) x U(1) is very simple: we get a 4D vector field A, with
charge s = 0 and two 4D scalars A, and Az with charges s = —1 and s = 1 respec-
tively, consistently with Eq. (2.5.6). The boundary conditions can be obtained from
Eq. (3.2.3) with g = 1. The gauge part of the orbifold twist is diagonal if one switches
from the standard basis with components Ay, to the creation—annihilation basis
with components AM1,2,3,3, Apxr = %(AM4;?;AM5) and Apjio = %(AMG :F’iAM7).
The final result is that the various components of the gauge field Ay = >, Apq t°
satisfy twisted boundary conditions with the following phases:

. 1 1
Aposs:l, Anipss T, Az1038: 7, 3.2.5

Ayt TEY A FoEe AL HEne (3.2.6)

The light modes of untwisted fields consist of the gauge bosons A, 235 forming
the adjoint of the surviving gauge group, the scalar fields A.,; with their complex
conjugates As_; forming a charged Higgs doublet under this group if n, = 1 mod N,
and the scalar fields A,_; with their complex conjugate Az;; forming a conjugate
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charged Higgs doublet if n, = —1 mod N. Referring to the decomposition reported
in Table 3.1, the projection keeps the 3¢ and 1y components for 4D indices and
some numbers n and n. of the 2 1 and the 2_ 1 components for internal indices,
depending on IV and n, = 1,..., N — 1. The possibilities for the numbers (n, n.) for
the consistent constructions labelled by the integers (N, n,) are the following:

(n,ne) = (1,1): for (N,n,) = (2,1); (3.2.7)
(n,ne) = (1,0) : for (N,n,) = (3,1),(4,1),(6,1); (3.2.8)
(n,ne) = (0,1) : for (N,n,) = (3,2),(4,3),(6,5); (3.2.9)
(n,ne) = (0,0) : for (N,n,) = (4,2), (6,2),(6,3), (6,4). (3.2.10)

It is therefore possible to construct models with two conjugate Higgs doublets (Zs),
a single Higgs doublet (Z3, Zy4, Zg) or no Higgs doublets at all (Z4, Zg).

3.2.2 Matter fields

A 6D Weyl fermion Wy of definite 6D chirality decomposes under SO(1,3) x U(1)
nto two 4D chiral fermions with charges s = £3: Uy = (Y1 p),_ 1@ (XR.L)ser 1,
where L, R denote the 4D chiralities. We thus see from (3.2.3) that any 6D Weyl
spindr gives rise to two 40 fermions of opposite 4D chiralities, twisted by g and g7
as in Eq. (2.5.3), times the gauge part of the twist. More generally, a 6D spinor
field ¥, of 6D chirality xs = &1 transforming in a representation R of the gauge
group, gives rise to different 40D spinor components 1, ,, with U(1) charge ¢ and
4D chirality x4 = %1, twisted by a phase:

Yoa : 9T F 2 (Fre) (3.2.11)
Depending on N and n,, the various possible choices for g allow the zero modes
of different subsets of components to be preserved. We will not list here the many
possibilities, since they can be easily derived from the data reported in Table 3.1.

For scalar fields the analysis is simpler, since they are singlets under Lorentz
transiormations and thus s = 0 in (3.2.3). The twist of a scalar field ¢% in a
representation R of the gauge group is only given by its gauge decomposition. For
a generic component ¢, with U(1) charge ¢, one has

Notice that there is a one-to-one correspondence between the case of scalars and
1-x4Xa
that of spinors, since the additional phase 7 P arising for the latter is always an

61



N-th root of unity and can therefore be compensated by a different choice of g. It
is easy to verify that the zero mode of any component can always be preserved with
a suitable and unique choice of the phase g, both for scalars and for fermions. This
is an important property for model building.

3.3 Higgs potential

Having defined a class of 6D GHU models, let us now see if, as expected, realistic
EWSB and Higgs masses can arise, due to the aforementioned tree-level quartic
coupling. In the literature, 6D Gauge-Higgs unification has been studied already
[22, 23] (see also [55]). Most of the models discussed so far, however, were based
on Zs orbifold constructions that necessarily lead to two charged Higgs doublets.
In this case, the tree-level quartic term has a flat direction, just as in the MSSM,
and therefore fluctuations along this direction only have radiatively induced masses,
which in general tend to be too small. We then focus our attention on 7°/Zy
orbifold constructions with N > 2 leading to one Higgs doublet. As we shall show
below, these models have a non-vanishing quartic tree-level potential, in contrast to
the S'/Zy orbifold. As already discussed, this term is responsible for an important
distinction between the interpretation of EWSB in T2/Zy and S*/Z, orbifolds.
In the 5D model, the VEV of the Higgs field is a flat direction of the classical
potential and corresponds to a Wilson loop, which is also equivalent to a twist in
the boundary conditions around S*. In 6D models, on the contrary, the VEV of the
Higgs field is not a flat direction of the classical potential, and such interpretation is
missing. Indeed, there exist no continuous families of solutions to the usual orbifold
consistency conditions for Wilson loops (2.3.10) in the case of SU(3) gauge theories
on T?/Zy with N > 2. Only discrete Wilson loops are allowed. Nevertheless, the
5D and 6D models share the interesting property that the Higgs dynamics is much
more constrained than what is just implied by the surviving gauge symmetry. This is
a consequence of the non-linearly realized remnant of the higher-dimensional gauge
symmetry associated to parameters depending on the internal coordinates, under
which the Higgs field transforms inhomogeneously [56].

Let us now compute the classical Higgs potential that arises for the single Higgs
models on T?/Zy with N = 3,4,6. We choose n, = 1, but the case n, = N — 1
is perfectly similar up to an overall conjugation and therefore physically equivalent.
The classical Lagrangian of the 6D theory is given simply by L = —%trF]ﬁ N, Where
Fun = OuAn — OnAn — igs [Anm, An]. The Lagrangian for the zero modes ASAC

I
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and A? is easily obtained by integrating over the internal torus. The result is given
by '
1
L=-5tr F2 +2tr|D,A%? — g2tr[A%, AY?, (3.3.1)

v

where g4 = g¢/VV, as in Eq. (1.5.9), is the gauge coupling of the 4D effective
theory below the compactification scale, Fy,, = 8, A —8,A% —igy[AS, A7) is the field
strength of the massless 4D gauge bosons, and D,A2, = 9,A; — igy[AS, A%,] is
the covariant derivative on the Higgs field. The three weak gauge bosons and the
hypercharge gauge boson are identified as W, = A%, for a =1,2,3 and B, = Al

The zero modes of A, =} A,,t% where a = 1,2, 3,8, are then given by

(Wit BB VW) 0
0 __ - 1
Ap=5| VIWr  -Wi+ 5B, 0 : (3.3.2)
0 0_ v B,

Similarly, the two complex components of the Higgs doublet are h, = A%, and
ha = AZ,,, and their complex conjugates are given by h* = A2 | and h} = Al .
The zero modes of A, =}, A.it™ and A; = Y, A- ;™ are thus given by

‘1 0 0 hy L [0 00
Al=—=100 hy |, A=—1| 0 0 0 (3.3.3)
V2 00 0 V2 Rt R% 0

Substituting these expressions in the Lagrangian, and switching from the SU(3) to
an SU(2) notation, we finally find:
1

L=-
2

~ 1 . Ta . 1 2
trFu? = SR+ J(é‘p — 194 Wyay- — igs tan 9W§Bﬂ>h’ — Vitass (R)(3.3.4)

where tan 0y = \/§, as for the S? /Zy case discussed in the previous section and
2
‘/class(h'> = %'h’4 . (3'3'5>

Quantum fluctuations induce a correction to the classical potential (3.3.5) and
can trigger radiative symmetry breaking. The quantum effective potential can only
depend on gauge-invariant quantities. These can be local or non-local in the com-
pact dimensions. Non-local operators involve Wilson lines wrapping around the
internal space and are generated with finite coefficients whose size is controlled by
the compactification scale 1/R. The local and potentially divergent operators con-
tributing to the Higgs potential arise from the non-derivative part of F,;, like the
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classical quartic term. Gauge invariance allows two possible classes of local op-
erators of this kind: even powers of Fyny in the bulk or arbitrary powers of Fi:
localized at the orbifold fixed points. In general, such terms will be generated at
the quantum level with divergent coefficients. At one-loop order, the bulk opera-
tors that can lead to divergences in the Higgs potential are the gauge kinetic term
F2, and a quartic coupling Fi;y, leading to quadratic and logarithmic divergences
to V(h) respectively. Localized operators are of the form gzp FY., where p is any
positive integer. Quadratic and logarithmic divergences can arise from the tadpole
operator p = 1 and the kinetic operator p = 2 respectively. Since the quadratic
bulk divergence gives rise only to a wave-function renormalization, we see that the
only quadratic divergence to the Higgs potential comes from the localized tadpole
operator F,;. In general, the latter induces a modification to the background and,
in its non-abelian part, possible mixings between the Higgs and its KK modes, aside
from a quadratically divergent mass term for the Higgs field h. In the rough ap-
proximation of neglecting the backreaction induced by the modified background and
the KK mixings, effects that we will consider in section 3.5, and also neglecting all
the logarithmic divergences, we see that the leading terms in the one-loop effective
potential for the Higgs are

Viuant (B) = —p2|B)2 + AlR[*, (3.3.6)

where 12 is a radiatively generated and possibly divergent mass term and A = g%/2
is the tree-level quartic term. Assuming p® > 0 so that EWSB can occur, we have
(|A]) = v/v/2 with v = p/v/A. At the minimum,

my = \/§M=\/§v\/x
1

mw = 5 gv. (3.3.7)

The ratio between my and my is therefore predicted in a completely model-independent

mE _ V2 _ (3.3.8)

mw g
Extra U(1) fields, possibly needed to fix the weak-mixing angle to the correct value,
do not modify Eq. (3.3.8). The main radiative correction to Eq. (3.3.8) arises from

way to be

the Higgs wave-function distortion induced by the tadpole operator F}z, as explained
in section 3.5. This effect can be estimated by Naive Dimensional Analysis (NDA)
to give O(1) corrections to Eq. (3.3.8). In spite of this, the value of the Higgs mass
is significantly increased with respect to the previously considered 5.1 models or Z,
orbifold constructions.
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3.4 Divergent localized tadpole

We have seen that gauge invariance allows a localized interaction that is linear in

the field strength, in addition to the universally allowed higher-order interactions

involving even powers of the field strength. The localized interaction is particularly

relevant, since it involves a mass term for the Higgs fields [30]. It has the form®
(N/2)

Ny
e
Lina =—i ) FIZ > 63 (z — 2z, ) FE(2), (3.4.1)
k=1

ip=1

where Cj, are real coefficients of mass dimension 1 and Ffz is the field strength of
the U(1) component left unbroken by the orbifold breaking, which in terms of 6D
fields reads

F8 = 0,A% — 0,48 + g8 A,,A;. . (3.4.2)

The operator in Eq. (3.4.1) is clearly compatible with the gauge symmetry since
(see Eq. (2.5.4) with Zy as in Eq. (3.2.2)) allowed local SU(3) transformations are,
at the orbifold fixed points, in the SU(2) x U(1) subgroup, so that the abelian U(1)
generator is gauge—invariant. In Zy orbifold models, the parity symmetry z < Z can
be implemented and it forbids the appearance of the tadpole, which is odd under
this discrete symmetry [23, 30]. This parity can be generalized to Zy orbifolds,
with N > 2, only if the twist matrix Zy is such that Zx? = 1. The allowed form of
the tadpole operator is then Im Tr Zy F,;, which automatically vanishes whenever
Zn* = 1. More precisely, we will see that the term associated to k in (3.4.1) can be
written as Im Tr Zy*F,;, implying that the tadpole vanishes in the sectors k& such
that Zy%* = 1, when the above Z, symmetry can be implemented. Notice that
projections that leave only one Higgs doublet do not satisfy Zy? = 1 and hence are
generally affected by tadpoles. We verify this statement by performing a detailed
calculation of the coefficients Cj, for all Zy models at one-loop order. In particular we
compute the contribution to the tadpole arising from gauge (and ghost) fields, and
from an arbitrary bulk scalar or fermion in a representation R of SU(3). Possible
localized boundary fields cannot minimally couple to the fields appearing in (3.4.2),
because of the residual non-linearly realized gauge symmetries that are unbroken
at the orbifold fixed points [56]. We therefore consider in the following 6D bulk
fields only. This computation is also useful to understand whether and under what
circumstances an accidental one-loop cancellation is possible.

6 Abelian gauge fields that are present already before the orbifold projection and are unbroken
can also develop a localized divergence term as in (3.4.1), but in this case the associated divergent
mass term for even scalars, the last factor in (3.4.2), is absent.
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As shown in Sect. 2.6, the computation of Feynman diagrams on an orbifold
can be nicely mapped to that on the corresponding covering torus by using a mode
decomposition such that the effect of the orbifold projection amounts only to a non-
conservation of the KK momentum in non-diagonal propagators, all vertices being
momentum—conserving. In the present case, computations are drastically simplified
by this technique. We extract the coefficients C; by computing the 1-point function
of all the KK modes of A%. We then work out also the 2-point function for the zero-
mode A of the Higgs field, defined as in (3.3.3), to extract its finite non-local mass
terms and to check the 1-point function computation. In order to find an expression
that can be directly compared with the computation of 1- and 2-point functions
for KK modes, we need to work out more explicitly Eq. (3.4.1). Using the 7% mode
expansion, as discussed in Sect. 2.6, we easily find:

[N/2]
/dﬁzm_ ch{z an %) (panAl s — peadls)

zk—l

+ —%@ f8+i—j)hih} . (3.4.3)
where p, 5 = ‘\‘/i—iA.,ﬁ, Dz = ~—\}-—§X,ﬁ are the internal KK momenta, with A\, A 88

in (1.3.3), and the dots stand for all the remaining quadratic couplings between all
the KK excitations of A, 4; and Az _;. Using the identity

Nk Z fn 461,k = \—/—__." (1 Zﬁ,)"lﬁEZQ ) (344)

dp=1
valid for all the T?/Zy orbifolds, the contributions of the two terms in (3.4.3) to
the 1- and 2-point functions are found to be
N/2]
= ipsq Z 5(1 _zk)-1hez? (3.4.5)

(hihl) = guf**7 j‘f G (3.4.6)
\/_

Notice that the Higgs mass term arising from (3.4.6) is sensible only to the sum of
the tadpole coefficients Cg.

3.4.1 1-point function

According to the considerations of Sect. 2.6, all the Feynman rules for the verteces
are the standard ones, whereas the propagator has to be replaced (see Fig. 3.1) by
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Figure 3.1: The gauge and ghost contributions to the 1-point function (A2 7).

its twisted version, as in Fig. 2.2. In the following we adopt the Feynman gauge,
obtained through the choice £ = 1 in the general gauge-fixing term in Eq. (2.5.12).
By 4D Lorentz invariance, a tadpole can be generated only for the field components
A and AZ. An explicit computation of this tadpole shows that it has the form:

. 2 d'p Dz
Aen) =002 & Z/ @2m) 1 — 2|p P R O=ZR (347)

wliere é,‘j are numerical coefficients depending on the kind of field running in the loop
and p* = p,p* is the 4D momentum squared. The sector k = 0 never contributes.
For the sectors k # 0, the §-function in KK space relates the internal momenta of
the virtual state to that of the external particle: D= (1— T’“)*lpg,ﬁ. We can then
perform the sum over m, and we are left with the condition (1 — Zy*)~'7 € Z2.
Therefore, the quadratically divergent part of Eq. (3.4.7) has the form of Eq. (3.4.5).
This condition can easily be shown to be equivalent to (1 — Z& )=l ¢ 722, so
that in Eq. (3.4.7) the sector N — k contributes just as the sector k. The two
contributions of these conjugate sectors can be paired, as expected, and simply
yield twice the real part of one of them (with the obvious exception of the sector
k = N/2 that, if present, must be counted only once). Finally, defining the new
coefficients £f = —21~%kn/2r—k/2N1/2{a Eq (3.4.7) can be rewritten in the more

suggestive form

[N/2]
(A2z) = =gaD(A) D prabu_giy-rneze ImEE + ..., (3.4.8)
k=1
where s .
— b _ 2
D(A) =4 / iy = A (3.4.9)
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The dots in (3.4.8) stand for additional logarithmically divergent and finite sublead-
ing corrections. These corrections are very similar to those found in [57] for the
FI term in 5D SUSY theories on S'/(Zy x Zj), and are associated to interactions
involving additional internal derivatives 0.0; acting on F. . Notice also that in the
presence of an additional bulk mass term M for the fields running in the loop, which
is possible for instance for scalar fields, Eq. (3.4.9) gets modified through the simple
substitution A2 — A% — 2 M?In(A/M).

The contributions to £° of the gauge and ghost fields in the adjoint representation,
and of complex scalar or Weyl spinor fields in an arbitrary representation R and
with overall twist g, are found to be:

_1 ) ] ] ) ]
(E)emse = —37 [5(7% 78— (7% + 7—&)} Trag | Zn"27) . (34.10)
k
2 . .
(Sg)sca.lar = ]\7]\]1/2 gk (Té + T g)ﬂR [Zth } ) (3.4.11)
k
210k /2

(fg)fermion - (4) (QT%)k TlR [ZNk ta} ) (3412)

NN?
where (£2)gange also contains the ghost contribution. The gauge trace appearing in
the above coefficients is as expected to differ from zero only for a = &, reflecting the
fact that only a U(1) tadpole is allowed by the gauge symmetry. It is easily evaluated
by recalling the definition of the twist matrix Pr, Eq. (3.2.4), and exploiting the
decomposition of the representation R under SU(3) — SU(2) x U(1). Denoting
by dg, and gg, the dimensionality and the charge under Qr = %t% of the r-th
component R, in the decomposition R — &, R, we find:

Trg [PH¥] = V3> dp,qr, 72" (FHamek, (3.4.13)
Rr
Notice that the gauge contribution to the tadpole vanishes at 1-loop order for the

7., case. The same happens for any scalar or fermion contribution in a real repre-
sentation. This can be seen by using the relation (valid for any Zy orbifold):”

Trg [P*5] = —Trg [P7*%] , if R real. (3.4.14)

This result is in agreement with that found in [30], where it was also generalized
to the 2-loop case. On the contrary, for N = 3,4, 6, there is always some tadpole

7 Actually the scalar contribution in the Zg model vanishes for any representation, not only for
real ones.
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Figure 3.2: The gauge and ghost contributions to the 2-point function (hih}).

coefficient that is non-vanishing for the single-Higgs projections. The tadpole can
only vanish for the zero-Higgs cases N = 4, n, =2 and N = 6, n, = 3, since they

correspond to vanishing Im Tryg; [P’“ t“].

In order to relate the coefficients &f to the coefficients C), appearing in (3.4.1),
we must compare Eq. (3.4.8) with Eq. (3.4.5), which have as expected the same
structure. The result is

Cr = g4VVD(A) Im €S . (3.4.15)

We summarize in Table 3.2 the contribution of a Weyl fermion to Cj, for all possible
twists and for the first few SU(3) representations. Notice that the contribution
of a fermion with twist g in the conjugate representation R is equal to that of a
fermion twisted by g7 in the representation R. Similarly, a scalar in the R with
twist g contributes as one in the R with conjugate twist §. The sum over all
possible twists for any scalar or fermion contribution always vanishes, since in this
case one reconstructs the matter content that would appear on the covering torus,
which cannot give rise to any localized divergence. We see that for N = 3,4,6
and for any choice of fermion representations, it is impossible to cancel the total
(gauge+ghost+fermion) one-loop contribution to each tadpole coefficient, although
one can obtain their global cancellation, namely the cancellation of their integral
over the compact space ), Cr = 0. This seems to be possible, without scalars, only
for Z4 with an odd number of 6D Weyl fermions in suitable representations. If one
includes scalars, an accidental local one-loop cancellation of the tadpole is possible,
but in this case one needs a symmetry to protect the mass M of the 6D scalars,
which is otherwise expected to be at the cut-off scale A, and reintroduce a quadratic
sensitivity to the latter.
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V2 1 T Zs3 1 T 72

c(3) | —4 | 4 c(3). | —4 | —4 | 8

a(6) | 4 | -4 c(6) | —20] 16 | 4

a8 | 0 | o a(8) | 12 | 24 12

(10) | —12 | 12 a(10) | 12 | 12 | —24

Zy 1 T N Zs T I I I I

a3 | 0 | =8| 0] 8 |[a@) | 4 | 4] -8 -4 4|8

(6) | —24| 16| 24 | 16 | | cy(6). | —4 | —32| 28| 4 | 32 | 28

a(8) | 24 | 24| 24| 24 | |cx(8).| 36 | 0 | —36|-36| 0 | 36

c1(10) | —48 | 24 | 48 | —24 | |ci(10). | —60 | —84 | —24 | 60 | 84 | 24

538 | 4| 4 | 4] 4 | @B | -4| 4|8 | -4 48

o(6) | 4 | —4 4| | en(6) | —20| 16 | 4 |-20| 16 | 4

w8 | 0 | o 0 | | ca(8) | 12 | —24] 12 | 12 |24 12

c(10), | =12 | 12 | =12 12 c(10) | 12 12 | =24 | 12 12 | =24
s(3) | —4 | 4 | —4 "4 4
s(6) | 4 | —4| 4 | 4] 4 | -4
8 | 0] 0| 0] 0|00
c3(10) | =12 | 12 | =12} 12 | =12} 12

Table 3.2: The contribution to the tadpole coefficients C;, from Weyl fermions for various repre-
sentations and all choices of the phase g. We report the quantity c; = /3 N Im[¢8], which for the
gauge contribution is given by ¢; = 0 for Zg, ¢; = —21 for Z3, ¢; = —36 and ¢ =0 for Z4, and
c1 = —45, cg = —21 and ¢z = 0 for Zg. In all cases, we are considering the projection with np = 1,
giving single-Higgs models for N # 2.

3.4.2 2-point function

We now compute the one-loop 2-point function for the Higgs field, at zero external
4D and KK momentum. Contrarily to the 1-point function, which we have computed
for any external KK momentum, this correlation gives us information only on the
form of the operator (3.4.1) integrated over the compact space (see Eq. (3.4.6)).
Nevertheless, it provides an important independent check of the 1-point function
computation and also allows the extraction of the finite non-local contributions to
the Higgs mass. ‘

Thanks to the property displayed in Fig. 2.4, each of the diagrams contributing
to the one-loop Higgs mass contains only one twisted propagator with twist k. The
diagrams with k¥ = 0 give a finite contribution, which reproduces up to a 1 /N
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factor the result that would be obtained for a theory on the covering torus 72. The
remaining contributions arising from the diagrams with the insertion of a propagator
with & 5 0 are instead divergent. Owing to momentum conservation at the verteces,
the internal KK momentum in the twisted internal lines has to vanish (see Fig. 3.2).
The general structure of the Higgs 2-point function is then given by:®

(hi hl) = g2 fs77€8, D(A) + g3 6 €, F(R), (3.4.16)

with D(A) as in (3.4.9) and
2

[ d*py U B
PR =i [ 555 3 iy = e L m + Unl™ 8427

REZ? A0

It is straightforward to compute the diagrams controlling the divergent part.
Note that ghosts do not contribute, because their coupling to the Higgs is propor-
tional to the KK momentum. Thanks to the identities

Trg [tT477 25" = 7MTeg [t7¢T 20"

o 1 )
Ter [t 28] = —ifst ‘Tz [t Zn"] , (3.4.18)
the result can be rewritten as
‘ (/2]
&= Im&, (3.4.19)
k=1

where the £5’s turn out to precisely match the expressions (3.4.10)—(3.4.12) extracted

from the 1-point function computation. This result represents a non-trivial check of

that computation. Indeed, comparing Eq. (3.4.16) with Eq. (3.4.6), we deduce that
(N/2]

> Ci=9sV/VD(A) & (3.4.20)
k=1

which is compatible with the result in Eq. (3.4.15) thanks to the relation (3.4.19).
The diagrams contributing to the finite part can be computed as well, and the
coefficients of the finite part are found to be given by:

(gfgin)gauge = Q%O(Adj) ) (3.4.21)
4
(ggn)scalar = NO(R) ) (3422)
4
<£§n)fermion = ’2N_C(R) ) (3.4.23)

8Equation (3.4.16) is valid also for the Zo model, where two Higgs fields are present. In this
case, there are additional 2-point correlators that we neglect. See e.g. [22].
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in terms of the quadratic Casimir C'(R) of the representation R, defined by the
relation Trg [t*t"] = C(R)6%, so that C'(Fund) = § and C(Adj) = 3.

3.5 Phenomenological implications

In sections 3.3 and 3.4 we have shown how 6D gauge theories on orbifold models
can lead to a beautiful prediction for the Higgs mass, but at the same time they
are affected by a quadratic divergence arising from a localized tadpole term. It is
thus natural to try to understand whether and to what extent such models can be
considered for realistic model building.

As already mentioned, it seems straightforward to introduce SM fermions and
to break the flavor symmetry in this modes, by generalizing to 6D the construction
of [24]. Moreover, fixing the weak mixing angle to its true value seems possible by
introducing additional U(1) gauge fields in the bulk, again generalizing [24].

The real issue, however, is that the presence of the quadratically divergent term
(3.4.1) can destabilize the electroweak scale. It must therefore be understood how
much (if any) progress has been achieved with respect to the SM, as far as the little
hierarchy problem is concerned. The abelian and non-abelian components of the
localized operator (3.4.1) induce respectively a non-trivial background for the field
A% and a mass term for the Higgs doublet A7*. The latter can generate not only
a mass term for the 4D Higgs field, but also mixings between all its KK partners.
These mixings can be neglected only if their magnitude is much smaller than 1/R,
the typical mass of KK modes. In our case, Cx > 1/R (see below) and the effect of
all these mixings, as well as that of the non-trivial background for A%, must be taken
into account. In order to see if and how much the EWSB scale is sensitive to this
divergence, one has to compute the background value of A% and study the quantum
fluctuations around it, to get the physical masses of the various fields, in particular
for A7*. A similar analysis has already been performed in [32], where the effect of
localized FI terms in 6D orbifold models has been studied (see also [58]). As already
mentioned, the tadpole (3.4.1) can be interpreted as a FI term in SUSY theories;
this suggests a correspondence that allows a study of its physical consequences even
in our non-SUSY set-up. The background induced by the tadpole can be explicitly
found as follows. If one sets to zero all 4D gauge fields, the effective potential one
obtains for the scalar fields A%, in the unitary gauge £ — oo in (2.5.12), can be
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written, up to some irrelevant constant terms, as

(N/2]

3
_%ZIFZ{:IQ—HF" [Fi-z‘z 25@ oz
a=1

zk—l

(3.5.1)

The potential (3.5.1) is a sum of squares and thus, as it happens for the D-term
potential of SUSY theories, configurations where it vanishes are automatically con-
sistent classical backgrounds. In the particular case where the tadpole globally
vanishes, that is ), Cx = 0, the background value of the fields can be easily deter-
mined. By taking an ansatz in which all fields A, ; 53 and A, 1; vanish and the only
non-trivial background is given to A, g, which is neutral under the SU(2) x U(1)y
EW group, all terms vanish in Eq. (3.5.1) but the last one. A global minimum
(V = 0) of the potential is found if

(/2]

F.: = —20; AS—zZ Ci ZM ~ z, :—zZ@ 69 (z - z), (3.5.2)

11\1

where the sum in the last term runs on the distinct fixed points z; on one fundamental
domain of the covering 72 and & is the appropriate combination of the tadpole
coefficients C. To be precise, if we want, as we will, to think the A% T2 field to be
e fleld on C with suitable periodicity conditions, the Lh.s. of Eq. (3.5.2) must be
extended by periodicity to the whole complex plane. The unitary gauge condition
0,A% = —8; A has been used in Eq. (3.5.2). By defining A% = id,W, Eq. (3.5.2)
reads

— 1 g
OIW = - \;@-5( Nz —z), (3.5.3)

which is basically a generalized form of the equation for the 2D propagator on the
complex plane C.

Solutions to Eq. (3.5.3), for any Zy orbifold model, are easily constructed as ra-
tios and products of the four Jacobi theta functions 6; 5 3 4, defined as in Appendix A.
Let us consider now, for definiteness, the case of T%/Z4, in which (see Fig. 2.1), 4
fixed points are present. Of those, two are 1-fixed (2, = 0 and 2z, = 7’—\};(1 + 1)),
while the others (z3 = “7—1% and z3 = ”—\/};z) are 2-fixed, and are identified by the orb-
ifold symmetry, so that the tadpole coefficients &3 4 at those points are equal. The
function W solving Eq. (3.5.3) is found to be

1 : z N 126
W = —log <I=I 16:( ﬁwR'Z) 2&) : (3.5.4)



To check this, one has to use the identities in Eq. (A.0.3), with ¢ = e 2™ for U =1
as in our case, showing that the product of theta functions in Eq. (3.5.4) can be
written as a product of §; functions with shifted argument. Since the only point
at which 6;(z|¢) vanishes is z = 0, where it behaves like z, we see that the only
singularities of W in Eq. (3.5.4) are located at the four fixed points. Around each
z; point, W behaves as

W~ Iog(ﬁ I ) + cosnt.

\/—
so that, by remembering the relation 80log(|z|*) = 4 () (2), we have proven Eq. (3.5.3)
to be solved by Eq. (3.5.4). Note that we have never used, up to now, our assump-
tion that the tadpole should be globally vanishing. This however turns out to be
essential if W has to be periodic on T2, as it should since A8 is periodic. If the pe-
riodicity under z — z + /27 R is automatic, (see Eq. (A.0.4)), the transformations
of the theta functions under z — z + 4 in Eq. (A.0.5) implies

Wiz + 2\7;51) =W(z)+ (—;— + Imz) Z & .
The tadpole must then be globally vanishing for Eq. (3.5.3) to have a solution
compatible with the torus boundary conditions, meaning that a neutral background
like the one we are looking for can be obtained only in this case. The last point
to be checked is the background we have found to be compatible with the orbifold
boundary conditions we have assigned. This is to say that W must be untwisted
under z — iz, since A, has twist —i. This is immediately checked to be the case,
if, again, the tadpole is globally vanishing, thank to the relations

Oy(—izli) = e TG, (20),  Bosal—izli) = € Oa54(2]0)

which can be deduced from the modular transformations of the theta functions.

Having found the background, let us consider quantum fluctuations. We are
intersted, in particular, to the existence of a zero-mode solution A;g for the field
AZ% to be identified with the Higgs. By looking at the potential in Eq. (3.5.1),
we immediately recognize that a mass—term for AZ* can only come from the second
term, the last one generating the quartic coupling. The wave function for the Higgs
field is then found by solving the first-order equation

2 (3 +zge—7\i§<A§>) To=0, (3.5.5)

74



where we have used the unitary gauge condition. The above equation is immediately

solved. It is, up to normalization

V3gs
20 = e W,

(3.5.6)
We will not provide here a detailed study of the above function, and we refer the
reader to [32]. We just want to observe that, in the presence of the tadpole, the
Higgs wave function (3.5.6), behaves at the fixed points as

. /5
so~lz—al” Al

(3.5.7)
so that not only it will be singular at some points, but may even be not normalizable
if &; is positive and large enough. Moreover, there are various integrals involving
A;io which are physically relevant. The 4D effective Higgs quartic coupling, for
instance, is proportional to the integral of the 4-th power of ;6 while the Yukawas,
since fermions have wave functions which are similar to the Higgs one, arise from
cubic integrals. It seems then that in the present situation a complete treatment
of the orbifold theory is impossible without referring to an underlying resolution
of the orbifold singularity. In [32] a ‘“resolution” of the orbifold singularity was
considered, consisting in replacing the delta function with a regular distribution of
width r, where r has to be considered as the size of the resolved fixed points. In
so doing, Eq. (3.5.6) is replaced with some smoothed version of it, so that it can
be normalized and all relevant integrals can be computed. The resulting physical
quantities, however, are sensitive to the resolution scale 1/r so that, in practice,
they are sensible to the UV resolved completion of the orbifold theory. There is also
another reason to believe the tadpole operator to be deeply related to the resolution
of the orbifold singularities. It is known, and this will be explicitly shown in the
next chapter when we will address the problem of orbifold resolution, that localized
curvature and field-strength backgrounds are “hidden” inside the fixed points. As
shown in Eq. (3.5.2), the effect of the tadpole is precisely to add some localized gauge
field-strength to the usual flat background F' = 0. It then corresponds somehow to
renormalize the localized gauge background which is present on the resolved orbifold.

Let us now come back to our GHU model with globally vanishing tadpole. The
above reasoning shows that a globally vanishing tadpole does not give rise to any
quadratic divergence in the Higgs mass parameter p? appearing in (3.3.6). In other
words, a globally vanishing tadpole is harmless for EWSB, which is governed by the
finite non-local contributions to the 2-point function, proportional to (3.4.17), which
for simplicity we have neglected in these simple lines of arguments. In the presence of
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globally vanishing one-loop tadpole, the little hierarchy problem is then solved. The
non-trivial profile for the Higgs field, however, induces large corrections to (3.3.8),
since this ratio depends on the integral of the Higgs profile in the internal directions.
As mentioned in Sect. 3.3, such corrections are estimated to be of O(1) and thus
might significantly alter the tree-level result (3.3.8). To be more quantitative, we
can rely on the higher-dimensional generalization of the NDA [59]. We denote in
short by I, = 1672 and lg = 12872 the 4D and 6D loop factors. The relation
between the cut-off scale A and the compactification scale 1/R is then estimated
to be A ~ g7 (2nR)™*/Is, which for the EW coupling yields A ~ 10/R. In this
way we obtain an estimate for the tadpole coefficient C; that is in agreement with
the direct one-loop result reported in (3.4.15) and of order lg/(2mRgals) > 1/R,
as mentioned. On the other hand, the value of u? in Eq. (3.3.6) induced by finite
non-local corrections is of order u? ~ g3/(l4R?), and from (3.3.7) one estimates
1/R ~ 1 TeV and A ~ 10 TeV, which are compatible with present experimental
bounds in a natural way. On the other hand, for a globally non-vanishing tadpole,
it is reasonable to expect to have effectively p? ~ giA?/ly. From (3.3.7) one now
estimates A ~ 1 TeV, corresponding to 1/R ~ 100 GeV. The amount of fine-tuning
that is needed in this case is about the same as in the SM, and there is no progress
concerning the little hierarchy problem.
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Chapter 4

Orbifold resolutions and fermion

localization

As already discussed in the Introduction, compactification on orbifolds is a particu-
larly useful tool, in the context of extra dimensional field theories. Simple orbifolds,
in particular S*/Zy and T2 /Zy, are frequently employed in model-building, asin the
cases considered in the previous chapter, for their capability of breaking symmetries
and introducing chirality in the fermion spectrum. As also shown in Sect. 1.6.2,
however, chiral fermions also arise in any smooth compactification such that the
index of the Dirac operator (see Eq. (1.6.14) for the 6D case) is non-vanishing.
For what concern symmetry breaking, it clearly can arise on a smooth space if a
background of a non-abelian gauge field (like A, for the SU(3) case previously
discussed) is turned on. Both effects, then, could be also obtained by flux compact-
ification, which consists on considering more complicated non—flat spaces like those
described in Sect. 1.1 and 1.6.2, on which background for the gauge (and eventually
gravity) fleld strength is present. The main reason for preferring orbifolds is sim-
plicity; when considering fluxes, indeed, we have seen how it becomes technically
much more involved to deal with the resulting theory, while an orbifold model can be
studied on the covering space (which is in general trivial and flat such as the circle
or the torus) by gauging away the discrete orbifold symmetry. Apart of simplicity,
another important reason why orbifolds are so commonly used is the flexibility in
their 4D field content. At the fixed points, indeed, 4D localized fields of any kind
are commonly introduced in arbitrary number.

Although their apparent simplicity, orbifolds have singularities at the fixed points,
and can be seen as singular limits of smooth resolving spaces. Under this point of
view, orbifold compactification is just flux compactification, in the limit in which the
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fluxes approach a singular profile. In this chapter, which is based on [37] and [38],
a resolved version of the C/Zy, T?/Zy and S'/Z, orbifolds are constructed, and
the free theory of a 6D chiral spinor studied on them. We show that each orbifold
singularity admits various topologically different resolutions, labelled by an integer
monopole charge g one can add at each resolved fixed point. As a consequence of this
fact, the index of the Dirac operator on the resolved space, which depends on these
monopole charges, can assume different values, so that different fermion zero—mode
spectra can arise on the resolved theory. This may appear to be an inconsistency,
since in the un—resolved orbifold model, which the resolution should resamble in the
suitable limit, the number and chirality of the zero-modes which survive the orbifold
projection is fixed. Our study of the resolved Dirac equation reveals, however, a very
nice physical interpretation of the extra zero-modes. Their wave function is indeed
found to be peaked around the resolved singularity, and their probability density
to become a delta—function in the orbifold limit. A certain, quite wide, number of
“brane” fermion distributions are then found to originate naturally, as an effect of
the resolution, from a single “bulk” 6D field.

In Sect. 4.1, a resolved version of the non-compact C/Zy orbifold is constructed,
and the free theory of a 6D chiral spinor studied on it. This theory represents a
resolved version of the fermion orbifold model and, indeed, the usual 4D chiral zero
modes are reproduced when the orbifold limit is taken. Extra states are found, how-
ever, with a profile localized at the resolved fixed point. In Sect. 4.2, the compact
T?2/Zy case is considered. Resolutions are built for all orbifolds and all possible con-
tent of discrete Wilson lines. The number and chiralities of 4D localized fermions
one can get from a single 6D chiral field are classified. In Sect. 4.3, finally, St/ Zs
orbifolds are discussed. The case is considered in which S'/Z, can be seen as a
degenerate limit of 72/Zy, and the resolution is then comstructed as the limit of
the T2/Zy one. Localized chiral zero-modes are found to arise also in this case and
their number and chiralities are classified. Moreover, by also making use of numer-
ical methods when needed, massive states are also considered. The mass—spectrum
and the wave functions are shown to correctly reproduce the orbifold ones, when
the orbifold limit is taken.

4.1 Resolution of C/Zy orbifolds

As the simplest example of the resolution procedure, let us consider the C/Zy
orbifolds, which are the non—compact versions of the T?/Zy ones. As we will see
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later, T2/Zy is locally equivalent to C/Zy, so that constructing a resolved version
of it permits us to discuss the resolution of T%/Zy as well. The C/Zy orbifolds
are obtained from the complex plane C with euclidean metric by identifying points
connected by a 27/N rotation around the origin. The fundamental domain one
gets is the 27 /NN plane angle in between the z = ¢ and z = 7t (¢ real an positive,
7 = ¢*/N) lines, which are identified. The plane angle can be deformed isometrically
in R® until the two extreme lines coincide, the resulting surface, shown in Fig. 4.1,
being a cone of angle «, with sina = 1/N. Let us consider on this space a 6D L—
handed spinor field U. As discussed in Sect. 1.6.2, the wave functions in the internal
space of its 4D L— and R-handed components can be combined in a 2D Dirac field

[ Y=r
() .

subjected to the 2D Dirac Equation (1.6.12). Our field, which is assumed to possess
an U(1l) phase transformation symmetry, is defined as a field on C which remains
invariant under a 27 /N rotation around the origin, modulo a suitable phase trans-

formation. Consistently with Eq. (2.5.2), we have
W(rz) =Pilz), P =emll-m)meRr, (4.1.2)

where p is any integer running from —N +1 to N — 1 at steps of 2. The U(1) phase
in Eq. (4.1.2) is chosen to make PV = 1 and an extra —1 = €™ has been included
in the Lorentz part of P for future convenience.

4.1.1 Definition of the resolving space

The C/Zy orbifold is a cone of angle o with sina = 1/N. The line element of this

space can be written as
ds® = dr? + sin o?72d¢? (4.1.3)

in the polar coordinates (7, ¢), which are related to the complex plane ones by
z = Tcei%. Of course, a space with the metric (4.1.3), if sina 1, is singular
at 7. = 0, and then needs a resolution. The cone possesses an O(2) isometry
group, whose R? embedding consists on rotations around its axis (¢ — ¢ + \) and
reflections orthogonal to any plane which contains it (¢ — —¢ + A). It is very
reasonable to assume the resolving space R to possess the same isometry group of
the space it has to resolve. Moreover, only spaces which can be entirely described
with a single set of coordinates, and are then topologically trivial, will be considered
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Figure 4.1: The picture in the left shows the fundamental domain of the C/Z3 orbifold from
which a disk of radius € has been removed. The resulting truncated cone, including the circle
and the cut which runs along the cone, is shown in the right. The infinitesimal path C, oriented
in such a way that the vector product of its direction with the one of the cut is outgoing from the
surface, is also shown.

in the following. These assumptions, though very reasonable, exclude of course
more complicate resolutions, in which R breaks the O(2) isometry, which is however
restored in the orbifold limit, or it has handles, and then non-trivial topology, but
they still leave a very general class of spaces. Topologically trivial smooth 20 spaces
with O(2) isometry group can be parametrized (see Appendix B) in terms of a single
function p(7), 7 € (0,00), which completely defines the metric, once expressed in
the polar coordinates (7, ¢). In these coordinates

ds? = dr? + p*(7)d¢?, (4.1.4)

where p(7) has to satisfy certain constraints (see Eq. (B.0.8)) ensuring that the space
so defined is really regular at 7 = 0, where polar coordinates are ill-defined. If R
has to reproduce the cone when 7 overcomes 7, which is defined to be the location
of the curve v in Fig. 4.1, its metric (4.1.4) must reduce to the one in Eq. (4.1.3) up
a coordinate change. Therefore, for 7 > 7, one requires

p(T) = sina(r +770), (4.1.5)

in such a way that, identifying the coordinate 7. in Eq. (4.1.3) with 7 + 70 = 7,
R reproduces, when 7 > 7, a portion (7. € (7 + 72,00)) of a cone. Since p ~ T
for 7 ~ 0 (see Eq. (B.0.8)), the role of the resolving space is to interpolate a plane
at 7 ~ 0 with a cone at 7 > 1. For R to be tractable, i.e. the tangent plane to
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be well defined, the first derivative of p must be at least continuous. A resolution
with p € C! at 7 is called a “C’ resolution”, and an example was provided in [37]
consisting in a spherical cap attached to a truncated cone.

4.1.2 Fermions on the resolved orbifold

Let us now define a resolved version of the theory of a free fermion on C/Zy. Con-
sider then a 6D fermion field on My x R. As usual, the wave functions in the
internal space of its chiral components are written as a 2D Dirac field 7 on R.
Apparently, one essential feature for this model to be related with the orbifold one
would be that, in the space region where R coincides with the cone (7 > 7), the 7
field on R and the one on C/Zy should share the same boundary conditions, pro-
vided by Eq. (4.1.2), under ¢ — ¢+27 (2 — 7z). Note that, however, the boundary
conditions alone cannot have any intrinsic meaning. Indeed, as for the U(1) Scherk—
Schwarz twist on S* discussed in Sect. 1.2, they can be changed and eventually made
trivial by field redefinitions, consiting on non-periodic U(1) gauge or Local-Lorentz
(LL) transformations which, at the same time, also affect the gauge field and the
spin connection, turning on non-trivial (flat) backgrounds A and w for them. What
really matters, on the contrary, is the holonomy of the field on circuits surrounding
the singularity. To the holonomy, which is gauge invariant, both the boundary con-
ditions and the background of the gauge and spin connections contribute. In the
case of trivial boundary conditions, it is expressed by the appropriate Wilson loop.
In the case of the orbifold model, in which the connections vanish, the holonomy

W = Wi Wyauge = P! = e~m(l-¥)o=Fr (4.1.6)

comes from the presence of the cut in Fig. 4.1. To be precise, the cut comes from a
mismatch in the transition functions at the boundaries of the “big” chart describing
the truncated cone, similarly to the Scherk—Schwarz twist discussed in Sect. 1.2.
The resolving space R, on the contrary, is entirely described by a single coor-
dinate set, so that the fields on it are described by single-valued functions. The
fermion will then be periodic as ¢ — ¢ + 27 and backgrounds for A and w must be
present. Note that the presence of a non-trivial LL connection w is automatic from
Eq. (4.1.4) and its form will be shown to be consistent with Eq. (4.1.6). The detailed
form of the gauge background A is, on the contrary, arbitrary. The connections A
and w are globally defined (O(2)-invariant, consistently with what was assumed to
be the isometry group) vector fields on R, with negative intrinsic parity under the
Zy (¢ — —¢) action. Note that the coupling of fermions to the A background breaks
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the parity symmetry (which interchanges L— and R-handed fields), while the one
to w does not. This is correct since, as comes from the index theorem (1.6.14), it
is the presence of the U(1) gauge background VEV A which can make the fermions
violate parity and induce a chiral spectrum. Any globally well defined covariant
(pseudo-)vector {2 (see Appendix B) can be parametrized in terms of a single func-
tion of 7, its ¢ component $y; §. being equal to zero. As for p(7), there are some
conditions on 2y and its derivatives at 7 = 0 (see Eq. (B.0.10)). These conditions
are automatically satisfied by the spin connection, once the appropriate local frame
has been chosen. Starting from the metric in Eq. (4.1.4), it is straightforward to
derive the 2-bein forms 6°

So  (—idos\@ 3B _ [ COS@dT —sin op(T)de
6% = (e )690 - < sin ¢dr + cos ¢p(T)d¢ ) ’ (4.L.7)

and, by imposing the torsion-free condition in Eq. (1.6.10), find the associated spin

connection
w=(1-p(r))do. (4.1.8)

Note that w, as expected, becomes a pure gauge (R = dw = 0) for 7 > 7, thanks
to the condition (4.1.5). The LL Wilson line Wy, on fermions is immediately

—miog(l=sine)  which precisely matches what

computed. It is Wy = emifow — ¢
is needed for reproducing the LL holonomy of the orbifold in Eq. (4.1.6). Since a
vanishing field-strength background is present in the bulk, the gauge connection A

must become a pure gauge for 7 > n:

__ p+2Ng

Alr) = N1

(1—sina)dg, (4.1.9)

(NN =y

where x has been chosen so that Wyauge = e~ 94 satisfies Eq. (4.1.6). An arbitrary
integer “monopole” charge ¢, to whose presence the holonomy is insensitive, has
been included in Eq. (4.1.9). When a concrete example of resolution will be needed,
the gauge connection A will be taken to be proportional to w: A = k/2w.

Summarizing, the general resolution of the orbifold model is parametrized by
two arbitrary functions, p(7) and A4(7), constrained to satisfy Eq.s (B.0.8), (4.1.5),
(B.0.10) and (4.1.9). The resulting space, with its gauge field background, is equiv-
alent by construction to the C/Zy orbifold for 7 > n. The precise relation between
fermion fields on R and the orbifold ones is given by

be(7s, 0) = e2W=DsH03)0 (- 20 NGy (4.1.10)
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Clearly, Eq. (4.1.10) makes a non—trivial twist under 8 — @ + 27 /N appear in .
which precisely matches Eq. (4.1.2). Note that all the results of the present section
are based on necessity arguments. Some checks have been performed in [38] that
the resolved theory really mimic, at energy much below the resolution scale 1 /m, the
orbifold one.

Given the 2-beins in Eq. (4.1.7), the Dirac equation is easily written

. 1 R
01, — (T) [ %(Aqﬁ iwcf))] Y = z-me_‘fg[;R | (41.11)
O ¥r + 56y [0 + i(Ag + 3w)] YR = —ime™*yy

and displays its invariance under SO(2) Lorentz transformations, acting as
6= ¢=F, ¢ — ey (41.12)

The operator i0g — 03/2, which generates the above symmetry, can be diagonalized
with real eigenvalues on the space of solutions to the Dirac equation. Therefore, one
can look at solutions of the form

VR = eindva(T) ) vr = ei(n+1)¢fL(7-) ? (4,1.13)

with n integer. For m = 0, the symmetry of the Dirac equation is enhanced, since it
becomes invariant under 1) — €%#734) transformations also. One can simultaneously
diagonalize the o3 and 9y operators and the ansatz in this case is more general:

Yrr = fLR(T)emR? (4.1.14)

with nz g, of course, integers. Let us consider now the massless Dirac equation,
whose solutions will provide us the wave function in the internal space of the massless
4D zero-modes. With the ansatz (4.1.13), Eq. (4.1.11) becomes

{ 8- log fr = L5 [ng + Ag + Lwy] (4.1.15)

8 lngL—-——pT) [nL+A¢—2 ‘?5]

It is impossible, of course, to integrate Eq. (4.1.15) without specifying a particular
shape of p(7) and Ag(7). The behavior of the solutions for 7 ~ 0 and 7 > 7,
however, is universal, since universal is the form of p and A, in these regions. For
7~ 0, p(T) ~ 7, Ag(T) ~ 0 and Eq. (4.1.15) approximates the one on the C. The
solutions at 7 ~ 0 behave then as

fR(T) ~ TR ’ fL(T) ~ T )
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which means the only well-behaved solutions to be those with
ngr Z O, nr, S 0. (4.1.16)

In the 7 > 7 region, p = sina(r +70), Ay = k/2(1 —sina). Eq. (4.1.15) then
becomes, in the coordinate 7. = 7 + 72, the Dirac equation on the cone, whose
solutions are, up to a multiplicative constant

fr=1> R, fo=7TM, (4.1.17)

with the integers Az r defined as

A = Ar(ng) = gz(nr + B2 (1 —sina)) = 2522 + N(ng +q),
A= Ap(np) = o (np + 5511 —sina)) = == 4+ N(ng + q)

sin o

(4.1.18)

where the angular momenta ny g are subject to the conditions (4.1.16). If we do
not impose normalizability to our wave-functions, there are an infinite number of
solutions to the Dirac equation, depending on the values of Ay, and Ag. If we consider
those which do not diverge at infinity, one has

k—1 1
> 1 /  — IO e — —_ -
ng > (sina — 1) 5 ZN(p N+1)—gq,
K+1 1
< (sina—1 = N-1)—q. 4.1.
ng < (sina—1) 5 2N(p+ ) —q (4.1.19)

When ny, g reach the bounds of the above inequalities, in the orbifold limit 7 — 0, the
corresponding wave function is constant on the cone. Constant solutions are peculiar
as they correspond to the usual constant zero modes of the C/Zy orbifold; they do
not always arise depending on the value of p, as expected from Eq. (4.1.2), but also
on the sign of g. The bounds of the inequalities in Eq. (4.1.19) can be reached if
p = N-1and g > 0 for left-handed states or p = —N+1 and ¢ < 0 for right-handed
states. These values of p are precisely those required for the orbifold projection given
in Eq. (4.1.2) to leave untwisted the left- and right-handed states respectively, in
such a way that the corresponding zero mode is present. The non-constant solutions
are those for which the strict inequalities are satisfied in Eq. (4.1.19). For ¢ > 0, ¢
left-handed states of this kind are present, and no right-handed ones. For ¢ < 0, we
have —¢ right-handed states and no left-handed ones. For ¢ = 0, no non-constant
state can be present.

We see that, as expected, different choices of the integer ¢, which was not fixed by
the general discussion of the previous subsection, correspond to a different number
of (non-divergent at infinity) zero modes on the resolution of the orbifold. What is
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important to notice is that the extra states which are introduced by the presence of
the integer ¢ have a power-like divergence at 7 = n when the orbifold limit 1 — 0
is taken. Moreover, in any case but when |p| is maximum and ¢ has the “wrong”
sign, they are bound states, which can be normalized on the resolved cone. They
correspond then to states which are localized at the fixed point of the orbifold which,
surprisingly enough, naturally arise when resolving the singularity.

4.2 Resolution of T?/Zy

Let us consider now the compact 72/Zy orbifolds, defined in Sect. 2.3. In this
section, a resolved version Ry of T2/Zy is constructed, and the massless Dirac
equation studied on it. Localized states are shown to arise at the resolved fixed
points, in a number which depends on the integer monopole charges g;; one is allowed
to put at the resolved fixed points. The resulting bulk-brane field distributions is
derived.

- 4.2.1 The resolving space

As in Sect. 2.3, T?/Zy orbifolds are defined from the complex plane C by mod-
ding out translations and 27/N rotations. We will take R = —\/"li—w in Eq. (2.3.1)
and consider a spinor field 9 on 72/Zy subjected to the generalized periodicity
conditions

V(z+1)=T(z), vz+U)=Tpy(z), Tiy= e Ty , (4.2.1)

with 71y € U(1) are discrete Wilson lines, subjected to Eq.s (2.3.8, 2.3.10) with Zy
replaced by the orbifold twist matrix P defined by

W(rz) = Py(z), P =em(-w)os e, (4.2.2)

Consistency conditions (2.3.8) and (2.3.10) require constraints on the allowed values
of t1,v and p in Eq. (4.2.1) and (4.2.2). For T%/Z, one needs p = =1, t, 7 = 0, 1.
For T?/Zs, p is in the —2,0,2 range while ¢; = ¢ = 0,1,2. In the T?/Z, case,
one has p = +3,+1 and ¢; = ¢y = 0,1. For T?/Z, finally, ¢, = #y = 0 and
p = x5,£3,%1. Consider now the physically distinguished [fixed points z;; of
T?/Zy, with I =1,..., [N/2] and i = 1,..., F}, with the notation of Sect. 2.3. At
each fixed point z;;, the orbifold has a conical C /Z ) singularity, as it can be seen
from Fig. 2.1 by computing the deficit angle. The twist matrix which characterizes
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the singularity is the effective orbifold twist P,
77/)(21,1‘ -+ 'rlz) = @D(Tl(zl’i -+ z) +m; + nIU)
= TP TP (21 + 2) = Prath(zi + 2),

i.e. the transformation matrix of orbifold fields under 27l/N rotations around z;.
Clearly, Pl,iN/ ! = 1 by consistency.

A resolution Ry of each T2/Zy orbifold is easily constructed by removing small
disks surrounding the singularities —which correspond, for each z;; fixed point,
to a truncated C/Zy,, orbifold with projection matrix Ppi— from the fundamental
domain and replacing them with the appropriate resolving space, defined in Sect. 4.1.
In this way, the resolution simply consists on a flat region, corresponding to the bulk,
which connects various resolved cones that represent the singularities. Note that,
since 731’1-N = 1, the projection matrices can be written as

wi(1=+)os  Fop s
= i

with p,; running from —(N/I — 1) to N/l — 1 at steps of two. This matches the
form (4.1.2) of the projection matrix, so that the results of the above section can
be directly applied if identifying N and p with N/l and py;, respectively. Clearly,
as in Eq. (4.1.9), an arbitrary integer monopole charge g;; can be put at each fixed
point. As mentioned in Sect. 4.1, when |p| is maximal the sign of ¢ needs to be
the same as p for the resolution correctly reproduce the constant zero—modes of the
C/Zy orbifold, so that we will restrict here to this case. For each orbifold, the
allowed configurations of effective projections p;; are easily derived. In the T2)Zs
case either, for ¢,y = 0, all fixed points have the same twist p = +1 or, if at least
one of t1 s is different from zero, two fixed points have the opposite twist then the
other two. For T?/Zs, similarly, either the twist for all fixed points is the same,
p1; = p = £2,0, or they are all different, p;; = (2,0,—2) or permutations. In
the T?/Z4 case one may have p1g = p1; = p = £3,=£1 and Py1 = P2 and then
po1 = p+2Mod(4) = (=1)PHD2 or pro = —p11 = —p = £3,%1, and poy =
pMod(4) = (=1)*~Y/2. For T?/Zg, the only possibility is pi,y = p = £5, %3, +1,
a1 = p+3Mod(6) and p1, = pMod(4) = (—1)®=1/2 In the following, the fermion
zero—modes spectrum on the resolving space Ry will be derived. The index of the
Dirac operator in Eq. (1.6.14), i.e. the number of L- minus the number of R-handed
zero—modes, is easily computed on Ry by means of Eq. (4.1.9). One finds

1 Pl
Te=np—np=o [ F=5 o4+ > gy, 42.3
nL = TR 27r/ - aNJl T - @ (4.2.3)
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1 E 2

Figure 4.2: The fundamental domain in the complex plane of the T2/Zy orbifold with complex
structure 7 = €2™/3. The location of the four fixed points is also shown. The fixed points have been
removed by cutting infinitesimal disks away from the fundamental domain. Its edges are given by
the six oriented lines shown in the figure. Each couple of lines is identified (A~D,B~C,E~F)
due to torus+orbifold point identifications. Due to these identifications, the oriented curves 3,
Y4, 71 + 71 and y2 + 5 are closed and represent the boundaries of the “truncated” orbifold.

which is integer, for any allowed choice of p1,i- Is worth noticing that the first term in
Eq. (4.2.3) counts the orbifold bulk zero-modes, meaning that it is always zero but
for p = £(N —1) and ¢,y = 0, in which case its value is 1, in accordance with the
orbifold projection (4.2.2) which leaves untwisted, respectively, the L—(R-)handed
component of the fermion field.

4.2.2 The zero—modes

The fundamental domain of 7?/Zy —from which infinitesimal disks have been re-
moved in correspondence with the singularities, as shown in Fig. 4.2 for the 772 /Zq
case— constitutes the “bulk” of the resolving space Ry defined in the previous
section. The massless Dirac equation in this region simply states (see Eq. (1.6.17))
the wave functions to be holomorphic (1r(2)) and anti-holomorphic (¢1,(2)). De-
fine the circuit I, counter—clockwise oriented, as the boundary of the bulk region.
It is composed by infinitesimal circular paths 7;; around each z1; fixed point, and
completed by the segments, indicated in Fig.s 4.2 and 2.1 as A~ D, B ~ C (and
E ~ F in the T?/Z, case), which delimit the fundamental domain. Note that each
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segment is covered by I' in the opposite direction then its “mirror”, with which it
is identified, and chiral fields at the two identified segments are proportional, as
implied by Eq. (4.2.1) and (4.2.2). One then has

.L 428, log (Yr(z)) = ——5—. dz0zlog (v(2)) = 0,

27(_2 Ao—As 27]"2, Ao—Aq
for (A;,4s) = (A, D), (B,C), (E,F). Therefore, if the above contour integral is
performed on the whole closed path I', it only receives contributions from the 7
circular paths, which are all oriented clockwise and cover each a 2m/(N/I) plane
angle. 1 At each fixed point z;, the L— and R-handed wave functions behave as

IR _ _ _ ki
’QDR(Z) ~ (: - Zl,i)’\R y V,DL(Z) ~ (: — Zl,i) AL s (4.2.4)
so that (see Eq. (4.1.17)) locally match the massless wave functions —with angular

momenta Arp = /\f,’f,L—— on the resolved C/ Zny- The allowed values for /\3’{; 5, are
then seen from Eq. (4.1.18) to be

/\%27’“'}'1\7/{ 1+]V/l(nR+qu),

4.2.5
)\[le .ELL_LM_—}—N/Z(TLL +ql,z>7 ( )

with né{ 1, respectively, arbitrary positive and negative integers. By mean of Eq. (4.2.4),
the contour integral on -, is immediately computed, and one finds

Ly

2 rd2d,log (Ya(e)) = o S, [, 42 ($25) = z“%%—bR,
1

ok fpdz0adog (Yu(2)) =~ Ty, [, 47 (YB) = Tu = o

where the theorem of residuals has been used to write the last equality. Having

(4.2.6)

assumed the wave functions not to have poles in the bulk, the result is entirely given
by the number bg 1, of zeroes, counted with their multiplicity, of g inside I. By
means of Eq. (4.2.5), the condition (4.2.6) can be expressed as

ny=-bp-T—1, > ng=b,—T+1, (4.2.7)
1,1 i

with 7 as in Eq. (4.2.3). In the following, by = 0 will be assumed, and the
assumption will be verified at the end, when the number of chiral zero-modes derived

1Tp the case in which two representatives of the same fixed point z;,; are present as two distinct
corners of the fundamental domain, +; ; must be thought as the union of two paths, each covering
a m/(N/l) angle, located at the two corners.
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with by g = 0 will be shown to be consistent with the known value of the index 7. If
an additional (say, R~handed) state with b > 0 has to be present, since all né’{”s need
to be positives, Z would need to be smaller than —1—bg, which is incompatible with
the existence of any “new” L-handed state with by, > 0, whose presence is however
required by the index theorem. Consider then Eq. (4.2.7) with by z = 0. It implies
that only L—(R-)handed states can be present on Ry if 7 is positive (negative). No
H~handed and 7 L-handed states have then to appear if Z is positive, no L-handed
and —7 R-handed if it is negative. The distinct solutions to Eq. (4.2.7), however,
are much more then |Z|, meaning that not all of them are independent. One should
be able to write down, for any solution to Eq. (4.2.7), the explicit form of the wave—
function, identified by its behavior (4.2.4) at the fixed points, and check that, for
any given value of Z, only |Z| of them are linearly independent. This can be done
in some explicit example for the T2/Z, case, the wave—functions being provided by
suitable products and ratios of Jacobi theta functions, as discussed in [37]. Even
though a mathematical proof is not available, the general criterion is that linearly
independent wave—functions are only labelled by the degree and location of their
pole of maximum degree. This is physically very reasonable since, in the orbifold
limit, the wave function localizes at its maximum pole, and “local” quantities only,
such as the angular momentum )\sz R» can be relevant to label it. By using the above
prescription, the location and number of zero—modes can be derived, for any T°/Zy
orbifold and any allowed value of the twists Dii.

As an illustrative example of the procedure, consider the simple 7?2 /Zs case, with
pii=-+1lforanyi=1,...4 OnehasZ = 1-+ 'ZZLI q1,; > 0, since all monopole
charges must be positive, and then L-handed state only can appear. In this case
Eq. (4.2.5) reads

M =200 + qu),
while Eq. (4.2.7) becomes
Z(TLF + ql,i) =0. (4.2.8)

Consider each fixed point separately; take ¢ = 1 for definiteness. A state localized
at 7 = 1 is found for any choice of njl-J’i < 0, satisfying Eq. (4.2.8), such that /\i’l > 0,
all the other )\Ilji’s being smaller then that. Note that, having fixed a positive value
for L', several choices of n%3’4 satisfying the above constraints could be possible.
Having assumed the physical states to be only labelled by the location and degree
of their higher pole, however, just one must be counted among all these, so all
what matters is that at least one of them exists. This is clearly the case for any

ni’l =0,...,—¢11+ 1 (such that )\]13’1 > 0) since one could take \Y* = 0 for 4 = 2,3
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and /\};4 = —)\lL"l. Therefore, g1.1 L-handed localized states have been found at i =1
and, since the same holds for any i, ¢1; states are found at each fixed point. One
independent state only, the bulk one (}\Jlf = 0) escaped the above analysis. Note
that, even if this does not occur in the present case, states which are doubly localized
at two fixed points “1” and “2” can appear. States with equal angular momenta at
two points )\};2 = )\, are, in general, linear combination of two states, one localized
at “1”, the other at “2”, with maximum poles of order Ar. It happens, however,
that such “singly” localized states at “1” and at “2” do not exist, for some value of
Ar. When this is the case, a new linearly independent doubly localized zero—mode
must be take into account. In a straight—forward, but tedious way, all orbifolds with
all twists could be discussed. The number of localized fermions at each fixed point,
for different patterns of effective orbifold projections is summarized in Table 4.1 for
the T72/Zy 34 orbifolds. In the table, Z > 0 is assumed, so that all states are L—
handed, but the spectrum of R-handed localized states one gets when 7 < 0 is easily
obtained by inverting the signs of p;; and g;;. For T?/Zy and T?/Z3, the result for
the most general pattern of effective orbifold projection p;; can be obtained from
the table by interchanging the fixed points. For T?/Z,, on the contrary, the absence
of discrete Wilson line, Ty = 1 in Eq. (4.2.1), is assumed. The case Tiy = —1,
and the results for the 72 /Zg orbifold as well, which are not shown, could be easily
worked out. When looking at the table, the index theorem (4.2.3) may sometimes
appear not to be respected, one state being missing, even thought the usual bulk
zero—modes are correctly added to the counting. When this happens, a doubly
localized state —which is not counted in the table— appears and makes the index
theorem respected.

4.3 The “resolved” S'/Z, orbifold

The one-dimensional orbifold S'/Zs, much more then the two—dimensional ones
considered up to now, is of great phenomenological importance, since many models
have been formulated in which it has been used to describe the internal dimension.
Geometrically, S*/Z, is simply a line segment, and the two points of the circle which
are fixed under the Z action are simply boundaries and then, differently from the
two—dimensional cases considered up to now, are not singular points at all. At the
purely geometrical level, therefore, there is no reason for trying to replace S/Z
with some “smoothed version” of it. Thought doubts could be aroused on the full
consistency of field theories on a segment, one may argue that these technicalities
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1 2 3 4
(1,1,1,1) lq1,1] |g1,2] lg1.3] | 1g1,4|
(1,1,-1,-1) I+lql,1l;lQ1,2|—1J I+i<11.2lj2-lq1,1l“1 0 0
(2, 2,2) 1 2 3
g1l | lg12] | lgu3l
(0,0,0) 1 5 3
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q1,1 191 1}7 q1 , i 'QI,I' |Q1,21 qual
91,3 = |q1,3]
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(2, 0, -2) 1 2 3
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p) )
91,3 = —|q1.3| 3 - ’ +
712 = —|a1.2], q1,3 = —|q1,3]
(3,3,1) 1,1 1,2 2,1
lgral | lavel | laza]
(17 1, —1) , 1,1 1,2 2,1
q1 = g1, 2= lg1,2], [I+lq1,1i—lq1,2l—1] [I+Iq1,2|"lq1,1l—1J 0
_ p) )
32,1 = —|ga1] - -
qi,1 = |q1,1], T 0 0
q1,2 = —|q12, g2,1 = —|g21]
(—1,—1,1) 1,1 1,2 2,1
q1,1 = lay1], ¢12 = |q12
la11l, 912 = gzl a1 a1 g2
72,1 = |go,1]
q1,1 = lg1,1); [21—2|¢J1,1I+lq2,1|—1] 0 [I+2141,1|—IQ2,1|*2]
q1.2 = ~|q12|, ¢2,1 = |g2.1] ° - ° -
gi,1 = —}Ih,ll, 0 0 ’ T
q1.2 = —|q1,2|, g2,1 = |g2,1]

Table 4.1: Number of fermions localized at the various fixed points for 72/Zs 3 4. When a number
in the table is negative, it has to be replaced with 0, while the other non-vanishing number on the
same raw must be replaced with Z. The symbols |.. J+ are used; [z]_ is the usual integer part of
corresponding, when the argument is positive, to the maximum integer which is smaller or equal
then z; [z]., on the contrary, is the minimum integer which is greater or equal then z.
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do not signal any physical need of resolving the orbifold effective theory, which may
be considered as it is. The approach followed here, however, is weakly related to
the above considerations. The resolution may just be seen as a mechanism for the
localization of fermions, that will be shown to take place in this case as in the two—
dimensional ones. The final result will consist on a list of “special” brane fermion
distributions, to be eventually studied in the unresolved orbifold theory, which can
be obtained from considering S*/Zs as a limit of a boundaryless 2 space. Clearly,
introducing one more dimension in the resolving theory slightly restricts the class
of 5D models one can treat. Only those can be considered whose field content can
be interpreted as arising from a 6D model. 5D Dirac fields will be reproduced by
starting from chiral 6 spinors.

4.3.1 The resolving space

Let us consider a 72 /Zs orbifold with complex structure U = it (¢ real) and fermions
periodic for z — z + U (4.e., no Wilson line around the U cycle). In the degenerate
limit ¢ — 0, this theory degenerates to a one dimensional St/Zy orbifold with
periodic (if t; = 0 in Eq. (4.2.1)) or anti-periodic (if ¢, = 1) fermions on the covering
circle ST. In this limit, the two-dimensional orbifold (see Fig. 4.3) becomes a one-
dimensional segment, where the z; and zq4, as well as the z; and zs, fixed points
collapse to a single point. The space C which resolves the St/Z, segment is then
taken to be a 2D compact ”cigar-like” surface (see Fig. 4.3) which resembles, in
a certain region, a finite portion of a cylinder of radius r. The cylinder becomes,
in the orbifold limit in which r shrinks to zero, a line segment which reproduces
the bulk of S'/Zy. The rest of the space consists on two disconnected regions and
each of them will shrink to a point in the orbifold limit. They provide the resolved
description of the orbifold fixed points. The topology of C is assumed to be as simple
as possible, i.e the one of the sphere. Namely, each fixed point will be described by
a single chart, the overlapping of the two being provided by the cylinder. Moreover,
the O(2) isometry group of the cylinder is taken to be the isometry of the whole
space. The results of Appendix B can then be applied in each coordinate system,
and the metric parametrized as

(ds?); = dri® + pi®(7:)dei?, (4.3.1)

where ¢ are angles and 712 both run in the [0, L — n| interval, being L the total
“length” of C, i.e. the distance between its two “poles” 7, = 0 and 75 = 0. The
two coordinate systems are related by 7o = L — 71 and ¢» = —¢1 in the overlapping
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Figure 4.3: The cigar-like surface C, which reproduces the S! /Zz orbifold when the radius r goes
to zero. The oriented curves V1.2, corresponding to 7y 5 = 7, are also shown.

region 7; € [n, L — n] which parametrizes the cylinder. The resolved fixed points are
described by the two disconnected regions 71 5 € [0, 7], and the orbifold limit consists
on taking n — 0. Since each (7, ¢;) coordinate system is ill-defined at 7; = 0,
p;i(7;) and its derivatives must satisfy certain conditions at 7; = 0, summarized in
Eq. (3.0.8), ensuring that no physical singularity is present at that point. Moreover,
since Eq. (4.3.1) must reduce to the flat cylinder metric: p1,2(7) = p1a(n) = r for
T; = 1. As a particular class of C* profiles for pi, consider

pi(r) = /0 " [e"‘z(ﬁlﬂ?ﬁ?)} . (4.3.2)

Be 9 a spinor field on C. Tt will be described, in each coordinate system, by
single~valued functions, so that its holonomy on circles wrapping around the cylinder
is entirely given by the appropriate Wilson loop. The Local-Lorentz part of the
holonomy is easily computed: Wy, = e~™° = —1. The total holonomy needs to be
the identity, if some light state has to survive when the orbifold limit is taken. A
non trivial gauge background A* (i = 1,2 labels the two coordinate systems) must
then be included to generate a gauge holonomy Wyayge = —1. This background, as
usual, is assumed to be O(2) invariant and then (see Appendix B) it has the form
At = A;i (7:)d¢;, and is subjected to the conditions (B.0.10) at 7; = 0. Moreover, A*
must to reduce to a pure gauge for 7; > 7,

Al = —/;—i-dqbi, (4.3.3)
where ; needs to be an odd integer if requiring Woauge = €794 = —1. Having
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chosen A2 in Eq. (4.3.3), the gauge + LL transformations relating, on the cylinder,
the representations of the fermion field in the two coordinate systems is fixed to be

WAL =1, —d) = el TR )Brem Tyl 6)) (4.3.4)

The Dirac equation on C is given, in each coordinate system, by Eq. (4.1.11) and, as
in Eq. (4.1.13), its SO(2) invariance can be used to parametrize the ¢,—dependence
of massive states as

U= Fa(r)em s, U = film)e (4.3.5)
In the massless case, as in Eq. (4.1.14), the ansatz is
Ui = FRo(n)em R, (4.3.6)

with n} p, and n;, integers.

4.3.2 Zero-modes

With the ansatz (4.3.6), the massless Dirac equation (4.1.11) reads

{anmgﬁf=zégh%+Aé+%wd (4.3.7)

Orlog f} = — 5oy [nf + Ay — Lwy]

At 7; ~ 0 it reduces to the C—plane one. In that limit, the solutions then behave as
Farrh,  fimr,

meaning that the only states to be considered have n > 0 and nj, < 0. Clearly,
n}, p must be expressed in terms of n} p, if the two wave functions ¥} r have to
describe, on the cylinder, the same fermion state. According to Eq. (4.3.4), one has

n%=_<n%%+m-2i'l$2+1>, n%z—(ni%—m;m—l)-

Imposing n% > 0, n? < 0 then implies an upper bound for the allowed values of ny

and a lower one for n}. Therefore, it is

K1+ K K1+ K
0§n§§_122_1, *122

+1<n} <0, (4.3.8)

so that |(#; + Rq)/2| zero modes, L-handed if (k1 + R2)/2 is positive, R-handed if
it is negative, are found on C. This is in agreement with what results from applying
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the Atiyah-Singer index theorem. Besides of the chirality and number of the zero-
modes, their wave function on the cylinder (i.e. in the bulk) can also be computed,
regardless to the detailed profile of C, since the bulk equation is universal. In the
i == 1 coordinate system, for 7; > 7, the solutions have the form

1

Th(n) = Are™ (4.3.9)

fi(n) = AL«‘E"’LT1 |
where A\ = nj + §(R1 + 1), AL = n} + (& — 1). The solutions in the i = 2
coordinates are easily obtained by transforming Eq. (4.3.9) according to Eq. (4.3.4).
The bulk profile of the R-handed states, then, is localized at 7, = n (the “1” fixed
point) if A < 0, at 71 = L — 7 (the “2” fixed point) if Ak > 0. The contrary holds
for the L-handed ones. The usual constant orbifold bulk zero mode is obtained for
Arr=0.

"The fermion spectrum on C is summarized in Table 4.2, and agrees with what
found in [37] where C was assumed to be composed by two halves-spheres connected
by a cylinder. Note that the presence of one (L- or R-~handed) bulk zero mode is
not automatic. It only arises when the two gauge fluxes K1,2 have the same sign, its
chirality depending on this sign. This case is considered in the upper part of Table 4.2
and corresponds, in the orbifold limit, to a model on S'/Zj, in which the I~handed
component of the spinor is taken to be even (if &1 5 > 0), or odd (if 12 < 0). In the
other case considered in the table, on the contrary, no bulk zero-mode is present.
It corresponds then to fermions which are antiperiodic on the S! circle. This is the
same as considering a fermion on the segment with, at the “1” extreme, Neumann
(09 = 0) and Dirichlet (¢ = 0) boundary conditions, respectively, for the L— and
R-handed components; the opposite at “2”. The case #; < 0, &1 > 0 is obtained
from Table 4.2 by interchanging the two fixed points. These correspondences, which
can be checked here at the level of bulk zero-modes only, will be verified in the
following section, when bulk massive states will be studied. The mass—spectrum
and the wave-functions will be shown to reproduce, once the orbifold limit is taken,
the ones on the segment with the appropriate boundary conditions.

4.3.3 Massive states
With the ansatz (4.3.5), the Dirac equation becomes

{ O (0f1) + ity [+ 1+ (A), — Jwi)] GF) = mf,

. , 4.3.10
Or il — =L (e + (AL, + 5 )] Fi = —m(ifi) (4:3.10)
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I:{,Lg >0 :7{,112 <0
(|g1] —1)/2 L at "1” (|1 —1)/2 R at 71"
1 L in the bulk 1 R in the bulk
(|ko| — 1)/2 L at "27 (|Re| = 1)/2 R at 727
K1 >0, ke <0
K1+ ke >0 K1+ ko =20 K1+ ko <0
|k1 + Re|/2 L at 717 |Ry + RKeo|/2 R at 727

Table 4.2: Fermion zero-modes spectrum on the resolved S!/Zs orbifold for different choices of
the gauge fluxes %1 2. The chirality and the location of the states are indicated.

and, clearly, cannot be solved until the shape of pi(7;) and Ag,(7:) is not specified.
At 7; ~ 0, however, it simply reduces to the C-plane one and its regular solutions
can be expressed, for 1y < 7, as

f_;{ = M Jn(mTi) ) fi = M Jn-%—l(mTi) ) (4311)

where J,(z) are the first kind Bessell functions, with the conventions of [60]. At
7; > m, on the contrary, the equations become those on the cylinder, and the solution
assumes the form

fﬁ = C!fieiw"” + ﬁie—iwﬂ' ,
ifh = o (2 — ) e 4§ (B4 2) e,

mr m m

(4.3.12)

(Ri+1)
2

either positive or negative, having neglected the case w; = 0. The coefficients oy o

having defined the integers A; = n; + and w? = m? — \;®/r?, which can be
and B entering in Eq. (4.3.12) are determined by the evolution of the solution,
due to Eq. (4.3.10), from the initial condition (4.3.11) at 7; = 0, to 7; = 7. They are
then fixed by the N7, coefficients appearing in Eq. (4.3.11). A profile-independent
approach to the computation of the wave functions cannot be followed and a definite
class of “trial” profiles must be used. The C* profiles of Eq. (4.3.2), labelled with
the real parameter §, will be considered, and a gauge connection Al = %wi will be
employed. The results which follow have been verified to depend weakly on ¢, the
strict limit 7 — 0 being completely resolution-independent. From now on, the case
§ = n will be considered. Eq. (4.3.10) is numerically solved from 0 to n, for any
given value of the mass—parameter m. The solutions are found in the two coordinate
sets, up to the constant multiplicative factors N1 2, by considering Eq. (4.3.11) with

96



PN TS ! !
i) 2 4 6 8

Figure 4.4: The function o(m), whose zeros give the mass—spectrum on C, is plotted versus
mL/m. On the left, the case &1 = 1, &y = 3 and n; = 1, for three different choices of the
resolution parameter n = L/10,L/20,L/100. On the right, &1 = 1, &, = —3 and n; = 1, for
n = L/10,L/20,L/100

Nis = 1 as the initial condition at 7 = 0. ? The parameters a1 and B of
Eq. (4.3.12) are then determined by continuity, and the two wave—functions on the
cylinder are found. Since the two must describe a single spinor field on C, however,
they must be related by Eq. (4.3.4), which implies ni2 to be related as

o= —ny —1— &L;—@ (4.3.13)
and consequently Ay = —\; = \, w; = wy = w, but also
207 _ ]
fR(L Tl) = ’YfR(Tl) ) (4314)

iff(L— 1) = —vifi(n),

for some proportionality factor . Note that, once Eq. (4.3.13) is imposed, the
solution in each coordinate system is uniquely determined for any given mi, up to
the rescaling N 5, which at most can change the value of 4. All what can be done
is then to try to check if Eq. (4.3.14) is satisfied. To this end, define

_ 1 o[ PR L)
m) Ifl(L/z)Hfz(L/zMDt(if,{(z;/z) if2(L/2) )

?The author thanks M.Neri for her help in implementing the required software. Various routines
developed in Numerical Recipes [61] for differential equation solving, numerical integration and
computation of Bessell functions have been employed. Clearly, since the differential equation
becomes singular at 7; = 0, this point cannot be used for assigning the initial conditions. The
initial condition (4.3.11) has then been imposed at a point 7; < 1, and checks have been performed
the results not to depend on 7, if it is small enough. It has been also verified, by solving the
equation from 7; backwards, that the solution so obtained remains finite when 7; approaches 0,
while divergences are encountered if perturbing the initial conditions, meaning that the regular
solution of Eq. (4.3.10) is correctly selected by this procedure.
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Figure 4.5: The L- and R-handed components of the first Kaluza—Klein mode, for two different
values of the resolution parameter n = L/10, L/100, as a function of 7/L € [0, 1]. The case &1 =1,
%y = 3 and ny = —1 is considered in the picture.

where | f2(L/2)] is the modulus of the ( L2 +if]%) vector, so that o is the sine of
the angle between f1(L/2) and F2(L/2). Tt only vanishes if (4.3.14) is satisfied at
715 = L/2. Vanishing of o(m), however, is equivalent to Eq. (4.3.14), since functions
in the two sides of Eq. (4.3.14) are solutions, on the cylinder, to the same differential
equation and then coincide if they are equal at one point. The mass-spectrum of
fermions on C is given by the values of m for which o(m) vanishes.

As an example, consider the case &1 = 1, &y = 3. Only for n; = —1, and
then A = 0, small masses are obtained, since it happens that ¢ = 0 can be only
realized when w? = m? — A\2/r? is positive, the bulk solutions having oscillating
behavior. All states with A # 0 have then mass at the 1/r scale, and decouple
in the orbifold limit. A plot of o(m) is shown in Fig. 4.4 for different choices of
the resolution parameter 1. The zeroes of o are seen to approach, as n decreases,
the expected values of my = kr/L. This is consistent with the interpretation of C
as an S'/Z, orbifold with even L-handed fields. Note that smaller values of the
orbifold masses are better reproduced for a given resolution parameter 7. For the
first Kaluza-Klein state the relative errors with respect to the orbifold value 7/L are
(0.09, 0.04, 0.009), linearly decreasing with n = L/10, L/20, L/100. For the second
Kaluza-Klein state the relative errors are (0.09,0.05,0.008), and similarly for the
third one: (0.09,0.04,0.009). One has, in practice, dm/m ~ n/L. Once the values
of the masses are found by computing at the zeroes of o(m), the wave function for
each massive state is easily computed. In Fig. 4.5, the L— and R-handed components
of the wave function of the first Kaluza—Klein state are plotted, for n = L/10, L/100,
as a function of T € [0, L]. The wave—functions are given, for 7 € [0, L—1n], by FA(T)
and ifi(r); by fa(L —7) and —iff(L — 7), rescaled so that the resulting profile is
continuous, in the [L — 7, L] interval. The L-handed component, as shown in the
plot, approximates the cosine function with frequency L /7, while the R-handed one
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resambles a sine with the same frequency and a minus sign in front. This is precisely
what expected for the wave function of the first Kaluza—Klein state on S*! /Zs. To
conclude, the case &y = 1, k3 = —3 can be considered. It should correspond, in
the orbifold limit, to a segment with Neumann (Dirichlet) boundary condition for
the L—(R-)handed field at the “1” extreme and the contrary at “2”. In Fig. 4.4,
the profile of o(m) obtained in this case is plotted for n = L/10, L/20, L/100. The
zeroes approach now, as expected, my = m/L(k + 1/2). One could also verify that
the wave functions are correctly reproduced.
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Conclusions

Basically, two main subjects have been treated in this thesis. The first one, discussed
in Chapter 3, is the GHU mechanism for stabilizing the EWSB scale and in particular
its implementation in 6D orbifold models. The second one, to which chapter 4 is
devoted, is the arising of localized fermions at the fixed points of resolved orbifolds.

For what concern 6D GHU, we explored SU(3) models on T2/Zy orbifolds and
discussed the two new features which arise in the 6D case as compared to the 5D
one, briefly reviewed in Sect. 3.1. Firstly, we have shown how the Higgs—W mass—
ratio (and the compactification scale 1/R as well) is increased in single-Higgs models
due to the arising of a tree-level quartic coupling. Secondly, we have addressed the
problem of quantum stability of the EWSB scale, which is not any more guaranteed
in the 6D case, due to the existence of the tadpole operator. We have shown the
arising of the tadpole, whose coefficients we explicitly computed at one—loop, to
be unavoidable in single-Higgs models. Moreover, an accidental cancellation of the
leading divergence in the tadpole coefficients (which would be enough to stabilize
the Weak scale) is found to be impossible without introducing fundamental scalars.
The tadpole, then, is a serious problem for GHU models in D > 6. The possibility
of cancelling it, with different gauge groups and/or numbers of ED, can be used as
a guiding line for GHU model-building, as discussed in [62]. We found, however,
that it may not be impossible to “live” with the tadpole in the case in which it is
globally vanishing, or at least when the leading divergence in its integral is cancelled,
as it is possible to arrange for in the SU(3) T?/Z, case. As discussed in Sect. 3.5,
indeed, a globally vanishing tadpole induces a non—trivial (but neutral) background
for the A2 field, and it does not trigger EWSB. Moreover, a massless scalar Higgs
doublet is present in this background, so that neither the EWSB scale nor the Higgs
mass are destabilized by the divergence which arise in the tadpole coefficients. Both
quantities are generated by non local quantum correction, as in the 5D case. Though
technically challenging, a more detailed study of models with globally vanishing
tadpole would be extremely interesting. Realistic construction may also come, in
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6D orbifold context, from the search of different gauge groups. In the Go case, for
instance, a single—Higgs projection exists on T?/Zg, and a semi-realistic prediction
is found for the Weak angle in this case, so that the construction of an electroweak—
unifying GHU model could be attempted. A single Higgs projection also exists for
SO(5) in T?/Z, and, interestingly, a local accidental cancellation of the tadpole
can be achieved in this model. In the G case, however, the tadpole cannot be
cancelled, even not globally, while the fermion content required for the cancellation
in the SO(5) case gives rise to an irreducible 60 gauge anomaly. Other gauge
groups could be considered. Note that the possibility of the Higgs field to be a
non—abelian continuous Wilson line, even though we discussed the opposite case, is
not ruled out. In such a model, of course, no tree-level quartic coupling (and no
quantum divergences) would appear, so that one would face again the same problems
encountered in the 5D case and in the SU(3) T?/Zs one, i.e. the smallness of my
and 1/R. Since the problem is basically numerical, however, (a factor four in my
and 1/R would be enough) one should not neglect the possibility that different
group—theoretical factors might significantly improve the situation.

In the fourth chapter of this thesis, fermion localization from orbifold resolution
has been discussed. By studying the Dirac equation on resolved orbifolds, the aris-
ing of extra localized states, in a number which depends on the integer monopole
charges labelling the resolution, has been demonstrated. We believe this is impor-
tant for two reasons. Firstly, orbifold resolution is found to be a (very natural)
mechanism through which localized fermions can be obtained, without need for any
extra dynamics or extra fields than those required by the resolution of the orbifold
singularity itself. Secondly, various bulk-brane fermion distributions are found to
originate naturally from a single ED field, so that they have an unified origin. Field
distributions which admit such a interpretation have been classified; we believe that
this might provied a non-trivial constraint for model building.

A very important point is, in this respect, the generality of our results, i.e.
the possibility that different resolutions might give rise to different brane fermions
content. For studying the C/Zy cone (see Sect. 4.1 and Appendix B) we have
employed a very general class of resolutions. Namely, we have considered a resolving
base space with trivial topology (diffeomorphic to R?) and the same O(2) isometry
group of the corresponding orbifold, but with completely general (O(2)—invariant)
profile for the gauge and the spin connections. We have shown, by computing it, the
localized zero-modes spectrum on C/Zy to be independent on the detailed profile
of the resolution. For what concern T2/Zy and S'/Zs, on the contrary, we have
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used general resolutions for the singularities, but assumed the bulk to be described
by a flat space to which the resolved singularities are “attached” in a C°° manner.
We cannot exclude the possibility that more complicated resolutions, in which the
bulk is not flat before the orbifold limit is taken, might give rise to different spectra.
Of course, various generalizations of this analysis should be considered. First
of all, non abelian gauge fields should be added, so that one could study the gen-
eral case of orbifold projections realizing the orbifold breaking G — H C G. This
generalization is technically straightforward, at least as far as inner automorphisms
are concerned, and leads to interesting constraints on the allowed fermion configura-
tions. From the usual orbifold field theory point of view, we have complete freedom
of putting at the orbifold fixed points an arbitrary number of 4D fermions in arbi-
trary representations of the surviving group 7, regardless of the representation and
number of bulk fields. As it will be clear in the following simple example, much of
this arbitrariness will be removed when imposing the orbifold model to admit our
simple resolution. Consider an SU(2) doublet of Dirac fermions ¥ = (¢, ¥™)! on
the T?/Zy orbifold, satisfying the following orbifold+torus boundary conditions:

U(-2) =Py(z), P=cimed?,
Y(z+1) =P(z), (4.3.15)
bz +U) =9(2),

Wﬁére Ji (I = 1,2,3) are the generators of SU(2), normalized such that J; =
diag(l,—1). When applied to the SU(2) gauge fields, the boundary conditions
(4.'»3.15) realize the breaking of SU(2) — U(1). The components 1* of 1) satisfy the
conditions given in Eqs. (4.2.2) and (4.2.1), with ¢; y = 0 and p = %1, respectively.
It is clear, from the form of the twist matrix P in Eq. (4.3.15), that the resolution
of this orbifold configuration requires a background gauge field A;, at each resolved
C/Zy singularity, aligned with the J; direction: A; = A2Js. Each component ¢* of
the fermion doublet can be treated, since the gauge background is diagonal, as an
U(1) fermion, like those considered in Chapter 4, with AF = +43, and the spectrum
of localized fermions can be read from Table 4.1. For 1™, we have pfi = +1 and
q{':i =¢; 2 0. For ¢¥~, p;; = +1 and ¢; = —gqi1,;. The two monopole charges qli’i are
related by the fact that the A backgrounds really come from the non—abelian gauge
background A} Js;. Aside the usual bulk modes (one L-handed and one R-handed),
g; left-handed and an equal number of right-handed localized states are present at
the fixed point z;;. All L-handed (R-handed) states have +1 (—1) charge under
the surviving U(1) gauge symmetry. The index of the Dirac operator is zero, as
expected, since Tr[F] = 0 for SU(2). On the contrary, the most general configura-
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tion one can have from the point of view of the unresolved orbifold theory, would
allow to put at the fixed points an arbitrary number of 4D chiral fermions with any
charge under the U(1) surviving gauge group.

An other extention which might be considered is the study of other fields, other
then fermions, on the resolved orbifolds, in order to see if an analogous localization
phenomenon does occur. Moreover, the orbifold resolutions considered in this thesis
might be used to study operators localized at the fixed points. In some cases,
as for the gauge tadpole discussed in Chapter 3, the consistent treatment of such
operators seems indeed to require (see e.g. [63] and references therein) a resolution
of the orbifold fixed points. In this respect, one remark is in order. Even though
orbifold field theories do need a resolution at the level of regularization (i.e., to
perform consistent computations) when dealing with localized operators of particular
types, there is no true physical need for resolving the singularities. The un-resolved
orbifold models can be safely considered as effective field theories, the scale of the
resolution (if any) being above (or at) its physical cut—off. It is then important to
remark that the phenomenon of fermion localization observed here is completely
independent on the resolution scale, which can be arbitrarily high. The allowed
brane fermion configurations listed in this thesis can be directly considered in the
unresolved orbifold model, as a remnant of the high energy resolution. All other
effects related to the finite size of the singularities can be neglected. |
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Appendix A
Theta functions

The theta functions with characteristics a, b = 0,1/2 are defined as follows:

[ J Z'U Zq2 n+a)2 2mi(z+b)(n+a) , (A01>
where ¢ = exp(27iU). Another common and more compact notation is the following:

1/2 [ 1/2 ]
0[/ =0,; 6 / =0y;

1/2 0
90_—9-6F0-—9 A.0.2
OJ_"*’ 12| % (A.02)

These functions are related by the following identities:
_ 1 . 1/8 —inz 1 U
O5(2) = 6, <z - —) , b3(z) =g, (z 5 2) :
0u(2) = —igY3e=img, ( - —) , (A.0.3)

omitting the dependence on the modular parameter U. They are clearly holomorphic
functions, but they are not elliptic functions, since they are not exactly periodic.
They satisfy the following periodicity conditions under z — z + 1:

91(Z+1|U) =—(91(Z|U), 92(Z+1'U)= —eg(le),

O5(z + 1U) = 63(2|U),  Oa(z 4+ 1|U) = 6,(2|U), (A.0.4)

and

01(z + UU) = —q" 2220, (2|U), b3z + U|U) = g e =0, (2|U)

) ) A.0.5
O3(z+ U|U) = q"%6_2“293(z|U) ., O(z+U|IU) = —q‘%e‘2mz€4(z|U) , ( )
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under z — 2z + U. One of the most important property of theta functions is that
they have only one simple zero and no poles at all inside a fundamental domain 7.
The zeroes z; of the 4 theta functions 8; (i = 1,2,3,4) are at z = 0, 25 = 1/2,
z3 = (1+U)/2 and z4 = U/2, modulo lattice shifts.
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Appendix B

Two dimensional spaces with O(2)

isometry group

B.0.4 The metric tensor in polar coordinates

The O(2) group divides in SO(2) @ Zy; it will exist a coordinate system {z'} on

which SO(2) acts as rotation, and Zs as parity:

i i
v (e (B.0.1)
vt — (P), 2,

where hy = €72 and P = ¢3. The invariance under O(2) of the line element implies
for the metric g;; to satisfy

gij(haz) (ha)* (h/\)jk = gu(x),
- 9ii(Pz) (P) (PY) = gu(z)

In this coordinate system, of course, the metric must be regular (C*, with rank 2

(B.0.2)

and (+,+) signature) at any point, including the origin = = 0, which has however
the peculiar property of being fixed under O(2). Take Eq. (B.0.2) at z = 0, it states
the O(2) invariance of g;;(0), which transforms as 2-tensor (in the 2 ® 2) of O(2).
Since the only invariant O(2) tensor is d;;, g must be proportional to the identity
at z = 0. Moreover, if d derivatives of Eq. (B.0.2) are taken, one finds that, at
z = 0, the d-th derivative of g, which is in the 2%+2 tensor representation, must be
invariant. A non trivial invariant can be only built when d is even, meaning that all
odd derivatives of g;; are enforced to vanish at zero.

The space will be more simply described in the polar coordinates (7, ¢), being
¢ an angle and 7 running on the positive real axis. The coordinate transformation
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reads

ot = (/1,@)ij'z,7'7(7) : (B.0.3)

being v(r) a representative of R?/SO(2) which can be chosen to have the form
vi(7) = (r(7), 0)'. with r(7) a smooth positive monotonic function vanishing at
7 = 0 and divergent for 7 — oo. Of course, this coordinate system is not appropriate
for describing the origin, Eq. (B.0.3) being not invertible at z = 0, which indeed
corresponds to 7 = 0 for any value of ¢. In polar coordinates, the action of h, is
simply a shift ¢ — ¢ + \. Accordingly, the Killing vector field K associated to
SO(2) has components K7 = 0, K¢ = 1 and the Killing equation (Lx(g));; = 0
states that

8¢QTT = 8¢QT¢, = 8¢g¢¢ = 0, (BO4)

meaning that, in polar coordinates, all the components of the metric only depend
on 7. Moreover, since the parity P € O(2) acts as ¢ — —¢ in polar coordinates, gr4
must vanish. The metric, up to now, is parametrized in terms of the two functions
of 7. grr and gge. The possibility of choosing r(7), however, can be used to fix g,r
to 1. This can be implemented by taking

7(r) = ./OT dr'~/gi1 [z = (7, 0)], (B.0.5)

which is indeed monotonic, invertible and positive.
Summarizing, the line element has the general form

ds? = dr* + p*(1)d¢?, (B.0.6)
having defined the function

p(7) = 1/ 966() = 7(7)/ g2 [z = (r(7), 0)], (B.0.7)

which is, of course, undetermined, and encloses all the freedom one has in the

definition of R. Note that p(7) is almost arbitrary, but not completely. At 7 =0, in
particular, it must satisfy some consistency conditions which ensure that the space,
described in a coordinate system which is ill-defined in the origin, is however regular
at that point, and the singularity is entirely due to the coordinate choice. By taking
9. derivatives of Eq. (B.0.7), and remembering that odd derivatives of g;; vanish at
zero, one easily realizes that

@ dQn

—(r=0=1, ——p(r=0)=0, (B.0.8)

for any n positive integer.

110



B.0.5 Globally defined one-forms

Be () a globally defined 1-form field, invariant under the isometry group O(2), with
negative intrinsic parity under the Zo C O(2). Its components ;(z) in the *z” coor-
dinate system considered in the previous section, in which O(2) acts as in Eq. (B.0.1)
are subjected to the condition

Qi(haz)(h)'; = Qy(x)

Qu(Pz)(P); = — (), (B.0.9)

By looking at Eq. (B.0.9) and its derivatives at z = 0, one immediately recognizes
that any d-th derivative of ; must vanish at the origin if d is even, since it transforms
in the 24! of O(2). The Killing equation (Lx(Q)), = 0, with K as in the previous
section, states that both ¢ and 7 components of € only depend on 7. Moreover,
parity invariance ¢ — —¢ enforces £,(7) to be identically zero. The more general
O(2) invariant vector field € is then parametrized in term of one function of 7 only,
its ¢ component (4 (7), which can be expressed as

Qo(7) = Q) = —r (7)Y [z = (r(7),0)]

in ‘terms of the components §;(x) of {2 in the "z” coordinates. Taking derivatives
of the above equation w.r.t. 7 and remembering that ; and its even derivatives
need to vanish at the origin, one immediately recognizes that (4(7) must satisfy the
following consistency conditions at 7 = 0

an

where 7 is any odd positive number. Conditions (B.0.10), analogously to those in
Eq. (B.0.8), are necessaries to ensure ) to be well defined at the origin.
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