Spin-charge gauge approach to HTS cuprates:
Theory versus Experiments

Thesis submitted for the degree of
Doctor Philosophice

Candidate: Supervisors:
Giuliano Orso P.A. Marchetti and L. Yu

October 2003

s







Contents

Introduction

1 Phenomenology of HTS cuprates

1.1 Introduction and Model Hamiltonian . . . . . . . . ... ... ... .
1.2 PhaseDiagram . . . . . . .. ... ... ... ...
1.3 Outline of Normal State Properties . . . . . ... ... ... .....
1.3.1 Im-plane Resistivity . . . . . . . .. ... ... .. ......
1.3.2  Out-of-plane Resistivity . . . ... ... ... ... .....
1.3.3 AnisotropyRatio . . .. ... ... ... ... .. ... ...
1.34 KnightShift. . . . .. ... ... ..
1.3.5 Spin-lattice RelaxationRate . . . . ... ... ... .....
1.3.6 Electronic Specific Heat . . . . .. ... ... ........
1377 FermiSurface . . . . ... ... ... ... ..........

2 Chern-Simons Gauge Approach

2.1 Imtroduction . . .. .. ... ... ... ...
2.2 C-SBosonization . . . . . . ... ... .. ...
2.3 Implementation . . . . .. ... ... ... ...
24 GaugeFixing . . . . . . . . ...
2.5 Optimization . . . . . . . . ...
2.6 “Improved” Mean Field Approximation . . .. ............
2.7 Spinon Effective Action. . . . . ... ... ... ... .. ...
2.8 Holon Effective Action . . . . .. ... .. ... ...........
29 RoleoftheGaugeField . . . . ... ... ... ... ... ......

3 Gauge fluctuations Effects on Physical Correlators
3.1 Motivations . . . . . ...
3.1.1 In-plane Resistivity . . . . . .. ... ... ... .......

11
11
14
14
16
17
18
19

21
21
22
23
25
27
29
30
32
34




ii Contents
3.1.2 Out-of-plane Resistivity . . . . . . .. ... ... ... ... 39

3.2 Spinon Current-Current Correlation Function . . . . ... .. .. .. 41
3.2.1 Feynman-Schwinger-Fradkin Representation . . . . . .. .. 41

3.2.2 Gauge Field Strength Correlation Function . . . . .. . ... 42

3.2.3 Eikonal and Saddle Point Approximation . . . . . ... . .. 45

3.3 The Electron Green’s Function . . . . .. .. ... ... ....... 46
3.3.1 Holon Effective Action . . . . . . . ... ... ... ... .. 46

3.3.2 Tomographic Decomposition . . . . . . .. ... . ... ... 47

3.3.3 Quasi-particlePole . . . .. ... 50

3.3.4 Fermi Surface and Electron Resonance . . . .. ... .. .. 52

4 Pseudogap: Comparison with Experiments 53
4.1 In-plane Resistivity . . . . . . . . . .. .. 53

42 Universal Normalized Resistivity . . . . . . . . . . ... ... .. .. 56

4.3 Hidden MIC in Superconducting Cuprates and Magnetoresistance . . 58
4.4 Far Infrared AC Conductivity . . . . . . . . . . .. .. 60

4.5 In-plane a — b Resistivity Anisotropy . . . . . . ... ... .. ... 65
4.6 Spin-Lattice RelaxationRate . . . . . ... ... P 67

47 Out-of-plane Resistivity . . . . . ... ... .. ... ... ... ... 68

4.8 Resisitivity Anisotropy Ratio . . . . . ... .. ... ..o 70

5 Strange Metal 71
5.1 Introduction . . . . . . . . . . i e 71

5.2 Optimization . . . . . . . . ... 72

5.3 Holon Effective Action . . . . . . . . . ... 74

5.4 Gauge Effects in the Spinon Sector . . . . . . . ... ... oL 76

5.5 In-plane Resistivity . . . . . . . .. . oo 77

5.6 Spin-lattice RelaxationRate . . . . . ... ... .. ... 81

5.7 Electron Green’s Function: QuasiparticlePole . . . . ... ... ... 82

5.8 Out-of-plane Resistivity . . . . . . .. ..o oo 84
Conclusions 87
Appendix 89
Bibliography 95

Acknowledgments 101



Introduction

High temperature superconductivity was discovered by Bednorz and Muller (1986)
in a complex oxide containing quasi-two dimensional copper-oxygen planes. These
CuO, sheets are surrounded by layers of other atoms which play the role of charge
IESEervoirs.

Undoped cuprates are well understood half-filled Mott-Hubbard insulators with
long range antiferromagnetic order. By chemical substitutions in the charge reser-
voirs one can add or remove electrons from the CuO, planes. This introduces charge
carriers into the planes which can delocalize quantum-mechanically.

The interesting point is that this delocalization is a highly collective phenomenon:
the moving holes disturb the spin order and as a result the antiferromagnet “distorts”
locally and the holes are surrounded by a droplet of quantum spin liquid.

Even in the absence of superconductivity, this new quantum state of matter has
little to do with the traditional Fermi-liquid. Detailed experimental investigations
in cuprates have shown that the temperature dependences of a variety of physical
observables deviate strongly from the corresponding Fermi-liquid predictions.

Understanding the normal state properties of these materials is a great challenge
for theorists and it may also shed light on the mechanism of High T, superconductiv-
ity.

From the theoretical front there has been several attempts to derive the low-energy
properties of cuprates in a unifying frame, but we are far from a theory that is consis-
tent with all the experimental data. It is generally accepted that the ¢ — .J model or the
Hubbard model (at large U) contain the relevant physics for cuprates.

The main difficulty is that these models are not integrable in two-dimensions so
one has to resort to a mean field approximation or other approximation schemes.
Since we are interested in energy scales much smaller than the on-site Coulomb re-
pulsion U, the constraint of no doubly occupied sites must be implemented exactly,
beyond a mean field approximation.

The gauge theory approach followed in this thesis is an attempt to implement the
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Gutzwiller projection in a non perturbative way. Said in words, the idea is that if
we “detach” the spin from the electron creating a spinless fermion ¢; (holon) and a
neutral boson doublet X, (spinon):

Caj = C~j2aj (1)

the Pauli principle no longer sees the spin of the particle and it automatically forbids
any double occupation of a given site.

A useful tool to separate formally the charge from the spin degrees of freedom
of the electron comes from Mathematical Physics and is the so called Chern-Simons
bosonization. This technique allows one to write action and partition function for the
t — J model in a path integral formalism in terms of holon and spinon fields. The
price you pay is that ¢; and ¥, appear minimally coupled to additional statistical
fields, gauging the global symmetries of the model.

The Chemn-Simon representation is exact but apparently more complicated than
the original one. One hopes nevertheless that the new version is more suitable for a
Mean Field approximation, as it already contains the germ of spin-charge separation.

Another important point is that decomposition ( 1) introduces a fictitious U(1)
local symmetry so the ultimate picture is that of holons and spinons scattering against
a U(1) gauge field. Following Nagaosa and Lee[41], we assume that this scattering is
the main source of dissipation at low energy.

According to the above picture, the role of the gauge field is to destroy the Lut-
tinger liquid excitations which means that spin-charge separation is not “complete”
in 2D.

It is fair to say that there is no small parameter in the problem, so we must proceed
by intuition and test the relevance of the theory a posteriori by making some explicit
prediction for a given observable and comparing it with experimental data.

In Chapter 1 we discuss the generic (7, §) phase diagram for hole-doped cuprates,
where T is the temperature and ¢ the density of holes. We focus our attention on the
normal, i.e. non superconducting, phase where we identify two non-Fermi liquid
regions separated by a crossover temperature 7.

Optimally doped samples and underdoped samples at T > T belong to the
“Strange Metal phase”; this phase is metallic in nature with the in-plane and out-
of-plane resistivities showing linear-in-7" behaviour.!

! Also overdoped samples at high temperatures enter this phase.
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By decreasing the temperature below 7™, underdoped samples enter the “Pseu-
dogap phase” characterized by a suppression of the density of state near the Fermi
level.

The reduction of the scattering rate due to the pseudogap opening affects the in-
plane resistivity which becomes sublinear. At sufficiently low temperature and in the
absence of superconductivity a striking Metal Insulator Crossover (MIC) is observed
in these samples. On the basis of the experimental data, we reject the interpretation
of the MIC as due to disorder-induced localization and we assume that the MIC is a
hallmark of the Pseudogap.

In the remaining part of this chapter we briefly review some of the anomalies of
the normal state of cuprates superconductors.

The spin-charge gauge approach to the ¢ — .J model for the “Pseudogap phase” is
presented with enough details in Chapter 2. The spinon dynamics is described by a
non-linear o-model with a theoretically derived mass gap m; ~ J(8]1nd|)*/?, where
J is the exchange integral.

The holon is fermionic with “small” Fermi surfaces (e ~ td) (with ¢ as the
hopping integral) centered around (£ /2, =7 /2) in the Brillouin zone and a reduced
spectral weight outside the reduced Brillouin Zone. The small Fermi surface picture
. is due to the presence of a strong statistical magnetic field which frustrates the charge
motion.

The low energy dynamics for the gauge field is obtained from holon integration
and, due to the finite Fermi surface, the propagator for the transverse component A%
exhibits a Reizer singularity.

The analogies and differences with respect to the corresponding one-dimensional
problem are explicitely quoted.

Chapter 3 is more technical in nature. In the spin-charge approach both holon and
spinon are coupled with the gauge field and the in-plane resistivity is controlled by the
particle having the shortest scattering time (Ioffe-Larkin rule), the spinon in our case.
In order to apply Kubo formula, we evaluate the spinon current-current correlation
function, averaged over gauge fluctuations.

The out-of-plane motion is a totally different story: only the electron is gauge
invariant and hops between the layers, so holon and spinon should irecombine first,
as first suggested by Anderson[1]. The Green’s function for the physical electron,
needed to calculate the c—axis resistivity and compare with the ARPES data, is given
by the product of holon and spinon propagators, averaged over gauge fluctuations. We
find that gauge fluctuations are sufficient to bind holon and spinon into a resonance
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near the Fermi level.
In the evaluation of physical correlators, we use path-integral methods and eikonal
approximation, strictly preserving gauge invariance.

Chapter 4 is the core of this thesis. The results obtained in the previous chapter
are systematically used here to calculate a variety of observables.

The MIC for the in-plane resistivity p,; is explained[48] in terms of the compe-
tition, in the spinon sector, between the mass gap m, and gauge fluctuations which
account for the dissipative motion of charge carriers. This competition explains also
the broad peak found in the spin-lattice relaxation rate for many underdoped samples.

The emergence of a MIC for underdoped superconducting cuprates (6 = 0.06)
when a strong magnetic field is applied along the c—axis to destroy superconductiv-
ity, is the key to interpret the large positive in-plane magnetoresistance measured in
these materials.[50] These results were derived previously and are reported here for
completeness.

We have subsequently extended our analysis to account for other peculiar proper-
ties of the “Pseudogap”[59][60].

The universality curve for the normalised resistivity p, (see Sect. 4.2) noticed in
a variety of cuprates (YBCO, LSCO, BSCO, etc.) is a natural consequence of our
formula.

Following the approach of Kumar et al.[39], we calculate the thermal behaviour
of the out-of-plane resistivity p. in the Pseudogap finding a very good agreement. In
particular the theory predicts a marked roundeed knee that is indeed seen in the ex-
perimental data[17]. We interpret it as due to a change in the temperature dependence
of the electron recombination time.

Motivated by a very recent experiment [53], we generalize the approach to fre-
quency dependent phenomena and we calculate the (Far Infrared) dynamical in-plane
conductivity for strongly underdoped cuprates. We show that at low temperatures the
Drude response disappears and a broad peak emerges at finite frequencies (w ~ 100
cm~1) which is the analogue of the peak found in temperature dependent DC conduc-
tivity for the same sample. The anisotropy in the MIC temperatures along the a and b
plane directions found in both the DC [54] and AC [53] conductivities data, is almost
certainly related to a corresponding anisotropy in the antiferromagnetic correlation
lengths. Neutron scattering experiments[56] have indeed revealed that the magnetic
correlation lengths are strongly anisotropic, with §, > &.

In Chapter 5 we extend the gauge approach to describe the “Strange Metal phase”.
This phase differs from the Pseudogap by the fact that there is no statistical magnetic
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flux per plaquette so charge carriers delocalize more easily. This causes a change in
the dispersion relation which in the absence of gauge fluctuations is simply given by
the usual tight binding expression and one finds a large Fermi surface, as predicted
by electronic structure studies at high temperatures.

The role of holon-induced gauge fluctuations strengthen up and leads to metallic
resistivities, with p,y, and p, both linear-in-T" at high temperatures.

Moreover, the calculated spin lattice relaxation rate at the Cu sites (ﬁl—f) has the
same temperature dependence of the in-plane conductivity. All these features are well
supported by experimental data.

Finally, in view of the technical details, the procedures followed to find the op-
timal spinon configuration for a given holon background in both the Pseudogap and
Strange Metal phases are outlined in the Appendix.







Chapter 1

Phenomenology of HT'S cuprates

1.1 Introduction and Model Hamiltonian

Cuprate compounds are a class of layered materials sharing the same Perovskite-like
structure: the basic unit cell is made up of one or few planes of CuO, atoms on top
of which there are layers of other atoms (O,Ba,La,Ca, etc.). A typical single layer
reference compound is La,CuO, (LSCO) whose simplified unit cell is sketched in
Fig. (1.1).

Transport experiments have shown that cuprates are quasi two dimensional sys-
tems with the relevant physics taking place in the CuO; sheets. The surrounding
layers play a secondary role acting as charge reservoirs that control the carriers con-
centration in the sheets.

The undoped compounds have one hole per Cu atom, occupying the hybridized O-
2p and Cu-3dy2_,2 orbitals. These materials are charge transfer insulators with long
range antiferromagnetic order. The insulating nature clearly indicates that electrons
in the CuO; planes are strongly correlated: the on site Coulomb repulsion freezes
completely the charge degrees of freedom and the system becomes purely magnetic.

Doping is obtained via chemical substitution of atoms from the charge reservoirs
with other atoms having a different ionization state. In order for the Copper to achieve
shell completeness, electrons are then taken out of the CuQO, planes (hole doping) or
donated to them (electron doping). For instance, LayCuO, can be hole-doped by
substituting the trivalent La atom in the reservoir with the divalent Sr atom while
Nd;CuO; is electron-doped by replacing Nd** by Ce*™ in the charge reservoirs.

Injecting holes, i.e. empty sites, in the CuOs sheets we allow electrons to de-
localize in order to decrease their kinetic energy and for a given temperature, this
determines the metallic or insulating state of the material.
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Charge reservoir

d
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Figure 1.1: Simplified unit cell of the Lay_,Sr;CuO, crystal.

The simplest model consistent with the above phenomenology is the one band
Hubbard model defined in a square lattice:

HHubb — Z *tc:;raCja -+ h.c. + UZ TNt = 1, (11)

<ij>o

in the strong coupling limit ¢ < U.

According to this picture, undoped compounds are simply half-filled Mott-Hubbard
insulators. This is due to the fact that, to first order in U™!, the Hubbard model be-
comes equivalent to a Heisenberg model with the spins given by the localized elec-
trons and a (super-)exchange coupling constant J = 4¢2/U, leading to a Neel ground
state with small quantum fluctuations.

The strong coupling limit of the Hubbard model at finite holes density is the so
called t — J model:

~ - - = 1
H;_ ;= Z Pg(—tc;rac‘ja +h.c)Pg+J Z (S; - Sj - Zninj), (1.2)

<ij>,o <ig>

where Py is the Gutzwiller projector enforcing the constraint of no double occupation
of a given site. The relevant parameter for cuprates is J/t o~ 0.3, well inside the strong
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correlation regime. This model has been suggested to be relevant for high 7. cuprates
by Anderson, in a seminal paper [1]in 1987.

The t — J model is particularly appealing because it emphasizes the competition
between the hopping term favoring delocalization and the spin term working against
it, because the charge motion anavoidably frustrates the spin background. The need
to implement P in a non perturbative way is at the basis of our approach.

For real materials an additional term ¢’ ~ 0.2¢ describing hopping between next
to nearest neighbor sites is usually added to the effective models ( 1.1) or ( 1.2). For
simplicity, we omit this term. This approximation should be acceptable if we are
mainly concerned with the anomalous thermal properties of cuprates, but of course
properties depending on the details of the Fermi surface are completely lost.

1.2 Phase Diagram

Experimentally, all hole-doped High 7, cuprates adhere to the same schematic phase
diagram, shown in Fig. ( 1.2), the interesting parameters being the hole concentration
6 measured from half-filling (6 = 0) and the temperature 7". This diagram is known
to be extremely rich and it’s microscopic explanation is one of the most challenging
open problems for physicists.

At very low doping § < 0.02, the material retains the properties of the parent
compound, i.e. it is an insulator with long range antiferromagnetic (AF) order with
small quantum fluctuations; this phase is theoretically well understood. The super-
conducting phase (SC) occurs in a range of doping roughly given by 0.05 < § < 0.3
with T;, reaching a maximum at the optimal doping § = J,p: == 0.16.

The boundaries of these two phases are marked with thick lines to emphasize
that they should correspond to real 3D phase transitions. The dashed lines, however,
represent crossovers from different regimes inside the normal state. In particular the
first two regimes dubbed Pseudogap (PG) and Strange Metal (SM) show a variety
of observables (resistivity, spin lattice relaxation rate, Hall constant, bulk magnetic
susceptibility, etc.) whose temperature dependences deviate strongly from standard
Landau Fermi liquid predictions.

Below, we shall review experimental data for a variety of physical observables,
putting special emphasis on the anomalous thermal behaviour. The “Pseudogap” is
certainly the most interesting region of the phase diagram showing peaks, minima
and inflection points at will. For a recent and thorough experimental survey on the
Pseudogap please consult the review paper by Timusk and Bratt [2].
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Figure 1.2: Schematic phase diagram of hole-doped cuprates.

Theoretical models attempting to interpret the Pseudogap are very much diversified.
Basically, there are two schools of thought.

According to one school, the pseudogap is a “precursor” to superconductivity,
i.e., the superconducting state is more fundamental. The other school emphasizes the
proximity to the Mott insulating state, considering the pseudogap phase as nothing
but doped Mott insulators. Therefore, the normal state is more fundamental, while
the superconduting state is derived from this anomalous normal state, as the BCS
superconductivity appears when a pairing force is present in the Landau Fermi liquid.

There were several early proposal on the first approach, assuming preformed pairs
in the normal state.[3] The underlying idea is that above T, the phase of the super-
conducting order parameter is no longer rigid which means that coherence and off-
diagonal long-range order of the superconductor are lost[4].

The other school of thought was pioneered by P.W. Anderson and collaborators
[1][5] leading to the RVB theory. To implement the single occupancy constraint in
the frame of spin-charge separation, a gauge theory approach was developed by many
authors.[6, 38, 41]

In recent years, new alternative theories emerged such as the quantum critical
point scenario[7, 8] and the Z, gauge theory of electron fractionalization by Senthil
and Fisher et al.[9]
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1.3 Outline of Normal State Properties

After more than a decade of intense experimental investigations of high quality mate-
rials, we know by now that the anomalous 7'-dependences of many observables such
as resistivities, spin susceptibilities, etc. are quite universal at least in the class of
hole-doped cuprates.

Before reviewing some of the peculiar properties of cuprates in the normal state,
it may be useful to recall the corresponding Landau Fermi Liquid (LFL) predictions.

Properties of the normal LFL follow from the one-to-one mapping of the low
energy eigenstates of the interacting electrons with those of a free Fermi gas. The
prerequisite of this assumption is that the volume of the Fermi Surface is conserved
and that low energy quasiparticles are sufficiently well defined (both these assump-
tions are questionable in cuprates).

Direct consequences are the linear specific heat Cyy = T and the temperature
independent spin susceptibility .

The resistivity is of the form p(7') = a + bT? where the constant term is due
~ to impurities or imperfections always present in a metal and the second term comes
from electron-electron scattering which cause quasiparticles to decay with life-time
proportional to T2,

The Hall constant Ry is temperature independent and inversely proportional to

 the carriers concentration.

1.3.1 In-plane Resistivity

The phase diagram of High T cuprate has been largely inspired by the anomalous T
dependence of the in plane resistivity.

In Fig. ( 1.3) we report data of Takagi et al. [10] for LSCO high quality samples.
One of the most striking feature is the linear in 7" behaviour for optimally doped
samples over a remarkably wide range of temperatures from just above 7, to near
1000K.

In underdoped and overdoped samples, however, the resistivity at low 7" is far
from linear. A remarkable yet universal feature appearing in strongly underdoped
samples is the existence of a minimum in pgy, with Ths7¢ located around 50 — 100K,
corresponding to a Metal-Insulator crossover (MIC).! It should be noted that for these
samples, the estimated krl < 0.1 at the MIC, that is the in-plane resistivity is well

IThis crossover has been observed in non-superconducting Bis4 4 Sra—,CuOg45,[11] and non-
superconducting YBa;CuzO7_s(YBCO)[12, 13] and La-doped Bi-2201.[14].
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above the Mott-Regel limit. This means that the MIC cannot be explained in terms of
disorder induced localization.

By increasing the St content z, the MIC shifts to lower temperature and eventually
disappears near T,, where the resistivity drops abruptely.”

According to our interpretation of the phase diagram, the MIC in py is the hall-
mark of the “Pseudogap”.

Another characteristic feature of in-plane resistivity which appear quite universal
in underdoped samples is an inflection point, i.e. a maximum of dp/dT" at T ~
100 — 200K this maximum disappear for higher dopings. At even higher temperature
the resistivity exhibits a linear in 7" behaviour approached from below.

At very low temperature many samples exhibit a second inflection point below
which the resistivity diverges approximately logarithmically in 7".[15] These two in-
flection points as a function of the holes content ¢ limit a portion of the (6, T") phase
diagram that we identify as the “Pseudogap phase”; the temperature 7 then corre-
sponds to the crossover to the “Strange Metal phase” of the diagram.

In overdoped samples pgy; is always metallic and the linear in 7" behaviour at
large temperatures is instead reached from above, suggesting a possible Fermi Liquid
regime with pg(T) ~ T¢, o > 1 atlow T.

2By applying a strong magnetic field to suppress superconductivity, a MIC has been observed in a
number of superconducting samples. In LSCO samples, using a 60 T pulsed magnetic field, the metal
to insulator crossover persists up to optimal doping.[15, 16]
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Figure 1.3: In-plane resistivity vs 7' for LSCO samples with different Sr content z.

From Ref.[10]
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1.3.2 Out-of-plane Resistivity

The strong anisotropy of cuprate compound is suggested by the c-axis resistivity p,
which can be from two to three order of magnitude larger than p,,. In particular p, is
well above the Mott-loffe-Regel limit (10m2 - cm).

The out-of-plane motion is incoherent, i.e. the mean free path of charge carriers
moving orthogonally to the CuO; planes is much smaller than the interlayer distance,
suggesting that conductivity along the c-axis in cuprates occurs by interplanar tunnel-
ing processes.

The remarkable temperature dependence p.(7") found in cuprate compounds is
shown in Fig ( 1.4). At low temperatures in the “Pseudogap phase” p.(T) is insulat-
ing, behaving like 7! with a coefficient essentially material independent. At higher
temperatures, it typically develops a rounded knee followed by a much slower de-
crease. Eventually a minimum is reached after which p.(T") grows linearly in T like
the in-plane resistivity.

We shall interpret the T'—linearity of both p.(7") and p.(7") as a hallmark of the
“Strange Metal phase”. The MIC in the out-of-plane resistivity then arises because
pc 18 insulating in the “Pseudogap” and metallic in the “Strange Metal”. The MIC in
Pab, however, is an intrinsic feature of the Pseudogap.

The coexistence in the PG of metallic in-plane and insulating out-of-plane resis-
tivities is hard to explain within Fermi Liquids theory.

1.3.3 Anisotropy Ratio

The resistivity anisotropy ratio p.(7)/pas(7") increases as T  decreases in the “Pseu-
dogap” and tends asymptotically to a doping dependent constant at high temperatures,
as shown in Fig. ( 1.5).

At very low doping and temperature, the system enters a new phase and the
anisotropy ratio goes through a maximum and decreases for 7' — 0.

We also mention that, if superconductivity is suppressed by a sufficiently strong
magnetic field, the anisotropy ratio for # 2 0.06 remains finite for vanishing temper-
atures as shown for instance by Boebinger et al. [16].
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1.3.4 Knight Shift

The Knight shift K is determined by the real part of the static magnetic susceptibility
X' (at a given nucleus) as the response to an applied magnetic field:

K =Ax'(w=0,7=0), (1.3)

where A is the hyperfine constant.

In an ordinary Fermi Liquid K is temperature independent.

Fig. ( 1.6) shows the planar 3°Y Knight shift for a series of YBCO samples with
different oxigen contents. We see that K (7") is depressed at low 7" in underdoped
samples due to the opening of a spin gap at 7' < 7T while it is almost T-independent
at optimally doped samples.

In overdoped cuprates K (7') is known to decrease as the temperature increases.

Finally, it has recently been found experimentally by Tallon et al. [20] that the
thermal dependence of %Y Knight shift for Y;_;CazBay,Cu30,_s is a universal func-
tion of T'/T™* up to an overall (doping dependent) scale.
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relaxation rate well above 7. From Ref.[21]

1.3.5 Spin-lattice Relaxation Rate

The spin-lattice relaxation rate T, ' measured the average spin fluctuation response
at a given nucleus to a quasi static magnetic field. It is related to the imaginary part
X" of the magnetic susceptibility

— =TA?lim Z X' CD (L.4)

w—0

where F'(g) is a form factor depending on the lattice geometry. Both the Knight shift
and the spin relaxation rate are measured in NMR (Nuclear Magnetic Relaxation)
experiments.

At the Cu sites, the form factor is strongly peaked around § = Q ar due to the short
range AF order. For Fermi Liquids, the following Korringa law is valid: 73 ™ oc KT
which implies EF—T =constant.

In Fig. 1.7 we show the thermal dependence of the spin-lattice relaxation rate at
83Cu nuclei for YBCO cuprate compound as found by Warren et al.[21] For optimally
doped and slightly overdoped samples, TlLT x %

For underdoped compounds this 7! behaviour is reached at relatively high tem-
peratures: by decreasing 7', T = goes through a broad maximum and then decreases at
low T A curious feature emerging from the experimental data is that the spin-lattice
rate = s = share, qualitatively, the same temperature dependence with the in-plane con-

duct1v1ty o4 (1) both in the Pseudogap and the Strange Metal phases.
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Figure 1.8: Temperature dependence of 7, of YBayCu3Ogy, for different oxigen
content. From Ref.[22]

1.3.6 Electronic Specific Heat

The electronic specific heat C; is a bulk thermodynamic quantity determined uniquely
for a given material by its spectrum of low lying electronic excitations. It basically
counts the number of degrees of freedom active at a given temperature and therefore
is an important test for any effective theory for cuprates.

In a usual LFL, the specific heat coefficient 7y, = C;E’ is T-independent and pro-
portional to the density of state at the Fermi Surface. This is due to the fact that only
the quasiparticles whose energy is within £g7" from the FS are not frozen by Fermi
statistics for 7' < ep.

In Fig. ( 1.8) we show the electronic specific heat coefficient as a function of ' for
YBCO compounds taken from Loram et al.[22]. In the “Strange Metal phase”, . (1)
is almost flat with a sudden increase in corrispondence to 7. It’s doping dependence
is also very weak.

At low temperatures in the “Pseudogap phase”, 7.;(T") decreases with T' reaching
a minimum at around 7' ~ 50K and then increases with an inflection point some-
where between 100 — 200K. It is important to note that this minimum is not due to
superconducting fluctuations as it is present also for non superconducting samples
such as LSCO with Sr content z = 0.03, see Ref.[23].
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Figure 1.9: Fermi surface of nearly optimal and underdoped Bi-2212 samples. From
Ref.[24]

1.3.7 Fermi Surface

Angle-resolved photoemission spectroscopy (ARPES) has been used extensively to
obtain direct information about the Fermi Surface of cuprates. Fig. 1.9 shows the
Fermi surface of two Bi-2212 samples as found by Marshall et al.[24]: the solid and
dashed lines refer to the overdoped and underdoped samples, respectively.

We see that for optimal and overdoped cuprates, the Fermi surface is large, con-
sistent with the Luttinger theorem and with predictions of electronic structure studies
at high temperatures. For underdoped samples, the FS develops a a half-pocket like
structure centered at the points (£7/2, ££7/2) in the Brillouin zone.

The current picture of the pseudogap opening leading to a small Fermi surface
in underdoped cuprates is as follows[25]: by decreasing the temperature below 7™,
a pseudogap first open near (0,7) and equivalent points, it then gradually “eats” up
the original large Fermi surface, converting it into “pseudogapped” part, eventually
leaving only short disconnected arcs around (7/2, 7/2). Finally, these arcs shrink to
nodal points of the gap function, and the pseudogap cohverges to the superconducting
gap, with the same d-wave like symmetry. Meanwhile, the quasiparticle peak which is
ill-defined in the normal-pseudogap state, becomes well-defined in the superconduct-
ing state, like in the typical BCS superconductors. This picture seems to be universal
for all classes of cuprate superconductors, and is consistent with all available data on
pseudogap phenomena.
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Chapter 2

Chern-Simons Gauge Approach

2.1 Introduction

Gauge theories have been succesfully applied to describe the Fractional Quantum Hall
Effect in two dimensional systems subject to a strong magnetic field.[26] The general
idea is to attach magnetic flux quanta to the real electrons and to rewrite action and
partition function for the model in terms of the new composite (fermion+gauge flux)
fields. It is important to note that the new particles are anyons, i.e. they may obey
a different statistics in virtue of the additional Aharonov-Bohm effect when two of
them are interchanged.

The advantage in doing this is that the new action may be more suitable for a Mean
Field Approximation, because it may naturally incorporate some non perturbative
features.

In cuprates, gauge fields appear because of the locally constrained dynamics. A
non perturbative way to implement the Gutzwiller projector Py is through a formal
spin-charge decomposition. Assume that the electron field operator on the lattice can
be written as a product of a spinless fermion (¢;) and a boson spin doublet (¥;,):

Cja = C}'Zja. (21)

The no double occupation constraint is then satisfied by imposing at any site the
condition

T =1, 2.2)
which implies C;‘acja = E}Ej. Therefore Pg is naturally taken into account by the
Pauli principle applied to spinless fermions. Clearly a switch of statistics leading to
a spinless boson and a fermion spin doublet (slave-boson theory) does not serve the

cause, unless one imposes a hard-core exclusion on the bosons.
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It is important to note that in slave-bosons and slave-fermion theories normaliza-
tion ( 2.2) is usually replaced by condition 6}53- + 37,50 = 1 and leads to different
Mean field scheme.

Decomposition ( 2.1) introduces 6 — 4 = 2 additional degrees of freedom per
site; having already fix one by imposing ( 2.2), the spurious degree of freedom comes
from the ambiguity in the spin-charge decomposition ( 2.1). The following //s local
transformation

& — e M) T, — Diaet) (2.3)

affects both holon and spinon fields, but leaves the physical electron field ¢; un-
changed. As a result, the low energy effective actions for the charged fields ¢; and
¥ ;o will ultimately describe particles coupled with a U(1) gauge field.

We shall assume that holons and spinons are true excitations and the main dif-
ference w.r.t. the 1D case is that such excitations interact strongly with the gauge
field. The non trivial working assumption is that in Mean Field approximation any
interaction non-mediated by the gauge field is neglected.

2.2 C-S Bosonization

A theoretical tool implementing decomposition ( 2.1) is the so called Chern-Simons
bosonization. It basically consists in gauging a global symmetry of the model Hamil-
tonian by minimally coupling the conserved current to a statistical gauge field V/
whose dynamics is described by a Chern-Simons action which does not introduce
spurious degrees of freedom. The global symmetries of the ¢ — J model (as inherited
from the Hubbard model) are:

e U(D) Cja —> €7%Cjg  Aq real Charge
o SUQ2) cjo — Uypcjp U € SU(2) Spin

Early attempts based upon slave-boson and slave-fermion methods can be easily de-
rived gauging only the U(1) symmetry[27]. Though relatively simple, these theories
do not treat the spin degrees of freedom with enough accuracy.

We choose to gauge both charge U(1) and spin SU(2) degrees of freedom simul-
taneously. More precisely, our theoretical treatment of the ¢-J model is based on the
following theorem[27, 28]:

If we couple the fermions of the ¢-J model to a U(1) gauge field, B, gauging
the global charge symmetry, and to an SU(2) gauge field, V,, gauging the global
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spin symmetry of the model, and we assume that the dynamics of the gauge fields is
described by the euclidean Chern-Simons actions:

_ 1 3 vp
SC.5_<B) = —"'2-7; ' d’zet B,LL((‘),/BP
Sun(V) = — [ daTree[V,0,V, + V.V, V. 2
es (V) = g d*zTre?[V,0,V, + 5‘”%‘ AR (2.4)

then the spin-charge gauged model so obtained is exactly equivalent to the original
t-Jmodel. In (2.2) V, = V!0, /2, a =1,2,3, u =0, 1,2 with o, as Pauli matrices.

Let us give an idea of the proof of the above theorem for the partition function. We
expand the partition function of the gauged model in the first-quantized formalism in
terms of worldlines of the fermions. After integrating out the gauge fields, the effect
of the coupling to B, (V),) is only to give a factor e™*3 (¢!%) for each exchange of the
fermion worldlines, so that the two effects cancel each other exactly.

As a case test, this non-abelian bosonization scheme has been applied [29], via a
dimensional reduction, to the ¢ — J model in 1D in the limit J < ¢: the exact critical
exponents of spin and charge correlators, known from Bethe Ansatz and Conformal
Field Theory techniques[30], are reproduced in a mean field approximation. The
necessary ingredients were the semionic nature of the holon and spinon fields and
the fact that the h/s gauge field has no transverse (physical) component in 1D which
implies that the two excitations are effectively decoupled, leading to a complete Spin-
Charge separation.

We believe that the present approach can be useful to treat the more interesting
2D case. In the remaining part of this chapter we presents the theory with enough
details, along the lines of Ref. [28].

2.3 Implementation

We start by writing the grand canonical partition function Z (3, 1) for the ¢ — J model
( 1.2) in path integral representation:

Z(B, ) = / D\IJD\I/*@‘St~-’(‘I’"I’*), (2.5)
with
Sy = /ﬂ dzo Z U2, (00 — 1) W + Z (=t¥;, V0 + h.c)
0 i (i.4)
IR P EEE NPT ol (R A (2.6)

(4.7) i

_J
2
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The two body potential u;; is given by:

oo 1=]
J
4

uj; = { —% 1,7 nearest neighbors

0 otherwise

with the Gutzwiller projector appearing as an infinite on-site repulsion.
In the Chern-Simons approach the Grassman field ¥;, representing the physical
electron is written as a product of two gauge invariant objects:

Ty = e PPt g, 2.7)

where H is a spinless fermion minimally coupled to the U(1) field B and and ¥, a
boson spin doublet minimally coupled to the SU(2) field V.! In ( 2.7) the integration
in the exponent is taken over an arbitrary path -; in the 2D plane, running from site ¢
to a point at co and P is the path ordering operator.

Applying the theorem mentioned in the previous section and taking into account
the constraint ( 2.2), the grand canonical partition function Z(f3, 1) can be rewritten
as

Z(B,p) = / DHDH*DY,DY:DBDVe SEAWEEBV)s(v*yy 1),  (2.8)

where the Euclidean action S(H, H*, ¥, ¥*, B, V) is given by

B
S(H*,H,~*,%,B,V) = / da® Z {H} [0 — iBo(j) — p] Hj + iBo(j)+
J

0
+(1 — HyH;)%5, (00 + iVo(5)lag Zj/s} +

I Z { *:_tH;eif(ij) B, (Peif<ij) V) , Yig + H.C.:l +
(i) *

%(1 — H;H))(1 - H;Hj) ( s (Pei Jin V)aﬂ s

+8S.5.(B) + Ses. (V). (2.9)

I'With respect to ( 2.1) we have applied a particle-hole transformation to the spinless fermion.



2.4 Gauge Fixing 25

By construction, the action ( 2.9) is invariant under U(1)xSU(2) gauge transfor-
mations and under the additional h/s gauge transformation. More explicitely, the
U(1) symmetry is given by

Hj - HjeiA(j)7 H; N H;ke—i/\(j)
B,(z) — Bu(z)+0d,Az), Alz) eR (2.10)

while for the SU(2) spin symmetry we get
S5 = 9%, T = Z56'()

V(@) = 9(2)Vau(2)g' (z) — ig(2)0,u9'(z) g(z) € SU(2). (2.11)

Finally, the h/s gauge invariance is given by
H; — Hye's, Hy — Hie ™

Sja = Djac, Ti, = Tie™9, (G ER. (2.12)

2.4 Gauge Fixing

The grand canonical partition function in ( 2.8) is written as a functional integral
over the composite fields and the statistical gauge fields. In order for this formula
to make sense, i.e. to give a finite result, we need to gauge fix the U(1)xSU(2)
symmetry before integrating over B, and V} and to gauge fix the h/s invariance
before integrating over H and X, fields.

Since our task is to find low energy effective actions for holon and spinon vari-
ables, we gauge fix the U(1)xSU(2) symmetry and postpone the h/s gauge fixing
until integration over the composite fields is required. Our action will therefore pos-
sess an additional, fictitious degrees of freedom per site to be fixed.

The U(1) symmetry is gauge fixed by imposing a Coulomb condition on B (from
now on p = 1,2):

0B, = 0. (2.13)

To retain the bipartite lattice structure induced by the AF interactions, we gauge—
fix the SU(2) symmetry by a “Néel gauge” condition:

al .
Ej=a'x”(0), oy = (1,0)07, (2.14)
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where |j| = j; + j». Then we split the integration over V' into an integration over a
field 17(¢), satisfying the Coulomb condition:

oMV =0, | (2.15)
and its gauge transformations, expressed in terms of an SU(2) valued function g(z)

V = ¢'Vg 4+ ¢'0g. (2.16)

The constrained integration over ©,, X%, is now replaced by integration over g(z)?.
Integrating over By which appears linearly in the action ( 2.9), we obtain

_ 1
By =B, +0B,, 6Bu(z) =3 > H;H;darg(z — j), (2.17)
J

where B, gives rise to a r-flux phase, i.e., e'for B = _1 for every plaquette p.
Integrating over Vg, we find an explicit expression for V;:

| 10a ;i :
V9 = (1~ H Hy)(ol'g} g0 Yubuarg (5 — f)oa,  (218)
J
where 0,, a = x,y, z are the Pauli matrices. After the U(1)xSU(2) field being gauge—
fixed, the action ( 2.9) becomes S = 57 + S5 with

Si(H,H*, A,U) = /Oﬁ da:o{Z[Hj (80 - u)Hj +i(1 - Hij)Aj] +
j

+ > (~tHUeiys H; + h.c.)} (2.19)
<ij>
H H* _ Bd 0 J * *H 2 1
So(H, H*,U) = ds ;P—Z—(l—HiHi)(l—Hj j)(iU<ij>[ —5), (2.20)

where the lattice gauge fields A;, U;;y depends on spin and charge variables as:

i4; ~ (010095081,
Uscijs ~ € <is> B9 (ol gl (Pei Jaia> V() g, 1), . (2.21)

It is easy to show that A; is real while Uy;; is complex with |Up;;| < 1.

2This is consistent because an SU(2) matrix is determined by 3 real parameters and the degrees of
freedom per site associated to ¥, X}, fields are exactly 4-1=3
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In particular, action S; describes a gas of spinless fermions on a square lattice
with hopping parameter on the link (ij) given by t|Uy;| < ¢ in the presence of an
e.m. field A.,, given by

A8, (5) = Ay, e Aomdl — giinalliy), (2.22)

while action S5 describes the Hamiltonian of a Heisenberg antiferromagnet with spins
situated at the non-empty sites and with link dependent coupling constant J; =
J(1 = |Usij>|?) < J.

2.5 Optimization

The Mean Field approach to an interacting “quartic” theory goes as follows. First the
interacting term is rewritten via a Hubbard- Stratonovich tranformation introducing
complex variables x;;, which play the role of order parameters for the system. The
action is now quadratic in the matter fields and we integrate over them to obtain an
effective action S,fr(X4j, Xi;*)-

Via a saddle point equation we find the configuration x{’;(le*) that minimizes
Sers. The low energy action is then given by expanding quadratically Sy; around
this optimal configuration and taking the continuum limit with the lattice spacing
a— 0.

Unfortunately, we cannot follow this route directly because the statistical gauge
fields A;, Uy;;) in (2.21) depend on both charge and spin degrees of freedom and no
Hubbard-Stratonovich trick can make the actions ( 2.19) and ( 2.20) quadratic in
and g.

We can nevertheless calculate the holon dependent spinon configuration g7*(H, H !
which maximizes the action S = S + S for a given holon background {H;}. We
then make the assumption that the hole background is not significantly disturbed un-
der small fluctuations of the spinon variables around the optimal configuration g™.

This is reminescent of the Born-Oppenheimer approximation for molecules where
nuclei are now represented by holons and electrons by spinons and can be justified
because the dressed holes are quite heavy as a result of soft spinon fluctuations sur-
rounding the hole in its motion. This is clearly different from the one dimensional
case, where spin and charge propagate quite independently and no such screening
effects take place.

The best configuration ¢"™({H;}) is found by a microscopic optimization process
of the partition function Z(A, U) of holons in a given g background, the latter being
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defined as
(A U) = / DHDH*e™ SHHA), (2.23)

In order to keep this section readable, we defer the computation of g™ to the Appendix
quoting here the result:

95" = G;jgj = e~ 3 Lips (—1)' o= arg(i=) i3 (- 1) o HI H; (2.24)

We then trade the old spin variables g; for new variables R; € SU(2) measuring
fluctuations around the optimal configuration through the definition

95 = G;R;g;. (2.25)

Plugging ( 2.25) in ( 2.19) and ( 2.20), the partition function for the £ — J model can
be exactly written in terms of the euclidean action S = Sj, + S,

B _ 4
Sh - / dﬂ?o{z H;[ao - (O‘L]!R;r»aoRjO'ijl)n - ,LL]H]‘
0 !
J
4 Z[_tHje—ifdp(B—i-&B)H( li |gTRTP€Zf<u> % +5V)Rj§jaf’)n + h.c.]} (2.26)

<ij>
s , ,
Ss = / dSEO{Z(ULJ'R;L-aoRjO']wJI)M
0 -
7

J . :
+ > 51— HH)(1 - HHj) [l(al:*g;‘R:f Petlesi> T+ Ry 5ol P — —] 2
(2.27)

<ij>

where V' = V(9 (g™) is defined in Appendix A and §V = V(@ ~ V.
Remarks:

I. In ( 2.26) and ( 2.27) no approximations have been made. The point of the
above analysis is that at low temperatures and near half filling, we expect that the
typical spinon configurations are given by smalil oscillations R; around the optimal
distribution given by R = 1.

2. We assume self-consistently that the variables R; are the slowly varying com-
ponents of g; at the lattice scale.

3. The spin-charge separation is up to now only formal: it is imposed as ansatz in
the Mean Field approximation.

4. The statistical field V coming from the SU(2) sector, and depending only on
the istantaneous holes distribution, is the key and novel ingredient of our approach
w.r.t. other slave boson/slave fermion theories.
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2.6 “Improved” Mean Field Approximation

We recall that the electron field operator W;,, is reconstructed out of two gauge invari-
ant fields, a spinon field

z

i / i () :
(Pe fﬁ"j‘ )E] = e fﬂfj(‘ ( +6V)§jRjO"]| < (;[ ) )

and a holon field . )
o fvj(B+6B)Hj‘

We note that in C-S bosonization, the fields §1 and 0B appearing in the string -,
are important to reproduce the semionic statistics of spin and charge gauge invariant
fields.

In 1D, the proper account of the statistics of the holon and spinon field operators
was crucial[29] for deriving ( within the C-S approach) the correct physical proper-
ties of the model, known by Luttinger liquid and conformal field theory techniques.
However, in 2D we believe the statistics of holons and spinons is less crucial because
we expect that they form a bound state, as will be discussed later.

Before taking the continuum limit, we therefore assume 6V = 0, 6 B = 0 which
considerably simplify the actions ( 2.26) and ( 2.27). 3

We write R; in CP* form as

g " b, = 2
R, ( - ) Viobja = 1, (2.28)

where b;, is a two component complex field and use it to compute the relevant link
variable

Rigils VR, — Q<ij>bibj1 + O‘<z‘j>bi2by2 Q<ij>by jo T a<ij>bi2 i1
: T\ —aeiisbinbip + ot b b s biobls + ak . b bk
Cij>0i2051 T Q55011052 Oleig>032045 T Q55011041

with Qcij> = 6% f<ii> Vz.

Substituting g; by its expectation value found in first quantization (see the Ap-
pendix), the off-diagonal elements of ( 2.6) enter S, through the Heisenberg term
while the diagonal elements enter S, via the hopping term.

3The first approximation (6§ = 0) corresponds to neglect the spinon fluctuations R; on the gauge
field V'(©) for small T', J/t; in order to reproduce the fermionic nature of the electron operator, we need
to impose 6B = 0.
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2.7 Spinon Effective Action

In order to derive a low energy continuum effective action for spinons, we follow
Haldane approach [see for instance [32]]: we introduce two order parameters L, 2
describing the ferromagnetic (¢ = 0) and the antiferromagnetic (¢ = @ 4r) modes

respectively
broGanbis ~ O + (—1)VleL;, (2.29)

with 2 = <1, Q-L= 0, where Q, L are defined on one of the two sublattices to
mantain the correct number of degrees of freedom.
It is useful to rewrite €2 in C'P* form:

Q = 2Fup2s, 220 = f, (2.30)

where z,,a = 1,2 is a spin % complex (hard-core) boson field.*
By writing i
Pl T CN a(—iV;)(5) + O(a?) (2.31)

and treating the holon density in a mean field approximation (H; H; ~ §), the Heisen-
berg term becomes, up to irrelevant constants

3 (o' Rf et J<is> T Ryl 2
2 <ij> a?

=1 {% (B5%) + 202 + V2() [ () + (92)?] } +0(a). (232)

For the temporal term we obtain analogously
. . g a - - -
> (@' BlonRiolin =3 (=115, 8020 — i Lj- (4 A Bofly) +O(a”).] (2.33)
J J
The first term in the r.h.s. of ( 2.33) is a topological Berry phase trivial in 2D[32]
and can be safely neglected.

Integrating out L which appears quadratically in the action and taking the contin-
uum limit, we obtain the massive NLo model action for spinons’

S, = / d%é[(@oﬁf +02(9,0)2 + 7207 (2.34)

“These variables actually result from a coarse graining procedure, see for instance [31].

5The last term in the r.h.s. of ( 2.32) apparently breaks the spin rotational symmetry of the original
Hamiltonian. We assume self-consistently that the system is in the unbroken phase and substitute
Q2+ Qy2 — %QQ. The remaining term is considered a small perturbation and is neglected.
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with the coupling constant g = % and the spin wave velocity v, = v/2Ja.

The ‘Hz termin ( 2.34) acts as a local, istantaneous mass for the spinon excitations;
in 1D no such non—trivial gauge field exists and the spinons are massless.

Since V, is fixed for a given holon distribution, under the assumption that 172
varies slowly in space and time, we can replace it by an appropriate mean field value
(V2) by averaging over holon configurations with a given mean density 6. A detailed
calculation [33][28] then yields

(V2) ~ —41né. (2.35)

Hence (V2 drives the NLo model from the symmetry broken Neel state to the disor-
dered regime, with unbroken symmetry and correlation lenght 4 =~ W o %
fully consistent with neutron scattering data on underdoped cuprates[34].

The mass of the spinon with the specific doping dependence ( 2.35) is the key fea-
ture of our approach and does not appear in the other U(1)xSU(2) gauge field theory
of P. Lee and collaborators[35], where the gauged SU(2) symmetry is an enlarge-
ment of the particle-hole symmetry at half-filling with switched statistics of holon
and spinon w.r.t. ours.

Finally, we expect the constraint 02 = f to be relaxed at large scales for m; not
too small.®

We should also bear in mind that at very low doping the AF correlation length
in real systems becomes strongly 7'—dependent as thermal spin fluctuations tend to
destroy the antiferromagnetic 3D order.

Expressed in terms of () the action 9, in ( 2.34) masks the coupling of the spinon
variables to the h/s gauge field. To recover this gauge symmetry explicitely, we write
S; using the z, fields defined in ( 2.30):

1 - * 2 * *
S, = / dr= {vs 2 |(80 — zﬁ80z5) za} + }(Bu - z58#25) za‘z + mfzaza} i
R2x[0,8] 9
(2.36)
The quartic terms in 2, can be reexpressed via a Hubbard-Stratonovich tranfor-
mation introducing a self-generated U(1) lattice gauge field A,:

iA,(z) = (-1)V22(2)0,20(2), = = ja. (2.37)

This field is indeed an internal variable over which we functionally integrate after the
U(1) symmetry is gauge fixed.

®This constraint would typically generate short range interactions that we neglect in the scaling
limit but it could in principle renormalize the spinon mass.
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Figure 2.1: Distribution of phase factors for B on the lattice respecting d—wave sym-
metry.

2.8 Holon Effective Action

We now search a continuum limit for S,. We see from ( 2.31) that the term linear in
V' is purely imaginary and does not contribute to the action. The first non vanishing
contribution is given by the quadratic term V2a? negligeable in the limit a — 0.

For B we use a gauge choice that respects the 7-flux per plaquette condition.
Fig.( 2.1) shows the corresponding distribution of phase factors on the lattice: for a

given link < 77 > we have
T

Pcij> = iz;
with the (+) sign if the line integral is calculated along the direction of the arrow on
the link and the (-) sign in the opposite case. It is important to remark that any other
consistent choice for B leads to the same effective action for holons.

To match the periodicity of ¢;;, it is convenient to introduce 4 sublattices:

(2.38)

(1) for 71, 72 even
(2) for 7; odd, j5 even
(3) for 7; even, j, odd
(4) for 51, 70 odd.

which can eventually be grouped into two sublattices A={1, 4} and B={2, 3} charac-
terizing, respectively, the even and odd sites of the lattice.



2.8 Holon Effective Action 33

Consistently we find useful to relabel the holon fields as

Hy — e %(hﬂy)Hl

Hg — 6_146 5z tJy) H2
Hg - € —i3 6 2 ]T—'—jy)Hg
j—f4 —S e —13 (]z+jy)g4'

(2.39)

lul El *_,I

with H ; playing the role of slowly varying field.
Taking into account the constraint b},b,, = 1, the holon action S}, can be written
as a bilinear form of H - H with kernel Sz] given by

Oy — 2500zq — (01 + 250126)  —1t(02 + 250224) 0

it(0h — 250124) O + 250020 — 1 0 it(0y — 250a24)

—it(ag e ch?gza) 0 80 -+ zj;aoza — U ’L"[J(al — z;ﬁlza)
0 it(Oy + 25002,)  1(01 + 250120)  Op — 25002q — 1

(2.40)
The holon action can finally be cast in a more compact Dirac-like form by introducing
the doublets ¥, o = 1, 2!’

xy:i ﬁ}*"”;@ \1;:_1_ _ﬁQ“Liﬁ?’
YT\ —Hy—iHy ) T B\ H —iH, )

Setting vy = 0,7, = (0y,05) we find that the effective action for holes is given
by

Sy, = / A3z Z U, [v°(8y — ;258020 — 1) + vE(¥*0, — z;fy“@ue,.za)] W,
R2x[0,8]

(2.41)
where U, = Uin0 e, = (=1)" and vr = 2ta.

Therefore the holes behave as massless dirac fermions coupled to the spinon-
generated gauge field A, [see ( 2.37)]. The finite chemical potential p oc td breaks
the relativistic invariance and generates small Fermi surfaces of area ~ ¢ at the four
nodes (+%,+%).

In conclusions, the full derived low energy effective action for spin and charge
degrees of freedom in the “Pseudogap phase” is given by

1
S = Az {—— [U;Q |8 — 14o) za]2 + (0, — iA,) za|2 + mszza] +
R2x[0,5] g

"Note that the two components of ¥, come from different sublattices A and B.
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2
+ Z U, [Y%(80 — iAo — p) + vp(y#0, — v*iA,)] xpr} : (2.42)

r=1

which clearly possesses the U(1) ~/s symmetry as required from first principles.

2.9 Role of the Gauge Field

Before applying the theory to derive physically relevant observables, it is important
to clarify the meaning of Spin-Charge separation in 2D and the role played in this
respect by the gauge field.

In Section 2.1 we saw that a U(1) gauge field naturally appears because decom-
position ( 2.1) contains an hidden local (h/s) symmetry.

In 1D the gauge field has no transverse component ( A7 = 0), holons and spinons
are decoupled and this yields a true spin-charge separation. In Mean Field approxi-
mation also the transverse component of the U(1) and SU(2) gauge fields vanish with
the following effects:

- BY; 4 =0, hence there is no Hofstatder mechanism and the holon has a quadratic
dispersion;

- Vil 4=0, hence there is no spinon mass generation.

In 2D the gauge field has one physical transverse component AT, which causes a
finite magnetic flux per plaquette. This means that in 2D holon and spinon continue
to “see” each other and this attractive interaction is mediated by the gauge field.

Said in other words, the hole to delocalize distorts severely the spin background,
so the total magnetic energy raises and most of the phase space for the hole motion is
energetically forbidden. As a result spin and charge degrees of freedom are strongly
correlated and the gauge approach is one of the methods to treat such correlation.

A major consequence is that, in 2D, spin and charge sectors contribute separately
to the evaluation of a given observable, the Ioffe-Larkin rule (see ( 3.1)) being a
typical example.

As previously mentioned, the gauge field A is an internal variable over which we
functionally integrate. Being a constraint, it has no proper dynamics: its low energy
effective action comes enterely by integrating out holons and spinons.

We make the assumption that the scaling limit (large distance, long time) can be
taken separately for the two subsystems. Then, using the techniques of Ref. [36],
one can prove that in this scaling limit the action is quadratic in A. This conclusion
follows from a derivative expansion for the spinon action, due to the presence of a
mass scale, m;, and from a tomographic decomposition along rays perpendicular to
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the FS of holons, using the quadratic dependence on A of the scaling action for a
single ray (Schwinger action). This result is valid only in the scaling limit when
the high energy degrees of freedom are integrated out via a Renormalization Group
scheme.

The term obtained from spinon (functional) integration is a 2D Maxwell-like ac-
tion (as in quantum electrodynamics), because the spinons are massive and the spinon
action is parity-invariant. The transverse component would then generate a logarith-
mic confining potential between spinons and anti-spinons. The longitudinal part is
gapped due to the plasmon effect at finite 7. This means that if only spinons were
coupled to the gauge field, the renormalized gauge field would have confining dy-
namics.

However there are also fermions (holons) coupled to the gauge field: the presence
of a finite Fermi Surface causes a Reizer-like contribution to S.s;(A) when these
degrees of freedom are integrated over. More precisely, the low—energy transverse
component AT of the gauge field in the limit w < vp|g] is of the form[37]

(ATATY(w, @) ~ (—x|a + %) (2.43)

where x is the diamagnetic susceptibility and x the Landau damping.

, This behavior dominates over the Maxwellian at large scales, destroying con-
: finement. Nevertheless, as we shall see, the attraction generated by AT in spinon-
antispinon and spinon-holon pairs will be sufficient to produce resonances with the
quantum numbers of the magnon and electron, respectively.

The mass of the spinons in our approach and its competition with dissipation of
the gauge field due to coupling with holons have far-reaching consequences, and it
will turn out to be responsible, in our scheme, for phenomena like the MIC, the low-1"
positive transverse in-plane magnetoresistance, the peak in the AC conductivity and
in the Cu spin-lattice relaxation rate, hence for many experimental signatures of the
“Pseudogap phase”.




36

Chern-Simons Gauge Approach




Chapter 3

Gauge fluctuations Effects on Physical
Correlators

3.1 Motivations

In this section, we introduce the theoretical scheme to calculate in-plane and out-of-
plane resistivities according to our spin-charge gauge approach. Our aim here is to
relate these quantities to the computation of appropriate correlators starting from the
derived low-energy effective action ( 2.42) for the “Pseudogap phase”.

3.1.1 In-plane Resistivity

As emphasized by Anderson [1], the in-plane resistivity might be interpreted in terms
of spin-charge separation. The basic inelastic process taking place in the layer is the
decay of the electron into holon and spinon. In a gauge approach if the scattering
time of spinons or holons by gauge fluctuations is shorter than the lifetime of the
electron, then this time scale will dominate the in-plane resistivity p. As a result, p
might exhibit a different temperature dependence than the electron lifetime.

To calculate the in-plane resistivity we use the Ioffe-Larkin rule[38] stating that
the physical resistivity, p, is a sum of the resistivity due to spinons, p, and the resis-
tivity due to holons, pp:

p = Ps =+ Ph (3.1)
Both p, and py result from the separate scattering of spinons and holons with the

gauge fluctuations. We recall that this gauge field A, represents a contraint: since
the physical electron is gauge invariant, the holon current must be balanced by the




38 Gauge fluctuations Effects on Physical Correlators

corresponding spinon anticurrent. Ioffe-Larkin rule then follows from the basic fact
that the charge transport is dominated by the slowest particle, i.e. the particle with
shorter lifetime.

The formal derivation of this addition rule is based on the following consideration:
If we couple the electron to an external electromagnetic (e.m.) field, A, ., it turns out
that we can attribute an arbitrary e.m. charge ¢ with 0 < ¢ < 1, to the spinon and
a charge 1 — € to the holon, because, in the path integral formalism, € can always be
eliminated by the change of variable A — A + €A, ,,. As a consequence, neglecting
“photon” drag, the renormalized e.m. current polarization bubble, II. ., , obeys the
rule:

(He-m‘)—l = (HS)—I + (Hh)_l- (3.2)

From (3.2) and Kubo formula, one can derive loffe-Larkin rule, provided both con-
ductivities o, and o) are non-vanishing. A crucial assumption here is the quadratic
dependence of the effective action in A which is is valid in the scaling limit beyond
the standard perturbation expansion.

Denoting by j° the spinon current, the spinon resistivity is calculated from the
fully renormalized current polarization bubble:

(7°(%)7°(y)) = Us(z — v) (3.3)
via the Kubo formula:

(b7 = o=~ R = O

= ZRe/ dz®z’TI, (2%, 7 = 0). (3.4)
0

For holons we have similar equations replacing the index s by & (e.g. 5 denotes
the holon current). In eq.(3.3) the expectation value is taken by integration over A,
the spinon ﬁeld, z, of the continuum NLo model and the Dirac holon field 1. The
last equality in (3.4) is obtained via Lehmann representation and the superscript R
denotes the retarded propagator.

In order to calculate the spinon resistivity p; we need first to compute the effect

of gauge fluctuations at finite 7" on the bare spinon propagator.
The presence of the mass gap implies that at low 7" we expect the spinon sector to
give the dominant contribution to the physical conductivity if o; # 0. In particular
the observed MIC originates from the competition between the spinon mass term,
dominating at low 7', with the gauge field dissipation overwhelming at high 7'.
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3.1.2 Out-of-plane Resistivity

A very distinctive feature of the spin-charge approach is the fact that the in-plane
electron lifetime might have nothing to do with the in—plane resistivity while it sets
the scale for the c—axis resistivity.

In such scheme, in fact, a spinon-holon decomposition of the electron holds only
in the CuO, layer and spinons and holons should recombine into electrons to hop
between layers and contribute to p.[1]. The out-of-plane resistivity is then determined
by the time scale of electron recombination.

This could explain at once one of the puzzles of the Pseudogap, namely the co-
existence in underdoped samples at T > T)7¢ of an insulating p.(7") and a metallic
pas(T).

To calculate p, we use the approach proposed by Kumar and Jayannavar (K-J)[39]
which is motivated by the experimental observation that the c-axis transport is essen-
tially incoherent, i.e. the mean free path for motion along the c—axis is shorter than
the interlayer distance. Since successive hoppings are phase-uncorrelated, one can
then consider a system of two layers weakly coupled by an effective tunnelling matrix
element —%,, taking into account an averaged momentum dependence of the hopping
parameter (this is know to vanish for diagonal momenta).

We assume that the 2D retarded Green function of the electron (holon-spinon) has
a quasi-particle pole for small w and momentum kr on the FS:

- A

GR(w, o) ~ — (3.5)

where Z is the wave function renormalization and I the scattering rate.

Taking into account a virtual hopping between two layers induces a shift of the
real part of the denominator of (3.5) from w to w & Zt,.

Let us denote by G the corresponding Green’s functions. The out-of-plane con-
ductivity in the “confined regime” I' € Zt. can be written through the Kubo formula

as
d -
= - Z/ “ot%e 2 (W) AL (k,w)A_(K,w), (3.6)
where Ax = —2Im GZ are the spectral functions and n(w) the Fermi distribution
function. Inserting (3.5) in (3.6) after standard manipulations one obtains

1/1 r
Pe~~ = <f + t2Z2> , (3.7

cC

with v the density of states at the FS.
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One can already anticipate that the first term causes the insulating behaviour and,
being independent of t., it is essentially independent of the material, as experimen-
tally observed for underdoped cuprates.

This upturn is a consequence of K-J assumption of conservation of the wavevector
parallel to the planes in the tunneling process: we see from ( 3.7) that the c—axis con-
ductivity is proportional to the overlap in energy between the two spectral functions
centered at w £ Zt, and this overlap is small at low temperatures since [' < Z1,.

We shall see that the derived lifetime of the electron resonance goes as 71, T—1/2
at low and high temperatures in the “Pseudogap phase” and therefore it cannot explain
the insulating behavior of the in-plane resistivity at low 7, but it indeed sets the scale
of the out-of-plane resistivity. In particular the calculated p.(7") has a rounded knee,
corresponding to the crossover between the high- and low-temperature regimes, in
agreement with experiment.

Via eq. (3.7) we have related the behavior of p, to the computation of [ and Z as
a function of 7" and 4, thus to the low-energy behavior of the electron Green function.
This propagator in turn can be expressed at large scales in terms of holon and spinon
fields, z,, ¥, and be extracted from a linear combination of terms

(o ()2 (%) s (¥)2a(y)), (3.8)

where o denotes the pseudospin structure of the Dirac holons, o the component-spin
index of the spinons, and the propagator (3.8) is calculated using the low-energy
spinon and holon effective actions.
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3.2 Spinon Current-Current Correlation Function

In this technical Section we outline the computation of the spinon current-current
correlation function I1;(w, ¢), at small w and ¢; this quantity is needed to compute the
spinon resistivity and the spin lattice relaxation rate.

The polarization bubble is evaluated by eikonal methods using a path integral
formalism, strictly preserving gauge invariance.

3.2.1 Feynman-Schwinger-Fradkin Representation

We start by noting that the propagator associated to the spinon effective action ( 2.27)
can be written after a suitable rescaling of variables, as a matrix element

(2(2)27(y)) = gus(z| v), (3.9)

p? 4+ m?

where p is the space-time momentum operator. It is convenient to recast (3.9) in the
Schwinger representation:

Goalz,ylA) = igu, / ds emsBatmd) (7 ) (3.10)
0

where z = (v,z°, %), A = (vsAp, A) and A4 denotes the 3D covariant Dalamber-
tian (or relativistic Laplacian). The propagator has been considered at zero temper-
ature, an approximation justified by the spinon mass gap, provided T' < Jam;, ~
J(|61n6|)/2.

The kernel appearing in (3.10) has the formal structure of an evolution kernel for
a 3D Hamiltonian H = —A 4 + m? and time parameter s. It can thus be expanded in
terms of Feynman paths starting from y at “time” 0 and reaching x at “time” s.

It is convenient to parametrize these paths through their 3-velocity, ¢#, u = 0,1, 2,
using a Feynman-Schwinger-Fradkin (FSF) representation (see e.g. Ref. [40]):

Ga(a:, OIA) — z'gvS/ ds e~ism§ /D(Z5 / d3p ez‘p(fos qb(t)dt—z)eifos dt{%¢2(t)+¢.A(z+fJ ¢(t/)dt/)].
0

(3.11)
Here the p-integration enforces the constraint on the initial and final points of the
paths and we use a short-hand notation for the 3D scalar product: e.g.

p-T = p,z". (3.12)

For a better understanding of the formula (3.11), notice that formally setting ¢*(t) =

dz;(t) the last exponential is ¢ times the Lagrangian of a 3D particle coupled to the
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e.m. potential A, corresponding to the previous Hamiltonian H, as one expects in a
path-integral formulation. Since under a h/s gauge transformation A(z), the spinon
field z,(z) changes by the phase factor e**(®), it follows that

Golz,0[A, + 0,A) = A@H=A0 G (30/4,). (3.13)

The gauge dependence of the Green function is already captured by the so-called
“Gor’kov approximation”

Go(z,0|A) = 'Jo 24 G (2,0), (3.14)

where [° denote integration along a straight line from 0 to 2 and G (z,0) is the
free propagator (in the absence of gauge field). The expression (3.11) is useful to go
beyond Gor’kov approximation by means of the identity[40]

/ u(xnt/qb dt>q§“()dt /IAd:c”
/d/\,\/ dt/ at' 6 (£)6" (£) F <x+)\/ 1 dt”) (3.15)

where F), = 0,4, — 0,4, is the gauge field strength. A pictorial representation of
this important identity is shown in Fig. 3.1: P is a generic path from z to y to which
is associated the phase factor e’ Jp4; the first term in the rh.s. corresponds to the
Gorkov phase factor while the second represents the gauge flux through the closed
region X(P) and is therefore gauge invariant, as it depends only on F,,,.

Shifting ¢#(t) by 2p* one can rewrite

Gol(z,0]4) = 'l A= G (3, 0| F), (3.16)
Go(z,0|F) = igv; gtlo A ‘f)df/ ds/ o~ ipe—i(p*+m?) /D¢ it I dt e (1)
_Z fo dAX [5 ds’ fo ds" [#(s")~2p*][¢" (s")—2p" | Fuv (/\ fo (p(s"")— 9p)ds”’) . (.17)

3.2.2 Gauge Field Strength Correlation Function

Now we turn to the polarization operator 1I,. Expressing it in terms of spinon propa-
gators we find:

Oy(z,y) = (DawG(z,ylA)D}, Gy, z|A))a = (3.18)
(@5 [ Fuds)Gla PO~ 5 [ Fds)Gla,yl - P
Yy y
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P

Gix.ylA)=>, Y
P x—=y

Figure 3.1: Feynman-Schwinger-Fradkin representation

where (-) 4 denotes the integration over A with the effective action in the scaling limit
and D, the covariant derivative. Notice that the two non-gauge invariant Gor’kov
terms of the two spinon propagators cancel against each other so that the result is
explicitly gauge-invariant as it depends only on F.

We use now the quadratic structure of the scaling action S.ss(A4) to integrate out
the gauge field. The explicit expression for S,s;(A) in the Coulomb gauge is:

1 ~
Seff(A) = —i/ddeQIA#H#VAV.

In the scaling limit and for small w/vr|g], the non-vanishing polarization components
show a leading Reizer singularity, given by[37]

- — l ] . w . . A
O5(gw) = (65 — T linm — x|d%, 4,5 =1,2, (3.19)
g 7]
Hgo(q), UJ) =v+ (.Up. (320)

In (3.19) and (3.20) x = Xxs + Xxn, Where X4 is the spinon (holon) diamagnetic
susceptibility, k ~ O(¢) the Landau damping, v oc ¢/t the density of states at the
holons Fermi Surface and w, the plasmon gap. For free holons

1 t
= ~ 3.21
Xh 12mmy, 670 (3.21)
and for free spinons
Xs ~ m; (3.22)

Hence for low doping we expect xp, >> Xs.
Due to the dependence on the field strength £ in (3.18) only correlator of electric
(Fo:) and magnetic (F;;) field can appear in the computation. Since the Ay-propagator
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is short-ranged whereas the A7 -propagator is long-ranged, the “electric” field contri-
bution at large scales is negligible w.r.t. the “magnetic”, and in first approximation
we neglect it. However, it might be useful to keep in mind that doing this we neglect
a short-range attraction between spinon and antispinon (or holon).

Since AT is gapless, we consider the effect of finite temperatures using the thermal
propagator:

dk[kPe e EE w
i . = - —). (3.23
(@) PO = (o~ bib) [ 52 [ T e e 0

We want to stress that the bare spinon propagator is evaluated at zero-temperature,
as justified by the mass gap m,, and that temperature enters only via the thermal
gauge-field propagator.

Since the typical energy scale for field fluctuations is set by 7', in (3.23) the in-
tegration over frequency is cut-off at w < T which in turn implies |k; < Qo, where

1/3
Qo = (%) is a momentum cut-off. Following Nagaosa and Lee[41] we interpret

Q7! as the effective length scale of gauge fluctuations.
In the limit T¢° < 1 an approximate evaluation of the above integral gives
Q1€

—Zere 4. (324)

We also find that for m; > g, in the expectation value (3.18) the derivative term
dominates over the F'-terms at large scales, so that to evaluate I1, the leading term is

obtained by computing
(G(z,0|F)G(z,0] = F))a (3.25)

and then taking the spatial derivatives. This can be self-consistently justified a poste-
riori, because (see eq. (3.30)):

1 k)
D~ oms s> -8-/ ds'¢(s") ~ 572 ~ (20 /mg) Y2, (3.26)
0

Notice that (3.25) coincides with the propagator ((}(z) - $3(0)), where ¢ = 2*5'z
is a “magnon” field.

We denote by ¢} and ¢ the velocity fields relative to the FSF representation of
the two Green functions in (3.25). Integrating over A the product of the two FSF
expansions one obtains an effective action, I(¢y, ¢2), which is quartic in the velocity
fields.!

1We neglect the ¢p—dependence in F, as justified a posteriori by ( 3.26).




3.2 Spinon Current-Current Correlation Function 45

3.2.3 Eikonal and Saddle Point Approximation

The ¢-integration is then performed using the eikonal approximation:

/ [D1][Déo] exp{- / 1 + / @ pel0172) o TO1b2)ler 0, (3.27)

where (-)4, 4, denotes the average w.r.t. the gaussian measure appearing in the Lh.s.
of (3.27). This approximation is justified because I ~ (7'/t) < 1.

Then the contribution of the two Green functions factorizes. This factorization
in a diagrammatic language means that after the cancellation of self-energy and ver-
tex renormalization (implicitly involved in the cancellation among Gor’kov terms),
the remaining leading effect of A-fluctuations is a self-energy renormalization of the
gauge-invariant spinon propagator. At this stage the correlator (((z) - ((0)) can be

written as )

{ / i / " dsed-iwtemi=L flestine- L0 0(e} | (3.28)
0

where o = |p]sQo, f and g are functions which summarize the effect of gauge fluc-
tuations. It 1s important to note that such corrections explicitely break the Lorentz
invariance: this should not surprise us because the Reizer propagator ( 3.19) is not
Lorentz invariant.

Explicit integral representations of f and g are:

flo) = / d/\/\/ d/\/\/ dy p2eme POV
gla) = / dA / A / dv ve= V(=07 (3.29)
0 0 0

Itis easy to see that f(c) is an increasing function of the argument, vanishing quadrat-
ically at o — 0 and growing linearly at large o while g(«) is always decreasing, finite
at o = 0 and vanishing as o' at large a.

Finally we evaluate the p and s integrals by saddle point approximation, obtaining
form? = T/x:
1/ (202 — 72

p~T/28 s~ =

2\ md = T7(e) o

and the magnon Q propagator in z-space becomes

= = 042 _ 12
. 1 —~2iy/m3-Zp(1E20) /(a0)2 —a7— L Q3g( 18 20) (= o
(=) - Q00 ~ o TR ’ R

(20)2 — |7

(3.31)
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which is the key result of this Section. We postpone the final steps of the calculations
to derive the spinon resistivity and the spin-lattice relaxation rate to the next chapter
where we sistematically compare the derived temperature and doping dependences
with experimental data.

3.3 The Electron Green’s Function

In this Section we evaluate the continuum limit of the electron Green’s function within
our approach, extracting, in particular, the wave function renormalization constant, Z,
and the inverse lifetime, I', needed to compute p. in K-J’s approach.

3.3.1 Holon Effective Action

In order to have a more systematic derivation, it is worthwhile to start by writing the
hopping Hamiltonian for holons, Hj,,,p, neglecting at first the coupling to the h/s
gauge field.

Restricting the holon field H to the two Néel sublattices, labelled by A, to which
the origin belongs, and B, we have in momentum space

R 0 —2t (74 +i7-) Hau(k)
Hhopp - ; <HA(k)HB(k)> ( _2t\/L§(fY+ _ 7;7—) v 0 ) ( HB(E)
(3.32)

where
v+ = cos(kza) = cos(kya), (3.33)

a being the lattice spacing and the sum over kE running in the reduced Brillouin zone.
The eigenvalues of H},,, are given by:

e+ (k) = £2ty /cos(kya)? + cos(kya)?, (3.34)

hence they describe double cones with vertices at ( + 7, :i:%) in the Brillouin zone.

Since the chemical potential for the holes is positive, u ~ 2td, only the e, band of
the double cones exhibits a FS. For each of these double cones one can identify a two-
component, continuum, Dirac field v, o =T, | describing the low energy physics of
the system.
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Figure 3.2: Tomographic decomposition of the Fermi Surface patch with square boxes
of size A.

The relation between 1), z and the original electron field ¢, in the two sublattices

is found to be given, e.g. near the (123, g) double cone, by

(A (@) (0) ~ eGEET(G (@)1, (0) — dy () (0)zalz)22(0))  (3.39)
(B@)(0) ~ BTG (2)wy(0) + ey (2)051(0)) zal(z) 25 (0)).

Analogous relations hold near the other three double cones.

3.3.2 Tomographic Decomposition

In the previous Section we evaluated the effect of gauge fluctuations on the z corre-
lator at large scales, using the FSF path-integral representation. An analogous repre-
sentation is hard to use for the 1, correlator because of the finite density of holons.
This representation would in fact contain a series of alternating sign contributions,
corresponding to an arbitrary number of closed fermion wordlines, describing the
contributions of the particles in the finite-density ground state, besides the path from
0 to z (see e.g. Ref. [27]).

To overcome this difficulty, we apply a dimensional reduction by means of the to-
mographic decomposition introduced by Luther-Haldane.[42] To treat the low-energy
degrees of freedom we choose a slice of thickness A = kz/\, with A > 1, in mo-
mentum space around the FS of 1), as shown in Fig. 3.2.

To simplify the description, we assume a circular FS, an approximation reasonable
for low ¢ (the method applies nevertheless to the general case by considering a Fermi
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momentum varying along the FS). We decompose the slice in approximately square
sectors; each sector corresponds to a quasi-particle field in the sense of Gallavotti-
Shankar renormalization[43] (see also Ref. [44]). Each sector is characterized by a
unit vector 77(6), pointing from the center of the FS to the centre of the box, labelled
by the angle 0 between this direction and the %, axis. The original momentum k
inside a given sector is written as

;= kpi(0) + 7, (3.36)

where ¢ spans the box, therefore |7 - 7(8)], |§ A 7i(6)] < A. Due to the Dirac struc-
ture of 1), to apply the tomographic decomposition to the holon propagator, we first
decompose the free 1 correlator as?

. d3/€ e—ﬂc:c
(Ya(z)p(0)) = / (2)3 {_%(ko + kp) + 7k, — desgn(|k| — kFJ of

B / L. 1
272" ko + kp — |k| + iesgn(|k| — kp)

y Yoo + kr) — Yuk . (3.37)
ko + kp + |k| — iesgn(|k] — kp) 5

In the scaling limit the matrix in square brackets does not have a pole and, for
momenta in a box labelled by 7(#), it approaches

Af) = Y — 5(9)

) \Ql

(3.38)

In Ref. [45] it has been shown that the tomographic decomposition is valid at large
distances even in the presence of a minimal coupling to a “photon” field. Applying
the tomographic decomposition to the holon propagator in the presence of an external
h/s gauge field A, in the scaling limit, using (3.37),(3.38), we derive

d
< ( wﬁ 0) Z Aaﬂ / o / _'Lan (6:)- mezqt):llo—zq T

) LIO — Hy, + zssgn(q . n(g))] ' (3.39)
where 1 2
Hy = Ao +7i(60) - (7= A) + 5 (@- A naE)] (3.40)
ZKp

2Here and below we set vg = 1.
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and f/ , denotes integration over a square box of size A. To the Fourier transform of
the term in square bracket of (3.39) one can apply the FSF path representation.

Using manipulations analogous to those performed for the evaluation of the spinon
bubble, one can rewrite (3.39) as

. [ d l2
]"f‘ dQA(Q) —ikpi(0)T lfo Apd / do / db/ C Q”

iq“
¢°(2°—u)~iq(F+(0)u) , 35 VF

du

A
X{/ Dgoi_elf‘) 2 % (u')du! —zfo drr [o du’ f” du ok (u')p? (u" ) Fuu (T fo ”')du”')}’

(3.41)
where we use the short notation ¢ = ¢~ 72(f), ¢ = ¢ A 7(6) and ¢ is the velocity
field of components ¢*(t) = (1,1, ¢, (¢)). Note that in (3.41) we have replaced the
original discrete summation ) |, with the continuum limit %{—‘— [ d9. We have checked
by explicit computation [46] that the term in curly brackets describing the correction
to Gork’ov approximation is irrelevant within the approximation scheme adopted in
previous Section and below, so we shall drop it from now on.®> Then, the u integration
can be performed exactly, after the trivial go integration. The ¢ integration gives

—q))je”

1 ezA(z“ zOvp) _ 1 . 1

A
/ dge @m0 (g)) = (3.42)
—A

~
i (7)) — zvp) x| — 2%vp’

where in the last approximation is valid in the limit Avpz® > 1.* Setting A(zq) =

1
( ke ) *, the ¢, integration gives

‘UFCL‘O

A gLz 2 29) A/A(zo) €°$J-A(z°)
/ dgy et T o A(xo)/ dy eMFT LY e=i5Y A\ ()T
—A —A/A(zo) \/g

(3.43)
Collecting all pieces, the holon Green’s function in the scaling limit and for Azy > 1
can be written as:

e%xL(9)2A(mO)

<TEQ(IL‘)¢§(O)>N A(l"/(i)k}?’/de \/{ A(H)aﬁeik”“(e)

1 1 ;o
_ i [y Apdzt
O(zg) + -———————mll(e) n xovF@( Zo)| e . (344)

z) () — 2lvp

3This agrees with the fact that the holon scattering time behaves like ~ T4/ | a posteriori a much
longer time with respect to the electron scattering time, triggered by gange fluctuations on spinons.
4The neglected term is proportional to a rapidly oscillating phase factor.
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3.3.3 Quasi-particle Pole

The electron Green'’s function in real space is given by the product of the holon prop-
agator ( 3.44) and the spinon propagator, given by the square root of (3.31), averaged
over gauge fluctuations. (3.35). The underlying idea is that gauge fluctuations are
sufficiently strong to bind holon and spinon into a resonance at finite temperatures.

The Gor’kov terms in the 1) and the z correlators cancel against each other and
the gauge field fluctuations act only on the gauge-invariant spinon correlator.

We perform now the Fourier transform of the electron propagator for momenta
close to the Fermi surface, in a sector laballed by the angle 1, G4 (w, (7/2,7/2) +
7i(n)kr + ), for small w and ¢. We integrate over 6 using the following:

Lemma: [45] Let f(#,%) be a smooth function, then in the large distance limit
|Z] > A~! we have

N Loy e 2
/ de™ e MO L (9, 5) ~ = f(n, 2)da-1 (2 A A)), (3.45)
F

where §,-1 denotes an approximate §-function of width A=*.
Setting Z = |Z|7(¢) we approximate

s

oa-1(ZA7(n)) ~ —=[6(¢ —n) + (6 —n+m)]. (3.46)

8y

|Z]

One can easily perform the ¢-integration; the remaining integration over space-
time variables is done as in previous Section, namely by saddle point approximation
for |Z] in the limit z° >> |Z| and by principal part evaluation and scale renormalization
for z°. The final result is

T
Calw, (55 ) +Rmke +@) ~ S()Z
i@z (0)] 1 o + @AMz (0)] 1 . } 7
W+ X~ UF g (0)q w— 2% —vp d|:;| (O)gy

(3.47)
where S(n) is the angle dependent part of the wave function renormalization constant
() = £ |1 = 2 (cos(n) + sin ))} (3.48)

- — —_— — 1n .

=3 73 n n

whose lattice analogue is shown in Fig. 3.3. We see that the spectral weight is strongly
suppressed outside the Reduced Brillouin zone, in qualitative agreement with experi-
ments.
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Figure 3.3: Angle-dependent spectral weight of the electron propagator

In ( 3.47) Z is the wave function renormalization constant averaged over the FS;
writing the tomographic momentum cut-off as A = kTF, with A > 1 and taking into

account the definition of ¢); we obtain

QO 1 Mgk 1
4= AN—)2 e 3.49
GO (349)
The renormalized electron self-energy . is given by
(3.50)

L =vgq/m2 — ic—,
X
where v, is the spinon velocity previously set equal to 1. From ( 3.47) we can imme-

diately read off the inverse scattering time I' for the electron: I' = —Im..
We see that I'(T") is an increasing function of temperature changing from 7T to

T'/? as the temperature increases. This damping rate is much bigger than the 7%/% es-
timate for the holon self-energy, which justify a posteriori our former approximation

to consider only the Gorkov term for holons.
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3.3.4 Fermi Surface and Electron Resonance

We now make the following

Assumption FS: the neglected short - range attraction between spinon and holon
exactly renormalize ReX: to 0 at the Fermi surface so that the electron exhibits a Fermi
surface.

Under Assumption FS, finally, for ¢ = 0 and w > 0 small we find the structure
(3.5) with the replacement Z — S(n)Z.

This structure shows that the gauge fluctuations are able to bind together spinon
and holon into a resonance for low energies and momenta close to the Fermi mo-
menta, but with a wave function renormalization constant which depends both on the
point of the FS, due to S(7), and the temperature. In particular Z ~ T/¢, so Z van-
ishes if formally extrapolated® to 7' = 0 even if the electron life-time is infinite. A
qualitatively similar behaviour is predicted by Marginal Fermi Liquid theory where
Z vanishing logarithmically at 7' = 0.[47]

It is important to recall that setting 7' = 0 in our formalism corresponds to ne-
glect the coupling with the gauge field: the convolution of the bare holon and spinon
propagators then gives branch cut singularities but no simple poles, so the Green’s
function is completely incoherent and Z = 0.

In principle the thermal and doping dependences of Z could be measured in
ARPES experiments. In fact, the measured intensity is proportional to ImG(w, k)n(w).
Denoting by [ (/Z) the integrated intensity along the “electron FS”, the electron reso-
nance contributes with a term I, given by

Ip(7(0)kr) ~ S(6)Z.

The factor S(6) is peaked around the diagonal in the reduced Brillouin Zone (¢ =
%” for the FS near (3, §)) and it nearly vanishes in the outer zone (see Fig. 3.3).
This angular dependence therefore yields a reduction of the electron spectral weight
outside the reduced Brillouin Zone, in rough qualitative agreement with experiments.

SWe remind that the || - saddle point is only dominant for 7' 2> xmsQo.



Chapter 4

Pseudogap: Comparison with
Experiments

In this chapter we use the results for the spinon-spinon correlator obtained in the
- previous chapter to evaluate in-plane spinon resistivity, magnetoresistance and spin
lattice relaxation rate in a unified frame: the derived temperature and doping depen-
dences reproduce qualitatively the phenomenology discussed in Chapter 1.

We shall discuss in details the findings of a very recent experiment by Dumm et
al.[53]. The authors measured the in-plane Far Infrared AC conductivity and the re-
lated a-b anisotropy for lightly doped LSCO samples (z = 0.03,0.04). By decreasing
the temperature below 80K the simple Drude-like response evolves in a broad peak at
finite frequency ~ 100cm—1 bearing very much resemblance to the Metal-Insulator
peak in the DC conductivity when plotted against temperature. We extend the the-
ory to account for finite frequency response and present a thorough understanding of
these data.

4.1 In-plane Resistivity

As mentioned in Section 3.2.2, the spinon contribution p, to the resistivity can be
calculated from the spinon-spinon correlator ( 2.26) by noting that the current-current
propagator is given by IT° (z) ~ (8,€(z) - 9#€(0)).

In order to apply Kubo formula, we need to integrate over Z to obtain IT°(z%, ¢ =
0). We consider the region z° >> |Z| and evaluate the |Z|-integration via saddle
point. Using the form of f and g one finds that the exponent of (3.31) at large z°
exhibits a complex saddle point at a scale |Z|(z°) ~ (z°)!/2, thus verifying the above
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assumed inequality with a behavior of a standard diffusion’, and with argument 7 /4.
A numerical extrapolation in the region of small z° yields an approximate z°-
dependence of the form:

1Z](2%) ~ ez (%),  z.(2°) = (C*Q5? + C'|2°|/m,) "/ “.1)

with C, C’ finite positive constant (C' ~ 0.5), thus approaching a finite value as 2° —
0. Setting ae(z%) = Q| Z|(z?) and

~1/2
N T, ( 82I(x0) ) (21(a%) 4.3)

((20)? = 22)* \ Ozc(2°)?

Since f is smooth on the scale |Z| ~ Qy*, assuming for z¥ the same scale the domi-
nance of the saddle point requires a lower bound for the temperature, which combined
with previous upper bound yields a range of validity given by

me 2 L 2 mQs. (4.4)
X

For a given doping 6, this gives a range of temperatures between a few tens and a
few hundreds of Kelvin. We believe that the bounds above correspond to crossover to
different phases, where the derived “Pseudogap” effective action ( 2.9) is no longer
valid. In particular the upper bound gives the crossover 7™ to the Strange metal phase.

The real part of the exponential in (4.3) is monotonically decreasing in z° at large
20, therefore we evaluate the z° integral appearing in Kubo formula (3.4) by principal
part evaluation.

When extrapolated to short time, the correlator ( 4.3) has a UV divergence, which
is clearly unphysical since z° > |Z,(x0)|. Since |Z,(zo)| ~ Q5 " for vanishing o, we
introduce an UV cutoff in the integral at A\Q; ' and evaluate the integration assuming A
large. Then we make the conjecture that for small w the physics is dominated by large

1 The diffusion constant D is proportional to the AF correlation lenght, i.e. D = vs/m;
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scales and the small-scale contribution can be taken into account by removing the UV
cutoff after a multiplicative scale renormalization. The result of this approximation is

[e%s) Z
o5 =2 Im/ dz’z°T(z°,§ = 0) ~ Im TJ , (4.5)
. 2 4 im /4
0 \/ms L f(Ce /4)
where Z; = Qo Zq with
- 2 . T L X 1/2 %
ZQ - (ms - ZC;)4 (Tf//(cfeiﬂ'/4) QO . (46)

Numerically one finds f(Ce'™/4) ~ 0.2 +143.3 and f"(Ce*™/*) real. For simplicity we

set Im f(C'e™/*) = c and we still denote by m? the quantity m2 — Re f(Ce™™/4)T/y

which in the range of temperature we are interested is in fact almost equal to m?.
For the spinon resistivity p; = o, * we therefore obtain:

1

Lo (e (5))
2 . 38 X
P V26 sin(2ZEM) /5 sin{}z arctan(———xc,,:;” ‘ @

S

For the holons one can borrow a computation performed diagrammatically in Ref.
[41] for a Fermi liquid interacting with a gauge field exhibiting Reizer singularity.
Adding, via Matthiessen rule, the contribution of impurities one finds:

1 T
— + (—)*7]. (4.8)
€ Timp €r

P~ O]
For small ¢, % we have p; > py, so the spinon contribution dominates the physical
resistivity in the Ioffe-Larkin rule. For low 7', p; is insulating going as ~ % while at
high temperatures T ~ xm2, p; ~ T/*, thus showing a metallic behaviour. From
formula (4.7) a MIC is thus recovered upon temperature decrease, in agreement with
experiments.

This crossover is determined by the interplay between the AF correlation lenght
& ~ |61n6|~'/? and the thermal de Broglie wave lenght Ay ~ (x/T)"/2 for holes.

At very low T’ the mass gap prevails (§ < Ar), the spinon configuration is frozen
and no spinon current can flow: the system is an insulator. The metallic behaviour is
recovered only at high temperatures where £ ~ \p.

We emphasize that in our interpretation the MIC is intrinsic and not driven by
impurities effects.
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The temperature dependence of p; is controlled by the dimensionless variable y

Tc Tc
xm?  t|1nd|

Y= 4.9)

which has a weak logaritmic dependence on doping, inherited from the spinon mass
ms. This implies that the calculated MIC temperature 1rc decreases slowly upon
doping increase, as found in experiments[10].

Our formula for p, has essentially no free parameters except for an overall resis-
tivity scale, which by the way is not universal. The only parameter O(1) used in our
numerical calculation is the coefficient r in the parametrization

t
Xm2 ~ 675—)51n5|r, (4.10)

which one can fine-tune by using e.g. the minimum of resistivity for some fixed
doping. The entire set of curves p(d,7") are then completely determined and the
agreement with the experimental data is good, as shown in Fig.1 of Ref.[43].

4.2 TUniversal Normalized Resistivity

We now consider a more subtle prediction following from our theoretical treatment.

As mentioned in Chapter I, an inflection point in the in-plane resistivity has been
observed in heavily underdoped cuprates at a temperature T, where dp/dT" has a
maximum. We suggest to identify 7* with the pseudogap temperature corresponding
to the crossover from the Pseudogap to the Strange Metal in the phase diagram.

Such an inflection point also appears in our derived in-plane resistivity formula
(1™ ~ sz, and the “relativistic” structure of the mass term is responsible for it.
In particular, the ratio Tysr¢/T™* is a universal (i.e. doping independent) numerical
constant (~ 0.4), suggesting that the two Pseudogap temperatures are related to the
same energy scale.

Moreover, if we define the “normalised resistivity” as:

_ A1) = p(Turc)
p(T*) = p(Twrc)
and neglect py, this is a universal function of the variable y = T'/T™.
This curve has been noticed in the YBCO [12] data and quantitatively similar
universal curves have been observed also for LSCO,[20] BSLCO, BSCO.[49] 2. Our
formalism explains in a neat way their universality character.

pn(T) 4.11)

21n these last references a different definition of T* was used, based on deviation from linearity
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Figure 4.1: Left: Calculated “normalised” resistivity p, versus reduced temperature

T/T*. Right: Temperature dependence for p,, in underdoped LSCO ( Extracted from
Ref. [10]) and YBCO (Extracted from Ref.[12])

In Fig. 4.1 we plot the calculated normalized resistivity p,, to be compared with
the experimental curve on LSCO and YBCO that we extracted from data of Takagi
- et al. [10] and Trappeniers et al.[12]. We did not make any attempts to reconcile the
calculated and observed Tysrc/T™ ratio which may depend on factors, not included
in our considerations, but we remark that the universal character of the normalized
resistivity is an explicit prediction of theory in agreement with experiment.

of p, not directly accessible to our approach, and therefore not permitting a direct comparison with
our formula. A rough estimate, however gives for that 7" a value dependent on the material, but
approximately twice our definition of 7*
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4.3 Hidden MIC in Superconducting Cuprates and Mag-
netoresistance

The techniques developed in previous sections are useful to compute other observ-
ables, like the transverse in-plane magnetoresistance and the %Cu spin-lattice relax-
ation rate. The calculation of magnetoresistance is outlined in Ref.[50] and here we
review the results for completeness.

The basic underlying hypothesis is that suppressing superconductivity by ap-
plying a magnetic field in superconducting underdoped samples, one recovers the
normal-state “pseudogap phase”.

A magnetic field H perpendicular to the plane then modifies the gauge effective
action in two ways:

1. Via a minimal coupling it induces a shift A — A — A, in the spinon term
and A — A + (1 — €) Agp, in the holon term, where ¢ is the spinon effective
charge and A,, is the vector potential corresponding to the applied uniform
static magnetic field H. In a mean-field treatment the effective charge is chosen
as € ~ xn/x in order to satisfy the Ioffe-Larkin rule for diamagnetic suscepti-
bility (see Refs. [51, 50]).

2. The presence of H induces a parity-breaking Chern-Simons term in the holon
action (o4 (H)/2m)A%;;0° A7, where o,(H) is the holon Hall conductivity.
Since A, is short-ranged, with a gap v = v + w, (see eq.(3.19)), it can be
integrated out yielding an effective renormalization of the diamagnetic suscep-
tibility in the transverse action: x — x(H) = x + ‘i(fy ) as discussed in Ref.
[51]. This effect is however subleading at low 7.

Restricting to 1), the presence of A.,, produces an additional term in the FSF
path-representation of G(z, 0| F) discussed in Chapter III:>

gie Iy AN 3 ds' J& ds (¢ (") =2p") (¢ (s") —2p ey H _ (4.12)

Evaluating the ¢ integrals in the same gaussian approximation, this term yields a
contribution e*IP"H* to the ) correlator in €q.(3.28) which in turn implies a renor-
malization of the relativistic spinon mass term:

3This is because the external field H contributes to the total flux penetrating the closed path £(P)
between two given points z and y.
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cT g2H?
d — M(H) = . 2 g - - — . 4.13
ot 200 = i -1 (- ) 13

The reduction of the damping % makes the thermal de Broglie wavelength At
longer, so the MIC occurs at a higher temperature w.r.t. the system at = 0.

Furthermore the shift of the minimum of p causes a strong positive transverse
magnetoresistance (MR) at low 7', as experimentally seen.[66, 17] At higher temper-
atures, in the region where dissipation dominates, the shift of diamagnetic suscep-
tibility due to the Chern-Simons term induces a reduction of resistivity, a tendency
contrasted by the classical cyclotron effect on holons, which can be taken into ac-
count in the Boltzmann equation approximation.

One then has two possible types of MR curves: one is always positive but it
exhibits a knee below the crossover temperature between the mass gap and the dissi-
pation dominated regions (See Fig. 3 in Ref. [50]). This behavior can be compared
with the one observed in LSCO reported in Ref. [66] and one finds a reasonably good
agreement.

If, on the contrast, the quantum effects related to oy, (H) are sufficiently strong, a
minimum develops, eventually leading to a negative MR in some region around it.

The MR scales quadratically with H (See Fig. 2 in Ref. [50] ) in agreement, in
particular, with data on LSCO, [17] away from the doping § = 1/8 where the stripe
effects dominate.

Finally we notice that in Zn-doped superconducting samples of BSLCO the MIC
become observable upon increase of Zn doping (when a magnetic field suppresses su-

perconductivity) and it shifts to higher temperature as the level of Zn-doping increases.[52]

This effect is qualitatively consistent with our picture. In fact, the Zn-doping disturbs
the AF background, so making the AF correlation length shorter, i.e. shifting the
MIC temperature up.
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Figure 4.2: Static (left) and dynamical (right) a-b conductivities for a LSCO sample
with Sr content z = 0.03. From Dumm et al. [53].

4.4 Far Infrared AC Conductivity

Recently, Dumm et al. [53] analysed the in-plane dynamicdl conductivity of un-
twinned La; 7Sry3CuQ, crystals. In the Far Infrared region at high temperatures,
the data are consistent with a simple Drude model. Below 80 K, a broad resonance
- appears at finite frequency (w ~ 100 cm™!) bearing a close resemblance to the peak
found in DC conductivity for the same sample; at the same time, a significant a-b
resistivity anisotropy is observed in complete analogy with the DC case [54].

The maximal anisotropy p,/p, — 1 reaches 50% for 3% doped LSCO which is
far too big compared with the orthorhombicity (up to 1.7%).[54] A “natural” expla-
nation of this unusual behavior would be the “self-organized” charge stripe structure,
proposed by a number of authors.[55] The conductivity is indeed higher in the stripe
direction (along the a-axis)[56] as further confirmed by the AC data of Dumm et
al.[53].

However, this intuitive “rivers of charge” interpretation suffers from two main
difficulties:

- The mean-field theory predicts the statically charge-ordered state is an insulator,[55]
while experimentally these lightly doped cuprates show metallic behavior at high tem-
peratures [54].

- The observed anisotropy ratio is too small compared with quasi-one-dimensional
(Q1D) conductors, usually showing order-of-magnitude bigger conductivity along the
chain direction.

To avoid these problems, the “electronic liquid crystal” scenario of meandering
stripes[58, 57] is invoked to induce metallic conductivity and to reduce the expected
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anisotropy. This picture, however, seems not consistent with experimets: a closer ex-
amination of the data[54, 53] reveals that the anisotropy effect is most pronounced in
the limit w, 7" — 0. If the effect is mainly static, why one needs to invoke dynamical
stripe fluctuations? This was also pointed out in Ref.[53].

In Section 4.3 we have shown that the large positive in plane magnetoresistance
found in underdoped cuprates at low 1" is due to a shift of the MIC temperature as a
function of the applied magnetic field. It is evident from the experimental curves[54,
53] that the major source of the in-plane conductivity anisotropy is also due to the
shift of the MIC energy-scale.

Motivated by these qualitative arguments, below we generalize the spin-charge
formalism to frequency-dependent phenomena and show the AC-conductivity ex-
hibits a maximum as function of frequency in an exact analogy with the DC con-
ductivity maximum due to MIC.

In presence of an external field of frequency €2, the propagator for the gauge field
has a natural cut-off energy scale A=max ({2, 7). The spinon-gauge sector dominates
the low energy physics of the system and the spinon conductivity is due to scattering
against thermal gauge fluctuations, so the entire 7'—dependence comes from A = 7.

For small but finite frequencies ) < m, and T' = 0, we have A = (), so we
expect that the dynamical conductivity o;(€2) shows a broad peak which is the AC
analogue of Ty 7c.

Let us now consider the theory in more details[60]. The effect of Reizer singular-
ity on gapless fermions is subdominant; it has been analyzed in Ref.[41] and at finite
T it gives an inverse scattering rate for the holon of order T%3 instead of the usual
Fermi liquid result ~ T2,

In order to include, non-perturbatively, the effect of gauge fluctuations in the
spinon current-current correlator, in Sect. 3.2 we first expanded the spinon propa-
gator in Feynman paths, as justified by the mass gap, and we integrated over velocity
fields in eikonal approximation. Being gauge invariant, the correlator of the spinon
current depends only on the gauge field strength F.

As mentioned above, A enters as a frequency cut-off in the large scale propagator
for the magnetic component F;; of the gauge field, see ( 3.23). For the sake of clarity,
we first summarize the DC calculations (A = T') presented in Sect. 3.2, 4.1 leading to
the explicit formula ( 4.7) for the in-plane resistivity.

As w < T, we approximate coth 57 ~ % then the w-integration in (3.23) be-
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comes

T
/ (i 2T (4.14)
o 27 (o (L

K

eventually leading to an evaluation of the large-scale “magnetic” propagator:

~Qgizl~ .
il gz , (4.15)
4y

where Qp = (Z£)!/3 is the typical momentum scale for gauge fluctuations. The
effects of thermal gauge fluctuations on the massive spinon propagator are described
by the functions f, g: at low T they introduce a dissipative term in the spin gap:

— My = (m? —icT/x)"?, (4.16)

where ic = f(Ce'™/*) is a numerical constant. This leads to the following thermal
behaviour for the DC spinon conductivity [see ( 4.7)]:

5 vz M
7Ty~ (f”(CeiW/4)|1\/[Tl> sin(arg ). “.17)

The competition between the gap term m? and the dissipation 7'/ causes a MIC

upon decrease of temperature.

We turn now to the AC conductivity at ' = 0 and set A = (2. In this case coth %
is replaced by sgnw and the w-integration in (3.23) becomes:

Q
/-dﬁ R (4.18)
0 2T () + (L)

Up to logarithmic accuracy, one finds for the magnetic propagator at large scales:

QQI 312

-z—QQ , (4.19)

where Qq = (%5)1/ 3 and ) is a positive constant, with A < 1/2, as follows from
comparing (4.18) and (4.14).

Repeating the steps of the DC calculations with this parameter A included, we find
as the analog of (4.16):

ms — Mg = (m? — icAQ/x)Y2. (4.20)
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Figure 4.3: Predicted frequency dependence of the AC conductivity for different hole
contents 9.

For 2 < 2my, one easily obtains for the AC conductivity:

5 2 M
o1(Q) ~ ()\f”(C’eiW/4)|JVIQ|> sin(arg 3—9-) (4.21)

We see that the behavior of the AC conductivity at 7" = 0 is rather similar to that
of the DC conductivity, with a broad peak corresponding to a MIC, hardening and
shifting to lower temperature upon doping increase, see Fig. 4.3.

The main differences are that the peak in the AC conductivity appears magnified
and shifted to higher frequency with respect to the DC counterpart due to the factor
A, see Fig. 4.4, in qualitative agreement with experimental data[53].

‘We next consider finite temperature effects for the dynamical conductivity sigma, (£2).
For T' < (2, the leading correction is a renormalization of Mg in 4.20. A pertur-
bative calculation gives Mg — M3 + C(T'), with the small correction C(T) given
by

C(T) = —%f ((£>1/3ei%) : (4.22)

Since for small a, f(a) ~ o2, C(T) is purely imaginary and of order (7/2)%/3.
Its leading effect is to increase the damping rate inducing a shift of {2y,;;¢ to lower
frequency. This effect would be more pronounced for higher doping concentrations
but the peak rapidly disappears because of the intervening superconducting transition
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Figure 4.4: Calculated frequency dependence of the AC conductivity for § = 0.03.
The corresponding DC conductivity as a function of temperature is shown with
dashed line in the same units (cm™1).

at T, ~ Qprc. Experimentally, the peak in AC conductivity is indeed not seen for
0 2 0.06[61].

For Q@ < T, instead, the 2 = O result applies and the conductivity will be fre-
quency independent and equal to the DC value.

Therefore upon temperature increase, the MIC peak is expected to shrink asym-
metrically and eventually disappear from the spectrum.

The limits of validity of the approximations involved in the calculation of the
spinon bubble are given by ( 4.4) with T replaced by (2. We recall that the above
calculations does not take into account the holon contribution to the physical conduc-
tivity, but this is of order A*/3, hence negligeable for small cutoff A.

We close this section by suggesting a feasible experiment which can further sup-
port our interpretation of the far-infrared AC data: to repeat the experiment using
underdoped superconducting samples in the presence of a strong magnetic field sup-
pressing superconductivity. On the basis of the results found in the previous sections,
our predictions are rather tight:

- at very low temperatures a broad peak does emerge from the Drude response;
- the peak shifts to higher frequency by further increasing the magnetic field.

Such an experiment is already in progress [61].
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4.5 In-plane a — b Resistivity Anisotropy

Let us discuss how the a — b resistivity anisotropy found [54, 53] in untwinned single
crystals of Las_,Sr,CuOy (z = 0.02 — 0.04) can fit into our scheme.[60]

The neutron scattering experiments have revealed incommensurate magnetic struc-
ture in lightly doped LSCO samples (§ < 0.05).[62] Unlike the superconducting
LSCO compounds where the deviation of the elastic magnetic scattering peaks from
(m,7) is along the a, b directions in the tetragonal basis,[63] these peaks are rotated by
45 degrees around (7, 7), i.e., they are located along the b* axis in the orthorhombic
basis, or along the diagonal of the tetragonal basis.

Moreover, from the half-width of the elastic peaks one can determine the mag-
netic correlation length in different directions. As a big surprise, one finds the cor-
relation length strongly anisotropic. In particular, for 6 = 0.024, &), = 94.94,¢}. =
39.9A.[56] The authors of Ref. [56] interpreted this result as due to stripe formation
along a-axis, although no quantitative argument was given.

We do not have a quantitative microscopic theory to consider the anisotropy of
the AF correlation length, but we take this experimental fact as our starting point
to explore its consequences. Since the spinon mass m; is inversely proportional to
the correlation length, we assume m;, < my;. This anisotropy is not due to the
orthorhombicity which is much smaller, up to 1.7%.[54] Similarly, the diamagnetic
susceptibility x which is inversely proportional to the holon effective mass, should be
also anisotropic.

As discussed in Section 4.1, the combination xm? = Z|In§|r is crucial in de-
termining the MIC point. If we assume that the basic results of our theory developed
for the 2D isotropic model survives the generalization to anisotropic case, one would
anticipate the parameter r to be also anisotropic. In view of the above discussion
we expect r,/r, < 1. As a consequence, the peak in o, will be shifted to lower
temperature with respect to oy, as follows from Eq.(4.16); the anisotropy ratio o, /0y
will show a sharp increase near the MIC and saturates as 7' — 0, in agreement with
experiments. [54]

The same phenomenon occurs for the AC éonductivity at low temperatures, where
the factor A makes the anisotropy ratio even bigger. To estimate this enhancement, we
extract the ratio r, /r}, by fitting the DC data (the extracted value 7, [y = 0.725). We
can then use (4.21) to evaluate the corresponding anisotropy ratio for AC conductivity
without introducing any additional parameters; a comparison with the experimental
curve is shown in Fig. 4.5.
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Figure 4.5: Calculated AC anisotropy ratio versus w and DC anisotropy ratio versus
T for hole content § = 0.03. Inset: AC and DC anisotropy ratio for a La; 751y 3CuOy4
sample. From Dumm et al. [53]

This anisotropy is less pronounced than the experimentally observed value for AF
correlation length, as quoted above for § = 0.024, but we should bear in mind that
part of the anisotropy effect in the combination xm? has already been cancelled since
presumably my, o < mpp.
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4.6 Spin-Lattice Relaxation Rate

The spin-lattice relaxation rate for the Cu-sites has been computed within our ap-
proach in Ref. [48]. The hyperfine field fI((j) is peaked around @ 45 = (7, 7), thus
probing the AF spin fluctuations.
Since the electron spin field §(z) = c'Zc(z) is related to the spinon and holon
fields by .
S(z) ~ (1 — H*H(z))e'%4r7((z).

we find:*

Tmy,(Qar + 4, © o
lim X (QZF‘LQ w) NIm/ dxom(,/d%-(l—&Q < G(z) - G(0) > 7%,
w—r Jo

(4.23)
The retarded magnon correlator in momentum space is obtained from the Fourier
transform of ( 3.31); for positive w we get:

Za :

w—2,/m§~z'c§

where Jp is the Bessel function and Z, is defined in ( 4.6).
Using a cutoff |q] < @ for the integration over momentum in (1.4) and assuming
that A(q) is smooth at this scale we derive

(G- Q) (w,q) ~ Jo(|q1CQ5 ™), (4.24)

[ao [ aga 1A@pemEo=  ginee). @
lg1<Qo

Numerically one finds ReJy(ce™™/*) = a and Im Jy(ce?™*) = b with a/b ~ 0.1,
Plugging (4.25) and (4.24) in (4.23) one obtains from (1.4)

1 9 _1 arg M .
T (1 —6)2V6|M|~2 (a cos( 5 ) + bsin(

arg M
2

). (4.26)

For low 7', T}:’r‘ ~ a + bT and for higher T one finds TZI’T' ~ T~1/%: therefore the
spin lattice relaxation rate (—ﬁl—T—) on Cu- sites exhibits a maximum and an inflection
point at higher temperature, as observed in YBCO underdoped samples.[65]

If a would be 0, then T‘}T would be proportional to the spinon conductivity o;.
However, due to the o term in (4.26) the minimum and the inflection points are shifted

w.r.t. their analogues in o.

4As usual, we approximate H* H by its mean field value §.
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In particular, the inflection point is at a lower temperature Tp, in qualitative agree-
ment with the fact that experimentally the pseudogap temperature deduced from spin-
lattice relaxation rate is lower than that derived from resistivity measurements.[67]

4.7 Out-of-plane Resistivity

Let us summarize the results of Sect. 3.3 needed to compute p, using the K-J’s ap-
proach.

In the temperature range m? < % < mQg, the gauge fluctuations couple spinon
and holon close to the FS into an “electron” resonance with scattering rate [' propor-
tional to the inverse life-time of the magnon, hence from ( 3.50) we get

T LS ys L«
t ) xm2 :

The wave function renormalization constant ( 3.49) shows a weak temperature de-
pendence Z ~ /g,m, o< T"/® due to the fact that the binding of holon and spinon is
induced by thermal gauge fluctuations.

To compute p, we average the angular dependence of S(¢) and insert (4.27) and
(3.49) in K-J’s formula eq.(3.7).

In the “confined regime”, relevant for the Pseudogap phase, we have p, ~ 1% with
a coefficient independent of ¢.. From (4.27) we see that for low 7', p, ~ T-! and
for higher temperatures it decreases more slowly as p, ~ T-1/2. These features
reproduce qualitatively the behavior observed experimentally in several materials
(LSCO,YBCO... ) in the “pseudogap phase”, included the rounded knee mentioned
in Chapter 1 which corresponds to the above change of temperature dependence.

As a consequence of K-I’s approach, the c—axis resistivity p.(7) at low 7" gives a
direct test for the thermal behaviour of the electron scattering rate in the pseudogap

phase.

The “metallic” contribution of the second term is important only at relatively high
temperature (T > 300 K), where it scales as T'/%, causing a further flattening of the
pe(T') curves or possibly a minimum.

Apart from an overall scale, having already fixed with p,, the variable xm?, our
formula has only one free parameter, the scale of Z, i.e. essentially the scale A con-
trolling the cutoff on momenta perpendicular to the FS, A = kr/)\ and weighting
the “metallic” contribution. This parameter should be a somewhat large number and
might be roughly estimated by fitting p. for one doping concentration.
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Figure 4.6: Calculated temperature dependence of the out-of-plane resistivity (in ar-
bitrary units) for different doping concentrations: 6=0.05 (full line), §=0.07 (dashed)
and 0=0.09 (dotted). Inset shows experimental data on LSCO, extracted from Ref.
[17]

For other dopings the T-dependence behavior of p, is then derived and as one can

see from Fig. 4.6, the theoretical results are in quite good agreement with experimen-
tal data.[68]
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Figure 4.7: Calculated temperature dependence of the resistivity anisotropy ratio as
a function of temperature for different doping concentration: §=0.05 (full line), o
=0.07 (dashed) and 6=0.09 (dotted). Inset shows corresponding experimental data on
LSCO, extracted from Ref. [18]

4.8 Resisitivity Anisotropy Ratio

Having an explicit theoretical dependence on § and T' for both p. and p,, one can
further analyze the anisotropy ratio ;ch'

The derived temperature dependence of this ratio for different hole contents is
shown in Fig. 4.7.

This ratio clearly saturates at low 7', since both p, and p scale as % but at higher
temperatures, in the “metallic” region for in-plane resistivity, the ratio decreases like
T4,

Again this behavior is qualitatively consistent with the experimental data in the
“pseudogap phase”[1, 15], as shown in the inset of the same figure. The drastic upturn
at low T for Sr content z = 0.08,0.10 is due to proximity to the superconducting
transition: by applying a strong pulsed magnetic field suppressing superconductivity,
the anisotropy ratio is indeed known to saturate at low temperatures. [16]



Chapter 5

Strange Metal

5.1 Introduction

Our spin-charge gauge theory was originally formulated to describe the MIC in p,
and related phenomena taking place in the Pseudogap; its range of applicability was
therefore limited to underdoped systems and low temperatures where the spin corre-
lation lenght £ is smaller or of the order of the thermal De Broglie wavelenght, i.e.
¢ < Ar. At higher temperatures 7' ~ 7™, underdoped cuprates cross over a new
“phase” called Strange Metal. Overdoped cuprates, also, reach this phase at relatively
high T" but presumably from an ordinary Fermi Liquid.

The Strange Metal phase is metallic in nature with anomalous yet very simple
temperature dependences of physical observables such as the celebrated 7'—linearity
of both in-plane and out-of-plane resistivities. In optimally doped samples this simple
law extends from just above 7, to temperatures of order J (~ 1000K)[10].

Experimentally, the “Strange Metal” shares with the “Pseudogap” a fairly robust
short range antiferromagnetism (SRAF) which in our approach originates from the
gapping of spin waves due to scattering against the vortices attached to the moving
holes. In the following we will assume that the low energy effective action S for
spinons is still given by ( 2.36) with m? = |§ In 6|. We emphasize that our derivation
makes sense only if the AF correlation length is larger than the lattice spacing, i.e.
& =m;! 2> a, and therefore fails when the density of holes is very large.

There are strong indications, in particular from ARPES experiments[69], that
charge degrees of freedom undergo instead a radical rearrengement near the crossover
temperature 7*: the excitations far from the zone diagonals, i.e. located near (,0)
of the Brillouin zone, become gapless and lead to a large closed Fermi surface. This
means that the density of effective charge carriers has grown from 6 to 1 — 4, the value
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expected from band structure calculations.

The increase of the electron density of states at the (new) Fermi surface leads to a
renormalization of the parameters (diamagnetic susceptibility y, Landau damping )
that appear in the Reizer propagator ( 2.43) for the transverse gauge field.

As a result, gauge fluctuations in the spinon sector strengthen and dominate over
the spin gap at all temperatures down to 7™ for the underdoped samples, thus driving
the thermal behaviour of many physical properties. In particular we shall recover
some of the distinctive features of the Strange Metal, namely the 7'—linearity of in-
plane and out-of-plane resistivities and the T'~! behaviour for T}‘Cf

Our theoretical understanding of the Strange Metal is however less clear near
optimal doping and very low temperatures where the inequality & > Ay = (x/T)?
ceases to be valid.! This is indeed the realm of superconductivity and we do not have
a theory for it.

In this chapter we go through the same analisys as for the Pseudogap: we first
find the optimal spinon configuration leading to a new low energy effective action for
holons, then we compute the effects of gauge fluctuations on the spinon-spinon and
spinon-holon correlation functions and finally we apply the obtained results to eval-
uate thermal and doping dependences for the in-plane and out-of-plane resistivities
and the spin-lattice relaxation rate.

5.2 Optimization

In our approach, the increase in the density of state at the Fermi energy e reflects
a change in the dispersion relation. The m— flux statistical field that minimizes the
ground state energy near half filling was responsible for the small Fermi surface in
the Pseudogap phase.

Since the Strange Metal is metallic in nature, we expect that in this phase there
are no magnetic fields to frustrate the charge motion and therefore we assume

arg(Us,) = 0, (5.1)

where arg(Us,) denotes the statistical magnetic flux per plaquette.
The corresponding optimal spinon configuration is found by fixing explicitely the
variables g;. We defer the details to the Appendix quoting here the main results.

! A related problem is the behaviour of the pseudogap temperature 7* near optimal doping. Loram
et al.[20] claimed that an extrapolation of their experimental estimate for 7* is only consistent with a
vanishing 7 at the presumed critical point §. ~ 0.19 but this issue is still under strong debate.
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Writing §; = €, we find n; of the form n; = (cos ¢;, sin ¢;, 0) with ¢; given by:

b — ()Y ifHH =1
! ~2(-1)"" if HrH; = 0.

In view of a Mean Field Approximation (MFA), it is convenient to introduce new
spin variables [?; measuring fluctuations around the optimal configuration:

g; = iR = 73 Zem (N meloil g g (5.2)

The key point is that we self-consistently expect the variable R; to be slowly varying
at the lattice scale so that it makes sense to take the continuum limit by expanding
R, := R(j) in powers of the lattice constant a.

Plugging ( 5.2) into ( 2.19),( 2.20) we get a new exact version for the ¢ — .J model
effective action S = S, + 9,:

Sh :/ diL‘ {ZH O'm R;agij]jajcjl)ll —/L]Hj
0

e Z [—‘[fH]*e“Z f<ij> 63H¢(U¥‘§3RIP€Z f<ij>(v+6V)Rj§jO':|Eji>11 -+ hC]} (53)

<17>

s . .
5= [ s {2 (o¥1g] Rjeu Ry gyt
0

J

* % il ~ il ..V -~ ; 1
T Z (1 — Hi H;)(1 - HjH;) [[(Ui'gmpe f<”>(V+W)Rj9j0¥‘)11[2 - 5] }
<ij>

(5.4)

The remarks below ( 2.27) apply here as well. We note that the statistical field B
has disappeared in 5y, cancelled by an appropriate choice for the phase factors 6;, as
explained in the Appendix.

The field V(¢ carries 0—flux per plaquette and its Mean Field value ¥ = V¢(g™)
is the same as for the Pseudogap? and given by ( 5.50). The fields § B, §V will again
be neglected in the subsequent analysis while the variables g; are replaced by their is-
tantaneous values in terms of ¢;. Once this is done, we obtain the following simplified
actions:

2Note that the field V(©) defined in ( 2.18) has contributions only from non empty sites and therefore
its mean field value does not depend on the variables ;.
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Sy = / dz’ {Z H;[0 MRT@oR oy — plH;
40
+ 3 [—tH Hy(ol Rl Pet > T Ryoli)y, + h.c.]} (5.5)
<ij>

s - .
SS :/ dﬂ?O{Z(Ulg'R]‘aQR]UL]l)M
40

J

+> g(l — H;H;)(1— H}H,) {l(a:l;'le Pet<ii>V Riolil) 2 — %} } (5.6)
<ij>
Note in particular that the spinon action ( 5.6) is formally identical to that considered
for the Pseudogap case [see ( 2.27)], thus leading to the same low energy effective
action ( 2.36).
Since B = 0, the dispersion relation for bare holons has changed from the 7—flux

phase spectrum ¢7¢(p) = i%\/ cos(pga)® + cos(pya)” restricted to the magnetic
Brillouin zone to the more conventional tight binding spectrum e5M (5) = 2t(cos(pga)+
cos(pya)) defined in the entire Brillouin zone.

5.3 Holon Effective Action

In this section we derive the low energy effective action for holons. The matrix ele-
ment in the hopping term is expanded in powers of the lattice constant a. Using the
usual C P! representation for R;, see ( 2.28), and the fact that z;,, are slowly varying
at the lattice scale a, we find

(GJZIREPeiqu VR]UQ')H ~ 1+iaV, (25,0 o ﬁ)—|—(—1)1i|az;-"a8uzw+0(a2). (5.7)

The term proportional to V, is purely imaginary and it is cancelled by the H.c.. To
the same degree of accuracy, for the temporal component we obtain:

S (@Y R R ol = > [(=1)P125, 8070 — ig-f;j (€5 A 8oS2;) +0(a?).] (5.8)
J J

thus leading to the low effective action ( 2.36) for spinons once the ferromagnetic
variables L; are integrated over.
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Introducing the self-generated gauge field A, as in ( 2.37) and collecting all
pieces, the holon effective action takes the simple form

B
Sy(H, H* A) = / PrH; () — p—iAo)Hy+ Y (tHy Hye'le> A 4 h.c.). (5.9)
0 <ij>

Neglecting gauge fluctuations, the Fermi surface is obtained by filling all the states
up to 41 := €p ~ 2tJ obtaining a large closed Fermi surface, contained in the reduced
Brillouin zone. Note that the bottom of the band for the holes is at the corners of the
Brillouin zone and we have to account for 1 + § empty states.

Since the chemical potential is near the center of the band, the density of states
v(er) at the Fermi surface is basically flat, independent of ex. A direct consequence
is that in the Strange Metal the Landau damping s « v(ep)vr is almost doping
independent.

Writing a continuum limit for the holon action is of course rather cumbersome
because the Fermi momentum varies along the Fermi surface. As a crude approx-
imation, we substitute the FS with a sphere having the same volume and make a
particle/hole conjugation. The tight binding action defined on the square lattice is
then replaced by a continuum action describing free particles (e, = k?/2m) with an
effective chemical potential ez ~ 4t(1 — ¢), where —4¢ corresponds to the bottom of
the tight binding band.

The continuum low energy action describing “filled” states near the Fermi surface
1s given by

1 (V—id))y(r, )| . (5.10)

ree __ 2 7, = -
Glree — /de T [?,/)(7“, )(0r — ep — 1A — 5
Using the above simplified action, the Landau damping and diamagnetic susceptibil-
ity can be easily evaluated and have a weak dependence on doping in the relevant limit
0 < 0.3 as required. First note that vp ~ 2ta is doping independent, kra o (1 — §)
and therefore m* = kp/vp = (1 — 0)/2ta®. The parameters entering the Reizer
propagator ( 3.19) are then given by

Kk~ O(1-9) (5.11)
ta?
6m(l—9)
The main difference with respect to the Pseudogap estimates in Sect. 3.2.2 is that

d is now replaced by (1 — ) so that, roughly speaking, both quantities vary by a factor
of order 5-10.

x =1/12rm* = (5.12)
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The decrease of the diamagnetic susceptibility implies that the thermal De Broglie
wavelenght for holons is shorter w.r.t. the Pseudogap analogue and therefore spin-gap
effects (€2 < \%) are confined to very low temperatures (though they do not disappear,
see below).

5.4 Gauge Effects in the Spinon Sector

The h/s gauge field renormalizes the massive spinons in a non trivial way. The ex-
pression ( 3.31) obtained for the dressed spinon-spinon correlator in the Pseudogap
applies here as well:

= ) 042 _ (512
. . 1 _21-,/m§—§f(@—'§9—°)\/«c_°)7——ﬂ—%gég(’”‘§°)mz‘j_Tj “lia
(Q(z) - 2(0)) ~ me L1
(5.13)
provided the new estimates for x and ) are used.

It is important to note that, in contrast to the Pseudogap estimate ( 3.23), the new
(1—5)(2/3)

1/3 . .
" (%—T—) " for gauge fluctuations is almost

typical momentum scale )y =
doping independent.

The spinon contribution p, to the resistivity is calculated below. It may be useful,
however, to give a rough estimate of the spinon mean free path. This can be done
by noting that, since % > m? (or, equivalently, \% < £?), the damping rate in the
exponent of ( 5.13) diverges when f (%2—‘1) is of order 1 or larger. Since f(a) ~ o at
large o, we find that the spinon travels at most a distance £y With £yezQo ~ -X—T"l;
so that £,,,, o< T—4/3.

We shall see below that £,,,, sets the scale of the mean scattering rate I' of the
electron at the Fermi surface, i.e. T'(T) ~ v,£;L oc T%3. This result is used in Sect.

5.8 to derive the temperature dependence of the c-axis resistivity via Kumar’s formula
(3.7).
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5.5 In-plane Resistivity

In order to apply loffe-Larkin rule, we need to evaluate the contribution of both sec-
tors to the in-plane resistivity.

It is known, since Nagaosa and Lee[41], that for a 2D Fermi gas scattering against
a U(1) gauge field with Reizer-like singularity, the inverse scattering time at the Fermi
surface is proportional to T%/%. This power law follows simply by scaling analisys and
does not depend on the details of the dispersion relations. The contribution p, from
our gas of spinless holons is of the form

ph~< = +eF<—T—)‘*/3>, (5.14)

Timp E€r

where we also added the contribution of impurities via Matthiessen rule. Since e is
of order ¢ in the Strange Metal, pj, contains the small factor (7'/t)*/* and we therefore
expect it to be subleading w.r.t. the spinon contribution.

We now turn to spinons. In order to apply Kubo formula ( 3.4), we need to inte-
~ grate over |Z] to obtain (7 - 7)(z°,§ = 0). We again consider the region z° > |Z|.
Since the propagator is non-vanishing only at short distances, the largest contribution
comes from |Z]|@Qp < 1. We expand the functions f(«), g(«) defined in ( 3.29) to the
lowest significant order around o = O:

n 0 2 f 2
fla) ~ f2( )oﬁ = Q‘;‘4’ (5.15)
g(a) ~ g(0) = 1/8. (5.16)
The spinon-spinon correlator ( 5.13), to the same accuracy, is given by
= 3 1 oimea®4iT 220 —;T—Qgg(O)Lq;(H—T;%)
(Qz) - Q0)) = —5e™ " Thims T2 e X m\xms 2 (5.17)
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valid in the limit z° >> |#] and |Z] < Qo ™'. The current-current correlator IT,(z) is
then given by

4
II,(z) ~ -w—o-ibaze_“[‘”l , (5.18)
where o .
b=e ™ “mmzd0)% (5.19)
T Q( T 2
“= o1 (QYmgg(O)Qﬁw" - zmsxo) : (5.20)
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The integration over |#| is simply gaussian; assuming Re(a) > Q3, we are allowed
to remove the cut-off:

4p Sp2 dh
I, (2%, 7 = 0) ~ —a’ / e~ | 72 2|7] = = (5.21)
2% Jizge<t 20
For the Kubo formula we obtain the following expression:
Hs R 4 _dimsmo_.i,7 2,02
—(w,qd=0) ~ /dccoz:vo—T;e ? 7 900 _ (5.22)
w |w—0 z0

We note that the above integral is logarithmic divergent at short times: this is due to
the fact that our working assumptions

xOQRe(a) > 1, Re(a) > @3, (5.23)

require z° sufficiently large (note that Re(a) o (z°)%).

We may cure this unphysical divergence by introducing a UV cut-off for the inte-
gration over z° in ( 5.22). Since |Z|Qo < 1, we see that a natural cut-off is given by
20~ AQyt with A > 1.

Integration via principal part evaluation then gives

11, 47 1

—(w,§=0) == . ba?) 62

Requiring that b(AQ; ") is slowly varying and of order 1, we find for the spinon con-

ductivity:
47 QP 1

X (—2m, +iZzg(0Q0)
In the high temperature limit Q) > my, the damping rate in ( 5.25) dominates over

the spin gap 2m, and the spinon resistivity p; = o, * is linear in T":

T
xm?2

(5.25)

o, ~ —Im

g(0)\2. (5.26)

ps

Moreover, the doping dependence of the slope coefficient oc = p, /T is found to be

1 1-9
xm?  6|lné|

a(d) « (5.27)

Neglecting the holon contribution ( 5.14), subleading for 7" < ¢, the above re-
sults reproduce qualitatively the T'—linearity of the in-plane resistivity in the Strange
Metal, included the decrease of the slope upon doping increase.
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Figure 5.1: Calculated temperature dependence of the in plane resistivity for different
dopings 4.

A very similar result is also predicted by the gauge field theory by Nagaosa and
Lee[41] for the uniform RVB state. In slave boson theory holes are bosons and filled
states are fermions. The resistivity is determined by the bosons and one finds

m
ppp A ~5—BT, (5.28)

where mp and § are the mass and the density of bosons (holes).

In Fig. 5.1 we plot Eq.( 5.26) versus temperature for different dopings; the arbi-
trariness in the slope coefficient due to the factor ) is eliminated by fitting it to the
experimental data of Takagi et al.[10] for LSCO for z = 0.15, see Fig. 5.2. For other
doping concentrations there are no free parameters in Eq.( 5.26) and the agreement
with experiments is reasonably good.

We remind that the derived formula applies only at high temperatures, while at
low temperatures p;(T") has an unphysical upturn, due to spin gap effects. This is
actually the most serious drawback of the present theory when applied to optimally
doped cuprates where the linear-in-T behaviour of the in-plane resistivity extends at
all temperatures down to 7.
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Figure 5.2: Temperature dependence of the in plane resistivity for LSCO single crys-
tals with different Sr content. From [10]
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5.6 Spin-lattice Relaxation Rate

From the experimental point of view, one of the hallmark of the Strange Metal is the
very simple law for the Spin-lattice relaxation rate at the Cu-sites:

1 : Im; (w, §) 1
— ~ 42 AV AT ~
T, T lim _ L T~ 5

q

(5.29)

While in optimally doped samples the above relation is valid over a wide range
of temperatures above T, in overdoped samples T%T saturates to a constant (i.e.
T'—independent) value at low temperatures, suggesting a possible crossover to a
Fermi liquid phase.

The formalism necessary to compute this important observable has been described
in Sect. 4.6. There, it was shown that the imaginary part of the spin susceptibility
Xs(w, Qar + ) is related, for small ¢ and w, to the spinon-spinon correlator by the
following formula:

I - oo - - C o
mxs(Qar + G w) Im/ dxoz-xo/d% (1-6)? < () G(0) > eiTE,
0

(5.30)
We again neglect || w.r.t. 2° and expand the correlator as in the previous section.
The integration over |Z| then gives:

lim
w—0 93}

/ &?| 3T Eeala” = Tl (5.31)
a

where a is defined in ( 5.20).
Replacing the summation over ¢ with an integration, we get

d? ik
f 5 “?Qe*% - % (5.32)
i
Collecting the results, we remain with the following integral:
1 1 _ ims o__ T 2,02 ’
i~ (10 / diia’ e 2ims s g 90907 (5.33)

Up to the factor (1 — §)?, the above integral is equal to ( 5.22) for the evaluation of
the spinon conductivity. This result is a consequence of the gaussian expansion of
the correlator and of the fact that the dominant contribution to the in-plane resistivity
comes from the spinon sector.
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In the high temperature limit we have

1 (1 —6)% xm?
~ 2, 5.34
T g0 T (5:34)

Also in this case, the predicted temperature dependence is in agreement with the
experimental data.

5.7 Electron Green’s Function: Quasiparticle Pole

The Green'’s function for the 2D electron is given in real space by the product of the
holon (G") and the spinon (G*) propagators, averaged over gauge fluctuations:

[ DAG"(m,y| — A)G*(z, y|A)e'=s+A)

[ DA (539

G(z,y) =

We are interested here in the quasi-particle pole, in particular in the thermal and
doping dependences of the wave function renormalization constant Z and the damp-
ing rate I" as defined in ( 3.5).

Since the final result depend weakly on the details of the Fermi surface, we assume
for simplicity a circular Fermi surface. The holon propagator follows immediately
from the low energy action ( 5.10) under the tomographic decomposition described
in Section 3.3.2. Within Gor’kov approximation we have (see also ( 3.44):

TR R
e3tL(0) (xo)eisz“(g)
Vi

Gula®,3) = (Balo)s(0)) ~ 2L [ g

1 1
[515”(0) — xovpg(xo) * z)(0) + z%vp

1

where A(zp) = ( ke )5 > 1 and 7i(6) labels the k—state at the Fermi surface:

vpxd
k = krii(0).
The spinon propagator Gs(z, 0| 4) is written as in ( 3.16):

@(-—:vo)} ello Auds” (536)

G,(z,0|A) = el lo 4ud?* G (1, 0| F). (5.37)

The Gor’kov phase factors in ( 5.36) and ( 5.37) cancel against each other and the
gauge invariant correlator G4(x, 0| F'), averaged over gauge fluctuations, is given by
the square root of ( 5.13).
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We again consider the region £° >> |Z| and expand G, (z°, |]) to quadratic order
in |Z|Qo. We find:

. Ltz (6)?Adx N
Ga(z® > 0,) ~ "%?—TE_F | / d@if%i)ei'wm : ge—%lfl‘. (5.38)
where a = a(z”) and b(z?) are defined in ( 5.20) and ( 5.19) respectively.

We finally perform the Fourier transform of ( 5.38) to obtain the Retarded electron
Green’s function G#(w, §) for states near the Fermi surface.

Writing & = |Z|7i(¢), the integration over ¢, i.e. along the Fermi surface, is done
via Lemma ( 3.45) and the |Z| and z° integrations exactly as in Sections 5.5 and 5.6.
We find

1

GRw, k= kpil) = Z b(2°) oerot 5.39
where the wave function renormalization constant Z is given by
Qo1 ,Msk, 1
Zx/\l(k;)z( = E (5.40)

with A; related to the tomographic momentum cut-off A by A = k—l: We see that
Z has the same thermal behaviour Z o T/¢ as in the Pseudogap but the doping
dependence is rather different since in the Strange Metal kg, Qy, & all depend weakly
on doping. We shall see below that the above estimate for Z is crucial to reproduce
the correct linear-in-T" behaviour for the c-axis resistivity.

From ( 5.39) we can read-off the electron damping rate I" at the Fermi surface:

T

_ (1 . 5)5/3
2xm?

F STmo]

Qog(0)\ oc T3

(5.41)

We see that I' is inversely proportional to the doping concentration. This is accept-
able in the Strange Metal where the magnetic frustration disappears: if more empty
sites are added, the electrons can take profit to delocalize so the Gutzwiller projector
becomes less effective and the scattering with the associated gauge field is weaker.
We therefore expect that for very high dopings, our underlying assumption that the
gauge field is the main source of scattering among excitations is no longer acceptable
and a more conventional Fermi liquid picture should emerge.

Note that both electrons and holons have scattering rate proportional to 7%/3 but
their respective doping dependences suggest I' > TI',,; which again justifies the
Gor’kov approximation for holons.
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5.8 Out-of-plane Resistivity

Conductivity along the c-axis in cuprates occurs by interplanar tunneling processes.
Since presumably there is no measurable Fermi velocity along this axis, we can use
Kumar-Jayannavar approach described in sect. 3.1.2 to calculate p.(7'). According
to the authors, the out-of-plane motion in cuprates is incoherent and governed by
the strong in-plane scattering via the quantum blocking effect. At high temperature
[ >> t, the interlayer tunnelling rate is reduced by in-plane scattering just as thermal
fluctuations limit tunneling by repeatedly “observing” a two level system. Under
these assumptions, p,(T') is controlled by the second term in Kumar’s formula:

1/1 T
PV (. 5.42
P u(r+tgz2> (5.42)

We have already seen in the previous Chapter that the first term in ( 5.42) describes
correctly the insulating behaviour of p.(T") in the Pseudogap, included the rounded

knee observed in many underdoped samples.

Analogously, we expect that the metallic contribution in ( 5.42) yields a qualita-
tively correct estimate for p.(7") in the Strange Metal.

Substituting T' and Z with the corresponding estimates ( 5.41) and ( 5.40) in
( 5.42), we recover the T'—linearity in the “incoherent regime” I' >> ¢, 2:

12 mov(ep)k 2xym2 A3

l

(5.43)

Pe =

Taking into account that v(ez) = mmy, X = 1/67my, and &, kg o< (1 — &), the
doping dependence in ( 5.43) comes entirely from m, and therefore we find

T J?

Ea 5.44
(5] 1n.6|)*/? 2 G4

Pc =
We see from ( 5.44) that the slope coefficient p.(T")/T" decreases upon doping in-
crease. _
Unfortunately, we don’t have a clean method to estimate the (extrapolated) T =
0 intercept of p.(T') which is large when compared to the corresponding ab—plane
intercept, see Fig 5.3, so we cannot extract the anisotropy ratio p.(T")/ pas(T)-
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Figure 5.3: Temperature dependence of the in-plane (upper panel) and out-of-plane

(lower panel) resistivity for LSCO single crystals with various compositions in the
metallic phase. From [70]







Conclusions

We briefly review the main results achieved in this thesis. The spin-charge gauge
theory was originally introduced to describe the Metal Insulator Crossover (MIC) in
underdoped, non superconducting cuprates as temperature decreases. The MIC orig-
inates from the competition of a spin lengthscale, the antiferromagnetic correlation
length £ ~ (6]1nd])~*/2, where § is the doping concentration, and a charge length-
scale, the thermal De Broglie wavelength for the holes Ay ~ (7'6/t)~'/2, where T is
the temperature, ¢ the hopping integral.

We believe that most of the experimental crossovers appearing in the tempera-
ture dependence of transport phenomena in the Pseudogap can be explained by the
existence of these two factors.

Motivated by a very recent experiment [53], in this work we have generalized the
gauge approach to frequency dependent phenomena and calculated the (Far Infrared)
dynamical in-plane conductivity for strongly underdoped cuprates. We have shown
that at Jow temperatures the Drude response disappears and a broad peak emerges
at finite frequencies (w ~ 100 cm™!) which is the analogue of the peak found in
temperature dependent DC conductivity for the same sample. We expect that an anal-
ogous peak should appear also in underdoped superconducting cuprates once a strong
magnetic field is used to suppress superconductivity.

The anisotropy in the MIC temperatures along the a and b plane directions found
in both the DC [54] and AC [53] conductivities data, is almost certainly related
to a corresponding anisotropy in the antiferromagnetic correlation lengths. Neutron
scattering experiments[56] have indeed revealed that the magnetic correlation lengths
are strongly anisotropic, with &, > &,.

We have shown that the a — b anisotropy in the MIC temperatures is the key to
understand the large a — b resistivity anisotropy found in both the experiments in the
limit 7" — 0 and w — 0, respectively.

Another important result following from our calculations is that, near the Fermi
level, holon and spinon bind together into a weak resonance with the quantum num-
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bers of the physical electron. This binding is entirely provided by thermal gauge
fluctuations and disappears as " — 0. We have calculated the wave function renor-
malization constant and the scattering rate at the Fermi surface as a function of the
relevant parameters 7', 6. The spectral weigth varies along the Fermi surface and is
strongly suppressed outside the Reduced Brillouin zone.

We have applied these results to calculate the temperature dependence for the out-
of-plane resistivity, following the approach of Kumar et al.[39] The calculated p as
well as the anisotropy ratio p./pgs are in fairly good agreement with experiments[17,
18].

Finally, we have extended our analysis to describe optimally doped cuprates and
underdoped samples at 7' > T , where 1™ is the pseudogap crossover temperature
(Strange Metal “phase”). Here we reproduced qualitatively the expected T'—linearity
of the in-plane and out-of-plane resistivities[10, 70] and of the inverse spin lattice
relaxation (737)% at high temperatures as well as the tendency to evolve to a su-
perlinear behaviour at lower temperatures for high doping levels, in agreement with
experimental data.

Let us finally spend few words for future directions of work.

Since the spin-charge gauge approach relies on strong assumptions and it is higly
non trivial, only the strict comparison with the huge amount of experimental informa-
tion can ascertain the relevance of this method to the understanding of the puzzling
phenomena in these strongly correlated systems.

Preliminary calculations are giving encouraging results, when compared with the
experimental data, for the the Knight shift in both the “Pseudogap” and the “Strange
Metal” phases.

An interesting open problem is to study the normal to superconducting phase
transition in cuprate compounds within the holon — spinon scenario.
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We outline here the procedure followed to find the istantaneous optimal spinon con-
figuration g7 for a given holon distribution. We recall that g;" 1s defined as the con-
figuration at which Z(g) reaches its maximum [see ( 2.23)].

The starting point is to write an equivalent path-integral first-quantized expression
for =:

Zn(9), (5.45)

E(g) =Bl et YT
N=0

~ where the canonical partition function Z ~(g) of N holes is given by

Zy(g) = ZwePN(_UU(W) Zjl...jn Hi\le f wr (0)=j» du(wy)

r(ﬂ):]w(‘r)

; 0 4
. H<ij>€wj_ tU<ij>eﬂfa” A =T ijsnu=t 5 JE d0(|Ucis |2~ 1 ) (5.46)

Here Py is the group of permutations of N elements, o () is the sign of the per-
mutation m and w = {wy, ..., wy} denote the worldlines of holon particles, w™ the
components of w perpendicular and w!! parallel to the time axis, respectively.

The above expression is written as a complicated product of terms defined at all
links < 7,7 > and sites (through w!l) of the lattice. The optimal configuration g;" 18
then found by requiring that any single term in the product ( 5.46) gives the largest
possible contribution. From now on we drop the m index.

To start with, we kill the on-site fluctuating phase in ( 5.46) by imposing

id; = (0¥lgl8og;olN =0, jedl. (5.47)

Eq. (5.47) is satisfied choosing g; constant during the period when no particle hops.
Imposing U~ = 01in S (see (2.20)) corresponds in the first quantized formal-
ism to setting:

(ol gl Pet <>V g5l =0, <ij >nNw=0. (5.48)
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In physical terms this means that the s + id RVB order parameter[71] is very small.
We notice that if
g; =cosf; +isinbjo., j¢Ew (5.49)

for some angle 6; € [0, 27), (5.48) is then satisfied. In fact, since V/ (¢) depends only on
sites where there are no holes (see (2.18)), from (5.49) it follows that correspondingly

_1\ Ml
vV (z) = Z(l - H;‘H])(T1> o,arg (z — j)oz, (5.50)

J

so that g;f Petteis v g; has only diagonal components.
The condition |U.;j»| = 1 in S; (see (5.46)) corresponds to imposing:

(olilgiPetl<i> V' g0l =1, < ij >€ w* (5.51)

which means in physical terms that the AM order parameter[72] is of order 1.
To discuss ( 5.51) we note that if < ij >€ w™, at a given time either site 7 is empty
(4 ¢ w) and site j is occupied (j € w) or viceversa. Suppose for instance j € w. Then
we can write
TPiI” v .. )
g, Pe’ <> = €08 0jj> + 15inbiy502, (5.52)

for some angle f;;~ € [0,2m).?
Representing g; as
gj = COS p; + 10 - i sin pj, (5.53)

we immediately find from ( 5.51) that
Yi = g: Njz — 0. (5.54)

So far the optimization process was independent of the density § of holes. In
particular we have found that the optimal spinon configuration must satisfy A; = 0
and |Ugj»| = 1,0 in S; and S, respectively. There still remain undefined variables
corresponding to the phase of (7<ij> whenever a hole hops along the link < 75 >.

We recall that arg(Uc;j>) is not invariant under h/s symmetry, the gauge in-
variant variable being the magnetic flux arg(Us,) penetrating a given plaquette p.
Assuming traslational invariance, the optimal configuration g7* is a function of the
mean magnetic flux per plaquette < arg(Us,) >.

3This is because the L.h.s. of ( 5.52) is a diagonal SU(2) matrix.
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Pseudogap
Numerical simulations at 7" = 0 and near half filling [73] have shown that the stable
state is realized when

arg (Ug,) =7(1—6), §<1 (5.55)

We shall use ( 5.55) as ansatz for the Pseudogap phase.
Since the B-dependent part of arg ( Uap) has a translation invariant mean satisfy-
ing condition ( 5.55), it is natural to impose (on average)

<0¥|ggeif<ij> V(C)gjai-f[)l ~1, <ij>€w. (5.56)
1
Defining
7 = e“‘%Zd#j(_l)[‘Tza'rg (f—j)) (5.57)
and choosing
g': ' w
g = { 7 i ¢ (5.58)
gig;, JEeEw

where g, is to be found, we can kill the fast fluctuating first term in (5.50). The
remaining term, denoted by

_ . —1) WMl .
V=- ZHJ HJ( 9 ) aﬂa‘rg (SL’ - ])az: (559)
J

depends only on the holes distribution and yields a contribution O(6) to arg(Uc;),
with zero translational average. Finally, using (5.54), (5.57), (5.58) we find

glet <V, = eilei> Vg, o . (5.60)
Since the left hand side of ( 5.60) has to satisfy ( 5.54), we write
g] — eig‘(a'mnjm+‘7y"jy) ] cw (561)

and we immediately derive from ( 5.60) the conditions nj, = 0,n;, = (—1)¥. The
“optimal” spinon configuration defined in ( 5.58) is now completely fixed:

g = g;g; = e 7 Deas (1) ozarall=g) i5 (-1l B} H;. (5.62)
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T e 2

Figure 5.4: Circuitation of a plaquette.

Strange Metal

It is not difficult to see that the statistical field V¢ defined in ( 2.18)does not carry
magnetic flux per plaquette, so strictly speaking the constraint arg(Uap) = 0 cannot
be satisfied. However, it is sufficent for our pourposes that whenever a hole make a
closed loop on the lattice, it acquires a trivial phase factor (27n).

We recall that, at the lattice level, the particle can either stay at rest at a given site
or jump to a nearest neighbor.

Without loss of generality, we consider a holon going around a given plaquette p
counterclockwise as shown in Fig. 5.4.

Now assume that the particle hops from site 4 to site j. Defining g;, g; and V as
in ( 5.57)-( 5.59), we see from ( 5.60) that

. i B (e) . il =t~ .
(C,Lzl glet IV gjgglgi)ﬂ ~ (aglgg‘gjgy)n. (5.63)
The SU(2) variables g;, §; are as in ( 5.49) and ( 5.54):
gi=e"", idw (5.64)

G; = i(G - 7;), nj=(cos¢;,sing;,0), jEw (5.65)

with §; and ¢; so far arbitrary.
These degrees of freedom will be fixed in order to cancel the m—magnetic flux per
plaquette generated by B. We need to impose:

[T (cdlgelt) =e (5.66)
<ij>€0p 1
Writing out explicitely the left-hand side of ( 5.66), we find

eHO1+62) g~ i(02+¢4) ei(Ba+¢3) o, —i(fa+¢1) (5.67)
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which is satisfied by the choice ¢; = Z(—1)V! irrespective of the 6; phases, provided
the latter contribute with a trivial phase factor.

We can be even more demanding by requiring that the field B is exactly cancelled
link by link. For instance, imposing

=2 (-1,

we cancel the distribution of phase factors for B chosen in Sect. 2.8.
The optimal spinon configuration is then completely fixed.
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