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Chapter 1

Introduction

Can we actually know the Universe?

My God, it’s hard enough finding your way

around in Chinatown.
Woody Allen

In the last twenty years, cosmology has become a precision science. Since the COBE era, a

wealth of data, along with advances in theoretical interpretation and numerical analysis, provided

us with a convincing model of the content and evolution of our Universe. It is now generally

accepted that an early period of inflation produced a nearly homogeneous flat Universe, with small

inhomogeneities (of quantum origin!) which can be seen as temperature anisotropies in the cosmic

microwave background (CMB), and which grow by gravitational instability to form the large scale

structure (LSS) of the Universe.

Measurements of the CMB anisotropies, which provide a spectacular 2-dimensional snapshot of

the Universe at the time of recombination, by the WMAP satellite (for the latest release see [1])

and other missions ([2, 3]) have been the dominant source of information in the past decade. From

the theoretical side, we have a thorough understanding of the physics of CMB [4, 5, 6, 7, 8, 9] and

fast numerical codes for anisotropy spectrum calculation [10, 11], since perturbations at decoupling

are very small and a perturbative treatment works well. Precision measurements of the CMB will

go on in the next years, with the Planck mission ([12]) and with CMBPOL [13].

These missions will probably end the epoch of CMB data mining and analysis. However, a

lot of experiments aiming at LSS observations have been planned for the near (and not so near)

future. In the last few years, in fact, large scale structure has been considered more and more as
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1. INTRODUCTION

an important and complementary probe to CMB measurements, and it will likely become the main

subject of observational cosmology. For instance, measurements of primordial non-Gaussianity

using the scale-dependence of bias [14, 15, 16] are already competitive with the latest WMAP

results [1]. In addition, large scale structures are a unique probe of the late acceleration of the

Universe, and therefore the only window on the nature of dark energy and on theories of modified

gravity.

Unfortunately, LSS observations are not ideal both experimentally, since what is observed is

often just the luminous baryon fraction which constitute only one sixth of the total matter (excep-

tions are lensing and velocity measurements), and theoretically, since structures have undergone

non-linear gravitational and complex hydrodynamical evolution. However, if one focuses on very

large structures, such as galaxy clusters, some theoretical predictions can be done. In fact, clus-

ters are mainly dominated by gravitational physics, and simplified theoretical models and N-body

simulations can be applied with success.

In this Thesis, after discussing an effective theory of perturbations of single-field dark energy,

we will explore the modifications on the mass function of dark matter haloes due to single-field

dark energy models and to non-Gaussianity in the initial conditions. We first present an effective

theory description of single field, minimally coupled dark energy models. A generic prediction of

this study is that, whenever the equation of state w becomes less than −1, the speed of sound cs of

perturbations should be set to zero because of stability requirements. We will then show, using the

spherical collapse and the excursion set theory formalism, how the mass function of haloes would

be modified in models with non-clustering (cs = 1) and clustering (cs = 0) dark energy, and we

speculate about possible signals in galaxy cluster observations. In the last chapter, we use a path

integral approach to the excursion set theory to derive the mass function of haloes for a generic

(small) non-Gaussianity in the initial conditions, which is a unique window into the physics of

inflation.
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Chapter 2

The accelerating Universe

2.1 Observational evidences

On large scales, the Universe is observed to be homogeneous and isotropic, and it can be described

by the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
, (2.1)

where r, ϑ, φ are comoving polar coordinates, k quantifies the spatial curvature of constant-t slices,

and the function a(t) is the scale factor, the only degree of freedom allowed by symmetry.

The evolution equations are:

H2 =
8πG

3
ρ− k

a2
, (2.2)

ä

a
= −4πG

3
(ρ+ 3p) , (2.3)

where H ≡ ȧ/a is the Hubble parameter, and ρ and p are respectively the total energy density and

pressure of the species present in the Universe at a given time, including the cosmological constant

term. The first equation can be rewritten as

∑

i

Ωi(t)− 1 =
k

a2(t)
, (2.4)

where we have introduced the relative abundance Ωi ≡ 8πGρi/(3H
2) for any species i. Thus, the

total energy density in the Universe determines its curvature: for a flat universe, Ωtot = 1.

Measurements of the distances and of the expansion history are one of the main concerns of

observational cosmology, since they determine the geometry and the energy content of the Universe.
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2. THE ACCELERATING UNIVERSE

2.1.1 Distance indicators

The physical distance to an object of (comoving) coordinate r depends on time, and it is d(t) =

a(t)r. Cosmologists use the redshift, i.e. the fractional amount by which the wavelength of a

photon has been stretched between the time the photon is emitted and the time it is received, as

a measure of the scale factor: z ≡ 1/a− 1, having normalized a0 = 1.

If an object of luminosity L is at a redshift z, a proxy for its distance to us is the luminosity

distance

dL ≡
√

L

4πF
, (2.5)

where F is the energy flux received from that object. This relation generalizes the usual one in

Minkowski spacetime. It is easy to compute that, in a flat Universe,

dL = c(1 + z)

∫ z

0

dz′

H(z′)
. (2.6)

Therefore, if there are sources of known intrinsic luminosity, known as “standard candles”, a mea-

sure of their apparent brightness (i.e. the energy flux received on Earth) at different redshifts

translates into a measure of the expansion history.

Type Ia supernovae are excellent standard candles. These are stellar explosions that occur when

a white dwarf, onto which gas is accreting from some companion star, reach the Chandrasekhar

mass limit (about 1.4 solar masses), the maximum possible mass that can be supported by electron

Fermi pressure. When this happens, the gravitational collapse that follows results in an extremely

bright explosion, with a luminosity that can reach a significant fraction of that of the host galaxy.

Because of the prompt explosion after reaching the Chandrasekhar mass, the variations in absolute

luminosity are small. Such variations can depend on the environment or the chemical composition of

the star, and they appear to be well correlated with the rise and decline time of the ligth curve. The

relationship between peak luminosities and light curve shape has been well-studied, and today type

Ia supernovae are reliably used as standard candles for measurements of cosmological distances.

In 1998, two independent groups, the Supernova Cosmology Project [17] and the High-z Super-

novae Search Team [18] measured luminosity distances of many SNIa as a function of redshifts up

to z . 1. The results show that the most distant supernovae appear dimmer than expected in an

Einstein-de Sitter Universe, which means that the expansion is accelerating. In subsequent years,

many more supernovae at high redshifts have been detected and studied. The trend towards fainter

supernovae at redshift z & 1 has been shown to reverse, which means that the acceleration took
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Figure 2.1: The Hubble diagram of SNIa, showing the apparent magnitude versus redshift. The solid

line is the best fit ΛCDM cosmology. The dashed line is the prediction for an open Universe, while the

dotted one corresponds to an EdS cosmology. Figure taken from [19].

place around z ≃ 1; such measurements play also a key role in disregarding dust as an explanation

of the dimming. We show the Hubble diagram taken from [19] in fig. 2.1.

Another definition of distance is the angular diameter distance. If an object has a proper size

lp orthogonal to the line of sight, and it is observed to subtend an angle θ on the sky, its angular

diameter distance is

dA ≡ lp
θ
. (2.7)

The relation to the luminosity distance is dA(z) = dL(z)/(1 + z)2. An object of which we know

the proper size is called a “standard ruler”. In our Universe a standard ruler is the size of the

sound horizon at recombination H−1
r , which is imprinted on the CMB temperature spectrum as

the maximum amplitude scale. This is because perturbations on larger length scales cannot be

affected by causal physics and they just bear the imprint of the primordial perturbations, while on

smaller scales there is the propagation of damped sound waves, generated by the competing forces

of gravitational infall and photon pressure. When photons decouple from the plasma, we expect to

see a peak in the CMB temperature power spectrum corresponding to the size of the sound horizon
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2. THE ACCELERATING UNIVERSE

at recombination. Since we know the physical size of H−1
r , a precise measurement of the angular

distance of the CMB is given by the position of the first peak in the temperature power spectrum.

The observed value, which is l ≃ 220, corresponds to the geometry of a flat Universe, and it is

almost independent of the relative abundances Ωm and ΩΛ.

2.1.2 CMB and LSS

The analysis of the CMB anisotropies is an invaluable tool for extracting the cosmological parame-

ters. The large-scale plateau of the power spectrum can be used as a probe of acceleration, through

the integrated Sachs-Wolfe (ISW) effect. In a flat, matter-dominated Universe, the gravitational

potentials are constant and therefore do not affect the energy of a photon traversing them. On

the contrary, photons traversing a shallowing (deepening) potential will be blueshifted (redshifted),

as the energy they lose when they climb out of the well is less (more) than the energy they gain

when they enter. The cleanest way to detect the ISW effect is to cross-correlate the CMB power

spectrum with the galaxy one, as the signal is expected to be correlated with the tracers of the

gravitational potentials [20]. Analyses show a 4σ detection [21, 22].

l ~ 220

ISW

first peak

acoustic oscillations

Figure 2.2: The CMB temperature power spectrum, as measured by the WMAP collaboration [1].

The solid line is the best fit ΛCDM model. We have shown the ISW on large scales, the position of the

first acoustic peak and the subsequent acoustic oscillations.
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2.1 Observational evidences

The acoustic oscillations in the plasma before recombination leave also a characteristic imprint

on the distribution of matter. There is a bump (called acoustic peak) in the correlation function

of the density fluctuations at a comoving separation of ∼ 100h−1Mpc; equivalently, we observe

oscillations in the matter power spectrum, known as baryon acoustic oscillations (BAOs). These

have been detected in galaxy surveys [23]. The physical wavenumber at which they occur is well

understood from linear perturbation theory, which allows us to use BAOs as a cosmological probe.

In a galaxy survey, the acoustic scale can be measured both across and along the line of sight, to

place constraints both on the angular diameter distance and on the expansion history.

Another powerful probe of acceleration is the growth rate of density inhomogeneities. At early

times, or on large scales, the fractional density perturbation is very small and it can be studied by

perturbation theory. In the linear regime, it satisfies the equation

δ̈m + 2Hδ̇m − 3

2
ΩmH

2δm = 0 , (2.8)

whose growing mode solution is δm(z) ∝ D(z), where D(z) is called the growth function and de-

pends on the background expansion history. The growth function can be measured by observations

of clusters and gravitational lensing.

Figure 2.3: Constraints in the Ωm−ΩΛ parameter space from SNeIA, BAOs and CMB data. Different

datasets are degenerate along different lines. Figure taken from [24].

7
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2. THE ACCELERATING UNIVERSE

2.2 Theoretical explanations

The acceleration of the Universe has been now firmly established by several independent obser-

vations, and the literature on its theoretical explanation has grown enormously in the last few

years.

A possible view is that the acceleration is due to the local environment of our own Galaxy. In

particular, if we happen to live near the center of a large void, measurements of background can

mimic an accelerating Universe.

Instead, if we stick to the FLRW cosmology, from the equation

ä

a
= −4πG

3
(ρ+ 3p) (2.9)

we infer that acceleration requires a matter source which violates the strong energy condition,

p < −ρ/3, named dark energy.

Such a source of gravity is, actually, already present in GR. In fact, to the Einstein-Hilbert

Lagrangian it is always possible to add the cosmological constant term:

∫
d4x

√
−g
[
M2

Pl

2
R− 2Λ

]
, (2.10)

where Λ is a costant. The form of such a term is the same as the energy-momentum tensor of a

perfect fluid with p = −ρ, and it can be interpreted as the energy of the vacuum. The zero-point

energy in quantum mechanics is usually subtracted, since only energy differences are measured;

in GR, however, it gravitates as all other forms of energy. If one tries to compute the value of Λ

from standard quantum field theory, the result is proportional to the fourth power of the cutoff,

usually assumed to be the Planck mass. Observations show instead that Λ ≃ 10−120M4
Pl, which is

a huge fine tuning. So far, there is no convincing theoretical explanation for this value. A possible

reason is the anthropic one, pioneered by Weinberg [25], and now accepted by many theorists in

the context of the the landscape of string theory [26].

The dark energy need not be a constant, and is usually described by parametrizing the equation

of state as p = wρ, where w is in general time-dependent; constraints on w show that it is close to −1

with a 10% accuracy. A form of matter that gives rise to this equation of state is a scalar field which

slowly rolls down its potential. In this case, perturbations in the scalar field can give interesting

observational signatures. The simplest models in this class are minimally coupled models, in which

the scalar field couples to gravity through the minimal coupling prescription, and does not directly

interact with matter. We study such models in chapter 3, using an effective theory approach.
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2.3 Future prospects

Another interesting class of models are scalar-tensor theories and f(R) theories, which are a

subset of the former. In these models, the scalar field is directly coupled to the Ricci scalar (in

Jordan frame) or, performing a conformal transformation of the metric, to the matter fields (in the

Einstein frame). It is possible to construct viable models which evade the stringent solar system

tests of GR by giving the scalar a large effective mass in high density regions, and whose background

evolution H(z) is the same as in ΛCDM cosmology. The difference here arises at the perturbation

level. A generic prediction of such models is that the two linear gravitational potentials φ and ψ

differ, and the growth function of density perturbations becomes scale-dependent. Therefore, only

measurements of the growth of structures are able to distinguish these theories from ΛCDM.

A more radical solution is represented by theories in which the gravity theory is different

from general relativity, like massive gravity [27], ghost condensation [28], the DGP model [29],

the galileon [30]. In this case, there is a non-trivial mixing of the scalar degree of freedom with

the graviton and there are deviations from Newton’s law already around a Minkowski background,

which are constrained to be tiny. Solar system tests are usually evaded by non-linear interactions of

the scalar field. In general, modified gravity theories can be falsified or constrained by measurements

of the growth function.

2.3 Future prospects

There has recently been a systematic study of the future prospects in dark energy observations,

summarized in the Dark Energy Task Force paper [31]. It is generally recommended that the best

approach is to use multiple techniques at every experimental stage, at least one of which is a probe

sensitive to the growth function of perturbations. The main areas of observations which are useful

for dark energy studies are BAOs, galaxy clusters, supernovae and weak lensing.

Baryon acoustic oscillations, as explained above, are a well-understood standard ruler, and

this technique allows to measure both the proper distance (from oscillations viewed transversally)

and the expansion history (from oscillations viewed radially). This probe is the least affected by

systematic uncertainties, but its potential to distinguish evolution of the equation of state parameter

is somewhat limited by the fact that the most precise measurements are made at z > 1. From the

theoretical side, an issue with the use of BAOs is the uncertainty in the effect of non-linear effects

on the galaxy power spectrum. Deep galaxy surveys and 21 cm observations will greatly improve

BAOs observations and the determination of background quantities.

9



2. THE ACCELERATING UNIVERSE

Cluster abundances are a powerful probe of the growth function, because of the exponential

dependence of the mass function on the linear field. The measured number density of clusters is also

sensitive to the proper volume in the Universe, which is proportional to a combination of proper

distance and expansion history. The strength of cluster counts is that clusters can be detected in

several different ways: X-ray emission, Sunyaev-Zeldovich emission, lensing shear measurements

and optical observations. The main uncertainty is given by the relation between the mass and the

observables, which depends on the complexity of baryonic physics. To overcome the uncertainty in

the mass-observable relation, one can apply “self-calibration” methods, which consist in modelling

unknown physics using nuisance parameters, which are to be determined along with the cosmological

parameters. With future missions, the number of detected cluster will increase substantially, and

observations with diverse techniques can allow to reduce systematic uncertainties.

Supernovae are the most established method to constrain the acceleration of the Universe. They

are only sensitive to the background expansion history, but they are a useful tool in the interesting

redshift range 0 < z < 2. The main uncertainties are in the standardization of light curves and the

possible foreground extinction. Future surveys should provide a huge number of SNeIa, with well

determined photometric redshifts.

Weak gravitational lensing is an emerging technique, but it is the method with the greatest

potential in constraining dark energy, and it is sensitive to both the background and the growth

function. A lot of statistics can be computed, allowing internal tests and corrections of systematic

errors. It is difficult to predict how well this method can perform, but it is likely to be dominated by

systematic errors in redshift determinations and in galaxy shape measurements. These problems

can be bypassed by using different kinds of observations (terrestrial, space and 21 cm), and by

further simulations and testing of shape measurements.

10



Chapter 3

The Effective Theory of Quintessence

The origin of the present acceleration of the Universe is likely to be the most important theoretical

problem in physics today. Given the general reluctance in accepting as explanation an incredibly

small cosmological constant and the absence of compelling alternatives, it seems that one should

keep an open-minded approach, concentrating on very general theoretical constraints and on ob-

servables more than on specific models.

In this chapter we study in generality, and focusing on perturbations, dark energy scenarios

where the dark sector is described by a single scalar degree of freedom, without direct coupling to

matter (in the Einstein frame). We will often call this general model quintessence, although in the

literature this name is usually reserved to a scalar field with a canonical kinetic term.

Following [32, 33], we will rewrite the scalar field Lagrangian in order to make explicit what is

the most general theory of quintessence perturbations around a given background solution charac-

terized by its pressure pQ and energy density ρQ. In this way, the freedom that we have after the

unperturbed history is fixed is made clear. This separation is particularly important given that a

host of new experiments is going to test dark energy clustering properties [31]. In our formalism,

the general theoretical constraints on single field models are also made clear.

In particular, we will study whether a single field model that is safe from ghost and gradient

instabilities can have an equation of state wQ < −1, where wQ = pQ/ρQ. In this regime, the

stability of the model can be guaranteed by the presence of higher derivative operators, a conclusion

already reached in [32], where single field models were studied focusing on the constraints enforced

by stability. Here, after reviewing and extending the results of [32], we will concentrate on the

behaviour of cosmological perturbations, which are relevant for observations. On cosmological

scales we find that these higher derivative terms are irrelevant for the phenomenology, so that

11



3. THE EFFECTIVE THEORY OF QUINTESSENCE

a model with wQ < −1 simply behaves as a k-essence fluid with virtually zero speed of sound.

Higher derivative terms are relevant for cosmology only when the equation of state gets very close

(and experimentally indistinguishable from) a cosmological constant. In this limit our general

Lagrangian reduces to the Ghost Condensate theory [28], smoothly connecting quintessence to this

theory of modification of gravity. Notice that, as detailed in AppendixA, we are interested in a

regime where higher derivative terms do not introduce additional degrees of freedom (contrary to

what happens, for example, in [34]). We find it convenient to summarize our results in the plane

(1 + wQ)ΩQ vs. c2s, where ΩQ is the quintessence contribution to the critical density. We dub this

plane of parameters the quintessential plane.

We also study the issue of whether it is possible to cross the so-called phantom divide wQ =

−1 [35, 36]. We find that the speed of sound vanishes exactly at the divide [37, 38] and since

quintessence may remain stable for wQ < −1 there is no general pathology associated with the

crossing. We show this explicitly with an example. The phantom divide can be crossed with a

single scalar degree of freedom, without introducing ghost-like fields.

This chapter is organized as follows. In section 3.1 we study the most general theory of single

field quintessence, taking into account higher derivative operators and focusing on the stability

constraints following [32]. An alternative way of deriving the action for perturbations is presented

in 3.2, following the approach of [32, 33]. In section 3.3 we study the phenomenology in various

limits, considering also the gravitational effect of dark matter on quintessence. In section 3.4

we consider the issue of crossing the phantom divide wQ = −1 and we show explicit examples

of the crossing without pathologies. In section 3.5 we concentrate on another kind of higher

derivative operators [32, 33], different from the ones studied for the Ghost Condensate. Although

the phenomenology on cosmological scales does not change, the modification of gravity at short

distances is quite different.

Several issues concerning our effective theory approach are left to the appendices. Appendix A

is devoted to reviewing how higher derivative operators must be treated in the effective field theory

approach. In appendix B we discuss the modification of gravity induced by the kind of higher

derivative operators that were not studied in [28].

3.1 Effective theory of quintessence

Our aim is to study the most general theory of quintessence perturbations. We will do it step by

step, first by considering a model with an action containing at most a single derivative acting on

12



3.1 Effective theory of quintessence

the field. This is known as k-essence [39, 40] and it will be possible to write the action for the

perturbations in such a way as to make explicit the dependence on the background energy density

and pressure ρQ and pQ. Then we will add higher derivative operators to the k-essence action

in such a way as to leave the background invariant. In this section we will consider the kind of

operators introduced in the context of ghost condensation. Other higher derivative operators will

be discussed later in section 3.5.

An alternative derivation of the most general action for quintessence perturbations is given

in the next section 3.2, following the approach of refs. [32, 33], that consists in writing down all

the terms preserving the symmetries of the system in a ‘unitary’ gauge, where the quintessence

perturbation is set to zero and appears as a scalar metric degree of freedom. This approach is

elegant and straightforward but less pedagogical than the one adopted in this section. Obviously,

both approaches lead to the same physical results.

3.1.1 The limit of k-essence

Let us start with a k-essence action

S =

∫
d4x

√−g P (φ,X) , X = −gµν∂µφ∂νφ . (3.1)

We assume a flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) Universe with metric ds2 =

−dt2 + a2(t)d~x2. Initially, we will treat this as a fixed background and neglect the perturbations

of the metric.

To describe perturbations around a given background solution φ0(t), it is useful to write the

scalar field as

φ(t, ~x) = φ0(t+ π(t, ~x)) , (3.2)

and expand the action (3.1) in terms of π. In the following, we are going to assume that the

function φ0(t) is strictly monotonic, φ̇0(t) 6= 0, to avoid singularities in the relation between φ and

π.

Using the expansions

φ(t, ~x) = φ0 + φ̇0π +
1

2
φ̈0π

2 + . . . , (3.3)

X(t, ~x) = X0 + Ẋ0π +
1

2
Ẍ0π

2 + 2X0π̇ + 2Ẋ0ππ̇ +X0

(
π̇2 − (∇π)2

a2

)
+ . . . , (3.4)
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3. THE EFFECTIVE THEORY OF QUINTESSENCE

where X0 = φ̇20, we have, up to second order in π,

S =

∫
d4x a3

[
P0 + Ṗ0π +

1

2
P̈0π

2 + 2PXX0π̇ + 2 (PXX0)˙ππ̇

+ PXX0

(
π̇2 − (∇π)2

a2

)
+ 2PXXX

2
0 π̇

2
]
, (3.5)

where PX = ∂P/∂X|0 and PXX = ∂2P/∂X2|0. The term P0 does not affect perturbations as it is

independent of π, while one can verify that the linear terms cancel using the background equation

of motion. Indeed, by integrating by parts the term ππ̇ and making use of the background equation

of motion, after some manipulations we are left with

S =

∫
d4x a3

[(
PXX0 + 2PXXX

2
0

)
π̇2 − PXX0

(∇π)2
a2

+ 3ḢPXX0 π
2

]
. (3.6)

We can now rewrite the coefficients of this expansion in terms of the stress-energy tensor of the

background solution. From the definition of the stress-energy tensor,

Tµν = − 2√−g
δS

δgµν
, (3.7)

one obtains the background energy density and pressure:

ρQ = 2X0PX − P0 , pQ = P0 . (3.8)

Using these expressions, the action above can be cast in the form

S =

∫
d4x a3

[
1

2

(
ρQ + pQ + 4M4

)
π̇2 − 1

2
(ρQ + pQ)

(∇π)2
a2

+
3

2
Ḣ(ρQ + pQ)π

2

]
. (3.9)

Here we have defined M4 ≡ PXXX
2
0 , where M has the dimension of a mass.

At this stage we can straightforwardly introduce the coupling with metric perturbations. This

coupling is particularly simple in synchronous gauge, where the metric takes the form

ds2 = −dt2 + a2(t)(δij + hij)dx
idxj . (3.10)

Indeed, at quadratic order in the action the coupling with gravity only comes through the perturbed
√−g in the action. Replacing a3 with a3(1 + h/2) in eq. (3.5) we have

S =

∫
d4x a3

(
1 +

h

2

)[
Ṗ0π + 2PXX0π̇ + . . .

]
. (3.11)
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3.1 Effective theory of quintessence

Integrating by parts and using again the background equation of motion one gets the full action

for π:

S =

∫
d4x a3

[
1

2

(
ρQ + pQ + 4M4

)
π̇2 − 1

2
(ρQ + pQ)

(∇π)2
a2

+
3

2
Ḣ(ρQ + pQ)π

2 − 1

2
(ρQ + pQ)ḣπ

]
.

(3.12)

The quadratic Lagrangian is thus specified by the functions (ρQ + pQ)(t) and M4(t). It is

important to stress that these two functions are completely unconstrained. For any choice of these

two functions one can in fact construct a Lagrangian P (φ,X), such that the quadratic Lagrangian

around the unperturbed solution has the form (3.12). Let us see explicitly how this works. First

of all, given ρQ + pQ (and possibly the other contributions to the total energy density and pres-

sure coming from other components), one can find the two functions ρQ(t) and pQ(t) solving the

Friedmann equations1. At this point it is easy to check that the Lagrangian

P (φ,X) =
1

2
(pQ − ρQ)(φ) +

1

2
(ρQ + pQ)(φ)X +

1

2
M4(φ)(X − 1)2 (3.13)

has the solution φ = t, gives the requested pressure and energy density as a function of time, and

gives eq. (3.12) as the quadratic action for perturbations. Note that the dimension of φ is that of

an inverse of a mass. The coefficient M4 is time dependent and for quintessence we expect that it

varies with a time scale of order H−1. Somewhere in the following, to simplify the calculations, we

take M4 = const.

One advantage of the action (3.12) is that the coefficients of all the terms are physically mea-

surable quantities – we will see below that M4 is related to the sound speed of perturbations.

This standard form of rewriting the action of quintessence perturbations does not suffer from field

redefinition ambiguities. Indeed, there is an infinite number of physically equivalent Lagrangians

P (φ,X) related by field redefinitions φ→ φ̃(φ), but they all give the same action (3.12). Note that

for most purposes the explicit construction of the action in terms of φ is irrelevant – this is apparent

in the “unitary” gauge approach, which relies on the symmetries of the Lagrangian. Indeed, one is

free to choose any function ρQ(a) to describe the evolution of the quintessence energy density as

a function of the scale factor. Then the action (3.12) will describe the perturbations around this

background. In particular, one can always make a field redefinition such that φ = t, as we did in

eq. (3.13).

1One has to solve the continuity equation for quintessence, ρ̇Q+3H(ρQ+pQ) = 0, where ρQ+pQ is a known function

of time, together with the Friedmann equation, H2 = (ρQ+ρrest)/3M
2
Pl, where ρrest includes all the additional sources

of energy density in the Universe. These equations can be integrated up to a constant in the initial condition. This

ambiguity corresponds to a shift in the cosmological constant, which does not enter in the action for perturbations.
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3. THE EFFECTIVE THEORY OF QUINTESSENCE

Let us see what are the theoretical constraints that we can put on the general form of the

action (3.12). A basic requirement that we will impose on our theory is that it is not plagued by

ghosts, i.e. that its kinetic energy term is positive:

ρQ + pQ + 4M4 > 0 . (3.14)

The presence of a sector with the “wrong” sign of the energy implies that the Hamiltonian is

unbounded from below. If one studies this sector alone, no pathology arises as the sign of the

energy is a matter of convention. However, quintessence is (at least) gravitationally coupled to the

rest of the world, so that there is the danger of exchanging energy without bound between a healthy

sector and a negative-energy one. Classically, this is not a problem if quintessence perturbations are

very small and remain in the linear regime. Therefore, for a quintessence with negligible clustering

(with speed of sound cs ∼ 1), there is no obvious classical danger. At the quantum level, however,

the situation is more pathological. The vacuum is unstable to the spontaneous decay into positive

and negative energy states and the decay rate is UV-divergent and strictly infinite in Lorentz

invariant theories [41]. Although it has been shown that it is possible to cut-off this instability in

a non-Lorentz invariant theory [42], in this work we take a more conservative approach and forbid

the existence of ghosts.

If we set M4 = 0 in the general action (3.12), we reduce to the case of a standard quintessence

field with canonical kinetic term (∂φ)2. In this case, forbidding the ghost implies ρQ + pQ > 0.

Thus, as it is well known, a scalar field with minimal kinetic term can violate the null energy

condition, equivalent in a cosmological setting to ρ+ p < 0, only if it is a ghost [43]. In this simple

case, the speed of sound of scalar fluctuations is c2s = 1. When M4 does not vanish the speed of

sound of fluctuations differs from unity [44] and reads

c2s =
ρQ + pQ

ρQ + pQ + 4M4
. (3.15)

One can see that, for ρQ + pQ > 0, i.e. for positive c2s, M
4 < 0 implies that scalar perturbations

propagate super-luminally [45, 46]. This is problematic in a theory with a Lorentz invariant UV

completion [47].

From the action (3.12) we see that in the presence of M4 there is no generic connection between

the violation of the null energy condition and a wrong sign of the time-kinetic term. The coefficient

in front of π̇2 can be positive also when ρQ + pQ < 0. On the other hand, ρQ + pQ fixes the sign of

the term in front of the spatial kinetic term (∇π)2 [48]. Thus, in absence of ghosts, the violation of
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3.1 Effective theory of quintessence

Figure 3.1: The quintessential plane 1 + wQ vs. c2s in the case of k-essence. If we require the absence

of ghosts, the sign of the spatial kinetic term is fixed to be the same as 1 + wQ, so that one has to

worry about gradient instabilities for 1 + wQ < 0. For 1 + wQ > 0 one has superluminal propagation if

M4 < 0.

the null energy condition implies a negative speed of sound squared. The constraints that we have

derived are summarized in the quintessential plane 1 + wQ vs. c2s, represented in figure 3.1.

An imaginary speed of sound – c2s < 0 – represents a gradient instability of the system. Taking

M4 ≫ |ρQ + pQ| the gradient term is suppressed and the instability is irrelevant for scales of

cosmological interest in the sense that the instability time is much longer than the age of the

Universe. Still, the instability is relevant for short wavelengths so that it seems difficult to make

sense of the wQ < −1 region [37]. However, this conclusion is too hasty. Indeed, when the term

(∇π)2 is suppressed, higher derivative operators may become relevant, as we will now discuss.
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3. THE EFFECTIVE THEORY OF QUINTESSENCE

3.1.2 Higher derivative terms and stability

We have just shown that, in the limit in which the quintessence speed of sound goes to zero, the

standard spatial kinetic term vanishes. Obviously, the action (3.1) is not the end of the story:

the full Lagrangian will contain higher derivative operators such as Q(X)R(�φ) and these will

give rise to the leading higher derivative spatial kinetic term. A generic higher derivative operator

will however change the background solution of (3.1), while here we want to study the effect of

higher derivative operators on quintessence perturbations around a given background, as we did in

eq. (3.13). To keep the background unchanged, let us add to the Lagrangian (3.13) the operator

LM̄ = −M̄
2

2
(�φ+ 3H(φ))2 . (3.16)

For reasons that will become clear later, we need M̄2 > 02. This term does not alter the back-

ground evolution φ = t, ρQ(t) and pQ(t). Indeed, �φ+ 3H(φ) vanishes on the background so that

the operator is explicitly quadratic in the perturbations. At quadratic order this operator reads

(neglecting for the moment metric perturbations)

LM̄ = −M̄
2

2

(
π̈ + 3Hπ̇ − 3Ḣπ − ∇2π

a2

)2

. (3.17)

One may worry about the presence of terms with higher time derivatives, as these would näıvely

be associated with additional solutions of the equation of motion. However, if one compares M̄2π̈2

with the standard time kinetic term M4π̇2 of eq. (3.12) – assuming M̄ ∼M – the former is always

suppressed with respect to the latter for frequencies below the scale M . In general, we expect

that for frequencies ω ∼ M all operators containing higher time derivatives become important, so

that the scale M ∼ M̄ sets the maximum energy scale for which the theory makes sense: it is the

energy cutoff. This is the standard situation in an effective field theory: higher derivative terms

become important for energies of the order of the cutoff and at lower energies they must be treated

perturbatively. In particular, there is no physical meaning in the new solutions that arise from

taking higher and higher time derivatives. We postpone a complete discussion about this point

to appendix A. Notice that the same argument cannot be used for the operator −M̄2(∇2π)2/2.

Indeed, in the limit of small ρQ + pQ there is no spatial kinetic term of the form (∇π)2 so that

−M̄2(∇2π)2/2 is the leading spatial kinetic term. At short scales we have a non-relativistic dis-

persion relation of the form ω ≃ k2/M , which implies that energy and momentum behave very

2As M4, also M̄2 can have a time dependence on a time scale of order H−1. For simplicity, in the following we

assume that it is constant.
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3.1 Effective theory of quintessence

differently (as we will see in appendix A, they have different scaling dimensions). In particular,

when comparing the first and last terms in brackets in eq. (3.17) we have ∇2π ∼ Mπ̇ ≫ π̈, for

energies below the cutoff. This means that we can drop π̈ altogether from eq. (3.17).

It is important to stress that there is no fine tuning in the limit |ρQ+pQ| ≪M4 – or equivalently

|c2s| ≪ 1 – as this limit is “technically natural”, i.e., there is a symmetry that is recovered in the limit

ρQ + pQ = 0. Indeed, as shown below, in this limit we obtain the Ghost Condensate theory [28],

which is invariant under the shift symmetry φ → φ + λ. In the presence of this symmetry the

expansion of the Universe drives the background solution to ρQ + pQ = 0. Thus, models with

very small speed of sound should be thought of as small deformations of the Ghost Condensate

limit [32, 33, 49].

Let us come back to the issue of stability for ρQ + pQ < 0 including the new higher gradient

term (3.17) and follow the discussion in [32]. As we discussed in the previous section, the only

dangerous modes are those on scales much smaller than the Hubble radius, as their instability rate

can be arbitrarily large; we thus concentrate on k/a ≫ H. In this regime the operator (3.17)

further simplifies as the second and third terms are negligible with respect to ∇2π. Considering

the action (3.12) with the addition of the only remaining operator −M̄2(∇2π)2/2, the dispersion

relation of π is thus modified to

(
ρQ + pQ + 4M4

)
ω2 − (ρQ + pQ)

k2

a2
− M̄2k

4

a4
= 0 . (3.18)

For ρQ+pQ < 0, the k2 gradient term has the unstable sign, but in the presence of the new operator

this instability is confined to sufficiently large scales. In particular, the fastest rate of instability is

given by

ω2
grad ≃ −(ρQ + pQ)

2

M̄2M4
, (3.19)

where we have taken M4 ≫ |ρQ + pQ|. This gradient instability is not dangerous when it is slower

than the Hubble rate, i.e., when

− ρQ + pQ
M̄M2

. H . (3.20)

It is clear that a larger M̄ makes the gradient instability slower.

However, a large M̄ sources another form of instability, which contrarily to the gradient instabil-

ity is already present for ρQ+pQ ≥ 0 and was originally discussed for the Ghost Condensate theory

in [28]. Indeed, when the coupling with gravity is taken into account, the system shows a sort of

Jeans instability, similarly to a standard fluid. To see this, let us introduce metric perturbations
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3. THE EFFECTIVE THEORY OF QUINTESSENCE

and consider the limit ρQ + pQ = 0. In this case, the complete Lagrangian reads, neglecting the

expansion of the Universe,

S =

∫
d4x


2M4π̇2 − M̄2

2

(
ḣ

2
−∇2π

)2

 . (3.21)

We see that a large M̄ enhances the mixing of π with gravity, i.e. the Jeans instability.

Thus, the equation of motion for π reads, in this case,

π̈ +
M̄2

4M4
∇4π =

M̄2

8M4
∇2ḣ . (3.22)

The gravitational perturbation h is sourced by the perturbations of π through Einstein’s equations.

In synchronous gauge, h satisfies [4]

ḧ = − 1

M2
Pl

(δρQ + 3δpQ) , (3.23)

where we have neglected the expansion of the Universe, and we have introduced the reduced Planck

mass M2
Pl ≡ (8πG)−1. The stress-energy tensor can be straightforwardly derived by varying the

action and the leading term is δρQ = 4M4π̇, while the pressure perturbation is negligible3. The

solution of eq. (3.23) can be plugged back into eq. (3.22). This yields the equation of motion of π

taking into account its gravitational back-reaction:

π̈ +
M̄2

4M4
∇4π = − M̄2

2M2
Pl

∇2π . (3.26)

The mixing with gravity induces an unstable k2 term in the dispersion relation, similarly to the

gradient instability discussed above. We can compute again the fastest instability rate:

ω2
Jeans ≃ −

(
M̄M2

M2
Pl

)2

. (3.27)

3Indeed, we have

δρQ = 4M4π̇ + M̄2

(

ḧ

2
−∇2π̇

)

, (3.24)

δpQ = M̄2

(

ḧ

2
−∇2π̇

)

. (3.25)

For k ≪ M , M̄2∇2π̇ ≪ M4π̇. Moreover, eq. (3.23) shows that also the ḧ terms can be neglected in front of M4π̇, so

that the operator proportional to M̄2 gives a negligible contribution to the stress-energy tensor.
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3.2 General action in unitary gauge

As expected, in this case the instability gets worse for large M̄2, i.e. when the mixing with gravity

is enhanced. By imposing that this instability rate is smaller than the Hubble rate4, we obtain

M̄M2

M2
Pl

. H . (3.28)

Requiring that both stability conditions (3.20) and (3.28) are satisfied we get the window [32]

− (1 + wQ)ΩQ .
M̄M2

HM2
Pl

. 1 . (3.29)

In conclusion, considering higher derivative terms, a quintessence model with wQ ≤ −1 can be

completely stable inside the window of parameters (3.29). On the other hand, eq. (3.29) indicates

that it is difficult to avoid instabilities when (1 + wQ)ΩQ ≪ −1. These stability constraints were

already obtained, for ΩQ = 1, in [32].

3.2 General action in unitary gauge

In this section, we wish to obtain the general action for the quintessence perturbations by choosing

a gauge where the scalar field perturbation is set to zero but it appears as a scalar metric degree

of freedom, following [32, 33]. In this gauge, the constant time hypersurfaces are equivalent to the

uniform field hypersurfaces. In the fluid language, this implies that the velocity is orthogonal to

the constant time surfaces, T 0
i = 0, that is why this gauge is called ‘velocity orthogonal’ [51]. Using

a particle physics terminology we can also call it ‘unitary gauge’, as all the degrees of freedom are

in the metric. The unitary gauge corresponds to the choice φ(t,x) = φ0(t), or π = 0.

In order to find the effective action, we write down all the terms that preserve the symmetries of

the system. Our choice of gauge breaks time diffeomorphism invariance, while preserving invariance

under spatial diffeomorphisms. Thus, we include linear and quadratic combinations of generic

functions of time t, the time-time component of the inverse metric g00 and the extrinsic curvature of

the constant time hypersurfaces. The effective action up to second order in perturbations is [32, 33]:

S =

∫
d3xdt

√−g
[
M2

Pl

2
R+ Lm + c(t)g00 − Λ(t) +

M4(t)

2
(g00 + 1)2 − M̄2(t)

2
δK2

− M̃2(t)

2
δKi

jδK
j
i −

M̂3(t)

2
δK(g00 + 1)

]
,

(3.30)

4A more careful analysis [50] indicates that this condition is very conservative and much larger instability rates

can be experimentally allowed.
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where R is the Ricci scalar and Kij is the extrinsic curvature of constant t hypersurfaces, which at

linear order reads

Kij =
1

2

√
−g00 (∂0gij − ∂ig0j − ∂jgi0) , (3.31)

and we have defined δKij ≡ Kij − a2Hδij , and δK ≡ Ki
i − 3H.

There are other operators that are invariant under spatial diffeomorphisms that one would

näıvely include in this action. However, these operators are irrelevant at energy scales below the

cutoff M ∼ M̄ ∼ M̂ . For instance, one could include the operator (ġ00)2. This would give the term

π̈2 in the final action, which indeed also appears as part of the operator (3.16) once expanded in the

perturbations, eq. (3.17). However, as explained in section 3.1.2, for frequencies smaller than the

cutoff π̈2 is negligible with respect to (∇2π)2 so that it can be ignored in the action. For simplicity

we will also ignore the operator proportional to M̃2 as it leads to terms qualitatively similar to

those proportional to M̄2.

One can easily fix the coefficients c(t) and Λ(t) by computing the background stress-energy

tensor. This gives

ρQ = Λ(t)− c(t) , (3.32)

pQ = −c(t)− Λ(t) . (3.33)

Finally, using these relations, we can write the action (3.30) in unitary gauge in terms of the

background quantities ρQ(t) and pQ(t):

S =

∫
d4x

√−g
[M2

Pl

2
R+ Lm + pQ − 1

2
(ρQ + pQ)(g

00 + 1) +
M4(t)

2
(g00 + 1)2

− M̄2(t)

2
δK2 − M̂(t)3

2
δK(g00 + 1)

]
. (3.34)

Now we can rewrite this action in a gauge-invariant form, using the so-called Stueckelberg trick.

We perform the following time-coordinate transformation:

t→ t̃ = t+ π(x) xi → x̃i = xi , (3.35)

22



3.2 General action in unitary gauge

that reintroduces π. The action for π reads, up to second order,

S =

∫
d4x

√−g
{
pQ + ṗQπ +

1

2
p̈Qπ

2

− 1

2
(ρQ + pQ)

[
(g00 + 1)− 2π̇ + 2(g00 + 1)π̇ − π̇2 + 2g0i∂iπ +

(∇π)2
a2

]

− 1

2
(ρ̇Q + ṗQ)π

[
(g00 + 1)− 2π̇

]
+
M4(t)

2

[
(g00 + 1)− 2π̇

]2

− M̄2(t)

2

(
δK − 3Ḣπ − ∇2π

a2

)2

− M̂ (t)3

2

(
δK − 3Ḣπ − ∇2π

a2

)[
(g00 + 1)− 2π̇

] }
, (3.36)

while the part of the action containing R and Lm is invariant under general diffeomorphisms. We

now choose to work in the synchronous gauge, which is defined in eq. (3.10). Using the notation

of [4], the two scalar degrees of freedom of hij are its trace h ≡ δijhij and η which is defined by

∇2hij ≡ ∂i∂jh + 6(∂i∂j − 1
3δij∇2)η. Using this metric, after integrating by parts and using the

background continuity equation ρ̇Q + 3H(ρQ + pQ) = 0, the action (3.36) takes the form

S =

∫
d4x a3

{
pQ +

1

2
(ρQ + pQ)

[
π̇2 − (∇π)2

a2

]
+ 2M4π̇2 +

3

2
Ḣ(ρQ + pQ)π

2 − 1

2
(ρQ + pQ)ḣπ

− M̄2

2

(
1

2
ḣ− 3Ḣπ − ∇2π

a2

)2

+ M̂3π̇

(
1

2
ḣ− 3Ḣπ − ∇2π

a2

)}
. (3.37)

We can now compute the stress-energy tensor of quintessence using the action (3.36). Expanding

in the perturbations, its components read

T00 = ρQ +
(
ρQ + pQ + 4M4

)
π̇ + ρ̇Qπ

− 3HM̄2

(
1

2
ḣ− 3Ḣπ − ∇2

a2
π

)
+ M̂3

(
1

2
ḣ− 3Ḣπ − ∇2

a2
π + 3Hπ̇

)
, (3.38)

T0i = (ρQ + pQ)∂iπ + M̄2∂i

(
1

2
ḣ− 3Ḣπ − ∇2π

a2

)
− M̂3∂iπ̇ , (3.39)

Tij = pQa
2δij + [ṗQπ + (ρQ + pQ) π̇] a

2δij + pQa
2hij

+ 2M̄2a2δij(∂0 + 3H)

(
1

2
ḣ− 3Ḣπ − ∇2π

a2

)
− 2M̂3a2δij(∂0 + 3H)π̇ . (3.40)

Let us compare the unitary gauge approach with the procedure presented in the previous section.

In sec. 3.1, we started from the action of k-essence, eq. (3.6), and we added the two φ-dependent

higher derivative operators −M̄2(φ)[�φ+3H(φ)]2/2 and −M̂3(φ)[�φ+3H(φ)](X − 1)/2, that do

not change the background equations of motion. The action (3.37) is constructed similarly. First

of all, note that the first line of eq. (3.37) is the action for k-essence. Indeed, it is equivalent to the
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3. THE EFFECTIVE THEORY OF QUINTESSENCE

action (3.12), which was found by expanding the k-essence action (3.1) in terms of π. The second

line of eq. (3.37) can be constructed by noting that the extrinsic curvature of the hypersurfaces of

constant φ, defined as

Kµ
ν ≡ −(gρν + uρuν)∇ρu

µ , (3.41)

where uµ ≡ −∂muφ/
√
X is the unit vector orthogonal to φ, can be rewritten as

Kµ
ν =

1√
−(∂φ)2

[
∇µ∂νφ+

∂µφ∂ρφ

−(∂φ)2
∇ρ∂νφ

]
. (3.42)

When expanded around the background solution φ = t, then δK ≡ Kµ
µ − 3H(φ) reads5

δK = −3Ḣπ − ∇2

a2
π +

1

2
ḣ . (3.43)

Thus the action (3.37) can be constructed by simply adding to the k-essence action the two operators

−M̄2(φ)δK2/2 and −M̂3(φ)δK(g00 + 1)/2, that do not change the background solution.

3.3 Phenomenology on the quintessential plane

3.3.1 k-essence vs. Ghost Condensate

Coming back to the quintessential plane of figure 3.1, in section 3.1.2 we have learned an important

lesson: the gradient instabilities for wQ < −1 can be made harmless by higher derivative operators.

Thus, part of the lower left quadrant of the quintessential plane is allowed.

To discuss the phenomenology of these models (for a related discussion see [52]), let us write

the full action for perturbations including the higher derivative operator (3.16):

S =

∫
d4x a3

[1
2

(
ρQ + pQ + 4M4

)
π̇2 − 1

2
(ρQ + pQ)

(∇π)2
a2

+
3

2
Ḣ(ρQ + pQ)π

2 − 1

2
(ρQ + pQ)ḣπ

− M̄2

2

(
3Hπ̇ − 3Ḣπ +

ḣ

2
− ∇2π

a2

)2 ]
. (3.44)

First of all, note that it is not possible to switch off quintessence perturbations for ρQ + pQ 6= 0;

doing it by hand would give gauge dependent unphysical results. On the other hand, the converse

is not true: even for ρQ + pQ = 0 perturbations may still be present, as in the Ghost Condensate

case.

5One may wonder why terms of the form π̇∇2π do not appear in δK2, while they do appear in (�φ + 3H)2. As

seen in eq. (3.42), a time diffeomorphism does not change the extrinsic curvature of constant φ hypersurfaces. Thus,

δK does not contain π̇ and π̇∇2π is not generated by δK2.
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We saw that the operator in the second line of eq. (3.44) allows the stabilization of the short

scale gradient instability; on the other hand, for cosmological purposes we are interested in very

large scales. Let us see whether this operator is relevant for scales of the order of the Hubble radius

(although our discussion will extend to all scales of cosmological interest). We want to show that,

when

|ρQ + pQ| ≫ M̄2H2 , (3.45)

the higher derivative operator can be neglected when discussing the cosmological clustering of

quintessence. In this case we reduce to a standard k-essence model, with the only difference that

there are no short-scale instabilities even for wQ < −1. On the other hand, in the opposite case

|ρQ + pQ| ≪ M̄2H2 , (3.46)

all the terms in the action (3.44) proportional to ρQ + pQ can be neglected. In this case the model

reduces to the Ghost Condensate theory.

Verifying the existence of these two regimes is quite straightforward. For instance, the dispersion

relation at k/a ∼ H is dominated either by (ρQ + pQ)(∇π)2 or by M̄2(∇2π)2, depending on the

hierarchy between |ρQ + pQ| and M̄2H2. The same applies for the operators involving the metric

perturbation, (ρQ + pQ)ḣπ and M̄2ḣ∇2π. This check can be done for all the other operators, by

taking ∇/a ∼ H and considering that time derivatives are at most of order H. The existence of

these two regimes can also be seen by looking at the stress-energy tensor.

Now we can go back and complete our quintessential plane. When wQ is close to −1,

− M̄2

M2
Pl

. (1 + wQ)ΩQ .
M̄2

M2
Pl

, (3.47)

the model behaves as the Ghost Condensate. We can estimate the width of this region by imposing

the absence of Jeans instability, eq. (3.28). Assuming M ∼ M̄ one gets a rough upper bound:

M̄ . 10 MeV [28]. A more accurate analysis shows that this limit is very conservative and it can

be relaxed to M̄ . 100 GeV [50]. Even in this case the window above is extremely tiny:

|1 + wQ|ΩQ . 10−34 . (3.48)

We can therefore draw an important conclusion: only for values of wQ which are observationally in-

distinguishable from the cosmological constant, does quintessence behave as the Ghost Condensate

on cosmological scales. This regime corresponds to the strip around the horizontal axis wQ = −1
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Figure 3.2: On the quintessential plane, we show the theoretical constraints on the equation of state

and speed of sound of quintessence, in the presence of the operator M̄ . Instability regions are dashed.

Where 1+wQ and c2s have opposite sign we have a ghost-like instability corresponding to negative kinetic

energy. For wQ < −1, the dashed regions in the left-lower panel is unstable by gradient (c2s . −HM̄/M2)

and Jeans ((1 +wQ)ΩQ . −1) instabilities, while the strip close to the vertical axis corresponds to the

stability window (3.29). Furthermore, the strip around the horizontal axis given in eq. (3.47) corresponds

to the Ghost Condensate. Above this region, in the right-upper panel, we find standard k-essence.

in figure 3.2. Notice that in this region the dispersion relation is of the form ω ∝ k2, so that the

speed of sound c2s is not well defined, i.e. it becomes scale dependent.

On the other hand, for any value of wQ which is appreciably different from the one of the

cosmological constant, the model reduces to k-essence, as higher derivative terms are cosmologically

irrelevant. Their only role is to stabilize the short scale gradient instabilities for wQ < −1. Although

in practice not relevant, note however that wQ cannot be made arbitrarily negative. This is shown

by eq. (3.29) and, in the quintessential plane, it excludes the bottom shaded region of the lower-left

quadrant.
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3.3 Phenomenology on the quintessential plane

Let us now constrain the values of the speed of sound c2s. For wQ > −1 there are no constraints,

besides the possible limit c2s ≤ 1 already discussed. For wQ < −1 the speed of sound is negative

and very small, as it is constrained by the absence of gradient instability, eq. (3.20):

− c2s ≃ −ρQ + pQ
4M4

.
HM̄

M2
. (3.49)

We can numerically constrain the right-hand side of this equation by considering that the scales

M ∼ M̄ represent the cutoff of our effective field theory. By requiring this cutoff to be larger than

the minimum scale at which gravity has been probed, i.e., M & 10−3eV, and using in eq. (3.49)

the value of the Hubble parameter today, H0 ∼ (10−3eV)2/MPl, we obtain

− c2s .

(
H0

MPl

)1/2

∼ 10−30 . (3.50)

Thus, for all practical purposes, the speed of sound can be taken to be exactly zero. On the

quintessential plane in figure 3.2, in the lower-left quadrant, we can only live in a tiny strip along

the vertical axis. Notice however that there is no fine tuning in keeping c2s extremely small. Indeed,

as we discussed, in the limit of Ghost Condensate c2s vanishes exactly for symmetry reasons. Thus,

the speed of sound remains small for tiny deviations from this limit.

3.3.2 Including dark matter

After the discussion about the stability constraints, we would like to understand the dynamics of

quintessence perturbations and their impact on cosmological observations. In order to do this,

we will now study quintessence in the presence of cold dark matter, which gravitationally sources

quintessence perturbations, and we will focus on the main qualitative features in the various limits.

Let us start from the Ghost Condensate limit (3.46). It is known that the Ghost Condensate

affects only short scales, i.e., π perturbations induce a modification of the Newtonian potential at

scales parametrically smaller than the Hubble scale [28]. Therefore, we expect to have extremely

small effects on cosmological scales. To verify that this is the case, we can study the action (3.44)

in the limit of ρQ + pQ = 0. This reads

S =

∫
d4x a3


2M4π̇2 − M̄2

2

(
3Hπ̇ − 3Ḣπ +

ḣ

2
− ∇2π

a2

)2

 . (3.51)

For simplicity, let us momentarily disregard the first two terms in parentheses:

S =

∫
d4x a3


2M4π̇2 − M̄2

2

(
ḣ

2
− ∇2π

a2

)2

 . (3.52)
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3. THE EFFECTIVE THEORY OF QUINTESSENCE

Notice that this is the action used in the Ghost Condensate paper [28]. The equation of motion for

the π perturbations is given by

π̈ + 3Hπ̇ +
M̄2

4M4

∇4π

a4
=

M̄2

8M4

∇2ḣ

a2
. (3.53)

The gradient term on the left hand side can be neglected on cosmological scales. Indeed, the time

derivatives will be at least of order ∼ M̄k2/(aM)2, so that the friction term in the previous equation

will always dominate the gradient term for k/a ∼ H. As we want to show that Ghost Condensate

perturbations remain small, we assume that the dark matter dominates the perturbed Einstein

equations. The validity of this assumption can be checked a posteriori.

In a matter dominated Universe, ḣ = −2δ̇m [4], with δm ≡ δρm/ρm. Using δ̇m = Hδm and the

background Friedmann equation, we get

ḣ = − 2

3H

δρm
M2

Pl

. (3.54)

We can now replace this as the source of Ghost Condensate perturbations on the right-hand side

of eq. (3.53). This yields, neglecting the gradient term:

π̈ + 3Hπ̇ ≃ − M̄2

12M4M2
Pl

∇2δρm
a2H

. (3.55)

If we now assume that the initial quintessence perturbations are small so that the homogeneous

solutions are sub-dominant, similarly to what happens in standard quintessence [53], this equation

can be solved to give

π̇ = − M̄2

24M4M2
Pl

∇2δρm
a2H2

. (3.56)

As we discussed in the previous section, the energy density and pressure perturbations of the

Ghost Condensate are dominated by the M4 operator so that δρQ ≃ 4M4π̇ and δpQ ≃ 0. Thus, on

cosmological scales,

δρQ ∼ M̄2

M2
Pl

δρm . (3.57)

From the simple estimate of M̄ below eq. (3.47), we conclude that quintessence perturbations are

negligibly small with respect to dark matter perturbations, δρQ . 10−34δρm. It is straightforward

to generalize this analysis including the two terms in parentheses of eq. (3.51) previously neglected

and verify that eq. (3.57) remains valid. The conclusion of eq. (3.57) is quantitatively consistent

with the (small) modification of the Newton law derived in [28], as one can check for example in

their eq. (7.11) for k/a ∼ H and ω ∼ H.
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Close to the wQ = −1 line, we have just seen that there are no appreciable effects of pertur-

bations on cosmological scales which can help in distinguishing quintessence from a cosmological

constant; all the interesting dynamics is limited to modifications of gravity on short scales. As we

move away from the wQ = −1 line, we enter in the k-essence regime, as we pointed out in the

previous section. The case wQ > −1 is well studied in the literature (see, for instance, [54, 55]).

The case wQ < −1 is much less studied: here we have a negative speed of sound squared that is

so small – see eq. (3.50) – that can be taken to be zero for all practical purposes. With a small

speed of sound we expect quintessence to cluster on scales shorter than the Hubble radius, driven

by dark matter gravitational potential wells. To study this, let us repeat the calculation we just

did in the Ghost Condensate case for a k-essence with c2s = 0.

For simplicity, let us assume for the moment that M is constant. Varying the action (3.12), we

get the equation of motion for π:

4M4(π̈ + 3Hπ̇)− (ρQ + pQ)
∇2

a2
π − 3Ḣ(ρQ + pQ)π = −1

2
(ρQ + pQ)ḣ . (3.58)

Small |c2s| is equivalent to |ρQ+ pQ| ≪M4 so that the gradient and mass term in this equation can

be neglected. Using again ḣ = −2δ̇m [4], we thus have

4M4(π̈ + 3Hπ̇) = (ρQ + pQ)δ̇m . (3.59)

One can verify that, neglecting decaying modes, the solution of this equation is

δQ =
1 + wQ

1− 3wQ
δm . (3.60)

It is easy to show that this equation holds, for constant wQ, for a general time dependent speed of

sound which satisfies |c2s(t)| ≪ 1.

Equation (3.60) describes quintessence perturbations both for positive and negative 1 + wQ.

When wQ > −1, quintessence energy density clusters in the dark matter potential wells, while in

the opposite case wQ < −1 it escapes from them [56]. However, clustering of quintessence remains

small compared to dark matter as the coupling with gravity is suppressed by 1 + wQ. For very

small values |1 +wQ| ∼ M̄2/M2
Pl we smoothly enter in the Ghost Condensate regime. Indeed, it is

easy to see that eq. (3.60) smoothly matches eq. (3.57) in the intermediate regime.

In this section we have studied the phenomenology of quintessence in various regimes of 1+wQ.

Quintessence perturbations smoothly turn off when we approach the cosmological constant limit

wQ = −1 from both sides. This suggests that in general there is no pathology in crossing the

wQ = −1 line, as we discuss in the next section.
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3. THE EFFECTIVE THEORY OF QUINTESSENCE

3.4 Crossing the phantom divide

It has been claimed that, during its evolution, single field quintessence cannot cross the wQ = −1

line as perturbations become pathological. For this reason this line has been dubbed “phantom

divide” [36]. However, there is no real pathology in crossing this line, besides the fact that, for

wQ < −1, short-scale gradient instabilities must be stabilized [37, 38]. If one does not take into

account higher derivative terms, a negative c2s leads to catastrophic instabilities at short scales.

Once instabilities are cured as we discussed in the previous sections, crossing the phantom divide

becomes trivial6.

Indeed, the Lagrangian (3.13) gives an explicit way to construct a model which crosses the

phantom divide. If one assumes for simplicity that quintessence is the only component in the

Universe7, the crossing of the phantom divide corresponds to a change of sign of Ḣ. In particular,

considering only quintessence, one can use Friedmann equations to recast the Lagrangian (3.13) in

the form (higher derivative operators will be considered later)

P (X,φ) = −3M2
PlH

2(φ)−M2
PlḢ(φ)(X + 1) +

1

2
M4(φ)(X − 1)2 . (3.61)

This is similar to what happens in inflation, where the inflaton is the only relevant component in

the Universe [33].

As an example, we consider the case where Ḣ evolves linearly in time and changes sign from

negative to positive:

Ḣ(t) =
µ4

M2
Pl

(mt− 1) . (3.62)

This implies that H(t) will be a parabola of the form

H(t) =
µ4

M2
Pl

(m
2
t2 − t

)
+H∗ , (3.63)

as shown in figure 3.3 (left panel). Using the general expression (3.61), we deduce that the La-

grangian

P (φ,X) = −3

[
µ4

MPl

(m
2
φ2 − φ

)
+MPlH∗

]2
+ µ4(mφ− 1)

[
(∂φ)2 − 1

]
+

1

2
M4(φ)

[
(∂φ)2 + 1

]2

(3.64)

6Models that cross the phantom divide have been found in f(R) theories of gravity. However, for wQ < −1 these

models are equivalent to scalar fields with negative kinetic energy, i.e. to ghosts. Thus, according to our stability

constraints, they are forbidden.
7The conclusions drawn in this section also hold when including dark matter.
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Figure 3.3: Example of phantom divide crossing, as given by eqs. (3.62) and (3.63), where we have

defined Hc ≡ H∗−µ4/(2mM2
Pl). Left figure: behavior of H and Ḣ; the crossing of wQ = −1 takes place

at t = m−1 when Ḣ = 0 and H = Hc. Right figure: trajectory on the quintessential plane.

admits the background solution φ = t and the cosmological evolution (3.62) and (3.63). Note that

there are no theoretical limitations on the choice of the background evolution H(t). Indeed, we can

cross the phantom divide as many times as we want. For example, choosing Ḣ(t) ∝ sin(mt) the

cosmological evolution keeps oscillating up and down around wQ = −1!

We can now study perturbations around a solution crossing wQ = −1 to show that no pathology

arises. The evolution equation derived from the action (3.12) reads

(
ρQ + pQ + 4M4

)
π̈+

1

a3
∂t
[
a3(ρQ + pQ + 4M4)

]
π̇−3Ḣ(ρQ+pQ)π−(ρQ+pQ)

∇2π

a2
= −1

2
(ρQ+pQ)ḣ .

(3.65)

At the phantom divide, the last three terms of this equation vanish but the equation is clearly non-

singular. In our approach, it is manifest that the speed of sound squared changes sign at wQ = −1.

In the example above c2s is given by

c2s =
µ4(1−mt)

µ4(1−mt) + 2M4
, (3.66)

and the trajectory of the crossing on the quintessential plane is shown in figure 3.3 (right panel). The

stability in the wQ < −1 region requires that |c2s| remains extremely small so that it is mandatory
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3. THE EFFECTIVE THEORY OF QUINTESSENCE

to have a hierarchy between µ andM , µ≪M . As we discussed, this hierarchy is naturally realized.

Another approach to study perturbations is using a fluid description, as k-essence is equivalent

to a perfect fluid. In synchronous gauge, denoting with a prime the derivative with respect to the

conformal time dη ≡ dt/a and defining H = aH, the fluid equations read, in Fourier space (see for

example [57]):

δ′Q + 3H(c2s − wQ)δQ = −(1 + wQ)
[
k2 + 9H2(c2s − c2a)

] ϑQ
k2

− (1 + wQ)
h′

2
, (3.67)

ϑ′Q
k2

+H(1− 3c2s)
ϑQ
k2

=
c2s

1 + wQ
δQ , (3.68)

where θQ is the divergence of the velocity field of quintessence, θQ ≡ ikiT 0
i/(ρQ + pQ) [4], c2s is

δpQ/δρQ calculated in a velocity orthogonal gauge (T 0
i = 0) [51] and it corresponds to the speed of

sound squared that can be deduced from the π Lagrangian8, to be distinguished from the adiabatic

speed of sound squared, c2a ≡ ṗQ/ρ̇Q = wQ− ẇQ/(3H(1 +wQ)) [58]. The absence of pathologies at

wQ → −1 can also be shown in this formalism. Indeed, in the continuity equation the divergence

of c2a is compensated by the prefactor in front of the squared brackets, while the 1 + wQ term at

the denominator in the Euler equation is harmless as c2s also vanishes for wQ → −1. Thus both δQ

and θQ are continuous through the divide. This is not surprising as θQ is just the Laplacian of the

scalar perturbation π, π = a θQ/k
2.

At this point the reader may be puzzled: in the previous sections we stressed that close to

the wQ = −1 line quintessence behaves like the Ghost Condensate on cosmological scales, while

eq. (3.65) as well as the fluid eqs. (3.67) and (3.68) do not contain higher derivative terms. Let us

see why these additional terms are irrelevant in realistic cases of phantom divide crossing. With

these new terms, the equation of motion for π derived from the full action (3.44) is obviously still

continuous so that also in this case the line wQ = −1 can be crossed smoothly. The operator

proportional to M̄2 dominates in the Ghost Condensate strip around the wQ = −1 line. However,

this happens only in the extremely narrow range |1 + wQ| . M̄2/M2
Pl . 10−34. The equation

of state parameter wQ will stay in this range only for a time much smaller than H−1, unless its

evolution is tremendously slow. Thus π has no time to evolve in the Ghost Condensate regime,

so that for all practical purposes one can totally neglect this strip around the wQ = −1 line on

cosmological scales.

8The velocity orthogonal condition T 0
i = 0 is equivalent to the condition π = 0. As φ is unperturbed in this gauge,

the perturbations of pressure and energy density only come from fluctuations of X, i.e. δpQ/δρQ = pQ,X /ρQ,X =

PX/(2PXXX + PX), which is the speed of sound c2s which appears in the π Lagrangian (3.6).
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We have seen that k-essence can be described with the fluid equations (3.67) and (3.68). Even

including higher derivative terms, quintessence remains a perfect fluid, but does not satisfy the fluid

equations (3.67) and (3.68) as these assume a linear dispersion relation. However, as we discussed,

higher derivative terms are phenomenologically irrelevant on cosmological scales, so that one can

still use the fluid description above when comparing with observations.

From a practical point of view we conclude that, when comparing with observations a dark

energy model which crosses the phantom divide, it is consistent and theoretically motivated to set

c2s = 0. On the other hand, it is inconsistent to turn off perturbations as sometimes done in the

literature.

3.5 Additional higher derivative operators

As we discussed, higher derivative operators become relevant when the speed of sound is very close

to zero. This regime is particularly interesting when wQ < −1 so that in the following we will

consider mostly the case ρQ + pQ < 0.

Theories with very small c2s should be thought of as tiny deformations of the Ghost Condensate

theory [32, 33, 49]: in this limit one recovers the shift symmetry φ → φ + λ, so that a small

deviation from the Ghost Condensate is technically natural. In the Ghost Condensate limit there

is an additional symmetry that one can impose, i.e. the parity symmetry φ→ −φ. The background
φ = t in Minkowski space breaks this parity symmetry and the time reversal symmetry to the

composition of the two; the theory of perturbations is thus invariant under π → −π, t → −t [28].
This symmetry is present only when the background metric is Minkowski: in de Sitter there is a

preferred time direction singled out by the expansion. In this case, terms violating the symmetry

will be proportional to H, and thus tipically suppressed by H/M . In this paper we have considered

small departures from the Ghost Condensate limit, i.e., tiny breakings of the shift symmetry. These

also generate terms which are not invariant under parity π → −π, t→ −t, as for instance the mass

term in eq. (3.12). These terms will be of the same order of magnitude, i.e. suppressed by H/M ,

as we are assuming that H−1 is the typical time scale of evolution of the operators.

However, one can also consider the case when the parity symmetry φ → −φ is absent in the

Ghost Condensate limit [32]. This happens for example if we add to the k-essence Lagrangian (3.13)

the operator

LM̂ = −M̂
3

2
(�φ+ 3H)(X − 1) , (3.69)
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3. THE EFFECTIVE THEORY OF QUINTESSENCE

which again does not change the background evolution as it starts quadratic in the perturbations.

For simplicity we assume that M̄ = 0 and a constant M̂9. In synchronous gauge at quadratic order

this operator is

LM̂ = M̂3π̇

(
π̈ + 3Hπ̇ − 3Ḣπ − ∇2π

a2
+
ḣ

2

)
. (3.70)

The first two terms in the parentheses contribute (after an integration by parts) to the time kinetic

term. Assuming M̂ ∼ M they can be neglected in comparison with 2M4π̇2. The third term gives

a mass term that is parametrically smaller than H and can thus be neglected.

To discuss the stability and phenomenology of this model, let us write the full action for per-

turbations, assuming |ρQ + pQ| ≪M4:

S =

∫
d4x a3

[
2M4π̇2 − 1

2
(ρQ + pQ)

(∇π)2
a2

− 1

2
(ρQ + pQ)ḣπ + M̂3π̇

(
ḣ

2
− ∇2π

a2

)]
, (3.71)

where we have neglected the mass terms. This equation is analogous to eq. (3.44) for the M̄

operator (3.16). Analogously to what we have done in sections 3.1.2 and 3.3.2 for the operator

proportional to M̄2, we will now study the stability and phenomenology on cosmological scales

with the operator LM̂ . In appendix B we briefly study the effect of this operator at short distances,

i.e. the modification of gravity induced by it.

3.5.1 Stability constraints with M̂

Let us first study the stability of the system neglecting other sources of gravity. The equation of

motion for π derived varying (3.71) reads

π̈ + 3Hπ̇ − ρQ + pQ
4M4

∇2π

a2
− M̂3H

4M4

∇2π

a2
= −ρQ + pQ

8M4
ḣ− M̂3

8M4
(ḧ+ 3Hḣ) . (3.72)

Notice that the operator M̂3π̇∇2π/a2 induces a spatial kinetic term for π proportional toH. Indeed,

this operator is a total derivative in Minkowski spacetime. Choosing M̂ > 0, the spatial kinetic

term has the “healthy” sign and can be chosen sufficiently large to cure the gradient instability

associated to ρQ + pQ < 0, giving a positive and very small c2s. This also allows us to neglect the

first term on the right hand side in eq. (3.72). To complete the stability analysis one has to take into

account the mixing with gravity, i.e., solve for h in terms of the quintessence stress-energy tensor

using the Einstein equation (3.23), and plug the result back in the right hand side of eq. (3.72).

This, similarly to what happens for the Ghost Condensate, will give rise to a Jeans-like instability.

9This assumption can be relaxed by having a time dependence with time scale of order H−1, as in the case of M̄2.
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The contribution to the stress-energy tensor of the operator (3.69) is

δρQ ⊃ M̂3

(
ḣ

2
− ∇2π

a2

)
, (3.73)

δpQ ⊃ −2M̂3 (π̈ + 3Hπ̇) . (3.74)

Given the small speed of sound, time derivatives are much smaller than the spatial ones and

the pressure perturbation is negligible, δpQ ≪ δρQ. Concentrating on frequencies much larger

than the Hubble rate one can neglect the terms containing Hπ̇ and Hḣ in eq. (3.72). A further

simplification comes from disregarding the standard k-essence contribution to the energy density

perturbation δρQ, i.e. 4M4π̇, in comparison with M̂3∇2π/a2. Indeed, from eq. (3.72) we have

M̂3∇2π/a2 ∼ M4π̈/H ≫ M4π̇. Moreover, as we will see, the absence of Jeans instability will

impose M̂3 . M2
PlH. This implies that the term with ḣ in eq. (3.73) is negligible with respect to

ḧ in the Einstein equation (3.23), which becomes

ḧ =
M̂3

M2
Pl

∇2π

a2
. (3.75)

Plugging this into the right hand side of eq. (3.72) we finally find

π̈ −
(
ρQ + pQ
4M4

+
M̂3H

4M4
− M̂6

8M4M2
Pl

)
∇2π

a2
= 0 . (3.76)

This same result would have been found using a more rigorous approach, as done in [32]. Again,

as in the Ghost Condensate case, mixing with gravity induces a Jeans-like instability, represented

by the last term in this equation. Thus, for ρQ + pQ < 0 we need to cure both the gradient and

the Jeans instabilities. This is possible for

− (1 + wQ)ΩQ .
M̂3

M2
PlH

. 1 . (3.77)

This stability window [32] is analogous to the one discussed in the Ghost Condensate case, eq. (3.29).

We conclude that, with the inclusion of the operator LM̂ , we can have a dispersion relation ω ∝ k

with positive speed of sound squared; thus, there is no sign of instability even for ρQ + pQ < 0.

3.5.2 Including dark matter

Analogously to what done in section 3.3.2, to study the phenomenology induced by the M̂ operator

we study quintessence perturbations generated by the coupling with dark matter. For simplicity
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we assume matter dominance. The action (3.71) gives the equation of motion for π sourced by the

dark matter perturbation δm:

π̈ + 3Hπ̇ − HM̂3

4M4

∇2π

a2
=

5

8

M̂3

M4
H2δm +

ρQ + pQ
4M4

Hδm , (3.78)

where we have used ḣ = −2Hδm and neglected the gradient term proportional to ρQ + pQ that is

subdominant. Since the speed of sound c2s = HM̂3/(4M4) is very small and we are interested in

cosmological scales, one would näıvely neglect the term with ∇2π. This gives the solution

π̇ =
HM̂3

4M4
δm +

ρQ
4M4

1 + wQ

1− 3wQ
δm . (3.79)

However, the approximation of neglecting the gradients is not good. Indeed, when we plug this

expression into the energy density perturbation

δρQ = 4M4π̇ + M̂3

(
ḣ

2
− ∇2π

a2

)
, (3.80)

there is a cancellation of terms proportional to M̂3 up to gradient terms. Thus one is forced to go

back to the equation of motion (3.78) and keep the term proportional to the speed of sound.

Once we do that, we obtain

δQ = − M̂6

24M4M2
PlΩQ

∇2

H2a2
δm +

1 + wQ

1− 3wQ
δm . (3.81)

This equation displays the existence of two different regimes, in strict analogy with what happens

in the Ghost Condensate case. For large enough |1 + wQ|, the second term on the right hand

side dominates and one recovers eq. (3.60), where the system behaves as standard k-essence. Note

however that, even for ρQ + pQ < 0, there are no stability problems in the stability window (3.77).

The dynamics of the system is dominated by the M̂ operator only when we are very close to

wQ = −1, i.e. for

− M̂6

M4M2
Pl

. (1 + wQ)ΩQ .
M̂6

M4M2
Pl

. (3.82)

This region is the analogue of the Ghost Condensate strip around the horizontal axis of figure 3.2.

In this range the first term in eq. (3.81) dominates and δQ remains extremely small with respect to

δm. Although the dispersion relation is of the form ω ∝ csk, quintessence does not follow the simple

fluid equations (3.67) and (3.68) because of the presence of higher derivative operators. However,

as in the Ghost Condensate case, given the narrowness of the strip (3.82), for all practical purposes

we can always use the fluid equations with c2s = 0, even when crossing the phantom divide. In

36



3.6 Conclusions

conclusion, the addition of the operator M̂ can stabilize k-essence in the phantom case wQ < −1,

and the phenomenology of the model is the same as for a k-essence with c2s = 0. This general

conclusion will hold even when considering both operators M̄ and M̂ at the same time, and can be

extended to all the possible higher derivative operators included in the general action in section 3.2.

3.6 Conclusions

In this chapter we have studied the most generic action describing the perturbations of a single

field dark energy – here called quintessence – around a given background. We have constructed the

action by adding to the k-essence Lagrangian higher derivative operators that leave the background

evolution invariant. Using this action, we have derived the theoretical constraints on the equation

of state parameter wQ as a function of the speed of sound squared c2s, by the requirement that

perturbations are ghost-free – i.e. that their kinetic energy is positive – and that there are no

gradient-like instabilities. These constraints have been conveniently represented on the quintessen-

tial plane (1 + wQ)ΩQ vs. c2s, in figures 3.1 and 3.2.

In particular, we have considered the case wQ < −1, which is commonly believed to be unstable,

and we have shown that for very small c2s both the gradient and the Jeans instabilities can be avoided

and perturbations stabilized [32]. Higher derivative operators are crucial for the stabilization.

Indeed, it is important to stress that taking an extremely small c2s does not represent a fine tuning,

as in the limit c2s → 0 we recover the Ghost Condensate theory which is protected by the shift

symmetry φ→ φ+c. Thus, for wQ < −1, quintessence should be thought of as a small deformation

of the Ghost Condensate limit [32, 33, 49]. When the higher order terms containing k4 dominate

over the spatial kinetic term c2sk
2, the phenomenology reduces to that of the Ghost Condensate.

This always happens on small scales, where the higher order gradients must dominate to stabilize

the perturbations, but on cosmological scales this only occurs for values of wQ extremely close to

the one of the cosmological constant, i.e. for |1 + wQ|ΩQ . 10−34. Away from this tiny strip –

i.e. for all practical purposes – the behavior on cosmological scales is very different from that of

the Ghost Condensate: higher derivative terms are irrelevant so that the phenomenology of the

wQ < −1 side of quintessence reduces to that of a k-essence fluid with c2s = 0.

Furthermore, we have studied the behavior of quintessence perturbations when crossing the

so-called phantom divide wQ = −1. By restricting the analysis to k-essence perturbations around

a given background crossing the phantom divide, we have shown that, as the speed of sound

vanishes exactly at the divide, perturbations remain finite during the crossing. For wQ < −1,
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3. THE EFFECTIVE THEORY OF QUINTESSENCE

higher derivative terms, while irrelevant on cosmological scales, are essential to stabilize the short

scale gradient instabilities. We conclude that no pathology arises during the crossing: the phantom

divide can be crossed without the addition of new degrees of freedom. We have illustrated this with

an example shown in figure 3.3. An important thing to retain is that a consistent and theoretically

motivated way of comparing with data a dark energy evolution which crosses the phantom divide

is to set to zero the speed of sound of perturbations.

The present analysis motivates the possibility that quintessence has a virtually vanishing speed

of sound, especially when wQ < −1. Such a quintessence can be detected through its effects on

structure formation. The speed of sound defines the sound horizon ℓQ ≡ a
∫
csdt/a, which sets

the characteristic length scale of smoothness of the perturbations. In the matter dominated era

ℓQ = 2csH
−1
0 for a constant cs. Hence, for cs = 1 – corresponding to the speed of sound of a scalar

field with a canonical kinetic term – quintessence can cluster only on scales larger than the Hubble

radius while for cs = 0 it clusters on all scales, thus affecting the gravitational potential and the

formation of structures of dark matter and galaxies. The effect of a clustering quintessence can

be measured with the cosmic microwave background [55, 56, 57, 59], galaxy redshift surveys [60],

large neutral hydrogen surveys [61], or by cross-correlating the integrated Sachs-Wolfe effect in the

cosmic microwave background with large scale structures [62, 63]. For instance, in [60, 62] it was

found that with future surveys it will be possible to measure a zero speed of sound of dark energy

if wQ & −0.95. As these analyses were restricted to positive values of 1 + wQ only, it would be

interesting to repeat them for negative values. Notice that for a vanishing speed of sound, dark

energy will actively participate to the formation of non-linear objects, affecting the halo bias. A

study of the non-linear structure formation with clustering quintessence, using the spherical collapse

model, will be the subject of chapter 5.

Quintessence is perturbed by the presence of sources and thus modifies gravity as any other

kind of matter. When this modification happens on scales much smaller than the Hubble radius

one can properly talk about a theory of infrared modification of gravity. This happens when

quintessence is close to the Ghost Condensate limit; in this case the modification of gravity is due

to the Jeans instability induced by higher derivative operators, and persists even in Minkowski

spacetime. Modifications of gravity induced by the Ghost Condensate have been studied in details

in [28, 50]. We have considered also the additional operator proportional to M̂3 [32]; it would be

interesting to investigate the deviation from General Relativity induced by this operator and its

possible observational consequences, extending the preliminary analysis of appendix B, where the

treatment has been restricted to linear perturbations in a Minkowski spacetime.
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Chapter 4

Excursion Set Approach to Mass

Function Calculation

Cluster observations are likely to be an important source of information about cosmology in the

upcoming years. One of the main observables is the cluster number density, or mass function, which

can be used as a probe of different cosmological scenarios. In this chapter, as an introduction to the

following chapters, we discuss the standard calculation of the mass function of virialized objects,

explaining the spherical collapse model, the original Press and Schechter approach and the excursion

set theory approach. For more details, useful reviews are [64, 65].

4.1 The spherical collapse model

The spherical collapse model is the simplest approximation to the dynamics of formation of a halo.

It was pioneered in [66], and it was used by Press and Schechter for their calculation of the halo

mass function [67]. We will now describe it in its simplest implementations of an Einstein-de Sitter

Universe; an extension to ΛCMD and dark energy models is studied in Chapter 5.

We consider a flat FRW universe filled with dust, with critical energy density ρ̄ = 3H2/(8πG).

Take a homogeneous spherical overdensity with energy density ρh > ρ̄ and radius R, and imagine

there is an empty thin layer around the ball which compensates the inner overdensity. By Birkhoff’s

theorem (see [68]), the metric inside the thin layer is Schwarzschild with M = 4
3πR

3ρh, and it is

independent on what happens outside the ball. At the same time, since the total density of the

ball is the same of the background one, the external spacetime follows the FRLW evolution. This

means that, to solve for the evolution of the spherical overdensity, we can imagine the Universe
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filled with energy density ρh as well. In the limit in which the thin layer goes to zero, the evolution

inside the ball is the same of a homogeneous closed FRW Universe, for which we can write the

Friedmann equation

Ṙ2

R2
=

8πG

3
ρh −

k

R2
, (4.1)

where k = +1 is the curvature constant and R(t) is the scale factor inside the ball. The equation

simplifies if we introduce conformal time η such that dη = dt/R. The well-known solution, in

parametric form, describes a cycloid:

t(η) = GM(η − sin η) (4.2)

R(η) = GM(1 − cos η) . (4.3)

Therefore, the ball expands until it reaches a maximum radius RM = 2GM at tM = πGM , then

it collapses to R = 0 at tc = 2tM . The non-linear evolution of the density field is given by

ρ = 3πM/(4R3), while the average universe density evolves as ρ̄ = 1/(6πGt2).

To make contact with linear theory, we expand for small times:

R ≃ GM

2

(
6t

GM

) 2
3

[
1− 1

20

(
6t

GM

) 2
3

]
. (4.4)

One important prediction of the model is the value of the overdensity linearly extrapolated at

collapse time:

δc =
3M

4π

R−3

ρ̄c
− 1 =

3M

4π

8

G3M3
6πGt2c

(
G2M2

36t2c

)
3

20

(
6tc
GM

) 2
3

=
3

20
(12π)

2
3 = 1.686 . (4.5)

Since the geometry of this model is special, particles never cross and the collapse will not end

until a singularity is formed at the center of the ball. In the real world, shell-crossing happens

before that, and the collapse will stop at the radius where virial equilibrium is reached. The virial

condition is
1

2
Ṙ2

v =
1

2

GM

RV
, (4.6)

and substituting the exact solution we find sin2 ηV = 1 − cos ηV, which is solved by ηV = k π
2 ,

k = 0, 1, 2, . . . . Since virialization is reached after turnaround but before collapse, the correct

solution is ηV = 3
2π, for which

RV = GM =
RM

2
tV = GM

(
3

2
π + 1

)
(4.7)
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The (non-linear) halo overdensity at virialization is usually calculated by taking the ratio of ρV

to ρ̄:

1 + δV =
ρV
ρ̄

= 18π2 ≃ 178 . (4.8)

Indeed, in simulations and observations the halo radius is often defined as the radius within which

the density is 200 times the background one.

4.2 The original Press & Schechter idea

Using the results from the spherical collapse model, Press & Schechter [67] derived a formula for

the mass function of virialized objects as a mapping from the linear density field to the distribution

of nonlinear objects.

Since we always observe overdensities smoothed with some resolution, the starting point of the

calculation is to smooth the field on a scale R, using a filter function W (x;R):

δ(x;R) ≡
∫

dx′W (|x− x′|;R)δ(x) . (4.9)

The variance is then

σ2(R) = 〈δ(x;R)〉 =
∫ ∞

0

dk

2π2
k2P (k)|W 2(k;R)| . (4.10)

There are several choices for the filter function. The most natural one is probably a top-hat in

real space: W (x;R) = 3θ(R − x)/(4πR3), which has the advantage that the mass enclosed within

it is simply M = 4πR3/3. However, such a window function has the undesirable property that

it leads to power on all scales in Fourier space. Therefore, another popular choice is a sharp k-

space filter: W (k;R) = θ(1/R − k), using which the variances on different scales are uncorrelated.

Unfortunately, the volume associated with this filter function is infinite, and therefore one does not

have a well-defined mass-radius relationship.

The basic assumption of the Press and Schechter approach is that objects will collapse when the

smoothed overdensity field on some scale exceeds a threshold value, but that the collapse of small

objects does not influence the collapse of larger ones. Following this assumption, the derivation is

based on three ingredients: a characterization of the statistical properties of the primordial density

fluctuations; the evolution of these fluctuations according to linear perturbation theory; the value

of the threshold for collapse into a virialized object, which is based on the spherical collapse model.
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The primordial density fluctuation field is assumed to be a Gaussian random variable; therefore,

the smoothed field δR(x) is Gaussian as well. Thus, the probability of attaining a value between δ

and δ + dδ is

P (δ;R)dδ = (2πσ2R)
−1/2 exp

[
− δ2

2σ2R

]
. (4.11)

The linear evolution of the density field is δ(x, z) = D(z)δ0(x), where D(z) is the growth

function and δ0(x) is the density contrast field linearly extrapolated to the present time.

An object of mass M will form when the smoothed density on the scale R(M) will exceed the

threshold δc ≃ 1.686, given by the spherical collapse model. Any region that exceeds the critical

density is assumed to meet that threshold when smoothed on some larger scale R′ > R. Therefore,

the fractional volume F(M) occupied by virialized objects larger than the smoothing scale R(M)

is the cumulative probability for a region to have a smoothed density above threshold:

F(M) =

∫ ∞

δc

dδP (δ; R) =
1

2
erfc

(
ν√
2

)
, (4.12)

where erfc(x) is the complementary error function, and ν ≡ δc/(D(z)σ(M)) is the height of the

threshold in units of the standard deviation of the smoothed overdensity. This formula, however,

is inconsistent as it is. In fact, in hierarchical models the variance diverges as R→ 0, which means

that all the mass of the Universe should be in virialized objects and F(0) should be unity. However,

erfc(0) = 1 so that, according to eq. (4.12), only half of the mass is contained in virialized objects.

To correct for this issue, Press & Schechter multiplied their function by a factor of two. Proceeding

with this extra factor of two, the number density of virialized objects with masses between M and

M + dM is
dn

dM
dM =

ρ̄

M

∣∣∣∣
dF(M)

dM

∣∣∣∣ dM . (4.13)

Substituting eq. (4.12), we get

dn

dM
dM =

√
2

π

ρ̄

M2
ν
d ln ν

d lnM
exp

(
−ν

2

2

)
dM . (4.14)

4.3 The excursion set theory

A major shortcoming of the Press & Schechter approach is the following: it can happen that the

overdensity field δR(x) smoothed on some scale R may be less than the critical density δc, but it can

exceed it at some larger scale R′ > R. It is natural to assume that the larger region will collapse,

overwhelming the less dense patches within it. Accounting for this effect provides the factor of 2
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that Press & Schechter missed, since the fraction of mass in collapsed objects is increased. In the

literature, this issue is referred to as the cloud-in-cloud problem. The correct way to proceed is to

compute the largest value of the smoothing scale for which the density threshold is exceeded. The

formalism to do this calculation constitutes the excursion set theory approach, beautifully explained

in a paper by Bond et al. [69], using results in the classical review by Chandrasekhar [70]. Recently,

this formalism has been put on firmer mathematical grounds by Maggiore & Riotto [71, 72, 73],

in a way that allows to include effects due to diffusing threshold or non-Gaussianity of the density

field (see chapters 6 and 7).

Consider the smoothed density fluctuation field δ(x;R), extrapolated to the present using linear

theory. Focus on a single point in space x, which we can take as the origin by translational

invariance, and study the smoothed overdensity field as a function of the smoothing scale, δ(R).

For very large R, the standard deviation σ(R) → 0, and the probability that the region exceeds

the threshold is vanishingly small. Decreasing the smoothing scale R, the standard deviation σ(R)

increases, and sooner or later the smoothed overdensity will reach the threshold δc. Mathematically,

the problem is to compute the probability of first crossing of the barrier δc at some scale R. Usually,

one considers the evolution of δ(R) as a function of the variance S(R) ≡ σ2(R), which can be

regarded as a “time” variable1. The trajectory δ(S) is a random walk, governed by the Langevin

equation:

dδ(S)

dS
=

4π

S′(R)

∫ ∞

0
dk
∂W̃ (k,R)

∂R
δ̃(k) . (4.15)

The properties of the noise depend on the choice of the filter. If the filter is a top-hat in k-space

(and the distribution of δ is Gaussian), we have a white noise and the resulting stochastic process

is a Brownian random walk. The probability of a transition from δ to δ + ∆δ when the time is

increased from S to S +∆S obeys the integral equation2:

Π(δ;S +∆S) =

∫
d(∆δ)Ψ(∆δ,∆S)Π(δ −∆δ;S) , (4.16)

which expresses the important fact that every step is uncorrelated with the previous history of the

trajectory. It is possible to show that Π(δ, S) obeys the Fokker-Planck equation:

∂Π

∂S
=

1

2

∂2Π

∂δ2
. (4.17)

1This is always possible in hierarchical models, as the variance is a strictly monotonic function of the smoothing

scale.
2This is called Chapman-Kolomogorov or Einstein-Smoluchowski equation.
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The distribution of trajectories which never exceed δc prior to a specific value of S is given by the

solution of the Fokker-Planck equation with appropriate boundary and initial conditions. The initial

condition is a Dirac delta centered on some starting point δ0 at some scale S0: Π(δ0, S0) = δD(δ0).

The boundary condition is that the barrier at δc is an absorbing barrier: Π(δc, S) = 0. The solution

can be obtained most elegantly by the method of images, and it is:

Π(δ, S) =
1√

2π∆S

[
exp

(
−(∆δ)2

2∆S

)
− exp

(
−(2(δc − δ0)−∆δ)2

2∆S

)]
, (4.18)

where ∆S = S −S0 and ∆δ = δ− δ0. The first Gaussian represents the distribution of trajectories

at time S without considering the barrier, and the second term removes the trajectories which have

already crossed δc. The fraction of trajectories that have crossed the barrier at or prior to some

time S is therefore

F(S) = 1−
∫ δc

−∞
dδΠ(δ, S) = erfc

(
δc − δ0√
2∆S

)
. (4.19)

Taking S0 = 0 and δ0 = 0, this is precisely the Press-Schechter formula (4.12), but with the

correct factor of 2. The differential probability of first crossing the barrier at time S (“first-crossing

distribution”) is obtained by differentiation:

F (S)dS ≡ −dF(S)

dS
dS =

(∫ δc

−∞
dδ
∂Π(δ, S)

∂S

)
dS =

1

2

[
∂Π(δ, S)

∂δ

]δc

−∞

dS

=
δc − δ0√
2π∆S3/2

exp

[
−(δc − δ0)

2

2∆S

]
dS (4.20)

Eq. (4.20) is the fundamental result of excursion set theory, giving the probability of first crossing

a barrier given any starting point δ0 and any change in filtering scale ∆S. Therefore, the fraction

of mass in virialized objects with mass between M and M + dM is

dF
dM

=
1√
2πS

δc
S

exp

[
− δ2c
2S

] ∣∣∣∣
dS

dM

∣∣∣∣ , (4.21)

where M is the mass which corresponds to the variance S, and the mass function follows from

eq. (4.13):

dn

dM
=

√
2

π

ρ̄m
M2

δc
S

∣∣∣∣
d lnσ

d lnM

∣∣∣∣ exp
[
− δ2c
2σ2

]
. (4.22)

In figure 4.1, the result (4.20) is compared to the predictions of a suite of cosmological N-body

simulations. While the gross features of the mass function can be explained by the standard

excursion set theory result (for instance, the power law at small masses and the exponential cutoff

above the mass M∗ where σ(M∗) ≃ δc), the details are not. In fact, the extended Press-Schechter

44



4.3 The excursion set theory

Figure 4.1: First crossing distributions. The solid line represents the standard extended Press-

Schechter prediction, eq. (4.20). The dashed and dotted lines are the fits by Sheth and Tormen [74] and

Jenkins et al. [75]. The points come from numerical data from a suite of N-body simulations by J. L.

Tinker. The figure is taken from [64]

predicts too many low-mass haloes and too few high-mass ones, but, given the simplicity of the

approach, the level of agreement with the data is indeed surprising and a good starting point for

better analytical results.

The reason why the sharp k-space filter is so useful is that it is the only fiter for which steps

are not correlated, i.e. the process is Markovian, and the solution for Π(δ, S) is very simple.

In principle, it is possible to use other filter functions; in this case, however, it is necessary to

numerically compute a large number of trajectories by solving the Langevin equation, and the

probability distribution is obtained by finding the density of trajectories at each smoothing scale.

This procedure is a bit cumbersome and time consuming, and moreover does not yield a closed-

form solution for Π(δ, S) or for the first-crossing distribution. Recently, Maggiore and Riotto

have shown that it is possible to take into account the effect of a filter different from a sharp

k-space perturbatively in the difference between the 2-point functions calculated with a generic

filter (actually they consider only the top-hat in real space) and with the sharp k one [71]. We will

discuss their approach in chapter 6.
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Chapter 5

The Spherical Collapse in

Quintessence Cosmologies

One of the most important open questions for cosmology is whether dark energy is a dynamical

component of the universe or a cosmological constant. A plethora of experiments and future

observations are currently planned with the aim of improving our understanding of this question

(see for instance [31] for a review). One of the most popular models of dynamical dark energy is

quintessence, where the acceleration of the universe is driven by a minimally coupled scalar field

with negative pressure. Standard quintessence is described by a minimally coupled canonical scalar

field [76]. In this case, scalar fluctuations propagate at the speed of light and sound waves maintain

quintessence homogeneous on scales smaller than the horizon scale [77]. Quintessence clustering

takes place only on scales of order the Hubble radius, so that its effect is strongly limited by cosmic

variance.

However, if the kinetic term is non-canonical, the speed of sound can be different from one.

Indeed, as we showed in chapter 3, in an effective description of quintessence perturbations the

speed of sound is a free parameter, subject to the constraints that the theory be free of ghost and

gradient instabilities. In particular, if the equation of state is w < −1, the stability of the theory

is guaranteed by the presence of higher derivative operators, provided that the speed of sound of

perturbations is negligibly small: |cs| . 10−15.

Apart from these theoretical considerations, the fact that the speed of sound of quintessence

may vanish opens up new observational consequences. Indeed, the absence of quintessence pressure

gradients allows instabilities to develop on all scales, also on scales where dark matter perturbations

become non-linear. Thus, we expect quintessence to modify the growth history of dark matter not
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only through its different background evolution but also by actively participating to the structure

formation mechanism, in the linear and non-linear regime, and by contributing to the total mass

of virialized halos.

In the linear regime, a series of articles have investigated the observational consequences of a

clustering quintessence. In particular, they have studied the different impact of quintessence with

cs = 1 or cs = 0 on the cosmic microwave background [55, 56, 57, 59], galaxy redshift surveys [60],

large neutral hydrogen surveys [61], or on the cross-correlation of the integrated Sachs-Wolfe effect

in the cosmic microwave background with large scale structure [62, 63]. On non-linear scales, the

dependence of the dark matter clustering on the equation of state of a homogeneous quintessence,

i.e. with cs = 1, has been investigated using N-body simulations in a number of articles (see for

instance [78] and references therein for a recent account).

A popular analytical approach to study non-linear clustering of dark matter without recurring to

N-body simulations is the spherical collapse model [66]. In this approach, one studies the collapse of

a spherical overdensity and determines its critical overdensity for collapse as a function of redshift.

Combining this information with the extended Press-Schechter theory [67, 69], one can provide a

statistical model for the formation of structures which allows to predict the abundance of virialized

objects as a function of their mass, as explained in chapter 4. Although it fails to match the details

of N-body simulations, this simple model works surprisingly well and can give useful insigths into

the physics of structure formation.

The spherical collapse can be generalized to include a cosmological constant (see for instance

[79]) and quintessence with cs = 1 [80] (see also [81, 82] for subsequent applications). If quintessence

propagates at the speed of light, it does not cluster with dark matter but remains homogeneous.

Indeed, pressure gradients contribute to maintain the same energy density of quintessence between

the inner and outer part of the spherical overdensity. A study of the spherical collapse model with

different quintessence potentials was performed in [83]. For a nice review on structure formation

with homogeneous dark energy see also [84].

In this chapter, based on [85], we study the spherical collapse model in the case of quintessence

with zero speed of sound. This represents the natural counterpart of the opposite case cs =

1. Indeed, in both cases there are no characteristic length scales associated to the quintessence

clustering1, and the spherical collapse remains independent of the size of the object.

1The characteristic length scale associated to the quintessence clustering is the sound horizon scale, i.e., Ls ≡
a
∫

csdt/a. As mentioned above, this vanishes for cs = 0 so that clustering takes place on all scales. For cs = 1 we

have Ls = 2H−1
0 , which is much larger than the scales associated to the spherical collapse.
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As the spherical collapse occurs on length scales much smaller than the Hubble radius, we will

describe it using a convenient coordinate system where the effect of the Hubble expansion can be

treated as a small perturbation to the flat spacetime. In these “local” coordinates, the description

of the spherical collapse becomes extremely simple and the well-known cases can be easily extended

to quintessence with cs = 0. In this case, pressure gradients are absent and quintessence follows

dark matter during the collapse. Thus, in contrast with the non-clustering case cs = 1 where

quintessence and dark matter are not comoving, for cs = 0 the collapsing region is described by

an exact FLRW universe. Note that, even though the energy density of quintessence develops

inhomogeneities as long as the collapse proceeds, the pressure inside and outside the overdense

region remains the same. Thus, as explained below, our model does not give the same description

of clustering quintessence as that proposed by [83] and studied, for instance, in [86, 87, 88].

We will see that, besides quantitative differences with respect to the cs = 1 case – a different

threshold for collapse and a different dark matter growth function – the cs = 0 case has a remarkable

qualitatively new feature. Quintessence clusters together with dark matter and participates in the

total mass of the virialized object, contributing to their gravitational potential.

The chapter is organized as follows. In section 5.1 we describe quintessence models with cs = 0.

In section 5.2 we study spherical collapse solutions first in known cases (dark matter only, ΛCDM

and cs = 1 quintessence) and then in the case of a clustering dark energy, cs = 0. It turns out to be

much simpler to describe these solutions in coordinates for which the metric is close to Minkowski

around a point in space. The equation for the evolution of the spherical collapse are solved in

section 5.3 and the threshold for collapse is calculated in the various cases. This leads to the

calculation of the dark matter mass function in section 5.4. In section 5.5 we study the accretion of

quintessence to the dark matter haloes and its effect on the total mass function. The contribution

of quintessence to the mass may be distinguished from the dark matter and baryon component in

cluster measurements, as we briefly discuss in section 5.6.

5.1 The model: quintessence with c
2
s = 0

Let us consider a k-essence field described by the action [39, 40]

S =

∫
d4x

√−g P (φ,X) , X = −gµν∂µφ∂νφ . (5.1)

The evolution equation of φ derived from this equation is

1√−g ∂µ(
√−g 2P,X∂

µφ) = −P,φ , (5.2)
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where P,f ≡ ∂P/∂f . The energy-momentum tensor of this field can be derived using

Tµν = − 2√−g
δS

δgµν
, (5.3)

and can be written in the perfect fluid form as [44]

Tµν = (ρQ + pQ)uµuν + pQgµν , (5.4)

once we identify

ρQ = 2P,XX − P , pQ = P , uµ = − ∂µφ√
X
. (5.5)

Let us initially neglect perturbations of the metric and assume a flat FLRW universe with

metric ds2 = −dt2 + a2(t)d~x2. The energy-momentum tensor of the field can be perturbed around

a given background solution φ̄(t) corresponding to a background energy density and pressure,

ρ̄Q = 2P̄,XX̄ − P̄ , p̄Q = P̄ , (5.6)

where X̄ = ˙̄φ2. To describe perturbations it is useful to write the scalar field as [32, 89]

φ(t, ~x) = φ̄(t+ π(t, ~x)) , (5.7)

where π describes the difference between the uniform time and scalar field hypersurfaces.2 Then,

eq. (5.5) can be expanded linearly in π using φ(t, ~x) = φ̄+ ˙̄φ π and X(t, ~x) = X̄ + ˙̄Xπ+2X̄π̇. This

yields, for the perturbations of the energy density, pressure and velocity,

δρQ = ˙̄ρQπ + (ρ̄Q + p̄Q + 4M4)π̇ , δpQ = ˙̄pQπ + (ρ̄Q + p̄Q)π̇ , ui = −∂iπ , (5.8)

where we have used eq. (5.6) and defined M4 ≡ P̄,XXX̄
2, where M has the dimension of a mass.

To describe the evolution of perturbations we can expand the action (5.1) up to second order

in π as done in chapter 3,

S =

∫
d4x a3

[
˙̄Pπ + 2P̄,XX̄π̇ +

(
P̄,XX̄ + 2P̄,XXX̄

2
)
π̇2 − P̄,XX̄

(~∇π)2
a2

+
1

2
¨̄Pπ2 + 2

(
P̄,XX̄

)
˙ππ̇

]
.

(5.9)

The second term proportional to π̇ can be integrated by parts so that the part of the action linear

in π can be written using eq. (5.6) as − [ ˙̄ρQ + 3H(ρ̄Q + p̄Q)]π, where H ≡ ȧ/a is the Hubble rate.

This part cancels due to the background equation of motion. Furthermore, we can manipulate the

last two terms of the action integrating by parts the last term, proportional to ππ̇, and making

2We assume that φ̄ is a monotonous function of t.
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use of the background equation of motion, to rewrite them as 3ḢP̄,XX̄ π2. Finally, it is convenient

to rewrite the coefficients left in this expansion in terms of the background energy density and

pressure using eq. (5.6). This yields

S =

∫
d4x a3

[
1

2

(
ρ̄Q + p̄Q + 4M4

)
π̇2 − 1

2
(ρ̄Q + p̄Q)

(~∇π)2
a2

+
3

2
Ḣ(ρ̄Q + p̄Q)π

2

]
. (5.10)

The coefficients of this quadratic action are completely specified by the background quantities

ρ̄Q + p̄Q and M4. The latter is a function of time which we expect to vary slowly with a rate of

order Hubble.3 As shown in [33, 89], eq. (5.10) is the most general action describing quintessence

in absence of operators with higher-order spatial derivatives. Note that this action is even more

general than the starting Lagrangian (5.1) as it can be generically derived using only symmetry

arguments [33]. An advantage of eq. (5.10) is that its coefficients are written in terms of observable

quantities. Indeed, ρ̄Q + p̄Q is proportional to 1 + w, where w ≡ p̄Q/ρ̄Q is the equation of state of

quintessence, which we will take here and in the following to be constant. The parameter M4 is

related to the speed of sound of quintessence, given by

c2s =
ρ̄Q + p̄Q

ρ̄Q + p̄Q + 4M4
. (5.11)

As can be seen from this equation, absence of ghost – i.e., positiveness of the time kinetic-term in

eq. (5.10) – implies that c2s has the same sign as 1 + w [32, 48, 89]. In particular, for w < −1 one

has c2s < 0, which signals the presence of gradient instabilities. As shown in [32, 89] stability can

be guaranteed by the presence of higher derivative operators but requires that the speed of sound

is extremely small, practically zero [89].

Regardless of the motivations expressed above on the stability of single field quintessence for

w < −1, in the following we will be interested in considering the limit c2s → 0, which is obtained

when |ρ̄Q+ p̄Q| ≪M4. We will see that what turns out to be physically relevant are the density and

pressure perturbations on surfaces of constant φ, i.e. of constant π. These are the perturbations in

the so-called velocity orthogonal gauge, and using eq. (5.8) they are given by

δρ
(v.o.)
Q ≡ δρQ − ˙̄ρQπ = (ρ̄Q + p̄Q + 4M4)π̇ , δp

(v.o.)
Q ≡ δpQ − ˙̄pQπ = (ρ̄Q + p̄Q)π̇ . (5.12)

Indeed, c2s defined in eq. (5.10) can be written as [89]

c2s =
δp

(v.o.)
Q

δρ
(v.o.)
Q

. (5.13)

3The time variation of M4 is expected to be even slower than Hubble, i.e. of order (1 +w)H , which is the typical

time variation of ρQ.
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Thus, the pressure perturbation is suppressed with respect to the energy density perturbation by

the smallness of the speed of sound. As we will see, in the limit cs → 0 this implies that pressure

forces are negligible and quintessence follows geodesics, remaining comoving with the dark matter.

In the limit cs → 0, the energy density perturbation on velocity orthogonal slicing becomes

δρ
(v.o.)
Q = 4M4π̇ . (5.14)

Note that since π̇ ∼ Hπ, the difference between δρ
(v.o.)
Q and δρQ is negigible for small speed of sound,

δρ
(v.o.)
Q ≃ δρQ. All these conclusions hold independently of the value of δρQ/ρ̄Q, provided that the

effective theory described by action (5.10) remains valid, i.e. for π̇ ≪ 1 [50, 89]. In particular,

they hold also when perturbations in the energy density of quintessence become non-linear, i.e., for

δρQ ≫ ρ̄Q.

Gravitational perturbations can be straightforwardly included in the action (5.10) as in [89].

As a warm-up exercise we will here, instead, study the evolution of quintessence in the spherical

collapse solution. According to the spherical collapse model, the overdensity can be described as

a closed FLRW universe with a scale factor R which is different from the one of the background

a. This remains true also when we take into account quintessence with negligible speed of sound.

Indeed, eq. (5.13) shows that there is no pressure difference between the inside and the outside of

the overdense region. Therefore, inside the overdensity we can describe quintessence using eq. (5.9),

where the time evolution of the metric is described by the scale factor R and we thus replace a3 by

R3.

With this new action, the second term proportional to π̇ can be integrated by parts and the

coefficients of the linear part of the action rewritten in terms of ρ̄Q and p̄Q using eq. (5.6). However,

now the linear part of the action does not cancel but can be written, using the background equation

of motion, as −δH(ρ̄Q+ p̄Q)π, where we have defined δH = Hin−H, with Hin ≡ Ṙ/R. We are thus

left with a linear term in the action, due to the difference between the rates of expansion inside and

outside the overdensity. After manipulations of the last two terms in eq. (5.9), similarly to what

was done to derive eq. (5.10), the action inside the overdensity becomes4

S =

∫
d4x R3

[
1

2

(
ρ̄Q + p̄Q + 4M4

)
π̇2 − 1

2
(ρ̄Q + p̄Q)

(~∇π)2
a2

+
3

2
Ḣ(ρ̄Q + p̄Q)π

2

− 3δH(ρ̄Q + p̄Q)π − 3

2
δH(ρ̄Q + p̄Q)̇ π

2

]
.

(5.15)

4We will not include in the action the contribution to
√−g coming from the curvature of the closed FLRW

universe. Indeed, as it is time independent, it does not affect our discussion.
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Using that π̇ ∼ Hπ, neglecting time variations of M and discarding terms suppressed when

|ρ̄Q + p̄Q| ≪ M4 (i.e., in the limit c2s → 0) the equation of motion of π derived from this action

reads

π̈ + 3
Ṙ

R
π̇ = − 3δH

4M4
(ρ̄Q + p̄Q) . (5.16)

As expected, the quintessence perturbation induced by the overdensity is proportional to 1 + w,

i.e. it vanishes in the limit of the cosmological constant. Note that the source term on the right-

hand side of this equation can be written as −3c2sδH and is suppressed by the smallness of c2s. This

implies that, even for large overdensities, i.e. δH & H, variations of π due to the gravitational

potential well are extremely small, π̇ ∼ c2s, inside the regime of validity of the effective theory.

Furthermore, this also implies that the difference in π between the homogeneous and closed FLRW

solutions is also tiny, ∆π ∼ c2sH
−1. Thus, the quintessential scalar field practically lies on the same

point of its potential.

Equation (5.16) can be written, using eq. (5.14) (and δρQ ≃ δρ
(v.o.)
Q ), as

δ̇ρQ + 3
Ṙ

R
δρQ = −3δH(ρ̄Q + p̄Q) . (5.17)

Note that, as δH is always negative, the sign of δρQ is the same as that of 1 + w. Remarkably,

this implies that for w < −1 dark matter halos accrete negative energy from quintessence, as was

noticed at linear level in [56]. Combining eq. (5.17) with the background continuity equation,

˙̄ρQ + 3H(ρ̄Q + p̄Q) = 0, we obtain

ρ̇Q + 3
Ṙ

R
(ρQ + p̄Q) = 0 . (5.18)

This equation describes the evolution of the energy density of quintessence with c2s = 0 inside a

spherical overdensity dominated by dark matter. Note that the pressure perturbation is absent, as

it is suppressed by c2s → 0. Indeed, this equation differs from the description currently given in the

literature for clustering dark energy. In particular, the analogue of this equation given in [83, 86]

includes the pressure perturbation δpQ = wδρQ. Including the pressure perturbation δpQ leads to

an incorrect description even in the linear regime, in contrast with eq. (5.18) which does match the

linear theory for small overdensities.

In the following two sections we will make this analysis more complete and derive all the

equations necessary to describe the spherical collapse with quintessence.
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5.2 Spherical collapse in local coordinates

As we did in the former section, the spherical collapse is usually treated using FLRW coordinates,

as in the simplest cases (Einstein-de Sitter or ΛCDM universe) the top-hat overdensity evolves as

an independent closed universe. This somewhat obscures a crucial simplification of the problem,

i.e. that the collapse of dark matter haloes occurs on scales much smaller than the Hubble radius.

In this limit one can treat gravity as a small perturbation of Minkowski space5. As the dynamics of

cs = 0 quintessence is not completely intuitive, we want to make use of a coordinate system where

this simplification is explicit; this will also make the dynamics of the other cases of spherical collapse

clearer. We thus choose a coordinate system around a given point, such that the deviation of the

metric from Minkowski is suppressed by H2r2, where r is the distance from the point, for any time6.

Notice that we do not want to limit the validity of our approximation to times shorter than H−1

because this is also the typical time-scale of the evolution of a dark matter halo. These requirements

define the so called Fermi coordinates. Note also that we are not taking any Newtonian limit: as

we are interested in quintessence we cannot neglect pressure as source of gravity.

A particular choice of Fermi coordinates are the so-called Fermi normal coordinates [90], where

the deviation of the metric from Minkowski can be written as a Taylor expansion around the origin

whose leading coefficients are components of the Riemann tensor. These are (with the conventions

of [91])

g00 = −1−R0l0m|~0 xlxm + . . . , (5.19)

g0i = 0− 2

3
R0lim|~0 xlxm + . . . , (5.20)

gij = δij −
1

3
Riljm|~0 xlxm + . . . . (5.21)

Here we will be interested only in spherically symmetric solutions. As R0lim vanishes because of

rotational symmetry, g0i must be of order higher than r2, and we can neglect it in the following

discussion. Furthermore, rotational symmetry implies that the corrections to g00 will be propor-

tional to r2 while those to gij will be proportional either to r
2δij or to xixj . It is possible to make a

redefinition of the radial coordinate such as to get rid of the term xixj without affecting g00 and g0i

at O(r2). In such a way we are using Fermi coordinates which are not of the normal form. In this

5For a recent use of this approximation in cosmology see [30]
6In the spherically symmetric case, the range of validity of this approximation goes to zero close to the collapse

singularity. However, this is not relevant because the singularity is anyway an artifact of the spherical symmetry. In

the real case the curvature of space remains small and the halo reaches virialization.
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case the metric can be written in the Newtonian gauge (not to be confused with the cosmological

perturbation theory Newtonian gauge) form as

ds2 = −(1 + 2Φ)dt2 + (1− 2Ψ)d~x2 , (5.22)

where Φ and Ψ are proportional to r2. In this gauge the 00 component of the Einstein equation

gives

∇2Ψ = 4πGρ . (5.23)

The part of the ij Einstein equation proportional to the identity gives

6Ψ̈ + 2∇2(Φ−Ψ) = 24πGp . (5.24)

As the typical time scale is of order Hubble, the Ψ̈ term is suppressed with respect to ∇2Ψ by

O(H2r2), and can therefore be neglected. Thus, using eq. (5.23) we obtain

∇2Φ = 4πG(ρ+ 3p) . (5.25)

As a first step, let us show how one can use these coordinates to describe an unperturbed FLRW

solution with non-vanishing curvature. In isotropic comoving coordinates this metric is written as

ds2 = −dτ2 + a(τ)2
d~y 2

(1 + 1
4K~y

2)2
, (5.26)

where K is the curvature parameter. Performing the change of coordinates τ = t − 1
2Hr

2 and

~y = ~x
a(1 + 1

4H
2r2) [30], with a and H evaluated at t rather than at τ , one gets at first order in

H2r2,

ds2 ≃ −
[
1− (Ḣ +H2)r2

]
dt2 +

[
1− 1

2
(H2 +K/a2)r2

]
d~x 2 , (5.27)

which is indeed of the Fermi form (5.22), where the corrections from flat spacetime are given by

Φ = −1

2
(Ḣ +H2)r2 , Ψ =

1

4
(H2 +K/a2)r2 . (5.28)

Let us now show that the metric (5.27) is a solution of the Einstein equations (5.23) and (5.25).

In the coordinates (t, xi), ρ(τ) and p(τ) are not space independent; however, their space dependence

is suppressed by H2r2, so that it can be neglected. With spherical symmetry, assuming regularity

at the origin, the two Einstein equations (5.23) and (5.25) are then solved by

Ψ =
8πGρ

3

r2

4
, (5.29)
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and

Φ =
4πG

3
(ρ+ 3p)

r2

2
. (5.30)

Comparing these expressions with (5.28) we recover the two Friedmann equations, respectively,

H2 +
K

a2
=

8πG

3
ρ , (5.31)

and
ä

a
= −4πG

3
(ρ+ 3p) . (5.32)

Note also that the traceless part of the ij Einstein equation, (∂i∂j − 1
3δij∇2)(Φ − Ψ) = 0, is

trivially satisfied by the expressions above. Matter stays at fixed ~y in the original FLRW coordi-

nates; therefore it moves in the new coordinates as ~x ∝ a, i.e. with velocity ~v = H~x. Finally, using

this equality one can check that also the 0i component of the Einstein equations is satisfied.

Let us now look at the dynamical equations for the fluid. The time component of the conser-

vation of the energy-momentum tensor gives (see for example [92]) the continuity equation

ρ̇+ ~∇ · [(ρ+ p)~v] = 0 . (5.33)

This equation is the same as in Minkowski spacetime, as the gravitational corrections only induce

terms suppressed by O(H2r2). When the velocity ~v is simply given by the unperturbed Hubble

flow we obtain the standard conservation equation in expanding space, ρ̇+ 3H(ρ+ p) = 0.

The spatial component of the conservation of the energy-momentum tensor gives the Euler

equation,

~̇v + (~v · ~∇)~v = − 1

(ρ+ p)

[
~∇p+ ~v

∂p

∂t

]
− ~∇Φ , (5.34)

where we have assumed that v ≪ c. At leading order in O(H2r2), gravitational perturbations

enter only through the last term on the right-hand side of this equation. In the particular case

of an isotropic and homogenous solution the first term on the right-hand side exactly cancels: as

p(~x, t) = p(t−Hx2/2), ~∇p = −ṗH~x and the gradient of the pressure cancels with the term coming

from its time dependence. This is not surprising, as what matters in the Euler equation is the

4-dimensional gradient of pressure perpendicular to the fluid 4-velocity. In this case eq. (5.34)

reduces to

~̇v + (~v · ~∇)~v = −~∇Φ . (5.35)

This equation is verified by the Hubble flow ~v = H~x, since we get

ä

a
~x = −~∇Φ , (5.36)
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which is clearly satisfied by the explicit expression for Φ, eq. (5.28).

We can now use these local coordinates to describe the spherical collapse in various cases,

starting from the simplest.

• Dark matter only

Let us take a spherically symmetric distribution of matter around the origin. As both the gravi-

tational potentials Φ and Ψ satisfy the Poisson equation, we do not need to know how the mass

is radially distributed to solve for the gravitational background outside a given radius r: we just

need the total mass inside the radius r. In particular (see figure 5.1), if inside a given radius rout

a distribution contains as much matter as the unperturbed cosmological solution, from the outside

it will look exactly as the unperturbed background. This implies that we can smoothly glue this

solution at r = rout to the cosmological background, and that the latter will not be affected by the

gravitational collapse inside. This is of course a linearized version of Birkhoff’s theorem in General

Relativity.

Figure 5.1: Spherical collapse

Conversely, the solution inside a given radius is not affected by what happens outside. In

particular, if we assume a homogeneous initial condition inside a radius rin (with rin < rout), this

central region will evolve as if these homogeneous initial conditions were extended outside, i.e. as

a complete FLRW solution [66]. The central overdense region will remain exactly homogeneous,

reaching maximum expansion and then collapsing.
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Without further assumptions, the evolution of the layer rin < r < rout does not enjoy particular

simplifications and its evolution must be computed as a function of the initial profile. In any case,

this is usually irrelevant as we are only interested in the fate of the r < rin region. If we assume

that the layer rin < r < rout is empty, the Poisson equations (5.23) and (5.25) give 1/r solutions

for the potentials, like for a source localized at the origin. This is the linearization of the exact

Schwarzschild solution.

• Dark matter and a cosmological constant

The considerations above also hold when we include a cosmological constant. Although Φ and

Ψ now solve different equations (because pΛ 6= 0), they are both of the Poisson form. Thus, we

still have an unperturbed evolution outside rout if the total matter inside matches the background

value. Assuming initial homogeneity, the central region r < rin will evolve like a complete FLRW

universe [79]. Although now pressure does not vanish, it just comes from the cosmological constant

which does not define a preferred frame and is therefore comoving with dark matter both inside

and outside the overdensity.

• Non-clustering quintessence: cs = 1

When quintessence has a speed of sound cs = 1, it does not effectively cluster but it keeps on

following the cosmological background solution, irrespective of the dark matter clustering [80].

As before, outside rout there is an unperturbed cosmological background. What is new now is

that the central region r < rin does not behave as a complete FLRW solution, even if we start with

a homogeneous overdensity. Indeed, quintessence and dark matter do not have a common velocity:

while dark matter slows down and eventually starts collapsing, quintessence keeps following the

external Hubble flow ~vQ = Hout~x. Note that, on the other hand, in the cosmological constant

case one cannot define a dark energy 4-velocity as its energy-momentum tensor is proportional

to the metric. To study the evolution of the dark matter overdensity one must use the Euler

equation (5.36). Here, what defines the velocity flow of dark matter is the effective “scale factor”

R, ~vm = Ṙ/R ~x. This yields

R̈

R
~x = −~∇Φ . (5.37)

Using the explicit solution (5.30) for Φ, this equation becomes [80]

R̈

R
= −4πG

3
(ρm + ρ̄Q + 3p̄Q) , (5.38)
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where we have separated the contribution of dark matter and quintessence to Φ. Notice that,

although this equation looks like one of the Friedmann equations, the dynamics of R is not the

same as for a FLRW universe. Indeed, ρm evolves following the scale factor R, while the quintessence

follows the external scale factor a. In a FLRW universe, from eq. (5.38) together with the continuity

equation one can derive the first Friedmann equation, (Ṙ/R)2 = 8πG
3 ρ−K/R2. Here, as the different

components follow different scale factors, this is not longer possible and the first Friedmann equation

does not hold.

• Clustering quintessence: cs = 0

Let us now move to the subject of this chapter. We want to show that, in the limit of vanishing speed

of sound, quintessence remains comoving everywhere with dark matter. In particular, this implies

that in the region r < rin quintessence follows dark matter in the collapse and the overdensity

behaves as an exact FLRW solution so that, contrary to the cs = 1 case, also the first Friedmann

equation holds. The fact that quintessence remains comoving with dark matter can be understood

both by using the fluid equations or directly from the scalar field equation of motion.

In the fluid language, the dynamics is described by the Euler equation (5.34). In general, in

the presence of sizeable pressure gradients, a fluid does not remain comoving with dark matter,

i.e. it does not follow geodesics. Since quintessence has a sizeable pressure, the fact that it moves

following geodesics may be unexpected but it is obtained in the limit cs → 0. This can be easily

seen by rewriting the Euler equation for quintessence in covariant form as

uµ∇µu
ν = − 1

(ρQ + pQ)
(gνσ + uνuσ)∇σpQ , (5.39)

where uµ is the quintessence 4-velocity. When the right-hand side of this equation vanishes, the

4-velocity solves the geodesic equation. In fact, the pressure gradient is multiplied by the projector

perpendicular to the fluid 4-velocity. This is the same as projecting on surfaces of constant φ,

and it is equivalent to a gradient of the velocity-orthogonal pressure perturbation that appears in

equation (5.12), which involves only π̇, and not π. By eq. (5.13) this is negligible in the limit cs → 0

and thus the right-hand side of (5.39) vanishes.

This result is even clearer in the scalar field language Taking the derivative of the equation

defining the quantity X in (5.1),

∂ν(∂µφ∂µφ) = −∂νX , (5.40)
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and writing it in terms of the 4-velocity uµ = −∂µφ/
√
X, we have

2uµ
√
X∇µ(

√
Xuν) = −∂νX , (5.41)

and therefore

uµ∇µu
ν = − 1

2X
(gνσ + uνuσ)∂σX . (5.42)

Equation (5.39) is recovered using eq. (5.5) and taking into account that ∂σP (φ,X) = ∂P/∂φ ·
∂σφ+ ∂P/∂X · ∂σX and that the first term vanishes when multiplied by the projector orthogonal

to uµ. From this, we clearly see that what matters is only the gradient of the pressure on φ = const

hypersufaces. This vanishes in the limit cs → 0 and thus we have geodesic motion. We stress

that, although quintessence with cs = 0 follows geodesics, its dynamics is quite different from the

one of dark matter. Pressure does not accelerate the quintessence 4-velocity but it does affect the

energy conservation equation (5.33). Moreover, quintessence does not enjoy a conserved current,

while dark matter particle number is conserved; this is related to the absence of the shift symmetry

φ→ φ+ c in the scalar field Lagrangian (see for example [93]).

As discussed in section 5.1, the different dark matter evolution inside and outside the overdensity

changes the quintessence solution by a very tiny amount ∆π ∼ c2sH
−1: the quintessence field sits

at the same position along its potential, φ = φ̄(t), apart from negligible c2s corrections. Notice

that this was derived using two different Friedmann coordinate systems, one following dark matter

inside the overdensity and one following the unperturbed Hubble flow outside. Thus, in reality we

have two solutions φ = φ̄(tin) and φ = φ̄(tout) respectively. Once these two solutions are written

in the same local coordinates (5.27), the solution for φ becomes φ = φ̄(t − 1
2Hinr

2) for r < rin

and φ = φ̄(t− 1
2Houtr

2) for r > rout. This implies that in these coordinates π has to jump in the

layer between the two regions, by an amount ∆π ∼ 1
2r

2δH, and that this jump is not suppressed

by c2s. One may expect that the scalar field would “react” to this gradient between the inside and

the outside. However, this does not happen in the limit cs → 0 as the spatial kinetic term is very

suppressed. Let us see this explicitly.

To study the scalar field equations in the local coordinates, one can start by writing the equations

in Minkowski space and then check a posteriori that the deviation of the metric from flat space

only gives relative corrections O(H2r2). The evolution equation for φ, eq. (5.2), reads in Minkowski

space

− ∂t(P,X φ̇) + ∂i(P,X∂iφ) = −1

2
P,φ . (5.43)
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5.3 Solving the spherical collapse

If we try a comoving solution of the form φ = φ̄(t − 1
2Hr

2), we end up with the standard FLRW

equation for φ̄, inclusive of the friction term,

− ∂t(P̄,X
˙̄φ)− 3HP̄,X

˙̄φ = −1

2
P̄,φ . (5.44)

Metric fluctuations give only a correction to this equation of order O(H2r2). As we discussed, the

two homogeneous solutions for r < rin and r > rout are different so that we expect gradient terms

to smooth out the initial top-hat profile. To estimate the thickness L of the layer over which the

smoothing takes place, we can study perturbations around a top-hat profile and require the spatial

and time kinetic term of the perturbation π in eq. (3.9) to be comparable:

M4π̇2 ∼ (ρQ + pQ)
π2

L2
. (5.45)

Using that π̇ ∼ Hπ, from this comparison we obtain L ∼ |cs|H−1. This makes perfect sense: our

top-hat profiles are smoothed out over a distance comparable to the sound horizon7.

In conclusion, the solutions outside and inside the overdensity are exact FLRWwith quintessence

comoving with dark matter. Gradient terms will smooth out this solutions on scales of order of

the sound horizon, which vanishes for cs → 0. This discussion also tells us that taking cs = 0 will

be correct only for objects which are much bigger than the sound horizon |cs|H−1. In the opposite

limit of an object which is much smaller than the sound horizon, one can treat quintessence as

unperturbed as discussed above in the c2s = 1 case. For example, if one is interested in objects

larger than 1Mpc, one can neglect the speed of sound as long as |cs| . 10−4.

5.3 Solving the spherical collapse

In this section we derive the equations for the spherical collapse of dark matter in the presence of

quintessence with vanishing speed of sound and we compute their solutions numerically.

• The background universe

The background is described by a flat FLRW metric with scale factor satisfying the Friedmann

equation (
ȧ

a

)2

=
8πG

3
(ρ̄m + ρ̄Q) , (5.46)

7It is straightforward to check that this estimate is not altered by the higher derivative operators that are required

for stability when w < −1 [32].

61



5. THE SPHERICAL COLLAPSE IN QUINTESSENCE COSMOLOGIES

where ρ̄m and ρ̄Q are the background energy density of dark matter and quintessence, respectively.

For later purposes, we express ρ̄m and ρ̄Q in terms of the fractional abundance of dark matter Ωm,

ρ̄m ≡ 3H2

8πG
Ωm , ρ̄Q =

1− Ωm

Ωm
ρ̄m . (5.47)

Dark matter redshifts with the expansion as the physical volume, ρ̄m ∝ a−3, while the energy

density of quintessence scales as ρ̄Q ∝ a−3(1+w). The dark matter contribution to the critical

density Ωm can be written as a function of its value today, Ωm,0, and x, the scale factor normalized

to unity today (at t = t0):

x ≡ a/a0 . (5.48)

This yields

Ωm(x) =

(
1 +

1−Ωm,0

Ωm,0
x−3w

)−1

. (5.49)

Equation (5.47) can then be rewritten as

ρ̄m =
3H2

0

8πG

Ωm,0

x3
, ρ̄Q =

1− Ωm,0

Ωm,0
x−3wρ̄m , (5.50)

where the second equation follows from (5.49). Furthermore, rescaling the time variable by defining

η ≡
√

Ωm,0 H0t , (5.51)

one can rewrite the Friedmann equation as

dx

dη
= (xΩm(x))−1/2 . (5.52)

The initial condition for x can be imposed at some small initial time ηi during matter dominance:

xi = (3ηi/2)
2/3. Then, eqs. (5.49) and (5.52) completely describe the background evolution of the

metric and energy-momentum tensors.

• The linear evolution

Before studying the collapsing spherical overdensity we derive the evolution equations of pertur-

bations of dark matter and quintessence in the linear regime. As we consider scales much smaller

than the Hubble radius, the gauge dependence of perturbations is not important. We will thus per-

turb the continuity and Euler equations in local coordinates, eqs. (5.33) and (5.35), adding small

inhomogeneous perturbations δ(t, ~x) and ~u(t, ~x) to the homogeneous energy density and Hubble

flow velocity:

ρ = ρ̄(1 + δ) , ~v = H~x+ ~u . (5.53)
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5.3 Solving the spherical collapse

Let us start from the dark matter. Perturbing at linear order eq. (5.33) with pm = 0 yields
(
∂

∂t
+H ~x · ~∇x

)
δm = −~∇x · ~u (local coords) , (5.54)

where we have specified that we are describing perturbations using local (physical) spatial coordi-

nates ~x. On the other hand, on the left-hand side of this equation one recognizes the time derivative

at fixed comoving coordinates ~y = ~x/a(t), i.e.,
(
∂

∂t

)

~y

=

(
∂

∂t
+H ~x · ~∇

)

~x

. (5.55)

Indeed, here we are interested in describing the evolution of an overdensity of dark matter contained

in a comoving volume. Thus, we describe δm and ~u as a function of the comoving coordinates, which

simply gives

δ̇m +
1

a
~∇y · ~u = 0 . (5.56)

To close this equation we need the evolution of the dark matter peculiar velocity ~u. This can

be obtained by perturbing at linear order the Euler equation (5.35). Using comoving coordinates,

the perturbed Euler equation becomes

~̇u+H~u+
1

a
~∇yδΦ = 0 , (5.57)

where δΦ is the perturbation of the Newtonian potential,

δΦ = Φ+
1

2
(Ḣ +H2)r2 . (5.58)

Equations (5.56)–(5.58) have been derived for instance in [94] in the context of Newtonian mechanics

described with expanding coordinates, for a pressureless fluid in the presence of vacuum energy.

Here the Poisson equation for δΦ is sourced by both dark matter and quintessence perturbations:

1

a2
∇2

yδΦ = 4πG(ρ̄mδm + ρ̄QδQ) , (5.59)

where we have used that δpQ = 0. The final step is to eliminate the peculiar velocity by subtracting

the divergence of eq. (5.57) from the time derivative of eq. (5.56). With the Poisson equation (5.59)

we obtain

δ̈m + 2Hδ̇m = 4πG(ρ̄mδm + ρ̄QδQ) . (5.60)

For quintessence we perturb the continuity equation (5.33) which gives, in comoving coordinates,

using δpQ = 0,

δ̇Q − 3HwδQ + (1 + w)
1

a
~∇ · ~u = 0 . (5.61)
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To eliminate the divergence of the peculiar velocity we can use eq. (5.56) taking quintessence to be

comoving with dark matter. Indeed, as explained above, both the dark matter and quintessence

follow geodesics and are dragged by the same potential well and the growing mode of their velocities

is the same. Thus

δ̇Q − 3HwδQ = (1 + w)δ̇m . (5.62)

In matter dominance, when δm ∝ a, the solution of this equation is [89]

δQ =
1 + w

1− 3w
δm . (5.63)

Note that the denominator on the right-hand side further suppresses the perturbation of quintessence

with respect to the näıve 1 + w estimate.

In terms of the dimensionless variables x and η, respectively defined in eqs. (5.48) and(5.51),

equations (5.60) and (5.62) are rewritten as

d2δm
dη2

+
2

x

dx

dη

dδm
dη

=
3

2x3

(
δm +

1− Ωm,0

Ωm,0
x−3wδQ

)
, (5.64)

where we have used eq. (5.50), and

dδQ
dη

− 3

x

dx

dη
wδQ = (1 + w)

dδm
dη

. (5.65)

The initial conditions are set in terms of the initial dark matter density contrast δm,i. In matter

dominance δ̇m = Hδm, i.e. dδm/dη|i = 2δm,i/(3ηi), while the value of δQ,i is fixed by δm,i through

equation (5.63).

• The spherical overdensity

We now study the evolution of a spherical homogeneous overdensity of radius R in a FLRW back-

ground that satisfies the Friedmann equation (5.46). We denote the energy densities of dark matter

and quintessence inside the collapsing ball by ρm and ρQ, respectively. Since dark matter is pres-

sureless, pm = 0 and since quintessence pressure perturbation is negligible, δpQ ≪ δρQ, we can

take quintessence pressure to be the unperturbed one p̄Q.

In local coordinates, the evolution of the scale factor R is described by the Euler equation (5.36).

Using the appropriate scale factor – i.e., R instead of a – and replacing the potential Φ using

eq. (5.30), the divergence of this equation can be written as

R̈

R
= −4πG

3
(ρm + ρQ + 3p̄Q) . (5.66)
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5.3 Solving the spherical collapse

(Note that for a non-clustering quintessence the equation for R is the same with ρQ replaced by

ρ̄Q [80].)

For the evolution equations for ρm and ρQ we use the continuity equation (5.33). Inside the

ball this reads, for dark matter,

ρ̇m + 3
Ṙ

R
ρm = 0 , (5.67)

whose solution is simply

ρm = ρm,i
R3

i

R3
. (5.68)

For dark energy eq. (5.33) becomes

ρ̇Q + 3
Ṙ

R
(ρQ + p̄Q) = 0 , (5.69)

which can be rewritten in terms of the nonlinear density contrast ∆Q ≡ ρQ/ρ̄Q − 1 as

∆̇Q + 3
Ṙ

R
∆Q − 3

ȧ

a
(1 + w)∆Q + 3(1 + w)

(
Ṙ

R
− ȧ

a

)
= 0 . (5.70)

To solve eqs. (5.66) and (5.70) numerically it is convenient to use y, the radius of the ball

normalized to unity at the initial time:

y ≡ R/Ri , (5.71)

and change a and t to the dimensionless variables x, η. Using eq. (5.50), eq. (5.66) can be rewritten

as
d2y

dη2
+

1

2

[
1 + δm,i

x3i

1

y2
+ (1 + 3w +∆Q)

1− Ωm,o

Ωm,o

y

x3(1+w)

]
= 0 , (5.72)

where we have used eq. (5.68) and that in the linear regime, where the initial conditions are set,

ρm/ρ̄m|i = 1 + δm,i. Equation (5.70) yields

d∆Q

dη
+ 3(1 + w)

(
1

y

dy

dη
− 1 + ∆Q

x

dx

dη

)
+ 3

∆Q

y

dy

dη
= 0 . (5.73)

As initial conditions we have yi = 1 by definition; the expansion rate of a collapsing sphere with

dark matter only and in the linear regime can be written as [95]

Ṙ

R
=

2

3t

(
1− 1

3
δm

)
, (5.74)

which fixes the first derivative of y: dy/dη|i = 2(1−δm,i/3)/(3ηi). For the dark energy perturbation

we use that ∆Q,i is linear at early times, ∆Q,i = δQ,i, and thus is fixed in terms of δm,i by eq. (5.63).
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By solving numerically eq. (5.52) for the background evolution described by x and plugging the

result into the coupled eqs. (5.72) and (5.73), one can compute the evolution of R as a function of

time t, from the initial time ti to the time of collapse tc. The evolution of R is shown in figure 5.2

for four different models: CDM only, ΛCDM, cs = 1 quintessence and cs = 0 quintessence in the

cases w = −0.7 and w = −1.3. We stress that quintessence models with c2s = 1 and w < −1 are

plagued by ghost instabilities and are thus very pathological on short scales; we study them here

only for comparison with the c2s = 0 case. We assume Ωm,0 and ΩQ,0 (or ΩΛ) to be the WMAP5

best fit values [96]. We have taken δm,i = 3 · 10−4 as initial dark matter overdensity at ηi = 10−6.

As expected, since the cosmological constant and the quintessence slow down the evolution of R,

the collapse is faster in the pure CDM model. This effect takes place earlier for w > −1, as in this

case quintessence is more important in the past than the cosmological constant. Thus for w = −0.7

the collapse happens later. On the contrary, for a quintessence with w = −1.3 collapse takes place

earlier. For w = −0.7 the collapse is enhanced by the quintessence perturbations and it takes place

faster when c2s = 0. The opposite happens for w < −1, as in this case negative energy clusters,

hindering the collapse (see eq. (5.17)).

In general, the time of collapse depends on the value of the initial dark matter overdensity.

This is shown in figure 5.3, where the redshift of collapse zc is plotted as a function of the initial

density constrast δm,i at the same initial time. As expected, larger overdensities collapse earlier, at

higher redshift. For large enough overdensities – and early enough collapse – the redshift of collapse

becomes the same for all four different models, because the cosmological constant or the quintessence

remain subdominant during the whole process. As expected, quintessence with w > −1 requires a

larger initial overdensity to collapse and in this case quintessence perturbations with c2s = 0 help

the collapse. The opposite happens for w < −1.

An important quantity to compute in order to derive the mass function is the critical density

contrast δc, i.e. the density contrast in the linear theory computed at the time when the spherical

collapse solution reaches the singularity. Thus, we numerically solve the linear evolution equations

for δm and δQ, eqs. (5.64) and 5.65, and we take δc to be δm at the time of collapse. In the standard

CDM scenario δc is given by the well-known number 1.686 [66], independently of the redshift of

collapse zc. However, in the presence of a cosmological constant or quintessence, δc depends on

the redshift of collapse. Indeed, as the relative abundance of dark matter and dark energy changes

with time, the dynamics of the spherical collapse depends on when it takes place. This is shown

in figure 5.4, where we plot δc as a function of zc. This result generalizes to quintessence with

c2s = 0 the standard results obtained for CDM [66], ΛCDM [79] and smooth quintessence [76]. As
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Figure 5.2: Thick lines: time evolution of the radius for a spherical collapse. Thin lines: time evolution

following the linearized solutions. The quintessence equation of state is w = −0.7 (above) and w = −1.3

(below). Starting with the same overdensity, a model with CDM only is the first to collapse. In the

upper figure ΛCDM collapses before the quintessence models as dark energy with w = −0.7 is more

important in the past. The situation is reversed for w = −1.3. For w = −0.7 the cs = 0 quintessence

collapses before cs = 1 as positive energy clusters together with dark matter. For w = −1.3 the situation

is reversed as negative energy clusters and hinders the collapse. Note that quintessence models with

c2s = 1 and w < −1 are plagued by ghost instabilities and are thus very pathological on short scales. In

this figure and in the following ones we study this case only for comparison with the c2s = 0 case.

expected, if the collapse takes place early, when the cosmological constant or quintessence are not

important, the critical density δc will be the same as for CDM. The cosmological constant decreases
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Figure 5.3: Redshift of collapse as a function of the initial overdensity. In the upper figure quintessence

models have w = −0.7, while they have w = −1.3 in the lower one. The behavior follows that explained

in figure 5.2.

the value of δc and quintessence with w > −1, becoming important earlier, decreases it even more.

Quintessence perturbations enhance δc if w > −1. This effect is very mild for w < −1 because

quintessence becomes important only at very late times.

The change of threshold is very small (. 0.5%) [84] in all the cases and it is easy to understand

why. Let us compare for example a universe with CDM only with a ΛCDM one and let us focus on

objects that collapse at a given redshift, say z = 0. The initial overdensity must be rather bigger

in the ΛCDM case to overcome the acceleration induced by Λ. But the threshold δc is obtained
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Figure 5.4: Linear overdensity at collapse as a function of the redshift of collapse. In the upper figure

the quintessence models have w = −0.7, while they have w = −1.3 in the lower one.

evolving this initial value with the linear transfer functions and this will suppress the ΛCDM value,

exactly for the same reason which required it to be bigger in the first place. In other words, the

only effect comes from the difference between the linear and non-linear evolution and this causes

only a small suppression with respect to the CDM case.

5.4 The mass function of dark matter haloes

We are now ready to discuss the predictions for the mass function using the Press-Schechter for-

malism [67, 69]. We will first concentrate on the mass of dark matter, leaving aside for the moment
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the contribution of the quintessence mass to the halos. The volume density of dark matter halos

of mass M is given by

dnPS
dM

(M,z) = −
√

2

π

ρ̄m
M2

δc(z)

D(z)σM

d log σM
d logM

exp

[
− δ2c (z)

2D2(z)σ2M

]
. (5.75)

Here σ2M is the smoothed variance of the density field today, which we define with a sharp cut-off

in real space

σ2M ≡ 1

2π2

∫ ∞

0
dk k2|W (kR)|2Pm(k) with M ≡ 4π

3
R3ρ̄m , (5.76)

where Pm is the matter power spectrum and W (kR) ≡ 3(sin kR− kR cos kR)/(kR)3 is the Fourier

transform of the top-hat window function in real space. Note that the Press-Schechter mass func-

tion (5.75) can be rigorously derived only using a sharp filter in Fourier space. Thus its use with

a sharp filter in real space is just an approximation; for corrections to this approximation see for

example [71] and the discussion in chapter 6. Notice that the redshift dependence of the threshold

δc(z) only comes from the spherical collapse dynamics discussed in the previous Section and does

not include the growth of the matter power spectrum, which is separately taken into account by

the linear growth function D(z).

The linear matter power spectrum is very similar in the cases cs = 1 and cs = 0. The difference

comes from the contribution to the Poisson equation of quintessence perturbations as shown in

eq. (5.64). The effect is independent of k and it is thus equivalent to a change in the growth

function D(z). The change in the growth function can be easily calculated as a function of z by

solving eqs (5.64) and (5.65). The result is shown in fig. 5.5. Given that quintessence becomes

relevant only recently and that perturbations are suppressed by 1 + w, the effect on dark matter

does not exceed the percent level; this result is somewhat smaller than a näıve estimate one can get

by comparing the two contributions on the right-hand side of eq. (5.64). As one can see in fig. 5.5,

for 1 + w > 0 setting the speed of sound of quintessence to zero fosters the clustering and the

dark matter spectrum is slightly enhanced; for 1+w < 0 quintessence has negative energy and the

dark matter spectrum is suppressed. The size of the effect is smaller for 1 +w < 0 as quintessence

becomes relevant only very recently.

For the calculation of the mass function, we do not need only the growth rate, but also the

complete matter power spectrum. We use for this the publicly available code CAMB [11], which

allows to set to zero the speed of sound of quintessence. Apart from w all the other cosmological

parameters are set to the WMAP5 best fit values [96]. We have checked that the effect of setting
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Figure 5.5: Ratio between the growth functions D(z) for cs = 0 and cs = 1 as a function of the redshift

z.

cs = 0 instead of cs = 1 in the code is compatible with what we got in fig. 5.5. In figure 5.6 we

show the matter power spectrum with cs = 0 and cs = 1 for two different values of w. The speed

of sound gives a small effect, much smaller than the modification of the growth rate induced by

the different background: for w > −1 quintessence becomes relevant before and suppresses the

spectrum in comparison with ΛCDM. The opposite effect is obtained in the case w < −1.
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Figure 5.6: Matter power spectrum. The two lines with w = −1.3 are almost superimposed.
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5. THE SPHERICAL COLLAPSE IN QUINTESSENCE COSMOLOGIES

The equation of state w and the speed of sound of quintessence enter in the mass function

eq. (5.75) modifying the growth function D(z) and the threshold for collapse δc(z). Notice that only

the combination δc(z)/D(z) enters in the Press-Schechter formula. As we discussed in the previous

Section, the change in the threshold is very suppressed and much smaller than the correction of

the growth function.

We want to focus on the effect of clustering quintessence on the collapse with respect to the

case when quintessence remains unperturbed. This effect can be estimated taking the ratio of the

Press-Schechter mass functions in the two cases,

dnPS/dM(w, cs = 0)

dnPS/dM(w, cs = 1)
, (5.77)

plotted in figure 5.7. We see that the effect is quite small: the ratio becomes large at high masses

as a consequence of the exponential dependence of the number density on the mass. We do not

dwell on the measurability of this small effect because, as we will discuss in the next section, the

additional contribution to the mass of the halo coming from the clustered quintessence will give a

comparable change in the mass function.

It is well known that the Press-Schechter formula does not fit in detail the mass function

obtained by numerical simulations. A better fit, motivated by the ellipsoidal collapse model, is

given by the Sheth-Tormen mass function [74]:

dnST
dM

(M,z) = −
√

2a

π
A

[
1 +

(
aδ2c

D(z)2σ2M

)−p
]

ρ̄

M2

δc
D(z)σM

d log σM
d logM

exp

[
−a δ2c

2D(z)2σ2M

]
, (5.78)

with a = 0.707, A = 0.322184 and p = 0.3. Since, as discussed, the dependence of the threshold

δc on the cosmology is very mild in all cases, δc is usually taken to be z independent and equal to

the EdS value, δc = 1.686. Notice that in this way the mss function is “universal”, in the sense

that the dependence on the cosmological parameters and redshift is only through the smoothed

linear density field D(z)σM . It is reasonable to expect that the Sheth-Tormen formula gives a

good description of the mass function in the case of non-clustering quintessence. In this case the

only effect of quintessence is through the time dependence of the background and its effect on

the growth function; this is not qualitatively different from the case of ΛCDM. In other words,

we expect “universality” to hold also in this case. On the other hand, we can estimate the effect

of clustering quintessence using the ratio described above: in taking the ratio we expect that the

shortcomings of the Press-Schechter prescription will partially cancel. Therefore, in figure 5.8 we

plot
dn

dM
≡ dnST

dM
(w, cs = 1) · dnPS/dM(w, cs = 0)

dnPS/dM(w, cs = 1)
. (5.79)
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Figure 5.7: Ratio of the Press-Schechter mass function for cs = 0 and cs = 1 at z = 0 (above) and

z = 1 (below).

As expected the main effect is at low redshift and high masses.

5.5 Quintessence contribution to the halo mass

So far we have been interested in the contribution of dark matter to the halo mass function. Given

that quintessence with vanishing speed of sound participates in the collapse, one may wonder
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Figure 5.8: Mass function calculated using eq. (5.79) for z = 0 (above) and z = 1 (below).

whether quintessence will contribute a sizeable amount of mass to the dark matter halo. After all,

most of the measurements will be sensitive to the total mass of the object, and not only to the

fraction of it associated with dark matter.
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5.5 Quintessence contribution to the halo mass

The quintessence contribution to the halo mass can be defined as

MQ ≡
∫

M
d3x δρQ , (5.80)

where the integral is extended over the whole dark matter overdensity. If we stick to the spherical

collapse model this just reduces to (4π/3)R3δρQ. Of course it makes sense to interpret this expres-

sion as a contribution to the halo mass, only if it stays practically constant over the time scales of

interest, i.e. a Hubble time. In the spherically symmetric case δρQ follows equation (5.17):

δ̇ρQ + 3
Ṙ

R
δρQ = −3δH(ρ̄Q + p̄Q) . (5.81)

When |δρQ| ≫ |1 +w|ρ̄Q, the right-hand side is negligible. In this limit δρQ redshifts as matter so

that the integral (5.80) becomes constant, as can be seen in figure 5.9. We expect this condition

to be marginally satisfied at turn-around when δρQ ∼ (1 + w)ρ̄Q. This allows us to estimate the

quintessence contribution to the halo mass,

MQ

Mm
∼ (1 + w)

ΩQ

Ωm
, (5.82)

although for a precise estimate one cannot neglect the evolution of the quintessence mass after

turn-around. Notice also that quintessence with 1 +w < 0 contributes with a negative mass.

Of course, this is only the prediction of the idealized spherical collapse solution. In reality,

dark matter haloes virialize with an overdensity ∼ 200 times larger than the background. What

happens to quintessence while dark matter virializes? Quintessence is exactly comoving with dark

matter; eventually dark matter reaches shell crossing and the velocity field ceases to be single-

valued. This corresponds to the formation of cusps in the quintessence field, similarly to what

discussed in the ghost condensate case [50] and more recently in the context of Hořava-Lifshift

gravity [97, 98]. The dynamics of the cusps will depend on higher derivative operators and possibly

on the UV completion of the theory8. In any case, the dynamics of quintessence in this phase is

very complicated [50] and its treatment is the subject of ongoing work. Let us assume however that

the cusps are somehow regularized and try to draw some general conclusion that is independent of

the details of virialization 9.
8For positive 1 + w one has c2s > 0. In this case, one would näıvely expect that quintessence remains smooth on

very short scales thus preventing the formation of cusps. However, in our case the velocity of the quintessence fluid

(which is the same as the dark matter velocity) exceeds the speed of sound, i.e. it is “supersonic”. In this case, sound

waves are too slow to prevent the formation of caustics.
9We are implicitly assuming that the process responsible for smoothing the cusps does not lead to an energy

loss to infinity. For instance, this can happen if the smoothing excites new relativistic degrees of freedom which are

radiated away.
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Figure 5.9: Spherical collapse for w = −0.9 (above) and w = −1.1 (below). Solid blue line: the

quintessence contribution to the halo mass (4π/3)R3δρQ, normalized to the constant dark matter mass,

as a function of time. Note that it becomes constant at late time. Red dotted line: the same, but for

the background energy density ρ̄Q. Orange dashed: the same for (1 + w)ρ̄Q.

As δρQ ≃ (1 + w)ρ̄Q at turn-around, when matter starts virialization the inequality |δρQ| ≫
|1 + w|ρ̄Q is satisfied with rather good approximation: as the virial radius is approximately half

of the turn-around radius, δρQ has grown by approximately 8 times from the beginning of the

collapse while ρ̄Q has remained approximately constant. The spherical collapse solution indicates

that the quintessence mass is, with good approximation, constant at virialization. In the real case

we expect the variation of the quintessence mass to be even smaller; in fact, the conservation of the

stress-energy tensor tells us that the mass variation is related to the energy flux across a surface

around the object,

Ṁ =

∮
dSi T

i
0 . (5.83)

As during virialization the velocity field of quintessence will cease to be radial, we expect this
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5.5 Quintessence contribution to the halo mass

integral to be suppressed with respect to the spherically symmetric case. We conclude that, as the

flux integral is negligible, the mass associated to quintessence stays constant independently of the

details of virialization. Thus, a good estimate of the quintessence mass can be obtained from the

spherical collapse model evaluating the quintessence contribution at the virialization radius, see

figure 5.10. The ratio between the virialization and the turn-around radii is taken to be the same

as in ΛCDM [79]10.
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Figure 5.10: The mass contribution of quintessence to the total halo mass, calculated from the spherical

collapse solution when the radius reaches the virialization value.

Let us now see how we can take into account the additional quintessence mass in the prediction

for the mass function. A rigorous treatment would be quite challenging: the formation of an

object of mass M at redshift z should be accompanied by an extra mass M →M [1 + ǫ(z)], where

ǫ(z) ≡ MQ,vir/Mm,vir is the quintessence to dark matter mass ratio at virialization. Then one

should follow this extra mass as the halo merges to form larger objects, which in turn accrete extra

quintessence as they form. However ǫ(z) is important only at low redshifts, so that we expect the

main effect to be on large objects that formed very recently, the ones on the exponential tail of

the mass function. Let us see how we can estimate the effect in this region. At any epoch, the

largest objects are mostly created with a negligible rate of destruction through merging to form

larger objects. Therefore, the formation rate for these objects can be accurately approximated by

− ∂

∂z

dnPS
d logM

(M,z) . (5.84)

10Quintessence clustering will modify the virial radius with respect to ΛCDM with corrections O(|1 + w|). The

effect of these corrections on the amount of clustered quintessence is O(|1+w|2) and can therefore be safely neglected.
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5. THE SPHERICAL COLLAPSE IN QUINTESSENCE COSMOLOGIES

As the effect of quintessence is to rescale the mass of the object as it forms, it is more convenient

to use the mass function per logarithmic mass interval. Using this expression, when positive, as an

approximation for the formation rate gives

∂

∂z

dnPS,m+Q

d logM
(M,z) =

∂

∂z

dnPS
d logM

(M(1− ǫ(z)), z) . (5.85)

Expanding the right-hand side of this expression and integrating it over the redshift enables us to

take into account the extra mass associated with quintessence accreted from an inizial redshift zi:

dnPS,m+Q

d logM
(M,z) =

dnPS
d logM

(M,z)

+

∫ z

zi

dz̃ ǫ(z̃)

[
− ∂

∂ logM

∂

∂z̃

dnPS
d logM

(M, z̃)

]
· θ
(
− ∂

∂z̃

dnPS
d logM

(M, z̃)

)
, (5.86)

where θ(x) is the Heaviside theta function.

In figure 5.11 we plot the mass functions including the quintessence mass contribution, using the

new Press-Schechter mass formula eq. (5.86) into eq. (5.79). Notice that the effect of quintessence

mass is to bring the cs = 0 lines closer to the ΛCDM one. To better visualize this effect, in

figure 5.12 we plot the ratio between the cs = 0 and cs = 1 case. For w > −1 (w < −1), setting

to zero the speed of sound of quintessence not only does enhance (diminish) the clustering of dark

matter, as discussed in the previous sections, but it also adds positive (negative) mass to the halo:

the two effects therefore pile up and the second is quantitatively slightly dominant. The sum of

the two effects is rather large: for values of w still compatible with the present data and for large

masses, the difference between the predictions of the cs = 0 and the cs = 1 cases is of order one.

We stress that the new mass function is not universal, in the sense that there is an explicit

red-shift dependence besides the one implicit in the growth of σR
11. This z dependence is quite

remarkable: the fact that the modification takes place only at very low red-shift is quite distinctive

and a clear link of the effect with the onset of acceleration.

5.6 Three contributions to the mass

In the previous section we saw that a distinctive signature of quintessence with cs = 0 is the extra

contribution of quintessence to the mass of virialized objects12. Although a detailed study of how

11The universality of the mass function, even in the presence of scale independent non-Gaussianity, has been tested

with good accuracy in N-body simulations [99].
12In this section we will assume this mass to be positive, which is the case for 1 + w > 0. Similar considerations

apply to the 1 +w < 0 case.
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Figure 5.11: Mass function for z = 0 (above) and z = 1 (below), including the quintessence mass

contribution, calculated using eq. (5.86) and (5.79).

to distinguish this extra contribution goes beyond the scope of this thesis, few remarks are in

order. Let us focus on galaxy clusters: as discussed in the previous section, the mass of these large

objects is significantly affected by the quintessence mass. Moreover, clusters are mostly dominated
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Figure 5.12: Ratio of the Press-Schechter mass function, including the quintessence contribution

eq. (5.86), for cs = 0 and cs = 1 at z = 0 (above) and z = 1 (below).

by gravitational physics (for an introduction to the subject see [100]). If we neglect quintessence

for the moment, a cluster is characterized by its baryon mass, mostly in the form of gas, and by

the dark matter mass. For sufficiently large clusters, in first approximation one expects the ratio

between these two components to be close to the cosmological baryon to dark matter ratio [101].

The various techniques to study clusters have different sensitivities to the two components (for a
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review on cluster detection tecniques see [102]). Weak lensing and galaxy velocity measurements are

sensitive to the gravitational mass of the object, i.e. to the sum of the dark matter and baryon mass.

On the other hand the optical richness, a measure of the light emitted by galaxies inside the cluster,

is a probe of the baryon fraction of the mass. X-ray and Sunyaev-Zeldovich (SZ) measurements are

sensitive both to the dark matter component and to the baryonic one. While these effects are caused

by the gas in the cluster, the temperature and the equilibrium of the intergalactic medium depend

on the dark matter distribution. Indeed, assuming hydrostatic equilibrium, one can use the X-ray

image of a cluster to reconstruct the baryonic and dark matter radial profiles from its temperature

and luminosity distribution, as explained for instance in [103, 104]. The combination of all these

techniques should allow a robust reconstruction of the dark matter and baryon components of the

clusters.

These standard techniques assume that there is no extra contribution to the cluster mass.

However, the crucial property of cs = 0 models of quintessence is that a third kind of mass,

associated to quintessence, enters in the game. How are the different tecniques sensitive to these

new mass? Lensing and galaxy velocity measurements will still trace the total mass, now including,

after dark matter and baryons, also quintessence. On the other hand, optical light associated to

galaxies should be rather independent of the accreted quintessence. X-ray experiments should

indicate a higher gravitational mass – both from studying the hydrostatic equilibrium and from

temperature measurements which are sensitive to the gravitational potential well – but the same

baryon component. This effect is similar to a reduction of the fgas parameter, the ratio between

baryonic and dark matter mass. Similar considerations apply also to SZ measurements.

A useful lever arm for distinguishing the accretion of dark energy from the other uncertainties

in the description of a cluster is the strong red-shift dependence. Quintessence should be relevant

only at very low redshift. It would be useful to find out the best combination of observables which

is able to constrain the presence of extra mass in the cluster. Besides a smoking gun of clustering

quintessence, it would be a useful consistency check between the various measurements.

5.7 Conclusions

Using the spherical collapse model, we have studied how the clustering of quintessence with negli-

gible speed of sound can affect the prediction for the mass function of dark haloes. As quintessence

does not develop pressure gradients, it follows geodesic motion remaining comoving with the dark

matter. In contrast to the case where quintessence remains smooth, spherical collapsing regions

81



5. THE SPHERICAL COLLAPSE IN QUINTESSENCE COSMOLOGIES

behave as exact closed FLRW solutions with the quintessence contributing to the overdensity. To

study the spherical collapse we found it useful to use Fermi coordinates where the effect of the

expansion can be treated as a perturbation around Minkowski spacetime locally around a spatial

point. In contrast to comoving coordinates, a unique coordinate system can be employed to describe

both the interior and the exterior of the collapsing region.

Quintessence with zero speed of sound modifies dark matter clustering with respect to the

smooth quintessence case through the linear growth function and the linear threshold for collapse.

Besides these conventional effects there is a more important and qualitatively new phenomenon:

quintessence mass adds to the one of dark matter, contributing to the halo mass by a fraction of

order (1 + w)ΩQ/Ωm. This effect is quite difficult to model and in this work we have adopted

a simplified treatment, which gives an accurate estimate of the high mass tail of the distribution

where the effect is more relevant.

As dark energy plays an active role in the formation of structures, the distinction between what

we call dark matter and dark energy becomes fuzzy. The distinction between the two components

can be probed by the different redshift dependence. It is quite remarkable that our knowledge

of structure formation still allows a completely inhomogeneous dark energy component on short

scales.

In this thesis we do not attempt to study experimental constraints and forecasts. However, we

have seen that for values of w which are not too close to the cosmological constant one, let’s say

|1 + w| & 0.1, the predictions for the high mass tail of the mass function in the cs = 0 and the

cs = 1 cases are quite distinctive. The effect of clustering quintessence gives order one changes in

the expected number of clusters. Whether the effect will be measurable or not will depend on the

possibility of breaking the degeneracy with cosmological parameters, most notably σ8 and Ωm, and

on the good recostruction of the limiting mass of the survey. Similar concerns have been addressed

in the context of the effects of primordial non-Gaussianity on the mass function in [105].

This line of work can be continued in various directions. A better theoretical treatment of

quintessence accretion would strengthen our predictions for the mass function, although at a cer-

tain point only a (challenging) numerical simulation can make a fully reliable prediction. On the

observational side, it would be interesting to understand what is the minimum value of |1 + w|
that allows a distinction between cs = 0 and cs = 1, using the forthcoming cluster mass func-

tion measurements. One should also explore whether other probes, lensing for example, are better

suited to study the non-linear clustering of quintessence. It would also be interesting to explore the

effect of quintessence on the halo dynamics, but this most probably requires a way to deal with the
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formation of cusps in the quintessence field. In a more model-independent way, one could try to

use data on clusters to constrain the presence of extra gravitational mass besides the dark matter

mass.
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Chapter 6

Path integral approach to excursion

set theory

We have described the excursion set theory for the mass function calculation, and we used the

formalism to predict the modifications of the mass function in quintessence cosmologies in chapter 5.

However, the excursion set theory has some problems. Apart from its being or not a fair physical

model for the formation and distribution of haloes, there are issues concerning its implementation.

In fact, also in the case where only dark matter clusters, we can identify two basic classes of

concerns.

The first one stems from the fact that, even assuming that the spherical (or ellipsoidal) collapse

is a correct description of halo dynamics, the use of the Fokker-Planck equation to describe the

distribution of trajectories is an oversimplification. Moreover, it is not clear how to generalize

the approach to different filter functions, which introduce non-Markovianities in the random walk,

or to non-Gaussianity of the primordial density fluctuations, which is a generic prediction (and a

powerful discriminator) of inflationary models.

The second problem is represented by the use of the simple spherical or ellipsoidal collapse

model to describe halo formation. Indeed, dark matter haloes grow through all kinds of processes

like smooth accretion, violent encounters and fragmentarions, and even the very definition of what

is a halo (both in simulations and in observations) is not unique.

These are the basic motivations that led Maggiore and Riotto (hereafter, MR) to put the

excursion set theory on firmer mathematical grounds in a series of papers [71, 72, 73]. The idea

is to rewrite the mathematical problem of finding the first passage distribution in terms of a path

integral with boundaries, and then taking the (subtle) continuum limit. The formalism just reduces
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to the results of Bond et al. in the case of a sharp k-space filter and fixed barrier δc. However, for

a generic filter, it is possible to give a perturbative treatment of the non-Markovian contributions.

To cope with the physical limitations of the spherical collapse model and take into account (at

least at an effective level) some of the physical complications of halo formation, one can treat the

threshold value as a stochastic variable itself.

We will use the path integral formalism to study the effects of primordial non-Gaussianity in

chapter 7, improving upon previous approaches in the literature [73, 105, 106]. As an introduction,

we will now illustrate the basic ideas and formulae of the path integral approach, for the case of

Gaussian density fluctuations, referring to [71, 72].

6.1 General formalism

We consider a stochastic process δ̂(S), where the density fluctuation field δ will play the role of

a “position” variable, while the variance S is to be regarded as a “time” variable. We choose to

denote stochastic quantities with a ˆ to distinguish them from the values they take. The mean is

〈δ̂(S)〉 = 0 and, since we are considering the Gaussian case, the only non-vanishing correlator is

〈δ̂(S1)δ̂(S2)〉c, where the subscript c stands for connected. A generic trajectory starts at “time”

S0 = 0 from an initial position δ̂(0) = δ0, and we follow the trajectory until S. The interval [0, S]

is discretized in n intervals ∆S = S/n, and we adopt the notation Sk = k∆S, with Sn ≡ S. The

trajectory is defined by the set of values it takes at each timestep, {δ1, . . . , δn}, such that δ̂(Sk) = δk,

and the δi are allowed to range in the whole interval [−∞,∞]. The probability density in the space

of trajectories is

W (δ0; δ1, . . . , δn;Sn) = 〈δD(δ̂(S1)− δ1) . . . δD(δ̂(Sn)− δn)〉 , (6.1)

where δD is the Dirac delta distribution. In terms of W , we can define

Π∆S(δ0; δn;Sn) ≡
∫ δc

−∞
dδ1 . . .

∫ δc

−∞
dδn−1W (δ0; δ1, . . . , δn;Sn) , (6.2)

which is the probability that a trajectory, starting from δ0 at S = 0, will be at δn at time Sn having

never exceeded the threshold δc. We will be interested in the continuum limit of Π∆S as ∆S → 0,

and in the first crossing rate

F (S) = −
∫ δc

−∞
dδn∂SΠ∆S=0(δ0; δn;Sn) . (6.3)
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In (6.1), one can write the Dirac deltas using the integral representation δD(x) =
∫∞
−∞ dλe−iλx/2π,

to obtain

W (δ0; δ1, . . . , δn;Sn) =

∫ ∞

∞

dλ1
2π

. . .
dλn
2π

〈e−i
∑

j λj δ̂(Sj)〉ei
∑

j λjδj . (6.4)

The object 〈e−i
∑

j λj δ̂j 〉 is the exponential of the generating functional of the connected Green’s

functions, and can be shown to reduce to [107]

〈e−i
∑

j λj δ̂j 〉 = exp




∞∑

p=2

(−i)p
p!

n∑

j1,..,jp=1

λj1 . . . λjp〈δ̂j1 . . . δ̂jp〉c


 , (6.5)

where 〈δ̂j1 . . . δ̂jp〉c is the connected p-point function of δ̂, with the short-hand notation δ̂j = δ̂(Sj).

In the Gaussian case, all connected n-point correlators vanish except for n = 2, so that

W (δ0 = 0; δ1, . . . , δn;Sn) =

∫
Dλ ei

∑n
i=1 λiδie−

1
2

∑n
i,j=1 λiλj〈δ̂(Si)δ̂(Sj)〉c , (6.6)

where
∫
Dλ =

∫∞
−∞ dλ1/(2π) . . .

∫∞
−∞ dλn/(2π). The distribution of trajectories is

Π∆S(δ0 = 0; δn;Sn) =

∫ δc

−∞
dδ1 . . .

∫ δc

−∞
dδn−1

∫
Dλ exp


i

n∑

i=1

λiδi −
1

2

n∑

i,j=1

λiλj〈δ̂(Si)δ̂(Sj)〉c


 .

(6.7)

6.1.1 Sharp k-space filter

If the filter function is chosen to be a sharp filter in k-space, things simplify considerably as δ̂(S)

obeys a Langevin equation with a white noise:

∂δ̂(S)

∂S
= η̂(S) 〈η̂(S1)η̂(S2)〉 = δD(S1 − S2) . (6.8)

In this case, the path integral can be performed exactly, and the result can be written as

W gm(δ0; δ1, . . . , δn;Sn) = Ψ∆S(δn − δn−1)W
gm(δ0; δ1, . . . , δn−1;Sn−1) , (6.9)

where

Ψ∆S(∆δ) =
1√

2π∆S
exp

[
−(∆δ)2

2∆S

]
. (6.10)

Eq. (6.9) expresses the Markovianity property of the stochastic process, i.e. the fact that the

probability of jumping from δn−1 to δn depends only on the previous step, but not on the past

history of the trajectory. Integrating eq. (6.9) over δ1, . . . , δn−1 we get the important relation

Πgm
∆S(δ0; δn;Sn) =

∫ δc

−∞
dδn−1Ψ∆S(δn − δn−1)Π

gm
∆S(δ0; δn−1;Sn−1) , (6.11)
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which generalizes the well known Chapman-Kolmogorov equation to the discrete time case.

We will now go on to find the continuum limit ∆S → 0 of the distribution Πgm, and we will

show that this reduces to the results of Bond et al.. It is mathematically very difficult to directly

perform the path integral in eq. (6.2), since the integrals over δ1, . . . , δn−1 run only up to δc, and

already the innermost integral yields an error function whose argument involves the next integration

variable1. A better strategy is to make use of eq. (6.11). Denoting Sn−1 = S, Sn = S+∆S, δn = δ,

δn−1 = δ −∆δ, it can be written as

Πgm
∆S(δ0; δ;S +∆S) =

∫ +∞

δ−δc

d(∆δ)Ψ∆S(∆δ)Π
gm
∆S(δ0; δ −∆δ;S) . (6.12)

In the limit ∆S → 0, Ψ∆S(∆δ) → δD(∆δ), so that the zeroeth order in ∆S of eq. (6.12) reads

Πgm
∆S=0(δ0; δ;S) =

∫ +∞

δ−δc

d(∆δ)δD(∆δ)Πgm
∆S=0(δ0; δ −∆δ;S) . (6.13)

If δ − δc < 0, the integral includes the support of the delta function, so that we have the trivial

identity that Πgm
∆S=0(δ0; δ;S) is equal to itself. However, if δ ≥ δc, we get

Πgm
∆S=0(δ0; δ;S) = 0 if δ ≥ δc , (6.14)

which is precisely the absorbing boundary condition postulated in the classical excursion set theory,

which naturally emerges in this “microscopic” approach.

For δ < δc, the continuum limit is more involved. If δ − δc is finite, it is possible to show that

the continuum limit gives

∂Πgm(δ0; δ;S)

∂S
=

1

2

∂2Πgm(δ0; δ;S)

∂δ2
, (6.15)

which is precisely the Fokker-Planck equation. Since Πgm obeys the absorbing boundary condi-

tion (6.13), we recover the Bond et al. result, which gives the mass function

fPS(S) =

√
2

π

δc

S1/2
e−δ2c/(2S) . (6.16)

1A possible approach is to integrate over the δi from −∞ to +∞, introducing Heaviside theta functions. Then

one should use the integral representation of the theta function, and one gets a double path integral. In principle,

this method of calculation can help in the more general case of different filter function or non Gaussian distribution,

but it is not clear whether this approach leads to some practical results.
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6.2 Generic filter functions

We now examine the case of Gaussian fluctuations, but using a generic filter function. The variance

S will be the one calculated with the filter function at hand. In the Markovian case, i.e. when one

uses a sharp-k filter, the distribution function of trajectories that never cross the barrier satisfies

a local partial differential equation, namely the Fokker-Planck equation. This is not possible when

the stochastic process is non-Markovian, as the distribution function depends on the whole history

of the trajectories. In fact, take the Sn derivative of eq. (6.7):

∂

∂Sn
Π∆S(δ0; δn;Sn) =

1

2

n∑

i,j=1

∂〈δ̂iδ̂j〉c
∂Sn

∫ δc

−∞
dδ1 . . .

∫ δc

−∞
dδn−1∂i∂jW (δ0; δ1, . . . , δn;Sn) , (6.17)

where δi ≡ ∂/∂δi, and we used the fact that ∂i gives iλi when acting on exp[i
∑

j λjδj ]. Upon

separating the term with i = j = n from the rest, we get

∂

∂Sn
Π∆S(δ0; δn;Sn) =

1

2

∂2

∂δ2n
Π∆S(δ0; δn;Sn)

+

n−1∑

j=1

∂〈δ̂nδ̂j〉c
∂Sn

∂n

∫ δc

−∞
dδ1 . . .

∫ δc

−∞
dδn−1∂jW (δ0; δ1, . . . , δn;Sn) , (6.18)

Now, since the upper limit of the integrals is δc and not +∞, the integral of the derivative ∂jW

with j < n gives a non-vanishing boundary term. The sharp-k filter is special because the 2-

point correlator is 〈δ̂nδ̂j〉c = min(Sn, Sj) = Sj, which is independent of Sn for j < n. Therefore

∂/∂Sn〈δ̂nδ̂j〉c = 0, and we are left with a local partial differential equation. For a generic form of the

2-point correlator, however, the second term on the RHS of eq. (6.18) does not vanish. Moreover,

in the continuum limit the sum over Sj becomes an integral over the intermediate “time” variable

Sk, which means that this term is non-local in “time”, depending on the whole past history of the

trajectory.

In the following, we focus on the real space top-hat filter, since it is the one most commonly

used in the literature, but the method can be applied more generally. The two point function can

be written as

〈δ̂(Si)δ̂(Sj)〉 = min(Si, Sj) + ∆(Si, Sj) , (6.19)

and an excellent approximation to the function ∆(Si, Sj) is

∆jk ≃ κmin(Sj , Sk)

(
1− min(Sj , Sk)

max(Sj , Sk)

)
, (6.20)
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where κ(R) ≃ 0.464+0.002R, with R measured in h−1 Mpc, using the 7-year WMAP parameters [1]

and the transfer function given in [108], as explained in chapter 7. Using (6.19) in eq. (6.7), and

expanding to first order in ∆ij , we find

Π∆1
∆S(δ0; δn;Sn) =

1

2

∑

i,j

∆ij

∫ δc

−∞
dδ1 . . .

∫ δc

−∞
dδn−1∂i∂jW

gm(δ0; δ1, . . . , δn;Sn) . (6.21)

When passing to the continuum limit, the sum becomes an integral over the past history of the

trajectories. There are some subtleties in taking the continuum limit of the resulting expressions,

because one needs to compute the behaviour close to the barrier of the function Πgm
∆S , which is not

analytic in ∆S. The final result can be split into a “memory” term Πmem, which depends on one

integral over one intermediate time variable, and a “memory-of-memory” term Πmem−mem, which

depends on a double integral over two intermediate times:

Πmem
∆S=0 = κ∂n

[
δc(δc − δn)

Sn
erfc

(
2δc − δn√

2Sn

)]
, (6.22)

Πmem−mem
∆S=0 =

κδc√
2πSn

∂n

[
e−(δc−δn)2/(2Sn)

∫ Sn

0

dSi
Si

e−δ2c/(2Si) erfc

(
(δc − δn)

√
Si

2Sn(Sn − Si)

)]
.

(6.23)

Observe that neither of the two functions Πmem and Πmem−mem vanishes in δn = δc. However, their

sum does, so that Π∆1 still satisfies the absorbing barrier boundary condition Π∆S=0(δ0; δc;S) = 0.

It is now straightforward to compute the first crossing rate and the halo mass function up to

first order in the non-Markovianities. Using (6.3), we find for the first crossing rate

Fmem(S) = 0 , (6.24)

Fmem−mem(S) = − κδc√
2πS3/2

[
e−δc/(2S) − 1

2
Γ

(
0,
δ2c
2S

)]
, (6.25)

where Γ(0, z) is the incomplete Gamma function. Putting together eqs. (4.20, 6.24, 6.25) and using

the definition of the halo mass function eq. (4.13), we find, up to first order in the non-Markovian

corrections,

f(ν) = (1− κ)

(
2

π

)1/2

ν e−ν2/2 +
κ√
2π
νΓ

(
0,
ν2

2

)
. (6.26)

A first check of the result eq.(6.26) is that it satisfies the normalization condition
∫ ∞

0

dσ

σ
f(σ) = 1 . (6.27)

In fact, it is easy to see that, integrating eq. (6.26), the κ dependence cancels out and the normal-

ization is correct.
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6.3 The diffusing barrier

The excursion set theory based on the spherical collapse model fails at the quantitative level.

Taking into account a generic filter function, as in eq. (6.26), does not improve much the agreement

with N-body simulations. In fact, eq. (6.26) is everywhere lower than the PS mass function, and

therefore, while it improves the agreement with N-body simulations at low masses, it is an even

worse result at high masses. One can think that the ellipsoidal collapse model [109, 110] will help

improving the agreement with simulations. In this case, the threshold acquires a dependence on σ:

B(σ) ≃ δc

[
1 + 0.47

(
δc
σ

)1.23
]
, (6.28)

which reflects the fact that low mass haloes (large σ) have larger deviations from sphericity and

significant shear, that opposes collapse. Therefore, low-mass haloes require an higher density to

collapse, and the barrier recedes away from δc at larger σ. On the contrary, high-mass haloes tend

to be more spherical. Therefore, it is apparent from eq. (6.28) that the ellipsoidal collapse model

will not help in improving the agreement with simulations at high masses: the barrier is always

higher than δc, and the mass function will be sistematically lower than the PS one.

There is some crucial physical ingredient missing in the model. Actually, already in the simple

ellipsoidal model, the value of the barrier is given by (6.28) only if one uses the most probable

values for the eigenvalues of the collapsing ellipsoid. In general, the ellipsoidal collapse predicts

a “fuzzy” threshold [111, 112], with a distribution that can extend even to values lower than δc.

Actually, the possible sources of stochasticity of the barrier are different. For instance, haloes

are subject to tidal effects from their environment, which give a distribution of values for the

barrier [113]. Substructures within a collapsing halo can also influence the critical value for collapse.

Last but not least, the very definition of what is a dark matter halo is a delicate problem, both

in observations and in simulations. For instance, in simulations haloes are usually identified either

with the friends-of-friends (FOF) algorithm, which track isodensity profiles, or with the spherical

overdensity (SO) algorithm, which singles out spherical regions with a given overdensity. There

is no fundamental physical reason to prefer one or the other algorithm, the choice being largely a

matter of convenience for the particular problem at hand. This introduces an additional source of

uncertainty in the threshold value, which will fluctuate around the value predicted by the ellipsoidal

model with fluctuations due to different reasons, some of which are not simply predictable.

Therefore, a sensible thing to do is to extend excursion set theory to take into account a barrier

which is itself a stochastic variable. We will consider an “effective” approach, supposing that the
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barrier performs a random walk with a diffusion coefficient DB . All our ignorance of the halo

formation dynamics and our uncertainties in the definition of a halo are buried into DB , which can

then be fitted using N-body simulations, or treated as a nuisance parameter when comparing to

observations. For the sake of simplicity, we will consider in the following a barrier which fluctuates

around the spherical collapse value 〈B〉 = δc. We expect this to be a good approximation for large

masses, and in particular this will be useful for the computation of non-Gaussian effects in 7. The

variance is taken to be the one of a Brownian motion, and for this reason this model will be referred

to as the diffusing barrier model:

ΣB ≡ 〈(B − 〈B〉)2〉1/2 =
√
DBσ . (6.29)

We will first neglect the filter effects, which will be taken into account later. We denote by

Π(δ0, δ;B0, B;S) the joint probability distribution that, at “time” S, the density contrast has

reached the value δ starting from the initial value δ0 and the barrier has reached the value B

starting from the initial value B0 = δc. The density contrast and the barrier are uncorrelated

stochastic variables and they diffuse independently: this means that Π satisfies the 2-dimensional

Fokker-Planck equation
∂Π

∂S
=

1

2

∂2Π

∂δ2
+
DB

2

∂2Π

∂B2
. (6.30)

The initial conditions are Π(S = 0) = δD(δ − δ0)δD(B − δc), while the boundary condition is that

Π(S) vanishes when δ(S) = B(S). The solution to the problem (6.30) can be found using the

method of images [114]. The final distribution for the density is marginalized over the barrier, by

integrating dB from δ to +∞. The result is

Πgm(δ;S) =
1

2
√
2πS

[
e−δ2/(2S) erfc

(
− δc − δ√

2DBS

)
− e−(2aδc−δ)2/(2S) erfc

(
−2aDBδc − (δc − δ)√

2DBS

)]
,

(6.31)

where a ≡ 1/(1 +DB). The first crossing rate is now given by

F gm(S) =

∫ +∞

−∞
dδ
∂Πgm

∂S
=

√
aδc√

2πS3/2
e−aδ2c/(2S) . (6.32)

The mass function f(σ) = 2σ2F (σ2) is then

fgm(σ) =

√
2

π

√
aδc
σ

e−aδ2c/(2σ
2) , (6.33)

and it is apparent that the effect of a diffusing barrier is simply to replace δc →
√
aδc. Notice that

this is the same modification postulated by [115] in order to better fit the N-body simulations.
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A simpler way to understand this result, which can be immediately generalized to the non-

Markovian case, is to observe that the problem of a barrier with coordinate x1 diffusing with a

diffusion coefficient D1, and a particle with coordinate x2 diffusing with a diffusion coefficient D2 is

equivalent to a one degree of freedom problem [114], introducing the relative coordinate x = x2−x1.
The resulting stochastic motion is governed by an effective diffusion coefficient Deff = D1 +D2. In

fact, consider the Langevin equations for both variables:

˙̂xi = η̂i(t) , with 〈η̂i(t)η̂i(t′)〉 = DiδD(t− t′) (6.34)

where i = 1, 2. Then, the relative coordinate satisfies ˙̂x = η̂(t) with η̂(t) = η̂2(t) − η̂1(t). If η̂1 and

η̂2 are uncorrelated, we find

〈η̂(t)η̂(t′)〉 = 〈η̂1(t)η̂1(t′)〉+ 〈η̂2(t)η̂2(t′)〉 = (D1 +D2)δD(t− t′) , (6.35)

which shows that the effective coefficient is D1 +D2. In our case, D1 = DB and D2 = 1, so that

the first crossing distribution is the usual result (4.20), with the replacement δc → δc/(1 +DB).

For the non-Markovian case, using the method of the previous section and reasoning in an

analogous way, the first crossing distribution is

f(ν) = (1− κ̃)
2

π

√
aδc
σ

e−aδ2c/(2σ
2) +

κ̃√
2π

√
aδc
σ

Γ(0,
aδ2c
2σ2

) , (6.36)

where κ̃ ≡ κ/(1 +DB).
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Chapter 7

An Improved Calculation of the

Non-Gaussian Mass Function

The primordial curvature inhomogeneities, generated by the inflationary mechanism, obey a statis-

tics which is nearly Gaussian. The deviations from Gaussianity, while expected to be small, provide

a unique window into the physics of inflation. For example, single-field slow-roll models of inflation

lead to a small level of non-Gaussianity (NG), so that an observation of a large NG would indicate

a deviation from this paradigm.

Until a few years ago, the main tool to constrain NG was considered to be the statistics of

the cosmic microwave background (CMB) temperature field, since inhomogeneities at the CMB

epoch are small and the physics can be described by a perturbative treatment. In recent years,

however, thanks to observations and developments in the theory, the large-scale structure (LSS)

of the universe has emerged as a complementary probe to constrain primordial NG. While it is

true that the n-point functions of the density field on small scales are dominated by the recent

gravitational evolution, and do not reflect anymore the statistics of primordial perturbations, it

turns out that the abundance of very massive objects, which form out of high peaks of the density

perturbations, is a powerful probe of primordial NG. In this context, much attention has been given

recently to three possible methods of constraining the magnitude and shape of the primordial NG

with the LSS: the galaxy power spectrum, the galaxy bispectrum and the mass function. It was

pointed out in [14, 15] that a NG of a local type induces a scale dependence on the galaxy power

spectrum, thus making it a sensitive probe of the magnitude of local NG f locNL. From [16] one finds

the following constraints: −29 < f locNL < +69, already comparable with those obtained from CMB

measurements in [1]: −10 < f locNL < +74. The future is even more promising, with precisions of
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∆f locNL ∼ 10 [116] and ∆f locNL ∼ 1 [117] being claimed for future surveys. The galaxy bispectrum is

also a promising probe of NG as it could be more sensitive to other triangle configurations [118].

The mass function, which is the focus of this chapter, has been used for example in [116] together

with the scale dependent bias to produce forecasts for future surveys, and in [119] in an attempt

to explain the presence of a very massive cluster at a large redshift as an indication of a large NG.

Some reviews summarizing recent results on these topics are [120, 121].

The formation of bound dark matter halos from initially small density perturbations, as seen in

numerical simulations, is a complicated and violent process. Some insight into the physics involved

has been gained from the study of analytical models. The quantity of interest is the halo mass

function, defined as the number density of dark matter halos with a mass between M andM+dM :

dn

dM
=

ρ̄

M2
f(σ)

∣∣∣∣
d ln σ

d lnM

∣∣∣∣ , (7.1)

where ρ̄ is the average density of the universe, σ(M) is the variance of the density contrast δR

filtered on some comoving scale R corresponding to the mass M , and the function f(σ) is to be

computed. In the following, we will refer to f(σ) itself as the mass function. Our calculations will

be based on the path integral formulation of the excursion set theory, as introduced in chapters 4

and 6.

Turning to non-Gaussianities, the most popular non-Gaussian mass functions are those due to

Matarrese, Verde and Jimenez [106] (MVJ) and LoVerde et al. [105] (LMSV). Both groups used the

PS approach, by modifying the probability density function for the (linearized) density contrast

to describe non-Gaussian initial conditions. In their prescription, the relevant object is the ratio

Rng of non-Gaussian to Gaussian mass functions. The full mass function is usually taken as the

product of Rng and an appropriate Gaussian mass function as given by N -body simulations, e.g.

the Sheth & Tormen mass function [115]. It is not clear however that this is the correct way to

proceed. Indeed, in a series of papers [71, 72, 73], Maggiore & Riotto (MR) presented a rigorous

approach to the first-passage problem in terms of path integrals, and in [73] they pointed out that

a PS-like prescription in fact misses some important non-Gaussian effects stemming from 3-point

correlations between different scales (so-called “unequal time” correlators).

On the other hand, MR treated non-Gaussian contributions to f(σ) by simply linearizing in

the 3-point function of δR, i.e. by linearizing in the non-Gaussian parameter fNL. Since the NG

are assumed to be small, in the sense that the parameter ǫ ≡ 〈δ3〉/σ3 satisfies ǫ ≪ 1, one might

expect that such a perturbative treatment is valid. However, another crucial ingredient in the

problem is that the length scales of interest are large, which leads to a second small parameter
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ν−1 where ν = δc/σ. This is evident in the calculations of MR, who crucially use ν−2 ∝ σ2 as

a small parameter. Any perturbative treatment now depends not only on the smallness of ǫ and

ν−1 individually, but also on the specific combinations of these parameters which appear in the

calculation. It is known (and we will explicitly see below) that a natural combination that appears

is ǫν3, which can become of order unity on scales of interest. The mass functions given by LMSV

and MR therefore break down as valid series expansions when this occurs. Interestingly, MVJ’s

PS-like treatment on the other hand involved a saddle point approximation, which allowed them to

non-perturbatively account for the ǫν3 term (which appears in an exponential in their approach).

It appears to us, therefore, that there is considerable room for improvement in the theoretical

calculation of the mass function. The goal of our work is twofold. Firstly, we present a rigorous

calculation of the mass function in the following way : we use the techniques developed by MR in [71,

72, 73], which allow us to track the complex multi-scale correlations involved in the calculation,

and we demonstrate that MR’s approach can be combined with saddle point techniques (used by

MVJ), to non-perturbatively handle terms which can become of order unity. This leads to an

expression for the mass function which is valid on much larger scales than those presented by MR

and LMSV. Secondly, by keeping track of the terms ignored, we calculate theoretical error bars

on the expressions for f(σ) resulting not only from our own calculations, but also for those of the

other authors [73, 105, 106]. Since the terms ignored depend on ν in general, these error bars are

clearly scale dependent. This allows us to estimate the validity of each of the expressions for the

mass function at different scales, but importantly it also allows us to analytically compare different

expressions.

In this work we will not explicitly account for effects of the ellipsoidal collapse model [109, 112],

since these are expected to be negligible on the very large scales which are of interest to us. For a

recent treatment of ellipsoidal collapse effects in the presence of non-Gaussianities, on scales where

ǫν3 ≪ 1, see Lam & Sheth [122].

This chapter is organized as follows. In section 7.1 we fix some notation and briefly introduce

the two most popular shapes of primordial NG, i.e. the local and equilateral ones. In section 7.2 we

present our calculation of the mass function. In section 7.3 we discuss certain subtleties regarding

the truncation of the perturbative series, and also compare with the other expressions for f(σ)

mentioned above. In section 7.4 we discuss the effects induced by some additional complications

introduced in the problem due to the specific choice of the filter function [71], which we take to be a

top-hat in real space, and due to the inclusion of stochasticity in the value of the collapse threshold

δc [72]. In section 7.5 we compare our final result (7.60) with those of other authors, including
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theoretical errors for each, and conclude with a brief discussion of the results and directions for

future work. Some technical asides have been relegated to Appendices C and D.

7.1 Models of non-Gaussianity

We need to relate the linearly evolved density field to the primordial curvature perturbation, which

carries the information of the non-linearities produced during and after inflation. We start from

the Bardeen potential Φ on subhorizon scales, given by

Φ(k, z) = −3

5
T (k)

D(z)

a
R(k) , (7.2)

where R(k) is the (comoving) curvature perturbation, which stays constant on superhorizon scales;

T (k) is the transfer function of perturbations, normalized to unity as k → 0, which describes the

suppression of power for modes that entered the horizon before the matter-radiation equality; and

D(z) is the linear growth factor of density fluctuations, normalized such that D(z) = (1 + z)−1

in the matter dominated era. Then, the density contrast field is related to the potential by the

Poisson equation, which in Fourier space reads

δ(k, z) = − 2ak2

3ΩmH2
0

Φ(k, z) =
2k2

5ΩmH2
0

T (k)D(z)R(k)

≡ M(k, z)R(k) ,

(7.3)

where we substituted eq. (7.2). Here, Ωm is the present time fractional density of matter (cold

dark matter and baryons), and H0 = 100h km s−1Mpc−1 is the present time Hubble constant. The

redshift dependence is trivially accounted for by the linear growth factor D(z) and in the following,

for notational simplicity, we will often suppress it. All our calculations will use a reference ΛCDM

cosmology compatible with WMAP7 data [1], using parameters h = 0.702, Ωm = 0.272, present

baryon density Ωb = 0.0455, scalar spectral index ns = 0.961 and σ8 = 0.809, where σ28 is the

variance of the density field smoothed on a length scale of 8h−1Mpc. For simplicity, for the transfer

function T (k) we use the BBKS form, proposed in Bardeen et al. [109]:

TBBKS(x) ≡
1

2.34x
ln (1 + 2.34x)

(
1 + 3.89x+ (16.1x)2 + (5.46x)3 + (6.71x)4

)−1/4
, (7.4)

where x ≡ k(hMpc−1)/Γ with a shape parameter Γ = Ωmh exp
[
−Ωb(1 +

√
2h/Ωm)

]
that accounts

for baryonic effects as described in [108]. For more accurate results, one could use a numerical

transfer function, as obtained by codes like CMBFAST [10] or CAMB [11]; the results are not

expected to be qualitatively different.

98



7.1 Models of non-Gaussianity

In order to study halos, which form where an extended region of space has an average overdensity

which is above threshold, it is useful to introduce a filter function WR(|x|), and consider the

smoothed density field (around one point, which we take as the origin):

δR =

∫
d3k

(2π)3
W̃ (kR)δ(k) , (7.5)

where W̃ (kR) is the Fourier transform of the filter function. For all numerical calculations we will

use the spherical top-hat filter in real space, whose Fourier transform W̃ (kR) is given by

W̃ (y) =
3

y3
(sin y − y cos y) . (7.6)

This choice allows us to have a well-defined relation between length scales and masses, namelyM =

(4π/3)ΩmρcR
3 with ρc = 3H2

0/(8πG) = 2.75 · 1011 h−1Msol(h
−1Mpc)−3. However it introduces

some complexities in the analysis, as discussed in chapter 6, which we will comment on later. By

using (7.5) and (7.3) we have, for the 3-point function,

〈δR1δR2δR3〉c =
∫

d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

W̃ (k1R1)W̃ (k2R2)W̃ (k3R3)×

×M(k1)M(k2)M(k3)〈R(k1)R(k2)R(k3)〉c , (7.7)

where the subscript c denotes the connected part; analogous formulae are valid for the higher order

correlations.

7.1.1 Shapes of non-Gaussianity

The function 〈R(k1)R(k2)R(k3)〉c encodes information about the physics of the inflationary epoch.

By translational invariance, it is proportional to a momentum-conserving delta function:

〈R(k1)R(k2)R(k3)〉c = (2π)3δD(k1 + k2 + k3)BR(k1, k2, k3) , (7.8)

where the (reduced) bispectrum BR(k1, k2, k3) depends only on the magnitude of the k’s by rota-

tional invariance. According to the particular model of inflation, the bispectrum will be peaked

about a particular shape of the triangle. The two most common cases are the squeezed (or local)

NG, peaked on squeezed triangles k1 ≪ k2 ≃ k3, and the equilateral NG, peaked on equilateral

triangles k1 ≃ k2 ≃ k3. Indeed, one can define a scalar product of bispectra, which describes how

sensitive one is to a NG of a given type if the analysis is performed using some template form for

the bispectrum. As expected, the local and equilateral shapes are approximately orthogonal with

respect to this scalar product [123]. We will now describe these two models in a bit more detail.
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7.1.1.1 The local model

The local bispectrum is produced when the NG is generated outside the horizon, for instance in

the curvaton model [124, 125] or in the inhomogeneous reheating scenario [126]. In these models,

the curvature perturbation can be written in the following form:

R(x) = Rg(x) +
3

5
f locNL

(
R2

g(x)− 〈R2
g〉
)
+

9

25
gNLR3

g(x) , (7.9)

where Rg is the linear, Gaussian field. We have included also a cubic term, which will generate the

trispectrum at leading order. The bispectrum is given by

BR(k1, k2, k3) =
6

5
f locNL [PR(k1)PR(k2) + cycl.] , (7.10)

where “cycl.” denotes the 2 cyclic permutations of the wavenumbers, and PR(k) is the power

spectrum given by PR(k) = Akns−4. The trispectrum is given by

〈R(k1)R(k2)R(k3)R(k4)〉c = (2π)3δD(k1 + k2 + k3 + k4)

×



36

25
f2NL

∑

b<c
a6=b,c

PR(|ka + kb|)PR(kb)PR(kc) +
54

25
gNL

∑

a<b<c

PR(ka)PR(kb)PR(kc)


 . (7.11)

7.1.1.2 The equilateral model

Models with derivative interactions of the inflaton field [127, 128, 129] give a bispectrum which

is peaked around equilateral configurations, whose specific functional form is model dependent.

Moreover, the form of the bispectrum is usually not convenient to use in numerical analyses. This

is why, when dealing with equilateral NG, it is convenient to use the following parametrization,

given in [130] (see also [131]):

BR(k1, k2, k3) =
18

5
f equilNL A2

[ 1

2k4−ns

1 k4−ns

2

+
1

3(k1k2k3)2(4−ns)/3
− 1

(k1k
2
2k

3
3)

(4−ns)/3
+ 5 perms.

]
.

(7.12)

This is peaked on equilateral configurations, and its scalar product with the bispectra produced by

the realistic models cited above is very close to one.

7.2 Random walks and the halo mass function

We now turn to the main calculation of our work. The non-Gaussian halo mass function can

be obtained by calculating the barrier first crossing rate F of a random walk with non-Gaussian
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noise, in the presence of an absorbing barrier. This can be done perturbatively, starting from a

path integral approach as prescribed by MR [71, 73] and the mass function can be shown to be

f(σ) = 2σ2F (σ). The calculation of f involves certain assumptions regarding the type of filter

used and also the location of the barrier. In particular, the formalism is simplest for a sharp

filter in k-space, and using the spherical top-hat of (7.6) introduces complications in the form of

non-Markovian effects. Further, in order to make the spherical collapse ansatz more realistic and

obtain better agreement with N -body simulations, it is useful to treat the location of the barrier

δc as a stochastic variable itself, and allow it to diffuse. For the time being, we will ignore these

complications, and will return to their effects in section 7.4.

Extending the results of chapter 6, in the non-Gaussian case (but still retaining the sharp-k

filter), the probability densityW ({δj};S) also gets contributions from connected n-point correlators

with n ≥ 3, since these in general do not vanish. These can be handled by using the relation

λke
i
∑

j λjδj = −i∂kei
∑

j λjδj , with ∂j ≡ ∂/∂δj . A straightforward calculation then shows the mass

function to be

f = −2S
∂

∂S

∣∣∣∣
δc

∫ δc

−∞
dδ1 . . . dδn exp

[
− 1

3!

n∑

j,k,l=1

〈δ̂j δ̂k δ̂l〉c∂j∂k∂l

+
1

4!

n∑

j,k,l,m=1

〈δ̂j δ̂k δ̂lδ̂m〉c∂j∂k∂l∂m + . . .

]
W gm , (7.13)

where W gm is given by the expression (6.9), and it is understood that one takes the continuum

limit ∆S → 0 before computing the overall derivative with respect to S. We will find it useful to

change variables from (δc, S) to (ν, S), in which case the partial derivative becomes

− 2S(∂/∂S)|δc = ν(∂/∂ν)|S − 2S(∂/∂S)|ν ≡ ν∂ν − 2S∂S . (7.14)

It is also useful at this stage to take a small detour and introduce some notation which we will use

throughout the rest of the chapter. We define the scale dependent “equal time” functions

εn−2 ≡
〈δ̂nR〉c
σnR

; n ≥ 3 , (7.15)

which as we will see, remain approximately constant over the scales of interest. We assume the

ordering εn−2 ∼ O(ǫn−2) with ǫ ≪ 1, which can be motivated from their origin in inflationary

physics, where one finds ε1 ∼ fNLA
1/2, ε2 ∼ gNLA, etc1. Typically we expect ǫ . 10−2 for

fNL . 100. Figure 7.1 shows the behaviour of ε1 and ε2 in the local and equilateral models, as a

1Notationally we distinguish the order parameter ǫ from the specific NG functions ε1 and ε2.
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Figure 7.1: Scale dependence of the εn. Panel (a) : Behaviour of ε1 vs. σ2 in the local and equilateral models,

for fNL = 100 in each case. Panel (b) : Behaviour of ε2 for the local model with fNL = 100 and gNL = 104. The

terms proportional to f2
NL and gNL are shown separately. Also shown is ε21 for the same model. The axes are

logscale.

function of S = σ2R. We see e.g. that ε2 in the local model is comparable to ε21. In the literature

one usually encounters the reduced cumulants Sn, which are related to the εn−2 by ε1 = σS3,

ε2 = σ2S4 and so on. The motivation for using the Sn comes from the study of NG induced by

nonlinear gravitational effects, where they are expected to be scale-independent. However, as we

see from figure 7.1, when studying primordial NG it is more meaningful to consider the εn which

are approximately scale-independent and perturbatively ordered.

We will soon see that a natural expansion parameter that arises in the calculation has the form

∼ ǫν, and we therefore require that the mass scales under scrutiny are not large enough to spoil

the relation ǫν ≪ 1. It turns out that observationally interesting mass scales can nevertheless be

large enough to satisfy ǫν3 ∼ O(1). Figure 7.2 shows the behaviour of ε1ν
3 and ε1ν at different

redshifts, as a function of mass, in our reference ΛCDM model for local type NG, with f locNL = 100.

The behaviour for the equilateral NG is qualitatively similar. The redshift dependence of these

quantities comes from the definition of ν,

ν(M,z) ≡
√
a
δc0
σ(M)

D(0)

D(z)
≡ δc(z)

σ(M)
, (7.16)

where we denote the usual spherical collapse threshold as δc0 = (3/5)(3π/2)2/3 ≃ 1.686, reserving

δc for the full, redshift dependent quantity, and a is a parameter accounting for deviations from

the simplest collapse model. In the standard spherical collapse picture we have a = 1. A value of
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Figure 7.2: Panel (a) : Behaviour of ε1ν
3/6 vs. mass in the local non-Gaussian model, for fNL = 100.

The three curves correspond to different redshifts. The horizontal line corresponds to ε1ν
3/6 = 1. Panel (b) :

Behaviour of ε1ν with the same setup as in panel (a).

a different from unity (specifically
√
a ≃ 0.89) can be motivated by allowing the collapse threshold

to vary stochastically [72], as we will discuss in section 7.4. We will soon see that the object ǫν3

appears naturally in the calculation, and to be definite we will assume ǫν3 ∼ O(1) for now. In

section 7.3 we will discuss the effects of relaxing this condition and probing smaller length scales.

We now turn to the “unequal time” correlators appearing in (7.13). Since we are concerned

with large scales, we are in the small S limit, and following MR we expand the n-point correlators

around the “final time” S. We can define the Taylor coefficients

G(p,q,r)
3 (S) ≡

[
dp

dSp
j

dq

dSq
k

dr

dSr
l

〈δ̂(Sj)δ̂(Sk)δ̂(Sl)〉c
]

Sj=Sk=Sl=S

, (7.17)

and then expand

〈δ̂j δ̂k δ̂l〉c =
∞∑

p,q,r=0

(−1)p+q+r

p!q!r!
G(p,q,r)
3 (S)(S − Sj)

p(S − Sk)
q(S − Sl)

r . (7.18)

For the 4-point function we will have an analogous expression involving coefficients G(p,q,r,s)
4 .

Since calculations involving a general set of coefficients G3, G4, etc. are algebraically rather

involved, we find it useful to first consider a toy example in which these coefficients take simple

forms. In this model we assume that the εn are exactly constant, and moreover that the n-point
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correlators take the form2

〈δ̂j δ̂k δ̂l〉c = ε1(SjSkSl)
1/2 ; 〈δ̂j δ̂k δ̂lδ̂m〉c = ε2(SjSkSlSm)1/2 . (7.19)

For clarity, we will display details of the calculation only for this model. In the more realistic case

of slowly-varying εn, we choose to parametrize the coefficients G3 and G4 in a convenient way as

follows:

G(1,0,0)
3 =

1

2
ε1(S)c1(S)S

1/2 ; G(2,0,0)
3 = −1

4
ε1(S)c2(S)S

−1/2 ,

G(1,1,0)
3 =

1

4
ε1(S)c3(S)S

−1/2 ; G(1,0,0,0)
4 =

1

2
ε2(S)c4(S)S , (7.20)

where the coefficients cn(S) are smoothly varying functions and depend on the NG model. They are

defined in such a way that they all reduce to unity in the toy model defined by (7.19). Figure 7.3

shows the behaviour of c1, c2 and c3 with σ2, for the local and equilateral models. The εn and

cn are independent of redshift by construction, since the linear growth rate D(z) always drops out

in their definitions. Also the cn do not depend on the values of fNL and gNL. The calculation of

the mass function for this general case proceeds completely analogously to that for the toy model,

apart from a few subtleties which we will discuss later, and our final result will be an expression

for f in the general case.

Using the first few terms of the unequal time expansions, in our toy model one can write

n∑

j,k,l=1

〈δ̂j δ̂k δ̂l〉c ∂j∂k∂l = ε1S
3/2

( n∑

j,k,l=1

∂j∂k∂l −
3

2

n∑

j=1

(1− Sj
S
)∂j

n∑

k,l=1

∂k∂l

− 3

8

n∑

j=1

(1− Sj
S
)2∂j

n∑

k,l=1

∂k∂l +
3

4

n∑

j,k=1

(1− Sj
S
)(1 − Sk

S
)∂j∂k

n∑

l=1

∂l + . . .

)
,

(7.21)
n∑

j,k,l,m=1

〈δ̂j δ̂k δ̂lδ̂m〉c ∂j∂k∂l∂m = ε2S
2

( n∑

j,k,l,m=1

∂j∂k∂l∂m − 2

n∑

j=1

(1− Sj
S
)∂j

n∑

k,l,m=1

∂k∂l∂m + . . .

)
.

(7.22)

These derivative operators are exponentiated in the path integral, and act on W gm. One simplifi-

cation that occurs in our toy model, is that the path integral in (7.13) becomes a function only of

ν (although this is not obvious at this stage), and hence eventually only the ν∂ν part of the over-

all derivative contributes. However, the structure of the exponentiated derivatives is still rather

2Throughout the paper we will consider at most 4-point correlators. This truncation is justified given our assump-

tions, as we will see later.
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Figure 7.3: The derivative coefficients c1 (panel (a)), c2 (panel (b)) and c3 (panel (c)), as a function

of σ2, for local and equilateral NG models. These quantities are independent of redshift and the NG

amplitudes fNL and gNL. The axes are logscale.

formidable. Moreover, the truncation of the series at this stage is based more on the intuition that

higher order terms should somehow be smaller, rather than on a strict identification of the small

parameters. In fact, we will see in detail in section 7.3 that the issue of truncation involves several

subtleties.

To make progress, it helps to analyze the effect on W gm of each of the terms in the above

series, before exponentiation. The leading term in (7.13) involves the multiple integral of W gm.

The operator ν∂ν acts on the error function to give the Gaussian rate. Next, notice that the action
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of the operator
∑n

j=1 ∂j on any function g(δ1, . . . δn) under the multiple integral, is simply

∫ δc

−∞
dδ1 . . . dδn

n∑

j=1

∂jg =
∂

∂δc

∫ δc

−∞
dδ1 . . . dδng , (7.23)

Using this, and the fact that S1/2(∂/∂δc)|S = ∂ν |S , we see that the leading term in (7.21) (i.e. the

term with no powers of (1− Sj/S)), leads to a term involving

ε1ν∂ν(∂ν)
3 erf

(
ν/

√
2
)
∼ fPS ε1 ν

3(1 +O(ν−2)) ,

The problem with this term is that the quantity ε1ν
3 can be of order unity, and hence cannot

be treated perturbatively. To be consistent, we should keep all terms involving powers of ε1ν
3.

Luckily, this can be done in a straightforward way due to the result in (7.23). We see that the

entire exponential operator exp[−(ε1S
3/2/3!)

∑n
j,k,l=1 ∂j∂k∂l] in (7.13) can be pulled across the

multiple integral and converted to exp [−(ε1/3!)∂
3
ν ] acting on the remaining integral. Similarly,

the operator exp [(ε2S
2/4!)

∑n
j,k,l,m=1 ∂j∂k∂l∂m] can be pulled out and converted to exp [(ε2/4!)∂

4
ν ],

and the same applies for all such equal time operators. We will see later that the action of these

operators can be easily accounted for, using a saddle-point approximation. To summarize, the

function f at this stage is given by

f = ν e−(ε1/3!)∂3
ν+(ε2/4!)∂4

ν+...∂ν

∫ δc

−∞
dδ1 . . . dδn exp

[
1

3!
ε1S

3/2

(
3

2

n∑

j=1

(1− Sj
S
)∂j

n∑

k,l=1

∂k∂l

+
3

8

n∑

j=1

(1− Sj
S
)2∂j

n∑

k,l=1

∂k∂l −
3

4

n∑

j,k=1

(1− Sj
S
)(1 − Sk

S
)∂j∂k

n∑

l=1

∂l + . . .

)

− 1

4!
ε2S

2

(
2

n∑

j=1

(1− Sj
S
)∂j

n∑

k,l,m=1

∂k∂l∂m + . . .

)]
W gm . (7.24)

Now consider the action of the individual terms in the remaining exponential under the integrals,

but without exponentiation. From MR [73], we have the following results3,

n∑

j=1

(1− Sj
S
)

n∑

k,l=1

∫ δc

−∞
dδ1 . . . dδn∂j∂k∂lW

gm =

(
2

π

)1/2 1

S3/2
e−ν2/2 , (7.25a)

n∑

j=1

(1− Sj
S
)2

n∑

k,l=1

∫ δc

−∞
dδ1 . . . dδn∂j∂k∂lW

gm =

(
2

π

)1/2 3

S3/2
h(ν) , (7.25b)

n∑

j,k=1

(1− Sj
S
)(1 − Sk

S
)

n∑

l=1

∫ δc

−∞
dδ1 . . . dδn∂j∂k∂lW

gm =

(
2

π

)1/2 4

S3/2
h(ν) , (7.25c)

3The terms in (7.25a), (7.25b) and (7.25c) are, upto prefactors, the integrals of what MR denote as Π(3,NL),

Π(3,NNLa) and Π(3,NNLb) respectively in [73].
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where we have defined

h(ν) ≡ e−ν2/2 −
(π
2

)1/2
ν erfc

ν√
2
=

ν

23/2
Γ

(
−1

2
,
ν2

2

)
, (7.26)

where Γ(−1/2, ν2/2) is an incomplete Gamma function. Let us focus on the term in (7.25a). If we

linearize in ε1 in (7.24), then this term appears with ε1t
3/2∂ν acting on it, leading to ∼ fPSε1ν ≪

fPS. This term can therefore be treated perturbatively. Similarly, one can check that the terms

given by (7.25b) and (7.25c) also lead to perturbatively small quantities, which are in fact further

suppressed compared to ε1ν by powers of ν−2. Specifically, one obtains terms involving ε1 erfc ν/
√
2

which, for large ν, reduces to ∼ fPS · ε1ν · ν−2(1 +O(ν−2)).

A few comments are in order at this stage. First, this ordering in powers of ν−2 is a generic

feature of integrals involving an increasing number of powers of (1 − Sj/S) being summed. This

can be understood in a simple way from the asymptotic properties of the incomplete Gamma

function, as we show in Appendix C. We are therefore justified in truncating the Taylor expansion

of the unequal time correlators, even though superficially (on dimensional grounds) each term in

the series appears to be equally important. Secondly, we have not yet accounted for the effect of

the exponential derivatives. In fact we will see in the next section that when ǫν3 ∼ O(1), it is

these terms that impose stricter conditions on the series truncations. For now, however, we have

no guidance other than the fact that if we account for one term of order ∼ ǫnνn, then we should

account for all terms at this order. Given this, note that for ǫν3 ∼ O(1) we have ν−2 ∼ ǫν, and

hence the terms arising from (7.25b) and (7.25c) are of order ∼ ǫ2ν2. To consistently retain them,

we must therefore also retain the term linear in ε2 and the one quadratic in ε1, when expanding

the exponential. These involve the following quantities:

n∑

j=1

(1− Sj
S
)

n∑

k,l,m=1

∫ δc

−∞
dδ1 . . . dδn∂j∂k∂l∂mW

gm = −
(
2

π

)1/2 1

S2
ν e−ν2/2 ,

(7.27a)
n∑

j,k=1

(1− Sj
S
)(1 − Sk

S
)

n∑

l,l1,l2,l3=1

∫ δc

−∞
dδ1 . . . dδn∂j∂k∂l∂l1∂l2∂l3W

gm = −
(
2

π

)1/2 4

S3
ν e−ν2/2 ,

(7.27b)

where we have used the result (7.23), and in (7.27b) also the identity

∂3νh(ν) = −ν e−ν2/2 . (7.28)
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We now see that the result of the path integral depends only on ν. Putting things together and

computing the overall ν derivative, we find

f =

(
2

π

)1/2

ν e−(ε1/3!)∂3
ν+(ε2/4!)∂4

ν+...

[
e−ν2/2 − 1

4
ε1ν e

−ν2/2 +
5

16
ε1

(π
2

)1/2
erfc

ν√
2

+
1

8

(
ε21 −

2

3
ε2

)
e−ν2/2

(
ν2 − 1

)
+O(ǫ3ν3)

]
, (7.29)

where we ignore terms like ε1νO(ν−4).

To compute the action of the exponentiated derivative operators, we start by writing the ex-

pression in square brackets in (7.29) in terms of its Fourier transform, using the relations4

e−ν2/2 =

∫ ∞

−∞

dλ√
2π
eiλνe−λ2/2 ,

−ν e−ν2/2 =

∫ ∞

−∞

dλ√
2π

(iλ)eiλνe−λ2/2 ,

ν2e−ν2/2 = −
∫ ∞

−∞

dλ√
2π

(λ2 − 1)eiλνe−λ2/2 ,

(π
2

)1/2
erfc

ν√
2
=

∫ ∞

−∞

dλ√
2π

i

λ
eiλνe−λ2/2 . (7.30)

Together with the identity eA(−d/dν)neiλν = eA(−iλ)neiλν , for constant A, this gives

f(ν) =

(
2

π

)1/2

ν

∫ ∞

−∞

dλ√
2π
eiλνe−λ2/2+(−iλ)3ε1/6+(−iλ)4ε2/24+...P(λ) (7.31)

where P(λ) is the truncated series given by

P(λ) = 1 +
1

4
iε1λ+

5

16

iε1
λ

− 1

4
λ2
(
ε21
2

− ε2
3

)
+ . . . (7.32)

The integral in eq. (7.31) can be performed using the saddle point approximation. We write it as

f(ν) =

(
2

π

)1/2

ν

∫
dλ

2π
eφ(λ) , (7.33)

where

φ(λ) ≡ iλν − 1

2
λ2 +

iε1
6
λ3 +

ε2
24
λ4 + lnP(λ) + . . . (7.34)

The location of the saddle point, λ = λ∗, is the solution of φ′(λ∗) = 0, and the saddle point

approximation then tells us that
∫ ∞

−∞

dλ√
2π
eφ(λ) = eφ(λ∗)(|φ′′(λ∗)|)−1/2 (7.35)

4We are using a regulator which shifts the pole at λ = 0 in the last expression in (7.30), to λ = −iα where α is

real, positive and small.
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(see Appendix D for a discussion of the errors introduced by this approximation). It turns out that

in order to obtain f(ν) correctly up to order ∼ ǫ2ν2, we only need λ∗ correct up to order ǫν. The

expression for φ′ at the relevant order is given by

φ′(λ) = iν − λ+
iε1
2
λ2 + . . . , (7.36)

and solving for λ∗ perturbatively up to order ǫν, we find

λ∗ = iν

[
1− 1

2
ε1ν +O(ǫ2ν2)

]
. (7.37)

The expression for the mass function f(ν) then works out to

f(ν) =

(
2

π

)1/2

ν exp

[
−1

2
ν2
(
1− ε1

3
ν +

1

4

(
ε21 −

ε2
3

)
ν2 +O(ǫ3ν3)

)]

×
(
1− 1

4
ε1ν

(
3− 5

4ν2

)
+
(
ε21 −

ε2
3

)
ν2 +O(ǫ3ν3)

)
, (7.38)

which superficially at least, is comprised of two series expansions, one in the exponential and one

as a polynomial, both based on the small parameter ǫν (see however the next section).

This derivation assumed that ε1 and ε2 are constant, and that the cn are unity. If we relax

these assumptions and allow a scale dependence in these parameters, (7.24) is replaced with

f = (ν∂ν − 2S∂S)e
−(ε1(S)/3!)∂3

ν+(ε2(S)/4!)∂4
ν+...g(ν, S)

=

[
ν +

1

3
ε̇1ε1∂

2
ν −

1

12
ε̇2ε2∂

3
ν

]
e−(ε1(S)/3!)∂3

ν+(ε2(S)/4!)∂4
ν+... ∂νg(ν, S)

− 2te−(ε1(S)/3!)∂3
ν+(ε2(S)/4!)∂4

ν+... ∂tg(ν, S) , (7.39)

where, for any function v(S), the dot is defined as

v̇(S) ≡ d ln v

d lnS
, (7.40)

and the function g(ν, S) can be shown to be

g(ν, S) =

(
2

π

)1/2 [(π
2

)1/2
erf

ν√
2
+

1

4
ε1c1e

−ν2/2 +
ε1
4

(
3

4
c2 − 2c3

)
h(ν)

− 1

8
ε21c

2
1νe

−ν2/2 +
1

12
ε2c4νe

−ν2/2 + . . .

]
, (7.41)
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The expression in (7.39) can be evaluated analogously to (7.29), since the additional derivatives

pose no conceptual difficulty. The result of the saddle point calculation, correct up to quadratic

order assuming ǫν3 ∼ O(1), is

f(ν, S) =

(
2

π

)1/2

ν exp

[
−1

2
ν2
(
1− ε1

3
ν +

1

4

(
ε21 −

ε2
3

)
ν2 +O(ǫ3ν3)

)]

×
{
1− 1

4
ε1ν

[(
c1 + 2− 4

3
ε̇1

)
+

1

ν2

(
3

4
c2 − 2c3 +

4

3
ε̇1 + 2c1(ε̇1 + ċ1)

)]

+
1

8
ν2
[
ε21

(
c21 + 2c1 + 5− 2

3
ε̇1(c1 + 6)

)
− 2ε2

(
1 +

1

3
c4 −

1

3
ε̇2

)]
+O(ǫ3ν3)

}
, (7.42)

which reduces to (7.38) if we take ε1, ε2 to be constant and set the cn to unity.

One issue which we have ignored so far, is that the definition of ν involves the variance S = σ2 of

the non-Gaussian field. Computationally it is more convenient to work with the variance σ2g of the

Gaussian field in terms of which cosmological NG are typically defined. We should then ask whether

this difference will require changes in our expressions for f . We start by noting that this difference in

variances is of order ∼ ǫ2. For example, in the local model one has σ2(R) = Ad1(R)+A(Af
2
NL)d2(R)

where A ∼ 10−9 is an overall normalization constant, d1 and d2 are scale dependent functions of

comparable magnitude on all relevant scales, and ǫ is estimated as ǫ ∼ fNLA
1/2. We therefore

have ν = δc/σ = (δc/σg)(1 +O(ǫ2)). However, with our assumption that ǫν3 ∼ O(1), we see that

this correction is actually of order ∼ (ǫ2ν2)ν−2 ∼ ǫ3ν3, which we have been consistently ignoring.

We will see that even when we relax the assumption ǫν3 ∼ O(1) and probe smaller scales where

εν3 ≪ 1, this correction can still be consistently ignored. Hence we can safely set ν = δc/σg in all

of our expressions.

7.3 Consistency of the truncation

7.3.1 Comparative sizes of terms in the mass function

Now that all the derivative operators which we consider important have been accounted for, we

can check whether our final result is consistently truncated, i.e. whether we have retained all terms

at any given order in the expansion. Symbolically, our current result for the mass function can be

written as

f ∼ e−
1
2
ν2(1+ǫν+ǫ2ν2+O(ǫ2,ǫ3ν3))

[
1 + ǫν +

ǫ

ν
+ ǫ2ν2 +O(ǫν−3, ǫ2, ǫ3ν3)

]
, (7.43)
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with the understanding that coefficients are computed (but not displayed) for all terms except those

indicated by the O symbols. Also, ǫ2 refers to both ε21 and ε2.

Since the expansions involve two parameters, ǫν and ν−2, they make sense only if we additionally

prescribe a relation between these parameters. So far we assumed that ǫ is fixed and ν is such that

ǫν3 ≃ 1, which was based on the observation that the term ǫν3 naturally appears in the exponent

and is not restricted in principle to small values. In this case, in the polynomial in (7.43) we retain

the terms ǫν ≃ ν−2, (ǫν−1, ǫ2ν2) ≃ ν−4, and we discard (ǫν−3, ǫ2, ǫ3ν3) ≃ ν−6. It would seem that

our expression is then correct up to order ∼ ν−4. However, the terms discarded in the exponential

have the form exp[O(ǫ3ν5)] ∼ exp[O(ν−4)] ∼ 1 +O(ν−4). The error we are making is thus of the

same order as the smallest terms we are retaining, and it therefore makes sense to also ignore all

the terms of order ∼ ν−4 which we computed in the polynomial. The consistent expression when

ǫν3 ≃ 1 is then given by

f ∼ e−
1
2
ν2(1+ǫν+ǫ2ν2) [1 + ǫν +O

(
ν−4

)]
. (7.44)

Clearly, similar arguments can be applied at smaller scales where, for instance, one might have

ǫν3 ≃ ν−1, ν−2, etc. It is then important to ask which mass scales correspond to these “transition

points”. In figure 7.4 we plot ν(M,z) given by (7.16) in an observationally interesting mass range,

for three different redshifts. The horizontal lines mark the transition points where ǫν3 becomes

equal to (from top to bottom) 1, ν−1, ν−2, ν−3, ν−4 and ν−5. We fix ǫ = 1/300 which follows from

the fact that in the local model with fNL = 100 we have ε1 ≃ 0.02 (see fig. 7.1), and the expression

for f(ν,M) contains the quantity ε1/6 in the exponential. From the intersections of the horizontal

lines with the curves, we see that different transition points are relevant at different redshifts, and

their locations also obviously depend on the value of ǫ. For example, we find that the transition

point where ǫν3 ≃ ν−2, remains accessible even when ǫ is an order of magnitude smaller (with

ǫ ≃ 1/3000, this transition occurs at ν ≃ 4.96). The transitions at ǫν3 ≃ 1, ν−1, on the other hand,

are not accessible for this level of NG. The transition at ǫν3 ≃ ν−2 is therefore observationally very

interesting.

We will now discuss in some detail the truncation of our expression for f , at various transition

points. The goal is to try and settle on a single expression which is valid over a wide range of scales

(i.e. across several transition points). This can then be applied without worrying about truncation

inconsistencies. Of course, the order of the discarded terms will then depend on the particular

transition point being considered, leading to a scale dependent theoretical error. At this point, the
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Figure 7.4: ν ≡ δc(z)/σ(M) in the range 5 ·1013 < (M/h−1Msol) < 5 ·1015 for three different redshifts,
with ǫ = 1/300. The solid, long dashed and short dashed curves correspond to redshifts z = 1, 0.5 and

0 respectively. The horizontal lines mark the transition points where ǫν3 becomes equal to (from top to

bottom) 1, ν−1, ν−2, ν−3, ν−4 and ν−5.

reader may skip to the end of the present subsection, where we present such a single consistent

expression.

7.3.1.1 ǫν3 ≃ ν−1

At this transition point, the terms we retain in the exponential are

ǫν3 ≃ ν−1 ; ǫ2ν4 ≃ ν−4 ,

while discarding O(ǫ3ν5) = O(ν−7). In the polynomial, meanwhile, we retain

ǫν ≃ ν−3 ; ǫν−1 ≃ ν−5 ; ǫ2ν2 ≃ ν−6 ,

while discarding

O(ǫν−3) = O(ν−7) ; O(ǫ2) = O(ν−8) ; O(ǫ3ν3) = O(ν−9) .

Our expression (7.43) therefore retains all terms correctly up to order∼ ν−6, and is consistent. With

some foresight, however, it turns out to be more convenient to degrade this expression somewhat

by also discarding the polynomial quadratic term ǫ2ν2 ≃ ν−6. The remaining expression

f ∼ e−
1
2
ν2(1+ǫν+ǫ2ν2)

[
1 + ǫν +

ǫ

ν
+O

(
ν−6

)]
(7.45)

is also consistent at this transition point, and has a form which is identical to the ones we will see

next.
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7.3.1.2 ǫν3 ≃ ν−2

As we mentioned earlier, this transition point is observationally quite interesting. The terms we

retain in the exponential are

ǫν3 ≃ ν−2 ; ǫ2ν4 ≃ ν−6 ,

while discarding O(ǫ3ν5) = O(ν−10), and in the polynomial we retain

ǫν ≃ ν−4 ; ǫν−1 ≃ ν−6 ; ǫ2ν2 ≃ ν−8 ,

while discarding

O(ǫν−3) = O(ν−8) ; O(ǫ2) = O(ν−10) ; O(ǫ3ν3) = O(ν−12) .

This time we see that the term ǫν−3 has become as important as the quadratic term ǫ2ν2 in the

polynomial, and to be consistent we should discard the quadratic term. The expansion should thus

read

f ∼ e−
1
2
ν2(1+ǫν+ǫ2ν2)

[
1 + ǫν +

ǫ

ν
+O

(
ν−8

)]
. (7.46)

7.3.1.3 ǫν3 ≃ ν−3

A similar analysis as above shows that at this stage ǫν−3 ≃ ν−9 > ǫ2ν2, and a consistent expression

again requires dropping the quadratic term in the polynomial, leaving

f ∼ e−
1
2
ν2(1+ǫν+ǫ2ν2)

[
1 + ǫν +

ǫ

ν
+O

(
ν−9

)]
. (7.47)

7.3.1.4 ǫν3 ≃ ν−4 and smaller

Beyond this point, the term ǫν−3 which we discard in the polynomial, becomes comparable or

larger than the quadratic term of the exponential as well, and a consistent expression becomes

f ∼ e−
1
2
ν2(1+ǫν)

[
1 + ǫν +

ǫ

ν
+ . . .

]
(7.48)

The parametric order of the terms now discarded depends on the exact relation between ǫν3 and

ν−1.

Finally, note that the error introduced by setting ν → νg where νg is defined using the variance

of a Gaussian field, was estimated in section 7.2 as O(ǫ2). When ǫν3 ≃ 1, this error is of order

O(ǫ3ν3) and can therefore be consistently ignored. It is not hard to see that at all the lower
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transition points this error continues to be comparable to, or smaller than, the largest terms being

discarded, and can hence be consistently ignored. In summary, we can state that for observationally

accessible mass scales larger than the transition point where ǫν3 ≃ ν−3, the single expression

f ∼ e−
1
2
ν2(1+ǫν+ǫ2ν2)

[
1 + ǫν +

ǫ

ν
+O(ǫ3ν5, ǫ2ν2, ǫν−3)

]
, (7.49)

is parametrically consistent as it stands – the terms ignored are smaller than the smallest terms

retained – and in fact it remains a very good approximation even when ǫν3 ≃ 1, since the only

“inconsistent” term then is ǫν−1, whose effect reduces as ν increases. On scales where ǫν3 ≃ ν−4

and lower, the theoretical error becomes comparable to or larger than the quadratic term in the

exponential. Plugging back all the coefficients, we have the following result for the mass function

(excluding filter effects, see section 7.4):

f(ν, S) = fPS(ν) exp

(
1

6
ε1ν

3 − 1

8

(
ε21 −

ε2
3

)
ν4
)

×
{
1− 1

4
ε1ν

((
c1 + 2− 4

3
ε̇1

)
+

1

ν2

(
3

4
c2 − 2c3 +

4

3
ε̇1 + 2c1(ε̇1 + ċ1)

))

+O(ǫ3ν5, ǫ2ν2, ǫν−3)

}
. (7.50)

7.3.2 Comparing with previous work

In this subsection we compare our results with previous work on the non-Gaussian mass function.

As mentioned in the Introduction, this quantity has been computed by several authors in different

ways [73, 105, 106]. If one considers the range of validity of the perturbative expansion, the strongest

result so far has been due to MVJ [106], who explicitly retain the exponential dependence on ε1.

Their expression for f can be written as5

fMVJ = fPS(ν)
eε1ν

3/6

√
1− ε1ν/3

[
1− 1

2
ε1ν

(
1− 2

3
ε̇1

)]
. (7.51)

The major shortcoming of their result is that it is based on a Press-Schechter like prescription,

and must therefore be normalized by an appropriate Gaussian mass function, typically taken to

be the Sheth & Tormen one [115]. Additionally, it always misses the contributions due to the

unequal time correlators, which contribute to the terms ∼ ǫν, ǫν−1, etc. in (7.50). When one

5The analysis presented by MVJ in fact allows one to retain terms like ∼ ǫ2ν4 in the exponential as well, and we

have seen that when ǫν3 ≃ 1, these terms are as important as the polynomial ǫν term retained by MVJ. However,

since the MVJ expression misses unequal time effects of order ∼ ǫν anyway, it is reasonable to compare our results

with the expression (7.51), which is also the one used by most other authors (see e.g. [22, 132]).
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considers formal correctness, on the other hand, MR have presented a result based on explicit path

integrals, which accounts for the unequal time contributions, and which also does not need any

ad hoc normalizations (in this context, see also Lam & Sheth [122]). Indeed, our calculations in

section 7.2 were based on techniques discussed by MR in [71, 73]. As we discuss below, however, the

fact that MR do not explicitly retain the exponential dependence of ε1ν
3 means that their result is

subject to significant constraints on the range of its validity. Their expression for f , ignoring filter

effects, is

fMR = fPS(ν)

{
1 +

1

6
ε1ν

3

[
1− 3

2ν2

(
c1 + 2− 4

3
ε̇1

)
− 3

2ν4

(
3

4
c2 − 2c3 + 4ε̇1 + 2c1(ε̇1 + ċ1)

)]}
.

(7.52)

This expression is precisely what one obtains by linearizing our expression (7.50) in ε1, which serves

as a check on our calculations. LMSV [105] present a result based on an Edgeworth expansion of

the type encountered when studying NG generated by nonlinear gravitational effects [133]. The

result most often quoted in the literature is their expression linear in ε1 (and hence in ε1ν
3), which

is

fLMSV,lin = fPS(ν)

{
1 +

1

6
ε1ν

3

[
1− 1

ν2
(3− 2ε̇1)−

2

ν4
ε̇1

]}
. (7.53)

In Appendix B.3 of [105], LMSV also give an expression involving ε21 and ε2, which can be written

as

fLMSV,quad = fPS(ν)

[
1 +

1

6
ε1

(
H3(ν) +

2

ν
ε̇1H2(ν)

)

+
1

72
ε21

(
H6(ν) +

4

ν
ε̇1H5(ν)

)
+

1

24
ε2

(
H4(ν) +

2

ν
ε̇2H3(ν)

)]
, (7.54)

where the Hn(ν) are the Hermite polynomials of order n. This expression was used by LMSV only

as a check on the validity of their linear expression. By comparing with our expression, which is

non-perturbative in ε1ν
3, we will see below that these quadratic terms in fact significantly improve

LMSV’s prediction.

Sticking to the linearized results, we see that the expressions of both MR and LMSV have the

symbolic form

f ∼ e−ν2/2
[
1 + ǫν3 + ǫν +

ǫ

ν
+ . . .

]
, (7.55)

where the ellipsis denotes all terms of the type ǫν−3, ǫν−5, etc., as well as all terms containing ǫ2.

As we have seen, deciding where to truncate the expression for f is not trivial, and using our more

detailed expression we can ask whether the expression (7.55) is consistent at all the relevant length
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scales. Immediately, we see that this expression cannot be correct once ǫν3 becomes close to unity.

However, this case is on the border of the observed mass window (for galaxy cluster observations),

even at high redshifts.

Let us therefore directly look at the case ǫν3 ≃ ν−2 which, as we saw, is accessible over a wide

range of redshifts for ǫ ∼ 10−2, and at high redshifts also for ǫ ∼ 10−3. In this case the terms MR

and LMSV retain have magnitudes

ǫν3 ≃ ν−2 ; ǫν ≃ ν−4 ; ǫν−1 ≃ ν−6 ,

and terms like ǫν−3 ≃ ν−8 are discarded. We know from our expression however, that ǫν3 appears

in the exponential, and therefore leads to terms like (ǫν3)2 ≃ ν−4 and (ǫν3)3 ≃ ν−6 when the expo-

nential is expanded, which are of the same order as the terms retained in (7.55). The exponential

also contributes a term ǫ2ν4 ≃ ν−6, which in fact involves the trispectrum of NG, again at the order

retained by MR and LMSV. The error in the expression (7.55) when ǫν3 ≃ ν−2 is therefore O(ǫν).

A similar analysis shows that the error at transition point where ǫν3 ≃ ν−1 is O(ν−2) > O(ǫν).

From a purely parametric point of view, the situation for MR and LMSV improves as ν is

decreased further, and the expression (7.55), as it stands, becomes exactly consistent (in the sense

discussed in the previous subsection, see below (7.49)) when ǫν3 ≃ ν−5, because at this stage

ǫν−1 ≃ ν−9, while (ǫν3)2 ≃ ν−10 and ǫ2ν4 ≃ ν−12, and hence the exponential only contributes a

single linear term ǫν3. More importantly, LMSV’s expression also has errors due to the absence of

the unequal time terms discussed earlier, which are of order ∼ ǫν and can be dominant over the

others. For the intermediate transitions, the analysis shows that when ǫν3 ≃ ν−3 the error in (7.55)

is O(ν−6) > O(ǫν−1), and when ǫν3 ≃ ν−4 the error is O(ǫν−1). This should be compared with

our result (7.50), in which the error (at least on large scales) is always parametrically smaller than

the smallest terms we retain.

7.4 Effects of the diffusing barrier and the filter

In [72], MR showed that the agreement between a Gaussian mass function calculated using the

statistics of random walks and the mass functions observed in numerical simulations with Gaussian

initial conditions can be improved by allowing the barrier itself to perform a random walk. The

width of this scatter was found by Robertson et al. [134] to be a growing function of σ(M), which

is consistent with the physical expectation that deviations from spherical collapse become relevant

at small scales. The barrier can thus be treated (at least on a first approximation) as a stochastic
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variable whose probability density function obeys a Fokker-Planck equation with a diffusion coef-

ficient DB , which can be estimated numerically in a given N -body simulation. In particular, MR

found DB ≃ 0.25 using the simulations of [134].

Conceptually, the variation of the value of the barrier is due to two types of effects, one intrinsi-

cally physical and one more inherent to the way in which one interprets the results of simulations.

From a physical point of view, the dispersion accounts for deviations from the simple model of

spherical collapse, for instance the effects of ellipsoidal collapse, baryonic physics, etc. On the

other hand, the details of the distribution of the barrier (and therefore the precise value of DB)

will depend on the halo finder algorithm used to identify halos in a particular simulation, since

different halo finders identify collapsed objects with different properties. MR concluded that the

final effect of this barrier diffusion on large scales can be accounted for in a simple way by changing

δc0 → √
aδc0, where a = (1 + DB)

−1. In practice this change is identical to the one proposed by

Sheth et al. [112]6. As MR argue in [73], this barrier diffusion effect can also be accounted for in

the non-Gaussian case, again by the simple replacement of δc0 →
√
aδc0. It is easy to see that their

arguments go through for all our calculations as well, and we have implemented this change in our

definition of ν in (7.16), setting
√
a = 0.89.

In [71], MR also accounted for the non-Markovian effects of the real space top-hat filter, as

opposed to the sharp-k filter for which the results of section 7.2 apply. This is done by writing

the 2-point function 〈δ̂(R1) δ̂(R2)〉, calculated using the real space top-hat filter, as the Markovian

value plus a correction, 〈δ̂(Rj) δ̂(Rk)〉 = min(Sj, Sk) + ∆jk, and noting that the correction ∆jk

remains small over the interesting range of length scales. A very good analytical approximation for

the symmetric object ∆jk is

∆jk ≃ κmin(Sj , Sk)

(
1− min(Sj , Sk)

max(Sj , Sk)

)
, (7.56)

where κ(R) ≃ 0.464 + 0.002R, with R measured in h−1 Mpc. The mass function is then obtained

6A potential issue in this argument lies in the assumption of a linear Langevin equation for the stochastic barrier

B, resulting in a simple Fokker-Planck equation with a constant DB like the one in MR, while the distribution of

B was found to be approximately log-normal (and therefore non-Gaussian) in [134]. One can see that a Langevin

equation of the type Ḃ = Bξ (which would produce a log-normal distribution) can be approximated by Ḃ = 〈B〉ξ,
whenever the fluctuations around 〈B〉 are small, and gives a constant diffusion coefficient as long as 〈B〉 is constant.
Although both approximations are reasonable on the scales of interest, non-Gaussian and scale dependent corrections

to the barrier diffusion should be studied, since in principle they could be of the same order as the other corrections

retained here. This investigation is left for future work.
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by perturbatively expanding in ∆ij, with the leading effect being due to the integral

∫ δc

−∞
dδ1 . . . dδn

1

2

n∑

j,k=1

∆jk∂j∂kW
gm , (7.57)

which on evaluation leads to

fg,sharp−x(ν, S) =

(
2

π

)1/2

ν

[
(1− κ)e−ν2/2 +

κ

2
Γ

(
0,
ν2

2

)
+O(κ2)

]
, (7.58)

where the subscript stands for Gaussian noise with the top-hat filter in real space, and κ introduces

a weak explicit S dependence. In [73], MR proposed an extension of this result to the non-

Gaussian case, by assuming that all the non-Gaussian terms computed with the sharp-k filter

would simply get rescaled by the factor (1 − κ) at the lowest order, but otherwise retain their

coefficients. Symbolically, their result (Eqn. 88 of [73]) is

fng,sharp−x(ν, S) ∼ ν

[
(1− κ)e−ν2/2

(
1 + ǫν3 + ǫν + ǫν−1

)
+
κ

2
Γ

(
0,
ν2

2

)]
, (7.59)

with the specific coefficients of the ǫν3, ǫν and ǫν−1 terms being identical to those in (7.52).

However, the coefficient of e.g. the κǫν term arises from the action of an operator ∼∑j,k ∆jk∂j∂k

combining with the first unequal time operator ∼ ε1S
1/2
∑

j(S − Sj)∂j
∑

k,l ∂k∂l, and there is no

simple way of predicting its exact value beforehand. Since MR explicitly neglect such “mixed”

terms, their formula is not strictly inconsistent, as long as one keeps in mind that the theoretical

error in their expression is of the same order as the terms ∼ κǫν that they include. However, if

one wants to consistently retain such terms, a detailed calculation is needed7. Our calculations,

which are not displayed, indicate that the coefficient of the κǫν term depends on certain details of

the continuum limit of the path integral near the barrier, which require a more careful study. At

present, we conclude that the mixed terms involving both filter effects and NG must be truncated

at order ∼ κǫν.

Finally, the filter-corrected mass function is also subject to effects of barrier diffusion. Here

we make the same assumptions as in [72], namely that the barrier location satisfies a Langevin

equation with white noise and diffusion constant DB , which can be accounted for by replacing

κ → κ̃ = κ/(1 + DB) = aκ. However, it is difficult to theoretically predict the unequal time

behaviour of the barrier correlations and these simple assumptions must also be tested, perhaps by

suitably comparing with the detailed results of Robertson et al. [134].

7Notice that this issue is completely decoupled from the subtleties in truncation discussed in section 7.3 – this

problem remains even at scales where the MR expression is formally consistent.
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Our final expression for the mass function, corrected for effects of the diffusing barrier and the

top-hat real space filter, is

f(ν, S) = fPS(ν)

(
1− κ̃+O(κ̃2)

)
exp

[
1

6
ε1ν

3 − 1

8

(
ε21 −

ε2
3

)
ν4
]

×
{
1 +

(
1− 2 ˙̃κ

)

1− κ̃
κ̃ν−2

(
1− 2ν−2

)
− 1

4
ε1ν

(
c1

1− κ̃
+ 2− 4

3
ε̇1

)

− 1

4
ε1ν

−1

(
3

4
c2 − 2c3 +

4

3
ε̇1 + 2c1(ε̇1 + ċ1)

)

+O(κ̃2ν−2, κ̃ǫν, κ̃ν−6) +O(ǫ2ν2, ǫ3ν5, ǫν−3)

}
, (7.60)

where we have chosen to account for the scale independent O(κ̃2) error arising from filter effects, as

an overall normalization uncertainty, and have explicitly displayed the orders of the various terms

we ignore. Here fPS(ν) =
√
2/π ν e−ν2/2 is the Bond et al. result, with ν(M,z) defined in (7.16).

To summarize, (7.60) gives an analytical expression for the non-Gaussian mass function. This

expression is based on approximations that are valid over a larger range of length scales than the

ones presented by MR and LMSV, and incorporates effects which are ignored in the expression pre-

sented by MVJ and LMSV. Like all these other mass functions, it suffers from the errors introduced

by filter effects. However, the largest of these can be accounted for as an overall normalization con-

stant, which can be fixed using, for instance, results of a Gaussian simulation. In table 7.1 we

provide analytical fits for ε1, ε2, c1, c2 and c3, for the local and equilateral case, as a function of

σ2. As mentioned earlier, all these quantities are independent of redshift, although they depend

on the choice of cosmological parameters in a complicated way, due to the presence of the transfer

function in their definitions. However, the dependence on σ8 is simple, and one can check that

we have ε1 ∝ σ8, ε2 ∝ σ28 , and that the cn are independent of σ8. Recall that the cn are also

independent of fNL and gNL. Also, we have the following relations for ε̇1 and ċ1, which can be

proved using the definitions of ε1 and the cn:

ε̇1 =
3

2
(c1 − 1) ; ċ1 = 1− 3

2
c1 +

1

c1

(
c3 −

1

2
c2

)
. (7.61)

For completeness, in table 7.1 we also give fits for the filter parameters κ̃ and ˙̃κ which appear in

the mass function, as functions of σ2.
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Parameter Fitting form b+ c Sn

Local NG b c n

ε1 0.0096 0.015 0.18

c1 0.98 0.073 0.094

c2 3.15 0.79 0.69

c3 2.15 0.45 0.65

ε2(f
2
NL) −0.0049 0.0059 0.011

ε2(gNL) 7.9 · 10−4 0.0022 0.25

Parameter Fitting form b+ c Sn

Equilateral NG b c n

ε1 0.01 −4 · 10−4 1.25

c1 1.03 −0.052 0.30

c2 2.32 0.93 0.49

c3 1.72 0.36 0.54

Filter

κ̃ 0.36 0.015 −0.47

˙̃κ 0.046 −0.064 −0.17

Table 7.1: Analytical fits for the various NG parameters, in the local and equilateral cases, as a

function of t = σ2, in the range 2 · 1013 < M/(h−1Msol) < 5 · 1015, for fNL = 100 and gNL = 104. We

have ε1 ∝ fNL in both cases, and for ε2 in the local case we give separate fits for the terms proportional

to f2
NL and gNL. We do not consider ε2 in the equilateral case, since the trispectrum in this case is

highly model dependent. We also give fits for the filter parameters κ̃ and ˙̃κ as functions of S, in the

same mass range. The errors on all the fits are less than 1%, except for ε2(f
2
NL) where the error is ∼ 6%,

because of numerical difficulties in calculating this object. These fits of course depend on our choice of

cosmological parameters.

7.5 Results and Discussion

In this section we conclude with our final results for the non-Gaussian halo mass function, comparing

our approach with previous work. In principle, we should compare the full expressions for the mass

functions of various authors with ours. However, recall that for MVJ and LMSV one has to multiply

an analytically predicted ratio Rng = f(ν,M, fNL)/f(ν,M, fNL = 0) with a suitable Gaussian mass

function based on fits to simulations, and it is not clear how to compute theoretical error bars on

the latter. On the other hand, the object Rng itself is an unambiguous theoretical prediction of

every approach, that is MVJ, LMSV, MR and our work, and we can compute theoretical errors

on it. In this work, we will restrict ourselves to comparing the different expressions for Rng. In

future work, we hope to compare both Rng and the full mass function with the results of N -body

simulations.

In figures 7.5 and 7.6 we plot the ratio Rng, respectively without and with the filter effects, at

redshift z = 1. In this way we can explicitly disentangle the errors due to an approximate treatment

of non-Gaussian effects from those due to the filter effects. We compare our expression (7.60) with

the expressions of MR (7.52), LMSV linear (7.53) and quadratic (7.54), and of MVJ (7.51). Notice

that, when considering the filter effects, the Gaussian function that enters in the ratio Rng is defined
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to be the function with fNL = 0 (i.e. without NG but with filter effects when present). We use

the local model of non-Gaussianity, setting fNL = 100 and gNL = 0, and the reference ΛCDM

cosmology described in section 7.1. We do not explicitly show the final results for the equilateral

model, but they are qualitatively similar. As is commonly done in the literature, we modify the

LMSV and MVJ curves by applying the Sheth et al. correction of δc0 → √
aδc0. An identical

correction is already present in the expressions (7.60) and (7.52) due to the barrier diffusion. We

set
√
a = 0.89, which is the value inferred in [72], using the simulations of Robertson et al. [134].

To make the comparison meaningful, we introduce theoretical error bars on the curves. These

error bars have no intrinsic statistical meaning – they simply keep track of the absolute magnitude

of the terms that are ignored in any given prescription for computing the mass function. As we

have discussed at length in section7.3, these theoretical errors are scale dependent. The estimated

error magnitude for each point is the maximum among the terms ignored in the expression. More

explicitly, the errors for the linearized LMSV expression (7.53) are estimated as the maximum of

(ǫν3)2 which comes from the expansion of the exponential, ǫν which is the order of the largest

unequal time terms missing, and κ̃ν−2 which comes from the filter effects. The errors for the

quadratic LMSV expression (7.54) are similarly estimated as the maximum of (ǫν3)3, ǫν and κ̃ν−2.

The largest error for the MVJ expression (7.51) is the maximum of ǫν (unequal time terms) and

κ̃ν−2 (filter effects). Finally, the error for the MR expression (7.52) is the maximum of (ǫν3)2 from

the expansion of the exponential, ǫν−3 from the largest unequal time terms ignored, and κ̃2ν−2 and

κ̃ǫν from the filter effects. We include the filter effects and the associated errors only in fig. 7.6, as

explained above.

From these figures, we can draw some interesting conclusions. First of all, we see that it is

important to retain terms which are quadratic in the NG, either with a saddle point method like

in MVJ and in our formula, or by expanding the exponential up to second order, like in LMSV.

Actually, we argue that the correct way to proceed is to keep the exponential, otherwise the

expansion breaks down when ǫν3 is of order unity. We notice in passing that the term proportional

to ε2, which comes from the trispectrum, partially cancels with the ε21 term. Secondly, comparing

our expression with MVJ’s, we can observe that keeping the unequal time terms allows us to sensibly

reduce the theoretical errors due to the approximate treatment of NG. In fact, if these terms are

missing, they provide the largest theoretical error on large scales. Instead, the largest theoretical

error on small scales comes from the approximations involved in dealing with a real space top-hat

filter, as is apparent from figure 7.6.
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Figure 7.5: Theoretical comparison of the different mass functions at z = 1, without the filter effects,

i.e. setting κ̃ = 0. We plot the ratio Rng of the non-Gaussian and Gaussian mass functions, in the

local model with fNL = 100 and gNL = 0. See main text for a discussion of the error bars. The arrow

indicates the mass scale where ε1ν
3/6 = 1, i.e. where the expansions of LMSV (both linearized and

quadratic) and MR break down.

To conclude, in this work we have calculated the non-Gaussian halo mass function in the

excursion set framework, improving over previous calculations. We started from a path integral

formulation of the random walk of the smoothed density field, following [71].

This allows us to take into account effects due to multi-scale correlations of the smoothed density

field (“unequal time” correlations), and due to the real space top-hat filter, which generates non-

Markovianities in the random walk. We recognize two small parameters in which we perturb: ǫ,

defined in (7.15), which measures the magnitude of the primordial NG, and ν−1 = σR/δc, which

is small on large scales. In order to do a consistent expansion and to estimate the theoretical

errors, one must study the (scale dependent) relation between these two parameters, which we

have discussed in sec. 7.3. We then used saddle point techniques to non-perturbatively retain the

dependence on ǫν3, which naturally appears in the calculation and whose magnitude becomes of

order unity at high masses and high redshift. Finally, we included effects due to the choice of the

filter function and to deviations from spherical collapse, as explained in sec. 7.4. Our final result is
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Figure 7.6: Same as fig. 7.5, but including filter effects. These affect only the error bars for MVJ

and LMSV, and they affect both the curve and the error bars for MR and our result. For MR and our

result, the Gaussian mass function used to construct the ratio Rng, is taken as the non-Gaussian result

at fNL = 0, and hence includes filter effects.

presented in (7.60), which we reproduce here:

f(ν, S) = fPS(ν)

(
1− κ̃+O(κ̃2)

)
exp

[
1

6
ε1ν

3 − 1

8

(
ε21 −

ε2
3

)
ν4
]

×
{
1 +

(
1− 2 ˙̃κ

)

1− κ̃
κ̃ν−2

(
1− 2ν−2

)
− 1

4
ε1ν

(
c1

1− κ̃
+ 2− 4

3
ε̇1

)

− 1

4
ε1ν

−1

(
3

4
c2 − 2c3 +

4

3
ε̇1 + 2c1(ε̇1 + ċ1)

)

+O(κ̃2ν−2, κ̃ǫν, κ̃ν−6) +O(ǫ2ν2, ǫ3ν5, ǫν−3)

}
. (7.62)

In table 7.1 we provide analytical fits for the various parameters that appear in this expression. We

also considered other expressions for the mass function found in the literature, which use different

expansion methods but do not estimate the theoretical errors. We estimated the theoretical errors

for each formula, and we show comparative plots in figures 7.5 and 7.6. In our work we have

improved over the calculations of MVJ [106] and LMSV [105] (who ignore unequal time correlations)

and of MR [73] (who do not retain the exponential dependence on ǫν3). We have also demonstrated

that the (linearized) result of LMSV can be significantly improved by retaining the quadratic terms

of their calculation which are usually ignored in the literature. We find that at large scales and
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high redshifts, the biggest theoretical errors are introduced by ignoring the exponential dependence

on ǫν3, followed by the neglect of unequal time correlations. The errors on our expression (7.62)

are therefore significantly smaller than those of the others. The strength of our approach lies in the

combination of path integral methods as laid out by MR [73], and the saddle point approximation

as used by MVJ [106].

Our work can be continued in several directions. First, a thorough calculation of the effects

due to the choice of the filter should be performed, since they lead to significant uncertainties in

our final expression. This would include a study of the details of the continuum limit of the path

integral near the barrier, and also a study of the statistics of the barrier diffusion process in the

presence of filter effects. Second, a comparison with N -body simulations should be performed, in

order to quantitatively assess the possibility of constraining NG using our work. Third, it would

be interesting to study how to account for the effects of ellipsoidal collapse, in a framework such as

the one employed in this paper. Finally, an application to the void statistics along the same lines

should be feasible. The problem here is made more interesting by the presence of two barriers,

as discussed by Sheth & van de Weygaert [135]. Since voids probe larger length/mass scales than

halos, they constitute a promising future probe of primordial NG [136].
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Chapter 8

Conclusions

In this Thesis, we studied the modifications induced by generic single-field dark energy and by pri-

mordial non-Gaussianity on the large scale structure, in particular on the abundance and evolution

of high-mass galaxy clusters.

First we studied generic single-field dark energy models, by a parametrization of the most gen-

eral theory of their perturbations around a given background, including higher derivative terms. In

appropriate limits this approach reproduces standard quintessence, k-essence and ghost condensa-

tion. We find no general pathology associated to an equation of state wQ < −1 or in crossing the

phantom divide wQ = −1, but stability requires that the wQ < −1 side of dark energy behaves, on

cosmological scales, as a k-essence fluid with a virtually zero speed of sound. This implies that one

should set the speed of sound to zero when comparing with data models with wQ < −1 or crossing

the phantom divide.

In particular, we can expect modifications on the evolution and abundance of massive galaxy

clusters, and we studied the spherical collapse model in the presence of quintessence with negligible

speed of sound (and generic values of w). As pressure gradients are negligible, quintessence follows

dark matter during the collapse. The spherical overdensity behaves as a separate closed FLRW

universe, so that its evolution can be studied exactly. We derive the critical overdensity for collapse

and we use the extended Press-Schechter theory to study how the clustering of quintessence affects

the dark matter mass function. The effect is dominated by the modification of the linear dark

matter growth function, but a larger effect occurs on the total mass function, which includes the

quintessence overdensities. Indeed, here quintessence constitutes a third component of virialized

objects, together with baryons and dark matter, and contributes to the total halo mass by a fraction

∼ (1+w)ΩQ/Ωm. This gives a distinctive modification of the total mass function at low redshift, in
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coincidence with the onset of acceleration. We also expect to observe a modification of the baryon

to dark matter ratio in clusters with respect to the cosmological value.

Finally, we use the halo mass function as a tool in studying the effects of primordially generated

non-Gaussianities on the large scale structure. The non-Gaussian mass function has been calculated

by several authors in different ways, typically by exploiting the smallness of certain parameters

which naturally appear in the calculation, to set up a perturbative expansion. We improve upon

the existing results for the mass function by combining path integral methods and saddle point

techniques (which have been separately applied in previous approaches). Additionally, we carefully

account for the various scale dependent combinations of small parameters which appear, since some

of these combinations in fact become of order unity for large mass scales and at high redshifts, and

must therefore be treated non-perturbatively. Our approach allows us to do this, and to also

account for multi-scale density correlations which appear in the calculation. We thus derive an

accurate expression for the mass function which is based on approximations that are valid over a

larger range of mass scales and redshifts than those of other authors. By tracking the terms ignored

in the analysis, we estimate theoretical errors for our result and also for the results of others, and

we also discuss the complications introduced by the choice of smoothing filter function, which we

take to be a top-hat in real space, and which leads to the dominant errors in our expression. We

present a detailed comparison between the various expressions for the mass functions, exploring

the accuracy and range of validity of each.

The lines of work developed here can be continued in several directions. First of all, in this

thesis we do not attempt to study experimental constraints and forecasts. As far as dark energy

is concerned, it is important to assess the robustness of our estimation of the mass function by

cosmological simulations. For instance, these should clarify that our estimate of the effect of the

accretion of dark energy is correct, and quantify the effect of clustering quintessence in the fgas

parameter. Before doing simulations, however, it is important to understand how cusps in the

scalar field can be resolved. Then, from the observational side, one can use our results to analyze

cluster data. Whether the effect be measurable or not will depend on the ability to break the

degeneracies with other cosmological parameters and on the precise determination of the cluster

mass.

Switching to non-Gaussianities, there are a few things that can be studied. From the purely

theoretical side, our calculation can be improved by thoroughly considering the effects due to

the choice of the filter function, which is the main source of error in our expression. A very

interesting problem will be to apply the formalism to the void mass function, which has not received
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much attention yet but it may become an important tool to constrain non-Gaussianities. Then,

a comparison with N -body simulations should be performed, in order to quantitatively assess the

possibility of constraining NG using our work.

The future of cosmology will heavily rely on large scale structure observations. The interplay

between observational techniques and theoretical advances is of paramount importance to push the

knowledge of our Universe forward. We hope to have contributed with some small steps.
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Appendix A

Higher derivative operators in

effective field theories

In this appendix we want to study the Ghost Condensate and its deformations from an effective

field theory point of view. In particular we want to show that, although the operator (∇2π)2

dominates the dynamics, operators containing higher time derivatives such as π̈2 must be treated

perturbatively.

In the Ghost Condensate limit, the free π action is

S =
M4

2

∫
d3xdt

[
π̇2 − (∇2π)2

M2

]
, (A.1)

where we neglected the mixing with gravity – as we are interested in the high energy behavior of

the theory – and for simplicity we assumed that there is a single scale M (M ≃ M̄). This action

is manifestly invariant under the energy scaling [28]

E → sE , t→ s−1t , x→ s−1/2x , π → s1/4π . (A.2)

As the theory is not Lorentz invariant, time and space behave differently under rescaling, and π

does not scale as s1 as in a Lorentz invariant theory (see for instance [137] for an introduction to

scaling in non-Lorentz invariant field theories).

What is the physical meaning of this scaling transformation? Assuming that the theory is

weakly coupled, the free action gives the leading contribution to the correlation functions, so that

these will be invariant under the scaling above. For instance, a relativistic massless scalar has
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scaling dimension 1. Thus, the two-point function satisfies1

〈φφ〉(x− y) = s−2〈φφ〉
(
x− y

s

)
⇒ 〈φφ〉 ∝ 1

|x− y|2 . (A.3)

In the case of the action (A.1) above, the scaling transformation (A.2) yields

〈ππ〉(∆t,∆~x) = s−1/2〈ππ〉
(
∆t

s
,
∆~x

s1/2

)
. (A.4)

Not only the scaling transformation gives information on the free theory, but, more importantly,

it allows one to estimate the effect of different operators added to the free action. In particular, in

the Ghost Condensate case, one can check that all additional operators allowed by symmetries have

positive scaling dimensions, so that their importance is suppressed by E/M elevated to a positive

power [28]. This implies that at low energy the theory is perturbative. For instance, the leading

irrelevant operator is π̇(∇π)2, which has scaling dimension 1/4.

Operators containing higher time derivatives have positive scaling dimensions so that they

must be treated perturbatively. For instance π̈2 has scaling dimension 2, so that at low energy it is

negligible. Additional time derivatives näıvely suggest the existence of more and more solutions of

the equations of motion. However, these solutions are non-perturbative in the expansion parameter

E/M , and there is no reason to expect that they have any physical meaning. For example, taking

seriously these solutions would imply that the Minkowski vacuum is unstable when considering

higher order corrections to the Einstein-Hilbert action [138]. The correct way of treating these

terms is perturbatively, i.e., evaluating them using the lower order equations of motion [139].

Following this logic, the additional solutions studied in the context of the Ghost Condensate theory

in [140] are non-physical, as already pointed out in [141].

As we discussed in this paper, in certain regimes quintessence behaves as a deformation of the

Ghost Condensate theory. The free action (A.1) is deformed by the addition of a (∇π)2 term:

S =
M4

2

∫
d3xdt

[
π̇2 − c2s(∇π)2 −

(∇2π)2

M2

]
. (A.5)

In these cases the dispersion relation is not exactly ω ∼ k2/M but it contains also a linear term

ω ∼ csk, with cs ≪ 1 (for this discussion we assume that c2s is positive).

The situation is now trickier than before because one cannot find a scaling transformation which

leaves the full action (A.5) invariant. On the other hand, one can separate two regimes, depending

on which of the gradient terms dominates, as illustrated in figure A.1.

1Note that the scaling dimension has nothing to do with the mass dimension of the field φ. Indeed, eq. (A.3)

remains the same if we choose a non-conventional normalization of the action such that φ has not mass dimension 1.
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Figure A.1: The two scaling regimes as a function of the momentum k together with the scaling

dimensions of some of the operators. Above: the Ghost Condensate regime where ω ∼ k2/M ; below: the

regime where ω ∼ csk.

For k ≫ csM , the dispersion relation is dominated by (∇2π)2 and the theory behaves as the

Ghost Condensate. In this regime the scaling of all additional operators can be obtained from

eq. (A.2). Notice that now there is a relevant operator, (∇π)2, that becomes more and more

important at low momenta (and energies). The coefficient of this operator is however suppressed

by the small deformation parameter cs ≪ 1. Thus, it can be treated perturbatively as long as

k ≫ csM .

On the other hand, when k ≪ csM the (∇π)2 operator dominates the free action. In this regime

the scaling becomes the same as in the relativistic case. Now both π̈2 and (∇2π)2 are irrelevant

operators with the same scaling dimension 2. However, time and spatial derivatives are still on a

different footing because the time derivatives are suppressed by cs with respect to the spatial ones,

ω ∼ csk. Thus π̈
2 ∼ c4s(∇2π)2 for k ≪ csM . In the intermediate regime k ∼ csM this suppression

can also be obtained from the Ghost Condensate limit. Indeed, at high momenta the operator π̈2

scales like (k/M)4, so that it is suppressed by c4s for k ∼ csM .

Even though these theories make perfect sense as effective field theories, it is not clear whether

one can find a UV completion. In particular, the violation of the null energy condition may be

problematic in the context of black hole thermodynamics [142].
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Appendix B

Modification of gravity with M̂

In the main text we studied the effects of the operator M̂ , focusing on stability and on the phe-

nomenology at cosmological scales. In analogy to what happens for the Ghost Condensate, we

expect that this operator will also be relevant at short scales, inducing a modification of gravity. In

this appendix we perform a preliminary analysis, restricted to linear perturbations only, although

the non-linear dynamics has been shown to be relevant and quite rich in the Ghost Condensate

case (see for example [50]). To simplify the analysis we set ρQ + pQ = 0 and M̄ = 0. Although

the background quintessence stress-energy tensor is the one of the cosmological constant, there

is still a propagating scalar degree of freedom. Its mixing with gravity induces a deviation from

General Relativity; indeed the Ghost Condensate was originally proposed as a consistent modifica-

tion of gravity in the infrared. The simplest setting to study this modification of gravity is in the

Newtonian regime ω2 ≪ k2 around Minkowski spacetime, where the new scalar degree of freedom

modifies the Newtonian potential Φ. For this purpose we will closely follow the discussion done in

[28] for the Ghost Condensate case, i.e., for the operator M̄ .

Working in Newtonian gauge with Ψ = Φ, the metric is ds2 = −(1+ 2Φ)dt2 + (1− 2Φ)d~x2 and

the quadratic Lagrangian for π and Φ reads

L = −M2
Pl(∇Φ)2 + 2M4(Φ − π̇)2 + M̂3(Φ− π̇)(4Φ̇ − π̈ +∇2π) . (B.1)

Let us first assume that M̂ is time independent. Dropping total derivatives and terms which are

negligible in the limit ω2 ≪ k2, we are left with

L = −M2
Pl(∇Φ)2 + 2M4(Φ − π̇)2 + M̂3π∇2Φ . (B.2)
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B. MODIFICATION OF GRAVITY WITH M̂

In terms of the canonically normalized fields πc ≡ 2M2π and Φc ≡
√
2MPlΦ, the Lagrangian in

Fourier space can be written as

L =
1

2

(
πc Φc

)
M
(
πc
Φc

)
, (B.3)

with

M ≡
(

ω2 −iω
√
2M2/MPl − k2M̂3/(2

√
2M2MPl)

iω
√
2M2/MPl − k2M̂3/(2

√
2M2MPl) −k2 + 2M4/M2

Pl

)
. (B.4)

Setting to zero the determinant of this matrix gives the dispersion relation

ω2 = − M̂6

8M4M2
Pl

k2 , (B.5)

which reproduces the Jeans instability already shown in eq. (3.76). The Jeans instability arises

from the non-diagonal (mixing) term and it is thus proportional to M̂6 instead of M̂3.

To study the corrections to the Newtonian theory, one can look at the propagator of Φ that is

the 〈Φ,Φ〉 entry of M−1. This can be written as

− 1

k2
·
[
1− k2M̂6

8M4M2
Pl

· 1

ω2 + k2M̂6/(8M4M2
Pl)

]
, (B.6)

where the term −1/k2 is simply the standard Newtonian propagator. As expected, a substantial

deviation requires, for a given distance k−1, a sufficient time ω−1 for the Jeans instability to develop,

i.e.,

ω2 .
M̂6

8M4M2
Pl

k2 . (B.7)

We can now consider the case of a time dependent M̂ . In this way we introduce new terms in

the action that were previously dropped because total derivatives. The same happens if we had

considered a time dependent spatial metric, but here we stick to Minkowski for simplicity. The

matrix M becomes

M ≡
(

ω2 − k2HM̂3/4M4 −iω
√
2M2/MPl − k2M̂3/(2

√
2M2MPl)

iω
√
2M2/MPl − k2M̂3/(2

√
2M2MPl) −k2 + 2M4/M2

Pl − 2HM̂3/M2
Pl

)
, (B.8)

whereH is the typical rate of variation of M̂3,
˙̂
M3 = HM̂3 (if the time dependence is induced by the

metric this becomes the Hubble rate). Computing the determinant and restricting to frequencies

much larger than H we get the dispersion relation

ω2 =
HM̂3

4M4
k2 − M̂6

8M4M2
Pl

k2 , (B.9)
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which correctly matches eq. (3.76). The value of M̂ can be chosen to avoid the Jeans instability

and have a healthy dispersion relation. The propagator becomes

− 1

k2
·
[
1− k2M̂6

8M4M2
Pl

· 1

ω2 − k2M̂3H/(4M4) + k2M̂6/(8M4M2
Pl)

]
. (B.10)

The scalar degree of freedom induces a 1/r force which adds to the Newton law: this force,

however, propagates at a very small speed

c2s ≈
M̂3H

4M4
. (B.11)

Given the absence of a Jeans instability, the modification of gravity induced by M̂ is very different

at linear and non-linear level with respect to the Ghost Condensate case [28, 50]. More work

is needed to understand the constraints on M̂ coming from the modifications of gravity that it

produces.
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Appendix C

Hierarchy of terms in the

non-Gaussian mass function

Here we argue why the hierarchy of terms ordered by powers of ν−2 emerges on expanding the expo-

nentiated derivative operators in (7.24). Focusing on terms involving the 3-point correlator, one sees

that a generic term in the expansion contains some powers of (ε1S
3/2), multiplying an n-dimensional

integral containing some summations ∼∑n
j1,j2,...=1(1−Sj1/S)p1(1−Sj2/S)p2 . . . ∂j1∂j2 . . ., and also

some summations over “free” derivatives ∼ ∑n
k1,k2...=1 ∂k1∂k2 . . ., all of this acting on W gm. More

precisely, the structure of the terms is

∼ (ε1S
3/2)m

∑

j1,..,j3m

∫ δc

−∞
dδ1 . . . dδn [(1− Sj1/S) . . . (1− Sjm/S)]

p

[(
1− Sjm+1/S

)
. . . (1− Sj2m/S)

]q ×
[(
1− Sj2m+1/S

)
. . . (1− Sj3m/S)

]r
∂j1 . . . ∂j3m W

gm , (C.1)

for m ≥ 1 and non-negative p, q, r such that not all three are zero. The terms we have considered

in the text are (m, p, q, r) = (1, 1, 0, 0), (1, 1, 1, 0), (1, 2, 0, 0) and (2, 1, 0, 0). We have already

discussed how the “free” derivatives can be pulled out of the integral and converted to ∂ν . For

the “non-free” derivatives, we see that what is important is the total number of (1− Sj/S) factors

accompanying these derivatives. For example, the (1, 1, 1, 0) term in (7.25c) has the same structure

as the (1, 2, 0, 0) term in (7.25b) – the effect of
∑

j,k(1 − Sj/S)(1 − Sk/S)∂j∂k, up to numerical

factors, is identical to that of
∑

j,k(1 − Sj/S)
2∂j∂k. This is expected to be true also with higher

numbers of non-free derivatives.

It is then possible to understand the hierarchy of terms by only considering terms containing
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∑
j(1− Sj/S)

p∂j , and no other non-free derivatives. The basic object to study now becomes

∑

j

(1− Sj/S)

∫
dδ1 . . . dδn∂jW

gm ,

which in the continuum limit can be shown to reduce to the integral

g(0)

(
ν2

2

)
≡
∫ 1

0

dy

y3/2
(1− y)1/2e−ν2/2y =

√
π

2
Γ

(
−1

2
,
ν2

2

)
. (C.2)

Notice the similarity with the function h(ν) in (7.28), which of course is not accidental given the

definitions of these objects. It is now easy to check that increasing the powers of (1 − Sj/S) in

the summation amounts to increasing the powers of (1 − y) in g(0). We are then comparing (with

A = ν2/2) g(0)(A) with g(p)(A) where

g(p)(A) ≡
∫ 1

0

dy

y3/2
(1− y)1/2+pe−A/y . (C.3)

Starting with p = 1 and manipulating the integrals, it is straightforward to establish the recurrence

g(p+1)(A) = g(p)(A)−
∫ ∞

A
dÃ g(p)(Ã) . (C.4)

The argument is now almost complete. We know that for large A = ν2/2, we have Γ(n,A) =

e−AAn−1(1 + O(A−1)). Hence g(0)(A) = (
√
π/2)A−3/2e−A(1 + O(A−1)), and its integral from A

to ∞ gives a leading term proportional to Γ(−3/2, A) = e−AA−5/2(1 + O(A−1)). The pattern is

now clear: g(p)(A) ∼ A−3/2−pe−A(1 +O(A−1)), and since A = ν2/2, this explains the hierarchy of

terms in powers of ν−2, in (7.24).
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Appendix D

The saddle point approximation

In this appendix we discuss the saddle point approximation of the integrals of the type appearing

in section 7.2, and estimate the error it induces. We will argue that the errors introduced by the

saddle point approximation are much smaller than those due to truncating the perturbative series

in the small parameters ǫ and ν−1. For an introduction to the saddle point approximation see [143].

Since we only wish to discuss the saddle point method in this appendix, we will ignore here the

complications introduced by the unequal time correlators, i.e. in (7.31) we set P(λ) = 1. We will

also work here to first order in ǫν. The extension to a more general case is straightforward and the

result is given by (7.42) as described in section 7.2. We begin with expression (7.31):

f(ν) =

(
2

π

)1/2

ν

∫ ∞

−∞

dλ√
2π
eg(λ) , (D.1)

where g(λ) ≡ iνλ− λ2/2 + (−iλ)3ε1/6 +O(ǫ2λ4).

We first find the location of a saddle point λ∗ of the function g(λ), by perturbatively solving

g′(λ∗) = 0 using ǫν as the small parameter and demanding g′′(λ∗) < 0. The first-order solution is

λ∗ = iν
(
1− ε1ν/2 +O(ǫ2ν2)

)
, (D.2)

g(λ∗) = −ν
2

2
(1− 1

3
ε1ν +O(ǫ2ν2)) , (D.3)

g′′(λ∗) = −1− ε1ν +O(ǫ2ν2) . (D.4)

The saddle point approximation consists roughly of performing a Taylor expansion of g(λ) to second

order around λ∗ in the integrand of (D.1) and performing the resulting Gaussian integral. We will

carry this out explicitly below. The saddle point prescription will give a good approximation to

the integral as long as g(λ) attains a global maximum at λ∗ (along the contour of integration);
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this is indeed our case since the integrand in (D.1) will be nearly a Gaussian centered at λ∗ in the

complex plane.

Notice that Im λ∗ 6= 0, requiring a deformation of the contour of integration such that it passes
through λ∗. The deformation of the path of integration can be performed by taking a closed contour
formed by four pieces: the real axis C1, the line Im λ = Im λ∗ which we call here −C2, and the
closures of this contour at possitive and negative infinity. The integral in this closed contour must
be zero, and since the integral on the closures of the contour at infinity can be assumed to vanish,
we have

∫
C1

=
∫
C2
. Therefore C2 is the desired deformation of the contour which passes through

λ∗
1. We can then make a series of approximations in the integral (D.1), which we discuss below,

∫ ∞

−∞

dλ√
2π
eg(λ) ≈

∫ ∞

−∞

dλ√
2π

eg(λ∗)+g′′(λ∗)(λ−λ∗)2/2

= eg(λ∗)
(
−g′′(λ∗)

)−1/2

= e−
1
2
ν2(1−ε1ν/3+O(ǫ2ν2)) (1 + ε1ν +O(ǫ2ν2)

)−1/2
. (D.5)

Here the integrations are performed along the deformed contour.

In order to estimate the errors induced by the approximation done in equation (D.5), one can
keep higher orders in the Taylor expansion of the function in the exponential:

∫ ∞

−∞

dλ√
2π

≈
∫ ∞

−∞

dλ√
2π

eg(λ∗)+g′′(λ∗)(λ−λ∗)2/2+g(3)(λ∗)(λ−λ∗)3/6+g(4)(λ∗)(λ−λ∗)4/24+...

≈ eg(λ∗)
(
−g′′(λ∗)

)−1/2

+

∫ ∞

−∞

dz√
2π

{
1

6
g(3)(λ∗)z

3 +
1

72

[
g(3)(λ∗)

]2
z6 +

1

24
g(4)(λ∗)z

4 + . . .

}
eg(λ∗)+g′′(λ∗)z2/2

= eg(λ∗)
(
−g′′(λ∗)

)−1/2
(1 +O(ǫ2)) . (D.6)

Here we used the fact that g(3)(λ∗) = O(ǫ) and g(4)(λ∗) = O(ǫ2). The integrals in the second

equality of this derivation can be computed analytically, which allows one to go to arbitrary accuracy

with the saddle point technique. Notice that the results of these integrations are of higher order

than the terms we retain. In the main text, where the integral contains also a polynomial P(λ)

one can again compute the errors via similar Taylor expansions. These errors can be shown to be

of order O(ǫ2), comparable to other terms which we ignore.

One can also estimate the errors introduced by our opproximations by using the following toy

model in which everything is computable: take the 3-point cumulant ε1 to be different from zero

1Technically, one should also require that Im g(λ) be nearly constant along the deformed contour for the saddle

point approximation to work. In our case one can show that Im g will be suppressed by ǫ. This and all errrors

induced by the saddle point are accounted for in equation (D.6).
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Figure D.1: Panel (a): Fractional difference between the saddle point approximation on the r.h.s.

of (D.7) and the numerical integration of the l.h.s. of the same equation. Panel (b): Total error induced

on the result of the toy model (D.7) by both the saddle point approximation and the perturbative

expansion to leading order in ǫν. We plot the fractional difference between the numerical integration of

the l.h.s. of (D.7) and the approximation (D.5). Both panels show the results for a local NG with two

values of fNL.

and all higher order cumulants εn for n ≥ 2 to be zero2. For such a model the integral is

∫ ∞

−∞
dλ eiνλ−λ2/2+(−iλ)3ε1/6 ≈

(
2π√

1 + 2ε1ν

)1/2

exp

(
1−

√
1 + 2ε1ν + ε1ν

(
3− 2

√
1 + 2ε1ν

)

3ε21

)
.

(D.7)

In the r.h.s of this equation we have used the saddle point approximation but have made no

expansion in ǫν. By comparing the numerical integration of the l.h.s. with the expression on

the r.h.s. (panel (a) of fig. D.1), one can see that the errors introduced by the saddle point

approximation are indeed of order ǫ2 as indicated by (D.6). On the other hand, one can use the

numerical integration of the left hand side of this equation and compare it with the approximation

(D.5) (panel (b) of fig. D.1), to see that the biggest error is of order ǫ2ν2 induced by the fact that

we perform a perturbative expansion in ǫν. Notice that here we considered only the leading order

in ǫν and ignored unequal time correlators, while in the main text we present a result which is more

precise (to next to leading order in ǫν) and complete (using the excursion set formalism rigorously).

2This toy model is inconsistent because if the third cumulant is different from zero, then all higher cumulants must

also be different from zero. We use it here only to estimate how good the saddle point prescription is in approximating

an integral, and compare it with errors induced by a perturbative expansion in ǫν.
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