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Chapter 1

Introduction

The unification of Quantum Mechanics (QM) and General Relativity (GR) is one of the biggest
challenges of contemporary physics. In spite of the fact that the two theories were discovered a
century ago and a lot of effort has been made to combine the principles of the two theory, still
we have not been a able to find a consistent quantum theory of gravitation, which describes
the nature in a satisfactory manner.
One may ask what is the need for having a quantum theory of gravity? The replies to this

are many, the important ones are the following:

1. Apart from gravitational interactions, the experimental results known so far tells that
there are three other forces namely: electromagnetic, weak and strong, that are respon-
sible for describing the physics of the known Universe. Gravity and electromagnetism
are responsible for describing the physics of large scale structure in the Universe while
the other two forces are used to the describe the physics at subatomic scale. The non-
gravitational forces have been studied in past consistently using the mathematical frame-
work of quantum field theory. For example electromagnetism at a macroscopic level can
be very described using the classical field theory like gravity, but at the microscopic level
it is consistently described using the quantum theory of electromagnetism, also known
by name Quantum Electrodynamics (QED). One will naturally expect something similar
to happen in the case of gravity. Furthermore the belief that there must exists a unified
description of all the known fundamental forces demands to search for a quantum theory
of gravity.

2. Classical GR produces solutions which contains spacetime singularities. These singular-
ities are either masked by an event horizon (in case of black holes) or are naked (the big
bang singularity). Classical GR breaks down near such singularities as the curvature of
spacetime become infinite. This makes classical GR incomplete. It is hard to imagine that
some classical extension of GR could avoid completely these pathologies. In fact black
hole solutions and Freedman-Robertson- Walker (FRW) type solutions studied in the ex-
tension of GR, like scalar-tensor theories and higher-derivative theories of gravity like
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2 CHAPTER 1. INTRODUCTION

F (R) theories, show that singularities persists. It is expected that a quantum theory of
gravity would resolve this.

3. Black holes are solutions of vacuum Einstein’s equation and are uniquely characterized
by just three parameters namely: mass, charge and angular momentum. It has been found
that black holes are like thermodynamical objects that obey laws similar to laws of ther-
modynamics, with an entropy proportional to its area. Semi-classical quantization shows
that the black holes radiate with temperature going as inverse of its mass. It was argued
that as black holes radiate more and more, their mass decreases more when ultimately
they vanish with an infinite temperature. This argument results in two problems: first
the well known problem of information paradox and secondly the problem of tempera-
ture becoming infinite. Also, as mass decreases its size also decreases and goes to zero. It
was argued that these problems are a consequence of semi-classical approximation being
made, whose results cannot be trusted beyond a certain energy scale. As the black hole
decreases and approaches the Planck’s size and reaches the Planck’s temperature, quan-
tum gravity effects cannot be ruled out. This urges very strongly for the need of having a
quantum theory of gravity. Besides as black holes are thermodynamical objects obeying
laws similar to laws of thermodynamics and having an entropy, thus it becomes neces-
sary to ask what is the microscopic structure underlying the macroscopic objects. Just as
for a fluid which obey macroscopic thermodynamical laws and can be described using
pressure, volume etc. while it also has a statistical description in terms of molecules; in
the same way one expects to find “atoms” of spacetime.

The reasons and motivations given above are just a few important points which urges the need
for having a quantum theory of gravity.
The traditional approach for doing QFT is through perturbative quantization of a classical

field theory. Here one performs the loop computation by expanding the Green functions in
to powers of ! or in powers of coupling constants. If the divergences appearing in the com-
putations can be reabsorbed by making suitable redefinition of a finite number of coupling
constants, then the theory is termed perturbatively renormalizable. One is then left with a fi-
nite theory free of divergences at all loops depending on a finite number of parameters which
are fixed through experiments. This methodology of perturbative quantization have been suc-
cessfully used to study various quantum physical problems in four dimensions. Famous ex-
amples are: QED, non-abelian gauge theories, scalar theories etc. The success of these methods
have led to the constructions of Standard Model. In general one can show that a theory is per-
turbatively renormalizable if the classical action contains couplings which have either zero or
positive mass dimensions. Experimental verification of QED and Standard Model to a great
accuracy has shown that perturbative quantum field theory methods are very reliable.
Motivated with the successes of these methods, physicists applied them to theories of grav-

ity. The first action to which it was applied was the Einstein-Hilbert action given by,

SEH =
1

16πG

∫
d4x

√
g R , (1.1)
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where it was found that the theory is plagued by UV divergences [1]. The calculation were
performed by breaking the quantum metric in to a background and a fluctuation. As the grav-
itational coupling has a negative mass dimension, thus it was expected that the theory will
be non-renormalizable. Explicit calculations done in [1] showed that pure gravity eq. (1.1) is
renormalizable at one-loop as the divergences vanish on-shell. Thus it was possible to absorb
the divergences using a field redefinition. It was further noticed that EH-gravity (1.1) inter-
acting with a scalar field is non-renormalizable even at one loop, where it was not possible
to absorb the divergence and the counter term did not vanish on-shell. The results of non-
renormalizability of EH-gravity interacting with matter were further confirmed in [2, 3], where
it was concluded that gravity interacting with matter is non-renormalizable. Further more,
a two loop computation showed that pure gravity eq. (1.1) is two loop non-renormalizable,
where a term cubic in curvature could not be absorbed within the original Lagrangian even
on-shell [4, 5]. This implied that as one goes further on the perturbation series more and more
counter-terms need to be added to the original action to make the theory free from divergences,
but then the theory will loose its predictability. However when perturbative methods of quan-
tization were applied to higher-derivative theories of gravity, they were found to be renormal-
izable but violating unitarity [6].
The common thinking is that when a theory is not renormalizable perturbatively then it is

not complete. Actually the reality is that such theories offers a low energy effective description
of the more fundamental theory. This line of thought has been applied to the case of weak
interactions where they were modeled using the Fermi’s theory. It was later found that the
theory of intermediate vector boson used to describe the weak interactions reduces to Fermi’s
theory in low energy limit. This makes one tempted to say that perhaps GR (or more gener-
ally a diffeomorphism invariant theory with metric as the dynamical variable) should not be
considered as a fundamental theory, meaning that one should expect it to hold at only low
energy scales, much below the fundamental scale, presumably the Planck scale. With this in
mind one can treat these theories like Fermi’s theory or the non-linear sigma model. Thus one
can make precise calculations for the quantum effects, like for example the computation of the
perturbative ! correction to the Newtonian potential [7, 8, 9].
In the same spirit that led to the development of the Weinberg-Salam model from Fermi’s

theory, one can try to do the same to describe gravity in a quantum setting, by incorporating
new features to the theory to make it consistent. The most prominent approach that has so far
succeeded in extending QFT consistently is String Theory. It is not a QFT in the usual sense
but in the low energy limit it has an effective description as a QFT. Current calculations rely on
perturbative quantization around a fixed background metric, and are able to reproduce under
some low energy limit the GR (and some higher order correction terms). String theory is beau-
tiful and elegant but for themathematical consistency requires large number of ingredients that
so far have not been seen in nature. To be mathematically consistent it demands the existence
of dimensions more than four. The nice feature of String theory is that they can be described
by just one free parameter, thus they can describe a unified description of the four forces. The
possible existence of extra-dimensions has a large phenomenological consequences. A decade
ago it was shown [10] that the existence of a large extra-dimension in a model will bring down
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Planck’s scale to a range of energy accessible by the particle accelerators like LHC, thus allow-
ing quantum gravity effects to be testable in accelerator labs. This model was also shown to
solve the problem of large hierarchy present between the electroweak and the Planck scale.
Instead of extending the theory to make it consistent, one could more conservatively think

that the problems do not lie with GR but with the method of quantization, the perturbative
techniques. The non-renormalizability of GR does not imply that it is incompatible with Quan-
tum Mechanics. The line of research that has gone farthest in this direction is Loop Quantum
Gravity (LQG) or its covariant form, the Spin Foam Formalism. It is the canonical quantization
of GR which originated from Ashtekar’s reformulation of canonical GR which tries to impose
diffeomorphism as a constraint on the Hilbert space of the quantum states. Unlike string the-
ory this approach to quantum gravity is background independent. An important problem (one
unlike in string theory) with this approach is that there is no proof that the low energy limit of
this theory will be EH-gravity.
Quantum field theory has attained an iconic status ever since its success in formulating the

Standard model of particle physics and its experimental verifications to a great accuracy. Not
only these, it has been successfully used to study condensed matter systems, for example su-
perconductivity. Therefore it becomes necessary before giving it up, that one should reconsider
QFT from the nonperturbative perspective, and study the problem of Quantum Gravity in that
framework. This is what I am going to discuss in this thesis. The issue that I am going to
tackle in this work is whether GR (or a minimal modification of it i.e. a theory based on min-
imal symmetry principles) can be given the status of the fundamental theory, one from which
predictions can be expected at all energy scales, without running in to problems of UV diver-
gences. I will be as conservative as possible and see first if it is possible to build a consistent
QFT with metric as the only dynamical field, without including any extra features like strings.
Simplical quantum gravity and causal dynamical trangulations are some of the discrete ap-

proaches to quantum gravity which can be used to calculate some of the numerical quantities
of interests. These approaches are related to QG in the same way as lattice QFT are related to
continuumQFT. Therefore the aim is to define the sensible continuum limit which by definition
would be QG.
Among the approaches that maintain the ideology of continuous QFT, the most promising

seems to be “Asymptotic Safety”. It was a proposal made by Steven Weinberg in 1979 [11],
and gained momentum in the last ten years. It is a generalized nonpertubative notion of renor-
malizability. It reduces to ordinary perturbative renormalizability under special circumstances.
The general framework for the asymtotic safety scenario is the renormalization group. It is well
known from the perturbative QFT that the coupling constants of theory runs i.e. the couplings
are dependent on scale k and vary as the scale k is varied. The running of the couplings is de-
scribed by the beta-function of the coupling, which in the case of perturbative QFT is obtained
through a Callan-Symanzik equation. Beta functions are very important ingredient of the the-
ory. For example in the case of non-abelian theories, the coupling approach zero as k goes to
infinity, making the theory asymptotically free. At this point the beta function of the coupling
vanishes, and for this reason this is called fixed point of the theory or more correctly the “Gaus-
sian” Fixed point. Near this fixed point one can do perturbation theory as the couplings are
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small.
In some theories the Gaussian FP is reached by the couplings in the UV limit, while in

others it is the FP in the IR limit. In the former case, theories have well defined UV limit and
are perturbatively renormalizable, while in later case UV limit is questionable, even though
they may be perturbatively renormalizable. The best and the simple example which describes
the later case is the λφ4 theory in four dimensions, which is perturbatively renormalizable but
develops a Landau pole in the beta function and thus the UV limit cannot be taken using the
perturbation theory. It is renormalizable near the Gaussian FP which lies in the in IR regime,
but as energies become high the coupling strength increases and one is no longer within the
realm of perturbative quantization.
Beside these there are theories which are perturbatively non-renormalizable, e.g. Einstein-

Hilbert gravity. It has been found to be one-loop perturbatively renormalizable but at two
loops the plague of UV divergences destroys the renromalizability. Putting matter fields in the
systemmakes the situation even worse, when the one loop renormalizability is also sacrificed.
Extending Einstein-Hilbert gravity by including higher-derivative terms brings new features,
renormalizability is achieved at the price of Unitarity. Coupling these theories with large num-
ber of matter fields, the business of unitarity gets settled. It was in this setting that the idea of
Asymptotic safety came to existence to settle the debatable issues by proposing a new line of
sight to the problem.
The idea proposed that as gravity becomes strongly coupled in the UV regime thus should

be treated nonperturbatively. The fact that it is perturbatively non-renormalizable was associ-
ated to the point of doing perturbation theory around a Gaussian FP and trying to extend the
results beyond the realm of validity. It was suggested that gravity might possess a nontrivial
FP in the UV regime where some of the couplings might be nonzero. If the theory possesses
such a non Gaussian FP and has a finite number of UV attractive directions at the FP, then one
can argue such a theory is free of uncontrollable UV divergences and is predictive. A QFT that
possesses such properties is termed Asymptotically safe.
In four dimensions one cannot reach this non-Gaussian FP through perturbation theory,

as the coupling are non-zero and thus one needs nonperturbative techniques to see this FP.
Soon after the idea was proposed, physicists tried to find this FP. They started off by doing
computations in d = 2+ε dimensions, where the canonical dimension of the Newton’s constant
is close to zero and perturbation theory can be trusted. On calculating the beta functions it
was seen that it possesses a non-trivial UV attractive FP, and has the right properties to make
gravity asymptotically safe in d = 2 + ε. Using dimensional continuation one can argue that
gravity is asymptotically safe in other near by dimensions too. However extending this to four
dimensions was questionable as the calculations cannot be trusted in the limit ε→ 2, because ε
was taken as a small parameter. This was all done in eighties [12, 13, 14, 15, 16, 17, 18]. Research
came to halt due to lack of technical tools to perform the computation in four dimensions.
In 1993 Wetterich discovered a Functional Renormalization Group Equation (FRGE) [20].

This equation was based on the Wilson idea [21] of integrating out degrees of freedom beyond
scale k to obtain an effective averaged theory describing the physics at scale k [19]. This is
done using functional integrals, where one integrates out modes with momenta above scale
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k, to obtain the effective theory at scale k. From this one could extract the k-dependence of
the couplings present and obtain their running, which are the beta-functions of the couplings.
This was done in seventies and the approach was perturbative. However this idea can be
implemented within a nonperturbative framework, thereby obtaining the flow equation for
the effective action. This is a nonperturbative flow equation as there has not been made any
assumptions about couplings being small. This equation is now known as FRGE and gives the
beta-functions of the couplings in a theory in a nonperturbative way.
This equation although first constructed for scalar field theory to study phase transitions

[22], was soon adapated to study gauge-invariant theories [23]. It was applied for the first time
to gravity to obtain the beta functions of cosmological constant and Newton’s constant in four
dimensions [24, 25]. These beta functions were completely non-perturbative and were imme-
diately used to search for nontrivial FP of Einstein-Hilbert gravity. A nontrivial FP was indeed
found in [26] with two UV attractive directions thereby making the theory asymptotically safe.
FRGE contains an scale dependent cutoff in the equation, and thus one expects that the re-

sults will depend strongly on the cutoff. This was termed as “Scheme Dependence”. However
computations involving different types of cutoff showed that results depend very mildly on
them. Only the quantitative properties are mildly affected while qualitative properties remain
same, like the existence of FP etc [27, 28]. As FRGE for gravity was constructed using the eu-
clidean functional integral, and thus involved gauge-fixing. So the gauge dependence of the
results pose another threat. But it turned out that even gauge dependence was mild [ 27].
The strongest fear was that whether the results will continue to hold when the Einstein-

Hilbert gravity is extended to include matter and/or higher-derivative terms. A study involv-
ing higher-derivative pure gravity was done for the first time in [29]. The system contained
three operators √g, √gR and √

gR2. It was found that nontrivial FP exists and has three UV
attractive directions. This was both a good news and bad one. Good in the sense that results
continue to hold i.e the theory is asymptotically safe. Bad in the sense that whenwe considered
EH-gravity, there we had two couplings in system and at the nontrivial FP it was found that
the theory possesses twoUV attractive directions; and whenwe considered a systemwith three
couplings, it has nontrivial FP and at FP it has three UV attractive directions. Thus it appeared
that as one increases the number of couplings, the number of UV attractive directions would
also increase. So it was expected that if for example one has ten couplings consisting of terms
up to R9, then there might perhaps be ten UV attractive directions.
To rule out such a possibility, a renormalization group study of higher-derivative gravity

with four derivatives of metric, including all curvature invariants except total derivatives was
considered in one-loop approximation [62]. This showed that the nontrivial FP was present
except that the number of UV attractive directions was now found to be five (of which three
were marginally attractive). This computation was in one-loop approximation thus demanded
further study. A study of this system beyond one-loop (but omitting the Euler term) shows that
there are no marginal couplings and the number of UV attractive directions is three [32]. This
was further confirmed by a nonperturbative computation done in the context of F (R)-gravity
with terms till R8, where it was found that at the nontrivial FP there are three UV attractive
directions [30, 31].
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Inclusion of matter field was another issue which raised fear. In perturbative computations
involving matter fields, it was found that renormalizability was sacrificed even at one loop. A
first step within the asymptotic safety scenario was to consider minimally coupled field. The
beta functions have been obtained in [25], while the study of fixed point and number of UV
attractive directions was done in [33, 34]. It was found that under some circumstances when
the number of matter fields is large, the existence of FP is questionable. This was used as a
condition to put bound on the matter fields of various spins. This was extended to consider
nonminimally coupled matter in [34]. It was found that gravity is asymptotically safe and pos-
sesses a nontrivial FP where matter couplings become asymptotically free, with four UV attrac-
tive directions. This was interesting to note that with the inclusion of nonminimally coupled
matter in Einstein-Hilbert gravity, the number of UV attractive directions increases from two
to four. This study was undertaken in a truncation involving a finite number of couplings, in
which it was not clear if the results will remain the same when a better truncation is considered
by including more number of couplings.
A study of minimally coupled scalar with an higher derivative R2 (including all possible

curvature invariants with four derivatives of metric) gravity showed that gravity is asymptot-
ically safe with three UV attractive directions [35]. This was a good news that coupling with
matter does not destroy the non-perturbative renormalizability of the theory.
In each of the work involving nonminimally coupled matter fields, it was not clear whether

the picture of asymptotic safety will change under the inclusion of more nonminimal matter
couplings. A numerical study conducted in four dimensions showed that a GMFP will exist in
all gauges, with four UV attractive directions, but there was no rigorous argument for the same.
In [36, 37] it has been mathematically proved using method of induction that at the GMFP
the number of UV attractive directions remains finite in arbitrary dimensions. In the study
involving nonminimal coupling of EH-gravity with scalar, it was found that in four dimensions
the number of UV attractive directions will always remain four irrespective of the number of
non-minimal couplings included [36]. A similar study involving higher-derivative truncations
involving powers of R up to R8, showed that in a non-minimal setting there will be two more
UV attractive directions apart from the usual three, therebymaking a total of five UV attractive
directions [37]. These two works constitute the main part of my thesis and are described in
detail in the later chapters.
Due to the fashionable proposal of extra-dimensions scenarios, there has been somework on

the asymptotic safety of gravitational theories in extra-dimensions. A first step in this direction
was taken in [38], where Einstein-Hilbert gravity was considered in arbitrary dimensions. It
was found that a FP exists in extra dimensions with two UV attractive directions. Moreover
studies also showed that the FP in four dimension is smoothly connected to the FP in d =
2 + ε (dimensional continuation) [31]. A study involving nonminimal coupling of scalar to
EH-gravity showed similar results [36].
The outline of the thesis is as follows. In chapter 2, I will describe the construction of FRGE

and discuss various issues related to it. Then I will describe the basic ides of asymptotic safety
as set forth by Steven Weinberg. I will then use FRGE to extract the running of couplings in a
O(N)-symmetric scalar field theory. This is followed by a discussion on scheme dependence in
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the beta functions derived using FRGE.
In chapter 3, I will show how to construct a FRGE for gravity. I will discuss the simplifi-

cations need to be made in order to do practical computations. Then I will use the FRGE for
gravity to study the flow of the couplings in Einstein-Hilbert theory of gravity, thereby deriv-
ing the beta functions of the couplings in four dimensions and using them to show how the
requirements of asymptotic safety are satisfied. I took this opportunity to also discuss various
cutoff types that are used in computations and how the results depend on them.
In chapter 4 I will apply the FRGE constructed for gravity to a scalar coupled nonmini-

mally to Einstein-Hilbert gravity. This is done in arbitrary dimensions. In chapter 5, I study
the asymptotic safety of scalar coupled nonminimally to F (R) gravity. Finally in chapter 6, I
present the conclusion of the thesis.



Chapter 2

Functional RenormalizationGroup Equa-
tion

In this chapter I will describe how to derive the Functional Renormalization Group Equation
(FRGE) for a simple scalar field. The main point in this derivation is the construction of the
effective average action Γk, which is the coarse grained action describing effective field theory
of the physics at scale k. The FRGE tells the running of this effective average action. After
discussing the construction of FRGE and effective average action, I will discuss the notion of
Asymptotic Safety as introduced by Steven Weinberg [11]. After demonstrating the process
of construction of FRGE for the simple scalar case, I will show how to use this equation to
extract the running of couplings in a theory. I will consider a simple example of an O(N)-
symmetric scalar theory consisting of the usual kinetic term and a generic O(N)-symmetric
potential. I will use FRGE to study its flow in arbitrary dimensions. The trivial Gaussian fixed
point is found in all dimensions. By considering the linearized flow around this fixed point I
will derive some general properties of critical exponents around this fixed point in arbitrary
dimensions for arbitrary N . On studying the flow in three dimensions the Wilson-Fisher fixed
point is found. I will then discuss the issue of scheme dependence in beta functions which are
obtained using FRGE.

2.1. FRGE and its Approximations

2.1.1. Derivation of FRGE
In this section I would demonstrate how to derive the FRGE for the simple scalar system in d-
dimensions and would introduce the concept of effective average action. The derivation given
closely follows the one first given in [19, 20] (see for reviews [39, 40]). Consider the Euclidean
path integral for the scalar field theory.

Z[J ] =
∫

Dϕ(x) exp
{
− S[ϕ] −

∫
ddxJ(x) · ϕ(x)

}
, (2.1)

9
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where S[ϕ] is a generic bare action. From this path integral one is able to get various n-point
correlation functions. Using this one can construct the connected Green’s functionalW ,

W [J ] = − lnZ[J ] . (2.2)

UsingW we get the vacuum expectation value of the ϕ(x).

φ(x) = 〈ϕ(x)〉 = − 1
Z

δZ

δJ(x)
=
δW

δJ(x)
. (2.3)

This is then used to construct the one–particle–irreducible (1PI) connected Green functional by
Legendre transformingW :

Γ[φ] = W −
∫

ddxJ(x) · φ(x) . (2.4)

In these generating functional all the modes of the quantum field ϕ(x) have been integrated
out. But in order to study physical phenomenons at a given scale k, one need to compute the
effective action at that scale k. The effective field theory Lagrangian describing the physics at
that scale is obtained by integrating out all modes of quantum field with momenta p > k.
Wilson obtained this aim by sharply cutting off the functional integral given in eq. (2.1) at

scale k and then considering its flow [21]. Thus in the Wilson’s picture eq. (2.1) is written as,

Zk[J ] =
∫

|p|>k
Dϕ(x) exp

{
− S[ϕ] −

∫
ddxJ(x) · ϕ(x)

}
. (2.5)

This job of sharply cutting off the functional integral can be done alternatively by introducing a
cutoff action ∆Sk[ϕ] in the exponent of eq. (2.5). The purpose of ∆Sk[ϕ] is to sharply suppress
the modes of quantum field with momenta below k. On introducing this cutoff in the path
integral (2.1) one gets,

Zk[J ] =
∫

Dϕ(x) exp
{
− S[ϕ] − ∆Sk[ϕ] −

∫
ddxJ(x) · ϕ(x)

}
. (2.6)

The cutoff action ∆Sk[ϕ] has the following form,

∆Sk =
1
2

∫
ddx ddy ϕ(x)Rk(∆)ϕ(y) . (2.7)

whereRk is the cutoff constructed from some differential operator∆whose eigenfunctions can
be used as basis for expanding the field. The purpose of cutoffRk is to modify the propagator
of the modes with momenta below k by adding a mass like term to it. An infinite mass term
would result in a sharp cutoff and would be equivalent to eq. (2.5). However a sharply cut
functional integral leads to technical problems. Replacing the sharp cutoff Rk with a smooth
one overcomes such difficulties. The particular form of Rk(z) is arbitrary apart from the fact
that it satisfies the following properties,

Rk(z) ≈
{

k2 for z ' k2 ,
0 for z ( k2 .

(2.8)
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A cutoff satisfying the above conditions would give mass of order k2 to modes of momenta
p < k, thus causing suppression while giving almost no mass to modes with momenta p > k,
thus allowing them propagate without suppression [20].
Having defined a well behaved path integral given by eq.(2.6), I define the connected Green

functionalWk at scale k in the same way as in eq. (2.2),

exp{−Wk} = Zk . (2.9)

Using which k-dependent expectation value of ϕ is obtained. This is denoted by φ(x).

〈ϕ〉k =
δWk

δJ(x)
= φ(x) . (2.10)

One can invert this relation to obtain source J as a function of φ. As φ is k-dependent, thus the
source which depends on φ gets an implicit dependence on k. Using this k-dependent source I
define the Legendre transform of the connected Green functionalWk which we call Γ̃k[φ].

Γ̃k[φ] = Wk[J ] −
∫

ddxJ(x) · φ(x) . (2.11)

On taking the functional derivative of this Legendre transformwith respect to the classical field
we get,

δΓ̃k

δφ(x)
= −J(x) . (2.12)

Now we take derivative of this Legendre transform with respect to t = ln k. This will give,

(∂tΓ̃k)[φ] +
∫

ddx
δΓ̃k

δφ(x)
· ∂tφ(x) = (∂tWk)[J ] +

∫
ddx

δWk

δJ(x)
· ∂tJ(x)

−
∫

ddx ∂tJ(x) · φ(x) −
∫

ddxJ(x) · ∂tφ(x)

(∂tΓ̃k)[φ] −
∫

ddxJ(x) · ∂tφ(x) = (∂tWk)[J ] +
∫

ddxφ(x) · ∂tJ(x)

−
∫

ddx ∂tJ(x) · φ(x) −
∫

ddxJ(x) · ∂tφ(x) , (2.13)

where eq. (2.10) and (2.12) has been used to obtain the last line of eq. (2.13). Canceling the
various terms we get,

(∂tΓ̃k)[φ] = (∂tWk)[J ] . (2.14)
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The RHS of the eq. (2.14) can be obtained in the following way,

(∂tWk)[J ] = − 1
Zk[J ]

(∂tZk)[J ] ,

=
1

Zk[J ]

∫
Dϕ(x) (∂t∆Sk) exp

{
− S[ϕ] − ∆Sk[ϕ] −

∫
ddxJ(x) · ϕ(x)

}
,

=
1
2

∫
ddx ddy 〈ϕ(x) · ∂tRk(∆) · ϕ(y)〉 ,

=
1
2

∫
ddx ddy

[
− δ2Wk

δJ(x) δJ(y)
+
δWk

δJ(x)
δWk

δJ(y)

]
· ∂tRk(∆) ,

=
1
2

∫
ddx ddy

[
− δ2Wk

δJ(x) δJ(y)
+ φ(x)φ(y)

]
· ∂tRk(∆) , (2.15)

where I have used eq. (2.10) and (2.12) along with the identity,

〈ϕ(x)ϕ(y)〉 =
[
− δ2Wk

δJ(x) δJ(y)
+
δWk

δJ(x)
δWk

δJ(y)

]
. (2.16)

The expression for the t-derivative ofWk derived in eq. (2.15) can then be plugged in eq. (2.14)
to obtain an equation for the running of Γ̃k. This is given by,

(∂tΓ̃k)[φ] =
1
2

∫
ddx ddy

[
− δ2Wk

δJ(x) δJ(y)
+ φ(x)φ(y)

]
· ∂tRk(∆) (2.17)

At this point I eliminateWk by making use of the following identity,

δJ(x)
δJ(y)

= δ(x − y)
∫

ddz
δJ(x)
δφ(z)

· δφ(z)
δJ(y)

= δ(x − y)
∫

ddz
δ2Γ̃k

δφ(x)δφ(z)
· δ2Wk

δJ(z)δJ(y)
= −δ(x − y) . (2.18)

The last line of the above equation can be notationally written in the following way,

δ2Wk

δJδJ
= −

(
δ2Γ̃k

δφδφ

)−1

(2.19)

At this particular stage I define the effective average action at scale k in the following way
[19, 20],

Γk = Γ̃k − 1
2

∫
ddxφ(x)Rk(∆)φ(x) . (2.20)
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The running of the effective average action Γk can be obtained by making use of eq. (2.20) and
(2.19) in eq. (2.17). This is done as follows,

(∂tΓk)[φ] =
1
2

∫
ddx ddy

[
− δ2Wk

δJ(x) δJ(y)

]
· ∂tRk(∆)δ(x − y)

= −1
2
Tr

[
δ2Wk

δJ δJ
· ∂tRk

]

=
1
2
Tr




(
δ2Γ̃k

δφδφ

)−1

· ∂tRk





=
1
2
Tr

[(
δ2Γk

δφδφ
+ Rk

)−1

· ∂tRk

]
, (2.21)

where the last line gives the expression for the running of the effective average action Γk. This
is the functional renormalization group equation, which we write separately,

(∂tΓk)[φ] =
1
2
Tr

[(
δ2Γk

δφδφ
+ Rk

)−1

· ∂tRk

]
, (2.22)

where δ2Γk/δφδφ ≡ Γ(2)
k is the Hessian of the effective average action.

2.1.2. Properties of the Flow Equation and Effective average action
Here I would describe the properties obeyed by the effective average action Γk given in eq.
(2.20) and the FRGE eq. (2.22).
(1) The trace appearing in eq. (2.22) is the sum over all the eigenvalues λ of the operator ∆.
This sum is both UV and IR regularized. This can be understood better in a simpler setting
when the operator∆ = −∂2. In this case the eigenvalues of∆ are p2, where p is the momentum
of the field. Thus the trace becomes a momentum integral with p running from zero to infinity.
In this momentum integral there is no need to put a UV regulator. This is because of the
properties of the cutoff Rk given in eq. (2.8). The trace contain a factor ∂tRk(p2), which is
significantly different from zero only in the region centered around p2 = k2. Hence the trace
receives contributions from momenta p2 ! k2 only and is therefore well convergent both in the
UV and IR.
(2) In the computation of the one-loop effective action we get the following expression,

Γ(1) = S[φ] +
1
2
Tr ln

[
δ2S

δφδφ

]
, (2.23)

where the second term contains the loop corrections. This is the full effective action where all
the modes have been integrated out. If one were to compute the one loop effective action at
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scale k, then that can be obtained by just adding the cutoff action∆Sk[φ] to S appearing inside
the trace and we get,

Γ(1)
k = S[φ] +

1
2
Tr ln

[
δ2(S + ∆Sk)
δφδφ

]
,

= S[φ] +
1
2
Tr ln

[
δ2S

δφδφ
+ Rk

]
, (2.24)

On taking the t-derivative of eq. (2.24) we get,

∂tΓ
(1)
k =

1
2
∂t

(

Tr ln
[
δ2S

δφδφ
+ Rk

])

,

=
1
2
Tr

[(
δ2S

δφδφ
+ Rk

)
∂tRk

]
. (2.25)

This equation has the same appearance as the one given in eq. (2.22) except that eq. (2.25)
contains the bare action within the trace, while eq. (2.22) contains the effective average action
at scale k. This is the renormalization group improved one-loop equation encoding the beta
functions of our effective theory. The eq. (2.22) is non-perturbative in the sense that we make
no assumptions about the couplings and is exact in the sense that solving it is equivalent to
solving the complete theory. The effective average action Γk in general can be expanded as
follows,

Γk =
∞∑

n=0

∑

i

g(n)
i (k)P(n)

i , (2.26)

where g(n)
i are the couplings and P (n)

i are all the operators of order n that can be constructed
from the field and its derivatives in accordance with the symmetry requirements. With this
effective average actions the LHS of FRGE would be,

∂tΓk =
∞∑

n=0

∑

i

β(n)
i (k)P(n)

i , (2.27)

where β(n)
i (k) = ∂tg

(n)
i (k) are the beta functions of the dimensionfull couplings. Thus one can

think of the RHS of the FRGE as a beta functional.
(3) The effective average action Γk satisfies the following integro-differential equation,

exp{−Γk[φ]} =
∫

Dϕ exp
{
− S[ϕ] −

∫
ddx (ϕ− φ)δΓk[φ]

δφ

}
×

× exp
{
−

∫
ddx (ϕ− φ)Rk(∆)(ϕ − φ)

}
. (2.28)

This equation is easily obtained by using eq. (2.9), (2.11) and (2.20) combined with eq. (2.10)
and (2.12).
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(4) From the definition of the effective average action at scale k given in eq. (2.20) we note that it
interpolates between the standard effective action Γ = Γk→0 and the bare action S[φ] for k → ∞.
The k → 0 limit is obtained from the properties of cutoff Rk given in eq. (2.8). The k → ∞
limit is obtained using the integro-differential equation given in (2.28). The argument goes as
follows. In the limit k → ∞, the cutoff Rk ≈ k2. Thus the second exponential on the RHS of
eq. (2.28) becomes exp{−k2

∫
dx(ϕ − φ)2}, which, up to a normalization factor, approaches a

delta-functional δ[ϕ − φ]. The ϕ integration can be performed trivially then and one ends up
with limk→∞ Γk[φ] = S[φ]. In a more careful treatment [20] one shows that the saddle point
approximation of the functional integral in eq. (2.28) about the point ϕ = φ becomes exact
in the limit k → ∞. As a result, limk→∞ Γk and S differ at most by the infinite mass limit of
a one-loop determinant, which we suppress here since it plays no role in typical applications
(see [41] for a more detailed discussion).
(5) The FRGE (2.22) is independent of the bare action S which enters only via the initial condi-
tion Γ∞ = S. In the FRGE approach, the calculation of the path integral for Wk is replaced by
integrating the RG equation from k = ∞, where the initial condition Γ∞ = S is imposed, down
to k = 0, where the effective average action equals the ordinary effective action Γ, the object
which we actually would like to know.

2.1.3. Theory space
The arena in which the Wilsonian renormalization group dynamics takes place is known as
“theory space”. It is a very formal concept but it helps very much in visualizing the various
notions related to functional renormalization group equations, see fig. 2.1.3. Here I will be very
general while describing the notion. Lets consider the an arbitrary set of fields given by φ(x).
Then the action which is a functional of φ(x) can be thought as a map from this set of fields to
c-numbers. The space of all action functionals based on this set of field under the requirements
of respective symmetries is called theory space. In formal notation one can write the map as
Γ : φ ,→ Γ[φ]. The theory space {Γ[ · ]} is fixed once the set of fields and symmetries are fixed.
Let suppose it is possible to find the set of “basis functionals” {Oα[φ]} which can be used to
expand each point of the theory space as follows,

Γ[φ] =
∞∑

α=1

ūαOα[φ] . (2.29)

The basis consists of both local field monomials and non-local invariants. The coefficients of
these basis are “generalized couplings” {ūα, α = 1, 2, · · · }, which can be seen as the local coor-
dinates of the action. More precisely, the theory space is coordinatized by the subset of essential
couplings.
From the geometrical point of view the FRGE given in eq. (2.22) defines a vector field on

the theory space. The integral curves along the vector field are the “RG trajectories” and are
maps k ,→ Γk with Γk being parameterized by k. These trajectories start from k = ∞, at the
bare action S and terminate at the ordinary effective action at k = 0. The orientation of the flow
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k
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  =S
bare action

effective action

Theory Space

Figure 2.1.: The points of theory space are the action functionalsA[ · ]. The RG equation defines a vector
field *β on this space; its integral curves are the RG trajectories k ,→ Γk. They start at the
bare action S and end at the standard effective action Γ.

is the direction of decreasing k or increasing “coarse graining”. One can expand the effective
average action in terms of the basis,

Γk[φ] =
∞∑

α=1

ūα(k)Oα[φ] . (2.30)

The trajectory would be described by infinitely many running couplings ūα(k). On plugging
the expansion of effective average action given by eq. (2.30) in the FRGE, one would obtain the
infinitely many coupled differential equations for the couplings ūα.

k∂k ūα(k) = βα(ū1, ū2, · · · ; k) , α = 1, 2, · · · . (2.31)

Here the beta functions βα are the components of the vector field, and can be obtained from the
FRGE by performing the trace on the RHS of FRGE and expanding it in the terms of Oα[ · ].
The presence of bar on ūα and βα is to indicate that we are still dealing with the dimension-

full quantities. To search for fixed points and study the UV behavior of couplings at the fixed
point, the flow equation is re-expressed in terms of dimensionless couplings uα = k−dα ūα,
where dα is the mass dimension of the coupling ūα. Then these dimensionless couplings are
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used as coordinates of the theory space and the RG equation would be a coupled system of
autonomous differential equations. The βα would have no explicit k dependence and would
define a “time independent” vector field in the theory space.

2.1.4. Effective average action and FRGE with UV cutoff
Till now I have been talking about the EAA and FRGE without a UV cutoff where the regu-
larization in the trace of FRGE was achieved by the presence of the factor ∂tRk(q2), which is
nonzero only for momenta centered around q2 ≈ k2 and goes to zero as q2 → ∞. But here in
this section I would talk about the EAA and FRGEwith a explicit UV cutoff Λc [42]. The reason
why one should study this is because without a UV regularization the functional integral given
in eq. (2.6) is not well defined. So it becomes important to introduce a UV cutoff to make the
functional integral underlying the definition of EAA well defined.
As has been described in the section 2.1.1, on the construction of EAA and FRGE without a

UV cutoff, we define the cutoff action and take its expression to be the one given in eq. (2.7).
Then the UV-regulated analogue of eq. (2.9) is given by,

exp{Wk,Λc} ≡
∫

DΛcϕ(x) exp
{
− SΛc[ϕ] − ∆Sk[ϕ] −

∫
ddxJ(x) · ϕ(x)

}
. (2.32)

Now following the same steps as outlined in section 2.1.1 on the construction of EAA and FRGE
without UV cutoff, I would obtain the coarse grained expectation value of ϕ to be given by,

φΛc(x) =
δ

δJ(x)
Wk,Λc[J ] . (2.33)

With which I define the Legendre transform of the Wk,Λc to be denoted by Γ̃k,Λc[φ], where for
notational simplicity we take φ(x) ≡ φΛc(x). Then using this we finally define the UV regulated
EAA as,

Γk,Λc[φ] = Γ̃k,Λc[φ] −
1
2

∫
ddxφ(x)Rk(∆)φ(x) . (2.34)

This has the following UV-regulated FRGE,

∂tΓk,Λc[φ] =
1
2
TrΛc

[(
Γ(2)

k,Λc
+ Rk

)−1
· ∂tRk

]
, (2.35)

where the trace is now the sum over all the eigenvalues λ ≤ Λ2
c and Γ(2)

k,Λc
denotes theHessian of

Γk,Λc Now for simplicity I would assume that∆ = −∂2. Then the trace would be a momentum
integration with the integration variable running from zero to Λ2

c . The trace can be written in
the following way,

TrΛc [· · · ] = Tr[θ(Λ2
c − p2){· · · }] , (2.36)

where p2 are the eigenvalues of −∂2. Since the cutoff Rk has the properties given in eq. (2.8),
therefore due to the presence of term ∂tRk in FRGE, it is safe to take the limit Λc → ∞. This
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would give the “Λc-free” FRGEwithout a UV cutoff, valid for all k ≥ 0, and this FRGE is given
by eq. (2.22). For simplicity I would write this as,

∂tΓk[φ] = Bk{Γk}[φ] , (2.37)

where Bk denotes the beta functional,

Bk{Γk}[φ] =
1
2
Tr

[(
Γ(2)

k [φ] + Rk

)−1
· ∂tRk

]
. (2.38)

As has been discussed in the section on theory-space 2.1.3, Bk denotes a vector field.

Γk vs Γk,Λc in the limit Λc → ∞

After having obtained the UV-regulated FRGE and described how to compute theTrΛc we now
compare this with the Λc-free FRGE eq. (2.22), and see how the two things differ when Λc is
made large [42].
The FRGE with UV cutoff eq. (2.35) contains the restricted trace TrΛc eq. (2.36). This can be

written as,
TrΛc [· · · ] = Tr[· · · ] − Tr[θ(p2 − Λ2

c)(· · · )] . (2.39)

Using this we have,
∂tΓk,Λc = Bk{Γk,Λc}[φ] + ∆Bk,Λc{Γk,Λc}[φ] , (2.40)

where the second term on RHS is given by,

∆Bk,Λc{Γk,Λc}[φ] = −1
2
Tr

[
θ(p2 − Λ2

c)
(

Γ(2)
k [φ] + Rk

)−1
· ∂tRk

]
. (2.41)

This term is a correction to the beta functional due to the presence of the UV cutoff. Its pres-
ence affects the Γk,Λc but not Γk. The corresponding RG flow are generated by the vector fields
Bk + ∆Bk,Λc and Bk respectively. This correction term is small due to the presence of the step
functions. It receives contributions only from modes with momenta p2 > Λ2

c ≥ k2. However
due to the properties of cutoff the term ∂tRk decays very quickly, when p2 → ∞. Thus this cor-
rection term receives substantial contributions from very small number of modes. It diminishes
quickly as Λc → ∞. This arguments tell that the flow equation for Γk and Γk,Λc are essentially
same as long as k ' Λc. But when k approaches Λc from below small deviations occur due
to the correction term. Making Λc larger increases the range of k values in which Γk and Γk,Λc

have the same beta functional, and finally in limit Λc → ∞ both Γk and Γk,Λc have the same
t-derivatives for any finite k.
This is the situation for the generic nonsingular cutoff Rk. Certainly it will be good if there

is a cutoff when the correction term vanishes. This indeed happens for the optimized cutoff
[43]. The optimized cutoff is given by,

Rk(p2) = (k2 − p2)θ(k2 − p2) , ∂tRk(p2) = 2k2θ(k2 − p2) . (2.42)
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Using eq. (2.42) it is easy to see that the correction term is zero for k ≤ Λc, as it contains
θ(k2 − p2)θ(p2 − Λ2

c). This is a very strong argument in favor of optimized cutoff [43]. Thus
from now onwards we will be using optimized cutoff in numerical computations given in this
work.
With the optimized cutoff the solutions {Γk,Λc , 0 ≤ k ≤ Λc} for the regularized FRGE be-

comes just the restriction of solutions {Γk, 0 ≤ k ≤ ∞} of the regularized free FRGE in the
interval k < Λc.

2.1.5. Approximation Schemes within FRGE framework
In most cases, when FRGE is used to study the renormalization group flow of a theory, one
has to depend upon approximations of the full exact flow. This is due to the way the effective
average actions are defined. As was mentioned in the section on theory space (2.1.3), they are
functionals defined on an infinite dimensional theory space which is spanned by interaction
monomials consistent with the symmetries, with co-ordinates as the couplings. The FRGE is
an exact equation and tells the flow of the full theory. But in principal it is impossible to handle
infinite number of couplings. Even if one starts from an EAA at a some scale k with only finite
number of couplings, there is no reason to believe why the RG flow would not generate other
couplings. In fact computations have shown the FRGE trace does generate other new couplings
as one moves away from the initial condition. As it is generally impossible to follow the flow
of the infinite number of couplings thus approximation schemes are needed in the framework
of FRGE.

Perturbation Theory

One possible way to do the approximation is to use perturbation theory. This is achieved
by performing the computations at one loop. In one loop computation of FRGE, one ignores
the running of the couplings on the RHS of the FRGE. The t-derivative would not act on the
couplings present in the cutoffRk. Thus the couplings gets k-independent on the RHS of FRGE.
The t-derivative can be taken outside the trace and one get the FRGE at one loop to be given
by,

∂tΓ1−loop
k =

1
2
∂t

(

Tr ln
[
Γ(2)

k̄
+ Rk

])

. (2.43)

where k̄ is some fixed scale and Γk̄ can be thought of as the “bare action”. This equation has
the same form as the eq. (2.25), which was obtained when the one loop effective action is
calculated by doing the computation perturbatively. It is for this reason this approximation of
FRGE is called one-loop approximation.

Truncations

Using perturbative techniques and doing the one loop computation one can extract only per-
turbative properties of the flow. On the other hand one is interested in the nonperturbative
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properties of the flow, then the approximation scheme described in the previous section will
not give us any nonperturbative information. In the context of FRGE the typical nonpertur-
bative scheme that is employed is to truncate the renormalization group flow [44, 39, 40, 45],
which is the procedure we will follow in this work. In this methodology one makes an ansatz
for the EAA Γk, which consists of a finite number of interaction monomials which forms a sub-
set of the infinite dimensional theory space spanned by interaction monomials. This ansatz is
then plugged in FRGE. The FRGE trace when expanded would produce not only terms which
lie within the subset of ansatz but also terms that lie outside this subset ansatz. In the trunca-
tion scheme the contributions coming from terms which lie outside the ansatz are put to zero,
the coefficients of remaining operators on both side of equation are equated to get the beta
functions of the couplings. These beta functions would be nonperturbative and would contain
genuine nonperturbative information.
Although the information given by this approximation scheme is nonperturbative, there is a

difficulty in checking its reliability of the ansatz made as there is no small expansion parameter
which can guide. Moreover the renormalization group flow generates terms which do not lie
in the ansatz subspace and discarding them might be potentially affecting the running of the
couplings we are retaining. To start with a good ansatz requires some physical intuition and an
educated guess as to what kind of interaction terms have to be a part of the ansatz subspace.
As far as the study of fixed points is concerned, it is well known that truncated flows can

give rise to spurious fixed points. To check whether a fixed point is spurious or not, one has
to extend the truncation subspace to full theory space. Then one should see if the fixed point
persists on extending the truncation. This is well understood in the case of scalar field theory
in the local potential approximation [44, 47], where it can be shown how physical solutions are
recovered among all apparent fixed points of the flow.
In theories which are more involved where such procedures are absent, the best way to

check if the results are reliable or not is to see if they remain stable in gradual extension of the
truncation ansatz. Results are considered to be reliable if the relevant quantities like values of
fixed point and dimensionless quantities computed in the previous truncation are not greatly
affected by the presence of new terms in the enlarged truncation and are seen to converge.
While studying theories of gravity and searching for non-trivial fixed point I will be employ-
ing this strategy. In subsequent chapters I would stress that encouraging results are not only
that such fixed points have been found in all truncations studied, but also they share similar
properties in all those truncations. Thus they constitute the physical solutions.
Another way to test the quality of the truncation is to consider the scheme dependence. This

is done by considering different types of cutoff. One can do this job in two ways: first by con-
sidering different forms of shape function entering the cutoff and secondly by constructing the
cutoff with different operators∆. While the choice of cutoff introduces a scheme dependence in
the results, physical quantities should be independent of such choices. Truncations introduce
spurious cutoff dependence which can serve as an estimate on the quality of the approxima-
tion. Using this one can define an optimization criterion for the cutoff profile [43] with which
such dependences are minimized and the truncated flow is rendered most stable.
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2.2. General notion of Asymptotic safety
Having introduced the concept of effective average action Γk, and having described its flow
given by FRGE, I now set to discuss the idea of “Asymptotic Safety” as introduced by Steven
Weinberg [11] (see also [46] for reviews).
For simplicity I will denote the field content of the theory by φA. Then the effective action

Γk[φA] used at the tree level gives the accurate description of the physical process taking place
at scale k. In general one can expand the effective action as follows,

Γk[φA, gi] =
∑

i

gi(k)Oi(φA) , (2.44)

where as mentioned before gi(k) are the running couplings and Oi(φA) are all possible oper-
ators constructed from the field and its derivatives, which abide the symmetry requirements
of the theory. These are functionals on F × Q × R+; where F is the configuration space of
all fields, Q is the space of all couplings and R+ is the space parametrized by k. The FRGE
(2.22) describes the dependence of Γk on k. We can write ∂tΓk(φA, gi) =

∑
i βiOi(φA), where

βi(gj , k) = ∂tgi are the beta functions and t = log(k/k0).
Dimensional arguments tell us that when the fields, couplings and k are scaled by some

arbitrary parameter b, then the effective action is invariant. This is expressed as,

Γk[φA, gi] = Γbk[bdAφA, bdigi] , (2.45)

where dA and di are the mass dimensions of φA and gi respectively, and b ∈ R+ is a positive real
scaling parameter. As Γk is a dimensionless quantity, it can be rewritten in terms of dimension-
less fields φ̃A = φAk−dA and dimensionless couplings g̃i = gik−di . At this point if one performs
the transformation given in eq. (2.45) with parameter b = k−1, then one can define a quantity
completely independent of the scale. It is a functional Γ̃ on the space (F ×Q× R+)/R+,

Γ̃(φ̃A, g̃i) := Γ1(φ̃A, g̃i) = Γk(φA, gi) . (2.46)

Similarly the beta functions of the dimensionfull couplings can bewritten as βi(gj , k) = kdiai(g̃j ,
where ai(g̃j) = βi(g̃j , 1). From this follows the dimensionless beta function of the dimensinless
couplings:

β̃i(g̃j) ≡ ∂tg̃i = ai(g̃j) − dig̃i , (2.47)

which depends on k only through the dependence of k implicitily present in g̃ i(t).
Changing the scale from k to k−δk results in the corresponding change in the effective action

Γk to Γk−δk. These two effective actions differ essentially by a functional integral over field
modes with momenta between k and k− δk. This integration will not involve any divergences,
so the beta functions obatined will also be finite. Once the beta function is known at a scale
k, they are automatically determined at any other scale through dimensional analysis. Thus
the scale k0 and the initial action S act just as the initial condition: when the beta functions
are known one can start from any arbitrary point on Q and use FRGE to obtain the RG flow
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in either direction. The effective action at a particular scale can be obtained by integrating the
flow from the chosen initial point up to scale k. In particular, the UV behaviour can be studied
by taking the limit k → ∞.
It happens often that it is not possible to integrate the flow up to infinity, and can be inte-

grated only to some limiting scale Λ, defining the point at which some “new physics” has to
come into play. In such a case the theory is valid only for k < Λ and is known as “effective” or
“cutoff” QFT. However, it may happen that one can integrate the flow up to infinity, where the
limit t → ∞ can be taken; then in such cases we have a self-consistent description of physical
phenomena which is valid up to arbitrarily high energy scales and does not need to refer to
anything outside it. Then the theory is termed “fundamental”.
The couplings appearing in the effective action can be related to physically measurable

quantities such as cross sections and decay rates. Dimensional analysis implies that aside from
an overall power of k, such quantities only depend on dimensionless kinematical variables X,
like scattering angles and ratios of energies, and on the dimensionless couplings g̃ i (recall that
usually k is identified with one of the momentum variables).

R = kD f (E/k,X, g̃i(k)) , (2.48)

where R is the reaction rate, D is the mass dimension of R and E is the energy at which the
process is taking place. The important point to note is that the physicial quantity R cannot
depend on any arbitrary choice of k at which the couplings are defined, so it is taken as the
energy of the process, and thus we get

R = kD f(1,X.g̃i(k)) . (2.49)

For example, a cross section can be expressed as σ = k−2σ̃(X, g̃i). If some of the couplings g̃i

go to infinity, when t → ∞, also the reaction rate R can be expected to diverge. A sufficient
condition to avoid this problem is to assume that in the limit t → ∞ the RG trajectory tends
to a FP of the RG, i.e. a point g̃∗ where β̃i(g̃∗) = 0 for all i. The existence of such a FP is the
first requirement for asymptotic safety. Before discussing the second requirement, we have to
understand that one needs to impose this condition only on a subset of all couplings.
The fields φA are integration variables, and a redefinition of the fields does not change the

physical content of the theory. This can be seen as invariance under a group G of coordinate
transformations in F . There is a similar arbitrariness in the choice of coordinates on Q, due to
the freedom of redefining the couplings gi. Since, for given k, Γk is assumed to be the “most
general” functional on F × Q (in some proper sense), given a field redefinition φ′ = φ′(φ) one
can find new couplings g′i such that

Γk(φ′B(φA), gi) = Γk(φA, g′i) . (2.50)

At least locally, this defines an action of G onQ. We are then free to choose a coordinate system
which is adapted to these trasformations, in the sense that a subset {g ı̂} of couplings transform
nontrivially and can be used as coordinates in the orbits of G, while a subset {gı̄} are invariant
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under the action of G and define coordinates on Q/G. The couplings g ı̂ are called redundant
or inessential, while the couplings gı̄ are called essential. In an adapted parametrization there
exists, at least locally, a field redefinition φ̄(φ) such that using eq. (2.50) the couplings gı̂ can
be given fixed values (gı̂)0. We can then define a new action Γ̄ depending only on the essential
couplings:

Γ̄k(φ̄A, gı̄) := Γk(φ̄A, gı̄, (gı̂)0) = Γk(φA; gı̄, gı̂) . (2.51)

Similarly, the values of the redundant couplings can be fixed also in the expressions for measur-
able quantities, so there is no need to constrain their RG flow in any way: they are not required
to flow towards a FP.
For example, the action of a scalar field theory in a background gµν ,

Γk(φ, gµν ;Zφ, λ2i) =
∫

d4x
√

g

[
Zφ

2
gµν∂µφ∂νφ+ λ2φ

2 + λ4φ
4 + . . .

]
(2.52)

has the scaling invariance

Γk(cφ, gµν ; c−2Zφ, c
−2iλ2i) = Γk(φ, gµν ;Zφ, λ2i) , (2.53)

which is a special case of eq. (2.50). There exists an adapted coordinate system where Z is
inessential and λ̄2i = λ2iZ

−i
φ are the essential coordinates. A transformation with c =

√
Zφ

then leads to Zφ = 1, leaving the essential couplings unaffected.
A comparison of (1.2.4) and (1.2.7) shows that k behaves like a redundant coupling. In

ordinary QFT’s, it is generally the case that for each multiplet of fields φA there is a scaling
invariance like (1.2.9) commuting with (1.2.3). One can use these invariances to eliminate si-
multaneously k and one other redundant coupling per field multiplet; the conventional choice
is to eliminate the wave function renormalization ZA. No conditions have to be imposed on the
RG flow of the ZA’s, and the anomalous dimensions ηA = ∂t log ZA, at a FP, can be determined
by a calculation. More generally, (1.2.3) and (1.2.6) can be used to eliminate simultaneously
the dependence of Γk on k and on the inessential couplings, and to define an effective action
Γ̃(φ̃A, g̃ı̄), depending only on the dimensionless essential couplings g̃ ı̄ = gı̄k−dı̄ . It is only on
these couplings that one has to impose the FP condition ∂tg̃ı̄ = 0.
We can now state the second requirement for asymptotic safety. Denote Q̃ = Q/G the space

parametrized by the dimensionless essential couplings g̃ ı̄. The set C of all points in Q̃ that flow
towards the FP in the UV limit is called the UV critical surface. If one chooses an initial point
lying on C, the whole trajectory will remain on C and will ultimately flow towards the FP in the
UV limit. Points that lie outside C will generally flow towards infinity (or other FP’s). Thus,
demanding that the theory lies on the UV critical surface ensures that it has a sensible UV
limit. It also has the effect of reducing the arbitrariness in the choice of the coupling constants.
In particular, if the UV critical surface is finite dimensional, the arbitariness is reduced to a finite
number of parameters, which can be determined by a finite number of experiments. Thus, a
theory with a FP and a finite dimensional UV critical surface has a controllable UV behaviour,
and is predictive. Such a theory is called “asymptotically safe”.
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A perturbatively renormalizable, asymptotically free field theory such as QCD is a special
case of an asymptotically safe theory. In this case the FP is the Gaußian FP, where all couplings
vanish, and the critical surface is spanned, near the FP, by the couplings that are renormalizable
in the perturbative sense (those with dimension d ı̄ ≥ 0).

2.2.1. Dimension of Critical Surface

The dimension of the UV critical surface can be determined from the behavior of the running
of dimensionless essential couplings near the fixed point. Lets denote the running of dimen-
sionless essential couplings by β̃ı̄(g̃). In the neighbourhood of the FP g̃∗

ı̄ , the running of dimen-
sionless essential couplings is given by,

∂tg̃ı̄ =
∑

j

Mij
(
g̃̄ − g̃∗̄

)
, (2.54)

where the sum is over the dimensionless essential couplings of the theory andM ij is given by,

Mij =
∂β̃ı̄(g̃)
∂g̃̄

∣∣∣∣∣
g̃=g̃∗

. (2.55)

The general solution of the eq. (2.54) is given by,

g̃ı̄(k) =
∑

J

CJ V J
i keJ + g̃∗ı̄ , (2.56)

where V J are the eigenvectors of Mij with eigenvalues eJ , and CJ are arbitrary coefficients.
Clearly the condition that the couplings approach the FP is that CJ should vanish for all posi-
tive eigenvalues. Thus the dimensionality of the critical surface is the number of remaining CJ

parameter i.e. the number of negative eigenvalues ofMij .

2.3. FRGE applied to O(N) scalar field theory
In the section 2.1.1 I showed how to derive a functional renormalization group equation and
also defined the effective average action as given in [19, 20]. I then discussed the properties
obeyed by FRGE and EAA, thereby giving the concept of theory space, which led to the dis-
cussion on approximation schemes [39, 40, 45, 44].
After having derived the FRGE, in this section I would demonstrate how this is used to

obtain the flow of the couplings present in the truncated subspace of the theory. One strategy
that is employed in making the guess for truncation is the derivative expansion of EAA. The
effective average action is expanded and truncated at some order. Here I would consider the
O(N) scalar field theory and would consider the leading order terms in the truncation. This
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would be the local potential approximation, where I retain only the kinetic term for the field
and its generic potential. The effective average action is then given by,

Γk =
∫

ddx

[
1
2
∂µφa∂

µφa + V (φaφa)
]

. (2.57)

In all computations where FRGE is used, the first step to do is to obtain the Hessian Γ (2)
k of the

theory. For the EAA given in eq. (2.57), the Hessian is obtained by doing the second variation
around a constant background φa. This is given by

(Γ(2)
k )ab = −δab" + 2V ′δab + 4φaφbV ′′ (2.58)

where prime (’) denotes derivative with respect to argument. In typical computation when the
Hessian has been obtained, one decides which operator has to be used as∆ in the construction
of the cutoff Rk. Once ∆ is identified, we first construct the modified inverse propagator of
the theory denoted by Pk(∆). This is obtained by replacing ∆ in Γ(2) with Pk(∆), which is
given by ∆ + Rk(∆), and Rk(∆) is the shape function. The cutoff is then given by Rk(∆) =
Pk(∆) − Γ(2)

k (∆). This is summarized as follows,

Γ(2)
k (∆) ⇒ Pk(∆) = Γ(2)

k (Pk(∆) )
where Pk(∆) = ∆ + Rk(∆) , and Rk(∆) = shape function ,

Rk(∆) = Pk(∆) − Γ(2)
k (∆) . (2.59)

For the present case we note that one can take∆ = −". At this point I would like to stress that
through out this work I will take∆ = −". Thus we have the modified inverse propagator and
cutoff given by,

Pab
k (−") = Pk(−") δab + 2V ′δab + 4φaφbV ′′

Rab
k (−") = Pab

k (−") − (Γ(2)
k )ab(−")

= Rk(−") δab . (2.60)

To do the computation using the FRGE we would need the following projectors,

αab =
φaφb

φ2
, βab = δab − αab , (2.61)

where φ2 = φaφa. These projectors have the following properties:

αab φa = φb , βab φa = 0

α2 = α , β2 = β , α · β = 0
Trα = 1 , Trβ = N − 1 . (2.62)
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Then using the projectors the modified inverse propagator and cutoff is written as,

P(−") = (Pk(−") + 2V ′) (α + β) + 4φ2V ′′ α

= (Pk(−") + 2V ′)β + (Pk(−") + 2V ′ + 4φ2V ′′)α , (2.63)
R(−") = Rk(−")α+ Rk(−")β . (2.64)

With the help of projectors the modified inverse propagator can be easily inverted. This is
given by,

(Pk(−"))−1 =
1

Pk(−") + 2V ′ β +
1

Pk(−") + 2V ′ + 4φ2V ′′ α . (2.65)

This information can be plugged in the RHS of FRGE which is written as,

(∂tΓ)[φ] =
1
2
Tr

[
(Trβ) ∂tRk(−")
Pk(−") + 2V ′ +

(Trα) ∂tRk(−")
Pk(−") + 2V ′ + 4φ2V ′′

]
,

=
1
2
Tr

[
(N − 1) ∂tRk(−")

Pk(−") + 2V ′ +
∂tRk(−")

Pk(−") + 2V ′ + 4φ2V ′′

]
. (2.66)

At this point after computing the RHS of the FRGE we note that there are two terms on the
RHS. The term proportional to (N − 1) has a propagator coming from modes in “Goldstone
directions” with mass m2 = 2V ′, which will be zero had the φa would have been the minima
of the potential. While the other term has a propagator for the radial mode with mass m2 =
2V ′+4φ2V ′′. These two termswill always be present as long asN > 1. ForN = 1, the projector
α = 1while β = 0. Thus the system reduces to that of one scalar and we reproduces the results
mentioned in [34].
The trace can be computed in two ways. This is done either by performing the trace in

configuration space, in which case it is Tr ≡
∫

ddx
∫

ddy
∑

a, or in momentum space in which
case it becomes Tr ≡ V ol (2π)−d

∫
ddq

∑
a. Given that we have a constant background field φa,

the FRGE trace in eq. (2.66) would give,

∂tΓk =
1
2

V ol

(4π)d/2

[
(N − 1)Q d

2

(
∂tRk

Pk + 2V ′

)
+ Q d

2

(
∂tRk

Pk + 2V ′ + 4φ2V ′′

)]
, (2.67)

where V ol =
∫

ddx is the space-time volume and the Q function is defined as,

Qn[W (z)] =
1

Γ(n)

∫ ∞

0
dzzn−1W (z) . (2.68)

At this point it is noted that while performing the trace the two contributions, one coming form
Goldstone modes and the other coming from radial modes, do not mix with each other. When
N = 1 only the radial mode survives, and we are left with the expression giving the flow of the
effective average action for a single scalar [34, 48, 49]. Depending on the choice that one makes
for the shape function, it possible to perform the integration in closed form or it has to be done
numerically. As has been discussed in previous section on FRGE with UV cutoff, it was shown
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that an optimized cutoff is the one in which the dependence on UV cutoff disappears. Thus we
will be using the optimized shape function [43, 48, 49], which is given by,

Rk(z) = (k2 − z)θ(k2 − z) . (2.69)

However computations have also been done in past using exponentials shape functions [20],
which are given by,

Rk(z) =
z exp−z/k2

1 − exp−z/k2
. (2.70)

With an optimized shape function (2.69), it is possible to do theQ-function integration in closed
form, while with exponential shape function the integration has to be done in a numerical way.
Since the background field φa is constant, one can extract the running of potential from eq.
(2.67). For the optimized shape function this is given by,

∂tV = kd+2 cd ·
(

N − 1
k2 + 2V ′ +

1
k2 + 2V ′ + 4φ2V ′′

)
, (2.71)

where cd = 1
(4π)d/2 Γ(d

2+1)
.

As has been discussed while outlining the requirements of asymptotic safety in section 2.2,
that one needs to work with dimensionless couplings in order to search for fixed points and
compute the critical exponents. Thus with this in mind I define dimensionless field φ̃a and
dimensionless potential Ṽ (φ̃aφ̃a) as,

φ̃a = k−(d−2)/2φa , ⇒ φ̃2 = k−(d−2) φ2 ,

Ṽ = k−d V . (2.72)

One can now derive the running of dimensionless potential.

(∂tV )[φ2] = ∂t(kdṼ [φ̃2]) ,

= d kd Ṽ [φ̃2]) + kd δṼ

δφ̃2
∂tφ̃

2 + kd(∂tṼ )[φ̃2] ,

= d kd Ṽ [φ̃2]) − kd Ṽ ′ (d − 2)φ̃2 + kd(∂tṼ )[φ̃2]

= kd
{
d Ṽ − (d − 2) φ̃2 Ṽ ′ + (∂tṼ )[φ̃2]

}
, (2.73)

where the t-derivative first acts on the factor kd, then it acts on the k-dependence in the φ̃2 and
then finally it acts on the k-dependent couplings present in the dimensionless potential. From
the last line of eq. (2.73) one can obtain the expression for the running of (∂tṼ )[φ̃2] in terms of
(∂tV )[φ2]. This is given by,

(∂tṼ )[φ̃2] = −d Ṽ + (d − 2) φ̃2 Ṽ ′ + k−d (∂tV )[φ2] , (2.74)

where the last term in the eq. (2.74) comes from FRGE. At this point I use the expression of ∂ tV ,
computed for optimized cutoff in eq. (2.71). Plugging this in eq. (2.74) gives the expression
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for the running of dimensionless potential in the local potential approximation for the O(N)-
symmetric scalar theory. This is given by,

(∂tṼ )[φ̃2] = −d Ṽ + (d − 2) φ̃2 Ṽ ′ + cd

[
N − 1
1 + 2Ṽ ′

+
1

1 + 2Ṽ ′ + 4φ̃2Ṽ ′′

]
. (2.75)

After having derived the beta-functional of the dimensionless potential, we note that where-
ever φ̃2 occurs explicitly, it occurs in combination φ̃2Ṽ ′ and φ̃2Ṽ ′′. This would be crucial in the
proof of the existence of “Gaussian” Fixed Point (FP). Equation (2.75) is a non-linear partial
differential equationwith second order in φ̃2 and first order in t. This equation cannot be solved
analytically in general. Even in the case of large N limit, the equation remains very nonlinear
although it become first order in φ̃2. The best thing one can do is to assume a polynomial form
of the dimensionless potential Ṽ and extract the beta functions of the dimensionless couplings.
Over here we will assume the following polynomial form of the potential.

Ṽ (φ̃2) =
nt∑

n=0

λ̃2nφ̃
2n , (2.76)

where nt is the maximum power of φ̃2 considered in the truncation. In this chapter we would
put the first term of the expansion in eq. (2.76) to be zero. Thus the first non zero term would
be λ̃2 which is the dimensionless mass term. The next term of the series is the usual quartic
coupling given by λ̃4, whose corresponding dimensionfull coupling λ4 is dimensionless in d =
4 and so on.

To extract the beta function of the couplings we simply take derivatives of eq. (2.75) with
respect to φ̃2 and set φ̃2 = 0, as

∂tλ̃2n =
1
n!
δn∂tṼ

δ(φ̃2)n

∣∣∣∣∣
φ̃2=0

. (2.77)

Using the above equation we will give the beta functions of the couplings for the truncations
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nt = 4, that is for λ̃2, λ̃4, λ̃6 and λ̃8. They are as follows,

∂tλ̃2 = −2λ̃2 + cd

[
−4(N − 1)λ̃4

(1 + 2λ̃2)2
− 12λ̃4

(1 + 2λ̃2)2

]
, (2.78)

∂tλ̃4 = (−d + 2(d − 2)) λ̃4 + cd

[
(N − 1)

(
16λ̃2

4

(1 + 2λ̃2)3
− 6λ̃6

(1 + 2λ̃2)2

)

+
144λ̃2

4

(1 + 2λ̃2)3
− 30λ̃6

(1 + 2λ̃2)2

]
, (2.79)

∂tλ̃6 = (−d + 3(d − 2)) λ̃6 + cd

[
(N − 1)

(
− 64λ̃3

4

(1 + 2λ̃2)4
+

48λ̃4 λ̃6

(1 + 2λ̃2)3

− 8λ̃8

(1 + 2λ̃2)2

)
− 1728λ̃3

4

(1 + 2λ̃2)4
+

720 λ̃4 λ̃6

(1 + 2λ̃2)3
− 56λ̃8

(1 + 2λ̃2)2

]
, (2.80)

∂tλ̃8 = (−d + 4(d − 2))λ̃8 + cd

[
(N − 1)

(
− 256λ̃4

4

(1 + 2λ̃2)5
− 72 λ̃2

4 λ̃6

(1 + 2λ̃2)4
+

36λ̃2
6

(1 + 2λ̃2)3

+
64 λ̃4 λ̃8

(1 + 2λ̃2)2

)
− 20736λ̃4

4

(1 + 2λ̃2)5
− 1296 λ̃2

4 λ̃6

(1 + 2λ̃2)4
+

900λ̃2
6

(1 + 2λ̃2)3
+

1344 λ̃4 λ̃8

(1 + 2λ̃2)2

]
. (2.81)

From these beta functions we note that if we had just one scalar (N = 1), then these beta
functions in d = 4 would match with the ones given in [34] for the optimized cutoff. The
first term in each beta function is coming from the tree level diagram, and consists of two
factors: one being the canonical dimension of the coupling whose beta function is computed
and second is the coupling itself. The terms in brackets contain quantum corrections and are
coming from loop diagrams. For the typical φ4, one can easily recognize the familiar terms in
the beta function of mass λ2 and λ4, which are proportional to λ4 and λ2

4 respectively.
Now we look for the fixed points and study the critical surface.

2.3.1. Fixed Points of O(N) scalar theory

O(N) scalar theory possesses two kinds of Fixed Points (FPs) : one is the “Gaussian” fixed
point which exists for all dimensions and in all truncations, while the other is theWilson Fisher
fixed point which exists for 2 < d < 4. Since a FP is defined by requiring that the t-derivative
of the dimensionless coupling is zero, thus the condition to search for FP in this truncation is
the requirement that the t-derivative of the dimensionless potential i.e. ∂tṼ = 0. Using this
information in eq. (2.75), the fixed point equation for the dimensionless potential is given by,

0 = −d Ṽ + (d − 2) φ̃2 Ṽ ′ + cd

[
N − 1
1 + 2Ṽ ′

+
1

1 + 2Ṽ ′ + 4φ̃2Ṽ ′′

]
. (2.82)
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This equation is a second order nonlinear ordinary differential equation for Ṽ . This equation
cannot be solved in closed form. In usual physical computation one assumes that the poten-
tial is analytic around φ̃2 = 0 and thus possess a polynomial expansion like the one given in
eq. (2.76). Then in the truncation nt = 4, eq. (2.82) is equivalent to setting the running of
dimensionless couplings λ̃2, λ̃4, λ̃6 and λ̃8 given in equations (2.78), (2.79), (2.80) and (2.81)
respectively, to zero.
Once the fixed points are found, one uses the dimensionless beta functions to obtain the

critical exponents. Critical exponents are defined to be negative of eigenvalues of the “Stability
Matrix”, which is given for O(N) scalar theory as,

Mij =
δ
(

1
i!∂tṼ (i)(0)

)

δ
(

1
j! Ṽ

(j)(0)
)

∣∣∣∣∣∣
FP

=
δβλ̃2i

δλ̃2j

∣∣∣∣∣
FP

, (2.83)

where i and j take values from 1 to nt.

Gaussian Fixed Point

A Gaussian fixed point is a point in the theory space where all the couplings vanishes. The
existence of this fixed point is important for the applicability of the perturbation theory. The
typical field theory computation involving perturbation theory are possible due to presence of
this fixed point.
In the case of O(N)-scalar theory, it is possible to prove its existence by assuming Taylor’s

series expansion of the dimensionless potential around φ̃2 = 0 like the one given in eq. (2.76) for
nt = ∞. Lets assume that the Gaussian FP exists, then that means Ṽ (i)(0) = 0 for all i ≥ 1. This
is nothing but the condition that all the couplings present in the expansion are zero. By taking
successive derivatives of eq. (2.82) andmaking use of this ansatz one can show easily show that
at each order of derivative of eq. (2.82), the equation is identically satisfied. This can be more
clearly seen in the case when nt = 4. For this the dimensionless beta functions of couplings are
given in equations (2.78), (2.79), (2.80) and (2.81). At FP LHS of these beta functions are zero.
Then making use of the condition Ṽ (i)(0) = 0 for all i ≥ 1, which is equivalent to saying that
λ̃2, λ̃4, λ̃6 and λ̃8 are all zero. This would imply that the RHS of equations (2.78), (2.79), (2.80)
and (2.81) are also zero.
After showing the existence of the Gaussian FP, we study the linearized flow around it. To

study linearized flow we compute the stability matrix given in eq. (2.83). From this definition,
the numerical computations tell that the stability matrix has the following form,





M11 M12 0 0 · · ·
0 M22 M23 0 · · ·
0 0 M33 M34 · · ·
0 0 0 M44 · · ·
· · · · · · · · · · · · · · ·




, (2.84)
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The various non zero entries ofM are related to each other by the following recursion relations
(in d-dimensions):

Mii = (d − 2) (i − 1) + M11 ,

Mi,i+1 =
(

2i
N

+ 1
)

(i + 1)
M12

2
(

2
N + 1

) = (2i + N) (i + 1)
M12

2(N + 2)
, (2.85)

whereM11 andM12 are given by,

M11 = −2 , M12 = −4cd (N + 2) . (2.86)

Thus to study the linearized flow around Gaussian FP all we need to know is M11 and M12.
All the other nonzero entries can be obtained from them. Thus the smallest truncation of the
dimensionless potential that one needs to consider is just containing the couplings for φ̃2 and
φ̃4.
Now I will give a mathematical derivation of the relations mentioned in eq. (2.3.1). From

the beta functional of dimensionless potential (for optimized cutoff) given in eq. (2.75) and
the running of effective action (for generic cutoff) given in eq. (2.67), we note that the beta
functional of the dimensionless potential for a generic cutoff can be written as follows,

∂tṼ = −dṼ + (d − 2) φ̃2 Ṽ ′ + (N − 1) H̃
(
2Ṽ ′

)
+ H̃

(
2 Ṽ ′ + 4φ̃2Ṽ ′′

)
, (2.87)

where H̃ is a generic functional which one obtain after doing the integration in Q-functions
of eq. (2.67). The exact form of the functional H̃ is not important, all that is required are the
arguments of the functionals. One can compare eq. (2.87) with eq. (2.75) and notice that the
last two terms of eq. (2.75) has the same functional form as the last two terms of eq. (2.87). The
properties of the stability matrix mentioned in eq. (2.3.1) can be obtained by taking successive
derivatives of eq. (2.87) with respect to φ̃2 at φ̃2 = 0.
For i = 1, we take one derivative of eq. (2.87). This gives,

∂tṼ
′ = −d Ṽ ′ + (d − 2) Ṽ ′ + (d − 2) φ̃2 Ṽ ′′ + (N − 1)

δH̃

δ(2Ṽ ′)
2Ṽ ′′

+
δH̃

δ(2Ṽ ′ + 4φ̃2Ṽ ′′)
(2Ṽ ′′ + 4Ṽ ′′ + 4φ̃2Ṽ ′′′) . (2.88)

When we set φ̃2 = 0, we note from the above equation that ∂tṼ ′(0) depends only on Ṽ ′(0)
and Ṽ ′′(0). We use this information in eq. (2.83) to calculate the i = 1 entries of the stability
matrix. We note that M1j = 0 for all j ≥ 3. Now we find the remaining nonzero entries. For
j = 1, we note that the dependence on Ṽ ′(0) is present (apart from the canonical terms) only
in δH̃

δ(2Ṽ ′)

∣∣∣
φ̃2=0

and δH̃
δ(2Ṽ ′+4φ̃2Ṽ ′′)

∣∣∣
φ̃2=0

. But each of these non-canonical terms are multiplied with

Ṽ ′′(0). So when we compute the entries of stability matrix at Gaussian FP, these terms will not
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contribute. Thus for j = 1 we take the derivative of ∂tṼ ′(0) with respect to Ṽ ′(0). This gives
M11 at the Gaussian FP as,

M11 = −d + (d − 2) = −2 . (2.89)

While for j = 2we take the derivative of ∂tṼ ′(0) with respect to Ṽ ′′/2. This gives,

M12 = 2(N − 1) · δH̃

δ(2Ṽ ′)

∣∣∣∣∣
φ̃2=0

· 2 + 2 · δH̃

δ(2Ṽ ′ + 4φ̃2Ṽ ′′)

∣∣∣∣∣
φ̃2=0

· 6

= 2(2(N − 1) + 6) · δH̃

δ(2Ṽ ′)

∣∣∣∣∣
φ̃2=0

= 4(N + 2)
δH̃

δ(2Ṽ ′)

∣∣∣∣∣
φ̃2=0

. (2.90)

Thus we see that for i = 1we have the following entries of the stability matrix,

M11 = −2 , M12 = 4(N + 2)
δH̃

δ(2Ṽ ′)

∣∣∣∣∣
φ̃2=0

, M1j = 0 ∀ j ≥ 3 . (2.91)

Now we consider the j = 2 entries of the stability matrix. To do so we first compute the
second derivative of eq. (2.87). This gives,

∂tṼ
′′ = −d Ṽ ′′ + 2(d − 2) Ṽ ′′ + (d − 2) φ̃2 Ṽ ′′′ + (N − 1)

(
δ2H̃

δ(2Ṽ ′)2
(2Ṽ ′′)2 +

δH̃

δ(2Ṽ ′)
2Ṽ ′′′

)

+
δ2H̃

δ(2Ṽ ′ + 4φ̃2Ṽ ′′)2
(2Ṽ ′′ + 4Ṽ ′′ + 4φ̃2Ṽ ′′′)2 +

δH̃

δ(2Ṽ ′ + 4φ̃2Ṽ ′′)
(10Ṽ ′′′ + 4φ̃2Ṽ ′′′′) (2.92)

When we set φ̃2 = 0, we note from the above equation that ∂tṼ ′′(0) depends only on Ṽ ′(0),
Ṽ ′′(0) and Ṽ ′′′(0). We use this information in eq. (2.83) to calculate the i = 2 entries of the
stability matrix. Using the same arguments as before we conclude that M2j = 0 for all j ≥ 4.
The other nonzero entrieswe compute one by one. For j = 1, note that the dependence on Ṽ ′(0)
is present only in δH̃

δ(2Ṽ ′)

∣∣∣
φ̃2=0

and δH̃
δ(2Ṽ ′+4φ̃2Ṽ ′′)

∣∣∣
φ̃2=0

. But each of these non-canonical terms are

multiplied with Ṽ ′′′(0). So when we compute the entries of stability matrix at Gaussian FP,
these terms like argued earlier will not contribute. Thus we conclude thatM21 = 0.
For j = 2 we take the derivative of 1

2∂tṼ ′′(0) with respect to 1
2 Ṽ ′′(0). Then at the Gaussian

FP only the canonical terms contribute, which gives,

M22 = −d + 2(d − 2) = −2 + (d − 2) = (d − 2) + M11 . (2.93)

While for j = 3, we take the derivative of 1
2∂tṼ ′′(0) with respect to 1

3! Ṽ
′′′(0) at the Gaussian FP.
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This gives,

M23 =
1
2



6(N − 1) · δH̃

δ(2Ṽ ′)

∣∣∣∣∣
φ̃2=0

· 2 + 6 · δH̃

δ(2Ṽ ′ + 4φ̃2Ṽ ′′)

∣∣∣∣∣
φ̃2=0

· 10





=
1
2



6(2(N − 1) + 10) · δH̃

δ(2Ṽ ′)

∣∣∣∣∣
φ̃2=0



 = 6(N + 4)
δH̃

δ(2Ṽ ′)

∣∣∣∣∣
φ̃2=0

=
3(N + 4)
2(N + 2)

M12 . (2.94)

Thus for note that i = 2we have,

M21 = 0 , M22 = (d − 2)(2 − 1) + M11 ,

M23 =
3(N + 4)
2(N + 2)

M12 , M2j = 0 ∀ j ≥ 4 . (2.95)

In order to understand the structure of lines for i ≥ 3 we proceed by method of induction.
We assume that the i-th derivative has the following structure,

(∂tṼ )(i) = −dṼ (i) + (d − 2)
(
φ̃2 Ṽ (i+1) + i Ṽ (i)

)
+ (N − 1)

{
δH̃

δ(2Ṽ ′)
(2Ṽ )(i+1) + · · ·

}

+

{
δH̃

δ(2 Ṽ ′ + 4φ̃2 Ṽ ′′)

(
2 Ṽ ′ + 4φ̃2 Ṽ ′′

)(i)
+ · · ·

}
, (2.96)

where the (· · · ) denote expressions having at least two factors of derivatives of potentials,
which are irrelevant when calculating the entries of stability matrix. Clearly this property is
true for i = 1 and i = 2. We show that if it holds for a given value of i, then it also holds for
i + 1. Thus we take one more derivative eq.(2.96) and we find

(∂tṼ )(i+1) = −dṼ (i+1) + (d − 2)
(
φ̃2 Ṽ (i+2) + (i + 1) Ṽ (i+1)

)
+ (N − 1)

[
δH̃

δ(2Ṽ ′)
(2Ṽ )(i+2)

+
δ2H̃

δ(2Ṽ ′)2
(2Ṽ )(i+1) (2Ṽ ′) + · · ·

]
+

[
δH̃

δ(2 Ṽ ′ + 4φ̃2 Ṽ ′′)

(
2 Ṽ ′ + 4φ̃2 Ṽ ′′

)(i+1)

+
δ2H̃

δ(2 Ṽ ′ + 4φ̃2 Ṽ ′′)2

(
2 Ṽ ′ + 4φ̃2 Ṽ ′′

)(i) (
2 Ṽ ′ + 4φ̃2 Ṽ ′′

)′
+ · · ·

]

(2.97)

Aside from the new terms containing two factors of derivatives of the potentials, which can be
neglected for our purposes, the remaining terms have the same structure as eq. (2.96). Thus by
induction eq. (2.96) holds for all i.
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We use this result to compute the entries of the stability matrix in the i-th row. To do so we
will need the following,

(
2 Ṽ ′ + 4φ̃2 Ṽ ′′

)(i)
= 2 (2 i + 1) Ṽ (i+1) + 4φ̃2 Ṽ (i+2) . (2.98)

Thus to compute the i-th row of the stability matrix we put φ̃2 = 0 in eq. (2.96). Then at
Gaussian FPMij = 0 for all j ≤ (i − 1) and for all j ≥ (i + 3). The only nonzero entries areMii

andMi,i+1, which are given by,

Mii =
δ
(

1
i!∂tṼ (i)(0)

)

δ
(

1
(i)! Ṽ

(i)(0)
)

∣∣∣∣∣∣
FP

= −d + (d − 2)i = (d − 2)(i − 1) + M11 ,

Mi,i+1 =
δ
(

1
i!∂tṼ (i)(0)

)

δ
(

1
(i+1)! Ṽ

(i+1)(0)
)

∣∣∣∣∣∣
FP

= (i + 1)
δ
(
∂tṼ (i)(0)

)

δ
(
Ṽ (i+1)(0)

)

∣∣∣∣∣∣
FP

= (i + 1) [2(N − 1) + 2(2i + 1)]
δH̃

δ(2Ṽ ′)

∣∣∣∣∣
φ̃2=0

= 2(i + 1)(2i + N)
δH̃

δ(2Ṽ ′)

∣∣∣∣∣
φ̃2=0

= 2(i + 1)(2i + N)
M12

4(N + 2)
= (i + 1)(2i + N)

M12

2(N + 2)
(2.99)

This completes the proof of our statement given in eq. (2.3.1).
Having established the properties of the stability matrix the usual question to ask what are

the eigenvalues of such a stability matrix? A good feature of the matrix given in eq. (2.84) is
that the eigenvalues are just the diagonal entries. We have already proven the relations among
various nonzero entries given in eq. (2.3.1) of the stability matrix. Thus we conclude the if the
eigenvalues of this system are named as ei for i from 1 to nt, then we have,

ei = (d − 2)(i − 1) + e1 = −d + (d − 2)i . (2.100)

Thus if knowM11 at the Gaussian FP, then we know the eigenvalues of the full stability matrix.
Beside this if we also know M12 then the full stability matrix is known and eigenvectors can
also be computed.
Due to the particular diagonal structure of stability matrix and the recursive relations fol-

lowed by the nonzero entries, it is easy to demonstrate that eigenvectors have certain proper-
ties too. One can write the eigenvector as v = (v1, v2, · · · , vq)T , where q = nt. Then the vector
V1 = (v1, 0, 0, · · · , 0)T is an eigenvector if v1 satisfies,M11 v1 = e1 v1 i.e. v1 is an eigenvector of
M11. AsM11 is one dimensional and is equal to e1, therefore v1 = 1.
Now consider a vector of the form V2 = (v′1, v2, 0, 0, · · · , 0)T . They are eigenvector of the

stability matrix if it satisfies M11 v′1 + M12 v2 = e2v′1 and M22 v2 = e2v2. By making use of
eq. (2.3.1 and 2.100) in the second equation I note that v2 = v1 = 1. Plugging this value in
the former equation gives v′

1. In the same way one can determine the other eigenvectors. For
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example to compute the next eigenvector, consider V3 = (v′′1 , v′2, v3, 0 · · · , 0)T . Then for it to be
eigenvector, it must satisfy,

M11 v′′1 + M12 v′2 = e3 v′′1 , M22 v′2 + M23 v3 = e2 v′2 M33 , v3 = e3 v3 . (2.101)

Then using eq. (2.3.1 and 2.100) in the last equation one finds v3 = v2 = v1 = 1. And so
one can figure out the rest of the entries. This process can be continued to figure out all the
eigenvectors.

Wilson Fisher Fixed Point

The Wilson Fisher FP correspond to the non-trivial solution of the fixed point equation given
in (2.82). Over here I will discuss the solution in d = 3. The fixed point equation (2.82) is a non-
linear second order ordinary differential equation. For N 2= ∞, one can obtain the analytical
solution by doing a Taylor series expansion of the dimensionless potential around φ̃2 = 0 as in
eq. (2.76) for nt = ∞. By equating coefficients of various powers of φ̃2 in eq. (2.82) to zero we
obtain the fixed point equations for various couplings. From these equations we will note that
at the fixed point all the couplings λ̃∗2n for n ≥ 2 can be expressed as a function of λ̃∗2. This can
be seen as follow. The beta function of λ̃2 when put to zero, would give λ̃∗4 in terms of λ̃∗2. Then
putting the beta function of λ̃4 to zero would give λ̃∗6 in terms of λ̃∗2. This recursion goes on,
and to determine λ̃∗2n in terms of λ̃∗2, one has to put the beta function of λ̃2(n−1) to zero. Thus all
the couplings becomes function of λ̃∗2, and one gets the fixed point potential Ṽ ∗ as a function of
λ̃∗2. All the fixed point values of the couplings starting from λ̃∗4, have the following functional
form,

λ̃∗2n = λ̃∗2 · f(λ̃∗2, N) ∀n ≥ 2 , (2.102)
where f is a function. The domain of validity of this expansion of potential is restricted to
0 ≤ φ̃2 ≤ φ̃2

c < ∞. Such polynomial solutions given in eq. (2.76) for nt = ∞ cannot be
extended to large fields. The value φ̃2

c defines the radius of convergence for the polynomial
approximation. It is related to the gap associated to cutoff functions [50, 49]. Not all values
of λ̃∗2 lead to scaling solutions which remain finite and analytical for all φ̃2 ≤ φ̃2

c . Only two
values of λ̃∗2 lead to well defined solutions of the fixed point equation. One is the Gaussian
FP corresponding to λ̃∗2 = 0 and has been discussed in the previous section, and other is the
Wilson Fisher FP corresponding to λ̃∗2 = λ̃c

2 2= 0. This value λ̃c
2 is determined by fine tuning

such that φ̃2 = φ̃2
c . In [49] the authors have calculated this value for N = 1.

Here I will not discuss that part. Rather as argued in [49], I would study the scaling solution
using numerical methods. This is achieved by truncating the polynomial expansion in eq. (2.76)
at some finite order nt. By doing so we would note that the beta function of λ̃2nt would not
contain coupling λ̃2(nt+1), thereby stopping the recursive process. Putting this beta function to
zero would determine λ̃∗2, and then all the other couplings in the truncation. By increasing the
truncation the value of λ̃∗2 starts to converge.
Now I would write the values of the couplings at the wilson-fisher FP and the critical expo-

nents at this FP. Here I would consider the truncation up to n t = 10 for N = 1. Other values of
N has been considered in detail in [49].
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nt λ̃∗2 λ̃∗4 λ̃∗6 λ̃∗8 λ̃∗10 λ̃∗12 λ̃∗14 λ̃∗16 λ̃∗18 λ̃∗20
2 -0.0385 0.3234
3 -0.0714 0.5179 0.7511
4 -0.0880 0.590 1.235 2.0460
5 -0.0941 0.612 1.419 3.017 4.377
6 -0.0947 0.614 1.436 3.112 4.839 2.263
7 -0.0935 0.610 1.401 2.921 3.919 -2.212 -25.123
8 -0.0928 0.608 1.380 2.804 3.366 -4.836 -39.53 -93.05
9 -0.0928 0.6074 1.379 2.800 3.340 -4.961 -40.21 -97.40 -29.80
10 -0.0930 0.6081 1.385 2.829 3.482 -4.290 -36.55 -73.94 131.3 1100.2

Table 2.1.: Position of Wilson Fisher FP for various truncation in d = 3 and N = 1.

nt θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10
2 1.843 -1.176
3 1.686 -1.133 -12.220
4 1.586 -0.956 -8.824 -32.52
5 1.537 -0.780 -6.522 -22.02 -60.30
6 1.527 -0.6614 -4.844 -15.80 -40.15 -93.47
7 1.534 -0.6191 -3.742 -11.76 -29.11 -63.19 -132.03
8 1.540 -0.6331 -3.164 -9.170 -22.35 -47.21 -92.23 -177.97
9 1.542 -0.6581 -2.986 -7.502 -17.91 -37.31 -70.87 -128.20 -232.55
10 1.540 -0.6667 -3.053 -6.420 -14.78 -30.48 -57.08 -100.42 -171.24 -295.61

Table 2.2.: Critical exponents at theWilson Fisher FP for various truncation in d = 3 andN = 1.

After having given the values of the couplings at the wilson fisher FP, I now give the critical
exponents for various truncations considered. A critical exponent is defined as opposite the
eigenvalue i.e. if e is the eigenvalue then the corresponding critical exponent denoted by θ =
−e.
This study of critical exponents at Wilson-Fisher FP is done without including any wave-

function renormalization for the scalar field. However this computation can also be done by
incorporating the wave-function renormalization for the scalar. In that case it will lead to im-
provements of the numerical results obtained above.

2.4. Cutoff Types and Scheme Dependence
After demonstrating the use of FRGE in deriving the beta functions of the couplings in a sim-
ple setup of an O(N)-symmetric scalar theory, I describe in this section the various ways of
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constructing the cutoff and how the results depend on them. By construction FRGE eq. ( 2.22)
contains the cutoff Rk, so the results obtained using it are expected to depend on the cutoff
Rk, i.e. depend on details of how one chooses to implement the cutoff. Scheme dependence is
nothing new in quantum field theory. It is usually taken as a sign that the quantity one is calcu-
lating is not directly mesurable. In the computations done using perturbative methods in QFT,
it has been observed that the beta functions generally depend on the way of the regularization
of loop integral and the renormalization.
Implementing the cutoff Rk in different ways leads to different quantitative results but it

is expected that qualitative properties of the renormalization group flow should remain same,
for example the existence of fixed point and the dimension of critical surface. It is due to these
reasons that in this section I will dicuss the different ways the cutoff can be contructed, thereby
discussing how the beta functions and fixed point differ in each of way of implementing the
cutoff [52].
The cutoff Rk are function of some differential operator ∆, which according to the form of

the Hessian Γ(2) can be the full Hessian itself or a part of it. In computations done so far the
cutoff Rk can be constructed in many different ways, which can be grouped in two classes. In
the first method of construction the cutoff contains either some or all couplings of the theory,
while in the second method of construction the cutoff does not contain any couplings at all and
are called “pure” cutoffs. The first class of cutoffs are further categorized in three types based
on way they are constructed using the Hessian. They are named as Type I, II and III cutoffs. the
type III cutoffs are also known as “spectrally adjusted” cutoffs. Lets assume that the effective
action Γk has the following derivative expansion:

Γk =
∑

i

giOi , (2.103)

where Oi are operators and gi are numerical parameters depending on k. The operatorsOi are
integrals of the form

Oi =
∫

ddx
√

gΩi, (2.104)

where Ωi are (possibly nonpolynomial) functions of the fields and their derivatives, respecting
all the symmetries that the theory is supposed to possess. In gauge theories,Ω i are constructed
with covariant derivatives and curvatures. The number of derivatives increases with i, but the
precise correspondence need not be spelled out here.
Some of the parameters appearing in the expansionmay be eliminated by field redefinitions.

This is the case, for example, for the wave function renormalization constants. Such parame-
ters are said to be “redundant” or “inessential” [51, 11]. We assume that the theory has been
parametrized in such a way that a certain subset of the gi is redundant, while the remaining
ones are “essential”.
The fields do not have any scale dependence, so that

k
dΓk

dk
=

∑

i

βiOi, (2.105)
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where βi(gj , k) = k dgi
dk are the beta functions. In general they depend on all the gi and also

explicitly on k. Note that we call “beta functions” the derivatives of the parameters appearing
in the action whether they are essential or not. One sometimes prefers to call “anomalous
dimensions” the (logarithmic) derivatives of irrelevant parameters such as the wave function
renormalization constants. We will not need to make this terminological distinction here. We
will call β (without subscript i) the “beta functional” on the r.h.s. of the FRGE

β =
∑

i

βiOi .

If the operatorΩi has dimensionαi,Oi has dimensionαi−d and gi has dimension di = d−αi.
One can now define dimensionless couplings g̃i and dimensionless operators Õi by gi = kdi g̃i

andOi = k−diÕi, so that eq. (2.103) can also be written as Γk =
∑

i g̃iÕi. The condition that has
to be satisfied by a FP is

k
dg̃i

dk
= 0 , (2.106)

for all essential couplings gi. We can rewrite this as follows. From the definition of g̃i we obtain
∂tgi = digi + kdi∂tg̃i. Then we can rewrite eq. (2.105) as

k
dΓk

dk
=

∑

i

dig̃iÕi +
∑

i

∂tg̃iÕi .

Then the FP equation can be written compactly as
(

−
∑

i

dig̃iÕi + β

)∣∣∣∣∣
essential

= 0 (2.107)

where the subscript “essential” means that the equation has to be projected on the subspace of
essential couplings. The individual equations eq. (2.106) can be obtained from the functional
equation by extracting the coefficient of the operator Õi. We will now compare the functional
form of this equation for two classes of cutoffs.
For definiteness we start by choosing a type III cutoff, defined as follows. The second vari-

ation of the action is a differential operator

∆(gi) =
δ2Γk

δφδφ
=

∑

i

gi
δ2Oi

δφδφ
. (2.108)

By this notation we emphasize that the operator depends on all the parameters g i. In the case
of gauge theories the operator ∆ is constructed with the covariant derivative ∇µ. We choose
the cutoff R to be a function of the full operator ∆: Rk = Rk(∆(gi)), where Rk is one of the
functions that were discussed in section III. Then the modified inverse propagator is

∆(gi) + Rk(∆(gi)) = Pk(∆(gi)) , (2.109)
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where Pk is defined as in eq. (2.3). This is a cutoff of “type III”, in the terminology of [31]. Since
the operator in the argument of the cutoff changes along the flow, this is called “spectrally
adjusted”.
The r.h.s. of the FRGE can now be written

β =
1
2
STr

(
∆(gi) + Rk(∆(gi))

)−1 (∂Rk(∆(gi))
∂t

+ R′
k(∆(gi))

∂∆
∂gi
βi

)
, (2.110)

where a prime indicates the derivative of the function with respect to its argument. In the
first term one derives only the explicit dependence of the cutoff on k and in the second the
dependence that comes from the flow of the gi. From here the beta functions βi can be obtained
in a two step procedure. First one has to extract from eq. (2.110) the coefficient of Oi. Formally
we can write

βi =
δβ

δOi

This is usually the most labor-intensive part of the calculation, but still it does not immediately
give the beta function, because the r.h.s. is itself a linear combination of the beta functions, of
the form

δβ

δOi
= Bi + Aijβj .

where Bi are the one loop beta functions and Aij are calculable coefficients. The beta functions
can be obtained by solving this linear system:

βi = (1 − A)−1
ij Bj .

If one is only interested in the location of the FP, one can avoid this step by the following trick
[33, 34]. Since at a FP gi = g̃i∗kdi , for some constants g̃i∗, we obtain an equivalent set of FP
equations if in the beta functional we replace βi by digi = dig̃ikdi . This modified beta functional
is

β̄ =
1
2
STr

(
∆(gi) + Rk(∆(gi))

)−1 (∂Rk(∆(gi))
∂t

+ R′
k(∆(gi))

∂∆
∂gi

dig̃ik
di

)
(2.111)

If we define
β̄i =

δβ̄

δOi

these expressions do not contain the β functions anymore, and so they can be plugged directly
in the FP equation. The FP equations obtained from the modified beta functions β̄i have the
same FP solutions as the ones obtained from the true beta functions βi. We observe that the
second term on the r.h.s. of eq. (2.111) is not just a function of ∆. In general it is a complicated
operator that will not commute with ∆ itself. We actually do not have the mathematical tools
to extract beta functions from such complicated traces involving functions of several noncom-
muting operators. However, calculability is not required here, so we can proceed formally. We
now simply assume that the FP equations determined in this way have a solution at g̃i = g̃i∗.
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The source of gi-dependence in the cutoff definition given above is the operator ∆. We can
turn the cutoff into a pure cutoff if we replace all the couplings appearing in ∆ by arbitrary
constants, multiplied by suitable powers of k to preserve the correct dimensionalities. The
cutoff is then Rk(∆(γikdi))). With this cutoff the r.h.s. of the FRGE reads

β =
1
2
STr

(
∆(gi) + Rk(∆(γik

di))
)−1

(
∂Rk(∆(γikdi))

∂t
+ R′

k(∆(γik
di))
∂∆
∂gi

diγik
di

)
(2.112)

From here one can extract beta functions

βi(gi, γi) =
δβ

δOi

that can be used to write FP equations. These FP equations depend parametrically on the
arbitrary numbers γi. Recalling that gi = g̃ikdi and comparing eq. (2.112) to eq. (2.111) we see
that the only difference lies in the replacement of g̃i by γi in certain functional dependences.
It is clear that since the FP equation for the spectrally adjusted cutoff has a zero when we

replace everywhere g̃i by the numbers g̃i∗, then the FP equation for the pure cutoff will also
have a zero when we replace all the γi and all the g̃i by g̃i∗. Therefore with the particular choice
of parameters γi = g̃i∗, the pure cutoff produces a FP in the same position as the spectrally
adjusted type III cutoff.
This result has been derived using what we call a “type III” cutoff, because the argument

is easier to make independently of the form of the action, but we believe that it holds more
generally, also for other cutoffs. To illustrate this consider a generalization of what was called
a “type I” cutoff in [31]. In a gauge theory the second variation defined in eq. (2.108) is a differ-
ential operator constructed with the covariant derivative∇µ. Let us assume that the truncation
of the theory is such that ∆ depends on ∇µ only through the combination −" = −∇µ∇µ. To
make this explicit let us write it as ∆(−", gi). A generalized type I cutoff can be defined by the
requirement that the modified inverse propagator has the same form as the original one except
for the replacement of −" by Pk(−"):

Rk(−", gi) = ∆(Pk(−"), gi) − ∆(−", gi) . (2.113)

The beta functional that one obtains with this cutoff has the form

β =
1
2
STr (∆(Pk(−"), gi))−1

(
∂∆
∂(−")

∂Pk(−")
∂t

+
∂

∂gi

(
∆(Pk(−"), gi) − ∆(−", gi)

)
βi

)

(2.114)
which upon use of the trick explained above yields equivalent FP equations as

β̄ =
1
2
STr (∆(Pk(−"), gi))−1

(
∂∆
∂(−")

∂Pk(−")
∂t

+
∂

∂gi

(
∆(Pk(−"), gi) − ∆(−", gi)

)
dig̃ik

di

)

(2.115)
Again we can define a pure cutoff of generalized type I by replacing gi by γikdi inRk

Rk(−", γik
di) = ∆(Pk(−"), γik

di) − ∆(−", γik
di) . (2.116)
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The beta functional that one obtains with this cutoff has the form

β =
1
2
STr

(
∆(Pk(−"), γik

di) + ∆(−", gi) − ∆(−", γkdi)
)−1

×
(
∂∆
∂(−")

∂Rk(−")
∂t

+
(
∂∆
∂gi

(Pk(−"), γik
di) − ∂∆

∂gi
(−", γik

di)
)

diγik
di

)
(2.117)

Again we see that the two beta functionals have the same form except for the replacement of
g̃i by γi in certain functional dependences; additional terms in the first factor cancel for γi = g̃i.
Therefore the argument given above shows that if we set γi = g̃i∗ the pure cutoff will have a FP
in the same position as the generalized type I cutoff.
The reason why this discussion is less general than the previous one is that this type of

cutoff could only be defined if the inverse propagator has a specific form. It may be possible to
generalize this argument, for example defining the cutoff by the rule

∇µ ,→
√

Pk(−")
−" ∇µ .

We will not pursue this further. The discussion of the type III cutoff is sufficient to make the
point in generality. Furthermore, the type III cutoff is “ideologically” at the opposite extreme
of a pure cutoff, being always fully dependent on all couplings. This is also supported by the
numerical results, which show that type III cutoffs yield fixed points at at the extreme end of
the range of variation [31]. So it is somewhat reassuring that one can reproduce at least the FP
position of a spectrally adjusted, type III cutoff by a pure cutoff.

2.5. Summary
In this chapter I showed how to derive the functional renormalization group equation in the
simple setting of a scalar system. Here I closely followed the methodology first introduced in
[19, 20]. This FRGE was constructed where it was assumed that the UV cutoff of the theory is
at infinity. Following that I have described the properties obeyed by the FRGE and the effective
average action. As the cutoff Rk enters the FRGE as a t-derivative, thus due to its required
properties it works as an UV-regulator thereby evading the necessity of introducing any reg-
ularization scheme. It was shown to be an one loop improved equation, whose r.h.s acts as
a beta-functional of the theory. The effective average action entering the FRGE was shown to
interpolate between the bare action in the UV limit and the usual effective action in the IR limit.
I then discussed the concept of theory space where the effective action is a point in theory

space. The basis of such a space is the field monomials obeying the symmetries of the theories,
while couplings act as co-ordinates in this space. In this notion, the FRGE is interpreted as a
vector field, whose integral curves were interpreted as RG trajectories, interpolating between
the bare action and the full effective action.
I then discussed the construction of FRGE in a theory with a UV cutoff. Here I followed

the steps given in [42]. This is important as in physical situations one has UV cutoff. The
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construction of this FRGE with UV cutoff is same as the one without UV cutoff except now
one does the FRGE trace over field modes with momenta only up to the UV cutoff, while in
the FRGE without UV cutoff one performs the trace over all the modes (the high momentum
modes are of course suppressed by the cutoff). I then discussed the difference that comes
up when the computations are done using the two methods. It was further shown that this
difference vanishes when the cutoff is chosen to be an optimized one [43].
As the theory space is an infinite one, thus in order to employ FRGE to practical computa-

tions, one needs approximation schemes. This constitute the discussion of section 2.1.5. The
two approximations that are commonly made are the one-loop approximation where one ig-
nores the running of couplings on the r.h.s of FRGE, while the second way of approximation is
by truncating the theory space. Sometimes both are employed at the same time i.e. considering
the one-loop flow of the couplings in the truncated theory space.
Then I introduced the concept of Asymptotic Safety, and obtained the properties that a the-

ory is required to have in order to be asymptotically safe. These were that the dimensionless
essential couplings parameters approach a nontrivial fixed point and the number of UV attrac-
tive directions at the FP be finite.
I then applied FRGE to a simple example of an O(N)-symmetric scalar field theory in a

local potential approximation consisting of a kinetic term and a generic potential. I show how
to compute the second variation of the action and using it how to construct the cutoffRk. Using
the simple optimized cutoff the functional RG trace was computed in closed form, from which
it the running of the potential is extracted by taking background of a constant scalar field. This
expression was then used to do a lot of things. First the beta functions of the couplings were
extracted by equating various powers of φ2. Then using the existence of Gaussian FP I proved
the properties obeyed by the various nonzero entries of the stability matrix. Wilson-Fisher FP
was also obtained with the critical exponents showing that it has only one attractive direction
at the FP.
Then in the final section 2.4 I discuss the two ways in which cutoffs are known to be con-

structed. One in which either some or all couplings are present are known as spectrally ad-
justed cutoff, while the other which does not contain any couplings at all are called pure cutoff.
Discussion showed how the results computed using the two schemes differ.



Chapter 3

FRGE applied to Gravity

As mentioned in the Introduction, most of the progress towards asymptotic safety of the last
ten years has come from applying functional renormalization groupmethods to gravity. In this
chapter I will show how to construct the FRGE for gravity. After deriving the functional RG
equation, I will apply it to the simplest truncation in the derivative expansion which will con-
tain only two derivatives of the metric. This truncation is the Einstein-Hilbert (EH) truncation.
By making use of FRGE I will derive the beta functions of couplings, look for fixed points and
find the critical exponents at the fixed point. This will be done in different cutoff types keeping
the spacetime dimension arbitrary, specializing to four dimensions wherever necessary.

3.1. Constructing the FRGE for gravity

3.1.1. Problems encountered in construction

I showed in the previous chapter that the FRGE of an effective action does not depend on the
bare action S. There I discussed that in order to define a theory space one has to specify on
which type of fields the functional Γ is supposed to depend, and what their symmetries are.
Furthermore, in the theory space one choose coordinates g i by writing the effective action Γ as,

Γ =
∑

i

gi Oi . (3.1)

This is the only input data needed for finding the renormalization group flow. Given a theory
space, the form of FRGE and, as a result, the vector field β are completely fixed.
In the case of quantization of pure gravity, the theory space consists, by definition, of func-

tionals Γ depending on a symmetric tensorfield, themetric, in a diffeomorphism invariant way.
Unfortunately it is not possible to straightforwardly apply the constructions of the previous
chapter to this theory space. Diffeomorphism invariance leads to two types of complications
one has to deal with [24].

43
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The first complication is the need to gauge fix the functional integral. This problem already
occurs during the functional integral quantization of any gauge or gravity theories, and so
is quite a familiar one. Furthermore, fixing the gauge does not leave the effective action Γ
constructed from it invariant, only the physical quantities constructed from Γ, for example
S-matrix elements are gauge invariant.
The second problem is related to the fact that in gauge theory a “coarse graining” based on

a naive Fourier decomposition of the gauge field is not gauge covariant, and hence not phys-
ical. In a non-gauge theory one decomposes the field in the eigenfunctions of the (positive)
operator −∂2 and the coarse graining is achieved by declaring its eigenmodes long or short
wavelength depending on whether the corresponding eigenvalue p2 is smaller or larger than a
given k2. In a gauge theory, the best that can be done in incorporating a similar procedure is
to decompose the field in to the eigenfunctions of the negative of covariant Laplacian (which is
positive) or a similar operator, and then organize the modes based on the size of the eigenval-
ues. Although this approach is gauge covariant but it sacrifices to some extent the intuition of
Fourier coarse graining in terms of slow and fast mode. Analogous remarks apply to theories
of gravity covariant under general coordinate transformations.
The key idea which led to a solution of both problems was the use of the background field

method. In fact, it is well known [53, 54] that the background gauge fixing method leads to
an effective action which depends on its arguments in a gauge invariant way. As it turned out
[23, 55] this technique also lends itself for implementing a covariant IR cutoff, and it is at the
core of the effective average action for Yang-Mills theories [23, 55, 56] and for gravity [24].

3.1.2. Method of Construction
In this section I will introduce the effective average action for Euclidean quantum gravity in
d-dimensions and will derive the flow equation governing its scale dependence.
Here I will closely follow the algorithm prescribed by Reuter [24]. The starting point of the

computation is the diffeomorphism invariant Euclidean path-integral,

Z =
∫

Dγµν exp(−S[γµν ]) , (3.2)

where S[γµν ] is the bare action for the gravity and γµν is the quantummetric. The path-integral
is invariant under the general co-ordinate transformation of γµν ,

δγµν = LV γµν = ∇µVν + ∇νVµ , (3.3)

where LV denotes the Lie-derivative with respect to the vector field V µ and∇µ is the covariant
derivative for the metric γµν . We will employ the background gauge fixing techniques. This
means that we break the field γµν as follows,

γµν = ḡµν + hµν . (3.4)

Here ḡµν is the fixed background metric, and hµν is the fluctuation, which is not supposed to
be small. This decomposition allows in the functional integral to replace the measure over γµν
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by a measure over hµν . Due to fixed background the gauge transformation acts only on the
fluctuation field hµν

δhµν = LV γµν = LV (ḡµν + hµν) , δḡµν = 0 . (3.5)

Due to background gauge invariance, the path-integral needs to be gauge fixed. Faddeev-
Popov procedure is used to do this [53]. The gauge fixing action so obtained is given by,

SGF [ḡ, h] =
A

2α

∫
ddx

√
ḡḡµνFµFν , (3.6)

where α is the gauge parameter, A is function of couplings, and Fµ = 0 describes the gauge
fixing condition. This procedure of gauge fixing introduces Faddeev-Popov ghost C̄µ and Cµ,
whose action is given by,

Sgh[h, C̄, C; ḡ] = −
∫

ddx
√

ḡC̄µḡµν ∂Fν
hρσ

LC(ḡρσ + hρσ) . (3.7)

This procedure works in general for all arbitrary gauge fixing, but it is convenient to use Fµ

which is linear in quantum field hµν .

Fµ = Fµ
αβhαβ , (3.8)

where Fµ
αβ is a differential operator. It is constructed from the background metric ḡµν . It is

important to construct it from a background metric as otherwise the effective action obtained
from it will not be diffeomorphism invariant. The most common gauge is given by,

Fµ =
(
∇̄µhµν −

β + 1
d

∇̄νh

)
,

=
(
δσµ ḡργ ∇̄γ −

β + 1
d

ḡρσ∇̄µ

)
hρσ , (3.9)

where α and β are the gauge parameters. For β = d/2−1 and in flat space, the condition Fµ = 0
reduces to the usual harmonic gauge condition ∂µhµν = 1

2∂νh. This gauge fixing would give
the following ghost action,

Sgh[h, C̄, C; ḡ] = −
∫

ddx
√

ḡC̄µ Mµ
ν Cν , (3.10)

whereMµ
ν is given by,

Mµ
ν =

[
ḡµρḡσλ∇̄λ(γσν∇ρ + γρν∇σ) −

2(β + 1)
d

ḡµλḡρσ∇̄λγσν∇ρ

]
. (3.11)

For every choice of background type gauge fixing Fµ, the ghost action is gauge invariant as the
ghost field transforms as:

δCµ = LV Cµ , δC̄µ = LV C̄µ . (3.12)
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With the gauge-fixing and ghost action one can write the connected Green functional at scale
k by introducing the cutoff action ∆Sk in the same way as was done in the previous chapter.
This is given as,

exp {−Wk [tµν , σµ, σ̄µ; ḡµν ]} =
∫

DhµνDC̄µDCν exp
[
−S(ḡ + h) − ∆Sk[h, C̄, C; ḡ]

−SGF [h; ḡ] − Sgh[h, C̄, C; ḡ] − Ssources
]

,

Ssources =
∫

ddx
√

ḡ
[
tµν hµν + σµ C̄µ + σ̄µ Cµ

]
. (3.13)

The action for SGF [h; ḡ] and Sgh[h, C̄, C; ḡ] are given by eq. (3.6) and (3.10) respectively. The
action for the cutoff action is defined in the same way as it was defined in previous chapter,
to be quadratic in fields. This is useful for obtaining a tractable evaolution equation later. For
gravity it has the following form,

∆Sk[h, C̄, C; ḡ] =
1
2

∫
ddx

√
ḡhµν Rgrav

k [ḡ]µνρσhρσ −
∫

ddx
√

ḡC̄µRgh
k [ḡ]µνCν , (3.14)

where the cutoffs Rgrav
k and Rgh

k are constructed from suitable differential operators using the
background metric. This makes it invariant under background gauge transformation. The
cutoffs have the properties defined in previous chapter. Given the functionalWk, we introduce
the k-dependent classical fields

h̄µν =
1√
ḡ

δWk

δtµν
, c̄µ =

1√
ḡ

δWk

δσµ
, cµ =

1√
ḡ

δWk

δσ̄µ
. (3.15)

Using the classical fields we define the Legendre transform of theWk. This is given by,

Γ̃k[h̄, c̄, c; ḡ] = Wk[t, σ, σ̄; ḡ] −
∫

ddx
√

ḡ
[
tµν h̄µν + σµ c̄µ + σ̄µ cµ

]
. (3.16)

Then the effective average action for gravity is obtained by subtracting the cutoff action from
the Γ̃k as was done in previous chapter,

Γ′
k[h̄, c̄, c; ḡ] = Γ̃k[h̄, c̄, c; ḡ] − ∆Sk[h, c̄, c; ḡ] . (3.17)

At this point it is useful to introduce the metric,

gµν = 〈γµν〉 = ḡµν + h̄µν . (3.18)

Using this one can write the Γk as a functional of gµν rather than h̄µν as follows,

Γk[gµν , ḡµν , c̄, c] := Γ′
k[h̄ = g − ḡ, ḡ, c̄, c] . (3.19)
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The functional Γk obeys the following flow equation,

∂tΓ′
k[h̄, ḡ, c, c̄] =

1
2
Tr

[(
Γ′(2)

k + Rk

)−1

h̄h̄
· (∂tRk)h̄h̄

]
+

1
2
Tr

[(
Γ′(2)

k + Rk

)−1

cc̄
· (∂tRk)cc̄

]

−1
2
Tr

[(
Γ′(2)

k + Rk

)−1

c̄c
· (∂tRk)c̄c

]
, (3.20)

where the Hessian Γ′(2)
k for graviton and ghost is given by,
[(

Γ(′2)
k

)

h̄h̄

]µναβ
=

1√
ḡ

δ

δh̄µν

1√
ḡ

δ

δh̄αβ
Γ′

k[h̄, ḡ, c, c̄] ,

[(
Γ′(2)

k

)

c̄c

]ν
µ

=
1√
ḡ

δ

δcµ

1√
ḡ

δ

δc̄ν
Γ′

k[h̄, ḡ, c, c̄] . (3.21)

This effective average action for gravity Γk has the following properties:
(1) The functional Γk is invariant under general co-ordinate transformation, where all argu-
ments transform as tensors of corresponding rank:

Γk[Φ + LV Φ] = Γk[Φ] , Φ = {gµν , ḡµν , c̄µ, cµ} . (3.22)

Note that in this transformation even the background metric also transforms as an ordinary
tensor field. This is contrary to the “quantum gauge transformation” given in eq. (3.5) where
the background metric was fixed. Equation (3.22) is a consequence of

Wk[J + LV J ] = Wk[J ] , J = {tµν , σµ, σ̄µ, ḡµν} . (3.23)

(2) Since the cutoffRk vanishes for k = 0, the limit k → 0 of Γk[gµν , ḡµν , c̄, c] gives the standard
effective action functional which still depends on twometrics. The effective action obtained by
setting ghost to zero is,

Γ′[h̄, ḡ] = lim
k→0

Γ′
k[h̄, ḡ, c̄ = 0, c = 0] (3.24)

This effective action is the generating functional of 1PI “Off-shell” Green functions. The Green
functions depends on the background metric ḡµν . The “ordinary” effective action Γ[gµν ] with
one metric argument is obtained from this functional by setting gµν = ḡµν :

Γ[g] = lim
k→0

Γk[g, ḡ = g, c̄ = 0, c = 0] = lim
k→0

Γ′
k[h̄ = 0, c̄ = 0, c = 0; g = ḡ] . (3.25)

This functional is the generating functional of the 1PI “on-shell” Green function for the gravi-
tons. They do not depend on the background metric. In this context “on-shell” means that the
metric satisfies δΓ[g]/δgµν = 0.
The k-dependent counterpart of eq. (3.25) is given by,

Γ̄k[gµν ] ≡ Γk[gµν , gµν , 0, 0] . (3.26)
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Due to eq. (3.22) , the functionals Γ[gµν ] and Γ̄k[gµν ] are invariant under general co-ordinate
transformation δgµν = LV gµν . However there is a price to be paid that the functional Γ̄k[gµν ] no
longer satisfies the functional RG equation (3.20), because it contains insufficient information.
The actual RG evolution has to be performed at the level of functional Γk[h̄, ḡ, c, c̄]. Only after
the evolution one may set the ḡ = g, c = 0 and c̄ = 0.
(3) The functional RG trace in eq. (3.20) does not require any additional UV regularization.
This is due to the properties that the cutoff Rk satisfies, and the way it enters the functional
RG equation as a t-derivative. Due to this the trace gets contributions only from modes with
eigenvalues close to k.
(4) The effective average action for gravity satisfies the following integro-differential equation,

exp{−Γk[h̄, ḡ, c, c̄]} =
∫

DhDCDC̄ exp

[

−S̃[h,C, C̄ ; ḡ] −
∫

ddx

{
(hµν − h̄µν)

δΓk

δh̄µν

+(Cµ − cµ)
δΓk

δcµ
+ (C̄µ − c̄µ)

δΓk

δc̄µ

}]

· exp{−∆Sk[h − h̄, C − c, C̄ − c̄; ḡ]} , (3.27)

where,
S̃ = S + SGF + Sgh , (3.28)

is expressed in terms of the “microscopic” field (h, C and C̄). Eq. (3.27) can be obtained by
inserting the definition of Γk in eq. (3.13) and using,

Γ̃k

δh̄µν
=

√
ḡ tµν ,

Γ̃k

δcµ
= −

√
ḡ σ̄µ ,

Γ̃k

δc̄µ
= −

√
ḡ σµ . (3.29)

When one takes the limit k → ∞, then the last term in eq. (3.27) becomes a delta function i.e

exp{−∆Sk} ∼ δ[h − h̄] δ[C − c] δ[C̄ − c̄] . (3.30)

As a consequence of which the EAA for gravity in UV limit is,

Γ′
k→∞[h̄, c, c̄; ḡ] = S[ḡ + h̄] + SGF [h̄; ḡ] + Sgh[h̄, c, c̄; ḡ] . (3.31)

The “initial value” Γ′
k→∞ includes the gauge fixing and ghost actions. At the level of functional

Γ̄k[g], eq. (3.31) boils down to Γ̄k→∞ = S[g]. However as the second variation Γ′(2)
k involves

derivatives with respect to h̄µν (or equivalently gµν ) at fixed ḡµν , it is clear that the evolution
can be formulated entirely in terms of Γ̄k alone.

3.2. Truncated Flow Equation
Solving the FRGE eq. (3.20) subject to the initial condition eq. (3.31) is equivalent to (and in
practice as difficult as) calculating the original functional integral over γµν . Both the task are
severely difficult and complex. Thus it is important to devise efficient approximation methods
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to tackle the problem. The truncation of theory space is the one which makes maximum use of
the FRGE reformulation of the quantum field theory problem at hand.
As for the flow on the theory space {Γ[g, ḡ, c, c̄]}, one way of simplifying things but still

keeping the truncation very general is by neglecting the flow of the ghost bymaking the ansatz:

Γk[g, ḡ, c, c̄] = Γ̄k[g] + Γ̂k[g, ḡ] + SGF [g − ḡ; ḡ] + Sgh[g − ḡ, c, c̄; ḡ] , (3.32)

where we extracted the classical SGF and Sgh from Γk. The remaining functional depends on
both gµν and ḡµν . It is further decomposed as Γ̄k + Γ̂k where Γ̄k is defined as in eq. (3.26) and
Γ̂k contains the deviations for ḡ 2= g. Hence, by definition, Γ̂k[g, g] = 0, and Γ̂k contains in
particular quantum corrections to the gauge fixing term which vanishes for ḡ = g, too. This
ansatz satisfies the initial condition eq. (3.31) if

Γ̄k→∞ = S and Γ̂k→∞ = 0 . (3.33)

Inserting eq. (3.32) into the exact FRGE eq. (3.20) one obtains an evolution equation on the
truncated space {Γ[g, ḡ]}:

∂tΓk[g, ḡ] =
1
2
Tr

[(
Γ(2)

k [g, ḡ] + Rgrav
k [ḡ]

)−1
∂tRgrav

k [ḡ]
]

−Tr
[(

S(2)
gh [g, ḡ] + Rgh

k [ḡ]
)−1

∂tRgh
k [ḡ]

]
, (3.34)

where Γ(2)
k [g, ḡ] and S(2)

gh [g, ḡ] are given by,

(
Γ(2)

k [g, ḡ]
)µναβ

=
1√
ḡ

δ

δh̄µν

1√
ḡ

δ

δh̄αβ
Γk[g, ḡ]

∣∣∣∣
g=ḡ

,

(
S(2)

gh [g, ḡ]
)µ

ν =
1√
ḡ

δ

δcν
1√
ḡ

δ

δc̄µ
S[g, ḡ]

∣∣∣∣
g=ḡ

. (3.35)

The eq. (3.34) is the one which is used in practical computations involving truncations. It
evolves the functional

Γk[g, ḡ] ≡ Γ̄k[g] + SGF [g − ḡ; ḡ] + Γ̂k[g, ḡ] . (3.36)

The truncation ansatz given in eq. (3.32) is still too general for the praticial computations to
be easily possible. The best way to simplify the computation is to do the derivative expansion
of Γ̄k[g] and consider terms up to some finite order. Under this strategy the first truncation
that was considered was the Einstein-Hilbert action with a cosmological constant. In the next
section I will describe how the FRGE was used to obtain the beta functions of the couplings in
this truncation.



50 CHAPTER 3. FRGE APPLIED TO GRAVITY

3.3. Einstein-Hilbert Truncation
In the Einstein-Hilbert truncation, the theory is parametrized by two couplings: cosmological
constant Λ and Newtons’ constant G = 1/16πZ . The functional Γ̄[g] consists of two operators∫

ddx
√

g and
∫

ddx
√

gR, and Γk[g, ḡ] is given by,

Γk[g, ḡ] =
∫

ddx
√

g (2ΛZ − Z R(g)) + SGF + Γ̂k[g, ḡ] , (3.37)

where SGF is the gauge fixing action given by,

SGF (ḡ, h) =
Z

2α

∫
ddx

√
ḡ

(
∇ρhρµ − 1 + β

d
∇µh

)(
∇σh

σµ − 1 + β
d

∇µh

)
, (3.38)

with α and β as gauge parameters. To extract the running of couplings from the FRGE one
plugs the eq. (3.37) in to eq. (3.34) and sets g = ḡ. Setting of g = ḡ implies h̄ = 0, which means
that the gauge fixing term and Γ̂k[g, ḡ] drops out from the LHS of the FRGE. By expanding the
functional RG trace to required order and comparing coefficients of respective operators gives
the running of respective coupling.
This is done by first expanding to second order the action Γ̄k[g] around the background ḡ,

then adding to it the gauge fixing action SGF and obtaining the Hessian for the gravitational
field. From the Hessian the cutoffRk is constructed and the information is plugged in FRGE to
obtain the flow.
In this section I will fix the gauge parameters, α = 1 and β = d/2 − 1 (de-Donder gauge). I

will describe two procedures of implementing the cutoff and computing the flow. Then I will
compare the results obtained from the two procedures.
The inverse propagator of hµν , including the gauge fixing term, can be written in the form

1
2

∫
ddx

√
ghµνΓ(2)µνρσ

k hρσ

containing the minimal operator:

Γ(2)µν
k ρσ = Z

[
Kµν
ρσ (−" − 2Λ) + Uµν

ρσ

]
, (3.39)

where " = ∇µ∇µ and

Kµν
ρσ =

1
2

(
δµνρσ − d

2
Pµν
ρσ

)
; δµνρσ =

1
2
(
δµρ δ

ν
σ + δµσδ

ν
ρ

)
; Pµν

ρσ =
1
d
gµνgρσ ;

Uµν
ρσ = R Kµν

ρσ +
1
2

(gµνRρσ + Rµνgρσ) − δ(µ(ρRν)
σ) − R(µ

(ρ
ν)
σ) . (3.40)

In the following I will sometimes suppress indices for notational clarity; I will use boldface
symbols to indicate linear operators on the space of symmetric tensors. For example, the objects
defined above will be denoted K, 1, P, U. Note that P and 1 − P are projectors onto the
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trace and trace-free parts in the space of symmetric tensors: hµν = h(TF )
µν + h(T )

µν where h(T )
µν =

P ρσ
µν hρσ = 1

dgµνh. Using that K = 1
2

(
(1 − P) + 2−d

2 P
)
, if d 2= 2 eq. (3.39) can be rewritten in

either of the following forms:

Γ(2)
k = Z K(−" − 2Λ1 + W)

=
Z

2

[
(1− P) (−" − 2Λ1 + 2U) − d − 2

2
P

(
−" − 2Λ1 − 4

d − 2
U
)]

(3.41)

where I have defined

W µν
ρσ = 2Uµν

ρσ − (d − 4)
2(d − 2)

(Rρσg
µν + gρσR

µν − Rgρσg
µν) .

Note that the overall sign of the second term in the second line of (3.41) is negative when d > 2.
This is the famous problem of the unboundedness of the Euclidean Einstein–Hilbert action. I
will show shortly how this is dealt with in the FRGE. Later on, I will need the traces:

tr1 =
d(d + 1)

2
; trP = 1 ; tr (1− P) =

d2 + d − 2
2

; trW =
d(d − 1)

2
R ;

trW2 = 3RµνρσR
µνρσ +

d2 − 8d + 4
d − 2

RµνR
µν +

d3 − 5d2 + 8d + 4
2(d − 2)

R2 . (3.42)

The ghost action is:
Sghost = −

∫ √
g C̄µ (−"δµν − Rµ

ν)Cν . (3.43)

On the d-dimensional sphere the tensorU becomes,

U =
1
2

[
(1− P)

d2 − 3d + 4
d(d − 1)

R − P
d − 2

2
d − 4

d
R

]
.

Then, using the second line of (3.41), I have

Γ(2)
k =

Z

2

[
(1 − P)

(
−" − 2Λ +

d2 − 3d + 4
d (d − 1)

R

)
− d − 2

2
P

(
−" − 2Λ +

d − 4
d

R

)]
. (3.44)

Now before I go on with the computations, I will give a short introduction t various cutoff
types available and how the function RG trace is performed in each one of them.

3.3.1. Cutoff types and FRGE trace
In this section I will illustrate the method that is used to compute the trace in the r.h.s. of (3.34)
in a gravitational setting and to evaluate the beta functions of the gravitational couplings. Quite
generally, we will consider the contribution of fields whose inverse propagator Γ(2) is a differ-
ential operator of the form Γ(2) = −" + E (" = ∇2), where ∇ is a covariant derivative, both
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with respect to the gravitational field and possibly also with respect to other gauge connec-
tions coupled to the internal degrees of freedom of the field, and E is a linear map acting on
the quantum field. In general, E could contain mass terms or terms linear in curvature. For
example, in the case of a nonminimally coupled scalar, E = ξR, where ξ is a coupling. A priori,
nothing will be assumed about the gravitational action and also the spacetime dimension d can
be left arbitrary at this stage.
In order to write the FRGEwe have to define the cutoff. For the operator∆ to be used in the

definition of (2.7), several possible choices suggest themselves. Let us splitE = E1 +E2, where
E1 does not contain any couplings and E2 consists only of terms containing the couplings. We
call a cutoff of type I, ifRk is a function of the “bare Laplacian”∆ = −", of type II if it is a function
of ∆ = −" + E1 and of type III if it is a function of the full kinetic operator ∆ = −" + E. The
substantial difference between the first two types and the third is that in the latter case, due to
the running of the couplings, the spectrum changes along the flow. For this reason these cutoffs
are said to be “spectrally adjusted” [57]. 1
Let us now restrict ourselves to the case when E2 = 0, i.e. the kinetic operator does not de-

pend on the couplings; then there is only a choice between cutoffs of type I and II. The deriva-
tion of the beta functions is technically simpler with a type II cutoff. In this case we choose a
real function Rk with the properties listed before and define a modified inverse propagator

Pk(∆) = ∆ + Rk(∆) . (3.45)

If the operator E does not contain couplings, using (A.10) the trace in the r.h.s. of the FRGE
reduces simply to:

Tr
∂tRk(∆)
Pk(∆)

=
1

(4π)d/2

∞∑

i=0

Q d
2−i

(
∂tRk

Pk

)
B2i(∆) (3.46)

where B2i(∆) are the heat kernel coefficients of the operator ∆ and the Q-functionals, defined
in (A.14,A.15) are the analogs of momentum integrals in this curved spacetime setting. We
have written ∂tRk to denote the derivative with respect to the explicit dependence of Rk on k;
when the argument of Rk does not contain couplings this coincides with the total derivative
d
dtRk.
With a type I cutoff we use the same profile function Rk but now with −" as its argument.

This implies the replacement of the inverse propagator∆ by

∆ + Rk(−") = Pk(−") + E . (3.47)

Therefore the r.h.s. of the ERGE will now contain the trace Tr ∂tRk(−∇2)
Pk(−∇2)+E . Since E is linear

in curvature, in the limit when the components of the curvature tensor are uniformly much

1In (2.7) it was assumed for simplicity that the operator ∆ appearing in the argument of the cutoff function is
also the operator whose eigenfunctions are used as a basis in the evaluation of the functional trace. It is worth
stressing that this need not be the case, as discussed in Appendix A.1.
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smaller than k2, we can expand

∂tRk

Pk + E
=

∞∑

-=0

(−1)-E- ∂tRk

P -+1
k

.

Each one of the terms on the r.h.s. can then be evaluated in a way analogous to (A.10), so in
this case we get a double series:

Tr
∂tRk(−")

Pk(−") + E
=

1
(4π)d/2

∞∑

i=0

∞∑

-=0

Q d
2−i

(
∂tRk

P -+1
k

)∫
dx

√
g(−1)-trE-b2i(−") . (3.48)

In order to extract the beta functions of the gravitational couplings one has to collect termswith
the same monomials in curvature.
At this point it is interesting to consider the scheme–independent part of the trace. In gen-

eral, on dimensional grounds, the functionals Qn

(
∂tRk
P m

k

)
appearing in (3.46) and (3.48) will be

equal to k2(n−m+1) times a number depending on the profile function. As discussed in Ap-
pendix A, the integrals with m = n + 1 are independent of the shape of Rk. Thus, in even-
dimensional spacetimes with a cutoff of type II, and using (A.19), the coefficient of the term in
the sum (3.46) with i = d

2 isQ0

(
∂tRk
Pk

)
Bd(∆) = 2Bd(∆). On the other handwith a type I cutoff,

using (A.18), (A.19) and (A.5) the terms with 0 = d
2 − i add up to

d/2∑

-=0

Q-

(
∂tRk

P -+1
k

)∫
dx

√
g(−1)-trE-b2i(−")

= 2
∫

dx
√

gtr

[

bd(−") − Ebd−2(−") + . . . +
(−1)d/2

(d/2)!
Ed/2b0(−")

]

= 2Bd(−" + E)

Therefore, in addition to being independent of the shape of the cutoff function, these coeffi-
cients are also the same using type I or type II cutoffs.
Now I will apply these cutoff schemes to the Einstein-Hilbert gravity case and perform the

functional RG trace according to various schemes.

3.3.2. Cutoff of type Ia
This is the scheme that was used originally in [24]. It is defined by the cutoff term

∆Sk[hµν ] =
1
2

∫
dx

√
g hµνRk(−")µνρσ hρσ −

∫
dx

√
g C̄µR(gh)

k (−")µνCν , (3.49)

where

Rk(−") = ZKRk(−")

R(gh)
k (−")µν = δµνRk(−") . (3.50)
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for gravitons and ghosts respectively. Defining the anomalous dimension by

η =
∂tZ

Z
, (3.51)

I then have
∂tRk = ZK [∂tRk(−") + ηRk(−")] . (3.52)

The calculation in [24] proceeded as follows. The background metric is chosen to be that of
Euclidean de Sitter space. The modified inverse propagator is obtained from (3.44) just replac-
ing −" by Pk(−"), where Pk(−") = −" + Rk(−"). Using the properties of the projectors, its
inversion is trivial:

(
Γ(2)

k + Rk

)−1
=

2
Z

[
(1− P)

1
Pk − 2Λ + d2−3d+4

d(d−1) R
− 2

d − 2
P

1
Pk − 2Λ + d−4

d R

]
(3.53)

Decomposing in the same way the term ∂tRk, multiplying and tracing over spacetime indices
one obtains

∂tΓk =
1
2
Tr(1 − P)

∂tRk + ηRk

Pk − 2Λ + d2−3d+4
d(d−1) R

+
1
2
TrP ∂tRk + ηRk

Pk − 2Λ + d−4
d R

− Trδµν
∂tRk

Pk − R
d

.

One can now expand to first order in R, use the traces (3.42) and formula (A.10) to obtain:

∂tΓk =
1

(4π)d/2

∫
ddx

√
g

{
d (d + 1)

4
Q d

2

(
∂tRk + ηRk

Pk − 2Λ

)
− dQ d

2

(
∂tRk

Pk

)

+
[
d (d + 1)

24
Q d

2−1

(
∂tRk + ηRk

Pk − 2Λ

)
− d

6
Q d

2−1

(
∂tRk

Pk

)

− d (d − 1)
4

Q d
2

(
∂tRk + ηRk

(Pk − 2Λ)2

)
− Q d

2

(
∂tRk

P 2
k

)]
R + O(R2)

}
. (3.54)

This derivation highlights two noteworthy facts. The first is that the negative sign of the kinetic
term for the trace part of h is immaterial. With the chosen form for the cutoff, any prefactor
multiplying the kinetic operator in the inverse propagator cancels out between the two factors
in the r.h.s. of the FRGE. The second fact, which I will exploit in the following, is that the
singularity occurring in the kinetic operator for the trace part in d = 2 (see equation (3.41)) is
actually made harmless by a hidden factor d − 2 occurring in U. So, the final result (3.54) is
perfectly well defined also in two dimensions.
The computation can be done also by not choosing any particular background. This is

achieved by not decomposing the field hµν into tracefree and trace parts and using the form of
the inverse propagtor given in the first line of (3.41). Then, the modified inverse propagator for
gravitons is

Γ(2)
k + Rk = ZK (Pk(−") − 2Λ1 + W) . (3.55)
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On a general background it is impossible to invert Γ(2)
k + Rk exactly, but remembering thatW

is linear in curvature it can be expanded to first order:
(
Γ(2)

k + Rk

)−1
=

K−1

Z
· 1
Pk − 2Λ

[
1 − 1

Pk − 2Λ
W + O(R2)

]

(
Γ(2)

CC̄
µ
ν + R(gh)

k
µ
ν

)−1
=

1
Pk

[
δµν +

1
Pk

Rµ
ν + O(R2)

]
. (3.56)

Then the FRGE becomes, up to terms of higher order in curvature,

∂tΓk =
1
2
Tr∂tRk + ηRk

Pk − 2Λ

[
1 − 1

Pk − 2Λ
W

]
− Tr∂tRk

Pk

[
δµν +

1
Pk

Rµ
ν

]
.

From here, using (A.10) one arrives again at (3.54). This alternative derivation explicitly high-
lights the background independence of the results.
One can now extract the beta functions. The first line of (3.54) gives the beta function of

2ZΛ, while the other two lines give the beta function of −Z . Note the appearance of the beta
function of Z in the η terms on the r.h.s. In a perturbative one–loop calculation such terms
would be absent; they are a result of the “renormalization group improvement” implicit in the
ERGE. The beta functions can be written in the form

∂t

(
2Λ

16πG

)
=

kd

16π
(A1 + A2η)

−∂t

(
1

16πG

)
=

kd−2

16π
(B1 + B2η) , (3.57)

where A1, A2, B1 and B2 are dimensionless functions of Λ, k and of d which, by dimensional
analysis, can also be written as functions of Λ̃ = Λk−2 and d. One can solve these equations for
∂tΛ̃ and ∂tG̃, obtaining

∂tΛ̃ = −2Λ̃ + G̃
A1 + 2B1Λ̃ + G̃(A1B2 − A2B1)

2(1 + B2G̃)
,

∂tG̃ = (d − 2)G̃ +
B1G̃2

1 + B2G̃
. (3.58)

The corresponding perturbative one loop beta functions are obtained by neglecting the η terms
in (3.57), i.e. setting A2 = B2 = 0, and expanding A1 and B1 in Λ̃. The leading term is

∂tΛ̃ = −2Λ̃ +
1
2
A1(0)G̃ + B1(0)G̃Λ̃ ,

∂tG̃ = (d − 2)G̃ + B1(0)G̃2 , (3.59)

whereA1 andB1 are evaluated at Λ̃ = 0. Wewill refer to it as the “perturbative Einstein–Hilbert
flow”.
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The explicit form of the coefficients appearing in (3.57), with the optimized cutoff [43], is

A1 =
16π (d − 3 + 8 Λ̃)

(4π)
d
2 Γ(d

2 ) (1 − 2 Λ̃)

A2 =
16π (d + 1)

(4π)
d
2 (d + 2) Γ(d

2 ) (1 − 2 Λ̃)

B1 =
−4π(−d3 + 15d2 − 12d + 48 + (2d3 − 14d2 − 192)Λ̃ + (16d2 + 192)Λ̃2)

3(4π)
d
2 d Γ(d

2 ) (1 − 2 Λ̃)2

B2 =
4π (d2 − 9 d + 14 − 2 (d + 1) (d + 2) Λ̃)

3 (4π)
d
2 (d + 2) Γ(d

2 ) (1 − 2 Λ̃)2
.

A similar form of the beta functions had been given in [28] in another gauge. For the sake of
clarity I write here the beta functions in four dimensions:

βΛ̃ = −2Λ̃ +
G̃

6π
3 − 4Λ̃ − 12Λ̃2 − 56Λ̃3 + 107−20Λ̃

12π G̃

(1 − 2Λ̃)2 − 1+10Λ̃
12π G̃

βG̃ = 2G̃ − G̃2

3π
11 − 18Λ̃ + 28Λ̃2

(1 − 2Λ̃)2 − 1+10Λ̃
12π G̃

. (3.60)

Note the nontrivial denominators, which in a series expansion could be seen as re-summations
of infinitely many terms of perturbation theory. They are the result of the “RG improvement”
in the FRGE.

3.3.3. Cutoff of type Ib
This type of cutoff was introduced in [25]. The fluctuation hµν and the ghosts are decomposed
into their different spin components according to

hµν = hT
µν + ∇µξν + ∇νξµ + ∇µ∇νσ −

1
d
gµν"σ +

1
d
gµνh. (3.61)

and
Cµ = cT µ + ∇µc , C̄µ = c̄T

µ + ∇µc̄ , (3.62)

where hT
µν is transverse and traceless, ξ is a transverse vector, σ and h are scalars, cT and c̄T are

transverse vectors, and c and c̄ are scalars. These fields are subject to the following differential
constraints:

hTµ
µ = 0 ; ∇νhT

µν = 0 ; ∇νξν = 0 ;∇µc̄T
µ = 0 ;∇µcTµ = 0 .

Using this decomposition can be advantageous in some cases because it can lead to a partial
diagonalization of the kinetic operator and it allows an exact inversion. This is the case for ex-
ample when the background is a maximally symmetric metric. In this section we will therefore
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assume that the background is a sphere; this is enough to extract exactly and unambiguously
the beta functions of the cosmological constant and Newton’s constant. Then the FRGE (3.34)
can be written down for arbitrary gauge α and β. We refer to [25] for more details of the
calculation. In the gauge α = 1, β = d/2 − 1 (de-Donder gauge) and without making any
approximation, the inverse propagators of the individual components are

Γ(2)
hT

µνhT
αβ

=
Z

2

[
−" +

d2 − 3d + 4
d(d − 1)

R − 2Λ
]
δµν,αβ

Γ(2)
ξµξν

= Z

(
−" − R

d

)[
−" +

d − 3
d

R − 2Λ
]

gµν

Γ(2)
hh = −Z

d − 2
4d

[
−" +

d − 4
d

R − 2Λ
]

Γ(2)
σσ = Z

d − 1
2d

(−")
(
−" − R

d − 1

)[
−" +

d − 4
d

R − 2Λ
]

Γ(2)
c̄T
µ cT

ν
=

[
" +

R

d

]
gµν

Γ(2)
c̄c = −"

[
" +

2
d
R

]
(3.63)

The change of variables (3.61) and (3.62) leads to Jacobian determinants involving the operators

JV = −" − R

d
, JS = −"

(
−" − R

d − 1

)
, Jc = −"

for the vector, scalar and ghost parts. The calculations of the Jacobians arising due to the field
decomposition is obtained along the method described in [58, 59]. For the case of gravity when
the field is decomposed as in eq. (3.61) the calculation of Jacobian is described in detail in
[27, 64]. The inverse propagators (3.63) contain four derivative terms. In [25, 27] this was
avoided by making the field redefinitions

ξµ →
√
−" − R

d
ξµ, σ →

√
−"

√
−" − R

d − 1
σ. (3.64)

At the same time, such redefinitions also eliminate the Jacobians. These field redefinitionswork
well for truncations containing up to two powers of curvature, but cause poles for higher trun-
cations as the heat kernel expansion will involve derivatives of the trace arguments. Therefore
while describing the flow equation for higher-derivative gravity I will not perform the field
redefinitions, but treat the Jacobians instead as further contribution to the FRGE by exponenti-
ating them, introducing appropriate auxiliary fields and a cutoff on these variables. Here I will
describe the result of performing the field redefinitions.
For each of the Hessians for the various spin component of the graviton, it is noted that it

has the following structure
Γ(2)

k = aZ[−" + bR + cΛ] , (3.65)
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where a could be a constant tensor or scalar. The cutoffRk is constructed for theHessian of each
of the spin component of graviton and for ghosts fields. It is constructed in the following way.
First the modified inverse propagator is obtained for each of the field component by replacing
−" by Pk(−"), wherePk(−") = −"+Rk(−"). Subtracting theHessian frommodified inverse
propagator for each field gives the cutoffRk, having the form,

Rk = aZRk(−") . (3.66)

The FRGE is

∂tΓk =
1
2
Tr(2)

∂tRk + ηRk

Pk − 2Λ + d2−3d+4
d(d−1) R

+
1
2
Tr′(1)

∂tRk + ηRk

Pk − 2Λ + d−3
d R

+
1
2
Tr(0)

∂tRk + ηRk

Pk − 2Λ + d−4
d R

+
1
2
Tr′′(0)

∂tRk + ηRk

Pk − 2Λ + d−4
d R

−Tr(1)
∂tRk

Pk − R
d

− Tr′(0)
∂tRk

Pk − 2R
d

. (3.67)

The first term comes from the spin–2, transverse traceless components, the second from the
spin–1 transverse vector, the third and fourth from the scalars h and σ. The last two contri-
butions come from the transverse and longitudinal components of the ghosts. A prime or a
double prime indicate that the first or the first and second eigenvalues have to be omitted from
the trace. The reason for this is explained in Appendix A.2.
Expanding the denominators to first order in R, but keeping the exact dependence on Λ as

in the case of a type Ia cutoff, and using the formula (A.10), one obtains

∂tΓk =
1

(4π)d/2

∫
dx

√
g

{
d(d + 1)

4
Q d

2

(
∂tRk + ηRk

Pk − 2Λ

)
− dQ d

2

(
∂tRk

Pk

)

+R

[
−d4 − 2d3 − d2 − 4d + 2

4d(d − 1)
Q d

2

(
∂tRk + ηRk

(Pk − 2Λ)2

)
− d + 1

d
Q d

2

(
∂tRk

P 2
k

)
(3.68)

+
d4 − 13d2 − 24d + 12

24d(d − 1)
Q d

2−1

(
∂tRk + ηRk

Pk − 2Λ

)
− d2 − 6

6d
Q d

2−1

(
∂tRk

Pk

)]
+ O(R2)

}

.

In principle in two dimensions one has to subtract the contributions of some excluded modes.
However, using the results in Appendix A.2, the contributions of these isolated modes turn out
to cancel. Thus, the FRGE is continuous in the dimension also at d = 2.
In order to be able to perform the calculation in closed form we choose the optimized cutoff

Rk(z) = (k2 − z)θ(k2 − z) [43]. The beta functions have again the form (3.58); the coefficients
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A1 and A2 are the same as for the type Ia cutoff but now the coefficients B1 and B2 are

B1 = 4π
(
d(d − 1)(d3 − 15d2 − 36) + 24 − 2(d5 − 8d4 − 5d3 − 72d2 − 36d + 96)Λ̃

−16(d − 1)(d3 + 6d + 12)Λ̃2
)/

3(4π)
d
2 d2(d − 1)Γ

(
d

2

)
(1 − 2Λ̃)2

B2 = 4π
d(d4 − 10d3 + 11d2 − 38d + 12) − 2(d + 2)(d4 − 13 d2 − 24d + 12) Λ̃

3(4π)
d
2 (2 + d)(d − 1)d2 Γ(d

2 )(1 − 2Λ̃)2

In four dimensions, the t-derivative of Z̃ and Z̃Λ̃ is given by,

∂tZ̃ = −2Z̃ +
373 − 654Λ̃ + 600Λ̃2

1152π2(1 − 2Λ̃)2
+
∂tZ̃

Z̃

29 − 9Λ̃
1152π2(1 − 2Λ̃)2

∂t(Z̃Λ̃) = −4Z̃Λ̃ +
1 + 3Λ̃

12π2(1 − 2Λ̃)
+
∂tZ̃

Z̃

5
192π2(1 − 2Λ̃)

. (3.69)

From this the beta functions of G̃ and Λ̃ is extracted and is given by,

βΛ̃ = −2Λ̃ +
1

24π
(12 − 33Λ̃ + 20Λ̃2 − 200Λ̃3)G̃ + 467−572Λ̃

12π G̃2

(1 − 2Λ̃)2 − 29−9Λ̃
72π G̃

βG̃ = 2G̃ − 1
24π

(105 − 212Λ̃ + 200Λ̃2)G̃2

(1 − 2Λ̃)2 − 29−9Λ̃
72π G̃

. (3.70)

3.3.4. Cutoff of type II
Let us define the following operators acting on gravitons and on ghosts:

∆2 = −" + W (3.71)
∆(gh) = −" − Ricci . (3.72)

The traces of the b2–coefficients of the heat–kernel expansion for these operators are

trb2(∆2) = tr
(

R

6
1− W

)
=

d(7 − 5d)
12

R

trb2(∆gh) = tr
(

R

6
1 + Ricci

)
=

d + 6
6

R .

The type II cutoff is defined by the choice

Rk = ZKRk(∆2)

R(gh)
k

µ
ν = δµνRk(∆(gh)) ,
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which results in

Γ(2)
k + Rk = ZK (Pk(∆2) − 2Λ)

Γ(2)
CC̄

+ R(gh)
k = Pk(∆(gh)) (3.73)

and
dRk

dt
= ZK (∂tRk(∆2) + ηRk(∆2)) .

Collecting all terms and evaluating the traces leads to

dΓk

dt
=

1
2
Tr∂tRk(∆2) + ηRk(∆2)

Pk(∆2) − 2Λ
− Tr

∂tRk(∆(gh))
Pk(∆(gh))

=
1

(4π)d/2

∫
dx

√
g

{
d(d + 1)

4
Q d

2

(
∂tRk + ηRk

Pk − 2Λ

)
− dQ d

2

(
∂tRk

Pk

)

+
[
d(7 − 5d)

24
Q d

2−1

(
∂tRk + ηRk

Pk − 2Λ

)
− d + 6

6
Q d

2−1

(
∂tRk

Pk

)]
R + O(R2)

}
. (3.74)

The beta functions are again of the form (3.58), and the coefficients A1 and A2 are the same as
in the case of the cutoffs of type I. The coefficients B1 and B2 are now

B1 = −4π(5d2 − 3d + 24 − 8(d + 6)Λ̃)

3(4π)
d
2 Γ(d

2)(1 − 2 Λ̃)

B2 = − 4π(5d − 7)

3(4π)
d
2 Γ(d

2)(1 − 2Λ̃)

In four dimensions, the beta functions are

βΛ̃ = −2Λ̃ +
1
6π

(3 − 28Λ̃ + 84Λ̃2 − 80Λ̃3)G̃ + 191−512Λ̃
12π G̃2

(1 − 2Λ̃)(1 − 2Λ̃ − 13
12π G̃)

βG̃ = 2G̃ − 1
3π

(23 − 20Λ̃)G̃2

(1 − 2Λ̃) − 13
12π G̃

. (3.75)

3.3.5. Cutoff of type III
Finally we discuss the spectrally adjusted, or type III cutoff. This consists of defining the cutoff
function as a function of the whole inverse propagator Γ(2)

k , only stripped of the overall wave
function renormalization constants. In the case of the graviton, Γ(2)

k = ZK(∆2−2Λ1)while for
the ghosts Γ(2)

CC̄
= ∆gh, where ∆2 and ∆gh were defined in (3.71). Type III cutoff is defined by

the choice
Rk = ZKRk(∆2 − 2Λ) (3.76)
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for gravitons, while for ghosts it is the same as in the case of type II cutoff. Since the operator
in the graviton cutoff now contains the coupling Λ, the derivative of the graviton cutoff now
involves an additional term:

dRk

dt
= ZK

(
∂tRk(∆2 − 2Λ) + ηRk(∆2 − 2Λ) − 2R′

k(∆2 − 2Λ)∂tΛ
)

(3.77)

where R′
k denotes the partial derivative of Rk(z) with respect to z. Note that the use of the

chain rule in the last term is only legitimate if the t-derivative of the operator appearing as the
argument of Rk commutes with the operator itself. This is the case for the operator ∆2 − 2Λ,
since its t-derivative is proportional to the identity. The modified inverse propagator is then
simply

Γ(2)
k + Rk = ZKPk(∆2 − 2Λ)

for gravitons, while for ghosts it is again given by equation (3.73). Collecting,

dΓk

dt
=

1
2
Tr∂tRk(∆2 − 2Λ) + ηRk(∆2 − 2Λ) − 2R′

k(∆2 − 2Λ)∂tΛ
Pk(∆2 − 2Λ)

− Tr
∂tRk(∆(gh))
Pk(∆(gh))

. (3.78)

The traces over the ghosts are exactly as in the case of a cutoff of type II. As in previous cases,
one should now proceed to evaluate the trace over the tensors using equation (A.10) and the
heat kernel coefficients of the operator ∆2 − 2Λ. However, the situation is now more compli-
cated because the heat kernel coefficients B2k(∆2 − 2Λ) contain terms proportional to Λk and
Λk−1R, all of which contribute to the beta functions of 2ΛZ and −Z . This is in contrast to the
calculations with cutoffs of type I and II, where only the first two heat kernel coefficients con-
tributed to the beta functions of 2ΛZ and −Z . In order to re-sum all these contributions, one
can proceed as follows. We define the function W (z) = ∂tRk(z)+ηRk(z)−2R′

k(z)∂tΛ
Pk(z) and the func-

tion W̄ (z) = W (z− 2Λ). It is shown explicitly in the end of Appendix A.1 (equation (A.33) and
following) that TrW = TrW̄ . Then, the terms without R and the terms linear in R (which give
the beta functions of 2ΛZ and −Z respectively) correspond to the first two lines in (A.34). In
this way we obtain

dΓk

dt
=

1
(4π)d/2

∫
dx

√
g

{
d(d + 1)

4

∞∑

i=0

(2Λ)i

i!
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2−i

(
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)
− dQ d

2

(
∂tRk

Pk

)

+
d(7 − 5d)

24
R

∞∑

i=0

(2Λ)i

i!
Q d

2−1−i

(
∂tRk + ηRk − 2∂tΛR′

k

Pk

)
− d + 6

6
Q d

2−1

(
∂tRk

Pk

)
R

}
. (3.79)

The remarkable property of the optimized cutoff is that in even dimensions the sums in those
expressions contain only a finite number of terms; in odd dimensions the sum is infinite but
can still be evaluated analytically. Using the results (A.22,A.23,A.24,A.29, A.30,A.31,A.32) the
first sum in (3.79) gives

1
(4π)d/2

d + 1
2

(k2 + 2Λ)d/2

Γ(d/2)

(
2 +

η
d
2 + 1

k2 + 2Λ
k2

+ 2
∂tΛ
k2

)∫
dx

√
g (3.80)
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whereas the second sum gives

1
(4π)d/2

d(7 − 5d)
24

(k2 + 2Λ)
d−2
2

Γ(d/2)

(
2 +

η

d/2
k2 + 2Λ

k2
+ 2
∂tΛ
k2

)∫
dx

√
gR (3.81)

This resummation can actually be done also with other cutoffs. An alternative derivation of
these formulae, based on the proper time form of the ERGE is given in Appendix A.3.
The beta functions cannot be written in the form (3.58) anymore, because of the presence of

the derivatives of Λ on the right hand side of the ERGE. Instead of (3.57) we have

d

dt

(
2Λ

16πG

)
=

kd

16π
(A1 + A2η + A3∂tΛ̃) ,

− d

dt

(
1

16πG

)
=

kd−2

16π
(B1 + B2η + B3∂tΛ̃) , (3.82)

where

A1 =
16π(−4 + (d + 1)(1 + 2Λ̃)

d
2+1)

(4π)
d
2 Γ(d

2 )

A2 =
16π(d + 1)(1 + 2Λ̃)

d
2+1

(4π)
d
2 (d + 2)Γ(d

2 )

A3 =
16π(d + 1)(1 + 2Λ̃)

d
2

(4π)
d
2 Γ

(
d
2

)

B1 =
4π(−4(d + 6) + d(7 − 5d)(1 + 2Λ̃)

d
2 )

3(4π)
d
2 Γ(d

2)

B2 =
4π(7 − 5d)(1 + 2Λ̃)

d
2

3(4π)
d
2 Γ(d

2)

B3 =
4πd(7 − 5d)(1 + 2Λ̃)

d
2−1

3(4π)
d
2 Γ

(
d
2

)

Solving (3.82) for dΛ̃/dt and dG̃/dt gives

dΛ̃
dt

= −2Λ̃ +
(A1 + 2(B1 − A3)Λ̃ − 4B3Λ̃2)G̃ + (A1B2 − A2B1 + 2(A2B3 − A3B2)Λ̃)G̃2

2 + (2B2 − A3 − 2B3Λ̃)G̃ + (A2B3 − A3B2)G̃2

dG̃

dt
= (d − 2)G̃ +

2(B1 − 2B3Λ̃)G̃2 + (A1B3 − A3B1)G̃3

2 + (2B2 − A3 − 2B3Λ̃)G̃ + (A2B3 − A3B2)G̃2
. (3.83)



3.3. EINSTEIN-HILBERT TRUNCATION 63

In four dimensions, the beta functions are

βΛ̃ = −2Λ̃ +
1
6π

(3 + 14Λ̃ + 8Λ̃2)G̃ + (1+2Λ̃)2

12π (191 − 60Λ̃ − 260Λ̃2)G̃2

1 − 1
12π (43 + 120Λ̃ + 68Λ̃2)G̃ + 65

72π2 (1 + 2Λ̃)4G̃2

βG̃ = 2G̃ − 1
3π

(23 + 26Λ̃)G̃2 − 51+152Λ̃+100Λ̃2

π G̃3

1 − 1
12π (43 + 120Λ̃ + 68Λ̃2)G̃ + 65

72π2 (1 + 2Λ̃)4G̃2
. (3.84)

3.3.6. Results in four dimensions

I will now consider Einstein-Hilbert gravity with cosmological constant in four dimensions.
The beta functions for Λ̃ and G̃ for the four cutoff types have been given in equations (3.60,

3.70, 3.75 and 3.84). All of these beta functions admit a trivial (Gaußian) FP at Λ̃ = 0 and G̃ = 0
and a nontrivial FP at positive values of Λ̃ and G̃. I will discuss the Gaußian FP first. As usual,
the perturbative critical exponents are equal to 2 and −2, the canonical mass dimensions of Λ
and G. However, the corresponding eigenvectors are not aligned with the Λ̃ and G̃ axes. It is
instructive to trace the origin of this fact. Since it can be already clearly seen in perturbation
theory, we consider the perturbative Einstein–Hilbert flow (3.59). The linearized flow is given
by the stability matrix

M =

(
∂βΛ̃

∂Λ̃

∂βΛ̃

∂G̃
∂βG̃

∂Λ̃

∂βG̃

∂G̃

)
=

(
−2 + B1G̃ + 1

2G̃∂A1

∂Λ̃
+ Λ̃G̃∂B1

∂Λ̃
1
2A1 + B1Λ̃

G̃2 ∂B1

∂Λ̃
2 + 2B1G̃

)
. (3.85)

At the Gaussian FP this matrix becomes

M =
(

−2 1
2A1(0)

0 2

)
, (3.86)

which has the canonical dimensions of Λ and G on the diagonal, as expected. However, the
eigenvectors do not point along the Λ and G axes. At the Gaussian FP the “attractive” eigen-
vector is in the direction (1, 0) but the ‘repulsive” one is in the direction (A1(0)/4, 1). The slant
is proportional toA1(0) and can therefore be seen as a direct consequence of the running of the
vacuum energy. This fact has a direct physical consequence: it is not consistent to study the
ultraviolet limit of gravity neglecting the cosmological constant. One can set Λ̃ = 0 at some
energy scale, but if G̃ 2= 0, as soon as one moves away from that scale the renormalization
group will generate a nontrivial cosmological constant. This fact persists when one considers
the renormalization group improved flow.
I will now come to the nontrivial FP. We begin by making for a moment the drastic approxi-

mation of treating A1 and B1 as constants, independent of Λ̃ (this is the leading term in a series
expansion in Λ̃). Thus we consider again the perturbative Einstein–Hilbert flow (3.59). In this
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Figure 3.1.: The flow near the perturbative region with cutoffs of type Ia and Ib. The boundary
of the shaded region is a singularity of the beta functions. The curves in light color
are “classical” trajectories with constant Λ̃G̃.
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Figure 3.2.: The flow near the perturbative region with cutoffs of type II and III. The boundary
of the shaded region is a singularity of the beta functions.
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approximation the flow can be solved exactly:

Λ̃(t) =
(2Λ̃0 − 1

4A1G̃0(1 − e4t))e−2t

2 + B1G̃0(1 − e2t)
,

G̃(t) =
2G̃0e2t

2 + B1G̃0(1 − e2t)
. (3.87)

The FP would occur at Λ̃∗ = −A1/4B1, G̃∗ = −2/B1, at which point the matrix (3.85) becomes

M =
(

−4 −1
4A1

0 −2

)
. (3.88)

It has real critical exponents 2 and 4, equal to the canonical dimensions of the constants 2ZΛ and
−Z . This should not come as a surprise, since the linearized flow matrix for the couplings g (0)

and g(2) is diagonal, with eigenvalues equal to their canonical dimensions, and the eigenvalues
are invariant under regular coordinate transformations in the space of the couplings. So we
see that a nontrivial UV–attractive FP in the Λ̃–G̃ plane appears already at the lowest level of
perturbation theory.
All the differences between the perturbative Einstein–Hilbert flow and the exact flow are

due to the dependence of the constants A1 and B1 on Λ̃, and in more accurate treatments to
the RG improvements incorporated in the flow through the functions A2, B2 A3, B3. Such
improvements are responsible for the non-polynomial form of the beta functions. In all these
calculations the critical exponents at the nontrivial FP always turn out to be a complex conju-
gate pair, giving rise to a spiraling flow. The real part of these critical exponents is positive,
corresponding to eigenvalues of the linearized flow matrix with negative real part. Therefore,
the nontrivial FP is always UV-attractive in the Λ̃–G̃ plane. Conversely, an infinitesimal pertur-
bation away from the FP will give rise to a renormalization group trajectory that flows towards
lower energy scales away from the nontrivial FP. Among these trajectories there is a unique
one that connects the nontrivial FP in the ultraviolet to the Gaußian FP in the infrared. This is
called the “separatrix”.
One noteworthy aspect of the flow equations in the Einstein–Hilbert truncation is the exis-

tence of a singularity of the beta functions. Looking at equations (3.60, 3.70, 3.75 and 3.84), we
see that there are always choices of Λ̃ and G̃ for which the denominators vanish. The singulari-
ties are the boundaries of the shaded regions in figure 3.1. Of course the flow exists also beyond
these singularities but those points cannot be joined continuously to the flow in the perturba-
tive region near the Gaußian FP, which we know to be a good description of low energy gravity.
When the trajectories emanating from the nontrivial FP approach these singularities, they reach
it at finite values of t and the flow cannot be extended to t → −∞. The presence of these singu-
larities can be interpreted as a failure of the Einstein–Hilbert truncation to capture all features
of infrared physics and it is believed that they will be avoided by considering a more complete
truncation. Let us note that for cutoffs of type I and II the singularities pass through the point
Λ̃ = 1/2, G̃ = 0. Thus, there are no regular trajectories emanating from the nontrivial FP and
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Scheme Λ̃∗ G̃∗ Λ̃∗G̃∗ ϑ
Ia 0.1932 0.7073 0.1367 1.475±3.043i
Ia - 1 loop 0.1213 1.1718 0.1421 1.868±1.398i
Ib 0.1715 0.7012 0.1203 1.689± 2.486i
Ib - 1 loop 0.1012 1.1209 0.1134 1.903± 1.099 i
II 0.0924 0.5557 0.0513 2.425±1.270i
II - 1 loop 0.0467 0.7745 0.0362 2.310± 0.382 i
III 0.2742 0.3321 0.0910 1.752±2.069 i
III - 1 loop 0.0840 0.7484 0.0628 1.695± 0.504 i

Table 3.1.: The nontrivial fixed point for Einstein’s theory in d = 4with cosmological constant.

reaching the region Λ̃ > 1/2. However, for type III cutoffs the shaded region is not attached to
the Λ̃ axis and there are trajectories that avoid it, reaching smoothly the region Λ̃ > 1/2.
In table 3.1 we collect the main features of the UV–attractive FP for the Einstein–Hilbert

truncation with cosmological constant for the two different cutoff schemes described here.

3.3.7. Pure Cutoff

As anticipated, wewould like to examine a different type of cutoff, not depending on any of the
parameters that are present in the action [52]. The cutoff eq. (3.66) depends on the parameter
Z , so to define a pure cutoff we replace Z by γk2 where γ is an arbitrary number:

Rk = aγk2Rk(−") . (3.89)

The FRGE now reads

dΓk

dt
=

1
2
Tr(2)

∂tRk + 2Rk
Z
γk2

(
−" + 2

3R − 2Λ
)

+ Rk(−")
+

1
2
Tr′(1)

∂tRk + 2Rk
Z
γk2

(
−" + 1

4R − 2Λ
)

+ Rk(−")

+
1
2
Tr(0)

∂tRk + 2Rk
Z
γk2 (−" − 2Λ) + Rk(−")

+
1
2
Tr′′(0)

∂tRk + 2Rk
Z
γk2 (−" − 2Λ) + Rk(−")

−Tr(1)
∂tRk

Pk − R
4

− Tr′(0)
∂tRk

Pk − R
2

. (3.90)
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Figure 3.3.: Value of G̃∗ (left panel), Λ̃∗ (right panel) and Λ∗G∗ (lower panel) as functions of γ
with a pure cutoff. The dot indicates the values for the type Ib cutoff.

This leads to the following beta functions

∂tZ̃ = −2Z̃ +
49γ(γ − Z̃) + (1 − 2Λ̃)(25Z̃2 − 151Z̃γ + 28γ2)

192π2(γ − Z̃)2(1 − 2Λ̃)

−
γ
[
3(γ − Z̃)2 + Z̃(1 − 2Λ̃)(101Z̃ − 3γ)

]

192π2(γ − Z̃)3
X

∂t(Z̃Λ̃) = −4Z̃Λ̃ − 9γ2 + 4Z̃2 − γZ̃(23 − 20Λ̃)
32π2(γ − Z̃)2

−
5γ

[
γ2 − 2γZ̃ + 4Z̃2Λ̃(1 − Λ̃)

]

16π2(γ − Z̃)3
X .(3.91)

where

X = ln

(
Z̃(1 − 2Λ̃)
γ − 2Z̃Λ̃

)
.

The appearance of the logarithms is due to the mismatch between the coefficients of −" and
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Figure 3.4.: Real and imaginary parts of the critical exponents as functions of γ. The dot and
the cross indicate the real and imaginary part of the critical exponent for the type
Ib cutoff.

Rk(−"), which leaves some explicit terms with z = −" to be integrated over. The FP now de-
pends on the arbitrary parameter γ, which is part of the freedom in the definition of the cutoff.
This reflects itself in the position of the fixed point, as shown in Fig. 3.3. We give separately the
dependence of G̃∗, Λ̃∗ and of the dimensionless product Λ∗G∗. We see that as γ varies over four
orders of magnitude, G̃∗, Λ̃∗ each vary by less than one order of magnitude, and Λ∗G∗ changes
just by a factor smaller than 2. It had been observed before that the dimensionless product ΛG
has a beta function that is gauge independent in lowest order in an expansion in Λ̃ [25]; also its
value at the FPwas found to be quite insensitive to the choice of gauge and cutoff. Our findings
confirm this picture also for the dependence on the parameter γ. In figure 3.4 we also give the
critical exponents as functions of γ. As with other cutoffs, they form a complex conjugate pair,
but for large γ the imaginary part of the eigenvalue goes to zero and for γ > 60 we find two
real eigenvalues. Clearly for very large or very small γ the properties of the FP are significantly
affected, but there is a wide range of values for which the properties of the FP are quite stable.
We observe that the curves in Fig. 3.3 pass through the position of the fixed point in the type

Ib cutoff examined previously, which is marked by a dot in the graphs. In other words, there
is a value of γ for which the pure cutoff gives a FP in the same position as the type Ib cutoff.
The corresponding value is precisely γ = Z̃∗ = 0.0284. This is an example of the discussion
presented in section 2.4.
It would seem from eq. (3.91) that the beta functions become singular when γ = Z̃ but if we

put γ = Z̃ + ε and expand in powers of ε, the coefficient of the negative powers of ε cancel out.
Furthermore, one finds that the leading (ε-independent) terms in the expansion coincide with
the first two terms on the r.h.s. of eq. (3.69).
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This is just an example of the more general argument discussed in section 2.4, where it was
showed that a pure cutoff obtained from any of the three type of cutoff schemes available,
by replacing the couplings present in the cutoff by an arbitrary real dimensionless parameter
times a scale dependent factor, will result in a FP which concides with the FP found in any of
the three cutoff schemes if these arbitrary real parameters acquire special values which is the
value of the FP of that coupling in the particular cutoff type adopted.
If for example one does the above analysis by obtaining the pure cutoff starting from the

type III cutoff given in eq. (3.76), by replacing the couplings Z and Λ by γ1k2 and γ2k2 respec-
tively. Then one will find that in the special case when γ1 = Z̃∗ and γ2 = Λ̃∗ (where Z̃∗ and Λ̃∗
are FP values of type III cutoff), the FP of the pure cutoff is same as FP obtained using the type
III cutoff.

3.4. Summary
In this chapter I showed how to construct FRGE for gravity. This involved some complications
and need to be fixed before one follows the steps outlined in chapter 2. Being a diffeomorphic
invariant theory it involved gauge freedom in the functional integral which need to be fixed
like in any other gauge theory. Apart from this the other complication was regarding the coarse
graining. In a non gauge theory one could choose some positive operator like −∂ 2, in whose
eigenfunction the field is decomposed, thereby classifying themodes as slow and fast according
to the eigenvalue p2 begin below and above the cutoff scale k. While in gauge theory the best
one can do is to consider generalized positive operator like−" = −∇µ∇µ or some other similar
operator. Doing this is gauge covariant but it sacrifices the notion of Fourier coarse graining.
Both these complications are settled by use of background gauge fixing technique.
Then after this, using the background field method I showed how to construct the cutoff.

Fixing the gauge introduces Faddev-Popov ghost, whose contribution is also taken while con-
structing the FRGE. The FRGE so derived is quite complicated to use in practical computations.
It depends on two metrics: classical metric g and background metric ḡ and the ghost fields. In
order to simplify, as a first step the running of the ghost action is ignored. Then after comput-
ing the Hessian for both graviton and ghost, the background metric is set equal to the classical
metric. The other simplification is to then consider truncated effective actions.
In this chapter I demostrated how to do the task mentioned in the above paragraph in the

simplest truncation for gravity: Einstein-Hilbert truncation. I took this opportunity to also
demonstrate the scheme dependence in the results by doing the computation in different cutoff
types, and comparing them in four dimensions.





Chapter 4

RG Flow of Scalar coupled to Einstein-
Hilbert Gravity

In this chapter I will study the renormalization group flow in a class of scalar-tensor theories
involving at most two derivatives of the fields i.e. a scalar field coupled to Einstein-Hilbert
gravity. I will compute the running of potentials (arbitrary functions of scalar field). Using the
expressions for the running of the potentials I will show that minimal coupling is self consis-
tent, in the sense that when the scalar self couplings are switched off, their beta functions also
vanish. I will then present complete, explicit beta functions in five parameter truncation of the
theory in d = 4. I will then search for the nontrivial fixed point of the theory in dimensions
greater than two. I will then study the linearized flow around the fixed points, thereby checking
whether the theory satisfies the requirements of Asymptotic safety in various dimensions.

4.1. Truncation Ansatz and Motivation
Fundamental scalar fields have not yet been observed, but they play a crucial role in the stan-
dard model and in grand unified theories, as the order parameters whose VEV is used to dis-
tinguish between otherwise undifferentiated gauge interactions. Whether such scalar order
parameters are elementary fields, as in the standard model, or composites, as in technicolor
theories, is still an open question. Known examples of the Higgs phenomenon (superconduc-
tivity, the chiral condensate in QCD) point to the latter possibility, but even if this was the case
it might still be possible to use scalar theory as an effective description (á la Landau-Ginzburg)
at sufficiently low energy.
Scalar fields also play an important role in theories of gravity. Due to their simplicity they

are very often used as models for matter. Also, because of the ease by which one can generate
a nontrivial VEV, with an energy momentum tensor that resembles a cosmological constant, a
scalar field is the most popular option as a driver of inflation. Furthermore, scalar fields easily
mingle with themetric: bymeans ofWeyl transformations it is possible to rewrite the dynamics
in different ways [60], sometimes leading to new insight or to simplifications. Theories of

71
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gravity in which a scalar is present are often called scalar-tensor theories. In this chapter I will
discuss the quantum properties of a class of theories of this type.
In the previous chapter I showed that pure Einstein-Hilbert gravity is Asymptotically safe.

In the recent years a lot of progress has been made towards understanding the UV behavior
of gravity. This included extending the Einstein-Hilbert gravity to include higher-derivative
terms in the truncation. It seems that pure gravity possesses a Fixed Point (FP) with the right
properties to make it asymptotically safe, or in other words nonperturbatively renormalizable
[11, 25, 24, 26, 27, 38, 61, 62, 30, 31, 63, 29, 64, 65, 32, 35, 66, 67, 42, 68, 69, 70, 71, 72] (see also
[46] for reviews). Let us assume for a moment that this ambitious goal can be achieved, and
that pure gravity can be shown to be asymptotically safe. Still, from the point of view of phe-
nomenology, one is not satisfied because the real world contains also dozens of matter fields
that interact in other ways than gravitationally, and their presence affects also the quantum
properties of the gravitational field, as is known since long [1]. Indeed, in a first investigation
along these lines, it was shown in [33] that the presence of minimally coupled (i.e. non self in-
teracting) matter fields shifts the position of the gravitational FP and the corresponding critical
exponents. In some cases the FP ceases to exist, so it was suggested that this could be used to
put bounds on the number of matter fields of each spin. More generally the asymptotic safety
program requires that the fully interacting theory of gravity and matter has a FP with the right
properties. Given the bewildering number of possibilities, in the search for such a theory one
needs some guiding principle. One possibility that naturally suggests itself is that all matter
self-interactions are asymptotically free [73]. Then, asymptotic safety requires the existence of a
FP where the matter couplings approach zero in the UV, while the gravitational sector remains
interacting. I will call such a FP a “Gaussian Matter FP” or GMFP. Following a time honored
tradition, as a first step in this direction, scalar self interactions in four dimensions have been
studied in [74, 34]. During my thesis studies I extended that work further in various ways, by
studying these theories in arbitrary dimensions and in arbitrary gauge, which I will describe in
this chapter.
The tool that was used in this study was the functional renormalization group equation,

which was described in detail in chapter 2. There I discussed that any study involving FRGE
necessarily requires making use of approximations, and if one is interested in nonperturbative
studies, then one has to apply FRGE on a truncated theory space. A systematic study of trun-
cations requires a derivative expansion of the effective action. In the case of a scalar theory the
lowest order of this expansion is the local potential approximation (LPA), where one retains a
standard kinetic term plus a generic potential [75, 20, 76, 77]. An exclusive example of this was
shown in chapter 2, where I applied FRGE toO(N)-symmetric scalar theory. In the case of pure
gravity with metric as the field, it involves operators that are powers of curvatures and deriva-
tives thereof. The lowest truncation involves two derivative of metric along with a constant
term, thereby constituting the Einstein-Hilbert truncation. A systematic study involving oper-
ators up to terms with four derivatives has been done in [62, 32, 35, 70], and for a limited class
of operators (namely powers of the scalar curvature) up to sixteen derivatives of the metric has
been done in [30, 31, 64].
In the case of scalar tensor theories of gravity, one will have to expand both in derivatives of
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the metric and of the scalar field. The lowest order in the expansion involving two derivatives
of the fields (metric and scalar field) including a generic potential for the scalar can be written
as,

Γk[g, φ] =
∫

ddx
√

g

(
V (φ2) − F (φ2)R +

1
2
gµν∂µφ∂νφ

)
+ SGF + Sgh. (4.1)

This can also be seen as a generalization of the LPA, where one also includes terms with two
derivatives of the metric. Here the functions V and F are generic functions of φ2 and for
simplicity I call them potentials. Notice that the scalar kinetic term is fixed. Taking into account
its running would yield information on the scalar anomalous dimension. We will not consider
this effect here.

4.2. The beta functions

In this section I will obtain beta functionals for the functions V and F defined in (4.1). To
achieve this, we use Wetterich’s functional renormalization group equation (FRGE) [20]

∂tΓk =
1
2
STr

[(
δ2Γk

δΦ δΦ
+ Rk

)−1

∂tRk

]

, (4.2)

where Φ are all the fields present in the theory and STr is the generalized functional trace
including a minus sign for fermionic variables and a factor 2 for complex variables, and Rk is
a suitable tensorial cutoff.

4.2.1. Second variations

In order to evaluate the r.h.s. of (4.2) we start from the second functional derivatives of the
functional (4.1). These can be obtained by expanding the action to second order in the quantum
fields around classical backgrounds: gµν = ḡµν + hµν and φ = φ̄+ δφ, where φ̄ is constant. The
gauge fixing action is given by

SGF =
1
2α

∫
ddx

√
ḡ F (φ2)ḡµν χµ χν , (4.3)

χµ =
(
∇̄νh

νµ − β + 1
d

∇̄µh

)
.

and Sgh is the corresponding ghost action given by

SGH = −
∫

ddx
√

ḡ C̄µ

[
δρµ "̄ +

(
1 − 2(1 + β)

d

)
∇̄µ∇̄ρ + R̄ρ

µ

]
Cρ . (4.4)
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These terms are already quadratic in the quantum fields. The second variation of eq. (4.1) is,

Γ(2)
k =

1
2

∫
ddx

√
g

[(
1
4
h2 − 1

2
hµνh

µν

) (
V (φ2) − F (φ2)R

)
+ F (φ2)hhµν Rµν +

1
2
F (φ2)h" h

+ F (φ2)hµν∇µ∇ρh
ρ
ν − F (φ2)hα

ν hµα Rµν − F (φ2)hµν Rρµσν hρσ − 1
2
F (φ2)hµν " hµν

− F (φ2)h∇µ∇νh
µν

]
+

∫
ddx

√
g

[
h · φ

(
V ′(φ2) − F ′(φ2)R

)
δφ+ 2φF ′(φ2)hµν Rµν δφ

− 2φF ′(φ2) δφ (∇µ∇νh
µν − "h)

]
+

1
2

∫
ddx

√
g δφ

[
−" + 2V ′(φ2) + 4φ2 V ′′(φ2)

− R
(
2F ′(φ2) + 4φ2 F ′′(φ2)

)
]

+ SGF + Sgh . (4.5)

Since we will never have to deal with the original metric gµν and scalar field φ, in order to
simplify the notation, in the preceding formula and everywhere else from now on we will
remove the bars from the backgrounds. As explained in detail in [24], the functional that
obeys the FRGE (4.2) depends separately on the background field ḡµν and on a “classical field”
(gcl)µν = ḡµν+(hcl)µν , where (hcl)µν is Legendre conjugate to the sources that couple linearly to
hµν . The same applies to the scalar field. Here, like in most of the literature on the subject and
as has been argued in the chapter 3, I will restrict myself to study the effective average action
in the case when (gcl)µν = ḡµν and φcl = φ̄. From now on the notation gµν and φ will be used
to denote equivalently the “classical fields” or the background fields. For a discussion of the
effective average action of pure gravity in the more general case when (gcl)µν 2= ḡµν we refer to
[68].

4.2.2. Decomposition
In order to partially diagonalize the kinetic operator, we use the decomposition of hµν into
irreducible components

hµν = hT
µν + ∇µξν + ∇νξµ + ∇µ∇νσ −

1
d
gµν"σ +

1
d
gµνh , (4.6)

where hT
µν is the (spin 2) transverse and traceless tensor, ξµ is the (spin 1) transverse vector

component, σ and h are (spin 0) scalars. In some cases this decomposition allows an exact in-
version of the propagator. This happens for example in the case of maximally symmetric back-
ground metric. Thus with that in mind we will work on a d-dimensional sphere. This change
of variables in the functional integral gives rise to Jacobian determinants, which however can
be absorbed by further field re-definitions ξ̂µ =

√
−" − R

d ξµ and σ̂ =
√
−"

√
−" − R

d−1 σ

[25, 27, 30, 31]. Then the inverse propagators for various components of the field are easily
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read from the second variation of the effective action. Thus for the spin-2 component hT
µν we

get the following inverse propagator:

1
2
F (φ2)

(
−" +

d2 − 3d + 4
d(d − 1)

R

)
− 1

2
V (φ2) . (4.7)

For the spin-1 component ξ̂ we have the following inverse propagator:

1
α

F (φ2)
(
−" − R

d

)
− V (φ2) +

d − 2
d

F (φ2)R . (4.8)

The two spin-0 components of the metric, σ̂ and h, mix with the fluctuation of φ resulting in an
inverse propagator given by a symmetric 3 × 3matrix S, with the following entries:

Sσσ =
(

1 − 1
d

)[{
1
2
−

(
1 − 1

α

)(
1 − 1

d

)}
F (φ2) (−") − 1

2
V (φ2)

+
d − 4
2d

F (φ2)R +
(

1 − 1
α

)
F (φ2)

R

d

]
,

Sσh = Shσ =
1
2

(
1 − 1

d

)[
2
d

(
β

α
+ 1

)
− 1

]
F (φ2)

√

−"
(
−" − R

d − 1

)
,

Sσφ = Sφσ = −2φ
(

1 − 1
d

)
F ′(φ2)

√

−"
(
−" − R

d − 1

)
,

Shh =
d − 2
4d

[{
−

(
1 − 1

d

)
+

2β2

αd(d − 2)

}
2F (φ2) (−") + V (φ2) − d − 4

d
F (φ2)R

]
,

Shφ = Sφh =
[
−2

(
1 − 1

d

)
φF ′(φ2) (−") + φV ′(φ2) −

(
1 − 2

d

)
φF ′(φ2)R

]
,

Sφφ = −" + 2V ′(φ2) + 4φ2V ′′(φ2) − (2F ′(φ2) + 4φ2F ′′(φ2))R . (4.9)

In order to diagonalize the kinetic operator occuring in the ghost action eq. (4.4), we per-
form a similar decomposition of the ghost field into transverse and longitudinal parts in the
following manner:

C̄µ = C̄µT + ∇µC̄ , Cµ = CT
µ + ∇µC . (4.10)

where C̄µT and CT
µ satisfy the following constraints,

∇µC̄µT = 0 , ∇µCT
µ = 0. (4.11)

Again this decomposition would give rise to a non trivial Jacobian in the path-integral, which
is cancelled by the further redefinition Ĉ =

√
−"C . For spin-1 component of the ghost, the

inverse propagator is
− " − R

d
, (4.12)
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while for spin-0 component we have the following inverse propagator
(

2 − 2(1 + β)
d

)
(−") − 2R

d
, (4.13)

Nowwe have to specify the cutoffRk occurring in FRGE eq. (4.2). We defineRk by the rule
that Γ(2)

k + Rk has the same form as Γ(2)
k except for the replacement of −" by Pk(−"), where

Pk(z) = z+Rk(z). Rk(z) is a profile function which tends to k2 for z → 0 and it approaches zero
rapidly for z > k2. The quantity Γ(2)

k +Rk is the “modified inverse propagator”. This procedure
applies both to the bosonic degrees of freedom and to the ghosts. The cutoffR k occurring in the
FRGE depends on k not only through the profile function Rk(z), but also through k dependent
couplings present in the function F (φ2) and F ′(φ2). Thus the derivative k d

dk = d
dt acts not

only on the profile function Rk(z), but also on the k-dependent couplings present in F (φ2) and
F ′(φ2). When this is neglected one recovers the one loop results. The presence of the beta
functions on the RHS of the FRGE, produces a coupled system of linear equations, which has
to be solved algebraically to yield the beta functions.

4.2.3. The β-functionals in d = 4

To read off the beta functions we have to compare the r.h.s. of the FRGE with the t-derivative
of eq. (4.1), namely

∂tΓ[g, φ] =
∫

ddx
√

g
(
∂tV (φ2) − ∂tF (φ2)R

)
. (4.14)

(the gauge fixing and the kinetic term are not allowed to run in our approximations). Since the
background R and φ are constant, the space-time integral produces just a volume factor, which
eventually cancels with the same factor appearing on the RHS of the FRGE. Thus the running
of V and F can be calculated using,

∂tV (φ2) =
1

V ol
∂tΓk

∣∣∣∣
R=0

, ∂tF (φ2) = − 1
V ol

∂(∂tΓk)
∂R

∣∣∣∣
R=0

, (4.15)

where V ol is the space-time volume. In order to exhibit the explicit form of these beta func-
tionals we go to d = 4, where V ol = 384π2

R2 , and set α = 0 and β = 1 (De-Donder gauge).
Furthermore, we choose the optimized cutoff Rk(z) = (k2 − z)θ(k2 − z) [43], which allows to
perform the integrations occurring in FRGE trace in closed form (see appendix A). From the
FRGE we then get

∂tV =
k4

192π2

{
6 +

30V

Ψ
+

6(k2 Ψ + 24φ2 k2 F ′ Ψ′ + k2 FΣ1)
∆

+
(

4
F

+
5 k2

Ψ
+

k2 Σ1

∆

)
∂tF

+
24φ2 k2 Ψ′

∆
∂tF

′

}
, (4.16)
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∂tF =
k2

2304π2

{

150 +
120 k2 F (3 k2F − V )

Ψ2
− 24

∆
(
24φ2 k2 F ′ Ψ′ + k2 Ψ + k2 FΣ1

)

− 36
∆2

[

−4φ2 (6 k4 F ′2 + Ψ′2) ∆ + 4φ2 Ψ Ψ′ (7 k2 F ′ − V ′) (Σ1 − k2)

+ 4φ2Σ1 (7 k2 F ′ − V ′) (2 Ψ V ′ − V Ψ′) + 2 k4 Ψ2 Σ2 + 48 k4 F ′ φ2 Ψ Ψ′ Σ2

− 24 k4F φ2 Ψ′2 Σ2

]

− ∂tF

F

[

30 − 10 k2F (7 Ψ + 4V )
Ψ2

+
6

∆2

(

k2 F Σ1 ∆ + 4φ2 V ′ Ψ′ ∆

− 24 k4 F φ2 Ψ′2 Σ2 − 4φ2 k2 F Ψ′ Σ1(7 k2 F ′ − V ′)

)]

+ ∂tF
′ 24 k2 φ2

∆2

[

(k2 F ′ + 5V ′)∆

− 12 k2 Ψ Ψ′ Σ2 − 2 (7 k2F ′ − V ′) Ψ Σ1

]}

(4.17)

where we have defined the shorthands:

Ψ = k2 F − V ; Σ1 = k2 + 2V ′ + 4φ2 V ′′ ; Σ2 = 2F ′ + 4φ2 F ′′ ; ∆ =
(
12φ2 Ψ′2 + Ψ Σ1

)
.

Let us define the dimensionless fields φ̃ = k
2−d
2 φ, R̃ = k−2 R and the dimensionless func-

tions Ṽ (φ̃2) = k−d V (φ2) and F̃ (φ̃2) = k2−d F (φ2). The beta functionals of the dimensionless
and dimensionful functions are related as follows:

(∂tṼ )[φ̃2] = −d Ṽ (φ̃2) + (d − 2) φ̃2 Ṽ ′(φ̃2) + k−d (∂tV )[φ2] , (4.18)
(∂tF̃ )[φ̃2] = −(d − 2) F̃ (φ̃2) + (d − 2) φ̃2 F̃ ′(φ̃2) + k−(d−2) (∂tF )[φ2] . (4.19)

Some comments are in order. From the expressions of ∂tV and ∂tF given in eq. (4.16) and
(4.17) respectively, we note that where ever there is occurrence of φ2, it occurs in combinations
like φ2V ′V ′, φ2V ′F ′, φ2F ′F ′, φ2V ′∂tF ′, φ2F ′∂tF ′, φ2V ′′ and φ2F ′′. Occurrence of such combina-
tions are crucial, as they help us (as is demonstrated in [37]) in proving that minimal coupling
is self consistent. Because of the occurrence of ∂tF̃ ′ in the r.h.s. of (4.16), the system of equations
cannot be solved algebraically for ∂tF̃ . It may be possible to solve it as a differential equation,
but here we shall not pursue this. Rather, we observe that if F̃ and Ṽ are assumed to be finite
polynomials in φ̃2 of the form

Ṽ (φ̃2) =
a∑

n=0

λ̃2n φ̃
2n ; F̃ (φ̃2) =

b∑

n=0

ξ̃2n φ̃
2n . (4.20)

with finite a and b, then ∂tF̃ ′ is also a finite polynomial in the beta functions and it becomes
possible to solve for the beta functions algebraically. As an explicit example, I present below
these equations in the de-Donder gauge (α = 0 and β = 1) in d = 4 with five couplings
truncation (a = 2, b = 1).
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4.2.4. Explicit beta functions

In the previous subsection I have presented equations which in principle determine the beta
functionals for V and F in d = 4 and in the gauge α = 0 and β = 1. At one loop the beta
functionals can be immediately read off from there, but if one wants to get the “improved” beta
functionals (meaning that no approximation is made beyond the truncation), then the system is
too complicated to be solved. It can be solved if I assume that V and F are finite polynomials. I
give here a set of ordinary nonlinear differential equations that determine the beta functions in
a five coupling truncation, including λ0, ξ0, λ2, ξ2, λ4. One can use algebraic methods to extract
the beta functions of the couplings with the help of mathematical packages. This exercise will
also enable us to compare with familiar one loop results. These beta functions had been written
previously in [34], but since there we had left the cutoff generic, it was not possible to compute
the integrals over momenta, which are contained in the expressions Q2 and Q1. 1 Here the
integrals have already been performed, using an optimized cutoff [43], so the beta functions
are in closed form and completely explicit. We use the notation η = ∂tξ0

ξ0
= ∂tξ̃0

ξ̃0
+ 2.

∂tλ̃0 = − 4λ̃0 +
1

32π2

[
2 +

1
1 + 2λ̃2

+
6λ̃0

ξ̃0 − λ̃0

]
+

η

96π2

5ξ̃0 − 2λ̃0

ξ̃0 − λ̃0

, (4.21)

∂tξ̃0 = − 2ξ̃0 +
1

384π2

[
25 − 4

1 + 2λ̃2

− 24ξ̃2
(1 + 2λ̃2)2

+
8ξ̃0(7ξ̃0 − 2λ̃0)

(ξ̃0 − λ̃0)2

]
+

η

1152π2

17ξ̃20 + 18ξ̃0λ̃0 − 15λ̃2
0

(ξ̃0 − λ̃0)2
,

(4.22)

∂tλ̃2 = − 2λ̃2 +
1

48π2

[
9λ̃0(1 + 2ξ̃2)
2(ξ̃0 − λ̃0)2

− 9(2λ̃0 − ξ̃0)(1 + 2ξ̃2)2

2(1 + 2λ̃2)(ξ̃0 − λ̃0)2
− 9(1 + 2ξ̃2)2

2(1 + 2λ̃2)2(ξ̃0 − λ̃0)
− 18λ̃4

(1 + 2λ̃2)2

]

+
η

96π2

[
−2ξ̃2
ξ̃0

+
3ξ̃0(1 + 2ξ̃2)
2(ξ̃0 − λ̃0)2

− 3ξ̃0(1 + 2ξ̃2)2

2(1 + 2λ̃2)(ξ̃0 − λ̃0)2

]

+
1

96π2

∂tξ̃2

ξ̃0

[
2 − 3ξ̃0

ξ̃0 − λ̃0

+
6ξ̃0(1 + 2ξ̃2)

(1 + 2λ̃2)(ξ̃0 − λ̃0)

]
, (4.23)

1Note that the notation used in [34] is opposite to the one used here: parameters with a tilde are dimensionfull,
those without tilde are dimensionless. The beta functions written in [34] contain a number of transcription
errors, which however do not affect the subsequent results.
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∂tξ̃2 =
1

576π2

[
1 + 2λ̃2

ξ̃0 − λ̃0

(

9 +
39ξ̃0
ξ̃0 − λ̃0

+
60ξ̃20

(ξ̃0 − λ̃0)2

)

+
3(3 + 32ξ̃2)
ξ̃0 − λ̃0

− 6ξ̃0(11 + 2ξ̃2)
(ξ̃0 − λ̃0)2

−60ξ̃20(1 + 2ξ̃2)
(ξ̃0 − λ̃0)3

+
216ξ̃2(1 + 2ξ̃2)2

(1 + 2λ̃2)3(ξ̃0 − λ̃0)
+

9[λ̃0(5 − 2ξ̃2) − 2ξ̃0(1 + 2ξ̃2)](1 + 2ξ̃2)
(1 + 2λ̃2)(ξ̃0 − λ̃0)2

+
27(1 + 2ξ̃2)(1 − 10ξ̃2 − 16ξ̃22)

(1 + 2λ̃2)2(ξ̃0 − λ̃0)
+

108ξ̃0ξ̃2(1 + 2ξ̃2)2

(1 + 2λ̃2)2(ξ̃0 − λ̃0)2
+

72λ̃4

(1 + 2λ̃2)2
1 + 12ξ̃2 + 2λ̃2

1 + 2λ̃2

]

+
η

1152π2

[
1 + 2λ̃2

ξ̃0 − λ̃0

(
3 +

18ξ̃0
ξ̃0 − λ̃0

+
20ξ̃20

(ξ̃0 − λ̃0)2

)
+

15ξ̃2
ξ̃0

− 6(1 + ξ̃2)
ξ̃0 − λ̃0

− 10ξ̃0(3 + 4ξ̃2)
(ξ̃0 − λ̃0)2

−20ξ̃20(1 + 2ξ̃2)
(ξ̃0 − λ̃0)3

− 3[λ̃0 − ξ̃0(5 − 4ξ̃2)](1 + 2ξ̃2)
(1 + 2λ̃2)(ξ̃0 − λ̃0)2

+
36ξ̃0ξ̃2(1 + 2ξ̃2)2

(1 + 2λ̃2)2(ξ̃0 − λ̃0)2

]

+
1

1152π2

∂tξ̃2

ξ̃0

[
−15 +

54ξ̃0
ξ̃0 − λ̃0

+
20ξ̃20

(ξ̃0 − λ̃0)2
− 6ξ̃0(7 + 2ξ̃2)

(1 + 2λ̃2)(ξ̃0 − λ̃0)
− 144ξ̃0ξ̃2(1 + 2ξ̃2)

(1 + 2λ̃2)2(ξ̃0 − λ̃0)

]
,

(4.24)

∂tλ̃4 =
1

48π2

[
9

4(ξ̃0 − λ̃0)2

(
5(1 + 2λ̃2)(1 + 4ξ̃2) − (1 + 2ξ̃2)(21 + 62ξ̃2) +

33(1 + 2ξ̃2)3

1 + 2λ̃2

−(1 + 2ξ̃2)3(23 + 24ξ̃2)
(1 + 2λ̃2)2

+
6(1 + 2ξ̃2)4

(1 + 2λ̃2)3

)
+

9ξ̃0(ξ̃2 − λ̃2)2

(ξ̃0 − λ̃0)3

(
6

(1 + 2ξ̃2)2

(1 + 2λ̃2)2
− 10

1 + 2ξ̃2
1 + 2λ̃2

+ 5

)

−72λ̃2λ̃4(1 + 2ξ̃2)(1 − 4λ̃2 + 6ξ̃2)
(ξ̃0 − λ̃0)(1 + 2λ̃2)3

+
9ξ̃0λ̃4

(ξ̃0 − λ̃0)2

(
6

(1 + 2ξ̃2)2

(1 + 2λ̃2)2
− 8

1 + 2ξ̃2
1 + 2λ̃2

+ 3

)
+

216λ̃2
4

(1 + 2λ̃2)3

]

+
η

96π2

[
2ξ̃22
ξ̃20

+
3ξ̃0(ξ̃2 − λ̃2)2

(ξ̃0 − λ̃0)3

(
6

(1 + 2ξ̃2)2

(1 + 2λ̃2)2
− 10

1 + 2ξ̃2
1 + 2λ̃2

+ 5

)

+
3ξ̃0λ̃4

(ξ̃0 − λ̃0)2

(
6

(1 + 2ξ̃2)2

(1 + 2λ̃2)2
− 8

1 + 2ξ̃2
1 + 2λ̃2

+ 3

)]

+
1

96π2

∂tξ̃2

ξ̃0

[
−2ξ̃2
ξ̃0

− 3ξ̃0(ξ̃2 − λ̃2)
(ξ̃0 − λ̃0)2

(
12

(1 + 2ξ̃2)2

(1 + 2λ̃2)2
− 21

1 + 2ξ̃2
1 + 2λ̃2

+ 10

)

−24ξ̃0λ̃4(1 − 4λ̃2 + 6ξ̃2)
(1 + 2λ̃2)2(ξ̃0 − λ̃0)

]
. (4.25)

If one neglects the terms involving η and ∂tξ̃2 in the r.h.s., then the remaining terms are the
one loop beta functions for the couplings. One can recognize among them some familiar terms.
The term containing −18λ̃4 in the first line of eq. (4.23) and the term containing 216λ̃2

4 in the
third line of eq. (4.25) are the familiar beta functions of the mass and of the coupling in φ4

theory in flat space. The term containing 72λ4(1 + 12ξ2) in the third line of eq. (4.24) is also
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known from earlier calculations [78, 79].
Notice the ubiquitous appearance of the factors 1/(1 + 2λ̃2), which represent threshold ef-

fects for the contributions of scalar loops: for k2 ( λ2, λ̃2 ' 1 and the denominator can be
approximated by 1, whereas for k2 ' λ2, λ̃2 ( 1 and the term is suppressed. The denom-
inators ξ̃0 − λ̃0 have a somewhat similar effect. When written in terms of the more familiar
variables Λ and G defined in eq. (4.66), they give rise to denominators (1 − 2Λ̃). These can
be approximated by 1 when Λ ' k2 but they vanish when the dimensionless cosmological
constant Λ̃ tends to 1/2, corresponding to an infrared singularity in the RG trajectories. This is
well documented in the literature.
The term proportional to 9ξ̃0λ̃4 in the third line of eq. (4.25) is the leading gravitational

correction (of order G̃) to the running of the scalar self coupling. Note that for small λ̃0, λ̃2 and
ξ̃2, the denominator and the bracket to its right can be expanded as 1 + O(λ̃0) + O(λ̃2) + O(ξ̃2).
2 The order of magnitude and sign of this term agree with the calculations done in [74], in the
gauge α = 0. One should not expect the results to agree exactly, because this term is gauge
dependent and the calculation was done in a different gauge (namely β = −1). Notice that this
term is proportional to λ̃4, thus when we set λ̃4 to zero, the beta function for λ̃4 does not get
any contribution from gravity, in agreement with the general statement that minimal coupling
is self consistent. We observe that the same phenomenon happens in the case of the Yukawa
coupling [81] and of the gauge coupling [82].

4.3. The Gaussian Matter Fixed Point

4.3.1. Minimal coupling is self consistent
We assume that V and F are real analytic so that they can be Taylor expanded around φ2 = 0.
A given V and F define a FP if the corresponding dimensionless potentials satisfy ∂ tṼ = 0 and
∂tF̃ = 0. Because of analyticity, this is equivalent to requiring that all the derivatives of ∂tṼ
and ∂tF̃ with respect to φ̃2, evaluated at φ̃2 = 0 are zero. Taking n derivatives of eq. (4.18) and
eq. (4.19) with respect to φ̃2 we get

0 = (∂tṼ )(n)(0) = ((d − 2)n − d) Ṽ (n)(0) + (k−d ∂tV )(n)(0) ; (4.26)
0 = (∂tF̃ )(n)(0) = (n − 1)(d − 2) F̃ (n)(0) + (k−(d−2) ∂tF )(n)(0) . (4.27)

where in the last two terms the expressions in brackets can be thought of as functions of φ̃2. We
can rewrite them as
∂n

∂(φ̃2)n
(k−d∂tV ) = k(d−2)n−d ∂n

∂(φ2)n
(∂tV ) ;

∂n

∂(φ̃2)n
(k−(d−2)∂tF ) = k(d−2)(n−1) ∂n

∂(φ2)n
(∂tF ) .

We now make the following Ansatz:

V = kd λ̃0 , F = kd−2 ξ̃0 , (4.28)
2on a related note, we also observe that the first term in ∂tλ̃4, which is proportional to G̃2, vanishes when we set

λ̃2 = 0 and ξ̃2 = 0.
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where λ̃0 and ξ̃0 are numbers to be determined. This corresponds to putting a = b = 0 in (4.20),
or in other words to setting to zero all scalar self couplings. We are assuming here that all the
derivatives of V and F at φ2 = 0 vanish, so that V and F are just constants. If a FP of this
type exists, we call it a Gaussian Matter Fixed Point (GMFP). In order to check that this ansatz
defines a FP we need to show that eq. (4.26) and (4.27) are identically satisfied for all n ≥ 1,
while for n = 0 they determine the numbers λ̃0 and ξ̃0.
For n ≥ 1 the first term on the r.h.s. of eq. (4.26) and (4.27) vanishes because of the ansatz.

There remains to show that ∂n

∂(φ2)n (∂tV ) and ∂n

∂(φ2)n (∂tF ) are zero at φ2 = 0. In d = 4 one can
check this explicitly by inspecting eq. (4.16) and eq. (4.17). The crucial point to observe is that
in ∂tV and ∂tF , whenever φ2 appears explicitly, it is multiplied by some derivative of V or F .
So when the derivative removes φ2, what remains is zero because of the ansatz, and otherwise
it is zero because there remains some positive power of φ2.
In other dimensions this crucial property remains valid, because it is true either for the sec-

ond variations (in the case of the transverse traceless tensor and transverse vector components)
or for thematrix trace of the second variations, in the case of the scalars. Since the beta function-
als are obtained by taking functional traces of these expressions, this property will go through
for them as well i.e. for n ≥ 1 the eq. (4.26) and (4.27) are identically satisfied. For a detailed
proof see [37].
Thus in any dimension the ansatz works for all n ≥ 1. There remains to solve the equations

for the constant terms in V and F , which are given by λ̃0 and ξ̃0. We are going to do this
numerically in section 4.4. In the meanwhile we assume that such a solution exists, and we
study the properties of the linearized flow around it.

4.3.2. Linearized Flow around GMFP

To study the linearized flow around GMFP it will be convenient to Taylor expand V and F as
follows:

V (φ2) =
∞∑

n=0

λ2n φ
2n ; F (φ2) =

∞∑

n=0

ξ2n φ
2n . (4.29)

We define dimensionless couplings λ̃2n = k−d+(d−2)nλ2n and ξ̃2n = k−(d−2)(1−n)ξ2n, in such a
way that the dimensionless potentials can be expanded as:

Ṽ (φ̃2) =
∞∑

n=0

λ̃2n φ̃
2n ; F̃ (φ̃2) =

∞∑

n=0

ξ̃2n φ̃
2n . (4.30)

To obtain the running of dimensionless couplings we take derivatives of eq. (4.18) and eq.
(4.19) with respect to φ̃2 and use eq. (4.15)

∂tλ̃2n =
1
n!
δn∂tṼ

δ(φ̃2)n

∣∣∣∣∣
φ̃2=0

; ∂tξ̃2n =
1
n!
δn∂tF̃

δ(φ̃2)n

∣∣∣∣∣
φ̃2=0

. (4.31)
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Because of the presence of t-derivative on the RHS of FRGE, we do not obtain the beta functions
of dimensionless couplings directly, rather we get algebraic equations for them, solving which
one get the full beta functions.
Having defined the dimensionless couplings, we now define the stability matrix to be the

matrix of derivatives of the dimensionless beta functions with respect to the dimensionless
couplings at the FP. By definition it is a tensor quantity in the theory space. It will be convenient
to write V0 = V and V1 = −F . One can then define the corresponding dimensionless potentials
as Ṽa = kd−2a Va, where a is either 0 or 1. Then the stability matrix is given by,

(Mij)ab =
δ
(

1
i!∂tṼ

(i)
a (0)

)

δ
(

1
j! Ṽ

(j)
b (0)

)

∣∣∣∣∣∣
FP

. (4.32)

From the above definition of the stability matrix we note that the couplings get arranged in the
following order: λ0, ξ0, λ2, ξ2, λ4, ξ4 . . .. Then the matrix M at the GMFP has the following
form: 



M00 M01 0 0 · · ·
0 M11 M12 0 · · ·
0 0 M22 M23 · · ·
0 0 0 M33 · · ·
· · · · · · · · · · · · · · ·




, (4.33)

where each entry is a 2 × 2matrix of the form

Mij =





∂βλ̃
(2i)

∂λ̃(2j)

∂βλ̃
(2i)

∂ξ̃(2j)

∂βξ̃
(2i)

∂λ̃(2j)

∂βξ̃
(2i)

∂ξ̃(2j)



 . (4.34)

Moreover the various non zero entries ofM are related to each other by the following recursion
relations (in d-dimensions):

Mii = (d − 2) i + M00 ; Mi,i+1 = (i + 1) (2i + 1)M01 , (4.35)

where

M00 =
(

−d 0
0 −(d − 2)

)
+

(
δMλ̃0λ̃0

δMλ̃0 ξ̃0
δMξ̃0λ̃0

δMξ̃0 ξ̃0

)

; M01 =

(
δMλ̃0λ̃2

δMλ̃0ξ̃2
δMξ̃0λ̃2

δMξ̃0ξ̃2

)

.

(4.36)
We can prove these facts for the one loop beta functions, i.e. neglecting the t-derivatives

of the couplings on the r.h.s. of FRGE. Using this we note that the running of dimensionless
potentials can be written as follows:

∂tṼa = −(d − 2a) Ṽa + (d − 2) φ̃2 Ṽ ′
a + H̃a

(
Ṽb, φ̃

2 Ṽ ′
b Ṽ ′

c , 2Ṽ ′
b + 4φ̃2 Ṽ ′′

b

)
. (4.37)
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We have indicated that the one loop beta functional depends on φ̃2 only through the three types
of combinations indicated as the arguments for H̃a. This can be verified in d = 4 by inspection
of eq. (4.16) and eq. (4.17), when one drops the terms proportional to ∂tF and ∂tF ′ in the r.h.s.
The properties of the stability matrix given above follow by taking successive derivatives of
∂tṼa with respect to φ̃2 at φ̃2 = 0.
The i = 0 entries of eq. (4.32) can be calculated by setting φ̃2 = 0 in eq. (4.37):

∂tṼa(0) = −(d − 2a) Ṽa(0) + H̃a(Ṽa(0), 2Ṽ ′
a(0)) . (4.38)

Since ∂tṼa(0) depends only on Ṽa(0) and Ṽ ′
a(0), in eq. (4.32) for i = 0, only j = 0, 1 will be non

zero. ThusM00 andM01 are given by,

(M00)ab = −(d − 2a) δab +
δH̃a(Ṽc(0), 2Ṽ ′

c (0))
δ Ṽb(0)

∣∣∣∣∣
GMFP

; (M01)ab =
δH̃a(Ṽc(0), 2Ṽ ′

c (0))
δ Ṽ ′

b (0)

∣∣∣∣∣
GMFP

.

(4.39)
Nowwe take first derivative of ∂tṼa with respect to φ̃2. This gives,

∂tṼ
′
a = −(d − 2a)Ṽ ′

a + (d − 2)Ṽ ′
a + (d − 2)φ̃2Ṽ ′′

a +
δH̃a

δṼc
Ṽ ′

c

+
δH̃a

δ(φ̃2Ṽ ′
c Ṽ

′
d)

(Ṽ ′
c Ṽ ′

d + φ̃2Ṽ ′′
c Ṽ ′

d + φ̃2Ṽ ′′
d Ṽ ′

c ) +
δH̃a

δ(2Ṽ ′
c + 4φ̃2Ṽ ′′

c )
(2Ṽ ′′

c + 4Ṽ ′′
c + 4φ̃2Ṽ ′′′

c ) .(4.40)

When we set φ̃2 = 0, we note from the above equation that ∂tṼ ′
a(0) depends only on Ṽa(0),

Ṽ ′
a(0) and Ṽ ′′

a (0). We use this in eq. (4.32) to calculate the i = 1 entries of the stability matrix.
We note that M1j = 0 for all j ≥ 3. Now we find the remaining possible non zero entries. For

j = 0, we note that the dependence on Ṽa(0) is present only in δH̃a

δṼc

∣∣∣
φ̃2=0

, δH̃a

δ(φ̃2Ṽ ′
c Ṽ ′

d)

∣∣∣∣
φ̃2=0

and

δH̃a

δ(2Ṽ ′
c +4φ̃2Ṽ ′′

c )

∣∣∣
φ̃2=0

. But each of these terms are multiplied either with Ṽ ′
a or Ṽ ′′

a , so when we

calculate the stability matrix, these terms will not contribute due to GMFP conditions (Ṽ (i)
a = 0

for all i ≥ 1). Thus we conclude thatM10 = 0.
For j = 1, we take the derivative of ∂tṼ ′

a(0) with respect to Ṽ ′
b . Thus using the condition of

GMFP and eq. (4.39) we find,

(M11)ab = −(d − 2a)δab + (d − 2)δab +
δH̃a

δṼb

∣∣∣∣∣
φ̃2=0

= (d − 2)δab + (M00)ab , (4.41)

while for j = 2 we take derivatve of ∂tṼ ′
a(0) with respect to Ṽ ′′

b /2 and use eq. (4.39). Thus we
get

(M12)ab = 2
δH̃a

δ(2Ṽ ′
c )

∣∣∣∣∣
φ̃2=0

· 6δbc = 6 (M01)ab . (4.42)
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Thus we see that for i = 1we have,

M10 = 0 ; M11 = (d − 2) · 1 + M00 ; M12 = 2 · 3M01 ; M1j = 0 ,∀j ≥ 3 . (4.43)

In order to understand the structure of the lines i ≥ 2 we will proceed by induction. We
assume that the i-th derivative has the following structure,

(∂tṼa)(i) = −(d − 2a)Ṽ (i)
a + (d − 2)

(
φ̃2 Ṽ (i+1)

a + i Ṽ (i)
a

)
+

{
· · · + δH̃a

δṼc
Ṽ (i)

c

+
δH̃a

δ(φ̃2 Ṽ ′
c Ṽ ′

d)

(
φ̃2 Ṽ ′

c Ṽ ′
d

)(i)
+

δH̃a

δ(2 Ṽ ′
c + 4φ̃2 Ṽ ′′

c )

(
2 Ṽ ′

c + 4φ̃2 Ṽ ′′
c

)(i)
}

, (4.44)

where the (· · · ) denote expressions having at least two factors of derivatives of potentials,
which are irrelevant when calculating the entries of stability matrix. Clearly this property is
true for i = 1. We show that if it holds for a given value of i, then it also holds for i + 1. Thus
we take one more derivative eq.(4.44) and we find

(∂tṼa)(i+1) = −(d − 2a)Ṽ (i+1)
a + (d − 2)

(
φ̃2 Ṽ (i+2)

a + (i + 1) Ṽ (i+1)
a

)
+

{
· · · + δH̃a

δṼc
Ṽ (i+1)

c

+
δ2H̃a

δṼc δṼd

Ṽ (i)
c Ṽ ′

d +
δ2H̃a

δṼe δ(φ̃2 Ṽ ′
c Ṽ ′
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c )
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c Ṽ ′
d

)(i)

+
δ2H̃a

δ(φ̃2 Ṽ ′
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c ) δ(2 Ṽ ′
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. (4.45)

Aside from the new terms containing two factors of derivatives of the potentials, which can be
neglected for our purposes, the remaining terms have the same structure as eq. (4.44). Thus by
induction eq. (4.44) holds for all i.
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We can now use this result to calculate the entries of the stability matrix in the i-th row.
Using

(
2 Ṽ ′

a + 4φ̃2 Ṽ ′′
a

)(i)
= 2 (2 i + 1) Ṽ (i+1)

a + 4φ̃2 Ṽ (i+2)
a , (4.46)

we note that at φ̃2 = 0 and using the condition of GMFP for calculating the stability matrix we
have,

Mij = 0 ,∀j ≤ (i − 1) ; Mii = (d − 2) i + M00 ;
Mi,i+1 = (i + 1) (2 i + 1)M01 ; Mij = 0 ,∀j ≥ (i + 2) . (4.47)

This completes the proof of our statements in the one loop approximation. It is difficult to
extend this proof to the exact equation, but we see in finite truncations that the previous prop-
erties of the stability matrix remain true.
Having established the properties of stability matrix we would like to compute its eigenval-

ues. The good feature of the block structure of stability matrix indicated in eq. (4.33) is that the
eigenvalues are given just by the diagonal blocks. Since the consecutive diagonal blocks just
differ by d−2, the eigenvalues of the consecutive diagonal blocks ofM also differ by d−2. This
is a very strong result, because it implies that, at a GMFP, the eigenvalues of M are all deter-
mined by the eigenvalues ofM00. Furthermore, the off diagonal blocks ofM are all determined
by M01, so knowing M00 and M01 one can also determine all the eigenvectors. This is useful
to understand the mixing among various operators at the FP. The smallest truncation that is
required to calculate bothM00 andM01 is when we retain terms up to φ2 in each potential.

4.4. Numerical Results

4.4.1. The GMFP in d = 4.
We now look for GMFP in various dimensions and calculate the critical exponents of the sys-
tem, which are defined to be the opposites of the eigenvalues of M , i.e. θ i = −λi, where λi is
the eigenvalue. As explained in the previous section, it is enough to calculate the eigenvalues
ofM00. We do this task first in d = 4.
In d = 4 for De-donder gauge we get the following FP equation,

24 λ̃0

(
16π2 +

1
λ̃0 − ξ̃0

)
= 19, (4.48)

(265 − 2304π2 ξ̃0) ξ̃0 + (127 + 2304π2 ξ̃0) λ̃0 =
160 λ̃2

0

λ̃0 − ξ̃0
. (4.49)

On solving these, the only real solution that we get is

λ̃∗0 = 0.00862 ; ξ̃∗0 = 0.02375 . (4.50)
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We now compute the critical exponents θ of the stability matrix in this gauge. The relations
given in eq. (4.35) between the various nonzero entries of the stability matrix are independent
of the gauge. However the entires of M00 and M01 are gauge dependent. For d = 4 eq. (4.35)
reduces to,

Mii = 2 i + M00 ; Mi,i+1 = (i + 1) (2 i + 1)M01 . (4.51)

In De-Donder gauge for d = 4, the entries ofM00 are

Mλ̃0λ̃0
=

1
32π2

1
Θ
ξ̃0

[
ξ̃20

{
9667 + 3456π2ξ̃0(169 + 2304π2 ξ̃0)

}
+ λ̃2

0

{
3279 + 1152π2ξ̃0(275 + 6912π2ξ̃0)

}

− 18λ̃0ξ̃0
{
551 + 128π2ξ̃0(331 + 6912π2ξ̃0)

}]
, (4.52)

Mλ̃0ξ̃0
=

1
32π2

1
Θ

[

−48384λ̃4
0 − 443520π2 ξ̃40 + λ̃0ξ̃

2
0

{
−9667 + 2304π2 ξ̃0(161 − 3456π2ξ̃0)

}

− 3λ̃3
0

{
1093 + 4608π2 ξ̃0(1 + 576π2ξ̃0)

}
+ 18λ̃2

0ξ̃0
{
551 + 192π2ξ̃0(−1 + 4608π2ξ̃0)

}]
,

(4.53)

Mξ̃0λ̃0
=

12
Θ

[
ξ̃20

{
−252λ̃0ξ̃0(3 + 128π2ξ̃0) + 3λ̃2

0(41 + 1536π2 ξ̃0) + ξ̃20(593 + 27648π2 ξ̃0)
}]

,

(4.54)

Mξ̃0ξ̃0
=
−3
Θ

[
−135λ̃4

0 + 1309ξ̃40 + 12λ̃3
0ξ̃0(145 + 1536π2 ξ̃0) + 36λ̃0ξ̃

3
0(77 + 3072π2 ξ̃0)

− 6λ̃2
0ξ̃

2
0(811 + 23504π2 ξ̃0)

]
. (4.55)

While the entries ofM01 are

Mλ̃0λ̃2
=

1
16π2

1
Θ

[
ξ̃20(37 − 1152π2ξ̃0) + 2λ̃0ξ̃0(−5 + 1152π2ξ̃0) − λ̃2

0(7 + 1152π2 ξ̃0)

]
, (4.56)

Mλ̃0ξ̃2
= − 3

4π2

(2λ̃0 − 5ξ̃0)(λ̃0 − ξ̃0)
Θ

, (4.57)

Mξ̃0λ̃2
=

24ξ̃0(λ̃0 − ξ̃0)2

Θ
, (4.58)

Mξ̃0ξ̃2
= − 72ξ̃0(λ̃0 − ξ̃0)2

Θ
, (4.59)
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where

Θ =
[
−18λ̃0ξ̃0(1 + 128π2ξ̃0) + 3λ̃2

0(5 + 384π2ξ̃0) + ξ̃20(−17 + 1152π2 ξ̃0)
]2

. (4.60)

The relations eq. (4.51) tells that the critical exponents of consecutive diagonal blocks will
differ by 2. In the truncationwherewe keep terms till φ2 in each potential, the critical exponents
are,

2.143 ± 2.879i , 0.143 ± 2.879i (4.61)

The critical exponents 2.143 ± 2.879i correspond to eigenvalues ofM00, while the critical expo-
nents 0.143 ± 2.879i which are shifted by 2 correspond to the eigenvalues ofM11. This justifies
our claim. The eigenvectors in this truncation are





0.3557 ± 0.3776i
0.8549

0
0



 ,





(−18.059 ± 7.310i) × 10−4

(−30.723 ± 10.763i) × 10−4

0.3557 ± 0.3776i
0.8549



 , (4.62)

where the first complex conjugate pair of eigenvector correspond to critical exponents 2.143 ±
2.879i, while the second pair correspond to critical exponents 0.143 ± 2.879i.
We then looked for GMFP in other gauges. In d = 4we consider various values of the gauge

parameters α and β. To study the gauge dependence we considered 50 different values of α
in the range 0 to 1.225 at step of 0.025, and 25 different values of β in the range −1 to 1.4 at
interval of 0.1. For each combination of α and β we solved the FP equation obtained for λ̃0 and
ξ̃0. In general, this produces a set of FPs. In order to choose the correct GMFP from that set, we
plot all the real FPs to see which one is continuously followed in other gauge values and which
ones are spurious. For example one can take any value of β, and plot all the real FPs for various
values of α. Some FPs don’t exits for all values of α, and are assumed to be truncation artifacts.
Only one GMFP exists for all values, and is continuous. This observation of continuity in α and
β is useful to write a code for selecting the right GMFP for various gauges. After calculating the
GMFPwe calculate the critical exponents ofM00. We then plot the GMFP and critical exponents
against the various gauge values and generate 3D graphs. In d = 4we obtain the graphs shown
in Fig. (4.1). We note that the existence of the FP has been actually verified in a much larger
range of values of α and β.

4.4.2. The GMFP in other Dimensions
We now look for the GMFP in other dimensions. For any d > 2, in De-donder gauge, the FP
equation for λ̃0 and ξ̃0 is given by,

2dλ̃0 +
(3d − 2)λ̃0 + (d − 2)(d2 + d − 1)ξ̃0

(4π)d/2Γ
(
2 + d

2

)
(λ̃0 − ξ̃0)

= 0 , (4.63)

A λ̃2
0 + B λ̃0ξ̃0 + C ξ̃20

(λ̃0 − ξ̃0)
+ D (λ̃0 − ξ̃0) = 0 , (4.64)
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Figure 4.1.: The gauge dependence of GMFP and critical exponents in d = 4. For conve-
nience of depicting the values in plot, we have rescaled λ̃∗0 and ξ̃∗0 by 1000 and
100 respectively.

where

A = −(d − 1)(d3 + 2d2 + 36d + 24) ,

B = −(d − 1)(d5 − 17d3 − 38d2 − 96d − 48) ,

C = (d6 − 13d5 + 32d4 − 104d3 + 72d2 + 36d + 24) ,

D = 24d(d − 1)(d − 2)(4π)d/2Γ
(

2 +
d

2

)
. (4.65)

Solving these equations we find that in other dimensions, it is possible to have more than one
real solution. But when we plot all the real the solutions against various d in a graph, we notice
that not all solutions exist in all dimensions. Only one solution exists in all dimensions, and
is continuous in d. Besides, the ones which don’t exist in all dimensions, have large critical
exponents and are probably unphysical. In Fig.2 we plot the position of the GMFP for 2 < d ≤
11, both in terms of λ̃0 and ξ̃0 and of the more familiar dimensionless cosmological constant
and Newton constant

λ̃0 =
2Λ̃

16πG̃
; ξ̃0 =

1
16πG̃

. (4.66)

After having found the GMFP in various dimensions, we set to calculate their critical expo-
nents. In arbitrary dimensions, the various blocks of the stability matrix obey eq. (4.35). We
plot the critical exponents of M00 for various dimensions. From the graph Fig. (4.3) we note
that around d = 2.8 there is bifurcation. Below d < 2.8 the critical exponents are no more
complex.
A summary of the properties of the GMFP in various dimensions is given in table (4.1).

Notice that for all the dimensions considered, the real part of the critical exponents is greater
than d − 2 and less than 2(d − 2). As a result, in all these cases there are exactly two pairs of
complex conjugate critical exponents with positive real part, i.e. four relevant directions.
Finally we studied the gauge dependence in different dimensions in the same way as we

did in d = 4, for example in d = 6 we obtain the graphs shown in Fig. (4.4).
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Figure 4.2.: In the first graph we plot the GMFP λ̃∗0 and ξ̃∗0 in various dimensions. In the second
plot we calculate the corresponding FP values of the cosmological constant Λ̃∗ and
Newton’s constant G̃∗ in various dimensions.
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Figure 4.3.: Critical exponents at the GMFP in various dimensions. The left panel shows the
real part of the critical exponents, the right panel shows the imaginary part of the
critical exponents. We note that below d = 2.8 the critical exponents becomes real.

4.5. Other Non trivial Fixed Points
Having discussed the existence and properties of the GMFP, we can ask ourselves whether
there exist other FP where the scalar field has nontrivial self-interactions. We look for (trun-
cated) polynomial FP potentials of the form

Ṽ (φ̃2) =
a∑

n=0

λ̃2n φ̃
2n ; F̃ (φ̃2) =

b∑

n=0

ξ̃2n φ̃
2n . (4.67)

with finite a ≥ 1, b ≥ 0. Such potentials are known not to exist in a pure scalar theory in four
dimensions [83], so we consider it unlikely that they exist in the presence of gravity, In fact



90 CHAPTER 4. RG FLOW OF SCALAR COUPLED TO EINSTEIN-HILBERT GRAVITY

d λ̃∗0 ξ̃∗0 Λ̃∗ G̃∗ θ1 θ2
2.001 4.968 ×10−5 2.386 ×102 1.041 ×10−7 8.339 ×10−5 2.001 0.001
3 1.605 ×10−2 1.047 ×10−1 7.666 ×10−2 1.900 ×10−1 1.627 + 0.754 i 1.627 - 0.754 i
4 8.620 ×10−3 2.375 ×10−2 1.814 ×10−1 8.375 ×10−1 2.143 + 2.879 i 2.143 - 2.879 i
5 2.669 ×10−3 5.744 ×10−3 2.323 ×10−1 3.463 3.236 + 4.996 i 3.236 - 4.996 i
6 6.230 ×10−4 1.207 ×10−3 2.581 ×10−1 1.648 ×10 4.818 + 7.039 i 4.818 - 7.039 i
7 1.225 ×10−4 2.235 ×10−4 2.740 ×10−1 8.900 ×10 6.744 + 9.004 i 6.744 - 9.004 i
8 2.133 ×10−5 3.738 ×10−5 2.853 ×10−1 5.322 ×102 8.945 + 10.904 i 8.945 - 10.904 i
9 3.380 ×10−6 5.747 ×10−6 2.941 ×10−1 3.462 ×103 11.396 + 12.748 i 11.396 - 12.748 i
10 4.960 ×10−7 8.228 ×10−7 3.014 ×10−1 2.418 ×104 14.089 + 14.537 i 14.089 - 14.537 i
11 6.817 ×10−8 1.107 ×10−7 3.079 ×10−1 1.797 ×105 17.025 + 16.261 i 17.025 - 16.261 i

Table 4.1.: Position of GMFP and critical exponents for various dimensions.
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Figure 4.4.: The gauge dependence of GMFP and critical exponents in d = 6. For convenience of
depicting the values in plot, we have rescaled λ̃∗0 and ξ̃∗0 by 104 and 103 respectively.

the outcome of our numerical searches is that no such FP’s appear to exist in dimensions 4, 5
and 6. (Some FP do appear in certain truncations but not in others, so they are likely to be just
truncation artifacts.)
The situation is somewhat different in three dimensions. We know that pure scalar theory

in d = 3 has the Wilson-Fisher FP [84]. This FP can be seen in our calculations by taking the
limit G̃ → 0 (where Newton’s constant G is related to ξ0 = 1/16πG) and λ̃0 → 0, in which case
gravity decouples. Solving the FP equations of the scalar field in the LPA, truncated to order
φ4, one gets λ̃∗2 = −0.0385 and λ̃∗4 = 0.3234, with critical exponents θ1 = 1.843 and θ2 = −1.176.
(These are not very good values, but we quote them here for the sake of comparison with what
we find in the presence of gravity.) The FP persists when one goes to higher truncations.
One wonders whether there exists a “gravitationally dressed” Wilson-Fisher FP, with non-

vanishing G̃, namely a FP where gravity and the scalar simultaneously have nontrivial inter-
actions. Again in certain truncations one finds various FPs which turn out to be truncation
artifacts. There seems however to exist one genuine FP: we find it in all truncations where
a ≥ b, and it has very similar properties in all truncations. To explore its properties we have



4.5. OTHER NON TRIVIAL FIXED POINTS 91

looked in two directions: increasing simultaneously a and b, or keeping b = 0 and increasing a.

(a, b) λ̃∗0 λ̃∗2 λ̃∗4 λ̃∗6 λ̃∗8 ξ̃∗0 ξ̃∗2 ξ̃∗4 ξ̃∗6 ξ̃∗8
(2,1) 0.0196 -0.1646 -0.1595 0.1088 -0.03108
(3,1) 0.01994 -0.1758 -0.1958 -0.2796 0.1096 -0.03810
(4,1) 0.02002 -0.1783 -0.2041 -0.3466 -0.5579 0.1098 -0.03969
(2,2) 0.01894 -0.1408 -0.1241 0.1071 -0.01122 0.04297
(3,2) 0.01971 -0.1680 -0.1848 -0.2879 0.1089 -0.03131 0.01731
(4,2) 0.01988 -0.1735 -0.1975 -0.3544 -0.5687 0.1093 -0.03542 0.01121
(3,3) 0.01911 -0.1469 -0.1469 -0.1935 0.1074 -0.01420 0.05017 0.1617
(4,3) 0.01953 -0.1618 -0.1768 -0.3083 -0.6569 0.1084 -0.02571 0.03197 0.1102
(4,4) 0.01923 -0.1512 -0.1572 -0.2496 -0.4911 0.1077 -0.01728 0.04732 0.1765 0.3868

Table 4.2.: Position of Nontrivial FP in d = 3 for various truncations.

(a, b) θ′1 θ′′1 θ3 θ4 θ5 θ6 θ7
(2,1) 1.648 0.592 -0.956 -3.902 -13.46
(3,1) 1.650 0.554 -1.079 -3.776 -11.20 -29.397
(4,1) 1.650 0.543 -1.105 -3.673 -10.02 -24.01 -49.31
(a, b) θ′1 θ′′1 θ′2 θ′′2 θ5 θ6 θ7 θ8
(2,2) 1.649 0.656 -7.979 1.261 -0.559 -3.192
(3,2) 1.652 0.589 -7.933 3.909 -0.835 -3.578 -27.67
(4,2) 1.652 0.570 -7.635 4.083 -0.898 -3.626 -22.64 - 47.78
(a, b) θ′1 θ′′1 θ′2 θ′′2 θ′3 θ′′3 θ7 θ8 θ9
(3,3) 1.649 0.641 -6.703 2.097 -14.12 8.990 -0.512 -2.991
(4,3) 1.651 0.603 -6.448 3.343 -13.94 10.91 -0.657 -3.287 -42.28
(a, b) θ′1 θ′′1 θ′2 θ′′2 θ′3 θ′′3 θ′3 θ′′3 θ9 θ10
(4,4) 1.650 0.630 -5.958 2.008 -12.88 7.966 -20.07 19.03 -0.513 -2.977

Table 4.3.: Critical exponents at Non trivial FP in d = 3 for various truncations. When the
critical exponents are complex we write them in the form θ ′- ± iθ′′-

Tables (4.2) and (4.3) give the position and critical exponents of this FP for a ≥ b and b ≤ 4.
One notices that λ̃∗2n < 0 for all n > 0 in the table. It is computationally demanding to continue
in this direction, so to have some indication on the sign of λ̃∗2n for higher n we considered
a simple truncation where F̃ is constant, i.e. ξ̃n = 0 for n > 0. In this case we could push
the truncation up to a = 8. The results are given in tables (4.4) and (4.5). One sees that the
coefficients of the potential are indeed all negative. Furthermore, the coefficients grow in
absolute value, so the series for V has a very small radius of convergence. This is similar to
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(a, b) λ̃∗0 λ̃∗2 λ̃∗4 λ̃∗6 λ̃∗8 λ̃∗10 λ̃∗12 λ̃∗14 λ̃∗16 ξ̃∗0
(1,0) 0.01813 -0.1088 0.1060
(2,0) 0.01880 -0.1343 -0.1561 0.1065
(3,0) 0.01894 -0.1395 -0.1942 -0.2633 0.1066
(4,0) 0.01898 -0.1407 -0.2032 -0.3284 -0.4998 0.1066
(5,0) 0.01899 -0.1410 -0.2053 -0.3437 -0.6182 -0.9604 0.1066
(6,0) 0.01899 -0.1411 -0.2058 -0.3472 -0.6452 -1.180 -1.826 0.1066
(7,0) 0.01899 -0.1411 -0.2059 -0.3479 -0.6511 -1.228 -2.229 -3.380 0.1066
(8,0) 0.01899 -0.1411 -0.2059 -0.3481 -0.6524 -1.238 -2.313 -4.091 -5.977 0.1066

Table 4.4.: Position of Nontrivial FP in d = 3 for other truncations.

(a, b) θ′1 θ′′1 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10
(1,0) 1.659 0.753 -1.699
(2,0) 1.675 0.745 -1.594 -10.59
(3,0) 1.679 0.742 -1.485 -8.384 -22.41
(4,0) 1.68 0.741 -1.434 -7.341 -18.19 -36.96
(5,0) 1.68 0.741 -1.414 -6.84 -15.93 -31.12 -54.10
(6,0) 1.68 0.741 -1.407 -6.609 -14.70 -27.47 -47.25 -73.60
(7,0) 1.68 0.740 -1.405 -6.509 -14.02 -25.287 -42.062 -66.663 -95.172
(8,0) 1.68 0.740 -1.405 -6.469 -13.67 -23.94 -38.77 -59.72 -89.58 -118.4

Table 4.5.: Critical Exponents at Non trivial FP in d = 3 for other truncations.

the situation discussed in [83], making the FP unphysical. So we conclude that also in three
dimensions there is probably no physically viable FP besides the GMFP.

4.6. Conclusions
The results given here confirm and extend the findings of [34]. The GMFP is found to exist also
in other dimensions and in other gauges, and (with the possible exception of d = 3) there does
not seem to be other FP’s with nontrivial scalar self-interactions. In four dimensions this agrees
with the findings of [83].
These results may be applied in various settings. The beta functions given in section 4.2.4

contain the full dependence on the dimensionless parameters λ̃0, ξ̃0, λ̃2, ξ̃2, λ̃4, without making
any assumption on the value of these couplings (which in the case of the first three means
the ratio between the dimensionfull couplings λ0, ξ0, λ2 and the RG scale k). In particular,
threshold effects are taken into account by the denominators 1+2λ̃2 and ξ̃0− λ̃0. One can easily
recognize among various terms the ones that are obtained in perturbative approximations, but
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we emphasize that the derivation of these beta functions using the FRGE does not require that
the couplings be small.
The most natural application of these results seems to be in the context of early cosmology,

where a scalar field is used to drive inflation. In an asymptotic safety context, it would be
attractive to obtain inflation as a result of FP behavior along the lines of [85, 86]. In fact the
energy scale involved is sufficiently high that one may expect quantum gravity effects to play
some role. Alternatively, it would also be of interest to apply the flow equations derived here
to the scalar tensor theory, e.g. to improve the results of [79].
According to various speculations, quantum effects may play a role also on very large scales,

and then again the RG flow of scalar-tensor theory could become relevant. In this connection I
recall that scalar-tensor theories of a different type also arise in the conformal reduction of pure
gravity, and have been studied from the FRGE point of view in [61, 66].
I have mentioned in the beginning of this chapter, that scalar-tensor theories can be refor-

mulated classically also as pure gravity theories with f(R) type actions, and one may wonder
whether there is a relation also between their RG flows. In particular one could ask whether the
FP that was found in [30, 31, 64] has a counterpart in the equivalent scalar-tensor theory. At first
sight one would think that this is not the case, because the choice of cutoff breaks the classical
equivalence between these theories. Still, this point deserves a more detailed investigation.
Another direction for research is the inclusion of other matter fields. As discussed in the in-

troduction, if asymptotic safety is indeed the answer to the UV issues of quantum field theory,
then it will not be enough to establish asymptotic safety of gravity: one will have to establish
asymptotic safety for a theory including gravity as well as all the fields that occur in the stan-
dardmodel, and perhaps even other ones that have not yet been discovered. Ideally onewould
like to have a unified theory of all interactions including gravity, perhaps a GraviGUT along the
lines of [80]. More humbly one could start by studying the effect of gravity on the interactions
of the standard model or GUTs. Fortunately, for some important parts of the standard model
it is already known that an UV Gaussian FP exists, so the question is whether the coupling to
gravity, or some other mechanism, can cure the bad behavior of QED and of the Higgs sector.
That this might happen had been speculated long ago [73]; see also [78] for some detailed cal-
culations. It seem that the existence of a GMFP for all matter interactions would be the simplest
solution to this issue. In this picture of asymptotic safety, gravity would be the only effective
interaction at sufficiently high scale. The possibility of asymptotic safety in a nonlinearly re-
alized scalar sector has been discussed in [87]. Aside from scalar tensor theories, the effect of
gravity has been studied in [82, 88] for gauge couplings and [81] for Yukawa couplings.





Chapter 5

RG flow of Scalar Coupled to F(R) Grav-
ity

In this chapter I will study renormalization group flow of a class of scalar-tensor theorieswhere
the scalar is coupled to a higher-derivative gravity which is polynomial in the scalar curvature
R. I will start with an effective action in arbitrary dimensions. I will then derive the Hessian
and construct the cutoff, which are then plugged in the FRGE eq. (4.2) to obtain the form of
the flow of potentials. This information is then used to prove that the at the Gaussian Matter
Fixed point, matter is asymptotically free as the matter couplings vanishes. I will then study
the linearized flow around this FP and obtain some general properties of the flow, in particular
the relations among the critical exponents. I will then specialize to four dimensions and give
numerical results.

5.1. Truncation ansatz and motivation
In the previous chapter I studied the renormalization group flow of a scalar coupled non-
minimalt to Einstein-Hilbert gravity in arbitrary dimensions. It was found that a GMFP exists
in all the dimensions considered and the theory is asymptotically safe with a critical surface to
be four dimensional for 3 ≤ d ≤ 11.
In recent years calculations involving pure higher-derivative gravity showed that it is asymp-

totically safe in four dimensions. However results about the renormalizability of gravity can
depend crucially on the inclusion of matter, as has been discussed in the previous chapter.
In this chapter I will consider the following truncation for the effective action,

Γk[g, φ] =
∫

ddx
√

g

{
F (φ2, R) +

1
2
gµν∇µφ∇νφ

}
+ SGF + Sgh , (5.1)

This effective action is the natural extension of the truncation that has been considered in the
previous chapter and of the F (R) gravity considered in [30, 31]. From the point of view of the
former, the truncation here taking in to account higher-derivative of the metric in the form of

95
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powers of curvature, while from the later point of view it is the study of inclusion of matter to
F (R)-gravity. Thus it is natural to study this truncation as a next step towards the understand-
ing of asymptotic safety scenario.

5.2. The FRGE for F (φ2, R)

5.2.1. Second variations

Starting from the action given in eq. (5.1), we expand F (φ2, R) in polynomial form in φ2 and R
as

F (φ2, R) = V0(φ2)+V1(φ2)R+V2(φ2)R2 +V3(φ2)R3 + · · ·+Vp(φ2)Rp =
p∑

a=0

Va(φ2)Ra . (5.2)

In order to evaluate the r.h.s. of eq. (4.2) we calculate the second functional derivatives of the
functional given in eq. (5.1). These can be obtained by expanding the action to second order in
the quantum fields around classical backgrounds gµν = ḡµν + hµν and φ = φ̄ + δφ, where φ̄ is
constant. The gauge fixing action quadratic in hµν is chosen to be

SGF =
1
2

∫
ddx

√
ḡ χµ Gµν χν , (5.3)

where χν = ∇̄µhµν − 1+ρ
d ∇̄νh

µ
µ, Gµν = ḡµν

(
α+ β"̄

)
; α, β, and ρ are the gauge parameters, we

denote "̄ = ∇̄µ∇̄µ.
The gauge fixing action eq. (5.3) gives rise to a ghost action consisting of two parts, Sgh =

Sc +Sb. The first part Sc arises from the usual Fadeev-Popov procedure leading to the complex
ghost fields Cµ and C̄µ. It is given by

Sc =
∫

ddx
√

ḡC̄µ(α+ β"̄)
[
δνµ"̄ + R̄ν

µ +
d − 2 − 2ρ

d
∇̄µ∇̄ν

]
Cν . (5.4)

The second part Sb arises for β 2= 0 and comes from the exponentiation of a nontrivial de-
terminant which requires the introduction of real anti-commuting fields bµ which are usually
referred to as the third ghost fields [78],

Sb =
1
2

∫
ddx

√
ḡ bµ Gµν bν . (5.5)

These terms are already quadratic in the quantum fields. Then the second variation of eq. (5.1)
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is given by

Γ(2)
k =

1
2

∫
ddx

√
g

[

F (φ2, R)
{

1
4
h2 − 1

2
hµνh

µν

}
+
∂F (φ2, R)
∂R

{

−hhµνRµν −
1
2
h"h

+
1
2
hµν"hµν + hµαhαβR

β
µ + hµνR

µρνλhρλ − hνµ∇µ∇ρhρν + h∇µ∇νhµν

}

+
∂2F (φ2, R)
∂R2

{

hµνRµν · hαβRαβ − 2hµνRµν · ∇ρ∇σhρσ + 2hµνRµν · "h

+ ∇α∇βhαβ · ∇µ∇νhµν − 2"h · ∇µ∇νhµν + "h · "h

}]

+
∫

ddx
√

g

[
h · φ∂F (φ2, R)

∂φ2
δφ+ 2φ δφ

∂2F (φ2, R)
∂R ∂φ2

{
∇µ∇νhµν − "h − hµνRµν

}]

+
1
2

∫
ddx

√
g δφ

[
−" + 2

∂F (φ2, R)
∂φ2

+ 4φ2 ∂
2F (φ2, R)
∂(φ2)2

]
δφ + SGF + Sgh , (5.6)

where " = ∇µ∇µ and h = hµ
µ. Since we will never have to deal with the original metric gµν

and scalar field φ, in order to simplify the notation, in the preceding formula and everywhere
else from now on we will remove the bars from the backgrounds. As explained in [24], the
functional that obeys the FRGE (4.2) has a separate dependence on the background field ḡµν

and on a “classical field” (gcl)µν = ḡµν + (hcl)µν , where (hcl)µν is the Legendre conjugate of the
sources coupling linearly to (hcl)µν . The same applies to the scalar field. In this paper, like in
most of the literature on the subject, we will restrict ourselves to the case when (gcl)µν = ḡµν

and φcl = φ̄. From now on the notation gµν and φ will be used to denote equivalently the
“classical fields” or the background fields.

5.2.2. Decomposition
In order to simplify the terms and partially diagonalize the kinetic operator, we perform a
decomposition of hµν in tensor, vector, and scalar parts as in [30, 31],

hµν = hT
µν + ∇µξν + ∇νξµ + ∇µ∇νσ −

1
d
gµν"σ +

1
d
gµνh (5.7)

where hT
µν is the (spin 2) transverse and traceless part, ξµ is the (spin 1) transverse vector com-

ponent, σ and h are (spin 0) scalars. This decomposition allows an exact inversion of the second
variation under the restriction to a spherical background. With that in mind, we work on a d-
dimensional sphere. For the spin-2 part, the inverse propagator is

δ2Γk

δhT
µνδh

T
ρσ

=

[
1
2
∂F (φ2, R)
∂R

{
" +

2(d − 2)
d(d − 1)

R

}
− 1

2
F (φ2, R)

]
δµν,ρσ , (5.8)
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where δµν,ρσ = 1
2(gµρ gνσ + gµσ gνρ). For the spin-1 part it is

δ2Γk

δξµδξν
=

(
" +

R

d

)[
(α+ β")

(
" +

R

d

)
− 2
∂F (φ2, R)
∂R

R

d
+ F (φ2, R)

]
gµν . (5.9)

The two spin-0 components of the metric, σ and h, mix with δφ resulting in an inverse propa-
gator given by a symmetric 3 × 3matrix S with the entries

Sσσ =
(

1 − 1
d

)
(−")

(
−" − R

d − 1

)[(
1 − 1

d

)(
−" − R

d − 1

){
α+ β

(
" +

R

d

)}
− 1

2
F (φ2, R)

−
(

2 − d

2d

)(
−" − 2R

2 − d

)
∂F (φ2, R)
∂R

+
(

1 − 1
d

)
(−")

(
−" − R

d − 1

)
∂2F (φ2, R)
∂R2

]
,

Sσh = Shσ =
1
2

(
1 − 1

d

)
(−")

(
−" − R

d − 1

)[
2ρ
d

{
α+ β

(
" +

R

d

)}

+
(

1 − 2
d

)
∂F (φ2, R)
∂R

+ 2
(

1 − 1
d

)(
−" − R

d − 1

)
∂2F (φ2, R)
∂R2

]

,

Sσφ = Sφσ = 2φ
(

1 − 1
d

)
(−")

(
−" − R

d − 1

)
∂2F (φ2, R)
∂R ∂φ2

,

Shh =

[

−"
{
α+ β

(
" +

R

d

)}(ρ
d

)2
+

d − 2
4d

F (φ2, R) +
(

1 − 1
d

)(
1
2
− 1

d

)

×
(
−" − 2R

d − 1

)
∂F (φ2, R)
∂R

+
(

1 − 1
d

)2 (
−" − R

d − 1

)2 ∂2F (φ2, R)
∂R2

]

,

Shφ = Sφh = φ
∂F (φ2, R)
∂φ2

+ 2φ
(

1 − 1
d

)(
−" − R

d − 1

)
∂2F (φ2, R)
∂R∂φ2

,

Sφφ = −" + 2
∂F (φ2, R)
∂φ2

+ 4φ2 ∂
2F (φ2, R)
∂(φ2)2

. (5.10)

As discussed in more detail in [31], to match the trace-spectra of the Laplace-operator acting on
hµν with those obtained for the constrained fields after the decomposition, the first eigenmode
of the operator trace over the vector contribution and the first two eigenmodes of the operator
trace over the σ contribution have to be omitted. The trace over the h and δφ components
should be taken over the whole operator spectrum instead. To handle the mixing of the scalar
components in an easy way, we subtract first the two first eigenmodes from the complete scalar
contribution from thematrix S and then add the first two trace modes which should have been
retained for h and δφ. This requires to take into account a further scalar matrix B formed by
the components of h, φ and their mixing term. It is given by

B =
(

Shh Shφ

Shφ Sφφ

)
, (5.11)
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whose trace contribution to the FRGE will be calculated on the first two eigenmodes of the
spectrum of the Laplacian.
Again, in order to diagonalize the kinetic operators occurring in the ghost actions eqs. (5.4)

and (5.5), we perform a decomposition of the ghost fields Cµ, C̄µ and bµ into transverse and
longitudinal parts,

C̄µ = C̄µT + ∇µC̄, Cµ = CT
µ + ∇µC, bµ = bT

µ + ∇µb, (5.12)

with ∇µC̄µT = 0, ∇µCT
µ = 0 and ∇µbT

µ = 0.
After this decomposition, the inverse propagators for the vector and scalar components of

the ghost and third ghost fields are

δ2Γk

δC̄T
µ δC

T
ν

= (α+ β")
(

" +
R

d

)
gµν , (5.13)

δ2Γk

δC̄ δC
=

2(d − 1 − ρ)
d

(−")
[
α+ β

(
" +

R

d

)][
" +

R

d − 1 − ρ

]
, (5.14)

δ2Γk

δbT
µ δb

T
ν

= (α+ β") gµν , (5.15)

δ2Γk

δb δb
= −"

[
α+ β

(
" +

R

d

)]
. (5.16)

5.2.3. Contributions by Jacobians
The decomposition of hµν , C̄µ, Cµ, and bµ gives rise to nontrivial Jacobians in the path integral,
given by

Jξ =
[
det′

(
−" − R

d

)]1/2

, Jσ =
[
det′′

{
"

(
" +

R

d − 1

)}]1/2

,

Jc = [det′(−")]−1 , Jb = [det′(−")]−1 . (5.17)

These Jacobians can be absorbed by field redefinitions which however introduce terms which
involve non-integer powers of the Laplacian. To avoid technical difficulties, we therefore prefer
to exponentiate these Jacobians by the introduction of auxiliary anti-commuting and commut-
ing fields according to the sign of the exponent of the determinant, see also [64, 30, 31]. One
has to take their contribution into account while writing the FRGE.

5.3. The Gaussian Matter fixed point

The running of Va(φ2) is calculated from the FRGE as

(∂tVa)[φ2] =
1

Vol
1
a!
∂a(∂tΓk)[φ2, R]

∂Ra
(5.18)



100 CHAPTER 5. RG FLOW OF SCALAR COUPLED TO F(R) GRAVITY

where (∂tΓk)[φ2, R] is obtained for various fields in an analogous way as in [30, 31]. Rescaling
all fields with respect to the cutoff scale k, we obtain the dimensionless quantities φ̃ = k

2−d
2 φ,

R̃ = k−2R and Ṽa(φ̃2) = k−(d−2a)Va(φ2). These dimensionless quantities we can use to analyze
the RG flow and its FP structure. From the running of Va(φ2) one can calculate the running of
Ṽa(φ̃2) using

(∂tṼa)[φ̃2] = −(d − 2a)Ṽa(φ̃2) + (d − 2)φ̃2 Ṽ ′
a(φ̃2) + k−(d−2a) (∂tVa)[φ2] (5.19)

where the last term is calculated using eq. (5.18). A FP is a solution of the infinite set of
functional equations ∂tṼa = 0 for a = 0, . . . ,∞. This means that, at the FP, for each a the
function Ṽa(φ̃2) is k-independent, or equivalently that each coefficient of its Taylor expansion
is k-independent. Since we assume that each Ṽa is analytic it can be Taylor expanded around
φ̃2 = 0, and therefore

∂tṼ
(i)
a (0) = 0 (5.20)

for i = 0, . . . ,∞, where the superscript i denotes the i-th derivative with respect to φ̃2.

5.3.1. Minimal matter coupling of gravity at the GMFP
The existence of a Gaussian Matter Fixed Point (GMFP), where all the matter couplings ap-
proach zero for k → ∞ and only the purely gravitational couplings have nontrivial values, was
observed for finite polynomial truncations in [34]. In [36], its existence was proven for effective
average actions of the form

Γk[g, φ] =
∫

ddx
√

g

(
V0(φ2) + V1(φ2)R +

1
2

gµν ∂µφ∂νφ

)
+ SGF + Sgh. (5.21)

The existence of a GMFP can be shown to hold for the more general class of effective average
actions considered in this paper. By definition, a GMFP is a point where Ṽa are φ̃2-independent,
i.e.

Ṽ (i)
a (0) = 0 (5.22)

for i = 1, . . . ,∞. In this subsection we will prove that with the ansatz in eq. (5.22) all the
equations in (5.20) with i = 1, . . . ,∞ are identically satisfied, thus leaving only the equations
with i = 0 to be solved. We will give numerical solutions of these remaining equations for
a = 0, 1 . . . , 8 in section 5.4.
Nowwe explicitly analyze the structure of ∂tF related to the second variation of the effective

average action given in eq. (5.1) for the various field components. The second variation for hT
µν

and ξµ has the form
Γ(2)

k

∣∣∣
T,V

= f(z, R) + fa(z, R)Va , (5.23)

where we denote z := −". The functional form for Γ(2)
k

∣∣∣
T,V

is motivated by eqs. (5.8) and (5.9)
from which we notice that it depends on Va at most linearly, with coefficients being functions
of z and R, which are denoted here by f(z, R) and fa(z, R).



5.3. THE GAUSSIANMATTER FIXED POINT 101

For the scalar part, the second variation has the form

Γ(2)
k

∣∣∣
s
=




l11(z,R) + f11

a (z,R)Va l12(z,R) + f12
a (z,R)Va g1

a(z,R)φV ′
a

l12(z,R) + f12
a (z,R)Va l22(z,R) + f22

a (z,R)Va g2
a(z,R)φV ′

a

g1
a(z,R)φV ′

a g2
a(z,R)φV ′

a z + Ra(2V ′
a + 4φ2 V ′′

a )



 ,

(5.24)

where a prime denotes derivative with respect to φ2. Again the functional form for Γ(2)
k

∣∣∣
s

is motivated by eq. (5.10) which clearly tells that entries Sσσ , Sσh, and Shh depend at most
linearly on Va, while the entries Sφσ and Sφh are linear combinations of φV ′

a. The coefficients in
these linear combinations are functions of z and R denoted here by lij(z,R) and gi

a(z,R).
For the ghost part the second variation has the form

Γ(2)
k

∣∣∣
gh

= D(z, R) . (5.25)

This can be verified from eqs. (5.13, 5.14, 5.15 and 5.16). We first consider the contributions
from hT

µν and ξµ. Since for them the second variation has the form given by eq. (5.23), the
modified inverse propagator Pk := Γ(2)

k + Rk and the cutoffRk will have the functional form

Pk = f(Pk, R)+ fa(Pk, R)Va , Rk = f(Pk, R)− f(z,R)+ {fa(Pk, R)− fa(z,R)}Va , (5.26)

where we have simply replaced z by Pk(z) := z + Rk(z) to obtain the modified inverse propa-
gator. Rk(z) is a profile function which tends to k2 for z → 0 and approaches zero rapidly for
z > k2. The RG-time derivative of the cutoffRk in eq. (5.26) is

∂tRk = ∂tf(Pk, R) + ∂tfa(Pk, R)Va + {fa(Pk, R) − fa(z,R)} ∂tVa . (5.27)

Using eq. (5.27) in the FRGE one finds that the contributions from hT
µν and ξµ have the form

∂tVa = Ha(Vc) + Hab(Vc)∂tVb . (5.28)

This can be justified by noticing that ∂tRk given by eq. (5.27) depends at most linearly on ∂tVb.
On the r.h.s. of the FRGE, ∂tRk occurs in the numerator, while the denominator contains the
modified inverse propagator given in eq. (5.26) which depends at most linearly on Va. So we
find that the r.h.s of the FRGE depends at most linearly on ∂ tVa. The coefficients in front of ∂tVa

are functionals of Va and are denoted byHa(Vc) andHab(Vc).
The contributions from the ghost parts will be simpler. Since they do not depend on the

potentials, they will only give a constant contribution toHa. The contributions from the scalars
are more involved due to the matrix structure. The modified inverse scalar propagator is ob-
tained by replacing all z with Pk in eq. (5.24).
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The cutoff is constructed in the usual way by subtracting the inverse propagator from the
modified inverse propagator. This cutoff can be written as

Rs
k =




l11(Pk, R) − l11(z,R) l12(Pk, R) − l12(z,R) 0
l12(Pk, R) − l12(z,R) l22(Pk, R) − l22(z,R) 0

0 0 Pk − z





+




f11

a (Pk, R) − f11
a (z,R) f12

a (Pk, R) − f12
a (z,R) 0

f12
a (Pk, R) − f12

a (z,R) f22
a (Pk, R) − f22

a (z,R) 0
0 0 0



 Va

+




0 0 g1

a(Pk, R) − g1
a(z,R)

0 0 g2
a(Pk, R) − g2

a(z,R)
g1
a(Pk, R) − g1

a(z,R) g2
a(Pk, R) − g2

a(z,R) 0



 φV ′
a .(5.29)

Then the t derivative of the cutoff given in eq. (5.29) is

∂tRs
k =




∂tl11(Pk, R) ∂tl12(Pk, R) 0
∂tl12(Pk, R) ∂tl22(Pk, R) 0

0 0 ∂tPk



 +




∂tf11

a (Pk, R) ∂tf12
a (Pk, R) 0

∂tf12
a (Pk, R) ∂tf22

a (Pk, R) 0
0 0 0



 Va

+




f11

a (Pk, R) − f11
a (z,R) f12

a (Pk, R) − f12
a (z,R) 0

f12
a (Pk, R) − f12

a (z,R) f22
a (Pk, R) − f22

a (z,R) 0
0 0 0



 ∂tVa

+




0 0 ∂tg1

a(Pk, R)
0 0 ∂tg2

a(Pk, R)
∂tg1

a(Pk, R) ∂tg2
a(Pk, R) 0



 φV ′
a

+




0 0 g1

a(Pk, R) − g1
a(z,R)

0 0 g2
a(Pk, R) − g2

a(z,R)
g1
a(Pk, R) − g1

a(z,R) g2
a(Pk, R) − g2

a(z,R) 0



 φ∂tV
′
a .(5.30)

The modified propagator for scalars is the matrix inverse of eq. (5.24) with z replaced by Pk.
It is given by

(Ps
k)−1 =

1
DetPs

k

Adj (Ps
k) . (5.31)

whereAdj (Ps
k) denotes the adjoint of thematrix (P s

k) (thematrix of cofactors). The determinant
is a functional depending only on Va, φ2 V ′

aV
′
b , and 2V ′

a + 4φ2 V ′′
a . This can be easily derived

from the modified inverse propagator obtained from eq. (5.24).
All entries of the adjoint of Ps

k consist of cofactors, thus it has the form

Adj (Ps
k) =




A11

(
Va, φ2 V ′

aV
′
b , 2V ′

a + 4φ2 V ′′
a

)
A12

(
Va, φ2 V ′

aV ′
b , 2V ′

a + 4φ2 V ′′
a

)
A13(Va)φV ′

a

A21
(
Va, φ2 V ′

aV
′
b , 2V ′

a + 4φ2 V ′′
a

)
A22

(
Va, φ2 V ′

aV ′
b , 2V ′

a + 4φ2 V ′′
a

)
A23(Va)φV ′

a

A31(Va)φV ′
a A32(Va)φV ′

a A33(Va)



 ,

(5.32)



5.3. THE GAUSSIANMATTER FIXED POINT 103

where each entry depends additionally on Pk and R. In order to calculate the RG trace, we
multiply (Ps

k)−1 with ∂tRs
k and then take the matrix trace. Doing this we note that φV ′

a is either
multiplied with another φV ′

a or it is multiplied with φ∂tV ′
a. So the scalar contribution to the

FRGE has the form

∂tVa|s = Ha
(
Va, φ

2 V ′
aV ′

b , 2V ′
a + 4φ2 V ′′

a

)
+ Hab

(
Va, φ

2 V ′
aV ′

b , 2V ′
a + 4φ2 V ′′

a

)
∂tVb

+ Habc
(
Va, φ

2 V ′
aV

′
b , 2V ′

a + 4φ2 V ′′
a

)
φ2 V ′

b ∂tV
′
c . (5.33)

The contributions from the transverse traceless tensor and transverse vector can also be com-
bined in the above expression to write the full FRGE contribution in the same way as above.
Then ∂tF = Ra ∂tVa.

After having calculated the structural form for the running of Va(φ2), we use it to calculate
the dimensionless beta functional using eq. (5.19), which gives

(∂tṼa)[φ̃2] = −(d − 2a)Ṽa + (d − 2)φ̃2Ṽ ′
a + H̃a

(
Ṽa, φ̃

2 Ṽ ′
a Ṽ ′

b , 2Ṽ ′
a + 4φ̃2 Ṽ ′′

a

)

+ H̃ab

(
Ṽa, φ̃

2 Ṽ ′
a Ṽ ′

b , 2Ṽ ′
a + 4φ̃2 Ṽ ′′

a

) {
(d − 2b)Ṽb − (d − 2)φ̃2Ṽ ′

b + (∂tṼb)[φ̃2]
}

+ H̃abc

(
Ṽa, φ̃

2 Ṽ ′
a Ṽ ′

b , 2Ṽ ′
a + 4φ̃2 Ṽ ′′

a

)
φ̃2Ṽ ′

b

{
(d − 2c)Ṽ ′

c

− (d − 2)
(
φ̃2Ṽ ′′

c + Ṽ ′
c

)
+ (∂tṼc)′[φ̃2]

}
. (5.34)

Inserting eq. (5.20) in eq. (5.34) we get the fixed point equation

0 = −(d − 2a)Ṽa + (d − 2)φ̃2Ṽ ′
a + H̃a

(
Ṽa, φ̃

2 Ṽ ′
a Ṽ ′

b , 2Ṽ ′
a + 4φ̃2 Ṽ ′′

a

)

+H̃ab

(
Ṽa, φ̃

2 Ṽ ′
a Ṽ ′

b , 2Ṽ ′
a + 4φ̃2 Ṽ ′′

a

) {
(d − 2b)Ṽb − (d − 2)φ̃2Ṽ ′

b

}

+H̃abc

(
Ṽa, φ̃

2 Ṽ ′
a Ṽ ′

b , 2Ṽ ′
a + 4φ̃2 Ṽ ′′

a

)
φ̃2Ṽ ′

b

{
(d − 2c)Ṽ ′

c − (d − 2)
(
φ̃2Ṽ ′′

c + Ṽ ′
c

)}
.(5.35)

The above equation is identically satisfied when we take its Taylor expansion around φ̃2 = 0
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and use eq. (5.22). For example, taking one derivative with respect to φ̃2 gives

0 = −(d − 2a)Ṽ ′
a + (d − 2)

{
φ̃2Ṽ ′′

a + Ṽ ′
a

}
+
δH̃a

δṼc
Ṽ ′

c +
δH̃a

δ(φ̃2Ṽ ′
c Ṽ ′

d)
(Ṽ ′

c Ṽ ′
d + φ̃2Ṽ ′′

c Ṽ ′
d + φ̃2Ṽ ′′

d Ṽ ′
c )

+
δH̃a

δ(2Ṽ ′
c + 4φ̃2Ṽ ′′

c )
(2Ṽ (2)

c + 4Ṽ (2)
c + 4φ̃2Ṽ (3)

c ) +
{
(d − 2b)Ṽ ′

b − (d − 2)φ̃2Ṽ ′′
b − (d − 2)Ṽ ′

b

}
H̃ab

+
{

(d − 2b)Ṽb − (d − 2)φ̃2Ṽ ′
b

}(
δH̃ab

δṼc
Ṽ ′

c +
δH̃ab

δ(φ̃2 Ṽ ′
c Ṽ ′

d)
(Ṽ ′

c Ṽ ′
d + φ̃2 Ṽ ′′

c Ṽ ′
d + φ̃2 Ṽ ′′

d Ṽ ′
c )

+
δH̃ab

δ(2Ṽ ′
c + 4φ̃2Ṽ ′′

c )
(2Ṽ (2)

c + 4Ṽ (2)
c + 4φ̃2Ṽ (3)

c )

)
+ Ṽ ′

b

{
(d − 2c)Ṽc − (d − 2)φ̃2Ṽ ′

c

}
H̃abc

+φ̃2Ṽ ′′
b

{
(d − 2c)Ṽc − (d − 2)φ̃2Ṽ ′

c

}
H̃abc + φ̃2Ṽ ′

b

{
(d − 2c)Ṽ ′

c − (d − 2)φ̃2Ṽ ′′
c − (d − 2)Ṽ ′

c

}
H̃abc

+φ̃2Ṽ ′
b

{
(d − 2c)Ṽc − (d − 2)φ̃2Ṽ ′

c

}(
δH̃abc

δṼd

Ṽ ′
d +

δH̃abc

δ(φ̃2 Ṽ ′
d Ṽ ′

e )
(Ṽ ′

d Ṽ ′
e + φ̃2 Ṽ ′′

d Ṽ ′
e + φ̃2 Ṽ ′′

e Ṽ ′
d)

+
δH̃abc

δ(2Ṽ ′
d + 4φ̃2Ṽ ′′

d )
(2Ṽ (2)

d + 4Ṽ (2)
d + 4φ̃2Ṽ (3)

d )

)
. (5.36)

Setting φ̃2 = 0 and using the GMFP conditions, we see that the right hand sidewill be zero. One
can take successive derivatives to verify that this property indeed holds when higher deriva-
tives are taken. The only equation which is not automatically solved in this way is the one
where we evaluate eq. (5.35) at φ̃2 = 0 and use eq. (5.22). This is just the FP equation for an
f(R) theory with a single minimally coupled scalar. We will solve these equations in section
5.4.

5.3.2. Linearized Flow around the GMFP

The attractivity properties of a FP are determined by the signs of the critical exponents de-
fined to be minus the eigenvalues of the linearized flow matrix, the so-called stability matrix,
at the FP. The eigenvectors corresponding to negative eigenvalues (positive critical exponent)
span the UV critical surface. At the Gaussian FP the critical exponents are equal to the mass
dimension of each coupling, so the relevant couplings are the ones that are power–counting
renormalizable (or marginally renormalizable). In a perturbatively renormalizable theory they
are usually finite in number.
At the GMFP, the situation is more complicated as the eigenvalues being negative or positive

do not correspond to couplings being relevant or irrelevant. In principle, at the GMFP the
eigenvectors corresponding to negative eigenvalues get contributions from all the couplings
present in the truncation, thus making it more difficult to find the fixed point action. Thus
understanding the properties of the stability matrix around the GMFP becomes crucial.
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Therefore we now discuss the structure of the linearized flow around the GMFP. It is conve-
nient to Taylor expand the potentials Va(φ2) as

Va(φ2) =
q∑

i=0

λ(a)
2i (k)φ2i, (5.37)

where λ(a)
2i are the corresponding couplings with mass dimension d − 2a − i(d − 2). We are

assuming a finite truncation with up to p powers of R, i.e. a going from 0 to p, and q powers
of φ2. In practice it has been possible to deal with p ≤ 8; as we shall see, it is possible to
understand the structure of the theory for any polynomial in φ2, so one could also let q → ∞.
Rescaling these couplings with respect to the RG scale defines dimensionless couplings λ̃(a)

2i =
kd−2a−i(d−2)λ(i)

2i and the corresponding beta functions β
(a)
2i = ∂tλ

(a)
2i .

The stability matrix is defined as

(Mij)ab =
δ
(

1
i!∂tṼ

(i)
a (0)

)

δ
(

1
j! Ṽ

(j)
b (0)

)

∣∣∣∣∣∣
FP

=
∂βa

2i

∂λ̃(b)
2j

∣∣∣∣∣
FP

(5.38)

Using the above definitions, numerical results tell that the stability matrixM has the form




M00 M01 0 0 · · ·

0 M11 M12 0 . . .

0 0 M22 M23
. . .

0 0 0 M33
. . .

...
...

...
... . . .





, (5.39)

where each entry is a (p + 1) × (p + 1)matrix of the form

Mij =





∂β(0)
2i

∂λ̃(0)
2j

· · · ∂β(0)
2i

∂λ̃(p)
2j

... . . . ...
∂β(p)

2i

∂λ̃
(0)
2j

· · · ∂β(p)
2i

∂λ̃
(p)
2j




, (5.40)

while p is the highest power of scalar curvature included in the action. It turns out that,

Mij = 0 ∀ i ≥ 1, ∀ j < i ; Mij = 0 ∀ i, ∀ j > (i + 1) . (5.41)

The various nonzero entries follow the same relations that were observed in [36]. In d dimen-
sions they are

Mii = (d − 2)i1 + M00 ; Mi,i+1 = (i + 1)(2i + 1)M01 ; (5.42)
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where

M00 =





δM
λ̃(0)
0 ,λ̃(0)

0
· · · · · · δM

λ̃(0)
0 ,λ̃(p)

0... . . . ...
... . . . ...

δM
λ̃(p)
0 ,λ̃(0)

0
· · · · · · δM

λ̃(p)
0 ,λ̃(p)

0





+





−d 0 0 . . . 0
0 −(d − 2) 0 . . . 0
0 0 −(d − 4) . . . 0
...

...
... . . . 0

0 0 0 0 −(d − 2p)




; (5.43)

M01 =





δM
λ̃
(0)
0 ,λ̃

(0)
2

· · · · · · δM
λ̃
(0)
0 ,λ̃

(p)
2... . . . ...

... . . . ...
δM

λ̃
(p)
0 ,λ̃

(0)
2

· · · · · · δM
λ̃
(p)
0 ,λ̃

(p)
2




. (5.44)

Using the same arguments as in [36], one can prove the above properties starting from eq. (5.33)
neglecting ∂tVa and ∂tV ′

a on the right hand side (corresponding to a one-loop approximation).
Solving eq. (5.33) beyond that level would require solving a functional differential equation and
would be beyond the scope of this paper. However, the results presented in the next section
suggest that these relations should hold exactly. They are relations independent of the gauge
choice, however the entries ofM00 andM01 are gauge dependent.
The physical nature of the relations among the eigenvalues can be understood from the dif-

ference between the GMFP and the Gaussian fixed point where also the gravitational couplings
would vanish. At a Gaussian fixed point, the critical exponents are determined by the mass di-
mension of the couplings, and therefore are all spaced by d− 2. At the GMFP, the gravitational
couplings lead to some corrections to the critical exponents, but the correction to all exponents
is the same, such that the spacing remains equal to d − 2.
These relations have important consequences. Because the stability matrix at the GMFP has

the block diagonal structure given by eq. (5.39), its eigenvalues are just the eigenvalues of the
diagonal blocks. Since the diagonal blocks are related by eqs. (5.42), the eigenvalues of the
various blocks differ only by multiples of d − 2. That means if ρ(0)0 , . . . , ρ(p)

0 are the eigenvalues
ofM00, then all the eigenvalues ofM are of the form

ρ(a)
2i = ρ(a)

0 + (d − 2) i . (5.45)

As M00 depends only on the couplings λ(a)
0 , it is enough to include only these couplings into

the action to find all the eigenvalues of the stability matrix. Therefore, the results for minimally
coupled scalar-tensor theory determine the eigenvalues of the nonminimally coupled scalar-
tensor theory. In particular, if one has calculated the dimension of the UV critical surface of the
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minimally coupled theory, one can also predict the dimension of the UV critical surface of the
nonminimally coupled theory.
To find all the eigenvectors of the stability matrix it is necessary to know alsoM01. One can

write the eigenvectors as v = (v0, v1, . . . , vq)T where each vi is itself a p + 1 dimensional vector.
Then the vector V0 = (v0, 0, 0, . . . , 0)T is an eigenvector if v0 is an eigenvector ofM00 which can
be seen immediately by multiplying it with M . The eigenvectors of M with the above form
are eigenvectors for the eigenvalues of M00 and can therefore be completely determined by
just usingM00. Thus we note at this point that these eigenvectors are mixtures of gravitational
couplings only, they do not contain any contribution from matter couplings.
Now consider a vector of the form V1 = (v′0, v1, 0, 0, . . . , 0)T . Acting on it with M , and

demanding V1 to be an eigenvector of M corresponding to some eigenvalue ρ(a)
2 , we obtain

two relations,
M00 v′0 + M01 v1 = ρ(a)

2 v′0 , M11 v1 = ρ(a)
2 v1 . (5.46)

The second equation in (5.46) tells that v1 is an eigenvector ofM11. Now due to equations given
in (5.42) and (5.45), we note that v1 = v0. Determining v1 will then determine also v′0. In the
sameway one can go on to determine the next eigenvector. Consider V2 = (v′′0 , v′1, v2, 0, . . . , 0)T .
We then demand it to be a eigenvector ofM . That means it should satisfy

M00 v′′0 + M01 v′1 = ρ(a)
4 v′′0 , M11 v′1 + M12 v2 = ρ(a)

4 v′1 , M22 v2 = ρ(a)
4 v2 . (5.47)

One notices immediately that v2 is the eigenvector of M22, and using equations in (5.42) and
(5.45) we conclude that v2 = v0. Other equations would determine v ′′

0 and v′1. This process can
be continued to find all the eigenvectors.
We will now illustrate the validity of these results in various truncations with scalar fields

coupled minimally and nonminimally to gravity.

5.4. Numerical results

5.4.1. Nonminimally coupled scalar field
From here on we proceed as in [30, 31]. We choose the gauge α = 0, β → ∞, and ρ = 0.
This simplifies the calculation considerably because with that choice several arguments in the
FRGE cancel with each other. The cutoff operators are chosen so that the modified inverse
propagator is identical to the inverse propagator except for the replacement of z = −∇2 by
Pk(z) = z + Rk(z); we use exclusively the optimized cutoff functions Rk(z) = (k2 − z)θ(k2 − z)
[43]. Then knowledge of the heat kernel coefficients which contain at most R4 taken from [89]
is sufficient to calculate all the beta functions. A further benefit of this choice of cutoff is that the
trace arguments will be polynomial in z. This simplifies the integrations in the trace evaluation
and is done in closed form.
Inserting everything into the FRGE and comparing the termswith equal powers ofR and φ2

on each side of the equation will give a system of algebraic equations for the beta functions of
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the couplings λ̃(a)
2i . The fixed points of the flow equations are evaluated and the corresponding

critical exponents ϑ(a)
2i are determined.

We carried out the calculation for effective average actions including up to R4 and up to φ2

in each potential Va. Such truncations include at most ten couplings. We find that a GMFP does
indeed exist for all these truncations.

p λ̃(0)
0∗ λ̃(1)

0∗ λ̃(2)
0∗ λ̃(3)

0∗ λ̃(4)
0∗

1 6.495 -21.579
2 5.224 -16.197 1.834
3 6.454 -20.756 1.071 -6.474
4 6.354 -21.342 0.792 -6.807 -3.865

Table 5.1.: Nonvanishing couplings at the GMFP. The index p is the highest power ofR included
in the truncation. All values are multiplied by a factor 1000.

p ϑ′0 ϑ′′0 ϑ(2)
0 ϑ(3)

0 ϑ(4)
0 ϑ′2 ϑ′′2 ϑ(2)

2 ϑ(3)
2 ϑ(4)

2

1 2.493 2.368 0.493 2.368
2 1.847 2.397 21.031 -0.153 2.397 19.031
3 3.077 2.524 2.033 -3.852 1.077 2.524 0.033 -5.852
4 3.261 2.772 1.670 -3.593 -5.182 1.261 2.772 -0.330 -5.593 -7.182

Table 5.2.: Critical exponents at the GMFP. The index p is the highest power of R included
in the truncation. Critical exponents are labeled ϑ(a)

2i , like the couplings, but the
corresponding eigenvectors involve strong mixing, as discussed in the text. For each
i, the first two critical exponents form a complex conjugate pair given by ϑ′0 ± ϑ′′0i
and ϑ′2 ± ϑ′′2i.

The nonvanishing fixed point values for various truncations are given in table 5.1, the cor-
responding critical exponents (the negative of the eigenvalues of the stability matrix) in table
5.2.
From the critical exponents one realizes at once several features. Though we carry out the

full FRGE calculation we find that in general the real parts of the critical exponents ϑ(a)
2 differ

from ϑ(a)
0 exactly by two as proven in the one-loop case while the imaginary parts of the critical

exponents are unchanged. This suggests strongly that the relations among the eigenvalues will
also hold at the exact level. The qualitative and quantitative properties turn out to be very
similar to those of the purely gravitational theory.
The inclusion of only four couplings with a = 0, 1 and i = 0, 1 leads to four attractive

directions. The complex critical exponents ϑ′0 ± ϑ′′0i are expected from the experience with
the Einstein-Hilbert truncation. The existence of a second pair of complex critical exponents
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ϑ′2 ± ϑ′′2i follows from the relation between the eigenvalues given in eq. (5.45). These complex
conjugate pairs occur also when higher scalar curvature terms are included.
When one includes also R2 couplings, one encounters large positive critical exponents as

known from the calculations in pure gravity [29, 30, 31, 64]. Using eq. (5.45) one concludes
that one has to go up to power φ20 before encountering a negative critical exponent, so the
critical surface would be twelve dimensional. But this is a fluke of the R2 truncations due to
the anomalously large positive critical exponent. The situation quickly normalizes when one
adds further powers of R.
Including R3 couplings, classically one would expect only three positive critical exponents

as the classical mass dimensions of λ(0)
0 , λ(1)

0 , λ(2)
0 , λ(3)

0 , λ(0)
2 , λ(1)

2 , λ(2)
2 , and λ(3)

1 , are 4, 2, 0,
−2, 2, 0, −2, and −4 respectively. Apparently, the FRGE calculation, which includes quantum
corrections with large mixing between the various couplings, produces instead six positive
critical exponents in the R3 truncation. The critical exponent ϑ(2)

2 is however very close to zero
in consistency with the eigenvalue shift in eq. (5.45). This tells us that the truncation with p = 3
has a six-dimensional UV critical surface for any i ≥ 1.
With the inclusion of the coupling for the R4 operator whose classical mass dimension is

−4, one notices that 0 < ϑ(2)
0 < 2. Thus one would expect that including the coupling for

the operator φ2R4 with classical mass dimension −6, in consistency with eq. (5.45), the critical
exponent ϑ(2)

2 would be negative, and the critical surface would be five dimensional. Indeed,
the inclusion of those couplings does make ϑ(2)

2 negative, leading to five negative and five
positive critical exponents. One can then say, using eq. (5.45) in the truncation p = 4, that for
any i ≥ 1, the critical surface would be five dimensional.
To illustrate our results we display here the stability matrix for theR4 truncation. The entries

in the upper left 5 × 5 block and in the lower right 5 × 5 block are the same except the ones on
the diagonals which differ by two. The upper right block is M01, the lower left one contains
only zero entries:

M |GMFP =




−0.81 1.87 0.40 −1.24 0.41 −0.0057 0.0021 0.0011 −0.00039 −0.000051
−8.01 −6.05 2.95 2.78 −1.80 −0.0031 −0.0093 0.00083 0.0024 0.00024
2.16 0.27 −4.57 1.64 −0.041 0.00021 −0.00018 −0.0032 −0.00038 −5.5510−6
2.95 −0.61 −7.46 4.13 0.44 −0.00026 −0.0032 −0.0098 −0.0019 −0.000091
5.12 4.95 3.34 −10.52 7.79 0.00065 0.0021 −0.0010 −0.0071 −0.00075
0 0 0 0 0 1.19 1.87 0.40 −1.24 0.41
0 0 0 0 0 −8.01 −4.05 2.95 2.78 −1.80
0 0 0 0 0 2.16 0.27 −2.57 1.64 −0.041
0 0 0 0 0 2.95 −0.61 −7.46 6.13 0.44
0 0 0 0 0 5.12 4.95 3.34 −10.52 9.79





.(5.48)

The eigenvectors corresponding to the five positive critical exponents in the R4 truncation
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are given by




−0.2774 ± 0.2693i
0.8574

−0.1206 ± 0.0634i
0.0473 ± 0.1254i
−0.2202 ± 0.1746i

0
0
0
0
0





,





(15.381 ± 5.409i) × 10−4

(−33.008 ± 13.931i) × 10−4

(4.894 ± 1.980i) × 10−4

(−2.535 ± 1.083i) × 10−4

(5.437 ± 8.333i) × 10−4

−0.2774 ± 0.2692i
0.8574

−0.1205 ± 0.0634i
0.0473 ± 0.1254i
−0.2202 ± 0.1746i





,





−0.3845
−0.07586
−0.7103
−0.5667
−0.1437

0
0
0
0
0





.

(5.49)
The first complex conjugate pair of eigenvectors corresponds to the complex conjugate pair

of critical exponents ϑ′0±ϑ′′0 with values 3.2608±2.7722i, while the second pair of complex con-
jugate eigenvectors corresponds to the complex conjugate pair of critical exponentsϑ ′

2±ϑ′′2 with
values 1.2608±2.7722i. The last eigenvector corresponds to the critical exponent ϑ(2)

0 = 1.6698.
We note that the eigenvectors corresponding to the eigenvalues of M00, namely the first com-
plex conjugate pair of eigenvectors and the last one, have the same structure as was described
in the previous section, i.e. (v0, 0, 0, . . . , 0)T , where v0 is determined by just using M00. We
note that these eigenvectors do not get mixing from the matter couplings, but only from the
purely gravitational couplings. Further more, if we look at the eigenvectors corresponding
to the eigenvalues of M11, namely the second complex conjugate pair of eigenvectors in eq.
(5.49), which has the form (v′0, v1, 0, . . . , 0)T , we clearly notice that v1 = v0, as described in the
previous section.

5.4.2. Minimally coupled scalar field
Having verified that the properties of the stability matrix proved at one-loop level do also
hold in the exact calculation, we now analyze higher order curvature terms retaining only the
couplings λ̃(a)

0 corresponding to a truncation with a minimally coupled scalar field. Then one
obtains the non-Gaussian fixed points and critical exponents given in tables 5.3 and 5.4. We
analyze these results and use them to make predictions for the nonminimal truncation. One
observes that the addition of the scalar fields alters the results for pure gravity in [30, 31] only
by a small amount. Just as there, the UV critical surface becomes at most three-dimensional,
and fixed point values for the cosmological and the Newton constant remain very stable. It
has to be remarked that for those two couplings the oscillation in the fixed point value after
the introduction of the R2-term is not as strong as in pure gravity. Also the critical exponent
obtained after the introduction of the R2-coupling becomes large, but not as large as in pure
gravity. So the addition of the scalar field seems to have already a little stabilizing effect on
the R2-truncation. The introduction of the R4 and R5-couplings leads to a second complex
conjugate pair of critical exponents as soon as both couplings are included.
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p Λ̃∗ G̃∗ Λ∗G∗ 103×
λ̃(0)

0∗ λ̃(1)
0∗ λ̃(2)

0∗ λ̃(3)
0∗ λ̃(4)

0∗ λ̃(5)
0∗ λ̃(6)

0∗ λ̃(7)
0∗ λ̃(8)

0∗
1 0.150 0.923 0.139 6.495 -21.579
2 0.161 1.228 0.198 5.224 -16.197 1.834
3 0.155 0.958 0.149 6.454 -20.756 1.071 -6.474
4 0.149 0.932 0.139 6.354 -21.342 0.792 -6.807 -3.865
5 0.149 0.932 0.139 6.355 -21.339 0.793 -6.793 -3.854 -0.024
6 0.146 0.918 0.134 6.312 -21.669 0.586 -7.169 -5.576 -0.537 2.702
7 0.146 0.917 0.133 6.318 -21.702 0.534 -6.469 -5.530 -1.979 2.761 2.565
8 0.148 0.926 0.137 6.344 -21.489 0.678 -5.922 -4.574 -2.074 1.863 2.393 0.829

Table 5.3.: Position of the FP for increasing number p of couplings included. The first three
columns give the FP values in the form of cosmological and Newton constant and
their dimensionless product. The values λ̃(a)

0∗ (and only them) have been rescaled by
a factor 1000.

Now it is easy to analyze how the dimension of the UV critical surface changes under the
introduction of nonminimal matter couplings. In general, if a critical exponent ϑ(a)

0 is negative
then ϑ(a)

2i will also be negative for all i > 0. From table 5.4 we see that ϑ(a)
0 < 0 for all a ≥ 3, thus

all ϑ(a)
2i < 0 for all a ≥ 3 and i > 0. However, since 4 > ϑ′0 > 2, using eq. (5.45) we conclude that

2 > ϑ′2 > 0. This means that there are two more attractive directions. From table 5.4 one sees
however that 0 < ϑ(2)

0 < 2 as soon as R4 is included, thus we do not obtain any other attractive
directions. So compared to [30, 31] where a three-dimensional UV critical surface was obtained
for pure gravity, interactions with scalar matter lead to a five-dimensional UV critical surface.

5.5. Summary
We have shown that a Gaussian matter fixed point does exist also under the inclusion of higher
order curvature terms and their coupling to scalar fields. We verified that the properties of the
stability matrix proven only at one-loop level hold also in the exact calculations. We exploited
these properties to show the relations between minimally and nonminimally coupled scalar-
tensor theory. In particular, we were able to calculate the critical exponents for the nonminimal
scalar tensor theory from those of the minimal one. The introduction of minimally coupled
scalar matter fields gives only slight quantitative corrections to the fixed point properties of the
purely gravitational theory. The critical exponents again seem to converge with the inclusion
of more curvature terms. The minimally coupled theory produces three positive critical expo-
nents. We derived that the additional critical exponents in the nonminimally coupled theory
will be the ones of the minimal theory shifted by constant values. This produces twomore pos-
itive critical exponents. From that we can conclude that, in four dimensions, the scalar-tensor
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p ϑ′0 ϑ′′0 ϑ(2)
0 ϑ(3)

0 ϑ(4)
0 ϑ(5)

0 ϑ(6)
0 ϑ(7)

0 ϑ(8)
0

1 2.493 2.368
2 1.847 2.397 21.031
3 3.077 2.524 2.033 -3.852
4 3.261 2.772 1.670 -3.593 -5.182
5 2.777 2.908 1.795 -4.176 -4.196 -6.764
6 2.841 2.813 1.386 -4.000 -3.798 -5.947 -8.538
7 2.930 2.964 1.312 -4.009 -2.760 -4.623 -7.459 -11.166
8 2.331 2.902 1.570 -4.063 -0.673 -7.120 -7.323 -9.854 -11.611

Table 5.4.: Critical exponents for increasing number p of couplings included. The first two criti-
cal exponents are a complex conjugate pair of the form ϑ′±ϑ′′i. The same is the case
for the fourth and fifth critical exponent ϑ(4)

0 ± ϑ(5)
0 i.

theory based on an action polynomial in scalar curvature and in even powers of scalar field
gives rise to a five-dimensional UV critical surface.



Chapter 6

Conclusion

Pure GR has been shown to be the best classical theory of gravity to date which is very suc-
cessful in explain a variety of cosmological and astrophysical phenomenons in a wide range
of energy. However this success is masked by a gloomy fact that it is inconsistent with the
quantum theory of matter, which has very well described the world at small scales. Gravity is
the only force among the four known forces which has not been successfully combined with
the quantum ideas. Different methods of incorporating the quantum notions in the classical
gravity picture, leads to several approaches to quantum gravity. These are broadly classified in
two categories: top-bottom picture and bottom-up picture. In the former one starts with a the-
ory which is drastically different from the well known physical theories describing the present
universe, and one tries to find the correct low energy limit, while in later one starts with the
effective theory describing the present universe and tries to extend it to higher energy scales.
In this thesis I have taken the bottom-up approach. It is the renormalization group approach

to gravity. I started by discussing the newmethods to study renormalization group of a theory,
by describing the construction of Functional Renormalization Group Equation (FRGE) and dis-
cussing its properties. I then discussed the generalized nonperturbative notion of renormaliz-
ability as first described by Weinberg [11], and showed how gravity can very well satisfy these
notions. It was called Asymptotic Safety Scenario. I demonstrated how the new tool FRGE
can be effectively used to study this nonperturbative notion of renormalizabiltiy by computing
the beta functions of the theory in a nonperturbative way, in the sense that the assumption of
coupling being small is not made.
FRGE has been very useful to study asymptotic safety scenario in the context of quantum

field theory of gravity, which has been formulatedwith metric as the field variable. Past studies
have shown that pure gravity is asymptotically safe as there exists a nontrivial UV attractive
FP satisfying the requirements of asymptotic safety outlined in section 2.2 [11, 25, 24, 26, 27, 38,
61, 62, 30, 31, 63, 29, 64, 65, 32, 66, 67, 42, 68, 69, 70, 71, 72] (see also [46] for reviews). Studies
involving inclusion of matter minimally interacting with gravity puts bounds on the number
of matter fields one can have in a system if the requirement of asymptotic safety needs to be
met [33], while considerations of a nonminimally coupled matter with gravity shows that the

113
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theory is asymptotically safe [34, 36]. Higher-derivative gravity interacting with matter have
also been studied in [35, 37], where theywere found to be asymptotically safe with an increased
dimensionality of UV critical surface.
Apart from the possible application of the work [36, 37] to cosmology as has been discussed

in the end of chapter 4, the research conducted in this thesis can be extended along various
directions.
First way of extending thework is to formulate a quantum field theory of gravitywhere both

metric and connection are dynamical, and investigate whether the requirements of asymptotic
safety are met or not. So far any asymptotically safe theory of gravity that has been constructed
is done with only the metric as the dynamical field. It would be interesting to see how the
situation changes when both metric and connection are dynamical. This is also called first
order formalism while the theory constructed with only metric is the second order formalism.
The second way to generalize the computations done in this thesis is by considering the ef-

fect of higher-derivative gravity. To start with one can do the truncations with four derivatives
of metric like the one considered in [62, 32, 35] and include a nonminimally coupled scalar
field. This can be then gradually extended to include more derivative terms of the metric.
Along this line a special class of such theories have been considered in [37], where the effective
average action was a scalar coupled nonminimally to F (R) theories of gravity. There it was
found that the UV critical surface is five dimensional while it has been noted that in pure F (R)
theories the UV critical surface is three dimensional [30, 31]. Thus it would be interesting to see
how the results gets affected when a non-minimally coupled scalar is introduced in the system
of higher-derivative gravity. Already it has been noted that in a theory involving maximum
four derivatives of metric, the UV critical surface is three dimensional [32, 35], irrespective of
whether one considers pure gravity or gravity minimally coupled to a scalar. The proposal
stated in above lines will thus be an improved computation. The only problem in pursuing
such studies are regarding the background metric that one should choose so as to extract the
beta functions of all the couplings present in the truncation. Choosing a very nontrivial back-
ground leads to computational difficulties while choosing a simple background may not give
all the information required. Thus in regard to this perhaps one needs to develop some new
tools extract the information from the FRGE. Development of new tools will also open the door
for studying the theories of gravity which contains the notorious two loop counter-term of per-
turbative gravity, which made EH-gravity two loop non-renormalizable. This will further shed
light on the asymptotic safety scenario.
The third line of research could be to include the effect of anomalous dimension of the scalar.

In a scalar theory in flat space background not interacting with gravity it has been noted that
in three dimensions, the presence of scalar wave-function renormalization leads to improved
results for theWilson-Fisher FP. Thus one expects that a similar thing might happen in the case
when the scalar is interacting with gravity.
The fourth line of research could be to study the asymptotic safety of higher-derivative grav-

ity theories in dimensions other than four, in particular focussing on extra dimensions. It has
been well established that EH-gravity whether interacting with matter or not is asymptotically
safe in dimensions other than four also [38, 36]. This was important to study after the pro-
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posal of extra-dimensions scenarios in [10], which has gained immense attention since its birth.
Within the community of asymptotic safety it is well known that at the nontrivial fixed point
of gravity all possible operators allowed by the symmetries of the theory will become equally
important. Thus it is important to study the asymptotic safeness of higher-derivative theories
of gravity both with and without matter in dimensions other than four.
The fifth line of research could be to study the effect of inclusion of other matter fields.

In a more realistic world apart from scalar fields there are dozens of other types of matter
field. Thus it is justified to consider a model of gravity interacting with various types of matter
field. A particular model which will be of great interest is the standard model interacting with
gravity. A first step in this directions was taken in [25, 33], where minimally coupled matter
fields were considered. It was found that demanding the existence of a fixed point required
putting constraints on the number of matter fields allowed in the theory. Thus considering a
realistic model consisting of various matter fields interacting nonminimally with gravity will
be of crucial importance to the field of aysmptotic safety. Such a study will nomatter be very
complicated to do but will shed light on the various important problems like the triviality and
hierarchy problem.
Apart from the proposals mentioned above there are several issues related to quantum be-

havior of gravity from a more general perspective which needs to be addressed. Particular
examples concering them that needs to be investigated are what is the structure of spacetime
in the UV limit within our approach to QG and what are the quantum observables. While such
issues have been started to be considered within the framework of FRGE [94, 95], they have
also been the primary focus of other nonperturbative approaches to QG. It would thus be in-
teresting to explore the connection between our approach and other approaches. This can be
done both at the level of reconstructing quantities such as bare action and regularized path in-
tegral from RG trajectories using FRGE [42] and of relating the theoretical predictions between
such different approaches. In the later context a possible point of contact is the phenomenon
of spontaneous dimensional reduction that has been reported across various approaches to
QG (see [96] for a review) and which also is an immediate consequence of asymptotic safety,
though whether it is a mere coincidence or not remains to be established. Although nonper-
turbative approaches are few but still establishing this connection is not any straightforward
task, as the method of quantization in various approaches is very different from each other.
However understanding these connections will be important as this will give crucial insights
in to gravitational physics in the UV.
Ultimately, however we would like to arrive at a testable theory of quantum gravity. In

the approach of asymptotic safety it requires what are the observational consequesce of our
putative asymptotically safe theory of gravity. This is important as apart from the theoretical
evidence that have been gathered for asymptotic safety scenario and its relation with other ap-
proaches to quantum gravity, the question of ultimate nature of quantum gravity is something
that must be determined by the experimental data. However it is perhaps too optimistic to
expect any direct experimental evidence or observational tests of quantum gravity in a near
future, but one can rely on indirect test of such theories in the light of astrophysical and cos-
mological observations [85]. Mapping the renormalization grop flow of gravity could be an
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important step in that directions.



Chapter A

Appendices

A.1. Trace technology
The r.h.s. of the FRGE is the trace of a function of a differential operator. To illustrate the
methods employed to evaluate such traces, we begin by considering the covariant Laplacian
in a metric g, −" (where " = ∇µ∇µ). If the fields carry a representation of a gauge group G
and are coupled to gauge fields for G, the covariant derivative∇ contains also these fields. We
will denote∆ = −"1 + E a second order differential operator. E is a linear map acting on the
spacetime and internal indices of the fields. In our applications to de Sitter space it will have
the form E = qR1where 1 is the identity in the space of the fields and q is a real number.
The trace of a functionW of the operator∆ can be written as

TrW (∆) =
∑

i

W (λi) (A.1)

where λi are the eigenvalues of ∆. Introducing the Laplace anti-transform W̃ (s)

W (z) =
∫ ∞

0
ds e−zsW̃ (s) (A.2)

we can rewrite eq. (A.1) as
TrW (∆) =

∫ ∞

0
dsTrK(s)W̃ (s) (A.3)

where TrK(s) =
∑

i e
−sλi is the trace of the heat kernel of ∆. We assume that there are no

negative and zero eigenvalues; if present, these will have to be dealt with separately. The trace
of the heat kernel of ∆ has the well-known asymptotic expansion for s → 0:

Tr
(
e−s∆

)
=

1

(4π)
d
2

[
B0 (∆) s−

d
2 + B2 (∆) s−

d
2+1 + . . . + Bd (∆) + Bd+2 (∆) s + ...

]
(A.4)

where Bn =
∫

ddx
√

gtrbn and bn are linear combinations of curvature tensors and their co-
variant derivatives containing 2n derivatives of the metric.
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Assuming that [∆,E] = 0, the heat kernel coefficients of ∆ are related to those of −" by

Tre−s(−!+E) =
1

(4π)
d
2

∞∑

k,-=0

(−1)-

0!

∫
ddx

√
g trbk(∆)E-sk+-−2. (A.5)

The first six coefficients have the following form [90]:

b0 = 1 (A.6)

b2 =
R

6
1 − E (A.7)

b4 =
1

180

(
RµναβRµναβ − RµνRµν +

5
2
R2 + 6"R

)
1

+
1
12

ΩµνΩµν − 1
6
RE +

1
2
E2 − 1

6
"E (A.8)

b6 =
1

180
R1

(
RµναβRµναβ − RµνRµν +

5
6
R2 +

7
2
"R

)

+
R

2
E2 + E3 +

1
30

E
(

RµναβRµναβ − RµνRµν +
5
2
R2 + 6"R

)

+
R

12
ΩµνΩµν +

1
2
EΩµνΩµν +

1
2
E"E − 1

2
JµJµ

+
1
30

(
2Ωµ

νΩ
ν
αΩ

α
µ − 2Rµ

νΩµαΩαν + RµναβΩµνΩαβ

)

+1
[
− 1

630
R"R +

1
140

Rµν"Rµν +
1

7560

(
−64Rµ

νR
ν
αRα

µ + 48RµνRαβR
α β
µ ν

+ 6RµνR
µ
ραβR

νραβ + 17R αβ
µν R ρσ

αβ R µν
ρσ − 28Rµ ν

α βR
α β
ρ σR

ρ σ
µ ν

)]
(A.9)

whereΩµν = [∇µ,∇ν ] is the curvature of the connection acting on a set of fields in a particular
representation of the Lorentz and internal gauge group and Jµ = ∇αΩα

µ. We neglect total
derivative terms. The coefficient b8, which is also used in this work, is much too long to write
here, and can be found in [89]. These coefficients are for unconstrained fields. The ones for
fields satisfying differential constraints such as hT

µν and ξµ in the field decompositions (3.61)
are given in the appendix A.2.
Let us return to equation (A.3). If we are interested in the local behavior of the theory (i.e.

the behavior at length scales much smaller than the typical curvature radius) we can use the
asymptotic expansion (A.4) and then evaluate each integral separately. Then we get

TrW (∆) =
1

(4π)
d
2

[
Q d

2
(W )B0(∆) + Q d

2−1(W )B2(∆) + . . .

+ Q0(W )Bd(∆) + Q−1(W )Bd+2(∆) + . . .
]
, (A.10)

where
Qn(W ) =

∫ ∞

0
dss−nW̃ (s) . (A.11)
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In the case of four dimensional field theories, it is enough to consider integer values of n.
However, in odd dimensions half-integer values of n are needed and we are also interested
in the analytic continuation of results to arbitrary real dimensions. We will therefore need
expressions for (A.11) that hold for any real n.
If we denoteW (i) the i-th derivative ofW , we have from (A.2)

W (i)(z) = (−1)i
∫ ∞

0
ds sie−zsW̃ (s) . (A.12)

This formula can be extended to the case when i is a real number to define a notion of “nonin-
teger derivative”. From this it follows that for any real i

Qn(W (i)) = (−1)iQn−i(W ) . (A.13)

For n a positive integer one can use the definition of the Gamma function to rewrite (A.11) as a
Mellin transform:

Qn(W ) =
1

Γ(n)

∫ ∞

0
dz zn−1W (z) (A.14)

while form a positive integer orm = 0

Q−m(W ) = (−1)mW (m)(0) . (A.15)

More generally, for n a positive real number we can define Qn(W ) by equation (A.14), while
for n real and negative we can choose a positive integer k such that n + k > 0; then we can
write the general formula

Qn(W ) =
(−1)k

Γ(n + k)

∫ ∞

0
dz zn+k−1W (k)(z) . (A.16)

This reduces to the two cases mentioned above when n is integer. In the case when n is a
negative half integer n = − 2m+1

2 we will set k = m + 1 so that we have

Q− 2m+1
2

(W ) =
(−1)m+1

√
π

∫ ∞

0
dz z−1/2f (m+1)(z) (A.17)

Let us now consider some particular integrals that are needed in this paper. As discussed in
section 3.3.1, there are two natural choices of cutoff function: type I cutoff is a function Rk(−")
such that the modified inverse propagator is Pk(−") = −"+Rk(−"); type II cutoff is the same
function but its argument is now the entire inverse propagator: Rk(∆), such that the modified
inverse propagator is Pk(∆) = ∆ + Rk(∆).
We now restrict ourselves to the case when E = q1, so that we can write ∆ = −" + q1.

The evaluation of the r.h.s. of the FRGE reduces to knowledge of the heat kernel coefficients
and calculation of integrals of the form Qn

(
∂tRk

(Pk+q)&

)
. It is convenient to measure everything
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in units of k2. Let us define the dimensionless variable y by z = k2y; then Rk(z) = k2r(y) for
some dimensionless function r, Pk(z) = k2(y + r(y)) and ∂tRk(z) = 2k2(r(y) − yr′(y)).
In general the coefficientsQn(W )will depend on the details of the cutoff function. However,

if q = 0 and 0 = n + 1 they turn out to be independent of the shape of the function. Note that
they are all dimensionless. For n > 0, as long as r(0) 2= 0:

Qn

(
∂tRk

Pn+1
k

)

=
2

Γ(n)

∫ ∞

0
dy

d

dy

[
1
n

yn

(y + r)n

]
=

2
n!

. (A.18)

Similarly, if r(0) 2= 0 and r′(0) is finite,

Q0

(
∂tRk

Pk

)
= 2 . (A.19)

Finally, for n = −m < 0

Qn

(
∂tRk

P 1−m
k

)∣∣∣
y=0

= (−1)m
(
∂tRk

P 1−m
k

)(m) ∣∣∣
y=0

=
m∑

n=0

(
m

n

)(
r − y r′

)(n) (y + r)(m−1)
∣∣∣
y=0

= 0

(A.20)
as (r − y r′)(n) = r(n) − y r(n+1) − r(n) = −y r(n+1) which vanishes at y = 0. This concludes the

proof that Qn

(
∂tRk

P n+1
k

)
are scheme–independent.

Regarding the other coefficients Qn

(
∂tRk

(Pk+q)&

)
whenever explicit evaluations are necessary,

we will use the so-called “optimized cutoff function” [43]

Rk(z) = (k2 − z)θ(k2 − z) (A.21)

With this cutoff ∂tRk = 2k2θ(k2 − z). Since the integrals are all cut off at z = k2 by the theta
function in the numerator, we can simply use Pk(z) = k2 in the integrals. For n > 0we have

Qn

(
∂tRk

(Pk + q)-

)
=

2
n!

1
(1 + q̃)-

k2(n−-+1) (A.22)

where q̃ = qk−2. For n = 0we have

Q0

(
∂tRk

(Pk + q)-

)
=

∂tRk

(Pk + q)-

∣∣∣∣∣
z=0

=
2

(1 + q̃)-
k2(−-+1) . (A.23)

Finally, owing to the fact that the function ∂tRk(z)
(Pk(z)+q)& is constant in an open neighborhood of

z = 0, we have
Qn

(
∂tRk

(Pk + q)-

)
= 0 for n < 0 . (A.24)
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This has the remarkable consequence that with the optimized cutoff the trace in the FRGE
consists of finitely many terms.
For noninteger n let us calculate

Q− 2n+1
2

(
∂tRk

Pk

)
=

(−1)n+1

√
π

∫ ∞

0
dz z−1/2 dn+1

dxn+1

∂tRk(z)
Pk(z)

(A.25)

where Pk(z) = z + (k2 − z)θ(k2 − z). We change the variable to x = z/k2 so we have

Q− 2n+1
2

(
∂tRk

Pk

)
=

(−1)n+1k−(2n+1)

√
π

∫ ∞

0
dxx−1/2 dn+1

dxn+1

2xθ(1 − x)
x + (1 − x)θ(1 − x)

(A.26)

We find
∫ ∞

0
dxx−1/2 d

dx
f(x) = 2

∫ ∞

0
dxx−1/2 d2

dx2
f(x) = −5 (A.27)

so that

Q−1/2

(
∂tRk

Pk

)
= − 2√

πk
(A.28)

Q−3/2

(
∂tRk

Pk

)
= − 5√

πk3

We also need some Q-functionals of Rk
(Pk+q)& . For n > 0we have

Qn

(
Rk

(Pk + q)-

)
=

1
(n + 1)!

1
(1 + q̃)-

k2(n−-+1) . (A.29)

The function Rk(z)
(Pk(z)+q)& is equal to k2−z

(k2+q)& in an open neighborhood of z = 0; therefore

Q0

(
Rk

(Pk + q)-

)
=

Rk

(Pk + q)-

∣∣∣∣∣
z=0

=
1

(1 + q̃)-
k2(−-+1) (A.30)

Q−1

(
Rk

(Pk + q)-

)
=

1
(1 + q̃)-

k−2- , Qn

(
Rk

(Pk + q)-

)
= 0 for n < −1 . (A.31)

Finally, for the type III cutoff one also needs the following

Qn

(
1

(Pk + q)-

)
=

1
n!

k2(n−-)

(1 + q̃)-
for n ≥ 0 ; Qn

(
1

(Pk + q)-

)
= 0 for n < 0 . (A.32)

In conclusion let us address a general problem concerning the choice of the operator O,
whose eigenfunctions are taken as a basis in the functional space. In some calculations the r.h.s.
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of the FRGE takes the form 1
2Tr∂tRk(∆+q1)

Pk(∆+q1) where∆ is an operator and q is a constant. Equation
(A.10) tells us how to compute the trace of this function, regarded as a function of the operator
∆+q1. In the derivation of this result it was implicitly assumed thatO = ∆+q1. However, the
trace must be independent of the choice of basis in the functional space. It is instructing to see
this explicitly, namely to evaluate the trace regarding 1

2Tr∂tRk(∆+q1)
Pk(∆+q1) as a function of ∆. Given

any functionW (z)we can define W̄ (z) = W (z + q); in general, expanding in q we then have

Qn(W̄ ) =
1

Γ(n)

∫ ∞

0
dz zn−1W (z + q)

=
1

Γ(n)

∫ ∞

0
dz zn−1(W (z) + qW ′(z) +

1
2!

q2W ′′(z) +
1
3!

q3W ′′′(z) . . .)

= Qn(W ) + qQn(W ′) +
1
2!

q2Qn(W ′′) +
1
3!

q3Qn(W ′′′) + . . .

= Qn(W ) − qQn−1(W ) +
1
2!

q2Qn−2(W ) − 1
3!

q3Qn−3(W ) . . . (A.33)

where in the last step we have used equation (A.13). Using (A.10) for the function W̄ we then
have

TrW̄ [∆] =
1

(4π)
d
2

[
Q d

2
(W̄ )B0(∆) + Q d

2
−1(W̄ )B2(∆) + . . . + Q0(W̄ )B2d(∆) + . . .

]

=
1

(4π)
d
2

[(
Q d

2
(W ) − qQ d

2−1(W ) +
1
2!

q2Q d
2−2(W ) − 1

3!
q3Q d

2−3(W ) + . . .

)
B0(∆)

+
(

Q d
2−1(W ) − qQ d

2−2(W ) +
1
2!

q2Q d
2−3(W ) − 1

3!
q3Q d

2−4(W ) + . . .

)
B2(∆)

+ . . .

+
(

Q0(W ) − qQ−1(W ) +
1
2!

q2Q−2(W ) − 1
3!

q3Q−3(W ) + . . .

)
B2d(∆)

+ . . .

]
(A.34)

We can now collect the terms that have the same Q-functions. They correspond to the anti-
diagonal lines in (A.34). Using equation (A.5) one recognizes that the coefficient of Q d

2−k is
B2k(∆ + q1). Therefore

TrW̄ [∆] =
1

(4π)
d
2

[
Q d

2
(W̄ )B0(∆ + q1) + Q d

2+1(W̄ )B2(∆ + q1)

+ . . . + Q0(W̄ )B2d(∆ + q1) + . . .
]

(A.35)

which coincides term by term with the expansion of TrW [∆ + q] using the basis of eigenfunc-
tions of the operator O = ∆ + q1. This provides an explicit check, at least in this particular
example, that the trace of this function is independent of the basis in the functional space.
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A.2. Spectral geometry of differentially constrained fields
In this appendix we work on a sphere. Consider the decomposition of a vector field Aµ into its
transverse and longitudinal parts:

Aµ → AT
µ + ∇µΦ

The spectrum of −" on vectors is the disjoint union of the spectrum on transverse and lon-
gitudinal vectors. The latter can be related to the spectrum of −" − R

d on scalars using the
formula

− "∇µΦ = −∇µ

(
" +

R

d

)
Φ. (A.36)

Therefore one can write for the heat kernel

Tr e−s(−!) |Aµ= Tr e−s(−!) |AT
µ

+Tr e−s(−!−R
d ) |Φ −e(s

R
d ). (A.37)

The last term has to be subtracted because a constant scalar is an eigenfunction of −" − R
d

with negative eigenvalue, but does not correspond to an eigenfunction of −" on vectors. The
spectrum of−" on scalars and transverse vectors is obtained from the representation theory of
SO(d + 1) and is reported in table A.1.
A similar argument works for symmetric tensors, when using the decomposition (3.61). One

can use equation

− " (∇µξν + ∇νξµ) = ∇µ

(
−" − d + 1

d (d − 1)
R

)
ξν + ∇ν

(
−" − d + 1

d (d − 1)
R

)
ξµ (A.38)

and equation

− "
(
∇µ∇ν −

1
d
gµν"

)
σ =

(
∇µ∇ν −

1
d
gµν"

)(
−" − 2

d − 1
R

)
σ (A.39)

to relate the spectrum of various operators on vectors and scalars to the spectrum of −" on
tensors. One has to observe that the d(d+1)/2 Killing vectors are eigenvectors of−"− d+1

d(d−1)R

on vectors but give a vanishing tensor hµν , so they do not contribute to the spectrum of −"
on tensors. Likewise, a constant scalar and the d + 1 scalars proportional to the Cartesian
coordinates of the embedding Rn, which correspond to two the lowest eigenvalues of −" −

2
d−1R, also do not contribute to the spectrum of tensors. So one has for the heat kernel on
tensors

Tr e(−s(−!))
∣∣∣
hµν

= Tr e(−s(−!))
∣∣∣
hT

µν

+ Tr e
“
−s

“
−!− (d+1)R

d(d−1)

””∣∣∣
ξ
+ Tr e(−s(−!))

∣∣∣
h

(A.40)

+Tr e(−s(−!− 2
d−1R)) |σ −e(

2
d−1sR) − (d + 1) e(

1
d−1sR) − d (d + 1)

2
e

“
2

d(d−1) sR
”

.

The last exponentials can be expanded in Taylor series as
∑∞

m=0 cmRm and these terms can
be viewed as modifications of the heat kernel coefficients of −" acting on the differentially
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Spin s Eigenvalue λl(d, s) Multiplicity Dl(d, s)
0 l(l+d−1)

d(d−1) R; l = 0, 1 . . . (2l+d−1)(l+d−2)!
l!(d−1)!

1 l(l+d−1)−1
d(d−1) R; l = 1, 2 . . . l(l+d−1)(2l+d−1)(l+d−3)!

(d−2)!(l+1)!

2 l(l+d−1)−2
d(d−1) R; l = 2, 3 . . . (d+1)(d−2)(l+d)(l−1)(2l+d−1)(l+d−3)!

2(d−1)!(l+1)!

Table A.1.: Eigenvalues and their multiplicities of the Laplacian on the d-sphere

constrained fields. To see where these modifications enter, recall that the volume of the sphere
is

VdS = (4π)
d
2

(
d (d − 1)

R

) d
2 Γ

(
d
2

)

Γ (d)
(A.41)

so that ∫
ddx

√
g trbn ∝ R

n−d
2 . (A.42)

This means a coefficent cm from the Taylor series will contribute to a heat kernel coefficient for
which 2m = n − d. So there are contributions to bn only for n ≥ d.
We have discussed how the negative and zero modes from constrained scalar and vector

fields affect the heat kernel coefficients of the decomposed vector and tensor fields. These
modes have to be excluded also from the traces over the constrained fields; this is denoted
by one or two primes, depending on the number of excluded modes. This can be done by
calculating the trace and subtracting the contributions to the operator trace from the excluded
modes. Thus the trace withm primes is

Tr
′...′ [W (−")] = Tr [W (−")] −

m∑

l=1

Dl (d, s)W (λl (d, s)) (A.43)

where λl(d, s) are the eigenvalues, Dl(d, s) their multiplicities, both depending on the dimen-
sion d and on the spin of the field, s. The eigenvalues and multiplicities for the m-th mode of
the Laplacian on the sphere are given in table A.1.
The expressions that we will need are those for the cases where one mode is excluded from

the transverse vector trace (s = 1, m = 1), or one or two modes from the scalar trace (s =
0, m = 1, 2), each one in two and four dimensions. The results obtained by calculating the
corresponding multiplicity and eigenvalue from table A.1 are given in table A.2. To see what
is the relevant contribution to one of the heat-kernel coefficients, one can expand the obtained
expression in R. For the case s = 0, d = 4,m = 2 one has for example

2∑

l=1

Dl (4, 0) W (λl (4, 0)) = W (0) + 5W
(

R

3

)

=
R2

4 (4π)2

∫
dx

√
g

(
W (0) +

5R
18

W ′ (0) +
5

108
R2W ′′ (0) +

5
36 · 27

R3W ′′′ (0) + . . .

)
.(A.44)
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s=1 s=0
m = 1, d = 2 3W

(
R
2

)
W (0)

m = 1, d = 4 10W
(

R
4

)
W (0)

m = 2, d = 2 W (0) + 3W (R)
m = 2, d = 4 W (0) + 5W

(
R
3

)

Table A.2.:
∑m

l=1 Dl (d, s) W (λl (d, s)) for s = 0, 1, d = 2, 4,m = 1, 2

S V VT T TT TTT

trb0
1 d d − 1 d(d+1)

2
(d+2)(d−1)

2
(d−2)(d+1)

2

trb2
R
6 d R

6
(d+2)(d−3) R

6d + 1
2 Rδd,2

d(d+1)R
12

(d+2)(d−1) R
12

(d+1)(d+2)(d−5) R
12(d−1) + 7

2 Rδd,2

Table A.3.: Heat Kernel coefficients for Sd. The columns are for scalar (S), vector (V), transverse
vector (TV), tensor (T), traceless-tensor (TT) and transverse traceless tensor (TTT).
The contribution proportional to δd,2 comes from excluded modes. The entries are
calculated using (A.6) and (A.7), and (A.37) and (A.40).

From this one sees that, in this case, the b2n receive a correction for n ≥ 2. In two dimensions,
that would be already the case for n ≥ 1. The full list of heat kernel coefficients of −" in 4d is
given in table A.4.

A.3. Proper time ERGE

Let us start from the ERGE for gravity in the Einstein–Hilbert truncation with a type III cutoff,
written in equation (3.78). Define the functions:

Ak(z) =
∂tRk(z)

z + Rk(z)
Bk(z) =

Rk(z)
z + Pk(z)

Ck(z) =
∂zRk(z)

z + Rk(z)
. (A.45)

The term in equation (3.78) containing C is nontrivial. To rewrite it in a managable form we
take the Laplace transform:

Ck (z) =
∫ ∞

0
ds C̃k(s) e−sz . (A.46)
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S V VT T TT TTT

trb0
1 4 3 10 9 5

trb2
R
6

2R
3

R
4

5R
3

3R
2 −5R

6

trb4
29R2

2160
43R2

1080 − 7R2

1440
11R2

216
81R2

2160 − R2

432

trb6
37R3

54432 − R3

17010 − 541R3

362880 −1343R3

136080
−319R3

30240
311R3

54432

trb8
149R4

6531840 − 2039R4

13063680 − 157R4

2488320 − 2999R4

3265920
683R4

725760
109R4

1306368

Table A.4.: Heat kernel coefficients for S4. The columns for the transverse vector (VT) and
transverse traceless tensor (TTT) are obtained from equations (A.37) and (A.40) in
d = 4. Note that the excluded modes contribute to trbn only for n ≥ 4.

Since the operator ∂t(∆2 − 2Λ) commutes with∆2 − 2Λ, we can write

Ck (∆2 − 2Λ) ∂t(∆2 − 2Λ) =
∫ ∞

0
ds C̃k(s) ∂t(∆2 − 2Λ) e−s(∆2−2Λ)

= −
∫ ∞

0

ds

s
C̃k(s) ∂te

−s(∆2−2Λ) . (A.47)

Laplace transforming also Ak and Bk, the first term in equation (3.78) becomes
1
2

∫ ∞

0
ds

[
Ãk(s) + B̃k(s) η −

1
s

C̃k(s) ∂t

]
Tr e−s(∆2−2Λ) . (A.48)

This is the functional RG equation in “proper time” form [91, 92, 93]. Note that the first term
corresponds precisely to the one loop approximation. The trace of the heat kernel can be ex-
panded

Tr e−s(∆2−2Λ) = e−s(−2Λ) 1
(4π)d/2

∫
dx

√
g tr

[
1s−

d
2 +

(
1

R

6
− W

)
s−

d
2+1 + O(R2)

]

= e−s(−2Λ) 1
(4π)d/2

∫
dx

√
g

[
d(d + 1)

2
s−

d
2 +

d(7 − 5d)
12

R s−
d
2+1 + O(R2)

]
,

whereas for the ghosts

Tr e−s(δµ
ν ∆−Rµ

ν ) =
1

(4π)d/2

∫
dx

√
g tr

[
δµν s−

d
2 +

(
δµν

R

6
+ Rµ

ν

)
s−

d
2+1 + O(R2)

]

=
1

(4π)d/2

∫
dx

√
g

[
ds−

d
2 +

d + 6
6

R s−
d
2+1 + O(R2)

]
.
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The ERGE then takes the form:

∂tΓk =
1

(4π)d/2

∫
dx

√
g
{d(d + 1)

4
Q d

2

(
Āk + ηB̄k − 2∂tΛ C̄k

)
− dQ d

2
(Ak)

+
[
d(7 − 5d)

12
Q d

2−1

(
Āk + ηB̄k − 2∂tΛ C̄k

)
− d + 6

d
Q d

2−1 (Ak)
]

R + O(R2)
}

.

where W̄ (z) = W (z − 2Λ). Using an optimized cutoff one can now reproduce equations (3.80)
and (3.81). However, in this way the sums in equation (3.79) can be resummed for any type of
cutoff shape.
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