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The ability to reduce everything to simple fundamental laws does not

imply the ability to start from those laws and reconstruct the universe. In

fact, the more the elementary particle physicists tell us about the nature of

the fundamental laws, the less relevance they seem to have to the very real

problems of the rest of science, much less to those of society.

The constructionist hypothesis breaks down when confronted with the twin

difficulties of scale and complexity. The behavior of large and complex ag-

gregates of elementary particles, it turns out, is not to be understood in

terms of a simple extrapolation of the properties of a few particles. In-

stead, at each level of complexity entirely new properties appear and the

understanding of the new behaviors requires research which I think is as

fundamental in its nature as any other.

Science, 177: 393. P.W. Anderson





Introduction

Biological systems are special classes of systems that encode and process
information virtually without errors even if subject to strong thermal noise.
One question that can be raised is how this can be explained within the laws
of physics. The difficulty to find the answer is deeply related to the com-
plexity of those systems, where several different biomolecules are involved
in thousands of biochemical and physical interactions. The usual approach
to model these systems, taking only the key ingredients in such complex
scenario, still results to be a challenging and astonishingly difficult task.
In the thesis we just give a flavor of how statistical physics could be use-
ful to answer question coming from biological problems. We start giving a
description of the most interesting experiments that allow to address new
quantitative questions in the realm of biology.

Motivations

Network analysis, inference and optimization represent methodological chal-
lenges which play a central role in large scale data analysis. Their practical
relevance arises from the huge quantity of empirical noisy data that is be-
ing made available in many fields of science, biology and economics in first
place.
For example, the recent abundance of genome sequence data has brought an
urgent need for systematic analysis to decipher the protein networks that
dictate cellular functions.

While stylized dynamical models of gene regulation were formulated as
early as in the 1960s [47], the integration of dynamical models with the
experimental information about transcription interaction is one of the big
modern challenges [21, 87]. Nowadays, by advances in technologies such
as mass spectrometry [34], genome-wide chromatin immunoprecipation [37],
yeast two-hybrid assays [94], combinatorial reverse genetic screens [93] and
rapid literature mining techniques [81], data on thousands of interactions in
humans and most model species have become available. Now the challenge
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vi Introduction

is to develop new strategies and theoretical frameworks to filter, interpret
and organize interaction data into models of cellular functions. If thought
from a theoretical physics perspective, this an extremely difficulty task since
nor the relevant degrees of freedom neither the microscopic Hamiltonian are
generally known for these systems. In this framework theoretical research
in biology aims at identifying basic design principles governing the cellular
behavior giving the missing ingredients, i.e. the laws of interactions.

It is largely known that apparently different realizations of networks can
be identical if looked from a more general perspective namely from a coarse
grained description. This seems to be true also in biology where interac-
tion networks are the results of random historical choices, subjects to strong
selection rules. Despite the difficult task to understand the mechanisms
behind the functionality of these networks, what is more interesting, ulti-
mately, is to investigate the principles at the base of historical evolution.
In the following we provide a brief description of some of the most popular
experiments that allow to probe such tiny systems.

Experiments

Hereafter, I describe shortly the leading experimental setups which allow to
identify protein-protein and protein-DNA interactions within the cell. This
resume does not want to be an exhaustive description of the modern exper-
imental state-of-the-art but to give only a flavor of what can be measured
nowadays.

Chromatin immunoprecipitation (ChIP) is a powerful tool for identifying
transcription factor proteins (TF), associated with specific genomic regions
namely specific portion of DNA [88]. The success of the procedure relies on
the ability of the antibody to bind to target protein after linked to the DNA.
The first step is to wait for the formation of cross-link between TF and DNA
using some chemical precursor, after which the cell is lysed namely destroyed,
freeing the cell extract (the complex of DNA and all the binding proteins).
At this point the DNA is shorn in small pieces through a procedure called
sonication and only after that the DNA/TF complex is precipitated using
the target antibody attached to a fixed substrate. The precipitation is the
process through which a solid is formed in a solution thanks to a chemical
reaction. After treating the complex, finally the DNA portion is purified
and identified with some standard techniques. The in vivo nature of this
method is in contrast with other approaches employed to answer the same
questions and, moreover, due to the specificity of the antibody interaction,
it permits to select specific TF proteins. The technique can be be used
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Figure 1: In figure the main steps for experimental setup of genome-wide
Chip are reported. The main difference with respect to Chip is principally
the last operation where the DNA is prepared to be analyzed using mi-
croarrays technique. The idea is to identify DNA regions by exploiting the
hydrogen bonds of nucleotide base pairs. The natural bonds formation be-
tween A T and C G basis, leads to the hybridization of two complementary
DNA nucleic acid sequences and the strength of the interactions depends
explicitly on the number of complementary base pairs.
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together with microarrays to discover the location of various transcription
factors on a genome-wide basis as sketched in figure 1.

Two-Hybrid systems is a method to detect interacting proteins. It is
based on the modular organization of many transcription factors TF. In-
deed, many such TF are composed by two different functional domains:
DNA-binding domain (DBD) and the activator domain (AD). It is of basic
importance for the success of the experiment that, when the two parts are
separated the TF is not longer able to activate the transcription of a target
gene. The first protein used for this technique was the yeast protein GAL4
that is composed on two well defined domains [27]. Using the specificity of
the interaction between the two domains, it is possible to test the interac-
tion between two given proteins by looking the activation of the target gene
usually called reporter. Now consider two different types hybrid: the first,
called bait, contains the DBD fused to a protein of interest whereas the sec-
ond (prey) is a protein fused to the activator domain. The bait can bind to
the DNA, but cannot activate transcription because it does not contain an
activation function (if it does, this procedure will not work). Hence, if we
express these two hybrid in the same cell, those expressing the reporter gene
are identified and purified for further characterization. This can be justified
by the fact that interacting proteins contained in the bait and in the prey
come close together starting the transcription of the target gene because the
two domains are put in contact. This process is sketched in figure 2.

Plan of the thesis

In the first chapter we give a short introduction to the cavity method and
show how it works on the traveling salesman problem. This is a well-known
problem, where the method was firstly introduced, which aims at identifying
the shortest loop connecting N different cities. Using a standard argument
á la De Gennes, we show how to obtain the optimal tour length from the
O(m)-model, by performing the analytic continuation m → 0. Using this
representation, we are in principle able to obtain the minimum length tour
by means of the cavity method. However, we experience several problems
related to the global property of finding a single connected loop visiting all
the cities. This seems to be related to the fact that local constraints can not
enforce the property of the loop to be composed only of one cycle.

This problem naturally raises the following general question: how is it
possible to identify subgraphs of a specific shape into large networks? The
answer is intrinsically related to the problem of imposing global constraints
by only local ones. Indeed, this can be rephrased as the quest for a clever
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Figure 2: We sketch the description of two-hybrid system. The TF is com-
posed by two different domain: DNA binding and activator domain. When
the DBD binds to the cognate binding site in the genome, the activation
domain is brought close to the promoter, allowing the activation domain
to interact with the transcription machinery and resulting in activation of
transcription. If we construct two different hybrid composed by these two
domains plus some different proteins, the expression of the reporter is pro-
duced only when the two added proteins interact. Indeed if the two proteins
in the hybrids do not talk to each other the two domains remain well sepa-
rated and by itself the bait fusion does not stimulate the expression of the
reporter.
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representation that allows to scan properties of networks by means of only
local checks. This issue represents the main topic of this thesis. We will
show a specific example where this goal has been achieved and give a gen-
eralization of the cavity method to deal with global constraints where the
nature of the problem is explicitly non-local.

In the second chapter, we show how to search for bounded trees of mini-
mum weight in fully connected weighted networks, imposing the global topo-
logical property of being a tree with local constraints by paying the cost to
add a new set of variables. This idea, inspired by some recent works on
the Steiner tree problem, has shown an interesting application to efficiently
cluster large dataset according on some notion of similarity between data.
We show that the algorithm interpolates between two well known clustering
methods: Affinity Propagation and Single Linkage. Later on we provide
two biological/medical data clustering problems for which external informa-
tion can be used to validate the algorithmic performance. First, we tackle
the problem of clustering homologous proteins based only on their amino
acid sequences and finally, we consider a clustering problem arising in the
analysis causes-of-death in regions where vital registration systems are not
available.

In the third chapter we generalize the method to deal with subgraphs
of any given shape, testing it on the maximum clique problem. In this
limit the algorithm shows good agreement with theoretical results. The
algorithm allows to analyze large graphs and may find applications in fields
such as computational biology. In the last chapter we show two different
biological applications. Firstly we use it to align the similarity graphs of
two interacting protein families involved in bacterial signal transduction,
and to predict actually interacting protein partners between these families.
Secondly we show how it performs on finding and counting the number of
directed different subgraphs in transcriptional regulation networks.



Chapter 1

An Overview on the Cavity

Method

This chapter is an overview on the cavity method which is the main tool
used throughout this thesis. We present the method in a general framework,
discuss the hypothesis on which it is based and give its physical interpreta-
tion. As an application, we study the traveling salesman problem. This is a
long debated hard optimization problem that introduces the main topic of
this thesis, namely, the role of global topological constraints.

1.1 Optimization and statistical physics

Optimization is a common concept in many research fields from biology to
computer science. It typically involves a large number of variables, which
are required to simultaneously satisfy a series of constraints. One can equiv-
alently define an energy function as the number of unsatisfied constraints
of a given assignment of the variables, and rephrase that problem as the
quest for a zero-energy ground state configuration. This analogy with low
temperature physics triggered an intensive research effort within the statis-
tical mechanics community[68]. More precisely, a line of approach for these
problems consists in looking for typical properties of randomly generated
large instances. The introduction of a source of randomness leads naturally
to the definition of ensembles. This concept summarizes the idea of taking a
large number copies of the system, which are under the same constraints and
are macroscopically equivalent. Of course they may appear very different at
microscopic level, but when looking at self-averaging quantities like energy
or entropy, they are identical.
From another point of view, one can be interested in finding explicitly the

1



2 1.1. OPTIMIZATION AND STATISTICAL PHYSICS

single instance assignment of zero energy. This line of research was com-
pletely inaccessible for hard problem using approximated methods and can
be seen as the main feature of the algorithmic implementation of the cavity
method.

As a first step it is interesting to understand how difficult it is to solve
the instances. Theoretical computer scientists developed the computational
complexity theory in order to quantify how hard problems can be in the
worst possible case [76]. The most important and discussed complexity
classes are the P, NP and NP-complete. A problem is in the P (polynomial)
class when it can be solved by an algorithm (or a deterministic Turing ma-
chine) for a given size N of the input data, in at most cNk steps, where k and
c are independent on the size N . On the other hand, the NP class is more
general and defines the set of all problems whose solution can be checked
in polynomial time and, in principle, can be solved by a non-deterministic
Turing machine in polynomial time. Although the majority of scientists be-
lieve that the two classes are different, it has not been demonstrated that
NP 6= P.

The concept of NP-completeness was introduced by Cook for the Boolean
satisfiability problem [18]. This complexity class is a subset of NP and it is
defined by the following rule: any other NP problem can be converted into
one of these NP-complete problems by a polynomial time transformation.
Such type of problems turn out to be very difficult and one way of approach-
ing is to use approximation techniques. For a complete list of NP-complete
problems see the article of Karp [44].
However, in many everyday problems, the solution is known also for NP-
complete problems because the typical instances are much easier with re-
spect to the worst ones. This happens when the difficult cases are very
rare while the typical cases are easy to solve, meaning that the time scales
polynomially in contrast to their complexity class.

1.1.1 Graphical Representation

Inference problems in statistical physics can be reformulated in terms of
computing marginal probability on a graphical model. Let X1, . . . , XN be a
set of N discrete-valued random variables and xi be a possible outcome of
the variable Xi. We consider the joint probability density function

p(X1 = x1, . . . , XN = xN ) = p(x)
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Figure 1.1: We show the factor graph, a bipartite graph composed by two
types of nodes: the variable nodes (white circles), associated to each degree
of freedom xi, and the factor nodes (red squares) associated to function
nodes fa. This is the graphical representation of the probability defined in
equation (1.1.1).

to be written as

p(x) =
1
Z

M∏
a=1

fa(xa) , (1.1.1)

where Z is a normalization constant and fa(xa) is positive and well defined
function of a subset of variables xa ⊂ {x1, . . . , xN}. Physically we can in-
terpret the function fa as a constraint involving a finite fraction of variables
which decreases the available volume of the phase space. In the statisti-
cal physics community, these constraints are given by the usual Boltzmann
factor

fa(z) = e−βea(z) (1.1.2)

having properly defined the inverse temperature of the system β and the en-
ergy by means of local terms ea(xa), E(x) =

∑
a ea(xa). The relation (1.1.2)

authorizes us to identify the normalization Z with the partition function of
the system.

The graphical representation of the probability in equation (1.1.1) is
showed explicitly in figure 1.1 and is based on the following two rules. First
of all, we associate to each xi a variable node (circle), and to each given
constraint fa a factor node (square). Then, we draw a link between variable
node i and function nodes a, if xi is an argument of the constraint, namely
xi ∈ xa. Of course, this is a bipartite graph in the sense that every square has
only ka neighbor circles, where the number ka = |xa| depends explicitly on
the nature of the interactions. Vice-versa, the neighborhood of the variables
nodes is composed only by factor nodes (squares) and the number of squares,
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qi, counts how many times the variable node i interacts. The previous
variables satisfy the following natural condition

Mk =
N∑

i=1

qi and Mk =
M∑

a=1

ka (1.1.3)

where k is the average number of variables involved in the constraint. Let
us consider as an example, pairwise interactions in a regular lattice, like
in Ising ferromagnet. In this case the factor graph remarkably simplifies
because qi depends on the dimension D of the lattice and ka = 2 ∀a so the
factor nodes (squares) become a redundant way to represent interactions
between couples, usually drawn as simple links.

From the joint distribution function we can compute also some important
quantities like the most probable configuration x∗ : maxx p(x) = p(x∗) or
the marginals and multi-nodes marginals, defined as a summation over all
variables but not the considered ones

pi(xi) =
∑
x/xi

p(x) pa(xa) =
∑
x/xa

p(x) . (1.1.4)

Finally, we can also compute the entropy and energy of the system as

S =
∑
x

p(x) log p(x) E =
∑
x

E(x)p(x) (1.1.5)

In case of complete factor graphs for pairwise interactions, statistical
properties are characterized in great detail [77]. In that case the notion of
distance in the graph is lost because all variables are neighbors of all the
others. The mean field solution turns out to be exact in the renormalization
group sense also for model defined on d-dimensional regular lattice above
the upper critical dimension dc. Unfortunately, most of the interesting cases
in nature are not within this range or are diluted systems without any finite
dimensional structure. For this reason, in last years new methods to deal
with sparse graphs i.e. Erdős-Rényi random graphs, random regular graphs,
or configurational models, have been developed. Among those is the cavity
method.

1.2 Cavity Method and Belief Propagation

The Cavity Method is a tool introduced in the field of disordered diluted
spin systems by Parisi and Mézard in [61] and further developed in [63]
to deal with non-trivial correlations. In principle it allows to compute the
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marginal probability of the Boltzmann measure for local degrees of freedom
in an acyclic graphical model. It has been successfully applied in many
combinatorial optimization and condensed matter problems on sparse graphs
[71, 53] and could be seen as complementary to the mean field method.
The latter case is valid in fully connected graphs while the former is exact
for diluted graphs where a notion of distance and the concept of locality is
somehow recovered. The cavity method offers new tools to study the physics
of diluted systems.

The natural algorithmic implementation of this method is called Belief
Propagation (BP), which is well known in the computer science community
since the 60’s [83] and further developed to study inference problems by
Pearl in [79]. BP provides an efficient scheme to solve by iteration a set
of mean field equations in sparse graph and can be seen as a method to
organize the calculation based on distributed simple elements that operate
in parallel.

It is worth mentioning that this method has been introduced several
times. For what concerns the physical framework, Bethe [10] firstly in-
troduced the free energy functional in terms of marginals to compute the
partition function of the Ising model. Its generalization to inhomogeneous
systems is principally due to Thouless, Anderson and Palmer in their sem-
inal work on the spin glass problem [92]. Nevertheless, the equivalence of
the two forms, BP and Bethe approximation for inhomogeneous systems in
loopy graphs, was demonstrated only recently [99, 100]. In these articles the
authors introduced the derivation of the BP equations inspired by a varia-
tional technique which shows that the method is a reliable approximation.

From a strictly mathematical point of view, both the cavity method and
BP are poorly understood, although a number of steps further have been
made in the last decade, showing its validity in locally tree graphs [69].

The idea behind the cavity method is to compare the properties of the
system after having created a cavity, namely having removed one node i

from the system and, consequently, the variable node i and all its near-
est neighbors factor nodes a ∈ ∂(i) from the associated factor graph. We
define ∂(i) as the set of neighbor factor nodes of i. This assumption natu-
rally leads to a set of self consistent equations for the marginal probability
(1.1.4) of the removed node i as a function of the probability in its absence
pi(xi) = F(pj→a(xj)) as represented in figure 1.2. Here pj→a is a notation
to define the probability density function of node j removing factor node
a ∈ ∂(i) and F is a generic functional form. In general, this set of equations
involves the solution of the equivalent model with N − 1 nodes. Despite
this difficulty, assuming the absence of correlations among variables after
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i

Figure 1.2: The system with N nodes is compared to the system after
removing the node i. This leads to a set of self consistent equations that,
in the absence of correlations among neighbors of the node i turn out to
be exact, like for example in tree or in fully connected graphs. The basic
hypothesis behind the method at this level is the presence of a single pure
state or in spin glass terms the replica symmetry is not broken.

having created the cavity, we can obtain a set of self consistent equations
depending only on the cavity probabilities. This assumption is completely
justified when the beneath graph is a tree. In that particular case, after hav-
ing removed one node, the graph splits up into two or more disconnected
components and therefore the joint probability density function factorizes.
A word of caution has to be added at this point. In physical systems with
short range interactions, correlations usually decay on the scale of few micro-
scopic units of length. However, close to critical points, where spontaneous
symmetry breaking occurs the above assumption of decay of correlations
generally fails since the system develops long range order. If this is the case,
we need to select one single pure state to ensure the absence of correlation1.
This can be very easy to do, such as in the ferromagnetic/paramagnetic Ising
critical point or much less trivial as in spin glass systems, where in the low
temperature phase replica symmetry breaking occurs. We will not address
here this very interesting topic and refer the reader to the original literature
where the proper generalization of the cavity method has been introduced
to deal with non trivial correlations[64, 50].

Let us start by describing the method. Firstly we provide an algorithmic
scheme which could be also used for computational calculations in order to

1A very important feature of the pure state is the clustering property. In essence it

states that connected correlation between two different points goes to zero when their

distance goes to infinity. Take for example the paramagnetic phase below the critical

temperature, we have that 〈σiσj〉c = m2, meaning that this state is not a pure state when

T < Tc. But after projecting the system by means of an external field, the correlation

vanishes and the cavity method still holds.
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Figure 1.3: After having created a cavity in the graph, we remove a vari-
able node and all its neighbor factor nodes. Let us define messages from
factor nodes to variable nodes as a vector over the possible states of xi,
and viceversa cavity probabilities from variable nodes to factor nodes as the
probability of the variable xi in absence of the constraint a.

find a single instance solution. Then, we generalize the results in the whole
graph ensemble, to obtain a well defined description of the method in the
thermodynamic limit.

1.2.1 The symmetric solution on a single graph

Let us first introduce messages for each link of the factor graph. We can
distinguish between two type of vector messages. The one going from the
variable node i to the factor node a pi→a(xi) and vice-versa let ma→i(xi)
be the vector message over the possible states of xi from the factor nodes
a to the variable i. The former term is the cavity marginal probability
in absence of the constraint fa(xa) whereas the latter can be physically
interpreted as a statement from the factor node a to the variable i about
the relative probabilities of i to be in one of its possible state xi related
to the constraint fa(xa), as sketched in the cartoon 1.3. The structure of
messages is determined by the underlying factor graph and they satisfy the
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following equations

pi→a(xi) =
1

Zi→a

∏
c∈∂(i)/a

mc→i(xi) = Fp({mc→i}) (1.2.1)

ma→i(xi) =
1

Za→i

∑
xa/xi

fa(xa)
∏

j∈∂(a)/i

pj→a(xj) = Fm({pj→a}),

(1.2.2)

where ∂(i)/a indicates the set of factor nodes close to the variable node i ex-
cept a and ∂(a)/i denotes all the variable nodes which are nearest neighbors
of the factor node a but i. Notice that, in presence of correlations, the true
condition for the messages would be ma→i(xi) ∝

∑
xa/xi

fa(xa)Pa→i(xa/i)
where Pa→i(xa/i) is the joint probability density function of the variables
xj ∈ {xa} − xi in absence of node i. Of course this term is non trivial
and can not be expressed in terms of messages but, within the hypothe-
sis of independence, the joint probability factorizes as a product of terms
Pa→i(xa/i) =

∏
j/i pj→a(xj) leading to (1.2.2).

We can replace the equation for the pi→a (1.2.1) into the equation (1.2.2)
and obtain a set of self consistent equations, to be solved by iteration. There-
fore, we introduce the time dependent messages mt

a→i(xi) and the cavity
probabilities pt

j→a(xi) and define at each time step an updating scheme by
using the previous equations, to obtain

pt
i→a(xi) =

1
Zi→a

∏
c∈∂(i)/a

mt
c→i(xi) (1.2.3)

mt
a→i(xi) =

1
Za→i

∑
xa/xi

fa(xa)
∏

j∈N(a)/i

pt−1
j→a(xj) . (1.2.4)

These equations are called the Belief Propagation equations or the sum-
product equations because they involve a summation of a product of terms
whose fixed points are the solution of the equations (1.2.1) and (1.2.2).
The messages are usually initialized to 1 but other non-negative initializa-
tions, that keep the messages positive-definite, are also possible. If the BP
equations converge, we obtain the fixed point messages and in term of these
we can define the BP marginals or beliefs bi(xi). The beliefs are defined as

bi(xi) ∝
∏

a∈∂(i)

ma→i(xi) (1.2.5)

and, more generally, we can define the multi-nodes beliefs which involve all
the variable of the constraint a

ba(xa) ∝ fa(xa)
∏

i∈N(a)

∏
c∈∂(i)/a

mc→i(xi) . (1.2.6)
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Naturally the BP equations (1.2.1) (1.2.2) could be obtained from the marginal-
ization condition bi(xi) =

∑
xa/xi

ba(xa), starting from the definition (1.2.6).
In term of these marginals, it is possible to construct a joint probability den-
sity of this form

p(x) =
∏

a ba(xa)∏
i bi(xi)qi−1

(1.2.7)

Despite, it is not possible to show that it is correctly normalized on a general
ground, it is true in graph with a local tree structure. We will see later on
that marginalization property together with the normalization of the belief,
comes out as a natural consequence from a variational method [99, 100]
although the lack of normalization for the joint probability density function
prevents the Bethe free energy to be an upper bound to the real free energy.

Free energy

Physical quantities like energy or entropy can be computed on the basis of
the beliefs, given the identities in (1.1.2)

EBP = − 1
β

∑
a

∑
xa

ba(xa) ln fa(xa) =
∑

a

∑
xa

ba(xa)ea(xa)

SBP = −
∑

a

∑
xa

ba(xa) ln ba(xa) +
∑

i

(qi − 1)
∑
xi

bi(xi) ln bi(xi)

(1.2.8)

Therefore the free energy can be written as usual

FBP = EBP −
1
β
SBP . (1.2.9)

At this point we can use a more intuitive approach in computing the
free energy given the cavity probabilities and messages that fulfill (1.2.1)
and (1.2.2). This method can elucidate the factorized form of the Bethe
probability grasping intuition from a more physical framework.

Let us start saying that when we create a cavity in the graph, namely we
remove a variable node from the hypergraph, the free energy of the system is
decreased by a factor due to the deletion of the node and of all its clauses. We
can think to the dual case of removing a function node a and consequently
all the attached nearest variable nodes, where ∆F a+i∈∂(a) is the shift in
free energy associated to the deletion of a and i ∈ ∂(a) while ∆F i is that
related to the elimination of i. This method has been introduced in [62] by
taking advantage of the physical intuition that the perturbation associated
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to these variations remains localized in the graph and does not propagate.
The ∆F a+i∈∂(a) can be written in term of cavity messages ma→i(xi) as

e−β∆F a+i∈∂(a)
=

∑
xa

fa(xa)
∏

i∈∂(a)

pi→a(xi) (1.2.10)

while the contribution obtained adding one node reads

e−β∆F i
=

∑
xi

∏
a∈∂(i)

ma→i(xi) . (1.2.11)

The total free energy can thus be written as the summation over all the
constraints of the increasing amount of free energy associated to the function
node a and its nearest neighbors, minus the terms counted twice. So that

FBP =
∑

a

∆F a+i∈∂(a) −
∑

i

(qi − 1)∆F i . (1.2.12)

An intuitive interpretation of this result is that in order to go from 0 to M
constraints one should add the energy of all the constraints. But in this
sum each variable i appears in qi different clauses and we have to subtract
explicitly qi − 1 energetic terms in order to remove the degeneracy. It is
possible to show explicitly that the forms (1.2.12) and (1.2.9) are equivalent
by using the following relations∑

x,a

ba(x) ln ba(x) =
∑

i

(qi − 1)
∑

a∈∂(i),x

bi(x) lnma→i(x)− β
∑
x,a

ba(x)ea(x)

−
∑

a

ln

∑
x

e−βea(x)
∏

i∈∂(a)

∏
b∈∂(i)/a

mb→i(xi)

 (1.2.13)

∑
x,i

bi(x) ln bi(x) =
∑

i,a∈∂(i),x

bi(x) lnma→i(x)−
∑

i

ln

∑
x

∏
a∈∂(i)

ma→i(x)


(1.2.14)

Substituting the definition of entropy and energy given in (1.2.8) in the
free energy (1.2.9), the previous conditions for the marginals allows for the
following consideration: the energetic term EBP is annihilated by the second
term in the right hand side of equation (1.2.13). Then we can recognize that
the first term in same equation (1.2.13) cancel exactly the first of (1.2.14)
after multiplied by qi − 1. The remaining terms are easily identified with
the ∆F i and ∆F a+i∈∂(a) factors defined respectively in (1.2.10) and (1.2.11).
This calculation ends the demonstration that the two ways of computing the
free energy, one from the definition of joint probability distribution function
and the other from physical consideration about the local tree geometry, are
equivalent and lead to the same value for the free energy.



CHAPTER 1. THE CAVITY METHOD 11

1.2.2 Average over the graph ensemble

We now turn to the case of random ensembles. Let us introduce a source
of randomness in the realization of the interaction networks and move the
attention from a single factor graph to the whole set of different factor
graphs constructed following several rules. This assumption is justified a
posteriori by the fact that in real networks, a large number of different
realizations seems to perform the same action or function and, in a certain
sense, belongs to the same class. The source of randomness in graphs could
be in the choice of the variable nodes that interact together or in the number
of times a single variable enters in a constraint.
In this probabilistic description, some extensive quantities are interesting,
i.e. the total number of edges, the node degree sequence or the number of
connected components in which the graphs split.

Let us introduce the random factor graph ensembles which can be seen
as a generalization to graph theory of the usual thermodynamic ensembles
[22].

Classical random graphs and random factor graphs

The interest in random graphs mainly concerns on the uncorrelated graph
ensembles, where the architecture is completely determined by the degree
distribution S(q). The two simplest models for random graphs are the
Gilbert graph ensemble GN p [32] and the Erdős-Rényi ensemble GN M [26].
The GN p is the set of all graphs with probability p of having an edge between
each pair of the N nodes. The microcanonical version of this ensemble, or
the GN M , is defined as the set of graphs with N nodes and fixed num-
ber of edges M . In the former case the number of edges fluctuates from
different realizations and is a Poissonian random variable with mean value
M = p × N(N − 1)/2. Naturally, it follows that in the thermodynamic
limit this two different ensembles share the same statistical properties when
the external parameter p and M satisfy the relation p = 2M/(N(N − 1)).
The properties of the Gilbert or Erdős-Rényi graphs strongly depend on
how the parameter p and respectively M scales with N . Of course, for fully
connected graph we have p = 1 or equivalently M = N(N − 1)/2 and for
null graph p = 0 and M = 0. Moreover, introducing the density of links
α = M/N , the graph is sparse if α/N → 0 for large N . This means that
the parameter p ∼ o(1/N) and consequently M = o(N). In Gilbert cases,
where the mean degree 〈q〉 = c is fixed, we have that the degree q for each
node has a Poissonian distribution S(q) = e−cc q/q ! .

These Poissonian ensembles can be generalized to the factor graphs de-
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noting by R(k) the degree distribution of the factor nodes, where the density
of constraints can be written as

α =
M

N
=

c

〈k〉
. (1.2.15)

If we fix the degree of factor node k = K and the number of variable to N
we have

(
N
K

)
possible choices for a given link in a constraint. We define the

equivalent of Gilbert ensemble for hypergraphs assuming that each link has
equal probability to be selected and is

p =
cN

K
(
N
K

)
so that the total number of constraints is a random variable with average
value M = cN/K, recovering the Gilbert random ensemble forK = 2.

The sparse regime c = O(1/N) is particularly interesting for our purpose,
since it follows that graphs are locally tree with only infinitely large loops.
This can be proved by computing the average length of the shortest cycle
going through variable i. Let us consider a particle which diffuses on this
graph. The probability for it to come back to the starting point i after d
steps, without coming back from the same edges, reads

1−
(

1− 1
N

)Pd
j=1(γqγk)j

, (1.2.16)

where γq = 〈q2〉−〈q〉
〈q〉 and γk = 〈k2〉−〈k〉

〈k〉 . The probability of coming back in
a number of steps d� logN/ log(〈q2〉 − 〈q〉/〈q〉) vanishes with N , meaning
that cycles smaller than logN become very rare in large size limit.

1.2.3 Belief propagation equations over the ensemble

We study the properties of the typical instances of the random ensemble by
denoting with 〈·〉 the average over the realization of graphs. We assume that
the factor graph ensemble is described by a given degree distribution S(q)
for variable nodes and R(k) for constraints. If we introduce the distribution
of the messages m’s, P(m), and of the cavity probability p’s, Q(p), we have

P(m) =
∞∑

q=1

qS(q)
〈q〉

∫ q∏
i=1

[
dpiQ(pi)

]
δ(m−Fm({pi}))

Q(p) =
∞∑

k=1

kR(k)
〈k〉

∫ k∏
i=1

[
dmiP(mi)

]
δ(p−Fp({mi})) (1.2.17)
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where Fp and Fm are the functional form defined in equations (1.2.1) and
(1.2.2). Once solved the previous equations, we have the explicit form of the
distributions of messages and cavity probabilities. This allows to compute
all the interesting quantities like free energy and entropy, by averaging the
equations 1.2.8 over P.

The solution of those equations is not straightforward and usually it is
not solvable analytically, however a very efficient numerical technique called
population dynamics [63] has been developed. The basic idea of the method
is to represent the distributions in term of a population, or a sample of Npop

elements drawn at random from it.
Since at the beginning we do not know the distribution, therefore we start
by sampling the population with uniform probability and then update their
values according to the BP equations. We just take randomly one term in
the population and compute its value using the equations (1.2.1)-(1.2.2) in
terms of the other randomly chosen elements. After T updating iterations
we arrive, up to an arbitrary precision, to the desired fixed point. The
probability distribution is then obtained by computing the histogram of the
Npop terms. Of course, this method is approximated but provides reliable
results and the error can be estimated in function of Npop and the time T .

1.3 Extracting the single instance solution

In general, the BP equations show some difficulties in the convergence and
usually to extract a single solution from local marginals is not an easy task.
For the latter problem there are some decimation technique2 [64, 65, 78,
70] devoted to the search of a solution starting from the BP beliefs. The
decimation scheme proceeds as follows:

• Run the BP algorithm.

• Use the marginals to choose a variable i and identify its value x∗i .

• Fix the value of xi = x∗i and run again BP algorithm with the con-
straints pi(xi) = δ(xi−x∗i ) or adding an external field hi = ∞ directed
along the x∗i .

If the algorithm does not produce a contradiction, it stops only when all the
variables are fixed, thus providing a solution of the problem. The perfor-
mance of the method are deeply related to the selection rule of the second

2These techniques have been developed in the context of Survey Propagation and only

successively extended to BP.
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point and of course we have to run N times the BP algorithm to fix all the
variables.
In what follow we are going to illustrate a different procedure, called rein-
forcement, a sort of smooth decimation introduced to solve both the prob-
lems of convergence and selection of optimal assignments [16, 15].

Reinforcement

The idea behind the reinforcement technique is to smoothly decimate during
the iteration procedure. This allows to run the BP algorithm only one
time, improving the convergence and finding the optimal assignment of the
variables at once. The idea is to introduce an extra term into the equation
(1.2.3), which can be defined as an external field and precisely

pt+1
i→a(xi) =

[
bti(xi)

]γt

Zi→a

∏
c∈∂(i)/a

mc→i(xi) (1.3.1)

where γt = 1−γt
0 and γ0 ∈ [0, 1] such that γt → 1 with increasing time. The

two trivial choices, γ0 = 1/0, correspond respectively to obtain back the BP
equations when γ0 = 1 and for γ0 = 0 to add an external field hi = log bti(xi)
that depends on the last computed belief bti(xi) =

∏
am

t
a→i(xi). If the

belief equals the exact solution bti(xi) = pi(xi) = δ(xi− x∗i ), the right choice
would be γ0 = 0, since we find instantaneously the solution by polarizing
the cavity field in the right direction. Of course, at t = 0, the beliefs
are randomly initialized so in general it is misleading to select γ0 = 0.
The choice of this parameter is crucial, since it modules the weight of the
computed beliefs by introducing a non trivial factor in front of the external
field hi = γt log bti(xi). In order to understand better how to tune this
parameter, it is worth stressing the fact that it determines the threshold
time T th at which γt reaches 1, giving the maximum weight of the previously
computed local belief, which scales as T th ∼ − α

log γ0
.

We numerically find that after having introduced a reinforcement term,
the dynamics of the equation oscillates a lot. This is showed by the error,
namely the maximum difference between two successive iterations, which
decreases monotonously and then changes by starting to increase again. The
amplitude of oscillations mostly seems to reduce, restoring the convergence
after a time which depends on the choice of γ0. However we will enter into
the details of the results in the rest of the thesis for the specific problem
under consideration.
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1.4 Exact variational method

It is possible to show that the BP equations are valid in all graphs which
are locally trees[69]. This has been finally demonstrated but it was already
expected since loops are of order logN when correlations decay fast enough
[56]. Moreover, this method provides good estimate of the free energy also
in case when graphs have short loops.
In fact, it is possible to show that the fixed points solutions of the BP
equations are the stationary points of a variational free energy. The physical
intuition dates back to the work of Bethe [10] and successively by Kikuchi
[48]. Variational method are based on the following assumption: ignoring
the true distribution of the system p(x), a trial probability b(x) is defined
which is correctly normalized and positive definite, so that it is possible to
define a variational free energy

F (b) = E(b)− TS(b) (1.4.1)

which differs from the real free energy by a factorD(b||p) called the Kullback-
Leibler divergence

D(b||p) =
∑
x

b(x) log
b(x)
p(x)

. (1.4.2)

It can be proved that this term is always non-negative and is zero only when
the two distributions coincide [20], thus providing an upper bound to the
exact free energy. Minimizing F (b) with respect to the trial probability is a
legitimate procedure to find the best approximation of the real free energy.

This is the basic idea behind the mean field method where the trial
probability is factorized as a product of marginal probabilities and in this
spirit the Bethe approximation is going a step further, by considering more
complicated forms for the joint probability b(x) which involves the multi-
nodes beliefs ba(xa).

Let us now introduce the trial probability in terms of the marginals

b(x1, . . . , xN ) =
∏

a ba(xa)∏
i bi(xi)qi−1

(1.4.3)

where the marginals have to be locally consistent. In other words they have
to fulfill the normalization conditions∑

xa

ba(xa) = 1
∑
xi

bi(xi) = 1
∑
xa/xi

ba(xa) = bi(xi) (1.4.4)

such that the associated free energy reads

F (b) = −
∑

a

ba(xa) log
ba(xa)
fa(xa)

+
∑

i

(qi − 1)bi(xi) log bi(xi) . (1.4.5)
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Unfortunately, it is not generally possible to construct the trial joint dis-
tribution consistent with the marginals beliefs ba(xa) and bi(xi). Therefore
the free energy defined in (1.4.5) is not rigorously an upper bound of the
free energy F , but still it is an accurate approximation giving good results.
The analogy with variational methods suggests that the stationary points of
the Bethe free energy should play an important role. In fact, the fixed point
of BP equations (1.2.1) and (1.2.2) are in one-to-one correspondence to the
stationary points of F (b) as we will show in the following in the context
of Lagrangian theory. Nevertheless, the reason why the BP equations give
good results in general is still unclear and a matter of intensive research.

We introduce a set of Lagrange multipliers: λi corresponds the normal-
ization of the belief bi(·) and λai(xi) is associated to normalization of ba(·).
We have totally introduced N plus N×M parameters which are used in the
definition of the Lagrangian

L = F (b)−
∑

i

λi

[∑
xi

bi(xi)− 1

]
−

∑
a,i∈N(a),xi

λai(xi)

 ∑
xa/xi

ba(xa)− bi(xi)

 .
(1.4.6)

Imposing the stationary conditions according to the beliefs, we obtain that

bi(xi) = e
1− 1

qi−1
(
P

a λai(xi)−λi) ba(xa) = fa(xa))e−
P

i∈N(a) λai(xi)−1 .

(1.4.7)
The multipliers have to be fixed by imposing the normalization conditions:
the first two equations, reported in (1.4.4), fix the values of λai and λi,
whereas the last

∑
xa/xi

ba(xa) = bi(xi) gives rise to a set of self consistent
conditions for the Lagrangian parameters.

In order to see the correspondence with the BP equation (1.2.1) (1.2.2)
we introduce the following definitions

pi→a(xi) ∝ e−λai(xi) , ma→i ∝
∑
xa/xi

fa(xa)e−
P

j∈N(a)/i λaj(xj) . (1.4.8)

It is easy to show that ma→i fulfills the condition

ma→i(xi) =
1

Za→i

∑
xa/xi

fa(xa)
∏

j∈N(a)/i

pj→a(xj) . (1.4.9)

Performing some manipulations, reported in detail in [71], we can also iden-
tify the pi→a as the cavity probability

pi→a(xi) =
∏

b∈∂(i)/a

ma→i(xi) . (1.4.10)
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Figure 1.4: The problem of finding the shortest tour among N cities can be
studied into different ensembles. The first one is called Euclidean and the
cities are putting randomly in a real D dimensional space with euclidean
distances. On the contrary, we can think to select randomly the distances
between the cities from a power law distribution ρ(d) defined in (1.5.14)
to mimic spatial correlations. In that case, the use of the term distance is
an abuse because they are not real distances since they do not satisfy the
triangle inequality.

Viceversa, for any given solution of the BP equations one is able to define a
set of Lagrangian parameters using the relation (1.4.8). This ends the proof
of the relation between the stationary points of the Bethe free energy and
the solutions of the BP equations.
This correspondence has important consequences for the existence and unic-
ity of the BP fixed points. For example in acyclic graphs the convexity of
the free energy is useful to show that the BP fixed point is unique whereas
in loopy-structures there could be multiple stationary points[71].

1.5 Traveling Salesman Problem

In the following we show how the general formalism described in this chapter
applies to solve the problem of identifying the shortest tour among a set of
N cities the so called traveling salesman problem (TSP). The TSP has in-
terested the scientific community since the last twenty years mainly because
it is an hard combinatorial optimization problem that can be mapped onto
the ground state of a statistical mechanical model[59, 49, 58, 60, 74].

Let us introduce the problem: we have a set of N cities connected two
by two by independent, identically distributed, random distances, dik, which
can be interpreted as the costs for traveling from a city i to another k and do
not satisfy the triangle inequality (see figure 1.4). The set of distances defines
a N ×N matrix that is random, symmetric and positive definite. The TSP
is focused on the research of the shortest, among all possible tours, passing
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through all the cities. Of course, doing it iteratively, requires a time which
increases exponentially with the system size N .

It is straightforward to show that the shortest tour is in the class of closed
paths, defined as the closed walks or loops passing through all the cities only
once. Hence that it can be identified with the N − 1 links connecting the
cities Γ∗ = {e1, e2, . . . , eN−1} and its length is E =

∑
e∈Γ∗ we, where we is

the weight associated to the e link. We can define a partition function as the
summation over all the possible N -city loops, Γ, following the Boltzmann
prescription as

Z(β) =
∑
Γ

e−βE(Γ) =
∑

nij=1,0

e−β
P

i<j nijdij (1.5.1)

where β is a fictitious temperature and E =
∑

i<j nijdij . Here the nij is a
0− 1 variable which can be interpreted as the probability that the link 〈ij〉
is included in the N -city loop. The average energy and average occupation
number is related to the partition function

〈E〉 = −∂ lnZ
∂β

〈nij〉 = −∂ lnZ
∂dij

(1.5.2)

and in the limit β → ∞ the minimum length tour is obtained. In order to
proceed it is convenient to formulate the TSP in terms of an m-component
spin model in the m → 0 limit [31]. This model is defined on a fully con-
nected graph of N vertices with exponentially decaying two-bodies interac-
tions uij = e−βdij . For each vertex k we assign an m-component spin vector
Sk satisfying the normalization condition Si · Si = m. Thus the partition
function reads

G(β,m, ω) =
∫ N∏

q=1

dµ(Sq) exp

ω∑
i<j

ui j Si · Sj

 (1.5.3)

where dµ is the measure over the m-dimensional sphere normalized to one
and ω is an external parameter. It is possible to show by a direct reasoning
that the TSP is mapped exactly into the O(m) spin model taking the proper
limits:

lim
m→ 0
ω →∞

G− 1
mωN

≡
∑
Γ

exp

−β∑
i<j

nijdi j

 . (1.5.4)

This equality can be obtained by using a classical diagrammatic argument
and expanding the partition function in terms of ω. Therefore, noticing that
only closed diagrams with single loop correspond to non vanishing terms in
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the sum we can identify the partition function of the TSP with that of the
m-component spin model. An other important consequence of the analytic
continuation m → 0 is the fact that only diagrams up to order ωN will
survive since any closed diagram with more than N links must necessarily
contain more than one loop. Finally, taking the limit ω →∞ the dominating
term of the expansion is the leading one, which represents precisely a closed
tour passing through all N cities.

We start by noticing that the factor graph simplifies to a fully connected
graph because we are dealing with two-bodies interactions and the degree of
the function node is ka = 2 ∀a ∈ [1 . . .M ]. The weight of function node can
be written in terms of all the N(N − 1)/2 possible couples a = {ij} ∀i ∈
[1, . . . , N ] and j ∈ {[1, . . . , N ] : j > i} and thus reads

fij(Si,Sj) = eωuijSi·Sj = 1 + ωuijSi · Sj +
ω2

2
u2

ij (Si · Sj)
2 + . . . . (1.5.5)

From (1.2.1) and (1.2.2) we obtain

pi→j(Si) =
∏
k/i

mk→i(Si) , (1.5.6)

mi→j(Sj) =
∫
dµ(Si)fij(Si,Sj)pi→j(Si) (1.5.7)

where mi→j(Si) is the constraint the site j feels from the neighbors i. The
cavity probability pi→j can be parametrized as usual in terms of the cavity
magnetization along the first of the m component3 xi→j = 〈S1

i 〉N−1

pi→j(S1
i ) =

1 + xi→jS
1
i

2
. (1.5.8)

By using the spherical symmetry
∫
dµ(S)S2n+1

k = 0 ∀n = [0, 1, . . . ,∞] and
the nilpotency when m→ 0, if we replace (1.5.8) into the (1.5.7), we obtain
that only the first two terms of the expansion survive and the vector of
messages becomes mi→j(S1

j ) = 1 + ω uij xi→j S
1
j /2. After using it into the

(1.5.6) and properly normalizing the probability, we obtain a self consistent
equation for the magnetization

xi→j =
ω

∑
k 6=j ukixk→i

1 + ω2
∑

k<k′/j ukiuk′i xk→i xk′→i
(1.5.9)

3This is true because without loss of generality we can always think to break the

symmetry along one of the m components, i.e. the first one, by applying an infinitesimally

small field directed along the chosen component
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Figure 1.5: The 2-matching problem finds a set of disconnected cycles span-
ning all the cities with minimum cost whereas the TSP aims at finding the
connected optimal tour passing thought all the cities.

In terms of the magnetization we can compute also the the occupation num-
ber using the definition (1.5.2) as

nij =
ω ui jxi→jxj→i

1 + ω ui jxi→jxj→i
. (1.5.10)

We now take the limit ω → ∞ to select the closed path visiting all the N
cities and after properly rescaling the magnetization xi→j = xi→j/

√
ω the

equations (1.5.9) and (1.5.10) become

xi→j =

∑
k/j e

−βdk ixk→i∑
k<k′/j e

−βdk ie−βdk′ ixk→ixk′→i
(1.5.11)

nij =
e−βdi jxi→jxj→i

1 + e−βdi jxi→jxj→i
. (1.5.12)

In the low temperature limit the solution of (1.5.11) selects the shortest cycle
identifying all the edges present in the tour. In order to correctly perform
the limit, we make the hypothesis that the magnetization in each site scales
exponentially as a function of the inverse temperature introducing the cavity
fields [49]

xi→j = exp(βφi→j) .

Thus the BP equations (1.5.11) reduce to

φi→j = m̂ink/j dk i − φk→i

nij =

{
1 if di j − φi→j − φj→i < 0
0 otherwise

(1.5.13)
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where m̂ink/j χk is the second minimum value of the function χk over all
possible k except j. In [49] and [59] the authors are interested in computing
the length of the shortest tour in the random distance (RD) ensemble, where
the distances are distributed according to

ρ(d) =
2πD/2
Γ(d/2)

dD−1 . (1.5.14)

to mimic what happens in euclidean space. The parameter D plays the role
of the dimension in real space and Γ(x) is the Gamma function. Using the
cavity method the authors obtain very good results, with respect to direct
numerical simulations, for the rescaled length of the optimal tour L(D). In
[49] they get

`c(D) = lim
N→∞

N1/DLc(D)

and for D = 1 the cavity prediction `c(D = 1) = 2.0416 perfectly matches
the numerical results by Johnson et al. `(1) = 2.0418 ± 0.0004 [41] and
later confirmed by Sourlas [90] with an investigation of the low temperature
properties of the model, leading to strong credence to the cavity value for
D = 1. For what concern higher dimensions, where the problems come out
from the non-validity of the triangle inequality, we refer the reader to the
work of [80], where the authors provide numerical evidence that the `c(D)
is self averaging and the cavity method at the replica symmetric level gives
good results also for D > 1.

We can eventually be interested in obtaining the shortest tour in a given
graph realization by numerically solving the set of self consistent equations
for a single instance problem. The algorithmic scheme to compute iteratively
the solution is summarized in the following:

• First of all, initialize the fields φi→j with some random values.

• Iterate the BP equations (1.5.13) until convergence has been reached:

– At each step update every message φi→j in a random order, and
compute the difference from the previous value ∆ij = |φt

i→j −
φt−1

i→j |.
– If the maximum difference maxij∈E ∆ij is below a given threshold,

end the update procedure and exit.

• Use the φi→j to obtain the solutions of the BP equations and then
check the condition for a given link 〈kl〉 to be present dk l − φk→l −
φk→l < 0. If the inequality is satisfied, set the probability of the link
to 1 and obtain the set of edges Γ∗ selected by the minimum length
tour.
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Figure 1.6: In figure we show the histogram of the length tour for N = 100
averaged over 247 samples. The mean value for the tour length is `c = 2.046
in good agreement with the one predicted by [49].

In figure 1.6 we plot as an example the histogram of the length tour
founded by the BP algorithm which turns to be peaked around the average
value predicted in [49] lc = 2.046 for N = 100. However if we look at the
fixed point solution of BP equations we notice that global connectivity is not
correctly enforced namely that Γ∗ is composed by a large cycle plus some
small loops (see left panel of the figure 1.7). This result can be understood
better, by noticing that the BP equations for the TSP are equivalent to
the 2-matching problem where the global connectivity constraint is lost.
Indeed in the 2-matching problem, we are interested in obtaining a graph
G, spanning the original network, with fixed connectivity z = 2. Notice that
the graph G forms a set of disjoint cycles which span all the vertices and
therefore by construction the global constraint to have a single loop is not
required as shown explicitly on the cartoon 1.5.

From this analysis we can conclude that from the energetic point of
view, the cavity method seems to be predictive giving correct results for
the rescaled minimum length `(D). However this appears to be not enough
in order to identify the optimal tour in a single instance problem. A novel
approach, able to deal with global topological constraints, is thus needed.
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Figure 1.7: On that plot, we show two examples of the tour obtained by the
BP algorithm: the first is a real connected tour while the second does not
enforce the connectivity constraint thus showing the algorithm solves the
two-matching problem.





Chapter 2

Finding trees in networks

As a first example of cavity method, we introduced a new algorithm (MST)
which aims to find a bounded depth D spanning tree on a fully connected
graph. Inspired by the recent work [7], we show how it is possible to enforce
a global constraint by introducing new variables for each degree of freedom,
physically interpreted as the depth from a root node. The MST has some
interesting applications in clustering large dataset, on the basis of some sim-
ilarity measure, and can be shown to interpolates between two highly used
complementary strategy: partitioning methods and hierarchical clustering.
Preliminary applications on two different biological datasets have shown
that it is indeed possible to exploit the deviation from the purely D = 2
spherical limit to gain some insight into the data structures. Our method
has properties which are of generic relevance for large scale datasets, namely
scalability, simplicity and parallelizability.

2.1 Global vs Local constraints

As we just mention at the end of the previous chapter, enforcing global
property by means of purely local constraints seems to be a challenging
task. This relative difficulty is reasonable if we think how to check local
properties with respect to the global ones. The former needs basically a
local examination of the graph whereas in order to control the latter, we
need to run a search algorithm which spans the whole network. The best
example that enhances this topic is the cavity formalism of the TSP problem.
Using the standard argument á la De Gennes we have shown in section 1.5,
how to obtain the optimal tour length from the O(m)-model, realizing that
something is lost by performing the analytic continuation. In fact, the BP
equations for the TSP are equivalent to that of the 2-matching problem,

25



26 2.2. CLUSTERING

which aims at finding the optimal set of disconnected cycles.
The failure of the previous technique suggests the need to enforce ex-

plicitly the global constraint. In this sense, the work [7] introduces a new
representation of the problem to exploit the topology of the tree and en-
forcing it by local constraint. This method works only on tree which are
well defined by the simple local property: if two nodes i and j are near-
est neighbors, necessarily their distance with respect to any selected node,
called root, has to satisfy the condition |di − dj | = 1. This intuition has
inspired the arborescent representation of the problem which allows to im-
plement explicitly global connectivity constraints in terms of local ones. The
term arborescent is associated to the rooted tree construction. Each node
of the rooted tree is identified by two degrees of freedom. The first one
is the distance di ∀i ∈ [1, . . . , N ] that assumes all integer value from zero
to the maximum distance D from the root node. Indeed, the root node
conventionally has zero distance. Secondly, the spin-like degrees of freedom
si are substituted with πi, a set of N -valued integer variables ranging from
[1, . . . , N ]. We describe in detail the new representation in the following and
see how it is enough to impose the global connectivity.

Finally, in this chapter we are going to illustrate how the method can be
used to obtain an efficient algorithm to cluster large dataset which interpo-
lates between two well known clustering methods: Affinity Propagation [28]
and Single Linkage [24].

2.2 Clustering

A standard approach to data clustering, that we will also follow here, in-
volves defining a distance measure between objects, called dissimilarity. In
this context, generally speaking data clustering deals with the problem of
classifying objects so that those, within the same class or cluster, are more
similar than those belonging to different classes. The choice of both the
measure of similarity and the clustering algorithms are crucial in the sense
that they define an underlying model for the cluster structure. In this chap-
ter we discuss two somewhat opposite clustering strategies, and show how
they nicely fit as limit cases of a more general scheme that we propose.

Two well-known general approaches that are extensively employed are
partitioning methods and hierarchical clustering methods [38]. Partitioning
methods are based on the choice of a given number of centroids – i.e. refer-
ence elements – to which the other elements have to be compared. In this
sense the problem reduces to finding a set of centroids that minimizes the cu-
mulative distance to points on the dataset. Two of the most used partition-
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ing algorithms are K-means (KM) and Affinity Propagation (AP)[52, 28].
Behind these methods, there is the assumption of spherical distribution of
data: clusters are forced to be loosely of spherical shape, with respect to
the dissimilarity metric. These techniques give good results normally only
when the structure underlying the data fits this hypothesis. Nevertheless,
with Soft Affinity Propagation [52] the hard spherical constraint is relaxed,
allowing for cluster structures including deviation from the regular shape.
This method however recovers partially information on hierarchical organi-
zation. On the other hand, Hierarchical Clustering methods such as single
linkage (SL) [24], starts by defining a cluster for each element of the system
and then proceeds by repeatedly merging the two closest clusters into one.
This procedure provides a hierarchic sequence of clusters.

Recently an algorithm to efficiently approximate optimum spanning trees
with a maximum depth D, that has nothing to do with the space dimen-
sion, was presented in [7]. We show here how this algorithm may be used to
cluster data, in a method that can be understood as a generalization of both
(or rather an interpolation between) the AP and SL algorithms. Indeed in
the D = 2 and D = N limits - where N is the number of object to cluster
- one recovers respectively AP and SL methods. As a proof of concept, we
apply the new approach to a collection of biological and medical clustering
problems on which intermediate values of D provide new interesting results.
In the next section, we define the objective function for clustering based on
the cost of certain trees over the similarity matrix, and we devise a message-
passing strategy to find an assignment that optimize the cost function. Then
we recover the two known algorithms, AP and SL, which are shown to be
special cases for appropriately selected values of the external parameters D.
Finally, in the last section we use the algorithm on two biological/medical
data clustering problems for which external information can be used to vali-
date the algorithmic performance. First, we tackle the problem of clustering
homologous proteins based only on their amino acid sequences and finally,
we consider a clustering problem arising in the analysis causes-of-death in
regions where vital registration systems are not available.

2.3 A Common Framework

Let us start with some definitions. Given N data points, we introduce the
similarity matrix between pairs sij , where i, j ∈ [1, . . . , N ]. This interaction
could be represented as a fully connected weighted graph G(N,S) where S
is the set of weights S associated to each edge. This matrix constitutes the
only data input for the clustering methods we present hereafter. We refer in
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Figure 2.1: Clustering an artificial 2D image. The black image on the left
was randomly sampled and the euclidean distance was used as a measure
of dissimilarity between nodes. Clustering by D-MST was then attempted
on the resulting graph. One external root vertex v∗ (red point) was added,
with distance λ to every other points. The output of the algorithm consists
in a minimum weight rooted spanning tree of depth D pointed out by bold
links. The last three figures concern the resulting clustering for different
choices of the depth limit D = 2, 4, > N respectively. Different clusters with
a complex internal structure can be recovered after removing the red node
v∗. In the case of AP D = 2 (second figure) the spherical clusters do not
fit the ellipsoidal shape of the original figure while for 4-MST (third figure)
the structure of two ellipses can be recovered. The fourth and last figure
corresponds to SL (D > N): in this case nodes are split into two arbitrary
components disregarding the original shape.

the following to the neighborhood of node i with the symbol ∂(i), denoting
the ensemble of all nearest neighbors of i. By adding to the graph G one
artificial node v∗, called root, whose similarity to all other nodes i ∈ G is a
constant parameter λ, we obtain a new graph G∗(N + 1, S∗) where S∗ is a
(N + 1)× (N + 1) matrix with one added row and column of constant value
to the matrix S (see figure 2.1).

We will employ the following general scheme for clustering based on
trees. Given any tree T that spans all the nodes in the graph G∗(N +1, S∗),
consider the (possibly disconnected) subgraph resulting of removing the root
v∗ and all its links. We will define the output of the clustering scheme as the
family of vertex sets of the connected components of this subgraph. That is,
each cluster will be formed by a connected component of the pruned T \ v∗.
In the following, we will concentrate on how to produce trees associated to
G∗.

The algorithm described in [7] was devised to find a tree of minimum
weight with a depth bounded by D from a selected root to a set of terminal
nodes. In the clustering framework, all nodes are terminals and must be
reached by the tree. As a tree has exactly N−1 links, for values of D greater
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or equal than N the problem becomes the familiar (unconstrained) minimum
spanning tree problem. In the rest of this section we will describe the D-
MST message passing algorithm of [7] for Steiner trees in the simplified
context of (bounded depth) spanning trees.

To each node of the graph we associate two variables πi, and di as
sketched in figure 2.2, where πi ∈ ∂i could be interpreted as a pointer
from i to one of the neighboring nodes j ∈ ∂(i). Meanwhile di ∈ [0, . . . , D]
is thought as a discrete distance between the node i and the root v∗ along
the tree. Necessarily only the root has zero distance dv∗ = 0, while for
all other nodes di ∈ [1, . . . , D]. In order to ensure global connectivity
of the D-MST, these two variables must satisfy the following condition:
πi = j ⇒ di = dj + 1. This means that if node j is the parent of node i,
then the depth of node i must exceed the depth of the node j by precisely
one. This condition avoids the presence of loops and forces the graph to be
connected, assigning non-null weight only to configurations corresponding
to trees. The energy function thus reads

E({πi, di}N
i=1) =

∑
i

siπi−
∑

i,j∈∂(i)

eij(πi, πj , di, dj)+eji(πj , πi, dj , di), (2.3.1)

where eij is defined as

eij =

{
0 {πi = j ⇒ di = dj + 1}
−∞ else

(2.3.2)

In this way only configurations corresponding to a tree are taken into account
with the usual Boltzmann weight factor e−βsiπi where the external parameter
β fixes the value of energy level. Thus the partition function is

Z(β) =
∑

{πi,di}

e−βE({πi,di}) =
∑

{πi,di}

∏
i

e−βsiπi ×
∏

ij∈∂(i)

fij , (2.3.3)

where we have introduce an indicator function of pairwise interactions

fij = gijgji.

Each term gij = 1 − δπi,j

(
1− δdj ,di−1

)
is equivalent to eeij while δij is the

delta function. In terms of these quantities fij it is possible to derive the
cavity equations, i.e. the following set of coupled equations for the cavity
marginal probability pj→i(dj , πj) of each site j ∈ [1, . . . , N ] after removing
one of the nearest neighbors i ∈ ∂(j):

pj→i(dj , πj) ∝ e−βsiπi

∏
k∈∂(j)/i

mk→j(dj , πj) (2.3.4)

mk→j(dj , πj) ∝
∑
dkπk

pk→j(dk, πk)fjk(dj , πj , dk, πk) . (2.3.5)
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Figure 2.2: The graphical representation of the BP equation for the MST
problem is sketched in figure. To each variable node two integer degrees of
freedom are defined: one of them being the distance from the root and the
other is interpreted as a pointer πi. Every couple of nearest neighbors has
a constraint fij shows as a red square in the cartoon. This representation
is enough to enforce the global property of being a tree by means of local
constraints.

These equations are solved iteratively and in graphs with no cycles they
are guaranteed to converge to a fixed point that is the optimal solution. In
terms of cavity probability we are able to compute beliefs using the equations
(1.2.5)-(1.2.6)

bj(dj , πj) ∝
∏
k∈∂j

mk→j(dj , πj) (2.3.6)

bij(di, πi, dj , πj) ∝ pi→j(di, πi)pj→i(dj , πj)fij(di, πi, dj , πj). (2.3.7)

From the algorithmic viewpoint in graph with cycles, the problem of non-
convergence can be overcome by introducing a reinforcement perturbation
term as in [7]. This leads to a new set of perturbed coupled equations that
show good convergence properties.

pt
j→i(dj , πj) ∝ bt−1

j (dj , πj)γte−βsiπi

∏
k∈∂(j)/i

mt
k→j(dj , πj) (2.3.8)

mt
k→j(dj , πj) ∝

∑
dkπk

pt−1
k→j(dk, πk)fjk(dj , πj , dk, πk). (2.3.9)

The β →∞ limit is taken by considering the change of variable

ψj→i(dj , πj) = β−1 log pj→i(dj , πj) (2.3.10)

φj→i(dj , πj) = β−1 logmj→i(dj , πj) (2.3.11)
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thus the relations 2.3.4-2.3.5 reduce to

ψj→i(dj , πj) = −siπi +
∑

k∈∂j/i

φk→j(dj , πj) (2.3.12)

φk→j(dj , πj) = max
dkπk:fkj 6=0

ψk→j(dk, πk) . (2.3.13)

These equations are in the Max-Sum form and equalities hold up to some
additive constant. In terms of these quantities, marginals are given by

ψj(di, πj) = −sjπj +
∑

k

φk→j(dj , πj) (2.3.14)

and the optimum tree is the one obtained by argmaxψj . If we introduce the
variables

Ad
k→j = max

πk 6=j
ψk→j(d, πk),

Cd
k→j = ψk→j(d, j),

Ed
k→j = max(Cd

k→jA
d
k→j) (2.3.15)

we can compute all the variable φk→j(dj , πj) = A
dj−1
k→j , E

dj

k→j for πj = k

and πj 6= k respectively. Using equations 2.3.12 and 2.3.13 we obtain the
previous quantities satisfy the following set of equations:

Ad
j→i(t+ 1) =

∑
k∈∂(j)/i

Ed
k→j(t) + max

k∈∂(j)/i

(
Ad−1

k→j(t)− Ed
k→j(t)− sjk

)
Cd

j→i(t+ 1) = −sji +
∑

k∈∂(j)/i

Ed
k→j(t)

Ed
j→i(t+ 1) = max

(
Cd

j→i(t+ 1), Ad
j→i(t+ 1)

)
. (2.3.16)

It has been demonstrated [8] that a fixed point of these equations with
depth D > N is an optimal spanning tree, meaning that the spanning tree
found in the network is associated to the minimum weight. Indeed, for
D < N the problem is not P and become difficult to solve and MST is an
approximated algorithm.

In the following two subsections, we show how to recover the SL and AP
algorithms. On one hand, by computing the (unbounded depth) spanning
tree on the enlarged matrix and then considering the connected components
of its restriction to the set of nodes removing v∗, we recover the results
obtained by SL. On the other hand we obtain AP by computing the D = 2
spanning tree rooted at v∗, defining the self-affinity parameter as the weight
to reach this root node.
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2.4 Single Linkage limit

Single Linkage is one of the oldest and simplest clustering methods, and
there are many possible descriptions of it. One of them is the following:
order all pairs according to distances, and erase as many of the pairs with
largest distance so that the number of resulting connected components is
exactly k. Define clusters as the resulting connected components.

An alternative method consists in removing initially all useless pairs
(i.e. pairs that would not change the set of components when removed in
the above procedure). This reduces to the following algorithm: given the
distance matrix S, compute the minimum spanning tree on the complete
graph with weights given by S. From the spanning tree remove the k − 1
links with largest weight. Clusters are given by the resulting connected
components. In many cases there is no a priori desired number of clusters
k and an alternative way of choosing k is to use a continuous parameter λ
to erase all weights larger than λ.

The D-MST problem for D > N identifies the minimum spanning tree
connecting all N + 1 nodes (including the root v∗). This means each node i
will point to one other node πi = j 6= v∗ if its weight satisfies the condition
minj sij < siv∗ , otherwise it would be cheaper to connect it to the root
(introducing one more cluster). We will make this description more precise.
For simplicity, let us assume no edge in G(N,S) has weight exactly equal to
λ.

The Kruskal algorithm [42] is a classical algorithm to compute a mini-
mum spanning tree. It works by iteratively creating a forest as follows: start
with a subgraph all nodes and no edges. The scan the list of edges ordered by
increasing weight, and add the edge to the forest if it connects two different
components (i.e. if it does not close a loop). At the end of the procedure, it
is easy to prove that the forest has only one connected component that forms
a minimum spanning tree. It is also easy to see that the edges added when
applying the Kruskal algorithm to G(N,S) up to the point when the weight
reaches λ are also admitted on the Kruskal algorithm for G(N+1, S∗). After
that point, the two procedures diverge because on G(N,S) the remaining
added edges have weight larger than λ while on G(N + 1, S∗) all remaining
added edges have weight exactly λ. Summarizing, the MST on G(N+1, S∗)
is a MST on G(N,S) on which all edges with weight greater than λ have
been replaced by edges connecting with v∗.
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2.5 Affinity propagation limit

Affinity Propagation is a method that was recently proposed in [28], based on
the choice of a number of “exemplar” data-points. Starting with a similarity
matrix S, choose a set of exemplar data points X ⊂ V and an assignment
φ : V 7→ X such that: φ(x) = x if x ∈ X and the sum of the distances
between datapoints and the exemplars they map to is minimized. It is
essentially based on iteratively passing two types of messages between ele-
ments, representing responsibility and availability. The first, ei→j , measures
how much an element i would prefer to choose the target j as its exemplar.
The second ai→j tells the preference for i to be chosen as an exemplar by
datapoint j. This procedure is an efficient implementation of the Max-Sum
algorithm that improves the naive exponential time complexity to O(n2).
The self-affinity parameter, namely sii, is chosen as the dissimilarity of an
exemplar with himself, and in fine regulates the number of groups in the
clustering procedure, by allowing more or less points to link with “dissimi-
lar” exemplars.
Given a similarity matrix S for N nodes, we want to identify the exem-
plars, that is, to find a valid configuration π = {π1, . . . , πN} such that
π : [1, . . . , N ] 7→ [1, . . . , N ] so as to minimize the function

E(π) = −
N∑

i=1

siπi −
∑

i

δi(π) , (2.5.1)

where the constraint reads

δi(π) =

{
−∞ πi 6= i ∩ ∃ j : πj = i

0 πi = i ∪ { ∀ j ∈ [1, . . . , N ] cj 6= i }
(2.5.2)

These equations take into account the only possible configurations, where
node i either is an exemplar, meaning πi = i, or it is not chosen as an
exemplar by any other node j. The energy function thus reads

E(π) =

{
−

∑
i siπi ∀ i { πi = i ∪ ∀j πj 6= i }

∞ else
(2.5.3)

The cavity equations are computed starting from this definition and after
some algebra they reduce to the following update conditions for responsibil-
ity and availability [28]:

rt+1
i→k = sik −max

k′ 6=k

(
at

k′→i + sk′i

)
(2.5.4)

at+1
k→i = min

0, ek→k +
∑

i′ 6=k i

max
(
0, eti′→k

) . (2.5.5)
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In order to prove the equivalence between the two algorithms, i.e. D-
MST for D = 2 and AP, we show in the following how the two employ an
identical decomposition of the same energy function thus resulting neces-
sarily to the same max sum equations. In the 2-MST equations, we are
partitioning all nodes into three groups: the first one is only the root whose
distance d = 0, the second one is composed of nodes pointing at the root
d = 1 and the last one is made up of nodes pointing to other nodes that
have distance d = 2 from the root. The following relations between di and
πi makes this condition explicit:

di =

{
1 ⇔ πi = v∗

2 ⇔ πi 6= v∗
(2.5.6)

It is clear that the distance variable di is redundant because the two kind
of nodes are perfectly distinguished with just the variable πi. Going a step
further we could remove the external root v∗ upon imposing the following
condition for the pointers πi = i⇔ πi = v∗ πi = j 6= i⇔ πi 6= v∗. This can
be understood by thinking at AP procedure: since nodes at distance one
from the root are the exemplars, they might point to themselves, as defined
in AP, and all the non-exemplars are at distance d = 2 so they might point
to nodes at distance d = 1. Using this translation, from Equation 2.3.2 it
follows that

∑
ij∈∂i

eij + eji =

{
0 ∀ i {πi = i ∪ ∀ j 6= i πj 6= i}
−∞ else

(2.5.7)

meaning that the constraints are equivalent
∑

ij∈∂i eij + eji =
∑

i δi(π).
Substituting (2.5.7) into equation (2.3.1) we obtain that

E({πi, di}n
i=1) =

{
−

∑
i siπi ∀ i{πi = i ∪ ∀ j 6= i πj 6= i}

∞ else
(2.5.8)

The identification of the self affinity parameter and the self similarity, λ =
sii, allows us to prove the equivalence between this formula and the AP
energy given in equation (2.5.3) as desired.

2.6 Applications to biological data

In the following sections we shall apply the new technique to different clus-
tering problems and give a preliminary comparison to the two extreme limits
of the interpolation, namely D = 2 (AP) and D = N (SL).
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Clustering is a widely used method of analysis in biology, most notably in
the recent fields of transcriptomics [25], proteomics and genomics[5], where
huge quantities of noisy data are generated routinely. A clustering approach
presents many advantages for this type for data: it can use all pre-existing
knowledge available to choose group numbers and to assign elements to
groups, it has good properties of noise robustness[23], and it is computa-
tionally more tractable than other statistical techniques. In this section
apply our algorithm to structured biological data, in order to show that by
interpolating between two well-known clustering methods (SL and AP) it is
possible to obtain new insight.

2.6.1 Clustering of protein datasets

An important computational problem is grouping proteins into families ac-
cording to their sequence only. Biological evolution lets proteins fall into
so-called families of similar proteins - in term of molecular function - thus
imposing a natural classification. Similar proteins often share the same
three-dimensional folding structure, active sites and binding domains, and
therefore have very close functions. They often - but not necessarily - have
a common ancestor, in evolutionary terms. To predict the biological prop-
erties of a protein based on the sequence information alone, one either needs
to be able to predict precisely its folded structure from its sequence proper-
ties, or to assign it to a group of proteins sharing a known common function.
This second possibility stems almost exclusively from properties conserved in
through the evolutionary time, and is computationally much more tractable
than the first one. We want here to underline how our clustering method
could be useful to handle this task, in a similar way as the one we used in
the first application, by introducing a notion of distance between proteins
based only on their sequences. The advantage of our algorithm is its global
approach: we do not take into account only distances between a couple of
proteins at a time, but we solve the clustering problem of finding all families
in a set of proteins in a global sense. This allows the algorithm to detect
cases where related proteins have low sequence identity.

To define similarities between proteins, we use the BLAST E-value as a
distance measure to assess whether a given alignment between two different
protein sequences constitutes evidence for homology. This classical score is
computed by comparing how strong an alignment is with respect to what
is expected by chance alone. This measure accounts for the length of the
proteins, as long proteins have more chance to randomly share some subse-
quence. In essence, if the E-value is 0 the match is perfect while the more
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E-value is high the more the average similarity of the two sequences is low
and can be considered as being of no evolutionary relevance. We perform the
calculation in a all-by-all approach using the BLAST program, a sequence
comparison algorithm introduced by Altshul et al. [3].
Using this notion of distance between proteins we are able to define a matrix
of similarity S, in which each entry sij is associated to the E-value between
protein i and j. The D-MST algorithm is then able to find the directed
tree between all the sets of nodes minimizing the same cost function as pre-
viously. The clusters we found are compared to those computed by other
clustering methods in the literature, and to the “real” families of function
that have been identified experimentally.

As in the work by [75], we use the Astral 95 compendium of SCOP
database [73] where no two proteins share more than 95% of similarity, so
as not to overload the clustering procedure with huge numbers of very similar
proteins that could easily be attributed to a cluster by direct comparison
if necessary. As this dataset is hierarchically organized, we choose to work
at the level of superfamilies, in the sense that we want identify, on the
basis of sequence content, which proteins belong to the same superfamily.
Proteins belonging to the same superfamily are evolutionary related and
share functional properties. Before going into the detail of the results we
want to underline the fact that we do not modify our algorithm to adapt to
this dataset structure, and without any prior assumption on the data, we
are able to extract interesting information on the relative size and number of
clusters selected (Fig.2.4). Notably we do not use a training set to optimize
a model of the underlying cluster structure, but focus only on raw sequences
and alignments.

One issue that was recently put forward is the alignment variability
[98] depending on the algorithms employed. Indeed some of our results
could be biased by errors or dependence of the dissimilarity matrix upon
the particular details of the alignments that are used to compute distances,
but in the framework of a clustering procedure these small-scale differences
should stay unseen due to the large scale of the dataset. On the other hand,
the great advantage of working only with sequences is the opportunity to
use our method on datasets where no structure is known a priori, such as
fast developing metagenomics datasets [95].

We choose as a training set 5 different superfamilies belonging to the
ASTRAL 95 compendium for a total number of 661 proteins: a) Globin-like,
b) EF-hand, c) Cupredoxin, d) Trans-Glycosidases and e) Thioredoxin-like.
Our algorithm is able to identify a good approximation on the real number
of clusters. Here we choose the parameter λ well above the typical weight
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Figure 2.3: In the three panels we show the average number of clusters over
the random noise as a function of the weight of the root for D = 2, 3, 4
respectively. For each graph we show the number of clusters (circle) and the
associated F value (square), computed as a function of precision and recall.
We want to emphasize the fact the highest F values are reached for depth
D = 4 and weight λ ∼ 1.3. With this choice of the parameters we found
the number of clusters is of order 10, a good approximation of the number
of superfamilies shown in figure as a straight line.

between different nodes, so as to minimize the number of groups found. As
a function of this weight you can see the number of clusters found by the
D-MST algorithm reported in figure 2.3, for the depths D = 2, 3, 4. In these
three plots we see the real value of the number of clusters is reached for
different values of the weight λ ∼ 12, 2, 1.4 respectively. The performance
of the algorithm can be analyzed in terms of precision and recall. These
quantities are combined in the F -value [75] defined as

F =
1
N

∑
h

nh max
i

2nh
i

nh + ni
, (2.6.1)

where ni is the number of nodes in cluster i according to the classification
λ we find with the D-MST algorithm, nh is the number of nodes in the
cluster h according to the real cluster classification K and nh

i is the number
of predicted proteins in the cluster i and at the same time in the cluster
h. In both cases the algorithm performs better results for lower value of λ.
This could be related to the definition of the F value because starting to
reduce the number of expected clusters may be misleading in the accuracy
of the predicted data clustering.

Since distances between datapoints have been normalized to be real num-
bers between 0 to 1, when λ→∞ we expect to find the number of connected
components of the given graph G(N,S). While lowering this value, we start
to find some configurations which minimize the weight respect to the single
cluster solution. The role played by the external parameter λ could be seen
as the one played by a chemical potential tuning from outside the average
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Figure 2.4: We show the results of clustering proteins of the 5 subfamilies
Globin-like (Gl), EFhand (EF), Cupredoxin (Cu), Trans-Glycosidases (TG),
Thioredoxin-like (Th) using 4-MST with parameter λ=1.45. We see that
most of the proteins of the first three families (Gl, EF and Cu) are correctly
grouped together respectively in cluster 4, 1 and 3 while the last two families
are identified with clusters 2 and 5 with some difficulties.

number of clusters.

We compare our results to the ones in [75] for different algorithms and
it is clear that intermediate values of D gives best results on the number of
clusters detected and on the F -value reached without any a priori treatment
of data. It is also clear that D-MST algorithm with D = 3, 4, 5 gives better
results than AP (case D = 2) as can be seen in Fig. 2.5.

We believe that the reason is that clusters do not have an intrinsic spher-
ical regularity. This may be due to the fact that two proteins having a high
number of differences between their sequences at irrelevant sites can be in
the same family. Such phenomena can create clusters with complex topolo-
gies in the sequence space, hard to recover with methods based on a spherical
shape hypothesis. We compute the F -value also in the single linkage limit
(D > N) and its value is almost ∼ 0.38 in all the range of clusters detected.
This shows that the quality of the predicted clusters improves reaching the
highest value when D = 4 and then decreases when the maximum depth
increases.
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Figure 2.5: We plot the F value for depths D = 2, 3, 4, 5 as a function of the
number of clusters found by the D-MST algorithm. The case D = 2 provides
the AP results while D > N is associated to SL and gives value well below
0.4. The highest performance in terms of the F value is reached for depth
D = 4 and number of clusters ∼ 10. We draw a line in correspondence to
the presumed number of clusters which is 5 where again the algorithm with
parameter D = 4 obtains the highest performance score.

2.6.2 Clustering of verbal autopsy data

The verbal autopsy is an important survey-based approach to measuring
cause-specific mortality rates in populations for which there is no vital reg-
istration system [72, 30]. We applied our clustering method to the results
of 2039 questionnaires in a benchmark verbal autopsy dataset, where gold-
standard cause-of-death diagnosis is known for each individual. Each entry
in the dataset is composed of responses n = 47 yes/no/don’t know questions.

To reduce the effect of incomplete information, we restricted our analysis
to the responses for which at least 91% of questions answered yes or no (in
other words, at most 9% of the responses were “don’t know”). This leaves
743 responses to cluster (see [72] for a detailed descriptive analysis of the
response patterns in this dataset.)

The goal of clustering verbal autopsy responses is to infer the common
causes of death on the basis of the answers. This could be used in the frame-
work of “active learning”, for example, to identify which verbal autopsies
require further investigation by medical professionals.

As in the previous applications, we define a distance matrix on the verbal
autopsy data and apply D-MST with different depths D. The questionnaires
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Figure 2.6: Cluster decomposition broken down by cause-of-death (from 1
to 23) produced by AP (blue) and D-MST (green). The parameter λ is
chosen from the stable region, where the number of clusters is constant.

are turned into vectors by associating to the answers yes/no/don’t know the
values 0/1/0.5 respectively. The similarity matrix is then computed as the
root mean square difference between vectors,

sij =
1
n

√∑
k

(ri(k)− rj(k))2,

where ri(k) ∈ {0, 1, 0.5} refers to the symptom k ∈ [0, n] in the i-th ques-
tionnaire.

We first run 2-MST (AP) and 4-MST on the dataset and find how the
number of clusters depend on λ. We identify a stable region which corre-
sponds to 3 main clusters for both D = 2, 4. As shown in figure 2.6, to
each cluster we can associate a different causes of death. Cluster 1 contains
nearly all of the Ischemic Heart Disease deaths (cause 5) and about half
of the Diabetes Mellitus deaths (cause 6). Cluster 2 contains most of the
Lung Cancer deaths (cause 13) and Chronic Obstructive Pulmonary Dis-
ease deaths (cause 15). Cluster 2 also contains most of the additional IHD
and DM deaths (30% of all deaths in the dataset are due to IHD and DM).
Cluster 3 contains most of the Liver Cancer deaths (cause 11) as well as
most of the Tuberculosis deaths (cause 2) and some of the other prevalent
causes. For D = 2 we find no distinguishable hierarchical structure in the 3
clusters, while for higher value we find a second-level structure. In partic-
ular for D = 4 we obtain 57-60 subfamilies for value of λ in the region of
0.15 − 0.20. Although the first-level analysis (Fig.2.6) underlines the sim-
ilarity of D-MST algorithm with AP, increasing the depth leads to a finer
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sub-clusters decomposition.





Chapter 3

Identification of subgraphs

The problem of identifying trees in network can be exploit using the property
of the distance: by defining a root node, it is not possible to have two
nearest neighbor nodes at the same distance from the root. This property
is peculiar only for tree-like structure and is not useful for other type of
graphs. In this sense, we find the motivations to introduce a more general
method able to identify any given possible subgraphs embedded in a large
network. We now introduce a basic algorithm that solves more generally
the Graph Alignment problem (GA) dealing with weighted graphs and can
be specialized to Subgraphs Isomorphism problem (SI).

3.1 Graph Alignment Problem

We are going to present the BP implementation for the GA. It aims at finding
a mapping between two weighted graphs g(N,S) and G(N ′, S′), where N ≤
N ′, such that they show major correlations. Weighted graphs are special
classes of graphs whose edges are weighted. Numerical weights sij ∈ S are
sometimes referred to as costs, especially if they are positive and we restrict
ourselves to sij ∈ [0, 1] so to interpret them as probability. To facilitate the
notation, primed quantities, always refer to G(N ′, S′). GA is a very general
problem that displays several NP-hard special cases, like SI or TSP. The
former is obtained when N < N ′ and the weights reduce to 0− 1, namely S
(S′) becomes the adjacency matrix A (A′). The A matrix summarizes the
relations between the nodes

aij = 1 if i ∈ ∂(j)
aij = 0 else

(3.1.1)

if there is a link between i and j, aij = 1 while it vanishes when there is not.
On the other hand, if we look for a graph g such that sij 6= 0 ⇔ |i− j| = 1

43
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ijs
πi

j

i

g(N,S) G(N’,S’)

ijs
j

i

g(N,S)

jπ = πi

G(N’,S’)

Figure 3.1: The application π has a clear interpretation has a mapping be-
tween the nodes of the two graphs as shown in the first panel. In the second
picture, we show which are the mappings suppressed by the constraint fij ,
in order to enforce the injectivity constraint.

we recover the TSP.
We start providing a mathematical description of the GA suitable with

the statistical formulation of the method. Let us introduce the usual appli-
cation {π : g → G}, namely a permutation between the sets of nodes V (g)
and V (G) that can be visualized as a reshuffling of columns and lines of the
matrix S′ as shown in figure 3.2. We define the cost energy to be minimized
as

E{π} = −
∑
i,j>i

sijs
′
πiπj

−
∑

i

hiπi , (3.1.2)

such that the zero energy configuration is associated to the maximal overlap
between the two graphs. If we define O, the distance between the two graphs
given the application {π}, as

O({π}) =
∑
ij

[
sij − s′πiπj

)
]2

=
∑
ij

s2ij − 2
∑
ij

sijs
′
πiπj

+
∑
ij

s′
2
πiπj

, (3.1.3)

it is evident that O({π}) ∝ E({π}). So that, minimizing the energy natu-
rally leads to the minimization of the distance between the graphs.

A major problem in this respect, is to enforce the injectivity constraint:
for i 6= j also πi 6= πj has to hold. The joint probability of a given
configuration can thus be written in the form

P ({π}) =
1
Z

∏
i,j>i

fij(πi, πj) . (3.1.4)

where the constraints take into account the energetic term plus the injectiv-
ity factor

fij =
(
1− δπi,πj

)
e
β

“
sijs′πiπj

+hiπi
δij

”
. (3.1.5)

The first term in the right hand side vanishes if two different nodes in the
subgraph g are mapped into the same node πi in G, see the cartoon in figure
3.1 for a graphical explanation.
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2

1

i

N

S S’
Figure 3.2: In figure we show how the permutation affect the graph G,
through a reshuffling of the matrix S′ in order to enforce the maximal overlap
between the two graphs g and G.

Of course, imposing this permutation constraint has a cost in term of
computational time because it requires a fully connected factor graph where
the number of constraints M scale as O(N2). But still it is polynomial time
calculation and gives reliable results. It is possible, however, to relax the
permutation adding a extra term in the Hamiltonian with a new external
parameter having the same role of the inverse temperature. This helps in
reducing the number of constraints from N(N −1)/2 to the number of links
in g [14]. This method is inspired by the work of [52] on softening affinity
propagation and is convenient principally when the graph g is sparse. On
the other side, this simplification is not particularly relevant in identifying
dense parts of the network because, in this case, the number of links of graph
g scales as O(N2) so that two implementations have the same computational
cost.

The BP equations for this problem read

pi→j(πi) = eβhiπi

∏
k 6=j

mk→i(πi)

mi→j(πj) =
∑

πi 6=πj

e
βsijs′πiπj pi→j(πi) , (3.1.6)

where the equalities hold up to some normalization constant. The solution
of these equations can be implemented by exchanging a vector of dimension
N ′ along all the links in the factor graph requiring a time that scales polyno-
mially with the system size O(N2N ′2). In the β →∞ limit, by assuming the
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unicity of the zero-energy solution, the previous equations further simplify
to

ψi→j(πi) = hiπi +
∑
k/j

φk→i(πi) (3.1.7)

φi→j(πj) = max
πi 6=πj

(
sijs

′
πiπj

+ ψi→j(πi)
)
, (3.1.8)

where ψi→j(πi) = β−1 log pi→j(πi) and φi→j(πj) = β−1 logmi→j(πj).
This is true in weighted graphs where it is very unlikely to have two

different configurations of the same weight but we will see that it is not
possible to assume it for non-weighted graphs, where the solutions can be
highly degenerate such us the case of SI problem.

In the rest of the chapter we test the performance of the algorithm by
applying it to the problem of the maximum clique. This is defined as the
problem of identifying the maximum order of fully connected subgraph cl(G)
present in a graph G.
We show first how the method correctly predicts the clique number that is
self-averaging in the Gilbert ensemble.

3.2 The Maximum Clique Problem

In this section we show how the algorithm performs when looking for a par-
ticular kind of subgraphs, the cliques, in graphs belonging to the Gilbert
ensemble. The cliques are fully connected non weighted graphs g(N,E)
whose adjacency matrix reads aij = 1 ∀ i, j 6= i. As it is well known the
clique problem is a NP-complete problem[44] and difficult to approximate
[13]. Moreover, identifying the fully connected subgraphs in a large net-
work is interesting because reveals some important features of the network
itself, i.e. the denser parts, the underlying community structures and so on.
The algorithm we present is devoted to the search of cliques but, working
at finite temperature, allows for non-perfect matching, thus providing the
identification of the dense subgraphs.

We now specialize the GA method to the search of clique g(N,E), where
E is the set of edges, and then we use it to identify the maximum clique
(MCP) present in the graph G ∈ GN ′,p. Searching for a clique can be
rephrased in looking for a permutations i→ πi and j → πj that satisfies the
local adjacency relations. This means that the energy counts the number of
conserved links of the permutation. In this regime the BP equation (3.1.6)
reduces

mi→j(πj) = Ci→j(πj) + e−βDi→j(πj) (3.2.1)
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where Ci→j(π′) =
∑

π∈N(π′) pi→j(π) and Di→j(π′) = 1−Ci→j(π′)−pi→j(π′).
In that case, the complexity simplifies remarkably when the graph G is
sparse because this new updating scheme requires a time that scales as
O(N2(N ′ +M ′)).

Performing the zero temperature limit allows to identify precisely all the
possible cliques embedded in G. Since the cliques can be more than one and
there is a high degeneracy due to the symmetry of the clique itself, we have
to be very careful in doing it correctly. We are not allowed to select only
the maximum value over the possible value of pi→j , as done since now, but
take into account the degeneracy of this state so that the (3.2.1) becomes

mi→j(πj) = Ci→j(πj) . (3.2.2)

In terms of the solution of the previous equation, we obtain the number of
cliques present in G through the entropy

SBP = −
∑
ij>i

∑
πi,πj

bij(πi, πj) ln bij(πi, πj) +
∑

i

(N − 2)
∑
πi

bi(πi) ln bi(πi) ,

(3.2.3)
where the beliefs bij(πi, πj) and bi(πi) are defined in equations (1.2.5) and
(1.2.6). The entropy is related to the number of solution through the fol-
lowing condition

SBP = log YN − logN ! (3.2.4)

where YN is the number of different cliques in the graph and N ! counts the
degeneracy of each clique due to the internal symmetry of the permutation.
Numerical results for SBP as a function of N ′ for the Gilbert ensemble, are
shown in figure 3.4.

At this point, it is useful to spend some more words on the high symmetry
which is intrinsic of the clique topology and see how it can be exploited to
further reduce the complexity of the algorithm 1. Indeed we notice that
the cavity probabilities and the messages are equal for each possible couple,
since all the edges are identical. This can be formalized assuming that the
quantities pi→j(π) = pc(π) and mi→j(π) = mc(π) are constants for each
couple ij. Therefore BP equations naturally follow

mc(π) =
∑

π′∈N(π)

pc(π′)

pc(π) = mc(π)N−1 , (3.2.5)

up to some normalization factor. This is a remarkable reduction of the
algorithmic time O(N ′ + M ′) and shows very good results in the entropic

1We thank the referee B for useful discussion.
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Figure 3.3: In figure is reported the BP entropy as a function of the clique
size N for N ′ = 10000. This calculation has been obtained using equations
3.2.5. The solid lines are the theoretical prediction computed by means of
〈YN 〉 in 3.2.9. The numerical points are averaged over 10 realization and
show a excellent agreement with the theoretical prediction.

estimation, as shown in figure 3.3 for numerical calculation in the Gilbert
ensemble. Unfortunately we experienced some problems of convergence that
start to be inctractable for higher order of the clique N ∼ N0. This may
be caused by the fact that this highly symmetric solution is dynamically
unstable and in order to converge to a fixed point, we need to break the
symmetry of problem.

Before presenting BP results for the Gilbert graph ensembleG ∈ GN ′,p for
p ∝ N ′−α where α ∈ [0, 1], it is worth to briefly review the main theoretical
bounds that has been obtained by Bollobas[12]. In particular we focus our
attention on the maximum order of the clique present in the graph G namely
the clique number cl(G).

Some theoretical results

Let G(N ′, E′) be a graph realization of GN ′,p, where N ′ are the number
of nodes, E′ be the set of edges and the probability to have a link scales
as p = N ′−α. g(N,E) is called a subgraph of G, g ⊆ G if its vertex set
V (g) ⊆ V (G) and its edges E ⊆ E′. We will denote by K(G) the set of
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Figure 3.4: In the left (right) panel of figure we show the entropy for cliques
of order N=3 (N=4), as a function of N ′ for various α = − log p/N ′. Sym-
bols are BP results (each averaged over 10 realizations), full lines give the
logarithm of the expected number of cliques given in equation (3.2.9). These
graphs show that the theoretical predictions are asymptotically approached
for N ′ →∞.

cliques of G and with KM (G) the set of maximum cliques in G:

KM (G) := {g ∈ K(G) : |V (g)| = max
g′∈K(G)

|V (g′)|} . (3.2.6)

Of course the maximum clique is bounded by N ′ when G(N ′E′) is a fully
connected graph (p = 1 and α = 0). If the graph G ∈ GN ′,p, its clique
sequence is almost entirely determined and its clique number has a narrow
bound

N0 − 2
log logN ′

logN ′ ≤ cl(G) ≤ N0 + 2
log logN ′

logN ′ (3.2.7)

with
N0(N ′) =

2
α

+ 2
logα

α logN ′ + 2
log(e/2)
α logN ′ + 1 + o(1) . (3.2.8)

This formula can be verified computing the number of cliques YN (G) =
|K(G)| of a given size N . Clearly its expected value averaged in the ensemble
is

〈YN 〉 =
(
N ′

N

)
p

N(N−1)
2 (3.2.9)

therefore, for small value of N < N0 the expectation value 〈YN 〉 > 1 and,
increasing N , the expectation value 〈YN0〉 = 1 and then drops below 1 rather
suddenly, thus identifying N0 with the maximum order of the clique.

As demonstrated in [12], the probability the clique number deviates sub-
stantially from the typical value N0 vanishes with N ′. Firstly, for N ′ suffi-
ciently large, the probability the clique number deviates from N0 of a factor
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Figure 3.5: The graph in the left shows the clique number cl(G) for a graph
of 100 nodes as a function of α with reinforcement version of the equations
(3.2.2). The reinforcement parameter is selected to be λ = 0.9999 and the
algorithm converges in almost 10000 iterations with a average time .... The
blue lines are the theoretical bounds N0 ± 2 log logN ′/ logN ′ while the red
one represent the theoretical value N0. The points are the BP solution found
with reinforcement technique, averaged over ten different instances. Results
are consistent with the theoretical bounds and demonstrate the clique num-
ber is self-averaging.

δ > 0 cl(G) = N0 + δ is dominated by

P{cl(G) ≥ N0} ≤ 〈YN 〉 < N ′−δ . (3.2.10)

As well as the probability that clique number can be smaller than N0 cl(G) =
N0 − δ for 0 < δ < 2, is upper bounded by

P{cl(G) ≤ N0 − δ} < 2
ξδ
N ′−δ , (3.2.11)

where ξ does not depend on N ′ and is positive. This demonstrates that both
the probabilities vanish with the size of the graph N ′ and deviations from
the value cl(G) = N0 become exponentially rare with N ′ as shown in figure
3.5.

Despite the fact that the number of clique has such a small variability
it is well known that large cliques of a random graph are very difficult to
identify. This is due to the fact that there is a large number of cliques of
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size N0/2, but it decreases very rapidly for N > N0/2. In particular for size
of order (1 + ε)N0/2 with ε > 0 their number is of order of N ′−g(ε) log(N) and
hence is more than polynomially small[39]

We found numerically that the quenched ensemble averages 〈log YN 〉 are
well estimated by the annealed calculations log〈YN 〉. In formulas this can be
shown, after having introduced δYN = (YN −〈YN 〉)/〈YN 〉 2, by the following
relation

〈log YN 〉 = log〈YN 〉+
∑

n

(−1)n−1〈δY n
N 〉 .

This means that if the distribution of YN is peaked around its mean value, in
the thermodynamic limit, we obtain that 〈δYN 〉 = [YN − 〈YN 〉]n〉/〈YN 〉n →
0. So that the log〈YN 〉 is directly comparable to the BP entropy obtained
by simulation through equation (3.2.4). The good numerical agreement of
the entropy is shown in both the figures 3.4 and 3.3 for all the range of N
and N ′, even for small number of averages, meaning the number of clique
are well-behaving quantities in the Gilbert ensemble and the higher order
corrections are negligible also for finite size systems.

Discussion

The comparison between BP calculations and theoretical predictions are
shown in figures 3.3 and 3.4. The first shows the entropy computed with
(3.2.2) as a function of the size of the graph N ′ while the latter refers to
entropy versus N , computed using the symmetric ansatz (3.2.5). Solid lines
give the theoretical predictions namely the logarithm of the expected number
of cliques log〈YN 〉 while the numerical points are related to numerical calcu-
lation of the entropy SBP . For small N , the asymptotic regime N ′ →∞ is
well captured by the BP computation, giving reliability of the cavity method.
Nevertheless, by increasing the size of the clique N , we found some problem
in the convergence of the symmetric algorithm.

We also obtain the clique number reported in figure 3.5. We explicitly
find the maximum clique in network by a reinforcement method, looking
for larger clique until the algorithm does not find any solutions with rein-
forcement parameter3 γ0 = 0.9999. This algorithm shows good property of
convergence and find similar results as decimation scheme but need for less
amount of time. The numerical value are well within the theoretical bounds
showing good performance of the method.

2in the regime 0 < δYN < 2
3The reinforcement description is introduced in section 1.3 where we introduce the

quantity γt by means of a real external parameter γ0





Chapter 4

Biological Applications

The algorithm we have presented in the previous chapter has been tested
in a well known academic problem, the maximum clique. From now on we
provide, as a proof-of-concept, two biological applications where our method
can be used. The first one refers to the sensory-response system while the
second aims at analyzing large biological networks of interactions among
biomolecules. There are many other problems where our algorithm may be
applied, the protein structural alignment being one of them.

The cell, in order to survive, has to perform several actions in particular
they have to respond to external stimuli. The mechanism through which the
cell responds to environment conditions is called sensory-response system.
The most common example of sensory-response system in bacteria is the
two-components systems (TCS) which is found on the interaction specificity
between two different families of proteins[91, 51]. The TCS has been deeply
analyzed in the last decade at molecular level [97, 35]. Despite the main
advance in this field, however, there are many open questions regarding
the regulation within individual pathways. The system-specific mechanism
through which a stimulus is associated to adaptive response is still unclear
and matter of research [82, 17].

The set of all these connections within the cell defines large networks
where nodes represent biological components and edges the physical or chem-
ical interactions among them. From one side, we can be interested in under-
standing the basic mechanism behind each of them on a general ground, and
from the other side we may be focused to analyze the network as a whole
in order to explain more complex function the cell is able to perform[67, 9].
From this perspective the topology of the networks is relevant in clarifying
its functionality and is crucial in understanding the key role played by spe-
cific nodes. This analysis is of particular relevance in systems with a large
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Figure 4.1: We summarize the main moments in the sensory-response sys-
tems of one of the main mechanism for signaling in organisms. A family
of proteins involved in transmitting chemical signals outside the cell, and
causing changes inside the cell is called G-protein. This family of proteins is
composed by an extracellular part called G-protein-linked receptor bounds
to the cell membrane and the intracellular G-protein inside the cell. As
soon as a signal molecule binds to the G-protein-linked receptor, the recep-
tor inside the cell activates a G protein by causing a conformational change.
G protein complexes bind to phosphate groups (GDP/GTP) that turns on
the molecule when is in its three phosphate state. This change results in
the action of another protein usually an enzymes altering its activity. After
the active part, when the signal is no more present the GDP group of the
receptor dephosphorylates and turns back to its inactive state.

number of degrees of freedom for which a large amount of data is available
and –at the same time– a set of clear theoretical models is still lacking. Tak-
ing inspiration from this approach, we show how the algorithm performs in
the searching of specific pattern of nodes in real directed networks.

4.1 Finding protein partners from multi-species

sequence data

The study of sensory-response systems has defined the basics of how many
organisms detect and respond with sensitivity to changes in their chemical
or physical environments. Such studies have recently focused on events that
occur at the cellular and molecular levels, elucidating the mechanisms of
detecting extracellular signals and transducing such signals into the appro-
priate intracellular events. The two-component signal transduction (TCS) is
the most prominent example of sensory-response system in bacteria[97, 35].
The signal is transduced from a histidine sensor kinase (SK) to a response
regulator (RR), which in its phosphorylated form becomes in most cases an
activated transcription factor. The SK, which is regulated by environmen-
tal stimuli, autophosphorylates at a histidine residue (HK-His) using ATP
present in the cell, creating a high-energy phosphoryl group (P). The P
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is then subsequently transferred to an aspartate (ASP) residue in the RR
protein. Phosphorylation induces a conformational change in the regula-
tory domain that results in the activation of an associated domain effecting
the response. This interaction forms the central part of signal transduction
mechanism.

In figure 4.1, it is summarized three different chemical moments.

• Autophosphorylation of the histidine residues

• Phosphotransfer from HK to RR

• Dephosphorylation of the aspartate residue of the RR

The signal-binding site is outside the cell while the histidine kinase sensor
site is inside the cell. When signal molecules binds outside the cell to the
specific HK, the histidine receptor is activated, as shown is the center of the
figure, when a P group binds to the HK-His (autophosphorylation). Then
it displaces (phosphotransfer) to the RR protein, usually a transcription
factor, altering its activity and starting the response. This activity is usually
temporary because RR hydrolyzes the phosphate P deactivating the RR.

Despite the fundamental importance of protein-protein interactions in
most biological processes, identifying interaction partners between SK and
RR is experimentally and computationally a major problem. Each bac-
terium contains O(10) interacting SK/RR pairs forming different TCS path-
ways. The necessity to trigger the correct answer for each specific extracel-
lular signal forbids crosstalk between pathways. So, even if all different SK
and respectively RR in one species are structurally and functionally similar,
only specific samples of these two protein families interact.

Our question here is, if GA algorithm can help in recognizing interac-
tion partners. We start from a large collection of SK sequences extracted
from hundreds of bacterial genomes, and a second large collection of RR
sequences coming from the same bacteria, and we aim at extracting inter-
acting SK/RR pairs, exploiting sequence similarities of proteins inside each
family. Proteins inside each family are homologous: they show strong struc-
tural and functional similarity, but also a considerable amount of sequence
variability between species. To maintain function, this variability cannot
be random: imagine, e.g., two interacting proteins, and a random mutation
occurring in the interaction surface of one of them. It is likely to have a
deleterious effect on the affinity between the two proteins, but it might be
compensated for by a mutation in the other protein. This mechanism intro-
duces a co-evolutionary coupling of interacting proteins, and therefore the
similarity networks of two interacting protein families are expected to be
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similar.
So that the basic idea is simple: two SK with very similar amino-acid se-
quences will (due to their probably recent common evolutionary origin) in-
teract with two similar RR. Globally spoken, an alignment of two similarity
networks - one for the SK family, one for the RR family - might be able
to pair a large fraction of all those SK and RR which actually belong to
common TCS pathways [84].

Our data set consists of two multiple-sequence alignments (with gaps)
for 2546 SK and 2546 RR proteins from 231 genomes [96]. They are se-
lected such that, due to the frequent coding of an entire TCS in one operon,
the correct mapping is known, and can be used a posteriori to verify our
GA results. Similarity networks for each protein family are constructed as
kNN graphs: Each protein is linked to the k most similar proteins, where
similarity is measured via the Hamming distance dij between the aligned
aminoacid sequences of two proteins i and j. The link weight is given as

sij = exp [−d2
ij/d

2
k] , (4.1.1)

with dk being the average distance between each protein and its kth neigh-
bor. One might use more sophisticated distance measures (e.g. alignment
scores), but due to the proof-of-concept character of this application we
have chosen the simplest possible measure. To identify interaction partners,
we must align only proteins inside the same species, formally this is imple-
mented by imposing hiπ = −∞ for all i and π belonging to different species.
Finally, we have also introduced various amounts of information about real
interaction partners, by randomly introducing positive similarities between
a number of actual interaction partners (training set). Summarizing we have
three different choices for the external field

hiπ =


−∞ π /∈M(i)

0 i ∈ T
ωi else

(4.1.2)

whereM(i) is the set of all possible images of i namely all the RR’s belonging
to the same species of i whereas T defines the set of selected SK proteins
forced to be mapped to the real partner. All the other couples have a field
proportional to a small random noise with fixed average value ωi � minij sij

that helps the convergence of the algorithm.
The results are summarized in the following table for different k and

training-set sizes T = |T |. Error bars result from an average over different
random training sets. The values display the fraction of correctly aligned
protein pairs in between all proteins not being in the training set.
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T 3NN, k = 3 6NN, k = 6 9NN, k = 9
2000 88.7 ± 1.7 89.8 ± 1.9 90.5 ± 1.7
1000 76.2 ± 1.3 78.7 ± 1.0 79.6 ± 0.8
500 67.4 ± 1.9 73.1 ± 1.4 75.0 ± 1.0
0 48.1 58.9 64.7

We note that even without training set, T = 0, almost 65% of all pro-
teins are correctly matched (for k = 9). This number has to be compared to
a random matching, where only 231/2546 ∼ 9% correct matchings would be
expected. The introduction of a training set improves strongly the perfor-
mance, for a training set of 2000 protein pairs, about 90% of the remaining
546 proteins are correctly aligned. These results beautifully demonstrate
that the original idea to exploit sequence similarity of proteins across species
is actually providing information about who is interacting with whom. Work
is in progress in applications which require to incorporate refined biological
priors into the algorithm.

4.2 Motifs in biological network

Cells have to carry out numerous functions to survive, ranging from replica-
tion and energy conversion to molecule transport and signalling –used in cel-
lular communication. Many of these functions require complicated cascades
of reactions between proteins, DNA, metabolites, that have been revealed
by means of new experimental techniques like i.e. mass spectroscopy [34],
genome-wide chromatin immunoprecipitation [37], yeast two-hybrid assays
[94].

We will focus on protein like i.e. transcription factors (TF) and gene (G),
by modelling the set of interconnections between them as abstract graphs
or networks, in which nodes represent bio-molecules and edges describe the
physical and chemical reaction among them (see figure for a brief explanation
of the main interaction between TF and genes 4.2). This network represent
a dynamical system and are designed with strong separation of timescales:
the input signal takes sub-second to change the TF activities. Then binding
to DNA sites requires several seconds and finally to see protein product can
take minutes or hours.

The connection between biomolecules can be either undirected if the re-
lation is symmetric or directed, if one molecule regulates the other but the
contrary is not true. Although the details of the physical connections in in-
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Figure 4.2: The cartoon explains the interaction between TF and genes.
Each gene is usually preceded by a regulatory DNA region called the pro-
moter, where the activator transcription factor binds due to the high affinity
with specific sequence sites. This binding increases, or decreases in several
cases, the probability the RNA polymerase (RNAp) start syntetizing the
mRNA and produce the gene product.

teractions is clearly lost, this large amount of information can be exploited
to describe the functionality of the cell at a coarser scale and the key role
played by each biological component in the whole system.
Recent works indicate that biological networks show recurrent small pat-
terns, pointed out as basic modules of molecular information processing,
called network motifs. These are collections of nodes interacting in a spe-
cific manner, that occur much more frequently than what would be expected
by chance [67, 9], suggesting that their presence might be responsible of some
function performed by the network. The basic idea behind this approach is
that the main functions performed by living organism can be best described
by interactions between modules rather than between single elements. The
importance of these motifs as information-processing modules has been jus-
tified theoretically [86, 54] and verified experimentally [43, 55].

Since transcription network is highly selected by evolution –a regulatory
interaction can be modified just by few point mutations on the genome– the
overepresentation of interaction patterns can be the outcome of a stronger
selection pressure because of some beneficial effects they perform on the
organism.

Some examples are shown in figure 4.3 in which we show two different
kind of motifs that perform specific function in the network. First of all the
feed forward loop that is highly represented in all the studied networks. This
circuit is composed by two transcription factors, X and Y , and a target gene
Z. The FFL has two parallel paths: a direct path from transcription factor
X to the gene Z and an undirected path through transcription factor Y .
It is responsible to a slow response to activation signal and a fast response
to repression signal as it is described in [2]. The second example of known
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Figure 4.3: Two motif examples: feed forward loop (left) and single input
module (right). The feed forward loop (FFL), depending on the sign of the
interaction could be coherent or incoherent with different possible function-
ality. In the coherent case the loop provides a pulse filtration activating a
response only to persistent signal. On the contrary the incoherent loop is
a pulse generator and a response accelerator. In the section Methods we
describe how to take into consideration the sign on the edge. The second
motif is called single-input module (SIM) and occurs when a single molecule
regulates a set of genes with no additional regulation. This is useful when a
set of genes must work in a synchronized manner.

functional motif is the single-input module, in which one factor X regulates
a group of target genes. The main function of this pattern is to coordinate
expression of several genes Y1, Y2 etc. with shared function. In particular
it can generate temporal expression programme in which each gene has a
defined order of activation[2].

Moreover network motifs provide an important tool for understanding
the modularity and the large-scale structure of the network. Thus identifying
these patterns and describing their dynamical function could be useful to
understand the design principles underlying the mechanism that sustain
cellular functions.

Unfortunately, this analysis is hampered by the limited size of motifs
handled by current methods. For example, in [67] exact counting have only
been reported up to size 4 motifs and in [46] a certain type of motif gener-
alizations up to 6 nodes. Efficient algorithms are known for specific classes
of subgraphs, such as cycles and cliques reviewed in [11], while several ap-
proximating methods have been developed, most of them based on sampling
techniques, for finding Hamiltonian cycles and spanning trees [40, 29, 57].
Depending on the graph being analyzed, the run-time of most of these algo-
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rithms grows very fast with the size of the subgraph thus making impossible
to detect the presence of larger network motifs.

This limitation leaves several important problem unsolved and new in-
sight could be gained by exploring larger subgraphs. As a matter of fact
finding motif of bigger size is useful to better describe the topology of the
network because smaller subgraphs can change their functionality if put in
interaction with other neighboring nodes in a specific manner [46, 6]. From
the algorithmic viewpoint, this task remains a major challenge mainly be-
cause of the computational complexity of the algorithm. In this sense it is
worth noticing the works going in this direction of Alon et al [45] in which
they introduce a sampling algorithm for finding N -nodes subgraphs. Kellis
et al [33] proposed a new method that assesses the significance of a single
query subgraph and then apply it to all the possible N size subgraphs using
a symmetry breaking technique.

First of all we describe how specializing the GA algorithm. Then we
discuss the results and the run-time of the algorithm and finally we introduce
some possible generalizations.

4.2.1 Algorithm

Two basic problems have to be faced in order to identify motif in large
networks. The first is that the number of different subgraphs increase expo-
nentially with the size of the subgraphs i.e. there are 13 different 3-nodes
subgraphs, 199 4-nodes subgraphs, 9364 5-nodes subgraphs and so on. More-
over, the subgraph isomorphism problem is NP-complete[33].

The problem is defined as follows: we are interesting in finding a di-
rected subgraph g(N,E) of N nodes and E arcs into a new directed graph
G(N ′, E′) of normally much larger order N ′ > N . A directed graph is a
graph whose edges have a unique direction, meaning that the relationship
between vertices is not symmetric. They are contained in the adjacency
matrix A, whose entries aij are equal one if there is an edge going from one
node i to j or zero otherwise. Of course, in case of directed graphs, this
matrix is not symmetric. After having introduced the mapping π we define
the energy function as

H =
1
N

∑
i,j∈V (g)

(1− δaij ,a′πiπj
) , (4.2.1)

where A and A′ are respectively the adjacency matrices of g(N,E) and
G(N ′, E′). It is straightforward to verify that 0 energy is related to the
isomorphic sub-matching between the subgraph g and the graph G, while
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on the other hand configurations with edge mismatches would correspond
to higher energy values. This means that finding the ground state of H is
equivalent to identify subgraph g(N,E) in the graph G(N ′, E′). Moreover,
as usual, we directly might enforce the injectivity, so that the constraint
factor reads

fij(πiπj) =
(
1− δπiπj

) [
(1− e−β′) eijeji + e−β′

]
, (4.2.2)

where eij = δaij ,a′πi,πj
and β′ = β/N .

We obtain two coupled equations, called belief propagation (BP) equations,
for the cavity marginal probability and the messages φj→i’s

pk→j(πj) =
∏

i∈V (g)/j

mi→j(πj) (4.2.3)

mi→j(πj) =
∑

πi:fij 6=0

pi→j(πi) , (4.2.4)

In term of the beliefs we can compute the entropy so to obtain the BP
approximated value of the logarithm of the number of subgraphs

SBP (β) = −
∑
ijππ′

bij(π, π′) log bij(π, π′) +
∑
iπ

(N − 2)bi(π) log bi(π) (4.2.5)

As a trivial limit, we choose the subgraph g(N,E) to be composed of
two node and a single directed edge. The entropy results to be equivalent to
S = logE′ and is exactly computed by BP simulation. In this case, in fact,
creating a cavity, the correlation vanishes and BP assumptions are correct.

In order to obtain the ground state configuration we perform the β →∞
limit, obtaining the BP equations (4.2.3)(4.2.4) further reduce to

pk→j(πj) =
∏

i∈K/j

φi→j(πj) (4.2.6)

mi→j(πj) =
∑

πi: aij=a′πiπj

aji=a′πjπi

pi→j(πi) . (4.2.7)

We apply this method in transcription regulation networks. These net-
works give a coarse-grained description of interaction between transcription
factor proteins that regulate the expressions of several genes or other tran-
scription factors. The transcription of a general is the process by which
the specific protein RNA polymerase, produce a mRNA that corresponds
to a particular gene sequence. This mRNA codes the information for the
production of a new protein called gene product in the process4.2.
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Figure 4.4: We show part of the transcription regulation network of S.
Cerevisiae and all the possible feed forward loops contained in it. The
selected edges of FFL are emphasized with bold line. This plot has been
done using the program MAVISTO[85]. It is possible to recognize nodes and
edges involved in more than one FFL with different colour: dark blue, blue,
green and orange, if they are respectively part of two, three or four FFL’s.

Here we study the transcriptional regulation networks of two different
organisms E. Coli and S. Cerevisiae (see figure 4.4). While the first is
described in [86] the latter is based on the YPD database [19]. Some recent
works point out that these networks can be split into small patterns made up
of several nodes connected in a given way. BP algorithm is able to identify
subgraphs of a given shape embedded in these genetic networks and gives
a good estimation on the number of times it appears in them computing
the entropy (4.2.5). In order to quantify the correctness of our algorithm
we define the relative error for each query subgraph and see what is the
fraction of samples that are correctly predicted with BP algorithm. Since
the number of subgraphs is an integer, we compute the relative error for the
entropy estimation as

∆S =
|SBP − log(N )|

log(N + 1)
(4.2.8)

where N is the exact number of times a subgraph is embedded in the real
network. This measure quantify correctly the number of estimated solution
of BP algorithm and shows the reliability of the method proposed.

In this sense, this is a step-forward because allow us to look for subgraphs
of larger size being much less expensive from the computational point of
view. Numerical limit of exact algorithm comes out just from size of order
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Figure 4.5: We show the computational complexity of the BP algorithm as
a function of the run-time of exact enumeration. We compare this result
with respect to exact enumeration method provide by Alon et al. in [67]. In
both cases we gain one order of magnitude in the computation of 6-nodes
subgraphs showing the limitation of exact method scaling behavior with
respect to our technique.

≥ 5 therefore the properties of real networks are much more easy to access
with this procedure. We show in figure 4.5 the run-time of our algorithm
to find N -nodes subgraphs as a function of the size N in both the networks
providing evidence of the different scaling behavior of BP method and exact
enumeration.

S. Cerevisiae network

Firstly we test the performance of the algorithm using the S. Cerevisiae
transcription network. The network is constructed from data collected in
YPD database [19] and is available on web page [1].
We show in figure 4.7 the entropy SBP as a function of the logarithm of exact
result obtained using the method proposed by Alon et al [67]. BP algorithm
converges fast for almost the totality of samples present in the network es-
timating the correct entropy with respect to the expected values as shown
in figure 4.7. The straight line outlines the perfect matching between the
predicted entropy and the exact count. Despite the crude approximation,
our numerical data are well distributed along this line demonstrating the
good estimation of our method. Computing the relative error of our pre-
dicted value we obtain, as shown in figure 4.6 that almost 80% of the queries
subgraph are predicted with an accuracy of 20% or less.
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Figure 4.6: In figure we plot the density function of the relative error defined
in equation (4.2.8) for both network S. Cerevisiae and E. Coli. It is clear
that in both the network the 80% of the subgraphs are predicted with an
accuracy of at least 20%. This provide a clear sign of the reliability of the
method proposed for the estimation of the number of subgraph occurrence.

E. Coli network

Secondly we use the E. Coli transcription regulation network. This network
is base on RegulonDB database enhanced by several transcription factors
finding in literature as described in [86]. It consists on 116 transcription
factors and 419 operons involved in 577 interactions and available on [1].
We look for motif of size ≤ 6 and compare the results of our approximate
algorithm with the correct one.
We could see as in the previous case a good performance of the BP algorithm
that is able to estimate the number of occurring subgraphs. We report in
figure 4.8 the entropy SBP as a function of the logarithm of the exact number
obtained with MFINDER [67] pointing out the perfect agreement with the
red straight line. The number of samples for which the algorithm does not
converge is a negligible fraction of the total and we obtain in the remaining
cases that the 80% of the totality queries are correctly predicted with an
accuracy of the 20% as shown in 4.6.

4.2.2 Discussion

We presented a novel approach to the discovery and counting of network mo-
tifs based on message passing technique. This algorithm can be generalized
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Figure 4.7: In the four panels we plot the logarithm of a given subgraph
occurrence in the genetic network of S. Cerevisiae, as a function of entropy
computed using BP algorithm. To each point is associated one directed
subgraph given the number of nodes N . The entropy in the Bethe ap-
proximation regime correctly estimate the number of times the subgraphs
is contained in the network. The straight line shows the best possible solu-
tion in which the two number are equal and it is possible to see the points
accumulate in that region.

in many ways. In particular we might be interested in adding some informa-
tion on the type of interaction between two biomolecules, for example the
strength or reliability, or the sign of the interconnection. This is the case of
transcription regulation networks where each transcription factor could ac-
tivate or repress a response regulator, need for the introduction of two types
of edges: + and −. In this networks identifying subgraphs with specific con-
figuration of signs could be more indicative than identifying only pattern of
nodes with specific interconnection. In transcription regulation network an
important feature is captured by frustrated closed subgraphs. This is a set of
subgraphs that have at least one close path with an odd number of negative
edges like i.e. the incoherent feed forward loop that have completely dif-
ferent properties than the coherent one. It is possible to demonstrate these
subgraphs might be liable to non-monotonic behavior [89] of the networks.
This properties is supposed to be related to the stability towards external
variability and could be used in order to understand deeply the functions
carry out by the network itself.
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Figure 4.8: In the four panels we plot the logarithm of a given subgraph
occurrence in the genetic network of E. Coli, as a function of BP entropy.
To each point is associated one directed subgraph g(N,E) with a fixed num-
ber of nodes N . The entropy in the Bethe approximation regime correctly
estimate the number of times the subgraphs is contained in the network.
The straight line show the best possible solution in which the two number
are equal and it is possible to see a good agreement between our method
and the exact one.

The BP algorithm could analyze this kind of networks by employing
a special mapping to a non-signed motif identification problem explained
below. Starting a network G(N ′, E′) with signs on edges c : E′ → {−1, 1},
we will define a new network Gs(N ′

s, E
′
s). First, duplicate the nodes of

G(N ′, E′), defining the set N ′
s = V (G) ∪ [N ′ + 1, . . . , 2N ′] and then apply

the following rule to draw new edges: if there is a positive edge going from
nodes i to j in G, add to E′

s two edges: one from i+N ′ → j +N ′ and the
other from i→ j. Otherwise if the edge from i to j in V (G) is negative, add
the following two edges instead: one from i→ j +N ′ and from i+N ′ → j.
We could visualize this procedure as sketched in figure 4.9, adding one more
plane. All the nodes i < N ′ are drawn in the upper plane while the other
i > N ′ are contained in the lower plane. In that representation negative
edges pass from one plane to the other while positive ones lie on the same
plane. It is straightforward to see that frustrated loops live between the two
sheets because passes from one plane to the other an even number of times.
In figure 4.9 we show a frustrated loop in the network G with a blue shadow
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Figure 4.9: In the right panel the cartoon sketches an example of frustrated
subgraph like a loop using the prescription defined in the article. After
drawing a twofold network we construct an edge between nodes in the same
plane (i→ j and i+N → j +N), if there is a positive edge - solid line - in
the original network as showed on the first plane. Otherwise, if the original
edge is negative - dashed line - we connect the duplicated nodes belonging
to different plane (i → j + N and i + N → j). A frustrated loop, pointed
out in the cartoon with a blue shading, is equivalent to a path going from
one node i to its duplicate i+N (green shading).

and its image on the new network Gs is outlined in green.





Conclusions and Perspectives

In this thesis we have developed novel statistical physics inspired algorithms
to efficiently solve computationally hard problems such as those arising from
subgraph identification. These classes of problems find many interesting
application in the field of computational biology to the large body of datasets
which have recently become available.

From a theoretical perspective the problem of searching for graphs of
a given shape is particularly challenging. This issue is enlightened in the
cavity solution of the traveling salesman problem that we have sketched
in chapter one. Using the standard argument á la De Gennes we showed
how the global constraint is lost and the BP equations of the TSP become
equivalent to that of the 2-matching problem, which aims at finding the
optimal set of disconnected cycles.

The failure of this method suggests the need to enforce explicitly the
global constraints and represents theoretical motivation for this work.
Firstly we discussed the particular case where the peculiarity of the con-
nectivity constraint can be rephrased in term of local quantities, by using
an appropriate representation. The novelty of the method is based on the
introduction of N new parameters di, interpreted as distances from a root
node. This provided an algorithmic scheme that has been applied to high
dimensional data clustering, giving new and interesting results.

The natural further step has been to generalize the method in order to
deal with any possible shape of sub-graphs. This has been done introducing a
global constraint that increases the computational costs but can be definitely
used for the graph alignment problem (GA). This very general problem of
aligning graphs such that they show maximum overlap, has many interest-
ing special cases: maximum clique identification (MCI), traveling salesman
problem (TSP) and subgraph isomorphism problem (SI). The MCI is a the-
oretical application where the algorithm shows very good performance and
agreement with theoretical predictions.

However, it is worth to notice the long standing problem of TSP seems to
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be inaccessible with all the different representations, showing that problem
is intrinsically difficult and leading to more complicated scenario.

As a proof-of-concept we have used GA algorithm to predict interaction
specificity within the cell sensory-response system. The idea was to exploit
the tendency of two types of interacting proteins to have correlated evolu-
tionary history. Results show good performance of the method proposed
that is able to correctly predict almost the 65%-90% of the interactions
depending on the biological information exploited.

The last application took its inspiration from the problem of identifying
patterns of nodes overrepresented in a given network [67]. Most of the recent
literature in this field is concentrated in identifying building blocks in the set
of interactions devoted to perform specific functions. This is motivated by
the fact that biological networks show modularity, simplicity and robustness
to component tolerances. Inspired by this picture, the introduction of motifs,
or recurrent pattern of nodes, tries to explain the mechanism behind the
network functionality. Nevertheless, this basic idea need for the definition
of a priori reference models, leading to ambiguous answers [4].

The method we proposed has many other possible application that can be
analyzed, one of them being the protein structural overlap. It is devoted to
the problem of aligning 3D structures of two or more different proteins, and
defining a similarity score among them [66, 36]. Looking for 3D structural
overlap between family of proteins is a major problem firstly because it is not
easy to define a well defined objective function to minimize. Nevertheless,
also measuring the statistical relevance of a given proposed alignment is
another big open question. This application is currently being tested and
will be the subject of a forthcoming publication.
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Abstract – We introduce a new distributed algorithm for aligning graphs or finding substructures
within a given graph. It is based on the cavity method and is used to study the maximum-clique
and the graph-alignment problems in random graphs. The algorithm allows to analyze large graphs
and may find applications in fields such as computational biology. As a proof of concept we use our
algorithm to align the similarity graphs of two interacting protein families involved in bacterial
signal transduction, and to predict actually interacting protein partners between these families.

Copyright c© EPLA, 2010

Over the last decade, the use of graphs for the descrip-
tion of relations between components of complex systems
has become increasingly popular [1]. However, most part
of the current literature concentrates on (computationally
accessible) local characteristics like node degrees, whereas
the full exploitation of more global properties of large
networks remains frequently elusive due to their inherent
algorithmic complexity. Most often studying global prop-
erties requires solving NP-hard problems or even harder
problems if some form of uncertainty or lack of information
is included in the definition of the problem. In both cases
heuristic algorithms need to be developed. Specific exam-
ples, covered by this article, include the comparison of two
different networks, the so-called graph-alignment problem
(GA) [2–4], and the sub-graph isomorphism (SGI), as a
particular case of which we consider the widely studied
maximum-clique problem [5–7].
Recently, there has been a lot of interest in distrib-

uted algorithms to deal with optimization problems over
networks. In the context of statistical physics a new gener-
ation of algorithms has been developed (e.g. [8,9]) that
have shown promising performance on several applications
(for a review, see [10]). These techniques are based on the
so-called cavity method and are known as message-passing
(MP) algorithms. They are fully distributed and easy to
run on parallel machines. A recent result in this frame-
work is an algorithm for finding a connected sub-graph
of a given graph which optimizes a given factorized cost
function [11].

(a)E-mail: riccardo.zecchina@polito.it

Here we aim at making a step forward by introduc-
ing new techniques for SGI and GA. We develop two
alternative MP strategies and test their performance on
three sample problems. The first two are well-defined theo-
retical benchmarks, where our results can be compared
to rigorous bounds: i) the maximum-clique problem in
random graphs for the SGI problem; and ii) the alignment
of two random graphs of controlled similarity. The third
sample problem is thought as a proof-of-concept appli-
cation in computational biology: We study iii) the align-
ment of the similarity networks of two interacting protein-
domain families involved in bacterial signal transduction,
to identify actual signaling pathways. This case, involving
large networks of > 2500 nodes, exploits co-evolutionary
processes between interacting proteins to identify interac-
tion partners [12].

The model. – Both problems, SGI and GA, can
be put into the common framework of matching two
graphs of possibly different size. Let G= (V,E,w) and
G′ = (V ′, E′, w′) be two weighted graphs with nodes V, V ′,
edges E,E′ and edge weights w,w′. In the applications
shown in this letter, weights are non-negative, but this
is not a necessary condition for the applicability of the
message-passing algorithms. In the case of unweighted
graphs, we assume w and w′ to describe the adjacency
matrices, i.e. weights are 1 if an edge is present between
two vertices, and zero else. Furthermore we denote
the node number by N = |V | (N ′ = |V ′|), and the edge
number byM = |E| (M ′ = |E′|). Neighbors of a node i are
assembled in ∂i. To facilitate notation, primed quantities
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Abstract. We propose a new method for obtaining hierarchical clustering based
on the optimization of a cost function over trees of limited depth, and we derive
a message-passing method that allows one to use it efficiently. The method and
the associated algorithm can be interpreted as a natural interpolation between
two well-known approaches, namely that of single linkage and the recently
presented affinity propagation. We analyse using this general scheme three
biological/medical structured data sets (human population based on genetic
information, proteins based on sequences and verbal autopsies) and show that
the interpolation technique provides new insight.
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Abstract

In this work, we study the percolation transition and large deviation properties of

generalized canonical network ensembles. This new type of random networks

might have a very rich complex structure, including high heterogeneous degree

sequences, non-trivial community structure or specific spatial dependence of

the link probability for networks embedded in a metric space. We find the

cluster distribution of the networks in these ensembles by mapping the problem

to a fully connected Potts model with heterogeneous couplings. We show that

the nature of the Potts model phase transition, linked to the birth of a giant

component, has a crossover from second to first order when the number of

critical colors qc = 2 in all the networks under study. These results shed light

on the properties of dynamical processes defined on these network ensembles.

PACS numbers: 00.00, 20.00, 42.10

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently the study of critical phenomena in complex networks has attracted a great deal of

interest [1]. One of the main critical phenomena occurring in networks is the percolation

transition which is a continuous structural phase transition that can be characterized by

critical indices as a statistical mechanics second-order phase transition. This phase transition

determines the robustness properties of complex networks [2–5] and the critical temperature

of the Ising [6–8] and XY models [9, 10] on complex networks. Moreover, the onset of

a percolating cluster determines a transition in between a phase in which small loops are

suppressed and a phase in which the expectation value of small loops is positive in the limit

of large network sizes [11].

1751-8113/09/195007+23$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1
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Abstract. Correlations are known to play a crucial role in determining the
structure of complex networks. Here we study how their presence affects the
computation of the percolation threshold in random hypergraphs. In order to
mimic the correlation in real networks, we build hypergraphs from generalized
hidden variable ensembles and we study the percolation transition by mapping
this problem to the fully connected Potts model with heterogeneous couplings.

Keywords: random graphs, networks, critical phenomena of socio-economic
systems, socio-economic networks
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An anomalous mean-field solution is known to capture the nontrivial phase diagram of the Ising model

in annealed complex networks. Nevertheless, the critical fluctuations in random complex networks remain

mean field. Here we show that a breakdown of this scenario can be obtained when complex networks are

embedded in geometrical spaces. Through the analysis of the Ising model on annealed spatial networks,

we reveal, in particular, the spectral properties of networks responsible for critical fluctuations and we

generalize the Ginsburg criterion to complex topologies.

DOI: 10.1103/PhysRevLett.104.218701 PACS numbers: 89.75.Hc, 64.60.aq

A great deal of attention has been given recently to the

effects that different topological properties may induce on

the behavior of equilibrium and nonequilibrium processes

defined on networks and to the possible implications for

the study of several social, biological, and technological

networks [1,2]. Heterogeneous degree distributions, small

world and spectral properties, in particular, have been

recognized as being responsible for novel types of phase

transitions and universality classes [1–4]. For instance,

scale-free networks present a complex critical behavior

for the Ising model, percolation, and spreading processes

that explicitly depends on the exponent of the power law in

the degree distributions [1–3]. On the other hand, the

existence of nontrivial spectral properties is crucial for

the stability of synchronization processes and OðnÞ mod-

els [4].

Despite the large amount of interest in the subject, much

smaller attention has been devoted to critical phenomena

on complex networks embedded in a metric space [5–9],

though some important problems related to navigability,

efficiency, and search optimization in spatial networks

have already been discussed in the literature [10–13]. In

fact, spatial embedding is a very relevant aspect of infra-

structure and technological networks, including airport

networks, the Internet, and power-grid networks.

Moreover, a pivotal role in shaping the topology of social

networks is played by hidden metric structures in some

underlying abstract space, such as that of the social dis-

tance between individuals [8,9].

The aim of this Letter is to investigate the role of spatial

embedding in relation with the critical behavior of phase

transitions in complex networks. It is well known that in

regular lattices, space dimensionality governs the critical

behavior of equilibrium and nonequilibrium systems. In

particular, below the upper critical dimension, critical fluc-

tuations that are not captured by the mean-field approach

set in. Similarly, for complex networks embedded in a low

dimensional space we can expect that, as the link proba-

bility becomes short ranged, the effect of the underlying

space might change the critical behavior leading to a

breakdown of the validity of (heterogeneous) mean-field

arguments. This should be relevant to understand real

phenomena in spatial networks, such as the spreading of

viruses [6], the emergence of congested phases in the

packet-based traffic on technological networks [14], and

cascading failure phenomena in power-grid networks [15].

As a prototypical example of the complex behavior

induced by spatial embedding, in this Letter we consider

the Ising model on annealed scale-free networks. On a

scale-free network with a degree distribution PðkÞ �
k��SF , the critical temperature of the Ising model diverges

for �SF < 3. The critical exponents, computed by means of

the annealed network approximation [16] or by assuming a

quenched randomness [17,18], deviate from the mean-field

ones as long as �SF < 5, with the exception of �; �0 de-

scribing the divergence of the magnetic susceptibility �

close to the critical temperature Tc (�� jT � Tcj
��;�0

). In

fact, �; �0 always remain fixed to their mean-field value

� ¼ �0 ¼ 1. For these reasons we refer to the critical

behavior of random scale-free networks as the heteroge-

neous mean-field solution. We derive here a Ginsburg

criterion [19] for spatial complex networks determining

the condition under which critical fluctuations become

larger than the ones predicted within a mean-field ap-

proach. In particular, we will show that the critical behav-

ior is always mean field, whenever the matrix

p ¼ fpijgi;j¼1;...;N , fixing the probabilities of existence of

each link (i; j) has a finite spectral gap � between the

maximal eigenvalue � and the second maximal one �2.

On the contrary, when the spectral gap � ! 0 in the

thermodynamic limit, the critical behavior depends on

the behavior of the tail of the spectrum of p. We will

demonstrate by theoretical and numerical results that the

behavior of such a tail is well captured by an exponent �S,

related to the effective dimension deff of the network

through the relation �S ¼ ðdeff � 2Þ=2. We find that for
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