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Abstract

After a general introduction and a brief review of the available experimen-
tal data on spatial representations (chapter 2), this thesis is divided into
two main parts. The first part, comprising the chapters from 3 to 6, is
dedicated to grid cells. In chapter 3 we present and discuss the various
models proposed for explaining grid cells formation. In chapter 4 and 5 we
study our model of grid cells generation based on adaptation in the case
of non-planar environments, namely in the case of a spherical environment
and of three-dimensional space. In chapter 6 we propose a variant of the
model where the alignment of the grid axes is induced through reciprocal
inhibition, and we suggest that that the inhibitory connections obtained
during this learning process can be used to implement a continuous attrac-
tor in mEC.

The second part, comprising chapters from 7 to 10 is instead focused on
place cell representations. In chapter 7 we analyze the differences between
place cells and grid cells in terms on information content, in chapter 8 we
describe the properties of attractor dynamics in our model of the Ca3 net-
work, and in the following chapter we study the effects of theta oscillations
on network dynamics. Finally, in Chapter 10 we analyze to what extent the
learning of a new representation, can preserve the topology and the exact
metric of physical space.
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Chapter 1

General Introduction

The medial temporal lobe, the system of networks surrounding the hippocampus, is
particularly appealing to modeling for two reasons: on the one hand it presents a
collection of closely related spatial representations (discovered in rodents over a 40
years span), with similar properties, expressed by groups of neurons at a distance of
1-2 synapses. On the other hand it exhibits an architecture of the connections among
these networks which, if not completely straightforward, certainly is much simpler and
better defined than anywhere else in the cortex, shaping a clear hierarchical structure
with the hippocampus sitting at the top of multiple lines of converging inputs. This
combination, the equivalent of which can be found perhaps only in the early visual ar-
eas, is ideal to develop causal models of the function of the region: ideally, one knows
which inputs one should combine, and knows what information is conveyed by those
inputs. Although not all the pieces of the puzzle are known, the amount of knowledge
accumulated in the last decades on the hippocampus, and more recently on the neigh-
boring areas, allows to at least try to define a division of work among these networks, to
describe the mechanics underlying the generation of the various representations, each
of them performing specific computations and providing different kinds of information
to the neighbors.

One of the distinctions that has more vividly emerged from this attempt to define a
work flow in the medial temporal lobe, is the one between place cells (O’Keefe and
Dostrovsky 1971) and grid cells(Hafting, Fyhn, Molden, et al. 2005). Discovered at
a distance of 30 years from one another, they are the prominent units found in the
hippocampus and in medial entorhinal cortex, respectively. Grid cells sit one synapse
away from hippocampal place cells both as an input of the hippocampal circuit, and
as an output (Kloosterman, Haeften, and Lopes da Silva 2004; Witter and E. Moser
2006). Their interaction is reflected in the similarity of the two representations, which
nevertheless exhibit a high degree of independence in response to change in the external
conditions, and moreover, seem to depend on different dynamical processes.

This thesis is articulated in two main parts which reflect the contrast between grid cells
and place cells. The first half is devoted to discuss extensions of the adaptation model
for grid cell generation initially introduced by Kropff and Treves (2008). After a general
preamble on spatial representations (Chapter 2) and on computational approaches to
modeling grid cell emergence (Chapter 3), we discuss the effect a non-planar topology
of the environment has on the appearance of grid cells produced by our model. In
Chapter 4 (published in Stella et al. (2013a)) we address the development of grids on
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1. GENERAL INTRODUCTION

a spherical surface, while in Chapter 5 we test our model in the case of the exploration
of a three-dimensional environment by a flying animal (partially published in Stella
et al. (2013b)). We observe that, indeed, the outcome of the self-organization process
on which our model is based is affected by the metric of the external environment.
The same model, with no modifications from the planar two-dimensional case, is able
to produce different grid arrangements on the sphere, where the result is a different
combination of spherical harmonics, depending on the size of the sphere, and in the
three-dimensional volume, where the model induces a mixture of Face Centered Cubic
and Hexagonal Close Packed arrangements in the fields.

We then proceed (Chapter 6, done in collaboration with Yasser Roudi and Benjamin
Dunn at the Kavli Institute for Systems Neuroscience in Trondheim) to propose a vari-
ant of the model where the alignment of the grid axes is induced through reciprocal
inhibition of mEC units. In this version of the model, plasticity modifications are ex-
tended also to this additional set of inhibitory connections, so that the final state is
completely the product of self-organization. We argue that the inhibitory connections
obtained during this learning process, might be functional to establish the necessary
scaffold for the implementation of a continuous attractor network in mEC. In this way,
the configuration of fields that has emerged from adaptation might be transferred to
the particular organization of the recurrent connections, which in turn might be later
used to reproduce the same grid pattern.

The constancy of grid cell pattern of activity across environments is in marked contrast
with the high degree of variability expressed by place cell representations. The second
half of the thesis is an attempt to characterize some of the aspects of this variability.
In particular how the presence of flexible relations between the activity of units and of
multiple, distinct maps, stored together, can influence the functionality of a network
like the CA3 subfield of the hippocampus. In Chapter 7 (based on Stella, Cerasti, Si,
et al. (2012)), we start by discussing how a dissociation between mEC and CA3 repre-
sentations can be unveiled by means of information content analysis. The results are
consistent with the view of mEC entirely dedicated to provide accurate estimation of
the spatial position only, and of the hippocampus working to produce context specific
representations, in which the spatial component is only one of the many contributions
converging to shape the representation.

In the following two chapters, Chapter 8 and Chapter 9 (an expanded version of Stella
and Treves (2011)) we study attractor driven dynamics of a CA3-like network, as a
way to investigate the structure of the stored spatial representations, and their effective
resemblance to a continuous attractor. In agreement with the information content ar-
gument, we show that input-free dynamics in the network is far from approximating a
continuous attractor. Rather than stably representing the current position, the activity
in the network ”drifts” toward certain configurations, a sub-set of specific locations in
the environment corresponding to the minima of an energy function (In Appendix 11
we also present an analytic approach to the same subject, developed in a collaboration
with Remi Monasson at ENS in Paris). When multiple maps are stored on the net-
work, the activity is also found to leave the original basin of attraction, transitioning
to another environment representation. This part of the work is also the result of dis-
cussions I had with Remi Monasson and Sophie Rosay, at ENS in Paris, who have been
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working on the same kind of analysis on their model of CA3 (presented in Rosay and
Monasson 2013) and who contributed to this section. We then show how a modulation
of the network activity, such as theta oscillations, can induce a switch in the dynamics,
from input-driven to recurrent-driven. We use this mechanism to model the results of
the ”teleportation” experiment (Jezek et al. 2011), but the model offers a more general
perspective on the way the network could access the information stored on the internal
connections, independently of the external input, or only in a partially independent
way, with just an initial external cue.

Finally, in Chapter 10 (based on Stella, Cerasti, and Treves (2013)) we analyze to
what extent the learning of a new representation, a mostly random process of self-
organization, can preserve the topology and the exact metric of physical space. We
present a way to assess this issue quantitatively, and find that in a simple neural net-
work model of CA3, the average topology is largely preserved, but the local metric is
loose, retaining only a portion of the optimal spatial resolution.
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Chapter 2

A Glimpse on Medial Temporal
Lobe Spatial Representations

The study of spatial representations in the Medial Temporal Cortex has had a major
influence on the neuroscientific endeavor of the last half of a century. Before the sev-
enties, all informations relevant to understand neural computations was obtained from
the very first sensory areas, and especially the early visual stream (Hubel and Wiesel
1959). Any attempt to move further down-stream, away from them, was frustrated
by difficulties in interpreting the neural correlates of the observed activity and even
more by the exponentially growing complexity of the connectivity structure, making it
increasingly difficult to properly trace the afferent and efferent brain regions diagram
(the famous Fellman and Van Essen graph is paradigmatic in this respect (Felleman
and Van Essen 1991)).

The discovery of neural representations in the hippocampus brought a revolution to the
field. It clearly demonstrated that neuronal coding could be studied scientifically also
beyond the sensory-motor periphery, deep inside the brain, into the advanced cortices
(E. Moser and M. Moser 2013) responsible for the more complex aspects of behavior.

Today, a collection of diverse neural populations, mainly located in hippocampus, en-
torhinal cortex and other regions of the medial temporal lobe are labelled as spatial
representations. In the years more and more members have joined the group, start-
ing with Place Cells (O’Keefe and Dostrovsky 1971), followed by Head Direction cells
(Taube, Muller, and Ranck 1990a), Grid cells (Hafting, Fyhn, Molden, et al. 2005),
Border/Boundary Vector cells (Solstad et al. 2008; Lever et al. 2009). Together they
form an extended space circuit distributed between hippocampus and entorhinal cortex
(E. Moser, Kropff, and M. Moser 2008; E. Moser and M. Moser 2013).

In this first chapter we will quickly review the experimental data concerning these rep-
resentations, to provide the neurobiological basis for the later discussions of modeling
studies. It is intentionally partial and incomplete, as a full account of the last 50 years
of research on the subject would need entire books (Andersen et al. 2006; S. J. Mizu-
mori 2008). We will therefore focus on some of the basic aspects characterizing the
activity of these cells. We will return on some of these later in thesis.
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2. A GLIMPSE ON MEDIAL TEMPORAL LOBE SPATIAL
REPRESENTATIONS

2.1 Hippocampus and Place Cells
The hippocampus is a non-uniform structure with an articulated internal organization.
It is comprised of sub-fields, the most important of which are the Dentate Gyrus (DG),
CA3 and CA1, that are also the consecutive steps in the flow of signals traveling from
the cortex into the hippocampus and then out again. We will mention them in the
following only when a particular fact is restricted to one of them, otherwise discussing
the general and common properties of the hippocampus as a whole.

Figure 2.1: Position and shape of the hippocampus in humans (top) and in rodents
(bottom). Adapted from Buzsaki, Scholarpedia page on the hippocampus.

A history of place cells can be summarized in very simple terms. O’Keefe and Dostro-
vsky discovered that neurons in the rat hippocampus respond to the animal’s location
within the environment. Each neuron is activated whenever the rat is in a particular
place, the so-called place field. They published their first findings in 1971, and several
details were clarified in the following years.
The activity of each neuron can be reduced visually to its place field (tacitly assumed
to be unique, and neatly circular in shape, although real place fields often deviate
from the stereotype). Different neurons are active in different locations, so that the
entire environment is covered with these place fields; by considering the entire popu-
lation, each location in the environment is associated with the activity of some of the
neurons, an ”ensemble” (Wilson and B. McNaughton 1993). The place representation
was shown to be non-topographic in the sense that the place fields of neighboring cells
(in terms of physical distance in the hippocampal tissue) appeared no more similar
than place fields of more widely spaced neurons. The nature of place cell activity was
immediately considered as a realization of Tolman’s idea of the cognitive map (Tol-
man 1948; O’Keefe and Nadel 1978). Consequently, most of the following research has
been aimed at defining the properties of the external environment and of the animal
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behavior affecting these representations.

Figure 2.2: Basic scheme of the hippocampal internal circuit. The three main areas
(DG, CA3, CA1) are indicated and the arrows show the main directions of signal
propagation. Entorhinal Cortex (EC) provides the main input to the complex from
its superficial layers (II/III) and receives most of the output to deep layers (V/VI).
Adapted from Kamran Diba

2.1.1 Remapping

Global remapping Place cell representations respond to changes in the external
properties of the environment in more than one way. At first it was observed that
changing the experimental enclosure where recordings are performed, induced a com-
plete rearrangement of cell activity. Most of the cells coding for the new environment
were silent in the first one, and if they were active, there was no relation between the
place field positions in the two. This kind of response is now called ”global remapping”
and it basically amounts to the generation of orthogonal, uncorrelated maps for differ-
ent environments, sharing a very low degree of overlap (S. Leutgeb, J. Leutgeb, Treves,
et al. 2004). This phenomenon is consistent with the idea of place cells as a cognitive
map, as it is necessary for successful behavior to distinguish among enclosures, even
when they are similar in shape or some other property.

Moreover this property of place cell representations was used to successfully demon-
strate attractor dynamics in the CA3 sub-field of hippocampus (Guzowski, J. Knierim,
and E. Moser 2004; J. Leutgeb, S. Leutgeb, Treves, et al. 2005; Wills, Lever, et al.
2005; Colgin, S. Leutgeb, et al. 2010). When two different recording boxes are mor-
phed one into the other (for example by gradually transforming a rectangular shape
into a circular one) it is observed that CA3 representation switch abruptly, between the
maps associated to the two end-points of the series, at a certain stage of the morphing
continuum.
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2. A GLIMPSE ON MEDIAL TEMPORAL LOBE SPATIAL
REPRESENTATIONS

Figure 2.3: Example of the spatial distribution of spikes of an hippocampal place cell.
In black the trajectory of the rat. In red, superimposed, the positions of occurrence of
spikes. Adapted from (Marozzi and Jeffery 2012)

Rate Remapping The above is not the only way place cells code for modifications
in the surroundings. It took thirty years, and more refined recording techniques to
actually identify an alternative remapping mechanism, which was named ”rate remap-
ping” (S. Leutgeb, J. Leutgeb, Barnes, et al. 2005; S. Leutgeb, J. Leutgeb, E. Moser,
et al. 2006). In this case, the same set of cells is maintained to code for the new envi-
ronment, and they also exhibit the same place fields arrangement. Only the peak firing
rate inside the place fields is changed independently by the various cells. In this way,
while the place fields remain stable, the local code for each position, the ensemble, is
modified, since the relative firing rates among the units active in the same spot are
altered. This kind of remapping is observed when the modifications in the environ-
ment are minor, and in particular when the rat is kept in the same room, although
in a different box. Rate remapping is thought to be a way to encode subtle perceived
differences in an otherwise familiar situation and is therefore alternative to the global
one that instead signals a drastic change (Ahmed and Mehta 2009).

Another line of inquiry has investigated the influence of the shape of the environment,
and in particular of symmetries in the shape, on the place cell code. Classic examples
are the hairpin maze (Derdikman, Whitlock, et al. 2009) and the multiple arms (or
multicompartement) maze (Singer et al. 2010; Spiers et al. 2013). These set-ups are
used to understand how place cells code responds to the similarities between portions
of the environment and to stereotypical behavior, such as a repetitive series of left and
right turns. Although there are some differences between results obtained with differ-
ent paradigms, there is also evidence that most of the place cells do not discriminate
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among similar parts of the maze (Derdikman, Whitlock, et al. 2009; Spiers et al. 2013),
getting reset and repeating the same firing pattern in each of them.

Non-Spatial Components of Place Cells Representations While the previous
examples all relate to the effects on the place cell code of the transformation of the
physical properties of the environment, others experiments have tried to delineate
to what extent the non-spatial elements of a task may contribute to place cell code
variability. Some of the early indications in this direction came from the observation
that during an alternation task on a Y-shaped maze, a different set of place cells was
active on the central arm, depending on the side of the next turn (Wood et al. 2000;
Ferbinteanu and Shapiro 2003; Smith and S. Mizumori 2006; Bahar, Shirvalkar, and
Shapiro 2011; Ferbinteanu, Shirvalkar, and Shapiro 2011; Allen et al. 2012). A more
evident example of the presence of an ”episodic” component in place cells activity
comes from a limited number of studies linking the properties of the representation to
the positions of the goal (generally the foraging or reward location). The studies agree
on a tendency of place cells to exhibit a higher density of place fields around and near
goal locations (Hollup et al. 2001; Tabuchi, Mulder, and Wiener 2003; I. Lee, Griffin,
et al. 2006; Hok et al. 2007; O’Neill, Senior, Allen, et al. 2008).

2.1.2 Dorsal and Ventral Hippocampus

The hippocampal formation is also characterized by a functional organization along its
dorso-ventral axis. The dorsal hippocapmus is connected to dorsal entorhinal cortex
as ventral hippocampus connects to ventral Entorhinal Cortex. Moreover, anatomical
studies indicates that the input and output connections of the dorsal hippocampus and
ventral hippocampus are distinct (Strien, Cappaert, and Witter 2009).
Place cells are found along almost the entire axis but place fields dimensions exhibit
a continuous gradient moving along it, with dorsal place cells forming small, very lo-
calized fields, while progressively more ventral cells have broader and broader fields,
covering an increasing portion of the environment (Jung, Wiener, and B. McNaughton
1994).

This differentiation has led to hypothesize that place cells belonging to different por-
tions of hippocampus might be used to simultaneously represent the environment at
different spatial scales. Not necessarily contradicting the idea, it is also known (E.
Moser, M. Moser, and Andersen 1993; M. Moser et al. 1995; Bannerman et al. 2003)
that performing a standard Morris water maze task, rats with a lesioned dorsal hip-
pocampus are severely impaired, while the effect is not observed in rats with equivalent
ventral lesions, that show no decrease in performance. That spatial navigation func-
tions might be concentrated in the dorsal domain of the hippocampus is the conclusion
to which many studies on stress, emotions and affect came, since they found an inverse
correlation in these non-spatial functions, with the ventral, more than the dorsal hip-
pocampus, deeply involved in their regulation (Fanselow and Dong 2010; Komorowski
et al. 2013).

The real existence of two completely distinct, functionally separated structures is still
a matter of debate and is quite implausible (Lubenov and Siapas 2009; Patel, Fujisawa,
et al. 2012), still, the observation of a similar pattern of dissociation in human studies
(Poppenk et al. 2013) hints at a complex and rich interaction between various parts of
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the region.

2.1.3 Re-play, Pre-play and other off-line Activity

Reactivation and Sharp Wave Ripples One of the signatures of place cell coding
is that it represents the actual position of the animal in space. Place cells get activated
when the rat traverses the position associated to its firing field. Also when lights are
extinguished place fields remain stable, keeping track of the position of the animal in
space. As a matter of fact this description is only partial. Recording from the hip-
pocampus during slow wave sleep, Wilson and B. McNaughton (1994), in 1994 found
that rather than being silent, place cells were reactivated in sequences. Cells that fired
together when the animal occupied particular locations in the environment exhibited
an increased tendency to fire together during subsequent sleep. The sequential activa-
tion of these cells can be viewed as a neural representation of the animal’s trajectory.
These sequences are repeated or replayed during sharp wave ripple complexes (SWRs),
network events observed in the hippocampal local field potential (O’Keefe and Nadel
1978; Buzsaki, Leung, and Vanderwolf 1983). Initially reported during sleep (Wilson
and B. McNaughton 1994; Skaggs and B. McNaughton 1996; Nadasdy et al. 1999;
Sutherland and B. McNaughton 2000; A. Lee and Wilson 2002), these events has been
then reported during rest periods between trials (Foster and Wilson 2006; Jackson, A.
Johnson, and A. Redish 2006; O’Neill, Senior, and Csicsvari 2006; Csicsvari, O’Neill, et
al. 2007; Diba and Buzsaki 2007; A. Johnson, Jackson, and A. D. Redish 2008; David-
son, Kloosterman, and Wilson 2009; Karlsson and Frank 2009; Gupta et al. 2010), and
more recently during the trial itself (Dupret, Joseph, Barty, et al. 2010; Pfeiffer and
Foster 2013).

During the awake rest state, representations of previous experiences are reactivated(Jensen
and Lisman 2000; Jackson, A. Johnson, and A. Redish 2006; O’Neill, Senior, and
Csicsvari 2006), and are replayed both in the order that they were experienced (for-
ward replay; Diba and Buzsaki (2007); A. Johnson, Jackson, and A. D. Redish (2008);
Davidson, Kloosterman, and Wilson (2009); Karlsson and Frank (2009)) and in the
reverse order that they were experienced (backward replay; Foster and Wilson (2006);
Csicsvari, O’Neill, et al. (2007); Diba and Buzsaki (2007); Davidson, Kloosterman,
and Wilson (2009)). In 2010, Gupta et al. (Gupta et al. 2010) also showed that the
sequences replayed do not necessarily correspond to a trajectory actually experienced
in the rat. Using a multiple choice T-maze, they were able to observe the activation of
sequences of units coding for shortcuts and alternative routes, that were never taken
by the rat.

Replay of behavioral sequences in the hippocampus provides a possible mechanism for
several critical functions in which the hippocampal formation plays a role: consoli-
dation of experiences into long-term memory (Marr 1971b; Buzsaki 1989; Sutherland
and B. McNaughton 2000), incorporation or consolidation of information into cognitive
schemas or cognitive maps (O’Keefe and Nadel 1978; Tse et al. 2007), and learning and
planning future experience (Foster and Wilson 2006; Diba and Buzsaki 2007; Karlsson
and Frank 2009; Lansink et al. 2009). To understand the role of SWRs and replay
in hippocampal function, recent studies have blocked CA3 output (the site of SWR
generation; Ylinen et al. (1995)) (Nakashiba, Buhl, et al. 2009) and have directly
disrupted SWRs after learning, during sleep (Girardeau et al. 2009; Ego-Stengel and
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Wilson 2010), showing that these manipulations impair performance on hippocampal-
dependent behavioral tasks. Although these studies show that SWRs are important
for correct task performance, they cannot specify the nature of learning taking place
during these events.

Future Paths Apart from speculations on the functional role of reactivation, until
very recently, there was very little that allowed to establish a direct link between the
sweeps of reactivated trajectories and behavioral planning. The relation was thought
to be at most deferred, with replays inducing the building of a flexible cognitive map.
Instead Pfeiffer and Foster (2013) were able to detect the activation of place cells cod-
ing for paths ahead of the animal, while the rat was performing a foraging task. The
study showed how these paths were then likely to be the ones chosen by the rat in
the movements that followed the reactivation event. Moreover, the end point of the
activated sequence was often a meaningful location of the environment, such as the
foraging spot. The sequence thus traced a direct link between the actual position of
the rat and a goal location at which the rat then headed. The results need to be
confirmed in other experiments, but surely they appear as a clear evidence of a mech-
anism allowing the hippocampus to actively probe its internal representations of space
in order to provide information on spatial locations beyond the animal current position.

Preplays Another form of predictive activity in the hippocampus is the one de-
scribed in a number of studies by Dragoi and Tonegawa (Dragoi and Tonegawa 2011;
Dragoi and Tonegawa 2013). Again they recorded off-line activity in the hippocampus
during SWR events, but this time they did it in the period preceding the experiment.
What they found is that sequential activation of cells is observed anyway, but most
remarkably there is a very high degree of overlap between these sequences and the
cells then used to represent the environment. These early activations look like ”pre-
plays”: even though the rat has no experience of the environment yet, it is already
possible to observe the groups of cells that will be recruited in the following session to
build the spatial representation. The results are challenging for the traditional view
of hippocampal representations as random constructs, and might hint at some sort of
pre-wired structure present in the circuit, or to some aspects of learning not yet fully
understood (Mizuseki and Buzsaki 2013).

2.2 Entorhinal Cortex and Grid Cells
Since the discovery of place cells, the apparent uniqueness of these units and the elegant
spatial code expressed in the subfields of the hippocampus led many investigators to
presume that place signals were mostly a product of computations performed entirely
inside hippocampal circuitry. But just as soon as part of the scientific community was
getting comfortable with the idea that the hippocampus was central to spatial navi-
gation, Fyhn et al. in 2004 made a discovery that messed things up and shed a new
light on the flow of information in the medial temporal lobe (Fyhn, Molden, et al. 2004).

There was already some clue indenting the idea of the hippocampus as the original
generator of the position code. Spatial firing was found to persist in CA1 after removal
of the intrahippocampal connections arising from the dentate gyrus (B. McNaughton,
Barnes, et al. 1989) and also from CA3 (Brun, Otnass, et al. 2002). These experiments

11



2. A GLIMPSE ON MEDIAL TEMPORAL LOBE SPATIAL
REPRESENTATIONS

Figure 2.4: Schematic representation of the standard view of the parahippocampal-
hippocampal circuitry. According to this standard view, neocortical projections are
aimed at the parahippocampal region (PHR), which in turn provides the main source
of input to the hippocampal formation (HF). Adapted from (Strien, Cappaert, and
Witter 2009)

suggested that some position information must be present already in the entorhinal
cortex, to be conveyed to CA1 through the direct perforant-path projections.

Grid Cells What Fhyn et al. found, looking at the activity of neurons in the me-
dial part of the entorhinal cortex, was that these cells responded to the position in
space of the rat in a way very similar to place cells; but instead of having only one,
or very few randomly displaced place fields, these cells appeared to have many place
fields, arranged throughout the environment in a surprisingly regular and precise fash-
ion (Hafting, Fyhn, Molden, et al. 2005). Their firing fields occupy the vertex of a
triangular pattern that covers the entire environment. Because of that, and because of
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Figure 2.5: Left: Entorhinal Cortex location in the rodents brain. Right: Connectivity
differentiation between the dorsal (purple) and ventral (blue) portions of Lateral (LEC)
and Medial (MEC) Entorhinal Cortex. Adapted from (Canto, Wouterlood, and Witter
2008).

Figure 2.6: An example of the typical triangular arrangement of fields expressed by an
entorhinal grid cell. Adapted from (Marozzi and Jeffery 2012)

their resemblance to place cells, they have been named grid cells. Grid cells can differ
from each other in their grid spacing and grid phase, while there is growing evidence for
an essentially common grid orientation throughout medial entorhinal cortex (Stensola
et al. 2012). Cells very close to each other in the tissue have their grids shifted by a
seemingly random phase, so that there is no topographic organization in the represen-
tation of space.
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Dorso-Ventral Gradient The only sign of a topographical organization can be
found in a gradual increase in the dimensions of the fields and in the distance between
them, going from the more dorsal to the more ventral portion of the medial entorhinal
cortex, symmetrically reflecting the analogous hippocampal place field size increase
(Brun, Solstad, et al. 2008). Indeed, recent studies, involving extensive recordings of
many cells from the same animal, unveiled a modular organization of the grids along
the axis. Sampling from a vast portion of the dorso-ventral extension of the region
Stensola et al. (2012) were able to identify four or five of these modules. Each module
was characterized by a common grid spacing and a common orientation. Therefore
the increase in spacing along the axis appears to happen by discrete jumps. What is
more, the extension of the jumps is very regular: the grid scale increases, on average,
by a factor 1.4 from one module to the next. Interestingly, the change in grid scale is
accompanied by a parallel progressive variation of the physiological properties of the
cells (Giocomo, Zilli, et al. 2007; Giocomo, Hussaini, et al. 2011; Yoshida, Giocomo,
et al. 2011; Yoshida, Jochems, and M. Hasselmo 2013).

When the rat is moved to a new environment, grid cells retain their firing structure,
the size of the fields and the distance between fields is maintained, while the grid is
shifted and rotated, changing the grid phase and orientation. Most remarkably, the
shift and the rotation are common to all nearby cells (Fyhn, Hafting, Treves, et al.
2007) belonging to the same module.

2.2.1 Entorhinal Cortex Layers and other Spatial Cells

Much like the hippocampus, medial entorhinal cortex (mEC) is not an homogeneous
structure, and like the rest of mammalian cortices is organized in layers. Each of the
five layers is characterized by the presence of different neural types and by a different
pattern of afferent and efferent connectivity (Canto, Wouterlood, and Witter 2008).
Grid cells studies soon started to probe the different layers to see to what extent grid
cells could be found. They found that grid cells actually intermingle with other cell
types in the deeper layers of mEC (Sargolini et al. 2006). While grid cells are the
dominant cell type in layer II, a large fraction of the intermediate and deeper layers
populations is comprised of head direction cells. Interestingly, starting from layer III,
most grid cells are also directionally tuned. They show a compositional selectivity,
firing only when the animal passes through the grid vertices with its head in a certain
direction.

Head Direction Cells The discovery of abundant head direction tuned cells in the
medial entorhinal cortex did not constitute a first observation of this kind of cell. They
were first reported by James Ranck in 1983 in the rat dorsal presubiculum, and then
described in Taube, Muller, and Ranck (1990a); Taube, Muller, and Ranck (1990b).
They have subsequently been observed in other species including mice and monkeys.
The activity of these cells is highly correlated with the direction of the animal’s head
and are independent of eye movements. They are controlled by external landmarks
and self-motion cues and they are active irrespective of the animal ongoing-behavior.
Since their discovery, head direction cells have been found in several other brain areas
including thalamus, lateral mammillary nuclei, retrosplenial cortex, striatum, and en-
torhinal cortex.
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Head Direction
 Cell

Border Cell

Figure 2.7: Examples of the firing patterns of a Head Direction Cell (left) and of a
Border Cell (right). Adapted from (Marozzi and Jeffery 2012)

Border Cells But this was not all, as in 2008 a new kind of spatially selective cell
was reported: border cells (Savelli, Yoganarasimha, and J. Knierim 2008; Solstad et al.
2008). These are cells that tie their activity to the proximity of one or more borders
of the environment, like a wall or an edge. The firing field of the unit follows modifi-
cations of the position of the border, and new fields are added when new borders are
introduced in the environment.

Grid cells, head direction cells, and border cells were found to coexist not only in the
medial entorhinal cortex, but also in the adjacent presubiculum and parasubiculum
(Boccara et al. 2010), demonstrating the extent of the distribution of spatial maps in
the entire region.

2.2.2 Grid Cells in other Mammals

Bats Most of the data on grid cells has been obtained using rodents, but recently
reports of grid activity in other mammals have begun to accumulate. First of all
grid cell activity has been extensively reported in crawling bats (Yartsev, Witter, and
Ulanovsky 2011). Notably, the critical features of rodent grid cells are the same in
bats: hexagonal firing, coherence of spacing and orientation, the lack of topographic
organization of phases and the dorso-ventral gradient. Also the same mixture of grid,
head direction and border cells is found in bat mEC. It is important to note the philo-
genetic distance between rats and bats.

Monkeys Reports of grid cells also come from a study on monkeys using visual stim-
uli (Killian, Jutras, and Buffalo 2012). In this case mEC units responses depended not
on the position of the monkey but on where the monkey fixated on a visual image. This
vision/navigation duality between monkeys and rodents is not new, as visual equiva-
lent of place cells, ”spatial view cells”, were reported almost 20 years ago (E. Rolls and
O’Mara 1995; E. Rolls, Robertson, and Georges-Francois 1997; Kornblith et al. 2013).
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Humans Very recently, the generality of grid phenomenon has been reinforced by
direct neural recordings in human epileptic patients (Jacobs et al. 2013), which led
to reports of grid-like activity in humans, in their Entorhinal Cortex during a virtual
navigation task. Although the hexagonal pattern was not as clear as in rodents data,
it is indicative of the potential relevance of grid phenomenon also outside the rodent
and bat domain.

2.3 Ontogeny of Spatial Representations
The problem of defining the origin of spatial representations has led to perform a series
of recording in newborn rodents to gather data on the neural activity in the developing
hippocampus and entorhinal cortex (Langston et al. 2010; Wills, Cacucci, et al. 2010;
Wills, Barry, and Cacucci 2012). Of all the cells previously mentioned, head direction
cells are the first to come online. Head direction cells in pre- and parasubiculum show
adultlike properties at the time rat pups leave the nest for the first time, often only
hours after eye-opening.

In contrast, both place cells and grid cells take some time after birth to show good
spatial selectivity and especially to stabilize their firing fields. Even though a rudimen-
tal map of space can be identified after a couple of weeks after rat birth, a period of
about 4 weeks of development is required for it to approach its adult-like properties.
The stabilization happens at different speed for the two representations, with grid cells
being the last to fully develop. While many place cells show consistent receptive fields
across trials at younger ages, most grid cells acquire their spatial periodicity gradually,
with the mature pattern appearing at the end of the 4 week period. It is important to
note that this 4 weeks interval coincides with the emergence of adult-like connectivity
within the entorhinal microcircuit.

2.4 Theta Rhythm and Phase Precession
The rodent hippocampal formation shows a prominent and pervasive modulation of
its activity in the 8-12 Hz range of frequencies: the theta rhythm. According to the
simplest model of theta generation, the medial septum in the basal forebrain functions
as a pacemaker, enforcing a global rhythm into which hippocampal and entorhinal cor-
tex (EC) networks are entrained. In general this rhythmic activity appears, at least in
rodents, during rodent’s active exploration and REM sleep.

An interesting phenomenon associated with theta is the so called phase precession
(O’Keefe and Recce 1993). As the rat runs across the field of a place or of a grid
cell, the spiking of the unit occurs at a progressively earlier phases in the theta cycle.
It has been argued that such a pattern of activity can express a coding mechanism,
alternative to the one based on the rate count, allowing for greater accuracy in the
estimation of the animal position.

While all layers in mEC are theta modulated, phase precession is not common to all
of them. It is particularly strong in layer II units, but it appears very sparsely in the
neighboring layer III (Hafting, Fyhn, Bonnevie, et al. 2008). Similarly, also hippocam-
pal sub-fields present a different prevalence of phase precessing units, with those in
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CA1 being more strongly affected (Mizuseki, Sirota, et al. 2009).

It is worth noting that now grid cells have been recorded in species in which theta
oscillations occur only intermittently, such as bats (Yartsev, Witter, and Ulanovsky
2011; Heys et al. 2013) and possibly in monkeys (Killian, Jutras, and Buffalo 2012).
It increasingly appears that theta oscillations (and therefore phase precession) is the
only element of a large mosaic of structural elements, connectivity patterns and neural
activity that is not universal across species. Without diminishing the importance of
these phenomenon it is possible that many considerations on the functional relevance of
theta oscillations and phase coding for spatial cognition might be applicable to rodents
and might not be directly and automatically applied to other animal models.

Figure 2.8: Example of a phase precessing cell in Layer II of mEC. Adapted from
(Hafting, Fyhn, Bonnevie, et al. 2008)
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Chapter 3

Models on the Edge of Gridness

The computational description of grid cells is by no means an isolated field of the-
oretical neuroscience. The emergence and differentiation of tuning curves among a
population of neurons has been an intriguing computational problem for many years.
This issue is of great relevance and encompasses phenomena common to a large num-
ber of brain regions, ranging from primary sensory areas to higher level ones. From a
certain point of view, the study of neural dynamics itself is the study of the origin of
neural selectivity and its properties.

In the framework of spatial representations, the discovery of grid cells (Fyhn, Molden,
et al. 2004; Hafting, Fyhn, Molden, et al. 2005) happened some 30 years after place
cells (O’Keefe and Dostrovsky 1971) and 20 years after head direction cells (Taube,
Muller, and Ranck 1990a; Taube, Muller, and Ranck 1990b). The scientific community
had already time to think about spatial representations that have a lot in common with
grid cells, and in fact most of the tools applied to grid cells case were already available
as they were developed before their discovery. Head direction cells and place cells, each
with their own specificity, provided challenging examples of continuous spatial represen-
tations in one and two dimensions, respectively. Indeed, path integration, continuous
attractor networks and oscillations interference are all ideas that although applied to
grid cells, have been originally proposed to describe other phenomena. Examples are
models originally thought for place cells (Touretzky and A. Redish 1996; Samsonovich
and B. McNaughton 1997; B. McNaughton, Battaglia, et al. 2006) and later extended
to the new grid cells.

3.1 A Computational Headache

Grid cells are, according to a basic description, cells showing selective responses for cer-
tain portions of the environment the animal is in. But this is true also for CA3 place
cells, that also have the animal position as a behavioral correlate. One might add that
grid cells always show preference for multiple, distinct locations in the environment,
but again, one could say the same for CA1 place cells, which are very commonly ex-
hibiting multiple firing fields (Fenton et al. 2008). Of course grids owe their name to
the precise position of their multiple fields and are inherently characterized by their
strikingly regular appearance. Most of the solutions devised by modelers for the emer-
gence of neural selectivity across the brain are dramatically challenged by the need of
combining selectivity and periodicity. Addressing grid cells required the elaboration of
new solutions.
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3. MODELS ON THE EDGE OF GRIDNESS

The question causal models of mEC units activity have to answer is:

How does a Grid cell know when to fire?

or more precisely:

How does a Grid cell know how to form equilateral triangles with its firing
fields?

3.1.1 Path Integrating Models of Grid Cells

In the last ten years, a certain number of proposals have been presented to answer
the question (Giocomo, M. Moser, and E. Moser 2011; Zilli 2012), and although all
these models differ from each other, they can be effectively grouped in a small number
of basic prototypes. The classification can in fact be based on the handful of prin-
ciples that drive grid generation. Most of the models assume that grid pattern is a
reflection of path integration1, with grid cells either performing it or just receiving
the outcome of computations performed somewhere else. Path integration is not a
expressed exclusively by grid cells, and in fact it is widely used to describe other forms
of neural activity (eg. head direction cells; K. Zhang (1996); Eliasmith (2005); Song
and X. Wang (2005); Qu, Yi, and X. Wang (2009)). Therefore these models need some
additional ingredient that allows the generation of hexagonal patterns from it. The
ingredient used distinguishes the path integrating models into two main sub-classes:

• Continuous Attractor Neual Networks (CANN)

• Interference Based Models

CANN These models rely on the collective activity of the units in the network to
produce the grid pattern (Conklin and Eliasmith 2005; Fuhs and Touretzky 2006; B.
McNaughton, Battaglia, et al. 2006; Guanella, Kiper, and Verschure 2007; Burak and
Fiete 2009; Mhatre, Gorchetchnikov, and Grossberg 2012; Navratilova et al. 2012; Bon-
nevie et al. 2013; Couey et al. 2013). They can be schematized as a two step process.
First, a notion of distance between the units in the network has to be defined. To
do so one can think of taking all the units and arranging them on a virtual layer, so
that one can then say that unit i and unit j are neighbors, or that unit k is at a
distance d from unit i. Connections among these units are then introduced based on
this distance. Here is where differences between various implementations emerge. Spe-
cific models use a mixture of excitatory and inhibitory connections, or only inhibitory,
continuously valued or all-or-none connections and so on, but in all of them the value
of the interaction is just a function of the distance between units and this function, the
connectivity profile, is uniform and translationally invariant across the virtual layer.
The connectivity is chosen so that when the network receives an external perturbation,
it settles in a stable state where unit activity shows an hexagonal grid organization (on
the virtual layer).

What is then necessary, the second step of the grid formation process, is to transfer
the grid from this virtual space to the real space where the animal movements take

1Path integration is the process by which a system continuously keeps track of the movements
made to provide an estimate of the current position of the agent.
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1D
Connectivity

2D
Connectivity

Directional Input
Moves the Bump

Figure 3.1: Schematic illustration of the building blocks for a continuous attractor
grid model. On the left, neighboring units are connected to form stable bumps of
activity and, on the right, a layer of conjunctive cells moves network activity on the
grid cell layer in the appropriate direction based on rat movement. Adapted from B.
McNaughton, Battaglia, et al. (2006)

place. This is generally achieved by assigning a directional selectivity to the units and
introducing a combined directional asymmetry in the connections of each of them. By
then plugging into the system an input representing the direction and speed of the
animal movements, one can literally push the activity profile around the virtual layer,
activating different group of cells in time. If one takes one of these units and projects
on the animal trajectory the times at which the unit was active, one sees that they
actually reproduce an hexagonal grid in the physical environment.

As already said, there are minor differences in the way these two steps are implemented
in each of the CANN models present in the literature, but all of them are based on the
possibility of moving around, with some external input linked to the rat behavior, an
intrinsically stable activity pattern generated by the network. The core of the model
is the way units are connected with each other, as the symmetries of the connectivity
(radial and translational) enables the activity pattern to emerge and stabilize. Again,
the connectivity has to be thought of in an abstract space of distances. The possibility
that these distances may correspond to actual physical distances in the cortical tissue
has been made implausible by the available evidence (Fyhn, Hafting, Witter, et al.
2008).

Interference Models The other group of models rooting grids into path integra-
tion is instead based on a single cell mechanism(Blair, Welday, and K. Zhang 2007;
Burgess, Barry, and O’Keefe 2007; M. Hasselmo, Giocomo, and Zilli 2007; Burgess
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2008; M. Hasselmo 2008; M. Hasselmo and Brandon 2008; Welday et al. 2011). It
doesn’t need interaction among units in the mEC network to produce grids, but is
instead relying on oscillations at the single neuron level. In the one dimensional case
the rationale of the model is simple: assuming that a cell receives two inputs in the
form of oscillating signals, then if the two oscillations have a slightly different period,
for example one is the omni-pervading theta oscillation, and the other has a slightly
higher frequency, then their interference yields in a periodical series of depolarization
intervals in which the cell is very likely to fire. If one further assumes that frequency of
the second oscillator is linearly modulated by the velocity of the rat (in the direction
of the one dimensional movement), then one obtains that the positions of the depolar-
ization fields are independent of the speed of of the animal.
In two dimension the matter is more complicated, as the interference between theta
and a single oscillator, whose frequency is modulated by speed only along a particular
direction, would produce high activity bands orthogonal to the preferred direction of
the velocity tuned oscillator. To actually obtain grids one has to introduce multiple
above-theta oscillators all projecting to the same unit, and to consider their combined
effect on the cell polarization. In particular, the presence of three in-phase oscillators
with the same frequency and with preferred directions differing by π/3 does the job of
producing hexagonal grid patterns.

Intrinsic 
Oscillation

Input 
Oscillation Interference Pattern

Firing Field

Figure 3.2: Schematic illustration of the basic interference model (Burgess et al. 2007,
Giocomo et al. 2007). Speed-modulated head direction input influences the frequency
of oscillations in three different dendrites. The three head direction inputs have pre-
ferred firing directions offset by 60 degrees relative to each other, as indicated by polar
plots above each dendrite. An interference pattern is generated when the dendritic
oscillations interact with the baseline soma oscillation. Adapted from Giocomo, M.
Moser, and E. Moser (2011).
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3.1.2 Path Integration is not Sufficient for Stable Represen-
tations

Even though both these classes of models rely on path integration as the main source
of positional information to the grids, this is not sufficient to make it all work. In-
deed a spatial representation purely based on path integration has two main problems.
First, the management the error in the tracking of the position based on proprioceptive
informations alone, inevitably accumulates and therefore generates an ever increasing
discrepancy between the real position of the animal and the represented one. Second,
simple path integration does not lead to the same arrangement of fields when visiting
the same environment at later times. The two hypothesis described, are affected by the
random trajectory of the rat when generating the grid since the phase and orientation
of the grid are induced anew on every new exploration session.

Both these models need an anchoring mechanism to stabilize grids in familiar envi-
ronments and to update the encoded position of the rat when external landmarks are
present, thus resetting the path integrator annulling the error. Generally this anchor-
ing is thought to be provided by some external and potentially independent system,
often identified with the hippocampus and with place cells (Bonnevie et al. 2013).
This parallel system is supposed to rely on direct sensory information and on memory
processes. Place cell fields would be associated to corresponding grid fields, so that
reactivation of the former would bring the latter into the correct position.

3.1.3 Path Integration Relies on Pre-Wired Connectivity

Both of these groups of models produce hexagonal grid patterns in an open arena,
and they make use of certain properties of the mEC region such as theta oscillations,
internal connectivity and a variety of velocity tuned signals in the neighboring cortices
and in mEC itself. They also generate a number of predictions on various aspects
of network behavior, from input currents on single neurons to global activity states.
These predictions can be verified experimentally or, sometimes, rejected (Domnisoru,
Kinkhabwala, and Tank 2013; Heys et al. 2013; Schmidt-Hieber and Hausser 2013;
Yoon et al. 2013). While there is no final word yet on the validity of either of these
models, they suffer also from a more intrinsic problem. Indeed, both if you think grids
are the product of a continuous attractor network implemented in some connections
of mEC, or that they reflect the existence of directionally tuned oscillators somewhere
upstream, you are assuming the existence of some pre-wired organization of the con-
nections already in place, that deliver grid cells.

Even if one of these models were to be proven valid, there would remain the necessity
of providing the means to put all the scaffolding these models require to work is in
its precise place. The challenge of explaining the appearance of order (in the form
of grid cells) in an otherwise messy place such as the brain, in these models, is just
recast as that of setting up a set of connections or velocity tuning specifically designed
to produce hexagonal grids in an open environment. The problem seems to have just
moved some steps away, also, there is the assumption that the outcome of the system
has to necessarily be hexagonal grids whatever the conditions the animal finds itself in.
The fact that until now, only hexagonal grids have been experimentally observed in
mEC, is surely a good reason to start with them, but the possibility that this might be
the effect of the environment experiments use, cannot be neglected. The data currently
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3. MODELS ON THE EDGE OF GRIDNESS

available still leaves open a number of questions and issues on the universality of the
hexagonal form of the grids.

3.1.4 An Alternative Approach

These considerations suggest that an alternative approach to the problem might be
welcome. If we leave aside the assumptions that grid cells rely directly on path inte-
gration for expressing their characteristic pattern of activity, we might turn to another
class of models that aims to generate grid patterns, those based on self-organization
(Kropff and Treves 2008; Grossberg and Pilly 2012; Si, Kropff, and Treves 2012; Pilly
and Grossberg 2013). In this case the spotlight is on how learning processes can shape
the activity of mEC cells to generate, without any kind of supervision or instruction,
the regular pattern. Generally, these models start from some sort of spatially modu-
lated activity that can be more or less structured (random place fields or stripe cells)
which works as an input to the network representing mEC. How this spatially informa-
tive input is generated, whether through path integration or some other mechanism, is
not described by these models, which instead focus on how this non-grid input can be
combined and processed by mEC units to yield grid-like activity.

The model on which we are going to focus, initially described in Kropff and Treves
(2008) and subsequently expanded in Si, Kropff, and Treves (2012), stems from the idea
that place cells and grid cells representations may be formed on different time scales.
The former appear to rapidly encode changes in the external environment through the
fast recruitment of pools of hippocampal cells (S. Leutgeb, J. Leutgeb, Treves, et al.
2004). Such assemblies would be organized in multiple quasi-continuous attractors
(Cerasti and Treves 2010) which might be rapidly acquired during exploration. These
kind of representations is also characterized by the high degree of flexibility (S. Leut-
geb, J. Leutgeb, Barnes, et al. 2005) and of representational capacity (J. Leutgeb, S.
Leutgeb, M. Moser, et al. 2007) necessary to keep track of the extreme variability of
the external world. mEC grid cell representations might instead be established more
slowly, through a gradual process that shapes unit responses and, possibly, mutual
connections, to generate a prototypical representation, rigid and invariant, that can
then be applied on the go to any new environment the animal encounters.

3.2 A Model Based on Adaptation

This scenario is described in a model that shows how the grids may emerge spon-
taneously from disorder under the influence of firing rate adaptation, a very general
property of cortical neurons. Such temporal modulation induces a self-organization
process that, over time, sculpts the activity of single units to produce a triangular
spatial pattern Kropff and Treves 2008.

The gradual process can be observed in simulations of a model network representing
mEC, that receives spatially tuned inputs from the hippocampus or from parahip-
pocampal cortices Kropff and Treves 2008. The combination of adaptation in mEC
units and plasticity on the feed-forward connectivity is enough to generate increasingly
regular grid patterns, over time scales corresponding to a couple of weeks of rodent
development.
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Spatially Modulated
Input

Layer of mEC Units

Figure 3.3: Schematic illustration of the adaptation model. An input layer provides
mEC with spatially modulated input. Under the influence of synaptic adaptation, units
in mEC self-organize, modifying their activity and the afferent connections strength.
The resulting configuration of the activity for each unit is an hexagonal grid pattern.
Adapted from Kropff and Treves (2008).

3.2.1 Analytical Formulation

The same process, at the single-unit level, can be described in analytical terms as an
unsupervised optimization process, if one neglects the collateral interactions that are
presumed to align the grids (Si, Kropff, and Treves 2012). The simplified version of
the model which can be analyzed mathematically is very abstract, and does not specify
most of the parameters necessary to the simulations. Nevertheless, it indicates which
are the asymptotic states that should be reached by the system after having evolved
for a certain time.

The asymptotic states are defined in terms of a variational principle amounting to the
minimization of a cost function of the form:

H = HK +HA =

∫
dχ[5Ψ(χ)]2 + γ

∫
dχ

∫
dt′Ψ(χ(t))K(t− t′)Ψ(χ(t′)) (3.1)

where χ is the spatial coordinate and Ψ represents the firing rate of the neuron across
the environment.
The functional is defined based on the hypothesis that the activity of the units reflects
only two simple constraints:

1. The minimization of the variability of the maps across space, i.e a preference for
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3. MODELS ON THE EDGE OF GRIDNESS

smooth maps. Such smoothness is expected to stem from the smoothness of the
spatial inputs and of the neuronal transfer function. This constraint is expressed
in the first term of the functional, the kinetic one.

2. The penalization of maps that require a neuron to fire for prolonged periods of
time, despite the presence of neuronal fatigue. The second term of the functional,
the adaptation term, represents this constraint.

The parameter γ parametrizes the relative importance of the two constraints.

In the second term, taking into account the averaging effect of a long run over many
trajectories, we can substitute the time-dependent kernelK(∆t) with an effective space-
dependent one, K(χ′ − χ):

H = HK +HA =
1

A

∫
S

dχ[5Ψ(χ)]2 + γ
1

A

∫
S

dχΨ(χ)

∫
S

dχ′Ψ(χ′)K(|χ′ − χ|) (3.2)

where we have also made explicit the normalization by the area A of the environment S.

In Kropff and Treves 2008 it is shown that the grid pattern exhibited by the mEC
neurons minimizes this cost function, as it is the optimal compromise solution (among
periodic and fully symmetric solutions) between the two opposite constraints, for a
number of reasonable choices of the kernel K.

3.2.2 Full Model Implementation

The model can also be expanded in a full dynamical description of a neural network
representing mEC units. For this, numerical simulations are required to virtually re-
produce the navigation of an agent (mimicking a real lab rat) through an environment.
During exploration, the position of the rat is linked to the activation of some neural
populations in the network, whose evolution is controlled by a set of equations, taking
into account adaptation and plasticity effects. These simulations can then be run for
some time to reproduce hours or days of virtual exploration and of associated neural
activity. In Kropff and Treves (2008) it is shown how during this time, units in the
mEC layer of the model develop an hexagonal pattern of firing fields, in agreement
with the analytical approach and with experiments.

It has to be reaffirmed that this model is completely self-organized: the feed-forward
connections between the hippocampal layer and the mEC one are initialized to ran-
dom values at the start of the simulations and it is the learning occurring during the
rat exploration that generate the right associations between the two set of units by
strengthening some of the connections and suppressing others. The model pays a price
in terms of speed, as it is unable to express good and stable grids in an interval of
seconds or minutes. It thus requires an extensive coverage of the environment to reach
the desired outcome.

3.2.3 Development and Environment Geometry

The long time it takes for the grids to be generated, in the simulations, suggests that
the process is not repeated multiple times in different environments, and it unfolds
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instead over a significant portion of the rat life. As we already pointed out in the
previous chapter 2.3, grid cells take some time to evolve in the newborn rat. Their
appearance actually seems to come after that of place cells and to require a longer
gestation. It is therefore reasonable to conjecture that adaptation might play its role
over some days following the eye-opening. According to the most recent experimental
data Langston et al. 2010; Wills, Cacucci, et al. 2010, the critical period for such slow
process may extend between the 15th and the 35th postnatal day.

Since the phenomena described by this model are presumed to extend over a long
developmental time, it is expected that the topological properties of the environment
in which the animal develops affect the shape and the appearance of the grid maps
(Barry, Hayman, et al. 2007; Savelli, Yoganarasimha, and J. Knierim 2008; Solstad
et al. 2008; Derdikman and E. Moser 2010). Until now, models of grid cells have
dealt only with planar, two-dimensional topologies. In the following two chapters we
are going to show how to extend our single-cell adaptation model (Kropff and Treves
2008) to include the third dimension in the environment in order to study two non-
planar topologies:

• the surface of a sphere (Stella et al. 2013a)

• the fully three-dimensional space. (Stella et al. 2013b)

The two cases will offer a test bench for the ability of the model to generate grids
adjusted to the specific environment. They will also provide predictions on the grid
structure that should be experimentally observed in similar conditions. New experi-
ments that make use of virtual reality on a revolving sphere (Harvey et al. 2009), or in
which rats are reared inside a spherical cage, will likely be a direct test for our model on
the sphere, while experiments with flying bats will provide evidence on the feasibility
of a genuine 3-dimensional representation of space in terms of grid units.
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Chapter 4

Grids for Small Worlds

4.1 Life on a Sphere: a Mathematical Analysis
Here we discuss a formulation of the adaptation model on the sphere. This formulation
is both experimentally relevant and mathematically treatable. While on the 2D plane
the solutions to the minimization problem were formulated in terms of Fourier compo-
nents, a similar approach can be applied on a sphere in terms of spherical harmonics
(Courant and Hilbert 1962).

4.1.1 Solutions from Combinations of Spherical Harmonics

Using the following set of coordinates to parametrize the unitary sphere (R = 1)

x = sin(θ) cos(ϕ)

y = sin(θ) sin(ϕ)

z = cos(θ)

we define a function Ψ(θ, ϕ) whose values on the sphere represent the firing rate of a
unit in the different locations.
We normalize this function such that:

Ψ(θ, ϕ) > 0 (4.1)∫
Ψ(θ, ϕ) = 1 (4.2)

corresponding to allowing only positive firing rates and to fixing the mean rate.
We start by considering the linear combinations of spherical harmonics that generate
an ordered and symmetrical grid-like arrangement of firing fields. Among these, we
then look for potential solutions to the minimization problem.
The number of fields obtained in the solution depends on the angular momentum (l) of
the harmonics used in the linear combination. Solutions for l up to 6 are the following
(Figure 4.1). The solution with a single field is obtained with l = 1 spherical harmonics:

Ψ1(θ, ϕ) = d[cY 0
0 + Y 0

1 ] =
1

4π
∗ (1 + cos(θ)) (4.3)

l = 2 harmonics lead to a 2-field map:

Ψ2(θ, ϕ) = d[cY 0
0 + Y 0

2 ] =
3

4π
cos2(θ) (4.4)
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l = 3 to 4 fields:

Ψ3(θ, ϕ) = d
[
cY 0

0 + [aY 0
3 + b(Y 3

3 − Y −3
3 )]

]
=

=
2
√

2

π(16
√

2 + 3π)

[
2 + cos(θ)(

5

2
cos(2θ)− 1

2
) +
√

2 sin3(θ)(2 cos(2ϕ) + 1)

]
(4.5)

Figure 4.1: The analytical solutions considered. Larger spheres lead to more fields,
given an approximately constant spacing.

l = 4 to 6 fields:

Ψ4(θ, ϕ) = d
[
cY 0

0 + [aY 0
4 + b(Y 4

4 + Y −4
4 )]

]
= 1

8π
[2 + 3(cos4(θ) + sin4(θ) cos4(ϕ) + sin4(θ) sin4(ϕ))−
−9(cos2(θ) sin2(θ) + sin4(θ) cos2(ϕ) sin2(ϕ))] (4.6)
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l = 6 to 12 fields, i.e., a soccer ball:

Ψ6(θ, ϕ) = d[cY 0
0 + [aY 0

6 + b
2
(Y −5

6 − Y 5
6 )]]

= d[c1
2

√
1
π
+

+[
√

143
137π

1
32
∗ (231 cos6(θ)− 315 cos4(θ) + 105 cos2(θ)− 5)+

+ 143
137π

21
6
∗ cos(5ϕ) sin5(θ) cos(θ)]] (4.7)

where d and c are used to satisfy conditions (4.1) and (4.2) while a and b values are
chosen in each case so that the solutions are fully symmetric.

4.1.2 Cost Function Evaluation

We now want to calculate the value of the ’energy’, i.e., the cost function associated
with these solutions. Consider our cost function H

H = HK +HA = − 1

A

∫
S

dχ[5Ψ(χ)]2 + γ
1

A

∫
S

dχΨ(χ)

∫
S

dχ′Ψ(χ′)K(|χ′ − χ|). (4.8)

To evaluate this function for every l, we expand our solutions on the spherical harmon-
ics:

Ψl?(r) =
∑
l=0,l?

∑
m=0,m?

almY
m
l (r). (4.9)

Then, using the spherical harmonics defining property

R252 Y m
l (r) = −l(l + 1)Y m

l (4.10)

we can write the kinetic term L1 for a given l?:

HK =
1

4π

1

R2
l?(l? + 1)(a2

l?,0 + 2a2
l?,m?) (4.11)

To calculate the adaptation term HA we project the adaptation kernel on a basis of
Lagrange polynomials. Suppose we consider an exponential kernel

K(~x · ~y) =
1

vτL
e
− q
vτL − ρ ∗ 1

vτS
e
− q
vτS (4.12)

which expresses the fact that adaptation effects become significant over time-differences
τS and decay away after time differences τL. It means that, after a neuron emitted a
spike in a certain position, the spatial region of strong adaptation is comprised in a
ring between radii vτS and vτL around that position.
In our case q is the distance between two vectors ~x, ~y having coordinates (θ, ϕ) and
(θ′, ϕ′) on the sphere. We write the kernel in terms of the angle between these two
vectors:

K(~x · ~y) =
1

vτL
e
− 1
vτL
∗R∗arccos(~x·~y) − ρ ∗ 1

vτS
e
− 1
vτS
∗R∗arccos(~x·~y)

(4.13)

The kernel is thus a function on the [-1,1] domain and can therefore be projected on
a set of Legendre Polynomials which are complete on that range (Abramowitz and
Stegun 1965).

K(q) =
∑
l

klPl(q) (4.14)
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HA is thus:

HA =
1

4π

∑
l=0,l?

∑
m=0,m?

alm
∑
l′=0,l?

∑
m′=0,m?

al′m′

∫
dΩY m

l (r)

∫
dΩ′Y m′

l′ (r′)K(~x · ~y)

=
1

4π

∑
l=0,l?

∑
m=0,m?

∑
l′=0,l?

∑
m′=0,m?

almal′m′

∫
dΩY m

l

∫
dΩ′Y m′

l′

∑
l′′

kl′′Pl′′(~x · ~y)

Using the addition theorem (Unsold 1927)

Pl(~x · ~y) =
4π

2l + 1

l∑
m=−l

(−1)mY m
l (~x)Y −ml (~y) (4.15)

the previous expression becomes:

HA =
1

4π

∑
l,l′=0,l?

∑
m,m′=0,m?

almal′m′
∑
l′′

kl′′
4π

2l′′ + 1

l′′∑
µ=−l′′

(−1)µ (4.16)∫
dΩY m

l (~x)Y µ
l′′(~x)

∫
dΩ‘Y m′

l‘ (~y)Y −µl′′ (~y).

Given the orthonormality rules for spherical harmonics:∫
dΩY m

l (~x)Y m′

l′ (~x)∗ = δl,l′δm,m′ (4.17)

and that l, l′ = 0, l? and m,m′ = 0,m?, the surviving combinations in the sum are

HA =
1

2l? + 1
kl?(a

2
l?,0 + 2a2

l?,m?) + k0(a2
0). (4.18)

The last term is identical for all solutions, as k0 and a0 are always the same.

The total energy is, therefore:

H = (a2
l?,0 + 2a2

l?,m?) ∗ (
1

4π

1

R2
l?(l? + 1) + γ

1

2l? + 1
kl?) + γk0(a2

0) (4.19)

In the region of parameters where ( 1
4π

1
R2 l

?(l?+1)+γ 1
2l?+1

kl?) > 0 any solution is worse
than the constant solution with all the alm = 0.
Since the first term in ( 1

4π
1
R2 l

?(l? + 1) + γ 1
2l?+1

kl?) is always positive, for the sum to
be negative it has to be at the very least that kl < 0. As shown in Figure 4.2, the
different components of the kernel projection kl have a qualitatively similar dependence
on the radius R, but the range in which they take negative values is progressively
shifted towards larger radii. This result does not depend, at least qualitatively, on
the particular choice of the kernel. Choosing a kernel consisting of radially symmetric
Gaussians

K(~x · ~y) =
1

vτL
√

2π
e
− 1

2(vτL)2
∗(R∗arccos(~x·~y))2 − ρ ∗ 1

vτS
√

2π
e
− 1

2(vτS)2
∗(R∗arccos(~x·~y))2

(4.20)

produces the same behavior, Figure 4.3. The choice of the adaptation time scale (τL,τS)
determines the spatial scale of these transitions. Slower adaptation dynamics means
that all curves are shifted towards larger values of R. In Figures ?? curves are plotted
with a fixed ratio τL/τS = 3 and R is expressed in units of vτL, so that higher values
of the time constants correspond to higher absolute values for R.
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Conclusion This allows us to conclude that the solutions associated with increasing
values of the angular momentum become energetically favored one after the other as
the size of the sphere increases. The precise radius at which the switch occurs between
two solutions depends also on the values of the components alm, on the particular value
of γ and on the choice of the kernel, among other factors, but the point of transition
from negative to positive values, of the corresponding component of the kernel, provides
an upper bound for the validity of the solution. Therefore, the different solutions are
not clearly separated and it is well possible that the energy minima are quite shallow.
Transitions from one solution to the next may thus be gradual, and allow for interme-
diate spurious solutions consisting of a mix of different locally minimal configurations.
These questions cannot be analytically addressed and are thus left for numerical sim-
ulations.
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Figure 4.2: Legendre projections kl of the Exponential kernel

4.1.3 The Possible Appearance of Other Solutions

These calculations are not conclusive about the effective optimality of the combinations
of spherical harmonics we have defined. Once we set a certain radius we know that
solutions including spherical harmonics with a certain angular momentum are favored.
The particular combination that minimizes the cost function is determined by the val-
ues of the alm associated to that solution by the constraints in Eq. 4.2. What about
other periodical but non-symmetrical solutions?

We have used a numerical approach to explore the existence of other solutions repre-
senting global minima for our functional. We have looked for any combination of the
l + 1 real spherical harmonics associated with each eigenvalue l. The optimal solution
for a given l was defined as maximizing the energy function

HNum = a2
l,0 + 2 ∗

l∑
m=1

a2
l,m − λ

∫
dχΘ(−Ψal,m(χ)) (4.21)
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Figure 4.3: Legendre projections kl of the Gaussian kernel

where Ψal,m is the solution corresponding to a particular set of coefficients, λ >> 1,
and the last term is used to enforce constraint (4.1).

With this approach, we find that for every l the solutions reached by the numerical
optimization procedure are equivalent, or strongly resembling, our symmetric ansatz,
as shown in the example of Fig. 4.4.

We limit this approach to the single l case for computational reasons. Not only the pa-
rameter space would significantly grow when any combination of different l is allowed,
but also the energy minima become dependent on the particular choice of the adapta-
tion kernel, making a comprehensive approach impossible. This situation is similar to
the one described for the planar case in Kropff and Treves (2008), where a single wave
vector length k is selected to produce the solutions.

Symmetrical solution Numerical Optimization Network Simulation

Figure 4.4: Comparison of the symmetrical solution for l = 3 (left) with the result of
the numerical minimization of the energy functional (center) and with the asymptotical
state of network simulations (right, see next section).
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4.2 Numerical Simulations of Grid Development
The solutions we have studied in the previous section should correspond to the asymp-
totic behavior of a more detailed model, which explicitly expresses the effects of adap-
tation on neural dynamics. We now proceed to study the more detailed model with
numerical simulations. If our analytical approach is robust, we expect the firing maps
generated by our simulated model units to correspond to the combinations of spherical
harmonics we have previously described.

4.2.1 Network Model

In our simulations, time is discretized in steps of length ∆t = 0.01s. The virtual rat
moves on the surface of spheres of different radii with a constant speed of v = 0.4m/s.
For simplicity, the change in running direction between two consecutive steps of the
virtual rat is sampled from a Gaussian distribution with zero mean and standard devi-
ation σh = 0.15 radians. The virtual rat always runs along the great circle determined
by its running direction. Our model comprises two layers, the input network represents
e.g. the CA1 region of hippocampus and contains Ninp = 4πR2ρ units, where R is the
radius of the sphere and ρ = 8000/m2 is the density of input units. The output network
represents a population of NmEC = 100 would-be grid units in mEC, all with the same
adaptation parameters.
Each mEC unit receives afferent spatial inputs which, as already discussed in Kropff
and Treves (2008), we take for simplicity to arise from regularly arranged place cells,
although they could also arise from spatially modulated units in the adjacent cortices.
The input to unit i at time t is then given by hti:

hit =
∑
j

W t−1
ij rtj. (4.22)

The weight W t
ij connects input unit j to mEC unit i. We will assume that at the

time the mEC units develop their firing maps, spatially modulated or place cell-like
activity is already present, either in parahippocampal cortex or in the hippocampus.
The network model works in the same way with any kind of spatially modulated input,
but the place-cell assumption reduces the time necessary for learning. Moreover, as
recent studies have shown (Langston et al. 2010; Wills, Cacucci, et al. 2010), it is
entirely plausible that place cells develop adult-like spatial code earlier than grid cells
do. We thus model the place field as an exponential bump centered in the place cell
preferred position ~xj0

rtj = exp(−‖~x
t − ~xj0‖2

2σ2
p

), (4.23)

where ~xt is the position at time t of the simulated rat, σp = 0.05m is the width of the
firing field and ‖a − b‖ is the great-circle distance between two points a and b on a
sphere. The firing rate Ψt

i of mEC unit i is determined by a non-linear transfer function

Ψt
i =

π

2
arctan

[
gt(αti − µt)

]
Θ(αti − µt), (4.24)

which is normalized to have maximal firing rate equal to 1 (in arbitrary units) and Θ(·)
is the Heaviside function.
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The variable αti represents the adaptation-mediated input to the unit i. It is related to
the hti as follow:

αti = αt−1
i + b1(ht−1

i − βt−1
i − αt−1

i )

βti = βt−1
i + b2(ht−1

i − βt−1
i ), (4.25)

where βi has slower dynamics than αi, with b2 = b1/3, b1 = 0.1. This adaptive thresh-
old makes it more difficult for a neuron to fire for prolonged periods of time, and
corresponds to the kernel K considered in the analytical treatment. The gain gt and
threshold µt are iteratively adjusted by Eqs.4.26 at every time step to fix the mean
activity a =

∑
i Ψ

t
i/NmEC and the sparsity s = (

∑
i Ψ

t
i)

2/(NmEC

∑
i Ψ

t
i
2
) within a 10%

relative error bound from pre-specified values, a0 = 0.1 and s0 = 0.3 respectively. If k
is indexing the iteration process:

µt,k+1 = µt,k + b3(ak − a0)

gt,k+1 = gt,k + b4g
t,k(sk − s0). (4.26)

b3 = 0.01 and b4 = 0.1 are the sizes of the iteration steps. ak and sk are the values
of mean activity and sparsity determined by µt,k and gt,k in the intermediate iteration
steps. The iteration stops once the gain and threshold have been brought within the
10% error range, and the activity of mEC units are determined by the final values of
the gain and threshold in Eq.4.24.

Figure 4.5: The network used for the numerical simulations in this and the following
chapter.

The learning process modifies the strength of the feed-forward connections according
to an Hebbian rule

W̃ t
ij = W t−1

ij + ε(Ψt
ir
t
j − Ψ̄t−1

i r̄t−1
j ), (4.27)
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with a rate ε = 0.002. Ψ̄t
i and r̄tj are estimated mean firing rates of mEC unit i and

place unit j that are adjusted at each time step of the simulation

Ψ̄t
i = Ψ̄t−1

i + η(Ψt
i − Ψ̄t−1

i ),

r̄tj = r̄t−1
j + η(rtj − r̄t−1

j ), (4.28)

with η = 0.05 being a time averaging factor.
After each learning step, the provisional W̃ t

ij weights are normalized into unitary norm∑
j

W t
ij

2
= 1. (4.29)

Units that win during competitive learning manage to establish strong connections
with units that provide strong inputs. As the learning proceeds the units establish
fields where they receive strong inputs and at the same time are recovering from adap-
tation. The emergence of the grid map is the product of averaging over a period of
time corresponding to some hours of run for the animal. It remains to be assessed
whether the mechanism we propose might also account for the formation of novel grid
representations in each new environment the animal encounters, or if, instead, it can
only be applied to the developmental period.

4.2.2 Results

We have run several simulations of 3× 107 learning time steps, i.e. 83 hours of animal
time, considerably longer than needed to produce clear grids in a flat 2D environment.
The fields developed by model mEC units are then expected to be in the asymptotically
stable regime, and they are depicted, for different values of the radius of the sphere,
in Fig.4.6. The figure presents the firing activity of a random sample of mEC units.
The units develop a grid-like pattern of activation and the emerging configurations are
in reasonable agreement with those predicted by the analytical model. For each value
of the radius, the units typically express the same number of fields. As the radius
increases, the units express an increasing number of grid fields, regularly tiling the
surface. As already discussed for the analytical approach, the particular association
between radius and number of fields is the result of the choice of the adaptation time
scale. A different value of b1 (and b2) will change the configuration of fields, but their
appearance will again be the same if the radius of the sphere is rescaled accordingly. In
the case of a population of cells with heterogeneous adaptation properties, we expect
the coexistence of different solutions on the same sphere.

The particular set of adaptation parameters we used would produce a spacing of about
56cm in the planar case. We notice that this spacing is approximately maintained on
the sphere, when its radius its varied. As a consequence of this constraint, the number
of fields expressed by the cells grows roughly quadratically with the radius of the sphere.

Generally the configurations correspond to those indicated as asymptotic solutions
(1, 2, 4, 6, 12 fields), but in the case of the 40cm radius, some units exhibit a non
symmetrical configuration of 8 to 10 fields, Figure 4.7, that emerges at the transition,
as it were, from the 6-field to the 12-field solution. The existence and the stability
of such a configuration is most probably the expression of the very shallow nature
of the energy profile. As previously noted, we cannot exclude the presence of other
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asymptotically stable solutions. The results of the simulations seem to point in this
direction.

4.3 Conclusions
In this chapter we presented the study of grid development in the specific case of a
spherical environment. Using an analytical approach based on the minimization of
an energy function, together with more detailed numerical simulations of the system
(though still a network of non interacting units), we study the configurations of activity
that develop after a long rearing period. We find that these configurations are described
by linear combinations of spherical harmonics, that express a grid-like arrangement of
the fields on the surface of the sphere. By combining harmonics of increasing angular
momentum one obtains solutions with an increasing number of fields (from 1 to 12)
and an increasing coordination number (from 1 to 5). The radius of the sphere de-
termines which of these is energetically favored, and thus prevails in the asymptotic
configuration of the activity, as shown also by simulations.

One problem that remains open is the existence of intermediate, stable states present
for certain radii, at the transition between one fully symmetrical solution and the next.
Their appearance may reflect the shallow nature of the energy profile described by our
model, or the inability of our approach to successfully identify all the minima of the
energy function defining the asymptotic states of the system.

In the model the grid pattern is a product of a self-organization process driven by
neural adaptation, with additional recurrent interactions to align the grids, which can
however be regarded as a second order correction (Si, Kropff, and Treves 2012). This
mechanism does not rely on any internal hard-wired structure to work. The final ar-
rangement of the grid fields is a spontaneous effect of the protracted exploration of the
environment by the animal. The model thus differs from those based on a pre-wired
attractor structure (Fuhs and Touretzky 2006; Burak and Fiete 2009), which rely on a
specific connectivity established a priori to produce the grid pattern of activity. It is
not clear to us what such models would predict in the case of rodents raised in or on a
sphere, or in fact in any other environment not matching the flat 2D geometry of the
pre-wired connectivity (it is likewise not clear what such pre-wired attractor models
would predict in the case of bats, flying in 3D). Unless attractor models can be shown
to also lead to symmetric combinations of spherical harmonics, or something similar,
experiments with a spherical environments might help contrast different models of grid
field formation. In parallel, the observation of spherical grid fields with l ≤ 6 would
immediately lead to refute models of grid-cell formation based on the combination of
striped fields at 60 or 120 degrees of each other (Burgess, Barry, and O’Keefe 2007;
M. Hasselmo, Giocomo, and Zilli 2007).
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(a)
R = 10cm

(b)
R = 15cm

(c)
R = 25cm

(d)
R = 30cm

(e)
R = 45cm

Figure 4.6: Units in an adapting network form grid-like firing maps on spheres. The
number of fields increases from 1, 2, 4, 6 to 12 when the radius of the sphere R increases.
In each panel, the first two rows show 4 examples of firing maps from two opposite
views perpendicular to the x-z plain. The bottom rows of each panel are the Miller
cylindrical projections of the corresponding maps.
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R = 40cm

Figure 4.7: Units develop intermediate numbers of fields if the size of the sphere does
not match the adaptation parameters of the network. The radius here is 40 cm, and the
4 units in the sample shown develop from 8 to 10 fields. Representation as in Fig.4.6

40



Chapter 5

Learning to Fly

5.1 Some Remarks on 3D Navigation

Although we naturally think of spatial navigation as a two-dimensional problem, most
of the times navigation actually takes place in three dimensions. Not only our surround-
ing environment is far from being flat, but we should also consider the perspective of
those beings that, rather than being confined to a surface in their movements, can fly
and freely explore volumetric spaces (Healy, Kort, and Clayton 2005; Tsoar et al. 2011;
Wu and Dickman 2012).

The study of spatial cognition in three dimensions has lagged behind the more ex-
tensive studies of two dimensional navigation, carried out on non-flying animals like
rodents (Tolman 1948). In particular, if at least some description of the behavior of
flying animals has accumulated over the years, until very recently there was no avail-
able data about neural activity related to spatial navigation in these animals (Jeffery
et al. 2013). In fact, after 40 years of extensive research, the neural circuitry underly-
ing planar navigation has in many cases been identified, and it now appears that the
building blocks of navigation have been reasonably well identified. Although between
the discovery of these structures and the construction of a causal model of spatial nav-
igation and memory is a large gap, still neural recordings offer the most powerful tool
at our disposal, to open a window into the mechanism underlying the integration of
sensory inputs and the building of a cognitive map in these animals.

5.1.1 Neural Recordings in 3D

The neural populations distributed in the medial temporal lobe, like Place, Grid, Head
Direction and Border Cells, whose contribution is thought to be essential for naviga-
tion, have been described and characterized mostly in conditions in which the third
dimension was absent. Therefore, very little is known about how the firing proper-
ties of these units would extend to the case of a three-dimensional environment (J.
Knierim, B. McNaughton, and Poe 2000; J. Knierim and B. McNaughton 2001; Calton
and Taube 2005; Gibson, Butler, and Taube 2013).

3D Spatial representations in bats Recent findings in bats (Yartsev and Ulanovsky
2013) show that at least in the case of place cells, the representation of the volume of a
room generated in the hippocampus by a flying bat is a straightforward generalization
of its 2-D counterpart. Place cells recorded in the bat hippocampus are selective for
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roughly spherical portions of the room. Different parts of the volume are evenly repre-
sented and there is no evidence for a bias in the number of place fields or in their shape
along the vertical direction. Therefore in the case of bats, place cells seem to naturally
extend their selectivity in the presence of additional dimensions, and to retain most
of the properties observed in two-dimensional environments. Also, unpublished data
about the bat subicular head directional system show a similar behavior, indicating the
presence of units with mixed selectivity for all the three Euler angles (and combinations
of them) that completely describe heading in 3-D. Grid cells firing during flight have
not been explored yet, although they are no markedly different from rat ones when the
animal is crawling (Yartsev, Witter, and Ulanovsky 2011).

What kind of periodical activity grid cells would develop in 3-D? Another
set of experiments performed on rats, however, reached very different conclusions.
Hayman, Verriotis, et al. (2011) studied the neural representations activated by a rat
exploring a set of experimental set-up artfully designed to allow the animal to climb
along the vertical direction. In these conditions they found a clear anisotropy in the
geometry of the representation. Place and grid cell firing fields had normal horizontal
characteristics but were elongated vertically, with grid fields forming stripes. Although
a direct comparison between the results of this study and the one on bats is still not
possible (due to the lack of grid cell data in the latter), nevertheless it suggests a pos-
sible profound discrepancy between the two animal models.

Making predictions on the appearance of grid cells in 3-D based on existing models
is not a trivial exercise (Jeffery et al. 2013). Popular models for grid cells generation
(??), namely those based on path-integration, either the continuous attractor variant
or the interference variant, are all based on the 2D planar case and fine-tuned to this
condition, in order to obtain, as the final outcome of the model network activity, the
hexagonal tiling of space observed in experiments. Of course this perspective is induced
by the fact that, indeed, experimental data has been obtained only in the 2D planar
case and that no other example of tiling of different spatial topologies is currently
available. Nevertheless, by restricting oneself to the Euclidean case and by forcing the
model to only produce hexagonal grids one is limiting the perspective not only on the
possible phenomenology of grid cells activity in other conditions, but perhaps also on
the theoretical account of grid cells function. To actually adapt these models to cover
also the 3-D case would presumptively require the introduction of ad-hoc additional
features that seem ad odds with the alleged role of grid cells in spatial representations
(to provide a regular and invariant reference frame to compute distances between lo-
cations in the environment), and with the generality of the phenomena that this role
should imply.

5.1.2 Addressing 3D Representations with the Adaptation Model

A different outlook on the grid cells formation in 3D might come from the models
based on self-organization. In these models the triangular pattern emerges sponta-
neously at the single unit level and is a product of firing rate adaptation. The model
is based on two relevant assumptions: first, the regular tiling of space is a consequence
of the isotropic exploration of that space. Second, the self-organization process takes
an amount of time that makes it feasible to describe the formation of grid cells dur-
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ing post-natal development Within a properly set experimental paradigm, bats indeed
explore the environment quite uniformly and moreover they experience flight during
development. Therefore bats behavior fall adequately into these assumptions. The
same cannot be said about rats which can move through vertical space only in artificial
conditions and are raised in flat cages with little or no experience of vertical movement.

The model therefore is not only aimed at predicting the spatial periodicity that would
be observed in the grid cells of flying bats, but also, perhaps, at providing the base to
link different behaviors to different expression of spatial representations in the brain.

5.2 Sphere Packing
What should we expect to observe in flying animals in the light of this model? As
we have already shown in the two dimensional cases of the plane and the sphere, the
conjunctive action of adaptation and competitive learning produces an arrangement
of fields which is fundamentally a solution to the problem of packing spheres in the
corresponding environment (Cohn and Kumar 2007; Petkovic 2009). Therefore the
same principle should apply when an additional dimension is added. As for the two-
dimensional case, the packing of spheres in a three dimensional volume (also known as
cannonball problem) is a well studied problem(Conway 1992). The calculation of the
maximal packing density, that is, the fraction of space actually occupied by the spheres,
goes back to Gauss, who calculated its value: π

3
√

2
' 0.74. The lattice structure that

achieves this limit is not unique. Any of these solutions is based on layers of spheres
arranged in a hexagonal pattern (like the one of planar grids) stacked one upon the
other (Fig 5.1). Given one of these layers, and taking it as a reference with positioning
A, there are two possibles arrangements (B and C) of the next layer, obtained with a
translation of A, that puts all the spheres at the same distance from their neighbors.
Any sequence of A, B and C without immediate repetitions has the same, maximum,
packing score. Any of these sequences can be generated from two regular prototypes:

• Face Centered Cubic (FCC) = ABCABCABCA

• Hexagonal Close Packed (HCP) = ABABABABAB

In both combinations each sphere has 12 first neighbors, and if d is the diameter of a
sphere (or the distance between the centers of two neighboring spheres), then the inter-

layer separation is
√

6
3
d. If we consider the unit cell of 13 spheres (a central sphere + 12

neighbors) (figura), then FCC and HCP differ only for the position of 3 spheres. In fact,
while in FCC neighbor spheres are arranged in 6 pairs with symmetrical positions with
respect to the center, in HCP there are only 3 of these pairs, those on the central plane.

From the perspective of tiling theory, then, 3D space admits a multitude of equally
optimal orderings of spheres, unlike the plane, where the hexagonal tiling is always
best, and the spherical surface, where a unique solution is defined given the size of the
sphere itself. Even restricting the choice to the two regular solutions, the fact that the
two configurations are undistinguishable in terms of regularity, coordination number
and of packing density, makes them both optimal solutions for the tiling of three di-
mensional space and therefore equally plausible candidates for the final outcome of our
model arrangement of fields.
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A A

A

B B

C

Figure 5.1: Difference of the layers sequence in FCC (ABCABC) and HCP (ABABAB)

As we have already shown, the output of the self-organization process implemented in
our model network can be predicted based on a simplified analytical approach 4.1. It is
well possible, although unlikely, that FCC and HCP, put on the same footing by these
preliminary observations, lead to very different values for our cost function when used
in the formula 3.1.

5.3 3D Close Packing
As we did in the previous chapter, we ask which is the favorite arrangement of the
fields in the 3D space in terms of the minimization of the functional:

L = L1 + L2 =
1

V

∫
V

dx [5ψ(x)]2 +
γ

V

∫
V

dxψ(x)

∫
V

dx′ψ(x′)K(|x′ − x|) (5.1)

We thus define two analytical expressions for the Face Centered Cubic and the Hexag-
onal Close Packed configurations. We look for combinations of plane waves as they are
well suited to be treated in this formulation of the problem.

5.3.1 FCC

To represent the Face Centered Cubic arrangement of fields we use the following ex-
pression:

ψFCC(r) =
8

9
(1 +

1

4

4∑
i=1

cos(ki · r))2 (5.2)
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a combination of four plane waves (Figure 5.3, top left), with the four wave vectors ki
components given by the matrix:

ki =
2π

a


0 0

√
3/2

2/
√

3 0 −1/
√

6

−1/
√

3 1 −1/
√

6

−1/
√

3 −1 −1/
√

6

 (5.3)

The directions of the wave vectors are equivalent to those of the center-to-vertex axes
in a tetrahedron.
This choice gives

Spacing = a (5.4)

Normalization < ψFCC >= 1 (5.5)

|ki|2=
3

2
(5.6)

With the use of this normalization we get

< ψ2 >= 9/8 (5.7)

and consequently, after some algebra

< ψFCC 5 ψFCC >=
71

162
k2 (5.8)

which corresponds to the first term, L1, of the functional.
The second term can be calculated as a straightforward extension of the 2D case (Kropff
and Treves 2008), by substituting to the sum over three terms the terms coming from
the square in the formula.
Introducing the 2D Fourier Transform of the adaptation kernel K

K̃(ki) =

∫
V

dqK(q)cos(ki · q), (5.9)

we obtain:

LFCC2 = K̃(0) +
32

81
K̃(|k|) +

1

648
K̃(2|k|) +

1

108
K̃(2/31/2|k|) +

1

108
K̃(2 ∗ 21/2/31/2|k|).

(5.10)
By combining the two terms one finally obtains:

LFCC = γK̃(0)+
71

162
k2+γ

[
32

81
K̃(|k|) +

1

648
K̃(2|k|) +

1

108
K̃(2/31/2|k|) +

1

108
K̃(2 ∗ 21/2/31/2|k|)

]
(5.11)

which can be simplified by retaining only the dominant term in the bracket:

LFCC ' γK̃(0) +
71

162
k2 + γ

[
32

81
K̃(|k|)

]
(5.12)

The adaptation kernel may take various forms, but for reasons that will become clear
in the next section, here we consider a kernel in a form that makes it factorable over
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the spatial variables. Without loss of generality we will use a difference of radially
symmetric Gaussians:

K(q) = KL(q)− ρKS(q) =
1

(2πvτL)3/2
exp

[
− q2

(2vτL)2

]
− ρ

(2πvτS)3/2
exp

[
− q2

(2vτS)2

]
.

(5.13)
The Fourier transform of this kernel is:

K̃(ki) = K̃L(ki)− ρK̃S(ki) = exp

[
−1

2
(kivτL)2

]
− ρexp

[
−1

2
(kivτS)2

]
. (5.14)

This choice allows us to modify Eq.5.11 into

LFCC = γK̃L(0)− γρK̃S(0) +
71

162
k2 + γ

[
32

81
K̃L(|k|)− ρ32

81
K̃S(|k|)

]
(5.15)

5.3.2 HCP

Since the Hexagonal Close Packing does not have central symmetry, the choice of a
function reproducing the arrangement of fields is less evident. We opt for:

(5.16)

ψHCP (r) = (1/2 + 1/2cos(kz · r))

[
1 +

2

3

3∑
i

cos(kixy) · r

]

+ (1/2 + 1/2cos(kz · (r + ∆z)))

[
1 +

2

3

3∑
i

cos(kixy) · (r + ∆x)

]

where two separate wave vectors are present: kxy fixing the spacing on the hexagonal
layers, and kz used instead to regulate the distance between the layers (Figure 5.3, top
right).
The components of kxy are, again

ki =
2π

a

 2/
√

3 0

−1/
√

3 1

−1/
√

3 −1

 (5.17)

with | kxy |2= 4
3
, while the z component is set to |kz|=

√
3

2
√

2
and | kz |2= 3

8
.

To obtain the correct HCP arrangement of fields ∆x and ∆z should be set to:

∆x = (
1√
3
, 0) (5.18)

∆z =

√
2

3
(5.19)

Spacing and normalization are the same as for FCC.
With this choice of numbers we get

LHCP = K̃L(0)K̃z
L(0)− ρK̃S(0)K̃z

S(0) +
1

6
[| k2

xy | +3/2(| kxy |2 + | kz |2)

+ K̃L(kxy)K̃z
L(0)− ρK̃S(kxy)K̃z

S(0) + 3/2(K̃L(kxy)K̃z
L(kz)− ρK̃S(kxy)K̃z

S(kz))] (5.20)
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where the factorization of the adaptation kernel has been made explicit.
If we take k2

HCP = k2
xy + k2

z and ˜Kz
L,S(0) = 1, then the previous expression can be

rearranged in:

LHCP = K̃L(0)K̃z
L(0)− ρK̃S(0)K̃z

S(0) +
1

4
[| k2 | +K̃L(k)− ρK̃S(k)]

+
1

6
[| kxy |2 +K̃L(kxy)− ρK̃S(kxy)] (5.21)

where the similarity with the LFCC (eq.5.15) dependence on k has been made explicit
and the additional xy term is in evidence.

1.5 2.0 2.5 3.0 3.5 4.0
5

5

10

15

20

25

LFCC

LHCP

kxy

L

Figure 5.2: FCC and HCP arrangements are equivalent in terms of our cost function.
The values for the plot have been evaluated with 5.23

5.3.3 The Cost Compared

We can compare the expressions for the cost of FCC (5.15) and HCP (5.21) by explicitly
writing them as a function of kxy

|kFCCxy | =
8

9
|kFCC |

|kHCPxy | =
1√

(1 + 9/32)
|kHCP |

What we get is (omitting the K̃(0) terms that are common to the two expressions and
thus irrelevant for their comparison):

LFCC(kxy) =
71

162
k2
xy + γ

[
32

81
e−

9
16
k2xyτL − 9

16
ρe−

41
64
k2xyτS

]
(5.22)

LHCP (kxy) =
529

1152
k2
xy + γ

[
1

4
e−

41
64
k2xyτL − 1

4
ρe−

41
64
k2xyτS +

1

6
e−

1
2
k2xyτL − 1

6
ρe−

1
2
k2xyτS

]
(5.23)
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Face Centered 
Cubic

Hexagonal 
Close Packed

Function

Autocorrelogram

Figure 5.3: Top: Functions used in cost function calculation for FCC and HCP, color
dots refer to 5.1. Bottom: Autocorrelograms of the above functions. Purple: full peaks.
Orange: half peaks

In Figure 5.2 we plot these functions for τL = 1, τS � τL, γ = 200, ρ = 0.3. They
are almost perfectly coincident. And indeed, even though their (awkward) expressions
look very different one can see, going back to them, that indeed: 529

1152
' 71

162
with a 1%

margin, 1/6+1/4
2
' 32/81(3%) and 41/64+1/2

2
' 9/16 (1%), indicating that the quadratic

term is nearly identical and the exponential term in LFCC is roughly the average of the
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two exponentials in LHCP .

Although the two cost functions are not identical, they are very close across the param-
eter space. They have a very close minimum position, meaning they share the same
optimal spacing, and they have the same value at the minimum, thus equivalently
optimal.

5.4 Simulations
As done for the previous study on the sphere, we now perform numerical simulations
aimed at reproducing the functioning of the more complex model with the full dynam-
ical details.

5.4.1 The Model

The model used to perform the simulations is basically the same as the one described
in the previous chapter.
The most obvious difference is the change of the environment explored by the virtual
animal, which is now a cube of 1m side. The input to the mEC layer is still composed
of units firing like place cells as in equation 4.23, with their preferred positions ~xj0
uniformly distributed in the volume. The norm ‖a − b‖ appearing in the equation is
now the Euclidean distance in three dimensions.
Two more substantial differences are represented by the introduction in the model of
Head Direction information, through the assignment of preferred directions to mEC
units, and the presence of recurrent connections in the mEC layer beside the feed-
forward set between the two layers (Si, Kropff, and Treves 2012). Both these additions
to the previous version are related to the grid alignment problem that we are going to
study in the 3D case.
Therefore, the overall input to the unit j is now:

hit = fθi(ωt)(
∑
j

W t−1
ij rtj + ρ

∑
k

WikΨ
t−τ
k ) (5.24)

with ρ = 0.1 a factor setting the relative strength of feed-forward (W t
ij) and collateral

weights (Wik), and τ = 25 steps is a delay in the signal transmission.

5.4.1.1 HD Input

The multiplicative factor fθi(ωt) in 5.24 is a tuning function which is maximal when
the current direction of the animal movement ωt is along the unit i assigned preferred
direction (K. Zhang 1996).

fθ(ω) = c+ (1− c)exp[ν(cos(θ − ω)− 1)] (5.25)

where c = 0.2 and ν = 0.8 are parameters determining the minimum value and the
width of the cell tuning curve.
Preferred head directions are randomly assigned to mEC units and they uniformly span
the 4π solid angle.

5.4.1.2 Collateral Weights

The basic function of collateral weights in the model is to favor the development of fields
in the post-synaptic unit with a certain phase shift relative to the pre-synaptic unit,
and consequently to induce the alignment of grids, producing a common orientation in
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the population. In this section we will not deal with collateral weight self-organization,
only with feed-forward weight learning. For simplicity, the collateral weight are set at
convenient values at the beginning of the simulations and left unchanged afterwards.
We will deal with the issue of recurrent connection plasticity in the next chapter, in
the scope of a somewhat different model.
Collateral weights are set in the following way: each mEC unit is temporally assigned
a preferred position, an auxiliary field at coordinates (xi, yi, zi). The coordinates are
randomly chosen among the place field centers of the input layer. These auxiliary
fields are introduced only for the sake of weights definition and will not play any role
in other parts of the simulations. The collateral weight between unit i and unit k is
then calculated as

Wik =

[
fθi(ωik)fθk(ωik)exp

(
− d

2
ki

2σ2
f

)
− κ

]+

(5.26)

where [∗]+ denotes the Heaviside step function, κ = 0.05 is an inhibition factor to favor
sparse weights, fθi(ωik) is the tuning function defined above (5.25), ωik is the direction
of the line connecting the auxiliary fields of unit i and k, σf = 20cm defines how broad
the connectivity is, and dki is defined such that

d2
ki = [xi − (xk + lcos(ωik))]

2 + [yi − (yk + lcos(ωik))]
2 + [zi − (zk + lcos(ωik))]

2 (5.27)

is the distance between the auxiliary fields with an offset l = 10cm. Note that l
corresponds to the distance traveled by the virtual rat in a time τ , when moving at a
speed v = 0.4m/s, as used in the simulations.
Normalization on this set of connections is performed similarly as in (4.29). The
definition of the weights is such that it generates strong interactions between cells with
similar preferred HD.

5.4.2 Simulation Results

What arrangement of fields emerges from our simulations? And in what time? Visual-
ization of data in 3D is tricky, especially when trying to identify regular arrangement
of fields (Fig 5.4, left). Calculating the autocorrelogram is thus critical to identify
symmetries in the rat map, even more than in 2D (Fig 5.4, right). As we have seen in
the previous section a FCC lattice has a central symmetry. In the same way as the au-
tocorrelogram of a hexagonal grid is a hexagonal grid, calculating the autocorrelogram
of function 5.2 would just reproduce the same configuration (Figure 5.3, bottom left) of
fields, with 6 symmetric pairs of equivalent peaks surrounding the central one. Indeed
the symmetries of the structure are such that one can find 4 planes passing throughout
the origin which contain peaks arranged in a hexagonal way (Fig 5.6), these planes
form angles of ' 72◦ and are all equivalent.

The case is different for HCP, where the central symmetry is missing. In this case
the autocorrelogram extracted from 5.16 does not reproduce the original form of the
function. In Figure 5.3, bottom right, one can see that the autocorrelogram presents
9 pairs of peaks around the central one. But in this case these peaks are not all the
same. The HCP structure is again periodical for translations along a plane, generating
6 peaks of height 1, like those of FCC (Figure 5.3, purple peaks). As the structure
is translated out of this preferred plane, the ABAB arrangement of the HCP layers
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is such that there are no translations that reproduce the exact same configuration of
fields, in the autocorrelogram. The 6 peaks above the central one ((Figure 5.3, orange
peaks) are indeed half-peaks, corresponding to an overlap of only half (6 out of 12) of
the peaks of the basic unit. Therefore, although one can build 7 planes with hexago-
nally arranged peaks on this autocorrelogram (Fig 5.6), they are not all equivalent to
those in FCC. Only one of them contains all the peaks of height 1 and forms an angle
of ' 72◦ with the other 6, constructed with half-peaks and forming an angle of ' 56◦

between them.

We can thus try to exploit this difference in the autocorrelogram that the two config-
urations should theoretically produce, to distinguish in our simulations between units
developing grids FCC-like or HCP-like. The difference is in the relative positions of the
fields across three layers. Observing only one, or even only two layers of fields would
make it impossible to distinguish between the two.

We simulate the exploration of the environment for 3∗105s of equivalent ”bat time”, a
duration significantly greater of that used for the model in 2D (Si, Kropff, and Treves
2012), but necessary for the estimated longer developmental time that the higher di-
mensionality of the environment will presumably require.

Rate Map Autocorrelogram

Figure 5.4: 3D firing rate map and autocorrelogram for one example cell.

First, by running a Fast Fourier Transform on the units autocorrelograms, one can see
that the power spectrum of frequencies has a major peak around λ = 50cm, which indi-
cates the presence of a narrow distribution of inter-peak distances, something espected
from the adaptation process. Interestingly, a second weaker peak appears around
λ = 40cm. By considering tetrahedron geometry, one quickly realizes that the ratio
between the two lengths is the same found between the vertex spacing and the height
of the solid. This second peak is thus induced by the presence of periodical layers of
activity at an interval λz =

√
6/3λ, where λ indicates the fields spacing.
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Figure 5.5: Fast Fourier Transform of the units autocorrelograms: colored lines are the
power spectra of single units, the thick black line is the mean across units. The first
peak at λ ∼ 50cm corresponds to the fields spacing. The second peak at λ ∼ 40cm
is the effect of the interlayer distance. The two distances are in very good agreement
with the ratio expected from a tetrahedron-like arrangement of the fields in space.

To study the formation of the three dimensional grids we will divide the problem in
two steps. We will address separately the formation of a layered structure of hexagonal
planes and the relative phases developed by these planes.

Layers formation and alignment To investigate the structure of the activity on
the single layers, we take multiple slices of the autocorrelogram matrix. We take sec-
tions passing through the center, with different angles of azimuth and elevation (Figure
5.6). We then take the correlation values on each of these planes, and we compare it
with a hexagonal template of equidistant peaks with π/3 periodicity (Figure 5.7, left).
The plane most resembling a hexagonal pattern (the ”best plane”) is selected together
with its similarity score, ζ1 (we used a correlation measure). This method provides
us with an equivalent of the traditional gridscore used to judge the quality of planar
grid cells. By looking at the evolution in time of the scores in the population we can
estimate the development of the hexagonal layers in the volume. Figure 5.7 shows how
the units in the network actually reach high overlaps with the hexagonal arrangement
(> 0.8 correlation) in about 40.000 seconds. This time is not dramatically larger than
the one necessary for an equivalent model to generate grids in two dimensions (Si,
Kropff, and Treves 2012). The effects of collateral interactions should be seen in the
way these best planes align in space. We looked for the dispersion of their orientations,
calculating the angles formed by the best planes of different cells (β), and the angle
between the hexagonal grid axis of cells sharing a similar best plane (ω) (Figure 5.7,
center and right). We indeed see that collateral interaction tends to align in time the
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principal layer of different cells, defining a preferred orientation for the global structure
of the grid. The emergence of the common alignment of the layers is much slower than
the formation of the layers themselves. It takes about 100.000 seconds of exploration
time to significantly reduce the dispersion of the angles (note that β is slightly faster,
maybe an effect of the preference of the system to first define the layers and then ar-
range shifts within them). Although this time is larger than the one observed in the
planar equivalent (about double), it is not dramatically higher.

Best
 Plane

Slices parallel to
the Best Plane

}Correlation
at d=2λz

3 Other Planes for FCC
and 6 (3+3) for HCP

Autocorrelogram

Rate Map

FCC
Score

HCP
Score

Figure 5.6: Illustration of the calculation procedure for our FCC and HCP Scores.

Mutual arrangement of layers sequences The previous measures do not tell us
anything about the relationships between neighboring layers. How can we distinguish
FCC and HCP in our autocorrelograms? We devised the following measures to quantify
the degree of similarity of them to the two prototypes (Figure 5.6). We use the fact
that once the best plane has been identified, the FCC has 3 more planes with hexagonal
symmetry, at ∼ 72◦ from the best plane and between one another. HCP instead has
6 of them, again at ∼ 72◦ from the best plane, but at ∼ 56◦ between them. We then
take our slice scores, take all the slices at an angle of ∼ 72◦ from the best plane and
sum the scores of the best triplet of slices with ∼ 72◦ of separation (ζ2−4). We then
exclude them and take a second triplet of slices again with a ∼ 72◦ distance from one
another and a distance of ∼ 56◦ from the first triplet (ζ5−7). These two numbers tell
us about the number of different planes with hexagonal symmetry that can be built
from our autocorrelograms. Both scores run from -3 to 3, as they are the sum of three
correlations. We expect ζ2−4 to be high for both FCC and HCP arrangements, and
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its value should be considered as an indicator of the general quality of the grid. ζ5−7

instead should be high only for those grids presenting an HCP type of arrangement,
but again its value might be affected by the quality of the grid. We thus define a score
for the degree of FCC similarity as:

χFCC = (ζ2−4 − ζ5−7)/ζ2−4 (5.28)

that should be close to 1 in the presence of FCC, and to 0 in the HCP case.

On the other hand, HCP is characterized by the repetition of the same fields positions
every two layers, while FCC has a periodicity of three layers. Then another way to
characterize the grids is to look for similarities between layers. Since the best plane
we calculated indicates the direction of stacking of layers in the HCP (along its normal
vector), we can go back to the firing rate map, take slices along this direction (which
is, slices with the same best plane orientation) and calculate the correlation between
planes separated by a two-layer distance (2 ∗ λz).

χHCP = ρauto(2 ∗ λz) (5.29)

Specularly to the previous score, this one should be close to 1 when HCP is expressed,
and to 0 when FCC is.

β

ω

Planar Correlation 
with an Hexagonal Grid

Common Orientation 
of Best Planes

Common Orientation
of Hexagonal Grid Axis

β ω

Figure 5.7: Emergence and alignment of the layers. Left: Correlation between the
autocorrelogram best plane and a hexagonal grid. Center: standard deviation of best
planes orientation. Right: standard deviation of grid orientations on the plane.

By looking at the combination of the two scores across the population we can assess the
distribution of the two prototype packings (or of mixtures of them) (5.8). If we look
separately at ζ24 and ζ5−7, we see that they reach their asymptotic value (∼ 2.6 and
∼ 1.5, respectively) in a time course similar to the one needed to generate the single
hexagonal planes (??, left), and that they do not show any further variation (5.8, a).
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The same happens for the two scores we defined, they have a quick initial transient to
an asymptotic value, intermediate between 0 and 1 (∼ 0.6 for χFCC , not shown, ∼ 0.5
for χHCP ) that is then almost constant for the rest of the simulation. The value of
the scores indicates the presence of both arrangements in the system. If we look at
the scores for each unit at a given time (5.8, b) we find that these are not clustered
in two groups, each one homogeneously expressing an HCP or FCC arrangement, but
instead they cover an entire continuum of score distribution between the two extremes,
expressing all intermediate arrangements.

Therefore, it appears that the system does not manage to arrange the sequence of
layers in a common way. The units of the population express different offset between
the fields on the different layers, corresponding to different combinations of FCC and
HCP. While the emergence of the hexagonal symmetry on the single layers is a process
unfolding in a similar time as in 2D, the positioning of the layers with respect to one
another appears more complex, accomplished on a much longer time scale, or maybe
not accomplished at all. Further, longer, simulations should address this point.
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Figure 5.8: Multiple layers arrangement scores. a) Temporal evolution of ζ2−4(left),
ζ5−7(center) and χHCP (right). b)Example of the continuous distribution of scores across
the population.
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5.5 Conclusions
Our model shows how grids in three dimensions may be produced starting from the very
same principles of auto-organization, without increasing costs in higher dimensions. At
least three time frames can be recognized. The shorter one, the one necessary to orga-
nize the fields on a hexagonal pattern is almost identical to the time needed to obtain
the same hexagonal arrangement on the plane (Si, Kropff, and Treves 2012). Also
the common orientation between the grids is developed in a limited, although longer
time. Again, this interval is not significantly longer than its equivalent on the plane. A
significant difference with the planar case is the observed lack of convergence towards a
common phase arrangement of the different layers, either coincident with FCC, or HCP.

The difficulties of the system to find a common arrangement might lie in the increased
complexity brought by the higher dimensionality, but it might also be that the presence
of multiple, ”energetically” equivalent arrangements, namely FCC and HCP, to chose
from, in 3D, is the origin of this lack of coordination. In two dimensions the solution
of the cost function minimization is unique, in three there are two similar but not
identical solutions, and perhaps a entire set of intermediate arrangements.
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Chapter 6

Building a Continuous Attractor
through Adaptation

6.1 Introduction
In the previous sections we have seen how our model based on adaptation is able to
produce different grid structures depending on the environment to which the animal
is exposed during development, and without the need of any change in the network
properties to adjust to different situations.

For the model to provide a more complete picture of the development proper grid cells,
nevertheless, there are at least two more questions that need to be addressed. These
two issues are of critical importance as they concern any implementation of the present
model and affect its explanatory power. They are:

• Through which kind of process do recurrent connections self-organize from scratch,
to induce a common alignment in grids?

• What mechanism makes the map, generated during development, available for
use in novel environments, experienced by a rat later in its life?

As we will see, these two issues have features in common, and from an answer to the
first, apparently more technical, question we might also learn something about the
second.

6.2 Inhibitory Connections

The adaptation model described in Kropff and Treves (2008) has at its core a single-
unit process, that would induce grid formation also in a neuron in complete isolation
from the rest of mEC population. Interactions among units have to be introduced when
it is necessary to make sure that they express grids in a coordinated way, by differen-
tiating their phases and aligning their axes. As we have seen in the three-dimensional
case, the latter effect can be obtained through the presence of recurrent connections
in mEC layer. In the model described above these connections were excitatory and
their strength depended on the HD preference of the connected units. This choice was
motivated by the abundance of head direction information present in the deep layers
of the Entorhinal Cortex (Brandon, Bogaard, Libby, et al. 2011; Canto, Koganezawa,
et al. 2012), not only in the form of head direction cell, but, especially in layer V, of
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conjunctive cells (grid x head direction) (Sargolini et al. 2006).

Following this line, the question of the self-organization of these internal connections
has been addressed in a study (Si and Treves 2013) where directional inputs and the
layer structure of mEC play major roles. In the model, pure grid formation in super-
ficial layers of mEC is obtained via the mediation of a population of conjunctive cells
in the deeper layers, that self-organize their activity and their recurrent connections.

In the following chapter, we will address the same issue from another perspective, which
is alternative to the one adopted in (Si and Treves 2013). Again, we will investigate
a mechanism to induce common orientation among mEC units while they are forming
grids, but with different ingredients than in Si and Treves (2013). Basically, the main
difference is the use of inhibitory connectivity to wire mEC units.

Inhibitory Connections in mEC Layer II The choice is motivated by recent find-
ings (Couey et al. 2013) indicating how stellate cells (generally identified with grid cells)
in layer II of the adult mEC are interconnected solely through inhibitory interneurons.
The study found that any sign of a direct excitatory interaction between stellate cells
disappears after a few post natal days and even before P10 it is an extremely rare
event. The result is limited to layer II, and there are no indications as to whether it
may extend or not to the deeper layers. Given the profound differences in the neural
populations at different layers (Sargolini et al. 2006) there is no reason to assume that.
The possibility that superficial layers get direct hippocampal inputs still has to be ad-
dressed experimentally. The model does not constraint the source of the spatial input
to superficial mEC. It might be the hippocampus directly (Bonnevie et al. 2013), or
it might be hippocampal input mediated by the deeper layers, or some other spatially
modulated signal present in abundance in the parahippoacampal regions (Boccara et
al. 2010). It is also true that from a modeling perspective it is interesting to explore
different routes to the same objective and to study the implications and the conse-
quences of particular network designs, especially when the experimental indications
are so clear-cut.

6.3 The Model
To study the effects of inhibitory collaterals on the development of grids, we have used
the usual Kropff and Treves model in the planar environment (Kropff and Treves 2008).
The number of units in the input layer is Ninp = 400 and an equal number of units
NmEC is present in the mEC layer. The environment is a square box of 1.5m side. The
details of the simulations are as in the standard case, the total input on unit i being

hit =
∑
j

+

W
t−1

ij rtj +
∑
k

−
W

t−1

ik Ψt−1
k (6.1)

where
+

W are the usual feed-forward connections between units of the input layer and
the mEC layer of the model, whereas the second term represents the effect on unit i

of the rest of the mEC population.
−
W are negative collateral weights implementing

the inhibitory interaction between grid cells, mediated by a population of interneurons
which are not explicitly included in the model.
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Both sets of connections are now affected by plasticity, and in both cases the delay in
the transmission is assumed to be short, of the order of a simulation time-step.
Following the model for inhibitory interaction proposed in Couey et al. (2013), we use
binary inhibitory weights:

−
W

t

ik = 0,−I. (6.2)

where −I = −0.02. While the learning rule for the feed-forward connections is un-
modified from other versions of the model, the update procedure for the weights of the
collaterals requires some explanation.
Inhibitory connections values are not updated continuously during simulations like ex-
citatory ones. Instead plasticity effects are taken to become effective only at the end
of entire exploration sessions lasting roughly 1hr of virtual time. After the end of one
session and before the start of the next one, inhibitory weights are checked and, if
necessary, updated. Being binary variables, changing a connection means taking its
value from 0 to −I, or the opposite. The update is made on the basis of the value of
a hidden variable, which is instead update at every time step during the session, much
like excitatory weights.

χtij = χt−1
ij + εI(Ψ

t
iΨ

t
j − Ψ̄t−1

i Ψ̄t−1
j ) (6.3)

The rate is εI = 0.0001, Ψ̄ is defined as in 4.28. The variable is allowed to assume
negative values, and its role is to keep track of the mean overlap between different
units, for the duration of the simulation.
At the end of a session the check is made and the weights are updated according to:

−
W ik =

{
−I, ifχtij 6 0

0, ifχtij > 0
(6.4)

Therefore, inhibitory connections are established between units with anti-correlated
activity, while units with similar spatial selectivity do not interact.
At the beginning of the simulations the inhibitory set of connections is completely
random. Each unit is assigned with a certain number of non-zero collateral connections.

6.4 Results

6.4.1 Grid Alignement in mEC

We first asked whether mEC units can form grid maps coherently aligned while at the
same time inhibitory connectivity develops. We studied the evolution of the activity
in the mEC layer over time looking for the appearance of grid-like patterns, and for
the emergence of a common alignment (Figure 6.1). As we show in Figure 6.2, the
two processes unfold more or less at the same time, but while the units increase their
grid score gradually, the emergence of a common orientation is an abrupt event that
occurs between 3 ∗ 105s and 6 ∗ 105s, depending on the particular parameters of the
simulation. Once this transition happens, the standard deviation of the grid axis drops
to almost 0, while the mean grid score progresses to values well above 1 (Figure 6.2).

6.4.2 Self-Organization of Inhibitory Connections

In the model, the common orientation is the product of collateral self-organization that
modifies their values according to a Hebbian-like learning rule. As this connectivity is
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Figure 6.1: Three examples of grid obtained with the model.

x105
Time (s)

Figure 6.2: Emergence of aligned grid cells. Blue (left axis): mean grid score in time
(shade = standard deviation); Green (right axis): standard deviation of grid axes
direction distribution.

shaped by plasticity, it induces a coherent alignment of the grid axes, that, in turn is
reflected on further changes in the connectivity due to changing correlations between
units.

What is the final outcome of this recursive process? As at the end of the simulations
grids are finally aligned, and have the same spacing, the correlation between units
should depend only on their spatial phases. Therefore also the existence of an inhibitory
interaction between two units can be attributed to the phase relation between two units.
A unit should have connections with those that units cover different portions of the
environment and should lack connections with the rest, those that are neighbors in
terms of phase distance.
Indeed, if we plot the probability of having a connection as a function of the relative

phase distance across the mEC population (figure), we observe that this relation indeed
exists. The connection probability exhibits a clear transition from values close to zero,
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Figure 6.3: Probability of connection as a function of phase difference between units.

for small distances, to almost full connectivity after a critical phase difference.

6.4.3 A Link to Continuous Attractor Models?

The presence of this kind of connectivity profile at the end of the learning process,
suggests a possible development of this model. In fact its properties closely resemble
those of the connections used to implement a continuous attractor, in the models for
grid cells based on path integration (Guanella, Kiper, and Verschure 2007; Couey et al.
2013). Of course, the model in its present form can not perform path integration.
For that, it would be necessary to introduce velocity selectivity in mEC units and HD
signals to the inputs of the system (like the one described in Couey et al. (2013)). Nev-
ertheless, the mechanism just described might represent a valid candidate for setting
up the particular connectivity pattern necessary for any of these models to work.

It might be possible that the initial formation of grid cells, sculpting the mEC inter-
nal connections over an extended developmental period, is functional to continuous
attractor dynamics in mEC, supported by those internal connectivity. In turn, after
the end of this critical period, mEC might produce grid patterns also independently
from the hippocampus, relying on integrating directional signals from other sources
and thus allowing for fast grid expression in novel environments, as reported in various
experiments (Barry, Ginzberg, et al. 2012).

In this perspective, the role of the hippocampus might seem a transient one, helping
the mEC to prepare the scene, and then fading away; but instead the interaction
between these two structures is likely to continue after the developmental period (as
suggested by many experiments and more directly by the recent study by Bonnevie
et al. (2013). Possibly, after this phase, the mEC network is able to work in two
modalities. It can produce grid cells with common orientation through two alternative
mechanisms, with attractor dynamics performing path integration on incoming velocity
stimuli (as described in Couey et al. (2013)), or integrating spatially tuned inputs
coming for example from the hippocampus, or another source in the neighboring regions
(as described in Kropff and Treves (2008)). It is also possible that the system associates
the two inputs when learning plasticity acts on the connections projecting from the
hippocampus. In particular, the two dynamical regimes are potentially relevant in
different time frames, with path integration dominating the initial expression of grid
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cells in a new environment, while hippocampal input may take the lead, and become
necessary for stable grid expression, after learning has taken place (Bonnevie et al.
2013).

6.4.4 Long Lasting Effects of Development

Another interesting consequence of the present model, is the relevant role that has
the environment, in which the animal develops, on later expression of grids in other
environments.
The internal connectivity supporting grid alignment develops together with the first
grids and its structure reflects the phase relationships established among the units dur-
ing this process. But it is clear that the phase relationships are affected by the nature
of the environment the animal can move in. Considering the example of a rat that
spends its developmental period constrained to move along a one dimensional environ-
ment, will make the point clear.

Naturally there is nothing to align in one dimension, but the model can be used anyway
to produce grids with periodical firing fields and to illustrate the differences with the
two-dimensional case. We use the very same model described above, this time having
the rat running continuously on a linear track of 1m length.

The emergence of fields at regular intervals along the track is very fast in this case
(one session is enough), reflecting the much reduced complexity of the process due
the reduced dimensionality. Different units share the same field spacing and phases
are distributed uniformly (Figure 6.4). If we now take a look at the way inhibitory
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Figure 6.4: Example of grid cells developed in 1D by the model

connections are organized, Figure 6.5, we can rearrange the connectivity matrix rows
and columns to unmask the regular pattern generated during learning. As in the 2D
case, the emergence of preferred phases in the activity of mEC units can be used to
define a notion of distance among the units and to induce the formation of a wiring
based on that distance.

By rearranging the units in the matrix, we are uncovering the phase distance between
them. We are rearranging the labeling of the units in the network so that units with
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similar phases are close to each other. As in the previous case, the resulting connectivity
could be used to sustain a bump of activity in the network, and it can provide the basis
to perform path integration, moving around the bump on the continuous attractor. The
only difference is that indeed, the dimensionality of the attractor is 1 in this case, a
ring attractor. Phases are evenly distributed on a line and therefore the connectivity
is reflecting the existence of a right and left neighborhood only. It is evident the
impossibility of using a network with this sort of wiring to integrate movements in
2 or more dimensions. The same argument applies to a two-dimensional continuous
attractor, where there is no way for the bump of activity to move along the z direction
and track vertical displacements. Of course such a network could be used in a lower
dimensionality, just by projection.
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Figure 6.5: Reordered adjacency matrix for a 1D development process.

6.4.5 A Problem with the Phases

Coming back to the two dimensional case we have to mention that the model is still
not perfectly functioning. In fact, while the gridness score and the common orientation
develop correctly in time, the grids exhibit an inhomogeneous distribution of phases
at the end of the learning phase. To a closer look (Figure 6.6) it is evident how the
phases tend to cluster in 6-7 groups with a spacing of about 10cm. A comparison with
a similar model ((Si and Treves 2013)), that indeed presents shorter learning times and
evenly distributed phases, may suggest that a solution might come from borrowing
some of its components, namely by adding a further mEC layer or by introducing HD
selectivity.

6.5 Summary
The structures that underlie spatial representations are common across mammals and
to a certain degree also to birds and reptiles (Striedter 2005). At the same time these
animals show different spatial behaviors and actually inhabit completely different en-
vironments. They crawl, they fly, they climb, they like open fields or obscure holes.
Reasonably this heterogeneity of behaviors is reflected in a differential necessity of rep-
resenting the various properties of space in which they navigate (Jeffery et al. 2013).
The model that we have described in the previous chapters offers a possible, although
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6. BUILDING A CONTINUOUS ATTRACTOR THROUGH
ADAPTATION
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Figure 6.6: Phase distribution in the population. Left: aggregated firing rate of all
units across space. Right: clustering of units according to their fields center. Note that
the spatial scale is reduced because of grid periodicity.

still tentative, mechanism to link these two aspects.

In the model, the initial exploration of space during a critical developmental period
(Langston et al. 2010; Wills, Cacucci, et al. 2010) determines what kind of grid the units
in mEC will express. To keep it simple, moving on a plane would result in hexagonal,
planar grids, while flying in space will generate three dimensional arrangements of fields.
One can speculate that if this early generation of a regular firing activity in space is
transferred to the pattern of the internal connectivity, that is maximally plastic in the
same period of time(Langston et al. 2010) and then stabilizes (Couey et al. 2013), then
early life experiences will have a long-term effect on the ability of mEC to produce
grids later in life. In particular, the fixation of certain phase relationships among units
in mEC will then affect the possibility of apply the grid to environments with an higher
number of dimensions, or a different metric structure.
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Chapter 7

Telling Apart Position and Context
in mEC and Hippocampus

7.1 Slow Grids for Fast Place Encoding
In the previous sections we have described a neural process enabling the generation of
a regular grid-like pattern of activity in a layer of mEC units.

Two aspects of the model are of particular relevance for understanding the role of
a grid cell representation in the larger scheme of the hippocampal-entorhinal circuit.
According to a series of theoretical studies on grid coding efficiency (Fiete, Burak,
and Brookings 2008; Sreenivasan and Fiete 2011; Mathis, Herz, and Stemmler 2012a;
Mathis, Herz, and Stemmler 2012b), the periodicity of grid representations is ”opti-
mal” for estimating spatial position and therefore superior to the accuracy attainable
by a set of place cells. Our model is on the same line as these studies, providing a
causal mechanism to obtain such regular spatial periodicity from any kind of spatially
modulated input, thus increasing the efficiency of the input code; but it also pushes the
concept a little bit further. It provides a way to generate the optimal tessellation for
the environment (Conway 1992; Cohn and Kumar 2007; Petkovic 2009). It generalizes
the properties highlighted by those studies as optimal for flat 2D representation, to any
kind of spatial metric, breaking free from the constraint of a hexagonal, planar grid.
The outcome of the self-organization process is still unique, once the environment is
given. Which structure the initially random representation will express, is defined by
the external conditions.

Another meaningful aspect of the model we described is its gradual self-organization.
Rather than being a flaw, the slow pace at which grids emerge defines a relevant
property of grid representations, in contrast with the fast acquisition of place cells
maps (Nakazawa et al. 2003; T. T. McHugh et al. 2007; Nakashiba, Young, et al. 2008;
T. McHugh and Tonegawa 2009). What emerges from the slow adaptation process is a
once-for-all structure that does not need any further modification to function. This is
true also for other models of grid cell formation. Those based on continuous attractor
networks in fact, rely on some pre-wired structure that should also be fixed. The
absence of plastic changes in the connectivity of the region is a requirement for the
success of that approach. Whether the connectivity is the result of genetic instructions
or of experience, this does not change the fact that grid cells are supposed to emerge
once and then remain untouched.
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7.2 Beyond the Rigidity of mEC code

The medial entorhinal cortex appears to contain a sort of universal map of allocentric
space. It is a rigid map, in which the relations between units remain fixed, almost like
sheets of millimeter paper stuck to each other (Fyhn, Hafting, Treves, et al. 2007).
The firing of a grid cell covers the entire environment, and it does so in a strikingly
periodical fashion. The way in which these cells represent space, compared to place
cells, appears to be much more metric in nature. The grid code seems to be related
to the basic 2D geometry of the environment, and to carry a large amount of spatial
information, larger than place cells coding. Before the discovery of grid cells, spatial
information could have been thought to be encoded in its final representation within
the hippocampus. Now it is clear that spatial information is available in a clean and
precise form before accessing the hippocampus.

What is the hippocampus doing with it remains to be discussed. It appears that the
map generated in medial entorhinal cortex is applied and used irrespective of context
(Fyhn, Hafting, Treves, et al. 2007). Other parts of the entorhinal cortex, like its
more lateral portion, receive context-specific signals (Lu et al. 2013). The hippocam-
pus can thus operate on the universal map and on the context-specific signals, merge
them and create context-specific metric representations of space (Hayman and Jeffery
2008; Pennartz et al. 2009; S. Mizumori 2013), which are stored in memory. If this is
correct, then, the grid cells representation should enable an evaluation of the position
of the animal in the environment with great precision (Fiete, Burak, and Brookings
2008; Sreenivasan and Fiete 2011; Mathis, Herz, and Stemmler 2012a; Mathis, Herz,
and Stemmler 2012b), while it should be almost impossible to determine which envi-
ronment the animal is in, just by looking at the activity of grid cells. In the case of
the place cells representation, instead, a possible decrease in the amount of positional
information should be traded off with a good capability to distinguish among different
environments.

The same argument should be valid also with other sorts of non-spatial elements, beside
context only. The hippocampus seats at the top of a hierarchical system of converging
sensory-motor inputs (Lavenex and D. Amaral 2000). It receives extensive inputs from
cortical (Naber et al. 1997).and sub-cortical (D. Amaral and Cowan 1980) regions
This inputs contain information that has already been duly processed and therefore
represents all sort of variables, including cognitive and emotional state, action-value
estimates (Pennartz et al. 2009), and so on (Eichenbaum and Lipton 2008; Meer et al.
2010). In this perspective the grid cell input is just one of many contributions that
interact in the hippocampal hub Lu et al. 2013; S. Zhang et al. 2013. And indeed,
hippocampal maps might reflect the combination of a multiplicity of spatial and non-
spatial factors, bound together to form highly processed, richly informative wraps.

7.3 The Hippocampus in our Life

In 1957, Brenda Milner reported the profound effect on memory of bilateral medial
temporal lobe resection, carried out to relieve epilepsy in patient H.M (Scoville and
Milner 1957). After the surgery, the patient exhibited profound forgetfulness but in the
absence of any general intellectual loss or perceptual disorders. He could not form new
memories (anterograde amnesia) and also could not access some memories acquired
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before his surgery (retrograde amnesia). His impairment extended to both verbal and
non-verbal material and it involved information acquired through all sensory modali-
ties.

Which structures within H.M.s lesion are really important for memory was understood
only gradually, during the 1980s, following more case studies with more specific le-
sions (Zola-Morgan, L. R. Squire, and D. G. Amaral 1986; L. Squire and Zola-Morgan
1991), and the successful development of an animal model of human amnesia in the
non-human primate (Mishkin 1982; Zola-Morgan, L. R. Squire, and Mishkin 1982).
Cumulative behavioral work with the animal model, together with neuropsychologi-
cal studies, thus identified the critical anatomical component of the medial temporal
lobe memory system in the hippocampus itself; and pointed at the additional roles of
the adjacent entorhinal, perirhinal, and parahippocampal cortices, that make up the
parahippocampal region (Suzuki and D. G. Amaral 1994; Eichenbaum, Yonelinas, and
Ranganath 2007).

The salient feature of memory dysfunction following hippocampal lesions is a specific
inability to remember events. At least patients with circumscribed hippocampal dam-
age, however, typically have a normal vocabulary and their general knowledge of facts
remains intact (Kensinger, Ullman, and Corkin 2001; Schmolck et al. 2002). The type
of memory that involves personally experienced events was termed episodic memory
by Tulving (1995), who contrasted it with other aspects of declarative memory, such
as knowledge of facts independently of (memory for) the context in which they were
learned (semantic memory) or context-independent recognition of stimuli based on a
feeling of familiarity. Thus, the hippocampus appears to be necessary for framing
events within their context in the initial formation of the corresponding memories.

Central to most of the theories focusing on the role of the hippocampus in retrograde
amnesia is the notion expressed by Ribot more than 100 years ago, that the loss of
memories from the past could be temporarily graded, i.e. more severe for more re-
cently acquired memories (Ribot 1881). This phenomenon has influenced a number of
accounts, which have ascribed to the hippocampus a more or less extended but nev-
ertheless time-limited role in memory. Marr was the first to cast into a mathematical
network model the idea that the hippocampus acts as a temporary memory store for
the storage of new information (Marr 1971a), while the neo-cortex, which he treated
in a separate network model, acts as a permanent memory store (Marr 1970).

In his model, later extended and clarified by many other investigators (B. L. Mc-
Naughton and R. G. M. Morris 1987; E. T. Rolls 1989) a sparse hippocampal represen-
tation of an event is rapidly encoded through the modification of recurrent connections
in the CA3 area of the hippocampus. This representation affords subsequent retrieval
by an incomplete cue through pattern completion. Marrs model expresses the hypothe-
sis that the hippocampus is required for the initial encoding of multi-modal information
that is represented in cortical areas: it provides a convergence zone to mediate these
associations. Then, over a certain period of time, these memories are taken to become
gradually independent of the hippocampus and to reside in neocortical storage sites.
This is part of the so-called memory consolidation processes (Nadel and Moscovitch
1997). The time-scale of transfer, or perhaps more accurately the time for neocortical
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Figure 7.1: Sketch of the two streams of information converging in the hippocampus.

memory traces to organize and consolidate, is suggested by the majority of studies of
retrograde amnesia in humans, that do find sparing of older memories, to be of the
order of years or even decades. The slowness of this process poses a challenge to the
simpler-minded view of this phenomenon, as if it were simply a case of pulling a mem-
ory item out of a display window, and putting it in permanent storage in a drawer in
the back of the shop. Such a slow transfer, in fact, would have taken almost the entire
lifetime of our prehistoric ancestors. If neocortical consolidation occurred so slowly,
one wonders how useful it could have been for them. Moreover, there is also some
conflicting evidence of hippocampally lesioned patients showing no gradient in their
amnesia (Sanders and Warrington 1971; Cipolotti et al. 2001).

The link between the storage of a memory item in the hippocampus and the notion of
”cell assembly”, has been directly tested by a number of studies that used optogenetic
tools to interact with hippocampal neurons during the formation of memories. In these
studies the possibility was demonstrated of artificially inducing the formation of a new,
spurious memory (Garner et al. 2012) or, even, of modifing an existing one (Ramirez
et al. 2013). This approach has highlighted the fact that, by targeting a limited pool of
identified units, one can affect the memory-based behavior of the animal, thus provid-
ing experimental evidence for the otherwise purely theoretical notion of cell assembly.
Another confirm of the direct link between medial temporal lobe neurons and episodic
memory, this time in humans, came from electrophysiological recordings in epileptic
patients (Quiroga et al. 2005; Viskontas, Quiroga, and Fried 2009; Cerf et al. 2010).
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7.4 Continuous or not? Attractors in the Medial

Temporal Lobe
The involvement of the hippocampus in memory has drawn attention toward attrac-
tor dynamics(J. Knierim and K. Zhang 2012), i.e. the spontaneous tendency of an
interacting system to approach one of a set of special configurations, the attractors
(Amit 1995). In the hippocampus, particularly if implemented by the rich recurrent
structure unique (within the mammalian hippocampus) to the CA3 region, it could be
the key network mechanism underlying its involvement in memory (E. T. Rolls 1989),
consistent with observations in CA1 (Wills, Lever, et al. 2005) and recent ones in CA3
(Jezek et al. 2011).

The notion of attractor was borrowed by neuroscience from the dynamical system vo-
cabulary. In the simplest case of discrete fixed-point attractors, it identifies specific
configurations which the system tends toward, if it is left to evolve. At least ideally,
these states are stable, in the sense that once the system has reached them, in the
absence of further perturbations, it will remain there for an indefinite time. To each
of these attractors is associated a basin of attraction. This means that if the system
is initialized in a configuration inside one of these basins, then it will, given a certain
time, approach and eventually reach the corresponding attractor.

Donald Hebb, in his inspiring book (Hebb 1949), developed the similar notion of a cell
assembly, as a group of cells whose coactivity represents something in the world, and
provides a reference point toward which neighboring configurations of activity tend
to evolve. The same idea found a precise formalization with the Hopfield model, in
1982 (Hopfield 1982). The notion of an attractor was slowly recognized as relevant to
understanding memory functions (Daelli and Treves 2010). In particular, since one of
its most relevant properties is pattern completion, to associative, content-addressable
memories, in which the presentation of portion of the original pattern of activation
leads to the retrieval of the entire representation.

7.4.1 Discrete and Continuous Attractors

The classical attractor formulation, however, was based on a finite number of attrac-
tors, neatly separated one from the other. This is the case of discrete attractors, which
correspond to single memory items stored in the network. Other states, intermediate
among these stable points, are not attractors, and the system may only go through
them on its way to a final stable configuration. Applied to the brain, the notion of a
stable point is of course an idealization, but one may still be able to observe conver-
gence toward putative attracting states within psychological time scales of 100-200 ms
(Akrami et al. 2009a).

In the case of a continuous attractor, instead, there is a multiplicity of quasi-stable
attractors making up a continuous manifold. These attractors are quasi-stable in the
sense that in the absence of perturbations the system can remain stable in one of them
forever, but it takes an arbitrarily small perturbation to make the system move to a
new attractor arbitrarily close to the first one, and perhaps continue gliding on the
manifold. Each point on the attractor manifold is an equilibrium point but this equi-
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librium is precarious, because other attractors are not separate and no barrier keeps
them at bay. As a consequence, at least in the ideal notion of a continuous attractor,
the system can be initialized in any of the points of the attractor manifold and be sta-
ble on it, or it can move effortlessly along the manifold. The manifold is typically low
dimensional (Yoon et al. 2013), and of course each point on the manifold is attractive
with respect to the many other dimensions of the (practically infinitely dimensional)
configuration space.

Discrete Attractors
Caontinuous Attractor

Manifold

Environments Position

Figure 7.2: Pictorial illustration of the concepts of discrete attractors (2 in the land-
scape on the left) and of a single continuous attractor (right). The latter can be thought
as exerting an attractive force towards the surface, but irrespective of the particular
position on the plane manifold. Adapted from (J. Knierim and K. Zhang 2012)

The continuous attractor notion has been used in neuroscience to model the ability of
certain brain structures to track continuously changing stimuli smoothly. Apart from
models of sensory tuning, as in orientation selectivity (Ben-Yishai, Bar-Or, and Som-
polinsky 1995) and in the head direction system (Xie, Hahnloser, and Seung 2002),
which do not, in principle, require the storage of information in long term memory,
this notion has been applied to the description of components of a spatial navigation
system, including place cells (Tsodyks 1999; Romani and Tsodyks 2010) and grid cells
(B. McNaughton, Battaglia, et al. 2006). In this case the quasi-stable attractors of
the manifold are used to represent the different locations the animal can visit while it
moves around in the environment. To each of these locations is associated an attractor,
part of a continuous manifold isomorphic to the real physical space. Inasmuch as these
animals are able to remember where they are when temporarily deprived of sensory
(and proprioceptive) inputs, the stability of the continuum of fixed points is used for
memory purposes, and not just the error correction or pattern completion capability
implicit in the convergence to the attractor.

In 1997, Samsonovich and McNaughton showed how, with their multiple-chart model
(Samsonovich and B. McNaughton 1997), one could conceive of fixed points organized
in multiple two-dimensional continuous manifolds, each of which maps the animal
position in a distinct environment. The attractor dynamics of a system with these
characteristics thus follow two separate directions. First, the sensory cues of the envi-
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ronment lead to the choice of one of the multiple charts stored in the network. Then,
the position of the animal in the environment lead to the corresponding activation pat-
tern of the network within that chart. Whatever the choice of the chart, the network
is able to represent the position for that particular environment, making the two pro-
cesses almost independent. While the switching between different charts is an abrupt
phenomenon (Jezek et al. 2011; Stella and Treves 2011)(see Chapter 9), the dynamics
internal to the single chart is a smooth process, in which the quasi-stability of the
attractors allows small signals to gently displace the bump of activity representing an-
imal position (Romani and Tsodyks 2010).

7.4.2 An Ideal too Far?

The notion of a really continuous attractor is of course an idealized limit case. To
fully express the continuity of the attractors and their quasi-stability, one would need
a network of infinite size. When endowed with a finite number of units, a network can
at best approximate the conditions described above (Roudi and Treves 2008; Cerasti
and Treves 2013). At most, network dynamics tend toward one of a large collection
of discrete attractors, which retain their point- like nature but with little separation
between each other, as they are densely distributed on the (quasi-continuous) attractor
manifold. When the system is driven by its internal dynamics, then, not all positions
in space can be represented with absolute precision. Rather, the discretized attractor
manifold defines families of positions represented, effectively, by the same pattern of
activity. The resolution of a chart can be higher or lower depending on the number of
units comprising the system. When the external input is introduced, and it is domi-
nant over the internal connections, the continuity is retrieved (Kali and Dayan 2000)
even if (a) the roughness of the attractor manifold is still reflected in a dishomogeneity
of the correlations among population vectors associated to different positions in space;
and (b) the memory capability of the attracting manifold are not really utilized - the
network merely represents, or recodes, what it currently receives. This lack of preci-
sion in representing spatial continuity with a recurrently connected neural network was
first noted by Tsodyks and Sejnowski (1995b) in a one-dimensional model and then the
result was extended to the two-dimensional case by Brunel and Trullier (1998) and, in
a slightly different context, by Roudi and Treves (2008).

Therefore, a continuous attractor is an idealization in at least two distinct ways. First,
stable attractor configurations are reached only asymptotically, and what is relevant
over plausible time scales is transient dynamics toward such states, not the states them-
selves; second, such stable states can be conceptualized as forming a continuum, but
in fact in any physical implementation they are a bunch of discrete attracting points.
Moreover, one should consider that even when close to the ideal case, e.g. with very
large networks, a problem with the accuracy of the representation arises again if the
decoding of the position can only rely on a limited number of units. Sampling only
a limited portion of the total population vector produces anyway distortions in the
charting of space.

These considerations sound like a serious limit to the actual capability of a network
with the characteristics of CA3 to accurately represent the spatial position of an animal
in the environment. Furthermore, this very same spatial position has already been
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Reality

Figure 7.3: Actual implementations of a continuous attractor network can achieve only
some approximation of that ideal concept. What they might produce is a collection of
multiple quasi-stable points distributed over space. Adapted from Macarthur, Ma’ayan,
and Lemischka (2009)

computed somewhere upstream of the hippocampus, and it is represented, as discussed
above, in the remarkably beautiful and precise grid representation of medial entorhinal
cortex. It seems reasonable to conceive of CA3 as specialized for something else than
encoding again spatial relations, e.g. for utilizing them to construct complex memories
(E. Rolls 1996; Eichenbaum, Dudchenko, et al. 1999; Cerasti and Treves 2013). If
spatial computation per se is not the prerogative of hippocampus, it may well be that
in the construction of memory representations with a spatial component a certain loss
of spatial precision is acceptable, if compensated by the capability to distinguish the
current environment from other similar-looking ones, that would lead to confusion
between different memory items.

7.5 Information Measures
As we have already mentioned, there is significant evidence supporting the idea of a
dissociation between the mEC and the hippocampus, in how well they represent con-
textual and spatial information. Nevertheless, spatial representations (in terms of place
cells) are found also in the hippocampus. How do they differ? In a neural context, a
quantitative approach, to address this sort of issues, is provided by information theory.

Why information theory? We can analyze brain processing by understanding what is
encoded by the neuronal firing at each stage of the brain, and determine how what
is encoded changes from stage to stage (E. Rolls and Treves 2011). Each neuron re-
sponds differently to a set of stimuli, and it is this that allows different stimuli to
be represented. We can only address the richness of the representation therefore by
understanding the differences in the responses of different neurons, and the impact
that this has on the amount of information that is encoded. These issues can only be
adequately and directly addressed at the level of the activity of single neurons and of
populations of single neurons, and understanding at this neuronal level is essential for
understanding brain computation (E. Rolls and Treves 2011). Information measures,
provide the only correct way to relate representations by populations of individual real
neurons to their counterparts in a given model.
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In the previous sections we have summarily looked at the experimental data available
for the hippocampus, and outlined the dichotomy between those who consider the hip-
pocampus as the storage site of episodic memories and those who consider it important
for spatial navigation. A challenge for current research on the hippocampus is to fill
this gap and to see whether these two different perspectives may fit together (Buzsaki
and E. Moser 2013; Eichenbaum 2013). To meet this challenge, a clear quantitative
measure of what is encoded in a certain neural representation is essential. What hip-
pocampal neurons are doing is less of an issue than how much they are doing it.

Information theory provides the means for quantifying how much neurons communicate
to other neurons. The fundamental quantity to measure the amount of information
contained in a given activity relative to some external correlate, or to the activity of
another population, is the mutual information:

< I(s, r) >=
∑
s,r

P (s, r)log2

P (s, r)

P (s)P (r)
(7.1)

where P (s, r) denotes the joint probability of the pair of events s and r. For example,
r may be the response of a population of neurons to stimulus s.

7.6 Coding Precision of the Grid Cells Code
To quantitatively investigate the coding capacity of the grid cells representation, we
apply information measures. We base our model of grid cells representation on the
one developed by Kropff and Treves (2008) and Si, Kropff, and Treves (2012), and de-
scribed above, although alternative models for the generation of the grid pattern would
yield very similar results for its coding capacity. We thus run the model to produce
a system of grid units, aligned with each other and phase-shifted like the real ones.
We use a population code comprised of 256 cells with a given spacing and orientation,
and random phases, to compute the spatial information that can be extracted from the
observation of the activity of this ensemble of virtual grid cells, during the simulation
of exploratory behavior in a typical recording box.

First, we construct templates of the activity of the network in different regions of the
environment, restricting ourselves to an 8x8-bin square spanning the basic periodic
cell of the grid representation (for a more comprehensive methodological description,
see Chapter 10). Then, to calculate the spatial information conveyed by the code, we
sample subsets of units of various sizes and through a decoding algorithm we compare
the decoded position, obtained by comparing the activity of the units in the sample
with the activity of the same units in the different templates, with the position actually
occupied by the virtual rat. We therefore construct a confusion matrix, representing
the probability of a location in the environment to be decoded as belonging to any of
the spatial bins in which we have divided the basic periodic unit of the representation.
Then we can compute the mutual information between the real and the decoded posi-
tion, contained in the values of the confusion matrix.

As expected, the spatial code expressed by our model mEC network turns out to
be excellent (Fig. 7.4, left). The amount of retrievable spatial information quickly
saturates close to the maximum value of 6 bits (having used 8x8 = 64 different spatial
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bins, the maximum amount of information is log2(64) = 6). The information is very
high even for small samples of units, and it rises above 5 bits already for 16 cells. We
fit the information values for different sample sizes to exponentially saturating curves,
in order to get the values of the two most relevant parameters that describe their
shape: the initial slope Islope (i.e. the average information conveyed by the activity
of individual units) and the total amount of information Imax (i.e. the asymptotic
saturation value). The function we used for the fit is the following

I = Imax(1− e−N
Islope
Imax ) (7.2)

where N is the number of cells in the sample. From the simulated mEC data in Fig.
?, we obtain Imax ∼ 5.8 bits and Islope ∼ 1.2 bits.

Our simulations support the idea, already expressed in other studies (Fiete, Burak,
and Brookings 2008; Sreenivasan and Fiete 2011; Mathis, Herz, and Stemmler 2012a;
Mathis, Herz, and Stemmler 2012b), that the grid cell code is particularly accurate in
localizing the animal in space.

7.7 mEC and Context Discrimination
The rigid arrangement of the grid fields of multiple units is very well suited to precisely
code for the position of the animal in a single environment, but this very same structure
obstructs discrimination between two or more different environments. Intuitively, the
multiplicity of grid fields, and their regular disposition, imply that (after a common
rotation and a shift) the representation will preserve a high degree of self similarity. Ev-
idence supporting this intuition comes from the experiment of Fyhn, Hafting, Treves,
et al. (2007). They recorded simultaneously from mEC and CA3, and calculated for
both regions the mean mutual information between recording session and distribution
of population vectors. In mEC, the mutual information was not larger when compar-
ing sessions in different boxes than in the same box, indicating that grid cells that
are coactive in one context remain coactive in others, too, and the coactivity patterns
are unable to discriminate between boxes. Therefore coactivity patterns are largely
overlapping, or covering roughly the same manifold in the abstract space spanned by
mEC population activity. The same study shows that the situation is very differ-
ent in CA3, where the degree of similarity between the activity patterns in different
recording boxes is much below the similarity between different sessions in the same box.

We then looked to our model of grid cells to have a statistically more reliable measure
of the context sensitivity of mEC activity. To replicate the remapping (i.e. shifting
and rotating) mechanism of the grid cells, we took a grid cell representation and we co-
herently rotated and shifted all individual grids, as observed to occur in the real data
(Fyhn, Hafting, Treves, et al. 2007) and in the model of grid formation we use (Si,
Kropff, and Treves 2012). In this way we produced another map, representing another
environment of the same shape and dimension. We then generated again templates, as
well as random virtual rat trajectories in both environments. To determine the infor-
mation contained in the units activity, about which environment the (virtual) animal
is in, we ran an identical analysis as described in the previous spatial case. However,
this time it was not the position that was decoded, rather the comparison between the
activity during the test phase with the templates was used to determine to which of
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the two environments the most likely template belonged. We thus extracted contextual
information, quantifying how well the two environments can be discriminated on the
basis of the observation of network activity. The results support the notion of the grid
cells code as nearly context-independent (Fig 7.4 right). The contextual information is
very small, almost zero, and it has a weak dependence on the sample size. The initial
slope of the curve that best fits the data points is Islope ∼ 0.001 bits.

It seems that the scenario of two separate streams of inputs, one for spatial information,
the other for non-spatial/contextual information (Hunsaker et al. 2007), is consistent
with our analysis of a simulated mEC code. If these two streams were to converge in
the hippocampus (Kesner 2007), then we would expect to see something different in
the way spatial and contextual information are expressed there.

Figure 7.4: Comparison of spatial (left) and contextual (right) information content of
the grid and place cells representations, for cell samples of increasing size. Simulation
results for mEC (blue dots) and CA3 (red dots) are shown together with experimental
data from CA3 recordings (orange circles). CA3 data points are fitted by the corre-
sponding curves (in the case of mEC, just connecting the dots).

7.8 Information in CA3
As done already above for mEC, we apply the tools of information theory to quantita-
tively assess the nature of the CA3 representations. Again, we formulate the problem
in terms of spatial and contextual information. The latter cannot arrive to the hip-
pocampus through the projections from mEC, as it is not expressed there. So any
non-vanishing contextual information should be ascribed to the action of some other
converging input that is integrated in the hippocampal representation (J. J. Knierim,
I. Lee, and Hargreaves 2006; Deshmukh and J. Knierim 2011; Yoganarasimha, Rao,
and J. Knierim 2011; Deshmukh, J. Johnson, and J. Knierim 2012). This is of course
fundamental to any notion of the hippocampus as the generator of episodic memories,
or at least to its role in providing a spatio-temporal context to such memories .

We have applied information measures both to experimental data and to computer
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7. TELLING APART POSITION AND CONTEXT IN MEC AND
HIPPOCAMPUS

simulations of the activity of the CA3 network. The experimental data was obtained
by Karel Jezek in Trondheim by recording the activity of CA3 cells in rats free-foraging
in two different environments, as baseline data for the teleportation experiment (Jezek
et al. 2011). The training had been arranged such that the two charts established for
the two environments involved global remapping, and not rate remapping, from one to
the other (S. Leutgeb, J. Leutgeb, Barnes, et al. 2005). The recordings were made in
CA3. (Note that analogous recordings from mEC do not typically include the num-
ber of units and the coverage statistics required to utilize information measures, even
though they appear consistent with the simulation results reported in Fig 7.4).

The simulations were performed based on a model of the DG-CA3 network (Cerasti
and Treves 2013) describing the flow of information, conveyed through the mossy fiber,
during the storage of new spatial representations in CA3. The original model (Cerasti
and Treves 2010) was extended to describe reverberations along recurrent connections
and the storage of multiple environments.

Fig 7.4 shows that, as expected, both the simulations and the experiment, even if with
some difference between them, show a drastic change with respect to the mEC case.
CA3 expresses a significant amount of contextual information, at the population level
(Fig 7.4 right; recordings: Imax ∼ 1.02 bits; Islope ∼ 0.01 bits; simulations: Imax ∼ 0.76
bits; Islope ∼ 0.01 bits). This major improvement at representing context can be seen to
be not only quantitative but also qualitative, as it marks the passage from an almost
complete inability of mEC, reflected by vanishing information, to a discriminatory
capacity which grows monotonically with the size of the sampled population. This
achievement does not entail a total inability by CA3 to distinguish locations within
the chosen environment. What we observe is a partial loss of spatial information with
respect to the strong performance by mEC (Fig 7.4; recordings: Imax ∼ 1.78 bits;
Islope ∼ 0.1 bits; simulations: Imax ∼ 2.62 bits; Islope ∼ 0.2 bits). The CA3 code is
less precise and it generates more confounds about different positions in the same en-
vironment. But this is possibly a necessary trade-off to efficiently represent differences
between distinct environments (Fig ??).

7.9 The Next Sections
Attractor dynamics is not an exclusive feature of CA3. Even in the restricted domain
of spatial representations, attractors are not a prerogative of place cells representations.
Low-dimensional dynamics, a typical signature of attractors, have been very recently
described in the mEC (Yoon et al. 2013), demonstrating the variety of phenomena that
can be ascribed to this network mechanism. But the fact is that the same unifying prin-
ciple can lead to very different outcomes when applied in its slightly differing variants,
outcomes as different as the single, rigid, grid cell representation and the multitude of
flexible, place cell representations.
Convergent agreement between experiments (J. Leutgeb, S. Leutgeb, M. Moser, et al.
2007; Bakker et al. 2008; Lacy et al. 2011; Burghardt et al. 2012; A. Morris et al. 2012;
Azab, S. Stark, and C. Stark 2013; Deng, Mayford, and Gage 2013) and theoretical
work (Treves and E. Rolls 1992; Si and Treves 2009; Almeida, Idiart, and Lisman 2010;
Renno-Costa, Lisman, and Verschure 2010; Monaco and Abbott 2011) indicates in the
DG the origin of the highly differentiated hippocampal spatial representations. But
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Figure 7.5: Pictorial representation of DG as a spatial random number genera-
tor/pattern separator. By passing through DG, grid maps that span the same con-
tinuous manifold in mEC are recoded as fully decorrelated CA3 charts, which can be
stored as attractors in memory.

once these representations are in place, CA3 is not expected to simply relay forward
the external input, but to actively retrieve the stored information. In the next sections
we will dwell on the retrieval of spatial maps from the network, and on the way in
which the external input and the recurrent collaterals interact during this process.

77





Chapter 8

Attractor Dynamics in Ca3

8.1 Dissecting the Problem
In this chapter we extend the analysis of a similar model, presented in Cerasti and
Treves (2013). We address the same kind of problem, that is, the nature of the at-
tractor landscape effectively stored in a recurrent network like CA3 (Papp, Witter,
and Treves 2007). But instead of focusing on the learning process and on the DG role
during the storage of the maps, as in the paper, we take a different slant and discuss
how the different elements of the representation determine the properties of the neural
dynamics.

To do so, we limit the complexity of the model initially used in Cerasti and Treves
(2013), and reduce it to a simplified toy model of CA3 spatial representations, in
which we are able to manipulate each element of the network, such as the connectivity
and the positions of the place fields. To understand the degree of approximation to a
continuous attractor that can be achieved by networks with the characteristics of those
found in CA3, we start from an ideal case and we then perturb it, to model some of
the constraints of a real system. Indeed, while often models of continuous attractor
are based on full connectivity and a regular arrangement of fields (but see, (Renart,
Song, and X.-J. Wang 2003; Itskov, Hansel, and Tsodyks 2011)), neither of the two
is found in the hippocampus: although CA3 is known for the high degree of internal
connectivity this is far from being full, and, as well known from experiments (Wilson
and B. McNaughton 1993), the place fields arrangement shows no regularity. On the
contrary, their disposition looks almost random, apart from some relationship observed
with goal locations (Hollup et al. 2001; Hok et al. 2007; Dupret, Joseph, Barty, et al.
2010).

8.2 The Model
The model we use is mostly a simplified version of the one described in Cerasti and
Treves (2013), scaled down to retain only the elements pertaining to memory retrieval
and recurrently driven dynamics. It simulates a representation of a 1x1m square en-
vironment. It is based on threshold-linear units. The firing rate of N units, ηi, is
calculated at discretized intervals in time, with the following equation:

ηi(t) = g(t)

[
Ext( ~x0) +

∑
j

Wijηj(t− 1)− T (t)

]+

(8.1)

79



8. ATTRACTOR DYNAMICS IN CA3

where Ext(~x) is a an external activation current used to initialize the system (see be-
low), ~x is the position in the environment and [?]+ is the Heaviside function. g and T
are two parameters adjusted at every time step to regulate the average activity of the
system. In particular g fixes the mean firing rate

∑
i ηi/N = 0.1, while the threshold

T is used to fix the sparsity level of the network a = (
∑

i ηi)
2/
∑

i η
2
i .

The connectivity is pre-wired, defined at the start of each simulation. We imagine that
plastic modifications of the connections have already taken place during some previous
learning session, used to deposit a map in the network. The weights thus depend
now only on the distance between the fields of the units, according to an exponential
function

Wij = Cexp(−( ~xi0 − ~xj0)2

2s2
) (8.2)

where ~xi0 is the position in the environment assigned to the unit place field of unit i,
and s = 5cm.

8.2.1 Simulations

Generation of the Maps We start from an ideal and perfectly regular map: each
unit is assigned a single place field, all the place fields are arranged on a square lat-
tice of size NxN (the size of the network) and the network is fully connected. This
produces a quasi-continuous attractor state. We expect this symmetric configuration
of the network to accurately represent the environment. Errors should only be due to
finite-size effects and be quickly negligible when increasing the size of the network. We
then start to introduce disorder to break the translational invariance of the system and
to study the induced deviations.

This disorder is of two types:

• The random deletion of an increasing number of connections

• The random displacement of the place field centers from the vertices of the start-
ing lattice

For the first type we simulate conditions in which the 20%,40%,60% and 80% of the
connections have been eliminated from the entire network. The deletion is always sym-
metrical, affecting both the connection from unit i to unit j, and the reciprocal one,
from j to i. For the second type we reassign the field center of each of the unit, drawing
the new coordinates from a Gaussian distribution centered in the old location of the
field. Different conditions correspond to increasing the width σ of the distribution,
from σ = 1cm to σ = 100cm. Since we are interested in structural deviations from the
ideal attractor network, we will neglect the effect of fast noise on the functioning of
the system. The dynamics are completely deterministic in all the simulations and are
only determined by the weight matrix, without any influence of stochastic components
of the dynamics.

Once the map is defined, we have the configuration of unit activity assigned to each
point in space. We construct a 100x100 binning of space, associating to each bin the
activity of the units expected from the assigned place field arrangement. We will use
these ”templates” to reconstruct the network dynamics during the simulations. Note
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that for the templates, we use the same constraints on mean firing rate and sparsity
used during the simulations.

Dynamics We then select 100 positions of the environment and we start 100 separate
trials by initializing the system in the expected configuration for each of these posi-
tions. This initialization, working effectively as an external input cueing the retrieval
of the stored representation, is kept active for a limited number of time steps in each
trial, namely 8 time steps, while its strength Ext( ~x0) (see equation 8.1 is gradually
decreased by 10% after each iteration. It thus becomes ineffective in an even shorter
time, after which the update of the units is entirely determined by their own activity
reverberating through the recurrent connectivity.

The total length of a trial is 40 time steps. Since this is a toy model with very simplified
neural equations, there is no direct correspondence between time in the simulations and
real neural time evolution. Still, the duration of the time bin should be sufficient for
the propagation of a signal from one neuron to its neighbors. One can think of it as
being roughly of the order of 10ms, with a trial corresponding to more or less 400ms of
simulated neural dynamics. During this time the activity of the network evolves with
no external influence. In the ideal case of the perfect continuous attractor, one expects
that after having initialized the system in a given location one could come back after
40 time steps and find the activity configuration almost unchanged, still representing
the initial position. But since this might not be the case in our simulations, we can
track the evolution of the system by comparing its configuration at each time step with
those initially collected as ”templates”. By choosing one of these templates according
to some distance measure (in our case the minimal Euclidean distance between the two
population vectors) one can thus decode the activity and reconstruct the represented
position, in time. Of course, the real activity of the network will not be completely
identical to any of these templates. One is projecting the position of the system in a
very highly dimensional activity space, on a two-dimensional sheet corresponding to
the stored map. One of course assumes that the distance of the real configuration from
this plane is not large, and as we will see later in this chapter, this condition actually
holds, at least when only a limited number of maps are stored in the network.

Analysis As already done in the paper by Cerasti and Treves (2013), we can describe
the distribution in space of the 100 positions represented by the system at the end of the
trials, by means of a combination of three measures (Figure 8.1 8.2 8.3). First, we can
count how many different, distinct final positions are actually being represented(Figure
8.1 8.2 8.3, left). Of course, 100 is the maximum and the optimal condition, in which
to each initial seed corresponds an unique final configuration. A number below 100
means there is convergence of multiple trajectories towards the same final position.

Then we can ask what is the degree of clustering of the trajectories (Figure 8.1 8.2 8.3,
center). Clustering can be calculated using the score:

Clu =
1

S(S − 1)

S(S−1)∑
k 6=l

e−(~xk−~xl)2 (8.3)

where S is the number of initial seeds, 100 in our case, and ~xk is the decoded position
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8. ATTRACTOR DYNAMICS IN CA3

in space. A low clustering score means that the points are evenly distributed on the
environment.

Finally, and perhaps most importantly, we can address directly the issue of stability
of the representation. That is, we can calculate how much is the distance between
the position represented by the network after relaxation and the one initially assigned
(Figure 8.1 8.2 8.3, right). We can thus evaluate what is the distance ”travelled” by the
system in the absence of an external input, the so called ”drift” (Cerasti and Treves
2013). Again, a low score is what is expected from a continuous attractor, while the
presence of only a limited set of stable configurations is reflected in a growing degree
of displacement of the activity.

8.3 Results
By varying independently the connectivity dilution, the disorder of the fields and the
size of the network, we can appreciate the effects on the three measures of each one
of these factors. As expected, networks of any size behave very similarly, and very
well, when no noise is present, showing no or very little drift. Not surprisingly, small
networks (blue lines) are strongly affected when noise is introduced, even in small
quantities. What is apparent, however, is that in the case of connectivity dilution (Fig
8.1), the increase in the size of the network strongly reduces these effects. Indeed, big
networks (red lines) show no clustering and full score in the final positions, even when
only a small fraction of the connections are still in place. Even though some drift is
still present (< 5cm) (Fig8.1, right) it seems that it has a linear dependance on the
total number of connections only, irrespective of the dilution rate, and that it can thus
be rapidly reabsorbed by slightly bigger networks.
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Figure 8.1: Final positions, clustering and displacement with diluted connectivity for
different network sizes. On the x axis, the percentage of surviving connections.

On the contrary, the effect of place fields disorder is much more dramatic. Not only
randomly arranged fields (σ = 10 Fig 8.2) produce non zero clustering and a restriction
on the number of final positions even in large networks, but the degree of displacement
is much larger (> 10 cm, Fig 8.2,right) and does not appear to vanish at a significant
rate with the increase in the number of units (Fig 8.3).

Above a certain number of units (∼ 4000−5000 units) the effects of size gets very small
for what matters drift, suggesting that the complete removal of drift might require a
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Figure 8.2: Final positions, clustering and displacement with disordered place field
centers for different network size. On the x axis the standard deviation of the field
centers displacement, in cm.

number of neurons above to that available in a real rodent hippocampus (D. Amaral,
Ishizuka, and Claiborne 1990), or, even, in a human hippocampus. What size seems
to affect, instead, is the speed at which drift takes place, as shown in Fig8.3, right,
representing the amount of displacement after different time steps. Small networks
drift further earlier, to then saturate at some maximum drift amount, that does not
depend significantly on the size of the network. The modulation of speed caused by
different network size, has been also discussed in (Itskov, Hansel, and Tsodyks 2011),
in a different context, namely in the case of a one dimensional bump of activity subject
to random, stochastic noise.

In Figure 8.5, left, we explicitly plot the speed of the drift as a function of the elapsed
time from the beginning of the trial. Different curves correspond to different combi-
nations of size and noise. On the one hand, the plot shows how over the span of the
40 time steps, the drift has almost completely run out. Speed approaches zero very
fast in all the conditions. Actually, most of the distance is travelled in the first half of
the trial, 20 time steps, after which minor adjustments take place. On the other hand,
while all the curves share a similar general behavior, there is a marked difference in the
first few time steps among networks of different size, as the smaller ones express much
higher speeds, at least in a limited time window. The feeling is that smaller networks
are ”rolling down a steeper hill”, a figurative expression that could be justified when
we introduce energy to describe the dynamics.

8.4 Energy
The aim of the simplified model with symmetrical interactions is to be able to define
an energy for the states of the system (Treves 1990) and to use it to try to formulate
a synthetic description of the dynamics of the system. Given the equations of motion
chosen for our simulations 8.1, we define the energy as:

E(~x) = −1

2

∑
ij

Wij

C
ηi(~x)ηj(~x) +

∑
i

ηi(~x)T (~x) +

∑
i η

2
i (~x)

2g(~x)
(8.4)

where C is the average number of connections per unit. The energy in this form is
an extensive quantity in the number of units in the network. It is thus sufficient to
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Figure 8.3: Final positions, clustering and displacement with disordered place field
centers for different extensions of time. On the x axis the total size of the network.
Different curves correspond to different time steps, from dark blue to green.

normalize it by N to directly compare results for networks of different size.

We can then calculate the energy value for each of the 100x100 bins of a map, and
obtain an energy landscape of the environment. By superimposing on this landscape
the trajectories taken by the activity of the network during drift (Fig8.4), one can see
that the system appears to travel along directions leading it to local or global minima
of the energy.
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Figure 8.4: Energy Landscapes with low and high disorder. The dynamics of the
simulations are overlaid. Black dots: starting points, purple dots: ending points, black
traces: trajectories.

Figure 8.5, right, shows the variation in time of the energy associated to the decoded
positions during the evolution of the system with respect to the energy with which it
was initialized. The negative values of the curves indicate that the dynamics of the
system (even though it is a projection of the real dynamics on a two-dimensional man-
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ifold) aims at minimizing equation 8.4. The time evolution is similar to the plot on the
right, with most of the drop in energy taking place in the first half of the time interval.
In this case however, the different conditions do not converge to the same final value.
Smaller networks exhibit a larger reduction of the energy, while for progressively larger
networks the steepness of the curve is reduced.

This difference might be attributed to certain properties of the energy landscape de-
pending on the number of units. In Figure 8.6 we then plot the values of the maximum
and the minimum values of the energy as a function of network size. In the absence
of noise the energies are all very similar, and the difference between its maximum and
minimum value in each network is almost zero, exhibiting the (quasi-)flatness of a
(quasi-)continuous attractor energy landscape. As we increase the noise the gap be-
tween the extremes in the energy values widens. The difference is more relevant for
smaller networks, which have also on average higher values of the energy. The random
distribution of a fewer number of elements generates larger deviations from the mean,
a fact that can explain the larger extension of energy values in small networks of ran-
domly arranged units.

We have also compared the energy values of the stored representations to the ones
that would be associated to a novel, random spatial representation that is presented to
the network, with no modification of the synaptic strengths. To do this we calculated
the same energy for a number of versions of the same network where the positions
of the fields is shuffled, keeping constant the underlying connectivity structure. The
decoupling of the fields positions and of the connections produces higher values of
the energy. Interestingly, even in the presence of high levels of disorder, the two
distributions never overlap. The activity patterns associated to familiar locations are
always energetically favored with respect to novel patterns of activation, even those
sitting on the top of the hills of the energy landscape.
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Figure 8.5: Time dependence of speed and energy during drifting.

8.5 Drifting Towards Crowded Locations
In the previous section we have seen how the role of place fields disorder is dominant
in determining the behavior of the system during recurrent driven dynamics. Can we
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characterize this dependence more precisely? By moving the place fields away from
the regular lattice, one is inevitably introducing some non-homogeneity in their distri-
bution. While on the lattice the density of fields is constant, a random arrangement
results in non-uniform values across space. The degree of variability of these values is
a signature of the break in the symmetry of the regular lattice.

By comparing the energy landscape with the distribution of place fields density in
space (for example like in Figure 8.7), one can notice the strong correlation between
the position of the throughs of the energy and the of peaks of the density of fields (in
the figure the color code of the energy is inverted, to emphasize the similarities). Of
course the correlation can be quantified by comparing the relative values of density
and energy across space. If we plot the results for one case (30x30 network, σ = 10 cm
Fig 8.8), the presence of a strong anti-correlation is evident, and indeed the correla-
tion score is -0.77 (the correlation scores for the different conditions are all very similar).

Locations happening to be associated to a higher number of fields are thus most prob-
ably corresponding to the stable configurations of the network. It is well possible
therefore, that over-represented locations are also preferentially selected as the ending
points of the drift dynamics. To check for this possibility we compared the values of
the energy and of the fields density of the drift final locations, to the mean energy and
density values respectively (Fig 8.9). We find that indeed, trajectories are attracted by
positions of the environment that offer a combination of low energy values, and high
number of place field centers in the surrounding.
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Energy Landscape Place Fields Density

Figure 8.7: Comparison of an energy landscape with the corresponding spatial distri-
bution of fields density. To visualize the similarities, the color code for energy has been
inverted.

In summary, the arrangement of fields appears to be the dominant factor in determining
the energy landscape of the manifold and thus of the dynamics of the system. Naturally,
it might be related to the particular implementation of our model, which indeed is very
far from the real biological system it is trying to describe. In Appendix A, we provide
an alternative, more theoretical approach to the problem of the stability of the activity
in the presence of disordered place fields, which leads to results consistent with those
presented in this chapter.
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Figure 8.9: Distribution of the energies and fields density of the final location of drift
trajectories. Values on the x-axis are relative to the mean (the red bar).
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8.6 Multiple Environments Case
According to a popular view of spatial memories in the hippocampus (Samsonovich
and B. McNaughton 1997), the representations would be organized as a collection of
distinct manifolds, or charts. Each of these manifolds is associated to a different envi-
ronment, and they would act as almost completely separate entities, with no or little
interaction between different charts.

In the previous section, we argued that the surface of one chart mapping a single envi-
ronment, might not be as smooth as expected by the classic continuous attractor theory
(J. Knierim and K. Zhang 2012). Attractor dynamics seems instead to be happening
on a mostly uneven landscape, leading the system to settle on a restricted number of
stable final positions. The analysis was performed assuming that only one environment
was stored in the network, but what about the presence of a set of similar charts, all
stored on the same group of units (Battaglia and Treves 1998; Monasson and Rosay
2013; Rosay and Monasson 2013)? We have extended the model to include the effects
on the synaptic matrix of a multiplicity of representations. The basics of the simu-
lations are the same with the following differences. We have used a network of 1500
units. Each of these units has a probability p of being assigned to a particular map
and to get a place field in the environment, and for most of the simulations p = 1/3.
We store M representations, repeating the pooling procedure for each of them. The
connection between two units is the average of equation 8.2 over the environments in
which both units are active. The number of stored environments is varied between 2
and 50. The same analysis, applied to a different model of CA3, is present in Rosay
and Monasson 2013.

For each of the maps we run 100 trials, as in the previous section. The decoding pro-
cedure is the same, only, this time, the templates include the representations of all the
stored maps. Therefore we can track the drift of the system comparing its activity
with that of all the stored manifolds, selecting the most similar template from any of
the charts. Transitions are detected whenever the decoded template belongs to a map
different from the one we initialized the system in. Do we observe such transitions, can
spontaneously evolving activity move from one map to the next, or is the wandering
of the system restricted to the first chart, with no possibility of leaving it without an
external drive?

In Figure 8.10 we show that by increasing the number of memorized maps we can
induce transitions between them. The increase in the number of trajectories leaving
the environment in which they were initiated (light purple), starts above a certain
threshold (10 environments) and then builds up linearly with the storage load. This
increase is paralleled by a loss of coherence of the moving activity bump. In fact, if we
calculate the distance of the activity pattern from the closest environment, we see that
it progressively increases, meaning that the retrieved activity is less and less similar
to the stored templates. The activity bump gets more unstable and in fact, when the
number of maps gets larger, above 25, most of the configurations in which the dynam-
ics settles are a mixture of states, not corresponding to any of the initially imposed
configurations. In the plot we separated those trajectories that finished having a high
coherence with only one of the maps (dark purple). These might be considered success-
ful transitions and they appear to be expressed by the system only in a limited range
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8. ATTRACTOR DYNAMICS IN CA3

of stored maps. Between 10 and 25 maps they indeed comprise almost the entirety of
the transitions.

The choice of the pooling probability p is of course affecting the storage capacity of the
network (Battaglia and Treves 1998). A lower p leads to less overlap across the popula-
tions coding for different environments and thus to larger storage capacities (Fig 8.10,
dashed lines). By reducing p to 1/4 we observe a shift of the curves towards higher
values of M.
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Figure 8.10: Solid lines, probability of having a field in a chart p=1/3. Dashed lines:
p = 1/4. (Left Axis) Green: average distance from the closest environment manifold.
(Right Axis) Light purple: Number of trajectories leaving the initial map. Dark pur-
ple: Number of trajectories leaving the first environment and ending in another one
(”successful transitions”).

How are the transitions points distributed (( )rosaycross2013)? If we look at a single
environment (Fig. 8.11,a and b) we see that both the locations in which trajecto-
ries left for another map, and the locations where trajectories coming from outside
appeared, are clustered in space, expressing some preferential distribution of these
events. Moreover the distributions of the entry and the exit locations are not coin-
cident, with some of the points in the environment that swallow the traveling bump,
and some others they eject it, much like the dark and white holes of theoretical physics.
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But the distribution of outs and ins is uneven also at the charts group level (Fig 8.11,
c). Here we see that the various charts fall into a continuous distribution of the ratio
between number of incoming trajectories and outgoing ones, with extreme cases of
environments being only final destinations or, on the contrary being only abandoned
rather than found. The results suggests the presence of an uneven probability of finding
the system representing one of the environments and of a second-order organization of
the energy landscape, with global minima at the level of the collection of charts.

What determines the existence of a transition location? If we look at the correlation
between the last decoded template in the old environment and the first one in the new
one, during a transition, we see that the values are higher than the global mean over
all the configurations pairs coming from different environments. But these values are
very low indeed (¡0.1 correlation), as a consequence of the random way in which the
representations were generated. The slightly higher correlations are mostly due to the
sharing of a relatively high number of units in the two population vectors (Fig, 8.12,
right), which does not in itself correspond to a large overlap between the configurations.

The above analysis suggests that the transitions are not happening with a direct pas-
sage between one point of environment A to another of environment B. Instead the
activity configuration goes through a mixed state, having a non-zero overlap with more
than one of the maps. Only after transitioning through this mixture of states, a new
environment is selected, and the system ”re-descends” on it. To compare this transi-
tion type with one induced by the similarities of the representations of two different
environments, we artificially generated an overlap between two maps, by imposing a
common patch of place fields on the two which acts as a direct gateway to the other
map. In Figure 8.13 we plot two illustrative examples for the two different situations.
In the direct case the system never actually leaves the manifold, smoothly slipping into
the new chart. This situation requires a very high degree of similarity between the
representations of two locations in two different environments, and it is very unlikely
to be obtained when the maps are randomly generated, even with a limited number of
cells like in our simulations (of course, one can think of mechanisms for non-random
generation of patterns in the setting up of CA3 representations (Dragoi and Tonegawa
2013; Mizuseki and Buzsaki 2013)).The kind of transitions one observes instead is a
trajectory passing through an ”uncharted” territory in the portion of the configura-
tions space lying between the manifolds represented by the stored connections. The
attractive nature of these manifolds appears from the eventual re-emergence of the sys-
tem in another environment, even though the increase of final mixed states indicates a
weakening of this attractive force with the increase of the number of memories (Amit
1992).

8.7 Discussion
The scenario presented by our simulations is pointing to a rich collection of dynami-
cal phenomena characterizing the attractor-driven evolution of our system. We have
shown how a reasonable implementation of CA3-like charts in a model network leads
to a performance very distant from that of an ideal continuous attractor network. The
activity bump in our model is extremely unstable and systematically drifts away from
the initially represented position, as soon as the external input is weakened its mag-
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Figure 8.11: Spatial distribution of transition locations (as in Rosay and Monasson
2013). a) Example of the distribution of exit locations for one map. b) Distribution
of the entry locations for the same environment. c) Distribution of entry and exit
probability on a set of maps stored on the same network.

nitude. We observe both the displacement of the bump around a single environment,
and its transition from one environment to another when more than one chart is present.

A fact of potentially functional relevance is the observed coincidence between the min-
ima of the energy (that provides a synthetic description of the properties of the attractor
landscape) and the over-represented locations. Given that place fields density is not
always homogeneous and might be linked, in certain situations, to relevant spots in
the environment, such coincidence might express a default mechanism by which the
recurrent network allocates importance to some of the locations in the stored represen-
tation. Moreover, considering the tendency of the drift to trace a trajectory, from the
rat position (indicated by the external input, when is present) to one of these locations,
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the dynamics we describe might eventually provide the basis for some sort of mental
exploration mechanism.

If this sort of dynamics has any relevance for the function of the hippocampus and
to guide behavior, then how does the system switch from a regime dominated by the
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external input, to one in which the expression of the stored representation is allowed?
To some extent, the dichotomy between recurrent driven dynamics and input driven
dynamics is equivalent to the known issue of separating storage and retrieval in a re-
current network like CA3 (Treves and E. Rolls 1992; M. E. Hasselmo, Bodelón, and
Wyble 2002); with the difference that in this case the contrast is not between so-called
pattern separation and pattern completion, but revolves about the ability of the system
to elaborate the incoming inputs based on the information stored in the connections.
In the next section we will discuss a possible solution to this contrast involving oscil-
lations, and in particular the rhythmic theta modulation of hippocampal activity. If
the network is effectively switching between operational regimes in coincidence with
particular physiological states, then it would be very important to better define the
temporal dynamics of the model in terms of real time. Knowing how fast the drift is
would allow to understand how much of the trajectories described before could fit into
a theta cycle, or a sharp wave ripple, and therefore to understand what fraction of the
dynamics (if only the initial transient, or the full relaxation) one can expect to observe
in the real system. Of course, it would also allow for comparison with experimental
evidence of sequential activation (Pfeiffer and Foster 2013).
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Chapter 9

Theta Oscillations and Attractor
Dynamics

9.1 Theta Oscillations in the Rodent Hippocampus
The hippocampal theta rhythm is a most prominent clocking mechanism in the fore-
brain Buzsaki 2006. The rhythm, in the 510 Hz band in the rat, can be readily
detected as a macroscopic local field potential (LFP) in the dorsal hippocampus dur-
ing exploratory behavior and REM sleep (Vanderwolf 1969; Buzsaki 2006). According
to the simplest model of theta generation, the medial septum in the basal forebrain
functions as a pacemaker, enforcing a global rhythm into which hippocampal and en-
torhinal cortex (EC) networks are entrained. However, evidence obtained with numer-
ous experimental manipulations indicates that several rhythm-generating mechanisms
and theta current dipoles are independently at work Montgomery, Sirota, and Buzsaki
2008; Mizuseki, Sirota, et al. 2009; Montgomery, Betancur, and Buzsaki 2009. The
idea of a coherent wave of activity turning hippocampal neurons periodically on and
off, as a single entity, has faded with the discovery of a much more complex pattern of
activation of the various hippocampal subpopulations.

9.1.1 Not One Theta Oscillator but Many

The hippocampus is not passively responding to a single theta generator. Several stud-
ies (Buzsaki 2002; Montgomery, Betancur, and Buzsaki 2009) have shown that each
lamina of the hippocampal formation acts as a distinct oscillator, with its own theta
rhythm. Although these multiple oscillators differ in phase and amplitude, they gener-
ally present the same frequency (Mizuseki, Sirota, et al. 2009). The uniformity in the
oscillation frequency across different layers nevertheless points at the influence of an
external common pacemaker, generally identified in the medial septal area. Indeed, the
inactivation of this area, or the interruption of its projection to the hippocampus, has
a dramatic effect on theta dynamics in the region (Rawlins, Feldon, and Gray 1979;
S. Mizumori et al. 1990; Yoder and Pang 2005)[20]. The LFP theta rhythm, along
with rhythmic hippocampal unit activity, is eliminated, together with any coherence
among different regions of the hippocampal formation. In normal conditions, sharing
the same frequency but at different phases results in the appearance of particular co-
ordination profiles among these regions (Figure 9.1). Recorded LFPs show increasing
and decreasing intensity with characteristic inter-layer intervals, which remain more
or less constant across time. More precisely, the two most prominent theta dipoles,
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the one in the stratum lacunosum moleculare of CA1 and the other in the stratum
moleculare of the DG, alternate in phase, while the current-source density in other lay-
ers shows intermediate phase relations. The theta modulation recorded in entorhinal
cortex, which has been demonstrated to be at least partly independent (Hafting, Fyhn,
Bonnevie, et al. 2008; Deshmukh, Yoganarasimha, et al. 2010; Quilichini, Sirota, and
Buzsaki 2010), shows an inversion in phase between layer I and deeper layers. Layers
II and III, where most of the projections to the hippocampus originate, thus oscillate
in phase, and this phase is the same as the one typical of the dipole located in the
stratum lacunosum moleculare of CA1.

Figure 9.1: Illustration of the different phase relationships existing between theta mod-
ulation in different regions of the MTL. Dashed lines indicates LFP amplitudes at dif-
ferent locations, while the bars represents the induced firing rate modulation at the
same locations. Redrawn from Mizuseki, Sirota, et al. (2009)

When examining the amplitude, frequency, phase, and coherence relationships among
these dipoles during various aspects of behavior, however, it has been found that the
power, the coherence, and the phase of theta oscillations exhibit layer-specific changes
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that depend on behavioral task demands [19, 24]. As a consequence, the relations
among the timing of theta oscillations in the various hippocampal layers can be mod-
ified by the particular cognitive state of the animal. Because the different layers are
associated with particular physiological structures, such as distal and proximal den-
drites and cell bodies, these modifications can influence the way spiking activity in the
various layers is generated. This implies that oscillations can support specific processes,
necessary only in certain conditions. A recent study [25] has complicated this situation
even further, by indicating that theta oscillations are not synchronized within stratum
oriens of CA1 but are traveling waves that propagate predominantly along the sep-
totemporal hippocampal axis. This study is in accordance with the finding that theta
dynamics are not homogeneous along the same axis: theta power and the fraction of
theta-rhythmic neurons are reduced in the ventral portion of CA3 compared to the
dorsal portion (Jung, Wiener, and B. McNaughton 1994; Royer et al. 2010). Again,
this inhomogeneity has been hypothesized to enable specific computational functions
(Fanselow and Dong 2010; Geisler et al. 2010). This body of experimental evidence
indicates that theta rhythm is not a monolithic clock signal: hippocampal theta oscil-
lations interact with a heterogeneous consortium of transmembrane currents, reflecting
layer-specific processing that can be modulated by extrahippocampal inputs or differ-
ential modes of operation within the hippocampus.

9.1.2 Influence on Firing Rates

In a network of synchronized neurons, the oscillatory phase determines the degree of
excitability of the neurons. In which way do hippocampal populations discharge with
respect to the theta phase? We expect the maximal activity of neurons to be coincident
with what is conventionally denoted as the trough of theta, when the membrane is
depolarized. And because of the variety and heterogeneity of theta oscillations, we
expect that neurons belonging to different subregions should fire at different times, in
accordance with the local dipole. This is found to be only partially true (Mizuseki,
Sirota, et al. 2009). Indeed, the activity of all the neurons of the hippocampus is
modulated, to different degrees, by the theta rhythm. The strength of this modulation
is not defined by the amplitude of the corresponding theta oscillation, however. CA3
neurons show the strongest modulation, while CA1 modulation is significantly less
pronounced, even if the strongest theta dipole is in the CA1 region. The preferred
phase does not necessarily correspond to the theta trough, either. So, for example,
the neurons of EC layers II and III fire at opposite phases of the common reference
oscillation, layer II neurons at the trough, and layer III neurons at the peak (Figure
9.1). This results in the fact that while the peak of population activity in an upstream
region may match the timing of dendritic excitation of downstream target neurons
(current sinks) in the hippocampus, the discharge of the respective target populations
could be offset of even half a theta cycle. Also interneurons show the effects of the theta
modulation (Freund and Buzsaki 1996; Klausberger and Somogyi 2008). As pyramidal
neurons do, also the different classes of interneurons have phase preferences. Different
types have different preferred phases (Halasy et al. 1996; Miles et al. 1996; Klausberger,
Magill, et al. 2003; Klausberger, Marton, et al. 2004; Somogyi and Klausberger 2005;
Czurkó et al. 2011). Interestingly, it appears that dendritic targeting interneurons
tend to group together and to have the same discharge phase, different from the one
preferred by somatic targeting interneurons, similarly grouped on their own (Miles
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et al. 1996). The local theta does not seem to constrain the discharge to occur at
its trough. Each population has a preferred phase of its local theta oscillation. And
if we take a global look at the distribution of spikes, taking as a reference a single
theta oscillator, we see that different regions discharge with specific times with respect
to others, generating a complex sequence of activation connecting the various parts
of the circuit (Montgomery, Sirota, and Buzsaki 2008; Mizuseki, Sirota, et al. 2009;
Montgomery, Betancur, and Buzsaki 2009). This pattern does not need to be the same
at all times. Also the preferred phase of certain populations shifts according to the
task (Manns et al. 2007).

9.2 Flickerings in CA3
New insight on the dynamics of spatial representations in CA3 has recently come from
work by Jezek et al. (2011). The aim of this study was to investigate the time course
of map replacement, by determining the evolution of neuronal activity in response to
an abrupt transition between two environments, resulting from a sudden change of the
external cues used to define each spatial context. The recordings were performed in
CA3.

Rats were trained in two different text boxes, designated A and B, which differed only
in the type of illumination. The rats spent several days exploring these environments.
The paradigm was intended to induce global remapping of the activity in CA3, by
generating two uncorrelated representations for the two environments. The test phase
took place after such uncorrelated representations had stabilized in the training phase.
The rat was started in one of the two familiar environments, then after some time the
rat was teleported to the other environment: the lights were abruptly switched to those
of the other environment, taking the rat instantaneously, as it were, from one place to
another.

A number of analyses (Jezek et al. 2011) indicate that even during these extremely
rapid transitions between reference frames, the activity in the hippocampus is deter-
mined by attractor dynamics. The representation expressed by CA3 at any time is
almost always one corresponding to one of the environmentsfew intermediate repre-
sentations are observed, corresponding to mixtures of the two representations for box
A and B, with elements from them both. The competition between the representa-
tions, stimulated by the fast transition, is revealed by the appearance, just after the
teleportation, of rapid switches from one representation to the other, a phenomenon
labeled by the authors as flickering. One peculiarity of such flickering is its relation
to theta oscillations. The re-expression of one of the two representations is generally
completed within the time span defined by a theta cycle. The theta rhythm seems to
regulate the timing of the dynamics also by marking the alternation between the two
representations.

These results seem to indicate a major role of the theta oscillations in regulating
attractor dynamics in the CA3 network. The propagation of activity through recurrent
collaterals appears to be controlled by the periodical modulation of the physiological
variables in the network. The raison detre of this phenomenon might be to allow a
trial-and-error-like procedure. Repeated convergence to attractor states might offer
the rodent the opportunity to self-correct, a possibility that can be very useful under
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conditions where input cues are ambiguous, weak, and confusing. In the case of this
experiment, the conflict is between the external cues, characterizing the final box, and
cues coming from path integration which, because of the very fast transition, still refer
to the initial box. The possibility to continuously integrate clues about location and
to formulate distinct hypotheses within a limited time may be important in order to
properly adjust behavior to the external world.

9.3 Our Model of Teleportation
To test the feasibility of an involvement of the theta rhythm in the dynamics of memory
retrieval and to check that the phenomenon observed in the teleportation experiment
can be ascribed to these oscillations, we have tried to simulate the results with a simple
model representing the CA3 region of the hippocampus. The goal of these simulations
is to see whether the flickering events may arise from a modulation of the activity in
the presence of partial and ambiguous external inputs. We thus compare the activity
in the network in the presence of theta oscillations and without them, when all other
conditions are the same. Even if the neural model is intended to represent the CA3
region of the hippocampus and its dynamics, the structure of the network and its
operating parameters do not exactly reproduce those in the real brain. T o focus
on the effects of theta modulation on network performance and to reduce any other
spurious effect coming from uncontrolled features of the model, not relevant for the
present issue, we have tried to reduce the complexity of the simulations as much as
possible. For the sake of clarity the model then represents a system only similar to
that present in the brain, retaining-it is hoped-the characteristics important for the
problem at hand.

9.3.1 The Model

We first construct the representations of the two environments. They are two geomet-
rically identical square boxes of size S. The network is comprised of N units. In the
standard condition, the two environments are represented by two separate populations
of units, half active in environment A, the other half in environment B. Each unit has
a single place field in the assigned environment. Its firing rate around the place field
center is defined by a Gaussian function. Place field centers are regularly spaced, ar-
ranged on a grid covering the whole environment. The two representations are therefore
identical and differ only in the subset of units which are active. The Gaussian bumps
representing the place fields are defined as all having the same effective size and height.
The network is fully connected, and the strength of the connections is prewired. The
structure of the connections is functional to the establishment of a quasi-continuous
attractor surface, expressed by synaptic weights that follow an exponential decreasing
function of the distance between place field centers. The weight of the connection
between cell i and j is then written as

W ij
rec = C ∗ exp(− dij

2 ∗ s2
) (9.1)

if the two cells have place fields in the same environment, while it is set to zero if they
belong to different environments. The total strength of the weights of each unit is then
normalized as ∑

j

Wij = |WTOT | (9.2)
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The model is a firing rate model and the neurons are simple threshold linear units.
The activity is thus governed by the following equation:

ηi(~x; t) = g

[
Ext(~x) +

∑
j

W ij
recηj(~x; t− 1)− T

]+

. (9.3)

For each cell, the activating current is comprised of two terms: an external input and
the recurrent collateral contribution. The gain g and the threshold term T are modified
to regulate the average activity µ =

∑
i ηi/N and the sparsity a = (

∑
i ηi)

2/
∑

i η
2
i of

the network. The value of the normalization |WTOT | 9.2, should be compared with the
strength of the external input. Their ratio is the relevant quantity for the model. In
the following we will set the maximum value of Ext(~x) to 1.

Generating the Templates The simulation consists of two phases. First, we gener-
ate a trajectory for the virtual rat. The simulation is continuous in space but discrete
in time. In each time step, intended to correspond to roughly 15 ms, the virtual rat
moves by 0.5 cm in a direction similar to the direction of the previous time step, with
a small amount of noise. At each time step we determine the input activity associated
with the position occupied by the rat. To that effect, movements are considered to
occur along the same trajectory in both environments, and so inputs are updated for
both environments. The activity of each unit is determined according to (9.3), with
the external input set according to the location in the current environment; while the
term representing the activation induced by the contribution of the recurrent collater-
als depends on the activity of the network calculated at the last step. This procedure
emulates the activity that is elicited in CA3 during navigation in each environment,
providing the templates of the spatial representation of the two environments. To study
the effects of teleportation on the dynamics of CA3, such templates are then compared
with the state the network takes when, instead of a full cue about one environment, it
receives conflicting inputs about both.

Test Phase The second part of the simulation reproduces the teleportation exper-
iment. The same path is followed as for building the templates, so that the rat runs
through the same trajectory. We then divide the path into three sections. In the first
part, we feed the network with a full cue about environment A. Then, we teleport the
rat to environment B. The external cue is suddenly changed. To simulate the ambi-
guity and the conflict between external cues and internal path integration, we modify
the input to represent this confusion. While before we fed the network with a full
cue, we now reduce it to 20%, in that only a subset of the cells now receives external
input. Moreover, the cue does not represent a single environment: a fraction refers to
environment A and the rest to environment B, which means that both units coding
for A and for B receive external input. Time steps are grouped in sets of eight, which
then represent eight phases within individual theta cycles, when we introduce theta
modulation. During each set/cycle the cue is kept constant, in the sense that, while
the input changes as the animal moves and changes location, the units that receive
external input remain the same. At the beginning of each cycle these cells are selected
with a certain probability, representing the proportion of environment A and B in the
external cue, which changes at each cycle. While the number of neurons receiving an
external input is kept constant, the amount of activated neurons in each group has a
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25% variability.

This state of confusion is held for a certain time, 10 sets or theta cycles in our simu-
lations. At the end of this phase, we turn the external input to a full representation
of environment B. The network is then fed a full cue corresponding to the second
environment, simulating a rat that has finally understood which box it is in. All the
simulations are first run without any periodic modulation of the activity in the network.
We then introduce theta oscillations by periodically modulating the mean activity and
the sparsity of the population, with a period of eight time steps (Scarpetta, Zhaop-
ing, and Hertz 2002). We also modulate the strength of the external cue in a similar
way, by varying both the number of units receiving external input and the intensity of
the stimulation. We vary the amplitude of this modulation and the relative phase ∆
between the oscillations of the network and of the external input.

µCA3(t) = µ0 + A ∗ cos(π/2 + 2π/L ∗ t) (9.4)

µExt(t) = µ0 + A ∗ cos(π/2 + 2π/L ∗ (t+ ∆)) (9.5)

aCA3(t) = a0 + A ∗ cos(π/2 + 2π/L ∗ t) (9.6)

aExt(t) = a0 + A ∗ cos(π/2 + 2π/L ∗ (t+ ∆)) (9.7)

(9.8)

where µ0 and a0 are both equal to 0.1 and L is the number of time steps of the simu-
lation corresponding to the length of a theta cycle, here L = 8.

9.3.2 Results

In Figure 9.2 we plot the correlation between the activity generated during this test
phase and the activity obtained during normal exploration, in the same location. Four
representative examples are illustrated. As expected, the network with no modulation
(Figure 9.2, top row) generally fails to respond to changes in the external environment.
After the first switch, the action of the recurrent collaterals is to maintain the network
in the attractor relative to environment A, even if the external input has changed. The
external cue can produce an effective change in the dynamics of the network only when
very strong. At the end of the simulation, with the full cue of environment B, the
system actually follows it and retrieves the other representation. In general, however,
in this range of parameters, the dynamics of the network do not respond rapidly to
changes in the external environment. The system cannot find an intermediate dynamic
range between being completely externally driven and the settling in one attractor. In
Figure 9.3, left, we show how varying the strength of the collaterals relatively to the
external input leads to the switch between two regimes. When the collaterals are weak,
we actually observe alternation between maps (green line), but the ability of the sys-
tem to retrieve the representation is very limited (blue line). As the strength of the
collaterals becomes sufficient to initiate the retrieval, the transitions are quickly lost.

Flickering events appear, instead, when we introduce strong theta oscillations and in
antiphase with the modulation of the input (Figure 9.2, second row). Such rapid tran-
sitions between the retrieval of one attractor and the retrieval of the other, in the time
span of a theta cycle, are similar to those observed in the experiment of Jezek et al.
(2011) and appear with the first switch between the environments. The simulations
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9. THETA OSCILLATIONS AND ATTRACTOR DYNAMICS

Figure 9.2: Examples from the results of our simulation of the teleportation experiment
in different parameter ranges. Bars represent correlation with the two different repre-
sentations at each time step (in the simulations a theta cycle is comprised of 8 time
steps). Different plots are relative to different conditions: strong is 75% variation in
firing rate and sparsity between the peak and the through and weak is 20% variation;
in phase means ∆ = 0◦ and out of phase means ∆ = 180◦.

show the effect of modulating the activity in enhancing the flexibility of the network
and its ability to respond rapidly and accurately to changes in the input. Note that,
while reacting to the changing external cue, the network does not simply reproduce
the ambiguity of the input. In each theta cycle, with a few exceptions, the system
retrieves one of the two representations and discards the other (Figure 9.5). At every
theta cycle this retrieval appears to be as good as the one obtained in the case with
no oscillations. Figure 9.5 shows how the retrieval of the representation is happen-
ing in the second half of the cycle, while in the first half there is a preponderance of
mixed states with components from both maps. Also this segregation finds confirma-
tion in the data from Jezek et al. (2011). The strength of the collaterals still affects
attractor dynamics in the presence of theta oscillations (Fig 9.4). Stronger collaterals
actually induce a longer permanence in the same attractor and a decrease in the flicker
probability. The system therefore, is not completely memory-less, even though weaker
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collaterals significantly reduce the effects of the retrieval history.
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Figure 9.3: Left: Collateral strength effect on the retrieval in the absence of theta
modulation. Center: larger amplitude leads to more flicker events. Right: Flickers
appear preferentially when the external input modulation phase has an offset close to
π.
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Figure 9.4: Flicker appearance is affected by collateral strength. Stronger internal
connectivity increases memory effects in the dynamics: the same representation persists
across more theta cycles, and flicker probability decreases.

The theta efficacy in inducing flickerings has a strong dependency on the parameters A
and ∆, the amplitude of the degree of activity modulation and the relative phase of the
external and internal oscillations (Figure ??). Varying the two parameters produces a
different number of switching events. As already evident from the examples in Figure
9.2, flickerings appear only with a combination of strong amplitudes and half-cycle off-
sets. This effect is quantified in the two plots showing the increase of events with the
increase of the amplitude (Fig ??) and the preferred offset around π (Fig 9.3, right).
Perfectly synchronized oscillations produce very few switches.

9.4 Discussion
Our model suggests that modulating the activity of the CA3 region of the hippocampus
may have significant effects on memory processes, but only if the modulation is strong.
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Figure 9.5: Theta oscillations entrains the attractor dynamics of the system. Full
retrieval of the representation is confined to the second half of the cycle (larger activity),
while on the first half of the cycle mixed states predominate.

In the model, flickering events as described by Jezek et al. (2011) in their teleporta-
tion experiment appear, but only in the presence of strong theta modulation. This is
consistent with an active role of theta activity in stimulating fast transitions between
attractor states (Harris et al. 2003).

The Conflict between Attractor Dynamics and External Input During mem-
ory retrieval, the activity generated by an external stimulus is propagated through the
collaterals connecting the units of an associative memory network. Since memories
are stored by modifying the strength of these connections, this propagation leads to
an activation of the network which corresponds to one of the stored memories-what
we call an attractor. Which one of the multiple memories stored in the network will
be retrieved depends on the characteristics of the initial external input. Such associa-
tive memory networks function optimally when the external input serves only as a cue
and neuronal activity is driven maximally by the recurrent connections. The internal
dynamics of the network should be relatively unconstrained by the external input, to
allow for convergence to the attractor state, even in the presence of an incomplete or
distorted cue. The drawback of this operating regime is that the network loses in flex-
ibility. The network is likely to remain in an attractor once it has reached one, and it
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Figure 9.6: Illustration of the proposed mechanism of alternation of externally- and
recurrent-driven dynamics by means of regular modulation of the system

needs a very strong shove to leave it. It is not reactive to external inputs unless this in-
put is strong and significantly different from its current state. In our case, in which the
external input is a mixture of two different representations, the action of the recurrent
collaterals is to let the system choose between one of them, generally the stronger of the
two, and it drives the activity of the neurons towards the corresponding attractor. But
as the external input changes, if neither representation clearly prevails, it is very diffi-
cult for the network to modify its state, at least, that is, when no modulation is present.

Theta Oscillations as a Regulator of External Input Dominance The effect of
introducing a modulation of the activity and of regulating accordingly the firing rates
of the neurons is to control the relative strength of the inputs each neuron receives,
the external cue, and the recurrent reverberation. As the number of active units and
the level of global activation changes, even if the strength of the connections remains
unvaried, the driving force of the system is shifted from external to internal inputs
and vice versa. When only few cells are active, those which receive a strong external
input have a major advantage in the competition and therefore are more likely to pass
the inhibition threshold and to fire. They in turn activate new units as inhibition gets
weaker. As new units are activated through the current injected in the collaterals,
the activity in the network evolves, driven by the internal dynamics generated by the
initial pool of active cells. If cells representing both maps are activated, then as the
threshold is lowered there is a rush to recruit new units, in a competition between
the two representations. When the inhibition reaches its minimum, one of the two
eventually takes over, and the system falls in one of the two attractors. What happens
next is crucial for the appearance of flickers. Once the inhibition rises again, the active
population starts to shrink. In the beginning the collaterals continue to determine the
active units, but as the inhibition approaches its maximum again, the contribution
of the external input becomes critical. In a regime of very strong competition, the
activity of the system is strongly related to the input that it receives at that time. As
before, this small core of units is then responsible for the activation in the next theta
period, while the state the system was in is forgotten. The system goes through a
sort of bottleneck that allows resetting the state of the units and forcing the system
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to discard the information conveyed by the recurrent collaterals. At each onset of the
cycle the internal dynamics of the system are thus almost independent of the past
activity. The system is potentially able to select a new attractor at each theta cycle.
The attractor dynamics observed in the teleportation experiment look quite different
from both point-like attractor and continuous attractors dynamics, and seem to reflect
the presence of periodic modulation (Figure 9.7).

In the non-modulated condition, either the system is driven by external input, with
little room for attractor dynamics, which merely serves to keep it within the correct
valley (Samsonovich and B. McNaughton 1997; Zugaro et al. 2003; A. Johnson and
A. Redish 2007; Akrami et al. 2009b), or, if inputs subside, it is capable of memory
retrieval, but rigid and unable to rapidly adapt to further external changes (Akrami
et al. 2009b). Introducing theta modulation allows implementing both these regimes
in the same system, by segregating them to different theta phases. The network is
input driven in the presence of strong inhibition and then progressively switches to be
driven by recurrent connections as the theta period progresses. In this perspective, the
addition of theta oscillations, while not essential, provides a new twist in an already
consolidated schema. Flickers could be the result of successive descents in different
attractor basins, while the internal attractor dynamics, taking place along the continu-
ous attractor representing each environment, may remain unaffected by the modulation
(Figure 9.7).

Strong Modulation . . . Our simulations indicate that to obtain this particular
effect the amplitude of the theta oscillation is crucial. The difference between the
number of active units and the average firing rate at the peak and at the trough of
the theta cannot be too small. Of course this conclusion is limited by the particular
assumptions and simplifications we made for our model. The way we implemented theta
effects on the system is simple and most straightforward. We do not explicitly model
the inhibitory neurons present in the hippocampus, nor we take into account complex
interactions between them and the pyramidal neurons. The effects of inhibition are
modeled as a homogeneous regulation of the gain and of the threshold applied to
the firing rate of all the neurons. Actually, as we have already said, there is growing
evidence on the complex dynamics linking the excitatory and the inhibitory populations
in the hippocampus (Buzsaki and Chrobak 1995; Hangya et al. 2010; Dupret, Joseph,
and Csicsvari 2013). The different phase locking exhibited by distinct inhibitory neuron
types and the fact that this differentiation roughly corresponds to the classification
in dendritic or somatic interneurons suggest the possibility that such articulation is
functional to an inhibitory mechanism not described in detail by our model (Csicsvari,
Hirase, Czurko, et al. 1999; Maurer et al. 2006). Moreover, the particular feedback
inhibition microcircuitry present in the hippocampus, which regulates local activity
and is not detailed in our model, may be another source of complex effects not expressed
in our simulations (Acsady et al. 1998; Banks, White, and Pearce 2000; Pouille and
Scanziani 2001; Remondes and Schuman 2002; Freund 2003; Lawrence and McBain
2003; Pouille and Scanziani 2004; Ang, Carlson, and Coulter 2005; Szabadics and
Soltesz 2009; Torborg et al. 2010). Input-specific suppression and other nonlinearities,
which may arise from the incorporation of this finer structure in a model, may extend
our results also to the case of gentler oscillations.
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. . . And out of Phase Another indication that emerges from our model is the role
of the timing of the activity in different elements of the hippocampal circuit. As the
simulations show, the relative phase of the oscillations of the incoming input is impor-
tant to maximize the effects of the theta modulation on the dynamics of our recurrent
network. It appears that the hypothesized mechanism functions optimally when the
two oscillations are out of phase. This makes sense, as such a phase relation of the
two oscillators enhances the separation between the two regimes of input dominance
and recurrent dominance, which is at the base of our model. A concurrent rise and
fall of the activity in the network and in the strength of the input actually cancels
the benefits obtained with the introduction of the modulation. The input then gen-
erates interference with the internal activity when the dynamics of the system should
be driven by the latter, and it is weak when its turn comes to lead. On the contrary,
an external input which is in antiphase with the modulation of the network can act
effectively during periods of low activity and then gently bow out when the network
retrieves the attractor. In conclusion, our data better reproduce experimental obser-
vations when the recurrent network is driven by an external input which oscillates in
magnitude with the same period but a different phase.

Figure 9.7: Different types of (idealized) attractors suggest distinct interpretations of
neural dynamics observed in experiments. In the 1D ring attractor putatively underly-
ing the head direction system (Zugaro et al. 2003) (top left), changing head direction
implies moving, whether continuously (green arrow) or in jumps (dashed arrow), along
the attractor. Convergent neural activity in IT (Akrami et al. 2009b) (top right) and
rapid flickers in CA3 (Jezek et al. 2011) (bottom) can be interpreted as rolling down
into the attractor basin (white arrows). In CA3, spatial representation activity can also
move along the flat attractor valley (A. Johnson and A. Redish 2007) (green arrow).

9.4.1 Some Remarks on Information Flow in the Hippocam-
pus

This leads to some comments about the operation of the real hippocampus. As reviewed
above, the phase relations of the activity of the different regions of the hippocampus
and of the neighboring afferent regions of the entorhinal cortex are rather articulated.
Consider the CA3 region. The two external inputs this region receives have specific
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and different theta phase modulation of the firing rate (Mizuseki, Sirota, et al. 2009).
The neurons in the DG, which projects to CA3 through the mossy fibers, fire almost in
conjunction with cells in CA3, and moreover the pattern of activation is very similar:
the activity in the two regions spreads and then shrinks in almost perfect synchrony
(Montgomery, Betancur, and Buzsaki 2009). On the other hand, activity in the EC
layer II, which projects to CA3 through the perforant path, appears to be maximal at
a completely different theta phase (Buzsaki 2002; Dragoi and Buzsaki 2006). Between
the two bumps of activity, the one in EC and the one in CA3, there is approximately
a quarter of a theta cycle (Mizuseki, Sirota, et al. 2009). This configuration seems to
replicate the one described by our model. If we want to infer from the simulations,
we should conclude that during the teleportation experiment, just after the switch of
environments has occurred, the recorded activity in CA3 is mainly due to stimuli com-
ing from the entorhinal cortex, in essence bypassing the DG. This conclusion suggests
a revision of the prevailing view of information flow in the hippocampus in normal
conditions. The normal path of activation, involving in the order layer II of entorhinal
cortex, DG, CA3 and finally CA1, may indeed be the normal one, but during encoding,
or when inputs are strong. During retrieval or when inputs are weak, there is some
evidence that CA3 may operate in different and alternative regimes.

(a) First, behavioral experiments on spatial learning in rodents indicate that DG inac-
tivation and DG lesions greatly impair the acquisition of new memories while sparing
the retention of already stored ones (Lassalle, Bataille, and Halley 2000; I. Lee and
Kesner 2004; B. McNaughton, Battaglia, et al. 2006). These studies indicate that the
combined action of perforant path and recurrent collaterals is sufficient to perform
retrieval of stored memories. So, while minor during robust DG activation, the con-
tribution of the perforant path emerges when left alone. Synaptic plasticity acting
on the perforant path allows associating the activity of the entorhinal cortex with the
representation imposed by dentate activity, thus enabling future pattern retrieval.

(b) This alternative route, which forfeits the contribution of the DG, appears to con-
tribute to another phenomenon observed in the hippocampus, the so-called sharp wave
ripples (SWRs) (Buzsaki 1986). Indeed, this physiological pattern of activity origi-
nates directly in CA3, triggered by synchronized activation of pyramidal cells, and
does not involve at all the dentate gyrus (Buzsaki 1986; Csicsvari, Hirase, Mamiya,
et al. 2000). It is plausible to suppose that these sudden bursts of activity may be
initiated by a weak input arriving from the entorhinal cortex(Sirota and Buzsaki 2005;
Isomura et al. 2006). The activation of even a small subset of CA3 neurons could
initiate a cascade of excitation across the recurrent collaterals, leading to reverberating
activity that eventually spreads to downstream regions like CA1 (Cheng and Frank
2008; Karlsson and Frank 2009) (possibly with a more active and independent role of
the latter in processing this signal than initially thought, as recent findings show that
the phenomenology of the CA1 ripples is too complex to be a mere reproduction of
CA3 activity during these episodes (Nakashiba, Buhl, et al. 2009; Sullivan et al. 2011)).

It is possible that inhibitory dynamics similar to that underlying SWR generation
Csicsvari, Hirase, Mamiya, et al. 2000; Sullivan et al. 2011; Patel, Schomburg, et al.
2013 may operate in the rat hippocampus during the interval following the telepor-
tation. The confusing and misleading context may limit the activity in the EC to a
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fraction of that normally observed. In this case, the input originating from this region
may be insufficient to properly activate the corresponding spatial representation in the
DG. Still it can be enough to generate a cascade of activity in CA3. The presence
of recurrent connections may act as an amplifier of an otherwise weak signal. The
concomitance of maximal DG and CA3 activation is in accordance with the generic
idea that phase synchronization is functional to optimize neural communication and
synaptic plasticity (Buehlmann and Deco 2010). Having the neurons in the two regions
active at the same time can be used to maximize the information transfer between the
two regions during the storage of new representations, even if we cannot exclude that
this scenario may be partially modified by specific effects arising from the particular
structure of the feedforward inhibition of DG on CA3 (Lawrence and McBain 2003).
On the other hand, the prevailing phase difference observed in the firing of the excita-
tory populations in EC and CA3 may result in an effect not captured by the generic
idea. This particular timing allows the dynamics of CA3 activity to select a new attrac-
tor at each theta cycle. Of course if the external cue, even if partial, is correlated with
a single stored memory, the system will simply retrieve the corresponding attractor.
This mechanism becomes interesting when the cue is ambiguous and is comprised of
a mixture of different representations. What happens then is that the choice of the
attractor may amplify a bias or even a statistical fluctuation of the composite cue. If
we observe the choices the system makes over a certain period, the number of times
it chooses a given memory could be related to the fraction of the cue representing
that particular memory. Moreover, because the choices are distributed in time, this
mechanism may allow integrating information arriving at the hippocampus at different
moments. Faced with a changing and unstable input, multiple choices provide statis-
tical information about the environment and allow the system to correct an occasional
wrong choice. If the network proceeds three times towards the attractor corresponding
to A and only once towards B, it can reasonably concluded that the box is A, even if the
cue was ambiguous. The freedom left to the system, from the external input, and the
resetting of the state of the system at every cycle, both obtained with the introduction
of the theta oscillation, are the elements generating flickering after teleportation, in
our model.

9.4.2 Beside Theta

Although the model we presented was devised thinking to the results in Jezek et al.
(2011), and most of its features are set to reproduce the flickering phenomenon, nev-
ertheless the attractor dynamics modulation we describe may be considered as a gen-
eral principle of the interaction between oscillations and local neural activity. Theta
oscillations are known to influence the temporal expression of cell assemblies in the
hippocampus also in other conditions, different from those of the teleportation exper-
iment (Kelemen and Fenton 2010; Gupta et al. 2012; Brandon, Bogaard, Schultheiss,
et al. 2013). Theta may act as a regulator of the relative strength of external inputs
and internal computations beyond the extreme conditions of the experiment, maybe
in less pronounced, milder ways. The periodical oscillation entraining the frequency of
the selection of the attractor does not necessarily have to be theta, moreover. One can
think of building a very similar model from a temporal rescaling of the one we present,
substituting theta oscillations with, say, gamma oscillations (Csicsvari, Jamieson, et
al. 2003; Colgin and E. Moser 2010; Buzsaki and X. Wang 2012) another prominent
feature of the hippocampal LFP. The kind of input-recurrent switch we discuss, can be
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obtained also at an higher frequency, perhaps nested in the theta cycle (Lisman and
Buzsaki 2008; Colgin, Denninger, et al. 2009; Lisman and Jensen 2013).

Full Cue 

A

Full Cue 

B

Environment

Switch

Single Oscillation

Figure 9.8: Theta modulation induces a regular and periodical alternation of the rep-
resentations, but the basic mechanism can be obtained when only one oscillation is
introduced. Here is an example of the same model run with no theta, except for one
cycle around t=20. The single perturbation is sufficient to induce a one-time switch of
the representation.

Another important aspect to point out is the periodical fashion of the attractor dy-
namics. The phase relationships necessary for flickering we discussed in the previous
section, are necessary constraints when both the input and the network are theta mod-
ulated. In Figure 9.8 we show a different implementation of the model in a system with
no theta modulation, apart from a single perturbation taking place after the telepor-
tation, when ambiguous input is present. Initially, how we already said, the absence
of oscillations leaves the system in the same attractor, unperturbed by the incoming
mixed input. The figure shows how then a single oscillatory event is sufficient to take
the system out of the old representation and restart attractor dynamics, in this case
leading to the other representation. Regular oscillations are necessary to reproduce the
flickering effect, a repetitive alternation between two attractors, but a single abrupt
variation in the activity of an un-modulated network (of the kind of a SWR event) can
regulate attractor dynamics as well, in a more restricted time domain (Girardeau et al.
2009).
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Chapter 10

Metric Structure of the Internal
Representations of Space

10.1 Introduction
What is specific about physical space, and makes it different from other correlates of
neuronal activity, is its intrinsic topographical structure. A set of spatial stimuli are
naturally endowed with a canonical topology and with a continuous metric, defined by
the relative position of locations in the environment. These stimuli thus span a multi-
dimensional manifold, which, in the typical experimental situation of a recording box,
is two-dimensional and Euclidean. How spatial is the internal representation generated
in CA3? How much of the external metric is preserved inside the brain? (Samsonovich
and B. McNaughton 1997; Stringer et al. 2002; B. McNaughton, Battaglia, et al. 2006).

One may pretend to ignore the real-world metric, and study the metric of the virtual
manifold established by the patterns of neuronal activity with which physical space
has been associated (Muller and Stead 1996; Muller, Stead, and Pach 1996). How?
In CA3 the movements of an animal traversing an environment elicit, on repeated tri-
als, a distribution of responses which one can use to define distances between pairs of
locations (Brown et al. 1998; Deneve, Latham, and Pouget 1999; Averbeck, Latham,
and Pouget 2006), in terms e.g., of the mean overlaps in the corresponding distribu-
tions of population vectors, and one can analyze the overall structure of such pairwise
distances in geometric terms. Ideally a faithful mapping of space should produce iso-
metric representations, i.e., whose relationships mirror the relationships induced in
real space by the Euclidean metric (Curto and Itskov 2008). Such an ideal mapping is,
however, unfeasible with any finite neuronal population, even more so with a random
self-organization process (Tsodyks and Sejnowski 1995a; Hamaguchi, Hatchett, and
Okada 2006; Papp, Witter, and Treves 2007; Roudi and Treves 2008). But how to
assess the degree of deviation from isometricity?

Spatial representations in CA3 depend, of course, not just on the physical structure
of external space but also on how it is perceived by the animal, and on the effective
dimensionality of the representation, as spanned by animal behavior (Hayman, Verrio-
tis, et al. 2011; Ulanovsky and Moss 2011). Distant locations might be seen as similar
or confused altogether, irrelevant dimensions might be ignored, e.g., on a linear track,
the relative distance between locations might be distorted, not all the locations might
be assigned a representation in the population, etc. In a word, the Euclidean nature
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of external space may be altered arbitrarily. To start with, it is useful, however, to
remove such arbitrariness and consider a model situation in which there is nothing but
the Euclidean metric of physical space to be represented, through self-organization.
This is what we set out to do in this study.

10.2 Metric Content
In Treves (1997), and later papers, e.g., Treves, Georges-Francois, and Panzeri (1998);
Ciaramelli, Rosapia, and Treves (2006); Rosapia et al. (2007), a metric content index
was introduced in order to characterize the amount of perceived metric in the rep-
resentation of a discrete set of stimuli, such as faces. It was shown empirically that
such metric content index is almost invariant as one varies the sample of cells used
to assess the representation. Thus, it approaches the role of an objective or intrinsic
measure, insensitive to the procedure used to extract it (e.g., how many and which
cells are recorded in a particular experiment). Can a similar descriptor be applied to
the representation of real space?

Although physical space is low dimensional, each spatial variable can span during
everyday behavior a small or large interval along any of the dimensions and, crucially,
can do so continuously. To actually define a set of distinct locations, for data analysis,
one has in practice to discretize space in a finite number of bins and to assign to
each of them a reference population vector, resulting from averaging over the activity
expressed when in that bin (the actual procedure to perform this average can vary).
One would want these bins to be as small as possible, to retain part of the continuity
compromised by the binning. On the other hand, any refinement of the bin resolution
leads unavoidably to a low sampling problem. This curse of dimensionality (Golomb et
al. 1997; Panzeri et al. 2007)(where the dimensionality referred to is not of space itself,
but of multiple locations in space) limits the current feasibility of the metric content
analysis of a set of real, experimental data. The length of a recording session necessary
to properly sample the distribution of population vectors tends to be prohibitive. One
may, however, turn to computer simulations, which can be as long as needed, to produce
the data necessary for the analysis.

10.3 Simulations
The full details of the model used here, which is the same we used for the estimation
of information in CA3 in Chapter 7, are reported in Appendix A-1.

The mathematical model described in the Appendix, was simulated with a network of
45000 DG units and 1500 CA3 units. A virtual rat explores a continuous two dimen-
sional space, intended to represent a 1sqm square environment but realized as a torus,
with periodic boundary conditions. In each time step (of 125ms) the virtual rat moves
2.5cm in a direction similar to the direction of the previous time step, with a small
amount of noise.

Before and during the learning session, all recurrent connections weights take the same
value JRC0 ; after the learning phase, they take the values resulting from the sum of
all modifications occurred during the session, and described by Eq.B-4, with learning
rate γ. The trajectory of the virtual rat during the learning session is a random path,
extended over a time long enough for it to effectively visit repeatedly all possible lo-

112



cations in space: 10000 time steps to cover the entire environment. This is taken to
correspond to about 20 min of exploration in real time. Such synaptic modifications
start to have an effect on the CA3 firing rate only at the end of the learning session,
when the RC weights are updated to their new values.

After the learning phase for the CA3 network, we run a training phase for our decoding
algorithm, during which we build the so called activity templates (E. Rolls and Treves
2011): the environment is discretized in a grid of 8x8 locations and to each of these bins
we associate a reference population vector. This reference vector for a bin is obtained
averaging the activity of the network in all the time steps that the rat spends in that
bin during a simulation of 100,000 time steps.

Subsequently a test phase is run. This time the rat is left wandering on a random
trajectory through the environment and at each time step the activity generated in the
network is compared to the templates previously defined. The dynamics is analyzed
when the input coming from the DG units is either on, to characterize externally driven
representation, or turned off, to characterize instead memory driven attractors (Wills,
Lever, et al. 2005; Colgin, S. Leutgeb, et al. 2010). The noise level we use is kept very
low (δ = 0.002), as we are more interested to probe the microstructure of the spatial
representation rather than to test its robustness. To have a roughly even coverage of
the surface of the environment and to produce a sufficient number of visits to each
one of the locations in which it is divided, simulations are run for 400,000 time steps
(nearly 35hr of virtual rat time).

For simulations without DG direct input, aimed at describing attractor properties, in
each step of the virtual rat trajectory, activity is allowed to reverberate for 15 time
steps; with a full DG input during the first one, an input reduced to 1/3 during the
second, and to 0 for the remaining 13 time steps. The final configuration attained by
the system after this interval is then observed and the rat is moved to the next position
and the procedure is repeated.

10.4 Analysis and Results

10.4.1 Global Metric

What does the global structure of the CA3 representation generated in our simulations
look like? One may start addressing this question by using the most comprehensive
measure of activity in the network. In our simulations, templates are generated us-
ing the entirety of the cells and averaging their activity over the spatial extent of the
relative bin. They are the fingerprints of the representation of the environment con-
tained in CA3. Templates are vectors in a high-dimensional space, namely the number
of dimensions corresponds to the number of units in the network, 1500 in the sim-
ulations we use for the analysis. To visualize the configuration of these vectors and
their arrangement, one should use some procedure to reduce their dimensionality and
to produce a readable picture. One can use the correlation between the vectors as-
sociated to different positions to construct a similarity matrix containing the relative
distance of all the vector pairs. Multidimensional scaling (MDS) uses this similarity
matrix to assign positions to the templates in a Euclidean space of a specified dimen-
sion (in our case, 3-dimensional), so as to best preserve the ordering of the distances in
the distance matrix. One can then directly compare the configuration obtained from
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the algorithm to the topology of the external environment, which, in the case of our
simulations, that make use of periodic boundary conditions, is a two-dimensional torus.

Figure 10.1: The figure shows the 3-dimensional coniguration of template vectors based
on pairwise correlations obtained by multidimensional scaling (Sammon criterion (Sam-
mon Jr 1969)), applied to the spatial representation produced by the model CA3 net-
work. The configuration closely reproduces the original similarity matrix (Stress =
0.04). Red and blue lines correspond to orthogonal directions in the external environ-
ment.

In fact, also configurations produced by a metric MDS (Sammon algorithm (Sammon Jr
1969), Stress=0.04) tend to have a torus-like topology (Figure ??). The global proper-
ties of the model CA3 representation thus faithfully reproduce those of external space,
at least in terms of average templates. This assessment, however, is only qualitative
and it misses finer details that may hide at different levels of resolution. The actual
responses of the network while the animal is traversing the environment are averaged
away in building the templates. Moreover a measure based on the activity of the whole
population does not provide indications as to the distribution of information sampled,
in practice, from the few neurons which can be recorded simultaneously, leaving doubts
as to whether such a global measure has any experimental relevance. We are then left
with the problem of constructing a synthetic description of the representation that
comprises information on its local properties, as gauged by observing a few units at a
time.

10.4.2 Decoding

To quantitatively assess the features of a neural representation of any set of stimuli we
can rely on some standard procedures (Quian Quiroga and Panzeri 2009). Decoding
the spike trains emitted by a population of neurons, when one (s) of a set of stimuli is
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presented, means applying an algorithm that estimates, given the current spike train
and those previously recorded in response to each stimulus, the likelihood for each (s)
of the possible stimuli to be the current one. The stimulus for which the likelihood is
maximal is the stimulus predicted on the basis of the chosen decoding algorithm. One
repeats this all the times s is the current stimulus, to generate a table P (s′|s). The
decoded stimulus is not necessarily the correct one, and a first measure of the nature of
the representation is just the fraction of correct hits in the table,

∑
s P (s|s)P (s), where

P (s|s) are just the diagonal elements of the confusion matrix. A more complex, yet
more complete, measure is given by the mutual information I (7.1) which also reflects
the distribution of errors, and thus provides further insight on the way the stimuli are
encoded (E. Rolls and Treves 2011). These two quantities, percent correct and mutual
information, depend on the pool of neurons used to perform the decoding, and most
crucially on the size of this pool. More cells obviously allow for better decoding.

The two quantities are not completely independent, as there are mutual constraints
between them. At the same time, one does not completely define the other: given a
certain percent correct there is a possible range of information values that depends
on the way errors are distributed among incorrect locations. At one extreme, when
there is no overlap between the representations of different stimuli, we expect errors
to be distributed at chance: the distance between any pair of stimuli is maximal and
effectively the same, and no non-trivial metric can be defined. Conversely, any non-
uniform overlap influences the way errors are produced. The more the distribution of
errors deviates from being flat, the more the representation contains overlapping and
interfering elements.

10.4.3 The Spatial Confusion Matrix

During the test phase of our simulations, at each time step, the firing vector of a set of
CA3 units is compared to all the templates recorded at each position in the 8x8 grid,
for the same sample, in a test trial (these are the template vectors). The comparison
is made by calculating the Euclidean distance between the current vector and each
template, and the position of the closest template is taken to be the decoded position
at that time step, for that sample. This procedure applies to our spatial analysis what
has been termed maximum likelihood Euclidean distance decoding (where the distance
between population vectors should not be confused with the distance between loca-
tions in the environment). The frequency of each pair of decoded and real positions
are compiled in a so-called confusion matrix. Should decoding work perfectly, in the
sense of always detecting the correct position in space of the virtual rat, the confu-
sion matrix would be the identity matrix. The confusion matrix is thus L2xL2 (64x64
for our simulations) and its dimension grows very fast when increasing the number of
bins, requiring a prohibitively longer number of time steps to properly fill all its entries.

The confusion matrix gives us the value of the percent correct and of the mutual
information. The size of the sample is then varied to describe the dependence of these
quantities on the number of cells in the pool. We used samples of up to 256 units, a
number which can be compared with the total population in our CA3 network, 1500
units.
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10.4.4 Metric Content

For a given percent correct (fcor) there is in general, in a non-spatial paradigm, a
certain range of possible amounts of information contained in the confusion matrix.
Ideally the information should be comprised between a minimum value

Imin = log2 S + fcorlog2fcor + (1− fcor)log2(1− fcor)− (1− fcor)log2(S − 1) (10.1)

(where S is the number of elements in the stimulus set) corresponding to an even
distribution of errors among all the possible stimuli, while the maximum is attained
when all the errors are concentrated on a single incorrect stimulus

Imaxbias = log2 S + fcorlog2fcor + (1− fcor)log2(1− fcor) (10.2)

However, this maximum corresponds to a systematic misclassification of the current
location by the network. It might therefore be reasonable to assume that our system
is an unbiased classifier, which implies that incorrect stimuli can at most be chosen as
frequently as the correct one, and reformulate the previous maximum in the following
terms

Imax = log2 S + log2 fcor (10.3)

The metric content index can then be defined, in such a non-spatial paradigm, as

λ =
I − Imin

Imax − Imin

(10.4)

This is the measure considered in our previous studies. With this choice, though, we
wouldneglect the intrinsic topological structure of spatial information. In fact, the high
correlation existing between the representations of neighboring locations constrains the
distribution of errors. We need to distinguish between errors originating from random
correlations in the representation of distant, unrelated locations, and errors emerging
form the continuity of the representation. The latter can be considered as structural
to the representation and they are expected to be present around the correct location
even in the case of optimal decoding, but with limited spatial resolution.

10.4.5 Full and Reduced Matrix

The confusion matrix conveys information which is location-specific: we know for each
of the locations how it was decoded during the test phase. The appearance of a typi-
cal example of these location-specific matrices shows how a decoding approach reveals
characteristics of the representation otherwise overseen (Figure 10.2A). Far from being
close to the real position, the decoded positions appear to be distributed in multiple
locations over the environment, often far away from the correct spot. The pattern
of distribution of decoding probability depends on the choice of the sampled neurons,
and on the size of the sample, and it seems to lack any regular principle of organization.

If any regularity in the distribution of errors across positions exists, we can try to
reveal it by extracting the translational invariant component of this distribution. By
deriving a position-averaged version of the matrix (Figure 10.2B), we construct a sim-
plified matrix Q(x−x0), which averages over all decoding events with the same vector
displacement between actual (x0) and decoded (x) positions. Q(x− x0) is easily con-
structed on the torus we have used in all simulations, and it is only LxL, much smaller
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Figure 10.2: Representative examples of the full and of the reduced confusion matrix.
(A) Decoding probability distribution for a single location extracted from the complete
confusion matrix. (B) Decoding probability distribution obtained from the reduced
matrix. Both are obtained with a sample size of N = 4. Color coding just reflects the
relative heights of the points in the probability distributions.

than the complete confusion matrix.

The two procedures, given that the simplified matrix is obtained just by averaging
the full confusion matrix after a row translation, might be expected to yield similar
measures, but this is not the case (Cerasti and Treves 2010). In fact the amount of in-
formation that can be extracted from the reduced matrix is significantly inferior to that
of the full matrix, even if the difference decreases as the sample of neurons gets larger
(Figure 10.3A). The discrepancy between the two measures reflects the presence of a
distribution of errors which is not translational invariant. The distribution found in the
reduced matrix instead represents the performance of the system when the effects of
specific firing configurations are averaged away. Being quasi-randomly distributed, the
errors of the complete matrix average out and produce a smooth, radially decreasing
distribution around the central, correct position in the reduced matrix (Figure 10.2B).
We are thus able to extract the average error dependence on the distance between two
points, regardless of their specific position. The reduced matrix is the expression of
the overlaps induced by the external metric of space together with the continuity of
the internal place field representation.

All the quantities of interest, the information contained in the full and reduced matrix
and the percent correct, have a dependence on the sample size which can be fit rather
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precisely by a sigmoid function. The function we use to fit the information is

Ifit =
Isat

1 + (n0/n)b
(10.5)

where n is the number of units in the decoding sample and Isat, n and b are the fit
parameters. An analogous form is used for the percent correct

ffit = fmin +
fmax − fmin

1 + (n0/n)b
(10.6)

The change in the convexity of the data is particularly evident when using a log scale
for the number of unit in the sample (Figure 10.3A, B).

Figure 10.3: Information and Percent Correct dependence on sample size. (A) In-
formation values. Markers: model data. Lines: fit curves. Gray markers/blue lines:
information content of the confusion matrix. Purple markers/red lines: information
content of the reduced matrix. Square markers/solid lines: results with the DG input
active. Triangular markers/dashed lines: results without the DG input. (B) Percent
Correct values. Markers: model data. Lines: fit curves, as in (A).

10.4.6 The Metric Induced by an Active DG

We can use the information contained in the reduced matrix to separate the effects of
the external metric on the CA3 representation from the other sources of correlation.
For this aim, the condition with the active DG is better suited, as we consider the
original map imposed by the external input, before the modifications induced by the
storage, which will be described in the following section.

If we fit the distribution of values in the reduced matrix with a Gaussian we can extract
the parameters describing the distance dependence of the errors, namely the height of
the central peak (pc), the width of the distribution (w) and the total volume below
the distribution (a). They correspond, respectively, to the number of correct hits, the
spread of errors around the central location and to the proportion of decoding steps
associated with a single location. These parameters depend on the sample size (Figure
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10.4): a larger sample corresponds to a higher peak of the Gaussian (corresponding
to an increase in the percent correct), to a lower standard deviation around the mean
and to a higher total volume. It should be noted, however, that the observed width
w bundles together the distribution of outright errors and the spread of correct but
spatially imprecise responses.

A non-zero standard deviation σ, which can then be regarded as a component of the
width w, expresses the difference between decoding a set of spatial stimuli and decod-
ing a non-spatial one. We can use this measure of the structural confusion between
locations of the environment to reformulate our measure of metric content for the case
of spatial information. We can argue that given a certain percent correct, the minimal
information would be obtained when the decoding distribution corresponds to a Gaus-
sian of width σ and total volume a centered on the correct location, plus the remaining
(1−a) evenly distributed on all the spatial bins. Analogously the maximal information
attainable would correspond to the situation in which 1/a Gaussians of the same shape
sit on the same number of different locations (one of them, of course, should be placed
on the correct one). Indeed this is a first maximum, and it corresponds to the maximal
unbiased information defined above for the non-spatial case.

For the spatial case, however, these minimum and maximum information values largely
reflect simply the definition of the reduced and full confusion matrix. They tell us about
the procedure used in the analysis more than about the representations being analyzed.
We can however go further, as we can also extract the limit towards the discrete case
for our model, attained when the spatial resolution is optimal, i.e. the spatial code
is precise, spatially exact. By sending the standard deviation σ to zero, in the limit,
and by replacing the Gaussian distribution with a single peak of height a located in
the central spot, we retrieve the situation in which, in the absence of errors due to
fluctuations in the topology, only the retrieval (i.e., identification) of a certain location
is taken into account. This upper maximum does not differ from the previous one in
terms of the number of different locations erroneously decoded as the correct one, but
it modifies the way in which individual decoded locations are distributed around them.
Of course all the conditions between these two extremes can be obtained, using an
intermediate value of the standard deviation.
We can then define a spatial descriptor of the metric content applicable to spatial
representations, as

χ = 1− σ

w
(10.7)

Note that χ = 0 implies that the entire width of the Gaussian in the reduced confu-
sion matrix is due to the poor spatial resolution, as decoding has a standard deviation
σ = w; χ = 1 instead implies that decoding is spatially exact, and the apparent width
w emerges entirely from averaging the errors in the full confusion matrix. We can call
χ the metric resolution index.

We can see where the data we generated with our simulations sit in relation these three
reference curves (Figure 10.5A). For simplicity and clarity, instead of the original data
we will use the fit curves we previously calculated. For each sample size, the param-
eters of the fit define the two maxima (lowest and highest dark blue dashed curves
for χ = 0 and χ = 1, respectively) and the minimum (dark red dashed line) for the
information, and we can compare then with the actual value of the simulated network,
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Figure 10.4: The Gaussian distribution parameters vs. sample size. The values ob-
tained from the fit of the central bump of the reduced matrix, are plotted for different
sample sizes. Pc and a are probabilities. w is measured in spatial bin units (each bin
is 12.5 cm in size).

both the value extracted from the complete confusion matrix (blue solid line), and
the value coming from the reduced one (Figure 10.5A, red solid line). Both series of
values appear to sit on a curve of constant metric resolution. The metric resolution
expressed by the complete confusion matrix is just above the one defined by our first
maximum curve, in fact it sits roughly at χ = 0.1. This corresponds to having a matrix
in which there are essentially no randomly distributed errors, while those associated
with specific locations are spread out locally, with resolution σ = 0.9w.

As expected, the form of the reduced matrix is quite different. It belongs to a complete
different category: here the errors are almost entirely randomly distributed, with the
exception of those giving rise to the central bump.

This measure of metric resolution, thus, extends the previous, non spatial notion of
metric content, and captures the qualitatively different nature of the information ex-
pressed by the two different types of matrices, full and reduced. It allows us to shed
light on the way spatial information is encoded in a CA3-like network by quantifying
the presence and the relative importance of the different sources of confusion present
in the system. Moreover it indicates that the nature of the confusion is an invariant
of the spatial code expressed by the network and it does not depend on the size of the
sample of cells used for the decoding.

10.4.7 Metric Resolution without DG input

One may ask how the procedure previously described applies to the other condition,
in which the DG input is removed and the representation starts to drift away from the
starting position. As already shown by (Cerasti and Treves 2013) the removal of the
external drive causes a major drop in the information about the position of the rat
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Figure 10.5: Metric Resolution. (A) Metric resolution of the CA3 representation gener-
ated with the external DG input. Blue solid line: information content of the confusion
matrix (close to χ ∼ 0.1). Red solid line: information content of the reduced matrix.
Dark red dashed line: theoretical minimum for the information. Dark blue dashed
lines: theoretical maxima of the information for progressively decreasing values of the
error dispersion. (B) Metric resolution of the CA3 representation based on the internal
collateral activity only (also close to χ ∼ 0.1). Color code, same as (A). Only the
metric resolution of the full confusion matrix is shown.

retrievable from the system (also shown in the figure). This drop comes with a parallel
decrease in the percent correct obtained by the system (Figure 3B).

The main effect of drift on our analysis is to introduce a systematic bias in the de-
coding of some of the positions in the environment. Since we discretize space in bins
of side L, every time drift crosses bin boundaries, the decoded position will belong to
a neighboring bin. Not all the points in the same bin are decoded as belonging to
another bin, however, some of them will be assigned correctly, while those who are not
may move in different directions to different neighboring bins.

This phenomenon introduces a series of non-negligible effects in our measure. It un-
dermines one of the fundamental assumptions of the approach, the unbiased nature of
the decoding. In many cases, in those locations where the drift is strong enough, the
maximum of the decoding matrix will be associated to an incorrect bin. Moreover it
invalidates the use of the reduced matrix to extract information about the distribution
of errors around the correct location. Being limited in space, the bump obtained in
the reduced matrix is a combination of metric errors and of neighboring bins reached
by the drift. This makes the parameters of the bump very unreliable and of little use.

It turns out, however, that the effects of drift can be effectively accommodated in the
analysis. To estimate the metric content of the representation generated without the
contribution of the external input we follow the same procedure used in the DG On

121



10. METRIC STRUCTURE OF THE INTERNAL REPRESENTATIONS
OF SPACE

condition with a single modification. We calculate the minimal and maximal infor-
mation levels as in the previous case, using the same parameters extracted from the
previous fits and therefore still coming from the reduced matrix of the DG On case.
The only adjustment we introduce is to impose that each of the 1/a bumps present in
the confusion matrix is transformed to a combination of two adjacent Gaussian bumps,
with the same width of the original, but half of the height. In this way the amount a
of hits associated with the location is preserved but the drift away from (some of) the
locations comprised in the bin is taken into account. This solution is an average of the
effects present at different locations in the environment, as in some of them no drift is
taking place, while in others the phenomenon is present with different strengths and a
variable number of directions.

The result proves that this simple procedure captures very well the effects of drift on
the properties of the representation and justifies the 2-bump choice. As shown in Fig-
ure 10.5B, the data sits on a curve of constant metric resolution, which happens to
coincide with the one expressed in the previous condition.

The calculation of the metric resolution offers insights on the characteristics of this
representation. In fact it shows how, factoring out the drift phenomenon, the repre-
sentation expressed by the recurrent collaterals alone appears to have the very same
metric properties as the one obtained with the active contribution of the DG. For each
sample size, the distribution of errors around the central location is indeed the same,
as are the number of locations erroneously chosen by the decoding algorithm. As in
the previous case, no portion of the errors is allocated randomly. This consistency is
noteworthy as we applied a method adapted, in the previous study, to a completely
different set of data, where both the information and the percent correct values are
drastically different. The metric content analysis shows a remarkable persistence of the
relationship between these two quantities, even when the external input is removed

10.5 Discussion
The ability of the hippocampus to operate as a cognitive map and to successfully
guide spatial behavior (R. Morris et al. 1982) lies in the amount of information about
the external environment that can be stored and retrieved from its representations
(Battaglia and Treves 1998; Káli and Dayan 2000). In particular one would expect
that the global topography expressed by these representations, the set of relationships
existing among the patterns of activation associated with the different points of the
environment, should reflect the one which the animal actually experiences (Curto and
Itskov 2008; Dabaghian et al. 2012). If we imagine an internal observer trying to de-
code the position of the rat, and the structure of the environment in which it is moving,
only relying on the sequence of units that get activated in the hippocampus, similar-
ities between the population vectors would be the most probable criteria to infer the
geometrical location of points traversed at different times, or to predict the existence
of traversable routes (Gupta et al. 2010; Dragoi and Tonegawa 2011).

In fact we observe that the topology realized by the averaged activity of our network
actually reproduces the torus in which the virtual rat of our simulations is moving.
From such a coarse-scale perspective, a CA3 representation is a true reconstruction of

122



the metric the rat is experiencing. Within minor deviations, the correlation between
two average population vectors is a good estimate of the distance of the two locations
over which their individual population vectors were recorded.

But does such a general approach capture all the variability expressed by the network
during its normal operation? We actually find that at a finer scale, the structure of a
CA3 spatial representation is richer than it appears at the coarser scale. The differ-
ence we observe, between the information content of the full confusion matrix and its
reduced version, is telling us about other, non-metric sources of correlation between
different parts of the representation. This difference appears when decoding is based
on limited samples of network units, but the effects persist up to substantial sizes of
the sample, and one should also consider the experimental impracticality of a decoding
procedure based on the whole population.

To quantify the properties of the finer aspects of the spatial representation we propose
the use of an index, the metric resolution, that like the metric content used earlier with
non-spatial stimuli, combines the measures of information and percent correct, which
are obtained from a confusion matrix. The index allows for an assessment of the metric
in the internal representation of space. The measure of metric resolution is applied to
our model of a CA3 network in two different regimes, when driven by an external input
coming from DG, and when this external input is absent and the active representation
is solely an expression of the activity reverberating in the collateral connections. In
both cases we find that the metric resolution of the representation is roughly constant,
at a value χ ∼ 0.1, when the size of the sample is varied, and that the same combination
of metric and non-metric structure is present in the confusion matrix generated from
these different samples. The metric resolution measure tells us that the self-organizing
process has generated an internal representation of space, in the model, which is con-
sistent with external space but has limited metricity, i.e. limited spatial resolution,
close to the minimum amount possible (which would yield χ = 0.0). We acknowledge
the possible dependence of the results on the size of the network that represents the
real CA3. Although a network of 1500 units is significantly smaller than the actual
rodent hippocampus, in some respects it can produce representations which faithfully
reproduce the characteristics of the ones experimentally observed (Cerasti and Treves
2010; Cerasti and Treves 2013). Moreover the difference in size is less extreme if one
regards the real CA3 network as comprised of partially independent sub-modules. The
fact that metric content, in our model system, is independent of sample size and of the
mode of operation (whether or not externally driven) is an indication of the robustness
of this measure.

The errors in decoding, that do not depend on the similarity in the representation due
to close distance, might be seen as hindering the proper operation of the hippocampal
memory system, by introducing ambiguities in the reconstruction of the external space.
But another possibility is that these holes in the consistency of the representation offer
the hippocampus a handle to introduce non-spatial elements of information in the
representation itself (Wood et al. 2000; S. Leutgeb, J. Leutgeb, Barnes, et al. 2005;
Singer et al. 2010; Eichenbaum, Sauvage, et al. 2011). Thus the metric content analysis
reinforces the suggestion (Cerasti and Treves 2013) that the CA3 network, with its
effectively random drive from the Dentate Gyrus, might be best adapted to serve a
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memory function, rather than to produce faithful representations of space.
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Chapter 11

Conclusions

Present day proposals on the functioning of the hippocampus can be seen as the result
of the convergence of two different line of thoughts. On one side the perspective of
the hippocampus as a part of the medial temporal lobe circuit for spatial representa-
tions, mostly based on neurophysiological studies and single-cell recordings in rodents
(O’Keefe and Dostrovsky 1971), on the other side the classical neuropsychological idea
about the role of the hippocampus in the formation of declarative memories (Scoville
and Milner 1957), certainly more respectful of its central position in the brain, but at
the same time often unrelated to the concrete cellular and network mechanisms under-
lying cognitive functions in this part of the brain.

The emerging synthesis is moving away from considering a mere involvement of the
hippocampus in spatial navigation, which it would subserve by providing just a where-
am-I signal. Instead hippocampal place cell representations are seen more and more
as the substrate with which rodent brains organize more complex and assorted kind
of memories, comprised of both spatial and non-spatial elements, more resembling the
notion of episodic memory. The position of the hippocampus at the converging focus
of multiple streams, and the identification of the neural representations expressed in
the regions part of the different streams, are pushing toward a characterization of the
different networks comprised in the medial temporal lobe on the basis of the relation-
ships occurring between them and on the way specific representations can be obtained
from the processing of afferent inputs.

Of particular importance for the development of this conceptual framework has been
the discovery of grid cells in the medial portion of entorhinal cortex (Hafting, Fyhn,
Molden, et al. 2005). They proved the existence of not only spatial information, but of
highly processed spatial information, present in the form of beautifully regular hexag-
onal pattern of activation, just at the gates to the hippocampus. The discovery ac-
celerated the effort to differentiate the function of the hippocampus from that of the
neighboring regions comprising the medial temporal lobe, insisting on their higher spe-
cialization (e.g. mEC in expressing spatial information, LEC in conveying context
discriminant signals, but poorly spatially informative) with respect to the hippocam-
pus, which is thought to ”put together” all the pieces.

This thesis work investigates some of the aspects of this proposal. Place cell and grid
cell representations are discussed in the frame of two different models, focusing on the
peculiarities of these two phenomena and trying to relate them to their functional role.
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In the case of grid cells we address the point of how such a pattern of activity can
emerge from raw spatial inputs. In our model based on adaptation (Kropff and Treves
2008) the grid pattern is the result of a gradual self-organization process that, over the
course of an extended time window, arranges the grid fields to form a regular tiling of
the environment. The model is devoid of any pre-wired element, and the formation of
the grid pattern is entirely based on the animal active exploration of space. This fact
is reflected on the dependance of the particular grid pattern generated on the metric
structure of the external environment. We show how, without the need of changes
or additional ingredients, the same network that generates hexagonal grids on a flat
surface, produces grids with different coordination number (from 1 to 5) on the surface
of a sphere (Chapter 4), and a combination of Face Centered Cubic and Hexagonal
Close Packed arrangement of fields in the three-dimensional space (Chapter 5). Thus,
we argue that the hexagonality of grids observed in the experiments is a consequence of
the particular topology of the environment used, and not an intrinsic property of grid
cell activity. Our model presents the formation of grids as a spontaneous tendency of
the system (guided by adaptation) to attain a regular tessellation of the environment
presented to the animal during a critical developmental period.

In Chapter 6 we discuss the effect of introducing inhibitory interactions among units
in the mEC layer of the model. Simulating the network with this kind of internal con-
nectivity, that is initially random and then self-organizes together with the rest of the
system, leads to the emergence of regular grids with common orientation, even though
the model still fails to produce an even distribution of the phases, which tend to be
clustered in space. Interestingly, however, the resulting inhibitory connectivity shows
the typical pattern used to wire continuous attractor networks, with a neat dependence
of the probability of a connection on the phase difference between two units.(Zilli 2012;
Couey et al. 2013) This implementation of the model, then, could represent a possible
link between the initial generation of the grid pattern through self-organization, and
the implementation of a continuous attractor in mEC, of the kind proposed by many
models of grid cells. Some of the assumptions of the model, like the once-for-all defi-
nition of the connectivity in mEC, in a critical developmental window after which no
plastic change in the synaptic weights is possible, may have interesting consequences
on the use of the network to produce grid patterns after this critical period. Namely,
grids would reflect the fields organization originally developed by adaptation, induced
in turn by the metric of the explored environment.

The reproducibility of grids over different environments is in sharp contrast with the
seemingly random arrangement of place fields. While the focus of the grid model was
on the possibility of generating a unique, extremely regular chart from any spatially
modulated input, even the more disordered one (Kropff and Treves 2008), in the case
of CA3, we address an almost opposite issue, that is the effects of disorder and multiple
charts on the attractor dynamics of the region and on its ability to faithfully represent
spatial location.

In Chapters 8 and 10 we present a series of results pointing towards a fundamental
inadequacy of the CA3 network to provide an accurate spatial representation of the
environment. Indeed, the internal metric of space found in our model of CA3 presents
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distortions of the local topology and introduces non-metric correlations between dif-
ferent parts of the representation. Moreover, the recurrent dynamics of the network in
the absence of a constant external input, is far from that of continuous attractor. The
activity configuration ”drifts” away from the initial position, towards a limited number
of stable locations in the environment. It also transit from one chart to another, in
the presence of multiple stored maps. The results are at odds with a popular view
of the hippocampal attractor landscape as composed by a collection of flat manifolds,
representing locations in an environment, well separated from each other and clearly
distinguished (the different environments) (Samsonovich and B. McNaughton 1997). In
our model the resulting ”energy” landscape inside each chart is not flat, and moreover
different charts (though randomly generated and largely uncorrelated) are connected
by sorts of wormholes which enables the bump of activity to move from one to another.

This situation is reflected in the spatial information provided by such a network (Chap-
ter 7). When compared to that conveyed by a grid map of the environment, the latter
clearly comes out as the superior winner. But the situation is reversed when taking
into account the ability of the two networks to discriminate between different environ-
ments. Here the high variability in the CA3 maps is an advantage to clearly distinguish
different contexts.

The nature of hippocampal representations seems to promote a trade-off between the
ability to convey precise and accurate information about specific elements of the exter-
nal world (in this case, spatial position), and the ability to distinguish and recognize
unique combinations of these elements (in our example, the context). But if the inter-
nal dynamics of CA3 are functional to process information, the network needs a way
to address the content of its memories, independently from the drive of an external
input. In Chapter 9 we present a possible solution to the conflict between the need
to collect inputs from the afferent regions, and the elaboration of this input through
recurrent dynamics. It involves the presence of the theta rhythm regularly modulating
the activity of the area. In our model, the two functional regimes are segregated to dif-
ferent phases of the oscillation, with the external input dominating the half with higher
inhibition, and attractor dynamics taking over during the other part of the cycle. This
sort of effect allows the system to periodically retrieve an attractor, not necessarily
the same one, on the basis of the changing external input. The model reproduces the
results of the teleportation experiment (Jezek et al. 2011), but it might also offer a
more general hint at the interaction between oscillations of any sort (like gamma, or
sharp wave ripples) and recurrent dynamics.

Taken together these results, contribute to the characterize the complementarity be-
tween grid cells and place cells. On one side the focus is on generating a prototypical
arrangement of fields and in permanently fixing the phase relations among units. On
the other, the accent is on the properties that derive to the representation from the
flexible generation of multiple and heterogeneous cell assemblies. Both processes rely
on plastic changes of set of connections, and both of them are described in our models
as the outcome of a self-organization process, but in the case of mEC the learning hap-
pens only once, gradually, on an extended time scale; in the case of the hippocampus
the units contributing to a representation are randomly recruited from a vaster pool,
and the relationship between their activity pattern is highly dependent on chance, or
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11. CONCLUSIONS

possibly on active mechanisms like the accumulation of place fields at the goal location.
We argue that the difference in the way the two representations are formed is reflected
in the different functional role of the two regions, with the circuitry of mEC cortex
specifically designed to provide ready-to-use, accurate metric relations (not necessarily
of locations in space), and the hippocampal representations expressing relationships
between different elements of the external world, whose combinations it is necessary to
rapidly encode in memory.
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Appendix A

In this Appendix we present an analytical approach to the problem of dynamics in the
presence of disordered place fields centers. To do so we consider a minimal formulation
of the problem, N place cells are modeled by interacting binary units σi (Monasson
and Rosay 2013)

σi = 0, 1 (A-1)

corresponding to, respectively, silent and active state.
We suppose that after learning each cell is randomly assigned a preferential firing
location, its place field. The centers of the place fields are randomly arranged on the
environment, which, for simplicity, is taken to be a one-dimensional segment of length
L. The place fields are represented by a Gaussian bump:

φ(x) =
1

(2πw2)d/2
exp(
−x2

2w2
) (A-2)

where x is the position in the environment.
Interactions between units depend on the extent of the overlaps between their place
fields:

Jij =

∫
V

dxφ(x− xi)φ(x− xj) (A-3)

We assume that the total neural activity is fixed by the action of a global inhibition.
We introduce the parameter f to denote the fraction of active cells:

N∑
i=1

σi = fN (A-4)

The couplings Jij and the constraints on the activity define the activity of the network
σσσ = (σ1, σ2, . . . , σN) which is assumed to be drawn from the probability distribution:

PJ(σσσ) =
1

Z
exp(−βH) (A-5)

where the energy of the configuration is

H = −
∑
i<j

Jijσiσj (A-6)
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and Z is the partition function.
If we introduce replicas

Z̄n =

∫
V

∏
i

dxi

∗∑
σai

eβ
∑
i<j Jij

∑n
a=1 σ

a
i σ

a
j (A-7)

(where
∑∗ stands for the sum over the configurations constrained by Equation A-4),

the conjugated variable y(x) (which represents the density of activity in space) and we
consider the set of scalings:

ρ =
N

L
,N, V →∞ (A-8)

φ(x) = φ̂(x̂)/L (A-9)

x = x̂L (A-10)

ya(x) = ŷa(x̂) (A-11)

after some calculations we get to a free energy of the form:

Z̄n =

∫ ∏
a

Dŷa(x̂)e−NF[{ŷa(x̂)}] (A-12)

F =
1

2βρ

∑
a

∫
dx̂ŷa(x̂)2 − log

[∫
dr̂

∗∑
σa

e
∑
a

∫
dx̂φ̂(x̂−r̂)ŷa(x̂)

]
(A-13)

By assuming replica symmetry:

ŷa(x̂) = ŷ(x̂), (A-14)

we finally obtain:

F/n =
1

2βρ

∫
dx̂ŷ(x̂)2 −

∫
dr̂ log

[
1 + eµ+

∫
dx̂φ̂(x̂−r̂)ŷ(x̂)

]
(A-15)

with µ used to enforce the constraint:

∫
dx̂ŷ(x̂) = fρ (A-16)

The minimization equation with respect to y reads:

1

βρ
ŷ(x̂′) =

∫
dr̂
eµ+

∫
dx̂φ̂(x̂−r̂)ŷ(x̂)φ̂(x̂′ − r̂)

1 + eµ+
∫
dx̂φ̂(x̂−r̂)ŷ(x̂)

(A-17)
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the one for µ is instead:

f =

∫
dr̂

eµ+
∫
dx̂φ̂(x̂−r̂)ŷ(x̂)

1 + eµ+
∫
dx̂φ̂(x̂−r̂)ŷ(x̂)

(A-18)

We numerically solve the system of equations A-17 A-18 varying the value of ρ (Figure
1). By increasing the density of fields the solution switch from flat to localized and then
get increasingly peaked. In Figure 2 we plot the standard deviation of the minimization
as a function of ρ (with f = 0.1 and w = 0.05).
We can then calculate the energy F of the solution (Figure 3) and compare it to that
of a uniform distribution in space of the activity density:

ŷ(x̂) = fρ (A-19)

The minimal energy initially coincides with that of the uniform distribution (and in-
deed the solution to A-17 is almost flat for small values of ρ), but above a certain
density (the same of the transition to localized solutions in Figure 2) it departs from it
becoming energetically favorable. Moreover an higher field density correspond to lower
energies.

x

y(x)
Ρ

20 40 60 80 100

5

10

15

20

Figure 1: Plot of the spatial shape of the minimization solution for different values
(colored lines) of the fields density ρ, 1D

The results have a dependency on the parameters w and f but are qualitatively the
same.

A-1 Drift

To quantify the amount of drift produced by our activity probability distribution, we
introduce an external field in the hamiltonian, representing an initial cue, initializing
the bump of activity around the point x = 0. The external field h will be then sent to
0, to estimate the displacement.
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Figure 2: Standard deviation of the minimal energy solution as a function of the fields
density ρ, 1D

Ρ
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Figure 3: Energy of the solution as a function of the fields density ρ, 1D

The hamiltonian is then:

H = −1

2

∑
ij

Jijσiσj − h
∑
i

σixi (A-20)

which gives a Partition Function:

Zn =

∫ ∏
a

Dyae−
N
2βρ

∑
a

∫
dxya(x)2+Nlog[

∫
dr

∏
a(1+edxφ(x−r)y

a(x)+hβr)] (A-21)
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Considering Replica Symmetry we get:

Zn =

∫
Dye−

nN
2βρ

∫
dxy(x)2+nNlog[

∫
dr(1+edxφ(x−r)y(x)+hβr)] (A-22)

The drift can be estimated in two ways:

D2 =
1

(fN)2
< (
∑
i

σixi)2 > =
1

(fN)2

∑
ij

< σiσj > xixj (A-23)

D†2 =
1

(fN)2
(
∑
i

< σi > xi)2 =
1

(fN)2

∑
ij

< σi >< σj > xixj (A-24)

where < · > stands for the mean over the probability distribution of σ, and (·) is
instead the quenched average over the arrangement of the fields.The two definitions of
displacement differ in the way the average over the ”thermal” noise is performed and
we expect that D > D†.
If we perform the calculations we find:

1

f 2N2
D2 =

1

f 2N2
(
∑
i

< σi > xi)2|h=0=
1

f 2N2

1

Z
4h Z =

=
1

f 2

∫
drr2 eµ+

∫
dxy(x)φ(x−r)

(1 + eµ+
∫
dxy(x)φ(x−r)) (A-25)

and

1

f 2N2
D†2 =

1

f 2N2
(
∑
i

< σi > xi)2|h=0=
1

f 2N2
(

1

Z

∂Z

∂h
)2 =

=
1

f 2

∫
drr2 e2(µ+

∫
dxy(x)φ(x−r))

(1 + eµ+
∫
dxy(x)φ(x−r))2

(A-26)

Results are depicted in Figure 4 (with f = 0.1 and w = 0.05). Consistently with their
definition, D > D†. Both measures show a decrease with the increase of ρ, but neither
of the two go to zero.
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Figure 4: Analytical evaluation of drift length.
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Appendix B

Here we describe the model used for the simulations in Chapters 6 and 9.

B-2 Basic Model for CA3 Simulations

The model we consider is, as in Cerasti and Treves 2013, an extended version of the
one used in a previous study (Cerasti and Treves, 2010), where the firing rate of a CA3
pyramidal cell, ηi, was determined, as the one informative component, by the firing
rates {β} of DG granule cells, which feed into it through mossy fiber (MF) connections.
The model used for the neuron was a simple threshold-linear unit (Treves, 1990), so
that the firing of the unit results from an activating current (which includes several
non-informative components) and is compared to a threshold:

ηi(~x) = g

[∑
j

cMF
ij JMF

ij βi(~x) + δ̃i − T̃i

]+

(B-1)

where g is a gain factor, while []+ equals the sum inside the brackets if positive in value,
and zero if negative. The effect of the current threshold for activating a cell, along with
the effect of inhibition, and other non-informative components, are summarized into
a single subtractive term, with a mean value across CA3 cells expressed as T̃ , and a
deviation from the mean for each particular cell ias δ̃i, which acts as a sort of noise;
threshold and inhibition, in fact, while influencing the mean activity of the network,
are supposed to have a minor influence on the coding properties of the system. In the
earlier reduced model, however, T̃ and δ̃ also included the effect of other cells in CA3,
through RC connections, and that of the perforant path, both regarded as unspecific
inputs - this based on the assumption that information is driven into a new CA3 rep-
resentation solely by MF inputs.

Since we are interested in the ability of the RC system (Amaral et al., 1990;van Strien et
al., 2009) to express spatial representations, we separate out the RC contribution, and
redefine T̃ and δ̃ into T and δ - which sum the remaining unspecific inputs, including
the perforant path, not analyzed here:

ηi(~x) = g

[∑
j

cMF
ij JMF

ij βi(~x) +
∑
k

cRCik J
RC
ij ηk(~x) + δi − Ti

]+

(B-2)

Connections between cells are indicated by the fixed binary matrices
{
cMF

}
,
{
cRC
}

,
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whose non-zero elements (which take value 1) represent the existence of anatomical
synapses between two cells. The synaptic efficacies are instead indicated by the matri-
ces of weights

{
JMF

}
,
{
JRC

}
, whose elements are allowed to take positive values. The

notation is chosen to minimize differences with our previous analysis of other compo-
nents of the hippocampal system (e.g. (Treves, 1990; Kropff and Treves, 2008)).

The perforant path inputs from Entorhinal Cortex are not explicitly included in the
model, in line with the hypothesis that the they relay the cue that initiates the retrieval
of a previously stored representation, and have no role in the storage of a new repre-
sentation and in defining the properties of the attractors in CA3. This perspective has
been theoretically described in (Treves and Rolls) and has found experimental support
(Lassalle et al.;Lee and Kesner). The firing rates of the various populations are all
assumed to depend on the spatial position ~x of the animal; and the time scale consid-
ered for evaluating the firing rate is of order the theta period, about a hundred msec,
so the finer temporal dynamics over shorter time scales is neglected. To be precise, in
the simulations, we take a time step to correspond to 125ms of real time, or a theta
period, during which the simulated rat moves 2.5 cm, thus at a speed of 20 cm/s. This
is taken to be an average over a virtual exploratory session, familiarizing with a new
environment.

B-2.1 The Storage of New Representations

The important novel ingredient that was introduced by (Cerasti and Treves, 2010), and
that makes the difference from previous models of self-organizing recurrent networks,
is a realistic description of the patterns of firing in the inputs, i.e. in the dentate
gyrus. As the virtual rat explores the new environment, the activity βj of DG unit j
is determined by the position ~x of the animal, according to the expression:

βj(~x) =

Qj∑
k=0

β0e
−

(~x− ~xjk)
2

2σ2
f (B-3)

The firing rate of the granule cells is then a combination of Qj Gaussian functions,
resulting in bumps, or fields in the firing map of the environment, centered at random
points . The environment is taken to have size A, and the fields are defined as all
having the same effective size π(σf )

2 and height β0. Qj, which indicates the multi-
plicity of fields of DG cell j, is drawn from a Poisson distribution with mean value
q, which roughly fits the data reported by (Leutgeb et al.). According to the same
experimental data, we assume that only a randomly selected fraction pDG � 1 (here
set at pDG = 0.033) of the granule cells are active in a given environment. Hence
population activity is sparse, but the firing map of individual active granule units need
not be sparse (it would only be sparse if qπ(σf )

2/A � 1, which we do not assume to
be always the case).

The activity of DG units determines the probability distribution for the firing rate of
any given CA3 pyramidal unit, once the connectivity level between the two layer has
been fixed:

{
CMF

}
= 0, 1, with P (CMF

ij = 1) = CMF

NDG
≡ cMF . In agreement with

experimental data, we set CMF = 50, a value in the range of the ones providing an op-
timal information transmission from DG to CA3 (Cerasti and Treves, 2010). The MF
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synaptic weights are set to be uniform in value, JMF
ij = J , and similarly JRCik = JRC0

initially. Subsequently, during the learning phase, RC weights are modified according
to the simulated learning process and under the influence of the input coming from the
MF connections. Following the simplified hypothesis that the mossy fibers carry all the
information to be stored without contributing anything to the retrieval process, which
is left to the recurrent collateral, MF weights are kept fixed to their initial values J ;
note that we have found, in our earlier study, that MF connections appear to be inad-
equate, even when associatively plastic, to support retrieval of spatial representation
(Cerasti and Treves, 2010).

The connectivity among CA3 cells is given by the matrix
{
CRC

}
= 0, 1 with P (CRC

ij =

1) = CRC

NCA3
≡ cRC , where CRC = 900 in most simulations. The activity of the network

is regulated by the constraint we impose on its mean and on its sparsity aCA3, i.e. the
fraction of the CA3 units firing significantly at each position, which is an important
parameter affecting memory retrieval ((Treves, 1990); more precisely, aCA3 = 〈ηi〉2 /〈η2

i 〉
). Here we set the sparsity of each representations as aCA3 = 0.1, in broad agreement
with experimental data (Papp et al., 2007), and at each time step we regulate the
threshold T accordingly, to fulfill such requirement, while keeping the mean activity
〈ηi〉 = 0.1 by adjusting the gain g.

B-2.2 Recurrent Collateral Plasticity

During the learning phase, the activity of CA3 is driven by DG inputs, and RC con-
nections contribute through weights uniformly set to their initial value J0. While the
virtual rat explores the environment, RC weights are allowed to change according to an
associative Hebbian learning rule, such that the total change in the synaptic weights
is given as a sum of independent terms

∆JRCik = γηi(t) (ηj(t)− Γj(t)) (B-4)

where ∆Jij(t) indicates the variation of the connection weight between cells i and
j occurring at a given time step t, ηi and ηj are the postsynaptic and presynaptic
firing rate, while γ is the learning rate. This associative learning rule includes the
contribution of a trace, Γ, of the recent past activity of the presynaptic cell, defined as

Γj(t) =
1

τ

∑ τ∑
ts=1

ηj(t− ts) (B-5)

where τ is taken equal to 14 time steps (1750ms). RC weights are forced to be non-
negative, so they are reset to zero each time they become negative. Moreover, the total
of the synaptic weights afferent to a single postsynaptic CA3 cell is normalized at the
end of the learning process, so that

∑
k J

RC
ik = 1 per each CA3 cell. In words, the

synaptic plasticity on recurrent connections allows the system to store the information
about the current environment conveyed by mossy fiber inputs; such information is
expressed in the form of place-like patterns of activity in CA3 units, and the Hebb-like
learning rule strengthens the connections between units that show overlapping fields.
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Czurkó, A., J. Huxter, Y. Li, B. Hangya, and R. Muller (2011). “Theta phase clas-
sification of interneurons in the hippocampal formation of freely moving rats.”
In: The Journal of neuroscience : the official journal of the Society for Neuro-
science 31.8, pp. 2938–2947. doi: 10.1523/JNEUROSCI.5037-10.2011. url: http:
//dx.doi.org/10.1523/JNEUROSCI.5037-10.2011 (cit. on p. 97).

Dabaghian, Y., F. Mémoli, L. Frank, and G. Carlsson (2012). “A topological paradigm
for hippocampal spatial map formation using persistent homology.” In: PLoS com-
putational biology 8.8. doi: 10.1371/journal.pcbi.1002581. url: http://dx.
doi.org/10.1371/journal.pcbi.1002581 (cit. on p. 122).

Daelli, V. and A. Treves (2010). “Neural attractor dynamics in object recognition”. In:
Experimental Brain Research 203 (2), pp. 241–248 (cit. on p. 69).

Davidson, T., F. Kloosterman, and M. Wilson (2009). “Hippocampal replay of extended
experience.” In: Neuron 63.4, pp. 497–507. doi: 10.1016/j.neuron.2009.07.027.
url: http://dx.doi.org/10.1016/j.neuron.2009.07.027 (cit. on p. 10).

Deneve, S., P. Latham, and A. Pouget (1999). “Reading population codes: a neural
implementation of ideal observers.” In: Nature neuroscience 2.8, pp. 740–745. doi:
10.1038/11205. url: http://dx.doi.org/10.1038/11205 (cit. on p. 111).

Deng, W., M. Mayford, and F. Gage (2013). “Selection of distinct populations of den-
tate granule cells in response to inputs as a mechanism for pattern separation in
mice.” In: eLife 2. doi: 10.7554/eLife.00312. url: http://dx.doi.org/10.
7554/eLife.00312 (cit. on p. 76).

Derdikman, D. and E. Moser (2010). “A manifold of spatial maps in the brain.” In:
Trends in cognitive sciences 14.12, pp. 561–569. doi: 10.1016/j.tics.2010.09.
004. url: http://dx.doi.org/10.1016/j.tics.2010.09.004 (cit. on p. 27).

Derdikman, D., J. Whitlock, A. Tsao, M. Fyhn, T. Hafting, M. Moser, and E. Moser
(2009). “Fragmentation of grid cell maps in a multicompartment environment.” In:
Nature neuroscience 12.10, pp. 1325–1332. doi: 10.1038/nn.2396. url: http:
//dx.doi.org/10.1038/nn.2396 (cit. on pp. 8, 9).

Deshmukh, S., J. Johnson, and J. Knierim (2012). “Perirhinal cortex represents non-
spatial, but not spatial, information in rats foraging in the presence of objects:
comparison with lateral entorhinal cortex.” In: Hippocampus 22.10, pp. 2045–2058.

143

http://dx.doi.org/10.1038/nn.3310
http://dx.doi.org/10.1038/nn.3310
http://dx.doi.org/10.1016/S0896-6273(00)00135-5
http://dx.doi.org/10.1016/S0896-6273(00)00135-5
http://dx.doi.org/10.1016/S0896-6273(02)01169-8
http://dx.doi.org/10.1016/S0896-6273(02)01169-8
http://dx.doi.org/10.1016/S0896-6273(02)01169-8
http://dx.doi.org/10.1111/j.1460-9568.2007.05684.x
http://dx.doi.org/10.1111/j.1460-9568.2007.05684.x
http://dx.doi.org/10.1111/j.1460-9568.2007.05684.x
http://dx.doi.org/10.1371/journal.pcbi.1000205
http://dx.doi.org/10.1371/journal.pcbi.1000205
http://dx.doi.org/10.1523/JNEUROSCI.5037-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.5037-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.5037-10.2011
http://dx.doi.org/10.1371/journal.pcbi.1002581
http://dx.doi.org/10.1371/journal.pcbi.1002581
http://dx.doi.org/10.1371/journal.pcbi.1002581
http://dx.doi.org/10.1016/j.neuron.2009.07.027
http://dx.doi.org/10.1016/j.neuron.2009.07.027
http://dx.doi.org/10.1038/11205
http://dx.doi.org/10.1038/11205
http://dx.doi.org/10.7554/eLife.00312
http://dx.doi.org/10.7554/eLife.00312
http://dx.doi.org/10.7554/eLife.00312
http://dx.doi.org/10.1016/j.tics.2010.09.004
http://dx.doi.org/10.1016/j.tics.2010.09.004
http://dx.doi.org/10.1016/j.tics.2010.09.004
http://dx.doi.org/10.1038/nn.2396
http://dx.doi.org/10.1038/nn.2396
http://dx.doi.org/10.1038/nn.2396


REFERENCES

doi: 10.1002/hipo.22046. url: http://dx.doi.org/10.1002/hipo.22046
(cit. on p. 75).

Deshmukh, S. and J. Knierim (2011). “Representation of non-spatial and spatial infor-
mation in the lateral entorhinal cortex.” In: Frontiers in behavioral neuroscience 5.
doi: 10.3389/fnbeh.2011.00069. url: http://dx.doi.org/10.3389/fnbeh.
2011.00069 (cit. on p. 75).

Deshmukh, S., D. Yoganarasimha, H. Voicu, and J. Knierim (2010). “Theta modulation
in the medial and the lateral entorhinal cortices.” In: Journal of neurophysiology
104.2, pp. 994–991006. doi: 10.1152/jn.01141.2009. url: http://dx.doi.org/
10.1152/jn.01141.2009 (cit. on p. 96).

Diba, K. and G. Buzsaki (2007). “Forward and reverse hippocampal place-cell se-
quences during ripples.” In: Nature neuroscience 10.10, pp. 1241–1242. doi: 10.
1038/nn1961. url: http://dx.doi.org/10.1038/nn1961 (cit. on p. 10).

Domnisoru, C., A. Kinkhabwala, and D. Tank (2013). “Membrane potential dynamics
of grid cells.” In: Nature 495.7440, pp. 199–204. doi: 10.1038/nature11973. url:
http://dx.doi.org/10.1038/nature11973 (cit. on p. 23).

Dragoi, G. and G. Buzsaki (2006). “Temporal encoding of place sequences by hip-
pocampal cell assemblies.” In: Neuron 50.1, pp. 145–157. doi: 10.1016/j.neuron.
2006.02.023. url: http://dx.doi.org/10.1016/j.neuron.2006.02.023
(cit. on p. 108).

Dragoi, G. and S. Tonegawa (2011). “Preplay of future place cell sequences by hip-
pocampal cellular assemblies.” In: Nature 469.7330, pp. 397–401. doi: 10.1038/
nature09633. url: http://dx.doi.org/10.1038/nature09633 (cit. on pp. 11,
122).

— (2013). “Distinct preplay of multiple novel spatial experiences in the rat.” In:
Proceedings of the National Academy of Sciences of the United States of Amer-
ica 110.22, pp. 9100–9105. doi: 10.1073/pnas.1306031110. url: http://dx.
doi.org/10.1073/pnas.1306031110 (cit. on pp. 11, 91).

Dupret, D., O. Joseph, P. Barty, and J. Csicsvari (2010). “The reorganization and
reactivation of hippocampal maps predict spatial memory performance.” In: Nature
neuroscience 13.8, pp. 995–991002. doi: 10.1038/nn.2599. url: http://dx.doi.
org/10.1038/nn.2599 (cit. on pp. 10, 79).

Dupret, D., O. Joseph, and J. Csicsvari (2013). “Dynamic Reconfiguration of Hip-
pocampal Interneuron Circuits during Spatial Learning.” In: Neuron. doi: 10 .
1016/j.neuron.2013.01.033. url: http://dx.doi.org/10.1016/j.neuron.
2013.01.033 (cit. on p. 106).

Ego-Stengel, V. and M. Wilson (2010). “Disruption of ripple-associated hippocampal
activity during rest impairs spatial learning in the rat.” In: Hippocampus 20.1, pp. 1–
10. doi: 10.1002/hipo.20707. url: http://dx.doi.org/10.1002/hipo.20707
(cit. on p. 10).

Eichenbaum, H., P. Dudchenko, E. Wood, M. Shapiro, and H. Tanila (1999). “The
Hippocampus, Memory, Review and Place Cells: Is It Spatial Memory or a Memory
Space?” In: Neuron 23, pp. 209–226 (cit. on p. 72).

Eichenbaum, H., A. R. Yonelinas, and C. Ranganath (2007). “The medial temporal
lobe and recognition memory”. In: Annual Review of Neuroscience 30, p. 123 (cit.
on p. 67).

Eichenbaum, H. (2013). “Memory on time.” In: Trends in cognitive sciences. doi: 10.
1016/j.tics.2012.12.007. url: http://dx.doi.org/10.1016/j.tics.2012.
12.007 (cit. on p. 73).

Eichenbaum, H. and P. Lipton (2008). “Towards a functional organization of the medial
temporal lobe memory system: role of the parahippocampal and medial entorhinal
cortical areas.” In: Hippocampus 18.12, pp. 1314–1324 (cit. on p. 66).

Eichenbaum, H., M. Sauvage, N. Fortin, R. Komorowski, and P. Lipton (2011). “To-
wards a functional organization of episodic memory in the medial temporal lobe.”
In: Neuroscience and biobehavioral reviews. doi: 10.1016/j.neubiorev.2011.07.

144

http://dx.doi.org/10.1002/hipo.22046
http://dx.doi.org/10.1002/hipo.22046
http://dx.doi.org/10.3389/fnbeh.2011.00069
http://dx.doi.org/10.3389/fnbeh.2011.00069
http://dx.doi.org/10.3389/fnbeh.2011.00069
http://dx.doi.org/10.1152/jn.01141.2009
http://dx.doi.org/10.1152/jn.01141.2009
http://dx.doi.org/10.1152/jn.01141.2009
http://dx.doi.org/10.1038/nn1961
http://dx.doi.org/10.1038/nn1961
http://dx.doi.org/10.1038/nn1961
http://dx.doi.org/10.1038/nature11973
http://dx.doi.org/10.1038/nature11973
http://dx.doi.org/10.1016/j.neuron.2006.02.023
http://dx.doi.org/10.1016/j.neuron.2006.02.023
http://dx.doi.org/10.1016/j.neuron.2006.02.023
http://dx.doi.org/10.1038/nature09633
http://dx.doi.org/10.1038/nature09633
http://dx.doi.org/10.1038/nature09633
http://dx.doi.org/10.1073/pnas.1306031110
http://dx.doi.org/10.1073/pnas.1306031110
http://dx.doi.org/10.1073/pnas.1306031110
http://dx.doi.org/10.1038/nn.2599
http://dx.doi.org/10.1038/nn.2599
http://dx.doi.org/10.1038/nn.2599
http://dx.doi.org/10.1016/j.neuron.2013.01.033
http://dx.doi.org/10.1016/j.neuron.2013.01.033
http://dx.doi.org/10.1016/j.neuron.2013.01.033
http://dx.doi.org/10.1016/j.neuron.2013.01.033
http://dx.doi.org/10.1002/hipo.20707
http://dx.doi.org/10.1002/hipo.20707
http://dx.doi.org/10.1016/j.tics.2012.12.007
http://dx.doi.org/10.1016/j.tics.2012.12.007
http://dx.doi.org/10.1016/j.tics.2012.12.007
http://dx.doi.org/10.1016/j.tics.2012.12.007
http://dx.doi.org/10.1016/j.neubiorev.2011.07.006
http://dx.doi.org/10.1016/j.neubiorev.2011.07.006


REFERENCES

006. url: http://dx.doi.org/10.1016/j.neubiorev.2011.07.006 (cit. on
p. 123).

Eliasmith, C. (2005). “A unified approach to building and controlling spiking at-
tractor networks.” In: Neural computation 17.6, pp. 1276–1314. doi: 10.1162/
0899766053630332. url: http://dx.doi.org/10.1162/0899766053630332 (cit.
on p. 20).

Fanselow, M. and H. Dong (2010). “Are the dorsal and ventral hippocampus function-
ally distinct structures?” In: Neuron 65.1, pp. 7–19. doi: 10.1016/j.neuron.2009.
11.031. url: http://dx.doi.org/10.1016/j.neuron.2009.11.031 (cit. on
pp. 9, 97).

Felleman, D. and D. Van Essen (1991). “Distributed hierarchical processing in the
primate cerebral cortex.” In: Cerebral cortex (New York, N.Y. : 1991) 1.1, pp. 1–47.
doi: 10.1093/cercor/1.1.1. url: http://dx.doi.org/10.1093/cercor/1.1.1
(cit. on p. 5).

Fenton, A., H. Kao, S. Neymotin, A. Olypher, Y. Vayntrub, W. Lytton, and N. Ludvig
(2008). “Unmasking the CA1 ensemble place code by exposures to small and large
environments: more place cells and multiple, irregularly arranged, and expanded
place fields in the larger space.” In: The Journal of neuroscience : the official journal
of the Society for Neuroscience 28.44, pp. 11250–11262. doi: 10.1523/JNEUROSCI.
2862-08.2008. url: http://dx.doi.org/10.1523/JNEUROSCI.2862-08.2008
(cit. on p. 19).

Ferbinteanu, J. and M. Shapiro (2003). “Prospective and retrospective memory coding
in the hippocampus.” In: Neuron 40.6, pp. 1227–1239. doi: 10 . 1016 / S0896 -
6273(03)00752-9. url: http://dx.doi.org/10.1016/S0896-6273(03)00752-9
(cit. on p. 9).

Ferbinteanu, J., P. Shirvalkar, and M. Shapiro (2011). “Memory modulates journey-
dependent coding in the rat hippocampus.” In: The Journal of neuroscience : the
official journal of the Society for Neuroscience 31.25, pp. 9135–9146. doi: 10.1523/
JNEUROSCI.1241-11.2011. url: http://dx.doi.org/10.1523/JNEUROSCI.1241-
11.2011 (cit. on p. 9).

Fiete, I., Y. Burak, and T. Brookings (2008). “What grid cells convey about rat lo-
cation.” In: The Journal of neuroscience : the official journal of the Society for
Neuroscience 28.27, pp. 6858–6871. doi: 10.1523/JNEUROSCI.5684- 07.2008.
url: http://dx.doi.org/10.1523/JNEUROSCI.5684-07.2008 (cit. on pp. 65, 66,
74).

Foster, D. and M. Wilson (2006). “Reverse replay of behavioural sequences in hip-
pocampal place cells during the awake state.” In: Nature 440.7084, pp. 680–683.
doi: 10.1038/nature04587. url: http://dx.doi.org/10.1038/nature04587
(cit. on p. 10).

Freund, T. and G. Buzsaki (1996). “Interneurons of the hippocampus.” In: Hippocam-
pus 6.4, pp. 347–470. doi: 10.1002/(SICI)1098-1063(1996)6:4<347::AID-
HIPO1 > 3 . 0 . CO ; 2 - I. url: http : / / dx . doi . org / 10 . 1002 / (SICI ) 1098 -
1063(1996)6:4%3C347::AID-HIPO1%3E3.0.CO;2-I (cit. on p. 97).

Freund, T. (2003). “Interneuron Diversity series: Rhythm and mood in perisomatic
inhibition.” In: Trends in neurosciences 26.9, pp. 489–495. doi: 10.1016/S0166-
2236(03)00227-3. url: http://dx.doi.org/10.1016/S0166-2236(03)00227-3
(cit. on p. 106).

Fuhs, M. and D. Touretzky (2006). “A spin glass model of path integration in rat
medial entorhinal cortex.” In: The Journal of neuroscience : the official journal of
the Society for Neuroscience 26.16, pp. 4266–4276. doi: 10.1523/JNEUROSCI.4353-
05.2006. url: http://dx.doi.org/10.1523/JNEUROSCI.4353-05.2006 (cit. on
pp. 20, 38).

Fyhn, M., T. Hafting, A. Treves, M. Moser, and E. Moser (2007). “Hippocampal remap-
ping and grid realignment in entorhinal cortex.” In: Nature 446.7132, pp. 190–194.
doi: 10.1038/nature05601. url: http://dx.doi.org/10.1038/nature05601
(cit. on pp. 14, 66, 74).

145

http://dx.doi.org/10.1016/j.neubiorev.2011.07.006
http://dx.doi.org/10.1016/j.neubiorev.2011.07.006
http://dx.doi.org/10.1016/j.neubiorev.2011.07.006
http://dx.doi.org/10.1162/0899766053630332
http://dx.doi.org/10.1162/0899766053630332
http://dx.doi.org/10.1162/0899766053630332
http://dx.doi.org/10.1016/j.neuron.2009.11.031
http://dx.doi.org/10.1016/j.neuron.2009.11.031
http://dx.doi.org/10.1016/j.neuron.2009.11.031
http://dx.doi.org/10.1093/cercor/1.1.1
http://dx.doi.org/10.1093/cercor/1.1.1
http://dx.doi.org/10.1523/JNEUROSCI.2862-08.2008
http://dx.doi.org/10.1523/JNEUROSCI.2862-08.2008
http://dx.doi.org/10.1523/JNEUROSCI.2862-08.2008
http://dx.doi.org/10.1016/S0896-6273(03)00752-9
http://dx.doi.org/10.1016/S0896-6273(03)00752-9
http://dx.doi.org/10.1016/S0896-6273(03)00752-9
http://dx.doi.org/10.1523/JNEUROSCI.1241-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.1241-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.1241-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.1241-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.5684-07.2008
http://dx.doi.org/10.1523/JNEUROSCI.5684-07.2008
http://dx.doi.org/10.1038/nature04587
http://dx.doi.org/10.1038/nature04587
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:4%3C347::AID-HIPO1%3E3.0.CO;2-I
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:4%3C347::AID-HIPO1%3E3.0.CO;2-I
http://dx.doi.org/10.1016/S0166-2236(03)00227-3
http://dx.doi.org/10.1016/S0166-2236(03)00227-3
http://dx.doi.org/10.1016/S0166-2236(03)00227-3
http://dx.doi.org/10.1523/JNEUROSCI.4353-05.2006
http://dx.doi.org/10.1523/JNEUROSCI.4353-05.2006
http://dx.doi.org/10.1523/JNEUROSCI.4353-05.2006
http://dx.doi.org/10.1038/nature05601
http://dx.doi.org/10.1038/nature05601


REFERENCES

Fyhn, M., T. Hafting, M. Witter, E. Moser, and M. Moser (2008). “Grid cells in mice.”
In: Hippocampus 18.12, pp. 1230–1238. doi: 10.1002/hipo.20472. url: http:
//dx.doi.org/10.1002/hipo.20472 (cit. on p. 21).

Fyhn, M., S. Molden, M. Witter, E. Moser, and M. Moser (2004). “Spatial represen-
tation in the entorhinal cortex.” In: Science (New York, N.Y.) 305.5688, pp. 1258–
1264. doi: 10.1126/science.1099901. url: http://dx.doi.org/10.1126/
science.1099901 (cit. on pp. 11, 19).

Garner, A., D. Rowland, S. Hwang, K. Baumgaertel, B. Roth, C. Kentros, and M.
Mayford (2012). “Generation of a synthetic memory trace.” In: Science (New York,
N.Y.) 335.6075, pp. 1513–1516. doi: 10.1126/science.1214985. url: http:
//dx.doi.org/10.1126/science.1214985 (cit. on p. 68).

Geisler, C., K. Diba, E. Pastalkova, K. Mizuseki, S. Royer, and G. Buzsaki (2010).
“Temporal delays among place cells determine the frequency of population theta
oscillations in the hippocampus.” In: Proceedings of the National Academy of Sci-
ences of the United States of America 107.17, pp. 7957–7962. doi: 10.1073/pnas.
0912478107. url: http://dx.doi.org/10.1073/pnas.0912478107 (cit. on p. 97).

Gibson, B., W. Butler, and J. Taube (2013). “The head-direction signal is critical
for navigation requiring a cognitive map but not for learning a spatial habit.” In:
Current biology : CB 23.16, pp. 1536–1540. doi: 10.1016/j.cub.2013.06.030.
url: http://dx.doi.org/10.1016/j.cub.2013.06.030 (cit. on p. 41).

Giocomo, L., S. Hussaini, F. Zheng, E. Kandel, M.-B. Moser, and E. Moser (2011).
“Grid cells use HCN1 channels for spatial scaling.” In: Cell 147.5, pp. 1159–1170.
doi: 10.1016/j.cell.2011.08.051. url: http://dx.doi.org/10.1016/j.
cell.2011.08.051 (cit. on p. 14).

Giocomo, L., M. Moser, and E. Moser (2011). “Computational models of grid cells.”
In: Neuron 71.4, pp. 589–603. doi: 10.1016/j.neuron.2011.07.023. url: http:
//dx.doi.org/10.1016/j.neuron.2011.07.023 (cit. on pp. 20, 22).

Giocomo, L., E. Zilli, E. Fransén, and M. Hasselmo (2007). “Temporal frequency of
subthreshold oscillations scales with entorhinal grid cell field spacing.” In: Science
(New York, N.Y.) 315.5819, pp. 1719–1722. doi: 10.1126/science.1139207. url:
http://dx.doi.org/10.1126/science.1139207 (cit. on p. 14).

Girardeau, G., K. Benchenane, S. Wiener, G. Buzsaki, and M. Zugaro (2009). “Se-
lective suppression of hippocampal ripples impairs spatial memory.” In: Nature
neuroscience 12.10, pp. 1222–1223. doi: 10.1038/nn.2384. url: http://dx.doi.
org/10.1038/nn.2384 (cit. on pp. 10, 110).

Golomb, D., J. Hertz, S. Panzeri, A. Treves, and B. Richmond (1997). “How well can
we estimate the information carried in neuronal responses from limited samples?”
In: Neural computation 9.3, pp. 649–665. doi: 10.1162/neco.1997.9.3.649. url:
http://dx.doi.org/10.1162/neco.1997.9.3.649 (cit. on p. 112).

Grossberg, S. and P. Pilly (2012). “How entorhinal grid cells may learn multiple spatial
scales from a dorsoventral gradient of cell response rates in a self-organizing map.”
In: PLoS computational biology 8.10. doi: 10.1371/journal.pcbi.1002648. url:
http://dx.doi.org/10.1371/journal.pcbi.1002648 (cit. on p. 24).

Guanella, A., D. Kiper, and P. Verschure (2007). “A model of grid cells based on a
twisted torus topology.” In: International journal of neural systems 17.4, pp. 231–
240. doi: 10.1142/S0129065707001093. url: http://dx.doi.org/10.1142/
S0129065707001093 (cit. on pp. 20, 61).

Gupta, A., M. A. van der Meer, D. Touretzky, and A. Redish (2010). “Hippocampal
replay is not a simple function of experience.” In: Neuron 65.5, pp. 695–705. doi:
10.1016/j.neuron.2010.01.034. url: http://dx.doi.org/10.1016/j.neuron.
2010.01.034 (cit. on pp. 10, 122).

— (2012). “Segmentation of spatial experience by hippocampal theta sequences.” In:
Nature neuroscience 15.7, pp. 1032–1039. doi: 10.1038/nn.3138. url: http:
//dx.doi.org/10.1038/nn.3138 (cit. on p. 109).

Guzowski, J., J. Knierim, and E. Moser (2004). “Ensemble dynamics of hippocampal
regions CA3 and CA1.” In: Neuron 44.4, pp. 581–584. doi: 10.1016/j.neuron.

146

http://dx.doi.org/10.1002/hipo.20472
http://dx.doi.org/10.1002/hipo.20472
http://dx.doi.org/10.1002/hipo.20472
http://dx.doi.org/10.1126/science.1099901
http://dx.doi.org/10.1126/science.1099901
http://dx.doi.org/10.1126/science.1099901
http://dx.doi.org/10.1126/science.1214985
http://dx.doi.org/10.1126/science.1214985
http://dx.doi.org/10.1126/science.1214985
http://dx.doi.org/10.1073/pnas.0912478107
http://dx.doi.org/10.1073/pnas.0912478107
http://dx.doi.org/10.1073/pnas.0912478107
http://dx.doi.org/10.1016/j.cub.2013.06.030
http://dx.doi.org/10.1016/j.cub.2013.06.030
http://dx.doi.org/10.1016/j.cell.2011.08.051
http://dx.doi.org/10.1016/j.cell.2011.08.051
http://dx.doi.org/10.1016/j.cell.2011.08.051
http://dx.doi.org/10.1016/j.neuron.2011.07.023
http://dx.doi.org/10.1016/j.neuron.2011.07.023
http://dx.doi.org/10.1016/j.neuron.2011.07.023
http://dx.doi.org/10.1126/science.1139207
http://dx.doi.org/10.1126/science.1139207
http://dx.doi.org/10.1038/nn.2384
http://dx.doi.org/10.1038/nn.2384
http://dx.doi.org/10.1038/nn.2384
http://dx.doi.org/10.1162/neco.1997.9.3.649
http://dx.doi.org/10.1162/neco.1997.9.3.649
http://dx.doi.org/10.1371/journal.pcbi.1002648
http://dx.doi.org/10.1371/journal.pcbi.1002648
http://dx.doi.org/10.1142/S0129065707001093
http://dx.doi.org/10.1142/S0129065707001093
http://dx.doi.org/10.1142/S0129065707001093
http://dx.doi.org/10.1016/j.neuron.2010.01.034
http://dx.doi.org/10.1016/j.neuron.2010.01.034
http://dx.doi.org/10.1016/j.neuron.2010.01.034
http://dx.doi.org/10.1038/nn.3138
http://dx.doi.org/10.1038/nn.3138
http://dx.doi.org/10.1038/nn.3138
http://dx.doi.org/10.1016/j.neuron.2004.11.003
http://dx.doi.org/10.1016/j.neuron.2004.11.003


REFERENCES

2004.11.003. url: http://dx.doi.org/10.1016/j.neuron.2004.11.003
(cit. on p. 7).

Hafting, T., M. Fyhn, T. Bonnevie, M. Moser, and E. Moser (2008). “Hippocampus-
independent phase precession in entorhinal grid cells.” In: Nature 453.7199, pp. 1248–
1252. doi: 10.1038/nature06957. url: http://dx.doi.org/10.1038/nature06957
(cit. on pp. 16, 17, 96).

Hafting, T., M. Fyhn, S. Molden, M. Moser, and E. Moser (2005). “Microstructure
of a spatial map in the entorhinal cortex.” In: Nature 436.7052, pp. 801–806. doi:
10.1038/nature03721. url: http://dx.doi.org/10.1038/nature03721 (cit. on
pp. 1, 5, 12, 19, 125).

Halasy, K., E. Buhl, Z. Lorinczi, G. Tamas, and P. Somogyi (1996). “Synaptic target
selectivity and input of GABAergic basket and bistratified interneurons in the CA1
area of the rat hippocampus.” In: Hippocampus 6.3, pp. 306–329. doi: 10.1002/
(SICI)1098- 1063(1996)6:3&lt;306::AID- HIPO8&gt;3.0.CO;2- K. url:
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:3&lt;306::AID-
HIPO8&gt;3.0.CO;2-K (cit. on p. 97).

Hamaguchi, K., J. Hatchett, and M. Okada (2006). “Analytic solution of neural network
with disordered lateral inhibition.” In: Physical review. E, Statistical, nonlinear, and
soft matter physics 73.5 Pt 1 (cit. on p. 111).

Hangya, B., Y. Li, R. Muller, and A. Czurko (2010). “Complementary spatial firing
in place cell-interneuron pairs.” In: The Journal of physiology 588.Pt 21, pp. 4165–
4175. doi: 10.1113/jphysiol.2010.194274. url: http://dx.doi.org/10.1113/
jphysiol.2010.194274 (cit. on p. 106).

Harris, K., J. Csicsvari, H. Hirase, G. Dragoi, and G. Buzsaki (2003). “Organization
of cell assemblies in the hippocampus.” In: Nature 424.6948, pp. 552–556. doi:
10.1038/nature01834. url: http://dx.doi.org/10.1038/nature01834 (cit. on
p. 104).

Harvey, C., F. Collman, D. Dombeck, and D. Tank (2009). “Intracellular dynam-
ics of hippocampal place cells during virtual navigation.” In: Nature 461.7266,
pp. 941–946. doi: 10.1038/nature08499. url: http://dx.doi.org/10.1038/
nature08499 (cit. on p. 27).

Hasselmo, M. E., C. Bodelón, and B. P. Wyble (2002). “A proposed function for hip-
pocampal theta rhythm: separate phases of encoding and retrieval enhance reversal
of prior learning”. In: Neural Computation 14 (4), pp. 793–817. issn: 0899-7667
(cit. on p. 94).

Hasselmo, M. (2008). “Grid cell mechanisms and function: contributions of entorhinal
persistent spiking and phase resetting.” In: Hippocampus 18.12, pp. 1213–1229. doi:
10.1002/hipo.20512. url: http://dx.doi.org/10.1002/hipo.20512 (cit. on
p. 22).

Hasselmo, M. and M. Brandon (2008). “Linking cellular mechanisms to behavior: en-
torhinal persistent spiking and membrane potential oscillations may underlie path
integration, grid cell firing, and episodic memory.” In: Neural plasticity 2008. doi:
10.1155/2008/658323. url: http://dx.doi.org/10.1155/2008/658323 (cit. on
p. 22).

Hasselmo, M., L. Giocomo, and E. Zilli (2007). “Grid cell firing may arise from in-
terference of theta frequency membrane potential oscillations in single neurons.”
In: Hippocampus 17.12, pp. 1252–1271. doi: 10.1002/hipo.20374. url: http:
//dx.doi.org/10.1002/hipo.20374 (cit. on pp. 21, 38).

Hayman, R. and K. Jeffery (2008). “How heterogeneous place cell responding arises
from homogeneous grids–a contextual gating hypothesis.” In: Hippocampus 18.12,
pp. 1301–1313. doi: 10.1002/hipo.20513. url: http://dx.doi.org/10.1002/
hipo.20513 (cit. on p. 66).

Hayman, R., M. Verriotis, A. Jovalekic, A. Fenton, and K. Jeffery (2011). “Anisotropic
encoding of three-dimensional space by place cells and grid cells.” In: Nature neu-
roscience 14.9, pp. 1182–1188. doi: 10.1038/nn.2892. url: http://dx.doi.org/
10.1038/nn.2892 (cit. on pp. 42, 111).

147

http://dx.doi.org/10.1016/j.neuron.2004.11.003
http://dx.doi.org/10.1016/j.neuron.2004.11.003
http://dx.doi.org/10.1016/j.neuron.2004.11.003
http://dx.doi.org/10.1038/nature06957
http://dx.doi.org/10.1038/nature06957
http://dx.doi.org/10.1038/nature03721
http://dx.doi.org/10.1038/nature03721
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:3&lt;306::AID-HIPO8&gt;3.0.CO;2-K
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:3&lt;306::AID-HIPO8&gt;3.0.CO;2-K
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:3&lt;306::AID-HIPO8&gt;3.0.CO;2-K
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:3&lt;306::AID-HIPO8&gt;3.0.CO;2-K
http://dx.doi.org/10.1113/jphysiol.2010.194274
http://dx.doi.org/10.1113/jphysiol.2010.194274
http://dx.doi.org/10.1113/jphysiol.2010.194274
http://dx.doi.org/10.1038/nature01834
http://dx.doi.org/10.1038/nature01834
http://dx.doi.org/10.1038/nature08499
http://dx.doi.org/10.1038/nature08499
http://dx.doi.org/10.1038/nature08499
http://dx.doi.org/10.1002/hipo.20512
http://dx.doi.org/10.1002/hipo.20512
http://dx.doi.org/10.1155/2008/658323
http://dx.doi.org/10.1155/2008/658323
http://dx.doi.org/10.1002/hipo.20374
http://dx.doi.org/10.1002/hipo.20374
http://dx.doi.org/10.1002/hipo.20374
http://dx.doi.org/10.1002/hipo.20513
http://dx.doi.org/10.1002/hipo.20513
http://dx.doi.org/10.1002/hipo.20513
http://dx.doi.org/10.1038/nn.2892
http://dx.doi.org/10.1038/nn.2892
http://dx.doi.org/10.1038/nn.2892


REFERENCES

Healy, S., S. de Kort, and N. Clayton (2005). “The hippocampus, spatial memory and
food hoarding: a puzzle revisited.” In: Trends in ecology & evolution 20.1, pp. 17–
22. doi: 10.1016/j.tree.2004.10.006. url: http://dx.doi.org/10.1016/j.
tree.2004.10.006 (cit. on p. 41).

Hebb, D. (1949). The organisation of behaviour. New York: Wiley (cit. on p. 69).
Heys, J., M. Katrina, C. Moss, and M. Hasselmo (2013). “Bat and rat neurons differ

in theta-frequency resonance despite similar coding of space.” In: Science (New
York, N.Y.) 340.6130, pp. 363–367. doi: 10.1126/science.1233831. url: http:
//dx.doi.org/10.1126/science.1233831 (cit. on pp. 17, 23).

Hok, V., P.-P. Lenck-Santini, S. Roux, E. Save, R. Muller, and B. Poucet (2007). “Goal-
related activity in hippocampal place cells.” In: The Journal of neuroscience : the
official journal of the Society for Neuroscience 27.3, pp. 472–482. doi: 10.1523/
JNEUROSCI.2864-06.2007. url: http://dx.doi.org/10.1523/JNEUROSCI.2864-
06.2007 (cit. on pp. 9, 79).

Hollup, S. A., S. Molden, J. G. Donnett, M.-B. Moser, and E. I. Moser (2001). “Accu-
mulation of hippocampal place fields at the goal location in an annular watermaze
task”. In: The Journal of Neuroscience 21.5, pp. 1635–1644 (cit. on pp. 9, 79).

Hopfield, J. (1982). “Neural networks and physical systems with emergent collective
computational abilities”. In: Proceedings of the national academy of sciences 79 (8),
p. 2554 (cit. on p. 69).

Hubel, D. and T. Wiesel (1959). “Receptive fields of single neurones in the cat’s striate
cortex.” In: The Journal of physiology 148, pp. 574–591 (cit. on p. 5).

Hunsaker, M., G. Mooy, J. Swift, and R. Kesner (2007). “Dissociations of the medial
and lateral perforant path projections into dorsal DG, CA3, and CA1 for spatial
and nonspatial (visual object) information processing.” In: Behavioral neuroscience
121.4, pp. 742–750. doi: 10.1037/0735-7044.121.4.742. url: http://dx.doi.
org/10.1037/0735-7044.121.4.742 (cit. on p. 75).

Isomura, Y., A. Sirota, S. Ozen, S. Montgomery, K. Mizuseki, D. Henze, and G. Buzsaki
(2006). “Integration and segregation of activity in entorhinal-hippocampal subre-
gions by neocortical slow oscillations.” In: Neuron 52.5, pp. 871–882. doi: 10.1016/
j.neuron.2006.10.023. url: http://dx.doi.org/10.1016/j.neuron.2006.10.
023 (cit. on p. 108).

Itskov, V., D. Hansel, and M. Tsodyks (2011). “Short-Term Facilitation may Stabilize
Parametric Working Memory Trace.” In: Frontiers in computational neuroscience
5 (cit. on pp. 79, 83).

Jackson, J., A. Johnson, and A. Redish (2006). “Hippocampal sharp waves and reac-
tivation during awake states depend on repeated sequential experience.” In: The
Journal of neuroscience : the official journal of the Society for Neuroscience 26.48,
pp. 12415–12426. doi: 10.1523/JNEUROSCI.4118-06.2006. url: http://dx.doi.
org/10.1523/JNEUROSCI.4118-06.2006 (cit. on p. 10).

Jacobs, J., C. Weidemann, J. Miller, A. Solway, J. Burke, X. Wei, N. Suthana, M.
Sperling, A. Sharan, I. Fried, and M. Kahana (2013). “Direct recordings of grid-
like neuronal activity in human spatial navigation.” In: Nature neuroscience 16.9,
pp. 1188–1190. doi: 10.1038/nn.3466. url: http://dx.doi.org/10.1038/nn.
3466 (cit. on p. 16).

Jeffery, K., A. Jovalekic, M. Verriotis, and R. Hayman (2013). “Navigating in a three-
dimensional world.” In: The Behavioral and brain sciences 36.5, pp. 523–543. doi:
10.1017/S0140525X12002476. url: http://dx.doi.org/10.1017/S0140525X12002476
(cit. on pp. 41, 42, 63).

Jensen, O. and J. Lisman (2000). “Position reconstruction from an ensemble of hip-
pocampal place cells: contribution of theta phase coding.” In: Journal of neuro-
physiology 83.5, pp. 2602–2609 (cit. on p. 10).

Jezek, K., E. Henriksen, A. Treves, E. Moser, and M. Moser (2011). “Theta-paced flick-
ering between place-cell maps in the hippocampus.” In: Nature 478.7368, pp. 246–
249. doi: 10.1038/nature10439. url: http://dx.doi.org/10.1038/nature10439
(cit. on pp. 3, 69, 71, 76, 98, 101, 102, 104, 107, 109, 127).

148

http://dx.doi.org/10.1016/j.tree.2004.10.006
http://dx.doi.org/10.1016/j.tree.2004.10.006
http://dx.doi.org/10.1016/j.tree.2004.10.006
http://dx.doi.org/10.1126/science.1233831
http://dx.doi.org/10.1126/science.1233831
http://dx.doi.org/10.1126/science.1233831
http://dx.doi.org/10.1523/JNEUROSCI.2864-06.2007
http://dx.doi.org/10.1523/JNEUROSCI.2864-06.2007
http://dx.doi.org/10.1523/JNEUROSCI.2864-06.2007
http://dx.doi.org/10.1523/JNEUROSCI.2864-06.2007
http://dx.doi.org/10.1037/0735-7044.121.4.742
http://dx.doi.org/10.1037/0735-7044.121.4.742
http://dx.doi.org/10.1037/0735-7044.121.4.742
http://dx.doi.org/10.1016/j.neuron.2006.10.023
http://dx.doi.org/10.1016/j.neuron.2006.10.023
http://dx.doi.org/10.1016/j.neuron.2006.10.023
http://dx.doi.org/10.1016/j.neuron.2006.10.023
http://dx.doi.org/10.1523/JNEUROSCI.4118-06.2006
http://dx.doi.org/10.1523/JNEUROSCI.4118-06.2006
http://dx.doi.org/10.1523/JNEUROSCI.4118-06.2006
http://dx.doi.org/10.1038/nn.3466
http://dx.doi.org/10.1038/nn.3466
http://dx.doi.org/10.1038/nn.3466
http://dx.doi.org/10.1017/S0140525X12002476
http://dx.doi.org/10.1017/S0140525X12002476
http://dx.doi.org/10.1038/nature10439
http://dx.doi.org/10.1038/nature10439


REFERENCES

Johnson, A., J. Jackson, and A. D. Redish (2008). “Measuring distributed proper-
ties of neural representations beyond the decoding of local variables: implications
for cognition”. In: Mechanisms of information processing in the brain: encoding of
information in neural populations and networks, pp. 95–9119 (cit. on p. 10).

Johnson, A. and A. Redish (2007). “Neural ensembles in CA3 transiently encode paths
forward of the animal at a decision point.” In: The Journal of neuroscience : the
official journal of the Society for Neuroscience 27.45, pp. 12176–12189. doi: 10.
1523/jneurosci.3761-07.2007. url: http://dx.doi.org/10.1523/jneurosci.
3761-07.2007 (cit. on pp. 106, 107).

Jung, M., S. Wiener, and B. McNaughton (1994). “Comparison of spatial firing charac-
teristics of units in dorsal and ventral hippocampus of the rat.” In: The Journal of
neuroscience : the official journal of the Society for Neuroscience 14.12, pp. 7347–
7356 (cit. on pp. 9, 97).

Kali, S. and P. Dayan (2000). “The involvement of recurrent connections in area CA3 in
establishing the properties of place fields: a model”. In: The Journal of Neuroscience
20 (19), p. 7463 (cit. on p. 71).
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