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Introduction

A. The dynamics of a rigid body with a fixed point in a conservative force field is one of the
classical problems of mechanics (see for instance [75,7,57]). It constitutes a Hamiltonian
system with three degrees of freedom, so that the equations of motion are integrable by
quadratures whenever there exist three independent integrals of motion in involution. Such
integrals are known to exist only in few particular cases.

In the classical cases of Euler—Poinsot, Lagrange, and Kowalevskaya the three integrals
exist, and are independent, in an open and dense subset of phase space. The first case
is ‘free’ motion, namely under the influence of external forces with vanishing torque with
respect to the fixed point (obviously, the reaction of the constraint is supposed to be ideal).
The other two cases concern symmetric rigid bodies, having special mass distributions, in
the constant gravity field (by symmetric we mean that the inertia ellipsoid relative to the
suspension point is of revolution). Moreover, there are also cases in which the equations
of motion are integrable, but only for a subset of initial conditions which is closed and of
zero measure (examples can be found in [9,25]).

Among all problems of rigid body dynamics, the most studied one is certainly that of a
‘heavy’ (i.e. subject to a constant gravity) rigid body. In such a case, there always exists a
second independent integral of motion, besides energy, namely the projection of the angular
momentum along the direction of gravity. The ‘third’ integral has been longly searched for,
and the very question of its existence was essentially open until recent times. For instance,
Poincaré (who had extremely clear ideas about the non-integrability of nearly integrable
systems) could not exclude its existence, and was very cautious about this question (see
[67], vol. 1, pag. 255-259). Non-existence results for analytic integrals (of a certain kind)
defined in open sets were later obtained by Husson (¢4 and, more recently, by Kozlov [52]
and Ziglin(™ (see also [9,43,54]). Numerical evidence for chaotic motions of a heavy
asymmetric body was given in [38].

The studies of rigid body dynamics have been spread over more than two centuries.
In the absence of exact integrability results, they have been mainly addressed to establish,
or exclude, the existence, in various cases, of special solutions (periodic motions, regular
precessions)l), and to study their stability properties.

Another important approach has been the search for approximate descriptions, espe-

1) With the hope, as Klein and Sommerfeld say, that ”by finding enough special cases we
may some day be able to know more about the general solution of the problem”. Leimanis
observed about thirty years ago that such a hope "has not yet come true” (see [55]).
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cially in connection with gyroscopic phenomena, and more generally with the fast motions
of the bodies. Roughly speaking, a motion is ‘fast’ if the angular velocity w is very large
(in some natural units); so it can be characterized, for instance, by the fact that the kinetic
energy is much larger than the potential energy. In such a case, one can be content with
a description accurate up to terms of the order of some inverse power of w.

It is then natural to set up a perturbative approach, in which one considers the
potential force field as a small perturbation of the Hamiltonian describing the Euler—
Poinsot system. This approach was quite common in celestial mechanics (see for instance
chapter 6 of [11]). However, because of the well known difficulties due to resonances
(‘secular terms’, ‘small denominators’), such studies were generally restricted to first order
expansions, and were not fully rigorous. The advantage of such a perturbative approach
over other approximate methods (see for instance [70,71,72,12]), lies in the fact that
classical perturbation theory is concerned with the behaviour in time of the phase space
functions which are integrals of motion for the unperturbed system, rather than with the
behaviour of individual orbits. The point is that one can control the perturbed integrals
of motion over time scales extremely longer than for the single perturbed trajectories.

In the early sixties, Arnold considered the problem of the fast motion of an asymmetric
body in the constant gravity field (more generally, in an axially symmetric force field) by the
rigorous methods of classical perturbation theory. Regarding the system as a perturbation
of the Euler-Poinsot case, he made an application of the then new—born KAM theory.
Basically, he succeeded in proving the integrability of the equations of motion in a subset
of phase space which is closed but of large relative Lebesgue measure. The main consequence
is a stability property of all fast motions.

B. The main purpose of the present thesis is to study the fast motion of a rigid body
with a fixed point in an arbitrary (but analytic) conservative force field by the methods
of Hamiltonian perturbation theory. However, at variance with Arnold, we will not use
KAM theory. Indeed, the latter cannot be applied for a generic perturbation, because of
the degeneracy of the Hamilton function of the Euler-Poinsot system (a problem which
can be overcome in the special case considered by Arnold, using in an essential way the
symmetry of the perturbation). Moreover, even if the perturbation had the very special
property of ‘removing the degeneracy’, KAM theory would nevertheless assure stability
only for the majority of initial conditions, and not for all of them.

Because of this, we shall base our analysis on what is now usually called the Nekhoro-
shev approach!®®05:86:15] in which one looks for results valid for all initial data, renouncing
to have results valid for all times. In fact, by such a method one gets results for extremely
long times, increasing exponentially with an inverse power of the ‘small’ parameter of
the system; in the present case, this leads to times increasing exponentially fast with the
(square root of the) angular velocity. For the sake of simplicity, we shall consider only the
case of a symmetric body.

Our central result is the following: in the fast motion of a symmetric body about a
fixed point, under the influence of an analytic conservative force field, both the modulus of




the angular momentum and its projection on the inertia symmetry axis of the body vary
at most of quantities O(1) (namely, independent of w), for times |¢| ~ exp(y/w) (the first
of such two estimates is optimal). In addition, a detailed approximate description of the
motions is obtained. Some partial results for a fast rotating body with no fixed point are
also given.

These results do not constitute simply a corollary of Nekhoroshev’s theorem. The
main reason is that the action—angle variables of the free rigid body are not globally
defined in the phase space. In fact, one can construct an atlas with two coordinate charts;
but, because of the degeneracy of the unperturbed Hamiltonian, there remains the problem
that one has no control on the time after which the system will leave the domain of each
chart. As a consequence, the standard results of classical perturbation theory, which use
canonical transformations to get suitable normal forms within each coordinate system, are
not sufficient. ’

Indeed, this is a general problem, which is always met in perturbation theory, when
one has to deal with systems which are degenerate and do not possess global action—angle
variables (actually, degeneracy is a typical cause of non—existence of global action-angle
variables). For instance, besides the rigid body, this problem is encountered in the Kepler
system.

Because of its importance, we study such a problem in full generality. We show
that, under fairly general conditions, the canonical transformations (and the corresponding
normal forms) constructed ‘locally’ in each chart domain with the usual techniques of
perturbation theory, are in fact the local representatives of a canonical transformation (and
of a Hamiltonian system) which is ‘globally’ defined on the phase space. This study will
be based on a theory of degenerate systems, given by Nekhoroshev (%%, which is essentially
a generalization of the Arnold-Liouville theorem.

Another problem concerns the quality of the estimates mentioned above. The exist-
ing, general proofs of Nekhoroshev’s theorem would lead to very poor estimates for the
variations of the angular momentum and for the times on which they are assured to hold.
Obviously, better results can be obtained in specific cases, taking advantage of the pecu-
liarities of the system. In the present case, a great effort has been paid to obtain the above
mentioned optimal estimate O(1) for the variations of the angular momentum. To this
“end, use is made of a perturbative technique based on the construction of a normal form
for the Hamiltonian vector field of the system, rather than for the Hamilton function alone
(see [36]).

C. The thesis is organized as follows. Chapter 1 has an introductory character, and
contains some general informations about rigid body and classical perturbation theory.
Special emphasis is given to problems of globality for action—angle variables, and degen-
eracy. Chapter 2 is concerned with the global (i.e. chart independent) formulation of
classical perturbation theory for degenerate systems. Chapter 3 is devoted to a prelimi-
nary, detailed study of the action—angle variables of the free symmetric rigid body. Chapter
4 deals with the construction, by perturbation theory, of the normal forms for the system;



these are then used in chapter 5 to study the fast motions of the rigid body.
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Chapter 1

The rigid body
and classical perturbation theory:

an overview

This chapter has an essentially introductory character: we give an overview of some relevant
arguments. Consequently, many details and proofs are left for the next chapters. Problems
related to action—angle variables will be of a certain importance in the sequel. Thus, we
devote section 1 to recall some basic facts about such coordinates, and about completely
integrable systems. Section 2 is an introduction to the ‘free’ motion of a rigid body with
a fixed point, namely the Euler—Poinsot problem. Section 3 gives a survey of classical
perturbation theory, while section 4 depicts its use in the study of the fast motions of a
rigid body.

We notice that (, ) and x will always denote, respectively, the euclidean scalar product
in R™ and the cross product in IR®.

1.1 The Arnold-Liouville theorem and the action—angle variables

A. Action—angle variables. The key result about the existence of action—angle variables
is the celebrated Arnold-Liouville theorem. We formulate here such a theorem in a form

which is somehow stronger than Arnold’s original statement ¥ which is due essentially to
Weinstein "% and Nekhoroshev (64,

To this purpose, let us introduce some notations and terminology. Let f = {f1,..., fm}
be m real functions defined on a manifold M. The subset Ry of M at each point of which
the differentials dfi,...,df, are linearly independent is foliated into the level surfaces
described by the equations f; = const, j = 1,...,m. FEach leaf of that foliation is an
immersed manifold of codimension m. Let L;(z) be the connected component containing



z of the leaf through the point z:
Lf(z) = the z—component of {z' € M : f;(') = f;(2),5 = 1,.. L, My}
Let us now restrict ourselves to the subset My of Ry which contains only compact leaves:
My = {ze M:dfi(2) A... Ndfm(2) #0, and Lf(z) is compact} . (1.1)

In the following, we shall call M; the properness set of the function {2 Obviously, My
is an open subset of M. The foliation of M s into compact connected leaves £; will be
denoted F7.

Recall now that two functions f, g on a symplectic manifold are said to be in involution
if their Poisson bracket vanishes identically: {f,9} = 0. The Arnold-Liouville theorem
gives properties of the foliation F; in the case the functionsfi,..., fm, m = %dim M, are
pairwise in involution (i.e. {f;,f;} =0for all 4,5 = 1,...,m).

Proposition 1.1 (Arnold-Liouville theorem) Let f = {f1,..., fm} be m functions defined
on a symplectic manifold M of dimension 2m, which are pairwise in involution. Then:

1. Let L be a leaf of the foliation F; of Myg. Then there ezist an open neighbourhood
U C My of L, which is union of leaves of F¢, and a diffeomorphism

2 (L(2)y ooy In(2) () om(2)) (1.2

of U onto B x T™, where B is an open set in R™, such that:
i) the symplectic two~form of M, restricted to U, is ZJ- dI; Ndp;,
1) in U, the leaves of the foliation Fy are described by I; = const, j =1,...,m,
wi) in U, the functions fi,..., fm are invertible funetions of I, ..., I,. :
2. Moreover, let L and L' be any two leaves of Fy, and let (I,) and (I',¢') be coordinates

as above, defined respectively in the neighbourhoods U and U, Then, in every connected
component of UNU' (if not empty) one has

I'= A7 1 ¢

o' = Ao + F(I) 43

for some A € O(Z,m), some a € R™, and some function I — F(I)e R™.2)

A proof of the Arnold-Liouville theorem can be found in [64] (see also [7,74,35,57]). In
the appendix A at this chapter we give a proof of part 2, which is simple but has a certain
interest. Let us now make some comments about the Arnold-Liouville theorem:

2) Such a name is surely not very lucky. It is motivated by the fact that a proper map is a map
such that the preimages of compact sets are compact.

®) O(Z,m) is the group of all the m X m matrices with integer entries and determinant =+1.
Notice that statements ii) and iii) above are not independent: we have inserted both for

greater clarity.




i) F; is a foliation of the properness set My into m~dimensional tori. Locally, in a
neighbourhood of each leaf of the foliation, there exist symplectic coordinates I,y
adapted to the foliation, which will be called action-angle variables of the foliation
Fs.

ii) In principle, one could define as ‘action—angle variables of the foliation F;’ any set of
local coordinates I, p(mod2w) which satisfy all the conditions of part I of proposition
1.1. It is easy to see that such coordinates are uniquely determined by Fy, up to
transformations of the form (1.3).

ii) Under the hypotheses of the theorem, My is also a fiber bundle with fiber T", which

we shall denote M 4 By. Indeed, statement 2 of the theorem shows that, by patching
together the local action—angle coordinates systems of the neighbourhoods of the leaves
of F, one constructs an atlas for My which is a fiber bundle atlas. The base By of
the bundle is locally defined by the projection (I,¢) — I. Thus, the (local) action
variables I can be regarded as local coordinates on the basis By.

iv) It is not assured by the theorem that one of the local systems of action—angle co-
ordinates can be extended to cover all of My, namely that there exists an atlas of
action-angle variables constituted by a single chart. When this happens, we say
that My possesses global action-angle variables; otherwise, we say that My possesses
action—angle variables. Obviously, My has global action-angle variables iff the bundle

Mg ER By is trivial (i.e. diffeomorphic to By x T™).

Remark 1.1 We adopt here the traditional approach, and describe the foliation into
tori by means of a set of indipendent functions in involution. Such approach is simple
and convenient for applications. However, it has some shortcomings, which come from
the obvious fact that the description of a foliation by functions is not univocal. Thus,
we remark that the important object for all the theory is the foliation, not the functions
which are used to describe it: in particular, the local action—angle variables depend only the
foliations. Furthermore, some caution has to be posed in‘identifying the (maximal) domain
in which the foliation is defined with the ‘properness’ set of the considered functions: a
trivial reason is that the loose of linear independence of the differentials of these functions
does not necessarily reflect a singularity of the foliation. A more important fact is that
there exist foliations which cannot be described globally by a single set of functions. To
avoid such problems, one could formulate the Arnold-Liouville theorem in terms of the
geometric analog of maximal sets of functions in involution, namely Lagrangian foliations

(see [74,33]).

B. Completely integrable systems. The Arnold-Liouville theorem, as formulated
above, is purely a statement of symplectic geometry.4) The interesting application of the

4) Tt can be of some interest to notice that in every symplectic manifold of dimension 2m there
exist m smooth functions which are pairwise in involution and have almost everywhere (with
respect to the Lebesgue measure) linearly independent differentials (see [37]).
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theorem is to the case in which the m independent functions in involution are integrals of
motion of a Hamiltonian flow. This is the case of the so—called completely integrable sys-
tems. Usuallyl®® 157 4 Hamiltonian system on a symplectic manifold M of dimension 2m
is said to be completely integrable if it possesses m smooth integrals of motion fi,..., fm,
which are pairwise in involution, and have differentials which are linearly independent in
an open dense subset of M (one does not require the independence in all of phase space,
so to consider, for instance, a harmonic oscillator or a pendulum as completely integrable
in all of their phase space).

In the case of a completely integrable system, the Arnold-Liouville theorem assures
that the ‘properness’ set M of the m integrals of motion in involution is fibrated in
m~dimensional tori L¢(z), which are invariant under the flow.

Notice also that the Hamilton function h, being constant on each torus L¢(z), can be

considered as defined on the basis B¢ of the bundle My e By.

The description of the flow of a completely integrable system is especially significative,
if referred to the local action—angle variables of the foliation into invariant tori: the local
actions are integrals of motion, and the motions appear to be quasiperiodic. In fact, in
the local action-angle variables (I,¢), the Hamilton function h has local representatives
h (defined by h=hol ) which are functions of the actions alone; thus, the equations of
motion are (locally)

I =0, ¢ = w(l) (i=1,...,m). - (1.4)

We shall call the (local) action—angle variables relative to the foliation into invariant
tori of a completely integrable system the action-angle variables of the system. We remark
that they are not uniquely determined. Besides re-definition of the form (1.3), there can
be a deeper cause of non—non-uniqueness: if the system is ‘degenerate’, in the sense that
it possesses additional independent integrals, the foliation into m-dimensional invariant
tori can be not uniquely defined. We shall come back later on this fact.

C. Global problems for action—angle variables. We consider now some questions
of globality of the action—angle variables of a completely integrable system. We are inter-
ested in such problems because of their relations with perturbation theory, which will be
discussed later (section 1.3D). In this subsection we make some general comments.

First of all we stress that, in general, action—angle variables do not exist everywhere
in phase space: simple examples are the harmonic oscillator and the pendulum. One easily
understands that the largest set in which action—angle variables can be defined (at least
locally) is the union of all the invariant tori of the maximal dimension m = dim M. Let M,
be such a set. One certainly has M, D M for any set f of independent integrals of motion
in involution. In general, not all the phase space (or the subset of compact trajectories)
is foliated into invariant tori of the maximal dimension: singularities of the foliations
can exist, in the neighbourhood of which action-angle variables do not exist. Typical

9




singularities are the isolated®) equilibria or periodic orbits, as well as the connections of
hyperbolic equilibria, see figure 1.1. Some general results about the existence of such
singularities can be found in [48, 37, 26].

(b)

(&)

Figure 1.1

A second ‘global’ problem can be formulated as follows: does it exist a single action-
angle coordinate system which covers all of a given subset of phase space, noticeably the
maximal subset M,? Such a problem has been first considered by Nekhoroshev (64 and
then by others, in particular by Duistermaat (35], As observed, this is the problem of the
triviality of a bundle. A necessary and sufficient condition for the existence of global action-
angle variables has been found[64:35:33] which seems to be applicable to specific cases. As
an example, it has been shown that the spherical pendulum (35:31] and the Lagrange top 13
(see section 1.2E) do not possess global action—-angle variables.®)

The non-existence of global action—angle variables is of no great importance as far
as the dynamics of the completely integrable system is concerned. In fact, each chart
domain is invariant under the flow. However, a perturbation of the flow may destroy such
invariance. As better explained later, the non-existence of global action-angle variables
does not constitute a real problem for perturbation theory, if it is not coupled to degeneracy.

5) Here, ‘isolated’ means that the considered equilibrium, periodic orbit or, more generally,
invariant torus of lower dimension (< m) does not belong to a family which fill a torus of
the maximal dimension m. For instance, a non—isolated lower dimensional torus (possibly a

periodic orbit) is the closure of any resonant trajectory.

8) One can obtain some insight into the pendulum case by observing that the phase space of
the plane pendulum (a cylinder) is divided by the separatrices into three disjoint connected
components, in each of which global action-angle variables do exist; thus, one concludes
that the union of these components possesses global action-angle variables, too. Such a
conclusion is quite striking, since the phase curves corresponding to the oscillations are not
homologous to those corresponding to the rotational motions. In the spherical pendulum, the
homoclinic connections of the unstable hyperbolic equilibrium do not disconnect the phase
space any more, and moreover the energy surfaces corresponding to oscillatory motions are
not diffeomorphic to the rotational ones.
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C. Degeneracy. A somehow different cause of non—existence of global action—angle
variables is degeneracy. Roughly speaking, a completely integrable system is degenerate,
if it has ‘too many’ integrals of motion, so that its Hamilton function does not depend on
all the action variables. Precisely, we give the following:

Definition 1.1 Let M be a 2m-dimensional fiber bundle with fiber T™ and base B, and
let h: B — R be a smooth function. We say that:

i) h is nondegenerate in B if its differential dh(b) is nonsingular at each point b of B.
i) h is properly (or intrinsically) degenerate if

n := sup rankdf(b) < m;
beB

the number n is called the number of frequencies of h.

As we now discuss, there are cases in which the non existence of global action—angle
variables is deeply related to proper degeneracy. To this purpose, let us refer to a very
simple case. Consider a Hamiltonian system on a 2m-dimensional phase space M which
possesses m + 1 independent integrals of motion fi,..., fm, fm+1, and assume that there
exist two distinct subsets of m pairwise in involution integrals, say f' = {f1,-.-, fm—1,fm}

and f" = {f1,..., fm—1, fmt1}-

Let My and My be the corresponding properness sets. Then My is foliated into
invariant tori of dimension m, and possesses action—angle variables. The same conclusion
holds for Myn. Let us also assume, for simplicity, that global action—angle variables do
exist in each of these sets.”) The interesting case is that in which both Mg and Mgn are
proper subsets of Mg U Myn.

Let us first consider the intersection of the two domains. Since f,, and fm+1 are
independent, My N My turns out to be foliated into invariant tori of dimension m — 1
(which are the intersection of the tori the foliations corresponding to f' and f"). This
shows in particular that the system is degenerate, with (at most) n = m — 1 frequencies.

Consider now the union of the two properness sets. Certainly, action—angle variables
can be constructed (at least locally) everywhere in My U M. However, one suspects that
no global system of action—angle variables do exist therein.

‘We now discuss an important example.

Example: The Kepler system. The system is defined by the Hamilton function A =
s{p,p) — 7% (g, q)*l/z on the phase space (R®\ {0}) x R® (with symplectic two—form
dp A dg). The Hamilton function A and the angular momentum vector m = ¢ X p are
integrals of motions. The Hamilton function h, the modulus G = (m, m)l/z of the angular
momentum and the projection J, = (m, e,) of m along any direction fixed in space, with

) In the intersection of their domains the local action-angle variables corresponding to the two
foliations need not to be related by (1.3).

11




unity vector e, are in involution. An elementary (but tedious) computation shows that
the differentials dh, dG and dJ, are everywhere linearly independent in (R*\ {0}) x R?,
except in correspondence to all

* the circular orbits
* the rectilinear orbits passing through the origin
* the orbits lying in the plane orthogonal to e,.

One sees that the propernessset M, : = M/ g,7,} is the complement of the set 5, US,US;,
where S is the subset of phase space in which A > 0 (the level surfaces of the three
functions are there non-compact), S, consists of circular orbits and rectilinear motions,

and S, = {(¢,p) € Q@ x R®: (p x ¢) x e, = 0}.

A standard computation (see for instance [42]) shows that the action—angle variables
corresponding to the choice h, G, J, of the integrals of motion are globally defined in M,.
The three actions can be taken to be

L =G, IL=-2 Iy = J,. (1.5)

Since h depends only on I, the system is properly degenerate, and has only one frequency.

It is now clear that action—angle variables can be constructed everywhere in the com-
plement M, of the ‘singular’ set 5.US introduced above. In fact, one has M, = M, UM,
for any choice of e, and e,#. Furthermore, M, is easily seen to be the larger set in which
action—angle variables exist. However, no global set of action—angle variables manifestly
exist in such a maximal set, because of the independence of the functions J,» and J,».

Another important example, very similar to the one above, is the ‘free’ rigid body with a
fixed point, which we consider in the next section.

1.2 The Euler—Poinsot system

We give in this section some general informations about the ‘free’ motion of a rigid body
about a fixed point, namely the ‘Euler-Poinsot’ problem (‘free’ means: under the influence
of external forces having vanishing torque with respect to the fixed point).

A. The rigid body as a Hamiltonian system. First, we give a survey of the Hamil-
tonian description of the rigid body. For details, we demand to [57], or also to [7,1].

Consider two right-handed orthogonal reference frames having the body fixed point
as common origin: a frame By = {e1,e2,e3} attached to the body, and an inertial frame
B, = {es,ey,e.} fixed in space (we shall refer to them as to, respectively, the ‘inertial’ or
‘spatial’ and the ‘body’ or ‘moving’ frame); all the vectors e;,...,e, have unit euclidean

12



norm. The configuration space of the rigid body with a fixed point is then the space of all
the orientations of the two frames B, and Bs.

We obtain a particular matrix representation of the configuration space, by choosing
a reference configuration. Let us take for it the configuration in which the two bases B,
and B, coincide: e; = ez, e3 = e, e3 = e,. Then, each configuration is determined by the
(unique) orthogonal matrix R € SO(3) defined by e, = Rey, ey = Rea, e, = Res.

By well known facts about Lie groups, and since the Lie algebra s0(3) is isomorphic to
IR® (with the cross product as Lie bracket), the tangent bundle TS50(3) can be identified
with SO(3) x R®>. Such an identification can be realized in two different ways, which
correspond, respectively, to the description of the motion in the reference frame attached
to the body, or in the inertial one. In the first case, the tangent vector (R, R) € TSO(3)
is identified with the point (R,w) € SO(3) x R?, where w is the angular velocity vector in
the frame attached to the body. In the ‘inertial’ description, instead, (7?,,72) is identified
with the point (R,w) € SO(3) x R®, where now w is the angular velocity vector in the
inertial frame.

In the present context, and especially for studying the properties of the integrals of
motion, i1t is convenient to adopt the body description. Later on (subsection D) we shall
instead turn to the inertial description. In order to avoid ambiguities, it would be advisable
to employ different symbols to denote vectors of the two frames (as for instance in [7]).
Unfortunately, this would involve significantly the notations. Thus, we shall not follow this
usage. On the contrary, we shall tacitly identify all vectors with their representatives in
the body base B} until section 1.2C included, and with their representatives in the inertial
base B, after on.

Let A be the inertia operator of the body relative to its fixed point. We assume that
the body has at least three noncollinear points, so that 4 is positive definite. We take, as
usual, the basis vectors e, ez, e3 of the body frame B, to be the eigenvectors of A, which
are called inertia azes of the body. Thus, in the body base B;, A has diagonal matrix
(which we continue to indicate with the same letter) 4 = diag(a;, as,as); the eigenvalues
aj ( = 1,2,3) are called the principal inertia moments of the body, relative to the fixed
point.

The kinetic energy of the system is the quadratic form (R, w) + T(w) defined by

T(w) = = (w, Aw) = =(a1w? + ayw} + azw;) (2.1)

¥

[NR
b

where w; = (w, e;). T(w) is the Lagrange function for the Euler Poinsot problem. The
advantage of the ‘body’ description is obviously in the fact that the kinetic energy does
not depend on the configuration R.

We now turn to the Hamiltonian description. The Legendre transformation corre-
sponding to the Lagrangian (2.1) is the mapping of SO(3) x IR® onto itself defined by

(R,w) — (R, Aw) . (2.2)
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The phase space is again SO(3) x IR®, the cotangent vector m = Aw being the angular
momentum vector in the body frame.’) The Hamilton function (R, m) — k(m) is given

by

_ 1 ciy o LM, M T
k(m) = 5 (m, 4 m>"’2’(a1+a2+a3>' (2.3)

B. Integrals of motion. As is well known, the Hamilton function k¥ and the angular
momentum in space (R*m, with the notations above) are integrals of motion of the Euler-
Poinsot system.®) In full analogy with the case of the Kepler system, the Hamilton function
k(m), the modulus G(m) = (m, m)l/2 and the projection J¢(R,m) = (m, Re¢) of the
angular momentum along any direction e fixed in space are integrals of motion, and are
pairwise in involution.

Let us first consider the general case of a body which has all the inertia moments
distinct (‘tri-axial’ body; we shall understood that a, is the middle inertia moment).
Since we are not aware of any precise statement about the properness set of the functions
k(m), G(m) and J¢(R,m), which we indicate £F (T standing for tri-axial), we state here

the following®?®

Proposition 1.2 The properness set Z? of the functions k,G, J; is the complement of
the set ST U S¢, where

ST = {(R,m) € SO(3) x R® : 2a;k(m) = G(m)* for some i = 1,2,3}

(2.4)
S; = {(R,m) € SO(3) x R® : m x Re¢ = 0}.

The set L¢ 1s the union of four connected components.

The proof of this proposition is deferred to the appendix B, at the end of the chapter.

One should notice that the ‘singular’ set ST consists of:

8) In principle, the Euler-Poinsot system is a Hamiltonian system in the phase space T*SO(3),
with its natural symplectic structure of the cotangent bundle. Here, an identification of
T*S0(3) with SO(3)xIR® has been obtained by identifying first T.SO(3) with SO(3)xR?, and
then each cotangent space with the corresponding tangent space by means of the euclidean
structure of the latter one. Essentially, all these identifications allow one to consider as defined
in one and the same space IR® (and then to draw in a same picture) the body, its angular
velocity vector and its angular momentum vector (in fact, the latter vector is identified with
the angular velocity vector of a body with unity inertia operator).

®) In the present formulation (in which we do not have an explicit expression for the symplectic
two form of the system, and then we cannot explicitly write the Hamilton’s equations) the

constancy of m could be justified on the basis of general arguments of symmetry: see [7,1,57].
10) For instance, in [64] it is stated that there is also a singularity for J; = 0, and that the

action-angle variables are defined in a set which is the union of eight (instead than four)
connected components, while in [51] there appears a singularity for L = 0.
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* the equilibria,
* the steady rotations about the three inertia axes,

* the four branches of the separatrices,

while 5¢ contains all the states with the angular momentum parallel to the axis e¢. Some
insight on the singularities in the set ST can be obtained from the (classical) figure 1.2a,
which shows the intersection curves, in the cotangent space m € R®, of two (nonzero) level
surfaces of the functions G(m) and k(m). Notice in particular the steady rotations about
the three inertia axes, and the ‘separatrices’ connecting the (unstable) rotations about the
middle inertia axis.

()

Figure 1.2

The action-angle variables for the (free) rigid body with a fixed point have been
extensively studied (see [3,64, 69, 51,53]). Here, we merely present some basic facts. The
three actions corresponding to the foliations of the functions k, G and J; are globally

defined in each connected components of Z?, and can be taken to be

Il == G, Iz = Iz(k,G), I3 = JC’ (2.5)

where I,(k,G) is a certain (analytic) function. The Hamilton function is a function of
only two of the action variables (G and I,), so that the system is degenerate, with two
frequencies,

Exactly as in the case of the Kepler system, action-angle variables do exist in the
maximal set 7, which is the complement of the set ST, but they are not globally defined
therein.

C. The symmetric case. A rigid body is said to be symmetric if two inertia moments
coincide, say a; = a,. In such a case, e3 is the symmetry axis of the inertia ellipsoid (also
called gyroscopic axis of the body), while e; and e, are not uniquely determined.
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In the symmetric case, the Euler—Poinsot system has an additional integral of motion,
namely the projection L = (m, e3) of the angular momentum along the gyroscopic axis
es. The function L(m) is pairwise in involution with all of the other integrals k, G, J¢
(for any ¢) but it is not independent of them: since A = diag(ai,a1,as), one immediately
deduces from (2.3)

2 2 2

2&1 2&3

In the symmetric case, as independent integrals of motion in involution it is convenient to
take G, L and J; (for a reason which will be clear in a moment).

Proposition 1.3 The properness set L of the functions G,L,J, is connected, and is the
complement of the set S, U S¢, where

S. = {(R,m) € SO(3) x R* : G(m) = |L(m)]}

s (2.7)
Se = {(R,m) € SO(3) x R* : m x Re¢ = 0}.

The proof of this proposition is quite similar to that of proposition 1.2, and is therefore
omitted.

The singular set S, contains now only
* the equilibria,

* the steady rotations about the symmetry inertia axes es.

The action—angle variables for the symmetric rigid body, in the set X, are well known. The
actions can be taken to be G, L, J¢, while the corresponding angles g, l, j¢ are illustrated
in figure 1.3a (where the axis e; is taken to be the axis e, of the inertial frame; figure
1.3b shows, for comparison, the familiar Euler angles). As far as we know, the first clear
introduction of these variables is due to Andoyer [2]. Later, Deprit proved in a simple way
their canonicity [34]. For this reason, they are sometimes called in the recent literature
Deprit’s variables. We shall prefer to call them Poinsot’s variables, because of their deep
relation with Poinsot’s description of motion (the angles g and [ are angular coordinates
on the two Poinsot cones). An exhaustive study of these coordinates (with particular
attention to their singularities) will be accomplished in chapter 3.

Once again, action—angle variables exist in a maximal set 2., which is the complement
of S,, but they are not global. It is of interest to notice that they are defined also in
correspondence of the steady rotations about the degenerate inertia axes. The reason is
that such periodic orbits are not isolated in phase space but, as one can easily argue,
grouped together to form a three-dimensional invariant torus, which constitutes one of the
leaves.of the foliation into invariant tori. Some insight can be drawn from figure 1.2b, which
is the analog of figure 1.2a. Notice in particular that the four heteroclinic connections of
the tri-axial case are collapsed into the above family of periodic orbits (such a collapse is

quite similar to that of the two separatrices of the pendulum as gravity goes to zero).tt)

11) The differentials of G, k, J¢ are linearly dependent at each point of such orbits (they inherit
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Figure 1.3

D. Poinsot’s geometric description. We now turn to the description of the body
motion in the inertial frame, i.e. in space. A deep insight into the motions of the free rigid
body is furnished by Poinsot’s classic geometric description.

Poinsot’s theorem can be stated as follows: think to the inertia ellipsoid of the body
relative to the fixed point as having its center in that point, and as being rigidly connected
to the body; then, the inertia ellipsoid rolls without sliding on a fixed plane, orthogonal to
the angular momentum vector (figure 1.4a). The point of contact draws a closed curve on
the ellipsoid and another one on the plane. These two curves, called respectively polhode
and erpolhode, are sections of the two Poinsot cones: the conical surfaces described by the
angular velocity vector in the space and in the body.!?)

Poinsot’s description makes clear that the motions are quasiperiodic, with two fre-
quencies. The motion can be thought as a composition of a rotation about the angular
momentum direction, and a proper rotation of the body (about an instantaneous axis which
is not fixed in the body, in the case of a tri-axial inertia ellipsoid). The corresponding
frequencies have a very simple interpretation ([67], vol. 1, sect. 86):

21
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from the tri-axial case the singularity on the separatrices), while this does not happen if L
is considered in place of k, or of G. '

12) The intersection curves of figure 1.2a look very similar to the polhodes, which are obtained
with the dilatation z; — /a;z; of the coordinates along the three axis e;.
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where P is the period of the proper rotation, namely the time between two successive
contacts of a same point of the polhode with the erpolhode, and « is the angle which is
formed in the invariable plane by the two points of contact, and has the vertex in the foot
of the angular momentum vector (see figure 1.4a).

Figure 1.4

The description of the motion simplify somehow in the symmetric case (figure 1.4b).
In such a case, polhode and erpolhode are circles. Moreover, as is well known (7 the
modulus (w, w)l/ 2 and the gyroscopic component (w, e3) of the angular velocity w are
constant; the vectors m, w, es always lie in a plane; the angle between m and w, and that
between w and e3 are both constant (figure 1.4b). Using these facts, one easily verifies
that the angular velocity w is given by

w = wip + wyes, (2.8)

where p is the unit vector in the direction of the angular momentum m and the two

frequencies of the motion w; and w; are given by!? )

1 —
wy; = —G, Wo = uL (29)

ai ay as

Such a motion is called a ‘regular precession’ (see [56]). Equation (2.8) indicates that,
during the motion, the vector w rotates uniformly on the fixed and on the moving circular
Poinsot cones, with angular frequencies given, respectively, by w; and w;. The motion
is the composition of a uniform ‘proper rotation’ of the body about the symmetry axis

13) They are more simply obtained from the expression (2.6) of the Hamilton function, if one
knows that G and L are the actions.
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es (with proper*®) period 21 /wy), and by a uniform ‘precession’ of the gyroscopic axis e;
about the angular momentum direction (with period 27 /w;).

E. The Lagrange top. We conclude this section by considering, for comparison, one
of the other classical cases of integrability. As noticed in the introduction, in the motion
of a ‘heavy’ rigid body there exist always two integrals of motion: the Hamilton function
and the projection J, = (m, e,) of the angular momentum along the ‘vertical’ e,, i.e.
the direction of gravity. At difference with the Euler-Poinsot case, the components of
m along any other axis e,y # e, is now no longer constant: the force field has removed
the degeneracy. The simplest case in which there exists a third independent (in an open
subset of phase space) integral in involution with J,, is that of a Lagrange top (or heavy
gyroscope): the inertia ellipsoid of the body relative to the fixed point is symmetric, and
the center of mass of the body lies on the inertia symmetry axis e3. The third integral is
the ‘gyroscopic’ component of m, L = (m, e3).

The motions of the Lagrange top are quasi—periodic with three frequencies: the body
rotates about its symmetry axis e; (‘proper rotation’), which in turn oscillates in the
vertical plane (‘nutation’) and rotates about the vertical (‘precession’).!?)

1.3 Classical perturbation theory

A. Nearly integrable systems.'®) Classical perturbation theory deals with nearly in-
tegrable systems, i.e. Hamiltonian systems which differ ‘little’ form completely integrable
ones. Employing action-angle variables, the Hamilton function of a nearly integrable sys-
tem has the form, in the simplest case,

h(I,p) = ho(l) + ¢ f(I,¢) (3.1)

where ¢ is a small parameter. We stress that ¢ should be considered a local parameter,
defined by the condition that one has ||h¢|| & || f|| in the region of phase space of interest,
where || || is an appropriate norm (for instance the supremum norm or, better, some
norm related to the derivatives of the functions) evaluated in the region of phase space of

14) Measured in a reference frame which rotates in space with angular velocity wap

15) Notice that the terminology is different from that of the Euler—Poinsot case: the frequency of
the ‘precession’ of the Lagrange top vanishes in the Euler-Poinsot case, while the ‘nutation’
of the Lagrange top is somehow similar to the ‘precession’ of the free body.

16) “Probléme générale de la dynamique” (Poincaré [67]). “Such an approach may be open to
criticism, but by means of it one can obtain some interesting results” (Kolmogorov [50]).
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interest. Here, we disregard for the moment all the questions of globality of the action—
angle variables, and consider the function (3.1) as defined in the phase space B x T", B
being an open domain in R"™.

The dynamics of nearly integrable systems is ultimately complex, being characterized
by a deep coexistence of integrable and non—integrable behaviour. A significative example
of a non-integrability result is the famous theorem by Poincaré on the non-existence of
integrals of motion in nearly integrable systems!67149], Such a theorem properly applies
to the case of a nondegenerate unperturbed Hamiltonian (see definition 1.1):

9% hyg
det (BIBI(I)> # 0 VIie B. (3.2)
Roughly speaking, in such a case the theorem implies that the foliation of the phase
space into invariant tori does not survive a (generic) perturbation, no matter how small
it is. Nevertheless, as classical perturbation theory shows, some integrability properties
still survive small perturbations (KAM theorem [49,3,4,7,61,59,68,29]), and moreover
the appearance of non-integrability behaviours may require extremely long time scales
(Nekhoroshev’s theorem [63,65,66,15]). In fact, under suitable conditions:

i) not all the invariant tori are destroyed: on the contrary, the majority of them (in
the sense of the Lebesgue measure) survive small perturbations, being only slightly

deformed (KAM);

i1) the motions starting on a destroyed torus remain close to such a torus for extremely
long times (growing faster than any power of 1/¢: Nekhoroshev’s theorem).

The main object of classical perturbation theory is to study the effect of perturbations
on the long-time behaviour of the integrals of motion of the unperturbed system, more
specifically of the action variables I1,...,I,. The main tool of perturbation theory is
canonical transformation theory, together with averaging techniques. We do not enter here
into the details: a deep and exhaustive introduction is chapter 5 of [9]. Some indications
will be given in the next, more technical chapters.

B. KAM theorem. Asis well known, the invariant tori of a completely integrable system
which survive a small perturbation, called Kolmogorov tori[®!, evaluated in the region of

phase space of interest, are those with strongly non-resonant frequencies w = %h:,g; for
instance, those which satisfy a Diophantine-like condition of the form

(D), M| = 2w YA e Z™\{0}, (3:3)
where || || is some norm, T a constant and y(¢) — 0 as ¢ — 0.}7) A possible formulation of

KAM theorem is the following[68:2°];

Proposition 1.4 (KAM) Assume that h(I,¢) = ho + ef(I,p) is analytic in a complez
neighbourhood of B x T™, and that hq ts nondegenerate in B. Then, there ezist:

17) The estimates (3.5) below are obtained with v ~ /.
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i) a positive number £*, which depends on the domain B and on general properties of
the functions hy and f,

i1) a subset B, C B of large relative Lebesgue measure,

1i) a smooth canonical transformation (I,¢) = Ce(J,%) of B x T™, which is close to the
identity, and

) a smooth nondegenerate completely integrable Hamiltonian h,(J) defined on B x T™,

with the following properties: if ¢ < e*, then one has
(ho + cf)oC. E hl, (3.4)

where 2 means equality of the functions at the two members, and of all their derivatives,
whenever J € B.. Moreover, B, C. and h'. satisfy

I|J —I|| < const (3.5a)

g
=
I — ol < const\/}: (3.50)
\/E
g

p(B\ Be) < const/— u(B), - (3.5¢)

h, = ho + ef + o(i*) (3.5d)
€

where || || is some norm in R™ and f = (27)™" Jqn fdo. The constants appearing in (3.5)

do not depend on ¢, and are uniform in B x T™.

The union C7*(B. x T™) of the Kolmogorov tori is the Kolmogorov set. The Kolmogorov
set, as constructed in the theorem, has large measure but, as is well known, its complement
is open and dense. One can notice that, in the above formulation, KAM theorem is an
integrability result (although on a nowhere dense set).

We are here mostly interested in the time variations of the action variables. It follows
from proposition 1.4 that one has

11(t) = I(0)|| < const \/}: VieR, (3.6)

for the motion on Kolmogorov tori.

As is well known, there is a special case in which the estimate (3.6) holds for all the
motions, not only for the ‘majority’ of them, so that KAM implies (topological) stability. In
systems with n = 2 degrees of freedom the foliation into the (two—dimensional) Kolmogorov
tori constitutes a topological obstruction to the variation of the actions, since they divide
the (three~dimensional) energy surface in which are embedded. One can show that, if the
unperturbed Hamiltonian hg satisfies the ‘isoenergetic’ nondegeneracy condition

8% hg Bhg
det (51—37(” aro(”) £0 VIeB, (3.7)

21




then the majority of the invariant tori on each energy surface will survive the perturbation.
In such a case, as a corollary of proposition 1.4 one obtains the following

Proposition 1.5 (Arnold) Assume that h = hg + ¢f(I,p) is analytic in a complez
neighbourhood of B x T2, B C R?, and that hy satisfies the isoenergetic nondegeneracy
condition (3.7). Then, if € 1s sufficiently small, i.e. ¢ < €* for some positive ¢ dependent

on B, hy and f, one has
1I(t) — I(0)]) < const,/si* (3.8)

for allt € R and all I(0) € B.
The estimate O(1/¢) in (3.8) cannot be improved (see [62]).

When the number of degrees of freedom exceeds two, such a topological obstruction
does not exists any more: n—dimensional tori do not disconnect the (2n — 1)-dimensional
energy submanifolds, if » > 3. In other words, the complement of the Kolmogorov set
is connected. Thus, for a set of initial conditions of small measure, but open and dense,
the motions can in principle wander on the energy submanifold (‘Arnold diffusion’). In
a known, nontrivial although very special example!®®! Arnold diffusion exists, although
with an extremely slow average velocity, O(exp —+/¢*/¢). Nekhoroshev’s theorem assures
that, in generic situations, Arnold diffusion is a very slow phenomenon: [|I(t) — I{0)]] is
bounded by a power of ¢, for times which grows exponentially fast with (a power of) £ /e.

C. Nekhoroshev’s theorem. At difference from KAM theorem, Nekhoroshev’s theorem
is a stability result for finite (though extremely long) times, but for all the initial conditions.
For such a reason, Nekhoroshev’s theorem seems to be more significant than KAM for
physical applications (for a number of applications, see [13,17,19,41,20,21]). In its more
general formulation, Nekhoroshev’s theorem applies to analytic Hamiltonian perturbations
of analytic, completely integrable Hamiltonians which satisfy a generic property called
‘steepness’ (see [65,45]). The simplest examples of steep functions are the convex functions
and, more generally, the ‘quasi—convex’ functions. The latter are the functions whose level
sets are boundaries of strictly convex sets, and have contact of the lowest order with the
tangent plane. Precisely, one gives the following definition (63l

Definition 1.2 Let B and B' C B be domains of R™. A smooth function h : B — R
is said to be quasi—convex in B’ if for any I € B' there ezists a constant c(I), uniformly
bounded away from zero and of constant sign in B', such that one has

1 0%h .
0 <§, W(I)§> > (¢ €)
for all £ € R™ such that <§, %—%(I» =0.

For instance, the function k(z;, ;) = 2 + nz2, (z1,22) € R?, is convex if > 0, quasi-
convex in the domain {z; > |z2|} if n < 0.

It is convenient to enunciate Nekhoroshev’s theorem with reference to a Hamiltonian

22



(‘with parameters’, in Nekhoroshev’s words(®%]) of the form
hIp,p,9) = holl) + € f(I,0,p,9) (3.9)

defined for I € B, a domain in R™, ¢ € T™, and (p,q) € U, a domain in R* ™™™ for some
m>mn> 0% (the symplectic two form is understood to be >odli Ndej + ) dp] A dg;).
Hamiltonians of the form (3.9) are encountered in two important cases.

First, consider a completely integrable system described by ho(I) in B x T™, coupled
by an interaction term v(I,¢,p,q) to a system with m — n degrees of freedom described
by a certain Hamilton function g(p,¢). The Hamiltonian describing the interacting system
has then the form

h(I,0,0,9) = ho(L) + g(p,q) + v(I,,p,q), (3.10)

and reduces to the form (3.9) in regions of phase space in which ||| > |lg||,|v]. An
example is a fast rotating rigid body, with no fixed point: in such a case kg is the kinetic
energy of the motion relative to the center of mass (described by the action—angle coordi-
nates I,y), g the kinetic energy of the center of mass motion (described by the cartesian
coordinates (p,¢) € R®), and v the potential energy of the external forces. Other cases are
considered in [17,19, 21].

Another important class of Hamiltonians of the form (3.9) is constituted by the small
perturbations of properly degenerate completely integrable systems. A perturbation of
a properly degenerate Hamilton function hy = ho(l1,...,I,) has the form (3.9), if one
interprets I = (I1,..., [ ) and ¢ € T™ as the action-angle variables corresponding to the
nonzero frequencies, the p’s as the other m —n actions (on which kg does not depend) and
q(mod2w) € T™™™ as the correspondent angles.

We now state Nekhoroshev’s theorem:

Proposition 1.6 (Nekhoroshev) Assume that the Hamilton function h = hq + ¢ f as in
(3.9) is analytic in a domain B x T™ ™ x U, that hy is quasi-convez (or more generally
steep) in B and that ¢ is sufficiently small, i.e. ¢ < ¢* for some e*(B,ho, f) > 0. Then,

for any motion z(t) = (I(t),gp(t),p(t),q(t)) one has

1) — I00)] < (——) (3.11)

for all times |t| < min(Tesc, Ty), where

N
Ty = T exp {(%) } , (3.12)

18) Thus, the system has m degrees of freedom, but only n frequencies. We make the obvious
convention that, if m = n, then the phase space reduces to B x T", with action—angle
coordinates (I, <p)
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while Tege 18 the escape time of the solution from B x T™ x U, and €*, a, b, T are positive
constants, independent of ¢.

Within the proof of the theorem, one can produce estimates for the various constants
entering the statement. However, as is typical of perturbation theory, such estimates are
rather dissatisfying. Especially bad is the dependence on the number of frequencies. The
most important constants are the two exponents a and b, whose estimated values depend
on the steepness properties of hg, and are better for convex and quasi~convex functions.
For example, if hq is convex, the following estimates have been produced (15];

1 1

Such values can be certainly somehow improved. However, a n—dependence of b seems to
be unavoidable. Concerning a, it is perhaps possible to obtain a = 1/4, or even a = 1/2.9)

Proposition 1.6 allows immediate conclusions for nearly integrable Hamiltonians A =
ho + ¢f of the form (3.1), namely without additional variables p,¢. In such a case, one has
clearly Tooc > Tp for all the motions z(t) = (I(t),(¢)) with I(0) not too near the border
of B (by (3.11), a distance O(g?®) is enough).

However, Nekhoroshev’s theorem does not give any information about the motion of
the ‘additional’ variables (p,q), when present. The escape of such variables from their
own domain of definition U can prevent the confinement of the actions for exponentially
long times. In some cases one can obtain some a priori control on such variables (typ-
ically by energy conservation) so to be sure that, at least for a large, significative set
of initial conditions, they do not escape their own domain of definition for times < Tp.
This situation is in fact rather common, if (p, ¢) are the canonical variables of an interact-
ing subsystem™1%21, The case of proper degeneracy can instead be quite different, as
discussed in subsection E below.

Remark 1.2: The possibility of studying systems of the form (3.9) is one of the advan-
tages of Nekhoroshev’s theory over KAM theory, which cannot in general be applied to such
systems. In the case of proper degeneracy, KAM theory works if the perturbation has very
special properties, precisely if it ‘removes the degeneracy’. Let, as above, I = (I1,...,1n)
and p = (p1,...;Pm—n) be the action variables of the system, and ¢ = (p1,...,¢0m) and
q = (q1,-ygm—n) be the corresponding angle variables. Then, it is required that the
Hamiltonian can be given the form ho(I) + cfo(I,p) + e* f1(I,p, ¢, g;€), with hg nonde-
generate, vy nondegenerate as a function of the actions p1,...,Pm—n, and f; divisible by
¢ (in other words: by averaging the perturbation over the angles ¢, the ¢ coordinates
disappear). For details, see [4,9]. By the way, the topological obstruction which led to the
stability result of proposition 1.5 does not exist any more, as far as m > 3, even if n = 2.

D. Global problems. We now discuss the problems connected to questions of globality
of the action—angle variables.

19) Tn the treatment of the rigid body of chapters 4 and 5, we shall actually obtain a = 1/2, but
for the rather special case in which n = 2.
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First, let us consider the singularities of the foliation into invariant tori, in the neigh-
bourhood of which action—angle variables do not exist. Such singularities have a certain
relevance for perturbation theory, because the perturbative study in a neighbourhood of
them has to be performed by specific techniques (not using action—angle variables, of
course). For instance, the study in the neighbourhood of isolated equilibria and periodic
orbits (sometimes called ‘limiting degeneracy’ [4]) are classical topics in perturbation the-
ory (Birkhoff’s series, Poincaré sections; for the case of invariant tori of higher dimensions
see [28]).20)

We now turn to the problems posed by the non-existence of global action-angle vari-
ables. Preliminary, notice that each action-angle chart domain is the union of invariant
tori. Thus, the escape of the system from one of such domains can be caused only by the
variation of the actions.

In connection with this problem, degeneracy plays a central role. In fact, as far as
nondegenerate completely integrable systems are concerned, the theorems of perturbation
theory indicate that all the action variables are essentially constant (at least on the time
intervals of interest), so that it can be assured that each motion does not leave some chart
domain (it is sufficient for this that the chart domains have sufficiently fat intersections).

However, things are very different in the case of degeneracy. The normal forms con-
structed by perturbation theory do not allow to control the variations of those action
variables (previously denoted by p) which correspond to the null frequencies"L. This situ-
ation is dangerous if, as in Kepler’s or Euler-Poinsot’s cases, the action variables which
cannot be controlled are exactly those which are not globally defined. In that case, one can
be unable to control the escape time of such actions from their own domains of definition.
As a consequence, the statement of Nekhoroshev’s theorem (as well as of KAM) becomes
meaningless: Tee. could be an extremely short time, if compared with Tp. Moreover, one
can even not to have any control at all on Tesc. '

This problem is encountered in the perturbative studies of the (non-planar) Kepler
system, where one has to be sure that the angular momentum does not pass through (or
too near to) the chosen z—axis. Even worse, in the n-body problem one has to check that
this does not happen for any one of the planets. In Nekhoroshev’s study of the n—body
problem (65], a great care is posed in determining a set of initial conditions for which the
motions do not fall into such singularities (for the time interval of interest). In much the
same way, in the rigid body case one can assure in general that the angular momentum
vector will not pass through (or too near to) a given spatial direction only for a subset of
initial conditions (all those which are sufficiently far from resonances). We find such a fact

unsatisfactory.

Motivated by this fact, we shall reconsider this problem from a general point of view.
Chapter 2 is devoted to this problem. The source of the difficulties is in the fact that the

20) If the excluded neighbourhood of the singularity is small, and some mechanism (like con-
servation of energy) confine the motions in its interior, one can avoid a detail study in such
a neighbourhood: this will be the case for the ‘gyroscopic’ rotations of the rigid body, see
section 5.3.

T There is no ‘fast’ motion over which to average: it is like within a resonance.
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normal forms of perturbation theory are constructed within a single coordinates system. It
is then not clear whether it is possible to reconnect the descriptions obtained with different
coordinate systems (the idea being simply that of changing chart, if the motion arrives
near a singularity of the considered chart). The solution of this problem is obtained by
showing that, under very mild conditions, the normal forms constructed in the different
charts are the local representatives of a unique Hamiltonian system, intrinsically defined
on the phase space.

(69] and

A geometric formulation of perturbation theory has been studied by Moser
Cushman®%, but only for the very special case of the perturbation of a ‘completely de-
generate’ Hamiltonian hg, which depends only on one of the action variables. In such a
case (which is that of Kepler’s system, but not of the n-body problem), all the orbits of
the unperturbed system are periodic. The geometric formulation of perturbation theory
is then essentially obtained by replacing the space averages with the corresponding time

averages along the motions.

It turns out that such a simple method cannot be used in the case of systems having
more than one frequencies. The appropriate setting for the study of the general case
is a theory by Nekhoroshev(%% of degenerate integrable systems, which is essentially a
generalization of the Arnold-Liouville theorem.

1.4 Fast motions of the rigid body and classical perturbation theory

A. Fast motions of the rigid body. We present in this section the basic ideas of the
study of the fast motions of the rigid body with a fixed point by classical perturbation
theory.

Let us preliminarily refer to the Euler angles ¢, 9, 8, which are defined in a well
known way with reference to the two orthogonal frames introduced in section 1.2A (see
figure 1.3b): ¢ is the angle between e; and e, X e3, 1 is the angle between e, X e;
and e;, while 0 < § < 7 is the angle between e, and e;. The conjugate momenta are
P = (m, e,) = J,, py = (m, e;3) and ps = (m, €,), where e, = (sin§) e, X e3 is the unit
vector along the nodal line. The kinetic energy T' is a function of the three momenta (on
which it depends quadratically) and of the two angles ¢, §. If the external forces acting on
the body are positional and conservative, with potential energy V(¢,,6), then the system
is Hamiltonian (with respect to the symplectic two—form dp, A dy + dpy A dip + dps A dF),
with Hamilton function

T(p¢,p¢,p9,¢,9) + V(QD,’Q/),H) . (4'1)

An interesting (both for applications and in itself) problem of rigid body dynamics
is that of the fast motion of a body, namely the motion with sufficiently large angular
velocity. Roughly speaking, such motions can be characterized by the condition that the
kinetic energy is much larger than the potential one: |T'| > [V|.2V

21) A more appropriate characterization requires the comparison of the derivatives of 7 and V.
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Such a problem can be naturally studied by perturbative techniques, since the Hamil-
ton function 7'+ V can be regarded as a ‘small’ perturbation of the Hamiltonian 7" of the
Euler-Poinsot case. The ‘small parameter’ for the problem is

_ Il
© = (4.2)

where || || is some appropriate norm.
The problem can be studied from two equivalent points of view. On one hand (as we

shall do) one can work in regions of phase space in which the angular velocity w — more
precisely some norm w = ||w|| of it — is large. In such regions, one has

p = OWw), ¢ = 0", T(p,q) = O(w?), V(¢) = O(°), (4.3)

where p = (py, Py, Po), ¢ = (¢,%,6). On the other hand, one can rescale the coordinates,
so to work in a region of phase space in which w, p and T are O(1), but the potential
energy is small, precisely O(w™?). Indeed, consider the rescaling of variables

p=2A, ¢=4¢, t=x (A>0). (4.4)

Since T' is quadratic in the p's and V is independent of them, the transformation (4.4)
conjugate (4.1) to

T(p'q') + eV(d), =172, (4.5)
If X is proportional to w, then one has p' = O(1) when p = O(w), so that (4.5) has the

9

&

standard form for perturbation theory, the small parameter ¢ being proportional to w ™2,

B. The action—angle variables. In order to apply perturbation theory, one needs to use
action—angle variables. We disregard for the moment any questions of domains. We refer
to section 1.2B (the only difference being that now we interpret all vectors as belonging to
the inertial frame). The three actions can be taken to be (see (2.5))

I}_ = G, Ig = IZ(T,G) 5 Is = Jz 3 (46)
where G = (m, m)l/z, J: = (m, e;), and I,(T,G) is a certain (analytic) function. Like Iy
and I3, I is a positively homogeneous function of degree one of the angular momentum:
I;(Am) = Al;(m) for all X > 0. Let 1, @2, 3 be the correspondent angles. The first two

of them are angular coordinates on the fixed and, respectively, the moving Poinsot cone,
while o3 is a rotation angle of m about the axis e,.

As a function of the two actions I, I, the kinetic energy k£ has good properties of
nondegeneracy. Precisely, one has the following

Proposition 1.7 (Arnold®l, Kozlov®) In each connected component of the subset of
phase space where the action-angle variables are defined, the function (Iy, 1) — k(I1,I2):

i) is analytic, and positively homogeneous of degree two;
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it) satisfies the condition of isoenergetic nondegeneracy (3.7);
i11) is steep?®).
It is also of interest to consider the properties of the potential energy V, as a function of

the action-angle variables. Let us write V(p,%,8) = v(I1,I2,I3,01,92,93), so that the
Hamilton function is

k(I1,I2) + v(I1,12,13,01,p2,93) - (4.7)
It is easy to establish that

i) v is a homogeneous function of degree zero of the actions I = (I1, Iz, I3):
v(A, ) = v(I,¢) YA>0; (4.8)

ii) if V does not depend on the Euler angle ¢, then v does not depend on ;.

Finally, it is useful to reconsider the relation between the use of the large parameter

w and that of the small parameter ¢ in terms of the action—angle variables. The canonical
transformation

I =X, o =¢, t=2X, (4.9)

conjugates the Hamilton function (4.7) to
BI) + co(lhe!), €= A2 (4.10)

Let us now denote (I(t;Io,c,oo;s),ga(t;fo,goo;s)) the solution at time t of the Hamilton
equations for the Hamilton function (4.10), and (I(t;Io, vo; 1), 0(t; Io, po; 1)) that of (4.7),
with initial datum (Iy, o). The homogeneity properties of k£ and v imply k ~ A2 v~ A0,
Then by (4.9), one has

I(,\"lt, Mo, ©o; /\25) = )\I(i;Io,(po;&') .
Consequently one has the relation

T\, AL, 003 M%) — AL, = A [I(t; Io, pose) — o] (4.11)

C. Arnold’s results. As far as we know, the first rigorous study of the motion of a
rigid body by Hamiltonian perturbation theory is due to Arnold (3], As an application of
KAM theory, Arnold studied the fast motions of a tri-axial body, in a force field which is
invariant under rotations about the axis e, (passing through the body fixed point), as is
the case of gravity. In such a case, V does not depend on the precession angle ¢, v does
not depend on @3 and I3 = J, is an integral of motion. Consequently, the system can be
reduced to a system with two degrees of freedom, described by the Hamilton function

hI3(I1,I2,(p1,<,02) = k(IhIZ) + UI:;(IhIZa‘Pl:'PZ)) (412)

22) Possibly, quasi-convex. Property 111) is not explicitly stated in the quoted references; never-
theless, it is an obvious consequence of what said in [51].
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with vr, (1, 2, 01,2) = v(I1,I3,I5,¢1,¢2). Since, as Arnold showed, k is isoenergetically
nondegenerate, one can apply proposition 1.5 to hr,. Taking into considerations (4.11),
one gets the following

Proposition 1.8 (Arnold, Neishtadt?®)) Under the stated hypotheses, there ezists a con-
stant ¢ such that, for all motions which at the initial time have a sufficiently large angular
velocity, and are not too near to the separatrices of the unperturbed motion, one has the
uniform estimates

G- CO)] < ¢, L) -L0) < ¢ (4.130,b)

for allt € R.

Remark 1.3: One should complete the statement of this proposition by specifying the
size of the excluded region near the separatrices (this would require a careful study of
the analyticity properties of the function k(I;,I) near the separatrices). Results about
the splitting of the separatrices can be found in [52,76,43,54,9]. A special consideration
concerns the motions near the rotations about the major and minor inertia axes, and those
with m parallel to the ‘vertical’ axis e,. Since the action—angle variables are there singular,
the estimates (4.13) for such motions cannot be obtained by invoking proposition 1.5. No
mention to this problem is made in [3,62]. We think that one should be able to prove
the validity of the estimates (4.13) for such motions by combining an obvious consistency
argument (the motion cannot escape too far from the singularities, otherwise it enters
the ‘regular’ region, where (4.13) holds) with conservation of energy (this method will be
successfully used in a quite similar case in section 5.3).

We mention that the estimates (4.13) are optimal, as one can argue observing that (4.7)
implies

: dv

I, = —(I = O(1).
Indeed, in [22] some examples are given in which the variations of G are O(1), in times

O(1).24)

D. Our approach. The main purpose of the present thesis is to study the fast motion
of a rigid body in an arbitrary external force field, which is not assumed to possess the
above rotational invariance. In such a case, the potential energy v depends on all the three
angle variables 1, @2, 3, the system has three degrees of freedom, and the unperturbed
Hamiltonian is degenerate. Consequently, as observed in remark 1.2, KAM theory cannot
be used in general; moreover, even if the system has the right, very special properties which
make applicable KAM theory, then this does not provide stability results for all the fast
motions. For these reasons, we shall resort to Nekhoroshev’s theory.

23) Neishtadt contribution ®?! concerns the estimates (4.13): in Arnold’s paper®], although this
fact is there not clearly stated, one had ||I(¢) — I(0)|| < O(w®) for some a > 0.

%) If V depends only on one of the two angles 1, 8, the system reduces to a system with one
degree of freedom. Conservation of energy then implies that the variations of G and L are
smaller than in (4.13), precisely O(1/w). An example is the fast motion of a Lagrangian top.
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At first sight, this program could appear to be a trivial application of Nekhoroshev’s
theorem. Indeed, the Hamilton function k(I1,I2) of the free rigid body is steep (proposi-
tion 1.7), so that Nekhoroshev’s theorem can be applied to the system described by the
Hamiltonian & + v, if the potential v is analytic.

There are however two problems. The first one is obviously that, because of the
degeneracy of the Euler—Poinsot system, and the presence of singularities of the action-
angle variables, the conclusions drawn from Nekhoroshev’s theorem can be of no utility.
As already mentioned, this problem requires a careful study, which is the object of chapter
2.

The second problem is the following. If one adapts the general estimates (3.11), (3.12)
to the case at hand, using the relation (4.11) (with A ~ w ~ 1/+/2) and the values (3.13)
for a and b (as if k were convex), then one finds

L) - L(0)] < O@W'*),  §=1,2 (4.14)

and Ty ~ exp(w?/*?). Estimates (4.14) are very poor, if not even useless.

Better estimates on the two exponents a and b can be obtained by reconsidering the
proof of the theorem, adapting it to the case at hand. The proof of Nekhoroshev’s theore::.
for systems with two frequencies is in principle almost trivial, because of the simplicity of
the geometry of resonances in the plane. However, our aim is that of getting the optimal
estimates (4.13) which is found within KAM theory, namely a = 1/2. To obtain such an
estimate within Nekhoroshev approach is not completely trivial, and requires a great care
(and suitable techniques) in perturbation theory.

Just for the sake of simplicity, we shall restrict the analysis to the case of a symmetric
rigid body. Such a case is simpler than the tri-axial one, since the action I, coincides
with the gyroscopic component L of the angular momentum, and the function k(G, L) is
explicitly written. Moreover, the separatrices are absent in the symmetric case. For such
a system, we shall prove that, for all initial conditions, one has

G(t) - GO)| < OWY), L) - L) € O@W”) (4.15)

for |t| ~ exp /w. In addition, a detailed description of the motions will be given.
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1.A Appendix: on the proof of the Arnold-Liouville theorem

We prove here statement 2 of proposition 1.1. Since both I and I' are invertible functions
of fi,..., fm, there exists a diffecomorphism I' = Z(I). Let ¢' = ®(I,p). Hence, the
equality > dI Adp =Y dI' A dp' implies

[%(I)Jt - [%(IM)J o (4.1)

This shows that —g% is independent of . Thus, there exist a matrix C'(I) and a vector
F(I), which depend smoothly on I, and are such that

o = CDe + F(I).

Since the mapping ¢ — C(I)¢ + F(I) is a linear automorphism of the torus I = const,
the matrix C'(I) has necessarily integer entries, and determinant +1. Consequently, such
a matrix must also be independent of I, in each connected component of B N B'. Finally,
equation (A.1l) implies I' = (C*)™!I + const. In the proposition, we have written 4 = C*.

1.B Appendix: proof of proposition 1.2

Let us first recall how a tangent vector to SO(3) is identified to a vector of R?. Let t — R,
be a curve in SO(3), let R be its derivative at ¢ = 0, and denote R = Ry. Then, to the
point (R, R) € TrS0O(3) one associates the point (R,p) € SO(3) x R®, where p € R® is
uniquely defined by the condition Ru = p x Ru for any vector v € R® (this definition is
correct, since the matrix RR! is antisymmetric, see D).

In this way, as in section 1.2, we identify both T'S§O(3) and T*S0O(3) to SO(3) x R®.
Moreover, we identify in the same manner T*(S0(3) x R*) = T*50(3) x T*R® with
S0(3) x R® x R* x IR®. Here, the order of the components is defined by the identification
of the spaces {R} x R® x {m} x R® with T%50(3) x T%R®. In other words, writing
(R, p;m, ) we interpret R € SO(3), p € R® = T550(3), m € R® (in fact, the cotangent
vector to SO(3) in R), u € T, R®.

We now compute the differentials of the three real functions defined on SO(3) x R®
by

E(R,m) = % (m, A”1m>

GZ(R,m) = <m7 m)
Je(R,m) = (m, e¢)

One finds
dk(R,m) = (R,O;m,A_lm)

dG* (R,m) = (R,0;m,2m) (B.1)
dJ¢(R,m) = (7?,, —m X Re¢;m, Reg)
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The last expression is obtained in the following way: if p denotes the vector of IR® corre-
sponding to the cotangent vector dR, one has

dT.(Rm) = (dm, Rec) + (m, (dR)ec)
= {(dm, Re¢) + (m, p X Re¢)
= (dm, Re¢) — (m x Reg, p)

From (B.1) it follows that dk, dG* and dJ; are everywhere linearly independent except at
the points (R, m) such that the equations

it A7T'm + eam + csRe¢ = 0

cam x Ree = 0

have a non trivial solution (cy,ca,c3). Now:
1) if ¢3 = 0, then the first equation has nontrivial solutions iff either m = 0 or m is an
eigenvector of A1,
ii) let c3 # 0. Then, the second equation implies m = ARe¢ for some real number A
(which can assumed different from zero), and the first equation is equivalent to

Aet AT ' Rer + (Aea +¢3)Rer =0

which has the solution ¢; = 0, ¢; = —c3/A.
In this way, we conclude that the gradients of k, G* and J; are linearly dependent only
on the equilibria, the steady rotations about the three inertia axes, and all the states with
m parallel to e;. The same also holds for k£, G and J¢. To obtain the properness set X
we have moreover to exclude the whole level set 2a;G? = k since, after the removal of the
steady rotations about the middle inertia, it is not compact. All the other level sets are
easily seen to be compact, and this completes the proof of the first statement of proposition
1.2.

We now prove that &, C SO(3) x R® is the union of four connected components. To
this purpose, we describe the complement C' of such set. One has C' = Cy U C¢, where

Co = S0O(3) x C”
C* = {m e R®: G*(m) = 2a;k(m) for some i = 1,2,3}

and
Cg - U {Tn} X Cg,m
melR3\C*
Cem = {R € S0O(3) : m x Ree =0}
Now, C* divides IR® into four disjoint connected components (refer to figure 1.2a). On
the contrary, C¢ does not disconnect SO(3) x IR® since, as we now show, for no vector

m € R®\ C* does C¢ ., disconnect SO(3). Observe preliminarily that for any m such that
m x e¢ # 0, C¢.m is diffeomorphic to T? (S, if m x e = 0): each R € C¢m can be
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represented as the composition of a rotation about m, a rotation about e¢, and a rotation
which take e¢ to coincide with m. Let us now introduce coordinates (referring to the case
m X e¢ # 0). Consider two orthogonal frames {ej,e;, e} and {es,e.,e¢}, em being the
unit vector in the direction of m, and define the Euler angles 8, ¢, % as, respectively, the
angles between e, and e¢, ej and e, X e¢, e, X €, and es. In this way, C¢ , is identified
with {80} x S x 51, for a certain angle 6y, 0 < y < 7. It is now evident that C¢ ., does
not disconnect SO(3): for any two points (61,¢1,%1), (f2,92,%2) not belonging to C¢ .,
(ie. 81 # 6o, 02 # 8y), there exists a curve [0,1] 3 t = (8(2), ¢ (t),¥(t)) with 8(¢) # 8§, for

all ¢ € [0,1] which joins them. The degenerate case e, x m = 0 is also obvious.
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Chapter 2

Perturbation theory

of degenerate systems

This chapter is devoted to the study of perturbation theory for systems which do not
possess global action—angle variables, and are also properly degenerate. The appropriate
setting for this study is a theory by Nekhoroshev [64] of degenerate integrable systems, which
is shortly réviewed in section 1. In section 2 we illustrate the difficulties that arise with
perturbation theory in these cases. The overcoming of such difficulties is then obtained,
in section 3, by a ‘global’ formulation of perturbation theory.

2.1 The geometry of integrable systems

A. Generalized action—angle variables. The appropriate notion for the description
of the geometry of the phase space of integrable (possibly degenerate) systems is that of
angular fibering (this name is not of general use; it is introduced in [64]). Following [64],
we define such a notions in a constructive way, which employs coordinates:

Definition 2.1 A connected symplectic manifold M of dimension 2m 1s called an angular
fibering of order n, 0 < n < m, if the following holds: M has a covering by sets My,
A € A (some index set), each of which is provided by coordinates (Ii, pl mod 27, p3, 73)
(i=1,..,n,7=1,...,m —n) with the following properties:
i) the symplectic two—form of M, restricted to My, is > ., dIi/\dgof\+Zz___ln dp‘;/\dqi;
it) for any pair (A,p) € A X A one has in every connected component of My N M,:

I, = (A) I + axg

e = (Axp)'en + Faulln,pr,q0)
pu = Pau(dr,pr,q0)

qu Qau(In;Prsqn)

il
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where Ay, € O(Z,n), ax, € R™, and Fru, Pap, @an are vector valued functions (if
My M, is not connected, then Ax,...,Qx, may differ from one component to the
other).

The local coordinates (Ix, pa, ¢ mod 2w, g3) will be called (local) generalized action-angle
vartables; the I's will be called actions and the ¢’s angles; sometimes, we shall refer to the
variables p and ¢ as to the degenerate variables.

An example of angular fibering is the (subset foliated into invariant tori of the) phase
space of a completely integrable system (Arnold-Liouville theorem).

Geometrically, an angular fibering of order n is a principal bundle with fiber T", and
structure group the ‘affine’ group of the n-dimensional torus. The latter is the group of
the toral automorphisms ¢ mod 27 — (Ap + a)mod2w, with & € R™ and 4 € O(Z,n).
The base B of the bundle is defined locally by the projection (by, ) — by, where by =
(IA) Px, (Z)\)'

We are interested in the geometry of the base B. The transformation equations
(1.1) imply that B is foliated into 2m—dimensional leaves, defined locally by the equations
Iy = const. Consider the quotient

T = B/~ (1.2)
where ~ is the equivalence relation defined by the property of belonging to the same leaf.

One important property of the angular fibering, made manifest by the equation (1.1),
is that each fiber has an affine structure which is inherited, locally, by Z (i.e., so to say,
by the actions). There is an important case in which such an affine structure is defined
globally in 7, which is then an affine manifold.

Assume that, within the notations of definition 2.1, the sets M have pairwise con-
nected intersections, and that there exist matrices Ay € O(Z,n), A € A, such that

Axy = (A4, Yp e, o (1.3)

The cocycle identity (1.3) is manifestly equivalent to the existence of a mapping I =
(I*,...,I™) : M — R™ such that

In = (A7 + an, ax€eR, (1.4)

for any A € A. Hence, T has an atlas {f)\,l',\};\eA, where 7, = 7T N M), whose transition
mappings are the identity: Iy =1, = 1.

Definition 2.2 Let the angular fibering M be such that its chart domains have connected
intersections, and (1.3) holds. Then we say that M possesses global actions I : M — R™.
We also say that T 1s the action space.

It can be proven!®¥ that a sufficient condition for M to possess global actions is that its
base B be simply connected.

The existence of global actions does not imply the existence of global generalized
action-angle variables, i.e. the existence of an atlas for M made of a single chart. Clearly,
when global actions exist, one can choose the local coordinates with Aypy=Tanday, =0
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for all A\, € A, so that Iy = I for all A € A. Nevertheless, obstructions to globality
still remain. First, the mapping I = (I*,...,I™) : M — R™ might be not injective.
Moreover, the other coordinates p, ¢, ¢ might be defined only locally on M; in particular,
the functions F,, might not vanish.

Finally, we notice that when global actions do exist, then each leaf of the foliation of
B is globally defined by the equation I = const; furthermore, it possesses an atlas made
of local coordinates (px,qr), A € A.

Remark 2.1: There exists an alternative point of view: an angular fibering of order nis a
foliation of a symplectic manifold, with isotropic leaves diffeomorphic to tori of dimension
n; its base is a Poisson manifold, which has a natural decomposition into its symplectic
leaves (our I = const). Such a point of view is pursued in [33].

B. Nekhoroshev’s approach to degeneracy. As a matter of fact, for our study of per-
turbation theory on an angular fibering, the transformation equations (1.1) will be all that
one needs. Nevertheless, we go here a little further in this theory, so to provide some mo-
tivations for the subsequent developments. In this subsection, we describe Nekhoroshev’s
characterization of degeneracy.

In Nekhoroshev’s approach, a ‘degenerate’ integrable system is a Hamiltonian system
on a symplectic manifold of dimension 2m, which possesses 2m — n > m independent
integrals of motion f = {f1,..., fam—n} (with some 1 < n < m), with the property that
each of the first n of them is pairwise in involution with all of them:

{fi,f;i} =0, 1=1,...,n, j=1,...,2m —n. (1.5)

This generalizes the notion of completely integrable system (which is recovered when n =
m). As in section 1.1, we denote by Lf(z) the connected components of the level sets
(which have now dimension n) and by My the properness set of f. The basic results of
Nekhoroshev’s approach is the following generalization of the Arnold-Liouville theorem:

Proposition 2.1 (Nekhoroshev) Let M be a symplectic manifold of dimension 2m, and
let f ={f1,..., fam—n} be a set of real functions defined on M which satisfy (1.5). Then,
the properness set My is an angular fibering of order n. Locally, the n actions I3,..., I}
and, respectively, the 2m — n coordinates (In,px,qr) on the basis are invertible functions

of fi,... fn and, respectively, of f1,..., fam—n-

For the proof of this proposition we demand to [64] (it is an immediate consequence of
theorem 1 and of proposition 1 of such paper). We only remark that the leaves Lf(z),
z € My, are tori of dimension n: in fact, they are compact, connected n-dimensional
manifolds which have n pairwise commuting and everywhere linearly independent tangent
vectors fields (the Hamiltonian vector fields of the functions fi,..., fn). Furthermore, the
n (local) action variables I3,...,I} are constructed, as in the non-degenerate case, by
integrating the symplectic one—form of M over n independent cycles of the tori £¢(z).

If the functions fi,..., fam-n are integrals of motion of a Hamiltonian system on A,
then the fibers T™ of My are invariant under its flow. Precisely, one has the following
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Proposition 2.2 (Nekhoroshev) Under the same conditions of proposition 2.1, assume
that the functions fi,..., fam—n are integrals of motion of a Hamiltonian system defined
by the Hamilton function k : M — R. Then k is, locally, a function of the action variables
only.

For the easy proof, see [64]. Proposition 2.2 means that one has klMA. = ky o I, for some
functions ky : R® — R (A € A). The equations of motion are then, in local generalized
action-angle coordinates:

Iy =0
px =0
pr = wa(l)
g =0

where wy = 0k, /0I: all the motions are quasi periodic with (at most) n frequencies.

Remark 2.2: Nekhoroshev’s definition of a ‘degenerate integrable system’ does not require
that m = 1dim M integrals of motion are pairwise in involution. However, m integrals of
motion in involution always exist locally: the coordinate functions I, py. We cannot say at
present whether (1.5) implies the global existence of m commuting integrals. Furthermore,
it should be of interest to investigate the relation of Nekhoroshev’s theory with the more
recent ‘noncommutative integrability’ of [37].

C. Proper degeneracy. Completely integrable systems which are properly degenerate
can be naturally described within the previous setting: the role of the 2m — n integrals of
motion of Nekhoroshev’s theory is played, at least locally, by the m action variables and
the m — n angles corresponding to the null frequencies. However, proposition 2.2 is too
restrictive, since it requires the simultaneous linear independence of all the differentials of
the 2m — n integrals of motion. Miming the cases of the Kepler system, and of the rigid
body, we shall now weaken this condition.

Let us refer to the simple but interesting case, already discussed in section 1.1D, of a
completely integrable system which has just one integral of motion in excess. The following
considerations can be adapted easily to more general situations. Thus, we consider a
Hamiltonian system with m degrees of freedom and m -+ 1 integrals of motion fi,..., fmx1,
and assume that f' = {f1,..., fm—1, fm} and " = {f1,..., fm—1, fms1} are two sets of
functions pairwise in involution. Let My and M+ be the correspondent properness sets,
and assume that both of them are proper subsets of My U M.

In such a situation, Nekhoroshev’s theory properly applies to the system in the set
Mg 0 Mgre: it states that this set is an angular fibering of order n = m — 1, and the
motions are quasiperiodic with n frequencies (moreover, the coordinates on the base are
functions of all the integrals f1,..., fm+1, while the actions are functions only of the first
m — 1 of them). By itself, this result is quite obvious: by the Arnold-Liouville theorem,
one knows that not only My N My, but also My and My are angular fiberings of order
m (and then m — 1, too). Nevertheless, one can easily extend Nekhoroshev’s results to the
larger set Mg U Mg :
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Proposition 2.3  In the stated hypotheses, assume that Mp MM is dense in Mp UM grr .
Then Mg U Mg is an angular fibering of order n = m — 1. Moreover, if both My and
Mg possesses global actions, then Mg U Mygn possesses global actions, too.

Proof. Let us consider a system of local action—angle coordinates (I',¢') of the angular
fibering My, defined in a domain M} C My . The functions ¢i,...,¢,, are angular
coordinates on the m—dimensional tori Ly, ... . -

Let us now restrict ourselves to M\ N M. Such a domain is foliated by the (m —1)-
dimensional tori Lf, . f,. fmi1s €ach of which is the intersection of a torus Ly, ... 5, With
a level surface of the function fr,4+1. Thus, in M} N My the tori Ly, .. s, are foliated
into the (m — 1)-dimensional tori Lf, .. f.. fmsi- Lhis implies that there exist a matrix

B'(fiy.y fm) € O(Z,m) and a vector b'(f1,..., fm) € R™ such that, if one defines

G = [B'(fiyerr fm)] 0" + B(f1yeer frm)

then (¢!,...,%! _.) are angular coordinates on the tori L¢, .. ; moreover, the an-
(701’ 7(70m 1 (= flx 1fm1fm.+1

ular coordinate ., is, on every torus Ly .. r , a function of f,,11 alone, so that one
g ‘70 ’ y Fireonfm
has ¢!, = @L.(f1, s fms frm+1). By an obvious argument of continuity, B' is a constant
matrix. Let us define

jl — (BI)—lII
and define correspondingly

77[" = (‘7‘3’1""’95:71.——1)7 qg = (75:71,
i Ti

J' = (I{,...,f,'n_l), p = I,..

In this way, we have constructed canonical coordinates ¥', ¢', J', p' on MiN My, such that
¥' are angular coordinates on Ly, . 1. f.s: and J', p', ¢' are (locally invertible) functions
of fi,.cy frmy fm+1. Notice that such coordinates can be extended to the whole domain Mj:
indeed, M§ N My is certainly dense in M}, B' is constant and b’, being independent of
fm+1, can be extended to all of MJ.

Consider now any system of local action—angle coordinates (I", ") of the angular
fibering My, whose domain M, has non-empty intersection with M}. Here ¢7...., ol
are coordinates on the tori Ly, . f._, f..4,- As before, we construct in M, a system of
canonical coordinates (J", ", ¢",9¥") such that J", p", ¢" are (locally invertible) functions
of fi,.., fm+1 and, in M} N My, b7, ..., are coordinates on the tori Lf,, ., 5. ;-

So, in the set My N M, , 7' and 3" are coordinates on the same tori. This implies

P = A% + a(fr,.. fm + 1)

for some A € O(Z,n) and ¢ € R™ . Since dJ" A d" +dp" Adg" = dJ' Add' +dp' A dq'
and J", p", ¢" do not depend on the angles ¥’ (in fact, they are functions of f1,..., fm+1),
one obtains

J' = A7,
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Moreover let us divide M} N M), in subsets, in each of which both J', p, ¢’ and J", p",
q" are mvertlble functions of fl, N S In each of such subsets, one has

p' = P(J,p, ), ¢' = Q(J',p,q).

Since My N My is densein My UM g1, we can construct in this way an atlas of generalized
action—angle coordinates for M’ U M".

Finally, observe that the statement about the existence of global actions is obv1ous
by virtue of the very construction of the actions J', J".

The above result has a certain interest in itself, since it characterizes the global structure
of a subset of the phase space which is larger than those to which the Arnold-Liouville
theorem applies. Furthermore, this result provides general motivations for the study of
the following sections.

2.2 The need for a chart-independent perturbation theory

In this section we indicate, by a simple argument, the difficulties that arise in the per-
turbation study of a degenerate system, when it does not possess global (generalized)
action—angle variables.
Let us refer to the simple case of an angular fibering M of order n and dimension

m, which possesses an atlas of just two charts, with generalized action—angle coordinates
Cr = (ba,or) : My — By x T™, A = 1,2. Here, My and M, are the two chart domains
(thus M = M; U M>), By and B, two open subsets of R®™™ ™, and we have written
by = (IA)pA7QA) ;
; Let k£ : M — R be a function which ‘depends only on the actions’: k’M,\ = ky oI, for

some functions k) : By — R, A = 1,2. Let v : M — R be any function, and consider the
Hamiltonian system defined on M by the Hamilton function

h =%k + cv. (2.1)
The local representatives of A have the form

RA(In,pa,02,90) = ka(In) + eva(ln,pr,@r,90) (2.2)

and define two Hamiltonian systems on the phase spaces By x T, A =1,2.

By the standard methods of perturbation theory, one can construct suitable normal
forms for hy and h,, separately. For definiteness, assume that in some subset of B, one
has a non-resonant normal form, up to some order » > 1, for the system described by hy,

= 1,2 (notice that we take r to be the same for the two systems). This means that, for
each A = 1,2, there exists a canonical transformation @3, (bx,x) = @.(b),)), defined
in some subset of By x T", such that A}, = hy o ®, has the form

RA(DY, ©8) = ka(By) + ega(By) + € fa(Bh, ) (2.3)
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with certain functions g and f). Let

Ay = sup [[(B),95) = (ba,a)ll
(bayoa)

(]|-|| being some norm) be the ‘deformation’ of the canonical transformation ®,. Typically,
the two deformations will be small, say of order ¢ for some 8 > 0.

The use of the normal form (2.3) to control the variation of the actions is well known

and elementary, if the motion remain within the domain in which A is defined. Indeed,
r 8fa
O

I(2) = LL(0)]] < [#]e" Fx

from (2.3) one gets Iy = ¢ . Hence

for a certain constant F. One then writes
L)~ L(0) = (L) - L] + [ - L0)] + RO -LO)]. (24

Estimating the first and the last term by the deformation of the canonical transformation,
which we assume to be of order ¢°, one finally gets

const

115 (t) — In(0)|| < conste? forall 0 <t < (2.5)

et

How to adapt this procedure to the case in which the motion does not remain within
a single chart domain for all the time interval of interest? Once more, we observe that no
problem arises for a non-degenerate system, namely if n = m: the estimate (2.5) implies
that the motion does not leave one of the two chart domains, at least if their intersection
is not too thin. The same conclusion could be reached for the perturbation theory near a
resonance, if a geometric construction of Nekhoroshev’s type is used.

In degenerate cases, instead, the normal forms (2.4) do not allow one to control the
motion of the additional ‘degenerate’ variables px, gx, which can then escape the chart
domains. Naively, one can use consecutively the two normal forms: the one for hA; when
the phase point is in Mj, the one for Ay when it is in M>. To do this, one switches from
one coordinate system to the other each time the phase point goes through some given
hypersurface?® N C M; N M, (see figure 2.1).

In this way, if t; < to < ... < t; are the instants at which the motion intersects
(transversally) N in the time interval (0,t), one can write (assuming that z(0) and z(t)

both belong to M;):

L)~ L] + [L@) -1 + [L(t) - L)
[L(ts) — I3(ts)] + [L(t) = I(tem1)] + [L(ts—1) = Li(ts—1)]

I(t) - I1(0)

25) Codimension one submanifold
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Figure 2.1

Using the normal forms (2.3), the second term of each line is estimated by |¢t; —¢;_1[e" Fi.
The other terms can only be estimated by the deformation Ay of the canonical transfor-
mation. This leads to

111(2) = L(O)] < [te" F' + 2(s +1)A

with F' = max, Fy and A = maxy Ay. This result is completely unsatisfactory, because
in general one does not have any control on the number s.

The origin of the problem is that, in equation (2.5), one does not cancel terms in
diagonal, precisely the last term of each line with the first one of the successive line. Let
~us even assume that M possesses global actions, so that I;(z) = Iy(z) = I(z) whenever
z € My N M,. Since I} depends not only on Iy = I, but also on pjx, gx, ¢, one may not
conclude I{(t) = I}(t) although I;(¢) = I2(¢). In order to be able to draw this conclusion,
one should know that the two canonical transformations ®; and @, are related in the right
way in M, N M, precisely that they are the local representatives of a single canonical
transformation defined (in some subset of) the manifold.

2.3 Perturbation theory on an angular fibering

This section deals with perturbation theory for degenerate systems which do not possess a
global coordinate system of generalized action—angle variables. Our aim is that of working
out a ‘global’ canonical transformation (and then a ‘global’ normal form) from the ‘local’
canonical transformations constructed within each coordinate system. Since these ‘local’
canonical transformations are constructed by means of Fourier series, whose harmonics
depend on the local resonance properties, one expects that the following two questions
play an important role:
1) are resonances intrinsically defined on the manifold?
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ii) may one reconstruct a function from the series expansions of its local representatives?
As will be seen, these questions are quite simple, at least if ‘global actions’ exist, in the
sense of definition 2.2. The key point is that the affine structure of the ‘action space’ makes
the resonance properties intrinsically defined.

In all of this section, M is an angular fibering of order n and dimension 2m, which has
an atlas {Cx, Mx; A € A}, Cy : My — Bx x T", with generalized action-angle coordinates:
Ca(2) — (ba(2),0(2)), with by = (Ix,px,qx) (see figure 2.2).

Figure 2.2

We assume that the intersections of the chart domains M, N M, are connected. The
transition mappings C, = C, o Cy' of the atlas have then the form (1.1). Furthermore,
we denote F(X) the space of the real smooth functions defined on a manifold ¥.

A. Resonant manifolds. Let k : M — R be a function which ‘depends only on the
action variables’: it satisfies klMA = kyoI, for all A € A, where the functions k) : By — R

can be regarded as its local representatives. Let wy = %’% be the frequency vector of k.

A vector v € Z" is called a resonance of ky at the point Iy € By if (wa(I)), v) = 0;
the point I and the vector wy(I,) are said to be resonant with v; [v| = 3 |v;] is the order
of the resonance. The set of all the resonances of kj at Iy is a ‘sublattice’ of Z™, which we
call the resonant lattice of ky at Ix. Conversely, given a subset £ of Z", the L-resonant
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manifold of k is the subset of all the points of By which are resonant with some vector of
L; we shall denote it by r..

The obvious globalization of these notions to the function k : M — R is based on the
following observation: let z € M, N M, for some A, uin A. Then vy € Z™ is a resonance
of kx at Ix(z) iff (Ax,) v is a resonance of k, at I,(z) (this is easily checked using the
definition of the frequency vectors, k, 0, = kxoI, and (1.1)). It follows that the resonant
lattices £, of k,, at I,(z) and L of ky at Iy(z) are related by £, = (4x,) " Lx.

Consider now the globalization of the resonant manifolds. The question is whether a
resonant manifold defined within a chart domain can be continued outside it. Let us first
consider the case in which M has ‘global actions’. Consider a collection {Lx; A € A} of
subsets £ of Z™, which satisfy the relations

Ly = (Ax,) ™ Ly forallpy, Ae A. (3.1)

Then the Ly-resonant submanifolds rz, C B, are easily seen to be the local images in the
charts Cy of a submanifold of the ‘action space’ T, which can be considered as the resonant
submanifold corresponding to the family {£,; A € A}.

However, if M does not have global actions, then the above characterization may be
meaningless, since it is not assured that, starting with some resonance lattice L, there
exist a family of lattices £,, 4 € A, which satisfies (3.1) (i.e. the matrices Ay, could be
not ‘reconciliable’). As discussed later in subsection G, this fact seems not to have very
serious consequences. Nevertheless, we shall restrict our treatment to the good case in
which global actions do exist. In fact, we do not know of any Hamiltonian system in which
this condition is not satisfied.

B. Fourier series. Let B be an open set in R*™™ ™. Any function f € F(B x Tn) can
be expanded in Fourier series

f= 2 (fMhE

IJEZ"

where the functions E, : T™ — R and (f), : B — R are defined, respectively, by E,(¢) =
expt (v, ¢) and

) = @07 [ fbe) expl=i v, o)) de (32)
If £is a subset of Z™, let Fz(B x T") be the subspace of F(B x T") of the functions

whose Fourier spectrum has support contained in £. Correspondingly, we define the linear
projector Iz onto F(B x T™) as

Mcf(bye) = D> (flu(b)expi(v,¢)  VfeF(BxT). (3.3)
veL

Lemma 2.4 Let the angular fibering M have the property stated at the beginning of the
section. Consider a family of functions {fx; A € A}, with fn € F(Bx x T") for each
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X\ € A. These functions are the local representatives of a function f € F(M) iff thewr
Fourier components satisfy the equations

(Fudo (Bau(bn)) = e o (f1) 45,0 (02) (3.4)
for allv € Z™, all by € Ba N B:\";(B“) and all p, A € A such that M, N M 1s not empty.

Proof. The functions {f\} are the representatives of a function f iff they satisfy f, =
fr0Cx, for all g and A. In turn, these relations are seen to be equivalent to (3.4) by virtue
of (3.2) and of the transformation equations (1.1). .

The functions on an angular fibering M cannot be expanded in Fourier series, unless
M is a trivial bundle (the existence of global actions is not sufficient, since the angular
coordinates might not be defined globally). Nevertheless, if M possesses global actions,
then the notion of ‘having Fourier components only on a subset of Z™’can be readily gener-
alized. Indeed, let {£; A € A} be a collection of subsets of Z™ which satisfy (3.1). Define
the subspace F(z,; ea} in the following way: f € Fic,;reay if its local representative
fr=foCit lMA belongs to Fg,(Bx x T™), for any A € A (such a definition makes sense,
since (3.4) shows that fy € Fz,(Bx x T™) iff f, € F,(Bu x T™)). Correspondingly, we
define in an obvious way a projector Iz, xea} : F(M) — Fic,; rear(M).

Let us remark that, if global actions I : M — R™ do exist, then one may take all the
local actions I coincident with the I (i.e. 4, =1 and ax, = 01in (1.1)). In such a case,

we simply write Fz(M) and II;. In this case, one may also define in an obvious way the
cut—off decomposition f = S 4+ >V for the functions f € F(M).

C. The Lie method. We give now an introduction to the so called ‘Lie method’ for
the construction of the canonical transformations. Such a method is fully geometric, then
useful for our purposes. A more complete account of the method is given in the appendix
at chapter 4.

Within the Lie method, one constructs canonical transformations near the identity by
means of Hamiltonian flows. Let M be a symplectic manifold and x : M — R a smooth
function. Let X be the Hamiltonian vector field of x f. We shall denote (r,2) — ®X(z)
the flow of X, and we shall refer to it as to the Hamiltonian flow of x.

Let ®X be the map at time 7 of the flow of X. Standard theorems on ordinary
differential equations assure that, if [7| is sufficiently small, then ®¥ is defined in an open
non—empty subset M, of M; more precisely, ®X is a diffeomorphism of M, onto its image,
which is contained in M. Furthermore, the mapping ®X depends smoothly on 7, and is
canonical. Since &Y = 1, such a mapping is in some sense ‘near the identity’: for instance,
in any reasonable norm omne has ||®%(z) — z|| = O(7).

The Lie transform is the family of transformations of functions f +— fo®X, depending

on the small parameter 7. Sometimes in applications it is useful to use only the map at
time one of the flow, and to define the Lie transform as f — fo®{. The two definitions are

I X is defined globally in M by dx = w(X, ), where w is the symplectic two~form on M, or

locally, in canonical coordinates (p, q), by X = —-%’pi-é% + %%.
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obviously equivalent, because of the identity ®¥ = ®;%, which holds for every fixed 7; the
smallness conditions on 7 are correspondingly turned into equivalent smallness conditions
on x. We shall employ the time—one map.

The Lie method allows a simple and efficient transformation theory of functions (or
vector fields), which is essentially based on the well known identity

d
—(fo®F) = {x,f} o (3.5)
relating time derivatives along the flow to Poisson brackets. It follows, for instance,

fo®f = f + RX(f)

—F o+t fh + B (3:6)

with

B(f) = [t froorar
/0 (3.7)

1 T
RY(f) = / dr / dr' [, {0, £} 0 8%} o B,

Expressions (3.6) furnish approximations of orders zero and one to fo®X, up to remainders
R which are, in some sense, of order |x|* (s = 1,2).

D. Construction of the ‘global’ normal form. We give now an outline of the the
construction of a normal form on an angular fibering M, which we assume to possess
‘global actions’ I : M — IR™. For simplicity, we refer to an atlas in which the local action
coordinates coincide with the global actions I. We consider a Hamilton function

h =k + ev - (3.8)
defined on M, with local representatives
hA(bA,L,O,\) = k([) -+ E’U)\(b)\,go,\) s AEeA. (39)

Clearly, the integrable Hamiltonian k has the same representatives in all charts, as well as

the frequency vector w(I) = 2&(I),

The aim of perturbation theory is that of constructing a suitable ‘normal form’ for the
system. As is well known, in typical situations, this has to be done differently in different
regions of phase space, depending on the local resonance properties. For instance, one can
work in a subset of phase space defined by I € U, U = U(L,N) being a subset of the
action space 7 in which the only resonances (exact, or approximate within some quantity)
of order less or equal to IV are those contained in the lattice £.2%) In such a case, one aims
to construct a canonical transformation which conjugates A to a normal form ‘adapted’ to
the lattice £ and to the cut—off N.

?6) Thus, perturbation theory is in a sense ‘local’ in the actions, but ‘global’ in the other variables.
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To this purpose, let us observe that, if x is any function, then by (3.6) one may write
ho®Y = k + {x,k} + ¢vSN + R¥(ev) + RX(k) + ev™V. (3.10)

One would like to choose x so that {x,k} + cv<¥ is a function € F,. Precisely, one takes
{k,x} = ¢ (@Y = oY) . (3.11)

This equation may be appropriately called (‘linearized’, and truncated) Hamilton—Jacobi
equation*®! (‘homological’ equation is also used[®l). To solve it, we resort to coordinates.
In terms of the local representatives of the various functions, (3.11) reads

{kx,xa} = E(UASN - H,c’va‘ . (3.12)

Since {xa,k} = <w, Q&*—>, (3.12) can be easily solved by Fourier series techniques: one

a1
finds
Xa = eSS va (3.13)

where the (formal) operator SE-IZ (whose introduction will somehow shorten some state-
ments below) is defined as follows:

Ssrf= > Z.g)’;) E, V feF(BxT") (3.14)
vgL, <N

As far as N < oo and the lattice £ contains all the resonances of w of order < IV
(namely, all vectors v € Z™ such that |v| < N and (w, v) = 0), the sum in (3.14) is well
defined, and no convergence problem arises. One could then expect to have x) = O(¢),
if vy = O(1). However, in typical situations one works in a region of phase space in
which some of the denominators in (3.14) are small: |{w, v)| ~ ¢! 7 for some 1 > a > 0.
Consequently, one has only x = O(e?).

We shall not discuss here further such a kind of problems. Indeed, our attitude in the
present is simply that of assuming that all the necessary estimates have been performed
within each coordinate system, in terms of the local representatives of functions. The key
point is that, as one easily verifies, the Fourier components of the functions x constructed
in this way do satisfy (3.4) (with 4., = 1). Hence, by lemma 2.5, we may conclude that
the functions y are the local representatives of a function x, which is manifestly a solution
of the Hamilton-Jacobi equation (3.11). The Hamiltonian flow of x is then globally defined
on the manifold, and the transformed Hamiltonian (3.10) takes the form

ho®f =k +cecg+ ¢f, (3.15)

where
g = MoV

f= R¥(v) + e RY(k) + o7V (8.16)
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Explicit estimates for the remainder f can be worked out within each chart, by means of
standard techniques.

We shall now formalize this argument, by paying the necessary attention to questions
of domains.

E. Formalization of the results. In order to be able to reconstruct a global normal
form from the local normal forms in the charts, we shall need that the intersection of the
domains on which the latter ones are defined are not too small.

In the formulation of proposition 2.5 below we make reference to domains BY C B\ C
By (A € A) with the following properties: for any A,z € A such that the intersection
Mx N M, of the chart domains is not empty, we assume

Cau(Byx T™)N (B, xT") = By, xT"
Cau(BX x T*)N (B, xT") = By, x T"

RZm—

where B}, and BY, are open, not empty, connected subsets of | ™. Let us also define

M = |JcTHBLx T
AEA

M" = [ JCTHBY xT™).

‘ AEA

Proposition 2.6  Within the above assumptions and notations:

t) assume that the Fourier series y = SiZZUA define analytic functions xx € F(B4yxT™)
for any A € A. Then there ezists a unique function y € F(M') of which the x are
the local representatives;

it) assume, moreover, that, for each )\ € A, the time-one map ®F* of the Hamiltonian
flow of xx is a diffeomorphism of BY x T™ onto its image. Then, ® is a canonical
diffeomorphism of M" onto its image, has local representatives (A € A) and
conjugates h t

] g €s l‘?f(M”) o

hod®Y = k 4+ ell v 4 ¢ F, (3.17)

with
[ = R{(v) + e ' R¥(k) + vV (3.18)

Proof. The statement in part i) follows from the fact that the Fourier components of
the functions y, = 55"271;,\ satisfy (3.4). Consider now part ). Since M is a symplectic
manifold, the Hamiltonian vector field X of y is defined globally on M'. The map at time
1 of its flow is canonical, and has local representatives &3 (indeed, one has Capo @ =
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P o C;: on the intersection of the domains) and is defined on M". The statements on
the normal form are proven as in the previous subsection.

One can iterate the construction of the normal form. The following result is obvious:

Proposition 2.7  Consider a lattice L C Z™. Assume that, for each A € A, the iterative
scheme (s =0,1,2,...)

h()f) =k + agfs) + sfﬁ”
& =0

=
A = o+ e

£ = B (g0 + 1) + &7 RS (k) + [FOPY

K] <N (s
X(A) = S5z i)

. 0 -1 e .
defines smooth functions X(A),...,X(; ), for some positive integer r, on some domains

B\ x T™. Assume also that, for each A € A, the composition of the time-one maps

) ) ) XY
—_ A A .
ey’ = &\ o ®* o--v0 N

is a diffeomorphism of a domain BY x T" (we assume that the domains B\ and B”j
satisfy the conditions specified above). Then, @E\T), A € A, are the local representatives of
a canonical diffeomorphism ®(") of M" onto its image, which conjugates h, restricted to
(MM, to

A7 =k + eg™ + ef™ (3.19)

where ¢ € Fr and () have local representatives gy) and, respectively, /(\r).

Typically, after 7 steps, one arrives at a remainder f(r) which is of order ™, for some
positive number b (usually greater then the number a introduced in connection with the
estimate of the small denominators of (3.14)). However, such a condition is here supposed
to be tested on each chart.

F. Estimate of the variation of the actions. We now indicate how the ‘global’
construction of proposition 2.7 solves the problem raised in section 2.1. To this purpose,
one could refer to the expansion (2.6). However, it is easier to proceed somehow differently.
Let J : M — R be a function, andlet Jy : BAxT™ — R (A € A) beits local representatives.
Let t +— z; be a motion of the Hamiltonian system defined by & on M, and assume that
2 € M" for all ¢ in a considered interval. Define z, = ®(")(z;). Then, z} is a motion of
the Hamiltonian system described by A(™ on &("(M"). Thus, we may write

J(z) = J(20) = [J(z) = J(z)] + [J(2) = T(20)] + [J(20) = J(20)] (3.20)
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and compute the second term at the r.h.s. as
t ’
TE) = I(3) = [ {0, }o 8 (ap)dr
0

where ®"' is the Hamiltonian flow of A/'. Thus, if J is a first integral of the unperturbed
system, we get

t 1
IE) = T() = ¢ [{o, 7o 8 ()i + [ 180 2¥ e

The integrals can be evaluated, or estimated, in the charts. In the simple case considered
in section 1.2 (J = I, £L = 0) one has {g,J} = 0 and then

[7(z1) = J(z)| < [tleC, (3.21)

with
C=sap  sup A7, L3ba,on)| ~ e
AEA (bx,pr)EBAxT™
(for some b > 0). Together with (3.20), (3.21) furnishes an estimate for the variation of
J in which the effect of the deformation of the canonical transformation is evaluated only
two times.

G. On cases with no global actions. Besides the obvious changes due to the fact that
the transition matrices 4,, cannot be taken all equal to the identity, the basic difficulty
in this case is that the resonant manifolds could be not defined globally on the manifold.

It is possible that this fact does not prevent, in practice, the possibility of a pertur-
bation theory. The point is that the normal forms constructed in each chart confine the
motions of the local action variables. Thus, one expects that the actions can visit only few
chart domains, for which no global obstruction to the reconciliability of the matrices Axp
exist.

Anyway, we do not investigate further such a case, since we are not aware of its
occurrence in any Hamiltonian system.
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Chapter 3

The action—angle variables

of the symmetric rigid body

In this chapter we study the action—angle variables of the symmetric Euler—Poinsot prob-
lem, namely the ‘Poinsot variables’. In section 1 we define such variables, and state a
number of their properties. Section 2 deals more specifically with the use of these coordi-
nates in the rigid body dynamics. Some proofs are collected in section 3.

3.1 The Poinsot variables

As in section 1.2A we identify T*SO(3) with SO(3) x R?®, by choosing two frames By =
{e1,e2,e3} and B, = {ez,ey,e;} which are, respectively, attached to the body and fixed
in space. We think the basis vectors of B, as being functions of R € SO(3): e, = Rea,
ey = Rea, €; = Res. The ‘Poinsot variables’ have been already introduced in section
1.2C (see figure 1.3). Here, we formalize their definition, and consider with some care the
singularities of such coordinates. With reference to the two frames By, B,, we define the

following subset of SO(3) x R®:

S(By,B,) = {(R,m) € SOB)xR® : mxe,#0, mxes#0]. (1.1)

Definition 3.1  The Poinsot angles relative to the two bases By, B, are the three real
functions j(mod2r), g(mod2r), I(mod2m) defined on (B, B,) as follows:
o j is the angle (in the ‘fized’ plane e, @ €y 1h) from e to e, X m, anticlockwise about e:;

e g is the angle (in the plane orthogonal to m through the origin) from e, X m to m X es,
- anticlockwise about m;

T We denote by u @ v the linear space spanned by the two vectors u and v.
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e [ is the angle (in the ‘moving’ plane e; ® ez ) from m X e3 to ey, anticlockwise about es.
The Poinsot variables relative to the frames By, B, are constituted by the three Poinsot
angles and by the three Poinsot momenta J = (m, e,), G = (m, m)l/z, L = (m,es).

Analytic expressions of the Poinsot angles as functions of (R,m) are easily obtained. First,
one deduces from the very definition of the three angles the expressions

cosj = (ez, €2 xm) B My .
lez < m]l. m2 + m?2
(ez X m, m X €3> (12)

9T e xmll. [m  esl.

(m X es, e1) _ ™Mo

cos! = -
lm X es]|e V/m2 + m?

(here and in the following || || denotes the euclidean norm). The second expressions of the
first and the third equations reflect the fact that j is the angle between the axis ey and
the orthogonal projection of m into the ‘“fixed’ plane e, & ey, while [ is the angle between
the orthogonal projection of m into the ‘moving’ plane e; @ e, and the axis e,.

We shall see in a moment that the Poinsot angles relative to two frames B, B, are
properly defined in all of the set X(By,B,), which is clearly an open, dense, connected
subset of SO(3) x IR®. On the other hand, they cannot be extended to all of SO(3) x IR,
since they cannot be defined on the boundary of (By, B,): indeed, the ‘nodal lines’ used
for their constructions are no more defined if m = 0 (i.e. G = 0) or else if m is parallel
either to es (|L| = G # 0) or to e, (|J| = G # 0). The last two singularities, but not
of course the one corresponding to m = 0, can in principle be removed by changing the
frames By and By, i.e. by using other ‘Poinsot charts’. Such a possibility is made precise
in the following proposition.2”

Proposition 3.1 .

i) With reference to any choice of the frames By and By, the Poinsot variables define an
analytic diffeomorphism (R, m) (J,G,L,3,9,1) of Z(Bs,B,) onto P x T°, where P
is the ‘piramid’

P ={JGLeR :@>0,|]|<G, |Ll<G}; (1.3)

1) such a diffeomorphism is symplectic, relatively to the natural symplectic structure of
cotangent bundle of .(By, B, ), and to the symplectic two-form dJNdj+dGNdg+dLAdl
of Px T3

27) In the application to the rigid body, it is usually appropriate to choose the axes e, ey, e3 of
the reference By to be the inertia axes of the body. Specifically, if the body is symmetric, one
takes e3 to be the inertia symmetry axis; instead, for a tri-axial body, es is chosen differently
in the two regions in which the separatrices divide the phase space, precisely as the minimal
or the maximal inertia axis. Consequently, in the study of the rigid body, it will be easy to
change B,, and correspondingly remove the singularities G = |J|, but it will be not possible
to change By. Correspondingly, the singularities G = |L| and G = |J| will have a completely

different role in perturbation theory, in accordance with the discussion of chapter 1.
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1) let Bﬁl), B be any two ‘fized’ frames with non-parallel z—-azes and Bgl), Bgz) two
‘moving’ frames with non-parallel e3~azes. Then, the Poinsot variables relative to the four
sets E(Bg"),Bﬁ”)) (n,v = 1,2) constitute an analytic symplectic atlas for SO(3) x {IRS\

{0}].

The proof of this proposition is deferred to section 3.3A.

We consider now the relation between Poinsot variables and Euler’s canonical coordi-
nates @, ¥, 8, p,, Py, P, obviously relative to the same couple of frames By, B. Since the
FEuler angles have a singularity for § = 0, we restrict ourselves to the set

Y (By,Bs) = T(By,Bs)\ {(R,m) : (ez, e3) = 0} . (1.4)

Proposition 3.2 (Deprit*%, Boigey?*24 ) In all of 5'(Bs, Bs), the Poinsot variables are
analytic invertible functions of the Euler canonical coordinates, and satisfy

Jdj + Gdg + Ldl = pydp + pydip + pedd . (1.5)

The transformation equations are

J L
cosf = ®<5’ —C-T;,g> (1.6a)
J L
cos(p —j) = @(a, ek g) (1.60)
J L ,
cos(v —1) = ¥(5, =, 9) (1.6c)
L? J 2
Pp = J (1.66)
py = L (1.61)
where the functions ©, ®, ¥ are defined by
O(z,y,9) = zy — V/1—224/1—y? cosg
Y —m@(w,y,g) (17)
®(z,vy, = ¥Y(y,=, =
(=,9,9) (v, 2,9) N R T
Moreover, one has
G* = p} + p5 + (pp — py cos8)? sin™? 6. (1.8)

The proof of this proposition is demanded to section 3.3B.
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Notice that the Euler angles 8, ¢, ¥ are functions of j, g, [, J/G, L/G. Thus, they
are homogeneous functions of degree zero of the momenta @, J, L.28) This fact has the
following obvious, but important, consequence (already stated in section 1.4). Consider
an analytic (‘purely positional’) function V : SO(3) — R, and extend it to T*50(3) in the
trivial way: V(R,m) = V(R). Then, in each set Z(Bs,5,), ¥ has a local representative
v which is an analytic function of j, g, I, J/G, L/G. In particular, v is a homogeneous
function of degree zero of the three momenta J, @, L:

U(j7g7la>‘J)>‘G7AL) = 'U(j,g,l,],G,L) VA>0. (19>
We consider now in detail the subset of SO(3) x R® given by
L(By) = {(R,m) € SO(3) x R* : m x e5 #0}. (1.10)

Notice that, in the case of a symmetric body, if e; is the inertia symmetry axis of the body,
such a set coincides with the set &, introduced in section 1.3C. Consequently, it is assured
by proposition 2.3, that 3(B;) is an angular fibering of order two and dimension three,
which possesses global actions. The generalized local action—angle variables for 3(By) are
the Poinsot variables, and clearly two charts are sufficient for an atlas. We now consider
in some detail the transition functions:

Proposition 8.3 For any choice of the frame By, the set $(By) has an atlas constituted
by two Poinsot charts

(GsGur Ly Juy Gy D) 2 DBy, BW) — P x T®, p=1,2,

where the two “fized’ frames BE”, B have non—parallel z—azes, with the following transi-
tion functions:

. Ji .
Gy, = Gy, gz = g1 -+ 912(5;]1)
1
Lg = Ll y lz = Zl ; (111)
. o Jr . . ~ rd1
Jo = G1 Ji (G—l,h) ) J2 = 312(51“731>
1 1

where the functions g1z, Jia, J12 (which depend only on the mutual orientation of the two

frames Bﬁl), BE”) are analytic for —1 < J;/G1 <1 and j; € S'. Moreover, the change of
coordinate is analytically invertible and symplectic.

Thus, G, L, g, | are the action—angle variables of the angular fibering X(B), while J and
J are its ‘degenerate’ variables. The two actions G and L are globally defined, and map
Z(Bs) onto the open domain of the plane (in fact, an open angle)

I ={GL)eR®:G>0,G>|L} (1.12)

which can be identified with the ‘action space’ of definition 2.2.

*®) A canonical transformation which preserves the symplectic one-form, as in (1.5), is called
‘homogeneous’ (or of the ‘Mathieu type’) since the coordinates and the momenta of one
group of coordinates are homogeneous functions of degrees, respectively, zero and one of the
momenta of the other group (see [75]).

53



3.2 The Poinsot variables and the rigid body

Let now the vectors ey, eq, es of the frame By be inertia axes of the body, corresponding,
respectively, to the inertia moments a1, a2, as.

Proposition 3.4 (Deprit) The Hamilton function of the free rigid body, in local Poinsot
coordinates in L(Bsy, B,), 1s

.2 2
K(,G. L) = (sm ! L oo l> (G* - I?) + 12 (2.1)

2(11 2&2 2(13

Proof. As noticed before, [ is the angle between the axis e; and the orthogonal projection
mia of m into the plane e; @ ez. Thus, my = M1 sinl and m, = miz cosl. On the other
2 2 2
hand, one has m2, = |m||2 — m% = G* — L?, so that the kinetic energy (B 4+ 4+ %
takes the form (2.1).

Local action—angle variables for the ‘free’ rigid body with tri—axial inertia ellipsoid can be
constructed out from the Poinsot variables, by employing the usual method of Liouville
(see especially [51,53], and also (3, 64,69,9]). ‘ v

The Poinsot variables are local (generalized) action—angle variables for the symmetric
rigid body in every chart domain (Bs, B,), if of course the body frame B is chosen
appropriately, namely with the axis es coincident to the symmetry inertia axis. In such a
case one has a; = ay and the Hamilton function (2.1) reduces to the form (2.6) :

kG, L) = 5%;@2 v o= (2.2)
The equations of the motion of the regular precession are
J=0, j=0
G =0, g = wi(G) (2.3)
L =0, [ = wy(L)

with w1 = G/a; and wy = U222 L (see (2.9) of chapter 1).

Consider now the problem of the motion in an external force field, which we assume
described by a ‘purely positional’ and analytic potential energy VY : §0(3) — R. We shall
be interested in studying the motion in the whole subset Z(B;) = X« of phase space.
Such a set is covered by two Poinsot charts, corresponding to two spatial frames with non
parallel z—axes.

Let us consider one of these two charts. Let v : P x T3 be the representative of V. As
remarked, v is an analytic function of the three angles g, j, | and of the two ratios J/G,

L/G. Of course, v is bounded in all of P X T:

sup [o(z)] € sup V(R
zePxT3 RESO(3)
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However, the derivatives of v can (and usually do, as a glance at equations (1.6)—(1.7)
indicates) diverge on the boundary (8P) x T? of the chart domain (precisely, for |J| — G
and |L| — G). Thus, perturbation theory (in action-angle variables) has to be performed
in a subset of P x T®, from which a neighbourhood of the boundary has been removed.

Such a subset can be obtained, for instance, by removing from P a layer of uniform
width near its boundary.Indeed, let

P—u={(J,G,L)eR®*: G>u, |]|<G~u, ,|L|<G-u} (2.4)

for some positive number u. By Cauchy estimate, v being analytic in P x T?, all first
derivatives of v are uniformly bounded in P — u, for any u > 0.2%)

Remark 3.1 A careful analysis shows that the derivatives of the local representatives
of (purely positional) functions are uniformly bounded up to distances O(G™!) from the
singularity G = |L|. However, we shall not make use of such a fact.

Let us conclude by noticing that the pre-images under the Poinsot variables C(#)
(r=1,2) of the sets P —u x T° cover®® the subset of SO(3) x R®

T—u = {(R,m) ¢ [mlle >u, [(m, es) | <[m|le —u}, (2.5)
which is again a fiber bundle, with global action variables &, L and action space

IT-u = {(GL)eER?: @>u, |L|<G—u}. (2.8)

3.3 Proofs of propositions 3.1, 3.2 and 3.3

A. Proof of Proposition 3.1. First of all, we show that the mapping C : (R,m) —
(7,9,1,7,G, L) is a bijection of X(By, B,) onto P x T*. This would not be strictly necessary,
since we shall re-obtain such a result as a byproduct of the proof of the analyticity of
such mapping. Nevertheless, it may be useful to give a simple and descriptive geometric
argument. The mapping C : X(B,B8s) — P X T? is manifestly well defined. We thus
show that its inverse is properly defined from P x T? into (B, Bs). To this purpose, we
consider any point (j,9,l,J,G, L,) € P x T* and proceed as follows:

- first (fig. 3.1), the angle 7 in the plane e, ®e,, measured from e, toward e,, determines
direction and orientation of a (non-zero) vector, which we identify with e. x m; this

29 Of course, one could exclude a larger neighbourhood of |J| = G. For instance, if ( is
the angle between the z—axes of the two spatial frames, one could restrict P according to

|J| < G cos({/2), and correspondingly to switch chart as soon as |J| = G cos(¢/2).
%0)  Obviously, we assume that the angle between the z—axes of the two spatial frames is not too
small.
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fixes the plane containing e, and m. Together with J = (m, e.) and G = (m, m),
this completely determines the vector m; since G # 0 and |J| < G, such a vector is
different from zero and non parallel to e,;

- next, consider the plane orthogonal to m through the origin, and in such a plane the
angle g, taken anticlockwisely (with respect to m) from e, x m. This angle determines
direction and orientation of a (non—zero) vector, which we interpret as mxes. Together
with L = (m, e3) this uniquely determines the vector e; having unit euclidean norm,
which is non parallel to m (since |L| < G);

- finally, the angle ! in the plane orthogonal to es, anticlockwise (with respect to e3)
from m X e3, fixes e;. The construction is completed by taking e; = e3 x e;, and
defining R as the operator which transforms the vectors e, ez, e3 into, respectively,
€z €y, €.

In this way we have constructed a mapping P x T° — X(Bs, B,), which is easily seen to
be the inverse of C.

€ | €z X M

Figure 3.1

The analyticity of C follows immediately from the expressions (1.2) of the Poinsot
variables in terms of (R,m). Concerning C™!, let us first notice that, as one easily ver-
ifies starting with (1.2), the representatives of the vector m in the basis By and B, are,
respectively,

VG? — L?sinl VG? — J?%sinyg
m® = | VG2 = L%cosl | , ml = | /G~ J%cosj | . (3.1)
L J

This shows that m is an analytic function of the the Poinsot variables. To show that & too
is analytic, one can construct its matrix relative to the two bases B,, Bj; indeed, it is easy
to see that R can be expressed as the product of five suitable rotations, whose matrices
are explicitly constructed and are manifestly analytic in the Poinsot variables.
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In order to prove the other statements i) and i) we use some results stated in propo-
sitions 3.2 and 3.3 (which are proven below).

First, it is stated in proposition 3.2 that the Poinsot variables are related by a canonical
transformation to the Euler coordinates. Precisely, in the set Y'(Bs,B,) defined by (1.4)
one has

Jdj + Gdg + Ldl = pyde + pydip + pedd . (3.2)

Now, the cotangent bundle 7*S0(3) possesses a symplectic one—form ¢ which is globally
defined and coincides with p,dp+pydib+pedf whenever the latter is defined (this is assured
by Darboux theorem, since the Euler angles are local coordinates on § O(3)). Thus, (3.2)
implies that one has Jdj + Gdg + Ldl = o in Z'(Bs, B,); by continuity, this relation holds
in all of ¥ (actually, £'(Bs, B,) is dense in & and the Poinsot variables are continuous in
all of ). This proves that the Poinsot variables are symplectic coordinates on 3.

Consider now part 41). The four sets E(BIS“), BE”)) clearly cover 50(3) x [R*\ {0}].
Thus, to prove i) we have to show that the different coordinate systems patch in the
right way in the intersections of the chart domains. The transition mappings (1.11) of
proposition 3.3 indicate that this is the case for the Poinsot variables (J1,91,11,J1,G1, Ly)
in T(By, BS") and the Poinsot variables (j, g2, l, J2, Gz, L2) in S(Bp, B?), where B
and B have non-parallel z—axes. It is easy to see that the transition mappings between
the other couples of charts have the same good properties as (1.11). Indeed, the transition
mapping corresponding to the change of the (‘moving’) frame is obtained form (1.11) by
exchanging the roles of the couples of variables (7,7) and (I, L), while those corresponding
to changes of both the frames can be written as compositions of two changes of coordinates
of the types above. The proof of proposition 3.1 is complete.

B.Proofofproposition 3.2. We do not repeat here the argument (based on elementary
considerations of spherical trigonometry) which proves equation (1.5) (see [34], and also
[23,24)).

The analitycity properties of the change of coordinates follow from the transformation
equations (1.6), which we now prove. Equation (1.6a) is proven simply by observing that
the second equation (1.2) can be written in the form

JL — G?cos b
VG2 —I2/GZ 7

cosg =

From figure 1.3 one draws the expressions

o ) {ez X m, e, X e3) L — Jcos#
CO — = =
P T o xmlles x el [smo|VEE =5

(e: X m, m X e3) J —Lcos¥

0D = ol el = i /e

which give (1.6b,c). The equality (1.6e,f) are obvious. We now prove the expression
(1.6f) for pg, which is the component of m along the nodal line e, = (sin8) e, x e;.
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Let v be the angle between m and e;. The projection of m along the axis directed and
oriented like e3 X (m X e3) is G| siny|. The angle between the (oriented) axes es X (m X e3)
and e, is either [ — 3 — 7/2 or its complement to 2m; in both the cases, one has py =
G|sin | sin(¢ — 1). Equation (1.6f) immediately follows, since cosy = L/G. Finally,
(1.8) is proven by observing that G = (m, m) = m?2 + m% + m} and using the standard

expressions
(p, — py cos 8)sinp + pgsin d cos P

my = :
sin 0
(p, — py cos §) cos 1 — pgsin §sin 7
mg = .
sin ¢

(which can be found, for instance, in [43]). The transformation equations (1.6) are mani-
festly analytic in ©'(Bs, Bs). Their (analytic) invertibility is also easily proven.

C. Proof of proposition 3.3. The equalities Gy = G1, Ly = L1 and [y = l; are
obvious, since no one of these functions depend on the fixed frame. The basis vectors egf),
e§,2), {2 of the frame B'? can be written as linear combinations of those of BS”, with
coefficients depending only on the mutual orientation of the two frames: el = > cabegl),

with a,b = z,y,z. One then easily computes, using (1.2):

‘ 1/2
Jy = Jic., + (czz sinJ1 — Cay cosjl) (G’z — le)
. 2 2 —1/2 .. .
cosjy = Jicy (G’ - Jl> -+ (cyz sin j1 — cyy cosy1>

The angles g; and g» lie on the same plane, and have one side in common; therefore, they

satisfy
<e£1) X m, e x m>

e 5 mlfe[|ef? x m]|.

which implies
CZZG% — J]Jg

g2 = g1 — = .
VG = TP - T3
The analyticity of the transformation equations in the stated domain is manifest, as well
as their invertibility. The symplectic character of the transformation is obvious, since by

proposition 3.2 each of the two coordinate systems is canonically related to a set of Euler:
coordinates.

58



Chapter 4

Perturbation theory:

the normal forms

In this chapter we construct, with the techniques of perturbation theory and Nekhoroshev’s
theorem, the ‘normal forms’ for the fast rotating symmetric rigid body. Section 1 contains
some preliminary materials: the definitions of domains and norms and the (very simple,
in the present case) ‘geography of resonances’. In section 2 we state the proposition 4.2
on the normal forms, which is then proved in sections 3 and 4. An appendix is devoted to
the Lie methods for vector fields. The use of the normal forms for the description of the
fast motions of the rigid body is deferred to the next chapter.

4,1 Preliminaries

A. The system. The material in the present chapter covers both the cases of a rigid
body with a fixed point and the case with no ixed point. Actually, we are mainly inter-
ested in the former case, but the consideration of the latter one introduces no additional
complications. The inertia ellipsoid of the body relative to its center of mass (or to its
fixed point, depending on the case) is assumed to be symmetric.

The system is defined on the phase space T*50(3) x @, where Q is some open domain
in R®. Let (p,q) € R® be canonical coordinates on Q, ¢ = (g1,92,93) being the coordinates
of the center of mass and p = M ¢ the total linear momentum of the body; M is the mass
of the body. Then, the Hamilton function has the form

h(R,m,q,p) = k(m) + u(p) + V(R,q) (1.1)

where k is given by (2.3) of chapter 1,

u(p) = le:p) (1.2)




and V is the potential energy, which is assumed to depend only on the configuration of
the body®!). The case of a body with a fixed point is recovered simply by taking Q = 0,
v =0,V =V(R), i.e. ignoring the coordinates p, g.
We consider the system (1.1) on the restricted domain X, x @, with X, defined as in
“section 1.2. The Poinsot coordinates, together with the coordinates (p, g), supply 2. x @
with an atlas of two ‘Poinsot’ charts, which we denote (changing a little the notation)

(Al,Ag,J()‘),agx),az,jo‘),p,q) : E(BB)B-B) X Q — P X -"-3 X Q ()‘ = 172) (13)

where 4; = G, 4, = L, agk) = ¢») and a; = I. Of course, we take the coordinates A;,
A, and as as coincident in the two charts. It is understood that the axis e; of By is the
inertia symmetry axis of the body, that the z—axes of the two frames Bgl) and Bﬁ"') are
(for definiteness) orthogonal, and obviously that the origin of these frames is the center of
mass or the fixed point, depending on the case. We shall always write A = (4;, 4;) and

ot = (a(l’\), asz).
Let

R4, TN,V i p g) = k(4) + u(p) + vV(4, TN, iV ), A =1,2

be the local representatives of the Hamilton function (1.1). The function v(*) depends on
the variables A, J(*) only through the ratios 45/A4; and J*)/A4;. Furthermore, one has

1 a; —a
k(4) = 5— (47 + n43), n= —

ai as

(1.4)

The parameter 7 is in principle subjected only to the condition n > —1/2. The body is -
oblate if n < 0, spherical if n = 0, prolate if n > 0. The limiting value n = —1/2 is attained
by plane bodies. We shall assume that the body is not spherical.??)

B. Properties of k(4). The ‘unperturbed Hamiltonian’ k(4) is convex if n > 0, and
quasi—convex in the region

IT={AcR*: 4; >0, 4; > |4:]} (1.5)

if n < 0 (as one readily verifies, referring to definition 1.2). We are here interested in some
very elementary properties of k(A4), and of the frequency mapping w = %f: : T — R?, which
is explicitly given by

1

a3

31) |In fact, the only important thing is that V and its first derivatives remain bounded as
ml. — oo.

32) All our results become meaningless for 7 — 0 and for 7 — co. Nearly spherical bodies could
be treated as perturbations of spherical ones.
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Let us notice that we shall use, for (real or complex) vectors z = (z15.+.,2n), the norm

2l = max]a (1.7
(the euclidean norm || - || will also be used). The norm of w(A4), namely
1
lol)ll = — max (|4a], [n]]421) (1.8)

will be the large parameter of perturbation theory. For any A € Z, lw(A4)]| is the larger of
the two frequencies |wi(G)| and |wy(L)| of the Poinsot precession (see (2.9) of chapter 1).

Lemma 4.1 Define

u(r) = max(1, ) (1.9)
Then, for any A € T one has
14l < o) < A7), (1.10)

Moreover, let v # 0 be the angle between two vectors A, A' € Z, and 7, the angle between
w(A) and w(A"). Then

=22 < max (fyl, Inl ™) (111)

min (|n], |7|7') < "

Proof.*®) The inequalities (1.10) are immediately checked (for the left one, the coﬁdition
|42| < A; is essential). Since w(4)xw(A')= a;?nAx A", one has lw(A)||el|w(A")]]e] sin s |
= a’[n||Alle]|A' ||| siny|. This equality is easily seen to imply (1.11).

C. Geography of resonances. The resonant manifolds of the frequency w in the action
space I are all the straight lines

e = {A€T: 14 +nrd, =0}, v=(vi,1) € Z?, (1.12)

(the point 4 = 0 does not belong to T). Obviously, the correspondence between resonant
lines and integer vectors is not one-to—one. Thus, we shall (tacitly) parametrize the reso-
nant lines by vectors of Z? whose two components are relative prime numbers. Moreover,
we consider the ‘one-dimensional lattices’ of Z?, defined as follows: for any v € Z> \ {0}

L, = {V'€Z*\{0}: vxv =0}

%) Here and in the following, the cross product u X v of two vectors u, v of R?, Z* or €* denotes
cbviously the number u;vy — uqv;.
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In order to dispose of a uniform notations, we shall formally treat the ‘non-resonance’ as
the resonance with the null vector. Thus, we define

Lo = {0} C Z? (1.13)

Let us introduce a cut—off N, which at the moment takes the role of a parameter, and
consider only the resonant lines of order |v| = |v1]+|v2| < N. Around each of them, we set
apart a certain ‘resonant zone’ R(v, N) C T (which will be fixed in a moment), and define
correspondingly the zone ‘nonresonant within N’ (which we denote as the zone resonant
with v = 0): ’

R(O,N) = I\ |J R@DN). (1.14)
VEZZ
0<|v|<N
The core of Nekhoroshev’s theorem is the construction of a nonresonant normal form

in each connected component of R(0, N), and of a resonant normal form, adapted to the
resonant lattice £,, in the resonant zone R(v, V), for each v € Z* 1< |v|<N.

The choice of the resonant zones is of crucial importance. The two basic criterions are
that the resonant zones must not overlap (otherwise one cannot construct a normal form
adapted to a one—dimensional sublattice of Z*) and, at the same time, that they should
not to be too small (the smallest they are, the smallest are the ‘small denominators’ in the
nonresonant zone).

In the case at hand, we find convenient to take the resonant regions the largest as
possible, compatibly with the non-overlapping requirement. This choice is possibly not
yet optimal, but will allows us to to obtain accurate results.

For a fixed N, we take the resonant zones R(v, V) as follows. Consider an open angle
A(v,N) C R?, centered on the straight line orthogonal to v and with the vertex in the
origin of R%. Then, we define R(v, V) as the preimage of A(v, V) under the diffeomorphism
w (see figure 4.1). Such angular shape is rather natural for the estimate of the small
denominators, but is not really important (moreover, it is in some sense fictitious —see
subsection D).

The size of A(v, N) is easily determined by the non-overlapping requirement. One
easily verifies that the (acute) angle -y, between any two (non parallel) vectors v, v’ of /A
is bounded by |sinv,| > (|v||v'])7*. Thus, taking A(v, N) to be the acute angle whose
semi—amplitude satisfies o

] 1
sm—z—A(V,N) = IR (1.15)
one has that the resonant zones
R(v,N) = w  [A(v,N)] (1.16)

do not overlap: for all the vectors v,1' € Z* of ‘order’ |v|,|v'| < N, and such that o' ¢ £,,
one has

R(v, N)[|R(+',N) = 0 (1.17)
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w(ts)

A N)

Figure 4.1

The angular size of the zones can be estimated by means of the inequalities (1.11) of lemma

4.1:
1 -1 . 1 1 o -1
- > — N) > —— . 1.1

D. A remark on the cut—off. Our aim is that of giving results for large values of
|lw(A)|. Thus, we introduce a positive parameter Q) and, for any (sufficiently large) value
of Q, say @ > Qg for a certain threshold o, we consider the subset of the action space I

in which [|w(4)]| > €.

Correspondingly, in the perturbation theory, the cut—off N will be taken to be a
function of Q. Precisely, we shall take N(Q) = O(y/©/%). Consequently, the angular
amplitude of the resonant zones will depend on {1 R(v, N(2)) ~ (Jv|v/Q)~*. Nevertheless,

for the moment it is convenient to treat N and ( as independent parameters.

E. Domains. Let p = (p1,...,pn) be a vector with positive entries. For any point z € R™
(or C*) and any domain B C R™ (or €7) we define

AiR(Z’P) = {yE‘Rn : Iyi_zi|£Pia i=1,...,n}

A(z,p) = {yeq'n : lyi_zi1§Pi7 izl?--'vn}
B+p = |J 2r(bp) (1.19)
beB
BP = U A(b?p)
beB

Furthermore, we define the set B — p = {z € B : AR(z,p) C B}. Let us also introduce
the complex neighbourhood S}, 7 > 0, of the circle 51 as

S} = {y(mod2r) e € : [Imy;| <7, 2= 1,...,m}. (1.20)
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Correspondingly, we put S = S} x S}, §% = §2 x S;.
Let us now consider the domain P x T® x @ of the two Poinsot charts (1.2). We
introduce an ‘extension vector’

P = (pAapp7pa7pq) (1'21)

whose entries are positive, have the physical dimensions of the corresponding coordinates,
and play the role of parameters. For practical convenience, we assume p, < 1. In order to
apply the notations above, we identify p with the vector (pa;,p4,,07)Pars---sPgs), With
Pay = Pa; =PI = P4y Pay = Pay = P = Pa and pp, = pp, pg; = pq for all i = 1,2,3.

Preliminarily, we restrict P so to avoid the singularities on its boundary. Precisely, as
in section 3.2, we consider the sets

T—-2p = {AcT: A >2pa, |4z < AL —2pa}

1.22
P—-2p = {(A,J)EP:A1>2pA,[A2|<A1~2pA,IJ|<A1—2pA}. ( )

In the following, we shall consider complex sets of the form D, = (P — 2p), X Sg X Q)
where SZ = Sga.

Let us now consider the resonant zones R(v, N). First, we consider their intersections
with the ‘high frequency’ part of the phase space (and with Z —2p). With reference to the
extension vector p (the dependence on which we do not indicate for 51mphc1ty), we define
for any v € Z* with 0 < |v| < N:

70, 4,0) = "M {4 € R+ o)l 2 2+ 2050} YT 20

P(y,N,Q) = {(4,J) e R® : A€ I(v,N,Q)} (P —2p).

(1.23)

We shall use real and complex neighbourhoods of these sets. Precisely, for any exten-
sion vector ¢ such that 3% ¢ < p, we shall consider the sets Z(v, N, Q) + o, I,(v, N, Q),
P(v,N,Q) + o, P,(v,N,Q) defined as in (1.19).

Finally, we observe that the preimages under the two Poinsot charts (1.3) of the set
P(v,N,Q)xT?xQ define an angular fibering X(v, N, Q) x Q which is a subbundle of £, x @,
and has action space Z(v, N, Q). Similarly, from the sets (P(v, N,Q) + o) x T x (Q+0)
one constructs an angular fibering (Z(v, N,Q)+¢) x (@ + o). These angular fiberings will
be the natural domains for the perturbation theory.

F. Norms. As a last prerequisite, we introduce the norms to be used later on. The
supremum norm of a function f in a real or complex domain B will be denoted

5 = suplf(0)]. (1.24)

34) Inequalities of the form o < p between vectors are intended to work separately on each entry.
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Consider now a domain of the form B, x Sg, where B is some subset of P x § x Q. Let

(f)v : B, — €, v € Z*, be the Fourier components (relative to the angles (a1, ) € S?)
of a function f : D, — C, so that

Floya) = D (Flu(b) el (1.25)

VEZZ

Then, for any ¢ < p we define the norm

flo = > 1Al el (1.26)

VGZZ

If the function f does not depend on the angles a, one has f = (f)o and (1.26) reduces to
the supremum norm in the domain B,.

The use of this norm in perturbation theory presents some advantages over the use of
the supremum norm. Clearly, it allows a very simple and efficient estimate of the solution
of the Hamilton—Jacobi equation and, moreover, of the ultraviolet part of the functions.
In our opinion, the latter is the the more important one: in the present study of the rigid
body, the useé of this norm has been crucial to find estimates for the variation of the actions
over times exp(21/2).

We shall also use a ‘local’ version of the norm (1.26): for any point b € B we define

oo = > |(f>y1g°g’g,a) elvloa (1.27)

veZ?
Actually, such a norm is introduced here in view of an application of secondary importance
(it will be used only for the study of the case of scattering, in section 5.5). However, its use

does not introduce here any complications at all; on the contrary, its use in perturbation
theory is, in our opinion, quite natural. Notice that (1.27) is meaningful for ¢ = 0, too:

[floo = D> 1) (1.28)

I/EZZ

Moreover, we shall use a ‘vector field norm’ of functions: for any vector ¢ < p and any
function f : B, x Sf, — € we define

190f

ponnsd X — =

17 = max (|5

where the maximum is taken over all the coordinates, 7is the variable canonically conjugate

to 7, and |- |, is the norm (1.26). Clearly, such a norm is nothing else than a norm of the
hamiltonian vector field of the function f.

a) (1.29)

Finally, notice that the norm (1.26) is not equivalent to the supremum norm. However,
one can show that, in the analytic case, for any §4 < pa, and writing 6 = (0,0, 64,0), it
results

(901522, < 1floms < () UAWIShss (1.30)

é
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4.2 The normal forms

In this section we state a proposition on the normal forms, which is the central result of
the chapter. First, we collect the hypotheses, which essentially reduce to the analyticity
of the potential energy V.

We consider the system of Hamiltonian k= k+u +V as in (1.1), on the phase space
Y. X Q. We assume that each one of the two representatives v T Px T’ x@Q — R,
A =1,2, of V in the Poinsot charts (1.3) can be extended analytically to the complex set
(P —2p), x 82 X @Q,, for some extension vector p, the extension being bounded in the
vector field norm (1.29). Let us denote (with some abuse of notations)

V||, = max ([v®),, [v1l,),

where the vector field norm (1.29) is evaluated in the set (P — 2p), X 8% x Q,. We also

assume that ||u||, = |u|§5:) is finite (this is obviously a condition on the set Q). Finally,
we assume p, < 1 and 7 # 0.

Let
211
Q. = ;‘;(Huﬂp +1VIl,)
@ (2.1)
27
Qo = max (Q*, M) .
a1 Pu
For any Q > €, define the cut-off N(Q2) by
4 Q
N = — o (2.2)
Pa *

and consider the partition of Z into the resonant and non-resonant zones R(v, N({2)). We
freely use the notations for Fourier series introduced in section 2.3B.

Proposition 4.2  Within the above hypotheses and notations, for any Q > Qo and any
veZ?, v < N(Q), there exist a canonical transformation

oa ¢ T, N(Q),0) x Q@ — (B(, N(2),Q) +p) x (@ +p) (2:3)

which conjugates h =k +u +V to

Q. Q. -
Bo=k+u+ TV + 4/ 50+ 4/qe [vam.] £ (2.4)

where [] denotes the integer part and the function G satisfies G = 115, G. The local repre-
sentatives g, f and v of G, F and V in each of the two Poinsot charts satisfy, at any point
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b=(4,J,7,p,9) € P(1,N(Q),0) x §* x Q:

9le < = Jol
— v
g, = 3 Vb, p
1
| fls0 < 3 [v]5,p
2.5)

Jg 2| Ov (
7 < = =1,2
laanlb,o = 3 8an|b,p (n=1,2)
af 1) Ov
—_ < - =1,2
Oanlbe = 3 10an b, (n 2)

Moreover, ®,q is a real analytic diffeomorphism of L(v, N(Q),Q) onto its image. In
each chart, its local representative @ : (b,a) — (b',a') satisfies, at any point (b,a) €
P(v,N(2),Q) x T> x Q, for any i = A, J,j,p,q and for any analytic function w:

v

b,p+ 5%.

é ou
w2
b~ 5l < 22 2 (|2

a. 6,
- b ,,> < 97° (2.6a)

0PN

w(t',0) = w(b,e)] < 27 (ullop + lellsg) oy < z@ Ni?n fwls,, (2.60)

where T denotes the variable canonically conjugate to 1 and

5V:|V| 1f1/7é0

b = N, (2.7)

This proposition is proven in the following two sections.

4.3 Proof: the iterative lemma

A. Generalities. Making reference to the theory of section 2.3, we prove proposition
4.2 by constructing the representatives of the canonical transformation @, q and of the
Hamiltonian h' within each chart domain. Thus, we consider one of the two charts, and
the Hamilton function h = k + u + v in the phase space P,(v, N(Q), Q) x §3 x Qp. Let us
remark that in the sequel the ‘extension’ vector p is thought of to be fixed, as in proposition
4.2.

For any o < p we denote
By = P,(v,N(0),0) x % x Q, (3.1)
where S; is the domain of the angle 7, and then write
D, = B, xS (3.2)
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Notice that By = P(v, N(Q),Q) x §' x Q and Dy = By x T*.

The proofis divided in two parts. In this section we perform just a single ‘perturbative
step’; in doing this, we shall consider the cut—off N as a free parameter. This procedure
will then be iterated in the next section, where the choice (2.2) of the cut—off will also be
made.

We shall work with the hamiltonian vector field of the system, rather than with its
Hamilton function alone. As explained in [36], such a procedure presents some advantages.

Let D, be a domain as in (3.2). The hamiltonian vector field of a (‘Hamilton’) function
f:Ds — Cis the vector field F' =}, Fi—o%, where

_ of — of _ _6f
Fan = =pars 7= =570 Fon = g, (3.3)
1} 8 8 .
FO!'n. = 3,4{‘ ’ Fj = 3_§; qu = Bpm

(with n = 1,2 and m = 1,2,3). As a rule, we denote functions by small letters, and
their hamiltonian vector fields by the corresponding capital letters. In particular, the
hamiltonian vector field of the ‘unperturbed’ Hamiltonian k(A) is

K = wi(4) 22 + nlws(A)

. (3.4)

day |

Furthermore, we shall denote by U/ and V the hamiltonian vector field of the functions,
respectively, u and v, the latter being the local representative of V in the considered chart.

Let us observe that, if g is a function and G is its hamiltonian vector field, then one
has (for any v € Z?)
g =1¢ 9 & G =1,,G.

In all of this section, |- |, denotes the norm (1.26) relative to the set D,. We use the
following norms for vector fields. For any ¢ < p and any point b € B,:

IFlle = max (p;" |Filo)

3.5
1Pl = max (o7 | Filo,o) o

where the maximum is taken over all the components of the vector field (this is nothing
else than the ‘vector field norm’ of the corresponding Hamilton function, as defined in

(1.29)).

We shall denote the cut—off decomposition of a function as f = f + f>V. Here f,
previously denoted f < NN is defined by

JE = Z (f)u’Eu'

v €Z2 |V |<N

vyhere E,r 1s defined as in section 2.3B. The cut—off decomposition of a vector field F' =
F + F>Y is defined through its components.
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B. The iterative lemma. We consider here, as parameters: a positive number IV > 4,
an ‘extension vector’ ¢ such that o < p, a positive number « such that & > zp, a vector
v € Z* such that |v| < N, and a positive number {2 with the dimension of a frequency.

Lemma 4.3 Assume that the hamiltonian vector fields G and F are analytic and bounded
in the norm (3.5) in the domain D, that G =1l G and that

Q > max (263351/ HFHC” %N&u) . (36)

Then, there exists a canonical transformation & : Dy_yzp — Dy _(2/2), which conjugates

H=K+G+FtoH =K+ G +F', where
G''= G + g, F; (3.7)

F' and its Hamilton function f' satisfy, at any point b € B, (for any 1 # a1,z and any
n=1,2):

, 248, 1 - - . ) 1
Filsgmnp < g [1Blaso (1G5 + 21F 1) + 1 Fls.0(1Gels,0 +2(Filo)]
+ e~ NNepa ]FfN!b " (3.8a)
, 2°6, - “Nz
Faulsomen < Zo 1F e (1G] + 21 Fll00) po + e™=r= | FZN|, oo (3.80)
256,

s 0ms0 < T (IGlbe + 211 Flln0) | floe + e™Mobn [£7V], (3.8¢)

Furthermore, ® : (b, ) — (b, a') is an analytic diffeomorphism of Dy_,, onto its image,
it 18 real on real sets, and satisfies for any b € By and any analytic function w : D, — C

84, : .
Ii, - i’b,a—mp < QO IFiIb,cr forall + = A: Ja],p?q (390’)
26,
[wo® —wlyosp < i a1 Fllee [wlee - (3.9a)

The remaining of this section is devoted to the proof of this lemma.

C. Proof: the Hamilton-Jacobi equation. We construct ® as the time—one map &%
of a suitable Hamiltonian vector field X. This is the Lie method, which was presented in
section 2.3C. Its use for transforming vector fields is briefly accounted for in the appendix
at the chapter, where one also finds all estimates which will be used in the sequel. Let us
here only recall that for any function w, and any vector field W , one has

(27)" w = w+ R (w) = v+ Lyw+ R¥ (w),
(25)" W = W+ BRI (W) = W+ LW + BX (W),
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where Lx is the Lie derivative associated to the vector field X, while @*w = wo ®
and ®*W = ((D@"l)W) o ® are the pull-back of w and W respectively, and RE =
579 . (s!)"' L denotes the k—th remainder of the Lie series.

s=k

It is easy to verify that, if the vector field X satisfies the ‘Hamilton—Jacobi’ equation
LxX = F -1 F, (3.10)

then H' = ()" H has the form K + G' + F', with G' = G + I, F and
F' = RY(G+F) + R¥(K) + F7IV. (3.11)

Since (LgX); = ) ; (Kj%—?i - ngg—{j—i), recalling the expression (3.4) of K, one sees that

equation (3.10) reads in components

2

Zwm"a’—AX—i“ = Fi - Hﬁ,,pi (i:Aﬂ]’jaPaQ)
— Oam,
2 80X _ _ 2 duw
m = an e ot = =1,2
Thus, it is readily solved by
X; = —gﬁz——— E, for all 1 # oy, a2 (3.12a)

vgcioen VoL@ V)

(Fan ) (Fa,)y
Xo, = e Eu (n=1,2), (3.12b)
v’ﬁﬁu%?/wszv ( V=1{w, V") & (v, 1/’)2

where 4; = a; and @, = a; /7. The remaining of this subsection is devoted to the (straight-
forward) proof of the fact that the vector field X defined by (3.12) satisfies, at any point
b e By:

426, = .
’lb,a < Q | Filo,o (i # o1,0a2) (3.13a)

- 5v/2 6,
bo — 0

[Flowpe (n=1,2). (3.13%)
Lemma 4.4 Consider any point A* € I(v,N,Q) and any vector v' € Z*\ L, such that
0 < |t'| £ N. Then, for any point A € A(A*,04) one has

0
426,

[{w(4), V)| = (3.14)
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Proof of lemma 4.4 First, we show that one has

)

[(w(47), )| > (3.15)

226,

Let v+ € R? be any vector orthogonal to v/, and v the angle between w(A*) and v*. Then,
since |[w(A*)|| > Q. (using also ||+ [[e > || - || and |- | £ /2| - ||) one has

(w(4%), )| > %QIV’Hsinvl

Since A" ¢ R(v',N), by the very definition of the resonant zones one has |sin~y| >
(2N]v'|)7 1, so that

Q
22N

This proves (3.14) if v = 0. If v # 0, one can do better: since 4* € R(v,N), one has
w(A*) € A(v',N) (refer to figure 4.1). Thus, the angle v is at least one half of the angle
7" between v’ and v, so that |siny| > 1|siny*|. As already noticed, |siny*| > (|o'| |v|) 72,
and (3.14) follows.

Consider now a point A € A(A*,04). One can compute, using also (1.9), (3.14) and
V'] < N:

[(w(4"), V)| 2

! * ' * ' { FL(T?)O-A
(64, V)] 2 1) )] = (a4, 2 e~ HDT

Inequality (3.14) follows from here, using (3.6), 04 < p4 and p, < 1.

We now come back to the inequalities (3.13). The first of them is an immediate
consequence of (3.12a), (3.14) and of ||w(4)|| > Q. From (3.12b) one gets

426, | - w(n) 74v26,\2 -
Xa, b,o < q lFaﬂ'b,a + -;1—“ ( a > ‘FAn bo (TL = 1,2)
and then, recalling the definition (3.5) of the norm:
426, - #(n) 4v26, pa
Do < o Pa - - =1,
Coligmsy £ —q IFlbapa [t + B =52 221 (na1y)

By (3.6) the expression inside the bracketsis <1+ N~! < 5/4.

D. The canonical transformation. We now make use of proposition 4.6 of the appendix.
First of all, from this proposition one knows that ®;* : D,_,, — Do _(z/2), is well defined,
provided |X;|, < zp;/8 for all the components i = A,J,,7,p,q. Since |Fi|, < |Fi|y <
| F'l|op:, by (3.13) and (3.6) this condition is fulfilled. The estimates (3.9a,b) of lemma 4.3
follow, respectively, from (A.14) and (A.16a) of proposition 4.6, using again (3.13).
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The mapping ® = & is canonical, since X is a hamiltonian vector field: indeed, a
Hamilton function x for X is defined by the Fourier series

Y = M g (3.16)

!
V@L,, |V |<N Y -1 <w7 V>
which is obviously uniformly convergent: as in the case of (3.13a) one has

428,  : ;
|X|b,a < o) lf[b,a (3.1!)

E. The remainder. We prove now the estimates (3.8a,b) on the remainder F' as in
(3.11). First, we consider the components F! with i # ;,a;. From (3.13) and from
(A.15a) of proposition 4.6, one gets

BXG+P)| < EE

"1: o x F o F P i Fz o .
do < T [BholG + Fllog + 1PlsclGi+ Fiue]

From the Hamilton—Jacobi equation (3.10) one has Lx K = ——(F — Iz, 13’)~ Thus, from
the inequality (A.15b) of proposition 4.6, taking into account the obvious || F; — Il Fi[| <
2|| F;||, one gets

REE), < BBl F
- Hbo—zp z§2 ’ !
Observe now that, for any function w : Dy — € one has
07 lbozp = D5 [0l e 0T < TN e (318)
>N

This proves (3.8a). Inequality (3.8b) is proven similarly.

F. The Hamilton function. Let h = k + g + f be the Hamilton function of H. Since
®:¥ is canonical, the function h' = h o ®{ is the Hamilton function of H', and it has the
form k+g¢' + f', with ¢' = g+ Iz, f and f' = R (g + f) + R (k) + f>V. Let us prove
(3.8¢c). First, using (A.16b) of proposition 4.6, (A.5a) of proposition 4.5, and observing
that, if X and W are hamiltonian vector fields with Hamilton functions, respectively, x
and w, one has L xw = — Ly, one computes

4
X v
{Rl (g + f>(b,cr-—:z:p <2 ‘Lx(g + f)Ib,cr~(z/2)p < ; “G + FHb,o’ leb'U )
Next, using (A.16c) and observing that x satisfies Lxx = f- g, f, one gets

2|

IRQX(k)’b,a~2p < ILX(]E_H‘C"f”va“(z/z)P < F

Inequality (3.8c) follows using (3.17) and (3.18).

The proof of lemma 4.3 is complete.

b,o lx‘b,a :
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4.4 Proof: the iteration

A. The strategy. It can be useful to explain briefly the general lines of the proof, and
to motivate in particular the choice (2.2) of the cut—off.

Basically, we apply a (large) number 7 of times the normalization procedure of lemma
4.3, each time with a restriction of the domain = ~ 1/r. In such a way, starting with the
vector field
79 - g + GO + @ : G0 — M., ey ,

we construct iteratively the vector fields H(1), H() .. H(™ each of which has the form
H® = K + @@ + FO | ¢ = 1,69, (4.1)
The remainders F(*) satisfy, by (3.8):

76,
Q

Npg
2r

|FCeHD| < {const (HG(S)H +2”F(s>”) + e~ ] (P[P (4.2)

The heart of the analytic part of Nekhoroshev’s theorem consists in reducing the remainder
at each step of a constant factor, for instance a factor e:

IFCHD ~ et PO

and iterate such a procedure a number of times which increases with some inverse power
of the small parameter of the problem. In our case, if r ~ QF (8 > 0), then

IFOU ~ e [FO) ~ e | FO) (4.3)

In order to obtain such a geometric decreasing, both of the two terms inside the square
brackets in (4.2) have to be ~ e™*. To have exp(—Nps/2r) ~ e~1, we simply take r ~ N.
After this choice, the condition on the first addend in (4.2) becomes (in the case v, = 0,
which is the worse)

NE 1
const = (G +2 | FW]) ~ . (4.4)

Since G() = @O0 Zj;é F& | an elementary induction shows that this condition is
satisfied for all s = 1,...,r, provided it is satisfied for s = 0 (possibly, with some additional
factor at the r.h.s.): thus

) Q

N? <
TGO+ FO

const

Taking, as is obviously convenient, the largest N compatible with this condition, one arrives
at a dependence of the cut—off on § of the form (2.2). Since r ~ NN, this gives = 1/2 in
(4.3)
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There is now, however, a minor point. Starting the iterative construction with H (0) =
H (that is, G0 = U, F(O = V), we eventually arrive at H(" as in (4.1), with G =
GO E;;i F() . Unfortunately, we can provide only the poor estimate

G _ U~ MV = 0(1)

€

In order to have (as is useful) a more accurate information about G("), we perform a
preliminary perturbative step with a reduction of the domain of order 1, precisely z = 1/2
in lemma 4.3. In such a way, we eventually obtain

G = U + Mg,V + O(\/%:> :

B. Proof of proposition 4.2. We take now the cut—off N as in (2.2), and assume
Q > Qg with Qg as in (2.1). Correspondingly, we define (with [-] denoting the integer part)

o= 8] = el

Denote G-V = U, F(-1) =V, ¢ = 4, f-1) = v, and apply a first time lemma
4.3, with o = p and z = 1/2. This is possible since, with the above choice of N, (3.6) is
implied by Q > Q,. In such a way, we construct a first canonical transformation (-1,

which conjugates H(=1) to

H® = g + ¢ 1 F(0)

with G(© = U + 11, V. Estimates on F(°) and its Hamilton function f'9) are worked out

from (3.8). Since
Npu Q 1 /.
€XPp (— 2P ) = €exp <—2 m‘) _<_ 5;' '—6 s

observing that |Vi|s, + |V>N |y, = |Vils,p, one gets from (3.8), for any b € By:

IN

1 /9. .
‘Fi(O)Ib,p/Z 3V q (IUilbm + ]Vi!b,p) (2 # o1, )
1 /9.
F(g?,,)lb,}?/z g _ﬁ (”U”byp + HVanD) pa (TL = 1’2)

1 /Q.
£,z < Vo (Iuls,p + [v]5,0)
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We now apply r times lemma 4.3, each time with z = 51; Let p, = (% —3%). As we

now show, after s steps (s = 1,...,7) one arrives at the system described in D,, by
H®) = K + G& + F (4.5)
with )
qe) — 0 + Znﬁu j2ed) (4.6)
Jj=1

and (f(") being the Hamilton function of F:

s 1 Q. s .
F e < 5 (Wil + [Vils,s) € (i # a1, a2)
1 Q* —3
F e, < 55 (WMl + 1V Ib0) pae™  (n=1,2) (47)
3 1 Q* —8
180, < 3 (elep+lvlsp) e

Indeed, assume that the first [ steps have been performed. One can then apply once more
lemma 4.3, since (4.7) imply that (3.6) is fulfilled. The vector field H(*+1) has again the
form (4.5), (4.6), and it is easy to verify that FU+1) and f(H1) satisfy (4.7), with s = [+ 1.
To this purpose, one simply applies (3.8), taking care of the following two facts. First:

N po _
exp(-— 2?)362.

Second, G 4 2FW) = GO 4 T4 1, FO 4 2FD = U 4 10, V 4+ FO 4 58 T, FO.
By the induction hypothesis, this gives

12 —1
P + 21F0) < (1+— °
3 e—-1

) (il + %) < 204+ ).

In such a way, one constructs the final hamiltonian vector field H(" = K + G(") +
F(), Tts Hamilton function A(" = & + g + F) coincides with the local representative
of the function h' given by (2.4), if the functions ¢(") and f(") are related to the local
representatives of the two functions G and F entering (2.4) via ¢(") = w41, v+ 9/ /8,
fir) =eTf 2./Q. Let G and F be the hamiltonian vector fields of f and g; they are
related to G(") and F(") by completely analogous relations. Then, from (4.7) and (4.6)
one works out the estimates

3 ,
max (31Fi|b,01 B |Gi|b,o) < |Uils,p + |Vilb,o (2 # a1, 3)
3 _
max (3!Fa,,,|b,o, 3 1Gan|b,0) < (1Ulsyo + 1V 115,0) pe (n=1,2)
3
max (3flo0, 5 l9lbo) < [ulo,p+ [vlsp,
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This proves the estimates (2.5).

Finally, the estimates (2.6) on the overall canonical transformation ¢ = (16500
.0 ®("=1) are easy consequences of (3.9a,b) and (4.7). Indeed, one has (for 7 # a3, az)

426, = 4256, 1 =
) —b;| < 9 > |FP |y < 9 [[Vilb,p + g(lUi‘b,p+ [Vils,») Ze J] )

j:——]_ j=o

which implies (2.6a). Concerning {2.6b), one computes

r—1
(b, o) ~w(b,e)l < | 52 Vles + g 3 IFD o, | fols,
j=0
27§,
< 0 (l|U||b,p+“V||b,p)|w|b,p-

The proof of proposition 4.2 is complete.

4.A Appendix: the Lie method

This appendix is intended to give a short treatment of the Lie method for functions and
vector fields; in particular, we state and prove all the results which have been used in
sections 4.3 and 4.4. The estimates presented below are the analog, in the norm (1.26), of
the estimates given in [36] for the supremum norm. Let us notice that we shall use freely
some of the notations already introduced in the chapter.

A. Estimates on Lie derivatives. If X = ZiXigaz—f is a vector fields on R? (or €7),
then the associated Lie derivative Lx acts on functions according to

Lxw = Y X; gz—‘f— . (A.1)

ITw=>5%, Wig% is a vector field, then LxW is the vector field having components
(LXW")i = LxW; — LwiX;. (A.2)

Our first aim is that of giving estimates on the Lie derivative Lx, and its iterations L%,
s > 1, which are necessary for the subsequent treatment of the Lie method.

Let B C R™ (m > 1) be any domain, and consider the set D = B x T™ (n > 1). The
points of D are denoted (b,a), where b = (b1,...,b,n) € B and a = (a1,...,a,) € T™
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Consider an ‘extension vector’ p = (ps, pa); With po = (Pbyy- .-, 06, ) 20d pa = (Pays -+ -y Pa)
(all the n entries are equal). Then, for any extension vector o < p we define the sets

B, = |J A(b,0)
bEB (A.3)

D, = B, xS87

where A(b, ;) is the complex polydisk {o' € €™ : [b} — b;| < 03;,5 = 1,...,m} and SF is
the complex neighbourhood of T™ obtained as product of n copies of S¢_, see (1.20).

We use the same local norms as in sections 4.2 and 4.3: if w and W are, respectively,
a function and a vector field defined in D,, then we define, for any point b € B and any

vector o, 0 < o < p:
wloe = 3 Hw)l§e el

veZ™ |W ‘ (A4)
ild,o
Wlls,o =  max =
1010y b, Q1 ey Qg Pi
where [v] = |v1] + ... 4 |vn|. We shall also use the global norm |w|, = supycp |w]s,0-

Proposition 4.5 (On Lie derivatives). Let the vector fields X, W and the function w
be defined and analytic in the domain D,. Consider an ‘exztension vector’ ¢ < p and a
positive number x such that ¢ > zp. Then, for any integer s > 1 and any point b € B one
has

1
ILXw]b,cr~zp < ;J‘HXHb,a—rprlb,a (A.5a)
1 e s
Fkwlbo-zs S (S1X0o) lolse (A.50)
1
[(ZxW), ]y sy < ~ X so—eolWils.o + [Wllb,0—zp| X:s,0] (4.5¢)

1, 1[4 .
SHEEW )i lyoin, < = =1 Xl Xilo o [W oo + [Wils,o|[Wlls,0| (4.5d)
s! ’ P z |z

where the indez i runs over all the components by,...,bm,01,...,0m.

Proofof proposition 4.5 The key estimate is (A.5a). To prove it, we need a preliminary
estimate of the Lie derivative in the supremum norm. This is well known. In full generality,
consider the polydisk A(z,6) = {z' € €7 : |z} — z;| < §;} of radii &;,...,6,, centered on
a point z = (z1,...,2,) € C7. Let Y and g be, respectively, a vector field and a function
which are defined and analytic in A(z,§). Then one has

(o)) < (e ) o, (4.6)

7=1,...

The proof of (A.6) is straightforward. Since z+7Y(z) € A(z,6) for all the complex 7 such
that |7| < T = min; §; [V;(2)|7?, the function 7 — g(z + 7Y (2)) is defined and analytic in
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the disk || < 7. Thus, the use of Cauchy inequality gives

Y5 ()Y | (oo
<
< (e, 57 ) 0152 -

This proves (A.6), since & f(z + Y (2)) _, = Lvg(2)

We now come to prove (A.5a). Since

d 1
— z < = Y

| Lxw Z (LxW), lg’Fb)a o) € (P I(Ga=2pa) (A7)

vELZ™

‘b,cr——zp

we have to work out an estimate, in the supremum norm, for the v~th Fourier component
of Lxw. It is easy to verify that one has, for any v € Z™:

(Lxw), = > D (X)w a<ab>f" V=1 Z Voo I (w) (A.8)

v’.v"EZu =1
vi4vll=v

Observe now that, if we introduce (for any v € Z™) the vector field

) = Y Euhgr + D Kadvpe

=1 =1

({X), is nothing else than the v—th Fourier component of X), then we can rewrite equation

(A.8) in the form

(Lxw), = Z [L(X)y, ((w>v" eﬁ(“”'a>>}a:0 (A.9)

vituvii=v

We can now use (A.6) to estimate each addend of this sum. Denoting by E, the base
functions of the Fourier series (as in section 2.3B) we find

Dy, () Eur) (b,0)] < ( max Ml—‘) oy |0 1B

1=b1,e.,C0n TPq

so that, by (A.9):

[(X5(b))w | A
i(LXw>V(b)l < Z (mzax—(——m%——> |(w>V"‘A(b):cp,,) eVl )

yldyll=yp

Taking the supremum over b € B this gives

o)
I(-Xi>v’(§, o—z vz
(max.._____—’_._p_. l(w) ”IA(b) zpb) e‘ l Pa .

T TpPq

I(LXw> i(bocor) zp — Z

pl byl =y
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It is now sufficient to insert the last inequality in (A.7), and use there |v| < || + [#"] to
obtain (A.5a).

We now consider the other estimates. Since (LxW); = Lx W, — Lw X;, (A.5¢) follows
from (A.5a). Inequality (A.5d) can be proven by induction. Let us assume it be satisfied
for some s > 1. With the decomposition (L3+1W) = Lx (L W) — L(LXW)Xi, using
(A.5¢c) to estimate the two addends (the first one with replaced by z/(s 4+ 1)), one gets

(L5 W),
(s +1)!

1 LW e
(s+ 1)z s!

(LxW),
sl

I"Yilb,U N

1
< Xy
< X,

b,a’—(l—ﬁl—)zp

Using (A.5d), the r.h.s. of this inequality is easily seen to be majorized by
1 /4 2
— [ = || X o o o o ||« o Xi o 124 o
= (C1Xlbe) [(1+ 2) (1els (Wl + Wl X 5.0) + = Xl W s,

Thus, since (1 + %)s < eand s > 1, one gets

(2%

1 /4 s - -
T S (1) [+ D) Xl W o + elWils ol X o]

from which (A.5d) follows with s replaced by s + 1. Finally, (A.5b) can be proven by a
very similar, and somehow simpler, induction. o

B. The Lie transform. We give now a sketch of the Lie method for vector fields, which
is formally very similar to the Lie method for functions presented in section 2.3C. At the
basis of the method is the identity

% (@)W = (&%) Lxw (A.10)

which relates the time-derivative along the flow to the Lie derivative. Here, ®*W =
(D@1 )W) o @ is the pull-back of the vector field W under the mapping ®. An iterated
use of (A. 10) leads in a trivial way to the “Lie series” representation of the “Lie transform”
W — ( Pt ) W
. = 1 |
X s
(@5)' W = > S IxW. (A.11)

s=0

In the analytic case, the convergence of such a series expansion is easily established (see
proposition 4.6 below). For any k£ = 1,2,..., the k—th remainder R (W) of the Lie series
(A.11) is defined by

. =1
R;}W:Z; SW. (A.12)

s=k
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Completely analogous expansions are obtained for functions: the k—th remainder of the

Lie series is given by
oo

1 3
Rfw = > S Lyw. (A.13)
s=k

Proposition 4.6 (On Lie transform) Let the vector fields X, W and the function w

be defined and analytic in the domain D, = B, x S} (defined as in (A.3)). Consider

a vector o < p, a positive number © such that ¢ > zp, and assume |X;|o < & for all

1=0b1,c;bm, 1,y . Then

i) the mapping ®% is an analytic diffeomorphism of Doz, onto ®X(Dy-z,) C Do_(2/2)p5
and it is real on real domains. For each point z € Dy_g, one has

![@lx(z)]i — zi‘ < [XJSE’;M) forall i =by,...,bm,01,..,0n . (A.14)

i) the vector field (@f{)* W is analytic in Do_z,, and one has, for any b € B:
()

(W)

9
[1X: 6,0 | W 5,0 + [Wils,o| X |lb,0] (A.15a)

T
1
T

<
ilb,o—zp
<

bo—zp

“Xi|b,a

|LxW|s,o + (LxW)ils,ol| Xle0] (A4.15)

i

ii) the function w o @ w is analytic in Dy_,, and one has, for any b € B:

2.5
|Riwl, ., < — [ Xleolwle,o (A.16a)
IRf{wlb,d—mp < 2 [Llebvo‘“(:”/z)P (A]‘ﬁb)
IRéleb'a__zp < IL%(w|b,0'—(m/2)p (A].GC)

Remark 4.1: The factor 1/8 in the assumption for |X;||, is introduced in order to obtain
the estimates on the remainders of the Lie series.

Proof of proposition 4.6 The statements in i) are elementary consequences of general
properties of ordinary differential equations, and of the fact that the norm (A.4) dominates
the supremum norm; in particular, the a priori estimate (A.14) is obvious, and implies
the inclusion property for ®(Dy_,,). The inequality (A.15a) is very easy to prove: one
estimates term by term the series expansion (A.12) by means of (A.5d), and reduces to a
geometric series. Concerning (A.15b), one first writes

1 1 .
REw =) = Ly (LxW
2 Z s (s—1)1 X (LxW)
s=1
and then proceeds in the same way. The estimates relative to the function w are proven
similarly, referring to (A.13), using (A.5b), and taking care of estimating separately the
first terms of the series by means of (A.5a).
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Chapter 5

Fast motions
of the symmetric rigid body

5.1 Introduction

A. Plane of the chapter. In this chapter we use the normal forms of proposition 4.2
to study the fast motion of a symmetric rigid body. Our main object is the motion about
a fixed point. Sections 2 and 3 are devoted, respectively, to nonresonant and resonant
motions, while in section 4 we extend the results to cover the excluded neighbourhood of
the gyroscopic rotations.

In section 5 we give some indications about the fast motion of a rigid body with no a
fixed point. The results for this case are much less complete than the previous ones: some
important facts about the motion near the resonance are ultimately not understood.

As a rule, we shall not compute the constants entering the various statementsj. The
computation could be done without difficulty. However, in our opinion, the (extremely
pessimistic) estimates that one can obtain within such a general approach are essentially
meaningless (on the contrary, it would be of great interest to study carefully some specific
" cases). Although not explicitly stated, such constants depend on the analyticity properties
of the potential energy V, and on the parameter 7; in particular, most of them vanish or
diverge (depending on the case) as n — 0 or 7 — oo, with the consequence that the results
become meaningless in these limits.

We shall refer tacitly to the hypotheses and the notations of chapter 4. Everywhere
we denote by A = (G, L), 7N, oM = (4™ 1), M, p, g (A = 1,2) the Poinsot variables
of the system, and by (A’,J'(A),a'(’\),j'(”,p',q') = @E,/\s))(A,J(A),a()‘),j(A),p, q) their im-
age under the local representative of the canonical transformation ®, o constructed in

proposition 4.2.

We shall be concerned with individual motions ¢ Gt,Li,Jt('\),ggA),lt,jt(A),pt,qt.

The parameter () will be related to the initial conditions of the motion by
1
= 5 |[w(Go, Lo)ll -

Correspondingly, we shall consider only ‘fast motions’, with ||w(Gyg, Lo)|| > 29..
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B. Gyroscopic phenomena. Preliminarily, it may be useful to recall some elementary
facts about ‘gyroscopic’ phenomena. The fast motion of a rigid body about a fixed point
presents some peculiar qualitative features which are well known (see for instance [56,73]);
however, a complete, rigorous theory is still lacking.

A first basic property of the fast motion is the ‘gyroscopic stiffness’ of the angular
momentum vector (see [73]):

Proposition 5.1 In the motion of a rigid body about a fized point one has

_ Hx(gxl‘) (1.1)

where p = m/G is the unit vector in the direction of the angular momentum and I' is the
external torque (relative to the fized point).

Proof. Equation (1.1) follows from the balance equation m =T, using (u, £) = 0. B

According to equation (1.1), the direction of the angular momentum vector changes slowly
in space, with speed O(G™1). Regarding p as the intersection point of the vector m with
the surface of the unit sphere fixed in space (centered in the body fixed point), one can
say that such a point moves with velocity O(G™1).

This fact is important, since it indicates that, on time scales shorter than O(G), the
direction of the angular momentum vector can be considered as (approximately) fixed in
space. Unfortunately, besides this fact, very few informations can be obtained by elemen-
tary methods. For instance, from conservation of energy (k + V = const) one can easily
derive the apriori estimate |Gy — Go| < ¢(n)Gp for all ¢ € R, with a certain constant
¢(n) < 1. This assures that a fast motion will perpetually remain fast, but nothing more.
No information can be obtained about the motion of the angular momentum relative to
the body (thus, on the body motion in space for time scales shorter than O(Q2) ), nor about
the motion of the angular momentum vector in space (for time scales larger than O(G)).

In this chapter, we shall give some answers to these questions.

A second feature of the fast motion is the ‘tendency to parallelism’ with the applied
torque. Indeed, from the balance equation m = I' one gets, for a motion ¢ — R(¢) of the

body, )
m(t) — m(0) = /0 I'(R(r))dr.

Then, one expects m to move in the direction of an ‘averaged’ torque (see [56]). This is
meaningful, since the body undergoes a fast (two—frequencies) motion. Indeed, one expects
one can replace R(7) in the integral by the free motion Ro(7), with a small error. But
again, precise statements are lacking.

By Hamiltonian perturbation theory, we shall obtain some results about this fact.?®)

35) In this regard, the fundamental advantage of Hamiltonian perturbation theory (with respect
to perturbation theory working directly on the solutions of the equation of motions) is in the
fact that one replaces time averages along the motion with the corresponding phase averages
(see chapter 4 of [8]).
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Frequently, the term ‘gyroscopic’ is reserved to the case of a symmetric body with
a fixed point, which undergoes a fast motion near a rotation about its symmetry inertia
axis e, i.e. with angular velocity w nearly parallel to e;. For instance, one can require
that, at the initial time, |w1| and |w;| are of order |w;|™® for some positive number 2.
In such a case, one claims that the gyroscopic axis e; manifests stiffness, and tendency
to parallelism, but it is definitely not clear over which time scale one can assure that the
angular velocity remains near the gyroscopic axis.

Just to give an idea of an existing approach to this problem, let us briefly mention here
the so—called ‘principle of the gyroscopic effect’, which has been widely studied in Italy
in the last forty years (see for instance [70,71,72,12]). In its simplest form, the principle
consists in describing the motion of the gyroscopic axis e; by means of the approximated
equation

as w3(0)63 = I (12)

The true motion of the axis e; is proven to remain near the solution of (1.2), up to
quantities O(|ws|™"), if at the initial time |w;| and |ws| are O(jws|™?), and the applied
torque I' is orthogonal to e3. *®) However, no estimate of the time interval over which such
an approximation holds is given in the papers on the argument. Certainly, such a time
scale (at least as could be obtained by the methods of the quoted papers) is extremely
short.

Unfortunately, we cannot obtain a detailed description of the motion near a gyroscopic
rotation, as it will be better discussed in section 5.4.

5.2 Non—resonant motions

A. Statements. We consider here the non-resonant motions of a rigid body with a fixed
point. The Hamilton function is k& + V (see (1.1) of chapter 4). We denote by a bar the
average over the two angles ¢(*) and [, namely we define (with the notations of section
2.3B) V = Mo} V. Moreover, if ¢ +— 2, is a motion and f(z) is a function, we write |f|§ to

mean [f(z) — f(z0)].

Proposition 5.2 There exist positive constants ci1,...,cy5 such that, for any motion
t Gy Loy I, g0, 1,50 with [|w(Go, Lo)l| = 20 > 204 and (Go, Lo) € Z(0, (), 2),

one has:

Q.
|Gy — Go| < eny )

/{2
o (2.10)

%¢) Notice that (1.2) is obtained from (1.1) by assuming m = asez and (T, py =0.

(2.1a)

|Ly — Lo|

IA
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£1.
- %‘i < ey (A=12) (2.1¢)
Ly Qs
—p—| < . 2.1
l; nal < eizyf g (2.1¢)
for allt € R such that
< =2 2.2
It[ S Ci3 €XPp Q* ; ( )
moreover, one has
— — .
T = -V < ey 23
for all t such that
Qs Q
It{ S Cls—h—‘ exp ﬁ;jl . (24)

Proof. The first two inequalities (2.1) are completely standard: from the normal form
Hamiltonian (2.4) of proposition 4.2 one gets

4, = 4l < 1;—‘\/%* e—["n/n*] max

An=1,2

(M

Oa EI)S

)
P

so that |4} — A}|| < const4/9,/Q for times as in (2.2). One then uses the estimate
(2.5a) of proposition 4.2 to come back to the original variables. Concerning the other

A
Qﬁ%—g——)—), and recall that the local

representatives v(*) of V are homogeneous functions of degree zero of (G, L, J), so that
(x) - - A
%o =0(G™) =0(a™).

In order to prove (2.3), let us write

two estimates (2.1) notice, for instance, that g =

(G2, < |Gy~ Gy

(G} — Gy +2|Gy — Gol + 2|Gol] -

Thus, observing that |G, — G| < const(Q./Q)%/? on the time scale (2.4), using the estimate
for the deformation of the canonical transformation, and the obvious inequality |G(0)] <
2a182, one gets

L

I(G')?]E < const q -

Similarly, one finds |(L')?|§ < const/Q./€, so that

s
|k(GY, L) — k(Gy, Ly)| < const. o
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The conservation of energy for the Hamilton function A’ = k +V + O(1/Q../Q) then gives
[V(z1) = V(2})| < consty/Q./Q (where z' = (&, ...,5') ). Using (2.6b) of proposition 4.2 to
come back to the original variables, and then using once more the conservation of energy,
one arrives at (2.4). |

B. Description of the fast motion. We now use the above results to give an accurate
description of the non-resonant motions in the time interval (2.4).

First, we observe that the body undergoes, approximately, a high frequency Poinsot
precession about the angular momentum vector m. This follows from the following facts:
for all ¢ as in (2.2), the angle 8 between e; and m is almost constant:

QN 82
|cosB: — cosfBy| < const (ﬁ)

(this follows from cos @ = L/G and (2.1a,b)). Moreover, inequalities (2.1c,d) indicate
that the two angular frequencies g, | are almost constant, t00.®”) Finally, recall from
proposition 5.1 that the direction of the angular momentum vector moves in space with
velocity O(271), so that it can be considered as essentially constant during a period of ¢

and /.

Let us now consider the motion in space of the angular momentum vector m, whose
modulus is, by (2.1a), almost constant. Observe that J/G and j are coordinates on the
unit sphere of R® (they fix the direction of the vector m relatively to the inertial frame).
Furthermore, observe that each local representative 7 of V is an analytic function of .J /G,
L/G and j. Thus, using Gy = Gy + O(Q7!) and L; = Ly + O(Q71), one sees that the
estimate (2.3) of proposition 5.2 implies

LO Jt . LO JO . Q*
7l =—, > ) =7 =22 22 — . 2.5

Consider now the intersection curves of the (conical) surfaces of equation (Lo /Go,J/G,j) =
const with the surface of the unit sphere. Equation (2.5) means that the tip of the unit vec-
tor 42 in the direction of m remains near to one of such curves, within a distance O(/Q. /)
(figure 5.1). Since i = O(Q7'), the motion of u along such a curve, and transversal to it,
is slow.

So, we arrive at the conclusion that, approximately, the motion consists of a (fast)
Poinsot precession about the angular momentum vector, which in turn undergoes a (slow)
precession in space along a conical surface, which is a level surface of an ‘average potential

energy’.?®)

®7) Notice, in particular, that one has at least |Lo| > O(Q'?) in the non-resonant zone, since
the angular width of the zone corresponding to the resonance v = (0,1) is O(N™!).

®8) Such motion can be interpreted, under certain hypotheses, as taking place in the direction
of an ‘averaged torque’.
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Figure 5.1

In principle, one could obtain precise informations about the precession of the angular
momentum vector in space, by means of the normal form Hamiltonian constructed in
proposition 4.2. On a time scale on which the exponentially small term can be neglected
(with some small error), it provides an effective Hamiltonian for the motion of the variable
J' and j', whose local representatives have the form

LI J! Q* LI J’ '
o (2,505 ) - 2.
v(G"G"”‘7> - Qg(G"G”]> (26)

This is the Hamiltonian of a system with one degree of freedom (parametrized by the values
of G' and L', which are constant in this approximation). Thus, in this approximation, the
system is integrable. If one knows (up to some small error) the function G in the normal
form Hamiltonian (2.4) of proposition 4.2, then one can determine the time evolution of
the variables j', J', and consequently also of J'/G'. Informations on j and J/G are then
obtained, using the fact that the old variables are near the new ones.

Remarks 5.1: i) Obviously, one can also obtain informations about the motion of the
angular velocity vector w. Since the body is symmetric, m, w and e; always lie in a
plane. Moreover, the angles between such vectors are approximately constant, as well as
the modulus |Jw||. and the projection ws = (w, e3) of the angular velocity.

ii) For the treatment of the non-resonant motions the apparatus of the geometric
theory of chapter 2 is not necessary: indeed the system remains certainly within the
domain of a single Poinsot chart (the direction of m is confined to the neighbourhood of a
curve on the unit sphere of IR*). However, it will be clear in the next section that such a
confinement cannot be assured in the case of resonant motions.
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5.3 Hesonant motions

A. Estimate on the variation of G and L. We consider now a motion starting within
a resonant zone: (Go, Lo) € Z(v, N(2),Q) for some |v| < N(Q), where llw(Go, Lo)|| = 29.

The normal form Hamiltonian A’ given by (2.4) of proposition 4.2 indicates that the
motion of the (new) actions G, L' is flattened on the ‘fast drift’ line, namely the straight
line through A} parallel to v. The control of the motion of A’ parallel to the fast drift
direction is one of the basic ingredients of Nekhoroshev’s theorem. It can be achieved by
two methods.

On one hand, one can use Nekhoroshev's original method. In the present case, this
method reduces essentially to the observation that, if the system escapes a resonant zone,
then it enters the non-resonant one, where the non-resonant normal form can be used
to stop it. Thus, the variation of the actions is essentially bounded by the width of the
resonant zone; more precisely, the length of the segment, contained within the resonant
zone, of the line of fast drift through the (image A4 of the) initial point 4y. In the present
case, the resonant zone has angular width (|v|N)~?, so that this criterion leads to the poor
estimate [|4y — Ao|| < const|v|~1V/Q.

The second method, used in [40,15], is based on considerations of energy conservation:
it uses the fact that the unperturbed Hamiltonian, if quasi-convex, has the following prop-
erty: its restriction to the fast drift plane has a (quadratic) extremum at the intersection
with the resonant manifold. In the general case, the two methods give essentially equiv-
alent bounds on the variation of the actions. However, in the present case, the method
based on energy conservation leads to significantly better results.®) ’

In order to properly formulate the results, we slightly restrict the resonant zone
I(v,N(©),Q), in such a way to avoid that a point (G,L), moving in the fast drift di-
rection, can arrive in the region where lw]| < Q. Precisely, we define j:(z/,N(Q),Q) as
consisting of those points 4 € Z(v, N(2), Q) such that |jw(A4 + zv)|| > 20 for all z € R for
which 4 + zv € (v, N(Q), Q).

Proposition 5.3 There ezist constants cy1, cos, c23 such that, for any motion with initial
data satisfying |lw(Go, Lo)|| = 2Q > 2Q. and (Go, Le) € I(v, N(Q),8), one has

|G — Go| < e (3.1a

|Li — Lo| < ca (3
G

gV -2 <o (A=1,2) (3.1¢c)
a;
L

i =122 < ey (3.1¢)
a;

39) This is due to the fact that our system has two frequencies. The reason of this fact is easily
understood by referring to figure 5.3, thinking to the effect of the presence of a third action
variable.
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for allt € R such that
Q
[t] < cas expl: ‘Q—} . (3.2)

Proof. From proposition 4.2 one deduces

|4} — (A + zv)| < consty/ %t

for all times ¢ as in (3.2), where t = T is some (analytic) function. An argument based
on the conservation of energy and the fact that, if B! is the new Hamiltonian as in (2.4) of
chapter 4, then one has |h' — k| < const, gives

k(A — k(Ag)] < cas (3.3)

for a certain constant cas, which does not depend on the initial datum (as far as 2 > Qu).
Inequality (3.3) means that A is confined inside the narrow strip between the two level
curves k(A') = k(Af) £ coa. The distance of such two level curves, in the region 7, is
easily estimated to be < const~! (one uses k(A4g) ~ Q2). It only remains to evaluate the
length d(v, Ay) of the segment of the fast drift line Aj+ Ry which is contained between such
two curves. Taking into account the estimate above on the width of the strip (3.3), and
the fact that k is a quadratic polynomial, one easily sees that d(v, 4y) < c2s, 2 constant
independent of the initial data. Indeed, d(v, A}) reaches such a maximum for Aj near the
resonant line 7, and decreases as the distance of Al from 7, increases (see figure 5.2).
The details of the proof can be easily worked out from these considerations. a

Figure 5.2

Remark 5.2: The proof of proposition 5.3, leading to the estimate O(Q°) on the variation
of G and L, is adapted to the worst case, that is to motions starting sufficiently near the
resonant line 7, say within an angle ~ -1 around it. One could assure a better confine-
ment of the actions for motions starting at greater distances from 7, (up to O(|v|/N), on
the border of the resonant zone). This can be significant in the case of resonances of low
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order [v| << N (in fact, for any given resonance, when N ~ Q1/2 — 00), since the angular
amplitude ~ ([v|V)™! of the correspondent zone is ~ 271/2 >> -1,

From the estimates (3.1), and the fact that the angular momentum vector moves slowly in
space (proposition 5.1), one immediately deduces that the body undergoes approximatively
a Poinsot precession about the direction of m (the angle between e; and m is now constant
up to terms of order 2./Q). However, on a longer time scale, the motion can be deeply
different with respect to the non-resonant case. The reason is that now the angular
momentum vector is no more forced to remain close to any given curve on the unit sphere
— rather, it can move in a wider region. In fact, the possibility of truly chaotic motions of
m, on a time scale of order {2, cannot be excluded.

This behaviour is in agreement with the general features of the dynamics of nearly
integrable Hamiltonian systems near resonances, as depicted in [15].4%) In order to exhibit
such a fact, we need to introduce the so—called ‘slow’ and “fast’ variables (see [65,15,9]).
This requires some preliminary work, to which the next subsection is devoted.

B. Slow and fast variables. Let n € Z? be a vector such that (n, v) = 1. Since 14
and v, are relative prime numbers, the existence of such a vector is a well known fact.
Moreover, as is convenient and possible*!), we assume that n satisfies In| < |v|. Consider

the matrix
c ( 71 n2>
—Vvs 1y

and perform the canonical change of variables (G, L' g",l'"y = (F,S,p,0), where

S GI _ 1
() =c(%) (2)=er (). 20
Notice that one has
S5 = (n, 4)
F=vxA4.

Thus, S(A"+zv) = 5(A')+z and F(A'+zv) = F(A') for any real number z. In particular,
S is a coordinate in the direction v of the fast drift.

(3.5)

As a function of the variables S, F,J', o, ¢, ', each local representative of the normal
form Hamiltonian A' takes the form

R [Qs .
k(S’F) + T'Z\)(F)S) ']”O.’jl) + —h—g(F7S7 J”O-L]')

+ %:6_[\/;&:] f(F,S,J',(p,U‘,j’)

(3.6)

0) Because of degeneracy, the dynamics of our system is much similar to that of a three degrees
of freedom system in the neighbourhood of a resonance of dimension two: a truly system
with two degrees of freedom is essentially integrable, near a resonance.

) Let @ € Z? be any vector such that (7, v) = 1. Then, for any ¢t € Z, the vector n =
(7 — tvy, 7y + tvy) satisfies (n,v) = 1. Assume vy # 0, vy # 0 (the case in which a
component of v vanishes can be considered separately, in an obvious way). One can choose
t so to have —v; < n; < vy, namely |n1| < |v3] — 1. From the relation ny = (1= win1)/va
one then gets |na| < |u].
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where

. 1 S v+ nus —ving + NV2Ty S -
k(5 F) = 2 aq <<F> ’ (—1/17L2 + nrang nn? 4+ n} F (3.7)

while w, g and f are obtained from Il ¢, v, g and f, respectively, with the change of variables
(3.4), and are easily seen to satisfy (at each point)

”8‘9'1 (y = vagaf)' (38)

9] < lvl, max o¢

PY=0,p £=g,l

a9
e 5
a¢l < 2|v| max

Let us notice that the resonant line r, = {A4' : (w(4'), v) = 0} has equation

Ok
F) := —(5F) = 0.
ws(8,F) i= o(S,F) = 0
This justifies the name ‘slow’ variables for S and ¢. On the other hand, F' and ¢ are called

‘fast’ variables. Since % = 0, we consider as ‘slow’ variables also J' and j'.

According to the Hamilton function (3.6), the ‘fast’ action F is essentially uncoupled
from the ‘slow’ variables S, o, J', 7' on a time scale which grows exponentially fast with
+/Q/Q.. In order to gain some insight into the evolution of the latter variables we intro-
duce, following [15], new coordinates adapted to the initial condition of the motion. Pre-
cisely, with reference to a given motion, let A} be the intersection point of the fast drift line
through the point A}, namely Aj + Rv, with the resonant line r, = {A" : {w(A"), v) =0}
(this is well defined since r, and v are never parallel). Correspondingly, define

(g) = C A (3.9)

= F—F,
= §5-5,.

and

Uy

Notice that F(0) = 0, S(0)v = Ay — A,. Thus, ]5’(0)‘ |v| measures the distance (in
the fast drift direction) of the point A} from the resonant line. Let us also motice that
wS(S*,F»g) = O-

In the new variables S, F', the Hamilton function (3.6) takes the form

ugr (F) + —2-by5'“ + ¢, F'S + s (F,S8,7,0,7) + o AB(F’S’J’J’],)J
* (3.11)
Q. _[./2]+ ~ & .
+ _{'2"6 [ Q*]fAb(FvsvjlvGﬂO)]’)
where b, = v} + 771/22, ¢y, = —ving + Nuang,

wp (F) = k(Se, P + F) = (qnl +nd)(F. + F)* + ¢, 8.F,

b | bt



1[)%(13’, s, J'o, i) =w(F, + F, S, + S, J'yo,7'), and ga;, and fA:D are defined in a similar
way. Notice that [b,]| < |v|?, |c,| < |v]?.

C. Description of the resonant motion. We now come back to the description of
the motion. As far as the exponentially small coupling term in (3.11) can be neglected,
the time evolution of the ‘slow’ variables can be thought of as described by an effective
Hamiltonian, given by the terms within the square brackets in (3.11). However, the term

¢, F§ is small: since F(0) =0 and |5(t)| = |S: — So| = O(+/§1/8,), one has
]cuﬁ’(t)g(t)] = O({tlexp—— %) (3.12)

Thus, as far as such term too can be neglected, one is left with the effective Hamilton
function

1, . . [, . . .
_9”171/‘92 + Ut’A{J(FaSaJ’ao_’j,) + ﬁngg(FaSw]’ao”] ) (313)

The fundamental difference with respect to the non-resonant case is that now the effective
Hamiltonian has two degrees of freedom: the variables J', j' are coupled to the other slow
variables 5, ¢.

Consequently, the motion of the angular momentum vector in space can be deeply
different with respect to the non-resonant case (obviously, on times scales O(Q), since in
both cases m moves in space with speed O(Q271)). If, as one expects to be the typical
case, the effective Hamiltonian (3.13) is non-integrable, then the point (J',;',5,0) can in
principle move widely on each energy shell.

Consider, in particular, a motion starting near the resonant line, say at a distance
}Sgl lv| = O(1) from it, so that 14,52 is O(1). Thus, during the motion, variations of m
of order one can in prmmple take place. It is easy to see that such variations imply that
the unit vector i parallel to m is not confined to the vicinity of a curve on the unit sphere,
but rather it will move in a widely extended region of the sphere. A deeper investigation
of this situation is certainly needed. For instance, it would be very interesting to exhibit
chaotic motions in some specific examples.

It would be also of interest to determine more precisely the time scales on which
irregular behaviour appear. For instance, in the case of a low order resonance (|v| ~ 1),
there exist motions starting far away from the resonant line, with |§| ~ v/Q. In such a
case, the effective Hamiltonian (3.13) is a small perturbation of a free rotator. Thus, it
can be expected that the two slow degrees of freedom are essentially uncoupled, on some
intermediate time scale. This fact can be also related to remarks 5.2 and 5.4.

D. Some remarks. We conclude this section with some complementary remarks.

Remark 5.8: The transition from the resonant to the non-resonant regime of motion
is obviously not so abrupt as presented here. In fact, it is possible to show that motions
starting inside the resonant zones, but not too near the resonant lines, manifest, on in-
termediate time scales, the same characters of non—resonant motions. To this purpose, it
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is enough to perform the perturbation procedure of chapter 4 with reference to narrower
resonant zones. Precisely, one can take the angular size of the resonant zone around 7, to
be of order (N8|v|)~! for some 3 > 1 (compare with (1.15) of chapter 4). Correspondingly,
as one easily sees by repeating the general argument of section 4.4.A, one takes the cut—off
as N(Q2) ~ Q1/(+8) wwhile the number r of iterations of the normalization procedure will
be taken again to be proportional to N. In this way, one constructs, in the non-resonant
zone, a normal form Hamiltonian given by

1/(1+8) 1/(1+8) )
Bo=k+u+V+ (%) G + (%) el n]

From this, one gets estimates like in proposition 5.2 (with the square root of {2, /( replaced
by its power 1/(1 + 3)) and a description of the motion similar to that of section 5.2, on
a time scale growing with the exponential of (Q*/Q)l/(1+/3). Notice that, for any 8 > 1,
the relative measure of the union of all resonant zones goes to zero as {) — oo: indeed, if

N(Q) ~ (Q/Q,)/0+P) then one has

1 0.\ 5
2 N (ﬁ)
uEZZ
o< || <N(Q)

Remark 5.4: In principle, one could also introduce slow and fast variables with reference
to the original action—angle variables:

(B)-e(©) ()-or (). o

Correspondingly, one can rephrase, in terms of S(A) and F(A), some of the results about
the motion. First, let us observe that the distance among the fast and slow variables
corresponding to the old and new coordinates satisfies the estimates*?)

max (|F(4") — F(4)|, |5(4") - S(4)]) < const%\/%. (3.15)

This allows one to prove the following estimates, about the motion in the resonant zone:

lv| [
|F(¢t) — F'(0)] < const N \/——;—‘

1S(8) = S(0)] < const —

v

42) A simple translation of the estimates of proposition 4.2 on the deformation ||A" — A|| gives
estimates which are worse than (3.15) for a factor |v|. The proof of (3.15) requires a careful

use of some properties of the canonical transformation constructed in proposition 4.2.
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for [t| < const 4/, /€ exp [«,/Q/Q*}o

Remark 5.5: Finally, essentially in view of the study of the case with no fixed point, we
consider here the possibility of finding an analog of estimate (2.3). To this purpose, in this
resonant case, one can look for the conservation of the energy of the “fast’ motion. Now,

using (3.12) and %ii = O(Jt[/2/Q exp —[v/Q/9Q.]), one easily obtains

£
/82,
< — 3.
O) S Ca3 Q (3 16)

Q. 2
It < cqq4 — exp[ ———J . (3.17)

1 A2 ~ ]
max ('uAB(F)[Z , ’—z—by 57+ W (Fo, 8,7 0,0)

for times

Q Q

It would be more interesting to obtain an analogous estimate in term of the original
variables (i.e., of the variables S(4), F(4), o(a), p(a), J,7). Unfortunately, we cannot
obtain such a separation of the energy k + V in two parts, separately almost constant, to
be interpreted as the energy associated to the fast and, respectively, to the slow motion.
The ultimate reason is in the fact that the term %by 52 can assume quite large values: up
to O(f2), on the border of a resonant zone of low order. :

5.4 INear the gyroscopic rotations

So far, we have not considered motions which are too near the gyroscopic rotations. In fact,
all the above results are relative to high frequency motions in the subset T — 20 ={(G,L) e
R*:G > |L|+ 2pa} of the action space I. By the way, it is very easy to obtain estimates
on the variation of the actions for motions within such an excluded neighbourhood.

To this purpose, let us first observe that, within the excluded neighbourhood, an
obstruction to the variation of the actions ( G, L) is provided by conservation of energy:
the point (G, Ly) must be contained within the two level curves k(G,L) = k(Go,Lo)£|V],.
As already remarked, the distance between such curves is O(Q~1) if k(Go,Lo) ~ Q2. The
fact is now that the equipotential curves of % intersect transversally the lines G = +1
(see figure 5.3). This implies that a point (G, Ly) will move at most of a distance O(1)
before escaping the excluded set {G' < |L|—2p4}. Then, an obvious consistency argument
based on the results of propositions 5.2 and 5.4 shows that one has |Gt — Go| = O(1),
|Lt — Lo| = O(1) for times |t| = O(exp Q/0.).

In this way, we can conclude that, for all fast motions of the symmetric rigid body
with a fixed point, G and L vary at most of quantities of order one, on the above time
scale.

However, the present treatment of motions near the gyroscopic rotations is very poor.
In particular, we cannot give any accurate geometrical description of such motions.
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Figure 5.3

As discussed already in the first chapter, this is due to the fact that the action—angle
variables are not defined on the gyroscopic rotations, which are isolated periodic orbits.
To study the system in the neighbourhood of such orbits one could employ standard
techniques, like the study of a Poincaré map.*?) Another, more promising approach to this
problem could be based on the introduction of adapted coordinates, similar to the so—called
Poincaré variables for the Kepler problem. These variables, at variance from the action-
angle variables (‘Delaunay elements’), are defined also on the isolated periodic orbits of
the Kepler system, namely the circular orbits (for details, see [1]). Such coordinates are
conveniently used in perturbative studies of the three or N body problem (see [4,65]).
Because of the analogy between the Kepler system and the rigid body, one can hope that
a similar procedure works for the study of a neighbourhood of the gyroscopic rotations of
the rigid body.**)

5.5 On the motion with no fixed point

In concluding the chapter, we give some indications about the motion of a fast rotating
symmetric rigid body with no fixed point. This is an extremely interesting problem (‘spin—
orbit coupling’). Unfortunately we do not have at present a real understanding of it. The
central open question concerns the very possibility of large energy exchanges between the
rotational and the translational degrees of freedom, when the frequencies of the rotational
motion are near a resonance of the Euler—Poinsot motion.

43) To this purpose, one can possibly still use Poinsot coordinates, but with the axis es of the
basis B, (refer to chapter 2 for notations) coincident with one of the degenerate inertia axes,

not with the gyroscopic one.

44) This possibility has been suggested to us by A. Gorgilli.
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On the contrary, we can give definite results for non-resonant cases. Such results are
strictly related to the ones obtained in the study of a simple, planar model in [21] (the
body was assumed to move in a plane, with angular velocity orthogonal to the plane), so
that we refer to that paper for many details. The basic difference concerns the time scale
on which rotational and translational degrees of freedom behave as if they were uncoupled:
exp 1/£/Q, in the present case, exp 0/, in the planar one.

A. Non-resonant motions. We consider the case in which, at the initial time, the
energy of the center of mass is (1), while that of the motion relative to the center of
mass, namely k, is order 0?; here, as before, 20 = lw(Go, Lo)||. For definiteness, we
assume that the external potential energy V is analytic and bounded for all g € R® (this
Is not a crucial hypothesis), and obviously for all R € 50(3).

In order to apply proposition 4.2, we need to assume, in particular, Q > Q,. Here,
{1. depends on the potential V, but also on the maximum value of [lpll on (a complex
neighbourhood of)) the domain Q. Now, we take Q = R® x AR(p(0), c||p(0)]]), where ¢ is
some positive constant (independent of Q). Thus, we are faced with a consistency problem:
to show that, in the time interval under consideration, ||p¢|| does not increase to much (such
a consistency problem is trivial, in the non—resonant case).

Proposition 5.4 There exist constants cg1,...,cer for which the following hold. Consider
a posttive number E > 2(IVIl, + V|,), and let )

211 2F
Quw = ';é— Co1 —j/j—
Consider a motion of the body with initial data satisfying
w0, 50) _
2M -

lw(Go, Lo)|| = 20 > 2max (Qﬂ’ﬂ%&é) (5.1)
. g

(Go, Lo) € Z(0,N(Q),Q).

Then, such a motion is defined in the whole time interval

0. Q
[t] < cea — exp { Q—J (5.2)
and satisfies
Q. .
max (|G; — G|, |Ly — Lo|) < ces a (5.3a)
NG G L 18,
max < gg\) _ z;g , lt — 7‘];10— ) S Ce4 *5 (53b)
(P(0)> »(0)) I —it 0.
L B = k+V-V < iy K
' ST + VO E4V VIO < cg5 a (5.3¢)
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Proof. The proof goes essentially the same way as for proposition 5.2. In addition, one
has here to show that ||p;| does not increase too much. This a consistency question, which
is easily proven by using the energy inequality (5.3¢). For details, see the proof of the
analogous statement in [21]. B

It is clear that, in this non-resonant case, there are no significant differences witl
respect the case of the body with a fixed point. Obviously, there are now the additional
slow variables (p,q), which are coupled with all the other slow variables, but the fast
variables G, ¢, L, [ are instead essentially uncoupled; in particular, the energy k of the
fast motion is almost constant, up to (high frequency) fluctuations.

B. On a case of scattering. We consider now the case of the scattering of a fast rotating
(symmetric) body by a fixed obstacle. We describe the obstacle by a smooth potential,
which decays at infinity in an integrable way. The basic question is how much energy can
be transferred from the rotational to the translational degree of freedom as a result of a
single collision.

Such a problem is of interest, among other things, in connection with a conjecture by
Boltzmann 27 and Jeans (4647 about the ‘freezing’ of high frequency degrees of freedom
in Hamiltonian systems, an argument of interest for the foundations of classical statistical
mechanics (see [13,16,17,19,18,39,10,21]).

We prove that, if far before the collision the body undergoes a non-resonant fast
rotation about its center of mass, then the energy exchange between the translational and
rotational degrees of freedom is extremely small, precisely it decreases exponentially fast
with +/Q/Q.. The proof of this fact uses in an essential way the local estimates on the
normal form and the canonical transformations given in proposition 4.2.

In order to proper formulate the results, let us introduce some terminology. We
say that we have a “scattering trajectory” (b(t),a(t)), with b(t) = (Gey Ley Jos Pty Jt @)
—co < t < +00, if the following conditions are fulfilled:

Jlim[lg(t)] = o0 (5.40)

Jim p(t) = p=#0 (5.4b)
+oo ) B

B = max [—oo B z(t)’pdt < 0. (5.4c)

In particular, the latter condition assures that %(b(t),a(t)) and 22(b(t), a(t)) go to zero
sufficiently fast for t — Foo, so that the limits G(do0) and L(+oo) also exist. Of course,
one could make assumptions on v (essentially, repulsivity with reference to a fixed scatterer)
which ensure the existence of scattering trajectories: however, assuming directly (5.4) is
simpler and, in the present framework, more natural.

Proposition 5.5 For any scattering trajectory, with p~ and {1 = Hlw(G(—o0), L(—o))ll
satisfying the conditions (5.1), one has

lk}_:: < const exp — {\/W‘J . (5.5)
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Proof.  One proceeds as in the proof of proposition 5.4. In addition to the conclusions

of proposition 5.4, one has now
. I 1 . -
G/ (400) — G'(=o0)] < = Q—e"nv”/ﬂ}/ dt < tp )L lver
b(¢),p 3 Q
(5.6)

3 Q e
On the other hand, by (5.4c), and (2.6a) of chapter 4, at ¢ = 4o one has G = &'
Proceeding in the same way for the variable L', one easily proves inequality (5.5).

v

Og

C. Resonant motions. We give now some indications about the difficulty of extending
the previous results to resonant motions. We refer, for definiteness, to the case of subsection
A. First of all, we remark that the sharp estimates of proposition 5.3 cannot be assured to
hold in the present case. The reason is simply that the conservation of energy now reads

(r(0), p(0))

i + V = const

o+
and one cannot apriori exclude large (~ 02?) energy exchanges between k and (p(0), p(0)) /2M.
This is the heart of the problem.
A better, though not yet satisfactory approach could be based on the distinction
between slow and fast variables. In the present case, the analog of inequality (3.16) of
remark 5.5 would read

1, 4 0), p(0 ) ’ /€. .
551}52 + %ﬁ(__)l + wa (Fo, 8,79 0,0,9")| < const - (5.7)
= 0

As already noticed, the term %b,,bi'z, which could be considered as the energy of the slow
motion, i1s not always small: for motions starting on the border of a resonant zone of low
order, such a term is O((2). This would lead to an a—priori estimate for the variation of p
of order /. This is better than the above one, but still not completely satisfactory. We
observe that, in order to have smaller values of the ‘slow motion’ energy %bygz, one would
significantly restrict the zones corresponding to the low order resonances. Unfortunately,
we do not see how to do this (without reducing too much the time scales: see remark 5.3).

Thus, the very question of the possibility of large energy exchanges, in conditions of
resonance, is at least at present an open question. It is certainly worth of further analytic
and numerical investigations.
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Conclusions

In the present thesis we have been concerned with two main topics. On the one hand,
there is a ‘global’ formulation of perturbation theory (chapter 2), which was a necessary
prerequisite for the study of the fast rotations of the rigid body. Essentially, we found that
certain singularities of the action—angle coordinate systems are not really dangerous for
perturbation theory, and the difficulties inherent their presence can be easily overcome.
Besides the rigid body, this situation is encountered in the Kepler system. Thus, a further,
quite natural application of these ideas could concern the N-body problem: as already
remarked in chapter 1, Nekhoroshev’s results about the existence of open domains of initial
conditions, which give rise to ‘planetary motion’ (i.e., no close collisions, and not too large
escapes) for exponentially long time scales, suffer quite heavily, in our opinion, for the need
of excluding the passage through the singularities of the coordinates.

On the other hand, the central argument of the thesis has been the study of the fast
rotations of the symmetric rigid body, with a fixed point. In our opinion, Hamiltonian
perturbation theory provides a powerful approach to this problem. Our results about the
fast motion have been presented in chapter 5. Besides definite bounds on the variations
of the action variables G and L, we gained some insight about some features of the body
motion.

This study is certainly not yet complete.

First of all, a great lack lies in the restriction to the case of symmetric bodies. This
was originally motivated by the will of avoiding, in the first approach to the problem, some
technical difficulties. But now, it seems to us that no real difficulty will be met in such an
extension.

Of course, a second direction in which this work has to be completed concerns the
gyroscopic rotations. To this purpose, one has to study the neighbourhood of a family of
periodic orbits, and we are confident that the methods of Hamiltonian perturbation theory
will lead to sharp results.

Another question concerns the quality of the estimates. As observed, estimates O(1)
on the variations of G and L are optimal, as far as one looks for estimates uniform in
phase space. Clearly, it would be of interest to investigate the optimality of the time scale
~ exp(ﬂl/ %) over which such estimates have been proven. Testing the optimality of the
exponent 1/2 would furnish an essential indication about the optimality of perturbation

theory, as developed in chapter 4. This is in our opinion an interesting question, since at
present we do not see any possibility of improving such a value.

A natural continuation of this work would be the study of some specific example,
possibly with the assistance of numerical tools. The possibility of chaotic motions, and the
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different time scales, certainly deserves a careful consideration.

But foremost, among all open problems, there is the motion with no fixed point. As
shortly discussed in chapter 5, motions far from the resonances of the Euler—Poinsot motion
are easily treated. But resonant motions are at present basically not understood. We do
not think that this will reveal to be a formidable problem, but certainly this problem has
to be considered as open. The key question concerns the very possibility of large energy
exchanges between the translational and the rotational degrees of freedom. Our feeling
is that there exist specific, but interesting situations in which they do not take place. A
possible one is the case of scattering, where one can hope of successfully exploiting the fact
that, during a collision process, the sirong interaction lasts only a very short time.

Moreover, there is another case which is worth of consideration. One should remark
that the angular velocity w = a7 '(G,nL) of the body can be large either because, as we
supposed here, the angular momentum is large (limit of high rotational energy), or else, at
fixed finite rotational energy, because the inertia moments are small (limit of point—mass).
The latter is the case of a small body of diameter proportional to a small parameter ¢.
The moments of inertia scale as 2, so that for small values of the angular momentum,
G = O(e), one has w = O(¢7!) and k = (G* +nL?)/2a; = O(1). This case is certainly
relevant in connection with the ‘Bolizmann—Jeans’ conjecture. It was successfully studied
in the planar model of reference [21]. In three dimensions an additional difficulty arises,
namely the action-angle variables become singular near G = 0. Nevertheless, we are
confident that these technical difficulties can be overcome.

In conclusion, much work remains to be done in this field, and many probléms have
to be carefully studied. We hope that the work done for this thesis will provide a concrete
basis for it.
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