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Chapter 1

Introduction

“Having its roots in philosophic speculation, cosmology evolved gradually into a physical

science, but a science with so little observational basis that philosophical considerations

still play a crucial if not dominant role.” These 50 years old words, taken from a paper

by R. H. Dicke [1], sound off-key today. The enormous wealth of observational data we

have at our disposal and the variety of observables put this statement into the drawer

of a faraway past. In fact, not only cosmology has entered the era of precision tests but

also the picture emerging from the available data is coherently included in a standard

model, the Lambda Cold Dark Matter (ΛCDM) model, which beautifully accounts for the

observed Universe evolution from its very first stages, a few hundreds seconds after the

Big Bang, up to present day, with only six free parameters. As a further occurrence we

have experienced in the last year a boost in the experimental evidences: the first data

release from the Planck survey agrees to an unprecedented precision with the predictions

of the standard model of cosmology [2].

However, this success comes with a price. Despite working with unexpected accuracy,

we know that the standard model of cosmology cannot be but an effective description of

the Universe no matters how precise. And in fact, there are many observational evidences

and theoretical issues that point towards some physics beyond ΛCDM model.

In order to fit the data, the matter content of the Universe must be equipped with two

unknown components: dark energy (DE) and dark matter (DM). DE is a form of exotic

matter/energy required to explain the observed accelerated expansion of the universe

whose fundamental nature is far from being understood. The natural candidate within

General Relativity (GR), a cosmological constant (CC) term, despite being able to fit

observational data, is plagued by theoretical issues and it is very unlikely to represent the

fundamental explanation for this component. Many alternatives have been proposed in

1



2 CHAPTER 1. INTRODUCTION

which the DE role is played by extra dynamical degrees of freedom, like a scalar field with

more or less complicated interactions, but up to now no smoking gun for any of these

extensions has been found. If DE is indeed a CC its value will have to be explained most

probably by Planck-scale/Quantum Gravity physics. If it is due to a field, then extra

phenomenology with respect to a CC is expected, e.g., dynamics and spatial fluctuations,

and in particular a redshift dependence in the pressure and energy density of DE.

DM, instead, is thought to be made by a new, yet undiscovered, set of particles with

at most weak interaction with standard model particles and its introduction is required

in order to correctly form the large scales structures we observe. Contrarily to DE, DM

seemed to be a settled issue with quite defined particle candidates in the context of Super-

symmetric (SUSY) extensions of the standard model (SM) of particle physics and with a

wealth of successes when theory is compared with observations. However, in the last years

we have collected evidences that this picture may not be so definitive. In fact, despite the

ability of this DM paradigm to provide a successful description of the Universe dynamics

at cosmological scales, at smaller, galactic scales, it seems unable to reproduce the ob-

served properties of structure formation. There is no general consensus on the origin of

these discrepancies in the standard framework: they may be due to unaccounted baryons’

feedbacks as well as to a modification of standard DM paradigm and this uncertainty is

stressed by the large number of alternatives proposed in the last decade.

But the issue is possibly more dramatic: many observations seem to point towards

correlations between luminous and dark components which are hard to explain in the

standard DM scenario, thus suggesting a modified gravity explanation of the small scale

dynamics. And in fact, there are phenomenological dark matter-less models, like MOdified

Newtonian Dynamics (MOND), that are able to fit the data more accurately at small

scales, through a modification of the gravitational laws. However, these models (and their

relativistic generalizations) fail to be as good as the ΛCDM model at cosmological scales.

This turns into an apparent dichotomy in our understanding of the Universe dynamics

which seems to be fractioned into the successes in opposite regimes of two clashing models.

Furthermore, ΛCDM model is based on GR which, despite its successes, is probably

not the ultimate theory of gravity. On the theoretical side, GR remains poorly understood

in its foundations: we can construct very many alternative theories of gravitation but we

do lack an axiomatic derivation of such theories and hence an authentic understanding

of their reciprocal relation. Moreover, generalized theories of gravitation can be as well

considered as different effective actions induced by physics beyond the Planck energy and

as such their study as alternative models of gravitation could provide some insight on the
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long standing problem of building a quantum gravity theory. On the experimental side,

we do lack severe experimental constraints on GR from galactic scales upwards. These

issues, together with the fact that the 95% of the energy/matter content of the universe is

of a yet unknown nature, have been among the most pressing motivations for the recent

outburst of attention toward alternative theories.

Given the above picture of current understanding of DM and of gravitational dynamics,

a natural direction of investigation seems to be towards the generalization of the inter-

actions between matter content and curvature terms. The study of couplings between

fields and gravity was started decades ago with the works of Brans and Dicke [3] and it

is nowadays well structured into Scalar-Tensor Theories of gravity which have found their

most successful application in the context of DE models. The topic was recently revital-

ized with the re-discovery of the most general scalar-tensor theory that gives second order

field equations in four dimensions [4, 5], the so-called Horndeski action, which provides a

coherent framework for extensions to the ΛCDM model.

In particular, the idea of non-minimally coupled DM was recently proposed [6] and

indeed it proved to be an intriguing alternative to the standard paradigm as it is able to

produce a mimicking of MONDian behavior in the context of DM theories, thus potentially

being able to reconcile in a single scheme two apparently unrelated models.

In this thesis we will further explore this topic applying the techniques of Scalar-Tensor

Theories to the DM sector by investigating both theoretical and phenomenological conse-

quences of a model in which a DM fluid gets non-minimally coupled (NMC) to curvature

terms. This phenomenological model shows to have relevant consequences on cosmological

evolution, in particular on the process of structure formation, as the generalized couplings

between DM and curvature terms lead, for example, to a modified Poisson equation in the

non-relativistic limit of the theory. Furthermore, the investigation of this model brought

us to the discovery that it is possible to find equivalent Einstein and Jordan frames which

are connected by a generalization of the conformal transformation, the so called disformal

transformation. This equivalence is a well known fact in the context of standard Scalar-

Tensor Theories but is also quite new and unexpected in more general theories, as is the

Horndeski one.

This point will quite naturally lead us to the question whether this invariance under

generalized metric transformations could be more than a coincidence. Hence we shall in-

vestigate the relation between Horndeski action and disformal transformations discovering

how these play a similar role to the one conformal metric transformations have for standard

Scalar-Tensor Theories. We shall then be able to identify a class of metric transformations
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under which the Horndeski action is invariant, thus extending the class of Scalar-Tensor

Theories that admits equivalent frames.

Far from being a mathematical curiosity, the invariance of the Horndeski action under

a particular class of disformal transformations represents a first step in order to formalize

some recently noticed relations between different theoretical models for DE, which may

be seen as equivalent representations of the same fundamental theory.

The plan of the thesis is as follows. After briefly reviewing the ΛCDM model and its

formalism together with its most relevant experimental evidences in chapter 2, we will

discuss its main critical points and some of the proposed solution to them in chapter

3. Chapter 4 will be devoted to the introduction of our model and to the discussion of

its characteristics, with particular emphasis on the weak field limit; in chapter 5 we will

further extend the discussion of this model by investigating its cosmological consequences

at the background and linear perturbations level. Chapter 6 will be devoted to a formal

investigation of the transformation properties of the Horndeski action under disformal

transformations, with particular attention on the equivalence between frames. Finally, in

chapter 7 we will draw our conclusions.

This work is based on the following publications:

D. Bettoni, S. Liberati,

“Disformal invariance of second order scalar tensor theories: framing the Horndeski

action”,

arXiv:1306.6724 [gr-qc]

D. Bettoni, V. Pettorino, S. Liberati, C. Baccigalupi,

“Non-minimally coupled dark matter: effective pressure and structure formation”,

JCAP 07(2012)027 [arXiv:1203.5735 [astro-ph.CO]]

D. Bettoni, S. Liberati, L. Sindoni,

“Extended ΛCDM: generalized non-minimal coupling for dark matter fluids”,

JCAP 11(2011)007 [arXiv:1108.1728 [gr-qc]]



Chapter 2

The standard cosmological model

The ΛCDM model is based on GR which relates, in a beautiful and elegant way, the

geometry of space-time to the matter content of the Universe, via the Einstein Field

Equations

Gµν + Λgµν = 8πGTµν . (2.1)

Gµν ≡ Rµν − gµνR/2 is the Einstein tensor, constructed from the metric gµν and its

first and second derivatives, Λ and G are the CC and the Newton constant respectively.

The matter content is instead included in the Stress-Energy Tensor (SET) Tµν . These

equations can be obtained through the variation with respect to the metric gµν of the

action

S =
1

16πG

∫
d4x
√
−g [R− 2Λ] +

∫
d4x
√
−gLm(g, ψm) , (2.2)

where Lm is the total matter Lagrangian and ψm collectively denotes matter fields.

The Einstein tensor is covariantly conserved as a consequence of the reduced Bianchi

identities so that the companion set of equations for the evolution of matter fields can be

obtained from the conservation of the total SET

∇µTµν = 0 . (2.3)

If there are no coupled species, the SET of the different matter components is individually

conserved and the matter evolution can be split into equations for the single components.

Alternatively, one can obtain the matter field equations via direct variation of the action

with respect to the field variables obtaining the standard Euler–Lagrange equations.

Looking for a solution of this non-linear coupled system of equations may seem a

tremendous task. However, at scales larger than about 100 Mpc, corresponding to the

largest observed structures, the Universe is almost homogeneous and isotropic. The as-

sumption of these two symmetries at large scales is confirmed by the high level of isotropy

5



6 CHAPTER 2. THE STANDARD COSMOLOGICAL MODEL

of the Cosmic Microwave Background (CMB) radiation and by the distribution of Large

Scale Structures (LSS) and it is often referred to as the Copernican or Cosmological Prin-

ciple.

The existence of these two symmetries dramatically simplifies the equations, reducing

the number of functions required to describe the geometry and strongly constraining the

form of the SET, and introduces a convenient reference frame, known as comoving frame.

In fact, these symmetries are seen only by observers that are at rest with respect to the

Universe expansion; otherwise a dipole anisotropy would be present for an observer moving

with respect to this frame.

Of course, at smaller scales, deviations from isotropy and homogeneity are expected

as a consequence of the collapse of matter into bounded objects. The process of struc-

ture formation is indeed allowed by the fact that the symmetries of space-time are not

exact, small inhomogeneities being present throughout the whole history of the universe.

However, these inhomogeneities can be considered as small perturbations around the ho-

mogenous background for most of the cosmological evolution and hence they can be mostly

described via linear perturbation theory.

In the next two sections we will review the dynamics of a homogeneous and isotropic

background Universe and the theory of linear perturbations.

2.1 The homogeneous and isotropic Universe

As said the isotropy and homogeneity of the Universe seen by a comoving observer at the

largest scales highly simplify the equations of motion. These symmetries can be translated

into the statement that the squared line element of the Universe is

ds2 = −dt2 + a(t)2dσ2 , (2.4)

where, using polar coordinates,

dσ2 =
dr2

1−Kr2
+ r2dΩ2 , (2.5)

where r is the comoving radial coordinate and dΩ2 = dθ2 + sin2 θdφ2, while K is related

to the spatial curvature and is commonly normalized in such a way to take the value −1

for an open Universe, 1 for a closed one and 0 for a flat one. As it is clear from equation

(2.4) under the assumptions of the Cosmological Principle only one degree of freedom is

required to fully describe the geometry of the Universe, the scale factor a(t).
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The structure of the metric derived from this line element forces the Einstein tensor

to be diagonal and, for consistency, the SET can only take the perfect fluid form

Tµν = [ρ(t) + p(t)]uµuν + p(t)gµν , (2.6)

where ρ(t) is the total energy density, p(t) is the pressure and the four vector

uµ = (a−1, 0, 0, 0) , (2.7)

is the fluid four velocity whose normalization is such that uµu
µ = −1. This parametriza-

tion tells us about another important fact: when dealing with background cosmology,

we can parametrize the matter content in a fluid limit with the consequence that only

macroscopic thermodynamical quantities are relevant for the dynamics of the Universe.

When we plug the metric inferred from the line element (2.4) into the Einstein Field

Equations and use the structure of the SET presented above we obtain the Friedman

equations

H(t)2 ≡
(
ȧ(t)

a(t)

)2

=
8πG

3
ρ(t)− K

a(t)2
, (2.8)

ä(t)

a(t)
= −4πG

3

(
ρ(t) + 3p(t)

)
, (2.9)

where we have introduced the Hubble parameter H(t) whose present day value is

H0 = 73.8± 2.4 km Mpc−1s−1 , (2.10)

as obtained from the Hubble Space Telescope (HST) [8] through a direct measurement

of the recession velocities of astrophysical objects around us. The Hubble parameter

has been recently obtained also from CMB [2] which provided the value of HCMB
0 =

67.80± 0.77 km Mpc−1s−1. The reason of this difference is presently under investigation.

Equation (2.8) can be usefully described in terms of the density parameter

Ω(t) =
8πGρ(t)

3H(t)2
. (2.11)

thus taking the equivalent form

Ωtot(t) = 1− ΩK(t) , ΩK(t) = − K

(aH)2
, (2.12)

where ΩK parametrizes deviations from spatial flatness. In what follows we will consider

K = 0 as is suggested by CMB measurements, ΩK = −0.037+0.043
−0.049 at the 95% limits [2].
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A useful quantity to be defined at this point is the critical density ρc, the total matter

density of the Universe in the absence of spatial curvature, whose present day value is

ρc0 =
3H2

0

8πG
= 1.88h2 × 10−29 g cm−3 , (2.13)

where h = H0/100 km s−1 Mpc−1. The Friedman equations (2.8) and (2.9) can be

combined together to give

ρ̇(t) + 3H(t)
(
ρ(t) + p(t)

)
= 0 , (2.14)

which is an evolution equation for the total matter/energy component which reflects the

conservation of the energy density. As said, if there is no interaction between the different

matter species, the conservation equation can be split into equations for the single matter

component

ρ̇i(t) + 3H(t)
(
ρi(t) + pi(t)

)
= 0 . (2.15)

In the presence of interaction it is still possible to write separate equations but in this case

they will be coupled, because of energy transfer from one species to the others. Under

quite general assumptions the coupled equations can be written as

ρ̇i(t) + 3H(t)
(
ρi(t) + pi(t)

)
= Qi , (2.16)

where Qi encodes the effects of coupling of the i -th species with the others and is such

that
∑

iQi = 0 in order to preserve the conservation of the total SET.

Of the three equations (2.8), (2.9) and (2.14) only two are independent so that we have

a system of two equations with three unknowns. In order to close the system we need to

provide an equation of state for matter which relates the pressure to the energy density.

A standard choice is to consider barotropic fluids for which

p = p(ρ) = w(ρ)ρ (2.17)

where we have introduced the equation of state parameter w which characterizes the

different fluids’ behavior. In the uncoupled case the continuity equation can be rewritten

in terms of the equation of state parameter w and, if this is constant, the equation can

be integrated to obtain the evolution of the particular matter species as a function of the

scale factor, namely

ρi ∝ a−3(1+wi) . (2.18)

This clearly shows how matter species that differ in their pressure component will have a

different scaling with the expansion of the Universe; hence, we can identify different eras

in which a particular component is dominating the energy content of the Universe.
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Before presenting the matter content that appears to compose the Universe we need

to define a few more relevant quantities.

Due to the expansion of the Universe the wavelength of a light ray coming towards us

from some distant object is stretched. It is then useful to introduce the concept of redshift

which exactly measures this change, via

z =
λobs
λemit

− 1 . (2.19)

This quantity can be related to the scale factor a providing a fundamental relation for

cosmology

1 + z = a−1 . (2.20)

Present time corresponds to z = 0 as the scale factor is normalized in such a way to

be unity today. This quantity is commonly used in cosmology as many equations looks

simpler when expressed in terms of redshift and also because this quantity is more closely

related to observables. For small redshifts we can expand the previous relation in powers

of the lookback time t− t0 to get

z = H0(t0 − t) +
H2

0

2
(2 + q0) (t0 − t)2 + . . . (2.21)

where we have defined the present day deceleration parameter

q0 ≡ −
ä0

a0H2
0

, (2.22)

which is an observable quantity that tells about the acceleration of the Universe expansion.

As we will see neither matter nor radiation are able to explain the currently observed value

of q0 ∼ −1/2 which indicates an accelerated expansion of the Universe.

Finally, we introduce another time variable that will be extensively used in the follow-

ing. We define the conformal time τ as

τ =

∫ t

0

dt

a(t)
, (2.23)

which will be the natural time variable for the description of the evolution of perturbations.

When expressed in terms of it, the FLRW metric reads

ds2 = a(τ)2[−dτ2 + dx2] , (2.24)

thus making the line element conformally related to the Minkowski one. A useful relation

is the following

H ≡ 1

a(τ)

da(τ)

dτ
= a(t)H(t) , (2.25)
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so that the evolution equation for matter components is

ρ′(τ) + 3H(τ)(ρ(τ) + p(τ)) = 0 , (2.26)

where the prime indicates differentiation with respect to the conformal time τ .

2.1.1 The ΛCDM model

Now that we have introduced the general framework for the evolution of an isotropic and

homogeneous Universe, we can specify the different species that compose its energy/matter

content. According to the most recent data from the Planck survey [2] 68.3% of the matter

content is composed by DE, that in its simplest ΛCDM realization is encoded in the famous

CC, an energy source constant in both space and time, required to explain the current

accelerated expansion of the Universe. The remaining 30% is composed by pressureless

matter divided in two species: baryonic matter and DM. The latter, of unknown origin,

accounts for 26.8% of the cosmic energy density while only the 4.9% is made out of known

particles.1 A minimal fraction of the present day energy density is made of CMB and

neutrinos while the contribution coming from curvature has been set to zero.

Due to the different scaling with the expansion of the various matter species we do

not expect this relative abundances to be fixed, and in fact the Universes passed through

different epochs before entering the current CC constant dominated era.

Radiation. With the generic term radiation we mean all particles that shows a relativistic

behavior and whose equation of state parameter is w = 1/3. As a consequence the

continuity equation (2.15) can be integrated to give

ρr(a) = ρr0a
−4 , (2.27)

where ρr0 is the radiation energy density at present. In the ΛCDM model there are

two relativistic components, photons and neutrinos, whose present day abundances

are

Ωγ0 = 4.2032× 10−5h−2 , Ων0 = 3.2701× 10−5h−2 , (2.28)

representing subdominant contributions to the total energy content of the present

day Universe. However due to their scaling, these components have dominated the

energy density of the Universe at early times. During this era, radiation is the only

1These values are slightly different from those obtained by the previous CMB experiment WMAP [7]

as a consequence of the lower value for today’s Hubble parameter H0 = 67.4± 1.4 found by Planck.
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energy component responsible for the expansion of the Universe and hence, using

the scaling relation (2.27), the Friedman equation implies

H(t)2 ∝ a(t)−4 . (2.29)

This equation can be integrated to give the evolution of the scale factor and hence

of the density as a function of time

a(t) = a0

(
t

t0

)1/2

, ρ(t) =
3

32πGt2
. (2.30)

where t0 = 1/(2H0) provides an estimate of the age of the Universe if it were to be

always radiation dominated. The deceleration parameter during this era is q0 = 1,

which means that radiation cannot be the responsible for the accelerated expansion.

Matter. The matter content is made out of two contributions: baryons and DM. They

are characterized by the absence of pressure, w = 0, and they are usually referred

to as dust components. The continuity equation can be integrated to give

ρm(a) = ρm0a
−3 , (2.31)

where ρm0 refers to the present day energy density for the two matter components.

The measured present day abundance of these two components is

ΩDM0 = 0.12029h−2 , Ωb0 = 0.022068h−2 . (2.32)

Notice that due to the different scaling of matter and radiation at some point along

the evolution of the Universe the two densities will be equal. If expressed in terms

of redshift, this happens when

1 =
ρm(zeq)

ρr(zeq)
=
ρm0

ρr0
(1 + zeq)

−1 , (2.33)

which is realized at redshift z ∼ 3000 thus defining the end of the radiation domi-

nated era and the onset of matter domination.

During this era, matter, basically DM alone, is the dominant energy component

responsible for the expansion of the Universe. Using the scaling relation (2.31), the

Friedman equation reads

H(t)2 ∝ a(t)−3 . (2.34)

This equation can be integrated to give the evolution of the scale factor and hence

of the density as a function of time

a(t) = a0

(
t

t0

)2/3

, ρ(t) =
1

6πGt2
. (2.35)
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where t0 = 2/(3H0). Notice that the scaling of matter as a function of time is the

same of that of radiation. This is a consequence of the fact that the scaling with time

is independent of the equation of state parameter w. The deceleration parameter

now is q0 = 1/2, so, again, we see that the universe expansion is decelerated also

during matter dominated era.

Cosmological constant. This component is related to the CC term appearing in the

Einstein equations and is characterized by a constant density and by an equation of

state parameter w = −1. Hence, we have

ρΛ =
8πGΛ

3
, pΛ = −ρΛ , (2.36)

whose present day abundance is

ΩΛ = 0.6825 , (2.37)

which makes this component the dominant contribution to the energy budget of

present day Universe.

When the cosmological matter content is dominated by a CC the Hubble parameter

is constant and the scale factor as a function of time is

a(t) = a0e
HΛt , HΛ =

√
8πG

3
ρΛ . (2.38)

The deceleration parameter in this case gives q0 = −1
2 meaning that this energy

component provides an accelerated expansion when it dominates the energy content

of the Universe. Given the present day abundance of this component we can quantify

when the accelerated era begins

1 =
ρm(zacc)

ρΛ(zacc)
=
ρm0

ρΛ
(1 + zacc)

−3 (2.39)

obtaining the result that accelerated expansion starts at zacc ∼ 0.7.

2.2 Growth of linear matter perturbations

If the Universe were perfectly isotropic and homogeneous the structure we see around us

could have never formed. But in fact, as confirmed by the data from CMB and LSS, the

Universe is quite but not completely homogeneous and isotropic. All the structure we see

are the final result of the gravitational collapse of some small initial fluctuations. The fact
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that at the time at which the CMB radiation was emitted the degree of homogeneity was

of 1 part over 105 allows us to use the tools of linear perturbation theory to study the

dynamics of these perturbations. In fact only at recent times and at suitably small scales

perturbations have become non-linear marking the breakdown of linear approximation.

In any case linear perturbation theory can be used to evolve initial conditions to provide

the starting point for a non-linear analysis of the gravitational collapse. In the next

sections we review this topic providing the most relevant equations that will be used in

the forthcoming chapters [9–12].

2.2.1 General theory and gauge freedom

Relaxing the assumption of a perfectly smooth Universe makes the dynamical variables

depend also on spatial coordinates, not only on time. However, in linear theory this

dependence shows up as small corrections to the smooth background and we can perturb

the Einstein equations (2.1) and the energy conservation equation (2.3). Denoting the

exact quantities with an overall bar one has

Ḡµν(τ, x)⇒ Gµν(τ) = 8πGTµν(τ) , (2.40)

δGµν(τ, x) = δTµν(τ, x) , (2.41)

∇̄µT̄µν(τ, x) = 0⇒ ∇µTµν(τ) = 0 , (2.42)

δ(∇µTµν(τ, x)) = 0 , (2.43)

where we have separated the smooth background quantities, which only depends on (con-

formal) time, from the perturbations that depend also on the spatial coordinate. A great

simplification to the analysis of the equations of motion comes directly from the structure

of the chosen space-time metric. In fact the FLRW metric allows a splitting between

spatial and time directions so that the perturbations can be classified accordingly to their

transformation properties under coordinate transformations on the invariant spatial sub-

space. In particular we can define the following categories.

Scalar. Scalar quantities are defined by functions of position and time with no spatial

indices so that the knowledge of their value at a point is enough to fully characterize

their structure at that particular point in space.

Vector. Any vector quantity can be decomposed as the gradient of a scalar potential plus

a divergence free vector

vi = viv +∇iv , ∆v = ∇ivi , ∇iviv = 0 , (2.44)
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v is then the scalar part of vi while vv is the vector part.

Tensor. A similar decomposition can be performed for tensorial quantities of rank 2

tij = tijt + (∇jtiv +∇itjv) +

(
∇i∇js− γij

3
∆s

)
+
t

3
γij , (2.45)

where

t = tii , tit i = 0 , ∇jtijt = 0 , (2.46)

which tells that t is the trace of the tensor perturbation and that tt is traceless and

transverse. Furthermore we have that tiv is the vector component of the tensorial

perturbation while the scalar one is obtained by differentiating twice the scalar

function s. Finally, γij is the metric of the spatial hypersurface.

A great advantage of this decomposition is that in a FLRW space-time the equations

for the different categories do not mix to linear order so that the analysis of linear pertur-

bations can be separately studied for the single perturbations components [12].

To further simplify the analysis we can recall that in the linear regime a convenient

description of perturbed quantities can be made in the Fourier space, given that different

modes do not mix. We then define the scalar Fourier amplitude A(τ, k) as

A(t,x) =

∫
d3k

(2π)3
A(τ,k)Y (x,k) , (2.47)

where Y (x,k) is a complete set of harmonic functions. Analogous quantities can be defined

for vectors and tensors. In particular, using the previous decomposition between scalar,

vector and tensor quantities, we define the vector and tensor Fourier basis Yi and Yij for

the scalar component, Y
(1)
i and Y

(1)
ij for the vector one and Y

(2)
ij for tensors [12].

Now that we have a Fourier basis for perturbed quantities we proceed with the defi-

nition of these. We will deal only with scalar perturbations so that from now on we will

specialize to this component, referring to the cited works for a full treatment of linear

perturbations theory in FLRW space-time.

Metric Perturbations. The perturbed metric can be expanded as ḡµν = gµν+hµν where

|hµν | � 1. They are defined as

ḡ00 = −a2(1 + 2AY ) , ḡ00 = −a−2(1− 2AY ) , (2.48)

ḡ0i = −a2BYi , ḡ0i − a−2BY i , (2.49)

ḡij = a2(γij(1 + 2HLY ) + 2HTYij) , ḡij = a−2(γij(1− 2HLY )− 2HTY
ij) , (2.50)

where Yi and Yij are respectively the scalar parts of the vector and tensor Fourier

basis introduced in (2.47).
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SET Perturbations. The perturbed SET can be expanded in a similar way T̄µν = Tµν+

tµν where tµν � 1. The scalar part components are

T̄ 0
0 = −ρ(1 + δY ) , T̄ 0

i = (ρ+ p)(v −B)Yi , (2.51)

T̄ j0 = −(ρ+ p)vY j , T̄ ij = (δij(p+ δp) + σY i
j) , (2.52)

where δ ≡ δρ/ρ is the density contrast, v the perturbation to the four velocity, δp

is the isotropic perturbation to the pressure and σ is the anisotropic stress of the

perturbed fluid. From the normalization condition for the four velocity we have that

the zero-zero component is not an independent perturbation variable as it can be

written in terms of metric perturbations, ū0 = a−1(1 − AY ), so that v is the only

independent perturbation associated to the velocity field.

With the definition of the perturbed metric we can write the perturbations of the

Einstein tensor and relate them to those in the matter SET. The full set of perturbed

Einstein equations, divided in components, read

2

a2

[
3H2A−HkB − 3HH ′L − k2

(
HL +

HT

3

)]
= −8πGρδ , (2.53)

2

a2

[
kHA− kH ′L − k

H ′T
3

]
= (ρ+ p)(v −B) , (2.54)

2

a2

[
(H′ −H2)B − kHA+ kH ′L + k

H ′T
3

]
= −8πG(ρ+ p)v , (2.55)

2

a2

[(
2
a′′

a
−H2

)
A+HA′ − k2A

3
− k

3
(B′ + 2HB)+

− 1

a
(aH ′L)′ −HH ′L −

k2

3

(
HL +

HT

3

)]
= 8πGδp , (2.56)

1

a2

[
−k2A− k(B′ +HB) +

1

a

(
aH ′T

)′
+

+H(H ′T − kB)− k2

(
HL +

HT

3

)]
= 8πGσ , (2.57)

which are respectively the (0
0), (0

i), (i0) components and the trace and traceless part of

(ij) component of the perturbed Einstein equations. This is a set of 5 equations in eight

variables that has to be added to the perturbed continuity equations, that read

δ′ − 3Hwδ + (1 + w)(vk + 3H ′L) + 3Hδp
ρ

= 0 , (2.58)

[h(v +B)]′ +
2

3
kσ − h(kA+HB) + 4Hh(v −B)− kδp = 0 , (2.59)

where we have defined h = ρ+ p.
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Before moving on with the analysis of these equations we have to discuss a somewhat

subtle issue. When perturbations are introduced there is no unique way to define a co-

moving frame. In fact, we may have an observer at rest with respect to perturbations that

will see no deviation from the smooth background velocity field. Hence, he would conclude

that there are only perturbations in the density of the cosmological fluid. However, this

conclusion is only related to its particular frame choice and it is hence unphysical. In or-

der not to draw erroneous conclusions we have to take into account this “gauge” freedom.

At linear level this is formally described through coordinate transformation so that two

different gauges are related by (τ, x)→ (τ̃ , x̃), or

τ̃ = τ + TY , x̃i = xi + LY i . (2.60)

Under this transformation the metric changes as

¯̃gµν(τ̃ , x̃) ∼ ḡµν(τ, x) + ḡµβδx
β
,ν + ḡνβδx

β
,µ − ḡµν,βδxβ , (2.61)

so that

Ã = A− T ′ −HT , B̃ = B + L′ + kT , (2.62)

H̃L = HL −
k

3
L−HT , H̃T = HT + kL , (2.63)

where T and L are the Fourier amplitudes of the coordinate shift δx0 and δxi respectively.

A similar reasoning holds for the SET of matter leading to

δ̃ = δ + 3(1 + w)HT , ṽ = v + L′ , (2.64)

δ̃p = δp+ 3
c2
s

w
(1 + w)HT , σ̃ = σ , (2.65)

where we have defined the speed of sound c2
s ≡ dp/dρ.

The gauge freedom tells us that of the eight perturbation variables only six are inde-

pendent. We can thus construct combinations of these variables that are invariant under

gauge transformations and write the evolution equations for those.

Another choice is instead to use the gauge freedom to fix two of the perturbation

variables to a particular value. This gauge choice can be very useful as in some cases the

equations are much easier to solve in some gauge or their physical meaning is clearer.

In the following we will adopt the second criterion and in particular we will use the so

called Newtonian or longitudinal gauge in which off diagonal perturbations in the metric

are taken to be zero.
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2.2.2 Newtonian gauge and non-relativistic limit

The Newtonian gauge corresponds to the choice of no off-diagonal perturbations in the

metric and is obtained by the choice HT = 0 = B and, by including the Bardeen potentials

A = Ψ, HL = Φ, the metric is

ds2 = −(1 + Ψ)dt2 + a2(1 + Φ)δijdx
idxj . (2.66)

This gauge choice not only simplifies the equations but also is free of any residual gauge

modes(contrarily to the Synchronous gauge) for a flat Universe. Moreover, this gauge is

particularly suited for late time and small scales cosmology as the gravitational potentials

coincides with the gauge invariant ones. Finally, as it will be clear later, in case of no

anisotropic stresses the two gravitational potentials are equal, with a further simplification

of the equations.

The perturbed Einstein field equations in this gauge read

3H(τ)2Ψ(τ,k)− 3H(τ)Φ′(τ,k)− k2Φ(τ,k) = −4πGa2δρ(τ,k) , (2.67)

kHΨ(τ,k)− kΦ′(τ,k) = 4πGa2h(τ)v(τ,k) , (2.68)

(
2a′′ −H(τ)2

)
Ψ(τ,k) +H(τ)Ψ′(τ,k)+

− 1

3
k2Ψ(τ,k)− 1

3
k2Φ(τ,k) +−2H(τ)Φ′(τ,k)−Φ′′(τ,k) = 4πGa2δp(τ,k) ,

− k2 (Ψ(τ,k) + Φ(τ,k)) = 8πGa2σ(τ,k) , (2.69)

while the evolution equations for the fluid perturbations (2.59) become:

δ′ +3H
(
δp

δρ
− w

)
δ + (1 + w)(vk + 3Φ′) = 0 , (2.70)

v′ +H(1− 3w)v − w′

1 + w
v +

δp/δρ

1 + w
kδ + kΨ +

2

3

kσ

(1 + w)ρ
= 0 , (2.71)

where Ψ is the Newtonian potential. The system of equations (2.71) and (2.69) provides

the evolution of matter and metric perturbation at all scales and times provided that

linearity is a valid approximation. Further simplifications to the equations come if there

are no anisotropic stresses, hence σ = 0, and if we consider barotropic fluids for which

p = p(ρ). The first request forces Φ = −Ψ as it can be seen from the last of the Einstein

equations, in contrast with alternative theories of gravity for which the two potential are

different. The second one, together with the assumption of adiabatic initial conditions,

instead implies that

δp = c2
sδρ , c2

s = w + ρ
dw

dρ
. (2.72)
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The dynamics of the previous system of equations is characterized by a single scale, known

as the effective horizon, H−1. As it may easily verified, both in the matter and the

radiation dominated eras the horizon grows faster than physical distances. When a given

scale is outside the horizon, then growing solutions exist for the density contrast, δ ∝ ap

with p > 0. For perturbations inside the horizon, we can further simplify the equations.

In fact, for scales such that kH−1 � 1 we can neglect time derivatives with respect to

terms proportional to the momentum k.

Putting together all the simplifications we obtain the following system of equations,

namely the Poisson, the Continuity and the Euler linear equation in Fourier space,

k2Φ = 4πGa2ρδ , (2.73)

δ′ + 3H(c2
s − w)δ + (1 + w)kv = 0 , (2.74)

v′ +H(1− 3w)v − w′

1 + w
v +

c2
sk

1 + w
δ − kΦ = 0 . (2.75)

This set of equations can be cast into a single second order equation for the fluid overdensity

δ. In particular if we set pressure to zero we obtain the equation for the evolution of the

DM overdensity

δ′′ +Hδ′ − 3

2
H2Ωmδ = 0 . (2.76)

The set of equations (2.73), (2.74) and (2.75) represents the basic equations that governs

the formation of structure in the Universe when the perturbations are still small and will

serve as initial conditions for subsequent non linear analysis.

2.3 Observational evidences for the ΛCDM model

We have today at our disposal an impressive amount of data from very different scales

and epochs to which we can compare the predictions made by the ΛCDM model. It was

just some months ago that we had the first release of the Planck data that showed to be

in an incredible agreement with the prediction of the standard model of cosmology [13].

We will now present and discuss some of the evidences in support of the ΛCDM model

as a standard framework for cosmology, with particular emphasis on DM.

2.3.1 Nucleosynthesis

Big Bang Nucleosynthesis (BBN) is the oldest observational evidence and it gives a picture

of the Universe when it was 200 seconds old providing a remarkable way to test our

cosmological models. When the temperature of the Universe is larger than ∼MeV there
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are no nuclei because the production of them is compensated with its destruction by an

energetic photon. However, at energies around 0.1 MeV, the rate of weak interaction falls

below a threshold allowing for a stabilization in the formation of light nuclei. After the

freeze out of the weak interaction responsible for the thermal equilibrium, the amount of

primordial light elements simply scales as a−3 to the present day value.

A particularly important quantity is the Helium abundance Y ≡ 4n4He/nb. This is

measured with precision to be

Y = 0.2477± 0.0029 , (2.77)

Y = 0.250± 0.004 , (2.78)

as reported in [14,15] respectively. These values are in good agreement with the theoretical

prediction [16,17]

Y = 0.2486± 0.0002 . (2.79)

The main dependence on cosmological parameters is represented by the baryon abundance

Ωb0h
2 and hence BBN can be used to cast constraints on the amount of baryons in the

Universe. However, this can be nowadays inferred from other observations, like CMB

anisotropies. Hence BBN is basically a parameter free process that can be used either as

a consistency check for the ΛCDM model or as a test for alternatives. In particular, the

existing limits tell us that dark, unobserved baryons, cannot play the role of DM, thus

reinforcing the non-baryonic origin of the latter. Another interesting thing to note is that

scalar-tensor theories of gravity generically induce a change in the Hubble parameter, as

they add a time dependence to the bare gravitational constant hence producing a change

in the redshift at which BBN onsets and hence a change in the present day abundance of

the light elements [18].

2.3.2 CMB

The CMB is probably the most precise evidence for the ΛCDM model [2]. This relic

radiation, whose present day temperature is measured with great accuracy to be T0 =

2.7255 ± 0.0006K [19], is the living evidence for the phase of the Universe history when

electrons and photons were in thermal equilibrium. Its existence represents a fundamental

evidence for the expanding Universe and its high degree of homogeneity, ∆T/T ∼ 10−5 is

a great confirmation for the assumed initial homogeneity and isotropy.

However, the vast majority of the informations on the Universe is encoded in the small

anisotropies in the CMB, Θ(~x, p̂, τ) ≡ ∆T/T . Given that we observe them from a single
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Figure 2.1: The Planck temperature power spectrum along with the Planck error bars

in blue [2]. The red line shows the temperature spectrum for the best-fit base ΛCDM

cosmology while the lower panel shows the power spectrum residuals with respect to this

theoretical model. The green line represents a cumulative uncertainty made of instru-

ment noise, sample (Gaussian) variance and angular resolution. See text for a detailed

description of the CMB temperature pattern.
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position it is very useful to perform an expansion in terms of spherical harmonics

Θ(~x, p̂, τ) =
∞∑
`=1

∑̀
m=−`

a`m(~x, τ)Y`m(p̂) . (2.80)

The single coefficients of the expansion of temperature anisotropies are thought to obey

a Gaussian statistics, as Planck has recently confirmed [2]. Therefore, what matters is

the angular power spectrum (PS), i.e., the variance Cl of the distribution at each angular

scale l. The latter is the quantity which is used for direct comparison with the ΛCDM

model and the derivation of the quoted constraints on cosmological parameters. Taking

the ensemble average of the Gaussian distribution, one has:

〈a`ma`′m′〉 = δ``′δmm′C` . (2.81)

These are plotted in figure 2.1 in terms of the convenient normalization D` = `(`+1)C`/2π.

We give now a brief description of the plotted red curve, representing the best fit. At low

`s, which corresponds to large angles in the sky, the power is given by the spectrum of

initial conditions, since no microphysics could have affected those large scales, corrected

by the gravitational potential affecting photons, the so called Sachs–Wolfe effect. Then,

at ` ≥ 100, corresponding to scales that crossed the horizon at the time of decoupling, the

spectrum shows a series of acoustic oscillations. These are a picture, taken at the time

of decoupling, of the oscillation pattern in the photon-baryon fluid, with the odd peaks

corresponding to compression while the even ones to rarefaction of the fluid, under the

effect of the potential wells provided by the DM overdensities. Both positions and ampli-

tudes of the peaks are a manifestation of the underlying matter content of the Universe.

In particular, the position of the first peak is associated to the sound horizon, the distance

travelled by a sound wave, at decoupling. Hence, the fact that it is found at ` = 220,

corresponding to one degree in the sky, requires a particular balance between the amount

of baryons and photons. Moreover, the differences in the amplitude of the spectrum at

different scales, requires the presence of a non-baryonic matter component about 6 times

more abundant than the baryonic one. Finally, at the largest multipoles, the power goes

to zero as a consequence of the radiation diffusion that erases the anisotropies.

The CMB contains informations that are not related only to the time of decoupling.

On the one hand, the knowledge of the primordial perturbations spectrum and of the

dynamics that generates the CMB pattern, are at present one of the most powerful tools

to constrain the cosmological parameters. On the other hand, we have to consider that

the CMB radiation had to travel a long distance from the surface of last scattering up to
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Figure 2.2: Galaxy distribution as obtained from the SDSS [20] (left) and the one extracted

from the Bolshoi simulation [21] (right). The high degree of resemblance between simulated

and real galaxy distribution is a clear evidence of the accuracy of the ΛCDM paradigm.

us, going through very different stages of the Universe evolution. In particular, DM per-

turbations act as lenses and are responsible for the CMB gravitational lensing effects and

an Integrated Sachs-Wolfe (ISW) effect arises because of evolving gravitational potentials

along the line of sight. Both effects have been detected and their relevance in cosmology is

being studied (see [2] and references therein). In particular, the latter is can discriminate

between GR and alternative theories of gravity.

Hence, fitting data coming from the CMB requires not only a precise knowledge of the

physics at the time of decoupling but also a recipe for the initial stages of the Universe

as well as a paradigm for structure formation. The fact that the ΛCDM fits so well the

CMB spectrum represents a remarkable achievement of the corresponding modelization.

2.3.3 LSS and BAO

Another important source of cosmological information comes from the observation of the

distribution of matter in the Universe. In fact, its isotropy at scales above 100 Mpc is a

further confirmation of the assumptions on the isotropy of the distribution of fluctuations

of the Universe. On the other hand, on smaller scales, gravitational dynamics tends to

clump matter into more irregular structure, clusters and galaxies, which can be used to

test our model of structure formation.
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In the ΛCDM model the need for DM perturbations is required in order to evolve the

initial ∼ 10−5 overdensities to the observed value for the density contrast of virialized

objects at present time, roughly ∼ 100. Perturbations in the baryonic component cannot

be the sole actors as their growth only starts after they decouple from radiation at zdec ∼
1000 as at earlier times they are in thermal equilibrium with the photon bath. DM instead

can start to collapse much earlier, but not before zeq when the gravitational effects of the

pressure from relativistic species prevent DM to collapse.

During matter domination and at scales much smaller than the horizon the evolution

of the perturbation in the DM component is almost scale invariant as far as linear theory

is concerned and is ruled by the equation

δ′′DM +Hδ′DM −
3

2
H2ΩDMδDM = 0 , (2.82)

where primes denotes differentiation with respect to conformal time (2.23). During the first

stages of matter growth the contribution from dark energy is negligible and the Universe

is very close to an Einstein-de Sitter model with Ωc ∼ 1. In this case perturbations in the

DM component have a linear growing mode δDM ∝ a.

Very similarly to what we did for the CMB, we can introduce the DM PS defined as

the Fourier transform of the two point correlation function of the DM density contrast

δDM(t,x)

〈δDM(k)δDM(k′)〉 = PDM(k)δD(k− k′) , (2.83)

where the Dirac delta δD is introduced in order to conserve energy and the average is

taken assuming a Gaussian and isotropic statistics.

The above expression is a definition given at a fixed time. If we want the time evolution

of the PS we need a recipe on how to evolve overdensities through horizon crossing and

matter-radiation equality since the evolution of perturbations in these regimes strongly

depends on scale. This is done introducing the transfer function T (k, a) so that

PDM(k, a) = T (k, a)2PDM,p(k) , (2.84)

where p refers to the primordial spectrum and a is, as usual, the scale factor. As we describe

below, the transfer function describes the super-horizon evolution on large, super-horizon

scales, while for those re-entering the horizon before equivalence, a suppression is caused

by acoustic oscillations.

Unfortunately we do not observe the DM power spectrum. What we observe is the

galaxy power spectrum in redshift space. One needs to introduce baryons’ physics in order

to obtain the theoretical galaxy power spectrum from the DM one to be compared with the
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Figure 2.3: The galaxy PS as obtained in [24], compared with the PS obtained from other

astrophysical and cosmological sources. The almost perfect overlap is a clear evidence

of the common origin of the perturbation in different matter species and can be used to

obtain informations on the evolution of the Universe. (See text for the details).

observed one. In figure 2.2 are reported the observed galaxy distribution [20] (left image)

and the one obtained from the Bolshoi simulation [21] (right image). The concordance

between the two is astonishing making indistinguishable by eye their different origin.

As it is what we actually observe, we now turn our attention to the distribution of

visible matter. The distribution of baryonic matter has been measured with great accuracy

by looking at different kinds of sources [20,22,23]. In figure 2.3 we report the matter power

spectrum as obtained in [24]. This spectrum shows the typical Harrison–Zel’dovich scale

invariant (almost proportional to k) growth up to ks corresponding to matter-radiation

equality. These scales are those that entered the horizon during matter domination and

hence started to grow in a way proportional to the scale factor a. For scales that entered the
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horizon before matter-radiation equality, k larger than keq, the spectrum shows the usual

suppression, due to the dominance of the relativistic pressure, that lasts until radiation

era ends. In the latter regime, an oscillatory pattern have been measured by the surveys

SDSS [24], 2dFGRS [25] and more recently by BOSS [26,27]. These are the counterpart of

the acoustic oscillations present in the CMB spectrum, the well known Baryonic Acoustic

Oscillations (BAO). The characteristic scales imprinted in these oscillations are the same

as those of the CMB, only evolved in time. Hence, they can be used, together with CMB

ones, as a standard ruler against which to test the cosmic evolution from last scattering

to present day.

2.3.4 Hubble law

The distance between an observer and some faraway astrophysical object is not constant

in time as a consequence of the predicted expansion of the Universe. We have in fact that

the physical relative distance evolves according to

r = a(t)x , (2.85)

where x is the comoving distance. From this we can compute the velocity of an object

ṙ = Hr + aẋ = vH + vp , (2.86)

where the first terms is the velocity due to the expansion of the Universe while the second

is the peculiar velocity. The latter can be as large as thousands of km/s for galaxies

inside clusters. This requires to look at scales larger than tenths of Mpc, corresponding to

z � 10−2, where peculiar motions are negligible. Moreover, we have to consider redshifts

smaller than one, so that a perturbative expansion of the velocity distance relation around

present day value is consistent. Under this constraints we obtain the Hubble law

v ∼ H0r . (2.87)

which states that distant galaxies should recede from us at a speed which is proportional

to their distance. Given that it is very unlikely that we occupy a privileged position

in the Universe the observation of such receding speed was the first indication of the

cosmological expansion. In order to measure H we need to measure distances, which is

generally a very hard task and requires the existence of some standard indicator. Two

very important astrophysical objects of that kind are the Supernova Ia and the Cepheids,

that have a luminosity that is quite independent on the details of the individual object.

Using these standard candles it has been possible to measure the distance as a function
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Figure 2.4: Hubble diagram for the Union 2.1 compilation. The solid line represents the

best-fit cosmology for a flat ΛCDM Universe for supernovae alone [28].

of redshift and infer the value of H0, producing a quite stable value for this fundamental

parameter [7, 28]. The first measurements were limited to small redshift (z < 0.1) where

cosmological evolution can be neglected. However, the discovery of standard candles at

larger redshift opened up the possibility to test cosmological models with this parameter.

These observations brought to the discovery of the accelerated expansion in 1998 [29–32]

providing the first evidence of DE. In fact, as can be seen from figure 2.4, the predictions

of ΛCDM model are in agreement with observations.

2.3.5 Dark Matter in galaxies

The first evidence of the need of a dark component to account for gravitational dynam-

ics dates back to 1933 [33], when it was observed that the visible mass was not enough

to explain the individual dispersion velocity of galaxies in the Coma cluster. This in-

vestigation was further extended during ’70s and ’80s [34–36] with the observations of

the rotation curves of galaxies, providing further confirmations of the velocity anomaly.
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All these astrophysical observations add up to the already mentioned evidences for DM

coming from cosmological observations and altogether form a coherent framework in the

context of ΛCDM. Moreover the astrophysical observations are possibly stronger than

those coming from cosmology as their dependence on the assumptions on the cosmological

model is somehow reduced.

Galaxy Rotation curves. Galaxies are bounded objects that have reached virial equi-

librium and hence the velocity of stars at their interior is in equilibrium with the

gravitational attraction. In particular, for spiral galaxies the gravitational mass of

the galaxy can be obtained measuring the rotational velocity via Doppler shift. Ac-

cording to Newtonian gravity, if the mass of a galaxy is made mostly by its luminous

components we have that the velocity field outside the matter distribution should

show the Newtonian fall off v ∝ r−1/2 meaning that luminous objects trace well the

matter distribution. However, as it is clear from figure 2.5, observations show an

almost constant velocity profile well beyond the galaxy’s core [37]. This behavior is

described by adding the extra mass profile

m(r) ∝ r . (2.88)

which can be explained assuming that galaxies resides at the core of a DM halo,

whose size extends far beyond the galaxy’s one, providing another evidence for the

presence of non-baryonic matter. The systematic investigation of these features

brought to the discovery that the profile of the rotation velocity of stars in spiral

galaxies has a universal profile leading to the so called Universal Rotation Curves

(RC) paradigm [38, 39]. This is in agreement with the predictions coming from

pure DM simulations since these predicts the existence of a universal profile for DM

density which directly translates into a universal asymptotic rotation velocity for

galaxies.

Radial Tully–Fisher Relations. In 1977 Tully and Fisher [40] proposed a new method

for measuring the absolute luminosity of astrophysical objects based on the mea-

surement of the width of the global neutral hydrogen line profile in galaxies. This

led to the famous Tully–Fisher relation (TFR) between velocity and luminosity

M = a log VMax + b , (2.89)

where M is the absolute magnitude, VMax is the maximum rotation velocity while a

and b are the slope and the offset of the TFR. In particular, it was found that spiral
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Figure 2.5: Galaxy RCs parameterized as functions of optical radii. This sample includes

2169 RCs extending beyond 0.6 Ropt, Ropt being a characteristic scale related to the size

of the luminous matter distribution. Notice the almost flat profile for large radii which

contrasts with the expected Newtonian fall-off of the rotation velocity. The plot is taken

from [37].
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Figure 2.6: The RTF relations [41]. Each one of the RTF relations is indicated with

different colors and it represents a TF-like relation at different radii.

galaxies share the common value for the slope parameter a = 4, which implies the

proportionality law M ∝ v4. This relation is already intriguing per se as it links

together two different quantities: luminous mass and gravitational mass. However,

more recently it was found that spiral galaxies do possess what has been called a

radial Tully–Fisher relation (RTF) [41]:

M = ai log V (Ri) + bi (2.90)

where the index i indicates different radii. This is a set of Tully–Fisher relations

whose exponent changes alongside with the radial coordinate. These relations are

plotted in figure (2.6) and it represents a very robust confirmation of the presence

of a DM component. In fact, the particular change in the slope parameter a implies

that light does not follow matter and that the dark component required to reproduce

this RTF relation is more relevant at larger radii.

Bullet cluster. The discovery of a cluster collision from which it was possible to ex-

tract the mass center position of intracluster gas, DM and that of galaxies has been

considered as a strong evidence of the DM paradigm, e.g., against modified grav-
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Figure 2.7: Left panel: the gas (violet), mass (blue) distribution in the bullet cluster.

Right panel: same as left but for the Musket cluster.

ity predictions, and it has been used to put constraints on the interaction cross

section-per mass of DM. In figure 2.7 two of such collisions are shown with in red

the positions of the gas, as inferred from X-ray observations, and in blue the position

of DM halos as inferred from gravitational lensing. The position of the galaxies that

belong to the clusters are also inferred, even if it cannot be seen by eye from the

figure. In both images it can be seen how the gas, due to its high friction, is still

at the position of the clash. Galaxies are expected to behave as collisionless objects

and to pass through the collision unaffected. Hence, the position of their center of

mass can be used as a marker for the position of the DM halo.

The left image refers to the Bullet cluster [42, 43] for which the center of mass of

DM and galaxies was found to coincide fact that the was considered an evidence of

the collisionless nature of DM. Notice however that the high initial velocity required

to explain the observed speed of the collision has been considered as a challenge for

ΛCDM model [44] and various alternative explanations have been investigated in

the context of both alternatives to DM [45] and DE [46]

Recently, a new cluster collision has been observed [47] which seems to point towards

a different interpretation (right image in 2.7). In fact, this collision is found to be

older than the previous one, and an offset in the position of galaxies and DM is found.

A possible explanation of this being that DM may have a larger self-interaction, able

to produce the friction needed to explain the observed mass configuration.
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2.3.6 CDM candidates and their search

Despite its yet unknown particle origin, decades of observations have provided a certain

amount of properties that a good DM candidate has to satisfy: it cannot be of baryonic

origin, in order to satisfy BBN constraints, it must be cold, i.e., non-relativistic, with very

small velocity dispersion, massive enough as to match the observed bottom up structures’

formation and it must interact very weakly with the particles of the standard model.

Here, we will briefly review some of the possible DM candidates and their searches.

We refer to [48–50] and references therein for a thorough discussion.

WIMP Dark Matter

The non-baryonic nature of the CDM seemed to find a perfect candidate in the Super Sym-

metric (SUSY) extension of the SM. In fact, besides addressing many of the SM problems

at the Electro-Weak (EW)scale, it provides a viable candidate for DM. The lightest super-

symmetric particle (LSP) is stable, weakly interacting and it is able to provide the correct

structure formation process and the right observed dark matter relic abundance. This

Weakly Interacting Particle (WIMP) was so successful that the expression “WIMP Mira-

cle” was coined. The most promising candidate is the neutralino, a mixture of four neutral

fermions: the wino, the bino and the two Higgsinos, namely χ = αB̃+βW̃ 3 + γH̃1 + δH̃2,

where α, β, γ and δ are parameters of the model [51].

Alternatives to SUSY have been proposed to explain physics at the EW scales which

happens to contain viable DM candidates. In particular, models like Kaluza–Klein DM

[52], little Higgs DM [53], Mirror DM [54] have new symmetries which provide stable

particle states at the same time preventing interaction with standard model ones.

Non-WIMP DM

WIMP DM is fundamentally related to the EW scale and hence to weak interactions.

However, one can think of particles that are disconnected from this scale and that have no

restrictions on the smallness of the interactions strength with known SM particles. The

discovery of the mass of neutrinos is the most relevant evidence for physics beyond the

SM. In the context of effective field theory description, the mass matrix of neutrinos is

mν = Aαβv
2/Λ, where α = e, µ, τ , v2 = 174GeV is the vacuum expectation value of

the Higgs field and Λ is some high energy scale suppressing the operators. One possible

explanation for the presence of these non-renormalizable terms can be associated to the

existence of a new particle in the form of a Majorana fermion singlet under SM group.
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From the cosmological point of view the most relevant fact is that sterile neutrinos have

masses around the keV scale and hence are not CDM but rather Warm DM (WDM).

These have major consequences on structure formation and this kind of DM may be a

good candidate to solve some of the ΛCDM issues at small scales (see chapter 3).

Another DM candidate comes from an apparently unrelated framework. The strong

Charge-Parity (CP) problem of the standard model of particle physics is associated to the

presence of a CP violating term in the Quantum Chromo Dynamics (QCD) Lagrangian.

Current constraints on CP violations force the parameter characterizing this extra contri-

bution to the QCD Lagrangian to be of the order of 10−9. In order to explain in a natural

way this value, Peccei and Quinn [55,56] introduced a global U(1) quasi-symmetry, i.e., a

symmetry at classical level which is broken by non-perturbative effects. The axion emerges

as the quasi-Nambu–Goldstone boson associated to the spontaneous breaking of this sym-

metry. The axion is a CDM candidates [57] and its mass, given in terms of the axion

decay constant fa

ma ∼ 0.6eV
107GeV

fa
, (2.91)

is constrained to be in the range 10−2− 10−6eV from various particle physics experiments

and astrophysical observations [58,59].

Another line of research is that of minimal extensions of the SM like models with a

single scalar field which is singlet under SM gauge group [60–62].

Present day status of direct and indirect dark matter searches

Astrophysical evidences in favor of the DM hypothesis and the large number of theoret-

ical candidates have motivated the search for DM particles through other, more direct,

channels. In particular, experiments that aim at a direct detection of DM are of extreme

importance as such detection would be the final confirmation of the existence of DM and

could be used to explore its properties with great consequences in the cosmological set

up. In particular, if dark matter is weakly interacting a direct detection via interaction

with standard model particles could be achieved while DM could be effectively created in

particle colliders such as the Large Hadron Collider (LHC). Another way to detect DM

particles is through the detection of the products of their annihilation in high density

regions like the core of the Sun or DM dominated galaxies.

None of the ongoing experiments has been able to provide a definitive proof of DM

detection, and at the moment only constraints on DM candidates properties are available.

LHC search. The LHC is a proton-proton collider whose purpose is to shed light onto the
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physics of the electroweak symmetry breaking. In the context of minimal supersym-

metric model (MSSM) the lightest particle is stable and could provide a viable DM

candidate whose detection may be at reach at LHC. Of course, a direct detection of a

DM particle is not feasible as cosmology requires DM to be stable, but such particle

could be detected as missing energy in the final products of some SM particle decay

or via anomalous branching ratios in known decay channels. Despite the first LHC

run showed no evidence for MSSM particles [63] still it was able to further reduce

the parameter space of various MSSM in particular when combined with constraints

coming from other experiments [64–69]. However, even in the case of no detection

at LHC, a possibility often referred to as the “nightmare scenario”, there still be

room for MSSM DM, which can be explored through other experiments [70]. It is

important to notice that the LHC DM search is very model-dependent, being related

to MSSM particles. Hence no detection of viable DM candidates in this experiment

would by no means imply the non existence of DM.

Direct detection. A WIMP dark matter candidate may be directly revealed exploiting

the DM particle flux that flows through the Earth as a consequence of its motion

inside the galactic halo. This kind of measurement is extremely difficult to achieve

as a consequence of the large number of uncertainties in the DM astrophysical pa-

rameters (local density, DM velocity, Earth motion) and in the magnitude of the

signal. However, several experiments are currently running in underground labora-

tories [71–74]. Among them only the DAMA-LIBRA experiment is claiming to have

seen a clear evidence for DM: an annual modulation in the energy released in the

detector which may be imputable to DM-nuclei collisions. Despite being a rather

model independent test for the existence of DM there is not general consensus on

this result, and at the moment only constraints on the DM-nucleus cross section for

specific models are available as a function of particle mass (see fig 2.8).

Indirect detection. If DM annihilates or decays, it is then possible to detect the prod-

ucts of such interaction in the form of excesses of particle flux over the expected

astrophysical backgrounds. In fact, several experiments (see [75] for a recent re-

view) have observed an excess of the positron fraction [76,77] which sounded like an

evidence of DM. More recent data [78], shows how this excess is somehow reduced

but that it is still present and its origin may be related to new physics even if it

an explanation in terms of astrophysical sources is as well a possibility [79, 80]. Fi-

nally, if the excess is due to some exotic particle decay it should be accompanied by

an analogous one in other annihilation channels and, for example, the observation
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Figure 2.8: Current constraints on dark matter direct detection [74]. The best constraints

come from the XENON 2012 data (blue line). Notice that the DAMA/LIBRA detection

region (red contours) lies outside the region excluded by other experiments.
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of antiproton flux may cast constraints on DM models [81]. Interestingly, Planck

measured the emission from the Galactic “haze” at microwave wavelengths finding

a morphology compatible with that of Fermi [82].
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Chapter 3

Beyond ΛCDM?

In the previous chapter we have discussed some of the strongest observational evidences

in support of the ΛCDM model. We have also seen that the recent Planck survey results

do not show any significant deviation from it.

However, both theoretical and observational issues are challenging this picture, calling

for a deeper understanding of the dark side of the Universe. The CC is plagued by the

coincidence and fine tuning problems, while the standard CDM paradigm has problems on

small, galactic scales, as anticipated in the Introduction. These issues may be considered

as need for alternatives to CDM and to the CC.

3.1 The cosmological constant problem

The history of CC dates back from the first days of GR and was introduced by Einstein

himself in the attempt to obtain a static Universe from his dynamical theory for space-

time. After the realization that such Universe was unstable the CC disappeared from the

scene for several decades. However, it was then realized that everything contributing to the

vacuum energy produces a cosmological constant like term ∼ λgµν . A simple and direct

calculation of the approximate value of such a contribution leads to the incredibly high

value for the energy density of the CC ρΛ ∼ 1071GeV4 which is obtained by combining

the Gravitational, Planck and speed of light constants. If a CC with such high value

was present in the early universe no structure could ever been formed. In order to make

such large value compatible with the measured value of the CC ρΛ ∼ 10−47GeV4, one

has to require that the CC appearing in the Einstein equations fine tunes to the vacuum

contribution to about 120 orders of magnitude, unless some mechanism exists that sets to

zero the vacuum contribution of quantum fields. It may be that a full theory of quantum

37
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gravity will set this issue but still the fine tuning problem remains to explain why the

cosmological constant we observe is so small compared to all other energy scales of nature.

The second problem with the CC is the so called coincidence problem. In fact it is hard to

explain why the CC is comparable with that of DM the energy density at z ∼ 1 despite the

different scaling of the energy densities and the fact that the CC dominates for an infinite

time in the future (see however [83] for an opposite point of view). The two scales are in

principle completely unrelated and this second fine tuning problem can be rephrased as

that of why the CC is small enough to allow the formation of the large scale structures

we observe.

The DE models were introduced to solve these problems by providing a dynamic mech-

anism responsible for the observed accelerated expansion of the Universe (see [84] for a

thorough review). It is possible to group DE models under two main categories: those

that modify the right hand side of the Einstein equations, thus introducing a new matter

field, and those that modify the gravity sector, namely the left hand side of the Einstein

equations. We will see however how this distinction is not rigid as it is possible to show

how some gravity models have an equivalent description in terms of dynamical matter

degree(s) of freedom.

DE as a scalar field

The simplest idea is that of promoting the CC to a dynamical scalar field. In this case

DE has a varying energy density which is not forced to stay fixed throughout the whole

Universe evolution thus relieving the fine tuning problem.

One possibility is represented by the quintessence scenario (QE) [85–87] where the

DE is described by a dynamical scalar field, whose properties are encoded in the scalar

field potential. According to our previous discussion, at the background level, any matter

component is described by its energy density and pressure from which one can construct

the equation of state parameter. The condition that the scalar field is able to drive an

accelerated expansion can then be written in the form1

wQE =
PQE
ρQE

=
X − V (φ)

X + V (φ)
< −1

3
⇔ X < V (φ) , (3.1)

which defines the different QE models. Note that the above condition is basically the re-

quirement that the so called Strong Energy Condition is violated [88]. The above condition

1This is true only if DE is the only component in the Universe. When other matter species are included

the condition for the onset of the accelerated expansion refers to the total equation of state parameter and

hence is wtot < −1/3. Thus the constraint on DE equation of state must be consequently adapted to this

more realistic situation.
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tells us that the mechanism responsible for the acceleration is analogous to that driving

inflation with a slowly varying potential. Remarkably, this model is able to alleviate the

fine-tuning problem as it admits an attractor solution that reduces the dependence on the

initial conditions.

However, the so called coincidence problem is still present as only a fine tuning in

the parameters entering the potential can explain why the energy density of the QE field

equals that of matter today.

The possibility of a DE-matter coupling has been widely investigated in the litera-

ture. Indeed, this coupling is expected to be generated unless some symmetry is present

to prevent it. However, the coupling with baryons is strongly constrained by both lo-

cal gravitational experiments and from precise measurement of the CMB and of galaxy

distribution. On the contrary, the coupling with DM does not have to satisfy such lo-

cal constraints and can be used as an appealing extension of QE models. Of course, the

changes in the cosmological dynamics due to the DE-DM coupling are severely constrained

at cosmological scales by the available data, e.g., CMB, BBN or LSS. A general feature

of these Coupled Quintessence (CQ) models [89] is that the single SET for DM and DE

are not separately conserved

∇µTµνDM = −QTM∂
νφ , ∇µTµνDE = QTDM∂

νφ , (3.2)

where φ is the CQ field, TM is the trace of the matter SET and Q is the QE-DM coupling.

The most relevant change with respect to uncoupled QE is that the CDM dominated epoch

is substituted with a φDM era during which perturbations grow slower with respect to

standard QE with observable effects on the CMB anisotropies spectrum. At background

level we have that, during this era and for a constant coupling Q, the normalized Hubble

parameter E(z) ≡ H(z)/H0 evolves as

E(z)/E0 ∝
[
Ωm0(1 + z)3+2Q2

]1/2
, (3.3)

which reduces to the standard matter evolution for a vanishing coupling DE-DM.

DE as a modification of gravity

The second approach to DE is to modify the gravitational structure of the theory, leaving

unaffected the matter content. There are several indications that GR, despite its successes

in describing gravitational dynamics at many different scales, cannot be the ultimate

theory of gravity. In this sense the idea that the anomalous expansion of the Universe

may be due to a modification of GR at cosmological scales is appealing. Along this
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direction the first modification that one can look for is that in the form of the Lagrangian

of the gravitational sector. The simplest extension of GR Lagrangian, namely the Ricci

scalar R, is to use a generic function of it, f(R) [90,91]. Given that one wants to address

late time dynamics, where the Ricci scalar is small, then one has to reduce to

f(R) = R− α

Rn
(3.4)

where α, n > 0 are new parameters. However, this is not enough to have a viable model

for DE and indeed stringent limits on the freedom of the f(R) function need to be imposed

to match observations (see chap. 9 in [84]), thus reducing viable models [92–95]. These

have been shown to be able to produce a ΛCDM-like background but they are expected to

differ at perturbation level, thus making DE and f(R) models distinguishable and testable

with future tomographic surveys [96].

f(R) theories have been shown to be equivalent to a sub-case of scalar-tensor theories

of gravity [97]. These theories, which we will discuss in some detail in chapter 6, contain

a new scalar degree of freedom for the gravitational interaction which is non-minimally

coupled to curvature terms. These models have been recently investigated in the context

of Covariant Galileons, [98,99] and have been proven to be viable mechanisms to produce

cosmic acceleration.

There is a strong connection between CQ and scalar-tensor theories. In fact, with

some caveats, CQ can be seen as the Einstein frame version of scalar-tensor theories,

thus explaining the origin of the scalar field-matter coupling. This link has been explored

and extended recently, with the introduction of disformal transformations [100], showing

that many models of DE can be connected by metric transformation [101–103]. This

classification is consistent within the Horndeski theory [4,5] since this is general enough to

contain all single scalar field DE models as subcases. We will devote the last chapter to the

investigation of the actual equivalence of these different theories exploring the symmetries

of the Horndeski action under metric transformations.

Before closing this section we note that, up to present, the CC has not been ruled

out by observations. However there is room for dynamical DE, and in fact in a recent

paper [104] it has been shown how CQ models with a non-zero coupling are consistent

with Planck data.

3.2 Challenging the CDM paradigm at small scales

If we were to know the DM particle, we probably wouldn’t worry too much about the

inconsistencies of ΛCDM at galaxy and cluster scales, referring to them as residual noise,
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or more than this, we could be able to provide an answer to them. However, the unknown

nature of the main actor of structure formation lead naturally to think about the discrep-

ancies between theoretical predictions and observations as hints towards the fundamental

nature of DM.

At the above mentioned scales, the evolution of the perturbation can be described in

terms of some (post-) Newtonian approximation, thus avoiding the complications of a full

GR treatment. However, virialized objects have typical densities 200 times the background

one, with the obvious consequence that linear theory cannot work anymore. Moreover,

baryons cannot be considered as a pressureless fluid and the high level of complexity of

the hydrodynamics of galaxy formation needs to be accounted for. For these reasons the

largest source of information on the formation and evolution of structures at such small

scales come mostly from large N-body numerical simulations, even though semi-analytical

techniques, like spherical collapse, allow to grasp some relevant information about this

regime.

We can classify the ΛCDM issues into two categories. On one side there are the discrep-

ancies between observable quantities extracted from simulation and the ones effectively

observed. On the other there exists sets of observational evidences that may be considered

as hints for new physics in the DM sector.

The core-cusp problem. One of the most relevant quantities that can be extracted

from simulations and directly compared with observations is the dark matter halos

density profile. For a CDM model this turns out to be well reproduced by the

Navarro–Frenk–White (NFW) profile [105]

ρNFW (r) =
ρs

r/rs(1 + r/rs)2
, (3.5)

where the two parameters ρs are rs are a density and radius parameter respectively

and are obtained from best fit of the DM distribution. At small radii this profile goes

like r−1. However when compared with the profile extracted from observations this

appears to be too cuspy in its interior [106, 107] and in fact, a more suitable choice

for the observed DM distribution seems to be the empirical Burkert profile [108]

ρ(r) =
ρ0r

3
0

(r + r0)(r2 + r2
0)
, (3.6)

where r0 is the core radius and ρ0 the central density. This profile shows the same

behavior of NFW at large radii but produces a cored shape in the inner regions.

This difference is at the basis of the so called core-cusp problem [109,110].
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It has to be stressed that the NFW profile emerges from pure DM simulations, in

which baryons’ effects are completely ignored and that the evidence for one or the

other of the profiles seems to depend on the baryonic observable chosen [111]. We

will discuss this in more detail in the next section.

Missing satellites. The missing satellites problem [112–115] is related to the discrep-

ancy in the predicted number of satellites of the Milky Way (MW) from simulations

and the actual observed number. This was considered to be a serious issue for the

standard model of structure formation. However, with the increase of the sensitivity

of the observational instruments it has been possible to discover ultrafaint galax-

ies thus reducing the discrepancy. Moreover, only a limited area of the sky has

been covered by observations and suppression mechanisms may have inhibited star

formation, hence making many dark halos not possible to be seen.

Too big to fail problem. Recent simulations [116, 117] have produced MW sub-halos

that are too dense to host any of the luminous observed satellite galaxies. In fact,

dwarf-spheroidal galaxies have typical maximal circular velocities less than 24 km

s−1, but in the simulations many sub-halos with velocities larger than this limit are

generated, reaching up to 70 km s−1 [118–120]. The fact that we do not observe

any luminous galaxy whose halo shows such velocities, is in contrast with the well

known monotonic relation between luminosity and halo circular velocity (and hence

halo mass). Hence, a priori these halos are too big to fail in producing galaxies but

given that no galaxy with such properties is observed we need a new mechanism able

either to avoid the formation of such halos or to suppress star formation in them.

Angular momentum problem. In the standard picture of structure formation it is sup-

posed that the angular momentum of baryons is conserved during collapse. However,

hydrodynamical simulations have shown that this is not the case as in the final state

baryons have only ∼ 10% of the initial angular momentum. This discrepancy is

shown in figure 3.1, which clearly shows the offset between observed and simulated

Tully–Fisher relation. The loss is imputed to the fast cooling of baryons in sim-

ulations that makes them to collapse to the center too fast, hence losing angular

momentum. A possible solution to this problem was thought to be the injection of

energy through supernovae feedbacks. However, more recent analysis [121] showed

how this problem is mainly due to a too high concentration of DM haloes and it

is hence unlikely that baryons’ feedbacks can solve it, unless the effects of backre-

action have been underestimated dramatically. A reduction in the concentration of
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Figure 3.1: Simulated TFR compared with the results of the numerical simulations. Dots

correspond to the observational samples while error bars to the simulated ones [121] . The

offset indicates that the simulation generates a too high rotation velocity compared to the

observed one.
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CDM halo by a factor 3 or 5 may solve this issue and could be an indication of a

modification of the CDM paradigm at small, galactic scales.

Correlations between DM and Baryonic parameters. Recent years have witnessed

a boost in the number and quality of observations of galaxy and halos mass distri-

bution, especially in their inner part. A remarkable outcome of these observations

was the discovery of Universal properties of mass distribution. In particular, in [122]

it was observed how the luminous surface density Σbary
0 at the radius at which the

DM density is almost constant, is constant in all the observed galaxies regardless

of their luminosity as can be seen in figure 3.2. This is equivalent to say that the

gravitational acceleration of baryons at the radius of the DM core is the same for

all galaxies. The same relation was found for DM in [123] meaning that, despite

the differences between halos, DM central distribution keeps constant the product

between core radius and density. This intriguing results seems to tell that, even if

in general the mass-to-light ratio is highly varying with luminosity, it is constant at

the scale of the DM core. This can be interpreted as a correlation between dark and

luminous matter in galaxies.

A second evidence is that of a common mass scale for Milky Way satellites. In fact,

in [124] it was observed how all the velocities of galaxies in these satellites were

compatible with a common mass of 107M� within 300 pc. This may be the evidence

of a common scale for galaxy formation or a scale characteristic of DM.

The Baryonic Tully–Fisher relation (BTFR) [125] is an extension of the already

discussed Tully–Fisher relation to include faint galaxies for which the TFR seemed

to fail. However, taking into account also the gas contribution to the mass and not

only the luminous one, the problem is solved thus ensuring that the TFR holds over

a large range of magnitude making this relation an evidence of a universal property

of galaxies. This relation is somewhat surprising as it has a very small scatter, which

is a clear manifestation of a correlation between dark and luminous matter.

The main point of these observations is that, in order to be satisfied in the standard

scenario of ΛCDM, they seem to require a high level of fine tuning, given the very

different histories of merging and structure formation that each galaxy went through.

A second interpretation can be that of considering these universal properties as hints

of a change in the DM dynamics at galactic scales.
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Figure 3.2: Universality of the average surface density and gravitational acceleration of

baryons within the halo core radius as a function of galaxy luminosity [122]. From the plot

it is clear how the gravitational acceleration for baryons, gbary(r0), is basically constant

over 16 orders of magnitude in luminosity, spanning over a set of galaxies with very different

formation histories.



46 CHAPTER 3. BEYOND ΛCDM?

3.3 Proposed solution to the small scales issues of ΛCDM

Given the aforementioned issues, it is natural to question the CDM paradigm and its

applicability at small scales by proposing alternatives or by putting more efforts to have

better simulations (and a deeper understanding of their outcomes). In support of the

first proposal many fundamental physics models may be introduced which, in the attempt

to extend the SM, directly introduce new potential DM candidates in the cosmological

context. On the other side, the ΛCDM is working so well that it is tempting to impute

the present issues simply to a lack of precision in simulations. Actually, there is also a

third point of view. As in the case of CC, the need of a DM component may just be the

evidence of a modified theory of gravity, instead of a missing particle.

Baryons’ feedbacks. Following the dynamics at galactic scales needs not only high per-

forming computer simulations of DM structure formation but also a deep knowledge

of the galaxy formation process [126], including the potential relevant baryons’ feed-

backs, like supernovae explosion. For example the core-cusp problem may be due to

the non-inclusion of baryon’s physics in the simulations [127–129] or, as said, may

just be related to a bad choice of the visible tracer [111].

However, due to difficulties with including baryons physics into the simulations,

today there is no a general consensus on the actual effects of baryon’s feedback. In

particular there is no prescription on how to address simultaneously all the above

listed issues. In fact if, for example, in [130] it was shown how a proper treatment

of baryonic feedbacks is able to erase many of the unwanted MW sub-haloes and

in [131,132] a realistic MW-like galaxy was formed in the ΛCDM framework, in [133]

it was claimed that these effects are not efficient in forming late time spiral galaxies.

Warm and Interacting Dark Matter. CDM has no relevant free streaming scale with

the consequence that the collapse of matter keeps on going down to very small scales.

A DM particle with a larger self interaction or with a non-negligible dispersion

velocity would significantly suppress the growth of structure below the free streaming

scale. This kind of DM, dubbed Warm DM (WDM), received a lot of attention in

the last years as it seemed to be a good candidate for solving some of the issues the

CDM is facing in the description of structure formation at small scale [134–137]. In

fact, a thermal WDM of a mass of 1 keV has a free streaming length around the size

of a galaxy so that it may be able to produce a cored profile for the DM distribution.

However, the effectiveness of these models is quite debated and recent works [138,139]
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showed that the WDM has to be quite tepid, almost reducing to CDM and hence

not being able to address the core-cusp issue significantly.

In [140] it is instead discussed the case of interacting CDM. In particular it is dis-

cussed how a non-negligible interaction may resolve the aforementioned issues of

standard CDM paradigm.

Ultralight DM. Recently, the possibility that DM may be made of ultralight scalar

particle, with masses as small as 10−22 eV has been proposed. In this case the

quantum properties of the scalar field cannot be neglected and a quantum pressure

provides the required support to suppress the growth of structure below a certain

scale [141–144]. Notice that, despite the smallness of the mass, this is a CDM

candidate.

MOND and no DM matter models. A more radical point of view is represented by

those models that try to explain galactic (and cosmological) dynamics without the

need to introduce a new, yet unseen dark component, but rather via a modification

of gravity. The most well known of such model is MOND [145,146] which hinges on

an empirical modification of Newton’s law at galactic scales

∇
(
µ

(
|∇φ|
a0

)
∇φ
)

= 4πGρ , (3.7)

where µ(x) is an empirical function that reduces to 1 for large x while at small values

of the argument µ(x) = x. The constant a0 is a new fundamental scale that divides

the regime of applicability of GR from that of MOND.

Despite its phenomenological nature, this modification is able to properly reproduce

many of the observed features of galaxy dynamics [147] better than what is achieved

by CDM. In recent years some relativistic extensions of MOND have been proposed

[148–151] with fairly good results, even if some problems in reproducing large scales

data are still present [152]. Moreover DM is anyway needed in order to match

observations [153–155].

Another approach recently explored that involves no DM particle is presented in

[156–159]. In these models a direct coupling between the matter Lagrangian and

curvature is present

S =

∫
d4x [f1(R) + (1 + λf2(R)Lm)] , (3.8)

where f1 and f2 are generic functions of the Ricci scalar and λ is the coupling

strength. The model has been tested in many cosmological situations showing a
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good potential in reproducing some of the observations like the galaxy rotation

curves [160].

Reconciling MOND with DM. A recent proposal, aiming at reconciling the merits of

a MOND-like picture with the strengths of a CDM framework, has been suggested

in [6,161]. There, it was shown how it is possible to reproduce a MONDian behavior

at galactic scales in a standard CDM scenario by requiring DM to couple with

baryons in a suitable way. In other words, the MONDian behavior would emerge

as an effect of the specific interaction between DM and baryons. If this interaction

can be built so as to be active at special scales and times, then one might be able to

achieve the aforementioned marriage between competing models. In particular the

interaction is such that

Sm[ψ, gµν ] + SInt[ξ, ψ, gµν ] ∼ Sm[ψ, gµν + hµν ] . (3.9)

hµν is a rank two symmetric tensor constructed with the metric gµν and with the

scalar field χ and its derivatives.

This particular coupling would introduce a non-geodesic motion for matter at suit-

able scales and times and its origin can be envisaged in a geometric effect due to

dark matter. In fact, this class of models is a generalization of standard scalar-tensor

theories and indeed, for small hµν , it is possible to derive such interaction from a

non-minimal coupling of DM.

In the next chapters we will proceed along the latter point of view by extending the

couplings that DM can have with gravity. In particular, we will consider a CDM fluid

that gets non-minimally coupled to gravity at suitably late times and small scales and

investigate both theory and phenomenology of this extended model for DM.



Chapter 4

Non-minimally coupled dark

matter fluids

The picture emerging from the discussion of the previous chapter is that of a tension

between the successes of the cosmological model at large scales and a difficulty in properly

accounting for the observed properties of the DM distribution at galactic scales. In fact,

even if the latter may be relaxed taking into account baryons physics in simulations, the

evidence for correlations between dark and luminous matter suggests that this may not

be the only reason for the mismatches between the prediction of the ΛCDM model and

observations. In particular, the fact that models without DM, like MOND, are able to

provide better fits to the data at small scales may be a hint of real differences with respect

to the standard CDM paradigm. However, one cannot ignore the impressive successes

of the latter at large scales. For this reason the possibility to reconcile the two schemes

into a unitary picture is appealing. Moreover, the unknown nature of DM and the fact

that gravity is poorly tested from astrophysical scales onwards [162,163], seem to suggest

that natural extensions of the CDM paradigm may be in the direction of generalizing the

interaction between DM and gravity.

A further hint in this direction is provided by MOND itself. As discussed in the previ-

ous chapter, this model introduces a new fundamental constant, a0, with the dimensions

of an acceleration which enters in a modification of the Newton’s gravitational law and as

such breaking the equivalence of gravitational and inertial masses which is the Newtonian

version of the weak equivalence principle. A similar non-geodesic motion for baryons can

be achieved assuming that the metric gphys along which propagate baryons is different

from that defining the gravitational sector ggrav. If then we take DM to be responsible for

this difference by postulating gphys = gphys(ggrav, χ), where χ is the DM field, we may be

49
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able to mimic a MONDian behavior in the context of DM theories. This is indeed possible

and in [6] it was shown how to construct such a theory.

In the same spirit, we propose and investigate a phenomenological model in which a

generalized coupling between curvature terms and DM aims to address the small scale

ΛCDM issues. In particular, we will consider a model in which a DM fluid, at suitably

small scales and late times, gets non-minimally coupled to curvature terms. On quite

general grounds this proposal is expected to have two main distinctive features: one is

that the DM fluid is no longer perfect at the scales at which the non-minimal coupling

is relevant; the other is that the metric along which baryons move gets redefined in a

way that depends only on how DM and gravity are coupled. This leads to a modified

effective dynamics for the fluid and for the gravitational field even in the Newtonian limit,

as we shall see. While the first feature may address the problem of dark matter density in

halos by assigning to the DM fluid an effective pressure, the second one may provide an

explanation to the unexpected correlations between dark and luminous matter.

4.1 Non-minimally coupled dark matter fluid

We now proceed with the construction of such model. First we note that, being inter-

ested in astrophysical scales, we can describe the matter content of our theory in the fluid

limit, in which only macroscopic quantities are relevant as all the quantum properties are

negligible or averaged out at the scales of interest.1 Hence, we introduce SM particles,

basically baryons and photons, as non-interacting fluids, minimally coupled to the gravi-

tational metric. Then, the equation of motion for these components will be given by the

conservation of their individual SET, as in standard GR.

The original ingredient of our model comes from the new couplings between DM and

curvature. Consider a system in which DM is described as a perfect fluid with a barotropic

equation of state which couples non minimally to gravity. The easiest way to do this is to

couple a scalar function of the DM variables to the Ricci scalar, adding to the Lagrangian a

term like f(R)Ldm, where f(R) is a generic function of the Ricci scalar and Ldm would be

the DM Lagrangian (for a thorough discussion of these models see, for instance, [157–159]).

However this particular scalar coupling would not affect the propagation of light rays,

given that the Maxwell action is conformally invariant. Consequently it would not be

enough for enhancing gravitational lensing as it seems necessary in order to account for

the observed DM phenomenology [164–166].

1An exception to this statement could be realized in the presence of torsion or in Bose–Einstein Con-

densates (BEC), as we will discuss later.
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Moreover, since we require the deviations from ΛCDM to be effective only at galactic

scales (where densities are higher than the cosmological ones), the coupling has to be active

only above a certain density threshold, at late times. This would fix a minimum scale at

which deviations from ΛCDM are expected to be present. This is a subtle issue since we

do not want to spoil the description of equally high density but spatially homogeneous

early universe cosmology. We will come back to this point at the end of this chapter.

It is rather clear that, working with perfect fluids, there are not many possibilities to

couple DM to gravity, given that we have at our disposal only scalars and the four vector

field encoding the four velocity at each spacetime point. If we add the constraint that we

want to keep the gravitational field equations of second order in the metric tensor, so that

we do not introduce additional gravitational degrees of freedom, only the following five

terms can be constructed

Rµνρσu
µuνuρuσ , Rµνρσg

µνgρσ , Rµνρσg
µνuρuσ , Rµνρσg

µρgνσ , Rµνρσg
µσuρuν . (4.1)

The first three are zero because the antisymmetric indices of the Riemann tensor are

contracted with a symmetric combination of the four velocity and the metric. Therefore,

we end up with only the last two terms, namely

Rψ(ρ) and Rµνξ(ρ)uµuν . (4.2)

Furthermore, if we use perfect barotropic fluid, the residual information about the coupling

can be parametrized completely with two arbitrary functions of the mass density (see

again [167] for another example of density dependent couplings).

Before moving on, it is worth to recall that we are indicating as ρ the mass density,

that uµu
µ = −1 and that for the rest we are following the treatment presented in [168].

4.1.1 Action and equations of motion

In the previous section we have discussed a set of requirements that have led us to propose

the terms coupling curvature to fluid quantities. In this section we formalize the previous

analysis into an action and derive the equation of motion from it. For the sake of sim-

plicity and to enlighten the effects of the modified DM couplings, we will neglect other

cosmological fluids. Their inclusion is in any case trivial and can be done in a second

moment.

The action for our model is given by the standard GR one, plus the two terms intro-

duced in the previous section, namely

S =
c3

16πGN

∫
d4x
√
−gΨ(ρ)R+

αRc
3

16πGN

∫
d4x
√
−g Rµνξ(ρ)uµuν + SDM[g, ρ]. (4.3)
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The DM fluid action is that for a perfect fluid [168]

SDM = −2c

∫
d4x

[√
−g ρ(n, s) + Jµ(φ,µ + sθ,µ + βAα

A
,µ)
]
, (4.4)

where n is the particle number density, s is the entropy per particle and the second term

implements the constraints for the flow of perfect fluid. In particular, φ and θ serve as

Lagrangian multipliers for the particle number conservation, while βA is needed to restrict

the fluid four-velocity to to be along the flow lines. The density vector Jµ is related to

the fluid variables as

Jµ = nuµ
√
−g . (4.5)

The function Ψ(ρ) = 1 + αSψ(ρ) controls the coupling of the dark fluid to the Ricci

scalar, while the function ξ(ρ) mediates the coupling to the Ricci tensor. Both these

functions are dimensionless, and hence they must involve, for dimensional reasons, at

least another density parameter ρ∗ which sets the characteristic, phenomenological, scale

of the model. Finally, the dimensionless constants αS, αR control the strength of the non-

minimal couplings. In fact, they could be reabsorbed in the functions ψ and ξ, without

loss of generality. However, it is useful to keep them explicit since they can be used as

dimensionless parameters for an expansion whenever the non-minimal coupling is expected

to be a subdominant effect.

The equations obtained varying the action with respect to the metric are

Gµν =
8πGeff(ρ)

c2

[
Tµνstandard + αSρ∗`

2
(
−2ψ̃gµν +∇µ∇νψ̃

)
+

−αR

2
ρ∗`

2
(
−2t̃µν +∇ρ∇µt̃ρν +∇ρ∇ν t̃ρµ − gµν∇α∇β t̃αβ

)
+

+
ρ∗`

2

2

(
αSψ̃

′ρR− αR

(
ξ̃′ρ− ξ̃

)
Rαβu

αuβ
)
Hµν

]
, (4.6)

where the prime indicates derivative with respect to the DM density and where we have

introduced the notation Hµν = gµν + uµuν for the projector on the subspace orthogonal

to uµ and the tensor t̃αβ = ξ̃(ρ)uαuβ to slightly simplify the expressions. Moreover we

have redefined the functions ψ and ξ as

ψ̃ =
c2

8πGNρ∗`2
ψ and ξ̃ =

c2

8πGNρ∗`2
ξ (4.7)

so to make more explicit the structure of the terms. We have thus introduced two new

constants, ρ∗ and `, that represents respectively the characteristic density and size of

the system under consideration. Notice that both ψ and ψ̃ are dimensionless. This
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parametrization will become clearer when we will discuss the Newtonian limit in the next

section.

The SET for the standard dark matter fluid is instead

Tµνstandard = [ρ+ p(ρ)]uµuν + p(ρ)gµν . (4.8)

The first thing to notice in the modified Einstein equations (4.6) is that the non-

minimal coupling affects Newton’s constant GN that now reads

Geff =
GN

1 + αSψ(ρ)
, (4.9)

which implies that now the value of the gravitational constant depends on the local density

of DM. This is a universal effect in the sense that if we were to include other (minimally

coupled) fluids they would all feel the same modified gravitational strength. Notice that

only the conformal coupling contributes to this modification, while the one associated to

the coupling with the Ricci tensor is not present. Then, as one can easily see, the Einstein

equations do not contains higher derivatives of the metric tensor. However, in addition

to the SET for a fluid made of dust, there are a certain number of terms that concur

to define an effective SET, depending on higher derivatives of the fluid variables and on

the curvature. This is indeed what should be expected, given that the basic idea of non-

minimal coupling is that the field, or fluid, is able to probe geometry on a given length

scale, not only point-wise as in the standard case.

The equations of motion for the fluid can be obtained either varying the action with

respect to the various fluid fields, or by using the Bianchi identities on the modified

Einstein equations. We will not discuss them in full generality here given that for our

purpose we can limit ourselves to their Newtonian limit, which is the relevant regime to

discuss galactic dynamics.

Indeed, from the contracted Bianchi identities for the system we have that

∇µT eff
µν = 0 , (4.10)

where T eff
µν is the effective SET, which contains all the terms appearing on the right hand

side of equation (4.6). In order to compute the covariant derivative of the SET notice that

∇µHµν = ϑuν + uµ∇µuν , (4.11)

where

ϑ = ∇µuµ , (4.12)
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is not yet defined as the expansion of the bundle of geodesics (but rather as the expansion

of the bundle of curves whose tangent vector field is uµ).

Then using the commutation rules for the covariant derivatives:

∇α∇β∇νf = ∇α∇ν∇βf = ∇ν∇α∇βf −Rρβαν∇ρf , (4.13)

and

∇ρ∇νtρµ = ∇ν∇ρtρµ +Rρσρνt
σµ +Rµσρνt

σρ , (4.14)

we have that the complete fluid equations reduce to the following expression:

∇µT standard
µν = −αS`

2ρ∗

(
R

2
∇νψ̃ −

1

2
Hµν∇µ(Rψ̃′ρ)− Rψ̃′ρ

2
ϑuν −Hνµ

Rψ̃′ρ

2
uρ∇ρuµ

)
+

− αR`
2ρ∗

[
−gαβRρναµ∇β t̃µρ +∇µ

(
Rρσρν t̃

σµ +Rµσρν t̃
σρ
)

+Rσν∇µt̃µσ +Hµν∇µW +Wϑuν +HµνWuρ∇ρuµ
]
. (4.15)

Notice that this expression contains the full Riemann tensor, and in particular the

Weyl tensor. Therefore, this kind of non-minimally coupled matter can have nontrivial

behavior even in Ricci-flat spacetimes (as, for instance, Schwarzschild spacetime).

It is probably worth to stress that even if in these equations higher derivatives of

curvature terms appear, these can be traded for fluid derivatives for which higher order

derivatives can find a natural interpretation in terms of effective viscosities. Hence, the

theory is indeed second order in the metric.

4.1.2 Newtonian limit

To properly discuss the Newtonian limit, it is important to work out the weak field limit

of equation (4.6). Indeed, it is important to understand how to establish a comparison

between terms that have different physical dimensions. As we have discussed, ψ, ξ are

dimensionless, as αS, αR and we have taken the typical size of the system under consid-

eration to be of order `. This enables us to compare the different terms in a consistent

way. The weak field limit is achieved whenever the curvature radius is much larger than

the size of the system, i.e.,

|Gµν | � `−2. (4.16)

For consistency, then, ξ, ψ must be small quantities, as well as the properly normalized

matter density. In short, the weak field limit is achieved when the following condition

holds on the SET:

ψ ' ξ ' 8πGN
c2

ρ`2 � 1 . (4.17)
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With this treatment, we can consistently extract the weak field limit of the equations

Eq. (4.6), taking systematically into account the relative size of the various terms. If we

define

gµν = ηµν + γµν ; γ̄µν = γµν −
1

2
ηµνγ; γ = ηµνγµν , (4.18)

the modified Einstein equations, in the weak field limit and in the transverse gauge, read

− 1

2
2γ̄µν =

8πGN
c2

{
−ρ∗

[
αS

(
ηµν2ψ̃ − ∂µ∂νψ̃

)
− αR

2
Ωµν

]
+ T standard

µν

}
, (4.19)

where

Ωµν = −2t̃µν +∇ρ∇ν t̃ρµ +∇ρ∇µt̃ρν − gµν∇α∇β t̃αβ . (4.20)

with t̃µν = ξ̃(ρ)uµuν . In the weak field limit we have that uµ = δ0
µ, and hence

Ωµν = δ0
µδ

0
ν2ξ̃(ρ)− δ0

ν∂0∂µξ̃(ρ)− δ0
µ∂0∂ν ξ̃(ρ) + ηµν∂0∂0ξ̃(ρ) . (4.21)

As one immediately sees, the effect of the non-minimal coupling is still present, even

in the weak field limit, and the fluid is not behaving as a perfect one in Minkowski space-

time: the non-minimal coupling has generated a SET which contains additional terms,

constructed out of the derivatives of the fluid variables. Notice that in this limit the

effective gravitational constant has turned back to its original constant value.

Putting everything together, and considering the static, nonrelativistic limit (i.e., the

c2 →∞ limit), we get the modified Poisson equation

∇2ΦN = 4πGN

(
ρ− αR

2
ρ∗∇2ξ̃(ρ) + αSρ∗∇2ψ̃(ρ)

)
. (4.22)

We see that, in this modified scenario, the Newtonian potential is sourced not only by the

mass density ρ, but also a certain number of derivative terms. Moreover, contrarily to

what happens in GR, the Newtonian potential ΦN is not the only potential concurring in

defining the gravitational dynamics. In fact now we also have that the spatial gradients

of the metric are present:

∇2γij = −8πGN
c2

{[
ρ+ ρ∗

(
2αS∇2ψ̃(ρ)− αR

2
∇2ξ̃(ρ)

)]
δij − 2ρ∗αS∂i∂jψ̃(ρ)

}
. (4.23)

The gravitational potential associated to the spatial part of the Einstein equations is

sourced by two terms: an isotropic contribution and an anisotropic one. Notice that

while in the first case both NMCs contributes, in the second only the scalar (conformal)

coupling matters. This is a novelty introduced by the NMC as in GR this potential has

to satisfy the equation 2γ̄ij = 0 whose only well behaved solution at infinity is γ̄ij = 0

(e.g., see [169]).
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Turning now the attention to the equations of motion for the DM fluid (4.15) we have

that in the weak field limit, these will reduce to:

∇µT standard
µν = 0 . (4.24)

However, in light of the fact that the definition of the dark matter mass density is

given in terms of the density that enters the right hand side of the equation of motion

for the gravitational field (either the Poisson equation or the general-relativistic version),

one might define an effective mass density and effective stresses, that do not coincide with

those that are defined out of the fluid action when the non-minimal coupling is absent. In

particular notice that, from an observational point of view, we can reconstruct the total

gravitational potential looking at baryons’ motion and hence, what we actually measure

is the right hand side of the Einstein equation. In terms of these effective quantities the

equations of motion for the DM fluid will get modified also in the non relativistic limit.

In fact, in the case of pressureless DM

ρeff = T eff
µν u

µuν = ρ+ αSρ∗∇2ψ̃ − αR

2
ρ∗∇2ξ , (4.25)

3peff = T eff
µνH

µν = −2αSρ∗∇2ψ̃ . (4.26)

One should then re-express ρ, p in terms of ρeff , peff , with the consequence that the system

in the new variables will show a standard Poisson equation but modified fluid equations.

Finally, notice from (4.26) the role of the NMC: even if we take a pressureless dust as

DM candidate, it will end up to have an effective pressure related to the gradients of the

DM distribution.

4.2 Phenomenological constraints

Now that we have defined our model and analyzed its Newtonian limit in which it can

address some of the CDM issues, we are in the condition to discuss more accurately its

predictions in different regimes and consequently use current observations to bound it

(in particular by constraining the behavior of the functions ψ(ρ), ξ(ρ)). There are two

obvious regimes at which the model has to offer new phenomenology: galactic dynamics

and cosmology. However, to be viable, any modified gravity model (in a broad sense) must

be compatible with solar system constraints on gravitational phenomena. We shall hence

start our discussion from here.



4.2. PHENOMENOLOGICAL CONSTRAINTS 57

Solar System scales: Of course, our model must reduce to general relativity at these

scales. In particular, if we impose that ψ(0) = ξ(0) = 0, we are sure that the dynamics

of a purely baryonic system will be described by general relativity without corrections.

Given that, at the level of solar system, it is safe to say that the density of baryonic matter

is much larger that the density of dark matter, this condition ensures that the agreement

with observational constraints will be achieved, provided that αS, αR are not too large.

Galactic dynamics: We have shown that the Poisson equation gets modified by a term

which depends on gradients of the density. This means that the more inhomogeneous a

distribution of DM is, the stronger is the effect. As a consequence, structures may grow

faster or slower than expected, according to the structure of the additional terms, and,

ultimately, to the signs of the coupling constants αS, αR.

As we have mentioned, the NMC coupling also generates a pressure term, which is

structured in two components. On the one hand, there is an isotropic pressure that again

is related to gradients of the density. This is a key feature as pressure may stabilize

halo’s cores preventing the formation of cusps, given that its magnitude increases with the

inhomogeneity.

On the other hand, there is an anisotropic pressure term which represents a distin-

guishing feature of our model. In standard CDM particles forming halos are collisionless

and hence they have no global collective motion. This anisotropic pressure may generate

a net overall rotation of DM halos which modifies the caustic structure of the infalling

dark matter particles with respect to the irrotational flow. There is convincing evidence

that such overall rotation can lead to a caustic structure closer to the observed one [59].

Given that the puzzles related to mass discrepancies are harder to address at the

galactic scale, one needs the NMC terms to be larger in these regimes and consequently

to SET ρ∗ ≈ ρgal; basically assuming that the functions ψ, ξ will attain their maxima in

this density regime.

With this model we may be able to address some of the problems that ΛCDM is

suffering, by reproducing, at suitable scales, a MOND-like behavior. However, we do not

have yet established a one to one correspondence between our model and MOND in its

traditional incarnation. Actually, this correspondence could be achieved only if baryons

would end up tracking DM. Indeed, if we interpret the extra contribution emerging from

the modified dynamics of MOND as DM, it would be nonetheless locked to the baryon

density. To settle this point, the detailed analysis of the gravitational dynamics of a galaxy,

within this model, is required. While the form of the Poisson equation gives the feeling

that at least a slight tracking will be present, it is worth stressing that this model will
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generically show a richer phenomenology than MOND and could at most mimic it in some

regimes.

We now show the connection between our model and the one proposed in [6]. Consider

the action (4.3) in which we take ψ = ξ and αS = αR/2. Then we have

S =
c3

16πGN

∫
d4x
√
−gR+

αRc
3

16πGN

∫
d4x
√
−gξ(ρ)Gµνu

µuν + SDM [g, ρ] , (4.27)

which is the same NMC coupling found in [6], between the Einstein tensor and the

field/fluid variables. If we then define

gµν = ḡµν + αRξ(ρ)uµuν (4.28)

for small deviations from GR, i.e.,ḡµν − gµν � 1, we can substitute this expression into

the above action to find

S = SEH [ḡ] + SDM [ḡµν + αRξ(ρ)uµuν , ρ] +O(α2
R) (4.29)

which shows in a more explicit way the connection between NMC and geometric effects

on the propagation of matter fields.

Moreover, with this choice of the parameters and functions we see that the contribu-

tions to the Poisson equations (4.22) coming from NMC terms, exactly cancels. This is an

interesting coincidence as it seems to indicate that at scales where gravity is weak and for

non relativistic fluids this particular case of the model reduces exactly to GR. This can be

seen as a particular screening that prevents modifications of gravity to be relevant at solar

system scales where the tightest bound on gravitational interactions severely constrain

alternatives to GR.

Cosmology: As pointed out earlier, a key feature of this model is the presence of spatial

gradients of the density in the non-relativistic limit. However, in the full relativistic theory,

not only spatial derivatives, but also time derivatives are relevant, and the additional

terms might be active even in spatially homogeneous cases. The NMC may affect the

cosmological evolution in a dramatic way that might lead to a sharp contrast with the

observations, whenever the time derivatives become relevant, i.e., at sufficiently early

times in cosmology.

Consider the flat FLRW metric:

ds2 = e2n(t)dt2 + e2a(t)dx2. (4.30)
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We can compute the Lagrangian for our model inserting the metric defined by the above

line element in the action 4.3. This gives the following effective Lagrangian density (where

a boundary term has been discarded):

Lgrav =
e−n+3a

16πG

{
−6
[
ȧ2 + (αSψ

′ + αRξ
′)ȧρ̇

]
− 6αSψȧ

2 − 3αRξȧ
2
}
, (4.31)

to which the fluid Lagrangian density has to be added.

We now want to recover, at large scales and at early times, the ΛCDM model. Given

that on large scales we can safely use spatially homogeneous configurations, we need only

to take care of temporal gradients. To be sure that these are not effective in changing

much the dynamics away from ΛCDM, we need to ask that the non-minimal coupling

terms disappear for a sufficiently dense or hot fluid.

This requirement suggests that our functions ψ, ξ must be strongly peaked around ρ∗.

Concretely, this means that as the density reaches the value ρ∗, then we get modified

cosmological evolution, until ρ drops well below ρ∗. If we take today cosmological DM

density to be of the order of .24 × 10−29g/cm3 and the reference density to be ρ∗ ≈
10−21g/cm3 – the typical value for dwarf spheroidal galaxies – we get that

1 + z∗ =
( ρ∗

ρdm0

)1/3
∼ 700 . (4.32)

This seems to indicate that our model may strongly affect the background evolution in

a small redshift window in the matter dominated era, something for which there is no

evidence. Nonetheless, it is not obvious that these modifications of the early universe

dynamics could not be made compatible with current observations. We just notice here

that the latter are normally able to cast strong constraints, for example via the CMB or

BBN.

The above discussion holds only if the NMC is taken as fundamental so that its action

is present all along the whole history of the universe. We have no reason to believe that

this is true and we shall argue below reasons to expect the contrary.

4.3 Origin of the non-minimal coupling

Up to now we have not given any reason why only dark matter should couple non minimally

to gravity. Furthermore, we have seen that a parametrization of the functions ξ, ψ with

only densities might lead to discrepancies from the expected behavior starting at relatively

large redshifts. Therefore, to address this tension we need to understand more of the
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possible mechanisms that can lead to the non-minimal coupling as a phenomenologically

more accurate description of the dark matter fluid.

The fact that only DM couples to gravity in a non trivial way may be seen as a

violation of the weak equivalence principle (WEP). However, here we are dealing with

fluids, not elementary particles. Hence WEP is safe as long as single particles have the

same coupling with gravity, while the WEP can be nonetheless violated at the level of the

collective behavior of the fluid.

There are two main mechanisms that may produce a non-minimal coupling: either

it appears through an averaging procedure that brings from particles to fluids or it can

emerge from some collective behavior of the DM particles.

In the first case there is a scale, the averaging scale which depends on the number

density of the DM particles. If these are heavy, the size of the averaging scale may be

large enough to be comparable with the curvature radius of the galaxy and hence generate

a non-minimal coupling, given that the minimal cell needed to define a fluid element is

able to probe geometry in a nonlocal way, becoming explicitly sensitive to curvature. In

this case, however, the reasoning applies to DM as well as to baryons, for which the non-

minimal coupling does not seem so well motivated (see, however [158–160] for a proposal

to explain dark matter as an effect of non-minimally coupled baryons).

The second picture is related to the possibility for DM particles to develop a macro-

scopic coherence length. A recent investigation in this sense is represented by BEC

[141,143].2 The condensate possesses a characteristic coherence length, the healing length,

that controls the deviation of the fluid dynamics of the condensate from the one of an or-

dinary perfect fluid. The BEC option seems to be rather intriguing for our model, given

that it would be able to reconcile the puzzle between the large density MONDian regime

of galaxies and of ΛCDM in the early universe. Notice that, while BEC is a macroscopic

quantum configuration of matter, it admits a rather standard hydrodynamical description,

given by the Gross–Pitaevski equation for the classical condensate wave function.

The answer to the puzzle would be that the functions ψ, ξ, besides the density, depend

on the temperature of the fluid itself: if the temperature of the fluid is smaller than the

critical temperature, condensation sets in, and with it the non-minimal coupling (provided

that the coherence length is large enough). On the contrary, if the fluid is too hot, the

condensation is impossible, and it behaves like an ordinary one. Noticeably, in trapped

BECs, the critical temperature increases with the depth of the potential well in which they

2See also [142] for a slightly different approach to the solution of the core-cusp problem, but also [144]

for a counterexample to it.
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are confined. Similarly, clumping of dark matter halos at the galactic scales might raise

the critical temperature above the temperature of the DM fluid, triggering condensation.

On the contrary, large density but too high temperatures, as in the high redshift universe,

might make condensation impossible.

In this sense, it is intriguing the idea that, due to the formation of deep enough

gravitational potential wells, a dark matter condensation can be triggered at suitable

scales and times and that this phenomenon might be indeed considered as a candidate for

the physical origin of the here generalized non-minimal coupling. While this is an exciting

perspective worth exploring, we feel that some caution should be used, especially when

applying our laboratory based intuition of BEC features to cosmology.

First of all, for this mechanism to take place and be effective in cosmology, a tight

balance between the microscopic properties of the dark matter bosons and the various

macroscopic parameters observed must be realized (e.g., the required size of the healing

length, needed to solve the cusp problem, is of the order of some parsecs).

Secondly, there is a big qualitative difference between the fluid dynamics of a standard

BEC and the fluid dynamics of the NMC fluid that we have explored in this chapter. In

fact, the pressure of the BEC gets corrected by the so-called quantum potential,

pBEC = phydro(ρ) + VQ; VQ = − ~2

2m

∇2ρ1/2

ρ1/2
. (4.33)

This gives rise to a dependence of the pressure of the fluid on the gradients of the density

closely resembling what found in the Newtonian limit of our model. However, it is easy

to see that no anisotropic stresses are present in this case while the NMC seems to lead

generically to the appearance of off-diagonal terms in the SET. This issue probably requires

a more accurate analysis possibly by considering more general theoretical settings for the

condensation with respect to the standard one based on scalar fields.

In this direction, we are currently generalizing the BEC theory to a full GR regime,

i.e., we consider a relativistic BEC in a curved spacetime, including a NMC as well [170].

Our preliminary investigation confirms the nature of the corrections to the Poisson equa-

tion (4.22), even though we found that the BEC fluid representation and the actual fluid

variables are related in a subtle way, thus leading to potential confusion when comparing

normal to condensed fluids. Moreover, one can show that anisotropic stresses in the BEC

are indeed present as a consequence of the quantum potential.
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4.4 Summary

In this chapter we have laid down a new framework for DM fluid dynamics. In particular,

we have shown how a NMC for a DM fluid can provide the latter with an effective pressure

which can be relevant in solving the small scales issues of the CDM paradigm providing,

for example, a characteristic scale for the collapse. We have also isolated some peculiar

effects related to this model, like the presence of anisotropic stresses or the fact that the

source of the gravitational potential depends on the way DM is distributed. We have also

envisaged a possible candidate which might lead to such phenomenology: a scalar field

which has undergone a phase transition. This seems to be a good choice as it implies a two

phase dynamics. Before the transition the fluid behaves as standard CDM, albeit being

slightly self-interacting as needed in order to induce the phase transition for suitably deep

gravitational wells and DM densities. Such a regime would be well suited for reproducing

the observed phenomenology of CMB and early universe. After the transition the fluid

develops a macroscopic coherence length which is assumed to be the responsible for the

onset of the NMC. In fact, we argued that if a fluid possesses a macroscopic characteristic

length scale then it would be able to probe gravity in a non-local way, thus developing

NMC of the sort discussed here.

Of course, further investigations are needed. On one side, we need to focus on ex-

tracting more detailed predictions from the model, for example by considering the issue of

structure formation, e.g., investigating linear perturbations or the effects of the NMC on

galaxy rotation curves. On the other side, it is worth exploring the origin of the extended

non-minimal coupling of dark matter both for its connection with ideas about the nature

of dark matter (BEC) as well as for its implications with regard the particle physics nature

of this evasive cosmological component.

In the next chapter we will stick to this program in two ways. First we will further

investigate the formal properties of this fluid scalar-tensor theory by constructing its Ein-

stein frame version and showing how it is related to the Jordan one by a generalization

of the conformal metric transformation; secondly we will study the effects of the NMC on

background cosmology and linear perturbations.



Chapter 5

Non-minimally coupled dark

matter:

Cosmology in the Einstein frame

In the previous chapter we addressed the small scale issues of the CDM paradigm through

a generalization of the interactions between DM and gravity. This is implemented by

considering a DM fluid that gets non-minimally coupled to curvature terms. We report

for convenience the action

S = κ2

∫
d4x
√
−ḡ
[
(1 + αSψ(ρDM)) R̄+ αRξ(ρDM)R̄µνu

µuν
]

+ SDM[ḡ, ρDM] + SSM[ḡ, ρSM] ,

(5.1)

where κ2 = c3

16πGN
and SSM refers to the action for standard model fluids. In the weak

field limit, this model is able to provide several new welcome features for the gravita-

tional dynamics of the DM fluid, for example a modified Poisson equation (4.22). The

phenomenological idea that brought to the construction of the aforementioned model is

that DM may develop, under suitable conditions, geometrical properties, thus making this

matter component to directly enter the definition of the metric along which matter fields

move (4.28). This is achieved assuming that DM undergoes a phase transition at suitably

late times and small scales, thus developing a coherence length that forces the DM fluid

to couple to the curvature.

Here we will further investigate this model and in particular its cosmological conse-

quences on the background and linear perturbation evolution. To do so we exploit the

invariance of Scalar-Tensor Theories under conformal transformation of the metric to

map the Jordan frame action (5.1) into the equivalent representation of the theory pro-

63
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vided by the Einstein frame, where the gravitational sector is described by the standard

Einstein–Hilbert action and the NMC is translated into couplings between particles. This

is standard in the context of Scalar-Tensor Theories of gravity [171] and, being our model

an extension of these [6], a similar procedure is as well viable under certain approxima-

tions. When in the Jordan frame the NMC (5.1) is taken to be with the Einstein tensor,

i.e., αS = αR/2 ≡ ε and ξ = ψ, the change of frame can be achieved with the following

metric transformation

ḡµν = gµν + hµν , (5.2)

where hµν = ψ(ρDM)uµuν , being ψ a generic function of the DM density and uµ the DM

four velocity; this is a particular case of the most general relation between metrics that

respect both causality and the WEP and is called disformal transformation [100]. We

stress that here hµν is a function of DM density itself and hence the metric ḡ now depends

on the DM field as well as on the gravitational metric g. If we re-express action (5.1) in

terms of the metric gµν and then expand in powers of hµν up to order O(h2
µν) we obtain

the following action

S = SHE[g] + SDM[g, ρDM] + SSM[g, ρSM] + Sint[g, ρSM, ρDM] , (5.3)

where SHE[g] is the standard Einstein–Hilbert gravitational action, SDM[g, ρDM] and SSM[g, ρSM]

are the DM and standard model actions in the metric g, while Sint[g, ρDM, ρSM] is

Sint = − ε
2

∫
d4x
√
−g (TµνDM + TµνSM)hµν(g, ρDM) , (5.4)

and represents a new interaction term which in general involves the metric, DM and

standard model particles. As usual the stress energy tensor Tµν for the i -th component is

given by

T iµν = − 2√
−g

δSi
δgµν

. (5.5)

In this new frame the effects of the NMC have been transferred into a coupling term for the

stress energy tensors of DM and standard model fluids and hµν which, as stressed before,

is itself a function of the metric as well as of DM fluid variables. This translates directly

into a coupling between DM and standard model fluids and a self coupling for DM. Notice

that those are not to be intended in the particle physics sense but they rather emerge

from a geometrical coupling between DM and gravity. A manifestation of the geometric

origin of the interaction is the universality of the coupling that in fact affects all matter

species in the same way. This is indeed a relevant point as one does not have the freedom

to suppress/enhance the strength of the interaction for a particular matter species leaving

unchanged the others, as this would result in a violation of the WEP.
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We further stress here that the action (5.3) is obtained from (4.3) through an expansion

and hence the two actions are equivalent up to order O(h2). In fact, consider the action

S = SHE[g] + SDM[g, ρDM] + SSM[g, ρSM]+

+

∫
d4x
√
−gGµνh(1)

µν (g, ρDM)− 1

2

∫
d4x
√
−gTµνM h(2)

µν (g, ρDM) , (5.6)

where the subscript M refers to the total matter SET and where h
(i)
µν(g, ρDM ) are generic

functions of the metric and DM variables. Now consider the metric transformation

gµν = ḡµν + h(3)
µν (g, ρDM) . (5.7)

If we take h
(i)
µν(g, ρDM) to be small so that a perturbative approach is well defined then we

can express the action in terms of the transformed metric and expand at linear order. We

get:

S = SHE[g] + SDM[g, ρDM] + SSM[g, ρSM]+

+

∫
d4x
√
−gGµν h̄(1)

µν (g, ρDM)− 1

2

∫
d4x
√
−gTµνM h̄(2)

µν (g, ρDM) , (5.8)

where

h̄(1)
µν (g, ρDM) = h(1)

µν (g, ρDM)− h(3)
µν (g, ρDM) , (5.9)

h̄(2)
µν (g, ρDM) = h(2)

µν (g, ρDM)− h(3)
µν (g, ρDM) . (5.10)

This shows how, at linear level, the action (5.6) is formally invariant under the metric

transformation proposed in the same way as Scalar-Tensor Theories are. This means that

we are free to choose the shape of the h(3) metric function such that the action has a

NMC but no SET coupling (Jordan frame) or the vice versa (Einstein frame), being the

two choices just different representations of the same theory. In chapter 6 we will discuss

in depth the issue of the equivalence between frames in the context of single scalar-field

theories, here we only comment that when dealing with fluids it is not obvious that the

equivalence holds beyond the perturbative level we are using here. In any case, this is

not crucial for the forthcoming analysis because we could have started directly from the

action (5.3), considering the particular form of couplings as a phenomenological ansatz.

5.1 Dark matter with an effective pressure

Our model has been designed to modify the standard dynamics at late times. Hence, as a

first investigation, we can neglect the contribution coming from baryons and photons as
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they are subdominant components during matter domination. Moreover we are interested

in the growth of DM perturbations and hence we can consider the effects of the NMC only

on this species. Of course, if we were to investigate the effects of the NMC on the CMB

spectrum, we should have retained also photons and it is clear that a coupling between

DM and baryons may have major consequences on the dynamics at galactic scales, which

are worth investigating.

The action (5.3) is defined in terms of fluid variables, because, as we pointed out, these

are the most appropriate quantities to describe cosmological matter fields. However, we

found that the field language is more tractable when dealing with coupled matter fields in

the Einstein frame. Hence we switch to field formalism using standard conventions [172]:

ρ = ρ(X,ϕ) , p = p(X,ϕ) , uµ = ∇µϕ/
√

2X , (5.11)

where now ϕ is the DM scalar field and X = −gµν∇µϕ∇νϕ/2 is its kinetic part. The field

variables are not fundamental fields, but rather stand for a different representation of the

fluid. In this sense we must ensure that in absence of a coupling we recover the equations

for the standard DM fluid. In general a scalar field will not behave as a pressureless dust;

actually, it does not reproduce any fluid with a time independent equation of state. In

fact, the pressure for a scalar field is defined in terms of its potential V (ϕ) and kinetic

energy X(ϕ, ∂ϕ) as p = X − V 2(ϕ) which means

w ≡ p

ρ
=
X − V 2(ϕ)

X + V 2(ϕ)
, (5.12)

where the potential appears to the second power for later convenience. In order for this

to be constant we need to specify a relation between the potential and the kinetic term

which is time independent, otherwise we can at most find asymptotic limits, e.g., a CC-like

equation of state can be mimicked if the scalar field kinetic energy is subdominant in some

regime.

In order to enforce a constant equation of state, actually the one for pressureless dust,

we introduce a Lagrangian multiplier in the Lagrangian for the DM field

L = λ(xµ)

(
X − 1

2
V 2(ϕ)

)
, (5.13)

where V (ϕ) is a generic potential so that when we take the variation of the action with

respect to λ we get
δSDM
δλ

= 0⇒ X − 1

2
V 2(ϕ) = 0 , (5.14)

which exactly sets the pressure to zero [173,174].
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We have already discussed how in our model, in order for the interaction to be active,

the temperature of the cosmological bath (i.e., time or redshift) must be below a certain

threshold. This is implemented through a time dependence of the coupling ε appearing

in the interaction Lagrangian (5.4). However, even after the critical temperature has

been reached, the density may be too low for the interaction to be efficient. Hence, one

needs high densities in order to make the interaction relevant. In order to implement

phenomenologically the desired scale and time dependences of the coupling, we fix the

parametrization of the coupling function in the following way:

hµν(X,ϕ) =
F (X,ϕ)

ρ∗
∇µϕ∇νϕ . (5.15)

The function F gives the scale dependence of the interaction by suppressing it until the

density is large enough to overcome a given threshold fixed by ρ∗.

The action (5.3) when only DM is present, can then be rewritten in terms of the field

variables as:

S = SHE[g] + SDM[g, ϕ, λ] + ε

∫
d4x
√
−gLNMC(X,ϕ) , (5.16)

where now SDM depends on {ϕ, λ} rather than on ρDM and

LNMC = −F (X,ϕ)

ρ∗
X

(
X +

1

2
V 2(ϕ)

)
, (5.17)

is the interaction term generated by the NMC. As said, the coupling ε is a switch that is

chosen to be zero at t < tc, tc being the time when the coupling is activated; for t > tc, ε

becomes different from zero, reaching a constant value of about ε < 1, as required by the

expansion of hµν to order (ε2). In other words, ε becoming different from zero indicates the

onset of the NMC epoch. At the same time, for the purpose of the present analysis, which

is limited to order O(ε2), its value must be small compared to one.1 From a cosmological

point of view the time dependence of the coupling is required because we want to study

how the NMC modifies the ΛCDM behavior at small scales and late times only, as we

stressed in the introduction and discussed in chapter 4. To be fully rigorous we should

have given ε a spatial dependence as well. That would cause the activation of the NMC

to happen at different times and in different regions. Such a spatial dependence would

give rise to a most interesting phenomenology but strongly dependent on which powering

mechanism is chosen for such a dependence on space. We therefore do not discuss it here

leaving its analysis for further studies.

1ε is just a phenomenological parameter that should be given dynamically by the NMC generating

mechanism. In this sense we are not introducing a non-dynamical field and background independence

should be though of as preserved.
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The variation of (5.16) with respect to ϕ and λ, derived in a detailed way in appendix

A, gives the two combined equations of motion which together specify the fluid dynamics

λ̇ = V −2(ϕ) [V (ϕ)ρ,ϕ − (ρ+ εp)ϑ] , (5.18)

ϕ̇ = −V (ϕ) , (5.19)

where

(̇) ≡ uµ∇µ, ϑ ≡ ∇µuµ , (5.20)

and ρ,ϕ is the derivative of the density with respect to the field ϕ. The energy density ρ

and pressure p are derived from the total DM SET

Tµν =
(
λ+ εLNMC

,X

)
V 2(ϕ)uµuν − εLNMCgµν . (5.21)

By a direct comparison with the form of the perfect fluid SET we can identify the following

thermodynamic quantities

ρ =
(
λ+ εLNMC

,X

)
V 2(ϕ)− εLNMC , (5.22)

p = LNMC , (5.23)

uµ = V −1(ϕ)∇µϕ . (5.24)

Notice that they are not the same appearing in action (5.3) because here the interaction

term is directly involved in the definition of both density and pressure. In other terms

in (5.3) ρDM is the DM density for a pressureless fluid which has some non trivial self

interaction while here the interaction has been absorbed into the definition of the DM

energy. ρDM in (5.3) is related to the {λ, ϕ} variables by the relation ρDM = λV (ϕ)2.

Since our knowledge of the DM distribution comes through its gravitational effects, the

definition (5.22) gives the actual measured DM density.

The effect of the NMC is twofold: on the one side it modifies the DM energy density

while on the other side it introduces a pressure term that would be absent in the standard

ΛCDM scenario. We expect both these terms to have relevant cosmological consequences

at the time and scales of interest, as it will be shown below. We anticipate that this model is

able, with appropriate potential shapes, to reduce the source of the gravitational potential

with the consequence of smoothing out the overdensities at small scales. The equations

for a pressureless dust (5.18)-(5.19) in the limit of vanishing coupling are independent on

the choice of the potential [173] that is to say the density scales like a−3 no matter what

potential is chosen. This does not represent a problem since the interaction term, which

in turns fixes the shape of the potential, is fixed once the mechanism that generates the
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NMC is known. We will not investigate the ultimate nature of the NMC here but we will

give some examples of potentials that could lead to an interesting phenomenology.

Finally, we notice that the pressure defined in (5.23) acts only along the direction

defined by the fluid four velocity, as it can be seen from the fact that the four acceleration

aν is identically zero. In fact,

aν ≡ uµ∇µuν = V −1∇µϕ∇µ(V −1∇νϕ) =
1

V

(
−dV
dϕ
∇νϕ+∇µϕ∇µ∇νϕ

)
= 0 , (5.25)

where we have used the constraint (5.14). As a consequence this model does not show any

spatial pressure and we do not have anisotropic stresses that in more general situations

may be present as discussed in chapter 4. This is due to the particular mechanism to

implement the condition p = 0 for the scalar field when the NMC interaction is switched

off.

5.2 Background and linear perturbations dynamics

We will now study the cosmological consequences of our model. We will assume a flat

FRLW universe filled with the DM field plus a CC.2 In terms of the conformal time (2.23)

we have

H2 =
8πG

3

[(
λ+ εLNMC

,X

)
V 2(ϕ)− εLNMC + ρΛ

]
, (5.26)

λ′ = −a(τ)V −2(ϕ) [V (ϕ)ρ,ϕ + 3H(ρ+ εp)] , (5.27)

ϕ′ = a(τ)V (ϕ) , (5.28)

where primes indicate time derivatives and ρΛ = 3Λ/(8πG). The equation for λ can be

rewritten in terms of the more physical quantity ρ defined by equation (5.22) which is

what appears on the right hand side of the Friedman equation (5.26) with no CC. In this

respect we are defining the density of the DM fluid as the quantity which plays the role

of gravitational source. With this consideration the previous system of equations is

H2 =
8πGa2

3
[ρ+ ρΛ] , (5.29)

ρ′ + 3H(1 + εw(ϕ))ρ = 0 , (5.30)

ϕ′ = a(τ)V (ϕ) , (5.31)

2Since here we are only interested in cluster/galaxy scales, we are not concerned about the nature of

dark energy. We thus make the minimal choice of a CC.
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where w(ϕ) = p/ρ. The continuity equation can be interpreted as that of a fluid with

a field dependent equation of state which in turns means a time dependent equation of

state.

We now present the equations for the linear perturbations in the Newtonian gauge

for scales which are well inside the horizon following the notation of [12], introduced in

chapter 2. The system of equations governing the evolution of the linear perturbations is

given as usual by the continuity equation, the Euler equation and the Poisson equation;

however, in this case, there are some differences due to the fact that we are expanding at

linear order around the coupling ε, in order to be consistent with the linearization of the

action (5.3). Moreover, the constraint (5.19) provides an extra perturbation equation

δϕ′ = a [V,ϕ(ϕ)δϕ+ ΦV (ϕ)] , (5.32)

and in the class of models under consideration extra relations exist that link together some

of the variables. We have, in fact,

v = V (ϕ)−1kδϕ ,

δp = p,ϕδϕ . (5.33)

The last relation has an important consequence on the dynamics of the NMC DM fluid as

it sets to zero the fluid speed of sound

c2
s ≡

dp

dρ
= p,ϕ

dϕ

dρ
= 0 , (5.34)

given that ϕ and ρ are two independent variables.

Hence, in the Newtonian gauge for scales much smaller than the Hubble scale, λ ≡
H/k � 1, the system of equations for the evolution of linear perturbations is the following

δϕ′ = a (Vϕ(ϕ)δϕ+ ΦV (ϕ)) , (5.35)

δρ′ + hkv + 3H (δρ+ εpϕδϕ) = 0 , (5.36)

v′ +

(
H+ ε

p′

ρ

)
v − kΦ = εk

δp

ρ
, (5.37)

k2Φ = 4πGa2δρ . (5.38)

Let’s consider now the Euler equation (5.37). Using (5.33) the two terms proportional to

ε cancel giving formally the same expression as in the standard, pressureless case

v′(k, τ) +H(τ)v(k, τ)− kΦ(k, τ) = 0 . (5.39)
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However here H is the modified Hubble expansion rate obtained by solving equation

(5.26). Eq. (5.39) is therefore actually non standard both in the friction term and in the

gravitational potential that feeds it, which, from eq. (5.38), can be rewritten as

k2Φ(k, τ) = 4πGa2Q(k, τ)ρ(τ)δ(k, τ) , (5.40)

where the Q function measures deviation from the ΛCDM model which has Q = 1 and

where δ is the dimensionless density contrast δ ≡ δρ/ρ. Explicit shapes for this function

are given in section (5.3). Finally we have

δ′(k, τ)− 3H(τ)εw(τ)δ(k, τ) + (1 + εw(τ))kv(k, τ) = 0 , (5.41)

v′(k, τ) +H(τ)v(k, τ) + kΦ(k, τ) = 0 , (5.42)

k2Φ(k, τ) = 4πGa2Q(k, τ)ρmc(τ)δ(k, τ) , (5.43)

where δ ≡ δρ/ρ and ρmc is the minimally coupled background DM density. With this

formalism the Q function takes the general form Q(k, τ) = (1+O(ε)), where the corrections

come from the modified background DM density.

From eq. (5.41) we can see that the continuity equation is modified in two ways: the

last term can lead to a speed up or slow down of the growth of perturbations, depending

on the sign of ε; the second term on the left hand side is a new genuine effect of this model

that closely resembles a dilution term.

The Euler equation is modified in two parts: H(τ) is modified as in the Friedman

equation (5.26) and the gravitational potential is changed as from the Poisson equation

(5.40). Notice also that despite the presence of an effective pressure, no Jeans length

appears in the equation. This is a consequence of the time-like character of the pressure

term, as noted above. Deviation from the ΛCDM model can be parametrized by two

functions [84]: ζ = (Ψ + Φ)/Φ, that characterizes the effects of anisotropic stresses, and

Q related to the deviation from the standard Poisson equation. The ΛCDM model has

ζ = 0 and Q = 1. We have no anisotropic stresses and hence ζ = 0 as well. However the

Q function is in general different from unity and hence it is a measure of the departure

from ΛCDM. As said, Q = 1 + εf(ρ, p) in general. Explicit forms for the function f will

be given below.

It is a standard procedure to take the derivative of (5.41) and using (5.42) and (5.43)

to obtain one single equation describing the evolution of the linear perturbations. In our

case this gives

δ′′ +
[
H− ε

(
Hw − w′

)]
δ′ + 3Hε

[
H
(

1

2
+ w

)
− w′

]
δ − 3

2
(1 + εw)H2QΩmcδ = 0 ,

(5.44)
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Potential Pressure F(φ,X) Effective coupling (εeff) coupling redshift

V (ϕ) =
√
ρDM0 p(z) = −(ρDM0 )2/ρ∗ 1 (ερDM0 /ρ∗) = 1 zc = 5

V (ϕ) =
√
ρDM0 e−κϕ p(z) = −K arcsinh

[(
ΩΛ/ΩDM

(1+z)3

)1/2
]4

1 (ερDM0 /ρ∗) = −5× 10−3 zc = 5

Table 5.1: Functions and parameters. In the first column the two potentials used in the

paper are reported while in the second column the related pressures as a function of the

redshift are given. The third column reports the used value for the scale function F.

The value is set to a constant meaning that no scale dependence is present. The last

two columns report the value for the effective coupling constant εeff = ερDM0 /ρ∗ and the

redshift at which the NMC is activated.

which reduces to the standard ΛCDM equation (2.76) in the limit ε → 0. As already

anticipated, notice that there is no scale dependence in this equation, despite the presence

of a non-zero pressure; this has relevant consequences as it means that our model, as it

stands, affects the DM dynamics at all scales. For completeness we give also the Euler

equation in real space

v′(x, τ) +H(τ)v(x, τ) = −∇Φ(x, τ) . (5.45)

Note again that here both H(τ) and Φ(x, τ) are modified according to equations (5.26)

and (5.43) respectively.

5.3 Results

In this section we present the results of the integration of equations (5.30)-(5.44) for

different choices of the potential which directly translates in different time behaviors for

the pressure. In the absence of a clear mechanism that can predict the form of the potential,

we consider various examples and derive their possible cosmological implications. We will

first explore the case in which the potential for the field ϕ is a constant and then we will

consider a decaying exponential potential.

As a further work assumption we choose F = 1. This means that the coupling is only

time dependent and not also scale dependent so that as soon as the critical temperature

is reached the coupling is active everywhere. This is a crude simplification which enables

us to illustrate, in a first concrete example, the phenomenological impact that the DM



5.3. RESULTS 73

5.02.0 3.01.5 7.0
z + 1

5 ´ 10-30

1 ´ 10-29

5 ´ 10-29

1 ´ 10-28

5 ´ 10-28

ΡHzL

5.02.0 3.01.5 7.0
z + 1

5 ´ 10-30

1 ´ 10-29

5 ´ 10-29

1 ´ 10-28

5 ´ 10-28

ΡHzL

Figure 5.1: Background density plots for (a) the constant potential (top panel, red line)

and (b) the exponential potential (low panel,red line), compared to standard pressureless

DM (black dashed line). In both plots we fix F (X,ϕ) = 1 and zc = 5. The density is in

g/cm3. The constant εeff in the case of the constant potential is chosen in order to give

a clear idea of the effects of the geometrical interaction term. In particular, in this case,

εeff = 1.
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NMC illustrated in section 5.1 can have. We leave more realistic scale dependent scenarios

to future study. The set of functions and parameters used are reported in table 5.2. We

also fix the cosmological parameters as follows: ΩΛ = 0.76, ΩDM = 0.24 and H0 = 74

km/s/Mpc.

Constant potential

In the case of a constant potential the effects on the background density evolution are

shown in figure 5.1a as compared to the evolution of standard CDM for different values

of the coupling constant ε. Remarkably the effect of the coupling is to mimic a CC as can

be seen from the background solution

ρ(z) = ρ0
DM(1 + z)3 +

εeff

2
ρ0

DM , (5.46)

p(z) = −εeff

2
ρ0

DM , (5.47)

where εeff = ερDM/ρ∗ with ρ0
DM the present day density of DM, and ρ∗ a reference density

characteristic of the scale under analysis. In this case the background DM fluid behaves

as if it were composed by two fluids, a standard dust plus a fluid with a CC equation of

state p = −ρ, as pointed out also in [173] in a different context, so that it may be possible

to avoid the introduction of an extra cosmological term in eq (5.26).

The evolution for the density contrast is shown in figure 5.2a as compared to that of

the density contrast for the ΛCDM model for the value of the coupling ε reported in table

5.2. The suppression is enhanced for illustrative purposes but it is clear that the growth

of linear perturbations is suppressed with respect to the one in standard ΛCDM, in a way

that mimics a ΛCDM model with a larger CC. This is also clear from figure 5.2b where the

growth function f ≡ − log δ/ log z for our model decreases faster compared to the ΛCDM

function. Notice that the plots hold for all sub-horizon scales.

The Q function, defined in the Poisson equation and responsible for deviation in the

gravitational potential has the following form in the case of a constant potential

Q(k, z) =

(
1− εeff

2(1 + z)3

)
, (5.48)

which implies that the effective gravitational constant that generates the gravitational

potential is reduced at those scales at which the interaction is active.

To conclude, the effect of the gravitational self coupling with a constant DM potential

is to add an extra contribution analogous to that given by a CC with the result that the

growth of the density contrast is more suppressed than in the standard ΛCDM model.
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Exponential potential

The exponential potential acts in a completely different way. The background DM den-

sity is shown in figure 5.1b as compared to the evolution of standard pressureless DM.

The effect of the NMC is to slow down the dilution of the DM density as soon as the

coupling is switched on. Notice that the sudden change in the evolution behavior is a

mere consequence of the step function that switches on the coupling only for t > tc. More

realistically, a smoother crossing is expected. The effect of the coupling fades away with

time and the model tends asymptotically to ΛCDM. This is a welcome feature as it could

possibly boost the number of high redshift clusters observed around z ∼ 2 without affect-

ing present day halos [175, 176], similarly to the scenario pictured in [177, 178] but here

relying only on the DM NMC to gravity.

In this case the explicit form of the pressure term, as obtained from eq. (5.23) is

p(z) = Karcsinh

[(
ΩΛ/ΩDM

(1 + z)3

)1/2
]4

, (5.49)

where

K =
1

2

(
3

2

)4

ρ0

(
3ρΛ

8πG

)2

. (5.50)

In figure 5.3a the evolution of the density contrast as a function of redshift is plotted.

In this case the Q function has a complicated expression, not reported here, due to the

non-trivial relation between time and redshift for a ΛCDM model. We just comment

that also in this case the function is always less than one, thus reducing the gravitational

potential.

In figure 5.3b we plot the growth function f as a function of redshift. As in the

case of the constant potential, here again we notice that the effect of the coupling is to

reduce the growth of linear perturbations. In this case, however, the sign of the coupling

constant is opposite. This is not surprising as ε is a phenomenological parameter and

different potentials represent different theories: thus the sign of the coupling is not a

priori determined. A mathematical explanation for this fact can be given in the limit of

Einstein–de Sitter. In this case the equation to be solved for the density can be generally

written as

ρ′(z)− 3

z

(
ρ(z) + ερ0

DMz
α
)

= 0 . (5.51)

This equation has the general solution

ρ(z) = ρ0
DMz

3 + 3Czα , (5.52)
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where C = −ε/(−3 +α) with α 6= 3.3 For a constant potential α = 0 and thus the partic-

ular solution to the differential equation is positive, hence the density is higher compared

to ΛCDM. In the exponential case instead α = 6 and hence the situation is reversed. In-

terestingly, for an exponential potential, this suppression is limited in time: perturbations

are maximally suppressed around the time of the switching but asymptotically the model

reduces to ΛCDM. Again, This can be interesting when trying to get a higher number of

halos in the past only, without affecting present abundances.

5.4 Summary

In this chapter we have addressed the question of whether the DM fluid can behave

differently at galactic scales rather than at cosmological ones, due to the presence of a

time-dependent non-minimal interaction between DM and gravity. We have extended the

analysis done in chapter 4, constructing the Einstein frame for the NMC DM model there

introduced. We have then illustrated for the first time the cosmological consequences of

such a scenario, both at the background level and within linear perturbation theory. In

particular we have shown that a NMC DM fluid is able to produce two relevant effects:

a pressure term for DM able to reduce the growth of structures at small scales, plus an

effective interaction term between DM and baryons that can explain correlations between

the two components of the cosmic fluid.

In this scenario we have considered the situation in which DM, at suitably late times,

undergoes some sort of phase transition, analogous to the BEC discussed in the previous

chapter, consequently developing a coherence length of a size comparable to that of the

local curvature radius, thus becoming non-minimally coupled.

We have studied in details the DM pressure term, neglecting the roles of baryons in

the present analysis. In particular, we have analyzed the system for two choices of the

DM potential that generates the pressure term: a constant potential, resembling a CC

contribution, and an exponential potential. These two choices are a good sample as all

power law potentials have intermediate behaviors.

For a constant DM potential, the DM fluid behaves like the superposition of two fluids,

one standard pressureless dust plus a fluid that behaves like a cosmological term, with a

consequent suppression of the density contrast at small redshifts.

In the case of an exponential DM potential the effects are mostly relevant near the time

of activation of the coupling. The background density is enhanced and the linear growth

3Notice that the case of α = 3 would simply rescale the coefficient of the homogeneous solution.
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Figure 5.2: (a) Evolution of the density contrast versus redshift in the case of constant

potential (top panel, red line) and (b) the growth function f(z) = −d log δ/d log z (low

panel, red line), compared to the standard ΛCDM results (black dashed line), both with

F (X,ϕ) = 1 and zc = 5. The constant εeff in the case of the constant potential is chosen in

order to give a clear idea of the effects of the geometrical interaction term. In particular,

in this case, εeff = 1.
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Figure 5.3: (a) Evolution of the density contrast versus redshift in the case of exponential

potential (top panel red line) and (b) the growth function f(z) = −d log δ/d log z (low

panel red line) compared with the standard ΛCDM results (black dashed line), both with

F (X,ϕ) = 1 and zc = 5.
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is suppressed for a limited redshift interval. In fact the pressure decays with redshift so

that standard ΛCDM evolution is recovered asymptotically.

We also provided the Euler and Poisson equations (5.42), (5.43) in a form convenient

for N-body simulations for any choice of the potential V together with explicit expressions

and predictions for the parameters Q and ζ, that characterize the deviations from ΛCDM.

In particular we found that ζ = 0, meaning that no anisotropic stresses are generated

by our model, and Q < 1, after the coupling is switched on, thus reducing the gravi-

tational potential. Constraints on these functions are rather weak and strongly model

dependent [179–183] thus making necessary a direct confrontation between our model and

observations in order to cast constraints on the deviations from ΛCDM.

For both choices of the potential we have obtained a suppression in the growth of linear

perturbations as in the figures (5.2) and (5.3). This is a good indication that this class of

models may be a viable possibility to solve some of the ΛCDM paradigm problems, like

the core-cusp, the missing satellites, high-z clusters. Of course, a non-linear analysis is

required to evaluate these effects.

We have derived the general perturbation equations valid for any F (ϕ,X) and V (ϕ)

(see equations (5.29, 5.30, 5.41, 5.42, 5.43)), though we have limited our specific examples

to F (ϕ,X) = 1, for simplicity. Baryons can be included, introducing a much welcome

relation between DM properties and baryonic features as expected from observations [122].

On a more formal ground we have also showed how, at linear level in the metric function

hµν appearing in (5.2), we can construct a scalar-tensor theory for fluids (5.6) which admits

equivalent Jordan and Einstein frames, connected by a disformal transformation. This is

interesting for at least two reasons: on one side the recent flourishing of modified theories

of gravity for cosmological fluids calls for an analysis similar to the one made for standard

Scalar-Tensor Theories while, on the other side, the coupling between the Einstein tensor

and matter variables resembles closely the one that is included in the recently rediscovered

Horndeski theory. Even if the connection between theories written in terms of fluid and

those in terms of field is not completely clear, this may be a first hint in the construction

of a Horndeski like model for fluids or, more generally, for vectors.

Indeed in the next chapter we will show, in a more rigorous way, how disformal trans-

formation can be used to investigate the structure of the Horndeski action, in its standard

scalar field formulation, with particular emphasis on the construction of equivalent frames.



80 CHAPTER 5. NMC DM: COSMOLOGY IN THE EINSTEIN FRAME



Chapter 6

Generalized Scalar-Tensor

Theories: the Horndeski action

and disformal transformations

There is nowadays a rather broad set of evidences, both theoretical and observational,

that points towards modifications of the standard paradigm for gravitational dynamics

represented by GR. As argued in the previous chapters, modified theories of gravity seem

to be very effective at addressing many of the problems of the ΛCDM model.

Among these, generalized Brans–Dicke (BD) Scalar-Tensor Theories have acquired,

since their initial proposal more than half a century ago [3], a most relevant role as the

standard alternative theories of gravitation. The investigation of formal aspects of these

theories has played a fundamental role for several theoretical and observational issues in

gravitation. In particular, Scalar-Tensor Theories have represented an ideal setting for

understanding the thorny issue of the different representations of a given gravitational

theory. For example, it has been realized that a whole class of higher curvature theories,

f(R) theories, can be recast as special cases of Scalar-Tensor Theories (with the number

of scalars related to the order of the initial field equations). Even more interestingly,

the invariance of the action of generalized Scalar-Tensor Theories under metric conformal

transformations and redefinitions of the scalar field, can be used to relate several equivalent

frames, for example trading off a space-time varying gravitational constant (i.e., a non

minimal coupling) for a GR-like gravitational sector (i.e., minimally coupled) associated

to a matter action with field-dependent masses and coupling constants.

It is worth stressing that such features are not only theoretically interesting, but are

81
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also relevant for the actual observational tests of the theory. So much so that the question

of whether conformally related frames are physically distinguishable is still an open issue

in the literature (see e.g., [184]). Furthermore, this kind of investigations become even

more important as one moves further away from GR into more general theories.

Further generalizations of the Scalar-Tensor Theories have been extensively investi-

gated in the contexts of cosmology [171], Dark Energy [84, 98, 185], inflationary mod-

els [186, 187] and in the context of extended DM models, as discussed in the previous

chapters, and have indeed provided very efficient frameworks for explaining (in an alter-

native ways w.r.t. GR) the observed properties of the universe.

An extension of the Scalar-Tensor framework that that has attracted a lot of interests

is represented by the Horndeski action [4], recently rediscovered in the context of the

Covariant Galileon theory [5, 188]. This action provides the most general Lagrangian for

a metric and a scalar field that gives second order field equations and as such is a well

motivated effective field theory. It has been extensively investigated since it includes, as

sub-cases, basically all known models of DE and single scalar field inflation. However,

this generality comes at a dear price. In fact, the physics derived from the full action is

rather obscure and the theory has been investigated only in few regimes or for particular

models, like the FLRW universe, so that a systematic investigation is still missing (see

however [102,189] for a first attempt in this direction and [190,191] for a method to derive

constraints in the context of DE models).

Given the above mentioned fruitful interplay between Scalar-Tensor Theories and con-

formal transformations and the intriguing connection between frames found in chapter 5,

one may wonder whether a generalization along this line might help shedding some light

on the properties and structure of the Horndeski theory. This is the main motivation of

the present work. As we shall see in what follows, simple conformal transformations are

not enough for this task, due to the more complicate structure of the Horndeski actions,

and the use of generalized metric transformation will be required.

An example of such generalized metric transformation is given by disformally related

metrics. These have been proposed in [100] and applied first in the context of relativistic

extensions of MOND-like theories [192] in order to account for measured light deflection by

galaxies. Later they found applications in varying speed of light models [193], DE [99,101,

102, 194], inflation [195] and modified DM models as discussed in the previous chapters.

More recently, empirical tests of these ideas have been proposed in laboratory experiments

[196] as well as in cosmological observations [197,198], highlighting the important role that

disformal transformations are playing in contemporary cosmology and gravitation theory.
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6.1 The Horndeski action and disformal transformations

The Horndeski Lagrangian [4] is the most general Lagrangian that involves a metric and

a scalar field that gives second order field equations in both fields in four dimensions.

Recently generalized to arbitrary dimensions by Deffayet et al. in [5], it is the natural

extension of Scalar-Tensor a là Brans–Dicke.

Horndeski theory remained a sort of theoretical curiosity for more than thirty years but

it was recently rediscovered as a powerful tool in cosmology. In fact, its generality (within

the bound of second order field equations) made of it an ideal meta-theory for Scalar-

Tensor models of DE and DM. However, up to now, no structural analysis analogous to

the one carried out for standard Scalar-Tensor was performed. In particular there is no

obvious extension of the concept of equivalent frames and no first principles to fix the

shape of the free parameter functions. In order to address these, after briefly reviewing

the Horndeski action and disformal transformations, we shall discuss here the behavior of

this theory under such extended class of metric transformations.

6.1.1 Horndeski Lagrangian

The Horndeski action, rephrased in the modern language of Galileons [188]1 can be written

as follows

L =
∑
i

Li , (6.1)

where

L2 = G2(φ,X) , (6.2)

L3 = G3(φ,X)2φ , (6.3)

L4 = G4(φ,X)R−G4,X(φ,X)
[
(2φ)2 − (∇µ∇νφ)2

]
, (6.4)

L5 = G5(φ,X)Gµν∇µ∇νφ+ (6.5)

+
G5,X

6

[
(2φ)3 − 3(2φ)(∇ν∇µφ)2 + 2(∇µ∇νφ)3

]
, (6.6)

where

X = ∇µφ∇µφ/2 , (∇µ∇νφ)2 = ∇µ∇νφ∇µ∇νφ , (∇µ∇νφ)3 = ∇ν∇µφ∇ν∇λφ∇λ∇µφ ,
(6.7)

while Gi,X = ∂Gi/∂X, R is the Ricci scalar and Gµν is the Einstein tensor. The coeffi-

cient function G4 has the dimensions of a mass square and it plays the role of a varying

1Notice that we have a different sign convention w.r.t. [188] due to the different definition of the function

X ≡ ∇µφ∇µφ/2
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Gravitation constant, while G5 has those of a mass to the fourth power. The field φ is

taken to have mass dimension 1. As said, this gravitational action is the most general one

that can be built with a metric and a scalar field, providing second order field equations

in four dimensions. We will not discuss here the equations of motion referring the inter-

ested reader to [5, 199] for a general analysis. Let us instead focus our attention on some

important properties of this Lagrangian.

First of all notice that, beyond the usual conformal non-minimal coupling, there is an-

other source which couples the Einstein tensor to second order derivatives of the field. This

represents a novelty as, contrarily to what happens for the coupling to the Ricci scalar, in

this case we have a direction dependent coupling. Secondly all the sub-Lagrangians give

second order field equations independently so that one could in principle neglect some of

them without spoiling the second order nature of the field equations. However, as is shown

in appendix B.3, neglected terms can alway be eventually generated through redefinitions

of the field variables. Finally, we notice that compared with the standard Scalar-Tensor

action the NMC coefficients now depends also on the kinetic term.

Given that this model is a generalization of standard Scalar-Tensor Theory one may

wonder whether suitable metric transformations can be introduced also in this case, leaving

the action invariant and linking alternative frames. It is not hard to realize that simple

conformal transformations have limited power in this sense. In standard Scalar-Tensor

Theories these transformations allow to replace by constants some of the field dependent

coefficients. However, the various terms appearing in the Horndeski action (Gi(φ,X)) are

also dependent on the kinetic term X and hence more general transformations are clearly

needed.

The most natural extension of the conformal transformation in this sense would be

A(φ)→ A(φ,X). However, even if this can remove the non-minimal coupling in the L4, it

is basically ineffective on the the non-minimally coupling provided by L5. Moreover, this

generalized conformal transformation contains derivatives of the field and hence one must

be careful that those do not end up introducing higher derivatives in the equations of mo-

tion. In this sense, the next natural candidate for a suitable set of metric transformations

is then represented by the disformal ones.
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6.1.2 Disformal transformations

Disformal transformations are defined by the following relation2

ḡµν = A(φ,X)gµν +B(φ,X)φµφν , (6.8)

where the disformal functions A and B now depend on both the scalar field φ and its

kinetic term X and where we have defined for convenience φµ = ∇µφ. We can classify

the properties of this generalization in two main categories: first the new functions do not

simply depend on the local value of the field but also on the metric itself, hidden inside the

definition of the kinetic term. Secondly we have a translation along the lines of variation

of the field which means that the new metric will also depends on the way the field is

changing through space-time.

When dealing with metric transformations one has to ensure that the new metric is

still a good one. We can formally define the goodness of a metric transformation with a

set of properties: it must preserve Lorentzian signature, it must be causal and it has to

be invertible, with a non zero volume element. All these properties directly translate into

constraints on the two free functions A and B which we are going to discuss one by one.

Lorentzian signature. Consider a frame in which φµ ≡ ∇µφ = (∇0φ,~0). Then the

Lorentzian requirement can be translated into

ḡ00 = A(φ,X)g00 +B(φ,X)φ0φ0 < 0 . (6.9)

This constraint must hold true for all values of the field and its derivative. Given

that we cannot exclude that for some values of the field variables the function B can

be zero, a first requirement is that A > 0. This is the usual requirement made also

for standard Scalar-Tensor Theories. Then by multiplying equation (6.9) with g00

we found that the condition to be fulfilled for preventing ḡ00 from sign inversion is:

A(φ,X) + 2B(φ,X)X > 0 . (6.10)

As a consequence, to have this relation to hold true for all values of X, it is necessary

to have some kinetic dependence at least in one of the two disformal functions. This

result was first derived in [151] (see also the original paper by Bekenstein [100]).

However in [102] it was argued that the dynamics of the scalar field can be such

that it is possible to keep the metric Lorentzian even with no X dependences in

2More general formulations may be possible, for example including higher derivatives of the scalar field

or by adding vector fields [100].
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the disformal functions A and B. For example this can happen when the scalar

fields enters a slow-roll phase e.g., when thought to be the field responsible for Dark

Energy. However this subject is not yet fully understood and, being not mandatory

for our purposes its investigation, in the following we will assume that both metrics

are Lorentzian for all the values of the scalar field and its kinetic term.

Causal behavior. The disformal metric can have, depending on the sign of the B func-

tion, light cones wider or narrower than those of the metric g. This may lead to

think that particles moving along one metric may show superluminal or a-causal be-

havior. However, the requirement of the invariance of the squared line element and

recalling that physical particles satisfy ds2 < 0 is enough to ensure causal behavior.

This objection has been discussed in some detail in [200].

Invertible. We also must be sure that an inverse of the metric and the volume element

are never singular. The inverse disformal metric is given by:

ḡµν =
1

A(φ,X)
gµν − B(φ,X)/A(φ,X)

A(φ,X) + 2B(φ,X)X
∇µφ∇νφ , (6.11)

while the volume element is given by
√
−ḡ = A(φ)2 (1 + 2XB/A)1/2√−g. The

constraint derived from these requirements are weaker than those already obtained

hence there are no new potential issues.

From this analysis we learn that the extension of conformal transformations to disfor-

mal ones is well posed, even if all previous points deserve a deeper analysis which, in any

case, is beyond the scopes of the present investigation and is left for further studies.

Disformal metrics seem to be good candidates for our purposes as they possess, beyond

a purely conformal term, another one which is a deformation of the metric along the direc-

tion of variation of the field and indeed disformal transformations have for the Horndeski

action a role very similar to that of conformal transformations for standard Scalar-Tensor

Theories.

6.2 Invariance of the Horndeski Lagrangian under disformal

transformations

The ability of the Horndeski action to give second order field equations resides in a fine

cancellation between higher derivatives coming from NMC terms and those produced from

derivative counterterms. This is the defining feature of the theory which fixes once and for
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all its structure. Consequently, it seems very natural to require that any transformation

operated on the action must preserve the same structure (6.1), plus possibly inducing

surface terms, in order to preserve this property. In summary, we are interested in those

metric transformations which leave the structure of the Horndeski action invariant.

It is easy to see that this requirements already reduces the freedom in the disformal

functions A and B. In fact, any kinetic dependence of these two terms would lead un-

avoidably to the breaking of the Horndeski structure, i.e., to higher order equations of

motion. We prove this through some examples in appendix B.1 while here we give a first

principle argument why one should expect this to happen. The ability of the Horndeski

action to give second order field equations lies on the antisymmetric structure of second

derivatives terms, as has been made clear in [5]. Consider the L4 part of the Lagrangian.

This can be rewritten in the following form

L4 =
(
gµβgνα − gµνgαβ

)
[G4(φ,X)Rµναβ −G4,X(φ,X)∇µ∇νφ∇α∇βφ] , (6.12)

where the antisymmetric structure is made clear. Given that we have to preserve this

structure the only effects that can have a transformation is to renormalize the function G4

and its derivative modulo a surface term. However, any kinetic dependence in the disformal

functions will spoil this structure. In fact, consider the transformation property of the

second derivatives of the scalar field under the conformal transformation ĝµν = A(X)gµν

∇µ∇νφ→ ∇µ∇νφ+
A,X
A

[
gµνφ

αφβ∇α∇βφ− φµφα∇α∇νφ− φνφα∇α∇µφ
]
. (6.13)

When inserted in (6.12), among other terms, the following one is generated

∼ 4G4,X

(
A,X
A

)2

φµφνφαφβ∇µ∇νφ∇α∇βφ , (6.14)

which is clearly symmetric in the four indices and hence will produce higher than second

derivatives in the equations of motion. One may wonder whether there may be countert-

erms coming from curvature that eliminate this but, as shown in appendix B.1, this is not

the case.

We hence conclude that in order to preserve second order field equations, we have to

restrict our analysis to the following class of disformal transformations

ḡµν = A(φ)gµν +B(φ)φµφν . (6.15)

The structural invariance of the action under the disformal transformation (6.15) trans-

lates into the statement that such transformations represent a symmetry of the Horndeski
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action so that all the functions are defined modulo a conformal and a disformal trans-

formation. This reminds very closely the case of standard Scalar-Tensor Theories where

invariance under conformal transformations is used to reduce the number of free functions

that defines the theory. However, the generalization of this reasoning to the case of Horn-

deski theory is not straightforward. In fact, the subset of disformal transformations (6.15)

does not allow for kinetic term dependent coefficients, consequently one cannot generically

rescale the functions Gi(φ,X) characterizing the Horndeski action.

The effects of the disformal transformation on the generic coefficient function Gi(φ,X)

can be schematically described as follows. After the application of (6.15) on the Horndeski

action the renormalized coefficient will take the form

Gi(φ,X) = f(φ,X;A,B)Gi(φ, X̄) + g(φ,X;Gj , A
′, B′, A′′, B′′) , (6.16)

where we have defined

X̄ =
X/A

1 + 2XB/A
. (6.17)

We can identify two main effects from the above equation. A multiplicative factor has

appeared in front of the original function which depends on the disformal functions A

and B and a second contribution has appeared that depends explicitly on the coefficient

functions themselves. This dependence enters the coefficients in a hierarchical way: only

the coefficient functions with j ≥ i will contribute, as we shall see below. Hence, if any

one of the pieces of the Horndeski Lagrangian is initially omitted, it will be generated by

the disformal transformation, with the important exception of L5. Moreover, notice that

the second piece depends on the derivatives of the disformal functions with respect to the

scalar field. This fact implies that if we take them to be constant, there will be no mixing

between different Lagrangian coefficient functions. We will see explicit examples of this

in the next section where we will study the transformation properties of the Horndeski

action under pure conformal and disformal transformations separately. In particular we

will derive the sub-class of Horndeski theories that admits a representation in which all

NMC terms are eliminated via a disformal transformation. We refer to appendix B.3 for

the detailed transformation properties.

As a concluding remark, let us add that the Horndeski action is also invariant under the

field rescaling φ→ s(φ)φ (this is explicitly discussed in appendix B.4 where we consider the

effects of this transformation on the Horndeski coefficient functions). This property will

play an important role later on in our discussion when we shall deal with the equivalence

of disformal frames.
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6.2.1 Purely conformal transformations

Let us first consider the effects of conformal transformations ḡµν = A(φ)gµν on the Horn-

deski action (6.1), extending the well known results for these transformations in Scalar-

Tensor Theories to this more general class of actions. The transformed Lagrangian coeffi-

cient functions read

Ḡ2(φ,X) = A2G2(φ,XC) + 2XG3AA
′ + 3X

G4A
′ [1− 2A]

A
+

+
6G5X

2A′

A

[
A′′

A
− A′2

A2

]
− 2XH5,φ +

2G5,XX
3

A3
A′2 , (6.18)

Ḡ3(φ,X) = AG3(φ,XC)−2G4,XA
′+X

(
−2H2,φ −

G5A
′2

2A2
+

2G5A
′′

A
+
G5,XXA

′2

A2

)
−H5 ,

(6.19)

Ḡ4(φ,X) = A(φ)G4(φ,XC) , Ḡ5(φ,X) = G5(φ,XC) , (6.20)

where

XC = X/A(φ) , H2 = G5
A′

A
, H5 =

∫
dX

[
H2,φ +

G5A
′′

A
+

5G5

2

A′2

A2
+ 2G5,X

A′

A

]
.

(6.21)

Here we can clearly see the hierarchical propagation of terms from higher derivatives

Lagrangians towards lower ones together with the special case represented by the L5

Lagrangian that does not receive any contribution from the other parts of the Lagrangian.

Then notice how the conformal NMC G4(φ,X), is modified by a multiplicative factor while

the NMC with the Einstein tensor is unaffected apart from a redefinition of the kinetic

term inside G5(φ,X).

Given that in general all the coefficient functions depend on both the scalar field and

its kinetic term, it is clear that using only a conformal transformation we shall not be able

to eliminate NMCs for any choice of the conformal factor A(φ). Even in the special case

when the coefficient functions depend only on the field and not on its derivatives, we are

able to set at most G4(φ) = 1 while retaining the generalized NMC between the Einstein

tensor and the field derivatives (6.6), given that part of the Lagrangian is not affected by

conformal transformations, see Eq. (6.20).

Notice that even if we were to take G5(φ,X) to be a function of the scalar field only,

we would not be able to eliminate it. In fact, we then have the following relation

G5(φ)Gµν∇µ∇νφ = G5,φXR−G5,φ

[
(2φ)2 − (∇µ∇νφ)2

]
+

−G5,φφ [2X2φ− φµφν∇µ∇νφ] , (6.22)
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that shows how in this case L5 is a contribution to the L4 (as well as to L3 and L2) that

depends explicitly on the kinetic term and cannot be eliminated by a simple conformal

transformation.

6.2.2 Purely disformal transformations

We turn now our attention to the case of a pure disformal transformation, i.e., when the

conformal factor A(φ) is set to one while the disformal function B(φ) is left unspecified.

Given that we are mainly interested on the effects of transformations on the NMC terms

we will report here only the relevant coefficient functions. The remaining ones can be

easily derived from the equations in appendix B.3.

In the case under consideration we have that the transformed NMC coefficient functions

read

Ḡ4(φ,X) = (1 + 2XB)1/2G4(φ,XD) +
G5(φ,XD)B′(φ)X2

(1 + 2XB)3/2
−HR,φ(φ,X)X , (6.23)

Ḡ5(φ,X) =
G5(φ,XD)

(1 + 2XB)1/2
+HR(φ,X) , (6.24)

where

XD = X/(1 + 2BX) , HR(φ,X) = B

∫
dX

G5(φ,XD)

(1 + 2XB)3/2
. (6.25)

Here we notice that the effects of the disformal transformation are richer than those

of the conformal one. In fact, besides a conformal modification of G4 we have other

contributions to L4 and in this case G5 is modified as well. In particular, the modified

coefficient functions receive corrections that depend on the kinetic term but, as can be

seen from equations (6.23) and (6.24), even in this case one cannot generically eliminate

the NMC.

Let us focus on this last point and study which constraints can be imposed on the

coefficient functions of the Hornedski action so to be able to eliminate all the NMC i.e., to

use the disformal transformation so to obtain Ḡ4 = 1 and Ḡ5 = 0. The latter condition is

satisfied if

G5(φ,XD)

(1 + 2XB)1/2
+B

∫
G5(φ,XD)

(1 + 2XB)3/2
dX = 0⇒

∫
dX

[
G5,X(φ,XD)

(1 + 2XB)1/2

]
= 0 . (6.26)

In general, if G5 = G5(φ) then the above constraint is automatically satisfied. We cannot

exclude the existence of other solutions in which an X dependence is also allowed, for

example if the integrand function is fast oscillating. However these will depend on the
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specific model chosen and would need to be investigated case by case. Finally, notice that

this constraint is not influenced by the freedom in rescaling the scalar field.

In order to have no conformal coupling we have to impose

1 = (1 + 2XB)1/2G4(φ,XD) +
G5,φ(φ)X

(1 + 2XB)1/2
− G̃5X , (6.27)

where

G̃5(φ,X) =

∫
dX

G5,X(φ,XD)

(1 + 2BX)1/2
, (6.28)

that, when expressed in terms of the initial variable X, gives

G4(φ,X) = (1− 2B(φ)X)1/2 −G5,φ(φ)X + G̃5,φ(φ,X)X , (6.29)

with

G̃5(φ,X) =

∫
dX(1− 2BX)1/2G5,X(φ,X) . (6.30)

Given that we want both constraints to be satisfied at the same time, we have then

G5 = G(φ) and G4(φ,X) = (1− 2B(φ)X)1/2 −G5,φ(φ)X , (6.31)

which fixes once and for all the functional dependence of the G4(φ,X) function on the

kinetic term.

We conclude that the following Lagrangian

SNMC =

∫
d4x
√
−g
[
G4(φ,X)R−G4,X

[
(2φ)2 − (∇µ∇µφ)2

]
+G5(φ)Gµν∇µ∇νφ

]
,

(6.32)

where G4 is given by (6.31), is the only one that admits a disformal map able to eliminate

all the NMC terms in the context of Horndeski theory.

However, it is worth noticing that inserting equations (6.22) and (6.31) in (6.32) all

the terms depending on G5(φ) end up canceling. Hence, if the function G5 depends only

on the scalar field, we conclude that the existence of a disformal metric able to cancel all

NMC requires the absence of L5.3 We are hence left with the following action

SNMC =

∫
d4x
√
−g
[
GE(φ,X)R−GE,X

[
(2φ)2 − (∇µ∇νφ)2

]]
, (6.33)

where

GE = (1− 2B(φ)X)1/2 . (6.34)

3It may seem that a constant G5 could be included without spoiling our request of no NMC. However

in this case L5 reduces to a surface term and hence does not contribute to the dynamics.
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While we have here considered a special subset of the φ-dependent disformal transforma-

tions (6.15) we can easily extend our conclusions to transformations including a conformal

factor A(φ). Indeed, in this case the most general action allowing for a full elimination

of the NMC would be the same as equation (6.33) modulo a conformal rescaling of the

GE(φ,X) function.

As a final remark, it is perhaps worth stressing that, as noted in [102], the non-

relativistic limit of the action (6.33) corresponds to the quartic covariant term of the

Galileon action with the appropriate non-minimal coupling to yield second order field

equations [103].

6.3 Disformal frames

The invariance of an action under metric transformations implies the possibility to fix some

of the free functions characterizing the theory, similarly to what is done when choosing a

gauge. Consequently, the number of the independent functions is reduced. In our specific

case the Horndeski action (6.6) is invariant under both purely conformal and disformal

transformations. This freedom allows us to define an infinite set of equivalent frames

defined by different fixings of two of the free functions in the action (see [201, 202] for a

similar reasoning in standard Scalar-Tensor Theories).

Among all these equivalent representations of the theory two are most relevant as they

correspond to somewhat opposite situations: the Einstein and Jordan frame. For the sake

of clarity we provide here generalized definitions relevant for the Horndeski actions under

consideration here.

Jordan Frame In the Jordan Frame the Lagrangian of the gravitational sector includes

a non-minimally coupled scalar field meanwhile all the matter fields follow the

geodesics of the gravitational metric (the stress energy tensor of the matter fields is

covariantly conserved w.r.t. the gravitational metric).

Einstein Frame In the Einstein Frame the gravitational dynamics is described by the

standard Einstein–Hilbert Lagrangian (plus possibly a cosmological constant). How-

ever, matter fields are coupled to the gravitational metric via some function of the

scalar field and its derivatives. They hence move on geodesics that can be different

from the one determined by the metric defining the Ricci scalar. Moreover, the

gravitational equations in absence of matter do not reduce to R = 0, as in GR, but

in general will retain the scalar field as a possible source.
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We now proceed to recall the issue of frames and their equivalence in standard Scalar-

Tensor and then extend this to the case of the Horndeski action.

6.3.1 Scalar-Tensor Theories and conformal transformations

A minimal prescription for generalizing GR is to promote the gravitational constant to

a scalar field which must be provided with its own dynamics in order to preserve diffeo-

morphism invariance. Furthermore, the Einstein Equivalence Principle (EEP) allows such

scalar field to also mediate the coupling of the matter to the metric (albeit in an universal

way). This reasoning then leads to the following action:

S =

∫
d4x

[
G(φ)R− f(φ)

2
∇µφ∇µφ− V (φ)

]
+ Sm[e2α(φ)g, ψ] , (6.35)

where the four functions G(φ), f(φ), V (φ) and α(φ) are general functions of their argu-

ment. We will not enter into the details of the applications of this theory, referring to the

above cited papers and to references therein for details, but we will focus on some more

formal properties of this action.

First of all, the above mentioned free functions in the action are actually redun-

dant [201,202]. Indeed, the invariance of action (6.35) under the conformal transformations

ḡµν = Ω2(φ)gµν and the scalar field redefinitions φ̄ = F (φ) allows to freely choose two out

of the four functions. Hence, implementations of (6.35) differing only for the fixing of

two of the four coefficient functions are indeed just different representation of the same

physical theory [201].

For this class of theories the Einstein frame is defined by the choice G(φ) = 1 and

f(φ) = 1 so that gravity is described by the standard Einstein–Hilbert action, the scalar

field has a canonical kinetic term while matter fields follows the geodesics of a physical

metric conformally related to the gravitational one. The Jordan frame is instead obtained

choosing α(φ) = 0 and G(φ) = φ. In this case we have that all fields follows the same

metric but now the scalar field is non-minimally coupled to curvature and it may possess

a non-standard kinetic term, i.e., f(φ) 6= 1. The fact that the above two frames are picked

up from (6.35) by just fixing two of the four coefficient functions implies their physical

equivalence (i.e. a varying gravitational coupling in the Jordan frame is translated into

field dependent matter masses and couplings when the action is in the Einstein frame).

The lesson that we want to capture with this short introduction is that when dealing

with generalized actions like (6.35) one has to pay attention to their symmetries in order

to correctly identify the set of physically equivalent frames (i.e., different representations
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of the same theory) which one can alternatively use for more conveniently dealing with

different physical issues.

These considerations become even more important as further modifications of gravity

are introduced and complicated terms are added. In what follows we shall first investigate

the issue for that class of Horndeski actions admitting an Einstein frame (as this frame is

often adopted for physical investigations). Later, we shall extend the discussion to more

general actions.

6.3.2 Horndeski action and the Einstein frame

In section 6.2 we have derived the most general action in the Jordan frame for which all

NMC can be eliminated via the disformal transformation (6.15). However, the discussion

of the possible equivalence of frames requires us to include also the action for matter fields

with possible generalized coupling to the metric. This leads to the following completion

of (6.33):

S =

∫
d4x
√
−g
[
G(φ,X)R−G,X (φ,X)

[
(2φ)2 − (∇µ∇µφ)2

]
+

+G2(φ,X) +G3(φ,X)2φ
]

+ Sm[g̃, ψ] , (6.36)

where

G(φ,X) = C(φ)2(1− 2D(φ)X)1/2 , (6.37)

Sm is the total matter action defined in terms of the physical metric

g̃µν = eα(φ)gµν + β(φ)φµφν , (6.38)

and ψ stands generically for matter fields.

Among the six free functions, four are related to the field-metric couplings, C(φ),

D(φ), α(φ) and β(φ) and two are defining the minimally coupled scalar field Lagrangian,

G2(φ,X) and G3(φ,X). Thanks to the invariance under both conformal and disformal

transformations we can fix two out of the four metric functions C(φ), D(φ), α(φ) and

β(φ) with appropriate choice of the functions A(φ) and B(φ) appearing in the disformal

transformation (6.15). In principle, we could act on G2(φ,X) and G3(φ,X) but given their

generic dependence on the kinetic term, (6.15) is not effective for fixing them. Hence, with

a general disformal transformation (6.15), we can define a Jordan and an Einstein frame

in the same sense as it can be done for standard Scalar-Tensor Theories.

However, we can also use the invariance of the Horndeski action under field rescaling to

further constrain the number of independent functions (as in the case of action (6.35)). In
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fact, as shown in appendix B.4, we can always rescale the field φ by an arbitrary function.

This amounts to say that we can fix one more of the free functions α(φ), β(φ), C(φ) and

D(φ) to arbitrary values so that the Einstein and Jordan frames defined above represents a

class of equivalent theories that can be further fixed with a field redefinition. We conclude

that implementations of (6.36) which differ only by the fixing of three out of six functions

are nothing but equivalent representations of the same physical theory.

It is worth noticing that the invariance under two metric transformations allows the

definition of more physically interesting equivalent frames, w.r.t. standard Scalar-Tensor

Theories. In fact, we can actually define the following four equivalent frames, all obtained

from the action (6.36) with different fixing of the free functions.

Jordan Frame. The Jordan frame is defined by the action

SJ =

∫
d4x
√
−g
[
GJ(φ,X)R−GJ,X

[
(2φ)2 − (∇µ∇µφ)2

]
+

+G2(φ,X) +G3(φ,X)2φ] + Sm[g, ψ] , (6.39)

where we have fixed α = 1 and β = 1 so that matter is minimally coupled to the

metric that defines the curvature terms appearing in the action. As a consequence

a conformal non-minimal coupling term, described by the presence of the function

GJ = C(φ)2(1− 2D(φ)X)1/2, is present and can be further constrained with a field

redefinition.

Einstein Frame. The Einstein frame is given by the action

SE =

∫
d4x
√
−g [R+G2(φ,X) +G3(φ,X)2φ] + Sm[g̃, ψ] , (6.40)

where the NMC has been eliminated by the fixing C(φ) = 1 and D(φ = 0) in

the action (6.36) but now matter feels a physical metric related via a disformal

transformation to that defining curvature terms, i.e., g̃µν = eα(φ)gµν + β(φ)φµφν .

Again we can fix one of the two functions α and β via a field rescaling.

Galileon Frame. This frame is given by the action

SG =

∫
d4x
√
−g
[
GG(φ,X)R−GG,X

[
(2φ)2 − (∇µ∇µφ)2

]
+

+G2(φ,X) +G3(φ,X)2φ] + Sm[g̃, ψ] , (6.41)

where

GG = (1− 2D(φ)X)1/2; g̃µν = eα(φ)gµν , (6.42)
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which corresponds to the choice C(φ) = 1 and β(φ) = 1. In this case we have both

NMC and matter fields feeling a physical metric which is now conformally related

to the gravitational one.

Disformal Frame. This frame is given by the action

SD =

∫
d4x
√
−g [GG(φ,X)R+G2(φ,X) +G3(φ,X)2φ] + Sm[g̃, ψ] , (6.43)

where

GG = C(φ)2; g̃µν = gµν + β(φ)φµφν , (6.44)

which amounts to the choice D = 0 and α = 1.

It is worth stressing here that the last two frames, which can be seen as some sort

of intermediate frames between the Jordan and Einstein ones, can actually reduce to the

latter for suitable choices of the rescaling of the field, as it can be seen from the last

columns of table 6.3.2. This is a consequence of the fact that we have four free metric

functions, α(φ), β(φ), C(φ) and D(φ), three of which can be arbitrarily fixed.

As a final remark, while all these equivalent frames are connected by disformal trans-

formations and field rescaling, one has also to be careful about accordingly rescale also

the so far neglected functions G2(φ,X) and Gi(φ,X) in order to preserve the equivalence

of frames.

The above mentioned frames where first proposed in [102] and partially discussed

in [103] where it was pointed out how disformal transformations relate them, albeit no

discussion about their actual physical equivalence was provided. Here we have re-derived

the same results in a different way and in addition we have proved the frames equivalence.

This has relevant consequences, for example it implies that not only DBI Galileon models

with a non-minimally coupled scalar field can be cast via a disformal transformation into

the simpler Einstein frame, but also guarantees the equivalence of these representations.

Furthermore, the equivalence of the frames allows us to claim the equivalence of many

apparently unrelated models as those reported in [101] given that we can move from one

to the other through appropriately chosen disformal transformations and field redefinitions.

6.3.3 More general disformal frames

We have seen in the previous section that the requirement of an Einstein frame strongly

constrains the shape of the Horndeski Lagrangian with a specific form for G4(φ,X) and
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Frame Disformal transformation Field rescaling

Matter Metric NMC function Matter Metric NMC function

Jordan Frame gµν C(φ)2(1 + 2D(φ)X)1/2
gµν (1− 2D(φ)X)1/2

gµν C(φ)2(1− 2ΛX)1/2

Einstein Frame eα(φ)gµν + β(φ)φµφν 1
gµν + β(φ)φµφν 1

eα(φ)gµν + Λφµφν 1

Galileon Frame eα(φ)gµν (1− 2D(φ)X)1/2
gµν (1− 2D(φ)X)1/2

eα(φ)gµν (1− 2ΛX)1/2

Disformal Frame gµν + β(φ)φµφν C(φ)2
gµν + Λφµφν C(φ)2

gµν + β(φ)φµφν 1

Table 6.1: Disformal frames obtained for different fixing of the Horndeski coefficient func-

tions of (6.36). The first two columns show the results of the fixing after a disformal

transformation while the last two show the effects of the further freedom associated to the

invariance under field rescaling (there are two possibilities in each slot in this case as one

can alternatively rescale the metric or the field φ derivative terms). Λ is a dimensional

constant introduced to keep track of the dimensions of the coefficient functions.

forcing G5(φ,X) = 0. However, there is no real physical need to have an Einstein frame

so that one may wonder about the existence of more general Lagrangians that do not

possess an Einstein frame but that show in any case interesting properties under disformal

transformation. We list and analyze here some examples.

Disformal matter When we add the matter Lagrangian to the full Horndeski action,

the Einstein Equivalence Principle allows matter fields to be coupled to a metric

which is disformally related to the one defining the Horndeski action

S = SH [g, φ] + Sm[ḡ, ψ] , (6.45)

where SH is the full Horndeski action (6.1), ψ collectively defines matter fields and

where ḡµν = eα(φ)gµν + β(φ)φµφν . Thanks to the invariance of the full Horndeski

action under disformal transformations and field rescaling we are free to fix both

α(φ) and β(φ) in such a way that, after the transformation, matter propagates

along the geodesics defined by the metric gµν that appears in the Horndeski action.

These transformations will of course affect the Horndeski Lagrangian, but only in

the shape if its coefficient functions, not in its structure. Hence, a Horndeski theory

in which matter propagates on the metric ḡµν = eα(φ)gµν + β(φ)φµφν is equivalent
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to another Horndeski theory, with redefined coefficient functions, in which matter

propagates along the same metric gµν that enters the Horndeski action.

This fact is not particularly surprising but it is nonetheless interesting as it shows

how, without any assumption on the shape of the Horndeski action, we can see that

apparently different matter behaviours are in fact different representations of the

same theory.

Einstein coupling Another possible extension is to include the L5 Lagrangian while

keeping the requirement of having a frame with no conformal coupling. Using the

relations derived in appendix (B.3) we see that this requirement translates into a

condition on the initial shape of the G4(φ,X) function

G4(φ,X) = (1− 2B(φ)X)1/2 −G5,φ(φ,X)X + G̃5,φ(φ,X)X , (6.46)

where

G̃5(φ,X) =

∫
dX(1− 2BX)1/2G5,X(φ,X) . (6.47)

With this requirement we can consider the following action

S =

∫
d4x
√
−g
[
G4(φ,X)R−G4,X(φ,X)

[
(2φ)2 − (∇µ∇µφ)2

]
+

+G2(φ,X) +G3(φ,X)2φ
]

+

∫
d4x
√
−g
[
G5(φ,X)Gµν∇µ∇νφ+

− 1

6

(
(2φ)3 − 32φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3

) ]
+ Sm[g̃, ψ] , (6.48)

whereG4(φ,X) is given by the previous expressions whileG5(φ,X) is left totally free.

With the disformal transformation (6.15) we can eliminate the conformal coupling

leaving only a NMC via the Einstein tensor and matter fields propagating along

disformal geodesics.

We conclude this section recalling that the invariance of the Horndeski action under

disformal transformations and field rescaling holds true for the full Horndeski theory (6.1).

Possible restrictions on the shape and functional dependencies of the free functions of the

theory are to be ascribed only to physical motivations, e.g., the requirement of an Einstein

frame, or to classification aims, e.g., identify equivalent models, but not to constraints

imposed by the invariance itself.

6.4 Summary

The gravitational interaction has been the first one studied in a systematic way and its

modern formulation is encoded in the theory of General Relativity. Despite its successes,
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GR is nowadays challenged both at the theoretical and experimental level, leading to

several proposals for alternatives theories of gravity. However the lack of an axiomatic

procedure for the construction of such theories and the limited regime for which we have

highly constraining observational data, make hard to reduce the number of alternative

theories and to find their mutual relations.

A major tool in physics is represented by symmetries. This is a clean and precise way

to order models, find their simplest formulations and identify the minimal set of degrees

of freedom required to fully define a theory. In the context of standard Scalar-Tensor

Theories this has been systematically investigated and the discovery of the invariance of

such theories under conformal metric transformations and field rescaling has made possible

to identify the minimal number of functions required to describe the theory and showed

the mutual relations between apparently different representations.

Along this line of reasoning, we have investigated the symmetries of the Horndeski

action and found that it is invariant under a more general metric transformation than

conformal, the so called disformal transformation, as well as under field rescalings. These

transformations contain free functions and hence can in principle be used to constrain

the coefficient functions that define the Horndeski action. However, we have shown that

the most general disformal transformation (6.8) cannot be used to this purpose as the

Horndeski action is not invariant under transformations induced by it. We have hence

circumscribed our investigation to a subset of disformal transformations, (6.15) where the

two free functions needed to define it only depends on the scalar field. We have shown that

the Horndeski action is actually invariant under such class of disformal transformations

albeit the generality of the Horndeski action does not allow for an efficient fixing of the

coefficient functions.

For this reason, we looked to the constraints that one has to impose on the Horndeski

coefficient functions in order to have a theory that admits an Einstein frame. We discovered

that this is a quite constraining request as in fact the full Horndeski action is reduced to

the action (6.36) where only a conformal non-minimal coupling is present. This allowed us

to investigate the existence of equivalent frames, in an analogous way to what is done for

standard Scalar-Tensor Theories. We found that apart from the well known Einstein and

Jordan frames, the invariance under disformal transformations allows for the definition

of two more equivalent frames: the so called Galileon and Disformal frames. We further

extend our analysis to frames that do not admit an Einstein frame and showed that even

without this requirement one can find physically relevant frames connected by disformal

transformations.
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In conclusion, we have found a new class of Scalar-Tensor Theories of gravity that

admits physically equivalent frames, which are related by disformal transformation and

field rescaling, thus generalizing the previous results obtained in the context of standard

Scalar-Tensor Theories. This may have important consequences in cosmological context,

in particular for DE models, as may allow to identify a large class of models into different

representations of the same theory.



Chapter 7

Discussion and conclusions

In this thesis we have explored an alternative to the standard CDM paradigm in which a

DM fluid gets non-minimally coupled to curvature terms, investigating both its theoretical

and phenomenological consequences.

In first place we have shown how to construct such a theory, providing the most general

NMC that can be obtained from a fluid if one wants to preserve second order field equations

for gravity. This turned out to produce a very rich phenomenology which may be able to

capture many of the currently unexplained properties of structure formation. Of particular

interest is the presence of anisotropic stresses and the change in the way DM sources the

gravitational potential. In fact the latter, in the weak field limit, depends not only on

the local matter density but also on how it changes in space. A very welcome feature

indeed when addressing the small scales issues of the CDM paradigm, as this effect can

contrast the gravitational infall and consequently alleviate longstanding problems such as

the core-cusp one. More than this, the fact that the gravitational dynamics is modified due

to DM NMC directly influences baryons’ motion thus potentially explaining the observed

correlations between dark and luminous matter.

This is even more clear when one moves to the Einstein frame of the theory where the

NMC is translated into couplings between DM and the other matter components. Here

the geometric nature of the coupling is manifest in the universal way in which it affects all

matter species, including DM itself. In fact, the couplings are fixed once and for all when

the form of the NMC is chosen. The investigation in the Einstein frame showed how the

NMC coupling acts as an effective pressure term for DM thus affecting significantly the

clustering properties. In particular, we have shown how the general effect of the pressure

is to reduce the growth of linear perturbation for a quite broad class of potentials.

We saw that the effects of the NMC are manifold and one has to be careful that they
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do not affect the dynamics in regimes where the standard model is a good description of

the observations. Indeed, our model is designed to modify standard cosmology only at

suitable scales and times. The NMC has not to be intended as a fundamental coupling

but rather as an effective one emerging as a collective behavior of DM particles.

A particularly intriguing driving mechanism might be provided by the condensation of

DM particles. In fact, in this case some special conditions need to be realized in order to

catalyze the NMC of DM to gravity. In primis the temperature must be below a certain

critical value, but also the particle density must be high enough. This in turns would

protect our model from affecting CMB and early universe physics (high densities but

temperature above the critical one) while making its phenomenology relevant at galactic

scales (low temperature and high density). Moreover, a condensation will provide DM with

a characteristic length scale that would make it able to probe gravity on a non-local scales,

thus activating the NMC. We hence consider this dynamical realization of a NMC for DM

worth further investigations which is currently being carried on through the construction

of a coherent framework for NMC BEC in curved spacetimes [170].

We also noticed that the proposed model belongs to a generalized class of Scalar

Tensor Theories. An intriguing result, evidenced by our analysis, was that the Einstein

and Jordan frame are not related, as in standard Scalar-Tensor Theories, via conformal

metric transformations, but rather through a more general one, the so called disformal

transformation.

Of course the NMC DM model here considered is in an early stage of development and

much work has still to be done. On the theoretical side, a better understanding on the

mechanism that triggers the NMC is needed in order to reduce the functional freedom and

to make more “observations-friendly” the model. On the phenomenological side, a detailed

investigation on the effects on gravitational dynamics is required to see to which extent

this model can relax CDM issues without spoiling large scale dynamics. Of particular

interest would be the analysis of the effects on CMB secondary indicators (ISW, weak

lensing), lensing and on the galaxy rotation curves. In particular the latter, being in weak

field limit, can be used to constrain the functional freedom of our model.

On general grounds the possibility that DM might have non trivial interactions with

gravity has been little explored despite its high potentialities. We believe that further

studies in this direction are worthy as they can shed light on cosmological dynamics

and on the nature of the gravitational interactions. In particular, the fact that when

coupled non-minimally to gravity DM develops an effective pressure may be tested against

a large number of observables. In the non-linear regime of structure formation the critical
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density required to form virialized objects will be changed and hence observables effects are

expected on halo properties and formation history. Moreover we can compute the pressure

effects on the statistical properties of matter distributions and on the CMB anisotropies

spectrum.

Finally, also inspired by the previous results, we investigated the effects of disformal

transformations on the most general Scalar-Tensor Theory we have at our disposal: the

Horndeski action. We found that, even if in its most general form this metric transforma-

tion spoils the second order character of the equations of motion, a sub-case is available

that leaves the Horndeski action invariant. This led us to ask, in an analogous way to

what is done for standard scalar-tensor theories, if this invariance can be used to fix some

of the free functions of the theory. We found that this is in general not possible. We

then turned our attention to which is the most general scalar-tensor theory that admits

an Einstein frame under the reduced disformal transformation. The result is interesting

for at least two reasons. First, such a theory exists and it does not reduce to the stan-

dard scalar-tensor theory, showing a more general conformal coupling. Secondly, we found

that, besides the well known Jordan and Einstein frame, two more physically interesting

frames are available: the Galileon and the Disformal ones. These were investigated in pre-

vious works that aimed at showing how some DE models can be related by such disformal

transformation. With our result we prove that they are indeed equivalent representations.

To conclude, in this thesis, we have adopted two different strategies to face current

cosmological puzzles. On one side we have chosen a phenomenological approach and we

have built a model that aims to address small scales DM issues. On the other side we have

conducted a formal investigation of the Horndeski action that led to the identification of a

theory that can accommodate, as different representations, apparently unrelated models

for DE. We believe that both routes are much needed in order to move forward our

understanding and hope that further investigations in these directions will provide a deeper

insight into the fundamental properties of the Universe, especially when done in connection

with observations. In particular, the Euclid mission [204] will represents a fundamental

mean to test couplings between matter and gravity, possibly including the one presented

in this work.
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Appendix A

Derivation of the background

equations in the Einstein frame

In this appendix we give full details of the derivation of the equations reported in section

(5.1). The starting action is

S = SHE [g] + SDM [g, ϕ] +
ε

ρ∗

∫
d4x
√
−gXF (X,ϕ)

(
X +

1

2
V 2(ϕ)

)
. (A.1)

The variation with respect to the independent variables ϕ, λ and the metric gµν respec-

tively gives:

λ�ϕ+∇µλ∇µϕ− λV (ϕ)V,ϕ(ϕ)+

ε

ρ∗

[
�ϕ

(
F (X,ϕ)

(
2X +

1

2
V (ϕ)2

)
+ F,ϕ(X,ϕ)X

(
X +

1

2
V 2(ϕ)

))
+

+∇µϕ∇µ
(
F (X,ϕ)

(
2X +

1

2
V (ϕ)2

)
+ F,X(X,ϕ)X

(
X +

1

2
V 2(ϕ)

))
+

+F (X,ϕ)XV (ϕ)V,ϕ(ϕ) + F,X(X,ϕ)X

(
X +

1

2
V 2(ϕ)

)]
= 0 , (A.2)

X − 1

2
V (ϕ)2 = 0 , (A.3)

Gµν = 8πGTµν + 8πGT int
µν , (A.4)

where

T int
µν =

2ε

ρ∗

{
∇µϕ∇νϕ

[
F (X,ϕ)

(
2X +

1

2
V (ϕ)2

)
+

F,X(X,ϕ)X

(
X +

1

2
V 2(ϕ)

)]
+ gµνF (X,ϕ)X

(
X +

1

2
V (ϕ)2

)}
, (A.5)
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In order to simplify the notation we define the following quantity:

LNMC(X,ϕ) ≡ 1

2
F (X,ϕ)Tµν

∇µϕ∇νϕ
ρ∗

=
F (X,ϕ)

ρ∗
X

(
X +

1

2
V (ϕ)2

)
, (A.6)

so that the stress energy tensor can be rewritten as

Tµν = (λ+ εLNMC
X )∇µϕ∇νϕ+ εLNMCgµν . (A.7)

By a direct confrontation with the shape of the perfect fluid stress energy tensor we can

identify the pressure of the field as

p = LNMC(X,ϕ) . (A.8)

Then, using the constraint equation (A.3) we get:

ρ = (λ+ εLNMC
X )V (ϕ)2 − εLNMC , (A.9)

p = LNMC, (A.10)

uµ = V (ϕ)−1∇µϕ . (A.11)

The constraint (A.3) can be rewritten as:

ϕ̇ = −V (ϕ), ˙≡ uµ∇µ , (A.12)

while we have that

ϑ ≡ ∇µuµ = V (ϕ)−1�ϕ+ Vϕ(ϕ) , (A.13)

with this set of definitions, equations (A.2) and (A.3) can be rewritten as

λ̇ = V −2 [V (ϕ)ρ,ϕ − (ρ+ εp)ϑ] , (A.14)

ϕ̇ = −V (ϕ), (A.15)

where we notice that the minus sign in equation (A.14) has appeared coming from the

definition of the derivative (A.12) and where

ρ,ϕ = 2λV V,ϕ + ε
[
LNMC
,XXV

3V,ϕ + LNMC
,Xϕ V

2 + LNMC
,X V V,ϕ − LNMC

,ϕ

]
. (A.16)
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Here we have defined the various terms in the Lagrangian as follows:

LNMC =
1

2
F (X,ϕ)

V (ϕ)4

ρ∗
, LNMC

,X =
3

2
F (X,ϕ)

V (ϕ)2

ρ∗
+

1

2
F,X(X,ϕ)

V (ϕ)4

ρ∗
, (A.17)

LNMC
,XX = 2

F (X,ϕ)

ρ∗
+

1

2
F,XX(ϕ,X)

V (ϕ)4

ρ∗
+

1

2
F,X(X,ϕ)

V (ϕ)2

ρ∗
, (A.18)

LNMC
,Xϕ = F (X,ϕ)

V (ϕ)

ρ∗
V,ϕ(ϕ) +

1

2
F,ϕX(ϕ,X)

V (ϕ)4

ρ∗
+

+
1

2
F (X,ϕ),XV,ϕ(ϕ)

V (ϕ)3

ρ∗
+

3

2
F,ϕ(X,ϕ)

V (ϕ)2

ρ∗
, (A.19)

LNMC
,ϕ =

1

2
F (X,ϕ)

V (ϕ)3

ρ∗
V,ϕ(ϕ) +

1

2
F,ϕ(X,ϕ)

V (ϕ)4

ρ∗
. (A.20)

Notice that the Klein-Gordon equation for the field ϕ is now an evolution equation for the

Lagrangian multiplier λ equation (A.14).
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Appendix B

Disformal transformation and the

Horndeski action

In this appendix we provide in detail the results of disformal transformations on the

Horndeski action. We will first show how the most general disformal transformation (6.8)

spoils the second order nature of the equations of motion derived from the Horndeski

action and then, after providing the transformation rules for geometrical quantities, we

will discuss the invariance of the theory under the reduced disformal transformation (6.15).

B.1 Keeping second order field equations

In this section we show how a metric transformation induced by the general disformal

relation (6.8) spoils the property of the Horndeski action of producing second order field

equations.1

Our proof consists of direct calculation of the modifications that the disformal transfor-

mation has onto a particular term of the full Lagrangian, namely L4, when the disformal

functions depends only on the kinetic term of the scalar field φ. Despite this does not

represent a formal proof of our statement it is nonetheless general enough to discard any

kinetic term dependence in the disformal transformation if second order field equations

are to be preserved. We leave the formal proof of this for further work, but we stress that

the result obtained here holds in general. Our calculations make use of [5], where a general

procedure on how to build actions for a metric and a scalar field that keeps the equation

1 We want to stress that this result holds on both curved background as well as on flat backgrounds

with the exception that on flat space times there exist subcases that give second order field equations even

after a disformal transformation.
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of motion second order was put forward. We will shortly review it for what concerns us,

referring the interested reader to the original paper.2

In flat space times consider the following Lagrangian:

L = T µ1···µnν1···νn
(2n) ∇µ1∇ν1φ . . .∇µn∇νnφ , (B.1)

where

T = T (φ, φα), L = L(φ, φµ,∇µ∇νφ) , (B.2)

then the following lemma holds:

Lemma 1 A sufficient condition for the field equations derived from the Lagrangian B.1

to remain second order or less is that T µ1···µnν1·νn
(2n) is totally antisymmetric in its first

indices µi as well as (separately) in its last indices νi.

Notice that this is a sufficient conditions. However the opposite statement has been

proven and a uniqueness condition exists so that the condition is both necessary and

sufficient.

When one moves to curved space times and covariantizes promoting partial deriva-

tives to covariant derivatives, third order derivatives of the metric are produced. It has

been shown that adding a suitable finite number of non-minimally coupled terms to the

Lagrangian is enough to eliminate the higher than second derivatives from the equations

of motion in both the scalar field and in the metric. As a final result the authors of [5]

gave the form of the Lagrangian that preserves the second order equations:

Ln{f} =

bn/2c∑
p=0

Cn,pLn,p{f} , (B.3)

where bn/2c indicates the integer part while the curly bracket indicates that L is a func-

tional of f , which is in general different for any n, and where

Ln,p{f} = Pµ1···µnν1···νn
(p) ∇µ1R(p)S(q≡n−2p) , (B.4)

R(p) =

p∏
i=1

Rµ2i−1µ2iν2i−1ν2i , S(q≡n−2p) =

q−1∏
i=0

∇µn−i∇νn−iφ , (B.5)

while

Pµ1···µnν1···νn
(p) =

∫ X

X0

dX1 · · ·
∫ Xp−1

X0

dXpT µ1···µnν1···νn
(2n) (φ,X1) , (B.6)

2Notice that in our work we have the following correspondences: π → φ, πµ → φµ, πµν → ∇µ∇νφ and

X → 2X.
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while the coefficients are given by:

Cn,p =

(
−1

8

)p n!

(n− 2p)!p!
. (B.7)

Using the Lagrangian B.1 and the rules reported above it is possible to construct

all covariant theories that gives second order field equations and in particular in four

dimensions we have that the Horndeski action is a linear combination of the following

terms:

L0,0 = Xf0(φ,X) , L1,0 = Xf1(φ,X)Aµν2 ∇µ∇νφ , (B.8)

L2,0 = Xf2(φ,X)Aµ1µ2ν1ν2
4 ∇µ1∇ν2φ∇µ2∇ν2φ , (B.9)

L3,0 = Xf3(φ,X)Aµ1µ2µ3ν1ν2ν3
6 ∇µ1∇ν2φ∇µ2∇ν2φ∇µ3∇ν3φ , (B.10)

L2,1 = Pµ1µ2ν1ν2

(1) Rµ1µ2ν1ν2 , P(1) =

∫
dX1Aµ1µ2ν1ν2

4 X1f(2)(φ,X1) , (B.11)

L3,1 = Pµ1µ2µ3ν1ν2ν3

(1) Rµ1µ2ν1ν2∇µ3∇ν3φ , (B.12)

P(1) =

∫
dX1Aµ1µ2µ3ν1ν2ν3

6 X1f(3)(φ,X1) , (B.13)

where the coefficients C are

C0,0 = 1 , C1,0 = 1 , C2,0 = 1 , C3,0 = 1 , C2,1 = −1

4
, C3,1 = −3

4
, (B.14)

where we have redefined the form function T2n(φ,X) = Xfn(φ, 2X)A2n in such a way to

separate the field dependences (φ,X) from the structure term A(gαβ, φα). Notice that the

terms (2, 0) and (2, 1) as well as (3, 0) and (3, 1) are coupled terms whose joint presence is

required in order to cancel the unwanted higher order derivatives. The Horndeski action

can be rephrased in these terms with the following identifications:3

G2(φ,X) = Xf(0)(φ,X) , G3(φ,X) = Xf(1)(φ,X) , Aµν(2) = gµν , (B.15)

G4(φ,X) =

∫ [
X1f(2)(φ,X1)dX1

]
; Aµανβ(4) = gµβgνα − gµνgαβ , (B.16)

G5(φ,X) =

∫ [
X1f(3)(φ,X1)dX1

]
(B.17)

Aµσανρβ(6) = gαν
[
gβµgσρ − gβρgσµ

]
(B.18)

+ gασ
[
−gβµgνρ + gβρgνµ

]
+ gαβ [gσµgνρ − gσρgνµ] . (B.19)

3Notice that compared with the convention used in the definition of the kinetic term X in [5] there are

factors 1/2 that have been reabsorbed into the definition of the function f(n).
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In order to prove our statement we need to show how a kinetic dependent metric transfor-

mation spoils the antisymmetric structure of the model. Before entering the calculations

we note that the effects of a disformal metric transformation on the coefficient functions

f(n) only redefines its functional dependence, while the structure functions A are again

only redefined with no modifications on their antisymmetric structure. Hence, in order to

check the breaking of the antisymmetric structure, we only need to compute the effects

of metric transformations on second covariant derivatives of the field and on the Riemann

tensor. In order to do this in a simple way, we will look at the effects of the kinetic

dependence of the disformal functions A(X) and B(X) by applying separately a confor-

mal transformation and a purely disformal one on the terms corresponding to L4 in the

rephrased Horndeski action (B.13).

B.1.1 Conformal transformation

Consider a conformal transformation of the kind

ḡµν = A(X)gµν . (B.20)

After the conformal transformation B.20 is performed the original L4 Lagrangian is

mapped into:

L4 = A2G4R−A2G4,X

[
(2φ)2 − (∇µ∇νφ)2

]
− 6AA′G4(∇µ∇νφ)2

− 6AA′G4φ
α2∇αφ− 2AA′G4,X

[
2φ+

A′

A
φµφν∇µ∇νφ

]
φαφβ∇α∇βφ

+ φµφν∇µ∇αφ∇ν∇αφ
[
−4AA′G4,X +AA′2X − 6A′′AG4

]
. (B.21)

From this expression it is clear that the first two terms are not dangerous as they have

the same structure as those in the original Lagrangian. In order to better understand the

others we proceed in rewriting them in the form Aµανβ∇µ∇νφ∇α∇βφ. Any antisymmetry

violating term will then directly lead to higher derivatives in the equation of motions. After

some manipulation we arrive at the expression:

∼
[
−6AA′G4(gαµgβν) + (−2G4,XAA

′ + 6A′2G4 +AA′′G4 +AA′G4,X)gµνφαφβ

+(−4G4,XAA
′ + 4G4,XA

′2X − 6AA′′G4)gνβφαφµ − 2G4,XA
′2φµφνφαφβ

]
∇µ∇νφ∇α∇βφ ,

(B.22)

where the symbol ∼ indicates that only the dangerous terms have been considered and

notice that we have added a surface term to rewrite the third order derivative. As can be
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easily seen antisymmetry breaking terms have appeared in the Lagrangian. We can then

conclude that the generalized conformal transformation B.20 spoils the antisymmetric

structure of the Horndeski action and hence gives equation of motion for the fields that

are higher than second order.

B.1.2 Disformal transformations

Consider now a metric transformation of the form

ḡµν = gµν +B(X)φµφν . (B.23)

Using the same procedure of the previous section we can write the transformed L4 part of

the Lagrangian and see whether or not it is possible to recover the antisymmetric structure.

The dangerous terms of the transformed Lagrangian read

∼

[
gµνφαφβ

(
2G4,X(B′X +B)

(1 + 2XB/A)1/2
− 2G4(B2 −B′(1 +BX))

(1 + 2XB/A)3/2

−2
G4

(1 + 2XB/A)1/2
Rαµβν −

G4B
′

(1 + 2XB/A)1/2
+

2B′G4

(1 + 2XB/A)1/2

+
2XB′′G4

(1 + 2XB/A)1/2
+

2B′G4,X

(1 + 2XB/A)1/2
− 2B′G4(B′X +B)

(1 + 2XB/A)3/2

)]

gµαφβφν

[
−

G4,X

(1 + 2XB/A)1/2

(
B − 2XB′(−1X2B′)) +

G4

(1 + 2XB/A)3/2
(B2 −B′ +B′2X2

−XB′′ (1 + 2XB/A)
)

+
G4B

′

(1 + 2XB/A)1/2
− 2

G4,XB
′X

(1 + 2XB/A)1/2
− 2

G4B
′

(1 + 2XB/A)1/2

]

φµφνφαφβ

[
G4,XB

′(1− 2X2B′)

(1 + 2XB/A)1/2
+
G4(−XB′2 +B′′ (1 + 2XB/A)−BB′)

(1 + 2XB/A)3/2

−
G4,XB

′

(1 + 2XB/A)1/2
− G4B

′′

(1 + 2XB/A)1/2
+
G4B

′(B′X +B)

(1 + 2XB/A)3/2

]
∇µ∇ν∇αφ∇βφ , (B.24)

which, again, contains terms which are not antisymmetric in the couples (α, β) and (µ, ν)

hence giving rise to higher derivatives in the equations of motion.

In conclusion, even if a formal proof of this result would be desirable, our result clearly

states that if one wants to preserve second order field equations, then the most general

disformal transformation that can be used is the one reported in equation (6.15) where

the disformal functions A and B only depends on the scalar field φ.
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B.2 Transformation properties of geometrical quantities.

We provide here the transformation rules for geometric quantities when the metric under-

goes a disformal transformation of the kind

ḡµν = A(φ)gµν +B(φ)φµφν , (B.25)

where both metric g and ḡ are well defined metrics that can be equally be used to rise and

lower indices. The transformed inverse is:

ḡµν =
1

A(φ)
gµν − B(φ)

A(φ)2 (1 + 2XB/A)
φµφν , (B.26)

while the volume element changes (see appendix C of [203]) as

√
−ḡ = A(φ)2 (1 + 2XB/A)1/2√−g . (B.27)

From this definitions one can express all the barred curvature quantities in function of

the unbarred metric and the scalar field φ. We list these below.

Connection coefficient

Γ̄µαβ = Γµαβ +
B

A (1 + 2XB/A)
φµ∇α∇βφ+

A′

2A

(
δµαφβ + δµβφα

)
+

1

2

φµ

A2 (1 + 2XB/A)

(
−AA′gαβ + (AB′ − 2A′B)φαφβ

)
. (B.28)

Ricci Tensor

R̄αβ = Rαβ+

[
AB (1 + 2XB/A)2φ−B2φµ∇µX −AA′ (1 + 2XB/A) + (AB′ −A′B)X

A2 (1 + 2XB/A)2

]
∇α∇βφ

+

[
−A2A′ (1 + 2XB/A)2φ+AA′Bφµ∇µX − 2A′X2(A′B −AB′)− 2A2A′′X (1 + 2XB/A)

2A3 (1 + 2XB/A)2

]
gαβ

+

[
2φ(A3B′ − 4AA′B′X − 2A2B(A′ −B′X))− 2A′′(A3 + 6AB2X2 + 5A2BX)

2A4 (1 + 2XB/A)2

+
ABφµ∇µX(2A′B −AB′) + 6A′2B2X + 2AA′BX(5A′ + 3B′X) + 3A′A2B′X

2A4 (1 + 2XB/A)2

]
φαφβ

+

[
−2AB (1 + 2XB/A)Rαµβνφ

µφν − 2AB (1 + 2XB/A)∇α∇λφ∇β∇λφ+ 2B2∇αX∇αX
2A2 (1 + 2XB/A)2

+
(A′B −AB′)(φα∇βX + φβ∇αX)− φαφβφµφ∇µX

2A2 (1 + 2XB/A)2

]
. (B.29)
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Ricci Scalar

R̄ = R− 2B

A2 (1 + 2XB/A)
Rαβφ

αφβ +
B

A2 (1 + 2XB/A)

[
(2φ)2 − (∇α∇βφ)2

]
+

2B

A3 (1 + 2XB/A)2 [∇αX∇αX − φα∇αX2φ]− 8A′BX +A(3A′ − 2B′X)

A3 (1 + 2XB/A)2 2φ

+
4A′B −AB′

A3 (1 + 2XB/A)2φ
α∇αX +

3A′X(A′ + 2B′X)

A2 (1 + 2XB/A)2 −
6A′′X

A2 (1 + 2XB/A)
. (B.30)

Notice that both functions A and B are to be intended as general functions of the

scalar field φ.

B.3 Transformation properties of the Horndeski action un-

der disformal transformations

We explored the consequences on the Horndeski action when the metric is transformed

via a disformal transformation

ḡµν = A(φ)gµν +B(φ)φµφν . (B.31)

through a direct calculation. Our results show that after this transformation is performed

the new action can be recast into the same initial Horndeski form given that all the effect

of the transformation are absorbed into the rescaling of the free coefficient functions.

As a consequence we can say that the Horndeski action is formally invariant under this

class of disformal transformation. We report below the transformations properties of the

Horndeski Lagrangian coefficient functions. The new Lagrangian is

L̄ =
∑
i

L̄i , (B.32)

where

L̄2 = Ḡ2(φ,X) , (B.33)

L̄3 = Ḡ3(φ,X)2φ , (B.34)

L̄4 = Ḡ4(φ,X)R− Ḡ4,X(φ,X)
[
(2φ)2 − (∇µ∇νφ)2

]
, (B.35)

L̄5 = Ḡ5(φ,X)Gµν∇µ∇νφ+ (B.36)

+
Ḡ5,X(φ,X)

6

[
(2φ)3 − 3(2φ)(∇ν∇µφ)2 + 2(∇µ∇νφ)3

]
, (B.37)
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where

Ḡ2(φ,X) = (1 + 2XB/A)1/2G2(φ,XD)+2X

[
G3(φ,XD)AA′

(1 + 2XB/A)1/2
+
G3(φ,XD)(A′B)X

(1 + 2XB/A)3/2
+H3,φ(φ,X)

]

+3X
G4(φ,XD) [A′ + 2A′B′X − 2AA′ − 4A′BX]

A (1 + 2XB/A)3/2
+12X

G4,X(φ,XD)X
[
A′2BX −AA′B′X

]
A2 (1 + 2XB/A)1/2

−2XH4,φ(φ,X)+
3G5(φ,XD)X2A′

A4 (1 + 2XB/A)5/2

[
−A′2BX + 2A2A′′ (1 + 2XB/A)−A(2A′2 + 3A′B′X)

]
− 2XH5,φ(φ,X) +

2G5,X(φ,XD)X3

A4 (1 + 2XB/A)3/2

(
A′3BX +AA′(A′ + 3B′X)

)
, (B.38)

Ḡ3(φ,X) =

[
AG3(φ,XD)

(1 + 2XB/A)1/2
+H3(φ,X)

]

+

[
G4(φ,XD)

(
4AA′B +ABB′X +A′B2X

)
A2 (1 + 2XB/A)3/2

+
BG4,φ(φ,XD)

(1 + 2XB/A)1/2

+
G4,X

(
AA′BX − 2A2A′ + 2A2B′X

)
A2 (1 + 2XB/A)1/2

−H4(φ,X)

]

+

[
X

(
−2(H2,φ(φ,X)−HR,φφ(φ,X)) +

G5(φ,XD)

A3 (1 + 2XB/A)5/2

(
5A′2BX −A

(
A′2

2
+ 6A′B′X

))

+
2G5(φ,XD)

A (1 + 2XB/A)3/2
A′′ +

G5,XXA
′

A3 (1 + 2XB/A)3/2

(
AA′ − 2A′BX + 4AB′X

))
−H5(φ,X)

]
,

(B.39)

Ḡ4(φ,X) = A (1 + 2XB/A)1/2G4(φ,XD)−

(
G5(φ,XD)X2

A2 (1 + 2XB/A)3/2
(A′B −AB′) +HR,φ(φ,X)X

)
,

(B.40)

Ḡ5(φ,X) =
G5(φ,XD)

(1 + 2XB/A)1/2
+HR(φ,X) , (B.41)

where the explicit form of the functions Hi are

H4(φ,X) =

∫
dX

[
G4(φ,XD)

(
4AA′B +ABB′X +A′B2X

)
A2 (1 + 2XB/A)3/2

]
, (B.42)

H3(φ,X) = B

∫
dX

G3(φ,XD)

(1 + 2XB/A)3/2
, (B.43)
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H5(φ,X) =

∫
dX
[
H2,φ(φ,X)−HR,φφ(φ,X)

+
G5(φ,XD)

2A3 (1 + 2XB/A)5/2

(
−5A′BX − 2A2A′′ (1 + 2XB/A)

+A(5A′2 + 6A′B′X)
)

+
G5,X(φ,XD)

A2 (1 + 2XB/A)3/2

(
−A′BX + 2A(A′ +B′X)

) ]
, (B.44)

H2(φ,X) = G5(φ,XD)
AA′ + (AB′ −A′B)X

A2 (1 + 2XB/A)3/2
, (B.45)

HR(φ,X) =
B

A

∫
dX

G5(φ,XD)

(1 + 2XB/A)3/2
, (B.46)

while

XD =
X/A

1 + 2B/AX
, (B.47)

and, again, the functions A and B depend on the scalar field φ. The most relevant

conclusion is that the effect of the disformal transformation on the Horndeski action can be

recast into renormalisation of the coefficient functions, exactly as in the case of conformal

transformations for standard scalar-tensor theories, which, we stress, are a subcase of

our result. Then notice that, if one starts with a only a subset of the Lagrangians, a

disformal transformation will in general produce contributions at all sub-Lagrangians in

a hierarchical way. Said in other words, the corrections propagate from higher derivatives

down to lower derivatives terms.

B.4 Invariance under field rescaling

Besides the previously analysed invariance under disformal transformation it can be proved

that the Horndeski action is also invariant under the rescaling of the scalar field

φ = s(ψ)ψ . (B.48)

In fact, the effects of this transformation can be again reabsorbed into redefinitions of the

Horndeski coefficient functions which become

Ḡ2(ψ, X̄) = G2(ψ, X̄) + 2Y G3(ψ, X̄)(2s′ + ψs′′)− 2Y H4,ψ(ψ, X̄) + 2Y H2,ψ , (B.49)

Ḡ3(ψ, X̄) = (s′ψ+ s)G3(ψ, X̄)−
(
4Y G4,Y (ψ, X̄)− 2G4(ψ, X̄)

) 2s′ + s′′ψ

s+ ψs′
+ 2Y H5,ψ −H2 ,

(B.50)

Ḡ4(ψ, X̄) = G4(ψ, X̄)− Y (2s′ + ψs′′)G5(ψ, X̄) , Ḡ5(ψ, X̄) = (2s′ + s′′ψ)G5(ψ, X̄) ,

(B.51)
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where

H4(ψ, X̄) = G4(ψ, X̄)
2s′ + s′′ψ

s+ ψs′
, H5(ψ, X̄) = (2s′ + ψs′′)G5

2s′ + s′′ψ

s+ ψs′
, (B.52)

H2(ψ, X̄) =

∫
dX̄H5,ψ(ψ, X̄) , (B.53)

where X̄ = (s′(ψ)ψ + s(ψ))2Y , being Y = ψµψµ/2, and where a prime denotes the

derivative w.r.t. ψ.

The field transformation is in principle arbitrary. However, as can be seen from,

e.g., the Ḡ3 coefficient, infinities may be generated if s + ψs′ = 0. This amounts to say

that the solution s(ψ) = ψ−1 is excluded from the set of admissible rescaling. This fact is in

some sense obvious because it is equivalent to the limit of having no scalar field. A second

remark concerns the possibility of eliminating the NMC with the Einstein tensor with a

field redefinition. In fact the transformed G5 coefficient is proportional to 2s′(ψ)+ψs′′(ψ).

This equation can be integrated once giving s(ψ) = −ψs′(ψ), whose solution is excluded

by the previous requirement. We conclude that it is not possible to eliminate the NMC

with the Einstein tensor with a field redefinition.
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