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Foreword

This dissertation summarizes the main line of research that I have followed during my PhD course.
It is based on some of the papers that I have co-written in the past three years [1-3], as well as
some yet unpublished material. The main topic is the study of cascading gauge theories by means
of type IIB supergravity dual solutions. This thesis is structured as follows.

The first four chapters contain review material on the large N limit of gauge theories and
its relation with string theory, beautifully realized in the celebrated AdS/CFT duality and in its
nonconformal extensions. Chapter 1 reviews the arguments suggesting that string theories might
arise in the large N limit of gauge theories. In chapter 2 we introduce the AdS/CFT correspondence,
which has provided the first explicit implementation of that long-standing expectation. In chapter
3 we recall the application of AdS/CFT duality, along with its nonconformal extensions, to the
arena of the conifold; we introduce and review in detail the prototypical example of a cascading
gauge theory, the famous Klebanov-Strassler theory, which at low energies describes the minimally
supersymmetric Yang-Mills theory.

The subsequent three chapters follow the tangential line of research of holographic dualities
for gauge theories with dynamical flavor fields. This field is relevant per se because it allows the
application of gauge/gravity duality to a realm of phenomenologically more appealing theories,
closer to real world QCD. Therefore we have included in chapter 4 an introduction to large N
expansions in gauge theories with fundamental flavor fields and to the extension of AdS/CFT
duality to account for flavor fields, with a critical presentation of the different approaches that have
been developed in the literature. This chapter concludes the review material of the thesis.

With the aim of finding a gravity dual of large N N’ = 1 Super-QCD, we consider the problem
of adding dynamical flavors to the Klebanov-Strassler theory. As a necessary intermediate step, we
first study in chapter 5 the addition of dynamical flavors to the conformal Klebanov-Witten theory.
After that preliminary work, in chapter 6 we find a flavored version of the Klebanov-Strassler
solution, learning, by means of novel methods that we introduce, that a different cascade describes
the RG flow of the dual field theory.

In the last two chapters of the thesis we apply our new methods to the study of cascading gauge
theories living on regular and fractional D3 branes at conical singularities. In chapter 7 we find a
gravity solution for fractional branes at an orbifold of the conifold. That is the first instance of a
supergravity solution describing fractional branes which trigger different low energy dynamics; we
study its RG flow, discovering that the interplay of various fractional branes considerably enriches
the pattern of the cascade with respect to previously known cases.

Stimulated by those results, in the final chapter we reconsider the well known solution describing
fractional branes on an N = 2 orbifold: we propose a novel dual interpretation of that solution
in terms of a cascading RG flow at a very specific point of the moduli space of the gauge theory.
We also find novel vacua, for which we identify the dual type IIB backgrounds, and in this process
we gain an understanding of some of the surprising aspects of cascading gauge theories that we
uncovered in the previous chapters.

Finally, we collect in five appendices our conventions and additional technical material which
may help the comprehension of the main text.
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Chapter 1

Introduction

String theory was born in the sixties as an attempt to model strong interactions, motivating the
approximately linear Regge trajectories that hadron spectra fit. Veneziano’s dual model [4] (with
respect to s-channel and ¢-channel exchanges of virtual particles) was soon interpreted as stemming
from a theory of open strings [5]. The idea was that a meson could be modeled by an open string,
representing a strong interaction flux tube, linking a quark and an antiquark at its endpoints.
Mesons with different spins arise in this picture as different oscillation modes of the same string, and
their interactions are interpreted as splitting and joining interactions of open strings. Unfortunately,
it was soon understood that quantum consistency of Veneziano’s dual model in four dimensions
requires that the spin 0 state of the spectrum is a tachyon and the spin 1 state is massless. But in
real world hadronic phenomenology, there are no tachyons nor massless vector mesons, therefore
string theory started to look problematic as a quantum theory of strong interactions.

In the same years, Quantum Chromodynamics (QCD) was proposed as another candidate for
describing strong interactions. In the early seventies, the discovery of asymptotic freedom [6] singled
out QCD as the correct quantum field theory describing strong interactions between quarks and
gluons. The high energy behavior of the theory has overcome innumerable tests at accelerator facil-
ities, starting from the deep inelastic scattering experiments which originally led to the formulation
of the phenomenological parton model in the late sixties, up to more modern experiments at LEP
and Tevatron where the whole Standard Model of elementary particles and fundamental interac-
tions, including QCD, has been extensively tested. The theory is well formulated and tested in the
ultraviolet in terms of the interactions between quarks and gluons, but its large distance properties
still escape a complete understanding. We know from observations that quarks and gluons are
confined inside mesons and baryons, but we are still far from being able to understand and prove
confinement from first principles, since for energies of the order of the dimensional transmutation
scale of QCD — about 200 MeV — the theory is strongly coupled and perturbative computations
are of no use. A low energy effective description of QCD is available — it goes under the name
of Chiral Perturbation Theory — but the spectrum of hadrons and the coupling constants of their
interactions cannot be obtained from the underlying microscopic theory.

Several brilliant methods have been developed through the years in order to overcome these
difficulties. One of the most powerful approaches is lattice QCD [7], which apart from technical
difficulties allows in principle the computation of all the low energy features of QCD; unfortunately,
even when it is very successful in estimating quantities, this method fails in providing a qualitatively
deeper insight of the phenomena it exhibits.

15



16 CHAPTER 1. INTRODUCTION

Another approach which looked very promising was the large N expansion of gauge theories [8].
't Hooft rearranged the Feynman diagrams of QCD in a topological expansion which resembles that
of a theory of open and closed strings, with coupling proportional to 1/N, thus reconnecting gauge
theories with string theory. Despite the simplification, nobody has been able to sum all the planar
diagrams and solve SU(N) QCD in the large N limit and propose an elementary string theory dual.
Nevertheless, many distinctive phenomenological features of QCD have a natural explanation in
the large N limit, suggesting that this be a very good approximation to real world SU(3) QCD.

Although QCD is the exact theory of strong interactions, well describing the approximately
Coulombic interactions at short distances, at larger distances, of the order of 1 fm, the quark-
antiquark interaction seems to be well approximated by a linear potential, indicating the presence
of a flux tube. String theory may therefore be viewed as an effective low energy description of
chromoelectric flux tubes, reliable when the length of the flux tube makes its thickness negligible.
Semiclassical quantization of long Nambu-Goto strings was considered by Liischer, who predicted
a quark-antiquark potential of the form V(r) = Tr +pu+ 1 + O (r%) at large distances [9]. The
coefficient ~ of the so-called Liischer term is proportional to the zero-point energy of the string in
four spacetime dimensions. Remarkably, lattice calculations are in good agreement with Liischer’s
formula for » > 0.7 fm [10].

During the nineties, the discovery of D branes [11] in string theory and the following formulation
of the AdS/CFT duality conjecture [12] and its nonconformal extensions, brought together string
theory and gauge theory once again, providing the first explicit realization of 't Hooft’s idea for
a four-dimensional gauge theory, and allowing computations in strongly coupled large N gauge
theories by means of weakly coupled and weakly curved string duals. Surprisingly, from that
viewpoint the effective thick YM string emerges holographically from the string of a fundamental
theory.

1.1 ’t Hooft’s large N. expansion for pure Yang-Mills theories

More than forty years after its formulation, and thirty-five years after the discovery of asymptotic
freedom that established it as the theory of strong interactions between quarks and gluons, Quantum
Chromodynamics (QCD) is still a challenge for theoretical physicists. The perturbative approach
is not useful to describe long distance properties of QCD, because of dimensional transmutation:
if the number of flavors is not too large, gauge dynamics runs towards strong coupling along the
renormalization group flow, and dynamically generates a mass scale Agcp that fixes the order of
magnitude of nonperturbative observables such as the spectrum of hadrons and the thickness and
the energy density of chromoelectric flux tubes which confine quarks inside hadrons. At energies of
the order of Agcp ~ 200 MeV, the gauge coupling becomes strong and the perturbative expansion
which describes very well ultraviolet (UV) phenomena such as deep inelastic scatterings is no longer
applicable. The best available quantitative method to tackle infrared (IR) properties of QCD is
that of lattice gauge theories. However, getting some analytic theoretical handle on the theory
would be clearly of great help.

Already in the 1970’s, considerable progress arose from the insight of 't Hooft [8], who proposed
to generalize the SU(3) color group of real world QCD to an SU(N.) group, and showed that
taking a suitable large N, limit the diagrammatics of the gauge theory greatly simplifies: Feynman
diagrams of the gauge theory rearrange in a topological expansion, weighted by powers of 1/N,,
which closely resembles that of a string theory.
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In addition to the original masterpiece [8], we refer the reader to the first part of [13] for a nice
introduction to the subject and to [14] for a more comprehensive review.

Let us review here the argument for the pure Yang-Mills (YM) theory. In section 4.1.1 we will
generalize to a Yang-Mills theory with flavor fields in the fundamental and antifundamental repre-
sentation. For the sake of simplicity we restrict our attention to the U(N,) pure Yang-Mills theory,
including only gluons in the adjoint representation of the gauge group.! The difference between
U(N.) and SU(N.) can be traced back, and affects only subleading diagrams in the expansions.
We will follow the convention according to which gauge fields are canonically normalized in the
action

1
Sym =3 /d4x Tr(F,, F*) , (1.1.1)

which must be supplemented with a gauge fixing and a ghost term for quantization. In our con-
ventions

1
Te(TaTp) = 5an (1.1.2)

is the normalization of generators T4 in the fundamental representation of U(N,). The covariant
derivative is

D, =0, +igA, (1.1.3)

and the nonabelian field strength is

Fuy = ——[Dyu, D] = 0,4, — 0, A, +iglAu, A . (1.1.4)

_t [
g
For the sake of simplicity we will neglect ghosts in the treatment; since they also transform in the
adjoint representation, they can be included safely without changing the qualitative results that

are laid out in the following.

In a large N, limit, it is important to keep track of traces over color indices arising from loops
of virtual gluons, since each trace carries a factor of N.. In view of this, 't Hooft introduced the
so called ‘double line notation’. Since N, x N, = Adj, as far as the color structure is concerned we
can associate to a gluon a quark-like index in the fundamental representation and an antiquark-
like index in the antifundamental representation of the gauge group. A quark propagator and an
antiquark propagator are usually denoted in Feynman rules as a single line, with an arrow pointing
in one direction or the opposite one. One can therefore naturally represent a gluon propagator as
a double line, made out of two parallel single lines with opposite orientations, as in Fig. 1.1.

The color structure in Feynman rules is simplified in this notation. Color conservation, or
gauge invariance of the vertices, implies that each line entering a vertex (cubic or quartic) also
exits the vertex as a neighboring line (there is no crossing). Furthermore, since the fundamental
representation of a U(N,) group is complex, lines have an arrow on top and vertices preserve line
orientations. The cubic and quartic gluon vertices in double line notation are presented in Fig. 1.2.

Let us now consider the one loop correction to the gluon propagator which arises from inserting
two cubic vertices, depicted in Fig. 1.3. Each cubic vertex carries a g factor, and the sum over
color indices k brings in an additional N, factor; all in all, the diagram is proportional to g2N..
This power counting analysis clarifies that a naive N, — oo limit would make radiative corrections

!The same argument goes through for a theory of N x N matrices, with a global U(N) symmetry.
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quark

antiquark

gluon

Figure 1.1: Propagators in double line notation.

Figure 1.3: Radiative correction to the gluon propagator.
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Figure 1.4: Instance of a connected vacuum diagram. This Feynman diagram is not planar since
there are two overpasses which add two handles to the plane.

diverge because of multiplicities in loops. In order for this radiative correction to be finite, the
limit which has to be considered is rather a double scaling limit:

{ Ne = o0 keeping A= ¢?’N, fized, (1.1.5)

g— 0

so that the vanishing of the gauge coupling cancels the divergence of the combinatoric factor. A is
usually called 't Hooft coupling, and is the coupling that naturally comes out of loop computations
in gauge theories, once combinatoric factors are taken into account. In this limit, the diagram of
Fig. 1.3 scales as A, and has the same N dependence as the tree level gluon propagator.

An alternative way to understand why we should consider the large N, limit (1.1.5) is to look
at the Yang-Mills one-loop S-function,

dg 11 g3

dg _ Uy 9 1.1.
Han = 37 16n2 (1.16)

This equation does not have a sensible large N, limit if we keep the Yang-Mills coupling fixed, since
the right-hand side diverges with N.. If instead we introduce the 't Hooft coupling A, its one-loop
B-function is
dx 22 X2
Fan = 73 16n2
therefore we can sensibly keep A fixed as we send N, — o0.
In the large N, limit (1.1.5), the Yang-Mills coupling g, which weights vertices in Feynman
rules, goes to zero. In order for a diagram to survive the large NN, limit, its combinatoric factors
must be large enough to compensate the vanishing of the gauge coupling. It turns out that only
‘planar diagrams’, those which can be drawn on a plane without lines crossing out of a vertex,
survive this limit. More generally, Feynman diagrams nicely rearrange in a 1/N, expansion where
the powers of the expansion parameter depend on the topology of the diagram. Let us review the
argument. We will first restrict our attention to connected vacuum diagrams, which at lowest order
in perturbation theory scale like N2. By attaching little surfaces (polygons) to each color loop, we
get a two-dimensional surface: it is characterized by having as many vertices V' as the interaction
vertices of the perturbative expansion, as many faces F' as the number of color loops, and as many

(1.1.7)
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edges F as the number of propagators. We further denote by V3 and V4 the number of cubic and
quartic vertices respectively, so that V = V3 + Vj. A generic example is drawn in figure 1.4. We
invite the reader to count the number of vertices, edges and faces of the diagram. Because Feynman
rules assign weight ¢ to the cubic vertex and g2 to the quartic vertex, the diagram will scale like

r=gBtVaNt (1.1.8)
Making use of the relation?
2F = 3V3 + 4V, =2V + (V3 + 2V)) (1.1.9)
between the number of propagators and the numbers of cubic and quartic vertices, we find that
r=g?EVINE (1.1.10)

and using the definition of the Euler character of the surface xy = F — E+V = 2 — 2h (h is the
number of handles) we get that the diagram scales like

r= \2VatVaN2-2h (1.1.11)

The result is that the N, dependence of the diagram is fixed by the Euler character of the minimal
genus Riemann surface over which the diagram can be drawn. Planar diagrams can be drawn on a
2-sphere (h = 0),% and all scale as N2, like the lowest order diagram. The first subleading nonplanar
diagrams are those which can be drawn on a 2-torus (h = 1), and are subleading by a factor of
1/N2. Diagrams with genus h are subleading by a factor of N;2". At each topology, an infinite
number of diagrams must be summed, constructing a series expansion in A. At fixed genus, the
power of A in this expansion grows as the number of loops F'. We can be more specific: the exponent
of Ain (1.1.11) is 3V34+ Vi = E—V =1—1, where | = E—V +1 = F — (2—2h) + 1 is the number
of unconstrained loop momenta that we have to integrate over after imposing energy-momentum
conservation.
The sum of all connected vacuum amplitudes is given by the double expansion

(o] o0
A=Y NZTENT g p AR (1.1.12)
h=0 F=2—-2h

Formula (1.1.11), which extends also to theories with matter in the adjoint representation, looks
like the topological expansion of a closed oriented string theory where the closed string coupling is
proportional to 1/N,.. The series expansion in A, namely the loop expansion in the field theory at
fixed genus of the diagram, should be related to an expansion in the worldsheet coupling constant.
Formula (1.1.12) suggests that any gauge theory might be reformulated as a suitable string theory.*

%We remark here a subtlety: this formula fails to hold for the simplest vacuum diagrams having a single propagator
going back to itself. In order to avoid this caveat, one should add at least one ‘quadratic’ vertex, which is actually
an intermediate point for the propagation, that has to be integrated over and carries no gauge coupling dependence.
This insertion of a quadratic vertex has the effect of adding one edge to all diagrams except the ‘pathological’ one.
The more correct formulae are then V = V5 + V3 + V4 and 2E = 2V, + 3V3 + 4V,

3We add the point at infinity so as to compactify the surface.

“In the case of SU(N.) gauge group, the lack of the last U(1) factor brings in 1/N2 corrections. The result is that
each Feynman diagram contributes in the expansion for any Riemann surface over which it can be drawn. Similar
large N. expansions can be formulated for orthogonal and symplectic groups; since the fundamental representations
are real in that case, the outcome is that the topological expansion is in term of both oriented and nonoriented
Riemann surfaces.
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This derivation can be easily generalized to the case when Green functions of gauge invariant
glueball operators are present. In the case of single trace operators of the form Tr(F™), the only
change is that these insertions appear as punctures in the Riemann surface; they add one (external)
vertex and one edge.

The power of 't Hooft’s expansion and the simplifications of the large N, limit has led to very
important qualitative understandings of YM and QCD phenomenology. For the pure YM theory,
assuming the existence of the large N, limit and confinement, one can prove that glueballs for large
N, are free, stable and not interacting. The amplitude for a glueball to decay into two glueballs
scales like 1/N,, whereas the amplitudes for glueball-glueball elastic scatterings are of order 1/N2.
Glueballs are in infinite number, and their masses have smooth large N, limits. In the large N,
expansion, they are the weakly coupled degrees of freedom appearing in the spectrum of Yang-Mills
theory. In the strict limit, the theory of glueballs is free. The 1/N, expansion can be rephrased as
a loop expansion in this effective theory of glueballs.

Unfortunately, despite the simplifications, the resummation of the planar diagrams of a four-
dimensional interacting quantum field theory has not been achieved by field theory technique, nor
it has been possible to understand which kind of closed orientable string theory should be dual to
large N, Yang-Mills theory in four dimensions. Along this last route, Polyakov [15] has suggested
that the dual string theory should live in a world with an additional dimension. More recently,
just before the advent of the AdS/CFT conjecture, he has proposed that this fifth dimension,
which has to be related to the energy scale of the field theory, should be warped [16]. Right after,
the AdS/CFT duality proposal formulated by Maldacena in [12] provided the first explicit and
quantitative realization of 't Hooft’s and Polyakov’s ideas, by conjecturing that the maximally
supersymmetric four-dimensional field theory is equivalent to type IIB superstring theory on a
manifold AdSs x S°.
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Chapter 2

AdS/CFT duality

In this chapter, we give a brief introduction to the subject of AdS/CFT duality, as the paradigm
of more general gauge/string dualities.

After recalling the complementary descriptions of D branes in section 2.1, in section 2.2 we
consider the decoupling limit of D3 branes that led Maldacena to conjecture the duality between
N =4 SU(N) SYM and type IIB string theory on an AdSs x S° manifold, that we formulate more
precisely in section 2.3. In section 2.4 we review the dictionary between observables in the two
theories, as well as the prescription for computing gauge theory correlators from the knowledge of
the dual string background. For a more complete exposition of the subject, we refer the reader to
some of the many reviews on the subject [17]. Finally, in section 2.5, we briefly mention some of
the generalizations of AdS/CFT duality to nonconformal and less supersymmetric settings.

2.1 D branes

The existence of Ramond-Ramond (RR) potentials (a 1-form C; and a 3-form C3 in type IIA
string theory; an axial scalar Cp, a 2-form Cy and a 4-form C4 with self-dual field strength in type
IIB string theory) has been known since the birth of superstring theory. Such potentials arise at
the massless level in the RR sector of the perturbative spectrum, but it is easy to see that the
corresponding vertex operators do not involve them, but only their gauge invariant field strengths
(and their Hodge duals). The fundamental string is not electrically charge under any of these
potentials (not even Cy, which has the correct rank to couple to a string), but only feels their field
strengths, in an analogous way to the dipole interactions of electrodynamics. Until the discovery
of D branes by Polchinski in 1995 [11], it was not clear how to describe perturbatively the states
charged electrically and magnetically under such potentials, although string dualities required their
existence. By minimal coupling, it is clear that a (p + 1)-dimensional extended object can couple
electrically to a p + 1-form potential Cpyq via a term gy, [ C'p+1, where p, is the charge density
carried by the source and the hat means pullback.

23
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2.1.1 Black p branes

The low energy limits of type ITA and IIB superstring theory are type IIA and type IIB supergravity.
Horowitz and Strominger [18] were able to find classes of solitonic solutions of the equations of
motion of those theories with the topology of extended (p+ 1)-dimensional objects surrounded by a
horizon, and carrying electric charge with respect to the RR potential C)41. These solutions were
named ‘black p branes’. They are subject to a BPS bound, stating that their mass (per unit volume)
is bounded from below by the value of the charge (per unit volume). In these classes of solutions,
the extremal objects saturate the BPS bound and preserve half of the original supersymmetries. At
least in the BPS case, one can naturally expect that such solutions extend to solitonic solutions of
the full-fledged string theory. For an overview of solitons in 10- and 11-dimensional supergravities,
we refer the reader to the classical review [19], which is also historically instructive for young readers
since it was written before the advent of D branes.

We review here the black p branes solutions found by Horowitz and Strominger [18] in the type
ITA and IIB supergravities. The result will be expressed in string frame.

The metric of the black p brane solution is

P 2
d
ds* = Z,(r)"Y2 | =K (r)dt?* + Z dz?| + Z,(r)'/? i rldsts_p | (2.1.1)
= K(r)
where t is the timelike coordinate, #* (i = 1,...,p) are the spacelike coordinates parallel to the

brane, r is a radial coordinate in the directions transverse to the brane, and dség_,D is the metric
of a unit round (8 — p)-sphere;

Zy(r) =1+ ay (%”)H (2.1.2)
K(r)=1- (TTH)H (2.1.3)

are the radial functions appearing in the metric (2.1.1), and we have defined the constants

r;_p = dp(QW)p_QgsNo/PTp (2.1.4)
_ 7_
dy =27 2T (219) (2.1.5)
T—p 2 7—p
r r
ap =414 [ 2 - 2.1.6
P <2r;_p> 27“;_1) ( )

These solutions have a horizon at r = rg, covering a singularity at » = 0. In addition, there are
nontrivial profiles for the dilaton (except for p = 3) and the (p + 1)-form RR potential:

3—-p

e® = gsZ,(r) T (2.1.7)
Cpr1 = g5 " Zp(r) tda® A~ AdaP . (2.1.8)

This solution therefore carries an electric charge with respect to the RR field strengths Fj, 2 and
a mass. As for the Reissner-Nordstrom black hole in General Relativity, the event horizon exists
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only if the ratio between mass and charge satisfies a certain lower bound, which in this case is a
BPS bound.

These solutions simplify in the extremal limit rg = 0, where the bound is saturated. The
corresponding solutions, which preserve half the supersymmetries of the asymptotic background,
are:!

ds* = Hp(r)*lﬂdmip + lLIp(r)l/2 [dr® + r?dsgs_, | (2.1.9)
e® = g Hy(r)' T (2.1.10)
Cpr1 = g5 "Hy(r) 1 da® A Ada? | (2.1.11)
where the warp factor
Tp\ 7P
Hy=1+(2) (2.1.12)

is a spherically symmetric harmonic function in the transverse space. The solution can easily be
generalized to a multicentered solution by choosing as the warp factor a generic harmonic function

1 N Tp P
H =1+ — —_ . 2.1.1
» +NZ.Z;<|F—a-|> (2115)

Let us make some remarks. The solution for seven-branes in type IIB supergravity, which is a
codimension 2 object, can be obtained by putting a harmonic function Hr(r) o log % Eight-
branes in type ITA (massive) supergravity are codimension 1 and form a domain wall. Finally, the
derivation of the solution for three-branes in type IIB supergravity is subtle since they are both
electric and magnetic sources of the self-dual RR field strength F5. Nevertheless, the punchline is
that the solution falls in the class described above, and can be obtained by simply fixing p = 3 in
the formulae written above.

2.1.2 Dp branes

Few years later, Polchinski [11] reconsidered the addition of open strings with mixed Neumann-
Dirichlet boundary conditions to type II superstring theories. If Neumann boundary conditions are
imposed on p+ 1 coordinates and Dirichlet boundary conditions are imposed on the remaining 9—p
coordinates, the endpoints of open strings are constrained to live on a hyperplane, called D(irichlet)
brane, with p spatial dimensions and one timelike dimension. Consistency requires p to be even
in type ITA string theory and odd in type IIB string theory. Mixed Neumann-Dirichlet boundary
conditions break one half of the supersymmetries of the background. The D brane gravitationally
interacts with bulk fields via open-closed string interactions, therefore it is not a rigid object, but
can fluctuate. The tension of the D brane arises from a disk diagram, therefore scales as g; ! in
string frame.

Massless open string excitations describe fluctuations of the D brane: a vector boson describes
fluctuations parallel to the brane, 9 — p scalars are the Goldstone bosons of the spontaneously
broken translation symmetry in the transverse directions, and their fermionic superpartners are
the Goldstinos of the spontaneously broken supersymmetries. The starting point and the endpoint

1We have not been careful here in the sign of the RR field, which will determine if this solution will correspond
to an extremal black p brane or an extremal black anti-p brane.
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of an open string need not be on the same D3 brane: both the Chan-Paton factors of open strings
range from 1 to IV, and all the excitations transform in the adjoint representation of U(N), where
N is the number of D branes. These massless fields and the action describing the interactions
among them, which is that of maximally supersymmetric U(N) YM theory in p + 1 dimensions,
can be obtained by dimensional reduction of N'=1 U(N) Super-Yang-Mills (SYM) theory in ten
dimensions to p + 1 dimensions.

The fundamental observation made by Polchinski is that not only Dp branes carry tension,
but they also carry electric charge with respect to the RR potential Cp,y;. The computation of
a cylinder/annulus amplitude shows that the gravitational attraction is exactly balanced by the
repulsion due to the RR field sourced by the D branes. There is no net force between two parallel
Dp branes, as should be expected since the objects are mutually BPS: their tension is equal to their
charge density. Dirac quantization, together with string dualities, fixes unambiguously the value of
the tension of a Dp brane. We refer the reader to appendix A.2.1 for details on the worldvolume
action of D branes.

Once these properties were understood, it was natural to connect the open string perspective of
a Dp brane as spacetime defects where open strings can end with the closed string perspective of an
extremal black p brane as a solitonic solution of closed string theory. Those are two complementary
descriptions of one and the same object.

2.2 The decoupling limit of D3 branes

In the previous section we have seen that Dp branes have two complementary descriptions. From
the perturbative/open string point of view, they represent the locus of the endpoints of open strings,
whose massless fluctuations are described by a maximally supersymmetric Yang-Mills theory. These
open strings interact not only among themselves but also with the closed string modes propagating
and interacting in the bulk, whose massless fluctuations are described by a maximally supersym-
metric supergravity theory (type IIA if p is even, or type IIB if p is odd). On the other hand, from
the closed string point of view, they arise as nonperturbative solutions of the equations of motion
(of the low energy supergravities), carrying tension and charge so that they curve spacetime.

More than ten years ago now, in a beautiful paper [12] Maldacena studied the decoupling limit
of extremal nondilatonic branes: D3 branes in type IIB string theory, and M2 and M5 branes in
M-theory. This analysis led him to the AdS/CFT duality conjecture. We will review here the
argument for D3 branes.

From a perturbative point of view, the string theory description of a stack of N D3 branes in
flat space goes as follows (see Figure 2.1). Open strings are attached to the D3 branes, and their
Chan-Paton factors are in the fundamental times antifundamental representation of the gauge
group U(NN). The massless level of the open string sector is described by a four-dimensional N = 4
U(N) gauge theory, with Yang-Mills coupling constant g2, < gs. In addition, there is a tower
of massive open string modes, with masses of the order of the inverse string length. In the bulk
ten-dimensional Minkowski space, closed strings propagate. The massless level of the closed string
spectrum is described by type IIB supergravity in flat ten-dimensional spacetime, with Newton
constant Gy o k2 o g2a’*, where o/ = [2, with I, the string length. In addition, there is a tower
of massive closed string modes, with masses of the order of [;!. Open string and closed string
modes interact. In particular, at the massless level the Yang-Mills theory hosted by the D3 branes
is coupled to supergravity. In order for this perturbative picture to be valid, we need g,N < 1,
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Figure 2.1: Perturbative picture (gsN < 1): type IIB superstring theory with N D3 branes in flat
spacetime.

since loop diagrams of open strings (higher genera) are weighted by powers of gsN, whereas loop
diagrams of closed strings are weighted by gs.

In a low energy limit (E < o/ -1/ 2), all massive string modes, open and closed, decouple. Fur-
thermore, because Newton’s constant in ten dimensions has negative mass dimension, (super)gravity
decouples too. This is nothing but the well known statement that gravity is IR-free. In this low
energy limit, the A/ = 4 supersymmetric U(N) Yang-Mills theory hosted by the stack of N D3
branes remains interacting, since its gauge coupling is dimensionless. Actually, the diagonal U(1)
is free and decoupled.

As usual in effective field theories, we can also define the low energy limit formally as a para-
metric limit in which the string mass scale o/~1/2 is sent to infinity and the typical energies relevant
to the gauge theory are kept fixed. A typical energy scale is the mass of a W-boson in a vacuum
belonging to the Coulomb branch. For simplicity, we can think of displacing a single D3 brane
from the stack of the other N — 1 D3 branes by a distance r, so that we spontaneously break the
gauge group U(N) — U(N — 1) x U(1). The massive W-boson corresponds to a string stretched
between the single displaced brane and the stack of the remaining ones, which has mass r/(2ra).
The decoupling limit will therefore be

r

o =0, U= fized . (2.2.1)

Oé,

In this decoupling limit we bring the branes together, but the expectation value of the Higgs fields
remains fixed.

Summarizing, what survives the low energy limit is the four-dimensional N' = 4 U(N) gauge
theory, together with a decoupled free gravity in ten flat noncompact spacetime dimensions.

From the dual closed string point of view, the stack of N D3 branes is represented by a warped
RR background in type IIB superstring theory, where closed strings propagate. In the string frame,
the background has a constant dilaton, a warped metric and N units of 5-form flux through the
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sphere parameterizing the angles of the transverse R (plus the Hodge dual term):

ds* = h(r)71/2d1‘%3 + h(r)/? [dr2 + T2d8%5] (2.2.2)
9sFs = (1 4+ %) d*z A dh(r)_1 (2.2.3)
A
hr)=1+ (2.2.4)
e® =g, (2.2.5)

where ds%g, is the metric of a round 5-sphere, and the integration constant L* = 4wa’2g,N is fixed
by requiring that the D3 brane charge of the solution be N. See appendix A.2.1 for the definition
of brane charges.

The D3 brane solution preserves 16 supercharges, and the metric asymptotes to that of ten-
dimensional flat spacetime far from the branes. Close to the branes there is a throat: the metric
asymptotes to the near-horizon geometry,? which can be obtained by dropping the 1 in the warp
factor and is AdSs x S°3

dsQ—ﬁde +L—2d 2 4 L2ds? (2.2.6)
= L2 1,3 7’2 T SS5 /N

with constant dilaton and N units of 5-form flux piercing the sphere. The curvature radii of
AdS® and S° are the same: L = (4ma2g,N)'/4. The near-horizon solution preserves all the 32
supersymmetries of type IIB supergravity.

In order for this supergravity picture to be valid, we need gs/N > 1 so that the curvature is
everywhere small (in string units), and gs < 1 to suppress interactions between closed strings. The
D3 brane geometry is depicted in Figure 2.2.

We now want to take the same low energy limit F < « considered before. Here the energy
E refers to the one measured by an observer in the asymptotically flat Minkowski region.* What
survives the low energy limit in the asymptotically flat region is a ten-dimensional free supergravity
multiplet, for the same reason expounded before. These modes also decouple from the ones in the
throat region because, having very long wavelength, they cannot sense the throat. On the other
hand, the whole tower of massive string modes localized in the deep throat region survives the
limit. Because of the warp factor, they have to climb an infinite gravitational barrier to exit the
throat. Any closed string state with arbitrarily high proper energy is redshifted to arbitrarily low
energy as measured by an observer in the asymptotic region, provided that the string is located
deep enough inside the throat.

1—1/2

Summarizing, what survives the low energy limit in this closed string perspective is the direct
sum of free gravity in flat ten-dimensional spacetime and the full interacting type IIB superstring
theory on the near-horizon manifold.

As in the dual perspective, we can equivalently view the low energy limit as the parametric
limit o/ — 0, keeping U = 7 fixed (2.2.1). This means that we are concentrating our attention

2We adhere to the usual nomenclature in the literature. However, one should keep in mind that in the extremal
3-brane solution (2.2.2) there is no horizon nor brane-source singularity at all: the metric is geodesically complete
and nonsingular.

3 Actually what we see here is only the Poincaré patch of the full AdSs geometry.

4The fact that the field theory energy (the conjugate momentum to t) of a string stretched between the ‘horizon’
and a probe brane displaced at r is proportional to r/a’ also in this dual picture comes from the cancellation of the
\/grr factor in the proper distance element with the redshift factor |/gu:.
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Figure 2.2: Gravitational picture (gsN > 1): type IIB closed strings propagating in the geometry
generated by a stack of D3 branes in flat spacetime.

on substringy distances from the D3 branes, since \/% = va' — 0. We will only see their near-

horizon geometry. In this limit the warp factor (2.2.4) loses the additive 1, so that the geometry
does not asymptote flat spacetime anymore, and becomes

R4

h(U) = a,2U4 Y

(2.2.7)

where we conveniently introduced R* = L*/a/? = 47g,N. Plugging this into the metric (2.2.2), we
find the near-horizon AdS® x S° geometry, expressed in terms of the U coordinate which remains
fixed in the decoupling limit:

2 2 U2 2 R2 2 23.2/a5

The previous analysis concerns the same low energy limit applied to two complementary pictures
of the same system, a stack of N coincident D3 branes in flat ten-dimensional space. Therefore
the two pictures should lead to the same result. In the perturbative string theory picture what
survives the low energy limit is N'=4 U(N) SYM theory in four dimensions, decoupled from free
type IIB supergravity in Minkowski space. In the complementary picture, what survives the low
energy limit is the full interacting type IIB string theory on AdSs x S°, decoupled from free type
IIB supergravity in Minkowski space. This analysis led Maldacena to conjecture that N'=4 U(N)
SYM in four dimensions is equivalent (dual) to type IIB superstring theory on AdSs x S° with N
units of RR 5-form flux.
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2.3 The different formulations of AdS/CFT duality

Let us start by formulating the AdS/CFT duality conjecture (for D3 branes) in its full glory. In
the strong form, it states the equivalence between the following a priori very different theories:

e N =4 SYM theory in 4-dimensions, with gauge group SU(N) and complexified coupling

Oyn . Am

TYM = 3 .
27 9y s

(2.3.1)

e Type IIB superstring theory on the background AdSs x S°, where AdSs and S° have the
same curvature radius L = (4mgsNa/?)'/4, with N units of 5-form flux

1

and with axio-dilaton (complexified string coupling)

T=0Co+ie®. (2.3.3)

Some comments are in order at this point.

First of all, the duality is conjectured to hold for the full quantum theories. In particular it
should apply to all the vacua of the two theories. Until now we have discussed the origin of the
moduli space of N' = 4 SYM, known to preserve the full conformal symmetry, which corresponds to
having N coincident D3 branes in the string theory realization. This vacuum is dual to the unexcited
AdS5 x S® background 2.2.6 with constant axio-dilaton 7 = Cp + gl of type IIB superstring theory,
which is the near-horizon geometry of the background generated By N coincident D3 branes. But
the duality statement is much more powerful than this: it allows us to relate any states and
marginal /relevant deformations of the theory to asymptotically AdSs x S° geometry perturbed by
normalizable and nonnormalizable deformations respectively. We will elaborate on this issue in
section 2.4.

Secondly, we have to comment on the gauge group of the N' =4 SYM theory. In section 2.1 we
have reviewed that a stack of N D3 branes hosts a U (V) gauge theory. The diagonal U(1) factor is
decoupled and free from the remaining nonabelian SU(N) dynamics. One could wonder whether
or not this free abelian factor is described by type IIB string theory on the AdS background. It
turns out that it is not. A first evidence for this will be clearer after we review the operator/field
correspondence in section 2.4. For the time being, let us only state that protected operators (short
multiplets) of the gauge theory are dual to supergravity modes in the AdSs x S° background. It
turns out that the classification of S> KK modes of type IIB supergravity on AdSs x S°® performed
in the eighties exhausts all the field theory short multiplets, except for the one having as a bosonic
component the trace of a single adjoint complex scalar field. This operator would not exist in an
SU(N) gauge theory, whereas it exists in a U(N) gauge theory. A second evidence comes from
the existence of the ‘baryonic vertex’: a D5 brane wrapped on S° represents a baryonic vertex
on which external quarks, in the form of strings starting from the boundary of AdSs, end. This
configuration represents in the field theory a coupling of the form €, 4, Q" ... Q% , where Q’s
are external quarks. Had the gauge group been U(N), this coupling would have been forbidden by
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gauge invariance. These two facts show that the gauge group of the dual field theory captured by
type IIB string theory on the AdSs x S° background is SU(N) rather than U(N).

Let us now return to the statement of the AdSs/CFT, duality and concentrate on the super-
conformal phase of the gauge theory and the AdSs x S® vacuum of type IIB string theory. In order
to define the duality properly, we have to map parameters of the field theory into parameters of the
string theory. This map follows from the way the correspondence was “derived” by Maldacena [12].
The low energy physics of a stack of N D3 branes, is described by N' =4 SYM with a complexified
gauge coupling 7y ps (2.3.1), which gets identified with the axio-dilaton 7 (2.3.3) of the type IIB
background, as results from expanding the Dirac-Born-Infeld action (A.2.28) and the Wess-Zumino
action (A.2.29) of D3 branes in powers of o'

0 4 i
ﬂ-ﬁ-iz =rvyy=17=Co+ — . (2.3.4)
27 9v Js

This last equality allows us to map the complex modulus 7 of type IIB string theory on AdSs5 X
S5 with the complexified coupling 7y s of the gauge theory, which parameterizes the maximally
symmetric submanifold of conformal fixed points of the field theory. The number of colors N of
the gauge theory is mapped into the number of units of 5-form flux on the 5-sphere.

We can rephrase the map in terms of the string coupling and the string tension:

1, 1 /A L2
s = e p—— J— _— = 4 SN = s 2. .
9s = M = A\ N o~ Vimg VA (2.3.5)

where L2/, the square of the curvature radius of AdSs and S° in string units, is the inverse of
the dimensionless coupling appearing in the nonlinear sigma model on AdSs x S°, and A = g% ulN
is the 't Hooft coupling of the gauge theory.

The strong form of the conjecture states the equivalence between the two theories for any values
of the rank N and of the 't Hooft coupling of the field theory, or equivalently for any values of
the string coupling and of the sigma model coupling of the string theory. In this form, it is very
difficult to test the duality because quantization of string theory on a curved RR background is
still a challenge.’

For this reason, it has proven useful to consider more tractable but still very interesting limits
of the duality. These limits are related to the two possible expansions in string theory, the genus
expansion and the worldsheet perturbative expansion.

The first limit that we may consider consists in keeping the size of AdS5 and S5 fixed and sending
the string coupling g; — 0, thus suppressing higher genus worldsheet topologies with respect to
the sphere, at fixed worldsheet coupling. In the field theory, it corresponds to keeping the 't Hooft
coupling A fixed and sending the number of colors N to infinity. It is exactly the large N limit
considered by 't Hooft, reviewed in section 1.1, which suppresses nonplanar diagrams in the double
line notation.

We remark that considering this limit provides the first precise formulation of the duality
between a string theory and a four-dimensional gauge theory in the large N limit, that was suggested
by ’t Hooft more than two decades earlier in [8]. The strict N — oo limit relates the planar gauge

®Very nontrivial tests of the correspondence at the quantum level in a curved background have been performed
by considering the duality between type IIB string theory on the maximally supersymmetric PP-wave and the BMN
subsector of N =4 SYM [20].
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Quantum type IIB string theory B
on AdSs x 5 Full quantum N =4 SYM
Vgs, V% YN, VA
Classical type IIB string theory B
on AdSs x §° Planar N' =4 SYM
gs — 0, }j‘—; N — oo, VA
Classical type 1IB supergravity B
on AdSs x S° Strongly coupled planar N’ = 4 SYM
9 =0, &5 <1 N oo, A>1

Figure 2.3: The three formulations of the AdS/CFT duality conjectures, from the strongest to the
weakest.

theory to classical string theory on AdSs x S°, and the 1/N expansion is mapped into the genus
expansion on worldsheets of different topologies.

Notice however that whereas the gauge theory is weakly coupled when A < 1, the dual sigma
model on the sphere is weakly curved in the opposite region of parameter space, A > 1.

We can simplify even more the correspondence, by taking further the large A limit of the previous
weak form of the conjecture. In this way we suppress nonlinearities in the worldsheet sigma model
and reduce to type IIB supergravity on an AdSs x S° with large curvature radii for the two factors.
Stringy o/ corrections to supergravity are mapped into A\~'/2 corrections in the strongly coupled
planar dual N/ = 4 field theory.

We conclude this section with a discussion of the global symmetries of the two theories which
are proposed to be dual. N' =4 SYM is a superconformal theory, whose global symmetries form
the supergroup PSU(2,2|4). The bosonic part of this supergroup consists of the product of the
SO(2,4) = SU(2,2) group of conformal symmetries in four dimensions and the SO(6)r ~ SU(4)r
group of R-symmetries, under which the vector boson of the N' = 4 vector multiplet does not
transform, the 4 Weyl fermions transform in the 4 representation, and the 6 real scalars transform
in the 6. In addition to the bosonic charges of the SO(2,4) x SO(6) algebra, there are 32 fermionic
supercharges: 16 of them generate N/ = 4 Poincaré supersymmetry, while the additional 16 are
conformal partners of the ordinary supercharges and can be obtained by commuting ordinary
supercharges with conformal boosts.

If the maximal conformal supergroup PSU(2,2/4) is not anomalous, these symmetries must
show up also on the other side of the duality. They do. The SO(2,4) conformal group arises as
the isometry group of AdSs, whereas the SO(6) R-symmetry group arises as the isometry group
of S°. The AdSs x S° background is a maximally supersymmetric background, which preserves
32 supercharges: 16 of them are the supercharges preserved by the D3 brane background, acting
as ordinary supercharges on the 4d Minkowski part; the extra 16 supercharges arise only in the
near-horizon limit, and may be obtained again by commuting ordinary supercharges with conformal
boosts.

We see that global symmetries of the field theory are translated into large gauge transformations
leaving the background invariant. Symmetries on the two sides of the duality match.
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Finally, NV = 4 is expected to have an SL(2,Z) Montonen-Olive duality symmetry, acting on
the complexified gauge coupling as

atyym + b

2.3.6
ctyym +d’ ( )

TYM —

with {a,b,c,d} € Z and ad — bc = 1. This duality symmetry maps into the type IIB string theory
S-duality symmetry, which acts on the axio-dilaton 7 in the same way as in (2.3.6), leaving the
metric background and the 5-form flux invariant.

2.4 The operator-field correspondence

In order for the equivalence to be well defined, we still have to provide a map between the observables
in the dual theories and a recipe for computing gauge theory correlators from the dual string theory.
This result was achieved in two independent papers by Gubser, Klebanov and Polyakov [21] and
by Witten [22], few months after the conjecture was proposed.

N = 4 SYM at the origin of its moduli space is a scale-invariant theory. As such, it is not
sensible to define particles as asymptotic states and to compute an S-matrix. The observables
of this conformal field theory are the correlators of gauge invariant operators. We will discuss
local operators, although nonlocal operators such as the Wilson loop may be included. These
local operators can be single trace operators or multiple trace operators.> Multiple trace operators
can be defined through the Operator Product Expansion (OPE) of single trace operators, but a
renormalization is required to take care of UV divergences. In the large N limit, knowledge of the
correlation functions of single trace operators fixes the correlation functions of all multiple trace
operators to leading order in the 1/N expansion.

Local gauge invariant operators are labeled by their quantum numbers under the PSU(2,2/4)
global symmetry group of the field theory. The short multiplets of the supersymmetry algebra are:
1/2 BPS multiplets, spanning 2 units of helicity, 1/4 BPS multiplets, spanning 3 units of helicity,
and 1/8 BPS multiplets, spanning 7/2 units of helicity. Long multiplets span 4 units of helicity.

On the other side of the duality, there are the excitations of type IIB string theory on the AdSs5 x
S5 background. These fields are also labeled by their quantum numbers under the PSU(2,2|4)
symmetries of the background, and belong to N' = 8 multiplets. A long N' = 8 multiplet spans 4
units of spin. Therefore modes arising from KK compactification on S° of the supergravity fields,
having maximum spin 2, must fill 1/2 BPS multiplets.

Maldacena’s conjecture is refined by declaring a map between local gauge invariant operators
O(x) of N'=4 SYM and the quanta |¢) of type IIB string theory on AdSs x S°. All the quantum
numbers have to match; in particular, we will see that there is a dictionary between the conformal
dimension A of O(x) and the ‘mass’ m of the string theory quantum |¢).”

In order to understand the prescription for computing gauge theory observables by means of
type IIB string theory on AdSs x S° [21,22], we first recall that according to the argument which led

5The notion of single-traceness is only well defined in the large N limit. At finite N, only traces of less than N
operators are independent. Traces with more operators can be expressed as linear combinations of lower multiple
trace operators.

"The AdSs ‘mass squared’ we are referring to here is defined as the eigenvalue of —Pp; Py, in analogy with the
case of the Poincaré group. We remark that, unlike the Poincaré case, this is not a Casimir of the AdSs isometry
supergroup nor of the SO(2,4) bosonic group.
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Maldacena to conjecture the duality, the rescaled coordinate r/a’ in the metric (2.2.6) represents
an energy scale in the dual field theory. The metric of AdS5 (2.2.6) in Poincaré coordinates has
R3 Minkowski slices at fixed . On the other hand, a quantum field theory is usually defined by a
bare Lagrangian in the UV. Therefore one is tempted to associate the conformal boundary of AdSs
living at r = oo with the spacetime where the field theory lives.

The argument that we have presented here for the sake of simplicity, although physically intu-
itive, is not very firm. We refer the reader to the paper by Witten [22] for a more precise discussion
of global issues. Suffices to say that the boundary of the conformally compactified AdSj5 is identical
to the conformal compactification of the 4-dimensional Minkowski space, over which the conformal
group acts. Therefore, the identification of this boundary with the spacetime where the conformal
field theory lives naturally arises. Furthermore, the boundary of AdSs extends in the timelike
direction; consequently, boundary conditions have to be specified there in order for the Cauchy
problem to be well posed.

We then recall that we have already identified the complexified gauge coupling 7y s of N' = 4
SYM with the expectation value of the axio-dilaton field 7 in the string background. The expec-
tation value is fixed by the boundary condition at r = co. Changing the gauge theory coupling
constant amounts to changing the boundary value of the dilaton. In the gauge theory, 7y 5s can be
viewed as a source for the A/ =1 field strength vector multiplet TrT/W*W,,, because of the term

1
Lsym = FIm <T / d’e T&"W"‘Wa> +cc =
Y[
(2.4.1)
1 1 . — 9 Oy mr ~
= Tr <—2FWF‘“' — 2iAd" DA+ D ) + 6.2 TrF,, F*

2
9y m
appearing in the Lagrangian density. In particular, we see that we can rewrite this term as a
boundary term in AdSs, having compactified on the transverse S°:

1
Sbary D Flm <T/d4a:/d29 TrWaWa> +c.c. (2.4.2)
T

The boundary behavior of the axio-dilaton field (reduced to AdSs), that we have to specify in order
to well pose the Cauchy problem, acts as a (constant) source for a gauge invariant operator of the
field theory.

We need to specify the boundary conditions of all fields in the noncritical string theory on
AdS5 which is obtained upon S° compactification of type IIB superstring theory on AdSs x S°. In
analogy to the previous observation, it is then natural to associate to each ¢(x,r) of these fields a
gauge invariant local operator O(z) in the gauge theory, in such a way that its asymptotic behavior
$o(x) at the boundary r — oo (after factorization of the r dependence: ¢(z,r) ~ 72 %pg(z)) acts
as a source in the dual field theory:

ZCFT[(ZSO(ZZ‘)] = <efd4$¢0(l’)(9(ac)>

~ (%)Af4 ¢0($)] L (243)

CFT

r—00

= Zstring |:¢(xa7n)

Zorr is the generating functional of connected Green’s functions of gauge invariant local operators
O(x) in the conformal field theory, and ¢q are the associated external sources; on the right hand side
there is the (unknown) partition function of the S° compactification of string theory on AdSs x S°
with boundary conditions ¢g(z) for the bulk fields ¢(x,r).
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In the supergravity limit of the correspondence (N — oo, A > 1), the unknown string theory
partition function reduces to its saddle point value

r

~ ()A_4¢dx4 ~ exp [ Sougrar k5] (2.4.4)

Zstring |:¢($7 T) L

7r—00

where Sgygrat kK is the on shell action of the 5-dimensional supergravity obtained by KK com-
pactification, with the prescribed boundary conditions for the supergravity fields.

Summarizing, in order to compute correlators of gauge invariant local operators in the planar
A > 1 limit of N =4 SU(N) SYM, one has to: specify the boundary conditions for the fields of KK
compactification of AdSs x S® type IIB supergravity; solve the equations of motion for those fields
subject to the boundary conditions; plug them back into the supergravity action in the right-hand
side of (2.4.4); finally, take functional derivatives with respect to the sources/boundary conditions
and set to zero the sources not appearing in the Lagrangian.

The computation may also be rephrased in a more intuitive fashion by using Witten’s formalism
[22], which mimics the usual Feynman diagrams technique by means of boundary-to-bulk and
bulk-to-bulk propagators, together with bulk interaction vertices that can be read from the five-
dimensional action.

We are now in the position to understand the relation between the conformal dimension A of a
gauge invariant operator O and the mass m of the dual string or supergravity field ¢. Let us consider
for simplicity a free scalar field ¢ with mass m propagating in AdSs.8 The argument generalizes
to tensors and spinors, with simple modifications of the mass-conformal dimension relation. Its
equation of motion (05 — m?)¢(x,7) = 0 has two independent solutions close to the boundary
r — oo: the asymptotic general solution is

s~ (D) 0@+ (5) T 6@ (2.4.5)
where m?L? = A(A —4), (2.4.6)

and we define Ay to be the roots of this equation:

Ar =24 +\/4+m2L?. (2.4.7)

In AdSs, all scalar modes with a value of m? such that the argument of the square root in (2.4.7)
is nonnegative,
m?L? > —4 (2.4.8)

are stable. This is the famous Breitenlohner-Freedman bound [23].
Since A > A_, the leading asymptotics is

r—A_
oer) = (7)) o-(@), (2.4.9)
where ¢_ is what was earlier called ¢g.
Consider a scale transformation
(a¥,7) — (aat,a”lr), (2.4.10)

8Tt is assumed that far from the bulk interaction region, the bulk field is asymptotically free.



36 CHAPTER 2. ADS/CFT DUALITY

which leaves the AdSs metric, and therefore the scalar field ¢(x,r), invariant. Relation (2.4.9)
implies that under the scale transformation ¢_(z) = o™~ ¢_(ax). Finally, scale invariance of the
source term [ d*z ¢_(2)O(x) in the CFT partition function implies that

O(ax) = a ™ 2+0(z) , (2.4.11)

meaning that
A=A, =2+ \V4+m2L? (2.4.12)

is the scaling dimension of the gauge invariant operator O.

We remark here that the (2.4.8) bound would imply A > 2. This relation follows from unitarity
of the CFT in most AdS/CFT pairs. In N/ = 4 SYM, the gauge invariant operator with lowest
conformal dimension is the trace of a product of two adjoint scalars, which has quantum dimension
2. In very special cases, like the Klebanov-Witten theory that we will review in the next Chapter,
gauge invariant operators with conformal dimension less than 2 exist. In such cases, the conformal
dimension is A_ instead of A} [24]. Secondly, we read immediately from (2.4.12) that irrelevant
operators correspond to positive m? fields, marginal operators correspond to vanishing m? fields,
and relevant operators correspond to negative m? field above the Breitenlohner-Freedman bound.

We can now revisit the general asymptotic solution (2.4.5) for a scalar field with mass parameter

m, that we rewrite as:
r

ry—A 4-A
o) = (1) "o+ (1) doa). (2.4.13)
The leading term that specifies the boundary behavior is the second one, which is not normalizable.
¢o(x) is not interpreted as a state in the dual CFT, but rather as a source deforming the theory on
the boundary and coupling to a gauge invariant local operator O with conformal dimension A, as in
(2.4.3). The reason is clear: since the mode is not normalizable, the divergence it would lead to must
be subtracted by a new boundary term. In some case, it occurs that the second term in (2.4.13)
vanishes, so that the asymptotics is driven by the first term in (2.4.13), which is normalizable. In
such circumstances, no boundary (counter)term is needed, and ¢1(z) is interpreted as the vacuum
expectation value of the dual operator O(z) [25].

Let us conclude this section by commenting on some tests and a peculiar prediction of the
field /operator correspondence. We have mentioned at the beginning of this section that among
N = 8 multiplets on AdSs x S°, the supergravity modes, which include supergravity fields on AdSj
as well as their KK replicas from the S° compactification, must fill 1/2 BPS multiplets otherwise
they would exceed spin 2. These modes were classified in the eighties [26]. On the gauge theory
side, the corresponding 1/2 BPS multiplets are obtained by applying the supersymmetry charges to
operators Tr®y; ... ®; 1 — traces, of dimension k, where ®; is one of the three N =1 adjoint chiral
superfields [22,27]. These operators are protected against acquiring anomalous dimension by the
representation being short; consequently, the dimension of these operators must remain the classical
one even in the strong coupling A > 1 regime of the planar gauge theory which was conjectured to
be dual to type IIB supergravity on AdSs x S°. There is an exact matching not only between the
S0O(2,4) x SO(6) quantum numbers of the field/operator pairs, but very remarkably also between
the masses of the supergravity fields and the anomalous dimensions of the dual operator, which
fulfil formula (2.4.6). Supergravity and KK modes exhaust all the gauge invariant single trace chiral
operators of the CFT.

Stringy states correspond instead to longer multiplets, and they are dual to operators which
acquire large anomalous dimensions. Let us consider a massive string state at excitation level n:
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its mass squared will be m? & n/a’. Plugging this into the mass-anomalous dimension formula
(2.4.6), and recalling (2.3.4), we easily obtain a scaling [21]

A o nt/2AVA (2.4.14)

This scaling by a fractional power of the ’t Hooft coupling A\ for large value of A is completely
unexpected in field theory, and was one of the first nontrivial prediction of AdS/CFT. The simple
instance of an operator dual to a stringy state is Tr(®;®;). More recently, massive employment of
integrability techniques in planar N'= 4 SYM, together with symmetry requirements, has allowed
the computation of the scaling dimension of some of these operators for any values of the 't Hooft
coupling, interpolating between the perturbative field theory region and the strongly coupled A > 1
region where supergravity is useful and the behavior (2.4.14) holds.

2.5 Other AdS/CFT dualities and non-AdS/non-CFT dualities

Already in the original paper [12] where the duality between N = 4 SYM and type IIB string
theory on AdSs x S° was conjectured, Maldacena proposed other AdS/CFT duality pairs for field
theories in different dimensions, by considering similar decoupling limits to the one (2.2.1) suitable
for D3 branes. Two instances of these are the dualities between the conformal theories describing
the low energy dynamics of stacks of coincident M2 and M5 branes and M theory on AdS; x S”
and AdS; x S* respectively.

In the realm of four-dimensional field theories, AdS/CFT duality was extended to orbifolds by
Kachru and Silverstein [28], who considered the decoupling limit of D3 branes probing orbifolds
of flat RS, In this way the correspondence was extended to systems with A" = 2, 1 and even 0
supersymmetry. The duality is between the planar CFT obtained by orbifolding the N' = 4 gauge
theory by a discrete group I' and type IIB supergravity on AdSs x S°/I'. Subsequently, Klebanov
and Witten considered the decoupling limit of D3 branes at a conifold singularity [29], which was
conjectured to be dual to a nontrivial IR fixed point of a particular AV = 1 gauge theory. We will
discuss this dual pair in the next chapter. This paper opened the way for AdS/CFT duality to be
applied to the low energy dynamics of branes at conical singularities [30-32].

So far we have mentioned less supersymmetric AdS/CFT dualities. Another very important step
towards building phenomenologically more attractive theories goes into the direction of breaking
conformal symmetry. The first breaking of scale invariance that was achieved in the literature
is the one due to thermal effects. Black holes in asymptotically AdS spaces were considered by
Maldacena [12] and by Witten [33] as dual to the finite temperature versions of conformal field
theories, with a temperature equal to the Hawking temperature of the black hole. This line of
research has become very relevant in recent years because it provides the only available method for
computations of thermodynamic and hydrodynamic properties of strongly coupled gauge theories
which are at least qualitatively similar to QCD, whose strongly coupled gluon plasma is under
study in heavy ion collision experiments (RHIC) in Brookhaven.

As regards breaking conformal invariance in the zero temperature field theory, three paths have
been followed in the literature. The first method consists in perturbing a conformal field theory
by relevant operators or by vacuum expectation values: this triggers an RG flow which leads the
theory either to a different IR fixed point or to nontrivial IR dynamics such as confinement and
that can be investigated holographically [34]. In the dual supergravity description this implies
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some different dependence on the radial coordinate, breaking the scale isometry of the AdS5 x S°
solution. As reviewed in the previous section, relevant deformations are dual to nonnormalizable
deformations of the AdSs x S® background, whereas vacuum expectation values correspond to
normalizable deformations.

A second approach, that has proven very powerful, was initiated by Klebanov and collabora-
tors [35-37], who studied the addition to the duality of so-called fractional branes, that we will
introduce in the next chapter. The effect is an unbalance of the ranks of gauge groups, which
breaks conformality in a very nontrivial way. The common lore is that the renormalization group
flow is described by a cascade of Seiberg dualities; the low energy dynamics may be very inter-
esting, such as in the celebrated Klebanov-Strassler background [37] which displays confinement
and R-symmetry breaking in the dual field theory. The original papers in this line of research will
be reviewed in detail in the next chapter. Qualitatively similar results were obtained in the case
of N' = 2 theories realized by placing regular and fractional D3 branes on a Zy orbifold of flat
space [38,39] and in the case of N’ =1 theories from branes on a Zg X Zs orbifold of flat space [40].

Since the main subject of this Ph.D. thesis.is the study of cascading gauge theories via dual
supergravity (plus branes) solutions, in the next chapter we will review in detail the gauge/gravity
dualities obtained by placing regular and fractional D3 branes at the conifold singularity.

A third alternative and complementary approach takes advantage of wrapped branes. Gauge/
string (or M theory) dualities for other than D3 branes were pioneered by the beautiful paper [41],
where subtleties related to the decoupling problem and the validity regimes of different approaches
in studying the field theory limit of the dynamics of coincident Dp branes (p < 6) were uncovered.
Two years later, Maldacena and Nunez [42] studied the gravity backgrounds generated by higher
dimensional branes wrapped on nontrivial cycles, that host a four-dimensional theory at low en-
ergies. The study of N' = 2 field theories, further investigated in [43,44], as well of an N' = 1
field theory possessing a low energy dynamics very similar to the one of the Klebanov-Strassler
solution?, was pursued by considering D5 branes wrapping two-cycles.

We refer the reader who intends to delve into this very interesting subject to some of the very
good reviews on non-AdS/non-CFT dualities in the literature [46-48].

We would like to conclude this chapter mentioning a common problem which arises in different
forms when trying to describe interesting, maybe confining, low energy dynamics in these three
different methods. The problem lies in the fact that the ultraviolet physics (relevant deformation
of a conformal theory, infinite cascade, higher dimensional physics) which completes the interest-
ing low energy dynamics in such a way that the supergravity approximation is reliable, actually
shows up at an energy scale of the same order of the strong coupling scale of the IR field theory.
The reason is very intuitive in the case where masses are given to the chiral adjoint superfields
of N =4 SYM so as to get N' = 2,1,0 supersymmetry at low energies (these theories are called
N = 2% /1*,0%). The dynamically generated scale of the low energy physics will be qualitatively
of the form A ~ Me=¢/*M) where M is the mass scale of the deformation, ¢ an order 1 factor
proportional to the coefficient of the f-function, and A(M) the value of the running 't Hooft cou-
pling at scale M. In order to decouple the UV completion from the low energy physics, we should
take a limit M — oo keeping A fixed: this implies that A(M) should go to zero, invalidating the
supergravity approximation. The full string theory is needed to decouple the UV completion. Sim-
ilar arguments exist for gauge/gravity dualities from fractional branes and from wrapped branes.

9Maldacena and Ntifiez gave a gauge/gravity interpretation to a solution previously found by Chamseddine and
Volkov [45], as the dual of a confining gauge theory with IR dynamics very similar to N' = 1 pure SYM.
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Another qualitative argument pointing to the necessity of the full string theory for describing a
confining gauge theory without any unwanted unconventional ultraviolet completion applies gen-
erally and is the following: in any realistic confining theory, glueballs of spin larger than two are
expected to exist, whereas at the level of supergravity the only gauge invariant operators that can
be described in the dual theory have at most spin two. The full string theory is needed to describe
the higher spin glueballs.
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Chapter 3

(non-)AdS/(non-)CFT dualities on
the conifold

In this chapter, we review the extensions of AdS/CFT duality that have been achieved by consider-
ing D3 branes at the conifold singularity. For a review of these gauge/gravity dualities, we refer the
reader to [49]. After an introduction, in section 3.2 we review the Klebanov-Witten gauge/gravity
pair. In section 3.3 we review the Klebanov-Tseytlin background, dual to a nonconformal theory;
in section 3.4 we review its desingularization in the Klebanov-Strassler background and discuss the
dual field theory interpretation.

3.1 Introduction

A very interesting generalization of the original AdS/CFT duality goes in the direction of lowering
the number of (super)symmetries of the four-dimensional field theory, without spoiling conformal
invariance. One can start by considering a stack of N coincident D3 branes probing a different
manifold than R%, and, following Maldacena’s argument, construct a duality between type IIB string
theory on the ‘near-horizon’ geometry generated by the stack of D3 branes, and the conformal field
theory controlling the low energy dynamics of the stack of D3 branes (in the conformal phase) [22].
The low energy gauge theory on the D3 branes depends on the transverse space the branes can
probe.

The transverse manifold should be noncompact to allow decoupling of gravity. The requirement
of conformal invariance of the gauge theory imposes that this transverse manifold be a 6-dimensional
real cone, namely its metric can be written as

dsg = dr* + T2ds§(5 . (3.1.1)

The space is a cone because there is a group of diffeomeorphisms r +— ¢r (¢t € R%) which rescales
the metric. X5 is a 5-dimensional compact submanifold called the ‘base’ of the cone. Except for
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R® whose base is the round S°, any cone has a (conical) singularity at r = 0. Examples of conical
singularities are orbifolds of flat space and conifolds, of which string theory can make sense.

The additional requirement that ' = 1 supersymmetry in four dimensions (4 supercharges) be
preserved imposes that the cone is a Calabi-Yau (CY) manifold. Ricci-flatness of the cone implies
that X5 is an Einstein manifold [29], which satisfies

RZ']' = 4g¢j s (3.1.2)

whereas the SU(3) holonomy condition imposes that X5 is a Sasaki-Einstein space [31]. For our
purposes, we can take as a definition of Sasaki-Einstein space the property that the real cone over
it is Calabi-Yau.

Any D3 brane can be displaced at any point in the transverse Calabi-Yau manifold without
spending energy; these possibilities must be recovered in the moduli space of the gauge theory.
This observation puts in one-to-one correspondence the moduli space of the gauge theory living
on the D3 branes with the singularity structure of the transverse manifold, strongly constraining
the gauge theory. General techniques have been developed to determine the superconformal field
theory of D3 branes at toric singularities [32,50].

The curved background produced by the stack of N D3 branes at the tip of the cone (3.1.1) is:

ds* = h(r)_1/2dxi3 + h(r)Y/? [dr2 + r2d5§(5] (3.1.3)
gsFs = (14 %) d*z Adh(r)™? (3.1.4)

L4
h(r)=1+ ey (3.1.5)
e? =g, (3.1.6)

where the integration constant
3

L* = 4nag N — — 3.1.7
I N0l (X5 (8.1.7)

is fixed by requiring the D3 brane charge of the solution be N. See appendix A.2.1 for the definition
of brane charges. Taking Maldacena’s decoupling limit (2.2.1) leaves the near-horizon metric

<w—ﬁ@2+EW+ﬁw (3.1.8)
— 72T X5 -

Type IIB string theory on the AdS5 x X5 manifold (3.1.8) with N units of F5-flux is conjectured to be
dual to the CFT describing the IR fixed point of the D3 branes theory. The different X5, the different
the gauge theory. In the vary large class of D3 branes at conical toric Calabi-Yau singularities,
the geometry can be obtained by partial resolutions of orbifold singularities of the C3/(Z, x Z,),
with suitable integer p and ¢. The field theory moduli space is in one-to-one correspondence with
the transverse space that can be probed by the D3 branes, modded out by identifications between
indistinguishable branes. Partial resolutions on the geometric sides correspond to Higgsings in the
gauge theory living on D3 branes. Since the gauge theory living on D3 branes at a C3/(Z, x Z,)
orbifold can be derived by perturbative open string methods, this correspondence allows us to find
the gauge theory living on a stack of D3 branes living at a generic conical toric singularity: it is
obtained by orbifolding and Higgsing the N/ = 4 field theory. This gauge theory exhibits at least
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a fixed point, which is dual to type IIB string theory on AdS; x X5, with X5 the 5-dimensional
Sasaki-Einstein space the real cone over which is the toric CY.

The first instance of such an AdS/CFT duality that cannot be obtained by orbifold methods
was found by Klebanov and Witten [29], who studied D3 branes on the conifold, which is the real
cone over a specific Sasaki-Einstein manifold known as 71!, We are now going to illustrate this
duality.

3.2 D3 branes at the conifold singularity and the Klebanov-Witten
CFT

In this section we review the AdS/CFT duality between type IIB string theory on AdSs x T'!
and the N/ = 1 gauge theory on D3 branes at the conifold singularity. We refer the reader to the
original paper [29] for a more complete analysis and to [49] for a nice review. The reader who
is not familiar with such a manifold is advised to read appendix B.1, where some generalities on
the conifold geometry, as well as our conventions, that differ slightly from those common in the
literature, are collected. In that appendix, the Kahler structure and the complex structure of this
Calabi-Yau are also explicitly provided. For later purposes, in appendix C.1 we have rederived the
solution for D3 branes on the conifold and its near-horizon Klebanov-Witten solution by means
of supersymmetry methods. It falls in the general class of equations (3.1.8) and (3.1.4), with
X5 =T
Here we recall that the conifold can be described algebraically as the affine variety

det Z = |71 4| = 2129 — 2324 = 0 (3.2.1)
zZ3  Z9
in C4. It possesses a manifest %jU@) x C* symmetry, where the two SU(2) factors act on the

rows and columns of the Z matrix, and the C* = R* x U(1) acts as an overall complex rescaling.
The base of the conifold is the Sasaki-Einstein 5-manifold called 7!!, described by the intersection
of (B.1.1) with the unit sphere

4 4
Yol =) jwf =1 (3.2.2)
i=1 i=1
in R8. It has S3 x S? topology, and is actually a coset manifold W Since the eighties,

type IIB string theory has been known to admit a consistent AdSs x S° compactification with
5-form fluxes [52]. Six real coordinates on the conifold can be introduced as in (B.1.5,B.1.5) so to
solve the defining equation (3.2.1). The Calabi-Yau metric of [51] is of conical type (3.1.1), with
the following Einstein metric for the 7! base:
1< 2 1 2
als%L1 =5 Z (d@i2 + sin? Gidcpi) + 9 (dd) — Z cos Hidg0i> . (3.2.3)
i=1 i=1

(0;, i), i = 1,2, parameterize the Kihler-Einstein space S? x S2, whereas 1 € [0, 47| parameterizes
a U(1), which is fibered over the Kéhler-Einstein base. The following angular periodicities hold:

(0 Y +4m Y+ 27 Y+ 27
o1 | ~ 01 ~ |1 +21 | ~ 1 . (3.2.4)
P2 2 P2 P2 + 21
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The volume of T11! is %—?773.

Using these coordinates, the symmetries of the space are manifest. As shown in Appendices
B.1 and C.1, the U(1) isometry along the 1 circle acts nontrivially on the holomorphic top form of
the Calabi-Yau and therefore on the Killing spinor. By the general arguments of section 2.4, this
isometry is mapped to the R-symmetry of the superconformal algebra of the dual CFT. Instead,
the SU(2) x SU(2) isometries acting on the two 2-spheres are mapped to global non-R-symmetries
of the dual CFT. Finally, the existence of a nontrivial 3-cycle in the 7! base leads to an additional
gauge symmetry on the gravity side, whose gauge potential is the reduction of the RR Cy4 potential
on this 3-cycle. This gauge symmetry will be mapped to the baryonic symmetry of the CFT.

To construct the field theory describing D3 branes at a conifold singularities, Klebanov and
Witten used the description of the conifold as a quotient. The defining equation (3.2.1) can be
solved by introducing four complex variables Ay, As, B1, By and letting

(1 om\ _ [A1B1 Ai1B
so (2 9)= (B ) 629
In such a way, under the SU(2) x SU(2) symmetry acting on the columns and rows A; and B;
(i,j = 1,2) transform in the isospin (3, 0) and (0, ) representations respectively. Under the overall

complex rescaling symmetry z; — (z;, they can be chosen to transform as (A, B) — BY 2(A, B).
Actually, we have to mod out by the C* rescaling

Aj — MA; By — \'By (3.2.6)

which leaves the z coordinates invariant. Away from the singular point, the noncompact part of
this redundancy can be fixed by

|AL? + [A2f* = [B1* + | Ba|* (3.2.7)
and the conifold is finally obtained after modding out by the remaining U (1) redundancy
Aj — A, By — e By, . (3.2.8)

The conifold must also be recovered as the moduli space of the supersymmetric gauge theory on a
D3 brane at the conifold singularity. Recalling that the action of the gauge group on the charged
superfields in a supersymmetric gauge theory gets complexified, the C* redundancy can be viewed
as a complexified U(1) gauge symmetry under which four chiral superfields A;, By, j, k = 1,2 have
charge 1 and -1 respectively. In such a gauge theory, the D-term equation, in the absence of a
Fayet-Iliopoulos term, fixes the R* redundancy as in (3.2.7).] When A and B acquire a VEV,
the U(1) symmetry previously discussed is Higgsed. This happens when the D3 brane exits the
singularity and goes to a smooth point. In such a case, an unbroken U(1) group should survive,
hence a second unbroken gauge group must be included, under which A and B are neutral. The
gauge theory living on a single D3 brane at the conifold singularity can therefore be summarized
as a U(1) x U(1) N = 1 gauge theory with bifundamental fields A; with charges (1,—1) and By,
with charges (—1,1), possessing a global SU(2) x SU(2) x U(1)g symmetry.

1A nonzero Fayet-Iliopoulos term appears in the presence of a small resolution, which substitutes the conifold
singularity with a P!. there are actually two possible resolutions, depending on the sign of the FI parameter, which
are related by a flop transition.
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A1, Ay

By, By

Figure 3.1: Quiver diagram for the Klebanov-Witten theory. Circles represent gauge groups (and
vector superfields), arrows represent bifundamental chiral superfields.

In generalizing to the nonabelian case of N D3 branes, the bifundamental fields A; and By, are
promoted to matrices transforming under a U(N) x U(N) gauge group. The diagonal U(1) acting
as (3.2.8) is IR free and becomes a global U (1) p baryonic symmetry. The other diagonal axial U(1),
apart from being IR free, is anomalous and therefore massive, and its D-term equation should not
be imposed at low energies [53]. In order for the moduli space of this theory to reproduce correctly
the conifold (3.2.1) modulo identifications, a superpotential enforcing the conifold equation (3.2.1)
on the eigenvalues has to be introduced. Before introducing the superpotential, a nonanomalous
R-symmetry under which the gluini have charge 1 and the superfields A; and By, have charge 1/2
can be found. The only superpotential consistent with the symmetries is

W = helef Tr(A; BLA; By) (3.2.9)

whose F-term equations correctly remove the unwanted flat directions and leave the conifold (mod-
ulo permutations Sy) as the moduli space of the theory of N D3 branes.

We summarize the representations/quantum numbers of the chiral superfields under the gauge
and global symmetry groups in Table 3.1. On top of these, there are also two discrete symmetries
(exchange of the gauge groups and charge conjugation), which are discussed in detail in [29]. The

| [SUN) x SUN)] | SU(2)a | SUR)s | UMWr | U1)5 |

A (

N) 2 1 1/2 1
B (N,N

N,
N,N) 1 2 1/2 -1

Table 3.1: Field content and symmetries of the KW field theory with massless flavors.

field content is usually summarized in the ‘quiver diagram’ of Figure 3.1, where circles represent
gauge groups and arrows represent bifundamental fields (fundamental under the gauge group the
arrow is exiting from, antifundamental under the gauge group the arrow is entering).

An analysis along the lines of [54] shows that this gauge theory has a superconformal fixed point
where the R-symmetry under which the chiral superfields have charge R[A;]| = R[Bj] = 1/2 and
the gluini have charge RA(M] = R]A)] = 1 becomes a generator of the superconformal algebra.
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The existence of such a superconformal point is equivalent to the existence of an exact U(1)r
symmetry in the superconformal algebra, because of the relation A = %R between the R-charge
and the quantum dimension of a gauge invariant operator. The quantum dimension of the chiral
superfields is 3/4, indicating that the theory is at a strongly coupled fixed point. A beautiful
description of the manifold of conformal fixed points preserving maximal symmetry can be found
in the review [55].

We should mention here that in addition to the mesonic branch of the moduli space, which
is the conifold modulo Sy, there exists also a baryonic branch where some of the dibaryonic
operators [56] of the schematic form AY and BY (indices are suitably contracted by antisymmetric
tensors) acquire a VEV, spontaneously breaking the baryonic U(1)p symmetry. In that case the
baryonic current gets a VEV, and the effect mirrors the presence of a D-term in the abelian theory:
the moduli space experienced by mesonic operators (D3 branes) becomes the resolved conifold.

The Klebanov-Witten conformal field theory, dual to type IIB string theory on AdSs x T!, has
an interesting relationship with a conformal field theory conjectured by Kachru and Silverstein to be
dual to type IIB string theory on AdSsx S°/Zs [28]. The latter field theory is an A" = 2 gauge theory
describing the low energy dynamics of D3 branes at a C x C2/Zy orbifold singularity, where the
nontrivial element of the Zs orbifold group acts on the three natural complex coordinates (z1, 22, 23)
of the covering space as (z1, 22, 23) — (—z1, —22, 23). Along the fixed line z; = 29 = 0 parameterized
by 23, there is an exceptional 2-cycle. The near-horizon geometry is AdSs x S°/Zsy, where the
angular part has an S'/Zs fixed locus of the Zy action. The gauge group arising from the Zy action
on the Chan-Paton factors is U(NN) x U(N) in the conformal case. There are two hypermultiplets,
one in the bifundamental representation (N, N), the other in the conjugate representation (N, N).
Decomposed in N' = 1 language, they appear as four chiral superfields Ay, Ay, By, Bs as those
appearing in the Klebanov-Witten theory. Because of N' = 2 supersymmetry, to each gauge group
is associated an N = 1 adjoint chiral superfield belonging the A/ = 2 vector multiplet. We will call
these adjoint superfields ® and ®. The superpotential is determined by N' = 2 supersymmetry to
be

W = gTI' [q)(AlBl — AQBZ)] + ng‘l" [(i)(BlAl - B2A2)] 5 (3210)

where ¢ is the gauge coupling of the two groups, that we assume to be the same for simplicity.
This is the case when the integral of the NSNS 2-form potential on the exceptional 2-cycle is
15— g2 B2 = . If we now add a relevant term [29]

AW = mTrd? — mTrd? | (3.2.11)

at energies below m the massive adjoint superfields should be integrated out by imposing their
F-terms. The resulting low energy superpotential is exactly the Klebanov-Witten superpotential
(3.2.9) with coupling h = g?/m. This indicates that the N' = 2 Zy orbifold theory flows to the
Klebanov-Witten upon mass deformation (3.2.11). Although naively the superpotential coupling
g%/m seems to disappear in the IR (which is the same as the parametric limit m — 00), it actually
does not and it becomes marginal due to large anomalous dimensions.

On the string theory side, the relevant deformation (3.2.11) appears as a twisted sector blowup
mode that smoothens the orbifold singularity S°/Zs into T1!. Clearly, a conical singularity survives
in the IR. In this N' = 2 case, the blowup mode is in the same SU(2)g multiplet as the complex
structure deformation modes. It is easier to see its effect by rotating to the description of a
complex structure deformation. We start from an A; singularity described by w% + w% + w% =0,
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times a complex plane parameterized by x (related to the VEV of ® and <i>) The geometric
picture of the mass deformation corresponds to fibering the x plane over the A; singularity as in
w% + w% + w% + m?22 = 0. The exceptional 2-cycle is blown up, except at the conifold singularity.
The resulting geometry is the conifold geometry.

Remarkably, an interpolating Calabi-Yau solution between the C x C2?/Zy orbifold and the
conifold and the holographic Klebanov-Witten RG flow between the two corresponding conformal
field theories has been shown to exist in [57].

We conclude this section by specifying the holographic dictionary that maps parameters in type
IIB string theory on AdSs x T1! into parameters of the Klebanov-Witten N' = 1 CFT, with matter
content as in Figure (3.1) and a quartic superpotential (3.2.9) [29,55,61].2 The number N of units
of RR 5-form flux through 7! is mapped to the number of colors of the two gauge groups in the
dual gauge theory, as follows from the brane construction.

More interesting is the mapping between the moduli of type IIB string theory and the couplings
of the dual gauge theory. We will restrict our analysis to the space of deformations that preserve
the SU(2) x SU(2) x U(1)gr global symmetry of the theory at the Klebanov-Witten point and of
string theory on the AdS5 x T'! geometry. On the string side, we are free to change the value
of the type IIB complexified coupling, the axio-dilaton 7 = Cy + ie~® = Cy + g%? provided that
we keep it constant as a function of the coordinates. We are also free to change the value of
the complexified 2-form potential Cy + 7By integrated over the nontrivial 2-cycle (B.1.21) of the
conifold geometry, provided that this remains constant, or in other terms that the complexified
2-form potential remains closed.?

Changing these moduli does not change the AdSs x T! structure of the solution, therefore
they correspond to motions in the maximally symmetric subsurface of fixed points of the Klebanov-
Witten field theory. These string moduli are mapped to renormalization group invariant quantities
in the gauge theory. If we define the holomorphic dynamically generated scales of the two gauge
groups,?

A;V = Iu,Ne 95 = MN 2T (3212)

two RG invariant dimensionless quantities can be constructed out of them and the superpotential
coupling h, consistently with the global symmetries. They are L; = hY A{V and Ly = bV Aév 5
Comparison with the transformation properties under exchange of the two gauge groups and analogy
with the dictionary of the CxC2/Zy N = 2 orbifold gauge theory clarifies that the correct dictionary

2It is perhaps worth commenting that in taking the large N ’t Hooft limit, also the quartic superpotential coupling
should be suitably scaled. However, since the coupling is superficially nonrenormalizable and the theory is at a strongly
coupled point, it is difficult to understand which scaling would fit.

3Making a quick jump ahead, we can perhaps mention to the educated reader that these two moduli are related
to the sum and the difference of the actions of the two fractional D-instantons (fractional D(-1) branes) representing
the supersymmetric gauge theory instantons of the D3 brane theory.

4As explained in [58], in the presence of matter fields these holomorphic dynamically generated scales are not
RG invariant if renormalization is done in the usual way, namely including the matter fields kinetic term. They are
renormalized by powers of the wave function renormalizations of the matter fields along the RG flow, consistently
with the exact Novikov-Shifman-Vainshtein-Zakharov g-function [59,60].

>The hY prefactors make the quantity dimensionless and cancel the renormalization by wave functions of the
matter fields.
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is
Ly Ly = exp [2miT] (3.2.13)

Li/Ly = exp Lr;’ /52(02 + TBQ)} : (3.2.14)

Here B, represents the fluctuation of Bs from the ‘orbifold point’ value in the N” = 2 theory that,
as discussed above, can provide a UV completion to the Klebanov-Witten theory. In that theory,
the ‘orbifold point’ is the one for which [¢, C2 =0 and [, By = 272a/: in such a case, we are able
to quantize string theory and check that the two gauge couplings are indeed equal [62]. Finally, the
holographic flow from the orbifold theory to the conifold theory does not change the value of Bs.
This dictionary can be rewritten in terms of the complexified gauge couplings 7; = g—; + i‘;—g of
J

the two groups and of the superpotential coupling h as

1 2N
Co+—=17=7m1+7n+ 3 log(hpu) (3.2.15)

gs

. / (C2 + TBQ) =71 —T2. (3.2.16)
SQ

o2m2a/

Notice the presence of the additional logh term in (3.2.15) with respect to more conventional
orbifold theories. This term should be regarded as a genuine effect of the nontrivial NV = 1
dynamics of the Klebanov-Witten theory (or, in other words, of the conifold singularity).

3.3 Fractional D3 branes and the Klebanov-Tseytlin solution

The scale invariance of the Klebanov-Witten field theory, describing the low energy dynamics of
N D3 branes at the conifold singularity, can be broken explicitly, in quite a peculiar way that we
will explain in this and in next section, by adding to the stack of N D3 branes a number M of
fractional D3. These fractional D3 branes can be viewed as D5 branes wrapped on the collapsed
2-cycle at the conifold singularity.

This fruitful idea arose from a study of D branes wrapped over cycles of 1! [56]. TV! has
S? x S3 topology, so that branes can be wrapped either on the 2-cycle or on the 3-cycle. In [63],
Witten studied the effect of adding a D3 brane in AdSs x S®, which is a domain wall in AdSs: the
flux of the RR 5-form field strength F5 jumps by one unit when the D3 brane wall is crossed. Since
this flux is related to the number of colors of the dual gauge theory, the effect in field theory is
to decrease the gauge group from SU(N + 1) (outside) to SU(N) (inside). Indeed, we know that
there is a moduli space for the positions of D3 branes, and that the effect of the Higgs mechanism
consists precisely in reducing the rank of the gauge group. Analogously, adding a D3 brane at some
radial position rg in AdS5 x T1! has the effect of increasing the gauge group from SU(N) x SU(N)
in the IR (r < rg) to SU(N 4+ 1) x SU(N + 1) in the UV (r > rg). Gubser and Klebanov [56]
argued that a D5 brane wrapped on the two cycle of 71! has instead the effect of increasing the
gauge group from SU(N) x SU(N) to SU(N) x SU(N + 1), leaving the matter content in the
same bifundamental representations as before, but now with respect to the new gauge group with
unbalanced ranks: the A; superfields transform in (N,N + 1) and the By superfields transform
in (N,N +1). Notice that such a wrapped D5 brane is not a stable object, since the two-cycle
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minimizes its volume at the tip of the cone, where it shrinks. There is no moduli space for the
wrapped D5 brane position: they are stuck at the singularity. The D5 brane does not disappear
provided a nontrivial By flux exists through the collapsed cycle. However, one can think of holding
the wrapped D5 brane fixed with an external source of energy and studying its effect, or of starting
with a wrapped D5 at very large r, where the energy of the system is very large, and then letting
the system relax to the vacuum and seeing what happens. The argument for the change in the
ranks relies only on charges and is firm.

There are different ways of arguing that the change in the ranks is the one proposed by Gubser
and Klebanov. First of all, one can make an analogy with the N' = 2 theory of D3 branes on
C x C%/Zs. In that case, it is possible to add fractional D3 branes (which are D5 branes wrapped
on the exceptional 2-cycle living at the singularity line), so that the gauge groups become SU(N) x
SU(N + 1), with bifundamental fields (and adjoint fields) remaining in the same representations
as before. This can be checked by explicit quantization of open strings. Giving mass to the adjoint
fields of this theory and integrating them out, we end up with an SU(N) x SU(N +1) gauge theory
with the same matter content as the Klebanov-Witten theory.® Notice that the SU(N) x SU(N +1)
gauge theory is not conformal invariant anymore.

An alternative argument was used by Gubser and Klebanov, who studied the behavior of a D3
brane wrapped on S? as it crosses the D5 brane wrapped on S? wall. In the conformal theory, a
D3 brane wrapped on S? is dual to a dibaryonic operator of the form ey, 4, €N Agll .. .Azg (or
one of the similar operators built out of B’s), where a and b are color indices, running from 1 to N.
In [56], a precise matching of the quantum numbers of the dibaryonic operators with those of these
string states was provided. In the SU(N) x SU(N +1) theory, the operators which are more similar
to the dibaryonic operators of the conformal theory are €4, q, €N bNHAgll e Azj\j , transforming

in the fundamental of SU(N + 1), and eal_,_aNebl'“bNbN“A‘gll : ..AggAggﬁ, transforming in the
antifundamental of SU(N + 1). The dual interpretation is simple: the wrapped D5 brane has a
string attached to it. The wrapped D5 brane generates one unit of F3 flux on the 3-sphere on one
side of it. When the wrapped D3 brane crosses it, it must reemerge with a string attached, because
the RR 3-form flux induces minus one unit of charge for the gauge field on the brane. Since the
brane is wrapped on a compact manifold, the total charge on this manifold has to vanish. The

endpoint of the string provides the necessary extra charge.”

As already mentioned, the wrapped D5 brane domain wall is not stable, and it actually falls at
r = 0, behind the horizon, being replaced only by its RR 3-form flux. The supergravity solution
corresponding to N regular D3 branes and M fractional D3 branes replaced by their fluxes should
therefore provide a dual of the SU(N) x SU(N + M) nonconformal version of the Klebanov-Witten
field theory, that from now on we will call Klebanov-Tseytlin (KT) or Klebanov-Strassler (KS)

5This argument is not as firm as it may look, since the two theories have a nontrivial RG flow. However, if the
mass of the adjoints is far from the dynamically generated scales of the two gauge groups, it is very reasonable that
the result should be this one, without any subtleties.

"To be more precise, the other endpoints of the strings attached to the wrapped D3 brane should also end
somewhere, because of charge conservation. This issue is related to gauge invariance of the field theory operator.
The configuration dual to a gauge invariant dibaryonic operator, of the schematic forms (A™)Y*! (contractions
with epsilon tensors are understood in these powers), is made of N 4 1 wrapped D3 branes, each one with a string
attached, and with the other N + 1 endpoints on a single D5 brane wrapped over T, which acts as a baryon vertex
for SU(N + 1) [64].
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Ay, Ay

N+M N

By, By

Figure 3.2: Quiver diagram for the Klebanov-Tseytlin/Strassler theory.

theory, and whose quiver diagram we reproduce in Figure 3.2. The superpotential remains (3.2.9):

W = hédeMTr(A; BLA;B)) . (3.3.1)

In [35], the supergravity equations of the system of N regular and M fractional D3 branes at
the tip of the conifold were solved to leading order in M /N, and the logarithmic running of the
difference of the inverse squared gauge couplings g; 2 9oy 2 was first pointed out. In [36], that
solution was completed to all orders: it is the famous Klebanov-Tseytlin solution, with 3-form
fluxes and running 5-form flux on the singular conifold; the warp factor has logarithmic corrections
to its AdS5 expression, the relative gauge coupling runs logarithmically at all scales, and the 5-
form flux decreases logarithmically as well. However, since the singular conifold has no preferred
scale, the logarithms are not cut off at small » and at some point the D3 brane charge becomes
negative and the metric develops a naked singularity. We review the Klebanov-Tseytlin solution in
the remainder of this section.

In appendix C.2, we have rederived such a solution by requiring supersymmetry and fulfilment
of Bianchi identities. That derivation shows how that solution can be found by simply adding an
SU(2) x SU(2) x U(1)g invariant closed primitive and imaginary-selfdual (2,1)-form G3 = F3 +
ie~® Hs3, with the normalization fixed by the conserved charge of the system, and then determining
the warp factor by imposing the Bianchi identity for F5. The result is the following. The solution,
that we will lay out in string frame, has a constant axio-dilaton 7 = Cy + ie”® = Cy + gis’ a
complexified 3-form field strength proportional to the SU(2) x SU(2) invariant closed primitive

and imaginary-selfdual (2, 1)-form wg 1’;1 ) defined in (B.1.29).

' Mo d
G3:F3+giH3:— 2a (C—Bi:>/\w2CF, (3.3.2)

where ( = dy — 25:1 cos 0;dyp; is the 1-form of the U(1)g fiber, and wQCF is the 2-cocycle of T
defined in (B.1.23) of appendix B.1. The prefactor is fixed by the number of fractional D3 branes,
namely the D5 brane charge (A.2.35), being M:

1
M=—-———— F: 3.3.3
Ao/ /53 5 ( )

where S3 is the 3-cycle of T11, whose representative can be chosen as in (B.1.24). Because of the
right-hand side in the Bianchi identity dF5 = —Hj3 A F3, the flux of Fj is not a conserved charge.
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This signals the fact that the number of D3 branes N or the ‘background value’ N of the ranks is
not really a conserved quantity.® The warp factor can be easily found to be:
_ 277 12 i 3

—(gsM)? log TL : (3.3.4)

h(r) Rl )

where 7. is an integration constant. There is a single integration constant rs. Its value can be related
to the D3 brane Maxwell charge (A.2.34) at some reference scale, because gsF5 = (1+*)d*z Adh~ .
Maxwell charges are the usual brane charges defined as fluxes of gauge invariant RR field strengths,
see appendix A.2.1. Following Klebanov and Tseytlin [36], we will name N the D3 brane Maxwell
charge at some other reference scale rg, so that the warp factor (3.3.4) is rewritten as:

27 51 3 9 r 1

h(r) = ikt [gSN + %(gsM) log - + i)l (3.3.5)
We stress again that IV and rp are not independent: there is really a single integration constant
rs. The D3 brane Maxwell charge (A.2.34), namely the flux of Fj, is not quantized and acquires a
radial dependence because of the 3-fluxes:

1

_ 3 2
Nepr(r) = _7(47#0/)2 /c Fs =N+ %gsM log o
5

T

(3.3.6)

Klebanov and Tseytlin noticed that the RG flow described by this dual background seems to enjoy
27
a cascade where Nefp(r) — Nesp(r') = Nepgp(r) — M as r— 1/ = e 39sMr: the ‘effective number of

colors’ Neg¢(r) drops by M units as r — r’ = ¢ 3 . This indicates that the dual gauge theory
changes from SU(N + M) x SU(N) to SU(N) x SU(N — M) as the logarithm of the energy scale
p~ r/a’® drops by a constant factor log uu +— log ju — 392:;\4.

The solution has a naked singularity of repulson type, located at the position r5 where the warp
factor vanishes. It is a bad IR singularity according to the criterion of [65]: this solution cannot be
used to extract IR properties of the dual gauge theory. At the radial position where the effective
number of colors vanishes (namely the derivative of the warp factor changes sign), gravity becomes
repulsive. Curvature invariants are small in the UV region. Even if gsM were very small, the
curvature is small provided gsNess(r) > 1. In that regime, field theory quantities can be reliably
computed.

Furthermore, running gauge couplings were computed by using the holographic relations valid
in the A = 2 orbifold theory:'®

8r2 82 _ 2
g 9 s

3.3.7
8r2 82 2[ 1 ( )

o _ o By — 7 (mod 21)|
9@ 93 s

2ma! S2

8We have been a little sloppy here, but we will discuss this point in detail in the following.

9This radius-energy relation is obtained using the stretched-string prescription. In nonconformal gauge/gravity
duals, it is known that the radius/energy relation usually depends on the process and the quantity under study.

0The use of orbifold formulae may look naive. However, a posteriori it turns out [55] that the corrections due to
the quartic superpotential can be neglected in the UV, where the Klebanov-Tseytlin solution gives a faithful picture
of the dual theory.
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using the NSNS potential

3gs Mo’
By = 2950 1og WO (3.3.8)
2 To
which is obtained by integrating Hs.!'! The result exactly agrees with the field theory compu-

tation of the §-functions of the gauge couplings, provided that the anomalous dimensions of the

bifundamental fields are the same (v = —%) as in the conformal Klebanov-Witten theory:!2
Bz =3(N+M)—-2N(1—~)=3M (3.3.9)
af
B2 =3N —2(N+ M)(1—~)=-3M, (3.3.10)
93

where g¢; is the coupling of the SU(N + M) group and g2 of SU(N). The gauge coupling ¢;
runs towards strong coupling, and diverges at some energy scale. If we start at an energy not
much larger than the one dual to ry, we see that the gauge coupling ¢; diverges ar r = rg, where
By vanishes. From the holographic relations and the validity of the solution at least in the UV
region, Klebanov and Tseytlin argued that the field theory can be continued past this seeming
strong coupling singularity provided that N is substituted by N — M. In the IR regime where
this jumping N becomes of the same order of M, the solution cannot be trusted and must be
desingularized.

We end this section by mentioning that not only [-functions, but also the anomaly of the
U(1)r R-symmetry of the field theory is succesfully reproduced by this dual background, as was
shown in [66]. The Klebanov-Tseytlin geometry is symmetric under a ¢ — 1 + 2¢ shift of the
coordinate of the U(1) fiber in T%!, which is dual to a U(1)g transformation parameterized by e
(under which gluini transform as A +— e¥)). RR field strengths are also invariant under this shift,
but the Cy potential is not: Co — Cy — Md'e wQC F_ On the other hand, we know that a Euclidean
D1 brane wrapped on the 2-cycle S? (Euclidean fractional D(-1) brane) is an instanton, and its
WZ action ﬁ /. g2 U2 is defined modulo 27. Therefore 1) — 1) + 2¢ is a symmetry when € € 1;Z.
Since € € [0, 2], the result is that a Zaps subgroup of the U(1)g classical R-symmetry group of
the gauge theory is not anomalous. In [66], it was also shown that the vector boson of the dual
gauge symmetry in the supergravity background acquires a mass eating the field |, g2 C2 dual to the
difference of the theta angles.

3.4 The Klebanov-Strassler solution

In the beautiful paper [37], Klebanov-Strassler achieved two main results: they were able to provide
a field theory interpretation of the renormalization group cascade displayed by the Klebanov-
Tseytlin solution, which reliably describes the ultraviolet regime of the gauge theory, and they
desingularized the Klebanov-Tseytlin solution by replacing the singular conifold with the deformed
conifold, which has a natural cutoff scale. The infrared regime of the dual gauge theory can be
sensibly investigated by means of their warped deformed conifold solution: up to subtleties related
to the non-decoupling of the UV completion, the IR dynamics is that of pure N' =1 SU(M) SYM,

"Here we have picked for latter purposes a convenient choice of the additive integration. In the Klebanov-Tseytlin
solution, which is singular at small r, there is really no physical way of fixing this integration constant.

2In [37], it was shown that in the UV, where M/N < 1, because of conformal invariance of the Klebanov-Witten
theory and of a Z; symmetry, anomalous dimensions are v = —1 + O((M/N)?).
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which displays confinement and chiral (R-) symmetry breaking. The strong coupling scale of the
IR gauge theory is related to the complex deformation parameter in the geometry.

3.4.1 UYV: a cascade of Seiberg dualities

In the previous section, we have mentioned that Klebanov and Tseytlin argued that the SU(N +
M) x SU(N) gauge theory dual to their background (in some energy range) might be continued past
the energy scale at which the SU(N + M) gauge coupling diverges, provided that N — N — M.
We can be more specific. Continuity of gauge couplings is achieved provided the SU(N) gauge
group is untouched and the SU(N + M) gauge group becomes SU(N — M), and the approximate
holographic relations (3.3.7) are modified into:

2 2
—87; 897; = 27e™?
g; s
er? g ol 1 (3.4.1)
— = — =2 [ //Bg—ﬂ(m0d27'() ,
9 gz 2l J g2

where g; is always the coupling of the larger rank gauge group and g, the coupling of the smaller
rank gauge group; on the right-hand side we have written e® for the string coupling, in order
not to ingenerate confusion between the string coupling and the gauge coupling gs appearing in
the left-hand side. This reshuffling precisely matches what occurs in the dual field theory, where
the continuation past strong coupling was understood in [37] to be described by a Seiberg duality
[67]. When the SU(N + M) gauge group becomes infinitely coupled, we are able to describe the
dynamics of the gauge theory at lower energies by resorting to a Seiberg dual description, where
the SU(N + M) group is substituted by an SU(N — M) gauge group, and with a superpotential
coupling the magnetic gauge singlet dual to the electric mesons M;; = B;A; to the Ny = 2N
fundamental and antifundamental chiral superfields b; and a; of the magnetic gauge group. The
dual superpotential is:

1 1
Winag = h Tr(Mi2May — My Maz) + i Tr(by Miia1) + 1 Tr(b1 Mizaz)+
1 1 (3.4.2)
+ X TI‘(bQMQlal) + X TI‘(bgMQQCLQ) y

where A is the mass scale that has to be inserted for dimensional reasons and enters the relation
between the electric and magnetic holomorphic dynamical scales. The M;; SU(N — M) gauge
singlets are massive and can be integrated out. The resulting superpotential for the light fields is

W' = h}ﬁ Tr(a1biazbe — ajbaagby) , (3.4.3)
a quartic superpotential of the same form as the electric one 3.2.9, with the only difference that h —
T}\T The magnetic dual theory (after an innocuous charge conjugation) has the same matter content
and superpotential of the electric theory, differing from that only in the rank of the gauge group:
the SU(N + M) x SU(N) gauge group in the electric description valid at high energies becomes the
SU(N — M) x SU(N) gauge group of the magnetic description valid at low energies. This peculiar

property of SQCD-like theories with a quartic superpotential is called self-similarity. Continuity of
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Q=

Figure 3.3: Renormalization group flow of the Klebanov-Tseytlin/Strassler theory in the UV regime.
At its infrared strong coupling scale, each gauge group is substituted by its magnetic dual, which
subsequently runs towards weak coupling.

the gauge couplings, as required by the dual supergravity solution with the holographic relations
(3.4.1), implies that the strong coupling scales of the electric and magnetic groups are the same
and equal A. The RG flow of the Klebanov-Strassler field theory is depicted in Figure 3.3. In the
UV regime, using the fact that the anomalous dimensions of the bifundamental superfields do not
acquire corrections at linear order in M /N, we conclude that the S-function of the dimensionless
quartic coupling A(u) = ph(p) is subleading with respect to the gauge coupling (-functions. To
leading order, X does not run. Under Seiberg duality, A —1 / A Continuity of this quartic coupling
under Seiberg duality imposes that A~ 1 in the UV region. A remarkably detailed analysis of the
Seiberg duality cascade in the Klebanov-Strassler theory can be found in the lecture notes [55].

We end this subsection by proposing corrected holographic relations for the UV of the Klebanov-
Strassler theory, obtained by completing an analysis of [61]. They are a generalization of formulae
(3.2.13)-(3.2.14) which hold in the Klebanov-Witten theory. On the gauge theory side, we can
build two renormalization group invariant quantities out of the quartic coupling h and the holo-
morphic dynamically generated scales A; and Ay of the SU(N + M) and SU(N) gauge groups,
consistently with the symmetries: they are L1 = hY Ajlv M with engineering dimension 3M, and
Ly = pN+M Ajlv —2M " ith engineering dimension —3M. Their product, which is invariant un-
der interchange of the gauge groups, should be matched with the amplitude e*™7 of a type 1IB
D-instanton, which is the sum of the two fractional D-instantons on the conifold which are the
instantons of the two gauge groups. The ratio of L; and L2 should instead be proportional to the
amplitude of the difference of the two fractional D-instantons. The proportionality factor should
carry the right engineering dimension and be consistent with the RG flow properties of the two
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sides. We propose the following relations:

LiLy = exp [27iT] (3.4.4)
6ar L i 5
h E = exp H . (CQ + TBQ) . (345)

Again, here B, represents the fluctuation of By from the ‘orbifold point’ value in the ' = 2
theory that can provide a UV completion. The S-functions and the U(1)gr properties of the two
sides exactly match in the UV, using the stretched string radius-energy relation and the U(1)g
infinitesimal transformation ¢ — ¥ + 2¢. The symmetry properties and engineering dimensions of
both sides of formulae (3.4.5) are the same.
This dictionary can be rewritten in terms of the complexified gauge couplings 7; = 29—; + i‘;—g of
J

the two groups and of the dimensionless superpotential coupling hu as

; 2N + M
Co + gi =t oM log(hyt) (3.4.6)
1 - 5M
et [, (Ot 7B2) =t (i) (347)

We stress again that the additional log(hu) terms with respect to the orbifold formulae can be
neglected in the UV regime, where to leading order hu does not run.

3.4.2 1IR: confinement and chiral symmetry breaking

The infinite cascade of Seiberg dualities explained in the previous subsection goes on until the
IR, where at some point different dynamics occurs and resolves the singularity of the Klebanov-
Tseytlin solution. If we start at some UV scale from N = kM, where k is some large integer, and if
corrections to anomalous dimensions do not become too large in the IR, the cascade goes on until
the gauge group is reduced to SU(2M) x SU(M). At that point, SU(2M) flows towards strong
coupling but we cannot move to a Seiberg dual description because Ny = N, = 2M. Instead, the
moduli space is deformed quantum mechanically [68]. The classical constraint det M — BB = 0,
where M is the meson matrix and B, B the baryon and antibaryon superfields, is modified at
quantum level to det M — BB = A%%. In the Klebanov-Strassler theory there is also a quartic
superpotential. The full exact superpotential is

W = h'Tr(My Mag — MiaMoay) + a(det M — BB — A3¥) | (3.4.8)

where « is the Lagrange multiplier enforcing the quantum constraint. There are two disjoint
branches of the moduli space of this gauge theory. In the mesonic branch the baryon VEV’s vanish
and the eigenvalues m;; of the meson matrices M;; lie on a deformed conifold m11ma2 —miamo =
A% a- This branch has a dual description in terms of mobile D3 branes on the deformed conifold.
A similar analysis at a generic step of the cascade can be found in [61] and leads to the same result:
the transverse space probed by D3 brane should be not the singular, but the deformed conifold.
In the baryonic branch, the mesons vanish and BB = —A%%. The solution to this equation is
B = éA%M, B = iCA%,,. At the Zy symmetric point ¢ = 1 of the baryonic branch and below the
scale Agps, what survives is the pure SU (M) gauge theory of the other group, which finally flows
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towards strong coupling at a scale Ap;. This point has a dual description in terms of fluxes on the
smooth warped deformed conifold geometry, which was proposed by Klebanov and Strassler and
we are to review now.

The previous analysis led Klebanov and Strassler to consider the smooth deformed conifold as
the internal Calabi-Yau space of the solution. Some generalities on the deformed conifold can be
found in appendix B.2. The Calabi-Yau metric on the deformed conifold is [51]:

ds% = %64/3.[{(7') ?>K13(T) (d7? 4 ¢?) + cosh? % [(93)2 + (94)2] +
(3.4.9)

+Sinh2% (4" +(®)?] |
where

(% sinh(27) — 7)1/3

sinh 7

K(r) = (3.4.10)

and the 1-forms g', g%, ¢3, ¢* and ¢ are defined in Appendices B.1 and B.2 in terms of the angular
coordinates. For large r and 7 , using the asymptotic change of coordinate

33/2

~ 5 e, (3.4.11)

.
the metric (B.2.7) reduces to that of the singular conifold dr? + r?ds?.,. ;. The deformed conifold
metric approaches that of R? x §% as 7 — 0:

21

. . 1
ds% ~ 61/3 43 {2 |:d7'2+7' 5

@2+ @)+ (3¢ + P e?)) . Ga

The ansatz for the RR 3-form field strength is

Fs = ]\420/ {C/\ [(1 — F(T))g3 /\g4 +F(T)gl /\92] +F/(T)d7'/\ (gl /\93 +92 /\94)} ’ (3413)

where F'(0) = 0 in order to ensure regularity at the tip of the deformed conifold and F(c0) = % to
ensure the Klebanov-Tseytlin limit. This form is automatically closed. The ansatz for the NSNS

2-form potential is
gsMdo'

By = 5 (f(T)g1 A g2+ E(T)g3 A 94) , (3.4.14)

where f(0) = k(0) = 0 so as to ensure regularity at the tip of the deformed conifold and f(7) ~
k(1) ~ 7/2 as T — o0 so as to approximate the Klebanov-Tseytlin solution.

Supersymmetry of the 3-form fluxes imposes the following system of first order differential
equations for the functions F(7), f(7) and k(7):

fl=(01-F) tanh2g

k' = F coth? % (3.4.15)

/_1 _
Fl= 2= ).
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which guarantees that G = F3 + g%Hg is (2,1), primitive and imaginary-selfdual (x¢G3 = iG3).
Finally, the Bianchi identity dFy = —Hs3 A F3 for Fy = ;15(1 + %)d*z A dh~! implies

1—-F)+kF
h' = —a% : (3.4.16)
K?2sinh” 1
where
o = 4(gsMa/)2e 83 (3.4.17)
The BPS system for the flux factors can be solved first, and yields
sinhr — 7
Fliry=—— 4.1
(7) 2sinh 7 (34.18)
Tcothr —1
f('T) W(COS}]T — 1) (3419)
Tcotht —1
Finally, requiring that the warp factor vanishes as 7 — oo, one obtains
h(r) = a2 *31(1) = (gsMa')?223¢ 831 (1) | (3.4.21)
where - o .
I(r) = / do T 0 [sinh (2a) — 22]'° (3.4.22)
- sinh” x

For small 7, I(1) = ag + O(7?), with ap ~ 0.71805: the warp factor approaches a constant.
Consequently, in the neighborhood of the tip of the deformed conifold 7 = 0, the 10-dimensional
geometry is metrically the product of 4-dimensional Minkowski space and of R? x S3. Corrections
to this asymptotics are O(72), so that the metric is smooth. Notice that the scale r,, necessary
for the definition of the logarithms in the Klebanov-Tseytlin solution (3.3.4), has dimensionally
transmuted into the deformation parameter € of the deformed conifold: ¢ ~ €2/3,

Curvature invariants are small everywhere, also close to the tip, provided that gsM > 1. This
implies that the cascade steps are very close one to the other, so that we cannot decouple the UV
completion (duality cascade) from the IR dynamics (N = 1 pure SYM) at the level of supergravity.

Let us now make some comments about interesting checks of the duality between the Klebanov-
Strassler solution and the proposed cascading gauge theory, which reduces in the IR to pure N' =1
SU(M) SYM.

Since the Klebanov-Strassler geometry ends smoothly at 7 = 0, it is dual to a confining gauge
theory, as SU(M) pure SYM is. Indeed, the Wilson loop in the fundamental representation and in
the g-antisymmetric representations obey the area law —log(W,(C)) = T,A(C) in the limit of large
area A of the loop C [7]. The Wilson loop in the fundamental representation is holographically
realized as a fundamental string whose worldsheet extends in the bulk geometry and has the loop
as a boundary at 7 = co [69].!3 In the Klebanov-Strassler geometry, for sufficiently large separation
between the external quark an antiquark pair that can be thought to bound a rectangular Wilson
loop, the string profile in the 7 direction takes a ‘U-shape’. The bottom of this U is an almost flat
tensionful string at the tip of the geometry, representing the chromoelectric flux tube in the dual

13See [70] for a nice review of the geometric translation of confinement in gauge/gravity duality.
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gauge theory; it is connected to the boundary by the vertical parts of the U, which are approximately
fundamental strings stretched radially from the boundary to the end of the geometry, and represent
the infinite masses of the external quark and antiquark, that have to be subtracted if we want to
compute the potential between quark and antiquark. The result is a linear confining potential, with
a tension of the confining string [37]

A/3

T~ ——
1 gsMa/Qv

(3.4.23)
where we have omitted order 1 numerical factors.

A similar analysis can be performed for the tensions of the ¢-strings, which have a dual descrip-
tion in terms of ¢ coincident fundamental strings [73]. In the S-dual description, it is possible to see
that because of the NSNS 3-flux through the 3-sphere at the tip of the geometry, the ¢ coincident
D strings blow up into a D3 brane wrapping an S? inside the S2, with ¢ units of worldvolume flux.
The tension of these confining ¢-strings can be computed, and give to a very good approximation
the sine law

T, sin W

mq

Ty sin 37

(3.4.24)

that was found in softly broken N'=2 SYM [71] and in /' = 1 MQCD [72], and ensures stability
of a ¢-string against decay into strings with smaller q.

Glueball masses can also be evaluated by studying fluctuations of supergravity modes. The
result is that the masses of glueballs are of order €%/3/(gsMa'), of the same order of the masses of
Kaluza-Klein modes from the $3. This is another face of the decoupling problem. The supergravity
solution is mildly curved provided g;M > 1; but then the UV completion of the IR theory, the
cascade, shows up at energies of the same order as the strong coupling scale of the IR theory, and
there is a mixing between states in the low energy theory and states in the completion. In order to
decouple the UV completion with all its undesired stuff, we should let gs;M be small; consequently,
the curvature radius becomes small in string units close to the tip of the deformed conifold. The
full string theory therefore necessary for a dual description of N = 1 pure SYM decoupled from its
UV completion.

Another remarkable check concerns the field-theoretic expectation that SU (M) pure SYM pos-

sesses M confining vacua parameterized by the gluino condensate TrAA ~ A3ei%, k=0,1,...,M—
1, which break spontaneously the Zs;; nonanomalous R-symmetry to Zs. This phenomenon is man-
ifest in the dual picture. The Zoys R-symmetry is the R-symmetry of the UV background, which
is approximately the Klebanov-Tseytlin background of the previous section. However, the full
Klebanov-Strassler solution preserves only a Zo subgroup: already the defining equation of the
deformed conifold (B.2.2) preserves only a Zs R-symmetry which maps z; — —z;. Fluxes and
potentials of the Klebanov-Strassler solution preserve this Zs too. It is also possible to compute
holographically the gluino condensate [74], with the result TrAX ~ M 5—,23 Furthermore, the domain
wall separating two of these M vacua, with & and & = k + [, have a holographic description as [
BPS D3 branes wrapping the S% at 7 = 0, with the remaining directions along Minkowski space.
As the domain wall is crossed, for large 7 the RR 2-form potential is shifted by ACy = wa’ leC L
reproducing the broken Zsj; transformation that relates the two vacua. The tension of the domain
wall is found to be T, ~ R

We end this section by mentioning that other solutions describing different points of the moduli
space of the Klebanov-Strassler cascading gauge theory exist. A thorough analysis of the moduli
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space of this theory was done in [61]. In [75], a family of SU(3) structure explicit solutions pa-
rameterizing the full baryonic branch B = %A% Mo B = iCAZ%,, of the Klebanov-Strassler theory
and so extending the work of [76], was found. Interestingly, in a limit the background reduces
to the one proposed by Maldacena and Nufiez as another dual of N' =1 SU(N) pure SYM [42].
More recently, a partially numeric solution describing the mesonic branch of the Klebanov-Strassler

theory appeared in [77].
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Chapter 4

Flavors in AdS/CFT duality

4.1 Flavors in large N, expansions

4.1.1 Flavors in 't Hooft’s limit

In section 1.1 we have introduced the large N. expansion for a pure SU(N.) Yang-Mills (YM)
theory, or a YM theory with matter in the adjoint representation. We have seen that Feynman
diagrams rearrange in a way that mimics the topological expansion of a theory of closed oriented
strings. In the original paper [8], 't Hooft studied the large N, expansion of QCD. He started from
a YM theory with gauge group U(N,.)! and N ¢ flavors of vector-like quarks, and considered the
limit (1.1.5), keeping the number of flavors N fixed. Let us review here 't Hooft’s argument.

The action we use is

Ny
Sy = —% /d%; Tr(F, F*) + /d%; > 1P — ma)va (4.1.1)
a=1

where the Dirac spinor field ¢, includes the quark and antiquark degrees of freedom, a is a flavor
index, and the covariant derivative D, was defined in (1.1.3). Hidden inside the covariant deriva-
tive term in (4.1.1), there is an interaction vertex for emission of a gluon by a quark, which is
proportional to the YM coupling g and in double line notation is shown in Fig. 4.1. Quark lines
are single lines and enter and exit the vertex of Fig. 4.1; therefore quark loops introduce boundaries
in the Riemann surface which is obtained by gluing faces to edges (propagators).?

Let us first consider connected vacuum diagrams.® The only difference with respect to the pure

! Also in this case, the adaptation to SU(N,) can be worked out easily.

2In order to keep track of the dependence on the number of flavors, Veneziano [78] has later introduced a double line
notation for quarks, where the second line is wavy and follows the flavor index. Although Veneziano’s diagrammatic
notation is very convenient, we will keep using 't Hooft’s double and single line notation, paying attention to Ny
factors.

3The same subtlety as in the pure YM case arises for the simplest vacuum diagrams with a single quark propagator
going back to itself. This pathology can be dealt with in the same way as in the unflavored theory, see section 1.1
around equation (1.1.9).

65
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Figure 4.1: Quark-gluon vertex in double line notation.

Figure 4.2: The quark loop contribution to the gluon propagator (on the left) scales like Nt/N,
with respect to the gluon loop contribution (on the right).

YM case arises when there are internal quark loops: any internal gluon loop which touches only
trivalent vertices can be replaced with a quark loop, introducing a boundary and substituting one
power of N, with one power of N;. See Fig. 4.2 for an instance of this.

The final result is

o0 o0
A=D"NXNED ey A, (4.1.2)
X F=x

with b the number of boundaries. The exponent F'—y of A can be rewrittenas FF'—y = E—V =1[—1,
where [ is the number of unconstrained loop momenta we have to integrate over.

This formula looks like a topological expansion for a theory of orientable closed and open strings,
where the open string sector is related to the quarks and the closed string sector is related to the
gluons. This is a strong suggestion that Yang-Mills theories with fundamental flavors may be
reformulated as suitable theories of closed and open strings.

One can also consider generic connected diagrams, where also insertions of gauge invariant
mesonic-like sources, like for instance the pseudoscalar 1751 or the vector current 1/71’}%1/1, can
appear. These sources will generically have definite flavor quantum numbers. What is important
here is that the source is gauge invariant, implying that color lines run through it undisturbed.
The previous argument goes through also for this case, with the only difference that the insertion
of mesonic-like sources in a quark loop fixes the flavor index running along the loop, hence lowering
the power dependence on the number of flavors Ny.

In the large N, limit (1.1.5) with Ny kept fixed, the dependence of a diagram on the number of
colors is again NX, where now the Euler character is

X=F—-E+V=2-2h—b. (4.1.3)
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The leading order diagrams in 't Hooft’s expansion are planar diagrams with a minimum number
of quark loops. In other words, quark loops appear only as external loops touching mesonic source
vertices, in a way analogous to the ‘quenched approximation’ in lattice gauge theories, where
the fermionic determinant is approximated by 1. There are two classes of subleading diagrams:
diagrams with internal quark loops, which are suppressed by powers of N¢/N., and nonplanar
diagrams, which are suppressed by 1/NZ.

A nice phenomenology can be derived in this large N, expansion, in addition to the pure glue
phenomenology mentioned in section 1.1 [13]. As consequences of the previously illustrated scaling
and of the assumptions of existence of this large N, limit and of confinement, one can show the
following properties. In this large N, limit mesons for large N, are free, stable and not interacting.
Meson decay amplitudes are of order 1/1/N,, amplitudes for meson-meson elastic scatterings are of
order 1/N, and are given by a sum of tree diagrams involving the exchange of physical mesons with
local vertices. There are infinitely many mesons, and their masses have smooth large N, limits.
The amplitude for a glueball to mix with a meson is of order 1/y/N,, the decay amplitude of a

glueball into two mesons is of order 1/N,, and an interaction vertex with & meson legs and [ glueball

1
legs scales like N, : 2k+1. Mesons and glueballs are the weakly coupled degrees of freedom (with

masses not diverging like N.) appearing in the spectrum of Yang-Mills theory. The 1/N, expansion
can be rephrased as a loop expansion in an effective theory of mesons and glueballs. Furthermore,
in this limit the Okubo-Zweig-lizuka (OZI) selection rule is exact, the mixing between flavor singlet
and octet mesons is suppressed, and mesons are pure ¢g states. Because of the N;/N, factors
arising from internal quark loops, all the phenomena which are related to the quark-antiquark sea
are suppressed.

Real world QCD has three colors and two (or three) light flavors, so that N. does not look
very large (but actually without resumming planar diagrams we cannot know what is the effective
coupling) and Ny is of the order of N.. Despite this fact, the qualitative similarity of 't Hooft’s large
N, limit phenomenology with real QCD phenomenology seems to indicate that this limit provides
a good approximation scheme. Quantitatively, in cases where 1/N, corrections vanish and the first
subleading corrections are at 1/N2, this limit allows to make predictions at the 10% level.

4.1.2 Veneziano’s large N, expansion

Few years after 't Hooft’s paper, Veneziano reconsidered large N, expansions in [78]. He pointed out
that 't Hooft’s large N. expansion, although very promising in tackling the issue of confinement,
had the phenomenological disadvantage that its higher orders mix together planar corrections
and nonplanar loop corrections. Nonplanar corrections can be shown to modify qualitatively the
physics of the leading planar term: they introduce violations of the OZI rule, as well as absorptive
corrections (such as cuts and long-range correlations) to the pole dominated leading terms of
the 1/N, expansion. On the contrary, planar corrections coming from internal quark loops are
expected to modify quantitatively, but not qualitatively, the leading term of the expansion. They
do not introduce violations of the Zweig rule nor absorptive corrections. Their effect is that of
renormalizing the quantities relevant to the leading term in 't Hooft’s expansion, for instance by
giving a finite width to the mesons, and of enforcing a set of unitarity-like constraints that the
leading order expansion obviously misses. Phenomenological observations give ground to a validity
of the OZI rule, to a good approximation, and also indicate that short range interactions between
mesons are dominant. Therefore it seemed phenomenologically desirable to include quark-induced
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planar corrections in a leading order expansion.

For these reasons, Veneziano decided to study a different scaling limit than 't Hooft’s one. He
considered the scaling limit N, — oo with A = ¢ N, fixed, together with = N 7/ N, fixed. Feynman
diagrams do not change, therefore the expansion is the same as (4.1.2), together with (4.1.3). It
still looks like a topological expansion for a theory of closed and open strings.* What changes in
this limit is that since z is kept fixed, planar diagrams with internal quark loops are not suppressed
with respect to planar diagrams without internal quark loops. Similarly, the two diagrams of Fig.
4.2 contribute both to the leading order in Veneziano’s expansion.

What the leading order of Veneziano’s expansion captures, in addition to the physics of ’t
Hooft’s large N, limit, is the dynamics due to the quark-antiquark sea. One can then expect that
phenomena like screening of color charges and breaking of confining chromoelectric flux tube can be
studied already at the leading order of this expansion. Furthermore, since quarks are allowed to run
inside loops, the way the coupling runs, or equivalently the magnitude of the dynamically generated
scale, is affected by the dynamics of fundamental fields. This is clearly seen in the expression of
the 1-loop G-function for the 't Hooft coupling:

d\ 2 Ny A2
AR S . 4.1.4
Fan =73 < Nc> 1672 (4.14)

One nice consequence for our modern taste is that Veneziano’s large N. and Ny expansion looks
also as a promising arena where one can study phases of (non)supersymmetric gauge theories
with fundamental flavors, that the power of holomorphy and duality has revealed so beautifully in
supersymmetric gauge theories. All these effects are washed out at the leading order of 't Hooft’s
expansion, but are kept in Veneziano’s expansion.

4.2 Adding flavors to the AdS/CFT correspondence

The original version of AdS/CFT duality proposed by Maldacena and developed also by many other
authors involves gauge theories with multiple gauge groups and fields in the adjoint or bifunda-
mental representation of the gauge groups [32]. In order to make contact with phenomenologically
more interesting QCD-like theories, the addition of fields transforming in the fundamental or anti-
fundamental representation of the gauge groups, as well as in the fundamental or antifundamental
representation of a global flavor group is of obvious importance. Large N expansions in gauge
theories, reviewed in the previous section, strongly suggest that the addition of flavor degrees of
freedom amounts to introducing an open string sector to the previously considered closed string
dual. This expectation is beautifully realized in the AdS/CFT correspondence.

In this section we will first review the argument of Karch and Katz [79], who considered the
addition of AdSs filling (noncompact) probe D7 branes to Maldacena’s setting of type IIB string
theory on AdSs x S°, as a way of including fundamental flavors in the correspondence. Then we will
elaborate on their argument, extending it to more general situations where the D7 branes cannot
be treated as probe.

4Actually, the resemblance can be even pushed further: it is possible to see for instance that correlation functions
of m mesonic currents are exactly the same as in a theory of oriented closed and open strings, where the string mass
scale is related to the dynamically generated scale of the gauge theory, and the string coupling is (in principle) a
calculable constant divided by VN..
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0O[1[2[3[4][5][6[7[8]9
D3| |- |- |-
D7 |- |- |- |- |- |-|-[-

Table 4.1: D3/D7 system in ten-dimensional Minkowski spacetime.
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Figure 4.3: Perturbative picture (gsNe, gsNy < 1): type IIB superstring theory with N, D3 branes
and Ny D7 branes in flat spacetime.

Let us consider a system of N, parallel D3 branes and Ny D7 branes in ten-dimensional
Minkowski spacetime, in the perturbative description. The D3 branes are placed along the di-
rections 0123, whereas the D7 branes are placed along 01234567, as in Table 4.1. This system
preserves 8 supercharges. D3 branes can either be placed inside the stack of D7 branes and form a
defect, or they can be separated in the 89 complex plane from the stack of D7 branes. The sectors
of string theory in this picture are those depicted in Figure 4.3:

e closed strings in flat R%Y
e open 3-3 strings
e open 7-7 strings
e open 3-7 and 7-3 strings.

The dynamics of closed strings is described at low energies by type IIB supergravity in flat ten-
dimensional spacetime, with Newton’s constant proportional to g2a™. The dynamics of open
3-3 strings alone would be described at low energies by an N = 4 U(N,) four-dimensional SYM
theory with dimensionless gauge coupling 9(24) ~ gs. The dynamics of open 7-7 strings alone would
be described at low energies by a nonrenormalizable U(Ny) 8-dimensional SYM gauge theory
preserving 16 supercharges, with dimensionful gauge coupling g(28) ~ gsa/?. The 3-7 and 7-3 open
string sectors introduce Ny N = 2 hypermultiplets in the four-dimensional gauge theory on D3
branes, and a defect sector in the eight-dimensional gauge theory on D7 branes.
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The SO(4) x SO(2) symmetry of the system maps to the SU(2)e x SU(2)r x U(1)r global
symmetries of the four-dimensional N = 2 theory obtained adding Ny hypermultiplets coupled to
an N = 2 vector multiplet inside the N/ = 4 vector multiplet. The hypermultiplets are massless
or massive depending on the D3 branes being on top of or displaced from the D7 branes. If they
are massive, the U(1)r R-symmetry corresponding to the SO(2) rotational symmetry in the 89
complex plane is explicitly broken in the gauge theory.

We can trust this perturbative description provided that gsN. < 1 and g;Ny < 1.

Let us now consider the decoupling limit (2.2.1) of D3 branes from bulk physics. If the D3
branes and the D7 branes are separated, we rescale their separations so as to keep four-dimensional
gauge theory quantities fixed. The result is the following. Closed string dynamics reduces to free
ten-dimensional supergravity in R"?, decoupled from everything else, because Newton’s constant
has negative mass dimension. For the same dimensional analysis reason, gauge dynamics on the
D7 branes disappears, and the U(Ny) group becomes global. On the other hand, dynamics on the
D3 branes reduces to a four-dimensional N' = 2 U(N,) gauge theory with Ny hypermultiplets in
the fundamental representation of a U(Ny) flavor group. If there are massless flavors, the diagonal
U(1) factor in the gauge group is IR free and decouples at low energies.

Summarizing, after the decoupling limit we are left with an interacting four-dimensional N' = 2
SU(N.) SYM theory with two vector multiplets, one of which is coupled to Ny flavors, plus free
supergravity in ten flat spacetime dimensions and free eight-dimensional maximal SYM on the D7
branes.

We now consider the dual picture. If one wants to work in full generality, one should start from
the supergravity solution generated by a stack of N. D3 branes and a stack of Ny D7 branes, and
then take the decoupling limit. Being D7 branes higher dimensional objects, for generic values of
N, and Ny the backreaction of D7 branes would be the leading effect. D7 branes are subtle, because
as codimension two objects they can introduce a deficit angle in the transverse space or even ‘eat
it up’ and close it [80]. Far from the branes, the dilaton becomes large and the full string theory is
needed to understand their physics. We will comment more on these subtleties in subsection 4.2.2.
Differently from the D3 brane solution, which is geodesically complete, the D7 brane source is at
finite distance from any point in the bulk geometry. This means that a source action for the D7
branes, therefore an open string sector, has to be introduced in the equations of motion.

4.2.1 The probe brane approximation

In order to avoid subtleties related to the leading backreaction of D7 branes, in their original paper
Karch and Katz restricted their attention to the probe approximation for the flavor D7 branes. In
the limit of very large N, with g;IN. > 1 and fixed, if Ny is kept finite we see that the backreaction
of D7 branes, proportional to gs/Ny is small. The background is therefore generated solely by the
stack of D3 branes; D7 branes have to minimize their action in the D3 brane background. The
situation is illustrated in Figure 4.4.

In the decoupling limit, the asymptotically flat region decouples, with its ten dimensional free
supergravity and eight-dimensional free SYM hosted by the asymptotic part of the D7 brane world-
volume. We are left with interacting type IIB supergravity in the near-horizon AdSs x S geometry
of the stack of N, D3 branes, together with the open string theory on the piece of the D7 brane
worldvolume which lives in this near-horizon region of the D3 branes, which is described by a
Dirac-Born-Infeld plus Wess-Zumino effective action. The reason, analogous to the one explained
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Figure 4.4: Ny probe D7 branes (in red) in the N. D3 brane background.

in section 2.2, is that for a field theory observer out of the throat all massive closed and open
string excitations inside the throat have arbitrarily low energies, provided that they propagate
deep enough in the throat. For the same reason, although naive dimensional analysis would sug-
gest that all gravity and eight-dimensional gauge interactions disappear in a low energy limit, they
actually survive in the throat.

This analysis led Karch and Katz to extend Maldacena’s AdS/CFT duality to field theories
with fundamental flavors. In the maximally supersymmetric setting, and in the probe brane ap-
proximation, the conjecture states the equivalence between:

e the 't Hooft limit (N, — oo, with A and Ny fixed) of the N’ =2 SU(N) SYM theory obtained
by coupling Ny fundamental hypermultiplets to N” = 4 SYM, in the strongly coupled A > 1
regime;

e Type IIB supergravity on AdSs x S, with N, units of RR 5-form flux, plus N; probe D7
branes.

An important remark is in order at this point. The reader should notice that the usual
open/closed string duality which is at the heart of Maldacena’s AdS/CFT has been enlarged with
an open/open string duality. The Dirac-Born-Infeld action for the D7 brane on the ‘string side’
describes the dynamics of 7-7 open strings which are not the 7-7 open string on the perturbative
(‘field theory’) side, which decouple; rather, it describes the dynamics of the 3-7 and 7-3 strings
of the ‘field theory’ side. Boundaries of the string worldsheet on the D7 branes represent mesonic
operators in the gauge theory.

A related comment concerns the fact that in AdS/CFT duality (see section 2.3) a global sym-
metry on the field theory side is mapped into a gauge symmetry on the string side. This still holds
in our setup: here the global flavor symmetry of the gauge theory, under which mesonic operators
transform in the adjoint representation, is mapped into the gauge symmetry hosted by the flavor
D7 branes on the string side.
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Meson spectra and correlators in this limit can be obtained by computing fluctuations of the
flavor branes [79,81,82]. We refer the reader to the review [83] for an overview of the subject and
a complete list of references.

This is the first explicit realization of ’t Hooft’s idea reviewed in section 4.1.1: a gauge theory
at large N. and Ny fixed is translated into a classical closed and open string theory. ‘Quarks’
(fundamentals) are only external objects, which do not propagate in loops, where only ‘gluons’
(adjoints) run. This translates in a geometry generated by closed strings, plus an open string
sector (hosted by flavor branes) which does not backreact on the geometry but can fluctuate in the
geometry.

4.2.2 Backreacting flavor branes

In the previous subsection we have discussed the addition of flavors to the AdS/CFT duality in
the probe brane approximation and we have pointed out that such an approximation amounts to
considering the leading order of 't Hooft’s large N. expansion, in which the 't Hooft coupling A
and the number of flavors Ny are kept fixed. However, 't Hooft’s field theoretical diagrammatic
arguments which led to 4.1.2, suggesting a dual closed and open string theory interpretation of a
large N gauge theory with flavors, hold irrespective of the ratio between the number of flavors and
colors. In particular, we have seen in section 4.1.2 that a different scaling limit can be considered in
which Ny /N, is kept fixed instead of Ny: in that limit the leading order includes diagrams with flavor
fields running in loops. It should be clear from the previous discussion that if we want to capture
the leading order of Veneziano’s expansion we should let the flavor branes backreact [84,85]. Some
papers which studied backreacting flavor branes even before the understanding of the decoupling
limit by Karch and Katz are [86-88].

Let us revisit in more generality the decoupling limit of D3 branes in the presence of D7 branes.
As a starting point, we recall the duality between the open string and the closed string pictures of D
branes. Conceptually, the D3 brane geometry could be obtained by resumming an infinite number
of diagrams with boundaries for the worldsheet of a closed string propagating in the presence of the
D3 branes. The decoupling limit further corresponds to the near-horizon limit of such a geometry.
The conjecture in its strongest forms states that quantum type IIB string theory on the near-horizon
geometry of a stack of D3 branes is dual to the field theory limit of the D3 brane dynamics.

In the presence of D7 branes we still consider the field theory/decoupling limit of D3 branes.
Doing this should be dual to considering propagation of closed strings in the near-horizon geometry
of the D3 branes, which is a consistent string background. Taking the decoupling limit of D3 branes
on this side, as we have already reviewed in the previous subsection, not only the full closed string
theory but also a full open string sector hosted by D7 branes (dual to mesonic excitations in the
gauge theory) in such a throat background survives, because of the redshift. We are therefore led
to the strongest form of the flavored extension of AdS/CFT duality, which states the equivalence
of:

e the full quantum four-dimensional N' = 2 theory obtained by coupling Ny fundamental hy-
permultiplets to N' =4 SU(N) SYM theory;

e the full quantum type IIB string theory on AdSs x S5, with N, units of RR 5-form flux,
endowed with an open string sector hosted by Ny D7 branes in such a background.
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Figure 4.5: AdS/CFT correspondence with flavors.

In order to obtain the string dual of the field theory with arbitrary A, N., N, we should be able
to quantize both closed and open strings in a curved RR AdS5 x S5 background. This achievement
is out of our current reach, but we can reduce to more controllable regimes.

If we take the usual supergravity limit gs < 1, gsN. > 1, the D3 brane sector can be easily
dealt with. Depending on N¢/N., the D7 brane sector has to be dealt with differently. For general
values of Ny/N,, the full backreaction of D7 branes in the near-horizon background generated by
D3 branes should be computed. This introduces an open string sector: string worldsheets (without
handles) can now acquire any number of boundaries. This means that in the dual field theory
fundamental flavor fields are allowed to run in loops. We are at the leading order of Veneziano’s
expansion, where amplitudes contain planar diagrams with any number of empty quark loops.

If we further take the limit in which % — 0 ("t Hooft’s limit), the backreaction of D7 branes
goes to zero, and the open string sector remains as external. In the jargon of lattice gauge theorists,
flavors are ‘quenched’ and cannot be pair-produced. We only find worldsheets with the topology of
a sphere, or with the topology of a disc if there are open string vertices insertions at the boundary.

Therefore, the advantages of the backreacting flavor branes approach that we will follow over the
probe branes approach are the same advantages of Veneziano’s expansion over 't Hooft’s expansion,
discussed briefly in section 4.1.2. New hadronic physics is captured, and nontrivial dynamics arising
from flavor fields quantum effects is visible in this approach.

At first sight, there are however some disadvantages, beyond the increased degree of technical
complexity. The first issue is related to the geometry generated by D7 branes. The authors of [80]
have shown that the geometry generated by a stack of localized Ny D7 branes in the transverse two-

dimensional space is asymptotically conical with a deficit angle of 2%% if Ny <12, asymptotically
cylindrical if Ny = 12, whereas it closes and is singular in all other cases, except for the regular
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case Ny = 24. Therefore there is no known nonsingular global solution for more than 24 D7 branes.
Furthermore, close to the D7 branes the effective string coupling e® goes to zero, bringing an
additional curvature singularity in string frame. This facts could worry the reader, since in the
next part of this thesis we are going to discuss solutions for backreacting D7 branes in the context
of gauge/gravity dualities.

We can anticipate here that, luckily, in this framework such singularities have a physical meaning
and are actually expected to be there. The IR singularity is related to a coupling in the dual field
theory flowing to zero. It is common lore in gauge/gravity dualities that when the field theory
becomes weakly coupled, the dual supergravity description develops large curvatures. This happens
for the maximally supersymmetric theory we have discussed so far [89], and will also happen for the
flavored Klebanov-Witten theory that we are going to discuss in the next chapter [1]. In that case
we give arguments why the coupling that is flowing to zero is not the gauge coupling but rather
the quartic superpotential coupling of bifundamental fields.

The UV singularity has a dual interpretation too, as a Landau pole in the dual gauge theory
that is obtained by adding flavors to a conformal field theory [1,89]. Such a behavior is expected on
field theoretic grounds for any nonvanishing value of Ny/N, in the large N, limit. The conclusion
is that, as a gravity dual of a field theory with a Landau pole, the UV singularity of a D3-D7 brane
geometry is not only acceptable but also expected.? The backgrounds are sensible for any number
of flavors. It would be of course nice to find a globally nonsingular string theory solution extending
in the UV for Ny > 12 (24), but for what concerns us that solution would only shed light on the
way string theory UV-completes the field theory with a Landau pole that we are studying. The
backgrounds that are found at the level of supergravity can be trusted in some energy range, thus
providing a tool for studying the physics of the dual gauge theory.

°In the (orbifold of) flat space case, it is possible to show that massless open string states (related to the field
theory picture) precisely map into massless closed string states (related to the supergravity pictures) without any
mixing with massive string states [89,90]. As a consequence, gauge/gravity duality works even in the absence of a
true boundary corresponding to an infinite energy ‘cutoff’.



Chapter 5

Unquenched flavors in the
Klebanov-Witten theory

In this chapter, we study the addition of backreacting noncompact D7 branes to the Klebanov-
Witten geometry. The resulting background is dual to a flavored version of the Klebanov-Witten
field theory, to leading order in Veneziano’s large V. expansion. This is a first step towards flavoring
the cascading Klebanov-Strassler field theory, the result of which is hoped to give a gravity dual
of an N/ = 1 SQCD-like theory in Veneziano’s large N, limit. That will be the content of the next
chapter.

This chapter is mostly based on reference [1], written by the present author in collaboration
with Francesco Benini, Felipe Canoura, Carlos Nunez and Alfonso V. Ramallo.

5.1 Introduction

Our starting point is the type IIB AdSs x T'*! solution dual to the Klebanov-Witten field theory [29]
earlier introduced in section 3.2. Our aim is to add a large number of flavors, comparable to
the number of colors, to each of the gauge groups. Our procedure can be generalized to cases
describing different duals to A/ =1 SCFT’s constructed from D3 branes placed at conical Calabi-
Yau singularities, as described in [1].

Let us briefly describe the procedure we will follow, inspired mostly by the papers [84,85,91]
and more recently [92,93] and introduced in subsection 4.2.2. In those papers (dealing with the
addition of many fundamentals in the noncritical string and type IIB string respectively), flavors
were added to the dynamics of the dual background via the introduction of Ny spacetime filling
flavor branes, whose dynamics is given by a Dirac-Born-Infeld and a Wess-Zumino action. This
dynamics is intertwined with the usual Einstein-like action of type IIB supergravity and a new
solution is found, up to technical subtleties described below.

75



76 CHAPTER 5. UNQUENCHED FLAVORS IN THE KLEBANOV-WITTEN THEORY

5.1.1 Generalities of the procedure

To illustrate the way flavor branes will be added, let us first recall the background of type IIB
supergravity that is dual to the Klebanov-Witten field theory. The dual type IIB background in
string frame reads’

2 2
ds® = h(r)"?da? 5 + h(r)2 3 dr? + T2 37 (@07 + sin 0, d?) + —(dip — Y cos 0; dpi)?
’ 6 i=1,2 9 i=1,2

gsFs = (1 + %) d'z Adh(r)™!
2 ch 2
h(r) = TmgsNea

4rt
with constant dilaton e® = g, and all the other fields in type IIB supergravity vanishing. The set of
coordinates that will be used in the rest of the chapter is 2™ = {20, 2! 22 23 7,9, 01, 01,02, 2}
We recall that a review of the conifold geometry can be found in appendix B.1.

We will add Ny noncompact D7 branes to this geometry, in a way that preserves four super-
charges. This problem was studied in [79,94,95] for the conformal case and in [96] for the cascading
theory.?2 These authors found calibrated embeddings of D7 branes which preserve four conserved
supercharges of the background. We will choose to put two sets of D7 branes on the surfaces
parameterized by

(5.1.1)

f? = {x07$17$2a$377,¢>923¢2} 01 = const. (1 = const. ,
€8 = {202t 2%, 23, r 4, 01, 01} 02 = const. 2 = const. . (5.1.2)

These two configurations are mutually supersymmetric with the background. The two sets of
flavor branes introduce a chiral U(Ny) x U(Ny) flavor symmetry,® the maximal flavor symmetry
for massless flavors. The configuration with two sets (two branches) can be deformed to a single
set, shifted from the origin, that represents massive flavors, and realizes the explicit breaking of
the flavor symmetry to the diagonal vector-like U(N¢). Our configuration (eq. (5.1.2)) for probes
is nothing else than the z; = 0 holomorphic embedding of [95], having two branches, z3 = 0 and
z4 = 0. Notice also that placing stacks of localized D7 branes along the embeddings (5.1.2) breaks
the SU(2) x SU(2) symmetry of the background and of the dual gauge theory to U(1) x U(1).

We will then write an action for a system consisting of type IIB supergravity* plus D7 branes
described by their Dirac-Born-Infeld and Wess-Zumino actions:

1 1 1 1
S = Q/dma: \/TQ[R— S0P P — S| Fy|? — *|F5‘2]+
2K 2 2 4

Ny Ny
Y [ et =il + =il |+ Y [ G,

!As in appendix B.1, we have flipped for convenience a sign in the fibration of the 1 angles with respect to the
most widespread conventions in the literature [49].

2A stable configuration of flavor branes that breaks supersymmetry was previously considered in [97].

3The diagonal axial U(1) is anomalous, and its anomaly can be seen at leading order in Veneziano’s large N.
limit [98].

4The problems with writing an action for type IIB that includes the self-duality condition are well known. Here,
as in appendix A.2, we just loosely mean a Lagrangian from which the equations of motion of type IIB supergravity
are derived. The self-duality condition is imposed on shell.

(5.1.3)
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where we have chosen the normalization |F},|> = %Fpr(g_l)p (see appendix A.1). The action, the
derivation of the equations of motion, as well as the definition of the Einstein frame can be found
in Appendices A.2 and A.2.1. Here we use the Einstein frame defined by (A.2.5), where we rescale
the string frame metric by the whole dilaton.

Notice that we did not excite the worldvolume gauge fields, but this is a freedom of the approach
we adopted. Otherwise one may need to find new suitable x-symmetric embeddings.

These two sets of D7 branes are localized in their two transverse directions, hence the equations
of motion derived from (5.1.3) will be quite complicated to solve, due to the presence of localized
source terms in the form of Dirac delta functions. But we can take some advantage of the fact
that we are adding lots of flavors, and that D7 branes along embeddings related by the broken
subgroup of SU(2) x SU(2) symmetry are mutually BPS. Since we will have many (N; — o0)
flavor branes, we might think about distributing them in a homogeneous way on their respective
transverse directions, thus restoring the SU(2) x SU(2) symmetry of the unflavored Klebanov-
Witten background. This ‘smearing procedure’ boils down to approximating

; N
ﬂ7E /dgfe<I> —§g) O f/dlocce sin 6;1/ —
Ny N
A MrIN§
> / G — 2 / [dvol(Y1)+dvol(Y2)} ACs, (5.1.4)

with dvol(Y;) = sin; df; A dp; the volume forms of the S?’s.

Notice that this smearing differs conceptually from the one that is encountered for instance
when T-dualizing at the level of supergravity brane solutions in transverse directions. Here we
are really considering Ny — oo flavor D7 branes, that we are free to place where we want in the
transverse directions, because these configurations are mutually BPS. This is a legitimate choice:
the only approximation we are doing consists in taking the continuum limit substituting an infinite
sum with an integral. This smearing effectively generates a ten-dimensional action

1 1
S=gg [d% \ﬁ[R - —8M<I>6M<I> — 5eMAP - |F5|2} n
K10
7Nf 0o N? f (5.1.5)
d > sind; ) 4 dVol(Y7) + dVol(Y)| A Cs .
1=1,2
From this action, we can derive the following equations of motion:
1 1
Run = g9unB =5 (3M(I>3N‘I> - §QMN6P(I)8 q;) ¢ e*® (FMFN - §QMN|F1’ )+
+ %FMPQRSFNPQ + 2630 TN
2 N
DMoyd = 2|1y ? + HlOM? f e® Z sin 0; \/ —
i=1.2 (5.1.6)

d(e” * Fl) =0
2 Ny
APy = 2oL [avol(1) + dvol(YQ)}
78
dF5 =0 .
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The modified Bianchi identity for Fj is obtained through F} = e 2% « Fy, and comes from the WZ
part of the action (5.1.5), see appendix A.2.1. The contribution to the stress-energy tensor coming
from the two sets of Ny D7 flavor branes is given by

1 §Sflavor N; e® 1 NG

TMN _ S f sin 0; = _gg)gg)aﬁ(gy(szv

—— —Z—=> \V 3 > (5.1.7)
V=9 0guN Ar /=9 S 2

where «, 0 are coordinate indices on the D7 branes worldvolumes. We will solve the equations of
motion (5.1.6)-(5.1.7) and propose that the resulting type IIB background is dual to the Klebanov-
Witten field theory when two sets of Ny flavors are added for each gauge group. We will actually
find BPS equations for the purely bosonic background, by imposing that the variations of the
dilatino and gravitino vanish and the Bianchi identities.

Let us add some remarks on some important points about the resolution of the system of
equations of motion and Bianchi identities. First of all, it is clear from the Bianchi identity of F} in
(5.1.6) that we will not be able to define the axion field Cy on open subsets. Regarding the solution
of the equations of motion, we will proceed by proposing a deformed background ansatz of the form

29 2f
ds* = h_l/Qdazig + hl/z{dr2 + % Z (d6? + sin® 0; d?) + %(dw - Z cos b; dcpi)Q}

i=1,2 i=1,2

Fs=(1+x*)d'zAndh™! (5.1.8)
Ny

Fi = = (d — iz;? cos b; dy;) .

Thanks to the smearing procedure, all the unknown function h, f, g, K and the dilaton ® only
depend on the radial coordinate . We will impose the Bianchi identity for the 5-form field strength
dF5 = 0 (the one for F) is automatically solved by our ansatz) and we will obtain solutions to
(5.1.6) by imposing that the BPS equations derived from the vanishing of the gravitino and gaugino
variations and the Bianchi identities are satisfied. These will produce ordinary first-order equations
for f(r), g(r), h(r), ®(r). It is also possible to derive these BPS equations from a superpotential
in the reduction of type IIB supergravity, as shown in [1]. The explicit solution of the system of
BPS equations for the flavored Klebanov-Witten theory will be given in the next section.

We will study in detail the field theory dual to the supergravity solutions mentioned above,
making a number of matchings and predictions. Let us anticipate the main results. The field
theory turns out to have positive G-function along the flow, exhibiting a Landau pole in the UV.
We will propose that the IR is also described by a strongly coupled conformal field theory. All
these results can be generalized to the interesting case of a large class of different ' = 1 SCFT’s on
D3 branes at conical Calabi-Yau singularities, deformed by the addition of flavors. In particular,
using the same method it is possible to add flavors to every gauge theory whose dual is AdS5 x M3,
where Mj is a five-dimensional Sasaki-Einstein manifold. Finally, a possible way of handling the
massive flavor case is undertaken.

We have explained the strategy we adopt to add flavors, so this is perhaps a good place to
discuss some interesting issues.

First of all, it is important to stress again that we are considering the backreaction of the
flavor branes along the lines discussed in subsection 4.2.2, rather than treating the flavor branes
as probes, as in the approach exposed in subsection 4.2.1. This is necessary if N¢/N. does not
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Figure 5.1: On the left side, the two stacks of Ny flavor branes are localized on each of their
respective S%’s (they wrap the other S2). The flavor group of the fundamental fields is clearly
U(Ny) x U(Ny). In addition, an unbroken U(1) x U(1) subgroup of the original SU(2) x SU(2)
symmetry group (plus the R-symmetry) is acting also on bifundamental fields. After the smearing,
on the right side of the figure, the global flavor symmetry is broken to U(1)M/=1 x U(1)Nr—1 x
U(1)p x U(1) 4, and the U(1) x U(1) group is enhanced to the original SU(2) x SU(2) of the KW
theory.

vanish in the large N, limit, and allows the study of the influence of flavor fields on color dynamics.
Our supergravity plus branes setting will describe the leading order of Veneziano’s expansion (see
subsection 4.1.2) of the dual gauge theory, rather than the leading order of 't Hooft’s large N,
expansion (see subsection 4.1.1).

Secondly, the reader might be wondering about the ‘smearing procedure’ discussed above, what
is its significance and effect on the dual gauge theory. We make clear that we smear the flavor
branes just to be able to write a 10-dimensional action that will produce ordinary (in contrast
to partial) differential equations without Dirac delta functions source terms. Let us pause for a
while on the global symmetries introduced by flavor fields, and let us go back to the weak coupling
(9sN. < 1) limit, in which we have branes living on a spacetime that is the product of four
Minkowski directions and the conifold. When all the flavor branes of the two separate stacks
(5.1.2) are on top of each other, the gauge symmetry on the D7 branes worldvolume is given by
the product U(Ny) x U(Nf). When we take the decoupling limit for the D3 branes o/ — 0, with
fixed gsN. > 1 and keeping constant the energies of the excitations on the branes, we are left with
a solution of type IIB supergravity that we propose is dual to the Klebanov-Witten field theory
with Ny flavors for both gauge groups [95], following the general discussion of subsection 4.2.2.
In this setup the flavor symmetry is U(Ng) x U(Ny), where the axial U(1) is anomalous. As we
have anticipated, this background would be for sure very involved because of the low degree of
symmetry: it would depend on the coordinates (7, 61, 02), if the embeddings of the two stacks of D7
branes are 61 = 0 and 6> = 0 respectively. When we smear the Ny D7 branes, we are recovering the
full SU(2) x SU(2) symmetry related to the internal space. At the same time, we are breaking each
flavor group U(Ny) — U(1)Nf (see figure 5.1). We will need to compare our way of introducing
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holographic flavors, which is dual to a field theory with maximal global symmetry acting on the
bifundamental fields, with the more conventional flavoring obtained by placing stacks of coincident
D7 branes, dual to a field theory where the superpotential coupling flavor fields to bifundamental
fields explicitly breaks some of the global symmetries of the unflavored theory (this coupling will be
presented in the next section). The results we will lay out and the experience obtained in [85,92]
show that many properties of the more conventionally flavored field theory are still well captured
by the solutions obtained following the procedure described above. It is not completely clear what
important phenomena in the conventionally flavored gauge theory we are losing in smearing, but
see the next sections for subtleties and discussions.

Another issue that is worth revisiting at this point is the objection on the limit on the number
of D7 branes that can be added. Indeed, since a D7 brane is a codimension two object (like a vortex
in 2 4+ 1 dimensions) its gravity solution will generate a deficit angle; having many seven branes,
will basically “eat-up” the transverse space. This led to the conclusion that solutions that can be
globally extended cannot have more than a maximum number of twelve D7 branes [80] (and exactly
twenty-four in compact spaces). In this paper we are adding a number Ny — oo of D7 branes,
certainly larger that the bound mentioned above. We refer the reader to the end of subsection 4.2.2
for a thorough discussion of the solution of this issue. We add here that the smearing procedure
distributes the D7 branes all over a 2-dimensional space, in such a way that the equation for the
axio-dilaton is not the one in the vacuum at any point. Therefore, strictly speaking, the analysis
of [80] does not apply to our case. Nevertheless, we will solve the equations of motion and discuss
the results, that are qualitatively similar to those of [80]. However, as already discussed in 4.2.2, in
the context of gauge/gravity duality having a solution which cannot be globally extended at large
r is not a problem. In our setup, it is precisely the dual of the field theory having a Landau pole.

5.2 Adding flavors to the Klebanov-Witten field theory

5.2.1 What to expect from field theory considerations

Before presenting the solution for backreacting D7 branes in the Klebanov-Witten background, in
this subsection we would like to have a look at the dual field theory, and sketch which are the
features we expect.

The addition of fundamental and antifundamental flavors to the Klebanov-Witten theory can
be addressed by including probe D7 branes into the geometry. This was done in a sequence of
papers [79,94-97], where different embeddings were studied. We will follow here reference [95],
where the embedding of the flavor branes we are considering in this work and the corresponding su-
perpotential for the fundamental and antifundamental superfields were found. The D7 branes have
four Minkowski directions parallel to the stack of D3 branes transverse to the conifold, whereas the
other four directions are embedded holomorphically in the conifold. In particular, D7 branes de-
scribing massless flavors can be introduced by considering the holomorphic noncompact embedding
z1 = 0, in the complex coordinates of appendix B.1 where the conifold equation is z1z9 — 2324 = 0.
Flavors from 3-7 and 7-3 strings are massless because the D7 branes intersect the D3 branes placed
at the tip of the cone. It is clear from the embedding equation that the D7 branes are made of two
branches, described by z; = 23 = 0 and z; = z4 = 0, to each one of which a stack will be associated.
The presence of two branches is required by RR tadpole cancellation, as will be explicitly shown in
the next subsection: in the field theory this amounts to adding flavors in vector-like representations
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Figure 5.2: Type IIA Hanany-Witten brane engineering of the conifold theory with chiral flavors.
The flavored Klebanov-Witten theory is obtained by setting r1 = ro = N..

to each gauge group, hence preventing gauge anomalies.

This is clear also from the classical type ITA T-dual picture discussed in [95]. The T-dual
Hanany-Witten brane engineering of the conifold theory [100] involves two stacks of D4 branes
suspended between orthogonal NS5 branes, along a circle direction. Chiral flavors are provided by
a D6 brane coincident with one of the two NS5 branes, in such a way that the NS5 brane splits
the flavor D6 brane in two pieces. Each of these two pieces provides a chiral flavor group for both
the gauge groups [99], see figure 5.2. A single half D6 brane cannot consistently end on an NS5
because of RR charge conservation: another half D6 brane must end on the NS5 brane, in such a
way that the two halves do not form an angle. In the gauge theory, RR charge conservation maps
into the absence of gauge anomalies: a single chiral flavor group would lead to gauge anomalies,
but two chiral flavor groups with the same rank do not, since they build vector-like representations
of the gauge groups.

The fundamental and antifundamental chiral superfields of the two gauge groups will be denoted
as ¢, ¢ and Q, Q respectively. The matter content of the flavored KW theory we are studying is
summarized in figure 5.3. The gauge invariant and flavor invariant superpotential proposed in [95]
is

W = Wgw + Wf , (5.2.1)

where

Wiw = h Tr(A; By A, By) €7 M (5.2.2)

is the SU(2) x SU(2) invariant Klebanov-Witten superpotential for the bifundamental fields; as far
as Wy is concerned, given a stack of Ny flavor branes localized in two branches at given points on the
two 2-spheres (say the north poles), we can conventionally take the coupling between bifundamentals
and quarks to be

Wf = h1 §®A1Qy + ho Q*B1q, - (523)

This coupling between bifundamental fields and the fundamental and antifundamental flavors is
dictated by the D7 embedding z; = 0. The explicit indices are flavor indices. This superpotential,
as well as the holomorphic embedding z; = 0, explicitly breaks the SU(2) x SU(2) global symmetry.
This global symmetry will be recovered after the smearing. In the type IIA brane picture, hy = —ha.
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Ny

Ny

Figure 5.3: Quiver diagram of the Klebanov-Witten gauge theory with flavors.

The gauge and flavor symmetries of the theory are summarized in Table 5.1. The U(1)r R-

[SU(N)?] | SUWNy)? | SU@)? | UMk | UM)p | U)pr
A | (Ne, N.) (1,1) (2,1) 1/2 0 1
B | (Ng N.) (1,1) (1,2) 1/2 0 -1
q (Ng, 1) (N¢, 1) (1,1) 3/4 1 1
i| (No1) | (LN | (1) | 34 | -1 | -1
Q| (LN | (IL,Np) | (1,1) | 3/4 1 0
Q| (LN | (Np1) | (L) | 3/4 | -1 0

Table 5.1: Field content and symmetries of the KW field theory with massless flavors.

symmetry is preserved at the classical level by the inclusion of D7 branes embedded in such a way
to describe massless chiral flavors, as can be seen from the fact that the equation z; = 0 is invariant
under the rotation z; — €®z; and the D7 wrap the R-symmetry circle. However, the U(1)g turns
out to be anomalous after the addition of flavors, due to the nontrivial Cy gauge potential sourced
by the D7. The baryonic symmetry U(1)p inside the flavor group is anomaly free, being vector-like.

The theory including D7 brane probes is also invariant under a real rescaling z; — (z;, therefore
the field theory is scale invariant in the quenched approximation. In this limit the scaling dimension
of the bifundamental fields is 3/4 and the one of the flavor fields is 9/8, as required by power counting
in the superpotential. In that case, the exact beta function for the gauge couplings® is

167 3 1 3Ny,

2
ﬁ8-:22 ng ﬂgl 4 f /BAZ (477)2 2NC 7 0

gz

(5.2.4)

with \; = g2 N, the 't Hooft couplings of the two gauge groups. At leading order in 't Hooft’s limit,

®We choose the normalization where the inverse square gauge coupling appears in front of the YM action, as is
natural on the D brane side.
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the field theory has a fixed point specified by the aforementioned choice of scaling dimensions,
because the beta functions of the superpotential couplings and the ’t Hooft couplings vanish. As
soon as Ny/N. corrections cannot be neglected, like in the leading order of Veneziano’s limit, the
previous choice of anomalous dimensions does not lead to a fixed point anymore. Rather, if a
regime of the RG flow exists where these anomalous dimensions are correct, in that regime the
theory flows close to what we will call a “near conformal point” with vanishing (- functions for the
superpotential couplings but nonvanishing G-functions for the t Hooft couplings, with very slow
running if Ny/N, is small. This flow was considered in [95], where the leading order backreaction
of flavor branes was computed. Let us remark that in a N;/N. expansion, formula (5.2.4) holds
at order N¢/N. if the anomalous dimensions of the bifundamental fields A; and B; do not get
corrections at this order. A priori it is not obvious that we should expect such a behavior from
string theory, since the energy-momentum tensor of the flavor branes will induce backreaction
effects on the geometry already at linear order in Ny/N,, unlike the fluxes, which will backreact at
order (Ny/N.)?. Moreover, since we are adding flavors to a conformal theory, we expect a Landau
pole to appear in the UV. Since the UV behavior changes drastically after flavors are added, there is
a priori no reason why the gauge theory should run through this “near conformal point” where the
anomalous dimensions of the flavor fields are those valid in the probe/’t Hooft limit. In a following
section we will propose an interpretation of the RG flow described by our supergravity solutions:
we will see that provided Ny/N. is small enough, an intermediate regime of the flow where the
anomalous dimensions are those previously discussed exists. The smaller Ny/N,, the longer this
regime will be.

We make here a remark which will turn out to be very important in that section for the
discussion of the IR dynamics of our solution. Notice that if the anomalous dimensions of the fields
become at some energy v4 = v = —1/2, 7g = 74 = 1, the gauge couplings and the bifundamental
quartic superpotential coupling stop running, whereas the superpotential coupling bifundamentals
to flavor fields is irrelevant and runs to zero in the IR. The flavored theory under study possesses
in principle a strongly coupled IR fixed point. We will argue in a following section that the RG
flow described by our solution actually ends in such a point.

5.2.2 The setup and the general solutions

The starting point for adding backreacting branes to a given background is the identification of
the supersymmetric embeddings in that background, that is the analysis of probe branes. In [94],
by imposing k-symmetry on the brane world-volume, the following supersymmetric embeddings for
D7 branes on the Klebanov-Witten background were found:

O =120 2 2% 23 0, 0o, o} f1 = const. 1 = const. (5.25)
S ={a% 2t 2% 2% 0,01, 01} 0o = const. 9 = const. o

They are precisely (SU(2) x SU(2) rotations of) the two branches of the supersymmetric embedding
z1 = 0 first proposed in [95]. Each branch realizes a U(Ny) symmetry group, giving the total flavor
symmetry group U(Ny) x U(Ny) of massless flavors (a diagonal axial U(1)4 is anomalous in field
theory, which is dual to the corresponding gauge field getting massive in string theory through
Green-Schwarz mechanism). We choose these embeddings because of the following properties: they
reach the tip of the cone and intersect the color D3 branes; they wrap the U(1) g circle corresponding
to rotations ¥ — 9 + «; they are invariant under radial rescalings. So they realize in field theory



84 CHAPTER 5. UNQUENCHED FLAVORS IN THE KLEBANOV-WITTEN THEORY

massless flavors, without breaking explicitly the U(1)r and the conformal symmetry. Actually,
these symmetries are both broken by quantum effects. Moreover the configuration does not break
the Zo symmetry of the conifold solution which corresponds to exchanging the two gauge groups.

As already mentioned, the fact that we must include both the branches is due to D7 charge
tadpole cancellation, which is dual to the absence of gauge anomalies in field theory. We can see
this explicitly at this point. The integral of the charge density on any 2-cycle in the geometry
must vanish. The only nontrivial 2-cycle in the conifold has the topology of a 2-sphere and can be
represented as S? : {6 = 02, 1 = 27 — @2, ¥ = const, 7 = const}, as reviewed in appendix B.1.
The charge distributions of the two branches are

wit) = ZNf 8@ (01,1) doy A dp w® = ZNf 03 (02, pa) dba A dipy (5.2.6)

where the sum is over the various D7 branes, possibly localized at different points, and a correctly
normalized scalar delta function (localized on an 8-submanifold) is 6 (x)\/—gs//—g. Integrating
the two D7-charges on the 2-submanifold we get:

/S2 w) = —N; /52 w? = N; . (5.2.7)

Thus, whilst the two branches have separately nonvanishing tadpole, putting an equal number of
them on the two sides the total D7-charge cancels.

The embeddings can be deformed into a single D7 brane embedding that only reaches a minimum
radius and realizes a merging of the two branches. This corresponds to giving mass to flavors and
explicitly breaking the flavor symmetry to SU(N¢) and the R-symmetry completely.

Each embedding preserves the same four supercharges, irrespectively to where the branes are
located on the two 2-spheres parameterized by (01,¢1) and (62,p2). Thus we can smear the
distribution and still preserve the same amount of supersymmetry. The 2-form charge distribution
is readily obtained to be the same as the volume forms on the two 2-spheres in the geometry, and
through the modified Bianchi identity it sources the flux F;. Because of the symmetries, we look
for a solution where all the functions have only radial dependence. Moreover we were careful in
never breaking the Zo symmetry that exchanges the two spheres. The natural ansatz is:

2g(r)
ds? = h(r)"/*da} 5 + h(r)l/Q{dTQ + BT > (d67 + sin® 6; deo})+
1=1,2
0 (5.2.8)
€ 2
+ (v - > cosbide;) }
i=1,2
d = d(r) (5.2.9)
_ h'(r) 0123r 10110202
Py = thM(—E +E ) (5.2.10)
N 3N
Py = Tf(dlb — cos 0y dip1 — cos by dips) = 4 Lhry= /4t gY (5.2.11)
78 7
N
dFy = T;(sin 61 6y A dipy + sin 0 db A dips) (5.2.12)
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where the unknown functions are h(r), g(r), f(r) and ®(r). The vielbein is:

BH = p~ V4 gt o9
. EY% = pt* = qp;
E" = hY*dr V6
; g (5.2.13)
v M AE g — Ao E¥ = hMA_ sin6; dy;
BV = hA = (dy > cosb; dg;) 7 @

i=1,2

In appendix C.3 we have collected the derivation of the solution, in a way that makes the com-
parison with the unflavored Klebanov-Witten solution simple. Our technique is to enforce Bianchi
identities and require that the solution preserve the same four ordinary supercharges preserved by
the Klebanov-Witten solution and by the probe D7 brane embedding. We end up with a BPS
system of first order differential equations, that we are able to solve.

We have explicitly checked that the Einstein, Maxwell and dilaton equations are solved. This
can be done even before finding actual solutions of the BPS system. The first-order system (Bianchi
identities plus vanishing variations of dilatino and gravitini) in fact implies the second order Ein-
stein, Maxwell and dilaton differential equations. An analytic proof is given in [1]. In checking
Einstein equations, we have used the following expression for the stress-energy tensor (5.1.7) of the
distribution of flavor branes (in the coordinate basis):

3N+ 4 &
2’%0 Ty =— 727: h™le®29 Nuv Ny
3N/ 2% Too, = —g e
2 _ d—-2g ™
ot = or ¢ 2 Ny o o9l 27 2 2 .2
N 2610 Tip0; = — e” "9 \4e* cos” 0; + 3e*9 sin OZ} (5.2.14)
2/‘6%0 Tww = _7f€<1>+2f_29 ?\?TF
an 2’*%0 Torp0 = —67;6(“2](_29 cos 61 cos Oy .
2630 Ty, = 6*6(“2]0_29 cos 0;
s

It is correctly linear in Ny. The Dirac-Born-Infeld equations for the D7 brane distribution are
solved because of k-symmetry (supersymmetry) on their world-volume.
The general solution, obtained after a change of radial coordinate dr = ef dp, is:

e 4m 1

B 3prma:p_p

1/6
eg = C [(1 - 6(p - pmaz)) 66(P*pmaz) + Cl}

s (5.2.15)

f = C [-6(0 ~ pmaa)e 027 " [(16(0  praaa)) 20 P25) 1 1

p /
h=—27ra’’N, dp e 490 4 ¢y

pmaac

In these new coordinates, the metric is

1 —2u
ds® = h™2da? y+h'/2 €2 dp+ - (dip— ) cosb; dipi)2+5— > (d6F+sin®0;dg?) b, (5.2.16)
7 9 i=1,2 6 i=1,2
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where
_ _ 6(p—pmaxz)
et = 2F-9) = 6p = pmaz)e . (5.2.17)
(1= 6(p — prmaz)) 8P—Pmaz) 4 ¢

The new radial coordinate p ranges from —oo (at most), corresponding to the IR of the dual
gauge theory, to a maximal value p;,q, Where the dilaton diverges; this will be later interpreted as
dual to the UV Landau pole of the flavored gauge theory.

5.2.3 The unflavored limit

Naively, one could think about reabsorbing the integration constants pm.. and C by a shift of the
radial coordinate and a rescaling of the Minkowski coordinates respectively, so as to simplify the
notation. However, this turns out not to be a good choice if we are interested in making contact
with the unflavored Klebanov-Witten solution.

First of all, the Klebanov-Witten solution (5.1.1) has a constant dilaton, whereas in our solution
the dilaton runs according to (5.2.15). In order to reduce our solution to the Klebanov-Witten
background with constant dilaton e® = g,, we conclude that the unflavored limit must involve a
scaling limit Ny — 0 with N¢ppmae — :;17”5. The value of p (dual to some energy scale) remains finite
in this limit.5 We will see in a moment that C has to scale properly too.

Secondly, continuity with the Klebanov-Witten solution requires also that ¢; and co vanish.
c1 = 0 ensures that in this limit e — 0, whereas co — 0 ensures that the warp factor vanish at
infinity.

Finally, inserting ¢; = 0 we get the following behaviors for the squash factors f and g as
Pmax — !

ef ~ e ~ C(6pmaz)'/CePmazer; . (5.2.18)

This suggests that the correct scaling for C' in the unflavored limit is C' & (6p,az) '/ 0ePmaz.
Summarizing, the unflavored scaling limit is

and C’(Gp,mm)1/66_’)’”’“”C — 719, (5.2.19)

4
Ny — 0, with Ntpmaz — 37T
g

s

where 1q is a reference scale with the dimension of a length.
After this limit is taken, we find e/ = €9 = rge? = r, and the warp factor h(r) = %Wa’QNcr%.
The Klebanov-Witten solution has been recovered.

Keeping the previous subtlety in mind, from now on we will reabsorb pm., and C' and set

5 Adding massive flavors, it is possible to stop the running and get a conformal Klebanov-Witten solution in the
IR, at energy scales below the mass. In that case, in the IR conformal range the conformal radius-energy relation
can be applied, so that, up to small threshold effects, a fixed mass m of the flavors is dual to a fixed value pg of the
radial coordinate, where the transition to the Klebanov-Witten behavior occurs. This value pg does not depend on
the number of flavors. This reasoning shows that p must be kept fixed in the unflavored scaling limit.
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c1 = co = 0, so that:

o A4m 1
3Ny p
e? = [(1-6p) 66'0]1/6
1/2 —-1/3
ef = (~6pe)* [(1 - 6p) ] (5.2.20)
o —6peb?
(1 —6p)edr

p /
h = —27ra?N, / dp e=290")
0

In the original paper [1], a discussion of the holographic interpretation of ¢; and ¢y as vacuum
expectation values of certain dimension 6 and 8 operators was provided. That interpretation is
consistent with the analysis of the unflavored limit. The IR behavior of the solution dramatically
changes if a nonvanishing value of ¢y is inserted. The behavior and the sign of the warp factor in
the UV (p — 07) instead depends on c2. An analysis of such behaviors can be found in [1] as well.
Here we will discuss only the solution having ¢; = co = 0, which has a continuous unflavored limit
to the Klebanov-Witten solution.

As a final remark, we notice that in the IR (p — —o0) the string coupling goes to zero. Note
however that the solution could stop at a finite negative pni, due to integration constants or, for
example, more dynamically, due to the presence of massive flavors.

5.2.4 Solution with general couplings

We can generalize our set of solutions by switching on nonvanishing VEV’s for the bulk gauge
potentials Cy and Bs. This result can be achieved without modifying the previous set of equations,
and the two parameters are present for every solution of them. The condition is that the gauge
potentials are flat, that is with vanishing field strength. They correspond thus to (higher rank)
Wilson lines for the corresponding bundles.

Let us switch on the following fields:

Cy = cw§t By =buw§t (5.2.21)

where the 2-form wy (B.1.20) defined in appendix B.1 is proportional to the Poincaré dual of the
2-cycle S?:
5% {6 = 0y, p1 = 21 — s, ¢ = const, r = const} (5.2.22)

wiT = ~(sin6; dby A dpy — sin 2 dos A dips) / W =4r . (5.2.23)
52

N =

We see that F3 = 0 and Hsz = 0. So the supersymmetry variations are not modified, neither are
the gauge invariant field strengths. In particular the BPS system does not change.

Consider the effects on the action (the argument is valid both for localized and smeared branes).
It can be written as a bulk term plus the D7 brane terms:

S = Sbulk — ,u7/d8§ GCI) \/ — det(ﬁs + f) + M?/ [Zq éq VAN 6'7:} R (5224)
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with F = By + 2ra/ Fy is the gauge invariant field strength on the D7 brane worldvolume (see
appendix A.2.1 for our conventions). To get solutions of the k-symmetry conditions and of the
equations of motion, we must take F5 such that

F=By+21d/ F, =0. (5.2.25)

Notice that there is a solution for F' because B, is flat: ng = d/\Bg = 0. With this choice
Kk-symmetry is preserved as before, since it depends on the combination F. The dilaton equation is
fulfilled. The Bianchi identities and the bulk field strength equations of motion are not modified,
since the WZ term only sources Cg. The energy momentum tensor is not modified, so the Einstein
equations are fulfilled. The last steps are the equations of By and A; (the gauge potential on the
D7). For this notice that they can be written as:

08 0.5y

d—r =21/ d—22" = 2.2
5T, T ¥ 0 (5.2.26)
oS o 0 Shulk 0 Sbrane o
5By~ 0B, + SE 0. (5.2.27)

The first is solved by F = 0 since in the equation all the terms are linear or higher order in F. This
is because the brane action does not contain terms linear in F, and this is true provided Cg = 0
(which in turn is possible only if Cj is flat). The second equation then reduces to ‘?’T“Q”“ = 0, which
amounts to d(e~? * H3) = 0 and is solved.

As we will see in section 5.2.6, being able to switch on arbitrary constant values ¢ and b for the
(flat) gauge potentials, we can freely tune the two gauge couplings (or better the two dynamically
generated scales A’s)” and the two theta angles, according to the dictionary (3.2.15-3.2.16). This
turns out to break the Zs symmetry that exchanges the two gauge groups, even if the breaking is
mild and only affects C'y and Bs, while the metric, the dilaton and all the field strengths continue
to have that symmetry. The dual effect is an unbalance between the two gauge couplings, such
that the relative gauge coupling does not run.

5.2.5 Analysis of the solution: asymptotics and singularities

We perform here a systematic analysis of the possible solutions of the BPS system, and study the
asymptotics in the IR and in the UV. In this section we will make use of the following formulae for
the Ricci scalar curvature, which can be obtained for solutions of the BPS system. In string frame

3N 3N
RE) = 9 4—7: ho1/2e720+5 [7 + 44;@292”‘1)] , (5.2.28)
whereas in Einstein frame
RE) _ 34& B2, 2f 40 [462f2g n 34Nfe<1>] , (5.2.29)
T s

Although the warp factor h(p) cannot be analytically for generic values of the integration
constant ¢y, it can be if ¢; = 0, as in the case we are interested in. Indeed, introducing the

" Actually, two combinations of the dynamically generated scales and the superpotential coupling.
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incomplete gamma function, defined as follows:

Ila,z] = /OO t e tdt ——— 2™ <1> o {1 + (’)(1)} ; (5.2.30)

T——00

we can integrate

h(p) = —2TnN.o/? di_
Pr= TR O 6y T
9 3 1 2
= SN () T, -2 + dg] (5.2.31)
27
~ ZWNC(—Gp)_2/3€_4p for p — —o0.

The warp factor diverges for p — —oo. If we integrate the proper line element ds from a finite point
to p = —o0, we see that the throat has an infinite invariant length. This holds both in Einstein
and in string frame.

The function r(p) cannot be given as an analytic integral, but using the asymptotic behavior
of ef for p — —oo we can approximately integrate it:

1.1
r(p) = 6Y/°|(=p)"%e” + Tz, —p]| +e5 (5.2.32)
in the IR. Fixing » — 0 when p — —oo we set c3 = 0. We approximate further on
r(p) ~ (—6p)"/Se . (5.2.33)

Substituting r in the asymptotic behavior of the functions appearing in the metric, we find that up
to logarithmic corrections of relative order 1/|log(r)|:

I~ o) oy

271N, 1 (5.2.34)

Therefore the geometry in Einstein frame approaches AdSs x TH! with logarithmic corrections in
the IR limit p — —oo.

UV limit

The solution with backreacting flavors has a ‘Landau pole’ in the ultraviolet (p — 07), since the
dilaton diverges (see (5.2.20)). The asymptotic behaviors of the functions appearing in the metric
are:

e*9 ~ 1 —6p*> + O(p?) (5.2.35)
e ~ —6p[1 +6p+ (’)(,02)} (5.2.36)
b= 20N — p— 495 + O(p")] . (5.2.37)

h(p) is monotonically decreasing with p and goes to zero at the pole p — 0.
The curvature invariants, evaluated in string frame, diverge when p — 07, indicating that
the supergravity description cannot be trusted in the UV. For instance the Ricci scalar is R(®) ~

1/2
9% (11\\]{ ) (—p)~3. The scalar curvature in Einstein frame diverges too.
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IR limit

The IR (p — —o0) limit of the geometry of the flavored solutions in Einstein frame is independent
of the number of flavors, if we neglect logarithmic corrections to the leading term. Indeed, at the
leading order, flavors decouple from the theory in the IR (see the discussion below eq. (5.2.4)).
The counterpart in our supergravity plus branes solution is evident when we look at the BPS
system (C.3.7),(C.3.15),(C.3.16),(C.3.10): when p — —oc the e® term disappears from the system,
together with all the backreaction effects of the D7 branes on the geometry (see subsection 5.2.6
for a detailed analysis of this phenomena), therefore the system reduces to the unflavored one.
The asymptotics of the functions appearing in the metric in the IR limit p — —oo are:

eI ~ ef ~ (—6p)1/0¢cr (5.2.38)
2
h ~ gm’QNC(—esp)*?/%*‘*P . (5.2.39)

Formula (5.2.28) implies that the scalar curvature in string frame vanishes in the IR limit: R() ~

1/
—%—fr <%ﬁ > (—p)*l/ 2 0. An analogous but lengthier formula for the square of the Ricci tensor
gives

s)MN @ Ny

Rg\Z)N R ~9x2 N,

(—p) +0(1) — oo, (5.2.40)
thus the supergravity description presents a singularity and some care is needed when comput-
ing observables from it. The same quantities in Einstein frame have limiting behavior R(¥) ~
8(27ma’2N,)/(—p) — 0 and R\ZLREVMN _, 640/(277N,).

Using the criterion in [65] in its strong form, that proposes the IR singularity to be physically
acceptable for the dual gauge theory if g;; does not increase as we approach the IR problematic
point, we observe that these singular geometries are all acceptable. Gauge theory physics can be
read from these supergravity backgrounds. We call them “good singularities”.

We remark here that it is possible to show that a region where all the curvature invariants in
string units and the effective string coupling are small exists if Ny /N, is sufficiently smaller than 1.
For instance, if we want the curvature invariants to be smaller than 1/4 string units, Ny/N, should
be approximately 1/20 or less. This range becomes larger and larger as we reduce Ny/N.,.

5.2.6 Detailed study of the dual field theory

In this section we are going to undertake a detailed analysis of the dual gauge theory features,
reproduced by the supergravity solution. The first issue we want to address is what is the effect of
the smearing on the gauge theory dual.

As we wrote above, the addition to the supergravity solution of one stack of localized non-
compact D7 branes at z; = 0 put in the field theory flavors coupled through a superpotential
term

W = hTr(A;ByA;By) €9e¥ + hy ¢*A1Qu + ha Q“Biqa (5.2.41)

where we explicitly wrote the flavor indices a. For this particular embedding the two branches are
localized at #; = 0 and 65 = 0 respectively on the two spheres. One can exhibit a lot of features in
common with the supergravity plus D7 branes solution:
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e the theory has U(Ny) x U(Ny) flavor symmetry (the diagonal axial U(1)4 is anomalous),
each group corresponding to one branch of D7’s;

e putting only one branch there are gauge anomalies in QFT and a tadpole in SUGRA, while
for two branches they cancel;

e adding a mass term for the fundamentals the flavor symmetry is broken to the diagonal
U(Ny), while in SUGRA there are embeddings moved away from the origin for which the two
branches merge.

The SU(2) x SU(2) part of the isometry group of the background without D7 branes is broken
by the presence of localized branes. It amounts to separate rotations of the two S? in the geometry
and shifts the location of the branches. Its action is realized through the superpotential, and
exploiting its action we can obtain the superpotential for D7 branes localized in other places. The
two bifundamental doublets A; and B; transform as spinors of the respective SU(2). So the flavor
superpotential term for a configuration in which the two branches are located at x and y on the two
spheres can be obtained by identifying two rotations that bring the north pole to z and y. There
is of course a U(1) x U(1) ambiguity in this. Then we have to act with the corresponding SU(2)
matrices U, and Uy on the vectors (A1, A2) and (By, Bz) (which transform in the (2,1) and (1, 2)
representations) respectively, and select the first vector component. In summary we can write®

Wp=hiq" |:Uac (ﬁ;)} [ Qu + By QY [Uy (g;)} v (5.2.42)

where the notation ¢%, Q, stands for the flavors coming from a first D7 branch being at z, and the
same for a second D7 branch at y.

To understand the fate of the two phase ambiguities in the couplings hy and ho, we appeal to
symmetries. The U (1) action which gives (g, ¢, @, Q) charges (1, —1,—1,1) is a symmetry explicitly
broken by the flavor superpotential. The freedom of redefining the flavor fields acting with this
U(1) can be exploited to reduce to the case in which the phase of the two holomorphic couplings
is the same. The U(1) action with charges (1,1,1,1) is anomalous with equal anomalies for both
the gauge groups, and it can be used to absorb the phase ambiguity into a shift of the sum of
Yang-Mills theta angles 9¥M + 9%/ M (while the difference holds steady). This is what happens for
D7 branes on flat spacetime. The ambiguity we mentioned amounts to rotations of the transverse
R? space, whose only effect is a shift of Cy. As we show in the next section, the value of Cy is
our way of measuring the sum of theta angles through probe D(-1) branes. Notice that if we put
in our setup many separate stacks of D7 branes, all their superpotential U(1) ambiguities can be
reabsorbed in a single shift of Cj.

From a physical point of view, the smearing corresponds to place the D7 branes at different
points on the two spheres, distributing each branch on one of the 2-spheres. This is done homoge-
neously so that there is one D7 at every point of S2. The nonanomalous flavor symmetry is broken
from U(1)p x SU(Ns)g x SU(Ny)L, (localized configuration) to U(1)p x U(1)! " x U(1)5
(smeared configuration).”

81n case the two gauge couplings and theta angles are equal, we could appeal to the Zs symmetry that exchanges
them to argue |h1| = |h2|, but no more because of the ambiguities.
9The axial U(1) which gives charges (1,1, —1,—1) to one set of fields (qz, ", Qz, Q%) coming from a single D7 is
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Let us introduce a pair of flavor indices (z,y) that naturally live on S? x S? and specify the
D7. The superpotential for the whole system of smeared D7 branes is just the sum (actually an
integral) over the indices (x,y) of the previous contributions:

) A - B
W:hTr(AinAjBl)e’Jekl+h1/ &2z [Ux<A1)] Qx+h2/ dzyQy[Uy< 1)] gy - (5.2.43)
S2 2/11 52 By /11

Again, all the U(1) ambiguities have been reabsorbed in field redefinitions and a global shift of
oy M 4 0¥ M.

In this expression the SU(2)4 x SU(2)p symmetry is manifest: rotations of the bulk fields A,
Bj leave the superpotential invariant because they can be reabsorbed in rotations of the dummy
indices (z,y). In fact, roughly speaking we can think of the action of SU(2)4 x SU(2)p on the
flavors as a subgroup of the broken U(Ny) x U(Ny) flavor symmetry. In the smeared configuration,
there is a D7 brane at each point of the spheres and the group SU(2)? rotates all the D7 branes in a
rigid way, moving each D7 where another was. So it is a flavor transformation contained in U (N f)Q.
By combining this action with a rotation of A; and B;, we get precisely the claimed symmetry.

Even if written in an involved fashion, the superpotential (5.2.43) does not spoil the main
features of the gauge theory. In particular, the addition of a flavor mass term still would give rise
to the symmetry breaking pattern

U x UMM ' xu@)yY ™ - vm.

Gauge couplings and (-functions

In order to extract information on the gauge theory from the supergravity solution, we need to
know the holographic relations between the gauge couplings, the theta angles and the supergravity
fields. In general, finding these relations is a very difficult task.

These formulae can be properly derived only in orbifold theories, when string theory can be
quantized, by considering fractional D3 branes placed at the singularity. For instance, in the
C x C2%/Zy orbifold, this can be done honestly only for the conformal field theory with equal
couplings. Symmetry arguments allow to extend this mapping also out of the so called ‘orbifold
point’ where we are able to quantize string theory [62], so that the moduli space of marginal
deformations of the field theory can be matched successfully with the subspace of the moduli space
of string theory that leaves the form of the metric background invariant.

In the case of the conformal Klebanov-Witten theory, similar relations can be obtained although
we are not able to quantize string theory on the conifold. The relations were guessed in [29] and
later specified and motivated better in [61]. In reference [55], Strassler has shown what the orbifold
relations, usually assumed to hold in the literature also for the conifold, actually miss in the
conifold theory. The argument was explained at the end of section 3.2. The result (3.2.15)-(3.2.16)
differs from its N/ = 2 orbifold counterpart by corrections depending on the quartic superpotential
coupling.

The extension of the conformal formulae to nonconformal cases, obtained either by adding frac-
tional D3 branes or D7 branes, is problematic. A smart attempt for the Klebanov-Tseytlin/Strassler

an anomalous symmetry. For each D7 brane we consider, the anomaly amounts to a shift of the two theta angles of
the gauge theory. We can combine this U(1) with an axial rotation of all the flavor fields and get an anomaly free
symmetry. Altogether, from Ny D7 branes we can find Ny — 1 such anomaly free axial U(1) symmetries.
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field theory can be found in [61]. Their attempt can be completed successfully, as exposed at the
end of section 3.4.1, equations (3.4.6)-(3.4.7), in such a way that the dictionary holds in the UV
region, mapping quantities with the same dimensions, charges and renormalization group flow prop-
erties. The holographic formulae differ from the conformal ones, and reduce to them only when
the number M of fractional D3 branes added to the regular D3 branes vanish. Knowledge of the
anomalous dimensions in the UV limit of the field theory is necessary to guess how to complete the
proposal of [61] in such a way that the map is consistent with the RG flow properties.

An analogous extension from the conformal Klebanov-Witten theory to its flavored version that
we are considering here could help our analysis. Unfortunately, such an extension is not known
and is very difficult to guess. It is not difficult to build two RG invariant quantities out of the
holomorphic dynamically generated scales of the gauge groups A; and the superpotential couplings
h and hj, analogously to the L; and Ls of section 3.2. The problem instead arises when trying to
match the product and the ratio of these quantities with the exponential of the axio-dilaton and of
the integrals of Co+7 By on the 2-cycle, since the axio-dilaton is not constant anymore. Furthermore,
since the UV of the flavor field theory involves a Landau pole, we lack field theory arguments to
pinpoint the anomalous dimensions of the fields in such a regime and also an asymptotic radius-
energy relation. Therefore we are not able to propose a dictionary that complies with the RG flow
properties.

The best that we are able to do is to use the holographic relations (3.2.15-3.2.16) valid in
the conformal Klebanov-Witten theory. As these relations change when fractional D3 branes are
added to the setting, they could also change when D7 branes are added. However, we do not feel
so uncomfortable: after all, all the analogous results in the Klebanov-Strassler cascading theory,
matching to a very good qualitative level field theory expectations, were derived in the literature
using the dictionary holding in the conformal N' = 2 orbifold theory (see [49] for a review), which
already in the Klebanov-Witten theory acquires corrections. Relations (3.2.15-3.2.16), valid in the
Klebanov-Witten theory, can be rewritten as follows:

872 872
—2Nlog || + —5 + —o- = 2me™® (5.2.44)
91 2
8r2 82 1
=2 [ | By—m (mod 2n) (5.2.45)
97 g5 2l J g2
2N arg(h) + 07 M + 03 M = 2rCy (5.2.46)
oYM _gYM _ 9 / By) —2 . 2.4
i 5 el o (02 + Cy 2) 7Co (5 7)

The ambiguity in (5.2.45) is the 27 periodicity of 5~ J s, B2 which comes from the quantization

condition on Hs. A shift of 27 amounts to move to aQWCTéual description of the gauge theory.

Let us now make contact with our supergravity solution. In the smeared solution, since dF; # 0
at every point, it is not possible to define a scalar potential Cy such that Fy = dCy. We by-pass
this problem by restricting our attention to the noncompact 4-cycle defined by {p, 1,61 = 02, o1 =
2w — 9} (note that it wraps the R-symmetry direction 1), so that we can pull-back on it and write

N

L i (5.2.48)

Fleff i



94 CHAPTER 5. UNQUENCHED FLAVORS IN THE KLEBANOV-WITTEN THEORY

and therefore

. N
o' = 2w — ). (5.2.49)
T
Now we can identify:
872 _ 3Ny
N
Oy M 1+ 0y M 4+ 2N arg(h) = Tf(w — ) (5.2.51)

where we suppose for simplicity the two gauge couplings to be equal (¢1 = g2 = g). The gener-
alization to an arbitrary constant Bs is straightforward since the difference of the inverse squared
gauge couplings does not run. Although, as discussed above, one cannot be sure of the validity of
(5.2.50), we can try to extract some information.

Let us first compute the S-function of the gauge couplings. The identification (5.2.44) allows
us to define a “radial” S-function that we can directly compute from supergravity [101]

y _ 08n? 9 ? 3Ny
g s 2
op 4

(5.2.52)

which gives the same numerical result of the gauge theory computation eq. (5.2.4) for the (-
function. The physical g-function defined in the field theory is of course:

0 8r?
ﬁgg%z Flog 7 (5.2.53)
where 4 is the subtraction scale and A is a renormalization group invariant scale. In order to
get the precise field theory [-function from the supergravity computation one needs the energy-
radius relation p = p(X), from which 3 = B 9p/dlog %. In general, for nonconformal duals,
the radius-energy relation depends on the phenomenon one is interested in and accounts for the
scheme-dependence in the field theory. The coincidence between (5.2.52) and (5.2.4) shows that if a
regime where the anomalous dimensions are those of the probe limit exists, then the radius-energy
relation in that regime is p = log & 4 const..

Even without knowing the precise radius-energy relation all along the flow, there is some physical
information that we can extract from the radial S-function (5.2.52). In particular, being the energy-
radius relation p = p(%) monotonically increasing, the signs of the two beta functions, the field
theory one and the radial one, coincide.

In the section where we studied the IR asymptotics of our solution, we have found that the
Einstein frame metric approaches the AdSs x T'! metric, with » = 7(p) of equation (5.2.33)
playing the role of the usual radial coordinate of AdSs. In that case, using equation (5.2.33) and
the stretched string radius-energy relation » = /A, one gets the previous radius-energy relation
p = log & 4 const., up to logarithmic corrections.

R-symmetry anomaly and vacua

Now we move to the computation of the U(1)r anomaly. On the field theory side we follow the
convention that the R-charge of the superspace Grassmann coordinates is R[¢] = 1. This fixes the
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R-charge of the gauginos R[\] = 1. Let us consider an infinitesimal R-symmetry transformation
and calculate the U(1)g — SU(N.) — SU(N,) triangle anomaly. The anomaly coefficient in front of
the instanton density of a gauge group is >, RfT [R(], where the sum runs over the fermions f,
Ry is the R-charge of the fermion and T [R(f )} is the Dynkin index of the gauge group representation
RUY) the fermion belongs to, normalized as T[RU*"4)] = 1 and T[R(*%)] = 2N,. Consequently the
anomaly relation in our theory is the following:

Nf 1 [V v
Oulp = == 353 (FuFa” + GLGe") (5.2.54)
or in other words, the effect of a U(1)g transformation of parameter € on the Lagrangian is equiv-
alent to shifting the theta angles of both gauge groups as'®
oy M — oYM 4 %5 : (5.2.55)

On the string/gravity side a U(1)g transformation of parameter ¢ is realized by the shift ¢ —
1+ 2¢. This can be derived from the transformation of the complex variables (B.1.1), which under
a U(1) rotation transform as z; — ez;, or directly by the decomposition of the 10d spinor € into
4d and 6d factors provided in appendices C.1 and C.3. By means of the dictionary (5.2.51) we
obtain for the sum of the theta angles

oYM oI M g¥ M L Y M 4 o %5 , (5.2.56)
in agreement with (5.2.55).

The U(1)r anomaly is responsible for the breaking of the symmetry group, but usually a
discrete subgroup survives. Disjoint physically equivalent vacua, not connected by other continuous
symmetries, can be distinguished thanks to the formation of domain walls among them, whose
tension could also be measured. We want to read the discrete symmetry subgroup of U(1)r and
the number of vacua both from field theory and supergravity. In field theory the U(1)g action
has an extended periodicity (range of inequivalent parameters) e € [0,87) instead of the usual 27
periodicity, because the minimal charge is 1/4. Let us remark however that when ¢ is a multiple of
27 the transformation is not really an R-symmetry, since it commutes with supersymmetry. The
global symmetry group contains the baryonic symmetry U(1)p as well, whose parameter we call
a € [0,2m), and the two actions U(1)r and U(1)p satisfy the following relation: Ur(47) = Up ().
Therefore the group manifold U(1)r x U(1)p is parameterized by ¢ € [0,47), a € [0,27) (this
parametrization realizes a nontrivial torus) and U(1) g is a true symmetry of the theory. The theta
angle shift (5.2.55) allows us to conclude that the U(1)g anomaly breaks the symmetry according
to U(1)r x U(1)p — Zn,; x U(1) g, where the latter is given by ¢ = 4n7/Ny (n =0,1,..., Ny — 1),
a € [0,2m).

Coming to the string side, the solution for the metric, the dilaton and the field strengths is
invariant under arbitrary shifts of ¢). But the nontrivial profile of Cy, which can be probed for
instance by D(-1) branes, breaks this symmetry. The presence of DBI actions in the functional
integral tells us that the RR potentials are quantized, in particular Cy is defined modulo integers.

10Tt is a common manipulation, following Seiberg, to assign inverse transformations properties to the theta angles,
so that the Lagrangian remains invariant. In the case at hand, this amounts to setting R[A;V"‘_Nf] = —%.
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Taking formula (5.2.49) and using the periodicity 47 of 1, we conclude that the true invariance of
the solution is indeed Z Ny

We end this analysis with some comments on the difference between the two theta angles
(5.2.47). On the field theory side, the R-anomalies of the two gauge groups are the same. On
the string side, a rotation in the U(1) fiber parameterized by v only shifts Cy. Using formula
(5.2.47), we obtain the expected result only in the special case ﬁ J g2 B2 = m. The same problem
arises also in the only other D3-D7 case in the literature where the anomaly has been computed,
namely the N' = 2 C x Cy/Zs orbifold [88]. To our knowledge, the solution of this puzzle is not
known. Even when conformality is broken by adding fractional D3 branes [36], similar subtleties
related to the CyBs term in (5.2.47) appear (compare with [66]): if one adds a flat Cj, the strange
phenomenon that theta angles as defined holographically change as we change the value of the
radial coordinate r shows up. Since we know in field theory that anomalies do not renormalize, this
could indicate that there are additional terms correcting the holographic relations and solving the
puzzle (which, at least in that instance, seems not to be the case), or that we are forced to change
the origin of the reference frame of the theta angles as we change r, or more probably we have to
appeal to something else. We suggest that the solution of the puzzle could perhaps be achieved
by substituting in (5.2.47) a quantized integral, related to the potentials that are used to compute
Page charges.

Proposal for the RG flow

The supergravity solution allows us to extract the renormalization group flow of the KW field
theory with massless flavors.

Let us first analyze the UV regime of the theory. It is dominated by flavors, whose addition to
the conformal theory makes the gauge couplings increase with the energy. At a finite energy scale
dual to pmes, that we conventionally fixed to p = 0, the gauge theory develops a Landau pole, as
confirmed by the string coupling that diverges at that particular radius. This energy scale is finite,
because p = 0 is at finite proper distance from the bulk points p < 0.

At the Landau pole radius the supergravity description breaks down for many reasons: the
string coupling diverges as well as the curvature invariants (both in Einstein and string frame),
and the v circle shrinks. It is conceivable that string theory may provide a UV completion for
this field theory, and finding it is an interesting problem. One could think about obtaining a new
description in terms of supergravity plus branes through various dualities. In particular, T-duality
could map our solution to a system of NS5, D4 and D6 branes, which could then be uplifted to M
theory. Anyway, T-duality has to be applied with care because of the presence of D branes on a
nontrivial background, and we actually do not know how to T-dualize the Dirac-Born-Infeld action.
Alternative, one could look instead for an F theory lift of the solution. This is an interesting open
problem.

We stress again that in our setting the UV singularity is not a problem at all: it is actually
expected and needed to describe the Landau pole of the gauge theory. Gauge/gravity duality holds
also for theories with a Landau pole, as discussed in subsection 4.2.2. If string theory provides a
UV completion of such a field theory, then a globally valid solution may be found. At any rate,
although very interesting, this would only shed light on the UV completion that removes the field
theory singularity.

We now want to propose an interpretation of the whole RG flow described by our flavored
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Figure 5.4: RG flow phase space for the  Figure 5.5: Klebanov-Witten model with flavors. The

Klebanov-Witten model. A-C flow has backreacting D7 branes in the A piece
and then follows the KW line in the C piece; it cor-
responds to Ny < N.. The B flow is always far from
the KW line, and corresponds to Ny 2 N..

solution, and in particular of its IR dynamics. It mainly arises from the analysis of the Klebanov-
Witten model at small values of the string coupling, and it is based on the nonvalidity of the orbifold
relations for all values of the parameters in the KW model, that was extensively pointed out in [55].
The correct formulae that we will use for the conifold theory are (5.2.44)-(5.2.45), which include
corrections due to the quartic superpotential h with respect to the A/ = 2 theory. In the following
analysis, we will consider for the sake of clarity only the case of equal gauge couplings g1 = g2 = g¢.

The curve of conformal points in the Klebanov-Witten model is obtained by requiring the
anomalous dimension of the fields A, B to be y4(g,A) = —1/2, which assures By = B5 = 0,
where A = hp is the dimensionless coupling constant of the quartic superpotential (u is the energy
scale). The qualitative shape of the curve is depicted in Figure 5.4, as well as some possible RG
flows. The important feature is that there is a minimum value g, > 0 that fixed points can have
(due to the perturbative 3, being negative, so that g = 0 is an unstable IR point). One way to
determine this curve of fixed points is to apply the a-maximization procedure originally spelled
in [102] by using Lagrange multipliers enforcing the marginality constraints [103], and then express
the Lagrange multipliers in terms of the gauge and superpotential couplings. This computation
for the Klebanov-Witten model was done in [104]. One can show that the curve of fixed points
does not pass through the origin of the space of Lagrange multipliers, which is mapped into the
origin of the space of couplings (free theory). In a particular scheme the curve of fixed points is
an arc of hyperbola with the major axis along A = 0. The exact shape of the curve is scheme-
dependent, due to scheme-dependence of the relation between Lagrange multipliers and couplings:
we choose a scheme in which the Lagrange multipliers are quadratic in the couplings. This choice
fixes a conical section, and it is such a hyperbola because the one-loop anomalous dimensions of the
chiral superfields get a negative contribution from gauge interactions and a positive contribution
from superpotential interactions. The conclusion that the curve of conformal points does not pass
through the origin of the space of coupling constants is physical.
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The family of Klebanov-Witten supergravity solutions describes the fixed curve. It is parame-
terized by e® that can take arbitrary values. For sufficiently large values of it, we can neglect the
dependence on the quartic coupling and trust the orbifold formula:

—=e for e N.>1. (5.2.57)

The ’t Hooft coupling g2N, is large (at least of order 1, so the theory is strongly coupled and the
anomalous dimensions are of order 1) and the string frame curvature Rg ~ 1/(e®N,) is small. For
smaller values e? N, < 1, (5.2.57) cannot be correct: it would give small 't Hooft coupling while
the gauge dynamics is instead strongly coupled. The answer is in (5.2.44): the quartic coupling is
very small, whereas the gauge coupling are not. The bottom end of the line corresponds to:

{e® = 0} o {g=g., A=0}, (5.2.58)

and the curvature of the supergravity solution is large even if the field theory is still strongly
coupled. Anyway some quantities, for instance the quantum dimension of A, B, are protected and
do not depend on the coupling, so they can be computed in supergravity even for small values of
e®N,. The duality between the Klebanov-Witten CFT and the AdSs x TV is still conjectured to
hold, at the level of string theory.

The supergravity solution of our system with D7 branes is in the IR quite similar to the KW
geometry: the IR asymptotic background is AdSs x T! (with corrections), but with running
dilaton. The gravitational coupling of the D7 branes goes to zero and the flavor branes tend to
decouple. The signature of this is in equation (C.3.16) of the BPS system: the quantity e®N;
can be thought of as the effective size of the flavor backreaction, which indeed vanishes in the far
IR. The upshot is that flavors can be considered as an irrelevant deformation of the AdSs x T1!
geometry (but not of the dilaton).

The field theory is thus deduced to be close to KW fixed line, but running along it as e® — 0
in the IR. As soon as e®? N ¢ < 1, flavor branes begin to behave as probes. In this regime, we expect
the quantities computable from the background to be equal to the KW model ones: in particular
ya = —1/2.

We can distinguish different regimes, starting from the UV to the IR. Depending on the values
of N. and Ny they can be either well separated or not present at all. A section of the space of
couplings and some RG flows are drawn in Figure 5.5, but one should include the third orthogonal
direction h; which is not plotted.

e For 1 < e® we are in the Landau pole regime, and the dilaton (string coupling e®) is large.

e For Nif < e® < 1 we are in a complicated piece of the flow, quite far from the KW fixed line,

as in the type A-B flows of Figure 5.5. In particular the D7 branes are largely backreacting.
In this regime our supergravity solution is perfectly behaved (as long as N% <e?).

e For N% <e® < Nif (this regime exists for Ny < N.) we are in a region with almost probe D7

11

branes, " so we are close to the KW line, but with large 't Hooft coupling, so that we can

"The dual in field theory of the D7 branes being probes is that Feynman graphs with flavors in the loops are
suppressed with respect to gauge fields in the loops, since Ny < N..
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trust (5.2.57). Furthermore, in this regime (if it exists) all the curvature invariants are small
in string units, so that we can trust our solution. We can expect the energy/radius relation
to be quite similar to the conformal ones, thus we can compute the gauge B-function and
deduce the flavor anomalous dimensions vg. Apart from corrections, we get:

1 1 1 3
YA —= Ry~ = Q=g RQ:Z : (5.2.59)
The R-symmetry is classically preserved but anomalous as in supergravity. The various

B-functions are computed to be

3 g
=-Ny—— ;~0 ~0. 5.2.60
We want to stress that this regime is not conformal, and in fact the theory flows along the
KW fixed line, as in the type C flow of Figure 5.5. The smaller is Nt/N,, the longer is this
piece of the flow. For Ny 2 N, this regime does not exist, and the theory probably follows
the type B flows of Figure 5.5, although we cannot really trust our solution anywhere because

curvatures are always large.

e Fore? < min(NiC, Nif) we are close to the end of the KW fixed line, and the gauge coupling is
close to g.. Again the D7 branes are almost probes. The string frame curvature is large, as
in the KW model at small g;/N.. Since the gauge coupling cannot go below g,, its G-function
vanishes even if the string coupling continues flowing to zero. We get in field theory the

following anomalous and quantum dimensions for the fundamental and bifundamental fields:

1 3 3

a5 A== 1e=1 AR~ (5.2.61)
3

By =0 B5 =0 B = Jha s (5.2.62)

using the following exact formulae for the G-functions:

Bagz = 3Ne = 2Ne(1 = 74) = Ny(1 = 70) (5.2.63)
95
B5 = (14 27y4)A (5.2.64)
1
Prs = 5(va +27Q)hi - (5.2.65)

7@ are the anomalous dimensions of the (anti)fundamental flavor chiral superfields, whereas
~v4 are the anomalous dimensions of the bifundamental chiral superfields.

All the flows accumulate at the point {g = G, A = 0} of Figure 5.5, but the theory is not
conformal. In fact the coupling h; always flows to smaller values, and the theory moves
“orthogonal” to the figure.

e The end of the flow is the superconformal point with h; = 0 (and g = g.), which should corre-
spond to e® = 0 and cannot be described by supergravity. Without the cubic superpotential
one can construct a new anomaly free R-symmetry with Rg = 1, by combining the previous
one (R4 = 1/2, Rg = 3/4), which is natural in the probe limit, with the anomalous axial
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Figure 5.6: Flavor 1-loop correction to the  Figure 5.7: Regimes of KW with flavors for
gauge propagator. Ny < N..

symmetry assigning charge 1/4 to each flavor superfield. This U(1) R-symmetry is the one
that enters the conserved current multiplet of the superconformal algebra. Moreover, the fact
that h; — 0 in the far infrared realizes in field theory the incapability of resolving the D7
brane separation at small energies, and the flavor symmetry S(U(Ny) x U(Ny)) is restored.

Note that when Ny 2 N, and the D7 branes are probes (this is the regime e? < Nif < N% and
g = g«) one could think hard to see in field theory a suppression of graphs with flavors in the loops,
with respect to gauge fields in the loops. Consider the gauge propagator at 1-loop with flavors
(Figure 5.6). It is of order g2 N t, not suppressed with respect to the graph with gauge fields in the
loop of order g2N,. But if we sum all the loops with flavors, we must obtain the flavor contribution
to the S-function, which for g ~ g, and so yg ~ 1 is indeed very small.

A summary of the phase space for Ny < N is in Figure 5.7. The computation of the 3-functions
performed in [95] using the anomalous dimensions for the conformal theory in the quenched limit
is valid in the region N% <e? < NL of the phase space, where the flavor branes can actually be
treated as small perturbations of the conformal Klebanov-Witten background.

5.3 Generalizations

5.3.1 Kuperstein’s embeddings

Until now, as in the original paper [1], we have considered smearing Ouyang’s embeddings [95],
which are of the kind z; = 0. With the aim of understanding some general features of the smearing
procedure and for later convenience, we believe that it is useful at this point to discuss the smearing
of different supersymmetric embeddings, such as those studied by Kuperstein in [96]. The embed-
dings considered by Kuperstein are the holomorphic embeddings of the type w; = 0 for some wj,
where w’s are the coordinates in terms of which the conifold equation in C* is written as

w? +wi +wi +wi=0. (5.3.1)

They are related to the coordinates previously used as Z = %Umwm, with (¢™) = (&,i1) (see
appendix B.1). If we concentrate for instance on the embedding we = 0, it can be rewritten
as z3 — 24 = 0. An embedding of this kind preserves supersymmetry because of holomorphy
of the equation. Indeed, k-symmetry on the D7 brane worldvolume is realized with a flat gauge
connection [96]. This embedding breaks the SO(4) symmetry of the conifold to an SO(3) subgroup,
and preserves U(1)g symmetry.
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In terms of the angular coordinates introduced in (B.1.5-B.1.8), this embedding is defined as:
01 = 02, p1 = s, Yo, V7. We can obtain other embeddings with the same properties by acting on
it with the broken generators. The charge distribution obtained by homogeneously spreading the
D7 branes in this class is the same as for the smeared Ouyang’s embeddings:

N
Q= L (sinfy doy A dpy + sin b dba A dps) (5.3.2)

where Ny is the total number of D7 branes. This form is fixed by symmetries.

The kind of flavor fields that are introduced by these embeddings and their interactions among
themselves and with the bifundamental fields of the Klebanov-Witten theory will be discussed in
detail in the next chapter, where we consider the addition of this kind of flavors to the Klebanov-
Strassler theory.'? For the time being, suffices to say that there are actually two kinds of D7 branes
along these embeddings, the difference between them being whether or not there is a worldvolume
flux on the exceptional 2-cycle living at the conifold singularity, which these D7 branes wrap. These
are really fractional D7 branes. NNy is the sum of the fractional D7 branes of one kind, which couple
to one gauge group, and of the fractional D7 brane of the other kind, which couple to the other
gauge group. They provide nonchiral flavors for both gauge groups, coupled to the bifundamental
fields through a quartic superpotential and also self-interacting through a quartic superpotential.

What matters for the present discussion is to underline that the field content and interactions are
very different from those arising from Ouyang’s embedding, that we have considered so far. Despite
these differences, the effect of smearing is that of restoring all the symmetries of the unflavored
theory, at least at the classical level, and this fixes completely the charge distribution of the D7
branes. Therefore, the background that is generated by this distribution is the same as the one
generated by the smeared distribution of Ouyang’s D7 branes. We are led to conclude that the
effect of the two distributions of flavor branes (Ouyang’s D7 branes and Kuperstein’s D7 branes)
on the gauge dynamics is the same.'

This points to some strange universality of the behavior of gauge theories with ‘smeared’ flavors
in Veneziano’s limit and at strong coupling. Consideration of localized flavor brane embeddings
preserving different symmetries would a priori lead to different results. But we cannot exclude that
the gauge dynamics could be qualitatively similar with the insertion of different flavors. It would
be very interesting to obtain a clear-cut understanding of whether the bulk of this universality
lies in the large 't Hooft coupling and large IV Veneziano’s limit or it is only a consequence of the
smearing procedure. An analogous analysis to that of the previous subsection can be worked out
as plausibly for the Klebanov-Witten theory with Kuperstein’s flavors, with the same results of
the RG flows of the right graph in Figure 5.5: a UV Landau pole, followed by a complicated flow,
then by a flow almost along the surface of fixed points of the unflavored Klebanov-Witten theory,
until its bottom is reached and finally the gauge theory flows to a strongly coupled fixed point with
vanishing superpotential. This analysis seems to hint that the bulk of the universality is in fact
due to the large 't Hooft coupling and large N Veneziano’s limit.

Notice that, on the contrary, the impact of gauge dynamics over the flavor fields is different
for distinct kinds of flavors. For instance, it is fairly clear that the spectrum of mesons, which

12 Adding Ouyang’s flavors to the Klebanov-Strassler theory is more complicated because, since the pullback of the
NSNS field strength H3 on the D7 branes worldvolumes does not vanish, a nontrivial gauge field has to be added on
the worldvolume so as to preserve supersymmetry.

13Here by gauge dynamics we actually mean the dynamics of the fields of the conformal theory, dual to closed
strings.
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can be obtained by computing fluctuations of the D7 brane embeddings, will be quite different for
Ouyang’s and Kuperstein’s flavors.

5.3.2 Massive flavors

In the ansatz we have been using up to now we have assumed that the density of RR charge of
the D7 branes is independent of the holographic coordinate. This is, of course, what occurs for a
flavor brane configuration which corresponds to massless quarks. On the contrary, in the massive
quark case, a supersymmetric D7 brane has a nontrivial profile in the radial direction [94] and, in
particular ends at some nonzero value of the radial coordinate. These massive embeddings have
free parameters which could be used to smear the D7 branes in the transverse directions. It is
natural to think that the corresponding charge and mass distribution of the smeared flavor branes
will depend on the radial coordinate in a nontrivial way.

It turns out that there is a simple modification of our ansatz for F; which gives rise to a charge
and mass distribution with the characteristics required to represent smeared flavor branes with
massive quarks. Indeed, let us simply substitute in the expression for Fy in (5.1.8) the constant Ny
by a function N¢(r). In this case:

3N (
F = f Z cos 6;dp;)
i=1,2
5.3.3)
3N( 3N.(r (
dF) = f Z sin 0;d0; A dep; + 70 g (dip — " cosbidy;) .
i=1,2 i=1,2

Notice that the supersymmetry analysis of appendix C.3 remains unchanged since only F}, and not
its derivative, appears in the supersymmetric variations of the dilatino and gravitino. The final
result is just the same system of first order BPS equations (C.3.7,C.3.10,C.3.15,C.3.16), where now
one has to understand that N¢(r) is a prescribed function of 7, which encodes the nontrivial profile
of the D7 brane. Notice that N¢(r) determines the running of the dilaton which, in turn, affects
the other functions of the ansatz.

It is not hard to prove that the modified BPS system solves automatically the equation of
motion for the dilaton and the Einstein equations, provided that the functions Ny(r) and N} (r)
are nonnegative. These two very weak conditions are certainly met by any smeared configuration
of D7 branes introducing massive flavor branes. The reader interested in the technicalities can find
them in [1].

The function Ny(r) is not really so arbitrary. Given a choice of masses, it can (in principle)
be computed. However, we have a lot of freedom, because an arbitrary distribution of flavor
masses can be chosen consistently. Any such arbitrary distribution will meet the requirements
Ny(r),Ni(r) > 0.

Finally, in order to get a qualitative understanding of the physics when all the flavors have a
fixed mass m, let us consider the approximation where the function N¢(r) has a Heaviside shape,
starting to be nonzero at some finite value p,, of the radial coordinate. In that case the BPS
equations and solutions will be the ones of massless flavors discussed in this chapter for values
of the radial coordinate larger than p,,. Below that radial value, the solution will be the one of
Klebanov-Witten, with a constant dilaton. Aside from decoupling in the field theory, this is clearly
indicating that the addition of massive flavors should “resolve” the IR singularity: the curvature
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in the IR should be small provided that the value of the running dilaton at the threshold scale
gt = e®(om) — _fTﬂfp% is such that g/®N, = —;—Z%—; > 1. Physically this behavior is expected
and makes these massive flavors interesting. A study of the solution dual to backreacting massive
flavors has been recently pursued in [105], confirming and refining the qualitative results of the
Heaviside approximation. We finally comment on the validity of this approximation. It is very
good as soon as the logarithm of the energy is sufficiently far from the logarithm of the mass. Close
to the mass scale, there are threshold effects that this approximation misses, and the energy range
where these effects are relevant scale logarithmically as we change the mass. One could naively
think that the approximation is better and better as the mass of the flavors goes to zero (in which
case N¢(r) becomes a constant). This is true and false at the same time. It is true if we compare
energies in a linear scale, but it is false if, perhaps more appropriately, we compare them in a
logarithmic scale. Indeed, the IR field theory is scale invariant, so that its cutoff m (together with
its threshold effects) can be scaled by scaling invariance without affecting the qualitative picture.
The range of the threshold effects in logarithmic scale does not change as m is changed.

5.3.3 Generalization to Sasaki-Einstein spaces

The results discussed in this chapter can be extended to the much wider class of gauge theories
living on D3 branes at conical Calabi-Yau singularities, as explained at length in [1]. The interested
reader can find in that reference all the technical details. Here we only explain the rationale.

In deriving the solution for backreacting symmetrically distributed flavor D7 branes in AdS5 x
T! we have really used only the structure of 71! as a 5-dimensional Sasaki-Einstein space, namely
a 4-dimensional Kihler-Einstein base (in the TH! case it is S? x S2), endowed with a local U(1)
fibration over it.'* The connection of the fiber in Sasaki-Einstein spaces obeys the property that
its curvature (field strength) is proportional to the Ké&hler form of the Kéhler-Einstein space. Let
us consider the addition of massless flavors, that classically preserve the U(1)g symmetry, to the
D3 brane gauge theory. This implies that the embedding of the flavor D7 branes extends along the
whole radial direction and the U(1)g 1-direction. Supersymmetric embeddings for the D7 branes
(without gauge field flux on the worldvolume) may be found either by imposing holomorphy of the
embedding equations or xk-symmetry. In general, they will span the four Minkowski directions, the
radial direction and the 1 direction, and finally a 2-dimensional submanifold of the 4-dimensional
Kéhler-Einstein space, breaking the global non-R-symmetries of the gauge theory (except for the
baryonic symmetries). Finding a solution in the presence of localized backreacting D7 branes is a
formidable task, which has been pursued only in some very special cases, like flat space or orbifolds
thereof, and often in quite an implicit way. If instead we take advantage of the symmetries of
the unflavored theory and of the number of flavor branes going to infinity, we can again consider a
special distribution of flavor branes that in the Ny — oo (and continuum) limit classically preserves
all the global symmetries of the unflavored theory. In that case, the derivation that we worked out
for T1! goes through for a general Sasaki-Einstein space. The supersymmetry projections on
the Killing spinors have the same form as those imposed in the conifold, but are written in the
complex vielbein basis suitable for a generic conical Calabi-Yau. Two projectors are related to the
Kahler-Einstein base, and one is related to the C* fiber. The magnetic charge distribution of the

14We have written ‘local’ meaning that the U(1) fibration need not be globally defined. In many cases it is really
an R fibration. Since the corresponding isometry is dual to the R-symmetry of the gauge theory, the fibration is R
when the R-charges of the fields are incommensurable.
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flavor branes is proportional to the Kéhler form of the Kahler-Einstein base, for symmetry reasons.
This fixes F} to be proportional to the U(1)g fiber dip — A, where A is the connection, defined
on the Kahler-Einstein space. The proportionality factor is fixed by the number of flavor branes.
The dilaton is therefore fixed to have the same dependence we obtained in the flavored Klebanov-
Witten solution, because of holomorphy/supersymmetry. The five-form RR field strength (or the
warp factor) is obtained by requiring fulfilment of its Bianchi identity. Finally, the metric ansatz
has again the same structure considered in the conifold case, with two squash factors, one in front
of the Kéhler-Einstein part and one in front of the U(1)g fiber. The supersymmetry conditions
and the Bianchi identities lead to a BPS system of the same form as the one considered in the case
of the conifold, and can be solved analogously.

The only subtlety arises when one wants to check that the equations of motions are solved. For
the Einstein equations and the dilaton equations, one needs the action of the smeared distribution
of flavor branes. Whilst in the Wess-Zumino action only the volume form of the Kéhler-Einstein
base appears as the effect of smearing, what appears in the Dirac-Born-Infeld part is actually a sum
of the moduli of the decomposable pieces in this volume form.!® In [1], we provided a coordinate
invariant definition of the action of the smeared Dirac-Born-Infeld action of the flavored D7 branes,
and showed that it is the correct action by exploiting supersymmetry, which relates the mass and
charge distributions.

We end this short section by commenting on the surprising result of this analysis: the same
structure of BPS equations repeats for all AdSs x X5 manifolds, provided X5 is Sasaki-Einstein.
This clearly points to some universality of the behavior of 4-dimensional N’ = 1 superconformal
gauge theories with flavors at strong coupling. The effect of flavors on the gauge dynamics has the
universal property of introducing an ultraviolet Landau pole in the gauge theory. The IR seems
to be described by a strongly coupled conformal fixed point, where the flavor fields acquire large
anomalous dimensions that make their superpotential coupling to bifundamental fields irrelevant
and cancels their contributions to the running of gauge couplings. This proposal for the IR has to
be taken with care however, since the curvature of the dual supergravity background is very large
and the correct treatment would involve the full string theory. Understanding in detail what is the
universality that produces the same dynamics for a large class of NV = 1 gauge theories with flavors
would be very interesting.

15 A form is decomposable if it can be written as the exterior product of one-forms.



Chapter 6

Unquenched flavors in the
Klebanov-Strassler theory

In this chapter, we study the addition of backreacting noncompact D7 branes to the Klebanov-
Tseytlin and Klebanov-Strassler geometries. The resulting backgrounds are dual to flavored versions
of the cascading Klebanov-Strassler field theory to leading order of Veneziano’s large N, expansion.
Even after the addition of dynamical flavors, the renormalization group flow is described in the
ultraviolet by a cascade of Seiberg dualities. We will see that flavors change the ultraviolet behavior
of the theory and the way ranks decrease in the cascade. The two backgrounds we will exhibit
are dual to RG flows with two different IR behaviors, which are selected according to the initial
conditions (in the ultraviolet) for the ranks. The flavored Klebanov-Strassler theory is an important
step toward finding a gravity dual of N' =1 Super-QCD in Veneziano’s large N, limit.

This chapter is a refinement of [2], written by the present author in collaboration with Francesco
Benini, Felipe Canoura, Carlos Nunez and Alfonso V. Ramallo.

6.1 Introduction and summary

Early ideas of 't Hooft [8] and the experimental evidence for stringy behavior in hadronic physics (see
chapter 1 of this thesis) suggested that aspects of the strong interaction can be described, predicted,
and understood using a (not yet known) string theory. These ideas started to materialize when the
Maldacena conjecture about AdS/CFT duality (see chapter 2) was formulated. A four-dimensional
field theory was shown to contain strings that captured nonperturbative and perturbative physics.
The downside was that the field theory in question (N =4 SYM) was not of immediate relevance
to hadronic physics. The necessity of finding extensions of these ideas to phenomenologically
more interesting field theories was then well motivated. In chapter 3, we have reviewed the very
fruitful extension of the AdS/CFT correspondence which stemmed from studying branes at conical
singularities, of which the case of D3 branes on conifolds is a particular example presenting especially
rich dynamics.
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In this chapter, endowed with the knowledge the flavored Klebanov-Witten theory, we will
tackle the problem of adding flavor degrees of freedom to the Klebanov-Tseytlin (KT) and Klebanov-
Strassler (KS) solutions of sections 3.3 and 3.4. According to the proposal of Karch and Katz, these
new excitations will be incorporated in the form of noncompact D7 flavor branes, corresponding
to fundamental matter in the dual field theory. Unlike the color branes, which disappear in the
geometric transition and are substituted by closed string fluxes, the flavor branes appear explicitly in
our solutions: they correspond to the open strings which are suggested by the topological expansion
of large N gauge theories and that appearing in the leading order of Veneziano’s expansion. The
addition of flavors to these field theories was first considered in [79,95,96]. We will follow the general
idea of chapter 4, but instead of working in the probe brane approximation of section 4.2.1 we will
consider the case in which the number of fundamental fields scales in the same way as the number
of color fields in the large N limit, that is Ny ~ N.. This means that the new (strongly coupled)
dynamics of the field theory is captured by a background that includes the backreaction of the flavor
branes. In order to find the new solutions, we follow the ideas and techniques of [1,85,92,107],
exploiting in particular the smearing procedure explained in the previous chapter.

We will present analytic solutions for the equations of motion of type IIB supergravity coupled
to the DBI+WZ action of the flavor D7 branes that preserve minimal supersymmetry in four
dimensions; we show how to reduce these solutions to those found by Klebanov-Tseytlin/Strassler
when the number of flavors is taken to zero. With these solutions at hand, we make a precise
matching between the field theory cascade (that, enriched by the presence of the fundamentals, is
still self-similar) and the string predictions. We will also match anomalies and beta functions by
using our new supergravity background.

The organization of this chapter goes as follows. In section 6.2 we present the setup, the
ansatz and the strategy to find supersymmetric solutions of the Bianchi identities and equations of
motion. We also introduce the notion of the so-called Page charges and we compute their values
in our particular ansatz. In sections 6.3 and 6.4 we present two main solutions, which reflect the
addition of flavors to the Klebanov-Strassler and Klebanov-Tseytlin backgrounds respectively. In
section 6.5 we present the dual field theory and propose that its RG flow can be understood in
terms of a cascade of Seiberg dualities. In section 6.6 we show that the duality cascade is encoded in
our supergravity solutions, by comparing ranks of the groups in field theory with effective charges
in supergravity, and matching R-anomalies and S-functions of gauge couplings on both sides of the
gauge/gravity duality. The behavior of the background in the UV of the gauge theory suggests
that the field theory generates a ‘duality wall’. We also provide a nice translation of the effect
of Seiberg duality in the cascading gauge theory as the effect of a large gauge transformation on
the supergravity background. In section 6.7, we add a final remark on the flavor groups of our
cascading solutions. We close the chapter illustrating the relations between RG flows of different
gauge theories living on branes at a conifold singularity in section 6.8.

6.2 The setup and the ansatz

We are interested in adding to the KT /KS cascading gauge theory a number of flavors comparable
with the number of colors, by means of Ny D7 branes representing the flavor mesonic degrees of
freedom of the dual gauge theory. The dynamics of these branes is governed by the corresponding
Dirac-Born-Infeld and Wess-Zumino actions. The solution we are after, which encodes the back-
reaction of the flavor branes, will have a nontrivial metric and dilaton ® and, as in any cascading



6.2. THE SETUP AND THE ANSATZ 107

background, nonvanishing RR 3- and 5-forms F3 and F5, as well as a nontrivial NSNS 3-form Hs.
In addition, D7 branes act as a magnetic source for the RR 1-form F; through the WZ coupling:

S = Y 8 Cot v, (6.2.1)
f 8

which induces a violation of the Bianchi identity dF} = 0. Therefore our configuration will also
necessarily have a nonvanishing value of F}, as the flavored Klebanov-Witten solution of the previous
chapter. The ansatz we shall adopt for the Einstein frame metric! is the following:

ds? = h(r)~2 das 3 + h(r)2 |dr? + e261(7) (ui + u3) +

(6.2.2)

+ e262() < (w1 + g(r)ur)® + (wa + 9(7“)“2)2) T

2G3(r)

e

J
where da:ig denotes the four-dimensional Minkowski metric, u; and w; (i = 1,2) are real 1-forms
that can be written in terms of the angular coordinates or of the 1-forms (B.1.12) as follows

uy + iug = db; — isinfydp; = /2 (01 — ioy) (6.2.3)
wy + iwy = e (dy + isinOadpy) = €™/ (81 4 i) , (6.2.4)

and finally ¢ = dw—zi:m cos 0;dp;. Notice that our metric ansatz (6.2.2) depends on five unknown
radial functions G;(r) (i = 1,2,3), g(r) and h(r). The ansatz for F5 has the standard form required
by supersymmetry, namely

Fs = (14 %) d*z Adh™Y(r) . (6.2.5)

The flavor D7 branes will be extended along the four Minkowski coordinates as well as an internal
noncompact four-dimensional manifold. The k-symmetric embedding of the D7 branes we start
from will be discussed in section 6.5. In order to simplify the computations, following the approach
of [1], we will smear the D7 branes in their two transverse directions in such a way that the
symmetries of the unflavored background are recovered. As explained in [1], this smearing amounts
to the following generalization of the WZ term of the D7 brane action:

SII/I);Z:M?Z/ CA'S + .- — H7/ QD ANCg + -+, (6.2.6)
Ny Ms Mio

where () is a 2-form which determines the distribution of the RR charge of the D7 brane and Mg
is the full ten-dimensional manifold. Notice that 2 acts as a magnetic charge source for F; which
generates a violation of its Bianchi identity. Actually, from the equation of motion of Cg one gets:

dF, = Qy . (6.2.7)

In what follows we will assume that the flavors introduced by the D7 brane are massless, which
is equivalent to require that the flavor brane worldvolume reaches the origin in the holographic

! As in the previous chapter, we will use the Einstein frame defined in (A.2.5), which makes sense in the presence
of D7 branes.
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direction. Under this condition the D7 brane charge density is radial coordinate independent.
Moreover, the D7 brane embeddings that we will smear imply that s is symmetric under the
exchange of the two S%’s parameterized by (01, 1) and (62, 2), and independent of v (see section
6.5). The smeared charge density distribution is the one already adopted in the previous chapter,
namely:

N N
dF, = 47f (sin01 doi N dpr + sin 69 dfs A d(pg) = 47f (—u1 A ug +wy A wg) , (6.2.8)
7y ™

where the coefficient Nt /(47) is determined by normalization. With this ansatz for Q5 the modified
Bianchi identity (6.2.7) determines the value of F, namely:

Nf
Fi = —(. 2.
1= 46 (6.2.9)

The ansatz for the RR and NSNS 3-forms that we propose is an extension of the one given by
Klebanov and Strassler and it is simply:

Mo
Bzz—T[fgl/\g%rk‘g?’Agﬂ
Mo 1
H3 =dBy = — 5 {dr/\(f’gl/\92+k’g3/\g4)+§(k—f)C/\(gl/\93—1—92/\94)] (6.2.10)
Mo

N N
F3 {(/\ [(F+4—7:f)gl/\92+(1—F+4—7J;k)g3/\g4} +F’dr/\(gl/\g3+92/\g4)}

2
where M is a constant, f(r), k(r) and F(r) are functions of the radial coordinate, and the g'’s are
the set of 1-forms defined in (B.2.9), that we rewrite here in the form

| Uzt o et
. _‘/?U . +‘{E (6.2.11)
V2 V2

The forms F3, H3 and F5 must satisfy the following set of Bianchi identities:
dF3 = —Hs N\ Fy dHs =0, dFs = —H3 N\ F3 . (6212)

Notice that the equations for F3 and Hs are automatically satisfied by our ansatz (6.2.10). Instead,
the Bianchi identity for Fj gives rise to the following differential equation:

dr,, 2G1+2G2+G3 | _ 3.9 n Nf / Nf / /
e ] = —SM%a [(1—F LRI E IO (k= DFY] L (6213)
which can be integrated, with the result:
N
B 2G1H2G2tGs —%M%’? [f —(f —k)F + 4—ffk + constant . (6.2.14)
T

Let us now parameterize Fj as

Fs = %o/2 Nepr(r)CA gt Ag® Ag® Ag* + Hodge dual , (6.2.15)
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and let us define the five-manifold M5 as the one that is obtained by taking the Minkowski coor-
dinates and r fixed to a constant value.? As fM5 Fs = —(47%a/)? N.s4(r), according to (A.2.34),
it follows that Ncs¢(r) can be interpreted as an effective D3 brane charge at the value r of the
holographic coordinate. From our ansatz (6.2.5), it follows that:

4
Nepg(r) = g W Xm0 (6.2.16)

and taking into account (6.2.14), we can write

1

Negg(r) = —W

2
/ F5:N0—i—% f—(f—k)F—F&fk ) (6.2.17)
Ms s 4T
where Ny is a constant. It follows from (6.2.17) that the RR five-form F5 is determined once the
radial functions F', f and k that parameterize the three-forms are known. Moreover, eq. (6.2.14)
allows to compute the warp factor once the functions G; and the three-forms are determined. Notice
also that the effective D5 brane charge is obtained, according to (A.2.35), by integrating the gauge
invariant field strength F3 over the 3-cycle S3: 6 = const., g = const.. The result is:

N

Mg 4(r) z—ﬁ : Fy=M[1+ L+ ). (6.2.18)

The strategy to proceed further is to look at the conditions imposed by supersymmetry. We
will smear, as in the previous chapter, xk-symmetric D7 brane embeddings. Therefore, the super-
symmetry requirement is equivalent to the vanishing of the variations of the dilatino and gravitino
of type IIB supergravity under supersymmetry transformations. These conditions give rise to a
large number of BPS first order ordinary differential equations for the dilaton and the different
functions that parameterize the metric and the forms. In the end, one can check that the first
order differential equations imposed by supersymmetry and Bianchi identities imply the second
order differential equations of motion. In particular, from the variation of the dilatino we get the

following differential equation for the dilaton:

3N
o =t L 4G (6.2.19)
0
A detailed analysis of the conditions imposed by supersymmetry shows that the fibering function
g in formula (6.2.2) is subject to the following algebraic constraint:

gl =1+ ez(Gl—G2>] —0, (6.2.20)

which has obviously two solutions. The first of these solutions is g = 0 and, as it is clear from our
metric ansatz (6.2.2), it corresponds to the cases of the flavored version of the warped singular and
resolved conifolds. In the second solution g is such that the term in brackets on the right-hand side
of (6.2.20) vanishes. This solution gives rise to the flavored version of the warped deformed conifold.
The flavored KT solution will be presented in section 6.4, whereas the flavored KS solution will be
analyzed in section 6.3.

2In order to define the Hodge dual, we have to specify an ordering. We choose an ordering such that the orientation
of the frame (as a Za valued object) is the same as the one previously considered in the conical case. The orientation
of M is therefore chosen to be the same that we picked for TH1. We remark that ¢ Ay A g2 Ag® A g* = —dy A
d91 A sin Gldgol A\ d91 A sin 91d(p1 = —108 dVOlTl,l .
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6.2.1 Maxwell and Page charges

Before presenting the explicit solutions for the metric and the forms of the supergravity equations,
let us discuss the different charges carried out by our solutions. In theories, like type IIB supergrav-
ity, that have Chern-Simons terms in the action (which give rise to modified Bianchi identities),
it is possible to define more than one notion of charge associated with a given gauge field. Let us
discuss here, following the presentation of reference [108], two particular definitions of this quantity,
namely the so called Maxwell and Page charges [109], whose definitions can be found also in ap-
pendix A.2.1. Given a gauge invariant field strength Fg_,, up to a p dependent sign the (magnetic)
Maxwell current associated to it is defined through the following relation:

dFy_p = jp (6.2.21)

or equivalently, the Maxwell charge in a volume Vy_, is given by:

P

Q]\D/[paxwell ~ [/ *jzf\)/[axwell ) (6222)
9

-p

with a suitable normalization. Taking 0Vy_, = Mg_, and using (6.2.21) and Stokes theorem, we
can rewrite the previous expression as:

QY azwell / Fy . (6.2.23)
P M

-p

This notion of current is gauge invariant and conserved and it has other properties that are
discussed in [108]. In particular, it is not “localized” in the sense that for a solution of pure
supergravity (for which d Fz_, = —Hs3 A Fs_p,) this current does not vanish. These are the kind of
charges we have calculated so far (6.2.17)-(6.2.18), namely:

1
Dy = Moy = =5 /F3 )
1
Mazwell _ _
Qp3™ " = Neyp = —(47T2a,)2/F5 : (6.2.24)

An important issue regarding these charges is that, in general, they are not quantized. Indeed,
we have seen explicitly in (6.2.18) and (6.2.17) that Q%gwwe” = M_ys and Q%[émwe” = Neyy vary
continuously with the holographic variable r.

Let us move on to the notion of Page charge. The idea is first to write the Bianchi identities for
F3 and Fj as the vanishing of the exterior derivatives of some differential form, which in general
will not be gauge invariant; then we define it to be the Page current. Using the polyform notation
of Appendices A.2 and A.2.1, we can define (up to signs), the polyform *;7%9¢ (the formal sum of

*jggge components of definite ranks, where here * is the Hodge star) as d(eP2 A F) = xjP%9¢. In
our case, we can define the following (magnetic) Page currents:
d(F3 + Ba A F1) = — % jp° ( )
6.2.25

1
d(F5+Bg/\F3+§Bg/\B2/\F1):—*jggge.
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The Page charges Qg‘gge and Qggge are just defined as the integrals of *jggge and *jggge with the
appropriate normalization, ¢.e.:

QPage _ 1 *jPage
D5 4120/ Vi D5
Page 1 *jPage
D3 (47r20/)2 Ve D3 >

where V4 and Vg are submanifolds in the transverse space to the D5 and D3 branes respectively,
which enclose the branes. Actually, we can use Page charges also when branes have transmuted to
fluxes via a geometric transition. In that case we define V; and Vg by their boundaries, in such a
way that the D branes were enclosed before transmuting into fluxes. In this case, Page charges are
carried by fluxes. By using the expressions of the currents *jggge and xj ggge given in (6.2.25), and
by applying Stokes theorem, we get for our geometries:

1
Page _ ___~ (F B/\F)
b =~ | (Rt Ban

1 1
ggge:—/M <F5—|—BQ/\F3+§BZ/\BZ/\F1)>

(6.2.26)

(6.2.27)
(47r20/)2

where S and M are the same manifolds used to compute the Maxwell charges in equations.
(6.2.18) and (6.2.17). It is not difficult to establish the topological nature of these Page charges.
Outside sources, Hodge duals of magnetic Page charges are closed. In compact notation: d(xj7%9¢) =
d (eB2 A F) = H3NeP2 NF 4+ eP2 A (—H3 A F3) = 0, where we have used the Bianchi identities
or equations of motion of RR field strengths collected in appendix (A.2) Locally we can write
eP2ANF=d (632 A C’), where C' is the polyform of RR potentials. Therefore, if the RR potentials
C were globally defined on the integration manifolds, Page charges would vanish identically as
a consequence of Stokes theorem. But they do not if the corresponding components of e?2 A C
of definite rank are instead topologically nontrivial and need to be patched, as happens for the
monopole number.

Due to the topological nature of the Page charges defined above, one naturally expects that they
are quantized and, as we shall shortly verify, they are independent of the holographic coordinate.
This shows that they are the natural objects to compare with the numbers of branes that create
the geometry in backgrounds with varying flux. However, as it is manifest from the fact that

Pagc and Qa9 are given in (6.2.27) in terms of the By field and not in terms of its field strength
Hj, Page charges are not gauge invariant under large gauge transformations. They are instead
invariant under small gauge transformations. Consider a small gauge transformation under which
0By = dA; and RR improved field strengths F' are invariant: outside sources the gauge variation
§(eFP NF)=dA ANeP2 NF =d (A AeP2 AF) is exact (provided there are no NS5 branes making
By not globally defined), so that Page charges do not change under small gauge transformations.
In subsection 6.6.2 we will relate this noninvariance to the Seiberg duality of the field theory dual.

Let us now calculate the associated Page charges for our ansatz (6.2.10) . We shall start by
computing the D5 brane Page charge for the 3-sphere S® defined by 6y, 2 = constant. We already
know the value of the D5 brane Maxwell charge (6.2.18), which gives precisely M.¢s. Taking into

account that
/C/\gl/\g2:/ C/\g3/\g4:—/ ng:_87T2, (6.2.28)
S3 S3 S3
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we readily get:

1 MN;

By Ay = (F+ k), (6.2.29)

472 J g3 7'('

and therefore:
M Ny

Qps’ = Megy = =~ (f+ k). (6.2.30)

Using the expression of M ¢s given in (6.2.18), we obtain:
P
Qps =M, (6.2.31)

which is certainly quantized and independent of the radial coordinate.
Let us now look at the D3 brane Page charge, which can be computed as an integral over the
angular manifold M5. Taking into account that

/ GANPNP NG A G = —(4r)? (6.2.32)

5

we get that, for our ansatz (6.2.10):

1 M? N
—(42,2/ BQ/\FB:_i[f_<f_k)F+7ffk
w2a’)? s 2
) ) M2 N (6.2.33)
f
- —BoANBoANFy = — —fk
(4m2a’)? /M52 2 A B2 A i 47Tf ’
and thus )
M N
Page _ ——[ —(f - k)F + L fk 6.2.34
D3 eff T f (f ) + A f ) ( )
and, using the expression of N.s¢ (6.2.17), we obtain
Page — Ny, (6.2.35)

which is again independent of the holographic coordinate. Recall that these Page charges are
not gauge invariant and we will study in subsection 6.6.2 how they change under a large gauge
transformation.

We now proceed to present the solutions to the BPS equations of motion.

6.3 Flavored warped deformed conifold
In this section we consider the following solution of the algebraic constraint (6.2.20):
g? =1—AG1=G2) (6.3.1)

In order to write the equations for the metric and dilaton in this case, we perform the following
change of coordinate:
3e S dr =dr . (6.3.2)
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In terms of this new variable, the differential equation for the dilaton is simply:

. Nf
d=-""Le? 6.3.3
e (6:33)
where the dot means derivative with respect to 7. This equation can be straightforwardly integrated,
namely:
N 1
et — 0<7<m, (6.3.4)
4 TO— T
where 79 is an integration constant. The equations imposed by supersymmetry on the metric
functions G1, G2 and G3 are:

Gl — i6203—G1—G2 _ leGQ_Gl + leGI_G2 -0

18 2 2
; 1 1 1
GQ . E62G3—G1—Gz + 5er—Gl . §€G1_G2 -0 (6.3.5)
G3 + 162G3—G1—G2 — G2=G1 + &642' —0.

9 s

In order to write the solution of this system of first order equations, we define the following function

[

2(1 — 19)(7 — sinh 27) + cosh(27) — 2779 — 1 s
AlT) = . (6.3.6)

sinh 7

Then, the metric functions G; are given by:

1 4 sinh®7
2G1 _ ~ 3 A
c 1" Coshr (7)
1
%62 = Z,u% cosh 7 A(T) (6.3.7)
2G5 _ 6,3 0T

[A(r)]*

where p is an integration constant. Notice that the range of the 7 variable chosen in (6.3.4) is the
one that makes the dilaton and the metric functions real. Moreover, for the solution we have found,
the fibering function g is given by

- (6.3.8)
9= coshr’ o

as in the deformed conifold. Using this result, we can write the ten-dimensional metric as:

ds* = h(T)_% d:nig + h(T)% ds? (6.3.9)
where ds? is the metric of the ‘flavored’ deformed conifold, namely
dsg = l/ﬁ A(T) Am — 1) (dr* + (g°)?) + cosh? (I) ((93)2 + (94)2>—|—
2 3A3(7) 2

(6.3.10)

+sint? () (417 + (4)?)
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Notice the similarity between the metric (6.3.10) and the one corresponding to the ‘unflavored’
deformed conifold (3.4.9). To further analyze this similarity, let us study the Ny — 0 limit of
our solution. By looking at the expression of the dilaton in (6.3.4), one realizes that this limit
is only sensible if one also sends 79 — +oo with N fixed.> Indeed, by performing this scaling
and neglecting 7 versus 79, one gets a constant value for the dilaton. Moreover, the function A(7)
reduces in this limit to A(7) ~ (470)% K (1), where K (1) is the function appearing in the metric of
the deformed conifold, namely:

W=

[Sinh 21 — 27’}
K(r) = - . (6.3.11)
23 sinh 7

Using this result it is straightforward to verify that the metric (6.3.10) reduces to the metric of
the deformed conifold (3.4.9) with € = (479)"/4p. In the unflavored limit, p has to scale so that
€ = (410)"/*u stays finite.

The requirement of supersymmetry imposes the following differential equations for the functions
k, f and F appearing in the fluxes of our ansatz:

: N
k:?<F+—iﬁcmﬁz
47 2

: N T

— % (1~ 2 2 6.3.12
f=e (1 F+ . k:) tanh 5 ( )
. 1
F:§f¢w—fy

Notice that in the unflavored limit the system (6.3.12) reduces to the one (3.4.15) found in [37].%
Moreover, for Ny # 0 this system can be solved as:

TcothTt —1

—¢ g =TT 7 coshr — 1
crf 2sinh (cosh7 —1)
e %k oemhr (coshT +1) ( )
_ sinh7—7
2sinh 1
where e® is given in eq. (6.3.4). By using the solution given by (6.3.7) and (6.3.13) in the general

eq. (6.2.14) we can immediately obtain the expression of the warp factor h(7). Actually, if we
require that h is regular at 7 = 0, the integration constant Ny in (6.2.17) must be chosen to be
zero. In this case, we get:

h(r) TM?a/? /T wcothz —1  —cosh2x + 422 — 4a79 + 1 — (z — 279) sinh 2z
T) = = :
4u8/3 N (z — 70)2 sinh? z (cosh 2z + 222 — 4279 — 1 — 2(x — 79) sinh 27)2/3
(6.3.14)

The integration constant can be fixed by requiring that the analytic continuation of h(7) goes to
zero as T — +00, to connect with the Klebanov-Strassler solution in the unflavored (scaling) limit.
Then, close to the tip of the geometry, h(7) ~ hg — O(72).

30ther rescalings are also necessary in taking this unflavored limit, similarly to what we did in detail in subsection
5.2.3 in the context of the Klebanov-Witten theory.
“The overall g, factor is compensated by the slightly different ansatz we chose.
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We should emphasize an important point: even though at first sight this solution may look
smooth in the IR limit (7 — 07), where all the components of our metric (as well as the 3- and
5-form fluxes, the NSNS 2-form potential and the dilaton) approach the same limit as those of the
KS solution (up to a suitable redefinition of parameters), there is actually a curvature singularity.
For instance, the curvature scalar diverges as 1/7. The reason is that in this flavored solution
corrections to the leading behavior are O(7) instead of O(72), which is the case in the Klebanov-
Strassler solution. The fibration of S3 over R?® becomes singular.® This singularity of course
disappears when taking the unflavored limit, using the scaling described above.

This is a good singularity according to the criterion of [65], therefore low energy properties of
the dual gauge theory can be extracted from our solution. There is a physically intuitive reason why
such an ‘infrared’ singularity should occur. Were not for this curvature singularity, the geometry
would have ended smoothly, and linear confinement (infinitely long QCD strings) would have been
found by studying the behavior of rectangular Wilson loops. In Veneziano’s large N limit, pair
production of flavor fields is allowed already at the leading order, that we are studying by means
of a dual background. Pair production of quarks leads to charge screening and chromoelectric flux
tube breaking. Hence it is natural to expect a dual solution with a curvature singularity in the IR
region. We have checked numerically, by means of the holographic method for computing the Wilson
loop [69], that exactly the O(T) corrections which are responsible for the curvature singularity are
also responsible for the existence of a maximal distance up to which a pair of external quark and
antiquark can be separated before the flux tube in between breaks.

The solution presented above is naturally interpreted as the addition of fundamentals to the
KS background [37]. In the next section, we will present a solution that can be understood as the
addition of flavors to the KT background [36].

6.4 Flavored warped singular conifold

In this section we consider the solutions with ¢ = 0. An alternative derivation is collected in ap-
pendix C.4, where we start directly from the singular conifold and exploit the K&hler and complex
structure of the (‘flavored’) singular conifold; reading that appendix is instructive because it high-
lights the links with the unflavored Klebanov-Tseytlin solution and the flavored Klebanov-Witten
solution.

First of all, let us change the radial variable from r to p, where the latter is defined by the
relation dr = e“3 dp. The equation for the dilaton can be integrated trivially:

4 1

>

= - <0. 6.4.1
€ 3N, p (6.4.1)

Here we have already absorbed the integration constant that would have been useful if we wanted
to take the unflavored limit. It can be reinstated trivially by redefining the radial coordinate
p by a shift. The unflavored limit is exactly the same as the one we analyzed for the flavored
Klebanov-Witten solution (5.2.19).

Requiring supersymmetry imposes that the metric functions G; satisfy in this case the following

®The simplest example of this kind of singularity appears at 7 = 0 in a 2-dimensional manifold whose metric is
ds® = dr® + r?(1 4+ r)d¢>.
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system of differential equations:

|
Gi=¢ ?Cs =20 (i=1,2)
6.4.2)
. 1 1 3N (
Cla — 3 — = 2G3=2G1 _ L 2Gs—2Gy _ 21V @
3 6° 6° sn

where now the dot refers to the derivative with respect to p. This system is equivalent to the
one analyzed in [1] for the Klebanov-Witten model with flavors. In what follows we will restrict
ourselves to the particular solution with G; = G2 given by:

1 1
2G1: 2G2:71_6 §2p
= =gl 2p) ‘ (6.4.3)
e?93 = —6p (1 —6p) 3 e .

Notice that, as for the flavored Klebanov-Witten solution of the previous chapter, the range of
values of p for which the metric is well defined is —oo < p < 0. The equations for the flux functions
f, k and F are now:

f—k=2e%F
. . N
_ 9. ® N
k=314 ZL(f + )] (6.4.4)
1 Ny
sz{1 (*‘P——) —k}.
We will focus on the particular solution of this system such that f = k and F' is constant, namely:
1
2
o r (6.4.5)
f = k‘ = - 1 —_—— s
Nf P

where I' is an integration constant. These are the solutions that reduce to the Klebanov-Tseytlin
solution in the unflavored limit. By substituting these values of F', f and k in our ansatz (6.2.10) we
obtain the form of F3 and Hs. Notice that the constants M and I' only appear in the combination
MT. Accordingly, let us define M as M = MT'. We will write the result in terms of the function

Myl =2 (6.1.6)

which is the D5 brane Maxwell charge of the solution at a value p of the holographic coordinate.
We find:

/

«
Fy =" Mess(p)CA (9" Ag* + 97 AgY)
6.4.7)
wa' M, (
Hg:Neff(p)dp/\(gl/\92+93/\g4).
;P

Moreover, the RR five-form Fj can be written as in (6.2.15) in terms of the effective D3 brane
charge defined in (6.2.17). For the solution (6.4.5) one gets:

M2 1 M2 (p)
N, — N4 Ny 6.4.8
ef£(p) + N, 2 + N, (6.4.8)
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where N = Ny — %—; Integration of equation (6.2.14) gives the warp factor:

h(p) = —27ma’? / * o [N+ (6.4.9)

0

M2 1:| 6—433
Ny 2| (1-62)35

We have chosen the integration constant so as to recover the Klebanov-Tseytlin solution in the
scaling unflavored limit, which can be taken after redefining p by a shift by suitably scaling the
maximal value of p to infinity.

To interpret the solution just presented, it is interesting to study it in the deep IR region
p — —oo. Notice that in this limit the three-forms F3 and Hs vanish. Actually, it is easy to verify
that for p — —oo the solution obtained here reduces to the one studied in [1], corresponding to
the Klebanov-Witten [29] model with flavors. Indeed, in this IR region it is convenient to go back
to our original radial variable r. The relation between r and p for p — —oco is r = (—6p)% e’.
Moreover, one can prove that for p — —oo (or equivalently » — 0), the warp factor h and the
metric functions G; become:

/2 2
h(r) ~ W% , 201 = 202 % , 2 2 (6.4.10)
which implies that the IR Einstein frame metric is AdSs x T1! plus logarithmic corrections, exactly
as the flavored Klebanov-Witten solution found in [1]. The interpretation of the RG flow of the
field theory dual to this solution will be explained in sections 6.5 and 6.6.

Finally, let us stress that the UV behavior of this solution (coincident with that of the solution
presented in section 6.3) presents a divergent dilaton at the point p = 0 (or 7 = 7 for the flavored
warped deformed conifold). Hence the supergravity approximation fails at some value of the radial
coordinate that we will associate in section 6.6 with the presence of a duality wall [111] in the
cascading field theory.

6.5 The field theory with flavors: a cascade of Seiberg dualities

The field theories dual to our supergravity solutions can be engineered by placing stacks of two
kinds of fractional D3 branes (color branes) and two kinds of fractional D7 branes (flavor branes) on
the singular conifold. In section 3.3, we have introduced fractional D3 branes on the conifold. The
conifold has a single nontrivial 2-cycle at the singularity, over which it is possible to wrap D5 branes
or anti-D5 branes with a suitable worldvolume gauge flux, still preserving the same supersymmetries
as the conventional (regular) D3 branes. Since the geometric volume of the 2-cycle vanishes, these
objects are really D3 branes, but they carry noninteger D3 charge, in particular they carry half a
unit of D3 brane charge in a background where | g2 B2 = 2120/, A regular D3 brane is a bound
state of the two kinds of fractional branes that unwraps the cycle and can move off the singular
point. We have also reviewed the arguments explaining why each kind of fractional D3 branes
increases the rank of one or the other gauge group of the quiver gauge theory.

Similarly to the fractional D3 branes, two kinds of fractional D7 branes, providing flavors for
either one or the other gauge group can be introduced. These fractional D7 branes are not wrapped
D9 or anti-D9 branes, which would have no transverse directions, but true D7 branes. They are
fractional because the 4-dimensional manifold they are both embedded along inside the conifold,
that we will define momentarily, touches the two-cycle at the singularity, and actually wraps it,
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q Q

Figure 6.1: The quiver diagram of the gauge theory. Circles are gauge groups, squares are flavor
groups, and arrows are bifundamental chiral superfields. Ny and Nyg sum up to Ny.

although leaving four other directions to be spanned by the branes outside the singularity. There are
two kinds of fractional D7 branes, because the can carry either zero or minus one unit of worldvolume
gauge flux on the exceptional cycle, still preserving the same supercharges as the regular D3 branes.
The worldvolume action of these fractional branes, which clarifies their properties, will be defined
and discussed in detail in the next section.
The supersymmetric embedding for these fractional D7 branes on the conifold was considered
by Kuperstein [96]:
Z3 — 24 = 0 s (651)

which in the w coordinates defined in appendix B.1 is wo = 0. We immediately see that the
embedding submanifold in the singular conifold, 2120 = 23 or w? +w3 + w3} = 0, is algebraically the
orbifold C x C?/Zs, having an exceptional 2-cycle at the singularity z; = 2o = 23 = 24 = 0, which
coincides with the conifold singularity. In order to convince the reader that this embedding actually
wraps the singular cycle, it is enough to consider either the small resolution of the conifold or the
deformation: in both cases the embedding z3 = z4 acquires a blown-up two-cycle (either as a Kéhler
or a complex structure deformation). Furthermore, an easy way of understanding why fractional D7
branes along the embedding (6.5.1) provide flavors coupling either to one or the other gauge group
is to recall that fractional D7 branes on the C x C2?/Zy orbifold, where explicit quantization of open
strings is possible, precisely provide nonchiral flavors for both the color groups of the corresponding
N = 2 quiver gauge theory [88]. Upon mass deformation, that N/ = 2 gauge theory with two gauge
groups and two flavor groups reduces to the one under consideration. Making contact with this
possible UV completion, it is also possible to understand which kind of fractional D7 brane (flavor
group) couples to which kind of fractional D3 brane (color group). It turns out that D7 branes with
flux flavor the gauge group related to wrapped D5 branes without flux, and D7 branes without flux
flavor the gauge group related to wrapped anti-D5 branes with flux.

Summarizing, by placing at the conifold singularity arbitrary numbers of the two kinds of
fractional D3 branes and placing arbitrary numbers of the two kinds of fractional D7 branes along
the embedding (6.5.1), we can engineer a flavored version of the Klebanov-Strassler theory whose
matter content is depicted in the quiver diagram of figure 6.1.
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We have not yet found the superpotential of the flavored gauge theory. Before facing this
issue, let us preliminarily observe that the embedding (6.5.1) is invariant under U(1)g and a
diagonal SU(2)p subgroup of the SU(2) x SU(2) x U(1)r symmetry of the conifold (and a Zs
which exchanges z3 <> z4). It could be useful to write it in the angular coordinates of the previous
section, using (B.2.5)-(B.2.6): 01 = 02, 1 = p2, Vib, V7. We can obtain other embeddings with
the same properties by acting on it with the broken generators. One can show that the charge
distribution obtained by homogeneously distributing the D7 branes in this class of mutually BPS
embedding is (6.2.8):

Oy = % (sin 01 doy N dpy + sin O dbs A d(pQ) , (6.5.2)
where Ny is the total number of D7 branes.’

Different techniques developed in the literature allow us to identify the field theory dual to our
type IIB plus D7 branes background. First of all, we have already mentioned that one possibility
consists in starting from an N = 2 quiver gauge theory realized via a generic configuration of
fractional D3 and D7 branes on the Cx C2/Zy orbifold, giving masses to the adjoint chiral superfields
in the A = 2 vector multiplets, and integrating them out to find our theory as a low energy effective
description. Another equivalent technique, that we found very transparent, is that of performing a
T-duality along the isometry (21, 22) — (€'“21, e "25). The system is mapped into type IIA string
theory: neglecting the common spacetime directions, there is an NS5 brane along x%°, another
orthogonal NS5 brane along %9, r; D4 branes along 2% (which is a compact direction) connecting
them on one side, other ro D4 branes connecting them on the other side, N1 D6 branes along x’
and at a 7 angle between 5 and 28°, touching the stack of r; D4 branes, and N 2 D6 branes
along 7 and at a 7 angle between 289 and z*?, touching the stack of ro D4 branes. NS5 branes
are T-dual to the conifold singularity, the two kinds of suspended D4 branes are T-dual to the two
kinds of fractional D3 branes, and finally the two kinds of rotated D6 branes are T-dual to the two
kinds of fractional D7 branes. The type IIA brane system is depicted in Figure 6.2. The spectrum
is directly read off, and the superpotential comes from the analysis of the moduli space [112]:"

W = h(A1B1A2By — A1 By A3 By) + hy G(A2By — A1Ba)q + ha Q(B1As — BaAp)Q+
+ adqdq + B QRQQ .

The factors Ay By — A1 By directly descend from the embedding equation (6.5.1), while the quartic
term in the fundamental fields is derived from the type IIA Hanany-Witten brane setup or from the
N = 2 completion. This superpotential explicitly breaks the SU(2)4 x SU(2)p global symmetry of
the unflavored theory to a diagonal subgroup SU(2)p, but this global symmetry is recovered after
smearing the flavors. It is worth here stressing that the smearing procedure does not influence at
all either the duality cascade, which is the main feature of our solutions that we want to address
here, nor (presumably) the infrared dynamics.

Notice that we have engineered a field theory with four independent ranks. In particular, the
number of flavors for one or the other gauge group depends on the number of D7 branes with
or without worldvolume gauge flux on the exceptional cycle. Since this flux is stuck at the tip

(6.5.3)

SNotice that one could have considered the more general embedding: z3 — z4 = m, where m corresponds in field
theory to a mass term for quarks. These embeddings and their corresponding supergravity solutions are not worked
out here.

"Sums over gauge and flavor indices are understood.
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Figure 6.2: Type IIA Hanany-Witten brane engineering of the conifold theory with nonchiral
Kuperstein flavors.

of the cone, outside the singularity we can only measure the D3, D5 and D7-charges produced.
Unfortunately three charges are not enough to fix four ranks. This curious ambiguity will show up
again in section 6.6. We will return more deeply on this issue (and solve it for the flavored warped
deformed conifold solution, where the previous statement is not correct) in section 6.7.

6.5.1 The cascade

Now that we know the field theory we are dealing with, we can propose a plausible pattern for its
RG flow, that will finally be confirmed by the dual supergravity backgrounds we have found.

Let us consider our gauge theory at an ultraviolet cutoff scale, below the Landau pole. It looks
natural to conceive that, as in the unflavored theory, the g-functions of the two gauge couplings
have opposite sign. If we follow the RG flow, at some energy scale the gauge coupling of the gauge
group with larger rank will diverge; at that point we can resort to a Seiberg-dual description [67].
Remarkably, a straightforward computation shows that the quartic superpotential makes the field
theory self-similar: the field theory in the dual description is a quiver gauge theory with exactly
the same field content and superpotential; the only quantities that change are the ranks of the
groups.®

From now on, we define the gauge theory at any energy scale by specifying the ranks of the color
and flavor groups: the gauge group will be SU(r;) x SU(rs), where [ always stands for the larger
gauge group and s for the smaller (r; > r,), and the flavor groups SU(Ny;) and SU(Nys) will be
associated to the gauge groups SU(r;) and SU(rs) respectively. We start at the ultraviolet cutoff
scale, conventionally, with ranks r; = 71, rs = 72, Nyy = Nyy and Nyg = Nyo, and follow the flow
until the gauge coupling of SU(r1) diverges. At that point we need to Seiberg-dualize that gauge

8This is not the case for the chirally flavored version of Klebanov-Strassler’s theory proposed by Ouyang [95], and
for the flavored version of nonconformal theories obtained by putting branes at conical Calabi-Yau singularities [113].
In those realizations the superpotential is cubic, and the theory is not self-similar under Seiberg duality: new gauge
singlet fields appear or disappear after a Seiberg duality, making the cascade subtler. This setup has been investigated
later in [110].
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group: as a result, the field theory becomes SU(2ry —r1 4+ Ny1) x SU(r2), with again Ny and Nyo
flavors respectively. In identifying which gauge group is now the larger and which is the smaller, we
have to exchange the labelling of the groups, so that we get r; = ra, ry = 2ro —r1+ N1, Njy = Npo
and NV J’cs = Nyi. Aslong as our assumption about opposite signs for the gauge coupling 3-functions
is still met, the flow goes on in a similar way: the new larger gauge group will run to strong coupling,
at that point we need to dualize it, and the former smaller gauge group becomes the larger gauge
group, then flowing to strong coupling, and so on. The assumption leads to an RG flow which is
described by a self-similar cascade of Seiberg dualities, analogously to [36,37]. By inspection of the
transformation properties of ranks under a Seiberg duality that we have considered above, we can
see that in the UV the ranks of the gauge groups are much larger than their difference, which in
turn is much larger than the number of flavors. Hence the assumption of having S-functions with
opposite sign is for sure justified in the ultraviolet regime of the RG flow.

The previous expectation is confirmed by our backgrounds. We will extract the field theory
cascade from our supergravity solution. We can anticipate that the ‘flavored warped deformed
conifold’ background of section 6.3 is dual to a quiver gauge theory where the cascade goes on until
the deep IR, with nonperturbative dynamics dual to the complex structure deformation occurring
at the end, like in the Klebanov-Strassler solution.

In the ‘flavored warped singular conifold’ background of section 6.4 instead, the cascade does
not take place anymore below some value of the radial coordinate, and the background asymptotes
to the flavored Klebanov-Witten solution [1] illustrated in the previous chapter. In the field theory,
this reflects the possibility that, because of a suitable initial choice of ranks at a UV cutoff scale, at
some point along the cascade we are driven to a field theory where the g-functions of both gauge
couplings are positive. In this situation, the infrared dynamics is the one discussed in the previous
chapter, but with a quartic superpotential for the flavors as in subsection 5.3.1.

Unlike the unflavored case, where the Klebanov-Tseytlin background is only an approximation
of the correct Klebanov-Strassler background, here the ‘flavored warped singular conifold’ and
the ‘flavored warped deformed conifold’ solutions are two morally distinct and equally legitimate
solutions, describing RG flows with different IR dynamics.

The description of the duality cascade in our solutions and its interesting ultraviolet behavior
will be the content of the next section.

6.6 The cascade: supergravity side

We claim that our supergravity solutions are dual to the class of quiver gauge theories with back-
reacting fundamental flavors introduced in the previous section. Indeed we will show that the
effective brane charges, the R-anomalies and the beta functions of the gauge couplings that we can
read from the supergravity solutions precisely match the picture of a cascade of Seiberg dualities
that we expect to describe the RG flow of the field theories, generalizing the results of [36,37] to
gauge theories which include dynamical flavors.

6.6.1 Effective brane charges and ranks

By integrating fluxes over suitable compact cycles, we can compute three effective D brane charges
in our solutions, which are useful to pinpoint the changes in the ranks of gauge groups when the
field theory undergoes a Seiberg duality along the cascade: one of them (D7) is dual to a quantity



122 CHAPTER 6. UNQUENCHED FLAVORS IN THE KLEBANOV-STRASSLER THEORY

which is constant along the RG flow, whereas two of them (D3, D5) are not independent of the
holographic coordinate and are dual to the nontrivial part of the RG flow. The (Maxwell) charges
of D3 and D5 brane (Ners and Myy) for our ansatz were already calculated in section 6.2 (see
equations. (6.2.17) and (6.2.18)). Let us now compute the D7 brane charge, integrating (6.2.8)
on a 2-manifold with boundary which is intersected once by all the smeared D7 branes (e.g. Da:
0o = const., w9 = const., 1) = const.). This charge is conserved along the RG flow because no
fluxes appear on the right hand side of (6.2.8). The D7 brane charge, which we interpret as the
total number of flavors added to the Klebanov-Strassler gauge theory, is indeed:

Nflcw = / dF1 = Nf . (6.6.1)
Do

Another important quantity is the integral of By over the nontrivial 2-cycle, which has S? topology
and can be represented by 61 = 62 =6, 1 = 27 — o = ¢, P = const.:

b(r) = ﬁ /52 By = %(f sin? % + k cos? %) . (6.6.2)
This quantity is important because in the absence of fractional branes, string theory is invariant
as it undergoes a shift of 1. For instance, in the KW background it amounts to move to a Seiberg
dual description. In a cascading background, the effect of changing the radial coordinate so that
b is shifted by 1 corresponds to moving to the following step of the cascades, as is clear from the
approximate formulae (3.4.1). So we will shift this last quantity by one unit, identify a shift in the
radial variable 7 that realizes the same effect, and see what happens to M.y and N.sr. Actually, the
cascade matching is not exact along the whole flow down to the IR but only in the UV asymptotic
(below the UV cut-off 7y obviously). The same happens for the unflavored solutions of [36] and [37]:
in the KT solution one perfectly matches the cascade in field theory and supergravity, while in the
KS solution close to the tip of the warped deformed conifold the matching is not so clean. On the
other hand, this is expected, since the last step of the cascade is not a Seiberg duality. Thus we
will not be worried and compute the cascade only in the UV asymptotic for large 7 which also
requires 79 > 1 (we neglect O(e~7)): in that regime the functions f and k become equal, and b is
1-independent.
Actually, we will not compute the explicit shift in 7 but rather the shift in the functions f and k.
We have:

) = ) =10 =
k(t) — k(7)) = k(1) — %

b(r) = b(r)=b(t) -1 = (6.6.3)

Correspondingly, after a Seiberg duality step from 7 to 7/ < 7, that is going toward the IR, we
have:

Ny — Ny (6.6.4)
Meyy(T) = Mepp(1") = Mepp(1) — —- (6.6.5)

Nepp(T) = Nepp(1') = Nepp(m) = Mepp(T) + (6.6.6)
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This result is valid for all our solutions.

We would like to compare this result with the action of Seiberg duality in field theory, as com-
puted in section 6.5. We need an identification between the brane charges computed in supergravity
and the ranks of the gauge and flavor groups in the field theory.

The field theory of interest for us, with gauge groups SU(r;) x SU(rs) (r; > rs), and flavor
groups SU(Ny;) and SU(Ny,) for the gauge groups SU(r;) and SU(rs) respectively, is engineered,
at least effectively at some radial distance, by the following objects: r; fractional D3 branes of
one kind (D5 branes wrapped on the shrinking 2-cycle), rs fractional D3 branes of the other kind
(D5 branes wrapped on the shrinking cycle, supplied with —1 quantum of gauge field flux on the
2-cycle), Ny fractional D7 branes without gauge field strength on the 2-cycle, and Ny; fractional
D7 branes with —1 unit of gauge field flux on the shrinking 2-cycle. This description is valid for
be[0,1].

This construction can be checked explicitly in the case of the C x C?/Zs orbifold [39,88], where
one is able to quantize the open and closed string system for the case b = % that leads to a free
CFT [114]. That is the N' = 2 field theory which flows to the field theory we are considering, when
equal and opposite masses are given to the adjoint chiral superfields (the geometric description of
this relevant deformation is a blowup of the orbifold singularity) [29, 32]. Fractional branes are
those branes which couple to the twisted closed string sector.’

Here we will consider a general background value for By. In order to compute the charges, we
will follow quite closely the computations in [87].

We will compute the gauge invariant charges'® of D7 branes and wrapped D5 branes on the
singular conifold, described by z129 — 2324 = 0. The D5 brane Wess-Zumino action is

Sps = ,u5/ {C@ + (27TO/F2 + B2) A C4} , (6.6.7)
M4xS?

where S? is the only 2-cycle in the conifold, vanishing at the tip, that the D5 brane is wrapping.
We write also a world-volume gauge field F» on S2. All forms except F5 are meant to be pulled
back. We suppress hats to avoid cluttered formulae. Then we expand:

BQ :271'&/03(4}2 93 =27b F2 :<I>w2 y (668)
where wy is the 2-form on the 2-cycle, which satisfies |, g2 W2 = 1.11 In this conventions, b has period

1, and @ is quantized in 2w Z. We obtain (using p,(472a’) = pp—9):

Sps = u5/ Co+ 22 [ (@400, (6.6.9)
M4xS2 271' M4

The first fractional D3 brane [38] is obtained with ® = 0 and has D3-charge b, D5-charge 1. The
second fractional D3 brane is obtained either as the difference with a D3 brane, or as an anti D5

9Notice that one can build, out of a fractional D3 of one kind and a fractional D3 of the other kind, a regular D3
brane (i.e. not coupled to the twisted sector) that can move outside the orbifold singularity; on the contrary, there is
no regular D7 brane: the two kinds of fractional D7 branes we are considering, extending entirely along the orbifold,
cannot bind into a regular D7 brane that does not touch the orbifold fixed locus and is not coupled to the twisted
sector [88].

0These charges, that we read naively from the Wess-Zumino couplings of D branes, were called ‘brane source
charges’ in [108].

"'We see that wy = --w§'”, in terms of the 2-form defined in (B.2.17).
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brane (global — sign in front) with ® = —2x, and has D3-charge 1 — b, D5-charge -1. These charges
are summarized in Table 6.1.

Now consider a D7 brane along the surface z3 = z4. It describes a 2129 = z§ inside the conifold,
which is a copy of C2/Z,. The D7 brane Wess-Zumino action is (up to a curvature term considered
below)

1
Sp7 = /1,7/ {Cs + (27TO/F2 + Bz) A Cg + 5(271’0/172 + Bg) AN (27TO/F2 + BQ) VAN 04} . (6.6.10)
M4xX

The surface ¥ = C?/Zy has a vanishing 2-cycle at the origin. Since the conifold has only one
2-cycle, these two must be one and the same and we can expand on ¥ using wy again. Moreover,
being wy the Poincaré dual to the 2-cycle on X,

1
/WQ N g = / a2 (6.6.11)
» 2 S2

holds for any closed 2-form «s, and % arises from the self-intersection number of the S2. There is
another contribution of induced D3-charge coming from the curvature coupling [115]:

M(QTF)Q/ CiNTr Ry ARy = —,ug/ Cy A p(R) . (6.6.12)
96 M4AxS M4AxY 48

This can be computed in the following way. On K3 p1(R) = 48 and the induced D3-charge is
—1. In the orbifold limit K3 becomes T*/Zs which has 16 orbifold singularities, thus on C2?/Zy the
induced D3-charge is —1/16.12

Collecting everything together we get:

M5 M3 2 2
= + = d+6 b+ 0p)° — . 6.1
Spr7 ,117/ 4><208 in /M4><s2( B)Cs + 162 / 4[( +0p)*—7 } Cy (6.6.13)

The second fractional D7 brane (the one that couples to the second gauge group) is obtained with
® = 0 and has D7-charge 1, D5-charge g and D3-charge (40> — 1)/16. With ® = 27 we get a
nonsupersymmetric or nonminimal object (see [38] for some discussion of this). The first fractional
D7 brane (coupled to the first gauge group) has ® = —27 and has D7-charge 1, D5-charge b*Tl and
D3-charge (4(b—1)% —1)/16. This is summarized in Table 6.1. Which fractional D7 brane provides
flavors for the gauge group of which fractional D3 brane can be determined from the orbifold case
with b = 3 (compare with [88]).

Given these charges, we can compare with the field theory cascade. First of all we construct
the dictionary:

Ny = Nyp + Ny (6.6.14)
b—1 b
Mepp=m—71s+ TNfl + §Nfs (6.6.15)
41 -5)?> -1 4p% — 1
Negr=0bri+(1=b)rs + (16)Nfl + =5 Nss (6.6.16)

1276 be fair, the previous computation is a bit too naive. Because the 4-dimensional manifold spanned by D7
branes inside the Calabi-Yau is noncompact, some additional care is needed in computing this topological quantity:
as the asymptotics changes, this topological quantity can change too. However, changing these curvature couplings
does not affect the matchings and the arguments that are laid out in the following, since it amounts simply to a
constant shift, proportional to the total number of flavors Ny, in the D3 brane charge. Therefore we will neglect this
subtlety, which is only relevant for a detailed analysis of the deep IR regime.
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Object frac D3 (1) frac D3 (2) frac D7 (1) frac D7 (2)
D3-charge b 1-b 4(1)%6)2_1 4bi6fl
Db-charge 1 -1 b_Tl %
D7-charge 0 0 1 1

Number of objects 7] rs Ny Ny,

Table 6.1: Charges of fractional branes on the conifold

To derive this, we have only used that the brane configuration that engineers the field theory we
consider consists of 7 fractional D3 branes of the 1% kind, r, fractional D3 branes of the 2"? kind,
Ny, fractional D7 branes of the 15 kind, and Ny, fractional D7 branes of the 274 kind. Recall that,
by convention, r; > r, and Ny (Ny) are the flavors for SU(r;) (SU(rs)).

We remark that this method is a clever trick. These D branes of which we are computing
the charges do not actually exist in the background. The whole idea is that, in the presence of a
fixed background value of b, we could engineer the field theory under study by placing a particular
configuration of branes (at the singularity). The gauge invariant ‘brane source charges’ of this
configuration can be computed and depend on the value of b. On the other hand, in the dual
background D branes are replaced by their fluxes, and in a cascading solution b varies as we move
in the radial direction; but at any value 7 of the radial coordinate, we can compute the gauge
invariant Maxwell charges of the solution. Being both gauge invariant, these Maxwell charges
must equal by construction the brane source charges, in a background for b equal to b(7), of the
hypothetical brane configuration that would provide the gauge and flavor groups describing the
gauge theory at the dual energy scale.

It is important to remember that in the holographic formulae (3.4.1) b is defined modulo 1, and
when b dynamically crosses an integer value a gauge coupling diverges and we go to a Seiberg dual
description in the field theory. At any given energy scale in the cascading gauge theory, there are
infinitely many Seiberg dual descriptions of the field theory, because Seiberg duality is exact along
the RG flow [55]. Among these different pictures, there is a single description that we can really
make sense of within our perturbative intuition, having positive squared gauge couplings: it is the
one where b has been redefined, by means of a large gauge transformation, so that b € [0, 1] (see
subsection 6.6.2). This is the description that we will use when we effectively engineer the field
theory in terms of branes in some range of the RG flow that lies between two adjacent Seiberg
dualities.

In field theory, as before, we start with gauge group SU(r1) x SU(r2) and Ny, flavors for SU(r1),
Nyo flavors for SU(r2), with 71 > ro. The gauge group SU(r1) flows toward strong coupling, and
when its gauge coupling diverges we turn to a Seiberg dual description. After the Seiberg duality
on the larger gauge group, we get SU(2ro — r1 + Ngi) x SU(rz), and the flavor groups are left
untouched.

The effective D5 and D3 brane charges of a brane configuration that engineers this field theory
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before the duality are:

b—1 b
Meff:T'1 _T2+7Nf1—|-7Nf2,
? 2 (6.6.17)
4(1-0b)2 -1 4b% — 1
Negp =bri+(1=b)ra + Ny + Nys .
16 16
After the duality they become:
b—1 b N
Méff:—r2+T1—Nf1+7Nf2+§ f1 :Meff_?f7
41 -0 -1 4 — 1
/ - J—
Neff—b’l”2+(].—b)(2T2_T1+Nf1)+TNf2+ 16 Nf1 = (6618)
Ny
= Nesf — Meyy + 1

They ezactly reproduce the SUGRA behavior (6.6.4)-(6.6.6). Notice that the matching of the
cascade between supergravity and field theory is there, irrespective of how we distribute the flavors
between the two gauge groups; so, from the three charges and the cascade we are not able to
determine how the flavors are distributed, but only their total number. Notice also that the fact
that M. sy shifts by Nr/2 instead of Ny confirms that the flavored version of the Klebanov-Strassler
theory we are describing has nonchiral flavors (with a quartic superpotential) rather than chiral
flavors (with a cubic superpotential) like in [95], where the shift goes with units of Ny.

6.6.2 Page charges and Seiberg duality as a large gauge transformation

Even though the effective brane charges (Maxwell charges) computed in supergravity in the previous
subsection run and take integer values only at some values of the holographic coordinate, the ranks
of gauge and flavor groups computed from them are constant and integer (for suitable choice of the
integration constants) in the whole range of radial coordinate dual to the energy range where we
use a specific field theory description. This range of scales corresponds to b € [k, k+ 1] (with integer
k) in the gravity dual. We can compute ranks of the groups at any energy scale inside each of these
ranges. At the boundaries of each energy range, in field theory we perform a Seiberg duality and
move to a new sensible description with real gauge couplings. In particular, if ranks were integer
before the duality, they still are after it. On the dual supergravity side, using the dictionary (6.6.15)
between ranks and Maxwell charges (via b) we can compute ranks at any energy and see that ranks
remain constant in each energy range where we use a specific field theory description, because the
extra running of Maxwell charges is compensated by b; furthermore, when we change description
in the field theory, the ranks we extract from the supergravity solution change by integers, exactly
matching the field theory description, so that relations (6.6.15) between Maxwell charges and ranks
via b still hold.

Although correct, the previous procedure is quite cumbersome. In this subsection, we provide
a different prescription which directly give ranks of color and flavor groups in terms of quantized
charges of the background.

In view of that, let us try to understand better what happens on the dual gravity side at the
threshold where b crosses an integer value, say 0.'3 The auxiliary system of D branes that we

13As we will stress momentarily, this can always be achieved by a large gauge transformation.
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used to compute the charges before crossing the threshold is no longer BPS, because some of the
constituents become tensionless at the threshold and then develop negative charges. At this point,
new minimal BPS auxiliary branes need to be considered in order to engineer the system [38]. They
are different with respect to those previously considered because they have different worldvolume
fluxes when they are compared at the same background value of b. However, they look the same if
we insist to remain in a gauge where b € [0,1]. We can achieve this by performing a large gauge
transformation, as we discuss below. For instance, the fractional D3 brane that is associated to
the larger gauge group still looks as a wrapped D5 brane with no flux of the (gauge noninvariant)
worldvolume field strength F5 in this ‘preferred’ gauge. But in the previous range, it would have
had one unit of worldvolume flux, therefore one unit more of gauge invariant D3 brane charge. We
would have called it more naturally a bound state of a regular D3 brane and a D5 brane.

Notice that there is nothing so strange in this. The situation is somehow analogous to monopoles
and dyons in A/ = 2 gauge theories: it does not make sense to say that some object is a monopole
instead of a dyon, because this statement depends on the duality frame one may choose, and different
duality frames are equivalent; it is sensible instead to compare two objects, and seeing whether the
charges of the two objects are different or not. In our situation, for our convenience we prefer to
change ‘frame’ by means of a large gauge transformation each time a threshold is crossed, so that
we still call ‘wrapped D5’ and ‘wrapped anti-D5 brane with minus one unit of (gauge noninvariant)
worldvolume flux” the minimal BPS objects. But when we compare the ‘wrapped D5’ above the
threshold with the ‘wrapped D5’ below the threshold, we see that their gauge invariant fluxes are
different, therefore the two objects are different.

At the threshold (the scale where we must perform a Seiberg duality in order to remain in a
sensible field theory description), Maxwell charges are continuous. Consistency therefore requires
that the rearrangement of the auxiliary brane system does not induce a discontinuity in the gauge
invariant charges of the system. This is exactly what happens: remarkably, this rearrangement
ensures continuity of the gauge couplings and exactly mimics the effect of Seiberg duality on the
ranks of the groups. We will delve into this subtle point in the last chapters of this thesis.

For a given value of the holographic coordinate 7, we choose a gauge where b(7) € [0,1].
Therefore we can use the approximate holographic formulae (3.4.1) forgetting the ‘mod’. When we
hit the value 7; for which b(7;) = 0, we have seen that there is a rearrangement in the auxiliary
brane system, which mimics Seiberg duality and ensures continuity of the gauge coupling. The fact
that the gauge theory is self-similar along the cascade after a single Seiberg duality translates in
the fact that the new BPS and minimal objects look always the same if we insist in remaining in
the preferred ‘frame’ such that b(r) € [0,1]. This can be always achieved by performing a large
gauge transformation whenever we hit a threshold. The integral of the NSNS By potential is not
a gauge invariant quantity and can be changed under a large gauge transformation. Indeed, if we
denote by wS'" the following two-cocycle:

1
wQCF = —§(g1 ANG*+ g A g4) , (6.6.19)

we can perform a large gauge transformation which changes Bs as follows:
By — By + ABy ABy = wo/ W§T . (6.6.20)

As wQC Fis closed, the field strength Hs3 does not change and our transformation is a gauge trans-
formation. The RR field strengths Fi, F3 and Fj are gauge invariant under this transformation.
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Being wQC F not exact, it is a large gauge transformation. Therefore, the flux of By does change as:

/ By — | By +4n?d (6.6.21)
52 S2

or equivalently b — b+ 1.

Since RR field strengths F’s are invariant under gauge transformations, we see that the com-
bination F3 + By A F7 that enters the definition of the D5 brane Page charge changes as follows
under (6.6.20):

N
Tf o ST (6.6.22)

N
A(F3+ By ANF1) =ABy N Fy :Wa/ng/\ 4—f§:
T
For the holographic computation of U(1)r anomalies, we will need Cy + CyBs. Locally, we can
write F3 + By A Fy = d(C2 + CyBs), but the quantity inside parentheses is not globally defined.
Comparing with the variation (6.6.22), we get

N
A(Cy + CyBs) = ?f o [(@ZJ — b, (sin By dby A dpy — sin by dfs A dips) + cos b1 cos B2 dpy A dg@g] ,
(6.6.23)

where 9, is a constant. In the study of the R-symmetry anomaly of the next subsection we
will actually need the change of the restriction of Cs + CyBs to the submanifold 6; = 65 = 0,
@1 = 27 — 3 = . Denoting by (Cy 4+ CyB2)¢!f the pullback of Cy + CyBs to this submanifold,
we get from (6.6.23) that:

N
A(Cy + CoBy) T = Tf o (1 —1b,) sin@df A dep . (6.6.24)

Let us now study how Page charges change under these large gauge transformations. From the
expressions written in (6.2.27), we obtain:

1
AQp¥ =——— [ ABy AR
An 1 . (6.6.25)
AQggge:—W/ (ABQ/\F3+AB2/\BQ/\F1+§AB2/\ABQ/\F1> .
Ms

Plugging in (6.6.25) our ansatz for F3 and Bs (6.2.10), together with the expression of ABy given
in (6.6.20) as well as the relations (6.2.28) and (6.2.32), one readily gets:

Ny

2
(6.6.26)
Page Nf
AQpy” = —-M - 4

AQpy" =

Recall that for our solutions QHi° = M (6.2.31) and Qh¥° = Ny (6.2.35), in the gauge we
have chosen initially. Formula (6.6.26) gives how these constants change under a large gauge
transformation. At a given holographic scale 7 we should perform as many large transformations
as needed to have b € [0, 1]. Suppose that we start at some radius/energy scale in the preferred gauge
frame in which b € [0, 1]. Flowing toward the infrared, at some point b will become negative (a gauge
coupling becomes imaginary): at that point, we have to perform the large gauge transformation
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that we have considered (a Seiberg duality in field theory) so as to go back to the preferred gauge.
Accordingly, Page charges change as in (6.6.26).

We can get an explicit expression of Qpage and Qpage in terms of the ranks r; and r, and the
number of flavors Ny and Nys. In order to verify this fact, let us suppose that we are in a region
of the holographic coordinate such that the two functions f and k of our ansatz are equal. Notice
that for the flavored KS solution this happens in the UV, while for the flavored KT this condition
holds for all values of the radial coordinate. If f = k the normalized flux b in (6.6.2) can be written
as:

b(t) = % f(r). (6.6.27)

Using this expression we can write the D5 brane Page charge (6.2.30) as
N
Page — M,;; — —f b. (6.6.28)
Notice also that the supergravity expression (6.2.18) of M.¢; can be written when f = k as:

N
Mgy = M + 7f b. (6.6.29)

Let us next assume that we have chosen our gauge such that, at the given holographic scale,
b € [0,1]. In that case we can use the value of M,ss obtained by the field theory calculation of

subsection 6.6.1 to evaluate the Page charge QP 9¢. Actually, by plugging the value of M,fs given

in (6.6.15) on the right-hand side of (6.6.28) we readily get the following relation between QPa’ge
and the field theory data:
Page __ Nfl

D5 —Ti—Ts— 5 (6.6.30)

Similarly, for f = k, one can express the D3 brane Page charge (6.2.34) as:

2

b
Qb9 = Njp — bM — TR (6.6.31)

which, after using the relation (6.6.29), can be written in terms of M.y as:

Ny
QPage = Nojp —bMess + : 2 (6.6.32)
Again, if we assume that b € [0, 1] and use the field theory expressions (6.6.16) and (6.6.15) of Ns¢
and Mcsr, we get:
3Nj — Ny
Ts + 16 .

Notice that, as it should, the expressions (6.6.30) and (6.6.33) of Q52 and QF29° that we have
just found are independent of b, as far as b € [0, 1].

To make things simpler, a much more practical way of relating Page charges of the background in
the preferred gauge to ranks in the dual gauge theory consists in assigning to the auxiliary branes
that would engineer the gauge theory charges which change under large gauge transformations,
and that can be obtained by taking the brane source charges of the previous subsection and setting
b = 0. With this shortcut, we find directly (6.6.30) and (6.6.33). Such total source charges of the

Qrase = (6.6.33)
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auxiliary brane system is mapped into the Page charges of the background in the preferred frame.
One can straightforwardly verify that under a field theory Seiberg duality the right-hand sides of
(6.6.30) and (6.6.33) transform as the left-hand sides do under a large gauge transformation (6.6.20)
of supergravity.

Finally, let us remark that in this approach we follow the RG flow pointwise not only as far as
gauge couplings are concerned, but also as ranks are concerned. Seiberg duality is performed at
a fixed energy scale where a gauge coupling diverges (b becomes integer); M.ss and Ny are left
invariant (recall that Maxwell charges are gauge invariant), or better they keep changing contin-
uously. From formulae (6.6.30) and (6.6.33) it is clear instead that Page charges provide a clean
way to extract ranks and number of flavors of the corresponding good field theory (the one with
real gauge couplings) dual at a given energy scale. The ranks of this good field theory description
change as step-like functions along the RG flow, due to the fact that b varies continuously and
needs to suffer a large gauge transformation every time that, flowing toward the IR, it reaches the
value b = 0 in the good gauge. This large gauge transformation changes Qggge and Qggge in the
way described above, which realizes in supergravity the change of the ranks under a Seiberg duality
in field theory.

Let us now focus on a different way of matching the behavior of the field theory and our
solutions.

6.6.3 R-symmetry anomalies and (-functions

We can compute the g-functions (up to the energy-radius relation) and the R-symmetry anomalies
for the two gauge groups both in supergravity and in field theory in the spirit of [66,88,116]. In
the UV, where the cascade takes place, they nicely match. For the comparison we make use of the
following holographic formulae, which can be derived in the N' = 2 orbifold case by looking at the
Lagrangian of the low energy field theory living on probe (fractional) D3 branes:'*

812  8x?
lz % =2me ®
g; 9s
2 2 -

87;_87226[1/ By — 2]
9 g2 T Lo Jge (6.6.34)

0, + 0, =27 Cy

1
0, — 0, = — (CQ + COBQ) —27Cy .
yixes S2

We have written the holographic relations directly in the preferred gauge where b = ﬁ f g2 B2 €
[0, 1], that we reach by performing large gauge transformations.

We have adapted the indices in (6.6.34) to the previous convention for the gauge group with
the larger (the smaller) rank. Let us restrict our attention to an energy range, between two
subsequent Seiberg dualities, where a specific field theory description in terms of fixed ranks holds.
In this energy range the gauge coupling g; of the gauge group with larger rank flows toward strong
coupling, while the gauge coupling gs of the gauge group with smaller rank flows toward weak

M These formulas provide a very good approximation when the quartic (dimensionless) couplings are almost con-
stant. This is what occurs in the Klebanov-Strassler cascade, and we will assume it occurs for our solutions as
well.
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coupling. Indeed, as formulae (6.6.34) confirm, the coupling g; was not touched by the previous
Seiberg duality, starts different from zero and flows to infinity at the end of this range, where a
Seiberg duality on its gauge group is needed. The coupling gs; of the gauge group with smaller
rank is the one which starts very large (actually divergent) after the previous Seiberg duality on
its gauge group, and then flows toward weak coupling.

In supergravity, due to the presence of magnetic sources for Fj, we cannot globally define a
potential Cy.'> Therefore we project our fluxes on the submanifold S?: 6, = 6y = 0, ¢1 = 27—y =
©, V1, T before integrating them. Recalling that locally we can write F3 + Ba A Fy = d(Cy+ CyB3),
what we get from (6.2.9)-(6.2.10) (in the UV limit) are the effective potentials

N
Cgff = 47; (¢ - ¢0*)

M Ny

(6.6.35)
(Cy + CoBo)*/ = —/ < + n) (Y — 1)) sin@df Adep .

2 4

The integer n in (Cy + CyB2)¢!f arises from n inverse large gauge transformations (6.6.20) on Bs,
that are needed to shift b(7) € [n,n + 1] by n units, so that the gauge transformed b(7) = b(t) —n
lies between 0 and 1.

The field theory possesses an anomalous R-symmetry which assigns charge % to all chiral super-
fields.!6 The field theory R-anomalies are easily computed. Continuing to use r; (r4) for the larger
(smaller) group rank and Ny (Ngs) for the corresponding flavors (see Figure 6.1), the anomalies
under a U(1)pg rotation of parameter ¢ are:

0c0; = [2(—r; +1r5) + Nfl] €

Field theory:
Y 5595 = [2(7‘[ — T‘s) -+ Nfs] €.

(6.6.36)

Along the cascade of Seiberg dualities, the coefficients of the anomalies for the two gauge groups
change when we change the effective description; what does not change is the unbroken subgroup
of the R-symmetry group. Because we want to match them with the supergravity computations,
it will be convenient to rewrite the field theory anomalies in the following form:

55(95 + 95) = Nf€

Field th :
ield theory 0c(0 — 0s) = [=4(ry —7s) + N — Nysle .

(6.6.37)

An infinitesimal U(1)g rotation parameterized by ¢ in field theory corresponds to a shift ) —
1 + 2¢ in the geometry. Therefore, making use of (6.6.35), we find on the supergravity side:

0c(0; 4+ 0s) = Nye

SUGRA:
52(6, — 0,) = —[AM + (2n + 1)N/] e .

(6.6.38)

These formulae exactly agree with those computed in the field theory. In order to see that this
agreement holds not only for the sum but also for the difference of the theta angles, we have to
translate M into a linear combination of ranks in the dual gauge theory. In the preferred gauge we

15To be precise, since we have smeared the magnetic D7 brane sources, we cannot even define it locally.
16 Although the R-charges of the chiral superfields are half-integer, an R-rotation of parameter € = 27 coincides with
a baryonic rotation of parameter o = 7. It follows that U(1)r x U(1)p is parameterized by ¢ € [0, 27|, a € [0, 27].
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are working, the D5 brane Page charge, which is related to the ranks of the field theory by (6.6.30),
is

N
Page — M +n-L . (6.6.39)

Again, the second term arises because of the —n large gauge transformations (6.6.20) necessary to
move to the preferred gauge where (6.6.34) hold. If we trade M for the ranks, using (6.6.39) and
(6.6.30), we see that in the right-hand side of (6.6.38) —[4M + (2n+1)Nyf| = —4(r;—75)+ Ng — Ny
precisely gives the same result of the field theory computation in (6.6.37).

It is very easy to check also that these anomalies change under a Seiberg duality (large gauge
transformations) in the way predicted by the field theory. This should be obvious by now, because
we have already seen that the variation of Page charges under a large gauge transformation agrees
with the variation of ranks under Seiberg duality.

The dictionary (6.6.34) allows us also to compute the S-functions of the two gauge couplings
and check further the picture of the duality cascade.

Since we will be concerned in the cascade, we will make use of the flavored Klebanov-Tseytlin
solution of section 6.4, to which the flavored Klebanov-Strassler solution of section 6.3 reduces in
the UV limit.

We shall keep in mind that, at a fixed value of the radial coordinate, we want to shift b =
ﬁ J g2 B2 by means of a large gauge transformation in supergravity in such a way that its gauge
transformed b = b — [b] = b — n!7 belongs to [0, 1]: in doing so, we are guaranteed to be using the
good description in terms of a field theory with positive squared gauge couplings.

Recall that

= (=P) (6.6.40)
oM (T
b= i <p - 1) , (6.6.41)

and the dictionary (6.6.34), that we rewrite in our preferred gauge as:

8n? _ 8m?  8m?
=+ = 2me® (6.6.42)
9y 9] gs
82 _ 8r?  8n? -
= T 9 ?(2b—1). (6.6.43)
2 2 2
g9- ] s
Then we can compute the following ‘radial’ g-functions from the gravity dual
d 8m?
BSFP) — ﬂ& = (6.6.44)
o2 P 9y
2
() — glo) — 481 6.6.45
ﬁ— — Ig% — dp gg ) ( e )

'"n(p) here should be thought as a step function of the radial coordinate.
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and we would like to match these with the field theory computations.
Using the expressions (6.6.42)-(6.6.43), we can conclude that

N
o =3t (6.6.46)

N
3 — 3<2f + Q) , (6.6.47)
where Q N¢[b(p)]+2M = Nyn(p) +2M is a quantity which undergoes a change @ — Q — Ny as
b(p) — b(p’) = b(p) — 1 (one Seiberg duality step along the cascade toward the IR), or equivalently

n(p) — n( Y =n(p) — 1. Notice that we can rewrite these two ‘radial’ S-functions as
3
ﬁ(ﬂ) - _° Nf

(6.6.48)

3
5(/3 5 [4M + (2n+1)Ny] = —5 [—4(r; —7rs) + Npy — Ny

which, up to an overall factor of —3/2, are the same quantities appearing in the R-anomalies in
(6.6.38).
The field theory computations of the G-functions give:

Pi = PBsaz =311 — 2rs(1 —va) — Np(1 —v9) (6.6.49)
9
/68 ﬂSwQ - 3TS - 27"[(1 - /YA) Nfs(]- - r)/q) ) (6650)

Qs

with the usual conventions. Hence

B =B+ Bs = (ri+7s)(1+274) — Ny(1 =) (6.6.51)
B-=01—PBs=(5—2va)(r1 —7s) + (Nys — Ny )(1 —74) - (6.6.52)

In order to match the above quantities with the gravity computations (6.6.46)-(6.6.47), an energy-
radius relation is required. This is something we lack here. Although it is not really needed to
extract from our supergravity solutions the qualitative information on the running of the gauge
couplings, we are going initially to make an assumption, which can be viewed as an instructive
simplification. Let us assume that the radius-energy relation is p = log ﬁ, where Eyyv is the
scale of the UV cutoff dual to the maximal value of the radial coordinate p = 0. Matching 54 and
B— implies y4 = 74 = —%.

Actually, the qualitative picture of the RG flow in the UV can be extracted from our supergravity
solution even without knowing the precise radius-energy relation, but simply recalling that the
radius must be a monotonic function of the energy scale.

It is interesting to notice the following phenomenon: as we flow up in energy and approach
the far UV p — 07 in (6.6.41), a large number of Seiberg dualities is needed to keep b varying
in the interval [0,1]. The Seiberg dualities pile up the more we approach the UV cut-off Eyy.
Meanwhile, formula (6.6.47) reveals that, when going toward the UV cutoff Eyy, the ‘slope’ in the
plots of g% versus the energy scale becomes larger and larger, and (6.6.46) reveals that the sum

of the inverse squared gauge coupling goes to zero at this UV cutoff. At the energy scale Eyy
the effective number of degrees of freedom needed for a sensible field theory description becomes
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Figure 6.3: Qualitative plot of the running gauge couplings as functions of the logarithm of the
energy scale in our cascading gauge theory. The blue lines are the inverse squared gauge couplings,
while the red line is their sum.

infinite. Since p = 0 is at finite proper radial distance from any point placed in the interior p < 0,
Eyy is a finite energy scale.

The picture which stems from our flavored Klebanov-Tseytlin/Strassler solution is that Epy
is a so-called “Duality Wall”, namely an accumulation point of energy scales at which Seiberg
dualities are required in order to have a sensible gauge theory description [111]. Above the duality
wall, Seiberg duality does not proceed, see figure 6.3. If a UV completion exists, it is not field
theoretical. However, it could be defined holographically if a string theory solution for the D3-D7
brane system which can be extended globally is found.

Duality walls have been studied in the context of quiver gauge theories first in [117] and later
in [118,119]. That analysis of this phenomenon was in the framework of quiver gauge theories with
only bifundamental chiral superfields, and was restricted to the field theory. In [119] a gravity dual
was constructed, but it did not described a field theory with a duality wall.

To our knowledge, our solutions are the first explicit realizations of this exotic ultraviolet phe-
nomenon on the supergravity side of the gauge/gravity correspondence.

We remark that our flavored Klebanov-Strassler flow not only displays a duality wall in the
ultraviolet, but also a Landau pole for g, at the same energy scale. These are two possibly
independent phenomena. A duality wall can exist independently of the fate of the coupling g
related to the dilaton. Examples of field theories where a duality wall is expected, but the positive
linear combination of inverse squared gauge coupling dual related to the dilaton stays constant
were studied in [118].
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6.7 A comment on the partition of flavors and the IR

So far, we have seen that from the three brane charges that we measure and the cascade pattern
that we have analyzed, we cannot conclude anything about the partition of the total numbers Ny
into Ny and Ny, flavors for one or the other color group respectively. We have mentioned the
difference between the two kinds of D7 branes that provide flavors for one group or the other: they
lie on the same embedding, which has C2/Zs topology, but they carry either zero or minus one unit
of flux of the flat worldvolume gauge field on the exceptional two-cycle of the embedding, sitting at
the conifold singularity. Kuperstein’s D7 branes are then fractional branes, in the sense that they
unavoidably wrap the exceptional two-cycle.

The remnant of this flux stuck at the singularity is a Wilson line of the gauge field at infinity,
along the noncontractible cycle of the embedding [113,120]. For toric Calabi-Yau cones, to any
holomorphic D7 brane embedding along a noncompact (toric) divisor is associated a 3-cycle, the
radial section of the divisor, over which a D3 brane can be wrapped supersymmetrically. Wrapped
D3 branes are dual to dibaryonic operator in the conformal theory, and there exist as many baryonic
U(1)’s as 3-cycles in the Sasaki-Einstein base. This correspondence ensures that flavor fields from
D3-D7 strings are coupled to the bifundamental field (elementary or composite) which is the building
block of the dibaryon related to the 3-cycle. For toric CY cones, these 3-cycles are generically Lens
spaces with S®/Z,, topology, having fundamental group 71(S%/Zy,) = Zy,. This means that there
exist m possible values that the Wilson line of the gauge field living on the D brane worldvolume
can acquire.

In the case of Kuperstein’s embedding, the divisor is algebraically C2/Zs, whose base is S3/Zs.
Consequently, the holonomy at infinity of the D7 brane gauge field is e $eA = £1. If the D7 brane
has an odd number of units of flux of the gauge field strength through the exceptional 2-cycle, then
the Wilson line along the noncontractible 1-cycle is —1, otherwise it is 1.

Let us come back to our solutions, and let us start by considering the one on the singular
conifold (section 6.4). As we have explained, in this case the two-cycle supporting the gauge field
flux on the D7 branes is at the conifold singularity, that we cannot access in our analysis of charges.
The gauge field on the flavor branes is flat outside the singularity, for both kinds of fractional D7
branes. Therefore our supergravity background (color dynamics) should be valid for any partition
of the Ny flavor branes into branes with trivial and nontrivial Wilson line. What will change,
depending on the number of D7 branes of one or the other kind, is the dynamics of flavor fields.

Things are different when the manifold is the deformed conifold, as in section 6.3. The effect of
the deformation is to give support to a 3-cycle at 7 = 0. Correspondingly, the (formerly exceptional)
2-cycle the D7 branes were wrapping develops a nonvanishiggiize even at 7 = 0: the embedding
of the D7 branes has now the topology of the blown up C2/Z,. Having the singularity on the
embedding disappeared, we are able to distinguish the two kinds of flavor branes. Indeed, the
D7 brane configuration with a nonvanishing Wilson line at infinity must now have a nonvanishing
worldvolume gauge flux along the 2-cycle at any value of 7, because the gauge field is not flat
anymore, but only approaches the flat configuration asymptotically. On the contrary, the D7 brane
which was lacking worldvolume flux on the exceptional 2-cycle still has vanishing flux on the blown
up 2-cycle for any value of 7, since in that case F» = 0 everywhere. Since in our solution we did not
put any worldvolume gauge flux, we are forced to conclude that our solution describes the gauge
theory with flavors coupled to a single gauge group. The fact that the flavored warped deformed
conifold solution we have presented has vanishing D3 brane charge in the IR indicates that a single
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Figure 6.4: Ultraviolet RG flows of KW (top left), KT /KS (top right), flavored KW (bottom left),
flavored KT/KS (bottom right) theories.

gauge group survives in the deep IR, after the “last step” of the cascade of Seiberg duality (which
is actually not a Seiberg duality). The analysis of the matter content associated to the different
fractional branes of section 6.6.1 tells us that the flavor fractional brane with trivial Wilson line,
that our solution is accounting, is coupled to the color group which disappears in the IR. Therefore
we conclude that at the very last step of the cascade we end up with a gauge theory without flavors.

Finding the general solution for Kuperstein flavors on the deformed conifold would provide
the dual of a cascading gauge theory reducing in the deep IR to N' = 1 SQCD with a quartic
superpotential, a theory with rich dynamics and of great interest. This requires the addition of a
worldvolume gauge field on some of the D7 branes. We leave this very important problem to future
work.

6.8 Remarks on RG flows of conifold theories

Finally, it is very instructive to compare the different (ultraviolet) RG flows of the KW solution,
KT solution, flavored KW solution and flavored KT (or KS) solution, which are summarized in fig.
6.4. In view of this comparison, we collected the derivation of these solutions by supersymmetry
methods in appendices C.1-C.4. The derivation highlights the similarities and differences between
these four solutions, which are mirrored in the RG flow analysis.

Adding fractional D3 branes to the conformal KW solution induces the difference of the inverse
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squared gauge coupling to run and creates an infinite Seiberg duality cascade (b — oo when 7
approaches its maximal value oo). The KT solution is obtained by adding (2,1) primitive ISD
closed 3-fluxes G to the KW solution. Adding flavor D7 branes to the conformal KW solution
induces the sum of the inverse squared gauge coupling to run, and creates a Landau pole at a finite
UV energy scale. This flavored KW solution is obtained by adding a supersymmetric (1,0) dr to
the KW solution. Pictorially, the flavored KW RG flow can be obtained from the trivial KW one
by pinching the point at infinity and pulling it to a finite value.

The flavored KT /KS solution can be obtained by adding supersymmetric (2, 1) primitive ISD 3-
fluxes G3 to the flavored KW solution, but also adding a supersymmetric (1,0) d7 to the unflavored
KT/KS solution. In the first case, because of the running 5-flux [ F5, an RG flow for g_ is induced
on top of the running which drives g4 to a Landau pole in the UV. In the second case, because of
the running of the dilaton caused by D7 branes, an RG flow for g4 which drives it to a Landau pole
in the UV is induced on top of the flow of g_ leading to the cascade of Seiberg dualities. The inverse
unflavored limits have been discussed in this chapter for the flavored KT /KS solutions and in the
previous one for the flavored KW solution: it involves sending the Landau pole scale to infinity. We
stress that the Landau pole scale (the scale where the dilaton diverges) and the duality wall scale
(the scale where b diverges) are the same in the flavored KT /KS solution. Again, pictorially the
flavored KT/KS RG flow can be obtained from the KT /KS one by pinching the point at infinity
(where b diverges) and pulling to a finite value.
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Chapter 7

Fractional branes interplay in
cascading theories

In this chapter, we provide the gravity dual describing the UV regime (and in some cases also the
IR regime) of cascading gauge theories realized by a general configuration of fractional D3 branes
on a Zso orbifold of the conifold. Several matchings and predictions for the cascade of the dual
gauge theories are easily extracted by means of an algorithm that we develop. We find hints of a
generalization of the familiar cascade of Seiberg dualities due to a nontrivial interplay between the
different types of fractional branes.

This chapter is based on [3], written in collaboration with Riccardo Argurio, Francesco Benini,
Matteo Bertolini and Cyril Closset.

7.1 Introduction

The correspondence between gauge theories with nontrivial low-energy dynamics and string theory
backgrounds has an enormous potential. The string theory setup is usually established drawing
uniquely on the holomorphic data of a supersymmetric gauge theory, including a specific choice of
vacuum. Then, solving the classical equations of motion of supergravity one can in principle obtain,
through the warp factor, all the dynamical information on the gauge theory low-energy dynamics,
that would instead usually imply precise knowledge of the Kéahler sector. The limitation of this
procedure to supergravity and not to full string theory corresponds in the gauge theory to taking
some large N and strong 't Hooft coupling limit.

A fruitful arena where to address these issues has proven to be that of D3 branes at Calabi-
Yau (CY) singularities. In this context, the most celebrated example where such a program has
been successfully completed is the warped deformed conifold [37], which describes a theory with
confinement and chiral symmetry breaking.

It is of obvious interest to apply the above program to gauge theories with a varied low-energy
behavior. D3 branes at CY singularities typically give rise to N'= 1 quiver gauge theories, which
are supersymmetric theories characterized by product gauge groups, matter in the bifundamental
representation and a tree level superpotential, all such data being dictated by the structure of
the singularity. Most quiver gauge theories can have several different IR behaviors, depending on
which branch of the moduli space one is sitting on. Already in the simple conifold theory, one has a
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baryonic branch displaying confinement and a mass gap in the gauge sector, and mesonic branches
with a dynamics which is N’ = 4 to a good approximation. In more general quivers, other kinds of
low-energy behaviors are possible. Some quivers will actually have no vacua and display a runaway
behavior [53,121-124], but this leaves little hope of finding a regular gravity dual. Other quivers
will on the other hand contain branches of the moduli space where the dynamics is approximately
the one on the Coulomb branch of an N' = 2 theory. The latter can also be thought of as mesonic
branches, albeit of complex dimension one instead of three as in the (generic) N' = 4 case.

As has been shown in [125,126], theories with both baryonic and N' = 2 mesonic branches
can be very interesting because they are likely to possess, besides the supersymmetric vacua, also
metastable supersymmetry breaking vacua. The latter arise precisely because there is a tension
between the conditions for realizing baryonic or mesonic vacua among the various nodes of the
quiver. On the gravity/string side, the metastable vacua are associated to the presence of anti-
D3 branes. They are only metastable because they can decay through an instanton that shifts
the flux in such a way that their charge is cancelled. Of course, a full gravity solution of such a
supersymmetry breaking vacuum would be a wonderful arena for studying quantitatively the low
energy dynamics of such theories.

In this chapter, we take a first step towards this goal. We construct the gravity dual of the
most generic gauge theory one can engineer using D3 branes at the tip of a Zj nonchiral orbifold
of the conifold [100], focusing for simplicity, but with little loss of generality, on the case k = 2.
This singularity admits different kinds of fractional branes, triggering confinement or enjoying an
N = 2 mesonic branch and known as deformation or N' = 2 fractional branes, respectively. We aim
at describing the backreaction of the most general D3 brane bound state. The difficulty in doing
so stems from the fact that the UV completion which corresponds to the supergravity solution
is qualitatively different in the two cases. For deformation branes, the common lore is that the
renormalization group (RG) flow is described in terms of a cascade of Seiberg dualities which
increases the overall rank of the quiver nodes towards the UV. For N/ = 2 branes, the RG flow
(which is indeed present and also increases the ranks towards the UV [38,39]) seems to be better
represented by some form of Higgsing [64]. We will study this phenomenon in detail in the last
chapter of this thesis.

It should be clear that whenever there are N/ = 2 branes around the IR of the gravity dual is
bound to contain some singularity. This is because their open string degrees of freedom cannot
completely transmute into flux. Indeed, on the Coulomb branch we still have by definition some
surviving abelian gauge group, which cannot be described in terms of closed string degrees of
freedom. This situation is similar to the situation where one aims at describing theories with
flavors. There too, flavor degrees of freedom must be described by open strings, and hence flavor
branes must be present in the gravity dual as physical sources [79], as we have seen in the previous
chapters. Thus in our set up we expect to have physical sources corresponding to A/ = 2 fractional
branes. The main difference with respect to the case of flavor branes is that NV = 2 fractional
branes are not infinitely extended but rather localized in the Calabi-Yau.

The main results of our analysis can be summarized as follows. We find an explicit analytical
supergravity solution corresponding to the UV regime of a generic distribution of fractional branes,
both of the deformation and N' = 2 kind, on the orbifolded conifold. It describes holographically an
RG flow which exactly matches the beta functions that one can compute in the dual field theory and
the expected reduction of degrees of freedom towards the IR, which occurs through a cascade. We
develop an algorithm to follow the RG flow of each gauge coupling from the supergravity solution.
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Figure 7.1: The quiver diagram of the gauge theory, for the most generic choice of ranks. For later purposes
we have parameterized the four independent ranks in terms of a common N.

An interesting feature is that in this general setting there are cascade steps that do not always
have a simple interpretation in terms of Seiberg dualities. This is due to the presence of N' = 2
fractional branes, or more generally to the presence of twisted fluxes. Nevertheless, supergravity
considerations and field theory expectations (based on the nonholomorphic beta function) exactly
match.

As far as the IR regime of the gauge theory is concerned, in [3] we also performed a nontrivial
consistency check matching the field theory effective superpotential with that predicted from the
geometric background. We also provided the solution for the 3-form fluxes and discussed the pattern
of singularities resolution, which depends on the number and the species of fractional branes placed
at the singularity, while we only set the stage for computing the exact warp factor. The discussion
of the IR regime has its own interest, especially in view of the proposed existence of metastable
supersymmetry breaking vacua obtained by adding anti-branes to the supersymmetric background,
but has not been included here.

This chapter is structured as follows. In section 7.2 we explain our setup and introduce the
minimal geometrical data that is needed in the following. In section 7.3 we present the supergravity
solution which is expected to reproduce the UV behavior of our quiver gauge theory. We take the CY
base to be the orbifold of the singular conifold, but we take into account all the fluxes sourced by the
fractional branes and compute their backreaction on the warp factor. We then check that the result
is indeed compatible with the expected RG flow and perform a number of nontrivial gauge/gravity
duality checks and predictions. We briefly summarize our results in a final section. We have added
appendix D, containing many technical data which might help in better understanding the form of
the supergravity ansatz that we solve in the main text and the geometric structure of the orbifolded
conifold CY singularity we consider.

7.2 The orbifolded conifold

We consider in what follows an orbifolded avatar of the familiar conifold quiver. We focus on a
nonchiral Zs orbifold of the conifold and consider the corresponding N' = 1 supersymmetric quiver
gauge theory obtained by placing a bound state of regular and fractional D3 branes at its tip. This
theory has been analyzed at great length in [125], to which we refer for more details.

The quiver gauge theory is shown in Figure 7.1. The gauge theory has four gauge factors and
a tree level superpotential for the bifundamental fields

W = h(X12X21 X14 X411 — X203 X32X01 X192 + X34 X43X30 X093 — X41 X14X43X34) (7.2.1)
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where X;; is a chiral superfield in the fundamental representation of the i-th gauge group and
antifundamental representation of the j-th gauge group, and traces on the gauge degrees of freedom
are understood.

We are interested in the dynamics of the gauge theory with the most generic rank assignment,
as in Figure 7.1. Depending on the values of the M;’s, various kinds of IR dynamics can occur:
confinement, runaway behavior or a (locally N' = 2) quantum moduli space.

There is a relation between the ranks of the various gauge groups in the quiver and the number
of fractional branes wrapping the different 2-cycles in the geometry. In turn, the fractional branes
source the RR 3-form flux which is an important ingredient in order to determine the supergravity
solution. In the following of this section we provide the link between these three sets of data (ranks,
branes wrapping cycles, fluxes). For a more detailed discussion we refer to appendix D.

7.2.1 Regular and fractional branes

The superconformal theory (N # 0, M; = 0) can be engineered by placing N regular D3 branes at
the tip of the cone. Unbalanced ranks in the quiver of Figure 7.1 correspond instead to the presence
of fractional D3 branes and the corresponding breaking of conformal invariance. From the gauge
theory viewpoint, fractional branes correspond to independent anomaly free rank assignments in
the quiver (modulo the superconformal one). Hence, in the present case, we have three types of
fractional branes to play with.

In general, fractional branes can be classified in terms of the IR dynamics they trigger [122].

A first class of fractional branes are those associated to a single node in the quiver, or to several
decoupled nodes, or else to several contiguous nodes whose corresponding closed loop operator
appears in the tree level superpotential. This subsector of the quiver gauge theory undergoes
confinement. The dual effect in string theory is a geometric transition, which means that the branes
induce a complex structure deformation. Hence the name deformation fractional branes. Examples
of this kind in our theory correspond to rank assignments (1,0,0,0), (1,0,1,0) or (1,1,1,0) and
cyclic permutations.

Another class of fractional branes are those associated to closed loops in the quiver whose cor-
responding operator does not appear in the superpotential. Such a subquiver has a mesonic moduli
space which corresponds to the Coulomb branch of an effective N’ = 2 SYM theory. Hence the
name A = 2 fractional branes. Geometrically, N' = 2 fractional branes are located at nonisolated
codimension four singularities in the CY threefold. Such singularities locally look like C x C2/T
(where I' = Zs in our case), where the C complex line corresponds to the Coulomb branch of the
effective N’ = 2 gauge theory. In the gauge theory a U (1) ! gauge group survives. In this case the
branes cannot undergo a geometric transition, because there exists no local complex deformation
of such a nonisolated singularity. Hence the supergravity dual background is expected to display
some leftover singularity. Rank assignments corresponding to this class of branes in our quiver are
for instance (1, 1,0,0) and cyclic permutations.

Finally, fractional branes of any other class (which is the most generic case, in fact) lead to ADS-
like superpotential and runaway behavior and as such are called DSB (dynamical supersymmetry
breaking) branes. Geometrically, they are associated with geometries where the complex structure
deformation is obstructed, this tension being the geometric counterpart of the runaway. In this
case the occupied nodes have unbalanced ranks.

Obviously, combining different fractional branes of a given class, one can obtain fractional
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branes of another class. Hence one can choose different fractional brane bases to describe the gauge
theory. In our present case, we will be able to choose a basis composed only of deformation and
N = 2 fractional branes. We have just seen to which rank assignments the various branes should
correspond, now we have to review which 2-cycles they are associated to.

7.2.2 Geometry, cycles and quiver ranks

There is a well established relation between quiver configurations, the primitive topologically non-
trivial shrinking 2-cycles of a given CY singularity, and the possible existing fractional D3 branes,
since the latter can be geometrically viewed as D5 branes wrapped on such cycles. Let us review
such relation for our CY singularity (see appendix D for a full analysis).

The conifold is a noncompact CY three-fold described by the following equation in C*: 2129 —
z3z4 = 0. We consider a Zy orbifold of such singularity defined by the symmetry

O : (2’1, Z92,23, 2’4) — (21, 29, —Z3, —2’4) . (7.2.2)
The resulting orbifolded geometry is described by the following equation in C*
(z122)* =2y =0, (7.2.3)

where x = z§ and y = 27. There is a singular locus in this variety which consists of two complex
lines, that we call the p and ¢ lines, respectively. They meet at the tip {z1 = 20 =z =y = 0} and
correspond to the fixed point locus of the orbifold action ©.

One can as well describe the variety as a real manifold. The coordinates we use are defined in
appendix B.1. From this point of view the conifold is a real cone over 7!, which in turn is a U(1)
bundle over S? x S2. The orbifold action (7.2.2) reads in this case

©: (pp2) = (1 —mpatm). (7.2.4)
The two complex lines are defined, in complex and real coordinates respectively, as

p={z1=2=y=0,V20}={01 =0,=0, Vr,¢'}

7.2.5
q:{ZQZIL’:y:O,V,Zl}:{Gl:92:7T,\V/7",1/1/,}, ( )

where ¢ = 1) — @1 — @2 and " = ) + @1 + o are (well defined) angular coordinates along the
singularity lines. In a neighborhood of the singular lines (and outside the tip) the geometry looks
locally like the A;-singularity C x C2?/Zs. The fixed point curve p sits at the north poles of both
5?’s while the curve ¢ sits at the south poles. A sketch of the conifold geometry in these real
coordinates and of the fixed points of © is given in Figure 7.2.

Our CY cone has three vanishing 2-cycles. Two of these three 2-cycles arise due to the orbifold
action. Such exceptional 2-cycles are located all along the C2?/Zs singular lines p and ¢, and we call
them Cs and C4, respectively. The third relevant 2-cycle descends from the 2-cycle of the parent
conifold geometry, whose base Th! is topologically S? x S3. Correspondingly, we will have a basis
consisting of three fractional branes.

In appendix D we construct different fractional brane bases. However, the basis we will favor
here is the one arising most naturally when viewing our singularity as a Zs projection of the conifold,
which as anticipated is given in terms of the two N = 2 2-cycles C and C4 and a deformation 2-
cycle, Cg. This basis of 2-cycles corresponds to a particular resolution of the singularity, which is
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i
=N r

Figure 7.2: The singular conifold in real angular coordinates: it is a real cone in r over T1!, which in turn
is a U(1) fibration in ¢ over the Kihler-Einstein space P! x P! parameterized by 6; and ;. The fixed point
locus of the orbifold action © is given by two lines p and ¢, localized at antipodal points on the two S2’s.
At the tip the spheres shrink and p and ¢ meet.

t2 t3
t1 ta
te ts

Figure 7.3: The (p, q)-web (right) associated to the specific triangulation (which corresponds to a specific
resolution) of the toric diagram of the orbifolded conifold (left).

encoded in the triangulation of the toric diagram (and the associated (p, ¢)-web) reported in Figure
7.3.

We now mention some results derived in appendix D. First, a linear combination of the three
cycles above, Ccr = 2Cg + C2 + C4, has a vanishing intersection with the exceptional 2-cycles
Cy and C4 and it corresponds to the 2-cycle of the double covering conifold geometry. Hence, a
brane wrapping it does not couple to closed string twisted sectors, which are those associated to
exceptional cycles, and it gives rise to the orbifold of the configuration of a fractional brane at
the singular conifold [36]. It thus corresponds to a quiver rank assignment (1,0,1,0). Given the
obvious rank assignments (0,1, 1,0) and (1,1,0,0) for branes wrapped on Co and C4 respectively, it
follows that the rank associated to a D5 brane wrapped on Cg is (0, —1,0,0). We will find it more
convenient to use a D5 brane wrapped on —Cg = C,, corresponding to the quiver (0, 1,0,0).

Eventually, one needs to compute the RR 3-form fluxes sourced by each fractional brane. Our
findings, which are derived in appendix D, are summarized in the Table below:

‘ - fA2 ) - fA4 F; - fACF F3  gauge theory

D5 on Cs 2 0 0 (0,1,1,0)

> 7.2.6
D5 on Cy 0 2 0 (1,1,0,0) (7.2.6)
D5 on Cq 1 1 ~1 (0,1,0,0)
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where fluxes are understood in units of 472a’gs. The 3-cycle Ay corresponds to the product of the
exceptional 2-cycle Cy transverse to the p-line with the S' on p. Similarly, A4 is the product of the
exceptional C; with the S! in the g¢-line. Finally, Acr is the image of the compact 3-cycle of the
double covering conifold under the orbifold projection.

The table above is all we need to translate directly a quiver with generic rank assignment to a
supergravity solution with the corresponding 3-form flux.

7.3 Supergravity background for the UV regime

In this section we present the supergravity solution describing the most general D3 brane system
one can consider on the orbifolded conifold. The solution is expected to be dual to the previously
discussed gauge theory with the most general rank assignment: (N + My, N + My, N + M3, N).!

Fractional branes are magnetic sources for the RR 3-form flux. This typically results in some
singularity of the backreacted supergravity solution. In some cases, namely when there are only
deformation branes around, the singularity is smoothed out by the complex structure deformation
the branes induce. One gets back a singularity-free solution where branes are replaced by fluxes
[37,127]. In more general situations it is more difficult to find a regular solution. As already noticed,
in the case of N' = 2 fractional branes this is in fact not even expected to be possible, because there
should always be some remaining open string modes corresponding to the left over U(1)V~! gauge
degrees of freedom on the Coulomb branch. Hence, (a remnant of) the brane sources remains in
the gravity dual.

This said, in order to take the leading effect of any such kind of fractional brane into account, it
is enough to make an educated ansatz for the supergravity fields and to impose suitable boundary
conditions on the system of differential equations. Therefore, in what follows, we will only consider
the type IIB bulk action Sjrp, see appendix A.2, and implement the effects of each brane source
by properly chosen boundary conditions.

7.3.1 Running fluxes and singularity lines

The general solution we are looking for has constant axio-dilaton 7 = Cj 4 ie~® = 4, but nontrivial
RR and NSNS 3-form fluxes (which are usually organized in a complex 3-form G = F3+ie ?Hy =
F5 4+ iHs), RR 5-form field strength F5 and warp factor. The ansatz reads

dsty = h™'2da3 | + b2 (dr? + r?ds.,)
Fs = (1+%)dh™ ! Advolz, (7.3.1)
Gs =GY +G¥
where the orbifold Zg identification (7.2.2) acting on the internal coordinates is understood, h is
the warp factor, while the superscripts U and T on the 3-form flux stand for untwisted and twisted

sector fluxes, respectively. The above ansatz is the one of a warped singular cone. Any deformation
of the singular geometry will still asymptote to this cone for large values of the radial coordinate,

LOur conventions for type IIB supergravity and D brane actions, together with the equations of motion for the
bulk fields, can be found in appendix A.2-A.2.1. Throughout this chapter, we work in the Einstein frame defined in
(A.2.3), where we rescale the metric by the fluctuating part of the dilaton, and the RR fields by the string coupling.
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and it is in this sense that we will think of the solution as representing (at least) the UV regime of
the dual gauge theory.

Recall that for the solution to be supersymmetric, the closed complex 3-form G3 should be
(2,1), primitive and imaginary-self-dual [87]

Gy =iGs (7.3.2)

where g is constructed with the unwarped metric. We will see that the warp factor depends on the
radial coordinate as well as some of the angular coordinates, as typical for solutions with N/ = 2
branes around [39)].

The equations of motion we have to solve can be worked out from appendix A.2, substituting
® — ¢ and k19 — K in equations (A.2.7-A.2.15). The warp factor equation is given by the Bianchi
identity for F5. The Einstein equations are then automatically satisfied by our ansatz (7.3.1).

It is easy to check that, given all the geometrical data discussed in the previous section, and
taking for simplicity all fractional branes sitting at the tip, the complex 3-form G3 reads?

/

« [ dr 1
G3:—§QS(M1—M2—|—M3) ng_327/\w2CF +

d d
+ 2imad’gs (—My + Ms + Ms) % A wép) + 2ima’ g (M7 + Mo — M3) % A wéq)
2 1
o [ dr 1
= —50s (M1 = My + M) W§F —3i— AnW§T| + (7.3.3)

r

] ]

+ind! gs (= My + My + Ms) (3: +idw’> A w4+
d

+imalgs (My + My — Ms) <3: +z’dw”> Aw?

where wgc F and w2c F are defined in appendix B.1, and wép ) and wéw are the two normalized excep-

tional 2-cocycles defined by the integrals below.
For the present purposes it suffices to recall that

/ WSt = 4r / wép) :/ wéq) =1, and / Ww§t =8n? | (7.3.4)
Ccr Ca Ca Acr

where Acp is the image under the orbifold projection of the 3-sphere on the double covering
conifold. The second equality in (7.3.3) can be easily obtained by using equations. (B.1.5-B.1.8).
It is then easy to check that the RR 3-form fluxes on the A-cycles are

1

- Fs = M; — Ms + M. 7.3.5
iralg, ACF3 1 2+ M3 ( )
1
— Fs = —My + My + M. 7.3.6
1m0l /A2 3 1+ M+ M; ( )
1
—_— Fs =M, + My — My . 7.3.7
inPalg, [, T TR T (7:3.7)

2The vielbein we use for the singular conifold can be found in (B.1.13). Alternatively, one can use (B.1.25).
Appendix B.1 contains a review of the singular conifold geometry.
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It is important to stress at this point that the above equations are really the input (i.e. the
asymptotic conditions) in solving the equations. They are in one-to-one correspondence with a
choice of ranks in the quiver. The real part of G3, that is Fj, is thus essentially determined in this
way. Then the imaginary self-dual condition (7.3.2) fixes also Hs, the imaginary part of G3. The
latter is thus the output of solving the supergravity equations. As we will see in the next subsection,
this is a nontrivial output in the sense that it will contain information about the running of the
gauge couplings. Further dynamical data on the dual gauge theory is contained in the warp factor.

From the ansatz (7.3.1), one sees that the warp factor should satisfy the following equation in
the unwarped internal manifold

xg d xg dh = Ah = — ¢ (Hg A Fg) , (738)

with boundary conditions dictated by the D brane sources. To compute Hs A F3 from (7.3.3) and
to solve for the warp factor h in (7.3.8), the first issue is whether there are mixed terms between
twisted and untwisted sectors in the expansion of such 6-form in the cocycle basis. Let us consider
a closed 2-form wo, that represents the Poincaré dual of an exceptional cycle C in any submanifold
transverse to the singularity line, and ag a smooth 2-form with vanishing flux on the exceptional
cycle. The 4-form wo A ai, which would give mixed terms, vanishes at any point but the singular
one. One can then write wy A ag = C §4 and compute C as

C—/wg/\ag—/ag—o. (7.3.9)
C

This implies that there are no mixed terms between the twisted sector and the untwisted one. Then
the 6-form Hs A F3 is easily computed. From (7.3.3) for the 3-form fluxes, using

4
? A ng A ng = —57dr A dvolpi 1
1
wép) A wép) =12 6@ (1 — cosy,1 — cosbh) sinb diy A dpy Asinbydfy Adpy — (7.3.10)
1
wéq) A wé@ =52 5(2)(1 + cos 01,1 + cosfy) sinfy df; A dpy Asinbydba A des

we get,

1 (1
Hy A Fy =81ag? — {2(M1 — My + M3)2 + (My — My — M;3)2 5@ (1 — cosy, 1 — cos o)+
r
+ (M 4+ My — M3)? 6@ (1 4 cos 01,1 + cos 92)} dr Ar°dvolpiy . (7.3.11)
The equation we have to solve for the warp factor is then

1
Ah=-81 o/zggr(i{(Ml — My + M3)2 + (M — My — ]\43)2 (5(2)(1 —cosfy,1 — cosBy)

+ (M 4 My — M3)? 6@ (1 + cos by, 1 + cos 02)} . (7.3.12)
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Defining the angular function

(2n+1)(2m + 1)

2 iz T A mim 1)

Po(x)Pn(y) , (7.3.13)

where P,(t) are Legendre polynomials, and which satisfies the differential equation
1
Agng f(cosby,cosby) = —5(2)(1 —cosfy,1 —cosby) + 1 (7.3.14)

the solution finally reads (see appendix D of [126] for details)

2

395 r 1
{gsN + 2B (M = My + My)? + (M = M) + M3 (log o )+

b= 27wa’? 1
47

2 it
2

6
+ % [(Ml — My + Mg)2 f(cosbq,cosbs) + (My + My — M3)2 f(=cosfy, — cos 02)} } .

(7.3.15)

The constant terms inside the {...} in eq. (7.3.15) have been fixed in such a way that the effective
D3-charge at r = rg is N. This is a choice for the physical meaning one wants to give to rg, as any
such constant term can be absorbed into a redefinition of rg.

The above solution is not smooth, as the warp factor displays singularities at small . Moreover,
as already anticipated, we expect an enhancon behavior to be at work whenever there are N' = 2
branes in the original bound state. Similarly to [38,39], the enhangon radius can be defined by the
minimal surface below which the effective D3-charge changes sign. The resolution of the singularities
has to do with the IR dynamics of the dual gauge theory. The structure of the vacua, as well as the
phases the gauge theory can enjoy, depend crucially on the classes of fractional branes present and
on the hierarchy of the scales A; associated to each quiver node. Hence, the way the singularity is
dealt with will change accordingly. These issues are discussed in detail in [3]. Here we just want to
stress that no matter the hierarchy between the dynamically generated scales A; and the specific
fractional branes content, the above solution is a good description of the UV regime of the dual
gauge theory. In the following we will then present a number of nontrivial checks of the duality
which apply in this regime.

7.3.2 Checks of the duality: (-functions and Maxwell charges

In this subsection we perform some nontrivial checks of the proposed gauge/gravity duality: we
discuss the computation of gauge coupling g-functions and analyze the RG flow of our solutions
using standard techniques. In the following subsection we adopt the new perspective explained in
the previous chapter, which is based on Page charges and enables us to get stronger predictions
from supergravity.

Typically, given a supergravity background dual to a quiver gauge theory, the knowledge of the
various brane charges at any value of the radial coordinate r allows one, in principle, to extract
the gauge ranks of the dual theory at the scale p holographically dual to r. Furthermore, from the
value of closed string fields, one can learn about parameters and running couplings appearing in
the dual field theory. In theories like IIB supergravity, whose action contains Chern-Simons terms
leading to modified Bianchi identities for the gauge invariant field strengths, different notions of
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charges carried by the same fields may be introduced [108]. Following standard techniques, we will
start using Maxwell charges, which are integrals of gauge invariant RR field strengths.

In order to specify the dictionary between the string and the gauge sides, one needs to un-
derstand the details of the microscopic D brane configuration that realizes the field theory. As
explained in [38] and in the previous chapter, the idea is to match the brane charges of the su-
pergravity solution at some value of r with the charges of an auxiliary system of fractional branes
that, in the presence of the same closed string fields as those of the supergravity solution, engineers
the field theory: in this way one reads the effective theory at the scale p. A complication arises
because the meaningful brane configuration changes along the radial direction: when certain radial
thresholds are crossed the D3-charge of one of the effective constituents of the system changes sign,
and the auxiliary system is no longer BPS. One has then to rearrange the charges into different
BPS constituents. The field theory counterpart is that, when one of the gauge couplings diverges,
one has to resort to a different description.

When the theory admits only deformation fractional branes, the link between different field
theory descriptions is established by Seiberg duality. This was originally proposed and checked
in the conifold theory [37], then applied to other singularities [119,128] and even to theories with
noncompact D7 branes [2,110] like the one of the previous chapter. In AN/ = 2 solutions like the
one of [39] the procedure works also well [38]. In this latter case, however, one expects the cascade
not to be triggered by subsequent Seiberg dualities: the correct interpretation is more along the
lines of a Higgsing phenomenon [64]. We will elaborate on this phenomenon in the next and final
chapter of this thesis.

The supergravity solution presented in section 7.3.1 is the first example of a solution describing
the backreaction of a bound state containing both deformation and N = 2 fractional branes, and
hence represents an excellent opportunity to study their interplay. One expects N' = 2 fractional
branes to behave as their cousins in pure N’ = 2 setups, and we will find good evidence that this
is the case. The novelty is that even deformation fractional branes, when probing a geometry
admitting A/ = 2 branes, may have that kind of behavior, sometimes.

Let us first compare the gauge theory G-functions with the supergravity prediction. The anoma-
lous dimensions of matter fields in the UV are to leading order the same as in the conformal theory,
v = —1/2. Defining x, = 872/g2, the four one-loop S-functions b, = 9/9(log ) x4 are then

3 3
b = 5 (2M1 — MQ) by = 5 (—Ml + 2My — Mg)

3 3 (7.3.16)
by = 5 (=M1 — M) by = 5 (—M2 +2Ms) .

On the other hand, inspection of the action of probe fractional D3 branes allows one to find the
dictionary between the gauge couplings and the integrals of By on the corresponding shrinking 2-
cycles [28,29,32].> With the conventions laid out in appendix A.2.1, the dictionary is easily found
to be

1 1
X2+ X3=5—— / By X1+ x3= ; B
2ralgs Je, 2wa’gs Cor
) o (7.3.17)
X1+ Xe =5 By Xi1txet+xst+xa=—,
T Gs Jc, Js

3We recall that such formulee are derived in N/ = 2 orbifolds. It is well known [55] that they get corrected by
superpotential couplings in cases where the geometry is not an orbifold of flat space, as we have discussed in chapter
3. Nevertheless, the correction due to the quartic superpotential coupling is negligible in the UV regime.
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with a radius-energy relation in the UV region r/a’ = pu, like in the conformal case. Recall that
Cor =Co +Cq — 2C,.
Integrating the NSNS 3-form given in eq. (7.3.3) one gets for the B field

3
32=§abﬂqﬁ?(Ah—Ab+A&M€F+2ﬂ—Nﬁ+ﬂ@+A@N§ﬂ
0

+ 27(My + My — Ms) wéq)} + ma/ [aCF WS + 4m(ag wgp) +ay wip)) , (7.3.18)

where acr, az, a4 are integration constants. This implies that

1
2mal g

1
|7
2m0'gs Je,

1
[
2l gs Je,

The three integration constants acp, a9, a4 correspond to the periods of By at 7 = rg, the latter
having being chosen to be the value of the holographic coordinate where the effective D3 brane
charge is IV, see the discussion after eq. (7.3.14). We can think of it as a UV cut-off for the dual gauge
theory, i.e. the scale where the dual UV bare Lagrangian is defined. Then the integration constants
fix, through equations. (7.3.17), the bare couplings of the dual nonconformal gauge theory. It is
easy to check that the logarithmic derivatives of (7.3.19) give exactly the same [-functions as the
field theory computation in (7.3.16).

T 2w
/ B2:3(M1—M2+M3)log—+—acp
Cor 7o g

s

2
(—M1 + My + Mg) log TL + ] as (7.3.19)
0

s

2T
—ay .

N W N W

-
(My + Mo —M3)10g77+
0

gs

As generically happens in supergravity solutions dual to nonconformal theories, the Maxwell
D3-charge runs. It is easily computed from eq. (7.3.15) to be in our case

1 395 9 9 9 T
= Fs=N+—/|M M. M3 — MMy — MoMs| log — . 3.2
Qps(r) (ar2a)2g, /lel/zf +o [M} + Mg + Mj 1M 2Mj) log o (7.3.20)

As in [37], the periods of By are no more periodic variables in the nonconformal supergravity
solutions. One should then investigate what the shift in Qp4(r) is once we move in the radial
direction from r down to 7/, where Ar = r —r’ > 0 is the minimal radius shift for which all the
periods of By on Cy, C2, C4 change by an integer (in units of 472a’). The shift in Q p3(r) should then
be compared against the gauge theory expectation for the decrease of the ranks under a specific
sequence of cascade steps. What changes after such a sequence are the ranks of the gauge groups,
all decreasing by the same integer number, the theory being otherwise self-similar, and with the
initial values of the couplings. Sometimes a cyclic permutation of the gauge group factors is also
needed, as in [37]. We will call such a sequence of cascade steps a quasi-period.

We are now ready to check the supergravity predictions against the field theory cascade in
some simple cases with deformation fractional branes only, where the RG flow can be followed by
performing successive Seiberg dualities.

1. (N+P,N,N + P,N)



7.3. SUPERGRAVITY BACKGROUND FOR THE UV REGIME 153

y

Figure 7.4: Example of the pattern of the cascade of Seiberg dualities for ranks (N + P, N, N + P, N) as
derived from the field theory. Black numbers indicate Seiberg dualities, performed on gauge groups with
diverging couplings. Inverse squared gauge couplings are plotted versus the logarithm of the energy scale.

This theory is the daughter of the duality cascade discussed in [37]. There are P deformation
branes of type (1,0,1,0) (corresponding to D5 branes wrapped over Cor). We get for the charge
and the periods

3
Qp3(r) =N+ 493 4P%log -
. o o (7.3.21)
bca:— gSQPIOgi‘Fa/a, 662:0’27 bC4:a4’
47 Tro

where acr = a2 + a4 — 2a, and be; are the periods of By along the cycle C; in units of 4720/, From
the above equation we see that ' = r exp[—4n/(6gsP)], and under this radial shift Qps(r’) =
Q®ps(r) —2P. This matches with the gauge theory expectations since the theory is quasi-periodic
with a shift N — N — 2P, which is obtained after four subsequent Seiberg dualities on the different
gauge groups. See Figure 7.4 for an explicit example of the RG flow computed in field theory,
for some values of the bare couplings. Obviously, for any cyclic permutation of the above rank
assignment we have the same story.

2. (N + P,N,N,N)

3
Qps(r) = N+ 2% 9p21og =
47 T0
3 T 3 T 3 r (7.3.22)
be, = —ﬁPlog— +aq, be, = —ﬁPlog— +az, be, = Js Plog— +ay .
4 o 4 0 A o

From the above equation we see that ' = r exp[—4m/(3gsP)] and consequently Q ps(r') = Qps(r)—
2P. This matches again with gauge theory expectations. Although the quiver looks self-similar
after four Seiberg dualities, the theory is not: the gauge couplings return to their original values
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Figure 7.5: Example of the pattern of the cascade of Seiberg dualities for ranks (N + P, N, N, N) as derived
from the field theory.

only after eight Seiberg dualities, as shown in Figure 7.5. Hence in this case a quasi-period needs
eight dualities and the shift in the ranks is indeed N — N — 2P. Again, similar conclusions hold
for any cyclic permutations of the above rank assignment.

3. N+Q,N+Q,N+Q,N)

3 r
Qp,(r) = N+ 495 20%log
39 . T To 3 . (7.3.23)
bCa:aOé7 b02:45Q10g—+CL2, bC4: SQ10g7+a4'
T 70 47 o

Here, ' = r exp[—47/(39sQ)] and Qps(r’) = Qp3(r) — 2Q. A quasi-period requires eight Seiberg
dualities and again agrement with field theory expectations is found. Notice that this theory
appears along the RG flow of the theory (N/, N, N, N' + Q).

7.3.3 Page charges and the RG flow from supergravity

There is another way of matching our running supergravity solutions (and more generally type 11B
solutions constructed from fractional branes at conical singularities) with cascading field theories.
The method was originally proposed in [2], on which the previous chapter is based, working on
ideas in [108]. Instead of using Maxwell charges, which are conserved and gauge invariant but
not quantized nor localized, the method is based on Page charges [109] which are conserved and
quantized, and therefore more suitable to be identified with gauge ranks, even though they shift
under large gauge transformations.
We recall that Maxwell and Page charges are defined, again up to signs, as as

1 1
[ R Page: QLo9¢ =
22Ty Jgs—» 8=p age: @y 2K2T),

Maxwell: Q, = / eB2/\F’ . (7.3.24)
S8—p 8—p



7.3. SUPERGRAVITY BACKGROUND FOR THE UV REGIME 155

We will need the D3 and D5 brane Page charges, which are both defined with a minus sign in front,
see appendix A.2.1.

We recall here that the general idea is that it is possible to read the field theory RG flow from
supergravity pointwise. At fixed radial coordinate r dual to some scale p, standard formulee allow
us to compute the gauge couplings from the dilaton and the integrals of Bs. Such formulse do
not give real couplings in general, but need particular integer shifts of By, which are large gauge
transformations. Consequently, Page charges get shifted by some integer values. Having at hand a
dictionary, they are readily mapped to the ranks of the gauge theory at that scale.

Flowing in the holographic coordinate, at some specific radii, in order to keep the couplings
real, one has to perform a further large gauge transformation, shifting By and therefore ending
up with different ranks. These points connect different steps of the cascade and can usually be
interpreted in the field theory as Seiberg dualities [37] or Higgsings [64]. In particular, ranks are
not continuously varying functions but rather integer discontinuous ones. This is not the end of
the story: in general the shifts of By are not enough to save us from imaginary couplings, and one
is forced to introduce multiple dictionaries. We will see how everything beautifully merges.

Let us make the point clear using a popular example, the Klebanov-Strassler cascade [36, 37]
of section 3.4.1. The first step is to identify a dictionary between the field theory ranks and Page
charges. An SU(N + M) x SU(N) theory is microscopically engineered with N regular and M

fractional D3 branes at the tip of the conifold, and in the suitable gauge we get Q1% = N,
Page

5 = M. The formule for the gauge couplings are
27 27
x1=-—b xe=—(1-0), (7.3.25)
gs Js

where Y, = 872/g2 and a = 1 refers to the larger group, while 4720/ b = J g2 Ba2. From the actual
UV solution [36], we have (for B in some gauge)

1 3gsM . 7 1 / 39, M? r
b=-—— | By= log — = — Fs=N log — . (7.3.26
Ara/ /52 ’ o ° o s 2k%73 Jp1a > * or 8 o ( )

At any radius/energy scale z = log r/rg one should perform a large gauge transformation and shift
b by some integer Ab such that x, > 0, compute the Page charges in such a gauge, and finally use
the dictionary to evaluate the ranks at that scale.

It is easy to evaluate Ab and Q:];age in this example. They read

Ab=— [398M;L~} Page = N~ AbM = N + [398M:c} M, (7.3.27)

27 - 27 -
where the floor function [y]_ is the greatest integer less than or equal to y. Applying the algorithm
at any x, we can plot the RG flow of the gauge couplings and the ranks along it. The result
(the famous KS cascade) is depicted in Figure 7.6. Notice that we never imposed continuity of
the gauge couplings (even though it is a well motivated physical requirement), nevertheless the
supergravity solution predicts it. Moreover it also suggests a reduction in the gauge group ranks
without explaining the corresponding field theory mechanism. It turns out that in this case Seiberg
duality can beautifully account for it [37,55].



156 CHAPTER 7. FRACTIONAL BRANES INTERPLAY IN CASCADING THEORIES

X

Q;;’age —N—-M Qg’ugft - N Q:{’age N+ M
SU(N) x SU(N — M) | SU(N) x SU(N + M) SU(N +2M) x SU(N + M)

1

-1 0 1

Figure 7.6: Flow in the KS theory as computed with the algorithm. x is in units of 27w /3g,M while y
in units of 27/gs. At integer values of = a large gauge transformation is required. At each step the Page
D3-charge and the field theory is indicated.

We want to apply the same procedure to our class of solutions. In order to do that, however,
we need some more machinery. Given a basis of 2-cycles C; and 3-cycles A; on radial sections, one
defines an intersection matrix

Ci-Aj:Iij i,j:1...p, (7.3.28)

where p is the number of fractional branes. Let (n;) = (#D5;,#D3), I = 1...p + 1 be the
occupation vector, that is the numbers of D5 branes wrapped on C; and of D3 branes. A dictionary
Fi) relates this system to the ranks 74, a =1... P of the dual gauge theory

Ta = [Fim)lar 1 - (7.3.29)

In general P > p+1, but for our nonchiral theory P = p+1 and F{;,) is invertible. In the following
i,j=1...pwhile I, Jia,b=1...p+ 1. Let (Qr) be the vector of Page charges

1 1 P
= - Fs, — F; ¢ .3.
(QI) ( 2/‘4}27-5 /Aj 3 2/€273 / 5 ) 9 (7 3 30)

then the definition of Page charges (7.3.24) (with a minus sign for both the D3 and D5 brane
Page charges) implies that Q; = —Itji n;. Introducing the matrix Z = diag(—Z%,1) we can write:

Qr =Z;yny. It follows that (suppressing indices)

r=(FmI) Q. (7.3.31)

The formulee relating the gauge couplings to the supergravity solution can be derived by considering
the worldvolume action of probe D3 and wrapped D5 branes [119]. Let x, = 872/g2 as before.
Considering D3 branes one concludes that > x, = 27/gs; then the integral of By on some 2-cycle
Cj is related to the gauge coupling on the probe D5 brane, which is itself related to the sum of the
X’s corresponding to the ranks increased by the D5 brane, as in (7.3.17). Defining the vector

(Br) = (ﬁ /C By, 1) (7.3.32)
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one can summarize the relations by

Qg: B=F[,x = X = 297; F(;j)t B. (7.3.33)
Under large gauge transformations the integrals of By change by integer amounts, thus the first p
components of the vector B undergo a particular shift B; — B; 4+ Z;, for some Z; € Z. As a result
the Page D3-charge is shifted by

1

2H2T3

AQEE = /AB2 ANF3=Q; (T Yk Zn (7.3.34)
while the inferred gauge couplings change according to eq. (7.3.33).

We now apply the algorithm to our solutions (7.3.3), where the integrals of By are (7.3.19), for
some values of the charges (equivalently for some M;’s). Using the basis {Ca,Cy,Cy} for the 2-cycles
and {As, A4, Acr} for the 3-cycles, the intersection matrix Z;; is given by

—2 0 0
;=10 -2 0 (7.3.35)
1 -1 1

as in (D.2.4), while the dictionary [F(1)],s derived in section 7.2.2 (see Table (7.2.6)), referring to the
central quiver in Figure 7.7, is reported in Figure 7.8. One quickly discovers that, for generic values
of the integration constants a; and of the radial coordinate r, there is no gauge transformation that
produces positive y, in eq. (7.3.33).

One is led to the conclusion that multiple dictionaries are needed. This had to be expected
since performing any Seiberg duality on the central quiver in Figure 7.7 one obtains the lateral
quivers (depending on the node chosen), which are substantially different and cannot be described
by the same dictionary, even up to reshuffling of the nodes.

It turns out that even two dictionaries are not enough in our case. We provide a set of six
dictionaries such that, at any energy, for one and only one dictionary there is one large gauge
transformation that gives nonnegative x,, see Figure 7.8.

The dictionaries besides F(1) are obtained from it through formal Seiberg dualities. Consider a
system with occupation vector n = (ny,n2,n3, N). Start with the central quiver where the ranks
are given by eq. (7.3.29) using F(1). Then a formal Seiberg duality on one node gives a new quiver
with new ranks (and superpotential), from which a new dictionary F{,,) is directly read. Actually
there is an ambiguity because the number of D3 branes N could have changed in the process (but
not the other charges) and then one is free to add lines of 1’s to any of the first three columns.
One can show that the physical result, that is the gauge couplings and ranks in the correct gauge
of By, is not affected. In our case, a Seiberg duality on node 1 gives Fi4), on node 2 F{g), on node
3 F(3), on node 4 F(5) and on two opposite nodes F{y).

We can finally apply the algorithm at any radius x = log r/rg, that is:

e find a dictionary in the set {F{,,)} and a large gauge transformation B;(z) — B;(z)+ Z; such
that, according to eq. (7.3.33), xy > 0 VI. It turns out that there is always one and only
one solution;*

4To be precise, when one of the y; vanishes there are two dictionaries (with their gauges) that do the job, one
which is valid for larger r and another for smaller r. At these radii there is the transition between the validity domains
of two different field theory duals.
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Figure 7.7: Seiberg dual quivers. The central quiver is the most extensively discussed one in the paper.
The left quiver is obtained with a Seiberg duality on node 1 or 3, while the right one on node 2 or 4.
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Figure 7.8: A set of six dictionaries for the orbifolded conifold theory. Fi3y, F4) refer to the left quiver,
with adjoints on nodes 2-4; F(y), F2) refer to the central quiver, without adjoints; Fis), Fs) refer to the
right quiver, with adjoints on nodes 1-3. The four columns represent the nodes activated by a D5 brane on
Cs, Cy, C,, and a D3 brane respectively.

e compute the D3 brane Page charge in this gauge, using eq. (7.3.34) (D5 brane charges are
invariant);

e use the dictionary and the charges in eq. (7.3.31) to evaluate the ranks at that scale in the
corresponding quiver.

As a result, one can plot the gauge couplings along the flow and keep track of the various field
theory descriptions.

It is clear that the transition radii between two different descriptions (dictionaries) occur when
one of the y; vanishes. But in principle there is no reason why one should expect, from the
procedure above, continuous couplings at the transition points. Surprisingly enough, it turns out
that the resulting coupling are indeed continuous. Some plots with explanation are in Figures 7.9,
7.10, 7.11, 7.12 (obtained via a mathematica code). In the following, we comment on interesting
examples.

1. (N+P,N,N+ P,N)

The RG flow, as computed from supergravity with the algorithm above, is plotted in Figure 7.9
(for P =1 and some typical choice of the integration constants az, a4, a, and the starting radius
x = logr/rg). It precisely matches with the field theory expectations, with respect to both gauge
couplings and ranks at any step. All transition points can be interpreted by means of a single
Seiberg duality, as the prototypical example in [37]. Notice that the integral of By on Cy and Cy is
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Figures: the following figures represent the RG flow as computed from SUGRA with the algorithm, for
typical values of the integration constants as, a4, a, and the initial radius @ = log r/rg. The gauge couplings
are in units of 27/gs. On the right side we report, for each step, the dictionary used and the ranks in
the quiver; the addition of N is understood. Underlined ranks signal an adjoint chiral superfield at the
corresponding node. The red line represents the first group, the orange the second one, the light green the

third one, the dark green the fourth one.
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Figure 7.9: RG flow for the (N + 1, N, N 4+ 1, N) theory from supergravity.
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Figure 7.10: RG flow for the (N 4+ 1, N + 1, N, N) theory from supergravity.
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Figure 7.11: RG flow for the (N 4+ 2, N, N + 1, N) theory from supergravity.
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Figure 7.12: RG flow for the (N + 1, N, N, N) theory from supergravity.

constant and generically not integer.

2. (N+P,N+P,N,N)

The supergravity RG flow is shown in Figure 7.10 (for P = 1 and typical integration constants).
This theory is realized with N/ = 2 fractional branes only, and one expects a behavior quite similar
to the N = 2 setup of [39]. The algorithm confirms that there are steps of the cascade where the
node with divergent coupling has an adjoint chiral field and N/ = 2 superpotential. In the example
of Figure 7.10, after a Seiberg duality on node 1, one is left with the left hand side quiver of Figure
7.7, and superpotential

W = —X12X01 X14Xu1 + Moo (X21X12 — Xo3X32) + X320 X03 X34 Xu3 — Mya(Xu3 X34 — Xa1X14) -
(7.3.36)
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The next node with diverging coupling is node 2. Notice that if one neglects the gauge dynamics
on the other nodes and possible subtleties related to a nontrivial Kahler potential and anomalous
dimensions of node 2, the theory is effectively N' = 2 massless SQCD with N + P colors and 2N
flavors. One is tempted to think that this piece of the RG flow can be interpreted as in the N’ = 2
theory of [38,39,64] (see also [129]).

It is beyond the scope of the present work to fully understand the field theory dynamics. We
just want to observe that on the gravity side this step in the cascade, possibly understandable as
Higgsings, precisely occurs when

1 1
2 4

(in this case only C4). Since Cy and C4 are shrunk 2-cycles along the N' = 2 singularity lines, at
these radii (called generalized enhangons in [64]) there are extra massless fields and tensionless
objects in supergravity. We will discuss this phenomenon in the next chapter.

3. (N+P,N,N+Q,N)

The supergravity RG flow for the case (N +2, N, N+1, N) is shown in Figure 7.11. This theory
is realized with deformation fractional branes only. Nevertheless, the fact that the geometry admits
N = 2 fractional branes causes that, at some steps, there is a reduction of rank in a node with
adjoint; as before, this cannot be interpreted as a Seiberg duality and some other mechanism, such
as Higgsing, should be invoked. Shells where such transitions occur are again precisely at radii
where one of the periods of By on Cy or C4 vanishes.

This rather intriguing fact can be understood by noticing that in some intermediate steps, i.e.
when there are nodes with adjoints, the relevant dictionary forces us to reinterpret the configuration
as if it were composed of deformation fractional branes together with a number of ' = 2 fractional
branes.

For generic P and () things can be analyzed in a similar way. Notice that for P and @) large
and coprime, the flow becomes quickly very complicated.

4. (N+ P,N,N,N)

The supergravity RG flow for the case (N + 1, N, N, N) is shown in Figure 7.12. As in the
previous examples, when one of the periods of By on Cs or C4 vanishes supergravity predicts some
transition that cannot be interpreted as a Seiberg duality in the F'T. This flow is anyway peculiar
because performing a Seiberg duality on a conformal node it is possible to provide a dual FT
interpretation of the RG flow using only Seiberg dualities, as was done in the previous subsection.
However, supergravity seems to predict a different pattern of dualities which nevertheless leads to
the same evolution of the gauge couplings.

7.4 Summary and conclusions

Let us summarize what we found. There exists a well-defined algorithm that, given a minimal set
of dictionaries, allows one to derive the field theory RG flow from a supergravity solution. For toric
singularities, as the one we are describing, the dictionaries can be derived using standard techniques
(see for instance [130]) and, given the first, the other ones follow applying formal Seiberg dualities.
It is not clear to us how to determine the minimal number of dictionaries, and we have obtained
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them by hand. Moreover, it would be interesting to understand how to extend the algorithm to
supergravity solutions dual to chiral gauge theories, as those in [128].

Our geometry admits both deformation and N/ = 2 fractional branes. We saw examples of
cascades from deformation branes that can be interpreted in term of Seiberg dualities only, examples
with N' = 2 branes that are very close to pure N’ = 2 theories and whose interpretation should be
similar to the Higgsing proposed of [64], but also examples which one would say are realized with
deformation branes only that require something like a Higgsing, at some steps. This field theory
interpretation will be further explored, in an N' = 2 setting, in the next chapter.



Chapter 8

The N = 2 cascade revisited and the
enhancon bearings

This final chapter is based on some work in progress done in collaboration with Riccardo Argurio,
Francesco Benini, Matteo Bertolini and Cyril Closset.

8.1 Introduction

In the previous chapter we have studied a generic cascading gauge theory by means of its holographic
dual. We have made use, as in the Klebanov-Strassler cascade, of an auxiliary brane system which
enabled us to extract ranks in the gauge theory from brane charges in supergravity. At special
positions along the holographic coordinate, some of the constituents of this auxiliary brane system
were no longer BPS, but they could always rearrange in a different auxiliary brane system which
is BPS in the new energy range. In generic theories like the one studied in the last chapter, the
new brane system can be quite different from the previous one: this translates to the fact that the
field theory need not be self-similar after a single strong coupling transition, that is interpreted as a
Seiberg duality or a peculiar kind of Higgsing, depending on the kind of fractional brane becoming
tensionless at the transition. As such a generic situation is encountered, a new dictionary is needed
in order to extract field theory observables from dual string theory fields. This is a signal that the
rearrangement of the BPS objects in the auxiliary brane system has a very nontrivial meaning.

In this chapter, we would like to understand better what occurs at the strong coupling transition
scales. We will restrict our attention to a more controllable N' = 2 cascade, where the Seiberg-
Witten technology allows us to extract exact results. We will provide a cascading interpretation of
the A/ = 2 solution from fractional branes at the C x C2/Zy orbifold [39], identifying a cascading
vacuum in the dual field theory, whose RG flow coincides with the one that can be extracted
holographically from the type IIB supergravity solution. In particular, we will understand that the
strong coupling transition is driven by a highly nonperturbative Higgsing, which to leading order
approximation is the one occurring at the baryonic root of the SQCD theory effectively describing
the dynamics of the strongly coupled group as the remaining gauge dynamics is neglected.

In the analysis of the Coulomb branch of the field theory, we will also encounter a particular
reincarnation of the enhancon ring, that we will call enhangon bearing and that will allow us to
gain a clearer understanding of what happens to brane probes, which in this N' = 2 situation are
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the branes of the auxiliary system, at the strong coupling transition scales.

This chapter is structured as follows. In section 8.2 we review the supergravity solution for
fractional D3 branes at a C x C?/Zy orbifold. In section 8.3 we review some different field theory
interpretations that have been proposed for that solution in the literature. In section 8.4, after
a review of the Coulomb branch of N' = 2 SQCD, we will propose our interpretation of the dual
field theory at a special vacuum and make some matchings between the two sides of the duality.
In section 8.5 we will study different vacua of the same theory, displaying enhancon bearings, and
we will see how they are connected to the cascading vacuum. In section 8.6 we summarize our
results and add some final comments. Finally, we have gathered in appendix E a short review of
the derivation of Seiberg-Witten curves in the context of M theory.

8.2 Review of the N = 2 cascading solution

In this section we review the N' = 2 solution describing fractional D3 branes at a C x C2/Zq
orbifold [39].

We parameterize the C plane by a complex coordinate z = pe? = y! + iy?; the covering space
of C?/7s is parameterized by two complex coordinates (z1,22) = (y* + iy, ® +iy%), on which the
generator g of Zg acts as g : (z1,22) — (—21,—22), leaving z invariant. The fixed point locus is
the z plane at z; = zg = 0. The orbifold group is contained in SU(2), therefore string theory on
this orbifold has sixteen supersymmetries. An exceptional 2-cycle C, with S? topology, lives at the
orbifold plane z; = zo = 0. As in the previous chapter, we will associate to this exceptional 2-cycle
a closed anti-selfdual (1,1)-form wy with delta-function support at the orbifold plane, normalized

as follows:
1
/(.UQ =1, / wy Nwg = —— . (8.2.1)
c C2/Zs 2

The supergravity solution for fractional D3 branes at the C x C?/Zy orbifold preserves eight
supercharges and enjoys logarithmically varying twisted fluxes, that can be thought of as vary-
ing 3-form fluxes on the (exceptional) 3-cycles of the geometry, analogously to the Klebanov-
Tseytlin/Strassler solution for fractional D3 branes at the conifold. We will see that also in the
orbifold case the supergravity solution naturally suggests that the dual field theory has a cascading
RG flow, where the number of degrees of freedom decreases along the flow.

The authors of [39] considered the simplest configuration, with M fractional D3 branes placed
at the origin z = z; = 29 = 0. The metric is a warped product of the 4-dimensional Minkowski
metric and the 6-dimensional Euclidean metric on the orbifold:

ds? = h™'2da} 3 + M2 dyg | (8.2.2)

where the warp factor has the dependence h = h(p?, r2), with 72 = 3% (y*)? the square of the
overall radius in the C? covering space of the orbifold and p the radius in the complex C plane. The
RR 5-form field strength is related to the warp factor in the usual way, F5 = (1 + *)d*z Adh~!, by
supersymmetry. The axio-dilaton 7 = Cy+ie~? = Cy+i is taken to be constant! because fractional
D3 branes do not couple to it. Being D5 branes wrapped on the exceptional cycle, fractional D3

We work here in the Einstein frame defined by (A.2.3), as in the previous chapter.
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branes source magnetically the twisted scalar ¢, living at the orbifold plane, which can be thought
of as the reduction of the RR 2-form potential on this cycle

1
=—— /[ C 8.2.3
T o /C 2> ( )
and therefore by supersymmetry they also source its NSNS partner
I / B (8.2.4)
— 47T2a, c 2 . L.

These two twisted scalars are normalized with periodicities 1. They can be summarized in the

complex twisted scalar
1
vy=c+T1b= P /6(02 +7Bs), (8.2.5)

which is in general a function v = 7(z, z). By (8.2.1), we can write
Co+ 7By = 4120/ yws (8.2.6)

whose exterior differential is the complexified 3-form field strength
G3 = 4n%a’ dy A ws . (8.2.7)

The complex twisted scalar v is subject to a two-dimensional Laplace equation with sources at the
positions of fractional D3 branes. The supersymmetry condition that G3 be closed, primitive, ISD
and (2,1) translates into the requirement that v = 7(z) be a meromorphic function. Fractional
D3 brane sources introduce poles in the meromorphic form dvy(z), with residues proportional to
the number of branes, by Gauss’ law. For the configuration with M fractional D3 branes at

z = z1 = z9 = 0, the solution is
gsM

log — (8.2.8)

z)=1
() -

where the integration constant z. formally acts as a regulating scale.
Finally, the warp factor is obtained by integrating the Bianchi identity dFs = —Hj3 A F3, with

the result [39]:

drgsMa'? { [ r P> ] }
h="T9C0 11 4 8rgoM |log ——— — 1+ , (8.2.9)
rt ’ pe(r? = p?) r? — p?

where p. = |z|. The resulting geometry has an unphysical repulsive region near the origin » = 0,2
which is expected to be resolved by string theory by an enhangon mechanism along the lines of [134].
8.3 Available interpretations of the cascading solutions

Several different dual field theory interpretations of the previous solution have been proposed in
the literature. We review them in some detail in this section.

2See appendix A of [133] for an analytic study of the warp factor.
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8.3.1 The pure YM theory: the enhangon and the Seiberg-Witten curve

The authors of [39] found the previous solution starting from quantization of open strings on the
C x C?/Zy orbifold, and computing the coupling of fractional D3 branes to the closed string sector
by means of the boundary state formalism. It was therefore natural for them to take the perspective
that the solution presented above is defined in the z plane from a radial cutoff scale pyry = pe €297 ,
where the twisted scalar b takes its ‘orbifold point’ value b = % which makes the orbifold sigma
model free [114], down to the interior. They also computed the moduli space metric for a probe
fractional D3 brane in the geometry, that by open-closed string duality was expected to map to
the moduli space metric on the Coulomb branch of the dual N' = 2 SU(M) pure SYM theory
(related by extended supersymmetry to the running gauge coupling and the theta angle). They
found precise agreement with the perturbative field theory computation. In particular, the moduli
space metric takes the form

2M
Gab = o log 2 dab (8.3.1)
T Pe

in a basis of canonically normalized real scalar fields, and becomes singular at p = p., the so-called
‘enhancon’ radius. At that radial position fractional D3 branes become tensionless, so that they
cannot enter the interior region. As in [134], the stringy interpretation is that the M fractional D3
branes generating the geometry are not actually allowed to stay coincident at the origin: the correct
microscopic description involves rather M tensionless fractional D3 branes melted in a thin ring
at the enhancon radius, which excises the repulsive region. The metric in the interior is flat, and
the twisted scalar « is constant there. The source introduced at the excision surface between the
exterior warped geometry with fluxes and the interior flat and fluxless geometry behaves exactly
as a thin ring of wrapped D5 branes, which become tensionless at the enhangon radius, providing
support for the enhancon proposal [135].

Let us also mention that the background displays a Zsp; symmetry, realized in the geometry as
discrete rotations ¢ — ¢ + g% (k=0,1,...,2M — 1); this maps to the nonanomalous subgroup of
the U(1)r symmetry nontrivially acting on the Coulomb branch of the dual N' = 2 SU(M) pure
SYM theory, that we mentioned earlier.

The enhancon mechanism is nothing but the large M manifestation of the Seiberg-Witten curve
at the origin of the moduli space of the dual SU(M) Yang-Mills theory; as suggested by (8.3.1),
the enhancon radius is mapped to the holomorphic dynamically generated scale A of the N’ = 2
SYM theory [136]. Let us review the argument here.

The result for the tree-level plus one-loop prepotential of the gauge theory

i 5, @2
Foert = %Tr d logA—2 (8.3.2)
M

implies that the perturbative moduli space develops, at a scale of order Ay, 2M singularities in the
plane of the adjoint field ® VEV’s; such singularities are related by Zsas rotations, the subgroup of
the nonanomalous abelian R-symmetry which acts nontrivially on this moduli space, and which is
unbroken in this vacuum. Along the lines of the Seiberg-Witten analysis of the SU(2) theory, it is
possible to show that instantonic corrections, whose size becomes important at energies comparable
to Aps, modify this picture and drastically change the IR behavior. The quantum moduli space has
only M singularities, corresponding to monopoles or dyons becoming massless. These particular
vacua break the Zsps R-symmetry to Zs.
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Instead, the Zops-symmetric origin of the Coulomb branch is a smooth point, but has very
interesting physics, as can be seen from the Seiberg-Witten curve for the N' = 2 pure SU(M)
Yang-Mills theory [137]:

M
v =[] (= - 6a) — 403}, (8.3.3)
a=1

where ¢, are the eigenvalues of the scalar adjoint field in the vector multiplet, which parameterize
the Coulomb moduli space up to Weyl group (gauge) identifications.?

Let us pause for a moment for an important comment. Classically (Ays = 0), the eigenvalues
¢q coincide with the branch points of (8.3.3) and also correspond to the positions of fractional D3
branes in the z plane [134]. At the quantum level, the eigenvalues of the adjoint scalar field still
parameterize the whole moduli space, but the physical information resides in the branch points of
the Seiberg-Witten curve (8.3.3), whose knowledge allows us to compute for instance the masses
of BPS states. In the perturbative semiclassical regime of the moduli space (|¢4| > |Aps]), branch
points of the Seiberg-Witten curve appear in pairs close to locations ¢,, with small separations,
so that we can still approximately associate fractional D3 brane positions with VEV’s. As soon
as the VEV’s get closer to the nonperturbative region (at energy scales comparable to Ayy), the
separations between branch points become large, so that it does not make much sense to talk about
fractional D3 brane positions (almost double branch points) anymore. This point becomes clearer
in the M theory derivation of the Seiberg-Witten curve, that we have reviewed in appendix E.1.

Let us now go back to the origin of the moduli space ¢, =0 Va =1,..., M. This is a smooth
point: the hyperelliptic curve (8.3.3) becomes y? = x2M + 4A?MM , which has 2M separate branch
points at the 2M-th roots of (2A2)M)2M " This is a highly nonperturbative configuration, since
branch points are equally separated. In the large M limit, one can think that these branch points
densely fill the ring of radius A, ~ Ajs. This is the field theory manifestation of the enhancon
mechanism: although classically fractional D3 branes can be placed at any points in the complex
plane, and in particular they can stay at the origin, at the quantum level some regions are not
allowed; the origin of the moduli space corresponds to fractional D3 branes melted at the enhancon
ring.

It is also possible to see explicitly from the Seiberg-Witten curve (8.3.3) that if we add to the
previous configuration a fractional D3 brane probe (in field theory terms, an additional VEV ¢ such
that |¢| > |Ap|), it can freely move in the semiclassical region. The corresponding two branch
points are placed at about ¢, with a small separation of order Ay (Aps/ ¢)M. However, as soon
as ¢ becomes comparable to Ay, its two branch points split considerably and finally melt in the
enhancon ring. The branch points cannot enter the interior, as the fractional D3 brane cannot. In
the large M limit, the splitting occurs abruptly at the enhancon scale, mimicking very accurately
the behavior of a fractional D3 brane probe in the solution of the previous section.

This analysis strongly suggests that the IR limit of the solution for fractional D3 branes on the
C x C?/Zs orbifold actually describes N = 2 pure SU(M) SYM.

3Here we have to assume a basic knowledge of Seiberg-Witten theory. We refer the reader to the original papers
[136,138] and to the review [139] for a detailed pedagogical introduction. In appendix E we briefly review the
derivation of Seiberg-Witten curves in the context of M theory.
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Figure 8.1: Quiver diagram of the theory on regular and fractional D3 branes at the C x C?/Zs
orbifold, in an N/ = 1 notation where arrows represent bifundamental N' = 1 chiral superfields.
Arrows from one node to itself are adjoint chiral superfields.

8.3.2 An N =2 Seiberg duality cascade

A broader point of view was taken by Polchinski [38]. He noticed that the logarithmically varying
fluxes imply that the D3 brane Maxwell charge, the flux of Fy through the base S°/Zy at radius r,
grows indefinitely towards r = 0o, in a way that is completely analogous to the Klebanov-Strassler
solution.* In both these supergravity solutions of fractional D3 branes, an effective D3 brane
charge, growing toward large r, is generated by requiring the supergravity limit. By the same kind
of analysis, based on Maxwell charges, that we followed in chapter 6, Polchinski concluded that at
higher energies the full N/ = 2 quiver of the theory of regular and fractional D3 branes, see figure
8.1, is supported.

We repeat here the argument for later convenience, although the reader should know it quite
well by now. The auxiliary brane system used to match the charges and extract the ranks of the
gauge group is now made, at some radius r dual to an energy scale u, of N+-M D5 branes wrapped
on the exceptional 2-cycle and N anti-D5 branes wrapped on the same cycle, with the suitable unit
of worldvolume gauge flux that makes it BPS and minimal with respect to the wrapped D5. For the
sake of convenience, we use the preferred gauge that we introduced in chapter 6: by a large gauge
transformation, we transform b(p) — b(p) € [0,1].5 The holographic relations between running
gauge couplings and closed string fields are found expanding the DBI action of probe fractional D3
branes: they are equations (6.6.42)-(6.6.43), where e® = g,, and [ refers again to the larger and s to
the smaller gauge group. Wrapped D5 branes are always associated to the larger gauge group, and
wrapped anti-D5 with flux to the smaller gauge group, since the D5 brane charge of the solution
is positive. As we flow toward the interior (the IR in the gauge theory), the larger gauge group
flows towards strong coupling and the smaller towards weak coupling, as in the Klebanov-Strassler
cascade, with the difference that here the g-functions of the gauge couplings are proportional to
+2M instead of £3M. At a first threshold scale p1, the gauge coupling of the larger group diverges.
On the supergravity side, the wrapped D5 branes of the auxiliary brane system become tensionless
and then their D3 brane charge changes sign, making the system no longer BPS. At this point a

4Actually, in the A/ = 2 case under consideration, a different UV completion in terms of a conformal theory,
stopping the cascade in the UV, can be achieved easily, as we will discuss below.

5Would not we have chosen that gauge, the previous objects would have had different units of worldvolume gauge
noninvariant flux on the exceptional 2-cycle, that can be easily worked out.
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transition occurs.® The constituents rearrange into a new BPS system in the adjacent interval,
made of objects which look like N wrapped D5 and N — M wrapped anti-D5 (with worldvolume
flux) after having chosen the good preferred gauge. In the old gauge we would have called them a
wrapped D5 with one unit of flux and a wrapped anti-D5 without flux, respectively. We stress once
again that a very nontrivial rearrangement has occurred: these two constituents are not the same
as those which were BPS in the previous interval, they only look the same in the preferred gauge
we chose. In particular, the N + M wrapped D5 branes of the initial interval do not become the N
wrapped D5 branes of the new one, nor the N initial wrapped anti-D5 branes become the N — M
new wrapped anti-D5 branes. On the contrary, as in the Klebanov-Strassler cascade of section
3.4, continuity of the gauge couplings at this seeming strong coupling singularity teaches us that
the gauge group SU(N) behaves as a spectator, whereas SU(N + M) becomes SU(N — M). The
previous analysis can be simplified by exploiting our method based on Page charges. The result of
course confirms the previous analysis done with Maxwell charges.

This pattern is the smoking gun of a self-similar cascading RG flow of the dual field theory.
Polchinski proposed that the field theory interpretation should go along the lines of an unknown
N = 2 Seiberg duality.

It was also noticed that a Higgsing SU(N + M) — SU(N — M) (times a group of rank 2M)
by the adjoint scalar field in the vector multiplet of the broken gauge group, leaving the SU (M)
group as a spectator, could fit the numerology. However, he discarded this possibility because
SU(N + M) initially acted on the D5 brane Chan-Paton factors, whereas SU(N — M) finally
acts on the anti-D5 brane Chan-Paton factors. Actually, the last argument can be questioned
since the transition occurs in a strongly coupled nonperturbative regime where no Chan-Paton
description can be applied. The nonperturbative nature of the field theory dynamics responsible
for the transitions driving the cascade is reflected in the highly nontrivial rearrangement of the
auxiliary brane system. We will return on this possibility in a following section.

8.3.3 A Higgsing interpretation

A different, more mundane interpretation of the cascade was proposed by Aharony [64], who pointed
out that the electric-magnetic duality suggested by Polchinski, at least in its simplest form, could
not ensure matching of the moduli spaces of the proposed dual pair. He instead provided pieces
of evidence for a diagonal Higgsing of SU(N + M) x SU(N) to a SU(N) x SU(N — M) times a
subgroup of U(M) x U(M), by M eigenvalues for the adjoint scalars of the two gauge groups.

Aharony’s point was that the source for Fy could be thought of as coming from an actual
distribution of regular or fractional D3 branes, dual to field theory VEV’s of the adjoint scalars,
rather than from the 3-form fluxes, which have no direct analogue in the field theory. In order
to match the decrease of 5-form flux, he proposed that M eigenvalues of the two adjoint scalars
should lie in each band between a radius where the D3 brane Maxwell charge is N and a radius
where the D3 brane Maxwell charge is N — M, for any N modulo M. And in order not to source
the complex twisted scalar «, he proposed that these sources are regular D3 branes (equal sets of
eigenvalues for the two adjoint scalars in the band) rather than fractional D3 branes.

SRemark that the wrapped D5 which ceases being BPS at p; is actually BPS for any p > pi. Similarly, the
wrapped anti-D5 with flux that is BPS in the same interval p € [p1, po], with po = p1 eﬁ, is actually BPS for any
p < po. In the [p1, po] interval, the D5 and wrapped anti-D5 with flux are the minimal BPS objects, in the sense that
any BPS object can be built as a linear combination thereof, with nonnegative integer coefficients.
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As noticed also by Polchinski, the unbalance between the ranks of the two groups can be achieved
starting from a number of regular D3 branes, splitting M of them into wrapped D5 and wrapped
anti-D5 brane, and placing these M anti-D5 branes at a UV cutoff scale by a perturbative Higgsing
which triggers the RG flow. This provides a UV cutoff to the cascade in terms of a conformal
field theory completion. Eventually, these cutoff branes can be sent to infinity so that the cascade
becomes infinite. Remark that this is not possible in the A/ = 1 Klebanov-Strassler cascade, which
lacks such a moduli space.

The main evidence for a Higgsing interpretation rather than a duality interpretation arose from
a holographic computation of the adjoint scalar VEV’s by means of the AdS/CFT machinery of
section 2.4, which is made possible thanks to the conformal field theory UV completion in the
cutoff cascade configuration previously mentioned. An operator dual to an untwisted field, of the
schematic form Tr((bicbl)—i—Tr(CI);(bg)—i— hypermultiplets, was shown to acquire a VEV, inconsistently
with the duality interpretation but consistently with the Higgsing interpretation for the cascade.

Aharony himself singled out some problems with its Higgsing interpretation. The first one is
that the Higgsing he proposed has actually a huge moduli space of possibilities, that is not clear how
to see in the dual background. But the main problem comes from the observation, already presented
in the previous subsection, that the field theory computation of the running gauge couplings shows
that the coupling of the larger gauge group diverges (at least using the perturbative result) at
some scale. This behavior is not affected by the regular D3 brane Higgsing, therefore something
else has to be invoked to explain what happens there. The holographic computation of the gauge
couplings shows how this gauge coupling goes past this perturbative singularity, in a way which
is more consistent with an electric-magnetic duality interpretation, although such a duality is not
known.

Let us end this section by remarking another related problem for the perturbative Higgsing
interpretation, that is clearer to us now that the method based on Page charges is available.
Associating D3 brane sources to the continuous variation of the D3 brane Maxwell charge turns
out to be incorrect: it is an artifact of Chern-Simons terms in the type IIB action. Taking the
solution of the previous section in the gauge we have written it, we can compute the D3 brane
Page charge and see easily that it is constant as we vary r, showing that there are no actual
D3 brane sources distributed in the geometry.” This is also consistent with the continuity of the
gauge couplings which is displayed by the holographic formulae (6.6.42)-(6.6.43), that are obtained
assuming that the minimal BPS constituents in each energy range are always the wrapped D5
without flux and the wrapped anti-D5 with flux in the preferred gauge.

Remark, however, that the above comment does not spoil the important observation that some
Higgsing is occurring in the dual field theory, as the aforementioned holographic computation
confirms. In the following sections, we will propose and provide evidence for an alternative inter-
pretation of the cascade, which reconnects Polchinski’s and Aharony’s results.

Before doing that, let us mention another interesting proposal for the gauge/gravity pair under
consideration, whose upshot is somehow closer to the perspective illustrated in subsection 8.3.1.

"The reader should not be confused by the fact that here we do not change gauge at the transitions. That is
done when we want to extract the gauge theory ranks by matching them with charges of the auxiliary brane system.
Here instead we simply want to see whether there are D3 branes in the geometry. There are not, neither in-between
transition scales nor at transition scales.
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8.3.4 The Seiberg-Witten curve analysis

An analysis of the Coulomb branch of the moduli space of the SU(N + M) x SU(N + M) orbifold
quiver gauge theory, spontaneously broken to SU(N + M) x SU(N) x U(1)™ in a perturbative
regime by adjoint scalar VEV’s, was performed using the Seiberg-Witten curve for the conformal
gauge theory in [129].

In appendix E we briefly recall the derivation of Seiberg-Witten curves in the M theory lift of
type ITA brane engineering models for the N’ = 2 pure YM and SQCD theories (appendix E.1) and
for the elliptic model under study (appendix E.2).

Petrini, Russo and Zaffaroni [129] studied the RG flow and the dynamics of the origin of the
moduli space of the SU(N + M) x SU(N) theory. That nonconformal theory is obtained via a
perturbative Higgsing of the conformal SU(N + M) x SU(N + M) theory by M eigenvalues of the
adjoint scalar ® of the second gauge group, which we have already mentioned in the previous subsec-
tions as a possible conventional UV completion of the field theory vacuum dual to the supergravity
solution. This completion is particularly useful because it allows to exploit the Seiberg-Witten
technology.

We recall here that the Seiberg-Witten curve (E.2.13), found in M theory as a holomorphic M5
brane embedding [140], may be written as

S(v) + R(v)
S(v) — R(v)

O3(ulr/2)  03(2u|27) + 02(2u|27)

= flulr) = Os(ulT/2)  03(2u|2T) — 02(2u|27)

(8.3.4)

in terms of quasi-modular Jacobi #-functions defined in appendix E.3, by suitably choosing the UV
values of the gauge couplings of the two SU(N + M) gauge groups to be the same. More details
on its derivation can be found in appendix E.2. R(v) = HiV:JrlM(v —¢q) and S(v) = Hivle (v — )
are degree N + M polynomials whose zeroes ¢, and gga are the eigenvalues of the VEV’s of the
adjoint scalars of the two gauge groups. u = i(x% + iz1?) /(27 R) parameterizes an M theory 2-torus
defined by the identifications 4 ~ v 4+ 1 ~ u + 7, where the complex structure 7 is nothing but the
type IIB axio-dilaton of section 8.2, but expressed in the string frame.

Let us briefly review the analysis of [129]. The VEV’s were chosen for simplicity to be Zj;-
invariant, and the other VEV’s were chosen to be at the origin, so that the polynomials R and S
are:

R(v) = oV TM S(v) = oN (M = M) . (8.3.5)

[e.e]

By means of the Seiberg-Witten curve (8.3.4), it is possible to extract both the branch points and
the RG flow of the gauge theory at the chosen point of the moduli space. As already stressed in
appendix E.2, the N common zeros of R and S, corresponding in the type IIB picture to N regular
D3 branes at the origin, factor out of the curve, without affecting the RG flow and the rest of the
dynamics. Therefore we can actually use

R(v) = oM S(v) = oM — M (8.3.6)

so that the curve is actually the same as that of an SU(M) x SU(M) gauge theory, spontaneously
broken to SU(M) at a scale zo. If the IR dynamics is not much affected by the UV Higgsing, as
it is natural to expect, the low energy physics should be similar to the one of the enhancgon, but
with N leftover regular D3 branes. This is indeed the upshot of the analysis.

Thanks to the relation between the Seiberg-Witten curve and the brane embedding explained
in appendix E, the RG flow can be extracted from the roots of the curve as v varies. In the case at
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Figure 8.2: RG flow of the theory at the enhangon vacuum (origin of the moduli space).

hand, this is done by approximating the exact curve in different regimes, according to the value of

the ratio S(0) ) o
v—f—Rv_ _ v
S() — Rw) 2( ) |

which has to be equated to f(u|r). In the UV regime |v| > |25],% the ratio is very large and the
theory is conformal with equal gauge couplings, because of the initial choice. On the contrary, when
|v| < |zoo| the ratio is almost equal to one. For |A| < |v| < |zo0|, with A = zooqﬁ the dynamically
generated IR strong coupling scale of the unbroken SU(N + M) group, the two gauge couplings
start to run in opposite directions. In the previous relations, ¢ = €™, whose modulus is related to
the type IIB dilaton by |q| = e27/9s and is very small in the supergravity approximation, allowing
a series expansion in its positive powers. It is possible to use the expansion f =1+ 2q1/4(t—|—t_1) +
(’)(ql/ 2) to get the approximate roots of the curve. The result is the perturbative running of the
gauge couplings, with B-functions equal to £2M for the two gauge groups respectively; the gauge
coupling of the unbroken SU(N + M) group diverges at a scale A. This running agrees with the
type IIB formulae according to which

(8.3.7)

Zoo

2
2
SLZ _ 2,
89;2 2g7r (8.3.8)
= (1)
Js Js

Analogously, for |v| < |A] it is possible to see that the couplings remain constant: there is an
infinitely coupled SU(N) gauge group, and another SU(N) group at its minimal value for the
coupling, as if in (8.3.8) b remained constant and equal to 0, see figure 8.2. This is precisely what
would occur if an enhancon mechanism were at work. The previous analysis is also confirmed
by the positions of the branch points of the Seiberg-Witten curve, that correspond to the double
points of f(u|r), at this point of the moduli space. It turns out to be simpler to use the alternative
meromorphic function g(u|7) defined in (E.2.11), related to f by (E.2.12), and in terms of which

8 As usual in the large M limit, transitions occur abruptly at the threshold scales, allowing us to use > instead of
>.
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the curve is R/S = g. These double points come in two sets: those placed at u = 0,1/2, where
g ~ £2¢' /4 is small in the supergravity limit, become zeros of the polynomial R in the classical
limit; instead those placed at u = 7/2, (1+7)/2, where g ~ £(2¢'/4)~! is large in the supergravity
limit, can be associated to the polynomial S. The first set of branch points turns out to be placed

at
2mik

1
S v~ =2MAea ,  k=0,1,...,2M —1. (8.3.9)

5
They correspond to M fractional D3 branes melted at an enhangon ring at a scale A. The second
set of branch points are almost double branch points

LL2 (A M
M <zoo>
They correspond to M semiclassical fractional D3 branes of the opposite kind, located about the
VEV’s zooe% of the adjoint scalar ®.

Moreover, as in the pure YM case, it turns out to be possible to understand what happens
to fractional D3 brane probes by means of the Seiberg-Witten curve. It is enough to add one
eigenvalue to ® and one to ®. If the two eigenvalues are added at an intermediate scale between 2
and A, it is easy to see that the eigenvalue of ® (corresponding to a wrapped D5 brane) can freely
move outside the enhancon ring, but, as it approaches it, its two branch points split and melt at
the enhancon, which then consists of M + 1 wrapped D5 branes. On the contrary, the eigenvalue
of ® (corresponding to a wrapped anti-D5 brane with flux) is free to move at |v| < |zs0| (that it
cannot cross), and can easily penetrate the enhangon ring: when this happens, it unchains two
branch points from the enhancon ring, that follow the two anti-D5 brane branch points inside the
ring. The interpretation of this phenomenon is that a wrapped anti-D5 brane with flux captures a
melted D5 brane from the ring, forming a D3 brane that is free to move everywhere.

u =0,

VU = 2o

1
—%I: () S, h=01,....,M—1. (83.10)

T
U:§,

An important remark is in order at this point. The one previously considered is not exactly
the same enhangon of section 8.3.1, but actually a generalized enhancon, in the language of [64].
The difference is that the gauge group whose coupling diverges is SU(N + M) rather than SU (M),
leaving IV units of D3 brane charge inside the. It reduces to the usual enhangon only when N = 0.

This analysis led the authors of [129] to conclude that actually there is no cascade: as soon as
the first generalized enhangon (the first threshold scale) is met, the gauge theory remains infinitely
coupled, and the fractional D3 brane melt in a ring.

This is certainly true for the vacuum at the origin of the moduli space of the SU(N+M)x SU(N)
gauge theory, for any value of N: its large N and M correct string dual is described by a solution
with constant twisted fields from infinity down to a cutoff radius where M cutoff wrapped anti-D5
branes with flux are placed; at that radius the b field starts to run as in the solution of section 8.2;
at the radius where b vanishes, there are actually M wrapped D5 branes melted in an enhancon
ring; in the interior b = 0 and the metric is flat.

In the following sections, we would like to propose that there exists a different vacuum which
instead displays a cascading behavior like the one of the supergravity solution of section 8.2. We
will see that it can be obtained as a particular limiting case of an infinite class of vacua, including
also the previous one, whose string dual can be easily identified.

Before presenting our proposal for the cascading vacuum, it is convenient to make a detour on
the moduli space of N' =2 SQCD.
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8.4 The cascading vacuum in the dual field theory

8.4.1 The baryonic root of ' =2 SQCD and the cascade proposal

In chapter 3, we have seen that in the NV = 1 Klebanov-Strassler cascade, the nonperturbative
dynamics which resolves the seeming perturbative strong coupling singularity and triggers transi-
tions along the cascade, Seiberg’s electric-magnetic duality, could be understood by neglecting the
dynamics of the finitely coupled gauge group, which acts as a spectator, and concentrating solely
on the gauge group flowing to infinite coupling.

It turns out that such an approach can be also successfully applied to the N’ = 2 cascade from
fractional D3 branes at the C x C?/Zs orbifold singularity, with gauge group SU(N + M) x SU(N).
If we treat, to first approximation, the finitely coupled SU (V) gauge group as a global flavor group,
the relevant field theory is N' =2 SQCD with n. = N + M colors and ny = 2N massless flavors.

The moduli space of vacua of N'= 2 SQCD has been explored and characterized in a series of
papers. The Coulomb branch of the moduli space was studied in [141], where the Seiberg-Witten
curve for this theory was found. Later, the full quantum moduli space of N' = 2 SQCD was
analyzed by Argyres, Plesser and Seiberg [142]. The result of that analysis is the following.? The
Coulomb branch is parameterized by the vacuum expectation value of the adjoint scalar field ¢ in
the V' = 2 vector multiplet, that after a suitable gauge rotation may be written in the diagonal form
¢ = diag(¢1, P2, - .., Pn.); the eigenvalues are subject to the tracelessness constraint > ¢, ¢q = 0
and are identified under permutations, which are gauge symmetries. The VEV’s generically breaks
spontaneously the nonabelian SU(n.) gauge group to its Cartan subgroup U(1)"~1.
at special submanifolds, where the Higgs branch touches the Coulomb branch, a nonabelian gauge
symmetry survives. Since the Higgs branch can be divided into nonbaryonic branches and a baryonic
branch, the corresponding intersections with the Coulomb branch were named nonbaryonic roots
and baryonic root respectively. nonbaryonic roots are true submanifolds, whereas the baryonic root
is a single point. Classically, the nonbaryonic roots and the baryonic root intersect, but at quantum
level they are separated.

nonbaryonic branches are labeled by an integer r < [nf/2]. The low energy effective theory
at the roots are the IR free or finite SU(r) x U(1)™™" SQCD with ny hypermultiplets in the
fundamental representation and charged under one of the U(1) factors. At special points along
these submanifolds, the Seiberg-Witten curve (E.1.5) shows that n. — r — 1 additional massless
singlet hypermultiplets arise, each one charged under one of the remaining U(1) factors. It is
important for us to remark that there are 2n. — ny such vacua, related by the broken Zs, p
nonanomalous R-symmetry acting on the Coulomb branch.

Instead the baryonic root is a single point, invariant under the Zgp,—n, R-symmetry. This
implies that its coordinates on the Coulomb branch are of the form

However,

= aw,w?, ... W 0,...,0), (8.4.1)

27
2nc7nf

where w = e , for some constant a. The gauge group is thus broken to SU(ny — n.) x
U(1)?m="s, which is IR-free. The requirement that a Higgs branch originates from this root
implies the presence of 2n. — ny massless singlet hypermultiplets charged under the U(1) factors.
The charges of the massless matter fields under the gauge symmetries can be found in [142]. The

9We will restrict our attention to the window n. < ny < 2n. — 2, where the nonconformal orbifold theory under
consideration lies.
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presence of additional massless hypermultiplets allows the identification of the constant « in (8.4.1)
by means of the Seiberg-Witten curve (E.1.5). The result is that aw = (—1)Y/(7<=") A, so that the
Seiberg-Witten curve takes the singular form:

Y2 = g2ngne) (2mens — A2nc*nf)2 ‘ (8.4.2)

The 22("r 7<) factor, corresponding to 2(ny —n.) coincident branch points at the origin, signals the
presence of the massless gluons of the nonabelian SU(nys — n.) group. The remaining 2(2n. — ny)
branch points show up in coincident pairs, placed at z = AwF, with k =0,1,...,2n.—n ¢—1: this
is the right singularity structure to account for 2n. — ny mutually local massless hypermultiplets.

The reader has perhaps already got the reason of this detour: the nonperturbative Higgsing at
the baryonic root preserves the same Zgp,.—r, R-symmetry of the supergravity solution of section 8.2,
and its low energy effective theory possesses a nonabelian SU(ny — n.) gauge symmetry precisely
matching the numerology of the cascade interpretation of section 8.3.2! It is therefore natural
for us to interpret the solution of fractional D3 branes at the C x C2?/Zy orbifold as dual to the
cascading SU(N + M) x SU(N) quiver gauge theory at subsequent baryonic roots of the strongly
coupled groups.!® This proposal reconnects the viewpoints of sections 8.3.2 and 8.3.3. Highly
nonperturbative dynamics occurs at energy scales where one of the couplings of the gauge theory
diverges, reducing the nonabelian group from SU(N + M) to SU(N — M) (modulo M). This
phenomenon is not interpreted as an N/ = 2 Seiberg duality, but as a Higgsing, as suggested also
by the holographic field/operator computation mentioned in section 8.3.3. However, this Higgsing
is driven by the adjoint scalar of the strongly coupled group, and stems out of nonperturbative
dynamics.

In the next subsection, we will study the Seiberg-Witten curve of the gauge theory in this
vacuum, showing that it actually mirrors exactly the type IIB supergravity solution. In the following
sections, we will study in more detail the moduli space of vacua of the SU(N + M) x SU(N) theory,
showing how it is possible to construct the cascading vacuum starting from the enhangon vacuum
at the origin of the moduli space illustrated in section 8.3.4.

Before proceeding, a couple of important remarks are in order. The first observation concerns
the 2M massless photons of the U(1)2 abelian groups and the 2M massless hypermultiplets at
the baryonic root. Their presence is clear from the Seiberg-Witten curve (8.4.2), but these massless
states are more elusive in the type IIB picture. In the latter picture, they should be related to subtle
tensionless string phases of the background, arising when the complex twisted scalar v = ¢ + 7b
vanishes up to periodicities: v € Z + 77Z. This becomes clearer following the duality map between
the type IIB picture and the M theory picture (which is nothing but the Seiberg-Witten curve).
We will see that points in the complex plane where 7 vanishes (up to its periodicities) correspond
to the double branch points of the massless hypermultiplets in the cascading Seiberg-Witten curve.

Another important remark regards the relation to Seiberg duality in N’ = 1 theories pointed
out in [142]. Upon mass deformation, the N' = 2 SQCD theory reduces at low energies to N' =1
SQCD with a quartic superpotential for the quarks, if the mass parameter is larger than the strong
coupling scale. Even in the deep IR (or in other terms, sending the mass deformation to infinity),
the quartic superpotential survives, as it is marginal for ny = 2n. and relevant for ny < 2n. at

10We should mention at this point that a proposal for an A/ = 2 cascade at the baryonic root has actually been
proposed in [143] in the context of the M theory realization of this elliptic model, following the same basic SQCD
reasoning explained above, without mentioning its relation to the type IIB solution of [39].
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the quantum level.'? When the mass parameter is much smaller than the strong coupling scale of
the A/ = 2 theory, the use of the effective theory at the roots is justified. N’ = 1 supersymmetry
prevents phase transitions as the mass parameter varies, so that the results should be the same
as those in the previous microscopic picture. As soon as the mass deformation is turned on, the
Coulomb branch is lifted, except for the baryonic root and the special points in the nonbaryonic
root where there is a maximal number of massless hypermultiplets. As the mass parameter is
sent to infinity (or in other words, in the IR), these points merge into a single one. Moreover,
new branches appear [144]. It is possible to show that this macroscopic description of the mass
deformation leads precisely to the magnetic dual theory -~ N = 1 SU(ny — n.) SQCD with ny
(magnetic) quark superfields and a quartic superpotential— of the microscopic (electric) theory —
N =1 SU(n.) SQCD with ns (electric) quark superfields and a quartic superpotential —. This is
practically a proof of Seiberg duality in SQCD with quartic superpotentials.

Given this relation, it is natural to expect that the cascading vacuum of the N' = 2 quiver gauge
theory of fractional branes at the C x C2/Zy orbifold should reduce upon mass deformation to the
Klebanov-Strassler cascading vacuum of the N' = 1 quiver gauge theory of fractional branes at the
conifold singularity. We will return to this point in the next subsection.

8.4.2 The cascading vacuum in the quiver gauge theory

In this subsection we consider the cascading vacuum at subsequent baryonic roots that we have
suggested in the previous subsection; we study it by means of the Seiberg-Witten curve for the
quiver gauge theory, introduced in section 8.3.4 and explained in appendix E.2. We will see that
the analysis of the curve at this special point indeed leads to a cascading RG flow for the field
theory which mimics precisely the running gauge couplings and the decrease of ranks that can
be extracted from the supergravity background of section 8.2, along the lines of the holographic
analysis of section 8.3.2.

Let us consider the elliptic model of section 8.3.4, starting from an SU((2h+ 1)M) x SU((2h +
1)M) conformal theory in the ultraviolet and then breaking the gauge group to SU((2h + 1)M) x
SU(2hM) by giving VEV’s of order zo to some components of the adjoint scalar of the second
gauge group, so as to trigger an RG flow: the vacuum we choose is given by subsequent alternating
baryonic root VEV’s for the two gauge groups. The Seiberg-Witten curve is

R(v)
S(v)

= g(u|T), (8.4.3)

where the meromorphic function g(u|7) is defined in (E.2.11) in terms of quasi-modular functions
on the u torus of complex structure 7. The polynomials R(v) and S(v), of degree (2h + 1)M, can
be written as:

h—1
R(v) = M T (M + ¢2+%:21)
j=0
- (8.4.4)
S(w) = (M — 220 [T WM + 242221y
j=0

""We do not consider ny > 2n. since the theory is not UV free and needs a completion.
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The polynomial R(v) is related to the SU((2h 4+ 1)M) group that starts flowing toward strong
coupling at the cutoff scale, whereas the polynomial S(v) is related to the SU((2h + 1)M) group
which is spontaneously broken to SU(2hM) at the scale z». The eigenvalues of the two adjoint
scalar fields are put, in an alternating manner, at energies corresponding to their (subsequent)
strong coupling scales along the cascade: in the limit in which we neglect the gauge dynamics of
the finitely coupled gauge group at those strong coupling scales, the vacuum expectation values
are placed exactly at the baryonic roots of the relevant SQCD theories at those energy scales. In
agreement with the cascading RG flow of the supergravity solution, the hierarchy of the strong
coupling scales is controlled by ¢ = €2™7, so that the strong coupling scales are equally spaced in
a logarithmic plot.

It is clear that the RG flow of the quiver gauge theory on this vacuum coincides by construction
with the RG flow that can be extracted holographically, as in section 8.3.2, from the type IIB
supergravity solution of fractional branes at the C x C2?/Zy orbifold. Indeed, because of the large
M limit, the Seiberg-Witten curve shows that out of the strong coupling scales of the gauge group
the running is led by the perturbative g-functions. This can be explicitly checked either numerically
using the exact curve, or analytically by expanding the polynomials energy range by energy range,
in an effective field theory approach that makes the previous statement obvious.

We now move to the study of the branch points of the curve. At ¢t = £1 (u =0 and u = 1/2
respectively) we find that the branch points of the Seiberg-Witten curve (points in the v plane where
NS5 branes touch) associated to the polynomial R(v) lie at v = :Fq%r”z% (n=0,1,...,h—1)
and vM = :F2qi+hzé‘g respectively. The former class of points consists of h sets of baryonic root
VEV’s of the first gauge group, whereas the latter branch points are those of the true enhancon of

the low energy SU (M) theory.
At t = +¢"/? (u = 7/2 and u = (7 + 1)/2 respectively), the branch points of the Seiberg-

Witten curve associated to the polynomial S(v) lie at v = (1 £ 2qi)zé\g and vM = IFq%+”zoj‘g
(n =0,1,...,h — 1) respectively. The first set of points are the almost coincident branch points
associated to semiclassical fractional D3 branes at the cutoff scale z.,, whereas the other ones are

h sets of baryonic root VEV’s of the second gauge group.

From the number of solutions found in the previous analysis, we immediately have an indication
that, to leading order in ¢, all the branch points are double except those related to the enhancon,
which are well split, and those related to the cutoff, whose relative splitting is of order ¢'/4; the
separations between close branch points at the cutoff are larger than those at the baryonic root
points, which are at least of order g, as we will see below.

We would like to estimate to which extent the ‘baryonic root’ branch points may be considered
double in the curve for the quiver gauge theory; in other words, we would like to see how much
this curve is similar, close to each transition scale, to the curve at the baryonic root of the related
SQCD theory. In particular, an important property of the baryonic root curve of SQCD is that it
has genus 0, having all double branch points: this is what allows this point of the moduli space to
survive the mass deformation to N' =1 [144,145]. It would be very nice to find a cascading N' = 2
vacuum with genus zero Seiberg-Witten curve: such a vacuum would survive a mass deformation,
which could be used to provide an exact interpolation between an N/ = 2 cascade and the N/ =1
Klebanov-Strassler cascade. Unfortunately, we have not succeeded in this achievement yet.

We will see explicitly that the branch points of the Seiberg-Witten curve of the cutoff cascading
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vacuum (8.4.4), to order O(q),'? are all double except those at the cutoff and at the enhancon.
Clearly, any vacuum with a conformal UV completion does not survive the mass deformation,
since the adjoint VEV’s which Higgs the conformal group to a nonconformal one are not allowed
anymore. But as soon as we send the cutoff to infinity, hence constructing an infinite cascade, the
approximation to which the branch points are double becomes better and better in the UV.

Let us see this explicitly. In order to study the infinite cascade limit, where we keep the scales of
strong coupling fixed as we send the cutoff to infinity, it is convenient to rewrite the two polynomials
in terms of the IR enhangon scale A.:

h
M H(U2M + q—ZjAzM)

=1

. (8.4.5)
Sh(’U) — (UM ffthM H 172jA2M) )

The limit of infinite cascade is simply h — oco. We then define o = v/A., and introduce dimen-
sionless polynomials Ry, (7) = Aél+2h)MRh(v) and Sj,(0) = AéHQh)MSh(v). Further definition of
x =M allows us to write

. (8.4.6)
Su(@) = (@ —q 1 ") [[(a* +¢"7¥)
j=1
Let us also define .
_Ru@) x4+ a)
Th(fE) = Sh(a:) - N q_l_h H;L:1(x2+q1 2]-) (8.4.7)
and
T(z) = lim Tp(x), (8.4.8)

so that the exact Seiberg-Witten curve (8.4.3) for the infinite cascade we are studying becomes
formally

T(x) = g(ulT) . (8.4.9)
We would like to see to which level of approximation the branch points of this curve, at u = 0, % and
u=3, H'TT may be considered double in an expansion in positive powers of the small parameter q.

We will make use of the following property of g at its double points: g(0|7) = —g(5|7) = 1/g(%|7) =
—1/g(3=|7). Let us start from the branch points at u = 0, 1. It is easy to show that

250 [0 +¢) 150 +6%)
l_i_sqi—l-h—n H?:l(l _|_q2i71)2 Hz n+1(1+q21 1) )

Th(—sq¢ ") = (8.4.10)

12Recall that in the supergravity limit ¢ — 0.
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where s = £1. Therefore, corrections due to the cutoff h enter qfiTh(—sq_") at orders qh7"+i

and ¢?("=™)+1 We should then compare s T(—sq™") with
02(0[27) sy (T4¢%)?
90(a) = 9(0I7) = 205 =24 H 05 2m1) (8.4.11)
The comparison yields
T(—sq™" i (14 g% 1
sT(=sq™") _ Hzfqéj)—l( q2' ) =1+ 0(¢%). (8.4.12)
Similarly, for the branch points at u = J, 3T,
1 n=10y | 2i—1\2 Tph—nt+l(q o 2i-1
Th(—sq’"Jr%) = i U™ )" [limy” 1 +a™) : (8.4.13)

250t (14 sq ) TS A+ TS0+ %)

Corrections due to the finite cutoff h enter qiTh(—sq_”*'%) at orders qh_”+% and g2+t We

should now compare s/T(—sq_"”'%) with go(q):

1

sT(=sq ""2)""  [ie,(+¢* )
90(q) I, + %)

We therefore conclude that, except at the true IR enhangon scale A., the branch points of the
curve are double in the ¢ — 0 limit. The approximation to which the branch points can be
considered double (or the extra hypermultiplets have small masses) is better and better as we go
to the ultraviolet (increasing n), and is instead poor in the IR. This had to be expected, because
the TR physics is given by SU(M) SYM, and, having chosen the origin of the Coulomb branch, we
find a true enhancon at 2 = 4. Hence we can conclude that this curve is not ‘rotatable’, in the
sense that the parallel NS5 branes of the corresponding type ITA setup cannot be rotated to an
N =1 supersymmetric configuration (the tangent of the rotation angle is proportional to the mass
parameter): it has not genus 0, because its far IR part carries genus M — 1.

This means that the cascading vacuum defined by (8.4.5) in the h — oo limit is not exactly
related to the /' = 1 Klebanov-Strassler vacuum. This should have been expected too, since the IR
regime of the Klebanov-Strassler cascade is pure N' = 1 SYM. The M vacua of this theory, breaking
the nonanomalous R-symmetry Zojs to Zo, can be obtained by mass deformation of M vacua of the
N =2 SYM theory, also breaking the nonanomalous R-symmetry acting on the Coulomb branch,
Zopg, to Zso. These latter vacua, whose Seiberg-Witten curve has genus 0, differ from the vacuum
at the origin of the moduli space. We conclude that an exact genus 0 Seiberg-Witten curve for
an infinite N' = 2 cascade, which would be related by mass deformation to the Klebanov-Strassler
cascade, necessarily involves breaking of the Zsj; symmetry, which the background of section 8.2
instead preserves.

=1+0(" ). (8.4.14)

Let us end this section summarizing the result and making a remark. The Zoj/-symmetric
type IIB background of section 8.2 is dual to a cascading N' = 2 gauge theory on the vacuum
described by the polynomials (8.4.5) in the h — oo limit, up to possible subleading corrections in ¢
which are not visible in the supergravity approximation. It possibly approximates a Zs-symmetric
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background whose Seiberg-Witten curve has genus zero!® and which upon massive deformation

flows to the Klebanov-Strassler cascade. This may be viewed as an N/ = 2 analogue of how the
Klebanov-Tseytlin solution approximates the Klebanov-Strassler solution, but with an important
difference: unlike its N/ = 1 counterpart, the N’ = 2 Zsy);-symmetric cascading solution describes
a perfectly legitimate vacuum, whose IR dynamics, described by an enhancon vacuum, is very
different from the one of a genus 0 point in the moduli space, with additional massless monopoles.

In the next section we will study in more detail the moduli space of the quiver gauge theory,
and show how it is possible to construct the cascading vacuum of this section starting from the
enhangon vacuum of section (8.3.4).

8.5 The enhancon bearings

In this section we study a class of vacua of the SU(N + M) x SU(N) quiver gauge theory which
preserve the same Zops R-symmetry as the supergravity cascading solution. We will start from the
enhancon vacuum of section 8.3.4 and gradually construct the cascading vacuum by pulling VEV’s
out of the origin. In this process, we will observe new nontrivial vacua, for which we will propose
novel type IIB dual backgrounds.

Let us consider the following polynomials for the Seiberg-Witten curve of the SU(N + M) x
SU(N + M) gauge theory:

R(’U) — ,UN—M(,U2M o ¢2M)

S(w) =N (M = My .

(8.5.1)

An overall vV =™ (interpreted as N — M D3 branes at the origin) factor in R and S decouples from
the Seiberg-Witten curve (8.4.3), so that we will effectively reduce to the SU(2M) x SU(2M) case,
with

S(v) = oMM = My . (8.5.2)

When ¢ = 0 we are at the enhancon vacuum at the origin of the moduli space. We want to
study the branch points of the Seiberg-Witten curve as we vary ¢ continuously. We work in the
supergravity approximation of small ¢, so that go(q) = 2¢*/* + O(¢°/*). We will use the shorthand
notation & = v™; let us also define the enhancon scale as A, = (2¢"/*z2)/M,

Let us first consider the branch points at u = 0,1/2, related to the R polynomial. According
to the value of |¢|, we can use different approximations. The branch points are the following:'4

o [oM] < g2

M
£ 4NN £~ xgM (f) | (8.5.3)

namely 2M equally separated branch points at the enhancon ring and 2M equally spaced
branch points at a ring of radius |¢?/A.|.

131t would be very interesting to prove the existence of such a vacuum by finding its genus 0 Seiberg-Witten curve.
"We write the first corrections only when they are necessary to split double branch points.
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Figure 8.3: RG flow of the theory at a vacuum with a perturbative Higgsing.

o [oM] > [q"/*=Y]:
£~ +(14eqHeM, e=41, (8.5.4)

namely 2M almost double branch points on a circle of radius |¢]|.

As far as the branch points at u = 7/2, (1 4+ 7)/2, related to the S polynomial, are concerned, as
long as [pM]| < |¢~'/*2M|, which will always be the case if |¢| < |2o0], the branch points are

M
€~ (14240 £ ~ +4¢"2pM (f) , (8.5.5)
€
namely 2M almost double branch points along a circle of radius the cutoff scale |zo| and 2M
equally spaced branch points on a ring of radius gL/M o1/ (2M) |62/ Ae|.

The picture which stems from the branch points of the curve and from the study of the RG flow,
which can be found immediately using an effective field theory point of view, is very interesting. In
the case |Ae| < |¢| < |2ao|, whose RG flow is depicted in figure 8.3, the theory is conformal in the
UV, up t0 2so,'® where M perturbative eigenvalues of one adjoint scalar field Higgs the gauge group
to SU(N + M) x SU(N) x U(1)M, triggering the RG flow. These eigenvalues correspond to M
semiclassical wrapped anti-D5 branes with flux in the type I1IB picture. At a scale ¢, there are 2M
almost double branch points at the positions of the 2M VEV’s of the other adjoint field, which break
SU(N+M) to SU(N—M)xU(1)* and invert the RG flow. They correspond to 2M semiclassical
wrapped D5 branes in the geometry, which invert the twisted fluxes: in particular, b starts to grow
as the radius decreases. At a lower energy scale ¢'/(2M) 2 /A the SU(N) gauge coupling diverges
and there are 2M branch points equally spaced along a ring; in the interior the gauge couplings do
not run, and we are left with an SU(N — M) x SU(N — M) gauge theory with a divergent coupling.
In the type IIB picture b reaches the value 1, and there are M tensionless anti-D5 branes with one
unit of flux smeared at this anti-enhangon. It is possible to see by adding an anti-D5 brane probe
that it cannot penetrate the interior, whereas a D5 can penetrate it, unchaining an anti-D5 from
the anti-enhancon. So far everything was expected.

5For the sake of brevity, from now on we omit the modulus when we discuss of energy scales.
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<

Figure 8.4: Branch points at a vacuum with one enhangon bearing, a nonperturbative region
between two enhancon rings. Red circles denote branch points related to the S polynomial, whereas
blue circles denote branch points related to the R polynomial.

The behavior is more surprising in the case |¢| < [A¢|. If ¢ = 0 we are at the enhancon vacuum
of section 8.3.4. Instead, if ¢ does not vanish, the branch points follow the pattern of figure 8.4,
whereas the RG flow is the one depicted in figure 8.5. There is a cutoff scale where M wrapped
anti-D5 branes are placed, then a flow with decreasing b toward smaller radii, and an enhancon ring
with 2M equally spaced branch points at A, where b reaches 0, M tensionless D5 branes melt on
the ring and the related gauge coupling diverges. At lower energies the couplings remain constant
as b = 0 in the dual supergravity solution, because of M D5 branes at the enhangon shell. One
could have expected that a new flow started at a scale ¢ because of the VEV’s, but it does not: it
actually starts only at a lower scale ¢?/A., where there are 2M additional equally spaced branch
points; below this energy scale, the gauge group which was at infinite coupling starts to run toward
weak coupling, whereas the other one toward strong coupling; we enter a new perturbative regime,

S

N-M N
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Figure 8.5: RG flow of the theory at a vacuum with one enhancon bearing.
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which ends with a final ring of equally spaced branch points at a scale of order ¢*/M)|¢2 /A, | where
one gauge coupling diverges; in the interior the couplings remain constant, one infinitely and the
other finitely coupled, down to the IR.

It turns out that there is an interesting ambiguity in the type IIB interpretation of the flow:
there is an N’ = 2-inspired point of view, which by continuity with the perturbative Higgsing regime
discussed before interprets the ring of branch points at $?/A. as an enhancon made of M tensionless
melted D5 branes (like the one at A.), which therefore forces b to grow as the radius decreases, so
that it remains bounded by 0 and 1. Finally, the innermost ring, placed where b reaches 1, is an
anti-enahncon ring made of smeared tensionless wrapped anti-D5 branes with flux. In this picture,
wrapped D5 branes are always associated to the first gauge group, and wrapped anti-D5 branes
with flux are always associated to the second gauge group.

But there is also an N = 1-inspired point of view, which works by analogy with the Klebanov-
Strassler cascade and interprets the ring of branch points at ¢?/A. as an anti-enhancon made of
M tensionless melted wrapped anti-D5 branes with 0 units of flux, so that b becomes negative
at smaller radii.'® Then b is monotonic, and the innermost ring at b = —1 would be interpreted
again as an enhancon ring made of M tensionless wrapped D5 branes with one unit of flux.!” This
is the picture that was followed by Polchinski: b is monotonic in the solution of section 8.2, and
the auxiliary brane system changes as b crosses integer values; the association between fractional
branes and gauge groups is such that wrapped D5 branes always correspond to the larger group
and wrapped anti-D5 branes to the smaller group.

Notice that for cascading transitions triggered by fractional D3 branes not of N' = 2 kind,
namely branes wrapped on isolated cycles, that do not possess an A = 2-like moduli space,'® the
N = 1 inspired interpretation is the only available choice, since no supersymmetric brane sources
can be placed out of the isolated singularity to explain the reduction of degrees of freedom as a
Higgsing.

Let us also remark that from the field theory Seiberg-Witten analysis, any of these two inter-
pretations is equivalent: they only give different names to a unique field theory physics. What
is physically meaningful in the field theory is to see whether pairs of branch points starting in a
perturbative region split and melt as they hit a ring of equally spaced branch points (which occurs
if they correspond to VEV’s of the same gauge group as those related to the ring) or rather they
cross it without any problems, unchaining a pair of branch points from the ring (which happens if
they are VEV’s for the other adjoint field). The probe brane analysis in the two interpretations
gives the same result.

This ambiguity is perhaps only a matter of definition: after all, the corresponding type 11B
supergravity solutions can be obtained by excising and gluing pieces of the solution of section 8.2
(possibly generated by one or the other kind of fractional D3 branes) and of a flat space fluxless
solution, with suitable sources accounting for the discontinuities at the glued surfaces, along the
lines of [135]. In each piece of solution we could act with the discrete S-duality transformation
which changes sign to the twisted fluxes, and so switch from one picture to the other.

Let us finally notice that we can keep playing the same game of adding suitable VEV’s, explained
so far in this section, to the newly found solutions, so as to generate longer RG flows with more

%11 the preferred gauge that we have used many times, they would have looked as wrapped anti-D5 branes with
flux.

"In the preferred gauge, they would have looked as wrapped D5 branes without flux.

8The reader may keep in mind the Klebanov-Strassler cascade as an example.
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and more transitions and reduction of degrees of freedom.

Let us summarize what we have found. Conventional enhancon rings are barriers for a kind
of fractional D3 brane probes, containing a disk in the complex plane, where there are no fluxes
and the metric is flat. Here we have found that in different vacua of the same N = 2 quiver
gauge theory, continuously connected to the usual enhancon vacuum, there exist enhangcon bearings,
regions bounded by two enhangon rings (or an enhangon and an anti-enhancon ring), which also
represent barriers for (one or two kinds of) fractional D3 brane probes and inside which there are
no fluxes and the metric is flat, which separate different regions of the plane. To any of these
configurations, at least in the Zsj/-symmetric case, we are able to associate a corresponding type
IIB solution obtained by gluing pieces of the fractional D3 brane solution and pieces of the flat
space solution (the enhangon bearings), up to the aforementioned ambiguity. Finally, we are free
to rotate as we like the pieces of brane solutions, effectively shifting the ¢ axion without affecting
the b field, since the enhancon bearings we have found act as domain walls between different pieces
of the fractional brane solution. In the dual field theory, this is achieved by changing the phase of
the ¢ VEV’s.

8.5.1 Reconstructing the cascading vacuum at the baryonic roots

Let us conclude this section be connecting these enhancon bearing vacua to the cascading vacuum
at the baryonic roots of the previous section. Such a cascading vacuum is characterized by the
property that all the complex strong coupling scales along the cascade are related by the same
hierarchy ¢/(2M) That ensures that, in the supergravity approximation, the branch points at the
strong coupling scales along the cascade (except for the last IR one) pair up in double branch
points.

We can reconstruct such a vacuum from a vacuum with enhangon bearings as follows. We start
from a vacuum with an enhangon bearing and send the thickness of the bearing to zero sending
|¢| — |Ae| for the relevant strong coupling scale A.. So doing, we end up with a single circle, at a
scale A, over which 4M branch points lie, 2M coming from inside and 2M coming from outside.
For generic phases of ¢, these branch points do not pair up, and on the type IIB side we end up
with a source term at the glued surface. But if the phase of ¢ is suitably tuned, branch points
coming from the outer boundary and branch points coming from the inner boundary of the bearing
collide, hence forming double branch points. If we start from an infinite RG flow with enhangon
bearings, and if we fine-tune all the ¢’s, we can obtain the cascading vacuum along the baryonic
roots.

On the type IIB side, as we reduce the bearing to zero thickness we make the two smeared
sources at the inner and outer boundaries of the bearing coincide. From the N = 2-inspired point
of view, we end up with a source for 2M smeared tensionless wrapped D5 branes, say. There
might be some additional subtleties at the special points where v € Z + 7Z, where tensionless
strings appear: these points are nothing but the locations of the double branch points. From the
N = l-inspired point of view, the two smeared sources along the rings correspond to tensionless
wrapped D5 branes and tensionless wrapped anti-D5 branes, both with no worldvolume gauge flux.
If the branch points of the inner and outer rings coincide as we shrink the bearing, the two smeared
sources annihilate leaving a continuous solution, otherwise a source remains accounting for the
discontinuity of ¢: very roughly speaking, it is tempting to think that it would be made of smeared
dipoles of wrapped D5 anti-D5.
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It would be very nice to study in more detail at the level of type IIB string theory the action
of these smeared sources, in such a way to account for possible shifts of c.

Let us make here a final remark on the ambiguity that we have mentioned previously. We have
recalled in appendix E how to reinterpret the Seiberg-Witten curve as the embedding of an M5
brane. Branch points of the curve correspond to NS5 branes touching or intersecting in the type
ITA picture which arises upon compactification. In the cascading configuration we have studied, by
continuously moving along the Coulomb branch it is possible to see that the vortex numbers on the
NS5 branes are such that the branch points can be interpreted either to NS5 branes touching or to
NS5 branes crossing. This is the T-dual of the type IIB ambiguity: NS5 branes touching correspond
to the first, N’ = 2-inspired, picture where b € [0, 1]; instead, NS5 branes crossing correspond to
the N = l-inspired picture where b is monotonic.'”

An important remark is in order at this point, concerning the behavior of probes and its relation
to the rearrangement of the auxiliary brane system that is used to extract ranks and gauge couplings
from the cascading supergravity solution. It will prove useful to start again from a vacuum with
an enhancon bearing, see what happens and finally shrink the bearing and let it disappear. Let
us add a probe VEV for the adjoint scalars of both gauge groups, in the perturbative regime at
energies higher than the scale of the outer enhangon of the bearing. We can then move the VEV
for the adjoint field of the gauge group related to the branch points of the outer ring, keeping the
additional VEV for the other adjoint field fixed. As we decrease this probe VEV towards the outer
enhancon scale, the two branch points which are semiclassically associated to the probe VEV start
to separate and finally end on the outer enhancon ring. When this VEV becomes smaller than the
scale of the inner ring of the bearing, two branch points escape from this ring, get closer, and then
continue their motion as almost double branch points. In the A/ = 1-inspired point of view, this is
interpreted as a wrapped D5 brane which melts at the enhangon, and then comes out of the inner
anti-enhancon as a wrapped anti-D5 brane. Similarly, we can move the probe VEV of the other
gauge group. The result is that its two branch points cross the outer enhancon ring, unchaining
two of its branch points. When they reach the inner ring, they leave two branch points there. In
the A/ = 1-inspired point of view, where b is monotonic, this is interpreted as a wrapped anti-D5
brane with flux, capturing a wrapped D5 brane at the enhangon and becoming a D3 brane, which
then leaves a wrapped anti-D5 with no flux at the anti-enhangon, becoming a wrapped D5 brane
with one unit of worldvolume flux when b € [—1,0]. Let us finally shrink the enhancon bearing: if
the positions of the branch points on the two rings are tuned (as occurs at the baryonic root), the
sources at the boundaries of the bearing annihilate, and we are left with the fractional D3 brane
solution of [39], with monotonic b. As a result, the interpretation of the behavior of probe VEV’s as
they cross the transition scales precisely accounts for the nontrivial rearrangement in the auxiliary
brane system.

It is worth noticing that the previous discussion can be rephrased consistently in the N/ = 2
perspective where b € [0, 1] takes a saw-shape: the language is simpler, and there is apparently no
rearrangement of branes. However, it is important to keep in mind that highly nonperturbative
dynamics occurs at the strong coupling scale; at that energy it does not make sense to think about
fractional D3 branes using our perturbative intuition: pairs of branch points from probe VEV’s
split and then rejoin at the surface where the source is, showing that some rearrangement has

9The latter is the only picture surviving rotation of the NS5 branes (mass deformation): in this ' = 1 case NS5
branes do not cross anymore, but it remains true that their coordinates along the T-duality direction keep crossing
on the circle.
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actually occurred.

To conclude this section, let us see a posteriori how the cascading vacuum at subsequent bary-
onic roots naturally arises as the dual of the supergravity solution of section (8.2). Requiring
rotational isometry in the C plane implies that the background has a Zojs symmetry. Moreover, no
sources were placed in the geometry (except those at the enhancon scale which resolve the repulson
singularity), so that the background for the twisted fields has everywhere continuous derivatives,
except at the enhangon. On the field theory side, vacua which preserve the same Zop; symmetry
and that do not display perturbative Higgsing in the large N limit are those where the scales of the
¢ VEV’s occur at strong coupling scales. Among these, only the cascading vacuum at the baryonic
root avoids seeming discontinuities (which would actually be resolved by instanton effects) of the
theta angles at the strong coupling scales: this maps into the continuity of ¢ on the supergravity
side. Continuity of the derivatives is finally achieved in the N = 1-inspired picture.

8.6 Summary and conclusions

In this chapter, we have proposed a field theory vacuum dual to the supergravity solution of M
fractional D3 branes at the C x C?/Zy orbifold. It enjoys a cascading RG flow similar to the
Klebanov-Strassler flow, where the number of degrees of freedom repeatedly drops by M units at
the strong coupling scales of one or the other gauge group; this RG flow can be compared faithfully
with the properties of the type IIB background from the UV down to the IR, which is described
by an enhancon mechanism. Unlike its N' = 1 counterpart, the decrease of the number of degrees
of freedom is not described by an electric-magnetic duality but is due to a highly nonperturbative
Higgsing. This nonperturbative Higgsing, occurring at the roots of the baryonic branches of the
strongly coupled gauge group was shown in [142] to reduce to Seiberg duality upon mass deforma-
tion. It would be very interesting to find an interpolating supergravity solution between the N' = 2
cascading background of [39] and the A/ = 1 Klebanov-Tseytlin background of [36], and even more
interesting to find a genus 0 Seiberg-Witten curve on an N' = 2 cascading vacuum, reducing to the
exact NV =1 MQCD curve for the Klebanov-Strassler cascade upon mass deformation.

Analyzing Zop-symmetric vacua of the moduli space of the (cutoff) SU(N+M)xSU(N) N =2
quiver gauge theory, we have also discovered a new incarnation of enhancon rings as boundaries of
enhangon bearings which separate disconnected regions. These vacua, for which we have been able
to propose type IIB duals, allow us to interpolate between the enhancon vacuum of section 8.3.4
and the cascading vacuum of section 8.4. In this process, we have also understood the origin of the
(perhaps mysterious) rearrangement of the constituents of Polchinski’s auxiliary brane system as
strong coupling scales are crossed.

In the background of the previous chapter, we have seen that even in N/ = 1 setups, at scales
where an N = 2 fractional D3 brane (of the auxiliary brane system) becomes tensionless a gauge
group with an adjoint field reduces its ranks and crosses a seeming strong coupling singularity.
When the gauge coupling diverges, the holomorphic part of the dynamics of that node of the quiver
is N/ = 2, whereas we lack information about the Kéhler structure. However, from the vantage
point of string theory it is natural to expect that the nonperturbative dynamics responsible for the
transition is the same as that considered in this chapter: nonperturbative Higgsing at the root of
the baryonic branch. This issue deserves further investigation.
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Appendix A

Conventions for type IIB supergravity

A.1 Forms and Hodge duality

We define a p-form w on an n-dimensional Riemannian manifold X as

1
w= ijm---up dxtt A ANdatr (A.1.1)

Hodge duality is an operation that maps p-forms into (n — p)-forms. The Hodge star is defined as
follows:

/5
xdxM N ... dztr = F’Z))' gPr gt ey o, AT N L dD R (A.1.2)

where s = £1 depending on X having Euclidean or Minkowskian signature respectively, and €, .. ,,
is the Levi-Civita symbol, which is a completely antisymmetric density and equals +1 (—1) when
its indices lie in the same (opposite) order as the ordered vielbein. For a generic p-form w, the
Hodge dual form is then

(*w)m...pn,p dl’pl AEEREWA dﬂjp"—l’ _

(A.1.3)
1 \/S
— W (p"g €V1~~~Vpp1-~~pn—p wlflwl’p) dxpl A A dajp"*p ,
so that
WA *w = L Vg Wy Wttt dM e = 1 Wyy gy W1 dvolx = |w|? dvolx
P it pl bt (A14)

* kW = s(—l)p("*p)w .
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A.2 Type IIB supergravity: action and equations of motion

We follow conventions in which the action of type IIB supergravity in string frame reads

) 1 1
Sstring 2{/52@ [R* 14+ 4d® A *d® — Hg/\*Hg] +
2K 2
. 10 . (A.2.1)
—2/ |:F1/\>(<F1—|-F3/\*F3+2F5/\*F5—C4/\H3/\F3:| } ,
where 2x%, = (27)7 o, and we define the gauge invariant field strengths
L =dCy , F3=dCy+ Cy Hs , Fs=dCys+ Cy N Hg Hs =dB> . (A.2.2)

Self-duality of F5 has to be imposed on shell. The %Fg, A *F5 term in (A.2.1) is a common abuse
of notation, since a simple Poincaré invariant action principle for the self-dual field does not exist.!
We also introduce the gauge invariant field strength polyform F = dC + C A Hs,? satisfying the
Bianchi identity dF + H3 A F = 0. F; and Fy are proportional to the Hodge duals of F3 and Fj
respectively; their precise definition will be derived below by consistency of the Bianchi identities
of higher rank field strengths with the equations of motion of lower rank field strengths.

When the dilaton is a constant or asymptotes to a constant, we can switch to Einstein frame
by rescaling the metric by the fluctuating part of the dilaton and the RR potentials by the string
coupling gs = e®0:

C
girv = ¢ giin $p=o—dp, cy =2 (A.2.3)
The action of type IIB supergravity (A.2.1) in this Einstein frame reads

_ 1 1 1
S[E[zgstem_ﬂ{/R*l_Q/[d(ﬁ/\*d(ﬁ—i—e%’Fl/\*F1+6¢F3/\*F3+2F5/\*F5+
K (A.24)
+e_¢H3/\*H3—C4/\H3/\F3]}a

where 2k? = 2k%, g2 = (27)7 g2 a* is the ten-dimensional Newton constant for an observer in the
asymptotic region.
When dealing with D3-D7 backgrounds, where the dilaton does not asymptote a fixed value,
we prefer instead to rescale only the metric by the whole dilaton field:
JuN = e/ gf/[N . (A.2.5)
After all, the true string coupling e® is not a constant, but rather the vacuum expectation value of
a field, which may vary in the manifold. The action of type IIB supergravity in Einstein frame in

!See however [146] for recent progresses in the subject. A related subtlety that we have to bear in mind is that
when varying with respect to Ci the D3 brane action, we have to split by hand the [ C; Wess-Zumino term into
electric and magnetic parts, and vary only with respect to the electric part. In other terms, we have to put a factor
of 1/2 in front of that term.

2A polyform is a formal sum of forms of different degrees. In the present context C' = Cy 4+ Cy 4+ Cy + Cs + Cs
andF:F1—|—F3+F5+F7+F9.
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this case reads

. . 1 1 1
Sﬁ-zgsmzn:w{/R*1—2/|:d(1>/\*dq)+62q>Fl/\*F1—|—€(I>F3/\*F3—|—2F5/\*F5—|—
K10

+€¢H3/\*H3—C4/\H3/\F3:|} .
(A.2.6)

In the conventions of (A.2.6), the equations of motion and Bianchi identities are:

1 1
Ryn — zgun R = <

2 2

1 1 1
(51\/1‘1) OND — 29MN|d‘I>|2> + 3 e?® <FM Fny — 29MN|F1|2> +

1 1 _
+7 e® (FupoFn"% — gun|F3%) + 1€ ® (HupoHNT? — gun|Hs|?) +
+ 96 Frrpors FnToMS
(A.2.7)
1

dxd® = *® Fi N xFy + B e?® (F3 N xF3 — e 2® Hs A *Hg) (A28)
d(e*® « Fy) = e® Hy A xFy (A.2.9)
d (e® x F3) = H3 A +F5 (A.2.10)
dFs = —Hs N\ Fs (A211)
dFs = —Hs A\ Fy (A212)
dF; =0 (A.2.13)
d (e ®xH3) = Fs AN F3 — e® Fy A +F3 (A.2.14)
dH3 =0, (A.2.15)

where we have consistently imposed *F5 = F5. Consistency of the equations of motion for Fy, Fj
with the Bianchi identities dFy + Hs A F7 = 0 and dF; + Hs A F5 = 0 for the dual field strengths
imposes the identifications

F7: —€q>>l<F3 Fg :€2¢*F1 . (A216)

Given these identifications, equations (A.2.9)-(A.2.13) are elegantly summarized in the Bianchi
identity dF' 4+ Hs A F' = 0 for the polyform F.

In the presence of D brane source terms Ss, in the action, equations of motions and Bianchi
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identities become:

1 1 1 1 1
Ryn — S9MN R= 3 OpmPOND — 29MN|d(I)|2> t3 e?® <FM Fy — 29MN|F1|2> +
1 1 _
+ 1 e® (FMPQFNPQ — gun|F5)?) + 16 ® (HMPQHNPQ — gun|Hsl?) +
1
+ % Frpors FnTOMS 4 213 T0%
(A.2.17)
1 0S
dxd® = *® Fy A *xFy + B e?® (F3 N xF3 — e 2% Hs A *Hg) — 2/{%0 6;:“ (A218)
0S
dFy + Hy \ Fy = =253 -2 (A.2.19)
0Cy
0S
dFy + H3 N\ F5 = 4253 -2 (A.2.20)
0C5
oS
dFs + Hy \ F3 = =23, -2 (A.2.21)
o
oS
dFs + H3 A Fy = =253, 55"“ (A.2.22)
6
0S8
dFy = +2k7, 5 08" (A.2.23)
oS
aaﬂﬂgzﬁA&—ﬁﬂAwa@wé“ (A.2.24)
dHs =0, (A.2.25)
where 1 sS
o (A.2.26)

Tun = ———
T =g g

is the stress-energy tensor of the sources, and we still use the definitions (A.2.16) and «xF5 = F5.

A.2.1 D brane actions and charges

The worldvolume action of a localized Dp brane in string frame is the sum
SPP = P8+ SiP, (A.2.27)

of a Dirac-Born-Infeld (DBI) and a Wess-Zumino (WZ) term:

o / P \/—det(§ + F) (A.2.28)
Dp
SEE, = 1y / CAeF Ay, . (A.2.29)
£ a=0,...,p, are coordinates on the worldvolume, and a hat denotes pullback. F = By+271a! Fy

is the gauge invariant field strength on the brane worldvolume, p, = [(277)1’0/%]_1 is the brane
tension, C' is the RR potential polyform, and €9_,, is a form localized on the Dp brane worldvolume
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(the Poincaré dual to the cycle) and closed. The magnitude of the backreaction of a Dp brane on
the geometry and the RR field strength is measured by the combination 25%0;11, = (472! )FTP

When moving to Einstein frame according to the field redefinitions (A.2.3), that we use in
absence of D7 branes, the DBI and WZ action become

SpBr=—Tp /D g e T \/— det(§+ e 2 F) (A.2.30)
p
Sib, = Tp/c NeT AQg (A.2.31)

where 7, = p,/gs = [(27)Pd/ = gs]~!. The relevant parameter measuring the backreaction of a Dp
brane is 2k%7, = 2k3y1p gs = (47720/)7%10 Js-

In the presence of D7 branes we define instead the Einstein frame by the field redefinitions
(A.2.5). The DBI and WZ worldvolume actions are

Spor = —up/ e T \/— det(j + e 2 F) (A.2.32)
Dp
SEE = 1y / CAeF ANy, (A.2.33)

The combination 2x3yu, = (472 )% will appear in Bianchi identities and equations of motion.

We are now in the position to define the RR charges of D branes as fluxes of RR field strengths.
We do that by comparing Dp brane actions and Bianchi identities/EOM modified by the presence
of sources. We will be interested in D3, D5 and D7 brane charges, therefore we compare (A.2.21-
A.2.23) with (A.2.33). We carry out this computation in the Einstein frame defined in (A.2.5).
Following the nomenclature of [108], we define ‘Maxwell charges’ as fluxes of gauge invariant im-
proved RR field strengths on all the possible cycles in the odd homology classes:

1

QJ\D/[;mwell = _(471-20/)2/C F5 (A234)
5
1
Maxwell —
= - F: A.2.35
QDS 4120/ ~/CB 3 ( )
QMoswell / P (A.2.36)
C1

where C,, is an n-cycle. Maxwell (magnetic) currents jM**well are defined by dF = xjMaerwell yp to
signs. The use of Maxwell charges in the literature is widespread. The most famous example is [37].
They are gauge invariant by construction; they are carried by fluxes, hence they are not localized;
because of the Chern-Simons term in the action (A.2.6), even when the fluxes are computed out
of sources, these charges are not conserved (as the manifold changes continuously) nor quantized
if there are lower RR field strengths. Indeed Bianchi identities in absence of sources tell us that
dF = —H3 A\ F # 0, so that Maxwell charges do depend on the representative chosen in a homology
class.
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In the alternative Einstein frame defined by (A.2.3), Maxwell charges are:

1
Mazwell —
= F: A.2.37
Qb3 (4n2al)2 g, /c;, 5 ( )
1
Mazxwell —
= F: A.2.38
QD5 47T2O/ Js /C3 3 ( )
1
Q]\D/[’;zxwell = _ Fl . (A239)
gs C1

Long ago, Page introduced a different notion of charge that obeys quantization [109]. Page
(magnetic) currents are defined by *j7%9¢ = d(eP? A F'), and Page charges are obtained by integra-
tion of *j7%9¢. In the Einstein frame defined in (A.2.5), ‘Page charges’ are

P 1 1
Dgge = —m . (F5 + By A F3 + 532 /\BQ/\Fl) (A240)
5
Page:_i1 F: Bo A F} A.241
b = g [L(B B0 (A241)
Qrise = / Fr. (A.2.42)
C1

Like Maxwell charges, Page charges are carried by fluxes, therefore they are not localized. But
unlike Maxwell currents, out of sources Page currents are closed, then they are locally exact. Their
integrals do not vanish, because they are differentials of forms which are not globally defined and
need to be patched. In other terms, like monopole numbers, Page charges are topological invariants

which are quantized. They are invariant under small but not under large gauge transformations.?
In the alternative Einstein frame defined by (A.2.3), Page charges are:

P‘Lge:—l/(F L BoAFy+ By A B A Fy) (A.2.43)

1
Page — [ (F34+ By AF A.2.44
Qps g, /cg( 5+ Ba A\ F1) ( )

1

Qrwe=— | F . (A.2.45)

s C1

Notice that the D7 brane Maxwell charge is equal to the D7 brane Page charge, hence it is quantized.

3Here we refer to the small gauge transformation under which 6 B = dA1, whereas the RR field strengths F’s are
invariant.
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A.3 Type IIB SUSY transformations in string and Einstein frame

The supersymmetry transformations of type IIB supergravity were found long ago in ref. [147].
Here we will follow the conventions of the appendix A of3 [148], where they are written in string
frame. Let us recall them:

1 1 1
(s) _ = (s) M - (s) MNP (S) P (s) M ¢
O A\ = 2<F oy ® + 2'3!HMNPF 0’3)6 26 (FMF (ZO’Q)+

1
+ ﬁFMNP [(e) MNP 01) e,

s s) (s 11 s s 1 s 1
Oc J(\/[) = ng)e( )+ ZEHMNPF( INP g3e®) 4 geq)(FNF( )N(w?)+
1

1
B'FNPQ P NPQ o1 + ﬁFNPQRT [(s) NPQRT (i02)>rg?6(s) ,

where the superscript s refers to the string frame, o; (i = 1,2, 3) are Pauli matrices, H is the NSNS
three-form and F’s are the RR field strengths of obvious ranks. In (A.3.1)

€= (Z;) (A.3.2)

is a doublet of Majorana-Weyl spinors of negative chirality:

(A.3.1)

+

F(H)ei =—¢, (A.3.3)
where I'(17) is the chirality matrix in ten dimensions, expressed in the vielbein basis as
Ly =T = —Toia. 9 - (A.3.4)
We also define the chirality matrix in the 4 Minkowksi dimensions
L5y = —tTo123 (A.3.5)
and the chirality matrix in the 6 internal dimensions
L7y = —ilap6789 (A.3.6)
so that
Ly =Tl - (A.3.7)

We are using conventions in which the ten-dimensional I" matrices are real.
We can study how these equations change under a rescaling of the metric

(s) ®/2 0N (A.3.8)

9un = €
which moves us from string to Einstein frame.* In doing that it is useful to follow section 2 of [149].
Under the above change for the metric, there are some quantities which also change:

T = /41y,

() — (P8,

AG) — o—P/8 ) (A.3.9)
- s)  Lo(e) \(s

v = Byl — TN

“Here we use the rescaling by the whole dilaton, which is suitable for solutions including D7 branes.
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The equation for the dilatino in the new frame can be easily obtained, whereas in doing the same
for the gravitino equation we will use

s 1 |
Vel = (/8 [vMe + ST (Vne) + g(chb)} . (A.3.10)

After some algebra with I' matrices, the supersymmetry transformations in Einstein frame we
obtain are the following ones:

1 , 1 _
55)\ = §FM(8M(I) - C(I)FM(ZO'Q)) € + WFMNP(E (I)/2HMNP o3 — 6@/2FMNP 0'1) €,

1 ) 1, _
56¢M = VME + ZGQFM(ZO'Q)G — %(6 (I)/QHNPQ o3 + eCD/QFNpQ 0’1)(FMNPQ — 95]]\\]/[FPQ) €+

FNPQRTFNPQRT(iUQ)FMG.

Ll
16 - 5!

(A.3.11)
In order to write the expression of the supersymmetry transformations, it is convenient to change
the notation used for the spinor. Up to now we have considered the double spinor notation, namely
the two Majorana-Weyl spinors ¢! and €? form a two-dimensional vector (A.3.2). We can rewrite
the double spinor in complex notation as

1
€= (EQ) —e=¢ +ié. (A.3.12)

It is then straightforward to find the following rules to pass from real doublets of spinors to complex
spinors:

: —é? : el e .
—toge=| 1 )i oze=| o) e—¢ gre={ 1 — i . (A3.13)

€

The supersymmetry variations of the dilatino and the gravitini in Einstein frame become:

1
O\ = 5 rM (8M@ +1 eCDFM) €— €<I)/2 MNP (FMNP +1 €_<DHMNP) e (A.3.14)

4. 3!
betpr = Ve — ieq)FME - % 6‘1)/2 (FNPQ — ief(I’HNpQ) (FMNPQ - 95% FPQ) €+

. (A.3.15)
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Appendix B

Generalities on the conifold geometry

B.1 The singular conifold
The singular conifold Cy can be defined as an affine variety in C* = {21, 29, 23, 24},
2129 — 2324 = 0. (B.l.l)

It is convenient to introduce the matrix notation

Z = (zl Z4> : (B.1.2)

Z3 22

in terms of which the defining equation (B.1.1) becomes det Z = 0. This notation makes manifest
an SU(2) x SU(2) symmetry acting on the rows and the columns respectively. There are also a
. ZQ )
By a linear change of coordinates Z = ﬁamwm, where (¢™) = (7,il), 0 being Pauli matrices,

C* symmetry acting as a complex rescaling Z — aZ, a € C*. The symmetry is

equation (B.1.1) can also be written as:
w? +wi +wi +wi =0, (B.1.3)

which has manifest SO(4) x C* symmetry. This manifold can be given a Calabi-Yau metric pre-
serving the symmetries previously discussed [51]. The base manifold, described by the intersection
of (B.1.1) with the unit sphere

4 4
Dol =D jwilP =1, (B.1.4)
=1 =1

is called 71! [52]. In terms of real coordinates (Z,,ym) € R®, such that wy, = Ty + iym, TH! is
described by the constraints ¥- ¥ =14 ¢ = %, -y =0: it is an S? fibration over S3. However such
a fibration is trivial,! so that topologically 71! = §2 x §3. The following coordinate system on the

'We can cover S® with two patches, intersecting at the equator. The bundle is constructed by specifying a
transition function on this equator (itself an S?), which is a map from S? to SO(3), the structure group of the fiber.
Such maps are always trivial (m2(SO(3)) = 0), so the bundle is trivial.
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cone will be useful?

; 6, . 6

2 = r3/2 ea(Wterter) iy 51 sin 52 , (B.1.5)
; 0

2y = 732 3 (—01=02) g 51 cos 52 : (B.1.6)

2y = /2 bt s 01 ) 02 (B.1.7)
0, 0

= T3/265(¢+<p1—e02)sin51c0852. (B.1.8)

Here, 0 <o <4m, 0 < p; <27, 0<6; <, and we have the following angular periodicities

(0 P+ 4m Y427 Y+ 27
o1 | ~ 01 ~ |1 +21 | =~ 1 : (B.1.9)
P2 ¥2 P2 P2 + 21

In these coordinates, the Calabi-Yau metric reads
ds%vo =dr? +7r* ds3a, ,, (B.1.10)

with the Sasaki-Einstein metric of 71!

dsi, = Z 6(al92 + sin? 6; dgpz Z cos 6; dgpz . (B.1.11)
i=1,2 i=1,1

It describes a circle bundle, where the circle v is fibered over S? x S2. In terms of the natural
vielbein for the two 2-spheres, it is useful to define rotated vielbein for the 2-spheres [150]
o1 + oy = e¥/? (df1 +isin by dyy) ,

) B.1.12
Y1+ = eu/)/? (d92 + 4 sin 6y ngQ) , ( )

where o; and X; are real by definition. Let us also define ( = dy — Zz‘:m cos@; dp;. For the
singular conifold, we will use the following ordered vielbein

{e =dr, e¥ C,e S 0'1,62:L0'2,63: (B.1.13)

LSRR
NG NG NG Jéz}

The metric of the conifold then reads ds%,O = 22:1 (e™)?, and the volume form is

1
dvolg, = €" A e’ Nel A2 Aed Net = T3 " Sdr Adip Adfy Asinfy dpy A dfy Asinbo des . (B.1.14)

A complex vielbein can be defined as

{El =el fie?, B? =e3 +iet, E3:er+z’ew} . (B.1.15)

*Remark that we differ from the conventions of [37] by a flip in the orientation of the angles ¢;.
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In terms of this complex structure, the Kéhler form is

— _ - 2
J = (El/\E1+E2/\E2+E3/\E3) :d<T6C> =

(B.1.16)

W3 N

2
dr A (dyp — 4;2 cos 0; dp;) + % ';2 sin 0; d6; A dp; |

which is (1, 1), closed, coclosed (because *J = $.J A J), and satisfies J A J A J = 6 dvolg,. It is not
only closed but also exact, since we are at the zero resolution point in Kéhler moduli space where
the cohomology class of J is trivial. The holomorphic top form is

OGO = FLAE2AES =

) 2
— ¥ % [dr + zg (d — 3" cost; dgoi)] A (dOy + isin 0y dgy) A (dfa + isin 6 ds) =
i=1,2

% dz1 Ndzo N dzs
9 z3 ’

(B.1.17)

which is closed and coclosed (because %2 = —i Q). Finally, dvolc, = % JNINJT = %Q AL
The last equality in (B.1.17) provides a first check that the coordinates z; introduced in (B.1.5-
B.1.8) are holomorphic with respect to the complex structure defined in (B.1.15). More explicitly,

you can define the complex structure as a map from the tangent space to itself that squares to
minus the identity. Given the Kéhler metric g,,, (B.1.10,B.1.11) and the Kéhler form J,, (B.1.16),

the complex structure is 7,,” = Jy,p ¢”. In the coordinate basis
0 ; 0 0 0 0
-3 0 0 0 0 0
0 cot 61 0 csc 0y 0 0
v __
Iu" = % cos 01 0 —sin 04 0 0 0 ) (B.1.18)

0 cot 6 0 0 0 csc by

% cos 09 0 0 0 —sin @9 0

where p runs through rows and v runs through columns. The holomorphic and antiholomorphic

projectors

_ 1-:J B 1+:J
2 2

P (B.1.19)

allow us to construct holomorphic and antiholomorphic exterior differentials @ = Pd and 0 = Pd.
It is then straightforward to explicitly check that Pdz; = 0 (i = 1,...,4) as well as PE! = 0
(1=1,2,3).

Let us now review 2- and 3-(co)cycles for the conifold. We have the closed (1,1)-form

3i - N1
WGF = 2L (El/\El—EZAE2) = (01 Aoa— T AXy) =

2 2 (B.1.20)
= 5 (sin 01 do1 N dpp — sin @y dfa A ngg) .
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The 2-cycle in TV is topologically a 2-sphere S2. It can be represented by
S2 . 0,=0,=0, or=2r—@a=¢p, =0, 0 €l0,2m), 0 (0,m). (B.1.21)
It turns out that [q. w§F = 4m. In addition, one usually defines the real closed 3-form
Ww§F = nWiE (B.1.22)
which is the real part of the imaginary-self-dual (ISD) closed primitive (2,1)-form
9 — — d
WD = B A (El NET — B2 A E?) - (g - Bir) AWSE (B.1.23)
r r
defined on the whole conifold. Imaginary self-duality means that s w = iw®1). The 3-cycle in
T! has the topology of a 3-sphere. We call it simply S3. It can be represented by
S3 =2 =0. (B.1.24)

Its orientation is such that [g; w§F = 8r2.

B.1.1 Simplified orthonormal basis

The frame basis introduced in (B.1.13) and (B.1.15) has the nice feature that the holomorphic top
form can be expressed as the unit (3, 0)-form E' A E? A E3, without any function in front. However,
the rotation by /2 introduced in (B.1.12) complicates the expression of the vielbein in terms of
the coordinates v, 01, 1, 02, 2. Consequently, the spin connection is more involved. In view of
this, we introduce an alternative frame basis where the 1)/2 rotation is undone and a prefactor et
appears in the holomorphic top form of the conifold. In this choice, the ordered real vielbein is

r r r r r
e =dr, e’ ==C, e = —dby, ¥ = ——sinbhidpy, €2 = —db,, e¥? = —sinbyd } ,
{ 36 75 g Sinbrder 75 /g Smb2de
(B.1.25)
the ordered complex vielbein is
{El = pietr B2 =eP e B3 =¢" + iew} , (B.1.26)
the Kahler form is
: o o o 2
J= % (El/\E1+E2/\E2+E3/\E3) :d<%g> =
. 2 (B.1.27)
= g dr A (dy - > cost; dei) + " > sin6; do; Adep;

i=1,2 i=1,2
the holomorphic top form is

QB0 =W gL A B2 A B3 =

) 2
= ¥ % [dr + zg (d— Y cost; dcpi)] A (d6y + isin 6y dpr) A (d6s + isin 0 dgs) =
i=1,2
_% dz1 Ndzo N dzs

9 z3 ’
(B.1.28)
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and the ISD primitive (2,1)-form is

_ — d
WD = %E?) A (E1 ANET - B2 A E?) - (c - 3ir> ASE (B.1.29)
T T
where
3 _ N1
WS = # (E1 NET — B2 A EQ) = 3 (sin 6y dfy A dipy — sin db A dipy) (B.1.30)
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B.2 The deformed conifold

The deformed conifold is defined as an affine variety in C* by the following equation:

4 3\ 3/2
Zw§:<2> €2 (B.2.1)
=1

or

1 /3\2
2129 — 2324 = 513 €, (B.2.2)

if z’s and v’s are defined as in appendix B.1. The ugly normalization has been put for consistency
with following formulae. The following assignments

3
=272 3! ee2(?1122) Igin b sin @e%(THw) — cos b Cos @e*%(ﬂrw) (B.2.3)
2 2 2 2 2
3\1 i 0 0 - 0 o <
2y =272 <2> eez2(p1te2) [cos 51 cos 526%(7+”’b) — sin 51 sin 2265(7“1&)} (B.2.4)
3
O . .
23 =272 3 cez(mP1He2) | cog b sin @e%(ﬂ”w) + sin b cos @e_%(ﬂr“f’) (B.2.5)
2 2 2 2 2
3
2 =272 (2) ’ e e2(P1=¢2) [sin % Ccos %e%“”w) + cos % sin 0226_5(”'“’[’)] (B.2.6)

solve the defining equation (B.2.2).
The deformed conifold can be given a Calabi-Yau metric which asymptotes the one of the
singular conifold for large values of >, |w;|? = >, |w;|* = 73 [51]:

(A7 + %) + cosh® £ [(g°) + (6)?] +

1
dsg = 564/3K(7') [

1
3K3(T)

(B.2.7)
+sinh® 2 [(9")? + (6)7] ] :
where ) 13
(5sinh(27) —7)

K = B.2.8
(7) sinh 7 ( )

and the 1-forms ¢!, g2, g3, ¢g* are defined in terms of (B.1.12) as follows:

¢ +igt= Ee /2 [(31 4 i32) + (01 — i02)]

(B.2.9)

o +ig? = e (S i) + (o )]
The change of coordinates between 7 and r is

3\ 3/2
3 = <2> ¢? coshr , (B.2.10)



B.2. THE DEFORMED CONIFOLD 203

which for large r and 7 can be approximated as

33/2

r 2725/26

ZeT . (B.2.11)
Using this asymptotic change of radial coordinate, the metric (B.2.7) reduces to that of the singular
conifold dr? + TQdS?FM. The deformed conifold metric approaches that of R? x S3 as 7 — 0:

21

1
dsg ~ 613 4/3 {2 [d72—|—7' 5

@2+ @)+ (504 @Pra?)) . @)

Some useful formulae are:

d¢=—(g* Ng* + > N g?) (B.2.13)
d(g® Ag*) = —d(g' Ng®) = %C Ag' Ag*+g* ng?) (B.2.14)
dg' Ng®+ g Ngh) =(n(g" Ng® —g° A gh) (B.2.15)
AdCAg' NG =d(CAgNghH)=0. (B.2.16)
Notice also that
wy't = —é(g1 NG+ g% N gh) (B.2.17)
G A gt+ g2 A g® =sin01dOy A dpy + sinBadbs A dps (B.2.18)
Finally,
wscFECAwQCF:—%CA(glAg%rgS/\g“) (B.2.19)

is the 3-cocycle such that [g, w§? = 872
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Appendix C

Supersymmetric type IIB solutions on
the conifold

In this appendix we derive supersymmetric solutions of type IIB supergravity (plus branes) on
the singular conifold, by imposing Bianchi identities and vanishing supersymmetry variations of
dilatino and gravitini, which together lead to a BPS system of first order differential equations. It
is possible to prove that this requirements imply fulfilment of the equations of motion. We have
checked it in all the cases under consideration in this thesis.

We start in subsection C.1 by deriving the solution for D3 branes at the tip of the conifold and
its near horizon limit, the Klebanov-Witten (KW) solution [29]. In subsection C.2 we derive the
singular Klebanov-Tseytlin (KT) solution [36] for regular and fractional D3 branes on the singular
conifold. In subsection C.3 we derive the solution which takes into account the backreaction of
an SU(2) x SU(2) symmetric distribution of noncompact D7 branes in the KW background [1].
Finally, in subsection C.4 we derive the solution for an SU(2) x SU(2) symmetric distribution of
backreacting noncompact D7 branes in the KT background [2].

We have collected all these solutions one after the other in order to clarify the connections and
the differences among them.

In this appendix we will use the vielbein introduced in subsection B.1.1 for the singular conifold.

C.1 The Klebanov-Witten solution

In this subsection we derive by means of supersymmetry methods the solution for a stack of N, D3
branes placed at the singularity of the conifold. The D3 branes span four-dimensional Minkowski
space and are a point in the conifold. In the absence of D3 branes, the product of R and the
conifold is a solution of type IIB string theory preserving 8 supercharges. The addition of D3 branes
breaks half supersymmetry down to 4 supercharges, because of the RR 5-form flux sourced by the
branes.

Symmetry considerations imply that he solution for D3 branes will be a warped product of R!3
and the conifold

1 1
ds® = h™'%dat 4 —|—h1/2{dr2 + 72 [g(dzp — ) cosbidp)’ + G > (d67 +sin” 6; d(pf)} } , (C.1.1)
i=1,2 i=1,2

205
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plus a self-dual 5-form flux along the T"! angles and along Minkowski and r. The warp factor h is
a function of the radial coordinate r only. Supersymmetry or Einstein equations relates the warp
factor and the 5-form flux. Here we will directly impose the ansatz

Fy= (14 dh ' Adz (C.1.2)

which solves this constraint.! Having done so, we will only have to impose the Bianchi identity for
F5, which determines the warp factor, and check that the supersymmetry variations of the dilatino
and the gravitini vanish.

The ordered vielbein related to the metric (C.1.1)is {EY, E', E? E3, E", EV, E%' ¥ E%2 E¥2}
where

Bt = p V4 gt
E" = h1/4 ro__ h1/4 dr

EY = pt/ie¥ — h1/4 S(dw — Y cosbidy;)
i=1,2 (C.1.3)

E% = VA el = pl/t L g,
V6

E? = Y eei = B sind; dy;
V6 v
In the vielbein basis, the RR 5-form reads

Fy=(1+=)dh ' Ad'z EOT . prhinteez) (C.1.4)

h5/4(

where EMNPQR = pM A pN A BP A B9 A ER.
First of all, we have to impose the Bianchi identity for F5, which in the absence of 3-form fluxes
is dF5 = 0. Since in the coordinate basis

n
Fs = —ﬁd'r/\dA‘:U+ n r® dvol(TH1) | (C.1.5)

the Bianchi identity becomes
d(Wr®)y=0, (C.1.6)

which has two solutions which are not diffeomorphic to each other:

Br) =1+ f: (C17)
and )
Wy =2 (C.1.8)

!This holds for both the Einstein frames we have defined, (A.2.3) and (A.2.5). If instead one prefers to work in
string frame, the ansatz is gsF5 = (1 + *) dh Y A dz.
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The first one is the D3 brane solution, which has asymptotically flat metric.? The second one is its
near-horizon limit, where the metric takes the AdSs x T1! form

dsQ—ﬁd:nQ +L—2d2+L2d2 (C.1.9)
_L2 1,3 ’]"2 r ST1,1 . .

The integration constant L* is fixed by imposing that the D3 brane charge of the solution be N..
In the Einstein frame which is commonly used when the dilaton is constant (A.2.3), the condition

is
1 L*  Vol(Th)
No=——— Fs = 1.1
i B g (C.1.10)
and since Vol(T"1) = 18 73, this fixes
w3 27
L4 = 47'('05/ gch . W = Zﬂ'al gch . (Clll)

The same result holds in the string frame. Instead, in the alternative Einstein frame (A.2.5) that
we use in presence of D7 branes,
L* = 47a’ N, 7773 = 2—77ra/N (C.1.12)
B ¢ Vol(Thl) 4 © o
The number of supercharges preserved by the D3 brane background is 4, which is one eighth
of the supercharges conserved by the IIB action. Therefore we have to impose 3 commuting pro-
jections on the Killing spinor. We will work with the complex notation for the ten-dimensional
spinors (A.3.12). Recall that according to our conventions the type IIB complexified supersymme-
try parameter has negative chirality in 10 dimensions, see (A.3.4):

L0123rp0, 010505 € = €, (C.1.13)

working in the vielbein basis. Consistently with the complex and Kéahler structures of the conifold
which are summarized in the complex orthonormal basis (B.1.26), we will impose the projections

Lrype=Tgp €=Tpp,e=1ic, (C.1.14)
which imply
Ly01010200 € = —LE, To123€ = 1€ . (C.1.15)

In particular, the Killing spinor of negative ten-dimensional chirality can be decomposed into a
tensor product of a 4d spinor of positive chirality and a 6d spinor of negative chirality, according
to the definitions (A.3.5) and (A.3.6).

2The additive constant is fixed to 1 in string frame and in the Einstein frame (A.2.3) by requiring that the metric
become the unit flat metric when the flux is switched off. When going to the Einstein frame (A.2.5), a suitable
rescaling of the radial and Minkowski coordinate like z* = g_:1/4 :ré‘s) and r = g;1/4 7(s) may be chosen so to fix the
additive constant to 1 again, so that in these rescaled coordinates the metric approaches the unit flat metric as the
flux is switched off. Obviously there is no physical content in this rescaling, that we choose here only for the sake of

convenience.
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In order to check supersymmetry and to find the Killing spinor of the D3 brane background,
we need the spin connection, which in the vielbein basis (C.1.3) is:

hl
wh" = ~ E* " 1 .
w k3 e 1
w,r,[p _ _4h + Th/ Ew ’r’hl/f
4h5/4 vo; 0.
wrrt = — E” C.1.16
. rht/4 ( )
¢ 4h5/4 i — 1 v V6 cot 0i E¥i
_ 4h +rh’ _ - rhl/A rhl/4
wT‘P’L — 4h5/4 E'%

The variation of the dilatino (A.3.14) vanishes trivially. Imposing vanishing variation of the
gravitini (A.3.15) in this F5 background reduces to requiring:

1
OZaA6+Zw§CFBce— FBCDEFFBCDEFFAG. (C.1.17)

i
16 - 5!
Because of the symmetries, we look for a Killing spinor which depends only on r and . In the
AdS case, this dependence is related to dilatation and U(1)g symmetry transformations of the
4-dimensional spinor in the dual field theory. i dependence arises because that angular direction is
fibered over the other four angles, which parameterize a 4-dimensional Kéahler-Einstein space. We
will work in the vielbein basis, with capital Latin indices at the beginning of the alphabet. The
partial derivative has to be translated to this basis:

r 1 v 3 ®i
8A6:5Amar€+6‘4rh71/48w6+6‘4

V6 cot b;
rht/4

The variation of the gravitino in Minkowski components vanishes because of the chiralities (C.1.15).
Indeed, the condition is

Oy€ . (C.1.18)

1 h i B
0= 2 <_4h5/4> Tire— 16 h5/4 (Corzsr + FT/J'91<P192<P2) e, (C.1.19)

which after factorization of I'y, becomes
2¢ —i (—To123 + mel%g%@) e=0, (C.1.20)

that is fulfilled once we impose the chiralities (C.1.15). Notice that it is the condition that the
variation of the Minkowski components of the gravitino vanish that fixes the relation (C.1.4) between
the RR 5-form and the warp factor, that we have chosen to impose from the beginning for the sake
of brevity.

Vanishing variation of the r and v components fix the dependence of the Killing spinor on those
coordinates. The 10-dimensional Killing spinor is

e=h"Y8eW2ef @es (C.1.21)

where e;f is a 4-dimensional constant spinor of positive chirality, and €5 is a constant spinor on the

conifold satisfying the projections

FMp €g = F91LP1 €g = FQ%OZ €g = ieg . (C.1.22)
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To see this explicitly, we first consider the condition that the supersymmetry variation of v, vanish:
1 i B
0= m Op€ — EW (F0123T + F¢91¢192¢2) Te, (C.1.23)

where the derivative is the usual one in the coordinate basis. After imposing the chiralities (C.1.15),
this boils down to

1
Ore = ~3 Or(logh) e, (C.1.24)
which tells us that e o< h~/8. Then we consider the condition d, Py, = 0:
3h 1 4h +rh/ 1 4h
0=—— ¢€—*7Frw€—*7(r‘g —l—Fg )€+
5/4 5/4 5/4 1¥1 292
i
T (Lo123r + Ly 0105005) T € -
After imposing the projections (C.1.14), it simplifies to
Dye = %e : (C.1.26)

which tells us that e o e™¥/2.

Similarly, the variations of the #; and ¢; components of the gravitino vanish because of (C.1.14)
and (C.1.21).

Incidentally, let us mention that the near-horizon solution AdSs x T! preserves four additional
supercharges, which are the superconformal partners of the ones discussed here; they are related to
additional solutions of the Killing spinor equations. The additional Killing spinor can also be found
by using the superconformal algebra, since the commutator of a special conformal transformation
and an ordinary supercharge gives this ‘conformal’ supercharge.

C.2 The Klebanov-Tseytlin solution

Klebanov and Tseytlin (KT) considered the addition of M fractional D3 branes to the Klebanov-
Witten background [36], as a way of breaking the conformal symmetry in the dual field theory.
Fractional D3 branes can be thought of as D5 branes wrapping the exceptional rigid 2-cycle living
at the conical singularity, and as such they source 3-form fluxes: they source Fj, whose flux
through the nontrivial 3-cycle in the 71! base counts the number of fractional D3 branes, and
by supersymmetry they also source Hs. Being D3 branes (the 2-cycle they wrap, when they are
thought of as D5 branes, has vanishing volume), they do not couple to the dilaton. The solution,
that we will rederive here by means of supersymmetry methods, will therefore involve nontrivial 3-
and 5-form fluxes.

Inspection of the Einstein equations (A.2.7) reveals that the Ricci scalar vanishes as long as
the complexified 3-form flux G5 = F3 + ie~® Hj is imaginary-self-dual (ISD) *¢G3 = i G3 or anti-
imaginary-self-dual (AISD) #6G3 = —iG3, since those conditions imply that |F3|? = e=2% | H3)?.
Supersymmetry will require G'3 to be ISD. Therefore, the metric ansatz will be the same as for the
Klebanov-Witten solution. The relation between the 5-form and the warp factor will not be spoilt
too. This is clear from the requirement that the variation of a u component of the gravitino vanish,
or from Einstein’s equation along Minkowski directions.
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We are after a solution with a constant axio-dilaton, a nontrivial 5-form flux, and a closed
complexified 3-form flux G3 (from the Bianchi identities), which preserves the same four ordinary
supersymmetries that we have exhibited for the Klebanov-Witten solution; therefore the Killing
spinor will be again of the form (C.1.21), subject to the same projections. Requiring the same
supersymmetries preserved by D3 branes imposes conditions on G3: not only it has to be closed,
but also primitive, ISD, and of (2,1) kind. After the global symmetries are imposed, it is easy to
see that primitivity of G3, namely J A G3 = 0, ensures vanishing dilatino variation and vanishing
gravitino variation along r and 1, and together with the (2, 1) condition ensures vanishing gravitino
variations along the other angles. Imaginary-self-duality comes out as a consequence of the other
requirements.

3-form fluxes break the four additional (conformal) supercharges; indeed we have to fulfil the
Bianchi identity dF5 = —H3s A F3, and because of relation (C.1.5) the warp factor h will develop a
more complicated r dependence than the simple L* / r* one, so that the background will not display
an AdS5 factor anymore.

Let us now determine the 3-form fluxes and the warp factor, and show more explicitly why the
solution preserves the same four ordinary supersymmetries of the KW background. In appendix
B.1 we have found the SU(2) x SU(2) x U(1)g invariant closed, primitive, ISD (2, 1)-form (B.1.29),
whose real part has nonvanishing integral on the 3-cycle (B.1.24) of the conifold. The complexified
3-form G3 we are after has to be proportional to this (B.1.29). We find that

' Mo d
Gy=Fy+— Hy= ——— <C—3ir)/\w20F, (C.2.1)
Js 2 r

where the prefactor is fixed by the number of fractional D3 branes, namely the D5 brane charge
(A.2.35), being M:3

1
M=———-— Fs . C.2.2
420/ /53 s ( )
Therefore 3/4
Mo 9h~
Fy= = =2 CAfT = —M ' BV A (B" - B%72) (C.2.3)
r
and 3/4
3Mdo d 9h~
Hy =g " A WGP =g, Mo E" A (EWI - EGW) , (C.2.4)
2 r 273
so that
BL . o ph 32 0110 81 o pl 1,1
F3/\H3:—98?M o —— BT 2“’2:—95?M a'“=dr ANdvol(T™7) . (C.2.5)
r r

The Bianchi identity dF5 = F3 A Hs becomes

(P h) =—go— M*a? = (C.2.6)
2 r
whose solution is o7 LT3
. ) 2 T
h(r) = R [% gs M~ log 7};] , (C.2.7)

3Here we are using the natural Einstein frame (A.2.5) that extends to the situation where D7 branes are present,
rather than the most common ones (A.2.3) or string frame.
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where r. is an integration constant. There is a single integration constant r.. Its value can be
related to the D3 brane Maxwell charge (A.2.34) at some reference scale.
We can also write the solution for the RR Bs potential:

3M o
a longZCF. (C.2.8)
2 &)

B2:gs

What is relevant for supersymmetry is the structure of the added 3-form flux which follows from
the requirement that it be primitive, (2,1) and ISD, as well as SU(2) x SU(2) x U(1)p invariant:

G3 o (E" +i EY) A (B9 — gf2¢2) (C.2.9)

The additional term due to the 3-flux in the supersymmetry variation of the dilatino (A.3.14) is
proportional to
(G3)apoT4PC ¢, (C.2.10)

which vanishes because T%1¢1 ¢* = T%%2 ¢*. This is ensured by SU(2) x SU(2) invariance and
the primitivity condition. As far as the supersymmetry variations of the gravitino (A.3.15) are
concerned, the additional term is proportional to the complex conjugate of

(G3)pop (TaBCP — 968 TP e (C.2.11)

The first term vanishes for any A for the same reason as before, as well as the second term when
A =7, 1. When A is one of the four other angles, the second term vanish because the E” + i E¥
part in (C.2.9) brings I'" + iT"%, which annihilates ¢ because of the projection I'" ¢ = ie. This is
the (2,1) condition, which together with the previous conditions fixes Gz (C.2.9) to be ISD.

Finally, we can check that the equations of motion for F3 (A.2.10) and Hs (A.2.14) are au-
tomatically satisfied. To see this, we rephrase the imaginary-self-duality condition on Gj3 as
xg I3 = —e P Hy and % H3 = e® F3, and make use of the identity

xws =h di A xgws | (C.2.12)

which holds for any 3-form ws with all legs in the internal space. The equation of motion for Fj
(A.2.10) is solved, because the left hand side (LHS) is —d(h~'d*z A H3) = —Fs A H3, which is
equal to the right hand side (RHS). The equation of motion for Hs (A.2.14) is also solved, because
the LHS is d(h~! d*z A F3) = F5 A F3, which is equal to the RHS.*

C.3 Backreacting D7 branes in the Klebanov-Witten background

In this subsection we derive the solution which takes into account the backreaction of an SU(2) x
SU(2) symmetric distribution of noncompact D7 branes in the KW background [1]. D7 branes
source the dilaton and (magnetically) the RR field strength F}.

_ NF g oy = N
Fi=_2 (dep i_ZI:QcoseZ dp;) = e (C.3.1)

4We have used that in this solution F; = 0, but the equation is satisfied also with a nonzero F.



212 APPENDIX C. SUPERSYMMETRIC TYPE IIB SOLUTIONS ON THE CONIFOLD

satisfies the modified Bianchi identity for an SU(2) x SU(2) invariant D7 brane charge distribution
with the correct normalization for a total number Ny of D7 branes:

Nf :/ dF , (C.3.2)
Do

where

D: 1 = 0y = p9 = const. (C.3.3)

is a 2-chain with boundary which is intersected once by every D7 brane. A metric ansatz that
respects the symmetry of the problem is

2f 29
ds? = B 2da? 5 + W2 dr? + S (@) — 3 cosbidgi)? + S S (d62 +sin® 0, dg?) b, (C.3.4)
7 9 i=1,2 6 i=1,2

where the warp factor h and the squash factors f and g are functions of the radial coordinate only.
The ordered vielbein related to the metric (C.3.4) is {E°, E', E? E3, E", EV, E% E¥1 E%2 E¥2}
where

EF = hm dat

E" =nY4er = 4 ar

!
v — h1/4%g h1/4 il (d — >~ cosb; d;)
i=1,2 (C.3.5)

g
EY% = h1/4 Z_ gp,
V6

E¥ = pl/t ¢ sin6; dy; .
V6

Relation (C.1.2) between the self-dual 5-form and the warp factor still holds, since it follows from
requiring vanishing variation of a Minkowski component of the gravitino. The RR 5-form reads

/
Fs = (14%)dh ' Ad'z = —2— d*zAdr+n' e*t dyol(TH) = h§/4( EON23r | pvtieibaey (1 3.6)
so that the Bianchi identity dFs = 0 becomes
B et = —2tra® N, | (C.3.7)

where the right hand side is fixed by the condition that the D3 brane charge (A.2.34) be N,

We now want to impose supersymmetry. We will again impose the projections (C.1.14), which
are fixed by holomorphy. The condition that the supersymmetry variation of the dilatino vanishes
is

1
0=0dcA =1 T4 (04® +ie®Fa)e. (C.3.8)

This equation will determine the dilaton. Let us remark here that

Oa®+ie?Fa=ie® (Fy+ide™®), . (C.3.9)
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In this solution with distributed D7 branes, Cy (and then the axio-dilaton 7 = Co+ie~®) is not well
defined, but its differential (and then dr = Fy +ide~®) is. With the supersymmetry projections
of the D3 brane solution (C.1.14), the supersymmetry variation of the dilatino vanishes if and only
if the differential of the axio-dilaton is a (1,0)-form. The equation gives

= —— . .3.10
oy = 2N, (.10
We can see immediately that
3N
Fi+ide®=—i Tf hVie S (BT +i EY) (C.3.11)
™

is a (1,0)-form.
The conditions that the supersymmetry variations of the gravitino vanish are

0=0ps=Vae— ieq)FAe . (C.3.12)
In the basis (C.3.5), the spin connection is:
hl
pro_ _ Iz
we= 4h5/4 E b0, 6f_2g )
hf'+ 1 Wi = g B
= = f5—;4 EY hf 29
4h voi _ ¢ 7 o6 C.3.13
0. 4hgl+h, EQ- w = Bi/4 E ( 0. )
W = — i
5/4 —92 _ ]
thy' / W Wi = & gy Ve cotdy
WP — g + i hl/4 hl/4
4h5/4
Expressed in the vielbein basis, the partial derivative is
-f V6e 9
_ oM _ 1/4 ~1/4 y 3¢ 0, Vbe
4= EM 400 = o4 W40, + 6% h Y40, + 6% o Ov 04 = Got

C.3.14
Jeat (C:3.14)
hl/4

+ 6% (cot 0; Oy + cscb; Dy,)

Exactly as in the Klebanov-Witten case, the y component of (C.3.12) is (C.1.19), which is satisfied

because of (C.1.2), and the r component is (C.1.23), which implies that ¢ oc h~'/8. Requiring
vanishing variation along the #; component leads to the equation
g =€ (C.3.15)

Once inserted in the conditions for vanishing variation along ¢; and v, it gives a system of two first
order differential equations which can be disentangled and imply the dependence € e3?, as well
as the final differential equation
13N
ef (f+2e/ 24 -2 e _3-90. (C.3.16)
2 Am
The equation of motion for F; (A.2.9) is automatically satisfied: the LHS vanishes because the
dilaton is a radial function, and the RHS is equal to —h~!d*z A H3 A Hy = 0.
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We can now solve the first order differential equations (C.3.10), (C.3.15), and (C.3.16). The
dilaton can be found after a change of radial coordinate from r to p, such that di =ef d%. From
now on, we will denote with a dot derivatives with respect to p. Equation (C.3.10) is rewritten as

. 3N
Sy 20V 1
(e=®) e (C.3.17)
whose solution is 4 1
o s
e = C.3.18
BAG Pmazx — P ( )

The radial coordinate p ranges from —00 to prmaz. At any nonzero fixed value of N¢, prqaz can be
absorbed by redefining p. However, the integration constant p,,q, is useful in taking the unflavored
limit: if we want to recover the Klebanov-Witten solution [29], which has a constant dilaton, we
must take a double scaling limit Ny — 0 with Ny pje, fixed. p remains finite in this scaling
limit. We will keep in mind this point, but from now on we will reabsorb p,., so as not to clutter
formulae. We will therefore use

ar 1
o
=———. C.3.19
€ 3Ny p ( )
We can now rewrite the two remaining equations (C.3.15) and (C.3.16) as
g=e"% (C.3.20)
. 1.
f=3-25-3%. (C.3.21)
It proves convenient to introduce the new function u = 2f — 2¢, subject to the first order equation
1
W=6(1—¢")+ -, (C.3.22)
p
whose solution is 6
—Gp ebP
et = pe . (C.3.23)

(1 —6p)eb + ¢

The integration constant ¢; cannot be reabsorbed. We can then integrate (C.3.20) to obtain
e =C [(1—6p)e® +1]"° | (C.3.24)

and use the definition of u to get

ef = C(=6peS) /2 [(1—6p)e® +cy] > . (C.3.25)
Finally, we can integrate the warp factor in (C.3.7):
h=—27ra’ N, /dp e 49 (C.3.26)

The metric (C.3.4) in terms of the coordinate p is

e—2u

1
ds* = h_l/deig—i-hl/Q e {dp2+9(d¢— Z cos 0; dp;)*+ Z (d6?+-sin? 6, dgo?)} . (C.3.27)
i=1,2 i=1,2

The integration constant C' in (C.3.24) and (C.3.25) can be reabsorbed by rescaling z# — z#/C.
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C.4 Backreacting D7 branes in the Klebanov-Tseytlin background

In this subsection we derive the solution which takes into account the backreaction of an SU(2) x
SU(2) symmetric distribution of noncompact D7 branes in the KT background [2]. The RR 1-form
field strength which is sourced by the flavor brane sources is still (C.3.1). Our strategy to find
the solution should be clear at this point. We will keep the same metric as in the case without
3-fluxes (C.3.4), with the same squash factors (C.3.24) and (C.3.25) (with C' = 1), as well as the
same dilaton (C.3.19); we will add to that solution a primitive, (2,1) and ISD complexified 3-form
G3 = F3 4+ ie~® H3, so that the supersymmetry arguments of the solution without 3-form fluxes
go through. Finally we will impose Bianchi identities dF3 = —H3 A Fy and dF5 = —H3 A F3 so as
to fix the 3-forms and the warp factor.
The complexified 3-form that meets the requirements is

Md'
Gy=Fy+ie ®Hy= "2 1(¢C—3iet dr) nw§F =
= _Md' 9e~ /20 I(EY — i E" Eorer _ g2 (0'4'1)
=M« 2h3/4 ( —1 ) A ( - ) )

where [ = [(r) is a function that will be determined by imposing the Bianchi identity dFs; =
—Hs A Fi. Inserting

9e—f—29 0 0
dFy = —Md/ — I'E™ A (E%ver — El2¢2) (C.4.2)
—f—2g
Hy=e® Mo/ 92h3/4 LE" A (B9 — EO292) (C.4.3)
N
F = i—f h il BY (C.4.4)
7

and switching to the radial coordinate p, in terms of which the dilaton is (C.3.19), we find that the
radial function [ appearing in Gg is

==, C.45

P (C.4.5)

where I' is an integration constant. As in [2], we define Mcsf(p) as the D5 brane Maxwell charge
(A.2.35) of the solution at a radial position p:

1 Mr _ M

M, =——F Fs=MlI(p) =—= C.4.6
100 =~ [, Bo= M) = S5 =T (C46)
the solution for i3 is therefore

. o M . . .

Gs=F3+ie ~ Hy = 7 7 (¢ —3idp) A (sinby dby A dey1 — sinfy dfa A dp2) . (C.4.7)
Finally, we have to solve the last Bianchi identity dFs = —Hs A F5. We will use
dF5 = ("9 b)Y dr A dvol(TH) = di(e‘*g h) dp A dvol(T1) (C.4.8)
p
T M2

—H3 A F3 =54 0/2F —dp A dvol(T"1) . (C.4.9)

P
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We first integrate
4g 1 / 1 M2 !
e h=-=2Tra" | N+ — —5 | = —27ma’ Neyss(p) , (C.4.10)
Nf 1%
where N is an integration constant and we have defined Ns¢(p) as the D3 brane Maxwell charge
(A.2.34) of the solution at a radial position p:

1 1 : 1 M?
N, =—— | F5=— Yh=N+—". C4.11
11(P) (4m2a/)? /T1,15 27ra © + Ny p? ( )
Finally, the warp factor is
h=—2Trd /dp e Ny (C.4.12)

The equations of motion for Fy, F3 and H3 are (A.2.9), (A.2.10), (A.2.14), since there are
no electric sources for these field strengths. We are about to show that they are automatically
solved. Equation (A.2.9) is trivially solved because the dilaton is a radial function and F} is not
along E". Equation (A.2.10) is solved for the same reason as in the KT case: the LHS can be
rewritten as —d(h ! d*z A H3 = —F5 A Hs. Finally, equation A.2.14 is also solved: the LHS can be
rewritten as d(h~! d*z A F3) = F5 A F3 — h~'d*z A H3 A Iy, whereas the RHS can be rewritten as
Fs A Fs+ Fy Ah~Yd* A Hs.

It is possible to check that also the equations of motion for the dilaton and the metric are
satisfied, provided that we use the BPS system of first order differential equations for the radial
functions appearing in the ansatz.



Appendix D

The orbifolded conifold and its
fractional branes

In this appendix, we derive the results presented in section 7.2 concerning the relation between the
ranks in the quiver, the cycles wrapped by the different fractional branes, and the fluxes present
in the supergravity solution. In order to do this, we need first to discuss in detail the compact
2-cycles of the geometry, on which the branes can wrap. Then we discuss the compact 3-cycles of
the geometry, which support the RR fluxes sourced by the branes, and their intersections with the
2-cycles (in the base of the singular cone). This will allow us to write the 3-form fluxes directly in
terms of the ranks of the gauge groups in the quiver.

The CY singularity on which our gauge theory is engineered is a nonchiral Zs orbifold of the
conifold (B.1.1), obtained considering the following action on the coordinates z; in C*

O :  (z1,22,23,24) — (21,22, —23,—2) . (D.0.1)

The orbifold geometry is still an algebraic variety. To describe it one can introduce a complete set
of invariants: x = 23, y = 27 and t = 2324, which satisfy the constraint zy = t2. The conifold
equation is rewritten as ¢t = z125 so that ¢ can be eliminated and we are left with

f=(zn12)"—2y=0. (D.0.2)

The singular locus f = df = 0 consists of two complex lines that meet at the tip of the geometry
{z1 = z9 = x = y = 0}, and corresponds to the fixed point locus of the orbifold action ©.

One can use real coordinates as well, those already defined in appendix B.1. The orbifold action
(D.0.1), which is an identification in the covering space, where we will work, reads

©: (p1,02) = (p1—mp2+m). (D.0.3)

The two complex lines, that we call the p and ¢ line respectively, are defined, in complex and real
coordinates, as
p={nn=2=y=0,Va}={0=0,=0,Vrv¢'}
g={2n=2=y=0,Va1} ={0, =0y =7, Vr,o"} ,

where ¢ = 1) — @1 — @9 and " = ¢ + @1 + @9 are (well defined) angular coordinates along the
singularity lines. In a neighborhood of the singular lines (and outside the tip) the geometry looks
locally like the Aj-singularity C x C2?/Zs. The fixed point curve p sits at the north poles of both
S52’s while the curve g sits at the south poles.

(D.0.4)

217
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D.1 2-cycles and resolutions

From the above analysis it follows that the singular geometry has three vanishing 2-cycles. Two of
these three cycles arise due to the orbifold action; such exceptional 2-cycles are located all along
the C2/Zy singular lines p and ¢ (D.0.4), and we call them Cy and Cy, respectively. Locally, one
could resolve the space into an ALE space fibered over C*. The third relevant 2-cycle descends
from the 2-cycle of the double covering conifold geometry, whose base T is topologically S? x S3.

Our goal in what follows is to pinpoint the precise map between vanishing 2-cycles, wrapped
D5 branes, 3-form RR fluxes and quiver rank assignments. To this end, it will prove useful to take
advantage of our CY cone being a toric variety', since in this case one can use standard techniques
to understand the structure of 2-cycles and their intersections. Let us sketch how this comes about.

A toric variety can be described as the moduli space of an associated supersymmetric gauged
linear o-model (GLSM). Consider n chiral superfields ¢;, i = 1...n charged under a product of
abelian gauge groups U(1)*, with charges Q,!, a = 1...s. In the absence of a superpotential, the
potential for the scalar components is

Vi =3 (Sl ) (D.1.1)
a=1 =1

where £, are Fayet-Iliopoulos parameters (FI). The moduli space of vacua M is given by the D-
flatness equations modulo U(1)® gauge transformations

M:{tie(C"

i@ai 2 =€ VYa=1,.. .,s}/Uu)s , (D.1.2)
=1

where U(1)* acts as t; — €%’ ?"t;. When the FI’s are such that dim M = n — s, M is the desired
toric variety (and n — s = r is just the number of isometry abelian factors). Putting the FI's to
zero the variety, if admissible, is scale invariant: this corresponds to a cone. As the FI’s change,
the Kéhler moduli of M also change and one gets resolutions or blow-ups. Generically, different
regions in the parameter space of the FI parameters correspond to different resolutions, delimited
by flop transition curves.

In our case the GLSM has six fields ¢; whose charges @, are reported in the table below

t to t3 t4 t5 t6‘
2 1 0]&

1
D.1.
1 -1 0 1 =1 0]¢&s (D-1.3)
-2 1 0 © 0 1 |&
We can parameterize the toric variety with the gauge invariants
tatats = 21 titale = 20 titstity =a  titatiti =y (D.1.4)

which, consistently, satisfy the defining equation (D.0.2). We can also give a parametrization for
the so-called toric divisors, which are the four-dimensional hypersurfaces in the toric CY defined

! A toric manifold is a manifold of complex dimension r which admits an isometry group (at least as big as) U(1)".

A toric CY threefold is then a CY threefold whose isometry group is at least U(1)®. For a recent introduction, see
e.g. [131].
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| W) t3
t1 ta
te ts

Figure D.1: The toric diagram and the dual (p, ¢)-web. The specific toric diagram triangulation is the one
related to having all £, > 0 in the associated GLSM.

by D; = {t; = 0}. We recognize Dy = {z1 = x = y = 0} as the p line and D; = {20 =z =y = 0}
as the g-line.

The toric diagram and the related (p,q)-web corresponding to choosing all £, > 0 (which
amounts to a given triangulation of the toric diagram) are depicted in Figure D.1. For the particular
resolution corresponding to &2,£3,&4 > 0 the three holomorphic 2-cycles can be directly read from
the (p, ¢)-web. They can be explicitly constructed as intersections of toric divisors

CQZDQ-D4 Cﬂ:DQ'D5 C4:D1-D5 . <D15)
This can be explicitly checked using D-term equations, which for the intersections of interest are

DyDy [t +1ts)P =& [tel* =2/t + &  |[al* =t + &5
DyDs = |ta]* + 1> = &5 |ts]? = 2|t4]? + & Its|? = 2|t1]* + & (D.1.6)
DiDs : [to]*+te]* =& [tsP=2tul’ + & [tal® =[t2]* + &5 -

As one can see, each C; topologically is a P! (parameterized by the first two variables in each row)
of volume §&;.

Let us consider also another basis of 2-cycles, which arises in a different resolution of the singular
conical geometry (corresponding to a different triangulation of the toric diagram). Consider the
region in the space of FI parameters where g < 0 with §& + &g > 0 and & + &g > 0. We can
introduce

§1=86+>0 E3=86+&>0 ba=—-63>0. (D.1.7)

This new resolution can be obtained from the one in Figure D.1 with a flop transition on Cg < C,.
The toric diagram triangulation and the corresponding dual (p,q)-web for the new geometry are
sketched in Figure D.2. In order to have a nice presentation of the GLSM charges in terms of the
new positive FI's, we can linearly reshuffle Table (D.1.3) getting

t1 ty ts ty ts g |

-1 0 0 1 -1 1]¢&

-1 1 0 -1 1 0]&
1 -1 1 -1 0 0]¢&

(D.1.8)

Repeating the same analysis as before one finds the holomorphic? 2-cycles in this new resolution
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t2 t3 D> D3
C
— Da
ta ta D1 Co
_C
te ts De Ds

Figure D.2: The toric diagram and the dual (p, ¢)-web in the region of the FI parameter space where {5 < 0.

in terms of toric divisors
C3 =Dy D, Co=D1-Dy Ci =D, D5 . (D.1.9)

Again the FI parameters are the positive volumes of the corresponding 2-cycles C;. From the
relations among FI parameters we read the relations

Ci =C4+Cg C3 =0Co —l—Cg , (D.l.lO)

which can be thought of as relations in homology between vanishing cycles.

A comment is in order at this point. In this nonchiral case, vanishing 2-cycles are in one-to-one
correspondence with possible fractional branes. All the divisors are non compact 4-cycles. This
implies that all dual 2-cycles support nonanomalous fractional branes. This does not hold in general,
as only 2-cycles dual to noncompact 4-cycles give anomaly-free fractional branes, their number being
equal to the number of 3-cycles in the real base of the CY cone (which in turn corresponds to the
number of baryonic charges). This is the geometric counterpart of the dual gauge theory being
nonchiral. Conversely, chiral theories are related to CY cones where there are compact 4-cycles
around. The latter put constraints on the allowed fractional D3 branes configurations, because of
the RR tadpole cancellation condition.

Once we wrap a D5 brane on a 2-cycle, it will thus source a 3-form RR flux. We turn to consider
the compact 3-cycles of the geometry which can support this flux, and their dual noncompact 3-
cycles.

D.2 3-cycles and deformations

The study of compact and noncompact 3-cycles is best performed in a regular geometry obtained
by complex deformation of the singular space, rather than by resolution (which is a Kéhler defor-
mation).
The algebraic variety (D.0.2) admits two normalizable complex deformations parameterized by
€1 and €3 [125]
f=(z122—€1)(z122 —€3) —2y =0 (D.2.1)
2Notice that generically if a homology class C has a holomorphic representative, —C has not because the repre-

sentative becomes antiholomorphic and one should look for a different one. In particular, in different resolutions the
role of homology classes with a holomorphic representative is exchanged.
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xy=0

X

T H(zz)=0

Figure D.3: The 6-dimensional manifold seen as a singular C* fibration over the (21, 22) space. The surfaces
Hy(z1,22) = 2120 — ¢ = 0, k = 1,3, are the loci where the C* fiber degenerates to a cone xzy = 0 and a
nontrivial S! shrinks.

The deformed geometry is regular for €; # €3, provided e1e3 # 0. For ¢ = €3 # 0 it still has a
C* line of A; singularities (locally C x C?/Zs) and corresponds to a Zsg orbifold of the deformed
conifold. For e3 = 0 it has a conifold singularity at the tip.

A convenient way to visualize the geometry is to regard (D.2.1) as a singular C* fibration over
C? ~ (21, 22)

Ty = Hl(zl, ZQ) Hg(zl, 22) with Hk(zl, 22) — 2129 — €k . (D.2.2)

At any point (z1, z2) where Hi(z1, 2z2) H3(21, 22) # 0 the fiber has equation zy = ¢ # 0 and is a copy
of C*. On each surface Hy(z1, 22) = 0 the fiber degenerates to a cone zy = 0 and an S1 shrinks. On
the other hand, each surface Hy(z1,22) = 0 is an hyperboloid in C? and has the topology of C*. For
a general deformation, €1 # €3, they are disjoint and never touch. When €; = €3 they degenerate one
on top of the other, while when one deformation parameter vanishes the corresponding hyperboloid
degenerates into a cone. See Figure D.3 for a picture of the geometry.

Figure D.3 is very useful to visualize compact and noncompact 3-cycles as well as 2-cycles in the
deformed geometry. Any line segment of real dimension one in the C2 space (21, 22) which begins
and ends on the locus xy = 0 represents a closed submanifold of real dimension two, obtained by
fibering on that segment an S' which lives in the C.,y cylinder and shrinks to zero at the endpoints.
When the line segment is noncontractible (keeping the endpoints on the zy = 0 locus), it represents
a nontrivial element in the homology group Ha(M,Z). In the same way, a real dimension two surface
with boundary on the zy = 0 locus gives rise to a closed dimension three submanifold after the S*
has been fibered on it. When the surface is noncontractible (keeping the boundary on the xy = 0
locus), it gives rise to a nontrivial 3-cycle. Compact 3-cycles A; arise from compact surfaces while
noncompact 3-cycles B; arise from noncompact surfaces.

In Figure D.4 we depicted the various 2-cycles C; and compact 3-cycles A; for the deformed
orbifolded conifold. We have used the basis which is most natural when complex deformations
are concerned. noncompact 3-cycles B; are easily obtained as well: the real dimension two base
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Figure D.4: The projection of the A and C cycles in the (x,y) space. The noncompact B-cycles are obtained
as C-cycles fibers over 7.

surfaces are noncompact “vertical” foils with one or two boundaries on the degeneration loci, and
are related to the line segment supporting the 2-cycles C;.

In the regular deformed geometry, a canonical symplectic basis for the third homology group
H3(M,Z) is given by {A1, A3, B1, Bs} with intersection numbers A; - B; = §;;. A; and As have
topology S while B; and Bs have topology R?. One can also consider a linear combination of
them, Ay = A; — Az (see Figure D.4) and its dual By = —Bj + B3 : they have intersection number
Ag - By = —2.

The asymptotic behavior of supergravity solutions based on these spaces is fixed, among other
parameters, by the D5 charges at infinity. These are constructed by integrating suitable currents
on the 3-cycles in radial sections of the asymptotically conical geometry. This is equivalent to
considering any radial section in the singular conical geometry (e; = €3 = 0). The latter perspective
is useful because from any 3-cycle in a radial section we can construct a noncompact conical 4-cycle
having the 3-cycle as its radial section: this allows us to introduce a concept of holomorphy and to
use toric divisors instead of 3-cycles in radial sections.

From the GLSM description we know that the number of compact 3-cycles in radial sections
(which equals the number of baryonic charges and the number of nonanomalous fractional branes)
is three. For concreteness we choose the following basis: As, A4 and Acp. Ao is the radial section
of the toric divisor Dy, and corresponds to the product of the exceptional 2-cycle Cy along the
p-line (which is = C*) with S! in the latter; in the same way, A4 is the radial section of the toric
divisor D1, and is the product of the exceptional C4 along the g-line times S'. Acr is the compact
3-cycle of the covering space conifold®: under the orbifold action it has an image, and no fixed
points. In particular, the representative 3-cycle at 03 = 7/2 and 2 = 0 is mapped to the divisor
{x = 22,y = 22} which has the GLSM description #1t3 = t4t§. Comparing the charges we find that
Ao corresponds to the toric divisor Dy 4+ 2Ds = Dy 4+ 2D5. Summarizing, our basis of 3-cycles
and the corresponding toric divisors are

Ay~ Dy Ay~ Dy Acp >~ D1 +2Dy = Dy + 2D5 . (D.2.3)

3Actually Acrp = A1 + As.
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Notice that in the deformed geometry As = —A4 in homology. Nevertheless they can give rise to
different charges when explicit sources are present in the geometry and this is in fact the case of
N = 2 branes which do not undergo complete geometric transition.

In order to compute the 3-form fluxes generated by D5 branes wrapped on 2-cycles, we will
need the intersection matrix between divisors and 2-cycles. In our basis we find

A2 >~ D4 A4 ~ D1 ACF

C; | -2 0 0
c ) s 0 (D.2.4)
Cs 1 1 -1

This table is computed from the charges in Table (D.1.3): in the GLSM construction each gauge
field gives rise to an element C, of the homology group Hy(M,Z), and the intersection between it
and a toric divisor D; is the charge Q.

D.3 The fractional branes/ranks correspondence

We have now all the ingredients to finally figure out the precise correspondence between fractional
branes (that is wrapped D5 branes) and quiver rank assignments.
Consider a D5 brane wrapped on a 2-cycle C; of our CY3. The Bianchi identity for Fj3 is violated
by the source
dF3 = —2K%75 Q4 (D.3.1)

where 4 is a 4-form with J-function support on the D5 world-volume, see (A.2.22). We are
interested in the flux generated on a 3-cycle A; in the radial section. First we have to resolve
the geometry, switching on the FI parameters of the associated GLSM. This does not change the
holomorphic data nor the quantized charges. Then we identify a noncompact divisor D; which has
A; as radial section. Being the geometry smooth, A; turns out to be (plus or minus) the boundary
of Dj, therefore

/ F3 = —/ dF3 = 2527'5/ Q4 = 2%27'5 (Dj s Cz) N (D32)
Aj D D
where (D;, C;) is the intersection number as in Table (D.2.4), and we have fixed the orientation
ambiguity requiring consistency with known cases, such as the conifold and the Zso orbifold. If
there is a holomorphic representative for C;, we can then directly compute the intersection from
the GLSM data.

The last thing to determine are the quiver rank assignments corresponding to each fractional
brane. A D5 brane wrapped on the exceptional 2-cycles C2 and C4 along the C?/Zy lines p and ¢
gives rise to an A/ = 2 fractional brane, and we conventionally choose the rank assignments to be,
respectively, (0,1,1,0) and (1,1,0,0). The rank assignment for a D5 brane wrapped on Cg can be
defined by observing that the combination Cor = 2Cg 4 C2 + C4 does not couple to twisted fields
and gives rise to the orbifold of the Klebanov-Tseytlin theory [36], see Table (D.2.4). This implies
that the corresponding gauge theory is the orbifold of the KT theory. We can say that the ranks
for one D5 on Cg are (a,b,c,d). Requiring that 2Cg + C2 + C4 is in the class (N + 1, N,N +1,N)
or (N,N 4+ 1, N,N + 1), which do correspond to the orbifold of the KT theory, singles out two
possibilities for Cg: either (1,0,1,1) or (0,0,0,1). To select the correct option we should consider
the induced D3-charge on the fractional D3 probe.
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The induced D3-charge is proportional to the integral of By (or more generally of F = By +
2ma’ Fy) on the corresponding 2-cycle C:

1
Q3 = Tp5 /Cf = T3 47_('20//'6(BQ—'—27TO/F1) . (D33)

The actual value depends on the background value of B. This is arbitrary at this level (and it
is related to the UV cut-off values of the gauge couplings in the dual gauge theory). We only
require these background values to be positive (so as to describe mutually BPS objects) and less
than one (in order to describe noncomposite, that is elementary, objects). Along the p and ¢ lines
the physics is locally C?/Zs, thus we can naturally set [132]: Je, B2 = Jo, B2 = (472a’) /2. TIf we
consider the KT theory and set also [36] chp By = (47%a’)/2, then using the previous relation
Cor = 205 + Cs + Cy, we get ng By = —(47r20/)/4.

This implies that while the A” = 2 branes have positive D3-charge, a D5 brane wrapped on Cg
has negative D3 brane charge and it is not mutually BPS. Putting one unit of worldvolume flux on
the wrapped D5 we get positive D3-charge: 3/4. The total D3-charge for Cop = 2Cg+Ca +Cy (with
two units of flux on Cg) is 5/2. This is exactly the D3-charge of the configuration (3,2, 3,2), which
implies that one D5 brane wrapped on Cg with one unit of worldvolume flux gives rise to the theory
(1,0,1,1). A similar analysis shows that a D5 brane wrapped on C, = —Cg (with no background
world-volume flux) corresponds to a rank assignment (0, 1,0, 0). Finally, direct application of Table
(D.2.4) tells us what the fluxes sourced by D5 branes wrapped on any 2-cycles are.

Our findings are summarized in the Table below

‘ —fA2 F; _fA4 F;3 _fAcp F3 D3-charge gauge theory

D5 on Cy 2 0 0 1/2 (0,1,1,0)
D5 on C4 0 2 0 1/2 (1,1,0,0) (D.3.4)
D5onCs | -1 —1 1 3/4 (1,0,1,1)
D5 on C, 1 1 ~1 1/4 (0,1,0,0)

where fluxes are in units of 472a/gs.

As anticipated, we will use D5 branes wrapped on Co, C4 and C, = —Cg without worldvolume
flux as a basis for fractional branes to discuss our gauge/gravity duality. This is the most natural
basis for discussing rank assignments parametrized as in Figure 7.1, where fractional branes modify
the ranks of the first three quiver nodes only.



Appendix E

Introduction to Seiberg-Witten curves
from M theory

E.1 N =2 pure YM and SQCD theories

N = 2 unitary YM theories can be realized in type ITA string theory by means of systems of D4
branes suspended between parallel NS5 branes.! Let us first recall, as an instructive example, the
construction for the SU(M) pure gauge theory, which may be used to derive (8.3.3).

Let us then consider a system of two parallel NS5 branes in ten-dimensional spacetime, spanning
the 0,1,2,3,4,5 directions and separated along the 6 direction by a distance Az%. Between the
NS5 branes, let M D4 branes be suspended in the 6 direction and span the 0,1, 2, 3 directions. The
system preserves eight supercharges and at high energies hosts a 5-dimensional U (M) Yang-Mills
theory on the D4 branes worldvolume, which at low energies (compared to the inverse distance
of the five-branes in string units) reduces by compactification to a 4-dimensional N' = 2 U(M)
SYM theory on the 0,1, 2,3 directions of the D4 branes worldvolume. The distance between the
NS5 branes Az% in string units is proportional to the classical inverse squared gauge coupling of
the 4-dimensional field theory, by compactification from 5 to 4 dimensions. At the classical level,
each of the M suspended D4 branes is free to move along the 4,5 directions, provided it remains
attached to the NS5 branes, matching the classical moduli space of the U(M) gauge theory.

At the quantum level, the presence of M suspended D4 branes bends the NS5 branes embeddings
logarithmically in the 6 direction as we move along the 4,5 plane, because brane tensions have to
balance at the intersections. This phenomenon is easily seen in the M theory lift that we will
discuss momentarily. The distance between the NS5 branes becomes a function of the coordinates
along the 4, 5 plane: this logarithmic asymptotic bending is interpreted as the logarithmic running
of gauge coupling of the quantum theory, because that is what results from probing the RG flow by
moving in the Coulomb moduli space. Special points in the 4,5 plane where the two NS5 branes
touch or intersect correspond to energies in the dual field theory where the running gauge coupling
diverges. It is also possible to see that the diagonal U(1) subgroup freezes, otherwise the NS5
branes kinetic energy would diverge when the ends of D4 branes fluctuate. Finally, as in the field
theory the inverse squared gauge coupling is accompanied by the theta angle, with which it forms

YA very detailed review of N' = 2 and N = 1 four-dimensional gauge theories realized on systems of branes in
type ITA string theory can be found in [151], to which we refer the interested reader.
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the complexified gauge coupling 1y = % + z'gg%z, the field 2% of each NS5 brane embedding has
as a partner an axionic scalar field propagating on the five-brane. Each D4 brane ending on the
NS5 brane forms a vortex (or an antivortex) for the field strength of this scalar.

This can be understood easily by lifting the type IIA brane configuration to M theory com-
pactified on a circle, parameterized by a coordinate ¢ ~ 2'? + 27 R [140]. The NS5 and D4 brane
configuration in type ITA string theory maps to a single (but multi-covering) generically smooth
M5 brane configuration in M theory,? and the NS5 brane worldvolume scalar becomes the !9
coordinate of the M5 brane embedding. The M5 brane worldvolume spans the Minkowski 0,1,2, 3
directions, is localized at 27 = 2® = 2% = 0, and finally spans a 2-dimensional complex Riemann
surface in the remaining directions, in the complex structure in which z* + iz® and 2% + iz!'9 are
holomorphic. This Riemann surface, which is a multi-cover of the (2%, 2'%) strip, is nothing but
the auxiliary Riemann surface of the Seiberg-Witten theory. Finally, it is possible to take a scaling
limit where the radius of the M theory circle goes to infinity, keeping proportions in the M5 brane
embedding fixed. This limit does not affect relevant and marginal field theory quantities, but allows
a semiclassical treatment of the M5 brane configuration. The abstract auxiliary Riemann surface
associated to any point of the Coulomb branch of the N' = 2 gauge theory, describing the quantum
dynamics of the theory at that point of the moduli space, has translated into the embedding of a
physical M5 brane, which makes the visualization of gauge theory quantities easier, thanks to the
semiclassical type ITA intuition. The M5 brane embedding is best described by introducing the
following complex coordinates

28 + iz10

t=e? = —. E1l.1
e, S 7 ( )

Since there are 2 NS5 branes and M D4 branes, the embedding equation for the M5 brane is written
as a polynomial equation which is quadratic in ¢t and of degree M in v, the complex dimensionless
coordinate along 4,5 which measures lengths in 11-dimensional Planck units. Moreover, the D4
branes are suspended between the NS5 branes, that therefore bend outwards so as to equilibrate
their tension, and go to t = 0,00 only at v = co. Therefore there are no poles or zeros of t(v) at
finite v. The equation for the M5 brane embedding takes then the form

(E.1.2)

2 ~
It can be rewritten as t? = B(Tv) —1in terms of t = ¢ + Bg}); finally, we can reinstate dimensions

by introducing y = 2A%f, x = Apv, ¢ = Apgv;, so as to obtain the Seiberg-Witten curve in its
conventional field theory look (8.3.3).

We see that the roots of the Seiberg-Witten curve, as functions of v, get translated into the
positions of the NS5 branes in the 6,10 strip, as functions of v, up to an exponential map. The
running complexified gauge coupling of the gauge theory (2.3.1) at a scale v (in units of Aps) is
readily extracted from the roots t; 2(v) as follows:

Tvm(v) =i (s2(v) — s1(v)) , (E.1.3)

*We recall that an M5 brane wrapped on the M theory circle becomes a D4 brane in type ITA string theory,
whereas an M5 brane which does not wrap the circle becomes a type ITA NS5 brane.



E.2. THE SEIBERG-WITTEN CURVE FOR THE ELLIPTIC MODEL 227

where sa(v) > s1(v) and we have used (E.1.1).

Notice that branch points of the curve (as a double cover of the complex plane) are translated
in the M theory pictures into special points v, in the 4,5 plane where the two roots ¢; 2(v) of the
(E.1.2) or (E.1.4) embedding equation coincide: ¢j(v.) = t2(v«). In the IIA picture this occurs
when not only the two NS5 branes touch or intersect, but at the same time the worldvolume axions
(related to the 10 direction in M theory) take on the two five-branes the same value, modulo the
periodicity. In general, these are not singular points, since the curve is smooth. Singularities arise
whenever at least two of these branch points collide.

Let us also remark that in the M theory lift of the type ITA brane configuration, each single D4
brane is thickened into an M5 brane and this results into two branch points in the v plane, which
lie close to one another in a semiclassical regime but need not in a nonperturbative regime where
the corresponding M5 brane is fat. Again, singularities occur when two of these branch points, in
general coming from different semiclassical branes, collide.

Finally, it is worth mentioning a straightforward generalization to SQCD theories, that will be
useful in the following: flavor hypermultiplets can be included in the type IIA picture by attaching
semi-infinite D4 branes along the 6 direction, on the opposite side with respect the finite D4 branes
(either on the left or on the right, or also on both sides), and spanning the 0, 1, 2, 3 directions as well.
The position of the endpoints of these semi-infinite D4 branes are related to the mass parameters
of the quark hypermultiplets in the gauge theory, which are provided by strings stretching form
the semi-infinite to the finite D4 branes. From the M theory viewpoint, the embedding equation is
simply obtained by promoting (E.1.2) to

An, (0)t* + B (v)t + Cn,(v) =0, (E.1.4)

where Ay, (v) and Ch,(v) are degree N; and N polynomials, and Ni + Ny = Ny is the total
number of flavors. By suitable redefinitions of variables, the embedding equation (E.1.4) can be
rewritten in the standard form [141] for SU(n.) SQCD with ny flavors:

Ne nyg
v =[] = ¢a)? — 402 T [ (= +ma) (E.L.5)
a=1 =1

valid for ny < n. — 2, where here n, = M and ny = Ny.

E.2 The Seiberg-Witten curve for the elliptic model

In [140], among other things Witten also found the Seiberg-Witten curve for the conformal N' = 2
SU(n)x SU(n)xU(1) quiver gauge theory arising on n regular D3 branes at the C x C2/Zs orbifold.
Before introducing the curve, following the presentation of [129], let us mention the relation between
D3 branes in type IIB string theory on the C x C?/Zsy orbifold and the M5 brane configuration
whose holomorphic embedding gives the desired hyperelliptic curve.

First of all, we can map the type IIB system to a type IIA string theory Hanany-Witten-like
setup, by T-dualizing along the U(1) symmetry (x,7) — (e'®z,e~'*y) of the A; singularity zy = 22
(the algebraic description of the C2?/Zy orbifold). If we call 2% the compact T-duality direction,
the singularity is mapped into two parallel NS5 branes, spanning the 0, 1,2, 3 Minkowski directions
and the 4,5 directions, separated along the 6 direction (a circle of radius L) by a distance 27wbL,
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proportional to the By flux through the exceptional cycle. The two kinds of type IIB fractional
D3 branes become D4 branes suspended between the two NS5 branes, on one side or the other:
wrapped D5 branes become D4 branes extended along the 2wbL long arc of the circle, wrapped anti-
D5 branes with flux become D4 branes extended on the other arc of the circle, of length 27(1—b)L.
Again, these lengths are nothing but the gauge couplings of the two gauge groups. Each of the
two kinds of suspended D4 branes has a classical moduli space matching the type IIB one. If there
is an equal number of suspended D4 branes on both sides of each NS5 brane, the field theory is
conformal in the UV and the NS5 branes are asymptotically parallel even at the quantum level.

The lift to M theory proceeds by adding the circle in the eleventh dimension parameterized by
210, which joins 2% in a complex variable 2% + iz'0 parameterizing a two-torus E:

(28, 21%) ~ (25, 21° + 27 R) ~ (2% + 27L, 2" — OR) , (E.2.1)

whose complex structure 7 turns out to be the same as the type IIB axio-dilaton in string frame.

We will use the complex coordinate
28 +ixt0 (£.2.2)
U=i—— 2.
27T R

so that the two-torus F is defined by the identifications

u~u+1~u+7),
6L (E.2.3)
T = b + ZE .
The Seiberg-Witten curve for the SU(n) x SU(n) x U(1) quiver gauge theory? is obtained as an
n-sheeted cover of the torus F, where the n sheets correspond to n suspended D4 branes between
each ordered pair of NS5 branes. The 2-torus E can be defined by the following equation in C?

(parameterized by a and y):
y? =z(z—1)(z -\, (E.2.4)

where A = —03(7)/03(7) in terms of the Jacobi theta functions defined in appendix E.3. The
Seiberg-Witten curve is then defined by the equation F(x,y,v) = 0, where F'(x, y, v) is a polynomial
of degree n in v:

F(z,y,v) = 0" + fi(z,y)v" L+ + fulz,y) . (E.2.5)

fi(x,y) are meromorphic functions on the torus, with simple poles at the positions of NS5 branes:
all the f;’s have simple poles at the same two points, and depend on two additional complex
parameters each. All in all, the Seiberg-Witten curve (E.2.5) depends on the asymptotic positions
of the NS5 branes (the poles of f;) plus 2n parameters which are one mass parameter (related to
how the v plane is fibered over E) and the 2n — 1 moduli of the Coulomb branch. The f;’s cover
the complex plane twice, with four double points. They can be chosen as follows,

+
fi(z,y) =i +d 2 YE (E.2.6)
r — B

placing one pole at the point at infinity P, and the other one at Pg = (zp,yp). A straightforward
manipulation brings the curve to the form

y+yB
x—zxp

(R+S)+ (R—S) (E.2.7)

3The additional U(1) which is not frozen is free and decoupled, therefore we will not bother much about it.
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where

n

R(v) = [ (v = ¢a)
=1 (E.2.8)

n

S@) =[] -,

a=1

bq and ¢, being the eigenvalues of the VEV of the adjoint scalars of the two gauge groups. Notice
that whenever the two adjoints have a common eigenvalue, this factorizes from the Seiberg-Witten
curve. It corresponds to two suspended D4 branes reconnecting into a complete D4 brane, that can
move off the NS5 branes. It is the T-dual of a regular D3 brane in type IIB string theory. Instead
noncommon eigenvalues force the NS5 branes to bend.

It proves useful to map the problem to the u parallelogram (E.2.3). Choosing, with no loss
of information, the ‘orbifold point’ asymptotic values ¢(®) = 0 and b(® = %, namely () = 5, for
the type IIB twisted fields, and fixing the asymptotic positions of the NS5 branes at u = %7‘ and
U= %7‘, the meromorphic form f = i’*_’—i’; can be rewritten as

~ 03(u|T/2)  03(2u|27) + 02(2ul27)

f= Os(ulT/2)  03(2u|27) — 02(2u|27)

(E.2.9)

in terms of the elliptic #-functions defined in appendix E.3. The Seiberg-Witten curve (E.2.7) is
then rewritten as

R(v) 03(2u|27) = S(v) O2(2u|27) . (E.2.10)

2miu 2miT

It is an infinite series in ¢t = e“™*. It is also common to introduce ¢ = e“™", whose modulus is

27
related to the type IIB dilaton by |¢| = e 9. We find it useful to introduce the meromorphic
function

02(2U|2T)
= —F E.2.11
ofulr) = e (B2.11)
which obeys g(u + 3|7) = —g(u) and g(u+ 3|7) = 1/g(u|7). It is related to f (E.2.9) by
1+g¢ f—1
=—= = E.2.12
f=1- g 9= ( )
The Seiberg-Witten curve becomes then
R(v)
= . E.2.13
S = 9l (E.2.13)

g(u|T) has four double points in the u parallelogram at the points {0, %, 5 TTH}, which have the
physical interpretation of points where the two NS5 branes touch, like the branch points discussed
in the previous section.

The complexified gauge couplings 7 2 of the two gauge groups, defined as in (2.3.1), in the type

IIB picture are given by the formulae

TI=br+c=7y (£.2.14)
To=0_1-b1—c=7—7, o
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where again the axio-dilaton is evaluated in string frame, and in the M theory picture are translated
into
71 = u2(v) —ui(v)

o =ui(v) + 7 — u2(v) , (E2.15)

assuming that Im(ug) > Im(ug).

E.3 Elliptic #-functions

In this appendix we collect our conventions for Jacobi’s elliptic §-functions. They are quasi-modular
functions on a two-torus E with complex structure 7. We parameterize the torus as in the previous
section by means of a complex coordinate u with the identifications v ~ v + 1 ~ v 4+ 7. The four
f-functions are defined as follows:

e . 2 .
(91(U|7’) — 4 Z (_1)n627r7'(n—%) 67,27ru(n—%)
e . 2 .
92(U|T) — Z ez7r7'<n—%) ezQTru(n—%)
S (E.3.1)
93(,“‘7_) — Z eiﬂ7n26i27run
94(’[1,‘7') — Z (_1)n€iﬂ'7n26i2ﬂ'un )
n=—o00

They are semi-periodic in the Z + 77 lattice:

‘ O;(u+1)7)/0;(u|r)  0;(u+7|7)/0;(u|T)

01 —1 N
05 ~1 N (E.3.2)
05 1 N

04 1 ~N

where N = e~ "7e~%2™_ They have no poles, and have zeros at:

zeroes
01 (ulT 7+ 17
O (u|T (Z+31)+7Z (E.3.3)

(ul7)
(ulr)
Oa(ult) | (Z+3) +7(Z+3)
Ou(ult) | Z+7(Z+3)
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