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Chapter 1

Introduction

Historical background

According to Hartshorne [13], one of the guiding problems in Algebraic Ge-
ometry is the classification of algebraic varieties up to isomorphism. Two
variants of the problem are the classification of complex projective varieties
up to isomorphism and classify all closed subvarieties of a given projective
space Pn up to projective equivalences. We remind the reader that two sub-
varieties of Pn are called projectively equivalent, if there is an automorphism
of this ambient space which carries the first variety onto the second one. As
Hartshorne also describes, these classifications problems usually fall into two
parts. First, has some discrete numerical invariants such as the Hilbert poly-
nomial of the (polarized) variety, which yields a first subdivision of the class
of all objects. Second, the objects with fixed numerical invariants usually
come in families of positive dimension and one has to construct a moduli
space for them, which is an algebraic variety whose points are in natural
correspondence with the set of isomorphism classes of the objects with fixed
numerical data. Mumford has conceived his Geometric Invariant Theory as
a major tool for constructing such moduli spaces.

Another important variant of this guiding problem is in the classifica-
tion, up to isomorphism, of vector and principal bundles over smooth, or
maybe singular, varieties. This problem is closely related to problem of clas-
sifying algebraic varieties up to isomorphism. In fact a vector or principal
bundle over, let’s say, a smooth projective variety X is nothing else that an
algebraic variety E with a surjective morphism E → X and some other com-
patibility conditions such as local triviality. Of couse the first problem to
treat is the problem of classifying vector bundles over an algebraic smooth,
projective curves over C. The basic invariants of a vector bundle E in this
case are the rank, i.e., roughly speaking, the dimension of the fibre, and the
degree. They determine E as a topological C-vector bundle. The problem
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of classifying all vector bundles of fixed degree d and rank r is not easy at
all. The first, and simplest, cases are the following: If r = 1 this problem is
covered by the theory of Jacobian varieties, if X = P1 Grothendieck’s split-
ting theorem [12] provides the classification. Finally, if the genus of X is
one the classification has been worked out by Atiyah [1] which gives a (1-1)
correspondence between irreducible vector bundles of degree d and rank r
and X. All other cases are not trivial in the sense that vector bundles of
degree d and rank r cannot be parametrized by discrete data. Therefore one
seeks a variety parameterizing them with some “good” property, replacing,
in some sense, the universal property of the Jacobian.
This good property was formulated by Mumford in his definition of coarse
moduli space in [24]. We recall that a fine moduli space for a given (alge-
braic) moduli problem is an algebraic varietyM with a family U parametrised
byM having the following (universal) property: for every family E parametrised
by a base space S, there exists a unique (up to isomorphism) map f : S →M
such that E ' f∗U . A coarse moduli space for a given moduli problem
is an algebraic variety M with a bijection α : A/∼ →M (where A is the set
of objects to be classied up to the equivalence relation ∼) from the set A/∼
of equivalence classes in A to M such that:

i) for every family E with base space S, the composition of the given
bijection α : A/∼ →M with the function νE : S → A/∼, which sends
s ∈ S to the equivalence class [Es] of the object Es with parameter s
in the family E, is a morphism;

ii) when N is any other variety with β : A/∼ → N such that the compo-
sition β ◦ νE : S → N is a morphism for each family E parametrised
by a base space S, then β ◦ α−1 : M → N is a morphism.

However, in the costruction of the moduli space of vector bundles over curves
one checks that the family of vector bundles is not bounded which implies
that a coarse moduli space cannot exist. For this reason one has to consider
suitable (bounded) subfamilies of the family of vector bundles: the families
of semistable and stable vector bundles. We recall that a vector bundle
E over a curve is (semi)stable if for any proper subbundle F ⊂ E

µ(F ) +
degF

rk(F )
<

(=) µ(E).

Therefore large part of the theory focusses on semistable vector bundles.

The costruction of the moduli space of stable vector bundles was made
by Seshadri in [28]. Unfortunately the moduli space is only quasi-projective.
To compactify one has to consider S-equivalence classes of semistable vec-
tor bundles. S-equivalence has the following important property: two stable
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vector bundles are S-equivalent if and only if they are isomorphic, while iso-
morphic strictly semistable vector bundles are S-equivalent but the converse
is not true in general. To be more precise, given a semistable vector bundle
E one constructs a particular filtration 0 ⊂ E1 ⊂ · · · ⊂ Es ⊂ Es+1 = E
of E, called the Jordan-Hölder filtration, and defines a graded object
gr(E) +

⊕s+1
i=1 Ei+1/Ei associated with the given filtration. It turns that

the filtration is not unique in general but the graded objects, up to isomor-
phisms, are. Therefore one says that two vector bundles are S-equivalent if
and only if their associated graded are isomorphic. So the moduli space of
S-equivalence classes of semistable bundles exists by the same construction
and is a normal projective variety compactifying the moduli space of stable
bundles. The generalization of this result over higer-dimensional varieties is
due to Gieseker, Maruyama and Simpson: [7], [22] and [37] respectively.
These works revealed that, on higher-dimensional manifolds, one has to in-
clude semistable torsion free sheaves in order to obtain projective moduli
spaces, namely the moduli space of locally free sheaves (or vector bundles)
is not projective and so one has to include also torsion free sheaves to get a
projective manifold.
The same holds true for principal bundles: also for principal bundles one
has to include some kind of “degenerate” objects in order to obtain a pro-
jective moduli space. In [26] Ramanathan gave a GIT costruction of the
moduli space of semistable principal G-bundles on smooth projective curve.
Hyeon, in [16], has generalized Ramanathan’s construction to give the mod-
uli spaces of stable principal bundles over higher-dimensional base schemes,
but the resulting moduli spaces are only quasi-projective. The necessary
singular generalizations of principal bundles have been considered only in
the case of classical groups O(n,C), SO(n,C) and Sp(n,C). Indeed, for G
one of these groups, the principal G-bundles have natural interpretation as
vector bundles with additional structures, and these can be extended in the
context of torsion free sheaves.
In [31] Schmitt proposes a more general approach for this problem: given a
principal G-bundle, with G a reductive group, and a representation ρ : G→
Sl(V ), he constructs a singular principal bundle imitating the construction
of a principal G-bundle from a principal Gl(V )-bundle E over a smooth va-
riety X and a section X → E/G. Therefore, from a principal G-bundle and
a representation of G in Sl(V ), he obtained a pair (E, τ) where E is a vector
bundle and τ is a morphism induced by a section σ : X → E/G which
“remembers” the principal bundle structure. Therefore, also in this case,
these vector bundles with an addittional structure can be generalized to the
setting of torsion free sheaves. Schmitt then gives a notion of semistability
for such singular principal bundles which generalizes the one of principal
bundles and proves that there exists a (projective) coarse moduli space for
the families of equivalence classes of semistable singular principal bundles.
Therefore the next step is to consider vector bundles with extra structure,
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the so-called “decorated” bundles.

Decorated bundles

In the framework of bundles with a decoration we recall two types of objects
which incorporate all others: decorated sheaves and the so called tensors.
The former were introduced by Schmitt while the latter by Gomez and Sols.
We recall breafly the definitions of such objects. A decorated sheaf of type
(a, b, c,N) over X is a pair (E , ϕ) where E is a torsion free sheaf over X and

ϕ : (E⊗a)⊕b ⊗ (det E∨)⊗c −→ N,

while a tensor of type (a, b, c,Du) is a pair (E , ϕ) where E is a torsion free
sheaf and

ϕ : (E⊗a)⊕b⊗ −→ (det E)⊗c ⊗Du,

where Du is a locally free sheaf belonging to a fixed family {Du}u∈R
parametrized by a scheme R. As one can easily see these two objects are
quite similar and both incorporates many types of bundles with a morphism,
such as framed bundles, Higgs bundles, quadratic, orthogonal and symplec-
tic bundles, and many others. The problem to classify decorated sheaves up
to equivalence is therefore related to many classification problems in alge-
braic geometry. In order to solve this classification problem by establishing
the existence of a coarse moduli space, one needs to introduce a notion of
semistability. The notion of semistability for decorated sheaves and tensors
is the same. In both cases one tests the (semi)stability of an object (E , ϕ)
against saturated weighted fitrations of E , namely against pairs (E•, α)
consisting of a filtration

E• : 0 ⊂ E1 ⊂ · · · ⊂ Es ⊂ Es+1 = E

of saturated sheaves of E , i.e., such that E/Ei is torsion free, and a tuple

α = (α1, . . . , αs)

of positive rational numbers. Then one says that a decorated sheaf or ten-
sor (E , ϕ) is (semi)stable with respect to δ if and only if for any weighted
filtration

P (E•, α) + δ µ(E•, α;ϕ) �
(−) 0.

Here δ is a fixed polynomial of degree dim(X)− 1 and, denoting by PE the
Hilbert polynomial of a sheaf, P (E•, α) is defined as∑

i

αi
(
PE · rk(Ei)− rk(E) · PEi

)
Finally µ(E•, α;ϕ) is

− min
i1,...,ia

{γ(i1) + · · ·+ γ(ia) |ϕ|
(Ei1⊗···⊗Eia )⊕b

6≡ 0}
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where

γ = (γ(1), . . . , γ(r))

+
∑
i

αi(rk(Ei)− r, . . . , rk(Ei)− r︸ ︷︷ ︸
rk(Ei)-times

, rk(Ei), . . . , rk(Ei)︸ ︷︷ ︸
r−rk(Ei)-times

). (1.1)

The notation “ �(−)” means that “�” has to be used in the definition of
stable and “�” in the definition of semistable. Moreover we recall that,
given two polynomials p and q in Q[x], we write p �

(−) q if and only if there
exists x0 such that p(x) >

(=) q(x) for any x ≥ x0.
The classification problem for δ-semistable decorated sheaves (or tensors)
with fixed Hilbert polynomial PE = P is abstractly solved by a projective
moduli space M δ. The existence of M δ was established by Schmitt over
curves [33] and by Gomez and Sols over manifolds of arbitrary dimension
[9]. Then Schmitt proved that these moduli spaces M δ do not depend “too
much” on δ in the sense that there are only finitely many different moduli
spaces occurring among the M δ [34].

Our objectives

As one can easily convinces oneself looking at the definition of µ(E•, α;ϕ),
the semistability for decorated sheaves is not easy to handle and in general
is quite complicated to calculate. This fact affects the possibility of general-
izing many basic tools that instead exists for vector bundles. For example,
until now, there is no notion of a maximal destabilizing object for decorated
sheaves nor a notion of Jordan-Hölder or Harder-Narasimhan filtration. This
thesis is devoted to the study of semistability condition of decorated bundles
in order to better understand and simplify it in the hope this will be useful
in the study of decorated sheaves. We approach the problem in two different
ways: on one side we “enclose” the above semistability condition between a
stronger semistability condition and a weaker one, on the other side we try,
and succeed for the case of a = 2, to bound the length of weighted filtrations
on which one checks the semistability condition.

To be more precise: in the former approach we say that a decorated
sheaf (E , ϕ) of type (a, b, c,N) is ε-(semi)stable with respect to a fixed
polynomial δ of degree dimX − 1 if for any subsheaf F ⊂ E

rk(E)
(
PF − a δ ε(ϕ|F )

) ≺
(−) rk(F) (PE − a δ ε(ϕ)) ,

where ε(ϕ) = 1 if ϕ 6= 0 and zero otherwise. Similarly, given a sheaf E and a
subsheaf F ⊂ E , we define a function kF,E with values in the set {0, 1, . . . , a}
and depending on the behaviour of ϕ on F as subsheaf of E (see Equation
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(2.16)). Then we say that a decorated sheaf (E , ϕ) is k-(semi)stable if for
any subsheaf F ⊂ E one has that

rk(E) (PF − δ kF,E)) ≺
(−) rk(F) (PE − δ kE,E) .

What happens is that

ε-(semi)stable ⇒ (semi)stable ⇒ k-(semi)stable

and, if rk(E) = 2, (semi)stability is equivalent to k-(semi)stability. In this
respect, we generalize some known results (in the case of vector bundles)
to the case of ε-semistable decorated sheaf and, to a lesser extent, to the
k-(semi)stable case. In fact, using ε-semistability, we find the ε-maximal
destabilizing subsheaf, prove a Mehta-Ramanathan’s like theorem about the
behavior of slope ε-semistability under restriction to curves, find a moduli
space for ε-semistable decorated sheaves and define an Uhlenbeck-Donaldson
compactification for them. Since k-semistability is a little bit more compli-
cated to handle with we managed to find a k-maximal destabilizing subsheaf
and prove a Mehta-Ramanathan theorem only for rank ≤ 3.

In the latter approach we study the effective semistability condition ask-
ing ourselves which filtrations are really essential to check semistability. Let
(E , ϕ) be a decorated sheaf (or tensor), E•I : 0 ⊂ E1 ⊂ · · · ⊂ Es ⊂ E be a filtra-
tion of E indexed by the set I + {1, 2, . . . , s} and finally let αI = (α1, . . . , αs)
be a weight vector for the filtration. Then let us point out that, in general,
it is not true that

µ(E•, α;ϕ) =
s∑
i=1

µ(0 ⊂ Ei ⊂ E , αi;ϕ).

We say that a filtration is non-critical if the above equality holds and
critical otherwise. For any pair of disjoint subfiltrations E•I′ and E•I′′ of E•I
(i.e., I′, I′′ ⊂ I and I′ ∩ I′′ = ∅) one easily checks that

µ(E•I , αI;ϕ) ≤ µ(E•I′ , αI′ ;ϕ) + µ(E•I′′ , αI′′ ;ϕ).

Therefore the length of a filtration is important for checking semistability
condition in the sense that it could happen that

(PI′ + δµI′) + (PI′′ + δµI′′) � 0 � PI + δµI,

where with PI and µI we mean P (E•I , αI) and µ(E•I , αI;ϕ) respectively.
At least when a = 2 we proved that, given a weighted filtration of length
≥ 2, there always exist two weighted filtrations such that

(PI′ + δµI′) + (PI′′ + δµI′′) = PI + δµI. (1.2)
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This result clearly implies that in this case the semistability condition can
be checked only over filtrations of length ≤ 2. As we remarked before, or-
thogonal bundles are examples of decorated bundles of type (2, 1, 0,OX) and
therefore they inherit the (semi)stability condition of decorated vector bun-
dles. However orthogonal bundles have already a notion of (semi)stability:
an orthogonal bundle E over a smooth curve is sayed (semi)stable if every
proper isotropic subbundle F of E has degree zero. As an application of
this result we will show that, at least in the case of orthogonal bundles over
curves, the two (semi)stability conditions coincide. Finally, as a futher ap-
plication, we implement a java code which finds the sets I′ and I′′ for which
equality 1.2 holds.

Contents and results chapter by chapter

* In Chapter 2 we recall the definition of decorated bundles and sheaves
and we present their notion of (semi)stability and slope (semi)stability.
In Section 2.2.1 we introduce the notions of ε-(semi)stability and k-
(semi)stability. After that we explain in which sense principal bundles,
Higgs bundles, quadric, orthogonal, symplectic and framed bundles
can be regarded as decorated vector bundles or sheaves (Section 2.3).

* Chapter 3 is devoted to generalizing the Mehta-Ramanathan theorem
to the case of ε-(semi)stable and k-(semi)stable decorated sheaves. In
both cases, to do this, one needs some preliminar results. After in-
troducing the notion of decorated coherent sheaves and semistability
notions for these objects (Section 3.1), we treat the ε-semistability and
k-semistability cases separately (Section 3.2 and 3.3 respectively). In
the former case, we first prove, using quite standard arguments, the
existence of a (unique) ε-maximal destabilizing subsheaf for decorated
sheaves (Section 3.2.1). Then we recall the definition of families of
decorated sheaves flat over the fibre of a morphism (Section 3.2.2).
In many constructions quotiens are easier to handle than subobjects.
However quotients of decorated sheaves (or tensors) are not well de-
fined in general as decorated sheaves. In fact, given a quotient Q of
a decorated sheaf (E , ϕ), i.e., a quotient E � Q, it is not always pos-
sible to induce a non-zero morphism ϕ on Q. Despite this there is
a one-to-one correspondence between decorated subsheaves of a given
decorated sheaf and its quotients. In Section 3.2.3 we face this problem
and “translate” the semistability condition, which is checked over sub-
sheaves, to a condition over quotients. After recalling in Section 3.2.4
the notion of the quot functor Quot

X/S
(E ,P), we prove the opennes of

the ε-semistability condition and the existence of a relative ε-maximal
destabilizing subsheaf for families of decorated sheaves (Section 3.2.5).
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Finally, in Section 3.2.7, we state and prove a restriction theorem for
slope ε-semistable decorated sheaves:

(Theorem 51). Let X be a smooth projective surface and OX(1)
a very ample line bundle. Let (E , ϕ) be a slope ε-semistable decorated
sheaf. There is an integer a0 with the following property: for all a ≥ a0

there is a dense open subset Ua ⊂ |OX(a)| such that for all D ∈ Ua the
divisor D is smooth and (E , ϕ)|D is slope ε-semistable.

In Section 3.3 we prove for the k-semistability case almost the same
results that we proved for the ε-semistability but we restrict our at-
tention only to rank ≤ 3 decorated bundles since we were not be able
to prove the existence of a k-maximal destabilizing subsheaf for rank
greater than 3.
Finally in Section 3.4 we give some important remarks about the pre-
vious results.

* Chapter 4 is devoted to the costruction of the moduli space of ε-
semistable decorated sheaves and the costruction of the Uhlenbeck-
Donaldson compactification for slope ε-semistable decorated sheaves.
In the first section of this chapter we recall the definition of families of
decorated sheaves and prove that the families of ε-semistable decorated
sheaves and slope ε-semistable decorated sheaves with fixed Hilbert
polynomial are bounded (Lemma 62 and Corollary 63). We prove
that the ε-semistability condition “cames from” a GIT semistability
condition (Lemma 64 and Proposition 65). Thanks to this result we
are able to construct a moduli space for such objects as a GIT quotient
of an appropriate scheme:

(Teorem 66). Let δ a rational polynomial of degree dimX − 1 with
positive leading coefficient. There is a projective scheme Mε-ss

δ (P, t)
that corepresents the moduli functor Mε-ss

δ (P, t). Moreover there is an
open subscheme Mε-ss

δ (P, t) that represents the subfunctor Mε-ss
δ (P, t).

The classical Mehta-Ramanathan theorems are used in the algebro-
geometric construction of the Uhlenbeck-Donaldson compactification
of moduli space of slope stable vector bundles on a nonsingular pro-
jective surface X. In the same way we construct the Uhlenbeck-
Donaldson compactification of moduli space of slope ε-stable decorated
sheaves on X (Section 4.2). More precisely, in Section 4.2.1, we recall
some definitions and results about the Grothendieck group of coherent
sheaves over a scheme; in Section 4.2.2 we re-adapt the techniques used
in [4] in order to construct a line bundle L(n1, n2) and prove that it
is (finitely) generated by its invariant sections (Proposition 70). This
fact is the core of the constructions of Section 4.2.3 and essentially
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leads, together with some technical results, to the construction of the
moduli space of slope ε-semistable decorated sheaves:

Mslope-ε-ss

δ
(c, t) + Proj

⊕
k≥0

H0(Rslope-ε-ss

δ
,L(n1, n2)⊗kN )Sl(P(m))

 .

The closure insideMslope-ε-ss

δ
(c, t) of the slope ε-stable decorated sheaves

is called the Uhlenbeck-Donaldson compactification.

* In Chapter 5 we investigate the semistability condition of decorated
sheaves in order to simplify it. In particular, in Section 5.1, we prove
the following reduction theorem:

(Theorem 77). Let (E , ϕ) be a decorated sheaf of type (2, b, c,N).
It is enough to check the semistability condition on subbundles and
critical weighted filtrations of length two.

Thanks to this result we can prove that, in order to check the semista-
bility condition of a = 2 decorated sheaves, we can restrict our atten-
tion not only to length ≤ 2 weighted filtrations but also to length ≤ 2
filtrations with weight vector identically 1 (Lemma 81). Therefore,
making some futher calculations, we are able to prove that a deco-
rated sheaf (E , ϕ) of type (2, b, c,N) is (semi)stable with respect to δ
if it is k-(semi)stable and, for any critical filtration 0 ⊂ Ei ⊂ Ej ⊂ E of
length 2,

(rEi + rEj )PE − rE(PEi + PEj )− 2δ(rEi + rEj − r)
�

(−) 0.

In section 5.2 we state (and prove) the reduction theorem (Theorem
77) in some more general context. Indeed, if (E,ϕ) is a decorated
bundle of type (a, b,N) and rank r and (E•, α) is a weighted filtration
of (E,ϕ) indexed by I we construct a r × · · · × r︸ ︷︷ ︸

a-times

“matrix” MI(E
•;ϕ)

which represent the behavior of ϕ (to be equal or different from zero)
over the given filtration. Defining RI(l) +

∑
i∈I, i≥l αi and setting

RI + max
i,j∈I
{RI(i1) + · · ·+RI(ia) |mi1...ia 6= 0}.

We prove the following theorem

(Theorem 84). Let a = 2. Fix a well-ordered set I, a vector αI of
real numbers and a symmetric matrix MI(E

•;ϕ) as before. Denote by
| · | the cardinality of a set. Then exists t ∈ N, sets J(1), . . . , J(t) and
positive real vectors αJ(1) , . . . , αJ(t) such that

i) |J(s)| ≤ 2 for any s = 1, . . . , t;
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ii) J(1) ∪ · · · ∪ J(t) = I;

iii)
∑t

s=1 α
(s)
i = αi, where is to be understood that α

(s)
i = 0 if i 6∈ J(s);

iv)
∑t

s=1RJ(s) = RI.

In Section 5.3, as an application of Theorem 77, we show that the usual
notion of (semi)stability for orthogonal bundles over curves coincides
with the (semi)stability condition induced by considering orthogonal
bundles as decorated bundles. Finally, in Section 5.4 we briefly discuss
a java implementation of an algorithm which “decomposes” matrices in
the sense of Theorem 84; while in Section 5.5 we discuss the possibility
of extending the above result to a ≥ 3.



Chapter 2

Decorated Sheaves

2.1 Definition and first properties

Let X be a smooth projective variety over C of dimension n and fix OX(1)
an ample line bundle. Let δ = δ(x) + δn−1x

n−1 + · · · + δ1x + δ0 be a fixed
polynomial with positive leading coefficient and δ + δn−1.

Definition 1. Let N be a line bundle over X and let a, b, c be nonnegative
integers. A decorated vector bundle of type t = (a, b, c,N) over X is the
datum of a vector bundle E over X and a morphism

ϕ : Ea,b,c + (E⊗a)⊕b ⊗ (detE)⊗−c −→ N (2.1)

A decorated sheaf of type t is instead a pair (E , ϕ) such that E is a
torsion free sheaf and ϕ is a morphism as in (2.1). Sometimes we will
call these objects simply decorated sheaves (respectively bundles) instead of
decorated sheaves (resp. bundles) of type t = (a, b, c,N) if the input data
are understood.

Remark 2. Note that, although E is torsion free, the sheaf Ea,b,c may have
torsion.

Now we want to define morphisms between such objects. Let (E , ϕ) and
(E ′, ϕ′) be decorated sheaves (resp. bundles) of the same type t. A morphism
of sheaves (resp. bundles) f : E → E ′ is a morphism of decorated
sheaves (resp. bundles) if exists a scalar morphism λ : N→ N making the
following diagram commute:

Ea,b,c
ϕ

��

fa,b,c // E ′a,b,c
ϕ′

��
N

λ // N.

(2.2)

11
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We will say that a morphism of decorated sheaves (bundles) f : (E , ϕ)→
(E ′, ϕ′) is injective if exists an injective morphism of sheaves (bundles)
f : E ↪→ E ′ and a non-zero scalar morphism λ such that the above diagram
commutes. Analogously we will say that a morphism of decorated sheaves
(bundles) f : (E , ϕ)→ (E ′, ϕ′) is a surjective if exists a surjective morphism
of sheaves (bundles) f : E → E ′ and a scalar morphism λ making diagram
(2.2) commute. Finally we will say that (E , ϕ) and (E ′, ϕ′) are equivalent if
exists an injective and surjective morphism of decorated sheaves (bundles)
between them.

2.2 Semistability conditions

Let (E , ϕ) be a decorated sheaf of type t = (a, b, c,N) and let r = rk(E). We
want to introduce a notion of semistability. To this end let

0 ( Ei1 ( · · · ( Eis ( Er = E (2.3)

be a filtration of saturated subsheaves of E such that rk(Eij ) = ij for any j =
1, . . . , s, let α = (αi1 , . . . , αis) be a vector of positive rational numbers and
finally let I = {i1, . . . , is} be the set of indexes appearing in the filtration.
We will refer to the pair (E•, α)I as weighted filtration of E indexed by I

or simply weighted filtration if the set of indexes is clear from the context,
moreover we will denote by |I| the cardinality of the set I. Such a weighted
filtration defines the polynomial

PI(E•, α) +
∑
i∈I

αi
(
PE · rk(Ei)− rk(E) · PEi

)
, (2.4)

and the rational number

LI(E•, α) +
∑
i∈I

αi (deg E · rk(Ei)− rk(E) · deg Ei) . (2.5)

Moreover we associate with (E•, α)I the following rational number depending
also on ϕ:

µI(E•, α;ϕ) + − min
i1,...,ia∈I

{γ(i1)
I + · · ·+ γ

(ia)
I |ϕ|

(Ei1⊗···⊗Eia )⊕b
6≡ 0} (2.6)

where I + I∪{r}, PE (respectively PEi) is the Hilbert polynomial of E (resp.
Ei) and

γI = (γ
(1)
I , . . . , γ

(r)
I )

+
∑
i∈I

αi(rk(Ei)− r, . . . , rk(Ei)− r︸ ︷︷ ︸
rk(Ei)-times

, rk(Ei), . . . , rk(Ei)︸ ︷︷ ︸
r−rk(Ei)-times

). (2.7)
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Definition 3 (Semistability). A decorated sheaf (E , ϕ) of type (a, b, c,N)
is δ-(semi)stable if for any weighted filtration (E•, α) the following inequal-
ity holds:

PI(E•, α) + δµI(E•, α;ϕ) �
(−) 0. (2.8)

It is slope δ-(semi)stable if

LI(E•, α) + δµI(E•, α;ϕ) >
(=) 0. (2.9)

Remark 4. 1. The morphism ϕ : Ea,b,c → N induces a morphism Ea,b →
(det E)⊗c⊗N. With abuse of notation, we still refer to the former by ϕ.
In this context is easy to see that a decorated sheaf of type (a, b, c,N)
corresponds (uniquely up to isomorphism) to a decorated sheaf of type
(a, b, 0, (det E)⊗c ⊗ N). Therefore the category of decorated sheaves
(with fixed determinant = L) of type (a, b, c,N) is equivalent to the
category of decorated sheaves (with fixed determinant = L) of type
(a, b, 0,L⊗c⊗N). From now on we will always identify such decorated
sheaves.

2. Let (E•, α) be a weighted filtration and suppose that µI = −(γ
(i1)
I +

· · ·+γ(ia)
I ), then there exists at least one permutation σ : {i1, . . . , ia} →

{i1, . . . , ia} such that ϕ|
(Eσ(i1)⊗···⊗Eσ(ia))⊕b

6≡ 0. We can say that, al-

though the morphism ϕ is not symmetric, the semistability condition
has a certain symmetric behavior.

3. From now on we will write

ϕ|
(Ei1�···�Eia )⊕b

6≡ 0

if there exists at least one permutation σ : {i1, . . . , ia} → {i1, . . . , ia}
such that ϕ|

(Eσ(i1)⊗···⊗Eσ(ia))⊕b
6≡ 0.

Fix now a weighted filtration (E•, α) indexed by I, define rs + rk(Es)
and suppose that the minimum of µI(E•, α;ϕ) is attained in i1, . . . , ia. Then

µI(E•, α;ϕ) =− (γ
(i1)
I + · · ·+ γ

(ia)
I )

=−

∑
s∈I

αsrs −
∑
s≥i1

αsr + · · ·+
∑
s∈I

αsrs −
∑
s≥ia

αsr


=− a

∑
s∈I

αsrs + r

∑
s≥i1

αs + · · ·+
∑
s≥ia

αs

 .



2.2 Semistability conditions 14

Then define

RI(l) +
∑

s≥l,s∈I
αs for l ∈ I and RI(r) + 0,

RI = RI(E•, α;ϕ) + max
i1,...,ia∈I

{
RI(i1) + · · ·+RI(ia) |ϕ|

(Ei1⊗···⊗Eia )⊕b
6≡ 0

}
(2.10)

and finally fix, for any i ∈ I, the following quantities

Ci + riPE − rPEi − ari, (2.11)

ci + ri deg E − r deg Ei − ari. (2.12)

Therefore the semistability condition (2.8) is equivalent to the following∑
i∈I

αiCi + rδRI
>

(=) 0, (2.13)

while the slope semistability condition (2.9) is equivalent to the following∑
i∈I

αici + rδRI
>

(=) 0. (2.14)

Sometimes, for convenience’s sake, we will write RI(i1, . . . , ia) instead of
RI(i1) + · · ·+RI(ia).

2.2.1 Others notions of semistabilities

Let (E , ϕ) be as before and let F be a subsheaf of E then define

εF = ε(F , ϕ) +

{
1 if ϕ|Fa,b

6≡ 0

0 otherwise,
(2.15)

and

kF,E = k(F , E , ϕ) +


a if ϕ|Fa,b

6≡ 0

a− s if ϕ|F�(a−s)�E�s
6≡ 0 and ϕ|F�(a−s+1)�E�s−1

≡ 0

0 otherwise,

(2.16)
Here with the notation F�(a−s) � E�s we mean any tensor product between
E and F where E appears exactly s-times while F appears a− s-times, and
when we write ϕ|(F�a−s�E�s)⊕b

6≡ 0 we mean that there exists at least one

tensor product between F and E over which ϕ is not identically zero (see
Remark 4 point (3)).
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Let (E , ϕ) be a decorated sheaf; we will say that (E , ϕ) is ε-(semi)stable,
slope ε-(semi)stable, k-(semi)stable or slope k-(semi)stable if and
only if for any subsheaf F the following inequalities hols:

ε-(semi)stable pF −
aδεF
rk(F)

≺
(−) pE −

aδ

rk(E)
(2.17)

slope ε-(semi)stable µ(F)− aδεF
rk(F)

<
(=) µ(E)− aδ

rk(E)
(2.18)

k-(semi)stable pF −
δkF,E
rk(F)

≺
(−) pE −

aδ

rk(E)
(2.19)

slope k-(semi)stable µ(F)− δkF,E
rk(F)

<
(=) µ(E)− aδ

rk(E)
(2.20)

where pF +
PF

rk(F) is the reduced Hilbert polynomial.

The above conditions are equivalent to the following:

(2.17) ⇔ PErk(F)− rk(E)PF + aδ(rk(E)εF − rk(F)) �
(−) 0

(2.18) ⇔ deg Erk(F)− rk(E) degF + aδ(rk(E)εF − rk(F)) >
(=) 0

(2.19) ⇔ PErk(F)− rk(E)PF + δ(rk(E)kF,E − ark(F)) �
(−) 0

(2.20) ⇔ deg Erk(F)− rk(E) degF + δ(rk(E)kF,E − ark(F)) >
(=) 0.

Moreover note that k-(semi)stability is equivalent to the usual (semi)stability
applied to filtrations of length one. In fact let F be a subsheaf of E and
consider the filtration 0 ⊂ F ⊂ E with weight vector α = 1. An easy
calculation shows that

P (0 ⊂ F ⊂ E , 1) + δ µ(0 ⊂ F ⊂ E , 1;ϕ) =

=PErk(F)− rk(E)PF + δ (rk(E)kF,E − ark(F)).

More precisely, these three notions of semistability are related in the
following way:

Proposition 5. ε-(semi)stable ⇒ (semi)stable ⇒ k-(semi)stable.

Proof. Let (E , ϕ) be a ε-(semi)stable decorated sheaf of rank rk(E) = r, let
(E•, α) be a weighted filtration indexed by I and let ri be the rank of Ei.
For any i ∈ I,

PEri − rPEi + aδ(rεEi − ri)
�

(−) 0,

therefore∑
i∈I

αi
(
PEri − rPEi + aδ(rεEi − ri)

)
= PI + aδ(r

∑
i∈I

αiεEi −
∑
i∈I

αiri)
�

(−) 0.
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We want to show that PI + δµI
�

(−) 0. Denote by εi + εEi and let j0 +
min{k ∈ I | εk 6= 0}. Therefore

µI = −min{γ(i1)
I + · · ·+ γ

(ia)
I |ϕ|

(Ei1
⊗···⊗Eia )⊕b

6= 0}

≥ −aγ(j0)
I

= a

 ∑
i≥j0,i∈I

αir −
∑
i∈I

αiri


= a

(∑
i∈I

αiεir −
∑
i∈I

αiri

)

= a

(∑
i∈I

αi(εir − ri)

)
.

So

PI + δµI
�

(−)PI + aδ

(∑
i∈I

αi(εir − ri)

)
=

=
∑
i∈I

αi
(
PEri − rPEi + aδ(rεEi − ri)

) �
(−) 0,

and we are done.

Finally, given a (semi)stable decorated sheaf, we want to show that is
k-(semi)stable. Let F be a subsheaf of E of rank rF ; if we consider the
filtration 0 ⊂ F ⊂ E with weights identically 1, after small calculation ones
get that

0 ≺
(−) P (0 ⊂ F ⊂ E , 1) + δµ(0 ⊂ F ⊂ E , 1;ϕ) = PErF − rPF + δ(rkF,E − arF )

and we have done. �

Note that µ(E•, α;ϕ) is not additive for all filtrations, i.e., it is not always
true that

µ(E•, α;ϕ) =
∑
i∈I

µ(0 ⊂ Ei ⊂ E , αi;ϕ). (2.21)

We will call non-critical a filtration for which (2.21) holds and critical
otherwise. Finally we will say that ϕ is additive if equality (2.21) holds for
any weighted filtration, i.e., there are no critical filtrations.

Remark 6. 1. It easy to see that for any filtration (indexed by I)

µI(E•, α;ϕ) ≤
∑
i∈I

µ(0 ⊂ Ei ⊂ E , αi;ϕ).
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Therefore any subfiltration of a non-critical one is still non-critical.
Indeed suppose that E• is a non critical filtration indexed by I and
J ⊂ I indexes a critical subfiltration of E•. Then µI(E•, α;ϕ) =∑

i∈I µ(0 ⊂ Ei ⊂ E , αi;ϕ) (since the whole filtration is non critical) and
µJ(E•, α;ϕ) <

∑
i∈J µ(0 ⊂ E•i ⊂ E•, αi;ϕ). Therefore µIrJ(E•, α;ϕ) >∑

i∈IrJ µ(0 ⊂ Ei ⊂ E , αi;ϕ) which is absurd.

2. If ϕ is additive k-(semi)stability implies (semi)stability and therefore
the two conditions are equivalent

3. Checking semistability conditions over non-critical filtrations is the
same to check them over subbundles.

4. Thanks to the previous considerations, the following conditions are
equivalent:

(a) (E , ϕ) is δ-(semi)stable;

(b) For any subsheaf F and for any critical filtration (E•, α) the fol-
lowing inequalities hold

0 ≺
(−) (rk(F)PE − rPF)− δ(rkF,E − ark(F)),

0 ≺
(−) P (E•, α) + δ µ(E•, α;ϕ).

Observe that the first part of condition (2) is just requiring that (E,ϕ)
is k-(semi)stable.

5. Note that Proposition 5 and points 2, 3 and 4 above hold also for slope
semistability.

2.3 Examples of decorated sheaves and their semista-
bility

2.3.1 Principal Bundles

Let G a reductive algebraic group, ρ : G → Gl(V ) be a faithful representa-
tion with ρ(G) ⊆ Sl(V ) and let P → X be a G-principal bundle.

Remark 7. i) If G is semisimple, i.e., if the radical of G is trivial, one
can take the adjoint representation;

ii) any representation from a semisimple group to Gl(V ) lands in Sl(V )
since semisimple groups no have non-trivial character.

iii) If ρ : G→ Gl(V ) is any representation then the representation

ρ⊕ (det ◦ρ)−1 : G −→ Gl(V ⊕ C)

g 7−→ ρ(g)⊕ 1

det(ρ(g))
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obviously lands in Sl(V ⊕ C).

We will show how P corresponds to a pair (E, τ) consisting of a vector
bundle with trivial determinant and a morphism of bundles. Define E as
the vector bundle associated with P via ρ, i.e., E = (P×ρV ) is the quotient
of (P × V ) with respect to the action (p, v) · g + (p · g, ρ(g)−1 · v) for all
p ∈ P, v ∈ V and g ∈ G. Note that detE ' OX since the representation
ρ lands in Sl(V ). The morphism τ is instead defined as follows: G acts via
ρ on the principal Gl(V )-bundle P ×ρ Gl(V ) ' Isom(V ⊗OX , E), therefore
we can quotient for this action and get

P //

��

Isom(V ⊗OX , E)

��
X = P/G σ // Isom(V ⊗OX , E)/G.

(2.22)

Here σ is the morphism induced to the quotient by the inclusion of P in
Isom(V ⊗OX , E).
Since, for any x ∈ X, Isom(V,Ex) = {f ∈ Hom(V,Ex) | det(f) 6= 0} and the
det is a G invariant morphism, the inclusion Isom(V ⊗OX , E) ↪→ Hom(V ⊗
OX , E) lands in the open subscheme of stable points of Hom(V ⊗ OX , E)
and therefore induces an inclusion between the quotients

Isom(V ⊗OX , E)

��

� � // Hom(V ⊗OX , E)

��
Isom(V ⊗OX , E)/G �

� // Hom(V ⊗OX , E)//G.

(2.23)

Finally one has that

Isom(V ⊗OX , E)/G ' Isom(V ⊗OX , E)G

Hom(V ⊗OX , E)/G ' Hom(V ⊗OX , E)G

where Isom(V ⊗ OX , E)G (resp. Hom(V ⊗ OX , E)G) is the sheaf of G-
invariant isomorphisms (resp. morphism). From the fact that Hom(V ⊗
OX , E) ' Spec(Sym?(V ⊗ E∨)) one can prove that

Hom(V ⊗OX , E)G ' Spec(Sym?(V ⊗ E∨)G),

(see [31]), and therefore the section σ (composed with the inclusion) induces
a morphism of sheaves τ : Sym?(V ⊗ E∨)G → OX .

Conversely if (E , τ) is a pair consisting of a torsion free sheaf E over
X and a non-trivial homomorphism τ : Sym?(V ⊗ E∨)G → OX of OX
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algebras, then, as before, giving τ is equivalent to giving a section σ : X →
Hom(V ⊗ OX ,A∨)//G. Such a pair is called also pseudo G-bundle. Let
UE ⊂ X be an open subset where E is locally free. If there exist an open
subset U ⊂ UE such that σ(U) ⊂ Isom(V ⊗OX |U ,A

∨
|U )//G, then the pseudo

G-bundle is called singular principal G-bundle and defines a principal
G-bundle P(E , τ) + σ∗(Isom(V ⊗OX , E∨)) over U via pullback:

P(E , τ)|U

��

// Isom(V ⊗OX , E∨)|U

��
U

σ|U // Isom(V ⊗OX , E∨)|U //G.

(2.24)

If moreover E has degree zero and σ(UE) ⊂ Isom(V ⊗OX |U ,A
∨
|U )//G, then

we say that (E , τ) is a honest singular principal G-bundle; since we are
supposing X to be smooth these two notions coincide, i.e., every singular
principal G-bundle is honest (see [17] and [31] Section 2.1 for further details).

Remark 8. Our notation is consistent with the notation of Schmitt in [35],
while in [32] there is a slight different notation: Schmitt calls singular prin-
cipal G-bundle what we call pseudo G-bundle. In [32] there is no notion of
singular principal G-bundle, as the one we introduced before.

Finally we relate honest singular principal bundles with decorated sheaves.
First recall that

Definition 9. Let ρ : Gl(V )→ Gl(W ) be a representation and let V,W be
finite-dimensional C-vector spaces. The representation ρ is homogeneous
if C∗ ⊂ Gl(V ) acts by z · idV 7→ zα · idW for some α ∈ Z.

Proposition 10 (Corollary 1.2 in [33]). Let ρ : Glr(C) → Gl(V ) be a ho-
mogeneous representation on the finite-dimensional C-vector space V . Then
there exist a, b, c ∈ N, c > 0, such that ρ is a direct summand of the natural
representation ρa,b,c : Glr(C)→ Gl(Va,b,c).

Let (E , τ) be an honest singular principal bundle. We recall that τ :
Sym?(V ⊗ E∨)G → OX . Since G is reductive, the OX -algebra Sym?(V ⊗
E∨)G is finitely generated (Hilbert finiteness theorem, see for example [29]
Theorem 1.2.1.4) and therefore exist an integer s such that the following
map is surjective

s⊕
i=1

Symi(V ⊗ E∨)G � Sym?(V ⊗ E∨)G. (2.25)

The morphism τ induces a morphism

τ ′ :
s⊕
i=1

Symi(V ⊗ E∨)G � Sym?(V ⊗ E∨)G
τ−→ OX (2.26)
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Remark 11. Recall that r = dim(V ) and consider the representation

R : G×Glr(C)→ Gl(V ⊗ Cr)
(g, g′) 7→ R(g, g′) : v ⊗ w 7→ ρ(g)(v)⊗ g′ · w

for g ∈ G, g′ ∈ Glr(C) v ∈ V and w ∈ Cr. This representation yields
a rational representation on the algebra Sym?(V ⊗ Cr)G, respecting the
grading and therefore we have a representation

Glr(C)→ Gl

(
s⊕
i=1

Symi(V ⊗ Cr)G
)
.

Unfortunately this representation is not homogeneous (it is homogeneous iff
the sum over s consists of only one term), and so we can not use the above
proposition. We need first to pass to the induced homogeneous representa-
tion:

t(s) : Glr(C)→ Gl(U(s))

where

U(s) +
⊕

h=(h1,...,hs)

hi≥0,
∑
i·hi=s!

Sh and Sh +
s⊗
i=1

Symhi
(
Symi(V ⊗ Cr)G

)
.

Remark 12. The above fact holds in general. In fact, every representation ρ
of Glr(C) obviously splits into a direct sum of homogeneous representations,
say ρ1, . . . , ρs. If any such representation has positive degree αi, then we
can pass to the following homogeneous representation

ρ′ :
⊕

ν1α1+···+νsαs=d

Symν1ρ1 ⊗ · · · ⊗ Symνsρs,

where d is a common multiple of the αi.

Therefore, thanks to the representation t(s) (Remark 11), the morphism
τ ′ induces a morphism

ϕτ : U(s)→ OX (2.27)

and, by Proposition 10, exists a, b, c and a sheaf E ′ such that

ϕ : Ea,b,c = U(s)⊕ E ′ ϕτ⊕0−→ OX
Indeed, consider now h = (h1, . . . , hs) such that

∑
i · hi = s!, then the

natural homomorphism
s⊗
i=1

(V ⊗ E∨)⊗i·hi →
s⊗
i=1

Symhi
(
Symi(V ⊗ E∨)

)
→ Sh → OX

induces a morphism(
(V ⊗ E∨)⊗s

)⊕N −→ U(s) −→ OX .

For further details see [31] and [32].
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Semistability

Let (E , τ) be a singular principal bundle and let U ⊆ X be a non-empty open
set over which E trivializes and the section σ, induced by τ , is non-zero. Over
U the above morphisms ϕ and ϕτ induce the following maps

σ|U (s) :U → P(V ⊗ E|U )//G ↪→ P(U(s))× U → P(U(s))

σ̃|U (s) :U
σ|U (s)
−→ P(U(s)) ↪→ P

(
((V ⊗ E)⊗s!)⊕N

)
.

The representation t(s) gives rise to an action of Glr(C) on U(s) and so to an
action on P(U(s)) with a linearization on the line bundle OP(U(s))(1). Any
weighted filtration (E•, α) of E defines a one-parameter subgroup λ : C∗ →
Gl(U(s)). For any point x ∈ P(U(s)) the point x∞ = limz→∞ λ(z) · x is a
fixed point for the action of C∗ induced by λ. So the linearization provides
a linear action of C∗ on the one dimensional vector space. This action is of
the form z ·v = zγ v for some γ ∈ Z, and finally one defines µt(s)(λ;x) = −γ.
Eventually one defines

µ(E|U , α;σ|U (s)) + max
x∈Imσ|U (s)

µt(s)(λ;x).

Then, for any weighted filtration (E•, α) of E , one defines

µ(E•, α; τ) +
1

s!
µ(E|U , α;σ|U (s)) =

1

s!
µ(E|U , α; σ̃|U (s)).

We say that an honest singular G-bundle is δ-(semi)stable if and only if for
any weighted filtration (E•, α), indexed by I, the following inequality holds

PI(E•, α) + δµ(E•, α; τ) �
(−) 0.

Lemma 13 ([31] Lemma 2.2.3). 1. There is a constant polynomial δGies,
such that, for every polynomial δ′ � δGies and every δ′-semistable sin-
gular principal bundle (E , τ), the sheaf E is itself Gieseker-semistable.

2. There is a polynomial δµ of degree exactly dim(X)− 1, such that, for
every polynomial δ′ � δµ and every δ′-semistable singular principal
bundle (E , τ), the sheaf E is itself Mumford-semistable.

Since honest singular G-bundles come from principal bundles, one might
expect that the semistability conditions for the two kinds of objects coincide.
However, this is not the case. To see this we first introduce another notion
of semistability which is closer to semistability for principal bundles.
Let (E , τ) be an honest singular G-bundle and λ : C∗ → G. A reduction of
(E , τ) to λ is a pair (U, β) which consists of a big open subset U ⊂ X over
which E is locally free, and a section

β : U → P(E , τ)|U /QG(λ)
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where
QG(λ) + {g ∈ G | ∃ lim

z→∞
λ(z) · g · λ(z)−1}

is the parabolic subgroup in G induced by λ.

Remark 14. Let ρ : G→ Sl(V ) ↪→ Gl(V ) a faithful representation.

1. Since G is reductive, if Q′ is a parabolic subgroup of Gl(V ), then Q′∩G
is a parabolic subgroup of G. [Sketch: if B (BG) is a Borel subgroup
of Gl(V ) (resp. of G) then, up to conjugacy class, B ∩G = BG and so
Q′ ∩G ⊆ BG]

2. Given a parabolic subgroup Q of G and a representation ρ, we can
construct a parabolic subgroup of Gl(V ); in fact, given Q, there exists
a one-parameter subgroup λ : C∗ → G such that Q = QG(λ), then the
set QGl(V )(ρ ◦ λ) is a parabolic subgroup of Gl(V ).

3. QGl(V )(ρ ◦λ), or simply QGl(V )(λ), is the stabilizer of the flag induced
by λ in Gl(V ).

4. Given λ′ : C∗ → Gl(V ), or equivalently the parabolic subgroup Q′

associated with λ′, there always exists λ : C∗ → G such that Q′ ∩G =
QG(λ) (see (1)). The following diagram however is not in general
commutative:

C∗

λ
��

λ′ // Gl(V )

G

ρ

;;

5. Given a parabolic subgroup Q′ ⊂ Gl(V ) and fixing a representation
ρ : G → G(V ), it is possible to define a parabolic subgroup Q =
Q′ ∩G ⊂ G (see (1)) and from Q we can obtain a parabolic subgroup
Q′′ ⊂ Gl(V ) as explained in (2). Therefore, fixing a basis of Gl(V ),
we have a map

ζ : {Parabolic subgroups of Gl(V )} → {Parabolic subgroups of Gl(V )}.

6. We will call stable the parabolic subgroups of Gl(V ) such that Q′ =
ζ(Q′), with respect to the same basis of Gl(V ).

Given a reduction (U, β) of (E , τ) to λ, consider the following composi-
tion:

β′ : U
β−→ P(E , τ)/QG(λ) ↪→ Isom(V ⊗OU , E|U

∨)/QGl(V )(λ).

Therefore the section β induces a section β′ of theQGl(V )(λ)-bundle Isom(V⊗
OU , E|U

∨)→ Isom(V ⊗OU , E|U
∨)/QGl(V )(λ); since λ induces a flag V • of V
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with weights αi(λ) = γi+1−γi
r (where γi are the weights of the action of C∗ on

Gl(V )), it is easy to see that section β′ corresponds to a filtration 0 ⊂ E ′1 ⊂
· · · ⊂ E ′s ⊂ E|U

∨ with the same weight vector α(λ) = (α′1, . . . , α
′
s). By dual-

izing, one gets a filtration of E|U by subbundles which extends by a filtration
E•β of E by saturated sheaves. Finally define α = (α1, . . . , αs) + (α′s, . . . , α

′
1).

Therefore, (E , τ) is β-(semi)stable (respectively slope β-(semi)stable) if
and only if for any β reduction one has that

P (E•β , αβ) �
(−) 0

(
L(E•β , αβ) >

(=) 0 respectively
)
.

Remark 15. 1. The following result holds:

Proposition 16 (Proposition 1. in [20] ). A filtration E• of E is a
β-filtration if and only if the parabolic subgroup Q′ associated with it
is stable.

2. If G is semisimple, one has the following implications ([32] Remark
1.1):

P (E , τ) is Ramanathan-stable ⇒ (E , τ) is stable

⇒ (E , τ) is semistable

⇒ P (E , τ) is Ramanathan-semistable

We recall that a principal G-bundle P is Ramanathan-(semi)stable
if and only if for any parabolic subgroup H of G, any reduction σH :
X → P (G/H) and any dominant character χ of H one has that

deg σ∗H(Lχ) <
(=) 0,

where we denoted by Lχ the line bundle induced by χ.

3. Let G be a semisimple group, ρ : G→ Sl(V ) ⊂ Gl(V ) a faithful repre-
sentation and λ : C∗ → G a one-parameter subgroup such that QG(λ)
is a maximal parabolic subgroup of G. Then the parabolic subgroup
QGl(V )(ρ◦λ) of Gl(V ) is not maximal. Thanks to this observation we
obtain that every β-filtration E•β : 0 ⊂ E1 ⊂ · · · ⊂ Es ⊂ Es+1 = E
has length greater then or equal to 2, i.e., s ≥ 2.
Notice that the parabolic subgroup of G associated with a β-filtration
is always a proper subgroup. Therefore, according to the definition of
Ramanathan, the (semi)stability condition is checked only for maximal
proper parabolic subgroups of G. If G is reductive but not semisim-
ple the above consideration does not hold in general as the following
example shows:
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Example 17. Consider G = Gl(k), ρ : Gl(k) → Gl(n) (k < n) the
inclusion (in the left up corner) and λ : C∗ → G given by

λ(z) +


zγ 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1

 .

Therefore λ′ = ρ ◦ λ is given by

λ′(z) +



zγ 0 . . . . . . 0

0 1
. . .

...
...

. . .
. . .

1

1
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 1


.

give arise to a maximal parabolic subgroup.

Finally the following results, due to Schmitt, holds:

Lemma 18 ([32] Lemma 4.4 and Proposition 4.5). Let (E , τ) be an honest
singular G-bundle, then

1. for any reduction β of (E , τ) to the one-parameter subgroup λ of G

µ(E•β , αβ;ϕ) = 0,

where (E•β , αβ) is the weighted filtration of E associated with λ and β.

2. If (E•, α) is a weighted filtration of E with µ(E•, α;ϕ) = 0, there exists
a reduction β to a one-parameter subgroup λ : C∗ → G with

(E•, α) = (E•β , αβ).

Proposition 19 ([32] Proposition 5.3). Let δ ∈ Q[x] be a positive polynomial
of degree exactly dim(X)− 1. Then the following properties holds true.

1. An honest singular G-bundle (E , τ) is (semi)stable if and only if the
associated decorated bundle (E , ϕ) is δ-(semi)stable.

2. (E , τ) is a (semi)stable honest singular G-bundle, then it is δ-(semi)stable.
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2.3.2 Higgs Bundles

Notation. In this section C will denote, unless otherwise stated, a smooth,
irreducible projective curve over C of genus g > 0, while Ω1

C will denote the
canonical line bundle over C. Denote by G a semisimple algebraic group.

A Higgs bundle is a holomorphic vector bundle together with a Higgs
field. To be more precise

Definition 20. A Higgs vector bundle is a pair (E, φ) where E is a
vector bundle over C, while φ is a morphism

φ : E → E ⊗ Ω1
C .

A principal Higgs G-bundle is a pair (P, φ) consisting of a principal G-
bundle P over C and a section

φ : X → Ad(P )⊗ Ω1
C ,

where Ad(P ) = P ×Ad g and Ad is the adjoint representation of G on its Lie
algebra g.

Two Higgs vector bundles (E, φ) and (F,ψ) are isomorphic if there is
an isomorphism f : E → F such that the following diagram commutes:

E
φ //

f

��

E ⊗ Ω1
C

f⊗id
��

F
ψ // F ⊗ Ω1

C

Similarly two principal Higgs G-bundles (P, φ) and (P ′, ψ) are isomor-
phic if there is an isomorphism f : P → P ′ of principal bundles such that
the following diagram commutes:

C
φ //

ψ
%%

Ad(P )⊗ Ω1
C

Ad(f)⊗id
��

Ad(P ′)⊗ Ω1
C

Now we want to discuss in wich sense a Higgs vector, or principal, bun-
dle over a curve can be regarded as a decorated bundle. We begin with the
vector bundle case.

Let (E, φ) a Higgs vector bundle over C of rank rk(E) = r. The mor-
phism φ : E → E ⊗ Ω1

C corresponds to a morphism E ⊗ E∨ → Ω1
C , that,

with abuse of notation, we still denote by φ. From the isomorphism

k∧
E '

(
r−k∧

E

)∨
⊗

r∧
E, (2.28)
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one gets that
∧r−1E ' E∨ ⊗ detE. So there is an injective morphism of

vector bundles

i : E ⊗ E∨ ' E ⊗
r−1∧

E ⊗ (detE)∨ ↪→ E⊗r ⊗ (detE)∨

Therefore (E, φ) corresponds to a decorated bundle (E,ϕ) of type (r, 1, 1,Ω1
C)

where we set ϕ|i(E⊗E∨)
+ φ and zero otherwise. Note that, for any λ ∈ C∗,

(E, φ) and (E, λφ) are not isomorphic as Higgs vector bundles while the
associated decorated vector bundles (E,ϕ) and (E, λϕ) are isomorphic.

Consider now a Higgs bundle (E, φ) of rank r such that detE ' OC . Fix
a section ω : OC → Ω1

C and consider the morphism φ⊕ω : E ⊗E∨⊕OC →
Ω1
C . As before, the isomorphism

∧r−1E ' E∨ ⊗ detE ' E∨ induces an
inclusion

i : E ⊗ E∨ ⊕OC ' E ⊗
r−1∧

E ⊕ detE ↪→ E⊗r ⊕ E⊗r.

Therefore, if we fix a section ω : OC ' detE → Ω1
C , (E, φ) corresponds to a

decorated bundle (E,ϕ) of type (r, 2, 0,Ω1
C) where we set ϕ|i(E⊗E∨)

+ φ⊕ ω
and zero otherwise. Note that, in this case, the (non isomorphic) Higgs bun-
dles (E, φ) and (E, λφ) are non isomorphic also as decorated vector bundles,
i.e., (E,ϕ) and (E,ϕ′), where ϕ is induced by φ⊕ ω and ϕ′ by λφ⊕ ω, are
non-isomorphic.

Let now (P, φ) be a principal Higgs G-bundle and let ρ : G→ Gl(V ) be
a (fixed) faithful representation. Since G is semisimple, ρ lands in Sl(V ).
As we explained in the previous section, the principal G-bundle P corre-
sponds to a pair (E, τ), where E is the vector bundle associated with the
principal Gl(V )-bundle Pρ = P ×ρ Gl(V ) and τ : Sym?(E ⊗ V )G → OC
is the morphism associated with σ : C → Isom(OC ⊗ V,E∨)G, which, in
turn, is induced by the morphism P → Isom(OC ⊗ V,E∨) ' P ×ρ Gl(V ).
With this notation it is easy to see that the morphism φ : C → Ad(P )⊗Ω1

C

induces a morphism φ : C → End(E) ⊗ Ω1
C . Therefore a principal Higgs

G-bundle (P, φ) corresponds to a triple (E, τ, φ) where (E, φ) is a vector
Higgs bundle while (E, τ) is equivalent, roughtly speaking, to the principal
bundle P . As showed in the previous section the pair (E, τ) induces a dec-
orated vector bundle (E,ϕ1) of type (a1, b1, c1,N1), while (E, φ) induces a
decorated vector bundle (E,ϕ2) of type (a2, b2, c2,N2). So, in some sense,
a principal Higgs G-bundles corresponds to a double-decorated vector
bundle (E,ϕ1, ϕ2). Observe that, since the representation ρ lands in Sl(V ),
detE ' OC and so c1 = c2 = 0. Let ρa1,b1 : Sl(V ) → Sl(Va1,b1) and ρa2,b2 :
Sl(V ) → Sl(Va2,b2) the obvious representations, then, for i = 1, 2, Eai,bi co-
incide with Eρai,bi = E ×ρai,bi Gl(V ) and the morphisms φi : Eρai,bi → Ni
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correspond to morphisms σi : C → P(Eρai,bi ). Then set χ + ρa1,b1 ⊗ ρa2,b2

and define φ : Eχ → N + N1⊗N2 as the morphism induced by the following
composition:

σ : C
(σ1,σ2)−→ P(Eρa1,b1

)× P(Eρa2,b2
) −→ P(Eχ).

Observe that χ ' ρa1+a2,b1b2 . Therefore the double-decorated vector bundle
(E,ϕ1, ϕ2) of type ((a1, b1,N1), (a2, b2,N2)) corresponds to a decorated vec-
tor bundle (E,ϕ) of type (a1 + a2, b1b2,N1 ⊗ N2).

Suppose now that Ĉ is a nodal curve with a simple node x0. Let ν : C̃ →
Ĉ be the normalization and let {y1, y2} = ν−1(x0). Then Bhosle shows in
[2] that there is a correspondence between torsion free sheaves over a nodal
curve Ĉ and generalized parabolic vector bundles over the normalization C̃ of
the nodal curve. We recall that a generalized parabolic vector bundle
with support the divisor D, is a pair (E, q) where E is a vector bundle over
C̃ and q : E|D → R is a surjective homomorphism of vector spaces. In the
case of nodal curves the correspondence is between torsion free sheaves over
Ĉ and generalized parabolic vector bundles over C̃ supported on the divisor
D = x1 + x2. Therefore the surjective morphism of vector spaces q goes
from Ex1 ⊕ Ex2 to an rk(E)-dimensional vector space R. More precisely, if
(E, q) is a generalized parabolic vector bundle over C̃, Bhosle shows that
the sheaf E

E + ker[ν∗E −→ ν∗(Ex1 ⊕ Ex2) ' Ex1 ⊕ Ex2

q−→ R]

is a torsion free sheaf over Ĉ such that ν∗E = (E, q).

Thanks to this result and to the previous considerations one can convince
oneself that there is a correspondence between principal Higgs G-bundles
(P, φ) over a nodal curve Ĉ and quadruples (E, q, τ̃ , ϕ̃), called descending
principal Higgs G-bundles, where (E, q) is a generalized parabolic vector
bundle over C̃, τ̃ : Sym?(E ⊗ V )G → O

C̃
is a homomorphism of O

C̃
-algebras

and ϕ̃ : C̃ → End(E)⊗ Ω1
C̃

is a section such that:

1. The pair (E, τ̃) defines a principal G-bundle P(E, τ̃) on C̃ (therefore
detE ' O

C̃
);

2. The image of the morphism τ from the triple (E , τ, φ) = ν∗(E, q, τ̃ , ϕ̃)
lies in the subalgebra OĈ of ν∗OC̃ ;

3. The image of the morphism φ from the triple (E , τ, φ) = ν∗(E, q, τ̃ , ϕ̃)
lies in End(E)⊗ Ω1

Ĉ
.

Finally, following the constructions above, it is easy to see that a de-
scending principal Higgs G-bundle could be injected into a double decorated
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vector bundle with a parabolic structure. The latter could in turn be in-
jected into a decorated parabolic bundle over C̃, i.e., a triple (E, q, ϕ) where
q : Ex1 ⊕ Ex2 → R is a surjective morphism and ϕ : Ea,b → N is the usual
decoration morphism.

Semistability

All objects we introduced before have their own notion of (semi)stability,
in this section we want to recall the various notions of (semi)stabilities and
give an idea of why coincide.

We recall that a subbundle F ⊆ E is sayed φ-invariant if and only if
φ(F ) ⊆ F ⊗ Ω1

C . A Higgs bundle (E, φ) over a smooth irreducible curve C
is (semi)stable if an only if for any φ-invariant subbundles of F ⊆ E the
following inequality holds:

µ(F ) <
(=) µ(E). (2.29)

If (E,ϕ) is the decorated vector bundle associated with a Higgs bundle
(E, φ), then (E,ϕ) is (semi)stable as decorated bundle if an only if (E, φ) is
(semi)stable as Higgs bundle. To be more precise:

Lemma 21. There is a positive rational number δ∞, such that for all δ ≥ δ∞
and all pairs (E,ϕ) induced by a Higgs bundle (E, φ) the following conditions
are equivalent:

1. (E,ϕ) is (semi)stable decorated with respect to δ;

2. for every nontrivial subbundle F of E with φ(F ) ⊂ F ⊗Ω1
C inequality

(2.29) holds.

Proof. The proof is as in [33], Lemma 3.13. �

Let K be a closed subgroup of G, and σ : X → E(G/K) ' E/K
a reduction of the structure group of E to K. So one has a principal
K-bundle Fσ on X and a principal bundle morphism iσ : Fσ → E in-
ducing an injective morphism of bundles Ad(Fσ) → Ad(E). Let Πσ :
Ad(E) ⊗ Ω1

C → (Ad(E)/Ad(Fσ)) ⊗ Ω1
C be the induced projection. Then

a section σ : X → E/K is a Higgs reduction of (E, φ) if φ ∈ ker Πσ. A prin-
cipal Higgs G-bundle (E, φ) over C is (semi)stable if for every parabolic
subgroup P ⊂ G and every Higgs reduction σ one has deg σ∗(TE/P,X) >

(=) 0.

In the previous section we saw that the (semi)stability of principal bun-
dles coincide with the semistability of decorated vector bundles. Therefore,
thanks to the previuos results, we get that a principal Higgs G-bundle over
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a smooth irreducible curve C is (semi)stable if and only if the associated
decorated bundle is (semi)stable. Analogously, one can check that a prin-
cipal Higgs G-bundle over a nodal curve Ĉ is (semi)stable if and only if
the associated parabolic decorated bundle over the normalization C̃ of Ĉ is
(semi)stable. For a more detailed explanation of these facts see [20].

2.3.3 Quadric, Orthogonal and Symplectic Bundles

Perhaps the simplest examples of decorated vector bundle are provided by
quadric, orthogonal and symplectic bundles. First of all we recall what these
objects are. A quadric bundle over a smooth projective variety X is a pair
(E,Q) where E is a vector bundle over X, while

Q : Sym2E → L

is a morphism between the vector bundle Sym2E and a fixed line bundle L.
An orthogonal bundle is a quadric bundle (E,Q) with L = OX , such that
the bilinear form Q : Sym2E → OX induces an isomorphism Q : E → E∨.
Finally a symplectic vector bundle over X is a pair (E,ω), where E is a
real vector bundle over X and ω is a smooth section of E∨ ∧ E∨ such that
for each x ∈ X, (Ex, ωx) is a symplectic vector space. The section ω is called
a symplectic bilinear form on E.

It is easy to see that all these objects are decorated bundles of type
(2, 1, 0,N), for appropriate N.

In Section 5.3 we will recall the semistability condition for orthogonal
bundles over curves and show that coincides with semistability of decorated
bundles, at least in the case of bundles over curves. The general case is a
straightforward generalization.

2.3.4 Framed Bundles

Let (X,OX(1)) be, as usual, a polarized smooth projective variety. We want
to introduce the notion of framed bundles and framed sheaves over X. These
objects are probably one of the first examples of bundles “decorated” by an
additional structure given by a morphism. Fix a coherent sheaf F , called
framing sheaf, over X. Then a framed sheaf is a pair (E,α) where E is
a coherent sheaf on X and α : E → F is a morphism of coherent sheaves.
A framed bundle on X is instead a pair (E,α) such that E is a torsion
free sheaf on X, D ⊂ X is a effective divisor, F is a vector bundle on D and
α : E|D → F is an isomorphism.
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For any framed sheaf (E,α), we define the function ε(α) by

ε(α) +

{
1 if α 6= 0

0 if α = 0.

Let n denote the dimension of X and δ(x) = δn−1x
n−1 + · · ·+δ1x+δ0 ∈ Q[x]

denote a fixed polynomial with positive leading coefficient δn−1 > 0. We
define the framed degree of (E,α)

deg(E,α) + degE − δn−1ε(α),

and the framed Hilbert polynomial

P(E,α) + PE − δε(α).

Finally a framed sheaf is (semi)stable if and only if for any framed subsheaf
(F, α|F ) of (E,α)

rk(E)P(F,α|F
)
≺

(−) rk(F )P(E,α)

and slope (semi)stable if

rk(E) deg(F, α|F ) <
(=) rk(F ) deg(E,α).

If, in the definition of decorated bundles of type (a, b, c,N), ones admits
the line bundle N to be a coherent sheaf then a framed bundle with framing
sheaf F is nothing else that a decorated bundle of type (1, 1, 0, F ) and framed
semistability coincide with decorated ε-semistability. Similar considerations
can be made for framed sheaves.



Chapter 3

Mehta-Ramanathan
theorems

Notation. Let (X,OX(1)) be, as usual, a polarized projective smooth vari-
ety of dimension n, δ = δ(x) + δn−1x

n−1+· · ·+δ1x+δ0 be a fixed polynomial
with positive leading coefficient and let δ = δn−1.

Decorated sheaves were introduced by Schmitt and provide a useful a
machinery to study principal bundles or more generally vector bundles with
additional structures. However in general it is quite hard to check semista-
bility for decorated sheaves because one has to verify inequality (2.8) and
therefore calculate µI for any filtration. For this reason we introduce ε-
semistability, a more computable notion of semistability, stronger than the
usual semistability given by Schmitt. ε-semistability is quite similar to the
semistability condition for framed sheaves given by Huybrechts and Lehn in
[14].

3.1 Decorated coherent sheaves

With the expression “decorated coherent sheaf” we mean a decorated
sheaf (A, ϕ) such that A is just a coherent sheaf (and not necessarily torsion
free).
Before proceeding we recall what a decorated coherent subsheaf is. If
i : (F , ψ) → (A, ϕ) is an injective morphism of decorated sheaves we get
immediately from condition (2.2) that λ · ψ = i∗ϕ. From now on we will
say that the tripe ((F , ψ), i) is a decorated subsheaf of (A, ϕ) and we
will denote it just by (F , ϕ|F ). Note moreover that, if F is a subsheaf of A
and i : F → A is the inclusion, then it defines a decorated subsheaf; in fact
defining ψ = ϕ|ia,b(Fa,b)

the triple ((F , ψ), i) is a decorated subsheaf of (A, ϕ).

31
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For an arbitrary decorated coherent sheaf (A, ϕ) define the ε-decorated
degree

deg(A, ϕ) + deg(A)− aδε(A, ϕ),

where degA + c1(A) · OX(1)n−1, and the ε-decorated Hilbert polyno-
mial

P(A,ϕ)(m) + PA(m)− aδ(m)ε(A, ϕ)

If moreover rank rk(A) > 0 we define the ε-decorated slope and, respec-
tively, the reduced ε-decorated Hilbert polynomial as:

µ(A, ϕ) +
deg(A, ϕ)

rk(A)
p(A,ϕ)(m) +

P(A,ϕ)(m)

rk(A)
.

Sometimes, if the morphism ϕ is clear from the context, we will write
degε(A) instead of deg(A, ϕ), µε(A) instead of µ(A, ϕ) and PεA (respectively
pεA) instead of P(A,ϕ) (resp. p(A,ϕ)).

Recall that given two polynomials p(m) and q(m) then p � q if and only
if there exists m0 ∈ N such that p(m) ≤ q(m) for any m ≥ m0.

Definition 22. Let (A, ϕ) be a decorated coherent sheaf of positive rank,
than we will say that (A, ϕ) is ε-(semi)stable or, respectively, slope ε-
(semi)stable with respect to δ (resp. δ) if and only if for any proper non
trivial subsheaf F ⊂ A the following inequality holds:

P(F,ϕ|F
) rk(A) ≺

(−) P(A,ϕ) rk(F). (3.1)

or, respectively,

deg(F , ϕ) rk(A) <
(=) rk(F) deg(A, ϕ) (3.2)

If rk(A) = 0 we say that (A, ϕ) is semistable (resp. slope semistable) or
stable (resp. slope stable) if moreover PA = δ (resp. degA = δ).

In particular this ε-(semi)stability extends ε-semistability, defined in Sec-
tion 2.2.1, to decorated coherent sheaves.

Remark 23. Note that

slope ε-stable ⇒ ε-stable ⇒ ε-semistable ⇒ slope ε-semistable;

and recall that ε-semistability (slope ε-semistability) is strictly stronger than
the usual semistability (resp. slope semistability) introduced in Chapter 2.
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The kernel of ϕ lies in Aa,b, so for our purpose we need to define a
subsheaf of A that plays a similar role to the kernel of ϕ. Therefore we let

K + max {0 ⊆ F ⊆ A | Fa,b ⊆ kerϕ}

where the maximum is taken with respect to the partial ordering given by the
inclusion of sheaves. Note that K is unique, indeed if K′ is another maximal
element, then K ∪ K′ is a subsheaf of A such that (K ∪ K′)a,b ⊂ kerϕ and
this is absurd.

Remark 24. 1. Let T (A) be the torsion part of A. The torsion part
T (Aa,b) lies in kerϕ, otherwise there would be a non zero morphism
between a sheaf of pure torsion and the torsion free sheaf N and this is
impossible. Therefore also the twisted torsion part T (A)a,b ⊂ T (Aa,b)
lies in the kernel of ϕ.

2. T (A) ⊆ kerϕ (point (1)) therefore T (A) ⊆ K;

3. A is torsion free if and only if K is torsion free. Indeed, suppose that K
is torsion free and that T (A) 6= ∅, then K ( K∪ T (A) which is absurd
for maximality of K. The converse is obvious.

4. Aa,b is torsion free if and only if kerϕ is torsion free.

5. If (A, ϕ) is semistable and rk(A) > 0 then K is a torsion free sheaf.
Indeed if T (K) is the torsion part of K, rk(T (K)) = 0 and than, for the
semistability condition, we get that:

rk(A)P(T (K)a,b,ϕ|T (K)a,b
)
≺

(−) 0.

Therefore T (K) is zero and K is torsion free.

6. If (A, ϕ) is semistable and rk(A) > 0 then A is pure of dimension
dimX and therefore torsion free. Indeed let F a subsheaf of A of pure
torsion, then by the semistability condition we get that

rk(A)
(
PF − aδε(ϕ|F )

)
� rk(F) (PA − aδ) = 0.

Moreover, for point (1), Fa,b ⊂ kerϕ and so PF � 0, this immediately
implies F = 0.

Remark 25. Note that Remark 24 holds also in the slope ε-semistable case.

Proposition 26. Let (A, ϕ) be a decorated coherent sheaf of positive rank
and let T + T (A) be the torsion of A. Then the following statements hold.

1. (A, ϕ) is ε-semistable with respect to δ =⇒ A/T is ε-semistable with
respect to δ.



3.2 Mehta-Ramanathan for slope ε-semistability 34

2. (A/T, ϕ) is ε-semistable with respect to δ =⇒ (A, ϕ) is ε-semistable
with respect to δ or T is the maximal destabilizing subsheaf of A in the
sense of Remark 30.

Proof. First of all note that, since T ⊂ kerϕ, the pair (A/T, ϕ) is a well-
defined decorated (torsion free) sheaf of the same type of (A, ϕ).

1. If (A, ϕ) ε-semistable with respect to δ, then as in Remark 24 one can
prove that T = 0 and so obviously (A/T, ϕ) is semistable.

2. Suppose that (A/T, ϕ) ε-semistable with respect to δ. If T does not
destabilize, then PεT = PT � 0 and so T = 0 and (A, ϕ) is ε-semistable.
Otherwise PεT = PT � 0 and Remark 30 shows that is the maximal
destabilizing subsheaf.

�

3.2 Mehta-Ramanathan for slope ε-semistable dec-
orated sheaves

In this section we want to prove a Mehta-Ramanathan theorem for slope
ε-semistable decorated sheaves. Before we proceed we need some notation
and preliminary results.

Notation. Let k be an algebraic closed field of characteristic 0, S an integral
k-scheme of finite type. X will be a smooth projective variety over k, OX(1)
an ample line bundle on X and f : X → S a projective flat morphism.
Note that OX(1) is also f -ample. In this section we will suppose that any
decorated sheaf is of type (a, b,N). If (W, ϕ) is a decorated coherent sheaf
over X we denote by Ws the restriction W|Xs , where Xs + f−1(s), and
ϕs the restriction ϕ|Ws . Finally, if F is a sheaf, we will denote by rF the
quantity rk(F).

3.2.1 Maximal destabilizing subsheaf

Proposition 27. Let (E , ϕ) be a decorated sheaf over a nonsingular pro-
jective smooth variety X. If (E , ϕ) is not ε-semistable there is a unique,
ε-semistable, proper subsheaf F of E such that:

1. pεF � pεW for all subsheaf W of E.

2. If pεF = pεW then W ⊂ F .

The subsheaf F , with the induced morphism ϕ|F , is called maximal desta-
bilizing subsheaf of (E , ϕ).
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Proof. First we recall that by definition E is torsion free and therefore of
positive rank.

We define a partial ordering on the set of decorated subsheaves of a given
decorated sheaf (E , ϕ). Let F1,F2 two subsheaves of E , then

F1 4 F2 ⇐⇒ F1 ⊆ F2 ∧ P(F1,ϕ1) rk(F2) � P(F2,ϕ2) rk(F1) (3.3)

where ϕi = ϕ|Fi
. Note that the set of the subsheaves of a sheaf E with this

order relation 4 satisfies the hypothesis of Zorn’s Lemma, so there exists a
maximal element (non unique in general). Let

F + min
rk(G)
{G ⊂ E | G is 4 -maximal} (3.4)

i.e., F is a 4-maximal subsheaf with minimal rank among all 4-maximal
subsheaves. Then we claim that (F , ϕ|F ) has the asserted properties.

Suppose that exists G ⊂ E such that

pεG � pεF (3.5)

First we show that we can assume G ⊂ F by replacing G by F ∩ G. Indeed
if G 6⊂ F , F is a proper subsheaf of F + G in fact F 6⊂ G (otherwise F 4 G
which is absurd for maximality of F). By maximality one has that

pεF � pεF+G. (3.6)

Using the exact sequence

0 −→ F ∩ G −→ F ⊕ G −→ F + G −→ 0

one finds PF +PG = PF⊕G = PF∩G +PF+G and rk(F) + rk(G) = rk(F ⊕ G) =
rk(F ∩ G) + rk(F + G). Hence

rF∩G(pG − pF∩G) = rF+G(pF+G − pF) + (rG − rF∩G)(pF − pG). (3.7)

where we denote by rF , rG, rF+G and rF∩G the rank of rk(F), rk(G), rk(F + G)
and rk(F ∩ G) respectively.

If the morphism ϕ is zero ε-semistability coincides with the usual semista-
bility for torsion-free sheaves and the existence of the maximal destibilizing
subsheaf is a well-known fact that one can find, for example, in [15] Lemma
1.3.6. So we suppose that ε(ϕ) = 1. From the above inequalities between
reduced decorated Hilbert polynomial of F , G and F + G one can easily
obtain:

pF+G − pF ≺ aδ
(
εF+G

rF+G
− εF
rF

)
pF − pG � aδ

(
εF
rF
− εG
rG

)
,
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therefore, using equation (3.7) and after some easy computations, one gets

rF∩G(p
ε
G − pεF∩G) =

= rF+G(pF+G − pF) + (rG − rF∩G)(pF − pG)− aδεG
rF∩G
rG

+ aδεF∩G

≺ aδrF∩G
(
εF+G

rF+G
− εF
rF

)
+ aδ(rG − rF∩G)

(
εF
rF
− εG
rG

)
− aδεG

rF∩G
rG

+ aδεF∩G

= aδ (εF+G − εF − εG + εF∩G)

� 0.

Therefore we can suppose both G ⊂ F and pεG � pεF , and, up to replacing
G, we can suppose that G is maximal in F with respect to 4. Let G′ be a
4-maximal in E among all subsheaves (of E) containing G. Then

pεF � pεG � pεG′ .

Note that neither G′ is contained in F , because F has minimal rank between
all 4-maximal subsheaves of E , nor F is contained in G′, for maximality of F ;
therefore F is a proper subsheaf of F + G′ and, for maximality, pεF � pεF+G′ .
As before one gets

pεF∩G′ � pεG′ � pεG,

but G ⊆ F ∩ G′ ⊆ F and this contradicts the assumpions on G. Therefore
F satisfies the required properties. The uniqueness and the ε-semistability
of F easily follow from properties (1) and (2). �

Lemma 28. Let (E , ϕ) be as before. If it is not slope ε-semistable there is
a unique proper subsheaf F of E such that:

1. µε(F) ≥ µε(W) for all subsheaves W of E.

2. If µε(F) = µε(W) then W ⊂ F .

Proof. The proof is the same of Proposition 27: it is sufficient to replace pε

with µε, P
ε with degε and δ with δ. �

Remark 29. Note that, if (E , ϕ) is ε-semistable, or, respectively, slope
ε-semistable, then the maximal decorated destabilizing (resp. slope desta-
bilizing) subsheaf coincides with E .

Proposition 30. Let (A, ϕ) be a decorated coherent sheaf of positive rank,
then Proposition 27 and Lemma 28 hold true, in the sense that if (A, ϕ)
is not ε-semistable (slope ε-semistable respectively) there is a unique, ε-
semistable, proper subsheaf F of E such that:

1. PεFrk(E) � PεWrk(F) for all subsheaves W of E.

2. If PεFrk(W) = PεWrk(F) then W ⊂ F .
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or, respectively

1
′
. degε(F)rk(W) ≥ degε(W)rk(F) for all subsheaves W of E.

2
′
. If degε(F)rk(W) = degε(W)rk(F)) then W ⊂ F .

Proof. Indeed, let F be a minimal rank sheaf between all 4-maximal sheaves
as in the proof of Proposition 27. Suppose that rk(F) = 0, then F ⊂ K =
T (A), and so, by maximality F = T (A). If G is such that rk(G) > 0
and T (A) 4 G then PT (A) � 0 but, by hypothesis, T (A) destabilize and so
PT (A) � 0. Finally T (E) is clearly unique and semistable.
Otherwise, if rk(F) > 0, then A has no nontrivial rank zero subsheaves, in
particular is torsion free. Indeed if exists a subsheaf G ⊂ A with rG = 0
then, by the above considerations exists G′ with rk(G′) = 0, G ⊆ G′ and
G′ 4-maximal which is absurd by the assumptions on F . Then the proof
continues as the proof of Proposition 27.
The proof in the case of slope ε-semistability is the same. �

3.2.2 Families of decorated sheaves

Let f : Y → S be a morphism of finite type of Noetherian schemes. Recall
that a flat family of coherent sheaves on the fibre of the morphism f
is a coherent sheaf A over Y , which is flat over S, i.e., for any y ∈ Y Ay is
flat over the local ring OS,f(y). If A is flat over the fibre of f the Hilbert
polynomial PAs is locally constant as a function of s. The converse is not
true in general, but, if S is reduced, then the two assertions are equivalent.

Definition 31. Let (E , ϕ) be a decorated sheaf over Y of type (a, b,N) and
f : Y → S be a morphism of finite type between Noetherian schemes. Then
(E , ϕ) is a flat family over the fibre of f if and only if

- E and N are flat families of coherent sheaves over the fibre of f : Y → S;

- Es = E|f−1(s)
is torsion free for all s ∈ S;

- Ns = N|f−1(s)
is locally free for all s ∈ S;

- ε(ϕs) = ε(ϕ|Es ) is locally constant as a function of s.

Note that the above conditions imply that the ε-Hilbert polynomials PεEs are
locally constant for s ∈ S.

Definition 32. Let (A, ϕ) be a decorated coherent sheaf of positive rank.
Then (A, ϕ) is a flat family over the fibre of f if and only if

- A and N are flat families of sheaves over the fibre of f : Y → S;

- Ns is locally free for all s ∈ S;
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- ε(ϕs) is locally constant as a function of s;

- rk(As) > 0 for any s ∈ S.

As in Definition 31 the above conditions imply that the ε-Hilbert polynomi-
als PεAs are locally constant for s ∈ S.

3.2.3 Families of quotients

Let (A, ϕ) be a decorated coherent sheaf over X and let q : A � Q be
surjective morphism of sheaves. Let F be the subsheaf of A defined by
ker q, so the following succession of sheaves is exact:

0 −→ F i−→ A −→ Q −→ 0.

Note that F is uniquely determined by Q and therefore also (F , ϕ|F ) is
uniquely (up to isomorphism of decorated sheaves) determined by Q. In-
deed, let (F , ψ) be another decorated subsheaf of (A, ϕ), then, by definition
of decorated subsheaf, there exists a non-zero scalar morphism λ : N → N
such that λ ◦ ψ = ϕ, then

Fa,b
ia,b //

ψ

��

ϕ|F

!!

Aa,b

ϕ

��

N
id

N
λ

//
λ

==

N.

Since the big square and the upper triangle commute, the entire diagram
commutes and so it easy to see that (F , ψ) and (F , ϕ|F ) are isomorphic as
decorated sheaves.

Suppose now that (F , ϕ|F ) de-semistabilizes a decorated sheaf (E , ϕ)
(with respect to the slope ε-semistability), then µε(F) > µε(E) and so

µ(F)− aδεF
rF

> µ(E)− aδεE
rE

deg(F) > rF

[
µ(E) + aδ

(
εF
rF
− εE
rE

)]
Recalling that deg(E) = deg(F) + deg(Q),

deg(Q) < deg(E)− rF
[
µ(E) + aδ

(
εF
rF
− εE
rE

)]
= µ(E)rQ − aδ

(
εF − εE

rF
rE

)
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and therefore, if εE = 1,

µ(Q) < µ(E)− aδ
(
εF
rQ
− rF
rQrE

)
= µ(E) + aδ ·

{
rF
rQrE

+ C0 if εF = 0

− 1
rE
+ −C1 if εF = 1,

(3.8)
otherwise, if εE = 0 then also εF = 0 and so we get that µ(Q) < µ(E).

Remark 33. Defining degε(Q) + degε(E)−degε(F) and µε(Q) = degε(Q)/rQ
one easily gets that µε(F) > µε(E) if and only if µε(Q) ≤ µε(E). Note that
in general it is not possible to define a morphism ψ over Q such that (Q, ψ)
is a decorated sheaf and ε(Q, ψ) + ε(F , ϕ|F ) = ε(E , ϕ). In fact it is possible
to define a morphism to the quotient satisfying such properties if and only if
kF,E = 0 or kF,E = a. This is because only in these two cases the morphism
t:

Fa,b �
� // Ea,b

ϕ //

����

N

Ea,b/Fa,b t
// (E/F)a,b

OO

is well defined and so it is possible to give a well-defined structure of deco-
rated sheaf to (E/F) defining a morphism ϕ : (E/F)a,b → N.

Analogously, if (F , ϕ|F ) de-semistabilizes (E , ϕ) with respect to the ε-
semistability, i.e., if

pF − aδ
εF
rF
� pE −

aδ

rE
,

then similar calculations show that

pQ ≺ pE + aδ ·

{
C0 if εF = 0

−C1 if εF = 1
(3.9)

Note that condition (3.8) implies condition (3.9), conversely, if pQ ≺ pE+δC
then µ(Q) ≤ µ(E) + δC.

Let (E , ϕ) be a flat family of decorated sheaves over the fibre of a projec-
tive morphism f : X → S. Let P = PEs and p = pEs the Hilbert polynomial
and, respectively, the reduced Hilbert polynomial of E (which are constant
because the family is flat over S). Define:

1. F as the family (over the fibre of f) of saturated subsheaves F ↪→ Es
such that the induced torsion free quotient Es � Q satisfy µ(Q) ≤
µ(Es) + aδC0;

2. F0 as the family of decorated subsheaves (F , ϕ|F ) ↪→ (Es, ϕ|Es ) such
that:
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- ε(F , ϕ|F ) = 0;

- pεF = pF � pεE (i.e., pQ ≺ p + aδC0 with Q + coker(F ↪→ Es));
- F is a saturated subsheaf of Es;

3. F1 as the family of decorated subsheaves (F , ϕ|F ) ↪→ (Es, ϕ|Es ) such
that:

- ε(F , ϕ|F ) = 1;

- pεF � pεE (i.e., pQ ≺ p − aδC1 with Q + coker(F ↪→ Es));
- F is a saturated subsheaf of Es;

We want to prove that the set of Hilbert polynomials of destabilizing
decorated subsheaves of a flat family (E , ϕ) of decorated sheaves over the
fibre of a projective morphism f : X → S is a finite set. From this we
conclude that the semistability condition is an open condition, i.e., the set
{s ∈ S | (Es, ϕs) is slope ε-semistable} is open in S. In order to prove this
result we first need to recall some facts.

Definition 34. A family of isomorphism classes of coherent sheaves on a
projective scheme Y over k is bounded if there is a k-scheme S of finite
type and a coherent OS×Y -sheaf G such that the given family is contained
in the set {G|Spec(k(s))×Y | s is a closed point in S}.

Definition 35. A sheaf A over Y is said m-regular if

H i(Y,A(m− i)) = 0 for all i > 0.

Define the Mumford-Castelnuovo regularity of A as

reg(A) + inf{m ∈ Z | A is m-regular}

Then the following statements hold:

Lemma 36 (Lemma 1.7.2 [15]). If A is m-regular, then

i) A is m′-regular for all integers m′ ≥ m.

ii) A(m) = A⊗OX(m) is globally generated.

iii) For all n ≥ 0 the natural homomorphisms

H0(X,A(m))⊗H0(X,OX(n)) −→ H0(X,A(m+ n))

are surjective.

Lemma 37 (Lemma 1.7.6 of [15]). The following properties of families of
sheaves {Ai}i∈I are equivalent:
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i) the family is bounded;

ii) the set of Hilbert polynomials {PAi}i∈I is finite and there is a uniform
bound for reg(Ai) ≤ C for all i ∈ I

iii) the set of Hilbert polynomials {PAi}i∈I is finite and there is a coherent
sheaf A such that all Ai admit surjective morphisms A → Ai.

Definition 38. Let A be a coherent sheaf. We call hat-slope the rational
number

µ̂(A) +
βdimA−1(A)

βdimA(A)
,

where βi(A) is defined as the coefficient of xi of the Hilbert polynomial of

A multiplied by i!, i.e., if PE(x) =
∑dimA

i=0 βi
xi

i! then βi(A) + βi.

Lemma 39 (Lemma 2.5 in [11]). Let f : Y → S be a projective morphism
of Noetherian schemes and denote by OY (1) a line bundle on Y , which is
very ample relative to S. Let A be a coherent sheaf on Y and Q the set
of isomorphism classes of quotients sheaves Q of As for s running over the
points of S. Suppose that the dimension of Ys is ≤ r for all s. Then the
coefficient βr(Q) is bounded from above and below, and βr−1(Q) is bounded
from below. If βr−1(Q) is bounded from above, then the family of sheaves
Q/T (Q) is bounded.

Proposition 40. Let A be a flat family of coherent sheaves on the fibres of
a projective morphism f : Y → S of Noetherian schemes. Then the family
of torsion free quotient Q of As for s ∈ S with hat slope bounded from above
is a bounded family.

Proof. It is an easy corollary of Lemma 2.5 in [11]. �

Thanks to Proposition 40 the family F is bounded. Due the previous
considerations both families F0 and F1 can be regarded as subfamilies of F
and therefore F0 and F1 are bounded families as well. Thanks to Proposition
37 the sets {PF | F ∈ F0} and {PF | F ∈ F1} are finite.

3.2.4 Quot schemes

Let A be a coherent sheaf over X flat over the fibres of f : X → S. Let
P ∈ Q[x] be a polynomial. Define a functor

Q + Quot
X/S

(A, P ) : (Sch/S)→ (Sets)

as follows: if T → S is scheme over S let Q(T ) be the set of all T -flat
coherent quotient sheaves AT � Q with Hilbert polynomial P , where AT
denotes the sheaf over XT = X ×S T induced by A. If g : T ′ → T is an
S-morphism, let Q(g) : Q(T ) → Q(T ′) be the map that sends AT � Q to
AT ′ � g∗XQ, where gX : XT ′ → XT is the map induced by g.
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Theorem 41 (Theorem 2.2.4 in [15]). The functor Quot
X/S

(A, P ) is repre-

sented by a projective S-scheme π : QuotX/S(A, P )→ S.

Consider now a decorated coherent sheaf (A, ϕ) over X, flat over the
fibre of f : X → S and let P ∈ Q[x] be a polynomial. Define the functor

Q0 + Quot
0
X/S

(A, ϕ, P ) : (Sch/S)→ (Sets)

as follows: if T → S is scheme over S let Q0(T ) be the set of all T -flat
coherent quotient sheaves AT � Q with Hilbert polynomial P such that
ε(ϕT |ker(AT�Q)

) = 0, where AT denotes the sheaf over XT = X×S T induced

by A and ϕT : (AT )a,b → Aa,b
ϕ−→ N is the morphism induced by ϕ. If

g : T ′ → T is an S morphism, let Q0(g) : Q0(T ) → Q0(T ′) be the map
that sends AT � Q to AT ′ � g∗XQ, note that g∗XϕT is zero if restricted on
ker(AT ′ � g∗XQ).

Theorem 42. The functor Quot
0
X/S

(A, ϕ, P ) is represented by a projec-

tive S-scheme π0 : Quot
0
X/S(A, ϕ, P ) → S that is a closed subscheme of

QuotX/S(A, P ).

Proof. The additional property is closed and therefore, using the same argu-
ments of the proof of Theorem 1.6 in [36], one can prove that Quot

0
X/S(A, ϕ, P ) =

{q ∈ QuotX/S(A, P ) | ε(ϕ|ker(q)
) = 0} is a closed projective subscheme of

QuotX/S(A, P ). �

3.2.5 Openness of semistability condition

Proposition 43. Let f : X → S be a projective morphism of Noetherian
schemes and let (E , ϕ) be a flat family of decorated sheaves over the fibre of
f . The set of points s ∈ S such that (Es, ϕs) is ε-(semi)stable with respect
to δ is open in S.

Proof. Let P = PEs and p = pEs the Hilbert polynomial and, respectively,
the reduced Hilbert polynomial of E . We first consider the semistable case.
Let

A + {P ′′ ∈ Q[x] | ∃ s ∈ S,∃ q : Es � Q such that PQ = P ′′ and ker(q) ∈ F}
(3.10)

and, for i = 0, 1, let

Ai + {P ′′ ∈ Q[x] | ∃ s ∈ S,∃ q : Es � Q such that PQ = P ′′ and ker(q) ∈ Fi}

The sets A, A0 and A1 are finite because the families F, F0 and F1 are
bounded as proved in Section 3.2.3. For any P ′′ ∈ A1 consider the Quot
scheme π : Quot

X/S
(E , P ′′) → S, while for P ′′ ∈ A0 consider the Quot
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scheme π0 : Quot
0
X/S

(E , ϕ, P ′′) → S. Both images S(P ′′) of π (for P ′′ ∈ A1)

and S0(P ′′) of π0 (for P ′′ ∈ A0) are closed sets of S. Therefore the union ⋃
P ′′∈A0

S0(P ′′)

 ∪
 ⋃
P ′′∈A1

S(P ′′)


is a closed subset of S, in fact it is finite union of closed sets. Finally is easy
to see that (Es, ϕs) is semistable if and only if s is not in the above union.
The proof of the stable case is similar to the semistable case, it is indeed
sufficient to consider, for i = 0, 1, the sets

Ast
i + {P ′′ ∈ A | with pQ � p + (1− i)(−aδC0) + i(aδC1)}

and continue as in the semistable case. �

3.2.6 Relative maximal destabilizing subsheaf

Theorem 44. Let (X,OX(1)), S, f : X → S and (E , ϕ) as before. Then
there is an integral k-scheme T of finite type, a projective birational mor-
phism g : T → S, a dense open subset U ⊂ T and a flat quotient Q of ET
such that for all points t ∈ U , Ft + ker(Et � Qt) with the induced morphism
ϕt|Ft

is the maximal destabilizing subsheaf of (Et, ϕt) or Qt = Et.
Moreover the pair (g,Q) is universal in the sense that if g′ : T ′ → S is any
dominant morphism of k-integral schemes and Q′ is a flat quotient of ET ′,
satisfying the same property of Q, there is an S-morphism h : T ′ → T such
that h∗X(Q) = Q′.

Proof. In the proof we apply the same arguments as in [27]. Define B1 = A1

and B0 = A′0, i.e.,

B0 = {P ′′ ∈ A | pQ � p − aδC0}
B1 = {P ′′ ∈ A | pQ ≺ p + aδC1}

Then define

B̌0 + {P ′′ ∈ B0 |π0(Quot
0
X/S(E , ϕ, P ′′)) = S}

B̌1 + {P ′′ ∈ B1 |π(QuotX/S(E , P ′′)) = S and ∀s ∈ S π−1(s) 6⊂ Quot
0
X/S(E , ϕ, P ′′))}

Note that B0 ∪B1 and B̌0 ∪ B̌1 are nonempty. We want to define an order
relation on B0, B̌0, B1 and B̌1 but first we need the following costruction:
let P ′′1 , P

′′
2 be polynomials in B0, B̌0, B1 or B̌1; then there exist surjective

morphisms qi : Es → Qi (i = 1, 2) such that P ′′i = PQi . Define, for i = 1, 2,
Pi + Pker(qi)

, ri + rk(ker(qi)) and pi = Pi/ri. We will say that the polyno-
mials Pi are associated with the polynomials P ′′i .
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If P ′′i ∈ B0 or B̌0 define the following ordering relation:

P ′′1 C P
′′
2 ⇐⇒ p1 � p2 or p1 = p2 and r1 > r2,

otherwise, if P ′′i ∈ B1 or B̌1, define:

P ′′1 C P
′′
2 ⇐⇒ p1 −

aδ

r1
� p2 −

aδ

r2
or p1 −

aδ

r1
= p2 −

aδ

r2
and r1 > r2

Let P
′′i
− , for i = 0, 1, be a C-minimal polynomial among all polynomials in

B̌i and P i− the associated polynomials. Then consider the following cases:

Case 1: p0
− � p1

− − aδ
r1
−

;

Case 2: p0
− ≺ p1

− − aδ
r1
−

;

Case 3: p0
− = p1

− − aδ
r1
−

and r0
− > r1

−;

Case 4: p0
− = p1

− − aδ
r1
−

and r0
− < r1

−;

In the first and third case define P
′′
− = P

′′0
− , in the second and fourth case

put P
′′
− = P

′′1
− . Note that the set

U ′− +

 ⋃
P ′′∈B0,P ′′CP

′′0
−

π0(Quot
0
X/S(E , ϕ, P ′′))

∪
 ⋃
P ′′∈B1,P ′′CP

′′1
−

π(QuotX/S(E , P ′′))


is a proper closed subscheme of S. In fact it is proper and closed because it is
a finite union of closed proper subschemes of S. Call U− its complement in S.

Suppose that P
′′
− ∈ B̌0. By definition the projective morphism

π0(Quot
0
X/S(E , ϕ, P ′′−))→ S

is surjective and for any point s ∈ S the fibre of π0 at s parametrizes possible
quotients with Hilbert polynomial P

′′
−. The associated subsheaf of any such

quotient is, by costruction, the maximal decorated destabilizing subsheaf.
The case that P

′′
− ∈ B̌1 is similar. Finally by re-adapting the techniques

used in the proof of the corresponding result in [27], one concludes. �

3.2.7 Restriction theorem

Let X be a smooth projective variety and OX(1) be a fixed ample line
bundle. Let (E , ϕ) be a decorated sheaf of type (a, b,N) over X with non-
zero decoration morphism. For a fixed positive integer a ∈ N+, we define:

- Πa + |OX(a)| the complete linear system of degree a in X;
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- Za + {(D,x) ∈ Πa×X |x ∈ D} the incidence variety with projections

Πa ×X Za
? _oo qa //

pa
��

X

Πa

One can prove (see Section 2 of [23]) that:

Pic(Za) = q∗aPic(X)⊕ p∗aPic(Πa). (3.11)

For any sheaf G over X one has PG|D(n) = PG(n)−PG(n− a), therefore,
given a decorated sheaf (E , ϕ) overX with decoration of type t = (a, b,N), for
all D ∈ Πa the restrictions E|D and N|D have constant Hilbert polynomials.
Since Πa is reduced, as remarked at the beginning of Section 3.2.2, it fol-
lows that q∗aN and q∗aE are flat families of sheaves on the fibre of pa : Za → Πa.

Remark 45. If for any D ∈ Πa ϕa|(q∗a E)|
p−1
a (D)

= ϕ|(E|D)
6= 0, the family of

decorated sheaves (q∗aE , q∗aϕ) is flat. Otherwise, since to be nonzero is open
condition, there exists a dense open subset of Πa over which (q∗aE , q∗aϕ) is
flat.

Thanks to this remark and Theorem 44, there exist a dense open subset
Va of Πa and a torsion-free sheaf Qa over ZVa + Za ×Πa Va such that:

� (Ea, ϕa) + (q∗aE , q∗aϕ) is flat over Va;

� Qa is flat over Va;

� Fa + ker(Ea → Qa), with the induced morphism ϕa|Fa , is the rel-
ative maximal decorated destabilizing subsheaf of (Ea, ϕa); i.e., for
any D ∈ Va Fa|

p−1
a (D)

(with the induced morphism) de-semistabilize

(Ea, ϕa)|
p−1
a (D)

.

Recall that:

� by construction of the relative maximal decorated destabilizing sub-
sheaf, the quantity

ε

Fa|
p−1
a (D)

, ϕa|Fa|
p−1
a (D)




depends only on a and not on D ∈ Va and for this reason from now on
we will denote by ε(a);
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� (Ea, ϕa), (Fa, ϕa|Fa ) and Qa are flat families of decorated sheaves (resp.
sheaves) over Va.

Let Ga be a line bundle which extends det(Qa) to all Za; in view of (3.11)
the line bundle Ga can be uniquely decomposed as Ga = q∗aLa ⊗ p∗aMa =
La �Ma with La ∈ Pic(X) and Ma ∈ Pic(Πa). Note that deg(Qa|

p−1
a (D)

) =

adeg(La).

For a general divisor D ∈ Πa = |OX(a)|, let deg(a), rk(a) and µ(a)
denote the degree, rank and slope of the maximal decorated destabilizing

subsheaf (Fa, ϕa|Fa )
|
p−1
a D

of (Ea|
p−1
a D

, ϕa|
p−1
a D

). Let µε(a) = µ(a) − aδε(a)
rk(a) ,

degq(a) = deg(Ea|
p−1
a D

) − deg(a), rkq(a) = rk(Ea|
p−1
a D

) − rk(a) and εq(a) =

εEa|
p−1
a D

− ε(a). Finally µq(a) = degq(a)
rkq(a) , degqε(a) = deg(a) − aδεq(a) and

µqε(a) = µq(a)− aδ ε
q(a)

rkq(a) = degqε(a)
rkq(a) .

Let Ua ⊂ Va denote the dense open set of points D ∈ Va such that D is
smooth.

Lemma 46 (Lemma 7.2.3 in [15]). Let a1, . . . , al be positive integers, a =∑
i ai and Di ∈ Uai divisors such that D =

∑
iDai is a divisor with normal

crossing. Then there is a smooth locally closed curve C ⊂ Πa containing
the point D such that C r {D} ⊂ Ua and ZC + C ×Πa Za is smooth in
codimension 2.

Lemma 47. Let a1, . . . , al be positive integers and a =
∑

i ai. Then

� µ(a) ≤
∑

i µ(ai),

� µq(a) ≥
∑

i µ
q(ai),

� µqε(a) ≥
∑

i µ
q
ε(ai)

and in case of equality rkq(a) ≤ mini rkq(ai), or equivalently rk(a) ≥ maxi rk(ai).

Proof. Let Di ∈ Uai , for i = 1, . . . , l, be divisors satisfying the requirements
of Lemma 46, be D +

∑
iDi and let C be a curve with the properties of

Lemma 46. There exists over Va a maximal decorated destabilizing subsheaf
Fa with the associated torsion free quotient Ea|ZVa → Qa. Recall that both

sheaves are flat over Va. Its restriction to Va ∩ C can uniquely be extended
to a C flat quotient Ea|ZC → QC and let FC = ker(Ea|ZC → QC), then
also FC extends Fa|Va∩C to all C. Note that also FC is flat over C and so
PFC |D

= PFC |c for any c ∈ C. Therefore µ(FC |D) = µ(a), rk(FC |D) = rk(a)

and ε(FC |D) = ε(a). Let
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� QD + QC |D/T (QC |D) and FD + ker(Ea|D → QD), i.e., they fit in the
exact sequence

0 −→ FD −→ Ea|D −→
QC |D

T (QC |D)
−→ 0;

� Qi + QD |Di/T (QD |Di ) and Fi + ker((Ea|D)|Di
→ Qi), i.e., they fit in

the exact sequence

0 −→ Fi −→ Ea|Di −→
QD |Di

T (QD |Di )
−→ 0;

Then one gets

� rk(a) = rk(FC |D) = rk(FD) = rk(FD |Di ) = rk(Fi) and rkq(a) =

rk(QC |D) = rk(QD) = rk(QD |Di ) = rk(Qi);

� µq(a) = µ(QC |D) ≥ µ(QD) and µ(a) = µ(FC |D) ≤ µ(FD);

� µ(QD |Di ) ≥ µ(Qi) and µ(FD |Di ) ≤ µ(Fi).

Since E|D and QD are pure, and the sequences

0 −→ QD −→
⊕
i

(QD)|Di
−→

⊕
i<j

(QD)|Di∩Dj
−→ 0

0 −→ E|D −→
⊕
i

(E|D)|Di
−→

⊕
i<j

(E|D)|Di∩Dj
−→ 0

are exact modulo sheaves of dimension n−3, following the same calculations
of Lemma 7.2.5 in [15], one gets that

µ(QD) =
∑
i

µ((QD)|Di
)− 1

2

∑
j 6=i

rk((QD)|Di∩Dj
)

rkq(a)
− 1

 aiaj


µ(E|D) =

∑
i

µ((E|D)|Di
)− 1

2

∑
j 6=i

rk((E|D)|Di∩Dj
)

rk(E|D)
− 1

 aiaj

 .

and

µ(Qi) ≤ µ((QD)|Di
)− 1

2

∑
j 6=i

rk((QD)|Di∩Dj
)

rk(QD)
− 1

 aiaj

Therefore µ(QD) ≥
∑

i µ(Qi), deg(E|D) ≤
∑

i deg((E|D)|Di
) and so easy cal-

culations show that µ(FD) ≤
∑

i µ(Fi).
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Note that, since TF + FD/(FC)|D is pure torsion, ϕ|TF
= 0 (see Re-

mark 24) and so ε(ϕ|(FC )|D
) = ε(ϕ|FD

). For the same reason ε(ϕ|(FD)|Di

) =

ε(ϕ|Fi
). Moreover, if ε(a) = ε(FC |D) = 0 then obviously also εFi = 0 for all

i; conversely if ε(a) = 1 then there exists at least one i such that εFi = 1.
Therefore

∑
i εFi ≥ ε(a) ≥ εFi .

Therefore, defining εQi = (1−εFi) and εQD = (1−εFD) as in Remark 33,
thanks to the previous inequalities and considerations, one gets

∑
i εQi ≥

εQD ≥ εQi and so

µqε(a) ≥ µε(QD) ≥
∑
i

µε(Qi) ≥
∑
i

µqε(ai).

If µqε(a) =
∑

i µ
q
ε(ai) it follows that µqε(Qi) = µqε(ai). Since µqε(a) is

the decorated slope of the minimal destabilizing quotient (i.e., its kernel is
the maximal decorated destabilizing subsheaf), we have rkq(a) = rk(Qi) ≥
rkq(ai) for all i. �

Corollary 48. rkq(a), εq(a)
a , µq(a)

a , µqε(a)
a , µ(a)

a , µε(a), rk(a) and ε(a) are
constant for a� 0.

Proof. The quantities rkq(a) and µq(a)
a are constant as proved in [15] Corol-

lary 7.2.6. The same arguments show that µqε(a)
a is constant as well. There-

fore εq(a)
a has to be constant too and easy calculations show that also ε(a),

µ(a)
a and µε(a) are constant. �

Corollary 49. For a >> 0 or εq(a) = 0 and ε(a) = 1 or ε(Ea, ϕa) = 0.

Proof. Since εq(a)
a is definitively constant, εq(a) = 0 for a >> 0. Since

εq(a) = ε(Ea, ϕa)− ε(a) or they are (definitively) both zero or both one. �

Lemma 50 (Lemma 7.2.7 [15]). There exist a0 ∈ N and a line bundle
L ∈ Pic(X) such that La ' L for any a > a0.

In this way we have proved that for a >> 0 an extension of det(Qa) is of
the form L�Ma with L ∈ Pic(X) and deg(Qa|D) = adeg(L) for any D ∈ Va.
Now we can state and prove the main theorem of this section:

Theorem 51. Let X be a smooth projective surface and OX(1) be a very
ample line bundle. Let (E , ϕ) be a slope ε-semistable decorated sheaf. Then
there is an integer a0 such that for all a ≥ a0 there is a dense open subset
Ua ⊂ |OX(a)| such that for all D ∈ Ua the divisor D is smooth and (E , ϕ)|D
is slope ε-semistable.
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Proof. We proof the theorem by reduction to absurd. Suppose the theorem
is false: thanks to the previous constructions there exists a line bundle La

such that
deg(La)− aδεq(a)

rkq(a)
< µε(E)

and 1 ≤ rkq(a) ≤ rk(E). We recall that rkq(a) and La are constant for a
greater than a certain constant a0, so from now on we suppose that a is
so and we call La = L and rkq(a) = rq. We want to construct a rank rq

quotient Q of E such that det(Q) = L.
Let a be a sufficiently large integer, D ∈ Ua and let (FD, ϕ|FD ) be the max-

imal decorated destabilizing subsheaf of (E , ϕ)|D and QD + co ker(FD ↪→
E|D) the associated minimal decorated destabilizing quotient. Put LD +
detQD and note that LD = L|D (by uniqueness of the maximal destabiliz-
ing subsheaf and so of the minimal destabilizing quotient). The surjective
morphism E|D → QD induces a surjective homomorphism σD : Λr

qE|D → LD
and morphisms

i|D : D −→ Grass(E|D , r
q) −→ P(Λr

qE|D).

Consider the exact sequence

Hom(Λr
qE , L(−a))→ Hom(Λr

qE , L)
f−→ Hom(Λr

qE|D , L|D)→ Ext1(Λr
qE , L(−a)).

By Serre’s theorem and Serre duality one has that for i = 0, 1 and a� 0

Exti(Λr
qE , L(−a)) = Hn−i(X,Λr

qE ⊗ L∨ ⊗ ωX(a)) = 0.

Hence if a is big enough f is bijective and σD extends uniquely to a homo-
morphism σ ∈ Hom(Λr

qE , L). Using the same arguments of the final part of
the proof of Theorem 7.2.1 in [15], σ induces a morphism i : X → P(Λr

qE)
that factorize thorough Grass(E , rq) and so we obtain a quotient q : E → Q.
Since detQ|D ≡ LD = L|D for all D ∈ Ua, by Lemma 7.2.2 [15], we get
L = detQ. Define F + ker(E → Q) and note that F|D = FD. Finally,
thanks to Fujita’s vanishing theorem ([19] pg 66),

H i(X,Fa,b ⊗ N∨ ⊗ ωX(a)) = 0

for i > 0 and a big enough. Therefore

Extj(Fa,b,N(−a)) = Hn−j(X,Fa,b ⊗ N∨ ⊗ ωX(a)) = 0

for j = 0, 1. The same holds also for E and so the following diagram is
commutative:

Hom(Fa,b,N) oo // Hom(Fa,b|D ,N|D)

Hom(Ea,b,N)

OO

oo // Hom(Ea,b|D ,N|D)

OO
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which proves that we can extend to all Fa,b the morphism we have over Fa,b|D
in such a way that ε(ϕ|F ) = ε(a). By construction (F , ϕ|F ) destabilizes,
with respect to the slope ε-semistability, the decorated sheaf (E , ϕ) and this
contradicts the hypothesis. �

3.3 Mehta-Ramanathan theorem for slope k-semistable
decorated sheaves of rank 2 and 3

Notation. Let X be a smooth projective variety, OX(1) a fixed ample line
bundle over X, k an algebraic closed field of characteristic 0, S an integral
k-scheme of finite type and f : X → S a projective flat morphism. Note
that OX(1) is also f -ample.

Proposition 52 (Properties of kF,E). Let (E , ϕ) be a decorated sheaf of
type (a, b,N) and rank r. Let G,F be subsheaves of E. Then the following
statements hold:

1. There exist an open subset U ⊆ X and complex vector spaces V ′ and
V of dimension rk(F) and r (respectively) such that F|U ' V ′ ⊗ OU ,
E|U ' V ⊗OU and kF,E = kF|U ,E|U

.

2. If there exists an open subset U of X such that F|U is isomorphic to
G|U , then kF,E = kG,E.

3. kF+G,E ≥ max{kF,E , kG,E}.

4. kF∩G,E ≤ min{kF,E , kG,E}.

5. kF,E + kG,E ≥ kF+G,E.

6. If kF∩G,E = kF∩G,F+G then

kF+G,E + kF∩G,E ≤ kF,E + kG,E (3.12)

in particular

kF+G,F+G + kF∩G,F+G ≤ kF,F+G + kG,F+G.

Proof. 1. Let UF be a maximal open subset where F is locally free and
admits a trivialization. Suppose that kF,E = k, then there exist an
open subset U ′ ⊆ X, k local sections f1, . . . , fk ∈ H0(U ′,F|U′ ) and

a− k local sections e1, . . . , ea−k ∈ H0(U ′, E|U′ ) such that

ϕ((f1, . . . , ft, e1, . . . , ea−t)
⊕b) 6= 0.

Let U + U ′ ∩ UF , then E|U ' V ⊗OU and kF,E = kF|U ,E|U
.
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2. The statement follows directly from (1).

3. Follows from the fact that F ,G ⊆ F + G.

4. Since F ∩ G ⊆ F ,G, it is easy to see that the statement holds.

5. Let t = kF+G,E and k = kF,E . Thanks to the first point, we can suppose
that F ∩ G,F ,G and F + G are trivial sheaves. Let f1 + g1, . . . ft + gt
and e1, . . . ea−t be sections of F + G and E respectively such that
fi are sections of F , gi are sections of G and ϕ((f1 + g1, . . . ft +
gt, e1, . . . ea−t)

⊕b) 6= 0. Let f =
∑
fi, g =

∑
gi and e =

∑
ei, then

also ϕ(((f + g)⊗t ⊗ e⊗a−t)⊕b) 6= 0. But

(f + g)⊗t ⊗ e⊗a−t =

(
t∑
i=0

(
t

i

)
f⊗t−i ⊗ g⊗i

)
⊗ e⊗a−t.

Since k ≤ t there exists i0 ≥ 0 such that t − i0 = k. Then for any
0 ≤ i < i0 one has ϕ((f⊗t−i ⊗ g⊗i ⊗ e⊗a−t)⊕b) = 0, since kF,E = k and
t− i > k. Therefore

ϕ

( t∑
i=i0

(
t

i

)
f⊗t−i ⊗ g⊗i ⊗ e⊗a−t

)⊕b 6= 0

and so kG,E ≥ i0 = t− k = kF+G,E − kF,E .

6. Let s = kF∩G,E = kF∩G,F+G. If s = 0 there is nothing to prove. Oth-
erwise, similarly to the proof of the previous point, we can choose a
section h of F ∩ G and sections f and g of F and G respectively such
that f + g is a section of F + G and ϕ((h⊕s ⊕ (f + g)⊕a−s)⊕b) 6= 0. In
particular note that kF+G,E = kF+G,F+G = a. Then is easy to see that
kG,E ≥ a− kF,E + s.

�

Let (E , ϕ) be a decorated sheaf and F a subsheaf of E . As usual denote

Pk
F + PF − δkF,E ,

pkF + Pk
F/rk(F),

degk(F) + deg(F)− δkF,E ,
µk(F) + deg(F)k/rk(F).

We recall that (E , ϕ) is k-(semi)stable, respectively slope k-(semi)stable,
if and only if for any F ⊂ E

pkF
≺

(−) p
k
E ,

or
µk(F) <

(=) µ
k(E),

respectively.
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3.3.1 Maximal destabilizing subsheaf

Notation. In this section, unless otherwise stated, any decorated sheaf will
have rank r ≤ 3.

Proposition 53. Let (E , ϕ) be a decorated sheaf of type (a, b,N) and rank
r = 2 or r = 3. If (E , ϕ) is not slope k-semistable then there exists a unique,
k-slope-semistable subsheaf F of E such that:

1. µk(F) ≥ µk(W) for any W ⊂ E.

2. If µk(F) = µk(W) then W ⊆ F .

The subsheaf F , with the induced morphism ϕ|F , is called the maximal
slope k-destabilizing subsheaf.

Proof. Define the following partial ordering on the set of decorated sub-
sheaves of E . Let F1,F2 be two subsheaves of E ; then

F1 4
k F2 ⇐⇒ F1 ⊆ F2 and µk(F) ≤ µk(E).

The set of subsheaves of E with this ordering relation satisfies the hypotheses
of Zorn’s Lemma, so there exists a maximal element (not unique in general).
Choose an element F in the following set:

min
rk(G)
{G ⊂ E | G is 4k -maximal}.

Then we claim that (F , ϕ|F ) has the asserted properties.

By contradiction, suppose that there exists G ⊂ E such that µk(G) ≥
µk(F), i.e.,

µ(G)− δ kG,E
rG
≥ µ(F)− δ kF,E

rF
.

Claim. We can assume G ⊆ F by replacing G by G ∩ F .

Indeed, if G 6⊆ F , F is a proper subsheaf of F+G since (by the assumpions
we made on the k-slope of G and by maximality of F) F 6⊂ G. By maximality

µk(F) > µk(F + G).

Using the exact sequence

0 −→ F ∩ G −→ F ⊕ G −→ F + G −→ 0

one finds, following calculations we made in the proof of Proposition 27,
that

rF∩G(µ
k(G)− µk(F ∩ G)) < δ(kF+G,E + kF∩G,E − kF,E − kG,E). (3.13)
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Therefore if (kF+G,E + kF∩G,E − kF,E − kG,E) ≤ 0 then µk(F ∩ G) ≥ µk(G) and
the claim holds true.

First suppose that r = 2.
Consider F ∩ G. If rk(F ∩ G) = 0 then kF∩G,E = 0 and, thanks to point
(5) of Proposition 52, the right part of equation (3.13) is less or equal to
zero, and the claim holds true. If rk(F ∩ G) = 2 then rE = rG = rF =
rF∩G = rF+G, F coincides, up to a rank zero sheaf T = E/F , with E and
kF+G,E = kF,E = kG,E = kF∩G,E = kE,E = a. Since deg(E) = deg(F) + deg(T )
and kF,E = a = kE,E one get that µk(F) ≤ µk(E) and F is not 4k-maximal,
which is absurd. Therefore rk(F ∩ G) = 1. If rF of rG are equal to 2
then, as before, one easily gets that F is not maximal, against the as-
sumptions. The only chance is that rF = rG = rF∩G = rF+G = 1 and so
all these sheaves coincide with each other up to rank zero sheaves. Thus
kG,E = kF,E = kF∩G,E = kF+G,E . Therefore the inequality 3.12 holds true and
µk(F ∩ G) ≥ µk(G) ≥ µk(F).

Now suppose that r = 3.
If rk(F ∩ G) = 0 then kF∩G,E = 0 and the right part of equation (3.13) is
less or equal to zero and the claim holds true. If rk(F ∩ G) = 3 as before
we easily fall in contradiction. If rk(F) = 3 then kF,E = a and F coincides,
up to a rank zero sheaf, with E ; so µk(F) ≤ µk(E) and F is not maximal,
that is absurd. Similarly if rk(G) = 3, then µk(F) ≤ µk(G) ≤ µk(E), that is
again absurd. Therefore the possible cases are the following:

rk(F ∩ G) rk(F) rk(G) rk(F + G) implies

1 1 1 1 kF∩G,E = kF,E = kG,E = kF+G,E

1 1 2 2 kF∩G,E = kF,E and kG,E = kF+G,E

1 2 1 2 kF∩G,E = kG,E and kF,E = kF+G,E

1 2 2 3 kF+G,E = kE,E = a

2 2 2 2 kF+G,E = kE,E = a

The non-trivial cases are the following: rk(F ∩ G) = 1 and rk(F) =
rk(G) = 2 or rk(F ∩ G) = rk(F) = rk(G) = 2. In the first case rk(F + G) = 3
and so kF+G,E = a and kF∩G,F+G = kF∩G,E , in the second case rk(F + G) = 2
and so kF∩G,E = kF+G,E = kF,E = kG,E . Therefore in both cases equation
(3.12) holds true and equation (3.13) holds with the less or equal than zero.
Then µk(F ∩ G) ≥ µk(G) ≥ µk(F) and the claim holds true.

Since we have proved the claim, the proof may continue as the proof of
Proposition 27. �

Proposition 54. Let (E , ϕ) be a decorated sheaf of type (a, b,N) and rank
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r = 2 or r = 3. If (E , ϕ) is not k-semistable then exists a unique, k-
semistable subsheaf F of E such that:

1. pkF � pkF for any W ⊂ E.

2. If pkF = pkW then W ⊆ F .

The subsheaf F , with the induced morphism ϕ|F , is called the k-maximal
destabilizing subsheaf.

Proof. The proof is similar to the proof of Proposition 53. �

Remark 55. As in the ε-semistable case, if (E , ϕ) is k-semistable (resp.
slope k-semistable) the maximal k-destabilizing (resp. slope k-destabilizing)
subsheaf coincide with E .

3.3.2 Restriction theorem

In the previous section we proved that, given a decorated sheaf (E , ϕ) of
rank less or equal to 3, there exists a unique maximal k-destabilizing sub-
sheaf (F , ϕ|F ). Since, as we noticed in Section 3.2.3, there is a one-to-
one correspondence between decorated subsheaves of (E , ϕ) and quotients
of E , we will call minimal k-destabilizing quotient the (unique) sheaf
Q + coker(F ↪→ E) such that F is the maximal k-destabilizing subsheaf.

In analogy with Section 3.2, we will say that a decorated sheaf (E , ϕ) over
a Noetherian scheme Y is flat over the fibre of a morphism f : Y → S
of finite type between Noetherian schemes if and only if

- E and N are flat families of sheaves over the fibre of f : Y → S;

- kEs,Es is locally constant as a function of s, where Es + E|f−1(s)
.

Note that the above conditions imply that the k-Hilbert polynomials Pk
Es are

locally constant for s ∈ S. The converse holds only if S is irreducible: i.e.,
asking that Pk

Es is locally constant as function of s is equivalent to ask that
PEs and kEs,Es are locally constant as functions of s.

If (F , ϕ|F ) slope de-semistabilizes (resp. de-semistabilizes) (E , ϕ) then

µk(F) > µk(E) (resp pkF � pkE). Let Q + coker(F ↪→ E); then

µ(Q) < µ(E)− δ
(
kF,E
rQ
− arF
rErQ

)
,

or

pQ ≺ pE − δ
(
kF,E
rQ
− arF
rErQ

)
,

respectively.
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Define Ck,i +
(

i
rQ
− arF

rErQ

)
for i = 0, . . . , a. Let (E , ϕ) be a flat family of

decorated sheaves over the fibre of a projective morphism f : X → S. Let
P = PEs and p = pEs the Hilbert polynomial and, respectively, the reduced
Hilbert polynomial of Es (which are constant because the family is flat over
S). Define:

1. Fk as the family on X parameterized by S of saturated subsheaves
F ↪→ Es such that the induced torsion free quotient Es � Q satisfy
µ(Q) ≤ µ(Es) + δCk,0;

2. Fk,i as the family of decorated subsheaves (F , ϕ|F ) ↪→ (Es, ϕ|Es ) such
that:

- kF,Es = i;

- pkF � pkE (i.e., pQ ≺ p + δCk,i with Q + coker(F ↪→ Es));
- F is a saturated subsheaf of Es,

for i = 0, . . . , a.

It is easy to see that these families are bounded and therefore, using the
same techniques used in Section 3.2.5 one can prove that k-semistability is
open. More precisely

Proposition 56. Let f : X → S be a projective morphism of Noetherian
schemes and let (E , ϕ) be a flat family of decorated sheaves over the fibre of
f . The set of points s ∈ S such that (Es, ϕ|Es ) is k-(semi)stable with respect
to δ is open in S.

Proof. Let

A + {P ′′ ∈ Q[x] | ∃ s ∈ S, ∃ q : Es � Q such that PQ = P ′′ and ker(q) ∈ Fk}
(3.14)

and, for i = 0, . . . , a,

Ak,i + {P ′′ ∈ Q[x] | ∃ s ∈ S,∃ q : Es � Q such that PQ = P ′′ and ker(q) ∈ Fk,i}.

Then, using the same techniques used in the proof of Proposition 43, one
concludes the proof. �

Thanks to the previous results and using the same arguments as in the
proof of Theorem 44, it is easy to see that the following theorem holds true:

Theorem 57 (Relative maximal k-destabilizing subsheaf). Let X,
OX(1), S and f : X → S as before. Let (E , ϕ) be a decorated sheaf of rank
r ≤ 3. Then there is an integral k-scheme T of finite type, a projective
birational morphism g : T → S, a dense open subset U ⊂ T and a flat
quotient Q of ET such that for all points t ∈ U , Ft + ker(Et � Qt) with the
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induced morphism ϕt|Ft
is the maximal k-destabilizing subsheaf of (Et, ϕt) or

Qt = Et.
Moreover the pair (g,Q) is universal in the sense that if g′ : T ′ → S is any
dominant morphism of k-integral schemes and Q′ is a flat quotient of E ′T ,
satisfying the same property of Q, there is an S-morphism h : T ′ → T such
that h∗X(Q) = Q′.

Finally, following the costructions made in Section 3.2.7 and replacing k
with ε, one can prove the following

Theorem 58 (Mehta-Ramanathan for slope k-semistable decorated
sheaves). Let X be a smooth projective surface and OX(1) be, as usual, a
very ample line bundle. Let (E , ϕ) be a slope k-semistable decorated sheaf of
rank r ≤ 3. Then there is an integer a0 such that for all a ≥ a0 there is a
dense open subset Ua ⊂ |OX(a)| such that for all D ∈ Ua the divisor D is
smooth and (E , ϕ)|D is slope k-semistable.

3.3.3 Decorated sheaves of rank 2

Lemma 59. Let (E , ϕ) be a decorated sheaf of rank r = 2. Then the follow-
ing conditions are equivalent:

� (E , ϕ) is (semi)stable (in the sense of Definition 3);

� (E , ϕ) is k-(semi)stable.

Proof. Since the rank of E is equal to 2 all filtrations of E are non-critical and
of lengh one. Then the statement follows from the fourth point of Remark
6. �

Thanks to the previous Lemma all results in the previous section holds
true for semistable decorated sheaves. In particular, if (E , ϕ) is a rank 2
decorated sheaf, then

� we have found the maximal destabilizing subsheaf and the relative
maximal destabilizing subsheaf of E ;

� we have provided the Harder-Narasimhan filtration and the relative
Harder-Narasimhan filtration of E ;

� we have proved that the semistability condition is open;

� we have proved a Mehta-Ramanathan theorem for such objects.
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3.4 Remarks

1. In Section 3.2 we never used that N is of rank 1 nor that it is a vector
bundle. We only used that it is a pure dimensional torsion free sheaf
(of positive rank). Therefore all results in this chapter can be easily
generalized for pairs (E , ϕ) of type (a, b, c,N) where E and N are torsion
free sheaves over X, a, b, c are positive integers and

ϕ : Ea,b −→ det(E)⊗c ⊗ N.

2. Let (A, ϕ) be a decorated sheaf of rank r > 0. Define Ã + Aa,b;
then the pair (Ã, ϕ) can be regarded as a framed sheaf. Recall that a
framed sheaf (A,α) of positive rank and with nonzero morphism α is
slope semistable with respect to δ̃ if and only if for any F ⊂ A

µ(F )−
δ̃ ε(α|F )

rk(F )
≤ µ(A)− δ̃

rk(A)

Suppose now that (Ã, ϕ) is frame semistable with respect to δ̃, then

(A, ϕ) is slope ε-semistable with respect to δ̂ + δ̃
a2 b ra−1 . In fact if

rk(Aa,b) = b ra deg(Aa,b) = a b r(a−1) deg(A)

and so if F is a subsheaf of A then

µ(Fa,b)−
δ̃ ε(ϕ|Fa,b

)

rFa,b
≤ µ(Ã)− δ̃

rÃ

which implies that

aµ(F)−
δ̃ ε(ϕ|Fa,b

)

b(rF)a
≤ aµ(A)− δ̃

bra

and so

µε(F) = µ(F)−a δ̃

a2b(rF)a−1︸ ︷︷ ︸
=δ̂

ε(ϕ|Fa,b
)

rF
≤ µ(A)−a δ̃

a2bra−1︸ ︷︷ ︸
=δ̂

1

r
= µε(E).

Since the subsheaves of A correspond to subsheaves of Aa,b but this
correspondence is not surjective, the converse does not hold in general
but only if a = 1 (b and c generic). Thanks to the previous calculations
and to Proposition 5, one has that

(Aa,b, ϕ) δ̃ frame slope (semi)stable⇒ (A, ϕ) δ̂ slope ε-(semi)stable

⇒ δ̂ slope (semi)stable

⇒ δ̂ k-(semi)stable.
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Replacing degε by Pε and µε by pε, similar calculations show that the
same result hols also for semistability and not only for slope semista-
bility.

3. Let (E , ϕ) be a decorated sheaf. If it is not semistable with respect
to definition (2.9) then it is not slope ε-semistable (see Proposition
5). Let F ⊂ E be the maximal (slope ε) destabilizing subsheaf and
suppose that ε(ϕ|F ) = 1, then F destabilize (E , ϕ). Indeed in this case
aεF = kF,E and so

deg(F)− aδεF
rF

>
deg(E)− aδ

rE
,

multiplying by rE rF one gets that

deg(E)rF − deg(F)rE − aδrF + rEδkF,E < 0.



Chapter 4

Moduli spaces

Notation. Again P denotes a fixed numerical polynomial of degree dimX.
Any flat family of decorated sheaves will be supposed to have constant poly-
nomial P. (X,OX(1)) will be, as usual, a smooth projective variety with a
fixed ample line bundle.

4.1 Moduli space for ε-semistable decorated sheaves

We are interested in families of decorated sheaves over X parametrized by
a Noetherian scheme S. Therefore with the expression “flat family of deco-
rated sheaves” we mean a flat family of decorated sheaves over the fibres of
πS : X × S → S in the sense of Definition 31. Namely

Definition 60 (Families of decorated sheaves). Let S be a scheme and
t = (a, b,N), where N in this chapter denotes a vector bundle over X. A
family of decorated sheaves of type t parametrized by S is a pair (E, ϕE)
where:

- E is a sheaf over X × S;

- ϕE : Ea,b → π∗XN;

- ϕEs : (Es)a,b → (π∗XN)s ' N is not zero for all s ∈ S;

with πX : X × S → X the projection. We will say that the family is flat
over S if the induced morphism E → X × S πS−→ S is flat. Finally we will
say that two families (E, ϕE) and (E′, ϕE

′) of decorated sheaves of type t are
isomorphic if there exists an isomorphism of sheaves f : E → E′ for which
exists λ ∈ O∗S such that the following diagram commutes

Ea,b
fa,b //

ϕ

��

E′a,b

ϕE
′

��
π∗XN

π∗Sλ // π∗XN.

59
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We recall the following fundamental result.

Theorem 61 (Maruyama [21]). Let P be a polynomial and C a constant.
Then the family of torsion free coherent OX-modules A with Hilbert poly-
nomial PA = P and µ(F) ≤ C for any F ⊆ A, is bounded in the sense of
Definition 34.

As a consequence

Lemma 62. The family Sε-ssδ (P, t) of ε-semistable decorated sheaves (with
respect the parameter δ) of type t over X with fixed Hilbert polynomial P is
bounded.

Proof. Let (E , ϕ) ∈ Sε-ssδ (P, t) and F a subsheaf of E . By the semistability
condition we get

rk(E)
(
PF − aδε(ϕ|F )

)
� rk(F) (PE − aδ) .

Recall that E is pure and rk(F) > 0 (see Remark 24) so that one has

pF � pE + aδ

(
ε(ϕ|F )

rk(F)
− 1

rk(E)

)
which implies

µ(F) ≤ µ(E) + aδ

and so, since µ(E) + d/r is constant for every E ∈ Sε-ssδ (P, t), the family is
bounded. �

Lemma 63. The family of S
slope-ε-ss

δ
(P, t) of slope ε-semistable decorated

sheaves (with respect the parameter δ) of type t over X with fixed Hilbert
polynomial P is bounded.

Proof. The proof is similar to the proof of Lemma 62 �

Therefore the family of ε-semistable decorated sheaves with fixed type
and Hilbert polynomial is bounded. Thanks to Lemma 37 and Lemma 36,
there exists m0 ∈ N such that for all m ≥ m0 any E ∈ Sε-ssδ is m-regular,
in particular

� E(m) is globally generated;

� H i(X, E(m− i)) = 0 for any i ≥ 1;

� h0(X, E(m)) + dim
(
H0(X, E(m))

)
= P(m).
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Fix m ≥ m0, let H be a vector space of dimension P(m) and define
H + H ⊗ OX(−m). Since E(m) is globally generated there is a surjective
morphism

H � E(m) = E ⊗ OX(m)

which induces a morphism

H = H ⊗OX(−m)� E .

Applying Theorem 41 one sees that there exists a projective scheme Quot(H,P),
parameterizing all quotients of H, whose closed points are the morphisms
[q : H� E ] ∈ Quot(H,P). For l big enough the standard map

Quot(H,P) �
� // Grass

(
H ⊗H0(X,OX(m− l)),P(l)

)
� _

��

P
(∧P(l) (H ⊗H0(X,OX(m− l)

))
is a well-defined closed immersion. Let OQuot(1) be the corresponding very
ample line bundle on Quot(H,P).

Let q : H → E be an element in Quot(H,P) representing a decorated
sheaf (E , ϕ). Then a morphism ϕ : Ea,b → N induces a morphism Ha,b → N,
in fact

Ha,b =
(
(H ⊗OX(−m))⊗a

)⊕b
= Ha,b ⊗OX(−am),

and so

H ⊗OX(−m)

��

q // E

��
Ha,b ⊗OX(−am)

��

qa,b // Ea,b

ϕ
ww

N.

(4.1)

Since a morphism Ha,b⊗OX(−am)→ N corresponds to a morphism Ha,b →
H0(X,N(am)) and the latter can be parametrized by the projective space
P + P

(
Hom(Ha,b, H

0(X,N(am)))∨
)

any decoration ϕ is represented by an
element in P.

Let Quot(H,P,N) be the closed subscheme of Quot(H,P)×P consisting of
pairs

([q : H ⊗OX(−m)→ E ], [f : Ha,b ⊗OX(−am)→ N]) (4.2)

such that there exists a decorated sheaf (E , ϕ) of type t such that the mor-
phism ϕ : Ea,b → N makes the diagram (4.1) commute.
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Let OP(1) be an ample line bundle in P and recall that OQuot(1) is an am-
ple line bundle on Quot(H,P) induced by the closed immersion Quot(H,P) −→
P(
∧PE(l)H ⊗H0(X,OX(l −m))).

Let p1 : Quot(H,P)× P→ Quot(H,P) and p2 : Quot(H,P)× P→ P be the
projections, then consider the line bundle

L′(n1, n2) = p∗1OQuot(n1)⊗ p∗2OP(n2)

+ OQuot(n1)�OP(n2)

defined over Quot(H,P)× P.

The action of Sl(H) on H induces actions on Quot(H,P) and on P which
are compatible and so induces a well-defined action on Quot(H,P,N) and a
(natural) linearization on

L(n1, n2) + L′(n1, n2)|Quot(H,P,N)

Recall that for a decorated sheaf (W, ψ) we denote

P(W,ψ) + PW − aδε(ψ) + PεW

and define
n2

n1
+ aδ(m)

Pε(l)

Pε(m)
− aδ(l).

In order to construct the moduli space of ε-semistable decorated sheaves
a fundamental step is to prove that the points in Quot(H,P, t) are semistable
as points of a projective scheme with respect to the linearization on L(n1, n2)
if and only if the associated decorated sheaf that they represent is ε-semistable
as decorated sheaves. Then, roughly speaking, the GIT quotient of Quot(H,P, t),
that is well defined and projective by general GIT theory, will be the desired
moduli space.

The proof of the equivalence between GIT semistability and ε-semistability
is composed by the following subsequent results.

Lemma 64. For sufficiently large l a point ([q], [f]) ∈ Quot(H,P,N) is
(semi)stable with respect to the linearization of L(n1, n2) if and only if the
following holds: if H ′ is a nontrivial proper subspace of H and F ⊂ E = q(H)
the subsheaf generated by H ′ ⊗OX(−m), then

dimH ′ (n1P(l) + n2) <
(=) dimH

(
n1PF(l) + n2ε(ϕ|F )

)
, (4.3)

where ϕ is the morphism induced by f.
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Proposition 65. For sufficiently large l a point ([q], [f]) ∈ Quot(H,P,N) is
(semi)stable with respect to the linearization of L(n1, n2) if and only if the
corresponding decorated sheaf (E , ϕ) is ε-(semi)stable with respect to δ and
the morphism H → H0(X, E(m)) induced by q is an isomorphism.

Proof. (Lemma 64). The proof is similar to the proof of Proposition 3.1 in
[14]. Let q : H → H0(X, E(m)) and f : Ha,b → N(am) be homomorphisms
representing the point ([q], [f]) and let W + H0(X,OX(l −m)). Define
h0
l + h0(X, E(l)). The morphism q induces homomorphisms q′ : H ⊗W →
H0(X, E(l)) and q′′ :

∧h0
l (H ⊗W ) → detH0(X, E(l)). If {w1, . . . , wt} is a

basis for W and {v1, . . . , vh} is a basis for H, then a basis for
∧h0

l (H ⊗W )
is given by elements of the form

uIJ = (vi1 ⊗ wj1) ∧ · · · ∧ (vi
h0
l

⊗ wj
h0
l

)

where I, J are multi-indices satisfying ik ≤ ik+1 and jk < jk+1 if ik =
ik+1. Given a one-parameter subgroup λ of Sl(H) with weight vector ξ =

(ξ1, . . . , ξh), then C∗ acts on
∧h0

l (H ⊗W ) by

λ(t) · uIJ = tξIuIJ , ξI +
∑
ik∈I

ξik .

Now let
µ(q′′;λ) = −min{ξI | ∃I, J with q′′(uIJ) 6= 0}.

This number can be computed as follows. Let $ denote the function t 7−→
dim q′(< u1, . . . , ut > ⊗W ). It is easy to see that

µ(q′′;λ) = −
h∑
i=1

ξi ($(i)−$(i− 1)).

Similarly if we set

µ(f;λ) = −min{ξi | f((vi ⊗ · · · ⊗ vi︸ ︷︷ ︸
a-times

)⊕b) 6= 0}.

then µ(f;λ) = −ξτ where τ = min{i | f|(<v1,...,vi>)a,b
6= 0}.

By the Hilbert-Mumford criterion ([24] Theorem 2.1) we have:

� ([q], [f]) is a (semi)stable point of Quot(H,P,N) if and only if for all
one-parameter subgroups λ one has

n1 µ(q′′;λ) + n2 µ(f;λ) >
(=) 0,

or equivalently,

n1

h∑
i=1

ξi ($(i)−$(i− 1)) + n2 ξτ
<

(=) 0. (4.4)
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The left hand side is a linear form of weight vectors whose coefficients are
determined only by the choice of the basis. Keeping such a basis fixed for a
moment, it is enough to check the inequality for the special one-parameter
subgroups λ(j) giving the weight vectors

ξ(j) = (j − h, . . . , j − h︸ ︷︷ ︸
j-times

, j, . . . , j︸ ︷︷ ︸
(h−j)-times

) j = 1, . . . , h− 1.

where we recall that we put h = dimH.

For ξ(j) the inequality (4.4) is equivalent to

j (n1h
0
l + n2) <

(=) h(n1$(i) + n2ε(j)),

where

ε(j) =

{
1 if f|(<v1,...,vj>)a,b

6= 0

0 otherwise.

Then the following holds:

� ([q], [f]) is a (semi)stable point of Quot(H,P,N) if and only if for all
nontrivial proper subspaces H ′ of H one has

dimH ′ (n1 h
0
l + n2) <

(=) dimH (n1 dim q′(H ′ ⊗W ) + n2 ε(Y
′)),

where

ε(H ′) =

1 if f|H′
a,b

6= 0

0 otherwise.

Let F be the subbundle q(H ′ ⊗ OX(−m)). In this case the decoration
ϕ : Ea,b → N vanishes when restricted to F if and only if f|H′

a,b
⊗OX (−am)

= 0.

Hence ε(H ′) = ε(ϕ|F ) and recalling that (for l big enough) P(l) = h0
l and

PF(l) = dim q′(H ′ ⊗W ) we are done. �

Proof. (Proposition 65). Observe that if ([q], [f]) is a semistable point the
homomorphism H → H0(X, E(m)) must be injective. Indeed if H ′ is its
kernel than q′(H ′ ⊗ W ) = 0 and ε(H ′) = 0, so the previous proposition
shows that dim(H ′) = 0. Hence, since dimH = h0(X, E(m)), the morphism
H → H0(X, E(m)) is an isomorphism.
Substituting

n2

n1
+ aδ(m)

Pε(l)

Pε(m)
− aδ(l) (4.5)

in the inequality (4.3) and setting H ′ + H ∩ H0(X,F(m)) for any non-
trivial proper subbundle F of E we can rewrite the stability criterion (4.3)
as follows:
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� ([q], [f]) is a (semi)stable point of Quot(H,P,N) if and only if for all
non trivial proper subsheaf F of E with the induced decoration the
following holds:

dimH ′
(

1 +
aδ(m)

Pε(m)

)
Pε(l) <

(=) dimH

(
PεF(l) +

Pε(l)

Pε(m)
aδ(m)εF

)
(4.6)

where as usual we denote by εF the quantity ε(F , ϕ|F ).

Recalling that PF(m) = h0(X,F(m)), P(m) = Pε(m) + aδ(m) and that

dimH ′ = PεF(m) + aδ(m)εF

the previous inequality is equivalent to the following:

(PεF(m) + aδ(m)εF)Pε(l)

(
P(m)

Pε(m)

)
<

(=) P(m)

(
Pε(m)PεF(l) + Pε(l) aδ(m)

Pε(m)

)
and after some simplifications we get

PεF(m)Pε(l) <
(=) P

ε(m)PεF(l)

Since the inequality (4.6) holds for every l large enough the same inequal-
ity holds also for the coefficients of polynomials in l. Then we derive the
inequality:

rEP
ε
F(m) <

(=) rFP
ε(m), (4.7)

and then E is (semi)stable.

Conversely, if (E , ϕ) is ε-(semi)stable as decorated sheaf, then for any
nontrivial proper subsheaf F one has rEP

ε
F(m) <

(=) rF P
ε(m). Since the pre-

vious inequality is equivalent to (4.6), we are done. �

Using GIT machinery one can prove the following result:

Theorem 66. Let δ a rational polynomial of degree dimX− 1 with positive
leading coefficient. There is a projective schemeMε-ss

δ (P, t) that corepresents
the moduli functor Mε-ss

δ (P, t) which to a scheme S associates the equivalence
classes of families of ε-semistable decorated sheaves with Hilbert polynomial
P parametrised by S. Moreover there is an open subscheme Mε-s

δ (P, t) that
represents the subfunctor Mε-s

δ (P, t) of ε-stable decorated sheaves.

For the proof of the previous statements is enough to re-adapt the tech-
niques used in the proof of the corresponding results in [14] (Proposition
3.3).
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4.2 U-D compactification for slope ε-semistable dec-
orated sheaves

4.2.1 General theory and preliminary results

Notation. In this sectionX will be a smooth projective variety of dimension
n = dimX with a fixed ample line bundle OX(1) and Y a quasi-projective
variety. Finally S will denote a Noetherian scheme.

Let C be an additive full subcategory of an abelian category CA. Let
Ob(C) denote the class of objects in the category C and let F (C) be the free
abelian group generated by the objects in Ob(C) modulo isomorphisms. An
element of F (C) is a finite formal sum of elements [T ] ∈ Ob(C)/isom, i.e.,∑

T∈Ob(C)

nT [T ]

where nT are integers and all nT , except for a finite number, are zero. Given
an exact sequence

T ′TT ′′ : 0 −→ T ′ −→ T −→ T ′′ −→ 0

of elements in Ob(C) define the element Q(T ′TT ′′) + [T ]− [T ′]− [T ′′] ∈ F (C).
Let H(C) be the subgroup of F (C) generated by all elements of the form
Q(T ′TT ′′). Finally define the Grothendieck group of C as

K(C) + F (C)/H(C).

Let Y be a quasi-projective variety. Then the category Coh(Y ) of coher-
ent sheaves on Y is an abelian category and the category Vect(Y ) of vector
bundles over Y is an additive full subcategory category of Coh(Y ). Then
the Grothendieck group of coherent sheaves over Y is defined as

K0(Y ) + K (Coh(Y )/') ,

and the Grothendieck group of vector bundles over Y is defined as

K0(Y ) + K (Vect(Y )/') .

Note that the morphism of categories Vect(Y ) −→ Coh(Y ) induces a
natural homomorphism K0(Y ) −→ K0(Y ). The following result is due to
Borel and Serre [3].

Theorem 67. If Y is nonsingular, quasi-projective and irreducible, the
canonical homomorphism

K0(Y ) −→ K0(Y )

is an isomorphism of groups.
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Let now X be a smooth projective variety of dimension n = dimX. We
will denote by K(X) = K0(X) = K0(X). Since the tensor product of vector
bundles is a vector bundle, the map

Vect(X)×Vect(X) −→Vect(X)

(F,E) 7−→F ⊗ E

is well defined. Moreover the tensor product is associative, commutative and
OX is clearly the identity element. One can show that H(Vect(X)) is an
ideal of F (Vect(X)) and therefore (K(X),⊗) inherits a commutative ring
structure.

Finally two classes u, u′ in K(X) are said to be numerically equivalent
u′ ≡ u′′ if their difference is contained in the radical of the quadratic form

χ : K(X)×K(X) −→R

(u, v) 7−→χ(u⊗ v) +
n∑
i=0

(−1)i hi(X,u⊗ v)

Denote by K(X)num + K(X)/≡. Note that by Hirzebruch-Riemann-Roch
theorem χ(u ⊗ v) =

∫
X ch(u)ch(v)td(X) and therefore the numerical be-

havior of c ∈ K(X)num is determined by its associated rank and Chern
classes ci(c). For any class c in K(X)num and any m ∈ N denote by
c(m) + c ⊗ [OX(m)] and with Pc(m) + χ(c(m)) the associated Hilbert
polynomial.

A flat family A of coherent sheaves on X parametrized by S defines
an element [A] ∈ K0(X × S) and since the projection p : X × S → S
is a projective morphism of Noetherian schemes it induces a (well-defined)
morphism

p! : K0(X × S) −→K0(S)

[A] 7−→
∑
i≥0

(−1)i[Rip∗A].

Definition 68. Let A be a flat family of coherent sheaves on X parametrized
by S. Define λA : K(X) → Pic(S) to be the following composition of
morphisms

λA : K(X)
π∗X−→ K0(X × S)

·⊗[A]−→ K0(X × S)
(πS)!−→ K0(S)

det−→ Pic(S).

Lemma 69 (Lemma 8.1.2 in [15]). Let A, A′ and A′′ be S-flat families of
coherent sheaves over X. The following statements hold.
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i) If 0 −→ A′ −→ A −→ A′′ −→ 0 is exact, for any u ∈ K(X)

λA(u) ∼= λA′(u)⊗ λA′′(u).

ii) If f : S′ → S is a morphism then, for any u ∈ K(X),

f∗(λA(u)) = λf∗A(u).

iii) If G is an algebraic group, S a scheme with a G-action and A a
G-linearized S-flat family of coherent sheaves on X, then λA factors
through the group PicG(S) of isomorphism classes of G-linearized line
bundles on S.

iv) Let N be a locally free OS-sheaf. For any class v ∈ K(X)num

λA⊗π∗S(N)(u) ∼= λA(u)rk(N) ⊗ det(N)χ(u⊗v).

Let us denote by HX the divisor associated with OX(1), let hX = [OX(1)]
its class in K(X). Fix a point x ∈ X and let c ∈ K(X)num, then define

ui(c) + −rk(c) · hiX + χ(c⊗ hiX) · [Ox]

4.2.2 Construction of the line bundle

From now on we fix dimX = 2 and a numerical class c ∈ K(X)num. Denote
by P + Pc the associated Hilbert polynomial. Recall that, since dimX = 2,
numerical classes are uniquely determined by their rank and by their first
and second Chern classes. Let (r, d, c2) ∈ Z ⊕ Pic(X) ⊕ Z the triple which
determines c. Let δ(m) = δ ·m+ δ0 the fixed stability polynomial.

Let S
slope-ε-ss

δ
(P, t) be the family of slope ε-semistable (with respect to

δ) decorated sheaves of type t = (a, b,N) with Hilbert polynomial P. Recall

that the family S
slope-ε-ss

δ
(P, t) is bounded (see Lemma 63) and therefore

there exists an integer m0 such that for any m ≥ m0, any slope ε-semistable
decorated bundle (E , ϕ) is m-regular, and so

� E(m) is globally generated;

� H i(X, E(m− i)) = 0 for any i > 1;

� h0(X, E(m)) + dim
(
H0(X, E(m))

)
= P(m).

Let H be a vector space of dimension P(m) = dimH0(X, E(m)) and de-
fine H + H ⊗OX(−m). Let Quot(H,P), P = P(Hom(Ha,b, H

0(X,N(am)))∨)

and Quot(H,P,N) as in Section 4.1. We define Ř
slope-ε-ss

δ
as the locally closed

subscheme of the scheme Quot(H,P,N) formed by the pairs

([q : H ⊗OX(−m)→ E ], [f : Ha,b ⊗OX(−am)→ N)])
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such that (E , ϕ) ∈ S
slope-ε-ss

δ
(where ϕ is the morphism induced by f) and

q induces an isomorphism H → H0(X, E(m)). Since Sε-ssδ ⊂ S
slope-ε-ss

δ
,

Ř
slope-ε-ss

δ
contains a subset Rε-ssδ consisting of ε-semistable pairs (E , ϕ), and

it is known that Rε-ssδ is open in Ř
slope-ε-ss

δ
. We denote by R

slope-ε-ss

δ
the clo-

sure of Rε-ssδ in Ř
slope-ε-ss

δ
.

In order to construct the U-D compactification for decorated sheaves
we need a line bundle with “enough” Sl(H)-invariant sections. In order
to define such a line bundle we need first to recall the notion of universal
quotient.

On Quot(H,P)×X there is a universal quotient Ẽu and a morphism

OQuot �H
q̃u

−→ Ẽu.

Let Eu the restriction to Quot(H,P,N) × X of the pullback of Ẽu via the
projection Quot(H,P)× P×X → Quot(H,P)×X, namely

Eu + i∗π∗Ẽu

��

π∗Ẽu

��

OQuot �H� Ẽu

��
Quot(H,P,N)×X �

� i // Quot(H,P)× P×X π // Quot(H,P)×X

There is a locally defined morphism ΦEu : Eu
a,b → π∗XN where

πX : Quot(H,P,N)× P×X → X

is the natural projection.

According to notation of Section 4.2.1 and Section 4.1, let

L(n1, n2) +
(
λ
Ẽu(u1)⊗n1 �OP(n2)

)
|
R
slope-ε-ss

δ

i.e., denoting by i, p1 and p2 the following morphisms

R
slope-ε-ss

δ
×X �

� i // Quot(H,P)× P×X

p1

��

p2 // P

Quot(H,P)

then
L(n1, n2) = i∗

(
p∗1λẼu(u1)⊗n1 ⊗ p∗2OP(n2)

)
|
R
slope-ε-ss

δ

where we set, as in Section 4.1,

n2

n1
+ aδ(m)

Pε(l)

Pε(m)
− aδ(l) (4.8)

for m ≥ m0 and l big enough.
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Proposition 70. For ν � 0 the line bundle L(n1, n2)⊗ν on R
slope-ε-ss

δ
is

generated by its Sl(W )-invariant sections.

Proof. We readapt to our case the techniques used in [4]. The main idea
is the following: if S is a scheme parameterizing a flat family (E, ϕE) of
slope ε-semistable decorated sheaves on X, and if C ∈ |OX(a)| is a general
smooth curve with a big enough (see Chapter 3), then restricting (E, ϕE) to
S ×C produces a family of generically slope ε-semistable decorated sheaves
over C and therefore a rational map S 99KMC from S to the moduli space
MC of semistable decorated sheaves on the curve C. The ample line bundle
L0(n1, n2) on MC pullbacks to a power of L(n1, n2) and in this manner we
can produce sections in the latter line bundle.

In detail, let S = R
slope-ε-ss

δ
. The pullback of the universal quotient

(Eu, ΦEu) of Y + Quot(H,P,N) to S gives a flat family (E, ϕE) of slope
ε-semistable decorated sheaves on X with numerical class c + (r, d, c2),
Hilbert polynomial P and decoration of type t = (a, b,N).

For C ∈ Ua ⊂ |OX(a)| a general curve, the restriction of the family to
S × C gives a family (EC , ϕEC) + (E, ϕE)|C of decorated sheaves on C. By
Theorem 51 the general element of this family is ε-semistable with respect
to δ. Let

i : C ↪→ X

be the inclusion, then the class i∗c is uniquely determined by r and i∗d =
d|C . Let m′ be a large positive integer, HC a vector space of dimension
Pi∗c(m

′) and HC = HC ⊗ OC(−m′). Let QC ⊂ QuotC(HC ,Pi∗c) be the
closed subset parameterizing quotients of HC with determinant d|C . Let

us denote by (Ẽu
C , ΦEuC) the universal quotient OQC � H′ → Ẽu

C and with
PC + P(Hom[(HC)a,b, H

0(C,NC(am′))]∨) so that, as usual, a point of P
corresponds to a morphism (HC)a,b = (H⊗aC )⊕b → N|C . Consider the sub-
scheme

YC + QuotC(HC ,Pi∗c,N|C ) ⊂ QC × PC ⊂ QuotC(HC ,Pi∗c)× PC

defined similarly to the scheme Y above (see also 4.2). Denote by p1,C :
YC → QC and p2,C : YC → PC the projections, recall that HX denote the
divisor in X associated with the (fixed) ample line bundles OX(1) and let
degC = C · HX . Consider the line bundle

L′0(n1, an2) + p∗1,C(λ
Ẽu
C

(u0(i∗c)))⊗n1 degC ⊗ p∗2,COPC (an2)

+ (λ
Ẽu
C

(u0(i∗c)))⊗n1 degC � OPC (an2) (4.9)

where n1 and n2 are defined in equation 4.8.

In analogy with Proposition 3.5 in [4] one can prove:
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Lemma 71. Given a point ([qC : HC → E], [fC : (HC)a,b → N|C (am′)]) ∈
YC the following assertions holds:

1. (E,ϕ) is ε-semistable and HC → H0(C,E(m′)) is an isomorphism,
where we denoted by ϕ the morphism induced by [fC ].

2. ([qC ], [fC ]) is a semistable point in YC for the action of Sl(HC) with
respect to the canonical linearization of L′0(n1, an2).

3. There is an integer ν and a Sl(HC) invariant section σ of L′0(n1, an2)ν

such that σ([qC ], [fC ]) 6= 0.

4. Let s ∈ S = S
slope-ε-ss

δ
a point such that (Es|C , ϕEs|C : (Es|C )a,b → N|C )

is ε-semistable with respect to δC . There is a Sl(H)-invariant section

σ ∈ H0(Rslope-ε-ss
δ

,L(n1, n2)aν)Sl(H) such that σ(s) 6= 0.

Now Proposition 70 follows from the fourth point of Lemma 71. �

4.2.3 Construction of the Uhlenbeck-Donaldson compactifi-
cation

By Proposition 70, the sheaf L(n1, n2)ν is generated by its invariant sections.

Let W ⊂W ν + H0(Rslope-ε-ss

δ
,L(n1, n2)ν)Sl(H) be a finite dimensional vector

space which generates L(n1, n2)ν . Let w1, . . . wt be a basis for W and let

jW : Rslope-ε-ss

δ
→P(W )

s 7→[w1(s), . . . , wt(s)]

be the induced Sl(Pc(m))-invariant morphism.

The following Lemma is a generalization of a classical result by Langton
[18].

Lemma 72. Let (R,m) be a discrete valuation ring with residue field k and
quotient field K and let X be a smooth projective surface over k. Let (E , ϕ)
be a flat family of decorated sheaf over X such that EK = E ⊗R E, with the
induced decoration ϕK , is a slope ε-semistable decorated sheaf. Then there
is a decorated sheaf (E, ϕE) such that (EK , ϕEK) = (EK , ϕK) and (Ek, ϕEk)
is slope ε-semistable.

Proof. We have already noticed (see Section 3.2.3) that there is a one-to-one
correspondence between decorated subsheaves (F , ϕ|F ) of a fixed decorated
sheaf (E , ϕ) and its quotients Q (without morphisms). Moreover, defining
ε(Q) + ε(E , ϕ) − ε(F , ϕ|F ) and PεQ + PQ − aδε(Q), one immediately has
that P(E,ϕ) = P(F,ϕ|F

) +PεQ, i.e., the decorated Hilbert polynomial is additive

on short exact sequences. Since the proof of Proposition 4.2 in [4] does not
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depend on the morphisms involved in the proof but only on their behavior
(ε = 0 or ε 6= 0) and on the additivity of the Hilbert polynomials on short
exact sequences of framed sheaves, the proof in this case is the same of
Proposition 4.2 in [4]. �

The above result immediately implies that the image of the morphism
jW is proper (see Proposition 8.2.5 in [15]) and so the following results holds:

Proposition 73. MW + jW (Rslope-ε-ss
δ

) is a projective scheme.

By using Proposition 73 and proceeding as in [15], Proposition 8.2.6, we
can prove the following result:

Proposition 74. There is an integer N > 0 such that
⊕

l≥0WlN is a finitely
generated graded ring.

Let N be as in the above proposition. Define the moduli space of slope
ε-semistable decorated sheaves as

Mslope +Mslope-ε-ss

δ
(c, t) + Proj

⊕
k≥0

H0(Rslope-ε-ss

δ
,L(n1, n2)⊗kN )Sl(P(m))

 ,

and let π : Rslope-ε-ss

δ
→Mslope be the canonically induced morphism.

Let M + Mε-ss
δ (c, t) be the moduli space of ε-semistable decorated

sheaves on X of type t = (a, b,N) introduced in Section 4.1 and letMslope-ε-s

be the open subset of M corresponding to slope ε-stable pairs (E,ϕ) with
E locally free. Then, following [4], we can prove that there is a regular mor-
phism of moduli spaces γ :M→Mslope such that γ|Mslope-ε-s

:Mslope-ε-s →
Mslope is an embedding. By analogy with the non-decorated case we define
the Uhlenbeck-Donaldson compactification ofMslope-ε-s as the closure
of γ(Mslope-ε-s) inside Mslope.

We skech the costruction of the morphism γ. Let (E, ϕE) be a flat family
of decorated sheaves parametrised by S (see Definition (60)) and let πX :
X × S → X and πS : X × S → S be the projections. Consider the schemes

S̃ +Isom(H ⊗OS , πS∗E)
τ−→ S

S̆ +Isom(Ha,b ⊗OS , πS∗Ea,b)
τ1−→ S

together with the projections π
S̃

: X × S̃ → S̃ and πS̆ : X × S̆ → S̆. Note

that there is an injective morphism i : S̃ → S̆ such that τ1 ◦ i = τ . Recall
that an isomorphism between two decorated sheaves (E , ϕ) and (E ′, ϕ′) is a
pair (g, λ) ∈ Isom(E , E ′) × C∗ such that λ ◦ ϕ = ϕ′ ◦ ga,b. The morphism
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ϕE : Ea,b → OS � N induces a morphism ϕE : OX×S → Hom(Ea,b,OS � N)
and therefore a morphism ϕE : OS → πS∗Hom(Ea,b,OS � N), moreover, if
λ ∈ O∗S than the pair (E, λ · ϕE) is isomorphic to the pair (E, ϕE). Since
we are interested in isomorphism classes of families of decorated sheaves,
for this section, accordingly to the notation in [4], we will say that a family
of decorated sheaves parametrized by S is a triple (E, L, ϕE) where E is as
before, L is a line bundle over S and

ϕE : L −→ πS∗Hom(Ea,b,OS � N).

Let (Ẽ, L̃, ϕ
Ẽ
) and (Ĕ, L̆, ϕĔ) be the lifted families over S̃ and S̆ respectively,

i.d.,

(id× τ)∗E + Ẽ //

��

(id× τ1)∗E + Ĕ //

��

E

��
X × S̃

π
S̃
��

id×i // X × S̆
πS̆
��

id×τ1 // X × S

πS

��

πX // X

S̃

τ

33i // S̆
τ1 // S

where ϕ
Ẽ

= (id× τ)∗ϕE and ϕ
Ẽ

= (id× τ1)∗ϕE. Denoting by L̃ = (id× τ)∗L,

Ñ = (id× τ)∗(OS � N), L̆ = (id× τ1)∗L and N̆ = (id× τ1)∗(OS � N), then

ϕ
Ẽ

: L̃→ π
S̃∗Hom(Ẽa,b, Ñ)

ϕ
Ẽ

: L̆→ πS̆∗Hom(Ĕa,b, N̆).

Let the morphism ϕ̃E be the following composition:

π∗SL⊗ Ea,b

ϕ̃E

**

π∗SϕE⊗id // π∗SπS∗Hom(Ea,b,OS � N)⊗ Ea,b

ev

��
Hom(Ea,b,OS � N)⊗ Ea,b

can

��
OS � N.

Applying the functor πS∗ to the morphism ϕ̃E we obtain a morphism ϕ̂E :
L ⊗ πS∗Ea,b → H0(X,N) ⊗OS . Let taut : Ha,b ⊗OS̆

∼−→ τ∗1πS∗Ea,b = πS̆∗Ĕ
be the tautological morphism and consider the composition

L̆⊗Ha,b ⊗OS̆
id⊗taut−→ L̆⊗ τ∗1πS∗Ea,b

τ∗1 ϕ̂E−→ H0(X,N)⊗OS̆ .
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Finally we pullback this morphism over S̃ via the map i : S̃ → S̆ and so we
get a morphism L̃⊗Ha,b⊗OS̃ −→ H0(X,N)⊗O

S̃
and therefore a morphism

f ′
Ẽ

: L̃→ Hom(Ha,b, H
0(X,N))⊗O

S̃
.

By the universal property of the projective space P the morphism f
Ẽ

defines

a morphism f
Ẽ

: S̃ → P.

Now we begin the construction of γ and explain in which senseMslope is

the moduli space of slope ε-semistable sheaves. Let M, respectively, M̌
slope

denote the functor which associates with S the set of isomorphism classes
of S-flat families of ε-semistable, respectively, slope ε-semistable decorated

sheaves of class c on X. Consider an open subfunctor Mslope of M̌
slope

which associates with S the set of isomorphism classes of those families

[(E, L, ϕE)] ∈ M̌
slope

(S) for which there exists a dense open subset S′ of S
such that [(E, L, ϕE)|X×S′

] ∈ M(S′). Clearly M is an open subfunctor of

Mslope.

For any scheme S and any family [(E, L, ϕE)] ∈ Mslope(S) the principal
Gl(H)-bundle τ : S̃ → S, by the universality of the Quot-scheme Quot(H,Pc),

defines a morphism Ψ
Ẽ

: S̃ → Quot(H,Pc) and hence a morphism Φslope

Ẽ
=

(Ψ
Ẽ
, f

Ẽ
) : S̃ → Rslope + R

slope-ε-ss

δ
. This morphism is Gl(H)-invariant, and

τ : S̃ → S is a categorical quotient, so that there is a morphism Φslope
E : S →

Mslope making the following diagram commutative:

S̃

τ

��

Φslope

Ẽ // Rslope

π
��

S
Φslope

E

//Mslope.

We thus obtain a natural transformation of functors Φslope : Mslope →
Mor(·,Mslope) given by Φslope(S) : Mslope(S)→ Mor(S,Mslope), which to a

triple [(E, L, ϕE)] associates Φslope
E .

We recall that the moduli space M corepresents the moduli functor M
(Theorem 66) and so we have a natural transformation of functors Φ : M→
Mor(·,M), Φ(S) : M(S) → Mor(S,M), [(E, L, ϕE)] 7→ Φslope

E . Therefore we
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have the following commutative diagram

S̃
Φ

Ẽ

//

τ

��

Φslope

Ẽ

++
Rε-ss

π

��

� � // Rslope

π
��

S
ΦE //

Φslope
E

33M γ //Mslope.

Since π : Rε-ss →M is a categorical quotient, it follows that there exists a
morphism γ :M→Mslope such that Φslope

E = γ ◦ΦE. Note that, by costruc-
tion, the morphism γ is dominant and projective, hence it is surjective.



Chapter 5

Reduction of the
semistability condition

Let (E , ϕ) be a decorated (torsion free) sheaf of type (a, b, c,N) and let
E• be a filtration of E indexed by I. We construct a tensor MI(E•, ϕ) =
(mi1...ia)i1,...,ia∈I, associated with the given filtration and to the decoration
morphism ϕ. Let Σ + {σ : I×a → I×a |σ is a permutation}, then:

mi1...ia +

1 if ϕ|
(Ei1�···�Eia )⊕b

6≡ 0

0 otherwise.

Note that

- MI(E•, ϕ) is symmetric, i.e., mi1...ia = mσ(i1)...σ(ia) for any permuta-
tion σ ∈ Σ of a-terms;

- It is easy to see that

µ(E•, α;ϕ) = − min
i1,...,ia∈I

{γ(i1)
I + · · ·+ γ

(ia)
I |mi1...ia 6= 0}

= r max
i1,...,ia∈I

{RI(i1) + · · ·+RI(ia) |mi1...ia 6= 0} − a
∑
i∈I

αiri,

where RI(ij) is defined in (2.10) and, as usual, we put ri = rk(Ei).

- Define the following (partial) ordering on the set {(i1, . . . , ia) | ∀s is ∈
I and i1 ≤ · · · ≤ ia} of ordered a-tuple: we will say that (i1, . . . , ia) 2
(j1, . . . , ja) if and only if is ≤ js for any s = 1, . . . , a.
Then, if mi1...ia = 1 for a certain a-tupla (i1, . . . , ia), it is easy to
see that mj1...ja = 1 for any (j1 . . . ja) 3 (i1, . . . , ia). Conversely, if
mi1...ia = 0, then mj1...ja = 0 for any (j1 . . . ja) 2 (i1 . . . ia).

Therefore, in order to calculate µ(E•, α;ϕ), it is enough to know the
vector γI and the tensor MI(E•, ϕ). This lead us to the following remark:

76
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suppose that ϕ and ϕ′ are two “decorations” of the same sheaf E such that
for any filtration E• of E one has that MI(E•, ϕ) = MI(E•, ϕ′). Then the
decorated sheaf (E , ϕ) is (semi)stable if and only if (E , ϕ′) is (semi)stable.

Thanks to the previous considerations, in order to simplify the semista-
bility condition, one can consider only to MI(E•, ϕ) and γI. We want to
find an algorithm to “split” the filtration E• indexed by I with weight vec-
tor α = (αi)i∈I in a certain number of weighted subfiltrations indexed by
J(1), . . . , J(t) ⊂ I with weight vectors α(1), . . . , α(t) in such a way that:

i) |J(s)| ≤ a for any s = 1, . . . , t;

ii) J(1) ∪ · · · ∪ J(t) = I;

iii)
∑t

s=1 α
(s)
i = αi, where is to be understood that α

(s)
i = 0 if i 6∈ J(s);

iv)
∑t

s=1RJ(s) = RI.

In fact, if we manage to do this, from (ii) and (iii) one gets that

t∑
s=1

∑
i∈J(s)

α
(s)
i Ci =

∑
I

αiCi,

where Ci were defined in (2.11), and so, thanks to (iv) and to (2.13),

PI + δµI =
∑
I

(αiCi) + rδRI

=

t∑
s=1

∑
J(s)

α
(s)
i Ci + rδRJ(s)


=

t∑
s=1

(PJ(s) + δµJ(s)) .

From the above considerations, the positivity of PJ(s) + δµJ(s) , for any s =
1, . . . , t, implies the one of PI + δµI and so, in order to check semistability
condition, ones can check it only over weighted filtration of length ≤ a. We
managed to prove this result at least in the case a = 2.

5.1 Reduction of the semistability condition for
decorated sheaves of type (2, b, c,N)

Let (E , ϕ) be a decorated (torsion free) sheaf of type (2, b, c,N). Replacing
N′ = (detE)⊗c ⊗ N we can assume, without loss of generality, c = 0. The
main result states that it is enough to check the semistability condition over
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(non weighted) filtrations of length 2. In order to prove this result we first
need some notation and preliminary results.

Remark 75 (Notation). For convenience’s sake we introduce the fol-
lowing notation: if (E•, α) is a weighted filtration as before, indexed by
I = {i1, . . . , it}, we define I = I ∪ {r}, where it is always understood that
Er = E . Given a filtration (E•, α) indexed by I, we will denote by µI the
number µ(E•, α;ϕ) if is clear from the context which filtration, weights and
morphism we are considering. Moreover if E• is a filtration indexed by I (F
is a subbundle of E) then we denote by ri, di and Pi (resp. rF , dF and PF)
the rank, the degree and the Hilbert polynomial of Ei for any i ∈ I (resp.
of F). Finally, if we write “filtration” instead of “weighted filtration”, we
mean that all weights are equal to one.

Given a filtration E• indexed by I = {i1, . . . , is} (is ≤ r − 1) using local
sections we can construct the (symmetric) matrix MI(E•, ϕ) = (mij)ij∈I
where

mij =

{
1 if ϕ|EiEj

6= 0

0 if ϕ|EiEj
= 0.

Proposition 76. Let (0 ⊂ Ei ⊂ Ej ⊂ E , αi, αj) be a critical weighted
filtration of length two, then

−µ{i,j} = 2(αiri + αjrj)− rmax{αi + αj , 2αj}.

Proof. We consider the matrix M{i,j} = (mlk)l,k∈{i,j} representing ϕ with
respect to the given filtration. One can check that the only critical case is
represented by the following matrix0 0 1

0 1 1
1 1 1

 ,

and in this case

−µ{i,j} =


γ

(i)
{i,j} + γ

(r)
{i,j} if αi ≥ αj = 2(αiri + αjrj)− r(αi + αj)

γ
(j)
{i,j} + γ

(j)
{i,j} if αi ≤ αj = 2(αiri + αjrj)− 2rαj

and this finishes the proof. �

Theorem 77. Let (E , ϕ) be a decorated sheaf of type (2, b, c,N). It is enough
to check the semistability condition on subbundles and critical weighted fil-
trations of length two.
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Proof. We will prove the statement by induction on the cardinality of I.
If |I| ≤ 2 there is nothing to prove. Otherwise we will prove that, given a
weighted filtration (E•, α) indexed by I with |I| ≥ 3, there exist two weighted
(proper) subfiltrations (if necessary with different weights) such that

PI + δµI = PJ + δµJ + PK + δµK. (5.1)

More precisely we will show that the two subfiltrations indexed by J and K

satisfy conditions (ii), (iii) and (iv) of the previous section and |J|, |K| < |I|.

Without loss of generality we can assume that the set I is well ordered
and that the first (last) element of the set is indexed by 1 (r−1 respectively).
Moreover if i ∈ J (where J is any well ordered set of indexes) with the
notation i + 1 we mean the successor of i inside J. Let M = (mij)i,j∈I be
the matrix representing the morphism ϕ with respect to the given filtration
(E•, α). If the first row of the matrix is zero then we can split the filtration
as (E1, α1) and (E•, α)Ir{1} and so we are done. Therefore we can assume
that this is not the case.
Let us denote ji, for any i ∈ I, the minimum of the set {j ∈ I |mij 6= 0}. We
will distinguish the cases j1 < r or j1 = r. In the former case we split the
filtration in two subfiltrations: (E•, α)Ir{r−1} and (E{r−1}, α{r−1}). With
these choices equality (5.1) holds, in fact

RI + max
s,t∈I
{RI(s) +RI(t) |ϕ|EsEt 6= 0} = max

i∈I
{RI(i) +RI(ji)}

and so, calling k the index such that (k, jk) realizes the maximum, one has
that

RI = RI(k) +RI(jk) = αk + · · ·+ αjk−1 + 2αjk + · · ·+ 2αr−1

= RIr{r−1} + 2αr−1

= RIr{r−1} +R{r−1},

where the second equality holds since the maximum in the subfiltration
indexed by Ir {r − 1} is still achieved in (k, jk) if jk 6= r − 1, otherwise in
(1, r) = (k, r) if jk = r − 1. The last equality holds from the assumption
j1 6= r which implies m1r−1 6= 0 and consequently mr−1r−1 6= 0. Finally,
recalling that PI + δµI =

∑
s∈I αsCs + δrRI, we get the thesis.

Suppose now that j1 = r and that maxi∈I{RI(i) + RI(ji)} is gained in k.
Therefore, for all s ∈ I such that js 6= js−1 and s ≤ js, we have a set of
inequalities in the variables αi given from the inequalities RI(k) +RI(jk) ≥
RI(s) +RI(js), i.e.,

αs + · · ·+ αk−1 ≤ αjk + · · ·+ αjs−1 s ≤ k − 1 (5.2)

αk + · · ·+ αs−1 ≥ αjs + · · ·+ αjk−1 s ≥ k + 1. (5.3)
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If an index t is missing in the previous set of inequalities we can as before
split the main filtration in two subfiltrations (E•, α)Ir{t} and (E{t}, α{t}).
Since RI(1) + RI(r) =

∑
i∈I αi and we are supposing that the index t does

not appear in the inequalities, this forces the coefficient of αt to present
(and equal to one) in all expressions of the form RI(i) + RI(ji). There-
fore jk > t, otherwise the coefficient of αt in the expression RI(k) + RI(jk)
should be two and so there would be an inequality in which αt would appear
with a non-zero coefficient, which is absurd. In particular R{t} = αt and
PI + δµI = PIr{t} + δµIr{t} + P{t} + δµ{t}. Indeed, if k 6= t, the maxi-
mum is still achieved in (k, jk), otherwise k = t and js = jk for all s ≥ k
(otherwise αk would appear in some inequality of type (5.2) and (5.3)) and
so the maximum of the filtration indexed by Ir{t} is realized in (k+1, jk+1).

The last case we have to consider is when all indexes appear in inequali-
ties (5.2) and (5.3). Note that the set of indexes that appear in inequalities
(5.2), that we will call J, does not intersect the set of indexes of inequalities
(5.3), that we will denote J′; moreover all indexes appearing in inequalities
of type (5.2) ((5.3) respectively) appear in the first inequality of the same
type (the last respectively). If k is such that the set J and J ′ are both not
empty, then an easy calculation shows that PI +δµI = PJ +δµJ +PJ′+δµJ′ .
Indeed, in the filtration indexed by J, the maximum is achieved in (jk, jk)
while the maximum for the filtration indexed by J′ is achieved in (k, r).

If J = ∅ then RI = RI(1) + RI(r), i.e., k = 1 and jk = r. Let S + {s ∈
I | s ≤ js and js 6= js−1} = {s1 = 1, . . . , st} (we are assuming t ≥ 3), then
we have the following inequalities:

RI(1) +RI(r) ≥ RI(s2) +RI(js2)

...

RI(1) +RI(r) ≥ RI(st) +RI(jst).

or equivalently

α1 + · · ·+ αs2−1 ≥ αjs2 + · · ·+ αr−1

...

α1 + · · ·+ αst−1 ≥ αst + · · ·+ αr−1.

In this case the subfiltrations we consider are the subfiltrations indexed by
K′ = {1, . . . , s2−1, js2 , . . . , r−1} and K′′ = {1, 2, . . . , js2−1} with weight vec-
tors (α′1, . . . , α

′
s2−1, αjs2 , . . . , αr−1) and (α′′1, . . . , α

′′
s2−1, αs2 , . . . , αjs2−1) re-

spectively.
Thanks to the previous inequalities it easy to see that the weights α′i and
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α′′i can be chosen in a such way that α′i + α′′i = αi and

α′1 + · · ·+ α′s2−1 ≥ αjs2 , . . . , αr−1

α′′1 + · · ·+ α′′s2−1 + αs2 + · · ·+ αst−1 ≥ αst + · · ·+ αjs2−1.

Therefore
PI + δµI = (PK′ + δµK′) + (PK′′ + δµK′′).

Finally, if t = 2, we have only the inequality α1 + · · · + αst−1 ≥ αst +
· · ·+αr−1. Then we call β = αst + · · ·+αr−1, we write β = β1 + · · ·+ βst−1

such that, for any i = 1, . . . , st − 1, αi ≥ βi. Then we consider weighted
filtrations 0 ⊂ Ei ⊂ Est ⊂ · · · ⊂ Er−1 with weights (αi, βi,st , . . . , βi,r−1) where
βi,h satisfy

∑r−1
h=st

βi,h = βi and βi,h ≥ βi,h′ if and only if αh ≥ αh′ , for any
i = 1, . . . , st − 1. With such choices is easy to see that

PI + δµI =

st−1∑
i=1

PKi + δµKi ,

where we denote Ki the set {i, st, . . . , r − 1}.

The case in which J′ = ∅ is similar and so we are done. �

Remark 78. As a consequence of the proof of Theorem 77 we have that
every critical filtration splits as a certain number of length two critical fil-
trations and a non-critical one (which obviously can be decomposed as the
union of length one filtrations).

Example 79. Let us fix r = 5 and let 0 ⊂ E1 ⊂ E2 ⊂ E3 ⊂ E4 ⊂ E be a fil-
tration with weight vector (α1, α2, α3, α4) such that the matrix representing
ϕ with respect the filtration is the following:

0 0 0 0 1
0 0 0 1 1
0 0 1 1 1
0 1 1 1 1
1 1 1 1 1


In this case the filtration is critical, in fact, denoting by I the set {1, 2, 3, 4},
we have that

RI = max{RI(1) +RI(r), RI(2) +RI(4), RI(3) +RI(3)}
= max{A + α1 + α2 + α3 + α4, B + α2 + α3 + 2α4, C + 2α3 + 2α4},

while
∑

i∈IR{i} = α1 + α2 + 2α3 + 2α4.
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If the maximum is A then we have the following inequalities:

A ≥ B ⇒ α1 ≥ α4

A ≥ C ⇒ α1 + α2 ≥ α3 + α4.

So in this case we are in the situation J = ∅ considered in the proof of
Theorem 77; therefore we can find α′1, α

′′
1 such that α′1 + α′′1 = α1, α′1 ≥ α4

and α′′1 + α2 ≥ α3. Let us consider the filtrations 0 ⊂ E1 ⊂ E4 ⊂ E ,
0 ⊂ E1 ⊂ E2 ⊂ E3 ⊂ E with weights (α′1, α4) and (α′′1, α2, α3) respectively.
Proceeding as before we split the filtrations {14} and {123} and we obtain
that:

PI + δµI = P{14} + δµ{14} + P{123} + δµ{123}

= P{14} + δµ{14} + P{13} + δµ{13} + P{23} + δµ{23}

and we are done.

If the maximum is B then we have the following inequalities:

B ≥ A⇒ α4 ≥ α1

B ≥ C ⇒ α2 ≥ α3.

Therefore J = {1, 4} and J′ = {2, 3} are disjoint and an easy calculation
shows that RJ = RJ(4) + RJ(4) = 2α4 and R′J = R′J(2) + R′J(5) = α2 + α3,
therefore PI + δµI = P{14} + δµ{14} + P{23} + δµ{23} and we finish.

Finally, if the maximum is C, J′ = ∅ and calculations are similar to the
case in which A is the maximum.

Thanks to previous results, in order to check the semistability condition,
we can focus our attention only on subbundles and critical filtrations of
length 2. More precisely:

Proposition 80. Let (E , ϕ) as before, then the following statements are
equivalent:

1. (E , ϕ) is δ-(semi)stable;

2. For any subsheaf F and for any critical weighted filtration (0 ⊂ Ei ⊂
Ej ⊂ E , (αi, αj)) of length two the following inequalities hold:

� (PErF − rPF)− δ(r kF,E − 2 rF ) >
(=) 0,

� P{i,j} − δ (2(αiri + αjrj)− rmax{αi + αj , 2αj}) >
(=) 0.
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Proof. The arrow (1) ⇒ (2) is trivial. So suppose that (2) holds, then, as
noticed before, semistability can be checked only on subsheaves and critical
filtrations and, thanks to Theorem 77, we can consider only critical weighted
filtrations of length two. Finally, due to Proposition 76, we get that

P{i,j} + δµ{i,j} = P{i,j} − δ (2(αiri + αjrj)− rmax{αi + αj , 2αj})

and so we are done. �

Lemma 81. Let (E , ϕ) be a decorated sheaf as before such that P (E•) +
δµ(E•;ϕ) ≥ 0 for any length ≤ 2 filtration E• with weight vector identically
one. Then (E , ϕ) is δ-(semi)stable.

Proof. Clearly (E , ϕ) is k-(semi)stable since weights do not affect the semista-
bility condition for subsheaves. Moreover by Theorem 77 we can check
semistability only on critical weighted filtrations of length two. Let (0 ⊂
E1 ⊂ E2 ⊂ E , α1, α2) be such a filtration. We want to show that

P + δµ = α1C1 + α2C2 + rδmax{α1 + α2, 2α2} >
(=) 0.

If the maximum is α1 + α2, then α1 ≥ α2 and the previous inequality
becomes:

α1C1 + α2C2 + rδ(α1 + α2) = α2(C1 +C2 + 2rδ) + (α1 − α2)(C1 + rδ) >
(=) 0

where the last inequality holds since by hypothesis C1 +C2 +2rδ and C1 +rδ
are non-negative.
Otherwise, if the maximum is 2α2, then α1 ≤ α2 so

α1C1 + α2C2 + rδ(2α2) = α1(C1 + C2 + 2rδ) + (α2 − α1)(C2 + 2rδ) >
(=) 0,

and (E , ϕ) is (semi)stable. �

In view of the previous results we can state the following (equivalent)
definition of (semi)stability of decorated sheaves of type (2, b, c,N):

Definition 82. A decorated sheaf (E , ϕ) of type (2, b, c,N) is δ-(semi)stable
if the following conditions hold:

1. If F is a proper subsheaf of E , then

PF − δkF,E
rk(F)

≺
(−)

PE − 2δ

r
.

2. If 0 ⊂ Ei ⊂ Ej ⊂ E is a critical filtration, then

(ri + rj)PE − r(PEi + PEj )− 2δ(ri + rj − r) �
(−) 0.
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Example 83. Let (E,ϕ) be a rank 5 decorated vector bundle of type
(2, 1, 0,N). Let 0 ⊂ E1 ⊂ E2 ⊂ E3 ⊂ E4 ⊂ E5 = E be a filtration of
E indexed by I = {1, 2, 3, 4} (with weight vector α = 1). Then all possible
matrices MI(E

•;ϕ) are the following.

(1)

(
1 1 1 1 1

1 1 1 1
1 1 1

1 1
1

)
(2)

(
0 1 1 1 1

1 1 1 1
1 1 1

1 1
1

)
(3)

(
0 0 1 1 1

1 1 1 1
1 1 1

1 1
1

)
(4)

(
0 0 1 1 1

0 1 1 1
1 1 1

1 1
1

)

(5)

(
0 0 0 1 1

1 1 1 1
1 1 1

1 1
1

)
(6)

(
0 0 0 1 1

0 1 1 1
1 1 1

1 1
1

)
(7)

(
0 0 0 1 1

0 0 1 1
1 1 1

1 1
1

)
(8)

(
0 0 0 1 1

0 0 1 1
0 1 1

1 1
1

)

(9)

(
0 0 0 0 1

1 1 1 1
1 1 1

1 1
1

)
(10)

(
0 0 0 0 1

0 1 1 1
1 1 1

1 1
1

)
(11)

(
0 0 0 0 1

0 0 1 1
1 1 1

1 1
1

)
(12)

(
0 0 0 0 1

0 0 1 1
0 1 1

1 1
1

)

(13)

(
0 0 0 0 1

0 0 0 1
1 1 1

1 1
1

)
(14)

(
0 0 0 0 1

0 0 0 1
0 1 1

1 1
1

)
(15)

(
0 0 0 0 1

0 0 0 1
0 0 1

1 1
1

)
(16)

(
0 0 0 0 1

0 0 0 1
0 0 1

0 1
1

)

(17)

(
0 0 0 0 0

1 1 1 1
1 1 1

1 1
1

)
(18)

(
0 0 0 0 0

0 1 1 1
1 1 1

1 1
1

)
(19)

(
0 0 0 0 0

0 0 1 1
1 1 1

1 1
1

)
(20)

(
0 0 0 0 0

0 0 1 1
0 1 1

1 1
1

)

(21)

(
0 0 0 0 0

0 0 0 1
1 1 1

1 1
1

)
(22)

(
0 0 0 0 0

0 0 0 1
0 1 1

1 1
1

)
(23)

(
0 0 0 0 0

0 0 0 1
0 0 1

1 1
1

)
(24)

(
0 0 0 0 0

0 0 0 1
0 0 1

0 1
1

)

(25)

(
0 0 0 0 0

0 0 0 0
1 1 1

1 1
1

)
(26)

(
0 0 0 0 0

0 0 0 0
0 1 1

1 1
1

)
(27)

(
0 0 0 0 0

0 0 0 0
0 0 1

1 1
1

)
(28)

(
0 0 0 0 0

0 0 0 0
0 0 1

0 1
1

)

(29)

(
0 0 0 0 0

0 0 0 0
0 0 0

1 1
1

)
(30)

(
0 0 0 0 0

0 0 0 0
0 0 0

0 1
1

)
(31)

(
0 0 0 0 0

0 0 0 0
0 0 0

0 0
1

)
(32)

(
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

)

All possible subsets of I = {1, 2, 3, 4} are {1, 2, 3}, {1, 2, 4}, {1, 3, 4},
{2, 3, 4}, {1, 2}, {1, 3}, {1, 4} {2, 3}, {2, 4}, {3, 4}, {1}, {2}, {3} and {4}.
Let J ⊆ I, we recall in this case

µJ =− min
i,j∈J
{γ(i)

J + γ
(j)
J |mij 6= 0}

=− 2
∑
i∈J

rEi + rmax
i,j∈J
{RJ(i) +RJ(j) |mij 6= 0}

The following are the values of µJ as J varies between all possible subsets
of I.
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µ1234 µ123 µ124 µ134 µ234 µ12 µ13 µ14 µ23 µ24 µ34 µ1 µ2 µ3 µ4

1 20 18 16 14 12 14 12 10 10 8 6 8 6 4 2
2 15 13 11 9 12 9 7 5 10 8 6 3 6 4 2
3 10 8 6 9 12 4 7 5 10 8 6 3 6 4 2
4 10 8 6 9 7 4 7 5 5 3 6 3 1 4 2
5 10 8 6 4 12 4 2 5 10 8 6 3 6 4 2
6 5 3 6 4 7 4 2 5 5 3 6 3 1 4 2
7 5 3 6 4 2 4 2 5 0 3 6 3 1 4 2
8 5 3 6 4 2 4 2 5 0 3 1 3 1 -1 2
9 10 8 6 4 12 4 2 0 10 8 6 3 6 4 2
10 5 3 1 4 7 4 2 0 5 3 6 3 1 4 2
11 0 3 1 4 2 4 2 0 0 3 6 3 1 4 2
12 0 3 1 -1 2 4 2 0 0 3 1 3 1 -1 2
13 0 3 1 4 2 4 2 0 0 -2 6 3 1 4 2
14 0 3 1 -1 -3 4 2 0 0 -2 1 3 1 -1 2
15 0 3 1 -1 -3 4 2 0 0 -2 -4 3 1 -1 2
16 0 3 1 -1 -3 4 2 0 0 -2 -4 3 1 -1 -3
17 10 8 6 4 12 4 2 0 10 8 6 -2 6 4 2
18 5 3 1 4 7 -1 2 0 5 3 6 -2 1 4 2
19 0 -2 1 4 2 -1 2 0 0 3 6 -2 1 4 2
20 0 -2 1 -1 2 -1 -3 0 0 3 1 -2 1 -1 2
21 0 -2 -4 4 2 -1 2 0 0 -2 6 -2 1 4 2
22 -5 -2 -4 -1 -3 -1 -3 0 0 -2 1 -2 1 -1 2
23 -5 -2 -4 -6 -3 -1 -3 0 0 -2 -4 -2 1 -1 2
24 -5 -2 -4 -6 -3 -1 -3 -5 0 -2 -4 -2 1 -1 -3
25 0 -2 -4 4 2 -6 2 0 0 -2 6 -2 -4 4 2
26 -5 -7 -4 -1 -3 -6 -3 0 -5 -2 1 -2 -4 -1 2
27 -10 -7 -4 -6 -8 -6 -3 0 -5 -2 -4 -2 -4 -1 2
28 -10 -7 -9 -6 -8 -6 -3 -5 -5 -7 -4 -2 -4 -1 -3
29 -10 -12 -4 -6 -8 -6 -8 0 -10 -2 -4 -2 -4 -6 2
30 -15 -12 -9 -11 -13 -6 -8 -5 -10 -7 -9 -2 -4 -6 -3
31 -20 -12 -14 -16 -18 -6 -8 -10 -10 -12 -14 -2 -4 -6 -8

5.2 The general setting

� Let a an integer ≥ 1.

� Let r be an integer ≥ 2.

� (I,≤) be a well-ordered set of cardinality r − 1 and let I = I ∪ {r}.

� Let αi ∈ R≥0 for any i ∈ I and let αI be the corresponding vector of
length r − 1.

� Let A + {(i1, . . . , ia) | i1, . . . , ia ∈ I and i1 ≤ · · · ≤ ia}. Define over
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the set A the following partial-ordering relation: we will say that
(i1, . . . , ia) 2 (j1, . . . , ja) if and only if i1 ≤ j1, . . . , ia ≤ ja.

� Let MI + (mij)i,j∈I be a r×a “matrix” with the following properties:

– MI is symmetric, i.e., mi1...ia = mσ(i1)...σ(ia) for any i1, . . . , ia ∈ I

and any permutation σ : {i1, . . . , ia} → {i1, . . . , ia};
– mij ∈ {0, 1} for any i, j ∈ I;

– if mi1...ia = 1 then mj1...ja = 1 for any (j1, . . . , ja) 3 (i1, . . . , ia);

– if mi1...ia = 0 then mj1...ja = 0 for any (j1, . . . , ja) 2 (i1, . . . ia).

� For any l ∈ I define

RI(l) +
∑

i∈I, i≥l
αi

if l ∈ I and RI(l) = 0 otherwise. We set

RI + max
i,j∈I
{RI(i1) + · · ·+RI(ia) |mi1...ia 6= 0}.

With this notation the following result holds:

Theorem 84. Let a = 2. Fix a well-ordered set I, a vector αI of real
numbers and a symmetric “boolean” matrix MI as before. Denote by | · | the
cardinality of a set. Then exist t ∈ N, sets J(1), . . . , J(t) and positive real
vectors αJ(1) , . . . , αJ(t) such that

i) |J(s)| ≤ 2 for any s = 1, . . . , t;

ii) J(1) ∪ · · · ∪ J(t) = I;

iii)
∑t

s=1 α
(s)
i = αi, where is to be understood that α

(s)
i = 0 if i 6∈ J(s);

iv)
∑t

s=1RJ(s) = RI.

Proof. The proof of Theorem 77 provides us an algorithm to find K(1), K(2)

satisfying points (ii), (iii) and (iv). Since |K(1)|, |K(2)| � |I| iterating this
process, after a finite number of steps, we obtain the thesis. �

Corollary 85. Let r, I, J(1), . . . , J(t) and αJ(1) , . . . , αJ(t) as before and let δ
be a fixed numerical polynomial. For any i ∈ I let Ci be a constant. Then

∑
i∈I

αiCi + r δ RI =

t∑
s=1

∑
i∈J(s)

α
(s)
i Ci + r δ RJ(s)


Proof. Condition (ii) and (iii) imply that

∑
i∈I αiCi =

∑t
s=1

∑
i∈J(s) α

(s)
i Ci.
�
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Corollary 86. Let (E , ϕ) be a decorated sheaf of type (2, b, c,N), then it is
slope semistable with respect to δ if and only if the following conditions hold:

1. If F is a proper subsheaf of E, then

µ(F)− δkF,E
rk(F)

<
(=) µ(E)− 2δ

rE
.

2. If 0 ⊂ Ei ⊂ Ej ⊂ E is a critical filtration, then

(rEi + rEj ) deg(E)− rE(deg(Ei) + deg(Ej))− 2δ(rEi + rEj − rE)
>

(=) 0.

Corollary 87. Let N be a torsion free sheaf of positive rank, (X,OX(1)) a
projective variety with an ample line bundle and (A, ϕ) a decorated coher-
ent sheaf of type (2, b, c,N ). Then it is enough to check the semistability
condition (2.8) over length ≤ 2 weighted filtrations.

5.3 Quadric and orthogonal bundles over curves

As we remarked in Section 2.3.3, quadric and orthogonal bundles are dec-
orated vector bundles of type (2, 1, 0,N) and, respectively, (2, 1, 0,OX).
Therefore them inherids the (semi)stability condition of decorated vector
bundles. Orthogonal bundles have already a notion of (semi)stability. For
example in [25], an orthogonal bundle E over a smooth curve is sayed
(semi)stable if every proper isotropic subbundle F of E has degree zero.
As an application of Theorem 84 we will show that, at least in the case of
orthogonal bundles over curves, the two (semi)stability conditions coincide.

We would like to point you out two papers by scar Garca-Prada, Peter B.
Gothen and Ignasi Mundet i Riera, where they prove some results very much
related (and in some cases essentially equivalent) to some results of this sec-
tion. The simplification of the (semi)stability condition for quadratic pairs
(i.e., the statement of Theorem 77 applied to non-degenerate quadric bun-
dles) is contained in Theorem 4.9 of [5], although the setting of Theorem 4.9
refers to symplectic Higgs bundles of which quadric bundles are particular
cases. While the relation between stability of nondegenerate quadric bun-
dles and the corresponding (generalized) orthogonal bundles extends part of
the contents of Theorem 4.2 in [6].

Let X be a smooth projective complex curve of genus g and N a line
bundle over X. Let us fix δ ∈ R+ and integers r > 0, d.

Definition 88 (Quadric Bundles). A quadric bundle onX of type (r, d,N)
is a pair (E,Q) where E is a vector bundle of rank r and degree d on X,
and

Q : Sym2E → N,
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is a morphism of vector bundles.
A morphism between quadric bundles f : (E,Q) → (E′, Q′) is a morphism
f : E → E′ of vector bundles such that there is a commutative diagram

Sym2E
Sym2f−−−−→ Sym2E′

Q

y Q′
y

N
λ−−−−→ N

where λ is a scalar multiple of the identity.
We will say that a quadric bundle is δ-(semi)stable if and only if is δ-
(semi)stable as decorated vector bundle.

The term “quadric” comes from the fact that for every x ∈ X the mor-
phism Q restricted to the fibre Ex defines a bilinear symmetric form and so
a quadric in Pr−1.

If the morphism Q is the zero morphism, a quadric bundle is just an
ordinary vector bundle, so from now on we suppose that Q is not identically
zero. Note that even if the map Q is non-zero it could happen that restricted
to a subbundle it vanishes.

An orthogonal bundle is a vector bundle associated with a princi-
pal bundle with (complex) orthogonal structure group. Equivalently, it
is a quadric bundle (E,Q) with N = OX , such that the bilinear form
Q : Sym2E → OX induces an isomorphism Q : E → E∨. In this case
Q gives a smooth quadric Cx for each point x ∈ X. Note that the isomor-
phism Q : E → E∨ forces the degree of E to be zero.

There is a notion of stability for orthogonal bundles (see [25] Ramanan):
an orthogonal bundle E is (semi)stable if and only if for every proper
isotropic subbundle F (i.e., kF,E ≤ 1),

deg(F ) <
(=) 0 = deg(E).

We will prove that an orthogonal bundle is (semi)stable if and only if
it is δ-(semi)stable as a quadric bundle. We start with the following useful
result:

Lemma 89. Let (E,Q) be an orthogonal bundle, and let F be a proper
vector subbundle of E. Then

1. There is an exact sequence

0→ F⊥ → E → F∨ → 0,

deg(F ) = deg(F⊥) and rk(F⊥) + rk(F ) = r.
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2. kF,E ≥ 1.

3. If F is isotropic (i.e kF,E ≤ 1), then

1 ≤ rk(F ) ≤ br
2
c,

where bxc is the largest integer less than or equal to x and F⊥ denote
as usual the orthogonal of F with respect to the non degenerate bilinear
form Q.

Proof. For the proof of (1) see Lemma 3.3 of [8]. (2) and (3) depend on the
fact that we are assuming the matrix to be non-degenerate. �

Lemma 90. Let (E,Q) be a quadric bundle such that Q is non-degenerate.
Let F be a proper isotropic vector subbundle of E. Then the filtration 0 ⊂
F ( F⊥ ⊂ E is critical.

Proof. Let F ′ be the maximal isotropic subbundle of E containing F and
let r′ denote its rank. Let A = (aij) the matrix representing Q with respect
to a basis of E subordinated to F ′. Then ar′r′ = 0, ar′+1r′+1 = 1 and

A =



0
. . . B

0

1

Bt . . .

1


The matrix B is a r′ × (r − r′)-matrix, every row contains at least a 1 and
two different rows must be independent. This forces the matrix B to be of
the following form:

0 . . . 0 ?
... . .

.
. .
.
•

0 . .
.

. .
. ...

? • . . . •

 if r is even, or


0 0 . . . 0 ?
...

... . .
.

. .
.
•

... 0 . .
.

. .
. ...

0 ? • . . . •

 if r is odd,

where “?” is any non-zero complex number while “•” denote any complex
number.
In both cases, since F ′ ⊆ F⊥, we have that

� Q|FF = Q|
FF⊥

= 0

� Q|FE , Q|F⊥E , Q|EE , Q|F⊥F⊥ 6= 0

and the filtration 0 ⊂ F ⊂ F⊥ ⊂ E is critical. �
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Remark 91. With the same notation as before, if F = F⊥, then 2rF = r
(in particular r is even); moreover, if (E,Q) is a δ-semistable quadric bundle,
condition (1) of Definition 82 tells us that

drF − rdF + δ (2rF − r) ≥ 0

and so µ(F ) ≤ µ(E).

Theorem 92. An orthogonal bundle is (semi)stable if and only if it is δ-
(semi)stable as a quadric bundle.

Proof. We prove the assertion for semistability; is the proof for stability very
similar.

Let (E,Q) be a quadric bundle such that Q : Sym2E → OX is non-
degenerate, and assume that it is δ-(semi)stable. Let F be an isotropic
vector subbundle. If F 6= F⊥, the filtration 0 ⊂ F ( F⊥ ⊂ E is critical by
Lemma 90. Then the semistability condition with weights identically 1 tells
us that

(rF + rF⊥) d− r (dF + dF⊥) + 2δ(r − rF − rF⊥) ≥ 0.

By the first point of Lemma 89 dF = dF⊥ and r = rF + rF⊥ . Since E
is an orthogonal bundle deg(E) = 0 and the above inequality tells us that
deg(F ) ≤ 0. If F = F⊥, by Remark 91 we still have µ(F ) ≤ 0 which proves
that E is semistable as an orthogonal bundle.

Conversely, let E be a semistable orthogonal bundle. Let F be any vector
subbundle. Following Ramanan (see [25]) let N = F ∩ F⊥, and let N ′ be
the vector subbundle generated by N . We have an exact sequence

0→ N ′ → F ⊕ F⊥ →M ′ → 0 (5.4)

where M ′ is the subbundle of E generated by F+F⊥. We have M ′ = (N ′)⊥.
If N ′ = 0, then E = F ⊕ F⊥, kF,E = 2, and deg(F ) = deg(E) = 0 (Lemma
89). Then

deg(F )− kF,Eδ

rk(F )
=
−2δ

rk(F )
<
−2δ

r
=

deg(E)− 2δ

r
.

If N ′ 6= 0, deg(F ) = deg(N ′) (by Lemma 89 and the exact sequence
(5.4)), and then deg(F ) ≤ 0 (because E is a semistable orthogonal bundle
and N ′ is isotropic). Recalling that if kF,E ≤ 1 then 1 ≤ rk(F ) ≤ b r2c, if
kF,E = 2 there are no conditions on the rank of F but in any case we have:

deg(F )− δ kF,E
rk(F )

≤ − δ kF,E
rk(F )

≤ −2δ

r
=

deg(E)− 2δ

r
.
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Now let 0 ⊂ Ei ⊂ Ej ⊂ E be a critical filtration. Then Ei is isotropic
and Ej ⊆ E⊥i (otherwise the filtration would not be critical). Therefore
rk(Ej) ≤ rk(E⊥i ) and thanks to previous calculations deg(Ei),deg(Ej) ≤ 0.
Finally we have

P{i,j} + δµ{i,j} = −r(deg(Ei) + deg(Ej)) + 2δ(r − rk(Ei)− rk(Ej)) ≥ 0,

and so by Definition 82 (E,Q) is δ-semistable as a quadric bundle. �

Remark 93. In “Orthogonal and spin bundles over hyperelliptic curves”
Ramanan shows that an orthogonal bundle is semistable if and only if it is
semistable as a vector bundle (Proposition 4.2). So as a corollary of Theorem
92 we obtain that a non-degenerate quadric bundle of degree zero (E,Q) is
semistable if and only if E is a semistable vector bundle.

5.3.1 Generalized orthogonal bundles

We will call generalized orthogonal bundle a quadric bundle (E,Q) such that
the morphism Q : Sym2E → N induces an isomorphism E → E∨ ⊗ N. This
isomorphism connect the degree d of E with the degree n of N, in fact one
has that d = −d+ rn and so n = 2µ(E).

For these objects a similar result to Lemma 89 holds:

Lemma 94. Let (E,Q) be a generalized orthogonal bundle, and let F be a
proper vector subbundle of E. Then there is an exact sequence

0→ F⊥ → E → F∨ ⊗ N→ 0,

so rk(F⊥) + rk(F ) = r and

deg(F ) = deg(F⊥)− d
(

1− 2rF
r

)
.

Thanks to the previous lemma, one can easily prove that Theorem 92
holds also for generalized orthogonal bundles.

5.4 The splitting algorithm: a java program

We have implemented a java program to actually find a decomposition of
a given weighted filtration. Using notation of Section 5.2, if (E,ϕ) is a
decorated bundle of type (a, b,N) and rank r and (E•, α) is a weighted
filtration of (E,ϕ) we constructed a r×a “matrix” MI(E

•;ϕ) which represent
the behavior (to be equal or different from zero) of ϕ over the given filtration.
All such matrices have the property that:

� if mi1...ia = 1 then mj1...ja = 1 for any (j1, . . . , ja) 3 (j1, . . . , ja) (i.e.,
the bottom right corner of the matrix is 1);
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� if mi1...ia = 0 then mj1...ja = 0 for any (j1, . . . , ja) 2 (j1, . . . , ja) (i.e.,
the top left corner of the matrix is 0).

Thus the elements mi1,...,ia such that (i1, . . . , ia) is 2-maximal, characterize
the matrix. In other words a boolean matrix satisfying the above proper-
ties is uniquely determined by the set of its 2-maximal elements. More-
over it is easy to see that the maximum of a given weighted filtration
varies between the maximal elements representing the matrix, on vary-
ing the weight vector α. Let (E•, α)I be a weighted filtration indexed

by I and MI = ((i
(1)
1 , . . . , i

(1)
a ), . . . , (i

(s)
1 , . . . , i

(s)
a )) be the matrix associated

with such filtration with respect to a fixed decorated bundle (E,ϕ). Sup-

pose that the maximum RI is attained in the a-tupla (i
(h)
1 , . . . , i

(h)
a ), then

RI(i
(h)
1 , . . . , i

(h)
a ) ≥ RI(i

(h′)
1 , . . . , i

(h′)
a ) for any other h′ = 1, . . . , s. Since

RI(i
(t)
1 , . . . , i(t)a ) =

a∑
j=1

RI(i
(t)
j ) =

a∑
j=1

 ∑
l∈I, l≥i(t)j

αl


the inequalities RI(i

(h)
1 , . . . , i

(h)
a ) ≥ RI(i

(h′)
1 , . . . , i

(h′)
a ), on varying of h′, imply

conditions on the weight vector α, namely:

a∑
j=1

 ∑
l∈I, l≥i(h)

j

αl

 ≥ a∑
j=1

 ∑
l∈I, l≥i(h

′)
j

αl

 for any h′ = 1, . . . , s. (5.5)

Denote by ΘMI(i
(h)
1 , . . . , i

(h)
a ) the set of all possible weight vectors for which

the maximum of the filtation is still attained in (i
(h)
1 , . . . , i

(h)
a ), i.e.,

ΘMI(i
(h)
1 , . . . , i(h)

a ) + {α = (α1, . . . , αr) | inequalities (5.5) are fulfilled}.

Then the idea of the algorithm is the following:

� first it creates all possible matrices of rank r represented as a number
of maximal elements, i.e., a certain number of vectors of length a.

� then it sets a matrix M = ((i
(1)
1 , . . . , i

(1)
a ), . . . , (i

(s)
1 , . . . , i

(s)
a )) and try

to decompose it in the following way:

– generates all possible pairs of distinguish subsets J, K of I such
that J ∪ K = I.

– Extracts the submatrixesM ′J = ((j
(1)
1 , . . . , j

(1)
a ), . . . , (j

(s′)
1 , . . . , j

(s′)
a ))

and M ′′K = ((k
(1)
1 , . . . , k

(1)
a ), . . . , (k

(s′′)
1 , . . . , k

(s′′)
a )) of M with in-

dexes j
(s)
i ∈ J and k

(s)
i ∈ K.
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– Fix a2-maximal elementm = (i
(h)
1 , . . . , i

(h)
a ) of the matrix, namely

fix a possible maximum of the matrix.

– Generates all possible couples (m′,m′′) such that

m′ ∈ {(j(1)
1 , . . . , j

(1)
a ), . . . , (j

(s′)
1 , . . . , j

(s′)
a )} and

m′′ ∈ {(k(1)
1 , . . . , k

(1)
a ), . . . , (k

(s′′)
1 , . . . , k

(s′′)
a )}

– Verifies if RI(m) = RJ(m
′) +RK(m

′′) or not.

– For the couples (m′,m′′) such that RI(m) = RJ(m
′) + RK(m

′′),
it verifies if there exists weight vectors α′ ∈ ΘM ′J

(m′) and α′′ ∈
ΘM ′′K

(m′′) such that α′ + α′′ ∈ ΘMI(m).

I tested the algorithm for r ≤ 10 and a = 2 and it works. Instead if a = 3
and for example r = 5 the total number of matrixes is 2079, the number
of possible cases, i.e., the number of possible maximum multiplied by the
number of matrixes is 7128. In 5992 cases the algorithm succeded in finding
two sets J and K such that J∪ K = I, RI = RJ +RK and α′+α′′ ∈ ΘMI(m),
while in 1136 cases the algorithm fails.

5.5 The case a ≥ 3

First we consider the following example.

Example 95 (a = 3 r = 5: a counterexample?). Let (E,ϕ) be a deco-
rated vector bundle of type (3, 1, 0,N), let (E•, α) be a weighted filtration
indexed by I = {1, 2, 3, 4} and suppose that MI +MI(E•, ϕ) is the following
“matrix”:

MI=(mijk)=



0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 1
0 0 1 1 1


i = 1



0 0 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 1 1 1
0 0 1 1 1


i = 2



0 0 0 0 0
0 0 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1


i = 3

Finally suppose that RI = RI(2) + RI(3) + RI(4) = α2 + 2α3 + 3α4. Then
we have the following inequalities:

RI(2) +RI(3) +RI(4) ≥ RI(1) +RI(3) +RI(r)←→ α4 ≥ α1

RI(2) +RI(3) +RI(4) ≥ RI(1) +RI(4) +RI(4)←→ α3 ≥ α4

RI(2) +RI(3) +RI(4) ≥ RI(3) +RI(3) +RI(3)←→ α2 ≥ α3.

Consider now the subfiltrations indexed by J(1) = {1, 2, 3}, J(2) = {1, 2, 4}
and J(3) = {1, 3, 4} with weights vectors (α

(1)
1 , α

(1)
2 , α

(1)
3 ), (α

(2)
1 , α

(2)
2 , α

(2)
4 )
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and (α
(3)
1 , α

(3)
3 , α

(3)
4 ) respectively. An easy calculation shows that

RJ(1) =

{
RJ(1)(1, 3, r) if α

(1)
1 ≥ α(1)

3

RJ(1)(3, 3, 3) otherwise

RJ(2) = RJ(2)(1, 4, 4)

RJ(3) =


RJ(3)(1, 3, r) if α

(3)
3 ≥ α(3)

4 and α
(3)
1 ≥ α(3)

3 + α
(3)
4

RJ(3)(1, 4, 4) if α
(3)
3 ≤ α(3)

4 and α
(3)
1 ≥ 2α

(3)
3

RJ(3)(3, 3, 3) otherwise.

In any case, for any s = 1, 2, 3 and for any other subfiltration indexed by
K such that J(s) ∪ K = I, one can check that the index 1 or 3 appear too
much times, i.e., RI 6= RJ(s) + RK. Therefore is not possible to split the
filtration (E•, α)I into two subfiltrations (E•, α′)I′ , (E•, α′′)I′′ in such a way
that αI = α′I′ + α′′I′′ and RI = RI′ +RI′′ .

The above example provides a counter example to Theorem 84 in the case
of a = 3. In ather words, using the notation of Section 5.2, let I be a well-
ordered set, αI be a vector of positive real numbers and MI = (mijk)i,j,k∈I
be a “boolean” simmetric cube, i.e., mijk = mσ(i)σ(j)σ(k) = 0 or = 1 for
any permutation σ : {i, j, k} → {i, j, k} and any i, j, k ∈ I. Then it is
not true that there exists t ∈ N, sets J(1), . . . , J(t) and positive real vectors
αJ(1) , . . . , αJ(t) such that

i) |J(s)| ≤ 3 for any s = 1, . . . , t;

ii) J(1) ∪ · · · ∪ J(t) = I;

iii)
∑t

s=1 α
(s)
i = αi, where is to be understood that α

(s)
i = 0 if i 6∈ J(s);

iv)
∑t

s=1RJ(s) = RI.

The above conditions clearly imply, as showed in Section 5.2, that the
semistability of a decorated bundle (E,ϕ) could be checked only over subfil-
tration of length ≤ 3 but the converse is not clear that holds true. Therefore
the above example does not provide a counterexample to the following state-
ment:

Let t + (a, b,N) be a fixed type of decorated bundles. Then there exist
a fixed natural number st ∈ N, depending on t, such that for any decorated
bundle (E,ϕ) of type t the following conditions are equivalent:

� PI + δµI ≥ 0 for any weighted filtration (E•, α)I;

� PI + δµI ≥ 0 for any weighted filtration (E•, α)I of length ≤ a+ st.

Until now we have not been able to prove the above statement.
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[5] O. Garćıa-Prada, P.B. Gothen and I. Mundet I Riera, The
Hitchin-Kobayashi correspondence, Higgs pairs and surface group
representations, arXiv:0909:4487v3.
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In Seminaire Bourbaki, Volume 6, Number 221, pp 249-276.

[12] A. Grothendieck, Sur la classification des fibrés holomorphes sur
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