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Introduction

In this thesis, some nonlinear problems coming from conformal geometry and physics, namely the
prescription of @Q-curvature, T-curvature ones and the generalized 2 x 2 Toda system are studied.
We study also the existence of extremal functions of two Moser-Trudinger type inequalities (which
is a common feature of those problems) due to Fontana[40] and Chang-Yang[23].

0.1 Introduction of the problems

The study of the relationships between conformally covariant operators on compact closed Riem-
mannian manifolds, their associated conformal invariants and the related partial differential equa-
tions has received much attention in the last decades.

A model example is the Laplace-Beltrami operator on compact surfaces (X, g), which governs
the transformation laws of the Gauss curvature. In fact under the conformal change of metric
gu = €2%g, we have

Ay, = 672“Ag; —Agu+ Ky = KgueQ“, (1)

where A, and K (resp. Ay, and K, ) are the Laplace-Beltrami operator and the Gauss curva-
ture of (X, g) (resp. of (X,g4))-
Moreover, we have the Gauss-Bonnet formula which relates [y, K dV, and the topology of ¥ :

[ Kaavy = 2mx()
>

where x(X) is the Euler-Poincaré characteristic of X. From this, we have that [, KodV is a
topological invariant (hence also a conformal one).

There exists also another example of a conformally covariant differential operator on four di-
mensional compact closed Riemannian manifolds called the Paneitz operator, and to which is asso-
ciated a natural concept of curvature. This operator, discovered by Paneitz in 1983 (see [74]) and
the corresponding Q-curvature introduced by Branson (see [11]) are defined in terms of Ricci
tensor Ric, and scalar curvature R, of the Riemannian manifold (A,g) as follows

) 2 .
Py = Agcp + div, ((SRgg — 2chg)d<p> ; (2)

1 .
Qy = _E(AgRg — R? 4 3|Ricy|?),

where ¢ is any smooth function on M.

As the Laplace-Beltrami operator governs the transformation laws of the Gauss curvature, we
also have that the Paneitz operator does the same for the Q-curvature. Indeed under a conformal
change of metric g, = e?“g we have

P, = 6_4“Pg; Pyu+2Q4 = 2que4".

7
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Apart from this analogy, we also have an extension of the Gauss-Bonnet formula which is the
Gauss-Bonnet-Chern formula

W 2
[ @+ Bebyay, = amvan,

where W, denotes the Weyl tensor of (M, g), see [33]. Hence, from the pointwise conformal in-
variance of |W,|?dV,, it follows that the integral of @, over M is also a conformal invariant.

On the other hand, there are high-order analogues to the Laplace-Beltrami operator and to
the Paneitz operator for high dimensional compact closed Riemannian manifolds and also to
the associated curvatures. More precisely, given a compact closed n-dimensional Riemannian
manifold (M, g), in [47] it was introduced a family of conformally covariant differential operators

o (for every positive integer m if n is odd and for every positive integer m such that 2m <n
if nis even ) whose leading term is (—A,)™. These operators are usually referred to as the GJMS
operators. Moreover after passing to stereographic projection Pj., coincides with (—Ag)™ if
M is the sphere and g its standard metric. In [9], some curvature invariants Q%,, were defined,
naturally associated to Pj.,,.

Now for n even let us set

Pr=Ps o Qr=Qp

Then in low dimensions we have the following relations
Pg2 =Ay; Q; =Ky,

and
Ps;l = Py; Q; =2Qy.

It turns out that P} is self-adjoint and annihilates constants. Furthermore as for the Laplace-
Beltrami operator on compact closed Riemannian surfaces and the Paneitz operator on compact
closed four dimensional Riemannian manifolds, for every compact n-dimensional Riemannian
manifold (M, g) with n even, we have that after a conformal change of metric g, = e%“g

P} =e "™P}; Plu+Qy =Qy ™. (3)
We remark, that due to equation (3) and to the fact that P7 is self-adjoint and annihilates
constants, | v @ydVy is conformally invariant and will be denoted by rpn.

In the paper of Fefferman and Graham, see [38], it was developed a tool which is referred to as
FG ambient metric construction and allows them to show existence of scalar conformal invariants.
Later the same tool was used to derive the GJMS operators. On the other hand, Branson [11] de-
fined the @Q-curvature in the even dimensional case via a continuation argument in the dimension,
while in the paper of Graham an Zworsky, see [48], (g was derived by an analytic continuation in
a spectral parameter. Furthermore, inspired by this work, Fefferman and Graham derived the Q-
curvature by solving some Lapace problem associated to the formal Poincaré metric in the ambient
space, and considering formal asymptotics of the solutions. Moreover this new approach of Feffer-
man and Graham to derive the Q-curvature allows them to define analogues of Pj' and Qj also
when nis odd. In this case, P’ and Qy enjo y several properties similar to their counterparts
in even dimension. More precisely Fj is self-adjoint and also annihilates constants. Moreover
P7 governs the transformation laws of Q7. On the other hand there is a difference because in the
odd case Pg' turns out to be a pseudodifferential operator. In the context of conformal geometry,
the role of P! and @)y is not clear yet since the definition of P and )y does not only depend on
the conformal class of the boundary of the ambient space but also on the extension of the formal
Poincaré metric to a metric in the interior.

As for the case of compact closed Riemannian manifolds, many works have been done also in
the study of conformally covariant differential (pseudodifferential) operators on compact smooth
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Riemannian manifolds with smooth boundary, their associated curvature invariants, the corre-
sponding boundary operators and curvatures in order also to understand the relationship between
analytic and geometric properties of such objects.

A model example is the Laplace-Beltrami operator on compact surfaces with boundary (%, g),
and the Neumann operator on the boundary. Under a conformal change of metric the couple con-
stituted by the Laplace-Beltrami operator and the Neumann operator govern the transformation
laws of the Gauss curvature and the geodesic curvature. In fact, under the conformal change of
metric g, = €2%g, we have

Ay, = 672uAg§ —Agu+ Ky = Kgue?u in %
9 o and 0
— : ou + kg = k;gue“ on OX.
Onyg, Ong Ing

where Ay (resp. Ay, )is the Laplace-Beltrami operator of (3, g) (resp. (X,g,)) and K, (resp.
K,,) is the Gauss curvature of (X, g) (resp. of (3 gu)), % (resp 87? ) is the Neumann operator

Ju

of (X, g) (resp. of (X,g,)) and k, (resp. kg, ) is the geodesic curvature of (9%, g) (resp of (9% gu)).
Moreover we have the Gauss-Bonnet formula which relates [ K dVy+ [ kydS, and the topology
of ¥

/ K,dv, + / kydS, = 2mx(5), (4)
b)) [

where x(X) is the Euler-Poincaré characteristic of 3, dVj is the element area of ¥ and dS is
the line element of 9%. Thus fz KqdVy + |, oy kgdSy is a topological invariant, hence a conformal
one.
The Paneitz operator and the @Q-curvature discussed above exist also on four dimensional Rie-
mannian ma Onifolds with boundary and enjoy the same conformal invariance properties that we
recall below.

On the other hand, Chang and Qing, see [18], have discovered a boundary operator P;’ defined
on the boundary of compact four dimensional smooth Riemannian manifolds and a natural third-
order curvature T, associated to P? as follows

10A,p Op Ry, Op
Pe = 5 gn + Bagy — 2HoBa + (Lo)ar(Va)a(Vols + VsHy Voo + (F = 50 2=
1 OR 1 1
'= 13 8n: + 5 RyHy— < Gy, Ly > +3H] — gTr(LB) + AgHy,
where ¢ is any smooth function on M, ¢is the metric induced by gon OM, Ly = (Lg)a =
—%%g—g is the second fundamental form of OM, Hy = itr(Ly) = 59°°Lay (9 are the entries

of the inverse g~! of the metric g¢) is the mean curvature of OM, RY., is the ambient (extrin-
sic) Riemann curvature tensor F = R%, .. Ruped = gakR’b“Cd (gak are the entries of the metric
g) and < Gy, Ly >= Ranpn(Lg)ab-

As for closed Riemannian manifolds, we have that, as the Laplace-Beltrami operator and the
Neumann operator govern the transformation laws of the Gauss curvature and the geodesic curva-
ture on compact surfaces with boundary under conformal change of metric, the couple (P;, Pg’) does
the same for (Qg,T,) on compact four dimensional smooth Riemannian manifolds with boundary.
In fact, after a conformal change of metric g, = e**g we have that

Pt = gmtupt. P*4+2Q,=2Q, ¢* in M
{ Gu g and g g Gu

5
P} =e P, P} + T, =T,,e*" on OM. )

Apart from this analogy, as in the case of closed compact four dimensional Riemannian manifolds,
there holds also an extension of the Gauss-Bonnet formula (4) which is known as the Gauss-
Bonnet-Chern formula

/M(Qg + 'VV;'Q )V, + /GM<T + Z)dS, = 4> (M) (6)
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where W, denotes the Weyl tensor of (M,g) and ZdS, (for the definition of Z see [18]) are
pointwise conformally invariant. Moreover, it turns out that Z vanishes when the boundary is
totally geodesic (by totally geodesic we mean that the boundary OM is umbilic and minimal).
Setting

R p4 :/ div;“ K p3 :/ ngSg,
g M 7 M

we have that thanks to (6), and to the fact that WydV, and ZdS, are pointwise conformally
invariant, also k ps + Kps is conformally invariant, and will be denoted by

K(p4,ps) :Iip51+/€P§. (7)

We have three Uniformization type problems related to equations (3), and (5) that we describe
in more details in the next Subsections.

The application of the method of nonlinear partial differential equations in the study of con-
formal structures on manifolds can be trace back to Poincaré. Indeed, using the later method
Poincaré solved the Classical Uniformization problem for closed Riemannian surfaces of genus
greater than 1. The analogous question for surfaces of positive curvature was first succesfully
studied by Moser, in which he obtained with precise constant a sharp version of a limiting case of
Sobolev inequality that is commonly referred to as the Moser-Trudinger inequality. This inequal-
ity was the crucial analytical tool in Moser’s argument. The role played by the Moser-Trudinger
inequality in Moser’s variational approach is due to the exponential nonlinearity and not to the
fact that the problem is the one of prescribing Gaussian curvature. Thus such ideas can be applied
to deal with variational problems with exponential nonlinearities. The later type of problems are
very well-know to be models for many physical phenomenon. A celebrated example is the following
system called Toda system defined on a domain Q) C R?,

N
fAui:Zaije“j, iil,...,N, (8)
j=1

where A = (a;;)i; is the Cartan matriz of SU(N + 1),

2 -1 0 0
-1 2 -1 0 0

Al 0 12 0o | ()
0 -1 2 -1
0 0 -1 2

and arising in the study of non-abelian Chern-Simons theory, see for example [35] or [84].
The system

N

hje%i

—Au; = pa--(f—l), i=1,...,N, (10)
i ; 7% fZ hje“JdVg

where h; are smooth and positive functions on the surface ¥ (of volume 1) is a generalized version
of (8). When N = 2, the system becomes

_ — __hie®t _ __hee"™ 4.
Auy = 2p; Tz hiev1dv, 1 P2\ T-haemzav, L) on % (11)
_ h2€u2 h]@ul _ ’
_AUQ = 2p2 1) - P1 [y hie"1advy, 1),

[ hoe"2dVy

and is reffered as the generalized 2 x 2 Toda system.
The solvability of the system (11) is a very important question in physics, and is investigated in
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this thesis. We will discuss it in more details in the next Subsection.

A common feature of the above problems is a phenomena called bubbling. As said above, the
crucial analytical tools which allow to deal with it are Moser-Trudinger type inequalities. There
are two important objects in the study of Moser-Trudinger type inequalities: one is to find the best
constant and the other is to determine whether there exists extremal functions. In this thesis, we
study the problem of the existence of extremal functions for two Moser-Trudinger type inequalities
due to Fontana[40] and Chang-Yang[23] that we discuss in more details below.

0.1.1 The prescribed ()-curvature problem in arbitrary dimensions

The prescribed @-curvature problem for compact closed Riemannian manifold (M, g) of arbitrary
dimension n, consist of finding metrics conformal to g such that the corresponding @Q-curvature
is a constant. Due to equation (3), the problem is equivalent to finding a solution of the equation

Plu+Qp =Qe™ in M; (12)

where @ is a real constant.
The problem has a variational structure. Hence in view of standard elliptic regularity theory,
solutions can be found as critical points of the following functional

ITa(u) = n(Pju, uy + 2n/ QyudVy — 2k pn log/ e"™dVy; we H=(M). (13)
M M
Since this Euler-Lagrange functional is in general unbounded from above and below, it is nec-
essary to find extremas which are possibly saddle points. We will use a min-max scheme following
the method of Djadli and Malchiodi in [33]. By classical arguments, a min-max scheme yields a
Palais-Smale sequence, namely a sequence (u;); € H 2 (M) satisfying the following properties

ITa(w) —c€R; Il () — 0 asl — +oo. (14)

Then, to recover existence, one should prove for example that (u;); is bounded, or a similar
compactness criterion. But since we do not know if the Palais-Smale condition holds or even if
Palais-Smale sequences are bounded, we will employ a monotonicity argument due to Struwe ,
see [80]. This consists in studying compactness of solutions to perturbations of (12), like

Plup+ Q= Q™ in M; (15)
where
Qi — Qo in C'(M); (16)
Qr— Qo in CY(M); (17)
Qo > 0. (18)

Adopting the standard terminology in geometric analysis, we say that a sequence (u;) of solutions
to (15) blows up if the following holds:

there exist x; € M such that w;(z;) — 400 as | — +oo, (19)

To give some geometric applications, we discuss three results proven by Gursky, [49], and
by Chang, Gursky and Yang, [17],[20] for the four dimensional case. If a manifold which
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has a conformal metric of positive constant scalar curvature satisfies | v @gdVy > 0, then its
first Betti number vanishes. Moreover up to a conformal metric it has positive Ricci tensor,
and hence M has a finite fundamental group. Furthermore, if the quantitative assumption
fM QqdVy > %fM |W,|2dV, holds, then M must be diffeomorphic to the four-sphere or to the
projective space. In particular the last result is an improvement of a theorem by Margerin, [68] with
a conformally invariant assumption, while the one of Margerin assumes pointwise pinching condi-
tions on the Ricci tensor in terms of Wj.

Finally, we also point out that the Paneitz operator, the @-curvature and their high-dimensional
analogues, see [9] , [10], appear in the study of Moser-Trudinger type inequalities, log-determinant
formulas and the compactification of locally conformally flat manifolds, see [12], [20], [21], [22].

For the four dimensional case, problem (12) has been solved in [23] under the assumption that Py is
a non-negative operator and || w QgdVy < 872 (872 is the integral of the Q-curvature on the stan-
dard sphere). Under these assumptions by the Adams inequality (see [22])

1
log/ 4(““alV<8 (Pyu,u) +C, we€ H*(M),
M

where u is the average of uw and where C depends only on M, the functional 71, is bounded
from below, coercive and lower semicontinuous, hence solutions can be found as global minima
using the Direct Methods of the Calculus of Variations. A first sufficient condition to ensure these
hypotheses was given by Gursky in [49]. He proved that if the Yamabe invariant of (M, g) is
non-negative, and if | v @gdVy > 0, then P, is non-negative with trivial kernel, and moreover
/ w QgdVy < 872, with the equality holding if and only if M is conformally equivalent to S*.
More recently Djadh and Malchiodi (see [33]) proved existence of solutions for (12) still in the
four-dimensional case under generic assumptions. More precisely they proved existence of solu-
tions when P, has no kernel and [, Q,dV, ¢ 8m2N. These conditions include manifolds with
negative curvature or negative Yamabe class, for which [ v @gdVy can be bigger than 82

For the n-dimensional case with n even, problem (12) has been solved under the condition that
P} is a non-negative operator with trivial kernel and rpn < (n —1)lw, ( (n — 1), is the value
of Kkpn on the standard sphere) using a geometric flow (see [13]). On the other hand, since under
these assumptions by a Moser-Trudinger type inequality (see Chapter 1), the functional is bounded
from below, coercive and lower semicontinuous, then solutions can be found also by Minimization
via Weierstrass theorem in the Calculus of Variations, as for the case of [23].

0.1.2 The prescribed ()-curvature and 7T-curvature problem on four man-
ifolds with boundary

When considering the problem of prescribing the Q-curvature and the boundary T-curvature of
a compact four dimensional Riemannian manifold with boundary (M, g), of particular relevance
are two cases. The first one consist of finding metrics conformal to g such that the corresponding
Q-curvature is constant and the T-curvature zero, and the second one to search for metrics in
the conformal class of the background metric g for which the T-curvature is constant and the
Q-curvature vanishes.

In this thesis, due to PDEs reasons, we will focus on two particular cases:

a): To search for conformal metrics in [g] with constant @Q-curvature, zero T-curvature and zero
mean curvature,

b): To find metrics conformally related to g with constant T-curvature, zero Q-curvature and
vanishing mean curvature.

From the fact that the Neumann operator governs the transformation law (under conformal
changes) of the mean curvature and (5), we have that problem a) is equivalent to solving the
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following BVP: B
P;u +2Q4 = 2Qe in M;

Pg?’quTg:O on OM;
0
—"—ngzo on OM,
Ong

where @ is a fixed real number and 6% is the inward normal derivative with respect to g.
g
Problem b) reduces to solving

Pru+2Q, =0 in M;
Pju +T, = Te*  on OM;

0

g Hyu=0 on OM,

ong :

where T is a fixed real number and % still denoting the inward normal derivative with respect
g

to g.

Due to a result by Escobar, [36], and to the fact that we are interested in solving the problem under

conformally invariant assumptions, it is not restrictive to assume H,; = 0, since this can always be

obtained through a conformal transformation of the background metric. Thus, to solve problem

a), we are led to solve the following BVP with Neumann homogeneous boundary condition:

Plu+2Q, = 2Qe™ in M;

3 _ .
Pu —|—8Tg =0 on OM; (20)
g 0 on OM,
ong
and problem b) to solve
Pyu+2Q, =0 in M;
3 _ . 3u .
Pju +8Tg =Te on OM,; (21)
- 0 on OM.
ong
Defining Hai as
0
Hi:{UGHQ(M)I —u:0};
on 8ng

and p;l,ii as follows, for every wu,v € Hai

2
<P;’3u,v>L2(M) = /M (AguAgv + BRngquv> dvy, — 2/M Ricy(V4u, Vgyv)dVy
—2/ LQ(VQ'LL,V@’U)ng,
oM
we have that, by the regularity result in Proposition 0.3.5 below, critical points of the functional
Ilg(u) = <P4’3u,u>L2(M) + 4/ QqudVy + 4/ TyudSy — K(pa,ps) log/ e4udVg; ueHa,
M oM M an

which are weak solutions of (20) are also smooth and hence strong solutions. Furthermore by
the regularity result in Proposition 0.3.8 below, critical points of the functional

4
IIT(u) = <P473U?U>L2(M) +4/M qudVg +4/3M Tgung — g/{,(pz;,p?,) IOg/aM e3ung; = H%,
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which are weak solutions of (21) are also smooth and hence strong solutions.

For the same reasons as in the problem of finding constant @-curvature conformal metrics on
compact closed Riemannian manifolds, to solve these two problems, we use mix-max arguments
and Struwe’s monotonicity method. Therefore, to find solutions for BVP (20), we have to study
compactness of solutions to perturbations of (20) of the form,

P;ul +20Q; = 2Q;e* in M;

3 _ .
Pgu—ng—O on OM; (22)
Th on M,
ong

where

Q— Qo>0 in C*(M); Q — Qo in C*(M); T, — Ty in C*(OM);  (23)

and for BVP (21) to study compactness of solutions to perturbations of (21) like

Plu;+2Q; =0 in M;
Pluy+ T, =Tie*™  on OM; (24)
du _, on OM,
ong
where
T, — Ty >0 in C*OM) T} — Ty in C*(OM) Q — Qo in C*(M); (25)

As in the case of the prescribed Q-curvature problem in arbitrary dimensions, here we also adopt
the standard terminology in geometric analysis, and we say that a sequence (u;) of solutions to
(22) blows up if the following holds:

there exist z; € M such that w;(z;) — 400 as | — +oc. (26)

On the other hand, from the Green representation formula given in Lemma 0.3.3 below, we have
that if wu; is a sequence of solutions to (24), then wu; satisfies

w(r) ==2 [ Gx,y)Qu(y)dV, — 2/ Gla,y)Tu(y)dSy(y) +2 | Glz,y)Ti(y)e* W dS,(y).
M oM oM

Therefore, under the assumption (23), if supy,; w; < C, then we have w; is bounded in C*+ for
every a € (0,1).
Hence in this context, we say that a sequence (u;) of solutions to (24) blows up if the following
holds:

there exist z; € M such that w(z;) — 400 as | — +oo. (27)

To mention some geometric applications, we discuss two results which can be found in the
survey [24]. The first one is a rigidity type result saying that if (M, g) has a constant positive
scalar curvature and 9M has zero mean curvature, then r(pa psy < 472; and the equality holds
if (M,0M)is conformally equivalent to the upper hemisphere (Si,SB). The second one is a
classification of the pairs (M,0M) with @ =0 and T = 0. Indeed it says that, if (M,0M) is
locally conformally flat with umbilic boundary OM, Q =0,7 =0, Y(g) > 0 (where Y (g) = inf <
L.u,u > where the infimum is taken over all metrics conformal to g with the same volume as g
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and zero mean curvature and L. = —6A, + R is the conformal Laplacian) and x (M) = 0 then
either (M,0M) = (S* x 53,8 x 5§2), or (M,0M) = (I x 53,01 x S®) whe re I is an interval.

To the best of our knowledge, the first existence results for problem a) have been obtained
by Chang and Qing, see [19] under the assumptions that Pg4’3 is non-negative, K erPg473 ~ R and
K(pa,p3y < 472, and no existence results is known for the problem b).

In the case of closed four dimensional Riemannian manifold M, it is well-known that the Q-

curvature equation is intimately related to a fully nonlinear PDE called the os-equation (o2(A4y) =
2Qg + §AyRy is the second symmetric function of the Shouten tensor Ay), see [17],[20]. A
study of the latter PDE has given important geometric applications of the @Q-curvature. In
[17],[20], it is proven that if the underlying Riemannian manifold has a conformal metric of pos-
itive constant scalar curvature and [ v @gdVy > 0, then its first Betti number vanishes. More-
over up to a conformal metric it has positive Ricci tensor, and hence M has a finite funda-
mental group. Furthermore, as said in the previous Subsection, if the quantitative assumption
/ v QedVy > % I} o |W,|2dV;, holds then M must be diffeomorphic to the four-sphere or to the
projective space.
In the case when M has a boundary, Chen [25] has studied an analogue of the os-equation which
turns out to be a fully nonlinear BVP. Among other results, she obtained that if the Yamabe in-
variant Y (M, M, [g]) (for the definition, see [25]) and k(ps, ps) are both positive and M umbilic
then there exists a metric g, in the conformal class of g such that oa(A,,) is a positive constant
(hence Qg, constant), Ty, = H,, =0, hence giving another existence result for the problem a).
Furthermore g, can be taken so that the Ricci curvature Ricg, is positive, hence M has a finite
fundamental group.

Remark 0.1.1. We point out that due to the rigidity type result above, the assumptions under
which Chen obtained existence results for problem a), we have that implicitely k(pa psy < 472 (
even if the the boundary is not umbilic).

0.1.3 The generalized 2 x 2 Toda system

The generalized 2 x 2 Toda system is the following system:

_ - __hie®t _ _hge" .
Aur =2p S hie*1dV, 1 P2 J5 hae*2dV DX on %
—Aus = hge"2 By et , ’
uz = 20 1 1)

Tohsezav, — )~ PL\ TS henav, —

where h; are smooth and positive functions on the Riemannian surface 3 which we assume to
have unit volume. Problem (11) is variational, and solutions can be found as critical points of the
functional 1, : H(X) x H(X), p = (p1, p2) defined as

2 2 2
1 ..
II,(ui,us) = 3 § /Za”VuZqujdVg + E pi/zuidVg— E pilog/zhie“idVg.
=1 i=1

ij=1
Here a% are the entries of the inverse matrix A=! (where A is as in (9)).

The structure of the functional 11, strongly depends on the values of p; and p. For example, the
condition p; < 47 for both ¢ = 1,2 has been proven in [44] to be necessary and sufficient for 11,
to be bounded from below, see Theorem 1.3.6 (we refer also to [77] and [78]). In particular, for
p1 and ps strictly less than 47, 11, becomes coercive (once we factor out the constants, since 11,
is invariant under the transformation u; — u; + ¢;, ¢; € R) and solutions of (11) can be found as
global minima.

The case in which one of the p;’s becomes equal to 47 (or both of them) is more subtle since the
functional is still bounded from below but not coercive anymore. In [43] and [58] some conditions
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for existence are given in this case, and the proofs involve a delicate analysis of the limit behavior
of the solutions when the p;’s converge to 47 from below.

On the other hand, when some of the p;’s are bigger than 4m, 11, is unbounded from below
and solutions should be found as saddle points. In [63], [72] and [73] some existence results are
given and it is proved that if h; = 1, and if some additional assumptions are satisfied, then (0, 0) is
a local minimizer for 11,, so the functional has a mountain pass structure and some corresponding
critical points. Furthermore in [43] a very refined blow-up behavior of solutions is given (below we
report Theorem 2.4.1 as a consequence of this analysis) and existence is proved if ¥ has positive
genus and if py, po satisfy either (i) p1 < 4w, p2 € (47, 87) (and viceversa), or (ii) p1, p2 € (4, 8).

In this thesis we investigate the solvability of the generalized 2 x 2 Toda system in the case
where one of the p; can be very large and the other one less the 4.

0.1.4 Extremals for Fontana and Chang-Yang inequalities

In his study of the extension of the results of Adams[1] to compact closed Riemannian manifolds,
L. Fontana[40] has proved among other things the following optimal inequality

/ 274V, < C Yu € H*(M) such that / |Au|?dV, <1 and / udV, =0.  (28)
M M M

Likewise, in their study of the extremals of the log-determinant functional on four dimensional
closed Riemannian manifolds, Chang and Yang[23] have proved an optimal inequality involving
the Paneitz operator. Precisely, they showed that if the Paneitz operator Pg4 is non-negative with
trivial kernel, then there holds

/ 632”2“2dVg < C Yu € H*(M) such that < P;u,u ><1 and / udVy = 0. (29)
M M

The problem of extremals for Fontana’s inequality (resp Chang-Yang’s inequality), is the one
of finding whether there exists an extremal for the maximization problem

sup / 632”2“2dVg, where Hy = {u € H*(M) : 7 =0, / |Agul?dV, = 1}.
u€Hy J M M

respectively

sup / 632”2“2dVg, where Ho ={u€ H*(M):u=0, < P;u,u >=1}
u€Hz J M

We recall that for the Sobolev inequality, the related extremal problem has no solution if the
domain is a ball of the Euclidean space. However, Carleson and Chang[16] proved a suprising
result by showing that indeed for the associated Moser-Trudinger inequality on the unit ball in
Euclidean space, there is a solution. This result was later extended to every connected domain in
two dimensional Euclidean space by Flucher[42]. In 2001 Li[59] proved the existence of extremal
functions for Moser-Trudinger inequality on every compact closed Riemannian surface.

We remark that in all these problems, the Euler-Lagrange equations associated are second order
in contrast to the probems of finding extremals for Fontana and Chang-Yang inequalities.

0.2 Content of the thesis

In this thesis, we study the four problems described above. The ones of prescribing @Q-curvature of
a compact closed manifold of arbitrary dimension, of prescribing the @-curvature and boundary
T-curvature of a compact four dimensional manifold with boundary and the generalized 2x2 Toda
system are mon compact variational problems. By mon compact, we mean that the standard
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compactness conditions like Palais-Smale one fail to hold. We tackled them using min-max method
and refined blow-up analysis combined with a monotonicity method introduced by Struwe. The
problem of finding extremals for Fontana’s inequality and Chang-Yang’s one is solved through
blow-up techniques combined with Pohozaev type identity and capacity estimates to overcome
the lack of a good maximum principle for fourth order PDEs and the fact that truncations are
not allowed in H?. We remark that the crucial analytical tools for the study of the problems of
prescription of @-curvature in arbitrary dimension, of prescribing the @-curvature and boundary
T-curvature of a compact four manifold with boundary and the generalized 2 x 2 Toda system
are Moser-Trudinger type inequalities. We divide the thesis into three main Chapters. In the
first one, we recall some classical Moser-Trudinger type inequalities, give some new ones and their
improvement used to tackle the problem of prescribing @Q-curvature in arbitrary dimension, Q-
curvature and T-curvature of a four manifold with boundary, and the generalized 2 x 2 Toda
system, and the proof of the existence of extremals for Fontana’s inequality and Chang-Yang’s
one. The second Chapter is concerned with the blow-up analysis of perturbations of the PDEs
(BVPs) involved in the problems of prescription of Q-curvature, T-curvature and the generalized
2 x 2 Toda system, and will be used to overcome the lack of compactness in their study. The last
Chapter deals with the min-max scheme to get existence results for the problems of prescribing
constant @-curvature in arbitrary dimensions, constant Q-curvature, constant T-curvature on four
dimensional manifolds with boundary, and the generalized 2 x 2 Toda system on compact closed
surfaces.

0.2.1 Existence of extremals for Fontana and Chang-Yang inequalities

In Chapter 1, the main results we obtain are the existence of extremal functions for Fontana and
Chang-Yang inequalities. Precisely, we prove the following two theorems:

Theorem 0.2.1. Let (M,g) be a compact closed smooth 4-dimensional Riemannian manifold.
Then setting
Hy = {u € H*(M) such that 1 =0 and / |Agul?dV, = 1}
M

we have that

2 2
sup / 63277 u d‘/g
u€H1 J M

s attained.

Theorem 0.2.2. Let (M,g) be a compact closed smooth 4-dimensional Riemannian manifold.
Assuming that P; is non-negative and KerP;L ~ R, then setting

Hy = {u € H*(M) such that u=0 and < Pju,u>=1}

we have that

2,2
sup/ e327ru d‘/g
uEH2 J M

is attained.
These results are obtained in collaboration with Yuxiang Li and are contained in the paper[61].

Remark 0.2.3. Since the leading term of P; s Ag, then the proof of the two Theorems are quite
similar. We point out that the same proof is valid for both, except for some trivial adaptations,
hence we will give a full proof of Theorem 0.2.1 and only a sketch of the proof of Theorem 0.2.2.

Remark 0.2.4. As already said in the discussion of the prescribed Q-curvature problem in arbi-
trary dimensions, we recall that due to a result by Gursky, see [49] if both the Yamabe invariant of
(M,g) and fM Q4dVy are non-negative, then we have that Pg4 s non-negative and KerPg4 ~ R,
hence we have the assumptions of Theorem 0.2.2.
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We are going to describe our approach to prove Theorem 0.2.1. We use Blow-up analysis.
First of all we take a sequence (ay), such that oy 3272, and by using Direct Methods of the
Calculus of variations we can find wu; € H; such that

2 2
/ e U dV, = sup / e dVy.
M veEH1 J M

see Lemma 1.5.1. Moreover using the Lagrange multiplier rule we have that (uy)y satisfies the
equation:
Uk 2
Ay, = S Uk
AW

— Yk (30)

for some constants Ax and .

Now, it is easy to see that if there exists « > 3272 such that S Ui dVy is bounded, then
by using Lagrange formula, Young’s inequality and Rellich compactness Theorem, we obtain that
the weak limit of u; becomes an extremizer. On the other hand if

e, = max [ug| = fug|(zk);

is bounded, then from standard elliptic regularity theory, wuy is compact, and thus converges
uniformly to an extremizer. Hence assuming that Theorem 0.2.1 does not hold, we get

)

Vo > 3272 lim Uk qV, — ~+00;
k—-+o0 M 9

2)
cr — +o00.

We will follow the same method as in [59] up to some extents.

In [59] where the author deals with a second order problem, the function sequence studied is
the following:

_Aguk — 760‘;{“)? — Yk
where o, " 4, and uy, attains sup I} o e“kudeg. The author also assumed ¢ —
Sy 1V gul2dVy=1,a=0
+00. Then he showed that
2apcp (up(zp + rrz) — ) — —2log(1 + 7|z|?) (31)

for suitable choices of rg, xx with ry — 0. Next he proved the following

1
lim Voup|?dV, = — VA > 1, 32

which implies that
A
lim e dVy = Voly(M) + lim =F,
k—+o00 M k—+o00 Ci.
and that cpuy converges to some Green function weakly. In the end, using capacity arguments
which consist in evaluating the energy of wg on a annulus around the blow-up point, he got an
upper bound of ’c\—é
k

Remark 0.2.5. (31) was first noticed by Struwe in [81], and (32) also appeared in [2].
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However there are two main differences between the present case and the one in [59]. One is
that there is no direct maximum principle for equation (30) and the other one is that truncations
are not allowed in the space H?(M) . Hence to get a counterpart of (31) and (32) is not easy.

To solve the first difficulty, we replace cp(uk(zr + rex) — cx) with Bi(ug(expg, (rez)) — k),
where

1/@:/ @ewidvg.
M Nk

By using the strength of the Green representation formula, we get that the profile of wuy is either a
constant function or a standard bubble. The second difficulty will be solved by applying capacity
and Pohozaev type identity. In more detail we will prove that Sxur — G (see Lemma 1.5.6) which
satisfies
{ A2G = 7(0yy — Volg(M))
.G =0.

for some 7 € (0,1]. Then we can derive from a Pohozaev type identity (see Lemma 1.5.7) that

lim eak“iqu =Vol,(M)+ lm 7 /\—

k—+oco Jar k—+o00 P

In order to apply the capacity, we will follow some ideas in [57]. Concretely, we will show that
up to a small term, the energy of wuj on some annulus is bounded below by the Euclidean one
(see Lemma 1.5.10). Moreover, one can prove the existence of Uy (see Lemma 1.5.11) such that
the energy of Uy is comparable to the Euclidean energy of wuy , and the Dirichlet datum and
Neumann datum of Uy at the boundary of the annulus are also comparable to those of ug. In
this sense, we simplify the calculation of capacity in [60]. Now using capacity techniques we get

% — dand dr =1, see Proposition 1.5.12. Furthermore we have that

2k ™ g+32w280_

Hence we arrive to

- 2,2 7T2 54 2
sup / 32V, < Vol (M) + —e3 32 5o, (33)
ueEH1 J M 6

In the end, we will find test functions in order to contradict (33). We will simplify the arguments
in [59]. Indeed we use carefully the regular part of G to avoid cut-off functions and hence making
the calculations simpler.

0.2.2 Some compactness results for ()-curvature, () —T-curvature equa-
tions and generalized 2 x 2 Toda system

In Chapter 2, we study the compactness issue of some perturbations of the @-curvature equa-
tions on compact closed Riemannian manifolds of arbitrary dimension, of the Q-curvature and
T-curvature equations on compact four dimensional Riemannian manifolds with boundary. Fur-
thermore, using a result of Jost-Lin-Wang[43] and Yanyan Li[52], we prove a compactness result
for the generalized 2 x 2 Toda system.

The main results obtained in Chapter 2 are the following:

Theorem 0.2.6. Let (M, g) be a compact closed smooth n-dimensional Riemannian manifold
(n>3). Suppose KerP)' ~ R and that (u;) is a sequence of solutions of (15) with Q satisfying (16)
Q satisfying (17), and Qq satisfying (18). Assuming that (u;); blows up (in the sens (19)), there
exists N € N* such that

/ QodVy = N(n — 1)lw,. (34)
M

From this and standard elliptic regularity theory, we derive the following corollary:
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Corollary 0.2.7. Let (M, g) be a compact closed smooth n-dimensional Riemannian manifold(n >
3) and suppose KerP; ~R.

a) Let (u;) be a sequence of solutions of (15) with Q satisfying (16), Q; satisfying (17) and Qo
satisfying (18). Assume also that

kQ:/ QodVg;ék(n—l)'wn ]4121,2,3,.... (35)
M
Then (w;); is bounded in C*(M) for any « € (0,1).

b) Let (u;) be a sequence of solutions to (12) for a fized value of the constant Q. Assume that
kpn #k(n—Dlw, k=1,2,3,..., then (w); is bounded in C™(M) for every positive integer m.

¢c) Let (u,,) {px — 1} be a family of solutions to (12) with QI replaced by prQY ,and Q by
prQ for a fived value of the constant Q. Assume also that kpn # (n — 1)lkw,, then (up,, )y is
bounded in C™(M) for every positive integer m .

d) If kpn # k(n — Dw, k =1,2,3,..., then the set of metrics conformal to g with constant
Q-curvature and of unit volume is compact in C™(M) for positive integer m.

Theorem 0.2.13 and corollary 0.2.7 are contained in the paper[69].

We are going to describe our strategy to prove Theorem 0.2.6. Our method follows up to
some extent [34] and [64]. However some new ideas are needed since some of the arguments
in [34] and [64] rely on the fact of being in low dimensions (more precise comments are given
below). We study equation (15) as an integral one. This is possible since one can show that
Py admits a Green’s function G(z,y) which is symmetric and for which G(z,y) ~ - log m for
x ~ y. Hence from the existence of the Green’s function, we have that equation (15) can be written
as

w(z) — o = /M G, y)(Que™® — Quy))dVy(y) = € M. (36)

As a first issue in the proof of Theorem 0.2.6 we determine the profile of solutions near blow-up
points. To do this in [34] and [64], a scaling argument and a classification result by C.S Lin
[62] is used. Unfortunately this classification result for entire solutions of (—A)2u = ™ (without
growth condition at infinity) is available only in dimension 2 and 4.
In higher dimensions, it is convenient instead to use the full strength of (36) and still after a
scaling argument to arrive to the following integral equation on R"™

|l 1
u(z) = / o log( Ye™dy — — log(ky,). (37)
n |z — y n
Assuming only that [,, e"“dz < oo, solutions of (37) have been classified by X. Xu in [89] as
standard bubbles and this allows us to deduce the profile of blow ups of (12). Moreover using a
generalized Pohozaev equality proven by X. Xu in [89] we derive a volume quantization near the

blow ups points.

At this stage the analysis is only local, and the next issue is to obtain a global volume quan-
tization as in the statement of Theorem 0.2.6. After proving a Harnack type inequality, one is
reduced to study the behavior of the radial average @;(r) = Vol, (0B (7) 013” faB uldag. For doing

this in [64] this function was studied by an ODE analysis Whlle in [34] it was mainly done using
a classification results of some singular solutions to a PDE in R?.

On the other hand, one can still exploit the properties of (36) entirely. Here indeed we can also
radialize (36) and study the radial function @;(r) as a solution of a suitable integral inequality
in one variable. This approach seems rather natural.

The next compactness result obtained deals with the prescribed Q-curvature equation on com-
pact four dimensional Riemannian manifolds with boundary.
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Theorem 0.2.8. Let (M,g) be a compact smooth four dimensional Riemannian manifold ‘with
smooth boundary. Suppose KerP;*3 ~ R and that (u;) is a sequence of solutions to (22) with Q, Q;
and T; satisfying (23). Assuming also that (u;); blows up (in the sense of (26)) and

/ QOdVng/ Tong+ol(1):/ Qle4“ldVg; (38)
M oM M

then there exists N € N\ {0} such that
/ QodV, + / TodS,; = AN72.
M oM

From this, and from the regularity result in Proposition 0.3.5 below, we derive the following corol-
lary .

Corollary 0.2.9. Let (M,g) be a compact smooth four dimensional Riemannian manifold with
smooth boundary, and suppose KerP;’g’ ~ R.

a) Let (u;) be a sequence of solutions to (22) with Q;, Q; and Ty satisfying (23). Assume also that

/ QodV, —|—/ TodSg + o(1) = Qle4“’dVg;
M oM M

and
ko=/ QodVg+/ TodS, # 4km* k=1,2,3,....
M oM

then (up); is bounded in CT*(M) for any « € (0,1).

b) Let (u;) be a sequence of solutions to (20) for a fived value of the constant Q. Assume also
that Kk(pa psy # 4k7?, then (up); is bounded in C™(M) for every positive integer m.

c) Let (up,) {prx — 1} be a family of solutions to (20) with T, replaced by prTy , Qg by prQy and
Q by prQ for a fized value of the constant Q. Assume also that k(ps psy # 4km?, then (up, )y is
bounded in C™(M) for every positive integer m.

d) If Kk(ps psy # dkm? k= 1,2,3,..., then the set of metrics conformal to g with constant
Q-curvature, zero T-curvature, zero mean curvature and of unit interior volume is compact in
C™(M) for positive integer m.

Theorem 0.2.16 and Corollary 0.2.9 are contained in the paper[70].

Now we describe our approach to prove Theorem 0.2.8. We use a strategy related to that
n [34], but in our case, we have to consider possible blow-ups at the boundary. We recall that
a variant of this method was used to prove Theorem 0.2.6, and it relies strongly on the Green
representation formula, transforming the PDE into an integral equation. For this case, we will
employ a similar method since for the BVP one can prove the existence of a Green representation
formula as well (using the method of the parametrix) with the difference that we have a boundary
term, see Lemma 0.3.3. We consider the same scaling as in [34] and in the proof of Theorem 0.2.6.
When we deal with the situation of interior blow-up points, we use the same argument as in the
proof of Theorem 0.2.6 to get that the limit function Vy which describes the profile near the
blow-up point satisfies the following conformally invariant integral equation

e x — 7|

Hence using the same argument as in the proof of Theorem 0.2.6, based on a classification result
of X. Xu [89], we deduce that Vj is a standard bubble and the local volume is 872. On the other

. o 1
Vo(z) = 3 log (||Z|) Vo) gy — 1 log(3). (39)
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hand when the blow-up happens at the boundary, we obtain that the limiting function satisfies
the integral equation on the upper half space Ri

1
Volz) = / 5 (log 12 + log |Z|> Vo) gy 1 log(3).
R

4 Am? |z — z| |z — Z|
+

So from this we are able to deduce that the normal derivative of V{ vanishes. Thus using Alexan-
drov reflection principle, we infer that the even reflection across OR% Vj of Vj solves the con-
formally invariant integral equation on the entire space R* asin (39).

In this way, we can use the classification result of X. Xu (mentioned above) to deduce that Vj is
a standard bubble and that the local volume associated is 872. Hence we find that the profile
near such blow-up points (boundary) are half of a standard bubble and that the local volume
associated is 472. At this stage to conclude we argue, as in the proof of Theorem 0.2.6, to show
that the residual volume tends to zero, and obtain quantization. We point out that, by the above
discussion, the volume of an interior blow-up is double with respect to the one at the boundary.

Next, we give a compactness result which deals with the prescribed T-curvature equation on
compact four dimensional Riemannian manifolds with boundary.

Theorem 0.2.10. Let (M, g) be a compact four dimensional Riemannian manifold with smooth
boundary. Suppose KerP,3 ~ R and that (w;) is a sequence of solutions to (24) with Ty, T; and
Q satisfying (25). Assuming that (u;); blows up (in the sense of (26)) and

/ QodV, + / TodS, + or(1) = / The™ds,; (40)
M oM oM

then there exists N € N\ {0} such that
/ QodV, +/ TydS, = ANT*.
M oM

From this and the regularity result in Proposition 0.3.8 below, we derive the following corollary.

Corollary 0.2.11. Let (M,g) be a compact smooth four dimensional Riemannian manifold with
smooth boundary, and suppose that Ker P} ~R.
a) Let (u;) be a sequence of solutions to (24) with Tj, T; and Q satisfying (25). Assume also that

QodV, +/ TodSy + 0i(1) :/ Tleg“ldVg;
M oM oM

and

ko =/ QodVg—i-/ TodS, # 4km* k=1,2,3,....
M oM
then (w); is bounded in CT*(M) for any « € (0,1).

b) Let (u;) be a sequence of solutions to (21) for a fived value of the constant T. Assume also
that k(ps psy # 4km?, then (w); is bounded in C™ (M) for every positive integer m.

c) Let (uy,,,) {pr — 1} be a family of solutions to (21) with Ty replaced by prTy , Qg by prQq and
T by piT for a fized value of the constantT'. Assume also that k(ps psy # 4km?, then (u,,) is
bounded in C™(M) for every positive integer m.

d) If K(pa psy # 4kn? k = 1,2,3,..., then the set of metrics conformal to g with constant T-
curvature, zero Q-curvature, zero mean curvature and of unit boundary volume is compact in
C™(M) for positive integer m.



0.2. CONTENT OF THE THESIS 23

Theorem 0.2.10 and Corollary 0.2.11 are contained in the paper[71].

To prove Theorem 0.2.10 we use the same argument as in the proof of Theorem 0.2.6 and
Theorem 0.2.8, and the fact that due to the Green representation formula blow-up is equivalent
to blow-up at the boundary .

The last compactness result deals with the generalized 2 x 2 Toda system on a compact closed
Riemannian surface (X, g) of unit volume.

Theorem 0.2.12. Suppose hy, he are smooth positive functions on 3, and consider the sequence
of solutions of the system

- = el 1)~ _hae'k ).
A =201\ Toerray, — 1) = P2 oasereray; — 1) ony.  (41)
hoe"2:k hie"l.k :
—Aug = 2p2 i 2 1 1 1),

T haezhav, — +) T PLk\ T hietRay,

Suppose (p1.x)k lie in a compact set K1 of U, (dim,4(i + 1)), and that (pa2.r)k lie in a compact
set Ko of (—o0,4m). Then, if fz: u; xdVy =0 fori=1,2 and for k € N, the functions (uq x,u2)
of (41) stay uniformly bounded in L™= (%) x L>(X).

To prove Theorem 0.2.12, we exploit the blow-up analysis in [43] when ps stays positive and
away from zero. On the other hand, for p; € (—o00,d] with § positive and small, we use an
argument inspired by Brezis and Merle, [15], combined with a compactness result in [52].

0.2.3 Existence of constant ()-curvature conformal metrics in arbitrary
dimensions

In Chapter 3, we prove a high-dimensional analogue of the classical uniformization Theorem for
compact closed Riemannian surfaces. Precisely, we prove that, given a compact closed Riemannian
manifold (M, g) of dimension n, there exists a metric conformally related to g of constant Q-
curvature under generic and conformally invariant assumptions. Indeed we obtain the following
theorem:

Theorem 0.2.13. Let (M, g) be a compact closed smooth n-dimensional Riemannian manifold
with n > 3. Suppose KerP)' ~ R, and assume that rpn # k(n —1)lw, for k= 1,2,..... Then
M admits a conformal metric with constant Q-curvature.

Remark 0.2.14. (a) Our assumptions are conformally invariant and generic, so the result applies

to a large class of compact closed smooth n-dimensional Riemannian manifolds.

(b) Under these assumptions, by Corollary 0.2.7 above, we have that blow ups of sequences of
solutions to (12) is not possible. Indeed, these turn out to be bounded in C™ (M) for every integer
m.

Our assumptions include those made in [13] (and its counterpart in the odd dimensional case)
and (one) of the following two possibilities (or both)

kpn € (k(n — Dlw, , (k+1)(n—1)w,), forsome keN (42)

P} possesses k mnegative eigenvalues (counted with multiplicity). (43)

Theorem 0.2.13 is the main result in the paper[69].

Remark 0.2.15. a) For the sake of simplicity of the exposition, we will give the proof of Theo-
rem 0.2.13 in the case where P is non-negative and (42) holds. In Chapter 3 after the proof of
the main Theorems, we will make discussions to settle the general case.
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We are going to give the main ideas for the proof of Theorem 0.2.13 assuming that k£ = 0 and
(42) holds. Using an improvement of an appropriate Moser-Trudinger type inequality (see (1.4.1)),
we show that if the conformal volume e™ is spread into (k + 1) distinct sets where k is as in
(42), then the functional IT4 stays bounded from below. As a consequence, we deduce that
if kis given as in (42) and if IIa(w;) — —oo along a sequence, then €™ has to concentrate
near at most k points of M. Hence, if we assume the normalization f u €M dVy = 1, then
e ~ Zle t;0z,, where t; > 0, x; € M, Zle t; =1 for IT4(u;) — —oo. Therefore, as in
[33] we can map e™ onto My for [large, where My is the formal set o f barycenters of M of
order k. Precisely for L > 1 we can define a continuous projection ¥ : {IT4 < —L} — M}, which
is homotopically non-trivial. The non-triviality of this map comes from the fact that Mj is non-
contractible and from the existence of another map @5 such that ®5 o U is homotopic to the
identity on Mj,. Furthermore, the map ®j is such that IT4(®5(Mj)) can become arbitrary large
negative, so that W is well-defined on its image. Hence from this discussion we derive that for
L large enough {II4 < —L} has the same homology as M. Using the non contractibility of
M., we define a min-max scheme for a perturbed functional Il4,, pclose to 1, finding a P-S
sequence at some levels c¢,. Applying the monotonicity procedure of Struwe, we can show existence
of critical points of 114, for a.e p, and we reduce ourselves to the assumptions of Theorem 0.2.7

Some comments in the construction of the map @5 are in order. We basically use the same
function as in [33]. However, we point out that in [33] the estimates of IT14(p5) were done by
explicit calculations which was possible since the dimension was fixed and low. Here instead, since
we want to let n be arbitrary, we need a more systematic approach, which both simplifies and
extends that in [33], see Lemma 3.2.26 and its proof.

0.2.4 Existence of constant ()-curvature conformal metrics on four man-
ifolds with boundary

In Chapter 3, we prove a fourth order uniformization result for compact four dimensional Rieman-
nian manifolds with boundary. We prove that on any compact four dimensional smooth Rieman-
nian manifold with boundary, there exists a metric of constant @Q-curvature, zero T-curvature
and zero mean curvature within a given conformal class under generic and conformally invariant
assumptions. Precisely we prove the following theorem:

Theorem 0.2.16. Let (M, g) be a compact smooth four dimensional Riemannian manifold with
smooth boundary and suppose KerP;“3 ~ R. Then assuming k(ps psy 7# kdn? fork = 1,2,---,
we have that (M, g) admits a conformal metric with constant Q-curvature, zero T-curvature and
zero mean curvature.

Remark 0.2.17. a) As in Theorem 0.2.13, also here our assumptions are conformally invariant
and generic, so the result applies to a large class of compact 4-dimensional Riemannian manifolds
with boundary.

b) From the Gauss-Bonnet-Chern formula, see (6) we have that Theorem 0.2.16 does NOT cover
the case of locally conformally flat manifolds with totally geodesic boundary and positive integer
Euler-Poincaré characteristic.

¢) For the boundary Yamabe problem in low dimension (less than5) existence of solutions was
obtained only under the assumption of local conformal flatness of the manifold and umbilicity of
the boundary. However in our Theorem, we point out that no umbilicity condition for the boundary
OM and no flatness condition for M are assumed.

Our assumptions include the two following situations:

K(p4,p3) < 47% and (or) Pg4’3 possesses k negative eigenvalues (counted with multiplicity)
(44)
K(pa,p3) € (4k7r2 , 4k + 1)7r2) , for some k€ N* and (or) P;’g possesses k negative eigenvalues
(counted with multiplicity)
(45)
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Theorem 0.2.16 is contained in the paper|[70].

Remark 0.2.18. As in the case of Theorem 0.2.13, in order to simplify the exposition, we will also
give the proof of Theorem 0.2.16 in the case where we are in situation (45) and k = 0 (namely
P;’?’ is non-negative). At the end of Chapter 3, a discussion to settle the general case (45) and
also case (44) is made.

We are going to describe the main ideas in the proof of Theorem 0.2.16. We use the same
strategy as in the proof of Theorem 0.2.13 above. However in the present case, there are some
differences. These consists in the fact that M} might be contractible and also boundary con-
centration can appear, hence new ideas are needed. Using a more refined improvement of an
appropriate Moser-Trudinger inequality (see (1.4.2)), we first study how big can be the num-
ber of possible boundary and interior blow-up points for the conformal volume e**, u € {v €
Ho [,,e*dVy =1; Ilp(v) < —L} with L large enough. From this study, we derive that

on

if kis as in (45) and if IIg(w) — —ooalong a sequence w; with [, e*dV, = 1, then
e has to concentrate near at most h interior points and [ boundary points with 2h +1 < k and
e g =S 8, + sy, >0, Y i+ s =1; @ € int(M), y; € OM.
Therefore, instead of Mj, it is natural to consider the barycentric set (Mpy)y (for the definition
see Section Notation) which is a good candidate for describing the homology of large negative
sublevels of IIg. In order to do this, one needs to map (nontrivially) the large negative sublevels
into (Mp)k, and to do the opposite, namely to map (Mpy) (nontrivially) onto low sublevels of
I1lq. If the composition of these two maps is homotopic to the identity, we derive information
in the topology of the low sublevels of Ilg, in terms of the number of concentration points of
the conformal volume e*. To find the projection onto (Mp)x, we can use some of the argu-
ments in [33], but with evident differences , because of the presence of the boundary. Taking
advantage of the fact that the functions we are dealing with have zero normal derivatives, we
use a doubling argument, which consists of constructing a new C! manifold DM, and using the
Alexandrov reflection principle . We then use some suitable test functions to find the desired
homotopy equivalence.

Using the Mayers-Vietoris Theorem, one can prove that (Mjp)y is non-contractible. At this stage,
we define a min-max scheme as in the proof of Theorem 0.2.13, and we reduce ourselves to the
assumptions of Theorem 0.2.9.

0.2.5 Existence of constant 7T-curvature conformal metrics on four man-
ifolds with boundary

In Chapter 3, we also prove that, given any four dimensional Riemannian manifold with boundary
(M, g), there exists a metric in the conformal class of the background metric [¢g] with constant T-
curvature, zero Q-curvature and zero mean curvature, still under generic and conformally invariant
assumptions. We obtain the following theorem:

Theorem 0.2.19. Let (M, g) be a compact smooth four dimensional Riemannian manifold with
smooth boundary, and suppose KerP;’3 ~ R. Then assuming k(ps ps) # kdn? fork =1,2,...,
we have that (M, g) admits a conformal metric with constant T-curvature, zero Q-curvature and
zero mean curvature.

Remark 0.2.20. a) As in Theorem 0.2.13, and Theorem 0.2.16, also here our assumptions are
conformally invariant and generic, so that the result applies to a large class of compact four di-
mensional Riemannian manifolds with boundary.

b) From the Gauss-Bonnet-Chern formula, see (6) we have that Theorem 0.2.19 does NOT cover
the case of locally conformally flat manifolds with totally geodesic boundary and positive integer
Euler-Poincaré characteristic.
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Our assumptions include the following two situations:
K(p4,p3) < 472 and (or) P;’3 possesses k negative eigenvalues (counted with multiplicity)
(46)
K(pa,p3) € (4k7r2 , 4(k+ 1)7r2) , for some k€ N* and (or) P;’?’ possesses k negative eigenvalues

(counted with multiplicity)
(47)

Theorem 0.2.19 is contained in the paper[71].

Remark 0.2.21. Here also, to simplify the exposition, we will give the proof of Theorem 0.2.19 in
the case where we are in situation (47) and k=0 (namely P}* is non-negative). At the end of
Chapter 3 a discussion to settle the general case (47) and also case (46) will be done.

To prove Theorem 0.2.19 we use the same idea as the one used in Theorem 0.2.13, namely in
the case without boundary. The only difference is that, here instead of working with M}y , we
use OMj,.

0.2.6 Existence results for the generalized 2 x2 Toda system on compact
closed surfaces

The last result in this thesis is contained in Chapter 3. It deals with the existence of solutions for
the generalized 2 x 2 Toda system in the case that one of the parameter is allowed to be large and
the other one is subcritical (i.e less than 47). Indeed we prove

Theorem 0.2.22. Let (X,g) be a compact closed Riemannian surface with unit volume. Suppose
m is a positive integer, and let hi,ho : X — R be smooth positive functions. Then for p; €
(dmm, 4m(m + 1)) and for py < 4w problem (11) is solvable.

Theorem 0.2.22 is obtained in a joint work With Andrea Malchiodi[66].

We are going to describe the main ideas to prove Theorem 0.2.22. We use the same methods
as in the proof of Theorem 0.2.13. For the sake of clarity, we will repeat the arguments and
point out the adaptations to the system. Again, a main ingredient in our proof is an improved
version of the Moser-Trudinger inequality for systems, which was given in [44], see Theorem 1.3.6.
From the improved inequality, we derive the following consequence: if p1 € (4nm,4nw(m + 1)), if
p2 < 4m and if I1,(u1,us;) — —oo along a sequence (uq,us;), then e has to concentrate
near at most m points of X. Therefore, as for the prescribed @Q-curvature problem in arbitrary
dimensions, we can map e“*! onto %, for [ large. Precisely, for L > 1 we can define a continuous
projection W : {11, < —L} — ¥,, which is homotopically non-trivial. Indeed, recalling that 3,, is
non-contractible, there exists a map ® such that ¥ o ® is homotopic to the identity and such that
I1,(®(X%,,)) can become arbitrarily large negative, so that ¥ is well-defined on its image. Hence
we obtain characterization of low energy sublevels of II, as in the scalar case.

Some comments on the construction of the map ® are in order. If we want to obtain low values
of 1T, on a couple (u1,uz), since e*! has necessarily to concentrate near at most m points of %,
a natural choice of the test functions (uq,us) is (<p>\7g, —%(p,\p), where o is any element of 3,,,
and where ¢, , is given in (3.96). In fact, as A tends to infinity, e#*-= converges to o in the weak
sense of distributions, while the choice of us is done in such a way to obtain the best possible
cancellation in the quadratic part of the functional, see Remark 3.2.38. .

At this point, using the non-contractibility of X,, , we run a min-max scheme as in the proof
of Theorem 0.2.13, and reduces ourselfs to the conditions of Theorem 0.2.12.
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0.3 Notation and Preliminaries

0.3.1 Notation

R™, is the standard n-dimensional Euclidean space, and R’} = {z = (21,---,2,) € R":
xn, > 0}

N denotes the set of non-negative integers, and N* for the set of positive integers.
B, (r), the open geodesic ball of radius r and center p, in the Riemannian manifold (1, g).
B%(r), the open ball of center 0 and radius rin R™.

Bf(r) = By(r) N M, and BY*(r) = BY(r) NR.

Given (M,g) a compact four dimensional Riemannian manifold with boundary 90M, we
denote by Bg M(r) the ball of center p € 9M and of radius r with respect to the intrinsic
Riemannian structure of OM.

dy(-,-) stands for the geodesic distance in (M, g).

H*(M), for s € R denotes the usual Sobolev space of functions on M which are of class
H? in each coordinate system.

M? stands for the cartesian product M x M, while Diag(M) is the diagonal of M?2.

injq (M), is the injectivity radius of (M,g).

wy, stands for the volume of the unit sphere in R7*1.

A; = 0;(1) means that A; — 0 as the integer | — +o0.

A = 0.(1) means that A. — 0 as the real number ¢ — 0.
As = 05(1) means that As — 0 as the real number § — 0.
A; = O(B;) means that A; < CB; for some fixed constant C..

dV,4 denotes the Riemannian measure associated to the metric g on the Riemannian mani-
fold (M,g).

dog stands for the induced volume form on geodesic spheres associated to g.

For (M, g) a compact four dimensional Riemannian manifold with boundary OM , we de-
note by dS, the volume form of OM given by the induced metric § .

Given a compact closed Riemannian manifold (M, g) and a function u € L(M), we denote
by % the mean value of w, namely @ = Voly(M)™! [,, udV, where Voly(M) = [,, dV,.

Given an operator P acting on functions wu(z,y) defined on M?, P, means the action of
P with respect to the variable y € M.

For (M,g) a compact four dimensional Riemannian manifold with boundary, given u €
LY(M) (resp. L'(OM)), we denote by w (resp. Uan) by the following quantities uw =
Volg(M)™! [, udVy, and gy = Volg(OM) [,,, udSy where Voly(OM) = [, dS,.
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Given (M, g) a compact closed n-dimensional Riemannian manifold and k a positive integer,
we set

k k
My ={d t:bs, t: >0, > ti=1lz; € M}. (48)
i=1 i=1

My, is known in the literature as the set of formal barycenters relative to M of order k (for more
details see [33] and the references therein) . We recall that My, is a stratified set namely a union
of sets of different dimension with maximum one equal to nk — 1.

M, will be endowed with the weak topology of distributions. To carry out some computations, we
will use on M}, the metric given by C!(M)*, which induces the same topology, and which will
be denoted by d(-,).

Next, given o € My, o = Zle iy, with z; € M, and ¢ € C'(M), we denote the action of
oon @ as

k
<o, >= Ztigo(xi)
i=1

Given f a nonnegative L' function on M with fM fdVy =1 and S C M;, we define the
distance of f from S as follows

d(f.S) = it d(f,0);

Now we consider a four dimensional compact Riemannian manifold with smooth boundary

(M,g).
For € > 0 we set
(OM) ={zeM dg(:v,(“)M)ge}.

B

where [%] stands for the integer part of %.

We set also

Given § > 0 a small positive constant we set
Ms =M\ OM x [0,4].

Let h € N, € N such that h < l;, I <k and 2h+1 <k we define My as follows

h 1 h 1
Mpg={> tibs, + > 80y t: >0, Y ti+ Y si=1 z; €int(M), y; €OM};  (49)
=1 =1 i=1 =1

We set also
(M) = UniMp.

As for the case of compact closed Riemannian manifolds, (Mp); will be endowed with the weak
topology of distributions. To carry out some computations, we will use on (Mp), the metric
given by C!(M)*, which induces the same topology, and which will be denoted by daz(-, ).

Now let us introduce some further definitions.
Given o € (My)g, o0 = 2?21 0z, + 22:1 8i0y, with z; € int(M), y; € OM and 2h +1 < k we

set
h
Oint = E ti(s;ci;
i=1
and

l
Obdry = E Siéyi-
i=1
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Next for p € CY(M) and o = Gipnt + Opary € (My)y, similar to the case without boundary, we
denote the action of o on ¢ as

h 1
<o,p>= ZWP(%’) + Z sip(yi)
i=1 i=1
where o, = 25‘;1 10z, and Opary = Zi.zl 8i0y;.
Next if f is a nonnegative L' function on M with fM fdVy =1 and S C (M) , again similar
to the case without boundary, we define the distance of f from S as follows

dIM(fa S) = ol_relng(faa)a

0.3.2 Geometric background

Given a positive integer n, a n-dimensional Riemannian manifold (M, g), and a system of co-
ordinates (U, ), U C M, ¢ : U — R”, we denote by g;; the components of the metric gin
these co-ordinates.

The Riemannian measure or volume form of M with respect to g is defined as follows

dvy = +/|gldz,

where |g| stands for the determinant of the matrix (g;;) and dx the standard n-dimensional
Lebesgue measure.
We denote by ¢* the component of the inverse g~! of g, and by Féj the Cristoffel symbols which
are given by the following formula
1
L

= 3
By means of the Cristoffel symbols, one obtain the components of the Riemann curvature ten-
sor Riemfﬂ-j as follows

(0ign; + 0i9ki — Okgiz) g™

Riemj,; = 0, — 9;T, + T}, 7 — T4 T

i im=~ jk jm* ik-
The Ricci curvature tensor denoted by Ric,;, is obtained by contracting the full curvature tensor
Riem, namely

Ric;; = Riem!

ilj
The scalar curvature R, is a scalar function arising from the contraction of the Ricci tensor
— Ric..qld
R = Ric;97.

The Weyl tensor (W;jx;) is defined by

. 1 . . . R
Wik = Riemyjz — > (Rlcikgjl — Ricygjr + Ricjigik + m(gjlgik - gijil)) .
Given a smooth function u: M — R, we denote by V,u the vector with components V u’ defined
by —
Vgu' = g 0;u.
The Laplace-Beltrami operator A, is the second order linear differential operator acting on smooth
functions u : M — R, as follows

1 .
Agu=—=0; (g”ﬁju\/|g|) .
Vgl
Given k a positive integer A’;, is the 2k-th order linear differential operator defined by the itera-
tive formula
Afu=Ag(AF " u),

for all smooth functions w: M — R.

Given a real number s, A7 stands for the s-th power of the Laplace-Beltrami operator: it is a
Pseudodifferential operator with symbol |(|** ( for more details see [41] and the references therein).
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0.3.3 Preliminary results

In this Subsection we give some preliminary results like the Green function for Az, Py, for the
couple (Pg4, Pg), with homogeneous Neumann boundary condition, and some regularity results.

We start by stating a lemma giving the existence of the Green function of Af] and its asymp-
totics near its singularities.

Lemma 0.3.1. Let (M,g) be a compact closed smooth four dimensional Riemannian manifold.
We have that the Green function F(x,y) of A; exists in the following sense :
a) For all functions u € C*(M), we have

wz)—u= [ F(z,y)Aluly)dVy(y) c#yeM
M

b)
F(a,y) = H(z,y) + K(z,y)
is smooth on M? \ Diag(M?), K extends to a C'*® function on M? and

1

H(r,y) = < /(r)log +

where, T = dg4(z,y) is the geodesic distance from x to y; f(r) is a C* positive decreasing func-
tion, f(r) = 1 in a neighborhood of r = 0 and f(r) = 0 forr > inj,(M). Moreover we have that
the following estimates holds

1
dg(,y) dg(z,y)?

Proof. For the proof see [23] and the proof of Lemma 2.3 in [64]. O

VoF(z,y)| < C

IV2F(z,y)| < C

Next we state a Proposition giving the existence of the Green function of P}’ and its asymp-
totics near its singularities.

Proposition 0.3.2. Suppose (M, g) is a compact smooth closed n-dimensional Riemannian man-
ifold with n > 3, and suppose KerPy' =~ R. Then the Green function G(z,y) of Pj exists in the
following sense :

a) For all functions v € C™(M), we have

ue)—a= [ GlPuwdve) o tyed (50)
b)
G(z,y) = H(z,y) + K(z,y) (51)
is smooth on M? \ Diag(M?), K extends to a C**® function on M? and

n r

1 1
H(z,y) = —log < ) f(r) (52)
where 2c¢, = (n—1)lw,, r=dy(x,y) is the geodesic distance from x to y; f(r) is a C* positive
decreasing function , f(r) =1 in a neighborhood of =0 and f(r) =0 forr > inj,(M).

PrOOF. Let z € M be fixed and m be a positive integer large enough. By [51] Theorem 5.1,
there exists a metric g conformal to g and a coordinate system around x called conformal normal
coordinate such that in the latter coordinate system we have that

|g(z,y)| =14+ 0((™) for yclose to x. (53)
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Now in coordinates Aj , has the following expression,

Agyv = ——0, (givj\ﬂg\ajv) .

vari
On the other hand in conformal normal coordinates we have that
9% = 6,5+ 0(r?),

and

95" = O(r).

Now to continue the proof, we divide the remainder into two cases.
Case n even
In the above coordinate system, we have by easy calculations that the following holds:

|Pg"H(:C,y)\ < C|P§"H(x,y)| <Cr*™"™ for r< C_linjg(M). (54)

On the other hand by considering the expression,

/ H(x, y) PPu(y)dVs (y) / w(y) P2 H (2, yu(y)dVs (y);
M\B.(e) M\Bo(e)

we have by integration by parts that,

[ @RV - [ )P i) -
M\ B (e) M\ B (€) (55)

/aB ( )a”(_A)%_lH(%y)U(y)dVg(y) +o0.(1).

Now by using the fact that close to 2 in conformal normal coordinate Ay is close to Agn, we
obtain by letting € go to 0

ulz) = / H(x, y) PPu(y)dVs (y) / PYH (. y)u(y)dVs(y). (56)
M M

Hence using the conformal invariance property of P}, for every z € M we obtain

ulz) = / H(,y) Plu(y)dVi (y) — / PrH (. y)u(y)dVi (y). (57)
M M

Next we can apply the same method as in [8] (Theorem 4.13) to construct a parametrix for the
Green’s function. We set

q

G(x,y) = H(z,y) + > Zi(x,y) + F(x,y);

i=1
n
where ¢ > 7,

Ziz,y) = /M T (2, O H(C, y)dVi (0): (58)

and TI'; are defined inductively as follows,

Topi(2,y) = /N i OP(C )V, (O

with
Fl(xay> = F(ﬂ?,y) = _P;yH(m7y>,
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and F' being the solution of the equation

P F(2,y) = Ty (2,y) — Vll(M) (59)
From (72) we have that Z; satisfies
Pp,Zi(z,y) =Ti(z,y) — Tit1(z,y). (60)
We observe that the following estimate holds for I'(z,y),
ID(z,y)l < Cr*™™ (61)

hence by using the results in [8] ( Proposition 4.12), we obtain the following estimate for T';(x,y),
Di(z,y)] < Cr¥—n. (62)

So arriving at this stage by still the same result in [8] (Proposition 4.12), we have that T'y(z,y)

and I'g41(z,y) are continuous hence using elliptic regularity we get Z,(z,y) and F(x,y) are in
Cn—1+e(M?). The regularity in both the variables x and y can be deduced by the symmetry
of G, which follows from the self adjointness of P’ and reasoning as in [8] (Proposition 4.13).
Further from (73) we deduce that I'; € LP with "T_2 <p<;sforall i=1,...,¢—1. Hence
by using standard elliptic regularity we infer that Z;(z,y) € H™P. So from the Sobolev embedding
theorem and the fact that 2=2 < p < -2 we get Z;(x,y) € C’2+‘I(M2) forall i=1,...,q—1
for some «. Hence setting K(a: y) = lel Zi(z,y) + F(z,y), the Lemma is proved for n even.

Case n odd

We remark that if the analogues of (54) and (57) are valid, namely if the following properties

|P;H(w,y)\ <Cr*™™ for r < C_lz'njg(M); (63)

/ H(z,y)Pyu(y)dVy(y / P} H(z,y)u(y)dVy(y), (64)

hold, then the proof for the even case can be easily adapted. Hence to finish the proof of the
Proposition, we need only to prove (63)-(64).
We first start by the second one which is less technical. Using the self adjointness of PJ' we have

[ PHEuV0) = [ B - [ R, 65)
M\ B, (¢) B, (€)

M

Letting € — 0 we are done. Now let us prove the first one. Writting n = 2k 41 and recalling we
are working in conformal normal coordinates around x, up to errors terms we can suppose we are

on flat space and that we have to compute (—A)2(—A)*H. First, reasoning as in the even case
we have the following estimate for (—A)*H(r)

(=A)CH(r) = O(r*72"). (66)

Now we recall a well known formula for Fourier transform of radial functions, see [79] (Theorem
3.3) that we will use to continue our analysis. Given f € L'(R") radial, it is well known that its
Fourier transform that we denote by f is still radial and verifies the following formula

f(r)= 2rr— T /000 f(s)J% (27rs)s 2 ds, (67)

where Jn-2 n2 is the Bessel function of first kind and of order ”— On the other hand Jn-—2 n2 has
the followmg asymptotics at 0

Taca () = £°F (bn + 0(1), (68)
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where 04(1) = 0as t — 0 and b, is a dimensional constant. Furthermore it has also the following
asymptotics at infinity )
Jn2 t)=0(@t"2). (69)

For reference about the asymptotics at zero and infinity of J n_z2, €€ [79] ( Lemma 3.11).
Now using (66)-(69), by easily calculations we obtain

(=ACH(r) = O(r*=27m); (70)
where (—A/)EI(T) stands for the Fourier transform of (—A)*H(r).
On the other hand using the definition of (—A)2, again (67)-(69) and (70) we have that

(—A)2 (—A)H = O(r' =), (71)

Hence from the trivial identity 2k — 1 = n — 2, we are done. So this conclude also the proof of the
Proposition. m

Now we state a Proposition which asserts the existence of the Green function of (P;7 Pg3) with
homogeneous Neumann condition. Moreover we give its asymptotics near its singularities.

Proposition 0.3.3. Suppose (M,g) is a compact four dimensional Riemannian manifold with
boundary and KerPg‘l’?’ ~ R. Then the Green function G(z,y) of (P;, Pg?’) exists in the following
sense :

a) For all functions u e C*(M), (%‘g =0, we have

w(z) —u = / G(m,y)P;u(y)dVg(y) +2 G(:c,y’)Pg?’u(t)ng(y’) rEM
M aM

b)
G(z,y) = H(z,y) + K(v,y)

is smooth on M? \ Diag(M?), K extends to a C*** function on M? and

s f(r)logt  if B.(0) oM =0
H(z,y) =
e f(r)(log: +1logl) otherwise.

where f(-) = 1in[-3,2] and f(-) € C§°(—4,0), & < 2min{d1,d2}, 61 is the injectivity radius of

M in M, and 6y = %", r=dg(z,y) and 7 = dy(x, 7).

To give the proof of the Proposition we need a Lemma which can be found in [19] (Proposition
Al

Lemma 0.3.4. There exists an extension of (M,g) into (M,g) which is a closed smooth four
dimensional Riemannian manifold such that

1) M is an open submanifold of M,

2) gIM =g,

3) In M, OM has a smooth tubular neighborhood T of width &g, such that, for any z €
T N M there exists an unique T € T\ M with dgz(x,0M) = dz(Z,0M), and for v € OM, x = 7,
where dg denotes the Riemannian distance associated to g.

PROOF of Proposition 0.3.3

We use the same strategy as in the proof of the Proposition 0.3.2. For the convenience of the
reader we add more details.

Let x € M be fixed, it is well known that in normal coordinate around x the following holds

lg(y)] =1+ 0(r?)  for y close to x.
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Now working in this normal coordinate system around z we have that
|P;H(x,y)| <Cr=2 for r< C_linjg(M).
and
|P93H(x,y)| <Cr ' for r< C_linjg(M).

On the other hand, by considering the expression
[ HewPuavie) - [ uP )
M\ B (e) M\ Bz (e)
we have by integration by parts that,
[ HepPuwdsw) - [ )P pu)av) -
M\ B (e) M\ Bq (e)

0A;
[ TG ) +2 [ ey )PS0 + o)
8B, (e) YNg oM

Now by using the fact that close to z in conformal normal coordinate Ay is close to Aga, we
obtain by letting e go to 0

w(z) = | H(z,y)Pjuly)dV,(y) — / Pl H (z,y)u(y)dVz(y) +2 | H(z,y')Plu(y)dSy(y)).
M M OM
Hence, for every = € M we obtain
/ H(z,y)Plu(y)dV,(y / PrH(z p)u(y)dVy(y)+2 | H(z.y ) Pou(y)dS,(). (72)
OM

Now we can apply the same method as in [8] (Theorem 4.13) to construct a parametrix for the
Green’s function. We set
q

G(z,y) = H(z,y) + ZZi(m,y) + F(z,y);

i=1
where ¢q > 2,

i) = /M Ti(2, Q) H(C, y)dV,y (©);

and I'; are defined inductively as follows,

Liao) = [ Tila O u)av, )
M
with
Fl(xa y) = F(l’,y) = _P;,yH(x7y)7
and F' being the solution of the equation
1

. =T - M
Py yF(z,y) k+1(2,y) Vol, (M) in M;
P937yF(x’y) = _Pgin(xay) on OM,;

9F(z,y) _ o oM

Ong.y :

Now from (72) we have that Z; satisfies
Py Zi(x,y) = Ti(z,y) — Tiga (2, y) in M;
3 = .
Py yZi(z,y) =0 on OM;

=0 OM.
Ong.y on
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We observe that the following estimate holds for T'(z,y),
D(z,y)| < Cr™%;

hence by using the results in [8] ( Proposition 4.12), we obtain the following estimate for T';(x,y),
ITy(z,y)| < Cr?i= (73)

So arriving at this stage by still the same result in [8] (Proposition 4.12), we have that T'q(z,y)
and I'y41(z,y) are continuous hence using elliptic regularity we get Z,(z,y) and F(z,y) are
in C3+t%(M?). The regularity in both the variables x and y can be deduced by the symmetry
of G, which follows from the self adjointness of P;* and reasoning as in [8] (Proposition 4.13).
Further from (73) we deduce that T'; € LP? with % <p<2forall :=1,...,q— 1. Hence by
using standard elliptic regularity we infer that Z;(x,y) € H*P. So from the Sobolev embedding
theorem and the fact that % <p<2weget Zj(x,y) € C**(M?)forall i =1,...,¢q—1 for
some «. Hence setting K(z,y) = > ¢, Zi(z,y) + F(x,y), the Lemma is proved. m

Next we give a regularity result corresponding to boundary value problems of the type of
BVP (20) and high order a priori estimates for sequences of solutions to BVP like (22) when they
are bounded from above.

Proposition 0.3.5. Let u € Hai be a weak solution to

4 £ 4u . .
Piu+ f= fe in M;
Pg’u =h on OM.
with f € C®(M), h € C®°(0M) and f a real constant. Then we have that u € C>(M).
Let u; € Hai be a sequence of weak solutions to
Plug+ fi = fie™™ in M;
P;ul =N on OM.

with f; — fo in C¥(M), fi — fo in C¥(M) and h — hg in C*(OM) for some fized k € N*.
Assuming sup,;u < C we have that

lwillcr-1+aary £ C

for any « € (0,1).

Before making the proof of Proposition 0.3.5 we give some Lemmas that will be needed. We
first state a Lemma which is a direct consequence of Lemma 0.3.4. Next we recall a Lemma giving
the existence of a Green function for Paneitz operator on compact closed four dimensional smooth
Riemannian manifold.

Lemma 0.3.6. Adopting the same notations as in Lemma (0.3.4), we have that there exists a
closed compact smooth four dimensional submanifold N of (M,g) such that M C N. Moreover
the following holds:

Vo € N\ M there exists a unique T € M NT such that

dg(x,aM) = dg(.f, OM).

As said above, we state a Lemma giving the existence of the Green function for Pg. Itis a
particular case of Proposition 0.3.2.
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Lemma 0.3.7. Suppose KerP; ~ R. Then the Green function G(m,y) of Pg exists in the
following sense :
a) For all functions u € C*(N), we have

u(z) —a = /M é’(x,y)Pgu(y)dVg(y) Vx € N;
b

Gla,y) = Ho(x,y) + Ko(z,y) Ve #y;
is smooth on N2\ Diag(N?), K extends to a C*** function on N? and

Hr,y) = 55 f(r) o -

where, r = dz(x,y) is the geodesic distance from x to y; f(r) is a C* positive decreasing func-
tion, f(r) =1 in a neighborhood of r =0 and f(r) =0 forr > injz(N).

Now we are ready to make the proof of Proposition 0.3.5.
PROOF of Proposition 0.3.5
We have that by assumption u € Hy, is a weak solution to

4 _ 7 4u . .
Piu+ f= fe in M;
Plu=nh on OM.

Then using Lemma 0.3.3 we obtain that
uw)—a= [ Glp)Fe - NV +2 [ Gl iy S, (o).
M oM
Now let us define the following auxiliary functions
w(z) = G(m,y)fe4“(y)dVg(y) x € M,
M

and

v(z) = —/ G(z,y) fdVy(y) + 2 G(x7y’)h(y/)ng(y’). (74)
M oM

Then it is trivially seen that
w(z) = u(z) —v(z) =€ M. (75)

On the other hand since f € C*°(M) and h € C*°(9M), then one can check easily that
v € C®(M). (76)

Now using the relation (75) we obtain w satisfies the following integral equation

w(z) = / Gz, y)e W) F W av,(y) z € M; (77)
M
and 5
g =0 on OM.
Ong

Now let us define the even reflection of w through oM

o Jw(z) if xe M;
@)=\ @) i re N\ M
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where NV is the closed 4-manifold given by Lemma 0.3.6.
Thanks to the fact that g—;j; = 0, we have that @ € H2(N). Moreover using the integral equation
solved by w (see (77)), one can check easily that @ satisfies

w(x) = /N Gz, y)e YW fAPW gV (y) = € N.

where G is the Green function of Pg (see Lemma 0.3.7) and @ is the even reflection of v through
OM, namely

o v(x) if xe M;
¥a) = v(@) if e N\ M.

Furthermore from (74) and the fact that f and h are smooth, we derive that @ € C1(N).
On the other from the assumption KerP,»® ~ R, it is easily seen that KerP; ~ R. Hence using
Lemma 0.3.7 we have that @ is a weak solution to

Pg = fe %% on N.

Thus from a regularity result due to Uhlenbeck and Viaclovsky, see [88], we infer that @ € C*°(N).
Now restricting back to M we obtain w € C*°(M). So using (75), (76) and the fact that w is
smooth on M, we have that u € C°°(M). The last part of the proposition follows from the same
argument.

Hence the proof of the proposition is complete. B

Now we give a regularity result corresponding to boundary value problems of the type of
BVP (21) and high order a priori estimates for sequences of solutions to BVP like (24) when they
are bounded from above. Its proof is the same as the one of Proposition 0.3.5, hence will be
omitted.

Proposition 0.3.8. Let u € Hai be a weak solution to
{ P;u =h imn M,
3 _ 7. 3u
Pju+ f=fe on OM.

with f € C*(OM), h € C®*(M) and f a real constant. Then we have that u € C*(M).
Let u; € Hai be a sequence of weak solutions to

Plug = hy in M;
Pjul + fi = fie™  on OM.

with fi — fo in C*(OM), f; — fo in C*(OM) and h; — hg in C*(M) for some fized k € N*.
Assuming supgy w < C we have that

l[wl|or—1+aary < C

for any o € (0,1).
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Chapter 1

Moser-Trudinger type inequalities

In this Chapter we recall some classical Moser-Trudinger type inequalities, present some new ones
involving the Paneitz-GJMS-Fefferman-Graham operators and the Chang-Qing one. Moreover we
give some improvements of new inequalities.

1.1 Some Classical Moser-Trudinger type inequalities

In this Section we recall some classical Moser-Trudinger type inequalities. We start with the one
due to Trudinger[86].
In 1967 Trudinger proved the following result:

Theorem 1.1.1. Given n > 2 and k two positive integers with k < n, £ an open bounded
subset of R™, there exists a constant § >0 and C = C(n,k) > 0, such that

/ Al e < 09
Q

for all u € W;’%(Q) such that ||V"”‘u||Lk <1.

Later in 1971 Moser[65] show the existence of the best constant [ for the case k = 1, and
give an explicit expression for it. Precisely he proved

Theorem 1.1.2. Giwen n > 2, Q0 an open bounded subset of R™, there exists a constant
C =C(n) >0, such that
e L
/ emwnt [l g < C|9
Q

1

for all w e Wy () such that ||Vul|z» < 1. Moreover the constant nw '~} is optimal in the sens

that if we replace it by an other one bigger, we can not find such a C independent of wu.

In 1983 D.R Adams[1] extends Moser’s results to every k < n.
Theorem 1.1.3. If n > 2 and k are two positive integers with k < n, Q an open bounded
subset of R™, then there exists a constant By = Po(n, k) and C = C(n,k) >0, such that

/ Al e < 0|9
Q

for all ue Wéc’%(Q) such that ||Vku||L% <1 and for all § < [y, where

n

5ok (ELL
n I( 21)> , if ks odd,
Wh—1 (
o = L
T2k (Ek
r ( (2)> , if ks even.
Wn—1 INE

39
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Furthermore, if 8 > By, then there exists a smooth function supported in  with ||Vku||L% <
1 for which the integral can be made as large as desired.

1.2 Fontana, Chang-Yang and Chang-Qing inequalities

In 1993, L. Fontana[40] extends the results of D.R Adams to curved spaces with the particularity
that the best constant is the same as in the Euclidean setting. Precisely he proved

Theorem 1.2.1. If n > 2, k are two positive integers k < n, and (M,g) a compact closed
smooth n-dimensional Riemannian manifold, then there exists a positive constant By = Po(n, k)
and C =C(n,k,M,g) > 0, such that

/ eﬁ\ulﬁdvg <C
M

for all w € W% (M) such that ||V§ku|\L% <1 and [,,udVy =0, and for all 3 < By, where

n ) n—k
o ) , if ks odd,

Wp—1 F( D)
Bo = o ]
22RT(EY\ "
I T 7]{2) , if ks even.
wn1 \ D557

Furthermore, if 3> [y, then there exists a smooth function with [|[Viul|, 3 <1 and [,, udV, =
0 for which the integral can be made as large as desired.

In their study of extremals of log-determinant functional on compact closed four dimensional
Riemannian manifolds, Chang and Yang have derived a Moser-Trudinger type inequality involving
the Paneitz operator. Precisely they proved

Theorem 1.2.2. If (M, g) is a smooth compact closed four dimensional Riemannian manifold and
the Paneitz operator Pg4 1s non-negative with trivial kernel, then there exists a positive constant
C = C(M,g), such that for all we H*(M) with (Pju,u) <1 and [,, udVy =0 there holds

/ 2Ty, < C.
M

1.3 Some new Moser-Trudinger type inequalities

This Section deals with some new Moser-Trudinger type inequalities. We start with an extension
of Chang-Yang inequality to every dimensions. The same inequality was derived also by Brendle,
see Section 3 in [13]. For the seek of completeness we provide a proof which is also similar to the
one of Brendle.

Proposition 1.3.1. Let (M, g) be a compact closed n-dimensional smooth Riemannian manifold
with n > 3. Assume Pg is a non-negative operator with KerPg ~ R. Then there ezists a
positive constant C = C(M, g) so that

nen (u—u)?

/ e () v, < O, (1.1)
M
for allu € H= (M), and hence

log/ =) < 0 4 4L (Pyu, u). (1.2)
M Cn
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PROOF.  Since P is a nonnegative operator with KerPy ~ R then \/Pig” is well defined
see [23] (in that case the authors are concerned with the four dimensional case but the same
construction remains true for all n). Moreover from the point a) of the Lemma 0.3.2 and the self
adjointness of PJ' we obtain,

uw) == [ \[BpGy)\Prudviw: ¥ u c (o) (13)

Hence G(z,y) = V/PrG(x,y) is the Green function of /Py'G(z,y)(see [13] ( Section 3 in the
proof of the boundedness of win H?%). Moreover it is a well known fact in the theory of pseu-
dodifferential operator that \/@ is a pseudodifferential operator of order 5 and whose leading
order symbol is as the one of (—A)% (see [41]). Hence, the leading term in the asymptotic expan-
sion of its kernel G(z,y) coincide with that of the Green’s function for the operator (—A)% in
R™. So by a well know formula for Fourier transform of radial functions (see [79], Theorem 3.3)
we infer that the leading term is a,r~ % where a, is a dimensional constant . Hence arriving at
this step we can follow the same proof as in [40] (Propostion 2.2) to conclude the first inequality.
Moreover from the basic inequality

2

b
nab < a*c, + Z— Va, b e R; (1.4)
Cn

setting a = u —uand b= <Pg"u, u>, taking the exponential and integrating we obtain the last
one. W

In their study of extremals for the log-determinant functional on compact four dimensional
Riemannian manifolds with boundary, Chang and Qing have proved a Moser-Trudinger type in-
equality. Precisely they showed the following theorem whose proof can be found in[19]:

Theorem 1.3.2. If (M, gq) is a smooth compact four dimensional Riemannian manifold with
smooth boundary, then for all o < 1672, there exists a constant C = C(M,g, ), such that for
all we H*(M) with [, |Agul> <1 and [,, udVy = 0 there holds

/ e dV, < C.
M

For the case of four manifolds with boundary, we prove a Moser-Trudinger type inequality
similar to the one of Chang and Yang involving the Paneitz operator and the Chang and Qing
one.

Proposition 1.3.3. Let (M, g) be a compact four dimensional Riemannian manifold with bound-
ary, and assume P;’3 is a non-negative operator with KerP;73 ~ R. Then we have that for all
a < 1672 there exists a constant C = C(M, g, ) such that

(u—u)?

/ €<P§v3u,u>L2(M) dVg < 07
M

for allu € Ha@, and hence

_ 4 .
4(u—a) - 4,3
log/Me §C+a<Pg u,u>L2(M) VueHo .

In order to make the proof of Proposition 1.3.3 we will need a technical Lemma. It says that
under the assumptions KerP;»® ~ R and P;* non-negative, the map

1
2

w€Ho — |ullpss = (Pyiuu)},

induces an equivalent norm to the standard norm of H?*(M) on {u € H o U= 0}. More
precisely we have the following
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Lemma 1.3.4. Suppose KerP,* ~ R and P,*® non-negative then we have that || - HP;,s is an
equivalent norm to || - ||gz on {u € Ho u= 0}

PROOF. First of all we have that u — ([, \Agu|2dVQ)% is an equivalent norm to the standard
norm of H?(M)on {u € Ho u= 0}.

Now with this, to prove the Lemma it is sufficient to show that ||u\|P;;,3 and ([}, \Agu|2dVg)%

are equivalent norms on {u € HOA a = 0}.

To do so we will use a compactness argument. First of all using the definition of Pj?’ one can
check easily that the following holds

lullpgs < ([ 18uPav)*. (15)
M
Now let us show that

(/ B,uPdVy)t < Cllullpss ¥ ue{ueHy a=0}. (1.6)
M g n

We argue by contradiction, suppose (1.6) does not hold, then there exists u; € {u € Ho u=
0} such that

/M(|Agul|2dvg)% =1 and [[u][pas — 0. (1.7)
Now using the fact that fM(|Agul|2dVg)% = 1, we get that (up to a subsequence) u; — u*.

Moreover using the fact that KerP;’3 ~ R, P;’3 is a non-negative, Hul||P;,3 — 0 and Rellich

compactness theorem we infer that
u* =0. (1.8)

Next using again the fact that [|u[|ps.s — 0 and the definition of P? we infer that

2 ,
/ |Agu 2dV, + gRg|vgul|dVg — 2/ Ricy(V gup, V guy)dVy — 2/ Ly(Vgur, Vau)dS, = o(1).
M M oM

(1.9)
Furthermore still by using Rellich compactness theorem we obtain
2
f/ R,V gu|dV, — 2/ Ricy(Vguy, Vau)dVy = o1(1). (1.10)
3Jm M

Now let € > 0 and small then by Lemma 2.3 in [19] and also Rellich compactness theorem we
have that

—2/ Ly(Vyur, Vyu)dSy > —6/ |Agu|dVy — o(1). (1.11)
oM M
So using (1.7), (1.9), (1.10) and (1.11) we get

o(1) > 1—e+o1(1).

Thus since € is small we arrive to a contradiction. So (1.6) is true. Hence (1.5) and (1.6) imply
that the Lemma is proved. B

Now we are ready to make the proof of Proposition 1.3.3.

PRrROOF of Proposition 1.3.3
First of all let us set

H={ucHy, u=0, (P}Pu,u)

and for a« >0
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We have that from Theorem 1.3.2 and Lemma 1.3.4 there exists « > 0 such that

sup Jq(u) < +o0.
u€H

Hence

ap =sup{a > 0: sup Ju(u) < 4oo}
ueHr

is well defined and 0 < ag < oco.
To prove the proposition it is sufficient to show that

ag > 1672

Suppose by contradiction that oy < 1672 and let us argue for a contradiction.
We have that by definition of aq there exists a family w., € > 0 such that

Jog+e(te) — +00.

On the other hand, using a covering argument there exists a point p € M such that for all r > 0
/ e(“°+€)”3qu — 400 as € — 0. (1.12)
By (r)

Moreover from the fact that u. € H and Lemma 1.3.4, we can assume without lost of generality
that w. — ug. Now we claim that ug = 0. Suppose not, then by using the property of the inner
product we get

e — wol [ pss <

for some 3 < 1and for esmall. Hence using Thoerem 1.3.2 and Lemma 1.3.4 we infer that
Joy (Ue —ug) < C
for some a1 > ap. Next using Cauchy inequality it is easily seen that
Jao (ue) < C

for some ag > . Thus a contradiction to (1.12). Hence ug = 0.

Now suppose p € OM

Let us take a cut-off function 7 € C§°(B,(d)) ,n=1o0n Bp(%) where d > 0 is a fixed positive
and small number. Using Leibniz rule we obtain

/ R§73(nue)(nue)qu < ||77UEHP4,3 <1+ €la (1.13)
Bp(%)-%— ‘

1672
1+<—:,

HERD (mue) o BCCpp(S,t), t>0;
Ue 87 =
(nue) o expy(s, —t), t<0.

for some ¢ > 0 such that

> ag. Now let us set

Then from 1.13 we derive that

|Agiie|?de < 2+ € ;
BO(9)

for some € small where Ag denotes the Euclidean Laplacian.
Hence by Adams inequality, see Theorem 1.1.3, we get

/ 38 <C
BO(3)
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for some g > 167w2. Thus we arrive to

/ e“wdeg <C e‘”ﬁfdx <C.
By(3) BO(9)

Hence reaching a contradiction to (1.12).

Now suppose p € int(M).

In this case, following the same method as above (and in a simpler way since we do not need to
use G, but wu. its self) one gets the same contradiction. Hence the proof of the Proposition is
complete. W

Moreover we also prove a trace analogue of the previous Moser-Trudinger type inequality.

Proposition 1.8.5. Let (M, g) be a compact smooth four dimensional Riemannian manifold with
smooth boundary, and assume Pg4’3 i a mon-negative operator with KerP;’3 ~ R. Then we have
that for all o < 1272 there exists a constant C = C(M, g, «) such that

a(u—ﬂaz\4)2

e
e L2 48, < C, (1.14)
oM ‘
for allu € Hai, and hence

VueHo. (1.15)

. 9
3(u—1a) 4,3
log /azvz ¢ 5y = C+ 4o <Pg u’u>L2(M,g)

PRrOOF. First of all, without loss of generality we can assume ugy; = 0. Following the same ar-
gument as in Lemma 2.2 in [19], we get V3 < 1672 there exists a positive constant C = C(3, M, g)

Je i
/ elu B PaVs 4V, < C, Yo € Hp with Byn = 0.
M n

From this, using the same reasoning as in Proposition 1.3.3 , we derive

Bv2
v

/ A 00 gy, < € o € H, with Doy = 0. (1.16)
M n

Now let X be a vector field extending the the outward normal at the boundary OM. Using the
divergence theorem we obtain

2 2
/ e’ dS, = / div, (Xe™) vy,
oM M

Using the formula for the divergence of the product of a vector field and a function we get
/ eo‘“2ng = / (divgX + 2uaV  uV X) eo‘“deg. (1.17)
oM M
Now we suppose < Pg‘l’?’u7 u >r2(a)< 1, then since the vector field X is smooth we have

< (1.18)

’ / divg X e dV,
M
thanks to (1.16). Next let us show that

‘ / 20uV yuV, X e dV,.| < C
M
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Let € > 0 small and let us set

4
o p2:47 b3 = —.
— € €

p1 = 3
It is easy to check that
1 1 1
—+—+—=1
p1r P2 p3

Using Young’s inequality we obtain

3—e

4

‘/ QQUVQUVgXeO‘“2dVg < Cllull, 4]|Vgul| s </ eo‘szle“QdVg>

M Le M

On the other hand, Lemma 1.3.4 and Sobolev embedding theorem imply
ull, 2 < C;

and
[[Vgullzs < C.

Furthermore from the fact that o < 1272, by taking e sufficiently small and using (1.16), we
obtain

4 2 4
(=)
M

‘ / 20uV yuV, X e dV,
M

Thus we arrive to

<C. (1.19)

Hence (1.17), (1.18) and (3.2.3) imply

/ e’ dS, < C,
oM

as desired. So the first point of the Lemma is proved.
Now using the algebraic inequality
3b?
3ab < 3v%a® + *—;,
ab < 3y“a” + 12
we have that the second point follows directly from the first one. Hence the Lemma is proved. B

Next we recall a Moser-Trudinger type inequality for system due to Jost and Wang[44]

Theorem 1.3.6. ([{4]) For p = (p1,p2) the functional 11, : H*(X) x H(X) is bounded from
below if and only if both p1 and ps satisfy the inequality p; < 4.

1.4 Improvement of Moser-Trudinger type inequalities

In this Section, we present some improvement of Proposition 1.3.1, Proposition 1.3.3, Proposi-
tion 1.3.5, and Theorem 1.3.6.

We start by stating a result which gives an improvement of Proposition 1.3.1. Its proof is the
same as the one Lemma 2.2 in [33] when n is even and in the odd case only one step is modified.
Hence will not repeat the proof but just sketch the arguments and show the modification in the
odd case.
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Proposition 1.4.1. Let (M, g) be a compact smooth closed n-dimensional Riemannian manifold
with n > 3, and suppose Pg non-negative with KerP; ~ R. Let | € N, and Si---Si41 be
subsets of M satisfying dist(S;,S;) > do for i # j. Moreover assume -y € (O,H%), then, for
any € > 0, there exists a constant C = C(E, dg, v0) such that

1 nw-w) cop M (pn 1.2
for all the functions u € H3 (M) satisfying
fs- emdVg
P T s e {1, 14+ 1). 1.21
fM e"“dVg Z Y0, ¥ { + } ( )

PROOF. As already said the proof follows that of Lemma 2.2 in [33]. We recall the arguments
which apply to the even case, and after show the modification to get the odd case. The argument
is based on constructing some cutoff functions g; which are identically 1 on S;; and which have
disjoint support. Then Vi by (1.21) we have that

1 C
/ emtdV, < — / emdv, < =M / eIy, (1.22)
M Y Js; Yo JMm

On the other hand using the Leibniz rule and interpolation inequalities we obtain
<P;giv,giv> < / g?(ng,v)dVg + e<Pg"v,v> + Ce,(;o/ ’U2dVg~ (1.23)
M M

Applying Moser-Trudinger inequality (see (1.3.1) ) to ug;, choosing ¢ such that fM gf(Pg"v, v)dVy, =
min; | M g]2- (P;v, v)dVy, and by using interpolation inequalities we obtain the required statement.

We point out that in the odd case P}’ being a pseudodifferential operator does not verify Leibniz
rule, hence to get counterpart of (1.23), we need a different argument. We will use the pseudod-
ifferential calculus. Indeed for every v € H? (M) we have that

<Pg"giv,giv> = /M gf(P;v, v)dVy + <P;giv — gin"v,giv> . (1.24)
On the other hand by using the property of the duality pairing, we obtain
<P;giv — giPJv, giv) < ||P)giv — 9iPyvl| -2 [lgivll 3 - (1.25)
Now using the property of commutators, (see [85] Corollary 4.2) we have that
1P2gi0 — giProl g5 < Cllolly -1 (1.26)

so using interpolations as in the even case we obtain
<P;giv,giv> < / gf(Pg"v,v)dVg +€ <P;v,v> + Ce 5, / vdeg. (1.27)
M M

As soon as we get a counterpart of (1.23), all the other steps apply as in the even case. B

Next we give an improvement of Proposition 1.3.3.

Proposition 1.4.2. Let (M, g) be a compact smooth four dimensional Riemannian manifold with
smooth boundary, and assume P;’?’ non-negative with KerP;’3 ~R. For a fixed 1y, ls €N, [ +
lo #0 and § > 0, let Sy---S;,, Qi---Q, be subsets of M satisfying S; CC Ms, dist(S;, S;) >

§ for i # 4, dist(,Q;) > 8,, QNOM #£0,Q; CC OM x [0,6] and let o € (0, ﬁ)
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Then, for any € > 0, there exists a constant C = C(€, 7o, 11,l2, M, §) such that the following holds

1)

_ 1 1
1 4(u—1u) <C P4’3 .
Og/Me <CH g D B e W ey
for all the functions w e H 2 satisfying
[s e*dVy
= > i 1,..,01}. 1.28
fM64udvg—’YOa ZE{; 71} ( )
and f gy
. ¢ "dVyg .
= > 1,..,05}. 1.29
fMe4udVg—fYOa 7’6{5 72} ( )

PROOF. We modify the argument in [29] and [33]. First of all we can assume without loss of
generality that @ = 0. On the other hand by the properties verified by the sets S; and 2; we
have that there exists

N5 C M closed submanifold of dimension four, US; CC N5 C int(M), USQ; CC M \ Ns.

Fwe can find [y + lo functions gi,---,¢;, and hq,--- , hy, such that
gi(x) €10,1] foreveryx e M, i=1,---,ly;
gi(z) =1 forzeS;, i=1,---,l;
0
gi(x) =0 if dist(z, S;) ZZ; t=1,--- 1l
supp(g:) C Ns (1.30)
HgiHC"‘(M)v <Csfor i=1,---l;
5t
Zgi =1 on N
i=1
and
h;(z) € 10,1] foreveryx e M, i=1,---,lo;
hi(x) =1 forx e Q;, i=1,---,lo;
)
hi(x) =0 if dist(x,Q;) > —;i=1,---,ls
4 (1.31)
||hi||C4(M)7 < 05 for i = 1, ce ,lg.
2
> hi=1 on M\ Nj
i=1

where Cj is a positive constant depending only on . Moreover we can choose the functions g; and h; such
that they have (mutually) disjoint supports.

We remark that the submanifold N depends only on §. But since in our analysis, only its volume

is involved when we apply Moser-Trudinger inequality to g;us see (1.36), then we can omit the
dependence to 9.

Using Leibniz rule, Schwartz inequality and interpolation, we obtain that for every e > 0 there
exists C¢s (depending only on e and d) such that Vv € H*(M), for any i =1,---,l; and j =
1,---,ly there holds

<P;’3giv, giv> < /M giQ(Pg‘l’gv7 v)dVy + € <P;’3U7 U>L2(M) +Ces /M UQdVg. (1.32)

and
(P}?hjv, hjv) < /M 15 (Pyv,v)dVy + € (PP, v) 1+ Ces /M v?dVy. (1.33)
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Next we decompose wu in Fourier mode, namely we decompose wu into low and high modes by
setting w = uy +ug with u; € L°°(M) (u; represents the low mode and ug the high one). Hence
from our assumptions, see (1.28) and (1.29) we derive that

/ €4u2dVg 2 674||UIHLOO’YO\/ €4ud%, Z — 1, e ;ll; (134)
S; M

and
/ et2qVv, > 6_4”“1HL°°70/ et dv,, i=1,--,la; (1.35)
Q M

Now using (1.34), (1.35) and the trivial identity

2y h
1 AV, = 1 etadv, 1 / etdv,
Og/Me DT og/ TR 0

we obtain

1 20
log/ e*dVy, < log — + 4||uy ||z + log/ giduz 4 log/ ethiv2qy, 4 C.
M Yo 20y + 1y N M

2l + ly
where C depends only on M. On the other hand by Chang-Yang inequality (see Theorem 1.2.2),
we get
u 1 _
log/Negl4 2 < Cy + —= 52 <P;N(giu2),giu2> + 4g;uz; (1.36)

where P n denotes the Paneitz operator associated to the close 4-manifold N endowed with the
induced metnc from g, and Cps depends only on Vol (M).
Now let « < 1672 (to be fixed latter), from Propostion 1.3.3 we infer

4( 21,
2ce "2l + o

1
10g/M e qy, < log =+ 4lfu|z= + ) (P2 (giuz), giuz) +

l .
%b)hﬂﬂ + Co, My ls-
(1.37)

Where Cg ar,1,,1, depends only on o, I, I and M. We now choose ¢ and j such that

/ g; (Pq NU2, uz)dV, < / gﬁ(R;Nug,ug)qu foreveryp=1,---,ly;
N

and
/ h?(P473qu, ug)dVy < / hz(P;’?’ug,ug)dVg; for every g =1,--- ,ls.
M M

Hence since the functions g,, h, have disjoint supports and verify (1.30) and (1.31)), then
by (1.32), (1.33) and (1.37) we get

log/ 4udV < log i + 4 |ug || + 4( 1 +e) <P;73u2,u2> + Ce.s, / ungg
M 70 Qél i L M (1.38)
+4(2ll ilz)gz 2+4(m)h U2+CaMl1 ly-
Now we choose A s to be an eigenvalue of Pg‘l’3 g;
up = PszU; U2 = PVC{EUJ (1.39)

where Vs is the direct sum of the eigenspaces of P4 3 with eigenvalues less or equal to A s,
and Py ,, P,. denote the projections onto Vs and V 5 respectively. Since @ = 0, then the
) €8
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L?-norm and the L*-norm on Ve 6.5 are equivalent (with a proportionality factor which depends
on € and ¢). Hence by the choice of wu; and wus, see (1.39) we have that

N

[ut]| o < Ces (PyPur,u)

and
CE,(;/ u%dvg <€ <P;’3u2,u2>;
M

where 6’675 depends on € and §. Furthermore by Holder inequality and Lemma 1.3.4 we have
that

Gitia < C (P, u)?

and

hjus < C <P;’3u,u>% .

So (1.38) becomes

4( 1
201 + 1o

log/ e4udVg < 210g7i + 6'575 <Pg4’3u1,u1>% + +¢) <P;’3u2, uz> + € <Pg4’3uz,u2>
M 0

(6%
1
4,3 2

+Cl17l2 <Pg U, u> *+ C%MJl,lr

where CA’€75 = 46’675. Thus by using Cauchy inequality we get

u 4 1 4,3
log /M e*dVy < Ce 5ot o.M + a(m + 3e) <Pg’ Uz, Uz .
Now setting o = 16m2 — 4¢ we obtain
log/ ettdv, < C, Svodlilo. M T #(# + 3e) <P4’3u2 u2>
M g — ~€,0,70,01,t2, 471'2 —€ 211 +l2 g ’ .

So choosing € such that M%e(ﬁ +3¢e) < ﬁ(m) we get

1 1

1 tuqv, < C. — (e
og /M € 9 S Cednolile, Mt (211 til,—¢

) ) <P;,3u27u2> :

Hence the Lemma is proved. B

Next we give an improvement of Proposition 1.3.5. Its proof is the same as the one of Lemma
2.2 in [33], hence will be omitted.

Proposition 1.4.3. Let (M, g) be a compact smooth four dimensional Riemannian manifold with
smooth boundary, and assume P;’?’ s mon-negative with KBTP;’S ~ R. For a fired | € N, let
S1 -+ Siy1, be subsets of OM satisfying, dist(S;, S;) > &g for i # j, let v € (0, ﬁ)

Then, for any € > 0, there exists a constant C = C(, dg,Yo,1, M, ) such that the following hods

1)

. 3 1 .
3(’[1,77.&0]\/[) < 4,3 .
log/aMe _C+716772(7l+1—é)<P9 u,u>L2(M),
for all the functions u € H% satisfying
[s e*“dSg
S T sy, die {1, 1+ 1) (1.40)
Jorr €*dSg t f

Now we give the last Proposition of this Section. It gives an improvement of Theorem 1.3.6.
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Proposition 1.4.4. Let (%, g) be a compact closed Riemannian surface, let 5o > 0, £ € N, and
let S1,..., 5S¢ be subsets of 3 satisfying dist(S;, S;) > 8o fori # j. Let vy € (O, %) Then, for any
€ > 0 there exists a constant C = C(&,do,, ¥, %) such that

2
—uy °0—Ts 1 1 .
élog/xe‘“l ! )dVg+log/Ee(“ WV, <Ot = |5 D /Za”wi-vwdvg

i,j=1
provided the function uy satisfies the relations

fSi e“1dV,

—_— > ) 1,...,¢;}. 1.41
fzeuldvg =% ’LE{ ) 75} ( )

Before proving the Proposition, we state a particular case of Fontana’s inequality (see Theo-
rem 1.2.1 with n = 2), an improvement of it and a preliminary lemma which will be proved later.
As already said we start by recalling the following particular case of Fontana’s inequality.

Lemma 1.4.5. Let (X,g) be a compact closed Riemannian surface. We have that there exists a
constant C' = C(X,g) > 0 such that

log/ e Dav, < C + %/ |Vu|?dV,, for all u € H'(X). (1.42)
b T Js

Next we give an improvement of the latter inequality.

Proposition 1.4.6. Let (X, g) be a compact closed Riemannian surface, Si,...,Se¢ be subsets of
Y satisfying dist(S;,S;) > 0o for i # j, and let v € (O, %) Then, for any € > 0 there exists a
constant C' = C(€,do,7y) such that

= 1
1 (w=mqy, <C 7/ 2dv,
Og/ze 0 S COF gz ), VeIV
for all the functions u € H*(X) satisfying

[q e*adV, _
P g

The proof is the same as the one of Proposition 1.4.1. We also refer the reader to [33].
Now we give an auxilliary Lemma whose proof is postponed at the end.

Lemma 1.4.7. Let (%,g) be a compact closed Riemannian surface. Under the assumptions of
Proposition 1.4.4, there exists numbers 40,50 > 0, depending only on vy, oo, %, and £ sets S, ..., Se
such that d(S;, S;) > 0¢ for i # j and such that

f~ e"1dV, _ f~ e"2dV, _ fae“ldV ~ )
SluigZ’Yoa SluigZ’YO; SiuigZ%v i€{2,...,0}.
fz: eudV, fz ev2dV, fz evdV,
PROOF OF PROPOSITION 1.4.4. We modify the argument in [29] and [33]. Let S, ..., S; be given

by Lemma 1.4.7. Assuming without loss of generality that w3 = us = 0, we can find ¢ functions
g1, - - -, ge satisfying the properties

gi(x) € [0,1] for every x € 3;

gi(x) =1, for every z € S;,i=1,...,0;
supp(gi) N supp(g;) =0,  for i # j;

lgillc2(s) < Cs,

(1.43)
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where CSO is a positive constant depending only on 8o. We decompose the functions u; and us in
the following way

up = Uy + Uq; Uy = Ug + Us, U1, Ug ELOO(E) (144)

The explicit decomposition (via some truncation in the Fourier modes) will be chosen later on.
Using Lemma 1.4.7, for any b € 2,...,¢ we can write that

-1

Elog/ e“ldVg+log/ e?dVy, = log [</ 6“1dVg/ e“ZdVg> (/ e"ldVg> ]
b b b b b

-1

[([ e“ldvg/~ e"deg> ([ 6"1dVg)

g 5 IS

-1

log [(/ eg”“dVg/ 691“2dVg> </ egbuldVg) ]

b b b

—  Llog Ao,

IN

— Clog 7o

IN

where C' is independent of u; and us.
Now, using the fact that 41 and 49 belong to L*°(X), we also write

{—1
log < / ed ™ dy, / eglﬂZdVg) ( / egbﬁldvg>
z P x

Llog o + L(||T1 || Lo () + [Tzl oo (x))-

IN

Klog/ e dV, +log/ e"2dV,
b b

Therefore we get

Elog/ e“ldVnglog/ e*?dV, < log/ eglﬂldVnglog/ eI 2qV, + (£ — 1)/ 92 gV,
b b b by b
— flog% + é(”fbl”Loo(E) + ||’&2HL°°(E)) (145)

At this point we can use Theorem 1.3.6 with parameters (4, 47), applied to the couple (¢g1@1, g112),
and the standard Moser-Trudinger inequality (1.42) to gyti1 to get the following estimates

2
. ﬂ 1|1 o i
log/zeg1 1dVg+log;/Zeg1 2dV, < y= 2i]z_:1/EaJV(glui)~V(g1Uj)dVg

+ (glﬂl + glﬂg) + C; (146)

m 67 1 ~ — =
(f — 1)/ egbuldVg S ( 16 ) / |V(gbu1)|2dVg + (6 — 1)gbU1 + (f - I)C
b) T Jx

Now we notice that for N = 2 one has

o=

Therefore, using elementary inequalities (completion of squares) one can check that for every point
x € X there holds

% Z aijg(fia f]) Z
,J

WI=WIN
[SMINSHIE

g9(&1,&1) for every couple (£1,&3) € T, 2 x T, X. (1.47)

1=

This can be checked for example using orthonormal coordinates at x, so that the metric g just
becomes the identity at this point. Applying this inequality to the couple (V(gpt1), V(gpti2)) and
integrating one finds

(t—1)
167

(4—-1)
4

%Z Laijv(gbﬁi)’v(gbﬁj)d% : (1.48)

4,j=1

/ 1V (gyiin) 2V, <
>
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Putting together (1.45)-(1.48) we then obtain

Elog/ e“ldVnglog/ e"2dV,
s )

IN

2

1|1 TR i

el ED /“ljv(glui)~v(91“j)dvg
ij=1"%

Z / a7V (gotis) - V(goii;)dVy | (1.49)

z] 1
+ (181 + g1t2) + (€ — 1)gptiy + £C — LlogFo
+ L[|l poe () + 2] Lo ()

Now we notice that, by interpolation, for any € > 0 there exists C_ 5 (depending only on & and
do) such that

IN

Z / 9 (1) - ¥ (g1755)dV,

z]l

2
1
2 Z / a Vi, - VidV,
1 2
+ 52 a"IVi,; - ViydV, +C. 5, / (@] + a3)dV,.

Inserting this inequality into (1.49) we get

2
1|1 y
€log/ e“lqu—&-log/e"Qqu < — s Z /Q%Gl]Vﬂi'Vﬂjqu
5 E - k 4 2i7j:1 5 k.

+

Z / a"Vu; - Viydv,

z] 1
{ 1<
—c |5 Ui, - VigdV, | +C._ 5 i3 + i3)dV,
+ 4’/T€ 21‘,»: ~/2a B uj 7 * 6’60/ZJ(UI+u2) J

+ (glﬁl + g1ﬁ2> (A 1)gbﬂ1 +0C — Llog g
+ (Al e () + 2]l Lo ()

forb=2,... /4.
We now choose b € {2,...,¢} such that

5 Z /gba”VuZ Via;dVy < — 6—12 Z/ a’Vu; - VidVy.

i,j=1 —1+15upp gs)

Since the g.s have disjoint supports, see (1.43), the last formula yields

A

1
Elog/e“ldVg—&-log/e"QdVg < o+ Z/ a'Vi; - VidV,
z P

1,j=1
tc. 5, /z(ﬁ% +a3)dV, + (101 + grti2) + (€ — V) gyiy

LC — Llog Ao + L(||U1 || oo () + |2 oo (5))-
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Now, by elementary estimates we find

A

1
(log / e“1dV, + log / e2dV, < —(1+Le) Z / AV, - Viydv,
2 2 4

4,j=1
+ C&gox/(ﬂ%-‘rﬂ%)d‘[q
b
+ Clsonq0 T A Lo (s) + (02 Lo (5))-

Now comes the choice of 4 and s, see (1.44). We choose C’E’ 5,.¢ to be so large that the following
property holds

CE,SO,K/E(U% +fu§)dVg < %/Eaijvm - Vo;dVy, Vi, v €V, o0

where V_ 5, denotes the span of the eigenfunctions of the Laplacian on ¥ corresponding to eigen-

values bigger than CE’ So.t
Then we set
ai = PVE.%’EU%‘; ’lli = PV:-S Zui,
, o

where Py,_; » (resp. PvL ) stands for the orthogonal projection onto V_ ;5 , (resp. Vl ,)- Since

u; = 0, the H'-norm and the L°°-norm on V_ 5o.0 Are equivalent (with a proportlonahty factor

which depends on ¢, & and £), hence by our choice of u; and ug there holds

13 () < 0550’42 Z/ a7 V- Vu;dVy; C. 5,0 /(u1+u2)dV <: Z/ a" Vv Vv;dV.

i,7=1 1]1

Hence the last formulas imply

1
Elog/e"lqu+log/e“2qu < yp (14 3¢e) Z/ a"Vii; - Vi;dV,
s b

1]1

+

,80,4,70"

This concludes the proof. ®

PROOF OF LEMMA 1.4.7. First of all we fix a number ry < 80 Then we cover ¥ with a finite
union of metric balls (B, (z;));. The number of these balls can be bounded by an integer N,,
which depends only on ¢ (and X).

Next we cover the closure S; of every set S; by a finite number of these balls, and we choose
a point y; € U;{x;} such that

/ e"tdVy =max{/ e“*dVy : By, (z)NS; #@}.
B (y4) By (1)

We also choose y € Uj{x;} such that

/ e?dVy = max/ e"2dVj,.
By (y) b J By (a)

Since the total number of balls is bounded by N,, and since by our assumption the integral of e"!
over S; is greater or equal than -, it follows that

JBrywo @ Vo 4 JBp) ¢ Ve 1
fz endVy T Ny, fz ev2dVy T Ny,

(1.50)
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By the properties of the sets S;, we have that

BQOTO (yl) N Bro (yj) for i 7£ Js card {ys : Brg (ys) N B20r0 (y) 7é (D} <1

In other words, if we fix y;, the ball Bagy,(y;) intersects no other of the balls B, (y;) except
B, (yi), and given y, Baor, (y) intersects at most one of the balls B, (y;)-

Now, by a relabeling of the points, we can assume that one of the following two possibilities
occur

(a) Baorg(y) N By (y1) # 0 (and hence that Bagr, (y) N By, (y;) = 0 for i > 1)
(b) Baory(y) N By (y;) =0 for every i =1,...,¢.

In case (a) we define the sets S; as

Si = Bsore (¥i),s fori=1,...,¢.
while in case (b) we define
g — Biory(y1) U Bior,(y)  fori=1;
! Bior, (Yi), fori=2...¢,

We also set 79 = NL and 0y = Hro. We notice that o and o depend only on v, dy and X,
)

as claimed, and that the sets S, satisfy the required conditions. This concludes the proof of the
lemma. B

1.5 Existence of extremals for Fontana and Chang-Yang in-
equalities

In this Section, we give the proof of the existence of extremals for Fontana’s inequality in the
particular case n = 4 and also for Chang-Yang’s one. As said in Remark 0.2.3, we will give only
a full proof of Theorem 0.2.1 and a sketch of the proof of Theorem 0.2.2.

We start with the following Lemma:

Lemma 1.5.1. Let «y be an increasing sequence converging to 32m2. Then for every k there

erists up € H1 such that
/ eo""“idVg: sup/ eo""“deg.
M ucHy J M

Moreover uy, satisfies the following equation

akuj _

1
Aguk = )\—kuke Yk (1.51)

where
2
/\k:/ uie® k dv,
M

and
1

Ve = 7/ uke“k“idvg.
)\kVOlg(M) M

Moreover we have uy, € C*°(M).



1.5. EXISTENCE OF EXTREMALS FOR FONTANA AND CHANG-YANG INEQUALITIES55

PROOF. First of all using the inequality in Theorem 1.2.1, one can check easily that the functional

aru?
Ik(u):/Me aVy;

is weakly ccontinuous Hence using Direct Methods of the Calculus of Variations we get the ex-
istence of maximizer say wup. On the other hand using the Lagrange multiplier rule one get the
equation (1.51). Moreover integrating the equation (1.51) and after mmultiplyingit by wu; and
integrating again, we get the value of 7, and A; respectively. Moreover using standard elliptic
regularity we get that ux € C°°(M). Hence the Lemma is proved. B

Now we are ready to give the proof of Theorem 0.2.1. From now on we suppose by contradic-
tion that Theorem 0.2.1 does not hold. Hence from the same considerations as in the Introduction
we have that :

1)

Va> 3272 lim [ e*kdV, — +oo (1.52)
k—+oo Jar
2)
Cp = max lug| = |ug|(zr) — +o0

We will divide the reminder of the proof into six Subsections.

1.5.1 Concentration behavior and profile of

This Subsection is concerned about two main ingredients. The first one is the study of the
concentration phenomenon of the energy corresponding to u;. The second one is the description
of the profile of Bpur as k — +o0o, where [y is given by the relation

1/@:/ @ewidvg.
M

k

We start by giving an energy concentration lemma which is inspired from P.L.Lions’work.

Lemma 1.5.2. uy verifies :
up — 0 in H*(M);

and
|A9uk |2 - 5060

for some xy € M.

PRrROOF. First of all from the fact that wui € H; we can assume without loss of generality that
up — ug in H2(M). (1.53)

Now let us show that wuy = 0.
We have the trivial identity

/M A, (g — o) PdV,, = /M A u PV, + /M 1A, uo|2dV, — 2 /M Ayurd uodV.

Hence using the fact that [, [Agu|?dVy =1 we derive

/ 1Ay (ug — ug)?dV, =1 +/ | A guo|*dVy — 2/ AgupAguodV,
M M M
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So using (1.53) we get

li / |A g (ug, — ug)2dV, =1 —/ AgupAguodVy
k—0 Jar M

Now suppose that ug # 0 and let us argue for a contradiction. Then there exists some 3 < 1 such
that for k large enough the following holds

[ 18y~ w)av, < 5.
M
Hence using Fontana’s result see Theorem 1.2.1 we obtain that
/ eo‘l(“’“_uo)deg < C for some a; > 3272,
M
Now using Cauchy inequality one can check easily that

/ ea2Uiqu < C for some as > 3272,
M

Hence reaching a contradiction to (1.52).
On the other hand without lost of generality we can assume that

|Ag’u,k|qu — U.

Now suppose p # 6, for every p € M and let us argue for a contradiction to (1.52) again. First
of all let us take a cut-off function 1 € C§°(B,(5)),n=1on B,(%) where z is a fixed point in
M and § a fixed positive and small number.

We have that

limsup/ |Ayug2dV, < 1.
k—+oco J B, (d)

Now working in a normal coordinate system around x and using standard elliptic regularity theory
we get

/ Ao 2V, < (1+ 05(1) / |Agux2dV,;
B?(§) B (9)

where # is the point corresponding to 2 in R* and nuy the expression of nuy on the normal
coordinate system. Hence for § small we get

/ |A07M\2dVg <1
B#(9)
Thus using the Adams result see [1] we have that
/ e®)* o < C for some & > 3272,

B¥(3)

Hence using a covering argument we infer that
/ ea“idVg < Cfor somed > 3272,
M

so reaching a contradiction. Hence the Lemma is proved. ®

Lemma 1.5.3. We have the following hold:

lim Mg = +o0, lim ~, =0.
k—+o00 k— o0
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PrROOF. Let N > 0 be large eenough By using the definition of Ay we have that

A = / uZe Uk AV, > N2/ KUk Y, = N2(/ KUk Y, — eKUR V).
M ‘ {ur>N} ‘ M ‘ {ur <N} ‘

On the other hand

lim / ek Y, — / e UidV, | = lim [ e idV, — Voly(M).
k— o0 M {ur<N} k— o0 M

Hence using the fact that

lim ea’““idVg = sup / 632”2u2dVg > Voly,(M)
k—+too /s u€H1 J M

we have that 1) holds. Now we prove 2). using the definition of ~; , we get

1 1

N < 2 772
<« NoyesemNr 1 1
il < o Ne Ve, M) N

Hence by using point 1 and letting & — +o00 and after N — 400 we get point 2. So the Lemma
is proved. H

Next let us set
Brur panul

Tk = -
M Ak

One can check easily the following

Lemma 1.5.4. With the definition above we have that 0 < B < ¢k, || <1 and Bryi is bounded.
Moreover up to a subsequence and up to changing uyp to —uy

T, — T > 0.

The next Lemma gives some Lebesgue estimates on Ball in terms of the radius with constant
independent of the ball. As a corollary we get the profile of Grur as k — +oo.

Lemma 1.5.5. There are constants C1(p),and Cs(p) depending only on p and M such that,
for v sufficiently small and for any x € M there holds

/B V3V, < oot

and
[, IVaslrav, < it

where, respectively, p < 2, and p < 4.

PrOOF. First of all using the Green representation formula we have
ug(z) = / F(x,y)Agudeg(y) Ve e M.
M

Hence using the equation we get

wie) = [ P (Guet ) avo) - [ Feamavo).

Now by differentiating with respect to x for every m = 1,2 we have that

1 2
Vi@l < [ 9Eeal (5 ) nleiavm + [ 9EREli.
M k M
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Hence we get

m m 1 [e3 u2 m
vy @] < [ 1VrFGal (52 ) ludertavo) + [ 1VER@ I .
Taking the p-th power in both side of the inequality and using the basic inequality
(a+b)P <2P7Y(a? +bP) for a>0 and b>0

we obtain
1 2 P
Oy Gana)l? <27 | [ 9 E@aln () luletavm)
M

P
ort [ [ 1wy Eels, m}

Now integrating both sides of the inequality we obtain

B (r)
P
+2P—1/ [/ \V?F(z,y)wk |’yk|] dVy(z).
By (r) M

First let us estimate the second term in the right hand side of the inequality

V' F ' Vv 1
/ [/ V5" F (2 )10 |’7k|} dVy(z) <C sup
B M

V() < C(M)rA
= (1) B, (r) yeM dg(z7y)pm 9( ) )

Thanks to the fact that Sy is bounded, to the asymptotics of the Green function and to Jensen’s
inequality. Now let us estimates the second term. First of all we define the following auxiliary
measure

1 2

We have that my is a probability measure. On the other hand we can write

/Bz(r) {/M VI F(2,9)|8k <)\1k) |Uk€a’““idvg(y):|PdVg(z)

= o L e v

Now by using Jensen’s inequality we have that

(1.54)

[ vpre, y>|dmk<y>r < || wrrGaran)

Thus with the (1.54) we have that
m 1 (o3 u2 P
/ / Vo' F(z9)|0k { = | lurle™ 2dVy(y) | dVy(z) <
By (r) M )\k

/Bz(r) [/M V?F(&y)pdmk(y)] dV,(2).

Now by using again the same argument as in the first term we obtain

/Bx(r) {/M |V?F(z,y)|pdmk(y)} dV,(z) < C(M)r*=m?.

Hence the Lemma is proved. B

Next we give a corollary of this Lemma.
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Corollary 1.5.6. We have Brur — G W2*P(M) for p € (1,2), Brur — G smoothly in M \
B, (0) where ¢ is small and G satisfies

in M;

{ AJG = 7(0ay — Volgl(M))

G=0
Moreover
G(z) = T 1 ! + 75(x)
T e
with 7= dg(z,z0). S = So+ S1(x) , So = S(xo) and S € W21(M) for every q > 1.
PrOOF. By Lemma 1.5.5 we have that
Brur = G WHP(M) p e (1,2)

On the other hand using Lemma 1.5.2 we get e®:%% is bounded in LP(M \ By, (6)). Hence the
standard elliptic regularity implies that

Brur, — G smoothly in M \ By, (9). (1.55)

So to end the proof of the proposition we need only to show that

f—zukeak“i — Tz, (1.56)

To do this let us take ¢ € C°(M) then we have

(pﬂku eakukdv / QO&UkeakuidVg—F/ @éu eakukdv
Ak M\Bay(8) Ak Buy(6) Mk

Using (1.55) we have that

/ Lpﬁ—u;cea"“de O(— )
M\Bay(5) Mk Ak

On the other hand, we can write inside the ball B, (J)

Is, (5)@%Ukeakuidvg = (p(zo) +05(1))/ @u eakukdv
zQ Bmo((g) )‘k:
B

= o) + o5(1 T — —ukeo"““idV
(¢(zo) + 0s(1)) f
M\ Bz (8) Mk

Now using again (1.55) we derive

/ Bt yemit — o(L),
M\B, (5) Mk Ak

Hence we arrive to

/ ‘P%uke“k“id% = 7¢(20) + 0or.5(1)-
By (8) Nk

Thus we get
/ w%“’“eakukdv O( -) +7e(wo) + oxs(1).
M

Hence from Lemma 1.5.3 we conclude the proof of claim (1.56) )and of the Corollary too. B
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1.5.2 Pohozaev type identity and application

As it is already said in the introduction this Subsection deals QWith the derivation of a Pohozaev
type identity. And as corollary we give the limit of fM e "k dV, in terms of Voly(M), A, B
and T

Lemma 1.5.7. Setting Uy = Aguy we have the following holds

2 1) 0
_ / ek gy, — _7/ UZdS, — Y urV yUrdV, + 2/ Uy
axXe JB,, () 2 Job,, (5 0B, (5) 0B, (5)  Or
U 0
+26 TRk S, + / O(r*)V yu,V ,UrdV,
0B,,(5) Or Or Ba, (5)

: 0
+/ O(r*)URdVy + / OV, — / eV, + O().
B., (6) B., (6) 2Xeak Jop,, (5) Bz
where § is small and fized real number.

PROOF. The proof relies on the divergence formula and the asymptotics of the metric g in normal

coordinates around xy.
By the definition of Uj we have that

{ Aguk = Uk

2
UL
AUy = e — oy

The first issue is to compute [, %) T%Aquk in two different ways, where r(x) = dgy(z, zx).

On one side we obtain

g-

8U ov,U 6U 0
/ RN gupdV, = 7/ (VoUrV gug + 7 RV gur)dV, +/ k Ok
zk(ﬁ) or 2, (8) 3 B, "or or
On the other side we get
/ 6UkA JukdV, :/ T%devg
(0 Or By (5) 07
:/ 271'2/ %Uk \g|r*dSdr
0 9B, (zx) O
=2 URdS, —2 UZ(1+ O(r?))dVy,.
0B, (5) Ba, (6)
Thus we have
ov,U
$ / UZdS, — 2 / Udv, = - / (Vo UpV guy + 1 89 b ur)dV,
8Ba, (8) Bq, (8) Be, (8) - r
+ r—’“ﬂdSﬁ/ O(r2)U2dy,
oB,, (5 Or Or wy (0)
In the same way we obtain
o / i ds, - 2 / Ui (1 4 O(r?))dV,
T eE @ e OV oU,, O 5
Uk k OUL
000 = — (V,UpVup + 1 ca v/ Uy)dV, Jr/ ————dS O(=5)
sz((;) g g or g g OB, () Jor Or g l%
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Hence by summing this two last lines we arrive to

2 1)
gﬁﬁ/ e%%mg—x—f/1 e%%mg+§/) zﬁ&s-z/ UZdv,
9B, (5) k% J B, (8) 9Ba, (9) 50, 8 Ba,, (9)
u,
o0 = — (QV U,V,up +r—VupV Uk)dV +2/ Ji S
B, (6) gmrne or 9 . OB, or or
oooo + O(r®)Uzdv, Jr/ ea’““iO( )dVy + O(—5 )
B., () B., (8) Bz
(1.57)
On the other hand using the same method one can check easily that
0
/ —V ukV deV = 5/ VgungdeVg - 4/ VgungdeVg
B @) OF OB, (9) 2 (8) (1.58)
+ O(r*)V yuy V Uy dV,
B., (6)
and
auk
VgUngudeg = - UkAgudeg + U,— P Sg
B, (6 B., (9) 0B () " (1.59)
- 7/ U,fdvg+/ U 2k 4,
or
By, (9) OBy, (9)
So using (1.57),(1.58) and (1.59) we arrive to
_2_ Uiy = 9 S, — 0§ v, +2 Ou
T aRAk € Vg - T2 Uk) - vguk:vg[]k ‘/g + Ukﬁ
B, (8) 9Ba, () N 8Ba, (6)
+26 b Ik +/ﬁ O(r)V yur V ,UpdV,
08,,(5) Or O Ba, (9)
- Ohgﬂ@d%—k/‘ O (r2)dV
Bz, () Bay, (5)
—y— KRV, 4+ O(=5 )
Pk ] o By () Br

Thus the Lemma is proved ®
Corollary 1.5.8. We have that

2
li i — Vol (M 2 lim 2%
k—1>I.|I_100 M ¢ VO g( ) +7 k_lf_}_loo ﬁk

Moreover we have that
€ (0,1].

Proor. First of all we have that the sequence (ﬂ) k is bounded. Indeed using the definition of

B
Br. we have that
A 1 2
7 3o dertav, 2

Hence using Jensen’s inequality we obtain

)‘k 1 apu? 2 apu’?
ﬁ—z < )\—k/Me k deg/Muke RV,

Thus using the definition of Ay we have that

A ‘/ o2
V.
o !



62 CHAPTER 1. MOSER-TRUDINGER TYPE INEQUALITIES

On the other hand one can check easily that

. 2 22
lim e dVy = sup / e*2™ UV, < oo.
k=00 Jpr u€H;

Hence we derive that (g—’;)k is bounded. So we can suppose without lost of generality that
k

(’6\—’5) &k converges.
k
Now from Lemma 1.5.7 we have that

lim UGV = 1672 lim A ‘5/ B U)?dS
k=) B, (5) ! e ankw)( KU S
oO(Bru
+0 / GV (Bu0as, —2 [ (g 20
9B, (5) 8Ba,, (8) T
(5kUk) (ﬁkuk)ds +0(5)).
8Bmk(6) or or
So using Lemma 1.5.6 we obtain
lim ekUuidy, = 16n2 lim 2% 5/ A,GI?dS
k——+oo Ba.-k (5) 9 k—-+oo ﬁk( 9B ( )‘ 9 | 9
15 / V, GV, (A,G)dS, — 2 / a,c2%
OB (x0) N 0Bz (9) or
925 GG 15+ 0®)).

3Bz0 (5) 8r 8r

Moreover by trivial calculations we get

A,GI2dS, = —— + O(1);
L, 5GP, = gz + O

2
-
V,GV,(AG)dS, = ——— 4+ O(1);
L. T80, =~z 01
0G T2
AG— = — + 0(6);
/3310(5) g or ].6’/T2 + ( )’
and 0A,G 0G 2
9 O S, = ——— +0(1
/831 5y Or or 5o 8%26—’_0( )
Hence with this we obtain
lim O"“"de =72 lim ] + O(9).
k—+oo [, (5) k—too (32

On the other hand we have that

M Bz, (9) M\Bg, (5)
Moreover by Lemma 1.5.2 we have that
/ e“F UV, = Voly (M) + og 5(1).
M\ Bg, (5)
Thus we derive that

2 Ak
li agug, V.=V M 2 li
k—1>r-&{loo M c d g Olg( ) 4 k—1>I-‘,I-10<> ﬂ2 + 06( )
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Hence letting § — 0 we obtain

: apu? 2 :
kEI—&I-loo Me UV, = Voly(M) + 7 kEToo 3

Now suppose 7 = 0 then we get
lim [ e™“kdV, = Vol,(M).
k— 400 M
On the other hand we have that
lim eo"““idVg = sup / 632”2“2qu > Volg(M);
k—+too J s u€H1 J M )

hence a contradiction. Thus 7 # 0 and the Corollary is proved. B

1.5.3 Blow-up analysis

In this Subsection we perform the Blow-up analysis and show that the asymptotic profile of wuy, is
either the zero function or a standard Bubble.
First of all let us introduce some notations.

We set

Ak

Brcr

_ 2
e = ek,

Now for x € B 9(0) with & > 0 small we set
wi(x) = 2000k (ur(€xpa, (1rT)) — k) 5
1
Uk(®) = -t (epa, (ri);

gr(x) = (expy, g)(rez).

Next we define

Ck .
Proposition 1.5.9. The following hold:
We have
1
if d <400 then wp — w(x):= p log | ———=——| in C?.(RY);
14 /82
and

if d=o0 then wy — w =0 in C}.(RY).

PROOF. First of all we recall that
gr — dz? in CE.(RY).
Since (g—%), (f—:) are bounded and ¢ — 400 , then we infer that
r, — 0 as k — 0.

Now using the Green representation formula for Ag (see Lemma 0.3.1) we have that

ug(z) = / F(Jc,y)Agudeg(y) Vo e M.
M
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Now using equation and differentiating with respect to x we obtain that for m =1,2

u
Vol < [ 9P |fEet -] av )

Hence from the fact that By is bounded see Lemma 1.5.4 we get

V()] < /M VTP, )| \Zk aV,(y) + OB,

Now for yi € B, (Lry), L >0 fized we write that

[ 19 Fe) Sesdav,y < o (e [ el v v, )
M Ak M\Ber(yk) >\k

C 2 —m
+0 (;e“kck/ dg (Y, y) dVg(y)>
k Brry (vk)
= O0(r, "B, ).

thanks to the fact that |ug| < ¢ to the definition of ry.
Now it is not worth remarking that c = up(xy) since we have taken T >0 (see Lemma1.5.4).
Hence we have that

wi(r) < wp(0) =0 VaoeRYL

So we get from the estimate above that wy is uniformly bounded in C?(K) for every compact
subset K of R*. Thus by Arzéla-Ascoli Theorem we infer that

W — W € Clloc(R4).

Clearly w is a Lipschitz function since the constant which bounds the gradient of wy, is independent
of the compact set K.

On the other hand from the Green representation formula we have for x € R* fized and for L big
enough such that x € BY(L)

ug (expe, (rre)) = /M F(expa, (rix), y) Aug (y)dVy (y).

Now remarking that
ug (k) = uk(exps, (rx0));

we have that

uk(€pa, (riw)) — uk(ex) = /M (F(eaps, (rix),y) — Fexps, (0),y)) Agur(y)dVs(y).

Hence using (1.51) we obtain

ug(expa, (rye)) — ug(zy) = /M (F(expa, (rie), y) — F(exps, (0),y)) %eak“idVg(y)

- /M (F(expay (1), 1) — F(expey (0),9)) (1) dVy (y).

Now setting

u 2
@) = [ (Fleaps, (). ) — Fleaps, 0.) Fe i av o)
Bmk (Lry) k

U
()= | (Feapa, (re) ) — Flerps, (0),9)) et av, (y)
M\Bg, (Lrt) k
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and
1, (z) = /M (F(expa, (rrx),y) — Flexps, (0),y)) (ve)dVy(y);

we find
ug(expy, (rez)) — ug(zx) = Ix(z) + i (x) + g (z).

So using the definition of wy we arrive to
wr = 20 Ok (Ik(x) + Hk(ac) + ]]Ik(ﬂ;‘)) .

Now to continue the proof we consider two cases:

Case 1: d < +00

First of all let us study each of the terms 2au Bkl (x), 20Ok Il (), 20k Bk 11 () separately.
Using the change of variables y = expy, (rpz) we have

2akﬂklk(x) = LL(O) (F(el“pxk (rkx),expzk (rkz)) - F(empik (0)7 €LPgy, (’rkz)))
200 B uk (€xpa,, (Trz))

" et LAy, (2).

Hence using the definition of v, and vy one can check easily that the following holds

20 Bk Lk () = 20, /B " (G(expy, (), exps (riz)) — Gewps, (0), exps, (riz))) vi(2)

e F @+ gy ().

Moreover from the asymptotics of the Green function see Lemma 0.3.1 we have that

2akﬂklk(x) = 20%/

1
( log & + K (z, z)) vk(2)e TNy, (=),
BO(L) |

872 x — 7|

where
Ky(x, z) = [K(expy, (117), expy, (11:2)) — (K (exps, (0), expy, (11:2)] -

Hence since K is of class C' on M? and g, — dx?in C?_(R*) and vy, — 1 then letting

loc
k — 400 we derive

lim QQkﬂka(JC) = 8/ 1og
k—+oo BO(L) |z — 2|

Now to estimate a0 Ik (x) we write for k large enough

1 1 ( dg(ewpzk(o)vy) )2akﬂkuk
0
dg(expy, (Te2),y) Ak

By Ihi(z) = / LA
M

I\Bg, (Lr,) 82
_ 20 O

+f R, y) 2252 vty ),

M\Bg,, (LTk) k

where
Kk (l‘, y) = (K(expwk (Tkx)v y) - K((El’pxk (0)7 y)) .

Taking the absolute value in both sides of the equality and using the change of variable y =
expy, (1kz) and the fact that K € Ct we obtain,

log |2|
|z — 2]
20, Brug

Jrer/ ek Uk dVy(y).
M\B,, (Lry) Ak

‘204k5k11k($>| < / ] |,Uk|(Z)e%(wk(z)(l-&-vk(z)))dvgk(Z)

RA\BE(0)
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Hence letting k — 400 we deduce that

lim sup |2c B I (z)| = or,(1).
k—+o00

Now using the same method one proves that
20,0k 11T (x) — 0 as k — +o0.

So we have that

w(x):/ SIOg( 2 )edw(z)dz—l— lHm 2040k I (x).
BL(R) k—-o0

Hence letting L — +o0o we obtain that w is a solution of the following integral equation

w(a:):/ 810g< 12 )ed“’(z)dz. (1.60)

|z — 2|

Now since w is Lipschitz then the theory of singular integral operator gives that w € C1(R%).
Since
. 20 B ug
im —_—

eak“idVg = 6471'2/ e @ gy,
k——+oo Bmk (er) )\k-

BO(L)

and

/ MeakUidvg < 6472,
By, (Lrk) Ak

then we get

lim e (@) g — / e (@) dgr <1.
L—+o00 JRo(L) R4

Now setting
d 1 8m2d

(w) = Jule) + ; log(—=0);

we have that W satisfies the following conformally invariant integral equation

_ 6 2] . 1 8n2d
=] =1 DBy 4 1 1.61
alo) = [ gezton (o ) ¥ + 1oa ", (1.61)

and
/ @) gy < +oo.
R4

Hence from the classification result by X.Xu see Theorem 1.2 in [89] we derive that

(z) = log (”)

N2 [z — a2

for some X\ >0 and xy € R
sFrom the fact that
w(z) <w(0) =0 VreRY:

we obtain )
1. 8n2d
@(z) < @(0) = 7 log(*~

1 ) Va € R

Then we derive
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Hence by trivial calculations we get

Case 2: d = +o0.
In this case using the same argument we get

llicm sup |a Bk ()] = or(1);
— 400

and
a B (r) = o (1),

Now let us show that
Ozkﬁklk(m) = Ok(l)

By using the same arguments as in Case 1 we get

o fBli(x) = /

1
< log 2l —|—Kk(x,z)) vk(z)ed’“(wk(z)(H”’“(z)))dng(z)
BO(L)

&2 ° |z — 2

Now since K is C' we need only to show that

1 |2 d
1 k(Wi (2) (v (2)) g1/ _ 1).
/BU(L) 8m2 8 |z — z|Uk(z)e o (2) = 0(1)

By using the trivial inequality

2
/ Bk g gy, < 1
By, (Lry) Mk

and the change of variables as above, we obtain

1

/ V2 (2) et (DG gy (2) = O() = ox(1).
BO(L) k

On the other hand using the property of vy one can check easily that

/BO(L) vk(z)edk(wk(Z)(1+Uk(z)))quk (z) = /BO(L) vz(z)edk(wk(Z)(1+Uk(z)))dvqk (2) + ox(1).

Thus we arrive to

1 |2 d
| k(wi (2) (1+vk(2)) 17 — 1
Loy 5 B e () = on(1)

So we get
Bl (z) = ox(1)

Thus letting k — 400, we obtain
w(r) =0 Vo € RY

Hence the Proposition is proved. B
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1.5.4 Capacity estimates

This Subsection deals with some capacity-type estimates which allow us to get an upper bound
of 721limy_ 4 oo % We start by giving a first Lemma to show that we can basically work on
k

Euclidean space in order to get the capacity estimates as already said in the Introduction.
Lemma 1.5.10. There is a constant B which is independent of k, L and d s.t.

Ji(k,L,d
/ 0~ Ble)aou e < ey, + L)
B3 (0)\BO(Lry) Ba, (6)\Ba, (L7x) Bi;

where
() = up(expy, (2)).

Moreover we have that

Jm Jim_ ik 2.8) =

Proor. First of all by using the definition of A, ie

1
Ay =—=0-(\/]9lg"0s);

Vdl

we get

|AgBrur* = |gr55kdi,«g’;s + O(|V Brt|)[?
= |97 By goris 2 + OV Briig| |V Biiie ) + O((V e )?)

On the other hand using the fact that (see Corollary 1.5.6))

ﬂkak — G’ in Wz’p(M);

where p € (1,2); and G(z) = G(expa, (z)); we obtain

/ O(|V? By ||V Btk |) + O((|V Briix])?)
BO(5)\BO(Lry)

< ClIG||wr.2(Bo(5)\BO(Lri))
= Jo(k, L,6),

and it is clear that

li li L,§) =
61—12) k—l>I-il:1<>o J2 (k (S) 0

2

Now let us estimate f30(5)\BU(er) |9 B 827"%1;5 . To do this, we first write the inverse of the

metric in the following form

gTS — 67'8 + AT'S
with

|A™8| < Oz

We can write

0%y,
ox"0x®

8%y, 0%y
0xm0xs 0xPOx4

1| Aok |2‘+22AP‘1A0U,€8a Uk, D AT AP

p,q 7,5,P,q

|T‘S

Furthermore we derive

8uk

0?1,
2 / AP Agitg 2 |av, < C (2’| Aoil” + 3 [2f?] 2)da
; BO(8)\BO(Lrs) QPO BO(6)\BO(Lry) gq: OxPOxt
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On the other hand we have that

2~ 2~ 2~
Z/ o5y P | o 0 O,
BO(&)\BO(LTIC) 0xPOx4 BO(§\BO(Lry,) 0xs0xs OxPOxP
Oty 0% g 0
+/ O(|Vﬁk|\V2ﬁk\)dx+/ g2 Sk 7 Tk <,>dS
BO(8)\BO(Lrs) A(BO(8)\BL™k (0)) O0x9 0xPOx? \ OxP’ Or

+/ | ‘Qauk (9 uk i 2 ds
B(BO(8)\BO(Lr1,)) Oxd OxPdxP \ Ox4’ Or '

So setting

J3(k, L, 9) _ /
B2 BO(§)\BO(Lry,)

~ ~ Ouk 8 uk
O(|Va| |V dm—i—/ <
(| H D 3(30(5)\30(er)) (91'q 6331)658‘1

8uk (9 uk (9 8
2

2 9Ny
+/{)(30(5)\30(er)) | | 633‘1 c’)aﬂ’awl’) <8$q7 8T> S

We obtain

>, Pl ot = [ op Ll Oy, ok L3)
BO(§\ B (Lry, 0xPOxd BO(§\BO(Lry,) 029029 OxPOxP Z

Moreover we have that

lim lim Js(k,L,d) =0.

§—0k—+o00

Hence we get

0% 0%a Ju(k, L, 0
22/ Al < [ 2] gty P+ P20
SN\BO (L ) 0xs50xs dxPIxrd BO(8)\BO(Lry) /Bk
with
(%IH(l) hm Jy(k,L,8) =0.
On the other hand using similar arguments we get
0%u 0%a Js(k, L, 6
/ AT A I Uk < C/ |33|4\A0ﬂk\2d3?+ 45( ’2 : )
BOGN\BO(Lri) 5 Oz79x* OxP Oz BO(§)\BO (L) B
with
lim lim Js(k,L,d) =0.
6—0 k—+4o0
So we arrive to
Jo(k, L, o
/ |Agurl*dVy < / (1+ Claf* + Clz|")| Ao dz + 6(72)
e, (9\Bay, (L) BO(§)\BO (L) Bk
with
lim lim Jg(k,L,6) =0
0—0 k—+4o0
Hence we can find a constant Bj independent of k, L and ¢ s.t
J7(k,L,d
/ |Ayug [*dV, > / (1 — Bylz*)|Agtix|*dz + Lﬂ
Bay ()\BLn, BO(8)\BO(Lry) B
So setting

Ji(k,L,6) = —J7(k,L,6) and B = B;
we have the proved the Lemma. B

Next we give a technical Lemma
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Lemma 1.5.11. There exists a sequence of functions Uy € W22(B°(8) \ B°(Lry)) s.t

——L logd + Sy w(L)
U _ 1672 U — .
kloBo(s) T ° kloBo(Lry) A + cx;
and
Uy T Uk, __wi(E)
ar OB O T TRz T o 1B T 90y By
Moreover there holds
lim lim ﬂ,%(/ |Ao(1 — Blz|?)Uy|?dx — / |(1 — Blz|?) Aoty |*dz) = 0.
6—0 k—+o00 BO(8)\BO(Lry) BS\BY(Lry)

PRrROOF. First of all let us set
hi(x) = ug(expy, (rpz)).

and uj, to be the solution of
?%uﬁc = A%hk
: oh
aLnbeU(QL)T,NaBO@L)aUU;C|SBU(2L) = hk|aBO(2L)

Glomo (1) arg Felosowy ouklome 1) = gt |
dn 10B°(L) 20, By, on 10B(L)> OUEIOBO(L) = 2q,p, 10B*(0)

Next let us define /
Ul — up(;E)  Lry, <] < 2Lry
ag(x)  2Lrg < |z

Clearly we have that
lim (1 — Blz|*)(|AgUT|)? — |Agiig|*)dz = 0,
k—+oco Jpo(aLr )\BO(Lry)
and

kEI-ir-loo U}, — g lco oL\ BO(Lry)) = 0.

Now let 7 be a smooth function which satisfies
(1 ot<1)2
"(t){ 0 t>2/3

.
82

and set w
xr .
Gy = n(—)(uk — 78y +

5 log |z|) — 87-? log |z| + 7.5.

Then we have that
x| . ~
G — —# log || + TS0 + Tn(u)Sl(x);

where Si(z) = S)(exps,(z)) .
Furthermore we obtain

~ X
By — G, — T (1 - W('(S)) Si(z),

then

lim | | Ao By dx f/ |A0Gy |2 dz| < X

=0 Jpos)\Bo(3) BO()\B°(3)
where

S = Ipoenmos 1200 = (NS @)12dw [0, pocs) 180(G — 5k loglal + n(51) 51 (2)[2da
< C68+/|logd|.
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So we get
lim | | Ao Beiin|2dz — / AoGi[2dz| < C5+/TTogd].
=0 JBo@oNBo(3) BO(§)\B(3)
Hence setting
Up = { Up(z) 2| < g
Gr(x) 6/2<|z| <6

we have proved the Lemma. B

Proposition 1.5.12. We have the following holds

and

dr =1.
Proor. First using Lemma 1.5.10 and Lemma 1.5.11 we get

S, (o) 1801 + fM\Blo(é) |AG)? + Jo(k, L, 0)
B

/ |Ao(1 — Blz[)Uy|?*dz < 1 — . (1.62)
BO(8)\B(Lry)

with
Il 0.0 =0

Next we will apply capacity to give a lower boundary of fBU(é)\BO(er) |Ao(1 — Blz|*)Us|?dz.
Hence we need to calculate

inf ) / |Ag®@|“dx
D D
P50 =P1,2ly50(ry=P2, 57 |9 50 () =Q1: 57 |9 50 (ry=Q2 J BO(R)\ BO(r)

where P, P», Q1, Q> are constants.
It is obvious that the infimum is attained by the function ® which satisfies

{ A28 =0
Dlopoery =P1 , Plopory = P2 S lopory = Q1 » 22 lopor) = Qo

Moreover we can require the function ® to be of the form
s C
¢ =Alogr+Br°+ 5 + D,
r

where A, B, C, D are all constants which satisfies the following linear system of equations

AlongrBrJr +D =P
AlogR+BR2+R2+D P
+2B7‘_2T73_Q1
R+2BR 2R‘5_Q2

Now by straightforward calculations we obtain the explicit expression of A and B

A— P1—Py+2rQ1+5RQ>

- logr/RJrg

—2P;+2P5— rQ1(1+R 2 logr/R)+RQ2(1+ 2 logr/R)
4(R2+7r2)(logr/R+0)

B =
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Where o = Furthermore we have

R2+ 2
/ |Ag®*dz = —872A%logr/R + 322 AB(R? — r2) 4 32n2B*(R* — r?) (1.63)
(R\B(r)

In our case in which we have that
R=6§ r=Lrg,

w(L) —g=z1ogd + 750 + O(dlog )

P =cy + Sl +O0(rpeg) Po 5
Q) = w'(L) + O(rger) Oy = _ 7+ 0(dlogd)
e 20 BT 2 87210

Then by the formula giving A we obtain by trivial calculations

N+ log &
cp + TEE 80

A= B
- logkikfozkcz
—logd +log L + —26%—* 414 O(r})

where I VL
N D) o WL 7

- ] 2y,
20 0+ lap  Tomz T OW01080) +Orkcy)

Moreover using the the fact that the sequence ( 7 L)k is bounded it is easily seen that

A=0(—).

Ck

Furthermore using the formula of B we get still by trivial calculations

2
—2cx + S?i‘% 3+ ([le)
F(—awed +log %)

and then
1.1

e
Now let compute 87242 logr/R. By using the expression of A, r and R, we have that

B =0(

Nk—i- 5 log § An 2
“t 2 (D8 Bt — Ry 5 10g 1)
4

C2
—logd +log L + M +140(2)

—872 A2 log(%) = —8n%(

Now using the relation

2 2
Ozkck 2 )\k 2
—4logd +4log L +1 440 =
()2 (1 g (~alogd + dlog L+ log 2 + 4+ 0(r}) )
2
log Ak — apc?
<—log5—|—10gL+Bkck4k+1—|—O(r,%)
we derive
Nk—i- 2logé _9
2 42 Ty 5, Ck T+ B 2 Ak 2
—8m?A log(E) = —8r (T) 1- o (—4logd + 4log L + log Frcr +44+0(ry))
log b — ay,c?
x(— ek "% og s+ log L).

4
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On the other hand using Taylor expansion we have the following identity

+4—4logé+4loglL

1 Y —2 log 2 b
(1— 5 (—4logé +4log L + log +4+O(r,%))) =142 Bacs
akck Orc

ozkck
log2 Ck
+O( ! )9
k
hence we get
Ni+=Z3 log§ 9
ey + —=2—— _ log =& 1C
—812A? log(i) = —8m%( D )2( B" . b logd +log L)
R QECh 4
1
log2 Ck
1 (0]
x( o ™)
On the other hand using the relation
Ny+-=5 logé A 5
ek + —=5——  log 7% — agc
—87‘(2( 2[‘319 )2( B k4 ko 10g5 1 log L) _
apcC
1 k
32r% 1 Ny + I logd ,,  log
o+ ——F—)"(1 - 5
g Ci Br Qg Cy,
we obtain
3272 1 Ny + 5 logd log 74~ +4 — 4log§ + 4log L log? ¢
—8r2A%log(—) = 2 (e =8 2 2142 ucs +0
(R) g Ci( k ﬂk ) ( Oéka ( Ci ))
log 2% —4logd + 4log L
X(l _ BrCr > )
ApCr
Moreover using again the trivial relation
IOg 5 10g2 Ck lo ﬁi\’;k _
(1+2 )1 - > ) =
akck Cr QECp
log 7 + 8 — 4log § + 4log L log? ¢
(1 e . +O(55™)
axcy ci
we arrive to
T 3272 1 Ni + ==z logd log 7 oo T8 4logd + 4log L log? ¢,
—8m°A%log() = — = —— )1 - +0
W A%log( ) = T et SR o ™)

On the other hand one can check easily that the following holds

Mot sirloglyy, 8ty T Aot ARl |, log? ey

1 =
(o + 220021 o o)
log 2t +8 —4logd + 4log L Ny + log § 1 1
¢ 4 — P 20, T80 plogk) o)),
g Bre Ck B

thus we obtain

—872A% 10 cr + 2cg
g(R) k a ﬁk

+32772i (O(longHO(ﬁlg))

ay ¢ cl

, 32m 1 2+1ogﬁ’2’;k+8—4log5+4logL ) Ni, + 522 logé
(677 Ck
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Furthermore using the relation

c, + + 2¢i

log 7% + 8 — 4logd + 4log L Ny + gz logd 1 1
2 BrCk 2 kT 8 08 + O( OgQCk) 0(7) =
g Bre Ck By

1 A 4 4logL 8
(Ci +log - — g+ dkrlogé 2N + B2 2y Ok(1)>
oy Brer oy Qk Ok
we get
r 3272 1 1 Ak 4 1 4log L 8
_8 2A21 2 — 1 — —logd ——di7logd + 2d; N, -
. Og(R) o2 C% (Ck+ ” og Gror o og +47r2 kT logo + 2d, N + o + o
3272 1
———o(1
+ %) C%Ok( )
(1.64)

Next we will evaluate |, M\B.. (5) DgGAGGdVy. We have that by Green formula
o

/ AyGA,GAV, = / GAZGdV, — / aGA G+ / 924G
M\B., (5) M\B,, (6) 0B, (5) OF 0B, (5)  Or

Thus using the equation solved by G we get

2

T T d(—logr)
AGA,GAV, = — / GdV, —7/ ———= 2 Ag(—logr
/M\Bmo(é) Immem (M) J B (v) Y64t Jop, ) OF ol )

T 0o (—Z5 logr)
+ ———=logr + S B + O(dlogé
T ) TR (510g.)
Hence we obtain
/ A,GA,GdY, A T +0(5log )
= — T
wme. ) 7 1672 8x2 °° 0 80)s
Now let us set
P(L) = / |Agw|?dz /(2 x 321%)2.
BO(L)
Hence using (1.62), (1.63), (1.64), we derive that
3272 1 A 4 1 4log L 8
24T (ci + —log o = logs + —Qdleogé—FQdek ke Ll )
Qg Brcr oy o o
2
P(L) — L= — log § So + O(Slog d 1
<1 - PO~ s~ s e ©logd) T orall)) | 202 4B) 4 50(2B7).
i
33%2 log 74
we get
3272 A 1 32 3272 4log L 8
—Zlog b < —5(dim? — —dm’—l—( 7T) )logd — T (2d, Ny, + °8 +—)
ak, 6k0k 87T oL AL Qe (677 (1 65)
! )
—d2(P(L) + 7S — ﬁ +O(610g 8) + ox(1)) + 620(c2AB) + §*0O(c2 B2).
Hence using the trivial identity
Ak Ak
lo =lo + logd
g =5 5k gﬂkck g ag
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we get
3212 N\ 64 327, 3272 2+4logl 2
] dar? — —d 2Ny, + —=— + —
a2 0g 2—82( kJF(ak))Og ak( kVE + o +Ozk)
2 72 3272 9
—di(P(L) + 718y — Ton2 + O(dlogd) + ox(1)) + 2 log dy, + O(dy).
k

Now suppose d = +00, letting § — 0, then we have that

lim log

= —
—>+oo /Bk ’

thus we derive

Hence using Corollary 1.5.8 we obtain a contradiction. So d must be finite.
On the other hand one can check easily that the following holds

322 Ak 1 3212, 9
log —= < — 1 1 1 1).
o2 Ogﬂ/% < o d - )*log d + O(1)(dg, + di, + log dy) + O(1)

Hence we derive

dpT — 1;

otherwise we reach the same contradiction. So we have that
dr = 1.

Hence by using this we can rewrite B as follows

2+ 5(7#@27?%) +O01/ck)  ox(1)

62 (—agci) + 0(1) ch

Thus we obtain .
39,2 AB(R? — 1) + 320 BA(R* — 1) = %D

Ck

On the other hand since d < +o00, we have that by Lemma 1.5.9

Alog(1+/dnlzP?)
d

w = —

Moreover by trivial calculations we get

1 Tos+ Jén?)
P(L) = g6z * 164272

Furthermore by taking the limit as k& — 400 in (1.65) we obtain

e 25 4\[@2 d
lim log < — 4 ddr + 2427 + 32028y + +2log(1 + ng2) —4log L

k—+oo Brer — 3 1+\[7TL2

Now letting L — 400, we get

lim lo
k—-+o00 gﬁkck

< g —log 6+ log w2 + log d.
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Hence by remarking the trivial identity

5 Ak 1 . Ak
1m - m —
k—+o00 ﬂkck d k—4o00 /6]%

we get
. )\k 7T2 5 2
72 lim — < Z_e3t32m S0,
k—+oc0 ﬁk 6

So the proof of the proposition is done. B

1.5.5 The test function

This Subsection deals with the construction of some test functions in order to reach a contradiction.
Now let € > 0,¢ >0, L >0 and set

A+Bdy (z,20)%—4 log (14 A(Lel220)y2 .
fF(x) = { ¢+ - - 6471'2(c ) + %) dg(-rny) < Le
@ dg(x,z9) > Le
where )
ﬂ'
A=—,0B=———————_
\/é’g L2€2(1+)\L2)
and
A = —6472c* — BL*¢* — 8log(Le) + 4log(1 + AL?). (1.66)

Proposition 1.5.13. We have that for e small, there exist suitable ¢ and L such that

/ |Agf2dV, = 1;
M

and 2
1imsup/ 2 Ue=I" qv, > Vol(M) + %6%32#250.
M

e—0

PRrOOF. First of all using the expansion of ¢ in normal coordinates we get
/ |Agf5\2dvg/ Ao fe?(1 +O(Le)2)dx+/ O(r?|Vo fc|?)dzx
Bre(zo) BL<(0) BL<(0)

where 3
e (I) = fs(expa?o (m))

On the other hand by direct calculations owe obtain

/ Aof [P = 12 + AL%(30 + AL?(21 + AL?)) + 6(1 + AL?)3log(1 + AL?)
BLe(0) ‘ 96¢2(1 + AL?)3w?

Hence we arrive to
2 2 2 313 2
I A, L2V, (14 O(Le)?) 1AL (B0+AL2(214AL?))+6(14+AL%)? log(14+AL?)
Br.(ao) |1 Do AV, 967 (IFAL?) 772
Belto 1+41log(14+AL2)+0(-4)+0((Le)* log Le)
32¢272

Furthermore, by direct computation, we have

Lt

/ P2V fi2de = (5.
BLe<(0) c
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Moreover using Green formula we get

A
/ 1A,G 2V, / Gdv, 7/ 9G A, Gds, +/ G925 5.
M\By.(z0) M\By.(x0) 9By (z0) O oBL. Or

= —1iz + S0 — %5 + O(Lelog Le)
Now let us find a condition to have |, 1Ay fe|?dV, = 1. By trivial calculations we can see that
it is equivalent to

1
32m2¢2

)
< 3 + 2log(1 + AL?) + 32725, — 4log Le + O( )+ O(LelogLe)) =1
ie. 5
321%c? = —3+2 log(1 4 A\L?) + 3272Sy — 4log Le + O( 5) + O(Lelog Le).
Hence by (1.66) A take the following form

1
A= 30 — 64725y + O(73 ) + O(Lelog Le).

On the other hand it is easily seen that

/ fedV, = O(c(Le));
Bre(zo)

G Le)*log Le
/ fédvgz_/ 720(( )* log )
M\Br(z0) Br. € ¢

fe = O(c(Le)*).

Furthermore by trivial calculations one gets that in Br.(xo)

(fe=Tf)? = A+ g0 (A+Br? - 410g(1 + A(L)?) + 64725y 4+ O(Le) + O(c*(Le)*))

= ¢t g — PRI 1+ O( ) + O(Lelog Le) + O(c*(Le)):

and

hence

hence

2
207 732 3271'2(02+%7M>+O(%)+O(LelogLe)+O(c2(Le)4)
/ 6327r (fe—1fe) d% e 487 L dx
Bprc(zo)

8w

v

(1+O(Le)2)/B -

- 6130+327r202+0( )+O(Lelog Le)+0(c? (Le)?) (W21+L;L6+O(L6)g)

¢le’s +32me? 72(14 O(£%) 4+ O(Lelog Le) + O(Le)?)
?2 3+32r° SO(l-I—O(LelogLe)-‘rO(ﬁ)-i-O( (Le)h)).

on the other hand

/ Uity = f (1+3202(f. — [)P)aV,
M\Bre(zo0) M\BrL(z0)

/ 3272G2dV, + O(c(Le)*)
M\Bpre(zo)

> Vol(M \ Bre(zo)) +

2
32m2G2dV,
= Vol(M)++M—7 —— + O(Le)* log Le
Thus we arrive to
322 G2dV,

_ 2
/ 632772(f5—f5)2dvg Z VOZ(M) + %€%+327T250 + fM\BLs(fo)
M

c2

)

+O(L610g(L6))+O( )+O( 2(Le)*)
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and factorizing by C% we get

/Me327r2(f5_f5)2dvg Z VOZ(M) + %26%—"-3271'230
2
+% (/ 3212G?dV, + O(c*Lelog(Le)) + O(%) + O(c4(Le)4)) .
M
On the other hand setting

1
L =log-
€

we get

2

O(c?Lelog(Le)) + O(ﬁ) +0(c*(Le)*) - 0 as € — 0.

Hence the Proposition is proved.

1.5.6 Proof of Theorem 0.2.1

This small Subsection is concerned about the proof of Theorem 0.2.1.
First of all by corollary we have that

A
lim Ui = Vol,(M)+ 72 lim —g
k—+oo Jar k—+o0 ﬂk
with 7 # 0.
On the other hand from Proposition 1.5.12 we get
2 g Mk T sisarrg
77 lim —5 < —e3 TP,
k—-+oco ﬁk‘ 6
Hence we obtain
2 7T2 5 2
lim e Uk < Voly(M) + —e3+32m 50,
k— 400 M - 6

Thus using the relation

. 2 2, 2
khm e dVy, = sup / e dV,.
—+too S ueHr J M

we derive

2
™ 5
sup / 632”2“2dVg <Volys(M) + Z_e3+327 50,
u€Hy J M 6

On the other hand from Proposition 1.5.13 we have the existence of a family of function f, such
that

/ A f2dV, = 1,
M

and

7 1
1imsup/ 6327T2(f€_f€)2d‘/;1 > VOl(M) + 6634_32‘”2807(2-
M

e—0

Hence we reach a contradiction. So the proof of Theorem 0.2.1 is completed. ®
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1.5.7 Proof of Theorem 0.2.2

As already said in the Introduction, in this brief Subsection we will explain how the proof of
Theorem 0.2.1 remains valid for Theorem 0.2.2.

First of all we remark that all the analysis above have been possible due to the following facts

)

Jas |Agul?dVy is an equivalent norm to the standard norm of H?*(M) on Hj.

2)

The existence of the Green function for Ag.

3)

The result of Fontana.

On the other hand we have a counterpart of 2) and 3). Moreover it is easy to see that <P;u, u) is
also an equivalent norm to the standard norm of H2(M) on Hs. Notice that for a blowing-up
sequence up we have that

<P;uk,uk> = / |Aguk|2dVg + ox(1); (1.67)
M
then it is easy to see that the same proof is valid up to the Subsection of test functions. Notice

that (1.67) holds for the test functions f., then it is easy to see that continuing the same proof
we get Theorem 0.2.2.
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Chapter 2
Blow-up analysis

In this Chapter, we perform the Blow-up analysis of some perturbations of the prescribed Q-
curvature equation in arbitrary dimensions, the prescribed @Q-curvature and T-curvature equations
on four dimensional compact Riemannian manifolds with boundary. Precisely we give the proof
of Theorem 0.2.6, Theorem 0.2.8, and Theorem 0.2.10 announced in the Introduction. Moreover
we give also the proof of Theorem 0.2.12.

2.1 Proof of Theorem 0.2.6

In this Section we give the proof of Theorem 0.2.10.

First integrating (15) we get
| av,+a)= [ qemay, (2.1)
M M

We recall now the following result of X. Xu (Theorem 1.2 in [89]).

Theorem 2.1.1. ([89]) There exists a dimensional constant o, > 0 such that, ifu € C*(R") is
solution of the integral equation

u(z):/ Jnlog( vl )e”“(y)dy+00,

where ¢ is a real number, then e* € L™(R™) implies, there exists XA > 0 and xy € R™ such that

2\
u(z) = log <)\2 - 3702) .

Now, if ¢, is given in Proposition 0.3.2 and o, in Theorem 2.3.1 we set k, = o,¢, and 7y, =
2(kp)"

The proof is divided into five steps.

Step 1

There exists N € N* N converging points  (x;;) 4 = 1,...,N, N sequences (u;;) @ =
1;...; N; of positive real numbers converging to 0 such that the following hold:
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a)

dg(@i 1, C =
g(x/t’l md +oo i j i, j=1,.,N and Qi) ") =1;
il
b)
1 ) 4y . 1 ny.

vii(x) = wlexpe,  (piaw)) — wilig) — n log(kn) — Vo(z) := 10g(w) in Cie(R");

c)
Vi=1,..,N we have, lim lim Qu(y)e™ WV, (y) = (n — 1)lwy;

R—+o0 l—+co Bmi,l(RMi,l)
d)

There exists C' >0 suchthat inf ng(xi7l,x)"e"“l($) <C VreM, VieN

7

Proof of Step 1

Let x; € M be such that w;(z;) = max,ep wi(z), then we have that w(z;) — +oo.

Let 4 > 0 be such that Q(z;)ppe™(®) = 1. Since @ — Qo CY(M), Qo > 0and
u(z;) — +00, we have that p; — 0.

Now let B°(5u; ') be the euclidean ball of center 0 and radius dyu; ', with & > 0 small fixed .
For z € B(0u; "), we set

o) = weape, (ur) — wlm) —  loa(kn): (2:2)
i) = Qileapa, (ua)); (2.3)
Qi) = Qulexps, (m)); (2.4)
ai(x) = (eapl,9) (ua). (2.5)

We have that g — dz? C? (R") as | — +oo.
Now from the Green representation formula we have,

w(z) —w = y G(x,y)Plu(y)dVy(y) Vo e M, (2.6)

where G is the Green function of Py (see Proposition 0.3.2).
Now using equation (15) and differentiating (2.6) with respect to x we obtain that for k=1,2

Veuly(e) < [ G lIQe ) — Q)Y

< [ VMGl Qe av, + o),
M

(2.7)
since Q; — Qo in C1(M).
Now for y; € By, (Ru), R > 0 fixed we write that,
195Gl P av, ) =0 (uf’“ / e"”ldvg)
M M\Byl (l—‘l)
(2.8)

+0 <e"“’(zl)/ dg(yl,y)_kdvg(y)> = O(Nl_k)-
By, (1)
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thanks to the fact that w; < u;(z;), to the relation Q;(x;)ulle™ @) =1 to (2.1) and Proposi-
tion (0.3.2).

Together with the definition of v; (see (2.2)) and the fact the fact that v;(z) < v,(0) = —1 log(ky)
Vz € R", we obtain (v;); is uniformly bounded in C?(K) for all compact subsets K of R™.
Hence by Arzela-Ascoli theorem we infer that

v — Vo in CL(R™), (2.9)

hence we have that Vy(z) < V5(0) = — L log(k,) Vx € R™.

Clearly Vj is a Lipschitz function since the constant which bounds the gradient of v; is independent
of the compact set K.

On the other hand from the Green’s representation formula we have for € R™ fixed and for R
big enough such that z € B°(R)

w(epa, (1)) — B = / G(expa, (1), y) Plur(9) AV (y). (2.10)
M
Now remarking that

wi(exps, () — w(@r) = w(ewrps, (mr)) — w(erps, (0)),

we have the following relation

w(exps, () — w(w) = (wlezps, () — w) — (w(exps, (0)) — w).
Hence (2.10) gives

wi(expe, (uw)) — w(e) = /]V . (G(expa, (), y) — Gewps, (0),y)) Pyu(y)dVy(y).

Moreover using (15) we obtain

wi(expe, (uw)) — w(er) = /N . (Glexpa, (i), y) — Glewps, 0),9)) Quly)e™ @ dVy(y)  (2.11)

—/M (Glexps, (), y) — Glexpr, (0),y)) Qu(y)dVy(y).  (2.12)

Now setting

Ii(x) = / (Glexpa (), y) — Gleapn (0),9) Qi)™ WdVy(y);  (2.13)
Bo (Ru)
I (x) = / (Glexpr, (uz), ) — Glexpr (0),9)) Qu(w)e™ WV (y); (2.14)
M\B,, (Ryu)
I () = /M (Gexpa, (1), ) — Clexpe, (0),4)) Qi(9)dVy (y); (2.15)
we find
up(expy, (px)) — wi(x;) = L(z) + I (z) + 1L (2). (2.16)

So using the definition of the v;’s we arrive to
1
’UZ(JC) = Il(LE) +1I l(l‘) + IIIl(:Z?) - E log‘(kn) (217)

Now let study each of the terms [;(z), II;(x), I1I;(x) separately.
Using the change of variables y = exp,, (1;2) and setting

G, (SL’, Z) = (G(empwz (Mlx)’ €TPx, (Mlz)) - G(e%pm (0)7 €Dz, (:U’lz)) )
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we have
I(z) = / (i, 2)Qi(exp,, ()™ P ) yndy, (2). (2.18)
Bo(R)

Now using the relation Q(z;)ule™(*) =1 and (2.2)-(2.5), we obtain

(=
0w = [ (Gl ). epe (1) = Gleipa (0) epi (1)) Gtem™! v ().
Bo(R) Q(=1)
(2.19)
Now from the asymptotics of the Green’s function (see Proposition (0.3.2)) we have,
L 2 Qu(z)
Ii(x :/ kn <log () + Ki(z,y ) = " (A qv. () for I large enough,
( ) Bo(R) n |Jj _ Z‘ ( ) Q(ml) Ql,( )
(2.20)
with
Ki(z, 2) = (K(expz, (), expe, (1nz)) — K(exps, (0), exps, (1nz))) - (2.21)

Hence since K is of class C!' on M? and g, — dz? in C?_(R"), then letting | — +oo we

loc
derive the following equality

lim I; () = / on log ('Z'> eV @)z, (2.22)
l BO(R) | |

T —z
Now to estimate II;(x) we write for [ large

1 d (61’me (0)7 y) > M nu
1L (z) = —1 g Wy :
) /M\Bml (Rur) Cn % <dg(expm, (), y) Uily)e Vslv) (2.23)

+ / Ei(, y)Qu(y)e™ W av(y),
M\B., (Ru1)

where B

Ki(z,y) = (K (exps, (), y) — K(exps,(0),y))- (2.24)
Taking the absolute value in both sides of the equality (2.23) and using the change of variable
y = expy, (z) and the fact that K € C! we obtain,

1
1L (z)] < / — |log
R™\Bo(R) ¢n

Hence letting | — +o0o we deduce by (2.1) that

|Z| él(z) nvy(z) = nu (y)
(|$ — z|) ‘ Q(xl)e dVy, (2) + R /M\Bml(Rul) Qi(y)e dVg(Z).
(2.25)

limlsup IL;(z) = or(1). (2.26)

Now using the same method one proves that
I (z) — 0 as | — +o0. (2.27)

So we have that

1
Vo(z) = / op log 4 "o @ dz — Zlog(ky) + lim I (x). (2.28)
BO(R) |£B Z| n l

Hence letting R — 400 we obtain that Vj solve the following conformally invariant integral
equation

1
Vo(z) = / oy log <x|zz> emVo (=) gy — 510g(kn). (2.29)

. —
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Now since Vj is Lipschitz then the theory of singular integral operator gives that V, € C*(R™).
Moreover by using a change of variables and the fact that g; converges to the Euclidean metric
in C7 (R") we obtain,

lim Qie"™dV, =k, / e"Vodu; (2.30)
l—=+00 By, (Rum) Bo(R)

hence (2.1) implies that "0 € L™(R™).
So by a classification result by X.Xu for the solutions of (2.29) (see Theorem 2.3.1) we get that,

2A

for some A >0 and zg € R".
On the other hand from Vy(z) < V5(0) = —Llog(k,) Vo € R", we have that A = 2k, and
xo9 = 0 namely,

4y
\% =1 — . 2.32
o) =06 ) (232
It is then easily checked that,
lim  lim Qi)™ Wav,(y) =k, | e"Vodz. (2.33)
R—+o00l—+00 B, (Rut) ) R

Furthermore from a generalized Pohozaev identity by X.Xu (see Theorem 1.1) in [89] for the
conformally invariant integral equation (2.29) we obtain that

Un/ enVO(y)dy =2,
hence we derives that

lim  lim Qi(y)e™ WAV, (y) = 2, = (n — 1)lw,. (2.34)
R—+o00 l—+00 B, (Ru)

Now for k> 1 we say that (Hy) holds if there exists k converging points (z;;); i =1,...,k,
k sequences (u;;) @ = 1,...,k of positive real numbers converging to 0 such that the following
hold

(43)
7dg(xi7l’xj7l) — 400 % #] 7’7] = 17 E) k and Ql(xi,l)u?lenul(IiJ) = ]"
il
(43)
(x) ( (pigx)) —w(x;y) 110 (kn) Vo(x) =lo 4 in CL.(R™) Vi
Vi(x) = ulexpy, i — i) — — n) — = T2 1 102 oc
N I\€XPz, (il 1\ i1 n g 0 g 4%21_‘_‘“2 1
(4%)
Vi=1,.,k, onehas lim lim Qu(y)e™ W) = (n — 1)lw,.

R—+o0 l—+co B, l(RMi.l)

Clearly, by the above arguments (H7) holds. We let now k > 1 and assume that (Hj) holds.
We also assume that

n nu;(x)

sup Ry i(x)"e — 400 as | — 400, (2.35)
M
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where
Ry (z) = min_k dy(z 1, ).

i=1;..;

We prove in the following that in this situation (Hyy1) holds. For this purpose we let zj41; € M

be such that

Ry (Tpy1,) e @) = gup Ry (z)"emu (@)
M

and we set

1 n
ft = (Q(zkﬂ,z)eml(““”) '
Since M is compact then (2.195), (2.36) and (2.37) imply that

Hit1,0 — +00 as | — +o0;
dg(i 1, Try11)
ME+1,1

Indeed from (2.195) we have that

n _nup(x
Ry i(xp+10)"e @) 4oo,

and since Ry ;(Tg+1,) is bounded because M compact then we obtain that,

enut(Trtrl) 5
Now from (2.37), Q; — Qo in C°(M) and Qo > 0 we infer that

prt1,0 — 0.
On the other hand we have that

dg(Ti, Try10) o Bii(Trp0)
Hk+1,1 T Mkt

hence (2.195) and (2.36) give that

dg(®ig, The1,1)
ME+1,1

— 4-00.

Now thanks to (A7), we can prove that

dg(xig, Thi1,)
il

— 400 as | — 400 Vi=1,... k.

= (R (hy1.0)"Q(Tpy1,1)e™™

— 40 as | — 400 Vi=1,... k.

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

Indeed if dgy(zi, xky1,) stays away from O then since p;; — 0, we are done. So suppose

that dg(x;1, 2p+1,) <€ € small enough and set,

expy ! (Tr11,0)

Tht1, =
il

We have that,
dg(xip, Thi1,1) _ dg(Tit, Thi1,1) Mkt

il HE+1,1 il
On the other hand we have also that

(MhtLiyn _ Q(zk,1) Q(Tk,)

Wil Q1) eur@rr) =k (zn,) - Q(Tpr1,)evitErenn)”
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Hence if (Zg41,); is bounded in R™ we have thanks to (A4%) that ”Z“l” converges to a positive

i,

number hence we are done. If (Z41,); were not bounded, then the relation

dg(i 1, Thy1,0) = Liil|Tht1,

shows that
dg(Zi 1, Tht1,1)

il

— 400 as | — 4o0;

hence (Aj,) holds.
Moreover it follows from (2.36) and (A}, ) that

lim sup (w(z) —w(zr41,0)) = 0. (2.41)
l=——oo 2€Ba; 4 (Ruk41,0)

Indeed from (2.36) we have that ,
Rk)l(xkﬂ)l)"e"“l(m’”“) > Rk)l(x)"e""l(”’) Vr € M,
hence the following holds
Ry (g ) e™ 00 > Ry y(2)"e™ ) Vz € By, (Rptrs)-
So taking the n-th root in both sides of the inequality we obtain that
R g(zppr ) @10 > Ry ((2)em®) vz € B;Hl,,(RMkH,l);
hence dividing by e (@++1.0 Ry ;(2) in both sides we get

eul(z)*ul(mk-%—l,l) < Rkvl (Ik-‘rl,l)
- Rk’l(z)

Now let zxt1,; € B;Hl ,(Rpg41,1) be such that

up(zr41,0) — wi(Trr1) = sup (w(2) — wi(Trt1,));
2€Ba; 1 (Rptkt1,1)

so we have
eu1(2k+1,l)—u1(wk+1,l) < Rk’l(xk+1’l)
Ry 1(zk411)

)

and let i1, € {1,...,k} be such that,

Rii(zky10) = dg(Tiyyy 105 26410)5

so we have that

e’u,l,(Zk+1,l,)7Ul($k+l,l) < Rk,l(Ik—&-l,l) < dg(xik+1’l’l’xk+1’l) (2.42)
- dg(mik+l,l’l7zk+1,l) a dg(x’ik+1,z,l’zk+1,l)

dg(z, Try1,1) <14 Ry

e (Zrr)—w(@et1,0) < 1 + )
dg(xik+1,z,lﬁzk+1,l) dg(xik+1,z,l7zk+1,l)

(2.43)

On the other hand the following chain of inequality holds

d!](xik+1,lvl7zk+171) > dg(xik+1,l7l’xk+17l) . dg(xk+1,lvzk+l,l) > dg(xik+l,l7l’zk+17l)
Hh41,0 o Hk41,0 Hh41,0 o Hhk41,0

,R;
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but from (A} ;) we deduce that,

dg (xik+1,1,lv :Ck:+1,l>

— +00;
Hk+1,1

hence
dg(Tip iy 1,05 241,01

Rpgq1y

— +00;
which imply with (2.43) that

lim sup (w(2k+1,1) — Uk (Zr41,0)) < 0;
l

and since
(wi(zk+1,0) — w(Tr41,)) > 0;

then we have proved that,

lim sup (w(z) — w(zrs1,0)) = 0.
l—+o0 2€Bgy y  (Rikt1,0)

Now mimicking what we did above thanks to the Green’s representation formula (see in particular
formula (2.8)) and using (2.41) then one proves that up to a subsequence,

1 4 m . n
1) = D1 1,) 1) 08(E) — Vo) = o (527 ) i Cla(RY)

and
lim lim Qi(y)e™ WV, (y) = (n — 1)lw,.

R—4o00l—+00 sz+1,l(RH’k+1,l)
Hence recollecting the informations above, one gets that (Hj1) holds. Moreover since (A}c) and

(Ai) of Hj imply that

/M Q(y)e”“l(y)dVg(y) > (n— Dlw,k + 0(1),

then we easily get thanks to (2.1) that there exists amaximal k,1 <k < m S Qo(y)dVy(y) ,
such that (Hj) holds. Arriving to this maximal k, we get that (2.195) cannot hold. Hence set-
ting N = k the proof of Step 1 is done.

Step 2

There exists a constant C' > 0 such that
Ry(z)|Vu|g(z) < C Ve € M and VIl € N; (2.44)
where

Riw) = min_ dy(zi,2);

1=1,..

and the x;;’s are as in Step 1.

Proof of Step 2
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We use again the Green’s representation formula for w;, that we differentiate. We let z; € M be
such that x; # x;; for all¢ =, .., N. Note that, for x; = z;;, the estimates of the proposition are
obvious. We write thanks to the asymptotics of the Green function of P see (Proposition 0.3.2)
that

1
Vulg(x;) = O / — ™y (y > + O(1). 2.45
Vuly(a) =0 ([ e Dav,m)) + o) (245)
Now fori =1,...IN, we set
Qi ={y € M,Ri(y) = dg(zi1,9)}; (2.46)
and we write that
1
—————e™1 WAV, (y) = Ly + 11y + 111 5 (2.47)
~/Q” (dg(z1,9)) ! ’ ’ ’
with
L= / — ey, (y); (2.48)
Qi,zﬂBzM(w) (dg(1,9)) J
1, = / L ey (y); (2.49)
) Q0 \Ba, (5dy (21,21.,0)) (dg(z1,y)) :
and

1

I, = / ——_emuWgy, (y). (2.50)
Qi,Lﬂle(5dg(wz,Iivz))\Bziyl(M) (dg(xl’y)) g

To estimate I;; we use the fact that y € Bz“(w), the triangle inequality and equation
(3) to find that

1
L1 =0 ——F———. 2.51
1= (Gaa) 250
On the other hand using the fact that y ¢ B, (5dg(x;;,2;)), and equation (0.3.2) we have that
II,; =0 (1) (2.52)
T\l wi) ) |
Moreover using the fact that we are in €;;, assumption d) of Step 1 implies that
111 0] / ! (2.53)
il = — | .
Bml(5dg(xl,xi,l))\3mM) (dg (1, y)dg(in, y)™)
hence using the fact that y ¢ BIH(W)7 we obtain
1 1
IIL;; =0 7/ — . (2.54)
((dg(fﬂla%,l))" Ba, (5dg(x1,:,1)) (dg(xlzy)>
Now working in geodesic polar coordinatesat x; we have that
/ L 0 (i)™ (2.55)
B, (5dy (z1,01)) Do (T0,Y)
hence we derive
1
;=0 —— ). 2.56
! <dg($h xu)) .
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So we have

#enul(y) _ ; )
/QM (dg(z1,9)) Vs(y) O((dg(a:l,xi,l))>’ (2.57)

hence Step 2 clearly follows.

Step 3

Set
Riy = rgéi?dg(zi,lyxj,l); (2.58)

we have that
1) There exists a constant C' >0 such that Vr € (0,R;;] Vs € (7,7]

3
lwi (expa, , (rx)) — wi (expy, ,(sy)) | < C for all z,y € R such that |z|, |y| < 7 (2.59)
2)If d;;is such that 0 <d;; < Rg‘l and Z’l —— 400 then we have that,if
[ Qe @avy) = (n - 1)k + (1) (2.60)
Bmiyl(di,l)

then
/ Qi(y)e™ WV, (y) = (n — 1)lw, + o,(1).
Bzi,l(2divl)

di,1 ) R,
pil +00, dii < 4R and

3) Let R be large and fixed. If d;; > 0is such that d,; — 0,

[ e v ) = (- Dl + o1
By, (5%)

2R

then by setting
y(r) = w(expy, , (digx)); T € Asg;

where Az = B°(2R) \ B°(55), we have that,
||d§flem~“||ca(AR) — 0 as | — +o0;

for some « € (0,1) where Ap = B(R)\ BO(%)'

Proof of Step 3

Property 1) follows immediately from Step 2 and the definition of R;;.

In fact we can join rz to sy by a curve whose length is bounded by a constant proportional to
r.

On the other hand from % — 400, point ¢) of Stepl and (2.60) we have that

/ . e"“l(y)dVg(y) =0(1). (2.61)
Ba; (di,i)\ Bz, ; (—5-)

2

Now from (2.59),by taking s = § and r = 2d;; we obtain that

AR / L, edVy(y);

/B“:i,l (Zdi,L)\BziJ (dip) Bziﬁl (di‘l)\BIi,L (1TJ)
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hence

/ enuz(y)dvg(y) — o(1).
Ba; 1 (2di,)\Ba, ; (i)

So also point 2) of the step is proved.
Now let us prove point 3 . First of all applying point 2) of the step a finite number of times we
obtain

Il,l,( Zlé )

/ L WAV () = or(1); (2.62)
By, ,(2Rd; )\B bl
hence since Q; — Qo C'(M) then we obtain from (2.62) that,

L Qe W dvy(y) = o(1). (2.63)

i
o)

/Bm“ (QRdi,l)\Bri,l (

On the other hand using the change of variable y = exp, ,(d;;x) and letting Jg, ,(z) denote the
Jacobian of the exponential map at the point z;; applied to the vector d;;x we have that

/ i Ql(y)enul(y)dvg(y) = Q_di,l (x)enﬂl(x)dzn.l‘]di,z(‘T)dv;}dv . (.’)3) (264)
Ba, ; (2Rdi,1)\Ba, , (57) Asp ’
where
9d;, (v) = (expy, ,9)(diix); (2.65)
Qa, ,(z) = Qu(di); (2.66)
Hence (2.63) implies that
A Qu, (@)™ D2 Iy, (2)dVy,,  (2) = (D). (2.67)
2R

Now let fix p so big that HP(AR) is continuously embedded into C®(Ag) where « is given by
the Sobolev embedding theorem, that is o = %.

Remarking that since d;; — 0 then gq,, — da? in every C*(Ag), then the embedding con-

stant can be chosen independent of [.

On the other hand, using an argument of Brezis and Merle see [15](Theorem 1) we have that
[1d50e™ | e (an) = 0r(1)-

Indeed from the Green representation formula for wu; we have that

di

R

u(@) =a +O0(1) + /M Gz, y)Qu(y)e™ W dVy(y) @ € By, (Rdig) \ Ba,,(F)-

Here O(1) stands for a quantity bounded from above and from below uniformly in .
Now defining B;; = By, ,(2Rd; ;) \ B, (%), we obtain

w(z) = +O(1) + /

B,

Gz, y)Qu(y)e™™ W aV, (y) + /]v . G(z,9)Qi(y)e™™ W dV,(y). (2.68)

Hence setting
(w) = m(x) + / Glz,y)Qi(y)e™ WV dVy(y) @ € Biy;
M\Bi,
we have that (2.68) becomes,

w(e) = () + O+ [ Gl Qu)e™ DV, (1), (2.69)
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Now let us estimate [5 enu(®@) gy, (z).
From (2.69) we obtain,

enut(@) > Cenﬁz(ﬂf)efBi,z nG(z,y)Ql(y)e”“'l(y>dVg(y). (2.70)
hence using the asymptotics of the Green’s function (see Proposition (0.3.2)), we find that
ndy (z)
nur(@) > e 2.71
) an fB Ql(y nul(y)dvg(y) ( 7 )
1,0
so integrating we obtain,
Jp,, €AV (@)
(D) gy (2) > C—2 ; 2.72
/Bi,L ‘ g(x) B d% fBi,l Ql(y)e”“l(y)dvg(y) ’ ( )
il
hence from (2.62) we arrive to the following estimate
" 2 J,, Qe 1@ av(y)
/ "M@ gV (2) = o) <d” pig ! ) . (2.73)
B7 1
Now let us estimate ||e”%]|p(4.y. From equation (2.69) we have that,
(Ar)
npuy(x) = npiy(z) + O(1) + / npG(x, y)Ql(y)e”“’(y)dVg(y) (2.74)
B

hence

npu(exps, , (di, 1)) =np@z(ewwi,z(dulx)+0(1)+/ npG(ewpy, ,(diiw), y)Qu(y)e™ WV, (y);
B

so using the change of variable y = ewxp,, (d;;z) and setting g, ,(z) = w(ewps,,(di 1)), we
obtain that,

npty(z) = npﬁdi’l(x)—i-O(l)%—/ npd?,leiwl(z)G(expxiyl(diyleexpmi‘l(diylz))Qdu( Je i ( dV( ).
B

(2.75)
Now by using the Harnack-type inequality for w;, see (2.59) and the asymptotics of the Green
function in Proposition 0.3.2 we have an Harnack-type inequality for for 4;. Namely there exist a
positive constant C' such that

[t (z1) —w(z2)| < C V21 xo € By

hence the following holds,

Jag T (y)e™ e (y)dngi,l ()

niq, ()
e i < (O
d)

(2.76)

On the other hand by taking the exponential and integrating on both sides of equation (2.75),
using Jensen’s inequality, the asymptotics of the Green’s function (see Proposition 0.3.2), and
Fubini theorem, we arrive to

(S, A Tay ()" 5 P avg,  (2))7

npty (x)

e dV <C d.

/4R Jdir = P :5 ‘]AZR diJa; (= )Qdi,L(z)enul(z)d‘gdi,l(Z) ol
a0 7,1

(2.77)
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where

1
I;, = su = - dV, z).
o yGAIZ)R /AR |z — y|% Jarn d:’llez‘,l(Z)Qdi,z(y)ewl(z)dv"di,z () S (@)
Hence taking the pth-root in both sides we find

g &1 ()" 5 BV, (2) s

Tlﬂl » < _ _ . .
||€ HL (Ar) = ¢ o fA2R i Ja;  (2)Qa, (z)e"“l(z)qud, . () “dit (2 78)
dlyd;
From (2.63) and (2.64) we derive that
/ 0 a1 (2)Qua,, ()" E AV, (2) = (1), (2.79)
Az2r '
and hence )
|Id5i.l‘ <C. (2.80)
Furthermore by a change of variables we have easily that
/ d} 1 Ja,, (y)e" Vv, (y) = / MDAV, (x). (2.81)
Ar ol B;,
From (2.73) we obtain
ni 1
€™ || Lr(aR) = Oz(dT); (2.82)
il
hence i
|[di 1™ | Le(ag) = or(1). (2.83)

On the other hand remarking that from Step 2 we have that ||Vi||p~ = O(1), then we deduce
that

IV (™™ )| Locan) < Clldi €™ || Lo (an; (2.84)
hence (2.83) implies
IV (e )| Lo can) = or(1); (2.85)
so from (2.83) and (2.85) we obtain,
||d;fz€nﬂl\|H1=p(AR) =o(1). (2.86)
Hence from the Sobolev embedding we arrive to
d ™™ | co(an) = or(1); (2.87)
so end of point 3 and Step also.
Step 4

There exists a positive constant C' independent of [ and ¢ such that r;; > Ré” and

J

Ql(y)e"“l(y)dVg(y) = (n—1)lw, + o,(1). (2.88)

R;
v (€

Proof of Step 4
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First of all fix % <vr< % and set for i =1,..., N,

di4(r) = Voly (0B, ()" / w(@)doy (@) Y0 < r < injy(M); (2.89)
o5, (1)
wii(r) =r"exp (u;;(r)) Y0 <r <inj,(M). (2.90)

By assumption b) of Step 1 we have that there exists R, such that,
VR > R, Lp;’l(R,ui,l) <0 Vi sufficiently large (depending on R). (2.91)

Now we define r;; by

R; ' .
rig =sup{Rypi; <r < 2’l s.t %‘,z(') <0 in [Ry,7)}. (2.92)
Hence (2.91) implies that
Tl oo as | — 4o (2.93)
Hil
Ri

+— 400 as | — H4o0.
Indeed if R“ +— 400, we have that there exist a positive constant C such that <7y

On the other hand from the Harnack type inequality (2.59), point b) of Step 1, and (2.92) we
have that for any 7 > 0, there exists R, > 0 such that for any R > R,, we have that

Now to prove the step it suffices to show that

Tl

Ri,
C

dg(,z:0)" €™ <npV " Vo € B, (ri0) \ Ba,, (Rpi)- (2.94)

Ré” > r;psee (2.92), we have é{# — 400, hence point c)

Since % — 400 see (2.93) and

of Step 1 implies that

[ Qe == ke (1)
Ba;  (=57)
On the other hand, by continuity and by the definition of r;; it follows that

;(rig) = 0. (2.95)

R;;

Let us assume by contradiction that Tt — 400. We will show next that o, 2(rig) < 0 for

I large contradicting the above equality (2 95). To do so we will study @, ;(-).

First let us remark that since M is compact then - — 400 implies that r;; — 0.

From the Green’s representation formula for w; we have the following equation,

- / G, y) Plun(y) AV (y) 41 = / G, 4)Qu(y)e™ DV, (y) -+~ / G2, ) Qu(y)dV, (y).
M M M
Hence

i4(r) = (Voly (9B, /aB ()/ (@, 9) Qi)™ WV, ()doy(z) + 1 (2.96)

~(Voly(0B,, (v /33 . | Gan@wivwin@. o)

Setting

Fui(r) = (Voly (0B, (r /8 s /MG(x,ywz(y)dvg(y)dag(:c);
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we obtain

) = (Voly(0B,,  (r /aB [ e v vy, +n R

Since @ — Qo in C'(M) we have that F;; is of class C! for all 4,/ and moreover,

injq(M)

IFL,(n|<C; ¥ re (o ). (2.98)

Now let % <A< % be fixed: we have that
/ Gz, ) Qi(y)e™ W aV, (y) = / Gz, ) Q™ v, (y) + / G(a, ) Que™ ® v, (y).
M Ba, ,(A) M\Bg; ;(4)
(2.99)
So
1(r) = Vol / . / — K(2,9)) Qi(9)e™ WV, (y)doy(x) + @
631 (T
7F¢J(T’) —+ Hi,l(’f‘);
(2.100)
with
Hiy(r) = Voly(0B,, ( / / Gz, y)Qu(y)e™ W aV, (y)doy(z)  (2.101)
B, ,(r) JM\B,, ,(4)
Vol, (0B, (r / / K (2,1)Qi(y)e™ W dV, (y)doy ().
0B, vy (A

Since G is smooth out of Diag(M), then for all i,1; H;; € C* (O, M) and moreover,

ingq(M)

|H;,(r)| <C ¥ r€(0, ). (2.102)

Now using the change of variable xt = rf and y = s6 we obtain

A ~ ~ ~ ~ ~ -~
iy = (Vol(S"~1))~! /S N /S e (G(re, s0) — K(r6, 39)) O(s0)em D gn=1 £ (s B)dsdfdd
—+u; — Fi’l(’l’) + Hi’l(’f‘).

So differentiating with respect to r and setting

~ o - -
L(r.0,0.5) = - (. 0)(G(ro, s0) — K (r6, 50)))
we have that
n— 1 nug( 50 " 1
iy, (r) = (Vol(S /Sn /Sn /0 )Q(s0)e f(s,0)dsddde

—F (r) + H; y(r).
From the asymptotics of G(-,-) (see Proposition (0.3.2) ) and the fact that f is bounded in C?,
it follows that

(Vol(s"1))~! /S 1 /S 1 (G(r@,sé) - K(r9,s§)) dfdo = f(r,s)log( )+ H(r,s); (2.103)

1
| — s
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with H(-,-) of class C® and f(-,-) of class C2.
Hence setting

G(r,s) = (Vol(S”fl))*l/Snil /SH % (f(r,e)(a(ro,sé)_K(ra,sé))) O(s0) f (s, 0)ddde.
(2.104)
we obtain

Gr,s) = f(r,s)—— + H(r, 5); (2.105)

r—Ss

where H(r,-) is integrable for every r fixed.
On the other hand using the Harnack type inequality (see (2.59)) we have that,

u(s0) < @;1(s) +C uniformly in 0,

hence we obtain A
ﬂ;yl(r) < C/ s”flé(r, s)e"ﬁi’l(s)ds - Fi/’l(r) + H;l(r)
0

Now le study fOA s"1G(r,5)e"™ 1 ()ds. To do so let Rso large such that r;; < Iz;’z" (this is
possible because of the assumption of contradiction). Now let us split the integral in the following
way,

A B B ”—R’L B B rig R _ ~
/ s”_lG(r,s)e”“ivl(s)ds:/ s"_lG(r,s)e”“i’l(S)ds—i—/ s" G (r, s)em 19 ds
0

Tl

0 R
Rél } ) A ) )
+ / S 1Gr,s)en e O ds + / S G, 5)e s,
Ti,LR é’l

Tl

Using the fact that we are at the scale = then b) of Step 1 implies that we have the following
estimates for the first term of the equality above with r =r;,

Ti,l

R - _ 2 1
/ § T G(rig, s)em  Pds = —— + 0y(1) —
0 T4 i,
On the other hand using assumption d) of Step 1 we obtain the following estimates for the third
term of the equality above with r =r;

Riu

c - _ 1
/ s”flG(ru,s)e”“"’l(s)ds =o(1)—.
’l‘,‘,le 'f‘i’l
Ry

We have also using assumption d) of Step 1 and the fact that - — 00 the following estimate

for the fourth still with r = r;,

A N _ 1
", :

Now let us estimate the second term. For this we will use the point 3) of Step 3. First we recall
that r;; and R verify the assumption of the latter. Hence the following holds
([ e (ag) = (1) (2.106)

?

for the definition of Apr and 4, see statement of the point 3) of Step 3 where d;; is replaced by
r;1. On the other hand performing a change of variable say r;;y = s we obtain the following
equality

Tile - B R R
/l s"_lG(r,s)e”““(s)ds:/ Y Gy (y) et W dy, (2.107)
Ti, 1 3
R R




2.1. PROOF OF THEOREM 0.2.6 97

where
Ui (y) = wi(riny)

Gia(y) = G(rig, rigy)
From the asymptotics of G(-, ) (see (2.105) ) we deduce the following one for G;;(-,-),
A A 1 .
Gialy) = fi,z(y)m + Hi(y); (2.108)

where H, ;(-) is integrable and fll() of class C2.
Hence by using (2.107) and (2.108) we obtain the following inequality

R s e U () A
/ $"1G (g, )T ds = — / v ) | et @dy. - (2.109)
ax T —y ’

R
Moreover using Harnack-type inequality for u; (see) and (2.106) we have that,
lcaqg.rp = o1(1); (2.110)

so using techniques of the theory of singular integral operators as in Lemma 4.4 ( [46]) to have
Holder estimates, we obtain

1
R

||7’Zzenﬂ“

f 1 fz‘ 1(y) ] i
[t (B i) ) ey = 1), (2.111)
1 (I-v)
hence with (2.107) we deduce that
Ti)lR - _ 1
/Tv "G (r, 5)em 1 (D ds = o (—). (2.112)
o T4
So we obtain
/ ]. 1 ’ ’
ﬂi,l(rl',l) S 7207‘7 + 0[(1)7 - i,l(TiJ) + Hi,l(,r)' (2113)
il il

Now let compute 4,0;7 ;(731). From straightforward computations we have,

eraria) = (i)™ " eap(isa(ri) (nv + ity (ria) )
Hence using (2.113) we arrive to the following inequality,
eralria) < (rag)™  eap(i (ria) (nv = 2C + (1) = rid By (rig) + iy o (rig) ) 5

sov < % implies nv —2C + 0;(1) < 0 for [ sufficiently large.
Hence since Fil’l and H;’l are bounded in (0, %)
for [ big enough,

uniformly in [ and r;; — 0 we have that

ia(rig) <0

hence we reach the desired contradiction and we conclude the proof of the step.

Step 5 :Proof of Theorem 0.2.6

We show first the following estimate

/ o Rag e 1WAV, (y) = or(1). (2.114)
M\UZY Ba,  (—5)
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For this we first start by proving
U — —oo as | — +oo. (2.115)

In fact, using the Green’s representation formula for wu; we have that for every x € M,
wle) =+ [ Gla) (Que™? - Q) Vi) 2w - C+ [ Glay)Qwe D av ).
M M

By assumption c) of Stepl we have given any € > 0, there exists R, such that for [ sufficiently
large

/ Qup)e™ DV, (y) > (n = Do = e (0~ 1l
BTELL(RQU'LZ)

Hence the last two formulas and the asymptotics of the Green’s function implie that

1

1 na
enul (x) 2 C €nul W

for | —x1;| > 2Rep1 for 1 large;
From this it follows that

/ "W QV, (y) > / e WdV, (y) (2.116)
M Bay  (injg(M))\Be, , (2Repi1,1)

 pingg(M) . -
> C—lenul / Se—(7z+1)d8 > C—lenul (2R€,U1’l)6 n
QRSHI,Z

So if € is small enough we have from (2.1) that
W — —o0, (2.117)

hence we are done .
Now by assumption d) of Step 1 we can cover M \ U=V By, ,(
balls By, (ry) such that for any k there holds ,

Ré:l) with a finite number of

/ Qlenuz(y)dvg(y) < %’
By, (2ry)

Now set By, = By, (2ry) and By, = B,, (r,) so using again the Green representation formula for
u; we have Vr € By,

w(z) =u + G(fv,y)Qze"”l(y)dVg(y)—/ G(z,y)Qi(y)dVy(y).
M M
hence

w(z) <+ C + / G(z,y)Qie™ WdV,(y) =@ + C+ | G(z,y)Qie" W adV,(y)
M By,

+/ G(z, y)@le"“l(y)dvg (y).
M\ By

So since G is smooth out of the diagonal we have that

w(@) <wm+C+ [ Gla,y)Quly)e™ W dvy(y).
By,
Now using Jensen’s inequality we obtain ,

Ql_(y)enul(y)XBk (y)
Qe x B, || L1 (ar)

exp (/B G(z,y)Qlenuz(y)dVg(y)) < /M exp (||QGHUIXBIQHL1(M)|G(I,y)|) v, (y).
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Hence using Fubini theorem we have

B 1 CnT'LHQenuZXBkHLl(M)
/67L“l(y)dvg(w)§06"“l sup / (> dVy(x).
M

By yEM,k dg (»T, ZJ)

So from ka Qi(y)em W dV,(y) < & and (2.115) we have that,
[ emav,) =) v k.
By

Hence
/ "W dv, (y) = or(1).
M\UIZNB,,  (Z5L)

C

So since By, (Ré’) are disjoint then the Step 4 implies that,

/M Qi)™ DV, (y) = N(n — Dl + or(1),
hence (2.1) implies that
/M Qo(y)dVy(y) = N(n — 1)lw,.

ending the proof of Theorem 0.2.6.

2.2 Proof of Theorem 0.2.8

In this Section, we give the proof of Theorem 0.2.8. For convenience we divide the proof into five
steps as in the previous Section.

Step 1

There exists N € N*, N converging points  (z;;) ¢ = 1,..,N, N sequences (f;;) ¢ =
1;...; N ; of positive real numbers converging to 0 such that the following hold:

a)
dg(xit, xj1)
M1

b)

— 400 i#j i, j=1,..,N and Qiz; )it @) =1;

There exists C >0 such that _Jnf ng(wi7l,x)4e4“l(”’) <C VreM, VieN.

c)
For every ¢ =1,--- /N
either

ci)

Ty — T; € int(M);

324

m) in Cphe(RY);

() = wi(ewpe, (1)) — ) — 7108(3) — V() = log(
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and
lim  lim Qi(y)e* W dVy(y) = 8*;
R—+o00 l—+o00 Ba,  (Rpit) ’

or

c5)

Ti) — X; € oM,
324

m) in Che(RY);

vi(x) = w(exps,, (pigx)) — wlwiy) — ilog(?)) — Vo(z) := log(

and

lim i 9 (1) ) Y
Rir%r}oo l—g—noo Bf Z(R#M) Ql(y)e dVg(y) T3

Proof of Step 1

First of all let 2; € M be such that w;(x;) = max,ens wi(x), then using the fact that w; blows up
we infer u;(x;) — +o0.

Now let p; > 0 be such that Ql(xl)u?e‘l“l(”l) = 1. Since Q; — Qo C*(M), Qo > 0and
uy(x;) — 400, we have that p; — 0.

Now suppose x; — Z € int(M) and let B°(dp; ') be the Euclidean ball of center 0 and radius
py ', with & > 0 small fixed . For o € B(6y; "), we set

v(x) = wi(expy, () — wi(x;) — ilog(?)); (2.118)
Qu(x) = Qulexps, (m)); (2.119)
Qi(x) = Quleaps, (m)); (2.120)
gi(x) = (exp},g) (). (2.121)

Now from the Green representation formula we have,

w(x) — 1y = / G(z,y)Pui(y)dVy(y) + 2 G(z,y ) Pou(y)dSy(y'); Vxe M, (2.122)
M oM

where G is the Green function of (P}, P2) (see Proposition 0.3.3).
Now using equation (22) and differentiating (2.122) with respect to x we obtain that for k = 1,2

Vg (2) < / V4G (2, )], Qu(y)e™ @ av, + O(1),
M
since Q@ — Qo in C'(M) and T} — Tp.

Now let y; € By, (Rui), R > 0 fixed, by using the same argument as in the proof of Theorem 0.2.6(
formula (2.8) ), we obtain

/M IVEG (g1, ) lge*™ P dVy (y) = O(u ") (2.123)

Hence we get
|VFu,(2) < C. (2.124)
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Furthermore from the definition of v; (see (2.118)), we get
1
vi(z) < v (0) = I log(3) Vo € R* (2.125)

Thus we infer that (v;); is uniformly bounded in C?(K) for all compact subsets K of R*. Hence
by Arzela-Ascoli theorem we derive that

v — Vo in CL(RY), (2.126)

On the other hand (2.125) and (2.126) imply that
1
Vo(z) < Vp(0) = - log(3) Va € R (2.127)

Moreover from (2.124) and (2.126) we have that Vj is Lipschitz.
On the other hand using the Green’s representation formula for (P;, Pg’) we obtain that for z €
R* fixed and for R big enough such that = € B°(R)

w(expy, () —t = /M Glexpq, (), y) Pyu(y)dVy(y)+2 | Glewpy, (ux), y' ) Pow(y')dSy(y').

oM
(2.128)
Now let us set

Ii(z) = 2/3 (Ru) (G(exps, (uz),y) — Glexps, (0),y)) Qu(y)e* ™ W dV,(y);

I () = 2 / (Gleapa, (1), y) — Clewpa (0),4)) Oi(y)e™ WV, ():
M\Ba, (Ru)

I (z) =2 /M (G(expq, (), y) — G(exps (0),y)) Qi(y)dVy(y);

and
I (z) = /a Ny (G(eaps, (), y') — Glewps, (0),y) Ti(y)dS,(y')-

Using again the same argument as in the proof of Theorem 0.2.6 (see formula (2.10)- formula (2.16))
we get

w(@) = L(x) + T(x) — T () — 1T, () — ilog(?)). (2.129)

Moreover following the same methods as in the proof of Theorem 0.2.6( see formula (2.18)-
formula (2.28) ) we obtain

. 3 || 4V,
lim I, (z) = —log [ ——— ) etV gz, 2.130
o () /BO(R) 472 Og<|x—z|>e : ( )
limsup II;(z) = ogr(1). (2.131)
l
III[(.’I?) = Ol(l) (2.132)
and
IIIL; (z) = or(1). (2.133)

Hence from (2.126), (2.129)-(2.133) by letting ! tends to infinity and after R tends to infinity,
we obtain V| satisfies the following conformally invariant integral equation

3 |2 4V, 1
Volz)= [ =21 0(=) gy — 21 . 2.134
o) ra 472 o8 <|x - z> ¢ Ty 08(3) (2.134)
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Now since Vj is Lipschitz then the theory of singular integral operator gives that Vo € C1(R?).
On the other hand by using the change of variable y = exp,, (1), one can check that the following
holds

lim Qe dv, =3 / Vo du; (2.135)
l=—=40o0 JB,, (Rm) Bo(R)

Hence (38) implies that e'o € L4(R%).

Furthermore by a classification result by X. Xu, see [89](Theorem 1.2) for the solutions of (2.134)
we derive that

2A

for some A >0 and z, € R%.
Moreover from Vo(z) < Vp(0) = —11log(3) Vz € R*, we have that A =162 and zo =0 namely,

324
Ve =1 — | .
O(:E) Og (1622 + |IE2>

On the other hand by letting R tends to infinity in (2.135) we obtain

lim lim Qi(y)e*™ W dv,(y) = 3 / e*Vodz. (2.137)
R— 400 l—+o0 Bwl(RMl) R4

Moreover from a generalized Pohozaev type identity by X.Xu [89] (see Theorem 1.1) we get

3 Vo (y)
2 dy =2
472 /R4 ¢ y=a

hence using (2.137) we derive that

lim lim Qi(y)er W av,(y) = 8n>
R— 400 l—+o0 Bwl(RMl) 9

Next suppose z; — T € OM and let let BS_ (5,ul_1) be the upper half euclidean ball of center 0

and radius Sy ', with § > 0 small fixed . For @ € BY (6, '), we consider v(z), Qi(z), Qi(z)
and g;(x) as in (2.118)- (2.121).

Repeating the same argument as above we get v; is uniformly bounded in C?(K) for every com-
pact set K of Ri. Moreover we obtain

v — Vo in CL.(RY), (2.138)

1
Vo(z) < V4(0) = —3 log(3) Va € RY;

and V| is Lipschitz.
Now let us define

Ii(x) =2 /B iy (e (102),9) = Glezpa, (0, 9) Quly)e™™ Vi y):

) =2 [ (Glerpalun).y) ~ Glerpn (0).0) Q)™ YV, )
& (R

() = 2 /M (Gexpa, (1), y) — Clexpe, (0),4)) Q) dVy (v);
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and
M) = | (Gleapane). o) = Gleap., (0).9) T/ a5, (0.
M
By still the same argument as above we obtain
1
v(z) = Ii(z) + 1(x) — T (x) — T (x) — 1 log(3).

Moreover we have that

lim Iy () :/ % <log |2| +log |Z|_ ) AVo(2)
1 BO(R) 4T |z — z| |z — Z|

limsup IT;(z) = ogr(1).
!

III[(I‘) = Ol(l)

and
IIIIZ (.’E) = 0y (].)

Hence letting [ tends to infinity and after R tending to infinity, we derive that V{ satisfies the
following integral equation

3 |2] |2| 4V 1
- = 1 1 0(2)gy — ~1 ) 2.1
Vo(z) Ai4w2<0g|x_z|+0g|m_z| e 2= 7 log(3) (2.139)

On the other hand from (2.139), it is easily seen that

A%
—— =0 on JR}.

ot on o

Now using Alexandrov reflection principle and denoting Vp the even reflection of Vj through the
plane 6Ri, we obtain V) solves the following conformally invariant integral equation

3 |Z| 4V, 1
V = —1o O(Z)d — —log(3). 2.140
O(x) 4 A2 g <|(E > € Z 1 g( ) ( )

On the other hand since Vy was Lipschitz then Vp is also. Thus using the theory of singular
integral operator we infer that Vj is of class C!. Moreover using again the change of variable

Yy = expy, (x) we get

lim  lim Qu(y)e™ ™ av,(y) =3 / Vo (@) gy (2.141)

R—+4o00 l—+00 Bil (Rﬂl) Ri

So from (38) we infer that [y, e*'*(®dz < +o0o. Thus ¢ ¢ L1(R%). Now arguing as above we
+

obtain
~ 324
—log [ 22 ).
Vo(w) = log (1622 ¥ |x2>
and 5
2 Vo) gy — 9. 2.142
oz [ ey (2.142)

Hence from the fact the Vj is the even reflection of Vj through OR%, (2.141) and (2.142) we get

i i 2i(y)e*™ W av, (y) = 4n.
REIEoolEEloo B;(RW)QZ(y)e g(y) "
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Now for k> 1 we say that (Hy) holds if there exists k converging points (z;;); ¢ =1,...,k,
k sequences (p;;) i =1,....,k of positive real numbers converging to 0 such that the following
hold

(4%)
dg(in, xj1)
i

(A7)
For every i =1,k
ejther
2,i
(43)

— 400 1#j 4,j=1,..,kand Ql(xi’l)ufle‘l“l(x“) =1;

Ty — T; € int(M);

1 24
Ui,z(l“) = Uz(expm.z(ui,ﬂ)) - Uz(ﬂii,l) 1 log(3) — Vo(z) := 10%(1@237_’_'33‘2) in Clloc(R4)
and
lim  lim Qi(y)e* W) = gr?
R—+o00l—+o00 Bwiyl(R.U‘i,l)
or
2,i
(43)
T — T; € OM;
v (@) = wi(expg,; , (pix)) — wi(xs ) L log(3) Vo(zx) := log( 524 ) in CL.(RY)
; = s i - i) — 7 — = o T
il I\EXPx; (Ml 141 1 g 0 g 1622 + [z]2 loc\!™ 4

and

lim lim Ql(y)e4“l(y):47"2
R—+o00 l—+oo B;E:,l(Rll«i,l)

Clearly, by the above arguments (H;) holds. We let now k > 1 and assume that (Hj) holds.
We also assume that

sup Rk,l(x)4e4ul(x) — 400 as | — +o0, (2.143)
M

Now using the same argument as in the proof of Theorem 0.2.6, one can see easily that (Hy41).
Hence since (A,lg) and (A%) of Hj imply that

/ Q) WV, () > (2ky + ka)dn? + 0y(1),
M

with k1, ko € Nand 2k; + ko = k. Thus we easily get thanks to (38) that there exists a maximal
ko1 <k< = ([ QwdVy(y) + [5, To(y)dSy(y')) , such that (Hj) holds. Arriving to this
maximal k, we get that (2.143) cannot hold. Hence setting N =k the proof of Step 1 is done.

Step 2
There exists a constant C' > 0 such that

Ri(x)|Vulg(z) < C Ve € M and VI € N; (2.144)
where

Ri(z) = min dg(z,,x);

i=1,..,
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and the z;;’s are as in Step 1.

Proof of Step 2
First of all using the Green representation formula for (P;, Pg’) see Proposition 0.3.3 we obtain

w(x) = = | Gx,y)Piu(y)dVy(y)+2 [ G,y )Pw(y')dS,(y).
M oM

Now using the BVP (20) we get
w(@) —w = 2/ Gz, ) Qi)™ ™ —QdVy(y) =2 [ Glx,y)Ti(y )y )dSy(y'). (2.145)
M oM

Thus differentiating with respect to x (2.145) and using the fact that Q; — Qo, Q; — Qo and
T, — Ty in C', we have that for 2; € M

Vurla)ly = O < / dg(;y)e‘*““y)dvg(y)) o).

Hence at this stage following the same argument as in the proof of Theorem 0.2.6, Step 2, we

obtain
U s ( 1 >
e*\YdV.(y) = O ;
/, @y (1, 9)) s =9 Rty

hence since x; is arbitrary, then the proof of Step 2 is complete.

Step 3
Set
R;; = min dg(mi,hxj,l)?
i#£]

we have that

1) There exists a constant C' >0 such that Vr € (0,R;;] Vs € (§,7]
if z; € int(M) then

lw (ezpy, , (rz)) —w (exps,,(sy)) | < C for all z,y € R* such that |z, |y| < g (2.146)
and if Z; € OM then

3
lw (expg,, (rz)) — w (exps,,(sy)) | < C  for all z,y € RY such that |z, |y| < 7 (2.147)

Ri

2) If d;;is such that 0 <d;; < =

it z; € int(M) and

and % —— 400 then we have that

/ Qu(y)e* W dVy(y) = 87° + oy(1); (2.148)
Baz, ,(di1)

then
/ Qi) W aV, (y) = 87° + or(1).
B, ,(2d;,)

if z; € OM and

/B+ y )Ql(y)e4“l(y)dVg(y) =472 + o(1); (2.149)
;0 (di
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then
/ Quy)e* W avy(y) = 4n° + oy (1).
B, (2di)

R,

3) Let R be large and fixed. If d;; > 0 is such that d,; — 0, — 400, d;; < S then

it &; € int(M) and

di,1
il

Qu(y)e™ W dv,(y) = 8% + oy(1);

Bz, (5%)
then by setting
iy (r) = w(ewpy, (dir)); z € Agg;
where Az = B°(2R) \ B°(55), we have that,

||dile4m||cw(AR) — 0 as | — +oo;

for some « € (0,1) where Ar = B(R)\ BO(%)
and
if &, € OM and

/+ g Z)Qz(y)e““l(y)d%(y) = 4r® + oy(1);
B (4

1,1
then by setting
ﬂ’l(x) = ul(ewpii,z(di7lx)); T € A;R;

where Aj, = B (2R) \ B} (55), we have that,
4 Ady .
l|d; e ||CQ(A;) — 0 as | — 4o00;
for some « € (0,1) where A}, = BY(R)\ By(%).
Proof of Step 3
We have that property 1 follows immediately from Step 2 and the definition of R;;. In fact we

can join rx to sy by a curve whose length is bounded by a constant proportional to 7.
Now let us show point 2. First suppose Z; € int(M). From dil __, 400, point c) of Step 1 and

(2.148) we have that
/ b, WAV, (y) = (1), (2.150)
Bz1,l (dt,l)\BI, 1 (T’)

Hence from (2.146),by taking s = § and r = 2d;; we obtain that

/ e4uz(y)dVg(y) < C/ . e4uz(y)dVg(y);
By, (2di)\Ba,  (di 1) By, (di,)\Ba,;  (—54)

Thus we get
/ 64“’(y)dVg (y) = oy(1).
Ba, ,(2d;.0\Ba, , (di)
Next assume z; € dM.Thanks to % — 400, point ¢) of Step 1 and (2.149) we have that

/B+ (di,)\B, (di,z)e4UZ(y)dVg(y):01(1)' (2.151)
z; (Al zi

2

Thus using (2.147), with s = § and r = 2d;,; we get

Wy, (y) < C

B, (2di )O\BE, (di1) By, (di)\BE, | (

iy
5-)
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Hence we arrive

duv) g = oy(1).
/B oty A ) = o)
@ e, @, \ 5,

So the proof of point 2 is done. On the other hand by following in a straightforward way the
proof of point 3 in Step 3 of Theorem 0.2.6 one gets easily point 3. Hence the proof of Step 3 is
complete.

Step 4
There exists a positive constant C' independent of [ and i such that
it &; € int(M) then
/ Quly)e Vv, () = 852 + or(1).
B

i
v (=57)

and
if T; € OM then

Proof of Step 4
The proof is an adaptation of the arguments in Step 4 of the one of Theorem 0.2.6, but for the
readers convenience we will make it.

First of all fix % <v< % and for i=1,.... N
if Z; € int(M) then set

i4(r) = Voly (0B, ()" / w(@)do,(x) YO <r < inj,(M);
an“ (r)
wii(r) = r4”exp (@i(r)) YO <r <injy(M).

if Z; € OM then set

(1) = Volg(é'B;rM(r)))*1 /aB+ ( )ul(x)dag(x) V0 <r < injy(M);
zi \T

wi(r) =r"exp (4 (r)) VO <1 <injy(M).
By assumption ¢) or d) of Step 1 we have that there exists R, such that,

VR > R, Lp;’l(R,ui,l) <0 Vi sufficiently large (depending on R). (2.152)

Now we define r;; by

R; /
rig =sup{Rypi; <r < 2” st @;(-) <0 in [R,,7)}. (2.153)
Hence (2.152) implies that
Tl oo as | — +oo. (2.154)
il

Now to prove the step it suffices to show that % +/— 400 as | — 4o00.

Indeed if R_“ +— 400, we have that there exists a positive constant C such that
Ti,l

R(j;l <1y (2.155)
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On the other hand from the Harnack type inequality (2.146) or (2.147), point ¢) or d) of Step 1,
and (2.153) we have that for any 7 > 0, there exists R, > 0 such that for any R > R,, we
have that

dy(@, i) et <l Ve e (B, (i) \ BY,  (Ruiy)). (2.156)
Since Z”I — 400 see (2.154) and Rz“ > 11 see (2.153), we have CI?” — +00, hence point ¢)
or d) of Step 1 (2.156) and (2.155) imply that if Z; € int(M) then

/ - Qie*™ = 872 + 0/(1);
B 1( &)

and
if z; € OM then

Qe =4n® 4 oy(1).
B+ Z(R'L.l)

On the other hand, by continuity and by the definition of r;; it follows that

i1(rig) = 0. (2.157)

equation Let us assume by contradiction that I:i’ll — 400 . We will show next that Lpz l(n 1) <

0 for [large contradicting the above equality (2.157). To do so we will study @; ().

First let us remark that since M is compact then Ri

s T +oo implies that r;; — 0.

From the Green’s representation formula for u; we have the following equation,

@) = [ )PtV +m+2 [ Gl Pu)is,w) = [ 6 n@ieav,)
+1 —/ Gz, y)Qu(y)dVy(y) —2 [ G,y )Plu(y)dSe(y').
M oM
Hence
G (r) = 2(Voly (0B / / Gl )01 ()™ DV, (y)do, () + @
aB+ ()
~2(Voly 082, ) [ . L e@vawavmin,e)
—(Voly (0B ( / ”(T/ G(z,y)Ti(y)dSy(y)do,(z).
Setting
Fuu(r) = 2(Voly(9B7 () / [ GV, wis, @)
aB+
+(Voly(0BF ( / Gl )T ) dS, () ()
63+
we obtain
i = 2(Voly(9By, ,( / /G(%y)@z(y)64"l(y)dVg(Z/)d0g(w)+ﬂz—Fi,z(T)-
B}, (r)

Since @ — Qo in CY(M)and T; — T in C'(OM) then we have that Fj; is of class C'! for
all 4,1 and moreover,

ingjq(M)
). (2.158)

EL, (] <C; Y ore (o



2.2. PROOF OF THEOREM 0.2.8 109

Now let % <A< % be fixed: we have that

M

G(,y)Qi(y)e™ PV, (y) = / o Gz, y)Que" WV, (y)+ / G, y) Qe WV, (y).
B, M

\Ba, , (A)
So
U;,(r) = 2Vol, 8B+ / / G(z,y) — K(x,9)) Qu(y)e*™ W av, (y)doy(x) +
aB}, () J B, l(A
—F; i (r) + H; (r);
with

H;,(r) =2Vol, 8B+ / / G(axy)@l(y)e4“‘(y)dVg(y)dag(:c)
3B+ 1 (1) JM\Bg, (A)
L2Vl (OB (r) A M)~ / / K (@, 5)Qu(y)e™ W av, (y)do, ()
’ oBf, () ‘

Since G is smooth out of Diag(M), then for all i,l; H;; € C* (O, W) and moreover,

—1 )

To continue the proof of the Step we divide it into two cases

Case 1 T; € int(M) .

First of all using the change of variable x = rf and y = s we obtain

|H;,(r)| <C ¥ re(0, (2.159)

A -
i, = (Vol(S3))~! /S /S /O £(r,0) (G(re, s) — K (r0, sé)) O(s0)er (59 3 £ (s, 0)dsddd
+a, — Fy (r) + Hi i (r).

So differentiating with respect to r we have that

A ~ - ~
iy, (r) = (Vol(S%) ™! /S 3 /S 3 /0 %(f(r,@)(G(rG,sé)—K(r&,sé))) Q(s0)er D 3 £ (s, 6)dsdfdo
_Fi/,l(r) + H;7l(7")~

From the asymptotics of G(-,-) (see Proposition (0.3.3) ) and the fact that f is bounded in C?,
it follows that

(Vol(S3))~! /S 3 /S 3 (G(ro,sé) - K(ra,sé)) dfdo = f(r, s)log(

1
) )

with H(-,-) of class C® and f(-,-) of class C2.
Hence setting

(s0) f(s,0)dods.

Q

G(r,s) = (Vol(S8*))™* /53 o % (f(r,@)(G(rﬁ,sé) — K(r#, sé)))

we obtain

G(r,s) = f(r, s)

+ H(r,s); (2.160)

where H(r,-) is integrable for every r fixed.
On the other hand using the Harnack type inequality (see (2.146)) we have that,

u(s0) < t(s) + C uniformly in 6,
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hence we obtain
G <C/ G(r,s) "“”(s)ds—F-()—i—H ().

Now le study fo $3G(r, s)et®i1(5) ds. 2 (this is possible
because of the assumption of contradiction). Now let us split the mtegral in the following way,

.
&t ri R

A _ 7 - _ ~ _
/ SBG(T, S)enui,L(S)dS _ / S3G(7“, s)e4ui,z(s)d8 + / SBG(T, 8)64Ui,l(8)d8
0 0 il

R

R,
i,l A

C ~ _ ~ _
+/ SSG(r,s)e‘l“i’l(s)ds—i—/Rv ng(r,s)e""i"(s)ds.

i,
iR e}

!

Using the fact that we are at the scale % then ¢) of Step 1 implies that we have the following
estimates for the first term of the equality above with r = r;,

Ti,l

R ~ _ 2 1
/ $*G(rig, s)e ™1 Pds = ——— + o1(1) —
0

Tl T4

On the other hand using assumption b) of Step 1 we obtain the following estimate for the third
term of the equality above with r =r;;

Ri

C ~ _ 1
/ §2G(ri, 8)e* 1 ds = o)(1)—.
rig R Til

R

We have also using assumption b) of Step 1 and the fact that - —— +oo the following estimate

for the fourth still with r = r;,

A ; 1
/ $G(rig, )et® (D ds = 0(1)—.
iyt ’ Til

Now let us estimate the second term. For this we will use the point 3) of Step 3. First we recall
that r;; and R verify the assumption of the latter. Hence the following holds

|Iri et || caan) = a(1) (2.161)

for the definition of Ag and 4, see statement of the point 3) of Step 3 where d;; is replaced by
r;1. On the other hand performing a change of variable say r;;y = s we obtain the following
equality

T LR - _ R R
/ l ng(r,s)e‘l“i’l(s)ds:/ Y2Gia(y)ry ettt gy, (2.162)
T, 1
R R

where
i1 (y) = i (riy)
Gi,l(y) = é(ﬁ‘,hﬁ,l@/)
From the asymptotics of G(-,-) (see (2.160) ) we deduce the following one for G (-, ),

Gii(y) = fiuy) + Hii(y); (2.163)

rii(1—y)

where H, ;(-) is integrable and fll() of class C2.
Hence by using (2.162) and (2.170) we obtain the following inequality

el 44 1 f le(y) F 4 4
/ $*Glrip,5)e* ™1 ds = 7/ v’ Qo gy T rallu) | rie bWy (2.164)
. _
r

T .
HZ Til
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Moreover using Harnack-type inequality for u; (see (2.146)) and (2.161) we have that,
Ird e | ca gy, mp = 0r(1)- (2.165)

So using techniques of the theory of singular integral operators as in Lemma 4.4 ( [46]) to have
Holder estimates, we obtain

/é y ((.];il (y)) +TZZHLI( )) T;{le4’lli,l(y)dy:0l(1);

hence with (2.162) we deduce that

’I‘ile ~ _ 1
/7» s2G(r, 5)e*®1) ds = o) (—).

il Til

So we obtain

1 / ’
l(rz l) < 20; + Ol( )’]" P i)l(Ti,l) + Hi,l(r). (2166)

Case 2 T; € OM
We will follow the same strategy up to some trivial adaptations. First using the change of vari-
able x = rf and y = s we obtain

;= (Vol(S%)) / / / f(r,0) (G(ro, s6) — K(r0, 39)) Q(Sé)e‘l“l“é)s?’f(s,é)dsdédG
58 Js3
+u; — F;;J(’I”) + Hi,l(T’).

So differentiating with respect to r we have that
a;,(r) = (Vol(52)) / / / (r,0)(G(r6, s0) — (ra,sé))) Q(s0)e* 1D 3 f (s, 0)dsdfd
4 SS SS 87"

—F; (r) + H; ().

From the asymptotics of G(-,-) (see Proposition (0.3.3) ) and the fact that f is bounded in C?,
it follows that

)+ H(r,s);

(Vol(5%))~1 /53 /53 (G(r&sé) - K(r@,sé)) dfdo = f(r,s) 10g(|r i 3]

with H(-,-) of class C* and f(,-) of class C2.
Hence setting

G(r,s) = (Vol(S3)) /S s 8r £(r,0)(G(r6, 6) — (re,sé)))Q(sé)f(s,é)déda.

we obtain

G(r.s) = f(r.s)-

. + H(r,s); (2.167)

where H (r,-) is integrable for every r fixed.
On the other hand using the Harnack type inequality (see (2.147)) we have that,

u(s0) < t(s) + C uniformly in 6,
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hence we obtain
G <C/ G(r,s) "“”(s)ds—F-()—i—H ().

Now le study fo $3G(r, s)et®i1(5) ds. 2 (this is possible
because of the assumption of contradiction). Now let us split the mtegral in the following way,

.
=t ri R

A ~ _ R ~ _ ~ _
/ $7G(r, s)e"" P ds = / s°G(r,s)e"" 1 ds + / S3G(r, )¢t ) ds
0 0

Tl

R

Ri

i A
C ~ _ ~ _
—|—/ SSG(r,s)e‘l“i*l(s)ds—i—ﬁv ng(r,s)e""""(s)ds.

1,1
iR e}

1,1

Using the fact that we are at the scale TR‘ then d) of Step 1 implies that we have the following
estimates for the first term of the equality above with r = r;,

Ti,l

R ~ _ 2 1
/ $*G(rig, s)e ™1 Pds = ——— + o1(1) —
0

Tl T4

On the other hand using assumption b) of Step 1 we obtain the following estimates for the third
term of the equality above with r =r;;

Ri

< - _ 1
/ SBG(m,l, 5)64“’3*1(5)055 =o(1)—.

iR Ti,l

We have also using assumption d) of Step 1 and the fact that
for the fourth still with r = r;,

Pf—“; — +00 the following estimate

A ; 1
/ $G(rig, )et® (D ds = 0(1)—.
iyt ’ Til

Now let us estimate the second term. For this we will use the point 3) of Step 3. First we recall
that r;; and R verify the assumption of the latter. Hence the following holds

|Iri et || caan) = a(1) (2.168)

for the definition of Ag and 4, see statement of the point 3) of Step 3 where d;; is replaced by
r;1. On the other hand performing a change of variable say r;;y = s we obtain the following
equality

T LR - _ R R
/ l ng(r,s)e‘l“i’l(s)ds:/ Y2Gia(y)ry ettt gy, (2.169)
T, 1
R R

where
i1 (y) = i (riy)
Gi,l(y) = é(ﬁ‘,hﬁ,l@/)
From the asymptotics of G(,-) (see (2.167) ) we deduce the following one for G (-, ),

Gii(y) = fiuy) + Hii(y); (2.170)

rii(1—y)

where H, ;(-) is integrable and fll() of class C2.
Hence by using (2.169) and (2.170) we obtain the following inequality

ri 1 R B . 1 R le(y) R . 4
/ $*Glrip,5)e* ™1 ds = 7/ v’ Qo gy T rallu) | rie bWy (2.171)
L _
%

T .
HZ Til
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Moreover using Harnack-type inequality for u; (see (2.147)) and (2.168) we have that,

21" lowq g .mp = a1(1); (2.172)

||Tzle

So using techniques of the theory of singular integral operators as in Lemma 4.4 ( [46]) to have
Holder estimates, we obtain

R 3
/1 y3 < fl,l(y) + llH’Ll( )) T4l€4u”(y dy = Ol(l);

(1-y)
hence with (2.171) we deduce that
iR - _ 1
/T $PG(r, s)etm1) ds = o)(—).

il r
" .l

So we obtain

1 ! ’
i (rig) < 20; +to(l)— -~ . i (rin) + Hiy(r). (2.173)

Hence in both case we get
’ ]_ ’ ’
a, (rZ 1) < QC— +o0(1)— “(ri,l) + H“(r). (2.174)

Til Ti,l

)

Now let compute <p;’ ,(i1). From straightforward computations we have,

@;,l(ri,l) = (Ti,l)4”71€13p(ﬂi,l(Ti,l)) (41/ + Ti,lﬂ;,l(ri,l)> .
So using (2.173) we arrive to the following inequality,
Gralrie) < ()™ Meap(iia(ria) (4 = 20 + 01(1) = riaFly(ria) + riaHyy(ri) ) s

sov < 1 implies 4v —2C + 0;(1) < 0 for [ sufficiently large.

Thus since F 4 and H 1 are bounded in (0, %) uniformly in 7 and r;; — 0 we have that

for [ big enough )
@i1(rig) <0;

hence we reach the desired contradiction and we conclude the proof of the step.

Step 5 :Proof of Theorem 0.2.8

We show first the following estimate

/ n, €AV (y) = o(1).
M\UZY B, (=&1)

C

For this we first start by proving
U — —oo as | — +oo. (2.175)

In fact, using the Green’s representation formula for wu; (see Proposition 0.3.3) we have that for
every x € M,

w(e) = +2 [ Gley) (Qwe™® —Quy)) av, / G,y )Ti()dS, (v

M

> Uy — +2/ G(z,y)Q 4“’(y)dV( ).
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By assumption ¢) or d) of Stepl we have given any e > 0, there exists R, such that for [
sufficiently large
it z; € int(M) then

Qu(y)e*™ Wav,(y) > 87 —
Brlvl(Rel‘l,l) I 327T2

and
if Z; € OM then

Du(y)etu® , e
e dV, > 42 —
/Bil,l(Reﬂl,l) Ql(y) g(y) Z 4T 672

Hence the last three formulas and the asymptotics of the Green’s function of (P;L , Pg3 ) imply that
if 7, € int(M) then

- 1
et (z) > 071641”78 for | — x| > 2Rcp1, for 1 large;
|z — @157
and if T, € OM then
1

et (z) > C et for |z — 1| > 2R for 1 large;

|1. _ xl,l|876

From this it follows that

/ e4ul(y)dvg(y) > / e4uz(y)dvg(y)
M

(B, , (injg (M)\BF, | (2Repr 1))

1 _4a indg (M) 5 1 _4a e—4
>C""e “l/ s B)gg > o letm (2Rep1 )" .
2R6H1,l

So if € is small enough we have from (38) that
U — —00,

hence we are done .
Now by assumption b) of Step 1 we can cover M \ UE{VB%Z(R(E’I) with a finite number of
balls By, (ry) such that for any k there holds ,

[ @) <
yp 2Tk

Now set By = By, (2r) and By, = By, (r) so using again the Green representation formula for
u; we have Vx € By,

() = o +2 /M G, 1) Q™ WV, (y) - /M G, ) Qu()dV, (y) - /8 Gy TS, ).
hence

uz(x)ﬁﬂlJrCJrQ/

G(a,y)Qe* WadVy(y) = u + C + 2 / G(z,y)Qie*™ W dV,(y)
M

By

w2 Gl @t avyy).
M\ By,
So since G is smooth out of the diagonal we have that

w(@) < i +C+2 /B G, ) Qu(y)e™ DV, (y).
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Now using Jensen’s inequality we obtain ,

Qz_(y)64“‘ Wy s, (y)
[|Qet i x B, |1 (ar)

ezp( G(z,y)Qze“’(y)dVg(y)) S/ exp ([|Qe* x5, |12 ()| G(z,y)]) dVy(y)-
By M

Hence using Fubini theorem we have

4 ia 1 ﬁHQeAMI’XBkHLl(M)
e (y)dv,(x) < Ce*™ su / () dV,(z).
| vy a) s (@)

So from [ Qi(y)e* WAV, (y) < 47? and (2.175) we have that,

[64“’(y)d%(y):01(1) v k.
By

Hence
/ DV, (y) = or(1).
M\U=NB,, (% '

i,l
ost (5

So since By, , (RC“) are disjoint then the Step 4 implies that,

/M Ql(y)e4'“’(y)dVg(y) =4Nn? + or(1),

hence (38) implies that

/ Qo(y)dVy(y) + / To(y')dS,(y') = ANT2
M oM

ending the proof of Theorem 0.2.8.

2.3 Proof of Theorem 0.2.10

In this Section, we give the proof of Theorem 0.2.10. We will use the same strategy as in the proof
of Theorem 0.2.6 and Theorem 0.2.8, hence in many arguments we will be sketchy.
First of all, we recall the following particular case of the result of X. Xu (Theorem 1.2 in [89]).

Theorem 2.3.1. ([89]) There exists a dimensional constant o3 > 0 such that, ifu € C1(R3) is
solution of the integral equation

u(z) = / o3 log (|x|ﬁ|y|) S Wdy + ¢,

where cq is a real number, then e* € L3(R®) implies, there exists A > 0 and x¢ € R3 such that

2
) = (s )

Now, if o3 is as in Theorem 2.3.1, then we set k3 = 27203 and 73 = 2(k3)?
We divide the proof in 5-steps as in [69)].

Step 1

There exists N € N* N converging points  (z;;) € OM 4 = 1,...,N, with limit points
x; € OM, N sequences (u;;) @ = 1;...; N ; of positive real numbers converging to 0 such that
the following hold:
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a)
dg(in, 1)
il

b)For every i

— foo iF#j i i=1,.,N and Ti(w;)pde® @0 =1;

7.

_ 1 . 1 4 = 43 ;
0ua(@) = walewpo, (i) —u(@s) =g loglha) — Vo@) in Cle(RY), Vojoms (¢) = log( o o)
and

lim lim T (y)e™™ Wds,(y) = 4n*;
R—+o00 l—+00 B, | (Rui,)ndM ) o)
c)

There exists C' >0 suchthat inf ng(:niyl,x)i’egul(m) <C VreoM, VieN.

(2

Proof of Step 1

First of all let &; € OM be such that u;(x;) = max,coar ui(x), then using the fact that u; blows
up we infer w;(z;) — +o0.

Now since dM is compact, without loss of generality we can assume that x; — T € OM.

Next let p; > 0 be such that Tj(x)pfe’(®) = 1. Since T; — Ty C'(OM), Ty > 0and
uy(x;) — 400, we have that p; — 0.

Let Bg(éufl) be the half Euclidean ball of center 0 and radius g, ', with § > 0 small fixed .
For z € BY(6p; "), we set

(o) = w(ewpy, () — won) — 3 log(ks); (2,175
Qi) = Quleapa () (2,176
Qi) = Quleap, (m)); (2.177)
01(2) = (expt, ) (ua), (2.17)

Now from the Green representation formula we have,

wle) = m = [ Gl Prul)aVyw) +2 [ Gla)Phuty)dS, () Vo€ M, (2170)
M oM

where G is the Green function of (P}, P?) (see Lemma 0.3.3).
Now using equation (15) and differentiating (2.179) with respect to x we obtain that for k = 1,2

VRl (x) < / V4G (e, )], Ti(y)e* @ av, + 0(1),
oM
since T} — Ty in CY(OM) and Q; — Qo in C*(M).

Now let y; € B (Ru), R >0 fixed, by using the same argument as in [69] (formula 43 page 11)
we obtain

/aM IVFG(y1, y)lge™ W dVy(y) = O ™) (2.180)
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Hence we get
|VEu,(z) < C. (2.181)

Furthermore from the definition of v; (see (2.175)), we get

v(z) < (0) = —% log(ks) Vo € RY (2.182)

Thus we infer that (v;); is uniformly bounded in C?(K) for all compact subsets K of R%. Hence
by Arzela-Ascoli theorem we derive that

u— Vo in CL.(RY), (2.183)
On the other hand (2.182) and (2.183) imply that
1

Vo(z) < V5 (0) = —glog(kg) vz € RY. (2.184)

Moreover from (2.181) and (2.183) we have that Vj is Lipschitz.
On the other hand using the Green’s representation formula for (P;, P;) we obtain that for = €
R4 fixed and for R big enough such that = € B (R)

wi(exp, (z))—u = /M G(expq, (juz), y) Pyui(y)dVy(y)+2 /a Ny Gexp, (), y") Pgu(y)dSy(y').

(2.185)
Now let us set
N 2/ (Gleaps, (), y') = Gleaps, (0),y)) Tily)e™ W dS,(y');
B, (Ru)NOM
tige) =2 | (Glewpe, (1), ') = Gleapn (0),4) Try )™ DS, (')
OM\(BE, (Ru)
(o) =2 [ (Glewpn (). ') = Gleap.,(0)./) TH0)S, (1)
M
and
1L (z) = 2/M (Glexps, (), y) — Glexps, (0),y)) Qi(y)dVy(y).
Using again the same argument as in [69] (see formula (45)- formula (51)) we get
1
v(z) = Ii(z) + 1 (x) — I (x) — T (x) — 1 log(3). (2.186)
Moreover following the same methods as in [69]( see formula (53)-formula (62)) we obtain
lim [;(z) = / o3 log ('Z|> 3z, (2.187)
l BY (R)NORYL |z — 2|
limsup II;(z) = or(1). (2.188)
!
11, (z) = oy(1) (2.189)
and
111, (2) = oy(1). (2.190)

Hence from (2.183), (2.186)-(2.190) by letting [ tends to infinity and after R tends to infinity,
we obtain Vo gs ( that for simplicity we will always write by ;) satisfies the following conformally
invariant integral equation on R3

Wolz) = / o3 log <|Z> V) gy - 1log(k;g). (2.191)
R3 |z — | 3
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Now since V; is Lipschitz then the theory of singular integral operator gives that Vo € C1(R?).
On the other hand by using the change of variable y = exp,, (1), one can check that the following
holds

lim Ty dV, = k3 / 3V d; (2.192)
l=—=+00 JB} (Ru)noM B (R)NORL

Hence (40) implies that "0 € L3(R3).
Furthermore by a classification result by X. Xu, see Theorem 2.3.1 for the solutions of (2.191)
we derive that

2\
Vi =1 —_— 2.193
O(:E) Og<)\2+$—l’0|2> ( )
for some A > 0and zy € R3.
Moreover from Vy(z) < V5(0) = —%log(ks) Vz € R3, we have that A = 2k3 and zo = 0
namely,

4y
Vo(z) = log(m)
3

On the other hand by letting R tends to infinity in (2.192) we obtain

lim  lim Ti(y)e* W dsS, (y) = ks / Vodg. (2.194)
R—tool=+o0 /Bt (Ru)NORL I R3

Moreover from a generalized Pohozaev type identity by X.Xu [89] (see Theorem 1.1) we get

0.3/ e3V°(y)dy= 2,
R3

hence using (2.194) we derive that

lim lim Ti(y)e* W dSy(y) = 4n°
R—tool—=too /Bt (Ru)noM ’

Now for k > 1 we say that (Hj) holds if there exists k converging points (z;;); C M i =
1.,k k
sequences (p;;) @ =1,...,k of positive real numbers converging to 0 such that the following hold
(a})
dg(wit, j1)
i

(A7)

For every i =1,-,k

— 400 iF) dj=1kand  Ti(wi)ple ) = 1;

T — T; € OM;

4y
)

1
() = ery (ia2))—up(zi0)— = log(ks) — Vi in CL.(RL), W = log(—5——
vi (%) = wi(expy, , (igw))—wi(wir) 5 log( 3) o(z) in Cpp(RY), Vojare Og(47§+|x‘2
and

lim lim Ty(y)e™ ) = dan?
R—tool=too Jpt  (Ru;)noM
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Clearly, by the above arguments (H;) holds. We let now k > 1 and assume that (Hj) holds.
We also assume that

sup Ry, (x)3e*(® — 100 as | — +oo, (2.195)

oM
where
Ryi(z) = min dy(wi, ).
Now using the same argument as in [34],[69] and the arguments which have rule out the possibility

of interior blow up above that also apply for local maxima, one can see easily that (Hy11). Hence
since (A%C) and (Ai) of Hj imply that

/ Ti(y)e¥ W dS, (y) > kir? + or(1),
oM

Thus (40) imply that there exists a maximal k,1 <k < 25 ([, Qo()dVy(y) + [5y, To(y)dSe(y))
such that (Hj) holds. Arriving to this maximal k, we get that (2.195) cannot hold. Hence set-
ting N = k the proof of Step 1 is done.

Step 2
There exists a constant C > 0 such that
Ri(x)|Vaulg(z) < C Vee M and Vle N; Vx e oM (2.196)
where
Ri(w) = min_dy(zi, v);

and the z;;’s are as in Step 1.

Proof of Step 2
First of all using the Green representation formula for (P;, Pg’) see Lemma 0.3.3 we obtain

w(z) — = / Gz, y)Pywi(y)dVy(y) +2 | Glz,y")Piu(y')dSy(y).
M oM

Now using the BVP (?7?) we get

w () — iy = —2/ Gz, y)QudVy(y) —2 | Gz, ¥ )Ty )wly')dS,(y)
M oM (2.197)
+2 [ Gla,y)Ti)e™ W)dS, ().
oM
Thus differentiating with respect to = (2.197) and using the fact that Q; — Qo, Q; — Qo and
T, — Ty in C', we have that for x; € OM

1 3uy(y)
= _— 1).
|Vgul(xz)|g © (/8M dg(fl,y ‘ ng(y) * O( )

Hence at this stage following the same argument as in the proof of Theorem 1.3, Step 2 in [69],

we obtain
1

L ey =0 (7))

hence since x; is arbitrary, then the proof of Step 2 is complete.
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Step 3
Set
R, =mindy(z;,x;,);
i#j

we have that
1) There exists a constant C' >0 such that Vr € (0,R;;] Vs (F,7]

3
lw (expa,, (rz)) — w (exps, ,(sy)) | < C for all z,y € ORY such that |z|, |y| < 3 (2.198)
2)If d;;issuchthat 0<d;; < 32“ and Z—i — +o0o then we have that
if '
/ Ty(y)e W dS, (y) = 47 + o (1); (2.199)
B;)l(di,l)ﬁaM

then

/B+ (2d;,1)NOM Tl(y)egul(y)dsg(y) =4n® 4 o(1).
z; 1 (2ds,0)N

di,1

N

R
4R

3) Let R be large and fixed. If d;; > 01is such that d;; — 0
then if

— 400, and d;; <

L g QD4 (0) = 477 5 1)
z 2N

i,l\2R

then by setting
w(x) = w(exps, ,(diyz)); x € Ap;

where A, = (BY(2R) \ BY(55)) NORY, we have that,

Hdile?’ﬁlﬂcam;) — 0 as | — +o0;
for some «a € (0,1) where A}, = (BY(R)\ BY.(%)) N IRY.

Proof of Step 3
We have that property 1 follows immediately from Step 2 and the definition of R;;. In fact we
can join rx to sy by a curve whose length is bounded by a constant proportional to 7.

Now let us show point 2. Thanks to Z‘i — +00, point c) of Step 1 and (2.199) we have that

v, S ) = (D). (2.200)

/B;i’l(di,l)naM\B;r“( LbynoM

Thus using (2.198), with s = £ and r = 2d;; we get

e3ul(y)dsg(y) < C/+ . e3ul(y)ng(y);
B‘T l(divl) L

/B;:J(2di,l)r‘18M\B;f'“(d“)ﬂaM NOM\BY,  (=54)noM

Hence we arrive

/ 48, () = ou(1),
B;M (zdi,l)maM\B;ti,l (di,1)NOM

So the proof of point 2 is done. On the other hand by following in a straightforward way the proof
of point 3 in Step 3 of Theorem 1.3 in [69] one gets easily point 3. Hence the proof of Step 3 is
complete.
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Step 4
There exists a positive constant C' independent of [ and ¢ such that

/B+ ) Tl @ ds,(y) = dn* +oi(1).
@ (=)0

Proof of Step 4
The proof is an adaptation of the arguments in Step 4 ([69])

Step 5 :Proof of Theorem 0.2.10

Following the same argument as in Step 5([69]) we have

W s, (y) = or(1).

/BM\w:;{V B, (“sbnan)

So since B Z(Rc'i'l) N OM are disjoint then the Step 4 implies that,

/ Ti(y)e* W dS,(y) = ANT> + o,(1),
OM

hence (40) implies that

/ Qo(y)dVy(y) + / To(y')dS,(y') = N7
M oM

ending the proof of Theorem 0.2.10.

2.4 Proof of Theorem 0.2.12

In this Section, we give the proof of Theorem 0.2.12. As already said in the previous Chapter, in
order to prove the latter theorem, we exploit a result of Jost-Lin-Wang[43] and an other one of
Li[52] that we recall

Theorem 2.4.1. ([43]) Let mi,ms be two non-negative integers, and suppose A1, Ao are two
compact sets of the intervals (dwmq,4m(mq + 1)) and (dwme, dm(me + 1)) respectively. Then if
p1 € A1 and py € Ay and if we impose fz w;dVy =0, i = 1,2, the solutions of (11) stay uniformly
bounded in L>=(X) (actually in every CY(X) with | € N).

This theorem, as stated in [43], requires m; and mg to be positive. However it is clear from
the blow-up analysis there that one can allow also zero values of m; or of ms.

Theorem 2.4.2. ([52]) Let (ug)r be a sequence of solutions of the equations

Vietr
—“Aup =y | ————— — W,
U k (fz VecwedV, k) )
where (Vi.)r and (Wi satisfy
[wav, =1 Willoxs 0 Nloghl <G [TVl <C.
b
and where A\, — Ao > 0, A\g # 8km for k = 1,2,.... Then, under the additional constraint

Js ukdVy =1, (ug)r stays uniformly bounded in L>°(X%).
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PROOF of Theorem 0.2.12
First of all we claim that the following property holds true: for any p > 1 there exists p > 0
(depending on p, K1, Ko, b1 and hs) such that for ps < p the solutions of (e*?*); stay uniformly
bounded in LP(X).

The proof of this claim follows an argument in [15]: using the Green’s representation formula
and the fact that p; > 0 we find (recall that fz ug dVy = 0)

h26u2’k

< 9y 2ETE
wasle) < €+ [ Glo) (2 s ) V)

where G(z,y) is the Green’s function of —A on X. Using the Jensen’s inequality we then find

U2,k
hae v, (y).

puz k() < C/ 2 G
e < EeXp( PP2.k (fc,y))fE hactzrdy, Ve

Recalling that G(z,y) ~ -~ log (#) and using also the Fubini theorem we get

T 2n d(z,y)
" 1
ePu2kdV, < Csup [ ———77dVy(y).
S ves s d(a,y)
Now it is sufficient to take p = % in order to obtain the claim.

For proving the proposition, in the case p2 > p we simply use Theorem 2.4.1, while for
P2, < p we employ the above claim. In fact, from uniform L? bounds on e">* and from elliptic
regularity theory, we obtain uniform W?? bounds on the sequence (v)x, where vy is defined as
the unique (we can assume that every vy has zero average) solution of

hoe¥2:k
Ay = — —— —1].
Vg P2,k <f2 haev2dV, )

Taking p sufficiently large, by the Sobolev embedding, we also obtain uniform C*® bounds on
(vg)r (and hence on (e¥)y). Now we write u3 , = wi g + vk, so that wy j satisfies

hiek etk
—Awi =2 —-1].
Wik PLk <f2 hqevkewikdV, >

Moreover, since we are assuming fz u1,xdVy = 0 and since fz vdVy = 0 as well, we have that
also fz wy,xdVy = 0. Hence, applying Theorem 2.4.2 with uy = w1k, A\x = 2p1,k, Vi = h1e"* and
Wi, = 1, we obtain uniform bounds on wj j in L>°(X). Since (vy)x stays uniformly bounded in
L>(X), we also get uniform bounds on u; x in L>°(X). Then, from the second equation in (41)
we also achieve uniform bounds on ug j, in WP (X) (and hence in L>(X) taking p large enough).
This concludes the proof. ®



Chapter 3

Existence results

3.1 A general min-max scheme and Struwe’s monotonicity
argument

Great part of this thesis deals with variational problems with lack of compactness and unbounded
Euler-Lagrange functional . In order to get existence results, we use min-max method combined
with Struwe’s monotonicity argument. Since they turn out to be one of the main ingredients in
this Chapter, then we decide to recall their abstract formulation.

We first give a general min-max scheme.

Theorem 3.1.1. Let X be a Hilbert space and J € C'(X,R) a functional on X. Let Ag be a
topological subspace of X and A C P(X) be a collection of topological subspaces of X such that
0A ~ Ay for all A € A. Suppose that there exists a positive constant [3 such that for all A € A

I(u) > B+ sup J(v) Yue A€ A, (3.1)
vEAp

then settmg
cy = inf sup J(u
J . p ( )

we have that if (PS)., holds then cj is a critical level of J
Remark 3.1.1. We remark that the condition (3.1) produces Palais-Smale sequence at level cy.

In his study of surfaces of constant mean curvature with free boundary, M. Struwe has in-
troduced a monotonicity argument to overcome the failure of (PS) condition. Later Ding-Jost-
Li-Wang[30] have used the same strategy to study the mean field equation on compact closed
Riemannian surfaces. We recall the general strategy here, since such a argument will be always
used .

Theorem 3.1.2. Let X be a Hilbert space and J,, p € R be a family of C* functional on X.
Let Ap be a topological subspace of X and A C P(X) be a collection of topological subspaces of
X such that 0A ~ Ag for all A € A. Suppose that J, have the following form

Julw) = gl ~ pF(w),

where F' is such that VF is a compact operator.
Setting

cy = inf sup J,(u
Tu AeAueﬁ u(1)

123
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we have that if the map p — % is monotone in a neighborhood of |po — €, o + €[ of o, then if
W Elpo — €, o + €[ is a point of differentiability of the latter map, then any Palais-Smale sequence
of Jy at level ¢z, is bounded.

Remark 3.1.3. We point out that in some cases to apply Theorem 3.1.2 we will do it with some
modifications (see last Subsection).

3.2 Topology of large negative sublevels of 114, I1g, II7, 1],

In this Section, we discuss the topological structure of some large negatives sublevel of the Euler-
Lagrange functionals 114, Ilg, Il7, and II,. The topological characterization of those sublevels
will be used to get existence of solutions for the corresponding problems via the application of the
abstract min-max Theorem 3.1.1 above and the monotonicity procedure given by Theorem 3.1.2.

3.2.1 Applications of the improved Moser-Trudinger type inequalities

In this Subsection, we give some applications of the improved Moser-Trudinger type inequalities
of Chapter 1.

We start by giving a Lemma which show a criterion which implies the situation described in the
first condition in (1.21). The result is proven in [33] Lemma 2.3.

Lemma 3.2.1. Let (M, g) be an n-dimensional compact closed Riemannian manifold, | be a pos-
itive integer, and suppose that € and r are positive numbers. Suppose that for a non-negative
function f € L*(M) with || f| z1ary = 1 there holds

/ fdVy <1 —¢ for every (-tuples p1,...,pe € M
UileT(pt)

Then there exist € > 0 and 7 > 0, depending only on €,r,£ and M (but not on f), and £+ 1 points

D1s---Dpp1 € M (which depend on f) satisfying
/ JdVy>¢2, ..., / JfdVy > & Bor(p;) N Bar(p;) = 0 for i # j.
B=(py) B7(Pey1)

In the next Lemma we show a criterion which implies the situation described in the conditions
in (1.28) and (1.29). The proof is a trivial adaptation of the arguments of Lemma 2.3 in [33].

Lemma 3.2.2. Let (M,g) be a four dimensional compact closed Riemannian manifold with
boundary, h andl be positive integer, and suppose that €, r and d are positive numbers. Assume
f € LY(M) is a non-negative function such that || f| 1) = 1, then we have the following

1) IffM\M45 fdVy < € then there holds

If

/ fdvy < fdvy —e for every h-tuples p1,...,pn € Mys such that
MysN (Ul By, (1)) Mays

Bp (27“) - Mg(g

then there exist € > 0 and ¥ > 0, depending only on ,r, h,5 and M (but not on f), and points
D1+ -sDpy1 € Mas, satisfying

/ fdVy>¢&, ..., / fdVy > & By, (27) N By, (27) =0 for i # j, By (27) C Mas.
Bp, (T) Bp; (7)
(3.2)
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2) If fMa fdVy < € then there holds:
¥ '

/ fdvy < / fdvy —«¢ for every l-tuples q1,...,q € OM,
OMx[0,5[N(UF_, BF, (r)) oM x[0,3]

i §
B (2r) c oM x [0, 5]

then there exist € > 0,and T > 0, depending only on 6,7‘,1~ and M (but not on f), and points

Q-5 Qiyy €OM, B;'j (2r) C OM x |0, g} satisfying

/B+()fd1/g>5, /B+()deg>5; BI(R)NBL@P =0 fori#j (33

q1 ar

3) If fM\M45 fdVy > € and st fdVy > ¢ then there holds
1

/ fdvy < fdvy — for every h-tuples p1,...,pn € Mas such that
Mysn(U)_, By, (1)) Mys

B,,(2r) C Mas

3

and

/ fdvy < / fdvy —e¢ for every l-tuples q1,...,q € OM,
OMx[0,5 [NVl BF. (r)) AM x[0,2]

i=

1
+
qu(27‘) C OM x [0, 5]
then there exist € > 0 and 7 > 0, depending only on e,r, i~1, l,0 and M (but not on f), points
Tglv cee 7ﬁh+1 € M45,(ITLCZ pOints qla s aqH»l € aM}
Bg'_ (2r) C OM x [0, 8] satisfying
J

/ fdVy>¢&, ..., / fdVy > & By, (27) N By, (27) =0 for i # j, By (27) C Mas.
By, (T) Bp; (7)

(3.4)
and

/B+ . fav, >z, ..., /B+() fav, > z; B (2r) mng(ﬁ) =0 fori#j. (3.5)

q1 ay

In the next Lemma we show a criterion which implies the situation described in the first condition
in (1.40). The result is proven in [33] Lemma 2.3.

Lemma 3.2.3. Let (M,g) be a compact four dimensional Riemannian manifold with bound-
ary, | be a given positive integer, and suppose that € and T are positive numbers. Suppose that for
a non-negative function f € L'(OM) with || f| L1 onr) = 1 there holds

/ fdSy <1—e¢ for every (-tuples p1,...,ps € OM
Ui_y B2M (ps)

Then there exist € > 0 and T > 0, depending only on e,r,0 and OM (but not on f), and £ + 1
points Py, ..., Ppyq € OM (which depend on f) satisfying

[T | Fds, > = BYM(5,) 1 B (5,) = 0 for i # j.
B2M (p,) B2M (B, q)
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Next we use the improved versions of The Moser-Trudinger type inequalities in Chapter
1 combined with the above Lemmas to characterize large negative sublevels of the functional
114, I1g, Iy, and I1,.
We start with I14.

Lemma 3.2.4. Let (M,g) be a compact closed Riemannian manifold of arbitrary dimension n.
Under the assumptions of Theorem 0.2.13, and for k > 1 given by (42), and for k =0, the follow-
ing property holds. For any € > 0 and any r > 0 there exists large positive L = L(e, ) such that

for any w e H=(M) with I1x(u) < —L, fM e™dVy =1 there exists k points Diu,...,Pku €

M such that
/ eV, < ¢ (3.6)
M\Ui?:pri,u(r)

PROOF. Suppose by contradiction that the statement is not true. Then we can apply Lemma 3.2.1
with I = k, f = €™, and in turn Lemma 1.4.1 with 69 = 27, S1 = Bp, (7),...,Sk+1 = Bp,,, (7).
This implies

RKpnh

[Tau) = den(k+1)—€

<P”u u>+n/ QrudVy — Ckpn — <P U u> nKpn .

n
2

Since kpn < 2¢,(k + 1), we can choose € > 0 so small that 4 — % > § > 0. Hence using

also the Poincaré inequality we deduce

ITa(u) > 6 (Pjlu,u) + n/ Qn(u—u)dV, — Ckpn
M

N

>4 <Pg”u,u> —nC <P;u,u> — Ckpn > —C. (3.7

This concludes the proof. m

Next we consider the functional Ilg.

Lemma 3.2.5. Let (M,g) be a compact four dimensional Riemannian manifold with boundary.
Under the assumptions of Theorem 0.2.16, and for k > 1 given by (45), and for k = 0, the
following property holds. For any € > 0, andr > 0 (all small) there exists large positive L =
L(e,r) such that for any u € Ho with Ilg(u) < =L, [,,e*dVy = 1 the following holds,
V§ > 0 (small)

1) If vaw“ e*dV, < e then we have there exists k points piu,... 1P € Mas By, ,(2r) C

Mss such that
/ etdVy, < ¢ (3.8)
Mas\Ui_, By, , ()

2) If fM5 e*dV g < e then there exists k points qiu,---,qku € OM, B;,u@r) C OM x]0, g] such
b

that
/ e4udVg <€
OM x[0,8]\UL_ B+ (r)

If If fM\MM e*"dV, > ¢ and fM& etdVg > e then there erists (h,1) € N* x N*, 2h +1 <
1

k, h points
Plus- - Phu € Mas By, ,(2r) C Mas and 1 points 1, - - -, qru € OM, B;ri’u(Zr) C OM x|0, %] such
that

/ et dVy < ¢ (3.9)
M46\U?=1Bpi,u (r)
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and

/ 64"dVg < €.

OMx[0,§1\U!_, BS; , (r)

PROOF. Suppose that by contradiction the statement is not true. Then there exists € > 0, r >
0,6 > 0 and a sequence (u,) € Hp, such that [, e*“rdVy, =1, Ilg(u,) — —o0 asn — +oo

and such that

Either 1) R
fM\M45 edun dVy, < e and k tuples of points p1,...,pr € Mys and By, (2r) C Mas,we have
/ et dV, < / fdVy —¢ (3.10)
]\/145Q(U?ZIBP1’,“,(T)) Mys
Or
2)

Jar, etundV, < e and Vk tuples of points qi,...,q € OM we have
1

/ e*dv, < / fdv, —e.
OMx[0,$N(UL_, BE (1)) oM x[0,2]

1794,

Or
3)
fM\M45 etundV, > e, fM5 etndV, > eand V(h,l) € N* x N*, 2h + [ < k, for every h tuples of

4
points pi,...,pn € Mys and By, (2r) C Mas and for every [ tuples of points q1,...,q € OM we
have

/ etdV, < favy — ¢ (3.11)
M45ﬂ(U?:1Bpi,u(T)) Mays

and

/ etdv, < / fdVy —e.
aMx[0,5n(Ui_, B, (1) oM x[0,3]

Now since the arguments we will carried out work for all the three cases, then we will focus only
on the case 3. We assume that this is the case and we apply Lemma 3.2.2 with f = e%%", and in
turn Lemma 1.4.2 with 6y = 27, S; = B, (7), Q; = B;; (7F) and o = € where €, 7, p; and g; are
given as in Lemma 3.2.2. Thus we have for every € > 0 there exists C' depending on €, r, J and
€ such that

IIo(un) > (P*3u,, uy, +4/ UpdV, +4/ T,undS —% P30, up
Q(un) = ( g ) MQ.O g onr Y g 4772(2h+l—€)< g )

—Clipzl,ps — 4I§}p4,PBW

where hand [ are given as in Lemma 3.2.2 and C'is independent of n. On the other hand, using
the fact that 2h +1 >k + 1 we have that

Io(uy) > (P%3u,. u, 4/ LAV, 4/ Tou,dS, — ——PLP2_(pAsy
Q(u)_<gu,u>+ MQQU gt onr gUn@Og 47r2(k+1_g)<gu’“>

_CFEP4,p3 — 4I{p4,p3'u7n.
So, since Kps ps < (k+ 1)472, by choosing € small we get

Ilg(un) > B (P, un) — 4C (PA3up, u,)? — Chips pa;

thanks to Holder inequality, Sobolev embedding, trace Sobolev embedding and to the fact that

KerPy;* ~ R (where §=1— % > 0). Thus we arrive to

IIQ(un) Z —C.
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So we reach a contradiction. Hence the Lemma is proved. B

Now we consider the functional IIp.

Lemma 3.2.6. Let (M,g) be a compact four dimensional Riemannian manifold with boundary.

Under the assumptions of Theorem 0.2.16, and for k > 1 given by (47), and for k =0, the follow-

ing property holds. For any € > 0 and any r > 0 there exists large positive L = L(e,r) such that

Jor any w e Ho with Ip(u) < —L, Jons €4dSy = 1 there exists k points piu,...,DPku €
OM such that

/ e*dS, < e (3.12)

OMA\UE_ BOM (r)

PROOF. The proof is same as the one of Lemma in [33]. For the reader convenience we repeat it.
Suppose that by contradiction the statement is not true. Then there exists ¢ > 0,7 > 0, and a
sequence (u,) € Hy, such that f(’)M eSunng =1, Ilp(u,) — —oc asn — +oo and such that
for any k tuples of points pi,...,pr € OM ,we have

/ e*dS, < 1—¢ (3.13)
(UE_  BZM (r))

Now applying Lemma 3.2.3 with f = e3%», and after Lemma 1.4.3 with &y = 27, S; = BgM(F),
and 9 = € where €, 7, p; are given as in Lemma 3.2.3, we have for every € > 0 there ex-

ists C depending on ¢, r, and € such that

4 3
4,3 4,3
Iy (uy) > <Pg un,un> + 4/M QqundVy + 4/8M TyundSy — glﬂ}(P47p3) T6r2(k +1-9) <Pg un,un>
—Cl*i(p4)p3) - 4l€(p4)p3)unaju

where C'is independent of n. Using elementary simplifications, the above inequality becomes

[T (up) > (PM3ug,u,) + 4 / QqtundVy + 4 / TyundS, L i )<P;’3un,un>
M oM

S An?(k4+1-—¢

—Clﬁlpzl)P:s — 4K}P4,P3W8M'

So, since kpa ps < (k+ 1)472, by choosing € small we get

IIp(uy) > 3 <Pg4’3umun> —4C <P;’3un,un>% — Ckpa_ps;

thanks to Holder inequality, Sobolev embedding, trace Sobolev embedding and to the fact that

KerPy;* ~ R (where §=1— % > 0). Thus we arrive to

IIT(un) Z —C.
So we reach a contradiction. Hence the Lemma is proved. B
Finally we consider the functional I7,.

Lemma 3.2.7. let (X,9) be a compact closed Riemannian surface and suppose py < 4w and
that p1 € (dmm,4dw(m + 1)) . Then for any e > 0 and any r > 0 there exists a large positive L =
L(e,r) such that for every (ui,uz) € H(X) x H'(X) with I1,(u) < —L and with [ e“dV, =1,
1 =1,2, there exists m points P1uy,--->Pm,us € 2 Such that

/ edv, < e. (3.14)
E\U?lleT(pi,ul )
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PROOF. Suppose by contradiction that the statement is not true. Then we can apply Lemma
3.2.1 with £ =m + 1 and f = e"* to obtain &y, 4o and sets Si,...Sy+1 such that

d(giagj)z(%a Z#]a
/AeuldVg>’y0/e“1dVg, i=1,....m+1.
S =

Now we notice that, by the Jensen’s inequality, there holds fz u;dVy < 0 for i = 1,2, and that two
cases may occur

(a) p2 <0;
(b) P2 > 0.

In case (a) we have that ps [y usdVy > 0. Using also inequality (1.47) to find
IT,(uq,u2) > /|Vu1\ vy, +p1/ w1dVy — C.

Now it is sufficient to use Proposition 1.4.6 with £ = m + 1, §y = 50, Y% = Y, S; = S'j7 j=
1,...,m+1and ¢ € (0,16m(m + 1) — 4p1), to get

1 2 P1
4/E|Vu1\ e T /|Vu1| dv, — C

167(m + 1) —4p) — /
d
= T46r(m+1) - [V vy~ C,

IIp(ul,uQ)

Y

where C is independent of (uy,us).

In case (b) we use Proposition 1.4.4 with §y = 50, Y =%, {=m+1,5; = 5']- and ¢ such that
(4m —&)(m + 1) > p1 and such that 47 — & >p o (vecall that pp is strictly less than 47 (m + 1) and
that pe < 4m), to deduce that

IIp(ul,UQ) > (47T — 5) [*(m + 1)@1 - ﬂz] + p1u1 + p2ug
= (pp—(m+D)MAdr—¢&)ur+ (p2 —4dr +&)uy — C > —C,

by the Jensen inequality, where, again, C is independent of (u1,usz). This concludes the proof. ®

Next we give some corollaries which are direct consequences of Lemma 3.2.4-Lemma 3.2.7 . Loosely
speaking it gives the distance of some (suitably) normalized functions belonging to large negative
sublevels of 114, Ilg, IIr,and I1, to some barycentric sets.

We start with IT4. We state a result which gives the distance of the functions €™ from M}
for w belonging to low energy levels of IT,4 such that fM e"dV, =1 and IIs(u) < —L with
L large. Its proof is similar to the one of the next corollary, hence we ommit it.

Corollary 3.2.8. Let (M, g) be a compact n-dimensional closed Riemannian manifold with Py non-
negative and KerPl ~ R. Let € be a (small) arbitrary positive number and k be given as
in (42). Then there exists L > 0 such that, if I1a(u) < —L and fM e"dV, = 1, then we
have that d(e™, My) <.

Next we consider the functional IIy. We give a corollary which provides the distance of the
functions e** (suitably normalized) from (Mp)s.

Corollary 3.2.9. Let (M, g) be a compact four dimensional Riemannian manifold with boundary
such that P4 3 non-negative and KerP4 3~ R. Letz be a (small) arbitrary positive number and
k be given as in (45). Then there emsts L > 0 such that, if Ilg(u) < —L and [, e*"dVy =1,
then we have that dys (e, (My)y) <z
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PROOF. Let € >0, r > 0 (to be fixed later) and let L be the corresponding constant given by
Lemma 3.2.5. Now let § > 0, then by Lemma 3.2.5 we have that the following 3 situations:

a)

The conclusion 1 in Lemma 3.2.5 holds

Or

b)

The conclusion 2 in Lemma3.2.5 holds

Or

c)

The conclusion in Lemma 3.2.5 hold.

Suppose that a) holds. Since the same arguments can be carried out for the other cases,
then we will only consider this case . We have that by Lemma (3.2.5), there exists k& points
p1,- -, pj, verifying (3.8). Next we define o € (M)}, as follows

k
o= Zti5pi where t; = / eMdVy, A,i= By, (r)\UZtB, (1), i=1,--- k-1, tp =1-> ;.

i=1 i=1

By construction we have A, ; are disjoint and U?;llAr,i = UE;pri (r). Now let ¢ € C'(M) be
such that ||¢||c1(ary < 1. By triangle inequality, the mean value theorem and the integral estimate
in Lemma 3.2.5 we have that the following estimate holds

‘/ e4ug0—<0,cp>’<C’M r+e+/ et dv,
M Mas\Mys

where C)y is a constant depending only on M. So, letting § tend to zero and choosing € and
r so small that Cps(r + €) < 5, we obtain

dM(€4u, (Ma)k) < €
as desired. B

Next we turn to the functional IIy. We give a corollary which provides the distance of the
functions e** from dMj, for u belonging to low energy levels of IIp such that [, e**dS, = 1.
Its proof is the same as the one above.

Corollary 3.2.10. Let (M, g) be a compact four dimensional Riemannian manifold with boundary
such that KerP;’?’ ~ R and P;’3 non-negative. Let € be a (small) arbitrary positive number and
k be given as in (47). Then there exists L > 0 such that, if IIp(u) < —L and [,, e*dS, =1,
then we have that dgpr(e®*,0My,) < E.

Now we consider the remaining functional, namely I1,. Using the same argument as in the above
corollaries, we get following result regarding the distance of the functions e“! (suitably normalized)
from X,,.

Corollary 3.2.11. Let € be a (small) arbitrary positive number, and let p; € (dmm,4n(m + 1)),
p2 < 4m. Then there exists L > 0 such that, if 11,(ui,us2) < —L and if fz e“1dVy =1, we have
d(e",%,,) <E.

3.2.2 Projections of large negative sublevels of 11,4, Ilg, Ilr,and I1, onto
barycentric sets

In this Subsection we show how to map nontrivialy large negative sublevels of the functionals
IT4, Ilg, IIT and II, onto appropriate barycentric sets.

We first discuss the topology of some sets which will be used to do that. We start by a Proposition
whose proof can be found in [33].
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Proposition 3.2.12. For every closed compact n-dimensional Riemannian manifold M and for
every positive integer k, the set of formal barycenters My is non-contractible. Indeed we have

Hny1yk—1(My; Zo) # 0.
Next we give a proposition which asserts the non-contractibility of the barycentric set (Mp)g.

Proposition 3.2.13. For every compact four dimensional Riemannian manifold (M,g) with
smooth boundary, and for every positive integer k, the barycentric set (Mpy)y is non-contractible.

To prove the Proposition we need an auxiliary Lemma. It is a trivial consequence of normal
geodesics at the boundary.

Lemma 3.2.14. Let (M,g) be a compact four dimensional Riemannian manifold with boundary.
Then there exists a small ey > 0 such that a continuous projection

Pypr: (OM)© — OM
exists.

PROOF of Proposition 3.2.13

Suppose that the following claim is true, (OM)y is a deformation retract of some of its open
neighborhood U in (Mp) such that setting V = (My)i\(OM)y, we have that X = UUint(V) ~
(My)r. Now assuming that the claim holds we have that

Hyp—1(X;Z2) ~ Hyp—1((Ma)r; Zo); (3.15)

and
H4k_1(U;ZQ) 2H4k_1((aM)k;Zg). (316)

Next let us denote
1:UNV-U, :UNV—->V, m:U—X, t:V—-X

the canonical injections and by 44, j«, M, tx the corresponding homomorphism on homology
groups.
We have that by Mayers-Vietoris Theorem there exists an homomorphism A : H,((Mp)x)) —

Hy—1((Ma)r)
(where p is a generic positive integer number) such that the following sequence is exact

: g H4k—1(U N V; Zz) (Ziz*) H4k—1(U§ Zz) S H4k—1(V;ZQ) mgt* H4k—1(X;Z2) (3 17)

A Hyo(UNV;Zy) "2

Now for h € N,I € N such that h < l::,l < k and 2h+1 < k we recall that M, ; (for the
definition see section 2) is a stratified set, namely a union of sets of different dimension. The
maximal dimension is 5h + 4] — 1, when all the points are distinct and the coefficients belongs to
(0,1). Hence the following holds

dim(Mp,; NV) <5h+4l—1,

and if A = 0 then
Mo’l nv = (Z)

Hence from the trivial identity 5h + 4l — 1 < 4k — 2 for such a (h,l) with h # 0, we infer that
Hyp 1 (UNV;Zy) = Hyp—1(V;Zo) = Hyp2(UNV;Z3) =0
Thus from (3.17) we deduce that

Hup—1(U; Zo) ~ Hap—1(X; Zo)
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So using Proposition 3.2.12, and the formulas (3.15) and (3.16) we get

Hyp—1((Ma)y; Za) # 0

Hence to complete the proof of the Lemma it is sufficient to prove the claim. Now let us make its
proof.
First of all it is easy to see that there exists € > 0 ( 4e <e ¢ ) small enough and a continuous map

X :[0,1] x (OM)?** — (OM)**

such that
X6(07) :Id(ﬁM)Q‘()7 X@(L) :PQM()

where Pj is given by Lemma 3.2.14.

Next, we define a homotopy F : [0,1] X Baep — Bacx ( for the definition of By j see section
2) whose construction is based on the following idea. Given o = 0int + Opary € Bock Oint =
Z?:l ti0u;s Obdry = 22:1 8i0y, h < l;:, 1 <k, 2h+1 < k, we fixed the boundary part, namely
Obdry € Boac . And for the interior part o;,., we argue as follows if x; is closed to the boundary
at distance less than e we send ;0,,, to t;0p,,, (), if it is far from the boundary, say at distance
bigger than 2e we squeeze and in the intermediate regime we use an homotopy argument reflecting
the possibility between squeezing and projection to boundary via Pyys since the distance is less
or equal than 2e. More precisely w e define the homotopy F : [0, 1] x Bae  — Bac i as follows
For every o = Oint + Obdary € Bae with oy = Z?’:l ti0z:s Obdry = 22:1 si0y, and s € [0,1] we
set

F(Jv S) = J(S) + Obdry

where o(s) is defined as

U(S) = Z tl(s)(swz(s)

and
(1= ()0 om0 i dist(z;, OM) < ¢
, — dist(xz;,0M) . ,
ti(8)0z,(s) (1-— ST)V(S)Q&XS(% dist(ep.0M) if e <dist(x;,0M) < 2¢;
(1= 8)y(8)tids, if dist(x;,OM) > 2¢;

where ~v(s) is such that we have the normalization Z?:l ti(s) + 22:1 s; = 1. Thus by trivial
calculations we obtain

_ Zi_:l t;
B s dist(x;,0M .
Pt onn<e (1= 5)) + 2 ccaes onn <2 (1 — 34“26 220)t:)) + (i, onny>2e (1= 8)t)

So by setting U = Bj;; we have that the claim is proved. Hence the proof of the proposition is
complete. W

7(s)

Using the barycentric sets, we give a first step in describing the topology of large negative
sublevels of the functionals IIs, Ilg, Il7 and II,. We start with the functional I14.

Proposition 3.2.15. Let (M,g) be a compact closed n-dimensional Riemannian manifold with
P nonegative and KerP}' ~R. For k > 1 given as in (42), there exists a large L > 0 and a
continuous map V¥ from the sublevel {u € H=(M) : Ils(u) < —L, and [, e™dV, = 1} into
My, which is topologically non-trivial.

Remark 3.2.16. a) By topologically non-trivial, we means that the map carry some homology.
b) The non triviality of the map will come from the non-contractibility of My and the Proposi-
tion 3.2.25 below.
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To prove the Proposition, we need the following Lemma, whose proof comes from the arguments
of Proposition 3.1 in [33].

Lemma 3.2.17. Let (M,g) be a compact closed n-dimensional smooth Riemannian manifold and
l be a positive integer. Then there exists €; such that for all € < ¢, there exists a continuous
nontrivial map Ilc; : Dey — M.

PROOF of Proposition 3.2.15

We fix e, so small that Proposition 3.2.17 applies with [ = k. Then we apply Corollary 3.2.10
with € = e;. We let L be the corresponding large number, so that if u € {v € H2 (M) : I1a(v) <
—L, and fM e"dV, = 1}, then d(e™, M}) < e. Hence for these ranges of wu, since the map
u +— e™ is continuous from H % (M) into L'(M), the projections Il., j from H?% (M) onto My is
well defined and continuous. ®

Now we consider the functional Ilg.

Proposition 3.2.18. Let (M,g) be a compact four dimensional smooth Riemannian manifold
with smooth boundary such that P;’3 non-negative and KerP;*o’ ~ R. For k > 1 given as
in (45), there exists a large L > 0 and a continuous map VU from the sublevel {IIg(u) <
—L, [, e*dVy =1} onto (M), which is topologically non-trivial.

Remark 3.2.19. As in Proposition 3.2.15, here also topologically non-trivial means the same
thing. In this case the non triviality of the map will come from the non-contractibility of (Ms)y and
Proposition 3.2.18 below.

To prove Proposition 3.2.18, we need two auxiliary Lemmas. We start with the one which
states (roughly) that M can be embedded smoothly in Euclidean space (with large dimension)
such that its interior lies in the interior of the positive half space and its boundary at the one
(boundary) of that half space. Since the proof works for all dimensions, we will give the Lemma
for a general finite-dimensional compact smooth Riemannian manifold with smooth boundary.
Precisely, we have

Lemma 3.2.20. Suppose N is a smooth n-dimensional compact manifold with smooth boundary.
Then there exists m € N* (large enough) and T : N — R™*L an embedding such that, T(ON) C
ORTH T(int(N)) C int(RTH') and T : int(N) — int(R7) is smooth. Furthermore, there
holds for all x € ON, the vector v, with origin T(x) and parallel to the x,,11-azis is the normal
vector of T(ON) at T(z).

ProoF. First of all, by Whitney’s embedding theorem we have that there exists m € N* such
that N is smoothly embedded in R™, namely there exists T : N — R™ a smooth embedding.
Now, we extend N by adding a nice tubular neighborhood such that the resulting object is a
compact smooth manifold that we denote by N. Using the compactness of N we can find a finite
open covering {0;}¥_; of N and a finite number of smooth functions ¢; : ©; — R" such that
{(©;, p;)}¥ are local coordinates for N and ©; C N. Moreover, we can take ©; such that if
©; NION # () then the associated ; verifies the following properties:

wi:0; = [-1,1]"
wi: ;NN — [-1,1]" N {z, > 0};
vi:0;NON — [-1,1]" N {z, = 0};

and furthermore ; maps the outward normal vectors on 9N to the outward normal vectors at
OR% of [-1,1]" N {x, = 0}.
Now to the covering {©;}F_, , we associate a finite number of functions {h;}5_, h;:©0; — R as

follows
1 x € 0; Cint(N);
hi(z) =
h o p;(x) r € 0,;NIN.
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where h:[—1,1]" — Ris defined as follows

hiz) — 0 if zel[-1,1"n{z, <0};
() = { T—(en =12 if we[-1,1"N{z, >0}

Next we choose a partition of unity {g;}¥ subordinated to the covering {©;}%. Therefore the
g;’s satisfy

g €C(0;) 1<i<k;

0<g;<1 on N Vi

k
Zgi: 1 on N.
i=1

With this partition of unity and the functions h;, we set

k
u(z) = Zgz(x)hl(m)
i=1

Using the definition of h; one can check easily that w verifies the following properties

w(z) >0 Vo €int(N) and wue€ C®(int(N));

u(x) =0 Vo€ dIN and g%z—l—oo on ON;

where % stands for the inward normal derivative at ON.
Now for z € N we define T : N — R™T1 ag follows

where T is given by the Whitney embedding theorem.
It is obvious that T is an embedding, smooth in int(N) and satisfies the properties of the Lemma.
Hence the proof is completed. B

Next we will used the previous Lemma to define a special doubling of M such that it is C*.
First of all applying Lemma 3.2.20 to M we get the existence of an embedding T : M — R™*1 (
given by Lemma 3.2.20).

Now we define the reflection T of T as follows

T(z) = (T*(2), -, T"(2), =T (2));

where T(z) = (T*(z),--- ,T™(x), T (x)). From the properties of T, it is easily seen that T is
also an embedding of M.

With the embeddings T and T, we can define the desired doubling of M. To do so, we start by
making some notations. We set

DM* =T(M) and DM~ =T(M).

By the properties of T and T (see Lemma 3.2.20) we have that DM™ and DM~ have a commun
boundary which is dM. Moreover they have the same normal vectors at their commun boundary.
Now we are ready to define the doubling of M and denote it by DM as follows

DM =DM+ UDM-~-.

where the notation ~ means we identify T'(z) and T(z) for x € M.
Using the fact that DM™ and DM~ have the same normal at AM and by considering the
reflection § of g through OM, we derive that (DM, g)is a C* closed 4-dimensional Riemannian
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manifold with lipschitz metric.
Next we introduce some further definitions.
Given a point = = (x1,- ,Zmy1) € DM, we define the even reflection of x accross 9M and
denote it by Z as follows
T= (21, T, —Tmt1)- (3.18)

For a function u € H?(M) and identifying DM to M, we define the even reflection of u accross

OM as follows
u(z) if =€ DM™;
upn (@) = {u(fc) it + € DM~
We say that a function u € L'(DM)is even with respect to the boundary OM if
u(z) =u(z) forae xz€ DM. (3.19)
We denote by DM}, the k barycenters relative to DM of order k, namely

k k
DM, = {Ztiaxi, z; € DM, Zti =1}
=1 =1

We have that DM is a stratified set, namely a union of sets of different dimension with maximal
dimension being 5k — 1 (for more details see [33]). It will be endowed with the weak topology
of distributions. To prove the Proposition 3.2.15 we will need at one stage to (roughly speaking)
evaluate the distance of some suitable functions to DM}, (see formula (3.21) below). To do this,
we will adopt the metric distance given by C'(DM)* and inducing the same topology as the weak
topology of distributions and will be denoted by dpa(-,-).

For e > 0, we set

Deyxpy = {f € LY(DM), f >0, fdVz =1 and dpy(f,DMy) < €}.
DM

The next discussion concern the way of defining convex combination of points of DM belonging
to a small metric ball. To do so we use the embedding of DM in R™*! discussed above in the
following way. Given }laoints x; € DM,i = 1,---,l, which belongs to a small metric ball and
a; >0,i=1,---,1,> . ;a; =1, we define their convex combination denoted by 2221 a;x; by
considering the convex combination of their image under the embedding and after project the
result on the image of DM (which is also identified to DM ). Hence in this way we have that
for such a type of points, the convex combination is well defined and if d(z;,z;) < (3 then we

obtain d(z;, Z;zl ajry) < 20.

We recall that the arguments which has lead to Proposition 3.1 in [33] are based on the
construction of some partial projections on some suitable subsets M;(e;) (obtained by removing
singularities) of M} and gluing method based on the construction of a suitable homotopy. The
construction of the latter homotopy which is not trivial is based on some weighted convex combi-
nations and the fact that the underlying manifold does not have corners.

Using the notion of convex combinations discussed above and the fact that DM is a C! closed Rie-
mannian manifold with lipschitz metric which rule out the presence of corners, and an adaptation
of the arguments of Proposition 3.1 in [33], we have the following Lemma:

Lemma 3.2.21. Let k > 1 be as in (45) and DM be as above. Then there exists €x,pm such
that for every € < €, pm, we have the existence of a non-trivial continuous projection

Pe .oy Deg,pyr — DMy;

with the following property:
For every w € D, pm even (in the sens of (3.19) ) if Peppm(u) = Zle t;0z, then

Va; ¢ OM there exists j # i such that xj=2; and t; =1;.
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Now we are ready to make the proof of the Proposition 3.2.18.

PROOF of Proposition 3.2.18
To begin, we let ¢; be so small that Lemma 3.2.21 holds with € = €. Next applying corollary
3.2.10 with € = %, we obtain the existence of L ( large enough ) such that

Vuec Ho, /M e*dV, =1, and Ilg(u) < —L

there holds
4d(64u, (Mé))k) S €L

Now since for v € H 2, we have by definition of H 2 that
n n

ou

- )

Ong
then we infer that the even reflection upys of u belongs to H?(DM). Moreover we have also

that the map
u € H*(M) — upy € H*(DM) is continuous. (3.20)

On the other hand, one can easily check (using the eveness of §) that the following distance

estimate holds
edupm

dDM(f DMk) < €. (321)

4u )
pa €17V dVg

Therefore, by Lemma 3.2.21, we have that Pé,mk’DM(%)
DM g

DMj,. Moreover, still from Lemma 3.2.21 we have that if

is well defined and belongs to

etupm

k
Pek,k,DM m = ztidm%
1=

DM

then the following holds
Va; ¢ OM there exists j # ¢ such that z; =&; and t; =t;.
Thus setting

U(u) = 1 Z tibs, + Z tj0z;

Zzae int(DM+) ta + beeaM b z; € int(DM+) z;E0M

we get U(u) € (Mp)g. On the other hand, since the map v € H2(DM) — e* € LY(DM) is
continuous, then from (3.20) we derive that the map u € H 2= etvom ¢ L1(DM) is continuous,

too. Thus from the continuity of P, » par we infer that, \I/ is also continuous. Hence the proof
of the proposition is complete. B

Next we consider the functional Iy, and we have the following Proposition whose proof is
the same as the proof of Proposition 3.2.15.

Proposition 3.2.22. Let (M,g) be a compact four dimensional smooth Riemannian manifold
with smooth boundary such that Pg4’3 is non-negative and KerP;’3 ~ R. For k > 1 given as
in (47), there exists a large L > 0 and a continuous map W from the sublevel {u : IIp(u) <
—L, faM e3"dS, = 1} into OMy, which is topologically non-trivial.

Remark 3.2.23. Here also by topologically non-trivial we mean the same thing as in the pre-
vious cases. The non-triviality of the map will come from the non-contractibility of OMy, and
Proposition 3.2.33.
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Finally we arrive to the functional II,, and we have the following Proposition.

Proposition 3.2.24. Suppose m is a positive integer, and suppose that p1 € (dmm,4n(m + 1)),
and that ps < 4w. Then there exists a large L > 0 and a continuous projection ¥ from {11, <
—LIn{ 5 e"1dV, = 1} (with the natural topology of H*(X)x H' (X)) onto ¥, which is topologically
non-trivial.

Remark 3.2.1. As for the other functionals, here aslo topologically non-trivial means the same
thing, and will come from non-contractibility of X,, and Proposition 3.2.37 below.

Its proof is similar to the one of Proposition 3.2.15. For the seek of completeness we give the
details.
PROOF of Proposition 3.2.24
We fix ,,, so small that Proposition 3.2.17 applies with [ = m. Then we apply Corollary 3.2.11 with
€ = &, We let L be the corresponding large number, so that if I1,(u) < —L, then d(e"*,X,,) <
€m. Hence for these ranges of u; and usg, since the map u +— e is continuous from H 1(2) into
L(X), the projections Il ,,, from H'(X) onto %, is well defined and continuous. m

3.2.3 Projections of barycentric sets onto large negative sublevels of the
functionals 114, Ilg, IIr and 11,

In this Subsection, we prove that some suitable barycentric sets can be map in a nontrivial way
to some large negative sublevels of the Euler-Lagrange functionals 114, Ilg, Il7, and I1,. From
this results and the one of the previous Subsection, we have as a corollary that those negative
sublevels have the same homology as the corresponding barycentric sets. Hence the knowledge of
the homology of the barycentric set implies the one of the sublevels. For the purpose of clarity of
the exposition, we divide this Subsection into four Subsubsections devoted each to the treatment
of an Euler-Lagrange functional.

The case of Iy

Proposition 3.2.25. Let (M,g) be a compact closed mn-dimensional smooth Riemannian man-
ifold with P non-negative and KerP} ~ R. Let W be the map defined in Proposition 3.2.15 .
Then assuming k > 1 (given as in (42)), for every L > 0 sufficiently large (such that Proposi-
tion 3.2.15 applies), there exists a map

dy : My — H: (M) (3.22)
with the following properties

a)
IIA(®5(2)) < —L for any z € My; (3.23)
b)
¥ o &5 is homotopic to the identity on Mj,.
We are going to make the proof of Proposition 3.2.25. For doing this, we start with some
technical estimates.

Technical estimates for Mapping My, into large negative sublevels of I14

In this Subparagraph we will define some test functions depending on a parameter A and give
estimate of the quadratic part of the functional II4 on those functions as A tends to infinity.
And as a corollary we define a continuous map from M} into large negative sublevels of I14.

For § > 0 small, consider a smooth non-decreasing cut-off function x5 : Ry — R satisfying the
following properties (see [33]):
xs(t)=t, for t€]0,d];
Xs(t) =20, for t>26; (3.24)
xs(t) €[6,28], for t€[d,26].
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Then, given o € My, 0 = Zle t;6;, and A > 0, we define the function ¢y, : M — R by

oxol( IOth (H)\Q)((;Ci(y))> (3.25)

where we have set
dz(y):dg(yaxl)v xi7y€M7

with dy(-, -) denoting the distance function on M. We define also

dimin (y) = min d;(y). (3.26)
When n =4m we set
Tapre = (—A)"Pr0s (3.27)
when n =4m + 2 we set
Tnoro =V((=A)"pr0) (3.28)
when m = 4m + 1 we set
Topro = (—A)3 (=) "px 0, (3.29)
and when n = 4m + 3 we set
Topre = (—A)5 (=) 0, (3.30)

Now we state a Lemma giving an estimate (uniform in o € M) of < T Ox s PA, ,,> as A — +oo.

Lemma 3.2.26. Under the assumptions of Proposition 3.2.25, and for ¢y, as in (3.25), let
€ > 0 small enough. Then as A — +o00 one has

<P;<)0)\,U? 90)\,0> < (4k38n +e+ 06(1)) 10g>\ + C€,5 (331)

PrOOF. We divide the proof into two cases.

Case n even

We first give an estimate of [, ( v (Tnpx, U) dV, and after use interpolation inequalities to conclude.
Let © be large and fixed, then by induction in the degree of differentiation we have that the
following pointwise estimates holds in UL, B, (%):

‘Tn(P)\pl < C)\%7 (332)

hence we obtain

/ (Tnpro)? dV, < CO™ (3.33)
Uk B, ()

Now to have a further simplification of the expression of ¢, », it is convenient to get rid of the
cutoff functions xs. In order to do this, we divide the set of points {z1,...,z;} in a suitable
way. Since the number £ is fixed, there exists 6 and sets By, ..., Bj,j < k with the following
properties
Crlo<o<
B]U“'UBj :{xl,...,xk};

dist(x;,xs) < 5 if @;,2s € Bg; (3.34)
dist(z;,xs) > 46 if x; € By, x5 € By,a # b,
where C}, is a positive constant depending only on k. Now we define
B, ={y € M : dist(y, B,) < 26}. (3.35)

By definition of § it follows that

xs(di(y)) = di(y), for x; € By, y € By, (3.36)
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and N .
xs(di(y)) > 26, for x; € By, y ¢ B,. (3.37)

Furthermore one has R .
B,NBy,=0 for a#b (3.38)

On the other hand it is also easy to see that the following holds,

IThprel <C5 in M\U_,B,. (3.39)

Now set Mg , 5= (M\ UL, B, (£)U (Uilea). Since we are taking O large, then in the set

Mg

Y the following estimates hold:
(1+ )\de) =1+ 0579(1))/\2611‘27 3,8(1 + Azd?) =(1+ 05,@(1)))\23ﬁd?§ for all muti-indices
n
Bo:lol< 5
(3.40)

First let suppose k =1 and after we treat the case k£ > 1. In the case k =1 we have ¢,  takes
the simple form

2\ .
QDO—,)\(.',C) = log HTd%(gj) m M@,O‘,XS' (341)
Hence from (3.40) we obtain
&} 8 1 1 S n
0o = 20 logd— + 057@(1)ﬁ for all multi-indices § : |8] < 3 (3.42)
1
1
So we have that ) .
(Tror)? = 4(T, log —)? + 050(1)(=-). (3.43)
dy df
On the other hand we have that in geodesic coordinates around x;
(Thlog )2 < —" (1 4 0,(1)); (3.44)
nlog )" < r(1)); :
Hence working now in geodesic polar coordinates we obtain
/ (Tnpon)? < denlog A1+ 056(1) + Cso. (3.45)
N@,a,x.é
So with what is said above we have that by fixing O large we arrive to
/ (Tupon)? < denlog A(1 + 05(1)) + Cj. (3.46)
M
Now let treat the case k > 1. For this let C large and let a; 5.0 (2) = t; (Wl\(d(w))) . Next
s\dq
for i€ {1,...,k} define the set A, ;= by the following formula.
A)\,a,i,@,a ={ze Meo .62 hats / ai7g7)\($) > 607,07,\(1‘) for all j #i}. (3.47)
By definition of ¢, () and a; x(z) we have that,
1 u 1 1 ajo (1)
j,0,A .
Pro(T) = I log(; ajon(T)) = o log(ai,qn(2)) + I log | 1+ ; m in A, iec

(3.48)
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Moreover the following holds :

> e 5 b Lt (3.49)
. 4 2 N2/ :
i az7o',)\(x) i ti 1+ A X5(d])
So By the above arguments we have that the following holds in A,\,o,i,ef
Qo alx) t; 1+ )\de2 n
175 - T = o =(1), 3.50
Z o\ (T) Z ti (1 + )\Qd?) ve.c(l) (3.50)
JFi VED)

hence from (3.40) we deduce that
t. dzn
> 2 =000(1)- (3.51)

j#i "

By differentiation and reasoning as in (3.40) we obtain

P ono(r) =207 log( 1) 107 BTN D (1)L ) for all multi-indices
P olT) = g d, o t; 1+>\2d? e,C diﬁl
n
: < —
5 181< 5
where o0g 7(1) — 0 as 0, C — +oo. Hence using again (3.40) we obtain
ﬁ ﬁ 1 ﬁ 1 .. .
0% 0(x) =20 log(d‘) (14 o056 Z 8 "+ 0g C(l)(m) for all multi-indices
! i d;
n
g IBl<5
(3.52)
Moreover by easy calculations we have that the folowing holds,
d? d? 1 n
B(Ziyn _ Ziyn =z
0 (d?) O((d?) e ) for all multi-index § such that |3] < 5" (3.53)
Hence we infer that , 2n
tj g, d7 ., tydit 1
j#i J IEX] L min
so from (3.2.3) we obtain
Z;a (ﬁ) = 0590(1)( Kl )- (3.55)
j#i v J dmzn

Hence we have that,

1 1
P oy (x) = 20° log(d )+ 05055 7 ) for all multi-index 8 such that 3| <

min

w.\ 3

(3.56)

Now define the set Mo oAd = Uk Ai’m)\’@f. Since (141-709\,9)5)1':1’,,,JC are disjoint, then we have
that

/ﬁf ( n(pko d‘/_q = Z/ n‘p)\a dVg = Z/ (Tn(pkﬁ)g dVg

©,0.7,6 Ay 00T Ay giocn{di>S)])
(3.57)
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From (3.56) we have that,

1 1
[ G- Z -, (4T 080 + 0502072 ) ) ¥
Mg 555 Ay s00nN{di>])) i min
(3.58)
On the other hand working in polar coordinates we have that
(T Tog(—))2 < —S (1 4 0,(1)) (3.59)
n 10g\ = = r ) .
& dl wn_lr”
hence we obtain
1 1
/ [4(Tn log(g))2 +0505(1 )(d" )| dVy < (den + 050 5(1) log A+ Cy 5 6 7
Axoi0,cN({di>€}) v min
(3.60)
hence we have that
/N (Tutpro)’ dVy < (dkcn + 056 (1) log A+ Cs o - (3.61)
M(—),o,x,s
. 2
Now let us estimate fMe,o,A,é\Me,a,A,S (Thore) dV,

First of all we give a characterization of the set Mg . A \M@@ A- We have that the following holds

Mg , 5. 5\ Y ={x € Mg, : Vi there exists an index j # i such that a;,x(z) < Cajox(2)}

Hence we have that z € Mg , , 5 \M@J’)\j is equivalent also to the fact that
1
tﬂ

Vi there exists an index j # i such that d?(z) > ———(1 4+ o5 @(1))d2(x).

11
Cr ]

So from this fact an using an iterative argument we have that if z € Mg | ; \ o0, then

ot 0
3j # i such that C™'-d} (2)(1 + 09 (1)) < df(2) < C-4di (x)(1 + 05 5(1).  (3.62)
tr tr i

Hence the following holds :

there exists [ =I(k) € N such that Mg, 5\ 0.ors C Ur_ A,

where A; is the annulus

Ai = By, (bl) \Byz (a’i)’
with y; € {z1,...,2;} and = _ C@ék
On the other hand reasonmg as in (3.53) we have that

1 _ _
T = O(dT) in Moo\ Moo (3.63)

min

Hence working again on polar coordinates as for (3.64) we find that
/ _ (Tapre)?dVy < Cg . (3.64)
Me,o,x\Me,o,x
So from (3.33), (3.61) and (3.64), by fixing C and © large enough we obtain we obtain

/ (Tooro)2dV, < (4kcn + 05(1)) log A + Cs. (3.65)
M
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Hence we obtain for every k£ >1
/M (Thpro) dVy < (4ken + 05(1)) log A + Cs. (3.66)

Now let us estimate <Pg"<p Ao <p>\,[,.>. We have from the self-adjointness of P’ and the fact that
it annihilates constants that the following holds,

<P;§0)\,0'7 90)\,0'> = <P;(SD)\,U - SOT,UL ©x,0 — (PT,O'> .

Hence using interpolation inequalities (see [55]) we have that

(Pporaene) (140 [ Tuonol @V +C. [ Jora—wrsPavy  (360)
M M
We notice first that the following fact holds true as one can check easily,
2
Px0(w) =log 1140252 for y € M\ Ui, By, (26); (3.68)
og m < QOA,O-(JI) < og 2\ in Ui:l B;EL (25), (369)
and 2 2
log———— < o <log —s———. 3.70
Next let us estimate fM loxe — <p>\70|2dVg. By remarking the trivial identity
2A 1 2A
ox — | = o — log ————=)dV, 3.71
Po,x — 108 1+4X262  Vol,(M) /M(QO A —1og 1 +4)\252) g ( )

we have, by the bilinearity of the inner product that the following holds

/ ( Pox)2dV, / ( 1 2 )2dy, 2 / 1 2 dv, i
» Do, A Lo\ g " Po, A g 1+4)\252 g VOlg(M) MQO WA g1+4)\252 g
2\
+V019(M)|10gm - %00,)\|2a
hence we find

2\ 2\

2 2 2

Por— Do dVv, < Yor —log ———==)dV,+Vol,(M)|log ———== — po1|". (3.72
/ ( A )\) g / ( A gl 4)\252) g O!J( )l g]. 4A2(§2 ,)\l ( )

So in order to estimate fM (o — goo.,,\)Q dVj, it suffices to do it for fM (po,x—log 1+i%)QdVg and

for fM(ng,,\ —log H_f%)dvg.
Let us first estimate [}, (¢ox — log Hi%)d‘/g. From (3.68) the following holds

2\ 2\
o — log ————)\)dV, = o — log ————=)dV/,. 3.73
[ on o= [, or o e BT
Using (3.70) we have that the following holds
2\ 2\
o, )d — 1 dav,. .74
/ (Por = 1+4)\262 JdVs < Z/I 2o 1+ AN (dy) %8 T g Ve (374)

Now working in geodesic normal coordinates around the points z; we find

2\ 2\ 6 1 +4)\262
1 -1 dv, <C = log—"—)d
/Bzi (26)( BTr AN (dy) BTy 4/\252) 9= / 5 (og 1+ 22 ) §

26 252
14+ 4N
*C/< e 2<>)d8

(3.75)
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Now recalling that xs is non-decreasing we have that

2) 2) ° 1+ 4X%5°
1 —1 av, < C "1 log ———-
in(gg)(og1+4A2X§<di) Og1+4>\252) g —= /O s <Og 1+>\232

On the other hand by performing the change of variables As = z we obtain

5 262 SVA 252 SA 262
1+4M°6 1 14+4X°6 1 14+4XN°6
/ 1 (log +ds) < —/ P log ;dz + —/ z”_llog ;dz
0 0 5

> ds+0(5™). (3.76)

14 A2s2 —an 1+ 22 A" Jsu/x 1+ 22
(3.77)
It is easy to see that the following holds
1OV 14N .
/) 2" log Wdz =0(6" A"z log ), (3.78)
and .
1 1+ 4X262
— [ g g — o™, (3.79)
)\n 5\/X 1 + z
Therefore we obtain
/ (Yo —lo L)dv < O(6"\" % log \) + O(6™) (3.80)
PO TR 22 = & ' '
Furthermore using the same procedure one finds
/ (¢o,x — log Lﬁdv < O(6"\" 2 (log \)?) 4+ O(6™) (3.81)
u 1+4X2627 79— ' '
Hence using (3.80), (3.81) and (3.71) we obtain
/ (Por — Pan)?dV, < 0s(1)log X + Cs. (3.82)
M

From (3.82), (3.67) and (3.65), the Lemma is proved.

Case n odd

We first remark that as soon we have the formula (3.66) in the even case the same proof holds.
Now following the proof of the even case, we have that everything remain true up formula (3.42),
that is

1 1
P, x = 20" log - + Oé@ﬂ)ﬁ for all multi-indices 5 : |8] < g (3.83)
1
1
Hence we obtain . .
(Thor)? = 4(T), log dT)Z + 05,@(1)(Tnd—1)2. (3.84)

On the other hand working in geodesic polar coordinates and reasoning as in the proof of the
asymptotics of the Green function P in the odd case, we obtain

Cn

< 1+ or(1)). (3.85)

1
T, log —)% <
(T, log dl) T

Now by using the definition of (—A)% or (—A)7 and still by reasoning as in the odd case for the
asymptotics for the Green function for Pg, we find by easy calculations

nL - oL, (3.56)
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Hence at this step we can continue the proof of the even case to get the estimate for the case
k = 1. Now let show the adaptations to do to get the case k& > 1. Focusing on two steps, we
follow the proof in the even case up to formula 3.56 that we recall

1 1
0% ora (@) = 207 10g( 1) + 05 (1)) for all multi-index B such that |5] < g (3.87)
Hence from this we obtain
1 1
(Tn@A,G)Q = 4T, IOg(E))Q + 06,@,6(1)((Tnd7.)2)~ (3.88)
(3 man

So reasoning as in the case kK =1 we can continue the proof in the even case up to arriving to the
formula (3.61). Moreover to continue the proof of the even case we need only one more adaptation
to obtain our result which is the formula (3.63). To do this we still argue as in the case k = 1.
Hence continuing to adapt the proof for the even case we get our Lemma. B

Next we state a lemma giving estimates of the remainder part of the functional I14 along ¢g .
The proof is the same as formula 40 and formula 41 in the proof of Lemma 4.3 in [33].

Lemma 3.2.27. Suppose @, as in (3.25). Then as A — 400 one has

/ QyPor = —kpnlog A+ O(" log A) + O(log ) + O(1); (3.89)
M
log/ e"for = 0(1). (3.90)
M
Now for A > 0 we define the map @) : M — H?% (M) by the following formula
VY o€ M, CI))\(O') = QoA (391)

We have the following Lemma which is a trivial application of Lemmas 3.2.26 and 3.2.27.

Lemma 3.2.28. Under the assumptions of Proposition 3.2.25, and for k > 1 (given as in (42) ),
given any L > 0, there exists a small § and a large X such that II(®5(0)) < —L for every
o € M.

Now we are ready to make the proof of Proposition
PROOF. The statement (a) follows from Lemma 3.2.28. To prove (b) it is sufficient to consider
the family of maps T) : My — M}, defined by

TA(O'):\I/((I)(O')), o€ My

We recall that when A\ is sufficiently large this composition is well defined. Therefore , since
nPo . . . . . .

% — ¢ in the weak sens of distributions, letting A — —+oo we obtain an homotopy

M g

between W o ® and Idjs, . This conclude the proof. B

The case of Ilg

Proposition 3.2.29. Let (M,g) be a compact four dimensional smooth Riemannian manifold
with smooth boundary such that Pg‘l’3 s non-negative and KerP;>3 ~ R. Let U be the map defined
in Proposition 3.2.18 . Then assuming k > 1 (given as in (45)), for every L > 0 sufficiently large
(such that Proposition 3.2.18 applies), there exists a map

@;\ : (Ma)k —)Hain

with the following properties

a)
I1(®5(2)) < =L for any z € (Ma)i;

b)

U o &5 is homotopic to the identity on (Mp)y.
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To prove Proposition 3.2.29, we start as in the previous Proposition by giving some technical
estimates.

Some technical estimates

As in the case of II4, we are going to define some test functions depending on a real parame-
ter A and give estimate of the quadratic part of the functional /g on those functions as A tends
to infinity. And as a corollary we define a continuous map from (My), into large negative sub-
levels of Ilg.

For § > 0 small, consider a smooth non-decreasing cut-off function s : Ry — R defined as above
see (case II4). Then, given o = oint + Ovary € (Md)k; Tint = Z?:l ti0zys Obdry = 22:1 5i0q,
and A > 0, we define the function ¢ sint : M — R, ©xopary : M — Rand oy, : M — Ras

follows
N 4
1 2\
o,in = 71 ti ;
©x0,int (V) 198 l; (1+)\2x§(d1,i(y)>> 1
. 4
o.bdr = 71 7
O 0,bdry () 798 Lz_;s (1 +>\2x§(d2,i(y))) ]
and

PX,o0 = PX,o,int + PN, 0,bdry (392)

where we have set
dl,i(y):dg(yvxi)v Zq Gint(M)vyeMv;

d2i(y) = dg(y, @), ¢ € OM,y € M,;

with dy(-,-) denoting the Riemannian distance on M.

Now we state a Lemma giving an estimate (uniform in o € (Mp)g) of the quadratic part
<P§’3<p,\7g,g0,\,g> of the Euler functional ITas A — —4oo. Its proof is a straightforward adap-
tation of the arguments in the case of 14 with the dimension beeing 4.

Lemma 3.2.30. Under the assumptions of Proposition 3.2.29 and for ¢y, as in (3.92), let € >
0 small enough. Then as A — 400 one has

(P}20x0,0x0) < (167°k + €+ 05(1)) log A + Ce s (3.93)

Next we state a lemma giving estimates of the remainder part of the functional Ilg along ¢g .
The proof is the same as the one of formulas (40) and (41) in the proof of Lemma 4.3 in [33].

Lemma 3.2.31. Suppose @, as in (3.92). Then as A — 400 one has

/ Qg rdVy = —kpslog A+ O(6*log \) + O(log 6) + O(1);
v .

/ TypondVy = —kpslog A + O(8%log \) + O(log 6) + O(1);
oM

and

log/ etPrx = O(1).

M

Now for A > 0 we define the map @ : (My)r — H o by the following formula
V o€ M CI))\(O') = Pg A

We have the following Lemma which is a trivial application of Lemmas 3.2.30 and 3.2.31.
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Lemma 3.2.32. Under the assumptions of Proposition 3.2.29 and for k > 1 (given as in (45) ),
given any L > 0 large enought, there exists a small 0 and a large X such that II(®5(c)) < —L for
every o € (Mpy)g.

Now we are ready to give the proof of Proposition.
PROOF. The statement (a) follows from Lemma 3.2.32. To prove (b) it is sufficient to consider
the family of maps T : (Mg)r — (M) defined by

T,\(O'):\I/(q),\((?')), o € My

We recall that when A is sufficiently large, then this composition is well defined. Therefore ,
etPo,n
fM eTPa, dvy

between W o & and Id(py,),. This concludes the proof. m

since — ¢ in the weak sens of distributions, letting A — 400 we obtain an homotopy

The case of Il

Proposition 3.2.33. Let (M,g) be a compact four dimensional smooth Riemannian manifold
with smooth boundary such that Pg‘l’3 s non-negative and KerP;’?’ ~ R. Let WU be the map defined
in Proposition 3.2.15 . Then assuming k > 1 (given as in (47)), for every L > 0 sufficiently large
(such that Proposition 3.2.15 applies), there exists a map

@X:aMk—*HaA

with the following properties

a)
I1(®5(%)) < —L for any z € OMjy;

b)

U o @5 is homotopic to the identity on OMj,.

Some technical estimates
As above, we are going to define some test functions depending on a real parameter A and give
estimate of the quadratic part of the functional II7 on those functions as A tends to infinity.
And as a corollary we define a continuous map from OMj into large negative sublevels of I1lp.
For § > 0 small, let x5 : Ry — R be as in the case of I14.
Then, given o =€ OMy, o = Zle t;0z;, and X\ > 0, we define the function ;o). : M — Ras

follows
& 3
1 2\
0 1 a2 VY 3.94

where we have set

with dg(-, ) denoting the Riemannian distance on M.
Now we state a Lemma giving an estimate (uniform in o € dMjy) of the quadratic part <P;’3go)\7o, cpA,g> of
the Euler functional II as A — +oo. Its proof is a straightforward adaptation of the arguments
in Lemma 4.5 in [69].

Lemma 3.2.34. Under the assumptions of Proposition 3.2.33 and for ¢y, as in (3.94), let € >
0 small enough. Then as A — 400 one has

<P;’3cp>\70, Pro) < (167%k + € + 05(1)) log A + Ce 5 (3.95)

Next we state a lemma giving estimates of the remainder part of the functional Ilr along ¢g .
The proof is the same as the one of formulas (40) and (41) in the proof of Lemma 4.3 in [33].
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Lemma 3.2.35. Suppose ¢, x as in (3.94). Then as A — +oo one has

|| @uradVy = —ipslog A+ 0" log ) + 0(10g ) + O(1):
M

/ TopordVy = —kps log A + 0(5*log \) + O(log §) + O(1);
oM

log/ e3Pex = O(1).
oM

Now for A > 0 we define the map ®, : OM, — H 2 by the following formula
V o€ dM, Dr(o)=@sa.

We have the following Lemma which is a trivial application of Lemmas 3.2.34 and 3.2.35.

Lemma 3.2.36. Under the assumptions of Proposition 3.2.33 and for k > 1 (given as in (47) ),
given any L > 0 large enough there exists a small 6 and a large X such that II(®5(c)) < —L for
every o € OMj.

Now we are ready to make the proof fo Proposition.
PROOF. The statement (a) follows from Lemma 3.2.36. To prove (b) it is sufficient to consider
the family of maps T) : OMy — OMjy, defined by

TA(O'):\I/((I)A(O')), OeaMk

We recall that when A\ is sufficiently large, then this composition is well defined. Therefore , since
e3P0, A

Sons e3Po.xds,
between W o ® and Idgps,. This concludes the proof. m

— ¢ in the weak sens of distributions, letting A — 400 we obtain an homotopy

The case of 11,

As in the other cases, here also our goal is to map non trivially 3, into arbitrarily negative
sublevels of II,. In order to do this, we need some preliminary notation. Given o € %,,, 0 =
Z;ll t;0, and A > 0, we define the function ¢, , : ¥ — R by

2
o(y) =1 t; , 3.96
o ng (1+>\2d2( )) (3.96)
where we have set
dl(y) = dg(yaxi)a T, Y S X

We point out that, since the distance from a fixed point of ¥ is a Lipschitz function, ¢y »(y) is
also Lipschitz in y, and hence it belongs to H ().

Proposition 3.2.37. Suppose m is a positive integer, and suppose that p1 € (4dnm,4mw(m + 1)),
and that py < 4m. For A > 0 and for o € ¥,,, we define ®:¥ ,,, - H (X)) x H'(X) as

(@0))() = (@) () 2(0)a() 1= (P200) 50000 ) (3.97)

where @y - is given in (3.96). Then for L sufficiently large there exists X > 0 such that
(i) 11,(®(0)) < —L uniformly in o € Sy,;
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(ii) T o @ is homotopic to the identity on X,

where ¥ is defined in Proposition 3.2.24, and where we assume L to be so large that ¥ is well
defined on {11, < —L}.

PROOF. The main ideas follow the strategy in the case II4, and in [33], but for the reader’s
convenience we present here a simplified argument (for the H? setting in [33] and H? as above,
it was necessary to introduce a cutoff function on the distances d; which made the computations
more involved).

The proof of (i) relies on showing the following two pointwise estimates on the gradient of ¢y »

IVoro(y)] < CX; for every y € 2, (3.98)

where C' is a constant independent of o and A, and

where Amin(y) = min  d(y, x;). 3.99
din (1) (y) =, min_ d(y, z:) (3.99)

For proving (3.98) we notice that the following inequality holds

Vere(y)] <

)\Qd(yv xl)

—— = < CA =1,... 3.100
1+ MN2d2(y,z;) — T ( )

where C'is a fixed constant (independent of A and ;). Moreover we have

_ 2 Zz ti(1+ )‘Zd%(y))_svy(d%(y))
Voro(y) = —2A S G0t REG) (3.101)

Using the fact that |V, (d?(y))| < 2d;(y) and inserting (3.100) into (3.101) we obtain immediately
(3.98). Similarly we find

) 272 -2 _di(y)
AN2 Diti(L+Adi(y)*di(y) < 42 i ti(1+ A di(y) X2d2 (y)

IN

Voo )]

SitiL+ N (y) 2 2o ti(L+A2d5(y)—2
_ 2720 V=2 1

o it NAW) Ty 4 ’

- Zj tj(l + )\Qd?(y))_Q ~ dmin(y)

which is (3.99).
Now, using (3.98), (3.99) and the fact that V®(0)s = —1V®(0);, one easily finds that

2
1 / y 1
= a’(V®(0);) - (V®(0);)dVy < C + 4/ ————dV,(y).
2 i,jZZI by ! ! E\UiB%(xi) d?nln (y) g

Reasoning as in [33] one can show that
1
/ dzidVg(y) < 8mm(1+ 0x(1)) log A, (oa(1) = 0 as A — +00),
E\UiB% (zi) “min (y)

and that
/ ©x0cdVy = —2(1+0x(1)) log A; log/ e dV, = O(1); log/ e_%‘”"dvg = (140x(1)) log A.
b b b

Using the last four inequalities one then obtains

I1,(®(0)) < (8mm — 2p1 +0x(1))log A + C,
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where C'is independent of A\ and o. Since we are assuming that p; is bigger than 4mm, we achieve
().

To prove (ii) it is sufficient to consider the family of maps T : X,, — %,, defined by
T\(o) = U(®)(0)), o€ X,

We recall that when X is sufficiently large this composition is well defined. Therefore, since
PN, o . . . . . .

f:g;+dv — ¢ in the weak sense of distributions, letting A — oo we obtain an homotopy between

= 9

Vo ® and Idx,, . This concludes the proof. m

Remark 3.2.38. We point out that, firing &, € R2, the choice of &3 which minimizes the quadratic
form Z” aiy - & is & = —%51. This motivates the coefficient —% in the second component of
D,

3.3 Min-max schemes for existence of solutions

In this Section, we perform the min-max schemes in order to get the existence results corresponding
to the problems of prescribing @Q-curvature in arbitrary dimensions, @Q-curvature and boundary
T-curvature of four manifolds with boundary and the generalized 2 x 2 Toda system. For the
purpose of clarity, we will divide it into four Subsections. The first one is concerned about the
prescribed @-curvature problem in arbitrary dimensions. The second one deals with the probem
of finding constant @Q-curvature conformal metrics on four dimensional manifolds with boundary.
In the third one, we threat the problem of existence of constant 7T-curvature conformal metrics
on four dimensional Riemannian manifolds with boundary. And finally in the last one, we deal
with the generalized 2 x 2 Toda system.

As said above, we start with the prescribed Q-curvature problem in arbitrary dimensions.

3.3.1 Min-max for the existence of constant ()-curvature metrics in ar-
bitrary dimensions

In this Subsection we provide the proof of Theorem 0.2.13. As said in the Introduction we will
suppose that P;' is non-negative and (42) holds.

First of all, we introduce the min-max scheme which provides existence of solutions . Let
Mj, denote the (contractible) cone over My, which can be represented as My, = (M, x [0, 1]) with M, x
0 collapsed to a single point. Next let L be so large that Proposition 3.2.15 applies with %, and
then let A be so large ( that Proposition 3.2.25 applies for this value of L). Fixing A, we define
the following class.

Iy 5 ={r: My — H?% (M) : mis continuous and (- x 1) = ®5(-)}. (3.102)
Then we have the following properties.

Lemma 3.3.1. The set 11, 5 is non-emptly and moreover, letting

_ — L
IT, 5= inf sup Ila(m(m)), there holds 11,5 > ——.
’ welly 5 me My ’ 2

PROOF. The proof is the same as the one of Lemma 5.1 in [33]. But we will repeat it for the
reader’s convenience.
To prove that 11, 5 is non-empty, we just notice that the following map

7(-,t) = t®5(-) (3.102)
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belongs to 11, 5. Now to prove that ﬁA; > —%, let us argue by contradiction. Suppose that
IT, 5 < —%: then there exists a map 7 € I, 5 such that sup,, 57~ L1 (m(m)) < —2L. Hence

since Proposition 3.2.15 applies with %, writing m = (z,t) with z € M}, we have that the map
t— Vomn(,t)

is an homotopy in M}, between W o ®5 and a constant map. But this is impossible since M}, is
non-contractible and W o ®5 is homotopic to the identity by Proposition 3.2.25.
|

Next we introduce a variant of the above minimax scheme, following [33] and [80]. For pin a
small neighborhood of 1, [1— pg, 1+ 0], we define the modified functional I14,: H2 (M) — R

ITp,(u) = n(Pu,u) + 2nu/ QyudVy — 2pukpn log/ e™dVy; we HE(M). (3.103)
M M

Following the estimates of the previous section, one easily checks that the above minimax scheme
applies uniformly for u € [1 — po, 1 + o] and for X sufficiently large. More precisely, given any
large number L > 0, there exist A sufficiently large and s sufficiently small such that
I . L
sup  sup [la,(m(m)) < —=2L; Il,, 5= inf sup Ila,(m(m))>—-;
m€ll s X meoMy, mEIIA N e 2 (3.104)

Me[l—ﬂo,1+uo],

where 11, 5 is defined as in (3.102). Moreover, using for example the test map, one shows that
for po sufficiently small there exists a large constant L such that

Ty, <L, foreveryp€[l—po,1+ pol. (3.105)
We have the following result regarding the dependence in u of the minimax value IT A

Lemma 3.3.2. Let A\ and po such that (3.104) holds. Then the function

ﬁA,,u,S\ . . . .
w— — is non-increasing in [1 — po, 1 + 1 — po)

Proor. For p > ,u', there holds

Iy, s(u) Iy, 5w n/1 1 n
Therefore it follows easily that also
IT, ., 5 I, 5
Apd A A <, (3.107)
I [
hence the Lemma is proved. B
114, x

From this Lemma it follows that the function y —
and we obtain the following corollary.

is a.e. differentiable in [1 — g, 1+ po),

Corollary 3.3.3. Let A and po be as in Lemma 3.3.2, and let A C [1—po, 1+po] be the (dense) set

11,4,

of p for which the function is differentiable. Then for p € A the functional 114, possesses

a bounded Palais-Smale sequence (u;); at level ﬁA%;\.



3.3. MIN-MAX SCHEMES FOR EXISTENCE OF SOLUTIONS 151

PROOF. The existence of Palais-Smale sequence (u;); at level IT, , 5 follows from the esti-
mates (3.104) and the Remark 3.1.1. Now applying Theorem 3.1.2, we get the boundedness. H

Next we state a Proposition saying that bounded Palais-Smale sequence of 114, converges weakly
(up to a subsequence) to a solution of the perturbed problem. The proof is the same as the one
of Proposition 5.5 in [33].

Proposition 3.3.4. Suppose (u;); C H= (M) is a sequence for which
ITg u(w) — ceRy II;LM[ul] — 0; / e"dVy =1 Hul”H%(M) <C.
M

Then (w;) has a weak limit ug (up to a subsequence) which satisfies the following equation:
Plu+ pQy = prpne™  in M.

Now we are ready to make the proof of Theorem 0.2.13.

PROOFOF THEOREM 0.2.13

By Lemma 3.3.2, Corollary 3.3.3 and Proposition 3.3.4, we have that there exists a sequence p; —
1 and w; such that the following holds :

Plu+ mQy = prpne™ in M.

Now since kpn = fM (g dV, then applying corollary 0.2.7 with @Q; = ;Qy and Q) = jykpn we
have that wu; is bounded in C¢ for every « € (0,1). Hence up to a subsequence it converges
uniformly to a solution of (12). Hence Theorem 0.2.13 is proved. ®

Next, we discuss the min-max scheme for the prescribed Q)-curvature problem on four manifolds
with boundary.

3.3.2 Min-max for the existence of constant (-curvature metrics on
four manifolds with boundary

In this Subsection we give the proof of Theorem 0.2.16. As already said in the Introduction, we
suppose that P, is non-negative and (45) holds.

—

We start by definning the min-max scheme. To do so, we let (Mpy); denote the (contractible) cone

over (My)y, which can be represented as m = ((Mp)y x [0,1]) with (Ms)x x 0 collapsed to a
single point. Next, we choose L be so large that Proposition 3.2.18 applies with %, and then let
A be so large that Proposition 3.2.29 applies for this value of L). Fixing A, we define the following
class.

—

g s ={m: (Ma), — H o :mis continuous and m(-x 1) =®5()}. (3.108)
We then have the following properties.
Lemma 3.3.5. The set 11 5 is non-empty and moreover, letting

— — L
Ilgs = iIr}f ~sup IIg(m(m)), there holds Il 5 > —3
TN ey,

PROOF. The proof is the same as the one of Lemma 5.1 in [33]. But we will repeat it for the
reader’s convenience.
To prove that Il 5 is non-empty, we just notice that the following map
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belongs to I, 5. Now to prove that ﬁQ,;\ > —% let us argue by contradiction. Suppose that

I, 5 < —L: then there exists a map 7 € Il 5 such that SUp, 7% Ilg(m(m)) < —3L.

Hence since Proposition 3.2.15 applies with %, writing m = (z,t) with z € (Mp), we have that
the map
t— Vomr(t)

is an homotopy in (Mpy)x between ¥ o &5 and a constant map. But this is impossible since
(M), is non-contractible and ¥ o @5 is homotopic to the identity by Proposition 3.2.29.
|

Next we introduce a variant of the above minimax scheme as in the previous subsection. For p in
a small neighborhood of 1, [1 — o, 1+ o], we define the modified functional Ilg , : Hag —R

11, (u) = (P}u,u) + 4p / QqudVy + 4y / TyudSy — 4k ps psylog / e*dVy; uwe Ho.
M oM M on

(3.108)
Following the estimates of the previous section, one easily checks that the above minimax scheme
applies uniformly for u € [1 — po, 1+ po] and for A sufficiently large. More precisely, given any
large number L > 0, there exist A sufficiently large and pg sufficiently small such that
_ ) L
sup sup  [lgu(m(m)) < —2L; Iy, 5= inf sup IIg ,(m(m)) > —3
T€IIQ X med(Ma) TGN e (3.109)
e [1 —u0,1+u0],

where 11, 5 is defined as in (3.108). Moreover, using for example the test map, one shows that

for po sufficiently small there exists a large constant L such that

Ilg,x <L, foreveryp€[l—po,1+ pol. (3.110)

We have the following result regarding the dependence in g of the minimax value ﬁQ, e
Lemma 3.3.6. Let \ and pg such that (3.109) holds. Then the function

ﬁ _
_ Q1A

is non-increasing in  [1 — o, 1 + 1 — po]
W

I

Proor. For p > ,u', there holds

Iy, s(w) I, s /1 1
Q,p,A Q,p A 4,3
: - : = < - ) <Pg u,u>

7 - 7

I I Bnoop

Therefore it follows easily that also

g 5 _ g w5
I W

<0,

hence the Lemma is proved. B

T x5
n

From this Lemma it follows that the function u —
and we obtain the following corollary.

is a.e. differentiable in [1— ug, 1+ po),

Corollary 3.3.7. Let A and pio be as in Lemma 3.3.6, and let A C [1—po, 1+p0] be the (dense) set

I1g . x
w

of p for which the function is differentiable. Then for p € A the functional I1g , possesses

a bounded Palais-Smale sequence (u;); at level ﬁQ%;\.
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PROOF. As for the case of Il4, we have aso here the existence of Palais-Smale sequence (up);
at level I1, , 5 follows from the estimates (3.109) and the Remark 3.1.1. Now applying Theo-
rem 3.1.2, we get the boundedness. B

Next we state a Proposition saying that bounded Palais-Smale sequence of 11, converges weakly

(up to a subsequence) to a solution of the perturbed problem. The proof is the same as the one
of Proposition 5.5 in [33].

Proposition 3.3.8. Suppose (u;); C Hai s a sequence for which
g u(w) = c€R; g, [u] — 0; / et dVy =1 | a2 < C.
M

Then (u;) has a weak limit u (up to a subsequence) which satisfies the following equation:

Pg4u +2uQ4 = 2p/i(p47p3)e4“ m M,

Plu+ pTy =0 on OM;
0
e on OM.
Ong

Now we are ready to make the proof of Theorem 0.2.16.

PROOFOF THEOREM 0.2.16

By Lemma 3.3.6, Corollary 3.3.7 and Proposition 3.3.8, we have that there exists a sequence p; —
1 and w; such that the following holds :

P;ul +2mQqg = 2[[,&/4}(1347133)64“1 in M;
Pgul + Ty =0 on OM,;
0
£ on QM.
ong

Now since r(ps p3) = fM QqdVy + faM dS, then applying corollary 0.2.9 with Q; = uQg, T} =
Ty and Qp = wK(ps, psy we have that u; is bounded in C*e for every « € (0,1). Hence up to
a subsequence it converges in C'(M) to a solution of (20). Hence Theorem 0.2.16 is proved B

Next we discuss the problem of finding conformal metrics with constant T-curvature on four
manifolds with boundary.

3.3.3 Min-max for the existence of constant 7-curvature metrics on
four manifolds with boundary

In this Subsection we give the proof of Theorem 0.2.19. As already said in the Introduction, here
also we assume P13 is non-negative and (47) holds.

As done in the other Subsections, we start by defining the min-max scheme. For doing this, we
denot by 8/]\7k the (contractible) cone over M}, which can be represented as G/J\Tk = (OMj, x
[0,1]) with M}, x 0 collapsed to a single point. Next let L be so large that Proposition 3.2.22
applies with %, and then let X be so large that Proposition 3.2.33 applies for this value of L.
Fixing A\, we define the following class.

Iy ={m: oM, — H o, :mis continuous and w(-x 1) =o5()} (3.111)

We then have the following properties.
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Lemma 3.3.9. The set Iy 5 is non-empty and moreover, letting

— L
Ilpx= inf sup Ilp(m(m)), there holds Ilpy > ~3

PROOF. The proof is the same as the one of Lemma 5.1 in [33]. But we will repeat it for the
reader’s convenience.
To prove that Il 5 is non-empty, we just notice that the following map

belongs to IIr 5. Now to prove that ﬁT’;\ > —é, let us argue by contradiction. Suppose that
II; 5 < —%: then there exists a map « € II55 such that sup, gar- 1(m(m)) < —3L. Hence

L writing m = (2,t) with z € M}, we have that the map

since Proposition 3.2.15 applies with 7,

t— Worm(,t)

is an homotopy in OM}, between Wo ®5 and a constant map. But this is impossible since 9Mj, is
non-contractible and W o @5 is homotopic to the identity by Proposition 3.2.33.
|

Next we introduce a variant of the above minimax scheme, following [33] [80] and[69]. For u in a
small neighborhood of 1, [1 — g, 1+ o], we define the modified functional IIp, : Ha@ - R

4
Iy, (u) = <P;’3u7u> +4u/ QqudVy, +4u/ TyudSy — - pk(pa,ps) log/ eB“ng; ue Ho .
M aM 3 oM on

(3.111)
Following the estimates of the previous section, one easily checks that the above minimax scheme
applies uniformly for p € [1 — po, 1 + o] and for A sufficiently large. More precisely, given any
large number L > 0, there exist A sufficiently large and g sufficiently small such that
_ L
sup  sup [lr,(m(m)) < —-2L; Ilp,5x= inf sup Ilr,(7(m)) > ——;
Ellr 5 ;meod iy Tl e oM, 2 (3112

€ [1— po, 1+ pol,

where 175 is defined as in (3.111). Moreover, using for example the test map, one shows that for
o sufficiently small there exists a large constant L such that

Iy, s <L, foreverypue[l— po,1+ po). (3.113)

We have the following result regarding the dependence in g of the minimax value ﬁT, e
Lemma 3.3.10. Let A\ and pg such that (3.112) holds. Then the function

ﬁT,/J.,S\

is non-increasing in |1 — po, 1 + 1 — pg)
W

n—

Proor. For p > ,u', there holds

Iy, 5(u) B Iy, 5(u) (1 1 > (PA3u,u)
- ’ g })

/ _

1 I I

Therefore it follows easily that also
ﬁT,#’X _ ﬁT,u',:\
I W

<0

— )



3.3. MIN-MAX SCHEMES FOR EXISTENCE OF SOLUTIONS 155

hence the Lemma is proved. B

ﬁT,[J.,S\
14

From this Lemma it follows that the function p — is a.e. differentiable in [1 — pg, 1 + uol,

and we obtain the following corollary.
Corollary 3.3.11. Let \ and jug be as in Lemma 3.3.10, and let A C [1 — po,1 + pol be the
(dense) set of p for which the function HTT“* is differentiable. Then for p € A the functional

It possesses a bounded Palais-Smale sequence (w;); at level ﬁT%;\.

PROOF.  As for the case of II4 and Ilg, we have also here the existence of Palais-Smale
sequence (u); at level I1, , 5 follows from the estimates (3.112) and the Remark 3.1.1. Now
applying Theorem 3.1.2, we get the boundedness. B

Next we state a Proposition saying that bounded Palais-Smale sequence of IIr , converges weakly
(up to a subsequence) to a solution of the perturbed problem. The proof is the same as the one
of Proposition 5.5 in [33].

Proposition 3.3.12. Suppose (u;); C Hai, is a sequence for which

Ty p(w) — c€ R IIp, ] —O; / dS, =1 |lullazan < C.
oM

Then (u;) has a weak limit u (up to a subsequence) which satisfies the following equation:

Plu+24Q, =0 in M;
ngu +uly = /.LKJ(p4’P3)€3u on OM;
0
gu 0 on OM.
Ong

Now we are ready to make the proof of Theorem 0.2.16.

PROOFOF THEOREM 0.2.16

By Lemma 3.3.10, Corollary 3.3.11 and Proposition 3.3.12, we have that there exists a sequence
u — 1and wu; such that the following holds :

Plug+21mQy =0 in M;
ng‘ul + Ty = MH(P47P3)63UI; on OM;
0
a—ul =0 on OM.
g

Now since k(ps ps)y = fM diVg—i—faM T,dS, then applying corollary 0.2.11 with Q; = Qg, 17 =
Ty and T; = pyr(ps psy we have that w; is bounded in C4e for every « € (0,1). Hence up to
a subsequence it converges in C'(M) to a solution of (21). Hence Theorem 0.2.16 is proved. m

The next and last discussion concerns some existence results for the 2 x 2 Toda system.

3.3.4 Min-max for the existence results for the generalized 2 x 2 Toda
system on compact closed surfaces

In this Subsection, we give the proof of Theorem 0.2.22. As done above, we start by definding
the scheme. To do this, we denote by K,, the topological cone over ¥, defined as in the other
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Subsections. Next let L be so large that Proposition 3.2.24 applies with %, and choose then ®

such that Proposition 3.2.37 applies for L. Fixing L and ®, we define the class of maps
g = {m: Ky, — HY(X) x H(X) : = is continuous and s, (zor,) = P} (3.114)
Then we have the following properties.

Lemma 3.3.13. The set llg is non-empty and moreover, letting

a, = inf sup I, ,,(7(m)), there holds a, > ——
melle mek,, i 2

ProoOF. To prove that IIg # (), we just notice that the following map
T(o,t) = tP(0); 0E€E X, t€[0,1] ((o,t) € Kp,) (3.115)

belongs to Il. Assuming by contradiction that a, < f%, there would exist a map 7 € Il with
supscg, 11,(m(5)) < —2L. Then, since Proposition 3.2.24 applies with L writing & = (o0, ?),
with o € ¥,,, the map

t— Uom(t)
would be an homotopy in >, between W o ® and a constant map. But this is impossible since ¥,
is non-contractible and since ¥ o ® is homotopic to the identity, by Proposition 3.2.37. Therefore
we deduce IIp > —%. m

As in the case of II4,1lg, and IIr, we introduce a variant of the above minimax scheme.
For ¢ close to 1, we consider the functional

1 3
Jipyps(U) = §Z/Ea”Vui-VujdVg—|—tp1/2u1dVg—|—tp2/Eu2dVg
1,7

— tpl 10g/ h1€u1dvg—tp2 10g/ hg@qu‘/g.
P h)

Repeating the estimates of the previous sections, one easily checks that the above minimax scheme
applies uniformly for ¢ € [1 — g, 1 + o] with ¢y sufficiently small. More precisely, given L > 0 as
before, for ty sufficiently small we have

. L
sup  sup  Jip, p, (m(m)) < —2L; = inf  sup Jip, pp, (m(M)) > —=;
w€lle medK,, melle meK,, 2
for every t € [1 — tg, 1 + 1], (3.116)

where Ilg is defined in (3.114).
Next we notice that for ¢ > ¢ there holds

Dot _ Jrptpt) _ 2 (1 - j) / aVu; - VuidVy >0, ue H'(S) x H'(Z).
2

Therefore it follows easily that also
Qtp Qi p

; 2 0,
namely the function t — is non-increasing, and hence is almost everywhere differentiable.
Using (3.116), Remark 3.1.1 and Theorem 3.1.2, one can see that at the points where % is
differentiable J;,, 15, admits a bounded Palais-Smale sequence at level ay,, which converges to a
critical point of J;,, +p,. Therefore, since the points with differentiability fill densely the interval

[1 —to, 1+ to], there exists ¢, — 1 such that the following system has a solution (uj , us2 k)

N
hjetik _
—Auip = tipjai (M — 1) . i=1,2. (3.117)

Aty

j=1

Now it is sufficient to apply Proposition 0.2.12 to obtain a limit (u;,us2) which is a solution of
(11). This concludes the proof.
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3.3.5 Adaptations for the generic cases

As said in the Introduction, the condition P} (resp P;’3) non-negative in the proofs of Theo-
rem 0.2.13, Theorem 0.2.16 and Theorem 0.2.19 is only required to make the exposition clear. In
this small Subsection we show how to deal with the general case. Since the same considerations
hold for all the three Theorems, then we will make the discussion only for Theorem 0.2.13. As-
suming we are dealing with the later Theorem, we divide the discussion into the three differents
remaining cases.

Case k=0and rpr < (n—1)lw,

This case was proven by Brendle[13](in the even dimensional case) using geometric flows. However
using Direct Methods in the Calculus of variations it can be obtained (both in the even and odd
dimensional cases) thanks to the Moser-Trudinger type inequality (see Proposition 1.3.1).

Case k#0and rpr < (n—1)w,

In this case, we have that P’ has some negative eigenvalues. We change the arguments as follows.
To obtain Moser-Trudinger type inequality we impose the additional condition ||| < C where 4 is
the component of u in the direct sum of the negative eigenspaces. Thus we have that the only
way that the functional go to negative infinity is that ||4|| tends to infinity. Hence to run the min-
max scheme we substitute Mj, with S*~!, the boundary of the unit ball in the k-dimensional
Euclidean space. Moreover an other modification for the min-max scheme is the monotonicity
formula which becomes

T,

p— — Cp is non-increasing in  [1 — po, 1+ pol;

for a fixed constant C' > 0
Case k#0and rpn € ((n—1)kw,, (n— D)k + Dw,), k>1

In this case we mix the ideas of the case k =0 and kpn € ((n — 1)lkw,, (n — )!(k + 1)w,), and
the Case k # 0and xpn < (n — 1)lw,. Precisely to obtain the Moser-Trudinger inequality and
its improvement, we impose the additional condition ||d|| < C where 4 is the component of « in
the direct sum of the negative eigenspaces. Furthermore another aspect has to be considered that
is not only €™ can concentrate but also ||@|| can also tend to infinity. And to deal with this we
have to substitute the set My with an other one, Ay ;. which is defined in terms of the integer
k (given in (42)) and the number k of negative eigenvalues of P}, as done in [33]. This also
requires suitable adaptation of the min-max scheme and of the monotonicity formula , which in
general becomes

17,

p— — Cp s non-increasing in  [1 — g, 1 + pol;

for a fixed constant C' > 0
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