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ABSTRACT 
 

 

In the neonate the muscles of the tongue, which are exclusively innervated by the XII 

cranial nerves originating from the brainstem nucleus hypoglossus, must contract 

rhythmically in coincidence with breathing, suckling and swallowing. These motor 

commands are generated by hypoglossal motoneurons excited by glutamatergic inputs. 

Since in forebrain areas the efficiency of glutamatergic transmission is modulated by 

neuronal nicotinic receptors (nAChRs), the role and identity of nAChRs within the 

nucleus hypoglossus of the neonatal rat were explored using an in vitro brainstem slice 

preparation. This area expressed immunoreactivity for α4, α7 and β2 subunits. Whole 

cell patch clamp recording from hypoglossal motoneurons showed lack of spontaneous 

cholinergic events mediated by nAChRs even in the presence of a cholinesterase 

inhibitor. However, pharmacological antagonism of α7 or β2 containing receptors 

depressed glutamatergic currents arising either spontaneously or by electrical 

stimulation of the reticular formation. Hypoglossal motoneurons expressed functional 

nAChRs with characteristics of α4β2 and α7 receptor subunits, and displaying fast 

desensitization (time constant of 200 ms) from which full recovery developed within 

one min. Low (0.5 �M) concentration of nicotine first facilitated glutamatergic 

transmission on motoneurons and later depressed it through receptor desensitization. 

When 0.1 �M nicotine was used, only depression of synaptic transmission occurred, in 

keeping with the suggestion that nAChRs can be desensitized without prior activation.  

These results highlight the role of tonic nAChR activity in shaping excitatory inputs to 

hypoglossal motoneurons and suggest that their desensitization by ambient nicotine 

could contribute to disorders of tongue muscle movements.
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INTRODUCTION 

 

1.  CENTRAL  CHOLINERGIC  SYSTEM 

 

Acetylcholine (Ach) was first identified as a neurotransmitter with the famous Otto 

Loewi experiments on heart muscle cells (1921) that advanced the chemical 

transmission hypothesis. Ach is synthesized by Choline-Acetyl-Tranferase (ChAT) in 

cholinergic terminals from choline and acetyl-coenzymeA (Ac-SCoA) (Fig. 1). Ac-SCoA 

is produced inside mytochondria; choline is supplied by an active transport system 

from  extracellular  fluid.  After synthesis, Ach is packaged into releasing  vescicles.  The  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic representation of a cholinergic synapse. 
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action of Ach in the synaptic cleft is terminated by ACh-Esterase (AchE), which 

hydrolyzes ACh into choline and acetate. Choline is then taken up into cholinergic axon 

terminals becoming available as substrate for new ACh syntesis. 

 

Besides the neuromuscular junction, Ach acts as a neurotransmitter at autonomic 

ganglia and at some central synapses. The central cholinergic system has not yet been 

completely described, but the available information suggests that it is made up of a 

series of closely connected subsystems (Fig. 2). The major cholinergic subsystems 

originate from groups of neurons located in the basal forebrain and the pons-

mesencephalon.  The basal forebrain  contains two  groups of cholinergic neurons: 

 

   

 

 

Fig. 2. Central cholinergic pathways. Cholinergic neurons in the basal forebrain and pons-
mesencephalon display widespread projections (see text). (scheme adapted from Woolf, 1991). 

 

(1) the medial septal group (medial septal nucleus and vertical diagonal band: ms and 

vdb) that project axons to the hippocampus and para-hippocampal gyrus and (2) the 

nucleus basalis group (nucleus basalis, substantia innominata and horizontal diagonal 
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band: bas, si, hdb) projecting to all parts of the neocortex, parts of limbic cortex and to 

the amygdala. The pontomesencephalon cholinergic neurons (laterodorsal tegmental 

and pedunculopontine tegmental nuclei: ldt and ppt) project onto hindbrain (including 

brainstem), thalamus, hypothalamus and basal forebrain. The striatum contains an 

intrinsic local circuit of cholinergic neurons (reviewed in Woolf, 1991).  Each cholinergic 

neuron innervates a discrete area making contacts with the dendrites of many other 

neurons. This extensive interconnection may lead to coordinate firing of closely spaced 

neurons. 

 

Cholinergic signal is transduced by two different classes of receptors, classified 

according to their pharmacological sensitivity to the exogenous ligands, muscarine and 

nicotine. It is now common knowledge that these two classes of cholinergic receptors 

are members of two receptor super-families structurally and functionally unrelated: 

nicotinic Ach receptors (nAChRs) are ligand gated ion channels, while muscarinic ACh 

receptors (mAChRs) produce their effect through interaction with GTP-binding 

proteins, and are therefore referred to as metabotropic receptors. For a long time it was 

thought that central cholinergic pathways worked mainly through muscarinic synapses. 

The importance of central nAChRs was disclosed by the effect of tobacco smoking on 

behavioral and cognitive functions. Nicotine enhances attention and arousal, diminishes 

anxiety, produces mild analgesia, and can even improve acquisition and retention of 

short-term memories. Furthermore, studies on patients with cognitive or behavioral 

disorders such as Alzheimer’s disease, Tourette syndrome, Parkinson’s disease and 

schizophrenia demonstrate significant alterations in the expression of CNS nAChRs and 

in some case have shown therapeutic effects of nicotine administration (Role and Berg, 

1996; Paterson and Nordberg, 2000). 
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2.  NICOTINIC  ACETYLCHOLINE  RECEPTORS 

 

2.1. MOLECULAR  STRUCTURE 

Best studied at the vertebrate neuromuscular end plate and in the Torpedo electric organ, 

nicotinic acetylcholine receptors (nAChRs) have been, for a long time, a model of 

ligand-gated ion channels (Fig. 3). This class of receptors includes gamma aminobutyric 

acid (GABAA and GABAC), glycine and 5-hydroxytryptamine (5-HT3) receptors. All 

these proteins are assembled in a pentameric structure across the plasma membrane, 

where they act both as “receptor” and as “effector”: after binding of agonist to the 

ligand-binding sites, the inner pore is opened via a conformational change, permitting 

ions to flow through. 

 

 

 

 

 

 

 

 

 

Fig. 3. The nicotinic acetylcholine receptor works as an ionic channel. 

 

During 1970s the nAChR was purified from muscular tissue and identified as a 290kDa 

glyco-protein. Thereafter, it was identified as made up by five monomers of four 

different types named α, β, γ and δ according to their increasing molecular weight 

(Changeux, 1990). 

Each subunit is a protein with four putative trans-membrane domains (M1, M2, M3, 

M4) (Fig. 4). Other features are: a long N-terminal extra-cellular part presenting 

glycosilation sites; a large intracellular loop comprised between the M3 and M4 
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segments, containing putative phosphorylation sites; a short C-terminal extracellular 

domain. Affinity labeling experiments have shown that: (1) the aminoacids involved in 

the binding of Ach are situated in the long extra-cellular N-terminal domain of two 

adjacent subunits; (2) the ion channel is lined with the second trans-membrane domain 

(M2) of all five subunits, which are crucial for the ion selectivity (Cordero-Erausquin, 

2000; Corringer et al., 2000).   

 

 

 

 Fig. 4. Schematic model of nAChRs structure. Top, this receptor is a membranal       
heteropentameric glyco-protein. Bottom, left and right, the topology of the subunits: M1, M2, M3 
and M4 represent four hydrophobic membrane spanning domains. 
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2.2. NEURONAL  RECEPTOR  SUB-TYPES  

Following the identification of the genes encoding the neuromuscular receptor 

subunits, molecular cloning revealed the existence of homologous sequences in other 

tissues. So far, in vertebrate, twelve more genes that encode for nAChR subunits have 

been identified: 9 α-type (α2-α10) and 3 β-type (β2-β4) (Sargent, 1993; McGehee and 

Role, 1995; Itier and Bertrand, 2001). The subunits are called α or β according to their 

homology to the muscle α1 subunit: assignment to the α subtype group requires the 

presence of two adjacent cysteines, which are though to participate to the Ach binding 

site. The existence of such a large number of subunits available for channel formation 

suggests that they may combine in several ways, creating different channel subtypes 

with distinct biophysical and pharmacological properties. Since individual gene 

products can assemble with different partners depending on the available 

combinations, it is not possible to predict receptor composition simply on the basis of 

the set of genes expressed by the neuron.  

The best characterized receptor subtype is the one found at the skeletal muscle and 

electric organ. On the other hand, on neurons two major classes of nAChRs can be 

described (Fig. 5). Expression of α7, α8 and α9 alone is sufficient for the formation of so 

called “homomeric” channels (although α8 subunit has been found only in avians, not 

in mammals, and the α9 subunit is only expressed by certain endocrine cells and 

sensory-end organs, namely cochlear hair cells). They are thought to contain five ligand 

binding sites, one at each interface between one α and the adjacent subunit (Elgoyhen et 

al., 1994; Broide and Leslie, 1999; Millar, 2003). Whereas channels formed by co-

expression of α and β subunits are said to be “heteromeric”, α2, α3 and α4 subunits can 

form functional AChRs when expressed in combination with β2 or β4 subunits. The 

predominant brain subtypes preserve the stoichiometry of muscle receptors, with two α 

and three non-α subunits, and consequently two agonist binding sites. The prevalent 

brain subtype has been shown to possess the stoichiometry (α4)2 (β2)3. It has also been 

reported that a co-assembly of the α7 and β2 subunits might occur, when these subunits 
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are co-expressed in Xenopus oocytes; perhaps this co-assembly may help to explain 

some nAChR channel diversity in the nervous system (Khiroug et al., 2002). 

An even more complex subgroup of heteromeric subtypes has been described: “triplex” 

receptors containing more than one type of α or β subunit, including the α5, α6 and β3 

subunits; these subunits are unable to form channels when expressed alone or as a pair 

with any other single α or β subunit (Conroy and Berg, 1995; Le Novere et al., 1996; 

Wang et al., 1996; Colquhoun and Patrick, 1997; Groot-Kormenlink et al., 1998; Yu and 

Role, 1998; Lindstrom, 2000). These subunits are also known as auxiliary subunits 

because they do not directly participate in the formation of the ligand binding site; they 

probably occupy the same relative position as β1 subunit in muscle nAChRs, and may 

have a role in controlling either ion permeability, desensitization or receptor location. 

 

                                                          
                                       muscle nAChR                                          neuronal  
                                                                                                     heteromeric nAChR 
 
 

                                                          
                                       neuronal                                                   neuronal  
                                    homomeric nAChR                    “triplex” heteromeric nAChR 
 
 

Fig. 5. Different classes of nAChR subtypes: subunit stoichiometry and arrangement (modified 
from Wang et al., 1996). 
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2.3. FUNCTIONAL  PROPERTIES 

After agonist binding, the ion channel is stabilized in the open conformation for several 

milliseconds. Through the opened pore cations can freely flow, causing a local 

depolarization of the cell membrane and eventually an intracellular signal. Beside 

sodium and potassium, also calcium takes part in this ionic current (Vernino et al., 1992; 

Seguela et al., 1993; Fucile, 2004; Oikawa et al., 2005). Calcium entry mediated by 

nAChRs is different from its flow through voltage-gated channels or the N-methyl-D-

aspartate (NMDA) glutamatergic receptor subtype.  Nicotinic receptors can mediate 

calcium entry at resting or hyperpolarized membrane potential, while voltage-gated 

calcium channels and NMDA receptors require membrane depolarization to activate. 

Moreover, calcium entry may have different biological relevance depending on the 

spatial distribution of nAChRs on the cell surface. 

 

Beside their closed resting and the open conducting states, nicotinic receptors show 

another basic conformational state, namely the desensitized one. As a consequence of 

prolonged exposure to the agonist, the channel closes to a reversible, non-conducting 

state that remains unresponsive until agonist comes off the binding sites. Katz and 

Thesleff (1957) first described in detail desensitization of muscle nAChRs. In their 

report they proposed a cyclical scheme in which nAChRs may exist in two functional 

states: the resting or activable (R) and the desensitized (D) (Fig. 6). The R conformation 

has a relatively low affinity and requires high concentrations of agonist to couple 

binding to channel opening. In contrast, the D state has a higher affinity for agonist; 

therefore at low concentrations, ligand binds to pre-existing D receptors, stabilizing the 

desensitized conformation. The disrupted equilibrium between R and D states is 

restored by transition of receptor molecules from R to D, and, after sufficiently long 

time, all receptors will end up desensitized. Hence desensitization can occur even at 

quite low concentration of agonist (Katz and Thesleff, 1957; Quick and Lester, 2002).  

During the past decades the idealized model for nAChRs has changed from a simple 

on-off cationic conductance to a sophisticated allosteric molecule (Changeux et al., 
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1984). Changeux and co-workers suggested that desensitization represents a classical 

form of allosteric protein behavior, which the receptor acquires in the absence of the 

agonist. Moreover, they introduced an intermediate desensitized state (I), in order to 

reflect the non-exponential time course of desensitization onset and recovery (Feltz and 

Trautmann, 1982; Boyd, 1987; Edelstein and Changeux, 1998). In this picture nicotinic 

receptors can exist in at least four interconvertible and functionally distinct 

conformational states (Fig. 6). In the absence of the ligand, the receptor spontaneously 

changes state, but even if a transition is possible, the probability of channel opening is 

extremely low. The four described allosteric states are named R, A, I and D. At resting 

conditions, the closed (R) state is the main one, however, some molecules are always in 

the desensitized (D) state. Exposure to the agonist preferentially stabilizes the active (A) 

open state and then subsequently the intermediate (I) closed state and finally, with a 

slower time constant, the desensitized (D) closed state. 

 

                                        
                (Katz and Thesleff, 1957)                                         (Changeux et al., 1984) 

 

Fig. 6. Kinetic models for nAChR desensitization. Left: cyclical scheme for desensitization of 
nAChRs, where L is the allosteric constant reflecting the distribution of receptors in the R/D 
state, and K0 and K1 are the ligand constant affinities relative to the R and D state, respectively. 
Right: cyclical model that includes two desensitized states, of intermediate (I) or high (D) 
affinity. (modified from Quick and Lester, 2002).  
 

 

 Both nicotine and ACh can produce desensitization at concentrations that do not 

activate a significant fraction of their receptor population necessary to elicit a 
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macroscopic response (Paradiso and Steinbach, 2003). The physical nature of the 

multiple desensitized states is not known, but it has been proposed that one (or more) 

of the slowly recovering processes may reflect phosphorylation changes. 

Phosphorylation may also regulate movements between functional and inactive pools 

of receptors (Huganir et al., 1986; Boyd, 1987; Fenster et al., 1999).  

 

The kinetic constants governing the rate of conformational changes, as well as the ion 

permeability in the open state, depend on many factors including the subunit 

composition. The relations between channel structure and its function can be mainly 

established thanks to heterologous expression studies in which host cells, usually 

Xenopus oocytes, are injected with the appropriate mRNA or cDNA. Oocytes do not 

normally express native nicotinic receptors, yet after appropriate injections, functionally 

active channels are generated, and their currents are studied by means of 

electrophysiological techniques. 

Both α and β subunits contribute to the pharmacological and functional profiles. In 

particular, there are clear distinctions among the neuronal nAChR complexes, whether 

generated by the expression of a single α-type subunit (homomeric) or by co-expression 

of α and β subunits (heteromeric) (McGehee and Role, 1995; Role and Berg, 1996). α7-

homomeric receptors display greater calcium permeability and can be gated either by 

ACh or by choline; this receptor subtype often shows fast onset of desensitization. 

While the exact number of receptors that falls into the heteromeric class remains to be 

elucidated, it is thought that receptors containing β2 subunits desensitize faster than 

those containing β4 subunits, independently of the α subunit expressed. Conversely, 

receptors containing α3 subunits desensitize faster than those containing α4 (Fenster et 

al., 1997; Quick and Lester, 2002; Wang and Sun, 2005). All these classes of receptors 

may be involved in different aspects of ACh function in the CNS. For instance, acting 

via homomeric receptors, ACh can induce short-lived or phasic membrane 

depolarizations, while acting via heteromeric receptors, ACh can generate sustained or 

tonic depolarization (Tribollet et al., 2004).  
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At a cholinergic synapse, approximately 1-3 mM ACh is rapidly released into the cleft, 

immediately activating nicotinic receptors. In few milliseconds ACh is hydrolyzed by 

the esterase and/or diffuses away. The half-time of ACh is very short and therefore 

desensitization is usually not thought to be important in physiological conditions. But 

at very active synapses when repeated pre-synaptic inputs occur, nAChRs are more 

susceptible to desensitization. In these conditions the onset of desensitization may 

prevent excessive stimulation because all nAChRs are Ca++ permeable (McGehee and 

Role, 1995), and therefore potentially excitotoxic to neurons. Moreover, several workers 

have suggested that the selective desensitization of one receptor subtype, while other 

subtypes remain active, may play a significant role in changing the plasticity of 

particular brain networks. The physiological role of desensitization may become 

especially important when considering nicotine plasma levels in smokers (Ochoa et al., 

1990; Dani and Heinemann, 1996), or the effect of drugs that inhibit ACh-Esterase (used, 

for instance, to treat Alzheimer’s disease). 

 

In addition, a variety of pharmacological agents regulating the functional states of 

nAChRs has been described (Lena and Changeux, 1993), like extracellular calcium 

which increases the ACh evoked current at α7 homomeric receptors, and a  calcium 

recognition site was identified near the ACh binding site. Similarly, heteromeric 

receptors show sensitivity to zinc: in particular β4-containing receptors are potentiated 

by low concentrations of zinc, while β2 receptors are inhibited (Vernino et al., 1992; 

Hsiao et al., 2001). 

 

The wide diversity of nAChR subtypes, although problematic for investigators, allows 

sensitive tuning of the cholinergic transmission.  
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 2.4. PHARMACOLOGY  

Different subunit combinations determine topographical variations at the ligand 

binding site, which in turn accounts for the pharmacological differences among 

nicotinic receptor populations. Ach is the major endogenous ligand for all nicotinic 

receptors subtypes, while its metabolite choline selectively gates the α7 subtype 

(Alkondon et al., 1997). The exogenous alkaloid nicotine, present in Nicotiana tabacum, 

mimics the effect of ACh activating all nAChR subtypes, and even epibatidine, the most 

potent natural agonist at nAChRs, obtained from skin extracts of an Amazonian frog, is 

not subtype specific (Badio and Daly, 1994).  

Pharmacological criteria have been used to classify nAChR subtypes, first of all the 

different sensitivity of nAChRs to the snake toxin α-bungarotoxin (α-BTX) (Clarke et al., 

1985). It was shown that homomeric receptors α7, α8 and α9 are blocked by α-BTX, 

whereas heteromeric receptors are insensitive to this toxin (McGehee and Role, 1995). 

Another natural compound acting on homomeric nAChR subtype is the alkaloid 

methyllycaconitine (MLA). The great advantage of using MLA is that its effect is 

completely reversible. By the way, its action is selective, rather than specific because 

MLA binds to α7 receptors with a Ki near to 1 nanomolar, while muscle and α4β2 

nAChRs require much higher concentrations for inhibition (Alkondon et al., 1992; Palma 

et al., 1996). On the other hand, the alkaloid di-hydro-β-erythroidine (DHβE), isolated 

from Erythrina seeds, displays heteromeric subtype specific antagonism at sub-

micromolar concentrations (Harvey et al., 1996; Chavez-Noriega et al., 1997). Also the 

venoms extracted from Conus snails are an interesting source for pharmacologically 

active drugs, among which the α-conotoxin MII, at nanomolar concentrations, showed a 

potent and selective antagonism for the α3β2 nAChR subtype (Cartier et al., 1996; 

Harvey et al., 1997; Kaiser et al., 1998). Competitive antagonists displace the agonist 

from its binding sites, whereas open channel blockers, such as mecamylamine, bind 

within the pore, and there are multiple sites for other non-competitive inhibitors and 

modulators such as physyostigmine and galanthamine (Pereira et al., 1994; 

Schrattenholz et al., 1996). In addition, nAChRs activity is subjected to regulation by 
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several other factors, including peptide transmitters, various protein kinases, and Ca++ 

(Hopfield et al., 1988; Mulle et al., 1992; Davis et al., 2001).  

A general problem in addressing nAChR function in the brain remains the lack of 

specific agonists and antagonists for each of the receptor subtypes.  

  

2.5. RECEPTORS  DISTRIBUTION  AND  LOCATION  

Much of the current knowledge regarding neuronal nAChRs has been obtained from in 

vitro binding studies (Marks et al., 1986). In situ hybridization and 

immunohistochemical experiments have furthered our understanding of native 

nAChRs composition (Wada et al., 1989). These studies indicate a wide and non-uniform 

distribution of various nAChR subunits. Although one class of nicotinic receptor often 

predominates within a region, usually more than one subtype is detectable.  

Nevertheless, the most diffuse receptor subtype in vertebrate nervous system seems to 

be the α4β2 subtype, which can also contain α5 subunit, and the α3β4 subtype, with or 

without α5. These receptors, corresponding to high-affinity binding sites for nicotine, 

have been detected in the thalamus, hippocampus, substantia nigra, striatum, cerebral 

cortex and cerebellum. The α6 containig receptors, very often in conjunction with the β3 

subunit, are present in the optic pathway, the locus coeruleus and dopaminergic neurons 

of the mesostriatal pathways where they control dopamine release (Picciotto et al., 1998; 

Perry et al., 2002). The α7 containig receptors, which account for α-BgTX binding (Orr-

Urtreger et al., 1997), are also rather diffuse, particularly in the hippocampus, 

hypothalamus, cortex and brainstem, whereas α9/α10 containing receptors are present 

extra-neuronally in limited area such as the olfactory epithelium and the cochlea (Gotti 

et al., 1997).  

 

nAChRs are strongly expressed early in embryonic life, suggesting their role during 

development (Zoli et al., 1995; Agulhon et al., 1999a; 1999b). Varying the level of 

intracellular Ca++ can have strong consequences on cell metabolism, from altering gene 

expression to triggering apoptotic cell death (Ghosh et al., 1995; Broide et al., 1999).  
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In the periphery, neuronal nAChRs have been detected not only in ganglionic tissue, 

but also in developing and denervated muscle, on keratinocytes and on peripheral 

blood cells, notably polymorphonuclear cells and lymphocytes (Gotti and Clementi, 

2004).  

 

Anatomical and functional evidence suggests that neuronal nAChRs are preferentially 

located on pre-synaptic boutons where they contribute to the regulation of secretion of 

other neurotransmitters via sustained Ca++ influx (Wonnacott, 1997). In many cases the 

α7 subtype, which is the most permeable to calcium among the nAChRs class, mediates 

increased synaptic release, but in some cases other subtypes are involved. Indeed, the 

magnitude and time course of pre-synaptic facilitation elicited by nAChR activity 

differs from synapse to synapse, and these differences may be the result of receptor 

composition (Grady et al., 1992; Guo et al., 1998; Alkondon et al., 1999). Activation of 

pre-synaptic nAChRs enhances the release of many neurotransmitters in diverse 

regions of the brain. In particular, pre-synaptic nAChRs have been implicated in the 

release of ACh, norepinephrine, dopamine, glutamate and GABA (McGehee et al., 1995; 

Maggi et al., 2001). It is common knowledge that nicotine addiction is mediated by the 

influence of nAChRs on dopamine release in the mesolymbic pathway (Wonnacott, 

1997; Fisher et al., 1998; Li et al., 1998; Radcliffe et al., 1999). Certainly, the presence of 

cholinergic projections within terminal fields displaying nAChRs is suggestive of 

endogenous cholinergic activation via pre-synaptic nAChRs. 

In addition to controlling and modulating the release of various neurotransmitters, pre-

synaptic nAChRs may play an important role in regulating neuronal growth, path-

finding and differentiation.  

Nicotinic receptors can modulate neurotransmitter release also at peri-terminal 

locations. Due to the high impedance of pre-terminal fibers, the gating of relatively few 

axonal nAChRs may elicit significant changes in synaptic excitability. nAChRs 

activation may initiate Na+-mediated axonal membrane depolarization, which in turn 

activates Ca++ entry through voltage gated channels. This action is blocked by 
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tetrodotoxin which prevents voltage-gated sodium channel opening and therefore stops 

depolarization advancing (Lena et al., 1993). Moreover, strategically located nAChRs 

might enable activation of only selective portions of the axonal arborization. 

There is also evidence that high-affinity, nicotine binding nAChRs are located on 

postsynaptic membranes (Clarke, 1993). Many neurons can generate fast inward 

currents in response to exogenously applied Ach, but relatively few direct nicotinic 

synapses have been documented in the mammalian brain. These receptors are regarded 

to mediate fast excitatory synaptic transmission on GABAergic interneurons in the 

hippocampus, and on both glutamatergic pyramidal cells and GABAegic interneurons 

in the developing visual cortex (Roerig et al., 1997; Alkondon et al., 1998). In many cases 

nicotinic transmission is a minor component of the excitatory input, which is 

overwhelmingly glutamatergic (Collingridge and Lester, 1989). 

 

 

 

Fig. 7. Schematic representation of nAChR locations: (left) pre-synaptic, (center) peri-synaptic, 
(right) post-synaptic. 
 

 

The intrinsic difficulty in studying central cholinergic synapses arises from anatomical 

considerations (Wolf, 1991): cholinergic projections are diffuse and nAChR containing 

targets are scattered throughout the brain. The density of synapses is rather low and 

therefore they are difficult to detect in a brain slice preparation, which is a commonly 

used experimental model. 
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It is thought that the physiological role of cholinergic systems may be regulating the 

gain and fidelity of synaptic processes by increasing the signal-to-noise ratio. Properly 

timed nAChR activity could facilitate transmitter release and boost the efficiency of 

synaptic transmission, ensuring that important events emerge out via enhanced 

synaptic probability of transmitter release (Maggi et al., 2003; 2004). It is this fidelity that 

might be lost by the impairment in nicotinic function in the hippocampus during 

Alzheimer’s disease. 

In addition to controlling pre or post-synaptic element activation, nAChRs may regulate 

several cell functions, activating various downstream events simply increasing 

intracellular Ca++ levels. Receptor location itself, together with the cellular machinery 

accessible from that site, is highly determinant for calcium-dependent processes (Berg 

and Conroy, 2002). 

 

 

 

3. A MODEL SYSTEM FOR STUDYING NICOTINIC RECEPTOR  

FUNCTION: THE  HYPOGLOSSAL  MOTONEURONS 

 

3.1. MOTOR NEURONS 

For a long time after the studies by Sherrington and Eccles, motoneurons have been 

considered to be paradigmatic to understand how neurons work. Many of the basic 

properties of neurons, and even the fundamental statement that chemical 

neurotransmission is the principal form of neuronal communication, were first 

identified in motoneurons. A huge amount of information relative to neuronal 

properties has been collected, but one difficulty in properly understanding all this is 

due to the absence of data concerning how neurons process incoming synaptic signal 

into actual function. In this regard motoneurons display special advantage, since their 

information coding is translated into action potential discharges, which, in turn, 

produce contraction of skeletal muscular fibers.  
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Although excitatory synaptic transmission to motoneurons is mainly glutamatergic, 

other neurotransmitters may contribute to excitatory input, among which ACh 

(Connaughton  et al.,1986). In mammals, nAChRs not only play a crucial role in muscle 

contraction, but also modulate motoneurons excitability via Renshaw cells activation 

(Eccles et al., 1954; Dourado and Sargent, 2002). Both spinal and cranial motoneurons 

are contacted by choline acetyltransferase (ChAT) containing axon terminals. Moreover, 

it has been shown that either class of motoneurons expresses functional nAChRs 

(Zaninetti el al., 1999; Ferreira el al., 2001; Ogier el al., 2004). In-situ hybridization 

experiments performed by Wada and colleagues (1989) have revealed the presence of 

mRNA strands relative to many nAChR subunits in several brainstem nuclei including 

trigeminal (V), facial (VII), vagal (X) and hypoglossal (XII) nuclei.  

 

 

                  

 

Fig. 8. Brainstem, ventral view. 
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3.2. NUCLEUS  HYPOGLOSSUS 

A suitable model for studying nAChR function in the CNS is the hypoglossal nucleus. It 

is a dense motor-nucleus, easily identifiable within the brainstem. It is located 

bilaterally to the medullary midline just beneath the floor of the forth ventricle; its 

rostro-caudal extent roughly covers the same length as the olive.                                                                                                                                     

At least 90% of neurons within the hypoglossal nucleus are motoneurons (Viana et al., 

1990) although there is anatomical evidence for a small population of interneurons 

(Boone and Aldes, 1984; Takasu and Hashimoto, 1988). However, interneurons are 

smaller (10-20 µm) than hypoglossal motoneurons (HMs) themselves (20-40 µm). 

Moreover, interneurons show few dendritic processes and are confined to the 

ventrolateral or dorsolateral borders of the nucleus. On the other hand, HMs are large 

multipolar neurons spreading dendrites extensively within the hypoglossal nucleus and 

also into the neighboring reticular formation. Axons from HMs travel ventrally through 

the medulla and then emerge to form the hypoglossal nerve (XII cranial nerve, c.n.), 

which innervates the tongue (Lowe, 1980).   

Lingual musculature comprises intrinsic and extrinsic muscles. The former have no 

bone anchoring and are located within the body of the tongue. They include vertical, 

transversal, superior, and inferior longitudinal muscles: their activity shapes the tongue. 

The extrinsic muscles have clear bony attachment, and include the genioglossus, 

geniohyoid, styloglossus, hyoglossus and palatoglossus, whose activity is fundamental 

in tongue protrusion, retraction, depression and elevation. The hypoglossal motor 

nucleus is myotopically organized. In the rat, HMs innervating tongue protruder 

muscles are located in the ventrolateral part of the XII nucleus, whereas HMs sending 

axons to retractor muscles are located more dorsally (Lewis et al., 1971; Krammer et al., 

1979; Dobbins and Feldman, 1995).  

Various peripheral sites (trigeminal, vagal and hypoglossal nerves), brain stem centers, 

and higher centers have been shown to exert an influence on XII motoneuron activity 

(Borke et  al.,  1983;  Takada  et  al.,  1984;  Li  et  al.,  1993;  Dobbins  and  Feldman,  1995; 

Ugolini,  1995;  Sahara   et  al.,  1996;   Hostelge  et  al.,  1997;   Jean,   2001;   Zhang  et  al.,  
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Fig. 9. Sagittal section of the head showing tongue’s musculature and its relative innervation. 
(freely adapted from Frank H.Netter’s Anatomical atlas). 
 

2001); anyway, no   direct  cortical connections to orofacial motor nuclei, including the 

XII, have been demonstrated in rats, confirming that voluntary motor commands to 

motoneurons pass through various relay stations (Travers and Norgren, 1983).  

It is the lateral reticular formation (LRF) that provides the primary source of inputs to 

the XII nucleus. In particular, hypoglossal premotor neurons are ventrolateral and 

dorsolateral in the medullary reticular formation (Borke et al., 1983; Travers and 

Norgren, 1983). The origin of LRF projections was localized to the nucleus reticularis 

parvocellularis (RPc) (Zhang and Luo, 2003). And in turn, RPc receives afferents from 

the trigeminal (V) and solitary nuclei (Lowe, 1980; Borke et al., 1983; Dobbins and 

Feldman, 1995; Luo et al., 2001). RPc is regarded as the brainstem center that coordinates 
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motor sequences of mastication, swallowing, respiration and vocalization. Some of 

hypoglossal premotor neurons are GABAergic, glycinergic, or glutamatergic 

(Collingridge and Lester, 1989; Singer et al., 1996; Li et al., 1997; O'Brien et al., 1997; 

O'Brien and Berger, 1999). The integration of all these synaptic inputs, in concert with 

the intrinsic membrane properties of motoneurons themselves, determines the output 

signals (Berger, 2000). 

 

The cholinergic neurons in the laterodorsal tegmental and pedunculopontine tegmental 

nuclei (LTD/PPT) are thought to provide the primary source of cholinergic projections 

to the hypoglossal nuclei (Connaughton et al., 1986). Immuno-cytochemical experiments 

performed using Ab against choline acetyl-transferase (ChAT) and the vescicular ACh 

trasporter (VAChT) has revealed the presence of staining fibers forming large 

puncta/spots around motoneuron cell bodies and dendrites in the hypoglossal nucleus, 

suggesting that this nucleus is the target of cholinergic innervation (Gilmor et al., 1996; 

Arvidsson et al., 1997; Schäfer et al., 1998; Ferreira et al., 2001). An intriguing possibility 

is that these motoneurons, by virtue of recurrent axon collaterals, could influence the 

activity of neighbouring cells via post-synaptic nAChRs. Such a direct synaptic 

coupling between motoneurons, already established in some motor systems, could 

facilitate motor unit recruitment, and enhance the synchrony of synergistic motoneuron 

firing (Perrins and Roberts, 1995). 

Electrophysiological studies reported that all HMs, regardless of their location, respond 

to stimulation by nicotinic agonists (Zaninetti et al., 1999; Chamberlin et al., 2002; Shao 

and Feldman, 2005). Very recent studies demonstrate positive immunoreaction in HMs 

for various nAChR subunits, suggesting a role for nicotinic receptors in the regulation 

of hypoglossal nucleus activity (Ferreira et al., 2001; Dehkordi et al., 2005). The density 

and distribution of nAChRs, assessed through binding experiments, is higher in the 

whole brainstem during embryonic and postnatal development in comparison with 

adult animals. Similar data are found in cortical and hippocampal tissue as well, 

suggesting a role for nAChRs in the maturation of all these brain structures (Tribollet et 
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al., 2004). It is feasible that increased nAChR expression may be related, and possibly 

contribute, to the establishment of functional neuronal connectivity. 

  

As the XII nerve innervates the tongue, HMs are engaged in several motor functions, 

including suckling, swallowing, and mastication (Jean, 2001). Moreover, because of 

tongue’s critical position in the upper airways, the hypoglossal nucleus is also active 

during respiration (Strohl et al., 1980). Rhythmic HMs activity, strictly correlated with 

the inspiratory burst generated in the pre-Bötzinger complex of the lower brain stem, 

has been monitored in different experimental systems, both in “in vivo” (Richmonds 

and Hudgel, 1996; Pierrefiche et al., 1997) and “in vitro” conditions (Suzue, 1984; 

Murakoshi et al., 1985; Smith et al., 1991; Funk et al., 1993; Ballanyi et al., 1999). It is 

noteworthy that nicotine not only increases respiratory rhythm, but also the activity of 

HMs, in particular of those projecting to the genioglossus muscle (the major extrinsic 

tongue protruder muscle), whose function is fundamental for the maintenance of upper 

airway patency (Remmers et al., 1978; Shao and Feldman, 2001; Robinson et al., 2002; 

Shao and Feldman, 2002).  Indeed, many investigators suggest a clinical use of nicotinic 

agonists in the treatment of obstructive-sleep-apnea, a disease that involves sleep 

related loss of genioglossus muscle tone (Strohl et al., 1980; Gothe et al., 1985; 

Bellingham and Funk, 2000). 

 

 

 

4. AIMS OF THE PRESENT STUDY 

 

The purpose of this study was to investigate whether nAChRs expressed in the nucleus 

hypoglossus are functional, to explore their pharmacological characteristics and their 

role in modulating glutamatergic transmission at early postnatal age. Furthermore, we 

investigated how nicotine can desensitize nAChRs and consequently affect 

glutamatergic transmission on HMs. Although nAChRs can control the activity of 
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inhibitory neurons, a large number of studies have indicated that the main action of 

nAChRs is to modulate glutamate mediated transmission. Hence, in the present report, 

we deliberately restricted the experimental variables of our in vitro model by 

systematically blocking GABA and glycine mediated inhibition. This enabled us to 

study glutamatergic events in isolation and to ascertain their efficiency in the presence 

of nicotinic agonists or antagonists in concert with changes in postsynaptic nACh 

activity.               

In view of the adverse effect of prenatal nicotine exposure on nervous system 

development (Nordberg et al., 1991; DiFranza and Lew, 1995; Slotkin et al., 1999; 

Robinson et al., 2002), it is still an open question the mechanism by which maternal 

smoking affects the neonate’s ability to generate motor commands to the tongue 

muscles responsible for breathing and milk suckling. The basic mechanisms that might 

underlie this important issue were investigated by testing the effect of small 

concentrations of nicotine, similar to those found in the plasma of smokers, on 

glutamatergic transmission in neonatal rat HMs. 
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METHODS 

 

1.  TISSUE  PREPARATION  

Experiments were carried out on brainstem acute slices obtained from neonatal Wistar 

rats (from 0 to 5 days old; P0-5) according to the method previously described by Viana 

et al., (1994). Animals were decapitated after being anaesthetized with intraperitoneal 

injection of urethane (2 g/kg body wt). This procedure is in accordance with the 

regulations of the Italian Animal Welfare Act following the European Community 

directives and approved by the local authority veterinary service.  

Thereafter, the brainstem was quickly removed and submerged in ice-cold saline (for 

composition see below). Cooling of the preparation was particularly important, because 

it minimized damage from anoxia and improved the texture of the tissue for slicing. A 

vibrating tissue slicer (Vibracut, FTB, Weinheim, Germany) was used to cut 200 µm 

thick slices. Mechanical stability of the tissue during slicing was essential. For this 

purpose a tissue block containing the lower medulla was fixed (using insect pins) onto 

an agar block (4 % in 0.9 % NaCl) shaped to contain the tissue in the correct orientation 

(caudal-end up). The block was then glued to the stage of the vibro-slicer and immersed 

in ice-cold physiological saline, saturated with 95% O2 -5% CO2. 

Slices were first transferred to an incubation chamber containing gassed Krebs solution, 

kept there for 1 hour at 32°C and then allowed to slowly reach room temperature. After 

this recovering period, single brainstem slices, were placed in a small recording 

chamber, held in place by a fine nylon net glued to a horse-shaped platinum wire and 

continuously perfused (2-3 ml/min) with the recording Krebs solution (see below). 

Hypoglossal motoneurons (HMs) were identified within the nXII (Fig. 10) with a Zeiss 

Axioscope microscope connected to an infrared video camera (Fig. 11). Under x40 
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magnification single HMs were clearly visible and showed a large soma (20-40 µm 

diameter).    

 

          
B

A

 

XII

 

 

Fig. 10. Neonatal rat brain-stem transverse slice; immunostaining of the hypoglossal nucleus  
(XII) with anti-ChAT (choline acetyl-transferase) antibodies. (scale bar: 200 µm, courtesy of E. 
Fabbretti) 
 

 

                                              
 

Fig. 11. Hypoglossal motoneurons from P2 rat brain stem slice (scale bar: 50 µm, courtesy of S.E. 
Pagnotta) 
 



 25 

2.  SOLUTIONS  AND  DRUGS 

 

2.1. SLICE PREPARATION AND MAINTENANCE 

The solution used for slice cutting and maintenance contained (in mM): NaCl 130, KCl 

3, NaH2PO4 1.5, CaCl2 1, MgCl2 5, NaHCO3 25, glucose 10 (pH 7.4 adjusted with NaOH; 

290-310 mOsm). 

 

2.2. VOLTAGE CLAMP RECORDINGS 

The extracellular solution used to perfuse slices during recording contained (in mM): 

NaCl 130, KCl 3, NaH2PO4 1.5, CaCl2 1.5, MgCl2 1, NaHCO3 25, glucose 15 (pH 7.4 with 

NaOH, 300-320 mOsm). Patch pipettes were filled with intracellular solution containing 

(in mM): CsCl 130, NaCl 5, MgCl2 2, CaCl2 1, HEPES 10, BAPTA 10, ATP-Mg 2, sucrose 

2 (pH 7.2 with CsOH; 280-300 mOsm).   

 

2.3. DRUG APPLICATION 

Drugs were applied in two different ways: either bath-applied via the extracellular 

solution superfused at 2-3 ml/min (for a minimum of 5-10 min to reach apparent 

equilibrium conditions), or via fast, focal pressure pulses. For the latter method, a thin-

walled glass micropipette was pulled in the same way as a patch pipette using a two-

stage puller (3P-A, List Medical, Germany) in order to obtain a DC resistance of 5-6 MΩ. 

The pipette was filled with nicotine (diluted to the final concentration of 2 mM in the 

external recording solution), and positioned approximately 20-50 µm away from the 

soma of the recorded cell, under microscopic control. The puffer pipette was connected 

to a Pneumatic Picopump (WPI, Sarasota, FL, USA); pulses duration ranged from 10 ms 

to 60 s (4-8 p.s.i. pressure). As long as applications were spaced at intervals of 1 min, 

observed responses were closely reproducible (see also Khiroug et al., 1998; Pagnotta et 

al., 2005).  

All experiments were performed in the continuous presence of bicuculline (10 µM) and 

strychnine (0.4 µM) in the bathing solution; these drugs were used as pharmacological 
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tools to block GABA and glycine-mediated transmissions (Donato and Nistri, 2000; 

Marchetti et al., 2002). In this way glutamatergic transmission could be studied in 

isolation. 

The following drugs were used: 6-cyano-7nitroquinoxaline-2,3-dione (CNQX), D-

amino-phosphonovaleriate (APV) and methyllycaconitine citrate (MLA) purchased 

from Tocris; bicuculline methiodide (bicuculline), dihydro-β-erytroidine hydrobromide 

(DHβE), ethyl[m-hydroxyphenil]-dimethylammonium chloride (edrophonium), ([-]-1-

methyl-2-[3-pyridyl]pyrrolidine) hydrogen tartrate salt (nicotine) and strychnine 

hydrochloride (strychnine) from Sigma; tetrodotoxin (TTX) from Latoxan.  

 

 

3.  ELECTROPHYSIOLOGICAL  TECHNIQUES 

 

3.1. PATCH-CLAMP RECORDING 

Recordings were performed at room temperature. The conventional whole-cell patch 

clamp technique (Hamill et al., 1981) was employed. Briefly, a small heat-polished glass 

pipette, pulled from thin–walled borosilicate glass capillaries (Hingelberg, Germany) 

with a two-stage puller (3P-A, List Medical, Germany) to a DC resistance of 3-4.5 MΩ 

(opening diameter between 0.5 and 1 µm), was pressed against the cell membrane. 

Gentle suction, applied to the pipette interior, led to the formation of an electrical seal 

with resistance in the order of 2-10 GΩ (giga-seal). After the giga-seal formation, 

additional suction applied to the pipette interior led to the membrane rupture, and 

direct low resistance access to the cell interior. 

An L/M-EPC-7 patch-clamp Amplifier (List Medical, Germany) was used for voltage 

clamp experiments. Cells were clamped at -60, -65 mV holding potential (Vh), and series 

resistance (5-25 MΩ) was routinely monitored, without any compensation. Voltage 

pulse generation and data acquisition were performed with a PC using pClamp 8.1-9.2 

softwares (Axon Instruments Inc.). All recorded currents were filtered at 3 kHz and 

sampled at 5-10 kHz.  
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3.2. ELECTRICAL STIMULATION 

Glutamatergic postsynaptic currents were evoked by placing a single bipolar tungsten 

electrode in the dorso-lateral reticular formation (Fig. 12) to stimulate afferent 

interneurons to the hypoglossal nucleus (Borke et al., 1983; Cunningham and 

Sawchenko, 2000). Stimuli of variable intensity and duration (10-100 V, 0.02-0.2 ms) 

were delivered at 10 s intervals, and were selected in each experiment in order to elicit 

submaximal responses. Electrically evoked synaptic currents were recorded and stored 

in a PC as individual files and then averaged with pClamp 8.1-9.2 after discarding failed 

events.     
  

 

 

Fig. 12. Schematic representation of a brain stem slice. Puffer pipette approaching HMs on the 
left, patch pipette on the righ. The stimulating electrode is placed in the dorso-lateral medullary 
reticular formation (mrf). X, vagal nucleus; XII, hypoglossal nucleus; AP, area postrema; Cu, 
cuneate nucleus; EC, external cuneate nucleus; Gr, gracile nucleus; IO, inferior olive; LRN, 
lateralreticular nucleus; mlf, medial longitudinal fasciculus; NTS, nucleus of the tract solitarius; 
py, pyramidal tract; SNV, spinal nucleus of the trigeminal nucleus.  
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4.  DATA  ANALYSIS 

Continuous recordings of spontaneous activity were stored on magnetic tape and 

transferred to a PC after digitalization with an A/D converter (Digidata 1200).  

Cell input resistance (Rin) was calculated by measuring the current response to 5 or 10 

mV hyperpolarizing steps (from -60,-65 mV, holding potential), or from the slope of the 

linear part of the I-V relation obtained by applying a slowly rising voltage signal (ramp 

test: from –80 to +20 mV, 41.7 mV/s).  

Single postsynaptic currents were detected using AxoGraph 4.6 (Axon Instruments, 

Foster City, CA) and Clampfit 9.2 (Axon Instruments) softwares, while SigmaPlot 2001 

(Jandel Scientific, San Rafael, CA) software was used for linear regression analysis of 

experimental data.  

Results were quantified as means ± S.E.M., with “n” indicating the number of cells in 

which the experiment has been repeated. Statistical significance was assessed with the 

Student’s paired t-test, applied only to raw data, or with the Tukey-test and ANOVA 

for non-parametric values; according to convention, two groups of data were 

considered statistically different if P<0.05. 
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RESULTS 

 

The database of the present study comprises 178 HMs, with 281±30 MΩ mean input 

resistance. 

 

 

1. INVESTIGATING THE PRESENCE OF TONIC CHOLINERGIC 

ACTIVITY  IN  THE  BRAINSTEM  SLICE  PREPARATION 

Previous studies have indicated that the nucleus hypoglossus expresses neuronal 

nAChRs (Zaninetti et al., 1999; Chamberlin et al., 2002; Dehkordi et al., 2005) and it is 

contacted by cholinergic fibers (Gilmor et al., 1996; Arvidsson et al., 1997; Schäfer et al., 

1998; Ferreira et al., 2001). In this study I first explored whether it was possible to 

observe direct cholinergic network activity on HMs, using a simple brainstem slice 

preparation. I started recording spontaneous synaptic currents (sPSCs) from HMs. 

Bicuculline and strychnine were routinely added to the recording solution, in order to 

block synaptic inhibitory processes (Donato and Nistri, 2000); the remaining activity 

was considered to be mediated by glutamate (Sharifullina et al., 2004, 2005) (Fig. 13A, 

top trace). Then the ionotropic glutamate receptor antagonists, CNQX (10 �M) and APV 

(30 �M), were bath-applied to reveal any non-glutamatergic excitatory currents (Fig. 

13A, middle traces): however, no events could be detected, confirming that spontaneous 

events were glutamatergic. This observation suggests the lack of spontaneously active 

cholinergic synapses on HMs (n=6), at least in this preparation.  

I also wondered if blocking ACh hydrolysis, with the cholinesterase inhibitor 

edrophonium (20 �M), could boost ACh availability and unmask cholinergic events 

(Kouznetsova and Nistri, 2000). However, as shown in Fig. 13A (bottom traces), even in 

this case there was lack of synaptic activity when CNQX and APV were present (n=3 

cells).  There  was  also  no  change   in  baseline  current.  Because  lack  of  spontaneous  
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Fig.13. Lack of endogenous cholinergic activity on HMs. (A) Upper traces: consecutive 
recording from a voltage clamped motoneuron (in the presence of 10 �M bicuculline and 0.4 �M 
strychnine. Middle traces: no residual activity is detectable after the application of APV (30 �M) 
and CNQX (10 �M)(n=6). Bottom traces: addition to the bathing solution of the AChE inhibitor 
edrophonium (20 �M) is ineffective to disclose any endogenous and spontaneous release of 
ACh (n=3). Reproduced traces are representative of the same cell. (B) ePSCs elicited by sub-
maximal stimulation of the dorso-lateral mrf (see methods): average traces of 20 pulses (10 Hz 
train) recorded in control solution, or in the presence of glutamatergic transmission blockers, 
alone and together with edrophonium (20 �M). Same cell as in (A). 
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cholinergic events might have suggested low release probability, it was attempted to 

elicit cholinergic currents by stimulating the reticular formation (mrf) with 10 Hz trains. 

Under these conditions and using a protocol which produces monosynaptic 

glutamatergic currents (Essin et al., 2002; Sharifullina et al., 2004), confirmed by the 

relatively short and constant lantency (4.8 ±0.3 ms, n=13) of the currents, I could record 

robust electrically evoked postsynaptic currents (ePSCs; Fig. 13B, left). These responses 

were fully suppressed in the presence of CNQX plus APV (Fig. 13B, middle; n=3), 

confirming that them to be primarily glutamatergic. No other evoked activity could be 

recorded, in the presence of glutamatergic ionotropic receptor blockers, even after 

applying edrophonium (Fig. 13B, right; n=3).  

However, interestingly, glutamatergic spontaneous transmission resulted significantly 

depressed following edrophonium application (about 4 min from the start; Fig. 14A).  

This effect consisted in a significant reduction in event frequency without change in 

event amplitude (Fig. 14B), and was reversible on washout (not shown). 

 

 
 
 
 
Fig.14. Edrophonium indirect effect on spontaneous glutamatergic transmission. (A) Sample 
of glutamatergic sPSCs recorded before and during bath-application of 20 �M edrophonium 
(upper and lower traces, respectively). (B) Histograms showing the resulting effect of 
edrophonium: 20�M edrophonium significantly reduces the frequency of sPSCs to 52.8 ±9 % 
(n=9, p<0.05) of control value, while leaves unchanged their peak amplitude (99.8 ±4 %, n=9). 
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Overall, spontaneous transmission is made up of network dependent and network 

independent events. To isolate synaptic terminal activity, recordings are usually 

performed in the presence of TTX (1 �M). In these conditions it was possible to record 

miniature glutamatergic synaptic events (mPSCs), which were unaffected in their 

frequency and amplitude by edrophonium (N. Lamanauskas, personal 

communication). Thus, the changes in glutamatergic activity observed during 

edrophonium application, were the consequence of enhanced cholinergic activity at 

network level rather than at presynaptic sites. 

 

 

2. EFFECTS OF NACHR ANTAGONISTS ON GLUTAMATERGIC 

CURRENTS 

High concentrations of di-hydro-β-erythroidine (DHβE) are commonly used for broad 

spectrum, non-selective antagonism of nAChRs (see review by Dwoskin and Crooks, 

2001). Bath application of 200 �M DHβE reduced the peak amplitude of glutamatergic 

sPSCs and ePSCs recorded from HMs (Fig. 15A, B), without significantly changing 

either the current kinetics (Fig. 15B) or the frequency of sPSCs (Fig. 15 C). Baseline 

current was unaffected. 

On the other hand, submicromolar concentrations of DHβE possess strong selectivity 

towards the α4β2 nAChR subtype (Harvey and Luetje, 1996). Because α4β2 receptors 

are widely expressed in the brainstem (Zaninetti et al., 1999), I tested whether DHβE, at 

0.5 �M concentration, was still able to modify glutamatergic currents. Fig. 16A shows 

that, at this concentration, DHβE significantly depressed the peak amplitude of sPSCs 

(see also histograms in Fig. 16D). Analogous observations were obtained when 

examining the action of 0.5 �M DHβE on mPSCs (Fig. 16B, D) and ePSCs (Fig. 16C, D). 

The right panel of Fig. 16 shows that, after scaling and superimposing, ePSCs retained 

similar kinetics. No significant change was observed in terms of event frequency either 

for sPSCs or mPSCs (Fig. 16D). It is noteworthy that the peak amplitude reductions in 

the presence of 0.5 �M DHβE were quantitatively smaller than those achieved with 200  
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Fig.15. Effect of a massive blockage of nAChRs, on glutamatergic transmission. (A) 
Recordings of sPSCs in control condition (bicuculline and strychnine in the bath, see methods), 
and in the presence of 200 �M DHβE (right). Data from the same cell. (B) Seventeen 
superimposed ePSCs (0.1 Hz; black traces) with their average (coloured trace) were collected in 
control condition (left) and in the presence of DHβE (middle). Synaptic failures have been 
omitted. Averaged traces normalized and superimposed show no changes in the kinetics of 
glutamatergic ePSCs (right). (C) Summary of the effect of 200 �M DHβE on glutamatergic 
transmission: the peak amplitude of both sPSCs and ePSCs resulted substantially depressed to 
72.9 ±6 % (n=9, p<0.02) and 71.0 ±4 % (n=7, p<0.002), respectively. On the contrary, the 
frequency of sPSC is not affected (113.4 ±13 %, n=9). 
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Fig.16. Effect of 0.5 �M DHββββE on glutamatergic transmission.  (A) Effect of DHβE on 
glutamatergic sPSCs (right), compared to control condition (left). (B) Glutamatergic mPSCs 
isolated in the presence of 1 �M TTX (left), and their responsiveness to the application of DHβE 
(right). (C) Superimposed glutamatergic ePSCs (0.1 Hz stimulation) recorded in control solution 
(left, nine traces) and in the presence of DHβE (center, twelve traces); their relative averages, 
shown in coloured line, are normalized and superimposed (right). (D) Histogram summarizes 
the effect of 0.5 �M DHβE on glutamatergic transmission: sPSCs, mPSCs and ePSCs resulted all 
reduced in peak amplitude (83.4 ±5 %, 85.8 ±4 % and 77.3 ±7 % of control values, respectively; n 
� 5, p<0.05). However neither sPSCs nor mPSCs appeared significantly changed in their 
frequency (90.5 ±10 % and 92.8± 6 %, respectively). 
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Fig.17. Effect of 5 nM MLA on glutamatergic transmission. (A) Continuous recordings of 
glutamatergic activity in control (left panel), and after the application of MLA (right panel). (B) 
mPSCs recorded in control solution and in the presence of 5 nM MLA. (C) Superimposed ePSCs 
(0.1 Hz) recorded in control (left, eleven traces) and in MLA containing solution (middle, nine 
traces); their relative averages (coloured) are normalized and superimposed (right). (D) 
Histogram summarize the effect of 5 nM MLA on glutamatergic transmission: there is a 
significant depression of the peak amplitude of sPSCs (86.4 ±3 %, n=15, p�0.001), mPSCs (84 ±5 
%, n=6, p<0.05) and ePSCs (76.7 ±4 %, n=7, p�0.0001), with no change on sPSCs (114.9 ±20%) 
and mPSCs (89 ±10 %) frequencies. 
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�M DHβE. This result suggests that other nAChR subtypes might have contributed to 

the regulation of glutamatergic currents. 

Because α7 receptor subunits are expressed within the rat brainstem (Zaninetti et al., 

1999; E. Fabbretti and N. Lamanauskas, unpublished), I tested the action of the alkaloid 

MLA, one of the most potent and selective antagonist at the α7-homomeric nAChR 

subtype (Palma et al., 1996; Bergmeier et al., 1999; Davies et al., 1999; Jones et al., 1999). 

At the concentration of 5 nM, MLA significantly reduced the peak amplitude of both 

sPSCs, mPSCs and ePSCs (Fig. 17A-D), without changing either ePSC kinetics (right 

panel of Fig. 17C, after scaling and superimposing average traces) or sPSCs and mPSCs 

frequency. I have also tested larger doses of MLA; up to 10 nM, no further reduction in 

synaptic response amplitude could be observed (data not shown). 

 

 

3. FUNCTIONAL PROPERTIES OF NACHR S ON HMS  

Lack of direct cholinergic synaptic activity on HMs did not preclude the possibility that 

HMs expressed functional nAChRs. To examine this issue and to minimize problems 

due to hydrolysis of ACh by AChE and to nAChR desensitization, I applied nicotine to 

voltage-clamped hypoglossal motoneurons, by means of brief pressure pulses (4-10 psi) 

delivered through a puffer pipette positioned 20-50 µm far from the soma of the cell (see 

also Di Angelantonio and Nistri, 2001; Pagnotta et al., 2005). Pressure ejected nicotine 

was able to generate fast post-synaptic inward currents in the patched cell. The peak 

amplitude of those currents was directly related to the duration of the pulse, so that 

increasing the delivery time of nicotine produced increasingly larger inward currents 

(Fig. 18A, left), because of the larger doses administered. The threshold to get a 

response to nicotine was at 10 ms, while amplitude saturation was gained with 

applications lasting approximately 500 ms (Fig. 18A, right). The half-maximal response 

was calculated to be reached with 160 ms long pulses.  

Nicotine-induced inward currents  persisted  in   the  presence of  CNQX  and  APV 

(Fig. 18 Ba;  n=7),   indicating   they   were   not    generated    by     glutamate     released    
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from presynaptically activated terminals. In fact, 100 �M DHβE was able to fully 

suppress them (Fig. 18Bb; n=3). Responses to puffer application of nicotine for up to 1 s 

were not accompanied by changes in sPSCs, showing that a relatively short puffer 

application of this drug predominantly affected HMs rather than network neurons.  

 

 

 
 
 
Fig.18. Nicotine generates fast inward currents on HMs. (A) Left: sample of responses to 50, 
100, 200, 500 or 1000 ms long pulses of pressure-ejected nicotine. Right: the plot shows the 
relationship between the normalized peak amplitude of responses (∆IN) and the duration of the 
puffer pulse (normalization is carried out with respect to 100 ms pulse response, n� 5). (B) 
Inward currents generated by nicotine (75 ms) are insensitive to bath application of APV (30 
�M) plus CNQX (10 �M, n=6), while are completely antagonized by 100 �M DHβE (n=3). 
 
 

For pharmacological identification of the nAChR subtypes mediating HM responses to 

nicotine, DHβE and MLA were again used, at subtype selective concentrations. Fig. 19A  
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indicates that  0.5 �M DHβE  reduced responses at all tested doses of nicotine. Likewise, 

a similar decrease was obtained in the presence of 5 nM MLA (Fig. 19B). When DHβE 

and MLA were co-applied, the summative action resulted in an almost complete 

blockage of the nicotine induced current (Fig. 19C). 

 
 

 
 
Fig.19. Pharmacological characterization of the nicotine induced inward currents. 
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4. DESENSITIZATION OF NACHR S ON HMS 

To investigate the time constant of nAChR desensitization onset I delivered long pulses 

of nicotine, in analogy to the protocol used by Katz and Thesleff (1957). HMs responded 

to such puffer pulses generating inward currents, which peaked and faded back to 

baseline even though the pulse had not ceased yet, as shown in Fig. 20A.  The decay of 

such currents could be fitted by a mono-exponential time constant (τ) of 211 ±35 ms 

(n=6). The time necessary for recovering from desensitization was investigated with the 

paired pulse protocol stimulation: two nicotine puffer pulses of the same duration (50 

ms) were delivered at increasing time intervals (Katz and Thesleff, 1957). Recovery was 

considered complete when response to the second, test pulse reached the same peak 

amplitude of the first, conditioning pulse (Fig. 20B, left). Full receptors functionality 

was stably regained with a 60 s long interval between the two consecutive pulses (Fig. 

20B, right). 

 

Receptor desensitization also occurred in the presence of sustained (4-5 min) bath-

application of small concentrations (0.1-1 �M) of nicotine. These nicotine 

administrations, in 20 out of 55 cells, generated an inward current which on average 

shift was calculated to be -56 pA. This macroscopic inward current started fading after 

about 1 min from its peak. Notwithstanding the ability of bath-applied nicotine to 

induce direct HM responses, the effects of subsequent test pulses of nicotine were 

always strongly attenuated (Fig. 20C). For instance, the currents elicited by 100 ms 

nicotine pulses were reduced in the presence of 0.5 �M nicotine to 17.6 ± 4.6 % of 

control ones (n=5). 

 

 

Ctd from Fig.19.(A) Left: example of the effect of 0.5 �M DHβE on responses produced by brief 
pulses of nicotine (100ms). Right: dose/response curves representative of control and DHβE 
enriched medium (n=9). (B) Samples representative of the effect of 5 nM MLA on nicotine 
generated current, different cells than in (A) Plots of responses to puffer applications of nicotine 
in control and MLA containing solution (n=10; right). (C) Application of both antagonists 
resulted in an almost complete blockage of the nicotinic currents (n=9, for right hand side plot). 
All data are normalized to value of the response to a 100ms pulse, relative to each data set. 
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Fig.20. Desensitization affects responsiveness of nAChRs to nicotine. (A) During 1 s long 
nicotine pulse application the resulting inward current peaks and then decays 
monoexponentially (average time constant=211 ±35 ms; n=6; vertical dot bars indicate the 
record used for fitting). (B) Time necessary for recovering from desensitization was investigated 
with the paired pulse protocol stimulation, where two identical nicotine pulses (50 ms) are 
delivered at increasing time intervals (4, 8, 16, 32, 64, 90, 120 s). The graph on the right shows 
the relative amplitude of the second response (as % of the first one) plotted against the inter-
pulse interval; complete recovery is regained after about 60 s (n=3). (C) Sample traces showing 
how currents generated by focally pulsed nicotine (100 ms) are strongly depressed during bath-
applied 0.5 �M nicotine. The plot on the right summarizes the depressive effect of bathing 
nicotine (n� 3); values are normalized with respect to the response to 100 ms pulse. 
 
 
Then I wished to examine if network nAChRs controlling glutamatergic transmission 

were equally subjected to desensitization. I tested how a much longer application of  

nicotine,   supposed   to  strongly  activate  nAChRs,  could  modulate  glutamatergic 

currents. For this purpose, I applied a long (1 min) puffer pulse of nicotine (in excess of 

the one eliciting the maximal response, cf. Fig. 18A) and measured both amplitude and 

frequency of glutamatergic sPSCs. Data were collected before the start of the puffer 
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administration and after the inward current  elicited  by  nicotine had  subsided  due  to 

nAChR desensitization, as shown in Fig. 21A. Under these circumstances, there was a 

significant fall in the sPSC average frequency (analogous to the one found with a small 

dose of nicotine), plus a significant reduction in sPSC average amplitude (Fig. 21B, n=6).  

 

 
 
 
 
Fig.21. Effect of an acute administration of nicotine on glutamatergic transmission. (A) Top: 
continuous recording of glutamatergic sPSCs before and during the application (1 min) of 
nicotine via a puffer pipette. Insets: two fragments runned at a faster time scale. (B) Histograms 
summarizing the effect of nicotine on sPSCs: both peak amplitude and frequency resulted 
depressed during nicotine pulse to 80.1 ±4 % and 51.4 ±8 % of control, respectively (n=7, 
p<0.01). 
 
 
Afterwards I investigated the effect of a long lasting application of nicotine on 

glutamatergic transmission, using a dose closer to those observed in the brain of 

smokers, namely 0.5 �M. After 5-6 min of such nicotine bath-application, the frequency 

of both sPSCs and mPSCs resulted reduced, but no significant changes were observed 

in  their  amplitude  (Fig.  22A, B, D).  



 42 

 
 
 
Fig.22. Effect of a low dose of nicotine on spontaneous glutamatergic transmission. (A) 
Continuous recordings of glutamatergic sPSCs in control condition or in the presence of 0.5 �M 
bathing nicotine. (B) Continuous  recordings  of mPSCs  in control or in the  presence of  0.5 �M 
nicotine. (C) Example of amplitude distribution histogram for mPSCs. Events are clustered 
between –8 and –15 pA, even in the presence of nicotine. (D) Indeed 0.5 �M nicotine does not 
affect the peak amplitude of neither sPSCs or mPSCs (99.6 ±3% and 100.4 ±6 % of control value, 
respectively, n=7), . but it significantly decreases their frequency, resulting 52.1 ±7 % (n=7, 
p<0.01) and 69.1 ±8 % (n=7, p<0.03), respectively. 
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Experiments on glutamatergic ePSCs provided additional clues about the sensitivity of 

brainstem nAChRs to desensitize in the presence of submicromolar doses of nicotine. In 

fact, as indicated in Fig. 23A, after about 4 min in the presence of 0.5 µM nicotine ePSCs 

were depressed without changing their kinetics. Network transmission was deeply 

impaired as the number of failures increased significantly (Fig. 23B). It was interesting 

to observe that the smaller ePSCs amplitude (calculated after excluding failures) 

displayed much smaller fluctuations as indicated by their CV value (Fig. 23C). The 

input/output curve obtained plotting the ePSC amplitudes as a fraction of their 

maximum versus the stimulus intensity resulted flattened in the presence of nicotine. 

The strongest depression was observed for responses elicited by the higher intensity 

stimuli (Fig. 23D). 

 

 
 

 Fig.23. Effect of 0.5 �M nicotine on glutamatergic ePSCs. 
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In view of the diffuse distribution of glutamatergic afferents to HMs, only part of which 

were electrically stimulated, and their association with nAChRs, it seemed interesting to 

compare the dynamics of depression of ePSCs and sPSCs (Fig. 24). So I measured ePSC 

amplitude following continuous 0.1 Hz stimulation before and following bath-

application of 0.5 �M nicotine (Fig. 24A, left; n=8): there was a transient, early 

facilitation of ePSC amplitude which lasted for about 100 s (p<0.05, Tukey test), 

followed by a significant depression (p<0.05) which outlasted the nicotine 

administration. On average, the facilitation was 136 ±8 % versus the average control 

amplitude, while the depression amounted to 53 ±5 %. To obtain recovery from 

nicotine-evoked depression a 5 min long wash-out was necessary. Surprisingly, when 

an even lower (0.1 �M) concentration of nicotine was used (see Fig. 24A, right), ePSCs 

were just reduced in amplitude, a phenomenon developing about 2 min from the switch 

to the nicotine containing solution. The largest reduction in current response (52 ±4 % of 

control, n=7) was comparable to the one observed during exposure to 0.5 �M nicotine. 

On the other hand, sPSCs displayed a different sensitivity to bath-application of 

submicromolar concentrations of nicotine. In particular, as indicated in Fig. 24B, neither 

0.5 (left panel) nor 0.1 �M  nicotine  (right  panel)  altered  the  peak  amplitude of  these 

currents although both doses facilitated sPSC frequency with dissimilar timecourse. 

With 0.5 �M nicotine the frequency facilitation (525 ±48 % of control; n=5) peaked at 

about 2 min and then gradually  declined  back to  baseline.  With 0.1 �M nicotine  the 

frequency facilitation (242 ±5 %; n=8) of sPSCs was clearly delayed with development 

after >4 min from the start of application.    

 

 
Ctd from Fig.23. (A) Ten superimposed glutamatergic ePSCs (black lines) elicited by sub-
maximal stimulation of the mrf (0.1Hz), in control solution and after addition of 0.5 �M nicotine 
(averages are in coloured line). Failures are not shown, but they resulted increased in number 
(B): 52.7 ±10 % in nicotine containing medium, versus 20 ±4 % of total responses in control 
medium (n=9, p<0.01). (C) Nicotine strongly depresses synaptic transmission, decreasing the 
mean peak amplitude of ePSCs (60.3 ±7 % of control; n=8, p<0.02), and reducing the CV of 
response amplitude  (75 ±6 % of control; n=7, p<0.02). (D) In the input-output curves, build up 
normalizing ePSC peak amplitude to their maximum (∆IN), asterisks indicate a significant 
difference between responses collected in control solution and those recorded in the presence of 
0.5 �M nicotine (p<0.05, with  Tukey test; n�4). 
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Fig.24. Timecourse of the action of bath-applied nicotine on glutamatergic transmission. (A) 
Timecourses of the effect of 0.5 (left, n=8) and 0.1 (right, n=7) �M nicotine on glutamatergic 
ePSCs. Shaded areas indicate the time window relative to nicotine application. Values are 
normalized with respect to the mean of those recorded before the application of nicotine.  
Asterisks indicate the datapoints which are signficantly different (p<0.05, Tukey test) from 
control. (B) Timecourses of the effect of 0.5 (left, n=5) and 0.1 (right, n=8) �M nicotine on 
glutamatergic sPSCs (black dots, peak amplitude; gray dots, frequency). Frequency values were 
obtained by analyzing 20 s segments of consecutive records. All values are normalized to 
control ones. To avoid potential interference due to cumulative desensitization, cells were tested 
with one dose only of bath-applied nicotine.  
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5. IMMUNOHISTOCHEMISTRY OF NACHR S IN BRAINSTEM SLICES 

Molecular biology experiments, performed in our laboratory by E. Fabbretti and N. 

Lamanauskas, provided further evidence in confirmation of the above reported 

electrophysiological findings.  

As shown in Fig. 25A, within the nucleus hypoglossus, immunoreactive cell bodies, cell 

processes and fibers were intensely labeled with anti-α4, α7 and β2 antibodies. In 

general, immunoreactive cells appeared to be more numerous in the caudal end than in 

the rostral end of the nucleus. In each histological slide the number of motoneurons (20-

40 µm somatic diameter) immunoreactive for any nAChR subunit has been counted and 

divided by the area of the nucleus hypoglossus in same slide (Fig. 25B). The density of 

neurons immunoreactive to α4, α7 or β2 resulted to be very similar.  

Anti-α4, α7 and β2 antibody specificity was evaluated performing western 

immunoblotting experiments, using lysates derived from P3 rat brainstem. As shown in 

Fig. 25C (lanes b), single immunoreactive bands corresponding to the expected 

molecular weights of the rat α4, α7, or β2 nAChR subunits were observed. In particular, 

the anti-α4 antibody recognized a band of 70 kDa, the anti-α7 highlighted a band of 57 

kDa, and the anti-β2 antibody gave a band at approximately 50 kDa, in full agreements 

with previous studies performed on rat brain tissue (Arroyo-Jiménez et al., 1999; Jones et 

al., 2001; De Simone et al., 2005). Western blots of comparable amount of protein extracts 

from rat kidney were used as negative control, showing no detectable signal (Fig. 25C, 

lanes c).  
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Fig.25. Immunohistochemistry of nAChRs in the nucleus hypoglossus. (A) Immunostaining 
of brainstem slices (x10 and x20 magnification for top and bottom rows, respectively) with 
antibodies against α4, α7 or β2 nAChR subunits reveals reactivity in HMs. (Scale bar=100 �m). 
(B) Bar charts of the density of immunoreactive cells in the hypoglossal nucleus for each type of 
nAChR subunit. (C) Western immunoblot of α4, α7 or β2 nAChR subunits. Lane “b” refers to 
brainstem samples while lane “c “ refers to kidney samples used as negative control. 
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DISCUSSION 
 

  

1. USE OF HMS TO INVESTIGATE MODULATION OF EXCITATORY 

SYNAPTIC TRANSMISSION 

Previous reports have demonstrated the usefulness of recording from HMs to 

investigate the neuronal properties of integrated input signals (Bellingham and Berger, 

1996; Rekling et al., 2000). Moreover, it has been shown how the efficiency of excitatory 

or inhibitory synaptic transmission could be modulated by activation of certain receptor 

populations. For instance, activation of metabotropic glutamate receptors is known to 

facilitate glutamatergic transmission and to constrain HMs into an oscillatory pattern 

(Sharifullina et al., 2004, 2005). Recently, we have observed that muscarinic receptors for 

ACh strongly depress inhibitory neurotransmission mediated by glycine or GABA 

(Pagnotta et al., 2005), while they facilitate glutamatergic transmission (Bellingham and 

Berger, 1996). 

Recent experiments have indicated that HMs possess functional nAChRs (Chamberlin 

et al., 2002). Furthermore, within the brainstem network impinging upon HMs, there are 

nAChRs that appear to upregulate the activity of inspiratory interneurons projecting 

glutamatergic inputs to HMs (Shao and Feldman, 2005). Hence, rat HMs offer the 

special advantage of studying both network and postsynaptic nAChRs in the same 

preparation. 

Nevertheless, it is unclear if nAChRs can actually modulate glutamatergic synaptic 

transmission directly on HMs and whether such effects can be functionally 

distinguishable from those due to activation of postsynaptic nAChRs of HMs. In fact, 

although it is clearly established that one important action of nAChRs on mammalian 

brain neurons is to favour the release of the excitatory transmitter glutamate (McGehee 

et al., 1995; Gray et al., 1996; Wonnacott, 1997; Mansvelder and McGehee, 2000; Genzen 

and McGehee, 2003; Ge and Dani, 2005; Guo et al., 2005), it remains to be ascertained the 
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relative contribution of pre and postsynaptic nAChRs to HM activity mediated by 

glutamate. 

For these reasons the present study was focused on the functional and pharmacological 

properties of nAChRs, and in particular on how nAChRs can modulate glutamatergic 

transmission, their locus of action, and sensitivity to nicotine, so mimicking any 

potential changes in HM activity induced by exposure to tobacco smoke.  

 

 

2. NACHR S EXPRESSED BY HMS   

HM nAChRs could be rapidly activated by focal application of nicotine, generating 

inward currents insensitive to glutamate, glycine and GABA receptor blockers. 

Although a previous report cast doubt on the expression of α7 receptors by HMs 

(Chamberlin et al., 2002), recent immunocytochemical data, confirmed in our laboratory, 

support the expression of both α4, α7 and β2 subunits by HMs (Dehkordi et al., 2005). 

Moreover, the present study demonstrates that they are also functionally active.  

The pharmacological profile of HM nAChRs was investigated using specific 

antagonists, namely DHβE and MLA, in subtype selective doses. Their combined 

application generated virtually full suppression of nicotine-induced responses, 

suggesting that the vast majority of nAChRs on motoneurons comprised homomeric α7 

and heteromeric α4β2 receptors, in analogy with most other mammalian brain regions 

(Gotti and Clementi, 2004). 

 

 

3. ARE NATIVE NACHR S ENDOGENOUSLY ACTIVATED? 

The brain slice technique facilitates investigations of synaptic transmission, because it 

preserves both healthy neurons and good connections, overcoming other technical 

troubles encountered in “in vivo” experiments, such as mechanical instability, and 

difficulties in modifying the extracellular environment. 
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Anyway, it should also be acknowledged that the brain slice preparation is not ideally 

suited to demonstrate the role of projection neurons: connections are preserved only to 

a certain extent, because of the unavoidable injury occurring during slicing. The size of 

the network contributing to a certain physiological function results inevitably limited, 

but at the same time, the simplified circuitry helps understanding certain basic 

mechanisms under investigation. This condition thus enables to formulate theories to be 

confirmed with “in vivo” experiments. 

These limitations, intrinsic to the use of brain slices, probably are the explanation for the 

impossibility of observing any random release of ACh, in the presence of blockers of 

glutamate, GABAA and glycine receptors, i.e. no spontaneous or electrically evoked 

synaptic events could be detected. Even following inhibition of AChE activity with 

edrophonium, there was no unmasking of cholinergic events. These observations 

suggest that cholinergic synapses on HMs were sparse and/or with low release 

probability (note lack of cholinergic miniature events).  Thus, in the slice preparation, 

cholinergic terminals on HMs (Gilmor et al., 1996; Arvidsson et al., 1997; Schäfer et al., 

1998; Ferreira et al., 2001) had little functional impact on motoneuron membrane 

properties. It is possible that such projections may require activation by direct 

stimulation of neurons located outside the slice preparation. This hypothesis will 

require future experiments with “in vivo” preparations. 

 

However, the administration of edrophonium, to boost endogenous ACh levels, 

significantly reduced the frequency of glutamatergic sPSCs. Because this effect was 

absent in TTX solution, it probably took place at network level. Actually the effect of 

edrophonium application appears to be complex. In fact, raised ACh concentrations, 

beside activation and desensitization of nAChRs on glutamatergic premotoneurons, 

would be expected to activate muscarinic receptors as well, which can modulate HMs 

excitability (Shao and Feldman, 2000; Pagnotta et al., 2005).  

To simplify the resolution of this issue, rather than enhancing the concentration of 

endogenous ACh to study its potential action on glutamatergic transmission, I 

investigated whether blocking nAChRs with selective antagonists could help to reveal 
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any discrete change in excitatory synaptic transmission. It is noteworthy that the 

nicotinic antagonists used in the present study do not have non-selective actions on 

glutamate AMPA receptors (Alkondon et al., 1999; Santos et al., 2002). 

Application of a large dose of DHβE to antagonize the entire population of nAChRs 

decreased the amplitude of sPSCs and ePSCs. Similar, though less intense, effects were 

also found with submicromolar concentrations of DHβE (to selective inhibit the β2 

subunit containing receptor subpopulation), or MLA (to antagonize the α7 subtype). 

Adding up the inhibition produced by each antagonist gave an effect analogous to the 

one produced by a non-selective, large dose of DHβE, indicating that nAChRs 

controlling glutamatergic transmission probably belonged to those two receptor 

subtypes. Their location presumably included some glutamatergic terminals (in view of 

the fact that the size of mPSCs were reduced by such antagonists), as well as network 

premotoneurons.  

Although the precise location of such nAChRs within the brainstem network remains 

still incompletely understood, it is worth considering the possibility that some of them 

were expressed at the level of projecting axons to regulate spike activity and hence 

transmitter release.  

In summary then, the present data suggest a significant contribution by nAChRs 

activated by endogenous ACh to glutamatergic transmission on HMs in the present 

experimental model. Although the multiplicity of glutamatergic synapses and their 

releasing sites make it difficult to perform a quantal analysis of excitatory synaptic 

transmission, further complexity may originate from the role of nAChRs at such 

synapses, thus determining quantal parameters at various sites.  

 

It was somewhat surprising to observe that nAChR blockers decreased the amplitude of 

mPSCs (beside sPSCs and ePSCs) without affecting their frequency. Previous studies 

have shown that, on rat HMs, such events are mediated by AMPA receptors (Essin et 

al., 2002; Sharifullina et al., 2004). At mammalian central synapses the amplitude of 

mPSCs depends on pre and postsynaptic factors. In the case of glutamatergic synapses, 

although co-activation of nAChRs and AMPA receptors can synergistically excite 
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interneurons (Alkondon et al., 2003), there is no evidence for a fast, direct cross-

interaction between these classes of ionotropic receptors on the postsynaptic membrane. 

It seems therefore more probable that nAChR activity can facilitate glutamatergic 

transmission presynaptically. Because nAChR activation mediates influx of Ca2+ at 

presynaptic level (Dajas-Bailador and Wonnacott, 2004), one possibility is that 

augmented levels of this divalent cations led to release of larger pools of glutamate 

(Voronin, 1993, 1994; Llano et al., 2000). Reducing the nAChR contribution with 

selective antagonists might therefore desynchronized vesicle release so that the 

amplitude of the postsynaptically recorded events was correspondingly decreased. 

Indeed, Sharma and Vijayaraghavan (2003) have suggested that nAChR activity 

strongly contribute to the amount of glutamate released at individual synapses of the 

rat hippocampus. 

 

 

4. DESENSITIZATION OF NACHR S ON HMS    

Currents generated by HMs, in response to focal application of nicotine, showed a 

relatively fast desensitization which developed with a time constant of approximately 

200 ms. Anyway, recovery occurred promptly upon nicotine washout, indicating that 

nAChRs could rapidly respond to changes in agonist concentrations. 

In accordance with the pioneering work by Katz and Thesleff (1957) on the frog 

neuromuscular junction, I also observed that, on HMs, even bath application of low 

concentrations of nicotine largely desensitized the currents generated by brief puffer-

delivery of nicotine. For these experiments I used bath concentrations of nicotine 

comparable to those found in the plasma of smokers (Gotti and Clementi, 2004). 

Interestingly, such concentrations of nicotine elicited a transient inward current in a 

minority of cells only, leaving a residual ability of the HM membrane to respond (albeit 

with significantly smaller amplitude) to focal application of large concentrations of 

nicotine. This finding can be related to the existence of multiple desensitized states  

with differential agonist sensitivity (Giniatullin et al., 2005). 
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Administration of nicotine also affected glutamatergic transmission. In fact, a large dose 

of this drug strongly (and reversibly) decreased the amplitude and frequency of sPSCs 

as expected as a consequence of full desensitization of nAChRs at prejunctional level. 

However, smaller (sub-micromolar) concentrations of bath-applied nicotine induced 

more complex effects on synaptic transmission. On the one hand, the frequency of 

sPSCs and mPSCs was significantly reduced with no loss in amplitude; on the other 

hand, ePSCs were depressed, their amplitude fluctuations minimized, and the number 

of failures increased. It seems likely that these effects originated from broad activation 

and subsequent desensitization of nAChRs at network and presynaptic level. To clarify 

this issue, I analyzed the dynamics of changes in synaptic transmission after applying 

very low doses of nicotine, monitoring both sPCSs and ePSCs. As far as sPSCs were 

concerned, there was a transient facilitation of synaptic event frequency (without any 

change in event amplitude) whose occurrence was related to the dose of nicotine. The 

amplitude of ePSCs was transiently enhanced by 0.5 �M nicotine and subsequently 

depressed, whereas 0.1 �M nicotine consistently decreased the ePSC size. 

It is noteworthy that, also in the case of metabotropic glutamate receptor activation, 

there is a differential modulation of spontaneous and electrically evoked events which 

is accounted for by assuming dissimilar receptor distribution (Sharifullina et al., 2004). 

In analogy with this result, the present data obtained with nicotine could be explained 

by assuming a differential distribution of nAChRs between neurons stimulated 

electrically and those spontaneously active. On spontaneously active cells, low doses of 

nicotine first facilitated event frequency, suggesting initial enhancement of glutamate 

release. Lack of change in event amplitude argues against a direct interaction between 

nAChRs activated by nicotine and glutamatergic receptors on the HM membrane. On 

neurons stimulated electrically, nAChRs were more susceptible to desensitization, 

which arose rapidly after activation (with increased response amplitude) causing 

subsequent depression. Very small concentrations (0.1 �M) of nicotine could actually 

induce synaptic depression with no evidence for prior facilitation, probably because 

nAChRs can be desensitized without being activated at low agonist concentrations 
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(Paradiso and Steinbach, 2003). This phenomenon is termed “high affinity 

desensitization” (Giniatullin et al., 2005) and, when occurring with ambient ACh, it can 

shape synaptic transmission efficacy (Lester, 2004).  

 

 

5. A SCHEME TO ACCOUNT FOR THE EFFECTS OF NACHR ACTIVITY 

ON HMS EXCITABILITY  

The complexity of the observed effects with agonist and antagonist applications is not 

easily resolved, even working on a reduced brain preparation. To aid future 

experiments targeted at clarifying the precise mode of action of nAChRs, it might, 

however, be useful to devise a simple scheme, as shown in Fig. 26, which is built on the 

reported experimental observations with the purpose of combining all available data 

into a unifying hypothesis. 

Since there was close analogy in the functional consequence of applying either α7 or β2 

subunit blockers and it was found analogous immunohistochemical expression of these 

subunits, it seems likely that α7 and α4β2 receptors shared similar distribution and 

function at network and HM level. When selective nicotinic blockers were applied in 

the absence of an agonist like nicotine, their effect would be manifested only where 

endogenously released ACh could activate nAChRs. Because the result was depression 

of synaptic transmission (including mPSCs), it seemed feasible that background 

activation of nAChRs, at network and presynaptic levels, facilitated glutamatergic 

currents perhaps by a dual phenomenon, namely membrane depolarization and 

increase in their quantal size. Postsynaptic nAChRs were unavailable to ambient ACh 

because the antagonists did not change the baseline current of HMs. The reason why 

despite histological evidence for cholinergic synapses on HMs (Gilmor et al., 1996; 

Arvidsson et al., 1997; Schäfer et al., 1998; Ferreira et al., 2001), I failed to detect their 

electrophysiological activity remains a matter of conjecture. It is possible that due to the 

postnatal age of the animals the majority of such synapses was still immature. 
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The global contribution by nAChRs to the efficiency of network glutamatergic 

transmission might be inferred from the data with a large, receptor saturating 

concentration of DHβE: the facilitation of glutamatergic transmission amounted to 

about 25 %. From immunohistochemical results and electrophysiological data 

concerning nicotine response block, it is apparent that nAChRs were predominantly 

localized on HMs, a fact that may explain the relatively limited contribution by nAChRs 

to glutamatergic transmission. Analogous inference could not be obtained simply on 

the basis of the experiments with edrophonium, because this AChE inhibitor exerted 

complex effects including boosting ACh actions on muscarinic receptors, the action of 

which could not be prevented by atropine that also blocks a wide variety of nAChRs 

(Zwart and Vijverberg, 1997). When nicotine was applied, a much wider population of 

nAChRs within the slice could be activated. Thus, recruitment of network receptors 

probably depolarized glutamatergic neurons and increased their frequency of release. 

This was manifested via transient facilitation of spontaneous events, which were then 

depressed presumably because of widespread desensitization of nAChRs. Non-linear 

summation of direct and indirect effects subsequent to nAChR activity over a large 

neuronal network could perhaps have cancelled out any changes in event amplitude, 

otherwise observed when nicotinic antagonists were applied.  Synaptic currents evoked 

by focal electrical pulses applied to the reticular formation region were probably 

monosynaptic (see Essin et al., 2002; Sharifullina et al., 2004), thus requiring activation of 

a much smaller circuit that the one responsible for spontaneous activity. In this case, the 

action of nicotine was first facilitatory and then depressant when 0.5 �M was applied, 

or outright inhibitory when 0.1 �M was used. Because the latter dose is below threshold 

for activating α4β2 or α7 receptors (Chavez-Noriega et al., 1997), it is suggested that 

depression was due to high affinity desensitization proceeding from bound-closed 

receptors (Giniatullin et al., 2005). 
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FIG. 26. Schematic diagram to account for the action of nAChRs on glutamatergic 
transmission in the nucleus hypoglossus. Glutamatergic premotoneurons (grey) impinging 
upon a HM (orange, under patch clamp condition) release glutamate (red dots) from 
endogenous pools following either electrical stimulation (see electrode) or spontaneously via 
local circuits. Glutamate receptors are indicated as grey ellipsoids. Because of the sparse 
cholinergic afferents (black) presumed to have been largely severed during slicing, cholinergic 
synaptic events are not detectable on HM. However, background release of ACh (open 
triangles) takes place and facilitates glutamatergic transmission mainly by acting on presynaptic 
terminals. HM is endowed with extrasynaptic nAChRs (of at least two subtypes) which are 
readily activated and then desensitized by nicotine (green diamonds). nAChRs are also 
expressed by glutamatergic premotoneurons at axonal or somatic level. Such network receptors, 
normally not accessible to endogenous ACh, unless AChE is inhibited, are activated and 
desensitized by nicotine with dual facilitation/depression of excitatory synaptic transmission. 
Note that very small concentrations of nicotine are likely to evoke nAChR desensitization 
without prior application (Paradiso and Steinbach, 2003).  
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6. FUNCTIONAL IMPLICATIONS 

The observation of strong responses mediated by nAChRs on HMs together with 

immunohistochemical demonstration of such receptors concur to suggest that the 

excitability of HMs can be powerfully upregulated by cholinergic agonists, including 

nicotine. Although nicotine is known to stimulate respiration via an action on 

respiratory brainstem neurons (Shao and Feldman, 2001, 2002), the present data show 

that direct stimulation by nicotine of nAChRs on HMs, which are phasically activated 

during inspiration, could contribute to changes in the respiratory network output. This 

phenomenon would be particularly important when considering the effects of tobacco 

smoke because even small doses of nicotine evoked clear alterations in excitatory 

synaptic transmission. In such a case nicotine would generate a more widespread action 

involving brainstem circuits and modulating their efficiency. These effects may have 

dramatic consequences during a crucial period such as development, resulting in 

impaired network connections and altered HMs responsiveness. 

Finally, the on-going contribution by nAChRs to glutamatergic transmission reveals an 

additional mechanism for interaction between distinct transmitters at similar synaptic 

sites. In fact, rather than co-release of diverse transmitters like in the case of glycine and 

GABA (Jonas et al., 1998), the release of the excitatory transmitter glutamate would be 

subjected to finely tuned, continuous control by ACh, making this process amenable to 

gain-setting via selective modulation of cholinergic receptors. In this context it is 

interesting that, in the hippocampus, activation of nAChRs by nicotine can up or down-

regulate, in a persistent fashion, the activity of glutamatergic synapses with presumably 

functional consequences for memory storage at molecular level (Ge and Dani, 2005).   
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