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1 Preface 

 
Animals are continually exposed to the changes in their environment, which they must 

detect through sensory receptors. Mechanical or chemical stimulation, heat, light, are just some 

of the inputs that change. The brain is able, by highly complex neural mechanisms, to integrate 

the inputs and generate appropriate responses. The output commands represent decisions made 

by the brain and transmitted to effector cells, so that life can continue. From invertebrates to 

higher vertebrates, all different forms of life use similar types of information processing and 

signal integration to survive. The numbers of cells increase with evolution, but the principles 

remain the same, or at least appear to do so. To understand more information processing and 

integration, we have chosen to investigate the leech nervous system. For these experiments we 

have decided to study the role of single identified nerve cells of the leech in information 

processing and integration, because previous studies have provided much detailed information 

about their morphological, physiological and functional properties. 

To what extent is it useful to understand leech neurons? While Nietzche in “Also sprach 

Zarathustra” said that it was a worthy ambition to be a master of the leech’s brain, others might 

be satisfied only by understanding the human brain.  

Nevertheless, nature with all its vast diversity does exist even if we do not 

understand it. If deepening our understanding makes us admire it even more, then science 

is art, the art of celebrating beauty, the beauty of perfection. 
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                                                       Abstract 

 

  The aim of this project was to study how and where action potentials arise and propagate 

in the arborizations of identified neurons in the central nervous system of the leech. A major aim 

was to assess whether the entry of calcium is localized to distinct regions of the cells and to 

determine whether there are significant differences in calcium channel distribution between 

different types of neurons. 

A combination of electrophysiological techniques, optical recording and image analysis 

was used to approach these problems. I developed an experimental set-up for optical recordings 

of calcium transients by a fast CCD-camera. By use of calcium sensitive dyes I analysed in detail 

optical responses to electrical stimulation of neurons and the density of calcium channels, 

spatially and temporarily, in different neural cell types, including mechanosensory neurons and 

motoneurons. Fluorescence changes (∆F/F) of the membrane impermeable calcium indicator 

Oregon Green were measured. The dye was pressure injected into the soma of neurons under 

investigation. ∆F/F caused by a single action potential (AP) in mechanosensory neurons had 

approximately the same amplitude and time course in the soma and in distal processes. By 

contrast, in other neurons such as the Anterior Pagoda neuron, the Annulus Erector motoneuron, 

the L motoneuron and other motoneurons, APs evoked by passing depolarizing current in the 

soma produced much larger fluorescence changes in distal processes than in the soma. When 

APs were evoked by stimulating one distal axon through the root, ∆F/F was large in all distal 

processes, but very small in the soma. These results confirm and extend previous 

electrophysiological data which demonstrate that the soma of a motoneuron in the leech, as in 

many other invertebrates, does not generate action potentials (Stuart, 1970; Muller and Nicholls, 
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1974; Goodman and Heitler, 1979). Impulses recorded in the soma are normally only a few 

millivolts in amplitude. The AP of a motoneuron propagates to muscles of the body wall along 

segmental nerves that emerge from ganglia. The site of impulse initiation has been found to be at 

a distance from the soma but within the ganglion (Melinek and Muller, 1996; Gu et al. 1991). 

Our experiments with fluorescent transients are in accord with the concept that they result from 

calcium entry through voltage sensitive channels. Thus at sites where APs are found to be large, 

the calcium signals are large (as in peripheral axons), while at sites where spikes are small, (as in 

motoneuronal cell bodies) signals were weak, or non existent. 

Our results show a clear compartmentalization of calcium dynamics in leech neurons in 

which the soma does not make propagating action potentials. Such cells represent interneurons as 

well as motoneurons and constitute the vast majority of ganglion cells. In such cells, although the 

soma is not excitable it can affect information processing by modulating the sites of origin and 

conduction of AP propagation in distal excitable processes.  
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1 Introduction and background 

 

Understanding the biophysical properties of single neurons and how they process 

information is fundamental for understanding complex integrative mechanisms of the brain. 

Early classical models of neurons were based on the assumption that dendrites behave as purely 

passive electrical elements. Recent studies have however shown that active regional electrical 

properties of individual neurones are extraordinarily complex and dynamic and that functional 

organisation of a neuron depends on variable distributions of voltage-gated channels. The 

principles of information processing in single neurons can only be determined by studying 

specific neuronal types in different experimental preparations. 

Many studies have been carried out using invertebrate neurons, primarily because of the 

ease with which their intrinsic properties can be analysed and related to animal behaviour. One 

can study how the brain of an invertebrate, which is made up of ganglia with their limited 

numbers of cells, generates all its movements, avoidance, hesitations, feeding, mating, and 

sensations. The remarkably stereotyped morphological appearance, together with the large size 

of the neuron cell bodies, make segmental ganglia of the leech ideal preparations for identifying 

the functions of individual cells and for studying their physiological properties (Muller et al, 

1981). 

Since biophysical properties of neurons in mammals and invertebrates are rather similar, 

the understanding of information processing in simple nervous systems provides a basis for 

unravelling mechanisms used by the brains of higher animals. 

 In my PhD project, I have used a combination of optical and intracellular recording and 

image analysis to investigate calcium dynamics and compartmentalization in mechanosensory 
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neurons and motoneurons of leech Hirudo medicinalis. For the analysis of problems concerned 

with signalling, optical recording techniques using appropriate indicator dyes can provide a 

sensitive assay with high temporal and spatial resolution. Optical responses to electrical 

stimulation of a neuron were studied in detail, spatially and temporarily, in different neural cell 

types. In this way, I have indirectly investigated the distribution of calcium transients and 

compartmentalisation in these neuronal types. 

For studying signal integration, AP initiation and propagation by using optical 

techniques, which have good spatial resolution, an obvious choice would be the use of the 

voltage-sensitive dyes. We have some preliminary results with these dyes and they will be 

discussed in chapter 5. A problem with these dyes however is low signal to noise ratio, and as a 

result, signals are often very small and masked by noise. 

In this introductory chapter I provide the rationale and the background of my thesis. Basic 

information about the neurobiology of the leech is presented in section 1.1. In section 1.2 the 

issue of functional organisation of neural cell is reviewed with the focus on calcium dynamics. 

Important publications on calcium dynamics and electrical compartmentalization in the leech are 

reviewed in section 1.3. The last section of this chapter describes the specific aims of my Ph.D. 

thesis. 

 

                   1.1   The central nervous system of the leech 
 

1.1.1   Structure of the central nervous system of the leech 

 
Leeches are segmental worms belonging to the class of Hirudinea, which includes 

about 650 species, related to the class of the earthworms (Oligochaeta). Unlike earthworms, 
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leeches have a fixed number of segments, 32, plus a non-segmental prostomium. The species 

Hirudo medicinalis, also called European medicinal leech, on which all the experiments of my 

thesis have been performed, will be described here. 

The leech is a segmented animal: its body is composed of a fixed number of similar 

segments which are linked and coordinated one to another.  The adult leech Hirudo medicinalis 

consists of 4 partially fused segments in the head region, 21 segments along the body and 7 

modified segments in the posterior region, forming the tail (Muller et al., 1981). The outer 

surface of the leech consists of 102 annuli (rings), each segment consisting of 5 annuli except at 

the head and the tail (see Fig.1.1).   

The structure of the CNS reflects this segmentation. The total number of neurons is about 

15.000-20.000, and many of these neurons are organised in a repetitive pattern in the segmental 

ganglia. As illustrated in Fig. 1.1A, the leech CNS lies within the ventral blood sinus and 

consists of a ventral nerve cord composed of a chain of segmental ganglia linked one to another 

by bundles of axons (connectives). The 21 segmental ganglia (G1-G21) are numbered 

sequentially from the anterior to the posterior region and are almost identical, except for G5 and 

G6, which innervate the sexual organs. The first 4 ganglia in the head region (H1-H4) are fused 

and modified to form the brain, while the last 7 ganglia (T1-T7) are fused in the specialized tail 

brain. 
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Figure 1.1 The leech central nervous system. A: Schematic diagram of the leech showing the segmentation and the 

two specialized regions of anterior and posterior suckers. The CNS consists of a ventral nerve cord composed of a 

chain of 21 segmental ganglia and two more specialized head and tail ganglia, linked one to the other by bundles of 

axons (connectives). Segments are indicated, composed of five annuli, the central one of which contains sensillae, 

specific sensory organs. B: Cross-section of the leech showing its anatomy. The body wall is made-up of three 

layers of muscles (circular, oblique and longitudinal), dorso-ventral muscle fibers run from the dorsal to the ventral 

side of the animal. The nerve cord lies in the ventral part of the body and it is surrounded by the ventral blood sinus. 

Ganglia innervate the body wall through the anterior and posterior roots. The posterior root bifurcates near the 

ganglion and  the dorsal branch crosses the body ventro-dorsally to innervate the dorsal region. The other roots 

innervate lateral and ventral regions. 

(From: Nicholls et al., 1992) 
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The leech performs its spectrum of behaviours using four major types of muscles 

(Fig.1.1B). From the inner to the outer part of the body wall, three layers of muscle fibers are 

located: longitudinal, oblique and circular, respectively. These muscles form the major portion of 

the body wall. Longitudinal muscle contraction shortens the animal, while circular muscle 

contraction elongates it. The oblique muscles are responsible for twist movements of the body. 

Dorso-ventral muscle fibbers run between the dorsal and ventral parts of the body wall and their 

contraction flattens the animal. A further kind of muscles, the annulus erectors (not shown in 

Fig.1.1B) are composed of short longitudinal fibers that traverse a single annulus just bellow the 

epidermis. Contraction of the erectors raises the annuli, forming a series of sharp ridges on the 

epidermis. 

1.1.2 The segmental ganglion 

 
The leech segmental ganglion is bilaterally symmetrical, about 0.6 mm in diametar. It 

contains the cell bodies of about 200 bilateral pairs of neurons, as well as a few unpaired neurons 

(Macagno, 1981). Its aspect and structure are conserved from segment to segment and from 

animal to animal; indeed the same neurons can be identified in each ganglion by their positions, 

dimensions and functions. All neurones in leech ganglia are monopolar. The cell bodies are 

contained in six separated regions (packets): a pair of anterolateral packets, a pair of 

posterolateral packets and a pair of ventromedial packets, each enveloped by one giant glial cell. 

The connections of the cells are made in the central neuropil, a special region in which synapses 

are arranged, surrounded by two giant glial cells (Muller et al., 1981); two other glial cells form 

the nuclei of the connective nerves. 
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The parallel pair of connectives extend anteriorly and posteriorly from the ganglion (there 

is actually a third, small, medial connective called Faivre`s nerve). Each of the segmental ganglia 

innervates a well defined segment of the body wall by way of two pairs of nerves (roots) arising 

symmetrically from the left and right sides (Fig 1.1B). The four roots are defined as anterior and 

posterior, left and right. The two posterior roots bifurcate near the ganglion, each one giving rise 

to two branches called posterior-posterior nerves (PP) and dorsal posterior nerve (DP). Through 

these nerves the ganglion innervates the whole segment. DP nerves innervate the dorsal part of 

the animal, while the anterior and PP nerves innervate the territory corresponding to the lateral 

and ventral part of the animal. 

The neurons in the leech CNS are relative large (10-60 µm). They can be classified in 

three categories: sensory neurons, interneurons and motoneurons. Sensory neurons directly 

translate a physical input coming from the environment into electrical signals, and thereby 

transduce a physical quantity like pressure, light, concentration into a change of electrical 

properties (Nicholls and Baylor, 1968; Blackshaw, 1981; Blackshaw et al., 1982; Peterson, 1983; 

Peterson, 1984; Blackshaw, 1993); sensory neurons also send axons through the connectives. 

The category of interneurons comprises all neurons whose arborisation does not exit the CNS but 

can run to neighboring ganglia through the connectives. Motoneurons are responsible for the 

excitation or the inhibition of muscles (Stuart, 1970; Mason and Kristan, 1982). Motoneurons 

and sensory neurons project from the ganglion to the periphery through the roots. 

The neuronal cell bodies in the ganglion are located on the dorsal and the ventral 

surfaces. The cell bodies of all mechanosensory neurons lie in the ventral side, while those of 

motoneurons mainly lie in the dorsal side, with few exceptions (see Fig.1.2 and Fig.1.6). 
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1.1.3 Propeties of mechanosensory neurons with the focus on morphology 

 
The identification of cells responsive to mechanical stimulation was carried out by 

Nicholls and Baylor (1968), who found three kinds of neurons responding to three different 

mechanosensory modalities (see Fig.1.2)  In each hemiganglion are three T (touch) cells, which 

respond to light mechanical stimulus applied to the skin, two P (pressure) cells, which respond to 

stronger stimuli, and two N (nociceptive) cells, which respond to damaging stimulation of the 

skin, with a threshold more than three times higher than the P cells ( Nicholls and Baylor, 1968; 

Blackshaw et al., 1982). Studies have demonstrated that N cells also exhibit functional properties 

similar to those of polymodal nociceptive neurons in mammals (Nicholls and Baylor, 1968; 

Pastor et al., 1996), i.e. they are not simple mechanosensory cells but respond to different 

sensory modalities of noxious stimulus like high temperature and irritant chemical substances. 

The intracellular recordings performed from the mechanosensory neurons cell bodies reveal APs 

with an amplitude larger than 50 mV (Nicholls and Baylor, 1968). 
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Figure1.2   Cell body map of the ventral aspect of a midbody segmental ganglion of H.medicinalis, showing the 

positions of the different kinds of mechanosensory cells (T, P and N), Anterior Pagoda (AP) and Annulus Erector 

(AE) motoneuron cells. (From: Muller et al., 1981) 

 

 Mechanosensory neurons are characterised by a main process arising from the cell body 

that gives rise to several (primary) branches that leave the ganglion on the ipsilateral side by the 

roots and connectives (see Fig.1.3). Branches that enter the roots are known from physiological 

studies to innervate the skin and body wall while those in the connectives reach adjacent ganglia 

(Baylor and Nicholls, 1969; Nicholls and Baylor, 1968; Stuart, 1970) to innervate the roots of 

adjacent ganglia. The finer (secondary) processes with varicosities arise from the primary 

branches and the main process and extend in each ganglion into the region called neuropil, the 

site in which synapses between neurons are concentrated. Varicosities were shown by Muller and 

McMahan, 1976, to be the locations of chemical synaptic sites, both pre- and postsynaptic, in 

these cells. 
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Figure 1.3   Secondary processes of touch (T), pressure (P) and nociceptive (N) cells arise from the main process 

and its primary branches: most are directed medially. The distribution of processes and the branching pattern 

characterises each of the three cell types. Drawn with camera lucida from cells injected with HRP and reacted with 

benzidine. M, midline. (From: Muller and McMahan, 1976) 
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The anatomical organisation of axon branches reflects the results obtained for the 

receptive fields (Muller and Mcmahan, 1976; Blackshaw, 1981; Blackshaw et al., 1982). The 

mechanosensory cells in each ganglion innervate a well defined territory of the skin in the 

corresponding segment (Nicholls and Baylor, 1968; Blackshaw, 1981; Blackshaw et al., 1982). 

For example the three T cells respond respectively to stimulation of the ventral (Tv), lateral (Tl) 

and dorsal (Td) region of the segment. Similarly, the two P cells respond to ventral (Pv) or to 

dorsal (Pd) pressure stimuli. For the two N cells (Nm, Nl) the receptive fields in the same 

ganglion are approximately coincident and span the entire hemisegment from dorsal to ventral 

midline. From the study of the anatomy and the physiology of mechanosensory neurons, their 

receptive fields appear to be composed of several contiguous sub-fields (see Fig.1.4) innervated 

by separate branches of the same cell (Nicholls and Baylor, 1968) passing through the roots of 

their ganglion and those of adjacent ganglia (Yau, 1976). On the other hand, by comparing the 

extent of receptive fields of different cells responsible for the same sensory modality in a single 

ganglion or in two adjacent ones, a considerable overlapping between receptive fields has been 

observed, as shown in Fig 1.4 (Nicholls and Baylor, 1968). 

 A B 
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Figure 1.4 Organization of the receptive fields. A: Boundaries of the receptive fields of three T cells in the same 

ganglion overlap. The cells are drawn in the same color as their receptive fields. Tv is represented in red, Tl in blue, 

Td in green. B: Adjacent subfields (I II III IV V) of a Tl cell, innervated by separated branches, do not overlap 

 
The synaptic regions of all the mechanosensory neurons are situated mainly on secondary 

processes. Each synaptic region contacts a multiplicity of postsynaptic processes and each 

synaptic region receives one or more presynaptic axon terminals (Muller and McMahan, 1976). 

Examples where inputs directly contact regions of output, as found in the leech, occur in several 

regions of vertebrate CNS, including the spinal cord, retina and thalamus (Dowling, 1970; 

Lieberman and Webster, 1974) and in other invertebrates (Gray and Young, 1964; Dowling and 

Chappell, 1972). 

Each mechanosensory neuron type has a distinctive mode of action potential firing and 

action potential shape. The traces in Fig.1.5 show the response of the cell types to depolarising 

current pulses. The impulses in the cell body of T cells are always similar but are smaller and 

briefer than those of P or N cells; N cells are distinguished by their large and long-duration 

afterhyperpolarisation. During maintained pressure, the T cell is rapidly adapting and usually 

ceases within a fraction of a second, the P cell discharge is slowly adapting and lasts 20 sec or 

more. N cells are slowly adapting and often continue to fire after the stimulus has been removed. 

The frequency of firing of all three mechanosensory neuron types is graded with the extent and 

degree of the indentation while each cell type needs different intensity of mechanical stimuli in 

order to fire, which is expressed in the name of the cell type. The amplitude of the action 

potential is more than 50 mV; mechanosensory neurons have excitable somata. 
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Figure 1.5 The intracellular recording of T, P and N action potentials elicited by passing depolarising current 

through the microelectrode (From: Nicholls and Baylor, 1968)  

 

1.1.4 Properties of motoneurons with the focus on morphology 

 
In each hemiganglion there are 21 excitatory and 7 inhibitory identified motoneurons 

(Nicholls and Baylor, 1968; Stuart, 1970; Ort et al., 1974; Stent et al., 1978; Mason and Kristan, 

1982; Norris and Calabrese, 1987; Baader, 1997). When the ganglion is observed in transmitted 

light, 25 motoneurons are visible on the dorsal side and 3 are visible on the ventral side (see 

Fig.1.2 and Fig.1.6). All motoneurons are present as pairs on the left and right hemiganglia.  
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Figure 1.6    Cell body map of the dorsal aspect of a midbody segmental ganglion of H.medicinalis. (From: Muller 

et al., 1981)  

 

With the exception of the Annulus Erector (AE), which erects the skin at the center of the 

annuli, and the heart excitor (HE), which supplies the lateral heart tubes, they are responsible for 

leech locomotion and movement. They can be divided into four groups, according to the muscle 

fibers they innervate: longitudinal, circular, oblique and dorsoventral. With only the exception of 

cell 4, a ventral longitudinal excitor, and cell 117, a dorsoventral excitor, all motoneurons exit 

the ganglion via the contralateral roots to innervate the corresponding body wall (Ort et al., 

1974). The main process of each motor neuron crosses the midline and bifurcates in the 

contralateral neuropil, forming two primary branches that enter the roots on that side. Numerous 

highly branched secondary processes radiate from the main process and its primary branches and 

extend within the neuropil (see Fig.1.7 and Fig.1.8). The fields of innervation of motoneurons 

extend longitudinally into adjacent body segments (Blackshaw, 1981) and frequently overlap 
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with those of neurons supplying the same muscle group. The motoneurons probably innervate 

muscle fibers by many terminals along their length, as in crustacea (Stuart, 1970). 

Unlike in the mechanosensory neurons, the soma and the proximal axonal regions of 

leech motoneurons are unexcitable. The action potentials arise at a site distant from the soma, 

near the primary bifurcation of the axon (Gu et al., 1991). For this reason, only small action 

potentials (few mV in amplitude), which are the results of the passive propagation of the action 

potential from the spike generation to the soma, are visible in intracellular recordings performed 

from the motoneuron cell bodies (Stuart, 1970).  

Motoneurons are postsynaptic and receive input on short branches and spines, which are 

distributed along both primary and secondary processes (Muller and MacMahan, 1976). 

 

 

 

Figure 1.7 Distribution of AP neurone processes within the ganglion. The main process crosses the ganglion and 

bifurcates to enter the contralateral roots. The outline of the ganglion is indicated by the line drawing. (From: 

Wessel et al., 1999) 
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Figure 1.8 Distribution of L and AE motoneurone processes within the ganglion. In both cases the main process 

crosses the ganglion and bifurcates to enter the contralateral roots. The pattern of secondary process is distinctive 

and typical for each neurone type. (From: Muller and McMahan, 1976) 

 

There is good evidence that the leech longitudinal nerve muscle junction is cholinergic 

(Gardner and Walker, 1982) and more generally that excitatory motoneurons synthesize, 

accumulate and release acetylcholine (Norris and Calabrese, 1987). The leech inhibitory 

motoneurons are thought to be GABAergic (Blackshaw and Nicholls, 1995), since the 

longitudinal motoneurons take up and synthesise GABA from the precursor glutamate and 

further, central and peripheral inhibitory synaptic effects are mimicked by GABA(Cline 351-58). 
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1.2   Functional organisation and calcium dynamics 

1.2.1   Functional organisation of the neuron 

 

The primary function of neurons is information transfer. This includes both intracellular 

signalling, from one part of a neuron to another of the same cell, and intercellular signalling, 

from one neuron to another or to a muscle cell (Nicholls et al, 2001; Levitan and Kaczmarek, 

1997). 

The language of intracellular signalling in nerve cells is primarily electrical. There is a 

voltage difference across the plasma membrane, and information is carried from one part of the 

cell to another in the form of action potentials, large and rapidly reversible fluctuations in the 

membrane potential that propagate along the axon. The electrical activity of nerve cells depends 

on the movement of the charge, carried by small inorganic ions, across channels in the plasma 

membrane. Electrical signalling is based on the opening of the voltage-sensitive ion channels, 

which are the class of specialised membrane proteins that span the plasma membrane forming 

hydrophilic pores through which ions flow from one side of the membrane to the other down 

their electrochemical gradient. Pumps and carriers play only a supporting role in electrical 

signalling in most nerve cells. 

 The firing pattern of a neuron can be seen as a play of interactions among the currents 

generated by the different kinds of ion channels in its membrane. The activities of the sodium 

and potassium channels responsible for the axonal action potential are dependent on voltage. 

Voltage clamp studies have provided a detailed understanding of the sequence of changes in 

channel activity that give rise to action potentials. 
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1.2.2 Calcium dynamics in neurons 

 

  Calcium ions may enter the cytosol through voltage-gated channels (for review, see 

McCleskey, 1994; Dolphin, 1996). This may contribute to the modulation of electrical excitation 

and propagation of APs, and to different modes of synaptic and nonsynaptic processes. Calcium 

channels are found in all excitable cells. They play an important electrical and transducing role. 

Most neurons exhibit a substantial voltage-dependent calcium current, which in some 

cases is responsible for much of the depolarisation during the rising phase of the action potential 

(Duch and Levin, 2000). Calcium channels are distributed in a non-uniform manner over the 

surfaces of neurons. For example, presynaptic motor nerve terminals (Katz and Miledi, 1965; 

Augustine et al.1989; Stanley and Goping 1991; Cohen et al. 1991) and dendrites of cerebellar 

Purkinje cells (Ross and Werman 1986; Hockberger et al.1989) show higher densities than their 

axons or cell bodies. Little is known about the mechanisms that determine how calcium channels 

are placed in the neuronal membrane. 

In dendritic processes of neurons, calcium channels contribute electrically to summing 

and spreading synaptic inputs that will drive the action-potential encoding region of the proximal 

axon (Llinas and Sugimori, 1980; Llinas and Yarom, 1981). In nerve cell bodies of molluscs, 

annelids, arthropods, amphibians, birds and mammals, it was demonstrated that calcium channels 

coexist with sodium channels and that make a partial contribution to electrical excitability (see 

Hille, 1992, and references therein). Ca2+ transients induced by single APs have been studied in 

detail in mammalian pyramidal neurons, showing Ca2+ signals in dendrites, and in particular in 

presynaptic terminals (Schiller et al, 1995; Beier and Barish, 2000). Axonal calcium signalling 
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due to single APs has been studied in rat cerebellar Purkinje neurons, showing only small 

calcium transients in the axon, while calcium influx of much higher amplitude was found in the 

dendrites and the submembrane region of the cell body (Eilers et al. 1995; Callewaert et al,. 

1996). Less is known about the spatial distribution of AP induced calcium transients in 

invertebrate neurons. One of the first studies showing calcium transients accompanying APs was 

performed in the cell bodies of Aplysia neurons (Gorman and Thomas, 1978). 

Calcium channels are of particular interest because calcium is far more than simply a 

charge carrier across the plasma membrane. The role of calcium in contributing to action 

potentials and other aspects of neural electrical activity can be secondary to the intracellular 

messenger action of calcium. Calcium channels are the only link to transduce depolarisation into 

all the nonelectrical activities that are controlled by excitation. Without calcium channels our 

nervous system would have no outputs (Hille, 1992). Calcium that enters the cell interacts with 

calcium binding proteins to regulate a variety of intracellular enzymes. Furthermore, intracellular 

calcium ion regulates the gating of several types of ion channel, and can even feed back and 

participate in inactivation of one of its own channels. In addition, an essential characteristic of 

neuronal signalling, the release of chemical neurotransmitters at synapses, is controlled directly 

by intracellular calcium. In this sense calcium can be thought of as the transducer of an electrical 

signal, depolarisation, into chemical signals inside the cell.  

Calcium channels are found at high density only in nerve terminals close to release sites. 

Perfectly selective blocking agents for calcium channels are rare and substitution of other cations 

for external calcium alters the gating characteristics of almost all known channels. 

In a resting cell the cytoplasmic free calcium level is held extremely low. The normal 

resting Ca2+ concentration lies in the range 20 to 300 nm in living cells. Internal K+ ions are 6 to 
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10 times more concentrated than internal Ca2+ ions. Quite in contrast to the situation with Na+ or 

K+ ions, the normal Ca2+ concentration is so low that it may be increased dramatically during a 

single depolarising response in a cell with Ca-channels. 

Multiple channel types can coexist in the same cell (Kostyuk 1990; Tsien and Tsien, 

1990). A striking difference between classes of calcium channels is their sensitivity to 

depolarisation. LVA- low voltage activated calcium channels activate with small depolarisation 

and HVA-high voltage activated calcium channels require high depolarisation.  

Since 1973, when it was found that calcium influenced a potassium conductance in leech 

neurons (Jansen and Nicholls 635-65), and a year later when it was discovered that calcium ions 

activate a class of K+ channels when injected into molluscan neurons, calcium dependent K+ 

channels have been found in many animal preparations. Evidence for Ca2+-activated K+ channels 

in dendrites has been found in rat Purkinje neurons (Khodakhan and Ogden, 1993), in rat 

hipocampal pyramidal neurons (Andreasen and Lambert, 1995; Sah and Bekkers, 1996) and in 

rat neocortical pyramidal neurons (Schwindt and Crill, 1997). 

 

1.3    Calcium dynamics in leech neurons 

 

An early study of calcium distribution in identified leech neurons in culture by using the 

optical recording with a photodiode array was done by Ross et al. 1987, in which calcium 

transients were recorded from the soma of all mechanosensory neurons and Retzius cells.  

Different size and kinetics of the AP-induced Ca transients in the axons and dendrites of 

the leech Retzius neuron are described by Beck et al., 2001. By using the voltage-sensitive dyes, 
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Fromherz and Vetter (1991) found APs pervaded the neurites of cultured Retzius cell without 

significant change of amplitude but with enhanced pulse width. 

The Anterior Pagoda neurons express Ca-activated K conductances that are present in the 

neurites and that regulate electrical signal propagation (Wessel et al. 1999). There is preliminary 

evidence for Ca-activated K channels in somatic membrane patches of the Anterior Pagoda 

neuron (Pellegrini et al. 1989) as well as in somata of other leech neurons (Jansen and Nicholls, 

1973). Evidence for calcium current in the Anterior Pagoda cell has been reported (Stewart et al., 

1989). The spike initiation site is far from the soma in Anterior Pagoda neurons (Melinek and 

Muller, 1996). 

The primary axon bifurcation of the Annulus Erector motoneuron is the site of integration 

of synaptic potentials that spread passively from both sides of the ganglion (Gu et al., 1991).  

 

1.4 Aim of the work 

 

We have studied the active properties of leech mechanosensory neurons and motoneurons by 

using a combination of calcium imaging and intracellular recordings. The specific question 

addressed in the present study was whether these neurons express a high density of calcium 

channels and whether the density of the channels is different in specific regions of the neuronal 

arborisation. We found that for mechanosensory neurons the density of calcium channels appears 

to be the same in the cell body and in processes, while in motoneurons the density of calcium 

channels appears to be much higher in the region of the first major bifurcation and distally from 

it than in the region of the cell body. The results obtained by studying the mechanosensory 
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neurons are presented in Chapter 3, and in Chapter 4 are presented the results obtained by 

studying motoneurons. 
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2   Materials and methods 

 

The experiments described in this thesis were performed in the leech CNS. In this chapter 

the experimental procedures and methods of analysis are explained.  

 

2.1     Animals, preparations and solutions 

 

2.1.1    Animals and preparations 

 

Specimens of Hirudo medicinalis were obtain from a commercial supplier (Ricarimpex, 

Eysines, France) and kept at 5 oC in tap water dechlorinated by aeration for 24 hours. The 

leeches were dissected under a dissecting microscope. 

An isolated ganglion of the leech was used. A single midbody ganglion was dissected 

from the leech CNS by making an incision along the dorsal midline of the leech body. It was 

then pinned through the connectives on a Sylgard-coated dish. Having a well-fixed ganglion is 

important both for intracellular penetration and optical recording; even the small mechanical 

movements can disturb optical recording. In experiments in which the cells were stimulated with 

the extracellular electrodes through the roots, the ganglion was pinned through the connectives 

and the other pair of roots. In experiments in which cells were stimulated with the intracellular 

electrodes, the ganglion was pinned through the connectives and both pairs of roots. The 

connective tissue sheath over the neuronal soma was occasionally removed with fine tweezers in 
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order to facilitate intracellular penetration and optical recording. Since mechanosensory neurons 

are visible from the ventral side of the ganglion (see Fig.1.2), ventral side up configuration was 

used for impaling and stimulating mechanosensory neurons in order to evoke action potentials in 

them and record optically from them. On the other hand, since most motoneurons are contained 

in the dorsal side of the ganglion (see Fig.1.6), dorsal side up configuration was used for 

impaling and stimulating motoneurons. Sensory neurons and motoneurons were identified by the 

size and location of their cell bodies and, during intracellular recording, by their characteristic 

firing patterns and impulse size and shape (Nichols and Baylor, 1968; Stuart, 1970). 

 

2.1.2    Solutions 

 

Preparations were kept in a Sylgard-coated dish at room temperature (20-24 oC). During 

dissection and during experiments, the preparations were bathed in a Ringer solution with the 

following composition in mM: 115 NaCl, 1.8 CaCl2, 4 KCl, 12 glucose, and 10mM Tris maleate 

buffered to pH 7.4 with NaOH (Muller et al., 1981). 

 

 

                              2.2    Electrophysiology 

2.2.1    Intracellular recordings 

 

The electrical activity of neurons was monitored by intracellular recordings (Muller et al., 

1981). Intracellular recordings from the soma of selected neurons were obtained by impaling 
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those neurons with sharp electrodes. The electrodes were pulled (P-97 puller, Sutter Instruments) 

using thin glass capillaries (TW 1B100F-4, WPI). Electrodes had a resistance between 15 and 50 

MΩ. Potassium acetate 4.0 M solution was used to fill the electrodes (Muller et al., 1981). The 

electrode holders, including head stage, were mounted on micromanipulators (Narishige, Japan). 

The intracellular recordings were performed using an Axoclamp-2b amplifier (Axon 

Instruments, Foster City, CA) and RedShirtImaging software. 

The sensory input was mimicked by evoking action potentials in mechanosensory 

neurons by passing depolarising current pulses through the electrode into the cell bodies. Action 

potentials were evoked similarly in the motoneurons. Stimulation was controlled by the 

RedShirtImaging software through the AxoClamp 2B. 

 

2.2.2    Extracellular recordings 

 

Suction pipettes were used for extracellular stimulation of nerve roots emerging from the 

segmental ganglion and to analyze calcium dynamics initiated by the stimulation of distal 

processes (see Fig.4.4). The pipettes were obtained by pulling (P-97 Flaming/Brown 

micaropipette puller, Sutter Instruments) thick walled glass capillaries (TW 100-4, WPI). After 

pulling, the capillaries were cut on the tip and shaped with the microforge, in order to match the 

section diameter of the root we had decided to stimulate. The pipets were positioned near roots 

using micromanipulators (Narishige, Japan). Roots were stimulated by applying a current pulse 

of 0.2 s with an intensity able to evoke a brief discharge of at least three APs. The posterior or 

the anterior root was stimulated antidromically while a suction electrode on the other root was 

used for recording. Electrodes were connected to the RedShirtImaging interface through a 
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stimulator (Axon Instruments, Isolator-10 stimulus isolation unit) and the stimulation was 

controlled by the RedShirtImaging software. 

Extracellular voltage signals were recorded using a homemade 8-channel amplifier, 

whose head-stage had a bandwidth of 200-2000 Hz and a gain of 103. The second stage of 

amplification was contained in the rack mounted box that had a gain ranging from 1 to 50. The 

signal produced by the action potentials, recorded by the suction electrodes from the roots, 

ranged between 15 and 500 µV. The standard deviation of the noise was about 10µV. 

Both intracellular and extracellular recordings were digitised at 10 kHz and stored on a 

personal computer using the acquisition board Digidata 1200B and the software Clampex 8 

(Axon Instruments) (see Fig 2.1). 

 

2.3    Optical recordings 

 

To decide on which method to use for optically recording from single living neurons it is 

necessary to define exactly what one wants to record and how one wants to do it. Specifically, 

deciding what to record involves determining a parameter of interest (e.g., membrane potential or 

ion concentration), the nature of the information required (e.g., qualitative or quantitative) and 

the optical indicator best suited to making these measurements. Likewise, deciding how to record 

these signals involves consideration of recording methodologies (e.g., imaging), experimental 

procedures (e.g., loading and staining protocols) and data processing techniques (i.e., signal 

processing and analysis). o 
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2.3.1    Dye characteristics, preparation and loading 

 

The long-wavelength calcium indicators Oregon Green and Calcium Green are visible 

light excitable probes. Upon binding to calcium, these indicators exhibit an increase in 

fluorescence emission intensity (FCa/Ffree~14) with little shift in wavelength so they belong to a 

class of qualitative indicators which simply change their brightness in proportion to bound 

calcium, in contrast to quantative, ratiometric indicators which commonly undergo calcium-

dependent spectral shifts. The major difference between Oregon and Calcium Green is that both 

the fluorescence excitation and emission maxima of the Oregon Green 488 BAPTA indicator are 

shorter by ~10nm. The extinction coefficient for Oregon Green 488 BAPTA-1 absorption at 488 

nm is ~93% of its maximal value, whereas for Calcium Green-1 is only about ~ 45% of 

maximum. 

For intracellular injection, 3 mM of the dye Oregon Green (Oregon Green 488 BAPTA-1, 

hexapotassium salt, cell impermeant, Molecular probes) was dissolved in 30 mM potasium 

acetate.  In some experiments 300 µM Calcium Green (Calcium Green-1, hexapotassium salt, 

cell impermeant, Molecular probes) was dissolved in distilled H2O. These solutions are stable 

and can be stored at 4 oC for several weeks. Oregon Green and Calcium Green have dissociation 

constants, Kd, for Ca2+, in the absence of Mg2+, of 170 nm and 190 nm respectively, but Oregon 

Green is more efficiently excited by a 488 nm spectral line than Calcium Green. As a 

consequence, with a similar dye loading, a larger emitted fluorescence is obtained by using 

Oregon Green. Before filling the electrodes, dye solution is put on a vortexer and ultrasonic 

cleaner in order to mix the solution and break the aggregates. The dye was pressure injected with 

intracellular electrodes into leech neurons. A continuous pressure varying from 5 to 20 psig was 

 29



applied to the microelectrode using a pressure injector system (PM2000B 4-Channel MicroData 

Instrument, Inc.). The dye injection time, and the amount of dye injected was reduced to a 

minimum that still allowed us to see cell processes. Dye was injected for approximately 5 

minutes. After loading the neuron with dye, the ganglion was left in darkness at room 

temperature for two or three hours before making optical recordings. This allowed spread of the 

dye into the neural processes. Pharmacological effects impose limitations when using too much 

dye. It is not always possible to increase the amount of dye in distal processes by putting more 

dye in the soma because of damage. The absence of large pharmacological effects is evident 

from the fact that electrically recorded action potentials were essentially unchanged after 

staining. 

Photobleaching is the irreversible destruction of the excited fluorophore. To use lower 

excitation intensity, detection sensitivity must be maximized by low-light detection devices such 

as CCD cameras, as well as by high numerical aperture objectives and the widest bandpass 

emission filters. 

 

2.3.2 Optical recording of calcium transients 

 
 
Optical recording of membrane potential transients by using Ca-sensitive dyes is an 

indirect measurement. The quantity that is being measured directly, by photodiodes, is light 

intensity. Qualitative optical measurements reflect changes in calcium without reference to 

resting levels or the absolute size of these changes. This kind of change is usually depicted as the 

change in fluorescence normalized by the overall mean fluorescence, ∆F/F.  
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Fluorescence is the result of a three-stage process that occurs in molecules called 

fluorophores or fluorescent dyes. The first stage is excitation. A photon of energy hνex. supplied 

by a light source, gets absorbed by the fluorophore, creating an excited state that exists for a 

short time during which the fluorophore undergoes conformational changes. An excited state is 

the second stage. The third stage is fluorescence emission when a photon of energy hνem is 

emitted, returning the fluorophore to its ground state. Due to energy dissipation during the 

excited-state lifetime, the energy of this photon is lower, and therefore of longer wavelengths, 

than the excitation photon. In fluorescent measurements, most of the fluorescent dye comes from 

the stained cell, regardless of the size of the image relative to the size of the detector, but, 

background fluorescence can become dominant when the process is extremely small or poorly 

stained. As only one cell is stained in the ganglion, the source of the signal is certain, and signals 

can safely be attributed to potential transients in the specific regions of the neuron. 

An advantage of calcium indicators is their excellent signal-to-noise ratio. This signal-to-

noise ratio is partially owing to the excellent calcium indicators available, but is also related to 

the large changes in intracellular calcium concentration that occur following an action potential. 

The intracellular calcium concentration can change by one to two orders of magnitude, in 

contrast to other intracellular ions, whose concentrations change far less. Hence fluorescent 

indicators for sodium ions offer a more direct measure of propagation of APs, the relatively 

small sodium concentration changes that occur lead to the small fluorescent change. A second 

advantage of calcium indicators is that their toxicity is minimal so that they have little effect on 

dendritic function. One exception is the effect on the calcium-activated potassium channels that 

play a role on suppressing action potential initiation or in repolarisation. Calcium dyes bind 

calcium so there is a low concentration of free calcium even if the calcium is raised. This means 
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that calcium dyes can damage the function of the cell if it depends on the concentration of the 

calcium, for example AP propagation can be disturbed if it depends on the Ca2+-dependent K+ 

channels. 

A disadvantage of calcium indicators is their poor temporal resolution compared to 

electrophysiological and voltage-sensitive dye techniques. The factor limiting the temporal 

resolution is the binding of calcium to fluorescent indicator. Following an action potential, 

equilibration of free and indicator-bound calcium may continue over several milliseconds 

(Sabatini and Regehr, 1998). 

A second disadvantage of calcium indicators is that they provide no direct measure of 

depolarisation. Calcium indicators are accordingly used to image the sites of action potential 

initiation and propagation. Often it is possible to demonstrate that a calcium signal results from 

active AP propagation if the calcium signal is attenuated when sodium channels are blocked by 

using TTX. But, changes in calcium channel density or subtype along the length of a dendrite 

may influence calcium influx, regardless of any change in AP amplitude or halfwidth.  

By comparing electrical signals with optically recorded action potentials one can assess 

how accurately the events are followed. In a typical experiment, the cell was stimulated by 

passing current through a microelectrode to produce action potentials, while simultaneously 

recording optical signals from multiple sites on the neuron. 

 

2.3.3    Optics 

 

A stereomicroscope (SMZ-2B, Nikon) was used during the dissection. The preparation 

was then transferred to an anti-vibration table, where impaling neurons under visual control was 

 32



possible in dark field illumination, obtained by mounting a dark field condenser (Leitz Wetzlal) 

onto the microscope (Fixed stage upright, Olympus). This microscope was also used for imaging. 

 

 

2.3.4    Imaging 

 

The preparation was placed on the stage of a microscope and the image of the stained cell 

was projected onto the fast CCD camera. This camera allows fast, multisite optical monitoring of 

membrane-potential changes. The preparation was illuminated with a halogen lamp (Olympus) 

or a xenon lamp (Optiquip). The xenon lamp was approximately 10 times brighter than the 

halogen lamp and was used when it was necessary to analyse calcium dynamics in the fine 

dendrites. The preparation was illuminated through the objective (40x/0.8 NA, water immersion, 

LUMPlanFI) and a dichroic mirror was used (U-MSWB filters: exciter filter BP 420-480 nm, 

barrier BA > 515 nm and dichroic mirror 500 nm). In epifluorescence, both the excitation light 

and the emitted light pass through the objective, and the intensity reaching the photodetector is 

proportional to the fourth power of the numerical aperture. Fluorescence emitted by the dye was 

measured with the fast CCD camera NeuroPlex (RedShirtImaging). The software provided by 

RedShirtImaging controlled the opening of the shutter at the beginning of the acquisition and its 

closing at the end of the acquisition and allowed setting the duration of acquisition, the beginning 

and the duration of stimulation, as the acquisition sampling rate. Images were acquired at a 

sampling rate of 1 kHz for 2 seconds and the sequence of fluorescence images F(n) was analysed 

by the same software provided by RedShirtImaging and by the software that we made in the lab. 

The spatial resolution of the fast CCD camera was 80 x 80. 
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Fig 2.1 Acquisition system   

        

 

2.4    Data analysis 

 
Fluorescence images F (n) obtained by the fast CCD camera, were averaged from F(n1) to 

F(n2), where F(n1) corresponded to the image acquired just after shutter opening and F(n2) 

corresponded to the image acquired just before stimulation. The averaged image F was used as 
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the resting fluorescence light intensity (see Fig.2.2A). Fractional fluorescence changes ∆F(n)/F 

were computed from the image sequence F(n) using the following procedure.  

  

                                                 

 
 
 
Figure 2.2 Processing of fluorescence images. A: a low resolution (80x80) image of an Annulus Erector 

motoneuron. B: a low resolution image (80x80) of ∆F/F, i.e. is the optical signal ∆F/F averaged over 2000 images 

acquired during an individual trial. In this case the cell was stimulated with a depolarising current pulse, which 

evoked 7 APs. In B white indicates large values of ∆F/F. C and D: unfiltered and filtered images of ∆F/F 

respectively. In C and D a colour-coded scale was used, with deep red corresponding to a fractional fluorescence of 

8.5 %. Deep blue corresponds to a fractional fluorescence change of 0.1% just above the noise level. Th1=1% Th2 

=3%. See Methods for further details. 

 

 The time constant τ  of bleaching was computed by fitting with the equation F0 e -t/τ   the 

fluorescence observed between shutter aperture and electrical stimulation, where F0 is the 
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fluorescence intensity measured immediately after the shutter opens. Typical values of τ  varied 

between 1 and 2 seconds. Corrected fluorescence F*(n) images were obtained as  

F*(n)= F(n)  e(n-m)∆t/τ  where m is the number of the image corresponding to the shutter opening 

and ∆t is the interval between two successive images (∆t is the inverse of the sampling frequency 

of image acquisition).  ∆F(n)/F= (F*(n)-F)/F was then computed and in order to avoid the noise 

originating from dividing by small numbers, ∆F/F was multiplied by a factor equal to 

F2/(F2+Th0
2). This factor was introduced to eliminate the big values of ∆F(n)/F which appear on 

the boarders of the image where F is near to 0.  Th0   is the correction factor which value was 

determined empirically. A value of Th0 corresponding to a fluorescence value of 5 was used for 

Th0. In order to reduce the noise further an adaptive spatial filtering was also used. The value of 

∆F/F was averaged over the entire image sequence and ∆F/F was obtained (see Fig.2.2B). Pixels 

with a high value of ∆F/F are those where the optical signal is significant and relevant. The value 

of ∆F/F was spatially filtered in the following way: if ∆F/F was less than Th1, ∆F/F was spatially 

averaged over a mask of 5x5 pixels, if Th1 < ∆F/F < Th2 the mask was 3x3 and if ∆F/F was 

greater than Th2 no spatial filtering was used. Fig.2.2C and D compare an unfiltered and filtered 

image of ∆F/F, when the values of 1% and 3% were used for Th1 and Th2 respectively. The 

resulting image sequence ∆F/F was viewed with a colour-coded map, where deep red was the 

highest fluorescence change. 
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3       Calcium dynamics in mechanosensory neurons 

 

3.1   Results 

 

I used the preparation described in Section 2.1.1 to characterize the calcium dynamics 

and distribution resulting from action potentials in cell bodies and processes of leech 

mechanosensory T, P and N neurons. The experimental set-up allowed recording of calcium 

transients simultaneously at several regions at once. Image sequences were acquired for 2 

seconds at frequency of 1 kHz with the acquisition system described in Chapter 2.  

As shown in Fig.3.1B, when three APs were elicited in a T cell (displayed in Fig 3.1A), 

the optical signal ∆F/F was approximately 6 % both in the soma and in the two axons innervating 

the skin. Successive action potentials elicited by somatic injection of current pulses produced 

distinguishable episodes of calcium entry. ∆F/F increased in steps, each step associated with the 

occurrence of an individual AP. The rise of the optical signal followed the peak of the AP by 

about 1 or 2 msec (see Fig.3.1B). After reaching a peak, ∆F/F declined to zero with a time 

constant of about 1.6 sec in the soma and 1.4 and 1 sec in the axons. As in barnacle neurons the 

recovery time was shown to be faster in the neuropil than in the soma or axon (Ross et al. 1986). 

The time course of decay of the fluorescence signal from the soma of a typical cell was 

exponential, (Ross et al. 1986). The membrane time constant, τ, represents the time for the 

calcium concentration to fall to 63% of its final value but is not a true measure of the removal of 

calcium in the cell, since the dye acts as a buffer (Gorman and Thomas, 1980). 
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Fig.3.1C reproduces the spatial profile of ∆F/F in a colour-coded scale at four selected 

times (indicated by t1 t2 t3 t4 in panel B) after current injection: the optical signal increases almost 

uniformly and simultaneously in the distal processes. 
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Figure 3.1 Calcium transients (∆F/F) in a T cell. A: image of a T cell at 80x80 resolution. B: APs recorded from the 

soma with an intracellular microelectrode (black trace) and ∆F/F at three selected locations indicated in A with the 

same colour and lettering. The optical signal from the soma was averaged over the area encircled by the dotted red 

points in A. C: spatial profile of ∆F/F at four different times t1, t2, t3 and t4 (indicated in B) following electrical 

stimulation of the T cell with a depolarizing current pulse. The colour-coded scale is shown on the right. Th1=1% 

Th2 =3%. Data obtained from a single trial. 
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 A more quantitative analysis of ∆F/F elicited by a single AP in mechanosensory neurons 

is shown in the P cell illustrated in Fig.3.2A, in which optical signals ∆F/F of about 3.5 % were 

observed at the locations indicated. ∆F/F followed the peak of the AP within 1 or 2 msec. The 

time constant τ of the decay of ∆F/F (see Fig.3.2B) varied between 1 and 2 seconds similarly to 

results previously obtained in Retzius cells (Beck et al. 2001). Fig.3.2C reproduces the spatial 

profile of ∆F/F in a colour-coded scale at four selected times (indicated by t1 t2 t3 t4 in panel B) 

after evoking a single AP in the P cell: the optical signal increased almost simultaneously in the 

soma and at some specific locations along the axon. A larger increase was observed in a sub-

compartment of the soma (see red spots in images taken at t1 and t2 of panel C). When the optical 

signal in the soma was averaged over the circle indicated in panel A, ∆F/F had an amplitude and 

time course very similar (see panel B) to that observed at the two locations indicated in green, aa, 

and blue, ab, along the axon (see panel A). In control experiments the calcium indicator Calcium 

Green was used instead of Oregon Green and similar results were obtained, as shown in 

Fig.3.2D. In this experiment a P cell was loaded with Calcium Green and a single AP was 

evoked (see upper trace of panel D); Optical signals ∆F/F were measured on the cell body (red 

trace and s in panel D) and along the axon at about 40 µm (green trace and aa in panel D) and at 

about 150 µm (blue trace and ab in panel D) from the cell body. As Oregon Green emits 

fluorescence more efficiently than Calcium Green and the same light intensity was used in the 

two experiments, a similar emitted fluorescence can be explained by a larger loading of the dye 

Calcium Green. As shown in Fig.3.2, amplitude and time course of optical signals ∆F/F obtained 

with Oregon Green or Calcium Green were similar, suggesting that dye loading had a minor 

effect on calcium dynamics. Data from 4 P cells (red symbols), 1 T cell (black symbols) and 1 N 

cell (blue symbols) are shown in Fig.3.2E: the peak of the optical signal ∆F/F evoked by a single 

 39



AP had almost the same amplitude in the soma and along the axons at distances of 250 

micrometers from the soma. 
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Figure 3.2 Calcium transients (∆F/F) in mechanosensory neurons evoked by a single AP. A:  image of a P cell at 

80x80 resolution. B: a single AP recorded from the soma with an intracellular microelectrode (black trace) and time 

course of florescence changes (∆F/F) at three selected locations indicated in A with the same colour and lettering. 

The optical signal from the soma was averaged over the area encircled by the dotted red points in A. C: spatial 

profile of ∆F/F at four times t1, t2, t3 and t4  (indicated in B) following electrical stimulation. The colour-coded scale 

is shown on the right.  Th1=1% Th2 =2%. D:  as in B but for P cell stained with Calcium Green and not Oregon 

Green. The location of the three selected locations where fluorescence changes (∆F/F) were monitored are very 

similar to those indicated in panel A with the same colour. E: amplitude of the peak of ∆F/F recorded at different 

distances from the soma for 4 P (red symbols), 1 T (black symbols), and 1 N (blue symbols) mechanosensory 

neurons. Same symbols correspond to data obtained from the same mechanosensory neuron. Data obtained from 

single trials. 
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3.2    Skin stimulation 

 

APs in mechanosensory neurons can be initiated either by direct mechanical stimulation 

of the skin (Nicholls and Baylor 1968), by extracellular stimulation of the roots (Nicholls and 

Baylor 1968; Wittenberg et al. 1990) or by intracellular stimulation of the cell body. In order to 

compare previous results obtained by the intracellular stimulation with the optical responses to a 

natural stimulus, we performed a following experiment. Skin preparation was made, consisting 

of a segment of the skin and a single ganglion innervating it. After the loading of the single 

mechanosensory neuron with the dye and a period of incubation, the skin was stimulated 

electrically, applying the current through the suction electrode and sequence of images was 

acquired. In Fig 3.3A, image of the P neuron is shown indicating the areas in which the time 

courses of relative fluorescence changes were evaluated. These time courses are displayed in the 

Fig 3.3B in the corresponding colours. Fig.3.3C reproduces the spatial profile of ∆F/F in a 

colour-coded scale at four selected times (indicated by t1 t2 t3 t4 in panel B) after the skin 

stimulation: the optical signal increases almost uniformly and simultaneously in the visible 

portion of the processes and in the cell body and reveals increases in the intracellular calcium 

concentration in response to skin stimulation that caused a depolarisation. 
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Figure 3.3 Calcium transients (∆F/F) in P neuron evoked by a single AP induced by a skin stimulation. A:  image of 

a P cell at 80x80 resolution. B: time course of florescence changes (∆F/F) at three selected locations indicated in A 

with the same colour and lettering. The optical signal from the soma was averaged over the area encircled by the 

dotted red points in A. C: spatial profile of ∆F/F at four times t1, t2, t3 and t4 (indicated in B) following electrical 

stimulation. The colour-coded scale is shown on the right.   

 

The time course of ∆F/F and the increases in the intracellular calcium concentration in the 

cell bodies and in the processes of the mechanosensory neurons, when the AP was initiated either 

in the soma or in the distal processes after the skin stimulation, were similar and almost 

indistinguishable. 
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3.3 Comparison of averaged and single trial responses 

 

  The data shown in Figs 3.1 and 3.2 were obtained from single trials and were not 

averaged. In order to analyse reproducibility of calcium transients, mechanosensory neurons 

were loaded with Oregon Green and a single AP was evoked in successive trials, repeated every 

2 minutes. 
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Figure 3.4 Reproducibility of calcium transients (∆F/F) in mechanosensory neurons. At the centre of the figure 

there is an image at 80x80 resolution of a T cell. In A, B and C are shown the amplitude of the peak of ∆F/F in 

successive 15 trials and the average optical signal <∆F/F> and its coefficient of variation CV∆F/F obtained from the 

three coloured regions of the neuron shown at the centre of the figure. The red colour and the letter s correspond to 

the soma and the blue and green colours and the lettering a1 and a2 corespond to the anterior and posterior axons, 

respectively. The CV∆F/F was computed as the ratio between the standard deviation of the optical signal σ∆F/F and 

<∆F/F>. A single AP was evoked in each trial by injecting a brief depolarizing current pulse in the soma.   

 

Figure 3.4 illustrates a stained T cell in which a single AP was evoked in 15 successive 

trials. Optical signals from the cell body (shown in red and with the letter s) and the two axons 

emerging from it (shown in blue, a1, and green, a2) were recorded. The amplitude of the peak of 

∆F/F was stable over most trials, as shown in the lower portion of panels A, B and C. In two 

trials (# 4 and 5) large optical signals were observed, but in the remaining 13 trials the amplitude 

of ∆F/F was reproducible. The standard deviation of the peak of ∆F/F was 0.95, 0.48 and 0.53 in 

the soma and in the anterior and posterior axon. The average optical signal <∆F/F> and its 

coefficient of variation CV∆F/F obtained from the three coloured regions of the neuron were 

computed. As shown in the upper portion of panels A, B and C the amplitude and time course of 

the averaged ∆F/F in the three regions were quite similar. The CV∆F/F   in the axons decreased to 

about 0.4 at the peak of the optical signal and was 0.55 in the cell body. Very similar results were 

obtained in two other T cells, in three P cells and in two N cells. A coefficient of variation 

between 0.3 and 0.5 is often observed for electrical signals in many neuronal networks (Shadlen 

and Newsome 1994 and 1998) and is usually taken as an indication of good reproducibility.  
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3.4    Retzius cells 

 

Calcium transients in subcompartments of the Retzius neurons as induced by single 

action potentials were studied by Beck et al. 2001. After intracellular stimulation of one Retzius 

cell, optical response from the other Retzius cell may be different. Fig 3.5B, black trace, shows 

APs from the soma of Retzius neuron labelled with green in A, recorded with an intracellular 

microelectrode. Lower traces show time course of florescence changes (∆F/F) of two Retzius cell 

bodies indicated in A with the same colour and lettering. These traces show that three APs of one 

Retzius cell induced only two APs in the other electrically coupled Retzius cell. Fig 3.5D and F 

show that APs induced a calcium transients of the same size in submembrane regions as in more 

central regions of the both Retzius cell bodies. Colours in D and F correspond to those in C and 

E. 
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Figure 3.5 Calcium transients (∆F/F) in Retzius cell bodies, where both cells were injected with dye. A, C and E: 

image of a Retzius cell bodies at 80x80 resolution. B: APs recorded from the soma with an intracellular 

microelectrode (black trace) and ∆F/F at two Retzius cell bodies indicated in A with the same colour and lettering. 

The optical signals from the soma were averaged over the area encircled by the dotted points in A. D and F: APs 

recorded from the soma with an intracellular microelectrode (black trace) and ∆F/F at three different regions of 

interest indicated in C and E with the same colours. 
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4 Calcium dynamics in motoneurons 

 

4.1 Annulus Erector (AE) 

4.1.1    Introduction 

 

    The Annulus Erector (AE) motoneuron innervates muscles immediately under the skin 

and its electrophysiological properties have been extensively investigated in previous studies (Gu 

et al. 1991). The AE motoneuron has a structure typical of several other known leech 

motoneurons. It has unipolar process emerging from the soma between 100 and 200 micrometers 

long (see Fig.5A). From the trunk, many fine branches emerge rich in postsynaptic contacts (Gu 

et al. 1991). The trunk divides at the first major bifurcation into two branches. The two branches 

project into the left and right contralateral roots and innervate specific muscles that cause annuli 

surrounding the animal to form ridges. Laser axotomy has shown that AE is not excitable along 

its axon proximally to the initiation zone that is in the region of the first major bifurcation, 

situated in the neuropil (Gu et al., 1991). Action potentials generated there spread only 

electrotonically into the soma, so the impulses generated in soma are small (Kuffler and Potter, 

1964; Lytton and Kristan, 1989; Gu et al., 1991). 
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4.1.2   Results 

 

To study motoneurons, I used the same experimental set-up as for mechanosensory 

neurons. This experimental set-up allowed recording of calcium transients simultaneously at 

several regions of interest. Image sequences were acquired for 2 seconds at frequency of 1 kHz 

with the acquisition system described in Chapter 2 and analyzed as explained in Section 2.4.  

Fig.4.1B illustrates APs recorded in the soma after a pulse of depolarizing current was 

injected. These APs had an amplitude of about 5 mV. The red and blue traces reproduce the 

changes of ∆F/F recorded at the two different coloured locations shown by corresponding 

lettering in Fig.4.1A. In contrast with mechanosensory neurons, ∆F/F was significantly larger in 

the dendritic tree than in the soma where ∆F/F was negligible. At the first major bifurcation 

(indicated in blue and with the letter b) ∆F/F increased in discrete steps, each evoked by an 

individual AP. The size of each step was about 1.5%. The increase of ∆F/F in the first major 

bifurcation occurred with a delay of some msec from the peak of the AP recorded in the soma.  
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Figure 4.1 Calcium transients (∆F/F) in an Annulus Erector motoneuron and in an Anterior Pagoda neuron: A: 

80x80 image of the stained AE motoneuron. B: ∆F/F from the locations indicated with the same colour and lettering 

in A, and in black the voltage measured in the soma while passing a depolarizing current pulse. C: spatial profile of 

∆F/F at different times following electrical stimulation. The colour-coded scale is shown on the right.  Th1=1% Th2 

=2%. D:  80x80 image of the stained Anterior Pagoda neuron. E: ∆F/F from the locations indicated with the same 
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colour and lettering in D, and superimposed in black the voltage recordings measured in the soma while passing a 

depolarizing current pulse. F:  spatial profile of ∆F/F at different times following electrical stimulation. The colour- 

coded scale is shown on the right. Th1=0.5% Th2 =2%. G: amplitude of the peak of ∆F/F recorded at different 

distances from the bifurcation towards the soma. 6 Annulus Erector motoneurons (red symbols); 3 Anterior Pagoda 

neurons (black symbols) H: amplitude of the peak of ∆F/F recorded at different distances from the bifurcation 

towards the roots. Open and filled symbols refer to the ventral and anterior root respectively. The cross refers to one 

experiment in which only the branch projecting to the ventral root was stained. Data obtained from single trials. 

 

Fig.4.1C illustrates images of changes of ∆F/F in a colour-coded scale at selected times 

after the current injection. ∆F/F is very small in the soma and in the initial portion of the trunk 

originating from it. On the contrary ∆F/F is visible and significant at the first major bifurcation 

and at all more distal locations. The amplitude of ∆F/F had a hot spot at the first major 

bifurcation and was uniform in the more distal regions.  

 

4.2    Anterior Pagoda 

4.2.1    Introduction 

 

The Anterior Pagoda is a neuron extensively analysed in previous investigations 

(Melinek and Muller 1996). Its function is not known. It has a unipolar process with a major 

bifurcation 150/200 micrometers distally from the soma. The two major branches project into the 

anterior and posterior contralateral roots (see Fig 4.1D). APs recorded in the soma have an 

amplitude varying between 5 and 10 mV with a characteristic shape (reminiscent of the roof of a 
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pagoda). As with the AE motoneuron, the site of initiation of APs has been identified at the first 

major bifurcation (Melinek and Muller 1996).  

 

4.2.2   Main results 

 

When a pulse of depolarizing current was injected through the microelectrode into the 

soma, a train of small APs was evoked, as shown in Fig.4.1E. The coloured traces in Fig. 4.1E 

indicate that ∆F/F in the soma was almost undetectable, while it became visible at the first major 

bifurcation 150 microns distal from it. At the first major bifurcation (indicated in blue and with 

the letter b) ∆F/F increased in discrete steps, each evoked by an individual AP. The size of each 

step was about 0.5%. Fig. 4.1F illustrates images of changes of ∆F/F in a colour-coded scale at 

selected times after the current injection. ∆F/F is very small in the soma and in the initial portion 

of the major axo-dendritic tree originating from it. ∆F/F was significantly larger on locations 

more distal than the first major bifurcation. Similar results were obtained from a total of 5 

Anterior Pagoda neurons. 

The decline of ∆F/F along the initial trunk connecting the first bifurcation to the soma is 

analysed in Fig.4.1G, where red and black symbols refer to data collected from the Annulus 

Erector and the Anterior Pagoda neurons respectively. ∆F/F declined rather sharply with a space 

constant varying from 25 to 90 µm (see the solid lines in red and black in panel G). The decline 

of ∆F/F along the initial portion within the trunk is in sharp contrast with what was observed in 

mechosensory neurons (see Fig. 3.2D) where the amplitude of ∆F/F in the soma and in the axons 

 51



was almost uniform. The change of ∆F/F along the branches from the first major bifurcation 

towards the roots is reproduced in Fig.4.1H for the two branches (open and filled symbols) of 

Anterior Pagoda and AE neurons. In some cases ∆F/F clearly declined, but in other neurons, 

∆F/F in distal branches was large and comparable with that observed at the bifurcation.    

The small optical signal recorded in the soma compared to that observed at the first major 

bifurcation and in distal processes could be due to an inhomogeneous loading of the dye and/or 

to a dye sequestration into intracellular organelles of the soma of the Anterior Pagoda and AE 

neurons. As shown in Figs 2.2 and 4.1 the soma of motoneurons is well stained and its resting 

fluorescence was comparable to that of mechanosensory neurons as those shown in Figs 3.1 and 

3.2.  In two experiments optical signals from the soma were measured while injecting the dye. In 

these two experiments ∆F/F in the soma was also small and almost undetectable. In these 

experiments optical signals were measured as soon as the soma appeared to be stained when the 

dye was presumably in the cytoplasm before it could have been absorbed by intracellular stores. 

These observations suggest that the compartmentalization of calcium transients in the Anterior 

Pagoda and AE neurons is physiological and is not due to inhomogenity of dye loading and/or to 

its sequestration into intracellular stores.  

 

4.2.3    Differential invasion of APs in branches 

 

The results described in the previous section were obtained from single trials and it is 

possible that the invasion of distal processes following stimulation of the cell body may vary 
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from trial to trial. Therefore, the reproducibility of calcium transients in the AE motoneuron was 

studied in successive trials. 
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Figure 4.2 Reproducibility of calcium transients (∆F/F) in the AE motoneuron. At the centre of the figure there is an 

image at 80x80 resolution of an AE motoneuron. In A, B, C and D are shown the amplitude of the peak of ∆F/F in 

successive 15 trials, the average optical signal <∆F/F> and its coefficient of variation CV∆F/F obtained from the four 

coloured regions of the neuron shown at the centre of the figure. The cyan colour and a1 correspond to the trunk, the 

blue colour and b to the first major bifurcation, red, a2, and green, a3, to the anterior and posterior processes, 

respectively. The CV∆F/F was computed as the ratio between the standard deviation of the optical signal σF/F� and 

<∆F/F>. A train of 6 or 7 APs was evoked in each trial by injecting a depolarizing current pulse in the soma. 

Therefore, the time to reach the peak of ∆F/F is longer than in the experiments shown in Fig.4 where a single AP 

was evoked in each trial.  Same motoneuron as in Fig.4.1 

 

Fig.4.2 illustrates a stained AE motoneuron in which trains of 6 or 7 APs were evoked in 

successive trials. Optical signals from the first major bifurcation (shown in blue and with the 
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letter b), the trunk connecting the bifurcation to the cell body (shown in cyan and with a1) and 

the two processes emerging from the first major bifurcation (shown in red, a2, and green, a3) 

were recorded and their variability analysed. In all trials calcium transients were larger at the first 

bifurcation and were detected in both processes: indeed, the amplitude of the peak of ∆F/F was 

very similar in all trials, as shown in the left portion of panels A, B, C and D. The average 

optical signal <∆F/F> and its coefficient of variation CV∆F/F obtained from the four coloured 

regions of the motoneuron were computed. As shown in the right portion of panels A and B, in 

all trials <∆F/F> in the trunk was approximately 3 times smaller than at the first major 

bifurcation. In all trials optical signals were observed, with an average amplitude of 5.9 % and of 

8.4 % in the anterior and posterior branches, respectively. The CV∆F/F at the first major 

bifurcation decreased to about 0.3 at the peak of the optical signal and was less than 0.5 in the 

two branches.  Similar results were obtained in two other AE motoneurons and in one AP 

motoneuron. These results indicate that calcium transients are detected equally well in the two 

branches emerging from the first major bifurcation and that calcium dynamics is rather 

reproducible in leech motoneurons. 

 

4.2.4    The effect of steady currents 

 

The initiation site of APs in the AE and in the Anterior Pagoda neurons, can be 

modulated by steady currents injected into the soma (Gu et al. 1991; Melinek and Muller 1996). 

Thus depolarising currents move the initiation site towards the soma and hyperpolarizing current 

moves it towards the roots.  
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Figure 4.3 The effect of steady currents on the amplitude of calcium transients (∆F/F) in the same AE motoneuron 

as in Fig.6. A: Image of the AE motoneuron with its cell body fully visible. B: time course of ∆F/F measured at the 

locations indicated with the same colour and the lettering in A. The black trace is the voltage recorded in the soma 

while passing a depolarising current pulse. C: Image of the same AE motoneuron when more distal branches were 

viewed. D: spatial profile of ∆F/F in the absence of the depolarising steady current. E: ∆F/F from the locations 

indicated with the same colour in C and superimposed, in black, the voltage recorded at the soma. F: spatial profile 

of ∆F/F in the presence of a steady depolarising current. G:  as in E but in the presence of a steady depolarising 

current of the same amplitude as that used in panels D and E. In F and G the reference value for F was that achieved 

with the steady current. Data obtained from single trials. 

 

A large optical signal was recorded at the first major bifurcation of the AE neuron shown 

in Fig.4.3A, but no detectable fluorescence changes were measured in its soma (see Fig. 4.3B). 
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This was also true when a train of 7 APs were elicited by passing a depolarizing current pulse 

through the microelectrode inserted in the soma. Having established that optical signals in the 

soma were negligible, the preparation was moved by about 100 micrometers and a large portion 

of the distal dendrites was visualized (see Fig.4.3C). When 12 APs were evoked in the neuron 

(see Fig.4.3E), a large optical signal ∆F/F with an amplitude of approximately 15 % was 

observed at the first major bifurcation (see red trace in Fig. 4.3E). As shown in panels D and E, a 

much smaller optical signal was detected along the trunk. When a steady depolarizing current 

was injected through the microelectrode, the AE neuron fired a train of APs with a frequency of 

10 Hz and the firing rate increased to 30 Hz when the same depolarising current pulse was 

superimposed to the steady current (see Fig.4.3G). Under these conditions, as shown in Fig. 4.3F 

and G, the optical signal ∆F/F evoked by the same depolarising pulse was very similar in the 

bifurcation and in the trunk. When a steady hyperpolarizing current was injected, optical signals 

elicited by a depolarizing pulse evoking a brief train of APs, were primarily located at the first 

bifurcation, in accord with what was observed in the absence of a steady current. Similar results 

were obtained from a total of 6 AE motoneurons, showing that the region of calcium transients 

was moved towards the soma by a steady depolarization. 

      These results show that APs evoked in the Annulus Erector motoneuron cause 

intracellular Ca2+ to increase at locations more distal than the first major bifurcation, at a position 

identified as the initiation site of APs in previous studies (Gu et al. 1991). In the presence of a 

steady depolarising current, small but detectable Ca2+ transients were found in the trunk with an 

amplitude larger than those measured at more distal locations.  
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4.2.5 Comparison of calcium transients elicited  

         by stimulation of the soma and distal processes    

 

In order to establish the degree of compartmentalization of optical signals in the Anterior 

Pagoda neuron, calcium transients originated by direct intracellular stimulation of the soma and 

by extracellular stimulation of the roots (see Fig.4.4A) were compared.  

The first major bifurcation and the distal dendrites were visualized (see Fig.4.4A). We 

compared ∆F/F when APs were initiated by passing a depolarizing current pulse in the soma (see 

Fig. 4.4B and C) and when APs were evoked by extracellular stimulation of the anterior (see 

Fig.4.4 D and E) or posterior root (see Fig. 4.4 F and G). As shown in the Fig.4.4 C, E and G, 

the stimuli evoked a train of a similar number of APs clearly detected by the intracellular 

microelectrode impaling the soma. 
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Figure 4.4 Comparison of calcium transients (∆F/F) initiated by stimulation of distal roots and by injection of a 

depolarizing current in the soma. A: schematic drawing of a leech ganglion containing an image of the major 

bifurcation of the Anterior Pagoda neuron. The red letters (B, D and F) indicate the stimulation sites used in panels 

B and C, D and E and in F and G respectively. B: spatial profile of ∆F/F at different times following electrical 

stimulation of the soma. The colour-coded scale is shown at the right. C: intracellular recordings from the soma of 

the Anterior Pagoda neuron while passing a depolarizing current step in the soma. Evoked APs have an amplitude of 

about 5 mV. D: spatial profile of ∆F/F at different times following extracellular stimulation of the anterior root. E: 

intracellular recordings from the soma of an Anterior Pagoda neuron while stimulating extracellularly the anterior 

root. F: spatial profile of ∆F/F at different times following extracellular stimulation of the posterior root. G: 

intracellular recordings from the soma of an Anterior Pagoda neuron while stimulating extracellularly the posterior 

root. Data obtained from single trials. 

 

For the three stimulations, the time course and spatial profile of ∆F/F was similar: in all 

three cases ∆F/F was significantly larger at the first major bifurcation (see panels B, D and F) 

and was small and almost undetectable in the soma. Calcium transients evoked by the 

stimulation of the anterior root propagated to the processes entering into the posterior root and 

vice versa, but were greatly attenuated at the soma.  

 

4.2.6    L motoneuron and other motoneurons 

 

The L motoneuron innervates longitudinal muscles in the leech skin and projects 

contralaterally into the anterior and posterior roots. Electrophysiological and functional 

properties of the L motoneuron have been well characterized. APs recorded in the soma have an 
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amplitude slightly larger than in the Annulus Erector and Anterior Pagoda neurons and vary 

between 5 and 10 mV (Stuart 1970).  

In three L motoneurons we repeated the experiments described in Fig.4.1 obtaining 

similar results: when APs were evoked in L motoneurons, ∆F/F was larger in distal processes 

than in the soma. This is shown in Fig.4.5 where in Fig. 4.5A image of the stained L motoneuron 

is presented, in Fig.4.5B time course of florescence changes (∆F/F) at four selected locations 

indicated in A with the same colour and lettering is presented, and Fig.4.5C illustrates images of 

changes of ∆F/F in a colour-coded scale at selected times after the current injection. Similar 

experiments were repeated in two motoneurons # 5 and in one motoneuron # 2, with very similar 

results. In all analysed motoneurons ∆F/F was significantly larger in distal processes than in the 

soma. 
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Figure 4.5 Calcium transients (∆F/F) in an L motoneuron: A: 80x80 image of the stained L motoneuron. B: ∆F/F 

from the locations indicated with the same colour and lettering in A. C: spatial profile of ∆F/F at four different times 

t1, t2, t3 and t4  (indicated in B) following electrical stimulation. The colour-coded scale is shown on the right.   
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5    Discussion 

 

5.1   Why the leech? 

 

Information processing and functional compartmentalization of neurons are among the 

major questions of cellular and systems neuroscience investigations. In order to study these 

problems, we have used a preparation of leech ganglia. It satisfies the necessary requirement that 

experiments must be performed in at least partially intact neuronal structures, as leech ganglia 

are, in order to ensure that highly specific regional electrical properties of individual neurons and 

characteristic synaptic connections are preserved. Cells in different regions of the leech nervous 

system are diverse in their morphology and in their electrical and biochemical properties. Even a 

fundamental phenomenon such as the amplitude of action potentials, varies in shape and size in 

different neurons. In addition, the pattern of action potential firing exhibits great diversity in 

neurons. This diversity reflects differences in membrane ion channels, their kinetic properties, 

single channel conductance, density and voltage dependence. We have chosen the leech to study 

the role of single identified nerve cells in information processing and integration also because 

previous studies have provided a considerable quantity of detailed information about their 

morphological, physiological and functional properties (see Section 1.1). 
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5.2 Optical recording 

 

It is difficult to understand the behaviour of many cells on the simple basis of 

simultaneous microelectrode measurements from the soma or from a few neural positions. To 

improve spatial resolution and achieve multi-site recording, it was necessary to turn to indirect 

measurements of voltage changes. Indeed, optical recording offers the possibility of recording 

from processes that are too small or fragile for electrode recording.  

 

5.2.1 Voltage-sensitive dyes 

 

To study signal integration, AP formation and propagation by using optical techniques 

that have a good spatial resolution, the best choice would be to use voltage-sensitive dyes (see 

Zochowski et al, 2000; Zecevic and Antic, 1998). In light of this, we did perform some 

preliminary experiments using these dyes. They indicated partial success in the effort to use 

intracellularly applied voltage-sensitive dyes to record responses from neurons in leech ganglion. 

The results suggest that, with further improvements, it may be possible to follow optically 

synaptic integration and spike conduction and consequently sodium and potassium ion channels 

distribution in leech neurons. However, these experiments show the advantages of selective 

staining of particular neurons by intracellular application of the dye. The two most serious 

problems were the slow diffusion of this dye and the low signal-to-noise ratio of the optical 

responses. Because the signal size was small, it was not possible to use multisite optical 
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recording to study the regional characteristics in leech single neurons. Limitations and prospects 

for a further refinement of the technique depend mostly on the signal-to-noise ratio; 

improvements in both the apparatus and the design of more sensitive dyes can increase the 

signal-to-noise ratio. 

 

5.2.2    Calcium recording 

 
Calcium indicators have been often used to image AP initiation in a variety of neurons 

and, although they have some disadvantages (Waters et al. 2005), they are a powerful tool to 

investigate compartmentalization at a cellular level and to monitor changes of intracellular Ca2+ 

concentration. The advantages and disadvantages of calcium indicators are recalled in the 

Section 2.3.2. As calcium influx is a secondary consequence of depolarisation, depends on the 

presence of voltage-sensitive calcium permeable channels and it is a twice remote indirect 

measurement of the membrane voltage, we monitored light and derived calcium concentration 

changes that are, in turn, related to changes in membrane potential. With this approach, we tried 

to give an answer to these questions: 1) If most leech neurons appear electrically 

compartmentalized, will it be the same for intracellular messengers such as calcium? 2) What are 

the functional implications of these biophysical properties? 

But, there were several technical problems that we had to consider and they will be 

reported in this discussion. Calcium sensitive dyes are slow in comparison to voltage sensitive 

dyes so action potential shape and peak latency along the neuron cannot be followed. But the 

signal-to-noise ratio of calcium dyes is much more evident, enough to record optical signals from 

many locations in the neuron. These signals give information about the time course of the 

potential change but no direct information about its magnitude. In many measurements the 
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absolute calibration of optical signals in terms of voltage is not critical. Many conclusions 

depend on the comparison between relative amplitudes and time information that are obtained 

from nonratiometric optical recordings.  

When calcium channels were expressed in the neural cell subcompartments, activation of 

these channels by depolarisation caused an increase in the intracellular calcium concentration. 

Since fluorescence change (∆F/F) is related to changes of intracellular Ca2+ (Jaffe et al. 1992; 

Stuart et al. 1997; Koester and Sakmann 2000; Waters et al. 2005), spatial and temporal 

properties of calcium dynamics were analysed at a fast temporal resolution (1 kHz) and at 

several simultaneous locations. Following impulses in each of the cells, clear, distinctive step 

increases of fluorescence were recorded. The changes in all cells were large enough to be 

detected in a single trial.  

Measurements of rapid changes in intracellular calcium initiated by an electrical event, 

millisecond time scale, allowed us to study when, where and how much calcium has entered. 

Buffering prevents calcium from spreading by diffusion more than a few micrometers. The 

voltage signals spread and they cause calcium entry along the way. Since calcium diffuses 

slowly in cytoplasm compared to the time course of most electrically induced transients, 

different regions of a neuron respond independently to the changes in calcium and the site where 

calcium increases must be close to the channel location. Since the rising phase of a calcium 

transient was almost coincident in time with the electrical event that caused it, the detection of 

the transient can also be used as an indicator of an action potential. As calcium levels in neurons 

change in response to electrical events, knowledge of the time course, amplitude, and spatial 

distribution of calcium transients evoked by electrical activity can give information about the 

events that caused the changes (Ross, 1989). It is important to know how accurately the calcium 
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dye signals represent electrical events and this was done by comparing electrical signals with 

optically recorded signals. Electrophysiological recording of the membrane potential parallel to 

the optical recording showed that the optical response corresponded to the electrical change. A 

problem may arise if voltage-sensitive calcium channels are not present, whereupon an AP 

would not induce the entrance of the calcium in the cell. But in our experiments, this was not the 

case. The calcium response was absent only in the region where intracellular recording showed 

the size of APs was only 4-5 mV, which means that the region was not excitable and that the 

signal arrived there passively. So we have demonstrated that the calcium response follows the 

AP propagation and we have raised several questions: What is the role of calcium? Does it play a 

role in signal integration together with sodium and potassium, or does it play a second messenger 

role, connecting the electrical and chemical events? On the basis of the results, we can say that 

calcium transients in our experiments were fast, which probably means that they were mainly 

involved in information processing. Slower changes in calcium concentration would be probably 

involved in other functions.  

Our experiments also provide several important methodological results. First, they show 

that it is possible to deposit the dyes into the cell without staining the surrounding tissue. The 

signal-to-noise ratio in fluorescence is degraded by the dye bound to extraneous material. It was 

possible to deposit the dye into the cell without staining the surrounding tissue, keeping low, in 

this way, the background fluorescence. In each ganglion, only one neuron was stained so 

fluorescence was coming only from cell of interest. In addition, we established that 

pharmacological effects of the dye were small and reversible. The absence of large 

pharmacological effects is evident from the fact that electrically recorded action potentials were 

essentially unchanged after staining and an incubation period of more than 2 hours. Furthermore, 
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photodynamic damage at the incident-light intensities used was not significant, since the time 

course of the electrically recorded action potentials from the cell body and optically recorded 

signals from the soma and the neuronal processes didn’t change over several trials. 

 

 
5.3 Calcium dynamics in leech neurons 

 

A single AP in mechanosensory neurons evoked an optical signal ∆F/F with peak 

amplitude varying between 2 and 6 %. Optical signals ∆F/F of similar amplitude caused by a 

single AP backpropagating in the dendrites of CA1 pyramidal neurons (Callaway and Ross 1995; 

Spruston et al. 1995; Frick et al. 2003) and of neocortical pyramidal neurons (Markram et al. 

1995) were observed. Larger optical signals evoked by a single AP were measured in the intact 

retina (Denk and Detwiler 1999). As shown in Figs. 3.1 -3.4 the value of ∆F/F is similar in the 

soma, in the distal processes and in the branches innervating the skin. A similar behaviour is 

observed in many other mammalian neurons of the CNS, where calcium transients initiated by 

APs are observed with approximately the same size in the cell body and in dendrites like in CA1 

pyramidal neurons (Frick et al. 2003). In L2/3 pyramidal neurons the peak value ∆F/F evoked by 

a single AP is about 10 % in the soma, increases by 2 or 3 times at a distance of about 100 µm 

along the apical dendrites, and it decreases at larger distances from the soma (Callaway and Ross 

1995; Spruston et al. 1995; Waters et al. 2003, 2005).  

The aim of this study was to elucidate how uniform these calcium transients are along the 

cellular processes and the soma, and how they modulate the shape of an AP. The results in Figs 

3.1 and 3.2 show that only minor differences in the amplitude of the calcium transients in 

different parts of the cell membrane have been found, indicating that the calcium influx is 
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distributed almost equally and that calcium transients, elicited by APs in mechanosensory 

neurons, have similar properties in the soma and in the axons. The time course marking the 

return of a calcium transient to baseline is indicative of the speed of buffering, sequestration, or 

pumping out of free calcium from cytoplasm. There is no a priori reason for assuming that all 

parts of the cell will respond in the same way. Our experiments have shown that recovery time 

was faster in the distal axon than in the soma that is in agreement with the results published on 

barnacle neurons (Ross et al. 1986). Our results indicate that AP induced intracellular calcium 

transients are mediated by the opening of voltage-gated channels in both dendrites and the soma. 

It is concluded that voltage gated Ca2+ channels are not differentially clustered along processes of 

mechanosensory neurons; and voltage signals and Ca2+ transients are observed throughout the 

entire neuron. 

As shown in Figs.4.1-4.5 in the Anterior Pagoda neuron, in the AE, L # 5 and # 2 

motoneurons ∆F/F associated with APs occur at the first major bifurcation and sharply decline 

with a space constant varying between 25 and 80 µm along the part of the trunk connected to the 

soma. In these neurons, calcium transients can be observed only in distal processes and are 

strongly compartmentalized. It appears that under normal conditions, slow depolarizing voltage 

pulses applied to the soma are electrotonically spread into the processes with little attenuation. 

These depolarizing pulses initiate action potentials in the processes at remote sites that appear to 

be more excitable than the neighbouring segments. 

Calcium transients were not observed in the soma of these neurons even when large 

depolarizing currents were injected into the soma itself (Fig.4.1) and therefore the absence of 

calcium transients in the presence of APs cannot be attributed only to the small electrical signals 

reaching the soma. These observations show that the density of voltage gated calcium channels 
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in the soma of these neurons is significantly lower than in distal processes. The sharp decline of 

Ca2+ transients along the initial part of the trunk is caused by the combination of several 

mechanisms: i - the restricted diffusion of Ca2+ ions along a narrow structure; ii – the absorption 

and buffering of diffusing Ca2+ ions by intracellular stores; iii - a differential distribution of Na+ 

and Ca2+ voltage gated channels along the trunk. A Ca2+ -activated K+ conductance that has been 

described in the processes of the Anterior Pagoda neuron (Wessel et al. 1999a) is likely to be a 

major determinant also for the attenuation of the amplitude of APs along the same structure, and 

therefore will reduce the Ca2+ inflow through voltage gated Ca2+ channels along the trunk. APs 

in motoneurons are expected to have the usual amplitude of approximately 70 mV and their 

initiation site has been located at the first major bifurcation (Melinek and Muller 1996). An AP, 

travelling from the first bifurcation to the soma is attenuated between 10 and 20 times over a 

distance of 100-200 micrometers, indicating an effective space constant of approximately 50 µm, 

similar to the decline of the optical signal ∆F/F (see Fig. 4.1). A space constant of 50 µm in an 

entirely passive cable can originate from a very high axial resistivity and from an unusually high 

membrane conductance (Rall and Agmon-Snir 1998). A space constant for the higher 

frequencies associated with the action potential depends also on the capacitance. For brief 

events, the current flow giving rise to the signal may end before the membrane capacitances 

become fully charged. This has the effect of reducing the spread of the potential along the fiber. 

In other words, for brief signals the effective space constant is less than for those of longer 

duration. It is also likely that active properties such as the Ca2+ -activated K+ conductance 

(Wessel et al. 1999a and b) contribute to the large attenuation of voltage and the associated 

calcium transients along the major trunk.  
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This compartmentalization is reminiscent of what is observed in several invertebrate 

preparations, such as in barnacle neurons (Ross and Krauthamer 1984; Krauthamer and Ross 

1984) and in Aplysia neurons (Gorman and Thomas 1978), where the initiation site of APs is 

located at 100-200 µm from the soma. In vertebrates and in particular in mammalian neurons, the 

site of AP initiation is usually located in the axon at some distance from the soma (Stuart and 

Sakmann 1994; Stuart et al. 1997). In cerebellar Purkinje rat neurons the site of AP initiation has 

been localized at about 75 micrometers from the soma, at the first major axonal branch (Clark et 

al. 2005). In these neurons, however, the amplitude of the AP recorded in the soma is large, 

almost identical to that measured at the site of AP initiation, because it back propagates. 

Our results show that in the leech nervous system calcium dynamics in mechanosensory 

neurons compared to the great majority of other neurons are different. Calcium dynamics in the 

Anterior Pagoda neuron, in the AE, L, #2 and #5 motoneurons and presumably in most other 

motoneurons and interneurons are highly compartmentalized and calcium transients are restricted 

to the distal processes and hardly reach the soma (see Figs.4.1-4.5). By contrast, calcium 

transients are observed over the entire arborisation of mechanosensory neurons (see Figs.3.1-

3.4). This differential compartmentalization in leech neurons is observed consistently in different 

trials and is affected by a small variability (see Figs 3.4 and 4.2). Therefore, 

compartmentalization of calcium dynamics mirrors the compartmentalization of electrical events 

(Gu et al. 1991; Melinek and Muller 1996).  

Our results show a clear compartmentalization of calcium dynamics in most leech 

neurons, in which the soma does not give propagating action potentials. In such cells, the soma, 

while not excitable, can affect information processing by modulating the sites of origin and 

conduction of AP propagation in distal excitable processes. The appearance and the different size 
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and kinetics of the AP induced calcium transients in the soma and dendrites of the leech neurons 

suggest an important role that calcium has in the local modulation of the propagation of APs. 

Local variation in voltage-dependent calcium entry during an AP may modulate electrical 

excitation, propagation of APs and different modes of synaptic and non-synaptic communication 

between that cell and the other cells in the nervous system. 

Calcium sensitive dye recording, with the present sensitivity and temporal and spatial 

resolution, is a powerful tool for investigating the principles of signal integration in single 

neurons. One step toward understanding how sensory inputs lead to appropriate motor behaviour 

is to learn how individual neurons process sensory information. Studies in the leech suggest that 

changes in its behaviour can be explained, at least in part, by the alteration of firing patterns of 

selected neurons and muscles resulting from modulation of multiple ion conductances. 

Information gathered from this animal will therefore increase our understanding regarding 

general principles underlying the cellular basis of behaviour. Thus, after observing the functional 

significance of the calcium sensitive voltage channels for dendritic integration of multiple 

synaptic inputs in the leech, we can expect these dynamics to be important in other invertebrate 

and vertebrate nervous systems. 

 

5.4    Functional implications 

 
Mechanosensory neurons (see Fig.5.1A) differ from other leech neurons in many aspects: 

in fact, they integrate sensory input in the skin and send signals to other neurons in the same 

ganglion and in neighboring ganglia. Nervous signals generated in the skin are transmitted to the 

soma, at a distance of some millimeters apart, by the usual action potentials. These APs have to 

reach presynaptic endings in the ganglion and in neighboring ganglia and travel at short distance 
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from the soma. Therefore, the soma of leech mechanosensory neurons is close to the pathway 

where action potentials must travel.  

 
 

Figure 5.1 Electrical compartmentalization in leech neurons. A: in mechanosensory neurons, APs and the 

associated flow of information (indicated by red arrows) travel from the skin to the ganglion and vice versa. In 

mechanosensory neurons APs travel through the soma. B: in a unipolar motoneuron or interneuron, postsynaptic 

potentials are initiated in the fine branches emerging from the trunk. The flow of information (indicated by the red 

arrow) is conveyed by APs initiated at the first major bifurcation to the distal dendrites, where presynaptic terminals 

innervate muscles or second order neurons. In these neurons, the soma is distant from the main route of the 

information flow. C: in vertebrate neurons the soma (in grey) of unipolar leech neurons has been moved near the 

first major bifurcation. 

 
Leech interneurons and motoneurons (see the scheme of Fig. 5.1B) need to integrate 

synaptic inputs within the ganglion itself. Leech interneurons and motoneurons obtain a 

 71



functional segregation of their processes by having many of their synaptic inputs concentrated 

between the soma and the first major bifurcation of their arborisation. Their presynaptic contacts 

to other neurons and/or muscles are primarily located more distally in relation to the first major 

bifurcation. In order to process properly some of the synaptic inputs, it is useful and possibly 

necessary to have a poorly excitable membrane with a low density of voltage gated Na+ and Ca2+ 

channels, avoiding the initiation of action potentials which would temporarily wipe out all 

synaptic signals being passively propagated. Therefore, leech neurons have a low density of 

voltage-gated channels in those regions primarily destined for synaptic integration, i.e. between 

the soma and the first major bifurcation.  

Leech motoneurons and possibly also interneurons achieve a functional segregation by 

controlling the density of voltage gated Na+ and Ca2+ channels: their density is low in the soma, 

up to its first major bifurcation.  The density of voltage-gated channels becomes high at the first 

major bifurcation, where APs are initiated. In leech interneurons and motoneurons, the flow of 

information goes from the trunk to the first bifurcation, where action potentials are initiated, and 

finally to the presynaptic endings in the ganglion or onto the muscles. The soma of the great 

majority of leech neurons has a low density of Na+ and Ca2+ gated channels and, therefore, it is 

poorly excitable and does act as a threshold for incoming synaptic signals, as the soma of more 

conventional neurons does. Nonetheless, passive properties of the soma can influence the way in 

which APs travel on excitable distal processes, for instance by modulating their reflection at 

bifurcations (Baccus et al. 2000 and 2001 ) and by modifying the pattern of APs trains ( Amir 

and Devor 2003; Amir et al 2005 ) with the occasional insertion of “ extra APs “.      

We believe that functional and anatomical properties of leech neurons and of vertebrate 

neurons, apparently so different, can be reconciled. The first major bifurcation has the same role 
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of the axon hillock of conventional vertebrate neurons. Vertebrate neurons, however, have 

developed a morphology which appears to be better suited to their functions and have the genetic 

and biochemical machinery (Craig and Banker 1994; Wodarz 2002) able to produce a polarized 

structure with distinct functional properties. In vertebrate neurons the soma of unipolar leech 

neurons has been moved to the major bifurcation, obtaining a better functional segregation with 

an excitable axon on one side and the dendritic tree on the other side (see Fig. 5.1C). However, 

we don’t exclude that, by moving the soma to a location distant from the dendrites and axon 

hillock, the invertebrate neuron allows the site of integration to be closer to the region of 

synaptic input. 
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6.  Conclusions 
 
 
 

In my PhD thesis I addressed an important topic in cellular neuroscience: the functional 

compartmentalization of neurons. I studied the biophysical properties of single leech 

mechanosensory neurons and motoneurons and how they process information. 

The experiments I performed aimed at investigating how and where action potentials 

arise and propagate into the arborizations of identified neurons in the leech nervous system. In 

particular, I investigated whether the entry of calcium is localized to distinct regions of the cells 

and whether there are significant differences in calcium channel distribution between different 

types of neurons. 

The results presented in Chapter 3 show that in mechanosensory neurons the optical 

signal ∆F/F increased almost simultaneously in the soma and in locations along the axon, 

indicating that the voltage-gated calcium channels are not differentially clustered along 

processes; and voltage signals and calcium transients were observed throughout the entire 

neuron. The results in Chapter 4 show that in motoneurons, in contrast with mechanosensory 

neurons, ∆F/F was significantly larger in the dendritic tree than in the soma, where ∆F/F was 

negligible, indicating the strong compartmentalization; the density of calcium channels appeared 

to be much higher in the region of the first major bifurcation and distally from it, than in the 

region of the cell body. 

The major achievement of my PhD project consists in the demonstration of 

compartmentalisation of calcium dynamics in leech neurons and that there are significant 

differences between different types of neurons. My experiments confirm and extend previous 

electrophysiological data, which demonstrate that the soma of motoneurons in the leech, as in 
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many other invertebrates, does not generate action potentials (Stuart, 1970; Muller and Nicholls, 

1974). Thus at sites where APs are found to be large, the calcium signals are large, as in 

peripheral axons, whereas at sites where spikes are small, as in cell bodies of motoneurons, 

signals were small or non existent. These results indicate also a non uniform distribution of the 

voltage-sensitive calcium channels: calcium channels are distributed in a non-uniform manner 

over the surfaces of the motoneurons. Therefore, my results show a clear compartmentalization 

of calcium dynamics and of voltage-sensitive calcium channels in leech motoneurons. This 

pattern is consistent with measurements on many other preparations. In dendritic processes of 

these neurons, calcium channels contribute electrically to summing and spreading synaptic 

inputs. 

The findings described above show the utility of an experimental approach combining 

optical recording with electrophysiological recording and image analysis, for studying the 

functional compartmentalization of neurons in a simple invertebrate system such as the 

medicinal leech. 

Since biophysical properties of neurons in mammals and invertebrates are rather similar, 

understanding information processing in simple nervous systems provides a basis for unravelling 

mechanisms used by the brains of higher animals. 
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