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ABSTRACT

Using an effective potential approach for composite operators, I study
dynamical symmetry breaking in QCD-like gauge theories. The analysis is
extended to massive quarks in QCD with three flavors and the masses of the
pseudoscalar octet mesons and their decay constants are calculated. Renor-
malization group corrections are taken into account. The effective potential
depends on the standard parameters of QCD: Agcp, my, mq, ms and on a
further mass scale y which discriminates between the infrared and the ultravi-
olet regimes. A good fit for the meson masses (agreement within 3%) and for
the decay constants is obtained for the following values of the quark masses
at 1 GeV: m, = 5.8 MeV, mg = 8.4 MeV and m, = 118 MeV. These
values essei;tially agree with the values obtained by quite different methods

except for certain sum rules estimates of m, which give larger values.
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1. INTRODUCTION

There are now various reasons to believe that SU (3)c gauge theory of
quarks and gluons (quantum chromodynamics (QCD)) is the best candidate
theory of hadron physics even though many essential properties that it is
presumed to have such as confinement, dynamical mass generation and chiral
symmetry breaking, are still poorly understood.

Because of the complexity of the strong interaction phenomena which
this theory describes, it is impossible to solve it exactly and some sort of
approximation is nedeed.

In fact, in the high momentum (or short-distance) regime, quarks and
gluons can be treated as weakly interacting particles in perturbative QCD,
but, at the other end of the scale is low-energy hadronic physics. Here the
interacting units are not individual quarks and gluons but hadrons. So far
we cannot solve QCD in this domain.

In this work we will focus on the problem of the realization of the chiral
symmetry in QCD and on the causes and consequences of its spontaneous
and explicit breaking.

From the vast amount of experimental informations available, some
highly fruitful ideas had been developed long before QCD was invented. We

are referring to what is known as ”current algebra”.

The mass matrix m in the QCD Lagrangian density is a phenomenologi-
cal quantity whose origin is unknown. If QCD leads to quark confinement, as
it is assumed, then the mass parameters are not observable quantities. How-
ever they can be determined in terms of observable hadronic masses through
”current algebra” methods.

In this framework the quark mass problem shows up only implicitly in
the symmetry properties of the Lagrangian that is in the commutation rules
involving the currents and the energy momentum tensor.

The approximate unitary symmetry of the strong interactions implies
that the masses of the light quarks are almost equal my, ~ my ~ m, and the

breaking of this global flavor symmetry was identified as an octet term very

early [1].




Since isospin conservation is a much better symmetry than the whole
flavor SU(3), the relation m, =~ mgq should hold to a higher degree of accuracy
than mg ~ m,. Also, the mass parameters for quarks ¢, b, ¢ should all be
much larger than those of u, d, s because we see no trace of flavor SU(4) or
higher symmetries in the hadronic spectrum.

If we put m, = my then isospin will become exactly conserved. In this
limit the neutron and the proton will have the same mass and so will the
pions 7+, 7~ and #°.

But this does not explain the smallness of pion mass (M, /M, = 0.14)
which makes the pion very special among the hadrons.

To understand this Nambu [2] suggested that there is a limit, which is
an idealized theoretical construct, in which the pion is a massless Goldstone
boson associated with spontaneous symmetry breaking.

To translate these ideas in QCD let us consider the chiral limit m, =
mgq = 0.

Since m,, and mg, as we will show later, are small compared to the nu-
cleon mass, this limit gives a reasonably good description of ordinary hadronic
physics in which strangeness and higher flavors do not play a direct role.

This unperturbed system is invariant under the global symmetry group
SU(2)y ® SU(2)a ® U(1)y ® U(1) 4 where the subscripts V and A stand
respectively for ”vector” and ” axial-vector”.

How are these symmetries manifested in nature?

The U(1)v is manifested directly as barion number conservation whereas
the U(1)4 is broken by the Adler, Bell and Jackiw axial anomaly. The
SU(2)v invariance leads to the isospin conservation and in fact the hadron
fall into easily recognizable isospin multiplets.

On the other hand a direct manifestation of SU(2) 4 would require that
each isospin multiplet is accompanied by a mirror multiplet of the same
mass but with opposite parity. No hint of this can be found in the hadronic
spectrum.

Assuming that the real world is well approximated by the chiral limit
and that the flavor and chiral invariance are valid to a similar order of ap-

proximation, one must conclude that these symmetries are not realized in
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the same manner.
In general, given a set of generators L7 of symmetry transformations of

the Lagrangian density £, we have two possibilities:

LFloy=0 (1.1)
which is called Wigner-Weyl symmetry, or

L |0) #£0 (1.2)

called Nambu-Goldstone symmetry.

Two theorems are specially relevant with respect to these questions.

The first, due to Coleman (3], asserts that ”the invariance of the vacuum
is the invariance of the world” or, in more straightward terms, the physical
states (including bound states) are invariant under the transformations of a
group of Wigner-Weyl symmetries.

In this way it is strongly suggested that the SU (2)v is an approxi-
mated Wigner-Weyl symmetry and that the chiral SU(2) ® SU(2) g contains
Nambu-Goldstone type generators.

The second relevant theorem is due to Goldstone [4]. It states that for
each generator that fails to annihilate the vacuum there must exist a massless
boson with the quantum numbers of that generator.

Therefore we may explain the smallness of the 7 masses because in the
limit m,, mg — 0 we would have M, — 0.

The mass of the physical pions then comes from the explicit chiral sym-
metry breaking parameters m, and mg4. Since m, and my are small, the
pions are almost massless and the axial-vector currents to which they couple
are almost conserved. ’

Let the pion states be denoted by |r;) where j = 1,2,3 is the isospin
index. The axial-vector currents J ,’fs k =1,2,3 can annihilate states of the
same quantum numbers as the pions and hence connect the pion states to

the vacuum. By Lorentz invariance and isospin consevation we can write

(015 (2) 7 (p)) = & pp By fre'PE (1.3)
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where p, is the pion 4-momentum anf f; is the pion decay constant. Then,

taking the divergence
(010" 5 (2)|m; (p)) = 6k; fx Mze 'P? (1.4)

which expresses the property of the pions of being the Goldstone bosons in
the chiral limit since d#J,5 = 0 implies M, = 0.

One can defines
i

) = 22z,

" Jk(z) (1.5)
then .
(Ol@x(z)|m;(p)) = brje *P* (1.6)

The content of PCAC is a rule for using ¢x(z) as a pion field operator in the
chiral limit.

Let us spend some more words on the Nambu-Goldstone realization of
the chiral G = SU(2) ® SU(2) g symmetry.

The six generators of this group Q* and Q% (i=1,2,3) are such that

Q'0) =0 (1.7)

Qslo) £0 (L.8)

Hence the generators to which the isospin vector currents are associated do
annihilate the vacuum and generate a subgroup H of G, the stability group

of the vacuum, (here H = SU(2)p4r = SU(2)y), while the generators Qi
lie in the quotient space

Qi € Lie G/Lie H (1.9)

This phenomenon is commonly referred as the spontaneous symmetry break-
ing of the symmetry G down to the syminetry H (SSB) [5].

This means that, even though the Lagrangian is chiral invariant, this
symmetry is not reflected algebrically in the S-matrix elements since it is
not a symmetry of the ground state. The symmetry is not really broken, of
course the axial-vector currents are exactly conserved and the pions remain

massless through all perturbative orders of the Lagrangian.
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Furthermore, since there is strong evidence for approximate unitary
SU(3) symmetry in hadronic physics, one might entertain the idea of an
extended chiral-symmetric limit corresponding to m, ~ mg ~ m, = 0.

By the same reasoning as before, one concludes that this extended chiral
symmetry is spontaneously broken and is manifested through the existence of
Goldstone particles identifiable with the eight lightest pseudoscalar mesons
(7, K,n). '

In this limit the global symmetry group is SU(3)y @ SU(3) 4@ U(1)y ®
U(1)a with the SU(3)4 realized in the Goldstone mode and the SU(3)y
realized directly in the ”eightfold way”.

Let us remark that the eightfold way is an approximate symmetry of the
strong interactions not because the quarks u, d, and s have similar masses,
but because their mass differences are small in comparison to hadron masses.

The explicit chiral symmetry violation raises the masses of the pseu-
doscalar mesons to ﬁhite values while the SU(3)y violation leads to mass
splitting in the pion octet as well as those in all other flavor multiplets [6].

This arises from the perturbation Lagrangian density
—(myuu + mydd + m,3s) (1.10)

whose effects are usually treated by ”chiral perturbation theory” [7] which is
a combination of ”current algebra” and ”extended PCAC?”.

The question is now the following: what is the dynamical reason why
SU(3) 4 manifests itself in the Goldstone mode?

In the non-renormalizable pre-QCD model of Nambu and Jona-Lasinio
[8] the cause of spontaneous symmetry breakdown is a direct nucleon-nucleon
attraction.

The scheme is motivated by the observation of an interesting analogy be-
tween the properties of Dirac particles and the quasi-particle excitations that
appear in the theory of superconductivity of Bardeen, Cooper and Schrieffer
(BCS) [9].

The characteristic feature of the BCS theory is that it produces an energy

gap between the ground state and the excited states of a superconductor.
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This gap is due to the fact that the attractive phonon-mediated inter-
action between electrons, produce correlated pairs of electrons with opposite
momenta and spin near the Fermi surface.

As the energy gap in a superconductor is created by an effective electron-
electron attraction, one assumes that the mass of a Dirac particle is also due
to some interaction between massless bare fermions.

In ref. [8] a simplified non-renormalized model of a chirally invariant
four fermion interaction is considered.

The implications are that the nucleon mass is generated by some primary
interaction between originally massless fermions and that the same interac-
tion is also responsible for the formation of pseudoscalar zero-mass bound
states of fermion-antifermion pairs which may be regarded as idealized pi-
ons. |

The presence in the physical spectrum of massless particles is a mani-
festation of spontaneous symmetry breaking.

However, here the Goldstone bosons are composite particles and the
Goldstone mechanism turns out to be secondary in the sense that it is not
related to the fundamental Lagrangian but it is related to the effective La-
grangian of hadron interaction.

Hence, in the contest of a non-renormalizable direct fermion-antifermion
interaction, chirél symmetry is spontaneously broken by the dynamics of
the strong interactions. This phenomenon is called dynamical symmetry
breaking (DSB). ' ‘

Just as the effective electron-electron attraction in superconductivity
arises from the more fundamental electron-phonon interaction, the Nambu-
Jona-Lasinio model represents an effective low-energy description of the
strong quark-gluon gauge interaction.

So the further problem will be to explain how the color forces really lead
to the dynamical breakdown of chiral symmetry. In such a way the problem
will be reduced to the dynamical realization of a linear o-model [10].

As it is known, in the unstable (symmetric) phase of the o-model there
are n® scalar and n? pseudoscalar tachyons assigned to the (n,n*) @ (n*,n)

representation of the chiral SU(n), ® SU(n)g group. In addition there
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are n left and n right massless fermions assigned to the (n,0) and (0,n)
representations respectively.

The occurence of tachyons indicates that the vacuum of the normal phase
with massless fermions is unstable.

Under the vacuum rearrangement (phase transition), the symmetry is
lowered to SU(n)y ® U(1)y. Then n? — 1 pseudoscalar tachyons are trans-
formed into massless Goldstone bosons and n? scalars and one pseudoscalar
(associated with the U(1) 4 broken by the axial anomaly) are transformed
into massive bosons. Fermions acquire mass due to the Yukawa-type inter-
action with scalar bosons.

In the framework of QCD, hadrons are represented by bound states of
quarks and antiquarks. So one must determine the forces which can lead to
such tightly bound states as tachyons and Goldstone bosons in the unstable
and stable phases respectively.

One expects that the binding of the fermions, coming from the strong
action of the color forces at distances of the size of Goldstone bosons, results
in the appearence of condensates breaking spontaneously chiral symmetry.

The crude but basic idea is the following. Consider a bound state of a
pair of massless quark and antiquark. Because of the uncertainty principle,
the energy of the ground state in a fully relativistic formulation will be given
by |

E? ~p? — g?/r? ~ p?(1 - g*) (1.11)

where p and r denote the relative momentum and coordinate respectively
and ¢ is the gauge coupling constant.

When g exceeds order one, there will be a tachyon bound state indicating
the instability of the vacuum. In order to cure this instability, the vacuum
rearranges itself and gives mass to quarks.

The existence of a critical value for the coupling is essential for the
mechanism of dynamical mass generation.

The gauge coupling in quantum chromodynamics is asymptotically free
and becomes strong at large distances. So there will be a scale at which the
ground state of the theory has an indefinite number of massless fermion pairs

which can be created by the strong coupling.
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Since we still expect the bound state to be invariant under Lorentz
and color SU(3), transformations, it will only contain pairs with vanishing
total momentum, angular momentum and color charge but with a net chiral
charge.

More generally the situation is that the vacuum |(2) will have the prop-
erty that an operator which destroys a fermion pair has a non zero vacuum

expectation value
(QlﬁLi‘I’lefD = <ﬂl§Ri‘Ilelﬂ> = vd;; (1.12)

corresponding to equal condensation of pairs for each flavor.

So, in the limit in which the global SU(n)y is an unbroken symmetry,
we will have the same dynamical mass generation for each quark flavor.

These arguments summarize the basic points of physics that we wish
to discuss in detail in this work. It remains to carry out this analysis more
completely and precisely.

Our first priority is to learn how to do a more quantitative computation
of chiral symmetry breaking. Basically we need to know how to test whether
the energy of the vacuum is lowered when some fermion bilinear acquires a
nonzero vacuum expectation value. ,

The standard method to describe symmetry breaking in field theories
when the quantity acquiring a vacuum expectation value is a scalar field ¢ is
to evaluate the effective potential [11].

The main property of the effective potential is that it turns out to be
equal to the energy of the vacuum under the constraint that the vacuum
expectation value of ¢ has some definite value ¢.. So one needs only to
minimize this functional with respect to ¢, in order to determine the vacuum
value of ¢ and the various phases of the theory.

A series expansion for the effective potential was derived by Jackiw [12].
Each order of the series corresponds to an infinite set of Feynman diagrams
with a fixed numbers of loops. |

This functional evaluation of the effective potential results very useful

since it is important to be able to study the higher-order multiloop graphs,

if not explicitly, at least in general terms.
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In fact there exist phenomena which cannot be easily seen in perturbative
series. A clear example is given by the formation of bound states which can
never be observed in a finite order of a loop expansion. Necessarily they
require at least an infinite subset of all orders ( remember that in the case
of a chirally symmetric theory the invariance of the Lagrangian guarantees
that the mass term in the fermion propagator will never appear in any order
of perturbation theory).

So, what we need is an approximation scheme that preserves some of
the non-linear features of field theory which, presumably, leads to these co-
operative and coherent effects.

With the effective potential series as introduced by Jackiw, it is possible
to sum large classes of ordinary perturbation-series diagrams so it represents
a formalism especially appropriate for the study of DSB.

Actually in this case one expects that the breaking of the theory is due to
the formation of bound states (condensates) playing the role of the previous
elementary scalar fields ¢. So one needs an appropriate generalization of the
effective potential for composite operators.

This was introduced by Cornwall, Jackiw and Tomboulis (CJT) [13].
The idea is to introduce inside the generating functional of the Green func-
tions of the theory, a bilocal source J(z,y) coupled to the composite operator
we are interested in and then to Legendre-transform to a generalized effective
action.

The functional I' they obtain in this way for a scalar theory, depends
not only on the possible expectation value of scalar field ¢.(z), but also on
G(z,y), a possible expectation value of T(¢(x)¢(y)) and it represents the
generating functional in ¢, of the two particle irreducible Green functions
expressed in terms of the propagator G. (The conventional effective action
is merely I'(¢., G) at J(z,y) = 0).

Physical solutions require

6L(¢e, G)
—5g =0 (1.13)
8T (¢e, G)
—sa =0 (1.14)

9




Eq. (1.13) reproduces the equations of motion of the theory while eq. (1.14)
is nothing but the Schwinger-Dyson equation for the full propagator G.

We see that this formalism is especially appropriate for the study of
dynamical symmetry violation which is characterized by the fact that even
though (1.13) has only the symmetric solution ¢.(z) = 0, symmetry breaking
solutions exist for (1.14).

In ref. [13] a formal series expansion is derived for the generalized ef-
fective action consisting on a systematic resummation of graphs with a fixed
number of loops.

So one has to evaluate I'cj7 up to a certain loop approximation and
derive the stationary conditions of egs. (1.13) and (1.14) corresponding to
vanishing sources.

A non-symmetric solution of eq. (1.14) for the composite operator G is
a signal for dynamical symmetry breaking.

For example, in the case of spontaneous chiral symmetry breaking (xSB),
all this procedure is equivalent to turn on some external field ( analogous to
a magnetic field orienting a potentially ferromagnetic system) coupled to the
bilinear (1¢), construct the ordered vacuum in the presence of this field and
then see if the order of this vacuum survives when we turn off this field.
The vacuum expectation value of the composite operator (Ezﬁ) is the order
parameter characterizing the phase transition.

But, as it has been pointed out in refs. [14] and [15], the CJT functional
has an intrinsic defect: it is not bounded from below. In particular, in the
case of a SU(NV) fermion gauge theory, a detailed numerical study [16] shows
that all chiral symmetry breaking stationary points are saddle points.

This is a very unpleasant property if one wants to perturbe the vacuum
of the theory to find its excitations.

To cure this instability problem of the CJT formulation R. Casalbuoni,
D. Dominici, R. Gatto and I, have introduced a modification of the CJT ef-
fective action which corresponds to a different choice of the source-dependent
term [18], [22].

Our functional has the same stationary points as the CJT one but does

not suffer from the problem of unboundness from below and also has the
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property that the solutions of the Schwinger-Dyson equation for the propa-
gator correspond to real minima.

The main difference in the two cases resides in the choice of the dynam-
ical variable. In the case of fermionic gauge theories the CJT effective action
is a functional of the full fermion propagator S while our effective action
results completely espressed in terms of the fermion proper self-energy .

We have applied this formalism to the study of the dynamical breaking
of the chiral symmetry in QCD-like gauge theories.

Our main hypothesis is that the relevant contribution for the xSB phe-
nomenon comes from relatively short-distance effects as also suggested by
computer simulations [17]. This justifies our calculation for the effective ac-
tion which are performed in the two-loop approximation.

Our strategy consists in introducing a parameter p as an infrared cutoff.
We have assumed the self-energy of the fermions as a constant at energies
lower than p whereas, for greater energies, we have used the behaviour given
by the Operator Product Expansion (OPE).

The parametrization of the fermion self-energy is in terms of the renor-
malized fermionic condensates. The condensates are indeed our variational
parameters to be determined by looking at the minimum of the generalized
effective potential.

In our first works on this subject [18], [19] and [20], we have discussed
the so called "rigid case” in which the logarithmic corrections coming from
the renormalization group analysis are neglected.

In this approximation it is possible to derive analytically the complete
expression for the effective potential at two fermion loops.

The result is that in the case of massless fermions, the theory has two
phases: the chirally symmetric phase and the broken phase into the diagonal
flavor subgroup when the gauge coupling constant exceeds a critical value.

In the case of massive quarks, it is necessary to renormalize the com-
posite operator wave function. This leads to a condition which is equivalent
to the Adler-Dashen requirement in the limit of vanishing quark masses and
also ensures the absence of spontaneous breaking of parity.

In this framework, since the lowest energy vacuum corresponds to a local
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minimum of our effective potential, it is possible to calculate the masses of the
pseudoscalar mesons. In fact they are simply related to the second derivatives
of the effective potential which, in our model, turn out to be positive definite
(remember that our stationary points are minima).

In ref. [20], in collaboration with A. Barducci, we find that, in QCD
with three flavors, a good fit for the pseudoscalar meson masses (singlet

sector excluded) can be obtained with the quark mass ratios
mg/my, =194 my/mg =217 (mg — )/ (mg — m,) = 43.14

(e = (my +ma)/2)

to be compared, for example, with the corresponding values 1.7640.13, 19.6+
1.6, 43.5 2.2, given in [21].

The further step consists in generalizing all these results to the case in
which one considers the gauge coupling constant and the fermion self-energy
corrected by the renormalization group analysis in the leading logarithmic
approximation.

In the case of massless quarks we have discussed the different ansatzes
with or without logarithmic corrections and we have found that the result
of spontaneous symmetry breaking of chiral symmetry for large couplings
remains stable [22] and [23]. In particular we find that, when the leading-log
expressions are used both for g and for X, then xSB does occur in QCD with

three flavors for )
9*(r)

> 0.737 (1.15)

with an U(3)y residual symmetry.

The analysis of the massive case has been carried out in ref. [24] and
represents the central part of this work.

We evaluate the effective potential as a functional of the proper fermion
self-energy ¥ in QCD with three flavors in the general case in which both
spontaneous and explicit breakdown of the chiral symmetry are present.

The calculations are in the two-loop approximation, use is made of the
Landau gauge and of the renormalization group improved expression for the

gauge coupling constant.

12




From the analysis of the asymptotical equations of the Green functions
we deduce the form of the test function to adopt for X.

We assume a constant behaviour in the infrared region of momentum
and a decreasing as 1/p? (logs) for p > u which is completely consistent with
the OPE analysis.

By substituting in the effective action we find an expression which is
ultraviolet finite. This fact is connected with the use of renormalization
improved expressions for ¥ and g which completely regularize the theory in
the two-loop approximation we are considering.

However a finite part of the effective potential remains to be fixed with
a suitable normalization condition. The natural choice for it comes from the
expression of the effective potential for small masses and, in this limit, it is
equivalent to the Adler-Dashen requirement.

Our method consists now in making a convenient ansatz for & in terms
of a set of parameters related to the fermionic condensates and then in min-
imizing the effective potential with respect to these parameters.

We find that, also in the massive case, the effective potential evaluated
at the minimum factorizes out in the sum of separate contributions, one for
each flavor.

We determine in this way the values of the condensates for the quarks
u, d and s at the minimum. They depend on the parameters of our model:
the renormalization invariant mass Agcp, the three quark masses m,, my
and m, and the further scale u we have introduced in order to separate the
infrared from the ultraviolet region of momenta.

Our task is to determine these parameters from the experimental data.

We are in the position of calculating the masses of the pseudoscalar
mesons which represent the pseudo-Goldstone bosons of our derivation.

Also we can derive an expression for the decay coupling constants for
the pseudoscalar meson octet by following refs. [25] and [26].

The necessary ingredients are the normalization of our pseudoscalar
dynamical variables and the vertex function of the pseudoscalar compos-
ite fields. Then the decay constants are evaluated from the coupling of the

meson fields |7;) to the axial-vector currents Jrs(z) (4, = 1,..8). (The
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mixing in the 3-8 sector has been explicitly taken into account).

We have in this way a system of coupled equations and we determine
the parameters of our model with an iterative procedure.

We obtain a very good fit for the meson masses (agreement within 3%)
and for the decay coupling constants for the following values of the quark

masses at 1 GeV
my (1) = 5.8 MeV

mgq(l) = 8.4 MeV (1.16)
me(1) = 118 MeV
These values agree with the valeus obtained by quite different methods, ex-
cept for certain sum rule estimates of ms(1) which give larger values.

In sect.2 we review some fundamental aspects of alternative forms of
the effective potential for composite operators and we look at the nature of
their stationary points. Then we derive our modified version for the effective
action and discuss its properties.

In sect.3 we evaluate the effective action for a QCD-like gauge theory of
massive fermions as a functional of & which, at the phisical point, turns out
to be the proper fermion self-energy.

In sect.4 we derive the ultraviolet behaviour of the fermion self-energy
in the general case in which both spontaneous and explicit breakdown of the
chiral symmetry are present. We also make some comments in favour of the
use of the so called ”regular solution” for the self-energy.

In sect.5 the variational ansatz for ¥ is discussed.

In sect.6 we analize the cancellation of the ultraviolet divergences in T
and we normalize our functional.

In sect.7, in order to better understand the pattern of the dynamical
breakdown of the chiral symmetry, we analize the properties of the massless
effective potential.

Sect.8 is devoted to the comparison with other studies of the dynamical
symmetry breaking phenomenon.

In sect.9 we discuss the general massive case in the case of QCD with

three flavors.

Then we calculate the masses and the decay coupling constants of the
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octet pseudoscalar mesons in terms of the parameters of our model in sects.10
and 11 respectively.

The numerical results are given in sec.12 while in sec.13 our discussion
focuses on the comparison of the values we get for the quark masses with the
values obtained by different methods.

Conclusions and further developments are in sec.14.
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2. EFFECTIVE ACTION FOR COMPOSITE OPERATORS, RE-
VIEW OF ALTERNATIVE FORMULATIONS

The main tool in the following analysis is a modified version of the
effective action for composite operators introduced by Cornwall, Jackiw and
Tomboulis (CJT) [13].

The physical interest in the study of the effective action and, more par-
ticularly in the study of the effective potential, is the fact that the minima
of this functional determine the physical vacuum of the theory.

Of course this is particularly relevant when one expects a non trivial
vacuum as in the case of spontaneously broken symmetries.

When the breaking of the theory is due to the formation of bound-
states (condensates), as in the case of strongly interacting fermionic theories,
the technique of the effective action for composite operators turns out to
be very useful. In fact it consists of a systematic resummation of graphs
which is capable of describing non-perturbative phenomena in a sequence of
approximations.

The more direct way to construct an effective action describing the in-
teractions between the elementary degrees of freedom of the theory and the
collective modes (composite fields), is to introduce an auxiliary field in the
generating functional and to develop a loop expansion in it.

This approach leads to the so called ”collective variables” or ”auxiliary
field” (AF) method (see for example [27]).

Unfortunately the (AF) technique suffers of severe limitations because
it can be usefully applied only in the case of quartic interactions.

A more general formalism to study dynamical symmetry breaking was
introduced by Domokos and Suranyi [28], and rediscussed some years later
by Cornwall, Jackiw and Tomboulis [13].

- In this method, one introduces a ”classical ” bilocal field which turns
out to be the one-particle propagator of the theory and defines a generalized
effective action such that its variations with respect to the usual ”classical”
field and to the bilocal field reproduce the equations of motion of the theory
and generate the Schwinger-Dyson (SD) equation for the propagator (gap
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equation).

We believe that this is the most efficient way to our disposal to discuss
DSB.

We will review the AF and the CJT methods for a fermion gauge theory
showing that, in the lowest approximation, these formulations are equivalent
in the sense that the stationary points in the two cases simply give the same
dynamics.

We will then introduce a modified version of the CJT functional having
the same local extrema as the CJT one but a different asymptotic behaviour
turning out to be bounded from below [29],[18] and [22].

The main advantage of the new form of the action is that the solutions
of the gap equation correspond to real minima. This can be seen from the ex-
plicit expression and from the general analysis performed by various authors
[30] and [31].

This stability property is essential if we want to do something more than
just find the extrema of the effective potential and in particular if we want
to perturbe the vacuum to find its excitations.

Let us recapitulate here the salient points of the CJT formalism in the
case of a fermion gauge field theory in its euclidean formulation.

This technique consists in introducing a bilocal source J (z,y) coupled
to the operator ¢(z)#(y) in the generating functional of the theory Zcyr [J]
Zegr |J] —e~Wour [J] =

— — 2.1
L / D DF DA, e~ (B, Au) + BTy (2.1)

where N is a normalization constant (it will be omitted from now on), and
I (t,b,_t/;, A,) is the classical euclidean action for the gauge theory evaluated in
the Landau gauge (see sect. 3). Clearly it also contains ghost terms but, for
sake of simplicity, we have written down only the dependence on the fermion

and gauge fields. Use is made of the shorthand notation

0= [ dle 'y B (@) ap(a0)e(y) (22)
where the index a is a collective index for spinor and flavor variables. Also we

have not explicitly introduced in Zg [J] the usual linear sources coupled

to 1 and 1 because we are not interested in their effects.
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Let us define the ”classical” bilocal field S

Wear
= -8 2.3
57 (2.3)
and introduce the effective action I'cjr as the Legendre transform of the
generating functional of the connected Green functions Wy = —log Zg 1
oW,
Teyr [S]=Weur — —Egjﬂl J (2.4)
It follows that 5T
cJT
= J 2.5
55 (2.5)

The Legendre variable S conjugate to J will be the CJT dynamical

variable.

For physical processes (J = 0), S has to satisfy the stationary condition
for the effective action éT'cyr/6S = 0.

We will show that this is nothing but the Schwinger-Dyson equation for
the fermion propagator and so S coincides with the exact fermion propagator
when the source J is turned off.

A remark is now in order. If one is interested only in translationally
invariant solutions of the SD equation, one can take the composite field S to
be a function of the space-time difference (z—y).

In this way an overall factor of space-time volume factorizes out and the

effective potential for composite operators Vo may be defined

Vosr [S] Q=Tcyr [9] 0= /d“x (2.6)

tran.inv.
which, in the CJT formulation, is equivalent to consider the generating func-
tional for zero-momentum two-particle irreducible Green functions, expressed

in terms of the propagator S.

I'cyr (and equivalently Vi JT) can be expressed in the euclidean space

as the following formal series
Toyr (S) = —Trlog S™" — Tr(S51S) — I'y(S) (2.7)

where S is the free fermion propagator and I'2(S) is the sum of all the two-
particle irreducible vacuum diagrams of the theory evaluated with fermionic

propagator equal to S.
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By inserting (2.7) in (2.5) one gets the following expression for J

0Ty

_6layr oI’y
J= 6S

=815t~
6S 0

(2.8)

From eq. (2.8) the SD equation follows by setting J = 0. It is clear that

_ls

=35

(2.9)

represents the fermion self-energy when the source is off.
We will evaluate I'; at the lowest order, that is at the two-loops level

corresponding to a single gluon exchange.

Ty = (2.10)

This approximation will be improved by taking into account renormal-
ization group effects which amounts to use the running coupling constant at
the vertices (see sect. 3).

The important fact is that I's in this approximation is a quadratic ex-
pression in S, in fact (62I'5/652) is nothing but the gluon propagator plus
possible corrections not involving explicitly fermions.

For this reason it follows (the trace operation is understood)

1 52I‘2 1 6Ty
or 9
62Ty _ 6T,
552 = %3 (2.12)

It is easy to see that the approximation we are using for I'; corresponds
to integrate formally in the generating functional Z the gluon fields and then
to expand up to the fourth order in the fermionic fields.

In this way one obtains an effective four-fermion interaction and, instead
of using I'c 7, one can introduce a collective variable, the auxiliary field &

related to the bilocal fermion-antifermion composite field.
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The strenght of the effective four-fermion interaction, within the speci-
fied approximation, is given by (62I'2/652).
One performs the standard trick of the functional identity

1
Do e—:?f_(q) ¢¢) (- ¢¢)= const. (2.13)

where D is an arbitrary operator. In order to eliminate the quadrifermionic

term, we will choose D = §2T';,/652.
Then one defines a new functional Z4r depending on a bilocal source

J(z,y) which is now coupled to the auxiliary field ®

Zap [J]= e War [J] =
62Ty
652

(2.14)

~Leps(,8) + 5 (@ — 99) o2 (@ — i) - T

:/D¢bip’0¢>e

where I f(@b,E) results from the integration over the gauge fields and from
the expansion up to the forth order in the fermionic fields.

From the equations of motions for the auxiliary field ® one gets

®op(2,Y) = Ya(z)Ps(y) (2.15)

In this sense ® can be identified with the operator 1.

In order to build up an effective action relatively to auxiliary composite

field, let us integrate on the fermion fields

—[~Trlog(Sy " + 62F2<I)) + = @52F2 d — J3]
Zar [J] =/D<b e B0 652 2652 (2.16)

If we do a stationary phase approximation, i.e. tree approximation in
the ® field, we get

61‘2

621‘2
652 To) +

War [J] = —Trlog(s5 + 29

<150 — J®, (2.17)

where @ is the solution of the classical equation of motion.

One can Legendre transform W4 p [J] in the usual way by defining

6J

= -3, (2.18)
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and

oW
Tar [®c] = Wap — 53” J (2.19)
from wﬁich it follows 5T
AF
= J 2.20
6@(; ( )

In the lowest order approximation we can choose ®, = ®.
By substituting eq. (2.17) in eq. (2.19) we obtain the auxiliary field

effective action in the tree approximation for the composite field @, [30]

- 62T, 1. 62T,
Tap [(I)c] =-Tr log(So 1 + *6—3—2@0) -+ —é@cm—@c (2.21)
Then from eq. (2.20) one gets:
' PR 82T

which gives ®, as a functional of J.
Let us look at egs. (2.8) and (2.22). They represent the stationary
conditions for I'cyr and I' 4 respectively.

Switching the source J off and using eq. (2.12) in (2.8) they respectively
read

52T

571=5514 55225, (2.23)
82T

o7l =551 + —53—52-% (2.24)

This means that the CJT and AF formulations are equivalent in the
lowest approximation (which is the tree approximation for the auxiliary field
and the lowest non-trivial (two-loops) order in the CJT formalism) in the
sense that S and @, satisfy the same gap equation at the phisical point and
so describe the same dynamics.

However, the functional form of I'cyr and T'4r are different and the
effective actions for these two cases do differ outside the stationary points.

We can easily show that the difference between Wy and Wur is a
quadratic term in J(z,y) essentially due to the fact that the source in the

generating functional is coupled to ¥(z)®(y) in the first case and to ®(z,y)

in the second one.
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If we start from eq. (2.1) and use the same functional trick (2.13), we

obtain, after integrating over the fermion fields,

62T, 62T,
_WCJT—/D Trlog(So + 652@+J)+2@ 552 o)

(2.25)

If we use the invariance of the volume element under translations, we

can change the integration variable

62T,

-1
S+ (55) M T (2.26)
and get
C”WCJT‘:
62T, 1_62%T, 1_.62T,
log(Sg ! + ——== d+-J 1J-J®
/D [—Trlog(S, +652¢)+2®6S2 + = (65’2) ]
(2.27)
that is
W, War + = J 6T, _IJ (2.28)
car = War 552 .

So, the whole effect of introducing the auxiliary field ® and coupling a source
to it, is to add a term with a quadratic J dependence to Wg .

We will see that this term is responsible for éhanging the stability prop-
erties of the effective potentials in the two formulations.

In fact, let us introduce in the standard way the ” auxiliary field” effective

potential

Vap [8e] 0 = Tap 4] Q= / ds (2.29)

tran.inv.

It is clear that, in the AF formalism, the second derivative of Vp [®c] can
be interpreted as the mass of the ®. field. So, its positivity is a necessary
condition for the validity of the composite field loop expansion.

We will show that the auxiliary field effective potential does have a local
minimum corresponding to the lowest energy vacuum of the theory.

On the other hand, it happens that, even in the free field case, Voyp

turns out to be unbounded from below (see [14] and [15]) and, in general,
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that the absence of a lower bound and the related saddle point behaviour for
the solutions of the gap equation of Vyr, is an intrinsic defect of the CJT
formulation.

Haymaker, Matzuki and Cooper ([16] and [30]), have shown that, in the
case of a SU(N) fermion gauge theory, under certain physical conditions
imposed on the solution of the gap equation, the lowest energy stationary
point is a saddle point for Vo 1 while it is a local minimum for V4.

To determine if a solution of the gap equation is at a local minimum, a
saddle point or a maximum, we need to solve an eigenvalue equation for the

curvature operator.
Let us consider the case of a massless fermion gauge theory and let us
parametrize the fermion propagator in the Landau gauge as following
6T

S71(p) = ip — T(p) 2(p) = 5500) (2.30)

Since we are looking for a solution of the gap equation which is a singlet

under the internal and Lorentz variables, the self-energy can be set

Tapl  =Z bap (2.31)

extr

Also the following assumptions are made ([16], [30])
i) the solution to the gap equation is spherically symmetric in four mo-
mentum space,
ii) I'y gives a negative contribution to the effective potential in full space,
iii) the self-energy function T has a constant behaviour as p — 0 and
approachs to zero as p~— %, a > 0 for p — co.

(Notice that all of them will be satisfied in the model we will develop in the

next sections).

Let us substitute {2.30) in eq. (2.7) with I'; evaluated at the two-loop
order.

Then, performing the angular integration in euclidean momentum space

and taking the traces over y-matrices we obtain, after a constant renormal-
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ization, the following expression for the CJT effective potential

__ Nn £2(p?) B
Vesr = “““‘271_2 [/ dp p3 T Ez(pz)_
1 2% (p?)
/dp p° log(l+ p )— (2.32)

p’) %(q?)
“3 [ @r e ) g

where N is the dimensionality of the gauge group, n is the number of flavors
and the gauge coupling constant is included in the definition of the kernel
D(p,q).

Due to the above assumptions the self-ernergy ¥ is a function of the
square of the momentum, D(p, q) is positive definite and it is symmetric in
p and q even if it includes the running coupling constant.

From eq. (2.32) we derive the gap equation for ¥ and the expression for

the curvature operator

5VCJT _ 9 3 E(qz) B
55(p?) = A(p) [ (p )—/dq ¢°D(p, q) m =0 (2.33)
62Veyr
sEpen(g) ~ APép—a) - AlP)D(p. 9)Ad) (2.34)

where we have omitted the overall constant factor (Nn/27?) and

N A ()
(p2 + 22(1)2))2

A(p) = (2.35)

In order to compare the curvatures of CJT and AF formulations, let
us derive an expression for the AF effective potential for a massless fermion

gauge theory when the same assumptions are made.

Here ,
8Ty
Y= .
~ 552 —0, (2.36)
Substituting in eq. (2.21) we get
- g 1 62T\ 7!
Var = =Trlog (ip — Z(p*)) + ETI (= 552 %) (2.37)
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Let us remark that in the case we are considering

62T,
6Spa(p)6Ss+(q)

= bay6ps D (p, q) (2.38)

Then, performing as before the angular integration in euclidean momen-

tum space and taking traces over y-matrices we obtain

N 1 Y2(p?
VAF = 57—[_%[ 2 /dp p3 log(1+ (p ))+
(2.39)
/dpp /dq ¢° £(p*) D™ (p, q) =(¢*)
where the inverse of D(p,q) is defined as
1
/ dr 1* D7(p,1) Dlrvg) = 5 6o~ ) (2.40)

From equation (2.39) we derive the gap equation for X and the expression

for the curvature operator in the AF formulation

5)3(;1;) TP ey P /dqq D7 (p,q) B(¢*) =0 (2.41)
8%V, 1 ,
s ~ AP =)+ s (2.42)

(we are again omitting the (Nn/27?) factor).

It is easy to prove (by using (2.40)) that eq. (2.41) gives us the same
solution as eq. (2.33) showing once again that the CJT and the AF formu-
lations lead to the same stationary points.

Let us now expand the effective potential about a solution ¥ of the gap

equation

V(Z+63) =V () + /dpdq 65 (p )52( o §S(q?) +--- (2.43)

p?)63(q?)

It is possible to show that in the CJT case, the second term in (2.43) can

be negative or positive by choosing appropriate variations 63 i.e. the solution

is a saddle point and also that the same solution of the gap equation which

is at a saddle point of the CJT effective potential, is at a local minimum of
the AF effective potential [30].
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Let us consider the following eigenvalue equation

/ dg [6(p — 4) — D(p,0) A(g)] #n(a) = Anda(p) (2.44)

with the ¢, satisfying the orthogonality relation

/ dp 4 Gon(p) A(D) D (P, ) A(Q) b (a) = 6mom (2.45)

Let us expand the variation 65(p) in the ¢,, basis

6)3(17) = ch¢n(p) (2.46)

Then the expectation value of the CJT curvature given in eq. (2.34) has

the following expression

/ dp dg ) emdm(p) A(p)[6(p — q) — D(p, 0) A(q)]cndn(g) =

m,n

(2.47)
— [ dp da 3" cmenadm(p) A(2)60 0
From eq. (2.44) one can derive
én(p) = _1/\’1 /dq D(p,9)A(9)$x(q) (2.48)

Then, substituting in (2.47) and using the orthogonality relation (2.45)
we get

6Vesr
6% (p?)6%(q?)

An
1-A,

[ v da 527 65(¢%) = Y ¢ (2.49)
n
The eigenvalue equation (2.44) has been numerically studied in ref. [16].
The result is that the eigenvalues corresponding to the ultraviolet region are
positive and less than 1, while those corresponding to the infrared region are
larger than 1, which makes the value of (An/(1 — A,,)) negative.
This clearly means a saddle point solution for the CJT effective potential.

Let us now examine the expectation value of the curvature (2.42) for the

AF effective potential.
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By using egs. (2.44) and (2.45) we get
/ dp dg Zcm¢m )[9°D(p,4)4* — A(D)5(p — )]endn(a) =

=/dp dq dr Zcmcn¢m(P)[p3D_l(p’ q)r36(q —r)- (2.50)

myn

~ A(g)p>D (p,r)D(r, q)r®]én(q)

where we have also used eq. (2.40).

Then, from the eigenvalue equation (2.44)

/dp dq 53(1’2)3‘5%53(42) =

: (2.51)
=3 encmn [ dp dr (B0 D (p,)r ()
m,n )
Multiplying both sides of (2.48) by [ dp p®D~(p,t), we get
1 1
[ 0 D7 (0, )60(5) = Tk 4040 (252)
where use has been made of eq. (2.40).
Let us substitute the result (2.52) in eq. (2.51)
62V up
d e 62(¢%) =
[ b da 55(p )62( S )6E(q )
= chcm — A /dp ¢m ¢n(p)
(2.53)

_chcm 253 [ 40 4 6mD)ABD (3, ) Al (a) =

where we have used again eqs. (2.48) and (2.45).

Since A, is positive, as showed by the numerical study of ref. [16], the
expectation value of the curvature of the AF effective potential is positive
definite.
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This fact ensures that the solution to the gap equation for the AF effec-
tive potential is at a local minimum even though, the same solution is at a
saddle point for the CJT effective potential.

Taking into account these properties of the CJT and the AF effective
potentials, we have introduced a further functional which is a modified version
of the CJT one not suffering from the problem of unboundness from below.

In particular our effective action will be as general as the CJT one (not
being restricted to the case of four-linear interactions), will have the same
stationary points as I'cy7 and I' 4 but it will have the same functional form
and so the same asymptotic behaviour as the AF one.

In this way it will be clear that the instability due to the presence of
saddle points is an artifact of the particular choice of the effective potential
and that it disappears when one chooses an alternative but equivalent form.

We have shown that W4 can be obtained by adding a source dependent

term to Wg .

Let us change the definition of the source J(z,y)

87Ty
J= 557 L (2.54)
Then eq. (2.28) can be rewritten as
6T
War ZWCJT~I‘2(S+L)+I‘2(S) + —ETS,——L (2.55)

where we have used the property of ['3(S) of being a quadratic functional of
S (egs. (2.11) and (2.12)).

Let us consider the explicit expression for W7 in terms of Doy

0Ty

Weir =Tcyr —JS =Tcyr — —E_S'_L =
ST (2.56)
= —Trlog (S71) — Tr (S518) — I'y(S) — TSEL
where we have used the formal series representation (2.7) for T yr.
Substituting eq. (2.56) in (2.57) one gets
War [L] = —Trlog (S7') — Tr (S5 'S) — I'y(S + L) (2.57)
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and

War =1 s-1_ 0—1 _ gl E — & (2.58)
6L 6S |spr) 0L 65 |gyp
Let us insert (2.54) into the gap equation (2.8)
—FL = - - — 2.59
652 L=5, 5 6S (2:59)
Then, remembering that I'; is a quadratic functional, that is
62I‘é 6T
=222 60
B+1)%5 = 55 |,., (2.60)
if follows 5T
Sgl=8"14+2 2.61
0 + §S SiL ( )
So, by substituting (2.61) in (2.58), we obtain
War 6T ~
L 65 g1 |S+L

which means that the variable conjugate to the source L in the AF formalism
turns out to be .
Finally, let us perform the Legendre transform of W4 [L] with respect

to L in order to get the "auxiliary field” effective action as a functional of
£ = —(6T2/65)|s 41

- oW
Tar [5] = War — 6£‘FL—_—
6T

- _ -1 2

= —Trlog (So + 55 S+L)+ (2.63)
() AN

+Tr { =2|  (S+L)) -Ta(S+1I)
68 S+L

where again eq. (2.61) has been used.
The different functional form of I'cyr and I'4r is due to the use of
different sources, J and L respectively. This means that the two effective

actions describe the dynamics of the different composite fields S and 3 to

which the sources are linearly attached.

A third alternative for the source term gives our result.

29




Since we want I to be our dynamical variable (and not f]), it is quite

natural to define a new action simply redefining S as (S + L) in (2.63)

‘ ‘ 6T '
I [%] = —Trlog (So—l + %) +Tr <-5§3 s) —T5(8) (2.64)

This is the effective action which has been used in [18], [19], [20], [22],
[23], [24], [25], [26] and [29].

It is clear from the derivation that T Ap[z‘f}] and T'[Z] have the same
functional form. This means that the second derivatives of the two effective
potentials with respect to their respective variables, evaluated with sources
turned off, are equal (f) = ¥ at the physical point).

This makes us sure that our potential has local minima as stationary
points.

There is a general proof of this property [31] and also our analytical and
numerical calculations fully confirm the validity of the statement.

Let us now derive the relation between our functional I' and I'c .

By using eq. (2.8) in (2.7) one obtains

6T 6T
Tcor [S] = —Trlog (Sl;l-l- *——Z-I-J) + Tr (*——2 +J>S—P2(S) =

6S 68
| 1, 6Ty 1, 6T\
6I'y
(2.65)
Then, if we use again (2.8), we may write
§T2\ ™"
1 -1, 9l2 _ -1_ 17y —
Trlog (1—I—<So + 65) J)=Trlog (14 (S J)7J) (2.66)
=Trlog (1 —SJ)™!
Let us now insert (2.66) in (2.65) and compare with (2.64)
FCJT=P+TTIOg (1-SJ)+TI‘ (JS) (2.67)
From eq. (2.67) the following relations follow
Teor|;_o= FIJ:O (2.68)
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Ty _or (2.69)
68 J=0 65 J=0
However ) )
$Tosr or (2.70)
628 ;-0  6%25|;_

Furthermore, let us perform the functional derivative of I' as given in
(2.64) with respect to X (X = —6I'3/65)

6T 1 et 65 6T, 68
— = — -8 -y === 2.
xS0 —E)T - S Yee - vees (2.71)

Then, the stationary condition éI'/6% = 0 leads to the right SD equation
S7l=5;1+% (2.72)

Another good reason to use I' instead of I'c 7, is related to eq. (2.62)

6WAF . 6F2 _ 6WAF 6J N
-2 =5 5=
6L 65 25+L 6J 6L (2.73)
82T,
=—o. 5§52 2|S+L

which shows the simple relation between the self-energy and the vacuum
expectation value of the composite field & (&, = (®)).

It follows that a series expansion of the effective action in ¥ = —6T, /
6S gives essentially the 1PI Green functions relative to the field &, while a
series expansion in S as in the CJT case, does not have so a direct physical
meaning.

In other words ¥ describes the physical excitations of the theory around
the vacuum and an analogous situation does not hold in the CJT formulation

because due to the fact that (62Vcyr/6%2) is not positive definite.
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3. EVALUATION OF THE EFFECTIVE ACTION IN QCD-LIKE
GAUGE THEORIES

Let us evaluate the effective action for an SU (V) QCD-like gauge theory
whithin our modification of CJT functional formalism.

The mechanism of the spontaneous chiral symmetry breaking in non-
abelian massless gauge theories has been studied in refs. [18], [22] and [23].

Here this mechanism is extended to the realistic situation when both
spontaneous and explicit breakdown of the global chiral symmetry take place.

The calculations are for § = 0 ( @ is the parameter connected with the
axial anomaly).

The classical euclidean lagrangian density of the strong interaction of
the fermioﬁs ¥, mediated by a set of vector gluons A, which are the gauge

bosons of the symmetry group SU(N) is

L= WS‘;I\I’—i g UAT + gauge terms (3.1)
3.1
+ghost terms + gauge fizing
where ¥ are n multiplets of SU(N) each of them assigned to the fundamental
representation of the gauge group and S is the free fermion propagator
which, in a theory renormalizated at the point p? = u2, has the following

expression

So(p) = [Zw(, A)(6p — mo(A))] (3.2)

Here A is an ultraviolet cutoff, Zy (1, A) is the renormalization constant for

the fermion propagator and

mo(A) = m(u) - 6m (s, A) (3.3)

where m(u) is the n X n renormalized mass matrix which is responsible for
the explicit breakdown of the chiral symmetry and ém(u,A) is the mass

counterterm.

In fact we can write the lagrangian in eq. (3.1) as a sum of two contri-

butions:

L= Lo~ Zy(p,A) Tmo(A)¥ (3.4)
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where Lo is invariant under the transformations of the flavour group U(n) . ®
U(n)r (more precisely it is invariant under the global chiral SU(n); ®
SU(n)g and the U(1)r+r groups since the divergence of the singlet axial-
vector current connected with the U(1)L,_g group is non-zero even in the
chiral limit due to the axial anomaly).

The expression to be evaluated is (see eq. (2.64))

_ 6o 6T
— 1 a3 il _
T[] = —Trlog (So + 55 ) + Tr < 5S S) I'»5(S) (3.5)
with 5T
2
=2 3.6
> 6S (3.6)

Ty = l@*’ @ + @ +oeee o (37)

In eq. (3.5) S is the full fermion propagator which, at the physical point,

satisfies the gap equation

S7'(p) =S5 (p) — =(p) (38)

with ¥ equal to the fermion self-energy function.

We will show that, in the chiral limit, the theory possesses two phases:
the chiral phase and the broken phase into the diagonal subgroup and, in
particular, that spontaneous symmetry breaking occurs when the coupling
constant g exceeds some critical value.

This spontaneous symmetry breaking is accompained by n2—1 composite
Goldstone bosons which are associated to each unbroken generator of the
coset space SU(n) ® SU(n)r/SU(n)L+r.

Actually the lagrangian in eq. (3.1) is not chirally invariant because of
the quark mass term.

However, as it will follow from our analysis, there is a phase of the
theory in which one has dynamical generation of the fermionic mass due to

the formation of quark-antiquark condensates.
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For sake of simplicity, we will keep on calling this phenomenon spon-
taneous chiral symmetry breaking (xSB) even if, clearly, this term is not
appropriate. In the case we are analyzing the particle spectrum contains
pseudo-Goldstone bosons which have acquired a mass induced by the ex-
plicit chiral symmetry breaking.

Following some suggestions from lattice calculations, we assume that the
main contribution to the effective action for the spontaneous chiral symmetry
breaking phenomenon comes from short-distance effects.

In fact, computer simulations in lattice gauge theories suggest that the
range of forces responsible for xSB is relatively short and independent of
confinement [17].

This suggestion is consistent with the idea that the pion is a thightly
bound quark-antiquark state characterized by a size which is less than the
distance at which the confinement forces dominate.

For this reason we will introduce an infrared cutoff for the confinement
region and we will focus our attention on the short-distance dynamics.

In this range it is sensible to perform a loop expansion of the effective
action.

In fact for large momenta, in virtue of the asymptotic freedom of the

gauge theory, one can neglect the multiloop contributions and evaluate T’ 2 to

the lowest order

Ty = (3.9)

In this graph one has to decide the form of the vertex and of the gauge
field propagator.

The renormalization group analysis and the asymptotic freedom allow
us to use the free expression for the vertex and gauge field propagator and

to improve this approximation with the running coupling constant (see the

next section).
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But, as far as the vertex is concerned, the situation is more subtle be-
cause, in principle, one can run in some difficulties in order to satisfy the
Ward identities. Let us examine this point.

We can express the inverse of the full fermion propagator in the following

general form:
S~ (p) = 1Z(p?) p - ='(p?) A (3.10)
Then the Ward identity for the vertex function reads

(g1 —42)" T =8"Y(q1) =87 (q2) =

sy 2Y A sl 2Y A re 2 12 (3'11)
=1Z(q1) 1 —1Z(q3) G2 — (1) + ='(g3)
This equation can be satisfied by taking
Py = i (020 iz 02) 1) gy — i(B(a2) — 1) e
(@1~ a2) (3.12)

~>'(¢}) + ='(¢3)

However, in the evaluation of 'y, T',, is always saturated with the gauge field
propagator.

Therefore, if we adopt the Landau gauge, the gauge field propagator is
transverse and we can safely use the free expression for the vertex. In other
gauges the corrections to the free vertex are needed in order to satisfy the
Ward identity (3.11).

This is the reason why all our calculations will be performed in the
Landau gauge.

Also, as we shall see, there will be some other simplifications in this
gauge. For example the wave function renormalization constant Zy (i, A) in
the Landau gauge is equal to one in the approximation we are considering.

It remains the problem of the gauge invariance.

By itself, the phenomenon of the spontaneous chiral symmetry breaking
is gauge invariant since the chiral group currents are singlets with respect to
the gauge group.

As stated before we will construct the effective action as a functional
of 3 and we will describe xSB with the help of this function which, at the

physical point, represents the fermion dynamical mass.
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In the next section we will derive a relation between the scalar part of
the fermion self-energy and the condensate (¥W),,.

So if one chooses the vacuum expectation value (V) u, Which is a gauge
invariant quantity, as the order parameter, it is reasonable that all the results
one finds in such a picture are gauge invariant.

The expression for I'; we obtain is then the following
1 [ d*p d'q . 2
F2 - "’5 / (27[_)4 (271_)4 (Z g(p,q))

T [S(TS(@T°"] Duwlp o) [ ats

(3.13)

where T* a =1,..,N? — 1 are the hermitean generators of the gauge group
in the fundamental representation, g(p, q) is the running coupling constant

and g
1
D[,LV(IC) == 76—5(9,“/ - ;:2V> (3.14)

In the region of momenta larger than the renormalization group invariant
mass of the theory My (in QCD My = Agcp), we will assume, in the leading

logarithmic approximation, the following form for the function ¢2(p, q) [32]

g’ (p,9) = O(p* — ¢*) ¢*(p) + ©(¢* — p*) ¢*(q) (3.15)

However, we know that the running coupling constant g2 (p) becomes singular
for p? = M2, a singularity due to the use of perturbation theory in a region
where the coupling becomes strong.

Unfortunately in eq. (3.13) one has to integrate upon all the range
of momenta and consequently one has to make an ansatz for the coupling
constant in the infrared region.

Since the attitude we take here is that the spontaneous chiral symme-
try breaking is dominated by short distance effects, we will substitute the
infrared behaviour of g*(p) with a constant by introducing a mass scale i
characterizing the separation between the large distance and the small dis-
tance regions.

On the other hand, for values of p? > u? we will assume the standard

renormalization group expression for g*(p) which provides the effective cutoff

of interaction at small distances.
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So, the expression we will use for the running coupling constant in the

leading log approximation is the following

| 1 | 1
2(p) =25 |O(u? — p?) ——— +O(p> —p?) ————| (3.16
(7 W) itz O ) iogrpary) 1)
with & = 2472 /(11N — 2n).
g“(p) !
P
B
|
A
!
P
3 | H . .
9(w) ; ‘ FIG. 1. Running coupling
: ! constant in QCD-like gauge
: ! theories.
! I
| I
| i
1 1
L
! '
P!
Mo & p

In this way the expression (3.13) for I'y is not merely the ladder approx-
imation consisting of a single gauge field exchange but, with the insertion of
the running coupling constant, it takes automatically into account the vertex
perturbative corrections at least in the leading logarithmic approximation.

A further observation is in order. We have choosen the scale p separating
the infrared and the ultraviolet region to be coincident with the point at
which we renormalize the theory.

As it will be clear in the next section, this fact leads to some simplifica-
tions, for example in the relation holding between the value of the minimum of
the effective potential and the corresponding value of the fermion-antifermion
condensate.

However the constant u is a free parameter of our model.

In order to evaluate I'z, let us parametrize the fermion propagator in
the following way

[S(p)I4z = 655 (p)a = 65 [iA(p")s 5+ B(p*)} +i1:C(p?)0]  (3.17)
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with A,B=1,.,N a,b=1,..,n.

Notice that, from the assumption of a fermion propagator S which is
function only of the space time difference, the translational invariance of
the effective action follows and, as a consequence, the space-time volume
1 = [d*z factorizes out in 'y (see eq. (3.13)).

Let us substitute the parametrization (3.17) in (3.13) and evaluate the

trace over the color and the spinor indices

_ d*p  d'q ¢*(p,9) r 2 2 2 2\
Iy _.6ch9/ 2n) 2n) (p_q)zt [B(p*)B(¢%) + C(p*)C(¢?)]
d'p d'q ¢*(p,9) 2 A (2

—2NOA | B Gt o) [A(p")A(¢")] E(p,q)

(3.18)
where C; = (N2 —1)/2N =Y _T°T® a=1,.,N? -1 is the quadratic
Casimir of the fermion representation, the trace is over the flavor indices and
(p* — ¢*)? 1

(P—a)? | (p—0q)?
The expression for g%(p, ¢) we use, does not depend on the angle between

p and g (see egs. (3.15) and (3.16)). Therefore one can perform the angular
integration in (3.18) by the help of the following formulae

(3.19)

E(p,q) =1— ;21- [(p2 +4¢°) +

\ ,
/dn L _ 2™ —[logq/p| (3.20)
(r—9)? pg
1 on? ¢—|logq/p|
an - 3.21
/ (p—a)* pg |p?—¢? (3:21)

The result is
/dﬂ E(p,q) =0 (3.22)

and so there is no contribution in 'y from the matrix A defined in (3.17).
This is obviously due to the non-renormalization of the wave function in
the Landau gauge at this order.
We are so left with a dependence of I'; only on the matrices B and C.
Remember that, as pointed out in the previous section, our task is to
express I'y as a functional of ¥ = —6I'3/6S which, when the Schwinger-

Dyson equation is satisfied, is nothing but the fermion self-energy.

38




In order to do that, let us separate the scalar from the pseudoscalar

contribution by defining
2(p?) = Za(p%) + 75 Zp(p?) (3.23)

Then, performing the functional derivative of I'; given in (3.13) with respect

to S(g?) and using the parametrization (3.17) we obtain

2.(¢7) = ~30s [ 22 B7) L0 (324
2,(07) = 30s [ &2 o) L0.0 (3.25)

Here 3, and X, are matrices in the flavor space.

After inserting (3.15), let us perform the angular integration in (3.24)

3Cy [g2(q) (€

So(¢’) =15 [g qzq /0 dp* p* B(p*)+
- (3.26)

/. dp® B(p?) 92(1’)]

We can invert the relation between X, and B by applying an appropriate

differential operator to both sides of (3.26).

In particular, let us differentiate with respect to ¢2

2

d 2 3C; d 92((1) 1 2 2 2
B =i (C) e ey )
that is
1672 1 d 7
S 3C: d [g%(q)) dg? Es(qz):/o " v B(") (328)
355( q? )

and, differentiating once again we obtain

1672 1 d 1
— - ¥.(q*
3Cy ¢% d¢* | d_ (9”(q)) dg? (@)

B(¢?) = (3.29)




and analogously

1672 1 d 1 d
— —3%. (q® 3.30
3C2 ¢2 dg? | d [g%(q) dg? p(q%) (3.30)
dg? \ ¢?

C(¢*) =

Let us remark that in deriving egs. (3.29) and (3.30) it is crucial to
assume (3.15). The expressions we find are however valid for any choice of
g*(p).

An important property of I's in the two loop approximation is to be a
quadratic functional of S.

This means that we can reexpress I'y by using the Euler theorem for
homogeneous functionals (see egs. (2.11) and (2.12))

1 6T 1
Io==-Tr{ —=S | =--Tr(ZS 3.31
= 37(525) - nos) (3.31
By substituting all these results in (3.18) and performing the angular

integration we obtain

2N .
F2*3—C—2- /dp tr

dp? \ p?

. d 1 d )
0 (_d_(m) )"

(3.32)

dp2 p2

2 d 1 d \
+2P(p ) dpz( d (gz(p)) dpzzp(p ))]

This is the final form for I'y which results completely expressed in terms
of 3, and X,

Let us now evaluate the logarithmic contribution in T (see eq. (3.5))

Tr log (Sal + *5—8-) = Tr log (iﬁ —mo(A) — Ea(p?‘) — ify52p(p2)) =
v [ -F2 g Det (i3 A) — Bo(p?) — i7s 3, (p?)) =
= W og Det (1p — mo(A) — X4(p?) — 475 p(p?)) =

d*p
(3.33)
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where we have defined
M = (mo(A) + Zs(p?)) + i1 5 (p?) (3.34)

The following relations hold

MM! = [mo(4) + ,(p?)2 + B2(p?) (3.35)

Mp = pM! (3.36)

PYsM = pys[(mo + ) + 175 Ep) =
= [(mo + X,) — 1952, pys = (3.37)
= M'pys

(

et(—“‘—“ 7P )= (3.38)
(
(

from which
Det (ip — M)|”* = Det (ip — M) Det (ip— M) =
= Det (p? + MM!) = (3.39)
= det[(p? + MM1)]*
where the last determinant is only on the flavor space.
Our result is then

Tr log<sgl + %) = —gg / dp? p? log det (p? + MMT) (3.40)

Let us now write down the final form of the effective action I' as a

functional of 3.

Observing that in the two loop approximation

6T
Tr(s—SES) ~Ty=T, (3.41)
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we get
. N 2 2 2
rEl=0a|- 8z dp* p* log det | p“dap+

T [m0(4) + Za(p2)]2, + [zz(p2)1ab)+

2N 2y ¢ . :
n e dp® tr | 2,(p?) dp? (i(M) dp2zs(p2))+
dp? \ p? k
b d 1 d 2
+5p(0%) (_C{_(sﬂp)) a7 PP ))H
dp? \ p?

(3.42)
with 2(p?) = 2,(p?) + 175, (p?)-
As expected, the volume element () factorizes out, and we can define the

effective potential

r=0v

Our method will consist now in making a convenient ansatz for X (p?)
in terms of a set of parameters related to the fermionic condensates and then
in evaluating these parameters by minimizing the effective potential with
respect to them.

In order to get a hint for the ansatz to be made, in the next section we

will analize the ultraviolet asymptotics of the fermion self-energy function
for our SU(N) gauge theory.
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4. THE ULTRAVIOLET ASYMPOTICS OF THE FERMION
SELF-ENERGY FUNCTION

We will obtain some restrictions on the mechanism of spontaneous chiral
symmetry breaking directly from the equations of the theory [33].

In particular we will consider the Ward identities relating the unrenor-
malized proper axial-vector vertex function with the fermion bare propagator
in the massive case.

These quantities depend on an ultraviolet cutoff A.

Only after having introduced the renormalized functions and going over
the deep euclidean region of momenta, we will perform the limit A — oo.

For sake of simplicity, we will consider the case of an SU(N) gauge
theory of n fermions having the same bare mass, that is, we will restrict to
a bare masé matrix which is proportional to the identity in the flavor space
(mo(A) = mo(4) 1).

The Ward identities read

T8 (02,01,4) = = 2imo(A)T {42, 1, 4)+

Ai ; (4.1)
75559 a1, ) + S(O)“(qz,A)%vs

where p = ¢ — qq, ng)i are the bare vertices of the colorless axial vector
currents J ;;5 = @_7“75 3‘21\1', I‘go)i are the bare vertices of the colorless pseu-
doscalar densities Ji = U~ i\ii\I!, A; are the matrices of the fundamental
representation of the SU(n) algebra normalized to tr(A;A;) = 26;; 1,7 =
1,.,n2 — 1 and §(®~1 js the inverse bare fermion propagator. -

The vertices I‘g?t)i and I‘go)i satisfy the equations of the Bethe-Salpeter
type

(0)s Ai b A% o)
I‘5p (QZ) QI’A)aﬂ = ”5(’7#'75)045 + (271’)4 K (qz’ Qhk’ A)aﬁa’ﬁ' (4 2)
(SO (& + p, AT (K + p, ke, A)S© (k, A)] s v
: i A gtk
I‘go) (Q27 QIaA)aﬂ = —2—1(1’75)05[3 +/ (271_)4 K(O)(qZ,Qhk,A)aﬂa'ﬁ' (4 3)

[SO(k + p, T (k + p, k, A)S© (K, A)]arpr

43




where K is the fermion-antifermion scattering kernel.

P ' k p
>= o} 3 >
'i _ i
~< P+Q ' < <
P+q k+q p+q

FIG. 2. Graphical representation of the integral equation for the azial-
vector vertex function.

By substituting (4.2) and (4.3) in (4.1) we get

" A ik
1728 +f (27‘_)4 K(O)(qZ’ ql’k)A) [S(O) (k "I“p’ A)’75 + '755(0) (kaA)] =

= 2mo(A)7vs + 7155 gy, A) + SO~ (g, A)ys
(4.4)

Now, by taking the limit p — 0 and defining ¢ = (g1 + ¢2)/2 we get

15572 (g,4) + 87 (g, A)vs = —2mo (4) 75+

b ' 4.5
+/ (;iﬂ'l;‘i K (g,k,4) [S© (k, A)vs + 755 (k, A)] (4:5)
Let us pass on the renormalized functions
S(k) = Zg (1, 4)S O (k, A

K(g,k) = ZZ(u, A)K©) (g, k, A)

where Zy(p, A) is the usual renormalization constant for the fermion prop-
agator and g is the renormalization point which, as before, is chosen to be
coincident with our mass scale p.

One then obtain the equation

755 (q) + ST (a)vs = —2Zu (11, A)mo (A) 5+

A 4 |
" / (;iwl;4 K(q, k) [S(k)vs + 755 (K)] (4.7)
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Let us parametrize
S7Yk) = iZ(k?) k — ' (k?) (4.8)
Substituting in (4.7) we get
152" (¢) = Zy (1, A)mo(A)vs+

A g4 (4.9)

+ | Gyt K(@ k) Sk ()5 (k)

As usual in considering the ultraviolet asymptotics, let us go over to the
deep euclidean region of momenta in eq. (4.9).

Since the ultraviolet asymptotics of Z(k?) and K (g, k) are insensitive to
the mass tefm, they should not be changed when spontaneous chiral symme-
try breaking is taken into account.

Therefore in the leading logarithmic approximation, one can take for
them the expressions following from the renormalization group analysis [34].

Assuming the validity of the usual arguments that the main contribution
to the integral on the right-hand side of eq. (4.9) in the limit ¢ — co comes
from the region k%, (g — k)2 >> M2 (M, is the free dimensional parameter

of the theory), we will use the following expressions

K(g,k)aporpr = Ca (ig(g,k))*(v*) pp (

Z(k*) =1 S(k) = -

=2

oo D (g — k)
; (4.10)

where
Cy=(N?-1)/2N

1 kuk,
Dy (k) = +5 (g,,,, - 7{")
and g(g,k) is the running coupling constant previously introduced in eq.
(3.15).
Let us spend some words about these choices. According to the renor-
malization group analysis and thanks to the asymptotic freedom of the gauge

interaction, it is meaningfull to approximate the kernel K in the large mo-

mentum region with the lowest perturbative order but inserting the running

45




coupling constant which takes automatically into account of the vertex per-
turbative corrections at least in the leading logarithmic approximation. Re-
member that we have used the same arguments in the calculation of 'y (see
eq. (3.13)).

In this way the expression (4.10) for the kernel is not merely the asymp-
totic limit of the ladder graph, but, with the insertion of the running coupling
constant, faithfully represents the complete (relevant) kernel.

Also, since we are working in the Landau gauge, there is no wave function
renormalization at this order (Zg (1, A) = 1). This means that the anomaluos
dimension «y¢ is equal to zero in this approximation and so there are no
logarithmic corrections to the lowest perturbative order of the proper four-
fermion scattering amplitude.

Substituting eq. (4.10) we find that (4.9) in the deep euclidean region
takes the following form

d*k '(k2)

A
B(¢*) = ma(4) +3C; [ G SR E gy ()

In the region k2, (¢ — k)% >> M2 we are considering, we will assume for
the function g%(q, k) the behaviour expected from egs. (3.15) and (3.16) in
the large momentum range [32].

Substituting in (4.11) we get

E'(qz) — mO(A) + 3C, 92(Q) Aq (;l:rl;4 k2z(:;(_li2]1)2

AZ d4k ) 2[(k2)
+3C2/qz ent ¢ Wagg iy

+
(4.12)

According to our assumption of the ultraviolet dominance, we will use
a regularized expression for ©'(k?) in the k — 0 limit (see next section) and
so we will not have infrared divergences in (4.12).

Let us now integrate over the angles and obtain the final result

2'(¢%) = mo(A) + f’ﬁc 2 [ q(2 7) /0 . dk® o' (k*)+
/ & 2 (k) z(kz)]

(4.13)
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showing that the chiral symmetry violating part of the fermion self- energy
satisfies an homogeneous integral equation.

For the determination of the ultraviolet asympotics of the dynamical
mass function $'(¢?), one has to solve (4.13) with a finite A and only after
to perform the A — oo limit.

Eq. (4.13) can be transformed into a differential equation.

Let us differentiate with respect to ¢*

d 302 d gz(q) g
7”@ = 5 dq2< 2 ) ) W TE) (4.14)
SO 2
! d g 3Cy j[q s
@) e ) T T f, D) (4.15)
dq2 q2

By differentiating once again, we find out that the solutions of (4.13)

satisfy the second order differential equation

167 d 1 d g 'oa
3C, dg? 4 7*(q) dqzz (¢°)]| =%'(q") (4.16)
dg? \ ¢
and the boundary condition
d
2 —_ 2
g*(q) dg? ,
g%=A2
The general solution of eq. (4.16) takes the form
2'(¢%) = a1 T1(¢®) + a2 Ta(g?) (4.18)
with
g\
2
21(q*) qz—00 ~ (108 Mg) (4.19)
1 q2 d—1
T2(9%) g2 o0 ~ Z (log M-;i) (4.20)



and 3Cub
4= 3¢

~ 8n2

In the literature these two solutions are commonly referred as the irreg-

ular and the regular solution respectively.
By substituting (4.18) in the boundary condition (4.17) and retaining

only the leading contributions for large values of A we get

1 A2 2d—2 A2 d
ay = —ap d -1—&—2 (log ﬁg) -+ mo(A) <log ‘M—g) (4.21)

Now we can remove the cutoff A.
Remembering that, in the leading logarithmic approximation, the rela-

tion between the bare mass and the mass renormalized at the point p reads
m(u) =mo(A) Zz'(n, )
Zon(i1y A) = (log(uz/Mg) ) (4.22)
log(A?/M§)
we obtain
u? \?
a; = m(p) (log M?) (4.23)

Then the result is that the constant a; is proportional to the explicit
chiral symmetry breaking parameter and so it vanishes in the chiral limit.

In this way we have found that the asymptotic behaviour of the irreg-
ular solution ;(g?) exactly corresponds to the result of a straightforward
renormalization group analysis in the case of a bare fermion mass different
from zero.

Hence we expect that the solution which actually represents chiral sym-
metry realized in the Goldstone mode has the softer asymptotic behaviour
of £2(g?).

It is possible to express the constant as through the phenomenological
parameter (W), (this is a shorthand notation to indicate

lim ) (0[Waaa(0)¥54(z)|0),

z—0
a,A

where o and A are the spinor and color indices respectively and no summation

is performed on the flavor index a).
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Indeed, in the theory with cutoff we have

(TW)5 = — lim (0|T ¥()T(0)[0) =

A gk
= — 1 (A) k =
oo 1T / @ ®)
A g4 2 4.24
a4k So(k (4.24)
= lim a24N — 2( ):
e e (2n)% ~ k2

2N (A )d
a O
23C5b \ S M2

where we have only considered the X2 contribution to the dynamical mass
because the explicit symmetry breaking term does not contribute due to the
definition of the T product.

Also, in deriving (4.24), we have used EgA) = Y since in the Landau
gauge there is no wave function renormalization at this order.

From the relation between the bare and the renormalized condensate

2 /3421 @
(TU), = (%) (T9), (4.25)

we finally determine a,

—d
302() /,L2 —
a2 = (log M(?) (vye), (4.26)

(notice that both the constants a; and a; are renormalization group invariant,
i.e. independent on p).
Summing up, the ultraviolet asymptotics of the fermion mass function

in the case in which both spontaneous and explicit chiral symmetry breaking

take place is given by

£(q%) g o0 ~ m(n} (M)d+

log(p? /M3) (4.27)
3C2 moy 97(9) (log(a®/M3)\*
TR q° (log(uz/Mc?))

Let use notice that, in the case in which one wants to take into account

also of the pseudoscalar contribution in X', the previous considerations are
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still true and one obtains an extra term in (4.27) proportional to the pseu-
doscalar condensate.

So, separating the scalar from the pseudoscalar contribution in X/ we

o log(g?/M3)\ ™
Z5(97) g2 =00 ~ m () (W) *

30 gy 92(0) (log(g®/M3) \*
ta e <log(u2/M§))

2 oola?/M2)\ ¢
25 (2%) g2 00 ~ %(ﬁi75‘1’>ugq(?q) (:O:&//ﬁ%))) (4.29)

These results are consistent with those obtained by means of the Wilson

get

(4.28)

Operator Product Expansion (OPE) analysis [35] (for the explicit comparison
see [23]).

In the OPE evaluation of £'(¢?) the factors g?(g) and (log(q?/M2))? are
due to the renormalization group improvement of the Wilson coefficients and
in particular (log(¢®/M¢g))? comes from the anomalous dimension of (¥'¥)
or equivalently of (Wivys¥).

It is surprising that, although the first papers concerning the ultraviolet
asymptotics of the fermion self-energy in QCD, appeared in the middle of
seventies ([34] and [35]), until now there is no common opinion about the
form of this asymptotics.

For example, recent studies of the spontaneous chiral symmetry breaking
of massless QCD in the framework of variational approach, some authors [36],
[37] and [38] agree with us by using the regular solution Z3(g?) as given in
(4.20), while other authors [39], [40] and [41] use the irregular solution 21(¢?)
given in (4.19).

Also, in a recent paper [42], K. Stam affirms that the ultraviolet asymp-
totics of the dynamical quark mass has the irregular form (4.19) while the
regular solution is only an artefact of the Hartree-Fock approximation.

In a later work [43], V.A. Miransky has criticized the approach used
by Stam and we agree with him in stating that only the regular solution
can ensure the conservation of the anomaly-free axial vector currents J ‘i5 =

_\17’7“'75%\11 in massless QCD (this condition is of course necessary to guaran-
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tee the spontaneous character of chiral SU(n)r ® SU(n)r symmetry break-
ing).

In fact, let us specialize the previous analysis of the ultraviolet asymp-
totics of the fermion self-energy function, to the chiral case.

In the theory with the ultraviolet cutoff A and the bare mass mo(4A), the

axial vector currents satisfy the equation
n o7t ey Az’
0 Ju5 = 2m0 (A.) ‘1/75 E‘I’ A (430)

Due to the property of asymptotic freedom, the dependence on A of the

composite operator (U3 ¥), is well known (see eq. (4.25))

M —
Uys—0) =2 (u,A) | Uys—T (4.31)
2 ), 2
u
with Z,, given in (4.22). ,
So the condition ensuring the conservation of the axial-vector currents
is a rapid decrease of the bare mass mg(A) as A — oo

lim mo(A)Z; (1, A) =0 (4.32)

A—oo

The condition (4.32) is necessary and sufficient to determine uniquely
the asymptotics of the fermion self-energy.

In fact, substituting it in the boundary condition (4.17) and using (4.18),
we find that the coefficient a; is equal to zero in the A — oo limit and
therefore the only regular solution £3(g%) does contribute in (4.18).

Let us also remark that, in a paper subsequent to [42], L.J. Reinders
and K. Stam [44] discuss the dynamical quark mass function in the frame of
the Operator Product Expansion.

They find that, asymptotically, the regular solution is consistent with
the OPE, while the result of the analytic continuation to lower values of p?,
leads to a freezing of the quark self- energy at its treshold value reached for
p’ = mgyn where mgyy is a sort of constituent quark mass.

As we will see in the next section, the ansatz for the dynamical quark

mass function we will use, completely agrees with this result.
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5. ANSATZ FOR THE FERMION SELF-ENERGY

When the bilocal source J(z,y) is off, that is at the physical point, the

Schwinger-Dyson equation for the fermion propagator must hold

S7Hp) =S5 (p) + —g = 1P — mo(4) — 2(p?) (5.1)

S
with the self-energy function X evaluated at the minimum of the effective

potential.

In the previous section we have parametrized S™! in the following way
§71(p) = ip — 3 (57) (5.2)

and we have derived an expression for 3'(p?) in the range of large momenta
(remember that, in the approximation we are considering, Z(p2?) = 1 at this
order in the Landau gauge).

From the comparison of egs. (5.1) and (5.2) we can deduce the asymp-
totic behaviour of the function X(p?) at the physical point.

The main assumption will be that, also outside the extremum of the ef-
fective potential, the function 3 (p?) has the asymptotic behaviour suggested
by the Schwinger-Dyson equation.

In order to have a hint on the form of the test function for the fermion
self-energy in the infrared region of momenta, let us consider the gap equa-
tions for the scalar and the pseudoscalar parts of ¥'.

Let us start with the relation

S(p) = iA(p?)p + B(p?) + ivsC(p?) =

A ] 2 N 7 21y —1 (5‘3)
= (10 — 2, (p%) — 1725 (p7))
From eq. (5.3) we get (after diagonalization in flavor space)
1
A p2 = —
) S )
D 2
B = el (54
p? + T (p?) + 237 (p?)
bl 2
C(p*) = )

P2+ 3% (p2) + 212 (p?)
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Taking into account eqs. (3.24) and (3.25) and using (5.4) we get the non-
linear SD equations for ¥/ and X}

0?) — m d*p 4 (p?) 9*(p,9)
Es(q )“ O(A) +3€2/ (271')4 p2+2§2(p2)+}3;,2( ) (P )2 (5‘5)
ooy d*p 2, (r?) 9%(p, q)
=67 =% | Gyt s

(5.6)
+ 22 (p?) (p—9)?
Let us examine the integrals on the right hand side of eqgs

. (5.5) and
(5.6) in the ultraviolet region of p? by inserting the asymptotic behaviours
of 3} and 3.

As far as the pseudoscalar part is concerned, the integral representation
(5.6) is clearly ultraviolet convergent because

1
2 () p2 o0 ~ ;2—(1096)

Also for the scalar part there are no problems due to the asymptotic be-
haviour of the mass term in X/

We have in fact

dp ! (p? 9*(p, q) N
mo(A)+3C2/ (27r)4 p? —|—E’2( 2) x ( 2) (p—q)? p2—roo
Nmo(A)+f£rz2/ dp® T4 (p )g 7 ~
2 p( p/z—*O; ; (5.7)
3C; (M dp? log(p®/Mg) \ ™ 2 _

~ mo(4) + Té?ﬁ/o Faag (log(u2/M§)> log(p?/M3)
B log(42/M3)\ ™" _
= mo(A) — m(y) <m> =0

where we have used eq. (4.22) relating the bare mass to the renormalized
one in the leading logarithmic approximation

In other words, the asymptotic behaviours (4.28) and (4.29) give us a
perfectly UV regularized theory in the leading log approximation

On the contrary, if one ignores the logarithmic corrections coming from

the renormalization group analysis, the integral representation (5.5) is ultra-
violet divergent.

53




In fact, in this case, the asymptotic behaviour of 3/(p?) is simply

'oa 3C20’ (5 o (T T) ) 5.8
2 (p*)pr 00 ~ m(p) + = [ (W), + i (W75 L) o (5.8)

By substituting in egs. (5.5) and (5.6) one finds an ultraviolet divergence

for the scalar part, which is proportional to the mass parameter

3C,g9®

20| .. =m(g) logA—2
sldiv 1672

2

(5.9)

This is exactly the divergence corresponding to the diagram

sm(p, A) w ; (5.10)

= div
m

which must be subtracted in order to regularize the theory.

It is clear that in our formulation, the renormalization group prediction
for the fermion self-energy takes automatically into account this minimal
subtraction procedure.

Let us now examine the behaviour of the integrals of egs. (5.5) and (5.6)
in the infrared region of momenta.

To this end, let us perform the ¢ — 0 limit and let us suppose that
(%) gm0~ (¢*)™* a>0 (5.11)

It is easy to see that, with this assumption, one has a finite contribution
at the lower limit of integration while, on the left hand side of eqs. (5.5) and
(5.6), one has an infrared divergence.

It follows that, for ¢> — 0, 3'(¢?) must go to a finite constant.

As stated before, we will assume that these results are valid also outside
the extremum. Thus the test function for 3(g¢?) will be assumed to have a
constant value in the IR region of momenta. This value can be identified
with the fermion dynamical mass.

Therefore, using our preferred renormalization point u, we will make the

following ansatz for 3(q?)

2(¢%) = m(u) f1(p*) — mo(A) + (s + i5P) f2(p?) (5.12)
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with

f1(p?) = ©(u? — p?) + 0(p* — u?) f (p*) ¢ (5.13)
f2(p?) = |©O(® — p*) + O (p* — uz)%;f(z)z)d“l (5.14)
f(p*) = %%% (5.15)

We will use the parameter-dependent test function (5.12) for the fermion
self-energy in our effective potential formalism to investigate the stability of
the theory.

The fields 8, and pgy a,b = 1,..,n which here are constant fields
because we are only interested in the evaluation of the effective potential,
will be our variational parameters. The minimum of the effective potential
will determine the values of these parameters corresponding to the optimal
form of the test function for 2(p?).

The matrices s and p evaluated at the extremum of the effective poten-
tial, let us call them (s) and (p), can be related to the fermionic condensates.

This can be seen directly by the comparison of our ansatz with the
OPE expansion which coincides with the expressions given in eqs. (4.28) and
(4.29).

We obtain in this way

3C; ¢*(n) ~
(Sab> = Z]v‘ ,u,3 <\I’a\Ilb>p, (5.16)
3C2 ¢%(p) ~ .
(Pab) = 7 3 (TaisTa) (5.17)
a,b=1,..,n

Let us notice that, if we didn’t have chosen the scale u separating the
ultraviolet and the infrared region of momenta, to be coincident with the
renormalization point of the theory, and we had renormalized at p? = 2,
then an extra factor (log(pu?/M¢E)/ log(a2?/M2))¢ would have been present in
egs. (5.16) and (5.17).

An obvious question is now in order: how much will our following results

depend on the particular choice of the ansatz for the fermion self-energy?
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As a check, in the case in which one neglects the logarithmic corrections
coming from the renormalization group analysis (let us call this case ”the

rigid case” ), we have considered the following smooth test function for 3(p?)

2

. ©
S =u(s+1 —_ 5.18
(p*) = p (s + i7sD) o (5.18)

Explicit calculations have shown that the qualitative picture of dynam-
ical chiral symmetry breaking does not change and also quantitatively the
results in the two cases do not differ very much. This is a confirmation of

the ultraviolet dominance for the xSB phenomenon.

"o 0.2 0.4 0.8 0.8 1. 1.2 1.4 w0 3

p

FIG. 3. Self-energy functions for the quark u tn QCD with three flavors
(rigid case). The curves shown correspond to the ansatz (5.19) with
p =306 MeV and (xu) = —2.76 ([25]) (solid line), and to the ansatz
(5.18) with p = 282 MeV and (x,) = —4.31 (dashed line).

In the rigid case, eq. (5.12) simply becomes ([18], [19] and [20])

S(p?) = p (s +ivsp) |[O(p? —p?) +O(p? - uz)l;——:] (5.19)

In Fig. 3 the shape of the two different test functions (5.19) and (5.18)

for the quark self-energy evaluated at the minimum of the effective potential

is shown.
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In particular the curves refer to the quark v and specializing (5.16) to
QCD (N = 3, C; = 4/3) we have introduced

(Xu) = (s11) = 5% (Tu) (5.20)

The numerical fit for the octet meson masses and decay constants (see

next sections), gives higher values for the quark condensates in the case in
which the ansatz smooth (5.18) is used.

Actually in Fig. 3 we have plotted —X, since the scalar condensate has

a negative value (the pseudoscalar is vanishing).
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6. CANCELLATION OF THE ULTRAVIOLET DIVERGENCES
IN THE EFFECTIVE ACTION AND NORMALIZATION CON-
DITION

Let us substitute our ansatz (5.12) for (p?) in the expression (3.41) for

the effective action and let us start with analyzing T',.

By performing an integration by parts in (3.32) we obtain

AZ

f2= % Q(% [ Z(_;z‘(;)‘)‘ br (3%5(23(?2) + Eﬁ(pz))ﬂ =

0

dp* \ p?
A? 1 d 2 \ 2

_/0 dp? i(gz(p)) [tr(dpzzs(pz)) +tr<—d—§2p(p )) D

dp® \ p?
(6.1)

with

2.(p?) = m(p) f1(p*) — mo(A) + sf2(p?) (6.2)
Z,(p%) = pf2(p?) (6.3)

and f1(p?), f2(p?) given in eqs. (5.13) and (5.14).
The surface term in (6.1) gives a vanishing contribution.

In fact, for p2 = 0 we get obviously zero. Let us calculate explicitly the

contribution for p% = A2,

Introducing
1 A? 1 A?
= 2 = — —— —_— [ —
fa=1f(p )|A2 5a log M2 1+ 5 log 2 (6.4)
a = log o
Mo

Il
—
o
ot
~——




—2d+1
=tf(m2(ﬂ))(2zd A2 fa )+

1+ 2afy
+tr(s? + p?) (47? i—i ﬂ%) -
—tr(mo(A) - 5) (432 w 1-{i;;fA>‘
—tr(m() - mo(4)) (2Zd A IJEZZ;A)-*—
+tr(m(p) - 5) (432 e 1+f2AafA)

Remembering that, in the leading log approximation

mo(A) = m(p) Zm (s, A) = m(p) f1* (6.6)

with Z,(, A) defined in (4.22), and performing the A — co limit we get

d ;z(p) tr [de (22 (") +E§(P2))] ~
w(50) o
~ir (m” () <2§jd It ffzd;A) .
—tr(m(u) - ) (422 e +f é‘ah) _ (6.7)
_tr(mz(“))(zzd 2 1£;d:)‘lA)+
st (54 ) =

showing that no contribution arises from the surface term of I'y in virtue of

the mass renormalization.

We are so left with

2N A7 2 1 d 2(,.2 2¢,.2
Fz——g-c—,;ﬂ . dp mjtf[“;g(zs(P)+zp(P ))} (6.8)




For large values of momenta we have

. [;l;‘f;(zz(p% - zz(pz))] -

p?—o00

~ tr(m® () (4%25 I—,]i f (pz)‘2““2)+
\ (6.9)
+ 2tr(m(u) . s) ( — % (d -1~ 2af(p2))’—;g f(p2)“3) +

6
+ tr(S2 + pz) (&% (d -1- 2af(p2))2g_8_ f(p2)2d—4>

so
T, :'f% 0 [tr(m?(p))A + 2 tr(m(p) -s) B + tr(s? +p2)c] (6.10)

with

= Ll

B = —2% M3/A2 %”22 (d—1—2af(p?)) % (6.11)

et [ 1 nerry S

Notice that the first term in (6.10) does not depend on the fields s and
p and so it can be neglected since it only represents an additive constant.

Furthermore, the integral in C is convergent for large values of momenta.

It remains to analize the ultraviolet divergences arising from the term
proportional to tr (m(u,) . s).

Let us perform a change of variable in B

2

t = log }% (6.12)
then

d 3 log Az/“2 201

==  dt(d-1-2a— =
B=%* / (d a—t) (2a+t)(1+2a +1)

d A? A2
=—ap®|(d—1)log|2a+1log— | —d log |1+ 2a+ log —

b 12 12

(6.13)
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Taking the A — oo limit, we finally find a divergence of the form

2

. d A
B = lim —3 ¢ 12 loglog ) (6.14)

A—o00

div
which, substituted in eq. (6.10) gives

2

NQ
= lim — a p® tr(m(u) . s) log log " (6.15)

I,
2
div A—oco 27

Let us now examine the ultraviolet divergences in the logarithmic term
of I'. Let us call it T'j,g.

Na [
Tiog =53 / dp* p* log det (p*8as + [mo(4) + X (p*) ]2 + [Z5(0%)]b)
(6.16)
Substituting our ansatz for the large momenta behaviour of 3, and X,

and neglecting an infinite constant we obtain

A2
Trog ~ [ 4102 02 10g det 6 + 2 () as — F2(5) +
og 8ﬂ-2 ab ﬂ abp2 lp

+ 2 [m(u) - S]abﬁgfl (p?) f2(p?) +

+ [s* +P2]ab;15f22(p2))

(6.17)
In the p?> — oo limit, we can use in (6.17) the relation
det(l+ A) =1 + trA (6.18)
which holds for any infinitesimal matrix A.
Also we can expand the logarithm and obtain
Na [ 2 2 2(,2
Liog ~ e dp? | tr(m®(u)) 17 (p*)+
+ 2tr(m(p) - s) f1(p?) f2(p?) + (6.19)

+tr(s? + pz)fzz(pz)>

In (6.19) the first term does not depend on the fields s and p and can
be neglected.
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Substituting the expressions (5.13) and (5.14) for f1(p?) and f2(p?), one
finds that an ultraviolet divergence arises only from the term proportional to
tr(m(p) - s).

The explicit calculation gives

I‘,og = lim

div A—+oo

NQ 4 [P dp?
“gn2t ra

f (pz)"l} 2tr(m(p) - 8) ~

. (6.20)

~— Allrréo —g;;g a p® tr(m(p) - s) loglog %2—
which exactly cancels the divergent part of I'y (eq. (6.15)).

In this way we have a completely UV regularized expression for I'.

This is due to fact that we are taking into account the renormalization
group effects in the leading log approximation. As a consequence in fact, we
don’t obtain the usual logarithmic mass divergence from I';,; but it remains
only a divergent term which goes to infinity like loglog(AZ/u?).

In other words, the insertion of the running mass m(u)f1(p?) in the
scalar part of the fermion self-energy, regularizes the theory at one loop
order, at least in the leading log approximation, while the residual divergence
is cancelled by the two loop contribution of T';.

Remember that, also in the discussion of the Schwinger-Dyson equation
(see sect. 5), the asymptotic behaviour for large momentum of the mass term
in X! is responsible for the regularization of the theory in the ultraviolet
range.

Let us remark that, in the case in which one neglects the renormalization
group effects, the situation of the ultraviolet divergences changes.

As observed in the previous section, in the rigid case a logarithmic di-
vergence appears in the gap equation for 3/ and, in order to cancel it, one
has to use a subtraction procedure by inserting a mass counterterm.

Let us analize the ultraviolet divergences in I' in this simplified rigid
case.

The ansatz for 3 is given in eq. (5.19).

Inserting it in 'y we get a finite expression. But, let us examine the

logarithmic term of I' in the range of large momenta.
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Subtracting, as usual, an infinit constant which is independent on the

fields, we get

N A 1 P
Liog ~ —‘8‘;‘2‘/ dp® p? log det (5ab + [m2(u)]ab;5 + 2 [m(u) 'S]ab;)j{‘i‘
6
-+ [52 + pz]ab%“é
(6.21)

Using the relation (6.18) and expanding the logarithm in (6.22) one finds

an ultraviolet divergence only from the term proportional to tr(m(u) - s)

: NQ 4 A?
Piog| = lim izt logpg tr(m(p) - s) (6.22)

which is a logarithmic divergence.

Recalling the relation between s evaluated at the extremum of the ef-
fective potential and the scalar fermion condensate (5.16), we can write the

divergent term in the form

39202 A2
- ﬂ - . =
16r2 1 108 7 tr(mu) - S) (6.23)
= —0 tr(6m(y,A) - S).
with
Sap = Ea,\Ijb
3g%C, A?
dm(p, A) = m(u) T6n2 108 o (6.24)

Eq. (6.24) represents exactly the divergence of the composite operator S
which is equal to minus the usual mass divergence evaluated at the one loop

order. Diagrammatically

div div
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We see that, in the rigid case, it is necessary to renormalize the potential
by adding a wave function renormalization term for the composité operator
S,

tr(6Zs(p,A) - S)
such that
0Zs(u, A) =1 ém(p, A) (6.25)

div div

The finite part of § Zg has to be determined by a suitable normalization
condition which will be discussed in a while.

Let us come back to the general case.

We have proved that the ansatz we have made for the self-energy asymp-
totic behaviour, garantees the cancellation of the mass divergences.

What iye need now is a normalization condition in order to fix the finite
part of the effective potential.

The natural choice comes from the expression of the effective potential

for small masses [20]

1 v 4Np3
lim — = a=1,.,n 6.26
me=0Mmg OXa| - 3C29%(k) (6.26)
with \
3C —
(Xa) = (8aa) = "Zj—\gj;(;’)‘<‘1’a‘pa>u

In eq. (6.26) m, are the n eigenvalues of the fermion mass matrix and
the partial derivative is made with respect to the explicit dependence of V
on X, (explicit symmetry breaking part) and is evaluated at the minimum
of the potential.

To understand this choice, let us derive an expression for the effective
action in the limit of small masses.

We can think to add the mass term by the following replacement in the
bilocal source

J(z,y) = J(z,y) + m §*(z — y) (6.27)
Then the generating functional of the connected Green functions in the pres-
ence of a small mass term can be written
w0, J]

Wm,J]|m_o ~ W[0,J] + / d*z tr [m m] (6.28)
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where the trace over the spinor and the color indices is understood.
We can now calculate the effective action at its axtremum J = 0 obtain-

ing

L(m)[;_o = W (m, 0)m—o ~ W(0,0) — tr [m/ oe S(x,x)] I=0 i (6.29)

~ I'(0) |J=0 + 0 tr (m (VD))

in fact S(z, z) is nothing but minus the scalar condensate.
Therefore we have to require

1 6T
m — tr (m_l ————)

e =1 6.30
m—0 0} 5(TT) (6:50)

extr
or equivalently, by using the relation between the scalar condensate and the

scalar field s (5.16)

lim tr (m_l BV(52 + p2,s))

_ 4N p3
3C29% (1)

As we will see, at the minimum of the effective potential we will have

6.3
m—+0 Os ( 1)

extr

(Pab) =0 VY a,b (6.32)

(Sab) =0  for a#b (6.33)
and consequentely a factorization of the effective potential itself in the sum
on n pieces, one for each flavor.

Hence, if we choose a diagonal mass matrix, as we will do, the normal-
ization conditions to be imposed will be those of eq. (6.26).

At this point, having verified that the expression (3.41) for the effective
action results IR and UV finite once inserted the ansatz (5.12) for the self-
energy and having introduced the suitable normalization condition for T' at
the physical point, we are in order to give an expression of the effective

potential V' (I' = 0 V) as a function of the variational parameters of the

theory s and p

_ vt
 4n?

vV [c Aq tr (s® +p?) + (A2 + 62f) tr (m(w) -s)—

(6.34)

1 [ee]

— .2~/ dy y logdet (y&ab +x2, + zzb)]
0

65




where

82
€ = e
3C29%(k)
d? 1 F(u)Zd—Z
A= — | du ———
! 1+2a/§ u1+2aF(u)
2a [ [* du 1 1+ 2a
== — ————— —(d = 1)1
Az 7 [0 v 1+ 2aF(u) ( ) log 2a

F(u)=1- —za—logu
h) f200)

X= m (6.35)
1 "

Z= p f2(y)
©

’ —d
Als) = 001 =) +0(y~1) (1+ 5 logy)

d—1
fo(y) = [9(1 —y)+0O(y— 1)5 (1'+ ;—alogy) ]

azlogﬁ-
0

and we have introduced the finite counterterm §2z 7 to be determined in order

to satisfy the normalization condition (6.26).
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7. MASSLESS EFFECTIVE POTENTIAL

If the mass parameter in the classical Lagrangian density (3.1) is equal
to zero, one recovers the invariance of the theory under the chiral group.

Let us consider the logarithmic contribution in I" in the massless case
_ 1, 6T2) _ -A 2y - 2\ _
Tlog = —Tr log| S5~ + 55 ) = —Tr log| ©p — Z,(p*) — s Zp(p?) ) =
d*p . n . 2
= —~N{) W log Det| ip — (s + ivsp) f2(p*)

(7.1)‘
where we have used egs. (6.2) and (6.3) in the massless case and f2(p?) is
given in (5.14).

The matrix
A =s+1ivp (7.2)
considered as an n X n complex matrix, can be diagonalized by a chiral

rotation using two unitary matrices U and V
Ay =TUATV (7.3)

Since this transformation leaves the I's contribution in the effective ac-

tion invariant, we can simply insert A g in the evaluation of the determinant

log Det (iﬁ — Adfz(pz)) =
n—1 n—1 (7.4)
= log Det (iﬁ - [(30 + Y sihi) +ivs(po+ Y Pihi)] f2 (p2)>
i=1 i=1

where we have expanded A4 in terms of the generators of the Cartan subal-
gebra of U(n), 1 and h; ¢=1,..,n — 1 normalized as tr(h;h;) = 6;;.
Substituting (7.4) in (7.1), one obtains

d*p

Llog = — Nﬂ/ @n)i log Det([z’ﬁ - (x1 + i'yswl)fz(pz)]-
-[iﬁ — (x2 + i’Ysﬂz)fz(Pz)] e [iﬁ —(xn + i’757fn)f2(172)]> = (7.5)

d*p n . 2
@) log Det |ip — (Xa + 1757a) f2(p?)
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where
n—1

Xa = Saga = 80 + Z Si(hi)aa

1=1

n-1 (7.6)
Mg = Paa = Po + Z pi(hi)aa

i=1
a=1,.,n
that is x, and 7, are the eigenvalues of the matrices s and p respectively.
On the other hand

n

tr(s? +p?) = 3 (x2 +72) (7.7)

a=1
Therefore, evaluating as before the determinant over the y-matrices in
I'1og and performing the integration over the angular variables we obtain the
following expression for the effective potential in the massless case which we

will indicate as V(%) (we omit an additive infinite constant)

n

Npt
v (0) :—_471-2 Z VI(O) (Xa»Ta)
a=1

VI(O)(X,W) :(C [1+ngol i %] (X2+7r2‘)"

1 (! 2, .2
——/ clyylog(1+X+7r>—
2 Jo )

1
- 1/ d—’; log (1 + (x* + %) v® F(u)2d~2)>
2/ u

(7.8)

where ¢, F'(v) and a are quantities defined in (6.36).

As expected V(9 is a completely finite quantity both in the ultraviolet
and in the infrared regime.

The theory is in fact regularized in the infrared by the assumed constant
behaviour of the self-energy in the p — 0 limit, whereas the convergence in
the ultaviolet follows in the massless case from the physical meaning of x and
.

In fact, from the relations (5.16), (5.17) and (7.6) it follows that x and

7 have operator dimension equal to three.
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However, due to the chiral invariance, linear terms in x and 7 are for-
bidden so that the effective potential V(%) must start at least with (x? + n?)
in an expansion in the composite fields.

Therefore, due to the absence of operators of dimension lower or equal
to 4, no ultraviolet divergences are expected in V(9.

In the simple case in which one neglects the logarithmic corrections due
to the renormalization group analysis, it is possible to perform all the inte-
grations explicitly and to find an analytic expression of the effective potential
as a function of ¢? = x? + 2.

This case, which we have called the rigid case, corresponds to a fixed

coupling constant g2(p) = ¢2(r) = ¢ and to

(1og(p2/M3) )d .
log(p?/Mg)
which is equivalent to take equal to zero the anomalous dimension of the
composite operator (V).
Then, calling V' the effective potential in the rigid case, we get
AR QLA

472
a=1

1+¢°
¢2

1— ¢2/3 + ¢4/3_~
o
1 r 2 — $2/3"

- Z\/—3—¢4/3 ('2' — arctan W)

It is interesting to notice that the simplicity of this case is mainly due

Vgo)(¢2):(c_i)¢2+;li¢4log +

1
+ §¢4/3 log (7.9)

to the fact that, ignoring the logs, one recovers the exact scale invariance.
In fact the scale u appears in the effective potential only as an overall
factor and the minima of V(O), which determines the phase structure of the
theory, depend only on ¢ which is inversely proportional to coupling constant
(¢ = (87%)/(3C2g?)).
From eq. (7.9) we get easily the behaviour of Vgo)(qﬂz) for 2 = 0

7 (620 ~ (e — 1)¢? (o)
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showing that the theory is unstable at ¢ = 0 when ¢ < 1 and spontaneous

symmetry breaking occurs.

Thus, for
2m

> —
% 7 30,

(7.11)

(cs = g*/(47)), we have a local minimum of the effective potential at ¢2 # 0
which corresponds to a non zero vacuum expectation value (VEV) for ¢2.

For example, in QCD with triplet fermions, the critical point is for
s =m/2.

The graphical representation of the potential V—go) of eq. (7.9) as a
function of the two variables ¢ and ¢ is given in Fig. 4.

The development of the separate minima in ¢ from a unique minimum

is clearly exhibited.

(0

N “1.03 N a.lm N 0.‘" G.ID

\
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-0.87 0.4 2.2 0.00 0.3 0.4 0.pa 0.80

FIG. 4. The effective potential 750) as a function of the field ¢ and
of the parameter ¢ (c 1s tnversely proportional to as). By decreas-
ing the value of ¢ one goes continously from a shape having a single
minimum in ¢ (the highest section in the figure) to a shape with two
distinct degenerate minima. The bifurcation trajectory of the minima
corresponds to the appearence of chiral symmetry breaking.

In Fig. 5 we have the potential V&O) as a function of x and 7 with its typical

70




shape of degenerate minima lying on a circle.
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FIG. 5. The effective potential Vﬁo) on the m - x plane. The figure is
for ¢ =0.6.

Without loss of generality, we can suppose that the VEV of x, is differ-
ent from zero and the VEV of 7, is equal to zero (there is no spontaneous
breaking of the parity).

Since the effective potential has the factorized form given in eq. (7.8),
every X, has the same VEV, (x,) = u.

From the expression of x, in eq. (7.6), we then find

190} = (1.12)
(s)=0 i=1,.,n—1

In this way we have proved that, in the framework of our simplified
model, the quark-antiquark-gluon interaction provides the Goldstone real-
ization of the chiral symmetry due to the spontaneous breaking of SU(n), ®
SU(n)gr to SU(n)r+&.

The fields p; 1 = 1,.;,n — 1 are the composite massless Goldstone

bosons of the chiral symmetry breaking ( po is not massless due to the axial
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anomaly) and egs. (7.6) and (5.17) give the relations between the p; and the
pseudoscalar condensates.

From eq. (7.9) we can easily extract the asymptotic behaviour of Vﬁo)
for large values of the field ¢2

V(62 g2 o0 ~ cd? (7.13)

showing that the effective potential is bounded from below (obviously for
¢ > 0).

Let us also observe that, the $ — 0 limit
=(0 3 1
VO (62) 420 ~ (c—1)¢% + ot - 7t log ¢ (7.14)

differs frorﬁ.a o-model potential [10] because of the last logarithmic term.

Such a logarithmic singularity comes from the vanishing quark mass
otherwise the ¢ — 0 limit of the effective potential would be analytic.

(Notice that in ref. [18], eq. (42), there is a misprinting in the coefficient
of ¢*).

It is important to remark that higher fermionic loops do not change
these results.

In fact, the instability for ¢ < 1 is exhibited by the quadratic term in
¢ while, a higher order contribution to I'y, would contain at least one more
fermionic propagator leading to a power of ¢ greater than two.

As far as the asymptotic behaviour is concerned, every fermionic prop-
agator gives a contribution which goes to zero for large fields.

So, the characteristic of our effective potential to be bounded from below,
remains true to higher loop orders.

One can also study numerically the minima of the potential of eq. (7.9)
and determine their behaviour with e.

Due to the connection between (x) and the scalar condensate renormal-
ized at p, we get the way of varying of (¥¥), with the coupling constant.
This is illustrated in Fig. 6 where

(% <<ﬁ;t;>u)é _ ( <2>;(2c)>>%
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is plotted as a function of ¢ showing explicitly the phase transition at ¢ = 1.

_ a &
_L <ww>'u / 3 g
N~ & 4

FIG. 6. Way of varying of the scalar condensate (W\P)” with ¢ =
27 [(3C2a,). The phase transition is for ¢ = 1.

Let us go back to the complete case with logarithmic corrections taken into

account.

First of all we will show that, also in this case the effective potential
V() of eq. (7.8) is bounded from below.

Starting from eq. (7.8), we can easily derive the following expression

. N 4 d2 1 F 2d—2
Vo) -7 ) = 717?2"(95&' /0 du 1-|-(t;)aF(u) #'-

1 /1 du 14 ¢? u® F(u)?42
— - — lo
2 u? 14+ ¢2 u8
(7.15)
In eq. (7.15) the first term is positive definite because F(u) > 0 for
O0<u<l.

As far as the second term is concerned, one has to consider the quantity

F(u)d_1 = (1 — %logu)

The expression (7.15) is positive definite when F(u)%~! < 1. Because u < 1,
it follows that F(u)%~! <1 according to (d — 1) < 0.

d—1
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Remember that

_3Cy 90,
| 812 11N —2n
so, in QCD with color triplet fermions (N = 3, C; = 4/3), one has d =
12/(33 — 2n), and d < 1 for n < 21/2. This means that, if we have less than
six families, V (0)(42) — 7 (%) > 0 for any value of ¢2.

We have derived in this way a rigorous lower bound for V(°)(¢?). This
bound clearly shows that also V (°)(¢2) is bounded from below.

The numerical analysis of V(%)(4?) is straightforward showing the oc-

d

curence of the spontaneous chiral symmetry breaking phenomenon SU(n) . ®
SU(n)r — SU(n)L+r-

In this general case, the effective potential is a function of the ratio of
the two scales y and My and it appears more natural to parametrize the
results With» p/My rather than in terms of the variable c.

One finds that, in the case of QCD with three flavors (Mo = Agcp),
the theory undergoes chiral symmetry breaking for u/Agcp < 1.355 which

corresponds to
_ 91
4m

> 0.731 (7.16)

The behaviour of the effective potential near the critical point is showed in
Fig. 7. _

Remember that, in the previous simplified discussion in which we ne-
glected the logarithmic corrections, we found (o) crit = 7/2.

The somewhat higher value of (e;)ri in this case with respect to the
case without logs, is qualitatively understandable since, in the latter case the
coupling constant does not depend on the momentum whereas in the former
it goes down to zero for large p. In some loose sense, in the rigid case we are
averaging the running coupling constant all over the range of momentum.

We can definitly conclude that the overall qualitative picture remains
unchanged when we take the renormalization group corrections into account.

Furthermore, the quantitative differences in the two cases are not dra-
matic (13% for the critical value of u/Agcp).

Let us also remark that, as we will see in the massive case, the two

potentials V and V must be compared for different values of r/Agep (this

74




quantity must be recalculated in each case from the experimental data).
In this way we will find that the observable quantities like the values
of the quark masses and condensates, vary very little from the rigid to the

general case (~ 10%).

[4.00E-06

=1.00E-06

FIG. 7. Behaviour of V(O)(qu) near the critical point in the case of
QCD with three flavors. The curves shown correspond to the values

#/Agop = 1.354 (dash-dotted line), 1.855 (solid line), 1.857 (dashed
line).
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8. COMPARISON WITH OTHER STUDIES OF THE DYNAM-
ICAL CHIRAL SYMMETRY BREAKING PHENOMENON

The method of the effective action for composite operators, as we have
seen, proves to be a convenient tool in studying field theories with dynamical
symmetry breaking.

The application of the direct variational method to the problem of DSB
in QCD, has allowed us to take into account the non linear aspects of the
problem and to justify the results obtained first in the framework of the
linearized approximation (see for example [45], [46] and [47]).

In fact a way to investigate the dynamical mechanism of the sponta-
neous breakdown of chiral invariance in massless gauge theories is based on
the exact solution of the linearized Bethe-Salpeter (BS) equations for the
pseudoscalar Goldstone bosons.

The main hypothesis of this approach is that the mechanism of the
condensates formation responsible for the spontaneous symmetry breaking,
comes from the strong gauge forces acting at distances of the order of the size
of the Goldstone bosons and the crucial point is the assumption that these
distances are smaller than those at which the confinement forces dominate.

In the model considered in ref. [45] the dynamics of condensation is
described by BS equations for the fermion-antifermion tightly bound states
in which the parameters of infrared and ultraviolet cutoffs are introduced in
order to pick out the momentum range which is responsible for binding.

The infrared cutoff is identified with the confinement scale.

Since the result of the analysis gives a critical value (9)crit for the cou-
pling constant at which chiral symmetry breaking occurs and, since in non
abelian gauge theories the domain of strong coupling (¢(p) > (¢)crit) is the
region of small momenta, they identify the ultraviolet cutoff with the value
of p at which g(p) ~ (g)crit-

The kernels of the BS equations, are taken in the ladder approxima-
tion with values of the coupling constant g and of the fermion dynamical
mass m equal to the values of the running coupling constant g(p) and of the

fermion mass function X(p?)/Z(p?) respectively, averaged in the appropriate
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momentum range (S~ 1(p) = 1Z(p?)p — Z(p?))-
With these approximations, it happens that the BS equations have the
solutions for the thightly bound states with M? < 0 if

2 N2-1
o= l—i’; o for SU(N)
exceeds its critical value
T

(a)crit = ’é’ (8-1)

In QCD this means

2
T

(as)crit = (i;r")crit = Z (8-2)

This model has been applied to the investigation of the spectrum of the
pseudoscalar mesons in QCD with n flavors [46].

The main results obtained are the following.

In the symmetric unstable phase, there exist n? pseudoscalar tachyons
while, in the phase in which the vacuum rearrangement results in sponta-
neous breakdown of the chiral SU(n); ® SU(n) g symmetry, a fermion mass
appears.

The spectrum of the fermion dynamical masses can be determined by
requiring that tachyons disappear in the stable phase and, instead of them,
the (n? —1)-plet of pseudoscalar Goldstone bosons appears (the singlet under
SU(n)L+r acquiring mass through the Adler-Bell-Jackiw anomaly of the
U(1) L—r current).

Also, in the case in which there is spontaneous and explicit breakdown of
chiral symmetry, the mass formula for the pseudoscalar nieSons is derived in
this model and, once compared with the mass formula of the current algebra,
it provides a dynamical realization of the PCAC hypothesis.

From the Ward identities for the axial currents, it follows that such a
way of determining the dynamical fermion mass, is equivalent to looking
for non trivial solutions for the linearized Schwinger-Dyson equation for the
self-energy (p?) in the ladder approximation.

An improved form of the Scwinger-Dyson equation for the quark prop-

agator in QCD, has been numerically studied by K. Higashijima [36].
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He also assumes that the short range force rather than the confining force
is responsible for chiral symmetry breaking in QCD and so he approximates
the kernel of the SD equation by the one-gluon exchange but improving with
the running coupling constant.

In order to tame the infrared singularities of

M) = =22 o

he defines a non confining QCD-like model by

A@)=~{Aﬂ“ if ¢ <t (8.3)

Alt, ift>t,.

with
3C,
A= —-—FT—

11 —2n/3
(which exactly corresponds to our choice for the running coupling constant).

The numerical result is that, in the case of triplet quarks and n = 3,

for ¢, < 0.88 the constituent quark mass remains no vanishing in the chiral
limit, that is, the chiral symmetry is spontaneously broken.

Since the parameter ¢. corresponds to our log(/Agep), the critical

point results for

7}
~ 2.4 8.4
(AQCD)cﬂt (84)

which corresponds to a broken phase for

T
- 8.5
> (85)

Let us notice that this is completely consistent with the critical value
(8.2) of the coupling constant of refs. [45], [46] and [47] in which the linearized
SD equation is considered.

This is not surprising since the dynamical mass function goes to zero as a
power for large values of momenta and so its contribution at the denominator

of SD equation is quite inessential in the range of momenta at which chiral

symmetry breaking occurs.
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In fact, let us write down the non-linear BS equation for the fermion

self-energy (see eq. (5.5)) in the massless case

2y _ d'p 2  ¢*p,9)
56) =36 [ G et (o (5.6

(we are only considering the scalar part of the self-energy and Z (P?) =1
(Landau gauge)).

In the large range of momenta, it is sensible to neglect the self-energy
contribution at the denominator on the right hand side of eq. (8.6) due to
the asymptotical behaviour of ¥ itself. In this way one just recovers the
linearized form of the Schwinger- Dyson equation.

As far as the variational methods are concerned, let us mention the
result obtained by M.E. Peskin [15] with a simple stability analysis of the
CJT effective action.

In order to compute whether chiral symmetry breaking can be induced
by one-gluon exchange in a SU(N) gauge theory of massless fermions (lowest
order approximation), he works in the following simplified framework: he
considers a fixed coupling constant g and expands I'c 7 into quadratic order
in the fermion self-energy .

Since he expects that for g2 sufficiently small, the vacuum is chirally
symmetric, he restricts his attention to study the stability of the symmetric
vacuum.

He finds that the kinematical terms in T'cy1 stabilize the chirally sym-
metric state ¥ = 0, and so the interactions must counteract this effect.

The explicit calculation of I'y truncated up to the second order in &

shows that, a criterion for an instability is

3C,g?
472

>1 (8.7)
which, for quarks in the fundamental of SU (3) gives again

w
as>z.

We notice that this result represents only a criterion for the vacuum

instability and it depends on the crude approximations done.
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In general, other computations based on the CJT effective action for-
malism, give a higher value for the critical coupling constant.

For example in ref. [38], an analysis completely equivalent to ours is
performed but using the CJT functional.

Their numerical analysis for QCD with three flavors gives for the cou-
pling constant the critical value

(as)crit = (8.,8)

w3

Some similar results have been obtained by P. Castorina and S.Y. Pi
[37].

They use the original CJT variational principle and reach the same con-
clusions on the chiral symmetry breaking as [38] and we find. We, however,
disagree with some statements of these authors.

First of all, their potential is not bounded from below since we have
shown in sect. 2 that all the stationary points corresponding to chiral sym-
metry breaking solutions, are actually saddle points.

So their statement of boundness from below of the Vg 7 effective po-
tential comes simply from the fact that they have not analized the behaviour
of the potential in the appropriate range of parameters.

This has also been proved directly by V.P.Gusynin and Yu. Sitenko in
ref. [38] in which the computer calculations show the monotone decreasing
of Veoyr(x) with increasing x.

The unboundness from below of this function is clearly preserved if any
finite numbers of loops is taken into account in evaluating the potential since
the contribute of the multiloop diagrams, as we have already observed, van-
ishes in the limit of large dynamical mass.

We don’t agree with another statement in ref. [37] about the fact that the
logarithmic behaviour of the coupling constant and the fermion self-energy
is crucial for the stability of the dynamical symmetry breaking solutions.

As it is shown in our previous analysis (sect. 7), this is not true since

the case with the logarithmic corrections taken into account, simply confirms

the results obtained in the rigid case.
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We think that the differences that P. Castorina and S.Y. Pi find in the
two cases, only concern the lack of finite symmetry breaking minimum in
their calculations with non logarithmic ansatz.

As a final remark, it is interesting to notice that the variational methods
with the specific ansatzes for the fermion self-energy give the higher value for
the critical coupling constant as compared to the methods based on the exact
solution of the linearized equation or the numerical solution of the non-linear
SD equation. This is a general feature of the variational calculations and
clearly indicates that the true form of the self-energy is more complicated
than that of the type (5.12).

In particular, the constant behaviour in the infrared region (p < u), is

a rather crude approximation.
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9. MASSIVE EFFECTIVE POTENTIAL IN QCD WITH THREE
FLAVORS

We can now discuss the general case of massive fermions and examine
the particular predictions of the formalism for QCD.
We will consider the case of three flavors u, d, s by introducing a diagonal

mass matrix for the three quarks

my, O 0
m=| 0 mg O (9.1)
0 0 mg

Let us calculate explicitly the determinant in (6.35) by using the stan-

dard relation holding for 3 x 3 matrices

3

detA = % [(tuﬁ) 2(trA)(trA2) + —;—(trA)?’] (9.2)

We get in this way [24]

N 4
v = DE e s te (874 p%) 4 (A2 + 62) tr (mu) -5)-
L oo (9.3)
- —/ dy y log Az
2 Jo ‘
where
b o\’
s, = ,Sa—— 9 4
= (3). (04
1\
b @
“Vv2/,
A; = Gell — Mann matrices; Ay = %; t=1,..,8, «a=0,..,8.
and 5
As =y* +3y*E +y(3E* - C?) + E* - EC? + —éD
C? = CyC, D = dgmCrCiCm
(9.6)

2 1
Cy = \/;(xomk + zo2k) + -Z-dijk(mirvj + 2izj) + fijrtiz;
1
E = g’cr(x2 + z2) 0,7, k,l,m,=1,..,8
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The quantities ¢, Ay, A2, X and z are the same we have previously intro-
duced in (6.36) and ézy is the finite counterterm which will be determined
in a while by imposing the normalization condition (6.26).

It is possible to show that, also in the massive case, the effective potential
(9.3) has a local minimum for vanishing charged fields.

We will prove this statement for n flavors in the symmetric case in which
m} = m 6% [19].

It is convenient to expand the fields s, (and pgp) in terms of the Cartan
basis of U(n)

n—1 (n—1)n/2
s =89+ E sih; + Z (saa + S—at—qa) (9.7)
i=1 a=1

and analogéusly for p.

We want to show that the potential V' has a minimum on the surface
defined by

8 =8q=8_4=0

(9.8)
Pi=pPoa=p-a=0
Let us consider the potential V' at the points defined by
Sq =68_4=0
(9.9)

I
T
Q
1
o]

Pa

We can prove that, on this surface, V decomposes, as in the massless

case, in the sum of n contributions, one for each flavor

Npt &
V=5 Y VilxasTaym) (9.10)
a=1

with x, and 7, defined in (7.6).
This factorization can be easily checked in the case of QCD with three

flavors, by considering all the components of the fields equal to zero except

for those in the 0, 3 and 8 directions in eq. (9.3).
Due to the structure of (9.10), the minimum of V will be at the point

{(Xa) = v and (7,) = w independent on a (remember that we are considering
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the U(n) symmetric case). So, using eq. (7.6) this means
(so) =
(o) =w (9.11)
(8;) =(ps)=0 i=1,.,n—1

This is a minimum on the surface defined by (9.9).

It remains to be shown that this point is a minimum also along the
charged field direction.

Due to the SU(n) invariance of the potential, the first derivatives of V

will have the form
oV

Js;

v

Ip;

QK =As_o+Bp_,

384

v

Opa

where A, B and C are SU(n) invariants.

At the point defined by eq. (9.11) and (9.9), eq. (9.12) implies

=As;+ B p;
(9.12)

=B s;+C p;

(9.13)
=B S—q + C P-a

AC — B% >0, A>0 (9.14)

and we see from (9.13) that the eigenvalues of the second derivatives of the
potential are positive also along the charged directions.

Some observations are now in order.

On the basis of the previous considerations alone, one cannot exclude the
possibility that V' has some other isolated minima. However, one can notice
that, in the zero mass case, the potential V does not show any other isolated
minimum and therefore, for small m, the minimum we found is certainly the
absolute one.

This result is in agreement with the one found by C. Wafa and E. Witten
[48]. In fact they have shown that in vector gauge theories with § = 0 (0is the
parameter connected with the axial anomaly), the global vector symmetries
are not spontaneously broken and that, in the case of a symmetric mass

matrix, all the condensates are equal (the theory breaks down to SU(n)y ).
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Let us also remark that the previous arguments apply rigorously only to
the symmetric case but, for small values of the fermionic masses, we do expect
the same conclusions in virtue of the continuity of the effective potential

function.

We will then assume that, also for a general diagonal mass matrix for
the quarks, the matrix of the condensate is diagonal at the phisical point.

This leads again to a factorization at the minimum of the effective po-

tential in a sum of indipendent terms.

The result for QCD with n = 3 follows by considering the charged fields
equal to zero in (9.3). Then, using the definition (7.6) for x, and m, with
a=u,d,s and (/\o/\/§, }\3/\/5, Ag/\/—i) as basis of the Cartan subalgebra of
U(3), we get

V=3 )
= an? 1{Xa>Ta, U

a=u,d,s

Vilx,m o) = ¢ A (x2 + 7r2) +p a x(Ag + 6z5)—

1! 2ax + (x? + 72)
— =/ dyylog|1l —
2/(; vy Og( + v+ o

1 14 2 -1 2, 2,3 2d—2
3 ../ du log (1 + 2axuF(u)™' + (x* + 7%)u’F(u)
2 /o ud 1+ o?uF(u)—2d

(9.15)
with o = m,/p and d = 4/9.

We can now determine 6z by imposing the normalization condition
(6.27). The result is the following

— 4
u+ (x°)”

+/01£i}£ Fu)™!

U 14 (x0) 2ul F(u)2d-2

1 1

A2+5Zf: —l;|:26+/ du
0

(9.16)

where (x°) is the value of the field x at the minimum of the potential in the

massless case.

By substituting (9.16) in (9.15) we get the final form of the effective
potential (with charged fields equal to zero) for QCD with three massive
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flavors

d2 1 F(u)Zd—2 2 9
Vl(x,w,a)——-c [1+§2L dum (X +7T')+

1 u
+ax[2c—|—/o du W+
A —
0w 1+ (X))

1t 2ax+(x2+7r2))
— - d 1 1 —
2/0 vy og( + U+ ol

1 /1 % log (1 N 20xu?F(u)~ + (x% + 7r2)u3F(u)2d_2)
0

2 1+ a?uF(u)—2d
(9.17)
where
F(u)=1—~llogu a = log K
2a QCD
Remember that the following relations hold
1 1 1 g*(n)
(Xu) = (Suu) = -\-/—5(60) + 75(8?) + %(Stﬁ = ‘guT@u)u
1 1 1 g%(n) ~
(i) = () = = (s0) = =(o0) + =(os) = L @, (0,19

= (500) = = (s0) = Y2 (sq) = L) 5,
<X8> = <Sss) = \/§<30> \/g( g) = 3u3 < >ﬂ

and analogously for (r,) related to (¥ iy5¥,) e

So we are to determine the values of the quark condensates from the
stationarity points of V1(xa,7q, @) given in eq. (9.17).

Let us consider the simplified case of a symmetric mass matrix m$ =
m 6% (e = m/u) and let us neglect the logarithmic corrections (rigid case)
[19].

From the previous discussion it follows that the potential around the

minimum defined in (9.11), has the following form (n flavors)

Nt

472

<l

n T/'—1(80,130,&)
172 2 2 AZ
VI(SO’pO’a) = C(SO + Po) + asg log F—-

A?/p? s o \
-2 / dy y log (1 4 2osof () + (58 + p5)/ (v) )
0 Y+ o

(9.19)

2
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where

1) = n|0(1—y) + 0 - 1)} ]

and we have regularized the expected ultraviolet logarithmic divergence, lin-
ear in sg, with the cutoff A.

The integral in (9.19) can be evaluated exactly but the expression one
finds is not very useful because it depends on the roots of a cubic equation.

However, one can derive some general features of V; simply by its in-
tegral representation: i) the function V; has stationary points on the line
po = 0, ii) the hessian matrix of V' is positive definite on the stationary
points outside the line po = 0, iii) in the asymptotic limit so,po — oo, V3
goes like ¢(s3 + p2).

The qﬁa.litative picture we get from these considerations is that two
possibilities arise:

1) V1 has only one minimum on the line po=0

2) V1 has two minima at the points ({so), (o)) and ({(so), —(po)).

These two possibilities correspond to two different phases of the theory.
In particular, the second one, corresponds to a phase where P and CP are
broken spontaneously by a non vanishing vacuum expectation value of a
pseudoscalar fermion pair. .

In order to better understand the effect of (py) # 0, let us perform a
chiral rotation on the fermionic fields

.
i 2
Toe "2 U (9.20)

corresponding to a rotation on the plane ((so), (po)):

(s0)' = (s0) cos p + (po) sin
(9.21)
(po)’ = —(s0)sin + (po) cos

By choosing

{po)

tanp = —

(s0)

we rotate the minimum along the line p = 0, but the effect on the mass
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term in the Lagrangian is

TV —m (30> _
my ((s0) + (po)?)*/? vt

(po)

(o) + (poy2) 172 WY

+m

that is the Lagrangian acquires a P-violating contribution.

(9.22)

Phisically, the spontaneous violation of the parity we obtain, is due to

the degeneracy pop — —po of the potential and to the fact that, under a parity

transformation pg — —po. When the theory develops a non zero VEV for pg,

we have to choose between two degenerate vacua and break spontaneously P

and consequently CP.

The numerical analysis of function (9.19) completely confirms the previ-

ous considerations. In particular we have found that the CP-violating phase

is present and the (¢, &) phase diagram in Fig. 8 shows the boundary of this

region.
a
a=2—120
11.5 : .
P-,CP-violating
phase
1+1.0
105
0.3 \ 1.2
t=0.54 ¢=0.68

FIG. 8. The phase diagram for SU(N) color gauge theory with n mas-
sive fermions. The vertical azis is o = m/p, ratio of the fermion mass
m and the momentum scale . The horizontal azis is ¢ = 27 /(3Cqa;)
where oy = g2/(4m) and g is the color gauge coupling. In the shadowed
region P and CP are spontaneously violated by vacuum ezpectation val-

ues. These results are obtained with 6 = 0.
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In Fig. 9 we have reported the values of the minima (so) and (po) as

functions of ¢ and «a.

(a) VEV of the scalar sg

0.0

f<s°>

I
05 _J ) WI[

ﬂ

FIG. 9. The vacuum ezxpectation values of (a) so and (b) po as func-
tions of a and c. The region where (po) # 0 [in (b)] is the P- and
CP-violating phase. This region corresponds to the step rises of (sg)
[see (a)] at constant o and increasing c¢. In (a), for convenience of
visualization, the horizontal c-azis runs from right to left.
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Let us now expand eq. (9.19) for small o. We get

V1(505P0, @) a—o — V1(80,P0,0) + aso N(so,po) (9.23)

where

1+ s2 + p? 1
N(s0, po) =1~(s3+p%)log(-————————~2 et 0) + - log(1+ 55+ p3)  (9.24)
s+ pg 3 ,

A numerical study shows that the function N(so,po) changes its sign for
(s2 + p3)1/? = 1.110320, therefore, the absolute minimum of V; goes from
negative to positive values of sq.

Due to the continuity of V1, this may happen only if the minimum moves
from one pbint to another ”outside” the line pg = 0.

From the analysis of the minima at m = 0 one finds that the value
(s3+p3) 1/2 = 1.110320 corresponds to ¢ = 0.54 and this explains the starting
point of the CP-violating region in Fig. 8.

One can ask where QCD-like theories lie on the phase diagram of
Fig. 8.

To give an answer to this question, remember that in eq. (9.19) we have
regularized the potential by a minimal subtractjon procedure but we have
not yet imposed the normalization condition of eq. (6.26).

As we will see in detail later on, this requirement will constrain the
theory to satisfy the Adler-Dashen condition for small quark masses [20],
[25].

In the case we are analyzing here, that is without the logarithmic cor-
rections, (6.26) is a non trivial condition since it determines the value of the
coupling constant g (and so the value of ¢).

In fact, from the expansion for small masses (9.23) we get
N (so,po) = N((so(c))) = 2¢ (9.25)
extr

which becomes, in this case, only an equation in ¢ since, as we have noticed
in sect. 7, the minima of the effective potential in the massless case depend

only on ¢ (remember that v depends on u only for an overall scale).
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One can show that eq. (9.25) has one and only one solution which can
be obtained numerically. The result is ¢ = 0.32.
In Fig. 10 the curves y = N((so(c))) and y = 2c¢ are plotted as functions

of ¢. Their intersection represent the solution of eq. (9.25).

5 \N (<so(c)>)

\,
2c¢

yd
\

X

.........

FIG. 10. Graphical solution of eq. (9.25). It shows that, for QCD-
like gauge theories analyzed in the rigid case, the requirement of the
Adler-Dashen condition in the small masses limit, leads to ¢ = 0.32 or
equivalently a, = (1/C3) 2.08 .

In this way g? is fixed while p is left undetermined.

This is nothing but the dimensional trasmutation (S. Coleman and E.
Weinberg [11]) and the theory is now completely identified by the scale pa-
rameter u (besides the fermion masses).

Let us observe that this result does not remain true when one takes the
renormalization group corrections into account since the theory in this case
depends explicitly on the infrared mass scale p.

The conclusion is then the following: no spontaneous parity violation ap-

pears in QCD-like gauge theories in the approximation in which one neglects

the logs.

91




This can be seen from the phase diagram in Fig. 8 which shows that the

line ¢ = 0.32 never meets the P- and CP-violating region.

It thus appears that the normalization condition (6.26), or equivalently
the imposition of the Adler-Dashen requirement, constraints the theory in a
region of the phase diagram in ¢ and o where P and CP conservation are

guaranteed.

This result is consistent with a general result found by C. Wafa and
E.Witten [49].

We can now ask what will happen in the general case.

We expect that all the previous conclusions remain true also in the

case with logs since, as previously proved, the logarithmic corrections don’t

change the picture.
Furthermore, we have a check on this assumption.

In fact, as we will see in the next sections, we have performed our cal-
culations of the masses of the pseudo-Goldstone bosons for vanishing values

of the pseudoscalar condensates at the minimum of the effective potential.

What we find is a positive value for the masses, as it must be, and,
equivalently, a positive value for the second derivatives of the effective po-
tential with respect to the pseudoscalar fields showing that the points we are

considering are true minima of the effective potential itself.

The final conclusion is that we can put 7 = 0 in eq. (9.17) and simply

minimize Vi (x, 0, ) = Vi(x, @) with respect to .

In Fig. 11 we have plotted Vi(x,a) as given in eq. (9.17) as a function
of x in the massless case and for a value of the quark mass equal to 5.8 MeV.
We see that in the massive case the degeneracy is removed and we have a

minimum for a negative value of y.

In Fig. 12 we can see how the shape of the effective potential changes

for an increasing value of the quark mass (118 MeV).

The values 5.8 and 118 MeV correspond to the masses, renormalized at
1 GeV, of the quark u and s respectively, as we will obtain in sect. 12 from

the fit of the octet meson masses.
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FIG'.V 11. Effective potential Vy for QCD with three flavors as a func-
tion of x for m =0 (dashed line) and for m = 5.8 MeV (solid line).
The curves are for a value of p/Agcp = 1.11.

Vi /
1L /

N \ X
4N 22 |0 2 4

FIG. 12. Effective potential V1 for QCD with three flavors as a func-
tion of x for m = 118 MeV and p/Agcp = 1.11.

The boundness from below of our effective potential is evident in these

graphs.
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10. PSEUDOSCALAR MESON MASSES

As we have seen in the previous sections, if the coupling constant in the
infrared region, exceeds a critical value, then the dynamical breakdown of
the chiral symmetry in the massless case occurs.

According to the Goldstone theorem, we expect n? — 1 massless Gold-
stone bosons relative to the breaking of SU(n); ® SU(n)g to SU(n)r+r (as
stated before we are neglecting the U(1) 4 problem).

These particles are represented by the composite fields pyy a,b=1,..,n
whose vacuum expectation values are related to the pseudoscalar condensates
(Ugaivs ), by eq. (5.17).

When a mass matrix m for the quarks is allowed, the Goldstone bosons
acquire méss and, in the case of QCD with three flavors, they are represented
by the octet of the pseudoscalar mesons.

What we are going to do, is to calculate the masses of the pseudoscalar
mesons of the octect in the framework of our model.

In order to better visualize the main points of our program, let us con-
centrate, as an illustration, on the case of a single flavor in which the potential
V' is a function of the scalar field x, the pseudoscalar field 7 and the quark
mass m. A

First of all, one has to properly normalize the field m with respect to the

canonical pseudo-Goldstone field ¢,
Gr =br (10.1)

The constant b, can be obtained in terms of the pion decay constant f,.

Performing a chiral rotation in (10.1) and taking the vacuum expectation

values we get

by = —— Im (10.2)

V2 (X)

where, as usual, (x) stands for the value of x at the minimum of V.
To compute the mass of the pseudoscalar meson (the pseudo-Goldstone
boson described by the field ¢,), one has to take the second derivative of

the effective potential with respect to the field 7, evaluate it at the minimum
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and opportunely normalize it

2 2 2 dZV
M,E:—d——‘;— =-—1551—V2— =2<—X—>§~ —— (10.3)
d¢7l’ extr b‘ll' dm extr fﬂ” dm extir
Since (m) = 0, the following relation holds
2
é._‘_;: — _LQ‘_[_ (10.4)
dm extr (X> ax ectr

where the derivative of V' on the right hand side means the derivative with
respect to the explicit dependence on x (3V /3 is proportional to the explicit
chiral symmetry breaking term).

Eq. (10.4) represents the Goldstone theorem. Substituting it in eq.
(10.3) we get

' oV 2 —
M,%=~-f—2 0 G| =72 Bl

where we have used the relation between the scalar field at the minimum and

3'u’3 X lextr

the scalr condensate.

Taking into account the normalization condition (6.26), eq. (10.5) re-

produces, as expected, the Adler-Dashen formula in the small mass limit

M2~ —2m = (P, (10.6)

m—0 ™

Let us now apply this procedure to the general case of QCD with three
flavors in order to obtain an expression for the masses of the pseudoscalar
octet mesons [24]. Remember that the effective potential we have calculated
depends on the standard parameters of QCD: Agcp, my, mq, m, and the
further mass scale pu.

So we will proceed in the following way.

We will derive a convenient generalization of eq. (10.5) which will allow
us to compute directly the pseudo-Goldstone masses in terms of Agcep, My,
mg, m, and p and of the decay coupling constants fij 4,7=1,.,8.

Then we will derive within our formalism an expression for fi; and,
finally, we will determine the parameters of our theory from the experimen-

tal data. Having a system of coupled equations, this determination will be

performed numerically.
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First of all we need to normalize our dynamical variables p; ¢ =1,..,8
(remember that we are neglecting the U(1) 4 problem) defined in (9.5).
Let us call p, the fields which diagonalize the matrix of the second deriva-

tives of the effective potential given in eq. (9.3), then

8
B:= Y pjaji (10.7)
j=1

where a is an orthogonal n X n matrix which is non diagonal only in the 3-8

sector.

The coefficients b; which relate the fields p; to the physical fields ¢;

8
¢ =biP; =b; ¥ _p; aji (10.8)

7=1
can be determined through standard current algebra arguments.

In fact, let us remind the standard relations in pion physics generalized

to the case of three quarks flavors
ifi; = (0[@5,¢;(0)]J0) 4,5 =1,..,8 (10.9)

where ¢; are the canonical pseudo-Goldstone boson fields related to the p;

by eq. (10.8), |
% = [ ¢z o)) (10.10)

are the axial charges and f;; are the decay coupling constants for the meson

octet and they are defined by
(01735 (2)|m5 (P)) = 1 pu fise *P® 4,5 =1,..,8 (10.11)

Here J ;;5 are the axial vector currents and the |7;(p)) are the meson octet

states with four-momentum p, which satisfy (see (1.6))
(0];(z)|m;(p)) = 6i5 e *PT (10.12)

Combining eq. (9.5) with (5.17) we find that the fields p; are related to

the pseudoscalar fermion condensates by the relation

p;=F (‘@'»ys %\P) (10.13) {'
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where )
g*(r)
3ud

is the usual dimensional normalization factor.

Substituting (10.13) in (10.8) and then in (10.9) we find

8
— — A
fij = —g ai by F tr(QW), — > ag; by dyg F tr@\—}—‘P)u (10.15)
k=1 2

F= (10.14)

So, for the sector with charge or strangeness different from zero (ai; =

8i7), one gets (remember (x,) = F (¥, ¥,), a=u,d,s)

\/ifrri

by =by = — =b,
T T+ e
V2 [t
by =bg = ——""""T2" 1} 10.16
1 ) ) K (10.16)
\/§f 0 o
be = by = — K° K

(xa) + (xs)  K°OK°
where, according to the usual conventions, we have set
fi1 = faz = fr=

faa = f55 = fxx . (10.17)

foo = f171= fro 55

For the sector with @ = S = 0, one obtains

fur="_ Appapby  p,v=38 (10.18)
with )
Azz = —75 ((xw) + (xa))
Ass = s = —% ((xa) = (xa)) (10.19)

Ass = -—5—1@ (xu) + (xa) + 4(xs))

Summarizing, the coefficients b; can be expressed in terms of the decay

constants of the pseudoscalar mesons and of the values of the fields x, (a =
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u,d, s), at the minimum of the effective potential, but, due to the mixing in
the 3-8 sector, one has also to take into account the matrix a which transforms
the fields p; in the mass eigenstates (notice that in the SU(2)-symmetric case
(mu = ma), aij = &;).

Let us now derive an expression for the masses of the pseudoscalar octet
mesons by multiplying the second derivatives of the effective potential with
respect to the pseudoscalar fields by the appropriate factors relating the
physical fields ¢; to our variables p; (clearly we do not compute the ' mass
since we have not considered the effects of the U(1) 4 anomaly).

The mass matrix is given by

d*v

M? = M?6;; = —— —
” Y dgdg, ,
exrir

8 8
1 d2v 1 (10.20)
Y Z Akialy = Z akial; Vi
btb] k=1 dpkdpl otr b =1
1,7=1,...,8

A direct calculation of the second derivatives evaluated at the extremum

of the effective potential, leads to the following result
Vir = Vas = 2 | 9ca 1/O°d T L,
= - —— c —_— -
H 227 4n2 Y, vy Ty +24 y+z2
Tg 1 2
+
Ty+Zg Y+ mﬁ) f2(9) }
st [y (e g
1 y—!—mz y+x§ 2\Y

3u 1 [ Ty 1
Vig = Vs = 2¢cA d
MU [C P /o yy<mu+$s y+x3+

T, 1 2
+
Ty + T4 y‘|“$§) fZ(y) :l

3ut / x4 1
Ves = Vig = P |2¢4, — = | d
o0 T 4 [ ' yy(md-l-fcs y+z3

Ts 1
+ 2
T4+ Tg y+x§) f2(v) }

Vss—“
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3ut
Vag = yps

SRR Ny Y

01—;2‘0 vy 6 y+ 22
1 1 2 1 9
+6y+x§+3y+m§)f2(y)}

3t 1 1 /°° 1 1 .

38 = Vas = 15 [2\/5 PR A e Rl fa(y)
(10.21)
where ¢, A, f2(y) are defined in eq. (6.36) and z, (a = u,d,s) are the

eigenvalues, evaluated at the extremum of V, of the matrix x defined in
(6.36).

'We want now to derive a more physically transparent expression for the
V.

As stated before, when one sets the charged fields equal to zero, the
effective potential factorizes in the sum of three contributions, one for each
flavor, as showed in eq. (9.15).

For the further developments, it is convenient to rewrite eq. (9.15) in

the following form

y =3 > Vgl
- 47]'2 1( g,aXaama)

a=u,d,s
Vi(¢®,x,m) =¢ Ay ¢* + mx (A2 + 6z5)—

o 2
- %/2 dy y log (y + %ff(y) + ¢52f¥2%(2y—)— + 2x%f#fz(y))
(10.22)
where ¢? = x? + 72, Ay + 625 is given in (9.16) and ¢, A1, f1(y), f2(y) are
given in (6.36).
The extremum condition is

vy _, Vi oV

o "X gzt gy =0 (10.23)

that is
Vil 1 an 4
27| Ak ax| oM
¢ ezrt <X) X extr (10.24)
1 [ 3 (y)

2u? Jo Yy (mfiy)/n+ (x)f2(y)/n)?
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So, for the various flavors a = u,d, s one gets

3ut N 2
(Xa) Oxa| _, 47 ©® Jo y+z3
Let us substitute eq. (10.25) in (10.21).
For the 3-8 sector we get simply
v 1 JdV 1 9V
33 = — =77 - P
2(Xu> aXu extr 2<Xd> aXd extr
1 oV 1 oV 2 dV
Veg = ————7— -V - (10.26)
6<Xu> aXu extr 6<Xd> 3Xd extr 3<X8> aXS extr
Vaw = Ven = 1 1 9V _ 1 1 9V
T 8T 9 /3 (xa) x4 2v/3 (Xu) OXu
extr extr

Let us.now examine Vj; as given in eq (10.21). We can rewrite it in the

following form

3ut 1/ 1 T4 1
Vii= " |2e4;, —— | d -
H 4%2{6 T e YNy matagytaE

T4 1 2 B
t ot y+z§> f2 (y)} = (10.27)
1 1% 3“'2 oo md(.’Bu _ zd) ,
= T Nav. |l T anz Yy
<Xu> IXu oatr 472 o (y+$3)(y+$§) fz (y)

or, analogously, we can obtain

1 3V _—3_,u2_ °°d Ty(Td — Ty)
(xa) Oxd a2 Y v+ ed)y+ 12

extir
So we can write an expression ud symmetric for Vy; by summing egs.
(10.27) and (10.28) and dividing by 2.

The same arguments apply to V44 and Vgg and the result is

Vii=—

f3y)  (10.28)

1 9V 1 oV
Vip=Vag = ——— - v,
e 2(Xu) OXu 2(xda) x4 TV
extr extr
1 oV 1 oV
Vg =Vig = ——— 22 | _ +V 10.29
v i 2<Xu.> aXu eztr 2<X8> 6X3 extr * ( )
1 av 1 9V
Veo=Vig == | ——— 2| 4V
T T 2 (xa) Oxa 2(xs) OXs @
extr extr
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We recall that here the partial derivatives are respect to the explicit depen-

dence on x, and

3'u2 [ele} (ma _ xb)z

V== [ d
T Jy VY ey + )

f2() (10.30)

a=u,d,s,

Inserting (10.29) in (10.20) we obtain a generalization of the Goldstone
theorem as expressed in (10.4) to the case of three flavors.

In fact in eq. (10.29) the dependence on the explicit symmetry breaking
part of the effective potential, has been isolated. This means that, in the
m — 0 limit, the Vi; are all naively equal to zero independently on the
values of the fields x, at the minimum.

This 1s not clear if one uses directly eq. (10.21) for evaluating Vi with
obvious problems from a computational point of view.

As an example, let us consider the SU(2)-symmetric case given by m, =
mg = m.

Clearly in this case (x4) = (x4) = (x) and a;; = &;.

Then, using the first of eq. (10.16), we obtain for the pion

1 1 9V 2 aVv

2 1 1 oV __“ ov
M2 = 70 3 ) X 5y (10.31)

extr ectr
and, with the normalization condition (6.26), we get for m — 0
2 1 -
M2 ~om L G, (10.32)
m—0 f7r

where ($9), = (Tu), = (dd),..

Eq. (10.32) is the standard Adler-Dashen relation.

As already observed, there is a mixing between the components along 3
and 8 directions (see eq. (10.26)).

This is of course expected and we have to diagonalize the matrix of the
second derivatives of the effective potential in order to get the masses of the
physical 7° and ng. (Notice, however, that the ng is not the true physical
particle but the result of undoing the mixing between the members of the

octect and of the singlet of SU(3) giving rise to the physical n and n’).
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The explicit calculation, performed up to the order

2
My — M4

gives for the 3-8 sector

a33 a3g — _:L V33 — Vgg
ag3 asgs

with
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11. PSEUDOSCALAR MESON DECAY CONSTANTS

In our context there are at least two possibilities to evaluate the decay
constants of the pseudoscalar mesons: i) to evaluate the couplings of the
fields ¢; to the axial currents Jg“, ii) to evaluate the residue at the pole of
the meson propagator.

In the first case we need to know the meson-quark-antiquark vertex,
while in the second case the knowledge of the bound state wave function of
the pseudoscalar fields is required.

These quantities can be determined directly from the effective action if
we are able to extend our previous calculations from constant fields s and p
to arbitrary functions of the space-time. _

In fac't' from the effective potential one can extract amplitudes for com-
posite operators of vanishing four-momentum but, to derive amplitudes of
non zero momentum, one has to allow for space-time dependence in the com-
posite fields.

Our effective action I' (see (2.65)) consists of two terms: the I'; term,
which in our approximation is a quadratic expression in the composite fields
(so the relation Tr(S é6I'y/6S) — I'y = I'p, holds), and the logarithmic term
which can be interpreted as the sum of all the graphs with a fermionic loop.

Therefore, in order to determine the meson;quark—antiquark vertex, we
only need to generalize the logarithmic term of T to the case of local fields.

Let us recall the structure of the self-energy for constant fields s and p
(eq. (5.12))

—52;;) =Z(p*) =m(u)f1(p") — mo(4) + (s + ivsp) f2(07)  (1L.1)

with f1(p?) and f(p?) given in (5.13) and (5.14) respectively.
For sake of simplicity, from now on we will omit the square in the argu-
ments of 3, f; and f,.

The operator we need to generalize is

6T - A
So '+ —5~§2~ with  S5!(p) = ip — mo(A)

in the Landau gauge.
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We will use a Weyl symmetrization prescription [25],[26] that is

(alS5" + S 21y) = {alip — m() f2(p)-

. -;—[s(x) +175p(x), f2(p) | v)

+

(11.2)

where x and p have the canonical definition

xp|z) = zp|z)
Pulp) = pulp) (11.3)
[X;upu] = =1 Guy

Notice that this prescription maintains the charge-conjugation property

of the fermion propagator

¢ [(Sgl + %) (:r:,y)] C = (Sgl + %)T (y, ) (11.4)

We shall also see that the Weyl symmetrization prescription leads to
a meson-quark-antiquark vertex which is consistent with the axial Ward-
identity.

In order to evaluate Tr log (S;! + 6T3/6S), we traslate the composite

fields s and p with respect to their value at the minimum of the effective

potential.

Let us define

= 0 (x5 O (11.5)
and introduce the operators

S () = ip — m(u) f1(p) — (8)f2(p)
®(z) = s(z) + ivsp(z) — (s) (11.6)

R = |26 ate)|

where S can be interpreted as the quark propagator with mass (s) f2(p) dy-

namically generated.
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Substituting in the logarithmic term of I' we obtain

Tr log (SEI + %) = Tr log S 4T log (1-SR) =

I (11.7)
=Trlog S - » = Tr (SR)"
n=1 n

The last trace can be calculated inserting intermediate eigenstates of x,

Tr (SR)" = / [Jate: tr [(2[5le2)(za R zs)-

1 (11.8)
s o AT2n—1|S|T2n) (T2n R |z1))

From the definition of the operator R, introducing
fa(z —y) = (z|f2(p)|v) (11.9)

we get

1
($2i|R|$2i+1> = 5(‘1’(121‘”2(-’52;‘ - $2i+1) + f2($2i - $2i+1)‘1’($2i+1) =

1
=5 / d*z; [6%(zi — z2i) + 6% (2i — T2i41)] f2(2i — T2ig1) B(2) =

= /d“zi V(z2:, T2iv1; 2i) ®(2:)

(11.10)
where we have defined
1
V(z,y;2) = —2—[64(2—.1:) +64(z—y)] fa(z —y) (11.11)
So, using
S(z —y) = («|S(p)ly) (11.12)
we finally obtain
_ 2n n _
Tr (SR)" = / Hd4f'3i H d4zj S(z1 — z2) V(z2,z3;21) B(21)
== (11.13)

-S(.’Eg — 1:4) V($4,$5;32) Q(22)

o S(zan—1 — Tan) V(xZnaxl;zn) Q(Zn)
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From eq. (11.13) it is clear that the operator Tr (SR)™ corresponds to n
bound state fields ® emerging from a fermionic loop calculated with fermion

propagator S as illustrated in Fig. 13.

FIG. 18. Graphical representation of the operator Tr (SR)" given in
eq. (11.13).

The vertex V(z,y; z) has the following expression in the momentum space

d4p d4q . . . . _
V(m,y;z):/ (27'.)4 (271-)4 V(p,q) e zpm+zqy+2(l’ Q)Z

' (11.14)
V(p.g) = 5 [f2(p) + f2(0)]

where the momenta are as in Fig. 14.

Actually we are interested in the pseudoscalar bound state vertices. We

can read their expressions directly from eqs. (11.13) and (11.14)

Vip,q) = i%g% [f2(p) + f2(q)] (11.15)

This is the effective coupling gyg,.

To get the effective coupling g45, for physical mesons, we must properly
normalize the fields p; by using eq. (10.8).
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The result is

1 8

Gi(p,g) ==Y _Vip,q) aji =
1 j=1
. (11.16)

_ i%i)l‘- Z -22———\;5 aj; [fz(p) + f2(Q)]

) le

The G% are the physical pseudoscalar meson-quark-antiquark vertices.

FIG. 14. The pseudoscalar bound-state vertices with two fermion lines
of momenta p and q whereas p — q ts a bound state line.

- We will now prove that the expression (11.16) is exactly what one needs
in order to satisfy the axial vector Ward identities relating the proper axial-
vector vertex functions T' , and the fermion propagator S [50].

Let us consider the case of massless quarks. Then the axial Ward iden-
tities have the following form (see eq. (4.1))
i

s X _ A
1¢"T5u(p +0,9) = 1555 Y(p) + 5 1(1o+q)'75—2— (11.17)

(remember that in the massless case the fermion propagator is proportional
to the unit matrix in the flavor space since the condensates in the self- energy

have all the same value for each flavor).

Let us substitute the expression for the fermion propagator as given by

the Schwinger-Dyson equation in the massless case

S~ (p) = ip — Z(p) (11.18)
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where ¥ is the self-energy evaluated at the minimum of the effective potential.
We get

t i

i¢"T},(p + q,p) = 1457 — Vs [(p + ¢) + Z(p)] (11.19)

From eq. (11.19) it follows that one can have a non zero dynamical
quark mass if and only if I‘g# has a pseudoscalar pole at ¢* = 0 (Goldstone
pole) whith residue proportional to the pion decay constant f.

Then we can write

t

. A . qn =
su(P+a:p) = S — [xG5(p+ 4, P) E% + T (p+a,p)  (11.20)

Here Gg(p+q, p) represents the proper pseudoscalar meson-quark- antiquark
vertex function and f‘ép(p + ¢,p) is a term regular at g2 = 0 which can be
ignored in the approximation we are considering since it is of order g2.
Finally, the comparison of eq. (11.19) with eq. (11.20), gives the follow-
ing expression for pion-quark-antiquark vertex function
i

ip+a,p) = —~ivs'\7 ;};[E(er a) + X(p)] (11.21)

which is in complete agreement with (11.16). In fact, in the approximation

of massless quarks we have

by =by = —— ™ (11.22)

It is worth to stress that the result (11.16) crucially depends on the
symmetrization prescription used.

In practice, what we have shown here is that our effective action repro-
duces, at one loop level, the results of the Dynamical Perturbation Theory
(DPT) introduced some time ago by H. Pagels and S. Stokar [50].

At this point, having derived the meson-quark-antiquark vertex function,
it is possible to obtain an expression for the meson decay constants f;; by

directly evaluating the coupling of the fields ¢; to the axial-currents Jgu.
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From the diagram

one gets (remember that we are working in the Euclidean space)
(0175, (0) |75 (a)) = 1qufi; =

d4p . X; .
= 3/ —Tr |17, = S(p + ¢)GL(p + ¢,p)S(p)
(2m) 2
(11.23)
Substituting the expressions for the quark propagator and for the meson-

quark-antiquark vertex, we get

1qufi; = f p+‘1)+f()]
pJtiy 3k1k7/(2 1 1\pP

(11.24)
Tr (iwms% i+ d) —=(p+4q)] i%%k- [ip — Z(p)] —1>
where _ :
. Yulp) O 0
3(p) = ( 0 Y4(p) O ) (11.25)
0 0 Ys(p)
with fa(p) = mafl(p) (Xa,>f2( ) a=u,d,s.

Let us evaluate the traces over the spinor and the flavor indices in (11.24)

qufi; = Z ak; Z / [f2(p + q) + f2(p)]-

J k=1 a,b=u,d,s
- pu(Balp+q) - Eb(p)) — ¢,%(p)
(P+9)2 +Za(p+9) (P2 + T3 (p)

(11.26)

where ¢’* are 3 x 3 matrices of the following form

c11:( ):czz c44:(
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0 00 .
=100 1|=c" (11.27)
01 0
1 00 (100
¢E=]1010 css_—g— 010
0 0 O 0 0 4
, (1 0 0
38 83
¢cc"=—=10 -1 0 =c¢
v3lo o o

In order to obtain an expression for f;;, we will differentiate with respect
to ¢, in eq. (11.26) and, according to the soft pion limit, we will take ¢ = 0.

In this way we get

i = 51* > My ay, (11.28)
J k=1
with
3 ; d*p
guv Mig = G a,,b:zu,d, alg (27)4
[afz ®) Ta(p) — Ts(p)
opy " (p2 tfi(p)) (p? + T2 (p))
b g, T (11.29)
+2 f2(p) =2 =2 -
(P2 + Z,(p)) (p? + T, (p))
(2 Pupy + a};;(p) pp> (Zalp) — Zo(p))
-2 fr =2 . 2 =2
| ) (P? + Za(p) " (p? + E4(p)) }

For the sector with charge and strangeness different from zero, inserting
(10.16) in (11.28), one finds

R ST I
Thex = _———“‘“<Xﬂ>\—;§<xs> My (11.30)
Ko K = “%}‘ Meo

(clearly from eq. (11.29) we get My; = Mjy, Myy = Mjss and Mgg = Myy).
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As an illustration, let us derive a representation fo f2 in the case of

massless quarks. Then

ax(p =
Pu _ap(—,/) — guv 5(p)

— (11.31)

2+ (p)"

So, using the relations (11.22) and performing tha angular integration we

g,uz/MII = 6\/-2—/ ('%11_'1))—4 fZ(p)

obtain

—2 —_

oo b — 1,2y s U
fr=2 / P’ p? AR
" (2”)2 0

(11.32)

which is the expression given by H. Pagels and S. Stokar [50]. We recall that
Euclidean variables have been used.

On the other hand, for the sector with Q = S = 0 one obtains

1
fuw == > Mya, (11.33)

p=3,8

which, toghether with eq. (10.18) gives the following results

fp.l/fp,u = Z My,papr-’q'y/ra'ru (1134)
p,7=3,8

11.35
Zp—_—g,s MSpapB ( )

Zp=3,8 Aspaps

b2 =

Eq. (11.34), in which there is no summation on the indices p and v,
gives the square of the decay constants in the 3-8 sector.

Here the matrices M and A depend only on the parameters of our model:
1y Agep, My, mg and m,. Therefore the f;;’s are completely determined as
functions of these quantities.

On the other hand, with eq. (11.35) we can calculate the coefficients b3
and bg which enter in the expressions of M2, and M, (see eq. (10.20)).

As an example let us consider the SU(2) symmetric case (m, = my).
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Then a;; = 6;; and also Azg = Agz =0; Mazg = Mgz =050

(tu) + (xa)
V2
f828 = f?s =M;gg Agg = _(Xu.) + <Xd> +4<Xs>

3v2

2 2
f33 = fro =Mas Aszz = — Mz

(11.36)

Mgsg

_ Mss
Asgs

b2 =

bs

11.37
Toa (11.37)

Using (11.36) in (11.37) we get

o T 2k

37 A% ((tw) + (xa))?
bZ . 7?8 - 18f33
A% ((xw) + (xa) +4(xs))?

(11.38)

Eq. (10.20) for the 3-8 sector in the symmetric case reads

1 1
'b—z— V33 MSZ - T Vgg (1139)
3

M=
3 b%

which means that, as expected, that there is no mixing.

So we can identify

Ms = Mo Mg = M,, (11.40)

and the following relations hold

1 2 q2v
=g+
2 f2, Ou) + (xa) dpadps

11.41
2y (11.41)

dpgdpg

2
M’?s :18 lfgs ((XU> + (Xd> + 4<Xs>>

As it follows from the previous considerations, in the general case one

has to correct eq. (11.41) with terms of order
2
m,, —mgy
( Ms >
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12. NUMERICAL RESULTS

The expressions we have found in the previous sections for the decay
coupling constants and for the pseudoscalar meson masses, are functions of
the parameters of our model: p, Agcp, My, mq and ms,.

The problem now is to determine these parameters from the experimen-
tal data.

We have a system of coupled equations given by (10.20) and (11.28), so
this determination can be done only in an approximate way.

In order to realize this program, we start from the SU(2) sector with
my = mg = 0.

Then the representation for f2 (see eq. (11.32)), gives fr/Agcp as a

function of .¢

In _ p(e) (12.1)
Agep
(remember that in QCD with three flavors
2m? P 4/9
c= or equivalently =e ).
9*(n) Agep )
F(c
| (©)
@l 15 T
@: 1@ T
0,68 + \
G, 06 . \ , | c
¢.9 @.2 2,2 G, € ¢.5

FIG. 15. Graphical representation of fr/Aqgcp as a function of c

in the massless case. The curve reaches a mazimum value Fy,,, for
c = 0.23.
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The numerical analysis of eq. (12.1), shows that the function F(c) has a
maximum, Fjnqz, when ¢ = 0.23. This means that in our model Agcp >
frlFmaz-

So, in order to reproduce the experimental value fr = 93 MeV with the
possible smallest value of Agcp, we have to fix ¢ = 0.23 corresponding to
the maximum for F (see Fig. 15).

In this way, having fixed the value of ¢, we can determine p (or Agcp)
from the experimental value of f.

Furthermore, from the value of the minimum of the effective potential
for massless quarks, one can extract the values of the condensates (wu®), =
(dd®),, (the superscript 0 means m = 0).

Using these values in the Adler-Dashen relation (10.32), we obtain a first
approximation for the quark mass m, = mq given the experimental value of
the pion mass.

Substituting these first results in eq. (11.28) with ¢,7,k = 1 we redeter-
mine p given fr = 93 MeV.

Then we iterate this procedure.

From the minimum of the effective potential we obtain the values of the
condensates for the quarks u and d and then, from the second derivative of
the effective potential evaluated at the minimum, we extract the values of

the quark masses. Schematically

fr =93 MeV - ©
%—K =0 — (Tu), = <3d>ﬂ

X ) my (1) + ma(p)
M? = (139 MeV)?2  —  p)= ) 5

where we have explicitily indicated the dependence on the renormalization

point p of the quark masses and condensates.

The iteration converges very fastly and the results we obtain are

u =497 MeV
Agcep = 449 MeV (12.2)
m(pu) = 18 MeV
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With these values, it is easy to determine my, for instance given Mg+ =
494 MeV. The result is

ms(p) = 294 MeV (12.3)

Finally, assuminig that the elettromagnetic mass difference between K+
and K° KO is of order of 1.5 MeV [21], we can calculate the difference
my(p) — mg(p) and, combining with the previous result (12.3), we find

my () = 14.5 MeV

ma(u) = 21 MeV (124)

We are now ready to calculate the masses and the decay constants for
the octet mesons.

The values we get [24] are the following to be compared with the exper-

imental ones.

evaluated experimental
M+ 139 MeV 139.6 MeV
Mo 138.7 MeV 135 MeV
Mycs 492 MeV 494 MeV
MKD,_I?E 498 MeV 498 MeV
M,, 546 MeV (566) MeV
fr 93 MeV 93 MeV
Ik 105 MeV fx/fr=1117
fn 111 MeV fo/fe =13

The fit for the meson masses is very good (agreement within 3%) and
the ratios fx/fr = 1.13 and f,/fr = 1.19 are in rather good agreement with
the experimental results [51] and with the current algebra calculations [52].

Some observations are now in order.

It is known that the main contribution to the 7% — 7% mass difference is

electromagnetic. The mass splitting we find in the framework of our model,
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comes only from the explicit SU(2) breaking due to m, 7# mgq and therefore,
it has to be compared with the current algebra predictions [21], [53].

For the fit we have reported, the mass difference is (M,;+ — M;0) =
0.3 MeV of which 0.11 MeV come from the 7° — ng mixing.

Here M,, is the mass of the eigthth component of the octet.

However, ng mixes with the singlet ng because of the SU(3) breaking
and the physical states are given by

n =ng cosf —ng sind

(12.5)
n' =ng sinf + ny cosd

where 6 must be determined in order to diagonalize the mass squared matrix
: 2 2
(%Sg ﬁgﬂ ) (12.6)
Since we are ignoring the mixing with the SU(3) singlet, the output of our
model is M,, and it has not to be compared with the experimental value of
My, but with the prediction of the modified Gell-Mann-Okubo mass formula
which yields to M,, = 566 MeV [53].

Let us also puntualize that in the determination of fro and f,,, we have
neglected the mixing terms since their contributions is almost irrelevant. Our
explicit calculation gives in fact fsg, fgs ~ 1.5 MeV. (See also [52] where
the determination of the off-diagnal matrix elements of the meson decay
constants is performed in the context of chiral perturbation theory).

Having determined the values of the quark masses, one can extract the
corresponding numerical values of the quark condensates from the minima of
the effective potential.

Let us remember that the numbers we get for the masses and for the
condensates must be interpreted as the values at the renormalization point
uw =497 MeV.

In order to compare our results with the values obtained by quite differ-

ent methods, quoted in literature, let us perform a rescaling at 1 GeV.

Recalling that the current quark masses scale as:

_ () <IOgE/AQCD>—d

m(p) =m og 11/ hgcs (12.7)
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with d = 4/9, and that m (1) is a renormalization group invariant quantity

m(B) (Y)g = m(k) (Y¥)u (12.8)
we obtain
my (1) = 5.8 MeV (Gu)y = (—223)° MeV?
mq(1) = 8.4 MeV (dd)y = (—225)® MeV? (12.9)
ms(1) = 118 MeV (3s); = (—284)% MeV?®

First of all, let us compare these results with those of ref. [25] where
the same calculations are performed but in the approximation in which the
logarithmic corrections coming from the renormalization group analysis are

neglected (rigid case).

rigid case logs
7 306 MeV 497 MeV
Agep 265 MeV 449 MeV
my (1) 6.5 MeV - 5.8 MeV
mq(1) 9.5 MeV 8.4 MeV
m(1) 122 MeV 118 MeV
(Tu), —(218)® MeV? —(223)® Mev?
(dd), —(220)® MeV?® —(225)% Mev?
(38)1 —(284)® MeV? —(284)% MeV?

We see that, even if the values for 4 and Agcp the two cases are quite
different, the variations for the quark masses and condensates are small.
This shows once again that the whole picture is essentially insensitive to the
corrections due to the renormalization group.

The same numerical analysis in the rigid case has been also performed

by using the smooth ansatz (5.18) for the fermion self-energy just to have an
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indication of the dependence of our results on the particular test function for
.

As anticipated in sect. 5, the differences we find are not dramatic. In par-
ticular we obtain a good fit for u = 282 MeV, Agecp = 220 MeV, m,(1) =
3.6 MeV, my(1) = 5 MeV and m,(1) = 82 MeV to which correspond a
little bit higher values for the quark condensates ((wu); = —(262)% MeV3,
(dd); = —(264)% MeV3, (35); = —(341)% MeV?).

Other quantities which can be introduced are the invariant quark masses

and condensates given by

m = m(u) (log,u/AQCD)d (12.10)

(%) = ($9p), (logu/Agep) ™ (12.11)

Then, with our values of Agcp = 449 MeV we obtain

My = 5.25 MeV (wu) = (—261)® MeV?
g = 1.6 MeV (dd) = (—232)® MeV?
ms = 106.4 MeV (5s) = (—293)® MeV?,
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13. COMPARISON WITH CURRENT ALGEBRA AND SUM
RULES PREDICTIONS FOR THE QUARK MASSES

The earliest informations about quark masses derived from current al-
gebra although, in this framework, the quark mass problem showed up only
implicitly in the symmetry properties of the Hamiltonian i.e. in the commu-
tation rules involving the currents and the energy-momentum tensor.

We know that for massless quarks, QCD with three flavors possesses a
global symmetry SU(3)z ® SU(3)r ® U(1)L+r (the U(1)r_g is broken by
the axial anomaly).

The G = SU(3), ® SU(3) g chiral symmetry is spanned by the genera-
tors which are the charges associated to the Noéther axial vector and vector
currents .

J;N(a:) = @7,;75—2—\11

; — X (13.1)
Ju(z) = \Ilz'y,,—z-\lf

i=1,..,8

The symmetry framework inherited from the success of the current al-
gebra and PCAC is the one where the axial charges do not annihilate the
vacuum i.e. the chiral symmetry is realized 4 la Nambu-Goldstone [2], [4].

In this scheme, the chiral flavor group is broken spontaneously by the
quark vacuum condensates down to a subgroup H = SU(3) g with respect
to which the vacuum condensates are symmetric (remember that we are
dealing with the massless case so (uu) = (dd) = (3s)).

This spontaneous breaking is accompained by 8 Goldstone bosons which
are associated to each unbroken generator of the coset space G/H.

On the other hand the vector charges annihilate the vacuum and the
corresponding symmetry is realized & la Wigner-Weyl so that particles are
classified in irreducible representations of SU(3)L+k.

As it is clear from our previous analysis, the massless Goldstone bosons
acquire a mass induced by an explicit breaking of the SU(3), ® SU(3)r
global symmetry due to the quark mass terms in the QCD Lagrangian.

In this way the divergence of the axial-vector currents are non zero and
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they are associated to the meson decay constants.

Also, since the spectrum .of the pseudoscalar mesons in the octet does
not show a degeneracy in their masses, an explicit breaking of the SU(3) 1+ r
is expected and its strenght is measured by m, — (my + mgq)/2.

There are convincing estimates of the quark mass ratios from the com-
parison of various current algebra Ward identities at zero momentum transfer
with physical parameters like the masses and the decay constants of hadrons.

The success of the current algebra predictions is mainly due to the fact
that the ratio of the quark masses is defined unambiguosly as it is scale
independent.

For example, a standard way to extract informations about the quark
mass ratios is based on the chiral expansion [21].

In fact, since the masses of the light quarks u, d, s turn out to be small
in comparison to their typical kinetic energy, the deviations from chiral sym-
metry may be studied by treating the quark mass term in the Hamiltonian
as a perturbation, with massless QCD as the unperturbed system.

The chiral symmetry implies a set of Ward identities which link the
various Green functions and therefore interrelate the expansion coefficients.

In this way, by expanding the mass of the bound states in powers of the

quark masses, one obtains the first order mass formulae. For the pseudoscalar

meson octet they read

M2 = (my +mq) B+ 0(mglogm,)

Mk, = (my +m,) B+ O(mqlog my) (13.2)
M;O’R—a = (mg + ms) B + O(mgqlogmy)

with the same constant
2

2
(in fact, in the chiral limit, fr = fx and (@u) = (dd) = (3s)), showing that
the Gell-Mann-Okubo additive rule [54] is well satisfied by the pseudoscalar

octet.

B = (Tu)

So, if one ignores the higher order corrections, eq. (13.2) gives the quark

mass ratios in terms of the masses of the pseudo Goldstone bosons.
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The study of higher order terms in the quark mass expansion does not
reduce to the study of a simple Taylor series since, in the chiral limit around
which one is expanding, the theory contains massless physical particles (Gold-
stone bosons) which generate infrared singularities [55].

To obtain a reliable approximation scheme, it is necessary to reorder the

expansion and summing up the leading infrared singularities that occur to
all orders in the quark mass.

Armed with the estimates of the higher order terms in the quark mass
expansion, one can analyze the quark mass ratios m, : my : m, given the
experimental values of the meson and barion masses.

For example in ref. [21] the ratio R = (ms — ) /(mg — my,) with /i =
(my + myg)/2, is determined on the basis of five independent manifestations
of isospin breaking (K+ — K° p—n, £+ - %% B°—E~ and p — w mixing).

Treating the values they obtain in this way as independent, they find
R=435+22 (42.65) (13.3)

where we have reported in parenthesis the value we get in the framework of

our model.

From the observed masses of 7, K and n, one can extract the value of the

ratio my /7 and, from the analysis of the corresponding higher order terms

in the quark mass expansion, one gets [21]

me/th = 25.0£ 2.5  (16.62) (13.4)

The above results for R and m,/m imply the following values for the related
quark mass ratios [21]
mg/m, =1.76 £0.13  (1.45)
ms/mg=19.6+1.6  (14.05) (13.5)
me/m, =34.5+51  (20.34)

Let us notice that the discrepancies between the chiral perturbation
theory results and ours (written in parenthesis), are essentially due to the

fact that in our calculations fr # fx # f, and also the values of the quark
condensates are different for each flavor.
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While it is possible to calculate the quark mass ratios on the basis of
current algebra symmetries alone, the absolute value of the light quark masses
is not known very accurately even if there has been substantial progress in
its determination during the last few years.

~ The framework which has been used is a variety of QCD sum rules.

The method of QCD sum rules is based on the duality between the QCD
expression of the hadronic Green functions and their spectral representation
wich can be derived from the analytical properties of such Green functions.

Formally, the kind of objects one is dealing with are two-point functions

like.
M(g?) = i / d*z (O[T 0(z)01(0)[0) ¢19% (13.6)

where O(:b) denotes a composite operator of quark and gluon fields with
specified quantum numbers.

Ever since the advent of QCD, there has been a lot of effort to find ways
of relating the behaviour of two-point functions like that in eq. (13.6) in deep
euclidean region where the theory makes firm predictions, to the properties
of the resonances of multihadron states-which the operator O (z) can extract
from the vacuum.

To this end one considers the dispersion relation

[o.¢]
M(g?) = /0 ds S—_q—i—:—l—é —}r- Im TI(s) + subtractions (13.7)

which follows from the analyticity properties of two-point functions like
(13.6).

The relation (13.7) can be regarded as a duality relation in the sense
that the weighted average of the hadronic spectral function (1/7) Im TII(s)
in the right hand side (which, up to kinematical factors, is a total cross-
section), for sufficientely large space-like ¢? values, must match 1(g?) in the
left hand side which, up to subtractions, is a calculable quantity in QCD.

Various forms of duality sum rules which follow more or less directly
from eq. (13.7) have been proposed in literature.

In all of them the left hand side is evaluated by theory and compared to

phenomenological input in the right hand side.
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Following the original ideas developed by Shifman, Vainshtein and Za-
kharov [56], there has been a lot of effort to improve on a purely QCD
evaluation of the left hand side of equations like (13.7).

These authors have proposed to use the Wilson Operator Product Ex-
pansion of the time ordered product in eq. (13.6) to parametrize non-
perturbative effects due to the confining nature of the QCD vacuum which,
at short distances, appear as power corrections to asymptotic freedom be-
haviour.

In order to extract informations about light quark masses, the appropri-

ate two point functions are those involving the divergence of the axial-vector

currents
Vs(g?) =4 / d*z (O[T 8*Js,(z)8" J],(0)]0) 9% (13.8)

and the cofresponding two point functions associated to the divergence of

the vector currents
¥(g?) =i / d'z (0T 8*J,()3"J, (0)|0) €= (13.9)

The reason to consider these particular two-point functions is that in
QCD the operators 0*Js, and d*J,, which are renormalization group in-
variant operators, are proportional to the sums and to the differences of
quark masses respectively.

For example, there are two familiar Ward identities which relate 15(0)

and (0) to products of quark masses and vacuum expectation values of

quark-antiquark fields

¥5(0) = — (my + mq) (Tu + dd)

_ (13.10)
P(0) = — (my — my) (uu — dd)

The variety of QCD sum rules found in literature, is due mainly to the
freedom one has a priori to exploit optimally the informations both on the
hadronic side and on the QCD side of these equations.

Although some consensus on the values of the light quark masses has by

now been reached among various group of authors, there are still inconsistent

results and the errors remain rather large.
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For example, Gasser and Leutwyler [21] show that the sum rules they

consider for the divergence of the axial current, are consistent with
(1) =T+2 MeV,  mg(1) =180+ 50 MeV (13.11)

With the results for the ratios m, : mq : m, given in eq. (13.5), the

estimate (1) = 7+ 2 MeV amounts to the following results
mu(l) =51+ 15 MeV  (5.8)
mg(l) = 8.9+ 2.6 MeV  (8.4) (13.12)
mo(1) = 175+ 55 MeV  (118)

These absolute values are not known very accurately. However, within
the large errors, we see that our estimates (in parenthesis) for the v and d
quark maéses at the same renormalization point compare very well while the
situation for the strange quark is much more critical.

Also, if one uses the value M(1) = 74+ 2 MeV in the Adler-Dashen
relation, one can fix the order parameter (wu) = (dd) from the experimental

values of M, and fr. The result is
(Tu); = (—225 £ 25)° MeV® (—(223)%) (13.13)

which agrees very well with the value we find.

In a recent paper, S. Narison [57] discusses in detail various determina-
tions of chiral symmetry breaking parameters from the light-meson systems
by using the SVZ-Laplace transform QCD sum rules and also calculates a
weighted average of various estimates coming from different methods.

Concerning the light quark u, d and s masses he gets (for 100 < Agcp <

150 MeV)
my(1) =5.14+0.9 MeV (5.8)

ma(1) =9.0+£ 1.6 MeV  (8.4) (13.14)
me(1) = 148.4 +15.3 MeV  (118)

As far as the estimates of the ratios of the quark vacuum condensates

are concerned, the results he gets are
(dd)/{uu) =1—(1£0.3) 1072 (143 107?)

(13.15)
(8s)/(uu) = 0.6 £ 0.2 (1.08)
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and, as usual, we have reported in parenthesis the values we get from eq.
(12.9).

Also C.A. Dominguez and E. De Rafael [58] have recently presented an
improved determination of the light quark masses in QCD by combining the
information provided by the effective chiral Lagrangian of QCD at long dis-
tances (see for example [21],[52]), and the QCD behaviour at short distances
within the combined framework of Gaussian sum rules and finite energy sum
rules.

The main result of their work is the determination of the sum of the

running v and d masses at 1 GeV
mu(1) + ma(l) = 155+ 2.0 MeV  (14.2) (13.16)

Then, they determine the strange quark mass from the combination of
the result (13.16) with the current algebra determination of the ratio m,/m

(for example, the value in ref. [21] is given in eq. (13.4)) and they get
mo(1) = 199 £33 MeV  (118) (13.17)

Also, the best determination in their framework of the down and up quark
mass difference, follows from the combination of the current algebra deter-
mination of the ratio (mq — m,)/(mq + m,) with eq. (13.16). They obtain

in this way the individual values

my(1) =5.6 £ 1.1 MeV  (5.8)

(13.18)
ma(1) = 9.9+ 1.1 MeV  (8.4)

Let us also mention the results obtained by L.J. Reinders and H.R.
Rubinstein [59] about the determination of the mass and the condensate of
the strange quark.

Their strategy consists in taking advantage of the constraints coming
from heavy quark physics and then in analyzing the light quark meson chan-

nels with strange quarks.

They find that the compatibility of all sum rules they calculate, requires

a very narrow window for m(ss).
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As a consequence they establish that
ms (3s) = —(210 £ 5)* MeV* (—(228)%) (13.19)

and

me(1) = 110 £ 10 MeV  (118) (13.20)

They also suggest the following value for the condensate
(ss)1 = (0.8 £0.1) (Tu); (13.21)

which, however, does not agree with their previous results. In fact, taking

litterally the values given in egs. (13.19) and (13.20) one would get
(3s); = —(260 £ 20)® MeV? (—(284)%) (13.22)

which is in very good agreement with our result.

Summing up, we can say that, as far as the value of (m, (1) + my(1)) is
concerned, one finds in the literature values ranging between 10 and 19 MeV
[60] which agree very well with our results.

However, the situation for the mass of the strange quark is much more
confused. One finds evaluations varying from 100 up to 230 MeV.

At the same time, there is a general tendency to indicate that the value
of the condensate (gq) decreases for heavier quarks.

Notice that, in our approach, the condensate increases with the mass
simply because the extremum of the effective potential moves further away
from the origin as the symmetry breaking increases. ,,

This is clearly shown in Fig. 16 where we have a plot of the the cubic
root of the quark-antiquark condensate as a function of the quark mass.

However, as it is shown in Fig. 16 (b), the condensate varies very slowly
for large values of the current quark mass. For example, it varies of ~
(0.3 GeV)® when passing from a value of 20 GeV to a value of 40 GeV for
the mass.

This means that, for heavy quarks, the effects of the condensate become

neglibible as also expected from the asymptotic behaviour of the quark self-

energy.
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FIG. 16. Way of varying of -—((ﬁq)l)l/?‘ with mg(1). The values are
in GeV. In (a) the current quark mass ranges from 0 to 1.5 GeV while
in (b) it reaches the value of 40 GeV'.

As an example of this phenomenon let us compute the ” constituent quark

mass”.

D. Politzer [35] has proposed a definition which, in the euclidean region

reads

Meonst = 5 (sz = _4m§onst) (13.23)




where &' (p2) = mo(A) + E(p?) is evaluated at the extremum of the effective

potential.

Using our previous results, we get the following form for the Politzer’s

equation

—4/9

1 4m?

Meonst = m(1) (1 + 7m log mc—gl‘—s——t-> n
a H

(13.24)
2 1 4 2 —5/9
+ux /‘; (1 4+ — log Meonst

4Tncon.srt 2a ‘1’2

with a = log(1/Agcp).

A numerical study of eq. (13.24) with the values of 4, Agcp, my, My
and m; given in (12.2), (12.3) and (12.4) and the values of the condensates
renormaliied at u obtained by rescaling in (12.9), gives essentially the same

constituent mass for all the three light quarks

(mu)const = 275 MeV

(ms)const = 288 MeV

Here the constituent mass is largely dominated by the condensate scale.

In the case of heavy quarks the situation is quite different.

I, for instance, we look at the charm quark, using the value m.(2m,) =
1.01 GeV for the charm mass, we find

, (mc)const = 0.97 GeV ' (13.26)

Hence, although the large value of the charm condensate ((cc)yp,, ~
—(600)® MeV?), the constituent mass differs from the current mass of only
4%.

This means that, already for the charm quark, the effects of the conden-
sate are negligible for a quantity like the constituent mass. Obviously this

phenomenon will be stronger for much heavier quarks.
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14. CONCLUSIONS AND FURTHER DEVELOPMENTS

We have analyzed dynamical mass generation in QCD-like fermion gauge
theories with running gauge coupling constant and fermion self-energy cor-
rected by the renormalization group analysis in the leading logarithmic ap-
proximation.

Use has been made of a variational method based upon an effective
potential for composite operators which is a modified version of the one
introduced by Cornwall, Jackiw and Tomboulis.

This formalism deals with a non local order parameter for which a non
local source J(z,y) is introduced.

Since this effective potential corresponds to the vacuum energy only
when the source function vanishes, there is an ambiguity of adding an arbi-
trary polinomial of the source function itself satisfying some suitable condi-
tions.

In particular our choice corresponds to a functional which has the same
local extrema as the CJT one but has the convenient property of boundness
from below. Vg ;1 does not enjoy this property and this instability is reflected
in the saddle point character of its stationary points.

We have shown that the different choices of the source term in the two
cases correspond to different choices of the dynamical variable. Qur effective
potential results completely expressed in terms of the fermion self-energy &
and our variational method consists in making use of a parameter dependent
test function for ¥ to investigate the stability of the theory.

The parametrization of the self-energy is in terms of constant fields re-

lated to the fermionic condensates once evaluated at the minimum of the

effective potential.
Following some suggestions from lattice calculations we have assumed
- that the main contribution for the spontaneous chiral symmetry breaking

phenomenon comes from short distances effects and is independent on con-

finement.

For this reason we have introduced a parameter p as an infrared cutoff

and we have focused our attention on the short-distance dynamics.
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In this range it is sensible to perform a loop expansion of the effective
action and to retain only the lowest non trivial contribution.
| So, we have calculated the effective action at the two loop order and, ac-
cording to the renormalization group analysis, we have improved this approx-
imation with the insertion of the running coupling constant at the vertices
(the calculations are performed in the Landau gauge).

As far as the momentum dependence of the fermion self-energy test
function is concerned, we have assumed a constant behaviour in the infrared
region (p < p) and a fall down like 1/p? (logs) for p > p as suggested by the
Operator Product Expansion analysis.

In the case of massless fermions we find that the theory possesses two
phases: the chirally symmetric phase and the broken phase to the diagonal
flavor subgroup, depending on the value of the coupling constant renormal-
ized at the point p (which is chosen to be coincident with the mass scale
which discriminates the IR from the UV region of momenta).

For example, in the case of QCD with three flavors, the numerical calcu-
lations show that the color gauge dynamics spontaneously breaks the chiral
symmetry down to SU(3)L4+r by giving equal vacuum expectation value to
the scalar quark-antiquark pair (wu) = (dd) = (ss), for o, = g2(u)/(47) >
0.73m.

This value, which is in agreement with the one obtained by other varia-
tional methods with the specific ansatzes for the fermion self-energy, is higher
than the value that people find with methods based on the exact solution of
the linearized Schwinger-Dyson equation or the numerical solution of the
non- linear one. We think that this is due to the fact that the true form of
the fermion self-energy is more complicated than the one used. In particular
the constant behaviour of ¥ in the infrared region is a rather crude approxi-
mation and in the definition of the critical value of a, are involved also the
low momentum components of the theory.

The central part of this work is represented by the extension of the
effective potential formalism to the realistic situation when both spontaneous
and explicit breakdown of the global chiral symmetry take place.

Because we believe that chiral symmetry breaking in QCD is realized in a
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dynamical way, we have examined the particular predictions of our formalism
for QCD. In this way it has been possible to compare the theoretical results
with the experimental ones and to have a check, in a quantitative way, of the
quality of the approach used.

We have considered the case of three flavors u, d and s and the result
is a minimum of the effective potential corresponding to a vanishing value
of all the pseudoscalar condensates (no spontaneous P and CP violation)
and of the scalar charged condensates (the global vector symmetries are not
spontaneously broken).

We have determined the values of the quark condensates (wu), (dd) and
(Ss) from the stationary points of the effective potential. They depend on
the parameters of our model: the renormalization invariant mass Agcp, the
quark masses m,,, mg and m, and the further scale pu.

In order to determine these parameters from the experimental data,
we have derived an explicit expression for the masses and for the decay
constants of the pseudoscalar octet mesons which represent the pseudo-
Goldstone bosons of the chiral symmetry breaking.

The equations relating the meson masses to the second derivatives of
the effective potential with respect to the pseudoscalar fields, can be recast
in a form which only depends on the explicit symmetry breaking part of the
effective potential and is particularly useful from a computational point of
view. Also, when the normalization condition for the effective potential in the
small quark mass limit is imposed, these equations represent a generalization
to the case of three flavors of the Adler-Dashen relation.

Allowing a general space-time dependence of the variational parameters,
have calculated the effective action at one loop order by using a Weyl sym-
metrization prescription in order to solve the quantum mechanical ordering
problem.

In this way it has been possible to estract, directly from our functional,
the expression for the meson-quark-antiquark vertices.

This is a necessary ingredient for the calculation of the pseudoscalar
meson decay constants together with the normalization factors relating our

dynamical variables to the canonical pseudo-Goldstone fields.
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The espressions for the masses and the decay costants of the pseudoscalar
mesons represent a system of coupled equations so, the determination of the
parameters of our model has been carried out in an approximate way.

The experimental inputs are

fr=93 MeV

M+ =139 MeV

Mg+ =494 MeV

(Mg+ — Mgo)? = 1.5 MeV

and we get a very good fit for the octet meson masses (agreement within 3%)

with the following choices:

p =497 MeV

Agop = 449 MeV
my(1) = 5.8 MeV
mg(l) = 8.4 MeV
me(1) = 118 MeV

where p/Agcp has been fixed in order to obtain the maximum value for
Agcp in the massless case given f, and the quark masses are renormalized
at 1 GeV. (In our calculations the mixing in the 3-8 sector has been taken
into account while we have not faced the U(1) 4 problem.)

A comparison of our results with current algebra and sum rules predic-
tions shows that our estimates for the u and d quark masses and condensates
agree very well while the situation for the strange quark is much more critical.

However the indications given in the literature for m,(1) are confused.
One finds evaluations varying from 100 MeV up to 230 MeV.

So, within the large errors, we can conclude that the variational approach
we have used for studying dynamical mass generation has led to quantita-
tive results which are essentially in agreement with those obtained by quite
different methods.

This proves the validity of the method and encourages us to use it for

the study of the DSB phenomenon in other different contexts.
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What we have in mind is the application of this variational formalism
to technicolor-type models [61].

Let us spend some words about this argument.

Although the SU(2) ® U(1) gauge theory of electroweak interactions has
met with considerable experimental success, the symmetry breaking mecha-
nism that generates the masses for the W, the Z° and the fermions remains
yet to be understood. '

The original version of the electroweak theory makes use of fundamental
scalars to break the gauge symmetry.

A serious problem one encounters in this way is the so called "natural-
ness” problem connected with the fact that, unless some particular symmetry
arises (like supersymmetry), there is nothing to prevent the Higgs mass to
become as large as the typical cutoff of the theory.

Another problem with fundamental scalars is that the Yukawa couplings
to fermions are quite arbitrary. They must be adjusted by hand to fit the
various 'fermion masses.

To circumvent these problems, during the last few years there have been
many attempts to find alternative formulations of the standard model avoid-
ing elementary Higgs fields. Various schemes have been proposed and, in all
of them (except the case of supersymmetric theories), the Higgs fields are
composite ones.

Then, no naturalness problem arises, but the question of spontaneous
symmetry breaking becomes a non-perturbative issue and one has to look for
appropriate tools in order to be able to deal properly with it.

An example is represented by theories in which the electroweak sym-
metry breaking is driven by the condensation of a fermion bilinear due to a
strong vector gauge force called technicolor (TC).

In these theories the technifermions T must exhibit a global chiral sym-
metry at least as large as SU(2);, ® SU(2) g and its spontaneous breakdown
to SU(2)+r produces the three requisite Goldstone bosons to trigger the
Higgs mechanism.

This phenomenon can be studied by using the same tecnique as for

the xSB in QCD provided that the confinement scale and also the chiral
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symmetry breaking scale are of the order of several hundred GeV. In this
way this mechanism provides an adequate origin for the masses of the W+
and Z° vector bosons.

The problem with technicolor theories is that they do not easily generate
the masses of quarks and leptons.

In fact additional interactions must be introduced playing the role of the
Yukawa couplings in the conventional scalar field Higgs theory.

The scale M associated with these new interactions must be larger than
the technicolor scale and, at momenta small compared to M, the new interac-
tions will take the form of the effective four-fermion couplings with strenght
of order 1/M2. Fermion masses are then generated by the condensation of
technifermions and they are proportional to (TT)/M2.

The natural expectation based on the experience with QCD is that (TT)
is of the order of A%‘c (A7 is the confinement scale of the technicolor theory).
So, the scale M must be much larger than Az¢ in order to explain the mass
of any known fermions. '

But, in addition to the four-fermion interactions involving two ordinary
fermions and two technifermions, there will be others involving four ordi-
nary fermions and also four technifermions. These too are expected to be of
strenght 1/M2.

The problem with the four ordinary fermion interactions is that they
typically contain flavor-changing neutral currents.

The standard electroweak model with the GIM mechanism has succes-
fully predicted the rates of flavor-changing neutral current processes and
technicolor models must do the same in order to become viable alternative
to it.

It is possible to show that in order to avoid a variety of experimental
constraints, the scale M must be ‘at least of the order of 300 TeV. But, with
M of this order, the typical size of a fermion mass will be no more than
1 MeV, much less than many of the quark and lepton masses.

The problem of ﬂavor-cha,ngiﬁ_g neutral currents has long been a fatal

desease to the TC theories [62] and nowadays many people believe that TC
is dead.
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There is also another problem that is likely to plague any such theory.
The full global symmetry of the technifermions will typically be larger than
SU(2)r ® SU(2)g. If so, there will be more Goldstone bosons than can be
absorbed by the W= and Z°.

Some of these will remain massless until the effects of the four techni-
fermion interactions, that explicitly break some of the relevant chiral sym-
metry of the technisector, are included.

The pseudo masses generated in this way, can be computed by chiral
perturbation theory and they are proportional to (TT)

The existence of these light pseudo-Goldstone bosons is a phenomenolog-
ical embarassment and there is the necessity of a mechanism capable to raise
the pseudo masses above current experimental bounds. For example with a
two-order-of-magnitude enhancement of the technifermion condensate, these
pseudo masses can be pushed well out of the range so far excluded by exper-
iment.

Recently, T. Appelquist and L.C.R. Wijewardhana [63] have proposed
a modification of the TC dynamycs leading to a higher value of the fermion
condensate but leaving the Goldstone bosons decay constant F', which deter-
mines the W and Z masses, essentially unaltered.

In their model the asymptotic freedom of the TC theory is maintained
but it is assumed that the large number of fermions expected in a realistic
TC theory substantially slows down the running of the coupling.

They show that the slow running modifies the ultraviolet behaviour of
the theory. In particular they find that there is a critical coupling a. that
the running coupling a(p) must exceed before chiral condensation can set in
and that the solution of the Schwinger-Dyson equation for constant o > o
has a 1/p power behaviour multiplied by an oscillatory function.

They use the mass scale M as an UV cutoff. Then, the relatively slow
fall of the technifermion self-energy allows a higher value for the cutoff M
than naively expected for a given value of the fermion mass.

This raising of the cutoff leads to a suppression of the flavor-changing
neutral currents and also raises the pseudo masses above current accelerator

bounds. They find that fermion masses of the order of 100 MeV and pseudo
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masses of 100 GeV can be obtained for M~ 300 T'eV.

On the other hand, W¥ and Z° masses remain essentially unaltered since
the condensate (TT)yy is clearly much more sensitive to the high momentum
behaviour of the self-energy than is the decay constant F.

Due to the interesting properties of this model, we can think of apply-
ing all our variational formalism to the case of chiral symmetry breaking in
asymptotically free theories with slowly running couplings.

The ansatz for the self-energy to be used in this case is clearly different
from the one used in QCD. In fact the test function will start from a constant
value for momenta p < Apc, will fall slowly like 1/p ®(logs) for a significant
range p > Arc and then will take the asymptotic form 1/p? (logs).

All these topics are now under study and represent some of the further

devel'opments of this work.
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