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Introduction o

In recent years, computer simulation methods have provided much in-
sight into several structural, dynamical and thermal properties of solids
and liquids. Computational methods are particularly well suited to the
study of low symmetry systems (e.g., defects, surfaces, clusters), where .
the complexity of analytical treatments may become overwhelming, and
of systems at finite temperature.

The key ingredients in computer simulations are interatomic forces.
The problem we wish to solve can be simply stated as follows: given
a set of N atoms having some positions 71 ...ry and linear momenta
P1...pN, what forces will they experience ? Calculating these forces
ab initio is a very difficult task. Even if we are not interested in the
electronic’ properties of the system, but only in ionic properties (e.g.,
vibrations, equilibrium structures, etc.), we must generally take into
full account the electronic aspect of the problem.

In the Born-Oppenheimer adiabatic approximation [1], the forces
can be obtained by considering the nuclei as fixed and searching for
the minimum energy state of the electronic system. This -may be done
using the Hartree-Fock approximation, or in a density functional theory
framework. The force acting on a nucleus is then determined as the
gradient ‘of the total energy respect to a displacement of that nucleus.
After all nuclei have been moved accordingly to the forces computed in
this way, the whole process may be iterated for the new conﬁgﬁration,
‘thus performing a dynamical calculation. This approach, however, is
Computatxonally extremely expensive, and not feasible when the number

of particles is of the order of ten or more.



Much effort is presently being spent in devising more efficient first-
principle schemes. One of them is the recently appeared Ca};—ParrineHo
method [2]. In this scheme, the time evolution of a system containing
nuclei and electrons is followed by using an unified Lagrangian equation
of motion where the electrons are treated within the frame of density
functional theory. However, even using present-day supercomputers, it
- is not possible to follow this approach in problems involving a large
number of particles (of the order of several hundreds or thousands) or
long simulation times (of the order of 107%5s), due to the great amount
of computations required for each configuration. This is especially true
for transition or noble metals, where the simultaneous presence of core,
valence and conduction electrons calls for a very finely grained mesh to
represent adequately the rapid variations of the electron density in the
material.

Therefore, there is still a need for simple empirical calculational
schemes, where the atoms are treated as points interacting through some

total potential energy function
V =V({1,72,...,"N).

Here, the electrons do not appear explicitly, but of course their presence
is reflected in the form of V.

The simplest choice consist of writing V as a sum of pairwise in-
teractions between the atoms. The simplicity of two-body forces makes
them particularly appealing for use in computer simulations, and in fact
a very large number of “computer experiments” with pairwise interac-
tions have been performed in the last two decades. 7

Two-body interactions, however, are able to model reasonably well
only a limited class of ma:teri»auls, namely rare gas solids :and simple
metals. In other materials, like covalent solids and noble metals, many-
body effects are extremely important, and should be accounted for by
‘any realistic empirical force scheme. This is particularly true in presence
of surfaces or defects, where electron redistribution effects produce forces
on the ions which cannot be niimicked by pair potentials.

In this thesis, I will describe an empirical many-body force scheme,



named the “glue” model, which we have developed in an attempt to
make feasible large-scale simulations of metallic systems. In this scheme,
the two-body term in V is ’supplerﬁented by a many-body term (the
“glue”), which acts to keep the coordination of the atoms as close as
possible to its bulk value. This gives rise to additional forces, which are
particularly strong where the coordination is poor (surfaces, clusters,
etc.). :

In spite of the many-body character, the forces are calculated only
from the knowledge of the distances between pair of atoms. The com-
putational effort is thus comparable with that required by two-body po-
tentials, meaning that simulations including several thousands of atoms
can be easily performed. 7

This model is well suited to noble metals, where the very important
cohesive contribution from the (nearly) filled d-band seems expressible
in terms of atomic coordination. We have focused in particular on gold,
which is unique among all noble metals in exhibiting reconstructions
(i.e., the atomic arrangement on the surface is not a simple projec-
tion of the bulk crystal structure) on all its low-index surfaces, notably
Au(100), Au(110) and Au(111). It turns out that the simple “glue”
mechanism is able to explain the occurrence of these reconstructions
simply as the result of a tendency to increase surface packing. Gold also
has other peculiar properties, as listed in Chapter 1, none of which has
been described microscopically before.

This thesis is organized as follows. Chapter 1 introduces the model,
and presents several analytical relations which connect the Hamiltonian
with physical properties of the real material. In Chapter 2, the proce-
dure used to fit the model to gold, involving con_iputer simulations at
finite temperature, is described in detail. Some details on the implemen-
tation of glue forces in a molecular dynamics program are given in the
Appendix. The results of molecular dynarmics studies of bulk proper-
ties (thermal expansion, melting, liquid structure and thermodynamics,
vacancies) are reported in Chapter 3. A detailed i‘nvestigation of the
structural properties of the gold surfaces at 7' = 0 (surface reconstruc-

tions) is given in Chapter 4. Chapter 5 describes an extensive molecular



dynamics study of the Au(111) surface at high temperature, aimed at
detecting the possible existence of surface me_iting. Finally, a study of
the structural properties of gold clustérs, containing a number of atoms
in the range 100-1000, is detailed in Chapter 6. Chapter 7 concludes
the thesis with a summary of the main results:

Parts of the results presented in this thesis have been, or are being

published in the papers in Ref. [3].



Chapter 1 ‘

The glue model |

1.1 Failures of pair potentials in metallic

materials

In almost all the empirical schemes used in the past for computer sim-
ulations of condensed matter systems, the total potential energy V is

written as a sum of pairwise interactions between the particles:

1N
V=252 é(ry) (1.1)

i,j=1

(3#1)
where 7;; is the distance between nuclei 7 and J, and the factor % avoids
double counting. All the physical information on the system under study
is completely embodied in ¢(r). This is of course an enormous simplifi-
cation in the description of a material, Which allows to perform simula-
tions very easily. However, we should consider now in which cases this

approximation can be justified.

In rare gas solids, cohesion is due to the van der Waals attractive
forces which do not exactly have a two-body nature, but can be treated
as such to a good approximation. It is in fact well known that this kind
of materials can in practice be described quite accurately using pair
potentials, such as the Lennérqunes potential [4].

On the other hand, the properties of a metal are dominated by the

conduction electrons. How these electrons respond to ionic motions



determines the form of the atomic interactions. Our problem is whether
it is possible to describe these mteractmns in terms of two-body forces
between ions or not.

Metals can be divided in two general classes: simple and non-simple.
Simple metals, like sodium, can be thought of as non-overlapping ions
immersed in a sea of nearly-free conduction electrons. Each ion consists
of a nucleus surrounded by closed shells of tightly bound core electrons.
In pseudopotential theory [5] the ions, treated as point charges, are
screened by the conduction electrons which tend to follow the jons adi-
abatically. The result is that for several purposes the metal can be
described by effective pairwise forces between the ions. (6].

Non-simple metals, like transition metals, are more subtle. The free
atoms contain partially filled shells of d-electrons, and s and P valence
electrons. When the atoms are brought together to form the metal,
a rather complex band structure appears, with d-bands and sp-bands
above and below the Fermi level. How crystal cohesion can be micro-
scopically understood in these cases has been described in the literature
[7,8]. If we displace an ion, the rearrangement of the electrons can-
not be described as a cloud of charge following the ion. Therefore, it is
clear that the pairwise approximation will generally not work in the case
of transition metals [6], although it may still serve for some particular
study, e.g., bulk phonons. In any case, extracting an effective pair po-
tential from first principles is difficult, and the usual choice consists in
building it empirically by fitting known bulk properties of the material,
such as the lattice constant, the coheswe energy, the phonon frequencies
and so on.

There are however some serious intrinsic drawbacks in the pair po-
tential approach which prevent an accurate descrlptlon of several classes
of materials. In the case of noble metals, and focusing particularly on
gold which is the subject of the present work, the most important fail-

ures of two-body interactions can be summarized as follows:

1. Let us define the dimensionless ratio ¢ — €./ kpTi,, where ¢, is the

cohesive energy, T,, the melting temperature and kg the Boltz-



Material | ¢, T ¢ S5, A V/m
Ne 0.02 24 9.7 164 15.3
Ar 0.080 84 11.1 1.69 14.4
Kr = 10116 117 115 1.69 15.1
Xe 0.17 161 12.3 1.711 15.1
Al 3.34 933 415 1.39 6.5
Pb | 2.04 601 39.4 0.96 3.6
Ni 4.435 1728 29.8 1.22 5.4
Pd 3.936 1825 25.0 1.13 5.9

Pt 5.852 2042 33.3 1.16 6.6
Cu 3.50 1357 29.9 1.16 4.2
Ag 2.96 1234 278 1.10 3.8

LAu 3.78 1336 32.8 1.13 5.2 |

Table 1.1:

Cohesive energies (in eV/atom), melting temperatures (in degrees Kelvin),
ratios C' = ¢,/ kBT, entropy changes on melting S, (in kg /atom) and volume
changes on melting AV/V, (in %) for several f.c.c. solids. Cohesive energies
are from Ref. [9], all other data from Ref. [10].

mann constant. We can see from Table 1.1 that C is about 10 in

rare gas solids, but around 30 in metals.

Using two-body forces, the cohesive energy is simply due to the
bonds that must be broken to remove an atom, and can be easily
calculated for a given crystal structure. For example, for a first-

neighbour potential we have
N
€, == —?qﬁ(d)

where d is the first neighbour distance and A the coordination
number (12 for the f.c.c. structure). The melting temperature
can be extracted from computer simulations (with the molecular

dynamics technique). It turns out that in two-body systems ('



is usually of the order of 10. This implies that in metals ¢, and
T cannot be reproduced simultaneously using pair potentials.
A system with the correct cohesion is stiff compared to the real
material and melts at a much higher temperature, while a system

with a nearly correct T, has a cohesion too low [11].

. Table 1.1 shows also that metals have a low entropy change and
volume change on melting when compared with rare gas solids.
Again, these characteristics are not well reproduced by péirwise
forces. For example, a system described by the Lennard-Jones
potential has, at the triple point, C' = 12.8, S,, = 2.16 kp/atom,
AV/V, =17.7% [12].

3. Another difficulty with two-body'I‘Jotentials is that the vacancy
formation energy € is nearly equal to the cohesive energy €. In

fact, the energy required to create a vacancy is given by
e = EY — Ey

where Ey is the total energy of a system with N particles in N
crystal sites (no vacancy), and EY is the total energy of a system
with N particles in N + 1 crystal sites, i.e. with a vacancy. In
the pairwise scheme, if we neglect the effect of atom relaxations
around the vacancy (which is usually rather small, see e.g. Ref. [13]

for the Lennard-Jones system), we have

Ey — Eni = —No(d)

N
EN+1 — EN = —€, = ?¢)(d)

and therefore
P N
Ev = —_mé(d) = €
2 .
On the other hand, Table 1.2 shows that in metals €F' /e, is in
ﬂlé range 0.25-0.35. The fact that it is relatively easy to create
defects in the material is of course connected with the low melting

temperature [18].



Wllaterialv € el - /e, Ref.
Ne 10.02 0021 1.05 [14]
Ar  10.080 0.076 0.95 [14] -
Kr {0116 0.077 0.66 .

Al 334 076 023
Pb  12.04 049 024 [16]
Ni 4435 139 031 [17]
Pt 5852 1.51 026 [15]
Cu 350 114 033 |
Ag  |2.96 1.08 036 |1
Au 1378 095 025 |

Table 1.2:

Vacancy formation energies (in eV) and their ratios to the cohesive energies

for several f.c.c. solids.

4. Another discrepancy between two-body and metallic systems is
related to the so-called “Cauchy relation” between two of the three

independent elastic constants in a cubjc crystal:
012 = 044 (12)

Its validity is a mathematical consequence of using pairwise central
forces [19,20], but, as Table 1.3 shows, it is far from being satisfied
in metals. In noble metals the ratio C13/C44 is around 2, reaching a
spectacularly high 3.7 in Au. The low value of C44, which is one of
the shear moduli, is related to the high ductility and malleability

of gold.

5. Surface properties are also a quite severe test for the validity of in-
teratomic forces. For example, it can be shown [22,23] that a two-
body potential without oscillations, such as the classical Lennard-

Jones or Morse potentials, always leads to an outward relaxation -

of the first surface layer (i.e., the distance between the first and



| Material | Gy Chy G C12/Cus Ref. |
Ne 0.0166 0.0086 0.0095 0.9 [21]
Ar 0.042  0.024 0.022 1.1 [21]
Kr 0.051  0.028 0.027 1.0 [21
Xe 0.053  0.028  0.030 0.9 [
Al 1.143  0.619 0.316 2.0 [9]
Pb 0.555  0.454 0.194 2.3 [9]
Ni 2.612  1.508 1.317 1.2 9]
Pd 2341 1761 0.712 2.5 9]
]
]

Cu 1.762  1.249 0.818 1.5 [9
. Ag 1.315 0973 0.511 1.9
Au 2.016  1.697 0.454 3.7

Table 1.3:

Elastic constants at T' = (in 1012 dyne/cm?), and ratios C12/C44, for several
f.c.c. solids. A ratio C12/C44 greater than 1 indicates presence of many-body

effects.
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the second layer exceeds the bulk interplanar distance) !. On the
other hand, metals usually exhibit an inward relaxation of the first
layer [25]. As shown by Finnis and Heine [26], this contraction can
be understood in terms of electrostatic forces. Moreover, surface
reconstructions (which occur on many metal surfaces) cannot be
explained by two-body schemes (unless, of cour;s’e, a different po-

tential is used for surface atoms [27]).

Another, perhaps more serious problem which occurs at surfaces of
two-body systems is an unrealistically high evaporation rate near
the melting point, as seen from molecular dynamics simulations
[28,29], clearly caused by the low e./kpT., ratio. This results in a
very high value for the vapour tension. Again, this is a situation
typical, for example, of rare gas solids but not of metal surfaces,
where the evaporation rate is so low that no atoms leaving the
surface should be seen at reasonable temperatures on the size and
time scales used in computer simulations (of course, this is an-
other aspect of the impossibility of obtaining at the same time a
good cohesive energy and a good melting temperature). In sum-
mary, the surface properties predicted by two-body potentials are

generally vastly different from those of the real metal.

Some of the difficulties described above can be avoided by adding a
volume-dependent term to the total potential energy [30]. In its simple

form, this correction contains a term linear in the volume:

N
> (ri;) + po (1.3)
1,j=1
(J??Si)

V=

B | =

where pg is a constant and  the total volume of the system. In partic-

ular, it can be shown that by choosing

_ 1 - A
Po = “2‘(012 — 044)' . (14)

'Inward relaxations can be predicted, however, by potentials with an oscillatory
tail {23,24]

11



we obtain correct values for the elastic constants, i.e. the Cauchy re-
lation no longer holds. For this reason, the quantity (C1z — Caq)/2 is
called the “Cauchy pressure”. While this approach may be helpful for a -
better representation of the buik, it raises new problems when applied
on surfaces (external or internal, as in vacancies, cracks, ...), where
the volume is not unambiguously defined [31,32]. Here, an’ adequate-
modelling can be achieved only by introducing local many-body contri-
butions.

Therefore, one is led to the conclusion that a scheme based on pair
interactions does not describe a metal in an adequate way, in particular
when surface properties are considered. An empirical many-body force -
scheme able to overcome all the difficulties mentioned above, named the

“glue” model, will be introduced in Sec. 1.3.

1.2 The role of coordination

Electronic cohesion in noble and near-noble metals is largely due to the

d-electrons, which form very broad, filled d-bands. How does an ion

immersed in this electron sea move ? In particular, how can we express

the forces acting on the jon in terms of the positions of the other ions ?

In attempting to model this situation, the key variable to consider is

the local atomic coordination. A filled d-band has no possibility to re-

hybridize to form directional “bonds”. Yet its enérgy is lowered, roughly

proportionally to the d-bandwidth, once an atom is surrounded by many

other identical atoms. The same reasoning, based just on coordination,
would not work for an sp-bonded material, or for a partly filled d-band
metal, where the role of directional chemical bonding should become

crucial. - -

Therefore, assuming that the number of neighbours of a given noble
metal ion represents in some way the amount of local electronic density,
we can take the coordination as characterizing the environment in which -
our ion is situated. Schematicaﬂy, then, when the coordination of an

lon remains nearly constant during the motion, the ion interacts with

12



the others essentially through an effective two-body potential (for a
discussion on this p6i11t, see Ref. [6]). On the other hand, motions which
tend to change the coordination appreciably are greatly discouraged by
their high energetic cost. Such motions easily occur in proximity of
surfaces or defects, and the extreme case con31sts of pulling an atom out
of the system

This mechanism cannot be modelled by two-body forces, for one
simple reason: a two-body scheme implies a linear dependence of the
energy of an atom upon its coordination. The strength of any alterna-
tive scheme should be based on the non-linearity of this dependence.
Let us consider, for example, the formation of a vacancy. In an f.c.c.
crystal structure, it implies the change in coordination of the 12 neigh-
bouring atoms from 12 to 11. In our picture, this change is rather small
and leaves almost unchanged the local environment, so the vacancy for-
mation energy will be low. On the other hand, extracting a single atom
from the system implies changing its coordination from 12 to 0. This is
a dramatic change, and the associated energy cost (which is the cohesive
energy) will be high. It is evident here that the difference between e
and €. is an expression of the non-linearity of the energy of an atom as

a functlon of its coordination.

1.3 The glue Hamiltonian

These concepts can be expressed in mathematical form by writing the

total potential energy of a system of N atoms as

[\DI!—‘

N N
Z ¢(ri;) + ZU(W) (1.5)
G =

A standard two-body part is still present, together with the new many-
body term which replaces the volume-dependent term in Eq. (1.3). Here,
n; is the coordination of atom i, and the function U(n) associates an-
energy value to this coordination, thereby including the previously dis-

cussed “gluing” effects of the conducticn electrons. For this reason, U(n)

13




has been nicknamed the “glue”, and Eq. (1.5) the “glue Hamiltonian”
[33,34,35]. )
It is natural to impose

U(0) =0 | | (1.6)

In this way, the total energy is referred to that of a system of NV atoms
at rest, infinitely far each from the other. Of course, we expect U(n) to
be negative in the coordination range of our interest.

In order to use Eq. (1.5) in computer simulations, we need a proce-
dure to compute n; for each atom in the system. The simplest choice
consists in building n; as a superposition of contributions from the neigh-
bburing atoms: ‘

N
ni= Y p(ri;) L (1.7)
j=1
(3#4)
where p(r) is a short-ranged, monotonically decreasing function of dis-
tance. Equation (1.7) essentially counts the number of neighbours of
atom 2. This is done in a continuous way, so that nearby atoms give a
larger contribution to n; than more remote atoms. The final result for
n; is a real number that generalizes the usual idea of coordination.

The ‘units for p (and n) are arbitrary, because they are only auxiliary
quantities in this scheme. In particular, given p(r) and U(n), the new
pair

Ar) = cp(r) | (1.8)
U(n) =U(n/ec)
describes the same physics, i.e., it gi-ves rise to the same forces for an
arbitrary value of c. So we have the freedom to define a scale for n. A
convenient choice is to make it coincident with the ordinary coordination
number for a bulk atom. Assuming an f.c.c. (or h.c.p.) crystal structure,

this means that we are free to fix arbitrarily, but suggestively,
=12 (1.9)

where ng indicates the result of applying eq. ( 1>.7) to a bulk atom in an
undistorted lattice. When p(r) has a range limited to the first neigh-

bours, it is ny = 12p(d) where d is the first-neighbour distance, and

14



therefore condition (1.9) becomes simply

This normalization will be adopted from now on.

" The glue Hamiltoz}iaﬁ is particularly convenient from the computa-
tional point of view, since the atomic positions appear only in the form
of distances between pairs. In spite of the intrinsic many-body character
of the glue, there are no explicit three-body or more complex terms in
the expressioné for the forces 2. In fact, the force F’; acting on a particle
i is given by the following formula, obtained by derivation of eq. (1.5)
(aind‘using (1.7)): '

ol

=200 + W) U ) (1
i i
where 7; = 7; — 7; and the prime indicates derivation. The extension of
a standard molecular dynamics (MD) program to include the glue forces
is relatively easy to accomplish, and is discussed in the Appendix.
Finally, let us note that the form of Hamiltonian (1.5) allow us to .

assign an energy e; to each atom 7 in the system:

2 (17 = 751) + U(my) (1.12)

J=1
(3#4)

B =

£: —
& =

sothat V.= YN ¢, This equation is often used to study how the energy

is distributed between different parts of the system.

1.4 Other many-body force schemes

We have introduced the glue Hamiltonian from a purely empirical point
of view. At least two other families of similar approaches can be found in
literature: one, similar in spirit to the glue scheme, is in connection with
the tight-binding model, the other, called “embedded-atom-method”

ZThree—body terms do appear, however, in the force constants, as will be shown in
Sec. 1.6. k

15



(EAM), leads to the same form for the Hamiltonian by starting from
first principles Cénsidérations.

The former approach has been proposed by Finnis and Sinclair [36]
for use in b.c;c.-transition metals. In their Hamiltonian, the glue func-
tion is fixed to be U(n) = —A/n, while #(7) and p(r) are built empir-
ically. This particular form for U(n) comes from the second moment
approximation to the tight-binding model [7,37]. .

In the “embedded—atom—method”, introduced by Daw and Baskes
(38,39], each atom of the metal is seen as an “impurity” embedded in
a host system consisting of all other atoms. In the density-functional
theory framework, using the uniform density approximation [40,41], the
energy of this impurity can be written as a function of the host elec-
tron density (i.e., before the introduction of the impurity) n4(7) at the
impurity site R:

Eimp = F(ny(R))

Starting from this observation, Daw and Baskes take the following an-

satz for the total energy of the system:
Etot = Z F(nz)

where n; is the electron density at the site of atom t of a system in which
atom z is missing.

Two further assumptions are required:

® A ‘two-body part is also needed to account for the core-core repul-

sion. The potential is assumed to be purely repulsive.

® 7n; can be approximatively constructed as a superposition of atomic

densities:
n; =" p(ri;)
J

Here, p(r) is the electron density distribution of a free atoni, taken

from Hartree-Fock calculations.

The resulting Hamiltonian is thus formally identical to the glue

Hamiltonian. Here, n is directly interpreted as the electronijc density
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(while in the glue scheme it is simply an auxiliary variable, not identi-
fied with a precise physical quantlty) and the function p(r) is fixed to-
be the electronic density of an isolated atom, taken from Hartree-Fock
calculations [42]. i
In a recent reformulation of this type of scheme named the “effective
medium” theory [43], the ¢ embeddmg energy” F(n), and the electronic
density around an atom p(r), are self-consistently calculated for an atom
in a homogeneous electron gas within the local density approximation.
For d-band metals however, owing to the large number of approx-
imations involved, connections with first principles. cannot be of too
much practical help in finding the optimal functions, so that usually
it remains necessary to resort to an empirical fit procedure. For this
reason, we find it desirable to leave all the three functions ¢, U and p
undetermined at the onset, but instead available for the fit. We have
used this additional freedom to characterize well the thermal behaviour

and the surface properties of the system, as discussed later.

1.5 An invariance property in the glue Hamil-
tonian

In some of the “first principles” derivations described above, the glue
part supplies the electronic cohesion while the two-body potential sim-
ulates the core-core repulsion between the ions. While ‘this physical
distinction seems appealing, no such distinction really exists when con-
sidering the glue Hamiltonian in practice, because of the existence of
a peculiar invariance property: a glue Hamiltonian defined by #(r),
U(n), p(r) remains unchanged when these functions are replaced by

é(r), U(n) p(r), Where

30) = () + 22000 s
U(n) =U(n) — An :

and X is an arbitrary real number. In fact, in going from ¢, U, p to q@, U,

p, we add and subtract the same quantity in the two terms in eq. (1.5).

17



This has some practical consequences. First of all, a glue term which
is a linear function of coordination is equivalent to a two-body term (in
fé,ct, it can be eliminatec_l by choosing A appropriately); the physical
meaning of this statement has been already discussed. Iess trivially,
there is no unique choice for ¢ and U, since a term linear in the coordi-
nation can be transferred from the two-body part to the glue part and
vice versa without any change in the physics. For instance, one may
have a system where the two-body potential is pui‘ely repulsive and all
the attraction is supplied by the glue; at the equilibrium lattice spacing,
these two forces balance exactly. But with the appropriate transforma-
tion it is also possible to construct a completely equivalent Hamiltonian
where both the two-body part alone and the glue part alone predict the
same, equilibrium lattice spacing.

Therefore, in spite of the physical reasoning which led us to conceive
the glue U(n) and the glue Hamiltonian, we are not able to attach a
physical meaning to either I/ (n) or p(r) when considered separately. Of
course, only quantities that are invariant with respect to (1.13) can be
connected to physical properties. Some examples of invariant quantities
are p(r) itself, the second derivative of the glue U”(n), the “effective
potential” [35,36,38] ‘

$(r,m) = $(r) + 20" (n)o(r) (1.14)

Another obvious consequence of this invariance property is that a
condition can be arbitrarily imposed, thereby removing the ambiguity.
A particularly convenient choice, in that it makes the fitting process
easier, is

U'lng) =0 (1..15).

where ng is the bulk coordihation (Eq. (1.9)). In particular, as it will
be shown in ‘the next Section, with this choice the transverse phonon
frequencies depend only on the two-body potential. From now on, con-
dition (1.15) will be assumed to hold.
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1.6 Lattice dynamics in the glue model

1.6.1 Force constants

In this Subsection and in the following, some basic lattice dynamics
relations will be quickly recalled for clarity of exposition. The reader
‘may consult Ref. [1] for a full general treatment.

Let us consider a system of N particles in an equilibrium configura-
tion, so that the force acting on each particle is zero. The total potential
energy V can be expanded in powers of the atomic displacements @,
from equilibrium. The first order terms vanish around the equlhbnum

position, so that we obtain

1
V:T/O—{—§§:Caﬁu ul . (1.16)

mn“mn
manf3

where Vj; is the equilibrium energy of the system, indexes m and n run
on the particles, and o and 8 on the three cartesian directions. In the
harmonic approximation we neglect all third or higher order terms, so
that the vibrational properties of the system are completely character-

ized by the force constants

2
o OV (1.17)
8U?nBUIn 0

The requirement that the total potential energy should not change when

we displace rigidly the whole sysiem leads to the condition

Sof=0 (1.18)

Let us suppose now that the particles are interacting through the
glue potential (1.5). An explicit expression for the force constants can
be obtained straightforwardly by applymg Eq. (1 17) to (1.5). The result

has the form

C2t — 5o YD D, (1.19)
with D"‘n given by
DY = @00 + U + 158 (1.20)
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where

. ¢-{krm1l) r B . ¢I(71mnj '
@aﬁ — " ) — mn’' mn 50: . 1.21
2= () = L)) ) ' aay
U = (U () + U' ()] { (p"(r,,m ) - p———_i )) R | § g Pmn) i . )} _
' | R " (1.22)
Lo = (ol + 670, — 128, | (1.23)
, l ' :
where the coefficients t:il are defined as
a B )
ot = U (10)p! (P ) () -tk (1.24)
TmiTnl
if m # {and n # [, and
t:fzzm = t:xn/fzn = 0 (125)

Let us note the following points:

¢ The form ( 1.19) of the force constants guarantees that the trans-
lational invariance condition (1.18) is satisfied.

 The quantities D28

m

(and therefore $28 s T ) have no phys-
ical effect, since they cancel away in the expression (1.19) for the
force constants C2f . Only the terms DB with m # n are impor-

123

tant.

° In a system with pairwise interactions only, Ul =Teh — . i34

is therefore the two-body part of D8,

o The form of yeos resembles that of 28 . To understand this term,

note that if U(n) = An, then Fﬁﬁ, = 0 and ¥2? is the entire
glue contribution. But we have already noted in Sec. 1.5 that
in this case the glue term is completely equivalent to a tWo-body
potential. Therefore, U8 should be regarded as another two-body

part, coming from the glue term. The part which is really many-
body is I'*#  and P28 + WP s the “effective two-body part”.

m
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e I'*® is a sum of “triplet” terms. In the glue model two-particle
terms are sufficient to construct the forces (first order derivatives),
- but three-particle terms are required for the force constants (sec-
ond order derivatives), and in general (n + 1)-particle terms are
required for n-th order derivatives. This makes the glue model
somewhat less attractive for lattice dynamics calculations, com-

pared with Monte Carlo and molecular dynamics.

Up to now, we did not make any particular assumption on the sym-
metry of the system, so that the formulas we have written can be applied
to infinite crystals as well as to less symmetric situations such as sys-
tems with defects, surfaces, clusters or amorphous structures. If we now
assume that the atoms are arranged in an infinite crystal with one atom
per unit cell, some simplifications can be made., First, all atoms must

have the same coordination:

Ty = Z P(Tmn) = ng (1.26)

n#Em

Let us assume that (1.15) is satisfied:
U/(TL()) = 0

(if it is not so, a transformation of the form (1.13) can be applied), and

let us call

7 U'(no) = UY (1.27)
With condition (1.15), ¥ vanishes. Moreover, isince for symmetry
reasons (o) ' ’
SR g (1.28)
l#n . Tin .

for all n and B, it is easy to show that res becomes simply

/ N
el = gy LY’;—QPEQL;I)T;ITQ o (1.29)
l m n



1.6.2 Bulk phonons in a perfect crystal

In the harmonic limit, as follows by Eq. (1.16), the equations of motion

of the atoms in the lattice are

Mig, = -~ CeByf ' (1.30)
} v _

where M is the mass of an atom. If we choose a solution of the form

1
v M

and substitute it into (1.30), we find that

up () = e® exp(—iwt + ik - T1mo) (1.31)

Mw?e* = 3" DB(f)P (1.32)
B

where D"‘ﬁ(l;) is the dynamical matriz and is connected to the force

constants C'%° by

D*(k) = 3 ¢es exp(ik - 7,,,) (1.33)

or to the related quantities D2f (using (1.19)) by

Df(k) = 3 pes (1 — exp(ik - ) (1.34)

mn
n#m

D“ﬁ(/_g) does not depend on m as a consequence of the periodicity of the
lattice. As Eq. (1.32) shows, the bulk phonon dispersion w(l;) is then
Stfaiglltforwardly obtained by diagonalization of the 3 X 3 dynamical
matrix.

Assuming now a glue-type interaction, the dynamical matrix can be

separated in two parts:

D (k) = $°5(k) + r*4() (1.35)
Wllere
(k) = Y b (1 - exp(ik - 7,, )) (1.36)
n#m



and
(k) = 3 T2 (1 — exp(ik - P ) (1.37)
) n#Em -
with &8 and '8 supplied respectively by (1.21) and (1.29). With a
little manipulation, the result can be written as

-5 5 (58) [ 4) 2 s

o R R? R

(1.38)

T*8(k) = U Zsin(lé'-ﬁ)'—'@m Zsin(é.fi)@RB 1 (1.39)
' R#0 R R#o : R -

where the sums run on the lattice vectors.

1.7 Connection with pPhysical properties

In this Section, we derive some relations connecting the glue Hamilto-
nian with a certain number of physical quantities. These relations will
be useful in building ¢, U, p by fitting these quantities to the experi-

mental values for a given material. We assume:
e an f.c.c. crystal structure
e a ﬁr;t—neighbour range for ¢(r) and p(r)
e the normalizations (1.9) and (1.10) for n and pimg =12, p(d) =1
e condition 3 (1.15): U'(ng) =0

These restrictions allow us to write simple formulas, which will be
used in Chapter 2 to fit the Hamiltonian to the experimental data for
gold. To simplify the notations, we shall often omit the arguments of

the functions ¢, p, U or of their derivatives, being implicit that ¢ and p

can be found in Refs. [35]_and (38].

*If this condition does ot hold, all the following results are still valid if the two-
body potential #(r) is replaced by the “effective potential” (1.14) calculated for n — ng.
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1.7.1 Cohesive energy, bulk modulus, vacancy and
surface energy

Let us consider the potential energy per atom in a perfect lattice where

R is the first-neighbour distance:
12
{(R) = = 4(R) + U(12p(R)) (1.40)

In the general case the system is not in equilibrium, so that there is a

net pressure

M) = = e Y ) o (R 20 (1)

where Qo = R%/1/2 is the volume occupied by an atom. Of course, when

R is equal to the equilibrium distance d this pressure vanishes:

p(d) = —2;?

(by definition, ny = 12p(d)). Since U'(ne) = 0, this condition reduces

to the ordinary equilibrium condition for two-body potentials

(¢(d) + 20/ ()" (o)) = 0 (1.42)

¢'(d) =0 (1.43)

€(R) has a minimum for B — d, which is, apart of the sign, the cohesive
energy:

& = —¢(d) = —[64(d) + U(no)] (1.44)
The bulk modulus of the system

dp Q d’¢ 2 d%

B == —QOE = oziﬁg = ?’z ‘d“ﬁ; y (1.4:5)
is given by .
_ 4 " ' 271
= 775 3%"(@) + 325/ (&)U (no)] (1.46)

Equations (1.43), (1.44) and (1.46) give us three relations that can be
used in the fit.

The glue Hamiltonian solves the problem of the low vacancy for-
mation energy compared to the cohesive energy. In fact the former,
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neglecting relaxations, is the energy associated with the breaking of 12

bonds, and the change of coordination of the 12 n;aighbour atoms from
12 to 11:

€ = —64(d) + 12(U(11) — U(12)] (1.47)

while the latter is given by (1.44). The two quantities differ by virtue
of the non-linearity of the glue.
Finally, the surface energy per atom on a (111) unrelaxed f.c.c. face
is obtained by removing 3 bonds and changing the coordination from 12
to 9:
¢, = —gqﬂ(d) +U(9) - U(12) (1.48)
Of course, €' and €, will be further lowered by relaxation effects, as will

be discussed in detail later on.

1.7.2  Phonon frequencies

In an f.c.c. structure, the 12 first neighbours lattice vectors are

+1 0 +1
- a a a
{B}=3| +1 5| £ [hg] 0 (1.49)
0 +1 +1

Eq. (1.38) and (1.39) for the two-body and the many-body part of the
dynamical matrix can therefore be explicitly written:

- —‘- 2 o ﬁ
(k) = 24" 3 sin? (k R) R

2
Re{R} R
_ | 49" = 20" cos K2 (T, cos K2 —cosKe) ifa =g (1.50)
- 2¢" sin E;—“ sin E;ﬂ if a # 8 .
and
aﬂ"‘i " 12 RN ‘—‘_’RB
I'“?(k) =U p Z sin(k - R)_R— Z sin(k - R)'ﬁ" =
Be{R} Re{R}
_ 8Uup/2fa(]g)fﬁ(];) (1.51)
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I' =(0,0,0) Mw? =0

2 "
X =12x1,0,0) | Mwz =8¢
: Muw? = 44"
. Mwi = 64"
W =21(1,10) y
Mw; = 44

Mwp = (4 +v/2)¢" + 2(6 — 44/2)U" o' 2
K =22(1,1,0) Mw? = (44 2v/2)¢"
Mo}, = (2 +V2)g"

. Muw} = 8¢"
L: ;(1’1’1) Mw%:zgﬁll
Table 1.4:

Relations for the phonon frequencies at some points of the Brillouin zone, for a
first-neighbour glue Hamiltonian and an f.c.c. crystal structure. ¢ and p' are
evaluated at the first-neighbour distance r — d, U" at the bulk coordination
n = ng.

where

. @ ¥ «a
f*(k) = sin ka > cos Fa _ cos ka (1.52)
2 \& "7 2

These equations can be used to evaluate phonon frequencies at par-
ticular k points. Some frequencies are reported in Table 1.4. Two
important points must be noted [35]:

e the glue term does not have any effect on the transverse phonon
frequencies: that are completely determined by the two-body po-
tential.

® even in longitudinal modes, the glue term does not have any effect
in many k points that lie on the Brillouin zone boundaries. Among
them, points X, W, L, the whole II and A branches. Therefore,
all the phonon frequencies at these points depend only on the two-
body potential.
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€me) remajng roughly constant in a
transverse tatlonary mode, while ;¢ Is strongly modulated jp, a lon-
8itudina], Propagatin

is therefore largely

he transverse pho-

"(d). Clearly, some

apter 2
1.7.3 Elastic Constantg
The elastjc Constants cap pe easily obtained from the phonon dispersions
in the acoustjc (k — 0) lim

1
0112‘

" (24" + 320"p' ) (1.53)
Cz = é(gzﬁ” +320"p'2) (1.54)
Caq = §¢” (1.55)
21(011 —C1) = 1%” (1.56)
The €Xpressiong obtained for th

(Eq. (1.4)) depend only

1 1 " +32
2(012 - 044) = ;‘16[] 14

- It may pe noted
body forces of the glue
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type would have Cy, =0, C11 = C43, and therefore it would be unstable
under shear deformations: two-body forces remain essential for a faithful
description of the physical system.

Finally, let us note that the expression (1.46) for the bulk modulus
B, previously obtained by applying an external pressure to the system,
is recovered if we calculate B by combining the elastic constants derived

in this Subsection from the dispersion relations:

1 1/4
B = 3(Cu+200) = - (34 +320"'?) (1.58)

1.8 The lack of angular forces

It follows from the results of the previous Section that from the point of
view of fitting the lattice vibration spectrum a glue Hamiltonian is not
substantially better than a two-body description.

Such limitations in modelling the vibrational spectrum might be
intrinsic of the glue Hamiltonian. The glue term is by nature non-
directional, i.e., the glue energy depends only on the number of neigh-
bours around an atom and their distance from it, while the distribution
of the relative bond angles is not relevant. On the other hand, we expect
that in real materials different angular arrangements of the atoms should
make a significant difference to the energy. This picture is supported by
the fact that it is possible to obtain an excellent agreement between the
calculated and the experimental phonon dispersion relations by using
three-body force constants with an ahgula,r dependence [46,47].

Another consequence of the lack of angular forces in the glue scheme
is that, if the interaction range is limited to the first or second neigh-
bours, the f.c.c. and h.c.p. crystal structures are predicted to have the
same energy. This is due to the fact that in these crystal structures the
first two shelis contain the same number of neighbours (respectively 12
and 6) at the same distances. On the other hand, there is a difference in
the angular disposition of the second neighbours, and from a physical
point of view this, rather than the different number of third neighbours,
is likely to be the origin of the f.c.c.-h.c.p. energy difference [31].
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e

This spherical symmetry is perhaps the most important limitation
of the glue Hamiltonian when compared to other empirical fnany-body
schemes. However, the simplification, resulting in a saving of computing
power for a molecular dynamics or Monte Carlo simulation, is enormous,

and should not be underestimated.
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Chapter 2

Fitting the glue scheme to
gold

2.1 The necessity of stringent tests

There is a large amount of arbitrariness in the glue Hamiltonian, which
has so far been specified by three continuous functions, rather than by
a handful of parameters. In the previous Chapter, we have shown some
simple relations connecting the functions in the Hamiltonian with vari-
ous physical quantities, such as lattice spacing, cohesive energy, defects
or surface energies, elastic constants, phonon frequencies, etc. Such
relations provide some fitting points for ¢(r), U(n), p(r) or their deriva-
tives at certain fixed values of the arguments, but there remains a large
freedom-in the shape of the functions far from these points. Therefore,
it is possible to construct many different triplets of functions ¢, U, p,
all of which fit the same quantities, yet describe different physical sys-
tems. It may be said that in this freedom lie both the strength and
the weakness of the glue Hamiltonian. One can confidently hope to find
in the large space of all the possible choices a realization with overall
properties similar to those of the real material. However, in order to
restrict the number of candidates, some powerful selective tests need to
be introduced. These tests, of course, should be able to extract new in-

formation from the Hamiltonian by probing more properties than those
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that have been fitted. v

Thermal properties constitute a useful test bench. In fact, when the
atoms vibrate they sample wide regions of the three functions ¢, U, p, so
that the behaviour of the system depends on their whole shape, even rel-
atively far from the fit points. The “thermal test” is particularly severe
at high temperatures, where anharmonic effects play an important role.
Properties like the thermal expansion coeflicient or the melting temper-
ature are very sensitive to tiny details in the shape of ¢, U and p. For
instance, the slope of the core region in the two-body potential turns
out to be crucial in determining the melting temperature. Moreover, a
crystal structure which is found to be stable at T' = 0 with a certain glue
Hamiltonian, may, if allowed to, undergo a transition towards another
structure at a finite temperature. If this is not the case for the real ma-
terial, such a Hamiltonian must be rejected. Of course, investigating the
thermal properties requires the use of a molecular dynamics or Monte
Carlo simulation during the glue Hamiltonian construction phase itself,
just to try out successive realizations and discard the bad ones.

Another stringent test for a glue Hamiltonian is the accurate descrip-
tion of surface properties. The interactions between surface atoms are
very different from those between bulk atoms, because the coordination
is lower and therefore a different part of U(n) becomes relevant. The
resulting relaxation effects tend usually to reduce the bond lengths, so
that also the behaviour of ¢(r) and p(r) at distances lower than the bulk
first neighbour distance is important in determining the final structure.
For example, the amount of first-layer contraction, when experimentally
known, may be another independent quantity that can be fitted. In ma-
terials which exhibit surface reconstructions, like gold, the reconstructed
surface should have a surface energy lower than the non-reconstructed
surface; and the contrary should occur in materials whose surfaces do
not reconstruct.

Thermal and surface properties depend on the details of the glue
Hamiltonian in a complex way, so they are not easy to fit. However,
by using molecular dynamics (MD) and a trial-and-error approach, it

is possible to reproduce them rather accurately. This work requires
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a suitable parametrization of ¢, U, p, flexible enough to allow shape
variations of the functions within the constraints given by the fit points.
It should be emphasized that we are generally unable (and unwilling)
to determine an “optimal” realization of the glue. The search for a
Hamiltonian terminates when a satisfactory realization is found; i.e.,
when some previously defined “design goals” have been attained within
a reasonable margin. In particular, the three functions are not expected
to be meaningful for values of their arguments outside the range sampled
in simulations (e.g., 7 deep in the core region, n near 0 or extremely large,
etc.).

2.2 Details of the fit

A set of functions ¢(r), p(r), U(n) aimed at reproducing gold properties
as closely as possible, has been constructed accordingly to the guidelines
discussed in the previous Section.

The conditions listed at the beginning of Sec. 1.7 have been adopted,
so that all the relations there presented can be applied. It should be
noted that

e an f.c.c. crystal structure is assumed as a starting point, but its
stability is not a priori guaranteed and therefore it must be verified

a posteriorz.

e limiting the range of both ¢(r) and p(r) to the first neighbours
proved to be a valid choice in the case of gold; but this does
not imply of course that such a short range is adequate for other

madterials.
The following experimental data have been fitted exactly :

e T' = 0 lattice parameter ap.
e Cohesive energy e..

e Surface energy 0. A T = 0 estimate for an “average crystal face”
[48] has been fitted on a not reconstructed but relaxed (111) face.
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This case has been considered to be quite typical in the case of
gold, where all surfaces reconstruct in order to achieve a closely-

packed structure.

Bulk modulus B.

Frequency of the transverse phonons at point X of the Brillouin
zone vp(X).

Moreover, we have attempted to reproduce at least reasonably (as

explained in the previous Section) the following quantities:

F

v *

Vacancy formation energy e
Thermal expansion coefficient a = (1/a)(8a/8T).
Melting temperature T,,,.

Instability of the ideal (100) surface structure, which in Au recon-
structs (see Sec. 4.3).

The following analytical forms based on polynomials have been used

for the three functions ¢, p and U:

( al(r —d)* + al(r — d)® + al(r — d)?
+al(r—d)+al ifr <d

¢(r) =9 agl(r — d)° + aff(r — d)® + af(r — d)*

p(r)

+aif(r—dP+alf(r —d)? +aff(r—d)+all fd<r<r.
0 ifr. <r
(2.1)

\

bi(r — d)® + bi(r — d)? + bi(r — d) + b} ifr<d
bsi(r —df? + b3/ (r —dP? + b (r —d) + b Hd<r<m

= b (r — 1) + B (r — 1) + B (r — 1)

_{_b(I)II Hry <r<r,
0 fr, <r

\

(2.2)
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d +0.2878207442141723 x 10! | r,, +0.3500000000000000 x 10' | ny  +0.1200000000000000 x 10%
rc  +0.3700000000000000 X 10' | r,  +0.3900000000000000 x 10! | n,  +0.9358157767784574 X 10*
aj  —0.8000000000000000 x 10~ | bl +0.1000000000000000 x 10! | ¢l —0.2793388616771698 x 101
al  +0.0000000000000000 bl —0.6800000000000000 o —0.3420000000000000
al  +0.7619231375231362 bl +0.7500000000000000 el +0.3902327808424106 x 107+
ol  -0.8333333333333333 I —0.1333333333333333 x 10! | <] +0.7558829951858879 x 1072
a]  -0.1211483464993159 | 88T +0.1000000000000000 x 10 | ¢/ £0:3090472511796849 x 1073
al?  —0.8000000000000000 x 10~! | /7  —-0.6800000000000000 cf’ —0.3300000000000000 x 10*
a!’  +0.0000000000000000 b1 +0.7500000000000000 cf¥  +0.0000000000000000
all  +0.7619231375231362 biT  -0.1527241171206038 x 10! | cf7  +0.8618226772941980 x 10~}
all  -0.8333333333333333 bJ77  +0.0000000000000000 ed’ 40.4341701445034724 x 1072
afl  -0.1096009851140349 x 10! | 77 +0.0000000000000000 cJT —0.3044398779375916 x 1073
el +0.2158417178555998 x 10! | bi7T  10.5578188675490974 x 10! | ¢  —0.3300000000000000 x 101
all  -0.9128915709636862 biTT +0.6132971688727435 x 101 | ¢{!f  +0.0000000000000000
cfTT 10.8618226772941980 x 10~
ei1T 10.4325981467602070 x 102
Table 2.1:

Parameters characterizing the glue Hamiltonian for gold.

A=)+ cl(m — m)° + cl(m — )"
+el(n—n,)+¢

ci’(n — no)* + ¢5f(n — n0)® + ¢’ (n — no)?
+ cf(n — ng) + ¢kt

et (n —ng)® + el (n — no)? + i (n — ny)

IIr
+ ¢

Hn<n,

Hn, <n < ng

ifng<n
(2.3)

The coeflicients and the other parameters d, r., 7y, T, n,, ng are
given in Table 2.1. As will be discussed in detail in the three following
Subsections, some parameters have been determined by the fit points,
some by requiring continuity at the junctions, and the remaining (a
dozen), controlling the shape of the functions, by the MD-based proce-
dure discussed above.

The fit of the phonons deserves some comments. As explained pre-
viously, the phonon dispersion relations can be fitted only in an approx-
imate way, because only two parameters are available with our first-
neighbour choice. One parameter (¢"(d)) is related to the two-body
part, the other (the product U"(no)[p'(d)]?) to the many-body part. It
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Figure 2.1:
Phonon dispersion of Au as predicted by the glue Hamiltonian, with (solid lines)
and without (dashed lines) the many-body term, compared with experimental
data (dots) [49]. As discussed in 1.7.2, it can be seen that the glue term affects
only the longitudinal branches, and its contribution vanishes at the Brillouin

zone boundary.

has been chosen to fit them to the bulk modulus and to the transverse
phonon frequency at the X point, to reproduce accurately the lattice
vibrations where the density of states is larger. In gold, the overall
compromise turns out to be quite acceptable, as shown by the phonon
dispersion in Fig. 2.1 and by Table 2.2. Clearly, a better phonon fit
would have been obtained if a larger interaction range for ¢(r) had been
used. Attempts in this direction, however, turned out to make fitting of
other properties more difficult, if not impossible.

In the following three Subsections, the details of the fit procedure

are discussed for each of the three functions ¢, p and U. It should be
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Figure 2.2:
The pair potential ¢(r).

kept in mind that these details are generally dependent on the material

which we are trying to reproduce, so that different materials may require

a different procedure and/or different analytic forms.

2.2.1 Construction of the pair potential ¢(r)

The pair potential ¢(r), defined by Eq. (2.1) with the parameters given

in Table 2.1, is shown on Fig. 2.2.

The 12 coeflicients appearing in Eq. (2.1) have been determined by

the following conditions:

* $(d) = go (supplied)
e ¢'(d) = 0 (lattice parameter, Eq. (1.43))
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¢"(d) = Mw}(X)/4 (transverse phonons, Table 1.4)

¢"(d) = ¢4’ (supplied)

#(r*) = 1eV (supplied)

¢(rc) =0 (going to zero smoothly-at-r = r;) - -

¢'(rc) = 0 (going to zero smoothly at r = r,)

#"(rc) = 0 (going to zero smoothly at r = r,
g

@(r) continuous in r = d

@'(r) continuousin r = d

@¢"(r) continuous in r» = d

@"'(r) continuous in r = d

s .
-

Four parameters are supplied externally: ¢, re, 7 and ¢4’ @o is the
depth of the potential, which (under the condition given by Eq. (1.15))
determines the partition of the cohesion between the two-body part and
the glue part. It also determines, to some extent, the anharmonicity of
the potential: due to the first-neighbour constraint, a deep potential is
more harmonic than a shallow one. This has visible effects, for instance,
in the thermal expansion coefficient. Once ¢, has been fixed, there is a
very narrow range of possible values for the range . if wild oscillations
of the derivatives of ¢(r) are to be avoided. The last two parameters
control the shape of the core region, which has a deep influence on
melting and on surface properties. This point is discussed further in
Subsection 2.2.3.

2.2.2 Construction of the function p(r)

The function p(r), defined by Eq. (2.2) with the parameters given in
Table 2.1, is shown on Fig. 2.3.
The 12 coefficients appearing in Eq. (2.2) have been determined by

the following conditions:
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_ e p(d) =1 (normalization, Eq. (1.10)).
e p'(d) = py (supplied)
o p"(d) = plj (supplied)
e p"'(d) = plf (for r < d) (supplied)
° p(rs) = py (supplied)
e p(rm) =0 (going to zero smoothly at r = r,,)
e p'(rm) = 0 (going to zero smoothly at r = r,,,)
e p(r) continuous in r =d
e p'(r) continuousin r = d
e p(r) continuousin r = d

e p(r) continuous in r =7

p'(r) continuous in r = 7

Here, six parameters are supplied externally: 7., s, ps, o, o4, and
py'. This leaves a great freedom in determining the shape of this func-
tion.

It is worthwhile to note that p(r) itself cannot fit any physical prop-
erty, since it operates “within” U(n) in the hamiltonian. Only suitable
combinations of p(r) and U(n) are related to quantities of the physical
system. One of such combinations is Eq. (1.46) for the bulk modulus.
From this equation, it is seen that the choice of p/, is quite important, be-
cause fitting the bulk modulus then forces a particular value for U"(n,),
#"(d) being fixed by the transverse phonons. This value for U”(no) may
result to be incompatible with the general behaviour of U(n), which is
governed by other considerations such as the surface energy fitting (as
discussed in 2.2.3). Actually, the inverse route has been followed: first,
a reasonable value for U"(n,) is selected, then p/ is determined by fitting

the bulk modulus. This requires a sort of self-consistency in the fitting
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process, since U(n), as explained in the next Subsection, must be con-
structed after p(r), and only at this last stage it is apparent whether the
original choice for U"(ng) was really good or not. A valid, if qualitative,
quality test is the smoothness of U’(n) and U"(n), i.e., they should be
free from spurious oscillations. 7 _

The value for p} resulting from this procedure gives a rather flat
curve around 7 = d. The shape of p(r) seen in Fig. 2.3 is the result
of the competition between this small slope around » = 3A and the
short-range requirement. The “cutoff region” between 7, = 3.5A and
rm = 3.9 A has been located in correspondence with the minimum be-
tween the first- and the second-neighbour shell in the pair correlation
function (as determined by high temperature simulations). In this way,
the effect of this region on the properties of the system has been reduced
to a minimum.

The control provided by the two parameters p/ and p}' permits to
adjust the shape of p(r) in the very important region around r = d,
which determines how the atoms gain and lose coordination when their
mutual distances are varied. Since the energies associated with coordi-
nation changes are large, slight modifications on p(r) around the first-
neighbour distance can easily induce dramatic changes in the thermal
behaviour and in the surface properties. For example, the presence of
surface reconstructions can be switched on or off by acting on p(r) for
r < d.

2.2.3 Construction of the glue function U(n)

The “glue” function U(n), defined by Eq. (2.3) with the parameters
given in Table 2.1, is shown on Fig. 2.4.
The 14 coeflicients appearing in Eq. (2.3) have been determined by

the following conditions:
e U(0) = 0 (by definition, Eq. (1.6))
e U(ng) = Up (cohesive energy, Eq. (1.44))

e U'(ng) =0 (Eq. (1.15))
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e U'(ng) = Uy (bulk modulus, Eq. (1.46))
e U(n*) =0 (supplied)

e U(n,) = U, (surface energy, Eq. (2.4))
e U'(n,) = U, (supplied)

e U(n) continuous in n = ng

e U'(n) continuous in n = ng

e U'"(n) continuous in n = ng

e U(n) continuous in n = n,

e U'(n) continuous in n = n,

e U"(n) continuous in n = n,

e U"'(n) continuous in n = n,

Here, ng = 12 (bulk coordination), and n, is the first layer coordi-
nation on a relaxed (111) surface (defined below). Only two parameters
are supplied externally: n* and U.. n* is greater than ny and controls
the shape of U(n) for large coordinations. For gold, the value chosen
(n* = 17.48) is such that the glue function rises rather rapidly above
n = ng. This rise corresponds to a sort of core-core repulsion, but ob-
tained through the glue term instead of the two-body term. This pecu-
" liar behaviour solves the following problem. In order to obtain a system
with the correct melting temperature, the core region of the two-body
potential should be soft enough to allow large vibrational amplitudes of
the atoms. Such a “soft” system, however, would not be enough anhar-
monic to yield a realistic thermal expansion. A potential with a hard
core region, on the other hand, gives a system which expands well but
is too stiff and melts at a temperature which is too high. In the gold
realization described here, the potential is soft and the anharmonicity
is supplied by the glue: at high temperatures, in fact, the shape of the

glue around n = ng favours fluctuations which tend to decrease, rather
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“than increase, the local coordination. The system reacts by increasing
slightly the lattice parameter.

The surface energy fit also deserves some comments. Once ¢(r) has
been assigned, U(no) is known by fitting the cohesive energy (Eq. (1.44))
and at this point U(9) can be calculated using the expression (1.48) for
the surface energy of a (111) face. However, this expression refers to
an unrelaxed surface; relaxations raise the first layer coordination above
9, thus reducing the effective surface energy. To avoid this problem, a
more sophisticated fitting procedure must be adopted. Assuming that
only the distance between the first and the second layer is varied from
the unrelaxed value s = \/27’;d to a certain value s, the expression for

the surface energy per atom can be generalized as follows:
9 6 ., 6
(s) = ~39(d) + 58(&) + S9(a) + U(n) + Ulna) 20 (ne)  (2.4)

where d is the bulk first-neighbour distance, d' = 4/s% 4 d?/3 the dis-
tance between an atom in the first layer and a first neighbour in the
second layer, a' = |/s? + 4d?/3 the distance between an atom in the first
layer and a second neighbour in the second layer, n;, = 6p(d) + 3p(d') +
3p(a’) the first layer coordination, and ny = 9p(d) + 3p(d’) + 3p(a’) the
second layer coordination. Some second-neighbour terms are present
because, due to a possible contraction, it is not guaranteed that a’ is
larger than the range of ¢(r) or p(r). (2.4) is more complicated than
(1.48), but can be straightforwardly calculated for a given value of s.
Our fitting procedure self-consistently solves the two equations
e;(s) =cA (2.5)
e(s)=0
where o is the experimental surface energy per unit area and A =
d?+/3/2 is the area occupied by an atom. Equations (2.5) ensure that
the correct surface energy is obtained in correspondence with the equi-
librium relaxation. They are solved by using the following iterative
method:

1. Build the region of U(n) with n > ng; this can be done from the

initial conditions, and will never be changed.
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2. Assume an initial value for s.
3. Given s, calculate d', a/, n, and n,.

4. Solve Eq. (24) for U(n,). Note that U(nz) is known, since ny > nq.
This gives the condition U(n,) = U,.

5. Now all the coeflicients of U(n) can be determined, so that U(n)

becomes known for all values of n.
6. Solve €,(s) = 0. This yields a solution s’ # s.

7. If |s — s'| < e, and |e,(s) — €,(s")| < €. (where €, and ¢, are very
small tolerances) then terminate, otherwise rename s’ as s and go
back to step 3.-

Note that the final shape for U(n) is controlled by the parameter
U, which is supplied externally. If a reasonable value is given to this
parameter, the procedure converges within ten iterations. Relaxation
effects between the second and the third layer and between deeper lay-
ers, neglected by this method, lead to a very small (—0.2%) correction,
as a molecular dynamics calculation established later. This correction
is. surely negligible in comparison with the error associated with the

experimental estimate of the surface energy [48].

2.3 Comparison with experiment

Many physical quantities of gold as predicted by the fit are compared
with experiment in Table 2.2. The calculations of the thermal expansion
coeflicient, the bulk melting properties, and the vacancy parameters, are
presented respectively in Sections 3.1, 3.2 and 3.4.

From the table, it can be seen that modelling of gold is fairly ac-
curate on the whole. In particular, all the quantities difficult to fit
with two-body forces, which we have discussed in Sec. 1.1, are now well

reproduced.
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Quantity Glue model Ezpertmental Ref.
T = 0 Lattice parameter aq (A) 4.07* 4.07 [50]
Cohesive energy e (eV/atom)~ - 3.78* 3.78 [9]
Surface energy o (meV/A?) 96.6* 96.8 [48]
Vacancy formation energy ¢ (eV) 1.26 0.94 [51]
Vacancy migration energy €M (eV) 0.98 0.85 [51]
Bulk modulus B (102 dyne/cm?) 1.803* 1.803 [62]
C11 (102 dyne/cm?) 2.203 2.016 [62]
C12 (10'%2dyne/cm?) 1.603 1.697 [52]
Ca4 (10'2dyne/cm?) 0.600 0.454 [52]
vp(X) (THz) 3.89 4.61 [49]
vr(X) (THz) 2.75% 2.75 [49]
(W) (THz) . 3.37 3.63 [49]
va(W) (THz) 2.75 2.63 [49]
v(L) (THz) 3.89 4.70 [49]
vr(L) (THz) 1.94 1.86 [49]
Th. exp. coeff. o at 773 K (10-6K~1) 13.8 15.2 (53]
Heat capacity Cp at 1200 K (10~*eV/K/atom) | = 3.1 3.09 (53]
Melting temperature T, (K) 13567* 1336 (53]
Entropy of melting S,, (kp/atom) 1.0 1.13 (10]
Latent heat of melting AH,, (eV/atom) 0.12 0.13 [10]
Volume change on melting AV/V, (%) 0.6 5.2 [10]

* fitted

Table 2.2:

Comparison between some experimental quantities of gold and the same quan-

tities as predicted by the glue model. The fit is not always exact, owing to the

procedure used (see text). o (referring to a non-reconstructed (111) surface),.

€

F

v

and €M are calculated at T = 0 and include relaxation effects. a, T, Sm

and AH,, are determined by zero-pressure molecular dynamics simulations.
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Chapter 3 e

Molecular dynamics studies

of bulk properties

3.1 f.c.c. stability and bulk thermal ex-

pansion

As mentioned in Sec. 2.2, several properties of the bulk at finite tem-
perature were monitored during the construction of the three functions
characterizing the glue Hamiltonian.

To this end, the Parrinello-Rahman molecular dynamics technique
[64] has been extensively used (for a general survey on molecular dynam-
ics, see Ref. [55]). In this method, the box containing the particles (and
extended to infinity through periodic boundary conditions) can vary in
volume and shape, under the action of the internal stress and, if present,
an externally applied pressure or anisotropic stress. It has been shown
[54] that changes in the shape of the box allow the (previously impos-
sible) observation by molecular dynamics of solid-solid transformations,
such as that of an f.c.c. crystal into a b.c.c. and vice versa. These
phase transformations can be induced by applying external forces, but
they may also occur spontaneously if at a certain temperature the two
phases have the same free energy [56].

The stability of the f.c.c. structure of gold (as described by our glue
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Hamiltonian) against the b.c.c. structure ' has been therefore verified
up to the melting temperature through Parrinello-Rahman simulations
in the absence of pressure or stress.

The same calculation also gives directly the lattice parameter a as
a function of temperature. Within the accuracy allowed by our trial-
and-error procedure, we have tried to reproduce the experimental data
as closely as possible by making changes on the shapes of the functions.
The result for the final choice is shown in Fig. 3.1. The agreement

between the model and experiment is fairly good.

3.2 Melting point

The melting temperature has been determined by computer simulation.
A bulk simulation is not well suited for this purpose because, lacking
any defects, it undergoes overheating and supercooling, i.e., it exhibits
a large hysteresis effect which makes it difficult to locate even approxi-
mately the melting point [29,57]. A system with a free surface overcomes
this problem, because the melt can easily nucleate at or near the surface
and then propagate into the bulk [28,29,136].

In order to determine the melting temperature, the following proce-
dure has been adopted. A system with a free surface is heated until a
spontaneous nucleation of the liquid phase occurs at or near the surface.
The system is then kept hot, to allow for the motion of the liquid-solid
interface into the bulk. In this way we produce a sample with a liquid
phase and a solid phase simultaneously present, although not in per-
fect equilibrium. Starting from this sample, the melting temperature,
at which by definition the liquid-solid interface remains stationary, is
searched by trial-and-error.

The melting temperature is a function of the pressure or, more gen-

erally, of the stress applied on the system. We have kept the stress

1The f.c.c.-h.c.p. stability is more delicate, because it involves atom displacements
relative to the box, as well as variations in the box shape [54]. No conclusion can be
drawn about this point. Note that at 7' = 0, with the glue Hamiltonian, the f.c.c. is

favoured over the b.c.c., while f.c.c. and h.c.p. have the same energy.
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Figure 3.1:
Lattice parameter a of Au as a function of temperature. Molecular dynamics
simulation data (solid line) are compared with experiment (dots) [50]. The ver-
tical lines represent the calculated (solid line) (see Chapter 5) and experimental

(dotted line) melting temperature.
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equal to zero by adjusting the lattice parameter of the crystalline phase
to match the value obtained by the thermal expansion curve at each
temperature. This is done by scaling of the molecular dynamics cell.
The liquid is not under pressure due to the presence of the free surface.

The melting temperature, as discussed in Sec. 2.2, is one of the
quantltles .o.tﬁn-‘mglue Hamiltonian has been fitted to. However, a pre-
cise determination of the bulk melting point is computationally quite
expensive. In fact, when T is near T}, the solid-liquid interface moves
very slowly, so that long simulation times become necessary to detect
the motion. For this reason, T}, was monitored rather roughly (with an
accuracy around 5%) when constructing the Hamiltonian.

A much more accurate determination has been done later, in the
context of a study aimed at detecting the possible existence of surface
melting on the Au(111) surface. This study is fully detailed in Chapter 5,
and we report in this Section only the results related to bulk melting.

The resulting value for the melting temperature is
T, =1357T£ 5K

At T'=1350K, the liquid-solid interface moves in the direction of the
solid, eventually leading to a complete recrystallization of the sample,
while at T = 1360 K, the melt is seen to proceed into the bulk. The
estimate of the melting temperature is based on the different interface
velocities observed at these two temperatures. To achieve an accuracy -
of £5 K, the simulation time scale must be of the order of ~ 50000 time
steps, or ~ 0.5ns. The value obtained for T, is in good agreement with
the experimental value, T,,,(exp) = 1336 K.

The latent heat of fusion has been also estimated by comparing the
average energy per particle in the liquid and in the solid phase. The
result is

AH =0.12 £ 0.01eV /atom

The entropy change on fusion is therefore

Sm=AH/T,, = 1.0 £ 0.1kp/atom
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These values are only slightly lower (~ 10%) than the experimental
values (see Table 1.1 on page 7), which is very gratifying.

The volume change on melting has also been estimated. In this
case, the value obtained (0.6%) is one order of magnitude smaller than
the experimental value (5.2%, from Table 1.1). We can attribute this
discrepancy tentatively to the extreme softness of the core of our two-

body potential.

3.3 Liquid structure

With the exception of the melting temperature, properties of the liquid
phase have not been taken into account when building the parametriza-
tion of the glue Hamiltonian for gold. Nonetheless, it is interesting to
study how our Hamiltonian reproduces structural and thermodynamic
properties of bulk liquid Au. This study constitutes an additional test
of the model, and may also indicate if the present approach is well suited
for computer simulations of liquid metals.

The results described in this Section have been obtained by molecu-
lar dynamics. For liquid simulations, the Parrinello-Rahman technique
mentioned in Sec. 3.1 does not offer particular advantages compared
with traditional methods where the box has a fixed shape. In fact, in a
solid, small deformations cause restoring elastic forces to arise, so that
the box shape oscillates around an equilibrium shape. In a liquid, on
the other hand, no force reacts to deformations, and the box shape in
a Parrinello-Rahman simulation “wanders” randomly. For this reason,
the simpler constant-pressure Andersen method [58] has been used. In
this method, the box may still vary in volume, but shape variations are
not allowed.

In all computations, the box, extended to infinity in all the directions
by periodic boundary conditions, contains 500 particles and the external

pressure is set to zero.
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3.3.1 Diffusion

A series of MD runs has been performed to investigate thermodynam-
ics properties of liquid Au at zero pressure. In each run, the system
is first equilibrated for 2500 steps at constant enthalpy E, then several
data are collected in the subsequent 2500 steps. Table 3.1 reports the
temperature T', self-diffusion coeflicient D, atomic volume {2 and coor-
dination n (as defined by Eq. (1.7)), for each run at a given enthalpy E.
T is proportional to the kinetic energy, averaged (as 1 and n) both on
particles and time. The self-diffusion coefficient D has been extracted

by using the relation [59]
(|7(¢) — #(0)*) = 6D, (3.1)

averaged on the 500 atoms in the sample.

The table goes beyond the experimental evaporation temperature of
gold, T.(exp) = 3081 K. No attempt to determine 7, in the glue model
has been made. Therefore, some high-temperature points reported in
Table 3.1 might refer to an overheated liquid. On the other hand, points
with T' < T,,, = 1357 K surely refer to an undercooled liquid.

It is very well known that in solids the temperature dependence of

the diffusion coefficient is well reproduced by an Arrhenius-type law
D = Ae~Q/ksT, (3.2)

with (possibly) small deviations near the melting temperature (see Sec.
3.4). In liquids, on the other hand, deviations from this law are quite
common [60]. The Arrhenius plot of our calculation, shown in Fig. 3.2,

exhibits a linear behaviour up to a temperature 7" ~ 1850 K, with
A=207x10"%cm?/s, Q =0.315eV

Progressively higher deviations occur at higher temperatures.
Unfortunately, no experimental values have been found in literature
for liquid gold. Data reported for other noble metals [61], collected in a

temperature range just above T, show comparable values for Q:

Cu(exp) : A =1460 x 10~%cm?/s, Q = 0.421eV
Ag(exp): A =580x10"%cm?/s, @ =0.332¢eV
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E T D Q n
(eV/atom) (K) (10~®cm?/s) (A3?)
—-3.600 315 0.11 17.466 11.9
—3.550 496 0.16 17.549 11.8
—-3.500 660 0.45 17.624 11.8
—3.450 820 2.4 17.672 11.8
—3.400 961 4.7 17.712 11.7
—-3.350 1110 8.2 17.732 11.7
—3.300 1268 11.6 17.763 11.7
—3.250 1430 16.2 17.803 11.6
—3.200 1587 21.7 17.836 11.6
—3.150 1756 26.3 17.881 11.6
-3.100 1923 32.3 17.918 11.5
—-3.050 2091 44.0 17.966 11.5
—-3.000 2266 52.7 18.025 11.5
—2.950 2440 61.8 18.078 11.5
—2.900 2618 76.0 18.125 11.4
—2.850 2801 74.1 18.208 11.4
—2.800 2983 87.4 18.266 11.4
—2.750 3165 111. 18.337 11.4
—2.700 3346 112. 18.415 11.3
—2.650 3543 115. 18.490 11.3
—-2.600 3736 132. 18.573 11.3
—2.550 3921 150. 18.654 11.2
—2.500 4113 156. 18.742 11.2
Table 3.1:

Total enthalpy per atom E, temperature T, self-diffusion coefficient D, atomic
volume 2 and coordination n (defined by Eq. (1.7)) as averaged in zero-pressure

molecular dynamics runs.
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- Figure 3.2:
Arrhenius plot (log D vs. 1/T) of the diffusion coeflicient of liquid Au in the

glue model as a function of temperature. The points are the simulation data,

the solid (straight) line is a fit at low temperatures.
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The specific heat at constant (zero) pressure C, = (O0E/0T),, ex-
tracted from Table 3.1 in a wide region near T, is C, =‘3.1 x 10~4
eV/K/atom. This result is in almost perfect agreement with experi-
ment, Cp(exp) = 3.04 x 107* eV/K/atom [62].

The glue model, on the other hand, fails in predicting the thermal
expansion coefficient of liquid Au. The valie extracted from Table 3.1,
(1/9Q2)(092/8T) ~ 17 x 107°*K~1, is lower than the experimental value,
(1/Q)(8Q/0T)(exp) =~ 86 x 107°K~! [62], by about a factor 5. This
problem, together with the low volume change on melting mentioned in
Sec. 3.2, indicates that the repulsive (core) part of the potential at short

distances is probably too soft.

3.3.2 Pair correlation function

The pair correlation function g(r) of the liquid predicted by the glue
Hamiltonian has been also calculated using molecular dynamics. The
conditions assumed are zero pressure and a temperature of 1600 K.

Starting from a crystalline state, the system is brought at T' = 2000 K
in order to melt quickly. After 3000 steps of equilibration, the tempera-
ture is decreased to 1600 K, and the system is equilibrated again for 3000
steps. The pair correlation function has been measured in the subse-
quent 1000 steps, and the result is shown on Fig. 3.3, compared with the
experimental g(r) at T' = 1573 K [63].. There is a substantial agreement
on the position, height and width of the first peak. The calculated g(r)
has, however, the first minimum too deep, and the second shell slightly
too close when compared with the experimental g(r).

As a final observation, it may be noted from g(r) that the distance
between a pair of particles, in practice, is always larger than 2 A; in this
simulation it is also seen that the distribution of the coordinations n
(in the glue Hamiltonian sense) of the atoms is confined in the interval
9-14 (with an average value of 11.6). At surfaces, the lower bound of the
coordination distribution decreases to about 7. As discussed at the end
of Sec. 2.1, these values indicate the limits of validity for the functions

in the glue Hamiltonian: we do not expect that modifications made to
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Figure 3.3:
Calculated (solid line, 1600 K) and experimental (dashed line, 1573 K) [63] pair
correlation function g(r) of liquid gold.
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these functions out of the ranges sampled in simulations would yield
visible effects on the properties of the system. The validity range can
be thus summarized: » > 24, 7 < n < 14.

3.4 . Vacancy properties at T = 0

Gold is one of the most studied metals from the point of view of point
defect properties [51,64,65]. However, several aspects of its vacancy
properties are still controversial and justify further theoretical studies.

Two-body force models are certainly inadequate to study vacancies
in metals, for the reasons discussed in Section 1.1. The present glue
model, on the other hand, reproduces fairly well defect energies and
the temperature behaviour, and offers a suitable framework for this
kind of studies. A full, detailed investigation of vacancy properties,
aiming at characterizing temperature-dependent properties, is currently
in progress [66]. In this Section, we report some preliminary results on

T' = 0 properties of a monovacancy in gold.

3.4.1 Vacancy formation

As already stated in Sec. 1.1, the vacancy formation energy is given by
ef‘ =FEy — En

where Ey is the energy of a system with N particles in NV perfect crystal
sites, while E}; is the energy of a system with N particles in N +1 crystal
sites, that is, when a vacancy is present. In the same terms we can define

the vacancy formation volume:
of =3 —ay

Neglecting relaxations, the formation energy predicted by the glue
Hamiltonian can be calculated using Eq. (1.47). This gives €ro = 1.458
eV which is about 50% higher than the experimental value, €f'(exp) =
0.94 eV [51]. Atom relaxations around the vacancy, however, reduce the
formation energy.
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Relaxations effects have been included by using molecular dynam-
ics. The procedure consists in performing a simulated quenching, where
the atoms are moved accordingly to the instantaneous forces but their
velocities are rescaled by a factor o < 1 at every time step of the sim-
ulation. In this way, kinetic energy is continuously removed until the
system eventually reaches a stationary state, where all'the atoms areat ’
rest in their relaxed equilibrium positions and the energy is minimized.

A problem lies in the fact that a point defect in a crystal generates an
elastic strain which at large distances falls as 1/r® [67], but in molecular
dynamics calculations the range of the distortion is limited by the size
of the computational box (subjected to the usual periodic boundary
conditions), so that long-range contributions are lost. However, these
contributions can be estimated by noting that the density of elastic
energy w(r) at a distance r from the defect decays like 1/ r® (the square
of the strain). Therefore, the total elastic energy W(R) associated to

deformations at distances r > R falls, for large R, as

W(R) =~ /Rm drriw(r)dr ~ —I%_ (3.3)

3

For this reason, we expect that vacancy formation energy calculations
performed on a cubic box of size La (where a is the lattice parameter)
should exhibit a dependence on L of the kind

_ A
(L)~ e + Is . (3.4)
By fitting this relation to the values of €. (L) extracted from the simu-

lations, the asymptotic term &

can be reasonably estimated.
Two sets of calculations have been performed, one (CL) at constant
lattice spacing and one (ZP) at zero pressure, with I = 3,4,5,6, and

N =4L3 — 1 = 107,255,499, 863.

CL In this set (constant lattice spacing), the volume of the box is
kept fixed accordingly to the T' = 0 lattice spacing of the perfect
crystal. This corresponds to imposing a vacancy formation volume
equal to the atomic volume 9. The resulting energies are given

in the second column of Table 3.2, while in the third column these
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eF(L) Eq. (3.4)
1.3013  1.3012
1.2787  1.2788
1.2705  1.2708

1.2676  1.2673

S Gv o W |

Table 3.2:

Vacancy formation energies €f' (in eV) from constant lattice spacing (CL) cal-

culations, and best fit from Eq. (3.4).

¢f(L) Eq.(3.4) Aafag O /Q
1.2383  1.2383 —0.27 0.1408
1.2518  1.2520 -0.11  0.1459
1.2567 1.2569  —0.06 0.1476

1.2592  1.2590 —0.03 0.1484

> v b ol

Table 3.3:

Vacancy formation energies £ (in eV) from zero pressure (ZP) calculations,
best fit from Eq. (3.4), corresponding lattice parameter variation Aa/ao (in %)

and vacancy formation volume in atomic volume units.

energies have been fitted by Eq. (3.4), with & =1.2624eV and
A = +1.0482€V.

ZP In this set, the volume of the box is allowed to vary in order to
compensate the internal pressure induced by the vacancy, so that
the system is at zero pressure. In this case, the vacancy forma-
tion volume becomes less than 2y and can be measured. The
results are given in Table 3.3. The fit parameters in Eq. (3.4) are
ef =1.2620eV and A = —0.6404 V.

As seen from the above Tables, CL calculations overestimate the for-

mation energy, while ZP calculations underestimate it. The explanation
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lies probably in the fact that in ZP, the attractive interaction between
the vacancy and the other image vacancies in the nearby compufétional
boxes is stronger than in CL, where it is almost cancelled by the con-
stant volume constraint. The two sets are in remarkable agreement as

for the value of &'. Dropping the last digit, we can thus assume
e =1.262eV

as the vacancy formation energy predicted by the glue Hamiltonian.
This value is larger than the experimental value (0.94 eV), but the agree-
ment can still be regarded as reasonably good, particularly if we recall
(from Sec. 1.1) that two-body forces would predict € ~ e =3.78 eV |

From ZP data we obtain also
QF =0.15Q,

as the vacancy formation volume, which is only weakly dependent on
the box size. This value appears to be small when compared with the
experimental value, QF (exp) ~ 0.5 [64]. This signifies an excess of
relaxation in our model.

Finally, the relaxations of the first four atomic shells around the
vacancy in the case L = 5 are given in Table 3.4, together with the
atomic coordinations n (in the glue Hamiltonian sense). It can be seen
that all the four shells move towards the vacancy. It is interesting to
note [68] that in two-body systems with interactions not limited to the
first neighbours, the first shell relaxes towards the vacancy but the other

shells move away from it.

3.4.2 Vacancy migration

The vacancy migration energy €/ is defined as
€£/I = E;V - E;’\r (35)

where EY is the energy of the crystal with the vacancy in the equilib-
rium position, and Ej the energy at the saddle point of the potential
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Shell R AR n
CL

1 2.8324 -0.0458 11.205
4.0205 -0.0499 12.109
3 |4.9447 -0.0405 12.041

4 |5.7255 -0.0309 12.009
ZP

1 2.8298 -0.0484 11.219
2 |4.0184 -0.0520 12.123
3 |4.9416 -0.0436 12.055
4 |5.7220 -0.0344 12.022

Table 3.4:
Distance R from the vacancy (in A), relaxation AR respect to the unrelaxed
distance (in A) and coordination n for the first four atomic shells around the
vacancy. CL indicates the constant lattice spacing calculation, ZP the zero

pressure calculation.
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e

energy surface in configuration space. This saddle point separates the
two regions corresponding to the vacancy being located in one of two
neighbouring lattice sites. In other words, €/ is the energy barrier as-
sociated with the jump of an atom into a vacant site.

The vacancy migration volume QM is defined by the similar relation

R (3.6)

eM and QM have been determined by a relaxation procedure similar

to that described in the previous Subsection. The saddle point config-
uration is produced by constructing a crystal with a vacancy equally
split between two neighbouring sites. This means that an atom near
the vacancy has been moved to a position halfway between the vacancy -
and its original lattice site. This configuration is then relaxed by the
quench procedure. The “jumping” atom remains on the saddle surface
without additional constraints, as a consequence of the high symmetry
of the initial condition 2.

The results, for the case I = 4 (255 atoms), not corrected for size

effects, are

eM =0.98eV

and

aM = —0.280,.

While €Y is in good agreement with the experimental estimate,
eM(exp) = 0.85 eV [51], the negative value found for ¥ is rather un-
usual, and disagrees with the experimental estimate Q¥ (exp) ~ 0.15%,

[64]. Once again, this seems an effect due to excessive relaxation.

3.4.3 Isotope effect

If we assume that the main mechanism of self-diffusion in metals is

through jumps of monovacancies, the diffusion coefficients D, and Dg

2Numerical roundoff errors in the computation destroy the symmetry, so that the
atom may “fall” into one of the two wells in a long simulation run. The quench
procedure must be quick enough to prevent this.
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of two isotopes a and 3 are related by [69,70]

D, I's
) e

where ', ['5 are the vacancy jump frequencies, and f is the correlation
factor for monovacancy self-diffusion, which in f.c.c. crystals has the
constant value 0.781 [71].

Accordingly to classical harmonic rate theory [72], the jump fre-

quency is given by

15
Iy = 2TFH?£V1 ; iexp(—— M /kpT) (3.8)

where w; are the eigenfrequencies of the system at the equilibrium posi-
tion, and w! are the eigenfrequencies at the saddle point. The imaginary
frequency relative to the reaction coordinate, wyy, is not included in the
product at the denominator. :

From this relation, since the w’s scale as M;'/? (where M, is the

mass of isotope o) and € does not depend on mass, we may write

Fa M 1/2
= (i) (39)

and conclude that

%;- _1=f [(%ﬁ-)l/z - 1] (3.10)

However, we are implicitly assuming here that the movement of the
jumping atom is completely decoupled from the other atoms in the lat-
tice.

Coupling to other atoms reduces the sensitivity of diffusion rates to
the isotope mass. Other atoms also move during the jump, and it is no
longer true that the w’s scale as M 1/2 which refer only to the jumping

atom. A more realistic relation is

2— Mﬁ 1/2
b~ 1=1AK {(Ma) - 1] (3.11)
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where AK is a factor < 1, which can be shown [73,74] to be the fraction
of the kinetic energy associated with motion in the jump direction, which
belongs to the jumping atom.

A lattice dynamics evaluation of the isotope effect factor AK can be

simply carried out as [75]

(7 - @)’

i, (R )

where 7 is the unit vector in the jump direction, @; is proportional to

AK = (3.12)

the velocity of atom i (obtained from diagonalization of the dynamical
matrix at the saddle point), and i = 1 is assumed to be the jumping
atom.

For gold in the glue model at T' = 0, this analysis yields
AK = 0.897.

This is in excellent agreement with the experimental estimate obtained
by Herzig et al. from measurements on **Au and '*°Au, AK(exp) =
0.90 [76]. This value has been obtained by assuming that all diffusion
is due to single vacancies, i.e. without consideration of any divacancy

contributions.
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Chapter 4

Structural studies of Au

surfaces

4.1 Noble metal surface reconstructions

Since the advent of the earliest experimental tools in surface physics,
the noble metal surfaces have constituted a kind of standard testing
ground. Their rather peculiar structural properties have therefore been
discussed—if not properly understood—since a long time [77]. For irid-
ium, platinum and gold, in particular, the most notable feature is sur-
face reconstruction, namely a surface rearrangement which produces
new strange surface periodicities. For example, the (110) surfaces all
exhibit a so-called (1 x 2) reconstruction, meaning that the surface pe-
riodicity is twice as long as expected along the surface direction (001),
while it remains regular along the orthogonal (110) direction. Also the
(100) surfaces of Ir, Pt and Au reconstruct, although not exactly with
the same periodicities. For Au, the reconstruction is often designated
as (20 x 5). Finally, Au seems to stand out as a kind of “reconstruc-
tion champion” in that also the (111) surface reconstructs (the so-called
(23 x 1/3) reconstruction).

The situation prior to 1981 is reviewed very nicely by Van Hove et
al. [77], who summarize various possible explanations for some of these

reconstructions. More recently, with newer surface techniques—such as
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STM, ion scattering, He-scattering, etc.—more information has become
available, particularly for Au.

A common factor of all these reconstructions seems to be the for-
mation of close-packed (111)-type facets or overlayers, as was guessed
pretty early in some cases [78,79,80]. The electronic motivation for this
tendency is a subject of current theoretical research, and still open to =
discussion [81,82]. At the ab initio microscopic level, with present-day
possibilities, the task is certainly a difficult one, due to the great com-
plexity of the electronic problem. First-principle approaches (of the
LDA type) are beginning to appear [83], but it will be presumably some
time before a consensus based on them will form. In particular, it can-
not be hoped that complicated geometries, such as those of the (100) or
(111) surfaces, could be handled without another breakthrough of the
level of the recent Car-Parrinello method [2].

Phenomenological schemes, however, could also constitute useful
tools to study the nature of metal surface reconstructions. As discussed
in the previous Chapters, empirical schemes where the total energy is
assumed to depend only on the atomic coordinates, should incorporate
many-body forces in order to reproduce correctly many bulk properties
of noble metals. It has been shown, in particular, that using a many-
body Hamiltonian of the “glue” type (certainly a very restricted class
of many-body forces) with a carefully constructed parametrization, a
satisfactory modelling of bulk gold properties can be achieved.

Inward surface relaxations (which occur in most metals) and surface
reconstructions are clearly many-body phenomena too. In fact, two-
body systems always display bulk-like crystalline atomic arrangements
at their surfaces, usually with outward vertical relaxations [22,23].

These phenomena can be accounted for by the glue Hamiltonian.
The rise of U(n) for decreasing coordinations, such as one finds at a
surface, provides a natural driving force for surface relaxation. By con-
tracting the first layer onto the second, the value of n for surface atoms
can rise, and the total energy is lowered. This mechanism works, how-
ever, only when U(n) is a mild function of n. When U'(n) is too large,

surface relaxation may become inadequate to lower surface energy, and
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can be replaced by reconstruction: since the coordination of a surface
atom is poor, it pays to reconstruct into a denser layer, with better co-
ordination. As shown in this Chapter, this simple mechanism is capable
to explain at a considerable detail level the T' = 0 structural properties
of the Au(100), Au(110) and Au(111) reconstructed surfaces [84].
 Section 4.2 is devoted to a discussion of the technicalities of the slab
molecular dynamics method used for searching the optimal structures.

Sections 4.3, 4.4 and 4.5 contain a description of our main findings for
Au(100), Au(110) and Au(111) respectively.

4.2 Searching for the optimal structure

Searching for minimum energy configurations in systems with a large
number of degrees of freedom and non-trivial forces may be a difficult
task. This is particularly true when the “best” geometries are largely
unknown and have low symmetries—perhaps due to the presence of
surfaces or defects—so that it is not possible to restrict the search by
freezing-in some degrees of freedom. In these cases, the system should
be able to find its own way towards the energy minimum, without any
“suggestion” or built-in constraint. This is the case when statistical
mechanics simulation methods, based on molecular dynamics or Monte
Carlo algorithms, are used—except for limitations due to the cell size
and to the statistical ensemble.

The minimum energy configuration can be obtained from simulation
either by a direct quenching procedure, or by a thermal annealing fol-
lowed by a slow cooling down to T' = 0. The former method is faster,
but since the danger of trapping in a local energy minimum is high, it
must be used with caution. The latter method (“simulated annealing”)
requires more computer time, but energy barriers can be overcome and
the system may be able to “land” in the global energy minimum, pro-
vided that is deep enough, even if the initial conditions were very far
away from there. This method of course does not guarantee attainment

of the absolute minimum. However, it is always possible to improve
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one’s confidence in a given configuration by trying different annealing
schedules, and by s"t'arting from different initial conditions.

We have used either of these methods, in a molecular dynamics (MD)
framework, to find the optimized structures. The atoms are arranged in
a slab geometry, with periodic boundary conditions parallel to the sur-
face, free boundary conditions along the surface normal, and a number
of layers in the range 10-20. The area of the slab is kept rigid, however
its value is changed at different temperatures to match the bulk thermal
expansion, accordingly to the zero-pressure bulk calculation described
in 3.1. This ensures that internal layers of the slab are as close to bulk
layers as possible.

We use standard molecular dynamics, where the number of particles
N is fixed. This poses a problem for the study of reconstructed sur-
faces, since reconstruction often implies surface density changes. In real
systems showing surface phase transitions, extra atoms can be added
or removed because reservoirs are present in the form of steps, kinks or
other defects [77]. Such defects are not present in our small cell, and the
only escape is to perform simulations on the same cell using different
values for N. The preferred final structure at T' = 0 will be that with

the lowest surface energy o, which we define as

FE — Ne,.
= e 4,
o 24 (41)

where E is the total energy of the slab, €. the bulk cohesive energy per
atom, A the slab area and the factor 2 accounts for two surfaces.
Another problem arises from the small size of the MD cell. Clearly,
the MD cell must be a multiple of the reconstruction cell. As a con-
sequence, the search for the optimal reconstruction cell must proceed
through attempts with different MD cells, comparison of surface energies

always being the ultimate criterion to establish the optimal geometry.
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4.3 Au(100) surface reconstruction

4.3.1 Experiments

The (100) surface of gold has been known to reconstruct since a long
time. The first, low-resolution LEED measurements [78,79] indicated a
(1 x 5) surface periodicity. Shortly after, the discovery of extra spots in
the LEED pattern led to assume (20 x 5) as the best estimate for the
reconstruction cell [78,80].

This large cell was explained as due to the formation of a closely
packed triangular overlayer, on top of a square (100) substrate. In this
geometry, the five-fold periodicity is due to the fact that six close-packed
rows of the triangular layer are stacked above five (011) close-packed
rows of the substrate. This arrangement requires a small (3.8%) shrink-
age of the overlayer—when compared with a normal (111) plane in the
bulk—to bring the natural row separation dv/3/2, where d is the bulk
- first neighbours distance, into the commensurate 5d/6. If the registry
were preserved in the direction (011) parallel to the rows, the unit cell
would be (1 x 5). The observed (20 x 5) cell of Au(100) was explained
by assuming a small contraction of the overlayer also in this direction,
so as to accommodate one extra row over 20 (011) substrate rows.

- Later experiments [77,85,86,87,88] refined this substantially correct
picture. In particular, LEED [77] and He-scattering [87] studies sug-
gested a much larger unit cell such as ¢(26 x 68), as the result of an
additional contraction along the five-fold direction (011) (and 26 re-
placing 20). In their scanning-tunneling-microscope (STM) real-space
investigation [88] Binnig, Rohrer, Gerber and Stoll (henceforth BRGS)
propose a ("’Z6 fs) unit cell where —5 < Z < 0, implying an additional
(011) contraction but also the possibility of a small rotation (about 0.1°)
of the whole overlayer over the substrate. It should be noted that these
experiments do not rule out the possibility that the two lattices are
actually incommensurate.

From the physical point of view, the most important feature of the

Au(100) reconstruction is the close packing achieved by the topmost
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layer. This indicates the surface density increase as the driving force
behind reconstruction. The energy of the system is lowered by this
density increase, overcoming the strain energy cost caused by the misfit
between the square substrate and the triangular overlayer.

The scope of the present Section is to explore all details concerning
both shape and energetics of the Au(100) surface atomic arrangement
as predicted by the glue Hamiltonian at T'= 0 [33,89].

4.3.2 (1 x 5) reconstruction

An investigation of the Au(100) surface structure predicted by the glue
Hamiltonian has been carried out using molecular dynamics, following
the procedure outlined in Sec. 4.2. MD is used as a tool to generate
the minimal energy configuration, through simulated annealing, of slabs
with in-plane periodic boundary conditions and initially 5 x 5 = 25
atoms per (100) plane. It is found that a number of layers L = 14 is
sufficient to decouple the two surfaces. A typical annealing cycle consists
of warming the slab up to about T},,/2 and, after equilibration, gradually
cooling back to T' = 0. The total length of the cycle is of the order of
10000 MD steps (1 step >~ 7 x 1071%s).

This procedure has been first applied to the clean, unreconstructed
(100) faces. Figure 4.1a shows the appearance of the first atomic layer
after annealing. One can note that the surface atoms have shrunken
together, leading to formation of close-packed stripes (five atomic rows
each) separated by a gap '. This gap in turn can be seen as leading
to the formation of two monatomic steps, here still very near to one
another. The second layer has remained a basically perfect (100) plane.
This is a clear indication that our (100) surface wants to reconstruct
into a denser layer, even within the constraint of the small 5 x 5 cell.

To pursue further this idea, we have made a series of runs where a

1By a careful quench of a perfect crystal, nof preceded by heating and thermal
equilibration, an unstable relaxed but perfect (100) surface has been indeed produced.
Its surface energy is higher than that of the configuration with the gaps (128.5 vs.
109.6 meV /A?).
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Figure 4.1:

Side views of minimum energy configurations of (100) slabs after thermal equi-
libration and subsequent annealing. Two molecular dynamics cells are shown

for clarity.

(a) The starting configuration was a perfect (100) slab. The atoms have
shrunken in 5-rows wide stripes, leaving a gap (indicated by the arrow)
in between. The surface energy is 109.6 meV/AZ.

(b) 5 additional adatoms present in the starting configuration. They are
absorbed, giving rise to a 20% denser quasi-triangular reconstructed first
layer with a ABCC BA stacking. The surface energy is 102.3 meV/A2.

(c) Same as (b), but the registry is different and the stacking is ABCDCB.
The surface energy is 102.6 meV/A2.

All atomic positions shown to scale (not schematic), but atom radii are arbi-
trary. Vertical (z) direction (100), horizontal (y) direction (011).
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Figure 4.2:
Surface energy of the final configurations as a function of the number of
adatoms present at the start in a 5 X 5 (100) slab. The minimum at n = 5

corresponds to the configuration in Fig. 4.1b.

number 72 of extra adatoms is added on top of the first layer. n is varied
throughout the range from n = 1 to n = 25. For n small, the extra
atoms are absorbed into the first layer giving rise, after annealing, to
a denser packing. At the same time, we find a decrease of the surface
energy o (defined by Eq. (4.1)). A minimum of o as a function of n is
obtained for n = 5, as shown by Fig. 4.2.

The corresponding first-layer arrangement of Fig. 4.1b is a good
candidate for explaining the Au(100) reconstruction. The second and

deeper layers retain a strained (100) character, in agreement with the
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experimental findings [85]. The amplitudes of the corrugation predicted
for the first four layers are ¢ = 0474, & = 0.21 A, &= 0.134, and
€4 = 0.08 A. The relaxations of the distances between average layer po-
sitions are Adys = +3.6%, Adys = +2.2%, and Adss = —0.2%. The
increase of dj, and d,; is due to excessive coordination in the second
layer, caused by the first-layer reconstruction. The stacking of the rows
is ABCCBA, as on Fig. 4.1b.

We have also found a local energy minimum at another stacking
ABCDCB, shown in Fig. 4.1c. In this arrangement the surface en-
ergy is slightly higher and the corrugation is larger. The main physical
difference between the two stackings is that in the latter the strain is
concentrated on the atoms of row D, which is severely raised over the A
row (& = 0.74 A), whereas in the former ABCC BA stacking the strain
is shared by the two C rows, resulting in a smaller outwards corrugation
over the A rows. In both cases the strain is not uniformly distributed;
the surface density is higher in a hilltop row, and lower in a valley row,
where the atoms are not far from their ideal hollow-site positions over
the square substrate.

Of course the role played by the cell size in these calculations is not
a minor one. The n = 5 “best” configuration has a (1 x 5) reconstructed
structure which fits very well in our 5 X 5 cell. On the other hand, the
use of different cells may reveal the existence of reconstructed surfaces
with a still lower surface energy. Following this idea, calculations of
the same kind have been performed, with cells suited to the following
reconstruction patterns: (1 x 7), (1 x 12), (1 x 8), (1 x 3), respectively
of the kind 8-onto-7, 7-onto-6, 5-onto-4, 4-onto-3 (in increasing order of
surface density). Some have periodicities which are twice the number
of substrate rows because the unit cells must contain an even number
of rows in the triangular overlayer. All these surfaces reconstruct into
a denser overlayer, and the surface energies are reported in Table 4.1.
Since they are all higher than the (1 x 5) surface energy, (1 x 5) is the

preferred pattern.
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Structure o (meV/A?)
non-reconstructed, ideal 143.1
non-reconstructed, relaxed 128.5
(1 x 7) relaxed 103.7
(1 x12) relaxed | 710327
(1 x 5) relaxed 102.3
(1 x 8) relaxed 103.3
(1 x 3) relaxed 108.6

Table 4.1:

Surface energies for several (100) geometries. (1 x 7), (1 X 5) and (1 x 3) have
8 rows over 7, 6 over 5, 4 over 3 respectively. (1 X 12) and (1 X 8) have 7 rows

over 6 and 5 rows over 4. (1 X 5) has the lowest surface energy.

4.3.3 (M x 5) reconstruction

So far we have considered only the reconstruction along the five-fold
(011) direction, which gives rise to the basic (1 x 5) pattern. In this
geometry, the quasi-triangular overlayer is contracted on the average by
3.8% along (011) (henceforth direction y), while it is in registry with the
- underlying lattice in the (011) direction (henceforth direction ). On the
other hand, as discussed in Subsec. 4.3.1, the unit cell has been regarded
as a (20 x 5) for a long time, indicating a 4.8% average contraction along
z, and larger cells are suggested by later experiments [77,88].

The 5 x 5 cell size used in the calculation described in the previous
Subsection cbviously prevents the possibility to study reconstructions
of long periodicities. We have therefore lifted this restriction by going
to larger M x 5 unit cells. Assuming as a starting point the presence
of a 6-onto-5 reconstruction in the y direction, we searched for the op-
timal contraction in the = direction by studying the surface energies of
reconstructed (M x 5) 12-layers slabs.

In the starting configuration, the topmost layer is a perfect triangular

lattice contracted by 3.8% in the y direction to accommodate 6 rows
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onto 5 in the substrate and by a factor 1/(M + 1) in the z direction
to accommodate M 4 1 (011) (staggered) rows onto M. All the initial
interlayer distances are set equal to ao/2. This configuration is already
reconstructed and very close to the (1 x 5) geometry, found to be opti-
mal among all small size cells investigated in the previous Subsection.
Therefore, ohly small relaxations (and not extensive atom rearrange- °
ments) are expected to be required to minimize the energy. For this
reason, a relatively fast (~ 3000 steps) molecular dynamics quench pro-
cedure has been employed to search the minimum energy state, where
kinetic energy is gradually extracted from the system until alocal energy
minimum is attained.

Although computationally heavier (due to the large N and to the
number of slabs to study) and, as it turns out, quite instructive, the
present study is in a way simply a refinement of the basic quasi-tri-
angular geometry already established. In particular, we know from the
previous Section that there are two kinds of stable (1 x 5) arrangements
(ABCC BA and ABCDCB), differing mainly in the registry with the
substrate along the y direction. In the present study of (M x 5) cells
we explore either possibility, by choosing the appropriate registry in
the starting configuration. We then calculate and compare the surface
energies o of the final, fully relaxed slabs. We have verified, in each
case described here, that the two surfaces of the slabs behave identi-
cally, structurally and energetically, to an accuracy of better than six

significant figures.

4.3.4 Energetic and structural analysis

The surface energy of relaxed (M x5)-reconstructed slabs as a function of
M is shown in Fig. 4.3. Surface energies are expressed as differences Ao
from the ABCCBA (1 x 5)-reconstructed surface, oo = 102.3 meV/A2.
Four curves are represented, two corresponding to the ABCCBA reg-
istry and two to the ABC DC B registry. For each registry, the even and
odd M cases are distinguished. The latter choice in fact gives system-

atically a slightly higher surface energy. The two curves related to the
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Figure 4.3:

Differences of surface energies of (M X 5)-reconstructed slabs, with respect to
a (1 X 5)-reconstructed ABCCBA slab, as a function of M. The two basic
y registries (ABCCBA and ABCDC B) show different behaviours. For each
registry, the odd M case is slightly disfavoured due to the presence of excited
solitons S* (see Subsec. 4.3.6). The optimal surface is ABCCBA, M = 34.
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- ABCC BA registry should converge to 0 in the limit M — oo, where
the (1 x 5) registry is recovered. The ABC DC B registry is favoured for
M < 19, while the ABCCBA has a lower surface energy for M > 19.
In the ABCCBA case, all M > 18 improve over the (1 x 5) surface
energy. The curve becomes very flat for M > 26, with differences of
the order of 1 1eV/A? between adjacent points 2. The absolute min-
imum value occurs at M = 34, then the curve gently begins to rise
towards the asymptotic zero value. The surface energy corresponding
to this minimum is about 0.1% less than the ABCCBA (1 x 5) sur-
face energy. In the ABC DC B registry there is a marked minimum at
M = 20, then the curve rises towards the ABCDCB (1 x 5) surface
energy which corresponds to 366 ,ueV/Az. Furthermore, we note that
after annealing some of the small distortions that take place break the
exact mirror plane symmetry of ABCCBA. The relaxed surfaces have
instead a lower symmetry of the type ABCCBA, where A and A, B
and B, C and C are different as discussed below.

The above analysis leads to the following interesting points:

1. the ABCCBA arrangement provides the overall surface energy
minimum, and leads to larger unit cells than ABCDCB.

2. the best length M of the (M X 5) unit cell is M = 34, but the
minimum of the surface energy is so flat as to make this precise
value almost meaningless. Any value of M between 28 and 38 is
about equally good.

3. the odd M cells cost more energy to realize than the even M cells.
This has to do with the presence of a defect, as will be discussed in
detail in 4.3.6. The defect-free situation is that of even M, which

therefore must be taken as representative of the perfect surface.

20f course, the absolute level of confidence we have on the energetic accuracy of
our glue scheme is far from the level of the peV, or even the meV, per atom. The
accuracy of relative energy differences, however, can be very different, and should
basically be as good as the physical description behind our Hamiltonian. In this sense,
it is meaningful to seek the optimal configuration, even among possibilities which are

energetically very close.
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We can now proceed to examine the structural details of our opti-
mal (100) surface arrangement, i.e. ABCCBA, (34 x 5), as resulting
from our molecular dynamics minimization. In Fig. 4.4 we show three
views of this surface. It is apparent that the strain in the z direction is
concentrated in highly corrugated regions which have a one-dimensional
““soliton” appearance [90]. These solitons form a two-dimensional lat-
tice, six of them per each rectangular unit cell, of size 34 x 5. Except for
a small distortion, this arrangement corresponds to a centered rectan-
gular lattice with two solitons per cell, of size 34 X % Note the alternate
stacking of solitons, due to the geometrical interplay of superposed tri-
angular and square lattices (see Fig. 4.4b), more than to an effect of
repulsion between solitons. Yet, this repulsion exists. In the dilute
limit, i.e. M very large, the soliton-related surface energy change Ao

can be expanded in powers of their density, 5]\/1 -

(a2/2)Ac = u(6/5)M ™" + —2—1/(6/5)2M“2 T (4.2)

We have found that Eq. (4.2) provides a good fit for M = 18,20,...,40
and oo, as shown in Fig. 4.5. The fit yields p = —48 meV (the soliton
“chemical potential”) and v = 1370 meV (the effective soliton “pairwise
repulsion”).

Next, we discuss the corrugation pattern of our (34 x 5) surface,
shown on Fig. 4.6. We note first of all that, far from the soliton re-
gions, the B, B rows are basically at the ideal first-second layer distance
(2.035 A), while the A, A rows are ~ 1% contracted and the C, C rows
are ~ 4% expanded. The solitons show up rather sharply at = = +0.7 A
(with our choice of origin, = = 0.7 A corresponds to a bulk (011) row),
as can be seen from the sharp cusps for rows 4, B and C. The soliton
width can be estimated to be about 10 A. The remaining rows A, B and
C run “between” these solitons and show a much weaker corrugation.
In fact the other three solitons in our cell appear symmetrically on these
rows A, B and C, and their centers fall at z = —48.2 A, very near to
the cell boundary (z = +48.9 A). A wide smooth area extends between
the two triplets of solitons. Right in the middle of it, at =z = —23.7A
and z = +25.2 A, there is a coincidence of A with A, B with B, and C
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Figure 4.4:

The optimal ABCCBA (34 x 5)

surface.

A 2 X 2 array of cells is

(a) Perspective view showing the soliton lattice.

shown.

(b) Top view of the first (white atoms) and the second layer (black atoms).

) has a

(c) Side view of the first six layers. The first layer (a B row is shown

soliton in the middle.
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Figure 4.5:

Second-order expansion of the surface energy difference Ao with respect to
ABCCBA (1 x 5) in powers of 1/M. The dots are the values obtained from

the molecular dynamics minimization.
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Figure 4.6:

Distance of first layer atoms from the second-layer average plane as a function
of z for each row. The dashed line at ag/2 = 2.035 A corresponds to the bulk
interplanar spacing.

80




with C, so that locally the surface is exactly a (1 x 5) ABCCBA. The
relatively large extension of this area may account for the intense (1>< 5)
features of diffraction patterns: the surface only differs from a (1 x 5)
due to the solitons, which are rather localized.

We can argue from Fig. 4.6 also about the y-corrugation (along
(011)) "The corrugatlon pattern in the smooth area (i.e. for z =~ £25 A)
is single-maximum-single-minimum, with a total excursion of 0.48 A in
the middle of the area. On top of the solitons, on the other hand, the
ABCC BA pattern is double-maximum-double-minimum, with a total
swing of 0.80 A. This pattern occurs only on 6 rows out of 35, 1.e. when
the A (A) atoms are higher than the B (B) atoms. It is noteworthy
that the two maxima have different heights (2.29 A in 4, 2. 74A in 0).

Along with these morphological features, we can identify correspond-
ing oscillations of the local atomic coordination n; (defined by Eq. (1.7)),
and of the associated excess energy per atom relative to the bulk, € — €.
(defined by Eq. (1.12)), both of which are shown on Fig. 4.7. The coor-
dination along a row increases when approaching a soliton, but falls into
a deep minimum in correspondence with the top atom at the center of
the soliton. At the same time the energy has a sharp maximum. This
situation is completely changed when the soliton is in the two adjacent
rows (for 4, B, C in Fig. 4.7 this happens at z = —48.2 A). In this case,
the atoms have a true maximum in the coordination and a minimum
in the energy when going through the “valley” between the solitons.
Therefore, the alternate soliton stacking plays a crucial role in keeping
down the soliton formation energy.

Also evident from Fig. 4.7b is the high average energy of the C row.
This is due to a concentration of the strain in the y direction over the
C and C hill rows. In fact, it can be visually seen in Fig. 4.4a and 4.4b
that the A and A rows have a slightly wider spacing than the C' and C
rows. On the C and C rows we observed large bond length contractions
(up to 16% for some atom pairs, with ~ 5% as a typical average value)
and the associated two-body repulsion raises the energy of the row.

Finally, in Fig. 4.8 we show the behaviour of the phase ¢; of the
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Figure 4.7:

(a) Coordination n; as a function of = for atoms of the A, B, C rows.

(b) Excess energy per atom (relative to the bulk) ¢; — €. as a function of =
for the A, B, C rows.

The soliton centers are at z = +0.7TA for 4, B, C, and at = = —48.2 A for the
adjacent rows 4, B, C.
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Figure 4.8: -
Soliton phase (defined by Eq. (4.3)) as a function of z for each row. The total
360° phase shift in a cell is achieved in two steps. The large step corresponds

to a soliton in the given row and the small step to solitons in the adjacent rows.
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solitons, defined for a given row as

2
o = —;—E(mk — kd+1b), (4.3)

where k is an index running from 1 to 35 (number of atoms in a top row
for a bulk cell of 34), i is the « coordinate of atom k, d is ao/ V2 and bis
a constant (equal for all the rows). We have referred the phase angle to
an ideal perfect square lattice rather than to the actual substrate layer,
which is slightly distorted as discussed in 4.3.5. It is apparent that the
360° total phase shift within a cell is achieved by a row through two
distinct steps: a larger phase shift across the soliton region (~ 250° for
A, A, B, B, ~ 200° for C, (), and a smaller phase shifts when the row
runs “between” two solitons (~ 110° for 4, A, B, B, ~ 160° for C, C).
As a result, the phase difference between any pair of rows changes its
sign across the soliton region, so that the (1 x 5)-like phase on the left

of the soliton becomes mirrored in a specular phase on the right.

4.3.5 Multilayer relaxations

The previous Subsection describes the first layer alone rather exhaus-
tively. This should not be taken to imply that the second and deeper
layers, which have not reconstructed, have retained their perfect square
lattice atomic positions. On the contrary, the second layer is severely
strained and warped. Moreover, some “multilayer” relaxation propa-
gates down to the third and fourth layers.

The second layer undergoes a considerable amount of in-plane shear
distortion. The maximum shear occurs in correspondence with the mid-
dle of the smooth area, and amounts to 0.37 A between the two adjacent
(011) rows labeled Cj, C, in Fig. 4.4a. The vertical corrugation is also
very noticeable, “following” generally the first-layer corrugation. The
detailed pattern is that of Fig. 4.9. Cusps are still sharp at the soliton
positions, although their height is lower. The y-corrugation ranges from
0.21 A in the center of the smooth area, to 0.29 A in correspondence

with the solitons.

84




2, (A

18

X (f\)

Figure 4.9:

Same as Fig. 4.6, for the second layer. Distances are from the third-layer
"average plane. The dashed line corresponds to the bulk interplanar spacing.

The labeling of second-layer rows is shown in Fig. 4.4a.
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Proceeding down to the third and deeper layers we observe that,
while the in-plane shear decays quite fast (0.07A in the third layer,
0.02 A in the fourth, and negligible afterwards), the same is not true for
the vertical corrugation. In the third layer, the y-corrugation is 0.13 A

near the middle of the smooth area, and 0.19 A at the soliton positions.

The corresponding values for the fourth layer are 0.08 A and 0.10A;

Finally, the average interplanar distance is also modified apprecia-
bly. By averaging over all atoms of each layer, we obtain Ad;; =
(dyz — d9,)/d%, = +5.0%, Adys = +2.1%, Adsq = —0.3%. Adss and
successive are negligible. These average relaxations are close to those
obtained with the smaller (1 x 5) cell. The outwards relaxation of the
first layer may appear unusual for a metal. However, it is an unescapable
consequence of our Hamiltonian, where coordination plays a key role.
The first-layer reconstruction, while not succeeding in raising the first
layer coordination to 12, has the effect of increasing that of the second
layer above 12. Qutwards relaxation of the first layer relative to the
second, and to some extent also of the second relative to the third, is
then called for as the only means to keep the second-layer coordination
from getting too high. No experimental data have been reported for
such relaxations on Au(100). It is interesting, however, to note that
data do exist for the closely related (1 x 5) Ir(100) surface. The model
proposed by Moritz [91] based on dynamical LEED is quite similar to
our (1 x 5) cell, and is reported to have a large first layer outwards relax-
ation Ady; ~ +15% (average value), which encouragingly goes precisely

in that direction.

4.3.6 0Odd versus even M: excitations in the soliton

system

Here we digress briefly on the implications of the even-odd M oscillations
shown by our results of Fig. 4.3. It is quite simple to explain how these
oscillations arise in our calculation. We start by recalling that we have
M + 1 atoms per row to be placed above M substrate atoms along z.

As it turns out, for even M one of the M + 1 atoms of each row wants
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Figure 4.10:
The sharp soliton S and the broader “excited” soliton S* for the B rows. The

“excitation energy” from S to S* is about 11 meV.

to sit exactly at the same z, i.e., approximately on top, of one of the M
substrate atoms. That is the center of the sharp soliton (denoted by 5)
for that row. When M is odd, it is not possible to realize a sharp soliton
on all rows. The optimal solution is realized by retaining a sharp soliton
S for every other row (e.g. A, B, C) and replacing the sharp soliton
on the remaining rows (4, B, C) with a broader “excited” soliton S*
energetically less favourable than S . As shown by Fig. 4.10, in $* the
soliton center falls between two atoms rather than on top of an atom as
in S. In the odd M case the stacking is thus A*BC*CB*A (where Ar
means an A row with an §* soliton, etc.). The mirror plane reflection

transforming ABCCBA into ABCCBA for even M, has disappeared

3 Actually, for the odd M case, other less symmetric configurations can also be
generated with comparable or even slightly lower energy than that just described. In
such configurations, the number of S* solitons per cell is decreased, at the cost of
some extra strain on the S solitons. We will not go into further detail about that here,
since the concept of excited soliton S* is already well introduced by the symmetric

arrangement.
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for odd M, where S and S* are different.

The energetic cost ¢ required for “exciting” a soliton S into §* is
straightforwardly extracted from the even-odd oscillation 8o visible in
Fig. 4.3, by using é0 = 3¢/A. Here 3/A is the surface density of 5™ ex-
cited solitons in a cell of area A. Our best estimate for € is 11 meV. Such
a low energetic cost is interesting, and suggests that already at room
temperature the probability to find each given soliton in the (broader)

excited state is far from negligible.

4.3.7 Comparison with STM results

The surface energy minimization described in the previous sections has
provided a very detailed model for the Au(100) reconstructed surface.
The optimized periodicity is (34 x 5), to be compared with the suggested
experimental value of (26 x 48) [88], which (in spite of numbers looking
different) is very close to (26 x 5). This can be regarded as a pretty
good agreement, particularly since: (a) the minimum in o versus M
is extremely flat, as already mentioned in Subsec. 4.3.4; (b) no provi-
sion is made for an additional contraction in the y direction or a small
overall rotation (both leading to much larger unit cells) and for finite
temperature effects.

The detailed discussion provided by BRGS of the Au(100) surface
morphology obtained by STM allows some further comparison with
our calculated structure. Their STM micrograph, shown in Fig. 4.11,
exhibits an alternation of “smooth ribbons” with “rough ribbons”. We
can identify the rough ribbons as the stripes joining solitons along (011),
and the smooth ribbons as the wide flat regions in between. The rough
ribbons seem narrower in our calculation than in the STM picture. How-
ever, it is possible that this could be due to temperature smearing, rather
than a genuine disagreement. We note that a non-sharp soliton can only
really be expected of a hard-sphere model, where relaxation is totally
absent. Soliton sharpening is an inevitable effect of relaxation which

is generally expected, quite independently of the present specific force
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Figure 4.11:
STM micrographs of Au(100), taken from ref. [88]. They show the alternat-

ing sequences of “rough ribbons”, with a double-maximum-double minimum

corrugation pattern, and “smooth ribbons”, with a single-maximum-single-
minimum pattern. These ribbons are oriented along (011). Divisions on the
axes correspond to 5 A. The solid lines show the unit cell, ~ (26 x 48). (011)
is direction z and (011) direction y in Fig. 4.4.
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model *.

Another feature which is present in a hard-sphere model but is wiped
out by relaxation in our model is the “triple-maximum” corrugation
along y [88]. In our (34 x 5) surface the y corrugation can be described
as follows. In the z region between the solitons (the smooth ribbon
of BRGS)‘WC find a “single-maximum-single-minimum” corrugation of
magnitude ~ 0.5 A (see Fig. 4.6). This corrugation coincides numeri-
cally with the value suggested by the He-scattering analysis of Rieder
et al. [87]. On the other hand, on top of the solitons the y corrugation
is of the “double-maximum-double-minimum” type (due to the alter-
nating stacking of solitons) with total magnitude ~ 0.8 A. Once again,
it seems to us that such a theoretical corrugation pattern is compatible
with the STM results. They indeed present an alternation of “single-
maximum-single-minimum?” with “double-maximum-double-minimum”
stripes, with little direct evidence for a triple maximum.

In conclusion, it has been shown how an extremely detailed picture
of the reconstructed Au(100) surface can be obtained by starting from
the same glue Hamiltonian which reproduces the bulk properties. The
resulting energetics and surface atomic arrangement appear realistic,

and compare favourably with existing experimental evidence.

4.4 Au(110) surface reconstruction

4.4.1 Experiments

The (110) surfaces of Ir, Pt and Au exhibit a (1 x 2) reconstruction,
meaning that the surface unit cell length is the same as in a truncated
bulk along the (110) direction, while it is twice as long along (001).
Among gold surfaces, Au(110) is probably the most studied. Experi-
mental data for Au(110) have been obtained with a number of different

‘However, the amount of sharpening does depend on details. For example, if the
final first-second layer expansion of Au(100) were found to be as large as suggested for
Ir(100) [91], i.e. ~ 15% rather than 5%, then also the soliton width would probably
be larger.
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techniques, namely LEED [78,92,93,95,96,105], He-diffraction [94,98],
low [97,106], medium [107] and high [99,103,104] energy ion scattering,
STM [100], X-ray diffraction [101] and transmission electron microscopy
[102]. ‘

While various models have been proposed in the past to explain the
(1 x2) pattern (see,ﬁe;g“.., Ref. [98]), general consensus has now gathered
around the “missing row” model. In this model, every other close-packed
(110) row is absent in the topmost layer. The resulting surface structure
displays a zigzag profile, with tiny (3-rows wide) (111) facets. A point
debated in literature concerns the relaxation of the top row. By now,
most authors believe that the top (ridge) row is contracted towards the
second layer [92,97,98,105,106,107], although expansion had been argued
by some [101,102].

Other periodicities such as (1 x 3) and (1 x 4) are also occasionally
observed in experiments [92,100]. In their STM study [100], Binnig et al.
interpret these periodicities as due again to structures of the “missing
row” type, but with larger channels. In particular, a (1 x L) missing row
model consists of L — 1 rows missing in the topmost (110) layer, L —2 in
the second layer, and so on. This gives rise to (111) facets (each of them
L+ 1 (110) rows wide), which form—neglecting relaxation effects—an

‘ideal angle of about 35° with the flat (110) surface plane. From these
experimental observations, Binnig et al. argue that at the origin of the
Au(110) reconstruction there is a strong tendency to (111) faceting. This
tendency should be driven in turn by a large surface energy anisotropy,
where the cost a perfect (110) face is very high compared with (111)
[108].

It has been shown in Sec. 4.3 that the Au(100) surface reconstruction
is explained in considerable detail as arising by the necessity of surface
atoms to switch from a poorly packed (100) layer to a (111)-like densely
packed configuration. It is therefore natural to expect that a Au(110)

missing row reconstruction should be favoured in the glue model.
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4.4.2 Unrelaxed missing row surface energies

Owing to the simple geometry, it is easy to calculate analytically, ne-
glecting relazations, the T' = 0 surface energies in the glue model for the

various (1 x L) missing row reconstructions and for the perfect (110)

—..surface. . ... ...

If we assume first-neighbour interactions for both ¢(r) and p(r), as

in our realization for gold, then in a (1 x L) missing row surface:
e the top (ridge) row atoms have coordination n = 7;
e the bottom (groove) row atoms have coordination n = 11;
e all the other atoms in the (111) facets have coordination n = 9;

e the remaining atoms, buried below the “surface” atoms above,

have the bulk coordination n = 12.
To bring the coordination of an atom from 12 to n, it is necessary
to break 12 — n bonds, so that the associated energetic cost is

(n) =~ + U(n) ~ U(12) (4.4)

where ¢ (which is negative) is the two-body potential at the first-neigh-
bour distance d. A
Therefore, the surface energy o(X) for a (1 x L) missing row surface
is given by
o) = E}Z[e(ﬂ + €(11) + 2(L — 1)e(9)]. (4.5)

where A = d?4/2 is the area occupied by an atom in a perfect (110)

plane. This equation recovers for L = 1 the surface energy of a perfect
(110) face

1
eV = <€) + €(11)] (4.6)

while in the limit L — oo it gives

o) = -j-e(g) (4.7)
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Such a “(1x 00)” reconstructed surface is simply a slanted (111) surface,
and its surface energy is of course that of a (111) multiplied by the

inverse of the cosine of the tilting angle (about 35°):

o(®) = \/ggm ~ 1.2250 (4.8)
From the above results, we can write
1 ' 1
b = Ea(l) + (1 — —i) o(*) (4.9)

In this simple model, therefore, oX) changes linearly from ¢(!) to o(°)
as 1/L is decreased from 1 to 0. It may also be noted that
(1) (c0)
2 = Z___J;_"__

In order to determine the lowest surface energy state of the surface, we

(4.10)

evaluate, using Eq. (4.4), the difference

Ay o o) _ (o) — 1) _ \/50 _ UM -20(9) +U(12)  4U"(9)
- 2 A A
(4.11)

The conclusions that can be drawn from this analysis, based on ne-

glecting relaxations, are the following:

e If only a first-neighbour pair potential is used, there is no difference
in surface energy between all the (1 X L) missing row surfaces,

including L = 1 (unreconstructed surface).

e In presence of a glue term, the reconstruction is favoured (Ao > 0)
if U(n) has a positive curvature in a wide region around n = 9,
disfavoured (Ao < 0) in the opposite case. Note, however, that the
former condition is usually satisfied when U(n) is fitted to other
physical properties. In particular, U” must be positive around
n = 12 to give a positive Cauchy pressure (see Eq. (1.57)).

e As a peculiar consequence, it is impossible to model f.c.c. metals
whose (110) surface do not reconstruct (e.g., Cu) with a first-neigh-
bour glue as done for Au. At the very least, second neighbours
must play a role in that case.
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e If reconstruction is favoured, the “best” state is that with L = oo,
which corresponds to a tilted (111) plane. (1x2)is not particularly

good in a picture where relaxations are absent [109].

The results of the above analysis somewhat contradict the experi-
-ments. Of course, a (1 X oo) would take in practice an infinite time

to form when starting from a perfect (110) plane, for kinetic reasons.
However, experimental results indicate the (1 x 2) as the most stable
state for the surface, and (1 x 3), ... as metastable, and no tendency to
increase indefinitely the size of the facets is observed.

While this may seem a failure of the model, or a limitation due to the
short range of the interactions, it is really a consequence of neglecting
atom relaxations. As it will be shown below, relaxations are very strong
on this surface, and the energy gained from them is larger than the
energy gained from reconstruction.

In the following Subsections, we report about the energetics (4.4.3),
the structure (4.4.4) and the low-temperature behaviour (4.4.5) of the
Au(110) surface in the glue model, studied using molecular dynamics

[110].

4.4.3 Energetics

We use molecular dynamics (MD) as a tool for searching the energeti-
cally optimal configuration, following the procedure outlined in Sec. 4.2.
The systems chosen for our study are (110) slabs of sufficient thickness
(twelve to twentyfour layers) and variable lateral (z,y) size. A relatively
fast quenching procedure (about 2000 MD steps) turned out to be suf-
ficient to optimize the energy reliably for all the geometries we have
studied. We have applied this procedure first of all to a flat Au(110),
and then to the (1 X L) missing row reconstruction models. Displacive
reconstruction models [98], like the “sawtooth” model [111], are auto-
matically included in the search, and need not be pursued separately.
For each starting point, we have searched and reached the lowest
energy E,, and the corresponding optimal structural configuration. Ta-

ble 4.2 presents the surface energy, defined by Eq. (4.1), and the percent
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Structure o (meV/A%) | Adiz (%) Adys (%) Adsa(%)

(1% 1) ideal 150.4 0 0 0
(1 x 2) ideal 139.5 0 0 0
(1 x oo) ideal 128.7 0 0 0
(1 x 1) relaxed 122.5 —-33.9 +6.9 +1.3
(1 x 2) relaxed 107.4 —27.5 —4.7 -2.2
(1 x 3) relaxed 109.8 —30.8 —4.8 -10.2
(1 x 4) relaxed 109.5 -31.9 -5.2 -8.3
(1 x 5) relaxed 109.4 —36.0 —6.9 —10.0
(1 x 6) relaxed 110.0 —-33.1 —-14.1 —-8.3
(1 x 00), rel. (111) 118.3

(1 X 00), rec. (111) 108.0

Table 4.2:
Optimal surface energies and multilayer relaxations for various models of
Au(110). Al the structures except (1 x 1) are of the missing row type.
The values relative to (1 X co) are based on (111) surface energies o}j}; =
105.1meV /A2, ol1! = 96.6meV /A%, oll!l = 88.1meV/A? calculated in
Sec. 4.5.
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variations of the average (110) interlayer distances Ad; 1, relative to
our bulk value dy = 1.439 A. .

We note, in the first place, that simple relaxation is by itself able to
reduce drastically the surface energy. However, a small but definite ex-
tra energy gain is obtained by reconstructing (displacive reconstruction
models are not listed, as they are found o raise the siirface energy). The
best configuration is found to be the (1 X 2) missing row, in agreement
with experimental evidence presented in Subsec. 4.4.1 and with other
recent ab initio [83] and empirical or semiempirical [112,113] theoretical
studies.

Contrary to the approximate treatment presented in 4.4.2, we find
the surface energies of the (1x3), (1x4), ..., missing row reconstructions
to be higher than (1 x 2). The difference, however, is extremely small.
This may explain the above mentioned observations of (1 x 3) or (1 x 4)
local configurations in STM data [100], and of (1 x 3) by LEED [92]
and He-scattering [114]. It probably also has a bear on the detailed
mechanism of disappearance of (1 X 2) ordering at high temperatures
[115,116,117] or through silver deposition [118].

As a last comment on energetics, we note that, knowing the Au(111)
surface energies calculated in Sec. 4.5, we automatically have the “(1 x
00)” missing row energies. If the (111) facets are taken to be themselves
unreconstructed, then the “(1 x 00)” energy is higher than any of the
(1x L) missing row models. However, at some value of L, reconstruction
should set in on the (111) facets [129], leading to further energy lowering.
Although we have not tried to verify this for any finite L, we can still
confirm that this is the case for (1 X o0). The (1 X oo) slanted and
reconstructed (111) has in the glue model a surface energy only slightly

higher than the optimal (1 x 2) missing row surface.

4.4.4 Structure

Now, we turn to a discussion of the Au(110) surface structure. Table 4.2
already indicates that all situations display a very substantial contrac-

tion of the first-second layer distance. This is a typical effect of the
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T=0K T =300K
Atom T y z T Y z
0.266  0.000 8.185|0.000  0.000 8.204
1.496 —1.752 7.141 | 1.444 —-1.770 7.150
1.496 1.752° 7.141 | 1.444 17770771507
—0.027  0.000 b5.586 | 0.000  0.000 5.599
0.022  4.070 5.955| 0.000 4.084 5.994
1.436 —2.153 4.363 | 1.444 —2.169 4.393
1.436  2.153 4.363 | 1.444  2.169 4.393
0.001  0.000 2.839|0.000 0.000 2.837
—0.001  4.070 2.902 | 0.000 4.084 2.913
1.439 —2.040 1.452|1.444 —2.048 1.459
1.439  2.040 1.452 | 1.444  2.048 1.459
0.000  0.000 0.000 | 0.000 0.000 0.000
0.000 4.070 0.011 | 0.000 4.084 0.013

TOZRZENDOREOD QW

Table 4.3: B
Coordinates, in A, of the atoms in the (1 x 2) reconstructed surface unit cell.
Direction z is (110), y is (001), z is (110) (surface normal). T = 0K denotes
the optimized geometry, while average coordinates are given at I', = 300 K.
The atom labels are as in Fig. 4.12. The origin has been arbitrarily placed on
the atom O. The bulk lattice parameter of the crystal, calculated in Sec. 3.1,
isa=4.070A at T =0 and o = 4.084 A at T = 300K.

glue. Contraction takes place against two-body forces, but it improves
coordination, which is very poor for a surface atom. Deep multilayer
relaxations are also created as a byproduct.

A lateral picture of our optimized (1 x 2) surface structure is pre-
sented on Fig. 4.12. Atom coordinates at 7' = 0 and 7' = 300K are
reported in Table 4.3. The finite temperature positions have been ex-
tracted from a 10000-steps MD run for a 20-layers slab with a 8 x 6
in-plane size. The coordinates reported are the result of averages both

on time and on the 48 (1 X 2) surface unit cells available (24 on each
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Figure 4.12:
Side and top views of the optimized T' = 0 (1 x 2) missing row surface. All -
atomic positions shown to scale (not schematic). Atom radii are arbitrarily
chosen to be 0.85A. In the side view, the solid circles correspond to the
actual atomic positions, the dashed circles to the ideal, unrelaxed missing row
structure. In the top view (first three layers shown), the sliding distortion of

- the top row along its own direction partly uncovers third layer. atoms.

98



side of the slab). ,. 7

The topmost row is deeply suni&en, with a 27% contraction onto
the second layer. This value exceeds only slightly the estimates ex-
tracted from recent data, indicating a contraction in the range 18%-—
20% [105,106,107]. It disagrees totally with earlier reports of outwards
* expansion [101,102]. I

The lateral motion of second layer atoms is smaller (yp — yur =
0.29 A), but appears to be opposite in sign to that indicated experimen-
tally [105]. A similar “inward” motion of second layer atoms was also
obtained by Daw for Pt(110) using an “embedded-atom” scheme [119],
and seems to be typical of this class of Hamiltonians.

The third layer is buckled: the atoms directly underneath the miss-
ing row are slightly pushed up, while the others are strongly pushed
down by the first-layer atoms, their first (bulk) neighbours. Our total
third-layer buckling is zg — zp = 0.37 A. The corresponding experimen-
tal values are reported in the range 0.20-0.24 A [105,107]. Again, this
confirms a qualitative agreement with experiments, while in the detail
our numbers seem somewhat too large. The relaxation pattern contin-
ues, while attenuating progressively, into a multilayer relaxation which
falls below 0.1% only around the 8th layer.

4.4.5 A “sliding distortion” of the top row

Our optimized (1 x 2) missing row structure has also an unexpected
frozen-in secondary lattice distortion, clearly visible in the top view in
Fig. 4.12. All the topmost (110) rows have undergone a uniform “slid-
ing” translation z4 — o = 0.27A along their own direction, and the
second-layer atoms follow with zp — z3r = 0.06 A. The corresponding
surface energy decrease is small, about 0.67meV /A2, or 180K per sur-
face atom, with respect to the (unstable) arrangement where the sliding
distortion is removed.

The energetic cost of a single (left-right) defect in a row is large (J =
1100 K) while the coupling between neighbouring rows (8.14 A apart) is -
tiny (JL ~ 1.7K). Thus, it is expected that this symmetry-lowering dis-
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tortion should disappear with an extremely anisotropic Ising-like tran-

sition. If we, quite roughly, use the formula of Ref. [120]
kpTe ~ 2Jy/In(Jy/J 1)

to get an estimate for T, we anticipate a transition somewhat above
room temperature. ‘ S T e

We obtain a much more accurate determination of 7, by molecular
dynamics. We have carried out a (microcanonical) study of the low-
temperature properties of our (1 X 2) missing-row surface. The main
structural features described above remain essentially unchanged up to
room temperature. However, the sliding distortion disappears above
roughly T, ~ 230 K. Table 4.3 clearly shows that at room temperature
the distortion is absent. It should be pointed out that such a distortion
might explain a symmetry breaking reported by spin-polarized LEED
[95]. Further low-temperature studies of Au(110) would be helpful to
clarify this point.

At and above room temperature, we can observe an increasingly
frequent sliding motion of entire top rows. This massive sliding would
of course become impossible for larger cell sizes, but it could easily occur
in presence of defects. It is interesting to note that the defects observed
by Binnig et al. by STM [100] seem precisely connected with the sliding
of a top row, which we find in our glue model. Moreover, sliding rows .
might provide a clue to the understanding of the highly anisotropic
diffusion rates observed on the similar Pt(110) surface [121].

4.5 Au(111) surface reconstruction

4.5.1 Experiments

Gold is the only known f.c.c. metal which exhibits reconstruction on
the already well-packed (111) surface [77]. Experimentally, Au(111)
has long been known to reconstruct with a periodicity which is prob-
ably incommensurate, numerically close to (23 x V/3), as established

by electron diffraction [122,123,124], transmission electron microscopy

100




[125,126,127,128] He-diffraction [129] and STM [130]. To explain this,
it has been supposed that the uppermost -(111) layer is somewhat con-
tracted along the (110) direction, while contraction is absent in the
orthogonal (112) direction.

Due to the contraction, epitaxy of the first layer onto the second is
imperfect. Refinements of this ‘model [127] suggest that f.c.c. epitaxy
might remain essentially exact over a whole region. Then, a phase slip-
page (soliton) occurs, leading to a second region of good epitaxy, now
of h.c.p. type. Again, a second phase slippage would then lead to a new
f.c.c. region, and so on. Harten et al. [129] have shown that this domain
model is able to give an interpretation to He-diffraction data, although
the soliton regions do not seem as narrow as originally proposed, but
rather have an extension of about 12 A. '

Theoretically this situation is quite analogous to that occurring, e.g.,
in a rare gas adsorbed film, and has been widely discussed, in general
phenomenological terms [90]. Nevertheless, it is quite interesting to ask
whether a model based on explicit interatomic forces, such as the glue
model, might account for this rather unusual behaviour of Au(111).

It has been shown in Section 4.3 that the tendency to form a closely
packed, (111)-like surface layer, induced by the glue Hamiltonian, ex-
plains the Au(100) surface reconstruction. In fact, the many-body en-
ergy decrease obtained by improving surface coordination is larger than
the two-body energy increase due to the bond lengths reduction, and
the total energy decreases by reconstruction. On a (111) surface, how-
ever, the packing is already good. Although surface contraction always
acts to reduce the glue energy, the final result of the energetic balance
between two-body and many-body forces is not easy to predict.

In this Section, we describe the results of a molecular dynamics in-
vestigation of the T' = 0 surface structure of Au(111) in the glue model
[131]. More details on this work can be found in Ref. [132].
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4.5.2 Energetics and structure

A molecular dynamics simulated annealing procedure has been used
as a tool for searching the optimal surface structure, as described in

Sec. 4.2. In particular, for the (111) surface we use 10-layer slabs, with

free boundary conditions in the (111) direction, and periodic boundary =

conditions in the in-plane directions (110) and (112). The length of the
box along (110) is Md (where d = 2.88 A is the first-neighbours distance
and M an appropriately chosen integer), while the length along (112)
is 24/3d. The number of atoms in a general layer is 4M, while that in
the outermost surface layer is permitted to increase to 4(M + 1). If the
surface wants to reconstruct by in-plane contraction, as suggested by
earlier discussions, then such an increase should lead to a lowering of
surface energy, provided M is conveniently chosen.

We have found that this is indeed the case. Table 4.4 summarizes
the values obtained for the surface energy as a function of the cell
length M. For the relaxed but not reconstructed surface, correspond-
ing to the limit M — oo, the surface energy (defined as in Eq. 4.1) is
onr = 96.6meV/A2, Forall M > 5, 0(M) < 0pr, and the optimal value is
o(11) = 88.1meV/A% Hence the optimal (111) surface geometry of our
glue model is indeed reconstructed as expected, but with a shorter peri-
odicity, roughly (11 X \/5) A picture of our optimized surface structure
is shown in Fig. 4.13.

We can make the following comments and qualifications:

1. The surface energy minimum at M = 11 is very asymmetric and
shallow only if M is increased above 11. For example is still as
low as 90.2meV/A? when M is as high as 23. This means that
grand-canonical fluctuations (allowed in presence of source terms
which could be present in the form of steps, etc.) might tend to
increase the average M value at finite temperatures. In turn this

would bring the theoretical result closer to the experimental value
M = 23. The behaviour of o(M) is reproduced reasonably well
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Structure o (meV/A?)  Asiy(%) Asys(%) Assa(%)
(4 x v/3) relaxed 114.4 +1.4 +2.4 —-0.3
(5 x v/3) relaxed 99.4 —-0.5 +2.5 —-0.3
(6 x /3) relaxed 93.2 ~1.8 +2.6 —-0.3
(7 x 1/3) relaxed 90.4 —2.6 +2.6 —-0.3
(8 x V/3) relaxed 89.1 —-3.2 +2.6 —0.3
(9 x /3) relaxed 88.5 —3.7 +2.6 —0.3
(10 x 1/3) relaxed 88.3 -4.1 +2.6 —0.3
(11 x v/3) relaxed 88.1 —4.4 +2.6 —-0.3
(12 x +/3) relaxed 88.3 —4.6 +2.6 —-0.3
(13 x v/3) relaxed 88.4 4.8 +2.6 —-0.3
(15 x +/3) relaxed 88.8 —5.1 +2.6 —-0.3
(18 x +/3) relaxed 89.3 5.4 +2.5 —-0.3
(23 x 1/3) relaxed 90.2 -5.8 +2.5 -0.3
(33 x v/3) relaxed 91.4 —6.1 +2.4 -0.3
(50 x v/3) relaxed 92.5 —6.4 +2.4 -0.3
non-rec., relaxed 96.6 -7.9 +1.2 -0.1
non-rec., ideal 105.1 0 0 0
Table 4.4:

Surface energies and variations of the average interplanar distances Asiip1 =
(8ii+1 — 80)/S0, where s = 2.35 A is the bulk (111) spacing, for several (111)
reconstruction geometries.
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Figure 4.13:
Top view of the optimized Au(111) (11 x v/3) surface. Twelve unit cells, ar-

ranged in a 2 X 6 array, are shown.

by a second order expansion in powers of 1/M:
1
o(M) —ope ~ —u/M + -2—1//M2 (4.12)

with p ~ 200meV/A? and v =~ 2400 meV/A2. 4 can be regarded as

the “chemical potential” of the reconstruction stripes.

2. There are many similar (but not identical) T' = 0 configurations,
all of which have the same M and very close surface energies (typ-
ically within +0.05meV/A2 at M = 11). The difference between
any two such structures consists mainly in a very small lateral
(110) shift of position of the topmost layer relative to the second
layer. Therefore in our model the average structure, even at very
low temperatures, is not identical to that belonging to any of the
T = 0 optimal structures. The relevance of this point may be
somewhat academic, since for example already at 100 K the ther-
mal fluctuations overwhelm those due to this sort of “spin-glass”

problem.

3. Morphologically, the optimal T = 0 structures are all characterized
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by an “undulating” behaviour of each single top layer (110) atomic
row, with the peak positions correépénding tof.c.c.or h.c.p. cf&stal
sites. The in-plane (112) undulation, amounting to about 1.0 A,
is clearly visible in Fig. 4.13. A corresponding small vertical (111})"
undulation is also present, with periodicity half of the in-plane

““andulation, and a peak-to-peak amplitude of 0.12 A.

4. All the cells display oscillatory multilayer relaxations. s;; increases
when M is decreased to compensate for the increment of in-plane
packing. For the optimal (11 x V/3) structure, the average first-
second layer spacing is contracted by 4.4% (0.10 A) with respect
to the bulk value, while the second-third layer spacing is increased

by 2.6% (0.06 4).

5. Considering one T' = 0 “optimal” structure, we have studied the
(110) phase of the first layer lattice (relative te an ideal (111) bulk
layer lattice) in an attempt at identifying f.c.c. and h.c.p. epitaxial
regions, as well as soliton regions. Our result indicates, somewhat
surprisingly, a nearly uniform (110) in-plane shrinking, with rather
narrow f.c.c. and h.c.p. regions separated by wide, smooth tran-
sition regions. This disagreement with the experimental model

[127,129] seems genuine, and the reasons for it are not yet clear.

Within the present MD approach, it might seem that we are ideally
equipped for the study of (111) phase transitions. In particular, a tran-
sition between a directional (“striped”) reconstruction as assumed here
and three simultaneous such reconstructions at 120°, yielding an overall
isotropic surface, has been reported near 1000K [126] and discussed in
phenomenological terms by Okwamoto and Bennemann [133]. A direct
study has so far proved unfeasible, for two reasons both connected with
the MD box. The box size is far too small to allow roughening of the
solitons and possible formation of vortices, as one expects in such a
system [90]. Moreover, its chosen directionality pr;:—determines at the
outset whether one will go for a uniaxial, or hexagonal, reconstruction.

While at T = 0 surface energy can tell which one is best, we have no
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free energy that can be practically used at T # 0. Surface melting, on
the other hand, is a short-range phenomenon and its study does not
suffer from this problem. An investigation of the behaviour of both the
reconstructed and the unreconstructed Au(111) surface in the present

glue model is reported in Chapter 5.

4.6 Summary

We have shown in this Chapter that the glue Hamiltonian provides a
rather realistic energetic and structural description of the reconstructed
surfaces of gold.

This gives us important indications on the nature of this pheno-
menon. Since the glue forces are defined exclusively in terms of atom
coordinations, the driving force for surface reconstruction in noble met-
als has been shown to be the tendency of surface atom to increase their
coordination, induced in turn by the glue forces which mimic electronic
d-band effects. While in other metals this tendency is weak, so that first-
- layer contraction suffices, in several noble metals the need to increase
coordination is so strong as to make favourable extensive first-layer rear-
rangements. Complicated geometries arising from these rearrangements
are simply a consequence of the packing tendency, and angular forces
(not included in the glue) play no important role.

Strong first-layer contractions also have important consequences on
surface dynamics. A recent dynamical study of Au(110) (1 x 2) per-
formed with our model p.redicts the existence of anomalous high-fre-
quency phonon modes, which presumably arise because of a stiffening
of the surface force constants caused by the large inward relaxation of
the topmost row [134].

A study of the behaviour of Au(111) near the melting temperature
is presented in the next Chapter.
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"Chapter 5

Surface melting behaviour of

Au(111)

5.1 The surface melting hypothesis

The idea that crystal melting could be a surface-initiated process is very
old [10], and some evidence has been provided long ago by macroscopic
means [135]. Recently, interest in surface melting has been revived by
qualitative ideas [136], new theories [137], as well as by newly available
microscopic surface tools [138], and by the possibility to realistically
simulate the warm crystal surface on the computer (for a general review
on surface melting, see Ref. [139]).

The best simulation so far is that of Lennard-Jones (LJ)
crystal surfaces, thoroughly characterized by several researchers
[28,140,141,142,143]. They show clear evidence of surface-nucleated
melting, down to temperatures as low as %Tm, in remarkable agreement
with predictions based on simple qualitative models [136,144].

Experimentally, surface-initiated melting has been recently demon-
strated on Pb(110) [138] as well as on Ar [145]. For Pb(110), a close
correlation has been found [146] between anharmonic surface outwards
relaxation and the onset of surface disorder, as predicted by Jayanthi et
al. [144).

The general situation is however still far from clear. In the case of
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Lennard-Jones crystals, the role of vacancy-related surface roughness
could be important [142], and is as yet unclear'. Moreover, the thermo-
dynamics of the warm surface is not well established, in that one does
not know if surface melting is or is not a well-defined phase transition,
and of what type Finally, metals are most commonly used for micro-
"scoplc experlments but a Lennard-Jones crystal is certainly not a good
description for them.

For these reasons, computer simulation studies of hot metal surfaces
would be very helpful to improve our understanding of surface melting.
Until very recently, however, the lack of a&equate force models prevented
the possibility to perform such calculations. In particular, the need to
reproduce correctly both surface energetics and vibrational properties
at the same time, makes pairwise models completely inadequate for this
- purpose [29], as discussed in Sec. 1.1.

The glue model, on the other hand, satisfies the requirements men-
tioned above, and seems to be a valid tool for investigating the melting
behaviour of a metallic surface. Therefore, we have undertaken an ex-
tensive molecular dynamics study of a gold surface at high temperature
[148].

As detailed in Chapter 4, all low-index surfaces of gold in the glue
model are unstable in their normal, bulk-like surface arrangement, and
reconstruct to achieve (locally) a higher packing density. For the pur-
pose of the study described here, it seemed appropriate to choose the
surface where atomic rearrangements are less dramatic, namely Au(111)
(see Sec. 4.5). Moreover, the non-reconstructed Au(111), although en-
ergetically disfavoured, could also be studied by molecular dynamics. In
fact, it can be easily preserved in a metastable state, because surface
reconstruction cannot occur without the addition of a few extra atoms
at the outset.

The results for the reconstructed and non-reconstructed Au(111) are
reported respectively in"Sec. 5.2 and 5.3. A discussion on the role of

many-body forces on the melting behaviour of well-packed metal sur-

!However, one can prove that, once surface melting has begun, roughening will
necessarily ensue below the triple point, see Ref. [147].
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faces is presented in Sec. 5.4.

5.2 Non-melting of reconstructed Au(111)

~ We have _que}‘_t?,.kenba“ggr_viie_s_ 'gf._mole.gular dynamics (MD) calculations to

characterize the melting behaviour of the Au(111) surface. We have used
the “glue” potential and a slab geometry, with the two bottom layers
assumed to be rigid in their bulk-like positions to mimic the contact with
a semi-infinite bulk. Periodic boundary conditions are used along z, y,
and free motion is allowed along z (zero pressure). In order to minimize
spurious slab effects, the iateral box size was adjusted to match the mean
lattice parameter at T' ~ 1350 K, as extracted from the bulk simulation
described in Sec. 3.1.

Atom evaporation is a very improbable event in this system, and we
have observed none during our simulations. On the other hand, we have
directly checked that a surface vacancy or adatom has an extremely short
lifetime (~ 107*® s and ~ 107'% s respectively) before being annealed out.
Therefore, the reconstructed surface is free of vacancies and adatoms at
almost any time. Hence, we argue that a solid-vacuum interface—such
as that realized in our simulation—should behave very similarly to the
equilibrium solid-vapour interface?.

For most of the calculations we have used slabs of 40 layers with 56
particles on each layer. Our (z,y) cell is defined by L2(110) x M 2(112)
with L = 7 and M = 4. In this approximately square cell, we can
accommodate either an unreconstructed surface (56 top layer atoms), or
a denser unreconstructed surface (64 top layer atoms). This corresponds
to higher surface density 6p,/p, ~ 14%. This value is slightly higher
than the value 6p,/p, ~ 9%. which is optimal for our potential (as
discussed in Sec. 4.5) but has the advantage of requiring a smaller size
cell. The total number of particles with reconstruction is therefore N =

56 x 39 4 64 = 2248, of which 112 belonging to the rigid layers. This

>This reasoning neglects asymmetry between surface vacancies and adatoms, which
if important might cause a gradual decrease of surface demnsity with 7. We do not
expect this effect to be relevant in our case.
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requires about 1 CPU second per MD step on an IBM 3090 with Vector
Facility.

Annealing of this system at low temperatures leads to the ordered
surface structure studied in detail in Sec. 4.5. This reconstructed surface
is, as it should, much more stable and well packed than the correspond-
ing unreconstructed surface. | ' S T

To check for lateral size effects we have doubled, in some calculations,
the lateral size in each direction (bringing in this way to 224 the number
of particles of an unreconstructed layer), and decreased the number of
layers to 12 (of which 2 rigid) to limit the increase in the total number
of particles. In these runs we have found no difference in behaviour with
the other runs, thus indicating that 56 particles per layer are sufficient
for present purposes.

We have performed both microcanonical and canonical runs. Canon-
ical runs have been realized by crudely rescaling the particles velocities
at each time step to adjust the kinetic energy to conform to the desired
temperature. Figure 5.1 summarizes the results of the canonical runs
for the reconstructed Au(111) surface, and presents the number n of
molten layers at each temperature.

There are several qualitative ways to define a molten layer:

(a) the intra-layer pair correlations have lost their crystalline shell

structure;
(b) diffusion is linear with time and large;

(¢) the average energy per atom is ~ 0.12eV larger than in a typical
bulk layer;

(d) the in-plane orientational (hexatic) order parameter Og has drop-
ped from close to 1 to close to 0.
We define 50
_ X Wige™|
i Wi

where the sums run over first-neighbour pairs and 6;; is the angle which

Os (5.1)

the -5 bond, projected on the zy plane, forms with the = axis. The
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Summary of the runs for the reconstructed Au(111) surface. The dotted line
represents the curve of instability v(T').
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Figure 5.2:
Orientational order parameter Og¢ and (z,y)-averaged density, for a micro-
canonical sample with (n) = 18 molten layers and (T') = 1350 K. The two
leftmost layers are rigid. These data have been averaged over 2000 MD steps.

weight function
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with § = 0.59 A, has the purpose of filtering out all “non-coplanar”
neighbours. Figure 5.2 exemplifies the behaviour of Og and of the (z,y)-
averaged atomic density for a sample with n = 18 + 2 molten layers

and (T) = 1350K. As a practical criterion, we call “solid” a layer with
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O > 2. We have checked that this definition generally fits well with
the other criteria (a), (b), and (c) above. In particular, diffusion sets in
rather sharply for Og smaller than this value.

Returning to Fig. 5.1, each arrow nn' represents a simulation, be-
ginning with n and ending with n’ molten layers. Initial configurations
with any number n of molten layers are easily generated by a high tem-
perature run (T' > 1600 K) where, starting from an initially solid slab,
n grows with time. Each run has typically required ~ 10* to ~ 3 x 10°
time steps, the larger times being required for runs close to the melt-
ing temperature. Since a time step At = 7.14 x 1071%s has always been
used, our equilibration times range from ~ 107!%s to ~ 107°s.

We generally find that the energy F of a sample is rather accurately

related to temperature and to n by the simple relation
E=NC, T+ AHnny, : (5.3)

where C), = 3.1 x 107*eV /(K atom) is the solid bulk specific heat and
AH = 0.12eV /atom is the bulk heat of melting for our model potential.
Here ng is the number of particles in each layer.

Up to a temperature Ty = 1357 £ 5 K, the only equilibrium config-
uration is crystalline (n = 0). Above Ty, we find two possibilities. If
the initial liquid thickness is small enough, n < v(T'), the sample crys-
tallizes, n’ = 0. For n > v(T'), the sample melts completely, n' — oo
(really, n' — 35, due to our finite size and rigid layers). The “unstable
line” v(T') is oblique, and intersects zero at Ty ~ 1500 K. Above T}, any
initial configuration, including n = 0, will melt.

We interpret the above as follows. The temperature Ty is identified
with the bulk melting (triple point) temperature T,,, = Ty = 1357 + 5 K.
This value is in fairly good agreement with the experimental value
TP = 1336 K, confirming the good accuracy of the glue potential also
at high temperatures. The crystalline reconstructed surface is stable be-
low T}, and remains metastable between T}, and T;. Thus, microscopic
surface melting does not occur on this surface. In principle, this does
not imply that macroscopic surface melting, i.e., sudden formation of

a thick liquid film extremely close to T.,, might not occur. We simply
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cannot address this question with our tools, due to size and time limita-
tions. Within these limits, however, our surface is not only stable up to

T, but can also sustain overheating by as much as ~ 100 K above T.,.

5.3 Blocked-melting of unreconstructed..Au(l11._)“,.*.,_,“.___,A_ |

It is tempting to relate the lack of microscopic melting of the recon-
structed Au(111) to its denser first-layer packing. To test this idea,
and also to explore the more general possibility of a totally different
behaviour for a slightly different state of the surface, we have carried
out a parallel study of the unreconstructed surface. Here, the topmost
layer is taken to be simply identical to all other layers, i.e., no extra
atoms have been added. This state of the surface might be experimen-
tally accessible, in spite of its substantially higher surface energy o (at
T =0, from Table 4.4, oyec = 90.4meV /A2, 0ynrec = 96.6 meV/Az).

Figure 5.3 describes our results for the unreconstructed Au(111) sur-
face. Here, the first two layers melt simultaneously at 7% ~ 1250 K, with
an energy increase Ah ~ 0.03eV /atom, a value much lower than the
bulk heat of melting. This may be due to the poor degree of packing of
the unreconstructed surface layer and by the concurrent high quality of
packing found on the double melted layer. This two-layer melting shows
hysteresis, which could indicate a first-order character.

Following this two-layer melting, one might have expected to observe
the solid-liquid interface to propagate into the bulk, as T}, is approached
further. However, this does not happen, and the double-melted layer
state remains stable up to T, (quite similarly to recent reports about
Ge(111) [149]). Moreover, in analogy with the reconstructed surface,
the two layer state can be overheated for about ~ 100 K above Ti,.

We conclude that indeed a situation of poorer surface packing can
bring about some microscopic surface melting. Yet, this “nucleus” does
not propagate into the bulk to give rise to a thick liquid layer as Tj,
is approached. In this sense, the lack of surface melting of Fig. 5.1 is

confirmed.
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Figure 5.3:

Summary of the runs for the unreconstructed Au(111) surface. The dotted line
represents the curve of instability v(T).
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5.4 Many-body forces and surface stabil-
ity

We believe the non-melting behaviour of reconstructed Au(111) to be
-an effect of the many-body “glue” forces. Specifically, the energetics of
surface atoms, very poor in a system with two-body forces (such as LJ),
becomes very much better once the many-body forces are included. For
example, the (relative) excess energy of a surface atom respect to a bulk
atom at T' =0, (E, — E;)/|Es|, decreases from 0.29 for LJ(111) [141] to
0.20 (ideal unrelaxed) to 0.17 (relaxed unreconstructed) to 0.13 (relaxed
and reconstructed (111) surface). As a consequence, all entropy-related
quantities, such as thermal vibration and expansion, defect concentra-
tion, etc., are expected to rise much higher near T}, in a two-body system
than in a many-body system.

This particular point finds a direct confirmation by comparison of
the LJ results with our Au(111) results. While the LJ surface is wobbly
and full of defects already 5% below T, our reconstructed surface is
still very much bulk-like even at T;,, as shown by Fig. 5.4. This point is
also particularly evident from the mean-square vibration amplitudes of
our reconstructed surface, shown in Fig. 5.5. Even as close to T}, as 5K,
the surface is clearly still vibrationally stable, in contrast with the LJ
case [141]. The mean-square first layer vibration amplitude relative to
the bulk for our reconstructed Au(111) surface is only 1.5 just below T,
(T = 1350K). The corresponding value for LJ(111) is already as high
as 2 at T/T,, = 0.5 [140].

Similar considerations also apply with respect to simple models. In
the Pietronero-Tosatti model the surface instability is caused precisely
by the abnormal entropy-driven growth of surface thermal vibration and
expansion. As shown by Jayanthi et al. [144], even a small energetic
strengthening—such as that caused by inwards relaxation—is very ef-
ficient in raising the vibrational surface instability and possibly killing
surface melting. The conclusion to be drawn from these considerations

is that the improved surface energetics of our metal as compared with,
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Snapshots of the Au(111) reconstructed surface in the glue model at T
The Au surface still exhibits crystalline order, while the LJ surface is very

(a), and of the Lennard-Jones (110) surface at T = 0.95T, (b) (from Ref. [142]).
disordered and full of defects.
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Figure 5.5:

‘Average mean square displacement (u?) (sum of the three components) as a
function of z for a reconstructed sample at T = 1350 K, just below T,,. These
data refer to a case with 12 layers, of which 2 rigid. The decrease in (u?) for
the leftmost layers is due to the contact with the rigid layers. The average (u?)
for the surface (rightmost) layer is only ~ 1.5 times larger than in the bulk.
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to completely prevent microscopic melting, allowing even the surface to
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Chapter 6
Structure of gold clusters

6.1 Introduction

The interest in the physics of small metal clusters [150,151,152] is es-
pecially related to catalysis and to crystal growth. In both cases, it is
important to be able to prepare clusters with controlled size and purity,
as well as to characterize their structure and stability. In this business,
gold offers a number of advantages, due to its low reactivity and to
the possibility of preparing it relatively easily with standard methods
(evaporation, chemical deposition, etc.) on different substrates (alu-
mina, SiO,, graphite, etc.). Supported gold particles of a variety of
sizes (50 < N < 10000) can thus be investigated with a number of
structural tools. In fact gold particles are relatively well known: in-
vestigations have been conducted with extended X-ray absorption fine-
structure (EXAFS) [153], X-ray diffraction [154], electron diffraction
[155], electron microscopy [156,157,158,159,160,161], and more recently
STM [162].

Several interesting structures have been reported particularly
by high-resolution electron microscopy, among which one can find
f.c.c.-cuboctahedra [157,158], icosahedral and decahedral particles
[156,158,161], and also amorphous-looking clusters [159)].

No information on the structure of free (unsupported) clusters is

available. From the “magic numbers”, i.e., the N’s corresponding to
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largest abundances in the mass spectra, special stability seems to cor-
respond in the small size range (N < 200) to electron shell filling [163],
which parallels very similar evidence in alkali metals.

As for the theoretical study of stability and structural properties of

clusters, no relevant work has been done so far on supported aggregates.

Several approaches have been pursued instead on free 'a:g'gmrékgﬁatﬁes', which

differ strongly in the size range of applicability.

At the most phenomenological extreme, various arguments have
been presented (briefly reviewed in Sec. 6.2), based on Waulff construc-
tions, arising from anisotropic surface tensions and theory of elasticity
[164,165]. It is reasonable to apply this type of approaches to rather
large clusters, where departure from “bulk + flat surface” conditions is
minimal [166]. The situation of smaller clusters with, say, N < 1000,
seems however too extreme for these models to retain a credible predic-
tive power.

At the opposite microscopic extreme are the ab initio calculations
based on either Hartree-Fock (HF) or configuration interaction (CI)
schemes [167] or LDA, without [168,169,170,171] or with [172,173] the
possibility for the atoms to move. These approaches are of course very -
satisfactory. However, they are computationally very heavy, and have
not been practically implemented for N larger than a few tens of atoms.
Even with the most advanced techniques [2] it is not foreseeable that
N > 100 could be attacked at least in the next few years.

Model calculations of microclusters with a few hundred atoms have
been attempted using a tight-binding description of the electron states
[174,175,176]. These results provide an interesting starting point for
discussion. However, the predictive power of this type of approach seems
limited.

Summarizing, there is a size range, roughly 100 < N < 1000, where
no quantitative theory is readily available. This range is actually very
interesting, since one generally expects a kind of transformation to occur
between the “molecular” and “crystal” regimes. Moreover, for gold and
other supported clusters, this is the range where most of the physics has
been demonstrated.
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In.practice, studying atomic structure and dynamics of such rela-
tively large aggregates would be easy if empirical interatomic potentials
could be used. However, apart from the case of rare gases (177,178
and alkali-halides [179], only few attempts have been made to apply

empirical potentials to covalent (silicon, germanium) [180] and metal

[181] clusters. The reason is of course that a two-body potential is not =~

expected to work in these cases, very much for the same reasons out-
lined in Chapter 1. Based on that reasoning, one is led to expect a
large improvement by the use of a many-body force scheme, like the
glue model.

In this Chapter we present a first qualitative study of structure and
energetics of gold clusters in the size range 100 < N < 1000 based on
the glue Hamiltonian [182].

6.2 Cuboctahedra, icosahedra and deca-
hedra

Particular geometrical shapes have been suggested as the equilibrium
geometries for small atomic aggregates since a long time.

As thoroughly discussed by Ino [164] and later by Howie and Marks
[165], shapes which are expected to be particularly favoured on ener-
getic grounds are the cuboctahedron (i.e., octahedron with truncated
corners), the icosahedron and the decahedron. These polyhedra are

shown in Fig. 6.1.

Cuboctahedral particles. In cuboctahedral particles (Fig. 6.1a), all
atoms occupy perfect f.c.c. sites. In most solids, g111 < 0100 <
o110 < .... If, in particular, o110 > 1/3/20111, the cuboctahedron
minimizes the total surface energy [odS, and is therefore the
favoured shape accordingly to the Wulff theorem. Such a particle
has only (111) and (100) faces. Of course, the relative amplitude
of (100) and (111) areas is related to the 7111/ 100 ratio.

Icosahedral particles. Icosahedral particles (Fig. 6.1b) are constitu-
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e,

Figure 6.1:
Geometrical shapes particularly favoured by the Wulff theorem. (a) cubocta-
hedron; (b) icosahedron; (c) decahedron; (d) decahedron with five (100) extra

faces.
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ted by 20 tetrahedral twins (with (111) facets) arranged symmet-
rically. For this reason they are also called,. together with the
decahedral particles described below, multiply-twinned particles
(MTPs). Only (111) faces are exposed, thus reducing the total
surface energy. On the other hand, such a structure is not space
filling, so that the interior must be strained. A certain amount of

elastic energy will be associated to this strain.

Decahedral particles. Decahedral MTPs (Fig. 6.1c) are constituted
by 5 tetrahedral twins (with (111) facets) arranged symmetrically.
Although only (111) faces are exposed, the total surface energy
is not as good as in the icosahedron, because the shape is quite
far from the spherical shape, and therefore the total area is large.
A better shape, if o100 is not exceedingly large, is that shown in
Fig. 6.1d, where a “ring” of five (100) faces is present. This is
called by Ino a “D-Wulff-polyhedron” [164]. In the remainder,
somewhat improperly, we shall refer to it as a “decahedron”. Like
the cuboctahedron, the size of the (100) faces with respect to the
(111) faces depend on the o111 /o100 ratio; and like the icosahedron,
this structure must be strained to fill the space, with an elastic

energy associated to the deformation.

It follows from these descriptions that a transition between MTPs
and cuboctahedra should be expected to occur at a certain critical size
N*. For N < N*, the energy is dominated by surface effects, and
MTPs are favoured by their large (111) facets and small area. For
N > N*, however, the total elastic strain energy becomes so large as to
make convenient the cuboctahedral arrangement, where the total surface
energy is larger but there is no internal strain.

This approach is rather crude, being based only on mMacroscopic con-
cepts (surface energy and elasticity theory). Its validity for small clus-
ters is therefore questionable. However, its simple outcome is useful to
interpret experimental results.

In the simple case of rare gas clusters, experiments and MD simula-

tions suggest a transition between icosahedral and cuboctahedral struc-
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tures around N* = 750 [177].

For metal clusters, the situation is somewhat less clear. For example,
the existence of very small (IV = 55) cuboctahedral clusters is reported
for Au [157] and Cu [183]. At the same time, multiply-twinned particles
of gold are observed for sizes up to N ~ 10000 [156] In the case of
small partlcles however, ‘the influence of the substrate (01‘ of the molec-
ular matrix in which the cluster is embedded) on the structure is not
known. Large particles, on the other hand, may be out of thermody-
namic equilibriuni.

In a recent electron microscopy experiment, lijima and Ichihashi ob-
serve a gold particle, consisting of about 459 atoms, which continually
changes its shape under electron-beam irradiation [158]. Among the
various shapes, cuboctahedra and icosahedra are clearly distinguishable.
Moreover, amorphous clusters are also occasionally observed [159]. Al-
though the clusters are not in equilibrium owing to the intense electron
beam, these experiments make the 100 < N < 1000 range particularly
attractive for a theoretical investigation.

Finally, it should be mentioned that a tight-binding based calculation
of platinum clusters indicates a critical size N* ~ 200 for the transition

between icosahedral and cuboctahedral structure [174].

6.3 Method

A structural investigation of free gold clusters, with particular emphasis
on the geometrical shapes described in the previous Section, has been
carried out within the glue model framework. The method used for this
study is based on a molecular dynamics (MD) annealing strategy very
similar to that previously employed for our surface studies.

As in that case, we must live with two very basic handicaps. The first
is that for a fixed atom number, well above 10 and below 10000, one can
generally expect an extremely large number of configurations which are
energetically nearly equivalent [184], many more so than for a surface

situation, where periodicity along the zy plane helps to reduce their
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number. The second handicap—present also for surfaces—is that MD
works with a constant particle number which makes the search for the
“best” cluster geometries very clumsy and essentially impossible to carry
out systematically. Within the limits posed by these two handicaps,

‘we have found that our scheme provides interesting new insight and
undefsfandillg; as will be shown below. T

Several different annealing methods have been used:

o Simple relazation (SR). Starting from some initial configuration, a
damped MD run is performed, where kinetic energy is continuously
extracted from the system by a factor @ < 1 at each time step.
This quickly brings the system in a local energy minimum. The
number of time steps required depends on «, but a number in the
range 2000-5000 is quite typical. This procedure is analogous to -
a steepest-descent minimization, though a limited choice between
nearby local minima might be allowed. The SR procedure is often
used by starting from highly symmetric initial conditions (ie., a
“perfect” polyhedron), and, frequently, this initial symmetry is
preserved. SR consumes little computer resources, but, at least in

our case, it rarely finds the true, absolute energy minimum.

e Low-temperature annealing (LA). In this procedure, the system is
equilibrated at a temperature T of the order of 0.2-0.3 Ty, where
T.. is the melting temperature of bulk Au, then T is gradually
decreased to 0. This procedure allows moderate atomic rearrange-
ments to take place (especially at the surface), while extensive
structural reorganizations cannot occur. The final energy is usu-
ally lower than that obtained by SR. The total length of the cy-
cle, however, must be larger (of the order of 10000 time steps, or
10785s).

e Medium-temperature annealing (MA). As above, but the equilibra-
tion temperature is in the range 0.5-0.7 Trn, and the total simu-
lation time is also larger (20000-50000 steps). This method is of

use in cases where large reorganization must occur.
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e High-temperature annealing (HA). In this case, the system is bro-
ught at T > T, and melted. Then, the temperature is very slowly
decreased back to zero. The cycle length may reach 100000 steps
or more (~ 107°s). Except in the case of very small (N < 60)
clusters, where the reliability of our potential is questionable, this
procedure is not able to Mré‘—;r‘ysté,l]ize the melt. In fact, the time
scale of the MD simulation is not sufficient for the purpose. There-
fore, the final result is always a reasonably optimized amorphous
structure. As will be shown below, these amorphous structures
are often very competitive in energy with crystalline structures,

and exhibit interesting features.

None of these methods can be classified as the “best”. Rather, each of - -
them constitutes a useful tool to apply when appropriate.

As will be detailed below, we have found that the atomic arrange- .
ment at the cluster surface is very important in determining the final
total energy. Optimal or quasi-optimal arrangements are often quite
far from the geometrical positions set at the beginning, so that, to im-
prove the energy, surface atoms should be able to migrate for relatively
* long distances. Such migrations require relatively high temperatures
(~ 0.8T,,), which often lead also to disordering of the “bulk” part of
the cluster. In this case, the cluster becomes amorphous, and its energy
increases.

To overcome this problem, we have sometimes adopted a strategy in
- which only the atoms in the external shell are allowed to move, while the
internal atoms are kept frozen in their crystalline arrangement. In de-

tail, this strategy, that we shall call high-temperature surface annealing
(HSA), is performed as follows:

1. Starting from some initial (and often quite arbitrary, e.g. in the
choice of the lattice parameter) configuration, a SR procedure is
performed. This allows large relaxation effects to occur, like the
contraction of the whole cluster, or surface relaxations. The sym-

metry, on the other hand, is not substantially altered.

2. At the end of SR, the internal atoms are frozen in their positions.
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3. An HA cycle is performed. The external atomic shell is “melted”,
and then slowly cooled on the crystalline substrate provided by

the frozen atoms.

4. When the temperature reaches zero, the frozen atoms are released,

and allowed to move again.

5. Finally, a new SR procedure is performed with all the atoms al-
lowed to move. This relieves the cluster of strains due to the new

surface arrangement, and further reduces the total energy.

This procedure almost always leads to better results than all the other
methods listed above. It also selects the type of cluster geometry (cuboc-
tahedron, etc.) at the outset. '

Finally, we make some considerations on the energetic comparison
of two different clusters. Let us consider two clusters Cy and Cj, with
respectively Ny and N, atoms, and average (T' = 0) energies per atom
¢ and e;. If Ny < Ny, it is also likely ¢; > €;. This is simply due to
the proportionally larger number of surface atoms in the smaller cluster
C;. This surface energy contribution is, in a sense, trivial, and has to
be removed for the effective comparison of different structures when N
is not the same. It can be subtracted by writing the total energy of the
cluster as

Ne= Ne¢* 4 4rR%o (6.1)
where R is the average cluster radius and o the average surface energy
per unit area. What we have called €” is the “effective” energy per atom,
and it is what we shall use for comparison purposes.

Of course, R could be directly estimated for each cluster. Somewhat
roughly, we shall instead assume that the cluster has a spherical shape,

whose volume is that occupied by the same number of atoms NV in a

bulk f.c.c. crystal:

4 . Na}
=z = 2
31rR 2 (6.2)
Substitution in (6.1) then gives
e 1673 1/ \/§agcr (6.3)
= N 1 .
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By assuming a value for o, we use this equation to compute the “effec-
tive” energy per atom €* 1. We have taken o = 96.6 meV/A2, which is
the surface energy of a non-reconstructed (111) surface (see Table 4.4,
page 103).

O T [

6.4 Results

Due to the intrinsic limitations outlined in the previous Section, our MD
study of clusters has been restricted to a very restricted set of situations,

namely:

e Clusters without a crystalline germ. High-temperature annealing
invariably leads to amorphous structures. Here a precise choice of

N is not critical.

e Clusters growing from f.c.c., icosahedral or decahedral germs, lead-
ing to “crystalline” structures. Here, the choice of N is often criti-

cal (e.g., complete shells lead to more symmetrical arrangements).

In both cases, only a few values of N have been investigated, in the
size region 100 < N < 1000. The results for amorphous, cuboctahedral,
icosahedral and decahedral clusters are discussed in the four following
Subsections. A brief mention to the results for N < 100 is made in the

last Subsection.

6.4.1 Amorphous clusters

As described in the previous Section, a high-temperature annealing pro-
cedure (HA), where the cluster is first melted, and then gradually cooled
down to T = 0, always leads to an amorphous final structure. We dis-
cuss first these amorphous clusters, since they provide a good reference
point against which the other structures can be compared. Moreover,
their surfaces exhibit interesting (111)-faceting effects.

Table 6.1 reports the final energies per atom for amorphous clusters

10f course, (6.3) could also be used in the opposite way: given a value for € (for

example, the cohesive energy), an effective surface energy o can be computed.
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N € €

116 | —-3.1072 —-3.7370
201 | —3.2142 —3.7386
314 | —3.2857 —3.7376
1459 1=3.3434 —3.1416| T
640 | —3.3775 —3.7339
861 | —3.4101 —3.7330

Table 6.1:
Energies ¢, and effective energies ¢* (in eV/atom), of amorphous clusters at

T = 0, after high-temperature annealing (HA).

with N = 116, 201, 314, 459, 640, 861. This sequence is that of ideal
cuboctahedra with 3 x 3 (100) facets, as described in the next Subsec-
tion. However, even if cuboctahedra were chosen, somewhat arbitrarily,
as the starting point for the annealing procedure, the final amorphous
configuration seems to retain no memory of this initial state.

It is interesting to note that €* is nearly constant across the sequence.
This indicates that a spherical droplet model is quite adequate for these
clusters, and also that the value we have chosen for o (see Eq. (6.3))
is rather realistic. The average value for €*, €, = —3.737 eV/atom,
can be assumed as the average effective energy of an amorphous cluster,
regardless of its size. This can be compared with the crystalline cohesive
energy at T = 0, ¢, = —3.78 eV /atom, and with the T' = 0 extrapolation
of the energy of the supercooled bulk liquid (from Table 3.1, page 52)
€. = —3.70 eV /atom.

Visual inspection also gives valuable informations. Figure 6.2 shows
the clusters with N = 201, 459 and 861 at T' = 0 after the HA procedure.
Although the global shape is ball-like as expected, the surface layer is
extremely well packed. Except for a few defects, it has locally a (111)-
like, triangular lattice appearance.

Figure 6.3 shows the N = 861 cluster at T' = 0, and a snapshot of the
same cluster at T' = 1380 K (above the bulk melting temperature). In

130




Figure 6.2:
Final T' = 0 amorphous structures, after a high-temperature annealing, of
clusters with N = 201 (a), 459 (b) and 861 (c). Surfaces are always well
packed and tend to form (111)-like facets. A
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Figure 6.3:

Amorphous cluster with N = 861. (a) T = 0, overall view. (b) T

0, internal

view. The cluster has been cut along a plane passing through its center. (c)

and (d) are the same as (a) and (b), but represent snapshots (instantaneous

positions) at T' = 1380 K, where the cluster is liquid.
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‘the latter case, the diffusion coefficient and other thermodynamic data
indicate that the cluster is indeed liquid. However, it can be seen that
faceting and high surface packing are still present to some extent. This
gives further support to the results on the non-melting behaviour of the
Au(111) surface studied in Chapter 5. It can be also seen from Fig. 6.3
'~ that the cluster is internally disordered, although the atomic layers near
the surface are kept somewhat ordered by the highly-packed surfaces.
Amorphous gold clusters are sometimes observed in electron micro-

scope experiments [159].

6.4.2 Cuboctahedral clusters

As discussed in Sec. 6.2, f.c.c.-cuboctahedra are octahedra with eight
(111) faces, whose vertices are cut by six (100) faces. They are con-
structed by putting all atoms in f.c.c. crystal sites. The total (111)
area, owing to the lower surface energy, is expected to be larger than
the total (100) area. For this reason, only cuboctahedra with relatively
small (100) faces have been investigated. In. particular, the following -

families have been considered:

e True octahedra. (100) facets are absent. An octahedron with n
shells is obtained from the octahedron with n —1 shells, by adding
(n +1)? 4+ n? atoms. This gives rise to the sequence N = 6, 19,
44, 85, 146, 231,344, 489, 670, 891, ...

e Cuboctahedra with 2x2 (100) facets. Obtained from the octahedra
by removing the six “tip” atoms. Their sequenceis N =... , 79,
140, 225, 338, 483, 664, 885, ...

e Cuboctahedra with 3x 3 (100) facets. Obtained by further removal
of six 2 X 2 atomic squares (24 atoms). Their sequenceis N = ...
, 55, 116, 201, 314, 459, 640, 861, ...

0dd N systems have an atom in the center, while even N systems have

an interstitial site in the center.

133




SR

LA

Energies ¢, and effective energies €* (in eV /atom), of cuboctahedral clusters at

T=0.

134

N
€ € € €*
Octahedra 146 | —3.1093 —3.6926 | —3.1461 —3.7294
231 | —3.2055 —3.7061 | —3.2284 —3.7290
344 | —3.2818 —3.7202 | —3.2990 —3.7374
489 | —3.3395 —3.7294 | —3.3526 —3.7425
670 | —3.3853 —3.7363 | —3.3954 —3.7464
_ 891 | —3.4224 —-3.7416 | —3.4302 —3.7494
2 x2 (100) 140 | —3.1003 —3.6918 | —3.1383 —3.7298
225 | —3.2032 —3.7082 | —3.2254 —3.7304
338 | —3.2782 —3.7192 | —3.2978 —3.7388
483 | —3.3363 —3.7278 | —3.3524 —3.7439
664 | —3.3820 —3.7341 | —3.3954 —3.7475
885 | —3.4193 —3.7392 | —3.4303 —3.7502
3 x3 (100) 116 | —3.0075 —3.6373 | —3.1056 —3.7354
201 | —3.1746 —3.6990 | —3.2135 —3.7379
314 | —3.2744 —3.7263 | —3.2896 —3.7415
459 | —3.3405 —3.7387 | —3.3440 —3.7422
640 | —3.3899 —3.7463 | —3.3927 —3.7491
861 | —3.4279 -—3.7508 | —3.4301 —3.7530
Table 6.2:




The results of simple relaxations and of low-temperature annealing

runs

are reported in Table 6.2. Several observations on these results can

be made:

The group of cuboctahedra with 3 x 3 (100) facets is slightly
favoured.over the others. . For this_reason, we shall refer mainly

to this group in the following.

LA invariably leads to a better energy than SR. This confirms
that the optimization problem is not trivial in this case. The
symmetry is often reduced by the finite-temperature annealing;

the arrangement of surface atoms changes considerably.

By using SR, all clusters with N < 400 have energies which lie
above the energy of amorphous clusters, € = —3.737 eV /atom.
This suggests that the starting point provided by the perfect,

“crystalline” structures is indeed quite bad for such small sizes.

. LA apparently solves this problem. However, an examination of
the systems with N = 116 and 201 (and also N = 140, 146) shows
that their structure has become amorphous or quasi-amorphous. -
That is, for such small systems, the temperature reached in the
annealing run (around 300 K) is sufficient to “melt” them. This
is not of course a real melting, since the energy decreases in the
transition. It simply indicates an unstable starting configuration,
whose energy is higher than that of a well-annealed amorphous
structure. Other crystalline structures with energies lower than

the amorphous structures may, of course, exist.

Clusters with N in the range 300-500 remain crystalline after LA,
but their energetic improvement over the amorphous structures
is extremely small (less than 5 meV/atom). Only for N > 500

cuboctahedra become clearly favoured.

The competition between crystalline and amorphous structures
seems basically due to the fact that amorphous clusters have a

better surface energetics. For example, in the case N = 459,
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the average energies of hylk and surface atoms, calculated using
- (L.12), are respectively ¢, ~ —3.68eV, ¢, ~ —3.02¢eV in the crys-
talline cluster, and €% >~ —3.61eV, ¢, ~ —3.09¢€V in the amorphous
cluster. Here, bulk energies are better in the crystalline cluster,
but surface energies are better ip the amorphoys. Since for this

size the number of surface atoms nearly equals the number of bulk ™

As usual, visua] eXamination of the clusters Provides some further
insight, Figure 6.4 shows the cuboctahedrs, with N = 90 and 861

cuboctahedra with 7 — 201(79), 459(201), 861(459). Here, the presence
of a rigid crystalline core Prevents “cata.strophic” rearrangements, The

reported in Table 6.3, With the exception of N — 201, whose energy

is nearly identical to that of the amorphous clusters obtained by LA
(Table 6.2) or HA (Table 6.1), the energies display a cleay improvement.

e Atom rearrangement occurred in a non-symimetric way.

® Surface relaxations are Very strong, both in the radial and tangen-
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Figure 6.4:
0 structures of cuboctahedral clusters: N = 201 after SR (a) and LA (b),

861 after SR (c) and LA (d).
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Figure 6.5:
T = 0 structure of a N = 459 cuboctahedral cluster after high-temperature

surface annealing (HSA). Global view (a) and atomic structure of a plane

passing through the center (b).
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N SR HSA
€ €* € €*

201 | —3.1746 —3.6990 | —3.2138 —3.7382
459 | —3.3405 —3.7387 | —3.3528 —3.7510

Table 6.3:

Energies ¢, and effective energies ¢* (in eV /atom), of cuboctahedral clusters
with 3 x 3 (100) faces at 7' = 0. The two rightmost columns refer to a high-
temperature surface annealing (HSA) procedure.

e (111) faces tend to shrink laterally, while (100) faces tend to open
up laterally, probably being “pulled apart” by neighbouring (111)

faces.

e A square of 2 x 2 atoms (instead of the initial 3 x 3) is often seen
on top of the (100) faces. However, the central atom in the 3 x 3
“second layer” square is missing, so that the 2 X 2 square can
heavily subside into the vacant hole. This also allows the (111)

faces to shrink.

The last point suggest. that a new family of cuboctahedra, i.e. with
2 x 2 (100) faces and the central atom missing in the 3 X 3 square below,
could be a favourable geometry. We have tried three such systems, with -
N = 219(79), 477(225), 879(483). The results are reported in Table 6.4.
N =477 and N = 879 are unique, in that SR and HSA yield the same
result. Asshown by Fig. 6.6, these clusters are symmetric and extremely
stable. However, the somewhat defected N = 459 and N = 861 clusters
reported in Table 6.3, have a (slightly) better energy.

6.4.3 Icosahedral clusters

The n-th atomic shell of an icosahedral particle has 12 vertices, each

éontaining 1 atom; 30 edges, each containing n — 1 atoms; and 20 faces,
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Figure 6.6:
T = 0 structures of N = 219 (a), N = 477 (b) and N = 879 (c) cuboctahedral

clusters after high-temperature surface annealing (HSA).
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N SR HSA

€ € € €
219 | —3.2203 —3.7299 | —3.2319 —3.7415
477 | —3.3559 —3.7490 | —3.3559 —3.7490

879 | —3.4333 —3.7540 | —3.4333 —3.7540 |

Table 6.4:
Energies ¢, and effective energies ¢* (in eV/atom), of cuboctahedral clusters
with 2 X 2 (100) faces, and the central atom missing in the 3 x 3 layers below,
at T = 0. The two rightmost columns refer to a high-temperature surface

annealing (HSA) procedure.

N SR LA HSA

€ €* € €* € €*
147 | —3.0906 —3.6726 | —3.1213 -3.7033 | —3.1287 —3.7107
309 | —3.2506 —3.7049 | —3.2640 —3.7183 | —3.2771 —3.7314

561 | —3.3518 —3.7242 | —3.3548 —3.7272 | —3.3630 . —3.7354

Table 6.5:
Energies ¢ and effective energies ¢* (in eV/atom) of icosahedral clusters at
T = 0, using simple relaxation (SR), low-temperature annealing (LA) and
high-temperature surface annealing (HSA) procedures. .

each containing (n — 1)(n — 2)/2 atoms. The total number of atoms
in the shell is therefore S(n) = 12 + 30(n — 1) 4+ 10(n — 1)(n — 2),
and therefore the total number of particles in icosahedra are given by
N(n)=1+3Y%, S(¢) = 13, 55, 147, 309, 561, 923, ...

Table 6.5 reports the results of SR, LA and HSA runs for N =
147(55), 309(147) and 561(309). The numbers in parenthesis indicate
the size of the rigid core. As in the case of cuboctahedra, the best results
are obtained by HSA. All energies are higher than the cuboctahedra en-
ergies (Table 6.3), and also slightly higher than those of the amorphous
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N |  HSA

€ €*
159 | —3.1479 —3.7149
329 | —3.2871 —3.7320
T581| —3.3731 —3.7412

Table 6.6:
Energies ¢ and effective energies €* (in eV /atom) of icosahedral clusters at
T = 0, using a HSA procedure. SR data are not reported, being not significant

in this case (presence of adatoms).

clusters (Table 6.1). The energy differences, however, rarely exceed 20
meV /atom, with 10 meV /atom as a typical value.

The corresponding final configurations are shown in Fig. 6.7, where
the atoms allowed to move have been put in evidence. It can be seen
that surface atoms tend to shrink, forming “holes” on the cluster surface.
This is basically the same phenomenon which occurs on the flat Au(111)
surface, leading to surface reconstruction (see Sec. 4.5). In the case of
cuboctahedral clusters, shrinking occurs at the expenses of (100) faces,
which become broader. In icosahedra, all faces are initially equal, so that
symmetry breaking and creation of defects are unavoidable consequences
of shrinking.

Like in our surface studies, we attempted to improve the icosahedra
energy by supplying more atoms on their surfaces (as adatoms) in the
initial configurations. 12 atoms have been added to the smaller icosahe-
dron, and 20 atoms (one per face) to the other two, producing clusters
with N = 159, 329, 581. The results are reported in Table 6.6, and
the final configurations are shown in Fig. 6.8. It can be seen that clus-
ter surfaces are now well coated, but the energy improvement is rather
small. Therefore, cuboctahedra remain favoured at all sizes over icosa-
hedral particles. We see also from Table 6.6 that icosahedral clusters
are better than amorphous for N > 500.
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Figure 6.7:
T = 0 structures of N = 147 (a), N = 309 (b) and N = 561 (c) icosahedral

clusters after high-temperature surface annealing (I1SA). Shaded atoms were

allowed to move during the annealing, all other atoms were kept fixed.
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Figure 6.8:
T = 0 structures of N = 159 (a), N = 329 (h) and N = 581 (c) icosahedral
clusters after high-temperature surface annealing (11SA). Shaded atoms were

allowed to move during the annealing, all other atoms were kept fixed.




N ¢t h SR LA HSA

* *

€ € € €

€ € *
258 4| -3.1918 -3.6743 | —3.2493 —-3.7318 | —3.2513 —3.7338
409 4| —3.2841 -3.6979 | —3.3085 —3.7223

5
6
-1 606 -7 - 4-1-~3.3501-~—3-7133 | -3.3700 —3.7332
7
8

711 5| —3.3636 —3.7077 | —3.3915 —3.7356 | —3.4066 —3.7507
992 —3.4123 -3.7203 | —3.4347 -—3.7427

Table 6.7:
Energies ¢ and effective energies €¢* (in eV/atom) of decahedral clusters at
T = 0, using simple relaxation (SR), low-temperature annealing (LA) and
high-temperature surface annealing (HSA) procedures.

6.4.4 Decahedral clusters

As discussed in Sec. 6.2, decahedra have ten (111) triangular facets with
t atoms per side, and five (100) rectangular facets containing ¢ x h atoms.
The lengths ¢ and h are controlled by the ratio ¢111/0100, in order to
minimize the total free energy at constant volume accordingly to the
Wulff theorem [164]. We have chosen 111/0100 = 88.1/102.2 = 0.862
(using our values for reconstructed surfaces found in Chapter 4).

The results for the decahedra we have studied are reported in Ta-
ble 6.7. The energies are only marginally poorer than those of cubocta-
hedra.

Figure 6.9 shows the configurations of the N = 258 and N = 711
decahedral clusters after the HSA procedure. Again, surface atoms tend
to shrink and holes appear on the external shell. A remarkable feature
is the triangular structure that (100) faces tend to assume (Fig. 6.9b).
This suggest that the (100) ring around the decahedral particle might
be reconstructed like the flat Au(100) surface (see Sec. 4.3). The h =5
height of these faces in our N = 711 and N = 992 clusters seems
ideal to accommodate one extra row, in order to give rise to the six-
over-five stacking, characteristic of the Au(100) reconstruction. Such

reconstruction could bring the energy of these decahedral clusters near
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Figure 6.9:
T = 0 structures of N = 258 (a) and N = 711 (b) decahedral clusters after
high-temperature surface annealing (HSA). Shaded atoms were allowed to move

during the annealing, all other atoms were kept fixed.
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or below that of cuboctahedra. We are presently extending our study
in this direction. Interestingly, decahedra with N ~ 1000 are often
observed in electron microscopy, while smaller decahedra rarely appear
[159].

Overall, we find here that decahedra are only marginally higher in

‘energy than cuboctahedra, and might be favoured when N does 1ot a

cuboctahedron. In particular, decahedra appear to be more favourable
than either icosahedra and amorphous for 500 < N < 1000.

6.4.5 Very small clusters (IV < 100)

In clusters with N < 100, the number of “surface” atoms greatly exceeds
the number of “bulk” atoms (if any atom at all can be regarded as such).
Many of these “surface” atoms may have a very poor coordination, so
that our potential, fitted in rather different physical situations, is not
expected to give reliable results in this size region.

Moreover, “magic” numbers arising from closed-shell filling of clus-
ter-sized orbitals, as seen by mass spectroscopy experiments [163], can-
not of course be explained by a classical model like ours.

The atomic arrangements arising from simulated annealing MD runs
of clusters with N < 100 are in fact rather odd and probably of little
physical meaning. For N < 60, the minimal energy structures are elon-
gated or disk-like. As an example, Fig. 6.10 shows a disk-like structure

- with N = 28. For 60 < N < 100, amorphous aggregates are usually ob-

tained, whose energy is appreciably lower than that of all the crystalline
clusters of comparable size that we have tried.

A single exception, however, is worth mentioning. A stable, crys-
talline N = 58 cluster spontaneously appeared at the end of a HA pro-
cedure, without the use of a rigid core. This cluster, shown in Fig. 6.11,
has a b.c.c.-like crystal structure, without the central atom, and with
five shells containing respectively 8, 6, 12, 24, 8 atoms at distances 2.5,
3.5, 4.5, 4.8 and 5.4 A from the center of the cluster. The average energy
per atom is € = —2.9791 eV /atom, or ¢ = —3.7726 eV /atom, which is
remarkably good. Removal of the central atom from the N = 59 b.c.c.
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cluster allows a strong contraction to take place, reducing the energy.
For an infinite bulk, the b.c.c. structure is unstable (and not metastable)
in our model: relaxation effects related to its small size play a crucial
role in the stability of this cluster. . '
For the reasons dlscussed above, the occurrence of this “magic” clus-
“ter s should not‘l;(;taken too serlously It is interesting to note, however,
that the N = 59 b.c.c. structure is a good candidate for explaining the
EXAFS results of Montano et al. on Cu microclusters [183], as close

examination of their Table I suggests.

6.5 Clusters: summary

The main results of this study can perhaps be condensed as follows.

e Rather different cluster structures, such as f.c.c.-cuboctahedra,
decahedra and icosahedra, all yield very similar energies, with
typical differences of the order of 0.2% at N ~ 500 between one

and another.

e The lowest energies are obtained by heavily distorted cubocta-
hedra. Decahedra and icosahedra appear to be higher in energy
(the latter being the worst), but the differences are small, gener-
ally in the order of 10-20 meV/atom. The T' = 0 energetics is

summarized in Fig. 6.12. In presence of thermal and electronic

excitation, all these structures should become observable, which is

experimentally confirmed.

e Surfaces exhibit a tendency to reconstruct. In cuboctahedra, the
interatomic spacing within (111) faces tends to shrink. In icosa-
hedra and decahedra, small improvements in the total energy may
be obtained if the surface density is made higher by addition of

extra atoms.

e There is always a “non-crystalline” state of the cluster, whose inte-

rior looks amorphous and whose surface structure reminds one of
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Figure 6.12:

Effective energies per atom ¢* (defined by Eq. (6.3)) at T = 0 as a function
of the number of atoms N. A are amorphous, I icosahedral, D decahedral,
and C f.c.c.-cuboctahedral clusters. The points represent the results of high-
temperature annealing runs, with all atoms free to move (A), or with frozen
crystalline germs (I, D, C). The lines connecting the points are provided only
for visual convenience. €, = —3.78 eV is the bulk crystalline cohesive energy,

€, = —3.70 eV is the T = 0 extrapolation of the energy of the supercooled bulk
liquid.
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somewhat rounded (111) crystal facets. Its energy is very close to
the best crystalline cuboctahedral state. Starting with N > 200,
the smaller the cluster, the closer the amorphous and crystalline
energies are, until they merge for N ~ 200. The amorphous state
becomes favoured at small sizes because of its lower total surface
encrgy. e e ,
e The stable crystalline cluster structures are not trivial to obtain
from the MD annealing procedure. They require a rather artic-
ulate strategy based on starting from a smaller crystalline germ,
annealing the outermost shell of added atoms, and then relaxing
the whole system. Simple high-temperature annealing done with-
out these precautions usually leads irreversibly to an amorphous

cluster.

This study is currently in progress, and an investigation of the melt-

ing properties as a function of size is being planned.
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Chapter 7

Conclusions

The glue model is a novel empirical way to represent atomic interactions
in a metallic system. As discussed in Chapter 1, the main difficulties
associated with the use of two-body descriptions in metals are overcome
without introducing a new significant computational overhead. There-
fore, the model is particularly well suited to molecular dynamics or
Monte Carlo computer simulations.

It has been shown that the glue Hamiltonian provides for a good
unified description of bulk, defect and surface properties of gold. In
particular, it is successful in predicting the occurrence of reconstruction
on all its low index surfaces. Reconstructions arise from the tendency
to increase surface coordination, induced by the glue forces. A highly
detailed picture of all reconstructed gold surfaces has been obtained,
which in several cases has a direct experimental confirmation.

The method of using computer simulation as part of the fitting pro-
cedure allows to model quite accurately also the thermal behaviour, so-
that realistic computer simulation studies of metal surfaces and defects
at finite temperature are also feasible. In a first study of the melting
behaviour of the Au(111) surface, we have found that surface melting
does not occur on reconstructed Au(111), as a consequence of the good
energetics of surface atoms and of the surface stiffening arising from the
first-layer contraction.

The success in reproducing surface properties encouraged us to apply
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the model also to small clusters of atoms, where surface forces presum-
ably play a crucial role in determining the structure. We find that this
is confirmed, and in particular that denser (or “reconstructed”) surface
layers quite often yield a better energetics. Generally, we find cuboc-

tahedra to be energetically favoured. However, amorphous clusters of

‘ ‘4"\'1'iigmh'siléigili't}”‘ére also uncovered, which for N < 200 become favoured

over clusters with a “crystalline” structure.

On the negative side, the glue Hamiltonian has some intrinsic limi-
tations. The lack of true angular forces, in particular, prevents a good
fit of the phonon dispersion curves, which basically remain determined
by the two-body part. For the same reason, the stacking-energy differ-
ence between the f.c.c. and h.c.p. crystal structures is zero in our simple
first-neighbour scheme. Like for two-body forces, interactions extending
at least to third neighbours would be required for a realistic description
of these aspects.

Such an extension is of course possible, but has not been attempted
here. It remains to be considered for the future, along with similar
applications of many-body force schemes to other metals, as well as to

non-elemental systems.
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Appendix A -

Glue forces in molecular

dynamics

The purpose of this Appendix is to discuss some technical aspects of
the molecular dynamics (MD) simulation program used to carry out
the studies described in this thesis, with particular emphasis on the

calculation of the glue forces.

A.1 The MD method

The molecular dynamics method for a classical system consists of follow-
ing the time evolution of a N-particles system by numerical integration
of Newton’s equations of motion
= "“‘]’.‘“{7‘:‘V
m;
where V is the total potential energy function (for a recent extensive
survey on MD, see Ref. [55]).

From the phase space trajectory of the system obtained in this way,
several statistical properties of the system may be obtained by time
averaging. Moreover, MD may be effectively used as a tool for energy
minimization, as discussed in Sec. 4.2 (page 66).

In MD calculations of bulk systems, the particles are enclosed in a

box (usually a parallelepiped), and periodic boundary conditions (PBC)
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are used to minimize boundary effects. PBC consist of repeating the
computational box by rigid translation along the three directions parallel
to the box edges, so that the whole space is filled. For surface studies,
PBC are in effect only along directions parallel to the surface plane,
whereas free conditions are used along the surface normal. This gives
rise to a “slab” geometry, and care must be taken to define a number
of atomic layers large enough to avoid excessive coupling between the
two surfaces. This was not a serious problem in our case, where 10-20
layers always proved to be sufficient, owing to the short-range character

of the functions in the glue Hamiltonian.

A.2 WMD at constant volume

In the simplest version of the MD method, the box volume  is fixed,
and the total energy E and number of particles IV are conserved, mean-
ing that the simulation is performed in the microcanonical or EQN
ensemble.

For a system of identical particles interacting through the glue Hamil-
tonian, V is given by Eq. (1.5) and the equations of motion are

1

= Z( $'(ri;) + U (nz)w(n,)]p(n,))

m
(J#t)

where 7;; = 7; — 7;. Implementation of these equations in the simula-
tion program requires to pass twice over all the interacting pairs. By
“interacting pairs” we mean here all pairs of particles whose distance is
less than max(r.,r,), where 7. is the range of ¢(r) and r,, the range
of p(r). In the first pass, the two-body forces and the coordinations n;
are calculated for each particle. In the second pass, the glue forces are
computed using the values for n; previously obtained.

The algorithm is sketched in Table A.1. In the production pro-
gram, the functions ¢(r), p(r) and U(n), and the derivatives —¢'(r)/7,
—p'(r)/r and U'(n), are taken from numerical tables generated previ-

ously (once for all). To avoid square root computations, the functions of
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Initialize to zero arrays forcex, forcey, forcez and coord
dot=1,N -1 ( Two-body forces and coordinations loop)
do =1+ 1,N .
Compute distance v7; = z2; + y; + 2%; between i and j
if 7% <rl then
Compute f = —¢'(ri;)/7ij -
forcex(i) = forcex(:) + f*z;;
forcey(i) = forcey(i) + f*y;;
forcez(z) = forcez(i) + f*z;;

forcex(j) = forcex(j) — f*zij
forcey(j) = forcey(j) — f*yi;
forcez(j) = forcez(j) — f*z;
endif
if r?j < 7l then

Compute p;; = p(ri;)
coord(i) = coord(z) + p;;
coord(j) = coord(j) + pij

endif
enddo
enddo 3
do1=1,N (Loop to evaluate and store U'(n;))
uderiv(z) = U'(coord(i))
enddo
dot=1,N -1 (Glue forces loop)

do ] =1 + ]_’ N
Compute distance v3; = z%; + y%; + 27 between i and j
if 77, <rZ then
Gompute g = /()
f =g * ( uderiv(:) + uderiv(j) )

forcex(i) = forcex(:i) + f*z;;
forcey(i) = forcey(i) + f*y;;
forcez(i) = forcez(i) + f*z;
forcex(j) = forcex(j) — f*z;;
forcey(j) = forcey(j) — f*y;;
forcez(j) = forcez(j) — f*z;
endif
enddo
enddo
Table A.1:

Algorithm for molecular dynamics glue forces calculation.
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r are stored at constant intervals in 72. A linear interpolation procedure
between the values sampled in the tables is then used to evaluate the
functions for a generic argument.

Actual code is slightly more complicated than that listed in Ta-

- _ble A.1, owing to the 1mplementat10n of Parrmello Rahman motion

equatlons (bneﬂy discussed in Sec. A. 3), and to neighbour-list handling
(discussed in Sec. A.4).

A.3 MD at constant pressure

Recently, methods extending MD beyond the microcanonical ensemble
have been developed. Among them, the isoenthalpic-isobaric (HPN)
[58], isoenthalpic-isostress (HSN) [54,185], and the canonical (TQN)
[186] ensembles. Extension of MD to the grand canonical T'(Qi ensemble
remains an open problem.

The program used in the present work implements the EQN, HPN
and HSN ensembles. In the latter, the computational box, which is a
generic parallelepiped, may vary in volume and in shape, driven by the
instantaneous imbalance between the internal and the external stress.
The advantages of this scheme, developed by Parrinello and Rahman
[54], have been discussed in Sec. 3.1 (page 46).

In this method, the box is described by a 3 x 3 matrix h, whose
columns are the components of the three vectors @, I_;, ¢ that span the
edges of the box. Scaled coordinates 5; are introduced, such that the

position of a particle 7; is written as

and the square distance between two particles as
rh; = (8 — §;) G(5: - 5j)
where the symbol T indicates transposition, and

G = hTh
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is the metric tensor in the new coordinate system. {3;} and h are the
3N +9 dynamical variables of the system, whose time evolution is given

by the Lagrangian

1 Eor . - " 1 ST
L= imz:s- Gs; — V(f1,...,n) + -W Tr(h™h) — pQ
=1
where W is a constant para.meter (controlhng the inertia of the walls)
p the external pressure, and 2 = det h the box volume. In case of an
anisotropic external stress, p{} is replaced by a more complex term.
When V is given by the glue expression (1.5), the equations of motion

generated by L are

LN 1 N 7 1] —
=-G7'Gs - ~ Z (¢ (i) + [U'(n3) + U' ()] (7:5)) 555
(J;ﬁ’)
N N«
WhH*? = mz (hé’,) e

1
i=1

N

-ry = (¢ (ri5) + [U' () + U'(n;)]0' (r13)) (h%5)" o5

1=1 j>1 Tij

where

—

— —_—
Si_,':si——Sj

2 _ 7T~z
T = .sist,_,

N
ni= ) p(rij)
j=1
(3#9)
The algorithm of Table A.1 can be easily modified accordingly.

Note that the forces depend upon both the positions and the veloc-
ities. The well-known Verlet (or leap-frog) integration algorithm [187]
is not well suited to this situation, where positions and velocities must
be simultaneously known. In the Verlet algorithm, in fact, knowledge
of the positions at time ¢ + At (where At is the integration time step)
is required to obtain the velocities at time ¢. For this reason, and for
higher accuracy, a fifth-order (6-value, 1-step in the classification of
Ref. [187]) predictor-corrector Gear integrator has been used instead. A
good description of this algorithm can be found in Ref. [188].
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A.4 Neighbour list on vector computers

In a simple force calculation algorithm (like that presented in Table A.1),
all the N(N — 1)/2 particle distances are computed at each time step.
In systems with short-range interactions (such as the model for gold
described in this thesis), when N is large, this constitutes a waste of
time since only a minority of pairs are actually interacting.

Therefore, the performance of a MD program can be greatly im-
proved by using bookkeeping mechanisms to keep track of the particle
pairs which are close enough to interact. The usual method, invented
by Verlet (see Ref. [188] and references therein), is the following. A list
is made of the neighbours of each particle out to a distance r.+ S, where
r. is the interaction range and S a “skin” thickness. The formation of
this list requires O(N?) time. For several time steps after that moment,
only neighbours from the list are considered, and the force calculation
runs in O(N) time. The list is re-built when particle pairs excluded
from the list may have moved within the interaction range.

Owing to the non-linear addressing of memory intrinsic in the list
data structure, this technique inhibits vectorization of programs on re-
cent vector computers such as the Cray X-MP or IBM 3090/VF, pre-
venting an efficient utilization of such machines. A clever solution to
this problem has been provided by Fincham and Ralston [189]. In their -
proposed algorithm for the formation of the neighbour list, shown in
Table A.2, the non-linear access to memory is confined in a short and
compact loop containing only integer arithmetics, while the distances
are computed in a vectorized loop. This scheme leads to significant
speed improvements on vector machines, and has been implemented in
our program.

Once the neighbour list is formed, it has to be used for several time
steps. Algorithms which compute the forces using the neighbour list are
more difficult to vectorize efficiently. We have found the usual scalar
algorithm, shown in Table ‘A.3, to be the best choice in our case. In
fact, the loop on the neighbours of particle ¢ is very short (~ 10 it-

_erations) when first-neighbour forces are used, as in the present glue

159




m=1
marker(l) = O

do:=1,N -1
do j=t¢+1,N B
- Compute distance rizj = :c?j + yizj + zizj between 1 and j
index(7) = 0
if r% < r? then index(j) =1
enddo
do =1+ 1,N
list(m) = jJ
m =m + index(7)
enddo
marker(i +1) = m—1
enddo

Table A.2:
Fincham-Ralston algorithm for the formation of the neighbour list. The first
loop on j vectorizes. The second does not vectorize, but contains only a small

amount of (integer) arithmetics.

do t=1,N—1
do m = marker(z) + 1,marker(z + 1)
j = list(m)
Compute distance r%; = z%; + y?; + 23; between i and j
Compute forces and/or coordinations and accumulate them
enddo
enddo

Table A.3:
Conventional algorithm for force evaluation using the neighbour list. This
algorithm does not vectorize.
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model. Therefore, only a modest (if any) improvement could be achieved
by vectorization (e.g., by use of gather/scatter operations as done in
Ref. [189]). Moreover, since this algorithm takes O(N) time, the total
execution time becomes anyway dominated by the list formation when
N is large.

Completely different strategies could perhaps lead to ‘more efficient’
solutions to the force evaluation problem in molecular dynamics. Vec-
torizing MD algorithms for short-range forces which scale as N have
been recently proposed [190]. Implementatioﬁ of such algorithms in
production programs could make practical simulations in the size range
N ~ 10%-10°, allowing new kinds of physical problems to be attacked

by computer simulation.
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