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Chapter 1

Introduction and summary

Polar Ring (PR) galaxies are systems composed of a central component, normally an
S0 galaxy, circled by a luminous annulus with gas, dust, and stars, aligned along the
minor axis of the host galaxy. From the earliest studies (Bertola & Galletta 1978,
Lausten & West 1980, Schweizer et al. 1983, Whitmore et al. 1987a) they were
shown to be very effective laboratories of the dark matter problem, the intrinsic shape
of hot stellar bodies, and interaction/merging between galaxies.

The questions stressed by the first papers (Schweizer et al. 1983, Whitmore et
al. 1987a,b) on these systems dealt with the presence of the dark halo around the
central component and its three-dimensional shape; especially NGC 4650A which
showed the best evidence of a dark matter halo. The rotation curve for the ionized
gas in the ring is flat and extended out to ~ 3Rys', a distance comparable with the
most extended radio rotation curves obtained for spiral galaxies using the 21 cm HI
neutral hydrogen emission.

At the same time, information on the three-dimensional shape of dark matter
halos were deduced from the comparison between the velocities of stars in the host
galaxy and that of gas in the ring, since they are lying on nearly orthogonal planes.
Whitmore et al. (1987a,b) using the scale free potential of Monet et al. (1981) and a
straight comparison of the above velocities derived that the dark halos were spherical
in the case of three PR systems. A similar conclusion has been derived previously
by Schweizer et al. (1983) and is based on stability arguments. Ring structures
embedded in a flattened potential are perturbed by its quadrupole moment and their
precession rates depend both on radius and inclination. They estimated that such
structures, tilted away from 90°, are subject to differential precession and disrupted

1R,5 is the distance corresponding to the 25-mag-arcsec™? isophote of the central S0
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6 CHAPTER 1. INTRODUCTION AND SUMMARY

in less than a Hubble time. An alternative for the stability of inclined is a spherical
potential, or nearly orthogonal rings, since in that case the PR precession rate would
easily exceed the Hubble time.

But still the PR dilemma remains: PR structures are found normally 10° —20° far

from the pole, and they should feel the differential precession and be disrupted, while,
were the potential spherical, the ring structures should be found at any inclinations.

Sparke (1986) discussed whether self-gravity would be able to stabilize PR in an
axisymmetric oblate potential. She studied the dynamics of precessing rings in a
scale free potential of Monet et al. (1981) and found that stable PRs are possible
if their masses exceed a minimum value. For lighter PR, stable configurations are
possible just near the symmetry plane of the potential. For intermediate masses, PR
are stable near either 90° or 0°. If the PR is really massive it evolves independently
from the potential and is stable at whatever angle.

Moreover, a detailed analysis of the rotation curve for the gas in the ring of NGC
4650A, and a different correction of the stellar rotation curve for asymmetric drift,
lead Sackett and Sparke (1990) to state that the dark halo in NGC 4650A is probably
not spherical but flattened.

Regarding the stability of PR structures another model has been discussed: the
preferred orientation model (Steiman—-Cameron & Durisen 1982, 1984, 1988, Habel
& Tkeuchi 1985, Varnas 1986, Christodoulou 1988, Steiman—Cameron 1990) proposes
that the gravitational potentials of SO galaxies are slightly triaxial in nature. This
small departure from axisymmetry will lead a fraction of all dissipative disks accreted
by SOs to settle into the polar orientation, because dissipative interactions among
elements of a twisted gas disk will lead to the transport of angular momentum, causing
the radial inflow of material and the settling of the disk into a steady state, or
“preferred” orientation. In triaxial galaxies the polar orientation is also preferred. If
the figure of the potential is static, then a completely settled ring will be orthogonal
to the underlying SO disk. If the figure is very slowly rotating, then the ring will be
slightly inclined to the polar orientation and may be slightly warped away from the
pole at large radii.

So the general picture is that large PRs around SOs indicate the presence of dark
matter halos, whose shape is probably flattened, either axisymmetric or triaxial.

Recently, Whitmore et al. (Polar Ring Catalogue, PRC, 1990) have published a
survey of polar ring galaxies and systems possibly connected with them, in order to
enlarge the statistics on these objects. An analysis performed by Whitmore (1991)
on the data published in the PRC indicates the presence of two classes of PR: the
first one, whose prototype is the system NGC 4650A — called wide polar ring — and a



second one, where the central component is round and the ring appears narrow and
contained in the optical radius of the central component, called narrow polar ring.
This second class provides the opportunity to study the intrinsic shape of the hot
stellar system, since the PR probes the gravitational field at smaller radii.

This thesis deals with the subjects stressed in the above presentation, both theo-
retically and observationally. In the first part of the thesis (Chap. 2) we have analysed
the dynamics of PRs, considered as a probe for the intrinsic shape of the potential
well around galaxies (Arnaboldi & Sparke 1992).

We have developed a numerical code which simulates the evolution of massive
rings, modelled as a series of circular wires, concentric with the underlying galaxy,
embedded in a axisymmetric or triaxial potential. We find that tilted massive rings
cannot be stable in a static triaxial potential: the torque of the gravitational potential
with respect to the line of nodes causes the structures to wobble, i.e. to change its
inclination with respect to the equatorial plane of the potential, and then to change
the sense of precession. The stability of tilted rings is possible if the triaxial potential
is tumbling: in this case PR configurations are possible for lighter mass than in the
correspondent axisymmetric oblate case. We also find that, in the limit of the ring
mass going to zero, tilted rings away from the equatorial plane are possible in the
triaxial rotating case, but not in oblate potential. The warped solutions found for the
tumbling triaxial case with mass going to zero, bend towards the equator, and are
the massive analogies of the anomalous retrograde orbits (Schwarzschild 1982). For
intermediate masses the rings are found either near the pole or near the equatorial
plane, reproducing the statistic of the orientations observed in polar ring systems.

Stable solutions near the pole are warped and they bend towards it, away from the
equator.

From the point of view of spectroscopic observations, the warping of gas rings
may effect the rotation curve produced by the galactic potential due to projection
effects: the rotation curve may appear rather complex, even if the underlying potential
is smooth. We develop a code (Arnaboldi & Galletta 1992) which computes the
projected rotation curves at different slit positions on a given warped structure. The

numerical code and several applications to different galactic systems are described in
Chap. 3.

We applied these theoretical and numerical tools to study the prototype of the
“Narrow Polar Ring” class, the AM 2020-504 system (Arnaboldi et al 1991,
1992a,b). We acquired new photometric and spectroscopic data which revealed the
peculiarity of this system. In this case the host galaxy is an E4 with a dynamically
decoupled core; this fact, together with the difference in color between the material
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in the ring and that in the host galaxy, and the huge amount of HI detected in the
system, unusual for an elliptical galaxy, support the accretion/merging scenario for
PR. Rotation curves for the gas in the ring have successfully been reproduced with
a self gravitating warped structure in an oblate potential, the relevant parameters of
the model are presented and discussed in Chap. 4.

The inferred accretion scenario for narrow PR deduced from the observations of the
“prototype” AM 2020-504 is highly testable, since the possible new material accreted
from the galaxy during its evolution would lead to a second burst of star formation.
This new burst will affect the spectral energy distribution (SED) of the underlying
elliptical galaxy and perturb it in the UV part. To test the proposed evolutionary
scenario for narrow polar rings we acquired new IUE data to investigate the UV part
of the spectrum of AM 2020-504 (Arnaboldi et al. 1992c). The UV spectrum of AM
2020-504 clearly shows the presence of a recent burst of star formation: the data and
model for the SED are described in Chap. 5. The model for the star burst also gives
a lower limit to the age of the PR in AM 2020-504, indicating that the structure is
quite young.

Work is still in progress: we have acquired new spectroscopic data for AM 2020-
504 to investigate its decoupled core. There is some evidence for non—circular motions
but we are still analysing the data from the August 1992 run at the ESO 2.2m
telescope. In addition other photometric and spectroscopic data have been acquired
for another narrow PR system, ESO 603-G21, and the system ESO 474-G26, which
has two rings at orthogonal angles. All these round galaxies with narrow gas rings
appear surrounded by small companion galaxies, and are found in the center of small
clusters of galaxies. In the case of ESO 603-G21, the narrow band image centered on
the Ho emission line shows ionized gas clouds that seem to be settling down in the
ring: perhaps this is a snap shot of the on—going formation of the ring in the system.
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Chapter 2

Ring Dynamics

2.1 Intro duction

As pointed out by Sackett and Sparke (1990) the dark halo around a polar ring galaxy
may not be spherical, and the dynamics of precessing rings can help in understanding
whether the intrinsic shape of the flattened potential is axisymmetric or triaxial. In
this chapter we are going 10 analyse the dynamics of rings around matter distributions
with different three-dimensional shapes. We will briefly describe the equations of mo-
tions following Goldstein (1980) in Section 2.2; the gravitational potential (de Zeeuw
& Pfenniger 1988) used to model the potential well around galaxies is discussed in
Section 2.3 and a suitable computational method to evaluate the torques exerted by
the gravitational feld on the precessing Ting is presented in Section 2.4. Following
Sparke (1986), gravitational interactions between rings is taken into account to study
the evolution of the ring structures: two different methods to compute forces between
Tings are described and compared in Section 2.5. Then the evolution of massive rings

in axisymmetric and triaxial potentials is discussed in Section 2.6 and conclusions
stated in Section 2.7.

2.2 Equations of motions

Let us consider a ring of radius r and linear density o embedded in a potential
®(z,9,2), where z,v, z are the cartesian coordinates in the galaxy system of reference
¥(z,y,z)- The potential &(z,y,z) contains both the potential ®4(z,y,2) generated
by the matter distribution in a galaxy and the mutual potential &n(z,y,2) due to the
interaction with other massive rings. The 1ing plane II has an inclination 6 respect

13



14 CHAPTER 2. RING DYNAMICS

to the xy—plane and its line of nodes is at an angle ¢ from the x—axis. In the ring
system of reference ¥'(z’,7’,2'), the points on the ring are given by:

¢/ = rcosy
y' = rsing (2.1)
2= 0

where 1 is the radius and 7 is the parameter angle of the ring. We can express the
coordinates z’,y’, z' in the galaxy system of reference X(z,y, z) through the orthogonal
transformation ¢’ = Tz where T = C - D and

1 0 0
C=1|0 cosf sinf (2.2)
0 —sinf cos¥

cosp sing 0
D=| —sing cosp 0 (2.3)
0 0 1

(Goldstein 1980, p.146). So the coordinates of the points along the ring becomes

c=T"'2"=D".C7. .2 (2.4)
where
T-Y(1,1) =cosp T7(1,2) = —singpcosf T7'(1,3) =sinpsinf
T-'(2,1) =sinp T71(2,2) =cospcosd T7'(2,3) = —sinfcosyp (2.5)
T-1(3,1)=0 T-1(3,2) =sin b T-1(83,3) = cos b

So the ring coordinates in the system of reference ¥(z,y, z, ) are given by:

z = 7(cosncosp — sin7sin ¢ cos f)
y = 7(singcosn + sinn cos ¢ cos § (2.6)
z= rsinysinf

Following Goldstein (1980), we derive the equations of motion for the ring precessing
in the potential ®(z,y,2,). In ¥'(z',3’, 2’) the ring lies in a plane perpendicular to k4
and rotates at a rate ¥ about that axis. The ring has a moment of inertia I3 = mr?,
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where m is the ring mass, about 2/, and I; = mr?/2 about the z’,7' axes. The
component of the vector angular velocity in the frame ¥(z,y, z) are:

Il

wy 9 sin ¢ — 1 sin 6 cos @ (2.7)

{ wy = Bcosp+1sinpsinf
w, = 1cosl+ ¢

The kinetic energy from the precession is then:
I . I .
T = (g% sin’ 0 + 6" + S (posd + )" (2.8)
Considering only the potential energy of the ring due to the matter distribution of

the galaxy:
Vi6,0) = [ @,dM (29)

ring
the lagrangian of the ring precessing in the galactic potential is:

L= 12_1((,52 sin0 4+ 0%) & (g cos 0+ $) — Vy(6,4). (2.10)

In the general case we are exploring, the potential energy is an explicit function of the
Euler angles 6, ¢, so the only cyclic coordinate is 7, which implies the its conjugate
momentum is a constant of motion. The canonical momenta are:

Py= 9L =L+ )

oy
P, = %—-’5 = Iigsin? + Py cosd (2.11)
= 9T _ 14
p= 9% -1

Expressing the angular speeds 1/'), ¢, and § through their conjugate momenta, we can
compute the hamiltonian for the system, given by:

g B 1 (B-Pocostf P
2]1 2[1 SiI].?g 2]3

+Vy(6,0) (2.12)
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and then the equations of motion for the ring precessing in the general potential
energy V,(6, ) are:

j— o P 1 (P, — PycosB)(Py — Pycosb) 0V,
R C A sin® 6 00

. P,— Pycost s —_aV;,

L I, sin* 8 Py = Bo

i+ Py cos(P,— Pycost) 5 _

v = I3 I, sin’ 4 Py= 0

(2.13)
If we consider an axisymmetric potential, the lagrangian will depend explicitly only
from the § angle and P, becomes a constant of motion.

2.2.1 Steady precession

In an axisymmetric potential the condition for steady precession requires that the
inclination angle § should be a constant. Using the Lagrange’s equation of motion

for the 8 coordinate:
d (6L oL
Sl et e 2.14
dt (39) g5 =" (2.14)

%,
09

we obtain

I8 — L% sin 6 cos 8 + Iz sin (3 + ¢ cos §) = — (2.15)

The conditions for steady precession are § = § = 0, which simplifies eq. 2.15 to:

Iip?sinfcos§ — ¢sin 6P, — % =0 (2.16)

In the case of slow precession, i.e. when in eq. 2.16 ¢° becomes negligible respect to

¢, the relation between the precession rate and the torque from the galactic potential
becomes:

10w,
~ Py dcosb

¢ (2.17)

In the steady precession the sum of the angular momenta and the hamiltonian are
conserved.
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2.3 Potential-density pair

We would like to use in our model a potential obtained from a realistic density distri-
bution via the integration of the Poisson’s equation. For triaxial systems, the general
case we are interested in, few explicit solutions of Poisson’s equation are known. The
most famous of these is the family of models where the density is stratified on similar
concentric ellipsoids. We will use a class of triaxial density distributions for which
Poisson’s equation can be solved also by one-dimensional quadratures, We are in-
terested in models which have a smooth density distribution that falls off not faster
than 1/7? at large radii, so that they are well suited for a description of galaxies with
massive halos (de Zeeuw & Pfenninger 1988). The smooth density distribution in
Y(z,y,z) is given by:
2 2 2

Po 2 T Y

2 z
p(z,9,2) = p(m’) = 1= m=—tants (2.18)

where a : b : c are the axis ratios, and a > b > ¢, and the central density is equal to
po- The total mass inside the ellipsoid m is:

M(m) = 4mabcpo(m — arctan ) (2.19)

So the total mass of the spheroid results infinite. The gravitational potential ®,(z,y, 2)
inside a density distribution p = p(m?) can be derived by means of the classical theory
in Chapter 3 of Chandrasekhar (1969); it can be written:

© dy [m?(v) 2 2
@g = wGabc o m/(; p(m )dm (220)
where
. 1122 ,y2 22
— A — 2 2 2 .
mi(u) = (w) = y/(a? +u)(b2 +u)(c? +u) (2.21)

Using the density stated in eq. 2.18, the potential can be rewritten as:

du
Au)

® = wGpoabe /:o In[1 + m*(u)] (2.22)

2.3.1 Ellipsoidal coordinates

For the evaluations of the integrals in eq. 2.22 it is useful to change from cartesian co-
ordinates (z,y, z) to confocal ellipsoidal coordinates (A, g, v) (de Zeeuw 1985) defined
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as the three roots for 7 of the equation m?(7) = -1 with > < v < B2 < p < a? <A,
otherwise rewritten to:

22 y? 52
=1 2.23
a2+u+b2+u+62+u , (2:23)
This equation becomes:
P4+ AP+ Br+C=0 (2.24)
where
A = —(A+p+v)= —(a2+b2+cz+r2) (2.25)
B = Mg+ pv+vd=a®b? + 6 +a?l + (2.26)
mz(bz +cz) +y2(c2 +a2)+z2(b2 +a2)
C = —duv = —(a?b’c + a?b%2% + 2?0’ c* + d*c’y?) (2.27)
Now, let us define the following quantities @, R, 7 as:
A? - 3B
Q = — (2.28)
24% —9AB +27C
= 2.29
R 51 (2.29)
R
7 = arccos (Q3/2) (2.30)
and 7 is always real; the value of the ellipsoidal coordinate 7 is:
2
TZ—Z\/—COS <;}_+_732,_7r> ——34 n=20,1,2 (2.31)
For the oblate case, a = b, then g = b? and
—B = Mv=d+P+r?
C = w=a+u’?+a%2? w?=2z2+y" (2.32)

In the general triaxial case, the coordinate surfaces are ellipsoids (A) and hyperboloid
of one (1) and two (v) sheets. In terms of ellipsoidal coordinates the quantity 1+m?(u)
becomes:

A +u)(p+u)(v+u)
(a? + u)(b% + u)(c® + u)

and the expression for the density of our model can be rewritten as:

a?b?c?
P(A, 1,v) = po ( v ) (2.34)

1+ mz('u,) = (2.33)
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2.3.2 Force components

Following de Zeeuw and Pfenniger (1988), upon transformation of the integral in
eq. 2.22 to ellipsoidal coordinates we find that the potential takes the very simple
form:

du

AG %)

&, = F(A)+ F(y) + F(v)  F(r) = nGpoabe f In(r + u)

0
where we have neglected an additive constant in ®,. There is no known closed form
for the integral in eq. 2.35; it has to be evaluated by numerical quadrature. Indeed
the simple form for ®, results in a very simple expressions for the forces, which can be

expressed in terms of Carlson’s (1979) symmetrize version of the incomplete elliptic
integral of the third kind, R;, as follows:

0%,
or
For a = b the model defined in eq. 2.18 is stratified on oblate spheroids. In this
case g = a’ and the ellipsoidal coordinates reduce to prolate spheroidal coordinates

(A, ¢,v) with the z—axis as symmetry axis. The function F(7) still requires numerical
integration but its derivative is elementary and is given by:

2 Y —

F'(r) = f—(z)—:i?—(gl with f(r) = ——Marctan r—¢

T—a VT —c ¢

It follows that the force components can be expressed in terms of elementary functions.

For ¢ = b the ellipsoids are prolate spheroids. Since v = b? the ellipsoidal coordinates

reduces to oblate spheroidal coordinates (A, p,v), that have the z—axis as symmetry
axis. The expression for the force term becomes:

2
F’(T) = gﬂGPOabCRj(az, an C2a T) (236)

(2.37)

F(r) = g(r) — g(b%)

SRR (2.38)
where
g(w) = —?;%arctanh (La“‘i> w = p, b? (2.39)
and 2 Gpoab? Ny
g(A) = Y v arctan (——a—-—-) (2.40)
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2.3.3 DPotential energy and torques of a precessing ring

The potential energy of a precessing ring with a given radius 7 in the galaxy potential
is:

M r2r
Vilbp)= [ @dM = /O P\ p,v)dn (2.41)
and its general increment is
M 2= [OP opP opP
AV, (60,¢) = ing ¢, dM = 5—7;/0 {-é—/\—A)\ + E;IA# + -6—1—/-AV} dn (2.42)

where AA, Ap, Av are increments of the ellipsoidal coordinates, and P /0t are the
general force terms respect to them. The torques exert by the potential on the
precessing ring can be expressed according to:

aV,(6, ) M/Zw{ap 8x 8P 8y  OP v }dn
0

- 9 5(6,0) | Op8(0,5) | Ov 8(8,)

e = 3 (2.43)

then, to obtain the torques, we have to evaluate the derivatives of the ellipsoidal
coordinates respect to the Euler angles (6,¢), which can be derived through the
equation m?*(t) = —1.

2.3.4 Derivatives of the ellipsoidal coordinates respect to
the Euler angles (6, ¢)

In the general triaxial case, since the radius 7 of the precessing ring is constant with
respect to a variation of (6,¢), we can derive a relation between the derivatives of
the ellipsoidal coordinates, i.e.:

oA n Ou n ov
(8,0)  0(8,0) 0(8,9)

In the case of the oblate potential, eq. 2.44 and eq. 2.32 easily leads to:

/\+p+1/=a2+bz+c2+r2———>a 0 (2.44)

X r%(a® — c?)sin’ 7 sin 26

% - -3 (245)
oA

55 = 0 (2.46)
ov 0A

% = o9 (247)
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In the triaxial case, the evaluation of the derivatives of the ellipsoidal coordinates is
more complicated; using the following system of equations

0 = AX+Ap+Av (2.48)
AB = AXp+v)+Ap(A+v)+ (2.49)
Av(X 4+ p)
A(=C) = AXpv)+ Ap(vd) + Av(Ap) (2.50)
Rewriting them as

a1 AN + asAp +a3Av = AB (2.51)
AN+ b Ap+ b3Av = A(-C) (2.52)

and with a little algebra we obtain:
(¢ — a2)Ap + (a1 —a3)Av = —AB (2.53)

Solving the system of equations via substitution, the variation of the ellipsoidal co-
ordinates with respect to an increment of the Euler angles (6,¢) may be expressed
as

(v = W(AAB — A(=C))

AN = = (2.55)
Ay = O V)(#Ag — A(=0)) (2.56)
sy - N8B AC0) -
where
V=X —v)+piv -2+ (A —p) (2.58)

Since B, C are explicit functions of cartesian coordinates, their increments as the ring
tilts can be expressed in terms of A(2?) and A(z® — y?). Recalling that

B = a?b® 4 6% + a®c? + a*(r? — 2?) + b (r® — ¢%) + S (r* = 2P) (2.59)
then
2 p2
AB = —d’A(z?) - BPA(Y?) - FA(Z%) - Q‘f-%b—)A(a? +v°)
2 _ 2
—gg—————é——)—A(:zz2 —y3) = SPA(ZY) (2.60)

2
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Since r? = (z? + y?) + 2% is constant with respect to increments in (§,¢) coordinates,
it implies A(z? + y?) = —A(z?), so:

AB = [ﬂ}-@— - CZ] A(2?) - (—"‘2—;@43(1-2 — ) (2.61)

where the coefficient of A(z?) is a measure of the oblateness, while that of A(z? —y?)
is related to the non—axisymmetry of the potential. Using the same procedure, from

the definition of C
— C = a®b*c? + a®b%2% + 22b P + aPc?y? (2.62)
we can derive its variation, given by:

2(“2 + bz)

5 A(2%) — C2MA(:B2 —%). (2.63)

A(—-C) = |a®b® —¢ 5

The increments in B, C are all functions of the increments in the Cartesian coordi-
nates, which amount at:

A(2*) = —2r? sin® 7 cos § A(cos 6) (2.64)
for A(z?), depending just on the § angle, while z? — y* depends both (6, ¢):
8(z? — y?)

5(cos 0) —2r?% sin g[cos  cos 2¢ sin 77 + sin 2¢p cos 7] (2.65)
o(z* — y?) _ 27 2 20 2 .
. = —2r*[sin 2¢p(cos® 1 — cos” §sin” n) + cos 2¢p cos §sin 2] (2.66)
¥

In the prolate case, we have b = ¢, which implies v = ¢, A+ p = a? +c* + 7% =
const. — dA = —dp and

(A = p)dp = (c* — a®)dp (2.67)
which is just function of the z? increment with respect to 6, ¢,
8212 2 . .2 . .
B¢ = T osin fcos §sin” n(1 — cos 2¢) — sin 2¢ cos 77 sin 7] (2.68)
Oz? 27 - 24 52 2 .
50 = 7 [sin 2¢(cos” fsin” 7 — cos® i) — cos § sin 27 cos 2¢p)] (2.69)
14

and change of the ellipsoidal coordinates can be evaluated.
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2.4 Torques as function of the Euler angles (6, ¢)

If we had the potential energy V,(§,¢) of the precessing ring, we could express it
as a series of spherical harmonics and then use this decomposition for the numerical
evaluation of the force terms. The problem with the above class of potential and
the pseudo-isothermal one in particular is that the potential energy has not a closed
form: we have an analytic form just for the force terms with respect to the ellipsoidal
coordinates.

2.4.1 Oblate case

Starting from the oblate case for the matter-density distribution, the axisymmetric
properties of the potential implies the following decomposition of the torque with
respect to the § angle

k
%1;2 = —sinf Y AnP,(cos ) (2.70)

n=0

where P, are the Legendre polynomials and A,, are the coefficient of the decomposition
given as:

M 2= 2= [OP  OA OP Ov
An = 5;/0 d6F(cos 0)/; {aa(cos 8) + Bv O(cos 9)} dn (271)

where OP/0t, (r = A,v) are given by simple analytical functions and the integral
is evaluated via Gaussian integration. Since the potential is symmetric with respect
to the equatorial plane, it will be function just of even Legendre polynomials: this
implies that the force terms would be given by odd Legendre polynomials. The terms
in the series of eq. 2.70 are computed till convergence is achieved, i.e.:

k
?—Yﬂ — |—sinf Z ApP,(cosbp)
o6 6o

n=0
(%)

09 /4,

for the most flattened halo with ¢/a = 0.5 and 6, € [0,7/2]. This condition is fulfilled

when the terms are evaluated up to k = 9; coeflicients A, are evaluated up to k=9
also for the less flattened case.

<107° (2.72)
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2.4.2 'Triaxial case

In the more general triaxial case, we have to cope with the dependence of the potential
on the ¢ angle; applying the same procedure to the force terms with respect to the
ellipsoidal coordinates as in the oblate case, the coefficients A,, are no longer constants,
but functions of ¢:

% = —sin 6] Ao(0) + A1 (1) Py(cos ) + Az(p) Pa(cos 6) +

oo+ + Ag(p) Py(cos 8)] (2.73)
%% = [Bo(g) + Bi()Pi(cos 8) + By(p) Py(cos 8) +

-+ + By(p) Py(cos 6)). (2.74)

So a suitable orthogonal base should be found in order to project the w—dependence
of the A,,, B, coefficients. The convergence is reached when the parameter € satisfies:

0V, ) &
— F P,(cos b
_ (a(ga(to) (00 ,0) L:o' =0 k(SDO) ( O)]

¢ k
- (a6
8(6’ 30) {6o.%0)

for a strongly triaxial potential, (b/a = 0.8,c/a = 0.6). At first we tried to project
the A.(¢), Bn(p) coeflicients onto the orthogonal base of the Legendre polynomials
P;(cos ), but even for i = 10, € turns out to be 1072: this is not a suitable orthogonal
set for the above functions. Then we tried with the orthogonal set cos 2k, sin 2k,
according to:

<107° (2.75)

A () = Cno+ Cpicos(2¢) + -+ + Cpi cos(2kp) + - - - (2.76)
+ Dno + Dpisin(2¢) + -+ - + Dyg sin(2kp) + - - - (2.77)
B.(¢) = Clo+ Clicos(2¢p)+ -+ C,y cos(2kp) + -+ - (2.78)
+ Do+ Dy sin(2p) + -+ D, sin(2kp) + - - (2.79)
where Cpk, D, are defined as
1 2% 7
Cro = ‘2—7;/;) An(p)dep (2.80)

1 27
Cur = —/ An(p) cos(2ky)dp (2.81)
m Jo
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Dno = (2.82)

0
1 2'.-.'A .
Cnk = ;;/(; 2() sin(2ke)dep (2.83)

and the same definitions hold for C/,, D!,, substituting A,(y) with B,(¢). This
time, evaluating the C and the D coefficients up to i = 4 gives ¢ < 1075 for b/a =
0.8,c/a = 0.6.

The symmetry of the triaxial potential with respect to the principal planes put
constraints on the expected values of the coeflicients coming from the ¢ decomposi-
tion. The plane ¢ = /2, which contains the intermediate and the short axis is the
one which contains the long axis orbits and should be a minimum with respect to
the p—component of the torque 0V, /0y, while on the plane ¢ = 0, which contains
the long and the short axis, we have a maximum for this component of the torque.
So we expect a dependence on sin(2k¢y) for the p—component of the torque, while
for the §—component of the torque, 8V,/06, we expect a cos(2ky) dependence. The
computed coefficients agree with these predictions.

We also tested which was the more accurate order of projection, 7.e. whether it
would give better results projecting first the f—dependence, and then the p—dependence,
or the other way around. We find that the sequence — projection on the Legen-
dre polynomials P,(cos ) and then the projection of the derived coeflicients on the
sin(2k¢p), cos(2kp) - is the more accurate: the other way around gave bigger values
for €. The dependence of the triaxial potential on the 8 angle is stronger than the
one on the ¢ angle: we have to account for the behaviour in 6 first and then we can
treat the ¢ dependence as a perturbation.

The computation of the coefficients Cpk, Dnr and of the primed ones proceeds
as follows: the interval ¢ € [0,27] is divided in a grid G, of 80 points, and for
each value w5 € G,, the code evaluates the coefficients A,(¢s), Bn(pg), given by
eq. 2.71. The gaussian integration over angle § at fixed ¢ is done using a modified
routine (Subroutine Gauleg) in double precision from Numerical Recipes, and uses a
grid Gy of 100 points in the interval § € [—m,7]. The functions A,(pg), Ba(pg) are
then projected on the trigonometric functions sin(2k¢), cos(2k¢p) using the Newton-
method for integration.

The biggest time expenses are relative to the first decomposition, since the function
to be evaluated for each 6,, w3 pair is the average torque along the ring given by
eq. 2.43, which requires the evaluation of an elliptic integral. This is done through
a standard NAG routine that implements Carlson’s algorithm for computing those
integrals. Since the force term respect to the elliptical coordinates is proportional to
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the elliptic integral R;(a? b% c?,7) defined as

3 oo dt
. az,b2,62,7' —
By =3}, (t+ )/t + @)t + )t + )

(2.84)

in our code we tabulate this function at the beginning for values of 7 € [0, Ajqz] and
then we approximate them through a spline function. The number of tabulated points
is such that the relative error between R;(a?,b?,c?,7), evaluated at 7o, and the value
of the interpolated spline function at 7y is less then 107®. When the suitable spline
function is determined, the first decomposition on Legendre polynomials through
Gaussian integration uses the spline approximated function instead of the elliptic
integral.

This procedure has sensibly reduced the CPU time required for the evaluation of
the coefficients since the NAG routine is called just at the beginning to tabulate its
values and then the spline function is computed using a Numerical Recipes routine.

2.5 Gravitational interaction between rings

The mutual gravitational interaction between massive rings can be computed using
two different methods which are presented and discussed in the following sections.
The first is used in Sparke (1986) and is derived from Binney and Tremaine (1987)
p.73, and the second is derived by R. James. The two methods are compared, taking
into account the approximation used in our model for the Polar Ring, in order 1)
to check the two numerical codes one respect to the other and 2) optimize the CPU
time.

2.5.1 L. Sparke formulation of inter-ring forces
Potential energy of two rings with the same lines of nodes

Let us consider a ring of mass m’, radius r’ and choose carthesian coordinates (¢, 7, (),
with { perpendicular to the plane of the ring. The potential due to the ring at a point
Z is given by:

®(z) = —

M/ 27 !
¢ /O dn (2.85)

2

& — 2]
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where @’ is a point on the ring. Let the point # to have coordinates (£,7,¢) with
p? = €2 + 77 then (Binney & Tremaine 1987, p.73) the potential can be rewritten to:

2 M’ 1 '
B(z) = —2¢ / do (2.86)
V1= 22)(1 = k22?) (o + )2 + 2
since in this case z/ = (r',¢',0) (in the ring polar coordinates) and
Z2—2')> = p>+717—2pr'cosd +¢
1
= (o) + (Ul — K cos® () (287)
where
4pr'

B ——— 2.88
(p+71)2 + (2 (288)

and the variable z of integration is equal to cos(—;—qb’ ); the integral over the z variable
is the elliptic function K (k). Using the definition of k* given in eq. 2.88 we can derive
that

pr'[d — 2k%) = (r"* + r®)k? where 7% = p® + (? (2.89)
and
1 kO
Vil +m2 4¢3 2y/pr
k? 2
e i )
ST iy (2.90)
hence
k2
K(k) 1——
2G'M
3(z) = 2 (2.91)

The mutual potential energy between two rings is found by integrating this potential
®(z) over a ring of radius 7, with some inclination relative to the first ring.

If the point Z is on another ring which has inclination 8 to the z axis, and the
same lines of nodes, then & = (¢,7,() has { = rsin(f — 6')siny where 7 is an angle
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round the ring 7, and p = r\ﬁ —sin? 7 sin(f — ¢'). The total mutual potential energy
due to the gravitational interaction between rings is then:

GMM' 1 2 k?
k — —d
w2 +/r2 4+ 2 /0 K(k)\1 9 m

and mutual forces can be found by differentiating V;, with respect to the Euler angles
0,0, ve.:

Vin(0,6') = — (2.92)

. OV GMM' K? Ok
Pg g = — =

1 2w d
o 6(9>6') w2 m-/o dn;l—k; [K(k) 1_—2— 5(9,9/) (2'93)

Derivative of the elliptic integral K respect to the Euler angles 6,6’

The explicit form of the integrand in eq. 2.93 can be derived through the following
steps. We have

d
E[K(k) 1-%| =

& -3))-
1 [E(k)(l — lc;) _ K(k)} (2.94)

2 1—k2
kq/l—-—]i-
2

since for the elliptical function K (k) the following relation holds:

& (kre(h) = 1E_(k122 (2.95)
The other term 8k/8(9,8') of the product is given by:
2
-‘25;- - %%’%%‘% (2.96)
where 2 2
ok _ (=) 4 (2.97)

Op - (r2 4+ 72) "
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since p% + (% = r2, pdp + ¢d{ = 0 and

2
%%_ - -—%r cos(f — ') sing (2.98)
so that L2
1— 2
Ok _ —-C-—-l—élrr'(———?_—)— cos(6 — ') sin g (2.99)

86 p2k (r2 +772)

Force terms

Using the set of equations derived in Section 2.5.1, we can derive the torque one ring
exerts on the other one, when the two rings have the same lines of nodes. The torque
respect to the 8 angle of the ring with radius r’, mass M’ from the ring with radius
r and mass M is:

OV _ GMM'  —4rr' .o
B —(9?_ - 2 (,,,2 + 7"2)3/2 cos(0 — 0 )A d’?; (2.100)
(1- Ky [Bm)a - &) |
2k? 1 — k2 — K (k)| sinn

Looking at the periodicity of the integrand, we have that k depends on 7 through the
variable p, which is periodic of period = in 7, with p(8) = p(—6) = p(r — ), and
¢ rsin(d — 0)sin’q

LI 2.101
; p (2.101)

It appears that the whole integrand repeats in each of the sector (%7{','-‘%'—17&') so the
integral has to be performed on the interval [0, 7] to be sure. The integral becomes:

Ve  GMM rr’ n [27, —(sing
B Tt L Gt | dn ; (2.102)
k*\3/2 k2
(1—=%)"" | E(R)(1 - %) :
72 T — K(k)| sing

If the two rings do not have the same lines of nodes, the angle between the two
normals to the respective ring planes is given by:

cos a = sin fsin 6’ cos(¢ — ¢’) + cos 6 cos ' (2.103)
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and the forces respect to the Euler angles of the two rings can by expressed as:

OV oV Oa

Pogr o = — = — 2.104
b = 0, rp)  Oa 00,800, (2109
When the line of nodes coincide, i.e. ¢ = ¢’ we have
0V 0V 0V
= = 2.1
5o B(6—0) 06 (2.105)
so we can write the dependence of 0V,,/0c according to
! ' 27 : a2
OV _ _4GMM : T __ cosa/ . sin asin® 7y (2.106)
da w2 (r? %) 0 \/l—sinzasinzn

ER-%)
1— k2

(-
k2

K (k)

sin

where ( = rsinasiny, p? = r? — (* as before. Now 0V,,/0a should multiply da/dw
where w = 6,6, 0,0’ to get the force components respect to the Euler angles:

Oa sin 0 sin 6’ sin(p — ¢')

g e (2.107)
O0a _ sindsin§'sin(p — ¢') (2.108)
dp sin o '

and similarly for the primed quantities. Now the force terms can be computed using
egs. 2.104, 2.106 and 2.107.

Numerical evaluation of the mutual force terms

To evaluate numerically the force terms we should perform the integral in the 7
variable in eq. 2.106, and we have to cope with the fact that the function to be
integrated has a bad behaviour near 7 = 0, when » ~ r and § ~ §’. A part from a
multiplicative constant, the integrand behaves as

. OVom 1 7’
lim = 5
ArA0n—0 Oa A2 Ar )
r2AG?

= f(n) (2.109)
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which peaks at 7 = 0, when the ratio Ar/A#r is small. So we need to space points
very closely to 7 = 0 when we are in the above conditions and have a compressed
scale like Ar/Adr.

Since near 7 = 0 the behaviour of the integrated function is given by eq. 2.109,
we found that a suitable change of variable to perform the integration is:

d
/ F(n)dn = / F (n(y))g;ldy (2.110)
where
rAf
arctan 7]——A
_ T
arctan - —

and the “weight” dn/dy is

ivl _ ta TrAf
dy = arctan 2A7r

Ar
rAf

2
nrAf
2.1
+(Z7) (2112)
(since dn/dy = 1/(dy/dn) and dy/dn ~ f(n)), so that we can use points evenly
spaced in y, and every points in the trapezoidal sum is weighted by the value of

dn/dy. Since the “weight” presents a peak at 7 = m/2, which becomes important
when Ar/rAf < 7/2, the integration with the y—variable is performed up to:

( *’I'AG)
arctan | 7 An

Ymazr = e " (2113)
rcta
2AT
where
Ar wrA\b
* 2.114

After performing the integral in the peak region [0,¥maz), the variable of integration
is changed from y to 7, and the newtonian method is used with points evenly spaced
in 77, up to Nas = .
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2.5.2 R. James formulation of inter—ring forces

We try a different approach to the evaluation of inter-ring forces, suggested by R.
James in 1984. The rings have radii rq, 1y, and masses M;, M,. We take the z—axis
O; in the plane of ring 1, perpendicular to the intersection of the ring planes. The
y—axis O, coincides with this intersection, and O, with the normal to the ring 1
plane. Let’s consider a point P on ring 2: the potential generated by a massive ring
in a point P is

2GM, (~/? d
o(P) = —= [ d

T \/P3 cosy + p} sin

and p;,p, are the distances from P to the intersections of the plane through P and
the normal to the ring plane, with the ring 1. The radius vector of P is at an
angle 7, (the angle round the ring 2) to the intersection of the ring 2 plane with
the z,z—plane and denote by « the angle between the ring planes. The coordinate
of P are (r; cosns,r2sinns,0) relative to the cartesian axes in ring 2 plane; in the
reference system of ring 1 they becomes (7, cos 7z cos @, 7y sin 772,73 cos 2 sin ). The
plane through P and O,, II,,,, is normal to the vector (—r; sin a, 73 cos 7, cos &, 0), and
its equation is given by z tan7; = y cos a in the reference frame of ring 1. The plane
II,, intersects ring 1 at

(2.115)

ztanm, = ycosa
z = 0 (2.116)
22 4+y? = 12

Defining A = (1 + tan® nysec’a)~!/2, so that the coordinates of the intersections can
be rewritten to:

Ty = tAr; Y1,2 = £Ar; tan naseca (2.117)
the £ being identical in these expressions. Thus we can rewrite p;, ps as
P%,z = (72 cos Mg cos a F Ary)? + (rosin @ F Ary tan gpseca)? +

. 2 '
5 cos’ mpsin® a = r2 + 72 F 7175 COS 7 COS @ (2.118)

A
and we use the — sign for p? and + for p2. Thus we obtain
p3cos’ny + pasin®y; = (2.119)

2, .2
T + T3 — —T1T2 COS 72 COS (X COS 213

A
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Then the potential energy for the ring 2 in the gravitational field of ring 1 is:

2OGM. (2= /2 d
®a1 = - - d7]2027‘2/ n (2.120)
0 0

3 + 1§ — 27175 cos 2 cos a cos 27

where oory = M, /27 and

COS T2 COS &

T = COS T3 COS a\/I + tan? myseca = \/sin2 72 + cos? 7, cos? a (2.121)

At the end the mutual potential energy becomes:

GM, M. /2 p2m d
By = il / / L (2.122)
i o -0 \ﬂ-% + 72 — 2775 cos 2my \/sin2 72 + cos? 73 cos? &

note that (sin® 7, + cos? 77, cos? a) recapitulates in each 7; quadrant the values it takes
in the first; it is clearly periodic with period = in 7;, and the change 7, = ™ — 17, leads
no change in the above quantity. Thus:

4G M, M. /2
by = ——Zl-—l = // dnydna(r? + r3 — 2717 cos 2y \/c052 7 cos? o + sin® 772)_1/2
™ 0
(2.123)
The expression is symmetric in 7y, ro. Writing 7y = 73, the potential simplifies to:
ra®o = __ﬂ.z—('Y +1)"V?f(B,) where 8= poprp (2.124)
and

=/2
f(B,a) = /:/(; dmidn2(1 — B cos 21, \/(:os2 72 cos? o + sin? 7,) /2 (2.125)

Then the torque on ring 2, sense of « increasing is:

08, GM M,

2 ~1/2
da w22 (" +1) /

of
e (2.126)

Behaviour of f(8,a) near a =0
The dependence on the a angle goes through:

\/cos2 7y cos? o + sin® 7y = (1 — cos? 77, sin? a)1/2 (2.127)
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and expanding in powers of sin? a it becomes

1
1- 3 cos® 7, sin® o — 3 cos® 7y sin o —
1 5
T cos® 7, sin® a — 128 cos® mysin®a — -+ (2.128)
Thus
~1/2
{1 — B cos 2 \/cos2 7 cos? a + sin? 772} =
2 1 )
L costmy sin® a4 — cos®my sin® & + — cos® g sin® e 2.129
5 72 sin a+16cos 72 sin a+128cos 72sin®a + .-+ (2.129)
We write Bos?
cos 2m
I's ———— 2.130
1 — Bcos2m ( )
and expand to obtain:
{377 = (1= Beos2m)™/*(1 - (2.131)
1 1 1
EI‘ (5 cos® 7y sin® a + 3 cos? 7y sin a+
1
Ig cos® 72 sin® a -+ 1—2—8 cos® 12 sin® a + - )
Sl 4 g4 1 6. . 5 8, & 8
—i—gI‘ (+ZCOS 7y s« + gcos 72 s1n- a + 6_4COS M2 sIn” o + )
5 1 3
—-1—6-I‘3 (g cos® T2 sin® a + 6 cos® 72 sin®a + -- )
35 1 8 . .8
+15g g €O5 M2sin a) (2.132)
We define 1 5 0
T ™ cos™
R
thus
o2 L= (1= B oos2m)"
Ir=["d L= (M + ( Paa+-- (2.
n o Ui (1_ﬂC0527]1)n ( 1 )I 1+( 2 )I 2+ (2 134)
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Thus (1 — B cos 277;)7/? integrates to /21y /,; the coefficient of sin? ai.e.:

1 B cos 21
4 (1 — Bcos 2, )3/?

cos? 7, (2.135)

integrates to —7r/16I§/2. Following this procedures, it is possible to rewrite f(8,)
near a = 0 as:

s iy .
f(B,0) = ‘2‘11/2 - ﬁfé/zsm2 a+
3 :
16 ('1'6]3/2 + 3—2152/2) sin*a +
o 1, 3 ., 5 4 s
3 (-—-?-)513/2 + 6—4]5/2 — m—L/Z) sin” o +
35w (5 15 15 175 _
<_%§I§/2 + 5‘1'2“152/2 - 5‘%13/2 + MIQ/Q) sin® o (2.136)

with the following recurrence relations:

Ié/z = I35 — Iy (2.137)
152/2 = Is;— 2132+ Lo (2.138)
I’?/z = Iy — 35+ 3570 — Inyo (2.139)
13/2 = Iy —4l7js + 6150 — 4l3p2 + Inp (2.140)

The integrals I,.;/, are related to standard elliptic integrals and their numerical
evaluations is quite easy.

2.5.3 Comparison between L. Sparke’s and R. James’ pro-
cedures

The goal of performing the numerical evaluation of gravitational forces between rings
following both Sparke’s and James’ methods is to do a double check on the two codes
and the optimization of CPU time. The results of the two codes are shown and
compared in Fig. 2.1 and 2.2 for different values of the ring radii.

When rings have r; ~ 1; James’ approximations gave the proper results up to
Aa =~ 20° between the two rings, and deviates strongly for bigger values. The dis-
crepancy reduces when r, # 11, and 12 3> 11, but since we would like to approximate
the polar ring around SO or ellipticals with a series of circular wires, radii of adjacent
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rings will be only slightly different, and in this case James’ procedure is valid only
for angles between rings less than 20°. Since we would like to study the time evolu-
tion of precessing rings forming whatever angles between them, Sparke’s procedure is
adopted, and the self gravity contribution from the ring mass is computed according
to the previous discussion.

2.6 Polar Rings in axisymmetric and triaxial po-
tential

Polar rings (PR) around SO or elliptical galaxies are usually interpreted as material
accreted from the outside the host galaxy, remnants of merger with a companion
galaxy. These regular tilted structures seems surprising since the axially symmetric
S0 or flattened ellipticals (possibly triaxial) would have a galactic gravitational field
with a quadrupole component, which causes particle orbits to precess about the pole
at a rate which depends on the radius and orbital inclination. Simple estimates
suggest that differential precession will destroy the flatness of PR in much less than a
Hubble time, implying that the observed structures have been formed only recently.
Anyway severely warped PR are not common, and many of them look quite smooth
and have time to form the observed stars. In Sparke (1986) the case of long lived PR
and tilted dust lanes around an axisymmetric oblate galaxy had been described in
detail. We will analyse the properties of PR and their tilts in a axisymmetric oblate
pseudo isothermal potential and use these results to make a step behind and analyse
the effects of triaxiality on the dynamics of such rings.

2.6.1 Massless PR in a axisymmetric potential

Consider a test particle of small mass m, traveling with angular speed 2 in a nearly
circular orbit of radius » which is tilted by an angle 8 from the equatorial plane of an
axisymmetric galaxy. This orbit precesses about the symmetry axis at a rate

1 8Vy(r,0)
LA——Ts) O(cos 8)

(2.141)

where V, is the potential energy of the particle, averaged over the circular orbit
(Goldstein 1980). In an oblate galaxy, this rate is negative: it tends to zero as the
orbits becomes polar (§ — 90°), and at large distances. The actual orbit will not
be precisely circular and the particle will not move with exactly uniform speed, but
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these effects are first order in the galactic oblateness and affect the precession only
at a second order. To account for the effect of the flattening (2 is evaluated using the
velocity derived from the average radial force along the orbit, i.e.:

27 BV
v m
0 =-— where v,=—ri— -

T 2w Jo Or

(2.142)

and 7 is the angle round the ring. A massless PR can be assembled as a collection of
test particles in these tited orbits. If all the ring particles have the same inclinations
then by eq. 2.141 those at small radii will regress most rapidly, and the ring will
become twisted. Viscosity can act to prevent twisting but causes the ring to settle
into the equatorial plane (Tohline et al. 1982). If particles at larger radii are in more
nearly equatorial orbits, this will tend to equalize the precession rates. Orbits may be
adjusted so that the regression rate is kept constant and the ring then precesses as a
solid body, instead of being disrupted. Using our method to characterize the torque
of the galactic potential in the oblate case the precession rate rewrites to:

LS~ 4, Pa(cos0) (2.143)

mucr S5

b=
and a PR will precess as a solid body if its inclination varies so that:

9
> AnPu(cosb) <7 (2.144)

n=0

the closer to polar the inner orbits are the less the ring is warped. This kind of orbits
are neutrally stable; if the angular momentum of one particle is increased, its orbits
will tilt slightly, shifting the precession speed to slightly different value and this tend
to break up the ring. A long lived massless PR about a axisymmetric galaxy, with the
same shape at all radii, must be inclined to pole by an amount which varies roughly
linearly with distance. If the outer radius of the PR is twice the inner radius, then
at the outside its tilt respect to the pole must be double the tilt at the inner edge.
As pointed out by Sparke (1986) in IIZw73 and UGC 7576, this degree of warping
may be excluded (Schechter et al. 1984). In a gravitational potential with the same
shape at all radii, the PRs in those galaxies must be unstable if they are composed
of test particles; but in the galaxy NGC 3718 (Schwarz 1985) the disc of neutral
hydrogen lies perpendicular to the stellar disc at the centre, and warps by 90° to
become nearly equatorial at the edges; its shape resembles that of the massless rings.
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2.6.2 Massive rings in oblate potential

Sparke (1986) showed that in an oblate scale free potential of Monet-Richstone and
Schechter (1981) the mutual attraction of its particles may force the ring to precess
as a unit. We briefly summarize her method, which will be used for PR embedded in
an oblate potential and we will extend it to investigate the case of PR embedded in
a triaxial pseudo isothermal potential.

In this model the PR is approximated by a pair of thin uniform circular wires
mutually tilted but concentric with a slightly oblate potential representing the rest of
the galaxy. Let the wires have masses M, M’, radii 7, 7’ > r, and inclination 6, ¢ to
the galactic equatorial plane. There is then a mutual potential energy Vi (r,8,7/,6'),
as well as the energy Vi(r,8) due to the galaxy, where V,, and V, are evaluated
according to the methods discussed in Section 2.3 and 2.5. Each wire spins about
its own axis at a rate {}(r) appropriate to a nearly circular orbit at that radius. We
look for a solution in which both wires cross the equator on the same nodal lines, and
precess uniformly about the pole. The first wire can now precess at the slow constant
rate:

.1 0
v = mr2{) O(cos 0)

{Via(r,0,7",8") + Vy(r,6)} (2.145)

The rate for the second wire is given by interchanging primed and unprimed
quantities. The solid body rotation for the PR requires the two speeds to be equal:
this fixes 6’ as a function of 4.

Equilibrium configurations

We want the orbits of the two wires model to be adjusted so that the regression rate
is kept constant, then the ring precesses as a solid body, instead of being disrupted.
We look for equilibria such that the PR appears stationary in a system of reference
rotating with an angular velocity equal to the regression rate. This condition is
satisfied when for a given precession rate ¢y, the torque with respect to the 6 angle
is null -no nutation—, i.e. Py = 0 for both the two wires forming the ring. The set
of 801 02, which satisfy 1—:’91.2 = 0 for a given ¢y, represent the equilibrium solution we
are looking for. ,

When the model is extended to include more wires, the equilibrium solution is
found by solving Ps; = 0 for a given ¢y simultaneously for each wire. It consists in
solving a system of n non-linear equations, where n is the number of wires used to
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approximate the PR. The set fp;, solution of this system of equations, is found numer-
ically using a Numerical Recipes routine for solving systems of non-linear equations.

Stability diagrams

The results for this simple model and the pseudo isothermal potential with axis ratio
a:b:cgiven by 1:1:0.7 are illustrated in Fig. 2.4. The curves in the diagram are
labelled with the value of the ratio of the combined mass My of the wires and the
galactic mass (which amounts to 51.16 in arbitrary units) within the outer edge of
the ring.

In the stability diagram of Fig. 2.4, for each value of the total ring mass of the
two wires model there are two solution curves, the continuous lines on the stability
diagram, one belonging to the family A and the other to the family B. The first family
(A) passes through (0°,0°); the inner wire lies closer to the equatorial plane while
the other is tipped towards the pole. The second family (B) starts from (90°,0°): in
this case the inner wire is found nearer to the pole, while the outer one is closer to
the equatorial plane. In both families, a point (§,6’) on a continuous line is solution
of the system of equations

B =0
{P9, _ (2.146)

for a given value of @p; @Yo varies continuously along each curve.

The solutions belonging to the family A show that if the total mass of the ring
Mp = M + M’ falls below a certain value — here is about 0.076 of the galactic mass
contained within the ring — then the inner wire has a maximum tilt: as the outer
wire becomes more inclined, the inner one falls back to the galactic plane. For larger
masses, the angle between the wires reaches a maximum at some intermediate tilt,
and then declines as both wires become nearly polar. The equilibria approach the
curve § = ¢ as the ring mass grows: self gravity becomes so strong that the galactic
potential is irrelevant. What happens is that self gravity equalizes the regression rates,
the outer wires tends to slow the regression of the inner one, while itself regressing
more rapidly than it would in the galactic field alone, so that the PR remains intact.

For the solutions belonging to the family B, if the ring is massless, they are the
solution already discussed. In this case the two wires may be quasi coplanar at the
pole, but the angle between them increases near the equator: when the outer wire is
almost equatorial, the inner wires is about 30° from the equator. As the ring mass
grows, the difference in tilts grows larger, since the inner wire tugs on the outer,
slowing its regression. If the outer wire is to keep up with the inner one, it must
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become more nearly equatorial so as to increase the regression caused by the galactic
field. At the same time the inner ring must become more polar, and the effect is
stronger, as the ring mass grows. When the ring is heavy enough, the angle § may
exceed 90°; and the inner wire has its sense of spin reversed. If the combined mass
Mp exceeds about 0.05 of the galaxy mass, then there are equilibria with the two
wires lying on opposite sides of the pole. At larger mass these curves approach the
limit 8 = 6’ + 90°, with the two wires perpendicular.

Stability in an axisymmetric oblate potential

None of these equilibria is of practical interest unless it is stable: the region of secular
stability are limited by the dash dotted lines. A long lived PR corresponds to a
steadily precessing equilibrium state E where 6,8’ and the difference ¢ — ¢’ do not
change with time: this is a stationary point in the space (6,¢,¢ — ¢, Py, Py, P_),
where P_ is defined as the moment conjugate to ¢ — ¢’. E is stable if small excursions
from it do not grow large with time. A sufficient condition for stability is that the
hamiltonian H is a minimum at E with respect to changes in these six quantities; E
is then secularly stable. The regions of secular stability were found by calculating the
forces numerically near each point at the equilibrium. If the equations of motion when
linearized about E have exponentially growing solutions, then E must be unstable.

When self gravity is absent, the solutions are neutrally stable. When self gravity is
present, equilibria with the two wires almost coplanar are stable: the mutual potential
energy is near a minimum there. Some states in which the inner ring lies near the
equatorial plane are also stable: these are related to warped galaxy disk. There are
many unstable solutions: the equilibria of sequence B (with the inner ring more nearly
polar) are unstable close to the pole: an example of time evolution of these unstable
solutions is shown in Fig. 2.5.

Stable solutions with both wires near the pole are of the greatest observational
interest. These have 8’ > 6, so that the outer wire is more steeply inclined and 6 ~ &',
i.e. the ring is not greatly warped. Such stable equilibria exist only when the total
ring mass is larger that the critical value m* = 0.05. For masses just above m*, there
are stable equilibria near the pole (see Fig. 2.6) and near the equatorial plane, but
not at intermediate angles: if the mass is larger (than about 0.076 of the galaxy mass)
there are solutions at any angle to the pole.
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2.6.3 Massive rings in triaxial potentials

We investigate what happens to the solutions A and B for a massive two wires model
when we go to a triaxial potential. We will treat models of triaxial potentials with
different axis ratios but with the same total mass inside the outer radius of the ring,
i.e. with bycir = bopiconr = 0.7. We will present in some detail models with triaxial
potentials with axis ratios 1 : 0.95 : 0.7368 and 1 : 0.9 : 0.7777, the latter being
the model with an higher degree of triaxiality. We will discuss what happens to a
PR structure when it is embedded in a stationary triaxial potential or in a tumbling
triaxial configuration.

Stationary triaxial potential

In a stationary triaxial potential, as the ring precess due to the 8V,/8 cos(f) com-
ponent of the torque, it is influenced by the 8V,/0¢ component as well, so P, is no
more a constant of motion. In this case, the condition Py = 0 does not imply that ¢,
will be constant for each wire in the model, because 0V, /0y is different from zero.

As stated before, a stable polar ring should appears stationary in a steadily ro-
tating frame, but this condition cannot be fulfilled since 8V, /8¢ # 0. Here again so-
lutions are found with all wires having the same line of nodes! and with the 8V,,/8¢
component equal zero for the inter-ring part of the potential. This means 0V, /9y = 0:
so either ¢; = 0 or 7/2. The system of equations which determine the set of 6, look
the same as in the oblate potential.

In Fig. 2.7 the initial conditions for a 10-wires model are found by looking for
a configuration where By, = 0, 0;r1 > 0;, v; = 7/2 and the precession rates ¢; all
equal to g, where ¢ is a given value. As wires precess, the PR starts to wobble, it
reached the pole after 10 orbits, and it reverses it sense of precession. The structure
oscillates between 8,,r; and 90° + G444, while changing its sense of precession every
~ 10 orbits. This behaviour does not satisfy our stability criteria.

In a stationary triaxial potential, stationary configurations for polar rings are not
possible. The only way such a structure may persist is if the triaxial potential is
tumbling around its minor axis and the wires have a precession rate ( given by 2.145)
equal to the angular velocity of tumbling.

n principle there could be other type of equilibria, with wires having different lines of nodes
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Tumbling triaxial potential

In a tumbling triaxial potential, solutions of the families A and B are found for
¢ = m/2, i.e. the plane where anomalous retrograde orbits (Schwarzschild 1982)
intersects the plane containing the long and the middle axis. This plane, as described
in Section 2.4.2, is a minimum for the dV,/0¢ and solutions found according to
previous prescription may be stationary, as the figure tumbles. In the case of a
rotating triaxial potential, the precession rate of the ring has to be equal to the figure
tumbling speed (Schwarzschild 1982, van Albada 1987) : so for a given model of the
potential we will not have continuous lines in the diagram 4, ¢’, as for the oblate case,
but just single solutions for each value of the ring mass (see Fig. 2.8). In Fig. 2.8
crosses indicate solutions found for precessing rings with different masses, embedded
in a triaxial potential with axis ratios 1 :0.95 : 0.7368, at three different values of the
figure tumbling speed ¢ = —3-1072, —1.5-1072, —8-1073; the full triangles indicate
solutions for precessing rings with different masses, embedded in a triaxial potential
with axis ratios 1:0.9 : 0.7777 for four different values of the figures tumbling speed
$=-3-10"2,-1.5-10"2,-8-1073,—4-1073 in arbitrary units. Solutions associated
~with higher precession rates (in absolute values) are found near the origin, and those
lower values are found further out, near (0°,90°), (90°,90°) and (90°,0°).
' Since we are interested in stable equilibria, we investigate the regions of secular
stability for both triaxial potentials, using the figure tumbling rate as a free parameter.
The stability regions for the families A and B in Fig. 2.9 and 2.10 are delimited by
dash dotted lines. In both diagrams, the stability regions are found by evolving
numerically the equilibrium configurations for the two wires model up to 140 orbits:
those which remain unchanged are considered “secularly stable”. Secularly stable
solutions are those where the hamiltonian of the system has a minimum: i.e. the
hessian of the second derivatives of the hamiltonian with respect to the phase space
coordinates has all positive eigenvalues.

Going from oblate to the rotating triaxial case we found that the stability region
for the family B is different: in the limit of Mg — 0 the solutions with § > 6’ become
stable, close to the pole and at intermediate angles. These solutions are related to
the anomalous retrograde orbits, which turn out to be stable also if we include the
gravitational interaction between them. Regarding the A family, stable solutions with
both wires near the pole exist for both triaxial potentials, and less mass is required:
in the triaxial potential with axis ratios 1 : 0.9 : 0.7777, solutions with both wires
near the pole are found already when the total ring mass is 0.05. The stability regions
around (0°,90°) and 6’ ~ § appear narrower than the corresponding ones in the oblate
case: the triaxial model with the same mass as the oblate case has a “weaker” torque
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with respect to 6,68’ (0V/0 cos(8,6')), and solutions for family A have smaller Af.

Equilibria belonging to families A and B are found also at ¢ = 0: the concentric
wires intersect the equatorial plane of the potential at the z—axis, along the plane
were OV;,/Op has its maximum. The equilibria there are unstable: Fig. 2.11 shows
the evolution for a solution belonging to the A family, which starts to wobble after 5
orbits and the sense of precession is reversed after ~ 10 orbits.

2.7 Conclusion

We have shown that polar ring around an axisymmetric oblate galaxy or a rotating
triaxial system can be stabilized by self gravity, so that it is long lived. These stable
rings curve towards the pole in both cases, and the total ring mass must exceed a
minimum value, which increases using potential with less degree of triaxiality: in the
cases we investigated we found that the minimum mass needed to find solutions near
the pole is 0.05 for a rotating potential with the highest degree of triaxiality (axis
ratios 1:0.9:0.7777), and should exceed this value in the corresponding oblate case.
When the ring mass is too light, PR in the oblate case can be stable only near the
equator plane, while in the rotating triaxial potential it can be stable also away from
it, if the ring structure is bending towards the equator. These solutions found in the
limit of ring mass going to zero, are related to the anomalous retrograde orbits of
tumbling triaxial potentials (Schwarzschild 1982). Somewhat heavier rings may be
stable either near the pole or near the equator, but not at intermediate angles. As
its mass increases, the ring becomes more nearly planar, though tilted away from the
pole. The amount of curvature decreases as 1) the ring becomes more nearly polar,
2) the ring becomes narrower, and 3) the ring mass increases in proportion to the
galactic quadrupole moment for the oblate case, following eq. 6 of Sparke (1986).
Referring to the stability diagrams for the cases presented above, the massive polar
rings in rotating triaxial potentials are less warped than those in the oblate model,
with the same total mass. Simulations of the time evolution of massive polar ring
embedded in a stationary triaxial potential show that it is unstable: after few orbits,
the ring begins to wobble between the initial value ., and 90° + 84r¢, While its
sense of precession is reversed.
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Figure 2.1: Comparison between Sparke’s and James’ procedures: torques between
rings are computed for different values of ring radii, r; = 1.511, 211, 2.5, t.e. ¥ =
0.66, 0.5, 0.4. For cach v, the torque 8V;,/8 cos(fs) is plotted against #; values. For
r, = 1.5r;, James’ method holds for §; < 0.2 rad, and deviates strongly for larger

values.
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Figure 2.2: Comparison between Sparke’s and James’ procedures: torques are com-
puted for r; = 3r3, 3.511, 4r;. The discrepancy between the predicted values decreases

as the difference in radius increases.
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Figure 2.3: Sections through three massless i)élar rings (dotted lines); this shows how
the orbital plane of the ring particles must vary with radius to maintain a constant
precession speed about the z—axis. The potential is the pseudo isothermal potential
with a total mass of 51.16 in arbitrary units inside the outer radius (8, inner radius is
5) of the PR, and axis ratios 1 : 1 : 0.7. The continuous lines show sections through
three self-gravitating rings with the same precession speeds and total mass equal 4.5.
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Figure 2.4: The inclination 6, ¢’ for a pair of steadily—precessing concentric massive
wires in an oblate potential with axis ratios 1 :1:0.7. When ¢ = §', the wires are
coplanar but tilted with respect to the galaxy. Along each curve the mass of wires
is kept constant, while the precession rate varies. Regions of secular stability are
limited by dash dotted lines; the two families A and B are discussed in the text. The
wires have radii of 5.75 and 7.25 units with the same mass (i.e. with linear density
decreasing as 1/r). Curves are labelled with values of the ratio between the combined
mass Mp of the wires and the galactic mass of 51.16 within the outer cdge of the ring.
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Figure 2.5: Time—development of a B solution ncar to the pole, followed using a 10~
wires model, in an oblate potential (axis ratios 1 :1:0.7). At each stage, the outer
semi-circular frame shows the inclination 6; the equator is horizontal, and the radial
scale is marked. The inner frame shows the azimuth ¢, with the radial scale shrunk
to half that of the outer frame. The total mass of the ring is 0.3. Times are given
in terms of the orbital period P at radius 6.37, in the middle of the ring, which is
15 time units. To start, the precession speed at each radius was chosen so that the
torque in the 6 direction was zero (no nutation). The ring is unstable and after 13
orbits it breaks in sub-ring.
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potential is stationary and has axis ratios given by 1 : 0.9 : 0.7777; the ring has a
mass of 3.9. The structure wobbles and is sensc of precession changes due to the
9V, /d¢ torque of the galactic potential.
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9)

Figure 2.8: Comparison between the solutions 6, 6’ found for a pair of steadily-
precessing concentric massive circular wires in an oblate potential with axis ratio
1:1:0.7, and for tumbling triaxial potentials with axis ratios 1 : 0.95 : 0.7368
(crosses) and 1 : 0.9 : 0.7777 (full triangles) respectively. The precession rates, at
which solutions are found, are described in the text. Solutions for the first case
(crosses) are nearer to the equilibria computed for the oblate case.
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100

Figure 2.9: Comparison between the solutions @, §' found for a pair of stecadily—
precessing concentric massive circular wires in an oblate potential (axis ratios 1:1:
0.7) and for a rotating triaxial potential with axis ratios 1: 0.95 : 0.7368 (crosses).
Going from the origin to outwards, solutions are found for different values of the
figure tumbling speed, ¢ = —3 -107%,—1.5-107%,—8 - 107° respectively. The dash
dotted lines indicates regions were stable solutions are found.
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6

Figure 2.10: Comparison between the solutions 8, ' found for a pair of steadily—
precessing concentric massive circular wires in an oblate potential (axis ratios 1 :
1:0.7) and for a tumbling triaxial potential with axis ratios 1 : 0.9 : 0.7777 (full
triangles). Solutions are found for different values of the figure tumbling speed, ¢ =
—3-1072,~1.5-1072,—8-107%, —4-1072 respectively. The dash dotted lines indicates
regions of'stable solutions.
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Figure 2.11: Time—evolution for an equilibrium (A) found at ¢; = 0,7 = 1,---,10
and with a ring mass equal to 2.17 (in arbitrary units). The potential has axis ratios
equal to 1 : 0.9 : 0.7777, and a total mass inside the outer ring radius of 51.16 (in
arbitrary units). The ring starts to wobble and its sense of precession is reversed after
~ 10 orbits.
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Figure 2.12: Time—-evolution for an equilibrium (A) found at ¢; = 7/2,7=1,---,10
and with a ring mass equal to 3.9. The potential is the same as in the previous figure.
The solution is stable, and the wires precess all with the same speed.
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Chapter 3

Kinematical properties of warped
structure

3.1 Introduction

Recent observations indicate that many galaxies possess warped gas planes, detectable
not only at 21 cm (Sancisi 1976) but also in visible light. The categories of polar ring
S0s (Schweizer et al. 1983, Whitmore et al. 1990) and dust-lane ellipticals (Bertola
& Galletta 1978, Hawarden et al. 1981) now include many tens of galaxies with such
structures. The gas kinematics of these galaxies require more complex hypotheses
than the conventional approach of coplanar, circular orbits for the gas motions, and
need new approaches, which are simple enough to be used in the analysis of many
different systems.

This chapter, we will show how is possible, with a simple geometric and kinematic
model, to reproduce and interpret spectroscopic observations of gas in galaxies with
warped structures. Contrary to the usual analysis, which makes use of 2-D maps of
the velocity field (by 21 cm or Fabry-Perot data), this model only needs photometric
data and long-slit spectra to put constrain to the warps.

We apply this procedure to several specific cases, to show the flexibility of our
model, which can be used in two different ways. The first is an heuristic approach,
in the sense that it can give a better estimate of the rotation curve and thus of the
galaxian mass. The second is to check the predictions of N-body codes (Steiman-—
Cameron & Durisen 1988) or dynamical code for precessing rings (Sparke 1986) with
regard to producing warped and twisted gas structures.
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3.2 The model

3.2.1 The geometry of the stellar structure

To describe the geometry of a warped structure in a galaxy, we need to first establish
a reference frame. We use the equatorial plane of the stellar structure as a reference.
In the case of a disk galaxy, whose structure is presumed to be axisymmetric (oblate)
or only slightly triaxial (Magrelli et al. 1992), this plane is clearly identified by
the galaxy symmetry plane. Hereafter, we call this plane the (z’,3') plane in the
reference frame OX'Y’Z’, and call (y”,2") the plane of the sky in the reference frame
OX"Y"Z". In the latter, the line-of-sight corresponds to the X” axis and is inclined
with respect to the galaxy reference frame by the zenith- and the azimuthal- angles
i and ¢. These angles correspond to the inclination (i = 90°: edge-on) and the P.A.
of the line-of-nodes, referred to an arbitrary “north” direction.

The oblate case is the most widely adopted in the literature as a model of the
stellar structure of polar-ring galaxies. Assuming a mean disk flattening of ¢/a=0.25
(Sandage et al. 1970), the mean observed axial ratio of the galaxy isophote (b/a)oss
gives the inclination 7 of the galaxy through the equation:

1 —(b/a)3,
1—(c/a)? (3.1)

In elliptical galaxies, where the intrinsic shape is probably triaxial, an accurate
analysis of the isophote parameters (apparent axial ratios and position angles of the
isophote major axes) is needed to determine the range of the intrinsic axial ratios
c/a, b/a and the orientation angles 7, ¢ with respect to the line-of-sight, where the
equatorial plane is generally defined as that which contains the major and interme-
diate axes (a,b), with the X’ axis of the reference system oriented toward the galaxy
major axis. The relations between the intrinsic parameters and the observed ones for
the general case of triaxial structure have been discussed by several authors (Stark
1977; Binney 1978; Benacchio & Galletta 1980; Galletta 1983). Applications to real
galaxies are presented by Williams (1981), and Caldwell (1984),

sini =

3.2.2 Definition of the ring reference frame

Once the parameters of the host galaxy are defined, it is possible to deduce the incli-
nation angle(s) of the gas structures (z.e. rings or disks). In this work, we approximate
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the warped gas distribution with a series of circular wires. This choice is justified by
the facts that closed orbits in the meridian plane of a flattened potential are only
slightly elliptical (Williams & Schwarzschild 1978), and in the case of the gas the col-
lisions between clouds tend to circularize the orbits, driving the gas to closed paths,
and smoothing the velocities along each orbit.

In our model, the N circular wires are inclined with respect to the galaxy equa-
torial plane (z/,y') by an angle é,, n = 1,..., N. We assume these wires have radii
7, on the (z,y) plane in a reference frame of orthogonal axes OXY Z. The line of
nodes of the n-th ring, defined as the intersection between the ring plane and the
equatorial plane of the galaxy, forms an angle a, with respect to the X’ axis of the
galaxy reference frame.

The matrix which transforms the coordinates of the ring from its reference frame
to the sky frame is given by!:

o = Ble; (2= 2,9,2) (32)
where '
R:’J = R Ry;, (3.3)

R/, is the rotation matrix from OX'Y'Z' to OX"Y"Z" and Ry; is the transforma-
tion from the ring reference system to the galaxy one. The coefficients of the global
transformation for each ring are:

R}, = cos(a, — ¢)sinicosé, + sin §, cos1 = :'1’1
R}, = —sin(a,— ¢)sin = }}'2'1
Ry = —cos(a, —¢)sinisinéd, + cosicosd, = RY,
2 = sin(a, — @)coséy, = R,
Rly = cos(an — 9) - (34)
R}, = —sin(a, — ¢)sinéd, = Ry
5 = —cos(a, —¢)cosicosb, +sinisind, = R/,
ha = sin(a, — @)cost = Ry,
Ry, = cos(a, — ¢)cosisiné, + sinicosé, = Rj,
where 1~2:'] is the matrix for the inverse transformation, i.e.
T; = fZ:'J:z:;' (3.5)

1We omit the index n, referring to the n-th ring, in the R;; coefficients for simplicity
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while the equation for the z = 0 plane is given by equation [3.7], from which we have
:Z)"2 — y112R121§ RI{;? + ZNZRg; Rllll;2 + 2R’2’3R€3’3R’1’;1y”2” (3-12)
which, substituted into equation [3.11], gives the projected ellipse
YRS + BE) + (R + B) + 20" R Ry = 2R (319)
which can be directly compared with the shape of the ring as visible on the images.
All the figures presented in this chapter have been obtained with this procedure.

3.2.4 Projection of the velocities

The previous equations describing the intrinsic structure of the rings and the un-
derlying galaxy have involved photometric analysis only. If we want to compare the
observed kinematics to the model we need to derive the projected velocities on the
sky.
Since the n-th wire is confined in its (z,y) plane, i.e. z =0,z = 0, we can consider
the motion in this plane introducing the polar coordinates (r,3,z). So we have
;{; = 'f.-c.osﬂm'rﬁ'sinﬁ (3.14)
y = rsinf+rBcosf
where 7 is the expansion- or contraction- velocity within the galaxy and ﬁ is the
angular velocity. The velocity vector in the sky frame would be given by
¢’ = Rz — Ry
¥’ = e + Ry (3'15)
" R3¢ + Rayy

il

Since z” is the line of sight, the radial motion of the point y”, 2" with respect to the
observer is:

¢" = 7(Ry; cos B + Ri,sin8) + rB(RY, cos B — R}, sin ) (3.16)
which can be rewritten as
&" = Vigp( Ry cos B + Ry sin B) + Vo RY, cos B — RY, sin B) (3.17)

Vezp and V., are the radial and tangential velocities with respect to the galaxy nucleus;
these are generally functions of the distance 7’ from the nucleus, the azimuthal angle
B and the height 2z’ on the galactic equatorial plane. In the case of elliptical orbits,
Vezp represents the radial component of the orbital velocity, while for circular orbits,
as so far assumed in our model, V,;,=0.
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3.3 Kinematical predictions

We can use the above treatment in different ways: if we have a good image of rings
or warped disks, we can apply equation [3.13] to build a computer-generated image
of the structure by varying the quantity of warping and/or twisting until a satisfac-
tory reproduction of the main features is reached. At this point, assuming a typical
rotation curve, we can extract the projected velocities on the sky. As we shall show,
once a possible intrinsic structure is defined, complex assumptions about the rotation
curves are not necessary and very simple trends (rigid then flat rotation) are able to
reproduce complex observed velocity curves.

The specific approach to modelling the galaxy follows three steps: 1) Deduction
of the inclination 7 from the apparent flattening (b/a)o, of the stellar component; 2)
Evaluation of the warping (4,, n=1,..,N) and the twisting (a,, n=1,...,N) using images
of the warped structure in visible or narrow-band wavelengths (we conservatively
assume a smooth trend A§, Aa with radius), and 3) Deduction of the intrinsic rotation
curve Vo by means of comparison with the observed gas rotation curves. Steps 2)
and 3) are iterated until a result consistent with all the observations is found.

Another use of this procedure is to verify dynamical models already presented in
the literature, which predict both warped configuration in space and the gas rotation
curve. The orientation angles (,,a,) and the rotation curve V,, then arise from the
assumption of a particular potential. With our model, we can compare the observed
velocities curves at any position angle on the sky with those expected in the assumed
configuration. The procedure to describe the system is similar to the one already
discussed, but the parameters in steps 2) and 3) are assumed from a dynamical
model and tested by comparison with the observed rotation curves.

To summarize, a single galaxy can be described in our model by the inclination
angle(s) and mean intrinsic flattening(s) of its stellar body. Its warped structure will
be identified by a set of orientation angles (é,, ) for N wires of radius 7, and by
the kinematical function V,u(7y).

3.3.1 Applications

To show the versatility of our approach we will produce a model for a suitable can-
didate: a galaxy taken from the literature whose morphology clearly indicates the
presence of a warped structure, and the rotation curves at different P.A.s show pe-
culiar characteristics. One of these nicely warped galaxies is NGC 660 (Benvenuti et

al. 1976), shown in Fig. 3.1.
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It has a bright stellar body, quite elongated with multiple dust lanes lying on
its apparent major axis and at higher inclinations on one side of the stellar body.
The central bright region is circled by a luminous ring-like feature, which resembles
the polar rings visible around several SOs (like NGC 4650A). In fact, this galaxy is
included in the Polar Ring Catalogue of Whitmore et. al. (1990), belonging to the
class of system for which the external ring material may eventually evolve in a polar
structure.

The rotation curves derived from the 21-cm emission of HI has been published
by Gottesman and Mahon (1990). These curves are determined for a P.A. = 46°,
the apparent major axis of the stellar component, and at P.A. = 173°, close to the
elongation of the gaseous structure. The first rotation curve shows the presence of HI
clouds at different projected velocities. Two features can be recognized: fast rotation
at about 140 km s™! and a second one whose projected velocities are nearly zero
with respect to the systemic velocity. A third feature is visible in the center of the
galaxy, where HI absorption against the strong central continuum source produces a
vertical strip in the velocity diagram. This absorption profile is also present in the
second rotation curve together with the faster rotating component of the HI gas. To
model this galaxy we calculated the inclination of the stellar body by measuring its
apparent flattening. This produced b/a,,, = 0.3, suggesting an inclination of 7 = 80°.
Morphological considerations, based on the position of the nucleus with respect to
the innermost horizontal dust lane, as it appears in our plates, led us to assume an
inclination z = 100°, symmetric to the previous one, but on the other side of the
galaxy equatorial plane. Thirty wires are used to approximate the gaseous structure;
they are lying on the equatorial plane and their inclination increases monotonically
from 8; = 0° up to é30 = 63°. The last angle is computed from eqns. 3.8 and 3.9
using the apparent b/a,in, = 0.36 = 0.06 and AP.A. = 55° & 2°, derived for the
elongated gas structure. The line-of-nodes is the same for every wire, and forms an
angle of o = —60°. These choices reproduce both the inner horizontal dark lanes,
(see Fig. 3.2), and the outer inclined one. In addition, it produces the luminous,
elongated gas structure. This configuration also reproduces the observed HI rotation
curve (Fig. 3.3) assuming a very simple rigid+constant velocity curve, with a turning
point at ~ 4” and a maximum value (in the plateau) of 140 km s™'.

The galaxy is assumed to be transparent at the HI wavelength (unlike the optical
lines), so all the wires crossed by the line~of-sight produce velocities in our plots, even
if hidden by the galaxy or the warped structure itself. The double rotation curve
visible in Fig. 3.3 is the result of this transparency. The good agreement between
morphology, rotation and model can be judged from these figures.
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Another application of this modelling procedure is demonstrated using by the
twisted and warped gas structure observed in the barred S0 galaxy NGC 2217 (Bettoni
et al. (1990). In this case, the gas disk is perpendicular to the bar axis (assumed
to be the z’ axis) in the inner parts, where §; = 0°, and o; = 90°, and it settles
down towards the equatorial plane of the galaxy, with the last wire at 6390 = 90°. The
maximum twisting due to differential precession of the wire is Ao = 18°. The general
appearance of the gas structure and the good agreement of the projected emission-line
rotation curve with the one produced by the model are shown in Fig. 3.4.

A detailed discussion of this galaxy with the application of this model, is presented
by Bettoni et al. (1990).

This modelling procedure has also been used to verify the warped structure pre-
dicted by a dynamical code for the polar ring galaxy AM 2020-504. The geometry of
the warped gas was obtained using the physical parameters derived from observations
and the assumed underlying potential (Arnaboldi et al. 1992): the warped model re-
produces the S—shape of the polar ring and the observed gas rotation curves showed
in Fig. 3.5 for two different slit positions along the edges of the ring, no twisting is
needed to reproduce the observed velocities. The procedure shows also that a copla-
nar circular corona produces rotation curves (dashed lines in Fig. 3.5) which are not
in agreement with the observed ones.

3.4 Conclusions

We have shown with three different applications to real galaxies how a simple model
can reproduce very complex structures, both in the morphology and the rotation
curves of peculiar systems. In each case presented, the strange features in the gas
rotation curves were due to projection effects and do not imply intrinsic non—circular
motions.

In particular, NGC 660, a galaxy where the gas, probably acquired from the
outside at § ~ 60°, is smeared in annulus which have settles down to the galaxy
equatorial plane in the inner parts, is shown to have a rotation curve which is a
simply rigid + constant rotation.

AM 2020-504 belongs to the same category as NGC 660, having accreted gas
from the outside, and our model indicates that the accreted gas may possibly be in a
warped stationary structure.

Finally, we infer from the gas kinematics of NGC 2217 that it has a warped and
twisted gas disk. Here the elongated barred potential and the oblate potential of the
disk are responsible of the distortion of the gas structure.
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Obviously all these observed structures can be reproduced by complicated non
circular orbits or more complex modelling, but the advantage of our model is that it
is based on a minimum number of assumptions.
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X

Figure 3.2: Computer-simulated image of NGC 660, projected at the same orien-
tation angles of the real galaxy. The front side and the innermost portion of the rings
is plotted with heavier dots.



70 CHAPTER 3. KINEMATICAL PROPERTIES OF WARPED STRUCTURE

‘0 - F .
E 1000 & =
=800 £ =
w5600 B q
6 —8
1000
o
\.
E.
L,.E’ .
- 800
:>’f '
600

R [arcmin]

Figure 3.3: Upper panel: Axis velocity profile of HI through the center of NGC 660
at P.A. =46°, where multiple pcaks are present. Lower panel: Axis velocity profile
of HI through the center at P.A. =-7°. In both pancls the predicted velocities at
the different P.A.s from the warped gas structure arc indicated with full dots, which
follow exactly the multiple peaks, in HI intensity.
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Figure 3.4: Left: Computer-simulated image of NGC 2217. Right: emission-lines
rotation curves at different P.A.s and the projected velocity curves obtained from the
warped structure.
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Figure 3.5: Left: Computer-simulated image of AM 2020-504, the front side of the
warped structure is plotted with heavier dots. Right: open dots are data from the
emission-lines rotation curves at P.A. = 159°, taken offset 2.5 SW (B3) and NE
(B4) from the nucleus. The continuous lines represent the predicted velocity curves
expected from the self-gravitating warp structure; the dash-dotted lines represent the
rotation curves obtained at the same slit position with no warp.
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Chapter 4

Observations and model for AM
2020-504

4.1 Introduction

Gas rings in early-type galaxies tend to occur in two different morphologies: rings
in SO galaxies are normally wide annuli extending out to large radii, while those
in ellipticals are narrow and internal to the optical radius of the galaxy (Whitmore
1991). The rings are not inclined at random angles: they appear either near to the
equatorial plane of the galaxy or near to the orthogonal plane.

Those systems where the ring is nearly orthogonal are classified as Polar Ring
Galaxies (PRGs). The study of their dynamics gives a unique opportunity to acquire
information on the amount and three-dimensional shape of the matter distribution
generating the galactic potential, since the velocity field is mapped on two different
planes (Schweizer et al. 1983; Whitmore et al. 1987a; Sackett & Sparke 1990).
In particular, narrow polar rings in elliptical galaxies may help us gain insight into
the still unsolved question of the intrinsic shape — triaxial, oblate or prolate —
of the total galaxy potential (Merritt 1992). The inclination of the ring, and the
warps and ripples in it, together with analysis of the stability of orbits in the ring
plane, give constraints on the “evolutionary scenario” for the PRGs. They also help
discriminate between recent merger or accretion of material from a companion or in a
close encounter (Schweizer et al. 1983), and old rings stabilized either by self-gravity
(Sparke 1986) or in a tumbling—triaxial potential (Steiman-Cameron & Durisen 1982).

In this chapter we present and model some new photometric and spectroscopic
data for AM 2020-504, selected as the “best case” of the so—called narrow polar rings
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from the Polar Ring Catalog (PRC) of Whitmore et al. (1990); see Arnaboldi et
al. (1991). The system (Fig. 4.1) appears as an E4 galaxy with a luminous ring
internal to the pg = 25 mag arcsec™? isophote; the ring plane is almost perpendicular
to the apparent major axis of the galaxy. AM 2020-504 has a heliocentric redshift of
czo = 5040 km s™! and a total blue magnitude Br = 14.5 (PRC). Throughout this
work we will assume Hy = 75 km s™! Mpc™!, which makes d(AM 2020-504) = 67
Mpc, 1”7 = 327 pc.

Our new data for AM 2020-504 are presented in Section 4.2 and in Section 4.3
below; in Section 4.4 we produce photometric models for the parent galaxy and for
the ring, which are analysed dynamically against the kinematical data in Section 4.5.
The results are reviewed and the conclusions stated in Section 4.6.

4.2 Photometric Observations

Broad-band images of AM 2020-504 in the Johnson—Cousin B, V, and R bands, and
Ha images (+ adjacent continuum) were secured with the CCD camera attached
to the 1.54 m ESO-Danish telescope at La Silla, Chile, under fair seeing conditions
(FWHM ~ 17”4 — 2"). The narrow-band filters (FWHM= 8A) were centered at
X = 6672A (redshifted Ha) and A = 67724 (continuum). The CCD frames were bias
subtracted and flat-fielded using the MIDAS data reduction package. The photo-
metric zero—points of the B and V images were established by means of eight Lan-
dolt (1983) standard stars. We note that the corresponding sky surface brightness,
pp = 21.77 £ 0.03 is just 0.1 mag fainter than the value required to make By = 14.5
as in PRC. Our B-light profiles are also in agreement with those published in PRC.
No previous observations have been published for the V and R bands or in the narrow
band filters.

The isophotal map reveals that the ring lies inside the up = 25 mag arcsec™
isophote, 7.e. well within the optical image of the galaxy, as shown also by the blue
luminosity profile along the galaxy minor axis (Fig. 4.1). The polar ring (PR) shows
up along the minor axis as secondary peaks in the B-light profile, North-West and
South-East of the galaxy center. The light profile along the major axis looks perturbed
on both sides close to the center, and no absorption dips are immediately evident.

In the central part of the image, the ring appears as a S-shape feature super-
imposed on the elliptical isophotes of the host galaxy, as would be expected from a
slightly twisted ring. In order to disentangle the ring structure from the underlying,
presumably smooth image of the host galaxy, we fitted ellipses to the isophotes in
regions not perturbed by the ring. Excluding the inner part, where the ellipticity

2
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Table 4.1: Major axis blue luminosity profile

Radius pp LB
(arcsec)

0.944 19.46 19.46
1.044 19.92 19.69
1.477 20.37 19.98
1.926 20.47 20.32
2.089 20.64 20.43
2.381 20.62 20.66
2.515 20.63 20.75
2.839 20.6 20.89
3.218 20.63 21.04
3.478 20.7 21.05
3.843 20.83 21.04
4.378 21.02 21.06
4.869 21.21 21.16
5.429 21.4 21.35
6.075 21.62 21.52
6.812 21.84 21.77
7.611 22.04 21.98
8.416 22.28 22.19
9.443 22.55 22.46
10.53 22.8 22.7
11.74 23.06 22.92
13.08 23.3 23.13
14.6 23.62 23.36
16.29 23.86 23.68
18.18 24.07 24.01
20.25 24.37 24.29
22.58 24.64 24.42
25.18 24.8 24.65
28.1 24.84 24.77
31.35 25.34 25.05
34.98 25.66 25.46
39.01 26.03 25.68
43.51 26.13 26.08

48.52 26.25 26.46
54.09 27.44 NE 27.07 SW
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data are meaningless given the limited resolution of our material and the dominant
presence of the ring, the isophotes in the outer regions (R > 8”) are well reproduced
by concentric ellipses with constant flattening, /a = 0.6 +:0.03, and fixed orientation
of the major axis, P.A.= 72° £ 2°.

The (B — R) map is shown in Fig. 4.2a. With respect to the host galaxy, the
ring appears bluer and the image center redder. Lacking an absolute calibration for
the R band, we assume that the color of the host galaxy spheroid is the mean color
of an ordinary elliptical, (B — R) = 1.6 (Peletier et al. 1990). This would imply
that the ring color is (B — R) = 1.0. The color profile along the galaxy major axis
shows that the center is instead redder than the adopted average color by about
A(B — R) = 40.4.

It is not evident from the isophotal and color maps which is the front side of the
ring. Color profiles parallel to the major axis and offset from the center are generally
bluer in the NE side of the galaxy, but the asymmetry is marginal: A(B — R) = 0.03
along the major axis. The approximate inner and outer radii for the ring are estimated
by locating, in the color map, the boundaries of the region where the color is bluer
than the galaxy mean color:

R;, =3'5+£075 Rt = 1970+ 075

The Ha image (Fig. 4.2b) shows that the ionized gas lies along the minor axis of
the galaxy. It is concentrated in clumpy structures following a S-shape stretched
across the inner galaxy. The S-shape resembles a warped ring, such as that shown in
Fig. 4.2c (see also Section 4.5 below). Bright Ha knots are present at the NW and SE
edges of the ring, and structures of similar and stronger intensity are present along
the major axis of the galaxy, close to the center (R < 5”).

4.3 Spectroscopic Observations

Spectra of AM 2020-504 were secured in two different observing runs at La Silla,
Chile. During the first run, three long-slit deep spectra were taken with EFOSC
at the ESO 3.6m telescope, two of them at P.A. = 75° (coded E1), and a third at
P.A. =165° (E2); these directions are within 3° of the galaxy major and minor axes.
The spectra cover the range 5100-7100 A with a dispersion of 2.0 A pix!, and a
spatial scale of 0767 pix~'. During the second run, four spectra were taken with the
EMMI at the ESO NTT, two parallel to the minor axis (P.A. = 159°) and offset
from the nucleus by 2'5 NE (B4) and SW (B3) respectively, one at P.A. = 136°
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Table 4.2: Log of the spectroscopic observations

Instrument Ident. P.A. Range Time Resolution

[A] [sec] [A pix™]

EFOSC 3.6m E1 75° 5100 — 7100 1800 2.0
EFOSC 3.6m E1 75° 5100 — 7100 1800 | | 2.0
EFOSC 3.6m E2 165° 5100 — 7100 1800 2.0
EMMI NTT B1 75° 4800 — 6100 3600 0.8
EMMI NTT ’B3 159° (2.5”SW) 4800 — 6100 1800 0.8
EMMI NTT B4 159° (2.5”"NE) 4800 — 6100 1800 0.8
EMMI NTT B5 136° 4800 — 6100 1800 0.8

(B5), and another along the major axis, P.A. = 75° (B1). The wavelength range
is 4800-6100 A, the dispersion 0.8 A pix~!, the spatial scale 0735 pix~!, and the
average seeing FWHM= 2”. With our own data, we discuss velocity measurements
published by PRC and relative to the major axis of the ring (B2). A complete log of
the observations is shown in Table 4.1

After proper pre—processing, the EFOSC spectra were wavelength calibrated using
a longslit reduction package developed by one of us (EVH), while EMMI spectra were
calibrated in the IRAF environment. For a graphical summary of our spectroscopic
slit positions, see the sketch of Fig. 4.3; the spectra E1, Bl, and E2 are displayed in
Fig. 4.1.
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Table 4.3: Major axis stellar velocity — (B1) NTT data

Radius Vot Error Radius Vot Error
(arcsec) (kms™!) (kms™!) (arcsec) (km s™!) (kms™!)

8.750 SW 63.61 20.47 -0.3471E-04 -14.13 9.114
8.400 61.92 18.11 -0.3500 -13.93 9.002
8.050 108.0 22.79 -0.7000 -16.33 10.36
7.700 103.3 20.76 -1.050 -46.58 11.69
7.350 121.9 50.81 -1.400 -42.68 9.692
7.000 81.95 31.60 -1.750 -43.85 11.51
6.650 80.18 28.32 -2.100 -78.91 10.07
6.300 54.90 17.99 -2.450 -110.6 19.81
5.950 95.32 16.73 -2.800 -68.70 19.16
5.600 68.18 18.62 -3.150 -96.46 15.61
5.250 116.7 19.29 -3.500 -94.62 12.95
- 4.900 96.97 14.38 -3.850 -86.59 12.70
4.550 125.2 15.77 -4.200 -135.8 15.80
4.200 123.4 18.61 -4.550 -105.3 16.25
3.850 100.3 20.77 -4.900 -79.48 19.19
3.500 116.0 10.45 -5.250 -113.2 12.15
3.150 86.63 9.406 -5.600 -111.7 7.132
2.800 101.7 12.55 -5.950 -64.12 8.491
2.450 88.29 13.14 -6.300 -82.77 9.179
2.100 63.52 12.64 -6.650 -72.20 6.910
1.750 64.85 18.70 -7.000 -51.63 11.94
1.400 11.19 20.18 -7.350 -101.2 30.34
1.050 55.91 12.06 -7.700 -122.6 23.77
.7000 -8.706 10.22 -8.050 -26.85 16.82
-8.400 8.438 34.31

-8.750 -22.10 18.95

-9.100 NE = -37.61 19.72
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Table 4.4: Major axis stellar velocity — (E1) EFOSC data

Radius Vot Error Radius V5ot Error
(arcsec) (kms!) (kms™') (arcsec) (kms™) (kms™!)
20.65 SW 15.6 16.1 -0.7 -24.8 18.1
19.6 16.1 13 -1.05 -17.5 63.8
18.9 18.5 13.1 -1.4 -47.7 46.1
17.85 -13.4 36.9 -1.75 -111 61.4
17.5 -1.8 13.2 -2.1 -162 71
17.15 -1 18.4 -2.45 -135 64.5
16.8 -0.6999 15.2 -2.8 -118.3 76.3
16.45 10.7 37.1 -3.5 -96.3 74.8
16.1 2.2 12.4 -4.2 -75.3 73.3
15.4 -4.2 18.7 -4.55 -33.1 23
14.7 12 15.7 -4.9 -124.6 155.4
14 -4.9 15 -5.6 -101.8 40
12.95 -12.5 16.3 -8.05 11.3 154
12.6 -7.9 13.2 -8.4 -4.3 17.2
12.25 6 18.6 -8.75 1.8 15.3
11.2 8.6 13.1 -9.8 -0.9001 15.6
10.85 -7 16.2 -10.85 -1.2 12.7
9.8 2.7 16.5 -11.2 -8 14.4
9.45 -5.4 15.4 -11.55 -0.4001 14.2
8.4 10.7 14.9 -12.25 11.9 11.9
6.65 45.6 112.4 -12.6 0.4998 14
6.3 88.7 76.3 -14.35 -4 13.6
5.95 73.6 67.9 -14.7 11.2 13.3
5.6 105.3 77.9 -15.4 -11.1 12.9
4.9 139.4 69.8 -16.45 2.2 16.7
4.55 130.5 37 -17.5 23.8 22.2
4.2 49.5 72.8 -20.65 NE 1.6 12.8
3.85 82.8 44.8

3.15 58.6 40.8

2.8 119.1 449

2.45 95.2 22.2

2.1 118.7 28.4

1.75 56.3 23

1.4 66.4 24.3

1.05 4.4 20.1

0.7 11.3 29.3

0.35 -28.9 35.6

0 -62.6 33.5

81
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Table 4.5: NTT data — Velocity dispersion

Radius o(r) Error Radius o(r) Error
(arcsec)  (kms™!') (kms™') (arcsec) (kms™') (kms™)
10.15 SW  89.16 56.29 -0.3471E-04 267.3 10.22
9.800 44.89 31.15 -0.3500 271.9 9.114
9.450 36.16 29.29 -0.7000 273.8 9.002
9.100 180.0 12.09 -1.050 223.0 10.36
8.750 147.4 20.47 -1.400 195.3 11.69
8.050 159.7 22.79 -1.750 240.7 9.692
7.700 136.5 20.76 -2.450 - 203.6 10.07
7.350 53.45 50.81 -3.150 188.0 19.16
7.000 126.8 31.60 -3.850 170.3 12.95
6.650 77.93 28.32 -4.200 184.9 12.70
5.250 147.3 19.29 -4.550 226.2 15.80
4.900 138.7 14.38 -5.250 1154 19.19
4.550 136.9 15.77 -5.600 92.08 12.15
4.200 140.6 18.61 -6.300 111.4 8.491
3.500 164.0 10.45 -6.650 93.93 9.179
3.150 158.0 9.406 -7.000 144.5 6.910
2.800 181.0 12.55 -7.350 94.40 11.94
2.100 178.2 12.64 -7.700 101.5 30.34
1.750 152.8 18.70 -8.050 148.0 23.77
1.400 172.7 20.18 -8.400 96.32 16.82
1.050 238.1 20.18 -8.750 134.5 34.31

.7000 235.5 12.06 -9.100 NE 166.3 18.95
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4.3.1 Major Axis Stellar Velocities

Kinematical information on the stellar component of AM 2020-504 are obtained from
the major-axis absorption-line spectra (E1 and B1) in the range 5100-6100 A (domi-
nated by the Mgb and NaD features), using a Fourier Quotient package made available
to us by G. Galletta. No change is introduced in the results from the EFOSC spectra
by switching to the cross—correlation package developed by R. Bender (1988), or to
the similar package developed by S. Levine for the IRAF environment. The velocities
are plotted in Fig. 4.4 and 4.5. The interpolating curve, shown as a solid line, has
been constrained to be symmetric about the nucleus. It has been computed from the
folded rotational data, neglecting the EFOSC points in the innermost 9”, since their
spatial resolution is lower than the NTT data.

The stellar radial velocities for the major axis confirm previous evidence of a fast
rotating core inside R = 9” (Whitmore et al. 1987b, hereafter WMSb), but they
also reveal the presence of a very peculiar dynamics. First of all, due to the better
spatial resolution of NTT data, the inner fast rotating core has been resolved into
possible sub—components: see Fig. 4.5, where the data have been folded with respect
to the center and to the systemic velocities. The rotation curve shows some evidence
of two peaks, at R = 4”5 and 7”5, reaching |V, | = 122 and 109 km s™! respectively.
Moreover, our deep EFOSC spectra disclose the presence, from R = 9” and out to
20", of a non-rotating component. This implies a dynamical decoupling between the
inner core and the surrounding bulge (see also WMSb). The decoupled core and its
peculiar double-peaked rotation curve are probably related to the central color excess
and to the concentration of Ha emission. This may represent material acquired when
the ring formed, which has already settled down in the core and has turned into stars.

The EMMI spectrum reduced by means of the cross correlation package of Bender
(1988) provided the velocity dispersion o(r) profile along the major axis of AM 2020~
504. The velocity dispersion peaks at the center, o(0) = 270 km s™!, and decreases
outwards; the same central value and the same general behaviour in the first 3” from
center are measured from the absorption lines present in the spectrum B5. Our
measurements, folded about the center, are displayed in Fig. 4.5, along with those
of PRC. Our central dispersion is significantly larger than the value of 153 km s™?
quoted in PRC; for R > 5", however, our data are in agreement with PRC. The
higher peak detected at the center is likely to be a consequence of our better spatial
resolution. At best, 7.e. even if the inner galaxy rotates with the same speed as the
decoupled core, the ratio V;,/og is equal to 0.55 indicating that the parent galaxy is
not rotationally supported (Davies et al. 1983).
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4.3.2 Emaission Lines

The gas kinematics in the ring were derived by measuring the Ha line in the EFOSC
spectra and the [OIII] 5007A line in the NTT spectra (Fig. 4.6). The fitting procedure
gives an error of £5 km s~ and +2 km s™! on the EFOSC and NTT gas rotation
curves respectively. The velocity curve from the EFOSC spectrum (E2) along the
minor axis of the galaxy is asymmetric with respect to the heliocentric systemic
velocity of the stellar component, ¥y = 5040 km s~!. The velocities of the absorption
lines apparent near the galaxy center in this spectrum are also larger that V5, and are
comparable with the redshift appropriate to the SW peak of the spinning core. This
would suggest that our slit was offset by about 2” from the nucleus towards the SW,
an assumption consistent with the slit width and with the slit coordinates relative to
a galaxy image taken simultaneously with EFOSC spectra.

The velocity curves of the gas obtained from the NTT spectra at P.A. = 159°
(B2-B4) are flat near the origin (R < 0'1) and increasing slowly outwards, while the
velocity curve at P.A. = 136° is increasing rapidly near the origin and then flattens.
We will consider all these rotation curves and the published one to derive a mass
model for the galaxy AM 2020-504 in Section 4.5 below.

4.4 Geometrical Models

In order to produce a dynamical model for the gas in AM 2020-504, we must be able
to model the host galaxy. This implies knowing whether the galaxy is intrinsically
triaxial, oblate or prolate. If the figure of the galaxy is not tumbling, prolate structure
is unlikely, given the presence of the fast rotating core aligned with the galaxy major
axis. In fact, given a prolate structure, these orbits would lie in a plane perpendicular
to the equatorial one, and they would be unstable (Binney & Tremaine 1987). If the
intrinsic shape of the host galaxy is triaxial, the absence of twisting and the constant
flattening of the isophotes imply one of the following two scenarios.

1. The orientation of the parent galaxy is such that the line-of-sight coincides
with the long axis, but then the orbits corresponding to the PR should circle
the intermediate axis and be unstable (Schwarzschild 1979).

2. We are seeing the galaxy along the intermediate axis, so the PR orbits are
close to the stable long-axis orbits. Simulations of a self-gravitating PR in a
stationary triaxial potential (Arnaboldi & Sparke 1992) show that it would be
unstable: at first the PR begins to wobble and then it breaks up. However, the
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Table 4.6: Ha line - P.A.= 165° (E2)

Radius V,u Radius Vot
(arcsec) (km s™!') (arcsec) (km s™1)
12.2 SE  —184 —0.5 —57
11.5 —185 —-1.2 —-31
10.9 —193 —-1.8 —15
10.2 —182 -2.5 25
9.5 —166 —-3.2 51
8.9 -179 -3.8 76
8.2 —172 —4.7 78
7.5 —175 -5.2 76
6.9 —182 —5.9 109
6.2 —155 —6.5 126
5.5 —143 7.2 153
4.8 —146 —-7.9 147
4.2 —136 —~8.5 154
3.5 —135 -9.2 153
2.8 —127 —-9.9 154
2.2 —132 —-10.5 171
1.5 —94 —-11.2 186
0.8 -80 -11.9 217
0.2 —86 —13.20 236
—-13.90 241
—14.50 207

—15.20 NW 253
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Table 4.7: OIII line — P.A.= 159° (B3)

Radius V5ot Radius V4
(arcsec) (km s™!') (arcsec) (kms™!)
—11.5 NW 169 ~3.5 —-30
—-11.1 128 3.1 —6
—10.8 131 —-2.8 —21
-9.0 159 —2.4 -8
—-8.7 142 —-2.1 —6
—8.3 144 -1.7 —21
8.0 147 —1.4 —13
—17.6 83 -1.0 —18
—-6.9 54 -0.7 -7
—6.6 57 2.5 —26
—6.2 49 3.6 —21
-5.9 27 4.2 —30
—-5.5 38 4.6 —155
—-5.2 41 5.3 —67
—4.8 62 6.0 —-120
—4.5 3 7.4 —245
—4.1 27 7.7 —-239

-3.8 22 8.1SE -231
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Table 4.8: OIII line — P.A.= 159° (B4)

Radius Vot Radius V,u
(arcsec) (km s7!) (arcsec) (kms™!)
—10.5 NW 183 2.5 22
—10.2 178 3.6 10
-9.8 183 4.1 12
-9.1 112 4.5 -1
-8.8 127 4.8 10
—8.4 131 5.2 —23
-8.1 115 5.5 —36
—-7.7 112 5.9 —76
—7.4 112 6.2 —68
-17.0 95 6.6 —178
—6.7 83 6.9 —65
—6.0 52 7.3 —55
~4.6 27 7.6 —83
—4.2 51 8.0 —86
-2.1 31 8.3 —100
—-1.8 47 8.7 —127
-0.7 37 9.0 —-119
9.4 —-107
9.7 —135
11.1 —167
11.5 —178
11.8 —174
13.6 SE  —192
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Table 4.9: OIII line — P.A.= 136° (B5)

Radius Vot Radius  V,.
(arcsec) (kms™!) (arcsec) (kms™!)
—6.3 NW 108 0.3 —16
—-5.9 115 0.7 —6
—5.6 100 1.0 —41
—-5.2 104 1.7 —48
—4.9 90 2.4 —68
—4.5 96 2.8 —96
—4.2 122 3.1 —-98
-3.8 139 3.5 —106
-3.5 130 3.8 —99
-3.1 118 4.2 —-102
—2.8 121 4.5 —125
—-2.4 124 5.2 —74
-2.1 120 5.6 —61
-1.7 121 6.3SE 73
—-1.4 105

—0.7 90

—0.3 55

—0.0 4
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stability is recovered by introducing a slow rotation in the triaxial component
along its short axis: the self-gravitating PR can be stable if its precession
rate equals the figure tumbling-rate of the spheroid. In this case, according
to Schwarzschild (1982) and van Albada (1987), the average rotation of stars
should be comparable to the figure speed. The precession rate of the equilibrium
model (Section 4.5) translates into a stellar rotation rate of ~ 5 km s~ at R =
16", which is too small to be detectable in our data. In conclusion, a tumbling
triaxial host galaxy cannot be ruled out definitely by stability arguments, but
absence of isophote twisting would imply that we must be looking at a triaxial
system from a very particular angle. Therefore we restrict our analysis to a
simple model in terms of an oblate spheroid.

To determine the orientation of the ring with respect to the galaxy, using the
color map of Fig. 4.2a and the Ha image of Fig. 4.2b, we adopt the same assumptions
(that the ring is circular and flat) and the same notation as in Whitmore (1984). The
observed angle ® between the major axis of the two components, and the angle g of
the ring from edge-on are:

P = 87° +4°% fr = tarcsin(b/a) ing = £18° £ 2°.

Since the ring is close to edge—on, if we assume that the galaxy is also seen edge—on,
then the angle between the equatorial plane of the galaxy and the plane of the ring,
61, is nearly equal to the observed elongation ®. If the galaxy is not seen edge-on, it
is intrinsically flatter than E4; then the implied value of 6; is two—valued (depending
on which side of the galaxy is in front). We find numerically that the ring does not
depart by more than 12° from polar orientation even if the galaxy is intrinsically
as flat as E6/7; depending on the inclination of the galaxy, the ring could be exactly
polar.

In absence of other indications, we assume that the galaxy is seen edge-on. In
order to determine which is the front side of the ring, we wrote a code that computes
the cumulative surface brightness of a spheroid together with an outer ring, and
convolves the result with a Gaussian to simulate the effect of seeing. The photometric
model contains the following components:

1. For the host galaxy we adopt an oblate Jaffe (1983) model with contours of
constant luminosity density given by ellipsoids:
A By P

S 1 — = = 4.
m2(1+m2)’ " a’ +c2’ (4.1)

CG(I:)y) z) =
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where (& is the central value, and a = r; the Jaffe radius (the effective radius
re = 0.763 X 7). The values of the parameters, found by fitting the model to
the observed luminosity profiles in the outer regions, are r; = 1670 4 0”5 and
axis ratio ¢/a = 0.58 £ 0.02; the fit along the major axis is shown in Fig. 4.7a.

2. The emission from the ring is determined from the light distribution along the
galaxy minor axis, after subtracting the contribution coming from the Jaffe
model. The ring is taken to be azimuthally symmetric, so that its emission is
just a function of the radius. We adopted a gaussian:

Ca(r) = Chexp {-g (= R)} , (4.2)

SR

and derived the parameters (3, %, and sg from fits to the luminosity profiles,
ignoring the twisting of the ring (cf. Section 4.3.2). Under this assumption the
parameters are (§ = 2.0 £ 0.7, 7% = 13.7 4 0.05, and sg = 5.5 & 0.05.

3. We assume that the ring absorbs light from that portion of the host galaxy
which lies behind it:

Iobs = e—.T/SineRIem (4.3)

where I, is that part of the observed flux corresponding to an emission I, of
the host galaxy behind the ring. The optical depth 7 was taken to be constant
inside the ring region.

4. The photometric model is convolved with the appropriate Gaussian point spread
function (FWHM= 174), and compared to the observed images.

In our composite model the surface brightness distribution in the two sides of the
galaxy major axis intersected by the ring is clearly asymmetric when 7 # 0; a dip
becomes evident where the ring passes in front of the galaxy. By comparison of the
isophotal map for AM 2020-504 with the contour plot of the model, we see that the
near side of the ring is to the NE of the galaxy nucleus. Good images of the system
(PRC, Fig. 3e) seem to show a hint of an absorption lane on the NE side, supporting
our contention that the NE side of the ring is in front.

In fitting the model to the observed photometric data (Fig. 4.7), we had to cope
with some of its limitations:



4.5. DYNAMICAL MODEL FOR THE PR 91

1. In building the model we did not account for a possible central component of
stars, gas and dust related to a kinematically decoupled core (R < 9"); see
Section 4.3.1.

2. The innermost structures in our images are poorly resolved: the inner diameter
of the ring along its minor axis is 22, while the seeing during observations was

at best FWHM = 174,

3. The ring appears to be twisted into an S—shape: the NW side passing SW of
the core and the SE side passing to the NE are brighter than the NE and SW
portions of the ring.

As a consequence we expect that the model will not be able to reproduce the observed
~ profile along the galaxy major axis for R S 9”: in fact the V-band luminosity profile
is less luminous there than the Jaffe profile (Fig. 4.7a). Therefore, the convolved
model was compared with luminosity profiles obtained off the nucleus and parallel to
the galaxy major axis. In Fig. 4.7c,d the model light profiles for the NE and SW sides
(ring in front and beyond the galaxy) are plotted against the corresponding observed
profiles at 3" SE of the nucleus and 7’ NW respectively. By comparing the fits for
the B and V images we estimate that the reddening coefficient of the ring material
is E(B — V)g ~ 0.14; note that the Galactic reddening is just E(B — V) = 0.003
(Burstein & Heiles 1982). Assuming Ny;/E(B — V) =5.1-10%' cm™?mag™" (Knapp
& Kerr 1974), the implied hydrogen mass would be Mgy = 7.2 - 10 Mg: this is
significantly less than the HI mass measured with the 64m Parkes telescope by O.
Richter (private communication), My; =9 - 10° Me.

Since AM 2020-504 has effective parameters p. = 22.9 mag arcsec™?, and R, = 4.0
kpc, it falls in the region of the p, — R. plane occupied by the so—called “bright
family” of galaxies that are likely to have undergone merging or accretion phenomena

(Capaccioli et al. 1992a,b).

4.5 Dynamical Model for the PR

The large HI mass indicates that self-gravity may play an important role in the
dynamics of the ring (Sparke 1986). We have therefore tested whether the general
shape of the PR in AM 2020-504 and its dynamics could be reproduced by a self-
gravitating ring made up of a series of circular wires precessing in an oblate potential.
We look for stable solutions with the inclination of the wires to the galaxy equator
increasing with their radius (a condition required by the Ha morphology and not
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permitted in absence of self-gravity; Sparke 1986), using the appropriate flattened
potential to represent the galaxy.

4.5.1 The potential of the host galaxy

Since the photometry suggests an oblate spheroid as a good approximation for the
light distribution, and the ring is close to being exactly polar, we will use a flattened
potential to compute the velocity curve of polar orbits, integrating the equations of
motion in the zz—plane, see Fig. 4.8. To find the velocity corresponding to a distance
R from the center, we find the closed loop orbit which reaches its maximum z—height
at that distance; the z—velocity at the peak height gives the speed of the material in
each ring at its maximum distance from the center, corresponding to our measured
rotation speed. ;

Under the hypothesis that light traces mass, the density law for the mass distri-
bution is again an oblate Jaffe model:

Po

g (4.4)

p(:v,y, z) =

where the elliptic radius m is defined as in eq. 4.1; a = r; = 16” is the Jaffe radius,
and the axis ratio ¢/a = 0.6 have the values derived in the previous section. The
forces corresponding to this mass distribution may be found in terms of elementary
functions using the prescription of de Zeeuw and Pfenniger (1988), Sections 5.1 and
2.7. The central density pg is to be determined from the best fit to the emission line
rotation curve. The velocity curve obtained from the loop—orbits in the zz—plane is
plotted against the data in Fig. 4.8. The predicted rotation curve deviates strongly
from the observed one in the inner region, and reproduces the observed flat trend in
the outer parts. The mass distribution of the Jaffe model is so strongly peaked at
the center that loop orbits remain almost round even at small radii: at 0.1” the axis
ratio of the orbits is still 0.85; and loop orbits exist also at smaller radii.

If the ring had a central hole and the inner gas orbits were seen nearly edge on, the
projected radial velocity on the slit would have a shallow, linear gradient, whatever the
underlying potential. Unfortunately, using our data we cannot say whether twisting
is present in the ring gas distribution, changing from edge-on in the inner region to
a (b/a)ring = 0.3 in the outer parts. But if we attribute the shallowness of the inner
rotation curve to twisting, our model implies a total mass inside R = 16” of 1 - 10!
Mg and a mass—to-light ratio M/Lp = 13.5.

To investigate all the possible alternatives, we use a shallower density law for the
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mass distribution, the pseudo-isothermal form:

Po

P(‘cayvz) = m;

(4.5)
the corresponding forces in the zz—plane are given in analytic form by de Zeeuw and
Pfenniger (1988). The free parameters of the model are the core radius a and the
central density po. When the system is flattened, the predicted minor-axis rotation
curve is again computed integrating the equations of motions in the zz—plane. We
obtain a good fit to the observed data using a core radius a = 3” and a central
density po = 3.48 Mg /pc?; integrating out to R = 16”, we obtain a mass of 1.8 - 10*!
Mg and a mass-to-light ratio M/Lp ~ 24; see Fig. 4.8. For comparison, fitting
a spherical pseudo-isothermal model to this rotation curve would give a = 6” and
po = 1.06 My /pc®, and M/Lp ~ 12; neglecting the oblateness of the galaxy reduces
the estimated mass.

We checked the consistency of the model comparing the observed stellar velocity
dispersion with the value predicted by the pseudo-isothermal model with isotropic
velocity dispersion (eq. 4-124b of Binney & Tremaine 1987). The model gives o =
141 km s™!, consistent with the quasi-flat portion of the velocity dispersion curve
for R > 2" along the major axis (see Fig. 4.5). The virial mass estimated using
Ry, = R. = 4 kpc and (o) = ¢(0) = 270 km s, equals 1.7 - 10" Mg, which gives a
total mass—to-light ratio of 15.

4.5.2 Warped model

The ring is assumed to extend between radii of 7 and 16”; in the model it is rep-
resented as a series of concentric massive wires. We assume that each of our wires,
which are equally spaced in radius, have the same mass; the surface density thus varies
as 1/r. In PR galaxies which have been mapped in HI with synthesis telescopes, the
hydrogen is associated with the ring and not with the central galaxy (Schechter et
al. 1984, van Gorkom et al. 1987); here we take the ring mass to be given by the
measured HI mass of My, = 9-10° My, as a lower limit.

Our computation followed the method of Sparke (1986). When the ring is not
exactly polar, the wires exert gravitational torques on each other, as well as precessing
in the gravitational field of the central galaxy. We searched for equilibrium states in
which all the wires precess at the same rate, so that the ring maintains a rigid shape.
In such equilibrium conditions, all the wires have the same line of nodes, crossing the
galaxy equatorial plane at the same azimuth.
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We computed a self-gravitating warp model in the oblate pseudo-isothermal po-
tential with @ = 3", po = 3.48 My/pc® and with axis ratio ¢/a = 0.6. With our
parameters, stable solutions are possible with a range of inclinations: one such model
is displayed in Fig. 4.2c.

We check the consistency of the self-gravitating model with the observational
data using a code developed by G. Galletta (Arnaboldi & Galletta 1992). This code
computes the projected velocity curve along a slit at any given position for a warped
disk made up of circular orbits, when the rotation speed and tilting of the orbits are
specified as a function of radius. The geometry of the system is computed according to
the assumption that the host galaxy is seen edge on, and that the apparent flattening
(b/a)ring = 0.3 and the position angle ® = 87° of the apparent major axis of the ring
refer to the outermost wires forming the ring. This fixes the viewing angle and the
inclination 87(out) for the outer ring. From the possible equilibria computed with the
self-gravity code we choose that with the outer wire having the inclination required
by the observed geometry; in this state the ring warps through an angle Af = 11°.
To compute the velocity curves, the wires are positioned with their inclination to the
galaxy equator increasing linearly (for the sake of simplicity) between the value 8;(in)
for the inner wire, given by the equilibrium solution, and the outer value §;(out), fixed
by the observations. This run of inclination is close to that computed in the dynamical
model itself.

The code requires the orbital velocity to be uniform along each wire; we compute
this velocity using the radial force f, due to the galaxy alone, averaged along the
circular wire. The velocity v, at radius = is given by v? =< rf, >. We can then
compute the velocity at different positions of the slit.

Fixing the geometry of the ring, we let the core radius a and the central density po
of the oblate spheroid modelling the host galaxy be free parameters; their values are
determined from the best fits with all the emission-line rotation curves for the gas in
the ring, at P.4. = 165°, offset SW (coded as E2 in Fig. 4.3), P.A. = 159° (WMSb,
PRC; B2), P.A. = 159° taken offset on the two side of the ring (labelled B3 and
B4), and P.A. = 136° (B5). The warped ring model along with the slit positions is
displayed in Fig. 4.3, the observed and computed velocity curves are shown in Fig. 4.6:
the model reproduces both the symmetric curve B2 and the peculiar shapes of the
other rotation curves (see Section 4.3.2). We obtain a good fit for all the rotation
curves with a core radius @ = 3”, and a central density po = 2.22 Mg/pc®. This
value of pg is lower than that obtained by fitting the velocities derived by integrating
the elliptical orbits along the spectrum B2, but this is expected since the velocities
computed according to v> =< rf, > are larger than the true minor-axis velocities.
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We can verify the presence of the warp in the PR: we computed the rotation curves
in the case of an unwarped disk, Af = 0: this model failed to reproduce the complete
sample of the emission lines rotation curves.

4.6 Discussion

This chapter deals with AM 2020-504, the prototype of a poorly known class of Polar
Ring galaxies, formed by a roundish spheroid as central component and a narrow
ring. The study of AM 2020-504 gives the opportunity of gaining information on the
intrinsic shape of E galaxies and shedding light on the still unsolved question of the
origin of PR. To this aim we collected a series of spectroscopic and photometric data
in order to model the evolution and the dynamics of the system. As a first goal we
were interested in determining the geometry of AM 2020-504 because of its crucial
importance in any attempt to model the evolution of the polar ring. The absence of
isophote twisting, the constant flattening of the isophotes in the host galaxy and some
stability arguments indicate that the elliptical component is an oblate galaxy. With a
detailed model of the surface brightness, assuming that the central component is seen
edge-on, we were able to determine the geometry of the system: the luminosity profile
of the central galaxy in AM 2020-504 is well described by an oblate Jaffe model with
axis ratio ¢/a = 0.6 for R > 9”. The intrinsic inclination of the ring plane derived
using the (B — R) and Heo images is consistent with the ring being very nearly polar.
The ring is warped and tilted 18° from edge on, passing with the NE side in front of
the elliptical galaxy.

The spectroscopic data suggest that an accretion event occurred in the system.
The better spatial resolution of the new spectroscopic data have confirmed previous
indication of the peculiar dynamics of AM 2020-504, suggesting a possible double-
peaked rotation curvein the inner core. More importantly, using the EFOSC spectro-
graph, we were able to obtain rotational velocities for the stellar component extending
to much larger radii, thus showing the presence of a non-rotating bulge, decoupled
from the rotating core. The peculiar dynamics of the stellar component, i.e. the core
and the non-rotating bulge, together with the excess of reddening in the inner region
and the bright Ha structures present in the nucleus, suggest that the rapidly spinning
core might perhaps be the part of the ring already settled in the equatorial plane of
the galaxy.

The large measured HI content, almost 10'° Mg, suggests that the gas in the ring
is likely to be dynamically important. Taking the ring mass to be of the order of
the measured HI mass, we find several stable self-gravitating equilibria in a potential
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corresponding to the symmetric rotation curve along the minor axis of the galaxy,
with its flattening given by the shape of the isophotes. We computed the predicted
rotation curve along the galaxy minor axis under the hypothesis that light traces
mass, i.e. integrating the equations of motion for polar orbits in the Jaffe potential,
but the predicted curve looks different from the observed one, being nearly flat instead
of rising. A pseudo-isothermal model for the galaxy was better able to reproduce the
rotation curve. In this gravitational potential, we computed self-gravitating warped
configurations for the polar ring, and found that these reproduce the S-shaped curve of
the Ho distribution. Then we used the warped model consistent with the geometrical
parameters of the system to compute rotation curves along various slit orientations
for the gas in the ring. This model fits all the emission-line rotation curves obtained
at different position angles and offsets, while the model with no-warping failed to
reproduce them. Further work on dynamical modelling is in progress (Arnaboldi &
Sparke 1992).

The derived total mass inside the polar ring is between 1-10'! Mg and 2-10'" Mo,
and the M/Lp ratio is between 13.5 and 24, depending on whether the gas orbits in
the PR are assumed to be twisted. The virial mass computed using the central value
for the velocity dispersion gives a total mass of 1.7-10" Mg and a total M/Lp = 15.

This study performed on the polar ring galaxy AM 2020-504 supports the accre-
tion scenario for its evolution because of the near-perpendicular orientations, large
mass of HI (unusual for an elliptical), the color difference between the ring and the
host galaxy, and the dynamical decoupling between the galaxy’s inner core and the
outer spheroid. The photometric analysis of the parent galaxy is consistent with the
above statement: from its position in the p. — 7. plane it is found to belong to the
“bright galaxy family”, i.e. galaxies which are likely to have undergone a merging or
accretion event (Capaccioli et al. 1992b).
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Figure 4.1: Photometric and kinematic data for AM 2020-504(central image). The
upper and left panels show the blue luminosity profiles along the minor and the major
axis. The rotation curves for the stellar and the gaseous component are displayed in

the right and lower panels.
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Figure 4.2: Clockwise from top left - (a) B — Rimage: the bluer color of the material
in the ring (dark upper and lower arcs) comparcd to the galaxy is immediately evident.
The core appears much redder than the rest with an excess of reddening on the SW
side. (b) Ha image: the nice overall S-shape appears together with bright knots at
the edges of the ring, and strong Ho emission in the inner core of the elliptical. (c)
Equilibrium model for precessing rings in an oblate potential (see text): the dashed
line shows an isophote of the galaxy.
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B3 B2 B4

Figure 4.3: Warped model for the polar ring in AM 2020-504. The ring is represented -
by tilted circular orbits about the z—axis (see text); one isophote of the host galaxy
is plotted for clarity. The positions of the slits (where spectra have been acquired
and the rotation curves have been computed) are indicated with dash-dotted lines

and labelled.
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Figure 4.5: NTT data for the stcllar kinematics. Upper pancl: open circles represent
the folded velocity dispersion data vs. radius at P.A. = 75°, black triangles represent--.
the folded velocity dispersion data vs. radius at P.A. = 136° and PRC data are
indicated with black squares; the solid line is a splinc fit of the folded NTT data at
P.A. = 75°. Lower pancl: folded rotation curve for the stellar component at P.A. =
75°, together with the same spline interpolation as Iig. 4.4.
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Figure 4.6: Emission line velocities in the polar ring, compared with predictions of
the warped model. From the top: (B5), NTT data — OIII emission line at P.A.=136°,
(B4), NTT data — OIII emission line at P.A.=159° offset 2.5” NE, (B3), NTT data -
OIII emission line at P.A.=159° offset 2.5” SW, (B2), PRC data — Ho emission line
at P.A.=159°, (E2), EFOSC data — Ha emission line at P.A.=165°.
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Figure 4.7: Luminosity profiles in the V-band and fits of the model to the surface
brightness. The upper panels show the data and the fits along the major (a) and minor
(b) axis; the lower panels show profiles taken parallel to and offset from the major
axis. The’SW side of the galaxy (c) is over-luminous respect to the model because
the emission from the ring is concentrate in structures with different dimension; the
NW side (d) shows the effect of absorption by the ring.
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Figure 4.8: B2 data compared with the predicted rotation curves from the Jaffe model
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observed:velocity curve.
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Chapter 5

The UV spéctrum of AM
2020-504

5.1 Introduction

Whitmore (1991) has suggested that galaxies of the Polar Ring Catalogue (Whitmore
et al. 1990) can be divided into different morphological classes:

1. — the “wide annulus” class, where an underlying S0 galaxy is circled by a wide
band of gas, dust, and stars, aligned with its minor axis and extending much further
out than its optical radius, and

2. — the “narrow ring” class, formed by a rounder host galaxy with a ring feature
confined inside its optical boundaries.

The first class has been studied in some detail (Schweizer et al. 1983, Whitmore et al.
1987a, Sackett & Sparke 1990), being among the few tools to map the tri-dimensional
shape of dark matter halos. The second class is only poorly known so far, although
it appears as a good laboratory for investigating the intrinsic shape of ellipticals and
accretion events.

Recent detailed observations of AM 2020-504, the “prototype” of the narrow polar
ring class (Arnaboldi et al. 1992), have pointed out the peculiarity of this system,
formed by an E4 galaxy and a blue ring. The new data have proven the occurrence
of a dynamical decoupling between the inner core and the outer stellar halo, first
noticed by Whitmore et al. (1987b). This fact, together with the great amount
of HI (~ 9-10° My; O.Richter private communication) detected in the system and
the different colors of the ring and the host galaxy, strongly supports the accretion
scenario for the evolution of this class of polar rings. In this picture, the host galaxy
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has acquired material from outside and after a period of instability, where part of this
material falls into the galaxy core, the accreted gas may eventually settle down in a
stable configuration (Steiman—-Cameron & Durisen 1982, Sparke 1986, Arnaboldi et
al. 1992). Such a scenario can be tested also by looking at the impact of the accreted
material on the stellar population content of the host galaxy. In effect, the accretion
is expected to generate a new burst of star formation and to modify the ultraviolet
emission of the system by a measurable amount. UV emission may provide clues
on bursts of star formation in early-type galaxies (Capaccioli 1982); with a detailed
modelling, the epoch when the star burst occurred and the amount of mass involved
can be estimated. These two data would provide direct information on the age of
the polar ring and help discriminating whether it may be stable or just a transient
phenomenon.

In this chapter we present the UV spectrum of AM 2020-504 obtained down
to ~ 1200 A with the International Ultraviolet Explorer (IUE). Observations and
comparison of the results are detailed in Section 5.2. In Section 5.3 we describe a
model able to reproduce the smoothed trend of the IUE spectrum of AM 2020-504.
The results are discussed in Section 5.4.

5.2 IUE observations

Four full-shift low-resolution spectra of AM 2020-504, two in the short-wavelength
range (SWP) and two in the long—wavelength (LWP) range for a total coverage
AX 12003300 A, have been secured with IUE on June 12 to 15, 1992 at VILSPA.
The long axis of the oval 10” x 20” aperture was at 27° + 2° to the polar ring major
axis (see Fig. 5.1). Since the visual magnitude of the galaxy (my ~13) is beyond the
imaging capabilities of the IUE FES, a standard blind offset technique from nearby
stars was adopted to put the target into the slit. The log-book of the observations is
reported in Table 5.1.
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Table 5.1

Date P.A. Range Exp. Time
(A) (min)

12/06/1992 4°  SWP [1000 - 2000] 380
13/06/1992 5°  SWP [1000 - 2000] 351
14/06/1992 6°  LWP [2000 - 3300] 370

15/06/1992 7°  LWP [2000 - 3300] 402

Our spectra have been consistently extracted from the so—called line-by-line spec-
tra provided by the standard IUESIPS processing, which are already wavelength cal-
ibrated and photometrically linearized. Our subsequent processing includes removal
of cosmic ray events and camera reseau marks as well as subtraction of a smoothed
nearby background giving a time-integrated net spectrum. The final absolute flux
calibrated spectrum is obtained by multiplying by the proper calibration function
and dividing by the exposure time. Since our data have been processed with the cur-
rent version of IUESIPS, the present LWP ITF2 calibration function (Cassatella et
al. 1988) has been adopted for long-wavelength spectra. The short-wavelength data
have been calibrated by means of the standard SWP function (Holm et al. 1982).
The composite spectrum in the range AX 12003300 A is shown in Fig. 5.2.

Given the faintness of the source, which is at the limit of the IUE capabilities, some
words on the reliability of the UV spectral data are needed. In order to estimate the
magnitude of the accidental errors, we have calculated the differences in flux between
the two available spectra both in the short and in the long range. The standard
deviation of the differences between pairs of 25 A bins is ~ 15% of the cumulative
signal at any bins all over the IUE spectral range, with the exception of the low
sensitivity intermediate region (1900 = 2300 A). The residual systematic pattern not
removed by flat—fielding has been estimated using a SWP long exposure of the blank
sky taken by one of us in a previous run. The magnitude of the effect is comparable
with the accidental errors.
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5.2.1 Comparison with other IUE spectra

The UV spectrum of AM 2020-504 appears flat in the LWP part and seems to in-
crease in the SWP region; the spectrum is noisy in the AA 2000+-2300 A, owing to
the low sensitivity of the LWP camera. The trend of this essentially flat UV spec-
trum is different from those of standard giant elliptical galaxies, which are regularly
decreasing from the LW region towards shorter wavelengths and may show a UV-
upturn shortwards of 2000 A, whose amplitude depends on the metallicity of the old
population (Burstein et al. 1988; but see also Longo et al. 1989).

To make a meaningful comparison of the UV spectrum of AM 2020-504 with those
of other galaxies, we normalized the UV flux to the visual flux. For AM 2020-504 the
magnitude inside the IUE aperture is V = 14.54; this figure has been obtained using
a CCD frame acquired with the 1.54m Danish telescope at ESO, La Silla, on April
1991 (see Arnaboldi et al. 1992). The comparison of the logarithmic UV flux of AM
2020-504 with the normalized spectra of NGC 5102, M32 and NGC 4649 (Bertola
et al. 1982, Burstein et al. 1988, Buson 1990) is shown in Fig. 5.3. NGC 5102 is
a SO galaxy with recent star formation, M32 is a low—metallicity dwarf galaxy with
no evidence of star formation, and NGC 4649 is a high-metallicity UV-bright giant
elliptical. The spectrum of AM 2020-504, though noisy, has the same flat behaviour
as that of NGC 5102, being completely different from the spectrum either of M32 or
NGC 4649.

5.3 Star burst model for the UV spectrum of AM
2020-504

This direct comparison between the IUE spectrum of AM 2020-504 and that of NGC
5102 suggests that at least a second burst of star formation occurred during the
evolution of AM 2020-504: a detailed model of the UV spectrum can give information
1) on the epoch when the stellar burst begun, 2) for how long it lasted, and 3) how
much mass was involved.

The UV spectra is modelled according to Barbaro & Olivi (1989); models are
derived by the technique of evolutionary synthesis and all the phases from the main—
sequence star (MS) to the post-asymptotic giant branch (p-AGB) stars are taken
into account. The procedure requires 1) the computation of the spectral energy
distribution (SED) of single generations of stars with different ages and chemical
compositions, each of them characterized by a given metal abundance Z and helium
content Y (the mass distribution function is that of Salpeter and the stellar mass range
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is 0.01 — 100 M), and 2) the computation of the SED of a galaxy by superposition
of the fluxes of the generations, each of them weighted by the stellar birthrate. The
composition of the generations forming the galaxy model is determined according to
the chemical evolution theory. The contribution coming from the p~AGB is taken into
account; details are discussed in Barbaro & Olivi (1989). This modelling produces
the SED in a spectral range AX 100010000 A, so it is possible to constrain the
galaxy model using the observed UV spectrum and B — R color, since the B — R
color predicted from the model can be evaluated form the optical part of the SED,
through the appropriate calibration functions.

The mean color of AM 2020-504 within the centered IUE aperture stretching at
(P.A.) ~ 6° (mean value over the full run) is B — R = 1.4. In order to estimate
the uncertainty associated with the above figure, we have computed the integrated
color inside centered circular aperture with increasing radius R = 5”,7"5,10”,1275.
Results (B—R = 1.50, 1.42, 1.37, 1.35) indicate that the color becomes bluer as bigger
portions of the ring are enclosed into the aperture. Lacking an absolute calibration
for the R band (cf. Arnaboldi et al. 1992) and because of the strong color gradient
from the nucleus to the outer regions, we will assume an average B— R ~ 1.414+0.05.

The model assumes that a star burst took place in a E galaxy of 16 Gyr, with a
birth-rate given by ¢ = vgexp(—ft) and 7 = 1/8 = 1 Gyr. The parameters of the
model for the star burst are: the duration At, its intensity 11, and the time T;na
when the end of star formation occurred; the average metallicity Z is assumed to be
equal to 0.03. The SED to be compared to the observed UV spectrum and color is
the sum of the SEDs coming form the E galaxy and the star burst. The observed
spectrum was corrected for extinction assuming an E(B — V) = 0.14 (Arnaboldi et
al. 1992) and the extinction curve by Savage & Mathis (1979).

We obtained good agreement between the average UV spectrum of AM 2020-504
(see Fig. 5.4) and a model with AT = 1-10% y1, ¥ /9o = 3 -107%, and the end of
the star formation taken at 5107 yr ago, which predicts a color index B — R = 1.41;
the average UV spectrum of AM 2020-504 is listed in Table 5.2 and 5.3. The model
gives a lower limit to the age of the polar ring in AM 2020-504 of 1.5 -10® yr. The
mass of the ring transformed in stars is ~ 4 - 10° Mg, 1/20 of the HI mass detected
in the ring.
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Table 5.2

SWP average spectrum

Wavelenght Flux

(A) (10715 erg s7! A‘l)
1225 4.556
1250 2.581
1275 3.139
1300 2.07
1325 1.736
1350 2.471
1375 0.7866
1400 1.498
1425 1.104
1450 2.525
1475 1.72
1500 3.439
1525 2.546
1550 2.374
1575 2.045
1600 0.8169
1625 1.415
1650 1.64
1675 5.9395e-02
1700 1.509
1725 2.42
1750 2.623
1775 1.954
1800 1.901
1825 2.033
1850 1.573
1875 1.418
1900 1.816
1925 0.9952
1950 1.105

1975 1.602
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Table 5.3

LWP average spectrum

Wavelenght Flux Wavelenght Flux
(A) 10718 (erg s~ A71)  (A) 1071 (erg s™! A1)
1978 2.101 2728 1.461
2003 1.696 2753 1.377
2028 1.856 2778 1.189
2053 0.1767 2803 1.077
2078 1.812 2828 0.9265
2103 4.087 2853 1.197
2128 2.026 2878 1.409
2153 1.6 2903 1.149
2178 1.756 2928 1.521
2203 2.342 2953 1.599
2228 1.828 2978 1.044
2253 0.7476 3003 1.252
2278 1.438 3028 1.51
2303 1.024 3053 0.5473
2328 1.849 3078 0.9174
2353 1.541 3103 1.138
2378 1.298 3128 1.381
2403 1.501 3153 2.118
2428 1.422 3178 2.971
2453 1.957 3203 0.7755
2478 2.031

2503 1.651

2528 1.216

2553 1.01

2578 0.9377

2603 1.414

2628 1.239

2653 1.431

2678 1.615

2703 1.589
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5.4 Conclusion

New IUE spectra acquired for the galaxy AM 2020-504 support previous evidence of
an accretion event in this system. The UV spectrum in the range AA 1200--3200 A
shows a general flat trend and a slight rise towards the shorter wavelengths. The
logarithmic flux of AM 2020-504, normalized with respect to the visual magnitude in
the IUE aperture, closely resemble the spectrum of NGC 5102, a galaxy with strong
evidence of recent star formation.

The UV SED is reproduced by a model consisting of an elliptical galaxy with a
star burst, which started 1.5 - 10® yr ago and lasted for 1 - 10® yr, with an intensity
a1 /1o = 3 -1072. This gives a lower limit of to the age of the polar ring (1.5 - 10® yr)
and is consistent with the structure being quite young.
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138

Frame

Pixels

: amv0001 . .
Identifier : AM2020/V/30M

ITT-table  : ramp.itt

Coordinates : 138, 282 : 265, 409

:1,1:512,512

Cut values :100, 750

User

: EMMECI

Figure 5.1: CCD image of AM 2020-504 in the V band (15 min exposure). The black
contour indicates the position of IUE aperture; North is up and East on the right.
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Figure 5.2: The complete UV spectrum (SWP + LWP) of AM 2020-504. The two
SWP and two LWP spectra have been reduced separately (dotted and dashed lines
respectively); the mean spectrum is displayed using a continuous line. The spectra
shown in the figure are rebinned linearly in bins of 25 A. B
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1500 2000 2500 . 3000
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Figure 5.3: Comparison between the UV spectrum of AM 2020-504 and those of NGC
5102, M32 and NGC 4649. Fluxes are expressed on a logarithmic scale, normalized to
the visual magnitude. Data for AM 2020-504 are indicated with full squares, while
those of NGC 5102, M32 and NGC 4649 with open circles, squares, and triangles
respectively.
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Figure 5.4: The observed UV spectrum of AM 2020-504 plotted against the predicted
SED from the star burst model. The flux (units 10715 erg cm™2 s~! A~1) is expressed .

on a logarithmic scale.
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