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Abstract

The role of dynamical friction on the formation and evolution of structure on
the scale of cluster of galaxies, is reconsidered and discussed. Dynamical fric-
tion originates from the fluctuating gravitational field generated by small-scale
substructure. The latter is predicted to be abundantly produced in a typical hi-
erarchical clustering model for structure formation, like the standard Cold Dark
Matter model. The small random force field of the substructure can significantly
affect the formation and dynamics of those large-scale structures whose formation
times are long, like clusters of galaxies.

After a review of the main theoretical ideas and observational facts concerning the
structure and dynamics of clusters of galaxies (chapters 1 and 2) we investigate
the statistical mechanics of the fluctuating gravitational force field component in
discrete systems (chapter 3). Our treatment is very general and can be applied to
any system where correlations are still in the linear. We show that clustering af-
fects significantly the force probability distribution, through a term proportional
to the an integral of the correlation function. We also derive an equation for
the probability distribution of the torques’ generated by the density peaks of the
small scale substructure.

The force probability distribution depends linearly on the correlation function.
In turn, it determines the dynamical friction coefficient. In chapter 4 we calculate
this coefficient and we study the dynamics of shells of matters within a clustered
medium. It turns out that the effects of dynamical friction can be quite large,
especially on the infall of the outermost shells. We also study the effect of this
modified accretion on the mass spectrum of cosmic structures which should arise.
Our results are in qualitative agreement with previous studies.

Finally, we study how dynamical friction affects the evolution of clustering. In
chapter 5 a self-consistent self-similar solution of a truncated BBGKY hierarchy
set of equations is found. We find that dynamical friction can affect signifi-
cantly the pairwise velocity distribution, but that the effect on clustering is not

very large. Our results are confirmed by some numerical simulations we per-



formed with an N-body code, to which a small scale fluctuating force field has
been added to simulate the secular effects of small-scale substructure, which are
usually neglected in ordinary N-body codes. A glance at some possible future
developments concludes the thesis (chapter 6).

All the original work contained in this thesis is also contained in some papers
published or submitted, and in some of these the candidate (V. Antonuccio)
appears as a co-author. However, after agreement with thé other authors, we
decided to include in this thesis only those parts which are entirely original con-
tributions of the candidate. A comparison with the aforementioned papers can

easily allow the reader to identify these contributions.
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Chapter 1

Structure and Dynamics.

The study of the dynamics of clusters of galaxies plays for many reasons a cen-
tral role in contemporary cosmological theories. As Zwicky (1933) and Smith
(1936) first discovered there exists a discrepancy between the total amount of
mass contained inside the galaxies in a typical cluster and the amount required
to ensure that clusters are in stable equilibrium configurations, given the observed
velocity dispersions. This observation has led to the idea that the M/L ratio,
as determined from the dynamics, is an increasing function of the distance from
the center, raising as a consequence the problem of the existence of Dark Matter
(see, e.g. Bahcall (1977)) on distance scales 1 — 10h~! Mpec. This idea has been
further confirmed by more recent studies using a variety of tools, such as redshift
surveys (Dressler & Schechtman, 1988; Colless, and Hewitt, 1987), analysis of
X-ray profiles (Forman & Jones, 1982; Sarazin, 1988; Eyles et al., 1991; Briel et
al., 1992; Gerbal et al., 1992), number counts of low-surface brigthness galaxies
(Binggeli, Sandage and Tammann (1987)). However, the quantitative assessment
of the increase of M/ L inside clusters and, in general, of other properties like the
density profile, the velocity dispersion, the velocity anisotropy, is still far to be
complete. Large uncertainties exist in the knowledge of the total M/L and of
other quantities even for the nearest and well known clusters like Virgo, Fornax
and Coma. The principal reason is the paucity of data on statistically significant
sé.mples of galaxies inside these clusters, and of X-ray femperature profiles.

In this chapter we will review the current observational and theoretical knowl-
edge concerning clusters of galaxies. At this point, it would be useful to have
a definition of clusters which could unambigously restrict the kind of physical

entities we desire to study. This definition should be physically motivated, so



as to make possible a comparison with the results of theoretical studies. More
often clusters are defined as objects included in catalogs compiled according to
some observational criteria: mostly relying on the galaxy overdensity over some
regions of the sky (Abell, 1958; Zwicky et al., 1961-1968). Although it can seem
heuristic, it turns out that this definition singles out a sample of objects having
some common properties (Sarazin, 1988), like an universal density profile and
some features in the velocity dispersion profiles. Our main purpose is to present
some background material for the next chapters, so our review does not pretend
to be complete. More comprehensive reviews which we have taken into account
are those of Bahcall (1977a), Sarazin (1986, 1988), Geller (1990), West (1990),
Richstone (1990) and Cavaliere & Colafrancesco (1939).

1.1 Structure and Substructure.

Clusters of galaxies often appear irregular and their distribution is far from being
Spherically symmetric. In irregular clusters projection effects further complicate
the problem of obtaining the intrinsic shape of the matter distribution. However,
for most clusters the azimuthally averaged surface luminosity density profile can

be adequately described by the surface density law:

2
= o (1.1)

Azimuthally averaged profiles are obtained after having divided the region around
the photometric center of the cluster in concentric shells and averaged the number

of galaxies in each shell. A density profile which is also often adopted is the De

Vaucouleur’s law:
174
{L = fiLo €Xp [—7.67 (—) ] (1.2)

The validity of eq. 1.1 for a sample of 27 Abell clusters has been proved by
Dressler (1978b) and Colless and Hewitt (1987) (see also West et al., 1987). One
noteworthy feature of the eq. 1.1 is that the space density corresponding to it is

given by:
3

p(r) = Pom, (1.3)
with: po = pzo/2r., and King (1962) has showed that this density profile provides

an acceptable approximation to the density profile of a system whose distribution
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function is a truncated maxwellian:
cexp [?—(O—)Uig(r—)] {exp (— 21?3) — exp (%?)} v? < ©(0)
flr,v) = (1.4)
0 v: > ®(0)

In the above equation ®(r) and oy are the potential and velocity dispersion, re-
spectively, of a non truncated system with the same total mass. The adoption
of the model described by egs. 1.3- 1.4 implies the assumption that clusters are
truncated systems. Observations actually show a rapid decline of the number
density of galaxies in many clusters after about 30r.(Bahcall, 1977). However,
it is very difficult to establish firmly the outer boundary of a cluster, because
often clusters are embedded inside superclusters and the contamination due to
the background contribution is very difficult to assess (Sarazin, 1986; Dressler,
1978b). Theoretical arguments based on the tidal torques produced by neigh-
bouring substructure on a collapsing protocluster suggest that actual clusters
{could be tidally limited, bounded systems (Peebles, 1968).

In truncated isothermal models the density distribution is specified by three pa-
rameters, namely pro or pg, 7. and Ry, the latter being the truncation radius.
Bahcall (1975) has observed that the core radius . of many rich compact clusters

have remarkably comparable values:
r. = (0.25 £ 0.004) A~ Mpc, (1.5)

where h is the Hubble constant in units of 100 Km/sec/Mpc. A similar conclusion
was reached by Dressler (1978b) who found a larger value for the dispersion
, namely: 0.07h~!. This fact suggests the possibility that the central part of
clusters are actually relaxed system: if violent relaxation took place, an universal
value for 7, could easily arise. Recently have appeared in the literature claims
that the central density profiles of rich clusters has a cusp and increase like r—*
(Beers & Tonry, 1986; Merrifield & Kent, 1990). This could indicate that galaxy
orbits are more radial near the center, and so the galaxy population in the core
of the clusters could not be isotropic and virialized. One must observe, however,
that it is very difficult to determine the density and velocity profile for r < 7.,
simply becasue there are very few galaxies (Geller, 1990): so the question of the
existence of a central cusp remains open and demands for further study.

If one assumes that clusters are actually relaxed and virialized and that the

3



distribution functions can be described by the above truncated isothermal laws,

the central luminous surface mass density will be given by:

902
lro = .
! 27 Gr,

(1.6)

Typical observed values for o, are 750 Km/sec (Geller, 1990), so using eq. ( 1.6)
and the relation between central density and surface luminosity given above, we
get a typical value: p. & 1.4 x 10'35Mgh?/Mpc®. A typical value for the central
luminosity density is 4 x 10**hLg/Mpc®, and these values give a typical mass—
to-light ratio:

M/L =~ 300+12hMy/Le. (1.7)

Similar and somewhat higher values are obtained if one accounts only for total
luminosity at blue magnitudes (Rood, 1981; Sarazin, 1988). These numbers show
the importance of the dark matter on the scale of clusters of galaxies. For com-
parison, for single galaxies one has M/L ~ 1 — 25h~' Mg /Lg. Observe also that
the above values for the velocity dispersion have been obtained extrapolating the
azimuthally averaged data for galaxies in the central 1‘égions, so they are rather
free of random scatter, although can be affected by systematic errors due to sub-
clustering. Even larger values of the M/L have been obtained by Colless and
Hewitt (1987) for a sample of 25 clusters: M/L ~ 500 £+ 100Mg /Lg.

From these numbers, one obtains an estimate of the contribution from clusters
to the total density of the Universe: Q & 0.2¢*%2, which can be compared to

the upper limit for baryons from nucleosynthesis, €2, ~ 0.0016.

1.2 Mass Estimates and Density Profiles.

The estimates of the value of the M/L ratio for clusters are not free from un-
certainties connected with the model assumptions. The hypothesis underlying
the derivation of eq. ( 1.7) is that the matter generating the gravitational po-
tential is distributed in the same way as the visible matter, i.e. that there is no
segregation between dark and baryonic matter, an hypothesis which could be
tested by detailed comparison between theoretical models and observed galaxy
distribution functions (Kent & Gunn, 1982; Kent & Sargent, 1983).

The total gravitating mass in a cluster can be estimated by means of the virial
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theorem. Assuming spherical symmetry and that time averages and phase-space

averages coincide, the virial theorem gives:

LI P (1)

(

the brackets indicating phase-space averaging. In practical applications one iden-

T

tifies the above averages with averages over all the galaxies in the sample: this
amounts to assume that galaxies represent a fair sample of the underlying phase-
space distribution, i.e. that they are a well-mixed population and, more impor-
tant, that the galaxy distribution traces the total mass distribution. Both these
hypotheses must not be necessarily true if galaxies inside a cluster form only at
local peaks of the density field, as predicted by biased galaxy formation theo-
ries (Kaiser, 1984). Under the additional hypothesis of energy equipartition the
intrinsic mean squared velocity is simply connected to the observed projectec
total velocity: (v?) = 3(v?)ops. Assuming then an uniform mass distribution one

obtains an estimate for the total mass:

2
Myiriar = ‘C_ﬁ%:% (1.9)
However, we had to introduce a number of significant hypotheses.
The virial theorem allows one also to get lower and upper limits of the total mass
of a cluster, as was shown by Merritt (1987). Following, this latter paper, let us
write: M, (r) = MpF(r),0 < F(r) < 1,0 < r < Ry, where Mr is the total mass
of the cluster. Then from eq. ( 1.8) one gets:

Mz = ﬁj (1.10)

The numerator is obtained from the observed galaxies’ velocities and is then fixed.
The denominator, on the other hand, is model dependent, and it is clear that a
minimum value for M7 can be obtained by maximizing it. Taking into account

the limit on F(r) one then obtains:

G5
Mnin G{r-1) (1-11)

The maximum value of M1 can be obtained by minimizing F'(r)r~!; for instance,
one could imagine to put all the mass near the outer boundary r ~ R,. But

this correspond to an unrealistic density distribution, increasing with distance
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from the center. On the other hand, if we impose the additional constraint that
the density must be a non-increasing and continously differentiable function of r,

then F'(r) must verify the additional condition:

2
d (1 .‘E) o2t oy (1.12)

dr \r? dr

where @ = r3. The function Fy(z) = z/R} is the maximal function satisfying the

above inequality under the proper constraint, i.e. any other function verifying

the boundary cconditions: F'(0) = 0, F(R}) = 1 is necessarily smaller than F} at

some point in the interval. One the concludes that the maximum mass can be

written as: M., = R} (v?)/G(r?), and this produces a minimum central density:
3 (v?)

= el 1.17
pmm 47TG <T2> ( 13)

Applying eqs. ( 1.11- 1.12) to the Coma cluster and using the galaxy density
profile F'(r) favored by Kent & Gunn (1982), which corresponds to a truncated
ing model, one obtains the following limits (Merritt, 1987):

]\/[mm = 0-19A4{viria17 Pmin = 10_3Pvirial- (114)

One concludes that the estimates of M and consequently of the total M/L based
on the virial estimators can be subject to rather large uncertainties.

Apart for these problems, the use of virial mass estimators to determine the mass
of clusters and groups of galaxies has been criticized on purely statistical bases
(Neymann, 1961; Bahcall & Tremain, 1981; Heisler et al., 1985). As we noticed
above, the virial theorem involves some averages taken over the sample. One can
then ask which is the statistics of the quantities (v?) and (r~!) introduced above,
for various possible distributions, and how the statistical uncertainties affect the
probability of getting values of the mass very far from the median ones. Bahcall &
Tremaine (1985) showed that the virial theorem mass estimator can be regarded
as a poor statistic estimator, being biased and inefficient. We try to summarize

shortly their arguments:

e Bias: The harmonic sum (r=1) = ©2/L, 3, 77! is strongly affected by the
presence of a few pairs having a small separation. The paradoxical case
would be a system where all particles lie in short-distance pairs rather

than being randomly distributed.



o Inefficiency It can be easily shown that the variance of the quantity (r=1),
i.e. the difference: (r=2) — (r=1)? diverges for an isotropic sample. This
implies that the standard deviation of the virial mass is not lesser than
71 (2In N)* N=1/2 and so it converges slower than N=1/2, which is the

usual decrease of a statistical estimator having a Poisson statistics.

In the same paper Bahcall & Tremaine (1985) suggest another estimator
which, for systems having a velocity distribution enough anisotropic, should give

a better estimate of the total mass:

M 2 ¢ 2 1.15
BT = 2GN ;v“ﬂ (1.15)

In eq. ( 1.15) N is the total number of galaxies and v, the line-of-sight ve-
locities. Moreover, they show that for reasonable small samples (N < 20) this
statistical indicator has a variance diminishing enough rapidly with the size of
the sample. The problem with Mpr is that the average distribution of anisotropy
should be known a priori, or at least one should be enough sure that in no part of
the cluster the orbits are predominantly circular, otherwyse the estimates base on
Mpr are grossly in error. The arguments by Bahcall & Tremaine (1985) are then
very relevant for the determination of mass in groups and poor clusters for which
the number of redshifts determined is not very high, or for those clusters like
Coma for which most velocity determinations are mostly restricted to the central
part of the cluster, so that an unbiased estimator should be preferred. Recent
confirmation of the merits of Bahcall & Tremaine’s (1985) estimator come both

from observational (Malumuth et al, 1992) and theoretical (Thomas & Couch-
man, 1992) studies.

All the estimates based on the virial theorem are global estimates, because
involve averages of quantities over all the extension of the cluster. It seems then
reasonable to suspect that a detailed self-consistent modelling of the density and
velocity dispersion profiles could set more stringent limits on the dark matter
distribution and the AM/L ratio, at least inside spherical, relaxed clusters. In
order to reliably perform such an anlysis, positions and velocities for a large
subsample of galaxies inside the cluster are required. Although the number of

known redshifts of galaxies in clusters has been increasing in the last years, the



analysis of these data is still subject to large uncertainties. The main reason
lies in the fact that also in apparently relaxed, spherical clusters like Coma the
data are scattered over a large region and this makes a quantitative evaluation
of the velocity dispersion profile subject to rather large uncertainties (Kent &
Gunn, 1982). Moreover, from the observations one can determine two quantities,
namely the surface density £(r) and the line-of-sight velocity dispersion o15(r).
The latter is connected to the radial and tangential velocity dispersion through

a simple geometrical relation:

- Apg(A) A2

S(r)or(r) = 2/; d/\——/\—;—_——; ol — = (03 — a?) (1.16)
where py(7) is the galaxy density and 0,0y are the radial and tangential velocity
dispersions, respectively. These latter quantities are connected through the Jeans’

equation:

{ L (pyot) + 22 (2 — o) = - eal) (117)

dr r T2
The mass M, is the total gravitating mass: it includes the contribution of
the dark component. We have now 2 equations in the three variables, namely
0,00 and My, (7). The problem is clearly underconstrained, but if one adds some
additional constraint, as for example the condition that the dark matter density

is a decreasing function of the distance:

_c_l_ _1_thot <0
dr \r2 dr =7

or that the anisotropy 8 = 1 — 02/c? should increase with distance (consistently
with theoretical sufggestions from N-body simulations) one could hope to restrict
significantly the range of possible dark matter distributions. It is however clear
now that the situation is different (Merritt, 1987; Kent & Gunn, 1982): presently
available data sets do not allow one to put firm constraints on the range of possible
models. For example, the data by Kent & Gunn (1982) on Coma can be well
fitted by models with an increasing anisotropy as well as by isotropic models, and
anyhow both these models could be rejected with confidence limits higher than
85% (Merritt, 1987).

Another interesting tool to constrain the mass distribution is the spatial derivative

of the cumulative distribution function of the line-of-sight velocities IV (v;s). If one
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assumes a lowered truncated maxwellian as a model for the distribution function

(eq. 1.4), then Merritt (1987) has shown that N (v;s) verifies an equation:

2

1 rmazx (Uls) Umaz(r
N = 1671-2/ I drr2/ ( )dvvf LA o (r) (1.18)
dvls 0 Vs 2

where 7,,4,(v;s) is the maximum distance a galaxy can travel, given the observed
projected velocity v;s and the (real) distance from the center r. One easily un-
derstands that r,,,, is determined by inverting the energy conservation equation:
2[®(0) — ®(rmar)] = vi. The quantity on the left-hand side of eq. ( 1.18) can
be estimated by binning the data in concentric shells at given distances from
the center, once the functions vper(r) and 74, (vis) is known from a model
density-potential distribution. However, the observed distribution of dN/dv;s for
the Coma cluster is clearly skewed, so that no isotropic model as the truncated
isothermal one on which the deduction of the right-hand side of eq. 1.18 was based
can ever be a good model. This skewness is an indication of subclustering, whose
occurrence in Coma has been recently confirmed by ROSAT observations (Briel
et al., 1992). From this example one concludes that oversimplified studies which
do not take into account the real spatial and velocity structure of the galactic
population can lead to large uncertainties in the determination of the intrinsic

properties of a cluster.

1.3 X-ray Emission.

Clusters of galaxies show a diffuse X-ray emission which has been broadly inves-
tigated since its discovery in the seventies’ (Cavaliere et al., 1971; Giacconi et
al., 1972, 1974; Sarazin, 1936). It is now acknowledged that a large fraction of
this emission in the range 3 — 30kev comes from bremsstrahlung electron radia-
tion emitted by high temperature intracluster gas (Felten et al., 1966; Sarazin,
1986). Simple calculations show that the cooling time of this gas is much larger
than the typical dynamical time for most clusters, so it in dynamical equilibrium
within the gravitational potential generated by the Dark Matter distribution.
From the shape of the spectrum one can get an average electronic temperature
of this intracluster plasma, and measurements of the total integrated emission
provide values for the electronic density, so that the total mass of this emitting

plasma can be estimated. Simple calculations show that this mass is at least



comparable with the total mass of the galaxies inside the cluster, and that the
gas is not self-gravitating (except maybe near the center and in those regions
where a cooling flow is seen), so that the dominant gravitational field is that of
the dark matter component. The intracluster plasma is then expected to relax
into the gravitational field of the dark matter, and for this reason it is believed to
trace the gravitational potential of the cluster. A full review of the X-ray cluster
emission is well beyond the purposes of this thesis: here we will only report on
few aspects more directly connected with the mapping of the cluster gravitational
potential and the dynamics. |

Mapping of the X-ray spectrum of the intracluster gas at different points can
provide the local density and temperature distribution of the dark matter inside
a cluster. Moreover, many clusters at high redshift are not easily resolvable at
optical wavelemgths but can be easily detected as X-ray sources, so that one can
obtain data and statistics for many more clusters than those in the catalogues
(Cavaliere & Colafrancesco, 1989). Until now, however, the detectors used on-
board the X-ray satellites had not enough resolving power to allow detailed maps
of the temperature and electroni density distributions across a cluster, which is
necessary to get a detailed density profile of the gas and of the dark matter.
Most of the analyses of the X-ray emission from clusters performed until now
agree on finding very high values for the total clusters’ mass, consisténtly with
the results of the optical studies (Sarazin, 1986). For example, Hughes (1989)
finds a total mass for the Coma cluster of M., =~ 55 — 150 x 103 M within a
radius of 2.5h~1 Mpc. Recent investigations have however cast some doubts on
some old ideas about the distribution of dark matter and the total amount of
X-ray emitting gas in clusters. Eyles et al. (1991) performed observations of the
Perseus cluster with the SL2 XRT facility onboard the SPACELAB 2 mission.

In the broad range of energy they scrutinized (2.5 — 25 kev) this instrument was

able to map the variation of the spectrum with distance from the cluster center.
Sound speed is usually high enough in the intracluster gas, so one can assume that
transport mechanisms are efficient and the gas is described by an ideal equation
of state. Under the hypothesis that the intracluster gas is spherically symmet-
ric distributed, the gravitational mass generating the potential in which it lies

can be obtained from the Jeans’ equation and from the equation of hydrostatic
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equilibrium:
kTx(r) |dlnpx(r) dInTx(r)

~ Gum, dlnr dinr

My, (r) =

(1.19)

where m,, is the proton mass and p the mean molecular weight. Eyles et al.
(1991) modelled the total density with an Hubble profile:

pox
[L+ (r/r2)]"?
with different values of the four parameters in eqs 1.19- 1.20 and temperature
profiles. Their best fit model has a core radius 7. = 0.26 Mpc, § = 1.12 and a
central M/L = 100My/Le (assuming Ho = 50 Km/sec/Mpc, considerably lesser

than the quoted median values given above. The total gravitating mass within

px(r) = (1.20)

1.3M pc of the center amounts to 5.7'*Mg, compared to the value 2'° Mg found
from the virial mass estimate by Kent & Sargent (1983). Moreover, the total mass
contributed by the gas is about 80 times larger than the mass contained inside
galaxies. Similar results have been obtained by Gerbal et al. (1992) from an
analysis of the IPC Einstein data of two apparently relaxed clusters of galaxies.
However, in the light of the comments by Cavaliere & Colafrancesco (1989), these
results could also indicate toward an intrinsic variance in the average cluster
properties originated from unresolved substructure. It is evident that no firm
conclusion can be established before new extensive analyses will be completed
and data from ROSAT and AXAF will be available. It is interesting to observe
that the variance in observed global cluster parameters can be used to constrain
hierarchical clustering models of cluster formation (Cavaliere & Colafrancesco,
1989), as has been recently done by Henry & Arnaud (1991)

It is then evident the importance of detailed large-band X-ray observations of

clusters, and of the detailed comparison with the results of optical studies.

1.4 Structural Relations.

One can expect to gain information about the mechanism of cluster formation
from observed correlations among different physical parameters characterizing
the clusters. If they exist, these correlations should at least be the targets of
any physically motivated theory of cluster formation. Here we will only mention
those observed relationship among dynamical and structural parameters.

The existence of a proportionality between the total X-ray luminosity Lx and the

11



velocity dispersion was suggested long time ago by Solinger & Tucker (1974), who
used EINSTEIN data for Virgo Cluster. Although a large amount of the X-ray
emission from Virgo comes from the Cd galaxy M87, which has an extended X-ray
halo, recent observations with the LAC counter on GINGA in the range 1.5 — 33
kev show that the X-ray emission is diffuse and comes from an extended, non-
isothermal intracluster halo (Takano et al, 1989; Koyama et al, 1991) . Further
studies employing a larger set of data for more clusters confirmed the existence

of this relation, which reads:

4
42 x 10 | e 1.21
Lx ~ 4210 {1031\'771/3@} (121)

(Quintana & Melnick, 1982) where Ly is expressed in erg/sec, and o, is the cen-
tral velocity dispersion. Eq. ( 1.21) was obtained from data in the spectral range
2 — 10 kev.

If the temperature of the intracluster gas is constant, this relation could be inter-
preted as a relation between the total gas mass and the central potential of the
cluster. However, there exists also a correlation between gas temperature and
velocity dispersion (Mithchell et al, 1979; Smith et al., 1979):

2
o
Tx (K°) ~ 6 x 107 | ————7— 1.22

x (B) [1031{771/3@] (122)
A relation between T'x and o is expected if the galaxies and the gas have the same
isothermal distribution inside the cluster and the gas is isothermal (Cavaliere &
Fusco-Femiano, 1976, 1978). From the hydrostatic equilibrium equation, under

the hypothesis of an isothermal distribution for the gas, one obtains:

dinp,  pm,d®
dr KTy dr (1.23)

and, if the density distribution generating the potential ®(r) is approximated by

a truncated King model one obtains a density profile for the gas:

Te

38
rN\2]77
Pe(T) = pgo {1 + (”‘) } ) (1.24)
where the coefficient 3 is given by:
_ pmyo?

b= (1.25)
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Jones & Forman (1984) report an average value for B, ~ 0.65, while the ob-
served relation would rather give a value about twice as large (Sarazin, 1986).
This discrepancy between the observed and predicted values of 3 can be explained
in various ways, all of which point to the weakness of some of the assumptions
underlying the simplified model which has been adopted. It seems that mak-
ing more detailed, non-isothermal models of the gas distribution one does not
improve substantially the situation, while if one supposes that the dispersion ve-
locity of galaxies has been in some way overestimated the situation can sensibly
improve. A clear example of this fact has been given by Kent & Sargent (1983),
whose detailed dynamical modelling of Perseus cluster has sensibly reduced the
discrepancy. As Sarazin (1986) has observed, the approximation to the density
distribution of the King models fail to be a good one at. large distances from the
cluster where most of the emitting gas is found. A better approximation gives a
value for # which is 2/3 of the one given in eq. ( 1.25), and is in far better agree-
~ ment with the observations (considering also the large scatter in the observed

relation).

A relation between the total gas mass deduced from the modelling of the X-
ray emission X-ray and the total luminous mass, was recently found by Arnaud
et al. (1992):

Mo, o< L9%02 (1.26)

This is a 1o result obtained collecting together optical data for 27 clusters from
different sources: the rather large scatter in the relation could be due to this
reason. However, this relation shows that the gas content increases with total
mass, assuming that L, increases also with the total mass, and this means that
rich clusters of galaxies have a larger fraction of gas than poor clusters and groups
(David et al, 1990). Galaxy and star formation could then be less efficient in rich
clusters than is poor one. This fact is ultimately consistent with the recent
findings of a large amount of very blue, low-luminosity, dwarf and low-surface-
brigthness galaxies in nearby clusters (Binggeli et al., 1984, 1987, 1991; Ferguson,
1989; Davies et al, 1988). Altough in the present thesis we are only concerned
with dynamical aspects and not with problem related to galaxy population in
clusters, it is clear that the problem of the global M/L contributed by low-

surface-brigthness galaxies is a very interesting one also for purely dynamical
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reasons. Unfortunately these objects are too faint for the present technological
possibilities to allow determinations of redshift, so their dynamics within the
cluster environment has not yet been determined.

Other interesting relations exist among parameters derived from fits to the optical
data. West et al (1989) deduced a relation between the optical radius (defined as
the radius of the isopleth containg half of the integrated luminous emission) and

the totical optical luminosity, derived from an analysis of a sample of 29 clusters:
R50 o LS.SI:{:0.00':" . (127)

West et al. (1989) show that this relation is consistent with the expectations of an
hierarchical clustering model. In a cosmologically flat Universe the turnaround
time t. scales with the average overdensity of a typical perturbation as . 67312,
and if the density fluctuations are gaussian distributed and generated by a power

spectrum of index n the density variance will be given by (Peebles, 1980, §26):

< 2
oM 3 o —(+n)
( i ) x Vk - AR"™ x z ,

where 2 o< k™! is the comoving length and V is the volume of the region. During
the linear phase of the growth the'density contrast grows with time as (6M/M)?
a=(+M)14/3 5o the collapse time t., determined from the condition (6 M/M)? ~ 1

will scale with comoving length as:

te oc 3G +m)/4

The background density varies as: p oc a2 o t~2, and the proper critical length
ntd

as: 7. X 4T, x t232, 2.7 , so finally the mass of the collapsed structures will

scale as:

= 3 , _2(3+n)+3 ('=Z+n)
M o p&r® o t743r% o rg CFD T = p T
giving:
54n
re o< M2 = 1.28
c toty ,B 9 + n ( )

Forn = 0,—1,—2 one gets f = 0.56, 0.5, 0.43, respectively. The empirical re-
lation ( 1.27) is approximately consistent with an hierarchical clustering picture
with an index varyin in the range —2 < n < 0. The upper value is more cosnsis-
tent with the standard CDM model (Efstathiou et al., 1988).
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Finally, Kashlinsky (1983) found another relation between gravitational radius

and central velocity dispersion:
R,y ox gl354045 (1.29)

with a correlation y? coefficient » = 0.65. As Kashlinsky (1983) notes, given
the large uncertainty this relation could be consistent either with an universal
constant density or an universal surface density.

The difficulty of establishing reliable empirical corrrelations among the physical
parameters describing a cluster could also be ascribed to the current rather un-
certain definition of cluster (Cavaliere et al., 1992) and, in general, is a signal of
the large observational uncertainties. One hopes that the situation will become
better in a few years, after the completion of deeper and more detailed surveys

of clusters.

1.5 Luminosity Function and Mass Spectrum.

The luminosity function of groups and clusters of galaxies is enough well deter-
mined observationally (Bahcall, 1979) and can be described by a Schechter (1976)

relation:

n (L) dL = o (-L]J—)_a exp <——Lji).dL (1.30)

0 0
with & = 2.05 £ 0.1, Lo = (1.05 £ 0.2) x 10*3Lg, o = 1.2 x 1077 (1012[@)—1.
This equation is valid over a large interval: 10.2 < log(L/Lg) < 13.8, ranging
aprroximately from Gott & Turner (176) groups up to rich clusters. Its mathe-
matical form should be consistently explained by any theory of cluster formation.
A very simple approach to this problem was devised by Press & Schechter (1974,
hereafter PS). It involves three main hypothesis: a) the statistics of the sites of
clusters’ and groups’ mass distribution is gaussian; b) clusters form at theose
regions where the average density, smoothed with a window function, is larger
than than a critical value §,. Smoothing is a necessary tool to filter substruc-
ture: its use is predicated on the basis that low mass substructure has very little
influence on the gravitational evolution of larger mass scales in hierachical clus-
tering models. However, the precise mathematical form of the window function
is usually chosen in a rather ad hoc way. The most popular choices are the sharp

space filtering W o« H (1 — R/Ry), the k-space filtering W (k) = H (1 — k/k.p)
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and the gaussian filtering W « exp (—RW?R?) (we have denoted with a” the
Fourier transform, and by H () the Heaviside function). More physically moti-
vated choices have been given by Appel & Jones (1990).

If p(r,t) denotes the unfiltered density field, the smoothed field will be given by:

pe (r,1) = /d3r'p(r,t) W(lr—r) (1.31)

and the variance of the mass density fluctuations will be given by:
o? (Ry,t) = /dSkW2 (k, R) P (k,1) (1.32)

where P (k,t) denotes the power spectrum. The third hypothesis in the PS
argument is that: c) the probability of forming an object at a given point is
proportional to the probability for the point of lying in a region of overdensity

larger than the critical one:
=) 1 62
. P (6, 50) = /C (lém exp (_—2—072.) (].33)

The characteristic mass associated to a filter with radius Ry will be given by
M = 4mp,R3%/3; the critical overdensity will be given by 6. ~ o (M), and the

number density of regions whose density exceeds this value will be given by:

n=_ra _
nes (M) =~ 07 =
___p b [_8)1do
(27r)1/2 o? &P ( 202) M dM (1.34)

For instance, for a power-law spectrum one has: o2 (R;) o< M7G+™/3 and we

obtain:
M5
~<-ﬁ) ] (1.35)

where M, = M. (0) (1 + z)_HL" is the characteristic mass which goes nonlinear
at redshift z.

Eq. ( 1.35) is not the actual PS equation: the actual one can be obtained from

N2 n43 1 (MN\TE
> AI - (—) p _( ) ‘
nes(M)=\7) e \an) o

this multiplying by 2.This latter step is necessary to give the correct normaliza-
tion and it means that the PS way of counting objects underestimates the real

number, excluding objects which, although contained inside underdense regions,
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eventually coome into overdense ones.

The problem of the factor "2” problem in the original PS derivation has produced
various attempts toward a solutions. It seems to have been recently partially
solved (Cole & Kaiser, 1989; Bond et al., 1991), at least when some filter func-
tions are adopted.

Apart for the normalization problems, the PS approach gives a ”static” treat-
ment of the statistics of structure formation, i.e. the dynamics of the density
perturbations is not taken into account: in the PS scheme regions of given over-
density collapse altogether at the same time. When one takes more realistically
into account the dynamics and the kinetics of the process, i.e. secondary infall
and some prescriptions on the rates of production and destruction of objects on
a given mass scale, the original PS spectrum turns out to be modified and a
steeper profile for higher mass is obtained (Cavaliere et al., 1991). However, the
real situation can be even more complex. Consider what happens to a region
which at some epoch #; is surrounded by, but external to, some overdense regions
which are entering a nonlinear stage. Secondary infall on these regions will poor
the background on which the linear region is growing, and Rozgacheva (1988)
has shown that this act to accelerate the further collapse of the linear region:
the most probable temporal evolution will be: § o #*/3. Overdense regions are
not static: they move through the background, and one can see that there ex-
ists a finite probability for a given region to enter an underdense region and to
speed up in this way the collapse. We quoted this example only to show that
a proper dynamical theory of structure formation could reveal many more sub-
tleties (Lucchin, 1988, Cavaliere et al., 1992). Other possible deviations from
the PS prediction could arise when the peculiarities of galaxy formation in the
overdense environments of clusters are taken into accoun (Bardeen et al, 1986;
Bower, 1991; David & Blumenthal, 1992).

Another theoretical approach to the problem of the mass function of clusters re-
lies on the idea that these structures form only at the peaks of the density field,
rather than only in overdense regions (Doroshkevich, 1970; Peacock & Heavens,
1985). After having smoothed the density field with a filter of scale Ry the num-
ber density of highly overdense (v = §/0 < 1) peaks of mass m, computed by
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Bardeen et al. (1986) is:

: 3/2 > 2
Npeaks (M, V) = (3 —g n> : (%)p v exp (—ij—> (1.36)

12 2 2

asuming a power-law spectrum of density perturbations. The problem here is
that this equation overestimates the number of small (low v) objects, because
these latter have very diffuse mass distributions and tend to overlap: so they
should not be counted as single objects. On the onther hand, the number density
of massive (high v) objects will be underestimated, because the objects do not

precisely coincide with single peaks. For high peaks, one has approximately:

. 3/2
Npeaks ~ ! (3 -16- 71) 1/377,195 (1.37)

o

(Thomas & Couchman, 1992).

Both the PS and the peaks’ approach are based on the assumption of a gaus-
sian amplitude distribution of the density perturbations; deviations from this
behaviour however necessarily arise during the nonlinear evolution and, more
importantly, could be generated by some specific primordial seeds like cosmic
strings. Lucchin & Matarrese (1988) have shown that the mass distributions
of various non gaussian density perturbations deviate significantly from the PS
distribution at high masses, typical of rich clusters: this fact could be a tool to
discriminate among different cosmological scenarios for the primordial density
perturbations. ,

It has to be said that numerical simulations from gaussian initial conditions have
generally tended to confirm the validity of the PS approach (Efstathiou et al.,
1988). Recent work by Brainerd & Villumsen (1992) casts some doubts on this
conclusion: the authors find that the high mass decrease of their numerical mass

function is much much lesser pronounced than in the PS approach.

1.6 Observational Evidence of Subclustering.

The issue of subclustering has arisen in the last years as one of the central issues
in the study of the origin and evolution of clusters of galaxies. In this chapter we
will only review the observational situation, leaving to the next chapter a short

review of the theoretical results.

After the seminal work of Baier (1977) many authors have claimed to detect
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a substantial amount of subclustering in the spatial distribution and/or X-ray
images of clusters (Geller & Beers, 1982; Gioia et al., 1982; Baier, 1983, 1984;
Baier & Oleak, 1934; Bothun et al., 1983; Fitchett & Webster, 1987; Fitchett
& Merritt, 1988; Fabricant et al., 1986; Binggeli et al., 1987; Malumuth et al.,
1992). On the other hand, other authors have seen little or no subclustering (West
et al., 1988; Rhee et al., 1991). Part of the reason for this lies in the different
definitions of subclustering adopted. Baier (1983, 1984), Baier & Oleak (1984)
and Geller and Beers (1982) look at density contours obtained by smoothing the
number counts histograms, and look at asymmetries of the isopleths. The level of
subclustering detected depends on the smoothing length, and the method seems
successful in identifying large clumps in the galaxy projected distribution, rather
than low level fluctuations. These asymmetries are taken as evidence of ongoing
merger events, and morphologically these clusters are not very much different
from the "double clusters” like Abell 1750 and SCo 627-54 (Forman et al, 1981),
which show two main lumps in X-ray and in the galaxy distribution: the only
difference is in the scale of linear separation between the centroids of the clusters.

Generally speaking, there are at least three main motivations behind a detailed

study of subclustering:

e To determine the real M/L ratios. As Bothun et al. (1983) have shown for
the case of the Cancer cluster, the resolution into subgroups which proved
to be not gravitationally bound together has forced to review the estimated
M/L from = 700 (from virial mass arguments) to = 250, consistent with

the M/ L of groups of galaxies.

e Relaxation. Any subclustering should be erased if the cluster were com-
pletely relaxed. On the other hand, the detection of suclustering inside the
core regions of apparently spherical and relaxed clusters suggests that this
could not be the case (Beers & Geller, 1982; Fabricant et al., 1986; Fitchett
& Webster, 1987; Fitchett & Merritt, 1987).

e Connection with initial conditions. In CDM models for galaxy and clusters
formation a substantial amount of substructure is predicted to occur, while
in HDM models any structure on scales lower than 10°Mg is erased by

neutrino free streaming. So the presence and amount of substructure inside
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clusters could be important to discriminate among different cosmological

models on scales on which the Universe is nonlinear.

In order to show the conceptual and practical difficulties of an analysis of
subclustering, we will study in some detail a statistically precise definition of
subclustering and a method of measuring it that have been proposed by Fitchett
(1988) and since then have been adopted in many other studies (e.g. West et
al., 1988; Fitchett & Merritt, 1988; Rhee et al., 1992). Fitchett distinguishes
between sublustering detected in the projected distribution of galaxies and in
the combined 2-D and line-of-sight velocity distribution. Projection effects can
mask subclustering: a cluster could be made of two or more clumps which, if
seen in projection along the same line of sight, could appear as only one cluster
with a smooth density profile (also at X-ray wavelengths, because the gas could
be distibuted symmetrically around the axis). Then the only way to detect the
real structure is to analize the projected velocity distribution of the galaxies and
theck whether they came from the same distribution, i.e. from the same clump.
The best statistical tool to detect subclustering would be a maximum likelihood
test for group membership: given a sample of N, galaxy positions and line-of-
sight velocities {:v(i), Uls(i)}il’ one divides this sample in n, groups and defines a
likelihood function and a null hypothesis for subclustering (e.g. that the fluctua-
tions in number counts are Poissonian). This likelihood function is proportional
to a cumulative probability distribution for the partitions, and must be found
by computing its value for some given theoretical distribution (Fitchett uses a
Gaussian distribution of {m(i),vls(i)}:\;l. The partition which maximizes the
likelihood function will be the best choice, and from the value of the likelihood
function one can deduce a significance level for the detected substructure. In

practical applications this program can hardly be accomplished for real clusters,

for two main reasons:

1. The calculation of the likelihood function is a formidable problem.
For example, for N, = 19 and n, = 9 one has & 1.7 x 10'? different

partitions! This would require a very large computer time.

2. The search for the maximum of the likelihood function can be a very
difficult problem. Often this function has many local maxima very near

to the absolute maximum, and only recently strategies like Simulated
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Tempering (Marinari & Parisi, 1992) have been introduced to deal
with this kind of problems.

A more viable method is offered by the Lee Statistics (Lee, 1979): we will
illustrate it for 2-D data. Suppose to draw a line trough the cluster and to
project all the positions vectors of the galaxies along this line. Choose one of the
projected positions as the origin and partition all the other projections data in
two sets, respectively to the left and to the right of the origin. Compute then the
quantity:

) = Mg e g
B Y+ ne X,

(1.38)

where: nj,n, are the number of points to the left and to the right of the origin,
respectively, u, pr the averages and X;, &, the variances to the left and to the right
of the origin, respectively. pr is the average for all the sample. The estimator
L(¢) depends on the position angle of the line, ¢ (measured w.r.t. some arbitrary
reference line inside the cluster), because the averages and the variances depend

on ¢. One then evaluates:

Lipaz = mazyL(¢) (1.39)

and the angle such that L(¢.) = L, defines the value of the orientation for
which substructure is significant. Lee (1979) showed that the statistics of the
indicator given by eq. ( 1.39) is equivalent to the maximum likekihood statistics
(under some conditions on the sample), and here lies the importance of the Lee
statistics: it is a 1-dimensional equivalent of the maximum likelyhood. Also the
local extrema of the function L(@) different from the absolute maximum are con-
nected with substructure, although in applications to clusters the Lee statistics
proves to be more efficient in cases where only two clumps dominate the overall
subclustering (Fitchett & Webster, 1987; Rhee et al, 1991). Before using this
statistics (as any other statistics), one has to perform Montecarlo simulations to
fix the relevant probabilities (see, e.g. Lindgren, 1976), but this is a task much
more feasible for this statistcs, because there are only 2 groups, i.e. the left and
the right. Another interesting feature of the Lee statistics is the fact that it deals
on an equal level with position and velocity information.

Other statistics can be introduced to characterize some aspects of subclustering

which proved to be difficul to detect with the Lee statistics (Fitchett & Webster,



1988; Rhee et al., 1991). The usefulness of these studies can be seen in the ap-
plications: substructure has been detected also in those clusters like Coma and
Hydra 1 whose X-ray map suggested a relaxed configuration (however, concern-
ing Coma see the recent ROSAT observations of Henry & Briel, 1992). As an
example, consider the Coma cluster: Fitchett & Webster (1988) use position and
redshift data coming from three different samples, namely Kent & Gunn,(1982)
(94 galaxies, complete to m, < 15.7) and Godwin & Peach (1977). Applying the
Lee statistics to projected positions (2-D) data, they are able to show that there
exist two main subclumps and our line of sight passes very near to the center
of them. The subclumps have characteristic virial masses 2.6 and 4.6 X 10 Mg,
and are centered about the galaxies NGC 4874 and NGC 4889, respectively.

In a similar way, Fitchett & Merritt (1988) analysed the Hydra 1 cluster. Al-
though the overall velocity histogram for the galaxies within 0.995h= M pc of the
cluster center is gaussian, the velocity histogram in the central 0.40h~ M pc is flat.
An analysis based on the Jeans’ equations ( 1.17) shows that the data are incon-
sistent with equilibrium models at a high significance level, namely 2.40. Models
including susbtructure are in much better agreement with observations, and the
authors use 5 more tests other than Lee statistics to check this hypothesis. On
the other hand, Rhee et al (1991), using the same statistical tests, found much
lesser evidence for substructure. However, as the authors themselves admit, they
analysed only positional data, and one must remember that the evidence from
Fitchett & Webster (1988) and Fitchett & Merritt (1988) comes from position-
velocity data.

One weak point of all these studies is that the substructure is put in a completely
ad hoc way. For example, Fitchett & Merritt (1988) consider three possible mod-
els for substructure in Hydra 1: one in which groups of galaxies are distributed
according to a De Vaucouleur’s profile near the center, a second in which a viri-
alized region is surrounded by infalling subgroups randomly distributed, and a
third one in which symmetrically displaced groups are distributed within the in-
ner relaxed region of the cluster. The third model seems to be favored by the
tests. However, none of this models comes as a natural output of a scenario
of galaxy formation, e.g. the CDM. It could be interesting to see how the pre-
dictions in the highly nonlinear regimes coming from the self-similar solutions

(Davis & Peebles, 1978) or from numerical simulations (Efstathiou et al., 1988;
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Antonuccio-Delogu, 1992) compare with observations.

A final point to notice is that X-ray observations are now revealing an increasing
amount of subclustering, particularly in poor, non—centrally-dominated clusters
(Bechtold et al., 1983). Recently, Henry & Briel (1991) discovered 23 new point
sources in the Coma cluster which do not seem to be associated with any vis-
ible galaxy. Whether this emission comes from po;mlétions_ of OB stars inside
blue compact dwarf galaxies or from shocks originating from gas trapped inside
residual density perturbations which did not attracted enough mass to excite
a starburst episode and/or form galaxies, it is evident that they are associated
with substructure and this shows once again the importance of substructure in-

side clusters.



Chapter 2

Evolution of Density
Perturbations.

As we saw in the preceding chapter, there is some observational evidence that
some clusters of galaxies could be structures not completely formed, with an
inner core already collapsed and virialized and outer parts showing evidence of
£}oeing still in the linear phase of evolution. It is then interesting to investigate
what theory can tell about the development of clustering inside a density fluc-
tuation which is going to originate a structure of the size of a cluster by the
present epoch. Most of the exact results which have been obtained describe the
evolution of slightly overdense, isolated density perturbations in homogeneous,
isotropic cosmological models (see e.g. Peebles, 1980; Efstahiou, 1990). In this
case the equations describing the evolution of the density and velocity field are
linear and can be solved exactly (§2.1). Being isolated, the fluctuations keep
the same aplitude distributions they had at the beginning of their evolution: if
they had a gaussian distribution, this will be preserved during the linear phases
of the evolution. The next step is to consider the nonlinear interactions among
density perturbations on different scales, and how the gravitational interactions
modify the amplitude distribution (§2.1.2). We will see that deviations from a
gaussian distribution appear during this phase, induced only by gravitational ef-
fects (§2.1.3). Finally, we will consider the evolution during the nonlinear phases,
commenting the results of previous N-body simulations of clusters’ formation and
the theoretical work on the solution of the BBGKY hierarchy for the evolution
of correlations in a self-gravitating cosmological background.

In the rest of this thesis, we will restrict ourselves to an homogeneous, isotropic
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cosmological model described by the Friedmann equations:

d? dnG A
a "'ﬂ-pba-l-

A 2.1
prE 3 34 (2.1)

d 3

— = 0. 2.2

7t {pea”} (2.2)
The cosmological expansion factor a(t) describes the evolution of the metric co-

efficients and connects the proper and comoving distances:
r = a(t)x. A (2.3)

Taking the time derivative of the above equation we obtain the proper velocity:
V = — =a(t)u+a(t)x, (2.4)

where u is the peculiar velocity, which measures the deviation from the Hubble
flow: vyuse = a(t)x.

We now recall some ideas and definitions concerning the statistics of density
perturbations in a cosmological background. One of the main assumptions in
cosmology is that the sample of Universe we can see is a "fair sample”: its sta-
tistical properties reflect the statistical properties of all the Universe. There are
however different methods of describing the statistics of a sample of objects, e.g.
correlation analysis (Peebles, 1980), percolation (Shandarin & Zeldovich, 1989),
fractal sets (Pietronero, 1987; Jones et al., 1988) among others. Here and in the
rest of this thesis we will consider the correlational analysis which has become a
standard tool.

If the universe around us is only one out of many possible realizations, then it is
convenient to look at the density field p(r,t) as a stochastic variable. We will also
assume that the Universe is everywhere isotropic (and then, as a consequence,
homogeneous, see e.g,. Weinberg (1972)), so the zero-order moment of (p(r,))
will not depend on position. All the other quantities derived from density which
we will introduce later, like the overdensity §, will always be meant to be average
values of stochastic variables and the deterministic equations we will write should
always be meant as involving averages over the ensemble of possible realization
of the field.

One of these averages, the two point correlation function is of particular im-

portance. It is defined as the combined probability of finding a given overdensity
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at two different positions in space:
£(r,1) = ((x,1)5(x + 1, 1)) (2.5)

where: § = p(x,t) is the overdensity. If the sample is discrete and the density
is independent of position, £ can be expressed as the excess probability over the

average of finding two objects separated by a distance r:
§P =n?[1+&(r,t)] (2.6)

Generalizing this definition, one can analogously define the n — point correlation
functions £(™). The correlation functions are determined by a set of equations
which can be obtained from moments of the collisionless Boltzmann equation, and
define the so-called Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy (Davis
& Peebles, 1978; Peebles, 1980). We will deal with these equations in chapter 5.
The correlation functions describe the clustering of the density field. Suppose
we are considering a region of the Universe of volume V, containig a discrete
population of objects, so that one can write: p(r) = ¥ ;n;6(x;) (where ¢ here
denotes the Dirac’s delta distribution). This density field can now be decomposed

into Fourier harmonics:
_ik.
p(r) =3 bxe ™,
k

so the average in eq. 2.5 becomes:

|4
6(1‘) - (271'3)

where the asterisk means complex conjugation. But the density field is real,

/ d3kékéiei(bfk’—k'x—ikq') (27)

so: 6f = 6(—k), and in the limits in which V is much larger than the typical

correlation length of the field, we can see the average of eq. (2.5) as an integration
over all the wavenumbers:

v

f(r) = (271‘)3

The function P(k) =| é(k) |? is the power spectrum: its Fourier transform is

/ LU | §(K) |? ek (2.8)

the correlation function (eq. 2.8). All the statistical averages over the ensemble
in an isotropic Universe depend only on r =| r |, and as a consequence also the
power spectrum will depend on & =| k |. One can then easily verify that under
this further constraint eq. ( 2.8) becomes:

{(r) =

sin k'r

k'r

/ kA kP(k') (2.9)

14
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The power spectrum is the spectral density of the Fourier amplitudes of the
density field. However, its specification is generally not sufficient to predict the
subsequent evolution of the density fluctuations: only a knowledge of all the
higher order correlation functions makes this knowledge possible. The reason can
be seen already from eq. ( 2.8) and from the definition of power spectrum: both
involve only the moduli squared of the density field’s Fourier transforms. But
in general the dx are complex quantities and a full specification involves also the
determination of a phase factor . If the phase factors are uniformly randomly
distributed then in the limit of high wave density (i.e. large volumes) their
contributions mutually cancel each other, and the average density fluctuation
squared is the sum of all the modes (| é |*= ¢ | &k |*). If this random phase
hypothesis is verified then the Large Number Theorem hold, and the probability
distribution of any quantity involving the sum of many independent quantities

like | § |* approaches a gaussian distribution:

52
‘ P(|é]) exexp (—;3) . (2.10)
The variance of the density field ¢ is connected to the correlation function:
- JEZCLE (2.11)
(27)3 '

As Efstathiou (1990) noticed, one can see already from eq. ( 2.10) that the ap-
proximation of gaussian distributed density perturbations can only hold in the
linear regime, i.e. when { < 1 and ¢ < 1, because by definition | § |< 1 and
we cannot have a finite probablity of having | § |> 1. Present-day nonlinear
perturbations cannot be gaussian: correlations develop during their development
which tend to create phase correlations and increase the clustering. The Fourier
transforms of the density field are no longer inedependent: cross correlation terms
become comparable in magnitude to the two-point correlation function. Howa-
ver, a gaussian field has a very important distinctive feature: all the higher order
correlation functions are either identically zero (the odd ones) or explicitly de-
pendent on £(r) (the even order components). This simpliﬁes enormously the
calculations and allows one to completely specify many characteristics, like for
instance the statistics of extremal points (Bardeen et al.; 1986). A complete pre-
sentation of the properties of gaussian density field would take too much time

and would bring us away from our main purpose, so we will not attempt it here.
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2.1 Density and Velocity Fields.

We will first of all obtain the equations describing the evolution of a density per-
turbation within an homogeneous background. If gravitational forces dominate
over other kind of interactions (a plausible hypothesis at the rather late epochs of
evolution, see e.g. Kolb & Turner, 1989), then one can suppose that the medium
is collisionles and its distribution function f(x,u,t) obeys the cosmological colli-

sionless Boltzmann equation:

O, o0 1001
ot T dz | madze us

We recall that this equation is obtained by applying the Liouville theorem to the

(2.12)

probability density du = fd®xd®u over a bounded region of the phase space of

the collisionless system:

d ‘
—dy = 2.13
- du =0, ( )

The time derivative appearing in eq. ( 2.13) is a total time derivative. The
equation of motions for the particles of the collisionless fluid are:
(cll_)t( = au, —Cfl—l: = R%qu) (2.14)

Putting eqs. ( 2.14) into eq. ( 2.13) one gets eq. ( 2.12).
The probability density f(x,u,t) cannot be deduced directly from the observa-
tions in real cases. For example, in the case of a cluster of galaxies, also if we
had all the velocities and position for all the galaxies gravitationally bound to
the cluster, which in the best case are about few hundred, we could sample a very
limited region of the entire phase space of the cluster. The best we can do is to
admit our ignorance and to use some averaged integral quantities which can be
more reliably determined from the observations. The moments of the distribu-
tion function like the density, average velocity, velocity anisotropy tensor seem
to be suitable to this purpose, because they can be easily determined from the
observations, at least in principle. ‘
The zero order moment of eq 2.12 gives the continuity equation:

0 1

% e
Multiplying eq. ( 2.12) by u and integrating over velocities we get an equation
for the average velocity:

Vi{pu} =0 (2.15)

_ [d*ufu
V=T By
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This equation is easily found:

v d 5 1 09
L (" — =0 2.16
T A (2.16)
where we have defined the velocity anisotropy tensor:
3 21 B
(vuf) = M—}—L— - (2.17)
p

In this equation ®(x,t) is the gravitational potential generated by the local den-

sity excess, which verifies the equation:
A® = 47G [p(x,t) — ps(t)] (2.18)

As is well known, each new moment of the collisionless Boltzmann equation
introduces a new set of unknowns; in the latter equations the new unknowns are
the components of the velocity correlation tensor, (u®uf). It is then necessary
to truncate at some point the hierarchy of moment equations by making some
physical approximations which take into account the proper spatial and temporal
scales of the problem in hand (Davis & Peebles, 1977; Bouchet & Pellat, 1984).
We will come back to this problem later.

Let us now linearize the above equations by introducing the density perturbation:

p(x,1) = pu(t) (1 + 8(x,1)).. (2.19)

Here py(t) is the background density which according to eq. (2.2) changes as:
py & a3(t). Introducing eq. ( 2.19) into the continuity equation, assuming that
the unperturbed peculiar velocity field is zero and keeping only terms of the first
order in 6 one gets the perturbed continuity equation:

06 1
9 ly. - 2.
gy TV (ppbv) =0 (2.20)

Here év denotes the linearized peculiar velocity. However, because the unper-

turbed peculiar velocity field is assumed to be identically zero, hereafter we will

drop the perturbation symbol ”6” from the notation for the peculiar velocity.

Proceeding in a similar way, we obtain the linearized first order moment equation:
dv™  a 0

0%
el o o, B 3 17 _
o TVt g L) +a’poo

(2.21)



After having introduced this equation into equation 2.13 and having performed

some algebra, one finds a second order differential equation for the density per-

turbation:
9% _add 1 1 92
a2 T2o5 = Ve § 2.92
ot? + a ot (ﬂvx (1 +8) Va2l + - a2 dzeah [(1 +68) (uu )] (2.22)

Before proceeding to discusse the solutions of this equation, we should be able to
specify the form of the peculiar velocity anisotopy tensor (u*uP). In the above
equation ( 2.22) this term plays the role of a stress tensor, and its gradients play
the role of pressure forces. If the density perturbation is not isolated, tidal forces
from neighbouring density irregularities can induce shear through quadrupole
and higher order moments, and so they can make this tensor different from zero.
However, for an isolated, spherically symmetric and linear density peltmbatlon
having a coherence length of the density field d such that: (U/\/U—d) <1
one can suppose that velocity asymmetries, if eventually present at the origin,
had not yet had time to grow sensibly, and we can simply ignore the velocity
anisotropy tensor. Later in this thesis we will however remove this limitation and
we will consider some more realistic possibilities.

With this simplification eq. ( 2.22) reduces to:

_5)2_6+ adé
ot? a Ot

For the @ = 1, A = 0 Universe we are considering in this thesis one has a(t) o

47\'0/)(,5 (2.23)

t2/3 4/a = 2/3t and eq. 2.23 admits two possible solutions:
So(x,t) = Ap(x, )23, §_(x,t) = A_(x,t)t7/>. (2.24)

The second solution describes a decaying mode, while the first one is the most
interesting one and tells us that the density contrast grows as the expansion
factor. Observe that the spatial and temporal parts are separated: this is a
consequence of the spatial homogeneity of the background over which the density
perturbation grows.

We can also determine the velocity field by linearizing eq. 2.21, so as to obtain:

dv® G o 100 . B S (!
Gt =y = Ome [ X060

x —x
| x'—x|

(2.25)

Using eq. ( 2.24) into the latter equation one verifies that the term in the right-

hand side is also a product of a function of position and time variables, so one
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can also look for a solution of the form of eq. ( 2.23) for the velocity field:
v = V,(x,t)tP. Subsituting into eq. ( 2.25), and taking into account the time
dependence in the acceleration:

Gpsa / d®>x'6(x', )

———————X/ —x o T3P

%= x|

one finally gets p = 1/3 for the growing mode. The decaying mode has p = —4/3

and a negative sign for the peculiar velocity field (Peebles, 1980), corresponding

to a velocity field directed in the opposite direction to the density perturbation

and tending to erase it. The final solution for the velocity field then reads:
o Ha 0 /dgx, 6(x") (

1 _— . 2.26
| % —x] )

T dx Oz
This linear result is of great interest on scales larger than 82=' Mpc, on which

the present Universe is believed to be still linear.

2.1.1 Spherical Density Perturbation and Secondary In-
. fall.

The linear theory predicts the existence of growing density perturbations, but
the evolution of each perturbation depends on its detailed shape and density
distribution. The simplest case to analise is that of a spherical homogeneous
shell, a case which can be relevant for the secondary infall of matter on some
given seed perturbation, or on an already collapsed and virialized region (Gunn
& Gott, 1972; Bertschinger, 1985).

The evolution of a shell enclosing a mass M inside a given radius r is given by

the equation:

Lr__GM

e (2.27)
where r(t) is the proper distance from the center. If shells do not cross during
the evolution the mass inside a given radius 7(t) is conserved and constant. If
one now writes: r(t) = a(r;,t)r;, one can easily check that the density will be
given by:

pilr,) = 47ra33(]rv,»[, t)r? (2:28)

Substituting into eq. ( 2.27) and taking into account eq. (2.2) one gets an
equation for the expansion parameter a(r;,t):

an(ri, t) _ 4G ﬁ,‘(m‘, t;)

di? 3 a?(r,t)’

(2.29)
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This equation can be integrated once to give:

(cla) 8rGp; AT (2.30)
dt a

where I is an integration constant. We will look for a parametric solution of this

equation. Let us introduce a new quantity 6(t) such that:

A 87Gipi.
(?i‘f) ‘ﬂ‘/ (2.31)

If we now rewrite eq. 2.30 in terms of the new variable 6 we obtain:
da\’ I} |
— | = H*|C 2.32

B_:EZ_ _pc_p_i
) Y = .

pe pe
Here p. is a critical density. Now, it is easy to check that in terms of this new

independent variable, the expansion factor ¢ verifies the equation:

where one has defined:

d?a B
da _ s 2.33
a2 — ¢ + 2 (2:33)
This equation has a simple solution:
(amm + 2%) cos([—~]"/? 6) — ’Z% 7<0
a(0) = (2.34)

Using eq. 2.32 we can also obtain the equation for the time dependence:

5475 (i + £ ) sin(| 7 /2 6) = £0 <0
Hit = (2.35)
S (a‘mz;m + ) sinh(] v ['/26) =26 v>0

Observe that these equations {( 2.32- 2.34) are sligthly different from those og
Gunn & Gott (1972): putting @, = 0 one easily recovers their set of equations.
The parameter 4 measures the mean overdensity of the shell, i.e. the excess
fractional density w.r.t. the crittical density which marks the transition between
the regimes of infinite expansiem and recollapse. Eq. ( 2.27) is symmetric w.r.t.

time: it describes a reversible process, involving only the mean-field component
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of the gravitational field. In chapter 4 we will take into account the first—order
corrections produced by dynamical friction effects, which are a byproduct of the
discrete nature of the phase space of a perturbations. We will see that these
modifications are really important only for hierarchical clustering models of
galaxy and clusters’ formation, like the CDM models, while in models predicting
a small amount of substructure on these scales, like the Hot Dark Matter cos-

mologies, these corrections are quantitatively irrelevant.

2.1.2 Early Nonlinear Stages.

The linear solutions found in the preceding paragraph were obtained by expanding
the density up to the first order in 6 and truncating the velocity hierarchy at the
zero—order, i.e. putting simply: (u®uf) = 0. The equations found in the preceding
section involve only the time as independent variable: if we take the Fourier
transform of the solutions we notice that each single component of the Fourier
transformed density field evolves independently of the others. Correlations, if
initially present, grow like the density field, i.e. £(r) o (1 + z)72 (because the
correlation function grows as 62).

However, as the amplitude of the fluctuations on a given scale grows, nonlinear
coupling of modes of different wavenumbers modifies the power spectrum and,
in general, phase coupling induces the growth of higher order correlations. The

density field can generally be expanded in a perturbative series:
§(k) = 6W(k) + 6P (k) + ..., (2.36)

where §()(k) is the Fourier transform of linear solution of the preceding section.
Evolution of second order perturbation has been considered by a number of au-
thors (Peebles, 1980, §18; Juskiewicz, 1981; Vishniac, 1983; Juskiewicz et al.,
1984; Coles, 1990). Inserting the expansion ( 2.36) into egs. ( 2.20),( 2.21) and
eq. ( 2.18), expanding all the other quantities and performing some reduction
one arrives at a separable second order equations for §(*)(k). The expansion up

to t’he second order of the averaged density perturbation squared now reads:
| 6(k) [P=] 60 (k) [ + | 6@ (k) 2 +2R(6M) (k)5 (k) (2.37)

The mixed average on the right-hand side does not cancel out after averaging over

phases: this important fact, noted by Vishniac (1983); complicates enough the
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analysis, because it brings into the game also §(3). After some tedious calculations

(Juskiweicz et al., 1934), one can show that the power siaectrurn will be given by:

t 4/3 1 8/3 R
Pkt = P) (() 7 + 160 + )] () (2.35)
and the correlation function will now be given by:
k
£(r) = dr / dwsmlf ") (P + L(k) + LK), (2.39)

where I;(k), I(k) are two functions depending on P(k). The precise behaviour
of £(r) now depends on the shape of the power spectrum. Coles (1990) has shown
that for the CDM spectrum and a gaussian window function of radius R; one
has:
P(k) = AKT?(k) exp (—k*R3)
log (1 4+ 2.34q)
2.34¢

T (k) = [1+3.89¢ + (16.1¢)" + (5.46¢)°

+(6.719)" " (2.40)

where: ¢ = k/Qcpamh*Mpc™! the modified spectrum ‘is in general steeper for

<

small 7 and has a crossing point larger. The modification depend sensibly on
the value of the bias parameter adopted, however. The steepening of £(r) can
be physically interpreted as a consequence of the transfer of power from low
to large k. About the eventual shortening of the correlation length there is no
general consensus: the point where ¢ ~ 0 marks the transition to the linear
regime, and in this region a competition between transfer of power from larger
regions and the shrinking due to gravitational contraction, which have almost
the same magnitude, make an interpretation of the ongoing physics rather subtle
and circumstantial.

In conclusion, the inclusion of nonlinear effects modifies the spectrum inducing
a steepening and a fast transition to the nonlinear regime. Quantitatively, the
effect depends on the shape of the power spectrum. Nonlinear terms grow much
f@ster than the linear ones, and the time interval in which a linear approximation

can be reasonably adopted is quite limited.

2.1.3 Late Nonlinear Stages - Numerical Simulations.

The nonlinear evolution of density perturbations should provide the final answer

to the problem of clusters’ formation and evolution. As we saw in chapter 1,
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there is evidence that the central regions of rich clusters have typical overden-
sities § &~ 100 and have already turned around. A solution of the nonlinear
BBGKY hierarchy has been found only under some approximations (Fry, 1984;
Hamilton, 1988). Numerical simulations could in principle provide the answer to
the problem of nonlinear evolution. In practice, the simulations peformed until
now proved to have a limited dynamical and mass range to reach the target.
More specifically, the problem is that clusters of galaxies are very inhomogeneous
systems, with dense central cores having typical radii 400 — 700h~! Kpc and
extended outskirts where the overdensity drops by 2-3 orders of magnitude. In
typical simulations like those performed by Thomas & Couchman (1992) one has
323 particles inside a cubic region of 50M pc size; the softening parameter is usu-
ally taken enough small to increase the dynamical range, but must also be large
enough to minimize relaxation problems. As an example, Thomas and Couchman
(1992) choose s = 40h~* K'pc. The 2-body relaxation time is then given by:

. tr (R/s)? 2 [Ny i 9
t ~ 0.03 x n (R/S) N 32‘—3-&.2; (...4].)

where £, is the particle number density, ¢ the age of the Universe and R the
core radius. At the end of the simulation, they find typical cor sizes R = +/es:
the relaxation time is then quite short in the core, because NV is small (= 40). On
the other hand, the outer parts of the cluster are free from this problem because
there N < 1. This shows that the interpretation of the results of numerical
simulations must be done carefully.

Two main methods have been adopted in the numerical studies of clusters: Mon-
tecarlo and N-body simulations. The essence of the Montecarlo method is the
generation of a stochastic process obeying a set of laws which describe the differ-
ent physical interactions among the different components of the cluster (i.e. dark
matter, galaxies, intracluster medium). Richstone & Malumuth (1983) applied
this method to study the evolution of the mass spectrum and the formation of a
Cd galaxy in rich clusters. Their work displays all the merits and problems of the
Montecarlo approach. Giving initial positions and velocities to a set of particles
whose masses are chosen according to a Schechter (1976) mass spectrum , they
followed the evolution of positions and mass spectrum. The main uncertainties
in the final result seem to come from the input physics, i.e. from the specification

of the cross sections and final binding energies of the merging events. They show
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that the Schechter spectrum is stable to an evolution including merger events,
and that a central Cd galaxy forms only in 30% of the cases. Moreover, they
find no evidence for mass segregation between dark and baryonic matter. They
also included a dynamical friction term in their equations of motions: contrary to
recent claims by Mayoz (1991) their procedure is correct, because the fluctuating
component of the gravitational field is not automatically produced in a Monte-
carlo simulation, contrary to what happens in N-body simulations.

The most popular algorithm to simulate clsuetr evolution is however the N-body.
A full analysis of the major findings of these experiments would require a large

review, so here we limit ourselves to summarise the main results.

Density profiles: As for many other topics, N-body simulations seem not

to have provided yet an unique answer to the question of the final density profile,
and especially of its dependence on the power spectrum. Quinn et al. (1986)
find that the density profiles depend strongly on the initial power spectrum: for
n < —1they get p =~ r=2, but for n > —1 the profiles are considerably steeper and
in remarkably good agreement with the results of the theoretical infall models by
Hoffman & Shaham (1985) (see also Hoffman, 1988, 1989). These findings have
been confirmed by the simulations of Efstathiou et al. (1988) but the results of
Carlberg & Dubinsky (1991) and Thomas & Couchman (1992) are not consistent
with these because they start with CDM spectra which, on the scale of a few
Mpcs can be approximated by power-law spectra having indexes —1 < n < 0,
and they find profiles decreasing as isothermal spheres (p = r~%) in the outer
regions. ;

On the other hand, West et al. (1987) do not find any evidence of a dependence
of the density profile on the power spectrum. The final density profiles in their
simulations are well approximated as isothermal. They conclude that clusters are
relaxed systems which have already experienced violent relaxation: their conclu-
sions are supported by a comparison with the the optical luminosity profiles for 27
Abell clusters which confirms their numerical results. West (1990) suggests that
the discrepancy in the results is only in the interpretation: while Efstathiou et
al. (1988) and Thomas & Couchman (1992) use ’friends-of-friends’ and minimal
spanning tree algorithms, respectively, to extract clusters out of their outputs,

West et al. (1987) look 'by eye’ at regions having some prescribed overdensity.
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As a‘result, their 'clusters’ are in general lesser overdense than those found by
former authors. However, they compare their results with luminosity profiles of
galaxy distributions, i.e. with data taken in the innermost regions of clusters.
Efstathiou et al. (1988) attribute the differences to the different number of par-
ticles adopted: their simulations involve many more particles, although West et
al. (1987) adopt an Aaarseth direct summation code rather than a P3M like
Efstathiou et al. (1988).
Another feature of the density profiles is the so-called ”secondary mazimum?”
(Bahcall, 1971; Oemler, 1974; Austin & Peach, 1974; Dressler, 1978a; Kirshner
et al., 1979; Yahil et al., 1980; Dekel, 1981). The reality of this feature has been

questioned by some of the mentioned authors, and it is not observed in many re-

cent simulations. The reason could be ascribed to the extended dynamical range
allowed by these more recent numerical simulations. Farouki et al. (1983) have
suggested that this feature could be originated by a large outward gradient of
the velocity dispersion profile which produces a local depression at some distance
from the core. They also saw in their sirnlulations that the location of the sec-
ondary maximum shifts outwards with time, as a consequence of a large outward
motion of the outer layers of the cluster. The secondary maximum could then be
present only in unrelaxed clusters.

A very important issue addressed often in the N-body simulations is that of
substructure. Cavaliere et al. (1986) addressed this question in a series of sim-
ulations and showed that substructure, often present in the form of two large
lumps, tend to last for quite long times in about 30% of their simulations. As
we saw in Chapter 1, observational work (starting from the paper by Geller &
Beers (1982)) has tended to confirm this prediction. Moreover, they find a large
variance in the outputs of their simulations which could be related to the ob-
served variance in the morphological X-ray properties of clusters. It is clear that
this conflicts with the above mentioned claims by West et al. (1987) and West
& Richstone (1988). The reason could lie in the proper choice of the scale of the
simulations (Richstone, 1990).

Mass and luminosity segregation: Since the original suggestion by Hoff-

man et al. (1982) many investigations have been devoted to a search for spatial
mass and luminosity segregation beteween dark and baryonic matter. The object

one looks at is the trend of M/L inside a cluster: i.e. whether dark and luminous
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matter are distributed in the same way or not. Hoffman et al. (1982) deduced
that the action of dynamical friction should have modified the distribution of
galaxies. It can be instructive to review their argument. Suppose for simplic-
ity that matter is distributed in a spherical halo with power law density profile:
p(R) = po(R/Ro)™™, with 0 < m < 3. If galaxies are on circular orbits their

velocity can be written:

v?(R) =

y 2—m
G Mo ( f ) (2.42)

Ro \Ro
where My = [4n/ (3 — m)] poR3. The equation of motion of a single galaxy in

presence of dynamical friction is:

dv 4G M, p(In A +0.367 )
= = — 9P (v2 )g(]v) (2.43)

where whe have defined:

g(jv) ==

. 4 (Eeou] T
- /[3 j\!] dg;:cge_xz
o 0

Solving eq. 2.43 for the density progile given above, and assuming that the shells

inside which galaxies move do not cross, we obtain:

R(t) { t ]e-——m
= |1 - — 2.44
R - (2.44)
where one has defined:
4—m 1 ]V_Ig

PTG mB-m) (A +0367)(v) M,

Now, we can write the M/L ratio as:

M_ o) _ (A (_R_)“” (2.45)
L n,(R)L L /e \Ryg

The latter equality comes out because iy (R) « Ny/R?® and p(R) o< R™™. So

when the average radius of the farthest shell decreases also the observed M/L

will decrease w.r.t. the asymptotic value. This is a consequence of the fact that

To is finite, i.e. that dynamical friction acts on a timescale much lesser than the

age of the Universe in the relatively dense interiors of rich Abell clusters. Even

larger decreases of the M/ L ratios are seen in the opposite case of radially, rather
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than circularly, anisotropic distribution functions (Kashlinsky, 1984). Subsequent
work by Kashlinsky (19386) showed that the M/L evoluution with time is much
reduced when realistic distribution functions and rotational profiles for clusters
are considered.

Mass and luminosity segregation is often seen in two component N-body simu-
lations (Roos and Aarseth, 1982; Farouki et al., 1983; Barnes, 1984; West and
Richstone, 1988; West, 1990). The amount of segregation depends critically on
the amount of dynamical friction, which ultimately depends on the amount of
subclustering. West & Richstone (1988) demonstrated this fact in a very ele-
gant way: they compared the mean harmonic radii of dark and baryonic mater
particles in two simulations, the first starting from a power-law spectrum and
the second from an initial distribution in which all the low-wavelength noise was
suppressed (the particle distribution was highly uniform on small scales). While
in the first case the harmonic mean of the baryonic paiticles was 3 times lesser
than that of the DM particles, in the second case no appreciable difference could
be detected at the end of the simulation.

Finally, the problem of mass segregation has also been studied via solutions of the
Fokker-Planck equations (Merritt, 1983, 1985; Inagaki & Saslaw, 1985; Yepes et
al., 1991; Yepes & Dominguez-Tenreiro, 1992). The applicability of the Fokker-
Planck equation relies on the assumption that a principle of detailed balance
applies, an assumption which could not hold over all the extension of a cluster.
It could be however valid in the central parts, precisely in those regions where
the density is high enough to reduce the typical duration of the stochastic force

T(F) below the dynamical time. Whether this applies or not has not yet been
completely investigated.

Velocity segregation: The first suggestion that dynamical friction reduces
the average relative velocity of galaxies w.r.t. dark matter was put forward by
Farouki et al. (1983): they also showed that the amount of velocity segregation
could weakly depend on the shape of the mass spectrum. More recent work by
Carlberg (1991) and Carlberg& Dubinsky (1991) using a much larger dynamical

range has confirmed the previous findings. The main conclusion is that dynam-

ical friction reduces also the velocity dispersion of the galactic population, in

addition to the mean average radius (i.e. the M/L). If energy conservation holds
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one should expect an increase of the average velocity dispersion of the galactic
component as it sinks inside the potential well of the cluster. The fact that a
decrease is observed proves that the opposite is true, i.e. that dynamical friction
causes energy to be transferred to the dark matter component during the infall.
The effect on the mass distribution of the Dark Matter halo due to this transfer
is probably very small if Mpy > M. This "velocity bias” can be quantified
by the parameter b, = opar/opar: Carlberg & Dubinsky (1991) find: b, =~ 0.8.
This number can reconcile the estimates of Q from the Cosmic Virial Theorem
(Peebles, 1980) with the observed values of the galaxies’ velocity dispersion which
are lower than predicted in a flat = 1 model. The velocity bias could have been
recently detected by Biviano et al. (1992).

The only problem with the velocity bias is that the interpretation offered by
Carlberg (1991) is unreliable, because it does not correctly take into account the
effect of clustering on the dynamical friction coefficient. In chapter 5 we will red-
erive his results using a N-body code conveniently modified to take into account
this effect and we will show the results to be in agreement with the theoretical

expectations of chapter 4.

N-body simulations give more definite predictions about the clustering and its
temporal evolution. Efstathiou et al. (1988) find that the theoretical predictions
of Davis & Peebles (1977) based on a self-similar evolution of the correlation
function are reproduced in their N-body simulations only in linear and moder-
ately nonlinear clustering regimes, i.e. for £ < 50. In strongly nonlinear regimes
the numerical correlation function is steeper than the self-similar one, and the
pairwyse velocity in these regimes is much larger than value predicted if clusters
were in virial equilibrium. This tends to suggest that virial equilibrium could
even never be reached in highly clusterd systems. We will return to this problem
in chapter 5.

In conclusion, numerical studies of cluster formation and evolution, when as-
sociated with theoretical interpretations, provide useful tests of the dynamical
mechanisms of energy transfer among the different components, although the
quantitative assessment has to be eventually left to more refined theoretical treat-
ments. N-body simulations outnumber the Montecarlo simulations in the current

astrophysical literature. Nonetheless, the Montecarlo method allows to test the
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effects of very detailed models of merging, i.e. a better specification of the input
physics, while in N-body simulations some more less high degree of simplification
is required in order to match present-day computer possibilities. One concep-
tual difficulty of the Montecarlo method is however the implicit assumption of
an underlying Markovian process in the generation of the interaction events: this
proves to be false in highly correlated systems like clusters of galaxies, i.e. the
probability of having a merger interaction is not only enhanced by the cluster-
ing but also dependent on the trajectory of the galaxy inside the cluster. On
the other hand, the positions and masses of the galaxies in Richstone & Malu-

muth (1983) simulations are independent of each other, and this is clearly an
oversimplification.
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Chapter 3

Gravitational Field Fluctuations
in Weakly Clustered Systems.

Stochastic fluctuations of the gravitational field in a collisionless, weakly clus-
tered protogalactic system are induced by local fluctuations in the number den-
sity of small collapsed peaks. We calculate the probability distribution of the
stochastic forces generated by these fluctuations, and we find a generalization
of the Holtsmark distribution, previously studied in a stellar dynamical context
by Chandrasekhar and Von Neumann (1942) and by Kandrup (1980). We also
find the probability distribution of the torques induced by these stochastic forces,
introducing the analogue of the Holtsmark law for the torque distribution, and
we study different cases corresponding to different power—laws.

We apply these considerations to realistic models of protogalactic and proto-
cluster density perturbations. The force probability distribution is remarkably
influenced by the clustering of substructure: the profile is more strongly peaked,
and the asymptotic decay W(F) — F~3/? is almost suppressed, resulting in an
enhanced probability near the average value. The consequences of this fact on
the calculation of the dynamical evolution of cosmological density perturbations,

which will be developed in a subsequent chapter, are stressed.

3.1 Introduction.

One of the crucial problems in any theory of structure formation in the Universe
is the origin and dynamical evolution of density fluctuations. In a hierarchical

“bottom—up” scenario high density, nonlinearly collapsed peaks cluster and merge
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together to form larger structures. It is often assumed that the density fluctua-
tion field is locally isotropic, the amplitudes are locally gaussian distributed and
their phases are uncorrelated (Peebles 1980). Under these assumptions the prop-
erties of the density fluctuation field §(r) can be entirely expressed in terms of
its Fourier transform, the power spectrum P(k). On average, the characteristics
of the density field’s peaks, e.g. their mass distribution, ellipticity, peculiar ve-
locities etc., are completely determined by the spectrum through its moments of
various order, at least during the linear and early nonlinear phases of the col-
lapse (Bardeen et al. 1986; Hoffmann & Shaham 1985; Ryden & Gunn 1987),
when the density perturbation detaches from the background expansion and sec-
ondary infall of matter gravitationally bound to the peak takes place (Gunn 1977,
Bertschinger 1985).

Due to isotropy, the distribution of all physical quantities around density peaks
is, on average, spherically symmetric. However, actual realizations of the den-
sity and velocity field distributions around peaks which will later form galaxies
and clusters, depart both from spherical symmetry and from the average density
profile. This produces important consequences to the dynamics of the collapse
and formation of protogalactic structures, which have been recently studied by
some authors (Hoffman & Shaham 1985; Ryden 1988; Heavens & Peacock 1988).
In particular Ryden & Gunn (1987), within the context of an infall model for
cluster formation, have considered the tidal coupling between shells of matter
which are accreted around a density peak and the inner parts of the forming pro-
tostructure. They have shown that the tidal torques and the dragging of Dark
Matter due to baryonic infall lead to the formation of haloes with density profiles
that well reproduce the general features of the rotation curve of a spiral galaxy.
Similar work has been independently carried out by Heavens & Peacock (1988).
In both papers, the authors are concerned with the dynamical influence of the
substructure of small length scale which is abundantly produced in hierarchical
bottom—up scenarios, on the matter gravitationally bound to the density pertur-
bation. However, they consider only those gravitational perturbations generated
by the global distribution of the substructure, namely by the deviations of this dis-
tribution from spherical symmetry. On the other hand, the substructure existing
in large wavelength density peaks generates local fluctuations of the gravitational

field. Rozgacheva (1988) has recently considered the effect of local fluctuations
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on the evolution of the density profile. Our purpose in the present chapter is
to start an investigation of these fluctuation fields on the dynamical evolution of
cosmological density perturbations.

An analysis of these small scale gravitational field fluctuations can be of interest
to understand various aspects of the dynamics of galaxy and cluster formation.
They can affect the dynamics of matter infalling onto the cluster, and the redis-
tribution of energy, angular momentum and other dynamic;xl quantities among
the dark and baryonic components of a protogalactic structure. This is especially
true in the innermost regions, where tidal effects become less important because
the density distribution tends to be more spherically symmetric (Ryden 1988).
The study of the small scale "graininess” fluctuations of the gravitational field in
a large but discrete gravitating system was pioneered by Chandrasekhar and Von
Neumann (1942 a,b): they showed an important fact, namely that the probabil-
ity distribution of the force experienced by a point particle moving in a region
containing other point-like particles randomly distributed with constant density

is given by the so called Holtsmark law:

t

o ! %
W(F) = -?;F /O dkk exp {—%N (C’T"j* k) }sin(kF) (3.1)

Here W (F)dF is the probability for a test particle of experiencing a force in the
interval F, F' + dF, N is the total number of particles, m, a typical mass and
r; a characteristic distance among the particles. A remarkable feature of this
distribution is the fact that it has a long tail, decaying at high values as F-3.
More recently Kandrup (1980a, b)) has performed a detailed analysis of the role
of the fluctuations on the relaxation of a self-gravitating system. He verified that
the Holtsmark law holds for a system having a density law given by p(r) ~ r7?,
with 0 < p < 3. He also found that the largest contribution to the local stochas-
tic force field distribution comes from the statistically more probable interactions
with few neighboring particles, rather than from strong perturbations by rare
collective effects involving distant particles. This result was already suggested
by the numerical simulations of Ahmad and Cohen (1973, 1974) and by Chan-
drasekhar (1941).

Implicit in the above works is that the gravitational field can be decomposed into
the sum of two independent components, namely a mean-field force due to the

global density distribution and a stochastic, fluctuating component. As stressed
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by Kandrup (1980a), this is rigorously true only for systems with no correlations
among the particles. Otherwise it would be difficult even to define a mean—field
component. However, if the correlations are weak, as happens when the system is
still in the linear regime, the decomposition of the gravitational field mentioned
above still applies. All the results we present in this chapter are valid only under
this assumption. i

It can be useful to compare the relative importance of the mean—field and fluctu-
ating components of the gravitational field in a realistic model of the protogalactic
system. To this purpose, we will make use of the results of the Chandrasekhar
and Kandrup’s investigations. Theoretical work (Ryden 1988) suggests that the
density profile inside a protogalactic dark matter halo, before total relaxation

and baryonic infall, can be approximated by a power-law:

o(r) = P78 (3.2)

TP

where: p & 1.6 on a protogalactic scale. The mean-field gravitational force from

this density distribution is thus given by:

_ GMie o
RGP

= (3.3)
Secondary peaks of the density field inside the spherical region will have a den-
sity distribution similar to eq. (2) above: n(r) = ng(r/ry)?, and will create
small-scale irregularities in the gravitational field. The average value of the force
induced by the secondary peaks was found by Kandrup (1980a, eq. (4.32)): how-
ever, his formula is valid only for p < 1. We will assume a conservative point of

view and adopt the value of Fyondom for a uniform medium:
Frandom = /dFFLV(F) = 8'879Gn7’peakn§1/}3 (34)

where n,, is independent of the position. Here Mpeak 15 an average value of the
mass of the scatterers. For the innermost regions where n(r) 2 ngy, this is a
lower limit to the actual value (Kandrup, 1980a), and is enough to allow an
approximate calculation.

The average force contributed by the secondary peaks of mass dmpeqr will be given
by: dFyandom = 8.879GN23dmyeqk, and in order to estimate the total average force

contributed by all the peaks in a given mass interval we have to specify n,, and
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Tpeak- The average density of the peaks of height v = §/0o inside a spherical

region is given by (Bardeenet al., 1986):

1 2
Mgy = W‘i G(%’YV)’ (3-5)

where R, is a typical radius of the object forming around a density peak. The
function G(7,7v) has been given by Bardeen et al. (1986) (eq. (Al19)). The
calculation of the mass associated with a peak of the density field is quite difficult
and different authors have given different solutions (Bardeen et al. 1986; Peacock
& Heavens 1990; Lucchin & Matarrese 1988; Ryden 1938). Here we will adopt
the expression given by Peacock & Heavens (1990):

22[4r [3]po -
v+ (0.9/v)15

Mpeak =

(3.6)

where po is the background density and v is a parameter which varies in the
interval 0.5 — 0.8 for a cold dark matter (CDM) spectrum. On a galactic scale
a CDM spectrum is well approximated by a power-law spectrum of index n=-
2, hence we have: v ~ 0.57, R, = 2'/2R;. By substituting equation (6) in the

equation for ng, one obtains:

ni = [L.‘)?’/?. ar
* o272 3

and finally the average force contributed by peaks in the mass range: 0 < mpear <

W

2 3
ez G(1,7v) -3 2
’ [73 + (09/1/)15} nzpe?xkﬂOa (37)

Mpeqk is given by:

- Mpeak 1
Frandom = /0 ’ dFrandom = 8879GC(’}’,’)’V)P3/3 -3 M ;eak7 (38)

where we have defined:;

= [e ()] [sEeti]

2 3 v+ (0.9/v)15

We can now compare the relative magnitude of the stochastic and mean—field
forces F,angom and Fp, by looking for the region where Fl.qngom > BF0, being 8 a

parameter which we will vary. From equations (3) and (8) we get:

Rays 4 =
( T 2| () uts . (3.9)
Rsys Rf,MAX 3.065 x 8.8790(’7,"/1/)
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Here Rjarax is the value of Ry associated with the value Mpcqr, for a given v.
Choosing the filtering radius sufficiently small w.r.t. R,,, will ensure that the
peaks generating the stochastic field can be considered point-like objects: in the
following we will take a nominal value Ry aax = Ryys/10. Moreover, from Fig.
2 of Bardeen et al. 1936, it is evident that n,,, and consequently our function
¢(7,vv) has a maximum at v & 1 for y & 0.57. The most relevant contribution to
the stochastic field comes then from the population of 1o density peaks. Taking
R,,s = 1Mpc we see that for p = 1.6 the region where the average stochastic
force of the 1o peaks is larger that 1/10 of the mean—field force (8 = 0.1) is:
r > 0.232Rg,,, i.e. a large part of the region. If 8 = 1, on the other hand,
we have: r > 10.75R;,;, i.e. the stochastic force field does not dominate the
dynamics inside a protogalactic region. It can only create a perturbation on the
average motion, leading to diffusion effects and dynamical friction.

However, we have still to evaluate the cumulative effect of many stochastic fluc-
tuations over a finite period of time. On average, a typical field fluctuation of

inagnitude Frandom will last for a time (Kandrup, 1980a, equation (5.29)):

15 2.603Gm,,eak)1/2 1
8 Frandam (3071‘3)1/6 (’02) .

T(Frandon) = ( (3.10)

At a given distance r from the center the crossing time will be: T,, = T/\/@,
and during this time a test particle will on average suffer T, /T ( Frandom) random
force impulses. Imposing the condition: [T /T (Frandom)] * Frandom > Fo we get
an estimate of the typical size of the region where the average mean-field force

dominates the random one during a characteristic crossing time:

(3.11)

0.472
> Rys [ } .

8.879 x 3¢y, vv)

(we have here assumed § = 1). Adopting the same values as above we get:
Tiim > 0.082 x R,,;. Hence we can conclude that, over a large extent of the
protogalactic region, the cumulative effect of the ”graininess” fluctuations of the

gravitational field can significantly affect the local dynamics.

In this chapter we will extend the previous analyses of Chandrasekhar, Von
Neumann and Kandrup to a system of clustered particles, for which the correla-

tion function is non-negligible: we will see that this fact increases the probability
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for it of experiencing a random force and the probability distribution itself. This
enhancement has important consequences for the calculation of the average du-
ration of a randomly induced force, but we will discuss these topics in a future
chapter (Antonuccio-Delogu, in preparation), where we will also study in detail
the effect of the stochastic force field on the dynamical evolution of a cosmological
density perturbation. In the present chapter we will restrict our attention to the
derivation and the main properties of the force and torque probability distribu-

tion in a clustered medium.

The plan of the chapter is as follows. In §3.2 we find an exact formula for
the probability distribution of the force generated by a random distribution of
peaks, inside a gravitationally clustered system, and we comment the different
distributions that will arise. The derivation of this formula is quite general and
not specific to the cosmological situation: it can be useful in other contexts, for
example in stellar dynamics. In §3.3 we derive another formula for the distri-
bution of the torques induced by this population of peaks, and in §3.4 we apply
these results to a specific example, namely to perturbations of galactic size in-
side a cluster. Finally, in §3.5 we summarize our results and comment on their

possible implications.

3.2 Force Probability Distribution.

Let us consider the gravitational field generated by point-like sources, randomly
embedded in a given spherical region of radius R,,,. We will call these objects
"subpeaks”. We consider two populations of subpeaks, having a correlation func-
tion finite or zero. Accordingly, we will characterize the two populations by the
subscripts: ¢l (clustered) and uncl (unclustered). This distinction will prove to be
useful for the applications we have in mind (§4).

We will assume that unclustered peaks have the following number density distri-

bution:
Aynel

7-uncl('r) = 7, 0 S T S Rsys (312)
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with 0 < p < 3, while for clustered peaks we assume the number density distri-

bution law:
aC

2
Ta(r) = ;—Z;,fexp (—%) , 0 <71 < Ryys (3.13)
0

with: p’ > 0. The introduction of the exponential cutoff in the latter equation is
dictated by mathematical convenience, as will be explained later and in the Ap-
pendix. The parameters o, oyno are connected to the total numbers of particles

inside the spherical region:

47 R3-P Reys ) 2
Nuncl - 2 CQunel, Ncl = 47TO£C1/ ’ d,rr2—P exXp |\ ——3 (314)
3—p 0 r§
We will assume in the following sections that R,y > 79, so that we can approxi-
mate: A ) ] )
v , r 1, . (3-p
Irr? P exp | —— | @ 215 P T | ——
/0 arn e ( rg) 20 2
The normalization constant of the clustered density distribution is then:
Ny .
< 4 Qo = P e (3.15)
2nry P'T (——zf-’—)

If we consider a test particle randomly placed inside the spherical region, we might
wonder what is the probability that it experiences a force F from the population
of subpeaks: we denote this probability by W(F). Let p(M)(ry,. .., ry) be the N-
point probability density function for the subpeaks. In general it will be given by
the product of the probability density functions for the clustered and unclustered
peaks populations:

pM(ey, . rn) = Aper - pV (e, en ) p W) (e 4q L eN), (3.16)

where A,,. is a normalization constant and: Ny + Nynag = N. We will conven-
tionally assign all particles with 1 <1 < N, to the clustered group, and particles
with Ny +1 <1 < N to the unclustered one.
The function p(Mune) is given by:

N

N, +15-0 0 I‘N) = H Tuncl(rj)- (3.17)
j=Ncl+1

p(Nuncl)(

If the n—point correlations for n > 3 are negligible, which is a good approximation

in the weak correlation limit, the function p(Me) can be approximated by:

N Nt
p(Nd)(I‘h .. .,I'Nd) = H Tcl(rl) : {1 + ZZ&(I r; =Tk D} (318)
=1

=1 k<2
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where € (| r; — ry |) is the two point correlation function and 7(r;) is the number

density distribution. Combining these equations, we get:

N Ny Nt
p(N)(rla"'arN)zAnor' H Tunel I‘J H’Td Iy {1+ZZ€ "“rk

j=Na+1 =1 k<s »
(3.19)
To calculate A,,, we will assume the normalization:
N
/ I @rmp™ (r1,...,t8) = 1 (3.20)
m=1

Being the two populations of particles independent, the above integral can be

decomposed as a product:

/H BrmpN (ri,...,rn)

Ncl
= / H dBTmp(Ncl) ( rth / H d37'[p(Nund) (rNcl‘I‘l’ rN) Ncl T‘[i\f'tuc’;d7
m=1 = Ncl+1
so that finally:
1
Anor = W—Nm (3.21)

uncl

In order to compute the probability distribution of stochastic forces, we will
closely follow the original derivation of Chandrasekhar (1943). More precisely,
our starting point will be his equation (52) for the quantity An(k), the Fourier
transform of the force probability distribution of a N-particle system (see also
Padmanabhan, 1990):

N
k) :/ H &Br, - p(N) (r1,...,rn) = Apor - Ade(k) . Ach(k) (3.22)
m=1

The expression for Ay, (k) coincides with eq. (53) of Chandrasekhar (1943):

. Nunel
AN pa(K) = 7= [ re T )] (3.23)

To obtain Ay, (k) we substitute the probability distribution p(Met) in equation
(52) of Chandrasekhar (1943):

=1 k<1t

Ath(k Nd/H Cl37‘ dkF ) HTcI r; {1+i26(tri"rk |)}:
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B [—1_/ dsreik'F(r)Tcz(r)}Nd + [—1— / d3T6ik'F(l')rcz(r)}NCZ“2.
N Nei
2NZ
(We are adopting a different notation from Chandrasekhar (1943) so the vector

k here corresponds to his vector p). Introducing now the definitions:

/cl3r1d3rze"k‘F(r‘)eik'F(r’")ﬁ (Jri—r2 [)7a () 7 (r2) . (3.24)

A,m,(cl,uncl)(k) = [/ d37'eik-F(r)Tcl,uncl(r)] ) (325)

Yetuney(k) = / PryPrye PR FED e (| v — 1y ) 7 unet (1) Tetumet (T2) 5

(3.26)
we find:
A (e(K) L 1\ Zy(k)

If the integral in eq. (23) above exists and is finite, also the limit: limpy,,  —co ANynq(K)

exists, and we have:

lim Ay, (k) = exp {—Auma(k)} (3.28)
uncl—00
where:
G(m)avk)%g o0 p=5 sin z
) = LG =y ]
l( ) Funet 2 G<7n)avk/R2sys ’ ! Z ’ (3 29)

We have denoted by: N and (m),, the total number and average mass of the
subpeaks, respectively, and by Rs,s the radius of the system. Observe that, due
to the isotropy of the density distribution, all the preceding quantities depend
only on k =] k |.

Similarly we obtain:

. . 1 Sk
lim A", (k) =exp |—Ag(k)- {1 4+ =2l
NC}r-E)O ch( ) e\p [ l( ) { + 2Al2,(cl)(k) 7 (3 30)

and A is given by:

G {m)a k)7 o0 - () aok
Acl(k) — acl'( <7n> ) 2 / deL?l exp _g_glr%)_.___ . _]; .[z_sin Z],
2 G{m)avk/R2,, ré z

(3.31)
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We now proceed to compute some quantities appearing in equation (27). From
equation (25) we obtain: Aj (k) = [4] ,(k)]?, and because of the isotropy
this last quantity does also depend on | k |:

’1,(cl)(k) =

Ry, 2 , . o/ )
= J,Vd ; / Cdr exp <—-r—2) r’? -277/ df sin § exp (zkr cos 0G(m> ) —
=N\ Jo A

orrg P'T (3—25’-) re

_ﬁ%[)&y dre\p( > /cLe\p( ( ) ):

To

_ 2N . (G(m)av)a‘:f‘l /0:* 06 ex _G’(m)av sin(kg)
B TS)"P’F (g:ZEZ) k G<"n)‘w/R%ys ) p 7"3¢ ¢(7—P')/2 B
2Z\fcl 3=p' 3-p' ( ' kG( )av)
=7 k7 (GiMm)a) 2 B|7T-p,—5— ), 3.32
T‘g—p F (9__52—) ( ( ) ) Rzys ( )

where we have defined:

, kG(m)a o kG(m)e \ sinz
— = lzexp | — . 3
B (1) = [, 20 () e 099

SYs 0

The calculation of ¥ (k) is rather lengthy and requires some care: we refer the
interested reader to Appendix A. In short, we perform an asymptotic evaluation

of the integral in the last term of (24) for large G(m)q.; the result is:

Lien(k) =
=a? 43P 1—75( 0)(GMg)*™" / dvv™ =) exp ( 2k ) cos (2(m)4,v) =
92 rév
e 1T (2ma "™ o
= a? - 4n? k3P "5 (—]—VK) (GMgy) ™" £(0)a(k), (3.34)

where we have defined:

/ dzz~ 5_”)exp< M—) cos(z). (3.35)

ez

In the above formulas, distance is measured in Mpcs, mass in units of solar
mass and k' in units of Mpc?/GMg. In order to obtain the probability distribu-
tion W(| F |) of the force induced by the subpeaks, we now consider the limit:
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limy_.e An(k), in the case: Ny, Nyna — 00,Nynet/Na = constant. From what

has been previously stated, it is evident that:

Af() = Jim An(k) =

15 (k
— Ay exp (= [Auna(E) + Au(R)]) - 41+ L ZE0(0) (3.36)
2 Al?,(cl)

and Ayna(k), Au(k), Ea(k) are given by equations (29), (31) and (26), respectively?.
The final step to obtain W(| F |) consists in substituting this last equation for
Ag(k) in equation (4.16) of Kandrup (1980a):

1

WIF D) = g7y

/D“’ dkksin (k | F ) A(k). (3.37)
We will plot the function: W(F) =4x | F |* W(|F |) in §4, whit a discussion
of some particular cases. For the moment we will make some remarks to justify
some of the assumptions we made during the derivation of equation (37).

Apparently, the introduction of two populations of subpeaks, with different clus-
tering properties, seems rather artificial. However, some of the integrals entering
into the definition of the function A(k) are divergent if the density profile is not
properly chosen. For example, the integral in equation (29) converges only for
p < 3, if Ry, — oo (Kandrup, 1980a), hence for power-law density profiles the
force probability distribution is defined only for these values. Considering the
number density distribution (13), the integral A.(k) and the asymptotic expan-
sion of ¥(k) exist for arbitrary values of the power-law exponent. However,
if we had chosen only one population of subpeaks with the number density law
(13), we would have noticed that the integral in equation (37) exists only if the
function kAf(k) decays rapidly enough for ¥ — oo, and this does not always
occur for the cases of physical interest considered in §4. The introduction of a
second population of unclustered peaks remedies this situation, and guarantees
the convergence of the integrals for arbitrary values of the power index p’ (pro-
vided, of course, that the unclustered peaks distribution has a power-law index
p < 3). From a physical point of view, one can think of the clustered peaks as

associated with shells of matter just infalling onto a protostructure which has

INote the difference with the analogous equation published in Antonuccio-Delogu & Atrio-
Barandela (1992) due to a journal’s misprint
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already collapsed and violently relaxed, so that the correlations have been de-
stroyed and the substructure contained inside it is predominantly non clustered.
We will show in §4 that, in a clustered medium, the force probability distribution
has a marked enhancement about the average values, and decreases much faster
at high values of F. This behaviour can be explained on the basis of Kandrup’s
(1980a) analysis, which shows that the most probable contributions to W(F')
come from the nearest particles. The correlation function causes an enhance-
ment of the probability of finding a particle in the neighborhood of a given one.
Following Kandrup (1980a), one expects that the resulting probability force dis-
tribution will be modified at about the maximum, which is of the order of the
average force produced by particularly proximate particles.

In the next section we will consider the probability distribution of the torques

generated by the subpeaks.

3.3 Torque Probability Distribution.

Let the torques be measured w.r.t. the center of the system: denoting by R
the distance vector from the center, the torque will be: T' = R X F. The
torque depends linearly on the force, so it is possible to derive the probability
distribution of the torques applying a reasoning similar to the one already followed
in the previous section. In fact, the force F enters into the derivation of the
force probability distribution (equation (37)) only through equations (20)-(21),
so only through terms of the form: eX*F. Substituting T for F we have: k -
T=k-RXF =FkXR-F. For a fixed k we will denote by © the angle
between k and R, and assume a spherical coordinate system having the axis
6 = 0 lying along the direction of: z = k X R/ | k X R | we easily obtain:
E-T = kRsin© -cosf | F |. Hence, in order to get the Fourier transforms:
ATpunct, Arjer, which are the analogous of equations (29), (31), it is enough to

make the substitution: ¥ — kRsin © in those equations, and so we obtain:
AT!uncl = Auncl(kR sin e), ATICI = Acl(kR sin @) (338)

The torque probability distribution will finally be:

1
(2m)°

W(T) = / P Az (k)e T (3.39)
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where:

Ars(K) = anor exp (—— [ATIWCI(I:R sin ©)+

. . 1 ETlcl(kR sin @)
Arja(kRsin 0) {1 T Ay B 0) [ | )

In order to compute the integral in equation (39) we consider a new spherical
coordinate system having as § = 0 axis a direction coinciding with the vector R.
From a simple application of spherical trigonometry we obtain: k-T =k | T |
sin © cos @, where @ denotes the angle between the planes defined by the vectors
R — T and R — k. The integral in equation (39) then becomes:

1
(27)3

T 27 oQ
W(T) = / dO sin O / 4o / dkk? Az (kR sin ©)-exp [—ik | T' | sin © cos 9]
0 0 0
The integral w.r.t. ® can be performed with the help of equation 3.715(18) from
Gradshteyn and Ryzhik (1968):

2

‘ d®exp [~k | T |sin©cos @] = 2nJy (k| T | sin ©),
0
where Jy denotes the Bessel function of first kind. Finally we get:

W(T)=W(T) =

(27)?

The integration of the latter is possible under conditions similar to those already
introduced in the previous section for the integral W(| F |): the presence in the
integrand of the Bessel function, which has a damped oscillatory behaviour for

high values of the argument does not substantially modify the conclusions we

w/2 ©0
/ dOsin O / dkk2 Az (kRsin ©) - Jo (kT sin ©) . (3.40)
0 0

have already reached in the previous section. Moreover, being the torque a linear
function of the force, one might expect that the dominating contribution to the
stochastic torques experienced by a given particle comes from a few very close
particles, as it was the case with the force distribution.

The knowledge of the distributions W(F) and W(T) allows one to calculate
various important quantities, such as, for example, the coefficients of the higher
order terms in a Fokker-Planck expansion of the kinetic equations for a given
system, the average friction force, and so on (Kandrup, 1980a). In the rest of
this chapter, however, we will only be concerned with the distribution themselves

and in the next section we will show how clustering affects their shape.
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3.4 Probability Distributions in Protogalactic
Structures.

In the Cold Dark Matter scenario galaxies and clusters form by the gravitational
clustering, merging and eventually violent relaxation of small-scale substructure
accreted onto the local peaks of the density field. We might expect that the mat-
ter inside a given region that will later collapse to form galaxies and /or a cluster
will be clumped in an hierarchy of "objects” having a wide range of dimensions.
In this section, we will restrict our attention to the force probability distribu-
tion generated by "objects” of "small” size (0 < Mo; < 109 Mg), which we call
" subpeaks”, contained inside a perturbation having the typical mass and size of a
galaxy (Mga ~ 1011 M), called protogalaxy. The protogalaxy is contained inside
a density perturbation having the size and mass of a cluster (Mcn = 101 M),
which we call protocluster. The subpeaks inside Mga come either from the pro-
togalaxy or from the protocluster: the two groups, however, will have different
density profiles and clustering properties. Following Ryden (1988), the density
profile inside the galactic perturbation can be described by equation (12) with
an index: p = 1.6, while for the peaks coming from the cluster we will assume
a truncated density profile given by equation (13) with ro &= R and p = p'.
By assuming these values the density profile in the interval 7 < Rga < Rgysis
accurately described by a power-law.

In an hierarchical scenario a protogalaxy forms and becomes nonlinear before the
protocluster inside which it is contained. All the considerations of the preceding
section apply under the hypothesis that the higher order correlations (n > 3) are
negligible, i.e. during an early phase of the collapse, while the density perturba-
tion itself is still in the linear phase of growth. The Universe today is non-linear
on a scale 8 — 10h~1Mpc (Peebles 1974), while on larger scales (roughly corre-
sponding to clusters of galaxies), it is still in a linear phase. Many clusters of
galaxies are turning around at about the present epoch, so until recently they
were probably in a linear phase.

As concerns galaxies, we can obtain an upper limit of the duration of the linear
phase of evolution, and consequently of the regime within which our considera-
tions are valid. It is often assumed that after recombination Gaussian density

fluctuations were present in the Universe, whose spectrum can be described by
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a power-law: P(k) = Ak" (Peebles 1980). The constant A can be obtained
from present-day galaxy number counts (Davis & Peebles, 1983), and the two-
point correlation function will be given by the Fourier transform of P(k), which
initially will be very small. Fall and Saslaw (1976) and Kandrup (1983) have
computed the growth of £(r,t) in the case: ¢(r,0) = 0: if this condition is not
satisfied the time scale to reach non-linearity will be shorter. We will then use
their calculations to get an upper limit for this time scale. They find that the
linear approximation applies as long as: 7 = At/ty = (¢t — to)/to < 1, where %o 1s
an epoch at which clustering inside the given perturbation begins. In a =1,
Cold Dark Matter scenario we have: t = T/(1 + 2)%/2, where: T = 2/(3Ho) is
the age of the Universe. Assuming now an epoch of galaxy formation of zo & 2.5
(Kashlinsky and Jones, 1990) the condition 7 <1 translates into: z > 1.2. A
protogalaxy becomes nonlinear at 7 = 1, i.e. ¢t = 2io; a protocluster becomes

nonlinear at an epoch given by (Efstathiou, 1990):

M KN
t t = Qto ( NL,Cl ) ’

that in our case corresponds to a redshift: z = 0.02. Hence, in the redshift in-
terval 1.2 < z < 2.5 the protocluster is essentially in a linear phase of evolution
and with a much smaller clustering, and our approximations apply.

Following Ryden (1988), if we take into account secondary infall the density pro-
file will be well approximated by a power law with index p = 1.6. The two-point
correlation function inside a protogalactic region will be the Fourier transform of
the power spectrum. In the following, we will first consider the case of a power-
law spectrum P(k) = Ak", for some values of the index n, and then the Cold
Dark Matter spectrum.

In order to apply the results of the preceding section we still have to specify
N, Nunat, the number densities of subpeaks originating inside the protogalaxy
and the protocluster, respectively. If we identify the subpeaks with regions of
small size surrounding local density maxima, our problem consists in specifying
the mass spectrum of structures forming in an hierarchical clustering scenario, a
problem tightly connected with the so called cloud—in—cloud problem (Bardeen
et al. 1986). This problem has been recently deeply investigated by many au-
thors, mostly because its solution allows to determine the mass function of cosmic

structures (see Heavens & Peacock (1988) for a recent discussion). Bower (1991)
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found a formula for the total mass fraction contained inside collapsed regions of
mass Msg around subpeaks of height §sc inside a larger region of typical mass

My, around a subpeak of height 6;,,:

3

1 n+3[]V[SG]ﬁ%:—

f(]\’fs@, (‘55@ ‘ ]Wtyp, 6typ) (UV[SG =

(2m)1/2 3 | M.(2)
n2
1| Msg | @ dMsc
Xp —= | —— e ‘ 3.41
xe"p{ Q[M*(z)} }MSG’ (341)

where M,(z) is the typical mass (averaged over the whole Universe) which has
collapsed by the epoch z. Substituting in this equation Mg and My, in place of
My, and dividing f by Msc we can compute Ny and Ny,., respectively, after
multiplying the resulting value by the volumes of the region.

We are now ready to show the results of the calculations, beginning with the
power—law cases.

<

3.4.1 Power—law Spectra.

In Figure 1 we plot W(F) for various values of the index n, ranging from n = —2
up to +1. We have assumed 2ry = Ry,s = 1Mpc, Msg = 1.2 -10°Mg, Mg =
10" My, Mcp, = 108¥Mg. A clear enhancement of the maximum probability
occurs, together with a rapid decrease of the distribution after an average value.
The enhancement is even more pronounced when we vary Ny: in Figure 2 we
keep n = —1 fixed and change N/Nynq in the range: 0 < Ny/Nynag < 3 x 1077,
The distribution is even more concentrated toward the maximum values.

In Figure 3 we plot W(T') for the same power spectrum of the preceding Figure,
for Nei/Nunet = 2 % 1077 and for different distances from the center. The steep-
ening of the distribution as one approaches the center suggests that stochastic
effects will influence energy and angular momentum transport especially in the
central regions of the protogalaxy. However, this can be intuitively understood:
the effect of the clustering will be to increase the average number of the nearby

particles, which are precisely those which mostly contribute to the average values

of the field.
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3.4.2 Cold Dark Matter Spectrum.

The CDM spectrum is given by (Bond and Efstathiou, 1984):
k

[1+ (ak + (bk)3/2 + (ck)?)1-13]/ 112

with: @ = 6.4(Qh?)" Mpc,b = 3.0(2h2?) " Mpc, ¢ = 1.7(Qh%) " Mpc. On galactic

and subgalactic scales this spectrum resembles a power-law with index between

-1.5 and -2.

In Figure 4a) we show different distributions corresponding to different values of

P(k)

(3.42)

Msea. Observe that also the unperturbed distribution, corresponding to a system
in which there are only unclustered peaks, has a maximum value of about 0.3,
slightly higher than the pure power-law case. Moreover, the decrease after the
maximum is very pronounced when clustering is present, together with a more
pronounced steepening of the function near the maximum values. This is also
evident from Figure 4b), which is the same as the preceding Figure but with a
different R,ys. As Ry increases, the relative fraction of clustered over unclus-
tered peaks decreases, and this explains why on average the distributions for the
clustered cases show less pronounced variations. Finally in Figure 4c) we can see
the effect of the decrease of Rs,s and of the increase of Msg. This plot is relevant
to ubderstand galaxy formation inside a group rather than a cluster. The effect
of clustering is the same as the preceding cases.

In Figure 5a) we plot W(T') for the same range of parameters as in Figure 4b)
and at a distance R = 50K pc from the center of the protogalaxy. The sharp de-
crease of the distribution is quite evident also for the torque distribution. From
Figure 5b) we can see how the torques’ distribution evolves with time: the two
curves correspond to z = 1 and z = 0.5. As clustering proceeds the distribution
becomes more and more peaked around the central, maximum value, in agree-

ment with the expectations from a near—neighbour theory for the complexion of

stochastic forces (Kandrup, 1980Db).

3.5 Conclusions.

Our task in the present chapter was to start an analysis of the gravitational field

fluctuations in a weakly clustered system. We derived an exact formula for the
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force and angular momentum distributions induced by ”"graininess” fluctuations
in weakly clustered systems and we showed explicitly their dependence on the
correlation function. The integrations were performed through asymptotic ex-
pansions, but, as is shown in Appendix A, they are valid for a wide range of
realistic cases. We will shortly consider some of the possible applications of these
results, which are still under development (Antonuccio-Delogu, 1991).

Various authors have stressed the importance of dynamical friction in determin-
ing the observed properties of clusters of galaxies (White 1976; Kashlinsky 1986,
1987). However, many authors have adopted the classical Chandrasekhar’s (1943)
formula which was derived under the hypothesis of an infinite homogeneous, un-
clustered system having a Maxwellian distribution. It is evident that an analysis
of the dynamical friction taking explicitly into account the clustering property of
the system (with all the limitations already noticed) can provide a more realistic
representation of cluster evolution. Generally speaking, the effect of clustering on
dynamical friction must be taken into account in any calculation, either numeri-
cal or analytical, of the evolution of a collisionless system. These considerations
can be applied to high density systems, because these systems can contain a
significant fraction of their mass, gravitational and correlational energy in small
collapsed regions. The formalism we have developed will allow us to investigate
the effect of substructure on the dynamical evolution of a density perturbation.
Other authors have already pointed out the role of neighbouring density peaks
on the temporal evolution of the density profile of a cosmological perturbation
(Rozgacheva, 1988). In both cases, the purpose is to go over the standard scheme
of an isolated density perturbation made up of spherically distributed, gravita-
tionally interacting shells.

The main limitation of the present work is that, as we have already stressed, it
is valid only as far as the correlations are weak; otherwise the spatial correla-
tions make it impossible to decompose the gravitational field into an average and
a stochastic component (Kandrup, 1980a). Many clusters and groups of galax-
ies presumably verify this condition, and actually many authors have adopted a
mean—field approach to describe their dynamics (e.g. Fitchett and Merritt, 1988).
Our next goal will be to apply these considerations to the study of the dynamical
evolution of galaxies in clusters, and in particular to the motions within the Local

Group (Antonuccio-Delogu, 1991).



3.6 Appendix A. Asymptotic evaluation of ¥ (k).

Our goal is to compute the six—-dimensional integral ¥(k):

.Gmg k-1 Gmgk -t
Yalk) = / d3r1/ d°ry exp (z——2—1> exp (z-——-—-—2——~—-2-) Ta(r1)Ta(r2)é (| vy — 12 |)
R3 »3 T T2
(3.43)
As we already mentioned, mass is measured in units of solar mass Mg and dis-
tances in Mpc, so that k will be measured in units of (Mpc)?/G M, . For arbitrary
7a(r1), Ta(r2), the integral (A.1) is not necessarily finite neither ought to be ex-
pressed in closed form. For the density profiles we are interested in (equation

13)) it is possible to obtain an accurate asymptotic expansion. We will also
p ymp P

estimate the error.

Let us define a new vector: p = r, — r; and choose a spherical coordinate sys-
tem having the vector k as reference axis for the calculation of the angles. Let

(61, ¢1), (0, ¢) be the coordinate angles for the vectors r1,p. Performing a change
of variables: &°r;d°ry — d®rid®p, where:

ry =711+ p* +2r1p{cosfcos ; + sin O sin b; cos(¢y — ¢)},

substituting equation (13) for 7,4(r), introducing two new variables: o, =

r12/Vk and performing the integrations w.r.t. the angular coordinates, we arrive

at:

Za(k) = A4k {[Hyp (k §) + Hao(k; €)] — [Hay (k5 €) + Ha (ks )]}, (3.44)

where we have defined:

Hy 2 (k5 6) =

[>S] [>) 2
- /0 dalaf'p/O do | oy — 0o |*Pexp (:i:inzavk(ﬁ(l,?)(al,a) — 20—2 k) E(Vko),
L)

(3.45)
and the functions appearing in this equation are given by:
1 o1+ 0 1 oL —0
o) = — S, ,o1) = — + ———————. 3.46
¢l(a) 1) O_% I o1 — 0 |3 ¢2(U 01) O’% | o + P I3 ( )

We will look for asymptotic expansions of the functions Hy4, Hoy in the limit
GM; — oco. For all the cases we consider in this chapter one has: mg, >

10°Mg > 1, so we are justified in adopting this approximation. The expansions
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for the integrals containing ¢1(c, o1) and ¢o(0, 01) are different, so we will consider
them separately. Many techniques of asymptotic expansions for Fourier-type
integrals assume that the region of integration is bounded (see, e.g. Bleistein and
Handelsman, 1986), so we will first choose a bounded region of the plane and we
will later study the behaviour of our expansion when the region is extended to
infinity. )

Let us begin with Hy+(k;€). The function ¢1(c,01) has no extremum point in
any bounded region of the first quadrant of the real plane, and is singular on the
straight line: oy — o = 0. We will consider the following region of integration:
T = (0,07) x (0, 07), and divide it into three regions: I' = I;UI;UT3 (see Figure

6), where we have defined:
I ={(c,01): <0< o0],0+e< o < o7},
I;={(0,01):2¢ <0< 0f,e< o <o} —¢},

: T3 ={(0,01):| 0 — o1 |< €}

In the limits: € — 0,07 — oo, I} fills asymptotically £2+. We will first consider
the integration over I';.
If 1 < p <5 the integral over the region I'; exists and is bounded. Using Hﬁg to

denote the part of the integral Hyy restricted to the region I';, we obtain:
Hi} =

[s9) o] 2
= / d01/ dofoy|o1—0 H2_p exp [imav (i + —U——_l-—q}’——) — 2-(-7—2} 5(\/150') <
0 0 o

o} |o—o1 P

2—p oo 2—p Mgy
<e ma,x(f)/ doyo; Pexp [i—| <
0 o

< 7P max () / dov= 5% exp|imayv)
0
Then:
| H(li) +HP |< 2P max (¢) /0 v™%" sin (Mmawv),

and this integral converges if and only if: —2 < (p —5)/2 < 0, which implies:
1 < p < 5. We assume that the value max(¢) is bounded, which is true for
the correlation functions we consider in this chapter. In what follows, we will be

interested in the limit € — 0. Clearly: lim._o [Hﬁz + H(ls_)] = 0.
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Let us denote by Hj the remaining part of the integral having as integration
domain the region I'; U I';. The asymptotic expansions of the integral over this
region can be computed through equation (8.4.49) from Bleistein and Handelsman
(1986), because the function ¢,(o,0;) is of class C* and V¢, Ixear;,2> 0 on the

boundaries of these regions :

o) 1 Jj+1 -
1a(may) = — —- L; - n)Wexp {imaydis}, 3.47
) = =3 (— =) [ W mW e magis) (347
where we have defined:
Lj=g; ]vvfll_p
j=0,1,...
gji+1 =V -L;

o2
By definition: go(0,01) = [0 | o1 — 0 |]*77 6—2;35 (\/Ecr), and W denotes the
elements of arc along dT'; U OT.
‘We will stop our expansion at the first (j = 0) term. The boundary dT'; U T is
composed of six arcs, each of which contributes an integral. Five of these integrals
are finite and go to zero when ¢} — 00,e — 0, and only one is different from

zero. In the limit € — 0 one obtains:

46(0) oo e : 2 v’
1= /0 dvv exp [:]:zmm,;;} - exp ~2r—8k (3.48)
Moreover, the condition for the existence of the limits € — 0 for some of the six
line integrals mentioned above imposes the constraint: 0 < p < 3, which results
to be the most severe upper bound on this quantity.

In conclusion, we have obtained the asymptotic expansion of H;(k; ¢) = Hi (% 6)+
H;_(k; £):

: 8E0) feo 2 2
mhr_{lm Hi~IL,+I_= —%(—22 A dvv™™?P cos (ma,,—&-) - exp [—2—:-8—]6} .
Finally we will estimate the magnitude of the error we made by restricting our
expansion to the first term j = 0. From equation (8.4.2) by Bleistein and Han-
delsman (1986) we see that for j = 0 the higher order terms in the expansion are
given simply by:

2

Mgy

2

Myy JOI

I=-

/FdXSh (sin(may@1) + sin(mg,d2)) = — dn - Ly.
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After some algebra, the main contribution to this integral turns out to come from

the arc element o = 0,07 > 0, and is:

€0 / doyo] P exp (—-—i—%k) = §%~—2ifi)

The integral is very small if:

k> [6(0) I(4 p)}m o,

Our choice p = 1.6,7¢ = 0.8 is sufficient to ensure the validity of this relation
over a large range of k.

Let us now turn our attention to the other integral, namely: Ha(k; €) = Haop(k; )+
H,_(k;¢). The function ¢2(c,01) does not have a stationary point in the first
quadrant of ®?; at variance with the preceding case it is completely regular in
every bounded region of 2. We will then choose as region of integration the
isqueu'e:

I ={(0,01):0< 0 <o},e<o; < o] +¢}.
(see Figure 7). Also in this case we will adopt the expansion (8.4.49) by Bleistein
and Handelsman (1986) and once again we find that the only term which is non-
zero in the limits: o7 — oo,e — 0 is precisely the one computed along the arc
lying on the axis ¢ = 0. The result is:

lim Hgi =

Mgy —+0CO

7T—2p . 2 ’02
exp [:}:zmav——g] - exp [-2—21:} . (3.49)
v

Ty

The total contribution comes from the summation of Hy, and H,_, and we

obtain:
2 2 202
H, -—’) / dvv™?P cos (mav )e*{p ——k|. (3.50)
v? ré

Finally, combining together the various integrals we obtain:

H1 - H'z = [H1+ - Hl_] - [Hg_l_ — Hg_] ~

0)/ dwwP™® exp [—%} cos (2mg,v) . (3.51)
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Figure Caption.

Figure 1.-Force probability distribution for a clustered system having a
power—law spectrum of fluctuations, for different values of the index: no cor-
relations (solid line), n=-2 (long-dashed line), n=-1 (short-dashed line), n=+1
(dot-dashed line). -

Figure 2.-Same as Fig. 1, but for Msg = 1.2 x 10" M and different values of
Na/Nunct: Na/Nuynat = 0 (solid line), Ny/Nyna = 1077 (dotted line), N/ Nyna =
3 x 1077 (dashed line).

Figure 3.-Torque probability distribution for power-law spectrum with n=-
2, and different distances from the center: 1=0.1 (solid line), 1=0.2 R, (dotted

line), r=0.5 Ry, (dashed line). The torque is measured in units of G My,,rg!.

<

Figure 4.-a) Force probability distribution for CDM spectrum, and different
values of Msg: Mse = 10*Mg (solid line), Msg = 106 My (dashedline), Msg =
10" My (dotted line).

b) Same as 4a), but for Msg = 10* Mg and different values of Ry, Roys = 1Mpc
(dashed line), Ry = 1.5Mpc (dotted line), Rgys = 2.5Mpc (solid line).

c) Same as 4a), but for Mg = 10* My, R, = 0.7TMpe.

Figure 5.-a) Torque probability distribution inside a galaxy-size perturba-
tion (Mg = 10" Mg) at a distance r=50 Kpc for different values of R,,, as given
in Figure 4b).
b)Same as 5a), but for R, = 1Mpc, z=1 (dotted line) and z=2 (dashed line).

Figure 6.—Path of integration for H;..

Figure 7.-Path of integration for Hy..



AYE!
AN-oL.EF.U Jo sjiun) aoduoy
o€ 0c¢

O, 01 x g1 = OS)y
adpyy ="y
odJygQ =

uIn1309 &,ﬂ Mu-1amog

(0M

164
F-f&c?.u jo sjlun) 22404
ot 0t 0¢

CIa01 X &1 = D5Jy
adpyl = ;.,:
adjygg =0

wnijradg mel-Jamod

()




ooc

00

(Dm

11 = (S5 /2 )60y

12331 e ploD

(ey sansiy

0’8

e1102dg me[-Jam0]

f aandiy

SCretceel'c0e8 I IZI9IC T+ ICI 2T 1I'I 0160 B'02L09°050¥%0C0205°00°0

(LM



d Jy 10

=%y g1 = (Crp /2y oo

J07e ]y jaec plod

(o1 sandyy

¥0

S0

(m

oot

20104

ad g = My 11 = (S /20 Yo

a1 Yaeq pred

00

10

<0

to

.Ev aindiy

S0

(Nu




Figure 5b)

Figure 5a)

1

Lo

e

o

o

-

=

- —

2 @
-

~ =

[ ~

= Qo

A 3

o =

- =

=

1 1 ] ) FWOUS PN PPN PPV PP 1 1 1 1

8.0

e
o

C2¥2eeeelzoeeIgILIelISI¥ICISTIIOoTe080408060%0E02°01°00°0

(LM

1

50K pe

I, =

Cold Dark Matter

8.0

Log{ M [Ma)

sgcret

-y

CTTI20CeIgILTIYIGIYICTIZIIlI0I8080208050F0€E0C01000

LIM

Torque

(=}
o

Torque



Figure 6: Integration path for the integral H;,.. The
dashed region is I';.
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Chapter 4

The effect of Dynamical Friction
on the Secondary Infall of
Matter on Protoclusters.

4.1 Introduction.

The accretion of matter by protocluster and protogalaxies before turnaround and
(eventually) full virialization, called secondary infall, has often been recognized
as an important feature to understand the formation of cosmological structures.
Starting with the seminal paper by Gunn & Gott (1972), many authors have
investigated the consequences of secondary infall on the features of the final col-
lapsed objects, like density profiles and collapse times (Gunn, 1977; Fillmore
& Goldreich, 1984; Bertschinger, 1985; Hoffmann & Shaham, 1985; Ryden &
Gunn, 1987; Bertschinger & Watts, 1988; Hoffmann, 1988; Ryden, 1988a; Hoff-
mann, 1989). Evidence for ongoing accretion and secondary infall comes from
the peculiar velocity field in the outer regions of clusters of galaxies (Regos &
Geller, 1989), as well as from recent X-ray surveys (Briel et al., 1991). In fact,
the effects of secondary infall are conjectured to be more easily observable in the
profiles of clusters, because these latter have a very long formation time scale,
comparable to the age of the Universe (in hierarchical clustering models), and
have probably not suffered violent relaxation in their outer regions (Geller, 1990).
For example, West et al. 1988 (see also West, 1990) from the results of numer-
ical simulations conjecture that subclustering should be more easily observable
in the outer regions of the clusters, outside the central virialized core, where the

accreted material has not yet relaxed. It is however very difficult to verify pre-
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dictions like these directly from the observations: as we saw in chapter 1, the
evidence for subclustering mostly comes from data near the center of the cluster,
simply because the number of galaxies decreases very fast with distance from the
center. The statistics then becomes very poor.

The mass function of cosmic structures could however also be strongly affected
by secondary infall. In a recent paper Cavaliere, et al. (1991) investigated the
effect of secondary infall on the mass spectrum of cosmic structures. They found
that relaxing the hypothesis of "istantaneous collapse”, which is implicit into the
original treatment of Press & Schechter (1974), in favour of a “time-resolved ap-
proach”, i.e. by taking into account the fact that actual halos accrete on a finite
time scale, the mass spectrum of the resulting structures is modified from the
original Press & Schechter form. One of the main ingredients in their paper was

an equation for the total mass accreted up to a given time ¢ from Gunn & Gott
(1972) (eq. 27):

(4.1)

M(t)=Mi{1+AM (t/t)*° — 1 }

M; AM/M; + (t]t)*?
where AM = M. — M; and M,, ., M; are the final total accreted mass and the

initial mass, respectively. This equation however was derived without taking into
account the effect of dynamical friction on the secondary infall. Our purpose in
this chapter will be to repeat the calculations of Cavaliere et al. (1991) making
use of an equation for M(¢) which explicitly takes into account this effect. As we
suggested alreay in the introduction to chapter 3, in CDM models one expects
a significant dragging due to the enhancement of dynamical friction inside clus-
tered environnment. Because we are interested only into the effects of dynamical
friction in the outer parts of a typical cluster, where linear theory can probably
still apply, the theory developed in the last chapter can be safely applied. In §4.2
we will compute the dynamical friction coefficient 7 starting from the probablity
distribution W (F') introduced in the last chapter. Then we will study the dy-
namics of a density perturbation when frictional forces produced by dynamical
friction are taken into account, and we will derive an approximate solution for
the expansion factor, the final collapse time and the total accreted mass (§4.3).
Finally, in §4.4 we will repeat the calculation of Cavaliere et al. (1991) starting
with this modified accreted mass equation, and we will study the modification

this produces on the final mass spectrum. Comments and a short summary of
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the results are provided in §4.5.

4.2 Dynamical Friction Coefficient.

Dynamical friction in a gravitating collisionless medium arises as a consequence of
the discrete nature of the phase space structure. The actual gravitational field felt
by an average particle will be the superposition of the mean field resulting from
the global mass distribution, and of a second flucuating component generated by
the interactions of the particle with the nearest particles, which occur randomly
as the particle travels through the system. In an ideal continuous system this
latter component would be zero in the absence of dissipational effects, in actual
self-gravitating systems this fluctuating component modifies gently the average
motion of a particle, introducing a frictional force —nv; the average displacement

of a particle from its initial position v then verifies an equation:

< % = V&(r) —nv (4.2)
The connection between 5 and W (F) was studied by Chandrasekhar (1943) and
further clarified by Kandrup (1980a). Under the rather restricting assumption
that there are no correlations among forces F and force derivatives dF/dt, which
amounts to assume that the random process generating the force probablity dis-

tribution is a Markoff process, one obtains (Kandrup, 1980a, eqs. 5.2 and 5.22):

b= (43)
where we have defined:
(F*T(F)) = / PEW(F)F?T (F) (4.4)

The outer regions of a cluster which are still infalling are also in the linear phase
of evolution, and the formalism developed in the preceding chapter (see also
Antonuccio-Delogu & Atrio—Barandela, 1992) allows a calculation of 7 taking
explicitly into account the effects of clustering (eq. 3.36). Observe that, according
to eq. (336), W(F') depends linearly on the correlation function, and from eq. 4.3-
4.4 we see that n depends linearly on W(F), so that we can write: n = 1o + 7.
In order to evaluate 1o we will closely follow Kandrup (1980a). We represent

the cluster environment as a collisionles medium, composed of a hierarchy of
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local density fluctuations characterized by some mass spectrum, consistently with
a hierarchical clustering scenario as it could arise in a CDM cosmology. The
precise shape of the mass spectrum will not be relevant for the calculation of
the dynamical friction coefficient: it can only introduce some factors of order
unity, but anyhow the calculation of 7 is only approximated and exploits many
other approximations which introduce comparable factors (Kandrup, 1980a). The
most difficult initial step is the calculation of the time scale for large individual
deflections in a collisionless system, T'(F). Many arguments suggest that in
a realistic collisionless system the contributions to this quantity coming from
rare scatterings with far and massive density fluctuations are statistically lesser
important than those originating from more numerous interactions with small

and nearby fluctuations. Then one can adopt eq. (5.48) from Kandrup (1980a)

and write:

(FZT(F)) ~ 888% log {112—(;%1122—@'112—5} (45)

<

Here (m),, and n,, are the average mass and number density,respectively, of the
generators of the fluctuating field. The average squared velocity for a system in
approximate virial equilibrium can be estimated as:

(v?) & G(m)e, N ?nl/3 (4.6)

av ?

where we have introduced the total number of objects N which generate the fluc-
tuation field. We identify the latters with the peaks in our density field having
an average size up to a given fraction f of the radius of the system, and we will
arbitrarily put: f = 0.1 The reason is that all the statistics in chapter 3 were de-
rived under the assumption that the fundamental interaction is newtonian: if the
generators of the stochastic field were distributed objects, one should also take
into account dipolar and eventually higher order terms. So we will cosnider only
that part of dynamical friction which is generated by ”"point-like” irregularities
of the gravitational field. It this way we are providing only a lower limit to a
more realistic situation: yet we will see that significant changes in the standard
dynamics of spherical density perturbations arise.

As a further approximation we will assume that density perturbations are gaus-
sian distributed. As we already stressed, many pieces of theoretical evidence

suggest that deviations from a pure gaussian behaviour develop early during the
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evolution and clustering of cosmological structures (Bernardeau, 1992; Fry, 1982,
1984, 1985, 1986; Grinstein & Wyse, 1986; Hamilton, 1988; Lucchin & Matarrese,
1988; Scherrer et al., 1991). Our choice is dictated by mathematical convenience:
as is well known, in the case of gaussian statistics many calculations involving the
density distribution of peaks can be performed exactly or with the help of well
known approximations (Bardeen et al, 1986, hereafter BBKS), and this allows a
significant simplification. With all these premises, the density (n),, can now be
estimated with the help of eqs. (4.5) and (4.11b) from BBKS:

(n)e =1.6 x 1072 (

n+5\¥* 1 -
) P (4.7)

6 t)RY’
where Ry is the filtering radius and a(t) is the cosmological expansion factor
(density here is measured in proper units). This equation gives the total number
density of peaks of any overdensity and mass. Given the radius of the cluster,
Ry, from what we said above we have: Rp = fR.. Inside a cluster of average
overdensity 8;,,, only a fraction of the total mass will be contained in regions of

average overdensity 6p. This fraction can be computed from eq. (11) of Bower
(1991), and is given by:

o [(14e ) ] s

In this equation o({m)y,) = A(m)au_%ﬁ is the mass variance. After having

introduced egs. ( 4.7- 4.8) into eqs. (4.3) and ( 4.5) and having performed some
algebra one finally finds:

6 _\¥*(3 f? Gim)a )"
=t () () a3/2(1.6x1o—2)1/2( Iz ) @ (49

The coefficient 7, can be computed in a similar way. We obtain:

Mel = To * He, (4.10)

where the factor ¢ does depend on the correlation function only, and for a pure
power-law spectrum it is a product of a function of the spectral index n and of
the central value §. We compute this latter function numerically with the help of

the equations and the asymptotic expansion for ¥.(k) of the preceding chapter
for each value of the index.
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As we said already in chapter 3, the friction coefficient is expected to be quite
small. However, as we will see in the next section, the dimensionless quantity

7T where T®) is a time scale for gravitational collapse is not negligible.

4.3 Dynamics.

The introduction of a drag term modifies the equation of motion of a shell of
matter embedded within a cosmological background. Adopting the same notation

as in Gunn & Gott (1972) we can write the proper radius of a shell:
r(ri,t) = ria(r, t), (4.11)

where r; is the initial radius and a(r;,t) is the expansion factor (the initial condi-
tion is then: a(r;,¢;) = 1). The equation of motion of the shell is (Peebles, 1980,
eq. 19.9):

d*r GM dr
‘ dar T () dt

Assuming no shell crossing the total mass inside the shell can be considered

(4.12)

constant. The average density inside the shell is given by:

3M
p ivt = '
plrist) drad(r;, t)r? (4.13)
Mass conservation requires:
_ pi(ri, ;)
e t) = Ly 4.14
plrt) = £ (414)
and inserting eqs. ( 4.11), ( 4.13- 4.14) into eq. ( 4.12) we finally get:
d?a 4G p; da
w3 e Ta (4.15)

The coefficient 7 is also a function of a(t): from egs. ( 4.9- 4.10) we can write:
n= 500'-3/23

where:

6 \*1/3 f3 G(m) gy 1/2
=44 (n +5) (Zx_n) (1.6 x 10-2)172 ( R (4.16)
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It will prove more convenient to rewrite eq. ( 4.15) in terms of a dimensionless
time variable: 7 = t/T,o, where:

.
Tg= "t (4.17)
@ Hi (Pi - pci)

is the collapse time of the shell in the unperturbed case, i.e. for n =0 (Gunn &
Gott, 1972), and p,; is the critical density. Introducing the notation: Ao = €T
we find: 2 J G 5T
a _apda G p; T3
20 g \ag ¥ = 0

dr? + Aod dr 3 a

We will be interested in the following into solution of this equation for small

(4.18)

values of the parameter \o; in Appendix 1 we derive an asymptotic expansion in
power of Ao to the solution. However, we will not really make use of this solution
in the present context, but of a related quantity, namely the correction to the
collapse time T. The drag forces determines a diminution of this quantity w.r.t
the unperturbed case; it is shown in Appendix 1 that the first order corrected

zollapse time will be given by:

0497
T
T, =T, 14+ X 11— 3 532 (419)

where the quantity ¢ is a constant depending on the initial conditions ami» and
6 =| 1 — pi/p. | is the average overdensity.

Plots of the solutions of equation ( 4.18) are presented in Figure 8, for a power—
law spectrum with n = —1.6, which, on the scale of clusters, approximates very
well the standard CDM spectrum (Ryden, 1988a). We solved eq. 4.18 also nu-
merically, using a standard Runge-Kutta fifth-order integrator. The differences
between the numerical solution and the first-order asymptotic expansion are neg-
ligible, and we plot only the aymptotic expansions in Figure 8. The small differ-
ence is a consequence of the smallness of the parameter Ag. From this Figure it
clear that an average shell spends most of its time near its maximum radius, and
the later collapse is enough rapid. Because we are inetersted into the behaviour
of outer infalling regions of cluster, we will predominantly consider values of the
parameters and initial conditions appropriate to these low density regions near
the maximum of their turnaround.

In Figure 9 we show the variation of T,./T,; with the overdensity 5. Observe that
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even in the limit of large &, the collapse time is always larger than in the unper-
turbed case: the magnitude of the deviation is simply proportional to Ag and, as
we see, is never lesser than about 1.1, even for low, very conservative estimates of
the total mass contained inside the peaks. The changes are even more noticeable

for lower &. In Figure 10 we show the variation of T./T; with (m)qy for different

s.

We must also observe that during the calculation we have kept fixed the value of

£o at the initial value, i.e. we have not taken into account any mildly nonlinear
evolution of the clustering, which would then have increased the dynamical fric-
tion coefficient. In all respects, the estimates of Ag and T,/T,; presented in this
chapter must be considered as lower limits: the real effects are probably larger.

These calculations show that the effect of dynamical friction is small but de-
tectable: one can then wonder about how this change in the characteristic time
scale for cluster evolution reflects on the time evolution of other quantities, like
the total mass accreted by secondary infall. We assume that no shell crossing
occurs , so the total mass inside the radius r(t) = ra(ri,t) will be given by
the cumulative mass distribution of all the shells. We consider the same density

model as in Gunn & Gott (1972, eq. 8):

Re
Pei+(ﬂci+f)+_pei -T_s" T>Ri
pei + p+ r < R;
Here pei, pe; are the critical and external densities (i.e. outer to the region of given
initial radius R;), p4 measures the deviation of the inner part from the critical
state and R; is the radius of the inner collapsed reagion. It is easy to verify that

for this profile the inner collapse time becomes:

T = L(Pci + p+) Piiﬂ

Hi o pY?
The time for collapse of the outer region can then be obtained from the following
equation:

T.\*? 2
(T > _ — {1 + Aog,\ou} (4.21)
o (pei = pet) + ()" (pes + p = pei)

where we have defined:

Vor /1 3/2

k= 3c <—§ + 1)



The overdensity is usually quite small, so we can approximate the total mass
inside R; as: M(t) = (47/3) p:R3 (r/R;)°. Inverting eq. 4.21 to find (r/R;) and

substituting in this later equation we finally find:

_ fL_ZRa pei (pei + py — pei) (ﬁ)2/3

Mo - : — (4.22)
3 P+ [1 + 2—’;—,9(1 - #)] + (pei = pei) (%) /

Eq. ( 4.22) can be rewritten in terms of the cluster mass at the epoch T, of core

collapse:

(£)" = |1+ Do+ o1 - )]

M(t)y=M(T)1+ ps 2/3
P+ [1 + o+ 22(1 - #)] +(pei = pei) (%)

(4.23)

This equation reduces to the Gunn & Gott’s (1972) eq. (20) in the limits of

Ao — 0. Introducing a new time:

<

2/\ 3/2
T = [1+A0+7°(1 —p)} T,

one can rewrite eq. ( 4.23) in a a form more similar to that of eq. ( 4.1):

2/3
(%) P [1+A0+%0(1—m]

_ 2/3
p+ [1 + /\0 -I" —2%(1 —_— l‘)] + (Pczp Pg:) <_:_I_f:z)

+

M(t) = M(T){1 +

(4.24)

In Figure 11 we show how dynamical friction affects mass accretion: the three
different curves correspond to different asymptotic masses My,,. Larger Mooz
are produced by larger initial overdensities, so the largest effects are seeen for the
smaller initial masses, as was already evident from Figure 9.

Finally we investigate another aspect of the dynamics of the collapse of a shell,
namely the dependence of the collapse time on the initial position of the shell. In
all the preceding figures we have considered the dynamics of those shells having
as initial conditions @omin = 1073, and then fixing the parameter c. We will
now look at the dependence of the evolution on the initial position of the shell.
At variance with the pure Gunn & Gott (1972) self-similar solution, we expect
that dynamical friction modifies in a different way the behaviour of different

shells. From Appendix 1, eq.( ??) defining: amin = dominA/v and noticing that
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Qomaz AV = 1 — GominA/V ONeE can write the coefficient ¢ as:

_ S \1/2 . 1/2 1 1—(1— /2 1 'n1/2
C(amin) — (1 O‘mm) _ Amin 4 o ( amm) . + o, _
Gmin (1 - amin) 2 1 - amin1/2 14 (1 — Oémin) /
(4.25)

Let us now put T, = 2t in eq.( 4.19). In a flat © = 1 Universe, if time is mea-

sured in units of the the value of ¢, corresponding to an Hubble constant of 100
Km/sec/Mpc the age of the Universe will be given by to = 2/ (3h), and the col-
lapse time in the no-friction case Tt; will be given by Te; = to-(37h/2) (1 + 5) 632

so one can write:

T. 4 &7
T, 3hrl+é
From eq.( 4.19) we obtain an implicit equation for the initial value of a of the

shell whose collapse time is twice the age of the Universe:

2 (1 41)"

min 1— By
: (Te/Tei-1)]

(4.26)

In Figure 13 we plot s as a function of the initial overdensity for two values
of the total mass contained inside the peaks. The interesting feature to observe
is that for small overdensities a large part of the region has a very large collapse
time, while for larger overdensities, as those expected for the core of clusters
at turnaround, the critical radius is quite large. This shows that the effect of
dynamical friction is large for small density perturbations, where the binding
action of gravity is comparable to or smaller than the resistance produced by
dynamical friction. This supports our preceding conclusion that the effects of

dynamical friction could be more evident in the outer regions of clusters.

4.4 Mass Spectrum.

The results of the preceding sections can be applied to the determination of the
evolution of the mass spectrum of cosmic structure, at least within those regimes
in which structure formation can be reasonably thought to proceed mainly by col-
lisionless gravitational hierarchical clustering. In CDM models this range proba-
bly extends from groups of galaxies upward in total mass. On smaller scales the
formation of structure has been probably strongly afffected by the interaction

with gas. On the larger scales, dynamical friction produced by substructure is
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the only dissipative effect, and, although very weak, it can significantly affect the
formation of those structure whose characteristic formation time scales are very
long, e.g. clusters of galaxies, as we have already shown in the introduction to
chapter 3.

A very successfull approach to the description of the mass spectrum has been
the Press & Schechter (1974) approach. Although based on some oversimplifying
assumptions on the statistics and the dynamics of structure evolution, its predic-
tion are remarkably close to the observations over a wide mass (luminosity) range
(Bahcall, 1979). One of the main weak points of the PS approach lies in the lack
of "temporal resolution” (Cavaliere et al., 1991), i.e. on the consideration that
structures on different scales evolve on different time scales. in a recent paper,
Cavaliere, Colafrancesco & Scaramella (1991) (hereafter CCS) have remedied this
situation introducing and solving an evolutionary equation which takes explicitly

into account the dynamics into the evolution of the mass spectrum (CCS, eq.
5.5):

ov , 2(MN) N N (.21)

T
The quantity N(M,t) is such that N(M,t)dM is the total number of objects”
in the mass range M, M + dM, and 7,7 are the timescales for formation and

destruction of the objects. These are specified by the following equations:
T, =2t.m™°/0, T_ = 2t./0, (4.28)

where m = (M/M,), M, is a critical mass and t, = M,/M, is an infall time
scale for the critical mass. The production time scale 7, is explicitly dependent
on mass, while the destruction time scale 7_ is constant. The balance is then
determined by the second term on the left-hand side, which describes the inertial
shiift of the mass spectrum as mass is produced. The only uncertainty left is in the
definition of the "objects” to which an equation like eq. 4.27 applies: ultimately
to a conversion from mass to luminosity which allows a direct comparison of the
theoretical predictions with the observed luminosity function.

CCS adopted the Gunn & Gott (1972) formula for the accretion rate M(t):

M(t) = M; {1 1 Moz = My RS } (4.29)

M; (Mopaz/M; — 1) + (¢/2,)%°
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We will repeat their calculations using the modified accretion rate ( 4.23). Eq.
( 4.27) with the source terms ( 4.28) can be solved exactly (Appendix 2), and the

solution reads:

N (t, ta(t, M)) = N (0, 5(¢, M)) exp {as,) (/O”“ o [M(a) +h(t, M)} ) }

M,
i (4.30)
where we have defined:

/T 1
bt M) = M — M (1) {1+ — T - (4.31)
1 + Pccp:‘Pel (t/Té)

and the coefficient ay, is connected to the index of power spectrum: a,, =
(n + 3) /6. Asinitial distribution we take a modified Press-Schechter distribution
(CCS, eq. 3.3):

| 1 M 1" 2 M \°
LN =N ] e {“5 <Mc(zz->” -

where: © = 2a,, = (n+3)/2, I' =2 — a.(1+p) and the coefficient p ~ 1.5

comes from a polynomial approximation to the number density of peaks (CCS,

eq. 3.1). A slight difference in the way we count peaks in this equation and
in the theory formulated above to calculate the coefficient of dynamical friction
Ao does not affect substantially our results, because the peaks which give rise to
the observed structure have typical sizes much larger than those producing the
substructure which originates the dynamical friction.

Given a mass spectrum N(M,t) one can obtain a luminosity function N(L,1)
provided one specifies a relation between M/L and total mass. In order to ease
the comparison with the results of CCS we will adopt the same relations they
adopted, namely: M/L oc M'/*. The results are shown in Figure 12. The two
curves have the same normalization, but the mass is shifted toward higher values
as a consequence of the variation in the accretion timescale (the shift term M in
eq. ( 4.27). The lower accretion rate connected to the revised accretion formula
of eq. ( 4.23) reflects in a larger shift from smaller to larger masses: the modifi-

cation of the mass spectrum is however not very large.
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4.5 Conclusions.

We have discussed the effects of dynamical friction on the dynamics of isolated
cosmological density perturbations and on the mass spectrum. The calculation
of the dynamical friction coefficient made use of the theory developed in a recent
work (Antonuccio-Delogu & Atrio-Barandela, 1992) and takes into account the
dependance on clustering. The efficiency of secondary infall “increasing the total
nonbaryonic mass in the outer regions of the protostructures is significantly de-
creased, becuse dynamical friction introduces a drag which slows the accretion.
The effect is more prominent in regions with low overdensities, and tends to vary
very fast with §. The effect on the mass spectrum is to produce deviations from
the original spectrum lesser prominent than those found when the Gunn & Gott
(1972) dissipationles model is adopted, and we have shown this by comparing our
results with those obtained by Cavaliere et al. (1991).

Our treatment however has exploited a few simplifying asumptions. First, our
equations for the dynamical friction coefficient applies only in the linear and
early-nonlinear stages of clustering, because of a theoretical limitation in the
underlying theory (chapter 3). Second, we had to model the amount of substruc-
ture present, and we assumed that this substructure does not evolve, i.e. that the
number density and mass spectrum of the subpeaks’ population producing the
stochastic component of the gravitaional field, which originates the dynamical
friction, do not vary in time. We did neither consider the temporal evolution of
the correlation function.

However, all these assumptions tend to underestimate the importance of dynam-
ical friction. For example, during the evolution clustering increases and conse-
quently also the coefficient of dynamical friction n, raises. All the effects quoted
above, if included, tend to slow the accretion and secondary infall of matter.
The results presented here can be seen as a sort of "low order” approximation to
a more realistic calculation, in which all the effects seen here should be larger.
Ultimately, the combination of mean-field gravitational field, dynamical friction
(weakly dissipative, first-order effect) and clustering should bring a given initial
system toward a quasi-relaxed, slowly evolving configuration. Dynamical friction
tends to slow the infall, to diminish the average separation of peaks, and as a
consequence to increase the clustering. But a higher clustering tends to raise the

dynamical friction coefficient: in the linear phase one has 7. /no o & 43 and
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this backup effects acts as a secular relaxation mechanism.

One of the main effects of dynamical friction should be a transfer of momentum
and angular momentum from the subpeaks to the larger-scale structure: this in-
duces a secular variation of the density profile of the subpeaks’ w.r.t. the higher
peaks of the density field inside which galaxies form, a process often called “segre-
gation” (Hoffmann et al., 1982; Farouki et al. 1983; Yepes et al., 1991). Another
effect observed in numerical simulations is the “velocity segregation” (Carlberg,
1991; Carlberg & Dubinsky, 1991), i.e. a tendency for larger mass particles to
have a smaller average pairwise velocity and velocity dispersions than the field
particles. Both these effects are a byproduct of dynamical friction exerted on
rare, high-density by the population of more numerous, low-density peaks. In
the next chapter we will mostly focus on these effects and we will compare the

predictions of a simplified exact theory for the evolution of clustering with the

results of these numerical simulations.
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4.6 Appendix 1.

An asymptotic expansion for the solutions of eq. ( 4.18) can be found using the
methods developed by Bourland & Habermann (1988, 1990) (hereafter BH8S and
BH90, respectively.). Let us write again eq. ( 4.18):

2 ¢ =2
%%‘ + )\ga—sﬂ% — _4139_ Pf;cz

If we consider the term containing the coefficient Ay as a perturbation, and we look
for an asymptotic solution for small values of the parameter Ay, we can exploit the
fact that we know in closed the form the solution of the “unperturbed” problem
(Ao =0).

We now introduce a “slow time scale”: T = Ao7 and a phase (BHS8, after eq.
2.1):

=20 4 yr) (4.33)

The precise functional form of ©(T') and ¢(T) depends on the problem: we will
define it later.

The solutions of the "unperturbed” problem can be given in parametric form
(§2.2.1):
(£ + domin) cos ([=7]20) = £ 7 <0

(;% + ao,min) cosh (71/29) - 2% 720

(& aan)sin (—10) - £0 7 <0
Him — Hitg = T 72 (4.34)
L (& + ) sioh (3470) =20 20

where we have defined:

pi pei — Pi 87G
/8 = ) T ) Hi = —/pe
Peci Pci 3 P
In the following we will also need an “angular velocity”: w(T) = ©'(T'), where

the apex means here derivation w.r.t. the slow time scale and E(T) is a slowly

varyin phase averaged energy:

By = <20 (%) — V(ao,T) (4.35)

94



and we have defined:

drGp T 4nG
V(ao, T) = |———Fize 4 2T (5 p )T (4.36)
3&0 3

We will look for asymptotic expansions of positions and velocities in terms of \g:

a ('ri’ T)=ao (ri,T) + Aoay (T‘i,T) + ...

%‘tf = b (1, T) + Aoby (1, T) + ... (4.37)
The dependence of E on T can be obtained solving an equation for an “action”,

as shown in BH90: il
— =-D 4.38
= —D(£,T) (4.38)
where the dissipation D(E,T) is defined as (Bourland & Habermann, 1988, eq.
2.11):

a0,mas 2[E — V(yo, ]
D(E,T) = [ a2 - /gyO ] (4.39)
< ag,min yO .

The “action” I(E,T) is defined by:

dev2 [E(T) — V(a,T)) (4.40)

20,mazx

I(E,T) :2/

ag,min

The integral in equation ( 4.39) for the V(ao,T) given in eq. ( ??) can be reduced
to:

/3 (M(a0,mazv)*/? ) 1/2
D(E,T) =2/~ /(A/(%W)m doy (a3 —1)""%,

where we have introduced the dimensionless quantities:

\ = 47T3GPiT6207 y = .‘”_Gf%:ﬂj“; - E (4.41)

The latter integral can be calculated with the help of eq. (2.225.(2)) from Grad-
shteyn & Ryzhik (1968), and finally we find:

v [t = @omnr/NY 1~ (d0masr /N
D(E,T) = 2\/5/\1/2 | { (ao,minV[\) ] 0 (a0, macV /) +
1 [\/1 — (a0min?/}) =1 /1 — (a0,masv/}) + 1} } (24)
20 (1= (@omasv/A) =1 /1 = (aomimv/A) +1
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We denote this latter function of @omaz,d0,min as ¢. Putting equations ( 4.40-
4.39) into eq. ( 4.38) one gets an equation for E(T):

dE | _de [— ATy _ rlz—o (4.43)

PR 2
Following BH90 we now solve this equation with the initial condition E(0) =0
(bound case), substitute the solution into eq. (4.34) and find w(T). This then

allows us to find the phase O(T') defined above from eq. (4.32). Proceeding this
way we obtain

; /2 22 \ 3
o) V2 4HMAY’ V2 ( de ) ~vH?T2\®3 , ,
T_}T(_T s\ T ) 9 +O0(7).
(4.44)
Now, the zeroth-order solution ag verifies the equation (BHSS, eq. 2.3):

82a0 47I'G 70_,
552 T 3 a2wr(T)

=0, (4.45)

which can be solved exactly w.r.t. the variable 1. This is the standard equation

for the expansion factor (Gunn & Gott (1972)), but for a modified, slowly varying
coefficient. The solution then reads:

_(F 1 B
ao(¥, T, ) = (—2—’; + ao,min> cos ([—71 ] 9) - % (4.46)
(for v < 0) and 6(%) is determined inverting the equation:
_ B 1/2 . 1/2
Y =w(T) - m [7 6 — sin ([~—7] 0)] + g, (4.47)

where: .

= Ll'a Y= 1- 6
The condition of full collapse is ag = @o min, | ¥ |'/? § = 27. Equating egs. ( 4.33)
and eq. ( 4.47) one obtains, for § = 27 (the initial value 1 is neglibly small, see

e.g. Gunn & Gott (1972)):

o (T.)
Ao

where T, is the final collapse time. One now expands this time in terms of

Xo: 7w = To+ o1+, T = AoTx = AoTo+Ao?71 +...The zeroth order contribution
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from the latter equation is:

V2 H?T? 3/ g5}
st \Te) e e 4
At zero order in A\ one has ¢(7p) = 0 and:
V2 [ HTR\*"
wlw =3\
so finally one has:
Y
To = W (4.50)

in agreement with Gunn & Gott (1972).

At first order in Ag one has:

V2 ([ HTANY? B de H72\° 3 , B
sy (752) 435 () (0752 gt =l )

<

(4.51)
Now, from BHS8S one has ¢’ (7) = Aw’(7) and, if a;(0) = 0 one obtains: A =

0,¢' (7o) = 0. After some manipulations one obtains:

1
Vix (_ﬁ)a/2i_1.

3c o7 To

1= —To

(4.52)
This is the dimensionless first order correction to the collapse time.

4.7 Appendix 2.

We will solve eq. 4.27 by the standard method of characteristics (see, e.g. Zwill-
inger (1989), §88). This can be applied to any linear partial differential equation
whose solution is known to be unambigously determined by the initial data and
the boundary conditions (i.e. if caustics do not arise) in the in the domain of
interest . It consists in reducing the problem for the original PDE to a set of

coupled ordinary differential equations. In our case we obtain:

dz dz )
’d—Sl = 1’.8—.;2 = 771(11?1(3)),

du  asp 9, s

= t:’xg Py — 7£u (4.53)
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with the initial conditions:

Where we have introduced a new variable: m = M/M,, because the coeflicient
74 in the original eq. ( 4.27) depends on this variable. The form of the equations
for N(m,t) is the same as the original one, provided one substitutes m = M /M,
in place of M. In eq. ( 4.54) we adopted some new definition for old variables:
zy =tz =m,u =N and a, = ©/2. It is easy to verify that z; = s, so s is

actually the time. The equation for z; can then be solved:

z,(t) = /Ot dom (o) + t; (4.55)

so that now the last of eqs 4.53 becomes:
B o ) e — oy, (4.56)
dt . 1.
The quantity ¢; coincides with the mass variable at ¢ = 0, and, using the identifi-
cation o = m we then write t; = m —m(¢) + m(0). We will adopt the expression

for m(t) given in the text, eq. ( 4.24), so m(0) = 0. Let us now introduce the

variable:

spl
w(t,t1) = u(t,t1) exp (atp )

c

our eq. 4.56 then reduces to:

d , .
71;’ = % [m(t) + 1] w (4.57)

whose solution can be written:

t
w(t, ) = w(0, ;) exp {ﬁﬁ / do [m(a) + M}}
t. Jo te
so that the solution for u = N will be:
asp [1 t
N(m, ) = £(0, t:(m, t)) exp (T [ tatoyts(o,m)] - t—), (4.58)

c c

with:

m) =m —m' (t/Té)z/B —1
faltm) {1 T 6100 (t/:r;)”:"} -22)

and m' = M(T))/M., B = pei — pei-
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Figure Caption.

Figure 8.-Modified expansion due to the introduction of dynamical friction
effects. The scale of the vertical axis is arbitrary, and § = 2 x 10~2. The un-
perturbed solution (solid line) and two perturbed solutions for (m),, = 10'* My

(dashed line) and (m)., =5 x 1012M (dotted line), respectively, are displayed.

Figure 9.-Variation of the collapse time with peaks’ overdensity, for differ-
ent (m),,. The value od &y, chosen is proper to the outer regions of a cluster
computed from the models of Ryden (1988b), assuming a central value of the over-
density 6, = 1.68/(1 + z4) ~ 1.29, corresponding to a formation eppoch zf & .3
(Gioia et al., 1990; Hnery & Arnaud, 1991). solid line: (m)q, = 5 x 10°M,
dotted line: (m),, = 2 x 101 My, dashed line: (m),, =5 x 1011 M.

Figure 10.-Variation of the collapse time with peaks’ mass, for different §.
solid line: 6 = 3 x 1072, dotted line: § = 2 x 107!, dashed line: § = 1071.

Figure 11.-The relative ratio of the accreted mass with friction effects in-
cluded to the accreted mass in the dissipantionless scenario of Gunn & Gott
(1972). solid line: Mpar = 2M;; short dashed line: M. = 4M;, dashed line:
M oe = 19M;. The value of ¢, are as in Figure 9.

Figure 12.-Luminosity functions. We plot the variation of the modified
Press-Schechter luminosity function solid line after accretion the lowest mass

peaks have accreted a mass comparable to the initial mass dashed line.

Figure 13.-Radius of the shell whose total collapse time is twice the age of
the Universe to. Solid line: (m)q, = 5x10° My; dashed line: (m),, = 5x10"2 M.
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Chapter 5

Evolution of Clustering in CDM
Models.

5.1 Introduction.

One of the distinctive feature of the CDM models for the formation of structure
in the Universe is the fact that objects form mainly through a dissipationless
aggregation mechanism, commonly referred as hierarchical clustering. Structures
on larger scales form via the clustering, collapse and eventually relaxation of sub-
structure on smaller scales. This process should produce at least two distinctive
features of present-day observed structures: a luminosity function very near (but
not necessarily) coincident with a Press-Schechter form (Bahcall, 1979; Binggeli
et al., 1988) and a two-point correlation function of the form ¢ ~ r=1® on scales
between 1072 — 10 Mpc (Peebles, 1980). In the preceding chapter we have consid-
ered the first aspect and we saw that when the dynamics of the collapse is taken
into account the mass spectrum does not evolves self similarly, as predicted in
“istantaneous collapse” models. However, we found that dynamical friction in
the outer low density regions of a forming cluster can slow this process.

In this chpater we will consider the effect of dynamical friction on the evolu-
tion of the dynamical properties of hierachical clustering models. In chapters 3
and 4 we have sen that a linear connection exists between an integral quantity
involving the correlation function and the coefficient of dynamical friction; this
suggests that this sligthly dissipative effect could influence some average prop-
erties of structures forming on long time scales, like the outer infalling parts of

clusters of galaxies. A confirmation of this comes from recent numerical simula-
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tions which showed an effect denoted velocity bias (Carlberg, 1991; Carlberg &
Dubinsky, 1991): structures forming inside peaks of relatively high density (called
galaxies) tend to have a relative pairwise velocity dispersion lower than that of
the background structure. Carlberg (1991) attributed this effect to the action of
dynamical friction, and showed that his results are in qualitative agreement with

a model in which the relative pairwise peculiar velocity changes as:

i é(z)dz

dvp _ 2 ) 2 xemx2| Ve
i —47Gpo ~ drpob(r)G* In AM,(r) |erf(X) ﬁ)xe v
(5.1)

where X = v,/ [21/ 201], o, is the velocity dispersion of the background particles
(halo), and A is the usual logarithmic Coulomb factor which takes into account
the probability of having rare, large scattering events. This equation can be de-
rived from the classical theory of Chandrasekhar (1943), so it can only provide
an approximation to the treatment of dynamical friction in an inhomogeneous
system. Kandrup (1980a) has shown that, for power-law density profiles, the left-
hand side of eq. ( 5.1) should be multiplied by a factor up to about 3 in order to
get the proper dynamical friction coefficient. However, eq. ( 5.1) has the merit of
showing an explicit dependence of the dynamical friction on the correlation func-
tion. The implicit assumption underlying the derivation of eq. ( 5.1) is that the
statistics of the gravitational field fluctuations is unaffected by the clustering, so
one can apply all the mathematical formalism of Chandrasekhar (1943) assuming
that clustering increases the local average density (p(r) — p(r) [1 + £(r)]). How-
ever, we have shown in chapter 3 that clustering modifies the force probability
distribution function, and in chapter 4 we have computed the dynamical friction
coefficient (eq. 4.9) and we have found that it has a value different from the one
given in eq. ( 5.1). It is interesting to attempt an analysis of the origin of the
velocity bias based on our new equations.

An equation like eq. ( 5.1) alone, however, does not allow a complete analysis,
because it is not self-consistent. Rather, it would be desirable to investigate how
the introduction of a secular weakly dissipative term of dynamical friction into a
complete set of moments of kinetic equations like the BBGKY hierarchy (Davis
& Peebles, 1977) affects the evolution of the clustering. This poses a formidable
mathematical problem, however. A possibly equivalent way could be to perform
N-body simulations, although present-day computers do not yet allow to perform

simulations on a very large dynamical range in a reasonable time.
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In this chapter we will attempt to follow both these strategies, i.e. we will look
for solutions of the BBGKY hierarchy and we will compare the results with the
outputs of numerical simulations. In §5.2 we will discuss the BBGKY hierarchy
and the modifications to take into account dynamical friction effects. In §5.3 we
will look for self-similar solutions of the equations introduced in §5.2: the system
of partial differential equations introduced in §2 will be shown to be equivalent
to a system of ordinary differential equations, and we will solve the boundary
value problem associated to this system. We then compare our solutions to those
of Davis & Peebles (1977), and, in §5.4, to numerical simulations performed
according to an algorithm which explicitly takes into account the frictional ef-

fects introduced by small-scale structure on the evolution of large-scale structure.

5.2 BBGKY Hierarchy.

A complete description of the clustering of matter in the Universe can be given
by the knowledge of the n — point probability distributions in configuration space
p{™, defined in such a way that: dP = p(™(xy,p1, ..., Xn, Pn,t) - [IFdx;dp; is the
probability of finding particle ¢ at a point x;, p; at a given time ¢t. In general, the
BBGKY hierarchy of equations can be written (Fry, 1982):

Jotk) k (%)
p Z px 9p™ ZZGm { 1 ](")p N

2 .
ma Bxl el 0x; | x; —x; || Op;

k
Gm? | 0 1 Opx
/ka+1dpk+1 Z—"Z‘Z“ ["’""‘ :! PEl g (5.2)
=1

0x; l Xi41 — X4 l 3pi
It proves however more convenient to introduced the "reduced” correlation func-

tions ¢(1, .., k) defined as (Davis & Peebles, 1977; Peebles, 1980; Fry, 1982):
C(l) = p(l)(xl’plyt)v

C(]-a 2) = p(Z)(le P1; Xo, p27t)) - p(l)xl; plvt)p(Z)(X%p?a t)a
C(]-a 2, 3) = p(s)(xla P1; X2, P2; X3, P3, t) - p(l)(xla P1, t)C(Q, 3)—
p(Q)(XQa P2, t)C(l, 3) - p(3)(X3, p3)t)c(172)a (53)
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and so on. In the following we will consider moments (and reduced moments) of
these quantities. One of the most useful defines the two-point spatial correlation

function:
2
[ Epidpacl1,2) = (ne) € (I 32 = 1,1), (5.4)

and analogously one can define the three-point spatial correlation function ¢(1,2, 3):

2
/d3p]d3p2d3p1c(1,2, 3) = (na3> C(|x2—x1 |, | X2 —x3|,| xa —x1 |,t) (5.5)

We will not derive here all the set of moments of the BBGKY hierarchy, and in
the following we will look for solutions of a system of equations derived from some
of these moments. We mostly based our work on the [a[er by Davis & Peebles
(1977), where a full account of the derivation can be found. We will only derive

in full extent an equation for the average pairwise velocity:

(V12> = 'W1_3)2/d3p1513p2c(1a2) (vo— Vl)

<

Here an in the following, v denotes the proper velocity. As we already saw in the
introduction to chapter 3, an approximate description of the motion of a particle
in the gravitational field of an highly structured system (like the environment of
a protogalactic distribution in a hierarchical clustering model) can be obtained
by summing to the mean-field contribution V®(r) a stochastic component with
a given probablity distribution W (F'). However, this latter component is usually
much smaller than the mean-field one (Kandrup, 1980b), and it changes on a very
rapid time scale, so the average effect on a particle will be that of introducing a
small drag force —pv. The pairwise velocity v,; between two particles at position

vectors ry, ry will then obey the equation:

d:l’;l = - [(ﬁ) var + 77(5)“21] —(Vy,® - V,,0). (5.6)

a

We must observe that this equation is valid only in an average sense, i.e. when
one averages over a time scale longer than the typical scale T'(F') of duration of
the stochastic force and smaller than a typical macroscopic time scale for the
system. These two extreme time scales are usually well separated in realistic
systems (Kandrup, 1980b), and eq. ( 5.6) gives an appropriate description of the
motion. In this sense, this is only a phenomenological equation: the real equation

of motion for a particle contains a first-order term which is a random variable of
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time: F,andom ().
Multiplying eq. 5.6 by ¢(1, 2), integrating over momentum space and making use
of eq. (72.1) from Peebles (1980) one obtains:

avgla aé) 3\ 2
<0t) + (v21) ——8-—111 [(na) (1—!—{)]—

et [ 0 et + 0T )+ 20ma Ty [ el

1+¢

2prCL/d3r§(1,2,3)%} S [(g +n>] (v, )Tr + 1—%—5% (5.7)
In order to derive this equation we adopted the assumption of spatial homogeneity
of the Universe, which is appropriate for the applications we have in mind which
are restricted to Friedmann-Robertson-Walker models. Under this assumption
all average quantities have components depending only on the radius, and this
allows one to write vo; = (vq;)r®/r. Finally, py in the latter equation denotes the
background density.
In principle the BBGKY hierarchy provides an infinite system of equations for
all the correlation functions. Under the hypothesis that the reduced correlation
functions are separable in momentum and physical space, an exact solution of
the hierarchy has been found (Davis & Peebles, 1977). However, this hypothesis
restricts greatly the possible mathematical form of the three-pont spatial corre-
lation function. Hansel et al. (1986) showed that this solution can reasonably be
applied only in the highly nonlinear regime.
In this chapter we will follow a more physical approach and we will introduce a
reasonable truncation scheme based on some plausible assumptions. In order to
make easier the comparison with previous results, we will adopt the truncation
scheme introduced by Davis & Peebles (1977), with some slight differences in
the notation. Before writing the full system of moment equations we recall some
of the notations adopted by Davis & Peebles (1977) and in this chapter. The

second order moment (vgvh,) can be decomposed in radial (i.e. directed along

the radius vector) and tangential components:
)Y
(1+¢) (")21”21) = {

(ma)
This quantity obeys an equation (Davis & Peebles, 1977, eqs. (48), (56)):

M- ropf

5

2+§( )}5aﬁ+ (5.8)

(ma)® 12
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— e [(ma&)3 (nas) (14 ¢) (v3 vy 1”21)] +4Gm? (na3) (14 £) (va1) — +
a B
2Gm?> (71(53)3/(13r3r3;§:31 (va3) [1 —l—f(rza)] /d37‘3 1) *———)\ (r12,723,731) =2
(5.9)

In this equation appears an important term, namely the skew third order moment
(vev5v3;). The main closure hypothesis of Davis & Peebles (1977) concerns this

term. They suppose that the tensor:

(Va1 — (var))® (var — (var))? (var = (vau))") = 0

This implies:

ropBpy
(Uglvglvgl> = —2(U21)3 3
r B . TB o, Tﬁ o Y
(va1) 7(”21”21) + ‘T—(U21U21) + 7(”21”21) (5.10)

This equation represents a crucial point in the development, because this severe
truncation hypothesis eliminates the need to deal with high-order velocity dis-
persion terms.

Another final major approximation concerns the three-point spatial correlation

function (1,2, 3) which is approximated as:

((r12, 723, 731) = Q [£ (12) € (r23) + € (723) £ (7a1) + € (ra1) € (T12)] (5.11)

This equation is actually the first of a series coming out of an hierarchical expan-
sion hypothesis for the n-th order spatial correlation functions which has been
hypothesized by Groth & Peebles (1977) and discussed later by many authors
(Fry, 1982, 1984, 1984b, 1985; Bouchet & Pellat, 1984; Balian & Schaeffer, 1985;
Lucchin & Matarrese, 1988; Hamilton, 1988; Bernardeau, 1992). It turns out
that the evolution at least until the early nonlinear regime (i.e. £ = 1) can be
well described by this equation, so this approximation for the purposes stated in
the introduction is well suited.

We will not continue with a detailed derivation of the final set of equations: the
major details can be found in Davis & Peebles (1977). The set of equations we
will consider is the following:

5t aa [ (146 (om)] = O (5.12)
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3
%EGman{;lg/OT dzz3 (1 + €) (vay) +/r°° dz (1 +€) (vm)} =0 (5.13)
d(v21) 3] 1 1 20 2 9 3
(1+¢) _B_t_ﬂv“)b—i (1+ 5)_;'(ma)2 {55‘; [(ma) (v1)* + H] +3 (I - E)} +
m mGpya [T a d®
RO+ P et T =~ (140 [S ] o) + 2 (5.14)

1d{v))2 1d a
2l 1 ey~ Sy, (5.15)
QG ro oo 7T . 2r N
1) = 22097 [% o ["dosing [ do:ze (12— [ [E(2) +€ ()
(ma)” r* Jo 0 0
(5.16)
U= 27era2/ drré (r,t) (5.17)
0
Egs. ( 5.12- 5.17) constitute a system of 4 differential equations in 5 unknowns,
namely: ¢, X, I1, (va1), @ (v1)?. We then need one more equation and some bound-

ary conditions to determine completely the problem. Davis & Peebles (1987) con-

sidered a second order (in time) equation obtained from the diagonal component

of the general equation for the second order velocty moments. This equation
contains two integral terms which, after some approximations, are reduced to
differential terms. These approximations however are enough arbitrary: they
involve hypotheses on the behaviour of the correlation function in the nonlin-
ear regime. Moreover in the final solutions they find that the behaviour of II
is rather arbitrary and ultimatelt depends on some joining conditions fro the
boundary value problem.

We will follow another path, namely we will specify the relationship between &
and II. This amounts to specify the amount of anisotropy of the structures we
are considering, and we feel it can provide an useful test for the physical mod-
els of structure formation. In particular, we will check whether the hypothesis
of previrialization (Davis & Peebles, 1977; Peebles, 1990) can provide results

consistent with the observations and with the numerical simulations.

5.3 Self-similar Solutions.

We will now look for self-similar solutions of the above system of equations ( 5.12-

5.17). Before doing this, we will take the fluid limit m — 0,n — oo with
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p = mn = const. This is necessary to eliminate the fourth term in the left-hand
side of eq.( 5.14) which prevents the possibility of obtaining a consistent set of
equations under the hypothesis of self-similarity. This choice was also implicitly
followed by Davis & Peebles (1977). Let us introduce a new variable: s = r/t,
where « is a coeflicient which will be determined later. Let us also suppose that
the dependence of the correlation function depends on r and t enters only through
this quantity: £(r,t) = £(s). Substituting into eq.( 5.12) we obtain the equation:
o3 * o [+ O] =0
This equation ultimately constrains the dependence of (vq1) on 7 and t. One can
verify by direct substitution that it can be satisfied only if:

_y {u21)(s)

(vg1) = ast®™! T (5.18)

One then verifies by direct susbtitution that eq. ( 5.12) becomes an ordinary

differential equation: ,
2 - [33(.”21)] =0 (5.19)

Proceeding in a similar way, one finds that all the equations ( 5.12- 5.15) can be
expressed as ordinary differential equations in the independent variable s in the
fluid limit, and in addition to eq. ( 5.19) we get the equations:

dy’ 1 1 d (’U,21> 2
e ve 9 il / el 5 / 0.2
s +“(a+3>2+34 ds{s 1+€[2+3(u1)} +

%@e {% [ dootium) + [ docr(u21)} =0 (5.20)

8:0256 / oot (0)- 2L Z [" o [ P00 -5 (o) +£(9)] =
_ [_; +of (Vu))] (uiz1) (5.21)

~as o (ul) +2 (a1 ) () =0 (5.22)

VO = 4x 0°° doa?é (o) (5.23)



where the quantities with an apex depend only on s and are connected to the

unprimed quatities through the relations:

Y = at®Y(s), (v)’=

-2/3
o .

The integral terms in equation ( 5.20) can be more conveniently reformulated as

We have also adopted the definitions: ¢y = aot

a differential term by defining two new variables:

1 s ) S
J(s) = ;-3:/0 doo* (usy) +/S doo(us)

. 1 s \
K(s) = ;5/(; doo*(uas) (5.25)
which are related through the equations:
dJ 3
— = ——K{(s 2
4= 2k(e) (5.26)
. .
%%==~§K@)+swﬂ) (5.27)
s s

The coefficient « is fixed by the boundary conditions on the correlation function

¢, and is connected to the index of the power-spectrum n by the relation (Davis

& Peebles, 1977, eq. (84)):
4

“T 9t
Apart for the fact that we did not use any second order equation, the main
difference between our set of equations and those of Davis & Peebles lies in the
term 7', which depends explicitly on a volume integral of the correlation function
(i.e. on V() as wesaw already in chapter 4. This term describes the effect of the

dynamical friction and its dependence on the correlation function. Our system

of equations describes then the dynamics of structure formation in a completely
self-consistent way. Observe that it is still a linear system of equations, because
also the coefficient 7" depends linearly on £ (via V@),

We notice immediately that eq.( 5.22) can be solved exactly and the solution
reads: :
(1)) (o) (2)" «#3
f13)¥(s) = (5.25)
(u1)? (s0) a=1/3
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The set of equations ( 5.18- 5.27) must be complemented by a set of boundary
conditions which describe the behaviour of the solutions at the extremes of the
integration interval. At any fixed time the extreme of the integration interval
(s_,s;) define two corresponding scales r_,r;. On small scales one can assume
that the correlation function ¢ describes a nonlinear regime, while on large scales
one can assume that it is still in the linear regime. The asymptotic behaviour of
the correlation function in the nonlinear regime can be predicted to be a power-
law: £(s) «x s™, v =2/(a+2/3) (Davis & Peebles, 1977, eq. (86)); inserting
this equation into eq.( 5.19) one can verify that also (ug;) must have the same

asymptotyic behaviour and one obtains the boundary condition:
3
E(s_)+ 1 (2 4+ n)(un)(s-)=0 (5.29)

Analogously, also in the linear regimes the behaviour of ¢ is predicted to be a
power law, although with a different exponent: ¥ = 3 + n, so one obtains the

second boundary condition:

§(s4) = —(uar)(s4) =0 (5.30)

Another boundary condition can be obtained from eq.( 5.25) and from the condi-

tion that at small separation the variable (u3;) changes as a power law; one then

obtains:
K (52) — 8% {ua)(s-) =0 (5.31)
At large s, one can similarly exploit the power law behaviour of (u2;) to obtain:
. 1
K (s4) = —s4(um)(s4) =0 (5.32)

At large s the last term in the equation for J(s) (eq.( 5.24)) can be considered

very small w.r.t. the first, and one has:

J(s4) = K(s4) (5.33)

Finally, under the assumption that the center of mass is at rest, one obtains:

/s+ dUO’(Ugl> =0

from which one obtains the boundary condition:
J(s=) = J(s4) = K(s-) — K(s4) (5.34)
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We have then obtained a closed system of 6 equations, namely egs.( 5.19, 5.20, 5.21,
5.23,5.26, 5.27) and the associated boundary conditions given in egs.( 5.29- 5.34).

In addition we have to specify the velocity anisotropy as a relation between II

and 2.

5.4 Results. -

We have solved numerically the system of equations considered in the precedinga
section using an algorithm based on a relaxation method with 1000 grid points;
the implementation is the one given by Press et al. (1986) in the routine SOLVDE.
The integration interval (s_, s4+) was chosen in such a way as to cover the distance
interval 50 Kpc-100 Mpc by the present epoch. The initial guessed solutions sat-
isfy the boundary conditions asymptotic behaviours, according to the preceding
discussion. The initial guess for {(s) was then chosen to be a power-law with two
different exponents at small and large s, joining smoothly in the middle part.
Substituting this into eq.( 5.19) we then obtained the initial guess for (uy), and
proceeding this way we obtained all the other initial guesses.

Peebles (1990) suggested that torques induced by substructure could induce ran-
dom motions inside primordial structure which ultimately could reach a virial-
ized, quasi-relaxed state at an eopoch approximately coinciding with the epoch
of turnaround, i.e. during the linear and early nonlinear stage. If the system is
virialised, one expects the relation II = ¥ to be approximately verified, and this
is the assumption we are adopting.

Dynamical friction could well act as the source of previrialization, and if this
happens already during the linear phase one should be able to observe the conse-
quences on the pairwise velocity profile: one expects friction to reduce the mean
pairwise velocity w.r.t. the unperturbed case. As one can see from Figure 14,
this is precisely what happens: the pairwise velocity is lower at larger separations
than in the case without dynamical friction. Here we have assumed a Cold Dark
Matter spectrum, and the dependence of the dynamical friction coefficient on the
correlation function is as specified in chapter 4. The difference is not very large,
approximately 30 Km/sec: remember however that, as we said in the preceding
chapter, the coefficient 5 is probably underestimated. Moreover, the shape of the
plot shows that also also the pairwise velocity dispersion is diminished w.r.t the

no-friction case, because the half-maximum width is smaller. It is also interesting
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to observe that the correlation function is not very much affected by the dynam-
ical friction (Figure 13): the crossing point at which ¢ > 1 is identical in the two
cases.

Our solutions cannot be directly compared to those of Davis & Peebles, because
the system of equations and boundary conditions we considered are different.
This explains some differences in the results: for example, our solutions for ¢
and (vq;) decrease very fast after the maximum. This is a consequence of the
hypothesis of complete isotropy II = X, which imposes a clear truncation of the
system if it has to have a finite total energy, while Davis & Peebles (1977) left
the value of II to vary freely and to compensate for the negative gradients of the
other quantities.

We find a sharp decrease of the average pairwise velocity also in a set of numerical
simulations we performed in order to gain more insights into the effects of dynami-
cal friction. These simulations were run using a copy of the TREECODE, kindly
provided to us by L. Hernquist, which we modifies as we are going to shortly
describe. The TREECODE implements a tree algorithm for the calculation of
forces and has been widely discussed elsewhere (e.g. Barnes & Hut, 1986; Hern-
quist, 1987). In short, the force acting on a given particle is written as the sum
of two components: F = F,, + Fno0th, where F,, is the force coming from the
direct summation of the newtonian potential provided by the nearest neighboors
(defined according to some "proximity” parameter), and Fynoon is the contri-
bution coming from an expansion up to quadrupole terms of the gravitational
potential of the distribution of all the other particles. However, in general, the
fluctuating component of the gravitational field is badly reeproduced in N-body
codes. This can be seen by comparing the average values of the fluctuating force
in N-body simulations with the one predicted on the basis of the CDM model.
From Kandrup (1980a) we know that in a discrete system composed of point-like
objects of mass m having an average density n the average fluctuating force is
given by (apart for some constant numerical factors): F o« Gmn?/3. Suppose
now that in the real system the fluctuating field is generated by a population
of n, peaks having characteristic mass m, = M f3, f? being the fraction of
the volume composed of peaks, while in the numerical simulation we have Ny,
particles and the total mass of the system is M;,; within a radius R,,s. One then

has: Mmsim = Miot/ Nsimy Nsim = sim/ngs’ and taking for n, the value given in
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chapter 4, namely: n, = 1.6 x 1072 - [(n 4 5) /6]*/* f3RZ3, one finally gets:

5Ys I

Fsim 6 -1/3 p—1
— =~ 15.75 X —— - N 5.35
F n+95 ! (5.33)

stm
p

In a treecode one takes into account direct interaction only with a fraction of
all the particles N;,.; typically if Ny, = 50000 an average particle "sees” by
direct summation about 500 particles in the simulations we performed. Then
from eq.( 5.35) one has: Fy;,/F, > 30.9. This suggests that only the high-force,
low probability component of the fluctuating field is actually taken into account:
all the small fluctuations induced by the small scale substructure are simply not
included.

To remedy the situation we modified the TREECODE by including a small scale
force component F(ss) in the treecode. This is generated by a Montecarlo gener-
ator which at fixed timesteps scans the probability distributions found in chapter
3 and adds this component to the force field. The duration of the force is com-
puted after Kandrup (1980a), and the parameters of the distributions are those
appropriated to the CDM spectrum. Essentially, our modified TREECODE is
a combined N-body and Montecarlo code: the random process generated by the
Montecarlo part reproduces the low-amplitude, high-frequency part of the fluc-
tuating gravitational field.

The introduction of the Montecarlo process tends to worsen energy conserva-
tion. This is because one does not take into account the back reaction of the
fluctuating force field on the total energy and angular momentum of the “invis-
ible” peaks’ population which induces the fluctuating field. We then arbitrarily
reduced the average value of the stochastic force until at the end of the runs
energy was conserved as in the original runs not including the fluctuating field,
l.e. to approximately 5%. A more appropriate procedure would consist in taking
into account the evolution of the low-density substructure, giving some prescrip-
tion on the way how it evolves with the background density, and considering
how it is transformed in larger mass substructure (i.e. in actual particles of the
simulations). We implemented recently such an algorithm, but the raise in com-
putational time did not allow us to run simulations with more than 5000 particles.
Although the results are encouraging, we feel that they are not yet definitive and
rather we prefer to show the results we obtained with the first procedure.

The results refer to numerical simulations performed with 50000 particles. CDM
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initial condition were created according to the algorithm by West et al. (1987).
The only difference is that the particles were initially distributed in a quasi-
random way inside a spherical region having an initial radius corresponding to 21
Mpc at the actual epoch. The quasi-random initial position and velocity genera-
tor is based on the Sobolev algorithm (Press & Teukolsky, 1989), and generates
initial positions which are strongly anticorrelated on small scales. The initial
positions and velocities are then sligthly modified according to the Zeldovich
solution. Our procedure should reduce the small-scale periodicities which are
generated when the particles are initially put on a regular cubic lattice (Peebles,
1990), although one must allow a sufficient initial number of particles to reduce
the Poisson noise. Qur choice of Ny, = 50000 meets this condition.

In Figure 16 we show the variation of the average pairwise velocity with sepa-
ration. This plot should be compared with the analogous plots from Efstathiou
et al. (1988) (Figure 5). The main striking difference is the reduced discrepancy
between the observed velocities and the Hubble prediction in our case. The in-
iterpretation is simple: dynamical friction reduces the average pairwise velocities
among particles. Similar effects were also observed in the simulations by Carlberg
& Dubinsky (1991), who prefer rather to speak of "velocity bias”. Observe also
the sharp decline with distance, in agreement with the solutions of the boundary
value problem found in the preceding section. The effect of dynamical friction is
evident also on the pairwise velocity distribution function (Figure 16) which is
remarkably simmetric, while Efstathiou et al. (1988) find asymmetries generated
by large bulk flows. We believe that these asymmetries are reduced when a small

amount of dynamical friction is added.

5.5 Final Remarks.

Our main purpose in this chapter was to study the effects of a dynamical fric-
tion coefficient assumed to depend realistically on the correlation function on the
evolution of clustering in CDM models. In chapter 4 we saw that the effects on
the dynamics of shell were little but detectable, especially low §, slowly evolving
environments. We have confirmed this fact in this chapter in a twofold way: by
looking for a self-similar solution of the BBGKY hiearchy with a proper trunca-
tion and by N-body simulations. The results are qualitatively comparable: we

have not attempted a quantitative comparison because we made many hypothe-
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ses to truncate the BBGKY hierarchy and it is not very clear whether hypotheses
are verified in the numerical simulations.

It is tempting to try to compare our results with those recently obtained by
Carlberg (1991) and Carlberg & Dubinsky (1991). The "velocity bias” of the
highest density peaks in their numerical simulations, i.e. the tendency of high
density peaks to have smaller pairwise velocities and velocity dispersions, could
be explained as a dynamical friction effect, and in fact the above authors sug-
gest this interpretation. High density peaks inside their numerical simulations
are bounded regions which move within the field generated by the background
particles: these latter produce the fluctuating field which exerts a drag on high
density peaks. However, we have also shown that the average properties of the
force probability distribution generated by the particles in a N-body code do not
coincide with those one expects in a CDM scenario, where much more abundant
and diffuse substructure cluster in a hierarchical way to produce the present-day
observed structure. We have remedied to this situation by modifying a N-body
code adding this small amplitude, gravitational force "noise” according to the
probability distributions found in chapter 3, and the results have shown a better
agreement with the predictions from the self-similar solutions of the BBGKY hi-
erarchy.

One problem of the present work is that the evolution of small-scale substructure
is not taken into account, i.e. the coefficient of dynamical friction do not depend
explicitly on time. However, we took explicitly into account its dependence on
the correlation function, and this produced a clear effect on the fact that the dis-
crepancy between pairwise velocity and Hubble-law predictions in the numerical
simulations tends to be reduced at small separation, i.e. where the correlation
function is larger. We think it would be interesting to check whether this dis-
crepancy will be similarly reduced when numerical simulations which take into

account the temporal evolution of substructure will have been completed.
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Figure Caption.

Figure 13.-Correlation functions. We plot the results for the case in which
no dynamical friction is included (n = 0, solid line), and those with a coefficient
n(€) = ncpm computed as described in the text (dashed line). The parameter s’

depends on the assumed scaling of the configuration.

Figure 14.-Pairwise velocities. In ordinate the average pairwise velocity is
displayed. n = 0: solid line, n = nopa:  dashed line. Absolute value of the
Hubble velocity (= —(2/3)s): dotted line. The parameter sq is the scale at which

the correlation function becomes nonlinear (¢ = 1)

Figure 15.-Average pairwise velocities from N-body simulations. The open

stars are averages over 10 simulations, the dotted line is the Hubble profile.

Figure 16.-N-body Pairwise velocity distribution. The histogram shows the

distribution of the relative frequency of particle numbers vs. the pairwise velocity.
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Chapter 6

Concluding Remarks and
Prospects for Future Work.

The main purpose of this thesis was to present some insights into the effect of
dynamical friction on the dynamics of structures which form on cosmological time
scales, like clusters of galaxies. The idea that dynamical friction can significantly
;ffect the evolution of clusters has been studied by many authors, starting with
the seminal paper by White (1977). Most of these studies have made use of the
classical Chandrasekhar (1943) formula, or of some corrections to it which take
into account the effect of inhomogeneities (Kandrup 1980a) and/or anisotropy
of the matter distribution (Binney, 1977), but not the dependence of dynamical
friction on clustering. Our purpose in this thesis was that of investigating better
the theoretical foundations of a theory of dynamical friction inside a clustered
medium, and to discuss some of its predictions. Our theory strictly applies only
to the linear stages of evolution: however it can be extended to the early nonlin-
ear stages, and non-gaussian terms can easily be included.

We also derived an equation for the torques’ probability distribution which could
be applied to predict the amount of previrialization induced by substructure. De-
spite recent efforts (Peebles, 1990), the issue of previrialization is still unsolved,
and our results suggest that a key point could arise from the coupling between
clustering and tidal torques’ field.

One of the crucial issues is the comparison with observations. Our predictions
apply to the outer infalling regions of clusters, and could then be checked against
observations of infall patterns around rich clusters (Schechtman, 1982; Ostriker

et al., 1988; Regos & Geller, 1989). The infall pattern of galaxies are used to
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predict values of by comparison with linear theory’s predictions, and a detailed
modelling of the motions of the outer shells is then necessary. One difficulty lies
in the estimation of the tidal field originated from deviations of the inner distri-
bution from spherical symmetry and from surrounding clusters. However, once a
model for the density distribution is chosen, it is possible to predict in detail the
velocity field around the cluster. i
Some useful indications about the effect of dynamical friction on the structure
of the innermost relaxed parts of clusters can come out of numerical simula-
tions. In this respect, the outputs of extensive investigations using the modified
TREECODE we described in chapter 5, which we are presently analyzing, could
tell us something about the effect of a clustering-dependent dynamical friction
coefficient on the relaxation processes acting inside clusters’ cores: ultimately
about the density and velocity dispersion profiles, and so on. This work is com-
plementary to the self-similar solutions described in Chapter 5, and there is much
to learn from a comparison between them.

Many more data about substructure in clusters and the outer infalling regions are
becoming available (e.g. Briel et al., 1991). After the completion of the ROSAT
survey it is reasonable to expect that the predictions of cluster formation theories,
like the present one, could be tested and tell us much more about the formation

of structure in the Universe.
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