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Chapter 1

Introduction

Quantum many-body problems in condensed matter physics are a context
of everlasting interest and relentless investigation in physical research. The
macroscopic amount of interacting degrees of freedom is such that even the
simplest models become extremely hard problems, in exact description as
well as in perturbative regime. The analytical and computational complex-
ity of many-body physics is deeply rooted in the foundations of quantum
mechanics themselves: the hardness of these problems undergoes a scaling-
law with the number of elementary constituents (size) of the system L, which
is typically much more abrupt than extensive behavior; it usually grows expo-
nentially with L. In physical literature a variety of models which have proven
to be particularly suitable for analytical study was developed, e.g. due to
some peculiar local structure or to some wide symmetry-group invariance;
however, the large majority of known non-perturbative Hamiltonians mani-
fest no attitude towards analytical simplification and must be faced head-on
with numerical techniques. Efficient simulation methods for condensed mat-
ter settings are many, often capable of integrating any bit of theoretical
knowledge, then crossing the remaining gap with computation. At the same
time, when no previous hint from theory is available, the exact problem turns
hard again, and computational costs scale fast with system specifics, so that
only very small sizes L are manageable for practical purposes.

The family of variational algorithms has always been regarded as one
of the most natural and promising paths in order to address many-body
problems at zero temperature: as ground states of Hamiltonians are minima
of the spectrum, searching them through variational procedures seems most
appealing. Yet the crucial point of any variational paradigm is the capability
of reducing the whole amount of degrees of freedom into a small number
of effective, important ones: these must embed all the relevant physics of
the target state, while requiring a limited number of numerical resources.

7



8 CHAPTER 1. INTRODUCTION

Such primary descriptors, or variational parameters (also known as reaction
coordinates in some contexts) need to be identified and discriminated from
the non-influential ones. This is clearly a delicate issue, especially if no
knowledge on the model is available. In other words, the selection a priori of
some appropriate basis of variational wavefunctions is the fundamental step
to undertake, determining the faithfulness and efficiency (and thus overall
success) of any variational algorithm we might want to develop.

In this thesis, we will focus on a very general family of variational wave-
functions, whose main peculiarity is that their descriptors/parameters are
tailored according to simple linear algebraic relations. The computational
power and success of these tools descends from arguments that were born
within quantum information framework: entanglement [1]. Quantum entan-
glement is indeed a resource, but it is also a measure of internal correlations
in multipartite systems. Once we characterized general entanglement prop-
erties of many-body ground states, then by controlling entanglement of a
variational trial wavefunction we can exclusively address physical states, and
disregard non-physical states, even before the simulation takes place. This
is the central concept which Tensor Network architectures are based upon.

Historically, the realization and profound understanding of this class of
states, was possible only after the introduction of Density Matrix Renormal-
ization Group (DMRG), curiously, an algorithm which is not formulated in
variational terms at all.

1.1 The age of Density Matrix
Renormalization Group

The idea of adapting a Renormalization Group algorithm to a lattice Den-
sity Matrix was proposed by Steven R. White, considered undoubtedly one
of the founders of the DMRG methods. In his first approaches [2] to the
technique, he was inspired by a paper of K.W. Wilson [3] where a numerical
renormalization group paradigm is applied to the Hamiltonian of a Kondo
problem.

The simple, yet brilliant, idea behind White’s formulation of DMRG was
to replace the traditional procedure of renormalization group, which acted
extensively in the real space, and thus actually performing a coarse-graining
transformation upon the system, with a scheme that applied extensively in
the Hilbert space dimension itself, leading to a site-by-site renormalization
scheme. In practice, assume that we are describing the state of a given
portion of the system (in terms of a density matrix) with a fixed amount
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of computational resources D. Now when another single constituent (a site)
is added to the subsystem, the resulting dimension grows linearly with the
local dimension d of the new component, ~ dD. Then renormalization is
performed, allowing us to represent the new subsystem with the same initial
amount of resources D, cutting the least relevant density matrix-eigenstates
out of the description. Obviously, such operations still manifest a group
structure, and they are summoned every time the density matrix dimension
(and not the real-space size) increases of a given factor d: thus DMRG.

The great amount of credit and interest gathered by DMRG is surely
due to its outstanding successfulness for low-dimensionality quantum sys-
tems. In particular, for one-dimensional (open-boundary) systems, DMRG
achieved variational precisions (compared to experiment, and theory when-
ever possible) that challenged other simulation approaches. At the end of
the "90s, it was considered probably the most powerful numerical method to
address 1D problems, with practically no knowledge on the model required a
priori. In literature, DMRG picture has been exploited in several settings of
both physics and quantum chemistry, and numerous variants of its original
formulation were proposed [4, 5]; in the end the basic idea was proven to be
winning, even though within its dimensionality limits.

1.2 The advent of Matrix Product States

The DMRG concept was quite renown, but it was in 2004 that the in-depth
reason of its success was fully understood: when F. Verstraete, D. Porras and
J. 1. Cirac started to investigate quantum states built via a DMRG algorithm
under a quantum information perspective [6]. In fact, they realized that
DMRG states had a strict equivalence relation with finitely correlated states,
i.e. lattice states whose entanglement is upper-bounded by an arbitrary finite
value, which does not scale with the system size.

Moreover, ground states of short-ranged (non-critical) Hamiltonians, have
been known for quite some time to satisfy the so-called area-law of entan-
glement [7, 8, 9]. This general rule was developed in quantum information
contexts, but carries important physical prescriptions. It claims that the
partition entanglement of a non-critical ground state does not scale as the
volume of the parted spatial region ~ L#¥ (which is the typical entanglement
scaling for random states), but rather with the parting surface ~ L#N—1
where # N is the number of spatial dimensions.

It is clear that for 1D systems, the correct area law is given by a non-
scaling constant ~ L% indeed entanglement of 1D non-critical ground states
typically saturates to a finite bound. This means, in turn, that ground states
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of 1D non-critical Hamiltonians are finitely-correlated states, and therefore,
that DMRG procedure can approximate them with arbitrary precision, and
their entanglement as well.

Moreover, ref. [6] has shown that finitely-correlated states allow a direct,
simple, immediate algebraic representation in terms of a product of matrices,
each of these matrices storing all the information related to a single renor-
malization process. This provides a one-to-one local correspondence between
DMRG, and these Matrix Product State (MPS) [10, 11, 12, 13] which, as
they allow an explicit analytic expression, actually form a class of tailored
variational wavefunctions.

Although not-homogeneously perceived by the condensed-matter physics
community, this discovery was definitely a breakthrough, for several rea-
sons. First, a variational formulation of DMRG opened the possibility for
new numerical strategies based on finitely-correlated states, so that several
minimum-search algorithms could be applied, but still using just the right
amount of necessary computational resources. Secondly, the algebraic MPS
expression provided faster ways to access physical information, and, at the
same time, it allowed innovative problem-solving options even from the an-
alytical point of view [14]. Finally, it is easy to generalize the MPS concept
to suit physical settings other than 1D, and still taking care of appropriate
area-laws. This argument lead, for instance, to the design of Product of
Entangled Pairs States (PEPS) [16, 15].

1.3 Entanglement Renormalization

The understanding of the relationship between DMRG, MPS, and finitely-
correlated states provided an unquestionable paradigm for dealing numeri-
cally with non-critical 1D system in a fully-contextualized theoretical frame-
work. Despite the fair success of adapting these algorithms to critical prob-
lems as well (although in a hand-waving and unnatural way), it was guessed
that due to the presence of scale-invariance symmetry, an old-fashioned real-
space renormalization group would be more appropriate to simulate strongly
correlated systems. Indeed, a state which is locally stationary under the
action of a coarse-graining transformation would definitely be scale invari-
ant. At the same time Wilson’s numerical RG had the unpractical feature
of suffering loss of short-range detailed structure, identified by translational
instability of entanglement.

An intriguing proposal to work around this trouble was introduced by
G. Vidal in 2007, who fist spoke about Entanglement Renormalization [17].
The idea is intuitive, yet very effective: we are still performing a real-space
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renormalization group, but prior to the renormalization process itself, we
apply a quasi-local unitary transformation, whose purpose is to decrease the
correlation among regions who are to be renormalized separately. Since the
goal of these unitary gates is to absorb, and thus store, entanglement out of
the pre-RG state, they are commonly called disentanglers. The disentangling
operation is then scheduled before every real-space RG operation takes place;
in the end, such entanglement renormalization acts at every lenghtscale, since
every RG step performs actually a scale transformation.

Similarly to DMRG and MPS, these entanglement-RG states have a vari-
ational counterpart as well. Precisely, it is possible to define a class of tai-
lored variational wavefunctions, whose descriptors are tied together by linear
relations, reproducing exactly the entire set of those states. Such states
are thus called Multiscale Entanglement Renormalization Ansatz (MERA)
[18, 19, 20, 21|, and manifest a natural attitude towards describing strong
correlation and criticality [22].

MPS, MERA, PEPS, are different classes of variational states sharing
some important attributes: they are able to capture interesting physics,
yet they require a small, manageable number of parameters, with simple
algebraic rules and direct access to relevant physical information. Physi-
cists started to regard them as belonging together to a larger, comprehensive
family of tailored variational states, whose entanglement can be directly con-
trolled through the selection of a related graph geometry. This is the concept
of Tensor Network states [23, 24, 25, 26].

1.4 Outline

The thesis is organized as follows:

e In chapter 2 we will present an in-depth review on Matrix Product
States, in 1D open-boundary conditions settings. We will show how
the MPS analytical expression is derived by the DMRG algorithm,
show its entanglement bounds and sketch their algebraic manipulation
features. We will explain how to achieve physical information on these
states in a computationally-fast scheme, and present some protocols to
simulate ground states.

e In chapter 3 we will generalize the concept of MPS to periodic bound-
ary conditions systems, and discuss how translational homogeneity of
the representation allows us to well-define the thermodynamical limit
for MPS. This will be the proper setting to show that MPS manifest
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natural non-criticality, whose signature is an exponential decay of two-
point correlations. We will then present possible generalizations to the
PBC case of MPS minimization algorithms, focusing on some tricks of
the trade useful to speed-up and stabilize the procedure.

e In chapter 4 we will explain how the MPS architecture can be gener-
alized to more complex Tensor Network geometries. We will investi-
gate the entanglement properties of Tensor Network states, and some
of their common algebraic features, like efficient contraction schemes
or the adaptability to fermionic contexts. We will also present some
remarkable subclasses of Tensor Networks, like PEPS and CPS, and
discuss on how they relate to each other.

e In chapter 5 we will put our attention on Trees and MERA, two classes
of Tensor Networks that share most of their main features. We will
show their natural attitude to describe critical states in 1D, identified
both by a logarithmic violation of the area law, and more importantly
by manifesting power-law decaying correlations. Critical exponents, as
well as the TTN/MERA state properties in the thermodynamical limit,
are completely characterizable by adopting a completely positive trace-
preserving map formalism. We will investigate other general properties
of such TN-architectures, e.g. the possibility to construct a parent
Hamiltonian.

1.4.1 Original content

Here I will list the original contribution I developed personally, either as
brand-new material or as a reinterpretation of previous knowledge, during
my Philosophiae Doctorateship.

e Section 2.11: analytical MPS representation of Slater Determinants,
many-body basis change, and configuration interaction states.

e Section 4.8.1: matrix product representation for correlator product
states (Jastrow factors).

e Most analytical results of chapter 5: scaling properties for TTN, parent
Hamiltonians, fluctuations, boundaries, hybrid geometries; and respec-
tive generalizations to MERA.

Part of this research was published in [27, 28, 29].



Chapter 2

Matrix Product States

It was in 2004 that computational physicists started to consider Density Ma-
trix Renormalization Group according to a Quantum Information perspec-
tive [6]; they realized that it is possible to understand DMRG in a variational
sense, in which the role played by entanglement and quantum correlation is
clear. Indeed, as a quantum many-body state achieved by DMRG proce-
dure is uniquely defined by the renormalization transformations (intended as
endomorphisms upon the density matrices space) one can regard such trans-
formations as variational elements, and every single choice of those elements
defines a state within a set of tailored variational wavefunctions. Nicely
enough, it was discovered that such states allow a simple and immediate
analytical description, where their many-body wavefunction, wrote upon a
product basis of one-body levels, appears just as a product of variational
matrices, thus leading to the name of Matrix Product States (MPS). As a
matter of fact, such transparent description allowed research to further in-
vestigate the properties of these states, leading to a deeper understanding of
DMRG as well, and in the end the new knowledge served well the purpose of
gaining more computational power in simulations, through a wider range of
algebraic manipulations and the adaptability of variational-based algorithms.

In the end, it was the Matrix Product State picture that helped to un-
derstand the deep physical reason of DMRG successfulness in 1D. Indeed,
MPS have proven to be in tight relation with 1D finitely correlated states
[30, 31], and in turn this set is known to include ground states of short-
range interacting non-critical Hamiltonians. Such argument holds not only
for finite, isolated systems, but extends naturally to open and/or thermody-
namical limit systems (as long as a zero temperature can be defined), allowing
DMRG/MPS to succeed even in these cases.

It is important to point out that Matrix Product State methods can be
successfully adopted for dealing with fermionic systems, and they naturally

13



14 CHAPTER 2. MATRIX PRODUCT STATES

avoid the sign problem which, in stead, is a major issue on other variational
fermionic algorithms like Montecarlo. Finally, MPS are not merely a numer-
ical tool, they have proven in various contexts to be fundamental to address
analytically several condensed matter models [32, 13].

2.1 Matrix Product State construction
from DMRG

Following the formalism of [2, 10], we start with a one-dimensional lattice,
L (length) being the total number of sites, d (local Hilbert dimension) the
number of levels per site, and where open boundary conditions (OBC) are
chosen for simplicity. Let us assume that we are describing a given quantum
state of this system obtained via a DMRG algorithm: D < d” is the maximal
number of states allowed for the each renormalization. Now let ¢/ < L be
the site where the last density matrix renormalization was applied in the
algorithm (while moving, say, to the right), this means that we know the
reduced density matrix of the state pZ, involving all the sites from £ to the
leftmost, but we only have access to its renormalized form: namely in stead of
keepmg in memory all its d’ eigenvectors |L;)7 and their relative probability

D; (Z] p; = 1, in decreasing order p; > pji1), only the D < d* of such
vectors are kept, of course those with highest probability:

bj
ZkD:I Pk

ensures that the new statistic p; is properly renormalized. The D vectors
|L;)F appearing in (2.1) are orthogonal by construction, and are normalized
on their space of definition (the left part of the system, i.e. sites to the left of
0); these shall be the only relevant vectors in the left part of the system which
will contribute to the full analytical expression of the global state. Now, the
trick of the trade, is considering that pf was obtained from the reduced
density matrix of the previous DMRG step pF | = Z]D q; | Li)E 1 (L;|, which
of course was renormalized Zf ¢; = 1. This means that, the D states |L;)} ,

joint together with the local levels |s) at site ¢, are enough to generate the
set of |L;)E:

B =Y B IL)F(L;l, where p; = (2.1)

PN AR ILYE @) (2.2)

k=1 s=1

Here AEf]j represents the decomposition over the product basis; it can be
either understood as a three-indices tensor (indices being s, k, and j), or
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since typically D > d, a d-long array (through s) of square D x D matrices
(from j to k). Preservation of orthonormality among |L;)* states determines
a condition upon A; indeed, assuming that the local basis |s) is orthonormal
by definition, one finds that the transformation must satisfy the equation

D d
«[ds 4145
AP Al =5, (2.3)
k=1 s=1
where the superscript * stands for complex conjugation. Eq. (2.3) can be
rewritten in an even clearer form once the A are intended as D by D matrices:

d

oAl Al =g, (2.4)

s=1

with - being the standard rows-by-columns matrix product. Equation (2.3)
follows directly from the fact that

= (Li|L;) E—ZZA*Z;] A (L L) - (st (2.5)

km st

but (s|t); = ds; by assumption, and (Lg|L,,)} | = . is the inductive
hypothesis, thus (2.3).

Moreover, looking at (2.4) under a quantum information perspective, we
clearly understand that the Al actually form a set of Kraus operators for a
completely positive trace preserving (CPT) map [1]; CPT maps are the most
generic transformations mapping density matrices into density matrices, they
represent the action of a quantum channel on an open system (for details,
see appendix A). On our case, the set of AY define exactly the CPT map
Mcpr performing the inverse DMRG transformation pf — pl | as follows

ﬁZL—l_MCPT Pe ZA[Z] ~L AT (2.6)

Let us now go back at (2.2); as DMRG procedure is recursive, one can
apply the same argument several times, for instance, until reaching the first
site. This leads to

d
Lyp= > (AL AR Al s @)@ @ sde  (27)

S1...8¢=1

the component of |L;)% over the local homogeneous product basis made of
|s1...8¢) is now expressed in terms of a product of matrices. These matrices
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have a number of rows and columns always bounded by D, although in
general it is impossible to require for all of them to be D x D square matrices
and satisfy (2.3) at the same time; typically, as the left boundary grows near,
their size shrink, up to the first site, whose A[Sll] are all one-row matrices.
Similarly, Al L] are one-column matrices.

In fact, we can associate a correlation space dimension Dy to every site
to the left of ¢ (more appropriately: to every bond ¢'), and state that the
matrices Asé, have common size Dy X Dgo 1. In order for (2.3) to hold, the
following inequality is a necessary condition:

Dy <d-Dy_; (2.8)

for ¢/ < ¢, where it is intended that Dy = 1. As (2.8) provides an upper
bound to the correlation dimension, so does the parametric renormalization
dimension D, typically acting as a simple cutoff. Indeed, in standard DMRG
algorithms it is a natural choice to adopt Dy = min{d", D}.

2.1.1 Completing the picture:
single center site DMRG

So far we understood how to represent in a clear, simple analytical way of
representing the left block states |L;)f of our DMRG. In order to complete
the picture to include the whole system we first need to identify which specific
architecture of DMRG (of those proposed in literature) is being used. For
simplicity we start with the case where the DMRG optimization is performed
by considering at every step a single center site (system) and the left and
right blocks (environment), as in ref. [4].

According to such description, the D left environment renormalized states
|L;)% |, joint with the right environment renormalized states |R;)%, and the
site levels |s)y, generate the DMRG state of the whole system:

D

d
[Tpame) = > D CHF [LE, ® |s) @ [Ri)E, (2.9)

jk=1 s=1

the components tensor C’][f,]: defines uniquely the precise state within the
DMRG space.

Now, the very argument we used previously to prove that for |L;)F,
eq. (2.7) holds, can be applied in a similar fashion to right environment
vectors as well. Precisely, if pFf = Z p;i |R;)F(R;| is a density matrix
obtained by recursive renormalizations starting from the right boundary (site
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L), we have that

d
Ryf= 3 (ngigl.....ngj}J.ngl) I5e01) a1 ® ... ® |s2)r. (2.10)

Spy1---8=1

Like before, we encounter a product of matrices Bgil,] (¢ > {); but notice that
this time the preservation of orthonormality property for the | R;)% states goes
from the right boundary towards the center site, i.e. propagating toward the
left. This means that the matrices Bg;l,] should satisfy a relation which is
different from (2.4), namely:

d
S BY. B =1, (2.11)
s=1

To satisfy the present equation the following constraint on matrices dimen-
sions (Bg] being a Dy_; X Dy complex matrix) is due:

Dg/ < d- DZ’—H) v > E; D, =1. (212)
Consistently, the CPT mapping associated to Bl performs the inverse RG
transformation, i.e. towards the right

d
~ - . e . /
P =M [pp] =Y BT - BY (2.13)
s=1
After all these considerations, we can put (2.7) and (2.10) into (2.9),

the state |¥pyra) appears automatically expanded in the natural separable
basis:

d
=3 (A[;j-...-A[sij]-CW]-BV“}-...-B@) Is1...s0),  (2.14)

Se Se+1
s1...s,=1

where C’s[f_,] has been written as an array of matrices as well. Notice that the
term within the parentheses is a scalar due to the fact that the A[Sll] matrices
are actually row vectors (one-row matrix) and the B are column vectors
(one-column matrix). Equation (2.14) tells us that all the components of
|W) over the canonical basis are the product of L matrices, which are local
objects and depend only on the state of the site they are associated with.
This is the definition of Matrix Product State [6].

Once we require that matrices A and BY respectively satisfy (2.4) and
(2.11) in order to preserve orthonormality of environment states, the proper
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normalization of the state |¥) becomes an equation involving the element

C’S[i} alone. Indeed we can explicitly calculate the norm of |¥) by exploiting
its MPS representation (2.14), as

d
W)= Y (e all). (Al eall)

s1.sp=1
< (cllo o) (B e 5l (Bl e B, @19
which, after some algebraic manipulation, reads
d
(Wey = 3 T [AMA?] LAl
s1..s=1

- Bt pilt* ol 4 .ATZ}ATQ]]. (2.16)

SL—1 Se+1 Se—1

And, by exploiting (2.4), (2.11) and cyclicity of the trace, all the AYT and
B matrices disappear from the equation. In the end, we are left with

1= (U|T) = ZT [Cgﬁcﬁfj] - Z Z(inj ol (2.17)

sp=1 J,k=1 s=1

the desired normalization condition. We would like to remark that manipu-
lations performed in order to derive (2.16) are identically suitable if we were
to calculate the one-site reduced density matrix p' of |¥) at site £, namely

ZTr[ oot ]| Yl (2.18)

s,t=1

- TI‘gc

where, clearly, the partial trace spans ¢¢, the complementary of /. Simi-
larly, the reduced density matrices pF and plt are easily accessible one the
representation (2.14) is at our disposal. In fact, those read

pr = Z Z Ao lls) 5y (k| Z Z BO i k], (2.19)

j,kom=1 s=1 j,k,m=1 s=1

and all the other reduced density matrices achieved through the original
DMRG algorithm can be generated starting from the previous expressions
via (2.6) and (2.13). In practice, the MPS representation (2.14) provides us
a quick access to the whole information of the DMRG algorithm, and at the
same time is more immediate and flexible than DMRG itself, proving a useful
computational tool as we will see later on.
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2.1.2 Double center site DMRG

The original DMRG protocol proposed by White (2], and most of the DMRG
architectures still in use nowadays adopt a slightly different picture than the
one we presented in (2.9). The basic idea is to consider the active system
block on which to perform the minimization as it were composed by two
adjacent sites in stead of just one, coupling to the left and right environments
as before. Of course, at fixed renormalization dimension parameter D, this
procedure is more expensive from a computational point of view, but provides
a big gain in algorithm precision and rapid convergence; moreover, it allows to
manipulate symmetries in a more natural and flexible fashion, thus improving
algorithm stability.

|¥pnMraG) = Z Z Th L) ®18)e ® [thers © |Ri) i, (2.20)

J,k=1s,t=1

In order to recover a complete analytical expression of the form (2.14), some
manipulation on the components tensor Tjskt has to be made. The simplest
path to take, is to consider two composite indexes o and [3: « representing
the pair {7, s}, while /5 representing {k,¢}. This allows us to write T, as a
matrix from index « to 3, of dimension dD x dD. At this point we perform
a Singular Value Decomposition (SVD) upon 7"

T.s =AY X, BIFY, (2.21)

where A and BI**1 are unitary matrices, and the diagonal matrix of singular
values is positive semidefinite, i.e. A\, > 0 V~. If we write again Al and Bl
in the original j, s and k, t indices it is clear that they satisfy the proper
orthonormalization propagation requirements, respectively (2.4) and (2.11).
This tells us that (2.20) can also be interpreted as follows

[Wonre) = Y Ay [L)f @ R, (2.22)
=1

where, following the formalism of (2.2) we substituted

E—ZZA[E] N ®@ls)e  and

]151

41
e _ZZBH]t |Ri) i1 @ [t) e

k=1 t=1

(2.23)
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Indeed, as |L,)} (resp. |R,)I) form a set of orthonormal vectors for the
left (right) partition of the system, equation (2.22) actually represents the
Schmidt decomposition of |Upyra), cut at site /. The Schmidt coefficients
A, must satisfy the normalization condition 1 = (¥|W¥) = 3~ A2; they are the
positive square roots of the probabilities p in the (dD-renormalized) reduced
density matrices of either partition of the system. The latter read

dD aD
=D MIL)LL =Y RIR)HR,. (224)
y=1 =1

In conclusion, the SVD decomposition (2.21) allows us to recover a matrix
product expression, substantially identical to (2.14). Precisely

d
= S (Al AN BB s s, (229)
s1...s,=1

where A\ is intended as the diagonal matrix with elements )\Lf]. Normally, in
order to press further on with DMRG algorithm, the left (or right) density
matrix should be properly renormalized to be D x D dimensioned; but this
is straightforward, by just cutting off the smallest singular values A, until
only the D largest of them remain, and renormalize as follows

A=
oM
VESX

so that state normalization (W|¥) = 1 is preserved. Even after this cutoff,

D
ye{l.D} — Y X=1, (2.26)
v

AL@ will still satisfy the condition (2.4): this descends automatically from
the fact that if any number of columns are cut out of a unitary matrix, a
left-isometric rectangular matrix (ATA = 1, but AAT =P = P?> =Pl #£1)is
obtained, thus (2.4). Similarly, the Bﬁiﬂ] resulting from the cutoff will still
satisfy (2.11).

It is trivial to make (2.25) formally match (2.14), we can either identify
cll = ALZ]A[@, or alternatively U = NOBIY and recover the previous
formalism. Similarly, we can manipulate (2.14) to appear in the latter form,
such operation will be clearer once we introduced a state-invariant transfor-
mation (gauge) of the MPS representation, which we are going to review in
section 2.5.
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2.2 Valence bond picture and
MPS entanglement

Interestingly enough, it is possible to interpret Matrix Product States in a
way [6, 10] that clarifies many of their quantum correlation properties, often
referred to as wvalence bond picture. The basic idea is to start by considering
an auxiliary system space that is actually larger than the proper Hilbert
H = C of our 1D (open boundary, so far) system; then we project onto the
original system by means of a local transformation. Let us associate to any
site of our quantum chain a pair of D-dimensional spins, one per bond formed
by that site. the starting state is prepared so that every pair of virtual spins
corresponding to the same bond, is initially in a maximally entangled state
&) = D2 Zg |acr), known in literature as entangled bond. Then apply a
local on-site map

d D
s . aux
A= 0D A 1) Gkl (2:27)
s=1 j,k=1
to every site ¢ € {1..L}, where |s), is a canonical state in the local phys-
ical space at site ¢ while |j,k)3"™ is a vector of the (double spin) respec-
tive auxiliary space. Equation (2.27) applied on the initial valence bond

state @, A(®, |2)2% ) leads to an expression where auxiliary indexes

of neighboring Age],: are contracted. Then, by writing any tensor ALZ],: as a
set of d complex D x D matrices, the state we are describing is naturally
expressed in the matrix product form

d
= Y (A[;ll-AQ-...-ALL;}]-ALLL]) Is1... 1), (2.28)

s1...s,=1

In general, not only the A operations, but even the auxiliary dimension D
of the entangled pair |®*) can be site dependent; this way the A matrices
are Dy_1 X D,y dimensioned (where Dy = Dy, = 1 to ensure that the complete
Matrix Product expression is a scalar quantity).

It is important to focus on the fact that, since the Al are basically a
LOCC transformation (i.e. achievable by means of Local Operations and
Classical Communication) its action can only degrade entanglement, thus
the entanglement of the resulting state |¥) is bound by that of the initial
state, which is known and straightforward to calculate. Precisely, consider
the entanglement entropy related to a left-right partition of the state |¥),
say at bond {¢,¢ 4 1}. This is by definition the Von Neumann entropy of
the reduced density matrix to the left (or right) part of the system, and it is
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bounded by the entanglement of the original pair across the bond:
Sw (pr) = =Tr [pylog py] < log Dy; (2.29)

where log D is the entanglement of a maximally entangled spin pair of dimen-
sion D, like |®T) (to check this, just consider that pP = Tr[|®+)(dH|] = 51,
thus Syx(pB) = log D).

In conclusion, a Matrix Product State, i.e. quantum state on a 1D lattice
allowing an analytic representation as in eq. (2.28), has well-defined upper
bounds on its entanglement. The entropy related to a left-right partition of
the system is bounded by the logarithm of D,, with D, being the dimension
of the Matrix Product bondlink ¢ we are breaking.

2.3 Completeness of Matrix Product
State representation

The previous observation involving entanglement in MPS becomes even more
meaningful once we will provide a theorem of completeness of MPS represen-
tations. Indeed, we are going to prove that, as long as we are NOT imposing
a finite bound to the maximal MPS bondlink dimension D, any 1D finite
lattice state can be expressed exactly as an MPS.

The argument behind this claim is quite simple indeed. Let us choose a
site ¢ within the (open boundary) lattice, 1 < £ < L. Let |¥) be the global
quantum state, and let us consider the Schmidt decomposition of |¥) where
the first subsystem is made by sites {1../} and the second by {¢+ 1..L}:

D,
T) = ML) ¢ @ [Ra)f. (2.30)

Following the formalism of previous sections, |L,)F are left block Schmidt
vectors and |R,) the right block ones. A are the Schmidt coefficients

>, )\512 = 1), but now the number D, of values the index a can assume is
not anymore defined a priori; instead it depends of the specifics of the |U),
precisely on its partition entanglement across the bond {¢,¢ + 1}. Similarly,
we could adopt the same argument when partitioning the system between
sites £ — 1 and ¢, namely

Dy 4

W) = 3 AL E @ [Ra)E (2.31)
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Now, since both descriptions are exact, and the fact that the block {1..¢} is
actually the composition of block {1..£ — 1} with the site ¢ alone, we must
conclude that the set of product states of the form |L,)F | ® |s), generate
every |Lo)¥ state (completeness argument). In fact, we may define the de-
composition tensor Al as follows

A% = (Ll @ (sle) 1Lo)E (2.32)

so that we can expand |L,)F in equation (2.30) in the new product basis

DZ—I Dg d

w) =SS (AB A L @ sy @ RIE. (233)

a=1 p=1 s=1

Of course, the completeness argument we used poses a relevant constraint
upon dimensions of Schmidt decompositions; in particular as |L,)L are or-
thogonal, they are linearly independent, and since the |L, )L | ® |s), basis
can generate them, it must be that Dy < d- D,_. Then, by construction, if
we write A([f]; as a set of matrices (from S to «) then it holds

d
SoAl Al =1
s=1
. (2.34)
Z Alf A1 ATLQ — Al

s=1

where the positive diagonal matrices Al are given by Ag] 5= 5a,5()\[§)2, and
correspond to the Schmidt-basis reduced density matrices of the partition,
ie. Al = pL = plt. The previous equations resume together the orthonor-
malization preservation relation (2.4), and the CPT mapping propagation of
reduced density matrices (2.6).

Similarly to (2.32), one can perform the formal expansion into site ¢ and
reduced environment for the right block of the partition, where we can define

B = <<Rﬁ|f§2 ® <8|e> [ Ra)ity, (2.35)

which allows us to write, provided the completeness constraint upon Schmidt
dimensions D,y < d - D, holds,

Dy_1 D, d

w) = >SS (B ILE @ s w RO (2.36)

a=1 g=1 s=1
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and of course, complete positivity relations read

d
ZBg} Bt =1
s=1

) (2.37)

3 Bt Al gl = pl,

s=1

In the end, by applying recursively either the left-block or right-block argu-
ment presented in this section, we are allowed to build the analytical MPS
representation of the original state.

In fact, for any given state |¥) and any choice of ¢ (1 < ¢ < L), one can
formally express it as

d
=3 (AEJ-.-AL@-AW-Bgﬁlﬂ-...-Bgﬁl) Is1...s1),  (2.38)

Sl...SLZI

Where the matrices A[Sil,] and BEZ,] are respectively given by (2.32) and (2.35);
they are Dy_1 X Dy dimensioned, and are well defined since the Schmidt
decomposition exists for any partition of the system. Since the choice for
the site ¢ to start from, is completely arbitrary, the constraint on Schmidt
dimensions holds both left-ways and right-ways for every site in the lattice,
namely

DE’—I < dDg/ and Dg/ < d Dg/_l Vgl, 0</? < L, (239)

where, of course, Dy = Dy = 1. This concludes the proof.

It is now important to point out a major fact concerning the completeness
of MPS representation; since the dimension constraint (2.39) are quite weak,
if the state we are dealing with has no limitations on its entanglement prop-
erties (which is the typical case for, say, a random state in the many-body
Hilbert) such MPS representation is poorly efficient. Indeed, (2.39) tells
us that the largest correlation dimensions Dy,., = max{D,} are typically
reached next to the middle of the 1D chain: precisely we have

Dy < min{d", d“~*} —  Dpay < d¥2 (2.40)

Therefore, in general, the typical dimension (number of rows and columns of
ALII]) of the MPS representation does scale with the full size L of the system,
and in the worst case scenario it grows exponentially.

This is the main reason why, in literature, when speaking of Matrix Prod-
uct States most of the time one actually refers to the manifold of quantum



2.4. AREA LAW AND SUCCESSFULNESS OF 1D MPS 25

states allowing an MPS representation for which the maximal bondlink di-
mension D is finite, does not scale with the system size L, and is typically
small. By putting together the valence bond picture (introduced in section
2.2) and the completeness argument, one can conclude that a Matrix Product
State representation of bondlink D can describe exactly any state whose par-
tition entanglement is bound by log D. Equivalently, every finitely-correlated
state is a MPS.

2.4 Area Law and successfulness of 1D MPS

After such preliminary considerations, interpreting matrix product states
as variational tools turns straightforward. The typical problem we want
to address is finding the ground states of a given, typically short-ranged,
Hamiltonian upon an OBC system with L sites. Similarly to the DMRG
procedure, we choose arbitrarily a maximal bondlink dimension D allowed for
the simulation that should lead us to the ground state itself, and regard the
elements AL in MPS representation as variational tensors/matrices. Then,
we adjust variational parameters according to some algorithm (see section
2.9) in order to minimize the energy.

Due to the completeness theorem of MPS representations, we know that,
for any global system size L it exists a finite D for which the exact ground
state is representable by a D-bondlinked MPS, and such D is related to the
estimated entanglement ¢ of the state itself, like € ~ log D. But now we can
exploit some theoretical knowledge involving ground states of many-body
systems, known in literature as the area-law of entanglement [7, 8, 9]: The
partition entanglement in a ground state of a non-critical local Hamiltonian
scales with the surface of the partition itself, and not with the parted volume.
For 1D non-critical systems, this means that € does not scale with the size of
the system L, but rather saturates to a finite value. This also suggests that
the bond dimension D required to achieve good precisions in representing the
ground state does not scale with L. In practice, for many tested models, the
D necessary to get an outstanding approximation to the GS is surprisingly
small, regardless to system size [14]. This very argument allows us to address
even problems with a large number of sites, and yet deal with them in a quasi-
exact fashion. Of course this also explains the great success of DMRG for
1D non-critical systems, a reason which was not yet fully understood in the
"90s.

Indeed, the area law argument also suggests that finite-D MPS should
also be capable to characterize a 1D problem directly in the thermodynamical
limit as € converges to a finite value (we will discuss this approach in section
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3.4). A special interest within this framework is raised by critical 1D systems
[33]. They are known for violating the area law of entanglement by a loga-
rithmic (with L) correction to the partition entropy, with the proportionality
constant given by the central charge C' of the model [34, 35]:

(V) = Sun(pr.ny2) ~ %logL +C (2.41)
and therefore the appropriate D to represent the ground state faithfully, does
scale in the end with the system size, according a power-law like behavior
D oc L6 where the exponent is C'/6 itself. Now since the large majority
of the famous 1D critical models have typically small central charges (e.g.
crit. Ising, crit. XXZ, Heisenberg, have C' < 1), even though D scales with
L, the scaling function is so concave that even in that case we can address
efficiently quite large system sizes with good precision.

Nevertheless, it is important to remember that for critical 1D systems,
their efficient MPS representability depends directly on the central charge,
while for non-critical systems it is natural, an automatic consequence of the
area law of entanglement. In chapter 5 we will introduce families of varia-
tional states more suitable to address criticality than mere MPS

2.5 Gauge group of
Matrix Product State representation

By now, it should be clear that, given a quantum state on an OBC chain, its
exact Matrix Product State representation is in general not unique. The issue
is simple: the state components expanded in the canonical basis are compos-
ite products of matrices, and the same product can be matrix-factorized in
many ways. We will now define and explain the usage of a group of trans-
formations that manipulate the set of matrices in the representation, under
which the physical state is invariant: by definition this is the gauge group of
MPS representation.

Let us start again from the state |¥), whose MPS representation has
bondlink dimension D, and is given by

d
w= 3 <A[811].ALZJ.._,-ALL;}]-ALLL]) Is1...51), (2.42)

81...$L:1

where matrices A[fj are Dy x D, dimensioned (D, < D, V¢). For every
¢ < L, we now define an invertible square matrix X, of dimension D, x D,.
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The expression within parentheses in eq. (2.42) is left invariant by

AL AR Al gl
S1 59 SL—1 SL
= (A X)) (Xt AR X)L (Xzil AL 'XLA) (Xt - AT

(2.43)

But now, any term of the form (X[_l1 . Ag] - Xy) is again a Dy_1 x D, matrix,
and as above we have d of them per site, indexed by s. In conclusion, the
latter expression in eq. (2.43) is again a Matrix Product, where the bondlink
dimensions D, are preserved site-by-site, and the original Matrices of the
representation underwent the (gauge) transformation

Al Bl =x1.A9. X, Vse{l.d}, (2.44)

S

while the state is left invariant, i.e.

d
=3 (Bgll B2 BE-U. ngl) 1. s1). (2.45)

s1...s,=1

For any nearest-neighboring bond, X, defines an allowed transformation as
long as its inverse is defined. Therefore, the gauge group of Matrix Product
States is equivalent to the direct sum of the groups of Isomorphisms of D,
dimensioned complex vector spaces

L—-1
Gups = @) 1so (C™) . (2.46)
/=1

In order to define properly Gyps we did not need to summon the Hilbert
structure: the invertibility condition is a rank dimension requirement, not
a metric constraint. This remark is definitely sensible, since the correlation
spaces are fictitious, virtual, and therefore there is no reason for a gauge
group to mingle with the physical-space metric properties.

Finally, notice that the gauge group we built Gyps is identified by the
initial choice of site-dependent bondlink dimensions D,, which we required
to be left unaltered from the transformation. Actually, in (2.43) we could
have used any rectangular D, x D’ matrix X, (with D" < D,) which is right-
invertible, i.e.

X,-X;'=1, but X;'-X,=P=P#1, (2.47)

and adopt such X, in (2.44); this, of course, leaves the matrix product invari-
ant, but the bondlinks of the representations are altered, their dimensions
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increased (By} now are Dy,_; x D', and B are D x Dy1). However, the
state contains the same amount of entanglement as before, but we are spend-
ing more resources to describe it: we are working in a non-optimal numerical
framework. Moreover, this extension G’ to the previously defined Gyps is
clearly a group lacking an inverse-element property. For these reasons, in
most cases it is interesting to limit the study of MPS gauge features on Gyps
itself, under which the MPS representation space, given by the {Dy},, is
stable.

2.6 The canonical form

The presence of a gauge group for MPS provides an computational advan-
tage, since freedom and manipulability of our description tools are increased.
At the same time, the capability of quickly recognizing state properties, or
comparison between states is reduced, as even MPS representations of two
identical states may look very different, when their gauges are incompatible.
The simplest way to avoid such difficulty is to break the gauge invariance
by hand, i.e. by characterizing a representative in the class of equivalence
for MPS, which is easy to achieve, recognize, and completely general. This
concept realizes in the definition of a canonical form for MPS representations.
We say that a Matrix Product State, of bond dimension D

d
b)) = Z <AL11] Ag e ALLLj] -AL?) |s1...50), (2.48)

s1...s,=1

where Ag_} are Dy_1 x Dy dimensioned matrices, with open boundary condi-
tions (Do = Dy = 1), is in the (right-) canonical form if it holds

d
YAl =1 wei<e<L
s=1

d 2.49
YA AT AT =AY ve1<e<L (249)

s=1

A9 = AP =1 and every A is positive and full rank.

We recall that the first equation is the CPT-condition to preserve orthonor-
mality among Schmidt vectors, when propagating from the right: for this
reason, we will, from now on, refer to this gauge-invariance breaking, (2.11)
(2.37), as right gauge, for brevity.
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Given any MPS, it is always possible to write a canonical matrix prod-
uct representation for the same state; the bondlink dimensions are equal or
smaller than the original ones. An operational proof of this statement is
explained in detail in ref. [10], we are now going to sketch the fundamentals,
as many of the involved manipulations will be useful later on, and this is the
perfect context to introduce them.

2.6.1 Proof of canonical form generality

Let us take an OBC-MPS representation given by BY matrices

S1 52 SL—1

d
wy= 3 (BY-BE. . BEBE) |5 sp), (2.50)

we are going to define explicitly a set of rectangular matrices Y, and Z,, with
Y,Z, = 1, such that by applying

Al =plliz Al -y, B,

A9 =y, \BYZ, for1<t<L, (2:51)
the resulting matrices AL satisfy (2.49), and they represent again |¥) faith-
fully via (2.48). Moreover, the resulting bondlink dimensions D, will be equal
or smaller than those of Bg] representation. Precisely, the full rank condition
(2.49.c) for Al tells us that the resulting Al representation uses the minimal
bondlink dimension, for every bond, necessary to describe | ).

The Y, and Z, represent a gauge transformation followed by a correlation
space truncation; constructing them is quite simple. We start from the right
of the 1D chain, by performing a Singular Value Decomposition (SVD) of
the matrix B]Lfs]L read as if s;, were an incoming index, and j an outcoming
one:

B = 3 iAo (2.52)

JSL 8,81,
B

where UH and AlH are respectively left and right isometric matrices, i.e.
UtU =1 and AA" = 1, and the diagonal matrix Al* is positive. Not only,
but we can make A strictly positive, by just cutting 8 values for which
A[BL] = 0 out of the sum. If we do, U™ and A continue to be isometries, as
any subset of columns of UM (resp. of rows of Al¥) is still an orthonormal
set. Then we just fix Y, _; and Z;_; matrices as

Y, =ABT gt g AL (2.53)
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By construction Y7, _q Bs - ALL}, which is an isometry and thus in the right
gauge. Similarly we define CL=1 = BIF"UZ, ;. and of course

d
oy = > (BU. L BEACETIAD) sy ), (259)

81...8L:1

is still a faithful representation of the original state |¥): the rightmost
bondlink Dj_; might be decreased after the transformation, but due to the
SVD argument we know we disregarded only zero components. In other
words we could say that Z;_1Y;_1 = P = P2 = P! is the projector over the
actual support of the bondlink space (in Bﬁ] representation).

Now we proceed recursively: we consider the composite matrix CJ[KL (with
¢ starting from L — 1 and moving left) whose incoming index « is the pair of
indices {k, s¢}, and again we perform a SVD

ol = Z Ul Ag AL (2.55)

By construction A satisfies the right gauge condition, since

ZAVQA* =05, — > Alaill=1, (2.56)

S¢

Then, bondlink ¢ space is truncated to the support of A, and the (pseudo-)
gauge transformation given by

Y, =aAl gt oz, = plaal, (2.57)

which lead to Y;_,CY = Y, ,B¥ 7, = AY and redefine BY V7, , = ¢l
so that we can apply the procedure again on site £ — 1. Once we arrive at
the left-end of the chain, C’s[? is already in the right gauge by assumption of
initial state normalization

Z et = () =1 (2.58)

in conclusion A[Sll} = Cg} = Bg]Zg = AP This proves the first statement
of (2.49): converting a complete MPS representation in order to be fully in
the right gauge is operatively possible by a recursive application of Singular
Value Decompositions.

The second statement of (2.49) is a direct consequence of the CPT map-
ping argument we presented in previous sections, in particular it corresponds
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to equation (2.13). Finally, the full rank condition follows from the fact that
after every SVD steps we truncated the bondlink space (dimension Dy) to
the support of the corresponding reduced density matrix A, This issue is
argumented in details in [10].

As a concluding remark to the present section, we would like to point
out that the canonical form we just presented is the right-directed one, i.e.
is made so that every MPS block is in the right gauge (and the correlation
space used is minimal). Of course, we could similarly define a left-canonical
form, where MPS is completely in the left gauge, i.e. (2.4) (2.34), and other
statements still hold:

d
oAl Al=1  wei<e<L
s=1

d 3 ~ 2.59
S AU AU AT =AY we1<e<L (259

s=1

AP = Al =1, and every A is positive and full rank,

such is the left-canonical form for MPS representations. The demonstra-
tion adopted in this section to achieve the canonical form is operational in
the sense that is exactly the algorithm we apply in numerical settings: the
computational advantage of using canonical MPS, apart from immediate es-
timation of entanglement, will be clear as soon as we explain how to achieve
expectation values onto an MPS state.

2.7 MPS and Observables

By now, we understood that MPS are outstanding candidates as tools for
simulating condensed matter one-dimensional many-body systems. Then, it
is fundamental that we realize how to achieve expectation values of observ-
ables, in a clear and efficient way. If we are to adopt, say, the global energy
as a simulation benchmark, so that our goal becomes achieving the absolute
energy minimum, we need first to calculate the expectation value (V|H|¥)
of the Hamiltonian H: and operator which is nonlocal, but it is explicitly
written as a sum of local (separable) terms. For simplicity we can assume it
couples only nearest neighboring sites

L L
_ A/ L ole-1] €]
H=> Y gt + 3 N ne, "we". (2.60)
=1 ¢q

=2 p
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Let us start from getting the expectation value over a MPS of a separable
observable O = ), O, where every operator O can depend on the site ¢
on which it acts. We have

(OIH[T) = Y Y (Al Al «

81...8n T'1...Tn

x<A*,[}j. A*[L> rL|®@H\sl sp). (2.61)

Now we define the so-called transfer matrices, as follows
d
= Z r|X|s) (A[fl ® A*L"]> , (2.62)

. . . . . ¢
where X is a one-site operator, acting on site ¢; transfer matrices [E[X] are

D? | x D} dimensioned. We now calculate the [E[é]g for every ¢, and the
expectation value becomes simply a multiplication of the whole string of
transfer matrices

(U|H|W) = £ -ES) ... ES) (2.63)

The computational cost for acquiring this expectation value scales only /lin-
early with the system size (recall that now we treat L and D as independent
parameters of the MPS variational ansatz); unfortunately, there is still a
harsh dependence on the chosen bondlink dimension D. Indeed multiplying
two D? x D? matrices costs ~ D elementary operations, yet by adopting
some technical tricks we can further improve this scaling law:

e We should start performing the multiplication from the right (or left)
boundary, as |Qr—1) = [E[é] is a one-column matrix, i.e. a column
vector. And multiplying a D? dimensioned vector |Q,) for a D?* x D?
matrix has an overall D* cost.

e instead of multiplying directly E[é]\Qg) = |Q¢_1) one can first calculate
Ty = (41 © 1]|Q,), followed by [TI) = 3= (r|©@]5)[T\7) and finally
Qe—1) =D, 1 ® A*LE]HH,LZ]). These operations requires respectively a
number of elementary operations equal to: dD3, d>D?, and dD3.

In the end, the total computational cost to achieve the MPS-expectation
value of a separable observable O scales, with size L and bond dimension D,
as

#cost ~ L (2dD’ + d*D?) . (2.64)
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Usually, the first term in the parentheses is the leading one (and the other
is negligible), since the typical bond dimensions chosen in simulations are
sensibly larger than local space dimensions D > d.

The result we got holds in a quite general scenario (provided that O is acts
locally); we will now see that if the involved operator has a small support, we
can considerably improve this limit by exploiting the gauge group of MPS.

2.7.1 Local support Observables

Let us assume that the observable O we are interested with does not involve
all the sites within the 1D chain, but only a small connected subset of those,
say lattice sites between ¢; and ¢y (1 < /1 < {5 < L). Recalling the previous
argument involving transfer matrices, i.e. eq. (2.63) we can write

(wlopw) = (BB (G-l ) (B ) (26)

Notice that on the sites outside {¢;..f2} the observable O acts trivially, so
we are considering the transfer matrix of the local identity operator 1 there.
Now, as the expectation value in (2.65) is a physical quantity, i.e. it de-
pends on the properties of the quantum state and not on its specific MPS
representation: it is a quantity invariant under the action of the MPS gauge
group. At the same time the transfer matrices are not gauge invariant, so it
is advisable to choose a gauge that reduces the computational cost of (2.65).
Precisely, we choose a gauge that turns our MPS to look like this

Z (Am LAl gl ol

Seq Sey
s1...sp,=1

Bl Bgﬁl) Is1...51), (2.66)

Seg+1

where MPS tensors to the left of the {{;..0s} support are in the left gauge
(>, ATA; = 1), those to the right of the support are in the right gauge
(>, BsBI = 1), and those in the middle can be in any gauge chosen by
the user, with the only constraint that they must satisfy the global state
normalization condition. As before, the form (2.66) can be achieved by means
of recursive Singular Value Decompositions that define appropriate gauge
transformations (from site 1 to ¢; to fix the A, from site L to ¢, to fix the
B), exactly like we did in the section 2.6.

Now we focus on the transfer matrices of the outside zone [E][f]. Consider



34 CHAPTER 2. MATRIX PRODUCT STATES

site L, due to the assumptions we made, it holds

d
Q1) =E =3 (Z B, B*}f“) jk) = |&T) (2.67)
7.k s,r

where |®7) is the (unnormalized) maximally entangled canonical vector

Dp—1 Dp 1

[©7) = 3 133) = X Slik). (2.68)

It is east to see that eq. (2.67) holds recursively for all |Q);), ¢ > {5, since

Dy d Dy
4 l)s *[lr .
Q) =E o) =Y (Z BY 6, 6,5 B Lg) k) =

j7k S7T a76

where we used both the fact that the operator acts like identity on site ¢
(thus ds,-), and the recursive hypothesis |Q¢) = |®T). An identical argument
can be applied to transfer matrices to the left of the support of O, where left
gauge condition can be exploited to see that (Q,| = (®*| for any ¢ < ¢;. The
conclusion simply follows:

J4 4
(W[O[W) = (T[S, -... - B 0T, (2.70)

which means that the number (#cost) of elementary operations we have to
perform does not even scale with the full size of the system L, but merely
with the size of the operator support:

#cost ~ (l, — 01) (2dD* + d*D?) . (2.71)

Honestly, we traded the modest effort of performing the SVD, needed to
convert the MPS in the proper gauge, to obtain a faster (and non-scaling)
computational speed in acquiring finite-range MPS physics.

We will see that this result can be partially exploited even when we are to
compute expectation values of observables which are not local and not even
separable, but allow a natural decomposition into local terms, such are the
Hamiltonians of typical short-range interacting models.
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2.7.2 Hamiltonian-like Observables

We are now interested defining an operational algorithm that, exploiting
MPS properties, computes efficiently the expectation values (V|H|U) of an
operator H which is formally written as a nearest-neighboring Hamiltonian
of the system, i.e. like (2.60). For algebraic reasons which shall be clear soon,
we rewrite it as H = H,’, where

L
Hy = Z Sghel+ N N el e et (2.72)

(=0'+1 ¢q =042 p

As before, it is important that we focus on the computational cost of this
data acquisition. We learned that working in the proper MPS gauge is in-
strumental for economy of calculus, thus we already start from a canonical
MPS representation (say the right one)

d
) = Z (BY B ... B [s1...s1), (2.73)

S1...s,=1

where all the BY are right-gauged, requirement which also guarantees proper
state normalization (W|W¥) = 1.

Again, our scheme to acquire (V|H|W¥) has a recursive formulation: we
need to propagate the contraction of our MPS structure and at the same
time include every term of H. Since this is expensive by definition, we will
try to regroup and sum the partially contracted tensors every time we can.
Then the starting point, at the right boundary, is defined as follows:

Dr1
=3 (S o) s

T8

(2.74)

DL1

i ™) Z <Zh (r|e"]s) )BJ[.L]SB*L“W).

Now we propagate towards the left. The idea is that |¢!) shall contain all

the elements of the Hamiltonian who have support in {¢+ 1..L}, while | Xj[f})
will take care of nonlocal neighboring terms across the bond {¢ — 1,¢}. Of
course, we can exploit the gauge conditions, telling us that |Q,) = |®T). This

allows us to calculate every |X§}) directly

Dr_1 Dy

K 1] Z Z (Z h[a 0" f]| )B[Z B*[Z]T| k). (2.75)
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Instead [£[¢71) is obtained via the recursive relation

|€[£ 1] Dzlfi (ngz |@[£]| ) Z]SB*[Z | k})

D(’ng

" Zk Z/B (ZZ ey > ) | Bl B 1K) (B +
' D¢—1 D,
2.2 Z B B k) (aBlel). (2.76)

3k oB s

By means of the transfer matrices formalism, we can rewrite the two previous
equations in a more compact, and clearer, form

€11y Zg IEg,127) + > Eag ) + B [¢l)
P

Y4
XYy = hif][E[@W).

(2.77)

Acquiring all these data, for every ¢ requires an overall computational cost
(apart subleading trends) of

#cost ~ L (#q + 2#p + 1) (2dD* + d*D?) (2.78)

where #q and #p are respectively the number of one body and two body
terms in the Hamiltonian expression. As you see, even in this complex sce-
nario, the scaling behavior with D and L of the computational cost remains
roughly the same. Now we can conclude that

(i ey = £ B E ), (2.79)

and in particular (U|H|¥) = |¢[) which is a scalar number, and it is exactly
the energy of the state if H is the actual Hamiltonian of the system.

The great improvement in computing expectation values we encountered
for separable observable is recovered in case of (short-range) Hamiltonian
operators: the full computational cost to acquire the energy (which will be
later adopted as variational functional) scales only linearly with the system
size. If one thinks that (full-search) exact methods typically bear an expo-
nential cost in L, it is easy to understand why DMRG/MPS architectures
are regarded with great interest.
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2.8 Pictorial representation of Matrix
Product States Tensor Network

Through the present chapter, we learned how to deal with MPS: their math-
ematical properties that allow algebraic manipulation (gauge group), and
their physical properties that allow to control quantum entanglement. On
the other hand, the equations we encounter start to look cumbersome and
confusing, like eq. (2.76). To work around this issue, we are now going to
provide an alternative way to express MPS representation that is based on
diagrams and graph theory rather than standard analytical expressions. This
will prove a faster and clearer fashion to represent states, observations, and
matrix multiplication; and will become instrumental in later chapters.

Let us start back from our definition of MPS. If our system is a 1D-OBC
lattice with L sites, and {|s)}s is the local canonical basis, then a generic
state of the system is written as |¥) = Zsl...sL Tsy.s. |51 .. sL); the complex
tensor (with L indices) Ty, s, uniquely defines |¥). Now, stating that |¥) is

an MPS (with fixed bondlink D), is equivalent to say that 7, s, allows the
following decomposition
Dy<D
. 1]5 [2]s [3 s [L—1]sp— [L]s
51 SL T Z A ' AJl JZ J2J?:‘: : "AijmjLLfll AijlL' (280)
{de=1}

As mentioned before, all the Al elements are three-indices tensors (apart the
first A and last A MPS blocks, which have only two indices due to open
boundaries), s, being the physical index, i.e. related to the local canonical
state |s)g, while the two j, being the correlation space indices linking to the
two neighboring MPS blocks, namely A~ and AU, Equation (2.80) tells
us that a MPS is the result of a multiple contraction of (possibly variational)
tensors, or more simply a Tensor Network.
Let us draw eq. (2.80) in the following pictorial graph

where every block (graph vertex) represent a single tensor A, the legs/links
attached to it being the indices s (vertical one), j,—1 and j,_; (horizontal
ones). Connecting two tensors though a given link means contracting the
product of the two over that index. By these very simple rules, one sees that
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(2.80) is recovered, but there is no need anymore to write down either the
sums or every single index s or j by its name. Everything is implicit in the
pictogram.

As we discussed in section 2.5, on each of the contracted index/connected
links we can insert an isomorphism X, together with its inverse X, ! Since
their global action cancels out during link contraction, they have absolutely
no effect on the global tensor 7. This is exactly the gauge of Matrix Product
States, which we represent like this

meaning that Bﬂ: =0 A[Z]S r and B][f,jl]s =0 X;, lAa +- This oper-
ation is definitely equivalent to (2 44)7 once we have deﬁned an isomorphism
Xy for every link 7, 1 < ¢ < L.

To break by hand the freedom granted the gauge group, we defined two
particular gauge choices, namely the left and right gauges. We said that
A is in the left gauge if >, Ang]ALE] =1, ie >, A%, s gl djk, OF

equivalently, read in terms of transfer matrices, (CI>+|[E¥] = (<I>+|; and in
pictorial representation, it becomes an equation between graphs:

& C

Similarly, the right gauge condition is the left-right specular of this graph
equation. Having such equation in graph form lets us to see immediately
how to exploit the gauge by substituting pieces of the Tensor Network and
thus eliminating tensors. In particular, assume we are to calculate the state
square norm (W|W) =37, \ 75, 5, T

$1..8L
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b aD b

If all the MPS tensors are in the left gauge, we can substitute (2.81) into
the diagram, and tensors start to literally cancel out, from left to right, until
only 1 = (¥|¥) remains. Moreover, the left gauge condition ensures (2.6)
(reduced density matrix propagation via CPT map), which corresponds to

(2.82)

In section 2.7.1 we saw that having the leftmost MPS tensors in the left
gauge and the rightmost in the right gauge provides a great advantage when
computing observables having local support. Precisely, let O = ®§2:£1 o,
and we require that ) ATLZ]A[S[] =1 for ¢ < ¢; and ), AgZ]AT[SK] = 1 for
¢ > (5. Then, the part of the graph outside {/;..f3} cancels out thanks to
(2.81) and we are left with
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= (cI)JF\[Egj1 Cee [Egz]l |®T), as we saw in the previous section.

To explain the algorithm we use to calculate the expectation value of
a nearest-neighbor interacting Hamiltonian H, we introduced the relations
(2.76) and (2.77), where the transfer vector [£[) was defined via a recursive
scheme. Despite the unclear look of those equations, it is possible to resume
them both in a simple and intuitive graphical equation:

H

(2.83)

where we just regrouped together the one-site operators as Rgﬂ =5 ‘ gl[f} @[qé],

and the two-site ones: RY) = pOS hy! 6’5_” ® @//;[f]-

Several equations that we will encounter in this thesis involve Tensor
Network contraction or decompositions, in most cases they allow a diagram-
matic version, granting immediateness, and clarity of understanding. So,
where appropriate, we shall provide it for completeness and comfort for the
reader.

2.9 Minimization algorithms

We mentioned MPS being powerful variational tools for simulating ground
state of 1D many-body systems, and we also managed to give a prescription
for evaluating the energy of the matrix product state. It is finally time we
adopt such energy (V|H|W) as a functional for variational simulation, and
describe an algorithm that drives our trial Matrix Product State toward the
absolute minimum of this functional. Despite the huge reduction in varia-
tional parameters we are left thanks to the MPS representation (~ LdD?
rather than ~ d%), performing full search of the minimum within the whole
parameter space at once is still too expensive for practical purposes. Instead,
we will follow a scheme similar to original DMRG: the idea is to perform only
local or quasi-local variations of the whole state representation, namely vari-
ating a limited number of connected MPS blocks while keeping the other
fixed. Then we repeat, while choosing each time a different compact subset
of MPS blocks to variate, until convergence is eventually reached. Like tra-
ditional DMRG algorithms, usually one or two adjacent block are variated
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at a time, and refrain by sweeping towards the left or the right (bouncing off
the boundaries of the system, if our problem is OBC).

2.9.1 Single variational site

In this framework, at every minimization step only one block of the MPS is
being treated as variational, say the one related to site ¢; the other ones are
fixed, and in practice the energy functional itself will depend on them. We
also assume that all MPS blocks to the left of ¢ are in the left gauge, and
those on the right are in the right gauge, so that

d
=3 (Agj-...-Angl-CW-BM-...-BLQJ) Is1...50),  (2.84)

Se Se+1
s1...s,=1

with A1 (53 AMAYT = 1) and B (32, BY'BIY) = 1) fixed, and we
are searching the C'¥! which minimizes (U|H|¥). It is always possible to
gauge transform an MPS to achieve form (2.84) by means of repeated SVD
as we saw previously, the whole singular part of the decompositions has been

embedded inside O,

It is easy to calculate the explicit dependence on C of the energy: by
means of transfer matrices formalism one can write

V4 _ V4 /4
(|H|P) = (@HE[¢") + (¢ ES @) + ) gf(@t|E]|0h)+

q

V4 — V4
+ 3 (@ ES D) + 3 R GYED, [@F). (2.85)
p

p

Let us interpret it: the first and second term embed respectively the terms of
the Hamiltonian having support to the right and left of /; the third term are
those acting on £ only, and the two last terms couple ¢ with its neighbors. As
all the terms contain just one E¥, the functional is quadratic in the tensor
CH: (W|H|Y) =3, C*r Hiks C*3 . where the effective Hamiltonian H is
hermitian. Also, we should take into account state normalization (V|¥) =
>0 C*3,.C5 ), which is a constraint of the problem, and therefore must be
inserted in the functional with its appropriate Lagrange multiplier €.

In conclusion, the resulting Lagrangian reads L£(C,C*) = (V|H|V) —
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e(U|U) = (C|H —eN|C) =

ey

where |C)) is intended as a dDyD;_1 ~ dD? dimensional vector, H and A as
observables on such space, representing respectively the effective Hamiltonian
and effective square norm. Here H is given by the same five terms of (2.85);
in the same order of appearance they read

‘)+Q+
JORCINED)

(2.87)
with |£%), as before, obtained recursively via (2.83), and similarly (71| arises
from the left-right specular equation.

You see that, thanks to the gauge condition chosen for the AF! and
B the effective square norm N coincides with the identity operator on
the dD*-dimensioned effective space, so that £(C,C*) = (C|H — 1|C) as
prescribed by (2.86). Finding the minimum of a quadratic Lagrangian is now
straightforward since, by exploiting the fact that C' and C* are independent
for complex differential calculus, one has

aL(C,C*)

2(C =[0) —  H|C) =e[C)). (2.88)

Therefore we have to deal with a standard eigenvalue problem for H, and
among solutions H|C)) = ¢|C') we have to consider the one giving minimal
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value of (C|H|C)) = £(C|C)) = &; in other words, we have to find the lowest
eigenvalue solution of the problem (2.88), and we are done. In conclusion, we
mapped an eigenproblem for the whole d* dimensioned global system into a
dD? eigenproblem for the local tensor C!. When D is a parameter chosen
by the user and not dependent on L, solving the local problem (2.88) requires
the same effort for every system size. Also, the great advantage of working in
the proper gauge framework is clear now, since if N” were not to coincide with
1, we would have to deal with a generalized eigenproblem (H|C)) = eN|C)):
more expensive and less stable.

It is clear that after one has found the minimal |Cyy,)) for (2.88) the
energy of the resulting |W¥s) is necessary decreased (or equal) from the initial
guess |Uy)

(W2 H[W2) = (Cruin H|Cumin)) < {Couess|H[Cauess)) = (V1|H[W1).  (2.89)

This is how the algorithm proceeds towards energy minimization, after this
step we move to the MPS block to the immediate right /41 (or the immediate
left £ — 1) and repeat. Of course, to complete the iteration step one has to

perform the proper gauge transformation so that, after finding C’r[ﬂn, turns it
into left gauge — Al (or right gauge if we are sweeping left) so that (2.84)
immediately holds for site £ + 1. But this is easy, just perform a singular

s [€]s
value decomposition of Cj

C =" AU N5 Use (2.90)
B

with a being the composite index {7, s}, and ATA = UUT = 1. The gauge
transformation is then

[4)s [4s -1 _ Alls

g 291
A ua e < Y
which concludes the iteration step.

The algorithm is usually carried on until some convergence threshold in
the energy ¢ has been achieved. In most cases this simulation procedure
converges surprisingly fast, as very few sweeps are necessary to reach a sta-
ble minimum, even if we were to start from a completely random variational
MPS. In several simulations where the single-site framework was adopted,
computational results are in good agreement with theory and/or experiment,
yet this protocol presents some difficulties. The monotonicity of the energy
functional at every iteration step, even if it allows fast convergence, hides
the possibility of getting stuck in local minima of the variational parameters
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landscape: in order to work around this issue one has to insert manually
artificial fluctuations, as proposed by S. White in DMRG context [4]. Sim-
ilarly, the algorithm encounters trouble when dealing with symmetries (see
appendix B), where the user is forced to insert symmetry-breaking fluctua-
tions by hand.

Despite on how we can solve, with big or small success, these issues in
the single-block framework, a very common way to work around them is
to recover the original idea that gave birth to DMRG, i.e. dealing with a
two-site block minimization at once.

2.9.2 Double variational site

This time we want to variate two adjacent blocks at the same time, say
Ct¥ and O, while keeping fixed the other ones. The most clever way to
do this is forgetting that Ct and C¥*+1 are two distinct MPS blocks: we
consider them as a single overall tensor M = C[é o Cg],f‘“ on which
the Lagrangian functional is quadratic, and adopt M as our only variational
element. Of course, this allows us to momentarily describe more entangle-
ment across the bond {¢, ¢+ 1} than what would be normally allowed by a
D-bondlink MPS. Therefore, to provide an iterative scheme, we will embed
in the algorithm a method for entanglement truncation, so that in the end

the original MPS representation is recovered.
Then, let us start from our initial guess for the iteration step

d

W= S (AL ALY M BB sy,
S1...sp,=1
(2.92)
where every Mj, ., is given by the matrix product Cs[e C’xﬂ and MPS

blocks A[Sil,] (resp. Bg;/,]) are in the left (right) gauge. As a whole, M is
a tensor with four indices, and notice that alongside the sudden increase
of allowed entanglement (from log D to logdD), an increase of variational
parameters, with respect to the standard MPS case, comes out: from 2dD?
to d>D?.

As we mentioned the Lagrangian is quadratic in M, and thanks to gauge
relations for A and B matrices, the effective normalization N is again the
identity operator, since (W|W) =3 |M7|*. Then

LM, M”) = (M[H|M)) — e(M|M), (2.93)
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where the effective Hamiltonian H is given by

-0y
((10)-(01)+ ()

(2.94)
Graphs 1 and 2 contain the terms of the Hamiltonian having support outside
{¢,0 4+ 1}; graphs 3,4 and 5 those of support inside {¢,¢ 4+ 1}, and the last
two represent interaction of the inner sites with the environment.
Like for the single site case, the optimal M is found via lowest eigenvalue
problem, i.e. smallest ¢ allowing

H|MY = | M)). (2.95)

Now we have to manipulate the newly found M in order to recover the
standard MPS form.

To do this we proceed again via singular value decomposition. First we
write the tensor M as a matrix M,z where the composite index a ~ {j, s¢}
refer to the left bondlink index j and the left physical index s,, while 5 ~
{k, s¢41} to the right bondlink k& and site sy, indices. Now we calculate the
SVD as

dD dD
Mas =S Al N, BIGT =N allee \) i (2.96)
v Y

so we can stick it into (2.92) and obtain again the MPS representation. Still,
the bondlink ¢ has increased dimension D}*V = min{dDy_1,dDy1} ~ dD.
But now the positive values \, are the Schmidt coefficients of the partition at
bond ¢ of the state |¥), and (¥|¥) = ZiD A2. Therefore, in order to recover
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the best approximation of this state allowing log D entanglement, we must
truncate the smallest Schmidt coefficients A, until only D of them remain.
Namely, if A, were sorted in decreasing order (A, > A,41), we keep only the
first D of them, and renormalize to preserve state norm

D

- A -

Ay=—"2— qef{L.D} — > X=1 (2.97)
v

VSN

moreover, A and B will satisfy respectively the left and right gauge con-
dition even after the truncation.
We can now write, assuming we are sweeping towards right, M =

0550+1
AL O/[fif], where C’;?;”SHI = )\VB[HI]S’“’Jrl so that

s ¥,k
d —
_ 1 -1 ¢ +1 0+2 L
= Y (Agg ALY 40 Gl g Bg;) 1. 51).
s1...sp,=1
(2.98)

The MPS representation is now ready to perform the next algorithm itera-
tion, just identify the new two-site block M,  ,, , = 511} . BL‘;ﬁ]

The double-site based algorithm we just described presents two impor-
tant improvements with respect to the single-site one. First, as two adjacent
blocks are being modified at the same time, reconstructing the correct short-
range physics runs much faster, and since the Hamiltonian is made of nearest
neighboring terms the energy is extremely sensitive to the n-n physics (es-
pecially for non-critical systems) thus leading to a faster minimization con-
vergence. Secondly, at the time we perform the truncation (2.97), we allow
for errors in our description, as we force the state to carry no more entan-
glement than the MPS representation allows. Therefore, slight fluctuations
appear, identified by eventual small increases in energy. This is actually an
advantage of the protocol, as fluctuations are a natural way to discourage
the algorithm from getting stuck in local minima of the energy landscape.

2.10 Matrix Product Operators

So far, we applied the Matrix Product formalism in order to build multi-
indexed tensors T, s, , which were components of a target state |¥) over a
separable (canonical) vector basis |s;...sy); but it is clear that its capabil-
ities extend to every algebraic construct which can be expanded in a basis
of local elements, regardless their nature. No doubt, applying the Matrix
Product concept to describe nonlocal operators seems the most natural goal
to pursue.
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Matrix Product Operators (MPO) were firstly introduced in [36] and
used, for instance, to describe either thermal mixed states, time evolution
paradigms for MPS [37] [38] [39], or long range interaction Hamiltonians
[40]. Their open boundary formulation is definitely similar to that of MPS:

d d
0= > (04 Ol) sy sph(ri...rol, (2.99)

81...8[, T1...TL

where, if |s) is the canonical vector basis on site ¢, then |s;)(r,| is the canon-
ical local operator basis. The local-basis expansion is then performed over
these canonical elements, while adopting Matrix Product-based coefficients.
To every site £, incoming physical index r,, and outcoming physical index s,
we associated a Dy,_; X D, matrix OL‘;W, which sums altogether to a four-
indices tensor on every site:

(2.100)
As you can see, blocks 1 and L of the MPO have only one correlation space
link index to be consistent with the OBC setting. As for MPS, Matrix
Product Operators are typically prescribed according to a maximal bondlink
dimension D (D, < D V¢, with D non-scaling with L) which makes the
expression (2.99) manageable for practical purposes even for large system
sizes L. Such D also poses a limit in the entangling capabilities of o, actually
binding the amount of long-range correlation the operator can create.
MPOs are outstanding tools when the goal is to apply a transformation
O to a state |W) whose MPS representation is available. In fact, the resulting
state ©| W) is automatically expressed in Matrix Product form:

Olwy= > (Ol o) (Al all)
{seH{rete}

X s sp)(re . rilt .t = (BQ}-.-B}?) Is1...s1) (2.101)

§1...8[,

where
B =Y (Al g olr). (2.102)

r
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Truly, the bondlink dimension of the target MPS ©]¥) is increased to D’ =
D, - Do, the product of the original MPS bond D, and that of the MPO
Do. So, it looks that application of MPO to MPS is definitely expensive in
terms of the bondlink. This is true, and nevertheless easy to work around:
it is sufficient to reduce the target MPS to the desired D" properly. This is
quickly done by following the usual steps:

e Choose a bond, say {¢,¢+ 1}.

e Gauge transform the MPS so that blocks to the left (resp. right) of
the chosen bond are in left (right) gauge, so that Schmidt coefficients
of the partition emerge explicitly

e Truncate the smallest Schmidt coefficients and renormalize to one the
remaining ones (squared), as (2.97).

e choose another bond and repeat, until every bondlink has been renor-
malized to D" or less.

The error we intake when renormalizing the state is compatible with the
amount of entanglement we are discarding (which is explicitly known by
comparing Von-Neumann entropies before and after truncation). Being able
to transform MPS into MPS becomes fundamental, for instance, if we want to
describe a time-evolution of a system whose starting point is a finitely corre-
lated state: within this paradigm it is very useful to understand how to write
an MPO representation of a given Hamiltonian, and how to exponentiate it
efficiently. This is a major point of interest of ref. [37].

2.10.1 Matrix Product Density Operators

A relevant class of operators we are typically interested in, is the family
of density matrices, i.e. positive, unity trace, operators. Although it is
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instructive and useful decomposing such operators into MPO form, it is even
more interesting to exploit their positivity (as well as positivity of any partial
trace, i.e. degree of freedom reduction) to further decompose their Matrix
Product structure. Indeed, if we consider that any p > 0 can be written
as p = XX (and, conversely, the whole space of matrices X generate the
class of positive operators via X XT) one is encouraged to build the MPO
decomposition of X rather than p itself. Doing so not only eliminates the
positivity restraint on the resulting MPO, but also gives us an edge for dealing
with state transformations, as the application T pT" simplifies into T'X, which
could be a nontrivial numerical improvement.

Precisely, in ref. [36] the Matrix Product Density Operators (MPDO) are
properly defined. They are those MPO, according to (2.99), whose blocks
O are given by

dy
olr = 3" 4107 @ Al (2.103)
T=1

where d is at most dD,_,D,. Decomposition (2.103) is actually splitting the
matrix product layer into two sub-layers stacked together, as

(2.104)
where the pentagonal shape of the tensors in the diagram specifies that ten-
sors in the upper layer are up-down specular to those in the lower layer (plus
complex conjugation).

If we were to give an interpretation to the tensorial index dimension d,
we could invoke again the valence bond picture: indeed log dy is the maximal
allowed entanglement that the system can share with an external degree of
freedom coupling expressly to site £, e.g. a local thermal bath.

MPDO are useful tools for addressing one-dimensional open systems, es-
pecially where the mixing with external media acts on the bulk itself. It is
even possible to formulate master equation problems with matrix product
formalism.
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2.11 Example: exact Matrix Product State
representation for Slater Determinants

We would like to conclude this chapter with a simple, yet practical ex-
ample of the Matrix Product formalism applied analytically to a specific
class of many body states: Slater Determinants. In fermionic problems,
Slater Determinants are the starting point of most many-body calculations
(like Hartree-Fock); they are states where N fermions share no quantum
correlations, each one of them filling an orbital which is typically solution
of the mean-field Hamiltonian. Nevertheless, since such orbitals are non-
necessarily localized in a chosen configuration space, they can still manifest
self-correlation entanglement in the separable basis. So it is probably the
simplest among non-trivial matrix product decomposition problems. The
following construction is somehow related to ref. [40], but I developed it dur-
ing my Philosophiae Doctorateship as an independent project, supported by
G. Santoro and V. Giovannetti.

Let us deal with spinless fermions, for simplicity: the first step we have to
perform is to match the physics of this context with the algebraic formulation
adopted so far in this chapter. To do this, we can completely forget about
physical dimensionality of the problem and boundary conditions: the only
initial structure we need is a complete set of L one-body wavefunctions. We
also choose a complete ordering for these. They will represent the sites in
our 1D OBC (spin) system, placed according to the chosen ordering; the
canonical local basis corresponding to |0) = empty level and |1) = filled
level. The mapping of a fermionic system into a spin system is made via
standard Wigner transformation

Q) —  |00...0)

. . ) (2.105)

where [Q2) is the vacuum state, ¢, the destruction operator on level ¢, and o
being Pauli matrices. Now any state |¥) can be expanded in such product
basis [W) = > . Ts . s.l51...51), and we are going to apply the matrix
product formalism to the components tensor 7y, s, , local dimension d = 2.
For sake of completeness, let us even write the explicit MPS expansion in the
second quantization formalism,

2
O) b = Y (A[;j — A[;j) (D). (ch)™ Q). (2.106)

S1...sp=1

where the construction operators c} are placed in the correct order, and

obviously (c))? = 1. Simple as that.



2.11. SLATER DETERMINANT MPS 51

A Slater determinant state |X) is defined as follows
) =élel L) (2.107)

where ¢! fills a one-body orbital which may have a nontrivial expansion over
the original one-body levels we chose as basis. Precisely the transformation
is given by

Co = Y n(0) cr, (2.108)

¢r (0) being the first-quantization decomposition of the Slater orbital o onto
the original wavefunction basis £. Orthogonality is required among « orbitals,
ie. > 0a(l)95(f) = dap. As we know from literature, such considerations
lead us to write |X) in its explicit determinant form

P1(l1)  d1(l2) - Pi(ly)

S| ) et |

%) = ol ...ch Q). (2.109)

0<l<..<bn<L

¢N.(51) ¢N.(52) ¢N(.€N)

To find a MPS representation for |3), will be instrumental to give a
Matrix Product Operator description for Fermi operators ¢, over delocalized
orbitals. Since the vacuum is already in (trivial) MPS form [0...0) we will
then find the MPS structure of |X) by stacking together MPOs of &, according

0 (2.107), as we did in (2.101) and (2.102)

2.11.1 MPO for delocalized Fermi operators

We are now going to provide a MPO representation of ¢!, which is compact,
elegant, and very general. The only ingredient we need is knowing the ex-
pansion of the orbital « in the original one-body wavefunctions basis ¢, (¢).
Then the goal is finding the Bl satisfying

1

ad— > Z (bo| I B,y [s1 . sp) (.

81...s,=07r1...r,=0
1

= ST @elBU B () ()@
{s},{r}=0
(2.110)

where we explicitly set vector boundaries to the matrix product expression
(actually |br) is a vector and (by| a functional) so that we will able to define
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every Bg]T homogeneously, even those at the furthest sites. In particular we
need D = 2, and the solution we found is given by

[40: 1 0 _ ml: 0 0 _

B (o 1) 1 B} (0 o) =0
o _ (0 0 _ - gl (L0 ) _ -

B (¢a(£) 0) da(l) o B (0 1 o

b= () =10 (ol = (0 1) = (1],
(2.111)
where the information on ¢, (¢) is used on only one of the 16 elements of the
four-indices tensor B, Apart from that the expression (2.111) is formally
homogeneous in ¢, as we wanted.

To show that (2.111) reproduces the correct action of & we first notice
that when performing the matrix product contraction, the terms which con-
tain one and only one o~ are the ones that survive: indeed (1|0) = (1|¢*|0) =
0, while (1]o~|0) = 1, but on the other hand (¢7)? = 0. So we can reduce
the expression (2.110) in a simple sum over the site ¢ upon which the o~ is
activated, becoming

Y ) [oi®.. .00, ®0; @1 ®1LL] — Y ¢all)cf = &, (2.112)
l J4

which proves the equivalence. As an additional remark, it is easy to see that
it is possible to deactivate the global action of such MPO by just changing
a correlation boundary state, say (by|. Precisely, if we were to set (bo| = (0|
instead of (1|, the MPO expression (2.110) would coincide with the identity
1 instead of ¢! ; one can then regard the correlation space boundaries as local
switches that control the whole matrix product behavior, even if it is not
localized.

2.11.2 MPO stack to MPS

We can now go back to the Slater determinant state |%) = & & ...l |Q)
and adopt the engineering we learned to define its whole MPS exact repre-
sentation (2.106). In particular we start from the vacuum state |00...0),
which is trivially an MPS with D = 0, and we apply Ejv to obtain again an
MPS. Then we refrain, by applying in order 61\,71, éj\,ﬁ ... and so forth, up
to EI: every step is performed following the prescription of eq. (2.102) (al-
though we should never renormalize if we want our description to be exact).
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In conclusion we have
1
[4 ¢,N10 0,2]93 0,192
Al = 3 (B @@ B @ BT (2.113)

q1.--.gn=0

As you see, our description uses as a whole a total bondlink dimension of
D = 2% regardless from L. Actually, since every B} is the null operator, we
can also restrict the previous sum to ¢ > ¢ > ... > qu, since every term
for which any q; < qg.¢, with ¢ > 0, would give zero contribution. In the end
it is a sum of merely N terms. Similarly, we define the correlation boundary
vectors:

br) =10)*Y = |, and (b| =" =(0---01).  (2.114)
0
Putting these ingredients together leads us to the decomposition of our Slater

Determinant ¥ in the MPS representation, where explicit boundaries of the
matrix product expression are present

2

D=3 ol AW - AFb) () ()|, (2.115)

81...SL:1

Let us briefly analyze the matrices we built via (2.113). It is easy to see that
A([f] it is always the identity A{f l—1 Dx D, While A[le] contains the information
upon orbitals, expanded in the original wavefunctions. To make this clear,
we show as an example the cases N = 2, for which it holds A!” = ¢,(0)[L ®
o+ ¢a(l)[o” ® o], ie.

0 0 0 0
N=2 — Alf= 2;%2 8 8 8 (2.116)
0 —¢2(f) ¢i(6) O

It is clear that, the only matrix products that lead to nonzero amplitude are
those where two excitations |1) are present, Thus the sum (2.115) reduces to

b= 30 (61(00) 6a(ts) — 62(02) 6u(6) (D) (D)?10).  (2117)
01 <lo

where we have recovered explicitly the determinant expression. Also, let us
write down the case with three orbitals to be filled N = 3, in this scenario
we and up with
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0 0 0 0 0 0 0 0

éi1(r) 0 0 0 0 0 0 0

éo(r) 0 0 0 0 0 0 0

r 0 —pa(r)  P1(r) 0 0 0 0 0

A= s o 0 0 0 0 o o | (2118

0 —ds(r) 0 0 éi(r) 0 0 0

0 0 —ds(r) 0  o(r) O 0 0

0 0 0 ¢3 (T') 0 7@52 (7“) d)l(?") 0

the reader is invited to check that the resulting amplitudes are correct.

2.11.3 Efficiency of the description

We want now argument that, if no further information upon the orbitals ¢, ()
being filled is exploited, the exact representation we just gave is the most
efficient in terms of MPS. By this statement we mean that we are spending
the smallest bondlink dimension needed to faithfully reproduce the correct
amount of correlation the state can manifest. From section 2.2, we know
that a D-dimensioned bondlink MPS allows up to § < log, D entanglement,
i.e. Von Neumann entropy of a partition (the logarithm base of 2 is chosen
as common ground in quantum information theory), thus the optimal is
D = 25. Now, inequality S < N is guaranteed by the existence of an exact
MPS representation (2.115). But if equality S = N can be achieved for some
choice of ¢, (), we also proved representation optimality.

To obtain it, we just adopt a special set of (doubly-periodic) plane-waves
¢a(l) = exp(4mial/L). For simplicity let us perform a half-system partition,
and define a new double set of orbitals {¢([XL ] (0), A (£)}o from the previous
ones as

O(0) = V2 O(L/2 — £)¢u(f) and
OLI(0) = V2 8L = L/2)¢a(0),
with © being the Heaviside step function. Even though in a general case a

new set of wavefunctions generated via (2.119) would no longer be orthonor-
mal, it is clear that with the specific choice of L/2 periodic plane waves,

(2.119)

orthonormality is preserved: ), gbLL } (E)gb*[ﬂR] (¢) = 0, as the supports are dis-
joint, and 32, o0 ()"} (0) = 2, 667 ()¢50 (€) = bup. So we can define
Fermi operators corresponding to this new set, satisfying the anticommuta-
tion rules {Cae, Cget = {Ca,r,Ch g} = 0 and {Ca,r, &5 1} = {Car, € g} = Oars.
It is clear that the original ¢ decompose in the new ones as ¢, = 2-1/2 (Cor +
Ca,r), thus letting us write the whole Slater determinant state as:

L /. . . .
3) = N2 (CJ{,L + CJ{,R) e (C;rV,L + CEV,R) €2), (2.120)
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Of this state, we want to calculate the density matrix reduced to half the

system, say the left one, so we trace over the right-half degrees of freedom
pr = Trr [|X)(X|]. With this goal, we set |¥') = ¢;|X) and consider:

1 y ~ ~ ~
pF =5 Trn (L + o) IZ)(2] (ru + )|

= % <5J{,LTYR (12X 1. + Trg HE’><E’H> (2.121)

- % Taxz @ Trp [[X) (] = 12;2 ® L

where we used the cyclicity of the trace over right support operators ¢, g,
and clearly ¢ z|%') = 0; then we noticed that py and (6{7L py 1) have
orthogonal supports. Now we repeat the same argument on |X'), and proceed
by induction. In conclusion, we can claim that p7 is (isometrically equivalent
to) 27V 1yn on, the maximally mixed state on a 2V dimensioned space, whose
Von Neumann entropy is just N. This concludes the proof.

An intuitive, but not naive, interpretation of such result can be given
in the following terms. As fermions occupying the various orbitals must be
mutually uncorrelated due to the Slater determinant state nature, the only
possible entanglement the system can manifest under a real-space partition
is given by the self-correlation of every orbital, separately accounted. In
fact, in the studied case, we presented N uncorrelated completely delocalized
orbitals, each one carrying the entanglement of a unit (i.e. the amount of
entanglement shared by a spin singlet), so N is naturally the total amount.

OVERALL REMARKS

e The ¢* matrix in equation (2.111) is the one and only responsible for
establishing the correct anticommutation relations of Fermi statistics.
That said, it is straightforward to modify (2.111) so that the corre-
sponding MPO is describing a Bose operator instead: you just need
to replace B mi = 1 and leave the rest unchanged (also extensible to

abelian anyons by using phase gates B[f]i = e¥77).

e We mentioned that the present design is modeled on spinless fermions,
but actually is naturally extensible to fermion with spins. The only dif-
ference is that at the very beginning, when we are selecting a complete
basis of orbitals, we need to specify a complete basis of spin-orbitals
instead, and then choose a complete ordering. Any ordering is fine
and does not compromise the MPS cost in terms of D as long as the
particles are uncorrelated and fixed in number.
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2.11.4 Tensor grid representation of one-body
wavefunction basis change

Let us recall that, when we derived the MPO representation for ¢/, we also
mentioned that it is possible to control its overall action by adjusting the
left correlation boundary vector (bp|: namely the MPO coincides with ¢, if
(bo| = (1], while it is just the identity 1 for (b;| = (0|. In other words
1
ST (@B - BE by TR = e, (2122)
{s}h{r}=0

with ¢ € {0,1}. Also recall that the fermionic orbitals ¢, (¢) we filled to build
the Slater determinant state were an orthonormal set: let us complete it to
an orthonormal basis {¢,(¢)},, with a € {1..L}. The dimension must be
L by the assumption that the original set of L wavefunctions was complete.
For any of those ¢, () the corresponding MPO is given by (2.111).

Now we stack together the MPOs, like we did for the Slater state, but
instead using only N of them, we stack the complete set, ordered from av = 1
on top to a = L at the bottom; moreover, instead of using the standard left
correlation boundary vector (bp|lo, = (1] we set a generic (bgla = (qu|- It is
obvious that the operator arising from this construction is equivalent to

gho gl glos - ghar (2.123)

Finally, we apply such operator to the vacuum |€2). The meaning of all this
construction is that we actually defined an application on the binary strings
of {¢a}a to the real Fermi space, as

(qr...q] — &A™ ee . daeq). (2.124)

By linearity, this map extends to all the space generated by (¢ . .. ¢z |, which
corresponds to the whole correlation bondlink space (as (q; - . . gz | is its canon-
ical product basis). The map is clearly bijective and thus invertible. But
you notice that the inverse of (2.124) is basically a Wigner transformation
from the Fermi space to its spin representation where this time the ¢, have
been chosen as basis of one-body wavenfunctions, so it is formally similar to
(2.105), but the basis has changed (the old one is associated to the ¢, the
new one to the ¢).

In conclusion, we could use all this MPO stack formalism to represent a
many-body state transformation |¥) corresponding to a change of the chosen
basis of one-body wavefunctions. I.e. assuming that we can expand

1 1

W)= D Tlad™ a0y = 3 T, an . ), (2129)

q1.--9L

{s}=0 {g}=0
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then the two components tensors 7°¢ and 77" satisfy the equation:

(2.126)
where the blue tensors in the grid are exactly Bl“®l of (2.111), with ¢ being
the coordinate in the horizontal axis, and « the one in the vertical axis (the
origin is the lower-left corner). The upper and rightmost edge tensors are
trivially |0) and |0).

An interesting remark to this result, is that the grid Tensor Network
that appear in (2.126) can be efficiently contracted, despite having several
closed loops in its geometry (see section 4.5), thanks to particle-conservation
symmetry relations.

2.11.5 Extensions to Configuration Interaction

In quantum chemistry settings, the simplest path to move beyond the mere
mean field paradigm is adopting Configuration Interaction. In those de-
scriptions, Hartree-Fock solutions are adopted as a canonical vector basis of
orbitals for further calculations. According to such viewpoint, one is inter-
ested to express correlations by superposing few to several Slater determinant
states, which typically share some of the HF orbitals as well as differ for
other ones. If the energy minimization problem were to be performed over
the whole space of Slater states the result would be exact, still this would be
an extremely hard problem: thus generally the amount of orbitals for which
the involved Slaters differ, is kept to a small, manageable number.

Having this scheme in mind, we would like to extend our previous Slater
MPS (MPO stack) representation to embed also Configuration Interaction
states, where different orbital excitations are coherently added. The ultimate
ingredient of this perspective would be writing Matrix Product representa-
tion for every operator generated by the Fermi ones ¢, through sums and
multiplications. Of course the related zoology is huge, so we will limit our
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discussion the simplest nontrivial case.
Consider for instance the expression

O =add +péld (2.127)

We want to describe ©5,5 as a Matrix Product Operator, and as you can
guess there is no unique way to perform the extension from the normal Fermi
operator case. Depending on whether we focus on the adaptability of the de-
scription or the economy on the bondlink dimension we end up with different
proposals.

Standard Guess - this path exploits the standard technique to sum
coherently Matrix Product objects, and is strongly based on (2.111); thus is
highly suitable for further generalization, but at the cost of a sub-optimal
bondlink dimension. Let us now adopt D = 8 and consider

. 0,1] 0,21k
Bl 3 BitY, @ Bl | LU (2.128)
- 0 \ B3, @ BIA

where the Bl“°l tensors are those defined in (2.111) for &. The basic idea
behind this construction is to use a correlation space which is the Cartesian
sum of the two original correlation spaces, and a matrix product object
which is the block diagonal composition. Similarly we define the correlation
boundary vectors, which contain information on «a and /:

&Ye (2.129)

I
Q

b)) =

COoOO0OWOOOR
OO O
o OO =

I
N
™ O
——
®
[ e R

where we used distributivity of the tensor product ® with respect to the
Cartesian sum @. Similarly, (by] = (11) ® (0001).

Cheap Guess - this path focuses on keeping the lowest correlation
bondlink dimension possible, and actually requires D = 6.

B[e,2+2]8 — Lgq B[e,2+2}(1) —0
0 0 0 0 0 0
Voo (0) 0 0 0 0 0
Ble2+2° _ VBos(0) 0 0 0 0 0
L | VBea(l) 0 0 0 0 0
Vaps(l) 0 0 0 0 0
0 —Vaga(l) —/Bos(l) Bes(l) api(l) 0
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10 0 0 0 0
0O -1 0 0 0 O
ol _ | 0 0 1 0 0 0
and B 1 00 0 -1 o0 ol (2.130)
o 0 0 0 -120
o 0 0 0 0 1

while boundaries are as before |b;) = |0) and (by] = (0...01) = (5. By
multiplying the B2+ matrices it is easy to see that we are reproducing the
correct action of the operator, i.e.

2 {O‘ (¢1<€1>¢2<€2> - d)z(fz)qbl(zl)) +

01<bo

+ B (05(60)81(82) — 0u(02)05(0)) } f, el (2131)

Like previously, we argued if this Matrix Product representation is optimal
in terms of correlation bondlink dimension: we found that a state of the form
©5.2|2) has a real-space partition entropy of entanglement at most equal to
5/2. This implies that a faithful MPS description would require a D > /32,
so that D = 6 is the smallest allowed integer, and thus optimal.

The present proposal presents various options for generalization, although
finding the analytical MPO expression for a generic operator which is cheap-
est in terms of D is definitely a hard task. With this last speculation we
conclude this analytical example of Matrix Product formalism for interesting
states in condensed matter physics and quantum chemistry.
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Throughout this chapter we dealt uniquely with open boundary condition
problems, and developed a formalism of Matrix Product States based on
the OBC framework. Of course, such a description can be adjusted to fit
naturally periodic boundary conditions as well, taking care of the correct
amount of entanglement. In the next chapter we will introduce a periodic
description for finitely-correlated states and thus Matrix Product States, with
its proper formulation and tricks of the trade; this will be instrumental in
the proper definition of a thermodynamical limit.



Chapter 3

Periodic and infinite Matrix
Product States

One of the major issues for standard DMRG architectures in 1D problems
is dealing with Periodic Boundary Conditions (PBC). It was soon clear that
traditional DMRG ideas could not be applied to PBC with the same success
and simulation precision, but it was only with the advent of MPS representa-
tions that this trouble become clear and argumented. Indeed, while in OBC
the DMRG procedures describes all and only the finitely correlated states,
i.e. those states whose entanglement is bounded by a finite value (which typ-
ically does not scale with system size L) in PBC the correspondence is not
exact any longer. Nevertheless, finitely correlated states play again a very
important role in describing ground states of short-range interacting models,
as they manifest the correct entanglement area-law. Indeed, even in PBC
finitely correlated states naturally lead to a matrix product representation,
but the formulation [41, 42] is slightly different from their OBC counterpart.

3.1 Valence bond picture for Periodic MPS

In section 2.2 we introduced the valence bond picture to argument and con-
textualize MPS with open boundaries; its is straightforward to extend such
description to a periodic system. To every site we associate a pair of spins,
each one D dimensioned (D chosen by the user, often sensibly larger than the
local degree of freedom dimension d). We prepare this virtual state so that
every pair of neighboring sites share a maximally entangled state through
the D-dimensioned spins [®+) = D2 S Plaa) (entangled bond). Notice
the difference with the OBC case, where we had L sites and thus L — 1 phys-
ical bonds: in PBC every site has two neighbors (there is neither first nor

61
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last site, or, if you prefer, sites 1 and L are neighbors), so the amount bonds
is L. The virtual-to-physical mapping is defined identically to the OBC case:

d

D
AT =33 A s) e R (3.1)

s=1 j,k=1

As before, which we are going to apply it to the composite entangled bond
state @, AY(®, [®1)3"5,,). Immediately, one can see that the resulting
state can be expressed as

d
W= Y TN AT A A, (32

s1...s,=1

where the ALLL] (resp AE}) are no longer vectors (dual vectors) in the corre-
lation space, but matrices, 0 # Dy—o < D, like for every other site . The
trace operator in (3.2) makes the inner matrix product cyclic, so there is no
starting nor ending point of the 1D ring. Also let us represent | V) =

(3.3)
diagra