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Introduction

The study of dissipation is of great theoretical and technological importance.
While physics often models a system as isolated, with all the relevant degrees
of freedom accounted for, in most realistic cases the “interesting” part of the
system is coupled to many external degrees of freedom, often referred to as
the environment. When we try to manipulate our system, in most cases we
will also be acting on the environment. The most direct effect of this is that
some of the energy we put in the system will be shared with a large number
of degrees of freedom and thus, to all intents and purposes, will be dissipated
in the environment. While we are typically not interested in the precise
dynamics of the irrelevant degrees of freedom, an accurate description of the
out-of-equilibrium dynamics of our system requires us to add some terms in
our model to account for this coupling and energy loss. As in many physical
problems, the main issue is the presence of a large amount of degrees of
freedom that cannot be handled exactly and the need for a description able to
represent the essential features of anything we are not specifically interested
in: this of course represents a well known line of problems in modern physics
[1, 2].

In parallel with the theoretical interest, the study of dissipation is of the
utmost importance in many applications. One of the macroscopic effects of
dissipation is friction: the conversion of kinetic energy into thermal energy
due to the relative motion of two bodies. Many theories have been created
to address this issue: from the simplest empirical observations of Leonardo
da Vinci, to the most sophisticated microscopic theories describing friction
through large scale classical atomistic simulations. Still, many problems
remain unsolved and most theories aim at obtaining simpler models to take
into account dissipative effects and, if possible, find ways to reduce their
complexity.

Moving to the quantum world, the basic idea remains the same, but things
often become much more complicated: while in a classical system we can of-
ten afford to construct reasonably simple models to mimic the presence of the
environment, in quantum systems the dimension of the Hilbert space grows
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2 INTRODUCTION

so rapidly that we are forced to be much more efficient in the description of
the non-relevant degrees of freedom. Moreover, while for classical systems
the environment is an external term added to the standard description of the
system, for quantum mechanics the presence of degrees of freedom which are
not treated explicitly forces us to move from a “pure-state description” of
our system to a statistical mixture of states.

The most common starting point for the description of quantum dissipa-
tive systems is, as for the general case, the separation of a complex model
in two parts: the system we are interested in describing and the environ-
ment, which is typically assumed to be in thermodynamical equilibrium and
large enough to keep its state under the influence of the system. From this
common starting point, most approaches focus on the elimination of the irrel-
evant degrees of freedom through various schemes, appropriate to the specific
problem under exam. In our application we will follow this general idea.

Quantum dissipative systems have been receiving more and more atten-
tion, since the development of nanotechnology requires a better understand-
ing of dissipative effects at scales where a quantum description becomes es-
sential. Many state-of-the-art applications, from atomic force microscopy to
quantum computation, require a profound understanding of these effects for a
reliable description. The models we will consider in this thesis fall into these
categories: in one application, analyzing a recent atomic force microscopy
experiment, we provide a theoretical description for a dissipation channel
unaccounted so far; in the other we construct a model taking into account
dissipative effects for electrons circulating a nanoscopic device of probable
experimental feasibility. In the first case [3] we will consider the energy loss
of a tip oscillating over a surface; this system is usually described in a mostly
classical framework in the known theories of nanotribology : the study of the
microscopic mechanisms and energy dissipation channels leading to the ef-
fects macroscopically characterized as friction. In our case we will see how
the central role of the spins of the surface and their coupling to the internal
degrees of freedom of the system will require an ad hoc quantum model. With
the second system [4], we will explore the effects of electronic dissipation over
the observables of a system explicitly kept in a nonequilibrium state through
an external cyclic perturbation generally referred to as pumping. In this case,
more than exploring the energy dissipation itself, our focus will be on the
effects of a dissipative coupling of the electron motion on the steady state of
the system. Once more, quantum mechanics will play a fundamental role in
our description.

While our two starting points will be very different, we will show how they
can both be reduced in the end to the most simple quantum system, a single
spin-1

2
, and how the presence of the bath will modify the simple dynamics



INTRODUCTION 3

of this spin in very interesting ways. Although our final Hamiltonian will be
similar in both cases, the different nature of the coupling will require two
very different approaches: in one case we will derive a master equation for
the spin density matrix, a quite intuitive and general approach valid for weak
coupling to the environment; while in the other case the presence of a strong
coupling will force use to resort to a path integral technique, a heavier and
more specific approach able to describe a wider range of parameters.

The outline of this work will be as follows: in chapter 1, after a brief
overview of the systems studied and a preview of the results obtained, we
will introduce the general models and methods we are going to use to tackle
the systems considered, hopefully providing enough theory to understand our
later extensive treatment, without entering in too much detail in the widely
studied general theories of our models. In chapter 2 we will show our first
application: the description of a spin-sensitive dissipation channel compatible
with the experimental findings of an atomic force microscopy experiment. We
will describe in some detail the experiment and the system under study and
why some direct approaches are unable to account for the observed effect; we
will then specialize the previously described path integral technique to obtain
a numerical description of the system, highlighting our proposed dissipation
mechanism. In chapter 3 we will consider electron current pumping in a three-
site system and how it can be affected by the presence of an environment.
We will first obtain and solve a simple equation for the isolated system, then
couple a bath to this and specialize the master equation theory to obtain
an analytical result for the system in presence of an environment, observing
some interesting changes it its behavior. The experimental feasibility of
the proposed setup will be explored. Finally, in chapter 4 we will briefly
present another model for the description of dissipative systems which has
been investigated but, for now, is not complete enough to produce interesting
results: inspired from another atomic force microscopy experiment where
frictional effects of hydrogen atoms on a surface are observed, we will try to
investigate the possibility of inherently quantum effects in a similar system,
where a light particle is coupled to other heavier atoms, treated classically.
We will propose a model and a technique for its simulation, though this will
prove too computationally demanding to be of practical use.
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Chapter 1

Models and Methods for
Dissipative Quantum Systems

There is no standard model to tackle a general dissipative system. However,
one general concept behind the description of a dissipative quantum system
is the possibility to construct a model in which a small number of interesting
degrees of freedom (usually referred to as the system itself) is coupled to
a much larger number of less interesting degrees of freedom that can be
treated as a bath. The aim of dissipative models is to take into account
the presence of the bath and its effects on the system without the need for
a precise description of all its degrees of freedom, but just referring to its
general properties such as temperature, density of states and coupling.

In section 1.1 we will present a general overview of the systems studied to
provide a structure of what will be explained in more details in the rest of the
thesis. The rest of the chapter will be quite technical: in section 1.2 we will
describe the general characteristics of a bath and compute some quantities
that will later prove useful, we will then considers two different procedures
to compute the time evolution of a system represented by a simple spin-1

2
in

contact with a bath composed of bosons with different spectra and coupling
limits. Specifically, in section 1.3 we will consider the case of weak coupling
through the Master Equation formalism, while in section 1.4 we will consider
the path integral approach which, although more technically involved, can
handle a wider range of couplings and can still be recast in a rather simple
form in some limiting cases.
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6 CHAPTER 1. MODELS AND METHODS

1.1 Overview

We will now briefly introduce the two models that will be considered in this
thesis and the general strategies that will be used to extract the relevant
physics. While both models will described in much more detail in the re-
spective chapters (2 and 3), this introduction will give the reader a general
idea of the whole procedure, which might get obscured by the technicalities
of the complete treatment.

The first system we investigated is inspired by an experiment of non
contact atomic force microscopy [14] where an atomically sharp Fe tip is os-
cillated over a NiO sample, achieving a sufficient accuracy to distinguish be-
tween inequivalent spins in the antiferromagnetic structure of NiO. Our aim
is to find a channel of dissipation of the mechanically oscillating tip, which is
capable of accounting for the different energy loss observed in correspondence
with different spins. This task is far from trivial, since the observed force is
due to exchange interaction between the spins of Fe and Ni atoms and the
oscillation frequency of the tip is so slow that purely taking into account the
gapped spin excitations would lead to a very small effect, while the observed
energy dissipation per cycle is of the order of the exchange parameter itself.
In order to describe this system, we therefore need to consider the coupling of
the Ni spin to some other degree of freedom of the crystal: we find a suitable
coupling to the phonons, mediated by the presence of the tip magnetization,
and so reduce our system to the study of a single spin strongly coupled to a
bosonic bath. We will show that while one spin direction is always close to
its minimum with respect to the tip, the other may flip under the external
perturbation and in doing so dissipates energy through the phonons.

The procedure to understand the motion of the spin under the effect of
the environment is complicated by the strength of the coupling: since a per-
turbative treatment is not possible, we need to resort to a more complex
description of the density matrix of the system in terms of path integrals.
As will be explained in detail, in this framework the effect of the bath can
be accounted for exactly, but leads to a rather complex summation over the
possible paths. In the limit of slow external perturbation and for our specific
spin-phonon coupling, it is possible to resum the series and obtain much sim-
pler equations for the spin dynamics, which can be numerically integrated.
Aside from the numerical details, the physical effect of this strong coupling
is the introduction of a new “slow” timescale for the relaxation of the spin,
which is comparable to the frequency of the external perturbation. This effec-
tive “self-trapping” of the spin leads to a hysteretical response of the turning
spin: its position during approach and retraction of the tip is different, and
this difference is proportional to the energy dissipated in the system. Numer-
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Figure 1.1: Main steps for the spin sensitive dissipation: (1) the experimental
setup [14], (2) the measured force and dissipation maps [15], (3) our proposed
model, (4) the numerical hysteresis cycles. For further details see chapter 2.

ical calculations confirm the effective frequency and order of magnitude of
this effect to be comparable with the experimental findings, thus configuring
our model as a viable explanation for spin sensitive dissipation.

The second system we consider is purely electronic dissipation in a three-
site, three-electron model in a triangular setup, under the action of a cyclic
potential designed to pump current through the ring: such a model could
be used to represent a triple quantum dot. It is fairly easy to reduce the
three sites to a simple two level system, and estimate the pumped current
in the perfectly isolated case: the rotating perturbation acts as an effective
potential in the rotating frame of reference, the dynamics is therefore a simple
precession, leading to an oscillating current that never stabilizes due to the
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Figure 1.2: Main steps for the quantum pumping: (1) the three site model,
(2) solution in the spin space, (3) current in the coupled system for various
temperatures, (4) possible experimental setup. For further details see chapter
3.

precessional motion. It is quite clear that a perfectly isolated trimer is far
from realistic: to support this current the quantum state of the system should
remain unperturbed at all times. In reality one must therefore introduce
dissipation. To test the stability of the uncoupled result in presence of an
environment, we weakly couple our system to a bosonic bath: we expect this
to allow the system to relax to the thermal equilibrium state, affecting the
resulting pumped current.

Since we want to investigate the effect of a weak coupling, we can solve
this system by expanding the contribution of the bath in powers of the cou-
pling parameter and keeping terms up to the second order. The equation
we obtain for the density matrix is quite simple and the asymptotic current
can be expressed analytically: we indeed find that the system thermalizes
to the bath temperature, and a standard current increase with frequency, at
low frequencies, but we also observe a final decrease of the current for high
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frequencies, a regime where thermal fluctuations make an unexpected return
in the rotating frame of reference of the pumping. This result highlights the
importance of properly accounting for the dissipation channels in quantum
systems, and suggests an interesting effect amenable to experimental test.

1.2 The bath

We will now enter in more detail in the description of what we refer to as
bath. Throughout this work, we will consider Hamiltonians of the general
form:

H(t) = HS(t) +HB +HSB , (1.1)

where HS(t) is the (possibly time-dependent) Hamiltonian of the system, HB

is the Hamiltonian of the bath and HSB is the interaction Hamiltonian, of
general form

HSB =
∑

p

SpBp , (1.2)

Sp and Bp being system and bath operators, respectively.
The whole system plus bath model can be described by the density matrix

ρ(t) =
∑

µ |ψµ(t)〉 〈ψµ(t)|, but we will be interested in tracing out the degrees
of freedom of the bath, obtaining an expression for ρS(t) = TrBρ(t). In order
to do this, we will need a few assumptions on the nature of the bath itself.

For the sake of the later treatment, we will pass to the interaction picture
with respect to H0 = HS +HB. We will start by assuming that the bath is
almost unperturbed by the interaction with the system, so that the reduced
density matrix always reads:

ρ
(I)
B (t) = TrSρ

(I)(t) ≈ ρB(t) =
∑

ν

pν |Φν〉 〈Φν | , (1.3)

and we will consider the state of the bath to be in the thermodynamic equi-

librium state at temperature T , so that pν = e−E
(B)
ν /kBT/Z, where E

(B)
ν and

|Φν〉 are eigenvalues and eigenstates of HB.
Our general aim will be to take care of the terms in the interaction Hamil-

tonian HSB. To do that we will need to calculate the one and two operator
averages of the Bp’s. We can assume without loss of generality (allowing for
a renormalization of HS) that the first order averages are zero:

TrB

[

ρ
(I)
B (t)B(I)

p (t)
]

= 0 (1.4)

and we will define the second order averages

gpq(t, t
′) = TrB

[

ρ
(I)
B B(I)

p (t)B(I)
q (t′)

]

= gpq(t− t′) = gpq(τ) , (1.5)
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where τ = t − t′. It is easy to explicit the form of gpq in terms of the
eigenvectors of HB as

gpq(τ) =
∑

νν′

pν(Bp)νν′(Bq)ν′νe
i(E

(B)
ν −E

(B)

ν′
)τ/~ , (1.6)

which clearly shows the general property g∗pq(τ) = gqp(−τ). We will further
assume that gpq(τ) tends to 0 rapidly for τ >> τc, where τc is a characteristic
small time-scale of the fluctuation of the bath.

We will now derive an expression for the correlation function assuming
the bath to be composed of free bosons and the coupling operators to be
displacement operators of the form:

B(τ) =
∑

ν

λν
(
b†ν(τ) + bν(τ)

)
=

=
∑

ν

λν
(
eiωντ b†ν + e−iωντbν

)
,

(1.7)

where b†ν and bν are bosonic creation and annihilation operators and we con-
sider the presence of only one operator.

By using the Bose-Einstein distribution

〈
b†νbν

〉

B
=

1

eβων − 1
≡ fB(ων) (1.8)

at inverse temperature β = 1/kBT as our probability distribution we obtain

g(τ) =
∑

ν

λ2ν
[
eiωντfB(ων) + e−iωντ (fB(ων) + 1)

]
. (1.9)

Baths are more commonly treated by considering the energy levels to be
dense enough to be considered a continuum and are usually identified by the
spectral density

J(ω) =
∑

ν

λ2ν
2
δ(ω − ων) =

1

2
~
2α

ωs

ωs−1
c

e−ω/ωc (1.10)

where the last term is the general shape typically used with a power-law
dispersion characterized by the exponent s at low frequency and a cutoff
frequency ωc introduced to avoid divergences. The s = 1 case (linear disper-
sion) is usually referred to as the ohmic case, s < 1 is called subohmic while
s > 1 is superohmic.

The summation over the bath states can therefore be converted in an
integral, obtaining

g(τ) =

∫ ∞

0

dωJ(ω) cos(ωτ) coth
βω

2
− i
∫ ∞

0

dωJ(ω) sin(ωτ) . (1.11)
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We will derive here some noteworthy integrals of the correlation function
multiplied by sine and cosine functions as they will be useful in the treatment
of the master equation. Let us introduce the Laplace transform of g(τ):

ĝ(z) =

∫ ∞

0

e−zτg(τ)dτ =

=

∫ ∞

0

dωJ(ω)

[
fB(ω)

z − iω +
fB(ω) + 1

z + iω

]

,

(1.12)

and define:

g±(Ω) =

∫ ∞

0

g(τ)e±iΩτdτ

g0 =

∫ ∞

0

g(τ)dτ .
(1.13)

We can now compute these integrals as Laplace transforms for z = ∓2iΩ+0+

(0+ being an infinitesimal real part added for integral convergence) to get:

g±(Ω) =

∫ ∞

0

iJ(ω)dω

[
fB(ω)

±Ω + ω + i0+
+

fB(ω) + 1

±Ω− ω + i0+

]

=

= −
∫ ∞

0

iJ(ω)dω

[
fB(ω)

±Ω + ω
+
fB(ω) + 1

±Ω− ω

]

+

+π [J(±Ω)fB(∓Ω) + J(±Ω) (fB(±Ω) + 1)] ,

(1.14)

where −
∫

indicates the principal part integral. This finally gives us a very
simple expression for the real part of g±:

{ ℜg+(Ω) = π [J(Ω)− J(−Ω)] (fB(Ω) + 1)

ℜg−(Ω) = π [J(Ω)− J(−Ω)] fB(Ω) .
(1.15)

Moreover, introducing the sine and cosine combinations:






gc(Ω) =
1

2
(g+(Ω) + g−(Ω)) =

∫ ∞

0

g(τ) cos(Ωτ)dτ

gs(Ω) =
1

2i
(g+(Ω)− g−(Ω)) =

∫ ∞

0

g(τ) sin(Ωτ)dτ ,

(1.16)

we get simple expressions for
{ ℜgc(Ω) = π

2
[J(Ω)− J(−Ω)] coth(βΩ/2)

ℑgs(Ω) = −π
2
[J(Ω)− J(−Ω)] ,

(1.17)

and finally an expression that will be useful later:

− ℑgs(Ω)ℜgc(Ω)
= tanh

βΩ

2
. (1.18)
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1.3 The Master Equation

1.3.1 Derivation

To derive the Master Equation (ME) we will follow the book of Cohen-
Tannoudji et al. [5], with a little generalization to the time dependent case
as we will need it in our applications.

Let us consider a Hamiltonian of the form (1.1), and let the system be
represented by the density matrix ρ(t) =

∑

µ |ψµ(t)〉 〈ψµ(t)|; we will pass
to the interaction representation with respect to H0(t) = HS(t) + HB, i.e.
through the correspondent evolution operator

U0(t, 0) = T exp

(

− i
~

∫ t

0

H0(t
′)dt′

)

= U0,S(t, 0)× U0,B(t, 0) . (1.19)

The evolution equation for the density matrix ρ(I)(t) = U †
0 (t, 0)ρ(t)U0(t, 0) is

given by:

i~
d

dt
ρ(I)(t) =

[

H(I)
SB(t), ρ

(I)(t)
]

, (1.20)

where H(I)
SB(t) = U †

0 (t, 0)HSBU0(t, 0) is the system-bath interaction, in inter-
action picture.

Integrating Eq. (1.20) between t and t +∆t leads to

ρ(I)(t+∆t) = ρ(I)(t) +
1

i~

∫ t+∆t

t

dt′
[

H(I)
SB(t

′), ρ(I)(t′)
]

(1.21)

and iterating (substituting for ρ(I)(t′)) we obtain for ∆ρ(I)(t) = ρ(I)(t+∆t)−
ρ(I)(t):

∆ρ(I)(t) =
1

i~

∫ t+∆t

t

dt′
[

H(I)
SB(t

′), ρ(I)(t)
]

+

+
1

(i~)2

∫ t+∆t

t

dt′
∫ t′

t

dt′′
[

H(I)
SB(t

′),
[

H(I)
SB(t

′′), ρ(I)(t′′)
]]

.

(1.22)
Since we will be considering the case of weak coupling, this expression clearly
goes in the direction of an expansion in orders of HSB.

To further simplify this equation and eliminate the explicit dependence
on the degrees of freedom of the bath, we will take the trace with respect to
them in eq. (1.22) to obtain an expression for ∆ρ

(I)
S (t) = TrB[∆ρ

(I)(t)]:

∆ρ
(I)
S (t) =

1

i~

∫ t+∆t

t

dt′TrB

[

H(I)
SB(t

′), ρ(I)(t)
]

+ (1.23)

+
1

(i~)2

∫ t+∆t

t

dt′
∫ t′

t

dt′′TrB

[

H(I)
SB(t

′),
[

H(I)
SB(t

′′), ρ(I)(t)
]]

,
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where we have substituted the last ρ(I)(t′′) ≈ ρ(I)(t) to truncate the expansion
to second order; this is always legitimate if the interaction is small and we
consider ∆t to be much smaller than the typical timescale tS of evolution of
ρ(I)(t).

To be able to use the averages (1.4) and (1.5) we would like to factorize
the density matrix in two terms corresponding to bath and system. While
this can be simply assumed for t = 0, at later times its form generally is

ρ(I)(t) = ρ
(I)
S (t)× ρ(I)B (t) + ρ(I)corr(t) . (1.24)

However, the correlation acquired in an interval ∆t is at most of order τc/∆t,
so that for τc ≪ ∆t the fast decaying bath correlations ensure that we can
neglect ρcorr(t). We can therefore factorize ρ(I)(t) and we realize that the
first term on the r.h.s. of (1.23) vanishes exactly, and substituting (1.5) we
obtain:

∆ρ
(I)
S (t)

∆t
≈ − 1

~2∆t

∫ t+∆t

t

dt′
∫ t′

t

dt′′
∑

pq

(1.25)

{

gpq(t
′ − t′′)

[

Sp(t
′)Sq(t

′′)ρ
(I)
S (t)− Sq(t

′′)ρ
(I)
S (t)Sp(t

′)
]

+

+ gqp(t
′′ − t′)

[

ρ
(I)
S (t)Sq(t

′′)Sp(t
′)− Sp(t

′)ρ
(I)
S (t)Sq(t

′′)
]}

.

A change of variables to τ = t′ − t′′ and t′ and extending the integrals by
taking into account the fast decay of gpq(τ) yields

1

∆t

∫ t+∆t

t

dt′
∫ t′

t

dt′′ →
∫ ∆t

0

dτ
1

∆t

∫ t+∆t

t+τ

dt′ ≈
∫ ∞

0

dτ
1

∆t

∫ t+∆t

t

dt′ (1.26)

which recasts eq.(1.25) as

∆ρ
(I)
S (t)

∆t
≈ − 1

~2∆t

∫ ∞

0

dτ

∫ t+∆t

t

dt′
∑

pq

(1.27)

{

gpq(τ)
[

Sp(t
′)Sq(t

′ − τ)ρ(I)S (t)− Sq(t
′ − τ)ρ(I)S (t)Sp(t

′)
]

+

+ gqp(τ)
[

ρ
(I)
S (t)Sq(t

′ − τ)Sp(t
′)− Sp(t

′)ρ
(I)
S (t)Sq(t

′ − τ)
]}

.

This can be considered as the derivative of the density matrix in inter-
action picture as long as HSB is small (justifying the second order expan-
sion) and as long as we are interested in finite differences of order ∆t where
τc ≪ ∆t ≪ tS, τc being the correlation time of the bath and tS the typical
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timescale of the system. In this way we can remove one integral and obtain
the final form:

∂ρ
(I)
S (t)

∂t
≈ − 1

~2

∫ ∞

0

dτ
∑

pq

(1.28)

{

gpq(τ)
[

Sp(t)Sq(t− τ)ρ(I)S (t)− Sq(t− τ)ρ(I)S (t)Sp(t)
]

+

+ gqp(τ)
[

ρ
(I)
S (t)Sq(t− τ)Sp(t)− Sp(t)ρ

(I)
S (t)Sq(t− τ)

]}

.

Moreover, if the bath operators couple in the same way to all the sys-
tem operators we can clearly take the bath degrees of freedom out of the
summation over p, q and use eq. (1.11).

As a last remark, we can notice that in some cases it is more useful to
turn back to the Schrödinger picture with respect to the system and recast
eq. (1.28) as:

∂ρS(t)

∂t
≈ 1

i~
[HS, ρS(t)]−

1

~2

∫ ∞

0

dτ
∑

pq

(1.29)

{gpq(τ) [SpSq(−τ)ρS(t)− Sq(−τ)ρS(t)Sp] +

+ gqp(τ) [ρS(t)Sq(−τ)Sp − SpρS(t)Sq(−τ)]} .

1.3.2 The Spin-1/2 case

We will now specialize the last form of the ME (1.29) to the case in which the
system is represented by a single spin-1

2
, as this will be the case of our interest.

Specifically we will consider the simplest spin Hamiltonians and analyze its
behavior in presence of different bath couplings to gain some understanding
on the possible effects of environment on this kind of systems.

We will consider the general Hamiltonian form (1.1) and for the system
part we will take the simplest case:

HS =
∆

2
σz . (1.30)

It is clear that the solution of this Hamiltonian alone is simply a precession
around the z axis with frequency ∆/~. To exemplify the evolution of the
density matrix, throughout this subsection we will consider the effect of the
evolution equation on the generic state:

ρ̄ =
1

2
(I+ aσx + bσy + cσz) . (1.31)
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For example, in the absence of a bath, the precession is clearly exemplified
by:

∂ρ̄

∂t
= −i [HS, ρ̄] =

∆

2
(aσy − bσx) , (1.32)

where we have taken, as we will do henceforth, ~ = 1.
Let us now proceed by considering the coupling with a ohmic bath through

the operator σz:

HSB =
∑

ν

λνaνσ
z , (1.33)

where aν are creation operators of a bath characterized by the spectral density
J(ω) = αωe−ω/ωc.

Using the ME (1.29) and the integrals (1.13) we simply get:

∂ρ(t)

∂t
= −i∆

2
[σz, ρ(t)]− g0 [σz, σzρ(t)]− g∗0 [ρ(t)σz, σz] . (1.34)

which for our generic ρ̄ gives:

∂ρ̄

∂t
=

∆

2
(aσy − bσx)− 2ℜg0 (aσx + bσy) . (1.35)

From this we can see that the evolution is still characterized by a rotation
around the z axis, but this time coupled to a decay of the component in
the xy plane with a rate 2ℜg0. It is generally said that this form of coupling
destroys the coherences of the system (out of diagonal elements of the density
matrix).

Let us now see what changes if the coupling is along the x axis instead:

HSB =
∑

ν

λνaνσ
x . (1.36)

The application of (1.29) is in this case slightly more complicated because of
the time dependence introduced in σx by HS:

σx(t) = cos(∆t)σx − sin(∆t)σy , (1.37)

so that the final ME takes the shape:

∂ρ(t)

∂t
= −i∆

2
[σz, ρ(t)]− gc [σx, σxρ(t)]− g∗c [σxρ(t), σx]

+gs [σ
x, σyρ(t)] + g∗s [σ

yρ(t), σx] ,

(1.38)

where all the g’s are intended as g(∆).
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To get some further insight in what this means for the evolution of the
system, we apply this again to ρ̄:

∂ρ̄

∂t
= ∆

2
(aσy − bσx)− 2ℜgc (cσz + bσy)− 2ℜgsaσy − 2ℑgsσz =

= −∆
2
bσx +

(
∆
2
a− 2ℜgcb− 2ℜgsa

)
σy − 2 (ℜgcc+ ℑgs) σz .

(1.39)

Apart from the standard precession around z, we can now see two different
effects: the perpendicular xy component is once more damped to 0, but in
this case also the z component is affected by the presence of the bath. We
can easily see that the equilibrium state for z is given by (see eq. (1.18))

c = −ℑgsℜgc
= tanh

(
∆β

2

)

. (1.40)

This means that the populations of the system (diagonal terms) are brought
to an asymptotic state, which is exactly the thermalized state for the system
at the temperature T of the bath.

If we now want to consider more complex couplings, there are two things
that can be done: the direct combination of the previous cases would be to
take

HSB =
1

2

∑

ν

λνaνσ
x +

1

2

∑

ν

λνbνσ
z , (1.41)

i.e. two separated baths, one along each direction. It is quite straightforward
to see that in this case the final ME is a simple sum of the previous ones:

∂ρ̄

∂t
= −

(
∆
2
b+ ℜg0a

)
σx +

(
∆
2
a− (ℜgc + ℜg0)b−ℜgsa

)
σy

− (ℜgcc+ ℑgs) σz ,

(1.42)

so that the final behavior is the same of the perpendicular coupling, albeit
with different coefficients.

The second and more interesting case is a single bath with an intermediate
coupling direction:

HSB =
1

2

∑

ν

λνaν (σ
x + σz) . (1.43)

In this case, the correlation function gives rise to some new terms in the ME,
which reads:

∂ρ̄

∂t
= −i∆

2
[σz, ρ]− 1

2
(g0 [σ

z + σx, σzρ] + g∗0 [ρσ
z, σz + σx] +

+gc [σ
x + σz, σxρ] + g∗c [σ

xρ, σx + σz] +

−gs [σx + σz, σyρ]− g∗s [σyρ, σx + σz]) .

(1.44)
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Figure 1.3: Time evolution of the components of the spin for the interaction
Hamiltonian (1.43) (full lines) and asymptotic estimate according to (1.46)
(dashed lines).

To find the equilibrium value, again we consider our generic density ma-
trix:

∂ρ̄

∂t
= −

(
∆

2
b+ ℜg0a− ℜgcc− ℑgs

)

σx − (ℜgcc+ ℑgs − ℜg0a) σz +

−
(

−∆
2
a+ (ℜgc + ℜg0)b+ ℜgs(a+ c) + ℑg0 − ℑgc

)

σy , (1.45)

and since the solution is slightly more complex we set to 0 all derivatives to
find the stable state:







a =
−ℜgsℑgs + ℜgc(ℑg0 −ℑgc)
∆ℜgc − ℜgs(ℜg0 + ℜgc)

b = 0

c = tanh

(
∆β

2

)

+
ℜg0
ℜgc
−ℜgsℑgs + ℜgc(ℑg0 − ℑgc)
∆ℜgc −ℜgs(ℜg0 + ℜgc)

.

(1.46)

As we can see, in this case the presence of the bath altered the equilibrium
state of the system: the correction to the thermodynamical state is of first
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order in α and thus goes to 0 in the limit of weak coupling, but it can
nevertheless be observed for any finite value, as is shown in a simple example
in Fig. 1.3.

This simple examples showed us how there are two essential types of
damping due to a weak coupling to a bath: a decay to 0 of the directions
perpendicular to the quantization axis and a decay to the thermodynamic
state along the quantization direction. Moreover, we have seen how the
presence of a bath can change the final thermalization axis of a spin from
that of the original unperturbed Hamiltonian, but only at first order in the
spin-bath coupling.

1.4 The Driven Spin-Boson Model

1.4.1 The Model

We will present here a simple Hamiltonian generally known as the driven
spin-boson (SB) model. This system belongs to the more general family of
Caldeira-Leggett models [6], which try to describe quantum systems coupled
to external baths to get a description of quantum dissipation, the issue we
are interested in. Although it will soon become clear that this model could
in the limit of weak coupling be handled with the ME techniques previously
presented, we will introduce here another formalism which, applied specifi-
cally to this system, will prove fit to explore different regimes, which will be
important in our later applications.

Let us start by introducing the original SB Hamiltonian:

H =
1

2
εσz +

1

2
~∆σx + σz

∑

i

λi

(

bi + b†i

)

+
∑

i

ωi

(

b†ibi +
1

2

)

, (1.47)

which describes a spin-1
2
(σi operators) with a splitting ε and a hopping ∆

coupled via σz to a bosonic bath characterized by creation and annihilation
operators b†i , bi.

Since in the experimental case of our interest the external perturbation
is time dependent, in the final Hamiltonian we will substitute the spin pa-
rameters with the time-dependent version:

{
ε → ε0 + ε(t)
∆ → ∆(t) ,

(1.48)

which results in the driven SB model.
The method we will apply to this system works, with the due changes,

for different forms of the bath spectral density. However, for the case of our
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interest, we will concentrate in the following on the case of a ohmic bath (see
Eq. (1.10)):

J(ω) =
1

2
~
2αωe−ω/ωc . (1.49)

1.4.2 The Real-Time Path Integral Solution

The path integral description of quantum mechanics introduced by Feyn-
man [9] starts from the possibility of computing the probability of evolution
of a wavefunction between two states as a sum over all the possible paths
connecting them weighted by the exponential of the action over each path.
One of the main simplification in this theory comes in the form of “influence
functionals” that can take into account some of the degrees of freedom of the
system as an effective interaction among more interesting degrees of freedom.
Without entering too deeply in the detail of this technique, we will try in
the following to justify the application of this scheme to our model and its
reduction to a set of quite manageable equations. For a schematic derivation
of the influence functional use we refer the reader to Appendix A.

For the real-time path integral treatment of the spin-boson model we start
by considering the amplitude for an isolated two-state system in state σ′ at
time 0 to make a transition to a state σ at a subsequent time t as:

Aσ′σ =

∫

Dq exp
(
i

~
S[q]

)

≡
∫

DqA[q] (1.50)

where Dq represents an integral over all the possible paths for the two-state
system discreet variable q with constraints q(0) = σ′/2, q(t) = σ/2, and A[q]
represents the free evolution of the system, which is the exponential of the
classical action S[q].

We will now start from this expression to justify the more complex equa-
tion for the probability of a two-state system coupled to a harmonic bath
and under the effect of an external force to pass from state σ′ at time 0 to a
state σ at a subsequent time t. Computing a probability |Aσ′σ|2 will require
a double integral over paths q and q′, the effect of the external perturbation
will be accounted in the A[q] term and the presence of the bath will be rep-
resented by the introduction of the appropriate influence functional F [q, q′];
the final expression will therefore have the form:

P (σ, t; σ′, 0) =

∫

Dq
∫

Dq′ A[q] A∗[q′] F [q, q′] . (1.51)

As explained in more detail in Appendix A, the form of the influence func-
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Figure 1.4: Sojourns and blips in the path integral computation of 〈σz(t)〉.

tional for a harmonic bath is given by [10]:

F [q, q′] = exp

{

−
∫ t

0

dt′
∫ t′

0

dt′′ [q(t′)− q′(t′)]

[L(t′ − t′′)q(t′′)− L∗(t′ − t′′)q′(t′′)]
} (1.52)

with

L(t) =
1

π

∫ ∞

0

dωJ(ω)

(

coth
ωβ

2
cos(ωt)− i sin(ωt)

)

, (1.53)

[cf. Eq. (1.11)].
We can now introduce the symmetric and antisymmetric combinations

η(t) = q(t) + q′(t) and ξ(t) = q(t) − q′(t) and consider the two paths as a
single path made of steps were η = ±1 and ξ = 0, that we will call sojourn as
they correspond to the populations (diagonal terms) of the density matrix,
and steps were ξ = ±1 and η = 0, which will be called blips and correspond to
coherences (off-diagonal terms). We can now label the sojourns and blips as
shown in Fig. 1.4 and explicit the path integrals as: a sum over the possible
number of “jumps” between blips and sojourns, a series of integrals over
the time of the jumps and a further summation over the possible values of
ξj = ξ(t2j − t2j−1) and ηj = η(t2j+1 − t2j):

∫

DqDq′ →
∞∑

n=0

∫

Dn{tj}
∑

{ξj=±1}

∑

{ηj=±1}
. (1.54)

By further defining the integral concerning the spectral density

Q(t) =

∫ ∞

0

dω
J(ω)

ω2
(1− cosωt) coth(

1

2
βω) + i

∫ ∞

0

dω
J(ω)

ω2
sinωt , (1.55)
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we can separate the contributions to the path integral as: interactions of a
blip with itself

Sj,k = S(tj − tk) = ℜQ(tj − tk) , (1.56)

interactions of pairs of blips

Λj,k = S2j,2k−1 + S2j−1,2k − S2j,2k − S2j−1,2k−1 , (1.57)

and interactions of a blip with the preceding sojourns

Xj,k = R2j,2k+1 +R2j−1,2k − R2j,2k −R2j−1,2k+1, (1.58)

with Rj,k = R(tj − tk) = ℑQ(tj − tk).
With all these definitions we can recast the influence functional in the

form:

Fn = exp

{

−
n∑

j=1

S2j,2j−1 −
n∑

j=2

j−1
∑

k=1

ξjξkΛj,k + i

n∑

j=1

j−1
∑

k=1

ξjηkXj,k

}

, (1.59)

and the final probability takes the form:

P (σ, t; σ′, 0) = δσ,σ′ + σσ′
∞∑

n=1

(

−1
4

)n ∫ t

0

Dn{tj}∆(tj)
∑

{ξj}

∑

{ηj}

Fn exp

{

i
n∑

k=1

ξk

∫ t2k

t2k−1

ε(t′)dt′

}

.

(1.60)

With this expression we can compute the z-component of the spin at any
time for a system starting at time 0 from the up state, as 〈σz(t)〉 = P (↑, t; ↑
, 0)−P (↓, t; ↑, 0). To get a compact expression for 〈σz(t)〉 it is convenient to
take the Laplace transform of the probability:

P (λ) =

∫ ∞

0

P (t)e−λtdt . (1.61)

Defining the time intervals of the sojourns sj = t2j+1 − t2j and those of the
blips τj = t2j−t2j−1, after Laplace transform and summation over the sojourn
states {ηj}, we get:

〈σz(λ)〉 =
1

λ
+

1

λ

∞∑

n=1

(

−1
2

)n ∫ ∞

0

D̃n(λ)∆2n

∑

{ξj}

Qn cos

(

Φn +

n∑

j=1

ξjXj,0

)
n−1∏

k=1

cos

(
n∑

j=k+1

ξjXj,k

)

,

(1.62)
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Figure 1.5: Sojourns and blips in the path integral computation of 〈σx(t)〉.

where the integration D̃n(λ) =
∏n

i=1 dτidsie
−λ(τi+si) includes the transform

coefficients, ∆2n represent the 2n ∆ contributions at the time of the flips,

Qn = exp
{

−∑j S2j,2j−1 −
∑

j,k ξjξkΛj,k

}

is the blip pair and self interaction

and Φn =
∑n

j=1 ξj
∫
ε(t′)dt′ are the integrals of the z external perturbation

over the n blips.
Up to now all the equations we derived are exact and quite general, to go

further into the analysis of the system we will consider some simplifications:
the first approximation we make is the so called noninteracting blip approx-
imation (NIBA) [7]. This approximation, which consists in considering the
length of the blips τi much shorter than the length of the sojourns si, is quite
generally used in the treatment of the spin-boson model and has been shown
to be valid also in the driven case in the limits we will consider in section
2.3 [8, 11, 12]. We will thus neglect all blip pair interaction (Λj,k = 0) and
consider only interaction of a blip with the previous sojourn: Xj,k = 0 for
j 6= k + 1, Xk+1,k = R(τk+1). This simplifies Eq. 1.62 to:

〈σz(λ)〉 =
1

λ
+

1

λ

∞∑

n=1

(−1)n
∫ ∞

0

D̃n(λ)∆2ne
−S(τ1) cos (φ1 +R(τ1))

n∏

k=2

cos (R(τk)) cosφke
−S(τk) , (1.63)

where the φj’s are the integrals of the external z perturbation over the blips:
φj =

∫

τj
ε(t′)dt′.

This expression is considerably simpler to compute than the original one.
Moreover, we will see in 2.3 how specializing it for low frequency and Ohmic
dissipation leads to an equation that can be integrated numerically in a
straightforward way.

We will now briefly expose the modifications in the treatment needed to
compute 〈σx(t)〉. As σx = ρ−1,1 + ρ1,−1 is made up of off-diagonal terms of
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the density matrix, the path integral expression requires in this case an odd
number of transition, so that the paths end up in a blip state (see Fig. 1.5).
After taking the Laplace transform and summing over the η’s, the equivalent
of eq.(1.62) becomes:

〈σx(λ)〉 =
∞∑

n=0

(

−1
2

)n+1 ∫ ∞

0

D̃n+1(λ)∆2n+1

∑

{ξj}
ξn+1Qn+1

sin

(

Φn +

n∑

j=1

ξjXj,0

)
n∏

k=1

cos

(
n∑

j=k+1

ξjXj,k

)

,

(1.64)

with the same notation as before, except for everything being rescaled for
n+ 1 steps. Again, we can apply the NIBA and sum over {ξj} to obtain:

〈σx(λ)〉 =
∞∑

n=0

(−1)n+1

∫ ∞

0

D̃n+1(λ)∆2n+1e
−S(τ1) cos (φ1 +R(τ1))

n+1∏

k=2

cos (R(τk)) sinφke
−S(τk) . (1.65)

This is the equivalent of (1.63) for 〈σx〉 and will undergo a similar simplifi-
cation.
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Chapter 2

Atomic spin sensitive
dissipation on magnetic
surfaces

The dissipation mechanism proposed in this chapter is born from the obser-
vation of a comparably large and unexplained energy dissipation in a recent
atomic force microscopy experiment [14]. In section 2.1 we will describe such
experiment, in section 2.2 we will describe in more detail the material in
which the dissipation takes place and why standard dissipation mechanisms
do not give a satisfactory explanation; finally in section 2.3 we will propose
the dissipation mechanism we consider most relevant for this system [3].

2.1 Magnetic Exchange Force Microscopy of

NiO

In a recent and very accurate experiment, spin resolution in atomic force
microscopy (AFM) has been achieved thanks to a refined experimental setup
named magnetic exchange force microscopy (MExFM) [14]. In this experi-
ment, an atomically sharp iron tip was used to probe the surface of a nickel
oxide sample, showing not only a sufficient resolution to distinguish between
Ni and O atoms, but the ability to differentiate inequivalent spin direction
of the Ni atoms according to the known antiferromagnetic structure of this
crystal (explained in detail in 2.2) as can be seen in Fig. 2.1, reproduced from
the original article.

The experiment basically consists in oscillating a tip at constant ampli-
tude at different distances from the NiO sample and measuring the deviations
of the oscillation frequency from the resonance frequency of the free can-

25
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Figure 2.1: (a) Setup of the MExFM experiment. (b) Measured topography
of the NiO surface (multiple cell average in the upper right corner) and
corrugation as a function of position for the line marked in the topography.
Reproduced from [14].

tilever, due to the tip-sample interaction. While this is one of the standard
setups of AFM, very high sensitivity and the possibility to achieve very short
tip-sample distances (smaller than 3Å) increase the importance of exchange
interaction: as the electronic clouds of the tip and the substrate obtain a
considerable overlap we get a chance to observe spin-dependent effects. In
this particular experiment, the Fe tip is magnetized through an external 5T
magnetic field, such that we can reasonably assume the foremost electron to
posses a definite spin direction perpendicular to the surface. When such spin
gets a non negligible overlap with the spin of the Ni in the sample (whose di-
rection will be better explained in 2.2), depending on its direction a different
interaction changes the oscillation frequency, giving a measurable effects.

The resulting force map shown in Fig. 2.1 clearly shows a different cor-
rugation (distance needed to achieve a given frequency shift) for “up” and
“down” spins, found in alternating lines on the (001) surface of NiO.

A first principles calculation of the tip-surface interaction was carried out
in [16] to help with the interpretation of this experiment. Their calculations
(reproduced in Fig. 2.2) clearly show the different force curves as a function
of probe height for opposite spin directions. Specifically, we can see how
antiparallel spins show a stronger interaction: this is due to the hybridization
between Fe and Ni d-orbitals resulting in an exchange effect favoring parallel
spins. If we also consider the stronger interaction with oxygen, the force
topography of Fig. 2.1 can be clearly explained.

There is another effect which was originally not so clear in this exper-
iment: by measuring the amount of energy needed to keep the cantilever
oscillations at constant amplitude, it is possible to estimate the energy dissi-
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Figure 2.2: Calculated force curves as a function of the distance for a ↑-spin
Fe atom over the four inequivalent atoms of the NiO surface (a small spin is
observed for oxygen due to interactions with the underlying Ni). Reproduced
from [16].

pated in a cycle. As shown in Fig. 2.3 (reproduced from [15]), the dissipation
is clearly different for the two spin directions and in particular is larger for
antiparallel spins. This is the problem we are going to tackle in section 2.3.
As will be clear from a better description of the magnetic structure of NiO
given in section 2.2, obtaining this large difference in dissipation at the “slow”
experimental frequency (∼ 160 kHz) cannot be explained through standard
spin wave theory and will require a more complete treatment taking into
account the coupling of the spin to the phononic degrees of freedom of the
system.
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Figure 2.3: (a) Topography of the NiO surface. (b) Energy dissipation map
of the same surface, and the same quantity as a function of position for the
line marked in the map. Reproduced from [15].

2.2 Nickel Oxide

2.2.1 The Structure

Nickel oxide (NiO) is a crystal that shows the typical rock salt structure of
two compenetrating fcc lattices of oxygen and nickel atoms. From an elec-
tronic point of view, NiO is generally considered a charge-transfer insulator
[17], but what we are more interested in is the magnetic structure. Due to the
spin distribution in the d states of nickel, NiO shows a magnetic structure
and due to superexchange effects through the oxygen atoms the structure is
antiferromagnetic, and more specifically it exhibits antiferromagnetic order-
ing of type 2 (AF2) [18] with a Néel temperature of 525 K. The AF2 structure
in the nickel sublattice is characterized by planes of opposite spins alternating
along the [111] direction or, equivalently, four compenetrating simple cubic
lattices with alternating spins, as shown in Fig. 2.5. This structure emerges
from the interplay of different exchange mechanisms: a strong antiferromag-
netic superexchange J2 between a Ni atom and its 6 next nearest neighbors
(NNN) Ni in the same sublattice, forming a 180◦ angle with the oxygen in
the middle, and two smaller interaction with the 12 nearest neighbors (NN)
belonging to the other 3 sublattices and forming 90◦ angles with the oxygens:
a ferromagnetic one J−

1 with 6 of them and an antiferromagnetic J+
1 with

the remaining 6. An experimental estimate of the exchange parameters can
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be found in Fig. 2.4.

There have been many discussions regarding the specific form of the NiO
magnetic anisotropy [18, 19, 20, 21], but the accepted structure defines the
spins as lying in the (111) plane and, within the plane, pointing along one
of the three in-plane 〈2̄11〉 directions (there seems to be a very slight devi-
ation from the plane, but it represent a minor correction and can be safely
disregarded). This structure seems to ultimately be the effect of a long range
dipolar interaction between spins of different sublattices and can be mimicked
by considering an out-of-plane anisotropy parameter D1 and a triangular in-
plane parameter D2. Experimental estimates of these parameters can be
found in table 2.4.

The presence of this different possible orientation leads in most crystals
to the creation of domains where different minima are chosen and domain
walls between them. There are two kinds of domain walls [22]: T walls and S
walls. T walls, also called twinning walls, are characterized by different (111)
planes of parallel spins, they require more energy to form and are correlated
with some little magnetostrictive effect in the [111] direction; S walls are
generated by different 〈2̄11〉 orientations within the same plane, they are less
energetic and therefore harder to completely remove from a sample.

In our treatment we will consider the sample as a magnetic (as well as
chemical) single crystal, by assuming that any interesting effect happens
on such a short scale that it is reasonable to assume to be working with a
single domain. Of course the presence of domain walls or impurities causing
the pinning of domains would open many interesting channels of dissipation.
Within our approximation, we can model the system in terms of an fcc lattice
of spins ~Si with NN and NNN interaction and asymmetric anisotropy. A

Figure 2.4: Anisotropy parameters Di and exchange couplings Ji (in K) as
measured by neutron scattering. Reproduced from [21].
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Figure 2.5: The AF2 spin structure of Ni in NiO (oxygens now shown) with
one of the (111) planes highlighted. Modified from [21].

possible Hamiltonian reads [23]:

H0 = J−
1

∑

i,δp

~Si · ~Si+δp + J+
1

∑

i,δa

~Si · ~Si+δa + J2
∑

i,δ2

~Si · ~Si+δ2+

+D1

∑

i

(Sx
i )

2 +D2

∑

i

(Sy
i )

2 ,
(2.1)

where Sz is taken as the minimum position, Sx being the out-of-plane and Sy

the in-plane direction, and the vectors δp, δa and δ2 connect ferromagnetic
NN, antiferromagnetic NN and NNN, respectively.

2.2.2 Spin-Wave Description

To get some insight on the localization of the effect of the tip on the NiO
sample, we will consider the linear spin-wave (LSW) theory for an antiferro-
magnet [24]. We will show how this is implemented on the basic simple cubic
Heisenberg antiferromagnet (HAF) to estimate the perturbation of the tip
and the time evolution due to its oscillations. We will not explicitly derive
the same equations for the complete system, but we will show that it can
be reduced to a Hamiltonian of the same form, so that the same qualitative
results are expected to apply.

Linear spin-wave thory for the Heisenberg antiferromagnet in presence of
anisotropy — We want to describe a system of spins S interacting through an
antiferromagnetic Heisenberg interaction and subject to an on-site magnetic
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field generating an unidirectional anisotropy. In order to do this we will
use the Holstein-Primakoff (HP) transformation [25] to construct a linear
spin-wave theory of our system.

We start from the Hamiltonian:

H = J
∑

i,δ

~Si · ~Si+δ −D
∑

i

(Sz
i )

2, (2.2)

where J > 0 represents the antiferromagnetic coupling,D > 0 is the anisotropy
(along the z direction) and δ represents all the possible vectors joining the
nearest-neighboring (NN) sites (we will assume aM dimensional cubic struc-
ture with lattice spacing a). To start with we will apply to the spins the
so-called Holstein-Primakoff transformation for the antiferromagnet:

{
Sz
i = (−1)i (S − n̂i)

S±
i = 1∓(−1)i

2
d̂†i
√
2S − n̂i +

1±(−1)i

2

√
2S − n̂i d̂i ,

(2.3)

where the d̂i’s are bosonic operators satisfying the usual commutation rela-
tions and the n̂i’s are the corresponding number operators d̂†i d̂i. This trans-
formation casts our Hamiltonian in the form:

H = −J
∑

i,δ

(S − n̂i)(S − n̂i+δ)+

+
J

8

∑

i,δ

[

(1− (−1)i)2 d̂†i
√

2S − n̂i d̂
†
i+δ

√

2S − n̂i+δ +

+(1 + (−1)i)2
√

2S − n̂i d̂i
√

2S − n̂i+δ d̂i+δ

]

+

−D
∑

i

(S − n̂i)
2.

(2.4)

Assuming low occupation numbers, we can take the limit 〈n̂〉 /S ≪ 1 and,
keeping only terms up to order S, our Hamiltonian simplifies to:

H = −NJS2(M +D∗) + 2JS(M +D∗)
∑

i

d̂†i d̂i + JS
∑

i,δ

[

d̂†i d̂
†
i+δ + d̂id̂i+δ

]

,

(2.5)
where once more M is the dimensionality of the system and D∗ = D/J is
the rescaled anisotropy parameter. Moving to k-space, we have

H = −NJS2(M +D∗) + 2JS(M +D∗)
∑

k

d̂†kd̂k+

+JS
∑

k,δ

[

d̂†kd̂
†
−k e

i~k·~δ + d̂kd̂−k e
−i~k·~δ

]

.
(2.6)
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We can now diagonalize this Hamiltonian by means of a Bogoliubov trans-
formation in terms of the new bosonic operators b̂k and parameters uk = u−k:

{
d̂k = cosh uk b̂k + sinh uk b̂

†
−k

d̂†k = cosh uk b̂
†
k + sinh uk b̂−k.

(2.7)

We find that for this transformation to diagonalize the system, the uk’s must
satisfy the condition

tanh 2uk = −
∑

δ cos(
~k · ~δ)

M +D∗ , (2.8)

reducing the Hamiltonian to the final diagonal form

H = −NJS2(M +D∗)−NJS(M +D∗)+

+2JS(M +D∗)
∑

k

(

n̂k +
1

2

)
√
√
√
√1−

(∑

δ cos(
~k · ~δ)

M +D∗

)2

≡

≡ E0 +
∑

k

(

n̂k +
1

2

)

ωk .

(2.9)

An example of the dispersion ωk for different values of D for the 1-
dimensional case is shown in Fig. 2.6. As we can see the dispersion is gapless
and linear for small k in the isotropic case, while the anisotropy opens a gap
in the spectrum.

Interaction with a magnetic tip — We now want to model the interaction
of our antiferromagnetic surface with an external magnetic tip by adding a
term to the hamiltonian in the form:

Hint = −HzS
z
0 −HxS

x
0 , (2.10)

that is a Heisenberg interaction of one single (0) spin with an external mag-
netic field along the z and x direction (due to the experimental setup we want
to describe). We will try to find the ground state of this new Hamiltonian
within the LSW theory; we will thus expect our result to be accurate at least
for small external perturbations, when we can consider the low occupation
needed for this theory to still hold.

In the spin-wave b̂k basis of (2.9), our Hamiltonian now reads:

H = E ′
0 +

∑

k

ωkb̂
†
k b̂k −

Hz

N

∑

k,k′

cosh(uk + uk′)b̂
†
k b̂k′+

−Hx

√

S

2N

∑

k

(cosh uk + sinh uk)
(

b̂†k + b̂k

)

,

(2.11)
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Figure 2.6: Spin-waves dispersion for the 1-dimensional HAF for different
values of the anisotropy D∗ (see legend).

where E ′
0 = E0 + Hz(S − 〈Sz

0〉0) with E0 and ωk from (2.9) and 〈Sz
0〉0 the

average spin in the unperturbed system (the first order correction in energy),
and with the uk’s as defined by the Bogoliubov transformation (2.7), and N
the total number of spins in the system.

We now look for the lowest eigenstate of this Hamiltonian which has the
form:

|ψ〉 = fGS |0〉+
∑

k

fkb̂
†
k |0〉 . (2.12)

where |0〉 is the spin-wave vacuum (ground state of the unperturbed system)
and we have introduced the N + 1 parameters {fk,GS}, subject to the nor-
malization constraint |fGS|2 +

∑

k |fk|2 = 1. It has to be noted that, due to

the presence of terms b̂†k in the Hamiltonian, this combination of one-magnon
states cannot be an exact eigenstate of the system; anyway, as long as Hx

is small enough and so are the fk’s (which is the limit in which we expect
our theory to be valid), the higher magnon states can be safely neglected in
the determination of the ground state of the system. This condition will be
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taken into account in the following calculations.
Evaluating the energy of a set of coefficients {fk,GS} as E[{fk,GS}] =

〈ψ| H |ψ〉 / 〈ψ|ψ〉 using Hamiltonian (2.11) over the trial state (2.12) gives:

E[{fk,GS}] = E ′
0 +

∑

k

|fk|2 ωk −
Hz

N z

∑

k,k′

cosh(uk + uk′)f
∗
kfk′+

−Hx

√

S

2N

∑

k

(cosh uk + sinh uk) (fGSf
∗
k + fkf

∗
GS) =

≡ E ′
0 +∆[{fk,GS}] .

(2.13)
To find the minimum configuration for the coefficients {fk,GS}, we impose

the variation on the energy to go to zero:

δE[{fk,GS}] = 0 ⇒ 〈δψ|H − E |ψ〉 = 0 (2.14)

By considering a real variation of fk̄ or of fGS we get






fk̄ = 1
ωk̄ −∆

[

Hz

N

∑

k

fk cosh(uk + uk̄)+

+

√

S

2N
Hx (cosh uk̄ + sinh uk̄) fGS

]

fGS = − 1

∆

√

S

2N
Hx

∑

k

(cosh uk + sinh uk) fk.

(2.15)

This is a set of N +1 equations that need to be satisfied self-consistently.
We found solutions for these equations for different parameters Hz and Hx

and varying degrees of anisotropy D (taken into account in ωk and uk) with
respect to the initial J coupling constant. In Fig.(2.7) we can see an example
of the absolute difference in the Sz and Sx components of the spins from the
unperturbed values for different perturbations H in a 2-dimensional system.

We can see that the decay in both components of the spin is exponen-
tial, with a slight deviation near the interacting site (the slight deviation for
boundary sites is just a finite-size effect). We can further see that the de-
cay rate does not seem to depend on the perturbation strength (it is instead
related to the coupling-anisotropy ratio), while the rotation of the spin of
the perturbed site does. For perturbations stronger than the ones shown,
the rotation of the perturbed spin does not seem to increase further and the
decay rate slightly decreases; this is probably due to the breakdown of the
LSW theory.

Expanding the theory to include two-magnon states does not seem to
substantially change the shape of the perturbed ground state, which can
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Figure 2.7: Absolute difference in the Sz and Sx components of the spins
from the unperturbed values for a 2-dimensional 41 × 41 spins system in
term of sites i along the x̂ direction. We considered an anisotropy parameter
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therefore be considered the correct state of the system for small perturba-
tions.

We will now consider the time-dependence of the external perturbation
and compute the dynamics of the system. In order to do this we take a
time-dependent version of the trial wavefunction (2.12):

|ψ(t)〉 = fGS(t) |0〉+
∑

k

fk(t)b̂
†
k |0〉 (2.16)

and we impose the time-dependent version of the variational principle:

〈δψ(t)| i~ ∂
∂t
−H(t) |ψ(t)〉 = 0 . (2.17)

In this way we find equations for the derivatives of the coefficients:







∂fk̄(t)

∂t
= (ωk̄ + E ′

0) fk̄(t)−
Hz

N

∑

k

fk cosh(uk + uk̄)+

−
√

S

2N
Hxe

uk̄fGS(t)

∂fGS(t)

∂t
= E ′

0fGS(t)−
1

∆

√

S

2N
Hx

∑

k

eukfk(t) .

(2.18)

By numerically integrating this equations for a time-dependent pertur-
bation we can see how the system responds to tips oscillating at different
frequencies. An example for a ‘slow’ and a ‘fast’ perturbation behaving like
H(t) = H sin2(ωt) is shown in Fig. 2.8. We can clearly see how in the case
of slow perturbation the system can follow essentially adiabatically and is
always in the ground state with respect to the position of the tip. On the
contrary, for faster perturbations the system ‘lags’ behind and is not allowed
to reach the ground state; this means that the tip sees a different state while
approaching to and receding from the surface, giving rise to a hysteresis loop
that can account for dissipation.

To understand the regime relevant to the experimental case under exam,
we should construct a spin-wave theory for the more complex structure of
NiO. Luckily, it is possible to do so as shown in [23] starting from the Hamil-
tonian (2.1) we previously derived. We will omit here the tedious detail of
the derivation and just say that the final result is in the usual form

E0 +
∑

k

(

n̂k +
1

2

)

ωk , (2.19)
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Figure 2.8: Time evolution of the z component of the spin obtained inte-
grating Eq. (2.18), with D∗ = 0.01 under an external perturbation H(t) =
H sin2(ωt) with H = 0.008 (again Hz =
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with the rather complicated coefficients:







E0 = −1
2
NS(S + 1)

[
z2J2 +

1
2
z1(J

+
1 − J−

1 )
]

ωk = [(β1 + γ)(β2 − γ)]1/2

β1,2 = z2J2 +
1
2
z1(J

+
1 − J−

1 ) + J−
1

∑

δp
eikδp + 2D1,2

γ = J+
1

∑

δa
eikδa + J−

2

∑

δ2
eikδ2 ,

(2.20)

where all the quantities have the same definitions of (2.1) and z1,2 is the
number of NN and NNN (12 and 6, respectively).

Considering this spin-wave spectrum with the values of NiO and the ex-
perimental tip frequency around 160 kHz, it is easy to see that the MExFM
setup is clearly in the adiabatic limit and therefore no relevant dissipation
can come from this channel (even taking into account a possible discrepancy
due to the roughness of our model).

It is interesting to see that this result could have been predicted in a much
easier way just by considering the gap in the AF spin-wave spectrum: from
our theory or directly from experimental measurements we can see that this
gap is of the order of 1.5 meV, corresponding to a frequency of more than 2
THz. A perturbation at a frequency of 160 kHz is therefore clearly unable
to directly couple to any magnon mode within the sample and can be safely
considered adiabatic with respect to this kind of excitation, leading to no
direct dissipation from this channel. Dissipation could still in principle come
from the decay of the excited spin-waves, but this is a much smaller effect
and cannot be held responsible for the huge observed dissipation.

2.3 The Dissipation Mechanism

2.3.1 Coupling Mechanism

To provide a realistic mechanism able to describe the energy dissipation
observed in the MExFM experiment described in section 2.1, we will need
to take into account the coupling of the spin to some gapless excitations of
the system: in this case, phonons. To illustrate this coupling, let us consider
a ↓-polarized Fe tip oscillating over a Ni spin ~Si and define the exchange
potential

V ex(z) = V ↓↓(z)− V ↑↓(z) . (2.21)

This potential can be estimated to yield an exchange force f ex = −∂V ex

∂z
of

∼ 0.3 nN when the tip edge is closer than 3Å to the surface Ni [16], which



2.3. THE DISSIPATION MECHANISM 39

in turn produces a small displacement uz(i) of the Ni-atom from its equi-
librium position ultimately resulting in a potential of the form −f exSz

i uz(i)
(neglecting an unimportant spin-independent term). We can now express this
potential in terms of phonon creation (a†

ks) and annihilation (aks) operators
(ks being wavevector and polarization of the phonon mode) by writing

uz(i) =
∑

ks

√

~

2NMωks
ez(ks)(aks + a†−ks)e

ik·ri , (2.22)

ez(ks) and ωks being the eigenvector and eigenvalue of the ks phonon mode,
N the number of atoms in the chain, M their mass and ri the position of
atom i.

This gives us a simple form for the coupling of the Ni-spin to the Ni
acoustic phonons:

Hspin−phonons = σz
i

∑

ks

λ
(i)
ks(aks + a†−ks) (2.23)

where

λ
(i)
ks = −f exeik·ri

√
~

8NMωks
ez(ks) . (2.24)

As explained in section 1.2, the most important quantity for a compact
description of a bath is its spectral density (1.10). From the previous deriva-
tion we can easily estimate:

J(ω) = (f ex)2
~

8MN

∑

ks

δ(ω − ωks)
|ez(ks)|2
ωks

. (2.25)

By assuming the standard Debye form for the low-energy acoustic phonons
in three-dimensions, we find that the small-ω limit of J(ω) is precisely Ohmic
J(ω) = ~

2αω + · · · with

α = (f ex)2
3~2

8Mk3T 3
D

, (2.26)

where TD is the Debye temperature. An estimate, with f ex ∼ 0.3 nN, gives
a value of α close to 1, which can be easily made > 1 by a slightly larger
f ex or by a better account of the (softer) surface phonon modes. It should
be noted that we purposely ignored all complications related to the surface
projection of bulk phonons, which would call for a much more cumbersome
treatment, without essentially changing the physics.

We thus reduced our problem to the study of a slowly driven spin-boson
model with a Ohmic bath and a rather strong coupling. We will now refine the
path-integral theory of section 1.4 to tackle this limit in the most convenient
form.
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2.3.2 Path Integral Description

We will start our description from the last expression of section 1.4 for the
Laplace transform of 〈σz〉 within the NIBA, Eq. (1.63) that we repeat here
for convenience (we refer to that section for notation and terminology):

〈σz(λ)〉 =
1

λ
+

1

λ

∞∑

n=1

(−1)n
∫ ∞

0

D̃n(λ)∆2ne
−S(τ1) cos (φ1 +R(τ1))

n∏

k=2

cos (R(τk)) cosφke
−S(τk) . (2.27)

We will make four approximations to obtain our final result, justified by
the specifics of the system under study as presented in section 2.1. The first
one has already been presented as the NIBA and, as mentioned, is justified
in our case, namely by considering a Ohmic bath and a coupling α > 1. The
second approximation is allowed by the very slow oscillation frequency of the
cantilever, making our characteristic frequency ω such that ω 〈τ〉 ≪ 1, where
〈τ〉 is the average blip length. We can therefore replace the φk’s and ∆2n

with the average value of the perturbation during the blip itself:







φj ≃ ετj

j−1
∑

k=0

sk

∆2n ≃
n∏

j=0

∆2

j
∑

k=0

sk .

(2.28)

In this limit it becomes possible to analytically compute the series: con-
sidering only the antisymmetric contribution of the external perturbation (a
similar result can be found for the symmetric part, which can be proved to
decay rapidly) and defining ρj =

∑j
k=0 sk and the functions

Fλ(ρ) = ∆2(ρ)

∫ ∞

0

sinR(τ)e−λτ−S(τ) sin (ε(ρ)τ) dτ

Gλ(ρ) = ∆2(ρ)

∫ ∞

0

cosR(τ)e−λτ−S(τ) cos (ε(ρ)τ) dτ,

(2.29)

we find 〈σz(λ)〉 in the form:

〈σz(λ)〉(a) =
∫ ∞

0

dρ0Fλ(ρ0)e
−λρ0

∫ ∞

0

dρ1e
−λρ1 exp

[

−
∫ ρ0+ρ1

ρ0

dρGλ(ρ)

]

.

(2.30)
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We now need to introduce the specific form of the spectral density which
we found to be Ohmic (2.25), and calculate the functions S(τ) and R(τ),
which, we recall, are real and imaginary part of the spectral density integral
(1.55). For this case we can explicitly compute

S(τ) = 2α

[
~β

πτ
sinh

(
πτ

~β

)]

+ α ln
(
1 + ω2

cτ
2
)

R(τ) = 2α arctan (ωcτ) ,
(2.31)

which can be further simplified for τ such that ωcτ ≫ 1, our third approx-
imation and quite general, since ωc is supposed to be a high energy cutoff.
We obtain

S(τ) = 2α

[
~β

πτ
sinh

(
πτ

~β

)]

R(τ) = πα .
(2.32)

To get a simplified expression for Gλ and Fλ we will define the useful
integral:

Σ(λ) = ∆2(ρ) cos(πα)

∫ ∞

0

dτe−λτ

[
βωc

π
sinh

(
πτ

β

)]−2α

=

= ∆e

(
β∆e

2π

)
Γ (α + βλ/2π)

Γ (1− α + βλ/2π)
,

(2.33)

Γ being the gamma function and

∆e = ∆

(
∆

ωc

) α
1−α

[cos(πα)Γ(1− 2α)]
1

2−2α . (2.34)

This allows us to explicit Gλ and Fλ as

Gλ(ρ) =
1

2
[Σ(λ + iε(ρ)) + Σ(λ− iε(ρ))]

Fλ(ρ) =
tan(πα)

2i
[Σ(λ+ iε(ρ))− Σ(λ− iε(ρ))] .

(2.35)

The fourth and last approximation we will make is to consider G and F
not strongly dependent on λ: this is a rather drastic approximation, but it
can be shown to be true for the strong damping Ohmic case we are interested
in [12] and allows us to write a very simple rate equation governing 〈σz(t)〉.
If fact upon taking Gλ(ρ) ≃ G0(ρ) and Fλ(ρ) ≃ F0(ρ) we can perform an
inverse Laplace transform and get

〈σz(t)〉(a) =
∫ t

0

dρF0(ρ) exp

[

−
∫ t

ρ

dρ0G0(ρ0)

]

, (2.36)
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which in turn obeys the simple rate equation:

d

dt
〈σz(t)〉(a) = −G0(t) 〈σz(t)〉(a) + F0(t) . (2.37)

Eq.(2.37) can be easily integrated numerically for a given low frequency time-
dependent perturbation to obtain the time evolution of the z component of
the spin.

We will now briefly show how to obtain a similar result for 〈σx〉. We will
start from Eq. (1.65) and follow the same steps and the same approximations
presented for 〈σz〉: we will consider a low frequency perturbation and define

F̃λ(ρ) = ∆2(ρ)

∫ ∞

0

sinR(τ)e−λτ−S(τ) cos (ε(ρ)τ) dτ

G̃λ(ρ) = ∆2(ρ)

∫ ∞

0

cosR(τ)e−λτ−S(τ) sin (ε(ρ)τ) dτ .

(2.38)

In terms of these we can find for the symmetric contribution (similar equa-
tions can be written for the antisymmetric, which is the decaying one in this
case):

〈σx(λ)〉(s) =

∫ ∞

0

dρ0Fλ(ρ0)e
−λρ0

∫ ∞

0

dρ1e
−λρ1

G̃λ(ρ0 + ρ1)

∆(ρ0 + ρ1)

exp

[

−
∫ ρ0+ρ1

ρ0

dρGλ(ρ)

]

.

(2.39)

We can still write F̃λ and G̃λ in terms of Σ(λ) of Eq. (2.33) and take them
as almost constant in λ to get:

〈σx(t)〉(s) =
∫ t

0

dρF0(ρ)
G̃0(t)

∆(t)
exp

[

−
∫ t

ρ

dρ0G0(ρ0)

]

, (2.40)

which can be cast as another rate equation:

d

dt
〈σx(t)〉(s) = −G0(t) 〈σx(t)〉(s) + F0(t)G̃0(t)

∆(t)
. (2.41)

The last component of the spin 〈σy(t)〉 can be easily evaluated from
〈σz(t)〉 by using the simple relation [13]

〈σy(t)〉 = − 1

∆(t)

d 〈σz(t)〉
dt

. (2.42)
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2.3.3 Numerical Results

We can now apply the rate equations obtained for all the components of the
spin in the spin-boson model specialized to our system, to understand how
the coupling to phonons can account for the energy dissipation reported in
the experimental setup described in section 2.1.

Before considering the experimental time-dependent perturbation, it is a
good idea to start analyzing the behavior of the system under an external
perturbation turned on at t = 0 and having a constant value ε̄−ε0 thereafter.
In this case eq.(2.37) can be considerably simplified and the equilibrium value

〈σz(∞)〉 = −F0/G0 = − tanh(
1

2
βε̄) , (2.43)

as well known in literature [7], and as we have found for similar systems sub-
ject to thermalization in section 1.3 through a totally different formalism (see
Eq. (1.40)). Concerning the way in which the system reaches the equilibrium
value, the spin boson system is know to present different regimes: in partic-
ular in the ohmic case for α > 1 the system shows an overdamped behavior
reaching the equilibrium value exponentially with a decay rate given, for low
temperatures, by

Γ =
π∆2 ε̄2α−1

2Γ(2α)ω2α
c

[

1 +
π2α(2α− 1)(2α− 2)

3(βε̄)2

]

. (2.44)

This gives us an idea of how in the overdamped regime the decay rate can take
quite large values; this means that, even when subject to a comparably slow
external perturbation, the system can be out of its instantaneous equilibrium
value. This is the basis of the hysteretical behavior of this system, which we
have excluded in terms of spin-wave excitations in section 2.2, but becomes
now realistic in presence of this new timescale.

Before presenting the results of our analysis a remark about the role of
ωc is required: as we can see from Eq. (1.10), ωc acts as a high energy cutoff
to avoid the divergence of the spectral density. This cutoff can either be a
true characteristic of the system or, as is the case in many application of the
spin-boson model, an external artifact created while reducing a more general
system at low energy to a two-state system. In this second case, one usually
divides the density in a low energy component, treated as shown in the
previous section, and a high energy component, which merely renormalizes
the value of such quantities as ∆, which in the ohmic case is indeed found
to scale as ∆ ∝ ωα

c . We can thus find a combination ∆r = ∆(∆/ωc)
α/(1−α)

which is effectively independent of the chosen cutoff frequency: we will call
quantities dependent on ωc only through ∆r universal. As can be clearly seen
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from the explicit equations for the time-independent perturbation (2.43),
〈σz(t)〉 is in fact universal; contrariwise, as first noted in [26], 〈σx(t)〉 and
〈σy(t)〉 are not universal quantities, as their behavior strongly depends on
the high energy part of the spectrum. For this reason, as we will see in the
following, 〈σx(t)〉 and 〈σy(t)〉 will always be very small in our simulation, and
the dissipated energy will be in fact dominated by the 〈σz(t)〉 behavior. This
is not surprising, since a strong damping tends to suppress the coherences of
the system [cf. section 1.3].

We will now consider a time-dependent perturbation simulating the real
action of the tip. To do this we will start from the original Hamiltonian
(1.47), which we report here for convenience:

H =
1

2
ε(t)σz +

1

2
~∆(t)σx + σz

∑

i

λi

(

bi + b†i

)

+
∑

i

ωi

(

b†ibi +
1

2

)

, (2.45)

and take the external perturbation in the form
{

ε(t) = ε0 + h cos θ sin2(ωt)
∆(t) = h sin θ sin2(ωt) ,

(2.46)

where ε0 is the fixed potential on the spin due to the neighboring spins (we
take it as constant since we saw in section 2.2 that nearest neighbors are
only slightly affected by the perturbation), h is the maximum amplitude of
the perturbation due to the tip, which we take as oscillating with frequency
ω but always positive and θ is the angle the tip forms with the original spin
direction.

We start from the initial condition σz(0) = −1 and integrate numerically
equations (2.37) and (2.41) for values compatible with the experimental data.
Numerical integration was performed through a simple implementation of the
Runge-Kutta algorithm [27]. A sample time evolution for 〈σz〉 and 〈σx〉 is
shown in Fig. 2.9 (〈σy〉, not shown, is of the order of 〈σx〉): concentrating on
the σz component (in black), we can clearly see how, at regime, the response
of the system is “slower” than the perturbation, meaning that the system
cannot respond to the tip instantaneously and the interactions during the
approach and retraction phases are different. This is the typical case of
hysteresis.

We can therefore now propose our model for dissipation in this system on
more solid bases: the Ni spins are coupled through the action of the tip to the
phonons of NiO, due to this coupling the effective response to the external
tip perturbation is not instantaneous and any rotation of the spin leads to
dissipation of energy through hysteresis; since the coupling is ferromagnetic,
spins parallel to the tip are subject to a very small rotation and thus show
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Figure 2.9: Time evolution of 〈σz(t)〉 (black full line, left axis) and 〈σx(t)〉
(dashed red line, right axis) for ε0 = 1, ωc = 20ε0, α = 2.1, h = 1.5ε0,
θ = 0.6, ω = 10−8ε0, βε0 = 20. The dotted line shows the shape of the
external perturbation.

low dissipation from this channel whereas antiparallel spins undergo a much
greater movement to try to align to the tip magnetization direction and show
therefore a much larger dissipation.

To numerically support this model and check that the spin-dependent
dissipation is consistent with the experimental findings shown in Fig. 2.3,
we computed evolutions for different tip-sample angles θ and calculated the
energy dissipated in a cycle as:

W =

∫ 2π/ω

0

dt

[

〈σz(t)〉 dε(t)
dt

+ 〈σx(t)〉 d∆(t)

dt

]

, (2.47)

which also corresponds to the area of the hysteresis cycle as seen in a state-
perturbation diagram. Such curves and the corresponding dissipated energy
as a function of θ are shown in Fig. 2.10. It is necessary to point out that
only the data for the z component are reported, since the x contribution
is, as we have seen, negligible. Moreover, the curves represent the behavior
of the system in the steady state, which depending on the parameters may
take a few to a few tens of oscillation to be reached. We can clearly see
that the dissipation has a maximum near θ = 0 (not exactly at 0, where no
rotation is allowed) and decreases for larger angles, just as expected from our
description. Furthermore, the area of the hysteresis cycle for the most dis-
sipative cases is of the order of magnitude of the antiferromagnetic coupling
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Figure 2.10: Hysteresis cycle for the z component of the external perturbation
for different angles θ (see legend) for ε0 = 1, ωc = 100ε0, α = 2.1, h = 1.3ε0,
ω = 10−12ε0. Inset: angular dependence of the hysteresis area W .

ε0, which we saw in 2.2 to be of the order of 20 meV, and therefore perfectly
compatible with the dissipation difference of ∼ 15 meV reported in [15] (see
again Fig. 2.3).

In order to investigate some other features of this dissipation, we per-
formed calculations at different frequencies ω and inverse temperatures β,
as reported in Fig. 2.11 (in terms of energy dissipated per cycle W and of
dissipated power P = ωW ). This results clearly show the presence of an
“optimal” frequency attaining maximum dissipation. This can be easily ex-
plained by considering the new timescale Γ−1 (see Eq. (2.44)) due to the
bosonic coupling: for frequencies of the order of (or slightly higher than) Γ,
dissipation is high because the response of the system is hysteretic, but for
slower frequencies the system can easily follow the external perturbation and
the area of the hysteresis loop goes to zero, in accordance with the general
principle that there is no zero-frequency dissipation in a thermal system. On
the other side, for frequencies much higher than Γ the system has no time
to really evolve during an oscillation of the tip and only sees an average
perturbation in which it is effectively “frozen”, leading to a slow decay to a
position which is, in the steady state, almost fixed and producing no energy
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dissipation. We can see from the inset how the temperature dependence of
the maximum dissipation frequency is compatible with the T -dependence of
Γ (2.44).

Overall we can state that the dissipation mechanism we proposed satis-
fies all the prerequisites that were missing in the other models considered: it
is clearly spin-dependent, unlike many other dissipation mechanisms usually
considered in AFM experiments, it works down to low frequencies, which as
shown in 2.2 is not true for the most natural choice of dissipation through
spin-waves; and finally it has the right order of magnitude to fit the exper-
imental data. We are therefore inclined to believe that this is a mechanism
taking place in the MExFM experiment on NiO.



Chapter 3

Dissipative Quantum Pumping

In this chapter we consider another nanoscopic problem, this time electronic,
and its behavior in presence of dissipation. This problem enters the general
category of quantum pumping (QP): we refer to QP whenever we are forc-
ing quantum particles through a system with a cyclic process, obtaining a
direct current as a result. The case we will take into account, in which QP is
performed in a circular system, is often referred to as quantum stirring. In
section 3.1 we will describe the simple three-site model we will consider in
our further treatment and the real systems it can describe, we will present
the solution for the isolated system and a comparison to known results from
the standard QP theory. We will then introduce in section 3.2 the presence
of a bath to account for dissipation, showing how under quite general ap-
proximations the system can still be solved analytically and observing some
interesting changes occurring in the system due to this coupling [4], we will
then briefly explore some a possible experimental implementation.

3.1 Quantum Pumping in Three-Site Systems

3.1.1 From Three Sites to Two States

We will start by considering a model composed of three sites in a ring struc-
ture, as schematically represented in Fig. 3.1. We will consider two possible
systems characterized by this structure that can be reduced to the same
two-level Hamiltonian.

The most straightforward system showing these characteristics is a triple
quantum dot, where all dots are interconnected in a ring structure. The
experimental realization of such geometry is known to be feasible [28] and
will be further investigated in section 3.2. We indicate with ǫi the external

49
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Figure 3.1: Schematic representation of the three-site model.

bias applied to each single-orbital dot i, and with γij the hopping amplitude
for an electron to jump between sites i and j. The Hamiltonian

H0 =





ǫa −γab −γ∗ac
−γ∗ab ǫb −γbc
−γac −γ∗bc ǫc



 (3.1)

describes the one-electron dynamics. Without loss of generality, we can set
∑

i ǫi = 0.
This Hamiltonian can be easily diagonalized in the fully symmetric case

of equal hoppings γij = γ0 and energies ǫa = ǫb = ǫc = 0, to give a ground
state |0〉 = (|a〉+ |b〉+ |c〉) /

√
3 with energy −2γ0 and a degenerate doublet

of excited levels with energy γ0. We choose as a basis for the degenerate
subspace







|x〉 =
|b〉 − |c〉√

2

|y〉 =
2 |a〉 − |b〉 − |c〉√

6
.

(3.2)

Neglecting electron-electron correlation effects, when three electrons occupy
the system of the three quantum dots, two of them fill the state |0〉, and the
third one remains free to move in the twofold-degenerate manifold |x〉, |y〉,
which is therefore the one relevant for transport processes.
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To act on this twofold degeneracy, experimentally the easiest way is to
perturb the bias ǫi at each site. We can consider the perturbing Hamiltonian
in the |0〉, |x〉, |y〉 basis:

Hbias =










0
1√
6
(ǫb − ǫc)

1√
2
ǫa

1√
6
(ǫb − ǫc) −1

2
ǫa

1

2
√
3
(ǫc − ǫb)

1√
2
ǫa

1

2
√
3
(ǫc − ǫb)

1

2
ǫa










. (3.3)

As long as the deviation from the unbiased system can be treated as a small
perturbation with respect to the gap 3γ0, admixtures of state |0〉 produce
negligible effects within the |x〉, |y〉 doublet. We can therefore restrict the
treatment to the |x〉, |y〉 subspace. Here, the perturbing Hamiltonian takes
the form:

HQD = − 1

2
√
3

( √
3ǫa ǫb − ǫc

ǫb − ǫc −
√
3ǫa

)

. (3.4)

To realize the pumping (or stirring), we can cycle the external potentials
according to 





ǫa(t) = −~∆cos (ωt)

ǫb(t) = −~∆cos
(
ωt− 2π

3

)

ǫc(t) = −~∆cos
(
ωt+ 2π

3

)
(3.5)

and, since the system is now equivalent to a spin-1
2
, this reduces it to the

two-level Hamiltonian:

HS(t) =
~∆

2
[cos(ωt)σz + sin(ωt)σx] , (3.6)

where we have used the Pauli matrices σz and σx. This is the Hamiltonian
we will consider in our further treatment.

The second system that can be reduced to the same Hamiltonian is the
molecular trimer: we consider a molecule such as H3, Li3 or Na3 and its
valence electronic states [29]. In this case, driving is achieved through the
excitation of “rotating” vibrational modes and acts through the degenerate
electron-vibration interaction, of the Jahn-Teller “e⊗E” type [30].

A standard tight-binding model [31] provides a basic and fairly realis-
tic picture of the molecular electronic structure. The relevant tight-binding
Hamiltonian reads exactly like Eq. (3.1). A trimer of equal atoms has iden-
tical on-site energy ǫa = ǫb = ǫc = 0.

To realize the pumping in this system, we change in time the hopping
integrals γij. The equilateral molecular geometry has identical hopping in-
tegrals γij = γ0, in these conditions the spectrum consists again of a singlet
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ground state at energy −2γ0 plus a twofold degenerate excited state at energy
γ0 as before. But upon molecular distortion, these overlaps may be assumed
to change with distance approximately as

γij ≃ γ0e
−κ(dij−u0) , (3.7)

where dij is the instantaneous distance between atoms i and j, and u0 is the
equilibrium separation in the equilateral geometry.

To obtain time-dependent hoppings, we can consider the perturbation
to the electronic levels induced by the a small-amplitude excitation of the
vibrational modes of the trimer: excluding the uniform dilation, which does
not split the degeneracy, the remaining two vibrational normal modes are
degenerate in frequency. The associated atomic displaced positions can be
described in terms of two normal coordinates Qx and Qy as follows:







Ra = (0, 1)
u0√
3
+

(
1√
3
, 0

)

Qx +

(

0,
1√
3

)

Qy

Rb = −
(√

3

2
,
1

2

)

u0√
3
−
(

1

2
√
3
,
1

2

)

Qx +

(
1

2
,− 1

2
√
3

)

Qy

Rc =

(√
3

2
,−1

2

)

u0√
3
+

(

− 1

2
√
3
,
1

2

)

Qx −
(
1

2
,

1

2
√
3

)

Qy

(3.8)

The modified atomic positions result in modified overlap integrals estimated
by substituting dij = |Ri −Rj| into Eq. (3.7). We can compute the electron-
phonon linear coupling by linearizing the coupling term for small Qi. We
obtain the following overlaps:







γab ≃ γ0

(

1− κ
√
3

2
Qx − κ

1

2
Qy

)

γbc ≃ γ0 (1 + κQy)

γac ≃ γ0

(

1 + κ

√
3

2
Qx − κ

1

2
Qy

)
(3.9)

The resulting Hamiltonian for perturbatively small displacement can be rep-
resented in the |0〉, |x〉, |y〉 basis by:

Hlin = γ0






−2 1√
2
κQx

1√
2
κQy

1√
2
κQx 1 + κQy κQx

1√
2
κQy κQx 1− κQy




 . (3.10)
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We can further restrict this linearized Hamiltonian to the |x〉, |y〉 subspace,
where it takes the form:

HMT = κγ0

(
Qy Qx

Qx −Qy

)

, (3.11)

where we have omitted the trivial shift by γ0.
Assuming to be able to excite a classical motion of the vibrational degrees

of freedom, and choosing a time-dependent rotating combination of these
vibrations with amplitudes







Qx =
~∆

2κγ0
sin(ωt)

Qy =
~∆

2κγ0
cos(ωt)

(3.12)

we recover the pumping Hamiltonian in the form (3.6).
Since we want to estimate the pumping in the system, we need to find

the operator corresponding to the current circulating in the ring structure.
To do so, the simplest way is to consider the current between two sites, e.g.
a and b, as:

Iab = −iqγab
(

c†bca − c†acb
)

, (3.13)

where the c†i and ci are creation and annihilation operators at site i and q
is the charge. Applying the previous change of basis, we can therefore write
Iab in the |0〉, |x〉, |y〉 basis as:

Iab = iqγab







0 1√
6

1√
2

− 1√
6

0 − 1√
3

− 1√
2

1√
3

0







(3.14)

which, restricted to the subspace |x〉, |y〉 and for fixed hopping γ0, simply
reads

Iab =
qγ0√
3

(
0 −i
i 0

)

= I0σ
y , (3.15)

with I0 = qγ0/
√
3. The quantity 〈σy(t)〉 will therefore be the one we will be

measuring to estimate the current pumped in the system.

3.1.2 Solution for the Isolated System

We will now show the exact solution of the Hamiltonian (3.6). While one
could clearly tackle the problem directly, a clever change of basis can make



54 CHAPTER 3. DISSIPATIVE QUANTUM PUMPING

the problem particularly easy: let us consider the operator

Rt = e−iωtσy/2 = I cos(ωt/2)− iσy sin(ωt/2) , (3.16)

representing a rotation of frequency ω around the y axis. If we apply this
operator to the Hamiltonian we obtain:

H̃S = R−1
t HS(t)Rt =

~∆

2
σz , (3.17)

which is conveniently time-independent. Since our transformation is time-
dependent, the states ˜|ψ(t)〉 = R−1

t |ψ(t)〉 in the rotated frame obey a modi-
fied Schrödinger equation (due to the derivative of Rt):

i~
∂

∂t
˜|ψ〉 =

[

H̃(t)− ~ω

2
σy

]

˜|ψ〉 . (3.18)

We can take into account this new term in the Schrödinger equation by
considering a new effective Hamiltonian

H̃eff = H̃S −
~ω

2
σy =

~∆

2
σz − ~ω

2
σy =

~ω′

2
n̂ · ~σ , (3.19)

where ω′ =
√
∆2 + ω2, and n̂ is a versor in spin space with components n̂ =

(0,−ω/ω′,∆/ω′). It is trivial to solve this Hamiltonian, since the eigenstates
are simply spin states directed along ±n̂, call them |±n〉, and have energies
±~ω′/2.

We notice that the current operator σy is not affected by the rotation Rt

since it is parallel to the rotation axis: this means that the observable we are
interested in is still time-independent. It is also straightforward to estimate
the current on the eigenstates of the effective Hamiltonian:

〈±n̂|σy |±n̂〉 = ∓ ω
ω′ . (3.20)

If we start from the ground state of the original Hamiltonian:

|ψ̃(0)〉 = Rt |−ẑ〉 = sin

(
θ

2

)

|+n̂〉+ cos

(
θ

2

)

|−n̂〉 , (3.21)

with θ = arccos(∆/ω′), we get the current as a function of time as

〈ψ̃(t)|σy|ψ̃(t)〉 = sin2 (
θ

2
) 〈+n| J |+n〉+ cos2 (

θ

2
) 〈−n| J |−n〉

− sin (
θ

2
) cos (

θ

2
)
(

e−iω′t 〈+n| J |−n〉 + c.c.
)

.

(3.22)
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Figure 3.2: DC current as a function of the pumping frequency as per
Eq. (3.23).

This expression has a constant and an oscillating part. Since we are interested
in the DC component due to pumping we can concentrate on the first two
terms and get

J =
ω

ω′ cos θ =
ω∆

ω′2 . (3.23)

The oscillating component coming from the last term would have a frequency
ω′ and an amplitude ω∆/ω′2, but is not our main interest now.

The DC current as a function of the pumping frequency ω is shown if
Fig. 3.2: we can clearly see that the maximum current J = 0.5 is obtained
for ω = ∆. The maximum in the final current is due to the interaction
of two different effects: for increasing frequencies the maximum theoretical
current ω/ω′ increases as the effective quantization axis n̂ gets closer to the
y direction; on the other side our choice of initial condition |φ(0)〉 = |−ẑ〉
has a smaller projection on the y axis as the frequency increases, so that the
DC current decreases. A different choice of initial conditions would lead to
currents up to ω/ω′.

3.1.3 Standard Quantum Pumping

To consider our problem from a viewpoint closer to the standard quantum
pumping literature, we will re-derive our result in a different formalism, as
presented by Cohen in [32], specialized for our system.
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Let us start by considering a magnetic field threading our three-sites
system for a flux Φ (in units of the flux quantum Φ0): we can include this
in our Hamiltonian by updating the hopping terms as γ0e

±2πΦ/3 in (3.1),
assuming the dots to be equally spaced. By passing to the |x〉, |y〉 basis (3.2)
we obtain a term

HΦ = −γ0







cos

(
2πΦ

3

)

−i
√
3 sin

(
2πΦ

3

)

i
√
3 sin

(
2πΦ

3

)

cos

(
2πΦ

3

)







. (3.24)

Incidentally, we can recover through this the expression for the current op-
erator: by considering charge and flux as conjugate variables we get

J = − ∂H
∂Φ

∣
∣
∣
∣
Φ=0

=
2πγ0√

3
σy , (3.25)

and dividing by 2π over the circumference and multiplying by the charge
unit q (we consider here a probability current) we find again the expression
(3.15).

Neglecting the diagonal term (which is just a simple shift) we can intro-
duce this into the Hamiltonian (3.6) by adding a term coupled to σy:

H′
S(t) =

∆

2
[cos(ωt)σz + sin(ωt)σx] +

D

2
σy , (3.26)

with D =
√
3γ0 sin(2πΦ/3). Passing to the rotating frame of reference of

Eq. (3.16), since σy is not affected we simply get:

H̃′
S(t) =

ω′

2
σz +

D

2
σy , (3.27)

and a further rotation around x̃ gives us the final

Ĥ′
S(t) =

√
ω′2 +D2

2
σz; . (3.28)

The eigenvalues of this Hamiltonian are trivially E± = ±1
2

√
ω′2 +D2, and we

can apply the inverse rotations to get the eigenvectors in the original basis:

∣
∣±̂
〉
= ei

ωt
2

{[

cos
ωt

2
C± ∓ i sin

ωt

2
C∓

]

|↑〉+
[

sin
ωt

2
C± ± i cos

ωt

2
C∓

]

|↓〉
}

,

(3.29)

with C± =
√

(
√
ω′2 +D2 ± ω′2)/(2

√
ω′2 +D2) and where the first term is

added to insure the single-valuedness of the wavefunction over the ring.
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The space spanned by this Hamiltonian can be parametrized by 3 quanti-
ties: we will choose θ = ωt (which is the term we use to achieve our pumping,
with one cycle being 2π long), ω′ and Φ. Without entering too much into
the detail of the theory (for which we refer to [32]), we will state that within
linear response theory, and in the DC limit, the current is proportional to
the derivative of the parameters through a tensor called the conductance
matrix. In the basis and with the pumping of our choice, only the term in θ
is different from zero, and in the adiabatic limit it can be expressed as:

Bθ = ℑ 2

(
∂

∂θ

〈
−̂
∣
∣

)(
∂

∂Φ

∣
∣−̂
〉
)

. (3.30)

With this it becomes easy to calculate the pumped charge as

Q =

∫

cycle

Idt =

∫ 2π

0

Bθdθ =
4π2γ0√
3∆

, (3.31)

where we have taken the D → 0 limit since we work at Φ = 0. We can
compare this result with Eq. (3.23): multiplying by 2π/ω to get the pumped
charge, plus a further 2π for the circumference, and taking the adiabatic limit
ω → 0 we find the two results to coincide exactly.

3.2 Quantum Pumping in Presence of a Bath

3.2.1 Master Equation Description

We will now turn back to the Hamiltonian (3.6) to investigate what happens
if we introduce dissipation in the system by coupling it to a bosonic bath in
the form

H =

HS
︷ ︸︸ ︷

~∆

2
[cos(ωt)σz + sin(ωt)σx] +

+
∑

ξ=z,x

∑

ν

[
p2ξ,ν
2m

+
mω2

νq
2
ξ,ν

2

]

︸ ︷︷ ︸

HB

+
∑

ξ=z,x

∑

ν

√

2mων

~
λξ,νqξ,νσ

ξ

︸ ︷︷ ︸

HSB

,
(3.32)

where q, p, m and ω are position, momentum, mass and frequency of the
oscillators of the baths, λ represents the coupling constant and the sum over
ξ stands for the presence of two noninteracting baths, labeled z and x and
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coupled through σz and σx, respectively. Both baths will be once more taken
as Ohmic, with the usual spectral density (1.10):

Jξ(ω) =
∑

ν

λ2ξ,νδ(ω − ων) = ~
2αξωe

−ω/ωc (3.33)

Since we have seen how the system Hamiltonian is much better handled
in the rotating frame of reference defined by Rt (3.16), we will rotate the
complete Hamiltonian obtaining H̃ = H̃eff + HB + H̃SB(t), where the first
term is (3.19) and the last one is modified by rotating the spin operators as:

{

σ̃z(t) = R−1
t σzRt = σz cos (ωt)− σx sin (ωt)

σ̃x(t) = R−1
t σxRt = σx cos (ωt) + σz sin (ωt) .

(3.34)

We will handle this system through the ME formalism introduced in sec-
tion 1.3. Let us recall Eq. (1.29) and specialize it for our Hamiltonian:

∂ρS(t)

∂t
≈ −i[Heff , ρS(t)]−

1

~2

∫ ∞

0

dτ
∑

ξ,η{
gξη(τ)

[
σξ(t), U †(−τ)ση(t− τ)U(−τ)ρS(t)

]

+ g∗ξη(τ)
[
ρS(t)U

†(−τ)ση(t− τ)U(−τ), σξ(t)
]}

,

(3.35)

where the ξ and η summation runs over the x and z indexes of the baths and
we have dropped the tilde to lighten the notation, though all quantities are
intended in the rotated frame of reference. One must pay attention to the two
different time-dependences of the system operators σξ: the one given by the
rotation Rt, referred to implicitly in the equation above, and the one given
by the ME itself, here stated explicitly by the application of the operator

U(t) = eiω
′
n̂·~σt/2 = cos(ω′t/2)I− i sin(ω′t/2)n̂ · ~σ . (3.36)

Since the baths are independent and identical, we have gξη(τ) = δξ,η g(τ),
where g(τ) is defined as in (1.11). To proceed, it is convenient to name the
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possible integrals we will find:







gcc =

∫ ∞

0

g(τ) cos(−ωτ) cos(−ω′τ)dτ

gsc =

∫ ∞

0

g(τ) sin(−ωτ) cos(−ω′τ)dτ

gcs =

∫ ∞

0

g(τ) cos(−ωτ) sin(−ω′τ)dτ

gss =

∫ ∞

0

g(τ) sin(−ωτ) sin(−ω′τ)dτ

gc0 =

∫ ∞

0

g(τ) cos(−ωτ)dτ

gs0 =

∫ ∞

0

g(τ) sin(−ωτ)dτ.

(3.37)

It is also convenient to choose a basis more appropriate for the frame
of reference of the effective Hamiltonian: defining the vector perpendicular
to both n̂ and x as m̂ = (0,∆/ω′, ω/ω′), we can define the new operators
(obeying the standard Pauli matrices commutation relations):







σx = x̂ · ~σ
σm = m̂ · ~σ
σn = n̂ · ~σ .

(3.38)

In terms of these quantities we can explicit the ME (3.35) as:

∂ρS(t)

∂t
= −iω

′

2
[σn, ρS]−

[

Ctσ
x + St

(
∆

ω′σ
n +

ω

ω′σ
m

)

,

{
∆

ω′ (Stgc0 + Ctgs0) σ
n+ (3.39)

+
(

Ctgcc − Stgsc +
ω

ω′Stgcs
ω

ω′Ctgss

)

σx +

+
(

Stgss − Ctgcs +
ω

ω′Stgcc +
ω

ω′Ctgsc

)

σm
}

ρS

]

+ c.c. +

+

[

−Stσ
x + Ct

(
∆

ω′σ
n +

ω

ω′σ
m

)

,

{
∆

ω′ (Ctgc0 + Stgs0) σ
n+

+
(

−Stgcc − Ctgsc +
ω

ω′Ctgcs −
ω

ω′Stgss

)

σx +

+
(

Stgcs + Ctgss +
ω

ω′Ctgcc −
ω

ω′Stgsc

)

σm
}

ρS

]

+ c.c. ,

with Ct = cos(ωt) and St = sin(ωt).
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We can consider the generic density matrix ρ̄S = 1
2
(I+ aσx + bσm + cσn)

as we did in section 1.3 to cast the master equation in the more manageable
form: after evaluating the commutators and regrouping the terms we get

∂ρ̄S
∂t

=

= −2
{(

∆2

ω′2ℜgc0 +
ω

ω′ℜgss +
ω2

ω′2ℜgcc
)

a+

(
ω′

4
+
ω

ω′ℜgsc −
ω2

ω′2ℜgcs
)

b

+
∆

ω′

(

ℜgsc −
ω

ω′ℜgcs
)

c+
∆

ω′

(

− ω
ω′ℑgc0 + ℑgss +

ω

ω′ℑgcc
)}

σx +

−2
{(

−ω
′

4
− ω

ω′ℜgsc + ℜgcs
)

a +

(
∆2

ω′2ℜgc0 + ℜgcc +
ω

ω′ℜgss
)

b +

− ∆

ω′

( ω

ω′ℜgcc + ℜgss
)

c+
∆

ω′

(

ℑgs0 + ℑgsc −
ω

ω′ℑgcs
)}

σm + (3.40)

−2
{

−∆

ω′ℜgs0a−
ω

ω′
∆

ω′ℜgc0b+
(
ω2 + ω′2

ω′2 ℜgcc + 2
ω

ω′ℜgss
)

c

+

(

−2 ω
ω′ℑgsc +

ω2 + ω′2

ω′2 ℑgcs
)}

σn .

This is a simple equation with constant coefficients, we can therefore easily
find the equilibrium state of the system by setting all derivatives to 0. To
get a final simple result, we will recall that this theory is valid in the weak
coupling limit, and observe that, since all the g’s are of order α, the a and b
terms clearly vanish at zeroth order, while the c term goes to a finite value
that we can estimate:

ceq =
(ω′ − ω)2J(ω′ + ω) + (ω′ + ω)2J(ω′ − ω)

(ω′ − ω)2J(ω′ + ω) coth
~(ω′ + ω)

2kBT
+ (ω′ + ω)2J(ω′ − ω) coth ~(ω′ − ω)

2kBT

.

(3.41)
To recover the current we just need to project this state over the initial

y direction, acquiring a ω/ω′ factor (plus the I0 prefactor to obtain a charge
current). We can observe some quite simple behaviors in different limits:
for T → 0, irrespective of ω/∆ and of the form of the spectral density, the
stationary master equation operator is a projector onto the ground state |−n̂〉
and the current is therefore the maximum ω/ω′ of Eq. (3.20).

For finite temperature, in the adiabatic limit ω ≪ ∆, the effects of the
pumping should be minimal, and in fact we find

J ≃ ω

ω′ tanh
~∆

2kBT
, (3.42)
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Figure 3.3: Steady-state DC circulating current I as a function of the pump-
ing frequency ω. Solid line: T = 0 current, obtained by Eq. (3.20). Dashed
and dot-dashed curves: pumped DC current for several temperatures, as
obtained by the exact expression (3.41).

as is appropriate for a static Hamiltonian in thermal equilibrium.
Finally, in the high frequency antiadiabatic regime ω ≫ ∆ we find a

current

J ≃ ω

ω′ tanh
~(ω′ − ω)
2kBT

. (3.43)

This result is interesting, since it tells us that for fast driving, the spin reaches
the thermal equilibrium of a static spin Hamiltonian characterized by an
effective Larmor frequency

(ω′ − ω) = ∆

[
∆

2ω
+O

(
∆3

ω3

)]

, (3.44)

vanishing for large ω. The current, which coincides with the theoretical
maximum for all large frequencies at T = 0, decays eventually at any finite
T for large enough ω, as shown in Fig. 3.3. Faster and faster driving at finite
temperature enhances the pumped current up to ω ≃ ~∆2/kBT . For larger
driving frequencies, thermal fluctuations catch up and suppress J causing
the pumped current to drop.

The reason why (ω′−ω) determines the Boltzmann occupancy of the two
levels split by ~ω′ may be traced to the −ω ·M term to be included in the
thermodynamically relevant functions for a body rotating at frequency ω,
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see e.g., §26 of Ref. [33], where M is the body angular momentum which,
for our spin, coincides with ~σ. This basically makes the energies of the
spin states, as seen from the bath, be renormalized by a factor −~ω, and the
equilibrium reached is changed accordingly. This effect is quite intuitive for
the very high frequency limit where σn almost coincides with σy: shifting
to the frame of reference where the bath is at rest is a rotation around the
y axis with frequency ω, which in this limit clearly introduces the effective
factor −~ω.

3.2.2 Numerical Results

While finding analytical results is quite elegant, it is nevertheless always use-
ful to compare them with some numerical simulations, for the possibility to
relax some approximations or, as in this case, to obtain information on the
evolution rather than only on the asymptotic state. To this purpose, we
numerically integrated Eq. (3.39) using the Runge-Kutta algorithm [27] for
different values of α, T and ω: the first due check is that the system actually
reaches the predicted asymptotic state. In Fig. 3.4 we can see the match of
the asymptotic states found by simulating the whole evolution with the ana-
lytic solution of Eq. (3.41), already shown in Fig. 3.3. We find indeed a quite
good agreement, with small discrepancies mainly due to the accumulation of
numerical errors in the longer evolutions and the approximation of integrals.

Another opportunity of numerical integration is getting a better insight
on the time-evolution of the system, as can be seen in Fig. 3.5. We can clearly
observe how the presence of the bath leads to damped oscillations towards
the asymptotic state. The relaxation time needed to reach the steady state
is found to be decreasing with α, as could be expected, but also depending
on the temperature, with lower temperature baths generally taking a longer
time to equilibrate the system.

The final aspect we investigated numerically is the possibility of an ani-
sotropic coupling to the bath, meaning the coefficients λξ are different for
the x and z direction. The result is shown in Fig. 3.6: the evolution does not
completely damp the oscillations in the case of asymmetric baths, but goes
to a steady oscillating state with frequency 2ω and amplitude growing with
the anisotropy parameter. It can anyway be shown both numerically and
analytically (by averaging out the oscillations in the asymmetric equivalent
of Eq. (3.39)) that in the limit αξ → 0 (while keeping constant anisotropy)
the oscillation amplitude goes to 0 and the zeroth order symmetric result
(3.41) is recovered.
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Figure 3.4: Asymptotic current I as a function of the pumping frequency ω.
Curves: analytical results as obtained by the exact expression (3.41). Points:
steady state of numerical simulations.

3.2.3 Experimental Feasibility

Quantum pumping is nowadays achievable at the experimental level in na-
noscopic structures. We now ask ourselves whether the triple quantum dot
setup we considered is realistic and the current we calculated measurable.

If we look at state-of-the-art quantum dot experiments, we can find real-
izations of triple quantum dots in a ring structure based on two-dimensional
electron gas depleted by metallic gates [34, 35] as shown in the original
Fig. 3.7. While the main focus of these experiments is charge transfer through
the quantum dots, the same apparatus could in principle be used in a differ-
ent setup, carefully changing the gate voltage to achieve the cyclic potential
modulation we considered. In fact the presence of a state where changing
only two gate potential can push the only excess electron in any of the three
potential minima has been shown in [34].

We will therefore take this experiment as our reference to calculate the
current which could be induced by our pumping. Starting from the obser-
vation of a 30 mT periodicity in the current when the ring is subject to an
external magnetic field (due to Aharanov-Bohm effect), the estimated effec-
tive radius of the ring is reff ≃ 200 nm (compatible with the measured size
of the system). To calculate the current, we need to know the entity of the
hopping γ0 between the dots: both experimental results [35] and an extensive
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Figure 3.5: Time evolution of the current I(t) for ω = 2∆, in the dissi-
pationless case (α = 0, solid curve), and in the transient induced by weak
dissipation (α = 0.005), at low (dashed) and intermediate temperature (dot-
dashed), starting from the initial |−ẑ〉 state. Inset: temperature dependence
of the steady-state dc current I.

theoretical treatment [36] agree on a value γ ≃ 0.05 meV. From this we can
easily calculate the maximum current using Eq. (3.15):

Imax =
eγ0√
3~
≃ 8 nA , (3.45)

where e is the electron charge.
We can now imagine to measure this current from the magnetic field it

generates through the triple quantum dot (other measurement possibilities
exist involving the use of a further lead, but they seem less applicable and
more likely to perturb the system in such a complicated setup). We can
imagine to measure this current through a Superconducting Quantum Inter-
ference Device (SQUID): we will model this as a ring with a 5 µm radius
placed 5 µm over our system. All we need to do is calculate the flux though
the SQUID of a 8 nA current circulating in a 200 nm ring. We know the
flux can be calculated as Φ =

∫

Σ
~A · d~l, where Σ is the SQUID circuit and ~A

the vector potential generated by the current. A simple integral yields the
desired result Φ ≃ 4 ·10−17 Wb, which corresponds to 0.02Φ0 in terms of the
flux quantum.

Measurements of magnetic fields much smaller than 0.02Φ0 are known
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Figure 3.6: Time evolution of the current I(t) for ω = ∆, kBT/~∆ = 0.1 and
two different bath couplings: α1 = 0.01 and three different α2.

to be entirely feasible, so even accounting for some inaccuracy in our esti-
mate we are confident that the effect we described could soon be observed
experimentally, offering the intriguing possibility to investigate the effects of
the unavoidable coupling to external sources of noise and compare it to our
theory.

Figure 3.7: Experimental setup of a triple quantum dot. Reproduced from
[35]
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Chapter 4

Friction in Quantum-Classical
Systems

In this chapter we will present another model for the description of dissipative
systems which has been investigated, but for various reasons could not be
brought to a complete description. The general idea is an attempt to explore
a simple dissipative system where both a classical and a quantum description
could be fully achieved, with the ultimate aim of finding some intrinsically
quantum contribution to dissipation. The method employed, which will be
briefly explained, is a known procedure for quantum-classical systems, which
unfortunately proved computationally too heavy for a simple handling of the
system. Although incomplete, we hope this idea, in line with the rest of the
material presented, proves interesting for the reader and have a chance to be
further expanded in the future.

The idea for this model came from an experiment by the R. Carpick group
[37], where a nanoscale tip is slid over hydrogen- and deuterium-terminated
single-crystal diamond and silicon surfaces in a contact-mode AFM experi-
ment. The measured friction shows a clear dependence on the nature of the
adsorbed atoms: specifically the hydrogen-terminated surface results in a
higher friction (see Fig. 4.1). This effect is explained in terms of the different
damping related to different masses which in turn translates in a different en-
ergy dissipation. Although this mechanism is consistent with the experiment,
one is led to wonder if some specifically quantum effect could be observed
when light particles like H or D are perturbed at low enough T .

Models of single impurities coupled to chains and baths are known in lit-
erature [38], but mainly in classical terms and rarely with a specific attention
to frictional effects. Moreover the introduction of a quantum degree of free-
dom makes things more complicated: a complete quantum description, while
optimal in principle, is clearly not feasible in a system governed by many

67
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Figure 4.1: a Schematic representation of the experimental setup; b Mea-
sured effective shear strength for hydrogen (solid red dots) and deuterium
(open blue squares) coated surfaces. Reproduced from [37].

different timescales; we therefore explore the option of a hybrid quantum-
classical description of our system, in an effort to extrapolate the relevant
physics. To further reduce the complexity of the model, we will consider
a single quantum impurity attached to a classical atom chain, and we will
mimic the effect of the nanoscale tip through a last classical atom slowly
oscillating over the quantum particle.

The proposed model, shown in Fig.4.2, is composed of a big tip M gov-
erned by an external force F (t), connected to a chain of smaller oscillators
mi through a much lighter particle µ, held in place by its own transverse
potential, which we will regard as our quantum degree of freedom. The net
effect of the movement of the tip (in the transverse direction) should be a
sort of time-dependent double-well potential for the quantum particle: as the
tip oscillates the light atom is pushed left and right, while having to avoid
the position right under the tip. This effective double-well is the prototypical
model for Caldeira-Leggett-like systems [7], but since we expect many levels
to be involved in the dynamics, no simple treatment in terms of a spin-1

2
, as

presented in chapter 2, can be applied.
The model is described by the following Hamiltonian:

Htot =
P 2
0

2M
+
p̂2

2µ
+

N∑

i=1

P 2
i

2mi
+ VT (R0, t) +HTQ(R0, q̂)+

+VQ(q̂) +HQS(q̂, R1) + VS(Ri, . . . , Rn)+

+HSB(Rn, Rn+1) + VB(Rn+1, . . . , RN),

(4.1)
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Figure 4.2: The system under investigation: a quantum particle Q connected
to a classical system S (and bath B) and under the effect of a classical tip
T .

where we have divided the system in four components

• The tip T of mass M and coordinates {R0, P0}

• The quantum particle Q of mass µ and coordinates {q̂, p̂}

• The first n oscillators S of masses mi and coordinates {Ri, Pi}i=1..n

• The remaining N − n oscillators B of coordinates {Ri, Pi}i=n+1..N and
masses mi

and the various terms represent the kinetic component of each part, its exter-
nal potential (where needed to hold it in place in the transverse direction) and
internal couplings VX and the interaction terms among them HXY . In partic-
ular for the external force F (t) = −∂VT (R0, t)/∂R0 it the driving transverse
perturbation.

The reason for dividing the oscillators in two parts is to allow for the
possibility of treating some of them explicitly while transforming the rest in
an effective bath later in the calculation following one of the many simplifying
schemes to remove this kind of degrees of freedom [39].

The easiest and most direct way to tackle a quantum-classical problem
would be in the direction of the so-called Ehrenfest dynamics. In this method
the classical and quantum subsystems are evolved according to their respec-
tive Hamiltonians with the interaction term taking the instantaneous classical
values for the quantum system and the average over the quantum wavefunc-
tion of the coupling observable for the classical system. For example for a
two-level system coupled to some classical degrees of freedom {q, p} and de-
scribed by the wavefunction ψ(t) = cα(t)αq + cβ(t)βq, where αq and βq are
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the instantaneous eigenfunctions of the Hamiltonian with eigenvalues εα and
εβ, the time evolution would be given by

dcα,β(t)

dt
= − i

~
εα,βcα,β ∓ q̇dαβcβ,α, (4.2)

with dαβ = 〈αq|∇qβq〉. Conversely, the evolution of the classical degrees of
freedom would be modified with the instantaneous expectation value of the
quantum system like, e.g.,

ṗ =
∂V (q)

∂q
− (εβ − εα)dαβ(c∗αcβ + c∗βcα), (4.3)

depending on the shape of the coupling [40].
While this is a reasonable first approximation if we want to deal with

wavefunctions, it does not behave well for a system that is supposed to ther-
malize to the right statistical description in terms of a density matrix. The
reason behind this is that the evolution of the quantum state is ultimately
determined simply by a time-dependent Hamiltonian, so that a pure state
can never evolve into a mixed state and achieve the right thermal equilibrium.

In order to find a more complete description of quantum-classical dy-
namics, able to achieve the correct thermodynamic state, we will follow a
more general procedure for mixed quantum-classical systems introduced by
Kapral [41]: we will start from a completely quantum description of the sys-
tem and convert some degrees of freedom to their classical equivalent through
a Wigner transformation, this will allow us to keep the interesting physics
and in some reasonable limit obtain a manageable expression.

Let us consider just the Q and S parts of our model as a single quantum
system described by a density matrix ρ(t) starting from a factorized initial
state ρ(0) = ρQ(0)⊗ ρS(0). A Wigner transformation over the S degrees of
freedom is defined as

ρW (Ri, Pi, t) =
1

(2π~)n

∫ n∏

i=1

dyie
iPiyi/~

〈

Ri −
yi
2

∣
∣
∣ ρ(t)

∣
∣
∣Ri +

yi
2

〉

(4.4)

and it obeys an equivalent of the Liouville equation:

dρW (Ri, Pi, t)

dt
= − i

~

(
HWe

−i~Λ/2ρW − ρWe−i~Λ/2HW

)
(4.5)

where HW is the Wigner transform of the Hamiltonian and Λ =
←−∇P ·

−→∇R −←−∇R ·
−→∇P is an operator similar in spirit to the Poisson bracket.

If now consider the mi masses of the S system to be much bigger than the
µ mass of the Q system, we can justify the classical treatment of the former
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with respect to the latter and write the evolution as a quantum-classical
Liouville equation:

dρW (Ri, Pi, t)

dt
= − i

~
[HW , ρW (t)] +

1

2
({HW , ρW (t)} − {ρW (t), HW}) ≡

≡ −iLρW (t) ,
(4.6)

where {·, ·} is the Poisson bracket.

This equation properly accounts for the evolution of the system treating
the S part as classical (Poisson bracket) and the Q part as quantum (com-
mutator) and it can lead from a pure state to the correct thermodynamical
mixed state because we can properly explore all the elements of the density
matrix.

The direct integration of Eq. (4.6) is computationally quite heavy, since
each element of the density matrix needs to be evolved and can affect ev-
ery element of its row or column, plus having a different contribution to
the evolution of the classical subsystem. We will therefore present a possi-
ble algorithm to efficiently obtain the evolution of the density matrix in a
statistical way.

As a first step, we can write explicitly the terms of the Liouville operator
(4.6) for the various elements of the density matrix in the form

(
dρW
dt

)

β,β′
=

iLαα′,ββ′(ρW )αα′ considering the instantaneous eigenstates of the quantum
subsystem hW |αR〉 = Eα(R) |αR〉 in the adiabatic base at a given R:

iLαα′,ββ′ = iL0
αα′δαβδα′β′ − Jαα′,ββ′ = i(ωαα′ + Lαα′)δαβδα′β′ − Jαα′,ββ′ =

=

(

i
Eα(R)−Eα′(R)

~
+
P

m

d

dR
+

1

2
(F α

W + F α′

W )
d

dP

)

δαβδα′β′+

+
[
dαβδα′β′ + d∗α′β′δαβ

]
(
P

m
+
Eα − Eβ

2

d

dP

)

,

(4.7)
where ωαα′ = (Eα(R) − Eα′(R))/~, F α

W = 〈αR| dVW

dR
|αR〉, and dαβ(R) =

〈αR| d
dR
|βR〉, and where we have considered a single classical degree of free-

dom for sake of simplicity. We can identify a first term of simple propagation
plus a second term that actively accounts for quantum transitions between
different elements of the density matrix.

Let us consider the propagator from time 0 to time t as the product of
smaller propagators over N time-steps ∆t = tj− tj−1: from an initial density



72 CHAPTER 4. FRICTION IN QUANTUM-CLASSICAL SYSTEMS

matrix element (α0, α
′
0) to the final (αN , α

′
N) we will have

(
eiLt
)

(α0,α′

0),(αN ,α′

N
)
=

∑

(α1,α′

1)...(αN−1,α
′

N−1)

N∏

j=1

(
eiL(tj−tj−1)

)

(αj−1,α′

j−1),(αj ,α′

j)
.

(4.8)
If we now consider ∆t to be “small enough” (formally we operate a truncation
of the Dyson expansion of the exponential) we can rewrite each term plugging
(4.7) in the exponential and expanding:

(
eiL(tj−tj−1)

)

(αj−1,α′

j−1),(αj ,α′

j)
≃ e

iωαj−1α
′

j−1
∆t
e
iLαj−1α

′

j−1
∆t

(

δαjα′

j
δαj−1α′

j−1
−∆tJαj−1α′

j−1,αj ,α′

j

)

.

(4.9)

The simulation scheme we would like to follow represents the product
of these terms as an ensemble of surface hopping trajectories, which can be
sampled quite easily through a sort of Monte Carlo method to achieve the
evolved state of the system. Assuming to start from a system with classi-
cal coordinates (R,P ) and density matrix element α0α

′
0, the computational

procedure is as follows:

• We evolve the quantum state with e
iωα0α

′

0
∆t

(namely a phase factor)

and the classical system with e
iLα0α

′

0
∆t

• We choose with probability 1/2 if we consider the transition α0 → α1

or α′
0 → α′

1, where α1 and α′
1 are chosen uniformly among the allowed

final states

• We calculate the transition probability π and the momentum exchange
∆P (explained later) and cast a random number p ∈ [0, 1] to see if the
transition occurs:

– If the transition is not energetically allowed or if p > π we con-
tinue the trajectory adiabatically: the classical variables remain
the same and the quantum state gains a factor (1 − π)−1 (the
weight of the step).

– If the transition is energetically allowed and p < π we compute the
transition: the classical momentum is updated based on the mo-
mentum exchange P (t+∆t)→ P (t+∆t)+∆P and the quantum
state gains a factor wα0α′

0,α1α′

1
π−1 (the weight of the step consid-

ering the allowed jumps).
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The nonadiabatic transition probability π introduced above is defined as
(for a α0 → α1 transition):

π =

∣
∣
∣
∣

P (t+∆t)

m
dα0α1(R(t+∆t))

∣
∣
∣
∣
∆t

(

1 +

∣
∣
∣
∣

P (t+∆t)

m
dα0α1(R(t+∆t))

∣
∣
∣
∣
∆t

)−1

(4.10)
and the weight of the accepted transition is further multiplied by

wα0α′

0,α1α′

1
= N P (t+∆t)

m
dα0α1(R(t+∆t))∆t, (4.11)

where N is the total number of allowed final states.
The easiest way to calculate the last missing quantity, the momentum

exchange ∆P , is called momentum-jump approximation and basically relies
on (Eα − Eβ)

m
P

being small enough, so that we can convert the last terms
of J in eq.(4.7) in exponentials. In this case we can write the momentum
increment for a nonadiabatic jump as (skipping over some vectorial notation
for the multidimensional case):

∆P = dαβ

[

sgn(Pdαβ)
√

(Pdαβ)2 + Eβ − Eα − (Pdαβ)

]

(4.12)

where dαβ is the matrix element defined before. This automatically ensures
that the dynamics takes place on energy-conserving surfaces.

The last needed remark is about the energetic feasibility of the transition:
if Eβ − Eα < 0 the quantum system is getting energy from the system, so
that there is a chance that (Pdαβ)

2 < |Eβ −Eα| and the transition cannot
occur because there is not enough kinetic energy in the classical system to
balance it. If we select a sufficient number of initial states their average at
time t will represent the final evolved state of the system.

Since our final goal would be to treat some of the classical degrees of
freedom as an effective bath, we will see how it is possible to do this within
the same quantum-classical dynamics framework introduced up to now. The
basic idea behind this is to separate the classical system in two parts (our
HS and HB) and trace away the bath degrees of freedom to get a simple
modification of the dynamics of the classical system.

We start by applying the usual Wigner transformation over the classical
degrees of freedom of both subsystems to obtain ρW (R,P, t). We will divide
the total Liouville operator L in two parts: the one corresponding to terms
that do not include the bath degrees of freedom L′ and the bath and bath-
system interaction part L0 (for ease of notation in the following we will
indicate with a prime X ′ all quantities related only to HS and with a double
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prime X ′′ all quantities related only to the bath; quantities with no primes
generally refer to the whole system). The part of the density matrix we want
to get an equation for is

ρ′W (R′, P ′, t) =

∫

dR′′dP ′′ρW (R,P, t). (4.13)

To find an equation for this we will define the equilibrium density matrix
ρWe, satisfying iLρWe = 0, and we will assume that this can reasonably
be expressed as the product ρWe = ρ′We(R

′, P ′)ρ0(R,P ) where the first
term is the equilibrium density matrix for the quantum-classical system
iL′ρ′We(R

′, P ′) = 0 and the second is the equilibrium density matrix for the
bath on a fixed system configuration iL0ρ0(R,P ) = 0 (this can be actually
justified a posteriori as keeping the lowest order in ~). We will also consider
the projection of the overall equilibrium density matrix on the subsystem of
our interest ρc =

∫
dR′′dP ′′ρWe.

We can now define the projector P on a generic fW as:

PfW (R,P ) =
1

2

[

ρce

(∫

dR′′dP ′′fW

)

+

(∫

dR′′dP ′′fW

)

ρ†ce

]

, (4.14)

where ρce(R,P ) = ρWe(R,P )ρ
−1
c (R′, P ′). By applying this projector (and ap-

plying the Nakajima-Zwanzig identity [42]) we can verify that the projection
over the subspace of our interest of the density matrix obeys the equation:

dρ′W (R′, P ′, t)

dt
=

[

−iL′ − F 0
SB

d

dP ′ + ζ
d

dP ′

(
P ′

m
+KBT

d

dP ′

)]

ρ′W , (4.15)

where F 0
SB =

〈
dVSB

dR′

〉

0
(the average is over H0 = HB+HSB), and ζ is the fixed

particle friction tensor of the bath ζ(R′) = 1
KBT

∫∞
0
dt
〈
δFSBe

−iL0tδFSB

〉

0
,

δFSB being the difference between the actual forces on the system and their
H0 average: δFSB = F 0

SB − FSB. The position dependence of the friction
tensor has been dropped.

To obtain this final form, we have also made the approximation that
the characteristic relaxation time of the bath τB is much smaller than the
typical timescale of the rest of the system τQS (basically to ignore the term
depending on the initial conditions).

With respect to the previous equation (4.7), the presence of the bath
basically only changes the evolution of the classical system by considering
both external forces F α

tot = F α
W +F 0

SB and adding the term due to the tracing
away of the bath, so that we can rewrite (4.7) (with the previous notation)
as:

iL̃αα′,ββ′ = i(ωαα′ + L̃αα′)δαβδα′β′ − Jαα′,ββ′ (4.16)
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with

iL̃αα′ =
P

m

d

dR
+

1

2
(F α

tot + F α′

tot)
d

dP
− ζ d

dP

(
P

m
+KBT

d

dP ′

)

. (4.17)

The algorithm for the computation can be therefore easily changed accord-
ingly.

The theory here presented allows to describe mixed quantum-classical
systems in presence of a bath, in a way that preserves the density matrix
structure of the quantum state. Coming back to the initial model: we would
describe the quantum system Q as a single particle on a grid, solving the
relevant Schrödinger equation to find the adiabatic basis; the T and S sys-
tem would form our classical terms, while B would be absorbed in the way
presented for baths. Finally, we would like to apply Eq. (4.16) through the
sampling method proposed.

The approximations made should be reasonable for our system, given the
proper ratio between the masses is considered and a sufficient number of
paths with small enough time-steps is computed. Unfortunately, preliminary
results seem to show that the needed number of paths is indeed very large:
as with many Monte Carlo methods, the weights of the paths tend to diverge
and need to be treated carefully, so that a good sampling of the trajectory
space becomes quite heavy even for short evolutions. While this approach
has been used to reproduce the evolution of spin-boson systems [43], treating
systems with more degrees of freedom seems quite unfeasible.

Ultimately, we were expecting from this model to show a sort of frictional
force on the tip due to the presence of the quantum particle. This could
happen, e.g., in a regime where the motion of the quantum particle is damped
by the presence of the bath as was the case for the spin of chapter 2: whether
this is realistic or not for this system still has to be understood. This should
in principle be confronted with a classical treatment of the light particle to
see if some inherently quantum effect is present. Unfortunately, until we find
a lighter approach or a different implementation of the one presented here,
the exploration of this effects has to be delayed.
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Conclusion

In this thesis we have presented two examples of dissipative quantum systems.
Although both cases have been reduced to an “innocent looking” spin-1

2

coupled to a bosonic bath, they were derived from very different starting
models and proved to be characterized by very different features. This shows
the importance of the right description of the coupling between system and
environment and how the presence of other degrees of freedom can have non-
negligible effects even on the simplest Hamiltonian, completely changing the
isolated behavior of the system.

In the MExFM case, we have seen that strong coupling can significantly
slow down the response of a spin, so that an apparently adiabatic perturba-
tion can become nonadiabatic in presence of a bath. We have shown how this
effect can directly lead to dissipation by creating an hysteresis loop. In doing
so, we have found a low-frequency spin-dependent dissipation mechanism,
compatible with the experimental findings.

In the quantum pumping case, we have seen how a weak coupling can al-
low for relaxation of a spin to its ground state, but we have also showed that
in presence of a fast rotation, the relevant energy scale might not straight-
forwardly correspond to the one of the isolated system. Once more this
nonintuitive effect shows the importance of correctly accounting for the form
of the bath. In our ideal system, this effect leads to a non-monotonicity of
the pumped current as a function of frequency, an interesting effect which,
as we have shown, could lead to experimental tests in the near future.

While both these applications are quite self-contained, further exploration
of both systems could be interesting, especially if supported by experimental
findings. On a larger scheme, the treatment of quantum dissipative systems is
a rapidly growing area of research and both of these models could, with more
or less extensive modifications, be applied to different systems and hopefully
describe some other interesting effects.
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Appendix A

The Influence Functional

In this appendix we will briefly derive Eq. (1.52). Our derivation will start
from the general equation (1.50) for a path integral without further derivation
and will outline the main steps needed to obtain the expression we used; we
refer the interested reader to [2] and [10] for a more complete treatment and
discussion of the general properties and limits of influence functionals.

Expending Eq. (1.50) for a system with a generic variable q (the spin in
our case) and a bath with coordinates Xt and wavefunctions χ(Xt) from 0
to t we obtain:

Pfi =

∫

χ∗
f(Xt)χf(X

′
t)e

i
~
[S0(q)−S0(q′)+SB(X)−SB(X′)+SI (q,X)−SI (q

′,X′)]

χ∗
i (X

′
0)χi(X0)dX0dX

′
0dXtDqDq′DXDX ′ ,

(A.1)
where S0,B,I are the actions of the system, bath and interaction parts, re-
spectively, and once more the D· represent integrals over the paths.

If we factor out all the parts belonging to the bath, we can obtain an
expression for the influence functional by direct comparison with (1.51):

F [q, q′] =

∫

χ∗
f(Xt)χf(X

′
t)e

i
~
[SB(X)−SB(X′)+SI(q,X)−SI (q

′,X′)]

χ∗
i (X

′
0)χi(X0)dX0dX

′
0dXtDXDX ′ ,

(A.2)

or better, since we are working with density matrices,

F [q, q′] =
∫

ρB(X0, X
′
0)F (q;Xt, X0)F

∗(q′;Xt, X
′
0)dX0dX

′
0dXt, (A.3)

in term of the density matrix ρB of the bath and defining

F (q;Xf , Xi) =

∫

e
i
~
[SB(X)+SI (q,X)]DX . (A.4)
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We can now specialize this general form for a harmonic bath: for a bath
of N oscillators with mass mα and frequency ωα coupled to a variable q (the
spin in our case), we consider the Lagrangian of the bath and interaction as







LB =
1

2

N∑

α=1

mα

(

Ẋ2
α(t)− ω2

αX
2
α(t)

)

LI =
N∑

α=1

(

cαXα(t)q(t)−
1

2

c2α
mαω2

α

q2(t)

)

,

(A.5)

where the cα’s of the coupling correspond to our parameter λ and the second
term in the coupling just ensures the correct minimum for the potential of the
system. By assuming the bath at time 0 to be thermalized we can compute
for the density matrix

ρB(X,X
′) =

N∏

α=1

1

Zα

√
mαωα

2π~ sinh(ωα~β)
exp

{

− mαωα

2~ sinh(ωα~β)
[
(X2

α +X ′2
α ) cosh(ωα~β)− 2XαX

′
α

]
} (A.6)

where Zα is the partition function. We can then compute the other terms of
the influence functional from the Lagrangians:

F (q;Xf , X i) =

=

N∏

α=1

√
mαωα

2π~ sin(ωαt)
exp

{

imαωα

2~ sin(ωαt)

[
(X i2

α +Xf2
α ) cos(ωα~β)

−2X i
αX

f
α

]
+

iX i
αcα

~ sin(ωαt)

∫ t

0

sin (ωα(t− t′)) q(t′)

+
iXf

αcα
~ sin(ωαt)

∫ t

0

sin (ωαt
′) q(t′)− ic2α

2~mαω2
α

∫ t

0

q2(t′)dt′

− ic2α
~mαωα sin(ωαt)

∫ t

0

dt′
∫ t′

0

dt′′ sin (ωα(t− t′)) sin(ωαt
′′)q(t′)q(t′′)

}

.

(A.7)
By substituting the expressions (A.6) and (A.7) in (A.5) we finally find

the form:

F [q, q′] = exp

{

−
∫ t

0

dt′
∫ t′

0

dt′′ [q(t′)− q′(t′)]

[L(t′ − t′′)q(t′′)− L∗(t′ − t′′)q′(t′′)]
} (A.8)
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with

L(t) =
1

π

∫ ∞

0

dωJ(ω)

(

coth
ωβ

2
cos(ωt)− i sin(ωt)

)

, (A.9)

as reported in Eq. (1.52) used in the text.
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