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Introduction

An important branch of solid-state physics is the study of surfaces and inter-
faces, where many interesting phenomena often occur. The main feature in
surface physics is reconstruction of solid surfaces, i.e., atoms near the surface
rearrange themselves in a different crystal structure than that of the bulk
material. This is especially true in the case of semiconductors, which form
strong and directional bonds between atoms: if the bulk crystal is truncated
at a given surface, a lot of dangling bonds are created, i.e., half-filled or-
bitals pointing outwards the surface. Since dangling bonds are energetically
very unfavourable, semiconductor surfaces usually show a strong tendency
to reconstruct in order to reduce their number.

In the last decades, along with the extremely fast development of powerful
computers, computational methods have been acquiring an ever more impor-
tant role in many fields of physics. They are especially useful in the study of
solid systems, which by their nature, except for the simplest cases, are too
complex for an analytical treatment. By appropriate, quantum-mechanical
computational methods, many properties of solid materials can today be cal-
culated to very high degrees of accuracy, including properties that aren’t
directly accessible by experimental methods, and can provide considerable
insight for the comprehension of such systems.

In the main course of my Ph.D. research, I undertook a computational
study of a specific system, namely, the Sn-covered Ge(111) surface. This
surface has recently attracted great interest since the discovery of a puzzling
temperature-driven phase transition. What has been observed is that, be-
low a critical temperature (about —60°C), the reconstructed surface further
distorts reversibly, lowering the surface symmetry: the main structural fea-
ture of the distortion is a displacement of adatoms orthogonal to the surface
plane, some of them going “up” while some going “down”. The physical
mechanism underlying this phase transition is still highly controversial.

By numerical computation, using the ab initio DFT-PW (density func-
tional theory, plane waves expansion) method, we checked and confirmed
findings by other workers, and collected new evidence to help explaining the



behavior of this surface. While a complete understanding of the physics of
the Sn/Ge(111) surface is still lacking, this work clarified several aspects
of the problem. It was found that the electronic charge rearrangement ac-
companying the distortion is largely intraatomic, with little or no charge
transfer between adatoms: hybridization between the Sn adatoms’ dangling
bonds, backbonds and a deeper lying second-third layer bond must thus be
taken into account, making it impossible to describe the distortion within a
single-band picture. In particular, the interpretation of the distortion as a
charge-density wave transition, as was proposed by its discoverers, must be
rejected.

A completely new aspect of this surface’s behavior was found by investi-
gating the response of the system under surface strain. Computations show
that, when a compressive or expansive strain is applied, the distortion pattern
qualitatively changes, varying the relative population of “up” and “down”
adatoms by discrete amounts ranging from “all down” to “all up”. The data
indicate clearly that the adatom geometry, in particular their heights, can
jump between two distinct local energy minima, possibly associated to dif-
ferent valence states. Because of the triangular nature of the adatom lattice,
the surface might behave as a frustrated mixed-valence system.

Another unrelated and parallel piece of work that I did during my Ph.D. is
a computational study of the high-temperature phase of the Ge(111) surface.
This system shows a first-order phase transition above room temperature
(at about 540 K), and while the insulating room-temperature phase is very
well characterized, the structure of the high-temperature phase, known to
be weakly metallic, hasn’t been so intensely studied. I performed numerical
computations, using the empirical tight-binding method, on a model pro-
posed for this phase (the Phaneuf-Webb model), and compared them with
experimental data. A gratifying agreement between experiment and the-
ory was found, strongly supporting the validity of the Phaneuf-Webb model.
The weak metallicity can be attributed by surface “doping” by surface de-
fects that are intrinsic in this model. An interesting emerging concept is that
these defects exhibit fractional charge, donating exactly half an electron to
the surface bands.

The plan of this thesis has been arranged so as to introduce briefly in
chapter 1 the computational methods used, and then subsequently to discuss
in chapters 2-6 different points on the physics of our semiconductor surface,
encumbered by the necessity to describe technicalities case by case. Chapter
6 contains our provisional conclusions, still relatively open at the time of this
writing, on Sn/Ge(111). Chapter 7 is, as announced, devoted to the separate
problem of Ge(111).

The list of the main new results obtained in the course of this thesis work



is the following:

1.

We have shown (chapter 2) that the reason for enhanced stability, in the
V3 xv/3R30° structure, of a tetravalent adatom with large atomic num-
ber, such as Sn and Pb, on Ge(111) (and presumably also on Si(111))
is the increased interaction with the second-third layer Ge-Ge bond di-
rectly beneath. This is in turn encouraged by the large adatom size,
forcing a downward shift of its dangling bond energy.

We have analyzed (chapter 3) the energetics of the 3 x 3 distortion of
Sn/Ge(111) and found that the gain comes from electron kinetic energy,
at the expense of electron-ion, electron-electron and ion-ion energy.
This points towards a strong intra-adatom dehybridization and to a
modulation of the bond with the substrate as the driving mechanism,
and is contrary to a charge-density wave (CDW) picture. In CDWs,
the sum of electrostatic energies provides the gain, while some kinetic
energy is lost. This point is further illustrated by a model polyacetylene
calculation.

We calculate (chapter 4) the relative core level shifts of two inequivalent
adatoms on 3 x 3 Sn/Ge(111), and find a value which compares fairly
well with experiment. The “up” adatoms core level, in particular, is
found to be deeper than that of “down” adatoms, pointing to the fact
that the difference between the two is mostly hybridization, but not
total charge (that would give the opposite sign to the shift).

. We also calculate (chapter 4) the work function of Sn/Ge(111), both in

the v/3 x v/3R30° undistorted (unstable) state, and in the 3 x 3, “1 up”
distorted state. The calculated shift is extremely small, indicating a
negligible change of surface dipole, in full agreement with the lack of
true up-down charge transfer also suggested by the core level analysis.

. We investigate (chapter 5) the effects of magnetism on the Sn/Ge(111)

system, in particular we explore the possibility that a magnetic phase
might show good nesting properties and/or exhibit insulating character.
The answer is negative, and we conclude that magnetism is only of
secondary importance for this surface.

. We calculate (chapter 6) the effect of strain on the state of a surface

like Sn/Ge(111), and obtain our main surprise. The 3 x 3 distortion
disappears with large compression, and also with large tension. How-
ever the Sn adatom geometry, in particular its height over the second-
layer Ge substrate atom, does not change continuously. The adatom

7



has two stable positions, up (U) and down (D). Under tensile strain,
all adatoms are D (0U). At zero strain, one out of three is up (1U),
and for increasing compressive strain we have 2U, and finally 3U (all
adatoms up, v/3 x v/3R30° periodicity). The U and D states appear
as two different “valences” of Sn, and thus the Sn/Ge(111) and similar
surfaces could be seen as mixed valence systems.

. We have identified (chapter 7) a novel fractional charge defect in the
Phaneuf-Webb model of clean Ge(111) above 540 K. The resulting frac-
tional doping is held responsible for the weak metallic behavior seen on
this surface by EELS and photoemission.



Chapter 1

Computational methods

1.1 Density functional theory

The density functional theory (DFT) [1, 2, 3, 4] is a general scheme which can
be used to reduce a quantum-mechanical, many-body problem to an effective
one-electron problem, that can be solved much more easily.

Its basic theorem [1, 4] states that in the adiabatic approximation, the
energy E of the electronic ground state is a unique, universal functional of
the electron density matrix n(r), and that we can write [1, 3, 4]

Eln(r)] = To[n@)] + Bx [n(t)] + Ben[0(r)] + Enn + Bac[n()]  (1.1)
where the right-hand terms have the following meanings:
e T [@(r)] is the kinetic energy of a system of non-interacting electrons
52
To [g(r)} = -—%U;T_:_;fi,a/?,b;g(r)vzwi,g(r) dr (1.2)

where the 1; ,(r) are single-particle electronic wavefunctions, ¢ being
the spin (o = + for spin up, o = — for spin down), and the f; , are their
respective occupation numbers. The corresponding electron density is

n(r) = ny(r) + n_(r) (1.3)

where

ng(r) = Z fio |wi,0(r)[2 . (1.4)



o Ly [Q(r)] is the (Hartree) interaction energy between electrons

EH[Q(r)] = % 4;50 / n](rr):zg{) dr dr’ (1.5)

i.e., the classical electrostatic energy of the electron density n(r).

o F,, [Q(r)] is the interaction energy between electrons and nuclei

Buln(r)] = ¥ / vy (r)ny (r) dr (1.6)

o=+,

where
Vo (r) = XI: Vi(r — Rr) — pps(o)B(r) (L.7)

is the total potential exerted by nuclei, plus a spin-dependent Zeeman
term (usually zero); Ry is the position of the /-th nucleus, and V;(r) is
its electron-nucleus potential, while ug = efi/2m is the Bohr magneton,
s(+) =1, and s(—) = —1.

e [, is the interaction energy between nuclei

1 62 Z[ZJ

E,==— __arad
" 2 47T€0 IJ#I ]RI“‘R]I

(1.8)
that, as long as we consider the electronic problem for a fixed nuclear
configuration, is just an additive constant.

e F . {Q(r)} is the exchange and correlation energy, coming from two
sources:

— The difference between the true electron-electron interaction and
the Hartree energy, equation (1.5), which incorrectly includes the
interaction of each electron with itself.

— The difference between the kinetic energy of a system of inter-
acting electrons and the non-interacting expression of equation
(1.2).

In other words, E,, {Q(r)} is defined by the following relation:
T+V =Tn(r)] + (Bx [nr)] + Een|n(r)] + Enn) + Boe|n(r)] (1.9)

where T and V' are the true kinetic and potential energy of the system.

10



No exact expression is known for E,. {Q(r)]7 in the local-spin-density

approximation (LSDA) [3, 4], we assume that this functional can locally
be approximated by its value for a uniform electron gas, that is, we let

Eoo[n(r)] = / €20 (14 (r), n_(r)) n(x) dr (1.10)

€ze(ny,n_) being the exchange-correlation energy per electron of a uni-
form electron gas of spin-up density n,. and spin-down density n_:
expressions for it are available in the literature [5, 6, 7].

When effects of spin are neglected, the name LDA (local-density ap-
proximation) is used in place of LSDA.

Now, if we define

ooy _ OBze[n(r)]

vi(r) = ——=
dngs(r)

we can see that the system is equivalent to a system of non-interacting elec-

trons whose single-particle Schrodinger equation is

(1.11)

2
Hisio(r) = (“lVQ + VJKS(I‘)> Vio(r) = €ioio(r) (1.12)

2m

2 !
KS _ € ’I’L(I' ) ! zc
Vo (r) = p— / my——y dr’ + v, (r) + v¥¢(r) (1.13)

the electron density n(r) being given by equation (1.3) with the occupation
numbers f;, = F(eis), where F(F) is the Fermi distribution; the Fermi
energy is determined by the sum rule }°, ; f; - = Ne, where N, is the number
of electrons in the system.

The above equation is called Kohn-Sham equation [3, 4]; vZ%(r) is the
(spin-dependent) ezchange-correlation potential. Its expression within the
LSDA is

vz (r) = pg” (ny.(x), n_(r)) (1.14)

where p2¢(ny,n_) is the exchange-correlation contribution to the chemical
potential for the uniform electron gas

Mic(n-i-’ 7’L_) _ d ((7’L+ + nzliirwc(n—i-? TL_)) ) (115)

The total energy can be written as

E I S //* (5920, () dr + = -5 /”(r)”(r/)d dr' +
= — 4 2,0 7.0 1,0 By rdr
2m b i, 2 dneg ) |r—1|

11



+ 3 [ o) (r) dr + B [n(x)] + Bon =
Zfi,UEi,o __% e? /n(r)n( )d dr! +E7:c[ ( )] -

24neg ) Jr—1|

=Y [ ()ng(x) dr + B (1.16)

and in the LSDA

2 !
Z f’i,crgi,o' - ']; c / n(r)n(f‘) dr drl -+ (117)

24dwegJ v
+ 3 [ [we (n4 (), (1)) = 2 (. (x), ()] g (1) + Fo,

As we see, the Kohn-Sham Hamiltonian Hxs depends on the electron
spin-up and spin-down densities, which in turn depend on the wavefunctions
i (r): thus the Kohn-Sham equations must be solved self-consistently, by
guessing suitable starting densities n{)(r) (a superposition of atomic orbitals
is usually a good starting point) and generating successive approximations
n(r) by repeatedly solving the equations, until the desired accuracy is
achieved. A number of methods for accelerating the convergence rate are
known, e.g., the Broyden [8, 9] and Davidson [10] methods.

We are thus able to solve the electronic problem for any fixed ionic con-
figuration R: to find the ground state of the system, we must look for the
value of R that yields the minimum value of the total energy E. The sim-
plest way to obtain the optimal ionic configuration is to start with a trial
configuration, evaluate forces, move each atom proportionally to the force
acting on it, and repeat this procedure until an equilibrium configuration is
reached (some care is required to avoid falling into a local minimum).

Forces acting on nuclei can be evaluated through the Hellmann-Feynman
formula [11]:

oFE

Fo= =20 =yl 2 ) (1.18)

where )\ is one of a set of parameters descrlbmg the nuclear configuration,
usually the Cartesian coordinates of nuclear positions.

To obtain more accurate results, the local-(spin-)density approximation
is often corrected by using a functional of the generalized gradient approxi-
mation (GGA) type, that is, the exchange-correlation energy is expressed as
a local function of n(r) and of its gradient:

/f ny(r),n_(r), Vn,(r), Vn_(r)) dr (1.19)



where f(ny,n_,Vng, Vn_) is some suitable function. This approximation
is also called a gradient-corrected L(S)DA. In this work, we used mainly the
functional by Perdew, Burke, and Ernzerhof (PBE) [12]:

E.[n(r)] = ;_ / £2 (21, (1)) F (54 (r)) o (r) dr = (1.20)
_ A + :2;_ / £2 (2114 (1)) [F (50 (r)) — 1] no(r) dr
Ee[n(r)] = BEPA )] + [ Hna(),n- (@), 1) n(r)dr - (121)

where £,(n) = €,(3n,3n) is the exchange energy per electron of the unpo-

larized electron gas, and

B 1 |Vn,(r)]
Scr(r) . 2(37T2)1/3 ng(r)4/3

T\ 6 (K% dre, 12 n(r
t(r) = %<§>/ (%462 > g(n+(r)1,n_(r)) ‘;7(1")(7/)! (1.23)

glny,n_) =271/2 [(ﬁif/g + (91> 2/1 (1.24)

(1.22)

n n
w2 -
F(s) = 14+kK— </$ + -3—ﬁ52> (1.25)
m [ e\’
H(n—l-an—)t) :’)/_ﬁﬁ (Eg;) g(n+7n—)3X

Ii4 2 + A(ng,n_)tt
1 Z 2
* 208 [1 + v 1+ A(ng,n )2 + A(ng,n_)*t! (1.26)
-1
I&} 1m [ € \*eolng,n)
A == —= ~1 1.27
(n,m-) 7 TP\ TR \dree ) g(ng,no)? (1.27)
1—log2
k=0804 y= —Tog—- B = 0.066725. (1.28)

1.2 Pseudopotentials

Tt is well known (indeed, this fact constitutes the rationale for the periodic
table of the elements) that a major role in determining the chemical proper-
ties of an atom is played by electrons in its outermost shell: this is because
inner electrons have wavefunctions at much deeper energy levels and stay
very close to the nucleus, and are thus substantially insensitive to the atom’s
environment.
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Therefore, in the frozen-core approximation, electrons are partitioned
into two sets: core and wvalence electrons, and it is assumed that the core
electrons’ wavefunctions are the same as for an isolated atom. The choice of
valence electrons is somewhat arbitrary: one tries to pick as few of them as
required to obtain reliable results, in order to reduce the computational cost.
This implies that reliability of a given choice must be checked. Often, one
picks just the s and p electrons from the outermost shell, that is, no more
than 8 per atom.

A pseudopotential [13, 14] is an effective potential, obtained as the nuclear
potential screened by core electrons: this is the potential seen, on the aver-
age, by valence electrons. Thus, in a pseudopotential calculation, valence
eigenvalues are obtained as the lowest eigenvalues of the effective Hamil-
tonian containing the pseudopotential (often called a pseudo-Hamiltonian);
the corresponding wavefunctions are not the true valence wavefunctions, and
are thus called pseudo-wavefunctions. Valence electrons fill these pseudo-
wavefunctions, while core electrons, in this formalism, are neglected.

Several methods for systematic, ab initio generation of pseudopotentials
have then been developed [14, 15, 16, 17, 18]. Modern pseudopotentials
[16, 17, 18] are calculated by choosing an atomic reference state (usually the
ground state; other states can be used for particular applications), and im-
posing that the pseudopotential satisfies for that state a number of properties
chosen so as to ensure maximum transferability, that is, that the generated
pseudopotential can be used in as many different environments as possible.

The following properties are most frequently selected:

o Atomic pseudo-eigenvalues are equal to the corresponding true valence
eigenvalues.

e Atomic pseudo-wavefunctions are strictly equal to the corresponding
true valence wavefunctions beyond a chosen core radius re.

e The integral from 0 to r. of the atomic pseudo-electron density is equal
to the corresponding true electron density for each valence state (norm
conservation).

o The logarithmic derivatives of atomic pseudo-wavefunctions and their
first energy derivatives match those of the corresponding true wave-
functions at r = r,.

Pseudopotentials are often nonlocal, that is, they depend on the angular
momentum of the electron: such a potential is usually generated in the form

VS =SV () B (1.29)
1
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where P, = 3, |Yim) (Yim| is the projector on angular momentum [, the
|Y}) being spherical harmonics. This is called the “semilocal” form of the
pseudopotential.

However, all the V,52(r) are equal to the true potential, and therefore
to each other, for all r greater than the core radius 7.: the pseudopotential
can thus be written as a local part, plus a short-ranged nonlocal one. One
of the V;5X(r) is usually taken as the local part: at large 7, it must go as
—Ze*/4meyr, Z being the valence of the ion.

As we will show in section 1.3, pseudopotentials are often treated in mo-
mentum space; this requires evaluation of matrix elements with respect to
plane waves <eik'r| 14 'eik"r>, which in turn requires evaluation of integrals for
each value of the pair (k,k'). Kleinman and Bylander have shown [19] that
by expressing the pseudopotential in an alternate form, each matrix element
can be factored into a term depending on k and one depending on k' only,
greatly reducing the number of integrals to evaluate.

Namely, if a nonlocal pseudopotential, in the semilocal form (1.29), has
been generated for a reference state

[0°) = > Vi) (v

)= lz [0 Yim ) (1.30)

where

U2 (r) = (Yim|0°) :/w”(r,e,(pmm(e,¢)dcosed¢ (1.31)

we can rewrite it in the (“fully nonlocal”) form

VEB — lVKBl > < Vz ’ (1.32)
having let
‘/2?13(7") — VSL(S)le?m( )r ( )ﬁ’Pm(T) 75
<ylmvlm[ V W (/w VSL )w?m(TI)T,2 d?")
(1.33)

This potential is equal to V5% at |10), for

. V00 Yim ) (Vi VS0
VW) = e T

Im

= S VEEE) [UhaYim) = VI [0°) (1.34)
I,m

15



Using this form, plane-wave matrix elements can be factored as such:

<€ik-r eik’-r> _ Z <€ik‘r VKB 7m> < imwgBleik’-r> _
Im
sz (Ikl> /jl k| ) VEB ()2 dr x

X 4mY, <@> / g (K| ") VR (r')r” ar! (1.35)

VKB

where j;(z) is the spherical Bessel function of order [ [20, 21].

To express it efficiently in Fourier space, it is also advisable that a pseu-
dopotential is as smooth as possible. Methods for generating very smooth
pseudopotentials have been presented [18, 22].

1.3 Plane-wave expansion

To solve the Kohn-Sham equations numerically for a given system, it is espe-
cially suited to express them in momentum space, expanding wavefunctions
in terms of plane waves [23]. Crucial for the computational efficiency of this
formalism is the Fast Fourier Transform (FFT) technique [24, 25], which
allows to transform data efficiently between meshes of real- and momentum-
space points.

We start by imposing periodic boundary conditions: thus, by Bloch’s
theorem [26], we can choose a set of wavefunctions of the form ; ;i (r) =
€™, 51 (r), where ¢; .1 (r) is periodic, while k is a vector in the first Brillouin
zone. Bloch wavefunctions can be expanded in Fourier series as follows:

l/)i,gk(r) - Z r¢z ak — Zk * Z ezG r¢z crk ) (136)
bl @) = = [ G ) dr = TG () (137)
hok Q cell Lok o Npesh - ok )

where the sum over r ranges over a mesh of N, points covering the unit
cell.
The corresponding electron density is

n(r) = ny(r) + n_(r) (1.38)
r) =) wg Z Fiow i (T) " = Skj Wi Z fiote |Bionc(x) (1.39)

16



where the finite sum over k approximates an integral over the Brillouin zone;
each k point is assigned a suitably chosen weight wy. The condition > ) wy =
1 must hold for normalization.

The sum rule for the occupation numbers f; 5k is thus

Swi Y fiox =N (1.40)
ok i

where NN, is the number of electrons per unit cell.

Systematic methods have been developed [27, 28, 29, 30, 31] to choose
good sets of k points and corresponding weights: it is found that accurate
results can be obtained even with very small, but carefully chosen, sets.
Taking advantage of the symmetries of the system, we can often reduce to
sampling the irreducible Brillouin zone (IBZ) only, which can be a very small
part (as small as 1/48 when full cubic symmetry holds) of the whole first
Brillouin zone.

When studying a metallic system, the technique of smearing the states
near the Fermi energy must be used [32], for example, a Gaussian density
is associated to each state, and the occupation number is set to the area
below Er:

]_ Ep 9 2
fre= = | e BmadiAtap (1.41)
= N7 o

having put Er at the level which gives the correct sum. Otherwise, due to
the use of a finite set of k points, numerical problems can show up because
of abrupt occupation numbers jumps.

It is clear that m(r) is periodic over the unit cell: thus it can also be
expanded in Fourier series as

o) =T eSm@),  n(@)= Ly G (1.42)

Nmesh T

and similar formulas apply to all periodic observables.

To truncate the Fourier expansions to a finite number of G points, we
observe that, assuming a sufficient degree of regularity in the quantities in-
volved in our calculation, their Fourier coefficients tend to zero as |G| — co.
Thus, we do as small an error as we want if we restrict to the G vectors such
that |G| is less than a suitably chosen cutoff wavevector Gey. The latter is
usually expressed in terms of the corresponding cutoff energy

7;12
2m

GZ

Ecut = cut (143)

where m is the mass of the electron.

17



We can thus choose the smallest rectangular momentum-space mesh en-
closing the cutoff sphere; then, for the real-space mesh, we set the spacing so
as to obtain the same number of points. The accuracy of the computation can
be sistematically improved, of course at the expense of more computer time,
by increasing the number of k points and/or the cutoff energy. A discussion
on how to choose them is given in Ref. [33].

A substantial time saving can be obtained by using pseudopotentials:
not only the number of wavefunctions to be considered is made significantly
smaller (very often only 4 per atom, while large elements have several tens of
electrons), but wavefunctions are also smoother, thus allowing us to represent
them accurately with a smaller cutoff. As a result, the computational time
can be reduced by several orders of magnitude.

Therefore, we consider the general case of a nonlocal ion-electron inter-
action (pseudo-) potential f/;, where s labels the atomic species: we denote
by 75 the set of I such that the I-th atom is of species s. Denoting with Z,
the valence of an ion of species s, the total number of valence electrons per
cell will thus be

N, = ; Zyn =Y. N,Z, (1.44)

N being the number of atoms of species s, while s(I) is the species of the
I-th ion.
Fourier components of the quantities of interest are as follows [23]:

e Kinetic energy:

hQ
—— > wy ) fio (2 (r)VQT/)i,ak(r) dr =
2m ; ; k/ ok

h?
= QS we S fion |k + G |ion (G (1.45)
o,k

2m : i G

e Hartree electron-electron interaction energy:

1 e* /n(r)n(r’) drdr’ — 1 e QZ g;n(—G)n(G) (1.46)

2 dmeg ) Jr— 1] 2 dreg el

Note that the term with G = 0 is divergent (it cancels out together
with other terms, shown below):

1 e* _dr 1 e _4m /1 2
S0l n02 = |t-Zq <-— [ nir)a ) _
|2 drey G?”(O)L:O |2 Iy e g/ ) dr oo

1 & dn Nf}
G

S 1.47
[2 471—60 G2z Q ( )

=0
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e Electron-electron exchange-correlation energy: in the LSDA
[ £ (04 (), mo(x)) n(x) de = (1.48)
= > n(G) /eiG'rsm (ny(r),n_(r)) dr = QY &4e(—G)n(G)
G

G
where £,.(G) must be recomputed at each step by Fourier-transforming
Ezc (N4 (r),n_(r)) for the current electron density.

e Electron-ion energy: as mentioned in section 1.2, we write the pseu-
dopotential as the sum of a local part and a nonlocal, short-ranged
one.

The former gives

Z; wie Y ik / ¥; e (T) (2}: Vih(r — RI)> Yioe(r)dr = (1.49)
S [n() ¥ Vi = Ry)dr = 2 Si(G)V,(~G)n(G)

IeTs S,G’

having defined the structure factors

=3 O (1.50)

IeTs
and denoting with 7, the set of I’s such that the I-th atom is of species s.

Again, the term with G = 0 is divergent, because Viee(r) must go as
—Z€? [dmeg |r| for large r:

Q3 S,(0)Vi (0 :——ZZ O [ Vi) dr = (1.51)

s IET
1 e? 4m N2

‘ loc Z d

< )+ 47r50 |r|> ' {47&?0 G2 Q }

The nonlocal part may be expressed in the semilocal form (1.29), in
which case we obtain

Zwsz“jk/w“fk (Z‘/SL lI‘*R[D )Uz(rk( )d =
= QY w ) (Z Jiox®; 51 (G) Piorc(G') X

ok GG\ i

X ZS G)VFE(k + G, k+G)> (1.52)
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having defined
VSNL(K, KI) — _Sli/ewiK-r (Z VgiL(Ierl) eiK’~r dr =
= Z (20 + 1) Py(cosw) Fo (K, K) (1.53)

FEHKK) = 4 / VER)i (KIr) 3 (K 7)r2dr (1.54)

where cosw = K - K'/(JK| |[K'|), the F,(z) are the Legendre polynomi-
als, and the j;(z) are the spherical Bessel functions [20, 21].

A more efficient way is to use the Kleinman-Bylander form (1.32): in
this case we get (see section 1.2)

VYK, K) = ‘glg [ <lz

= 520 () Y (i) PHROOREROK) 159

s,lm s,lm

VKBY > <Y2mVKB ) eiK’-r dr =

where
sti,ﬁ —-47r/]l |K|r) ﬁﬁ( )r?dr. (1.56)

The nonlocal energy term (1.52) is thus most efficiently evaluated by
recasting it into the equivalent form

Zwk Z fzak

i,1,l,m

2

. k+G
Z@ k(G C Y, (m) Fifimk + G)

(1.57)

which avoids performing the double summation over G, G'.

Ion-ion interaction term:

()

Enn -

= d - =
dmeo | recan IR — Ry |r| N 2 dmey G2 Q)

JZI

DN |

e Zs(nZs() _ﬁ/ 1 ll e’ dr Nf}
G=0

(1.58)
having added and subtracted the energy of a neutralizing uniform
charge density —N.e/). The sum over J ranges over the whole in-
finite crystal.

The term in parentheses can be evaluated via standard Ewald-sum
techniques: since it doesn’t enter Kohn-Sham equations, it is computed
just once for each given configuration of ions.
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As we see, the three divergent terms exactly cancel each other.
Therefore, the Kohn-Sham equations can be written as

S (k+G'[Pbac + VA (G, G)) 6i0x(G) = eiordion(G)  (1.59)
G/

where
VES(G,G) = vy (G — G) +v¥(G — G')+ (1.60)
+3°5,(G - G) (VI™(G - G') + VM (k + G,k + G))

having let
2

v (G) = 4;0 g-;-n(—G) (1.61)
for G # 0, and vy (0) = V¢(0) = 0.

Note that equations for different ¢’s and k's are uncorrelated, so that the
system reduces into many subsystems to be solved separately. The only point
in which different o’s and k’s interact is when the electron density n(G) is
computed.

The total energy is given by

h2
E = =03 u) fiolk+ G |60k (G))* + Q 3" v (G)n(G) +
m kG G0
+Q Y S(G)VE(-G)n(G) + Q) wie X
5,G#0 ok
X Z <Z fi,akgbzak qbz ak Z S VNL(k + G k+G ))
GG \i

+ Ezc [Q(G)] + Ne Z Nsas + YEweald =

Zwkz fiok€ion — Q > vu(G ) + Ec {:(G)] -

2 &7

— QZZUZC G + N, ZNCZS + YEwald (1.62)
where
1 e 1

s = — ‘/loc Zy———— 1 d 1.
« Q/< S dreg \r[) ’ (1.63)
L e ZunZan N p 1 (1.64)

TBweld =3 Yrey R, - R, /] '

Iecell
JZ£I
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and in the LSDA
Er. [0(G)] =0 > exl-Gn(G). (1.65)

E makes sense only once Kohn-Sham equations have been solved self-
consistently. In practice, it is easily computed at each iteration, since this
requires a relatively short time once n(G) has been calculated, and differ-
ences between subsequent values are used to estimate convergence of the
calculation.

The Hellmann-Feynman forces on ions [11] are given by:
e Pseudopotential, local part:

F/° = —Vg, (9 > Ss(G)Vs"’C(—G)n(G)> =

$,G5£0

= —iQ) (;O Ge'S VIR (-G)n(@). (1.66)

e Pseudopotential, nonlocal part:

F]IVL = —Vg,

Q) wi Y, (Z fiok® 1 (G) bio(G') X

ok GG \ i

ILAC RO k+G)>]

= —Zﬂzwk Z (Zf10k¢zak ) Za’k(G,) X

ok GG \ i

!

x(G' - Gl &~ DRy (k+ G k+G )) (1.67)

which, if we use equation (1.57), we can also evaluate as

FYl= -2 S we Y fiowIm { (Z bi ok (G) X
g,k G

i,b,m
k+G
k + G|

o k+ G
x i GI 'zG -R1Y'7n FKB k + GI
(3 @6 i (G ) Fifunti + &)

where I'm(z) means the imaginary part, z = Re(z) + i Im(z).

x Gel¢ Ry ( ) Fif ik + G)>* X (1.68)
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e Jon-ion interaction:

1 € Zy 1y Zs(K)

2 dmeo szt IRy — Rl
K#J

FZAIOTL = ‘“VRI = "'VRI’YEwald- (1.69)

This term is evaluated by the Ewald-sum technique.

The total expression for the forces acting on ions is thus

F;=—iQ Y GeSRVIE(-G)n(G) -

G0
— i Z Wk Z (Z fiﬂkd);'k,ak(G)(bi,ak(G’)(G, - G)ei(G/—G)'R’ X

ok GG \i
X ‘inﬁ(k + G,k + G')) ~ VR;YEwald (1.70)

which, once the Kohn-Sham system of equations has been solved, can be
evaluated with comparatively little computational effort.



Chapter 2

The basic Sn/Ge(111) surface

The semiconducting elements in Group IV of the Periodic Table, namely,
silicon, germanium, and tin in its « form (grey Sn), form crystals having the
diamond structure (fcc with a two-atoms basis). Each atom is hybridized
sp® and bound to its four nearest neighbors, the bonds forming tetrahedral
angles  ~ 109°28'16" ~ 19.47° (cosf = —1/3) with each other. The un-
reconstructed (111) surface for such a structure is shown in Figure 2.1: it
forms a 2D triangular lattice, with a basis of one atom for each surface layer.
The unit cell of this lattice is also shown: its sides are equal to the distance
between two adjacent first-layer atoms (3.98 A for Ge), that is customar-
ily taken as the unit of measure, thus it is called a 1 x 1 cell. There is
one dangling bond for each such cell: each first-layer atom is bound to its
three second-layer nearest neighbors, leaving the fourth sp® orbital, pointing
outwards the surface, unsaturated.

Having that large number of dangling bonds, diamond-structured (111)
surfaces show a strong tendency to reconstruct: this is usually accomplished
by the promotion of “adatoms” over the surface. There are two inequivalent
sets of sites where adatoms can be adsorbed: so-called T} sites, with the
adatom standing directly on top of a second-layer atom (7" stands for “top”;
4 is the number of nearest neighbors, including the second-layer atom), and
Hj sites, with the adatom standing over a “hole” in the first two layers
(H stands for “hollow”; there are 3 nearest neighbors in this case), with a
fourth-layer atom directly beneath. This is illustrated in Figure 2.2. Both
experimental and computational evidence [34, 35, 36, 37, 38, 39] shows that
T} sites are generally preferred.

In either the 7} or the H3 position, each adatom is bound to three atoms
in the first surface layer. It takes, therefore, one adatom every three first-layer
atoms (1/3 monolayer of coverage) to saturate all of the substrate’s dangling
bonds: this is sometimes called the “a phase” of the surface. Its unit cell has
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Figure 2.1: The unrecostructed (111) surface of a diamond-structure crystal.

Figure 2.2: The T, and Hj adsorption sites for adatoms on (111) surfaces:
(a) top view; (b) side view.



Figure 2.3: The /3 x v/3R30°-a phase of a (111) surface: (a) top view; (b)
side view.

a periodicity of V3 x \/3R30° (where “R30°” means “rotated by 30 degrees”
with respect to the unrecostructed 1 x 1 cell), with one adatom and three
atoms per layer in every cell: it is shown in Figure 2.3. This reconstruction
has a threefold symmetry, being invariant under rotations of 120°.

The « phase is really very favorable when adatoms are of a trivalent
species (e.g., gallium or indium): in this case, the /3 x v/3R30°-« surface is
fully passivated and insulating, and usually extremely stable.

2.1 The adatom-rest atom structure

When adatoms are tetravalent, the V3 % v/3R30°-a reconstruction isn’t so
convenient as with trivalent adatoms: while all the substrate’s dangling bonds
are saturated, each adatom, being constrained to form three bonds, has a
dangling bond originating from its unsaturated fourth orbital.

A more favourable reconstruction mechanism, effectively removing all
half-filled orbitals, is provided by the formation of so-called adatom-rest atom
(shortly A-R) pairs. The basic “A-R block” is shown in Figure 2.4: it is a
2 x 2 cell, containing one adatom and four substrate atoms per layer. The
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Figure 2.4: The basic 2 x 2 cell of an adatom-rest atom reconstruction.

adatom coverage is thus 1/4 of monolayer. Of the first-layer atoms, three are

_ bound to the adatom, while the fourth, called the rest atom, is left with its

dangling bond unsaturated: thus, there are two dangling bonds per cell, one
on the adatom, and one on the rest atom.

This might look unfavourable at first sight; however, the adatom’s and the
rest atom’s dangling bonds correspond to distinct surface bands at different
energies, with the Fermi level pinned in between (see Figure 2.6). A charge
transfer must thus occur between the two surface bands: the rest atom’s
dangling bond is filled by two electrons, while the adatom’s one is empty. (A
rearrangement of backbond orbitals also takes place, so that the true charge
transfer between the two atoms is actually very much less than a whole
electron.) As a consequence, in this reconstruction, both dangling bonds are
passivated, and the surface becomes insulating.

The A-R mechanism appears to be a very convenient way to stabilize
a (111) surface with tetravalent adsorbates: actually, clean surfaces, that
is, with adatoms of the same species of the substrate, usually reconstruct
following A-R based patterns. For example, the clean Si(111) surface shows
the famous 7 x 7 dimer-adatom-stacking fault (DAS) reconstruction [40, 41],
which is basically made up of 2 x 2 domains separated by “dimer walls”,
while clean Ge(111) reconstructs with a ¢(2 x 8) pattern [42, 43] that is also
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A-R based. Theoretical calculations show that clean a-Sn(111) also follows
the A-R pattern [44].

Unexpectedly, instead, surfaces with tetravalent adatoms having large
atomic numbers (namely, Sn and Pb) present a stable v/3 x v/3R30°-c phase:
this is the case, for example, with Pb/Si(111) [36, 45] (that is, Pb adatoms
over a Si(111) substrate), Pb/Ge(111) [46], and with the Sn/Ge(111) surface
[35, 47, 48, 49], which is the subject of this work.

2.2 Relative stability of v/3 x v/3R30° against
2 X 2 phases

Based on the arguments presented above, the existence of a stable a: phase
in (111) surfaces with tetravalent adsorbates is rather surprising. Therefore,
we carried out a computational study of the Sn/Ge(111) surface, taken as
a representative case for this family of systems, to investigate the reasons
for the relative stability of the o phase against the more appealing A-R
reconstruction. An account of this study has been published [50].

All calculations were done using an early, scalar version of the PWSCF
program (available at the URL http://www.pwscf.org/). This program
solves electronic structure problems using the density functional-plane wave
method with pseudopotentials (see chapter 1). We used the LDA approx-
imation (no spin) with Becke-Perdew gradient corrections [51, 52], and a
plane-wave cutoff energy of 12 Rydbergs. To sample the hexagonal Brillouin
zone, we used the 3, 6, and 18 k-points sets by Cunningham [31]; when
optimizing atomic positions, the single Baldereschi point [27] was used for
computational efficiency.

For each surface reconstruction considered, we used a slab of 10 germa-
nium layers (5 bilayers), with the relevant reconstruction on the top surface,
hydrogen atoms saturating the bottom surface, and about 10 A of empty
space between repeated images of the slab. When optimizing atomic posi-
tions, we kept the lowest 4 Ge layers and the H layer fixed.

The computed reconstructions were the following:

e the Sn/Ge(111) V3 x V/3R30°-a phase, with 3 atoms per layer in the
unit cell, for a total number of 34 atoms (1 Sn adatom, 30 Ge, and 3
H). Sn adatom coverage: 1/3 ML (monolayer).

e the Sn/Ge(111) 2 x 2 adatom-rest atom phase, with 4 atoms per layer
in the unit cell, for a total number of 45 atoms (1 Sn, 40 Ge, 4 H). Sn
adatom coverage: 1/4 ML.



e the Ge/Ge(111) v/3 x v/3R30°-a phase, identical to the Sn/Ge(111)
one, but with a Ge adatom in place of a Sn one. Sn coverage: 0.

o the Ge/Ge(111) 2 x 2 phase, also identical to the Sn/Ge(111) one with
the adatom replaced. Sn coverage: 0.

In all of these surface relaxations, adatoms were placed in the T} position.
In addition, we computed the minimal diamond-structure cells (2 atoms, fcc)
of Ge and Sn, in order to obtain the bulk energy per atom of these substances.
For these computations, we used a Chadi-Cohen 10 k-points set [28].

These four reconstructions are all possible phases of the Sn/Ge(111) sur-
face at different Sn coverages: in particular, the Ge/Ge(111) phases can be
seen as Sn/Ge(111) phases with a Sn coverage of 0 ML. The quantity that
must be considered, in order to determine the stable phases of this system
as a function of Sn coverage, is the thermodynamical potential (that we call
“free energy” for convenience) 2 = E — pN, where N is the number of Sn
atoms, and p is the Sn chemical potential. The number of Ge atoms, instead,
is fixed, except that in the Ge/Ge(111) phases there is an extra atom, i.e.,
the adatom; therefore, from the energy of these phases, we subtract that of
a bulk Ge atom. The chemical potential of Ge is thus fixed to the latter
energy.

Stable phases of the Sn/Ge(111) surface are thus those (and only those)
whose free energy is less than that of all competing phases for some value
of u. It must be noted that u can’t be greater than the energy per atom of
bulk Sn: if this was the case, Sn atoms would aggregate into islands of bulk
Sn, rather than being adsorbed regularly on the surface.

The computed energies (using 18 k-points) are shown in Table 2.1, and
Q is plotted as a function of u in Figure 2.5. We obtain two stable phases,
namely, the Sn/Ge /3 x v/3R30°-a phase for —7.1733 Ry < p < —7.1476
Ry, and the Ge/Ge 2 x 2 phase for p < —7.1733 Ry. This is consistent
with experimental evidence: the Sn/Ge(111) system does present a stable o
phase [35, 47, 48, 49], while the clean Ge(111) surface actually reconstructs
with a ¢(2 x 8) structure [42, 43], that we didn’t consider in our computations
because its unit cell was too large, but which is composed of 2 x 2 and ¢(2 x 4)
blocks, both of the A-R type. We can thus expect that the energy of this
phase is not very different from that of our 2 x 2 phase.

To explain this behavior, we examined the geometry of the optimized
reconstructions. In Table 2.2, some data about the position of adatoms and
rest atoms are reported: it can be seen that adatoms are pushed considerably
higher than their ideal (tetrahedral geometry) position by some effect. An
obvious candidate is the repulsion between the adatom and the second-layer
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system slab energy energy/1 x 1 cell
bulk Ge (per atom) —8.0290
bulk Sn (per atom) —7.1476
Sn/Ge 2 x 2 —332.5274 —-83.1319
Sn/Ge v/3 x v/3R30° | —251.1912 —83.7304
Ge/Ge 2 x 2 —333.3862 —81.3393
Ge/Ge /3 x v/3R30° | —252.0442 —81.3384

Table 2.1: Energy of the calculated phases (in Rydbergs). To obtain values

per 1 x 1 cell, the energy of a bulk Ge atom has been subtracted from that
of Ge/Ge phases.
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Figure 2.5: Free energy as a function of p for different phases of the

Sn/Ge(111) surface. The upper bound figme,; = —7.1476 Ry is the energy
per atom of bulk Sn.
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system bond angle bond length 2nd-layer dist.

ideal (tetrahedral) 19.47° 2.455 1.636
Sn-Ge covalent distance — 2.631 —

Sn/Ge 2 x 2, adatom 37.19° 2.814 2.798
Sn/Ge 2 x 2, rest atom 29.88° 2.486 —

Sn/Ge /3 x V/3R30° 40.63° 2.816 3.042

Ge/Ge 2 x 2, adatom 33.60° 2.652 2.623
Ge/Ge 2 x 2, rest atom 30.31° 2.484 e

Ge/Ge /3 x v/3R30° 37.90° 2.657 2.889

Table 2.2: Bond angles and lengths for adatoms and rest atoms in the com-
puted reconstructions. All distances are in Angstroms.

atom beneath, which in the ideal geometry are far too close (only 2/3 of the
Ge-Ge bond length). However there must be more than that: indeed, the
optimized distance between the two atoms turns out to be much greater than
the Sn-Ge bond length, at which distance repulsion should cease. Further-
more, rest atoms are also pushed up, while there’s no atom directly beneath
them.

We formulate the following simple argument: there is a direct relation
between the geometry of sp® bonds formed by an atom, and its hybridization
state. In particular, if we consider an adatom with its dangling bond in the
vertical direction, the latter’s energy is given by [53]

9
Eg =¢p — Z(Ep — £,)sin® 0 (2.1)

where 0 is the angle between the adatom’s backbonds and the horizontal
plane. At the tetrahedral value of # ~ 19.47° (sinf = 1/3), we obtain
Eg = (3g, + £5) /4, yielding perfect sp* hybridization; at larger values of 6,
the dangling bond acquires a more s-like character, and Eg, decreases.
Now, let us examine the electron band structure of our systems (Figure
2.6): the surface band in the middle of the gap corresponds to the adatom’s
dangling bond, as can be seen from Figure 2.7 (for the v/3 x v/3R30° phase;
the plot for the 2 x 2 phase is similar). In agreement with our geometrical
argument, it has a lower energy for Sn/Ge than for Ge/Ge (by about 80-100
meV), both in the 2 x 2 and the V/3 x v/3R30° phase. There is however an
important difference between the two phases: in the 2x2 phase, the dangling-
bond band is empty, thus lowering its energy value has little effect on the
total system energy. In the v/3 x v/3R30° phase, instead, the dangling-bond
band is partially occupied, and if its energy is lowered, the total energy of
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this phase decreases correspondingly.

This is a distinct advantage of the v/3 x v/3R30° phase over the 2 x 2
phase in the Sn/Ge(111) system, and according to our results, it is sufficient
to stabilize the former phase against the latter for this surface. Indeed, we
can see from Table 2.2 that adatoms in the /3 x v/3R30° phase form larger
bonding angles (by about 4°) than in the 2x 2 phase: this indicates a stronger
tendency to move outwards the surface, because of the greater energy gain
in doing so.

The reason for Sn adatoms being higher over the surface plane than Ge
ones is the larger size of Sn, which has a covalent radius of 1.40 A, compared
to 1.22 A for Ge: bond lengths are correspondingly greater, as can be seen
from Table 2.2, thus allowing adatoms to stay higher. In addition to that,
a lowered dangling bond hybridizes much more strongly with states in the
substrate. It has been shown [54] that the Ge-Ge bonding state directly
underneath the Sn adatom is strongly involved in this stabilization procedure.

We can argue that the same mechanism also explains the stability of v/3 x
V/3R30°-c phases on systems such as Pb/Si(111) [36, 45] and Pb/Ge(111)
[46], where the adatoms are also larger than substrate atoms, while adatom-
rest atom based phases prevail for equal-sized adatoms.
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Chapter 3

The Sn/Ge(111) 3 x 3 distortion

A very interesting discovery was made a few years ago by Plummer and
coworkers on the Pb/Ge(111) surface [55] and later on Sn/Ge(111) [56],
namely, a phase transition from a room-temperature V3 x v/3R30°-a phase
to a new phase with 3 x 3 periodicity at low temperature (for Sn/Ge, T¢ ~
—60°C). This phase seems to be an « phase with reduced symmetry: STM
images show protrusions, identified with adatoms, at the same positions as
in the o phase, but while in the latter they all have the same brightness, in
the 3 x 3 phase two sets of inequivalent adatoms appear clearly. Namely, out
of three adatoms in each 3 x 3 cell, one is darker than the other two in STM
empty-states images, thus forming a “honeycomb” pattern; in filled-states
images, the situation is reversed (Figure 3.1).

Diffraction experiments on the Sn/Ge(111) surface [57, 58, 59] showed
that the phase transition is accompanied by a structural distortion of the
surface, extending for at least two layers into the substrate: the main feature
of the distortion is a displacement of adatoms orthogonal to the surface, with
the adatom appearing darker in empty-state images (from now on, the “up”
adatom) higher than the other two (“down” adatoms) by about 0.3 A over
the surface plane. Similar results were found for Pb/Ge(111) [60]. We will
thus refer to the room-temperature a phase as the “undistorted” phase, and
to the low-temperature 3 x 3 as the “distorted” one; the distortion pattern
will be labelled “1U”, meaning “one adatom up” (and two down) per cell.

Theoretical computations [61, 62] confirmed the experimental distortion
pattern, and found that the distorted phase has an energy lower than the
undistorted one by an amount of order 10 meV /adatom.

Although the 3 x 3 distortion of Pb/ and Sn/Ge(111) has attracted con-
siderable interest [63, 64, 65, the underlying physical mechanism is still con-
troversial: its discoverers interpreted the distortion as a charge density wave
(CDW) transition [55], but this was subsequently criticized, mainly because
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Figure 3.1: STM images of the Sn/Ge(111) surface (from Ref. [56]).

of the lack of nesting [66]. Therefore, we undertook a computational study
of Sn/Ge(111), in order to find a satisfactory explanation.

3.1 Basic results

All calculations were done using the parallel PWSCF program (available at
the URL http://wuw.pwscf.org/). This program solves electronic structure
problems using the density functional-plane wave method with pseudopoten-
tials (see chapter 1). We used the LDA approximation (no spin) with and
without gradient corrections (PW91 [67] and PBE [12]), and a plane-wave
cutoff energy of 12 Rydbergs.

We used slabs of 6 germanium layers (3 bilayers), with the relevant recon-
struction on the top surface, hydrogen atoms saturating the bottom surface,
and about 10 A of empty space between repeated images of the slab. Com-
putations on the undistorted phase, when optimizing atomic positions, were
done on a v/3 x /3 cell: the total number of atoms in the slab was thus 22
(1 Sn adatom, 18 Ge, and 3 H). To sample the hexagonal Brillouin zone, we
used Monkhorst-Pack sets [30] of 27 and 37 k-points. These large numbers
are necessary in view of the metallicity of these surfaces and of the extreme
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relative accuracies needed (of order 1 meV/adatom).

Once the positions have been optimized, and for all calculations on the
distorted phase, we used a cell with the full 3 x 3 periodicity: the total
number of atoms was thus 66 (3 Sn, 54 Ge, 9 H). With this cell we used sets
of 12 and 16 k-points, obtained by folding the 27- and 37-points sets used
with the v/3 X /3 cell into the 3 x 3 irreducible Brillouin zone. Both for the
V3 x +/3 and the 3 x 3 slab, when optimizing atomic positions, we kept the
last Ge layer and the H layer fixed.

Confirming earlier results by other researchers [61, 62], we found the 3 x 3
distorted phase to have lower energy than the undistorted one: using 12 (27)
k-points, the energy gained by distorting is 6.5 meV /adatom in plain LDA,
9.6 meV/adatom with PW91 gradient corrections [67], and 8.7 meV /adatom
with PBE gradient corrections [12]. Subsequent calculations were done us-
ing 16 (37) k-points and PBE gradient corrections; the energy gain was 8.5
meV /adatom. We refer from now on to the results of the latter calculations.

The optimized distorted and undistorted cells are shown in Figure 3.2:
the distortion follows the 1U pattern. The vertical distance between up and
down adatoms is about 0.34 A, in good agreement with experimental data
[58, 59]. We also tried to optimize a 2U (two adatoms up, one down) pattern,
but no energy is gained by such a distortion (more on that in chapter 6).

The electron bands for the distorted and undistorted surface are shown
in Figure 3.3. As a consequence of the distortion, one of the three dangling-
bond bands (that coincide in part in the undistorted case) is moved down in
energy, while the other two are moved up. The band splitting is of order 0.2
V. Electron counting, and the position of the Fermi level (dashed line), show
that the lower band is completely filled by two electrons, while the higher
ones share a single electron, and are thus only quarter-filled.

Tt is therefore natural to identify the lower-energy band with the single up
adatom, and the higher-energy ones with the two down adatoms: this picture
correctly explains STM evidence, namely, that the up adatom, with its filled
dangling bond, appears darker than down ones in empty-states STM images,
while it appears brighter in filled-states images. This is also in agreement
with our reasoning on adatom geometry and hybridization in chapter 2: when
an adatom moves upwards, its dangling-bond band acquires a more s-like
character, and thus lowers its energy. However, in doing so, it also increases
its hybridization with the underlying Ge-Ge bond, so that the filled state is
now only about 50% of dangling bond nature [54].
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Figure 3.2: Optimized positions for: (a) the distorted cell; (b) the undistorted
cell. Bond lengths are given in Angstroms.
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system Ekin Eel Ezc Etot
3 x 3 distorted 164.4098 —490.2132 —137.3272 | —463.1306
3 x 3 undistorted | 164.5964 —490.3130 —137.4122 | —463.1288
difference —0.1866  +0.0998 +0.0849 —0.0019
H chain, diff. +0.00180 —0.00161  —0.00081 | —0.00062
polyacetylene, diff. | +0.00471 —0.00388 —0.00139 | —0.00056

Table 3.1: Contributions to the total energy for various systems (in Ryd-
bergs).

3.2 Analysis of the energy gain

When the v/3 x v/3R30° — 3 x 3 transition of Pb/ and Sn/Ge(111) was
first observed by Carpinelli and collaborators [55, 56], they ascribed it to a
charge density wave (CDW) driven by Fermi surface nesting. However, while
that hypotesis might be appealing [68, 69], this interpretation is dubious: for
example, the Fermi surface doesn’t have the required nesting properties [56].
Furthermore, while the Pb/Ge 3 x 3 phase was characterized as semiconduct-
ing, the distorted Sn/Ge is still metallic [64, 70]. Core-level measurements
also appear to be inconsistent with a CDW [70]: this is discussed in more
detail in chapter 4. The true distortion mechanism is thus far from clear.
Alternate explanations, such as a band Jahn-Teller effect [58] with an order-
disorder transition [61, 71], have been proposed, but they are not really
different from a CDW in that they invoke a one-band physics. In recognition
of the important role of the substrate and of multi-band physics, a “bond-
density wave” has been proposed by our group [54]. However, it is not clear
how to make that idea more quantitative.

We examined the contribution of the different terms making up the to-
tal energy, i.e., the kinetic, electrostatic, and exchange-correlation energy
(expressions in section 1.3), as resulting from our calculations. Results are
shown in Table 3.1: the energy gain associated with the distortion comes
entirely from a large decrease of the kinetic energy, which overcompensates
a large increase of both the electrostatic and exchange-correlation energy.

To determine by comparison the expected behavior for a single-band
mechanism like a CDW or a Jahn-Teller distortion, we examined a cou-
ple of simple models. The first was a linear chain of hydrogen atoms, that
we considered in two different configurations: in the “undistorted” one, all
neighboring atoms are at the same distance (which we set to the computed
optimized value, d = 1.010 A), while in the “distorted” phase, dimers are
formed by displacing every two consecutive atoms in opposite directions along
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Figure 3.4: (a) the “undistorted” hydrogen chain; (b) the “distorted” one.

Figure 3.5: (a) the “undistorted” polyacetylene chain; (b) the “distorted”
one.
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the chain, by 1% of their distance (Figure 3.4). The second model was an infi-
nite polyacetylene chain, that we “dimerized” in a similar way by alternating
longer and shorter (d = 1.424 A 4 1.25%) C—C bonds (Figure 3.5).

Results for these “toy systems” are also reported in Table 3.1. We can
see that they both show the opposite behavior to that of the Sn/Ge system,
namely, the kinetic energy increases while the potential terms (electrostatic
and exchange-correlation) decrease. This behavior can be understood by
noticing that a CDW, or a band Jahn-Teller effect, are nothing else than a
weak attempt at forming a molecular bond. As shown, e.g., by Slater [72],
modifying the molecular bond length in H, costs kinetic energy and gains
potential energy. The kinetic energy cost in particular is due to electron
localization in the shorter bond.

These data clearly suggest that the 3 x 3 distortion of the Sn/Ge(111)
surface can’t be simply identified as a CDW, nor as a band Jahn-Teller distor-
tion. Again, they suggest that the distortion mechanism can’t be adequately
described as a single-band effect: as also suggested by our reasoning in chap-
ter 2, the hybridization state of adatoms must be considered. More evidence,
pointing in the same direction, is collected in the next chapters.



Chapter 4

Sn/Ge(111) core levels and
work function

4.1 Core levels

The first piece of experimental evidence indicating the existence of two in-
equivalent sets of adatoms on the Sn/Ge(111) surface was observed some
time before the discovery of the 3 x 3 distortion (and remained unexplained
up to then). It came from core-level measurements: the observed photoe-
mission spectrum for the 4d level of Sn adatoms below T¢ is clearly split into
two components, separated by about 0.32 eV [49, 70, 71] (Figure 4.1). The
component with lower kinetic energy, corresponding to the deeper of the two
core levels, is about half as intense as the other one: it is therefore natural to
identify them with “up” and “down” adatoms, respectively, since there are
twice as many of the latter as of the former in the 1U reconstruction pattern.

A rather surprising fact is that the same spectrum is observed at room
temperature, that is, well above T, where the system is in the nominally
undistorted phase [70, 71]. This suggests that the v/3x+/3R30° — 3x 3 tran-
sition is of strong order-disorder type: the surface is always instantaneously
and locally in the 3 x 3 phase, but at room temperature, it fluctuates very
rapidly, every adatom jumping up and down, so that a “slow” technique like
STM can only observe an average of the three possible orientations. Thus
all adatoms appear equivalent in STM. At low temperature, instead, fluctu-
ations are frozen out, and a static 3 x 3 pattern can be observed.

The identification of the deeper component of the Sn 4d spectrum with
up adatoms, and of the shallower component with down ones, is however
not guaranteed. Indeed, one might even expect the contrary: namely, since
the up adatom has one extra electron in its surface band (while down ones
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Figure 4.1: Photoemission spectrum of the 4d Sn core level (from Ref. [49]).

have one half electron less), the core electron in the up adatom could feel the
electrostatic repulsion exerted by the extra electron. Thus its energy would
be increased, making it correspond to the higher-energy component, rather
than to the lower-energy one. If this were the case, the distortion pattern
revealed by the core spectrum would actually be 2U. In particular, this is
definitely what one should expect if the distortion were a charge density wave,
that is, if a true charge transfer occurred between up and down adatoms.

We undertook a theoretical calculation of the core level splitting in the
Sn/Ge(111) 3 x 3 phase. To our knowledge, no such calculation has been
reported yet. The computational machinery was the same as in chapter 3:
we used the same 3 x 3, 6-layers slab, with 16 k-points and PBE gradient
corrections [12]. Atomic positions were kept fixed to the optimized positions
computed for the 3 x 3 distorted phase (with the 1U pattern).

We computed the core-level splitting using the Pehlke-Scheffler final-state
method [73]: a norm-conserving pseudopotential was generated for the ex-
cited Sn ion with an electron extracted from the 4d level (that is, the Sn
atom just after photoemission), and this was used in place of the neutral-Sn
pseudopotential for one of the adatoms. We did two separate runs, using the
“excited Sn” pseudopotential either for the up adatom, or for a down one:
the difference in the total energy between the two runs yields directly the
splitting between the two core levels. We obtained a splitting of 0.202 eV,
compared with the experimental value of 0.32 eV [49]; the deeper of the two
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levels resulted that of the up adatom, contrary to the electrostatic repulsion
argument, and in agreement with the 1U model.

We explain this splitting as follows: as can be seen from the plot of
electron bands (Figure 3.x), the dangling bond band of the up adatom is
about 0.2 eV less than that of down adatoms (0.229 eV at the K point),
which in turn pins the Fermi level. If no charge transfer actually occurred
between up and down adatoms, all of the adatoms’ levels would be also
rigidly shifted by the same amount, giving rise to a core level splitting nearly
the same magnitude of the computed one. We conclude that the effect of
electrostatic repulsion is rather small, which in turn implies that the excess
of charge in the up adatoms is also small. Therefore, the extra electron in
the up adatom’s dangling bond band must come from the other orbitals of
the same atom (i.e., the backbonds), through a substantial rehybridization:
that is, the charge transfer is intra-adatom, rather than inter-adatom.

4.2 Work function

A second piece of evidence revealing the presence, or the absence, of an inter-
atomic charge transfer, might come from the work function: if up adatoms,
in the 3 x 3 distorted surface, were actually negatively charged, and down
adatoms positively charged, a strong dipole would form at the surface. As a
consequence, the work function of the distorted surface would be considerably
higher than that of the undistorted one, where that dipole is absent.

To test this prediction, we computed the work function of the distorted
and of the undistorted surface. We used the same computational methods as
for the core levels; to determine the work function, we plotted the Hartree
potential averaged on planes parallel to the surface, as a function of the
orthogonal coordinate. The potential was shifted so as to set the Fermi level
to zero. This is expected to be constant in the vacuum layer separating
the two slabs (a thicker vacuum layer was used to enhance this effect); this
constant value is thus exactly the value of the work function.

However, our slabs have two different surfaces, namely, the 3 x 3 distorted
or undistorted Sn/Ge(111) on one side, and the H-saturated, unreconstructed
Ge(111) surface on the other side. Since the two surfaces have different work
functions, the Hartree potential in the vacuum, rather than being constant,
turns into a straight line with a nonzero slope, smoothly joining the two
surfaces (Figure 4.2). This implies that a constant electric field is present in
the vacuum region: the two surfaces act as the plates of a capacitor, with
opposite charges on them.

To extract the value of the work function, we fitted the potential to a

45



4.4 : . ] |
3x3 (distorted) —
Ge Sn sqrt3 (undistorted) ----
4.3 | . |
> 42 - |
o
n
L
'g 41 F |
t
@
I
> al |
39 |+ .
3.8 I : | . I
0 5 10 15 20 o5

z, Angstroms

Figure 4.2: Hartree potential, averaged on planes parallel to the surface, as
a function of the orthogonal coordinate. The zero is set at the Fermi energy.

linear function in the vacuum region; then, we took the extrapolated value
of that function at the surface edge. The main source of uncertainty is the
position of the surface edge: we chose the average height of Sn adatoms,
obtaining a work function of about 4.23 eV for both the distorted and the
undistorted surface. This compares fairly well with an experimental value of
4.43 eV [74]. By choosing instead the average height of the first Ge layer as
the surface edge, we obtained a value ~20 meV higher. This uncertainty is
however canceled out when computing the difference between the distorted
and undistorted work functions: it turns out to be less than 3 meV (at the
Sn height ¢gise = 4.230 eV, unaist = 4.227 eV).

The near coincidence of the two work functions is thus an additional
argument in favour of the inexistence of an interatomic charge transfer: this
rules out the possibility that a single-band mechanism, such as CDW or
Jahn-Teller, might explain the distortion. A satisfactory explanation for
the distortion must therefore take into account the rehybridization of the
adatoms’ orbitals, that accompany the transition.
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Chapter 5

Magnetic phases in Sn/Ge(111)

The interpretation of the 3 x 3 distortion of Pb/Ge(111) and Sn/Ge(111)
as a charge density wave has been criticized mainly because of the lack of
Fermi surface nesting [66]. However, that aspect may change in presence of
a finite magnetization. Our group in fact showed [65] that for the Si/Si(111)
surface, taken as a test case, while the LDA non-magnetic state fails to show
good nesting properties, a very strong, nearly perfect electron-hole nesting is
obtained for a phase with a total net magnetization of (1/3)up per adatom.
For that surface, in fact, the ground state was eventually shown to be a
magnetic 3 x 3 with a sizeable exchange splitting suggesting closeness to an
insulating state. That at first appeared to link well with the properties of
the Pb/Ge(111) surface, then believed to be insulating, with a small gap of
about 65 meV [55].

Moreover, other isoelectronic surface systems exhibit even stronger insu-
lating character, in spite of their apparently odd electron number per cell.
For example, the Si/SiC(0001) /3 x v/3R30° surface has a gap as large as 2.0
eV, explained by characterizing the system as a Mott-Hubbard insulator [75].
It was known that in a surface system of that kind, whose physics is driven
by a narrow exactly half-filled surface band (the bandwidth for Si/SiC(0001)
is 0.35 eV: that of Sn/Ge(111) is about 0.6 eV), an antiferromagnetic, insu-
lating ground state can well be expected [66].

Motivated by these facts, we performed a computational study of the
Sn/Ge(111) 3 x 3 surface, specifically looking for magnetic phases. The
computational machinery was the same as in chapter 3, except that the
local-spin-density approximation was used, i.e., we allowed for the system to
develop a spin polarization. We used PBE gradient corrections [12], and our
12 k-points set. Starting from the optimized 3 x 3 distorted configuration,
no magnetization spontaneously showed up. Even if we start with a finite
initial spin polarization, the final electronic state evolved self-consistently to
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a non-magnetic state.

To explore further that route, we used the following standard method
to force a magnetic state. We kept the magnetization at a fixed value, by
considering two separate spin-up and spin-down Fermi levels and assigning
occupation numbers to spin-up and spin-down wavefunctions independently,
according to the sum rules

Z ’wkfi,—i—k e %(Ne + ANE) Z wkfi,_k = %(Ne - ANe) (51)
ik ik

where N, is the number of electrons per cell, and we set AN, = 1. The system
was thus artificially constrained to have one spin-up electron in excess, i.e.,
a magnetization M =1 pg/cell.

Of course two separate Fermi levels are unphysical, but that is just an-
other way of mimicking a strong uniform external magnetic field B such that
its Zeeman splitting 2p5B coincides with the Fermi level splitting, spin-up
and spin-down bands shifted in opposite directions by ugB. The equivalence
is set by B = (Ep- — Epy)/2up. Since the exact dependence of the mag-
netization M on the field B is not known, we cannot determine a priori the
right value of B for a given M. Our method allows us to specify the target
value of M, effectively adjusting B so as to fit it.

We followed this procedure: first we relaxed the atomic positions (keeping
the lowest Ge layer and hydrogens fixed, as usual) while keeping the magne-
tization fixed. The state so obtained exhibits a marginal energy gain (about
0.3 meV/adatom) over the non-magnetic, undistorted state. The difference
between the two Fermi levels was about 29 meV, yielding an external mag-
netic field B = 0.0011 atomic units (about 250 T). Then, after optimizing
the atomic positions, we removed the constraint on the magnetization, re-
sorting back to a single Fermi level (i.e., B = 0), and relaxed the positions
again.

We obtained in this way a locally stable magnetic and structurally dis-
torted phase with 3 x 3 periodicity, with a total magnetization of about
0.17 pp/cell (0.06 pp/adatom) with an energy gain of 3.4 meV/adatom over
the non-magnetic undistorted phase. This is however still 5.3 meV /adatom
higher than the 3 x 3 non-magnetic distorted phase, meaning that the latter
is still the ground state of the Sn/Ge(111) system, while the magnetic phase
is metastable.

The main structural feature of this magnetic-distorted phase is that the
three adatoms in the unit cell are all inequivalent, placing themselves at
different heights; the underlying 2nd-3rd layer bond is also modulated cor-
respondingly. Taking the height of the “middle” adatom as zero, the other
two are 0.14 A above and 0.13 A below, respectively.
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Figure 5.1: Atomic positions for the 3 x 3 magnetic-distorted state.

The electronic bands for this phase, and for the phase with M = 1 ug/cell
(where the atomic positions are very similar), are also shown in Figure 5.2.
It can be seen that in both phases, the system is still metallic. The exchange
splitting is present, and large. The metallicity arises due to band overlap.

Because the energy differences obtained in this manner are marginal with
respect to our relative accuracy, it seems important to repeat these calcula-
tions with increasing k-point sampling. Repeating the calculation using an
improved 16 k-points set (see chapter 3), we obtained a very similar energy
gain of 3.3 meV/adatom, 5.2 meV/adatom higher than the non-magnetic
ground state. The atomic positions were also very similar to those obtained
with 12 k-points. However, the total magnetization was somewhat higher,
namely M = 0.31 pp/cell (0.10 pg/adatom). That might be due to the fact
that the 16 k-points set contains the M point (27/a)(1/2,1/2+/3)7, while the
12 k-points set doesn’t.

Finally, we repeated again the calculation using an even larger, 36 k-points
set. This time, when optimizing atomic positions, the system spontaneously
evolved towards the non-magnetic, 3 x 3 distorted ground state. This means
that the magnetic-distorted state found with 12 and 16 k-points lies actually
in a very flat region, so that the optimization algorithm stops, but may not
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Figure 5.2: Electron bands of: (a) the 3 x 3 magnetic-distorted state; (b)
the state with M = 1 upg/cell. Solid lines: spin-up bands; dotted lines:
spin-down bands. The dashed lines indicate the Fermi levels (two in (b)).
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represent a true local minimum. It is also possible that a very small energy
barrier appears as an artifact of the calculation with small k-points sets,
while it disappears with a larger set.

Anyway, contrary to our expectations for narrow-band systems, no clear
insulating ground state is found. Our magnetic-distorted solution is at best
a local minimum, and furthermore it exhibits a weak metallic character due
to band overlap. While that might well be an artifact due to the LDA gap
problem, we believe that the prevalence of the non-magnetic periodically
distorted state in 3 x 3 Sn/Ge(111) is likely, although with a very large
density of states at Er, and thus a large magnetic susceptibility.

The next question is: why does a Mott-Hubbard (magnetic) insulator
prevail in the Si/SiC(0001) surface, and on the contrary a non-magnetic
lattice distorted state in Sn/Ge(111)?

We attribute that to the fact that unlike the former, the latter surface
cannot at all described by single-band physics. That in turn can be traced to
a strong hybridization between the adatoms dangling bonds and some elec-
tronic states in the Ge substrate, in particular with the 2nd-3rd layer bond
directly under each adatom (see Refs. [50, 54]). Because of the large band
gap, small relaxations and stiffer bonds make that hybridization much smaller
in Si/SiC(0001), which remains effectively single-band, than in Sn/Ge(111),
which does not. Even the strong Fermi surface nesting exhibited by the
Si/Si(111) magnetic phase [65], a clear precursor signal of the Mott-Hubbard
state, cannot be reproduced for Sn/Ge(111) (not even with M =1 ug/cell).

In summary, our results indicate that, at least for Sn/Ge(111), weak
magnetism is not excluded (in particular the calculated susceptibility is very
high) but should be regarded at most as a secondary effect.
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| Chapter 6

Sn/Ge(111) under strain

Any given, locally stable state of a surface, of free energy f, is characterized
by its surface stress tensor, o;; = —0f/0e;;, where ¢;; is the strain tensor.
Therefore, two given reconstructions, which in the absence of strain may be
in a certain order, say fi; < fo (fi stable, fo metastable), may reverse under
a suitable strain, since fy — f; = [ de;;05 may change sign.

In this picture, the 3 x 3 distortion of Sn/Ge(111) can itself be seen as
a way to lower the surface free energy relative to the undistorted surface. If
we artificially expand or compress the surface, we could modify this state of
affairs, and at some critical value of strain, the distortion might disappear.

Therefore, we conducted a systematical study of the Sn/Ge(111) 3 x 3
phase under strain. All calculations were done using the same methods of
chapter 3; since however we had to perform a very large number of runs, we
used a Monkhorst-Pack 6 k-points set [29, 30] to reduce the computational
cost. We strained the Sn/Ge(111) 3 X 3 system isotropically in the surface
plane, by changing the cell side by amounts ranging from —5% to +4%.
The slab could freely adjust its thickness in the orthogonal direction and we
allowed the atomic positions (except the bottom Ge layer and the saturating
hydrogens) to relax.

For each value of the strain, we sistematically computed the energy change
Egist — Eyna as a function of the “distortion” (the difference in height between
up and down adatoms), kept fixed while atomic positions were allowed to re-
lax; the results are plotted in Figure 6.1. For a strain between +2% and
—4% (positive strain = expansion; negative strain = compression), the en-
ergy gain showed indeed a decrease roughly linear with the strain; at the
expansion of 4%, the 1U distortion practically disappears.

One could at this point surmise a simple picture: the 1U distortion is
forced by an effective compressive stress, causing one adatom out of three
to “pop up”; when the surface is allowed to expand, the popping ceases,
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Figure 6.1: Energy gain as a function of the height difference zy — zp, for
different values of strain: (a) —5%; (b) —4%; (¢) —3%; (d) —2%; (e) 0; (f)
+2%; (g) +4%; (k) optimal energy gain as a function of strain.
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strain pattern AZUD AZUl AZUQ AZDl AZDQ
—5% 3U — | 1.998 3.396 — —

—4% 2U 0.483 | 1.983 3.341 1.716 2.875
-3% 2U 0.473 | 1.972 3.313 1.714 2.865
—2% 1U 0.353 | 1.960 3.279 1.766 2.940

0 1U 0.344 | 1.940 3.235 1.7563 2.912
+2% 10 0.337 | 1.918 3.202 1.742 2.890
+4% ou — — — 1774 2.947

Table 6.1: Vertical distances between adatoms and their nearest neighbors
for different values of strain. U = up adatoms; D = down adatoms; 1 = first-
layer atoms; 2 = second-layer atoms. All distances are in Angstroms.

and there is no more distortion. However, that is too simple: in fact, when
we proceeded to calculate the intrinsic surface stress of Sn/Ge(111) at zero
strain, we found it compressive, i.e., with the wrong sign. We measured it by
registering the minute, but unmistakeable change of the in-plane equilibrium
lattice constant of the Ge(111) slab, from —0.16% with both surfaces H-
saturated, to —0.84% with one surface H-saturated and the other with 1/3
ML Sn coverage.

Hence, the Sn/Ge(111) surface wants to contract, not to expand; then
why does one adatom out of three want to pop up? Indeed, the overall
picture seems to be more complex. When compressing by 3% and 4%, we
found a new and surprising result: a deep minimum appears in the energy
plot for a negative distortion, meaning a ground-state configuration with fwo
adatoms up out of three (2U). The usual configuration, with one adatom up
out of three, is instead 1U. [We note that a 2U pattern has been recently
observed [76] on a patch of the Sn/Ge(111) surface.] Moreover, by increasing
further the compression to 5%, the situation changes again, the undistorted
phase becoming again the ground state.

The vertical distances between adatoms and their first- and second-layer
nearest neighbors are reported in Table 6.1 and plotted in Figure 6.2. Strik-
ingly, these vertical distances hardly change with strain. Every adatom is
either up (U) or down (D), and never in between. For zero strain U = 1,
D = 2; but at 3% compression U = 2, D = 1, and at 5% compression
U =3, D = 0. We label the latter (undistorted) phase “3U”. Conversely,
by expanding of 4% we find U = 0, D = 3: this state is again undistorted,
but now “0U”. Compression actually favours the distortion, but instead of
the expected “continuous” effect, we get a “discrete” one: at intervals, an
adatom jumps suddenly from the lower site to the upper one.
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Figure 6.2: Vertical distances as a function of strain (see Table 6.1). From
top to bottom: Azya, Azps, Azy1, Azpi. The steplike increases of Azp; and
Azps appear in correspondence with transitions between different patterns.

It is interesting to observe that for the similar Sn/Si(111) surface, while a
3 x 3 distortion has been looked for without success, core-level measurements
show a splitting of the Sn 4d level, just as for Sn/Ge(111) (except that relative
intensities suggest a 2U pattern instead of 1U) [77]. We may argue that at
zero strain, the Sn/Si(111) surface is either in a 0U or 3U phase, but that at
some values of strain, a distortion might show up. G. Profeta [78] is currently
investigating this possibility.

6.1 Mixed valence on Sn/Ge(111)7?

The results above are possibly the most important in this thesis. Because
they were discovered only near the end, they are to a large extent still under
scrutiny. Here are a few considerations and tentative points that we aim at
pursuing as early as possible.

Application of surface strain has uncovered two main facts. First, each
Sn adatom has basically two positions, U and D, and there is presumably an
energy barrier in between. Second, the relative abundance U/(U+D) can be
changed from 0 to 1/3, 2/3, and 1 by compression. Mechanically, this is clear
enough, since in-plane compression would naturally force the Sn adatoms up:
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the new fact is that the change from down to up is quantized.

Let us, first of all, look at the experimental situation to see whether
this picture is compatible with the data. Reports of 2U distortions [76] and
actual STM pictures of 2U patches [79] have been indeed reported. That can
now be interpreted as due to surface regions with local compressive strain.
Another experimental fact is that the distortion, as signaled, e.g., by core
level splitting (see chapter 4), is always large, but 3 x 3 long-range order can
be very fragile, with critical temperatures that have been claimed to be as
low as 105 K, and/or strongly defect-controlled [79].

While this is hard to explain in a CDW or band Jahn-Teller picture, it
is natural in a picture like ours where the main energetics is controlled by a
strong on-site double well, and relatively weak inter-site interactions, which
naturally yields an order-disorder picture. The difficulty of obtaining clear
bands and band dispersions in photoemission must also be related to the
intrinsic propensity to disorder.

The heart of our result is that each Sn adatom can be either U or D,
but not in between. Moreover we know from previous chapters that very
little charge transfer, if any, takes place between U and D adatoms in the
1U cell. Hence it appears that U and D directly reflect two different states
of chemical bonding of the adatom to the surface: in short, two different
valencies. It is well known in chemistry that Sn and Pb possess two valence
states, 4 and 2, the latter being caused by their relatively large s-p splitting.
Perhaps the D and U states of Sn can be considered as an attempt of realizing
these two valencies. We are currently considering analyzing Mulliken charge
populations, and ELF distributions to shed more light on that.

The predominantly kinetic energy gain upon 1U distortion must also be
interpreted. When an adatom goes from 0U to 1U, the main electronic effect
(Figure 3.3) is a sinking by about 0.2 eV of its combined dangling bond-
substrate bond state, a sinking driven by the dangling bond becoming more
s-like and less p-like. The kinetic energy decrease can thus be seen as that
pertaining to this p — s partial conversion.

The mixed valence picture of Sn/Ge(111), which we have arrived at, can
have rather far-reaching implications. If the 1U and 2U ordered 3 x 3 states
correspond to static mixed valence, one is obviously led to search for cor-
responding dynamic mixed valence, either thermal, or quantum-mechanical.
The high temperature V3 x /3R30° state is to be identified with a thermal
dynamical mixed valence. External strain could be used to produce quantum-
mechanical mixed valencies: this would happen when in close proximity to
any of the classical transitions (0U-1U, 1U-2U, or 2U-3U). At these critical
strains, the energy differences between U and D of one or more adatoms
get to be so small that quantum tunneling can take over at sufficiently low
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temperature. The possibility that such a state could be realized is truly
fascinating, and we aim at pursuing it further in the near future.

The apparent 2U signature of the Sn 4d core level in the nominally undis-
torted v/3 x v/3R30° Sn/Si(111) [77] seems in this context a signature of dy-
namical mixed valence: in conjunction with G. Profeta, we shall be pursuing
that too.



Chapter 7

The Ge(111) high-temperature
phase

It is well known that at room temperature, the clean (111) surface of germa-
nium reconstructs with an adatom-rest atom-based ¢(2 x 8) pattern [42, 43].
This surface has been accurately described and characterized. The high-
temperature behavior of Ge(111) has also been investigated: an extensive
series of LEED measurements was taken by Phaneuf and Webb [80], who
found evidence of a first-order phase transition at about 300°C.

Namely, at room temperature they observed the diffraction spots corre-
sponding to the well-known ¢(2 x 8) reconstruction; when approaching T¢,
the higher-order (fourth- and eighth-order) spots first decrease gradually in
intensity, and then disappear completely in a very small temperature range
(about 3°C), while at the same time, the half-order spots are split each into
two distinct spots at incommensurate positions (Figure 7.1). The distance
between these two spots increases with temperature, starting from a finite
value of about 0.17 A~ at T, (Figure 7.2). These data are indicative of a
2 x 2-based (adatom-rest atom) reconstruction with antiphase domain walls.
STM images show a disordered surface [81], suggesting that domains are
subject to thermal fluctuation over very rapid time scales: thus a “slow”
technique like STM can only observe a time-averaged image of the surface,
while diffraction measurements reveal the instantaneous structure.

Other authors have reported different values for the transition tempera-
ture T,, in the range 250-300°C [82, 83].

Modesti and collaborators [84] found that the high-temperature phase
is weakly metallic, the surface conductivity increasing roughly linearly from
about 500 K, where it’s nearly zero, to 1040 K, where the surface melts
(Figure 7.3). (The melting temperature for bulk germanium is 1210 K.)
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Figure 7.1: Intensity contour plot of diffraction spots at (from top to bottom
and from left to right): (a) 97°C (T < T.); (b) 297°C (T =~ T.); (c) 415°C
(T > T,) (from Ref. [80]).

7.1 The Phaneuf-Webb model

Phaneuf and Webb [80] proposed a structural model for the Ge(111) high-
temperature phase, that we expose here. It is based on the observation that
there are four different ways to place a 2 x 2 lattice of adatoms on a (111)
substrate, namely, any of the four equivalent T, adsorption sites within each
2 x 2 cell can be occupied. Therefore, Phaneuf and Webb proposed that
high-temperature Ge(111) is made up of small domains of 2 x 2 phases,
each in any of the four possible placements. At the boundary between two
adjacent domains, antiphase walls form: such walls are made of a single row
of ¢(4x2) cells. At three-domains boundaries, three concurrent walls forming
angles of 120° match, giving rise to a trimer of adatoms, that can be seen
as half a /3 x v/3R30° unit cell. Each domain must have six walls (some
of which however might have zero length) forming angles of 120°: thus the
surface appears as a network of irregularly shaped hexagons. The model is
illustrated in Figure 7.4.

It is relatively easy for domain walls to move: as shown in Figure 7.5, this
is accomplished by the collective motion of a single row of adatoms, each of
them being displaced by a 1 x 1 lattice vector (from a Ty site to another)
along the line separating a 2 x 2 domain from a row of ¢(4 x 2) cells. By this
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¢(4 x 2) building blocks, and the adatom trimers, are shown; in (c) the four
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Figure 7.5: Domain breathing by the collective motion of a single row of
adatoms (from Ref. [80]).

motion, a c(4 x 2) wall is displaced by a 2 x 2 lattice vector: as a consequence,
one of two adjacent domains is enlarged by a row of 2 x 2 cells, while the other
one is reduced correspondingly. This phenomenon is called “breathing”.

Fast breathing of domains can explain why the Phaneuf-Webb structure
fails to be observed on the clean Ge(111) surface: actually, a disordered
surface is seen by STM images [81], with adatoms randomly placed on the
1 x 1 lattice of adsorption sites. However, when a small amount (< 1 ML)
of Ga or In is adsorbed on the surface, the extraneous adatoms can “freeze”,
or at least slow down, the fluctuations, stabilizing domains over time scales
sufficiently long to be observed by STM: this has indeed been reported by
some authors [85, 86].

7.2 Surface doping by fractional defects

The walls separating adjacent 2 x 2 domains in the Phaneuf-Webb model
are clearly topological. Since there are four possible placements of the 2 x 2
lattice (labelled A, B, C, D in Figure 7.4(c)), the number of different walls

<;> = 6. They are neutral topological defects, having the same density of

is
adatoms (1/4 ML) as the internal of domains; however, at the intersection
of any three walls, a trimer of adatoms forms. The latter can be seen as half

a /3 x v/3R30° cell, with a coverage of 1/3 ML: there is therefore exactly
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one half extra adatom per trimer. Actually, single trimers can’t form (unless
we have infinite domains): in a regular arrangement such as that of Figure
7.4(b), there are always exactly two trimers per unit cell. This corresponds
to the fact that the hexagonal lattice has a two-point basis. There is thus
one extra adatom per unit cell beyond 1/4 ML of coverage; since there’s no
rest atom paired to this extra adatom, its dangling bond remains half-filled,
contributing one extra electron per unit cell, or one half extra electron per
trimer.

This means that the trimers are zero-dimensional defects, but of a rather
unusual kind, because the excess charge associated with the defect is frac-
tional. As a consequence, the excess electron can’t be localized on a single
defect, but must be shared between two “partner” defects, no matter how
far from each other.

To study the behavior of this system, we considered the three regular
arrangements shown in Figure 7.4(b), (c), and (d). These are composed by
unit cells made of IV + 1 adatoms and 4N + 3 atoms per layer, with N =6,
18, and 36; we used 6 Ge layers, plus a layer of H atoms to saturate the
bottom surface. The total number of atoms is thus 196, 544, and 1066: since
these unit cells are far too large for an ab initio treatment, we resorted to
the empirical tight-binding scheme [53].

We used the fitting formula by Goodwin et al. [87] to compute the tight-
binding matrix elements; the empirical coefficients appearing in this formula
were fitted so as to reproduce the electron bands obtained from a plane-
wave calculation on two smaller cells, namely, the Ge/Ge(111) 2 x 2 and
/3 x v/3R30° cells considered in chapter 2, truncated to 6 layers of thickness.
The precise positions of atoms in the cells were also obtained by taking the
optimized positions for the 2 x 2 cell from the same calculation, periodically
repeating it, and cutting out hexagonal cells of the required sizes.

The sides of out three cells are L = 20.8, 34.7, and 48.6 A; we assigned
a temperature to each cell, by computing the corresponding LEED spots
splitting 6¢ = 27 /L, and extracting the dependence of 6g on the temperature
from the data of Figure 7.2. We obtained T" ~ 800 K for the smallest cell,
and T ~ 600 K for the medium-sized one, while for the largest cell, g was
smaller than the experimental value just above 7.

In Figure 7.6 the computed electron bands for the smallest cell (N = 6)
are shown; the other cells yield a similar picture. There are in each case
N + 1 surface bands in the middle of the gap: electron counting shows that
there is a single electron occupying this bundle of bands, that is, exactly the
extra electron per unit cell coming from the two trimer defects. In agreement
with experimental evidence, our data show that the system exhibits a weak
metallicity. We computed the density of states around the Fermi level, also
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shown in Figure 7.6: n(Er) is 6.0, 4.3, and 3.0 states/(eV x adatom x spin)
for the small, medium, and large cell, respectively.

A plot of the electron density for the half-filled surface state is shown in
Figure 7.7. As we see, while the extra electron occupying this state “comes”
from adatom trimers at the corners of the hexagon, the state isn’t concen-
trated on trimers only, but also on the domain walls. This reflects the impos-
sibility for the electron to localize on a single trimer: it must continuously
“ump” between partner trimers, thus spending a considerable fraction of
time on the walls between them. This clearly supports the charge fraction-
alization picture.

We compared our theoretical results with experimental data obtained by
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A. Goldoni and S. Modesti. A joint report was submitted by us for pub-
lication [88]. The results of the comparison are shown in Figure 7.8: the
experimental spectral intensity at Er is plotted, together with theoretical
values computed from the electron density of states. The agreement is grat-
ifying.
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Conclusions

In this work we have collected a large body of fresh computational evidence
on the Sn/Ge(111) surface. While further work is under way to achieve a
complete understanding of the physics of this surface, we have already found
a number of interesting new facts:

1. We have shown that in the Ge(111) V3 x V/3R30° structure (and pre-
sumably also on Si(111)), covered by tetravalent adatoms with large
atomic number, such as Sn and Pb, the large adatom size forces a
downward shift of its dangling bond energy, through a rehybridization
mechanism related to the increased angles between the dangling bond
and the backbonds. A “coupling” of the dangling bond state with the
second-third layer Ge-Ge bond directly beneath adatoms also accounts
for enhanced stability.

2. We have calculated that the energy gain in the 3 x 3 distortion of
Sn/Ge(111) comes from electron kinetic energy, while the electron-ion,
electron-electron and ion-ion energy terms increase. This points to-
wards a strong intra-adatom dehybridization and to a modulation of
the bond with the substrate as the driving mechanism, and is contrary
to a charge-density wave (CDW) picture. In CDWs, the sum of elec-
trostatic energies provides the gain, while some kinetic energy is lost:
this has also been checked by a model polyacetylene calculation.

3. We have found that the theoretical “up” adatoms core level, on 3 x 3
Sn/Ge(111), is deeper than that of “down” adatoms: since experiment
shows that the deeper component is half as intense as the shallower
one, this supports the “1U” pattern of the 3 x 3 distortion, which is
indeed observed by STM. The computed absolute value of the shift also
compares fairly well with experiment. This fact also indicates that the
difference between inequivalent adatoms is mostly hybridization, but
not total charge (that would give the opposite sign to the shift). This
is again contrasting with the picture of a CDW.
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4. We have also calculated that the work function of Sn/Ge(111) changes
very little between the v/3 x v/3R30° undistorted (unstable) state, and
the 3 x 3, “1 up” distorted state. This indicates a negligible change
of surface dipole, which in turn means that the true charge transfer
between “up” and “down” adatoms is extremely small. This confirms
the conclusions suggested by the core level analysis.

5. We have shown that magnetism plays only a secondary part for the
Sn/Ge(111) system. In particular we have ruled out the possibility
that a magnetic phase, as is observed in other isoelectronic systems
such as Si/Si(111) and Si/SiC(0001), might show good nesting prop-
erties and/or exhibit insulating character. A weakly magnetic phase,
also presenting a small structural distortion, was actually found by the-
oretical computations, but it gains little energy over the non-magnetic,
undistorted v/3 x v/3R30° phase, and is at best metastable.

6. We have discovered a completely new aspect of the Sn/Ge(111) sur-
face’s behavior by investigating the response of the system under sur-
face strain. We found that strain modifies the qualitative pattern of the
distortion, namely, it changes from “0U” at large tension (all adatoms
down), to “1U” at zero or small strain, to “2U” and finally “3U” (all
up) for increasing compression. The “up” and “down” positions are
clearly distinct from each other, and change very little with strain.
The “up” and “down” states appear as two different “valences” of Sn
adatoms, i.e., a “metallic” and a “semiconducting” state, respectively,
and thus the Sn/Ge(111) and similar surfaces could be seen as mixed
valence systems.

In summary, it appears clear from our data that the explanation of the
Sn/Ge(111) 3 x 3 distortion as a CDW, or more generally as an effect driven
by a single, narrow band, must be rejected in favour of a more complex picture
involving intraatomic rehybridization, and possibly different valence states of
Sn. Further work is under way to obtain a comprehensive interpretation of
this phenomenon.

Finally, we have also studied the high-temperature phase (above 540 K)
of clean Ge(111). For this phase, we have confirmed the Phaneuf-Webb
structural model, and identified a novel fractional charge defect arising from
this model. Namely, the Phaneuf-Webb “honeycomb” model is an hexagonal
network of zero-dimensional defects of topological nature: the interesting
feature of these defects is that they each contribute exactly half an electron
to the surface bands. There is therefore a continuous motion of electrons
between neighboring defects, as a consequence of the impossibility for an
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electron to localize on a single defect. The resulting fractional doping is also
held responsible for the weak metallic behavior seen on this surface by EELS
and photoemission.
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