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Introduction

String theory is so far the best candidate for quantization of gravity. Its very definition is however
somewhat unsatisfactory, as a nonperturbative definition is still not completely clear. An important
step in this direction has been to realize that the space of the states of this theory will finally include
not only states coming from strings, but also from higher-dimensional extended objects, that were
christened D-branes. Though in the perturbative formulation these latter objects can only be under-
stood in terms of open strings, in the nonperturbative theory strings and branes will appear on the
same footing. It is therefore compelling to understand as many properties of these objects as one can.

This is not only out of the intellectual curiosity of fully understanding the structure and formu-
lation of an interesting branch of mathematics, as string theory has happened to become; but for the
very physical relevance of the theory itself. As an example, one of the requirements for any theory
to supersede the current standard model of particle physics is to explain the observed parameters of
the latter. This is currently the main drawback of string theory, given the huge number of possible
compactifications to four dimensions, with little or no theoretical reason of preference among them.
This is the physical ground of the huge mathematical problem of describing the moduli space of string
vacua. D-branes are relevant to this problem because of their above mentioned role in nonperturbative
string theory, and in particular because they give additional moduli.

The best understood way to probe nonperturbative features of a supersymmetric theory is to study
its BPS states; so one is lead to the study of those configurations of branes which do not break
supersymmetry completely. We will study two separate applications of this method, both with the
aim of understanding the nonperturbative structure of string theory.

The first is the proposal known as Matrix String Theory (MST) [62, 21]. The idea that a second-
quantized theory of strings, which describes multi-strings states, can be linked with matrices, is some-
what an old one, but it was revived more recently after the emergence of Matrix Theory [3]. After the
initial proposal, the essential lines of a proof were shown [12]. The main tool in this proof were BPS
solutions of the theory. These turn out to be given by Hitchin equations in 2 dimensions

F—iX,Xlw=cw, DX=0, (0.0.1)

where F is the curvature of the gauge field of the theory, D the (1, 0) part of its covariant derivative,
and X is a matrix valued field. There is then a well-known technique to produce, out of these data, a
covering of the base space, and a bundle on it. In our case the covering will be a Riemann surface with
marked points; in the method of [12] these are used to reproduce the S-matrix of the Green-Schwarz
string. The question arises, however, of whether this method can give the correct moduli space for
string scatterings: this will be the theme of our first chapter. We will see that several interesting
phenomena happen. First, there is a partial discretization of the moduli space, whose spacing goes
however to zero in the limit in which MST is expected to reduce to perturbative string theory. Second,
in general one has to allow these Riemann surfaces to be singular. Physically, this comes because we
are embedding them in the four dimensions of spacetime, and they look singular; taking in account
fluctuations in the extra dimensions, the singularities get resolved. Along the way, we will describe
an interesting way of arriving to a known relationship between the Newton polygon description of a
plane curve and its genus, involving toric geometry. Many of the mathematical concepts and methods
introduced in this chapter will be used in the later part as well.

Another interesting way to understand nonperturbative features of the theory, and at the same time
to tackle an important part of the string theory moduli problem we alluded to above, is to consider
branes in Calabi-Yau manifolds. The moduli space of Calabi-Yau compactifications without branes
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has been already thoroughly studied (see for example [40] for a review); inclusion of branes com-
plicates enormously the problem. In perspective, the moduli space of branes should give an infinite
covering of the closed string moduli space: for each closed string background there are several al-
lowed brane configurations. As part of such a program, we will start with an already interesting part:
fixing a Calabi-Yau and considering its closed string Kéhler moduli space.

In chapter 2 we will introduce the main ingredients for what follows. In particular, it will be noted
~afact that will allow us to split the problem in two. This is already visible in Hitchin equations (0.0.1),
which are again met in particular cases in this context: these equations consist of a real equation and of
a complex holomorphic one. This splitting has a deeper meaning than one may think; it corresponds to
the splitting of the equations which describe moduli spaces of vacua of supersymmetric gauge theories
in D-terms and F-terms. Moreover, in the cases we will consider (varying Kihler moduli only) F-
terms (holomorphic equations) are not modified [16]. It makes thus sense to consider solutions to the
latter first, and to postpone analysis of the former (which, for reasons to become clear, will be referred
to as a stability problem).

This first step will be done in chapter 3. We will see that, in two particular points of the Kéhler
moduli space (called large volume limit and Gepner point), branes can be described by two different
kind of objects: coherent sheaves and quiver representations. Since the moduli space is connected, a
continuous interpolation between them should be possible: after having noted that this is nothing but a
generalized McKay correspondence, we will find this interpolation in several examples, using Bondal
theorem [10], a generalization to Fano varieties of Beilinson’s one [6]. The most natural formulation
of this theorem 1is in terms of derived category, and we will argue then that this is the most natural
classifying object for D-branes as long as one neglects stability matters.

These will be then the subject of chapter 4. Again, the scheme will be here to understand tractable
points of the moduli space and try then to extend the analysis to the whole of it. In the large volume
limit, as we have mentioned, we will find generalizations of Hitchin equations. They involve in an
essential way connections on the gauge bundle E on the brane; it turns out that a property of this
bundle is equivalent to the existence of solutions to the equations. This property is called stability
and it always involves properties of subbundles E’ of the given bundle F; the equivalence of stability
with existence of solutions to the equations is sometimes called Hitchin-Kobayashi correspondence.
Tt is interesting to note that the equations have also the meaning of physical stability of branes, giving
a nice coincidence of words.

Away from the large volume limit, on a generic point of Kihler moduli space, these D-term
equations will be deformed. The complete form of these deformed equations is not known, though
some features were explored [58]. However, from worldsheet arguments one can argue for a deformed
stability, known as II-stability [28], which should again be equivalent to solutions of the deformed
equations, whatever they are. Since this deformed stability condition reduces to usual stability in the
limit, this gives in a sense a string theory rederivation of Hitchin-Kobayashi correspondence.
However, we have seen that, away from the large volume limit, the appropriate description is derived
category, one would expect some kind of derived category stability to come in. The final word on
this has not yet come, and this part will be more of a sketch of a program than a conclusive one.
The final goal should be to understand completely what is the derived category stability coming from
worldsheet arguments, and then rederive from this all the known stabilities of known equations in the
tractable limits. Depending on the cases, these equations can involve, besides the connection A on the
gauge bundle E on the brane, transverse scalars X (as in the Hitchin example we have seen) and/or
tachyons; each of these equations has its own Hitchin-Kobayashi correspondence with a stability
condition, and string theory should allow to rederive all of them as different cases of a unique derived
category stability.
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Chapter 1
Matrix strings

Matrix String Theory (MST) is a proposal for non-perturbative string theory, coming from the rela-
tionships of string theory with eleven dimensional theories noted in the recent years. If this proposal is
to make sense, it should reproduce perturbative results in the weak string coupling limit. After having
introduced the model, we will describe a sketch of a proof of this fact [12], and later concentrate on
a part of it. String scattering amplitudes involve summing over moduli spaces of punctured Riemann
surfaces; we will analyze the problem of recovering exactly these moduli spaces from MST.

1.1 MST and its origin

The idea is very simple. Perturbative string theory can only describe states with one string at a time.
If the fields which live on the string are promoted to matrices, then they can describe several strings
at a time through their eigenvalues.

In its modern form, this idea came from eleven-dimensional arguments [62, 21]. Recall in-
deed that non-perturbative type IIA string theory was indirectly found to be intrinsically an 11-
dimensional theory, the so-called M-theory, whose low-energy limit is not surprisingly 11-d super-
gravity. The Kaluza-Klein modes of the 11-dimensional gravitons are DO branes, which are indeed
non-perturbative states of string theory. Note that DO charge is quantized in energy, as it should to
have a KK interpretation: bound states of N DO branes are bound states at threshold, and thus have
N times the charge of one DO.

A proposal for a description of this theory is M(atrix) theory. The idea is to consider M-theory
in its infinite-momentum frame (IMF) [88]. As for field theory [3], in this limit we should not lose
information, and gain however in simplicity. Indeed, if we make a boost of infinite momentum in a
direction, we have that

e The only remaining degrees of freedom are the ones with very large momentum in the boosted
direction; the others are effectively integrated out;

e The theory of the remaining degrees of freedom has a Galilean invariance in the directions
transverse to the boost.

Let us apply this to a boost in the 11-th direction, which we call z; moreover, we compactify this
direction (there is no clash between these two procedures). We have mentioned above that py is
proportional to DO charge: so, because of first point above the only states remaining in our effective
description are bound states of a large number of DO branes. Moreover, because of second point,
the resulting theory should be a non-relativistic theory describing 9 transverse directions. We have

1




2 ‘ 1. Matrix strings

already such a theory: it is the nonrelativistic limit of the theory describing N DO branes. This is a
super Yang-Mills theory in 0+1 dimensions:

S 1 .
- (X' XN 4+ — T X, .
Toma KO0 + 507 1X,6))

S = l/dt tr (—1—(170)(2')2 — 07 D8 +
ls 29
all the fields are hermitian N x N matrices; X* are the 9 scalars describing fluctuations in the trans-
verse directions, 6 are their supersymmetric partners, in a spinor representation of the transverse
directions (the 16 of SO(9)); +* are the corresponding gamma matrices; Dy is the covariant deriva-
tive with respect to a 0 -+ 1 dimensional gauge field Ag; [; and g, are the string length and coupling
constant.

Since this is alleged to be a theory of non-
perturbative string theory, it is not surprising
that it can be massages to produce a more di-
rect description of non-perturbative scatterings

Figure 1.1: Chain of dualities and 9-4 flip

of strings. The method to achieve can be un- PO boun siee D1-F1 bound stare
derstood by compactifying the 9 direction as ‘,"’ o Y
well and looking at what happens when one N T . L
exchanges the role of directions 9 and fj. Since To
DO are gravitons with large py, after this flip ®~> R s —
we will have gravitons with large pg; these are i
described in 10-dimensional terms by closed _
strings. It is also instructive to look at this from 9 l flip l S
a chain-of-dualities perspective:

Here we have displayed for illustrative pur- F1-D1 bound state
pose the effect of dualities and of 9- flip on a ' O——> Y
bound state of two DO branes and on a single D0 "
fundamental string (denoted F1), both with a _
momentum pg. The latter is exchanged with To
DO charge (p11), as it should. The left side of o S
this diagram is IIA theory, the right side IIB.

So, states with high DO charge will become on
the lower left corner fundamental IJA strings
with high pg momentum. ,

This flip can be implemented through a careful mapping of constants, and through reinterpretation
of infinite traces as integrals (as it is customary in T-duality of D-branes in the style of [77]). The
result is an action defined on a cylinder S* x R:

1 . . 1 L 1 .
S= [ tr| DiX°D'X* + 0710 — g2 F;; F9 — = > "[x%, XI) + ;OT%[X’, ]| ; (1.1.1)
k)

LT .
5 iy

all the fields are matrices, X* are 8 scalars in the vector representation of transverse SO(8), 6 are
two-dimensional spinors as well as in the 8; @ 8, of SO(8). This action can be recognized as a 7
maximally extended A = (8, 8) super Yang-Mills ( not surprisingly, since the initial system of N DO
branes has 16 supercharges) with a gauge coupling constant

1
gyM = — - (1.1.2)

S



1.2 Gauge strong coupling and strings 3

The important thing is that one ended up with a matrix action, though describing now fundamental
strings. This gives hope that one can describe multistring states using eigenvalues of the matrices.

It can be a little surprising at first that an action as easy as (1.1.1) can describe such a complicated
theory as ITA string theory, which even claims to be a theory of gravity. However, note that the pertur-
bative regime of string theory is at small g,, which is, by (1.1.2), strong gauge coupling for the super
Yang-Mills action (1.1.1). Strong coupling regime of field theories is not under control as the weak
coupling one; the idea that strong coupling is in some sense a theory of strings is in fact an old one
[82, 83]. The same idea has found more recently a new avatar in the celebrated AdS/CFT correspon-
dence; it is perhaps not often stressed that these ideas would mean a non-perturbative formulation of
string theory. This is exactly the point of view taken here: super Yang-Mills action (1.1. 1) 'should give
a non-perturbative definition of type IIA string theory in flat space (once one deals carefully with the
constants, in such a way that the radius of the 9 coordinate in lower-left corner in figure 1.1 goes to
infinity).

Accordingly, we will now describe a sketch of a proof [12] that the strong coupling of (1.1.1) is
indeed IIA theory.

1.2 Gauge strong coupling and strings

The strategy is as follows. One tries to evaluate the euclidean path integral of the theory. Usually,
for that one uses the “steepest descent” method: This means that one expands the euclidean action
around a classical solution,

S(®) = 5(®) + (625/50%) (Do) ¢,  d=0— D (1.2.3)

and evaluates the quadratic part thanks to the fact it is Gaussian. Here, we do not want to really
evaluate the path integral, but rather to show that it is equal to something else (to the path integral of
IIA theory). So, the quadratic part in (1.2.3) will be actually left as it is, without evaluating it. This
could seem a little bizarre, but recall that string theory does indeed look as a free field theory from
the worldsheet point of view; it is the insertion of vertex operators that makes the story nontrivial.

The classical solution ®; is also called an instanton. When one has several instantons, steepest
descent methods instructs us to simply sum over all the contributions coming from all the instantons.
This gives

Z =Y e (@) / Dpe (@) (1.2.4)
I

where I labels the instantons and S(;) is the quadratical piece expanded as in (1.2.3) around the
instanton ®q(;). Of course this is only a symbolic expression. In particular, in general instantons
will come in moduli spaces; this will have two effects on (1.2.4). First, ZI will then be an integral;
second, this flat direction signals zero modes in the Hessian §2.5/®?; these zero modes have to be
excluded when one performs the quadratical integration in (1.2.4).

All of this is not specific to the strong coupling limit. The relative weight e=5(®on) tells us
however that only instantons for which the action is finite at strong coupling will survive in the limit.
The subclass for which we are sure that this happens is the one of BPS instantons, because they are
almost by definition the ones that saturate a Bogomol’nyi bound for the evaluated action. Thus we
will only consider BPS instantons in what follows.

Summarizing, the strategy is

e to find BPS instantons of MST action (1.1.1)
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e to apply to them the steepest descent method just reviewed.

In the first step we will discover notable properties of the BPS instantons that will allow us to complete
second step, and interpreting the quadratic piece in steepest descent method as the Green-Schwarz
action of the IIA string.

1.2.1 BPS instantons

For use in later chapters, we take here a more general point of view, analyzing all the BPS solutions
of maximally supersymmetric super Yang-Mills actions in any dimensions. We will neglect factors-
of coupling constants for the time being.

Let us start with a simple example. Consider super Yang-Mills in d = 4 with A" = 4. In this
case, one can easily verify that the condition for preserving half of supersymmetry, if the transverse
scalars X are set to their vacuum values, is a slight modification of the instanton equation F' = *F.
In complex coordinates z1, 23, this reads

Fii+Fyp =cld, Fip=0 (1.2.5)
where Fj; = F, .., Fi3 = F, z,, and another equation Fi5 = 0 follows from A being antihermitian.
Let us now consider the T-duals of these equations. The general procedure is the same as that of
dimensional reduction, and reads D; — X;: a connection becomes an endomorphism (a matrix).
More precisely, this rule, for T-duality, means that we are but rewriting the covariant derivatives
as infinite dimensional matrices; then, the expression obtained in this way will be true also in the
case in which matrices are finite dimensional. The outcome of this reasoning is the same as that of
dimensional reduction. If T-duality is in the 29, Z» directions, the result is

Fii+[X,X11=cld, D1X=0 (1.2.6)

where we have called X5 = X. These equations can be obtained also by considering super Yang-
Mills in d = 2 and with /' = (8, 8), which is indeed a dimensional reduction, or T-dual, of d = 4,
N = 4, and looking for solutions which preserve half supersymmetry with one complex scalar turned
on. For these reasons they have already been argued to be relevant in several physical situations
[8,7, 87,37, 12, 13]; on the mathematical side, with a proper covariantization that we will see, they
have been studied by Hitchin [47].

One can look for more general BPS conditions in super Yang-Mills theories starting instead from
the d = 10, N = 1 case, keeping all the complex scalars on:

Fli +.+F55 :C:[d, EJ =0. (12.7)

Again, reducing these to lower dimensions gives equations involving complex scalars in the adjoint:
for instance in 4 dimensions one gets

Fig + Fys + [ X1, X]]+ [Xs, X3] + [X3, X3] = ¢ 1d; Fip = 0;
DX =0, i=1,2  [XaXs)=0, a,b=1,2,3. (1.2.8)

These are a modification of the usual self-duality conditions (1.2.5) in 4 dimensions. In chapter 4 we
will consider these equations again, along with their covariantization. For instance, the case without
scalars, in any dimension, is the well-known HYM system of equations (2.2.9).

It seems from this analysis that our BPS equations are (1.2.8). We will later show, however, that
we can always reduce these equations to the case with one scalar only, as in the Hitchin case (1.2.6).
/s a consequence, the BPS solutions we are going to use are solutions to these equations. Note
that the complex coordinates z = 2y (Z = Zz,) are there because we are considering solutions in the
euclidean; this is the reason to call them instantons.
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1.2.2 Solutions to Hitchin equations

On compact Riemann surfaces Hitchin equations are very well studied (starting from [47]). On non-
compact cases like this (remember we are on the cylinder), we have to be more careful, but we will
see that we can still use the main ideas of the compact case.

Introducing a scheme we will use more at large in the following chapters, we will find solutions to
this system starting from the holomorphic part, for which we can use directly the powerful techniques
of complex geometry, and move then to the more difficult real equations, for which we will rely on
the techniques we have mentioned in the introduction as stability.

Holomorphic part

The holomorphic part is here the equation D X = 0. This has important consequences for the
matrix X . Indeed, for its characteristic polynomial px (z) = det(X — z1d) we have

ddet(X —zId) = det(X —zId)tr ((X — z1d)71oX) =
det(X — zId) tr ((X — zId)7'[X, A]) =0

since (X — x Id) is generically invertible.

This is important in view of the interpretation of X as describing motion in a transverse di-
rection. This is familiar with branes, and for constant X. In that case, the vacuum X = 0 rep-
resents N (the rank of the matrix) strings wrapped on the same locus; whereas the vacuum X =
diag(z®, ..., ™)) with z3) # ... # z(V) describes N branes, but displaced from one another.
We can summarize that by saying that eigenvalues of X describe positions of the branes.

Here, the difference is that X describes displacements of fundamental strings and not of branes;
and that X is no longer a constant. But this is not a problem: over each point w on the base cylinder
again the eigenvalues are the transverse displacement; varying w the eigenvalues will in general vary,
join one another and split. If the configuration was constant, we would have N cylinders; since it is
not constant, we will have in general an open Riemann surface ¥, defining a branched (because on
some point wy some sheets can meet) covering of the cylinder C.

This can be made more precise. The base space is a cylinder C; the Riemann surface is described
by the zeroes of the characteristic polynomial px (z,w), where we have now explicited the depen-
dence on w (remember that “polynomial” for the time being refers to dependence on ). This is
because, on each w, the zeroes of the characteristic polynomial are the eigenvalues. We have thus a
holomorphic equation px (z,w) = 0, defined in C x C.

At 7 = o0, we require a mild behaviour, in the following sense. We switch to a coordinate
z = e¥, which allows us to think of the cylinder as a C* C P!; in these terms, px(z, z) is now
required to be meromorphic on P, thus not to have essential singularities on the two added points
2z = 0 and z = oco. This is because we would have otherwise, in the following, too wild scattering
states, as we will see. ‘

Since we are at it, we can try to extend all the data to P*; this will be useful in a moment. On
P!, the characteristic polynomial should only be meromorphic, as we just said. A general principle in
algebraic geometry is the one which allows meromorphic functions to be considered as holomorphic
sections of line bundles. Then, we can describe everything a little more formally in the following
way. X was considered, on the cylinder, as a section of End(E ) (with E the trivial gauge bundle).
We can now consider X it as a section of End(E) ® L, with L a line bundle on P*. As we will see
again, line bundles on complex projective spaces are classified by their first Chern number; the one
with ¢; = k is called O(k). If L = O(k), one can see that for consistency z is a section of O(k),
the characteristic polynomial equation is a section of O(k IV), and it describes a subvariety cut by a
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single equation in the total space of the bundle O(k). Also this total space can be compactified to a
complex 4-dimensional compact space, as we will see.

The real equation

Having brilliantly solved the holomorphic equation, we turn to the real one, which we rewrite
here as

G F:+[X X]=c, (1.2.9)

where we have put the appropriate factor of g; back. We will see more extensively in chapter 4 that
equations of this kind admit often a formulation in terms of a property called stability. There, we will
explain the origin of this condition, proving that the latter is necessary in order to have solutions of
Hitchin equations and of its generalizations we have seen in subsection (1.2.1). We will rely on the
literature for sufficiency.

What we will do here is to simply formulate it, to show that we can find a solution of our equation,
and sketch the method by which a solution can be really found, taking it from the general theory.

The condition of stability is on the couple (E, X ), where E is the gauge bundle on P! and X is
a section of End(F) ® L.! The couple is stable if, for any subbundle E' which is X -invariant, the
inequality u(E') < p(E) holds, where = ¢y /rk. Call now the stable couple (E, M); a solution is
guaranteed to be found in the form

A=g7 0+ Ay, X=g'Mg, (1.2.10)

where Ay is a connection on F, and g is a section of End(E) (better, a complex automorphism of
E). This means that, starting from Ay and M, and considering the orbit of the complexified gauge
group, one will find sooner or later a solution of Hitchin equation. The moment map for the action of
the non-complexified gauge group is precisely the equation itself.

We will now show that for any covering > we can find a solution of Hitchin equation with that
assigned covering. First of all, one has to observe that under gauge transformations (1.2.10) the
characteristic polynomial does not change, and so neither does 3. Then, what we can do is to choose
an appropriate starting point M in such a way that the conple (E, M) is stable. Let us try with the
following simple choice:

_aN—l _..—aN2 LTI LR —-ao
1 0 - - 0
M = 0 1 e 0 . (1.2.11)
0 o - 1 0

The a; are by construction coefficients of the characteristic polynomial, Py;(z) = (z¥ +ay—1 2V 1+
...+ ao. For consistency, since z is, as we said above, a section of L, a; is a section of LN%, This
determines almost all of the bundle E. Indeed, one knows by Birkhoff theorem that all vector bundles
on P! are direct sums of line bundles, Li1@®...® L. Then, the element M;; of this matrix is a section
of L ® L} ® L;. Comparing this with the bundles of which the a; are actually sections, we obtain

LZL}CH]_ =L

"Note that we do not need, as it was assumed in [47], that I = K the canonical bundle. This requires then a little care
in covariantizing, see chapter 4.



1.3 Lifting the action and the moduli problem 7

(from now on we omit ® for line bundles, for clarity of formulas). This means that
E=LoLL'e.. el LV (1.2.12)

If the a; are all zero, the only invariant subbundle is easily seen to be the last line bundle of the
sum, Ly = L1 LV ~!. We can check then if the condition p(Ly) < p(E) holds: we have

c1(L1) — (N =1ei (L) < % (Ncl(Ll) - —]\—r(ﬂr)—_—l—lcl(L)>

F4

from which one sce thai one should require ¢1 (L) >> 0. Let us anticipate that fortunately, this coin-
cides with the condition for a line bundle to have holomorphic sections (which then we can regard as
meromorphic functions); had we obtained for instance the opposite sign, there would have been no
possible a; (but zero).
Now, the couple (E, M) is stable for a; = 0; one concludes by observing [44] that stability is an open
condition, and using again a particular action of the gauge group. This allows us to say that (E, M)
as given by (1.2.12,1.2.11), and supplemented by the condition that L is positive, is always a stable
pair.

We now know there is a g which takes this Ap and M to a solution of Hitchin equation as in
(1.2.10). Explicitly, the equation g should satisfy turns out to be (with 2 =g gh

¢28,(8.071Q) + M, QM =0

which looks like a WZNW equation; in fact it is a reduction of it. Stability implies that precisely this
equation has a solution.

We started from the cylinder C* and then extended data on P!; a possibly more orthodox way
could be to use the more systematic theory of these extensions from noncompact to compact curves
[74].

We have now solved both our equations. In principle, it would seem that the solutions have a large
moduli space of solutions, similar to the Hitchin one (recall however that our equation is not exactly
that one, being L different from K, see previous footnote). However, one thing we still have to do
is not present in the mathematical literature: the strong (gauge) coupling limit (weak string coupling)
of these solutions (after all this is the limit we are interested in checking). This has been done in [12]
with subtle techniques, and it gives the result that the only surviving moduli in the limit are the ones
coming from the covering.

1.3 Lifting the action and the moduli problem

We have thus set the stage for the steepest descent method, in the sense that we know now that the
moduli space of instantons (the label (7) in(1.2.4) is the moduli space of coverings of the cylinder.
As we said, we do not evaluate the remaining piece, but we transform it in a meaningful way.

The idea is to take the abelian part of the matrix action (1.1.1) expanded around a given instanton,
and Iift it to the corresponding covering ¥. Intuitively, this means the following. As we have said,
the eigenvalues of X define the covering %. All the other fields can be divided into a part which
commutes with X, and is thus diagonalizable simultaneously with it, and the rest. We call first part
Cartan modes and second non-Cartan.

Now, imagine to do a trip on the cylinder around a branching point of the cover. In the branching
point some eigenvalues will coincide; in the trip around that point, one can see that exactly those
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eigenvalues will get permuted among themselves; this is called a monodromy. The Cartan modes of
all the fields will get, by definition, the same monodromy.

Let us now call ¢4 the eigenvalues of the field ¢. On a generic point w of the cylinder we have N
distinct of them, and we can imagine to assign each of the eigenvalue to a point on the covering.
What will happen when we vary the point w? thanks to the above observation that the ¢4 get the
same monodromy as the eigenvalues x4 of X (which define the covering),

¢4 — Uapds, z4 — UaBTg,

the assignment will be consistent all over the cylinder. This is tantamount to say that we have defined
a function on the covering, or that we have lifted the field.

We can describe again more formally this intuitive procedure. The definition of the covering
space was already formalized in previous section, through the eigenvalues; we will now give also an
interpretation to the eigenvectors. If indeed we assign to each sheet the eigenvector v 4 corresponding
to that eigenvalue x 4, what we are defining on the cover is a line bundle £2. Take then any section ¢
of End £ which commutes with X. Since ¢ and X are simultaneously diagonalizable, they have the
same eigenvectors v4; by its action

PvA=Qava,

¢ defines (since v 4 is the line of the line bundle £ over the point z 4) a morphism of line bundles
from £ to itself. This is a function, and is the lifting of the field ¢ we defined intuitively above. The
main value of this formalization is that it allows things to be defined also in non-generic situations, in
which the line bundle degenerates to a sheaf.

At this point, we can also give the argument we promised to reduce to the case with one scalar
only, (1.2.6). The argument is this. If we consider more than one transverse scalars, again be-
cause of the equation DX, = 0, all of them will have an antiholomorphic characteristic polynomial,
ddet(X,—z,) = 0. But last equations in (1.2.8) implies, in the generic case in which the eigenvalues
are not coincident, that the matrices are simultaneously diagonalizable. This in turn implies that the
monodromies of the eigenvalues are the same, and thus that the characteristic polynomial are the same
[13]. So there is only one covering anyway. Moreover, if the eigenspaces have generically dimension
1 (which was our assumption anyway in the above), they are all proportional to one another; there is
then a redefinition that leaves again only one X in the equations.

Let us come back to the main course of the reasoning. The lifting is the main “dynamical” step in
[12]. All the fields are separated into Cartan and non-Cartan modes. The part of the integral in (1.2.4)
containing the latter is performed, and it is shown not to influence the rest (the Gaussian integrals of
bosons and fermions exactly cancel; the deep reason of this is in supersymmetry). The rest of the path
integral contains now Cartan modes, and can be lifted as we sketched above. The result is shown to
consist of two parts. A first piece is what one looks for, GS action for IIA string. A second piece is a
totally decoupled piece whose role is to reproduce correctly the factor g5 * which is originally present
in the string S-matrix.

The role of the “sum” over the labels () in (1.2.4) (the integral over the moduli space of instan-
tons) is now to provide the integral over Riemann surfaces in the S-matrix. This is last step in the
proof, and it is what we will consider now.

2We are supposing here to be in the generic situation, in which on a non-branching point the eigenspaces have dimension
1. We will also neglect pathological problems which may happen on the branching locus; again, generically everything
works.
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1.3.1 The moduli problem

The thing we will do here is to parameterize in some way the moduli space of the coverings, showing
in which sense we can recover all the moduli.

Let us first describe a little more carefully the coverings. We have not emphasized so far what
happens at the two punctures 0 and co. For instance, 0 is the infinite past 7 — —oo. Its counterimages
on the covering are thus marked (or excluded) points on the Riemann surface, which describe the
incoming strings. If O is not a branch point, the counterimages will be V; if it is a branch point,
there will be less. This is important, otherwise we could only describe scatterings of IV strings
into themselves. We can describe what is happening thinking about a small loop arourd-0. The
counterimages of this loop on the covering % represent the strings at some large and negative, but
finite, time. If 0 is not a branch point, these are N loops, not surprisingly. If it is a branch point, as we
said above the eigenvalue will get reshuffled among themselves by a monodromy after the loop. This
means that some of these small circles will get united among themselves to form a longer incoming
string. Note that this longer string will have a larger unit of momentum, recalling the proportionality
between IV and momentum pg (see figure 1.1).

Consider now the meromorphic function z on the P* base. There is a projection 7 : ¥ — P!, and
we can use this projection to pull back z to a meromorphic function 7%z on . This is obviously not
the same as the lifting procedure which we have described above; a related comment is that £ is not
the pull-back of E (the ranks do not match). '

This meromorphic function has — by definition — zeroes exactly in the points Z; of X representing
incoming strings, and poles in the points P; representing outgoing strings (the counterimages of 0
and oo respectively).

This has a crucial consequence. To see it, let us recall briefly the theory of

Jacobians and the Abel map.

We had occasion to note that, on projective spaces, holomorphic line bundles are classified by
their first Chern class. This is not true on higher genus Riemann surface, to an extent measured by the
theory of jacobians. The jacobian is defined as a complex torus obtained from H L(%3, O)* (the space
of linear functionals on the vector space H' (X, O)) quotienting by the lattice A of functionals of the
form fv’ with 7y a closed cycle; thus

HY(2,0)
=Tz )

This torus has dimension g, the genus of %, and can also be reformulated in a more concrete way
as the quotient of C9 by the lattice generated by the periods (the integrals of the g holomorphic one
forms over the periods).

Given a divisor D of total degree 0, we can associate a line bundle of zero ¢; to it. The question
is now whether this gives or not the trivial line bundle; in this case the divisor is called principal. On
projective spaces, as we said, the answer would be *“yes”. Here, the answer is given by so-called Abel
theorem: D =3, Z; — >, P, is principal if and only if its image under the Jacobi map

: B; P;
”(D):(Z/z. wlZ/z wy) € J(X)

is zero (i.e. it belongs to the lattice A).
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Call now P the polar divisor of 7"z, that is, ), Z; — 3 Fj. This divisor is principal, as it comes
from a meromorphic function. But then, we have just seen that its image in J(Z) under the Abel
map £ is zero. Since J(X) has dimension g (the genus of ¥), this sets ¢ constraints on the moduli
space and would seem to reduce very powerfully the possible scattering problems we can describe
with MST.

As an example, suppose we want to describe a one-loop scattering of two strings. The arguments
tells us that, once we have fixed the incoming positions Z1, Z, and one of the outgoing position Py,
last one is determined by the condition

; P ,
w(Zi+ 2y — P — Py) = E / w=0 in J(X)
2

that the total polar divisor be principal (as are sometimes called divisors coming from meromorphic
functions, and thus whose image in the jacobian is zero).

The way out of this is again in the branching mechanism. In our example, choose now a covering
with IV sheets such that the Riemann surface is again the same, and such that the three chosen posi-
tions are now branched points of order N/2 each. Then the polar divisor is exactly N/2 times what it
was before, and the condition becomes

N .
E‘#(Z1+Zz~P1-P2):0 in J(X);

being 0 in J(X) means to belong to the lattice A, and we see that the condition is now that u(Z7 +
Zy — Py — Py) is a point of order N/2 in this torus. Points of a given order N/2 are themselves a
lattice with narrower spacing:

So, for example, the point P, which before was uniquely fixed,
now has (IN/2)? possibilities. As N — oo, this outgoing point can
be put practically everywhere, with a small-at-will perturbation. The
strategy is similar in the general case. For any process, we will have to
use large V' coverings, branched in the incoming points accordingly t0  Figure 1.2: Points of given or-
the momentum pg we want to assign to each of them. When N — 00, der in the Jacobian.
the allowed points will form a narrower and narrower sublattice of the
jacobian, eventually filling it and effectively making the constraint of Abel theorem ineffective.

Having solved this first problem, we feel now more confident that we can recover the whole
of the moduli space. To check this, however, we have to analyze it more concretely, in particular
recognizing the features of each Riemann surface 3 (the genus, the position of the punctures) from
the bare characteristic polynomial (which is way 3 comes out of MST).

To do so, an effective way is to use Newton diagrams. In the rest of this section, we will first
describe generalities about these objects and the information one can extract out of them. Then we
will use this to the discussion of the moduli problem.

1.3.2 Newton diagrams.

Let us consider a characteristic polynomial p(z, z) = 0. We associate to each monomial z*y? in it a
point p = «, ¢ = B in a p, ¢ plane. We obtain a set of points called the carrier: its convex hull is by
definition the Newton polygon associated to the curve. In figure 1.3 we have displayed the Newton
polygon for the polynomial oz + cpz®z + azz?z + ayz2? + 522, We will see how we can deduce
from this diagrams
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e The structure of the singularities at O and co

e The genus of 2.

The first task is somewhat easier. Let us begin by the sin-
gularities in the point z = 0,z = 0. The monomial which are q S
important for the local structure of the singularity are the ones |- S I S o
which lie near the origin — in the example of figure 1.3, the two P
dots corresponding i< the points (2,0) and (0,1). Locally, this
is the polynomial c;; z+ 522 = 0. This is not singular, as there
is a linear piece. Thus, we see that we have an easy graphical
criterion to see whether there is a singularity at (0, 0): the point
is singular if neither of the dots (1,0) and (0, 1) is occupied.
(If the dot (0, 0) is itself occupied, the point z = 0 = z doc?s Figure 1.3: An example %f Newton
not belong to X.) In fact, we will see in a moment that there is  551yeon.
much more information one can extract from this.

The structure of singularities in other points over z = 0 and z = oo depends on the way we
compactify the noncompact space C* x C in which for the time being our open Riemann surface is
defined (by the equation p = 0). Earlier we have already compactified C* to P!, but now we mean
to compactify the whole C* x C, coordinatized by z and z. There are many ways to do that. Two
immediate proposals are P2 and P! x P!; the first because plane curves are much more studied in that
case, the second because it seems perhaps more natural.

Let us begin with the first. In that case, coordinates transform in the well-known way: 2’ = 1/z,

z' = z/z. To look at the structure around for instance one of the points at infinity, one has to use this
transformation rule to rewrite the polynomial in terms of the new coordinates =’ and 2’
The result has fortunately a graphical interpretation that we sketch in figure 1.4. Consider homoge-
neous coordinates for P2, wy, w1y, wa, connected to z and z as z = wy /wp and £ = ws Jwp. Then,
starting from the diagram, one has to do the following thing: Draw oblique lines as in figure 1.4,
starting from the dots; these oblique lines become then the vertical lines of the new diagram; more-
over, perform a horizontal reflection. The result is the singularity structure around the point (0, 1, 0)
in homogeneous coordinates. An analogous graphical procedure holds for the singularity around the
point (0,0, 1).

If one is instead to find similar things in the second case, the one in which we choose to compactify
C* x Cin P! x P!, it is easier to see that the graphical procedure is now to perform simple /2
rotations, reflections and translations of the diagram.

We can summarize these graphical procedures in this way. In the first case, one draws an external
triangle AN touching the Newton polygon and looks at the closer points not from the origin, but from
the other vertices of the triangle; in the second case, the same procedure holds replacing the external
triangle with an external square R

The reader who knows toric geometry will no doubt recognize the dual polyhedra associated to
P2 and P* x PL. Toric geometry deals with manifolds which are acted on by (C*)9, and which contain
a dense orbit of it. Without going too much into details, we note that these polyhedra encode exactly
the data of the transition functions between different open sets, which is exactly what we have used
here to transform the diagrams; so this coincidence is not surprising. There are many other ways to
compactify C* x C, and that for each of them there is a procedure like the one we have just described,
with an external polygon. The occurrence of toric geometry will not stop here.
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Come back indeed to the structure of singularities. Consider again the singularity around the point
(0,1,0). From figure 1.4 we can see it is the singularity (in the appropriate primed coordinates)

ozgsz:B + ayxz + oz522 =0. (1.3.13)

This time we really have a singularity; again, we can formulate now a criterion for singularity around
a corner of the polygon: this says that the point is singular only if on the two sides meeting at that
vertex neither of the two nearby points is occupied. In this example, the relevant vertex is point
(p,q) = (4,0) in the original diagram in figure 1.3; the nearby points are at (p, q) = (3,0) and (3, 1).

But we can go further. One can turn now to the main question:
what is the genus of a curve corresponding to a given polynomial?

Naively, there are lots of different answers to this. Indeed, the q
usual formula one learns at school for the genus of a Riemann
surface in P? is

g= (_d:-l_)g.(d_—Ifl (1.3.14)
where d is the degree of the polynomial once one expresses it in
the homogeneous coordinates. In the usual example, this degree is
3, and the genus would be 6.

However, if we compactify in P! x P! instead, the formula can be
again computed by adjunction formula, and the genus turns out to
be 4. If we compactify in other ways, it may turn out to be even
different numbers. ' q

We have thus two things which depend on the compactifica-
tion: the genus and the structure of singularities. It turns out that
these two dependences exactly cancel each other, in a way which
we will now explain. NOTRL

The point is that the genus we have just computed is not quite T
what we want. These surfaces described by these polynomials B
have singularities, even with generic choices of the coefficients
«. One may think that singular Riemann surfaces have to be ex-
cluded altogether; we will argue later that this is not possible, and P
even that they are a very important part of the moduli space. For
the time being, let us only try to reason mathematically about pos- Figure 1.4: Transformation of
sible resolutions of these singularities. A resolution, as we will alsI IR HRFEIRSchapters (for in-
stance in section 3.3), is essentially another manifold which is non-singular and which is the same
(for algebraic geometry) as the original one outside the singular locus. There is then a definition of
geometrical genus for singular Riemann surfaces X which is defined as the genus of the resolution 3.
This is by definition birationally invariant, namely invariant by resolutions and degenerations, and
seems thus a little more intrinsic that the formal genus considered so far.

If we are to compute this genus, we have now to subtract from the formal genus coming from
adjunction formula (for instance (1.3.14)) a contribution for each singularity [15]. The virtue of
Newton diagrams is that we can spare ourselves the hassle of this computation, as we now describe.
For each singularity, the formula instructs us to blow it up till it is non-singular (this can always be
done). Blow up is the most popular way to resolve singularities, and works as follows.

Take a singularity embedded in C?. One defines a non-compact manifold C? as the set of points in
C? x P! which satisfy

TYv = 2, (1.3.15)
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where z, z are coordinates in C? and vg, v1 are homogeneous coordinates in P!, This space is roughly
a space in which the origin of C? was replaces by a two sphere P! (called exceptional divisor). It can
also be described as the total space of the bundle (91%»(—1).

The idea is that, if one has a singularity embedded in C?, this will be “less singular” in C?. In fact,
this is true, in the sense that blowing up several times always resolves the singularity after a finite
number of steps. Let us see how this works in an example, again the singularity 1.3.13 displayed
the lower diagram of 1.4 around the point z = 0 = z. Blowing up, we have said that a P! at the origin
is introduced. Around a point of this P, we have two coordinates: a coordinate of P*, and one from
the transverse C2. For instance, let us consider the point vgp = 1, z = 0. Around such a point one
can consider the coordinates z; and z, where 7, = z, and 2 is iustead a true (non homogeneous)
coordinate in the P': z, = vy /vp. By (1.3.15), we have

Z=2ZpTh, Ty =T
we can now compute what is the new form of the singularity (1.3.13) in this coordinates:
3 2 2,2 _q.
sz +aszyzy a5ty 2y =05

this, factorizing the spurious component z2 = 0, which describes two times the exceptional divisor
P!, becomes the innocuous
Ty + 0gzp + a5z =0,

which is of course non-singular. So, in this case blowing-up was effective at first try.

We may try to give again a graphical interpretation to this. In general, the form of the singularity
after a blow up can be read off from the following graphical procedure: one draws again an oblique
line' h_ touching the diagram, and one then makes the oblique line of the new axes. Note that this is
again rediscovering toric geometry: the effect of a blow-up on the dual polyhedron of a toric manifold
is exactly a “cut” of the polyhedron by a line, as we just described.

Let us now come back to the computation of the genus. The contribution coming from each
singularity, as we said, is in turn a sum of contributions coming from each blow-up. This number is
k(k — 1)/2, where k is the multiplicity of the singularity before the blow-up (the smallest degree of
monomial appearing in it). In a moment we will interpret this formula and we will forget it. Note
indeed that this has the form of the number of points inside a triangle: this triangle is the one formed
by our cut& of before. In our example, our cut is as follows:

If we count also the (1,1) which is hit by the cut, we have
1, which is exactly the contribution prescribed by k(k—1)/2 in
this case. This example may not be too convincing, but this is
true in general. Even better, imagine that after a first blow-up,
the singularity is still singular; we will have to resolve again,
making another cut. The final result will be then that the (neg-
ative) contribution of a singularity to the genus is given by the
number of points which is contained between the axes around
the singular point and the Newton diagram. In this count, points
on the axes are not valid, but points on the border of the New-
ton polygon are. Actually, we do not even have to transform
first the diagram in such a way that the singular point is in the
origin, as we did in figure 1.4; we can directly make this count around the vertex corresponding to the
singular point; the “axes” of the above criterion are then the sides of the polygon coming out of the
vertex.

Figure 1.5: Cut of Newton polygon.
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What about the genus? going back to the expression (1.3.14) for the genus, we can see that also
this seems to have an interpretation as number of points inside a triangle. We have a triangle in that
case: the dual polyhedron to P2. Indeed, the number in (1.3.14) can be interpreted as the number
of points inside the external triangle touching the Newton polygon we introduced before. This is
also true for other compactifications! Formal genus is the number of points which are internal to
the polyhedron touching the Newton diagram externally, whatever the compact manifold chosen to
compactify C* x C.

We can compare now these two expressions to find the geometrical genus (the genus of the reso-
lution, also called normalization). This is by now only a subtraction of points: the ones in the external
polygon, minus the one between the external polygon and the Newton diagram. Thus the final result
is that the geometrical genus is given by the number of points internal to the Newton diagram. Here
points on the border are not valid. This remarkable results can be obtained also by more direct means
[32], but it was amusing to find it in this way. This path made us also ready to appreciate the role
of singularities, which we are now going to discuss, and the virtue of the geometrical genus. Note
indeed that now this final result is independent of the way we compactify C* x C.

One word of caution is in order: this method only works if the coefficients & in this polynomial
are generic. For special choices, internal singularities may appear, and one would have to compute
the contribution of those singularities as well. This will have an important role in the following
discussion. Our favorite example will have thus genus 2 for generic choices of the coefficients, but
for special values this may sink due to other singularities.

1.3.3 The moduli problem: reprise

We have now all the information to answer the question: can we really reproduce all of the moduli
space of punctured Riemann surfaces? The objects we have are polynomials p(z, z), and we just
learned how to compute the features of the associated open Riemann surface. In examples which
follow, a way to understand the branching structure will become clear as well.

First of all, can we obtain all the possible genera with all the possible branching structures? If
we used formula (1.3.14) for the genus, corresponding to P2, we could become worried: not all the
genera are realized. Indeed, for increasing degrees, one gets genera 1,3,6,10,... Since we argued that
we have to use geometrical genus, one could think we are safe; for instance, the example of previous
subsection gives an illustration of genus 2. However, there are two comments about this. First, why is
it right to use this genus after all? the argument we have given before is that it is the definition which is
independent on compactifications; but this means one has to resolve singularities, as we said; what is
the physical meaning of this? Second comment comes when, even accepting this definition, one tries
to realize low genera with high N. Since N is the highest power in z of the polynomial, graphically
it can be described as the height of the Newton polygon. The reader is invited to try to realize for
instance genus 1 for high N; one can convince oneself that this is impossible.

First problem is solved by understanding the role of singularities. One has to remember that
the instanton represents the Riemann surface embedded in four dimensions, whereas the physical
Riemann surface will get embedded in the 10 dimensions of string theory. What achieves this are the
fluctuations of the other coordinates X; we reduced ourselves to the case in which only one X was
on, but this is only possible for the instanton. Fluctuations in the theory will then desingularize the
Riemann surface in 10 dimensions, and this is the reason for which it is correct to consider the genus
of the desingularization, which is what we have done here. The fact that singularities are unavoidable
can also be realized taking the reverse point of view. Suppose we want to embed these higher (than
four) dimensional processes within the instantons of the 2d field theory. The only possibility is to
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D K K

Figure 1.7: Examples of processes and their Newton diagrams.

squeeze (project) them to the appropriate four dimensions: such operation of projecting gives rise to
singularities. It goes without saying that the true significance of singular plane curves is given by
their representing higher (than four) dimensional processes.

Once we realize this, also the second problem can be easily overcome. Indeed, if we accepted
to desingularize the singularities, we can also allow singularities at the interior, namely, singularities
obtained with a careful choice of the coefficients. How this can be done will be shown shortly in some
examples.

Example: smooth elliptic curve.

We start with the case N = 3,¢ = 1, for which there is already a good variety of examples.
These have the advantage that one can check the results by explicitly solving the cubic algebraic
equation by means of Cardano’s formula. We do not write down the algebraic equations, but simply
the corresponding polygons. The coefficient of the monomials within or on the border of the Newton
polygon are understood to be generic, unless otherwise specified.

The simplest process one can imagine is the string self-
energy. This means that we have to look for a totally branched
curve over z = 0 and z = co. Remember that the polynomials
giving the solutions over these points are given by the points of
the carrier on the ¢ = 0 and p + ¢ = N lines respectively. So
one simple solution is given by the carrier shown in figure 1.6;
the generic case will be non-singular also at finite z and so the
genus will be one. The presence of the points (1,0) and (2, 0)
ensures the non-singularity of 0 and co; the local behaviour
around them is given by the upper side of the inner (shaded) A
triangle.

Next we would like to describe a joining of strings. In this
case we keep z = co totally branched, while we add a point

on the ¢ axis in order to have, at 0, a polynomial like y3 + y2 p
instead of 3, so that y = 0 appears twice as a solution and - 16 )
y = —1 once. It is now easy to construct all combinations: igure 1.0 Self-energy of a string.

figure 1.7 shows various examples and their Newton polygons — as above, with generic coefficients.
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Example: singular plane curves

Of course for some choice of the parameters a singularity may appear. In this case one has simply
to replace the finite hole in these figures by a hole shrunk to a point (for example see fig. 1.8); the
curve becomes genus zero, i.e. a sphere with two identified points. This singularity is the simplest
one, it is characterized by a non-vanishing Hessian and is called a node. All nodes can be viewed as
two points identified: blowing up a node amounts to separating the points. For instance, consider our
first case (figure 1.6): the polynomial which corresponds to the diagram can be written as

P::y3 -+ czy—‘rz(z—a).‘ , ‘ (1.3.16)

Imposing that a point be singular, one finds that a necessary (but not sufficient) condition is that its
discriminant, § = 22[27(z — a)? — 4c®z], has a multiple root. The double root at z = 0 just signals
that this point is another triple branch point, as we already knew; imposing that the remaining factor
be a square, one finds several values, of which for instance ¢ = 0 gives a triple branch at z = ¢ and
no singular point, and ¢ = —3 al/3 gives instead a node.

This introduces us to our next task: to show how
it is possible to describe low-genus highly branched

curves. We will describe in detail the self-energy =~ o ~ >
case. We take N = 4; since we want total branching — e
we can choose a diagram like that in figure 1.8. The ~
corresponding polynomial has the coefficients corre- g \

o N

sponding to the vertices of the polygon, and can also
have coefficients corresponding to the points on the Y
sides or in the interior (by the way the latter are al- : >
ways (N — 1)(V — 2)/2 in number if there is no Lo ~
singular point at 0 and at co and count the genus of RN
the corresponding smooth curve). Now we can look T P
for singular cases in this family along the lines of the

previous example; since already in this case compu- Figure 1.8: Shrinking cycles: totally branched
tations become complicated, we restrict ourselves to 4Uartics at genus two and one.

the biquadratic case. In other words the polynomial

we start with is

P=y4+bzy2+z(d+ez+fz2); (1.3.17)

© its discriminant is
§ =162°(d + ez + f2)(4d + dez + 4f 2% — b?2)%. (1.3.18)

As before, the term z2 shows that the branching at z = 0 is of order three, i.e. four sheets meet
there. The other two terms mean the following. Solutions of a biquadratic equation are in general
Zy1,2. Its discriminant can vanish in two cases: if y; = y2 or y1 = —y2 — this is determined by the
third term in (1.3.18) — in which case, at the corresponding value of z, there is a couple of double
branch points; if y; = 0 or y = 0, which is determined by the second term, there is a single node. If
we choose the coefficients so that the third term is a fourth power, we have two nodes, and so genus
one; if, instead, the coefficients are chosen so that the second term is a square, we have a single node,
and so genus two. The situation is shown in figure 1.8.

If one does not wish to restrict to this particular case, one can still find examples of genus 1 and
2 curves. One notes, for instance, that imposing a node first and a total branch in z = 0 afterwards
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is computationally easier. A totally branched, non biquadratic genus one quartic is for instance given
by
4 2 zZ 2
P=y —5zy‘+3z(z+1)y—5(z+1) , (1.3.19)

which has two nodes at {z = —1,y = 0} and {z = 1, y = 1}, and two regular branch points:
§=2°(2+1)%(z — 1)(632% + 62z + 63).

As a conclusion, all the moduli can be recovered, if one carefully considers desingularization of
singularities. A careful analysis of this moduli problem beyond these examples will not be done here;
we just wanted to show this is passible in principle. : ~
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Chapter 2

Branes on Calabi-Yau manifolds

Orne of the most interesting parts of the moduli space of string theory is the branch in which the
closed string background is a Calabi-Yau manifold; not only because of expected applications to
4 dimensional physics, but also because of its mathematical richness. It is therefore interesting to
analyze the open string part of this problem, again both because of physical reasons (branes might
eventually be an important part of a successful string model for 4d physics, as for instance the idea
of brane worlds has suggested) and because of expected mathematical richness; the latter can in turn
fall back into the realm of physics by enhancing the understanding of the nonperturbative structure of
string theory. '

This chapter serves as a short introduction to these problems. After reviewing briefly the closed
string setting, we will describe BPS branes in a limit, intuitively when the Calabi-Yau is large. In this
limit we will note that BPS branes fall in two classes, and that the conditions they have to satisfy,
as mentioned in the introduction, are divided into a class of holomorphic conditions and one of real
conditions. As we try to tackle the much more difficult and interesting problem of extending the
analysis away from the large volume limit used at the beginning, we will see that these features keep
on being sensible and useful.

2.1 Closed string basics

Two points of view are in a close interplay in string theory. In the first, the worldsheet one, the
focus is on the 2 dimensional CFT which defines the perturbative theory. In the second, called zarget
space, one looks instead at the low-energy effective action (LEEA), where “low-energy” is meant
with respect to [;. This is less fundamental from the perturbative point of view, but this distinction
often disappears in the nonperturbative theory. When we compactify string theory to 4 dimensions,
we are in any case interested in the low-energy field theory that a 4 dimensional observer would see;
“low-energy” means now with respect to the compactification scale. We will refer to this as to the
effective 4 dimensional theory.

Now, a perturbative closed string theory is a 2 dimensional supersymmetric CFT. From this point
of view, compactification means to consider a CFT which is a product of a simple free field theory
describing propagatioﬁ of strings in 4 dimensional spacetime, and of a second (call it “internal””) CFT.
A typical example for the latter is a nonlinear sigma model with some target manifold X. This has as
fields a map « from the worldsheet ¥ to the manifold X, and a “worldsheet fermion with values in
the tangent bundle of X, that is a section 1 (z) of the bundle K 12 @ o*(Tx) (KY/? @ 2*(Tx)); in

19
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terms of the components z* and 1¥* of these two objects, one can write the action as
p i

1

2ol

S = / P2 [ g (@) (8:0#8:2" + 9Dy + D7) + %ngwwvww] .11
5 277

Consistency of string theory severely constrains this manifold: absence of conformal anomaly implies
dim(X) = 6 and ¢1(X) = 0'; if one wants, moreover, spacetime A/ = 1 supersymmetry in the effec-
tive 4 dimensional theory, it is necessary [2] to take the internal nonlinear sigma model to have N = 2
supersymmetry, and hence X to be a Kihler manifold. Putting all these conditions together, one ob-
tains that X is a Calabi-Yau threefold; this result can be obtained also analyzing compactification of
the LEEA, type II supergravity. Indeed, spinors in 6 dimensions are in the 4 of Spin(6) = SU(4); if
the holonomy is SU(3), which is the case for Calabi-Yau’s, the group-theoretical decomposition 3® 1
under the holonomy tells us there is only one covariant spinor, thus breaking 3/4 of supersymmetry.
In 4 dimensional terms this is NV = 2 for the supergravity; for branes this gets broken again by half,
giving N = 1.

Actually, the most interesting case is the one in which the resulting 4 dimensional theory has
exactly N/ = 1 (not more), and this means that the X will have to be so-called strictly Calabi-Yau,
meaning that the holonomy is exactly SU(3) (not properly contained).

Unfortunately, Calabi-Yau threefolds are far from being unique; as we said, this is the starting
point of the problem of the space of string compactifications. In the closed string part, there is freedom
of choosing the topological type of X, and there is, for any such choice, a freedom of deforming it
(actually the decoupling of these two issues is too naive; string theory joins often together moduli
spaces of topologically different manifolds. Anyway, we will ignore this here). Deformations come
from possible deformations of the sigma model action; this contains the metric and the antisymmetric
B field (we neglect the dilaton here). Let us start from deformations of the metric. These should
preserve its property of being Ricci flat (see, however, previous footnote); these can be divided into
two classes. First one is deformations of type dg;5, which preserve the hermiticity of the metric; these
are called Kdhler and can be shown to be harmonic, from which it follows that they are counted by
HAD(X). The other ones are of the form 6g;;, with both holomorphic indices, and thus do not
preserve the hermiticity of the initial metric. One can see that this can be reabsorbed into a change
of the complex structure of X: thus these are called complex structure deformations and are counted,
by Kodaira-Spencer theory, by H'(X,Tx) = H®'(X). More precisely, there are (2,0) and (0, 2)
deformations, so there are A(?!) complex of them. For Kihler deformation there were instead h(1:1)
real of them; but these couple with the same number of deformations coming from deformations of
B, and make up thus together A(1'1) complex deformations.

Note that the number of Kihler and complex structure deformations are the only two nontrivial
numbers in the so-called Hodge diamond of X:

R(0:0) 1
K(1,0) L(0,1) 0 0
£(2,0) A1) 1(0.2) 0 A(1,1) 0
A(3,0) A(2:1) A(1,2) #(0,3) — 1 h2.1) R2:1) 1 (2.12)
R h(2:2) p(1:3) 0 AL 0
h(3:2) h(2:3) 0 0
/(3:3) 1

We have considered here a local picture, but these deformations get integrated to moduli spaces
(for complex structure moduli spaces, there are no obstructions; for Kihler, the issue is much more

'"We will see shortly, actually, that this requires a more careful discussion.



2.1 Closed string basics 21

subtle. See [1] and references therein). So, a first rough approximation to the moduli space of closed
string theory is as a product of a Kéhler moduli space and a complex structure one.

At this point we might note a couple of things. First of all, these moduli spaces have special loci
in which singular behaviours may be expected; for instance, in the complex structure moduli space
there are the loci in which the corresponding Calabi-Yau becomes singular (this is called discriminant
locus). String theory can often resolve in some way these singularities, in the sense that it is well-
defined anyway. Second comment requires two words about mirror symmetry, whose results we will
be using later in chapter 3. Mirror symmetry is originally the observation that, from the CFT point of
view, complex structure and Kihler deformations are very similar: They are related by a reversal of
sign in a U (1) charge of the e.g. right moving sector). This makes one suspect that, for any Calabi-
Yau Y, there should be a mirror ¥ such that IIA theory onY is equivalent to IIB theory on Y. One can
view this as a kind of generalized T-duality. Kéhler moduli and complex structure ones are exchanged
by this duality; pictorially, one can view this as a 7 /2 rotation in the Hodge diamond (2.1.2). So, one
can individuate special loci in K#hler moduli spaces as well, by looking at the special loci of the
mirror. We will meet these special loci again in the sequel; for example, this is the most rigorous
interpretation of what we will call large volume limit later. In fact, most rigorously the Kdhler moduli
space in string theory should be thought of as the complex structure moduli space of the mirror [40].

2.1.1 Worldsheet techniques

Here we discuss various features of the perturbative string which will prove useful along the way.
General references for the technical analysis we will sketch here are for instance [33, 40, 56].

Perturbative string theory is a 2 dimensional CFT. In the case of Calabi-Yau compactification,
conformal symmetry gets enhanced to a superconformal algebra with N/ = (2,2). For the closed
string this algebra is roughly a direct sum of two isomorphic algebras, one for right-movers and one
for left-movers; each copy includes:

o the generator of conformal transformations T,
e two generators of supersymmetry G+,G™,
e a generator of a U(1) automorphism (R-symmetry) J.

The (super-)Lie algebra structure of the modes of these currents can be as usual summarized
conveniently by giving OPE’s among them. We only need here to know that

2¢ 2 J{w) 2T (w) + Oy J (w)
3(z —w)3 (z—w)2+ (z —w) + Reg.;

Gt (2)G™ (w) =

(2.1.3)

most of the other OPEs are expressing the conformal weight h and U (1) charge g of the various fields
(Jhash =1,and G have h = 1,¢ = 3/2).

As usual, what this algebra structure is good for is that states of the theory organize in representa-
tions. In particular, we can define in this way NS and R states in both left- and right- moving sector,
generalizing their homologues for string theory in flat space.

Let us see how this works. The G's are fermionic fields, and this calls for the usual twofold choice
between periodicity and antiperiodicity. The first case is called Ramond sector and the second is
called Neveu-Schwartz. Let us start from the second one.

In this case, we define a chiral primary state |1) to be one which is primary and annihilated by G fl /2"

G—.t]_/Q W)) =0;
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primary states annihilated by G —4 /5 are instead called antiprimary. The importance of this states can
be seen extracting from (2.1.3) the anticommutator

{G]_—/zv G;-/g} = 2L0 - JO

and taking the expectation value of this expression on [¢)): one gets
1 . .
hy = S for 1 chiral primary.

One can show that these states form a finite ring: the product of two chiral primaries is again a chiral
primary. This so-called chiral ring encodes much of the properties of the given theory. Considering
both the left- and right-moving sector of the theory, one can have left chiral primaries which are
also right chiral primaries (these are said to form the (c, ¢) ring) or that are right antichiral primaries
(called instead elements of the (c, a) ring), and so on.

Ramond sector has instead another set of relevant states, the so-called Ramond ground states,
which are by definition annihilated by Gg:. Now, the nice point is that one can moreover connect these
two set of states with a worldsheet operator. For this, one employs usual bosonization techniques: the

U(1) current J can be written as
J= \/g 9% 2.1.4)

in terms of a worldsheet boson @ (c is the central charge). Then, any state having charge ¢ will have

a factor e?V3/¢? which is easily seen to have the correct OPE with J as expressed in (2.1.4). Let us
consider now the spectral flow operator

1

Q=e7V5?, 2.1.5)
if we apply it to an operator of charge ¢, we get

e%\/g"‘—’(z) eq\/§¢(w) = (z — w)?/%el778) e - (2.1.6)

This means that @, applied to an operator of odd integer charge ¢, adds a square root to it. This
changes its periodicity property: an R state with odd integer ¢ becomes a NS one, and viceversa.

Since the low-energy interpretation of R and NS sectors is as fermions and bosons on the ambient
manifold (R* XY in our case), if we only had operators with odd-integer ¢ that would exchange bosons
and fermions, and thus realizing supersymmetry. Thus, it is enough to take only operators with odd-
integer g to have supersymmetry. This might seem at first a clumsy thing to do, but remember that just
the same thing is happening in the more familiar superstring in flat space, where one has to introduce
GSO projection in order for the theory to be supersymmetric. For this reason, this projection onto
odd-integer operators is called generalized GSO projection. A point about which one has to be careful
is that, although very often one often is dealing with the internal part of the theory, which has ¢ = 9
(the CFT which describes the Calabi-Yau part), this GSO has to be applied to the whole superstring
theory, which has ¢ = 12. One trivial way to see that this is necessary is to look at (2.1.6) again: the
U(1) charge of the transformed state gets transformed as ¢ — ¢ — ¢/6; with ¢ = 12 everything is
consistent: states with odd-integer charge get transformed into states with the same property.

Note moreover that spectral flow is a worldsheet operator realizing spacetime supersymmetry. As
we anticipated, it exchanges NS chiral primaries with R ground states: this is again because, having
G*a U(1) charge ¢ = 1, the spectral flow Q acts on it adding a factor of (z — w)1/2 as in (2.1.6).
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As an application of what we have just seen, one can also interpret in a more intrinsically stringy
way the complex and Kihler deformations we have seen in section 2.1. The deformation problem
has been indeed tackled in the context of CFT as well. Consider the addition of an operator O to
the action. A necessary condition for the action to remain conformal after this addition is that its
left- and right-moving conformal dimensions satisfy hz o + hr,o = 1, a condition which is called
marginality. There is also here something similar to obstructions, however, in the sense that this
condition is not a sufficient one; operators whose addition does really preserve the property of the
action being conformal are called truly marginal. The result we are interested in here is that [23, 22]
in the case at hand a truly marginal deformation can be constructed out of any chiral or antichiral
operator; more precisely, of any element of the (c, c) or (¢, a) ring, considering both the left- and the
right- moving sector.

In the case of primary interest so far, Calabi-Yau nonlinear sigma model, what are the (c,c) and
(c,a) rings? By spectral flow, we can equivalently look for Ramond ground states; and it turns out
that these have a geometrical interpretation [90] (see also [92]). In the case of strings in flat space,
remember that Ramond ground states are nothing but representations of the algebra of the zero modes
of the worldsheet fermions 1. Here the theory is less trivial, and we cannot rely on such easy Fourier
expansions; but the Testriction to zero modes is still meaningful, as the restriction to fields which are
constant as functions of the target manifold.

So, we can now take the action of the nonlinear sigma model, restrict it to constant fields and
quantize it; in its Hilbert space (in the Ramond sector) we will then look by bare hands for Ramond
ground states. From (2.1.1) we can read off the canonical quantization of z and 1), zp which is
convenient to express in terms of their holomorphic and antiholomorphic components along X, that
is, splitting the index p in indices ¢ and 7:

[Ii7 9,a7] = g7 = {W, W}, '
[, 82a7] = g7 = {97}, &4

Note that in the flat case g = 7), the algebra for example of the 1) is the same as the usual algebra
of creators 7 and destructors 1%, as it should be (this is the usual flat Clifford algebra). One can
therefore represent these operators on the Hilbert space of states of the form

S g O AT P ]0) (2.1.8)

Having the Hilbert space, we can now look for states which are annihilated by G in each sector.
These can be found as usual with the Noether procedure and turn out to be the most obvious gener-
alization of the worldsheet supersymmetry generators for the string in flat space, namely (in the left
moving sector) .

Gy = gj':a’,  Gg =gt 0:a7 .
The Hilbert space (2.1.8) is obviously isomorphic to the space of (r, s) forms on the manifold X
Then the creator 17 is isomorphic to the operator Adz’, and the operator ' to the operator -dz°.
Moreover, one can look at the bosonic part of (2.1.7) in the form [f(z), g7 0,27] = 9;f (=), thus
having that g;; 9,27 one sees then that G’i have the form Adz’8; = 0 and -dz*d; = 9'. So, we have
that the space of Ramond ground states of U(1) charges (r,s) is isomorphic to the space of (r, s)
harmonic forms.

The dimensions of these spaces in our case are summarized in the Hodge diamond (2.1.2). The
ALY and A1) deformations we had seen geometrically before are thus seen to arise as the defor-
mations associated to the elements of (c,c) and (c, a) ring, which are superpartners through spectral
flow of Ramond ground states.
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2.2 Open strings at large volume

When the nonperturbative importance of D-branes became clear, an analysis of D-branes on Calabi-
Yau manifolds was immediately made [5]. Based on a BPS analysis of low-energy actions, the fol-
lowing neat results were found. BPS branes can be divided into two classes, called A and B; for each
class there is a condition on the submanifold on which the brane is wrapped, and a condition on the
gauge vector bundle F living on the submanifold:

A: the submanifold L is required to be special lagrangian; this means that the following conditions
are met for the restrictions on L of the Kéhler form w and holomorphic 3-form 2 of the ambient
Calabi-Yau Y:

- dimg(L) = 1/2 dimg(Y") and w, = 0 (lagrangian);
- Im{er|L} = 0 (special).

The vector bundle E on L has instead to be flat.

B: the submanifold is asked to be a holomorphic submanifold of Y; the vector bundle E is required

to be a holomorphic one. In addition to this, the bundle should be such that there is a connection

A on it such that its curvature F' satisfies a set of equations, which are in the large volume limit

and neglecting transverse scalars X for the time being, for simplicity, the HYM we have already
mentioned:

w-F=c¢, F&0)=g. (2.2.9)

The names come from the A and B twisted topological models; these branes made an ante litteram
appearance [89] as boundary conditions in the model with the same letter.

The conditions on A and B imply that their dimensions are respectively 3 and even. By definition
IIA theory on a Calabi-Yau Y is equivalent to IIB on the mirror Y'; this was originally a closed string
statement, but it is natural to conjecture that the whole nonperturbative theories should be the same,
and thus to extend mirror symmetry to the open string theories represented by the branes. So, A
branes should be mirror of B branes and viceversa. As a rough check, note that in a strict Calabi-Yau
the number of 3-cycles is 2+ 2bo; and that of even cycles is 2+ 2b1; these two numbers are correctly
exchanged by mirror symmetry. ' We will see later that we can be more precise about the way this
partnership works, establishing a more precise correspondence between the two sets of conditions.

One may think at this point the analysis is more or less complete. However, these results are only
valid in a limiting situation. Indeed, many of the computations one would like to do in this context
are perturbative computations in the nonlinear sigma model coupling constant [/ R; and their validity
thus is often limited by higher perturbative, or nonperturbative, corrections. As this coupling goes to
zero with R — oo, we will be often talking about results which are only true in the large volume
Iimit. This is the case for instance for the condition for the vanishing of the conformal anomaly we
mentioned above, which is Ricci-flatness only in this approximation; the same remark applies to the
BPS analysis of branes we just reviewed. This is also intuitively clear: it is hard to see how one
can imagine branes to adhere to the idealized geometrical picture of “infinitely thin” objects, if the
size of the ambient Calabi-Yau itself becomes comparable to typical string scales. More precisely, all
this discussion about the “size” of the Calabi-Yau should be understood as choosing different closed
string backgrounds, corresponding to different points in Kéhler moduli space.

The description of branes as bundles on submanifolds on branes is breaking down away from the
large volume limit, what will replace it? what will be the appropriate mathematical description for



2.3 Away from the large volume limit: what remains true 25

branes as one goes to generic points of the Kéhler moduli space? This question is not completely
answered yet; let us see what is known and what are the problems.

2.3 Away from the large volume limit: what remains true

The first thing we will try to do will be to see whether something of the preceding analysis can be
retained at other points of the Kihler moduli space. We will see that

e the distinction between A and B remains a sensible one;

o the various conditions in their definitions keep on being split between real and holomorphic
ones; only either the former or the latter are deformed.

Both of these statements are not trivial and require some explanation. For the first one we will
briefly review the worldsheet approach, to be used later as well; for the second we will use instead 4
dimensional effective theories.

2.3.1 A and B: worldsheet approach

We need here to adapt the techniques outlined in 2.1.1 to open string theory. As usual this starts
introducing boundary conditions. First of all, the conformal symmetry of the theory is now different,
since the worldsheet will be (at tree level) the upper half plane and not the whole (punctured) plane.
We can express this new conformal group using the one of the plane and requiring the boundary z = Z
to be fixed. As Ty, and T generate conformal transformations in z and in Z respectively, we get the
boundary conditions 77, = Tr. More to the point, if we want to preserve a “diagonal” (between
left and right) N/ = 2 superconformal algebra, boundary conditions for all the currents J; should in

general have the form of
Jrr=R{JrJ

for R}’ an automorphism of the A/ = 2 algebra, and Jr1, Jr,I the various currents in both sectors.
These automorphisms are not too many. In particular, letus consider the current J. Since it is the only
current with conformal weight one, it can only transform to a multiple of itself: J — R(J) = aJ.
The only OPE we have not yet used nor described in section 2.1.1 is the one of J with itself, which is
that of a U (1) Kac-Moody algebra:

c/3

——— + Reg.

J(z)J(w) = oW

we see o = 1, namely R(J) = %.J. We can likewise complete the list of all the allowed possibilities
for the automorphisms, but let us concentrate on this. What we have just got is that we have the
possibility of boundary conditions with

JL:—‘JR or JLZ—JR;

in the large volume, the first type of boundary conditions can be seen [65] to correspond to B branes,
and the second to A branes. (The strange reversing of order can be explained going to the closed
string channel, in which the & present here are reversed.) A very rough account of this follows: Look
at the zero-mode expression of the U (1) current for the nonlinear sigma model,

Ji = gy’ ; (JR = gi 7" ;) (2.3.10)
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the boundary conditions are
’WL - qz“ . Neumann ; "gb” = —7,/;# y M Dirichlet ;

when locally half of the coordinates are Neumann and half Dirichlet, then one of the fermions in P
gets a plus and the other a minus sign, yielding J;, = —Jg; for B branes instead both fermions in
each summands gets a plus or a minus sign, giving J;, = Jg.

Thus, we have seen that the division between A and B branes is not just a feature of large volume
analysis, but finds its reason in the possible automorphisms of N/ = 2 algebra, and so it will remain
as we go to general Kihler moduli. '

2.3.2 D andF terms, and decoupling

As we have anticipated, we will be thinking here to the 4 dimensional effective approach. Consider a
brane which is totally extended in the 4 noncompact dimensions, and that may be whatever brane in
the Calabi-Yau. This will be to first approximation a gauge theory; as we have said, in our situation
this will turn out to have A/ = 1. Now, we know the general description of N = 1, d = 4 gauge
theories, and we will take as much profit as we can from this description. Choosing such a theory is
equivalent to choosing

e a gauge group G (with a vector multiplet in its adjoint)
o chiral multiplets ®; in some representations of the gauge group

e areal function K (®;, <I>1T) of the chiral multiplets, called Kéhler potential, that sets the kinetic
term

e a holomorphic function W (®;) of the chiral multiplets.

Given these data, one can write down an action in terms of superficlds. What concerns us is the
moduli space of vacua; it turns out that this can be described as the vanishing locus of a real equation

— oK
>l — =0,
: 9¢;
(see for example [9]) with T the gauge generators, and of complex equations
ow —0
Oi

in terms of the scalars ¢; of the chiral multiplets. These equations are called respectively D term and
F term equation, because they come from the equations of motion of the auxiliary fields of the vector
and chiral multiplets, traditionally denoted with these names.

In this setting we can interpret the real and holomorphic conditions on A and B branes respectively
as D and F term equations for the 4d effective gauge theory. For example, the first, real, equation in
(2.2.9) is the D term; the complex one, and the requirement of complex embedding, are the F term:
for example, for F(2:9) = 0 we can even guess the superpotential, which turns out to be a holomorphic
version of Chern-Simons lagrangian [89].

Now, these 4d gauge theories come from open strings. These come always with closed strings as
well, and this is reflected in 4 dimensions in the fact that the effective gauge theories will couple also
to the 4d effective actions of the closed strings, which are /' = 2 supergravity models, as we have
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seen. These couplings will be seen as a dependence of the Kéhler potential and of the superpotential
on the vector and hypermultiplets of the supergravity. Without repeating too explicitly the list we have
just seen for the gauge theory, recall that for ITA theory vector multiplets contain the K&hler moduli
and hypermultiplets contain the complex structure moduli; for IIB the converse is true. A non trivial
decoupling turns out to be true [16]: F terms of the gauge theory depend only on Kéhler moduli for
A branes, and on complex structure moduli for B branes; and the other way around for D terms.

This statement has deep consequences. Consider B branes. Then, as we go away from the large
volume limit to other points of the Kahler moduli space, the D term will change, but the superpoten-
tial will not change, because of the decoupling just discussed. This means that, as we abandon the
large volume limit, the equation F - w = ¢ will be changed, but all the holomorphicity statements
— the holomorphic embedding, and the presence of a holomorphic structure on the bundle which is
integrable (F(z,o) = 0) — will not be changed.

We have thus seen that the various conditions we have seen for A and B branes in section 2.2
correspond to D and F term, and so do not get mixed but preserve their individuality; and moreover,
that only some of them will change traveling in Kihler moduli space. In the case of A branes,
holomorphic conditions will be deformed and real ones will not, and vice versa for B branes. Since
holomorphicity is usually a powerful instrument, in what follows we will mostly concentrate on B
branes. This is ultimately also justified by mirror symmetry, which allows A branes to be studied also
as B branes on the mirror.

As a conclusion, we have now the basic lines of a program: to describe B branes at general points
of Kihler moduli space. The problem can be separated into a holomorphic part, which is constant, and
a real one, which depends on Kihler moduli. In what follows, we will first deal with the holomorphic
part, which is already interesting in itself, and then try to tackle with more difficult real part. We will
often refer to this second condition as to a stability, for reasons mentioned in the introduction and to
become clearer later.
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Chapter 3

Holomorphicity

As promised, we start with the easiest part of our program. Already this one will prove to be non
trivial and will show interesting features of string theory, along with mathematical results.

The goal will be to understand what are the mathematical objects describing branes at all points
of moduli space (disregarding stability, as we have stressed, for the time being). The naive answer
would be “coherent sheaves”, since these (as we will review) allow to describe very naturally bundles
on submanifolds of a given manifold. We will see, however, that these objects are not enough. In
a sense we have anticipated this with our remark about the thickness of branes at the end of section
2.2; but there are more solid reasons for this. We will see indeed that there is another tractable limit
of the Kihler moduli space, called the Gepner one; and, in that limit, branes are not described by
geometrical objects such as coherent sheaves but by algebraic ones, quiver representations' — in any
case, different kind of objects.

A natural candidate will then arise after some thought. The idea will be to follow one brane in a
path in the moduli space from one of these two special points — the large volume point and the Gepner
one — to the other. The correspondence obtained in this way will be of a twofold value. First of all, the
results obtained in this way are of relevance to the long-standing problem of generalizing the well-
known McKay correspondence to higher dimensions. Second, the methods we will use — essentially
a generalized Beilinson theorem — will strongly suggest the natural candidate one could have thought
of at the beginning: the derived category. Indeed, the derived category of representations of the quiver
one gets at the Gepner point is the same as the derived category of coherent sheaves of a natural Fano
manifold in which the Calabi-Yau is embedded. Though we do not claim to have general theorems
and complete solutions to the problems, there are many non trivial checks here, and this is part of
evidence in favour of derived category.

The main part of this chapter will be devoted to explaining these results. We will try to use first
a conservative approach, using derived category as little as we will be able to. At the end, we will
finally explain what derived category is, and recollect the evidences in its favor as the right object
for describing branes at arbitrary points of the moduli space, at least as long as we disregard stability
problems.

1Of course algebra and geometry are strictly tight together; commutative algebra is essential in describing coherent
sheaves, and quivers are related to geometry. This terminology refers only to the superficial level of these objects.
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3.1 Coherent sheaves

First of all, we describe the more properly geometrical side of the story, introducing coherent sheaves
and their connection to string theory.

Sheaves are mathematical objects which allow to treat in a uniform way various problems; for us
their value will be that they allow to describe sort of bundles with changing rank. In general, they
are not confined to algebraic geometry, though this is probably the field which has most heavily used
them. Of course we will not give here definitions in their full generality (though there is no particular
extra difficulty in doing so), trying instead to extract the information relevant to physics.

Let Y be a manifold. A presheaf of groups F' is the datum of o

e a group R(U) for each open set U,

e for each inclusion of open sets U v, a homomorphism (called restriction) F(V) "2
F(U),
such that

. . . tuv Lyw
for any chain of inclusionsU < V — W we have pyw = pvw © puv

for the corresponding restriction maps. This condition looks like the gluing condition for bundles,
but note that these open sets are nested and not general intersecting ones. Note that p goes “the other
way” with respect to «. This is best explained thinking about the examples this definition is meant
to describe, such as the sheaf of (holomorphic) functions, or of sections of a vector bundle. In these
cases, what we have called here restriction is really what we know under the same name, for instance
restriction of functions. An element of F/(U) is often called, after these examples, a section over U.

So far we have introduced a rather patural object (which could also be formulated, in terms of
the category language whose use we hope to elucidate to the reader in section 3.5, as a contravariant
functor from the category of open sets of the Y to the category of rings). The extra structure we
introduce now is in a sense more significant: it can be, for instance, relaxed, leading to interesting
generalization that we will only mention afterwards, again in section 3.5.

A sheaf of groups is now a presheaf of groups for which, for any two couple of open sets U and
V', the sequence
pUnV’Iﬂ:iUnV’V

0 FUUV) ") gy g F(V) FUNYV)

of groups is exact. This is called gluing condition: spelling out the exactness, we see that it means
that

i. ifasection son U and s’ on V agree on UNV (81, = siUnv), there is a section 8" on U UV
whose restrictions to U and V give s and s': si’U =s, si'v =3

ii. if a section s on U U V is zero when restricted to both U and V, (51, =0 = 8y )s then it
vanishes, s = 0.

This concept becomes powerful when applied to algebraic geometry. First of all, the definition
we have given can be easily extended to sheaves of rings, just by considering rings instead of groups.
A natural sheaf of rings over a complex manifold Y is its sheaf of holomorphic functions, called its
structure sheaf and denoted by Oy-. Second, we can now consider sheaves of modules over it. Recall
that a module M over aring R is what could also be called a representation, namely an abelian group
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with an action R X M —+ M of R on it compatible with sum and product. A class of examples of
modules over R is given by a direct sum of n copies of them:

Re...®R=R"
e’

n times

Unlike vector spaces (which are modules over fields), however, modules do not have all this form (in
which case they are said to be free). There can be indeed relations, putting some elements of R" to
zero. If there is a finite number n of generators and of relations m, the module M is said to be of
finite presentation, and can be put in an exact sequence

R - R'"—+M—0.

A sheaf of modules over, in this case, the sheaf of rings Oy, is another slight modification of the
concept of sheaves of groups. This time, to each open set U we assign a module M (U) over the ring
Oy (U) of holomorphic functions over U, such that restrictions are now compatible with the actions
of the rings over the modules.

A sheaf £ of Oy-modules is called coherent if the following happens: each point has a neigh-
bourhood U over which C is of finite presentation over the ring Oy (U):

[Oy ()™ =[Oy (U)]" = EU) =0, (3.1.1)

where again we have denoted by R™ the direct sum of n copies of K. As we have anticipated, the
virtue of this definition is that it allows to describe in a uniform way bundles on Y and bundles on
submanifolds of Y. For instance, suppose & is the sheaf of sections of a fiber bundle E.

In that case, locally £ is U x C": sections of £ over this open set U are simply holomorphic functions
from U to C*. This means that £(U) = [Oy (U)]". This is obviously a particular case of the definition
given above, taking in (3.1.1) m = 0. For obvious reasons, in this case the sheaf is called locally free.
But we can do more. Consider a submanifold X. Then we can define a sheaf on Y out of the structure
sheaf Ox of X in this way:

(i:0x)(U) = 0x (U N X),

where U are of course open sets in Y. This means that this sheaf i, (Ox) on Y is defined to associate
the empty set to the open sets of ¥ which do not intersect X, and the sections of Ox with the
intersection with X in the other cases.

Now, this is a sheaf of modules over Oy. Indeed, there is an action of the rings Oy (U) over the
groups (i.Ox)(U) = Ox (U N X): it is simply given by multiplying functions on the submanifold
X by functions on the ambient manifold Y. Now, it is immediate to realize that these modules are not
free, but there are relations. Indeed, any two functions which differ by a function which vanishes on
X will look the same when restricted to X . Suppose that locally, in the open set U/ we are considering,
X is defined by equations z; = 0,..., 2z, = 0. Then the relations are exactly that f € Oy (U) is
the same thing, when representing a function i, f € (¢.Ox)(U), as another function f + 2191, or as
another function f + z3¢2, and so on. There are thus m relations; this can be written as

[0y (U)™ = Oy (U) = (..0x)(U) = 0,

which is another example of (3.1.1), this time with N = 1.
Actually, sometimes we can even be more precise; for instance, if X is a divisor, we can summarize
these local sequences over U with a global sequence of sheaves

0— 0y (—X) = Oy = 40x =0, (3.1.2)
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where Oy (—X) is defined to be the sheaf of holomorphic sections on Y that vanish on X.

We have seen in this section what we wanted, namely that coherent sheaves are a good way to
describe vector bundles on submanifolds. This is also the right place to note two other virtues of this
formalism, namely the physical relevance of Grothendieck groups, and the correspondence between
Ext groups and the fermionic spectrum.

3.1.1 Grothendieck group and projective resolutions

Grothendieck group KC(Y') gives another definition, an algebraic-geometrical one, of K-theory. A way
of defining it is as follows. Define Z[L] to be the free abelian group generated by locally free sheaves
(in other words, the group of formal sums of vector bundles). Then

K* =Z[L}/T;

T is the ideal generated by elements of the form F — F' — F" if there is an exact sequence 0 —
F'—F—=F —0.

Now, any coherent sheaf on Y can be expressed as an element of X(Y). We have already seen
this in a particular case: resolution (3.1.2) allows us to write i, Ox as Oy — Oy (—X).

More generally, it can be seen (using, for example, regularity and the presence of an ample in-
vertible sheaf) that any coherent sheaf £ can be put in a so-called (terminating) projective resolution,
that is, in an exact sequence

0=-E,1—...wFE =>E—=£&=0

where Ej, are bundles. This generalizes (3.1.2). In that case the resolution terminates to the left im-
mediately, because there is only one relation (coming from the one equation defining the submanifold
X). In the general case, there are more relations; these may be in turn not independent and generate
a longer sequence. Its length, however, will not exceed the dimension of ¥ (we are assuming here Y’
is smooth).

Consider now a vector bundle £ on a submanifold X. This can be represented by a coherent
sheaf £ on X as a sheaf, it can always be expressed, through extension by zero (the 4, we have seen)
as a sheaf 4, (£) on V'; since the map 1, is proper, we have that i, (£) is a coherent sheaf on V.

The physical meaning of this is the following. This formalism has allowed us to write bundles
on submanifolds X as formal differences of bundles on Y. It transpires [85] that this formal difference
can be interpreted as a brane-antibrane couple which, after tachyon condensation, gives as a product
the original bundle E' on the submanifold X.

3.1.2 Ext groups

Given two sheaves £ and &5 on the manifold Y, we denote Homy (&1, &) the group of morphisms
between them. Then one can define, with the so-called derived functor techniques, other groups
Ext3}- (€1, £2) (conventions are such that Ext® = Hom). Their point is for us essentially that:

e They can be used to write long exact sequences involving Hom'’s; for instance, if we have an
exact sequence of sheaves
0—+A—-B—=>C—=0

we can write long exact sequences

0 — Hom(D, A) - Hom(D, B) — Hom(D, C)
— ExtY(D, A) — Ext!(D, B) — Ext}(D,C) — Ext*(D, A) — ...
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and

0 — Hom(C,D)— Hom(B,D) — Hom(A, D)
— Ext'(C,D) — Ext}(B,D) — Ext' (4, D) — Ext*(C,D) — ... ;

e If F' is a bundle and & a sheaf, one has Extl-(F,&) = HY(Y,F* ® £). This means that the
Ext’s are nothing but a generalization of the usual bundle valued cohomology groups. This
is important for the following reason. Recall the isomorphism given in section 2.1.1 between
states which are Ramond ground states in both the left and the right sector, and elements of
H(#)(X). For open strings stretched between two branes with bundles F' and E, there is an
analogous isomorphism. First modification is that the nonlinear sigma model action (2.1.1) is
modified by a supersymmetric boundary term

[ [Autedast + 3R+ 3w + ). 6.13)
X

Second modification is that boundary conditions leave then only one set of worldsheet fermions.
So, we have a Hilbert space with only one set of creator operators (differently from (2.1.8), in
which there is 1 and )); moreover, the presence of (3.1.3) modifies the expression of Gat by
a term containing A [48]. In fact, the resulting operators have now the form of D and Df,
when D is now dz*(0; + A;). Thus the result is that Ramond ground states belong now to
H(Y,F* ® E).

In the case in which the two branes are not bundles but more general coherent sheaves, one
can then show that the Ext are the right generalization; thus we get that the Ramond ground
states of strings stretched between two coherent sheaves £; and &£ are given by the groups
Ext?(E1, &)

Let us consider now the alternated sum of their dimensions x (&1, &2) = Y, (—)* dimg (Ezt (€1, E2).
This number is given by an index theorem, analogously to the alternated sum of the usual cohomology
groups h':

(E1,E2) = / ch(£2) ch(£)Td(T) .

note that this is a sort of product of central charges of the two &;; this can be formalized [60] and is
one of the arguments in favour of the K-theory classification of brane charges. Moreover, physically
this  can be seen [16] as a Witten index [91]. We will often denote x(-, -) simply as (-, -).

3.2 Quivers and branes

After having praised coherent sheaves, we will now show as anticipated that they are not enough to
describe branes on Calabi-Yau’s. This requires that we try to individuate another point of moduli
space where things are tractable. It turns out that there is another such limit; to see this, we have to
take a closer look at Kihler moduli space. An useful approach [93] is to use a model which is not
conformal, but which goes to the string CFT after renormalization group flow. This model is called

3.2.1 Linear sigma model.

We prefer, rather than introducing the model in its full generality, to start with an example, which will
be an important one throughout all of what follows.
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Linear sigma model is an N/ = 2 supersymmetric gauge theory, but this time in 2 dimensions.
Features of this theory are similar to the ones of d = 4, ' = 1 we have seen above, but this time this
is an approximation to the worldsheet theory. As in that case, we have to choose gauge group, chiral
multiplets, Kéhler potentials and superpotential. In our example we take

o G=U(l);
e five chiral multiplets Z; of charge 1 and one, P, of charge —5;

e a superpotential W = PF5(Z,...,2s), where F5 is a nonsingular polynomial in the Z; of
degree 5;

o we also add to the action a so-called Fayet-Tliopoulos term 7 [ D, where D is the auxiliary field
of the gauge multiplet.

We are interested in determining the moduli space of vacua of this theory. This is found again by
satisfying D and F term equations, which in this case read

15174 oW
|z1|2+...+l25|2—5|p]2=7“, — =F;=0, 5
1

and quotienting by the action of the gauge group (lower-case fields are scalars in the corresponding
chiral multiplets). Let us begin with the first equation. Considering this equation in the C% whose
coordinates are (z;,p), and then quotienting by the gauge group, can be recognized as a special case
of what is called symplectic quotient or hamiltonian reduction: the equation can be seen as

(moment map of the U(1) action) = r .

It turns out that this can be reformulated as a quotient

Co—Fp
c

for an appropriate Fa, which depends on r. This is reasonable: insiead of imposing a real equation
and then quotienting by U(1), we quotient by C* = Ry x U(1). Fpa is determined by the sign of
r: if 7 > 0, z; cannot be all simultaneously zero, and so Fa = {(0,...,0,p)}. First five coordinate
describe a IP%; last one, which can also vanish, is the coordinate on the fibre of a line bundle; on pro-
jective spaces all line bundles are powers of the so-called hyperplane line bundle H, whose definition
would have a 1 instead of a —5 in (3.2.5), or of the so-called tautological line bundle J, the dual of
H; so our line bundle is J°. A more uniform notation is the sheaf-theoretical one we have introduced
in the previous section; with a little abuse of language we will call a vector bundle and its sheaf of
sections with the same name. In this way H is also called O(H), or O(1) for short; in the same vein
J = O(-1), and our quotient (3.2.5) is O(-5).
For r < 0, the situation gets reversed: p cannot be zero. Thus we can use C* action to set it to some
po # 0; this would leave C® as a quotient, but there is still a subgroup Zs C U(1) which leaves
p = pp fixed; so in this case the result is (3.2.5)= C°/Z;. The result so far is summarized in figure
3.1

Let us turn now to all the other equations, the derivatives of the superpotential. Since Fj is
nonsingular, it cannot be zero together with its derivatives, unless all z; = 0. Thus we have

(z1,...,25,0) ~ (Az1,...,A25,A7°p), AeC (3.2.5)

{p=0,Fs=0t or {z=0}. (3.2.6)
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Now we put all the equations together. In the r > 0 *“phase” the D term equation describes the total
space of the line bundle Op+(—5); here the second possibility in (3.2.6) is ruled out; so we have the
equation p = 0, which cuts the zero section of the bundle (that is nothing but the base P* itself);
finally, the equation Fj cuts the locus of ‘a quintic polynomial in this projective space. The usual
adjunction formula gives that the canonical line bundle of the manifold described by this locus is
trivial; so it is a Calabi-Yau threefold, the most studied one, called the quintic for obvious reasons.
In the r < 0 phase, the first possibility in (3.2.6) is ruled out instead; thus we have that the only
solution is the origin in C* /Zs.

Summing up, we see a sort of phase transi-
tion in the structure of the moduli space of the
theory (see again figure 3.1).

We have only written the conditions to find
the zeroes of the (non negative) potential of the
theory. By looking at the potential itself, in
the » > 0 phase we can see that fields which
describe fluctuations not tangent to the moduli
space of vacua have masses which go to infin-
ity as r — --oo. Thus, in this limit these extra Figure 3.1: Moduli spaces of vacua of linear sigma
fields go away; what we remain with is a the- model in different phases.
ory which describes maps to the moduli space of vacua, which is, as we have said, a Calabi-Yau
manifold, the quintic. Note that we have not broken supersymmetry. The result we get is that

T

singularity

lim (linear sigma model) = nonlinear Calabi — Yau sigma model .
T—400

In the < O phase, again one can see that the mass of the field p goes to infinity with 7 — —oo.
As for the z;, they are massless, though the vacuum is an isolated point: this is due to the fact
that the superpotential has a singular point (it “vanishes quintically”) at the origin. This situation
is exactly what one would usually call a supersymmetric Landau-Ginzburg. Recall that this is a
supersymmetric theory inspired to the well-known (non supersymmetric) effective theories for critical
phenomena, with chiral multiplets, some Kéhler potential and a superpotential having an isolated zero
somewhere. The only difference, after having integrated out the very massive field p, is that there is a
Zs identification on the z;. For this reason the resulting theory is called a Landau-Ginzburg orbifold:

T_ljmoo(linear sigma model) = Landau — Ginzburg orbifold .

We have obtained in this way a one-real-parameter family of theories. As we have already seen

in section 2.1, however, real moduli spaces coming from Kéhler deformations get complexified by
the presence of deformations of B field. The manifestation of this phenomenon here is that we
can add a two-dimensional # term here, which gets hand in hand with the FI term to give a sort of
supersymmetric 6 term. The result is that we have to add a phase to this line of theories, obtaining a
Riemann sphere with two special points corresponding to our two limits r — Zoco.
We have now two special points, corresponding to known theories (a nonlinear sigma model and an
orbifold I.G) in a family of non-conformal ones. We can, however, consider now what happens after
applying a renormalization group flow to all these non conformal theories. It is reasonable that they
will have a fixed point, as the special points have; thus we will get a one-complex-dimensional moduli
space Mg, of conformal theories.

Now, for this particular type of Calabi-Yau, the quintic, the Kihler moduli space M g has dimen-
sion A(11) = 1. Moreover, we have already seen that one of the special points in Mg, is a nonlinear
sigma model. It follows that these conformal theories we have constructed are a realization of M.
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To which point in M g does the nonlinear sigma model special point we obtained in Mgy, corre-
spond to? to the large volume point: indeed, from first equation in (3.2.4) we can see that r is a kind
of “typical radius” for the moduli space of vacua.

Summing up, we have that

e the Kihler moduli space Mg can be reached from a family of (generically) non conformal
sigma models (linear sigma model) by a renormalization group flow;

e two points of M g correspond to more usual theories; one of them is a nonlinear sigma model,
the other one a Landau-Ginzburg orbifold.

This also implies that, starting from a nonlinear sigma model on a large Calabi-Yau and deforming
it, at some point we will get another type of theory, a LG orbifold. There is no contradiction in this;
a perturbative analysis shows that at small radii the perturbation theory of the nonlinear sigma model
breaks down; LG orbifold is in a sense its “‘analytical continuation”. We also add that, if Fj is chosen
to be izf’, this LG orbifold can be shown to be an orbifold of a tensor product of five NV = 2
minimal models at level k& = 3. This is called Gepner model and for this reason the second special
point we have found is called Gepner point.

The theory corresponding to this point is a LG orbifold. So, the idea is that we can consider the
standard procedure to treat branes supported in the singularity of an orbifold and apply it to this case.
To do so, let us review how this standard procedure works.

3.2.2 Branes at the Gepner point

We will analyze, as usual, a simple example, to illustrate the main features. Consider the singularity
C? /73, where the generator of Z3 acts on the two coordinates (z1, z2) as

(21,22) = (wz1,w?22) W =1,

Now, consider a brane in the origin of this space, and extended in the other 6 directions. On the
worldvolume of this brane we would have, without the orbifold action, two relevant fields, both of
them matrix-valued: the gauge field A and the transverse scalars Z. Apart the spacetime action we
have defined, Z3 can now act also on the matricial (Chan-Paton) indices of these two fields, through
a representation p:

A=pAp™t  Zi=wpZipt Zo=wipZopt; (3.2.7)

there is no reason to choose a representation in particular; all choices for p are possible. In this case
the classification is easy: we know that any p is direct sum of copies of the three one-dimensional
representations: the identity, multiplication by w, multiplication by w?. Concretely, the matrix in
(3.2.7) can be written as

: 2 2 .
p=diag{1l,...,1,w,...,w,w" ..., 0w | ;
n1 times no times na times

all the possibilities are so far encoded in the three numbers n;, the dimensions of the three blocks. We
have to impose now invariance on the fields A and Z', Z Z; to do so, we decompose them into blocks
Aij, Z, 1 ij of dimensions n; x n; and compute the action of p; (3.2.7) becomes

i
2
A Az Asg w Az wAs

Ay Azp Ags | =| wda  |Asn| w?Ay |
A1 Az Ass w2Ag wAzy | Ass
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wZi | Zi| w?Zi
1 1 1
o Ze %)\ (@) wzh o7

2 72 2 2

2 2 2 w*Z w Ziy h
(7 72 A e o7
! Z221 25y Zé2'3 =| 45| wipn wiy
\ 2%, Zi, Z o 2 2 72
\ 431 432 433 wZ? 23| wZd

In order to keep the invariant configurations, the matrices have to be chosen thus in such a way that
only the blocks are non-zero. All the relevant information can now be arranged in a nice way
in a diagram; the three dimensions of the blocks n; are represented by three dots, and arrows between
them represent matrices of dimensions Npead of the arrow X Ttail of the arrow» as displayed in figure 3.2.

This is called a quiver diagram, and the assignment of the num-
bers to dots (and of matrices of appropriate dimensions to the ar-

rows) is called a quiver representation. Summarizing, we can thus O
say that branes whose transverse space is an orbifold space are
classified by a quiver representation. The quiver is assigned once
and for all by the structure of the singularity, and in fact we will

see shortly that all these branes considerations are often but a re- O O
formulation of mathematical concepts.
Figure 3.2: Quiver for C? /Z3.

All of this can be also applied to the orbifold Landau-Ginzburg
we have found in the Gepner limit of the moduli space. The scalars
are now not describing displacements in physical space, but in an ‘
auxiliary space; moreover, the theory is not even conformal before RG flow. But the idea is again that
the holomorphic relations will be protected [19] against the flow, and thus we can pretend the theory
is the conformal one and that its “branes” are the same as the actual-branes of the theory after the
flow.

In this sense, branes in the Gepner limit will be again quiver representations, and we can use
now techniques borrowed from the part of algebra which studies these objects to ask questions about
branes.

In particular, one of the important upshots of this section is that coherent sheaves are not enough,
and that there is a limit in which branes are a different kind of mathematical object, a quiver represen-
tation. The question comes, what are branes away from the two limits? there should be some concept
which can describe both things at will. It is instructive to arrive at the answer to such a question in
the following way: a brane which is described by a given coherent sheaf in the large volume limit
can be, if one neglects (as we are doing in this chapter) stability issues, followed to the Gepner point.
It will then be described by some quiver representation, or bound state of them. So, it should be in
some way possible to set a “dictionary” between the two kind of objects: bound states of coherent
sheaves should be the same as bound states of quiver representations. This strange statement can be
made precise and mathematically correct; we will do so while trying to clarify precisely the concrete
form of such a dictionary. Before we do so, however, we will point out that this problem seems to be
exactly a classical mathematical correspondence, known as
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3.3 McKay correspondence.

First of all we will describe what is the so-called classical McKay correspondence. This occurs when
one considers a singularity of the form C? /T, with I" a finite subgroup of SL(2,C). One can consider
two sets of objects. First one is the ring of representations of I'. Among these there is a special repre-
sentation pger, which we can call it the defining one, in the sense that is precisely the representation
I' = SL(2,C) which defines the singularity; and there are the irreducible representations p;. The re-
lationships between these objects can be summarized by considering all the tensor products pger ® p;;
these can be in turn expanded in the irreps, which are a basis; this defines a matrix a;; through the
formula :

Pdet ® pi = @jajip;j - (3.3.9)

We can summarize this matrix in a quiver @ with a dot for each irrep, and a;; arrows between the 4-th
and j-th dots.

On the other side, we can consider a geometric set of objects. We can namely resolve the singu-
larity; this means considering the singular space C2 /T as an algebraic variety X, and finding another,
nonsingular, algebraic variety X which is birational to X . Birationality is a relation typical of alge-
braic geometry [41]; in this case it essentially means that the two varieties are identical outside the
singular locus. Intuitively, we can say that the singularity of X gets replaced by a locus E that we
call the exceptional locus. In the cases considered here, this singular locus will always be a union
of some number of complex projective lines P!, touching one another at some points. Again we can
summarize this by a diagram, drawing a dot for each P! and a number of lines between two dots equal
to the intersection number of the two corresponding P'’s.

Now, the result is this. Take the quiver diagram we have obtained from (3.3.9); in this case this

will always be unoriented, in the sense that it if there is an arrow between two dots there will always
be an arrow going the other way. Take then these couples of arrows and replace them by simple lines.
The resulting diagram will always be a Dynkin diagram of extended ADE type.
On the other hand, we have also obtained a diagram from the irreducible components of the resolution
of the singularity. It turns out that this diagram is again a Dynkin diagram, of exactly the same type
as that coming from representation theory, but unextended. This is what is called classical McKay
correspondence, and we summarize it in this tabie:

Classical McKay correspondence

I finite group acts on C? || Resolution — singularity:
(T — SL(2,C)) X —Cr
p; irreps of T’ irred. comp’s of Ha(X,Z)
Pdet ® pi = Bj aji pj ﬂ between components

To generalize this picture to higher dimensional singularities (C*/I') is a very natural thing to try,
but not so immediate to do [70]. There are various approaches; essentially the questions are on the
geometrical side:

o The exceptional locus of the singularity will not be now a union of components. What should
generalize then the irreducible components we had in the n = 2 case, and the Ho(E,Z) they
generate?
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e Once we have understood that, what should generalize the intersection numbers we had before?

First question has been asked in various cases, though it seems that no general theorem exists. It seems
[50] that the correct group to generalize Hy(E,Z) is the K-theory K (X) of sheaves supported on
the exceptional locus. As to second question, we will see shortly an answer in various cases (though
again no general theorem is presented) taking the physical problem of the “dictionary”” between the
two limits of the moduli space as a guide.

Indeed, the problem we had formulated in previous section seems to be exactly a generalization
to higher dimensions of McKay correspondence. First of all, note that passing from the Gepner to the
large volume phase is a resolution of the singularity of the LG orbifold. Then, branes in the Gepner
phase are quiver representations. But, to irreps of the finite group I' we can naturally associate the
so-called irreps of the quiver: The irrep of the quiver associated to p; is the representation which
associates 1 to the i-th dot, and which sets to zero all the matrices associated to the arrows. On the
geometrical side, branes are coherent sheaves supported on a Calabi-Yau contained in the exceptional
locus E, which are particular cases of sheaves with support on E (though we will see that considering
the Calabi-Yau is essential for computations).

Thus, we can see that McKay correspondence

representations of coherent sheaves supported on
finite group I’ the exceptional locus F

has a chance to be implemented through the physical problem

representations of coherent sheaves supported on
quiver () the Calabi-Yau Y C E.

As a first example, here is the quiver of the singularity C° /Zs ; o5t — b a
recall that this should correspond to the quintic Calabi-Yau. There R LA L
are 5 arrows between each couple of nearby dots, which are rep- 28y . O4 25
resented by matrices z5, 0 =1,...,5. We have also displayed \
relations (zszé?k = zﬁ’jz;-’,c) which at this point are not justified; o) O
they will emerge later from F-term equations. \

25 2Ty
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Let us first of all describe the strategy to write down the dictionary Figure 3.3: McKay quiver for the
we are looking for. quintic.

e First of all one has to understand the “discrete part”; namely,
the relations between brane central charges in the two limits. In the Gepner limit, charge
depends on the numbers n; associated to the dots in the quiver representation; in the large
volume phase, it depends on the Chern classes of the sheaf. Using mirror symmetry, we can
use this to write a change of basis between the n; and the Chern classes.

e Then we have to find the bundles S; corresponding to the irreps p;; there are several strategies
to do this, all of which require previous step at least as a check.
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e This is not enough, however; if we have a coherent sheaf in the geometrical phase, we want
to see what is the quiver representation associated to it in the LG phase, and so far we only
have the numbers n; associated to the dots. To find the arrows as well, one has to call into use
a mathematical machinery which goes under the name of theory of helices. This is the.most
interesting part.

We will describe more in detail these three steps in examples: the above mentioned quintic, and
two other examples for which the Kihler moduli space has dimension two (rather than one). This
is probably the place to comment on how to find Calabi-Yau manifolds. The most popular way (all
the examples we consider here can be found in this way) is through toric geometry, that we a]réady
met in section 1.3.2. The idea is to take a Fano (that is, with ample anticanonical line bundle) toric
manifold E of complex dimension 4, and to consider the divisor associated to the anticanonical line
bundle on it. This is by adjunction formula automatically a Calabi-Yau Y C E; even better, a family
of them. The only problem is that, in general, this construction will give a singular Y. If £ is cleverly
chosen, however, one can succeed in finding a family of nonsingular Calabi-Yau’s. The condition to
have this is that [4] the dual polyhedron A associated to the anticanonical bundle K, be integral. In
our case, the ambient toric manifold F will be either the easiest case of toric manifold, a weighted
projective space WP, or a toric resolution of its singularities. Although the Calabi-Yau in the WP
will be nonsingular, we will need often to work on £, and for this reason we will prefer to resolve its
singularities — a process which will not change results on the Calabi-Yau.

Thus, our other two examples will be a hypersurface of degree 8 in the weighted projective space
E = PL1222 and one of degree 12 in Pb1228; it is sometimes used the notation P*1222[8] and
Pl,l,?,?,ﬁ [12] .

34.1 The quintic

As we have promised, we will start from the comparison of central charges. Let us explain this in
more detail. Central charge Z of A and B branes can be found [60] to be:

e For A branes, which are three dimensional cycles, Z is simply the integral of the holomorphic
three-form on them, [, ©2; these are called the periods.

e For B branes, which are coherent sheaves &, the formula is more complicated, and was histor-
ically the first way in which K-theory was found to classify brane charges. In the Calabi-Yau
case it can be cast in the form

Z =~ / ch(&)et/Td(Ty) , (3.4.10)

where we have also explicitly included the dependence on the Kihler moduli ¢ = vol + 4B, a
(1,1) form, which we will need in what follows.

We have now, using mirror symmetry, all of the information we need to compare charges in the various
phases. In the large volume limit, we already have the formula. In the Gepner limit, by linearity the
charge of any brane will be determined by those of the irreps. What are these? There is a Z5 symmetry
at the Gepner point, and it is not surprising that they are an orbit of this symmetry, as one can also see
by comparison with boundary states techniques (that we have not reviewed here). Hence the irreps
can be obtained as an orbit of the monodromy around the Gepner point starting from the “pure” D6
brane (that is, the D6 brane with no lower charge, which is, at large volume, Oy), which is one of
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them. From this we can obtain their charges as the periods II; of the mirror Y'; summing up, the
upshot is that Z(p;) = II; and so that
Z=> nll;.
i

We can now use this to find a relation between Chern classes and the n;. First of all we work out
explicitly the central charge of a B brane corresponding to a coherent sheaf £. We need first of all
Td(Ty). From the fact that c1(Ty) = 0 and the expression of the Todd polynomial in terms of the
¢;(T'd(Ty)), one gets
ea(Ty)

24
c2(Ty) can be computed from the adjunction formula and properties of the total Chern class ¢ =
1+¢3 +cg+ ..., which give

Td(Ty) =1+

(1+ H)®
14+5H "’

with H the hyperplane bundle of P*, whence c3(Ty) = 10H |2Y . From this, and using that H? =5,

ly

c(Ty) =

1 1
7 = -/ 1—tH+1t2H2—3t3H3 rk+c H+ =chy H?> + = chg H® 1-{-£H2
v 2 6 2 6 12
B4 5 5 5 25 5 25
= Etrk—it Cl+<—2—ch2+-ﬁ’l‘k‘)t—<—6-ch3+i—2-cl 3.4.11)

where for simplicity we have written H instead of Hj,, and ch; = ch;(&) for short. Periods 1I; of the
mirror A branes can be instead computed using the prepotential [17]

F=-2¢3 - =42 4+ =t — Z=i((—3) + nonperturbative corrections.

Comparing Z =y, n;II; with the above Z in 3.4.11, we get

ng=r, MN4g=-—C, N2= %cl—— -g—chg, ng = %Cl+gch3. (3.4.12)

Having accomplished this *“zeroth” step, we have now to ask what are the sheaves which corre-
spond to the p;. Whatever method we use, the result should be such that the charge agree with respect
to the change of basis just found (3.4.12).

Basically there are two methods. First one is to use beyond its proved validity a construction
already found in the context of McKay correspondence by mathematicians. This is perhaps the con-
ceptually cleaner way, but is computationally very difficult [19]. The second method is essentially to
use a match of U(1) charges in the two limits, and is computationally much easier.

Both methods involve the introduction of an auxiliary set of bundles, that we will call R;. These
are sometimes called tautological for reasons that will become clear in a moment. To find these is
in both cases the hard part; from this we can find the bundles S; corresponding to the irreps p; in a
relatively easy — but interesting — way.

In the present case of the quintic, the first method is not computationally difficult, whereas second
one is almost trivial. We will thus concentrate here on first one, leaving second method to the other
examples.

Quiver varieties and tautological bundles




42 3. Holomorphicity

It is remarkable that the construction of the quiver @) in (3.3.9) is exactly the same as the physical
construction of invariant branes we sketched in the example C2 /Z3 in section 3.2.2. Another associ-
ated mathematical construction appears very naturally in brane physics: that of quiver variety. Let us
briefly review this again in the same example and then in general.

Almost all of the branes that we have described in 3.2.2 are confined to stay in the singularity.
Consider indeed for example a brane corresponding to the choice of an irrep. If this was to move out-
side the singularity, it would not be an invariant configuration any longer, since it would correspond,
in the covering €2, to a DO in one of the three identified domains without any image in the other
domains. By the way, for this reason the charge of this brane is defined to be 1/3 of that of a DO, and
the brane is called often a fractional one. '

A true D0?, free to move in the bulk of this singular space, outside the singular point, can be done
instead putting an image on all of the three identified domains. This means, to take the preceding
fractional brane along with its two images under Z3. This means, taking as p the sum of the three
irreps; that is, the regular representation, p = diag(1,w,w?).

The moduli space of this DO is the space itself, as usual. This can be seen again from D- and F-
flatness of the brane-worldsheet theory, as in section 2.3.2:

(2, (2 +12%, (2 =0, [, 2% =0,

where © = diag (61,02, 03) is a traceless diagonal matrix coming from a FI term and, in our example,
Z' are in the form given in (3.2.8):

Al C'2
7t = B: |, Z2=| Ay . (3.4.13)
Cl B2

Explicitly this gives us the equations

|A1]2 — [A2? — |C12 + |Col? = 64
|B1]2 = |Bof2 = |C1]2 4+ |Co|2 =62 ,  A1Ay=B1 By =C1Cs. (3.4.14)
|A1[* = Ao = |B1? + | Bo|? = 6

These describe the physical transverse space as their zero locus; this is what is meant when one says
that space is a derived concept from the point of view of D-branes. In this case, actually, this zero
locus is best analyzed in another form: the deformation due to © can be put in the F-term (the second
set of equations in (3.4.14)); if one defines z; = det(Zi), Ay Ay =a, By By = b, C; Oy = ¢, the
equation becomes eventually

z120 =abc, a=b+{=c+(

that is, z1 2o = a(a — (1) (a — (2). For ¢; = 0, this is a description of the singularity C?/Z3 we
started with; switching (; on gives a resolution of it. The same can be in principle seen also in the
original form of the equations (3.4.14), though in a longer way [30].

So, we have seen in this example that the locus described by D- and F-terms is exactly the trans-
verse space singularity, and that introducing a FI term gives a resolution. This is a general feature; in
fact this construction was already considered by mathematicians under the name of quiver variety.

*Here and in the following situations, such as Calabi-Yau compactifications, we will abuse the terminology and call for
instance DO any brane which in the transverse space under consideration appears to be a point, whatever its extension in the
other directions.
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To describe this, it is time to describe in more detail the higher dimensional analogue of clas-
sical McKay correspondence, the so-called generalized one. Let thus I' C SL,(C). This in-
clusion means an action of I' on C*, and this gives again a singularity C*/T". Consider the irre-
ducible representations pj, of I', and the n-dimensional representation pqer given by I' C SL,(C).

. . . 1
We can again define a quiver whose dots represent pj, whose arrows are given by numbers az(.j)

given by pger ® p; = @ ag) pi. For later convenience, we supplement this quiver with relations
which the X should satisfy; in the case in which I' is abelian and cyclic, these can be written

fw s X ows atw; tw; = X, a ;X i ;o witw; (which, in a compact notation, can be written
as [X*, XJ] = 0). Physically, these relations come from the F-term equations. The final quiver is
called a quiver with relations.

The manifold described by transversal motions of branes can be found by finding the space of
solutions to D and F equations for branes which correspond to the regular representation p, as we
have just explained in the C? /Z3 example above., there is an image of the brane on each of the three
identified sheets. The procedure we have explained above for solving these equations can then be
formalized as follows. First of all, taking the invariant blocks (as in (3.4.13) in the previous example)
can be formalized as considering the space (pger ® End p)T'; indeed, X belonging to pger ® End p
is nothing but a triple of X* transforming as, for instance, in the right hand sides of (3.2.7); the
notation (-)!" simply means taking the invariant triples — in the example, imposing the equality as in
(3.2.7). The step of imposing D-term equations and of dividing by the residual gauge invariance can
be formalized then by writing a so-called Geometric Invariant Theory quotient:

— {X € (paet ®Endp)F'[Xi’Xj] = 0}
- GLr(p) ,

It turns out that M is a resolution of C" /I", generalizing the 2-dimensional result we have seen in an
example and shown in general by Kronheimer [55].

In a special case of this construction (like the resolutions obtained as Hilbert schemes of points
[50]), we can go further, and define the auxiliary set of bundles F; we are looking for. Define P as
the numerator of (3.4.15), and view it as a principal fibration P — M then we can define the bundle
associated to the regular representation R = P X gr,.(p) 2> @nd the ones associated to the irreps p;, R;;
both are called tautological bundles. What we will actually need in the sequel will be their restrictions
R; = (R;)|; to the exceptional locus.

While we are at it, we describe a way to describe the S; as well, though we will come back on it
later. Multiplication by the coordinates, which is again implemented using the defining representation
pdef, defines a complex

M GLr(p) = (Endp)T . (3.4.15)

R = paect OR = A2pget @R =+ ... = Apges @ R = R, (3.4.16)
which can be decomposed as

Ri— @al) Ry = @0l Rj = 9l Ry = ... > Ry (3.4.17)

where Afpger ® p; = @ ag.];) pj. What is important for us is that the complex (3.4.17), that we call
S;, is exact outside the exceptional Jocus, and thus defines an element of the K-theory supported on
it; and that these S; are dual to the R; in a sense we will see below.

Thus, from this point of view we have what we wanted (the second point of the ones described at
the beginning of section 3.4: a map which associates to each irrep of I" p; a K-theory class S; on the
exceptional divisor (and hence, by restriction, on the Calabi-Yau).
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In the case of the quintic, the exceptional locus E of the resolution of the singularity C°/Z; is
E = P*. Tt is thus no surprise that the tautological bundles R; are nothing but powers of what we
have already called tautological bundle for the IP" case: more precisely, they are R; = O(i) (there
would not be much choice anyway, since on P™ line bundles are classified by their degree € Z).

We will describe now the procedure to find what we are really looking for, the S;, the bundles
(or sheaves) corresponding at large volume to the irreps p; of the quiver. We have anticipated above
that they are dual to the auxiliary set of bundles R;; the precise meaning of this that (R;,S;) =
x(Ri, S;) = ;5 on P4. The question is thus now how to find the S; that are dual to the R;. Doing it
by solving a system of equations is certainly not economical; the analogy with other inner products
comes to the rescue, suggesting a Gram-Schmidt procedure.

The first one, S1, obviously equals Rj itself. Next, let us notice that our bundles R; = O(7) have
the property (R;, R;) = 0,V% > j. Then the others .S; can be obtained as

Sy = —Ry+ (R1,R2)R1,
S3 = Rg— (Ry,R3)R1 — (Rz, R3)S2 = (3.4.18)
R3 — (Rz, R3) Ry + [(R1, R2)(R2, Rs) — (R1, Rs)] Ry,

and so on. These sums are meant as sums in the Grothendieck groups of coherent sheaves reviewed in

section 3.1.1. Of course near the end of the series we can use Serre to make the computations simpler.
This would be enough of course to compute the Chern classes of the S;, but in this case we can

actually do better. In fact, we have on P4 the Euler sequence ‘

0— O* = HY P, 01)®0 = 0(1) =0, (3.4.19)

where @* = Q ® O(1) (Q is the holomorphic cotangent bundle). Comparing with first equation in
(3.4.19) and with the definition of Grothendieck group, we see that S; = —Q*. Similarly, repeated
use of this sequence and of its exterior products yields the result

S; = (_)i—lAi Q* )

We will see later that this is an example of the theory of mutations of helices; this is a first hint that
that theory will be relevant.

Meanwhile, we can check that the correspondence S; <+ p; is in agreement with the change of
basis we derived at the beginning of this section. To do so, on one side we compute the Chern classes
of the (S;)y from the Euler exact sequence (3.4.19) and its exterior powers: we get

*) __ wo_ 1 2 1,3
Ch(Q?)——fS——e —4——w2—25w —Fw T (3.420)
ch(A*Q*) =10 —5e* +e* =6 —3w—5w" — 5w
and so on. As above, we have indicated by w the restriction Wiy for short; for the same reason
(w4Y = () the expansions are truncated to order wi.

On the other hand, we have said that the S; become near the orbifold point the images of the D6 under
the orbifold monodromy. Using mirror symmetry computations [17] one can find the monodromy to
be [16]

—4 -1 -8 5
-® 1 5 3|
1 0 1 -11’
-1 0 0 1
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by repeated application of this matrix on the pure D6, one obtains states of charges (1,4, 12, 70)
as follows:

I

v = (1,0,0,0)
vy = (~4.1,8,5)
v, = (6,3,19,—10) (3.4.21)
—4,-3,-14,10)

V1 =(113——5);

using then the change of basis (3.4.12), it is easy to check that the vectors of charges (3.4.20) and
(3.4.21) indeed agree. ; v S

=1,
(—
= (6,
= (=

Now last step is remaining: we do not know yet how to reconstruct arrows from a given coherent
sheaf. Again we can take profit of the fact that the exceptional divisor £ in which the Calabi-Yau Y’
is embedded is in this case a very special space, E = P*; and so we can make use of

Beilinson theorem.

This construction [6], in most simple terms, allows us to decompose a bundle in terms of a “basis”.
The procedure works as follows: Start from a sheaf F' on the projective space P, and pull it back to
the product P x P, On the latter space, there is a projective resolution of the structure sheaf Oa of
the diagonal A = P™ C P™ x P"*, which reads

0— A" (Opn(=1)RQ*) — ... = Opn(—1) B Q" = Opryxpr — Oa — 0, (3.4.22)

where Q = T(—1) is the universal quotient bundle, where E X F' = 77 (E) ® 75 (F) (m; are projec-
tions on the two factors).

We can now tensor this resolution with 7] F'; then take an injective Ja b — b a

resolution I°® of this complex (which is, by definition, a double Yok T Tk

complex), and apply to it the direct image of the second projection 28 4 O, 2%

a4 Consider now the cohomology of the double complex o, [°® / \

obtained in this way; as usual, this can be computed by spectral o) 0O

sequences. There are two spectral sequences, depending on which

filtration one chooses; one gives the result that the cohomology of 23& /

this double complex is present only in total degree zero, and its

sum is the sum of the grades of a filtration of the original F’; the o o
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other one has F; term .
Figure 3.4: Beilinson quiver for

EZ;:Q = HP(P", F(q)) ® A™7Q". (3.4.23) the quintic.

To be more precise: the grades here have the range 0 < p < n, —n < ¢ < 0, and the cohomology
whose sum corresponds to F' is in grades p = —q.

As a first hint towards the physical relevance of derived category, let us anticipate here that, in that
framework, this procedure has a clear interpretation as a Fourier-Mukai transform [79]. (Indeed, the
whole process can be seen as Rmg. (7] F ® Oa), where R is the derived functor within the derived
category; and it is clear that it is an identity from the derived category to itself.)

What is interesting for us is that the double complex (3.4.23) has an interpretation as a complex of
quiver representations. Let us make this more precise: Introduce the algebra A = Hom(@7L,Op=(7),
@ ,Opn(1)). This is the path algebra of a quiver, that we will call Beilinson quiver (for "), and
which is the quiver with n + 1 dots, n -+ 1 arrows between each pair of consecutive dots, and relations
as we described for the McKay quiver [X¢, X7] = 0 (see figure 3.4, where we have specialized the
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general n construction to our n = 4 case).
Now we interpret each line of (3.4.23) as a representation of this quiver as in [29]. In detail, let each
A*Q* correspond to the i-th irreducible representation of the quiver, as we have established before;
then, each arrow in the line is a morphism € Hom(A?Q*, A™*1Q*) = C**!; hence its components
in a basis give matrices corresponding to the arrows between two consecutive dots.
We have pretended here that only one line is on; in general all lines of the
double complex will be non zero. The interpretation of such a case is that (see
figure) the whole double complex is a complex (in vertical) of representations
of the Beilinson quiver. We will see that the proper place for this is the derived
category. :
Let us finally note that the charge can be extracted, from a complex which
*—p k— X represents an object in the derived category, as the alternated sum of its terms.
From this we can read the orbifold charges n;, which equal x(F'(—i)) =
x(00), F) = (0(i), F).

The whole program we have described at the beginning is thus completed: we have a dictionary
between branes at large volume (coherent sheaves) and branes in the Gepner limit (quiver represen-
tations). One could complain about the fact that in each line we actually gave representations of the
Beilinson quiver (figure 3.4), and not of the quiver we had expected from the McKay discussion (fig-
ure 3.3). Note, however, that Beilinson one is a subquiver of the McKay quiver, in the sense that it can
be obtained from it by taking away some arrows. So, if we have a representation of Beilinson quiver,
we can always give a representation of the McKay one, simply by representing the “missing arrows”
as zeroes. We will see that the same graphical feature remains there in more spectacular examples
later.

There are two limitations of the results we have seen so far. First one is that the procedure is not
general: we used heavily the fact that the quintic Y C PP*. Finding a more general procedure will
be the aim of next subsections. Second limitation, to which we have not found any remedy so far, is
that this only works for sheaves which come from restriction of sheaves on the exceptional divisor

E =P

342 PLL122[g]

In this example we will start seeing the salient features of the problem. The zero-th step of comparing
central charges is again easily done [19].

Then, one has to find the .S;. One method is the one we have explained above involving tauto-
logical bundles R;; this has been done for this example [19], checking that it is a correct method but
also its computational difficulty. We will try instead another method, first inspired by guesswork;
this involves again finding the auxiliary bundles R;, but not describing them as tautological, and then
dualizing them to find the S;.

The idea can come noting the particular structure of this example. Resolving the weighted pro-
jective space we find a toric manifold with charge matrix

00011 -2

11100 1/ (3.4.24)

which means that it is a P3 fibration over P': P (30p1 & Op1(—2)). Let us call H the divisor corre-
sponding to one of the first three vectors in the fan (in the same ordering of the charge matrix), and L



3.4 Physical realization 47

the divisor corresponding to the fourth (or fifth) vector. These are respectively given by an hyperplane
in the fiber P3, and a hyperplane in the base ]Pﬂ, In these terms, the results of [19] for the R; = Rig
read

R =0 Ry = @(L)

Ry = O(H) Ry=O(H+1L)

Rs = O(2H) R¢=OQRH+1I) (3.4.25)
Ry = 0O(3H) Ry =0O(3H + L)

(we changed notation with respect to [19]: there the R; are ordered differently and are the duals of
(3.4.25). This is, however, taken into account by us by a change in the orthogonality condition). One
immediately notices that the pattern followed is very easy: the coefficient of L (which is relative to
Pl goes from O to 1, and the coefficient of H (which is relative to P?) goes from O to 3. What can
one learn from this relationship between R; and the multiple fibration structure? In next example,
which has again such a structure, though more complicated, we will try to guess R; in a form again
suggested by this, but this time without the reassuring tautological bundle computation; and we will
show that the guess is indeed right. After these two examples, the structure of the R; in the multiple
fibration cases will be clear; however this is only a subclass of examples, and one may wonder how is
the general strategy. This will not face this here, as the most important part will be the helix structure
that the guesses done for these examples will help to uncover. However, we can peep at the general
strategy noting how the R; look like when restricted to the weighted projective space. There, there
is only one generator J of H{1), and our two generators go in the singular limit as L — J and
H — 2J. The list (3.4.25) becomes this O (k J) on PL1122; this regularity is precisely what helps
us in the general case.

We now have to dualize the R;, and next to find some analogue of Beilinson theorem. Remarkably,
both steps use the same mathematical concepts, taken, as we have anticipated many times, from the
theory of helices. Let us thus give a short account here of this piece of mathematics, giving at the
same time a new interpretation to the Gram-Schmidt we would have to use to dualize the R;.

Helices and mutations

Let us, for the time being, assume that further properties hold for the R;. Namely, let us suppose
that
Ext*(R;, R;) =0 Vi>j, Vk , (3.4.26)

and that
Ext*(R;,R;) =0 Vi<, Vk>0. (3.4.27)

In other words, given the ordering of the R;’s, if one takes Ext of a lower sheaf with a higher one,
there is only Ext®; if one takes it in reverse order, namely of a higher sheaf with a lower one, there
are no Ext at all. These conditions together make the R;, by definition, an exceptional series [71].
Using the second set of them, we can interpret S2 as being given by an exact sequence

0 — Sy — Hom(R;,R2) ® Ry — Ry — 0 (3.4.28)

that is, Sy is the kernel of the natural evaluation. This is usually called a mutation [71, 94, 48] of Ry
within the exceptional series { R;}, more specifically a left mutation, and noted as LR». In a similar
way, we can interpret Ss as the first term in the sequence

0 = S3 — Hom(R;, LR3) ® Ry — Hom(Rz, R3) ® Rs — Rg — 0; (3.4.29)
this sequence is obtained joining two sequences of the type (3.4.28), the first of which is

0— LRz — HOl’n(Rz, Rs) QR Ry = R3 — 0 (3.4.30)
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and defines LR3. Using (3.4.29) and our assumptions we obtain

S3 = R3— (R2,Rs)Ry+ (R1,LR3)R1 =
R3 — (Rz,Rg)Rg -+ [(Rl,Rz)(RQ,Rg) — (Rl, Rg)] Ry (3.4.31)

in agreement with result for S3 in (3.4.19).
It is natural to ask oneself whether the series we constructed in our two examples are exceptional.
As it turns out, even more is true: they are what is called a foundation of a helix. This means that
the series {R;}?_; can be extended infinitely in both senses, in such a way that any n consecutive
elements make up an exceptional series, and that the “periodicity” condition R41 = R ® K* holds.
Note that we have already seen an example of a helix and of a particular mutation of it; this was
in our quintic example, which involved bundles R; = O(i) on P*. Indeed, it is easy to see that

o U(i),1=0,...,4, are a helix;
o The Euler sequence (3.4.19) is a particular case of mutation, as in (3.4.28);

e The bundles A*Q* are another helix, obtained by successive mutations of the helix O(3).

We have now two things which make us curious about helices. First one is that they appear to
be closely related to the Gram-Schmidt procedure we would have to use anyway. Second one is that,
after dualization, our next task will be to find an analogue of Beilinson theorem; and in that theorem
precisely the bundles O(7) and A*Q* were the main characters, which we just saw to be helices.

These two things make one strongly suspect that the bundles R; we consider here (and in any
other example) are actually a helix. This requires a bit of technical analysis, which we will hide in
an appendix at the end of next subsection. The answer is in the affirmative. This means that the R;
are a helix, but it does not automatically imply that also the .S; are: not on any manifold mutations of
helices give other helices. Again, however, one can use derived categories to modify the definitions
in such a way that the S; are now a helix in this modified sense.

The check that the S; obtained in this way are the correct correspondents to p; will not be done
here [19], since we will present an esseniially identical computation in next example. For complete-
ness we should note that both here and in next example these S; are not given explicitly, but only
through their K-class. It is possible to give a more detailed derived category description.

The discovery that the R; are a helix is not computationally important for the dualization proce-
dure, but is essential for the last point, “finding the arrows”. We have already noted that two helices
appear in Beilinson theorem. And indeed it turns out [10] that there is a generalization, Bondal
theorem, to more general Fano varieties, making use exactly of the helix property.

An appropriate description of this again involves derived categories, and indeed can be seen
very naturally as one of the main reasons for the emergence of derived category in brane physics.
Anyway, we can describe here the main features of the story. The input is a helix R; on the Fano
manifold E (the exceptional divisor). Then, we can again (as for Beilinson) define the algebra
Ag = Hom(®;R;, ®;R;) = ®;; Hom(R;, R;) (product is composition of morphisms). Now, to
any quiver Q one can associate an associative algebra, its path algebra Ag, in the way the name sug-
gests: elements are paths, that is, juxtapositions of arrows with tails after heads; product of two paths
is their composition when they are one a possible continuation of the other (if the tail of first path
coincides with the head of first one) and zero otherwise. (This is a particular case of the construction
that associates an algebra to a category; what we will do next would be better done at the level of
categories.) Now, it turns out that there is a quiver Q z whose path algebra Ag , is precisely Ag.
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Beilinson theorem gave as an output a double complex. We interpreted each line as a representation of
a quiver, and the whole structure as a complex of representations. The same happens here: each line
is replaced by a “layer” which is a quiver representation, and the whole structure is then a complex
of such representations. Even without having to be too formal, we can give here the idea of how each
layer is constructed.

One takes a resolution of the sheaf £, and then, if £ is the k-th object of this resolution, the k-th
layer is constructed in the following way. We have all the vector spaces Hom(R;, &) representing
the dots; the arrows are given by the maps

Hom(R;, &) — Hom(Rj, £x)

induced by composition with Hom(R;, R;). This maps give by construction exactly the number of
arrows they should give, with the required relations. This generalizes Beilinson construction.

Now, let us see what is the quiver Qg constructed in this way and
and if it has to do with the expected McKay quiver. The result is given
in picture 3.5: Dashed arrows are those that are set to zero in Bondal
quiver. Relations are not displayed here.

In this example we described essentially all the features of the
general picture. The sheaves .S; which correspond in the large volume
to the irreps p; should be found by successive mutations of a helix
{R;}. This helix is then needed to complete the correspondence to
arrows, using Bondal theorem. All this picture is admittedly a little Figure 3.5: McKay and Bondal
conjectural: does the required helix always exist? is this found by the  quivers for this example.
rough method we have sketched here? we will describe here another
example, leaving others to the literature [38, 59].

343 PLLL2S[19)

The ideology has already been described above; this example is only meant as a nontrivial check, and
we will essentially present computations, with some note here and there.

As a preliminary, we need some information about the exceptional divisor E. It will be more
natural here to postpone the change of basis between Chern classes and quiver numbers n; to when
we will actually need it, since the computation requires details about the manifold.

We start from the weighted projective space and we resolve it to obtain a multiple fibration of
projective spaces. We do that in two steps. First we resolve the locus z* = 2° = 0, thus adding a
new homogeneous coordinate z%; then resolve again the locus 22 = 2% = 26 = 0. The final fan and
charge matrices read

égggigj"é 00011 -2 0

T = 2 Co0=|01100 1 -3|. (3432
00010 -2 -1 0 10000 0 1
0001 -1 0 0

This means that the resulting space has the following structure: A fibration in P* over a base, Fy _o,
which is itself a fibration (with a notation that generalizes the standard one for Hirzebruch surfaces)
in P? over P!. In analogy with the previous case, let us call respectively B, H and L the divisors
corresponding to the hyperplanes in the fiber P, in the P? and in the base P. In analogy with what
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we observed in the previous case, there should be 2 x 3 X 2 = 12 Rj:

Ry =0 Ry = O(Ls)
R3 = O(Ll) Ry = O(Ll + LZ)
Rs = O(2L4) Rg = O(2L1 + Lo)
(3.4.33)
Rr = O(B) Rg = O(B + Ly)
RQZO(B+L1) Ryg=0O(B+ 1, + Ls)
Ry =O(B—}—2L1) R12=O(B+2L1+L2).

This 12 is exactly the order of the singularity we started with (let us recall that the compact toric
variety we are talking about here is the exceptional divisor E of the resolution of this singularity).
The fact that, for instance, the coefficient of H in (3.4.33) ranges from O to 2 is fixed, in the framework
of this procedure, by the fact that it corresponds to a hyperplane in P2,

It is important to note that the one we wrote down is not, obviously, the only possible resolution of
the initial weighted projective space. In particular, it is not the same which was alluded to in [18];
in that case there is only one step, and the exceptional locus is a ruled surface. There are in general,
indeed, other possibilities of obtaining a multiple fibration by resolving; what makes the resolution
we chose more special, and having to do with the fit 12 = 12 we obtained above, is that this one does
not change the canonical class — that is, it is crepant. We will come back to this later.

We can describe, in any case, a rough motivation for this procedure (apart from the suggestions
coming from (3.4.25)). The R; of the McKay correspondence are defined as tautological bundles on
M, the whole non-compact resolution of C*/I". The idea is that it could even be that the relevant
information is already contained on the exceptional locus E; if we are able to resolve this space, in
turn, in order to reveal in its interior some projective spaces, then it is reasonable to think that the
tautological bundles, restricted to these projective spaces, become powers of the tautological bundle
on them. We will come back again on these ideas later, after having checked the conjecture in the
example we chose, and having noted a few nice fits that make the picture more plausible.

To proceed, we also need some pieces of information about the divisors in this variety and their
intersections. The Picard group is generated by three divisors B, H, L; we obtain the relations

[?=0, H*H-2L,)=0, B(B-3H)=0, BH’L=1 (3.4.34)
Moreover, the anticanonical divisor is —K = 2B. It follows that on the Calabi-Yau submanifold Y
By = 3Hy, H} =4, (H*L)y=2, (3.4.35)

the subscript ( )y, which we will hereafter drop when no confusion is possible, meaning restriction
to Y. This matches with the results of [18], and allows us to use results in the literature which we will
need. In particular, from now on we denote by h and [ the generators of the curves on Y, duals to H
and L in the sense that
(H-hly =1, (H-l)y=0
(L-h)y =0, (L-l)y =1

We can now find the S;, and restrict them to Y. Since we have already described the method, let us
just give the final result for the (S;)y = Vi:

(3.4.36)

ch(ih) =1 ch(Va) =—-1+1L

ch(Va) = —2+H —2L+2h+1+} ch(Va)=2-H—1+% (3.4.37)
3 3

ch(Vs) =1—H+2L+1—2h+3 ch(Vg) = —-1+H—-L—1—1
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(of course the first, integer, numbers, are element of H 0. while the final ones, fractionary, mean
elements of H®). We have not listed the others because V; + Vg4, = 0, aresult which parallels similar
ones for the other toric varieties and that matches the relation on the periods in the orbifold basis
w; + wire = 0.

From the latter relation and the mirror map found in [53, 73], we find the monodromy to be

10 1 -20 0
01 0 02 0
101 -1 -1 2 1
10 0 10 0 (3.4.38)
10 0 -11 1
10 0 10 -1

and as a consequence, acting repeatedly on the pure pure D6-brane state, we obtain the states

(1,0,0000)
=( 1,0,1,-2,0,0)
vg——( 2,1,—2, -1,2,1)
U4=(, 1,0,4,0, 1) (3.4.39)
=(1,-1,2,-1,-2,1)
=(-1,1,-1,-2,0,-1)

and their negatives. The charges in (3.4.39) are listed as (ne, n4,n4, 70, n%, n2) to complete the
check, we have to compare these charges with the ones in the Chern polynomials, the zero-th step we
have described before. This is accomplished again by comparing the central charges in the two bases.
We find

, 13
r=ng, ¢} = n}lH + niL, chy = néh + ngl, —chy =ng + —i—n}l + Znﬁ, (3.4.40)

using which the check can now be easily completed, comparing (3.4.37) and (3.4.39).

Appendix Helices: the proof

We will describe now the proof of the claims done in these last two subsections, that the R; make
up a foundation of a helix both in the example of this paper and in the one given in [19]. We will limit
ourselves to describe the main ideas, skipping details when they become too technicals.

The latter case is easier, so let us start by that one. What we have to do is to compute cohomology
groups in toric geometry; there is a standard method to do that [34], but we find it easier (and perhaps
more instructive) to use a mix of this and of other techniques. In the terminology of [19], we have to
check that the bundles kH + L,kH for k =0,...,3 and kH — L for k = 1,2, 3 enjoy the property
(which we will call acyclicity) h* = 0 ¥4 > 0.

First of all, we will use a consequence of the general method [34]: a sheaf generated by its sections on
a toric variety is acyclic. The condition for this to be true, by the general theory, turns out to include
all bundles kH -+ L and kH, but not kH — L. To treat these, we use an exact sequence

05 O0((k-1)H+L) — OKH-L)— (3.4.41)
0|(H~2L)(kH — L) = Oﬂll(k) b OPZ(-‘].) — 0;

~ since Op2(—1) has no cohomology, we reduce to the case previously treated.
We have to prove, in addition, that the inverses of these line bundles have no cohomology. We use this
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time two kinds of exact sequences, the first kind in which again the restriction to the divisor H — 2L
appears, the second one in which instead the restriction is to L. Using these, we can by a zig-zag
procedure prove the result for all the bundles we need; a relevant feature is that one sees that there is a
range of negative bundles with this property that is just enough bug to include those we are interested
in. This is analogous to what happens with the series O(1), ... O(n) in P": in that case the negative
bundles from O(—1) to O(—n) have no cohomology, and O(—n — 1) starts to have it. It seems as if
the conjectural method we described to find the R; can be viewed as a means to construct helices on
multiple fibrations of a certain type. We will see later why this is non trivial.

The second case, P%211 is more complicated, but is conceptually similar, and we will be very
sketchy. The bundles that we have to prove to be acyclic are now: a) kH + L, kH for k = 0,1,2 and
kH — Lfork=1,2,0) B+kH + kL, fork=—2,...,2and ¥’ = —1,0,1. The case a) can be
reduced to an analysis on a reduced fan which is nothing but a 3-dimensional analog of the P2:2,1,1
case that we have just seen. The case b) makes use again of a sequence very similar to (3.4.42), with
the restriction to the divisor B appearing instead of that to  — 2L. In that case, the divisor turned out
to be isomorphic to P! x P2, and we had at our disposal known vanishing theorems for line bundles
on P"; in this case, the divisor B is isomorphic to P21, and again we can use a 3-dimensional
analog of the discussion above to get the vanishing theorems needed.

Finally, we have to show that the bundles inverse to those of the cases a) and b) have no cohomology.
Similar techniques to the above let us get the desired results for these bundles as well.

In both cases, what we have really shown is that the R; are an exceptional collection. To show that
they are a foundation of a helix requires to check that Rn-VR, = R1(—K), where n is the length
of the collection. About the proof of this we have nothing special to say, but that it is made easier by
reformulating in terms of both left and right mutations; and that it is this last fact is very plausible
from the very beginning, due to the peculiarly easy form of the series. In the P%%%1.1 case, indeed, let
us observe that, if one were to guess the term following Rg in the series (3.4.25), one would naturally
write O(4H), which is indeed K*; the same is true for the case of P8*21L1  for which the natural
guess after the series (3.4.33)would be O(2B), which is again K*.

3.4.4 Some final comments

This table summarize the picture that emerged in this section.

Generalized McKay correspondence

[ finite group acts on C* Resolution — singularity:

(T < SL(n,C)) , X —Cyr

{S;}, mutation of a helix {R;}

pi irreps of I’ on E = 7-1(0)

McKay quiver: Bondal quiver (C McKay):

Pdet ® p; = B aji Pj Q| Ag = Hom(®; R;, ®:R;)
rad

However, there are many things still to be done; the most important conceptually is the fact that,
as we have seen, a sheaf corresponds in general only to a complex of quiver representations. We
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will reconsider this later in the framework of derived categories, making the whole picture more
reasonable.

We conclude this long section adding some comments about how much general the examples we
have presented here are. To begin with, let us come back to our multiple fibration resolution. We
already noted that the match between the number of R; found by our method and the order of I' is
a non trivial check. We add now that another non trivial fact is that we have found a helix on the
multiple fibration. The simplest examples of multiple fibrations are given by Hirzebruch surfaces Fl;
in this case [71], it is known that, in the cases F}, k > 3 there are no helices made up of line bundles.
So our examples could seem to be special in two senses: 1) they yield the match we talked about
above; 2) they allow helices on them made up of line bundles. '

One special property that our resolutions share is that they are crepant resolutions of the original
E = n~1(0). This is linked with another, very natural, property that toric varieties can have: that of
allowing a non-singular Calabi-Yau inside them. In general, indeed, it is true that one can take in any
toric variety a subvariety supported on the anticanonical divisor, and that a so chosen subvariety has
formally a trivial canonical bundle; but, for most ambient toric varieties, there would be no way to
find a non singular Calabi-Yau in this way. The condition to find non singular Calabi-Yau is that the
polyhedron of the toric variety, with respect to its anticanonical sheaf, be integral; and this condition
in turn means that the ambient toric variety has only Gorenstein singularities, which admit a partial
crepant resolution [4].

So we have found that an event which seems a priori to be very unlikely, the existence on a
multiple toric fibration of a helix with the right properties, seems to take place precisely when the
toric fibration admits a non singular Calabi-Yau inside. This fact is somewhat surprising, from a
mathematical point of view; the reason is probably that the dictionary between sheaves on the large
volume Calabi-Yau and quivers is required to exist by physics. Although we concentrated in this
paper on a class of examples (in general, as stated above, the crepant resolution is only partial; and
the final space after the resolution could be different from a multiple fibration), the structure found
here makes it probable that helices play a role in more general cases as well [59, 38].

A final remark is that we could have even guessed that our dictionary makes use of helices,
because of their mirror symmetry interpretation [48, 49]. A check of consistency with that approach
can also be done [84].

3.5 Derived category

We will now describe here the derived category interpretation of the results. But first we need some

3.5.1 Mathematical background.

Let us start with a crash course on categories. Why should a physicist be bothered with such a
seemingly-abstract concept? First of all, categories are not as abstract as one could think at first.
The concept is only to relax the usual requirements on product structures in algebra, that require the
product to be there for any couple of elements. The way to do this is to introduce first a class of
useful labels, called objects. Then, one introduces for any pair of objects a, b, a set of morphisms
Hom(a, b); let us say for the time being that these sets have the structure of a vector space. These are
generalization of the elements of the algebra: there is a product o such that a ¢ € Hom(a,b) and a
¢' € Hom(a',¥') can be multiplied only if b = a': one can imagine the morphisms as arrows, and say
that the product is defined only when the head of the first arrow coincides with the tail of the second
one. With this important proviso, which is the whole difference between a category and an algebra,
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all the rest of the definition remains the same: namely, in all the Hom(a, b) it is required to have an
unity element; there should be associativity (¢ o ¢') o ¢ = ¢ o (¢’ o ¢') whenever the products are
defined; and o should be bilinear in the two entries (distributive law).

The data we have introduced is called a linear category. Mathematicians use the same trick to
define various other generalizations of algebraic concepts: if one gives up to the structure of vector
space on the Hom’s, for instance, one is generalizing the structure of monoid with that of a more
general category (with some caveat about the fact that the category should be small, namely the class
of objects should be a set); as another example, if one instead requires all the morphisms to have an
inverse, one is defining a groupoid, which, as the word suggests, generalizes the concept of group,
and appears both in noncommutative geometry and in the theory of gerbes.

We will now introduce other properties, which will be also needed in physics With the objects
in a category we want to do more things: to add two of them, and to have a zero object. These two
requirements are what is required to call a linear category an additive one. If one moreover wants
to deal with exact sequences and homological algebra, there is instead a further set of less trivial
properties, which make a category an abelian one. Before we can define this, we define mono- (and
epi-) morphisms, and (co)-kernels, in any category.

Monomorphisms are those morphisms ¢ for which left composition is injective: o = o’ =
a = o. Kernels are instead defined to be, given a map A 2 B, maps K % A such that: )yop =0,

ii) for any other K’ ip-; A, there exists a morphism p such that the following diagram

K/

IV‘
Pl

Y
K—t=4-2%-p

commutes. (This is an example of what is called a universal property.) In the category of vector
spaces, the “kernel” that we have defined here reduces to the injection of the usual kernel in the
domain of the morphism ¢. In a similar way one can define epimorphisms and cokernels.

Now, the point is that in a general category not all morphisms have kernels: a 1 satisfying the
properties we have laid down might not exist. An abelian category is indeed defined as an additive
category in which

e Any morphism has a kernel and a cokernel

e Any monomorphism is the kernel of its cokernel (and any epimorphism is the cokernel of its
kernel); roughly speaking, this is a compatibility condition between two possible definitions of
being “injective”;

¢ Any morphism is composition of a monomorphism o an epimorphism (this is true for instance
in the category of linear spaces).

These requirements are essential to define exact sequences in our category and to start the homological
algebra. We will not go too far into this here, however, and this small sentence will be enough.

In spite of the seemingly involved definition given so far, the actual examples are actually very
familiar, as the category of vector spaces or of coherent sheaves on a manifold. We are now going to
define, instead, out of an abelian category, a more complicated object whose behavior is less intuitive
and the examples of which are less familiar.

We will try even less than before to be detailed, and try to give the idea. One first constructs the
category of complexes of the given abelian category: objects are (bounded) complexes, as the name
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suggests; a morphism of two complexes ¢ : As — B, is a series of maps between two complexes
such that all diagrams commute:

Ao A Ay

]

By B B> cee

some of the entries can be zero. Remember now that such a morphism ¢ is called a quasi-isomorphism
if its homology homomorphism H™(¢) : H™(A,) — H"(e) is an isomorphism for all n. Now,
derived category is defined to be a category in which quasi-isomorphic complexes are isomorphic,
and is constructed technically constructing a new category whose morphisms are constructed out of
those of the category of complexes in such a way that when the original morphisms of complexes are
quasi-isomorphisms, the new ones are isomorphisms. We will not get too deeply into the technicalities
of the definition of derived category, and will instead explore and underline some of its consequences.

First of all, notice that being quasi-isomorphic implies to have the same cohomology, but the
converse is not true. If we were to identify all complexes with the same cohomology, we would
obtain a sort of K-theory instead, with a Z grading instead of a Zy one. For instance, we would
identify a complex with its cohomology (with zero morphisms); let us see why this is not so in the
derived category. If for instance a complex A — B were to be quasi-isomorphic to its cohomology,

we would have a map of complexes

A—X =B (3.5.42)

o s

ker T 2 cokerT'

1 can be taken to be the natural projection of B into B/Im(T) = coker T, and in this case H ( fi)(=
H'(f*)) is automatically an isomorphism. As for fo, there is no natural map from A to kerT’; there
is one, but in the opposite direction, call it ¢; then the condition for having a quasi-isomorphism is
io fo = idye7; this is exactly the condition to split a sequence, and it does not hold in general —
it may well be the case that there is no fo with this property. So in general a complex is not quasi-
isomorphic to its cohomology. Had we tried to reverse the vertical arrows in (3.5.42), fo would have
been automatically correct and f; would have been the problematic one.

We want to underline now another aspect of the derived category. To do so, let us consider an
example. Take the abelian category of coherent sheaves on a manifold. For any divisor D, we have
the exact sequence (3.1.2), which we will rewrite here in a handier way:

0-0(-D)50%0p=0. - (35.43)

When we build the category of complexes, the complex O(—D) L Oisnowan object itself. Using
(3.5.43) and the example with quasi-isomorphisms of the previous paragraph, we see that in the
derived category we have (O(—D) — O) = Op[—1], where Op[—1] is the complex having only a
non-zero entry, equal to Op, in position 1. Let us now examine a morphism in the derived category
from two points of view:

O(-D) —

N

0 @)

12
S
=B
|
Mo

IR
S
|
R
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where 1 is the same map appearing in (3.5.43). On the two sides of the equivalence signs, we have
displayed the same morphism using different representatives of the same equivalence classes. Now let
us ask: what are the kernels and cokemels of this morphism? Looking at the left side, the morphism
would clearly seem to be injective, and having a cokernel O(—D). On the other hand, looking at the
right side this clearly seems to be impossible, and in fact the map seems instead to be surjective, and
in fact having a kernel O(—D)[—1], from 3.5.43.

What is the resolution of this puzzle? We have warned the reader before that the existence of
kernels and cokernels in general categories is not automatic, and one has to include it in the definition
of an abelian category. The procedure we have done to define the derived category has destroyed
this property: the derived category is not abelian. This could seem to be a disaster, because it would
mean that one cannot do any homological algebra with it. Fortunately, it turns out that there is a
substitute for kernel and cokernel and for exact sequences. For the latter, the substitute is called
distinguished triangle. The general definition of these is that they are triangles (i.e. diagrams of the
form A, — B, — C. — A,[1]) satisfying some extra complicated requirement; referring again to
our simple example above, the formalism of distinguished triangles allows us to use the fake kernel
and cokernel above, writing in this case

O(=D)[~1] = O[]-1] — Op[-1] = O(~D) .

You can imagine this triangle as going on forever, and one can truncate it at any four subsequent
terms. Such triangles often come from exact sequences in the abelian category, as in this cases.
Another way to build them is to use the so-called cone construction, which substitutes the concept of

dA
kernel and cokernel together. This is simple to define: out of two complexes ... A; = Aj41 — ...,

dB .
...B; % Bj11 — ..., and of a morphism between them consisting of maps ¢;, one defines the cone
{Aes — B,} as the complex

{A—B}

A
---Az-l-l@Bz — A1+2@B2+1->..., dl —(Qbﬂ.l dZB .
Notice in particular for the cone over the map of two H° complexes (i.e. with the the only 1n0n-zero
entry being the Oth one) A and B, we have {4 — B} = (A — B)[1].

3.5.2  Quivers, sheaves, derived category

We have now the background to properly reinterpret many of the results and statements of this chapter
in derived category terms.

Let us start from Beilinson theorem. We have said that, in general, the double complex has to be
interpreted as a complex of quiver representations with @ = Qp~ the Beilinson quiver. We know now
that this complex can be seen as an element of the derived category of quiver representations; since
these representations can also be viewed as modules over its path algebra .Ag which we denote by
Db(mod —Ag). If we do so, Beilinson theorem can be very succinctly stated as the equivalence of
this quiver derived category with the derived category of coherent sheaves on P":

DP(mod —Ag,.) = D’(P") . (3.5.44)

A similar statement holds for Bondal theorem: we can now make more precise the discussion made
in subsection (3.4.2) about “layers”. The original statement [10] is broken in two theorems which we
will combine. If the Fano variety E is such that the anticanonical class is very ample, and we have a
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helix {R;} on it, then we can construct a quiver Qg as we have explained above, as the quiver whose
path algebra is Az = Hom(&;R;, ®R;); the theorem is that there is again an equivalence of derived
categories

D¥(mod —Ag,) = DY(E) ; (3.5.45)

the equivalence can be described by a functor which is denoted by & = RHom(®R;, £); this is
nothing but rewriting in mathematical notation we described in section 3.4.2.

Let us try to understand the meaning of this reformulation in terms of derived category for physics.
We started from the statement that branes at large volure are described by coherent sheaves. Then we
pointed out that this cannot be true for any point of the moduli space, since at the Gepner point branes
are instead described by quiver representations. However, since the moduli space is connected, by do-
ing a path in it (shrinking the volume of the Calabi-Yau) one should find a relationship between them:
this is McKay correspondence, via Beilinson theorem. But the relationship is not directly between
the two sets of objects, coherent sheaves and quiver representations, but rather between objects in the
derived categories. This means that, if one supposed that, at large volume, branes were described by
the derived category of coherent sheaves, there would be no contradiction with the Gepner point: this
category would be precisely the same as the derived category of quiver representations, by (3.5.44)
or more generally (3.5.45). It is also natural to think that actually the complete correspondence will
involve the derived category of the Calabi-Yau Y itself.

The conjecture is thus that branes are described by the derived category of coherent sheaves on
Y, D¥(Y).

Some comments about this conjecture are in order. First of all, the reader may be puzzled about
the word “category” itself appearing in the brane context. One could answer that the two kind of
objects we started with, coherent sheaves and quiver representations, both constitute a category, and
even an abelian one. But more than that, we want to point out that the occurrence of categories
in brane physics is very natural in general, even without these examples. Indeed, we can think of
branes in a given situation as objects in a category; Hom(a, b) is then the Hilbert space of strings
between them. The product is given by triple correlation functions. The non-trivial thing is whether
this product is associative; this in general depends also on whether this Hilbert space is taken to be
the full one, or if one restricts to the subspace of physical states. In general, one may have to resort to
a generalization of the concept of category which relaxes the associativity requirement, the so-called
Aqo-category [76]. We will not enter into this here.
The category of branes is also additive: this can be seen most directly from the additivity of boundary
states: note that, despite the name “states”, they do not constitute a vector space, due to the nonlinear
Cardy conditions; these conditions do not spoil however the simpler structure of abelian group. In
other words, it makes sense add boundary states, and in particular to consider e.g. 2 times a given
boundary state, though it does not make sense to consider a non-integer real number times a boundary
state.
The next step would be to ask whether the category of branes is abelian; there does not seem to be
any immediate reason for this; and indeed the category we are proposing, the derived category, is
not abelian. Nevertheless, abelian categories of branes may play some role, as we will conjecture in
section 4.1.1.

There are also other reasons to argue for the relevance of derived category. Essentially these are:

e Whereas all points on a manifold represent the same element of K-theory, derived category sees
them as different. This suggests the simple idea that, while K-theory classifies the brane charge,
derived category classifies the branes themselves, with moduli (such as translations) included.
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¢ Brane monodromies turn out to be very clearly described if one supposes this hypothesis is
true; this is actually strictly related to what we have seen above.

e The “anticondensation” we saw in section 3.1.1 can be seen to give an element of the derived
category of Y, which is more than its image in the Grothendieck group.

e This would fit with homological mirror symmetry, among whose original motivations in fact
an ante litteram appearance of branes appears.

e There is even a detailed analysis in the case of the torus [52]; this would actually suggest
a modification of the conjecture when a B field is on, with the derived category of coherent
sheaves being substituted by the derived category of modules over a certain Azumaya algebra
[52]. This is very interesting because it would make noncommutativity to come into the play,
but we will neglect this in the following.

e Branes in the topological string are indeed classified by derived category [26].

This last point is in a sense a proof of the conjecture. In fact, a possible reason of complain about the
conjecture is that derived category would seem to be too large. After all, at large volume we know
that branes are coherent sheaves, and derived category contains complexes of them, which in general
are not quasi-isomorphic to a single sheaf, and so are many more objects. But remember that we have
disregarded, in all of this chapter, the stability part of the problem, coming from the real (D-term)
equations. This is the same as considering the twisted topological theory instead of the physical one;
thus [26] tells us that, if one disregards stability, the conjecture is true.

In the physical theory, then, there should be the same objects one has in the twisted theory, but
with an extra stability condition. This means that branes will be stable objects in the derived category.
What this “‘stable” means is yet to be completely understood (though see [26]), but one already knows
what one should expect in the two limits. All the extra objects in derived category which are not
reducible to sheaves are expected to be unstable at large volume (and even among the single sheaves,
not all of them will be stable: the concept of stability in this subclass should become that of u-stability,
as we will see). Similarly, at the Gepner point all the extra obj’ects which are not coming from a single
quiver representation will not be stable; moreover, also among the single representations not all will
be stable, and stability will reduce to the so-called §-stability [28].

Discussion of such matters will be the subject of next chapter.



Chapter 4

Stability

We have understood in last chapter several features of branes on Calabi-Yau manifolds; the most
general lesson was the fact that, without considering stability matters (or, if one wants, considering
the twisted topological theory instead of the physical one), branes can be considered as elements in
the derived category. In the physical theory, branes should be now stable elements in the derived
category. The point of this chapter is to understand what this stability is, and what are the equations
that correspond to it (in the vein of Hitchin-Kobayashi correspondence, see introduction).

We will start by reviewing this correspondence in the case of HYM equations, and describe after-
wards the modifications one should expect from string theory, both from string worldsheet and from
brane worldsheet point of view.

4.1 Stability for HYM equations and its deformation

Before we come to applications in string theory, we would like to review first how stability is linked
with equations. We will have to do in this chapter with various concepts of stabilities, depending on
the equations one consider. All these equations will involve however a connection A on a fiber bundle
E; stability will be always an inequality involving subbundles of the bundle E. Instead of being too
general, however, we will present here an example.

Let us thus start from the simple equation F4 = cw in 2 dimensions (along with F@0) a5
usual) where we have explicitly indicated that F4 is the curvature of a connection A on a bundle
E. Taking trace and integrating, we get ¢ = (2mi)cy (E)/(rk(E)Vol) = (2ni)u(E)/V ol. To avoid
use of induction, let us consider the case in which rk(E) = 2. Suppose now there is a holomorphic
subbundle (in this case it can only be a line bundle) L R E, with a connection A’ on it (on a line
bundle we can choose it to have constant curvature, like A has). The embedding s is a section of
End(L, E); A’ and A induce on this bundle a connection B, and the condition that the subbundle be
holomorphic can be explicitly expressed as Dps = 0 (here, as above, D denotes the holomorphic
part of the covariant derivative). Finally, let us put a hermitian metric (-, -) on the bundle End(L, E).
We can now consider the equalities

O:/é‘)(DBs,s) =/(DBDBS,S)—/(DBS,DBS).

Since, in the form notation we have been using so far, DgDg+DgDp = [Dg, Dp] = Fg’l) = Fp,
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and Dgs = 0, we have

[(Ds5,D55) = [(Fs,9) = iy L2 () - i

but, since the (imaginary part of the) lhs is non negative, we have that if on E there is a holomorphic
connection that satisfies F' = cw, E satisfies the following property, called p-semistability: for any
holomorphic subbundle L — E, one has u(E) > p(L).

In this way we have understood easily enough why stability of the bundle E is necessary to have
a solution to the proposed equation. Sufficiency is usually a little bit more difficult and involves
moment maps in the infinite-dimensional space of connections, but also some analytical arguments.

This simple equation is the lowest form of life in the zoo of equations we will be considering.
First of all, we can go up in the dimension. The equation becomes now the real equation in HYM,

w-F=c,

and an analogue argument of the one we just presented in 2 dimensions works. More precisely, p
becomes deg/rk, where deg = c; - [w]"~! depends now on the Kéhler class [w].

Let us now come back to physics. We have already seen in section 2.2 that HYM equations (2.2.9)
are one of the conditions for a supersymmetric cycle; thus, we get that at large volume the bundle E
on a B brane should be stable.

There are various reasons, however, for which this is not a complete statement. First one is that,
as we had also mentioned in section 2.2, we have neglected transverse scalars X so far. We will take
care of this later; we will argue that stability will be modified in the style of Hitchin, but that this will
not affect dramatically the form of the total space of BPS states of the theory. Second problem is that,
unlike for the holomorphic part (the F-term) of the equations, which was argued in section 2.3.2 not
to be modified by changing Kihler moduli, the D-term (in this case w - F' = c) has no reason not to
get deformed as we go away from the large volume limit. ~

4.1.1 Deformations

Indeed this has been explicitly shown in [58], where some features of the deformation have been
worked out. The method was to redo the BPS analysis starting from the complete Dirac-Born-Infeld
plus Chern-Simons action [58]; as a result one gets a deformation of the Hermitian-Yang-Mills equa-
tions. This obviously only works in the abelian case, as we do not have yet control over non-abelian
DBI. Moreover, this will neglect possible contributions from Ricci curvature.

We can write the resulting equations in the compact form

[Im(e”eF ) )top =0, 4.1.1)

where w is the Kihler form, and 6 is a phase. We will call them MMMS equations. The subscript
top indicates that we only have to take the top-form part of the expansion ef*¥. For instance, in 4
dimensions, (4.1.1) can be written as

1 1
iF Aw=1g(0) (5F2 + —2—w2> ; (4.1.2)
here we have used the fact that F' is anti-hermitian and so, in the abelian case, purely imaginary, and
that w is real. From this one can see that, at large volume (w — o), one can neglect the F? term, and
(4.1.2) goes to the (1, 1) part of equations (2.2.9) in 4 dimensions, as it should.
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As we have said, the equations were derived only in the abelian case. Nevertheless, (4.1.1) admit
a very natural non-abelianization by treating F' as a matrix, and putting an identity in the ™ part. This
will clearly be well-defined, thanks to the transformation of the curvature under gauge transformation
F — UFU?'. In fact, we can write this non-abelianized version again in a compact form as

[Im(eef ) ]0p = 0; (4.1.3)

this has now to be read with a little caveat, namely that Tm(-) is now ( () — (-)1)/2¢ (this is because
now F is not purely imaginary, but anti-hermitian). Practically, this means that for instance in 4 di-
rmensions we get again the equations (4.1.2), but with a non-abelian F' now. Notice that the equations
come automatically with a symmetrizer, due to the fact that they are written in terms of forms.

We can now note a nice thing about (4.1.1): it bears a suggestive similarity with the condition

Im{e?Q,} =0 4.1.4)

for A branes (see section 2.2). This naturally suggests that that (4.1.1) and (4.1.4) are exchanged by
mirror symmetry; the natural completion of this statement would then be the exchange of the vanish-
ing of w), on A branes and the vanishing of F20) for B branes. Decisive steps towards establishing
these statements have been done in [57]. A more detailed correspondence can then be drawn; see for
instance [80].

This approach has problems, as we have said: nonabelianization was done by hands; possible
Ricci terms have been overlooked; there will be instantonic corrections. A different method is to use
worldsheet techniques. Before we consider that, however, it can be instructive to look at an example
with A branes, which can be seen as a mirror counterpart of the picture we will describe later for B
branes.

A branes and supersymmetry breaking.

We can already gain useful insight by considering a flat space situation. Start from two branes,
which will be called B and B’, wrapped on two very particular SLags (Special lagrangians): two
affine linear spaces. When will the configuration of these two be stable? It turns out that this depends
on the quantity ¢ = 1/ arg([ Q) of the two branes. The story goes as follows:

e This configuration A + A’ turns out to be BPS only for ¢(A’) = ¢(4)(mod 2);

o For ¢(A) — ¢(A’) < 0 there is another SLag with the same asymptotic behavior, in which the
configuration can decay:

A \AI — AII

e For ¢(A) — ¢(A’) > 0 there is instead no such SLag. So, the configuration, though not BPS, is
stable for the trivial reason that there is nothing for it to decay into.

This analysis has in this case been carried out only using geometrical arguments, but one could find
the same result from worldsheet arguments. Looking at the spectrum, one will find tachyons in the
second case, signaling decay in the different configuration, and massive states in the other non-BPS
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case, signaling that there can be no decay and the two states do not make a new one. This situation
can also be described by an effective theory in which supersymmetry is spontaneously broken [S1].

Worldsheet techniques

By mirror symmetry, we expect a similar picture as the one we just sketched for A branes to be
there for B branes as well. This will again depend on the presence or absence of tachyons [26]. Let us
consider physical states in the Hilbert space of strings stretched between two branes. On the Calabi-
Yau, there are states which transform like fermions and others which transform like bosons; from the
worldsheet point of view, as we have recalled in section 2.1.1, they come from Ramond and Neveu-
Schwarz states' respectively. Ramond ground states in a nonlinear sigma model (fermionic states),
as we have already mentioned in section 3.1.2, belong to the Ext? groups of the two branes. These
are geometric quantities which only depend on complex structure, and so these states will remain
massless all over the moduli space. What about bosonic states? their masses will vary with Kéhler
moduli.

There is an argument leading to these masses, and works as follows. In section (2.1.1) we intro-
duced, for both left- and right-moving sectors, the U (1) current J = \/c/_3 3;5, and a spectral flow
exp(1/2+/¢/3%). For strings stretched between two different BPS branes B and B’, the spectral flow
in the right moving and left moving sector do not match exactly: they differ by a phase:

e312%0 — explim (¢(B') — $(B))]e /2P

So, this allows to individuate a bosonic partner anyway, since the difference is only a phase. When
the quantity §¢ = ¢(B') — ¢(B) is an integer!, the combined brane is again a BPS one; otherwise,
the mass of the bosonic state depends then on the sign of (the integer part of) this quantity. This is
exactly the same situation as in the example with A branes above; in that case ¢ depended on the
features of the branes as (1/7) arg(Z); by mirror symmetry, it is then not surprising that this holds
for B branes as well, with the only difference that now the central charge Z is given by the B brane
formula (3.4.10).

This method should be used to arrive at a definition of stability in the derived category. Problems
come in, however, when one tries to consider general elements in the derived category. There are
two problems with this. First one is that the p-stability requires the concept of subbundle; in the
derived category there is no concept of subobject, and one should use instead distinguished triangles.
Moreover, and most importantly, there are problems coming from the so-called grading. Although
the quantity ¢ could seem to take value in [0, 2[, it can be seen that it actually belongs to R. Indeed,
consider whatever brane B, and the worldsheet theory of strings ending on it with both ends. It also
makes sense to consider another worldsheet theory, in which all the charges of the Ramond ground
states are shifted by 2. For consistency of ¢ with U (1) charges, one has to consider these strings as
stretched between the original brane B and a brane B’ identical to this but with ¢(B’) = ¢(B) + 2.
These “shifted” branes have to be included in the spectrum because they are reachable by continuous
deformations of more standard ones. Since, from section 2.1.1, U(1) charges of R states are related
with the index of the Ext?, we can make contact with the derived category notation and identify B’
with B[2]: the integer part of the U(1) part gets absorbed in the Ext groups, following the derived
category formula Ext*(4, B[j]) = Ext™*7(4, B).

Given a brane at a point in Kdhler moduli space, to decide whether it is stable or not involves
thus in any case to compute its ¢. Usual central charge contputation only gives its part in [0, 2[. For
this reason the only derived category stability known so far [26] requires to make trips in the moduli

"This introduces the theme of the grading, which we will see later. For the time being, let us think only about little |¢].
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space. Resolution of these problems is work in progress, and should lead to a derived category
stability defined with reference to the given point of moduli space only, without having to travel in it.
This should eventually agree with all the equations we will present in this chapter, extending all the
tentative definitions we will give here.

A possibility could be that, whatever derived category stability should eventually mean, it works
in two steps: first identifying an abelian category relevant at the given point of moduli space (as
the category of coherent sheaves at large volume), and then working in this category as an abelian
category stability. Though this “two steps” stability is conjectural, it is anyway interesting to consider
it. This is the early II-stability proposal [28], which is modeled on p-stability. Namely, given this
abelian category we have just supposed to exist, a stdbie object in it would be an object B for which
the following holds: for any subobject B’, we have the inequality d(B') < ¢(B).

We can check that this stability goes to u-stability as one goes to the large volume point, noting
that, for maximal branes (those which fill the Calabi-Yau),

arg <~/e“tch(E)\/’fd_(’lT)> =arg (%/ﬁ —%/t%l(E)) =

3 3 deg(E)
Imlog <€ Vol rk(E) + dGQ(E)> =57t Bm’

For lower dimensional branes, the computation is similar: one gets for instance for 4-branes X
arglrk(E) [y 12 + [ t(ci(E) + rk(E)(stuff) )], where (stuff) depends only on X and thus can be
neglected in relative inequalities. As we have already mentioned, one can also show [28] that in the
Gepner limit II-stability goes to the natural stability condition for quivers, known as -stability. This
is again equivalent to the existence of solutions to the D-term equation, as it should be. We will see
this in more detail later.

So, II-stability interpolates between different known stabilities in various limiting points of the
moduli space; in particular, in the limit in which branes can be considered as geometric objects
(holomorphic cycles with bundles on them), the inequality with ¢ reduces to the inequality with L,
and we recover the usual stability for bundles. This is clearly similar to the way in which (4.1.3)
reduces to (2.2.9) in the limit of large w (or small F'). To be more precise, let us underline once again
the reason for which y is appearing in the usual stability. The reason is that . is proportional to the
constant ¢ appearing in HYM (2.2.9). Now, we have a constant in MMMS equations (4.1.3) as well:
itis #. As in the HYM case, the way to uncover the relation of this with the topological constants is
to take the trace of the equation and integrate. Here we get

/Im(eieeF"‘w)mp -
sin(6) / (W + W2 Te F2 4 ...) + cos(0) / ("L Tr(—iF) ok o™ Te(—iF%) +..) =

sin(@)Re/(w”+w”"lTrF+...) +cos(9)1m/(w"+w”_1’HF+...) =

I <ei0 / eF-l—w)

The equation (4.1.3) sets this to zero; thus we find that § = arg( [ ef %) + wki. Since in the
trivial geometries, this expression is the same as the central charge, this suggests that the corrections
[27] to the equation in a nontrivial geometrical setting amount to introduction of an additional factor

e~Fa/2,/ A(R)/A(F,), where a is the connection on the normal bundle, F, its curvature and R
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the Ricci curvature on the brane. In this way we get § = arg (f eF+‘”e“Fa/21/A(R)//1(Fa)> =

arg(Z) = ¢. Unfortunately, it is now harder to reproduce the proof we saw for HYM due to the
nonlinearity of equation (4.1.3). One of the central points of that proof was the appearance of F' from
the anticommutator of two covariant derivatives; the analogue of this is not totally clear. The lack
of supersymmetric completion for CS terms involving gravitational corrections is another obstacle in
this direction. One could try a different approach by attempting to generalize the usual moment map
method (see e.g. [81]).

We have not given a complete solution to the problem of derived category stability. We proceed,
however, to consider the inclusion in the picture of transverse scalars and of tachyons, which should
come into the play at some point anyway. Even more than this, all the points of view should agree;
various equations, with transverse scalars and/or tachyons [61], will have their stability conditions,
and they should be recovered as various limits of derived category stability.

4.2 Inclusion of transverse scalars

Again, our arguments will be a little indirect, since we do not have control over nonabelian DBI
action. The strategy we will follow will be to infer the equations from nonabelianization of the
equations without scalars (which we have already considered in previous section) and its dimensional
reduction. This is reasonable by comparison with manageable limits, for instance super Yang-Mills
limit. We have already analyzed BPS conditions in that case in subsection 1.2.1.

These super Yang-Mills theories are known to describe the dynamics of flat branes in R in
zero slope limit. Deformations away from this limit were discussed in the previous section. So,
summarizing we have:

- the BPS conditions in the large volume limit, in which there is a super Yang-Mills description,
are given by the dimensional reductions we saw in subsection 1.2.1 of the 10 dimensional
equations (1.2.7), which can be rewritten as Fw* = cw® (from now on we will omit A and Id if
there is no danger of confusion).

- away from the large volume limit, the deformation to these equations are known in all dimen-
sions, and in particular in 10 dimensions.

It is natural, then, to assume that dimensional reduction of the deformed equations (4.1.3) gives the
correct BPS conditions in lower dimensions with transverse complex scalars turned on. This will give
a deformation of the Hitchin-like equations we have shown before to arise from super Yang-Mills, for
instance (1.2.6) and (1.2.8).

Before we go on and find the general deformed equations with scalars, let us write also Hitchin
first equations in (1.2.6) and (1.2.8) in a covariant form. For (1.2.6) it is easier: a simple way is to
write it is

F—i[X, XNw=cw. (4.2.5)
We could have as well made X a one form; this second choice is the version studied by Hitchin, and
we will have more to say about this in section 4.2.2. As to the second, (1.2.8), there are more scalars
in this case. Let us then introduce a transverse form w , with which the indices of the X, and of the
X; = X1, which are scalars in the spacetime but vectors in the transverse directions, can contract.
This is a very natural thing to do, in light of the 10 dimensional origin of the equations. Then we can
write (1.2.8) in the form

2 w?

Fuw + 2 (ix +ix1) 2wy = ¢\ (4.2.6)
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where ix = X%, i+ = X%, are contractions with the holomorphic and antiholomorphic parts
X, X' of the transverse scalars. Notice that i%,15,; are zero because they reproduce the commutators
[Xa, Xp] and [ Xz, X]; tx%xt + txiix then gives the desired combination of commutators. Notice
that, in order to keep w, real, we have chosen it to be of the form 7 ), dz®dz®.

We confine ourselves to a holomorphic setup, and thus always consider the case when both the
original equations and the reductions are even-dimensional. In principle we could have as well re-
duced an odd number of covariant derivatives. Even though we will not do this here let us notice that
such reductions could also lead to interesting equations. For instance, the odd-codimension reduc-
tions of self-duality equations yields two important equations: Nahm equations in 0+1 dimension,
and the Bogomol’nyi equations for monopoles in 2+1 dimensions. Another interesting situation in-
volving an odd-dimensional reduction is the gauge theory on the coassociative cycles in manifolds of
G2 holonomy.

4.2.1 Transverse scalars equations

Let us now turn to the reduction of the equations (4.1.3). For illustrative purposes, we will first do the
reduction from 4 dimensions to 2, which can be viewed as reducing from 10 to 2 but with only one
complex scalar on. Then we will tackle the case with all the complex scalars on and reduce from 10
dimensions to 4. After that we will cast the result in a dimension-independent form analogous to that
of (4.1.3). The most convenient four-dimensional starting point is in the form (4.1.2). Reducing this
in 2 dimensions one gets

%{F(—i)[X, XN —i[X, X' |F—i(DXTDX - DXDX")} +w = i tg(0)(F —i[X, X Tw); (4.2.7)

this is, as expected, a deformation (by the first three terms) of (4.2.5): these two equations are the
same at linear order.

Coming now to the more laborious task of reducing from 10 to 4, we will not actually perform
the reduction of the equations, but reduce instead the expression

L 3,2 2 3 1
4|F +~?;—,;z—!Fw +,)'3‘Fw +4Fw +—5—'w
and then restore the phase 6 at the end. To write down the result in 4 dimensions, we introduce some
little more piece of notation. Let dy = D + D = dz*D; + dz' Dy, where D;, D; are the covariant
derivatives. With the help of this we will write the result in a form halfway from an explicit and a
contracted one, and then explain how to go on in either direction:

[€F+wld]to — ——F5+

F 6 . d . . 2 .J . 4
Sym{ (ix +ixt) +F( it AJZ)'( +ixt]” (ix +'ZXT) 4
3! 21 2!

=) da,ix +ixt]* . . w3

( ) [ 0 X } (ZX +7’XT)2> 3_'_L_ +

ZX"r"LxT (~)[dA,ix+in]2 (ix +2'Xf)4 w_L
K T 2 3] T

F (X-fo) (Mda,ix +ixi)? . 2 (5)dayix +ixt]*t) @i

(—2—~ 51 +F 51 (ix +ixt)” + 2 S|t

(ix +ix1)° wl (@X+ixf)4 (“)[dAviX+iXT}2 . Y W2L
[2' R I T T R 21 (ix +ixt)” ) 50+
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2 F(=)[da,ix +ixt]?
<‘9T(Zx+%xf)2+ Sl = S (4.2.8)
2 (s - 4 2 . . 2 2
W (ix +ix1)t Wi ‘ o (D)da,ix +ixt] F
[5————————2! ?-l-w F(ZX+ZXT) + o Lu_1_+—2-!—

2 2
{;—'(zx -+ in)zw_L + ijl + L;—“
A few explanations are in order. First of all, the symmetrizer Sym comes because reduction of terms
like F™ can give rise to terms like (ix + ix+)2F™ or F{ix +ix+t )2F™~! and so on (one can see this
for instance already in (4.2.7)); instead of writing all these possibilities, we have put a symmetrizer
in the gauge part, which is the same (however, each term (ix + ¢ XT)z should be considered here
as a unique piece; there are no odd powers of ix + ixt). As for expressions like 93{%’-(1)—&1%,
we have exploited here the notation introduced at the end of previous section: each power (ix -+
ixt)? gives commutators —i[X,, X 7], and so we have 1/(3!) eI [X, X ][ Xy, Xe)[Xe, X 7] =
(X1, X[ Xs, X3 X3, X3] +[X1, XI][XQ,X;[][Xg,X;f] + ... apart for an overall (—)? factor. It can
be a little harder to understand terms containing [d4,%x + ix+]. For instance, we have

(—)2[da,ix +ixt]?t,. N
A R e

3
. . . . . )
dz'dz* dz*dz* (=) D1, ix1)[D1,ix)(—)[D2,ixt][Ds, ix](ix + zXf)z—,j =

4247 d?d7(~i) Dy, Xg)[Dt, Xo) (=)D, Xl D, Kol (—0)Xe, X fletee™] =
2t d7t dz2dz2 ((—i)DlX;‘Din (=i) Ds X3 Dy Xo(—1)[ Xs, X3 + .. ) .

Let us note that (4.2.8) reduces, in the case without scalars, to [ef @ 14],,, = 1/21 F? + Fw +
1/2!w?, as it should. In fact the whole formula (4.2.8) can be rewritten in a nicer and more suggestive
form:

Fi[ D4 D i+

[ef iy )2 gy OF alternatively, {€F+[D7i;i—f]+[ix-,D]""(iX’HX’;)Z g tL]

XTI ¢ Jtop = top-
4.2.9)
At first sight, this formula may appear a little strange since a non-homogeneous object is exponen-
tiated. Note that formally this expression coincides with one obtained by reduction of F' directly in
the exponent of (4.1.3). However, the present computation, apart from clarifying the meaning of such
a formal expression, constitutes a non-trivial check since in the process of reduction, some forms
become scalars. For instance, from a similar formal argument (reduction of the covariant derivative)
one can write the exponent of (4.2.9) in an even more compact expression, turning its two forms into
respectively
[eé[DjLD—i(iX—HXT),D+D+z‘(z‘x+ixf)] ew_HUJ']top — [e[D+iX,D+in} ew+wj_]top (4.2.10)
if one understands the commutator in a super-sense: % is treated as “fermionic” and the usual super-
Lie bracket, which is an anticommutator on two fermions, is used. (Moreover, one should not forget
the extra signs coming from the usual grading of forms: for instance [A1, A2] = A1As + AAq)
This reminds one very much of the formalism and of the expressions appearing in the computation of
Chern characters with superconnections [69], as already noted in [67] in the context of the modified
D-brane Chern-Simons couplings [63]. Actually, at this point we just observe a similarity; tachyons
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and X scalars, although related by tachyon condensation, are not quite the same object, of course.
We will, nevertheless, come back to this later, arguing for the proper place of these similarities.
We can now conclude by putting back 6, and writing the equations in the form

Im (ew [eF+[D’iX’f]+{iX’D]+(iX+iX*)2ew'H"L]top) = 0. (4.2.11)

Note that formally an expansion of (4.2.11) in n dimensions contains terms of degree n = n)| + n
in self-explanatory notation. Here we keep only the purely-longitudinal forms n = n; (n = 0). The
need of defining extra rules and the presence of w; in the equations is not particularly nice, however
we find this form to be the most convenient for the analysis of the next section. In section 5 we will
reinterpret this equation and write it in a more conceptual form?.

4.2.2 Geometrical considerations

All we did in this section has been done actually, so far, as if we were in flat space, though we have
tried to write our formulas in the way most independent from this situation. We will try now to
extrapolate the equations the geometrical cases we are interested in.

When one wraps several branes on a submanifold B of the given ambient manifold Y3, the scalars
defining transverse fluctuations of the brane — which, in the abelian case, would be sections of the
normal bundle N (B,Y") —become also matrices; that is, they are now sections of N(B,Y)®End(E),
where E is the gauge bundle*. To derive the equations for this more general case, one has to start from
the analogue of (4.1.3) for a brane wrapping the whole Calabi-Yau. This can be read in eq.(3.27)(a)
in [58]: its imaginary part is still identical to the covariantization of its flat space counterpart, (4.1.3),
that we have already seen. Then, when the Calabi-Yau is fibred in tori over the cycle, the same logic of
T-duality as in flat space applies, and we get again our equation with scalars (4.2.11). Once more we
have to argue as in the flat space case: T-duality gives in principle only a rewriting of the equations, in
which D’s are written as infinite dimensional X’s; but then the expression obtained in this way is the
same for finite dimensional X . Moreover, in this case, we are supposing that the equations obtained
in the case in which there is a fibration in tori will be correct even in the general case. The procedure
is similar to that of [8, 7].

In principle one may imagine another method to get the equations with scalars, namely to try to
directly non-abelianize relevant equations in [58]. However, this would be correct only if we had the
complete x-symmetric non-abelian action, which is not the case. So, this second method will not give
the full equations; in particular, one cannot get terms with commutators [X, X T].

One could wonder what the piece with w appearing in (4.2.11) 1s supposed to mean in this more
general case. As we mentioned at the end of the section 4.2.1, due to the appearance in the equations
of the combination w + w |, we can substitute it more generally directly with (the pull-back of) wy,
the Kéhler form on the ambient manifold Y.

A point which deserves emphasizing is that now all the covariant derivatives we have been writing
in the flat space case should not only be covariant with respect to the usual gauge part, but also contain

*We may also recall that the equations (4.1.1) were related in [58] to noncommutative Hermitian Yang-Mills equations
via Seiberg-Witten map. The latter strictly speaking applies to abelian fields only. With a progress in finding a map
applicable to more general situations it would be interesting so see if (4.2.11) can lead to a simple form of noncommutative
Hitchin equations.

3Sometimes in the rest of the chapter our considerations will apply to cases more general than ¥ being a Calabi-Yau
manifold. However, we will stick mostly to that case.

*In principle the branes can be extended or not extended in the extra flat directions; in the latter case we can have also
scalars describing fluctuations in these directions, but we will ignore these issues altogether in this section.
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a connection a coming from the normal bundle [43]. This is simply because, as we noted, the X are
now sections of End(E) ® N(B,Y).

Twisting

The equations we have been writing so far were all covariantized keeping X as scalars, as required
by physics. However, as we noticed after (4.2.5), mathematically there would have been in principle
another possibility, that of making X a form. We will see here that this corresponds in fact to the
possibility of twisting the supersymmetric brane theory. The basic idea comes from [8]: consider
the case in which the ambient manifold Y is a K3, and B is a divisor in it. As we have said, X are
sections of the normal bundle tensor the matrix part, N(B,Y) ® End(E); but in this case, due to
adjunction formula, we have N(B,Y) = Kp, the canonical bundle, which is in this case nothing but
the cotangent Qp. So the X gets substituted in this case by a antiholomorphic one form® ¢ (that is,
a (0,1) form annihilated by the holomorphic covariant derivative: D¢ = 0) with values in End(E),
and the equation (1.2.6) can be written in the Hitchin form F + [¢, ¢] = cw.

Now, it is clear that we can do the same trick when Y, 1 is a higher dimensional Calabi-Yau and
B, is again a divisor in it. In that case, the only change is that the canonical bundle is now not be the
cotangent: ¢ is a top antiholomorphic form on B. In this way, for instance, equation (1.2.8) with one
scalar can be covariantized in the form

2
Fuw+ilg, ¢'] =c-‘92—.

It is now very natural to wonder whether this twisting can be applied also to our deformed equa-
tions (4.2.9). Let us stick to the cases that we have been considering so far, in which B is a divisor
in a Calabi-Yau n + 1-fold Y. In this class of cases, there is only one complex scalar on. Thus, we
can consider the easier equations obtained reducing from n + 1 dimensions to n. These equations can
again be summarized by (4.2.9), but now remembering that the transverse space has dimension 2.

First of all, for terms like [X, X1](ef*%);0p it is rather easy to see how we can manage the
twisting. Since X is now replaced® by the two form ¢, the commutator is now [, ¢{], which is a
top form. But there is really no great difference between a scalar and a top form, thanks to Hodge
duality; so we can simply, for example, contract this top form with the rest and get a scalar equation
(6,01 - (eF +@)4op- It is harder to understand the twisting of terms involving DX. The guiding
principle in doing this is again Hodge duality, and a local (anti)holomorphic Hodge duality (see
previous footnote). The result is that now, wherever DX appeared, now we have to use the (0,n — 1)
form D'¢, where D' is the adjoint of the D operator. In this way, we have that Dt¢DIgt is a
(n — 1,n — 1), which can be contracted with the rest again to give a scalar equation. The whole
formula becomes thus

Sym{(eF+)an — ilX, XT)(e"*)on + 5 (DXDX' = DXIDX) (7+*)2n-2}

P4

;n—1
— Sym{x(e")on + " [, 8] (F+)an + 5 (D'¢D'4! + ()" D16 Dlg) - (7 )z

SThis is due to the fact that, reducing equations like F;; = 0, we obtain actually antiholomorphic scalars D; X, ; see for
instance (1.2.8).

Sf the divisor were a Calabi-Yau itself, this would be not really a replacing, but rather a rearranging of the equations
using a holomorphic Hodge dual [25].
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4.2.3 Stability and scalars

Having obtained our equations with transverse scalars, we will now extend to them the stability con-
siderations we have applied in section 4.1. After having obtained a Hitchin-like stability condition
for linear equations, we will argue a similar condition for the full nonlinear equations with scalars
(4.2.11). Using then the covering technique, which we have already seen in chapter 1, we will argue
that the modification on the total space of BPS states is not so dramatic, outside some cases.

Let us thus work out first a “linearized” case. This should serve as a base for extending the
modifications to the non-linear equations. To be specific, let us concentrate on the Hitchin equations
in four dimensions (4.2.6) and find a stability condition for this equation. We will denote by (, ) the
inner product [ wvol (, ), with vol the volume form, and make use of the Weitzenbdck equalities [24]

1 .
5DhDa = 804 —iw-Fa.

As in the easier case of two dimensions and no scalars, discussed in the beginning of this subsection ,
we will choose for simplicity a rank 2 bundle E, and consider a sub-line-bundle L on which, without
loss of generality, we can put a connection a with constant curvature. Applying a Hodge star (and
changing c) we rewrite (4.2.6) in the form

3
iw-F+ Y [Xg,X[]=c. (4.2.12)

a=1

On the bundle Hom(L, E) we can now consider again the connection B induced by the connections
o and A on L and E. We can apply this covariant derivative again to the holomorphic section s of
Hom(L, E) expressing the subbundle relation (the embedding):

(D};DB s,8) = (8];83 s,8) —i{w-Fgps,s).

B |

Using adjunction (that is, integrating by parts), holomorphicity of s and (4.2.12) we have

285250 (4(8) — (L) = (D55, Do) + 3 (1Xer X, @2.13)

If we suppose that s is an eigenvector of X, Xs = As, we have for the last term

(X, X1 s,8) = (Xt s, XTs) = [A2s,8) = ((XT = Vs, (XT = N)s) .

Since this is non-negative, from (4.2.13) we get the condition we wanted: for any subbundle L S E
which is X -invariant (namely, the embedding s is eigenvector of all the X,’s) we have the relation
w(E) > p(L). This is the four-dimensional analogue of Hitchin stability. We have here only shown
that it is necessary for solution of (4.2.6) to exist; a proof of sufficiency is more difficult, but essentially
standard along the lines of other linear examples, using orbits of the complexified gauge group and
analytic arguments, as for example in [86, 47]. o

A similar case to this one, though with a different “twisting”, has been extensively studied in the
mathematical literature under the name of Higgs bundles [75].

Moving now finally to our equations (4.2.9), it is very natural to propose a Hitchin-like mod-
ification of stability: for each X-invariant holomorphic subbrane B’ of a given brane B, one has
$(B) > ¢(B'). The only step left is to specify what “X-invariant” is supposed to mean, since in



70 4. Stability

general (away from geometrical limits in the moduli space) branes are not bundles on cycles. For
this, we notice that one can reformulate this notion in a completely abstract way by completing the
embedding B’ — B to the exact sequence

0—-B B B"=0.
Using the maps 7 and 7, one can see that being X -invariant means that 7 o X o 7 = 0 as an element
of Hom(B, B"), where o is composition. Though this proposal is the natural melting of II-stability
and of Hitchin’s one, let us stress that again, as for the proposed connection between IT stability and
(4.1.3), a complete proof is very difficult to find due to the non-linearity of the equations.

We would like to underline that these modifications & la Hitchin to the usual stabilities is substan-
tial. Once one fixes a cycle B, a bundle F on it and a endomorphism X, it can happen in fact that
even if F was unstable with respect to the usual definition, it is stable with respect to the modified
one. Let us analyze for example p-stability. Suppose that there exists only one holomorphic subbun-
dle E' which destabilizes F, u(E') > p(E). Then, if this subbundle is not X-invariant, E is still
p-Hitchin-stable. (Or more accurately, the couple (E, X) is u-Hitchin-stable.)

Quivers and 9-stability

A logical consequence of this is also that the §-stability that one finds going to the Gepner point
[28, 54] should be modified in a similar fashion. Let us give a quick look at this here. First of all,
recall that, near the Gepner point of the moduli space, branes are described to some extent by the
same approach describing branes on an orbifold singularity [19]. Thus one has a supersymmetric
gauge theory whose gauge content is summarized by a quiver; here, however, we will not need this
explicitly, and keep all of the chiral multiplets in a set of “big” chiral fields ®; which are big matrices
whose blocks are the matrices which represent the quiver. Then, we can write the D-term and F-term
equations which describe the moduli space of the theory as

ow
1= . = 2
> [@4, 3] = ©1d; ge =0 (4.2.14)

23

As in the geometrical limit, the F-term equation (the (2,0) part) is holomorphic and does not get
modified by Kéhler moduli. The equation that leads to a stability condition is again the single real
equation for D-flatness, the first one in (4.2.14). The block-diagonal matrix © contains FI terms.

The condition for existence of solutions for these equations, again implies a stability condition.
Indeed, consider a subrepresentation of the quiver. From the point of view of the total fields ®, (of
rank, say, k), this means there is an injection 7 such that smaller matrices @/, of rank %" < k, satisfying
®, 01 =10 P can be found (we will omit o from now on). It is useful to introduce as well a matrix
it such that i'i = Idy; then #if is a rank &' projector p, and we can rewrite ®/, = i'®,i. Having
introduced such a notation, let us see what happens each time we have a subrepresentation 7. Then
we start from a quantity manifestly non negative and expand it: '

0 < Yt ((02a(l—p)p®a(1—p))) = (42.15)

> tr(p®e(1—p)@L) = (tr(p@a‘?i) - tr(p%p@i)) ;

a

but then, being
tr(p®op®l) = tr(ii’®,iT Bl = tr (1T @434 ®140) = tryw (@ ) =
try () ®1iT4) = tr(®,pd]), (4.2.16)
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we can reexpress (4.2.15) as

S ta(p[a, B1)) = :(p0).

So, each time we have a subrepresentation of the quiver, the relation tr(p©) > 0 should hold.
This is called §-stability. This direct and explicit proof of necessity of stability for solving the D-term
equations is exactly along the lines of the one we gave at the beginning of this long section. Now, it
is not evident that the modification & la Hitchin of the stability that we have introduced will survive
till this point of the moduli space; after all it is not clear to what the endomorphism which was called
X in the geometrical limit will correspond in the quiver limit. In particular it could correspond to the
zero endomorphism, thus giving no modification at all. But, at least mathematically, we can give an
example of an equation whose solutions would imply a #-Hitchin-stability.

Thanks to this analysis, this is now almost trivial. First, one must set the condition that the quiver
representation is X -invariant — the equation [X, ®,] = 0. Then, one finds the appropriate modification
to the D-term equation in the form

S [®0+ X, 8, + o X =01d . (4.2.17)

a

Indeed, for a subrepresentation to be X -invariant, the injection 2 should satisfy the additional condi-
tion (similar to the above with ®, &) that a smaller matrix X' should exist, such that X7 = ¢X'. If
a subrepresentation satisfies this, there is no problem in carrying out the steps (4.2.16) in exactly the
same way, with ® — @ + aX; otherwise this is not possible. Thus, the result is that we have the
inequality tr(p©) > 0 only for X -invariant representations.

Thus we obtain a modification to §-stability very similar to ones in geometric phase, which again
may in particular rehabilitate representations previously discarded as unstable. One can view this as
the survival of Hitchin-like modification all over the moduli space. We will see, however, that from
the point of view of the moduli space of all the BPS states, this modification is not so dramatic as one
could think, thanks to the fact that branes can be lifted to coverings, as we will now explain.

Coverings

In section 1.3 we have described the covering technique for the case in which the base space
was either a cylinder or its compactification P!. Here we will apply it to less trivial geometrical
situations; the base manifold will be now the submanifold B on which the brane is initially wrapped,
corresponding to the vacuum X = 0.

Let us recall that the covering technique described, out of a section X of End(F) ® L, a covering
B, as the locus cut by the characteristic polynomial px in the total space of the line bundle L. In
fact, this so-called spectral manifold can be defined also in the most general case, in which the base
manifold B on which the non-abelian brane theory is defined is an arbitrary manifold; X is now a
section of N(B,Y)®End(E), and thus the equation px (z) = 0 becomes now an equation in the total
space of the line bundle N(B,Y’) (or K, which is the same, if the ambient manifold Y is a Calabi-
Yau). Now DX = 0 means, as we have underlined in subsection 4.2.2, dX + [A, X] + aX = 0,
where A is the part of the connection in End(E) and a is a connection on the bundle N (B,Y). Thus
we have now (8 + a)px(z) = 0; this can be considered as giving a holomorphic structure to the
submanifold py(z) = 0 in the total space of the bundle N(B,Y"). With these modifications, the
geometrical interpretation is intuitively the same.

Actually, what we want is not quite a submanifold defined on the total space of the normal bundle
N(B,Y); this is only a local (around the initial brane B) description. Then we can make Ba
submanifold of the ambient manifold via the map N(B,Y) — Y, as it is done in K-theory to find
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Gysin map from the Thom isomorphism. Another possible version of this idea is to remain in the
realm of algebraic geometry and use the so-called normal cone deformation (see for instance [35].

Finally, as noted many times to specify a submanifold is not enough for giving a brane, we have
to provide the bundle on it as well. Also this was explained in section 1.3: the eigenvectors provide
a line bundle L on the covering. This line bundle L is natural in the sense that its push-forward from
B to the base B (this operation can be defined by resorting to sheaves) is indeed the gauge bundle on
the base: n.L = F, where 7 : B — Bisthe covering map.

Coverings, stability and the BPS states

We have now a non-abelian brane theory defined on a submanifold B ofa given ambient mamfold
Y. We have argued that stability gets modified a la Hitchin, with the condition on subbundles (or
subbranes) replaced by the same condition on X -invariant subbundles.

The first case is the one in which X = 0. In this situation the branes are all wrapped on the base
manifold B. But in this case, the modification we have proposed does not affect anything, because
being X -invariant is an automatically satisfied condition.

If, on the other hand, X is a non trivial configuration, then we have seen that this describes branes
on a covering B of the initial brane B. In particular, we have seen how we can lift the gauge bundle
from B to B. This is important for the following reason. If one considers BPS states on a fixed base
B, there are substantial contributions coming from the presence of the scalars X, as we have seen.
But, if one considers the whole moduli space of BPS states, namely the union of the former moduli
space for all the base branes B, the covering technique actually shows that most of the new BPS states
one obtains for one base brane B are actually copies of other BPS states pertaining to another brane
B

The discussion we had so far has some limitations. First, there are subtleties concerning the
covering mechanism. Indeed, we have supposed so far that the eigenvalues are all distinct. If the
characteristic polynomial is irreducible (which means that the covering is connect; this we can assume
with no loss of generality) the only way we have to duplicate eigenvalues is to duplicate all of them,
taking thus a characteristic polynomial which is a power: px/(z) = (px(z))*. In this case, lifting
yields a vector bundle E of rank < k over the covering brane B; a priori this is not guaranteed to be
in the usual moduli space of BPS states pertaining to the cycle B, since E could be not stable. But
the modification of the stability 4 la Hitchin that we have proposed means now that the subbundles E’
of the gauge bundle F on the base B should be liftable too. This way, the stability condition will get
translated into a stability for the vector bundle E over the lifted brane B.

Second, and more important, so far we have analyzed the covering mechanism in the case in which
there is only one transverse scalar. When there are more, although there is an equation [X,, Xp] = 0
from the undeformed (2,0) part of the equations, still the commutators like [Xg, X, g ] do not vanish:
they appear in the deformed (1,1) equations. This means that in general we are entering the realm
of noncommutative — perhaps better, fuzzy — BPS states; about this, we limit ourselves to the few
comments that follow.

The analysis of this case allows us to appreciate the importance of the part of the connection
corresponding to the normal bundle N(B,Y). Let us first of all tackle the flat space situation in

"We may present another somewhat indirect argument in favor of this assertion by recalling the definition of ¢(E).
As it was argued in [43] taking into account the non-abelian dynamics of D-branes amounts to replacmg the RR coupling
C' A Y by Clifford multiplication of ) by RR fields while leaving intact the form of the D-brane charge V, and thus the
element in K (Y'). We should note however that transforming CS data into equations of motion is not straightforward in
view of difference in “natural” conventions for the kinetic and CS parts. We will meet another similar clash of conventions
in section 4.3.



4.3 Deformed tachyon equations 73

which the brane is at least 2 dimensional but there are more than one complex scalar.

Recall the argument we had given in section 1.3 for reducing to the case with only one scalar.
Let us now see what differences come in when we are in a geometrically less trivial situations; let B
be a brane wrapped on a 2-cycle (or higher) on the ambient manifold Y. (In the main example we
have had in mind, that of ¥ being a Calabi-Yau threefold, the only such case is the one in which B
is a 2-cycle.) Then, as we have seen in the case with one scalar only, the equation DX = 0 does not
‘imply any longer that 8 det(X, — z,) = 0, but that Oy (p,y) det(Xo — o) = 0, where Iy (p,y) is
a connection on N(B,Y'). This prevents the arguments we expounded in the paragraph above to be
applied in this more general case.

Finally, we can consider instead the case in which B is a O-cycle. Then the above considerations
do not apply in flat space. The equation DX, = 0 becomes now one of the already present equations
[X4, Xp] = 0, and so all of its consequences that we have explored in the preceding paragraph are not
there any longer. In this case we are thus completely in the realm of fuzzy solutions; but we will not
explore this here.

4.3 Deformed tachyon equations

In this section, we use again dimensional reduction, this time in a different way: we will obtain
equations that we will argue to be relevant for the tachyon of the Dp — D p system.

Let us consider a pair of gauge bundles, F; and Es, describing the gauge theory on the brane and
on the antibrane, and a morphism of bundles T connecting them, that can be thought of as a section
of End(E1, E»). In [66], a set of equations has been described that implies the equations of motion of
this Dp — D p system, much in the same way in which the instanton equations imply the equations of
motion for Yang-Mills, and more generally in the same way in which BPS conditions imply equations
of motion for a supersymmetric action. These equations read

Frw—iTT = M1y,  FowtiTlT =Xldy,,  0T+AMT-TATY =0, (43.18)

where N; = rk(E;); along with the usual F(20), As for the HYM equations and their deformation
we have been studying so far, solution to them is equivalent to a stability condition on the triple
(Er, B, T).

Now, the point interesting for us is that these equations come naturally again from dimensional
reduction of HYM, although in a more formal way. Namely, we reduce from complex dimension
n+1ton, in such a way that only one complex scalar will appear; this we will call W', as it is not one
of the scalars parameterizing transverse fluctuations (for instance, the procedure we are following will
give us the tachyon equations also in the maximal dimension n = 5, that is for the D9-D 9 system,
in which case there are no transverse fluctuations at all). Another modification to the reduction we
have done before is that we have now to take a slightly more general non-abelianization of them,
considering a direct sum bundle; thus, in the rhs of (2.2.9), we can be more general and write, instead
of AId, diag(\Idn,, \2Idy,) (diag is here in a block sense). With this specifications, let us now
do dimensional reduction of HYM (2.2.9) taking the particular choice®

(A0 (0T
A (B0 w=(07) w319

8This choice can be better motivated [14] if one takes the fibre to be P!, and chooses then the bundle on the whole
fibration to be p} E1 @ p;Er ® p3O(2). Here we are doing a formal reduction as in section 4.1.
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(remember that I has the formal role that X had in previous sections, appearing in Hitchin equations
in its stead). In this way one obtains precisely the tachyon equations (4.3.18): first two come from the
(1,1) part, the third comes from the (2,0) part.

We have obtained these tachyon equations from reduction of HYM; but we have seen that the
latter get deformed by stringy corrections to (4.1.3). Thus we expect that, if we now reduce (4.1.3)
in the same way, we will obtain the right deformation of the tachyon equations. This is by now an
easy task: first of all, as usual, the (2,0) part does not change, so we will keep on getting DT =
oT + A&l’O)T — TA%I’O) = 0. Then, let us start from our expression (4.2.9) and first of all specialize
it to the case in which there is only one complex scalar. We get

Sym{ (7 )sop (1 = ilW, W) + 2 (1D, WHID, W] = [D, W)[D, W]) (7 ™):0p 5 }.
(4.3.20)
Once more, let us now extend this to the case in which the bundle is a direct sum; in this case
this means to substitute ¢? in (4.2.11) with exp{diag(i01Idn,,i02Idn,)}. Then, putting in this
expression the particular choice (4.3.19), one obtains our “deformed vortex equations”

Im (e Sym{(ef+eMm), (1 —iTT) — iDTDTH (ol 0}) =0,
I 6 Fotwldy ~rt L t Fr+wldy — (4.3.21)
m (e Sym{(e 2)top(1 +4T'T) + 5§ DT'DT (e 2)top—2}) =0,

where DT = 0T + Ago’l)T - TAgO'l) is the antiholomorphic covariant derivative of the tachyon.
Notice that these equations are less decoupled than usual: not only does the tachyon appear in both,
but also, in the deformation term with DT, both A; and A» appear.

It is natural to speculate that (4.3.21) can be expressed in terms of superconnections. Let us try to
make this expectation more precise. One would like to exploit the considerations made after (4.2.9)
to write an expression which contains a superconnection in the exponent. To do so, the procedure is
just like the one we have done above: i) replacing all the Id with diag(Idy,, Idy,), ii) taking A and
T of the particular form (4.3.19). But this time, one wants to start not from the more explicit form of
the equation (4.3.20), but from one of the more imaginative forms (4.2.9) or (4.2.10). Explicitly, one
gets

/ /N 1d 0 \ N
Im (Sym{exp( e OUNI 62 Td, ) [e” e““}top}) =0, (4.3.22)

where

_ Fy +ipipy dp Do — Dyir \ _ 0. _( D1 ir
F_<D2in—~inD1 Fg—}-in’iT >—[D’D]’ ’D~< 0 Dg)'
These equations need of course some comments. First, we remind the reader that we are using here a
super-Lie bracket instead of the usual one, as explained after (4.2.10); this explains the sign of Lt T
inF.

Second, we introduced in (4.3.22) a symbol J which is a two-form idwdw in the formal transverse
space spanned by W, Wt. Once again, this is not the physical transverse space, and this .J, though
it has the same formal role of w, in (4.2.9) and similar equations, is a different object, introduced
here only as a convenient device for bookkeeping. Given that there is only one holomorphic object
T here, this choice could appear rather baroque; and one could wonder if, instead, it would not have
been better to start from an expression halfway between (4.2.9) and (4.3.20); namely, an expression
as compact as (4.2.9) is, which also has an exponential structure, but with iy replaced in some way
by W. In fact, such an equation does not exist. To replace iy with W (or iz with T in (4.3.22))
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before expanding the exponential would be wrong, as one can convince oneself by noting the minus
sign in the expression [D, W1)[D, W] — [D, W][D, W] in (4.3.20). Moreover, the expression one
could obtain this way will necessarily have a piece proportional to diag(TTt, —T1T), which comes
from a commutator [W, W] (compare with (4.3.18)). Thus, this expression would be in any case
different from the superconnection arising from the CS system of the D — D system. It is hardly
expected that the two superconnections are the same. Since we are using the equations of motion,
there is a contribution from the DBI part. However, it is interesting to notice that the latter do not
spoil completely the presence of the Zy-graded structures.

Finally, let us notice that it could be that (4.3.21), alias (4.3.22), is the right deformation to solve
some of the problems of interpretation for stability of triples raised in [66].

Tachyons and transverse fluctuations

By expanding on the observation in section 4.2.1 on the similarity of equations involving the
scalars to those appearing in the computation of Chern character with superconnections, we conclude
by a comment on relation between tachyons 7" and transverse scalars X on D-branes. So far this is
only a formal correspondence, as 7' and X are quite different objects. One may furthermore note that
the reduction performed in this section for the tachyon equations is formal, unlike that for X which
was given by T-duality. For instance, there is no reason for which the tachyon equations we propose
should not be valid in the important case of D9-D9 system (in which case there are no transverse
scalars).

Nevertheless, there is a relation between the two objects, provided by tachyon condensation. First
of all, let us begin with a couple of considerations on the general meaning of what we are going to
analyze. Consider a Dp — D p system on some manifold Y. This defines, through relative K-theory,
some element of the K (V). Superconnections were initially introduced [69] as a method to compute
the Chern character of this element. If we consider instead a non-abelian brane theory defined on
some submanifold B, by the covering mechanism this describes a brane wrapped on some other
submanifold B of Y. This is again an element of K (Y'). Tachyon condensation connects these two
ways of obtaining a K-theory element; the result, as we will see shortly, is that T is the characteristic
polynomial of X.

To be more specific, consider a D9-D 9 system on C x Y, where Y is now a 8 dimensional
manifold. Let us first consider the case in which the bundles on the brane and the antibrane are
chosen in such a way that the tachyon is 7' = =z, where z is the coordinate on C. Thus the system
condenses to a D7 wrapped on Y, described by the locus z = 0. What we want to emphasize is that
both T for the D9-D 9 and X for the D7, the vanishing locus is the same, although from a different
perspective: in the first case the tachyon is a 10 dimensional field whose zeroes indicate where the
resulting lower-dimensional brane will be; in the second case X it is a 8 dimensional, whose zeroes
indicate in which position of the transverse direction that it parameterizes the vacuum is located. Let
us go ahead with this and consider now a less trivial case: let the tachyon be T'(z, z;), where z;
are coordinates on Y; let us suppose it is holomorphic, and moreover that is a polynomial in z of
degree N. Now, the D7 resulting after condensation can be obtained as a classical configuration in
the non-abelian brane theory with base B = Y. This is accomplished by the covering mechanism
we have described above: it is sufficient to take a configuration X with characteristic polynomial
px(x,2;) = T(z,2). Thus, more generally we can say that T" is the characteristic polynomial of X.

Let us give a geometrical twist to this. We can describe this Cx Y as a trivial line bundle over Y;
more generally we can consider a different line bundle L on Y, and take the 10 dimensional space as
the total space @ of this line bundle. In this situation the locus is again described by the zeroes of the
tachyon T'(z, z;); but the tachyon itself now is a section of the N-th power of the bundle which is the
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pull-back of the bundle L to its own total space ¢). This bundle has an obvious so-called tautological
section, and z is to be understood now as this section.

Finally, it is now an easy generalization to consider the case in which the result of the condensation
has codimension higher than 2: locally around the lower-dimensional brane, the tachyon will be in
that case

T = o, det(X, — 24), (4.3.23)

0 o,

where vy, = ( 0 0

makes more explicit in general the relationship between tachyon field and transverse scalars we have
been using implicitly in deriving (4.3.21) and (4.3.22).

is the v matrix relative to the holomorphic coordinate z®. This formula
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