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Chapter 1

Introduction and preliminaries

1.1 Introduction

In the last years a class of problems, known as free discontinuity problems, has been
widely studied in the contest of calculus of variation and numerical analysis. This term
was introduced by De Giorgi to denote those problems where “not only the solutions can
have discontinuity points but the most difficult part consists in finding or characterizing
these points”.

This framework has been used also in the formulation of some mathematical models
for image processing, fracture mechanics, liquid crystals and shape optimization. In view
of the numerical simulations of the models, it became interesting the development of some
approximations by means of functionals defined for finite elements or finite differences. In
this direction, following different approaches, many discretizations have been suggested
([3] [9] [18] [19] [20] [22] [34] [35] [38] [39] [41] [43] [44] [45]). For all these results the theory
of I'-convergence plays a crucial role, because it defines a variational convergence which
(under suitable hypotheses) implies also the convergence of the minimizers.

In particular this thesis deals with some discretizations of free discontinuity prob-
lems, presenting both the theoretical results, which are based on I'-convergence, and the
numerical solutions.

The Mumford-Shah functional is nowadays one of the most studied free discontinuity
problem. It was introduced, in a strong formulation, in [42] as a variational model for
image segmentation. Here and in the sequel it is considered in the weak form

F(u) = /B/Q |Vu|? dz + oH(S,) + /Q lu — g|? dz, (1.1)

where @ C R? is a,h open bounded set with Lipschitz boundary, a and B are positive
constants, g € L*(Q) and u € SBV (). Inspired by [14], Chambolle and Dal Maso
proposed in [20] a discretization of the form

L1
F.(u) = —/ F(e|Vul?) dz +/ lu—g|?dz. (1.2)
£Ja Q
The function f : [0, +00) — [0, +00) is nondecreasing, continuous and satisfies
) _ : B
tgrgi = 1 t};goof(t) =1. | (1.3)




The domain of the functional is a finite element set V?(Q2) which is defined in the following
way: let 0 < @ < 7 and, for every € > 0, let 7;9 be the family of the triangulations T
of R2 such that for each element T the length of the edges is bounded from below by €
and from above by 6¢ and such that the amplitude of the internal angles is greater than
or equal to 6. Then V() is the union of all the finite element spaces of piecewise affine
functions in © defined on the triangulations T¢ € 7.%. Chambolle and Dal Maso proved
in [20] that if 4 is sufficiently small the functional (1.2) T-converges to the Mumford-Shah
functional with 8 = 1 and o = sinf.

In particular this approach (see Figure 1.1) provides a triangulation T¢ in such a way
that the discontinuity set S, is contained in a tubular neighborhood. This approximation
was later implemented by Bourdin and Chambolle in [11] but in practice, due to the
difficulties in the generation of the adaptive triangulations, it could be effectively used
only for some model problems.

€ sinf

Figure 1.1: An adaptive triangulation T. and the structured mesh T} along a straight
line.

In order to simplify this approach I studied in [43] an approximation by means of a
functional which is again of the form

F.(u) = %/ﬂf(aqulQ)dx—}-/nlu—gPda: (1.4)

and which is defined on the finite element spaces V() based on the structured triangu-
lations T? (see Figure 1.2). In particular the elements of T} and T? are isosceles right
triangles while the ones of T2 are equilateral. This time the tubular neighborhood is re-
placed by a polyhedral set (see Figure 1.1), thus the T-limit will be a sort of anisotropic
Mumford-Shah functional of the form

= UZ ZT i\ 1 u — Z . .
F(u)—AlWML@()dﬁ +/ﬂi gPd (L5)

The functions ¢;(v), which can be explicitly computed, take into account an anisotropy
effect which is introduced by the geometry of the mesh.

Even if the functional (1.4) allows an easier numerical implementation, usually the
standard algorithms fail in the attempt of finding a minimizer, in general because of the
presence of many local minima. A general approach could be the simulated annealing
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Figure 1.2: Geometries of the triangulations T7 for i = 1,2, 3 respectively.

algorithm. Nevertheless, in practice, being based on randomness, it is not really efficient
for these problems, where the number of unknowns is large (usually 2'9).

These considerations suggest the use of ad hoc techniques which take into account
the specific properties of the problems. One of these, called “graduated non convesity”
algorithm (in short GNC), was suggested by Blake and Zissermann [15] for a similar
problem. The idea, based on a sort of relaxation argument, consists basically in minimizing
the discrete energy for increasing values of the parameter 8, using at each time a descent
algorithm. This technique can be clearly applied to our problem and gives good numerical
results. Nevertheless, in collaboration with Paolini, we developed in [46] a more efficient
algorithm, based on a sort of multi-scale approach. To present the motivations and the
idea, let us consider, for the sake of simplicity, the one-dimensional functional

= %/If(5|u'l2)d$+/.r[u~—g|2da:, ‘ (1.6)

where I is the interval (0,1), g € L*(I), and u belongs to the finite element space of
piecewise affine functions on the subdivision €Z N I. Choosing for instance

flt)=— arctan (%t) ,

the functional (1.6) I'-converges to the one-dimensional Mumford-Shah functional
ﬁ/ ' do + (S /|u o ds. (1.7)

Since f(t) behaves like B¢ A o our functional introduces a sort of local discrete threshold,
which turns out to be closely related to the presence of local minima. Indeed, considering
an interval I; = [z; z;+1], the slope of u in I; can be written as

[w(z:) — u(@i41)]
€

u'| =

and thus .
l/ feld|?) dz = {,B[u * if [u(zi) — u(zip)|® < ae/B
&€Jn a if |u(zi) — u(zig1) > > ae/B.



Hence F. introduces a sort of local discrete threshold on the contrast lu(z;) — w(@iy1)l-
This behavior becomes dangerous when ¢ is small because ae /B — 0 and then the func-
tional will be treated numerically as if it was constant. This aspect, and the numerical
solutions, suggested the use of a multiscale approach. The idea is basically to minimize
the discrete functional, using a second order algorithm (like quasi-Newton), for decreasing
values of the resolution parameter £, reducing in this way the wrong thresholding effect.
The implementation of this approach is faster than GNC and the quality of the numerical
results is comparable.

Considering that the structure of a digital image is simply alattice of picture elements
(the so called pizels) it is natural to use also tecniques based on finite differences. In this
contest, considering the work of Gobbino [34], Chambolle proposed in [19] a functional of

the form . (e + .
F=¢ Y T L < u(z ef[gl; u(z)] )p(f).

z € QNeZ? £ez?
T+ef €0

The function f : [0, +00) — [0, 400) is nondecreasing, continuous and satisfies (1.3), while
the convolution term p : Z? — [0,400) is even and satisfies

p0)=0 S p@)<+oo  p@)>0iE=1  p@=pE). (18

¢ez?

Then Chambolle proved that the I-limit is the functional

_Fm)chAJVuPdw+:L b(v) dH, (1.9)
Whére 1 ’ )
=5 2, P8 o) =3, pOI - (1.10)
¢cZ? £cZ2

Recently, in a joint work with Morini [41], we proved that (1.9) is the I-limit also of the
discrete functionals

F.(u) =¢€? Z —Llog (1 + agl¢

Iww+awmmw
€ QneZ2 acl¢]
T 13 é-ezz

e?|¢1?

)p@), (L.11)

T+ef €Q

where a; = Elog-;- and p satisfies (1.8)-

A remarkable property of (1.11) is the fact it does not introduce any local discrete
threshold, which caused difficulties in the minimization of (1.6) and (1.4). This aspect
is confirmed by some preliminary numerical results which show that the segmentations
obtained by a simple gradient descent algorithm are comparable with the ones obtained by
a GNC or multi-scale technique combined with a quasi-Newton algorithm (which employs
second order derivatives). Moreover this functional seems to suggest a link with a sort of
anisotropic diffusion. Following Richardson and Mitter [49] we can consider, for the sake
of simplicity, the functional

1
Ge(u) = ;;/Qlog (1+a.5|Vu|2) dw—l—/ﬂlu——glzdm,
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which can heuristically be considered a continuous version of (1.11). Then its Frechet
derivative is given by

Vu
=div| —2% ) 1oy —
dG, = div (1 +a5|Vu|2> +2(u—g)
and its gradient flow becomes
ou Vu
— =dG,=div| ————= 2(u—g). .
ot e =Y (1 + aEqu|2) +2u—g) (1.12)

The last equation resembles a biased anisotropic diffusion proposed by Nordstrém in [47).
As in [49] we can interpret heuristically the gradient flow as a steepest descent for the
minimization of the continuous functional G;. Consequently we can expect some relation-
ship between the minimizers of (1.11), computed by means of first order algorithms, and
the behavior of the solution of (1.12), computed by a finite difference discretization and
for large values of the time variable ¢.

In all the discrete functionals I presented before, the discontinuities were always defined .
implicitly by means of the behavior of Vu and the form of the I'-limit always depended
on the geometry of the mesh, both in the adaptive and in the structured case. Recently,
I studied in [45] a different type of discrete functionals, based on discontinuous finite
elements, where the discontinuity set is given explicitly and the geometry of the mesh
does not effect the form of the I'-limit (allowing in this way an easier mesh refinement).

For every € > 0 let T: be a triangulation of R? and assume that the family {7.} is
regular, in the sense of [21]. Let B, = {B.} be the family of the triangulations nested in
T, and defined in the following way (see Figure 1.3): every element 7' € T is divided into
four sub-elements of B, taking on every edge [z z1] of T' a knot z, which satisfies the
constraint . .

.=tz + (1 —t)zl fora. <t<1-—a,, (1.13)

where a. is a positive infinitesimal sequence. We will say that these vertices are adaptive
and we will denote by FE. the set of edges whose extrema are both adaptive vertices.

For every € > 0 and every B, € B, consider the finite element space W (2, B;) of
discontinuous functions which are affine on every sub-element 7' € B, and which can have
discontinuities only along the edges of E,.. Then our finite element set V(1) will be the
union of the spaces W,(Q, B;) for B, € B,.

Let s : [0, +00) — [0,+00) be an increasing continuous function such that

s(t) _ . _
Jm = =1 t—l»linoos(t) =1 (1.14)

Then for 0 < ¢ < 1 and for a positive diverging sequence b, the discrete functional,
defined, for u € W,(R, B;), as

F(u)= Y /TIVul2d:z:+ >

/ s(balut — u|9) di? (1.15)
T€B. (eE. "¢

I-converges to the Mumford-Shah functional.
Note that this approach seems to be very general and it can be applied, for instance,
to functionals of the form

/f(Vu)da:+/ b(v) dH! . (1.16)
Q Sau
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Figure 1.3: The foreground and a background triangulations T and B;.

Finally I would like to mention another approach, based on the work [8] of Ambrosio
and Tortorelli. The discretizations have been investigated by Bellettini and Coscia [9],
using finite elements, and by March [38], using finite differences.

Another interesting field for the applications of free discontinuity problems is the
propagation of fractures in brittle materials. An effective theory has been developed by
Griffith (see [48] and [37]) using the following energy balance: let dl be the infinitesimal
variation of crack length and let dE be the corresponding variation of linear elastic energy.
Griffith suggested that the energy required to increase the crack should be ~dl, for a
parameter v > 0 depending on material toughness. Then he postulated that the fracture
evolves only when —dE > ~dl, which simply means that the release of elastic energy —dE
must be greater then the energy dl spent to increase the fracture.

A rigorous mathematical formulation for these problems is given in the framework
of the functions with bounded deformation (see [6] [29]). Indeed, for these functions the
symmetric part of the derivative (in the sense of distributions) is the measure

BEu=DuT + Du=Eul"+ (ut —u ) @uH" 'L Jy. (1.17)

In this setting, for a two dimensional isotropic material, the linearized elastic energy is
given by the Hooke low

/ W (Eu) dz = / plEuf? + 2tr(€u)? da,

0 Q 2

where g > 0 and X > 0 are the Lamé coefficients; while the fracture energy is given by
7%1(']@&) ?

where v > 0 is called the material toughness. Then the Griffith energy becomes

/Q W(Ew) dz +yH(J) . (1.18)

6



In particular for the applications it is interesting to consider the evolution of the fracture
when the displacement u; (at time t) satisfies a Dirichlet boundary condition u; = g(t)
on a set Qp C 0N and when 90 \ 9Qp is traction free (for the rigorous mathematical
treatise of this problem see [26], [31] and recently [17]). In this situation, knowing the
displacement u; and the corresponding fracture J,, at time ¢, the behavior at time ¢ + dt
is determined as

Ut pdt € argmin{ / W(Ev) dz +yH (T, \ Jut)} (1.19)
Q

under the boundary condition v(z) = g(t + dt, z) in 9Qp and the irreversibility condition
Jy D Ju,- Indeed, being usyq4¢ & minimum point, for every function w(z) such that w(z) =
g(t+dt,z) in 8Qp and Jy, = Jy, we have

/Q W (Ettrar) + 7H Ty \ Tur) < / W (Ew) da
Q

and then
PH i\ ) < =( [ W(Eussa) W (Ew) do)

which implies Griffith’s criterion —dE > ~dl.

Clearly, in view of the numerical implementation of the model we need a discretization
of the energy (1.18). Following [20] and [43], I studied in [44] an approximation of (1.18) by
means of functionals defined on finite elements. Let V(Q, R?) and V(Q, R?) be the sets
of piecewise affine functions in ) taking values in R? and defined on the triangulations
T? and T. defined before. The discrete functionals are of the form

Ge(u) = é/gf(s,Du) dz .

The function f : Q x M?*2 — [0, +00) this time behaves as

_ [ eW(Bu) if e|Duf?> < g
oo = {3 oo Sy,

for a given constant 7 > 0. In analogy with [20] and [43] the I'-limits will be of the form
/ W (Eu) dz + / d(v) dH?, (1.20)
2 Ju

and
/Q W (Ew) dz +vH (JL), (1.21)

depending on the choice of the space. Note that, due to the lack of a density property
in SBD?(Q,R?), this convergence result holds only in SBV (£, R?). Nevertheless this
approach seems to be sufficiently general to predict a realistic physical behavior, as shown
by the numerical solutions.

Finally, Chapter 7 deals with a recent result, obtained in collaboration with Dal Maso
and Percivale [25], which is not directly related to the main subject of this thesis. Indeed,
by means of a I'-convergence approach it justifies, from a variational point of view, the lin-
earization of elastic energies, under the constitutive assumption which seem more natural



in this contest. We consider the case of hyperelastic materials whose reference configura-
tion is an open, bounded region with Lipschitz boundary. For these kind of materials the
elastic energy can be written in terms of the deformation gradient Vv as

/ W(z,Vv)dz, (1.22)
Q

where the energy density W (z, F) is defined for z € 2 and F' in the space M " of nxn
matrices. The stress tensor corresponding to the deformation gradient Vo is then given
by T(z, Vo) = W (z, V). g

By frame indifference we can express W (z,Vv) in terms of the right Cauchy-Green

strain tensor C(v) := Vol Vv or, equivalently, in terms of the Green-St.Venant ten-
sor £(C(v) — I), where I is the identity matrix. Thus we can write W(z,Vv) =

V(z,3(C(v) —I)) for a suitable function V(z, F) defined for z € Q and E in the space
Min of symmetric nxn matrices.

We prefer to express these quantities in terms of the displacement u, defined by u(z) :=
v(z) —z. As Vv = I + Vu the Green-St.Venant tensor $(C(v) — I) can be written
as E(u) := e(u) + $C(u), where e(u) := %(VuT + Vu) is the symmetric part of the
displacement gradient.

We assume that the reference configuration is stress free, ie., T'(z,I) = 0, and thus
W (z,I) = 8V (z,0) = 0. As W(z,-) and V(z,-) are defined up to an additive constant,
it is not restrictive to assume also that W (z,0) = V' (z,0) = 0.

Since the displacement u = 0 is an equilibrium configuration when no external loads
are applied, it is natural to expect small displacements for small external loads. It is then
convenient to rescale the variables and to write the load as €£ and the displacement as eu
for a suitable (adimensional) small parameter € > 0. Thus we have v(z) = z +eu(z), and
the equilibrium configurations are stationary points of the total energy

/ W (z,I +eVu)dr — &2 f ludz . (1.23)
Q Q
As
W(z, I +eVu) = V(z,ee(uw) + 1e2C(u)), (1.24)
if Vu is bounded we have, by Taylor expansion,
W (z,I +eVu) = 2105V (z,0)[e(u), e(uw)] + o(e?), (1.25)

where 0%V (z,-) denotes the second derivative of V(z,-) on Mg/ %, and o(¢?) is uniform

with respect to z. The tensor A(z) := 0%V (z,0) is called the elasticity tensor, and the
linearized elastic energy is then defined as

1
3 /Q A(z)[e(u),e(u)] dz .

The previous discussion shows that, if we rescale the total energy given by (1.23), we
obtain

lim——l—(/nW(m,I+EVu) dcv—szfﬂfudm) = %/ﬂA(:v)[e(u),e(u)] dx-—[nﬂudx (1.26)

e—0 62

for every Lipschitz function u. This equality is usually considered as the main justification
of linearized elasticity.



Note that this argument does not prove that the minimizers u. of (1.23), satisfying
suitable boundary conditions, actually converge to the minimizer of the corresponding

problem )
§/S2A($)[e(u),e(u)] da:——/gfuda:.

Indeed we shall see that this is not always true.
Given a load £ € L?(Q2, R™), a boundary value g € WhHeo(Q, R™), and a closed subset
9Qp of 09 with H™~1(6Qp) > 0, we consider the minimum problems

min {/ W(x,I—f—sVu)dm—ez/Eudz}, (1.27)
ueH 50~ JQ 9)

where H, 1 aqp denotes the closure in H L(©2, R™) of the space of functions u € W 2 (Q,R")
such that u = g on Ofp. Suppose that, for every £ > 0, there exists a solution u. of
(1.27) which satisfies the orientation preserving condition det(J +£Vu,) > 0. Under some
- natural hypotheses on V', we prove that u. converges weakly in H'(Q, R™) to the (unique)
minimizer ug of the problem

min { / e(u)] dx—/éudx
uEHgl_an

Moreover we prove the convergence of the rescaled energies, i.e.,

hm / W(z,I+eVu.)dz —¢ /Eug da:} = / A(z)[e(uo), e(uo)] dz — / Lugdz .
e—0 g2 Q
(1.28)
More generally, the same results hold if det(I + eVu,) > 0 and

/ Wz, I+ eVue)dz — 52/ lucdz = J. + o(?),
Q Q

where J; is the (possibly not attained) infimum of problem (1.27). This provides a full
variational justification of linearized elasticity.
These results are proved under the following additional hypotheses on V:

(a) :I}JIII;fp égf V(z,E) > 0 for every p > 0;

(b) there exist @ > 0 and p > 0 such that ilélg V(z,E) > a|E|?* for every |E| < p;
T

(c) liminf —- 1nf V(z,E) > 0.

|E|—+00 IE[
These conditions say that 0 is the unique minimizer of V(z,-) (with a uniform estimate
with respect to z) and that V(z,) grows more than quadratically near the origin and
more than linearly at infinity.
If (c) is replaced by the slightly stronger condition

1
’ = inf V(z,E) >0
) BRI fmp kY P)>



for some exponent p > 1, then we prove also that u. converges to wug strongly in
whe(Q,R"™) for every g < 2.

The proof is obtained in two steps. First we show that the sequence u. is compact in
the weak topology of H'(Q, R™), using a recent lemma proved by Friesecke, James, and
Miiller [32]. Then we prove that the functionals

Folw) = % [ Vo celw) + 3200 do

T-converge to the functional

These two facts lead to the weak convergence of the solutions in H 1(Q,R™) and to
the convergence of the rescaled energies expressed by (1.28). The strong convergence in
Wla(Q,R") for g < 2 is obtained from (1.28).

1.2 Preliminaries

1.2.1 [I'-convergence

We summarize in this section the definition of I'-convergence and its main properties
in the case of functionals defined in metric spaces (in the sequel denoted by X). For a
comprehensive treatise on I'-convergence we refer to Dal Maso [24].

Definition 1.2.1 Let Fj : X — [-00,+00] be a sequence of functionals. For every u € X
we define

F'(u) == I‘-li}ggﬁ Fj(u) = inf{li;:giolngj(Uj) : for every uj — u},

F"(u) := -limsup Fj(u) = inf{lim sup F}(u;) : for every u; — u}.

j—o0 I

Note that F' and F" -are lower semicontinuous.

Definition 1.2.2 A sequence of functionals Fj : X — [—o0,+00] I'-converges to F:X—>
[—o00,4+00] (as j —+ +00) if and only if for every u € X we have

F'"(u) < F(u) < F'(u).
In this case we write F = ['-lim;j 0 Fj.
Tt follows easily by Definition 1.2.1 that F; I'-converges to F' if for every sequence u; — u
F(u) < liminf F;(u;
(u) < limin Fg(w) :
and if there exists a (recovery) sequence u; — u such that

lim sup Fj(u;) < F(u).

j—roo
One of the most important results in the theory of I'-convergence is the following.
Theorem 1.2.3 Assume that Fj T-converges to F and let u; be a sequence such that

lim; Fj(u;) = lim; infx Fj. Then, if uj converges, its limit is a minimum point for F'.

10



1.2.2 Supremum of a family of measures

Using the regularity of (positive) Borel measures it is not difficult to prove the following
result [13].

Proposition 1.2.4 We denote by A(Q) the topology of Q. Let u : A(Q) — [0, +00) be
super-additive on open sets with disjoint compact closures and let X be a positive Borel
measure in 2. Let ¢; be a family of positive Borel functions such that

/ pid\ < p(A) forall Ae A(Q)
A

Then
/ sup s(z) d\ < p(A) for all A € A(Q).
A 1

1.2.3 Spaces of functions with bounded variation

This section presents the main definitions and properties of the spaces of functions with
bounded variation which appear in the free discontinuity problems treated in the sequel.
For the comprehensive theories we refer to [7], [6], [29]. We will always assume that {2 is
an open bounded set with Lipschitz boundary.

Definition 1.2.5 We say that u € LY(Q) is a special function of bounded variation if its
distributional derivative is a measure with finite total variation which can be written as

Du=VuLl"+ (ut —u )y, H LS,

where Vu is the approximate gradient, L™ is the Lebesgque measure, Sy is the set of dis-
continuity points of u, H"™* is the Hausdorff measure, while u™ and u™ are the traces (in
a measure theoretic sense) along Sy. The space of special functions of bounded variation
on § is denoted by SBV ().

The following compactness and lower semicontinuity theorem for SBV functions is
due to Ambrosio [4].

Theorem 1.2.6 Let ¢ : [0,400) — [0,+00] be a conver non-decreasing function such

that :
lim w = 400
t—+oo t

and let 8 : [0, +00) — [0, 400] be a concave non-decreasing function such that

lim Q—@— = +00
t—0+ ¢

Let uy, be a sequence in SBV (Q) such that

Sup {/Qw(lv'ukl)dw + /Suk O(juff — ug ) dH™ ! + ||ukl|oo} < 400. (1.29)
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Then we can extract a subsequence uj which converges in L'(Q) to a functionu € SBV ().
Moreover for every function ¢ : St — [0,+00), which is convez pair and positively I-
homogeneous, we have

/ 0(jut — u™|)p(v) dH" " < liminf 0(|u —uj|)p(v )ydH Mt (1.30)

j—-+oo Suj

Finally Vu; converges weakly to Vu in LY(Q,R™), hence, as ¥ is convez, we have
< Tim .
[ w17l ds < imins | wvus . (1.3)

We recall the slicing properties for functions in SBV (). Let £ € Sn=1 and let Il =
{y € R™ : (y,&) = 0}, then we define

Qf={teR:y+ieQ}.
Moreover, for u : O — R we denote by u?é' : Qg — R the function
uf (t) = uy + t€) .

Theorem 1.2.7 Let u € SBV(Q). For every ¢ € S"! the function u?é belongs to
SBV(Q) for " lg.e. y € g. Moreover for H" 1-a.e. y € II¢ we have

(Vuly +1€),€) = (ug)'(t) for a.et € Qf,
Sy_ Wi ={teR:y+t{ € Su},
(ug)*( ) =u(y+1€) Vi€ Sy,

/H6 (#(Su)g) dH" 1 (y) = /Su l(Vuaf)ld'Hnﬁl.

Conversely, if u € LY(Q) and if for every & € {&1,...,én} and for H* g y € I
we have uf € SBV (%) and

/ |Du|(9Y) dHP(y) < +oo,

then u € SBV ().

Given a family F of functions, for every ¢ € S"~! and y € Il we set Fg = {ug tu €
F}; moreover we say that a family F is 6-close to F if F' is contained in a 6-neighborhood
of F. The following is due to Alberti, Bouchitté and Seppecher [2].

Lemma 1.2.8 Let F be a family of equiintegrable functions belonging to L'(A) and as-
sume that there exists a basis of unit vectors {&1,...,&,} with the property that for every
i=1,..n, for every § > 0, there ezists a family Fs d-close to F such that (F5)gi is
precompact in L'(AY) for #Hn~l.a.e y € A,. Then F is precompact in L'(A).

12



Definition 1.2.9 A functionu € L*(Q) is called a generalized special function of bounded
variation if for each T > 0 the truncated function ur = (=T)V (T Au) belongs to SBV ()
for every open set Q' CC Q. The space of these functions will be denoted by GSBV ().

In the following we recall a compactness and lower semicontinuity result in GSBV (Q).

Theorem 1.2.10 Let v, 0, and ¢ as in Theorem 1.2.6. Let uy, be a sequence in GSBV (Q)
such that

Sip{ [ o dz [ u

Then there is subsequence uj of ug such that u; converges in measure to a function u €
GSBV(Q) and the lower semicontinuity inequalities (1.80) and (1.81) hold.

O(luf — ug ) dH™? ’f“/n'lukldm} < +oo.

k

Definition 1.2.11 For 1 < p < 400 we define the spaces
GSBVP(Q) :={u € GSBV(Q) : Vu € LP(Q,R"), H""1(S,) < +oo}.

Definition 1.2.12 We denote by SBV(Q,R™) the space of functions u € L'(Q, R™)
whose distributional derivative is a measure with finite total variation which can be written

as
Du=Vul'+ w" —u)@u,H" L S,,

Definition 1.2.13 For 1 < p < 400 we define the spaces
SBVP(Q,R™) .= {u € SBV(Q,R™) : Vu € LP(Q,M™™), H"1(S,) < 4oc0}.
Definition 1.2.14 Let W(Q,R™) be the set of u € SBV(Q,R™) such that
1. S, is essentially closed, i.e. H'(S, \ Sy) =0
2. S8, is the union of a finite number of (n — 1)-simplezes
3. ueWhke(Q\ S, R™) Vk € N.

The following lemma, proved in [23], shows the density property of the space W(Q,R™)
for free discontinuity problems.

Lemma 1.2.15 Let g : R™ x R™ x 8"~! — [0, +00) be a continuous function satisfying
9(a,b,v) = g(b,a,~v) for every a,b € R™ and v € S"!. Let uw € SBVP(Q,R"™) N
L>®(Q,R™) for p > 1, then there is a sequence wy € W(Q, R™) such that

wy, — u strongly in L1(Q,R™), (1.32)
Vuwy — Vu strongly in LP(Q, M™*2), (1.33)
lim sup [|wgleo < |[tlo (1.34)
k—+o0
limsup/ g(wi,wi,v)dH < / g(ut,u™,v)dH?. (1.35)
k=400 J Su, Su

13



Remark 1.2.16 Under the additional assumption that 1 < p < 2 and using a Cp-capacity
argument we can find a sequence Wk such that for every k the jump set Sy, is given by
the union of a finite number of disjoint simplezes.

Using a truncation argument it is easy to prove also the following density result in

GSBV?(Q).

Lemma 1.2.17 Let g : R X sn—1 — [0,+00) be a continuous function increasing with
respect to the first variable. Let u € GSBVP(Q) for p > 1, then there is a sequence
wy € W(Q) such that

wy, — u strongly in L*(Q) (1.36)

Vw, — Vu strongly in LP (2, R™) (1.37)

limsup/ g(jwiF - 'w,;{,v)d'Hl < / g(lut —u™|,v)dH" . (1.38)
k—-+oo ka w

1.2.4 Spaces of functions with bounded deformation

Definition 1.2.18 We say that u € L}(Q,R") is a special function with bounded defor-
mation in Q, if the symmetric part of its distributional derivative is a measure with finite
total variation, which can be written as :

Eu := -;—(Du + Dul) = Eul™ + (ut —uT) Oy H W Ty,

where Eu is the approzimate symmetric derivative, J. is the set of jump points and O
denotes the symmetrized tensor product. The space of these functions will be denoted by
SBD(Q,R™).

The following compactness and lower semicontinuity result [45] slightly generalizes
Theorem 1.1 and Corollary 1.2 in [10] to the case of anisotropic energies in SBD*(Q,R?).

Proposition 1.2.19 Let (2 be an open bounded set in R2, let ¢ : R? — [0, +00) be convez,
positively 1-homogeneous and pair, let : M?;ﬁl — R be convez and lower semicontinuous.
Let uj be a sequence in SBD?(Q,R2) such that

/ﬂlfug'lzdfc +H (Ju;) + llugllos < € < 400, (1.39)

then there exists a function u € SBD(Q,R?) and subsequence (not relabelled) such that

uj U in L} (Q,R?), (1.40)
<t .
/fquz(gu)d:c < %_I_{l_:&f/ﬂ'gb(guj)dm, (1.41)
1 S S 1
HI(R) < liminfH (), (1.42)
$(v)dH! < liminf / Sw)dH . (1.43)
Ju J=H00 J 1y,
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Proof. From the compactness and lower semicontinuity result contained in [10] follows
the existence of a subsequence, denoted as u; such that u; — u in L}, (€, R?) and such
that inequalities (1.41) and (1.42) holds.

To prove (1.43) let us first consider a function ¢ defined as ¢(v) = |(v,¢)| for ¢ € S.
For ¢ € St let Il = {z € R? : (2,€) = 0}, let {2¢ be the projection of  on the hyperplane
g and Qf = {t € R : fory € Iy y +t¢ € Q}. Moreover for y € Il and ¢ € St given
v € SBD(Q,R?) let Jy¢ = {z € Jy : (v (z) —v(z),£) # 0}, vg : Q¢ — R be defined as
vg = (v(y + t€),€) and finally let Ag(v) and Bg(v) be respectively the total variation of
the absolutely continuous part and the counting measure of singular part of (vé’)’ in Qé’,
namely

AW =610 BYW) = HO(Jyp) = #(T).
Being {u;} C SBD(Q,R?) then by Proposition 2.1 in [10] for every £ € S! and for
Hl-a.e. y € Q¢ we have (u;)f € SBV () for every j and

/Q E AY(u;)dH (y) < +oo. (1.44)

Moreover for H!- a.e. £ € S we have Ju; ¢ = Ju;. Now take &€ € S? such that Juj e = Ju,
for every 4, then

[ el = [ Biomi. (1.45)
Ju; Q

moreover, being Hl(Juj) < 400, there exist a subsequence, denoted {uy}, such that

J—r-+oo

. _ligloo N BY(uy)dH (y) = liminf N BY(uj)dH' (y) < +oo.

Take € € (0,1) and take a subsequence {w;} of {u;}, such that

; Year Y. 1 —
l_lffoo o, eAg(uj) + B¢ (uj)di (y) =

lim inf /Q eAZ (uz) + BY (uj)dH! (y) < +oo
3

j—+oo
and such that for #!-a.e. y € Q¢
uf € SBV(Q%) (u)f — uf strongly in L}Oc(Qg) .

By Fatou’s Lemma we get that

lliminf (sAg(ul) + Bg(ul)> < 400

—»+-00

for Hl-a.e. y € ¢. Let y € Q¢ such that the previous inequality is satisfied, then there
exists a further subsequence {u,} such that

lim (aAg(un) + Bg(un)) = lim inf (sAg(ul) + Bg(u,)) < +00,

n—+40co l.._)+00
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then by Ambrosio’s compactness and lower semicontinuity Theorem in SBV(Qg) [7] there
exists a subsequence {u} such that

Bg( u) < hmme (up)

T h—4o0

< liminf (EA (up) + BY (Uh)>

T h—too

< lim (EAg(un)-l-Bg(Un))

— n—r+oo
< lim inf (EA (up) + By(ul)> < +00.

l—-+oco

The previous inequality holds for H1-a.e. y € Q¢ so by Fatou’s Lemma

1 _ U 1
/J e ) = /Q Bl

IA

1iminf/Q eAY (ur) +Bg(ul)d}l1(y)
¢

l—+co

< elimsup | A} (w)dH (y) + hmmf By(ul)d?{l( )
=+ Qg QE

ce + lim By(uk)d’Hl( )

—-)OOQE

IN

j—r4oo

<ee +1iminf/ (v, €)|dH* . (1.46)
Juj

It remains to prove (1.46) for every § € St Let ¢ € St and let § > O then there exist &5
such that |¢ — &s| < 0 and

gt < umint /J e £)]dH? . (1.47)

It follows that

f (v, OldHE < /J (v, £5) dHY + 16

w

j—+oo

< liminf (v, &s)|dH + 16
J

< liminf / (v, €5 — O] -+ |0 Q)| dHE + 16

j—r+oo Ju

< liminf v, C)|dH! + cad
j—-+oo Juj

where ¢; and ¢y does no depend on é.

At this point the lower semicontinuity inequality is proved for every function ¢(v) =
(v, ¢)| for ¢ € S*. If ¢ is convex, 1-homogeneous and pair it can be written as

$(v) = sup{y(v) : P(u) = (u,n) —c and P(u) < $(u)} (1.48)
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In (1.48) it is not restrictive to take 7 linear, indeed for every ¢ € S*, being ¢ 1-

homogeneous, if (u,n) — ¢ < @(u) for every u then (u,n) < é(u). Thus we can define
a set © such that

¢(v) = sup|{v,£)|.

£€o

By the lower semicontinuity we have for every £ € ©

/ |, €)|dH* < liminf / (v, &)l
Ju Iree .
.. 1
< l}ﬂi&f/h_ p(v)dH
J

and by a supremum of measures argument it is easy to deduce that

p(v)dH! < lim inf / d(v)dH?
Ju Juj

J—r+0o0

which gives inequality (1.43). B
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Chapter 2

A finite element approxii:nation of
the Mumford-Shah functional

2.1 Statement of the main result

Let © C R? be an open bounded set with Lipschitz boundary, let Tg for i =1,2,3 be the
triangulations of R? defined in Figure 1.2 and let ¢ denote the diameter of the elements.
Let V() be the usual finite element space of piecewise affine functions in Q defined on
T?. Let f : [0,+00) — [0, +00) be a nondecreasing continuous function such that

tl_i)r(ﬁ f—i—tl =1 t_lj_rgloof(t) = foo < +00. (2.1)

Finally let g € L%(£). The main result is summarized in the following theorem.

Theorem 2.1.1 For i = 1,...,3, there ezists a convez, 1-homogeneous function & :
R2 — [0,+00) such that, for every positive sequence €j — 0 the functionals

1 RVt _ : ;
G, (u) = EJ' /ﬂ f(&lVul|*)dz + /Q |u gl’dz ifu € V,c.j (9) |
+oo ifue LHQ)\ VL (Q),

T'-converge, respect to the strong L2-topology, to the anisotropic Mumford-Shah functional,
defined by

Glu) = /Q Vul2de + foo [S bi(ve)dH! + /Q lu — g|?de (2.2)
ifu € I2() N SBY(Q) and G(u) = +oo if u € L*(Q) \ SBV(®).

2.2 Mesh anisotropies

In this section we deal with the anisotropy functions ¢;(v) appearing in (2.2). Let § C O
be a segment with unit normal v. Consider the set

Q={zeQ:z=s+tvforseSandt>0} (2:3)

and define a neighborhood of S in T,;.ij as
Si(Sv)={T € Ti : TNS#0and|TNQ|#0}. (2.4)
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Figure 2.1: A segment in T2 and the level curve {¢3(v) = 1}

In the following, for ¢ = 1,...,3 we define a convex, 1-homogeneous, pair function @i (V)
in such a way that for every segment S with normal v we have
1
. 1 = lim —
Gi(v)H! () = lim . > 1Tl (2.5)
Tes;, ,

Lemma 2.2.1 Let ¢ = 3 and let v = (~sino,cose). Let & = (1,0), & = (%,%—5),

& = (—%, g), and let the function ¢3(v) : ST — [0, +00) be defined as

(&) iff<a<Zand - T <a<-I

¢3(v) = &) FHF <a<mand ~T<a<0

|(1,€3)] if0<a<ZTand —n<a< —
then (2.5) holds for every segment S with unit normal v.

Proof. By symmetry it is sufficient to consider the case 0 < a < % Moreover it will
be clear from the computation that it is not restrictive to suppose #!(S) = 1. For every
Te Te3,- we have |T| = E?\/§/4, then

2ress 1T V3
"*“a—]“—— = #(52) 7 i

where #(-) denotes the cardinality. We will prove that

-—\Z—g Ej . (2.6)

= i 3
¢3 (1/) Ele)IO #(Ssi)
Fix o and ¢, take an orientation on S and let 2y be the first poin’b, Tpy+1 the last and
Z1,.--;%m be the intersection points between S and the edges with slope tan(%) (see
Figure 2.1). It’s clear that for n = 1,...,m — 1 each segment [z, z,,,1] intersects exactly
two triangles, while [zo 1] and [Zm, Zm+1] can intersect either one or two. So we have the

following estimate
2(m —1) +2 < #(52) <2(m - 1) + 4. (2.7)
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To estimate m, let h(g;) = H1([z1 z2]) and note that forn=1,...,m —1 each segment
[Zn Znr1] has the same length, then

[h(len] Tlsms Lz(lsj)

where [-] denotes the integer part. Joining (2.7) and (2.8) we get

1 -

2{h(16j)] -25#(5@)52[@} +4. (2.9)

At this point it should be clear that (2.6) does not depend on the particular choice of S,
indeed the estimate on #(ng) holds for every segment with the same normal, even when

it contains a vertex of the mesh, due to the careful definition of the set ng. Then we have

. 3 \/g . 1 \/g . \/§ €4
VS = lim | | L = lim o _
Eljlino #(Saj) 4 & aju—1>10 [h(sj):\ 2 & 51j1£>n0 2 h(&j) (2 10)
By a simple trigonometric argument we get h(e)(&,v) = £1/3/2, then
: 3 ~\/_?E (4¢3
Jim 3#(S;) €0 = (&3, v) (2.11)
and the proof is concluded. B

Remark 2.2.2 The function ¢3(v) can clearly be extended to any vector v € R? by 1-
homogeneity. Moreover it’s easy to check that ¢3(v) will be conver and its level curve
{¢3(v) = 1} is an hezagon, represented in Figure 2.1. For the applications it 15 useful
to measure the effect of the anisotropy, thus following [17] we compute the ratio a = M

m
where M = max|y|=1 ¢(v) and m = min),|=; ¢(v). Obviously, the greatest a is the more

the triangulation is anisotropic, in this case we have a3 = 2—3‘[@ =~ 1.154.

Lemma 2.2.3 Let i = 1 and let v = (—sina,cos ). Let ¢ = ({2,—?), & = (0,1),
¢1 = (=1,0), and let the function P1(v) : St —= [0, +00) be defined as

W, é) iff<a<mand -3 <a<0
$1(v) = 1/2—51(1/,5%)1 ifOSaS%and—ﬂ'gag—-%%

Ll,ed)| fI<a<tand-%<a<-F

then (2.5) holds for every segment S with unit normal v.

Proof. The proof follows the same argument used in the previous Lemma. Assume that
#1(S) = 1 and consider for o fixed a set of points g, - - - , Tm+1 such that forn =1,...,m—
1 each segment [z, Tn41] intersect exactly two triangles, then, using an estimate like (2.6)
and (2.9) we prove that

1 g

1 1 ii: . 1
h1(v) = 51,.190#(551') 1 = ISR

(2.12)
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Figure 2.2: A segment in T and the level curve {¢1(v) = 1}.

Take first 0 < o < T, the set of points z1,- - -, z,, is defined as the intersection between S
and vertical edges (see Figure 2.2). In this way, from h(gf)(€3,v)| = j/2/2 follows

i (§1) 5 = V2
Eljl-—ril[)#(saj) 4 - 2 |<§27V>I “¢1(V)‘ (213)
For 7 < a < T consider the set of intersection points between § and horizontal edges,
this time h(e;)|(¢3,v)| = ev/2/2 then

- 1y8 _ V2 0
%1310#(563') 4 - 2 ‘(éBa U)l - ¢1(1/) . (214)
Finally, for 7 < o < 7 define z1, ..., T, as the intersection between S and the edges with

slope tan(f). In this case we have h(e;)|(¢],v)| = €;/2, then

: 1y8 e _
Jim #(55) 2 = (&)l = 61 (v) (2.15)
and this concludes the pfoof. B

Remark 2.2.4 As before ¢1(v) can be defined for v € R2 in a 1-homogeneous convez
function, whose level curve {¢1(v) = 1} is represented in Figure 2.2. This time the
anisotropy factor a = —% 15 much greater, due to the particular orientation of the tri-

angles, indeed we have M =1 and m = —22 50 a1 = /2 ~ 1.414.

Lemma 2.2.5 Let i = 2 and let v = (—sina,cosa). Let the function $a(v) + St —
[0, +00) be defined as

¢2(v) = %(451(1/) + ¢1(V')) ;

iuhere V' denotes the symmetric vector with respect to the y-azis. Then (2.5) holds for
every segment S with unit normal v.

Proof. The idea is to reduce the computation to the previous case. For this reason we will
consider two variants of the triangulations T} and T? depending on the orientation of the
elements. They are represented in Figure 2.3 and 2.4. Consider the squares () obtained
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Figure 2.3: The triangulations T2% and T2,

Figure 2.4: The triangulations T!% and T

7

Figure 2.5: Two segments in T2% and T2".
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Figure 2.6: The level curve {¢2(v) = 1}

from the vertices of the mesh and note that the orientation induces a correspondence
between the triangles of T2® contained in @ and the ones of T or T2°. It should be
clear that for every segment S

H(SIH(S,v)) + # (S (S,v)) = #(82(S,v)) + #(82(S,v)) . (2.16)

Obviously by the symmetry it is sufficient to consider —~% < o < —%, in this case we show
that
#(S2H(S,v)) — 6 < #(SZ(S,v)) < #(82%(S,v)) +6. (2.17)

Being —90 < a < —45°, taking the set of points zj,..., z,, obtained by intersection with
vertical edges, it is not difficult to see that for n = 1,---,m — 1 each segment [z, Tn1]
intersects the same number of triangles in 7'2% and in T2 (see Figure 2.5 ). This is enough
to prove (2.17) because in [z¢ 1] and in [T, Zm+1] there are at most three elements. In
conclusion

1 1
. 2a, I : 2b .
Eljnno #(5¢, (S, 1/))4 g = s13_1m0 #(.S'Ej (S, 1/))4 €

then, by (2.16),

1 1
: 2a s = la 15
Jim #(S2(S,0)) &5 = 5 Jim (#5565, V) 6+ #SHSV) 2¢;)
= (510) + #10) (2.18)
where /' is the reflection of v respect to the y-axis. B

Remark 2.2.6 Again, the function ¢o can be extended in a I-homogeneous conver way

to R2. This time the anisotropy factor as is much less then ay, infact M = —‘{—5- and m = %

0 ag = %_5 ~ 1.118.

Remark 2.2.7 In the sequel, to prove the I'-liminf inequality, it will be very useful to
have a representation of the functions ¢; in terms of the scalar products (v, E,’c) Fori =3,
let cz = 1Vk, then ,
$3(v) = max (v, &)]. (2.19)
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Fori=1,letct =1and ch=c3= V/2/2, then
$1(v) = max ci|(v, &)l (2:20)

Fori=2, let cﬂzc = ck Yk, then we have

bolv) = 3 (:0) + 420
= S ol Gen)| + max (w3

= T (o, 00, Ge)l + R0 G ) (2.21)

1,R2

where ¢, denotes the reflection of (x with respect to the y-azis. Note that the max in
(2.21) can be reduced over the pairs (K1, k2) such that (Cry,Cy,) = V2/2.

2.3 T-limsup inequality

In the sequel we will use the following notations, given u€ L?(2) and a sequence €5 ~\ 0,

let

1 / 2 . ;
— gi|Vul?) dz if ue V2 (Q

Fej(u) =9 & af( 1Vel) () ' (2.22)
“+00 ifu eLz(Q)\ng (),

7 TN .
F'(u) = I-lim inf F, (u), (2.23)
F'(u) =T-limsup Fg;(u). (2.24)
J-r+0o0

In this section we prove that for any u € L?(Q) the I'-limsup inequality holds respect
to the strong topology of L%(£2). The proof is similar to the one presented in [20]. In order
to prove Proposition 2.3.2 we need the following result (for the proof see Remark 3.5 in

[20]).

Lemma 2.3.1 Let T be a triangle with angles 0; and edges Ci. Let v : T — R be an affine
function, then for every pair (i, ¢; we have the following estimate on the gradient

1V'U‘ <C ma‘X{IVCi’v!: IVCJ‘UI}’ (2'25)
where

\/sin? 9; + 4

C = max :
i=12,3  |sind;]|

In particular for C; defined by

C"— 3 fori=3
YTAV5 fori=1,2

inequality (2.25) holds for every €; > 0 and for every T € Tsij.
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Proposition 2.3.2 Let w € W(Q), then for i = 1,2,3 there ezists a sequence vj € VE"J ()
such that

v = wllr2(q) < cef,

hmsupFE] (UJ) / ivwlzdiﬁ’i‘foo/ bi(vw)dH*
Jj—= 4o

where the constant c does not depend on ;.

Proof. Fix i and let S, = U2 _, Sy, where Sy, are disjoint segments. Fix for every m a
normal vy, to Sy, and let S; = UP, =15, ! (Sm, Vm) be the union of the coverings as defined

before. By the regularity of w we have w € C°°(Q \ §;) for every j. Then the sequence vy,
defined as the Lagrange interpolation of w in V’J (Q), satlsﬁes the required properties. First
of all by the regularity of w and by standard results on finite elements, see for instance
[21] Theorem 3.1.6, there exists a constant ¢ such that the inequalities

lv; = wllz2(r) < CE?l“’[H?(T)

lv; = wllg ) < cejlwlge
hold for every w, for every £; and for every T such that T ¢ S;. Now let ; = Q\ S; then
we can write

~—/f IV da < 3 71> f(EJ|VvJ] tf S |T[

Teq; Tes; &
< 3 T 6T+ S ml).
TEQ; m=1 TeS. (Smvm) 7

The proof follows from the inequalities

lim sup Z iT|—— f (&5 Vuy] )</ |Vu|? dz (2.26)
J—=+o0 TeQ; 6.7
limsup » [T] / bi(Vim)dH . (2.27)
j—+oo Sz

The first can be proved as in [20] while the second follows easily from the properties of
the functions ¢;(v). &

The previous result proves the I'-limsup inequality for u € W(Q), it remains to extend
it to u € L%(Q). Clearly it is not restrictive to assume that u € GSBV?2(Q). Then by
Lemma 1.2.17 there exists a sequence wi € W(Q) such that

wy — u strongly in L2(Q),

Vwy — Vu strongly in L?(Q, R?),

lim sup i (v, )dH? S/ bi(vu)dH .
Su

k=400 J Sy,

Then by the lower semicontinuity of F”’ respect to the topology of L2(9) it follows that
F"(u) < lim inf F"(wy,) < limsup F(wg) < F(u)
koo k—r+4o00

and thus I'-limsup inequality is proved completely.
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2.4 T'-liminf inequality

In this section we will prove that the I-liminf inequality F(u) < F'(u) holds for every
u € L2(Q).

Proposition 2.4.1 Let &; N\, 0 and let u € L*(Q). If F'(u) < +oo then u € SBV?(9)
and

1
/ |Vul?dz + foo / ¢i(r)dH! < liminf — [ f(e;|Vu,l*)dz ,, (2.28)
Q Su jmtee & Ja
for every sequence u; € V;J (Q) converging strongly to u in L*(£).

The proof is based on the one presented in [20]. First of all, for every open set ACQ,
we define the localized functionals

1 . 2 . : i
Faj(u’A):{;j[qf(sleul )dz if ue VZ,(Q) |
+oo, if ue L2(Q)\ V. ()

F'(u,A) =T-liminf F, (u,A),

Jj—rtoo

then we prove the following Proposition.

Proposition 2.4.2 Leti = 1,...,3, u € L*(Q) and A an open set in Q. If F'(u, A) < 400
then u € SBV?(A) and

/ Vul2d < F'(u, A). (2.29)
A
Moreover fori=1,3
foo/s Ac};t(uu,g,i)[d';{l < F'(u,A) fork=1,...,3, (2.30)
uw
while for i =2
1 3 3 1 1 !
foo [ (6l el + b o)l ! < F' (0 4), (2:31)

for every pair (g, such that (C1» Crp) = V2/2.
In order to prove Proposition 2.4.2 we need some of technical lemma.

Lemma 2.4.3 Let A be an open set in Q and leti=1,...,3 . For every 0 € (0,1) there
exist oz > 0 and B5 > 0 such that for every u € V, () it is possible to find a function

v € SBV?(Q) satisfying

(1-4) / Voldz + asHY(Sy N As,) < Fi, (u, 4),

Hz e : u(z) #v(@)} < Brej Fe;(u, A4)
where A;; ={z € A : d(z,04) > €5}

Proof. See [20], Proposition 3.3.
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Lemma 2.4.4 Let A be an open set in Q and i = 1,3. For every § € (0,1) there exist
asg >0, Bs >0, and vs > 0 such that for every index k and for every u € VE’J (Q) it is
possible to find a function v € SBV?2(Q) satisfying

o5 / IVof2dz + BH (Sy O Ae,) < B, (u, A) (2.32)

{z € u(z) £ v(@)}| < v5e; By (u, 4), (2.33)

(=0 [ il €M < By (o 4). (2.34)
SUF‘IAEJ.

Proof. From the properties of the function f we deduce the existence of a positive constant
c such that
min(ct, (1~ 0)fao) < F(£) ¥£20.

Let Ta ={T € TZJ, : T C A} and let 0 = /(1 — ) foo/c. To build the function v we need
a careful classification of the triangles in 74 according to the behavior of Vur: let Ta
for m = 0,...,3 be the set of triangles T' € T4 such that the slope of u is greater than
o/./€; exactly on m edges. So we can write

Fwd) > Y L min(ee; [ Vurl?, (1 - 6)f.0) =

TETA &
e 3 |T|min([wT[2,—02)+(1—6)foo > iy
€ €5
TE€Ta,0 TeTa\Ta0

If T € Tho then [Vur| < C’z\;——&:: where Cj is the constant defined in Lemma 2.3.1, thus
J

we have a lower bound on ¢?/¢; in terms of |Vur|?, in particular for ¢ = 1/C? we get

T
FwA)2ed 3 IVurP+(1-0fe 3 2 (2.35)
T€Ta,0 TeTa\Ta,0 K
Now, if T' € T4 o we take v = u, in this way inequality (2.33) holds with v5 = 1/(1 —§) feo,
while if T' € T4 \ Ta,0 the function v and the constants a5 and 85 are defined in order to
satisfy the inequalities

T . )
Ty g / (v €LY dHE VR, (2.36)
€j ST
T
(1-36) ﬂ,ol;-| > a5 / \Vo[2dz + ByHY(S, N T), (2.37)
J T

which gives respectively (2.32) and (2.34). The function v can be defined as in [20], and
repeating the proof of Proposition 3.4 in [20] it is not difficult to see that the same choice
of v, as and By satisfies all the previous inequalities. ‘ |

Lemma 2.4.5 Let A be an open set in §) and let 1 = 2. For every § € (0,1) there exist
as; >0, B5 > 0, and 5 > 0 such that for every pair ky, ks with (gkl,g,'cz) =+/2/2 and for
every u € VZJ (2) it is possible to find a function v € SBV?(Q) satisfying (2.33) and

o5 / Volda + BsHY(Sy 1 Ase,) < B, (u, A), (2.38)
2e

J
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(et v G+ g2, Gl ) < Foy(s, ). (239)

[NSRI

(1= 0)fes /SvnAQD

Proof. In this case it is not possible to define a function v on a single element in such
a way that (2.39) is satisfied. It will be necessary to consider a group of triangles as the
one represented in Figure 2.7a, which is the smallest periodic structure of the mesh. Let
us call Q this set and let Q4 be the set of squares Q in meshepsj 2 such that Q C A. It
is clear that

Ase;  (Ugea, @) € 4.

First v is defined on AQ, thus for every edge L C 0Q, let 1, z2 be its vertices, z12 its
middle point and let u} be the slope of u on L, then

- v = u(z,) on the segment [z1 z12] and v = u(z) on the segment [z19 To] if lul | >
o/
- v=uif |uf| < o/ /E

Note that in this way v is no longer continuous on 9Q but its slope now is piecewise
uniformly bounded by ¢/,/€;- ’

Now, let T be a triangle in Q, if |Vur| < o/,/€j we take v = u on T', hence by an
estimate like (2.35) inequality (2.33) is still satisfied. Moreover this definition agrees with
the one given on 9@, indeed on the edges of T we have |u}| < |Vur| < o/ /€.

At this point we have defined v on the triangles T C Q) where |Vur| < o/,/€5 and on
the boundary 8Q. Figure 2.7b presents a set Q where on the lower left triangle v = u (the
colored triangle and the solid lines denotes where v is already given).

Call E the set where v is still to be defined, note that on dF the function is assigned and
its slope is piecewise controlled by o/,/€;. In the following the idea is to extend the values
on OF inside E introducing a jump set S,, which takes into account the discontinuities on
8Q and such that H*(S, N 8Q) = 0, and keeping a control on the gradient. Unfortunately
it is not possible to find a unique procedure for all the cases, thus we need to divide Q4
into five classes Qam for m = 0,...,4 according to the number of elements T' C Q) on
which |Vur| > o/,/€5. To avoid a repetitious proof we omit the easy part of verifying
(2.39) and (2.38) and every time we describe only the construction of v. In particular the
existence of the constants s and Bs will follow easily from the uniform bound on |V
and H1(S,). Moreover it is sufficient to prove inequality (2.39) for the pair ¢; = (4, 4),
¢ = (1,0).

Q € Qap. Obviously we take v = u on @, then (2.39) is satisfied being S, = §, and
the gradient is controlled by definition being |Vur| = |Vur| < o/,/Ej.

Q € Qa1. In this case we have four possibilities but, without loss of generality, we can
consider only the one represented in Figure 2.7c, all the other cases are equivalent by a
symmetry argument. Suppose that in the lower right triangle T' we have |Vur| > a/,/25,
in the others (colored) we have v = u. Moreover note that on 7'N Q the slope of v, being
equal to the slope of u, is bounded by o/ V/&j- Now consider the triangles 77 and T3. In
both the triangles v is already given on two edges, where its slope is controlled; thus by
linear extension v is defined on Ty and Ty and the gradient will be controlled by Co/,/Z;.
It remain to consider 75, also in this case we can apply the previous reasoning because v
now is defined on two edges. This time we have |Vur,| < C%0/,/gj. By the construction
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Figure 2.7: The set ), an example and Q € Q4 1.

it is clear that v can be discontinuous only on the bold segment and it is not difficult to
see that (2.39) is satisfied.

Q € Q2. Taking into account the symmetries of @ and v, we can consider only the
three possibilities, represented in Figure 2.8. For the first it is not necessary to give details,
indeed it is sufficient to adapt the definition of v given for Q) € Q4.

In the second case v is defined first on T3, 75 and T3, then, using the values of 75 and
T5 on the dashed lines we complete the procedure on Ty. The discontinuity, represented
by the bold segment, satisfies (2.39) and the gradient controlled in the worst case by
C%c /. /55.

The last case in Figure 2.8c can be reduced to the previous by means of a rotation,
note that the scalar products in (2.39) changes but the inequality is still satisfied.

@ ®)

Figure 2.8: The three cases for Q € Q4.

Q@ € Qu,3. In this case we should consider two possibilities, see Figure 2.9, nevertheless
it is easy to verify by symmetry that the same construction hold for both, thus we will
give details only for the first. As before v is built by linear extension first on the triangles
T; fori=1,...,4, then on T5 and T where it is known on one edge. By construction and
by Lemma 2.3.1 we see that |Vur,| < Co/ /&5 if i = 1,...,4 and |Vug| < C?c/./€; for
j=25,6.

Q € Qag4. This time it is very easy to find a good function v with the required
properties, indeed it is enough to extend the values on 0Q in the sets E; with an affine
function such that |Vuvg,| < Co/,/Ej for every i. ]
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Figure 2.9: The two cases for @ € Qa3.

E,

Figure 2.10: Q € Qa4.

Proof of Proposition 2.4.2. Consider a sequence u; converging to u in L?(Q) such that
uj € V;’J (Q) and liminf;_,4e0 Fe; (uj, A) < +oco. Up to extracting a subsequence we can
assume that sup; F¢; (uj, A) < ¢ < +oo. Now, take § € (0,1), for every j let v; € SBV?(Q2)
be as in Lemma 2.4.3. Let X\ € N be a truncation level, we define

UJ)-‘ =(-AVwj)AX and ug\ = (=AVu;)AAX.

It’s easy to see that u;‘ converges to u* in L2(Q2), then
/ v} — u}lde < 2X\Bse; ey (ug, A) < (2ABsc)e;
Q

and we conclude that also vJ)-‘ converges to u* for every A. Now, let n > 0, if ¢; is small
enough A, C A¢; and

(1=5) [ 1Vo)Pds-+ ashi(S,y 1 Ay) < Fy (0, 4) < o
A"I
By Ambrosio’s theorem we have that u* € SBV(A,) for every X and

(1- 6)/ quA|2d:L‘ + Cvg’Hl(Su,\ N A"T) < glgl-ﬁngEJ (Uj,A) .

An

Since the previous inequality holds for every sequence u; and for every 1 we have u* €
SBV?%(Q) and
(1-46) / |Vt 2dz + asH (S, N A) < F'(u, A).
A
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For A — 400 and § — 0 we get (2.29). It remain to consider inequality (2.30), it’s proved
exactly in the same way using this time the function v; given by Lemma 2.4.4. |

Proof of proposition 2.4.1. From Proposition 2.4.4 follows (2.28) by Proposition 1.2.4
and by the representations of ¢;(v) given in Remark 2.2.7. B

2.5 Numerical examples

This section presents some numerical results for artificial images obtained minimizing the
discrete functional

1 2 K
Ge; (u) = 6_3- /Q a- arctan (Ej-&-EIVU]Z) dz + /Q lu — g dz, (2.40)
where 2 = (0,1) x (0,1) and the function g takes values in the interval [0, 1]. Details about
the minimizing procedure are given in the next chapter. By Theorem 2.1.1 we know that
G, I-converge to the functional

6(w) =6 [ [VuPds+a [ putm)ar + [ - oas, (2.41)

thus the solutions of (2.40) should present for £; small enough the properties of the minima
of (2.41). In particular, according to [15], the amplitude of jump along discontinuities
should be greater than a minimum contrast threshold which can be explicitly computed
in terms of the coefficients o and 3. For our functional, due to the presence of anisotropy,
in general it is no longer possible to have a unique value of this threshold, nevertheless
for rectilinear discontinuities the estimate becomes

__ [a90)
5 | (2.42)

Let us consider now Figure 2.11. Here both the original image and the parameters were
chosen in order to stress the effect of anisotropy. Indeed on the white part we have g = 1
and on the black one g = 0, hence the original contrast is 1. Taking 8 = 0.07 and
a = 0.15, for T the anisotropy function takes the value 1 if v = (v/2/2,v/2/2) and 0.5 if
v = (=v/2/2,v/2/2) and so the constant c is respectively 1.06 and 0.75. For T2 there is
a unique value, which is 0.9. According to these estimates, in the first case the solution
presents a discontinuity on one side and a smooth region on the other, while in the second
the original symmetry is preserved.
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Figure 2.11: The original image and the numerical solutions using T}
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Chapter 3

Numerical solution of thé
Mumford-Shah functional

3.1 Discrete functional and I'-limit

Let © = (0,1) x (0,1) and let T¢ for i = 1,2 be the triangulations represented in Figure
1.2 (e is the diameter of the triangles). Moreover let V(2) be the finite element space of
piecewise affine functions in (2 defined on the mesh T7.

In order to fit the domain preserving the geometry of the mesh, let €; be a sequence
such that ¢; N\, 0 and (\/2—/53) € N Vj, then, by the previous chapter, for 7 = 1,2 the
discrete functionals

1 2 B o\ i
G, (u) = E;/Q“;ar“a“(ffailwl Jasitue Vi@
oo if u € L2(0) \ V2 (©)

I'-converge respect to strong topology of L?(Q) to the functional

,3/ |Vul|?dz + oz/ bi(vu)dH! if u € L2(Q) N SBV2(Q)
G(u) = Q S,
+o0 if u e L2(Q) \ SBV?(9).
From this result it follows easily by continuity that the functionals
F. (u) = Ge; (u) + /Q lu — g|?dz

I'-converge in the same topology to the anisotropic Mumford-Shah functional

F(u) = G(u) + /Q lu — g|?dz .

3.2 The quasi-Newton minimizing algorithm

Let us consider in general the problem of finding a minimizer for a smooth functional
F : R"* — [0,+00). In abstract the idea is to produce a sequence {ux} C R" that
converges to a minimum point of F. In practice, given an initial point ug, the algorithm
generates a finite sequence, defined by induction as ug.,; = uy + txdy, where i is a scalar
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in [0,1] and dj € R™ is a descent direction. In the following we briefly recall the classical
quasi-Newton algorithm (for a detailed treatise see [27] or [33]).

Step 1. Compute the gradient VF'(ug) and the Hessian H F (uy). Then check if the Hessian
is positive definite and (if it is not) introduce a small perturbation of its diagonal in
order to have a matrix HF(ug) = HF (ug) + Dy which is positive definite. In general
this can be done in different ways, for instance through an incomplete and modified
Cholesky factorization, but for our functional, due to the huge number of unknowns, a
better choice is the following. Let h;; be the elements of H I (ug); by Gershgorin’s theorem
the eigenvalues are contained in the union of the intervals

(hii - Z |hijl, hai + Z lhz'ﬂ) .
JFi J#i
Thus to ensure the positive definiteness it is sufficient to replace hy; with hi; = hii + 6; in
such a way that

(hsi +8) = > [his| > 0.
i#i
Moreover to prevent ill-conditioning it is better to require
(hii +6) = Y [higl >,
JFi
where 7 is a suitable positive parameter. Finally check the gradient: if VF(ug) # 0 we jump

to the following step, if VF(ux) = 0 and HF'(ug) is positive definite then the algorithm
has found a minimizer, otherwise introduce a small perturbation in ug and restart.

Step 2. Compute a preconditioner for I}\F(uk), for our functional an efficient choice is
the incomplete Cholesky factorization, which preserves the sparsity of the original matrix.

Step 3. The descent direction is defined by the linear system
HF (ug)dy = —VF(ug)

because o
(VF(ug),d) = —(HF(ug)di,di) <0.

The linear system can be solved using any preconditioned method for symmetric positive
definite matrices. Nevertheless for a fast implementation it is sufficient to solve the system

I/D—I}?’(uk)dk = —VF'(ug) where DHF denotes the diagonal of HF.

Step 4. Determine the step length 2. If HF(ug) is positive definite then we take ¢ =
1, as in the classical Newton algorithm, otherwise t; is computed minimizing the one
dimensional restriction of F' to the interval {uy + tdy for t € [0,1]}.

Step 5. The algorithm is stopped if
|ug+1 — k| = [trde| < 5
where p is a suitable positive value. Otherwise it goes back to the first step.

Note that the algorithm in general converges to a relative minimum of F' depending
on the choice of the starting point up and that, by Step 4, near the solution it should
converge quadratically as the classical Newton method does.
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3.3 The model problem in dimension one

In this section we will consider the one dimensional version of the Mumford-Shah func-
tional and we will prove some existence result about its global and local minima. Let
I =(0,1) and let g € L*®(I), taking values in [0, 1], then the one dimensional Mumford-
Shah functional is

Flu) =8 /I Pz + 0 (Sy) + /I lu — g|ds (3.1)

and the related segmentation problem will be min {F(u) : u € SBV?(I)}.
In particular let us first consider a function g having one discontinuity: let I; = (0,0.5),
I = (0.5,1), h € (0,1] and

_ h il’lIl
g‘{o in I, . (3-2)

In this case we can compute explicitly the solutions of the problems min{F(u) : u €
W2(I)} and min{F(u) : u € SBVZ(I)\W'2(I)}. Let A = /B, the function u, € C*(I)

defined as
_ hcosh(z/}) 7
2cosh(1/2y)
uc(z) = (3.3)
hcosh((z — 1)/X)) I
2cosh(1/2)) 2

is the solution of the problem

“Xu"+u=g inl
' (0) =4/(1) =0,

which is the Euler equation of F(u). Thus u, is the minimum in W12(I). Let u €
SBV2(I) \ Wh2(I), being S, # 0 it's easy to verify that the minimum is the function
- ug = g. The values of the energy relative to the previous functions are

E;j=F(ug) =«
h2Xsinh(1/X
B, = F(ug) = ,__T_L/_l
4 cosh*(1/2))
At this point it is very easy to find the minimum, indeed it sufficient to compare the values
of Ej and E., so
o Jud ifEg< E,
Umin = {uc if Ed > Ec ) (34)

In particular when A < 1, as it is in the applications, we have

_ h®Xsinh(1/)) N h2)
© 7 4cosh®(1/2)) T 2

h2X /2
Ed=Ec®a=—2—®h= —)*‘CE

So we recover the estimate for the contrast threshold

then

2c

ho =] —=
TV VB
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as it is reported in [15]. Similarly for A < 1 (3.4) becomes

if h < h
UminZ{Udl 0

ue ifh > hy . (3.6)

The functions uy and u, are also local minima of (3.1) as it is proved in the following
propositions.

Proposition 3.3.1 Let h € (0,1], g defined as in (3.2) and 6. € (0, ). Then for every
a >0 and B> 0 we have

F(ug) = min{F(u) : u € Bsco(uq)}

where Bsoo(ug) = {u € SBV2(I) : 0<u <1 |lu—ugllpe(n) < d}.

Proof. Being § < & for every u € Bsoo we have u(37) > u(%+), then #(Sy) > 1 and
F(u) > a= F(ug). |

Proposition 3.3.2 Let h € (0,1], g defined as in (3.2). Then for every a > 0 and >0
there ezists 6 > 0 (sufficiently small) such that

F(u.) = min{F(u) : u € Bsoo(uc)}
where Bjoo(te) = {u € SBVHI) : 0<u <1 |lu—ucllpeorm <6}
Proof. Let § > 0 and let Bs oo = Bg’oo U B(},OO where
BY o ={t€Bsoo : Su=0}  Bjoo =B\ B} -

It’s easy to see that for every 4,

F(ue) = min{F(u) : u € B,?,Oo},
thus it is sufficient to prove that for ¢ sufficiently small

F(u;) = min{F(u) : u € Bioo}.

Let k& € N such that
ko < F(ug) (k+1)a> F(ue).

Consider u € B,},oo, since we are interested in the minimum points, we can suppose that
Sy = {z1,79,...,Tn—1} With 2 <n < (k + 1) and we set zp = 0 and z,, = 1. First of all
we will prove that there exists § > 0

ﬂ/llu’l2d¢+ (n—1)a > ,B/IIu’c|2d:c. (3.7)

Tt is easy to see that there exists a > 0 such that for every subinterval (y1,y2) C I with
ly2 — y1| < a we have

(n ; 1>a >p :2 lul|?dz . (3.8)
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Moreover, given a, for ¢ sufficiently small we have u.(y1) — § > wu.(ys) + 6 for every
interval (y1,12) such that |y2 — y1| > a (because u, is decreasing). Let u € B(}’Oo and let
Sy = {Z1,%2,...,2p-1}. If for every index 1 < ¢ < n we have |z;_; — x;] < a then by
(3.8) inequality (3.7) holds. If for some index i we have |z;—; — z;| > a then we define on
(%i—1,%;) a function v;, which is the solution of the minimum problem

z

T i
/ [l 2dz = min{ / |u'2dz : ue(z) — 6 < ulz) < ue(z) + 5} .
Ti-1 Ti-1

Being u, decreasing, it is natural to suppose that v;(z;.1) = ﬁc(wi_l) — 40 and vi(z;) =
ue(z;) + 6. Moreover let z, and zy such that ;1 <z, < zp < z;. If the line

ri() = <vi($b) - 'Uz'(wa.))(m — 20) + u(za)

Tp — Tq
satisfies uc(z) — 0 < ri(z) < uc(z) + 6 for z, < = < x5 then the new function defined as

vi(z) ifz;m <z <2z
wi(z) = ¢ ri(z) ifz, <z <m3
vi(z) fzp <z <y

z; T4
/ ol 2 < / !|2dz
Ti—1 Ti-1

~ Then there exist y;—; and y; such that z; 1 <y;_1 <y; < z; and

satisfies

Ue(z) =0 ifmsy <y
vi(z) = < I(z) ifyi1<z<y; (3.9)
uc(z) +6 ify; <z,

where [(z) is the line which interpolates the points (;—1,uc(yi—1) — 6) and (y;, ue(y;) +6).
Note that the points y;—1 and y; depends on 4, in particular due to the minimality of v;
we have that y;_; is non-decreasing and y; is non-increasing respect to §. Then there exist
the limits

Imyi1=ya  limy =y,
and y, = yp. Indeed if y, # yp then, due to uniform convergence, u.(z) should be affine

on the interval (y,,yp) and it is impossible by its definition.
Now we will prove that there exists a value § > 0 such that

T; _ 1 T;
8 / pide+ ("o )a> 8 [ julfdo. (3.10)
Ti—-1 n Ti—1
Considering (3.9) we deduce that

Z; 9 Yi—-1 ’i2 Yz
/ 1o da:z/ | d:c+/
Ti-1 Ti—-1 Y

3 —

ZTi
ol dz + / i 2da,
1 |

Yi

then (3.10) becomes

Ui Yi n—1
5/y Iu’c|2dm~[3/ P < (")

i—1 Yi-1
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This is for sure satisfied for some positive J because

Yi 9 Yi
lim |ul|?dz = lim |vi|2dz = 0.
00 Sy, 4 60 Jy; 4

Moreover § can be chosen in order to satisfy inequality (3.10) on every subinterval (%4, zg)
such that |z4 — zg| > a. Then for every u € B%}oo and for ¢ sufficiently small

min {8 /I W/[Pdz + oS, } > Fluo),

'U.EB%)O°

which concludes the proof. |

3.4 Numerical solutions

First of all we present the numerical results obtained minimizing the discrete one dimen-
sional functional

-—1 il _ﬁ_’Z 12 2
F.(u) = E/Qozzarct::m (saﬂlul )daz—{—/ﬂlu—gl dz, (3.11)

using the standard quasi-Newton algorithm described in Section 3.2. Let zg =0, 2, = 1
and 7o < 71 < ... < T, a uniform subdivision with size £. We consider F, defined over the
space V.(I) of affine finite elements on the subdivision. The minimization of F, presents
in general some difficulties due to the presence of local minima. For instance, let g be
the characteristic function of the interval (0,0.5), and let 8 = 0.01 and o = 0.1. With
this choice the contrast threshold is hg = /2 and by (3.6) the minimum is the function
ue defined in (3.3). The solutions obtained numerically by the quasi-Newton algorithm,
taking g as initial point, (see Figure 3.1), are the function u, if ¢ = 0.02 and a solution us
which behaves likes ug if € = 0.004.

1 1
0.9 4 0.9
08 4 0.8
07 07
08 08
05 05
0.4 0.4
03 03
02 02t
0.1 01
% 0.2 0.4 0.8 0.8 1 % 02 0.4 \o.r 0.8 1

Figure 3.1: Solutions with ¢ = 0.02 and & = 0.004 respectively.

The same phenomenon occurs also changing the coefficients (see Figure 3.2). For € =
0.008

o ifa=4-10"2and B =16- 10~4 then Ay = v/2 and the numerical solution is correct

o ifa=4-10"! and B = 161072 then hg = +/2 but the solution u, is is again similar
to uq.
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1 T 1

0.9 08
0.8 1 0.8
0.7 b 07
0.6 9 08
0.5 9 05
0.4 04
0.3 0.3
02 02
a1 0.1
0 o |—

[} 0.2 0.4 0.6 08 1 0 0.2 04 0.6 0.8 1

Figure 3.2: Solutions with different coefficients and same contrast threshold.

Note that in both the cases the eigenvalues of the Hessian computed in u, are all positive,
so that the numerical solutions turn out to be relative minima, for the discrete functional
(corresponding to the relative minimum w4 of the limit functional).

Following a heuristic reasoning, we want to show for which values of £, «, S the
discrete functional presents these local minima. Let f(z) = min{fz, o} and consider that

the functional 1
- [ ePiao+ [ - gias,
€Jr I

which behaves like (3.11) and I'-converges to the one dimensional Mumford-Shah function-
al as well. Let I; = (24, Zj+1) be an interval of the subdivision and let [u;] = |u(z;) —u(zi41)|
be the variation of u in I;, then

1 " [ BIW)? i [wi]? < ae/B
e -/Iz f(elu')dz = { a if [w)? > ag/B.

As a consequence, for the discrete functional the variation [u;] is considered a jump when
[u;]? > ae/B, thus F; introduces a local discrete threshold, given by

a€

"B" 3

Note that h. depends on € and in general it is different from hg. In particular when
he < hg & & < 2+/f then F has a local minimum corresponding to the discontinuous

function ug. Indeed let I be the interval containing the jump of g and let u = g then,
being he < [ug], we have

-i— ; f(elw'|?)dx + /Ik lu — g|?dz = %/Ik feluP)dz = a.

hE=

Moreover for every interval I; # I we have
1
—/ f(elu'|?)dz +/ [u— g|?dz =0.
eEJr I;
Thus for every function v such that h, < [v] we have
1
= fW'P)dz +/ v — gf?de = o +/ lv — g|%dz > a.
£ I Ik Iy

This proves that g is a relative minimum, at least respect to small perturbations in the
variation.
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3.4.1 Minimizing algorithms

The analysis developed in the previous section shows that for certain choices of the co-
efficients, that often occur in the applications, the functional F. has a relative minimum
near the initial point and clearly the algorithm cannot find the global minimizer. An easy
solution should be the choice of another initial point but this idea does not work well in
general, in particular for real life images. In order to overcome the difficulty we develope-
d two minimizing algorithms that should be able to avoid this kind of relative minima.
Roughly speaking the idea is to force the condition € = 2+/B.which gives the equality
h. = hgo between the local discrete threshold and the contrast threshold. This can be done
either changing the coefficient 3, as in the first algorithm, or changing the size parameter
€, as in second.

Algorithm 1. Let the coefficients B1 < B2 < ...< PByn be defined as
,31=62/4 Bj = 2Bj-1 forj <n Bn=2p

and the corresponding o as o = a4/ B;/+/B. Then we consider the functionals

FI(u) = B; /I |u'|2d:c + o #(Su) + /I lu — g|?dz

and their discretizations

‘ 1 2 .

Fi(u) = E/Iaj;"— arctan (E%—gm']z)dm + /I lu — g|?dz . (3.12)
The algorithm gives a sequence of functions u; for j = 1,...,n defined by induction in
the following way:

e u; is the minimum of F! computed by the quasi-Newton algorithm with guess
point g

e uji) is the minimum of Fg +1 computed with initial point ;.

In this way, at the first minimization we have £ = 2v/ B, thus the quasi-Newton algorithm
should find the global minimum of F!. In particular the discontinuities are determined
according to the original contrast threshold, because

- ?_q_a;=\[2§,
g \/BJ_ VB

For the same reason in the successive iterations the behavior of the discontinuities is
preserved and in the region of continuity the solutions get closer to the minimum of F as
a; and f; tend to o and B.

Remark 3.4.1 This procedure turns out to be similar to the one proposed in [15] and
known as Graduated Non-Convezity algorithm (in short GNC). In [15] this minimizing
strategy was applied to a similar functional but on a sort of relazation argument. Refor-
mulated in our case the GNC algorithm consists in minimizing a sequence of functionals
F; with the same choice of Bj but taking a; = a. In the sequel we will call GNCL this
“sraduated non converity like” algorithm.
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Algorithm 2. Let g1 > ... > &, be defined in such a way that
g1 =28 g; =¢j-1/2for j <n En =E.

In this case the coefficients are not changed and the corresponding discrete functionals
are

1 [ 2
Fe,(u) = E; /Ioz; arctan (q—ﬁ—%lu’[z)dm + /Q lu — g|*dz . (3.13)
The procedure is similar to the previous one and gives a sequence of functions u; defined
in the following way:

e u; is the minimum of F;, computed by the quasi-Newton algorithm with guess
point ¢

e u; is the minimum of F; computed with initial point u;_;.

As before, for j = 1 we expect the solution u; to be the global minimum because €1 = 2+/5,
then for £; decreasing the solution is improved with details “living” at smaller scales. Note
that, being ¢; < ¢, the dimension of the finite element spaces V;;(I) is lower than the
dimension of V,(I). Thus the implementation is very fast because the number of unknown
is considerably reduced. Note that for €; # ¢ we must define a new function ge; - The easiest
idea is to re-interpolate g, but for noisy data and in particular for real life images a better
choice is an average or a median filtering of g.. We will call this algorithm multi-scale
algorithm (in short MS). ,

In Figure 3.3 are reported the numerical solution obtained by the previous algorithms
for the model problem in the case € = 0.004, & = 0.1 and 8 = 0.001. They both represent
the correct solution u,.

1 1
0.9 0.8
0.8 b 0.8
07 1 0.7
0.8 1 0.8
0.5 1 05
0.4 1 0.4
0.3 1 0.3
0.2 02
0.1 01

0 + [+

[} 02 04 0.6 0.8 1 o] 0.2 0.4 0.8 08 1

Figure 3.3: Numerical solutions with GNCL and MS.

Remark 3.4.2 As explained in [15] the solution of the Mumford-Shah functional has a
characteristic scale A = /B, which heuristically gives an upper bound to the distance of
interacting points. ‘

We remark that in the GNCL algorithm we have at the first step Ay = +/B1 = £/2 which
means that short distance interactions are taken into accounts. Then, for j increasing, also
the range of the interactions increases until the original one is reached.

On the contrary, the MS algorithm begins with the largest interaction on a scale €1 > €
and successively improves the solution at smaller scales.

In the sequel this observation will be confirmed by the numerical solutions.
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3.4.2 Detection of single discontinuities

In this section we want to test our algorithms as regards precision in the detection of
discontinuities. Many numerical experiments have been done in this direction, here it is
reported the one that better represents the general behavior. Let ¢ = 0.004, o = 0.015
and 8 =0.01. Let h € (0,1) and

@ (B <05
I\ =30 otherwise.

For this choice of @ and 8 the contrast threshold is hg = 0.547, hence the exact solu-
tion of the Mumford-Shah functional should have a jump when h > 0.547. We want to
see for which values of h the numerical solutions present a discontinuity: GNCL finds a
discontinuity if A > 0.659 and MS if h > 0.734.

The difference from the expected threshold is quite big but the reason is partially due
to the discretization, indeed the absolute minimum of F for A < 0.680 is given by the
continuous solution. Moreover for € smaller the precision of the first method is improved,
on the contrary this is not possible for the second because the solution depends strongly
on the ones obtained for bigger values of e.

3.4.3 Model problem for interacting discontinuities

The minimizing procedures were built to improve the solutions in the model case of a
single discontinuity, nevertheless the minima of the Mumford-Shah functional presents an
important feature related to the effect of interacting discontinuities. Indeed if the datum
g presents more than one jump in a region of width smaller than /8 then the minimum
should behave as if the datum had only a jump, given by the sum of two.

Let us consider a function g such as '

04 if z <0.55
g(z) =< 0 if0.55 <z <0.6
0.7 ifz > 0.6

and let o = 0.015 and 8 = 0.01.

The solutions in Figure 3.4 show that only the multi-scale method can reproduce
the correct behavior while GNCL seems to consider the discontinuities as if they were
isolated. This difference is explained by Remark 3.4.2: when an interaction occurs the
solution depends essentially on large scales which are sufficiently taken into account only
in the second algorithm when ¢ large.

3.4.4 A model problem with noise

An important property of the Mumford-Shah functional, which is very useful in image
segmentation, is its cleaning effect on noisy data. Consider a datum g with noise r given.
by
(z) = 0.7+r(z) ifz<0.5
IE = r(z) ifz>0.5.

and take o = 0.01, 8 = 0.01 and & = 0.004. The numerical solutions are reported in Figure
3.5 and 3.6.
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0.8 [oX:]
06 | 0.6 __——‘—/A
0.4 0.4

0.2 0.2

0 + o
0 0.2 0.4 0.8 0.8 1 0 0.2 0.4 06 0.8 1

Figure 3.4: Solutions for interacting discontinuities with & = 0.004.

0.8

06 |

0.4+

02+

o
1 0 0.2 04 0.8 0.8 1

Figure 3.5: The original datum and the solution using MS.

1 v 1
0.8 . . 1 08
0.6 . 0.6
0.4 0.4
02 0.2
° ] 0.2 04 0:6 0.8 _1 ° 0 02 04 06 08 1

Figure 3.6: Numerical solutions with GNCL and its regularization.

It is clear that the first method cannot eliminate all the noise where it is concentrated
in a peak. This phenomenon seems to be strange, nevertheless it can be explained by the
same heuristic reasoning used to show the existence of local minima. For h, < hg let I}
and I, be the subintervals containing the support of a peak in the datum. For every
function v such that h. < [vg] and he < [vky1] we have

1
- / f(&lv'|2)dz + / v — g’ dz =20+ / v — gl2d:1:
€ JIUIp 4 IyUIg 4 IpUlpg

which is a quadratic functional with minimum in g. To improve the solution, eliminating
all the noise, it is possible to perform a minimization of F; restricted to I U I, replacing
the value of u in the peak with the value in a neighboring vertex.
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3.5 Numerical results for real images

In the sequel we will not repeat the detailed analysis developed in the previous Section.
All the considerations are still valid, with obvious changes due to higher dimension. We
suppose that the domain is the square (0,1) x (0,1) and that the vertices of the triangu-
lations coincides with the pixels of the image (so we have e = 1/256 ~ 0.004). Moreover
the function g, which represents the gray level, is normalized to take values in the interval
[0,1]. The left image is segmented with coefficients o = 2-10"% and 8 = 2.4-107* and
the right one with and o = 1.4-10™* and § = 2.4- 107, -

Tn both the images the segmentation obtained with the GNCL algorithm is more
detailed and finds more contours. As shown in the one dimensional framework, some of
them are not correct because, the interactions between discontinuities are not properly
taken into account. Nevertheless MS is affected by a sort of step like effect on contours
which is caused by the passage from lower to higher resolutions.

Figure 3.7: Original images.
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Figure 3.9: Detected contours with GNCL and MS respectively.
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Chapter 4

On the relationship between
Mumford-Shah functional and
Perona-Malik anisotropic diffusion

4.1 Notations and statement of the main result

Given a vector 7 € R2 let
72 = {z € R?: z = m7 +nrt for (m,n) € 2%}, (4.1)

Cr={z€Z?:z=st+r7"for (s,r) € [0,1) x [0,1)}. (4.2)

For every open subset A C R? we denote

NZ2n 4) = {,U : Z2N A — R such that Z lv(z)] < +oo};
T€ZZNA

in the following every function v € 1(Z2NA) will be identified with the function 7 € L! (4)
which takes the constant value v(z) in the square z+C; if z € Z2N A, and zero otherwise.
So, having in mind this identification, given a sequence v, € ll(Zf.e N A) and a function
v € L(A), we will often write, with a slight abuse of notation, v, — v instead of ¥, — v
in L'(A). Given a vector 7 we will denote 7 := e

Let Q C R? be a bounded open domain with Lipschitz boundary and for every € > 0
consider the following functional

Rt % rios (Leadd MO0 g
£ez?

2| ¢12
TeQNeZ? & I§|

z+e£EQR »
if u € 1(eZ%2 N ), and F.(u) := +oco otherwise in L1((2), where a, = slog-}; and p: Z? —
[0, +00) satisfies .
Y o) <4oo and  p(¢) = p(et) V¢ € Z2 (4.4)
(ez?

In this chapter we will prove the following theorem.
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Theorem 4.1.1 The functionals Fy I-converge (as e — 0) with respect to the L'-norm
to the anisotropic Mumford-Shah functional F' given by

2 v Yifu
Flu) = {%/ﬂlvul dfc+/5u d(vy) dH' if u € GSBV(Q),

+00 ; otherwise in L(£2),
where )
=52 o6 and  4w) =) p@-E] (45)
£ez? £ez?

Moreover, every sequence (ug) satisfying sup, (Fe(ue) + ||uelloo) < o0 is strongly precom-
pact in LP(Q), for every p > 1.

The proof of the theorem will be split in the next sections.

4.2 Estimate from below of the I'-limit for N =1

In this section we study the one-dimensional version of the functionals defined above.
Given a bounded open subset I C R we define :

I ={zelneZ: z+e€l},

and, for every u : I NeZ — R, we define

Felu, I) == (—f— 3 log (1 ta, lu(z +¢€) — U(m)l2) |

2
& z€l: €

where, as above, a, = £log —i— As usual we will identify every function u : INeZ — R
(briefly u € I*(I NeZ)) with the piecewise constant function u of LY(I) given by

u(z) = {“ (e[z]) ife[g) e T,

0 otherwise.

Our aim is to prove the following proposition.

Proposition 4.2.1 Let ue € IY(I N€Z) such that ue — u in LY(I) as ¢ — 0 and
sup, Fe(ue) < +oo. Then u € SBV(I) and

lim inf 7, (ue, I) > / |/ |? dz + H°(Su)-
e—0+ I
We postpone the proof of the proposition after proving some useful lemmas.

. Lemma 4.2.2 Let p(¢) > 0 be such that lim,_,o+ p(e) =0 and

1 1
li log — —loglog = | =
lim (p(e) og -~ — loglog E) +00,
and set ¢, := eP€). Then the following properties hold true:

a) lim ¢, =0;
) e—0t ’
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log c.
T =0;

€

b) lim
=0+ log

2

c 1 ‘
¢) lim =log= = ;
)5—1>0+ 15 gé‘ oo

1
d) h log - = 0;
) B celos s =0

e) lim -———————————log <1 i aeg—%)

T =1.
e—0+ log =

Proof. . Properties a), ), c), and d) follow immediately. Let us check only e). Recalling
the definition of a., we have

1.2
log (1 + ag%:;:) log (1 + 19%—63>

im ————s5—* = lim T
e—0F log z e—0+F log z
log L¢2
log (——E—-) loglog L
= lim ——t = lim (142 8E  Zloge)
e—0+ log = e—0+ log 2 log =
where the second equality follows from c¢) while the last from b). B

Lemma 4.2.3 Let u; € I1(I N€eZ) be such that sup, F(us) < K < +00 and let c. be as
in the previous lemma. Set b2 := 4/c. log% and consider the following set

D, = {$616: lue(w+62—ue($)| S j;z;}

Then
lim H%(D,)c. = 0.

e—=0t
Proof. By our assumptions and recalling the definition of a., we have

— 2 2
(1ot IR g1 1D
2 log z

€
K> — Z log (D)

€ z€D,

so that, substituting the expression of b2, if € is small enough, from d ) of Lemma, 4.2.2 we
get
ce log %

celog i 1
<K'= =K'/\/celog~.
log(l—f—,/celog%} 1/celog% €

Again d) implies now the thesis.

H(D.)e, < K

Lemma 4.2.4 Let ve € SBV(I) such that lim,_,o+ ||v}]|cor/az = 0. Then, for every § >0
there exists € > 0 such that

1
o [ty o 2 - 5) [t
Qe J1 I

for every e <E.
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Proof. Fix § > 0 and note that there exists Ts > 0 such that

T,
log(l + a.t?) > (1 — 8act® Wt Bl
Og( + aE ) pey ( )aE E {07 \/CTE-:l b

by the assumptions, if € is small enough we have lvlllco < T5/+/Ge and therefore

l/log(1+a5|v;|2)dx > (1—5)/|U;12 dz.
Qe JI I

We are now in a position to prove Proposition 4.2.1.

Proof of Proposition 4.2.1. Let b. and ¢ be as in Lemma 4.2.3 and set
b lue(z +€) —ue(z)] ¢
Lo leleta Lol o at o ar,

where z} < 12 < ... < z* and M, = HO(B,). Now we want to replace the sequence u,
with a new one U, stlll convergmg to u, such that B, (f) is empty and F (de) < Fe(ue)-
Setting v? = u, and for k=1,. — 1 we define by induction the functions

vé“(t) for t < 2kt

Be(ug) == {m €l :

oE () =
vk () — [vE(ekt) - ok (ab)] for ¢ > 2EF,

and finally we set i, := v (see Figure 4.1).

1.6 T T T T T T T

14 . -

. U P

12+ O — i
1 -

08 - B— E

0.6 B b

04 B -

02} B -

B

0 1 | 1 ! ! ] I
01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.1: The construction of ..

First of all, using the fact that for every € > 0 and for every ¢ = 1,...,m; We get
/Il’vi _ oY de < i (al) — v ] = Jue(el) — ue (@I < e |1,
then we can estimate

/Il’ﬁs — ug|dz < Z/‘Ua z Hdo < chm < HO(Be(ue))eelI] < H(De)eelI] -

=1

a0



Therefore, by Lemma 4.2.3, we get @i — u in L' (I). Moreover, by construction, we clearly
have that F;(t:) < Fe(ue). We set

R:= {zezgz '“E(“Ez*us(m)i < jaj}
= {m €l : [ue(z +€) — ue(2)] > 95}

and we call w, the function belonging to SBV(I) defined by

welo) = (c[2]) + LD B CED 2]y weqmen,

we(zx) = G (E ED ife[2]efore[2] +e¢ (eZNI),
and we(z) := 0 otherwise. Roughly speaking w. coincides with the affine interpolation

of i, in the intervals (y,y + €) with y € I’ while takes the constant value 4 (y) in the
intervals (y,y +¢) with y € I} it is clear that

we — w in L Ve | wl]lco < be = 0 and Sy, = Il +¢. (4.6)
Now we can estimate
. € T (T + €) — T (z)|?
..T"e(us;-[) > EE‘ Z log (1 +a5‘ 6( 22 6( )l ) (47)
zell
£ e (z + €) — e ()
+E; Z log <1+as 2
:I:EIE
1 e o/ € c
> — [ log(1+ ac|we|®) dz + H (IZ)—log { 1 + ac—5 ). (4.8)
Qe Jr Qg £

Fix 6 € (0, 1); recalling (4.6) and the definition of a., by Lemma 4.2.4 and by e) of Lemma
4.2.2, from (4.8) we deduce the existence of  such that

Al D) 2 (1-0) ([lutP do +70(5,) )
I
by the Ambrosio Semicontinuity Theorem we therefore obtain that v € SBV (I) and

limnd . (e, 1) 2 snint 720, 0) 2 (1= ) ([ WP o+ 105
which concludes the proof of the proposition since § is arbitrary. B
We conclude this section with a remark that will be useful in the sequel.
Remark 4.2.5 Fiz t € R and for u € I*(eZ N 1) define
Fiu,I) = £ Z log (1 + ae [ulz +¢) - u(w)[Q) ,

2
€
€ zEelt

where
I''={zelnNe(t+Z): z+eecl}

then we have that Proposition 4.2.1 is still valid with F! instead of F. (without changes
in the proof).
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4.3 Estimate from below of the I'-limit for N = 2

Lemma 4.3.1 Let u. € [}(cZ?) be such that ue — u in L*(R?). For y, £ € Z2, let
vl € Me(y + Zg)) be defined as v} ((z) = uc(z) for every z € e(y + Z7). Then v, = u
in L*(R2).

Proof. We call Q¢ the unit cell of the lattice Z2, i.e.
Qg::O§ﬂZ2={Tl,...,Tk}, . (49)
where C; is the set defined in (4.2). For j =1, ...,k we set ug(m) = u.(z — 7). Since
/ lu (z) — u(z)| dz < / lue(z — e79) —u(z — e7?)| dz —l—/ lu(z — er?) — u(z)| dx
R2 R2 R2
- / e () —u(m)ldw—!—/ |u(z — &) — u(a)| dz,
R? R?2
we have that ul — u in LY(I) as € = 0T, for every j € {1,...,k}; therefore, up to passing

to a subsequence, we can suppose that

e there exists N ¢ R2 with £2(N) = 0 such that ug — u pointwise in R? \ N for
j=1,...k

® |u§] < ¢/ almost everywhere where ¢’ is a L! function, for j = 1,..., k.

Since for every z € R?\ N there exists j € {1,...,k} such that vgg(x) = ul(z), we get
'U:g,é_- — u pointwise in R?\ N; moreover |vf,§l < gi+...+ gk and therefore, by the Dominated

Convergence Theorem, v? ¢ U in L. As the same argument can be repeated for every
subsequence, the lemma is proved. B

We will need also the following lemma, whose proof is elementary (see Figure 4.2).

Figure 4.2: The set ()¢ and the shaded region.
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Lemma 4.3.2 Let Q, the unit cell of the lattice Z2 as defined in (4.9). Then H(Q¢) =
l€f?.

Proof. We refer to Figure 4.2. We associate every point z € Q¢ with the square z +
[0,1] x [0,1]. The area of the shaded region, which is the union of such squares, coincides
with the cardinality of Q. and it is clear from the Figure that it is equal to the area of
the set C¢ (defined in (4.2)). |

Before starting the proof of the I'-liminf inequality it is convenient to rewrite the
functional F; in a suitable way. After observing that

U @z +y) =

yEQ:

we can write, for every u € I} (eZ2 N Q),

AW =2 Y Y i (1+adglEr D or@l)

21¢12
TEQNeZ2 cez? & l§I

z+e£EN
= > &) D G¥(w), (4.10)
£ez2 yeQ:

where

ulx € — U\ 2
Gy,é( ) '—52 Z as]l'fl IOg (1+a8[§l, ( + 6) ( )l )

e2[¢]?
mEE(y-{-Z ne
z4e£€QR

Let ue — u such that sup, Fe(ue) < +oo. Taking u, and u equal to zero outside (¢Z2NQ),
we can suppose that u. € ['(eZ?), u € L'(R?), and u — u in L*(R2). If we are able to
prove that u € GSBV(Q2) and

e—0t

1 a -
hmmfG’ (ug) > (/ IVu.glz dm-{—f |yu.§|d;z_[l) , (4.11)
1€12 \Ja S
for every ¢ € Z? and every y € Qg¢, then, by (4.10), Lemma 4.3.2, (4.4) and (4.5), we have

liminf Fe(u;) > Z p(&) lim inf GY ¢ (ue)
e—0+t fez? VeQs e—0+

WG E%(/n'v“'é'”“/su - a1

£e€Z? YEQ,

- (/ Vu- f]zd:v—}-/ I - §|d’H)

£€Z2

/ S p(E)(Vu - € + [ Vu- §l])da:+/ S o6l - £ !

£ez? Su gez?

=c, /Q |Vu|? dz + /S ] d(vy) dH! . (4.12)
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Following the notation introduced in the Preliminaries, we denote the hyperplane or-
thogonal to & by Il and (¢ the projection of Q on Ilg. For every w € Ilg we set

= {t e R: w+tf € O} and, given a function, we define f'() := fw + t€).
We also define O ¢ := Q¢ N €Z? (see Figure 4.3) and for every z € R?

Of¢={y€x+etZ: y+et eQ}.
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'
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i
1
)
'
i
'
|
|
'
'
i
1
|
t
]
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&
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®

@---—--
§----

Oce

Figure 4.3: The sets Il and O ¢.

Note that we can write

DD D

wEOe ¢ Ow+sy

__‘_l_ . Iﬂ o lus($+5§)_ue(m)12
= TEE 2 cld 2 mlg(” aelél ——2jep >

wEQ, ¢ O;vz-w

[ 5 g g EEEO O ]
= HE ‘/QE l:ab.'gl Z 1g(1+ el€l €2|§|2 dH (w), (4.13)

u(x — ug(z)?
or1og {1+ acglielet el )

0z
where v” Y ¢ is the sequence defined in Lemma 4.3.1. Set 7 = ¢[¢|, w, . := vi’,g, z = y/|¢|
and observe that a
li T =1. 4.14
E—I)I(I)l‘*' aglé- I ( )

Fix 6 € (0,1); by (4.13), by Fatou’s Lemma, and by (4.14), we obtain

0 (@ + €€) — vY o (2)
lim inf GY e el (ue) > EP-/ 116_)0+ [aslfl Z log (1+ ac|¢] £ e £ )}d%l(w)

e—0t w+5y
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> L / lim inf [ Z log <1 +day f,g(w ) - wg’f(a:)P dHY (w)
€12 an

2
Qg 10t owtnz n
71 é

n—0+

- #/ lim inf ((ﬁw%ﬁé",ﬂ’é’) dH (w),

where t := z-{ and F} is the functional defined in Remark 4.2.5. Since (w wy )f — uy
for H'-a.e. w € Il¢, as n — 0 (thanks to Lemma 4.3.1), by Proposition 4.2.1 and Remark
- 4.2.5 we deduce

liminf G ,g(ue) lﬁ%/ﬂg ( ) 8l (u )lzdt-l—’r’{O(S y)) Hw),

g—0t

from which (4.11) follows by letting ¢ T 1 and by applying Theorem 1.2.7.

4.4 FEstimate from above of the I'-limit

Thanks to a standard approximation argument based on the use of Theorem 1.2.15, it will
be enough to prove the I'-limsup inequality for a function u € W(Q) whose discontinuity
set consists of the union of a finite family {Si,..., Sk} of disjoint segments compactly
contained in Q. Let e, — 0 and set, for every u € L(Q), F"(u) := [-limsup,,_, . F:, (u);

we aim to prove that
F"(u) < F(u). (4.15)

We begin by assuming that
SiNe,Z>=0 VYneN, Vie{l,.,k} (4.16)

As for the proof of the I'-liminf inequality, the thesis is achieved once we have shown that
for a suitable sequence (u,) converging to u, we have

1 a A
hmsqu ( ) < I_'Q:IE (/QIVu-ﬂzdm—l-/Su |2 -§[d’H1) VeEeZ? ye Qe (4.17)

n—oo

To simplify the notation we will prove (4.17) only for y = 0. In the sequel, given z;
and z9 in R?, we denote by [z1, 2] the segment joining the two points. Let us define the
following sets:

Ap={2€enfZ’NQ: s+l €Q, [1,0+,¢|NS; =0 for j=1,...,k},

and
Bl = {z € snzg sz, z+end]NS; £ 0} j=1,..,k.

Clearly for n large enough, B% N BE = 0 if i # j. Note now that we can write

_ 1 [un(z + €n8) — un(x)lz
ng,g(un) - E%Azn aEnlél IOg (]‘ + aenlﬂ 5721,I§[2 )

k 1 [un(Z + en&) = un(z)]?
2 T n n
RV R

k3

%)




_ ! |”g,g($ +ené) — Ug,g(as)lz
B 1519 /n ae, |¢] a8 <1 + el 2|¢|? X(An+enCe)

-

v~

I

n,l
1 S o2 1 ( |un (2 + £08) — un(z)[?
— 1 1 .
g el 2 g o (1 e e )
g . )
In,?

where 2 n¢ 1S the sequence defined in Lemma 4.3.1, while C; is the set defined in (4.2). It
is 1mmedla,te to see that

X(An+EnC§) - XQ\Su' (418)

Take z € Q\ Sy and let y, € snzg be such that T € y, + £,C; by Lagrange’s Theorem it
turns out that

0 (g — 0 2
log (1 o g l1al + ) — 00 ()] ) = log <1 + el + Ent) ﬁu(yn)P)

ealél? enlél”
tog (1 + ae, ¢ Vu(én) -€?)
< aenlfHVU(Sn) '5127

i

where &, € [Yn, Yn + €n€] and therefore &{n — 2. Taking into account the continuity of Vu
and recalling (4.18), we deduce that

limsupIn1 < T‘flli /Q |Vu(z) - €2 da. (4.19)

n—o0
Moreover, for every = € Bj,, we have

_ 2
o o) < e (10 M=) o

where the last limit follows from the definition of a.,. Denote by I¢(S;) the length of the
projection of S; on Il¢; using the fact that le(S;) = [, §; Vi £dHM!, we easily obtain (see
Figure 4.4 below)

log (1 + a, [¢] [un

HO(BI) < lf:i‘]qgl) +1< Enl’ fls, vy - EdHY + 15 (4.21)
therefore from (4.20) and (4.21) we get
. 0 1 ¢ s 1 o
limsup I n < GE hmsupzanlﬂ?i (B)) < IR ;/S] vy - EdH! = EF/Su vy - EdHY,

which, combined with (4.19), gives (4.17) and therefore (4.15).
If (4.16) is not true we can argue in the following way. We first observe that it is
possible to find a sequence (7¢) C R? such that 7, — 0 and S, + 71, satisfy (4.16) for every
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.

1e(S5)

Figure 4.4: The projection of S; on II.

k. Let ug(z) := u(z — 7x), then ug — u, Sy, = Sy + 7% satisfles 4.16, and F(ug) = F(u);
using he previous step and the semicontinuity of F", we have

F"(u) < liminf F"(u;) < lim F(ug) = F(u),
k—oo0

k—o0

which concludes the proof. B

4.5 Compactness

In this section we prove the equicoerciveness of the approximating functionals F.. We
will use the L'-precompactness criterion by slicing introduced by Alberti, Bouchitté &
Seppecher (see Lemma 1.2.8).

Proposition 4.5.1 Let (u:) be a sequence of equibounded functions such that
sup, Fr(u:) < M < +oo; then (ug) is strongly precompact in LP(Q), for every p > 1.

Proof. Clearly it is enough to prove the precompactness in L'. Let {e1, ez} be the canon-
ical basis in R2?. Since for £ = e; (for 7 = 1,2) the function vif’g defined in Lemma 4.3.1
coincides with u,, from (4.13) we have
M > sup F.(us) > sup Ggei
& €

>sup [ 7wz o) i) = s | pw)artw),  @22)

€ e JQe,

where

felw) = Fo ()2, 08).
Fix 6 € (0,1) and choose £ > 0 so large that

M%[g‘eﬂf’—" diam(Q) < §; (4.23)

o7




setting A’E‘ﬂ- = {w € Q, : f-(w) > k}, by Chebychev Inequality and 4.22, we can estimate

1 M
AF ;| < Zsup [ fo(w)dH (w) < —. (4.24)
’ k £ Qei ]{:
Let z. s be such that z¢ 5(z) = 0 if the projection of z on {2, belongs to A’g)i and z. 5(z) =
uc () otherwise. We clearly have

ll2e,5 — vellzr < sup luelloo| AL ;] diam(€) < 6,
€

where the last inequality follows from 4.24 and 4.23. Moreover F; ((2575)1” QZ) <

e;?
fe(w)(1 = x 46 ) < k for every w € €, and therefore ((2,5)%,), by the one dimensional
result, is precompact in Ll(Q’;’i) for every w € §,,. Thus we have constructed a sequence
which is é-closed to (u;) and such that the one-dimensional sections in the e;-direction
are precompact, for i = 1,2. The thesis follows from Lemma 1.2.8. |
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Chapter 5

A discontinuous finite element
approach for the approximation
of free discontinuity problems

5.1 Convergence result

Let & C R? be an open bounded polyhedral set. Let f : R? — [0, +00) be a convex
function such that for ¢;,¢; > 0 and for p > 1

a1zl < f(2) < colzlP Vz e R2. (5.1)
Let ¢ : R? — [0, +00) be convex, positively 1-homogeneous and such that
d(v)=¢(-v) and 0<c<¢(v) forve St - (5.2)

For u € GSBV?(Q) we consider the functional
Fu) = [ f(Fuydo+ [ plo)an’ (53
Q Su

For every h > 0 let T} be a triangulation of R2. Let hr and rr be respectively the
diameter and the internal radius of the triangle 7. Assume that the family { T%} is regular,
i.e. for every h > 0 and for every triangle T € T}, we have

h S hT S Clh rT 2 Czh (5.4)

for some constants C; > 0 and Cy > 0 independent of A and 7. Moreover, for the sake
of simplicity, we assume that £ can be represented by the union of the triangles T € T,
contained in Q.

Remark 5.1.1 For every triangle T let (' and 8¢ (for i = 1,...,3) be respectively the
edges and the internal angles. It is well known that the regularity condition (5.4 ) implies a
lower and an upper bound on the amplitude of the internal angles (the Zlamal’s condition).
Thus there exist 0 < 0y < 01, independent of h, such that 6y < 6" < 0,. Moreover it is
not difficult to see that there ezists a constant C3 > 0 such that for every T € T}, and for
every edge ¢* we have C3h < HY((Y).
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Let ap < & 5 be a positive infinitesimal sequence. For every h > 0 let B, = {Bp} the
family of the tnangulamons nested in T} and defined in the following way (see Figure
5.1): every element T' € Th is divided into four sub-elements T1,...,Ty, taking on every
edge [z¢ xh] of T a knot z}, of By which satisfies the constraint

g;h = t;z:;l +(1 - t):L‘h for ap <t <1 -—ap. (5.5)

We will say that these vertices are adaptive. Finally, for every mesh Bp, we denote by Ep,
the set of edges whose extrema are both adaptive vertices.

/N

| MOVING VERTICES !\>

[ FIXED VERTICES

Figure 5.1: The foreground and a background triangulations T}, and B,

For every h > 0 and every Bj € By, let Wi(§, By) be the finite element space of
discontinuous functions which are affine on every sub-element T' € By, and which can have
discontinuities only along the edges belonging to Ep. Then our finite element set Vi(92)
will be the union of the spaces Wy (2, By) for By, € Bp.-

Theorem 5.1.2 Let by, be a positive diverging sequence and let s : [0,400) — [0, +00) be
an increasing continuous function such that

. os(t) : .

Let 0 < g < 1, for u € LY(Q) let

Z /fVu )dz + Z/ (bp|ut —u™|)(ve) dH, (6.7)

TE By CEE,

if u € Wi(Q, By) and let Fy(u) = +oo otherwise. Then Fy T'-converges, in the strong
topology of L*(), to the functional given by

F(u) = /Q f(Vu)dz + /S (v dHY, (5.8)

if u € GSBVP(Q) and F(u) = +oo otherwise.
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5.2 TI'-limsup inequality

Lemma 5.2.1 Let {Th} be a regular family of triangulations of R2. Let S be a segment
with HY(S) < +oo and let S, = {T € Ty : TN S # 0}, then there is a constant C such
that, for h sufficiently small, #(S;) < CH(S)/h.

Proof. By the regularity of the mesh T}, for every element 7" we have |T'| > wr% > nCh2.
Let Cy be the constant appearing in (5.4) and let U(S,2C1h) = {z € Q : d(z, S) < 2C1h},
then U(S,2C1h) contains all the elements T' € Sj. Being S a segment
|U(S,2C1h)|
h

By the lower bound on |T], it follows that

#(Sh) < 'U(S(’/,flflh)' < OHI,ES) +o(1),

< 4AC1HY(S) + o(h) .

which gives the required estimate for A sufficiently small. B

Let § C Q be a segment with unit normal v and let S;, be as in the previous lemma.
For every positive h we define a discretization of S in By by means of a piecewise linear
curve Sy which can be represented by the edges { € Ej. For our purpose, as it will be
clear in the sequel, it is not restrictive to assume that the line S, which contains S, does
not intersects any knot of the mesh T}. For every T € Sp, let ¢ be an edge of 07 such
that (SN ¢) = {p}. Then p = =, + t(z] — z}), where z} and 2] are the extrema of ¢ and
t € (0,1). Let pp, be defined by

ot +an(z), — z¢) 0 <t <ap
PR=4P . ifap <t<1-ay (5.9)
gt + (1 —ap)(z] —2t) ifl —ap <t < 1.

Roughly speaking py, is the projection of p on the segment [z} + ap (2] — %), 2% + (1 —
ah)(arfb — z%]. In this way, as #(SNAT) =2, for every T € Sy, we defined two points py,
and gp (contained in 0T) and then we define S, NT as the segment [py gp]. The set S
will be clearly given by the union of the segments S, N T for T' € Sy, (it’s not difficult to
see that with this definition S}, is a piecewise linear curve).

Lemma 5.2.2 Let S be a segment, Sy, (for every h > 0) its discretization in By, T € Sy,
such that #(0T'NS) = 2. Then

HY S NT) — HYS,NT)| = O(arh), (5.10)
| (v) dHt — / b dHY] = O(anh). (5.11)
sNT SpNT

Proof. Let p and ¢ be the extrema of SNT, while p, and g, are the ones of S, NT. Note
that d(p,pn) < Caph, then from

HY (S, NT) < d(pn,p) + H'(SNT) +d(g,aqn),
HYSNT) < dp,pn) + H (S, NT) + d(gn, q),
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it follows easily that
|1 (S, NT) — H(SNT)| < Carh = O(anh) .-

Let v and vy, be the unit normal to SN T and S, N T respectively. Considering that vy,
and v are constant in T we get

[ etmyant = [ ow)dH!| < ol (5,0 T) - 40IH (S AT)
ST SnT .
< B (S5 1T) = SomHHS N D]+ HAS N T) = $IH (SN T)]

< |p(vn)|Canh + [$(v) — () HH (SN T). (5.12)

¢(—v) it is not
By the uniform

Denote by 7 and 75, the tangent vectors to S and S,. Being é(v)
restrictive to suppose that in (5.11) arccos({v,vy)) = arccos({r, 7)) <
continuity of ¢ it follows that

< I
2°

|p(vn) — d()[H (SNT) < Clv-- v HN(SNT) < Clr — m[H (SN T)
< OlrHY (S NT) — mH (Sh NT)| + ClmaH (Sp NT) = mH (SN T))|
< C[pq — Pagi| + CIHMN (SN T) = HH(SNT))|
< Clﬁ'@*}TP*?Tq—Q_TEI + O(anh)

< C|ppr| + Clggr] + O(anh) = O(anh). (5.13)

Joining inequalities (5.12) and (5.13) we conclude the proof. ]

From the estimate on the cardinality #(S;) and the previous Lemma the following
global error estimates come easily.

Lemma 5.2.3 Let S be a segment and let Sy (for every h > 0) be its discretization in
By, then
|H1(S) = H'(Sh)| = O(an +h), (5.14)

RO / B | = O+ ). 5.15)

Lemma 5.2.4 Let L : R? — R? an affine application and let {; and (; be unit vectors
such that arccos({(;,¢;)) = 6o > 0. Then

D] < € (IDG Ll +IDg LI ), (5.16)
where C depends only on 6.

Proof. Arguing by components the proof follows easily from Remark 3.7 in [20]. L]
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Lemma 5.2.5 Let S C Q be a segment. Let S be the line which contain S and assume
that it does not intersects any vertex of Ty. Let T € T, such that #(8TNS) = 2. Let Sy, be
the approzimation of S in By. Consider the triangles Ty, and T} as in Figure 5.2. Denote
by Ly the affine maps of Ty onto T, which keeps the natural correspondence between the
vertices. Then |DLy| < C, where C depends only on the constants Cy and Co appearing

in (5.4).

Figure 5.2: The triangles T}, and T} of Lemma 5.2.5.

Proof. Consider first the behavior of the triangles Ty for k = 1,...,3. Let z ) be the
vertex of T}, belonging to T, and take a system of coordinates Wlth origin in zg ;. We
denote by Ck, for ¢ = 1,2, the unit vectors corresponding to the edges of T} containing
Zkp- Then Ly is a linear map and Ck are its eigenvectors. Hence, for ¢ = 1,2 we have

1D Ll = 1L Gl = 1N,

where AL are the eigenvalues of L;. Considering the three cases in (5.9) we get either
AL <1or
Cih

N < —22

| i< C3h(l —ap) — sC.
Then by Lemma 5.2.4 we have |DL;| < C, where C depends only on 6y and thus, by
Remark 5.1.1, on the constants appearing in (5.4).

Finally, since Ly = Ly on 07, N 0T}, (for k = 1,2, 3), it is sufficient to choose a couple

of edges of T4 which form an angle greater than or equal to 6. Then by Lemma 5.2.4
we have again |DLy4| < C. ]

Proposition 5.2.6 Let F' and Fj as in- Theorem 5.1.2. Let u € W(Q) N L*®(RQ), then for
every h > 0 there exists up, € Vy(2) such that

up, — u in L1(Q), (5.17)

lim sup Fp(up) /f(Vu da:-{—/ ¢(v) dH! = F(u). (5.18)

h—0
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Proof. Step 1. Let Q C R? be an open square such that & CC Q. Since 0N} is piecewise
linear and compact and u € W54(Q2\ S) for every integer k and for 1 < g < oo by
the standard extension and embedding results for Sobolev spaces, see e.g. [1], there exists
v € SBV(Q) such that v = u in {, S, is the union of segments S; for 1 = 1,...,m and
v e WH(Q\ S).

Let 7; denote the unit vectors parallel to S;. Let £ € St such that £ # +7; for every
i = 1,...,m. Denote by K} the set of knots of the mesh T, and define the set Z, =
{z, € Ky, : © & S,}. Clearly d(Zy,Sy) > 0. Then for some 0 < t < Cih we have
(Sy +t&)N Ky, = 0. We will denote the function v(z—1tR€) by vt(x), the set Sye = (Sy+1aé)
by St and the sets (S; + tn€) by Sf -

First of all, for every h > 0, we define a mesh By, € By, which fits to the discontinuity set
St. Let I = {z € Q : o = S N St} For the sake of simplicity it will be useful to suppose
(without loss of generality) that the segments intersect in their extrema. Moreover we
assume that h is sufficiently small in such a way that we can localize the constructions.

Consider p; € I and assume, for simplicity of notations, that it is the intersection
point of the sets S? for 1 <4 < j. It is easy to see that it is possible to choose r > 0 in
such a way that for every h > 0 the sets U(SEt, C1h) \ B(pk,rih) are pairwise disjoint, for
1 < i < j. We will denote by By the ball B(pg,rrh). Let Cy p, be the union of elements
T € T, such that T N By # 0. Consider the segments St \ Ck,p and let Sf,h be their
approximations in Bj. Then it is possible to find a polygonal region Pxp C Ckp (see
Figure 5.3) which contains py and such that 8P is representable in By, and it connects
the sets S% ;,..., 5},

7
The polygonals Py, ;, and the piecewise linear curves S;:',h. define some vertices of By,

all the others will be given by ), = 3ai + 2a), (if ¢, belongs to the edge [z}, 7).

Figure 5.3: The construction around the point pg.

Step 2. Now we can define the function up. Let 5 be the union of the elements
T € Ty, such that T C Cgp or T NS}, # 0 for some k. We denote the set '\ 2} by Q5.
Note that || < ChH!(Sy) + #(I)Ch? and thus |Q}] — 0.
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We consider first the set Qf. Since v* is continuous in Qf we can define uy as the
Lagrange interpolation of v* in By,. Note that, by its definition, the restriction of By, to
the set €27 is regular in the sense of (5.4). Hence, by a classical result in the theory of
finite elements (see for instance [21] Theorem 3.1.6), we know that there exists a constant
C, independent of h, such that, for every element T' € Bj, with T C Q¢, and for every
p,q € [1,00] we have

[0 = Vhlm g < CITIT >3 fotp 7.
In particular for p = co, ¢ = 1 and m = 0 we have .
lv* ~ wnllir < Ch* o0, (5.19)
while for p = 00, g = 00 and m = 1 we have
[0t — wnll10r < Chivlapor, (5.20)

for a suitable constant C independent of h and T.
-Consider now the set 2. Let T € T}, such that TN S}, # 0. Consider the notations

of Lemma 5.2.5 and Figure 5.2. For k =1,...,4, as T C (Q\ S%) we have v* € W2°°(T7).
Thus we can define an auxiliary affine function vy, : T} — R as the Lagrange interpolation
of v in Tj. It’s easy to see that

IVonllooz; < 1V0lloory < IV0 oy 35 -
Then we define up, : Ty — R as up(z) = vp(Lgz). By Lemma 5.2.5 it follows that
IVunlloore < [DLk| [Vonlloozy < CIVY, o057 -

Finally let T' C Cj 5, and consider the sub-elements Ty, € By. If T}, C Py, j, we define up, = 0,
while if T}, ¢ Py, we define uj, as the Lagrange interpolation of vt in T}. As before we
have

IVunlloory < I1V0 o (57 -

Step 3. Let us see that the sequence uy, verifies (5.17) and (5.18). It’s clear that v* — u
strongly in L!(2), moreover by (5.19) it follows that

/ lup, = vt|dz < / |uh—-vt|dm—l—/ |uh—vt]dm
Q Q8 Qs

h

< 2IQISLL'”'Ut”oo,Q+ Z /Iuh——vt|da;
Tcag'T

<O+ Y Chvilacor
TCQ2

< O(h) + C'hzl’vlz,oo,(n\EZ) ’

which implies (5.17). The proof of the I-limsup inequality follows from

limsup/Qf(Vuh)dx:/ f(Vu)dz, (5.21)
Q

h—0
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limsupZ/ s(bplul —uy | (ve) dH! < / b)) dH* . (5.22)

h—0 (CE;

Let 1qg¢ be the indicator function of Qf. By the previous step, for every T' € By, we have
IIVuhHooT < || Vol|leor < +o0 and thus by (5.1) the function f(Vup) is bounded from
above. Since |Q5] — 0 by (5.20) it follows that f(Vup) converges pointwise to f(Vu).
Thus by dominated convergence we have

’llivr&)TZ:; /f (Vup) d$-"/ lim f(Vuh dx—/f (Vu)d (5.23)

Moreover, as s(b|u; — uj|9) <1 we have

S [sttalut —use) e <Y [ ow)drt 40 30 HAOR)

(eBL V¢ i=1" 5 pel
m
< Z/ d(vp) dH! + O(h). (5.24)
j=1"55n
Then by Lemma 5.2.3
m
lim sup Z /s(bhlu}f —up |9 o(ve) dit < thsup B(vp) dH*
< [ gv)dH'.
Su
and the proof is concluded. : [

Proposition 5.2.7 For every u € GSBV?(Q) we have F"(u) < F(u).

Proof. By Lemma 1.2.17 we have a sequence wg € W(Q2) such that

wy, —> u strongly in () (5.25)

Vuwy, — Vu strongly in LP(Q2, R?) (5.26)

limsup [ p(v)dH! < / $(v) i (5.27)
k=0 JSu, Su

Then by (5.26) and by a standard result on Nemitskii operators we have

/f(Vdem—%/f(Vu)d:c. (5.28)
Q Q

By Proposition 5.2.6, the lower-semicontinuity of F”(u), (5.27) and (5.28) it follows that

F'(u) < hmmfF "(wg) < limsup F(wg) < F(u).

k—+o0

which concludes the proof. |
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5.3 TI'-liminf inequality and compactness

Proposition 5.3.1 Let hy, be a positive sequence such that limy, oo by, = 0. Let u € LY(Q)
and u, € Vi, (Q) such that up, — u in L(Q). Then

F(u) <liminf Fp_(uy). . (5.29)

n—00

Proof. We denote the functional Fj, by Fy. Clearly it is not restrictive to assume
that liminf, o0 Fr(un) < +oco. Then there exists a subsequence h; of Ay, such that
sup; Fj(uj) < +oo and

lhggfﬁ’n(un) = ]1_13.10 Fj(uy). (5.30)
Moreover, up to a further subsequence (not relabelled), the limits

J—roo

lim /Qf(VuJ-) dz Jli)rgo /S,- s(bj|u;’ —u3 |9¢(v) dH?!

exist and clearly (5.30) is still valid.
Let m € N and j sufficiently large in such a way that b; > m. Since the function s(%)
is increasing, we can write "

/Sj s(mluf —u|9)é(v) M < /Sj s(bjluy —ug |9p(v)dH < C. (5.31)

Then by Theorem 1.2.10 we have a subsequence uy of u; and a function v € GSBV ()
such that wug converges to v in measure and such that

/Q f(Vv) de < lim inf /Q F(Vu) dz,

/ s(mlv* —v7[9)g() dH' < limint /S s(mlut — ur | ¢(v) dH? .

v

As vy, — u in L*(Q), the functions v and u must coincide, hence

/Qf(Vu) dmglikn_l)glf/nf(Vuk) dxzjgzgo/S)f(Vuj)dm. (5.32)

[ st —u g art < it [ s(mbuf - up160) a1

u

< lim [ os(bjluf —uf|9)p(v) dH* .

j—-)OO Sj

Being
. lifa#b
— b9 =
mHIEWS(mIG bl ) - {0 ifa= b,

by monotone convergence we have

B0) i < sup [ sl —up(0) dH?
Su m JS,

U

< lim s(bjlu;-F —u; [)e(v) dH? (5.33)

- ]-—)OO Sj
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Joining inequalities (5.32) and (5.33) with (5.30) we have

Gu) = /Q F(Vu) dz + /S () di

< Jli)rgo Qf(Vuj) dz -i-jl_i)nc}O /Sj s(bj|uj' —uy |9)p(v) dH!
= lim inf Fp, (un)
n—rod
and we conclude the proof. ' B

Proposition 5.3.2 Let h, be a positive sequence such that limg oo hn = 0. Let un €
Vi, () such that

Fo(uy) + /Q |un| dz
is equibounded. Then un 1s strongly precompact in L'(Q).

Proof. The proof follows easily by (5.31) and Theorem 1.2.10. |
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Chapter 6

A finite element approxifnation of
the Griffith’s model in fracture
mechanics

6.1 Statement of the convergence result

Let Q be an open bounded Lipschitz set in R?. For a positive constant k, denote by K ()
the set of functions v € L'(Q, R?) such that |u(z)| < k for a.e. z € Q. The set Q represents
the reference configuration and K the constraint. Moreover let M2*2 be the space of 2 x 2
matrices with the norm |M[? = 3, ;|my;|* and let M2x2 be the subspace of symmetric
matrices.

Fori=1,2,3, let T&.i be the triangulations of R? having the geometries represented in
Figure 1.2. The corresponding finite element spaces, denoted by VZ(Q, R2), are the classical
spaces of piecewise affine functions on T restricted to Q. Moreover given 8 € (0, £) and
an infinitesimal sequence d, > 6, let 72 be the family of triangulations T, such that for
every element the amplitude of the internal angles ; and the length of the edges (; satisfy

0<0; e<HY G <de. (6.1)

The corresponding finite element set, given by the union of the spaces V/(Q2, R?) defined
on T., will be denoted by V¢(Q,R?).
Let 1 : [0,4+00) — [0,1] be a non decreasing function such that

$(t) = o(t) fort— 0, (6.2)
(1—(t) = o(%) for ¢ — +co, (6.3)

and such that for ¢ large the function (1 — 1(¢))¢ is non-increasing. Given M € M?*2 let
the strain energy density be defined as

W(M™) = u MV + Slir (M, (6.4

for 4 > 0 and A > 0, and let
fle, M) = eW (M™¥™)(1 ~ ¢(e|M|?)) + v (el M]?). (6.5)
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Using the structured triangulations Té (for i = 1,2,3), the discrete functionals F*(u) are
defined as

Z F(e, Dv.)dz (6.6)
reri © /TN
if v, € VH(Q,R?)NK(Q) and Ff(u) = +oo otherwise in L! (22, R?). The convergence result
is the following.

Theorem 6.1.1 For every mesh T let ¢; : R? — [0,+00) be the anisotropy function
(depending only on the geometry of the triangulation) defined in Section 2.2. Let the limit
functional be given by

Fi(u) = /Q W (Eu)dz +v [ ¢i(vy)dH! (6.7)
Ju
ifu € SBD(Q,R)NK(Q) and F'(u) = +00 otherwise in L' (2, R?). Then for every u €
LY(Q, R?) and for every sequence v; € V, (2, R?), converging strongly to u in L' (2, R?),
we have
Fi(u) < hmmfF ' (ve;) -

Ej—*

Moreover for every u € SBV*(Q,R?) there exists a sequence ve; € V¢, (Q,R?), converging
strongly to u in L'(Q,R?), such that

Fiu) > hmsusz (ve;) -

£;—0

For the isotropic case, we consider the functional

FL(ve;) Z (e, Dv.)dz (6.8)
pers ©/TNO

ifv. € VY(Q,R*)NK(Q) and F7 (ve) = +o0 otherwise in L (€2, R?). Then the convergence
result is the following.

Theorem 6.1.2 Let the limit functional be
FO(u) = / W (EBu)dz + vsin 0K (J,) (6.9)
Q

ifu € SBD*(Q,R?)NK(Q) and F¥(u) = +oo otherwise in L*(Q,R?). Then for every u €
LY(Q,R?) and for every sequence ve; € ng (Q,R?), converging strongly to u in L*(Q,R?),
we have
[ T g
F(u) < ].lb}';l_l)lolf Fe(ve;) -

Moreover for every u € SBV?(Q,R?) there ezists a sequence Ve; € ij (92, R?), converging
strongly to u in L'(Q,R?), such that

FOu) > lim sup.?-' o 2 (ve;) -

E:,—)

70



Remark 6.1.3 The easiest choice for the function i is given by

¢(t)={0ift<6

1 otherwise,

nevertheless conditions (6.2) and (6.8) allow the use of smooth functions (such as
%arcta,n(t") for n. > 2) which are much better for the numerical implementation.

Note that the I'-limsup inequality is not complete because the proof is based on a
density argument which is not yet known for the case u € SBD?(Q,R?)\ SBV?(Q,R?).
Complete convergence results can be stated as follows (but these formulations cannot
ensure compactness for sequences of minima).

Remark 6.1.4 Fori=1,2,3 let the discrete functionals F*(u) be defined as

Fiw)=Y 1 [ fleDuda

€
reri  JTNY

if ve € VH(Q,R?) N K(Q) and Fi(u) = +oo otherwise in SBV2(Q,R?). The functionals
Fi T-converge (as € — 0), respect to the strong topology of L'(2, R?), to the functional

Fi(u) = /ﬂ W(E)dz +7 | ()i’

if u € SBV?(Q,R?) N K(Q) and F'(u) = +oo otherwise in SBV?(Q,R3?).

Remark 6.1.5 Let the isotropic limit functional be given by

1
‘7:50('06) = Z g f(E, -D'Us)dx
TETEQ TN

if ve € VI(Q,R?) N K(Q) and Fl(ve) = +oootherwise in SBV?(Q,R?). The functionals
FI T-converge (as € — 0), respect to the strong topology of L' (0, R?), to the functional

Flu) = /Q W (Eu)dz + vsin #'(J,)

if u € SBV(Q,R2) N K(Q) and F(u) = +oo otherwise in SBV?(Q, R?).

6.2 The anisotropy functions

The anisotropy functions appearing in (6.7) have been explicitly computed and studied
in Chapter 2 for the Mumford-Shah functional, here we report only the main properties
useful in the sequel. '

These functions are convex, positively 1-homogeneous and pair. They have an easy
representation in terms of scalar products. Indeed let

g1 =(1,0) &o=(V2/2,v2/2) &3=(0,1),

ci=c13=v2/2 ca=1,
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then we can write

¢1(v) = 2% ekl (v, E1)] - (6.10)

Moreover let
Gop=brpfork=1,2,3 &= (-v2/2,v2/2) &z5=(-1,0),

Cok = Cl,k/z for k = 1, 2, 3 C2,4 = C22 C2,5 = C2,1,

then

pa(v) = 1I§l§§4{02,k|<’/, Ea,i)| + co k| (v, Eo k1)) - (6.11)

Finally let
€31 =(—1,0) &30=(1/2,v3/2) &3 =(~1/2,v3/2),
cap=1for k=1,2,3,

then we have

¢3(v) = o, cs el (v, E3.1)| - (6.12)

On the contrary the idea for the isotropic approximation is to orient the elements along
discontinuities (see Figure 1.1) in order to have a tubular neighborhood and consequently
an isotropic approximation of the Hausdorff measure. This property is explained in the
following lemma (for the proof see Appendix A in [20]).

Lemma 6.2.1 Let S be the union of a finite number of disjoint segments Sy, then there
exists a family of triangulations T¢ € 7;9 such that

. S? .
hmsup‘—Ll = sin@H(S), (6.13)
e—0 €
where S¢ is the covering of S in T..
2 T T T v T 2 T T T T T - 2
15} 1 15 b J 150
1} JRURE BN 1 1F 1+ 21N
05t 7 \ i osf 05} 4
0 : ‘: o 0
‘\ ‘ \ g
05 | \ i -05F -0.5
At N o 1 At At <<t
151 {1 5t 1 st
2l ——— 2 et e 2 e
2 15 - 05 0 05 1 15 2 2 -5 -1 05 0 05 1 15 2 2 <15 - 05 0 05 1 15 2

Figure 6.1: The level curves compared with the unit circle.
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6.3 I'-limsup inequality

Proposition 6.3.1 Leti=1,2,3 then for every u € SBV?(Q,R?) N K () there exists a
“sequence” ve € V2(Q, R?) such that

ve — u strongly in L*(Q,R?) | (6.14)
lim sup FZ(ve) < F'(u). (6.15)
e—0

Proof. Step 1. Consider first u € K(Q) N W(Q,R?) with compact support, then, by
Definition 1.2.14, Sy, is the union of the disjoint segments S, for 1 < m < k. Let an’s be
the coverings of Sy, and consider € sufficiently small in such a way that they are pairwise
disjoint. Let SZ,E be their union and Q! = Q\ SfL,E. Being S, C SZ,E by regularity we
have u € C°(QL, R?), thus v, can be defined in QI as the Lagrange interpolation of u.
Moreover (¢ contains all the knots of the mesh T because the sets an’e are disjoint and
their interior do not contain any vertex by definition. Thus the function v, is defined in the
whole set (2, it clearly belongs to V(2, R?) and it satisfies also the constraint ve € K ().
By a standard result on finite elements (see [21]) there exists a constant C, which does
not depend on ¢ and u, such that

1.1
lu = vellm,gr < C|T|a 2™ lul2,p,T - (6.16)

Then for every triangle T' ¢ S’fm, for m =0, ¢ =1 and p = co we have

/T |ve — uldz < C|T|€? ]u|2,oo,(ﬂ\§;) .

Considering that ||velloo < |Jullco and that [SZ | — 0 it follows easily that v. converges
strongly to u in LY(Q,R?). Moreover for m = 1, ¢ = 2 and p = oo for every triangle
T ¢ S, we have

P2 21,12 .
/T |Dve = Du?do < CITI 2 ul? 050, -
Denote by De the function Dvelg; (where 1g: is the characteristic function of ¢). Then

D, converges strongly to Du in L?(2, M2*2), indeed from ISZ,EI = O(e), the regularity of
u and the previous inequality it follows that

/ |D; — Dul?*dz < / |Dve — Dul? dz +/ |Du|? dz

Q o Sie
< ce? |u)? = + 8% | Jul? — (6.17)
s 2,00,(0\Fa) T 1Puel 187 0 (150

To prove (6.15) we must consider separately the behavior in Q& and S’fz,,e' We start with
Q. By the previous inequality it follows that

limsup | W(Dv#¥™)dz = limsup / W (D™ dz
Q

e—0 QL e—0

_ / W (Eu) dz. (6.18)
Q
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Moreover, being (1 — %(t)) < 1, we have

sy [ (1~ plelDoel)) W (Do) do < imoup [ W (D2 d
e=0  JQL e—=0  Joi
< /W(Eu)dm (6.19)
Q

As u € WHe(Q\ 'S, R?) then |Dve| < ¢ uniformly in Q¢ and thus by (6.2)

limsup | Lu(e|Doel?) dz < limsup | Lyp(ec?)dz =0. (6.20)
=0 Joi € e—0 Joi €

Let us consider now the behavior in Sfb,a. If S C § is a segment and St is its covering,
then, being (1 — ¥(t))t bounded in [0, +oc0), it follows that

lim sup /
e—=0 S|

i
-4

(1 - w(lev5|2)> W (Dv3¥™) dz

< limsup/ E(l - 1/1(6|D1)5|2)>51Dv5|2 dz
=0 Jgi €

4
€

< climsup I—S;i < cHY(S). (6.21)

e—0

Let now § > 0, let S0 = {z € Sy : |[u™ —u7| > 6} and (52) be its covering. Being
u € WHo(Q\ Sy, R?), for e sufficiently small we have |Dve| > £ for T C (82)i. Then,
considering that £|Dv,|? diverges in (88)% and that (1 —1(t))t is decreasing for ¢ large we

deduce that

limsup/ '(1 - w(le'uE]?))W(Dvgym) dz
(58)%

e—0

< limsup/ 1(1 - 111(£|Dv€Ir"))cleng2 dz
(

e—0  J(s8)i €
i 2 2
<tmswp B8 (14 (55)) e
e—0 .
62 \\ 02
1706y 13 a2V
<cH (Su)hr;ljalp (1 ¢(16s)) T6e 0. (6.22)

Then, for every § > 0, by inequalities (6.21) and (6.22), we have

lim sup / (1 - ¢(lev€|2))W(vaym) dz
(Su)i

e—0

<timsup [ (1= ${elDvel’)) W (Do) do +
(532

e—0

+1lim sup/ (1 - ¢(6|DUEI2)) W (Dv¥™) dz
(Su)E\(S2)E

e—0

< CHMSu\ SY),

which proves (for § — 0) that

Jimn sup / (1= 9l Deef?) ) W (D) da = 0. (6.23)
e—0 (Su)

1
€
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Finally, for every segment Sy, from (2.5) follows

Do 12 2
limsup/ ,YM dr < ylim smpﬁgﬂf—zEl = ¢i(v)dH! . (6.24)
e—0 St . 2 e—0 € S,
Then by inequalities (6.19)-(6.20) and (6.23)-(6.24) it follows that
lim sup F(v,) < / W (Eu)dz + ’)// ¢i(v)dH! = Fi(u). (6.25)
e—=0 Q Tu

So the I'-limsup inequality is proved for v € K(Q) N W(Q, R?) with compact support.
Here the compact support is not strictly necessary, it just prevents technical problems
near the boundary 0.

Step 2. Denote by F(u) the I-limsup. By the previous step, if u € K (Q) N W(Q, R2)
with compact support then F*(u) < F'(u). Consider now u € K(Q) N SBV2(}, R2)
with compact support. By Proposition 1.2.15 there exists a sequence of functions wy €
K(92) N W(Q, R?) with compact support such that (1.32)-(1.35) hold. Then by the lower
semicontinuity of F it follows that

Fi(u) < liminf Fé(wy,) < limsup Fé(wy) < limsup F¥(w;) < Fi(u).

k—+o0 k=400 k=400
It remains to remove the hypothesis on the compact support. Let u € K(Q) N
SBV?(Q,R?), from Lemma 4.2 in [20] follows the existence of a function u' €
SBV?(R? R?) with compact support such that v/ = u in Q, ||v/|lec = |lullec and
H(Syw N ON) = 0. Let ' be a rectangle containing the support of v/, then there ex-
ists a sequence v, € VZ(Q, R?) such that limsup,_,q F(ve, Q) < Fi(u, ). Considering
the I'-liminf inequality, we have

F'e(u, Q) > limsup F (ve, Q') > limsup F(ve, Q) + lim inf F¥ (v, '\ 0)
e—0 0 =0

> Fi(u, Q) 4+ Fi(u, 2\ Q).
Then - . ‘ . .
Fi(u) = Fi(u,Q) < F'(u, Q') = F*(u, '\ Q) = F'(u, Q) = F(u),
which completes the proof. |

Consider now the isotropic approximation.

Proposition 6.3.2 For every u € SBV2(Q,R?) N K(Q) there exists a “sequence” v, €
VI(Q) such that
ve — u strongly in L*(Q,R2?) , (6.26)

limsup F2 (ve) < FO(u). (6.27)
e—0

Proof. Step 1. Let u € K(Q) N W(Q,R?) with compact support, and let S, be the
union of the disjoint segments Sy,. By Lemma 6.2.1 there exists a mesh T. € T.% such
that (6.13) holds. Using this mesh we can repeat the proof of Proposition 6.3.1 and we
get (6.19),(6.20) and (6.23). Finally, by (6.13) we have

2 i
limsup/ 7————-——-—¢<6|JZ%I ) dz < ylimsup ————l(S':)El =5 sin97-{.1(.5’u),
Sk,

e—0 . =0

and then the I'-liminf inequality is proved for u € K(2)NW(Q, R?) with compact support.
Step 2. See the proof of Proposition 6.3.1. ]
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6.4 TI'-liminf inequality

The proof of the I'-liminf inequality is based on the measure theoretic argument, presented
in Proposition 1.2.4, which requires the localization of the functionals.

Definition 6.4.1 Let A C Q be an open set, the localized functionals are defined as

i (ve, A Z (e, Dv;) dz

Te T" TNA

if v €VI(Q,RY) N K(Q) and Fi(ve, A) = 400 otherwise in L*(Q, R?).
We consider first the case of the structured triangulations.

Proposition 6.4.2 For i =1,2,3, denote by Fi(u) the T-liminf, o Fi(u) and take u €
L}, R?) such that F'(u) < +oo, then u € K(Q) N SBD*(Q,R?) and

/ W(Bu)dz+v [ éi(ve) dH' < liminf Fi(v,) (6.28)
o] - Ju e—0

for every sequence ve € VA(Q,R?) converging strongly to u in LY(Q,R?).

The proof of Proposition 6.4.2 requires some preliminary lemmas on the localized func-
tionals.

Lemma 6.4.3 For some positive constants o, B, for every open set A C Q and for every
function v, € V2, R?) there exists v € SBD?(Q,R?) satisfying

W (Ev)dz + aH! (J, N A:) < Fi(v, A), (6.29)
A

Hz €Q : ve(z) # v(2)}| < BeF(ve, A), (6.30)
where A, = {z € A : d(z,04) > €}
Proof. Let 7 > 0 such that
sup{eW (M*¥™) for e|M| < 7} < v
and define

~ {0 fort<r

¥(t) = ¥ (t) otherwise. (6.31)

Then the function
f(s, M) =eW(M*¥™) = eW (M*¥™) (1 - 'I,E(EIM!Q)) + ’71/J~(E|M‘2) (6.32)

satisfies f(g, M) > f(e, M). Indeed if e[M|* > 7 then P(e|M|?) = 4(e|M|?), while for
e|M|? < 7, being eW (M*¥™) < v we have

Fle, M) = eW (™) (1= (e MP)) + W (™) (e M)

< eW (M) (1= (eI M) + (e M) = (e, Du).
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Moreover, being 1(t) non decreasing, ¥(t) > 1(7) for t > 7 so that for e|M|2 > 7
Fle, M) = e (M) (1 = (el MP)) + v (el M) > yip(r)

Finally, given an open set A C Q and given v. € VI(Q,R?) let AL = {T € T! : T C A}

e AP ={T e Al :elDv2<7} A ={TecAl.T¢AY}.

Define A¥” c Q and AY C Q as the union of the elements belonging to AY and AM
respectively. Then it follows by the previous inequalities that

Fi(v,, A }: f g, Dve)|T|

TeA*
Z f(e Dv)|T| + Z f g, Dve)|T|
TeA”’ TeA’“

> > W(Bv)T|+ . —w )T (6.33)
TeAb TEA’“

Let v € SBD?(Q,R?) be defined as

_Jvein Ai-’b
0 inQ\ 4%,
then from (6.33) follows

{z € Q : ve(z) # v(2) IA”ﬁ! = >, ITI< F’(vs,A),

TeAb

which proves (6.30) for 8 = 1/(y%(7)). Moreover, being H!(8T) < c;e, it easy to check
that for a positive value of o we have

1
L Typ(r) > om (o)
Thus from (6.33) follows

Fi(ve, 4) > Y. W(E)T|+ > oH'(3T)
TeAl’ TeAl!

> [ W(Bv)dz + oM (J,NA,),
Ae

which proves inequality (6.29). v |
Lemma 6.4.4 Leti=1,2,3, for every § € (0,1) tﬁere are some positive constants o, 5,1
(depending only on &) such that for every ve € VX(Q,R?) and for every vector &y (ap-
pearing in (6.10) (6.10) (6.10) ) there ezists v € SBD*(Q, R?) satisfying

o / W (Bv) dz + BH(J, N A2) < Fi(v, A), (6.34)
A
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e €Q @ ve(z) # v(@)} <neFilv, A), (6.35)
and fori=1andi =3
=y [ el € H* < Fion, ), (6.36)
JuNAe
while for i =2

(1- 5)7/J o (Cz',kl(vv, i )| + Cigerl (v, €i,k+1)l) dH < Fi(ve, A). (6.37)

Proof. Step 1. For a given § € (0,1) let 75 such that (1—06) < %(¢t) for t > 75. Let aq < 1
such that for €| M|? < 75 we have ayeW (M*Y™) < «y. Moreover define

=~ J0 fort< s
v = {¢(t) otherwise, (6.38)

and
F(e, M) = caeW (™) (1 = (el MP)) + (el M)

Being f(e,M) a convex combination of eW(M®¥™) and v then f(g,M) 2>
min{eW (M*¥™),v}. By the choice of 75 and a; it follows that for | M|*> < 75 we have
F(e, M) = 0qeW (M*™) < min{eW (M*™),7} < (e, M).
Clearly f(e, M) < f(e, M) also for €| M|* > 75, being Y(e|M|?) = (] M|?) and o < 1.
As in the previous proof let AL ={T € T : T C A}. Let
AP ={T € AL : e|Duc|* < 5},
A = [T e AL : T ¢ AP},
and define Ai’b and Aé’ﬁ as the union of their elements. For T' € Aé’b we have 1[;(5]Dv5]2) =
0, then )
gf(e, Dv,) > oy W (Ew,) .
While for T € A% we have ¢|Dv.|> > 75 and then
1. 1 o 1
‘s‘f(E; Duv;) > '6‘7¢(5|D'Uel )= 2'7(1 - 9).
Thus, arguing as in the previous Lemma we can write
. 1.
Fi(ve, A) 2 Z Ef(E,D'UE)IT'
TeAL
1
> Y aW (BT +7 3 —$(elDvl)T]
TeAY TeAl
1
> D aW(Bw)T|+v(1-0) Y IT|. (6.39)
TeAL TeAb!
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Step 2. Consider the case : = 1 and ¢ = 3. The function v is defined as v = v, on AV
thus by (6.39) follow inequality (6.35) for n = 1/v(1 — ¢) and inequality

ai / W(Bv)dz < Fi(v, AY) . | (6.40)
Ar

On A% we proceed element by element and component by component, defining v first on
the boundary of the element and then in its interior, in such a way that, for a suitable
choice of 81 and ay the following inequalities hold

aQ/TW(E'U) dz < L?’ (6.41)
SyNoT =10, (6.42)
BHN(J,NT) < |_:£_] | (6.43)

[ el < L. (6.44)

Then from (6.39), (6.42) and (6.44) follows (6.36) while from (6.41)-(6.43) follows
agy(1 = 6) / g W (BEv) dz + B1H (J, N AMH) < Fi(u, AMH)
Ay

and thus by (6.40) follows the existence of & and f such that (6.34) holds.

Let ¢; denote the edges of 9T and let a; and b; be the endpoints of ;. We proceed by
components. Let v* be the n™® component of v, and let §;u” be the slope of v along ;.
T e A?b it’s clear that

g|o;ul|? < 275. (6.45)

Now, consider a triangle T' € A,f-’n and an edge (; then, proceeding by components, we set
v™ = v on (; if €|0;v7|? < 275, otherwise we set

v (ta; + (1 — £)by) = {328?) gi ; ig (6.46)

In this way v™ is no longer continuous on 9T but now its slope is uniformly controlled on
T \ {m1, ma, m3}, where m; denotes the middle point of the edges (;.

Given &, let J; ; be the bold set represented in Figure 6.2 for TE1 and in Figure 6.3
for TE3 . It’s easy to see by a simple trigonometric argument that for every k& we have

T
/ Ci | (v, &i )| dH' < 7 ; (6.47)
Jik €

and that for a sufficiently small parameter 8; > 0 we get
1 |T|
BHMNJikNT) < = (6.48)
Given &; i, both the components of v are defined is such a way that the discontinuity

set Jyn C Jik, so that J, C J; x and consequently inequalities (6.43) and (6.44) hold as a
consequence of (6.47) and (6.48). The construction is the same for all the choices of &; .
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Figure 6.2: The sets of discontinuity for T!.

S F’M/ &:3\

@ (b ©

Figure 6.3: The sets of discontinuity for T3,

Let R,, for m = 1,2,3 be the regions of T'\ J;x . On Ry, \ J; x, = ORNOT the component
v™ is already assigned, by construction it is continuous because the middle points are all
separated, and its slope is uniformly bounded by +/ 275/e. As a consequence, its value
on 8T defines in each region an affine function v such that |Vu™|? < c/e (see [43] for
details), where ¢ depends only on ¢ and on the mesh. Then, for a suitable constant axo,
inequality (6.41) holds and the proof is concluded. :

Step 3. Consider now the case i = 2. The function v is defined again as v = v
on A thus by (6.39) follows inequality (6.35) for n = 1/7(1 — d) and (6.40) holds. As
before we can proceed component by component but this time it is not possible to define
v™ element by element because the anisotropy is the result of the orientation of all the
triangles contained in the squares @ (see Figure 6.4 (a)) which represent the smallest
periodic structure of the mesh. Thus let Q. be the set of squares @ C A. We partition
Q. into the subsets Q. for m = 0,...,4, according to the number of triangles T C @

belonging to A% In particular (6.39) becomes

oo d) 2 Y W (BT +5(1-8) 3 /7]

TeAL TeAlt
> 3 aw@Er -9 Y (Y I
TeAb QEQ: TcQ:TeAM!
4
> Y a1W(Ev€)]T|+7(1—5)2( > m[TI). (6.49)
TeAb m=1 Q€EQe,m &

Given k = 1, ...,4 the function v" will be defined in such a way that for Q@ € Qe;m

J,NoQR =10, ' (6.50)

80



(2)

(@ (b) ©

o /Q W (Bv)ds < ﬁ'}‘ (6.51)
g (s,nQ) < L (652

T
ml—;' (6.53)

| (casllomn€aadl + capnllons aan)l ) i1 <
SuNQ

If all the previous inequalities are satisfied then the proofis concluded, indeed, considering
(6.49), from (6.50) and (6.53) follows (6.37) while from (6.50)-(6.52) follows the existence
of a and S such that (6.34) holds.

First of all note that by symmetry it is sufficient to consider the case k =1 ({21 =
(1,0), &2 = (v2/2,v/2/2)). As before, we proceed by components, defining v" first in HQ
and then the interior. Note that v is already defined in Q N A"b Let T C @ such that
T € A% and let ¢; be the edge of 0T N OQ. If €|d;v7|* > 2745 then v? is defined in ¢; as
in (6.46) otherwise we take v™ = v. Let Jy, be the sets represented in Figure 6.4-6.6. By
a simple trigonometric argument it easy to check that

T
/ (Cz,kl(% Ea k)| + cok41|(v, §2,k+1)f)d'Hl < ml___} , (6.54)
ImnQ € _

and clearly there exists 5; such that

m|T|

B (JnNQ) < (6.55)

Note that the sets Jy, are defined in such a way that for every connected component C of
\Az’ the slope of v" is uniformly bounded by 1/275/¢ on 8C N AQ. Thus we can extend
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(a) (b

Figure 6.6: Discontinuity sets J3 and Jy for the cases Q € Q. 3 and @ € Q4 respectively.

the values of v™ inside C in such a way that Jy» C J,, and

m|T|

/ Vo2 dz < c (6.56)
Q

Once the components are defined in this way, property (6.50) is clearly satisfied, (6.51)
and (6.52) follows easily and finally inequality (6.53) is proved from (6.54).  H

Proposition 6.4.5 Let u € L*(Q,R?) and let A be an open set in Q, if Fz(u A) < 400
then u € SBD?*(Q,R?) N K(Q) and

HY (T, N A) < +o0, (6.57)
/A W (Bu)de < Fi(u, A) . (6.58)

Moreover fori=1 and i = 3 and for every k =1,...,3 we have
1  cunlln G 4 < P 4). (6.59)

Finally for i = 2 and for every k =1,...,4 we have
’Y/ ) (02,k|<Vm§2,k)| + C2,k+1l(’/u,§2,k+1)|) dH' < Fi(u, A). (6.60)
W0

Proof. Let ; \, 0 and v, € VZJ.(Q,Rz) such that v;; — u» in L'(Q,R?) and
liminfe; 0 ng (ug;, A) < +o0. Up to taking a subsequence (denoted again as vg;) it is
not restrictive to suppose that F?. ('uEJ ,A) < ¢ < +o0.

Let us first prove inequalities (6 57) and (6.58). For every vg; let v; € SBD*(Q,R?)
be the function given by Lemma 6.4.3. From the convergence in Ll( ,R?) of ve,; and from
(6.30) it follows that v; converges to u and by (6.29) that

/ W (Bvj) dz + oH (Jy; 0 Ae;) < FL(ve;, A) < c.
Ae;
Let n > 0, if & is small enough then A, C A;; and then

W (Ev;) dz + aH' (Jy; N Ag) < FL (ve;, A) < c.
Aﬂ
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Then by the compactness and lower semicontinuity result of Proposition 1.2.19 we have
that u € SBD?(4,) and

W (Bu) dz + o' (J, N Ag) < liminf FY (v, A).

Ar[ ]%—I—OO

Since the previous inequality holds for every n we have

W Eu)dz < liminf F?, (v, A), -

_7'—)00

HY(Jy NA) < +00. (6.61)

Applying the same reasoning for every sequence €; , 0 and for every sequence v, it
follows that

/A W(Eu) dz < F'(u, A). (6.62)

Finally, to show inequalities (6.59) and (6.60), let this time v; be the function given by
Lemma, 6.4.4 then, as for the previous inequalities, (6.59) and (6.60) will follow from the
lower semicontinuity inequality (1.43). B

Proof of Proposition 6.4.2. The I'-liminf inequality follows applying the usual
supremum of measures argument and considering the representations (6.10)-(6.12) of the
anisotropy functions. The constrain v € K (Q) follows by pointwise convergence. [ |

Consider now the isotropic case.

Proposition 6.4.6 Denote by F%(u) the T-liminf. o F?(u) and take u € L}(Q,R2)
such that F%(u) < 4+co. Then u € K(Q) N SBD?(Q,R?) and

/ W(Bu) dz +7#1(S,) < liminf 72(u), (6.63)
Q £

for every sequence v, € Vf (2, R2) converging strongly to u in LY(Q,R2?).

Proof. Following the proof of Lemma 6.4.3 we can easily obtain (6.29) and (6.30). Arguing
as in the proof of Proposition 6.4.2, we get (6.61) and (6.62). It remains to consider the
H-term. We prove first a result on the localized functional similar to Lemma 6.4.4. For
every § € (0, 1) there are some positive constants e, 8,7 such that for every v, € V?(Q,R?)
and for every ¢ € S there exists v € SBD?(Q, R?) satisfying

a/A W (Ev) dz + BH (J, N A.) < F (v, A), (6.64)

{z €Q : ve(z) # v(2)}| < neF(ve, A), (6.65)

sinf (1 — &)y / Kvw, €)| dHY < FL (v, A). (6.66)
JyNAe

Following exactly the proof of Proposition 6.4.4 we get again inequality (6.39). Define
ve = v on A¥, so that from (6.39) we have (6.65) and

o / ., W(Bv)dz < FI (v, A% .
A%
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We want to define v on A%* in such a way that (6.41)-(6.43) and

sinf (v, €)| dH < 7l (6.67)
JuNT €
are satisfied. We can proceed element by element and component by component. Note
that for a constant ¢ > 0 if T' € A% then £|8;v2|% < 7 for every edge (; C OT'. Let now
T € A%% and let ¢ Cor. If €]0jv™|? > c75 then we define v™ on (; as in (6.46) otherwise
we set 0" = VL. ;
Given ¢ € S', following the idea of [20], let the edges of OT be ordered according to

(m1,&) < (mg,€) < (m3, &),

where m; denotes the middle point of ¢j. We define the discontinuity set J as the union
of the segments [my,my] and [my, m3]. Then by [20] we have

T
H'(J) < Eﬂinle, (6.68)
|T|
/J‘(Vv:f)ldlﬂl < comd (6.69)

Note that J contains all the middle points m; and that the components v™ are continuous
on 8T\ {my, m2, m3} and that their slope is uniformly bounded by +/c75/e. Consequently
for every connected component of T'\ J the value of v™ on OT defines an affine function
whose gradient is controlled by ¢/e (see [20] Remark 3.5) and for a suitable choice of ay
we have (6.64). Moreover in this way Jy» C J and then (6.67) follows from (6.69). Then
the T-liminf inequality is obtained following the proof of Proposition 6.4.2. H

6.5 Numerical results for a quasi-static evolution of a pre-
existing fracture

Let © C R2 be an open, bounded, and connected set with polyhedral boundary and
let 0p C 09 with H1(8Qp) > 0. Let the boundary condition be given in 0Qp by a
monotonically increasing function g(t,z) = tg(z) for §(z) € C%69Qp,R?).Let S C Qbea
segment representing the initial fracture and let 0 = tg < t; < ... < t, = T be a uniform
subdivision of the time interval [0, T].

For the sake of simplicity we will consider only the triangulations T2, which have been
used in the numerical experiments, and we assume that 2 and 8Qp can be represented
exactly in T2. Let g be the Lagrange interpolation of §(x). For a constant k > ||g|lec and
for t =1,...,ty let the discrete constraint be defined as

K () ={ue LY(9,R?) : ||jullec < th and u =t §. in IQp} .

For t =13 let Sgt, = {T € T3 : TN S # 0} then the discrete functional is given by

1
G (ve) = = > (e, Dv,) dz. (6.70)
TET3\Se, * T

Let we s, € argmin{Ge s, (ve) for ve € V3(Q,R?) N K, 4 (2) }. The discontinuity set of we;
is defined implicitly by an energy balance; since f(e, Dwg;) is a convex combination of
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eW (Ewe o) and v, the fracture will be represented by the set J¢1 of the elements T' € T3
where the “local Griffith’s criterion”

eW (Bwey,) >

is satisfied. Moreover, in order to ensure the irreversibility of the fracture, we define
Sct, = Seyy U Jey,. Proceeding by induction, the quasi-static evolution will be given by
the sequence of functions w4, fori=1,...,n.

By a rescaling argument we can choose v = 1. For ¢ = (u+ %) and s > 1 a good choice
for the function (z) is given by ’

P(z) = 2 arctan((cz)®) (6.71)

R
which gives X
2y s
P(e|Dve|*) = 2 arctan (55 (P‘ + 5) !D’UEIZ.Q) .

Indeed, considering (p + %)ID%I2 as an approximation of the energy W (Ewv,), the “local
Griffith’s criterion” becomes

s(u-%— %)|Dvg|2 >1=7,

suggesting that the function ¢(z) should change its behavior for z = 1.

From the numerical point of view the difficulties come from the non-convexity of the
function G,. Indeed in order to reproduce accurately the Griffith’s criterion we should use
a function v with a fast transition from 0 to 1, which is obtained taking s large. Indeed in
this way the bulk and surface energies are computed carefully, because f(e, Dve) is close

to the function W (B, £ D |2
= _Je ve) for ec|Duv|* < 1
f(e, Dve) = { otherwise.

Unfortunately the numerical minimization for s large is very difficult due to the sharp
layer of 9 at z = 1, indeed the algorithm seems to be unable to overcome the layer and
the solution does not exhibit any motion of the crack. For this reason we adopted a sort
of graduated non-convexity strategy. For every time ¢; let 1.5 = 51 < ... < sg = 8.5 with
Sn+1 — Sp = 1 and let G'Zf“t be the discrete functional obtained with the exponent sg in

¢
(6.71). For every time t;, starting from s; we compute a solution of Ggf"tj taking as initial

guess the solution of G:’t;l. Clearly for ngtj the initial guess will be the solution at time
ti_q.

’ For every time t; and every value s; the minimization is performed by a quasi-Newton
algorithm for non-convex functions using a quadratic back-tracking as line search strategy
(we refer to [46] and to the references therein for the details).

Our model problem is defined in the set © = (0,2) x (0,1), the initial fracture is the
segment with extrema (0,0.5) and (0.55,0.5). The boundary condition §(z) is assigned on
the sets 9 = {(z1,1) for z1 € (0,2)} and 8QF*™ = {(z1,0) for z; € (0,2)} and it is

defined as
(0,0.5) for z € AN ,

(0,-0.5) for z € QKwn,

The Lamé constants are p = 9 and A = 12 and the toughness is v = 1. Let us try to
give a rough estimate of the critical time ¢, when the motion of the fracture should start.
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Suppose that the crack tip is located at the point (L, 0.5), we expect the fracture to evolve
horizontally from left to right. We will restrict our analysis to the set (L, 2) x (0, 1) because
the value of the energy in (0, L) x (0,1) remains basically constant until loss of cohesion
occurs. Considering the geometrical symmetries of the problem we can approximate the
value of the elastic energy by

(u + —;—) %‘2t2(2 - L),

where 4(z) is the affine function having boundary condition §(z) on dNp. Let ¢, =
(n+ %)l(%‘;]2 and let dl, the increase in fracture length, be the unknown. Then the Griffith’s
energy is reduced to

Gy(dl) = cet?(2 — L — dI) + ydl = dl(y — cet?®) + cet*(2 — L)
which is a linear function in dl. The minimum problem becomes

in  dl(y — cet? t2(2-L).
08B 1) (7 = cet™) + cet™( )

Thus for (y— cet?) > 0 the minimum is attained in dl = 0 (the crack does not move) while
for (y — cot?) < 0 it is attained at dl = (2— L) (loss of cohesion). Even if the real behavior
is not so simple, because of the influence of lower order terms, we can take the value
t. such that v = c.t? as an approximation of the critical time. In our case ¢, ~ 0.258.
The numerical results seem to obey to this estimate, being the numerical critical time
t7 = 0.252.

Figure 6.8 and 6.9 show the evolution of the fracture and the behavior of the energies.
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Figure 6.7: Initial configuration.
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Figure 6.9: Comparison of elastic, fracture and total energies.
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Chapter 7

Linearized elasticity as [-limit of
finite elasticity

7.1 The main results

Let the reference configuration be an open, bounded, connected domain Q@ C R”, for
n > 2, having Lipschitz boundary. Let |F|? = i |F;j|? be the norm in the space M™*™
and let SO(n) be the subset of rotations (orthogonal matrices with positive determinant).

We will assume that the material is hyperelastic, i.e., there exists a stored energy
density W : Q@ x M"™*™ — [0, +00] such that for a.e. z € Q we have

W(z,F)=+oc0 ifdetF <0 (7.1)
(orientation preserving condition), and such that for a.e. z € O
Wz, F) < +o0 (7.2)

for F in a neighborhood U of the identity I independent of z (so that small deformation
of the reference configuration have finite energy). By frame indifference the stored energy
density can be written as

W(z,F)=V(z,4(FTF - 1I)). (7.3)

where F7 denotes the transpose of the matrix F. We suppose that V : Q x Mgm =+ R
is L™ x B"-measurable (where L™ and B™ are the o-algebras of Lebesgue measurable and
Borel measurable subsets of R") and that, for some § > 0, the function B — V(z, B) is
of class C? for |B| < § and for a.e. z € Q. Moreover we will assume that the reference
configuration has zero energy and is stress free, which means that for a.e. z € Q

V(z,0) =0 OV (z,0) =0. (7.4)

Finally we require the coercivity assumptions (a), (b), (c¢) and for a.e. z € Q the upper

bound
0%V (2, B)[T,T|| < 29|T|> for |E| <6 and T € M2, (7.5)

for some constant v > 0 independent of z.
From (7.4) it is easy to deduce by Taylor expansion that for a.e. z € Q

V(z,E) = %B%V(x,tE)[E, E] (7.6)
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for some t € (0,1) depending on z, hence
V(z, E)| < v|Ef> VE € M7 with |[E] <. (7.7)
Let A(z) := 03V (z,0). From (7.6) and (b) it follows that for a.e. z € Q2
A()[E, E] = 8%V (z,0) [E, E] > 20|B VE € Mg (7.8)
Finally for every z € Q and F' € M™" let Foym = (F+ FT)/2 and
Wo(z, F) = 215 Wz, T+ cF) = %V{m,sFSym + 1e2FTF). (7.9)
It is easy to see that for a.e. z € £

. 1
lim We(z, F) = —Q—a%W(x,I)[F, F]

1

-Z-A(:II) [Fsymv Fsym] . (7'10)

We consider the functional 7 : H'(Q,R™) — [0, +00] defined as

1 .
= —ia%‘V(x,O)[Fsyma Fsym] =

Fe(u) = /QWE(.’E,VU) dz, : (7.11)
and the functional F : H}(22,R™) = [0, +oo)'given by
Flu) = % /Q Az) [e(w), e(u)] dz . (7.12)

Let 09p a closed subset of 9Q with H1(8Qp) > 0 and let g € WH*(Q,R"). Let
H;,aQD be the closure in H!(€,R") of the space of functions u € Whoe(Q, R™) such that
u = g on 0fdp. By strong (resp. weak) topology in H;,BQD we mean the restriction of
the strong (resp. weak) topology of H 1(Q,R"). Let £: H'(Q,R™) — R be a continuous
linear operator, representing the work of the (rescaled) loads. We define the functionals
6., Hlg, - 0,+00] a5 Ge(w) = F:(u) ~ £(u) and G(u) = F(u) — L(w)

The main convergence results, proved in Section 7.4, are the following.

Theorem 7.1.1 Assume that V : @ x Mayt — [0, +oo] satisfies conditions (a), (b), (c),
(7.1), (7.4), and (7.5). If ue satisfies

Glug) = inf  Ge(u) +o(1) (7.13)

uGH;,aQD
then u, converges weakly to the ( unique) solution ug of

min  G(u).

1
“EHg,anD

Theorem 7.1.2 Under the hypotheses of the previous theorem, if condition (c’) is satis-
fied then u. converges to up strongly in WH(Q,R™) for 1 < g <2.

The proof follows basically from the following results, contained in Section 7.2 and 7.3
respectively.
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Proposition 7.1.3 Ife; = 0 and u; € H! 9,00 5 a sequence such that
Ge; (ue;) < € < +o0,
then ue, is equibounded in HY{(Q,R™).
PropOSItlon 7.1.4 Letej — 0. The functionals Ge; T'-converge to g in the weak topology

of Hy oo,

7.2 Compactness

From conditions (a), (b) and (c) it follows easily that there exists a non-decreasing, con-
tinuous function ¢(z), of the form

at? for0<t<c
(1) = { ac? fore<t<d
(ac?d™Y)t ford <t,

such that ¢(|E[) < V(z, E) for a.e. z € (2 and every E € M7 %, For a positive 8 let 1(t)
be the function defined as

at? for0<t<g3,
vt = { (2aB)t — (afB?) fort>p. (7.14)

It is easy to check that 1(¢) is increasing, C', and convex. Moreover, since
él_rf(l) 2a0 =0,
for f sufficiently small we have 9(t) < ¢(¢) and then
V(z, E) > ¢(|E]) (7.15)
for a.e. z € 2 and every E € M7

Lemma 7.2.1 Lete > 0 and us € H(Q,R™). Denote the rescaled deformation z-+cue(z)
by ve(z). Then there exists a function Re : Q@ — SO(n) such that

/Q Ve — Ref? do < Ce2F (u), (7.16)

where C' depends only on the function 1 (in particular it does not depend on € or v.).

Proof. We may assume F.(u:) < 400, so that det Vv, > 0 a.e. in Q by (7.1). Considering
that
« (ue) / We(z, Vue) dz = —/ V(z, (VoI Ve — I))dz (7.17)

and using (7.15) we get

IR AT / Vie, (VoI Vo = 1) < Fufu) . (719)
Q Q
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As det Vo, > 0 a.e. in by polar decomposition (see for instance [21]) for a.e. z € 2 there
exists a rotation R. and a symmetric positive definite matrix Uy such that Vv, = R U;.
In particular Vol Vo, = U2, hence

Vol Ve — I| = U2 - I]. (7.19)

Since U, is symmetric and positive definite, using an orthonormal basis in which U, is

diagonal, we can prove that
|U. - I < |UZ-1|.

Thus, by the definition of ¢, it follows that for 3|UZ — I| < 8
8|0, — I12 = (302 - I).
Moreover for a suitable constant c;, depending on j,
alU.=I2<[U2-1]  for JUZ—1] > 6.

Indeed, using again the diagonal form, we can write

i(xi—l)z sfjA?+n=

i=1 =1

ZA2—1 -—5<( %)iw-u.
=1 =1

Y

Moreover there is a constant ¢z such that 2eat < 9(¢) for ¢ > 3, hence for %-IUEQ ~-I1>p
cealUe = IP* < o|UZ — I| < 9(5]U2 - 1)) .

By this inequality and by (7.18) and (7.19) there exists a constant c3, depending only on
1), such that

/ U, — I? dz < c3eFe(ue) -
Finally considering that for a.e. z € Q we have Vv, = R.U, we can write
/Q |Vve — R.|*dz = /Q \U. — I? dz < c3e®Fe(ue) -
which is the required estimate. B
The following Lemma, (for which we refer to [32]) will be crucial in our proof.

Lemma 7.2.2 Let Q C R™ be an open bounded set with Lipschitz boundary. There ezists
a constant C such that for every v € H*(Q,R™) there exists a constant rotation R € SO(n)
such that

/ |Vu(z) — R[*dz < C / dist(Vo(z), SO(n))? dz, (7.20)
Q Q
where dist(F, SO(n)) denotes the distance from the matriz F to the set SO(n).

Moreover we will need the following result.
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Lemma 7.2.3 Let S CR" be a bounded H"-measurable set with 0 < H™(S) < +oo, for
some m > 0. Then

i
Flg = i Fz — ¢|2dH™ :
Fls = (min [ 1Fe - oParm(a)

s a seminorm on M"™*",
Let So be the set of points x € S such that H™(S N B,(z)) > 0, and let aff (Sy) be the
smallest affine space containing So. Let K C M™ ™ be a closed cone such that for every

F e K with F #0
dim(ker(F)) < dim(aff(Sp)). ~ (7.21)

Then there exists a constant C > 0 such that
C|F| < |F|s (7.22)
for every F € K.

Proof. It is not difficult to check that |F|g is a seminorm and the minimum is attained
for ( = foFzdH™. We will prove (7.22) by contradiction. Suppose that for every integer
k it is possible to find a matrix F, € K with |F}| = 1 such that

1 1

with { := fSFk:c dH™. 1t is not restrictive to assume that Fj; converges to F' € K, with
|F| = 1. Then by (7.23) and by continuity it follows that

/ \Fz — (PPdH™ = 0.
S
for ( = fgFzdH™. Then Fx = ( for H™-a.e.z € S and hence for every x € Sp. By

continuity and linearity Fz = ( for every = € aff(Sp). Then dim(ker(F)) > dim(aff(S;))
and thus, by (7.21), F = 0. This is clearly impossible because |F| = 1. |

Now we are ready to prove the following compactness result.

Proposition 7.2.4 Let u, be a sequence in H;,aﬂp- Then

/Q Va2 dz < OF (ug) + C /6 o e (7.24)
D

where C depends only on 9, Q, and 8Qp.

Proof. By Lemma 7.2.1 we have
/ dist(Voe(z), SO(n))? dz < Ce2F. ()
o)
and by Lemma 7.2.2 there exists a constant rotation R, such that

/Q Voe(z) — Rel? do < G2 (ug). (7.25)
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If ¢. = fa(ve(z) — Rex) dz, then by the Poincaré inequality
Jo2(e) = Rez = el ey < C [ [V0s(e) = Ref?d < OFi ().
Moreover by the continuity of the traces
fa o l0:(2) — Rez — C|?dH™ ™ < Cllve(z) = Rt — Gl o rm) S O Fe(te)
Considering that on 8Qp we have ve(z) =z + eg(z) we can write

/ |z — Rex — (o|2dH" ™! < Ce2Fe(ue) + Ce? / lg|2dH™ L. (7.26)
oQp oQp

Let K be the closed cone generated by SO(n)—1I, which is the union of the cone generated
by SO(n) — I and of the space of antisymmetric matrices. Therefore, dim(ker(F)) <n—1
ifFeKand F#0. Let S:= 0Qp. As § is contained in the Lipschitz manifold 0 and
H"=1(S) > 0, we have H" '(Sp) > 0. This implies that dim(aff(Sp)) > n — 1 and thus
condition (7.21) is satisfied. Using Lemma 7.2.3 and the previous inequality we obtain

II-RJ>P<CII-RJ;= C/ |z — Roz — Cc|2dH™
9Qp
and thus by (7.26)
fQ T = Re|*dz < Ce*Fe(uc) + Ce® /a . 9|2 dH™ L. (7.27)
D
By (7.25) and (7.27) we haveveasily
/ (Vv — IP dz < CE*Fu(ue) + Ce? / g2 dHm.
[y) a0p

Substituting Vv, = I + eVu, in the previous inequality we get (7.24). |
Proof of Proposition 7.1.3. Using Proposition 7.2.4 we have

/ Ve, 2 dz < CF., (us,) + C / g dH™
Q 0p
Hence we can write

fn Ve, > de < C(Ge, (e;) + L) + 1),
and by the Poincaré and the Holder inequality it follows that

llue; “%Il(Q,R“) <C+ O”“Ej ”Hl(ﬂ,R") ’

which gives the boundedness of u.; in H 1(Q,R"). ]

Finally we remark that for n = 2 and for a sequence ue; € H}(Q,R?) we can prove
the compactness result in a more elementary way without using Lemma 7.2.2. Indeed for
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every €; let Re,:Q — SO(2) be given by Lemma 7.2.1. Define M,; = (R,; — I)/e;. Then,
substituting Ve, = I +¢;Vue; in (7.16), we get

/inugj — M., > dz < C1F, (ue;) -

= [ as ~be
Msj (bej an )

for some real functions ac, and b;;. Denote the components of u by u'. By a linear com-
bination we obtain

A ‘Vluéj - v2u?j|2d$ = /Q !(VIU;J - an) - (Vzuzj - a€j)l2 dz < CQFE_,- (usj),

Note that M., has the form

/Q |Vaug, + vlugjlzdx /Q [(Vaug, +be;) + (Vlugj —be)|? dz < C3 e, (ue;) -
Moreover, being n = 2, we can write
/ |V, |? dz = / [Viug, — Vaul | dz + / Vaug, + ViuZ, | dz + 2 / det Vug, dz .
Q Q Q Q
As u, € Hj (2,R?) we have (see e.g. [21])
/ det Vug,; dz = 0.
Q
Then by the previous inequalities we get
/Q |Vue, |* dz = /Q Viug, — Voul, |* dz + /Q [Vaug, + Viul |* dz < CF, (ue;)

and thus u.; is bounded in H&(Q, R?).

The following example shows that, if other potential wells are present, with the same
value of the energy, we might lose compactness of solutions.

Example 7.2.5 Let Q = (=1,1) x (-1,1), £ = 1 and w € H}Q,R?) defined as
wl(zy, z3) = —max{|z1|,|z2|} + 1 and w?(z1,22) = 0. Let g; — 0, we; (z) = w(z)/ej
and v, () = T + £jwe; (z). Then Vvg; = I +¢€;Vwe; = I +Vw does not depend on €; and
takes only four values, denoted by Fy,...,Fy. Let E; = %(FZTFz =1I), fori=1,...,4. Let
V be the function satisfying conditions (b) and (c) and such that V(z,0) = V(z, E;) =0
fori=1,...,4. Then

. 1
inf{G,(u) : u € H} ()} < ;?-/ V(z, %—(V’UZ;V’UEJ. —1I))dz —/ We; dz
j/Q Q
)
= & w LI(Q,R”)'
If ug; is a sequence satisfying (7.13) then
1 B
’“'E‘Jf”'w“Ll(Q,R") +0(1) 2 Ge; (ue;) > = |lug; |l a,rr) »

hence |lug; |l L1 (o,r?) diverges.
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7.3 TI'-convergence

For € Q and E € M3 let |E|a(s) be the norm defined by

1

|Blage) = {§A(m)[E,E]}% = {%%V(x,o)[E,E]} . (7.28)

Note that by (7.5) and (7.8) we have

Il

B < |Eljm < 1B : (7.29)

I ®: Q — M™X" is a measurable map, the function z — |®(z)|a(s) is denoted by |®|a.
(z) Y A

sym
Let us fix a sequence ¢; — 0. By Proposition 7.1.3 the functionals G, are equicoercive
in H; oq, and by Proposition 8.10 in [24] we can characterize the I'-limit in the weak

topology of H;’ oqp D terms of weakly converging sequences. In particular we have

G (u) =T lig]ni%fgs(u) = inf{ljigl_&gggj (uj) : for uj = uin Hy 5 },

" (u) := I-limsup G. (u) = inf{limsup G, (u;) : for uj — u in H} pap}-
£;—0 j—++o0

We will prove that for every function u € H;,BQD we have G"(u) < G(u) < G'(u), from
which Proposition 7.1.4 follows.

Proposition 7.3.1 For every u € H;,BQD we have G (u) < G(u).

Proof. Consider first the case u € W1°°(Q, R™). By (7.10) it follows that for a.e. z € ()

lim We, (z, V) = %A(w) le(w), e(u)] .

Ej—r

Using the upper bound (7.7) we deduce that V; (z, Vu) is equi-bounded in L*°($2). Then
taking the sequence u; = u, by dominated convergence it follows that

limsup i (ue;) = lim, /ﬂ Vi, (s, Vu) do - L(u) = 5 /Q A(2) [e(u), e(u)] dz— L(u) . (7.30)

g;—0

If u ¢ WH°(Q, R™) by the definition of Hj 5  there exists a sequence uy, in Wwhe(Q,R"),
which satisfy the boundary condition uy = g on d{p and converge to u strongly in
H(Q,R™). Since, by (7.30), G"(ux) < G(ug), the lower semicontinuity of the I'-limsup
and the continuity of G respect to strong convergence imply that

G"(u) < likn_l)g}fg"(uk) < liminfG(ux) = G(u)

and the proof is concluded. B

Lemma 7.3.2 Let ¢; — 0 be a decreasing sequence. For every k € N there exist an

increasing sequence of Caratheodory functions VJ’“ : QXM — [0, +00) and a measurable

function p* : Q — (0,+o0) such that V]’“(:L', ) is convez for a.e. T € Q and satisfies

VE(z,E) < V(z,iE)[e; VB € Mg, (7.31)

1
Vi@ E) = (1-7)IBe  for|Blaw < #t@)/e - (7.32)
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Proof. By Taylor’s formula, from (7.4) and (7.29) it follows that for a.e. z € Q and every
k € N there exists r*(z) > 0 such that

1
(l - E) |Bla@) S V(€,B) for |E|aq) < rk(z) . (7.33)
Let us consider the function h* : Q x My, — R defined by

hk( 2 (1- %)IE}i(z) for |E|A(z) < Tk(-'f) )
z, = .
Y| Elaw)) for |Blag) > r*(z)

which is less than or equal to V(z, E) by (7.33), (7.29), and (7.15).
For a suitable choice of x*(z) > 0 the function

St { (1-%)2 for 0 < ¢ < p(z),
z, =
2(1 = Puf ()t — (1= ) (uh(2))? for t > pk(z),

is convex in ¢ and satisfies ¢*(z, |E| Az)) < B*(z,E) < V(z, E). To conclude the proof it
is enough to define ij(w, E) = ¢¥(x, sle]A(x))/sg. From the special form of ¢*(z,-) it is
easy to see that Vj’“(a:, ) is increasing with respect to j and that (7.32) holds, while (7.31)
follows from the inequality ¢*(z, |E)| A@) S V(z, E). [

Lemma 7.3.3 Let g; : @ x R™ — [0,+00) be Caratheodory functions such that 9i(z,-)
is convez. Let g;j(x,&) be increasing in j and pointwise converging to a function g(z, ). If
wj converges weakly to w in L*(Q,R™), then

/ 9(z,w)dz < liminf | g;(z,w;)dz. (7.34)
Q Q

J—>+00

Proof. As gi(z,w;) < gj(z,w;) for j > 4, by the lower semicontinuity of the functional
Jo 9i(z,v) dz we have

/gi(x, w)dz < liminf [ g;(z, w;)dz < lim inf gj(z,w;) dz,
Q Q Q

j—+oo J—+oo

which proves (7.34) for i — oo. E

Proposition 7.3.4 For everyu € H gl,BQD and every sequence u; € H ; s, weakly con-
verging to u, we have the I'-liminf inequality

3 | A@) ) ew)ds < imigt g, ), (7.35)

from which it follows that G(u) < G'(u).

Proof. For every k € N let V}’“ (z, E) be the sequence given by Lemma 7.3.2. Note that
by (7.32) for every E € M7%" we have

1
: k _ 2
jll? Vil(z, E) = (1 - E) IEla@) - (7.36)
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Then inequality (7.31) gives

1
Wsj (-T:VUEJ') = 'E—:?'V(x:f:je(uq) + %EjZVugVusj)
_>_ ‘/}k(m7 e(qu) + %Ejvug;vusj) .
Since Vug; — Vu in L*(Q,M"™*") we have that ejVuZ;Vqu — 0 strongly in
LY(Q, M™*™), hence e(ug;) + %ejVuZ;Vuej — e(u) weakly in L'(Q,M"*"). Then by
Lemma 7.3.3 and (7.36) for every k € N we have :

.. . k

llgggf QWEJ- (z,Vue;) dz > 1;314{{.% QV,- (z, e(ue;) + 365 VL, Vaue,) do
1 1
: /Q (1~ 7 )A@) le(w), efw)] da-

v

(7.37)

Taking the supremum as k — 00 and considering the weak continuity of £ we deduce
inequality (7.35). H

7.4 Convergence of minimizers

We are now in a position to prove Theorem 7.1.1.

Proof of Theorem 7.1.1. It is enough to prove the statement for evey sequence ¢; — 0.
Since G, (g) < C < +o0, We have e, (u;) < C < 400, then by Proposition 7.1.3 ue,
is equibounded in H'(Q, R™). Thus there exists a subsequence u, converging weakly to
some limit w € H;,anp' By I'-convergence we know that w must be the minimizer ug of
the limit functional G (see, e.g., [24], Corollary 7.17)

Finally, as the limit w depends neither on the subsequence we, nor on the sequence
€, the whole sequence w, converges weakly to u in H;’aQD. B

In the sequel we will assume that V(z, E) satisfies conditions (a), (b), and (¢’). It is
not restrictive to assume that 1 < p < 2. Let o be the constant appearing in (b). From
(a), (b), and (¢') it follows that there exists a nondecreasing, continuous function ¢(t) of

the form
at? foro0<t<c,

$(t) = { ac? fore<t<d, for0<c<d,
(ac?d™P)t? ford <t,

such that ¢(|E|) < V(z, E) for a.e. z € Q. Consider the function 1, (t) defined as

at? for0<t<up,

hp(t) = { a(t—bP forp<t, (7.38)

fora=ap P2 u?Pandb=(1- B)p. It is not difficult to check that 1,/)p(t)' is increasing,
C*, and convex. As 1 < p < 2, we have

Flbi_r_)r(l) ap PP P =0, (7.39)

thus for p sufficiently small 9,(t) < ¢(t) for every t > 0 and then ¥, (|E|) < V(z, E) for
ae. z € Q and every E € Mg7n.
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Lemma 7.4.1 Let ¢; — 0. For every k € N there ezists an increasing sequence of
Caratheodory functions Vf : Q0 x Mg — [0,400) and a measurable function p* : Q —

(0,+00) such that for a.e. z € Q the function V;k(:z,)r% is convez and (7.81) and (7.32)
hold.

Proof. We follow the proof of Lemma 7.3.2, with v replaced by 1p, and we consider the
functions
(1- 52 for 0 <t < ph(z),
¢p(z,t) = :
a(z)(t — b(z))? for ¢t > pF(z) .

Note that qbﬁ(:z:,t)z% is convex for a(z) = (1~ £)2Pp7P(*(2))>? and b(z) = (1=B)uk(z).
By (7.39) for u*(z) sufficiently small we have that

¢g($a IE[A(Z:)) < V(:I:,E)

for ae. z € Q and every E € My, Then the sequence defined by Vf(:c,E) :

I

ok (z, sj}E]A(m))/EJZ satisfles (7.31) and (7.32), is increasing with respect to 7, and V;-k (z,-)
is convex for a.e. z € Q. :

Lemma 7.4.2 Let &, —= ® weakly in L'(Q, M™™) such that |®n|a converges to |®|a in
measure. Then @, converges to ® in measure.

Proof. By passing to a subsequence and to a suitable measurable subdomain, it is not
restrictive to suppose that ®(z) # 0 for every z € Q and that |®,|a converges to |®|a
pointwise.

By (7.29) and by weak convergence we have

/51<T¢§)I_A’ ®p — B)adz — 0, (7.40)

where (-, -)a is the scalar product associated with the norm | - |a, €.,

(T, Uaa = 5A@E) [ (2), Ta()]

Moreover by the Schwarz inequality

/Q((!j;—A, @"—®>A)+d$—<-/n(l¢’nlA"l<I’lA)+ iz

As |®p|a is equiintegrable and converges to |®|a in measure, it converges also in L'(Q).

Thus
P +
/((——,@n—fb)A) dr —0.
o\ [2|a

Then by (7.40) <F§X » @n~®)a — 0 in L}(Q) and, up to a subsequence, it converges for
a.e. z € ), hence (FéfI?—A, ®n)a — |®|a pointwise a.e. in Q.
Considering the identity

(0]
|®[a’

2 2

@—@2= __'7¢TL 3
20— 9} = 3 804

Br — )R + [nfa — (
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we deduce that |®, — ®|2 — 0 pointwise for a.e. z € {2.
Since for every subsequence of @, we can find a further subsequence converging point-
wise to ®, it follows that ®, converges to ® in measure. B

Proposition 7.4.3 Let €5 — 0t and let u; — u weakly in HY(Q,R") such that

%2— QV(m,sje(Uj)+ %stC’(uj))dcc — /Qle(u)li dx . (7.41)

Then u; — u strongly in WLHi(Q,R") for 1 < g <2

Proof. For every k let Vj’c (z, E) be the sequence given by Lemma 7.4.1. Denote e(uj) +

1e;C(uj) by ;. By (7.31) for every k and every j we have

1
V}k (z,®;) < _E'JTEV(‘E’EJ'E(”J') + 3€;2C (ug)) - (7.42)

1
By (7.41) it follows that, for every k, VJ’“ (z,®;)? is bounded in LP(S2) uniformly with
respect to j and k. Being p > 1, by a diagonal argument there exists a sequence Jm —F 00
such that for every k

VE (3,8;,)F = uwf  weakly in LP(€), (7.43)

for a suitable function w® € LP($2). Moreover by the weak convergence of u; it follows that

®; converges weakly to e(u) in L*(€2, M™*™). Since the functions Vf (z, 5)% are convex in
¢, then by Lemma 7.3.3 and by (7.32), for every Borel set B C ( we have

1\ 2 . k L. k
(1—75) /B|e(u)|A d:cglﬂloréf/Bij(w,@jm)p dm—-/B'w dz .

Thus

1

wh > (1 - %);Ie(u)l,%\ a.e in Q. (7.44)

Moreover, by the weak lower semicontinuity of the norm, from (7.41), (7.42), and (7.43)
it follows that

/ (w*)P dz < / le(uw)|A dz . (7.45)
Q Q

Being p > 1, there exists w € LP(Q) and a subsequence of wF which converges weakly to
w in LP(€2). Then passing to the limit in (7.44) we get

(w)? > le(u)l3

for a.e. z € , and by (7.45) we have

/wpde/ le(u)|A dz .
Q Q

2
These inequalities imply that w = le(u)|% . Being the limit independent of the subsequence,
we have proved for whole sequence wk that

2
wk = |e(u)|} weakly in LP(Q). (7.46)
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Let p*(z) be the functions defined in Lemma 7.4.1. As p* > 0 ae. in (2, there exists a
decreasing sequence of constants 7 such that

1
meas({z € Q: p*(z) < n*}) < . (7.47)
Considering that lefn (z, <I>jm)% is bounded in LP(Q) uniformly with respect to m and k,
and hence we can use a metric equivalent to the weak topology, by (7.43) and (7.46) we
can extract a subsequence i of j,, such that, writing for simplicity ¢; instead of Ej),, WE
have . \

357— >k and  VE(z,®,)7 = |e(u)|l weakly in I?(Q). (7.48)

k

Then by (7.41) and (7.42) we have
nmsup/v;’;(g;, ®;,) g/le(u)ﬁdx.
k—oo JQ Q

By the uniform convexity of the L”(Q) space this implies that

2
Vi (e, ;)7 — le(w)|]  strongly in LP(€2).

Then we have
VzIZ(l'v q)ik) R le(u)li

strongly in L!'(Q) and a.e. in .
Now we can prove that |e(u;, )|a converges in measure to |e(u)|a. Indeed, for every
0 > 0 the set {||e(us,)|a — |e(u)a| > ¢} is contained in

{letws,)ln = le(ws,) + FeeClus)la] > §} U { [le(ws,) + JerClusy)la ~le(u)la] > £}
(7.49)
The first set is contained in {|2exC/(u;,)|a > %}, whose measure tends to zero since
erC(ui,) — 0 in L (Q, M™*"). Note that for z € {u*(z) > nF} if

]e(uzk) -+ %EkC(uik)IA <k

then by (7.32) and (7.48) we have

k-1
Vz];:(ma D) = Tle(uzk) + %Ekc(uik”?\ .

Then the second set in (7.49) is contained in

{1 (z) <0} U {le(ui,) + 5exClus)la > kY U{I( 5V (2, @5,) )7 — Je(w)|a] > £} -

The measure of all these sets tends to zero as k — +oo. The first one by (7.47), the -
second one since |e(u;, ) + 2£;C(us, )|a is equibounded in L1(R), and the third one because
( Ef—ll/;’; (z, @y,) )% — |e(u)|a pointwise. This concludes the proof of the convergence in
measure of |e(u;, )|a to |e(u)|a.

Then by Lemma 7.4.2 it follows that e(u;,) converges in measure to e(u). As e(u;,) is
bounded in L?(£2, M™*"), we deduce that e(u;, ) converges strongly to e(u) in LI(£2, M™*™)
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for 1 < g < 2. Since the limit does not depend on the subsequence we have that e(u;)
converges strongly to e(u) in L¢(2, M™*™).
By the Korn inequality (see e.g. [50]) there exists a constant Cy such that

/Q|V(u—-u]-)\qda:SCq/ﬂle(u—Uj)lqu—l—cq/glu—uj!qdw.

As e(u;) converges strongly to e(u) in LI(Q,M™") and u; converges strongly to u in
L(Q, R™) by the Rellich theorem, we deduce that u; converges to u in the strong topology
of WhH(Q2, R™). |

Proof of Theorem 7.1.2. Let £; — 0. By Proposition 7.1.3 u,; converges weakly to
u in H'(€,R™) and by I'-convergence we have G(ue;) — G(u) (see e.g. [24] Corollary
7.17). By weak continuity we have L(ug;) — L(u), so that (7.41) holds. The conclusion
follows from Proposition 7.4.3. ]
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