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Introduction

This thesis is devoted to the study of mathematical and numerical techniques applied

to the investigation of the physical phenomena of wetting on rough surfaces and the

hysteresis of the static contact angle. In particular, what we have tried to show in

this work, is that variational methods coupled with sophisticated numerical schemes

for the solution of partial differential equations can provide satisfactory tools for the

prediction on the behaviour of several experiments that can be compared with real

ones driven in laboratory.

The theory of capillarity and its application to the prediction of equilibrium shapes,

of fluid drop, soap films and soap bubbles have been the source of deep problems

and spectacular results across disciplinary boundaries for over two centuries, see

[16, 26] and [48]. Observations led in nature have picked out that water repellency

is a property owned by several materials which makes water hardly stick to them

(classical example is the one of the lotus flower leaves); however the natural hy-

drophobicity/hydrophilicty of a material can be also artificially enhanced even by

simple operations (for example a piece of glass that is passed through the yellow

part of a flame will be covered by a thin soot layer that prevents small drops to

collapse on it). Heterogeneities at microscopic scale, like chemical patterning of

the solid, microasperities and dirt, can surprisingly modify the wetting properties

of the materials leading to a dramatically amplification of the expected behaviour.

The mechanism for which these phenomena are possible relies on the pinning of the

liquid/air interface at the level of the contact line with the solid: the presence of

an obstacle gives rise to resistance forces that for instance prevent a drop which is

increasing its volume

from advancing. The presence of the frictional forces is even more evident in our

daily experience: rain drops are able to stick and stand in equilibrium on tilted glass

surfaces such as windshields and window panes till gravity does not exceed the pin-

ning resistance. These few examples suggest the study of a topic worthy of special
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Introduction

Figure 1: A thin glassy polymer film covered by a regular array of pillars, as seen by scanning

electron microscopy (SEM). [60]

consideration: metastability, namely, the ability of liquid globules to exhibit stable

equilibrium shape that are not minimizers of the capillary energy. A consequence

of the existence of metastable states is the possibility of multiple equilibrium under

the same external conditions, therefore a drop resting on a macroscopically flat sub-

strate can exhibit a static contact angle that varies in a range: this phenomenon is

called hysteresis of the contact angle, and reflects the fact that if we think of driv-

ing an evolutionary experiment, the equilibrium configuration at the intermediate

steps does not depend only on (the same) external conditions, but is influenced also

by the path of the evolution. Maybe fakir drops are the most striking example of

metastability states: a drop gently deposited on a bed of micro-pillars can be in

a stable equilibrium while resting only on the top of the asperities (Cassie-Baxter

state) and air remains trapped in the cavities formed by the pillars. If the asperities

are very tall, this is the state of minimal capillary energy; this state can be recovered

(provided that the radius of the globule is large enough) also when the energetically

favorable configuration is the one in which the liquid is in complete contact with

the substrates (Wenzel state); however, if the drop is allowed to reduce volume by

evaporation, then it falls down. Unfortunately classical theory of capillarity is no

longer able to describe properly these new issues, and it has to be integrated in a

proper way.

The first part of this project collects the studies about wetting phenomena on

rough surfaces; in particular two different variational strategies are described: the

first one is a homogenization approach that reduces the problem to determine the

ii



Introduction

macroscopic contact angle to a cell problem. The second one is a phase field ap-

proach, that characterizes the geometry of a drop by the use of a phase function;

supplying suitable modifications, phase field is a valid model in which the presence

of friction can be naturally embedded.

Homogenization is a powerful technique that captures the asymptotic behaviour of

problems with increasingly oscillating solutions [9]; in particular it can be applied

for the description of static phenomena involving the study of minimum points of

some energy functional whose energy density is periodic on a very small scale. In the

case of minimum problems of integral type, computing the Γ-limit allows to obtain

the “ effective” behaviour of these problems by means of “averaged” quantities.

The effect of microscopic surface roughness on the macroscopic angle is easily under-

stood if one realizes that the actual (microscopic) area of the contact may differ from

the one that is apparent at the macroscopic scale. Therefore in order to measure

interfacial energies correctly within a macroscopic model, it is necessary to perform

renormalization of the quantities that provide the correct value for the energy per

unit macroscopic area.

While describing metastable states and accounting for contact angle hysteresis in

contact line dynamics are still quite challenging, the effect of roughness on the

macroscopic contact angle exhibited by energy minimizing capillary drops is well

understood, at least in principle. Following Gauss variational formulation of the

problem of capillarity, the shape L of a liquid drop of prescribed volume V, sitting

on a substrate S and surrounded by vapor environment, is obtained by minimizing

E(L) = σSL|ΣSL| + σSV |ΣSV | + σLV |ΣLV | (1)

where ΣXY is the interface between phases X and Y , |ΣXY | is its area, and σXY the

corresponding interfacial energy density (surface tension). Minimizers of (1) satisfy

Laplace’s law and Young’s law on the contact angle

cos θ =
σSV − σSL

σLV
. (2)

It has been shown in [1] that, if the rough solid surface is an ε-periodic perturbation

Sε of a flat surface S, converging to S as ε→ 0 (i.e., in the limit in which the scale of

roughness is vanishingly small compared to the true size of drop), and if one defines

Lε = argmin
|L|=V

Eε(L) (3)

Eε = σSL|Σε
SL| + σSV |Σε

SV | + σLV |ΣLV | (4)
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then in the limit ε→ 0, one has that Eε Γ-converges to the homogenized energy

Ehom = σhomSL |ΣSL| + σhomSV |ΣSV | + σLV |ΣLV | (5)

where σhomSL and σhomSV are obtained from suitable cell formulas and are further dis-

cussed below, and Lε converges towards L which is given by

L = argmin
|L|=V

Ehom(L). (6)

In particular the macroscopic contact angle θhom satisfies

cos θhom =
σhomSV − σhomSL

σLV
. (7)

The renormalized surface tension σhomSV (respectively σhomSL ), represents the minimal

energy per unit macroscopic area for a transition layer between the microscopically

rough solid and the vapor phase (respectively, the liquid phase). The physical rea-

son why the renormalization is necessary is that, for example, the minimal energy

transition between a sufficiently rough solid surface and the liquid phase may be

realized by a composite interface in which the troughs near the bottom of the asper-

ities may be filled with vapor. The coefficients σhomSV and σhomSL can be characterized

in principle as the solutions of well defined variational problems, see Chapter §1.

The discussion of a numerical algorithm by which these quantities and hence, by

(7), θhom can be computed for a periodic rough surface of arbitrary complexity is

contained in a work [C] developed in collaboration with Prof. Antonin Chambolle

and Dr. Simone Cacace. The geometric formulation of the problem is replaced

by an equivalent analytical one that counts for the minimization of a new energy

in which a Total variation term is included. In particular the numerical estimate

of the minimum value of this energy will be the cosine of the static (macroscopic)

contact angle.

Total variation has been introduced for image denoising and reconstruction and it

has revealed particularly efficient because of its capability in preserving the natural

discontinuities of an image without the introduction of blurring diffusion. In our case

it represents a good choice to be used for the modelization of the cell problem since

our task is the identification of a certain set by means its characteristic function; as

in the case of image reconstruction, the introduction of diffusivity around the jump

set of the solution affects dramatically the accuracy on the right calculation of the

energy minimum value, that is the main goal to be achieved. The lack of simple

stationarity conditions in the analytical formulation of the cell problem, requires
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for the use of numerical algorithms for the minimization of convex functionals, that

belong to the family of the augmented Lagrangian methods..

The work on the phase field model is the continuation of the previous research

by Dr. Alessandro Turco, done under the supervision of Prof. De Simone, and the

results obtained are contained in a Symposium Volume [A] and in a journal paper

[B]. The main reason to resorting to a phase field model is to be able to follow

merging and splitting of drops, which occur naturally in wetting problems. Further-

more, diffuse interface models have received renewed attention for the simulation

of multi-phase and multi-component fluids because different physical effects can be

modeled by a suitable modification of the free energy [14]. The classical geometrical

formulation of the problem, in which the task of minimizing the energy stored at the

interfaces between solid, liquid and air gives rise to a problem of the iso-perimetric

type,, is replaced by the description of the shape of the drop through the use of

a phase function φ that takes the value 1 in the liquid phase, the value 0 in the

surrounding vapor, and spans the whole [0, 1] interval in a liquid-vapor transition

region. For wetting problems, the capillary energy (1) is replaced by an ε-regularized

version

Eε(φ) =
∫

Ω

(
ε|∇φ|2 +

1
ε
W (φ) + λφ

)
dx (8)

where λ is a Lagrange multiplier for the matching of the volume constraint associated

with the value that the drop prescribes. The equilibrium shape of the drop is

recovered by setting up a steepest descent dynamics

∂φ(τ, x)
∂τ

= −∇Eε(φ) (9)

that leads, as ε tends to 0, φ toward a critical point of energy (8). In the limit as ε

tends to 0, one recovers the solution of the capillary problem, with sharp interfaces

between the phases [41, 56]. The presence of the solid is modeled by imposing suit-

able (Dirichlet or Neumann) boundary condition on the phase function φ, which are

tuned in order to reproduce the Young contact angle (2). For the numerical resolu-

tion of the discrete problem deriving from (9), we present an explicit Euler method,

coupled with a splitting strategy for the calculation of the Lagrange multiplier λ.

Within this scheme, we begin also the description of mesh refinement techniques

and C++ libraries, that have been necessary for the three dimensional simulations

and that will be described in more detail in Chapter §4.

The model and numerical algorithm described above have already been used in the
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study of some model wetting problems [56]. Here we found of interest to explore

numerically the issue of metastability induced by surface roughness; in particular,

inspired by a laboratory experiment performed by Queré et al. [47], in which drops

are carefully deposited on a bed of micro-pillars and are then allowed to evaporate

(hence reduce their volume), we have followed the transition from the metastable

Cassie-Baxter state to the Wenzel one. Numerical simulations based on our model

reproduce this interesting effect, even in absence of additional frictional pinning

forces on the contact line. Furthermore, we give a numerical estimate on the min-

imum radius that a drop in equilibrium over the tallest part of the asperities may

exhibit and compare it with the experimentally determined one.

Numerical simulations based on a phenomenological description of contact angle

hysteresis complete the theoretical study of wetting. Including frictional pinning

forces in a phenomenological description of wetting phenomena requires that one

complements the energy of classical capillarity theory with the dissipation associ-

ated with the movement of the contact line. The resulting model is described in

detail in Chapter §3. When testing a state against varied configurations that dis-

place the contact line, the model augmented with dissipation produces additional

terms which can be interpreted as the energy dissipated by frictional forces on the

contact line. No such energy term and hence, no pinning forces are present in the

classical theory, that therefore allows the drop to assume only a well determined

static contact angle. The mathematical description of the phenomenological model

relies on the use of the phase field energy, conveniently augmented by a dissipation

potential. In particular, we replace the problem of minimizing capillary energy with

a family of discrete incremental problems (a one-parameter family parametrized by

the evolving loading conditions) in which the sum of the energy change and the

dissipation due to the motion of the contact line is minimized. The equilibrium

shape of the drop at time t + δt is obtained from the one at time t by setting up

a steepest descent dynamics that is now driven by capillary energy and dissipation.

We present a stringent test of this model by comparing its predictions with exper-

imental results on the maximal size of the drop that can remain in equilibrium on

vertical glass plates, subjected to a variety of surface treatments that change their

wetting properties.

The numerical solution of the system of semi-linear equations associated with the
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steepest descent dynamics (9) is not particularly challenging in two dimension and it

is easily solved even with an explicit Euler method [56, 57]. The situation changes if

we would like to perform three dimensional simulations: the high number of degrees

of freedom, the particular structure of the solution (different from 0 and 1 only in

a very narrow region) and the different length scales involved suggest the use of an

adaptively refining grid strategy. We use Adaptive Mesh Refining (AMR), a dynamic

gridding approach that employs a fine grid only where necessary. Furthermore the

severe limitations on the time-step imposed by an explicit strategy suggest for the

use of fully implicit schemes for the numerical solution of the phase field problem.

In Chapter §4, we present a preliminary study, developing an idea due to Prof. F.

Alouges, of a fully adaptive, mesh refinement based method for the solution of the

Euler-Lagrange equation associated with (8)
−ε4φ+ 1

εφ(1 − φ)(1 − 2φ) + λ = 0

∫
Ω φ = V

. (10)

The method is based on a quasi-Newton scheme in which we provide an approx-

imation of the Jacobian operator arising from the system of non-linear equations

and that follows from the discretization of (10). The discretization of the equation

is performed by cell centered finite differences and the system assembled at each

Newton iteration is solved on composite grids using multigrid methods, that extend

the classical developed on structured grids.

The main application for this new numerical approach is the study of an improved

version of the experiment introduced in Chapter §2, concerning the complete evo-

lution of a drop evaporating on a substrate of micro-pillars. Just like in real exper-

iments, our aim is to capture the transition from the Cassie-Baxter to the Wenzel

state, after a drop has lost part of its volume by evaporation. Once the drop is in

complete contact with the solid, we would also like to characterize the effects that

the asperities have in the enhancement of the hydrophilic properties of the solid

substrate, because of the pinning action of the tips.

The research of a fast and stable numerical strategy for the accomplishment of our

goal, is completed by the use of a continuation method, that is very useful when

dealing with a family of problems whose solutions depends on a continuously chang-

ing parameter. In our case, in which the evolving parameter is the volume of the

drop, the continuation method has revealed apt at stabilizing the contact line at the

most shocking moment for the system, namely when the volume is decreased, and
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therefore in providing a good initial guess for the solution at the intermediate steps

of the discretized time-evolution.
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Chapter 1

Capillarity on rough surfaces:

homogenization approach

1.1 Mathematical statement of the problem

1.1.1 The homogenization formula

Following Section 2-3 of [1] we introduce the variational formulation of the prob-

lem. We will focus our attention on the the study of the hydrophobic case (i.e.

cos θhom < 0); however the hydrophilic case (cos θhom > 0) shares the same mathe-

matical background and its investigation would need only few adjustments.

We denote by S, L and V the three regions of Rd (d = 2, 3) occupied by the solid,

liquid and vapor phases. The first one is a given, regular closed set, possibly un-

bounded. The other two are the unknowns of the problem.

We are interested in minimizing the following interfacial energy

E(L) = σSL|ΣSL| + σSV |ΣSV | + σLV |ΣLV | + [a.t.] (1.1)

where ‘[a.t.]’ stands for the fact that additional integral terms or constraints may be

present (classical examples are the potential energy due to gravity or the constraint

on the preservation of the volume of L); ΣXY is the interface between phases X and

Y , |ΣXY | is its measure. The surface tensions σXY are assumed to be constant, and

to satisfy the wetting condition

|σSL − σSV | ≤ σLV . (1.2)

Since ∂S is fixed, we can always renormalize the energy E in (1.1) by subtracting a

constant c times |ΣSV |+ |ΣSL| = |∂S|. In other words the configurations of minimal

1



1.1. MATHEMATICAL STATEMENT OF THE PROBLEM

energy are unaffected by the substitution

(σLV , σSV , σSL) → (σLV , σSV − c, σSL − c).

Moreover, the minimizers of E are also invariant under the substitution

(σLV , σSV , σSL) → (ασLV , ασSV , ασSL)

where α is any positive real number (in this case, the additional term ‘[a.t.]’ must

be modified accordingly).

Define now the angle θ ∈ [0, π] by

cos θ :=
σSV − σSL

σLV
. (1.3)

Since the right-hand side of (1.3) belongs to [−1, 1], because of the wetting condition

(1.2), the angle θ is well defined. If σSV ≤ σSL we deduce from (1.3) that θ > 0.

Using the substitutions (σLV , σSV , σSL) → (1, 0, | cos θ|)), we can reduce (1.1) to an

equivalent interfacial energy of the form

Ẽ = | cos θ||ΣSL| + |ΣLV | + [a.t.]. (1.4)

The renormalized energy (1.4) shows that, besides the physical parameters appearing

in ‘[a.t.]’, the only relevant physical parameter in the problem is cos θ. When cos θ is

negative, energy minimization promotes minimization of the area of the solid-liquid

interface and ∂S is called hydrophobic.

We assume that the solid surface is macroscopically flat and coincides with the

horizontal plane xd = 0, while it is rough at a scale ε, where ε is a positive scaling

parameter. More precisely, we define a microscopically rough solid Aε of the form

Aε := {εx : x ∈ A} (1.5)

where A is a closed set in Rd such that {xd ≤ 0} ⊂ S ⊂ {x ≤ a} for some a > 0, it is

t−periodic in the first d−1 directions for some t > 0 (i.e. invariant under translation

by teεε

xεε−AA− d−periodicof that

Aε

= {x d ≤



1.1. MATHEMATICAL STATEMENT OF THE PROBLEM

the energy density σhomSL is obtained by solving the cell problem

σhomSL := inf
V

E(V,Qt)
|ωt|

, (1.8)

where ωt is the square of all x in the plane xd = 0 such that −t/2 < xi < t/2 for

i = 1, .., d−1, Qt is the open cylinder ωt×R, E(V,Qt) denotes the energy associated

with a test set V within the periodicity cell ωt, with no additional terms, and the

infimum is taken over all bounded sets V contained in Qt \ A which are symmetric

with respect to the coordinate planes xi = 0 for i = 1, .., d − 1. Similarly, σhomSV is

given by the cell problem

σhomSV := inf
L

E(V,Qt)
|ωt|

. (1.9)

The macroscopic contact angle is then given by the formula

cos θhom =
σhomSV − σhomSL

σLV
. (1.10)

Minimization problem (1.8) amounts to finding the (energetically) most convenient

way to interpose a vapor layer between the given solid phase A and the liquid

phase, within the periodicity cell ωt. Similarly, problem (1.9) amounts to finding

the more convenient way to make a transition from solid to vapor. If we replace the

interfacial energy E with the renormalized energy Ẽ, the energy that appears in the

cell problems is given by

Ẽ(L,Qt) = Ẽ(V,Qt) = | cos θ||ΣSL| + |ΣLV |

and one immediately verifies that the infimum in (1.9) is obtained for L empty, that

is, σhomSV = 0. Hence (1.10) becomes

− cos θhom = | cos θhom| = σ̃SL = inf
V

Ẽ(V,Qt)
|ωt|

. (1.11)

This means that the numerical study of the cell problem (1.9) yields the apparent

macroscopic contact angle.

1.1.2 The analytical statement

The problem is a cell problem, in Q = ω × [0,H], H > 0, where ω = RN−1/ZN−1 is

the (N − 1)-dimensional torus.

We choose A ⊂ Q, the “bottom surface”, a connected open set which contains

ω×{0}, and is at positive distance from Γ = ω×{H} (in practice, a subgraph). To

3
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Q

�

A




σ

Figure 1.1: The setting of the cell problem.

simplify, we assume it has Lipschitz boundary (although this could sometimes be

relaxed). We first assume it is regular in the sense that HN−1(∂A \ ∂∗A) = 0. The

cell problem consists in finding a set E ⊂ Ω = Q \A, containing Γ, which minimizes

σ = min
E

Per (E,Ω) +
∫
∂A
σχE dHN−1 (1.12)

where χE is the characteristic function of the set E, and Per (E,Ω) =
∫
Ω |DχE | is

the perimeter of E in Ω, namely its Total Variation (see Appendix A).

Here σ is a constant with 0 < σ ≤ 1. More generally, we will also sometimes consider

the case where σ is a continuous function, defined on ∂A and with values in [0, 1]

and positive minimum. The minimum value σ is the effective contact angle of the

homogenized surface.

Observe that the Dirichlet boundary condition Γ ⊆ E should be relaxed by

adding a term
∫
Γ |1−χE(x)| dHN−1(x) in the functional, which takes into account (in

the “perimeter”) the parts of Γ where the trace of χE vanishes; with this relaxation

we may always assume that E contains a neighborhood of Γ: indeed, since there

exists H ′ < H such that ω × {H ′} is at positive distance from ∂A, if E is any set,

the set E ∪ (ω× (H ′,H]) has an energy lower than or equal to the relaxed energy of

E.

1.2 Analysis of the problem

First, let us show that our problem is well-posed.

4



1.2. ANALYSIS OF THE PROBLEM

1.2.1 Existence of a solution

Lemma 1.2.1. Problem (1.12) has a solution.

��������
��������
��������

��������
��������
��������

Q

�

A

σ

1

E

Figure 1.2: A possible solution E.

The proof is given in [1]. We give here a quick argument for the reader’s conve-

nience. The existence of a solution to (1.12) easily follows from the lower semicon-

tinuity (in L1) of the functional which is minimized. This property may be shown

as follows: we let

dA(x) = dist(x,A) − dist(x,Q \A)

be the signed distance function to ∂A, and we assume that σ is extended to a

continuous function σ(x) in Q, such that 0 < σ < 1 in Q \ ∂A. We define ψ(t) =

t2/(1+t2) if t ≥ 0, ψ(t) = t2 if t < 0. Then, the functional in (1.12) is the supremum

sup
n≥1

∫
Q
(σ(x) + ψ(ndA(x))(1 − σ(x))) |DχE | +

∫
Γ
|1 − χE(x)| dHN−1(x)

+
∫
ω×{0}

ψ(ndA(x))χE(x) dHN−1(x)

if E is a finite perimeter set in Q (it is +∞ if E ∩A has positive measure). But for

finite n, each functional in this supremum is lower semicontinuous.

1.2.2 Basic regularity properties

Observe that the boundary ∂E of any minimizer E is a minimal surface in Ω, hence

(if the dimension is not too high), it is analytical. In particular, ∂E ∩ Ω ⊂ ∂E ∪∂A,

5
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hence ∂E ∪ ∂A is a closed set of finite measure HN−1. It has therefore the property

that, as δ → 0,

|{dist(·, ∂E ∪ ∂A) ≤ δ}|
2δ

→ HN−1(∂E ∪ ∂A) (1.13)

(convergence of the Minkowski contents, see [3, 25]). The study of the contact surface

∂{x ∈ ∂A : χE(x) = 1} would be interesting. In particular, it is likely that if ∂A is

smooth enough, then the contact surface will have some regularity [10, 26, 54]. For

a piecewise affine ∂A this is less clear, and we leave this point for future study. This

would be important, in particular, to get a complete proof of the error estimate in

Section 1.3 in dimension higher than N = 2.

We observe, however, that a straightforward and standard estimate (see for instance

[11]) bounds from below the density of E at x ∈ E (the closure being understood here

in Q). To get rid of any ambiguity, we identify E with its points of Lebesgue density

1. The estimate is obtained as follows. We assume (here and in the remainder

of the paper) that σ is either a constant or a function bounded from below by

σ0 > 0. Consider x ∈ E, so that |B(x, r) ∩ E| > 0 for each r > 0 (else x is in

the interior of the points of density 0 for E). We assume that r is small enough

so that B = B(x, r) ⊂ Q (more precisely, we should consider a ball in the periodic

“unfolding” of Q in RN−1 × [0,H], whose canonical projection onto ω × [0,H] is

Q, and consider only balls B which lie inside one period (hence, r ≤ 1) but, since

we think there is no any ambiguity, we will skip this detail to make the proof more

readable).

Then (for a.e. r ∈ (0, 1)),

Per (E ∩B) = HN−1(∂B ∩E) + HN−1(∂E ∩B ∩ Ω) +
∫
∂A∩B

χE dHN−1 ,

but the minimality of E, that is, E(χE) ≤ E(χE\B), yields (for a.e. r ∈ (0, 1))

HN−1(∂B ∩E) ≥ HN−1(∂E ∩B ∩ Ω) + σ0

∫
∂A∩B

χE dHN−1 .

Combining the last two inequalities and using the isoperimetric inequality, we get

c|E ∩B|1−
1
N ≤ σ0 + 1

σ0
HN−1(∂B ∩ E) .

Letting f(r) := |E ∩ B(x, r)|, so that f ′(r) = HN−1(∂B ∩ E) for a.e. r, we deduce

(using Gronwall’s technique) that there is a constant κ > 0, depending only on the

dimension and σ0, such that f(r)/rN ≥ κ > 0. In particular, if |E ∩B(x, r)| < κrN

for some small radius (≤ 1), x is in the interior of the complement of E.

6
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The same kind of argument would show that if x ∈ Ω \E and B(x, r) ⊂ Ω, then

|B(x, r) \ E| ≥ κrN . In other words if |B(x, r) \ E| < κrN , then x is in the interior

of E.

Since we have assumed that ∂A is Lipschitz, we can easily deduce (possibly by

changing the value of κ) that if x ∈ Q \E and |B(x, r) \E| < κrN , then x is in the

interior of E. Hence the topological boundary of E consists exactly of the points of

Q where E has density neither 0 nor 1. In particular, we have HN−1(∂E \∂∗E) = 0.

We have shown the following:

Lemma 1.2.2. Let E solve (1.12). Then E, as a subset of Q, satisfies the two

following density estimates: there exists κ > 0 such that, for r small enough, r ≤ 1

and such that B(x, r) ⊂ Q),

• if |E ∩ B(x, r)| ≤ κrN , then there is a smaller radius r′ > 0 such that |E ∩
B(x, r′)| = 0,

• if |B(x, r)\E| ≤ κrN , then there is a smaller radius r′ > 0 such that |B(x, r′)\
E| = 0,

In particular, the points of Lebesgue density 0 or 1 form two open sets, with com-

mon topological boundary (denoted ∂E), which coincides HN−1-a.e. with the reduced

boundary of E in Q.

1.2.3 Equivalent convex formulation

We show here that our minimization problem is in fact a convex problem (that is,

the minimization of a convex functional over a convex domain). The approach is

standard.

Let u ∈ BV (Ω), and consider the problems

σ1 = min
{∫

Ω
|Du| +

∫
∂A
σu dHN−1 : u ∈ BV (Ω), u = 1 on Γ, u ≥ 0

}
(1.14)

and

σ2 = min
{∫

Ω
|Du| +

∫
∂A
σ|u| dHN−1 : u ∈ BV (Ω), u = 1 on Γ

}
(1.15)

The following proposition shows that σ1 = σ2 = σ.

Proposition 1.2.1. We have σ1 = σ2 = σ. Moreover, given any solution E

of (1.12), then χE solves both (1.14) and (1.15). Conversely, given any solution u

of either (1.14) or (1.15), then for any s ∈ (0, 1), {u > s} and {u ≥ s} are both

solutions of (1.12).

7
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Again, rigorously, we should add a term
∫
Γ |1−u(x)| dHN−1(x) to the functional

to take properly into account the boundary condition on Γ, since, again, if u is any

function then u′(x) = u(x) if xN < H ′, and u′(x) = 1 elsewhere will have lower

energy.

The proof of this proposition is an easy consequence of the coarea formula.

First, the value σ of (1.12) is greater than or equal to the solutions of the two other

minimization problems. Indeed if E is a set with bounded perimeter in Ω, then the

energy of E is the same as the energy of χE in (1.14) and (1.15). Then, it is clear

that if u is a solution of (1.15), then u ≥ 0 a.e. (and u ≤ 1, since (0 ∨ u) ∧ 1 has

lower energy — strictly lower if it differs from u), so that it is a solution of (1.14).

Now, one also has∫
Ω
|Du| +

∫
∂A
σu dHN−1

=
∫ 1

0

(
Per ({u > s},Ω) +

∫
∂A
σχ{u>s} dHN−1

)
ds ≥ σ

showing that the value σ1 = σ2 is greater or equal to the value of (1.12). This shows

in particular that {u > s} solves (1.12) for a.e. s ∈ (0, 1). But since {u > s} =∪
n{u > sn} for any sequence sn ↓ s while {u ≥ s} =

∩
n{u > sn} for any sequence

sn ↑ s, the proposition is deduced by approximation.

1.2.4 Comparison

We show that our problem is monotonic with respect to σ (in particular, the solution

is generically unique, in the sense that, for instance, if we replace σ in (1.12) with

σ + t, t ∈ R, then there is a unique minimizer Et for all t but a countable number).

Lemma 1.2.3. If σ < σ′ on ∂A, and if E solves (1.12) with σ and E′ solves the

same problem with σ replaced with σ′, then ∂E ∩ ∂A ⊇ ∂E′ ∩ ∂A. In particular, if

E is the largest solution corresponding to σ, and E′ the smallest corresponding to

σ′, then E ⊇ E′.

Let u and u′ respectively solve (1.14) with σ and σ′. In particular,∫
Ω
|Du| +

∫
∂A
σu dHN−1 ≤

∫
Ω
|D(u ∨ u′)| +

∫
∂A
σ(u ∨ u′) dHN−1

∫
Ω
|Du′| +

∫
∂A
σ′u′ dHN−1 ≤

∫
Ω
|D(u ∧ u′)| +

∫
∂A
σ′(u ∧ u′) dHN−1

8
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so that, summing up both inequalities and using the celebrated inequality
∫
Ω |D(u∨

u′)| + |D(u ∧ u′)| ≤
∫
Ω |Du| + |Du′|, we find∫

∂A
σ′(u′ − u ∧ u′) dHN−1 ≤

∫
∂A
σ(u ∨ u′ − u) dHN−1 .

Since u′−u∧u′ = u∨u′−u = (u′−u)+, we deduce that if σ < σ′, (u′−u)+ = 0 HN−1-

a.e. on ∂A. In other words, the traces u′ ≤ u on ∂A. Hence, ∂E′ ∩ ∂A ⊆ ∂E ∩ ∂A.

If u′ is a minimal solution and u a maximal solution, we also deduce that u′ ≤ u a.e.

in Ω (since otherwise u′ ∧ u ≤ u′ is better than u′, and u′ ∨ u ≥ u is better than u).

Remark 1.2.4. In dimension N = 2, if ∂A is a graph and u = χE a solution of the

problem, then one shows that ∂E is also a graph. In particular, for a given trace

u = χ∂E∩∂A on ∂A, the graph ∂E ∩ Ω is unique as the solution of a strictly convex

problem.

1.2.5 Stability for the cell problem

Let us now show that if ∂A is Lipschitz, the cell problem is “continuous” with respect

to variations of ∂A provided that the measure of ∂A is also continuously changed.

Proposition 1.2.2. Let An → A be such that ∂An → ∂A in the Hausdorff sense,

while HN−1(∂An) → HN−1(∂A), as n → ∞. We assume σn : Q → [0, 1] is a

continuous function, which converges uniformly to σ. We also assume that the

boundary ∂A is Lipschitz. We let Ωn = Q \An, and

En(u) =
∫

Ωn

|Du| +
∫
∂An

σn|u| dHN−1

while

E(u) =
∫

Ω
|Du| +

∫
∂A
σ|u| dHN−1.

Let σn = minE⊃Γ En(χE) be the effective contact angle for An and σn. Then σn →
σ = minE⊃Γ E(χE) as n→ ∞.

In fact, the assumption that ∂A is Lipschitz could here be replaced by slightly

weaker assumption, such as the fact of being locally a subgraph at each point.

Proof. We show a Γ-convergence result: first we extend En and E to BV (Q), by

letting En(u) = En(u|Ωn
) if u = 0 a.e. in An, and +∞ else, and E(u) = E(u|Ω) if

u = 0 a.e. in A, and +∞ else. Let un → u. If B ⊂⊂ Ω, then B ⊂ Ωn for n large

enough and ∫
B
|Du| ≤ lim inf

n→∞

∫
B
|Dun|. (1.16)

9
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If B is a neighborhood of ∂A, then it is a neighborhood of ∂An for n large enough,

and ∫
∂A
σ|u| ≤

∫
B
σ|Du| ≤ lim inf

n→∞

∫
B
σn|Dun| (1.17)

≤ lim inf
n→∞

∫
∂A
σn|un| +

∫
B∩Ωn

|Dun| . (1.18)

From (1.16) and (1.17) we easily deduce that

E(u) ≤ lim inf
n→∞

En(un) . (1.19)

Conversely, let u ∈ BV (Ω; [0, 1]) (identified with uχΩ ∈ BV (Q; [0, 1])), with

u = 1 on Γ. We want to find a sequence un (with also un = 1 on Γ), converging to

u and such that

lim sup
n→∞

En(un) ≤ E(u) . (1.20)

From (1.19) and (1.20) will follow the Γ-convergence of En to E , which yields σn → σ.

First, using Meyers-Serrin’s theorem, there exists uk → u such that uk ∈
C∞(Ω; [0, 1]) and

∫
Ω |∇un| dx →

∫
Ω |Du| as k → ∞. Since, by construction, the

traces of uk and u coincide on ∂A (and in any case, since ∂A is Lipschitz, the trace

of uk goes to the trace of u as a consequence of the convergence of the total varia-

tions), then E(uk) → E(u) as k → ∞ and (by a standard diagonal argument) it is

enough to show (1.20) for each uk: hence we assume that u is smooth in Ω.

Since ∂A is Lipschitz, one may extend u|Ω into a function u′ defined on a slightly

larger set Ω′ = {x ∈ Q : dist(x,Ω) < δ} (δ > 0), in such a way that 0 ≤ u′ ≤ 1, u′

is Lipschitz in Ω′ (see for instance [24]).

Let un = u′χΩn , for n large. Clearly,

lim
n

∫
Ωn

|∇un| dx = lim
n

∫
Ωn

|∇u′| dx =
∫

Ω
|∇u| dx .

Also, HN−1 ∂An ⇀ HN−1 ∂A weakly-∗ as measures (it follows from the assump-

tion HN−1(∂An) → HN−1(∂A)), while σnu′ → σu′ uniformly in Ω′. Hence,∫
∂An

σnun dHN−1 =
∫
∂An

σnu
′ dHN−1

→
∫
∂A
σu′ dHN−1 =

∫
∂A
σu dHN−1

as n→ ∞. We deduce that En(un) → E(u), which yields (1.20).
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1.3 Numerical Approximation

1.3.1 Error estimates

We wish to compute σ as precisely as possible. We assume, for simplicity, that

∂A is a polygonal boundary (by Proposition 1.2.2, any Lipschitz surface ∂A can be

replaced by a polygonal set with a small error, provided its total surface HN−1(∂A)

is precisely approximated: however, the error which is done in this case is quite

tricky to estimate).

If ∂A is polygonal, we may find for each h > 0 a “triangulation” Th of Ω such

that each simplex T of Th has a diameter less than h. We assume, moreover, some

regularity. More precisely: there is a constant K independent of h such that the

radius of the largest ball contained in each T ∈ Th is more than the diameter of T ,

divided by K.

The approximate problem is

σh = min
u∈Vh

E(u) (1.21)

where Vh is the set of piecewise affine functions in C(Ω), affine on each T ∈ Th, with

value 1 on Γ.

Let u = χE be a solution of (1.12). Consider uδ ∈ C2(Ω), with u = 1 on Γ and

such that for some constant C > 0,

|D2uδ| ≤ C

δ2
and {u 6= uδ} ⊂ {dist(·, ∂E ∪ ∂A) ≤ Cδ} (1.22)

(in particular, u and uδ are constant at some distance from ∂E ∪ ∂A, which is a

closed set of finite measure HN−1). Let uδh = Πh(uδ) be the Lagrange interpolation

of uδ on Th (uh ∈ Vh and uh = uδ at each vertex of a simplex of Th). Standard

interpolation arguments show that on each simplex T ∈ Th,∫
T
|∇uδh −∇uδ| dx ≤ c|T |diam(T )

ρ(T )

2

‖D2uδ‖L∞(T ) ≤ cK|T |hC
δ2

(1.23)

where c is a constant (explicit and depending only on the dimension), while diam(T )

and ρ(T ) are respectively the diameter of T and the radius of the largest ball con-

tained in T . On the other hand, if Σ is a facet of T ,∫
Σ
|uδh − uδ| dHN−1 ≤ c|Σ|diam(Σ)2‖D2uδ‖L∞(Σ) ≤ c|Σ|h2 C

δ2
(1.24)

We deduce that

E(uδh) ≤ E(uδ) + cK|{u 6= uδh}|
Ch

δ2
+ cHN−1(∂A)

Ch2

δ2

11
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Now, since uδh = uδ = u at distance larger than Cδ+h of ∂A∪∂E, and using (1.22)

and (1.13), we get that

|{u 6= uδh}| ≤ 4HN−1(∂E ∪ ∂A)(Cδ + h)

if Cδ+h is small enough. Assuming also h ≤ δ, we find that there exists a constant

(still denoted c), depending on K, on the dimension, on C, and on the energy of

χE , such that

E(uδh) ≤ E(uδ) + c
h

δ
(1.25)

Assume now that we can build uδ such that, for some constant c > 0,

E(uδ) ≤ E(u) + cδ = σ + cδ . (1.26)

As shown later this will be the case in dimension N = 2 and, under some regularity

assumptions, in higher dimension as well. Then, from (1.25) and (1.26), we deduce

that the optimal choice of δ (to minimize the global error) is δ = δh '
√
h, and

letting uh = uδhh , we eventually get the error estimate

σ ≤ E(uh) ≤ σ + c
√
h (1.27)

It is easy to build uδ in a few situations. First, if N = 2, since ∂A is piecewise

affine, one easily shows that ∂E ∩ Ω is a finite union of straight lines connecting

two points of ∂A. In this case, we can find δ > 0 small such that we can add

a small segment of length δ to both extremities of each of these lines, in such a

way that the segment is in the interior of A (except for its end which is common

with ∂E). This allows to extend the set E into a set Eδ defined in the whole set

{x ∈ Q : dist(x,Ω) < cδ} for some constant c > 0 depending only on ∂A (which is

piecewise affine). We mollify χEδ by convolution with a radially symmetric kernel

(1/δ′N )η(x/δ′), with support inside the ball of radius δ′ = cδ centered at the origin:

the result, restricted to Ω, is a function uδ which satisfies both (1.22) and (1.26).

Remark 1.3.1. In higher dimension, the situation is more complicated. If for

instance we know that there is a constant c such that HN−1(∂E∩{0 < dist(x, ∂A) <

δ}) ≤ cδ, then by standard technique we can reflect E across ∂A and the proof will

follow as in dimension 1.

Remark 1.3.2. Even if the error estimate (1.27) has been derived on simplexes, for

the numerical implementation we found more efficient to use a quads mesh. However

we believe that an estimate similar to the previous one is still valid on this kind of

triangulation.
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1.3.2 The minimization scheme: ADMM

From a numerical point of view, the major issue in finding the solution of the equiv-

alent convex formulation is the boundedness requirement u ≥ 0; this constraint can

be “plainly” matched if we work with the functional (1.15). We found the ADMM

(alternating direction method of multipliers) algorithm to be very flexible and effi-

cient in this kind of problem. This is a Lagrangian-based technique which is very

popular in problems of TV-l1 minimization (like image restoration). Following [23],

we give a brief sketch of the method.

Consider the problem

min
u∈Rm

Ku=f

J(u)

and assume that J(u) has separable structure in the sense that it can be written as

J(u) = H(u) +
M∑
i=1

Gi(Âiu+ bi)

where H and G are closed proper convex functions Gi : Rni → (−∞,∞],

H : Rm → (−∞,∞], f ∈ Rs, bi ∈ Rni , each Âi is a ni ×m matrix and K is a s×m

matrix. Introducing new variables pi = Âiu+ b
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[−∞,∞) defined by

qδ(µ) = inf
u∈Rm

p∈Rn

Lδ(p, u, µ)

The dual problem to (1.28) is

max
µ∈Rd

qδ(µ) (1.29)

Since (1.28) is a convex programming problem with linear constraints, if it has an

optimal solution (p∗, u∗) then (1.29) also has an optimal solution µ∗ and

F (p∗) +H(u∗) = qδ(µ∗)

which is to say that the duality gap is zero. So finding an optimal solution of (1.28)

and (1.29) is equivalent to finding a saddle point of Lδ. More precisely, (p∗, u∗) is

an optimal primal solution and µ∗ is an optimal dual solution if and only if

Lδ(p∗, u∗, µ) ≤ Lδ(p∗, u∗, µ∗) ≤ Lδ(p, u, µ∗) ∀ p, u, µ

At the step (k + 1) the ADMM iterations are given by:

pk+1 = argmin
p∈Rn

Lδ(p, uk, µk)

uk+1 = argmin
u∈Rm

Lδ(pk+1, u, µk) (1.30)

µk+1 = µk + δ(b− Âuk+1 −Bpk+1) .

1.3.3 Finite element discretization

We begin the definition of the numerical scheme by introducing the spatial dis-

cretization of the domain Ω, on which we will define the finite dimensional spaces Vh
and Wh. Let Th be a subdivision of Ω into quadrilaterals if d = 2, hexaedra d = 3,

and let Kl be an element of the mesh. Besides, let ∂Ah a polygonal approximation

of the boundary of the solid ∂A. In order to simplify the notation, from this point

forward we identify the triangulated domain with Ω and the approximation ∂Ah

with the boundary ∂A. We then consider two finite dimensional subspaces Vh and

Wh; our choice of the discrete spaces for u and Du is the so called Q1-P0 finite

element pair, defined as:

Vh = {v ∈ C0(Ω) : v|Kl
∈ Q1(Kl), l = 1, .., Ne}

Wh = {w ∈ L2(Ω)d : w|Kl
∈ P0(Kl)d, l = 1, .., Ne}

14



1.3. NUMERICAL APPROXIMATION

where we indicated with Ne the number of elements of the mesh, P0(Kl)d stands

for d -dimensional piecewise constant polynomials on the element Kl and Q1(Kl) is

the space of piecewise polynomials of degree 1 in each coordinate direction. Notice

that a basis for such a kind of finite element is given by {1, x, y, xy} (the degrees of

freedom are identified with the vertexes of the quads) and that obviously the space

of the gradient is discontinuous.

In the discretized form (1.15) can be read as:

σ2 = min
{∫

Ω
|∇u| +

∫
∂A
σ|u| : u ∈ Vh, u = 1 on Γ

}
. (1.31)

Now we can write the augmented Lagrangian associated with the energy (1.31);

we introduce p1 ∈ Wh and p2 ∈ Vh as auxiliary variables for the two components of

the functional, and in accordance with the notation of the previous section (if n1 is

the number of dofs in Wh and n2 is the number of dofs in Vh) we take:

K = 0, f = 0, H = 0, n = n1 + n2, p = (p1, p2)T , p ∈ Rn, b = (0, 0)T

F (p) = F (p1, p2) = G1(p1) +G2(p2) =
∫

Ω
|p1| + σ

∫
∂A

|p2|

µ = (µ1, µ2), µ1 ∈ Wh, µ2 ∈ Vh, B = −I, Â =

[
∇
I

]
.

Remember that the operator ∇ is a discrete version of the gradient operator (we

give more details about this in the implementation section); so we can write:

Lδ(p, u, µ) =
∫

Ω
|p1| +

∫
Ω
µ1· (p1 −∇u) +

δ

2

∫
Ω
|p1 −∇u|2

+ σ

∫
∂A

|p2| +
∫
∂A
µ2(p2 − u) +

δ

2

∫
∂A

|p2 − u|2

Now following the scheme (1.30), we define the alternating steps. We minimize

first in p, which means that given initial guesses p0 = µ0 = 0, u0 arbitrary, and

δ > 0 we find:

pk+1 = argmin
p∈Rn

∫
Ω
|p1| +

∫
Ω
µk1· (p1 −∇uk) +

δ

2

∫
Ω

∣∣p1 −∇uk
∣∣2

+ σ

∫
∂A

|p2| +
∫
∂A
µ2(p2 − uk) +

δ

2

∫
∂A

|p2 − uk|2

This is equivalent to finding

pk+1 = argmin
∫

Ω

[
|p1| +

δ

2

∣∣∣p1 −∇uk +
µ1

δ

∣∣∣2]+ σ

∫
∂A

[
|p2| +

δ

2

∣∣∣p2 − uk +
µ2

δ

∣∣∣2]
(1.32)
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Then we can split the global minimization in two sub-problems for p1 and p2 and

argue that (with little abuse of notation):

pk+1 = argmin
p∈Rn

Lδ(p, uk, µk) =

(
argmin
p1∈Rn1

Lδ(p, uk, µk), argmin
p2∈Rn2

Lδ(p, uk, µk)

)
= (pk+1

1 , pk+1
2 )

We look at the first term of (1.32) and define a = ∇uk − µk1
δ

; we get the following

chain of inequalities:

T̂ (p1) :=
∫

Ω

[
|p1| +

δ

2
|p1 − a|2

]
=
∫

Ω

[
|p1| +

δ

2
|p1|2 − δ(p1· a) +

δ

2
|a|2
]

≥
∫

Ω

[
|p1| +

δ

2
|p1|2 − δ|p1||a| +

δ

2
|a|2
]

=
∫

Ω

[
δ

2
|p1|2 +

δ

2
− |p1|(−1 + δ|a|)

]
(1.33)

Now, if (−1 + δ|a|) ≤ 0, we conclude that (1.33) ≥
∫

Ω

δ

2
|a|2 ∀p1 ∈ Wh and the

minimum value is attained for p1 = 0.

If (−1 + δ|a|) ≥ 0, we calculate the differential of T̂ (p1)

∇T̂ (p1) =
∫

Ω

[
p1

|p1|
+ δ(p1 − a)

]

which is 0 for p1 =
a

|a|

(
|a| − 1

δ

)
.

So, we conclude that pk+1
1 =

(
1 − 1

max(1, δ|a|)

)
a. Introducing the shrinkage oper-

ator Sλ : v 7−→ v

|v|
(|v| − λ)+ we have:

pk+1
1 = S 1

δ

(
∇uk − µk1

δ

)
.

The procedure for the minimization in p2 is completely similar to the one just de-

scribed and we get:

pk+1
2 = Sσ

δ

(
uk − µk2

δ

)
.

It remains only to perform the minimization in u: omitting the terms that contain

pk+1
1 , pk+1

2 , µk1 and µk2 since they don’t affect the calculation (they are constant with
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1.3. NUMERICAL APPROXIMATION

respect to u) we have:

uk+1 = argmin
δ

2

∫
Ω

∣∣∣∇u− pk+1
1 − µk1

δ

∣∣∣2 +
δ

2

∫
∂A

∣∣∣u− pk+1
2 − µk2

δ

∣∣∣2
= argmin

δ

2

∫
Ω

[
|∇u|2 +

∣∣∣pk+1
1 +

µk1
δ

∣∣∣2 − 2
(
pk+1
1 +

µk1
δ

)
·∇u

]
+

δ

2

∫
∂A

[
|u|2 +

∣∣∣pk+1
2 +

µk2
δ

∣∣∣2 − 2u
(
pk+1
2 +

µk2
δ

)]
(1.34)

Let us call cp1 := pk+1
1 +

µk1
δ

and cp2 := pk+1
2 +

µk2
δ

, then the stationarity condition

for (1.34) reads as:

δ

∫
Ω

[
∇u·∇v − cp1 · ∇v

]
+ δ

∫
∂A

[
uv − cp2v

]
= 0 ∀v ∈ Vh (1.35)

As we will see, (1.35) will give rise to a standard linear system whose solution

converges to the numerical solution of our problem.

The last step is the update of the Lagrangian multipliers, that has been done in a

standard way:

µk+1
1 = µk1 + δ(pk+1

1 −∇uk+1) ,

µk+1
2 = µk2 + δ(pk+1

2 − uk+1) .

1.3.4 Numerical implementation

The implementation involves three main steps: the first one is the representation of

Du, the second one is the representation of p (i.e. the numerical counter-part of the

shrinkage operation) and the last one the representation of u (i.e. the solution of a

linear system deriving from the discretization of an elliptic equation).

Step 1 : Since u and p are defined over different finite element spaces, each one

with its own degrees of freedom and set of basis functions, the first issue of the

implementation is to find a right representative for ∇u in Wh, once a representation

of u in Vh. So, given u =
∑
i

uiφi, with {φi} a basis for Vh and ui ∈ Rn1 , we represent

Du through the projection Π(∇u) onto Wh. Let {ψj} be a basis for Wh; the problem

now is to find ûj ∈ Rn2 such that Π(∇u) =
∑
j

ûjψj ; we are requiring that pointwise

∑
j

ûjψj(x) =
∑
i

ui∇φi(x)

We multiply each side of the equation with ψk(x) and perform a summation over k

∑
k

∑
j

ûjψj(x)ψk(x)

 =
∑
k

(∑
i

ui∇φi(x)ψk(x)

)
.
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b

a

Solid

Liquid

Solid

Liquidb b
′

a

a
′

θ

Figure 1.3: Benchmark configuration: on the left side the pillars have the same height,

the geometry on the right leads to a configuration intermediate between the Wenzel and the

Cassie-Baxter one.

Figure 1.4: Numerical visualization of the mixed configuration.

Finally, integrating on Ω we get the following linear system:

Mψû = b

where the mass matrix Mψ is given by

Mψ
jk =

∫
Ω
ψj(x)·ψk(x),

û is the unknown vector and b = B̂u, where B̂ is a n1 × n2 matrix, whose the

ik -term is given by

B̂ik =
∫

Ω
∇φi(x)·ψk(x)

and u is the vector representing the expansion of u on Vh.

Step 2 : The second issue of the implementation is to perform the minimization in

p1 and in p2; since we can compute them by the use of a pointwise formula, what we

need is to project the result of the shrinkage operation on the finite element spaces

that we have defined. Taking into account that the auxiliary variables live in the

same space of the associated primal variable and proceeding as before, we get for p1

(remember the former definition of a):∑
j

p̂1jψj(x) =
(

1 − 1
max(1, δ|

∑
l âlψl(x)|)

)∑
j

âjψj(x)
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σ = 0.2 σ = 0.45

σ = 0.65 σ = 0.82

Figure 1.5: Equilibrium configurations with increasing values of σ, on a spline geometry.

The last snapshot shows the adaptive mesh.

We deduce the following linear system from it:

Mψp̂1 = b̂

where Mψ is the mass matrix, p̂1 is the vector unknown and b̂ = M̂ψa with

M̂ψ
jk =

∫
Ω

(
1 − 1

max(1, δ|
∑

l âlψl(x)|)

)
ψj(x)·ψk(x)

and a the vector representing the expansion of a on Wh.

The procedure for p2 is similar but considering Mφ and M̂φ.

Step 3 : The last step is standard and deals with the minimization in u; using classical

arguments, it is easy to see that (1.35) defines a bilinear form L and a linear and

continuous functional F :

L(u, v) := δ

∫
Ω
∇u(x)·∇v(x) + δ

∫
∂A
u(x)v(x)

F(v) := δ

∫
Ω
cp1(x)·∇v(x) + δ

∫
∂A
cp2(x)v(x)

19



1.4. EXAMPLES

Solving the associated linear system completes the iterative scheme.

1.4 Examples

We begin showing some benchmark experiments in 2-D in order to check the per-

formance of the method. We consider configurations in which the minimum can be

plainly calculated and compared with our numerical results, and indicate with the

superscript ‘num’ the quantities that are numerical estimates of the real mathemat-

ical ones. In particular, for the example on the left of Figure 1.3 (equally spaced

pillars all of the same height) we would like to give an estimate of the critical σ

above which the liquid prefers to fill the space between the asperities. It is easy to

see that such a geometry allows only two possible minimum configurations: one has

the transition at the level of the top of the pillars (Cassie-Baxter configuration), in

the other one, the cavities are filled by the fluid (Wenzel configuration.) So, if we

choose a = 0.3333 and b = 0.3334, the critical σ that establishes the switch, is given

by σcrit = 0.3334. The numerical results are very satisfactory; we obtain (within five

minutes using a laptop PC) the following estimates: σnumcrit ≈ 0.335. In Table 1.1 the

real quantities are compared with their numerical approximations, using different

values for σ. We should specify that the result depends on the size of the mesh;

it could be possible, exploiting adaptive refinement and obviously more computing

resources, to reach even much better estimates.

In the second example we consider (right panel of Figure 1.3) the possible behaviour

is more complicated, indeed even equilibrium configurations of the liquid that mix

features of Wenzel’s model (complete contact on tall asperities) with features of the

Cassie-Baxter model (composite contact on short asperities) are allowed. It is easy

Table 1.1: Numerical results of the first benchmark experiment, left picture of Figure 3.

Recall that σcrit = 0.3334.

Surface tension Behaviour TV TV num Energy E Enum θ θhom;num

σ = 0.32 Wenzel 0 1 · e−5 0.5333 0.5333 108◦ 122◦

σ = 0.34 Cassie

Baxter

0.3334 0.3339 0.56 0.5619 110◦ 124◦
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Figure 1.6: Square cross section pillars in 3-D.

to show that this intermediate configuration is the optimal one if:

a′

b′
≤ 1 − σ

2σ
≤ a

b

Here σ = | cos θ|, where σ is the contact angle at the microscopic scale which is

fixed. If we choose a = 0.2, b = 0.1, a′ = 0.2 and b′ = 0.3, we have that the

upper bound of the inequality is violated for σucrit = 0.2, while the bottom one for

σdcrit = 0.4285 (even if also this one is an approximation since in the inequality we

replaced the length of the slightly tilted liquid-vapor interface with the length of its

horizontal projection). For σ ≥ σucrit the liquid touches only the tallest faces of the

pillars, instead for σ ≤ σdcrit it fills all the cavities. Also in this case the numerical

results are very satisfactory, we obtained the following estimates: σd,numcrit ≈ 0.455

and σu,numcrit ≈ 0.2 (as mentioned above, the analytical critical values are affected by

a simplification).

The third example deals with more complicated geometries: the choice of optimal

geometries is no longer in a discrete set (for example only two for the case of pillars at

the same height), but there is a continuous range of possible liquid-vapor interfaces

that are determined by the value of σ.

Fig. 1.5 shows different equilibrium configurations as σ is varied. We notice that

in this case the periodic condition is not “naturally” matched as before (since the
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Table 1.2: Numerical results of the second benchmark experiment, right picture of Figure

3. Recall that σu
crit = 0.2 and σd

crit = 0.4285.

Surface tension Behaviour TV TV num Energy E Enum θ θhom;num

σ = 0.2 Wenzel 0 1 · e−5 0.44 0.44 101.5◦ 116◦

σ = 0.205 Mixed 0.2044 0.2043 0.4417 0.4435 102◦ 116◦

σ = 0.455 Mixed 0.2246 0.226 0.7241 0.7256 117◦ 136.5◦

σ = 0.46 Cassie

Baxter

0.5 0.5 0.73 0.7316 117◦ 137◦

Table 1.3: Numerical results of the configuration with spline basement.

Surface tension Behaviour TV num Enum θ θhom;num

σ = 0.2 Wenzel 1 · e−7 0.3307 101.5◦ 109◦

σ = 0.45 Mixed 0.2293 0.7365 116.7◦ 137.5◦

σ = 0.65 Mixed 0.5826 0.9203 130.5◦ 157◦

σ = 0.85 Cassie

Baxter

0.8722 0.9884 148◦ 171◦
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Figure 1.7: Cylindrical cross section pillars in 3-D.

lateral position and the same height of the pillars forced the solution to be periodic)

but now it is a real forcing feature for the solution and because of it the liquid-vapor

interfaces do not lie on straight lines but have to follow diagonal trajectories. For

this set of simulations we introduced a gradient detector refinement method in order

to make the mesh finer only in the regions where it is required (that is where the

liquid-vapor interface is localized).

Finally we consider some three-dimensional examples. Our aim has been to recover

also in a three dimensional environment the configurations of intermediate type seen

Figure 1.8: Diagonal section of the solution.
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Table 1.4: Numerical results for the 3D simulations

Surface tension Pillars type Behaviour TV num Enum θ θhom;num

σ = 0.42 Cylindrical cross

section

Mixed 0.561 0.8092 115◦ 144◦

σ = 0.42 Square cross sec-

tion

Mixed 0.43027 0.761 115◦ 139.5◦

Figure 1.9: Horizontal section of the solution.

in 2-D. In the 3-D case, however, the calculations are more complicated because the

liquid-vapor interfaces are no longer straight: they are instead portions of minimal

surfaces. We have considered both cubic and cylindric pillars at different height, that

in sections (parallel to the coordinate axes) present the peculiar sizes that in two

dimensions let us see the intermediate states (neither Cassie-Baxter nor Wenzel).

As we can see in Fig. 1.6 and in Fig. 1.7 (where we plotted the solutions isosur-

faces at level 0.5) also in three dimensions there is a set of optimal solutions that

can both touch the lateral part of the pillars and make the liquid-vapor transition.

Notice that, as predicted in the theoretical part, the boundary of the geometrical

solution ∂E, is a minimal surface and, especially in the case of cubic pillars, the

change of curvature close to the asperities is evident. In Fig. 1.8, where a diagonal

section of the analytical solution is showed, it is easy to see how the transition region

is bended.
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Chapter 2

The phase field approach to

wetting

In this chapter we start the description of the phase field model for the investigation

of wetting phenomena. In particular we will introduce the classical geometric theory

of capillarity and will explain its connection with analytical formulation, showing the

Γ-convergence results that guarantee the identification of the liquid region by means

the phase function. This part of the thesis is the natural continuation of a previous

work began by Dr. Alessandro Turco. In particular, developing the material that has

constituted the core of the paper [56], we have tested it for the study of capillarity

on rough substrates. The last part of the chapter is focused on the description of

a numerical experiment regarding the transition from a Cassie-Baxter state to a

Wenzel one.

2.1 The theoretical review

In the classical (geometric) theory of capillarity, the energy of a liquid drop ω in

contact with a solid S and surrounded by vapor is given by [16, 26]:

E (ω, t) =
∫
∂Sω

σSL(x)dAx +
∫
∂V ω

σLV (x)dAx +
∫
∂S\∂Sω

σSV (x)dAx

+
∫
ω
ρL(x)G(x, t)dVx (2.1)

where ∂Sω is the interface between liquid and solid, also denoted by ΣSL, ∂V ω =

∂ω \∂Sω is the liquid-vapor interface ΣLV and ∂S \∂Sω is the solid-vapor one, ΣSV .

Since we consider a homogeneous fluid, ρL is set equal to 1, while G(x, t) stands for
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a generic potential related to an external force field (in our case this will typically

be gravity). The terms σXY (x) are the surface tensions at a point x on the XY

interface. When S represents a homogeneous solid, σSL and σSV are constant and

(2.1) simplifies to

E (ω, t) = σSL|ΣSL| + σLV |ΣLV | + σSV |ΣSV | +
∫
ω
G(x, t)dVx

= (σSL − σSV )|ΣSL| + σLV |ΣLV | +
∫
ω
G(x, t)dVx + k (2.2)

where |T | denotes the measure of the set T and k is a constant that does not affect

the search for the minima of the functional, and so it will be omitted.

Dropping, for simplicity, the time dependence until further notice, and given a

fixed volume V > 0, the (geometric) problem of capillarity is to find

ω∗ = argmin
|ω|=V

{E(ω)}. (2.3)

This constraint on the volume V of the liquid derives from the hypothesis of incom-

pressibility. To deal with such constraint, we introduce a Lagrange multiplier p and

we consider a modified energy:

Ē(ω) = E(ω) + pV (2.4)

The first variation of this functional produces [26] the well known laws of Laplace

and Young. The first one prescribes the mean curvature H of the surface ΣLV :

2HΣLV
(x) =

p

σLV
+

1
σLV

G(x). (2.5)

The constant p has the physical meaning of pressure jump across the surface of the

drop.

Young’s law fixes the contact angle the drop forms with the solid surface as the

one which makes the capillary energy (2.4) stationary. The resulting value for the

contact angle (measured from the inside as in Figure 3.1), denoted by θY , is given

by

cos θY = −σSL − σSV
σLV

. (2.6)

The geometric formulation described above is not suitable to simulate numeri-

cally wetting experiments where drops may split or merge. Phase field methods have

been devised precisely to overcome this difficulty and have been already used in [56]

to reproduce drop splitting phenomena. Consider, then, a bounded region Ω ⊂ R3

(the container) whose boundary ∂Ω describes a homogeneous solid surface and let
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W (s) = a2s2(1 − s)2 be a non-negative potential (with a > 0 to be specified later).

A phase field formulation for the capillary problem is obtained by considering an

energy of the type

Eε(φ) =
∫

Ω

(
ε|∇φ|2 +

1
ε
W (φ) + φG(x) + λφ

)
dx (2.7)

where φ is the phase function. The potential W , that vanishes only for the values

0 and 1 of φ representing the vapor and the liquid phases, has to be tuned in order

to produce the correct surface tension values from the corresponding interphase

transition layers in the limit as ε→ 0. We recall the results concerning the asympto-

tic behavior of φ as ε goes to zero obtained in a previous work [56]. There we proved

rigorously the Γ−convergence of the phase field functional (2.7) to the (geometric)

capillary energy (2.4) (with p = λ), provided that the correct Dirichlet or Neumann

boundary condition are imposed to φ on ∂Ω. This kind of variational convergence

guarantees convergence of the minimizers of the corresponding functionals. In other

words, we can work with the phase field model being sure that, when ε is small

enough, the ε−solutions we find are good approximations for the minimizers of

(2.4), and converge to them in the limit ε→ 0.

The theory fixes parameter a to the value 3σLV . The Dirichlet boundary con-

dition φ|∂Ω
= φS that enforces Young’s contact angle is recovered by solving the

algebraic equation

cos θY = −4φ3
S + 6φ2

S − 1 0 ≤ φS ≤ 1. (2.8)

Notice that equation (2.8) has always exactly one solution in the range of variability

of the physical parameters involved [16]. Alternatively, Young’s contact angle may

be enforced by imposing a Neumann condition on φ, namely, −2ε∂φ
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2.2 Numerical implementation

We typically work in situations where it is a-priori known that the liquid will occupy

a small part of the container Ω appearing in (2.7). We thus set the problem in a

computational domain Ω∗ ⊂ Ω, a bounded subset of R3 with piecewise C2 and

Lipschitz boundary. We decompose ∂Ω∗ into two parts: ∂Ω∗ = ∂SΩ∗ ∪ ∂V Ω∗. The

set ∂SΩ∗ is the part of ∂Ω∗ which is common with the solid surface, denoted by ∂S

in (2.1) and by ∂Ω a few lines above (2.7), and it is a proper subset of ∂Ω. The

set ∂V Ω∗ is the part of ∂Ω∗ contained in the interior of Ω that we can assume to be

occupied by the vapor phase. Notice that when the computational domain is much

smaller than the mathematical one, the effects of the boundary parts of Ω far from

the liquid phase are negligible. The Euler-Lagrange equations for the phase-field

model are (here we assume G = 0, a = 1 for simplicity, and Neumann boundary

condition on the solid):
− ε4φ+

1
ε
φ(1 − φ)(1 − 2φ) + λ = 0 in Ω∗

∂φ

∂n
= −N

2ε
on ∂SΩ∗

φ = 0 on ∂V Ω∗

(2.10a)

(2.10b)

(2.10c)

where λ is a Lagrange multiplier whose value has to be calculated in order to meet

the volume constraint
∫
Ω∗ φ = V. When Dirichlet, rather than Neumann boundary

conditions are imposed on the solid, we replace equation (2.10b) on ∂SΩ∗.

2.2.1 The basic numerical scheme

To solve the equilibrium equations (2.10), we transform the problem into a parabolic

PDE generated by a gradient flow [6], and we follow an artificial relaxation dynam-

ics until the system reaches the equilibrium configuration. The gradient flow is

introduced by setting φ = φ(τ, x), where τ is a fictitious time, and solving

φτ = ε4φ− 1
ε
φ(1 − φ)(1 − 2φ) − λ. (2.11)

Here the Laplacian is with respect to the space derivatives and the subscript τ

denotes a time derivative. Since along the flow (2.11) the energy is decreasing in

time
d

dτ
Eε = −2

∫
Ω∗

|φ2
τ |dx 6 0 ,
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we will obtain in the limit lim
τ→+∞

φ(τ, ·) a solution of our original equilibrium equation

(2.10) which is a (local) minimizer for (2.7).

For the time integration of the equation, we have used a forward Euler scheme,

which is stable only for sufficiently small values of dτ . A stability analysis leading

to the crucial estimate of the stable time increment is given in the next sub-section.

In order to find at each iteration the correct value for the Lagrange multiplier λ,

we have implemented a splitting method: given an initial guess φ0 that satisfies the

appropriate boundary condition on the derivatives, we follow the scheme:

φN+ 1
2 = dτ

(
ε4φN − 1

εφ
N (1 − φN )(1 − 2φN )

)
+ φN

λN =
V −

∫
Ω∗ φ

N+ 1
2∫

Ω∗ 1

φN+1 = φN+ 1
2 + λN

where V =
∫
Ω∗ φ

0. By construction we have that
∫
Ω∗ φ

N = V stays constant during

the iterations; the space derivatives have been calculated by means of a seven-point

finite differences stencil which guarantees a second order accuracy.

2.2.2 A sufficient condition for numerical stability

The gradient flow technique shows a very stable behavior, provided the parameter

of the simulations are well tuned. If ε is too small with respect to the grid spacing

h, then the level curves of φ lose smoothness and mobility. If the volume of the

drop is too small with respect to the transition width (and hence with respect to ε),

the algorithm is unstable. If the time step dτ is too large, the scheme diverges. A

sufficient condition for the stability of the algorithm is

dτ ≤ εh2

12ε2 + 2Kh2
. (2.12)

To prove this we follow [34]. We will omit the λ term, because it is known that

low order terms do not affect the stability of the scheme (see, [53] for example). The
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algorithm can be rewritten in a compact form:

φn+1
i,j,k − φni,j,k

dτ
= −1

ε
f(φni,j,k)+

+ 2ε
(−6φni,j,k + φni+1,j,k + φni−1,j,k + φni,j+1,k + φni,j−1,k + φni,j,k+1 + φni,j,k−1

h2

)
,

(2.13)

where f is the derivative of our potential W (x) = Kx2(1− x)2, K is the factor that

have to match the physical parameter σLV in the Γ-convergence. The error r due

to round-off and approximation satisfies:

rn+1
i,j,k − rni,j,k

dτ
=
(
−12ε
h2

− 1
ε
f ′(φni,j,k)

)
rni,j,k+

+
2ε
h2

(
rni+1,j,k + rni−1,j,k + rni,j+1,k + rni,j−1,k + rni,j,k+1 + rni,j,k+1

) (2.14)

where a Taylor expansion of f(φ+ r) ' f(φ) + f ′(φ)r has been used assuming that

r is small. Rearranging we obtain:

rn+1
i,j,k =

(
1 − 12εdτ

h2
− dτ

ε
f ′(φni,j,k)

)
rni,j,k+

+
2εdτ
h2

(
rni+1,j,k + rni−1,j,k + rni,j+1,k + rni,j−1,k + rni,j,k+1 + rni,j,k+1

) (2.15)

At this point the analysis splits into two parts: the liquid and the vapor zone will

be considered first, and then the interface. If φ ' 0 (vapor) or φ ' 1 (liquid), then

f ′(φ) = 2K(1− 6φ+ 6φ2) > 0 and f ′(φ) ' 2K. Hence the equation for rn+1 can be

seen as a weighted sum: since the sum of the coefficients is 1 − dτ
ε f

′(φni,j,k) < 1, if

they are all positive, the following inequality holds

rn+1
i,j,k ≤

(
1 − dτ

ε
f ′(φni,j,k)

)
max
i,j,k

{rni,j,k}, (2.16)

which implies stability. Therefore the algorithm is stable if all the coefficients of the

sum are positive, and we obtain (2.12).

The interface does not enter in the stability condition, unless it is too wide with

respect to the computational box. The worst possible case for the previous estimate

is a situation in which φ = 0.5 in the whole interface and hence f ′(φ) = −K.

Supposing rni,j,k = rn for all i, j, k and denoting with N the number of computational

nodes and M the number of nodes in the interface, we have:∑
rn+1 =

(
N

(
1 − 2Kdτ

ε

)
+ 3K

dτ

ε
M

)
rn. (2.17)
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The stability is maintained if
∑
rn+1 <

∑
rn = Nrn and this is true if M < 2

3N .

This condition is always satisfied in typical applications (N = 106, M ' 4 3
√
N =

400).

Because of the simplifications made in its derivation, the bound (2.12) is only a

sufficient condition for the stability of the algorithm. Indeed, we ran stable simula-

tions with higher values of the time increment. However, used as an equality, (2.12)

gives a formula yielding for each grid spacing h and each transition thickness ε, a

stable time increment dτ . As described in the Appendix B, this information plays

a crucial role in setting up a multigrid algorithm, in which the grid spacing h (and

hence the stable time step dτ) varies with the refinement level.

2.2.3 Adaptive mesh refinement

In the simulations of interest for applications, several widely separated length scales

occur simultaneously: the size of the drop, the size of the asperities of the solid

(more generally, the size of the heterogeneities of the solid surface), the size of the

diffuse interface that resolves the liquid-vapor interface. A natural idea is then to

pursue adaptive mesh refinement within a multigrid scheme.

We use static refinement in the region close to the solid, and dynamic refinement

close to the liquid-vapor interface ΣLV . The criterion for dynamic refinement is

the following: we regrid using up to two levels of refinement in the regions where

0.05 ≤ φ ≤ 0.95. Accuracy needs to be preserved across boundaries of regions where

the computational mesh changes from coarse to fine. This is done using interpolation

techniques which preserve the second order accuracy of the Laplacian across a level

boundary, and is handled using ghost cells (a layer of fictitious nodes that contribute

to the seven-point stencil at the boundary of real cells).

The update of the solution must preserve synchronization over the different levels

of the composite grid. For this purpose, we adopted a V-type scheme: an iterative

cycle that prescribes at each step to update first the solution on the finest level,

then to pass the new information down to the coarsest, so to update φ, and finally

to come back up. The stability estimate (2.12) demands smaller time steps for finer

grids, and synchronization forces us to use small time steps in the coarse grid as

well.

The complex structure of the grid hierarchy, with its ghost and real cells, the

interpolations, the indexing of such a large number of degrees of freedom, and the

parallelization of the code was made possible by the use of an existing ad hoc library:
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SAMRAI, a C++ library specifically developed for adaptive mesh refinement [59].

In particular, for the parallelization of the code, SAMRAI manages a set of so-called

patches: a partitioning of the computational domain in smaller disjoint sub-domains

which at the moment of calculation can be distributed to the components of a cluster

of processors. The simulations were performed on the high performance computing

grid available at SISSA (International School for Advanced Studies, Trieste). Further

details of the implementation are given in the Appendix B, and in [56, 57].

2.3 Metastability induced by surface roughness: fakir

drops

We now present the results obtained using the algorithm described in the previous

section. The first example concerns the stability of equilibrium states on micropillars,

a topic that has received considerable attention in the recent literature, see [13, 31,

32]. In such as study, we will rely on the fact that the proposed gradient flow

algorithm will arrest at any stationary point of the phase field energy functional

(2.7), namely, at any solution of the equilibrium equations (2.10), even when this is

not a global minimum.

In fact, it is worth emphasizing that the Γ−convergence analysis above guar-

antees that global minimizers of the phase field energy (2.7) converge to global

minimizers of the classical (geometric) capillarity problem. Hence numerically com-

puted global minimizers of the phase field problem are good approximations of global

minimizers of classical capillarity theory. To the best of our knowledge, similar con-

vergence results for critical points are not available. Nevertheless, we will accept

on a heuristic basis that, for small enough ε, solutions of the equilibrium equations

(2.10a) provide a good description of equilibrium configurations of capillary drops.

For drops resting on rough surfaces, two distinct equilibrium states are available:

either the drop touches only the top of the asperities or it wets completely the solid

surface. The first scenario is known as a Cassie-Baxter state, in which vapor is

trapped at the bottom of asperities: a drop in such a regime is reminiscent of a

fakir lying on a bed of nails. The second one corresponds to the Wenzel state. More

details about these equilibrium states can be found in [1, 16].

We consider here a drop over a hydrophobic solid surface, with Young contact

angle θY = 120◦, textured with pillars of height 12µm, with square cross-section of

edge length 2µm, interpillar distance of 18µm. Therefore the ratio between the area
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of the top of the asperities and the area of the whole horizontal projection is 1%. In

this situation, it is known that the Wenzel configuration is the energy minimizer but

metastable fakir drops can be observed, for example if they are gently deposited over

the surface, provided that their size is large enough. After some evaporation, when

the size of the drop is sufficiently decreased, this configuration becomes unstable

and the Wenzel state is suddenly recovered [13].

Figure 2.1: If the radius of the drop is large enough, then a metastable Cassie-Baxter state

can be produced (left). Upon evaporation, a Wenzel state is produced (image on the right),

the configuration providing the global minimum of the capillary energy.

Figure 2.2: Vertical section of the solution level curves. We can appreciate the partitioning

of the domain in patches (left) and the continuity of the solution between two boxes of the

composite grid at refinement levels three and four, just over the basis of the pillars (right).

Our results are shown in Figure 2.1. We place a drop inside a cubic computational

cell of edge length d = 0, 32 mm. The Cassie-Baxter configuration on the left is

attained with a drop whose volume is 0,56 µl (this is the volume of a spherical drop
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with radius 0,51 mm). When the volume is further decreased by evaporation, a

Wenzel configuration is reached. We decrease the volume in steps of about 0.1 µl

and observe a Cassie-Baxter state up to 0.16 µl and a jump to a Wenzel state at

0.058 µl. This leads to an estimate of the critical radius for the transition of 0.24

mm. The experimental value reported in [13] for such transition on a surface with

the same properties as the one we simulate is around 0.2 mm. This means that

we slightly under-estimate the stability of the Cassie-Baxter state with respect to

experiments. Notice that, consistently with the fact that the capillarity length for

pure water (at standard pressure and temperature) is about 2 mm, gravity plays a

negligible role in our simulations.

The simulations were performed using four levels of refinement near the solid,

where the most complex geometries are expected, three around the liquid-vapor

interface and two and one for the remaining regions; this led us to run numerical

experiments also involving about 40 millions of computational cells. The typical

CPU time on 64 processors in order to generate an equilibrium configuration is a

couple of days, during which at least 80000 iterations of the V-cycle are performed.

As it is evident looking at Figure 2.2, the computation is not affected by the division

of the computational domain in boxes with a different grid-spacing; in particular the

solution remains continuous also along the patches at different refinement levels. We

remark that the typical interface thickness is about 10h, where h is the smallest grid

spacing. (Table 2.1)
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Figure 2.3: A snapshot of the pillars (left) and contour lines of a Wenzel drop at the level

of the textured solid (right).

Table 2.1: Parameters used in the pillars simulations.

Description Notation in the thesis Value

Edge length of the

computational cube

d 0.32 mm

Interface thickness ∼ ε 2.56 µm

max num of levels 4

Smallest grid spacing h 0.4 µm

edge length 5h = 2µm

Geometry of the pil-

lars

height 30h = 12µm

lateral distance 45h = 18µm

Volume increments δV −0.1µl
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Chapter 3

Hysteresis of the contact angle

3.1 A phenomenological model for contact angle hys-

teresis

Topographical and chemical imperfection on the solid surface at the sub-micron scale

generate frictional forces that are able to pin the contact line. This is the origin of

the phenomenon of contact angle hysteresis (see [16, Chapter 3]), namely, the pos-

sibility that equilibrium drops adopt contact angles different from the one given by

Young’s law (2.6). We focus on quasi-static evolutions, namely, evolutions through

equilibria driven either by slowly varying time-dependent constraints (as in the case

of an evaporating droplet), or by slowly varying time-dependent external forces (as

in the case of a drop subject to gravity and resting on a surface which is initially

horizontal and then tilted), or both. In these cases, solutions at time t depend not

only on the instantaneous values of the data, but also on their entire time history.

We approach such problems by defining a one-parameter family of incremental min-

imization problems in which, based on the knowledge of the unknowns at time t, we

determine their values at time t+ δt, with δt small.

Following [2, 19], we begin by considering the following discrete incremental

formulation for the problem of quasistatic evolution of a drop whose volume changes

according to the prescribed law |ω| = V(t). For simplicity, we neglect gravity in this

first example, i.e., we set G = 0 in (2.2), and we illustrate the behavior of a small

droplet on a horizontal solid surface. Given the configuration ω∗(t) of a drop at time

t, the one at time t+ δt is given by

ω∗(t+ δt) = argmin
|ω|=V(t+δt)

{E(ω) +D(ω, ω∗(t))} (3.1)

37



3.1. A PHENOMENOLOGICAL MODEL FOR CONTACT ANGLE
HYSTERESIS

where E is capillary energy defined in Section 2 and the dissipation D(ω1, ω2) is

given by

D(ω1, ω2) = µ|∂Sω1 M ∂Sω2|. (3.2)

Here α M β = (α \ β)∪ (β \α) denotes the symmetric difference of the sets α and β;

µ > 0 is a parameter giving the dissipated energy per unit variation of the wetted

area. Clearly δt must be chosen sufficiently small, so that small changes of the time-

dependent data (in this case, the prescribed volume) occur during one time-step.

For ω∗(t) a spherical cap, energy and dissipation can be written simply as

E = (σSL − σSV )πa2 + σLVA (3.3)

D(ω1, ω2) = D(a1, a2) = µπ|a2
1 − a2

2| (3.4)

where A = 2πRh is the area of the spherical cap of radius R and height h, while

a is the radius of the wetted area, namely, the interface between the solid and the

liquid (see Figure 3.1).

The derivation of optimality condition from (3.1) requires some care because

of the non-differentiability of the function a 7→ D(a, a∗(t)) at a = a∗(t), and the

presence of the volume constraint. The first difficulty is usually handled using the

notion of sub-differential from convex analysis. In order to provide a more intuitive

derivation, we write

d
daD(a, a∗(t))da =

{
2µπa da if a = a∗(t), da ≥ 0

− 2µπa da if a = a∗(t), da ≤ 0

(3.5a)

(3.5b)

while, since a 7→ D(a, a∗(t)) is differentiable whenever a 6= a∗(t), we have

d
daD(a, a∗(t))da =

{
2µπa da if a > a∗(t)

− 2µπa da if a < a∗(t)

(3.6a)

(3.6b)

with da of arbitrary sign. In addition, we observe that the volume constraint

π

6
(3a2h+ h3) =

πh2

3
(3R− h) = given

constrains variations of R, h and a, so that

dh = − a

R
da, dR =

(
1 − 2a

h

)
dh = −

(
1 − 2a

h

)
a

R
da.

We thus obtain

dA||ω|=V(t+δt) = 2π(R− h)
a

R
da = 2πa cos θda (3.7)
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Using (3.5), (3.6) and (3.7) in the unilateral minimality condition

dE||ω|=V(t+δt) +
d

da
D(a, a∗(t))da ≥ 0

which must hold for every admissible pair (a, da), we deduce the following inequali-

ties

2πa(σSL − σSV + σLV cos θ + µ)da ≥ 0

{
∀ da, if a > a∗(t)

∀ da ≥ 0, if a = a∗(t)

2πa(σSL − σSV + σLV cos θ − µ)da ≥ 0

{
∀ da ≤ 0, if a = a∗(t)

∀ da, if a < a∗(t)

leading to

cos θY + cos θ + µ = 0 if a > a∗(t)

cos θY + cos θ + µ ≥ 0

cos θY + cos θ − µ ≤ 0

 if a = a∗(t)

cos θY + cos θ − µ = 0 if a < a∗(t)

This shows that the drop contact angle θ satisfies

cos θ ∈


{cos θR} if a < a(t)

[cos θR, cos θA] if a = a(t)

{cos θA} if a > a(t)

(3.8a)

(3.8b)

(3.8c)

where the advancing contact θA and the receding contact angle θR are given by

cos θA = cos θY − µ

σLV
,

cos θR = cos θY +
µ

σLV
.

The meaning of condition (3.8) is the following. Any value of the contact angle θ

such that cos θ ∈ [cos θR, cos θA] can be seen in an equilibrium configuration. How-

ever, at a point of the contact line which is advancing (resp., receding), the contact

angle must be θA (resp., θR). Using these angle conditions, and the fact that a drop

which is initially a spherical cap always remains a spherical cap, the solutions to (3.1)

can be computed analytically for any given volume history t 7→ V(t). A pictorial

representation of the histories t 7→ a(t) and t 7→ θ(t) resulting from a non-monotone

history of prescribed volumes t 7→ V(t) is shown in Figure 3.2.

The use of incremental minimization problems to study the quasistatic evolution
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of a dissipative system is quite common in solid mechanics and, in particular, in

plasticity theory ([37, 40, 52]). This can be regarded as an extension to the case of

non-smooth dissipative potentials (such as (3.5) and (3.6)) of the Rayleigh dissipa-

tion principle of Classical Mechanics ([33, 55]).

In applying this principle to wetting problems we are neglecting the viscous dissipa-

tion in the fluid. The problem of coupling bulk dissipation with the one occurring at

the contact line has been considered, e.g., in [44, 46, 51]. We neglect the viscous dis-

sipation in the fluid because we are considering problems in which time-dependence

is introduced by slowly varying data. These produce histories of configurations

where fluid velocities and viscous dissipation are vanishingly small. These configu-

rations will approach a history of equilibria with volume t 7→ V(t) and under “loads”

t 7→ G(t), in the quasistatic limit of infinitely slow changes of prescribed volume V
and loads G. Because of the non-uniqueness introduced by the non-smooth dissipa-

tion potential, and reflected by the existence of an interval of stable contact angles

(3.8b), solutions will not only depend on the instantaneous values of the data, but

also on their entire time history. A more rigorous discussion of the mathematical

properties of this model can be found in [2].

θY

R

a

h

Figure 3.1: Sketch of a spherical cap.

Considering now the general case (2.2), in which time-dependent external forces

may be present, we look for solutions ω = ω∗(t+ δt) minimizing the functional:

E(ω, t+ δt) +D(ω, ω∗(t)) (3.9)

where

E(ω, t+ δt) = (σSL − σSV )|∂Sω| + σLV |∂V ω| +
∫
ω
G(x, t+ δt)dVx

D(ω, ω∗(t)) = |∂Sω M ∂Sω
∗(t)|
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t

V(t)

Vinit, Vfin

Vmax

tadv trec

a(t)

ainit

afin

amax

θrec

θadv

θ(t)

tinv

θinit

Figure 3.2: Contact angle θ(t) and wetted area radius a(t) resulting from a non-monotone

history of prescribed volumes V(t).

among all configurations ω with volume |ω| = V(t+δt), using the phase field method

discussed in the previous section. In practice, this means to solve

φ∗ε (t+ δt) = argmin
{
Eε(φ, t+ δt), subject to

∫
Ω
φ = V(t+ δt)

}
(3.10)

with

−2ε
∂φ∗ε
∂n

=

{
NA on ∂Ωε

A

NR on ∂Ωε
R

(3.11)

where NA and NR are the Neumann boundary conditions associated with the ad-

vancing and receding angle respectively, computed by the use of (2.9). The regions

∂Ωε
R and ∂Ωε

A are ε-approximations of the parts of the solid which are wet and dry

at time t, defined as appropriate super- and sub-level sets of φ∗ε (t).

The Dirichlet boundary conditions case is completely similar, imposing the suitable

values on ∂Ωε
A and ∂Ωε

R by the use of the equation (2.8).

We remark that (3.10)-(3.11) can be regarded as the phase field formulation

of a standard capillarity problem on a heterogeneous surface whose properties are,

however, “time-dependent”. In view of this remark, the numerical scheme presented

in Section 3 can be easily adapted to the incremental problem introduced above in

order to model contact angle hysteresis. Within one time increment δt, the external

loads and the constraints are frozen at their value at time t. We can obtain that the
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drop advance (resp., recede) with contact angle θA (resp., θR) by imposing through

eq. (3.11) that in the regions that are dry (resp., wet) at time t + δt the contact

angle be the advancing (resp., the receding) one, as shown in Figure 3.2, in the case

of a spherical cap.

Thus, our algorithm is easily adapted to accommodate the presence of frictional

forces at the contact line: we solve a one-parameter family of standard capillarity

problems obtained by replacing the Neumann boundary condition (2.10b) by (3.11),

in which ∂Ωε
A and ∂Ωε

A are ε-approximations of the parts of the solid which are dry

and wet at time t.

Our first application of this algorithm is the study of the volume-driven evolution

of a spherical cap in the presence of hysteresis. This is a benchmark case for which an

exact solution is available, as discussed above. We run simulations with Neumann

boundary conditions associated with the following parameters: θY = 120◦, θA =

135◦, θR = 105◦. Figures 3.3 and 3.4 show a satisfactory agreement with the known

analytical solutions. Notice, in particular, that the solution is continuous across

patches with different levels of mesh refinement.

Figure 3.3: A slice of an advancing drop

and the sub-division of the computational

domain into patches. The thick line rep-

resents the analytical solution of the asso-

ciated problem, the thin lines are the level

curves of the phase function.

Figure 3.4: A slice of a receding drop.

The phase field solution (thin lines) is

compared with the analytical one (thick

line).

3.2 Vertical plate experiments

Consider, for the sake of simplicity, the two-dimensional geometry of Fig.3.5. The

drop is in equilibrium if

ρgA+ σLV cos θA − σLV cos θR ≤ 0, (3.12)
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where we recall that σLV is the surface tension (now more conveniently interpreted as

a force per unit length), ρ is the liquid density, g is gravity acceleration, and θA and

θR are the advancing and the receding contact angles. These are the maximal and

minimal contact angle the drop can exhibit in equilibrium, at the onset of advancing

and receding motion of the contact line. The maximum value Acrit of A compatible

with (3.12) is

Acrit =
σLV
ρg

(cos θR − cos θA) . (3.13)

Formula (3.13) prompts two remarks. The first is that necessary condition for

adhesion is that cos θR 6= cos θA (this implies that Young’s law is violated, i.e. the

drop in Fig. 3.5 is not a stationary point for the energy of capillary surfaces). The

second one is that the critical area is proportional to the difference (cos θR − cos θA).

θA

~σLVσLV cos θR

~σLV
σLV cos θA

θR

W

Figure 3.5: Forces on a capillary drop. The drop can stick if gravity is balanced by surface

tension forces. This is possible only if the drop can exhibit different contact angles at the

receding and at the advancing edge.

The three dimensional case, which is the one of interest for applications, is more

complex. Dussan describes in [21] the critical configuration of a drop on a tilted
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plane, with small hysteresis (i.e. cos θR − cos θA small), by studying its dynamics in

the limit of vanishing gravitational force. In this way, he estimates that the largest

drop that can stick to the surface of the solid inclined at a given angle γ is

Vcrit∼
(

96
π

)1
2
(
σLV (cos θR − cos θA)

ρg sin γ

)3
2(1 + cos θA)

3
4
(
1 − 3

2 cos θA + 1
2 cos3 θA

)
(cos θA + 2)

1
2 (1 − cos θA)

3
4

.

(3.14)

The 3/2 power in the second factor in the right hand side of (3.14) is obvious from

dimensional analysis. However, the critical volume depends on cos θR and cos θA not

only through their difference, but also through a non-dimensional correction factor

depending on cos θA alone.

Interestingly, experimental results by Carre and Shanahan [12] are available for

critical volumes of water drops in equilibrium on differently treated vertical glasses

plates. By simulating numerically drops of increasing volume, we can estimate the

maximal size a drop can have before gravity wins over pinning forces and obtain a

very stringent test of our model. This is done below, where we compare our compu-

tational results with the data in [12] and with those deduced by the application of

Dussan’s formula (3.14).

As it is common in the study of hysteretic evolutions, solutions depend not only

on the instantaneous value of the data, but also on their entire time history and, in

particular, on the initial conditions. Our protocol to initialize the simulations is the

following. We first set θA = θY = θR, where the value of θY is taken from the data

in [12], and let the system relax to an equilibrium configuration in the absence of

gravity. In these conditions, the equilibrium configuration of the drop is a spherical

cap meeting the solid surface at an angle given by Young’s law. Then we “switch

on” gravity and hysteresis simultaneously, and record whether the drop remains in

equilibrium with the full value of the gravitational force, or it starts sliding. A

typical equilibrium configuration of a drop, just before it starts sliding is shown in

Figure 3.6.

The meaning of the confidence interval we have used to present our results is

the following: the minimum value of the specified range is the volume of the largest

drop that we have observed to be stable; the maximum is the size of the smallest

drop we saw rolling down. The critical volume belongs to this interval. The level

of accuracy reached in this evaluation depends mostly on the computational time

spent to reduce the error that affects the solution. A preliminary version of these
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Figure 3.6: A phase field drop: a slice parallel and close to the solid surface (left), a slice

perpendicular to the solid (center) and a 3D snapshot (right). Note the ε-layer representing

the liquid-vapor interface.

Table 3.1: Parameters used in the vertical plate simulations.

Description Notation in the thesis Value

Edge length of the

computational cube

d Variable between 3 mm and

7 mm

Interface thickness ∼ ε 0.005·d

max num of levels 3

Smallest grid spacing h 0.00125·d

calculations has been presented in [18]. We have now narrowed considerably the

width of our confidence interval, and obtained a more precise estimate of the critical

volume.

In Table 3.2 we report the contact angles measured for water drops on the differ-

ent materials, subjected to several surface treatments. Table 3.3 shows the critical

volume obtained with the different approaches, which are also plotted in Figure 3.7

as a function of (cos θR − cos θA).

Looking at Figure 3.7, the agreement of the experimental data with both Dus-

san’s formula and with our numerical simulations is satisfactory. In particular, with

reference to (3.14), it is interesting to observe that, in a 3-D framework, the threshold

on the volume beyond which motion can start doesn’t depend only on the difference

45



3.2. VERTICAL PLATE EXPERIMENTS

Table 3.2: Contact angle data (θY , θA, θR) for untreated glass plates (control) and those

treated with a commercial anti-rain composition (CAC) and with the Corning surface treat-

ment (CST), before and after ageing in boiling water and before and after ageing in running

water.

Glass

treatment

No ageing After 1 hr in 100◦C–

H2O

After 30 hr in running wa-

ter

Control θY = 42.5 θY = 51.5 θY = 44

θA = 51 θA = 61 θA = 54

θR = 32.5 θR = 41 θR = 32

CAC θY = 108 θY = 72 θY = 96.3

θA = 113 θA = 91 θA = 111

θR = 103 θR = 51 θR = 82

CST θY = 105 θY = 99.5 θY = 103

θA = 111 θA = 105 θA = 113

θR = 99.5 θR = 94 θR = 94

Table 3.3: Critical volume data in µl; VD
c is the one deduced from Dussan’s formula (3.14),

VE
c is the experimental value and VC

c is our computational result.

Glass

treatment

No ageing After 1 hr in 100◦C–

H2O

After 30 hr in running

water

Control VDc = 6.34 VDc = 7.68 VDc = 7.92

VEc = 4.9 VEc = 6.3 VEc = 6.5

VCc ∈ (5.12, 5.45) VCc ∈ (6.15, 6.51) VCc ∈ (5.12, 5.45)

CAC VDc = 1.83 VDc = 19.74 VDc = 9.89

VEc = 1.5 VEc = 17.7 VEc = 8.6

VCc ∈ (0.89, 1.01) VCc ∈ (16.25, 17.03) VCc ∈ (9.13, 9.67)

CST VDc = 2.56 VDc = 2.55 VDc = 4.95

VEc = 1.8 VEc = 2.0 VEc = 4.0

VCc ∈ (1.14, 1.27) VCc ∈ (1.42, 1.58) VCc ∈ (3.03, 3.29)

(cos θR − cos θA) like in the 2-D scheme, but also on a second term, a correction

factor which depends on θA. Using a Taylor expansion centered in π
2 and defined

for convenience on the interval [50◦, 120◦] (that is the range where θA varies in our
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examples), (3.14) can be rewritten as:

Vcrit ∼ C (cos θR − cos θA)
3
2

(
1 − 3

4
t+

3
16
t2 − 45

64
t3
)

(3.15)

where t = (θA − π
2 ). When the term

(
1 − 3

4 t+ 3
16 t

2 − 45
64 t

3
)

is far from 1, namely,

when θA is far from π
2 , then Vcrit deviates from the monotone curve C(cos θR −

cos θA)
3
2 , hence explaining the non-monotone behavior of the data in Figure 3.7.

Figure 3.7: Comparison of the results of simulations based on our model with the experi-

mental data in [12] and with Dussan’s formula (3.14).
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Chapter 4

Evaporating droplet on pillars:

quasi-Newton methods and

continuation methods

We present in this section the numerical results obtained for the phase field sim-

ulation of a drop that is decreasing its volume, while resting on a substrate of

micro-pillars. Differently from the experiment performed in Chapter §2, we would

like to follow its entire evolution and apply the quasi-static procedure, in which the

configuration at an intermediate step depends directly on the one before it. The

computational complexity involved and some technical difficulties, like the update

of the changing volume parameter, require for the use of new numerical devices and

of a complete restyle of the strategy for the solution of the stationarity condition

for the functional (2.7). In particular we would like to solve directly the equation

(2.10a) without the implementation of the fictitious descent dynamics. Clearly we

are now in the case of a system of non linear equations and this demands for the use

of Newton-like methods. Furthermore multigrid techniques on a locally refined grid

and a special scheme (continuation method) for the updating of the initial guess at

each step of the evolution are presented.

4.1 Motivations

What we would like to show in this section is an overview of the methods and

possible strategies could be adopted in order to solve the equilibrium equation for

(2.10); in particular it would be interesting to point out pros and cons of the different
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Figure 4.1: In the left the contour lines of a two dimensional phase field drop are repre-

sented. The right panel shows the convergence history for the explicit Euler-method. The

x-axis represents the number of the iterations performed while the y-axis the norm of the

time-derivative

approaches, and then collect all these informations in order to choose the instruments

that could provide a stable, accurate and fast strategy.

The leading experiment we perform throughout the section and that we use as

benchmark for the comparison is the one of a drop in contact with an homogeneous

solid, with no additional external forces. For convenience the grid has 327 nodes in

each direction. Furthermore we found of interest to choose as grid space h = 0.00125

and in (2.7), ε = 0.004: values close to these ones provide the right resolution for

the description of wetting phenomena on rough surfaces.

The first method we take in exam is the explicit Euler, we have used in Chapter

§2. If one implements a gradient flow, a solution for (2.10) can be recovered, and

following this approach the equation has to be solved is:

φτ = ε4φ− 1
ε
φ(1 − φ)(1 − 2φ) − λ. (4.1)

The scheme we have used for the resolution is the one described in Section 2.2.1, in

which we provided a splitting strategy for the calculation of the Lagrange multiplier.

The criterion we have taken into account to measure the order of convergence relies

on the norm of the discrete time derivative∥∥∥∥φN+1 − φN

dτ

∥∥∥∥
in which dτ is the time-step that leads the evolution. If we recall the estimate on the

maximum time-step allowed for the stability of the explicit Euler method (2.12), we
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get that the parameters we have chosen, impose dτ ≤ 0.000032. As consequence a

high number of iterations are requested in order to get an admissible approximation

of the solution (Figure 4.1). This obviously influences also the effective time needed

for the simulation, and, in particular, we have spent about 2500 wall clock seconds

to perform the benchmark experiment.

Following [14], methods based on a semi-implicit splitting, in which linear leading

order terms are extracted and discretized implicitly are very effective when dealing

with Cahn-Hilliard type equations as (4.1). Amohmark13(the)-3icug27(e)-3clasions
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Figure 4.2: In this picture we show the performance of the SBDF scheme and the improve-

ment obtained when it is coupled with a multigrid technique.

ever slower on domains whose boundary ∂Ω is highly irregular as in the case of

simulations of micro-textured solids. In particular, some experiments have pointed

out that both the speed of convergence and the amplitude of dτ are penalized.

Since the non-linearity is quite simple (a polynomial in φ) and affects only the the

lowest order terms, it seems reasonable the application of Newton methods directly

to the Euler-Lagrange equations:
−ε4φ+ 1

εφ(1 − φ)(1 − 2φ) + λ = 0

∫
Ω φ = V

(4.4)

If now we use as stopping criterion the norm∥∥∥∥−ε4φ+
1
ε
φ(1 − φ)(1 − 2φ) + λ

∥∥∥∥
we have noticed that the Newton iterations converge very quickly (about 130 seconds

and 18 iterations) to the numerical solution of (4.4) (Figure 4.3). The requirement

(that a priori cannot be satisfied) on the initial guess to be close enough to the

exact solution makes the method unstable (the intermediate steps oscillate before

they converge to the right solution). Furthermore iterative solvers (e.g. conjugate

gradient) needed for the solution of the linear system associated with the Newton

step, converge slowlier (and in some cases just diverge) because of the values assumed

by the derivative of the non linear term g(φ) = 1
εφ(1 − φ)(1 − 2φ) (this will be
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Figure 4.3: Convergence history of Newton method applied to the equation (4.4)

discussed more in details in the next section). These considerations suggest for the

replacement of the Newton method with a proper quasi-Newton one.

4.2 Numerical formulation of the problem

For simplicity our description, and the basic results we are going to state, are thought

in two dimensions and on a uniform square grid, since the three dimensional case

and the study on a locally refined grid would require a deeper investigation that is

outside from the purposes of the work. At this level we would like to put attention

on the numerical reasons that also in the simplest cases taken in consideration have

motivated the choice to move from Newton methods to quasi Newton schemes, and

to justify, at least from an heuristic point of view, the advantages of the proposed

method.

4.2.1 The Newton method

In order to solve numerically (4.4), we use finite differences to approximate the

Laplacian operator. Then, the discretized system deriving from (4.4) is:
− ε
h2L · φ+ 1

ε g(φ) + λC = 0

CT · φ− V = 0

(4.5)

where h is the grid space (for simplicity it is the same in each direction), g(φ) is the

vector whose i-th value is given by the evaluation of the non linear term in the i-th
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4.2. NUMERICAL FORMULATION OF THE PROBLEM

node, C is a vector with all components equal to 1 (notice that we have rescaled

the second equation for convenience) and L is the usual three-block diagonal matrix

arising from the use of finite differences (see [49]). So we have a non linear system

of equations Fh in the unknown ψ =

[
φ

λ

]
and we want to find

Fh(ψ) = 0. (4.6)

The k + 1 step of the Newton method is defined as:

ψk+1 = ψk − J−1
h (ψk)Fh(ψk) (4.7)

where Jh is the Jacobian operator of Fh. Writing (4.6) in vector form we have

Fh(ψk) =


− ε
h2L C

CT 0

 ·


φk

λk

+


+1
ε g(φ

k)

−V

 . (4.8)

The linear system deriving from (4.7), in the unknown δφk (i.e. the correction to be

supplied at the (k+1)-th iteration) is

Jh(ψk)δψk = −Fh(ψk)

that is, looking at (4.8):
− ε
h2L+ 1

ε g
′(φk)I C

CT 0

 ·


δφk

δλk

 = −


− ε
h2L · φk + 1

ε g(φ
k) + λkC

CT · φk − V

 (4.9)

where for convention 1
ε g

′(φk)I is a diagonal matrix with values 1
ε g

′(φk). If we call

Bk := − ε
h2L + 1

ε g
′(φk)I, vk := − ε

h2L · φk + 1
ε g(φ

k) + λkC and pk := CT · φk − V,

(4.9) becomes: 
Bk · δφk + δλkC = −vk

CT · δφk = −pk
(4.10)

Performing the trivial substitutions, we obtain:
δφk = (Bk)−1(−vk − δλkC)

CT · [−(Bk)−1vk − (Bk)−1(δλkC)] = −pk
(4.11)
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4.2. NUMERICAL FORMULATION OF THE PROBLEM

From the second equation we get:

δλk =
pk − CT (Bk)−1vk

CT (Bk)−1C

If we call x1 = (Bk)−1vk and x2 = (Bk)−1(C), finally we obtain:

δφk = −x1 − δλkx2

Then the numerical core of the problem is to find the solution of the two linear

systems:

Bkx1 = vk (4.12)

Bkx2 = C (4.13)

that are the discrete versions of two elliptic equations.

From the theory we know that, if we denote with ψ∗ a solution for (4.6), the New-

ton method locally converges with quadratic rate of convergence if ∃ r > 0 and a

neighborhood N(ψ∗, r) such that in N the operator Jh is Lipschitz and if Jh(ψ∗) is

invertible.

What we want to do now is to establish sufficient conditions for the local conver-

gence of the Newton method applied to our equation. For this purpose we will use

the l1 vector norm and the matrix norm induced by it.

If v ∈ Rn and A = (aij) ∈ Rn×n:

‖v‖1 =
n∑
i=1

|vi|

‖A‖1 = max
1≤j≤n

{‖a.j‖1}

Here a.j denotes the j−th column of A. Then the induced l1 matrix norm is the

maximum of the l1 vector norm of the columns of A.

Definition 4.2.1. Let n > 0, G : Rn −→ Rn×n, x ∈ Rn, let ‖ · ‖ a norm on Rn,

and ||| · ||| a norm on Rn×n. G is said to be Lipschitz continuous at x if there exists

an open set D ⊂ Rn, x ∈ D and a constant γ such that for all v ∈ D,

|||G(v) −G(x)||| ≤ γ‖v − x‖. (4.14)

If (4.14) holds for every x ∈ D, then G ∈ Lipγ(D).

Proposition 4.2.1. If D is any bounded set in Rn, then Jh : Rn −→ Rn×n is

Lipschitz continuous in ∀ψ1 ∈ D, with respect to the l1 vector norm and the induced

matrix norm.
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4.2. NUMERICAL FORMULATION OF THE PROBLEM

Proof. If we take ψ1, ψ2 ∈ D we have the following chain of inequalities (where ci
are suitable constant):

‖Jh(ψ1) − Jh(ψ2)‖1 = c1‖ g′(φ1)I − g′(φ2)I︸ ︷︷ ︸
G

‖1 = max
1≤j≤n−1

‖{G.j}‖

= max
1≤j≤n−1

{|g′(φ1
j ) − g′(φ2

j )|}

≤ c1 max
s∈D

|g′′(s)| max
1≤j≤n−1

|φ1
j − φ2

j |

≤ c2 max
1≤j≤n

|ψ1
j − ψ2

j | ≤ c2‖ψ1 − ψ2‖∞

≤ c3‖ψ1 − ψ2‖1

Proposition 4.2.2. Let ψc = (φc, λc) the (continuous) solution of the equation

(4.4) and denote with Jh(ψc) the discrete Jacobian matrix evaluated in ψc. Then

there exists a neighborhood Nε of ε̂ = 1 where Jh(ψc) is invertible.

Proof. If by contradiction Jh(ψc) is not invertible, there would be a non null x =

(x′, xn) ∈ Rn (with x′ we denote its first n− 1 components), such that:
L̃ C

CT 0

 ·


x′

xn

 =


0

0


where L̃ = −εL+ 1

ε g
′(φc)I. This means that

L̃ ·
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Then, since −L is positive definite (it has positive eigenvalues, [8]), and |g′(φc)| ≤ 1,

if we indicate with λmin the smallest magnitude eigenvalue of −L (that on a square

domain is equal to 8 sin2
(
πεα

2

)
), we get:

vT
(
− L+ ε2(α−1)g′(φc)I

)
v = −vTLv + vT ε2(α−1)g′(φc)Iv

≥ λmin − ε2(α−1) = 8 sin2

(
πεα

2

)
− ε2(α−1) (4.15)

The last term in (4.15) can be written as

8 sin2
(
πεα

2

)
(εα)2

− 1
ε2
. (4.16)

For ε = 1, (4.16) is > 0, and for continuity the statement is true.

Remark 4.2.1. Notice that for ε→ 0, (4.16) → −∞.

Remark 4.2.2. If we refer to [45], thanks to the Lipschitz continuity of the Jacobian

operator Jh, the consistence of the problem and a simple stability requirement on

Jh(ψc)−1 that can be derived from Lemma 4.2.3 (see Section 4.2.2), we can assess the

existence of a solution ψ∗ of the discrete problem (4.5) and also derive an estimate

on ‖ψc−ψ∗‖. Furthermore, with arguments similar to the ones used in Proposition

4.2.2, it could be proved also the invertibility of Jh(ψ∗). In this conditions we would

have convergence of Newton method and also numerical stability when solving the

linear systems (4.12) and (4.13). Unfortunately for ε ≈ 1 the phase field energy does

not describe properly the transition layer between liquid and vapor, and the grid

space h = εα is absolutely inadequate for a good resolution of the approximated

solution. Actually, the values we used to perform our tests do not ensure the desired

properties, on the contrary it can be calculated numerically that with the usual

values we take for our simulations (i.e. ε ∝ 10−3, h = ε/2), the iteration matrix Bk

has negative eigenvalues. In these cases Newton method is no longer stable, and it

could diverge.

From now on, we would have to suppose the existence of a solution of (4.5) and the

non-singularity of its Jacobian, and in order to stabilize numerically the problem,

we would move to quasi Newton methods.

4.2.2 The proposed method

If one has the system of non-linear equations F : Rn −→ Rn continuously differ-

entiable, the basic idea of quasi Newton methods is to provide an approximation
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A to the real Jacobian matrix of F , J , and use it at each iteration. The reasons

to do this can be of different nature: in cases as ours this is useful for numerical

stability issues, but in other situations it could happen that J is not available (and

one has to estimate it by finite differences), or in cases when the Jacobian matrix

is very huge, it is convenient to calculate only how it acts on vectors, and also this

process gives raise to approximations. Obviously, the introduced deterioration not

only does not change the local nature of the method (the initial guess must be still

close enough to the real solution), but in almost the cases the quadratic convergence

is compromised.

Following [17], the algorithm is:

QUASI-NEWTON ALGORITHM FOR NONLINEAR EQUA-

TIONS

Given F : Rn −→ Rn continuously differentiable , and x0 ∈ Rn.

At each iteration k:

1. Compute F (xk), if it is not already done. and decide whether

to stop or continue.

2. Compute Ak to be J(xk) or an approximation to it.

3. Apply a factorization technique to Ak and estimate its con-

dition number. If Ak is ill-conditioned, perturb it in appro-

priate manner.

4. Solve AksNk = −F (xk).

5. Decide whether to take a Newton step, xk+1 = xk+sNk , or to

choose xk+1 by a global strategy. This step often furnishes

F (xk) to step 1.

We will focus our attention on the second step of the procedure. Since the crucial

point in our numerical implementation is that 1
ε g

′(x) = 1
ε (6x

2 − 6x+ 1) can assume

negative values (it has minimum - 1
2ε for x = 1

2), and this is the reason why, unless

choosing suitable ε and h, Bk looses its positive definiteness, we propose to weaken
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the non-linearity under a certain threshold K ≤ 0, that is we consider:

1
ε
ḡ′(x) =


1
ε g

′(x) if 1
ε g

′(x) > K

K otherwise

(4.17)

Then the approximation Ak to J(ψk) we are considering is:

Ak =


− ε
h2L+ 1

ε ḡ
′(φk)I C

CT 0

 · (4.18)

We will show that, if K is chosen in a proper way, the quasi Newton-method con-

verges. However we will give also an heuristic motivation of the fact that whatever

K ≤ 0 we choose for the approximation of the Jacobian, the quasi Newton-method

converges towards a zero of (4.6).

Definition 4.2.2. Let x∗ ∈ Rn, k = 0, 1, 2, ... Then the sequence xk = x0, x1, x2, ...

is said to be q-linearly convergent to x∗ if there exists a constant c ∈ [0, 1) and an

integer k̂ > 0 such that ∀ k > k̂

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖

Lemma 4.2.3. Let ‖ · ‖ be any norm on Rn×n such that ‖XY ‖ ≤ ‖X‖‖Y ‖ and

‖I‖ = 1, and let E ∈ Rn×n. If ‖E‖ < 1, then (I − E)−1 does exist and

‖(I − E)−1‖ ≤ 1
1 − ‖E‖

.

If Y is non singular and ‖Y −1(X − Y )‖ < 1, then X is non singular and

‖X−1‖ ≤ ‖Y −1‖
1 − ‖Y −1(X − Y )‖

Lemma 4.2.4. Let F : Rn −→ Rn be continuously differentiable in the open convex

set D ⊂ Rn, x ∈ D, and let J be Lipschitz continuous at x in the neighborhood

D, using a vector norm and the induced matrix operator norm and the constant γ.

Then for any x+ p ∈ D,

‖F (x+ p) − F (x) − J(x)p‖ ≤ γ

2
‖p‖2.

Proposition 4.2.3. Assume that there exists ψ∗ such that Fh(ψ∗) = 0 and Jh(ψ∗)−1

exists with ‖Jh(ψ∗)−1‖1 ≤ β. Then there exist η > 0, K > − 1
2ε and ψ0 ∈ N(ψ∗, η)

such that if Ak is defined as in (4.18), the sequence generated by

ψk+1 = ψk −A−1
k Fh(ψk)

is well defined and converges q-linearly to ψ∗.
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Proof. The proof is similar to that of Theorem 5.4.1 in [17]. Let us denote with γ

the Lipschitz constant of Jh and let M > 0 be such that:

‖A0 − Jh(ψ0)‖1 = max
1≤j≤n−1

{|K − 1
ε
g′(φ0

j )|} ≤M (4.19)

Then we will choose η and K so that

β(ηγ + 2M) ≤ 1
2
.

We will show by induction on k that at each step

‖ψk+1 − ψ∗‖ ≤ 1
2
‖ψk − ψ∗‖ (4.20)

For k = 0 first let us prove that A0 is non-singular. From the triangular inequality,

the Lipschitz continuity of Jh and ‖ψ0 − ψ∗‖ < η, we get

‖Jh(ψ∗)[A0 − J(ψ∗)]) ≤ ‖Jh(ψ∗)‖ ‖[A0 − Jh(ψ0)] + [Jh(ψ0) − Jh(ψ∗)]‖

≤ β(M + γη) ≤ 1
2

From Lemma 1 we get that A0 is non singular and ‖(A0)−1‖ ≤ 2β. Therefore ψ1 is

well defined and:

ψ1 − ψ∗ = A−1
0 A0(ψ0 − ψ∗) −A−1

0 Fh(ψ0) +A−1
0 Fh(ψ∗)+

+A−1
0 Jh(ψ0)(ψ∗ − ψ0) −A−1

0 Jh(ψ0)(ψ∗ − ψ0)

Therefore, by the use of Lemma 2

‖ψ1 − ψ∗‖ ≤ ‖A−1
0 ‖

[
‖Fh(ψ∗) − Fh(ψ0) − Jh(ψ0)(ψ∗ − ψ0)‖ + ‖A0 − Jh(ψ0)‖‖ψ∗ − ψ0‖

]
≤ 2β

[γ
2
‖ψ∗ − ψ0‖2 +M‖ψ0 − ψ∗‖

]
≤ (βγη + 2βM)‖ψ0 − ψ∗‖ ≤ 1

2
‖ψ0 − ψ∗‖.

The proof of the induction step is completely similar.

4.2.3 Nonlinear systems and unconstrained minimization problem

Given the system of non linear equations

F : Rn −→ Rn (4.21)

the problem of finding x∗ such that F (x∗) = 0 can be seen as the corresponding

unconstrained minimization problem

min
x∈Rn

f(x) =
1
2
F (x)TF (x) (4.22)
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Note that each 0 of (4.21) is a solution for (4.22), but in general the symmetric

relation is not true. Given a point xt, a descent direction for (4.22) in xt is any

direction p for which ∇f(xt) ·p < 0 , where the j-th component of the vector ∇f(xt)

is given by

[∇f(xt)]j =
∂

∂xj

n∑
i=1

1
2
(Fi(xt))2 =

n∑
i=1

[
∂

∂xj
Fi(xt)

]
· Fi(xt) = [J(xt)T · F (xt)]j

where again J(xt) is the Jacobian of F in xt. Therefore, the steepest-descent di-

rection for (4.22) is along −J(xt)TF (xt). Furthermore, the Newton direction along

s = −J(xt)−1F (xt) is a descent one, since

∇f(xt)T · s = −F (xt)TJ(xt)J(xt)−1F (xt) = −F (xt) · F (xt) < 0 (4.23)

as long as F (xt) 6= 0.

These considerations are used to widen the domain of convergence of Newton meth-

ods exploiting several techniques developed in the field of unconstrained minimiza-

tion [17]. For our aims it is interesting to point out, that in almost total the cases

described in literature (for instance Broyden’s method), quasi-Newton approxima-

tion A of the Jacobian operator J defines a direction s = −A−1(xt)F (xt), that even

if it is not guaranteed to be a descent direction, actually does not change property

(4.23). In particular, in small experiments where the calculation of the inverse is not

too much computational challenging, we numerically tested that (4.18) keeps setting

a descent direction for (4.7). These benchmark experiments tell us that in general

the quasi-Newton method we implemented, provides a Jacobian approximation that

is not too far from the real one.

4.3 The Continuation method

4.3.1 Introduction to the scheme

As stressed several times so far, Newton methods converge to a solution x∗ of F (x) =

0 only if the initial approximation is sufficiently close to x∗. The continuation method

may be considered as an attempt to widen the domain of convergence of a given

method, or, alternatively, as a procedure to obtain sufficiently close starting points.

Furthermore, in typical scientific and engineering problems not only a single isolated

nonlinear system is to be solved, but a family of problems depending on one or more

parameters γ ∈ Rp, p ≥ 1. We can suppose p = 1. In fact, parameter dependent
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systems of nonlinear equations

F (x, γ) = 0, x ∈ D ⊂ Rn, γ ∈ [0, L] (4.24)

are the basis for parameter studies in systems analysis and systems design, but, as

anticipated, if one provides suitable modifications when F does not depend naturally

on some parameter γ, can also be differently exploited for the globalization of local

Newton or Gauss-Newton methods, if only poor initial guesses are available (see

[20, 42] for a complete presentation).

In order to treat the problem family (4.24) a sequence of problems

F (x, γν) = 0, ν = 0, 1, .., (4.25)

is solved instead, where the interval [0, L] is replaced by the subdivision

0 = γ0 < γ1 < · · · < γN = L.

In order to solve each problem (4.25) by a local Newton method, “sufficiently

good” starting points are required, which should be supplied by some suitable pre-

diction method. Formally speaking, any starting points will lie on some prediction

path x̂(γ) for γ = γν . Then the local Newton method would work as a correction

method that, from the given starting point x̂(γν) supplies a solution x(γν). The task

therefore involves the choice of a suitable prediction method.

The first and most natural way to provide a starting point x̂(γν+1) is just take the

previous solution point x(γν). This is the so-called classical continuation method

and the prediction path for it is defined as

x̂(γ) = x(γν), γ ≥ γν
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A refinement of the above idea is to proceed along the tangent of the path x̄ in γν .

This is the so-called tangent continuation method, sometimes also called method of

incremental load or Euler continuation, and the prediction path is defined by

x̂(γ) = x(γν) + (γ − γν)ẋ(γν), γ ≥ γν (4.26)

wherein

ẋ(γν) = −Fx (x(γν), γν)
−1 Fγ (x(γν), γν) (4.27)

4.3.2 Application to quasi-static evolution of droplets

Continuation method is a natural approach for the study of the family of discrete

incremental problems described in Chapter §2. In particular, if we think of the

case of an evaporating drop on a substrate of micropillars, the driving parameter

for (4.24) is the volume V. Following the classical continuation method, in which

the initial guess for the N + 1 − th step is given by the solution at the N − th

step, the change of volume led to dramatic deteriorations on the solution: even for

small variation of the loading parameter we had instability around the region of the

contact line, drop was prone to spring up from the pillars, loosing the informations

about the wetting history stored previously.

Tangent continuation method has revealed the right tool for the updating of the

initial guess, once the volume was decreased. In particular, as for the description

of the phenomenological model in Chapter §3, we are following the quasi-static

evolution of a drop whose volume changes according to a prescribed law |ω| = V(t)

with t ∈ [0, 1]; V(1) is the decreased final volume we want to reach.

In order to simplify the notation, we leave the dependence on ε, even if now we are

looking at a solution φ∗ε (t + δt) as in (3.10). If we consider (4.4) and suppose the

differentiability in t of φ(t) and λ(t) we can write:
−ε4∂φ

∂t
+

1
ε
g(φ(t))

∂φ

∂t
+
∂λ

∂t
= 0

∫
Ω

∂φ

∂t
=
∂V
∂t

(4.28)

We now replace the interval [0, 1] in a subdivision

0 = tin < · · · < tN < tN+1 · · · < tfin = 1

and call
∂φ

∂t
= y, dt = (tN+1 − tN ) and

∂λ

∂t
= µ

63
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Following (4.26) and (4.27), if we indicate with φ0 and λ0 the couple solution at

time 0 in the evolution, a good initial guess for φ(tN+1) and λ(tN+1) will be given

by {
φ(tN+1) = φ(tN ) + dt · y(tN )

φ(0) = φ0

{
λ(tN+1) = λ(tN ) + dt · µ(tN )

λ(0) = λ0

(4.29)

where y(tN ) and µ(tN ) are the couple solution of the system
−ε4y +

1
ε
g(φ(tN ))y + µ = 0

∫
Ω
y =

∂V
∂t

(tN )

(4.30)

4.4 The multigrid structure and SAMRAI

The purpose of testing the model and the numerical method with experiments as

much as possible close to reality (i.e. to take in consideration 3D experiments)

requires for the use of adaptive mesh refinement (AMR) techniques in order to

increase the spatial resolution only in special region of the domain. This approach

favors both a more clever use of the computational resources and a better description

of the solution where it is needed. In particular, the extremely different length scales

we have to take into account for wetting phenomena on substrates heterogeneous

at microscopic scale and the particular structure of the phase-field drop (constant

on the entire domain but in a narrow region of width proportional to ε) enforce

this necessity. Structured adaptive mesh refinement (SAMR) is an AMR strategy in

which the computational mesh is organized as a hierarchy of nested levels, each one

composed by the union of logically rectangular regions (patches) (see also Section

2.2.3). Let

h =
L−1∪
k=0

hk

denote a set of mesh spacing such that hk+1 ≤ hk. If we call Ωhk the set of the

patches at the same resolution hk a SAMR grid can be represented in the following

way:

Ωh0 ⊃ Ωh1 · · · ⊃ ΩhL−1

where Ωh0 covers the entire computational domain and Ωk is the hierarchy till the

level k (therefore ΩL−1 ≡ Ωh is the entire hierarchy). The solution is defined only

in the cells that have not been refined, that is only on ΩhL−1 and in the subregions
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Figure 4.6: In the left the contour lines of the two dimensional phase field drop are repre-

sented. The right panel shows the convergence history for the proposed method. As usual,

the x-axis represents the number of the iterations performed.
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FAC ALGORITHM

INITIALIZE rh = fh − Lhuh

FOR k = L− 1, ..., 1 {
SET fhk = Ihk

k rk

SOLVE/SMOOTH Lhkuhk = fhk

CORRECT uk = uk + Ikhk
uhk

UPDATE rk = fk − Lkuk

}
SOLVE Lh0uh0 = fh0

FOR k = 1, ..., L− 1 {
CORRECT uk = uk + Ikk−1u

k−1

SET fhk = Ihk
k (fk − Lkuk)

SOLVE/SMOOTH Lhkuhk = fhK

CORRECT uk = uk + Ikhk
uhk

}

Notice that FAC only provides a general scheme for the solution of a partial dif-

ferential equation on a hierarchical domain and the operations included within the

procedure (such as interpolation/prolongation operator, type of iterative solver used

for the smoothing step) depend on the particular multigrid solver. In details, the

operators Ikk−1 : Ωk −→ Ωk−1 play the role of prolongation in classical multigrid,

since they interpolate data in Ωhk ∩Ωhk−1 (at level hk−1) to Ωhk ; additional transfer

operators Ihk
k : Ωk −→ Ωhk and Ikhk

: Ωhk −→ Ωk, serve to extract a level from Ωk

and insert a level into Ωk. These are only operations of copying but for the filling

of the ghost cells (a layer of fictitious nodes that enter in the calculation of the

differential operators, see also Section 2.2.3) in the regions where there is a change

of resolution. Differently from the case of the explicit resolution scheme, the use

of triquadratic interpolation is no longer necessary when filling ghost cells, but it is

sufficient the use of linear one.

For solving (4.12) and (4.13) we used an existent package in SAMRAI that imple-
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θ

θ

α

Figure 4.7: Apparent pinning of a contact line on an edge. The Young condition stipulates

that liquid meets the solid with a contact angle θ. Hence the contact angle at the edge can

take any value (if the horizontal direction is considered as the reference one) between θ and

π − α+ θ, as illustrated by the colored region.

ments the method FAC for the resolution on a AMR grid of the Poisson equation

−∇ · (D1∇u) +D2u = f

where the vector D1 represents the diffusion coefficient and the vector D2 is a cell

centered scalar field. The operations of solving and of data moving described in the

FAC procedure exploit the methods defined by the SMG (Semicoarsening Multigrid)

algorithm introduced by Schaffer [50] which, in the class of multigrid solvers, it is

appreciated for its stability and robustness.

4.5 Numerical examples

The first example we would like to show is the benchmark test we have used in Sec-

tion 4.1 for the comparison of the numerical methods. In Figure 4.6 the convergence

history of the proposed method is represented. The result is pretty satisfactory:

we have reached the same degree of convergence of the previous simulations with

only 104 iterations and and 148 seconds of wall clock computing. In particular we

have chosen as threshold to weaken the non linearity K = ( 1
16ε min g(x)); we can

appreciate that the quasi Newton-method is more stable of the pure Newton one

(there are no longer dramatic oscillations before reaching a guess that falls toward

the zero) but unfortunately, as predicted by theory, the convergence is only linear.

The rest of the section is devoted to the presentation of the three dimensional results

obtained for real capillary problems with the use of the proposed method and the
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Figure 4.8: A Drop that is increasing its volume on a basement.

Figure 4.9: In this sequence of panels the imprint left by the drop during the evolution is rep-

resented. Notice the pinning effect of the basement edges, which determines the progressive

change in a squared shape of the circular imprint.
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Figure 4.10: The drop at the begin of the evolution on the micro-pillars.

described devices. We focus our attention on the effects that geometrically hetero-

geneous surfaces induce on wetting phenomena. It is well known that defects on a

solid can pin a contact line, and as consequence droplets on incline stay at rest. In

particular the edge of the defect (of characteristic angle α) makes the contact angle

flexible at this place. One measures a (Young) angle θ before the edge and a (Young)

angle π − α+ θ at the edge (Figure 4.7), considering the horizontal as reference. A

groove can thus stop the front of a liquid drop (as if it were non wetting) and a

tip will act in the opposite way so that a solid decorated with both kinds of defects

yields both small and large apparent angles. The first experiment we show tries to

reproduce this effect. In absence of any external forces, we placed a drop over a

basement that is upturned with respect to the level of the rest of the solid. The

homogeneous condition we put on the solid induces a Young angle of θ = 90◦ and

the characteristic angle of the defect is α = 90◦. Then we increased the volume of

the drop and looked at the contact line; the imprint that the globule leaves on the

substrate is circular till it meets the edge of the basement: here, as willed, the front

of the liquid finds a resistance and the value of the (Young) angle begins to increase.

The imprint is no longer circular and only the zone at the corners are rounded off.

This effect can be appreciated only till the Young angle the drop exhibits is below

the threshold θ + α = 180◦; once this barrier is exceeded, the globule is able to win
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the resistance and begin to flood also over the lateral walls of the basement.

The second experiment we would like to show describes the transition from the

Cassie-Baxter state to the Wenzel one of a drop that is evaporating on a substrate

of micropillars. In the literature these two models of wetting on rough surfaces are

deeply investigated. A drop that is in a Wenzel state fills all the cavities formed by

the micro-asperities, that is, follows the profile of the solid. In this situation, the

mechanism of the contact line pinning is similar to the one just described, and it

should be evident the reason why a drop increasing its volume enhances its static

contact angle. Therefore also the hydrophobicity of the solid is increased. Fur-

thermore, if a drop begins to evaporate, the resistance due to the tips, acts in the

opposite way: this means that the contact line remains stuck and an enhancement

of the hydrophilic properties of the substrate is observable. If the asperities are

enough tall, the most favorable energetical configuration is the Cassie-Baxter one,

in which, as explained in Chapter §2, the drop rests on the top of the pillars, leaving

vapor in the cavities. The increase of the hydrophobic properties is striking and it is

not exaggerated to speak of super-hydrophobicity. This state can be recovered even

when the minimal energetical configuration is the Wenzel configuration: in these

cases Cassie-Baxter drops are metastable, that is, small perturbation of the external

conditions are sufficient to produce the collapse of the globule and a recover of the

Wenzel state.

We have followed the entire evolution of a drop that, starting from a Cassie-Baxter

state, after some evaporation, falls in the cavities. As predicted by the physical

model, the mechanism for which this transition is possible relies on a progressive

invasion of the liquid between the micro troughs. The simulation of the volume

changing has been particularly challenging because of the instability at the level of

the contact line, that this process introduces in the numerical drops. However the

results is satisfactory; furthermore, also the pinning effects due to the presence of

the tips is recovered by our experiments, and the enhancement of the hydrophilicity

is observable in the Wenzel state.
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Figure 4.11: Different sections of the numerical drop during the evaporation. Notice the

progressive invasion of the cavities between the pillars that leads toward a sudden collapse

in the Wenzel state. In the last picture on the right we can appreciate the pinning effect of

the pillars at the level of the contact line with the solid.
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Appendix A

A brief introduction to BV

functions

The material we show in this appendix section is taken from the first part of a

collection of lecture notes for the study of Total Variation in Image Analysis [15];

Several reviewed here concepts are useful for a better understanding of the material

presented in Chapter §1.

A.1 Definition

Let us consider Ω ⊂ RN any (bounded) open set.

Definition A.1. The total variation of a function is defined by duality: for u ∈
L1

loc(Ω) it is given by

J(u) = sup
{
−
∫

Ω
udivφdx : φ ∈ C∞

c (Ω;RN ), |φ(x)| ≤ 1 ∀x ∈ Ω
}

(TV )

A function is said to have Bounded Variation whenever J(u) < +∞. Typical

examples include

• A smooth function u ∈ C1(Ω) (or in fact a function u ∈W 1,1(Ω)): in this case,

−
∫

Ω
udivφdx = −

∫
Ω
φ · ∇u dx

and the sup over all φ with |φ| ≤ 1 is J(u) =
∫
Ω |∇u|dx

• The characteristic function of a set with smooth (or C1,1) boundary: u = χE ,

in this case

−
∫

Ω
udivφdx = −

∫
∂E
φ · νE dσ
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and one can reach the sup (which correspond to φ = −νE , the outer normal

to ∂E, on ∂E ∩ Ω, while φ = 0 on ∂E ∩ ∂Ω) by smoothing in a neighborhood

of the boundary, the gradient of the signed distance function to the boundary.

We obtain that J(u) = HN−1(∂E ∩ Ω), the perimeter of E in Ω.

Here, HN−1 is the (N − 1)-dimensional Hausdorff measure, see for instance [25] for

details.

A.1.1 An equivalent definition

It is well known that any u ∈ L1
loc(Ω) defines a distribution

Tu : D → R

φ 7→
∫

Ω
φ(x)u(x) dx

where here D(Ω) is the space of smooth functions with compact support (C∞
c (Ω))

endowed with a particular topology, and Tu is a continuous linear form on D(Ω), that

is, Tu ∈ D′(Ω). We denote by 〈T, φ〉D′,D ∈ R the duality product between a linear

form T ∈ D′ and a vector φ ∈ D. The derivative of Tu is defined as (i = 1, .., N)〈
∂Tu
∂xi

, φ

〉
D′,D

:= −
〈
Tu,

∂φ

∂xi

〉
D′,D

= −
∫

Ω
u(x)

∂φ

∂xi
(x) dx

(which clearly extends the integration by parts: if u is smooth, then ∂Tu/∂xi =

T∂u/∂xi
).We denote by Du the (vectorial) distribution (∂Tu/∂xi = T∂u/∂xi

)Ni=1.

Then, if J(u) < +∞, it means that for all vector field φ ∈ C∞
c (Ω;RN )

〈Du, φ〉D′,D ≤ J(u) sup
x∈Ω

|φ(x)|.

This means that Du defines a linear form on the space of continuous vector fields,

and by Riesz’s representation Theorem it follows that it defines a Radon measure

(precisely, a vector-valued (or signed) Borel measure on Ω which is finite on compact

sets), which is globally bounded, and its norm (or variation |Du|(Ω) =
∫
Ω |Du|) is

precisely the total variation J(u).

A.1.2 Main properties of the total variation

Lower semi-continuity The Definition A.1 has a few advantages. It can be in-

troduced for any locally integrable function (without requiring any regularity or

derivability). But also, J(u) is written as a sup of linear forms

Lφ : u 7→ −
∫

Ω
u(x)divφ(x) dx
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which are continuous with respect to very weak topologies (in fact, with respect to

the “distributional convergence” related to the space D′ introduced in the previous

section).

For instance, if un ⇀ u in Lp(Ω) for any p ∈ [1,+∞) (or weakly-∗ for p = ∞), or

even in Lp(Ω′) for any Ω′ ⊂⊂ Ω, then Lφun → Lφu. But it follows that

Lφu = lim
n
Lφun ≤ lim inf

n
J(un)

and taking then the sup over all the smooth fields φ with |φ(x)| ≤ 1 everywhere, we

deduce that

J(u) ≤ lim inf
n→∞

J(un) (A.1)

that is, J is (sequentially) lower semi-continuous (l.s.c.) with respect to all the

above mentioned topologies. [The idea is that a sup of continuous function is l.s.c.].

Convexity The second fundamental property of J which we deduce from Definition

A.1 is its convexity : for any u1, u2 and t ∈ [0, 1],

J(tu1 + (1 − t)u2) ≤ tJ(u1) + (1 − t)J(u2). (A.2)

It follows, again, because J is the supremum of the linear (hence convex) functions

Lφ: indeed, one clearly has

Lφ(tu1 + (1 − t)u2) = tLφ(u1) + (1 − t)Lφ(u2) ≤ tJ(u1) + (1 − t)J(u2) (A.3)

and taking the sup in the left-hand side yields (A.2).

Homogeneity It is obvious for the definition that for each u and t > 0,

J(tu) = tJ(u)

that is, J is positively one homogeneous.

A.1.3 Functions with bounded variation

We introduce the following definition:

Definition A.2. The space BV(Ω) of functions with bounded variation is the set

of functions u ∈ L1(Ω) such that J(u) < +∞, endowed with the norm ‖u‖BV (Ω) =

‖u‖L1(Ω) + J(u).

This space is easily shown to be a Banach space. It is a natural (weak) “closure”of

W 1,1(Ω). Let us state a few essential properties of this space.
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Meyers-Serrin’s approximation Theorem We first state a theorem which shows

that BV function may be “well” approximated with smooth functions. This is a

refinement of a classical theorem of Meyers and Serrin [39] for Sobolev spaces.

Theorem A.1. Let Ω ⊂ RN be an open set and let u ∈ BV (Ω): then there exists a

sequence (un)n≥1 of functions in C∞(Ω) ∩W 1,1(Ω) such that

1. un → u in L1(Ω)

2. J(un) =
∫
Ω |∇un(x)|dx→ J(u) =

∫
Ω |Du| as n→ +∞

Let us recall that in Sobolev’s spaces W 1,p(Ω), p <∞, the thesis of this classical

theorem is stronger, since one proves that ‖∇un−∇u‖Lp → 0, while here one cannot

expect J(un − u) =
∫
Ω |Dun −Du| → 0 as n→ ∞. This is easily illustrated by the

following example: let Ω = (−1, 1), and u(t) = −1 if t < 0, u(t) = 1 if t ≥ 0. Then,

the sequence un(t) = tanh(n× t) clearly converges to u, with∫ 1

−1
u′n(t)dt = 2 tanh(n) → 2 = J(u)

as n → ∞, but clearly J(un − u) ≈ 4 for large n. In fact, it is clear if v is any

smooth approximation of u such as shown on Figure A.1, then clearly the variation

J(u− v) of w = u− v is given by

|w(0−) − w(−1)| + |w(0+) − w(0−)| + |w(1) − w(0+)| =

|v(0) − v(−1)| + 2 + |v(1) − v(0)| ≈ 4

and cannot be made arbitrarily small.

Rellich’s compactness theorem The second important property of BV functions

is the following compactness theorem:

Theorem A.2. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary, and let

(un)n≥1 be a sequence of functions in BV (Ω) such that supn ‖un‖BV < +∞. Then

there exists u ∈ BV (Ω) and a subsequence (unk
)k≥1 such that unk

→ u strongly in

L1(Ω) as k → ∞.

Sobolev’s inequalities We observe here that the classical inequalities of Sobolev:

‖u‖
L

N
N−1 (RN )

≤ C

∫
RN

|Du| (A.4)

if u ∈ L1(RN ), and Poincaré-Sobolev:

‖u−m‖
L

N
N−1 (RN )

≤ C

∫
RN

|Du| (A.5)
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Figure A.1: Smooth approximation of a step function.

where Ω is bounded with Lipschitz boundary, and m is the average of u on Ω,

valid for W 1,1 functions, clearly also hold for BV function as can be deduced from

Theorem A.1

A.2 The perimeter. Sets with finite perimeter

A.2.1 Definition, and inequality

Definition A.3. A measurable set E ⊂ Ω is a set of finite perimeter in Ω (or

Caccioppoli set) if and only if χE ∈ BV (Ω). The total variation J(χE) is the

perimeter of E in Ω, denoted by Per(E; Ω). If Ω = RN , we simply denote Per(E).

We observe that a “set” here is understood as a measurable set in RN , and

that this definition of the perimeter makes it depend on E only up to sets of zero

Lebesgue measure. In general, in what follows, the sets we will consider will be

rather equivalence classes of sets which are equal up to Lebesgue negligible sets.

The following inequality is an essential property of the perimeter: for any A,B ⊆ Ω

sets of finite perimeter, we have

Per(A ∪B; Ω) + Per(A ∩B; Ω) ≤ Per(A; Ω) + Per(B; Ω) (A.6)

Proof. The proof is as follows: we can consider, invoking Theorem A.1, two se-

quences un, vn of smooth functions, such that un → χA, vn → χB, and∫
Ω
|∇un(x)|dx→ Per(A; Ω) and

∫
Ω
|∇vn(x)|dx→ Per(B; Ω) (A.7)

77



A.2. THE PERIMETER. SETS WITH FINITE PERIMETER

as n→ ∞. Then, it is easy to check that un∨vn := max{un, vn} → χA∪B as n→ ∞,

while un ∧ vn := min{un, vn} → χA∩B as n→ ∞. We deduce, using (A.1), that

Per(A ∪B; Ω) + Per(A ∩B; Ω) ≤ lim inf
n→∞

∫
Ω
|∇(un ∨ vn)| + |∇(un ∧ vn)|dx. (A.8)

But for almost all x ∈ Ω, |∇(un ∨ vn)(x)| + |∇(un ∧ vn)(x) = |∇un(x)| + |∇vn(x)|,
so that (A.6) follows from (A.7) and (A.8).

A.2.2 The reduced boundary, and a generalization of Green’s for-

mula

It is shown that if E is a set of finite perimeter in Ω, then the derivative DχE can

be expressed as

DχE = νE(x)HN−1 ∂∗E (A.9)

where νE(x) and ∂∗E can be defined as follows: ∂∗E is the set of points x where

the “blow-up” sets

Eε = {y ∈ B(0, 1) : x+ εy ∈ E}

converge as ε→ 0 to a semi-space PνE(x) = {y : y·νE(x) ≥ 0}∩B(0, 1) in L1(B(0, 1)),

in the sense that their characteristic functions converge, or in other words

|Eε\PνE(x)| + |PνE(x)\Eε| → 0

as ε → 0. Here |E| denotes the Lebesgue measure of the set E. This definition of

the boundary simultaneously defines also the (inner) normal vector νE(x).

The set ∂∗E is called the reduced boundary of E (the “true” definition is a bit more

precise, but still (A.9) is true with our definition, see [3, Chapter 3]).

Equation (A.9) means that for any C1 vector field φ, one has∫
Ω

divφ(x)dx = −
∫
∂∗E

φ · νE(x)dHN−1(x) (A.10)

which is a sort of generalization of Green’s formula to sets of finite perimeter.

This generalization is useful as shows the following example: let xn ∈ (0, 1)2, n ≥ 1,

be the sequence of rational points (in Q2 ∩ (0, 1)2), and let E =
∪
n≥1B(xn, ε2−n)

for some ε fixed.

Then one sees that E is an open, dense set in (0, 1)2. In particular its “classical”
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∑
n 2πε2−n = πε. Its “reduced boundary” is, up to intersections (which are negligi-

ble), the set

∂∗E ≈
∪
n≥1

∂B(xn, ε2−n).

One shows that this “reduced boundary” is always, as in this example, a rectifiable

set, that is, a set which can be almost entirely covered with a countable union of

C1 hypersurfaces, up to a set of Hausdorff HN−1 measure zero: there exist (Γi)i≥1,

hypersurfaces of regularity C1, such that

∂∗E ⊂ N ∪

( ∞∪
i=1

Γi

)
, HN−1(N ) = 0. (A.11)

In particular, HN−1-a.e., the normal νE(x) is a normal to the surfaces(s) Γi such

that x ∈ Γi.

A.2.3 The isoperimetric inequality

For u = χE , equation (A.4) becomes the celebrated isoperimetric inequality:

|E|
N−1

N ≤ CPer(E) (A.12)

for all finite perimeter set E of bounded volume, with the best constant C reached

by balls:

C−1 = N(ωN )1/N

where ωN = |B(0, 1)| is the volume of the ball in RN .

A.2.4 The coarea formula

Theorem A.3. Let u ∈ BV (Ω): then for a.e. s ∈ R, the set {u > s} is a finite

perimeter set in Ω, and one has

J(u) =
∫

Ω
|Du| =

∫ +∞

−∞
Per({u > s}; Ω)ds. (CA)

It means that the total variation of a function is also the accumulated surfaces

of all its level sets. For the proof see [3, 24]. Let us observe that:

• It is relatively simple if u = p · x is an affine function, defined for instance on

a simplex T (or in fact any open set). Indeed, in this case, J(u) = |T ||p|, and

∂{u > s} are hypersurfaces {p · x = s}, and it is not too difficult to compute

the integral
∫
R HN−1({p · x = s})ds;
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• For a general u ∈ BV (Ω), we can approximate u with piecewise affine functions

un with
∫
Ω |∇un|dx → J(u). Indeed, one can first approximate u with the

smooth functions provided by Theorem A.1, and then these smooth functions

by piecewise affine functions using the standard finite elements theory. Then,

we will obtain using (A.1) and Fatou’s lemma that
∫
R Per({u > s}; Ω)ds ≤

J(u);

• The reverse inequality J(u) ≤
∫
R Per({u > s}; Ω)ds =

∫
R J(χ{u>s})ds, can

easily be deduced by noticing that if φ ∈ C∞
c (Ω) with ‖φ‖ ≤ 1, one has∫

Ω divφdx = 0, so that (using Fubini’s theorem)

∫
Ω
udivφdx =

∫
{u>0}

∫ u(x)

0
dsdivφ(x)dx −

∫
{u<0}

∫ 0

u(x)
dsdivφ(x)dx =∫ ∞

0

∫
Ω
χ{u>s}(x)divφ(x) dxds −

∫ 0

−∞

∫
Ω
(1 − χ{u>s}(x))divφ(x) dxds =∫ ∞

−∞

∫
{u>s}

divφ(x) dxds ≤
∫ ∞

−∞
Per({u > s}; Ω)ds

and taking the sup over all admissible φ’s in the leftmost term.

Remark: observe that (A.6) also follows easily from (CA), indeed, let u = χA+χB,

then J(u) ≤ J(χA) + J(χB) = Per(A; Ω) + Per(B; Ω), while for (CA) we get that

J(u) =
∫ 2

0
Per({χA + χB > s}; Ω)ds = Per(A ∪B; Ω) + Per(A ∩B; Ω).

A.3 The derivative of a BV function

We mention an essential result on the measure Du, defined for any u ∈ BV (Ω) by∫
φ(x) ·Du(x) = −

∫
u(x)divφ(x)

for any smooth enough vector field φ with compact support. As mentioned in Section

A.1.1, it is a bounded Radon measure. A derivation theorem due to Radon and

Nikodym (and a refined version due to Besicovitch) shows that such a measure can

be decomposed with respect to any positive Radon measure µ into:

Du = f(x)dµ+ ν (A.13)

where µ-a.e.

f(x) = lim
ρ→0

Du(B(x, ρ))
µ(B(x, ρ))
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(and in particular the theorem states that the limit exists a.e.), f ∈ L1
µ(Ω), that is,∫

Ω |f |dµ < +∞, and ν⊥µ, which means that there exists a Borel set E ⊂ Ω such

that |ν|(Ω\E) = 0, µ(E) = 0.

If the function u ∈ W 1,1(Ω), then Du = ∇u(x)dx, with ∇u the “weak gradient” a

vector-valued function in L1(Ω;RN ). Hence, the decomposition (A.13) with µ = dx

(the Lebesgue measure), holds with f = ∇u and ν = 0, and one says that Du

is “absolutely continuous” with respect to Lebesgue’s measure. This is not true

anymore for a generic function u ∈ BV (Ω). One has

Du = ∇u(x)dx+Dsu

where the singular part Dsu vanishes if and only if u ∈ W 1,1, and ∇u ∈ L1(Ω;RN )

is the “approximate gradient” of u.

The singular part can be further decomposed. Let us call Ju the jump set of u,

defined as follows:

Definition A.4. Given u ∈ BV (Ω), we say that x ∈ Ju, if and only if there exist

u−(x), u+(x) ∈ R with u−(x) 6= u+(x), and νu(x) ∈ RN a unit vector such that the

functions, defined for y ∈ B(0, 1) for ε > 0 small enough

y 7→ u(x+ εy)

converge as ε→ 0, in L1(B(0, 1)), to the function

y 7→ u−(x) + (u+(x) − u−(x))χ{y·νu(x)≥0}

which takes value u+(x) in the half space {y · νu(x) ≥ 0} and u−(x) in the other half

space {y · νu(x) < 0}.

In particular this is consistent with our definition of ∂∗E in Section A.2: ∂∗E =

JχE , with (χ+)(x) = 1, (χ−)(x) = 0 and νχE (x) = νE . The triple (u−, u+, νu)

is almost unique: it is unique up to the permutation (u+, u−,−νu). For a scalar

function u, the canonical choice is to take u+ > u−, whereas for vectorial BV

functions, one must fix some arbitrary rule.

One can show that Ju is a rectifiable set, in fact, it is a countable union of rectifiable

sets since one can always write

Ju ⊆
∪
n6=m

∂∗{u > sn} ∩ ∂∗{u > sm},

for some countable, dense sequence (sn)n≥1: the jump set is where two different

level sets meet.

One then has the following fundamental result:

81



A.3. THE DERIVATIVE OF A BV FUNCTION

Figure A.2: The “devil staircase” or Cantor-Vitali function.

Theorem A.4 (Federer-Volpert). Let u ∈ BV (Ω): then one has

Du = ∇u(x)dx+ Cu+ (u+(x) − u−(x))νu(x)dHN−1 Ju

where Cu is the “Cantor part” of Du, which is singular with respect to the Lebesgue

measure, and vanishes on any set E with HN−1(E) < +∞. In other words, for any

φ ∈ C1
c (Ω;RN ),

−
∫

Ω
u(x)divφ(x)dx =

∫
Ω
∇u(x) · φ(x)dx

+
∫

Ω
φ(x) · Cu(x) +

∫
Ju

(u+(x) − u−(x))φ(x) · νu(x)dx.

(A.14)

Observe that (A.14) is a generalized version of (A.10).

As we have seen, an example of a function with absolutely continuous derivative is

given by any function u ∈W 1,1(Ω) (or more obviously u ∈ C1(Ω)).

An example of function with derivative a pure jump is given by u = χE , E a

Caccioppoli set (see Section A.2). A famous example of a function with derivative

purely Cantorian is the Vitali-Cantor function, obtained as follows: Ω = (0, 1) and

we let u0(t) = t, and for any n ≥ 0,

un+1(t) =


1
2un(3t) 0 ≤ t ≤ 1

3
1
2

1
3 ≤ t ≤ 2

3
1
2(un(3t− 2) + 1) 2

3 ≤ t ≤ 1

Then, one checks that

sup
(0,1)

|un+1 − un| =
1
2

sup
(0,1)

|un − un−1| =
1
2n

× 1
6
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so that (un)n≥1 is a Cauchy sequence and converges uniformly to some function u.

The function (see Figure A.2) is constant on each interval in the complement of the

triadic Cantor set, which has zero measure in (0, 1). Hence, almost everywhere, its

classical derivative exists and is zero. One can deduce that the derivative Du is

singular with respect to Lebesgue’s measure. On the other hand, it is continuous

as a uniform limit of continuous functions, hence Du has no jump set. In fact,

Du = Cu, which in this case, is the measure Hln 2/ ln 3 C/Hln 2/ ln 3(C).
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Appendix B

Details on the multigrid

architecture

We describe here the main features of the adaptive mesh refinement technique that

has been implemented in order to achieve three main results: optimized usage of

available computing resources, better resolution of the liquid-solid interface (par-

ticularly useful for the modeling of the contact angle hysteresis), the possibility to

resolve realistic asperities (micron sized pillars) on the solid surface.

Static refinement has been performed near the solid surface. Dynamic refinement

is performed near the liquid-vapor interface, whose position is a-priori unknown,

driven by the computed value of φ. We performed refinement over the computa-

tional nodes where 0.05 ≤ φ ≤ 0.95, at a decreasing frequency rate following the

convergence of the gradient flow (see (2.11)).

Following [36] and [58], we used an interpolation technique preserving the second

order accuracy of the finite difference approximation of the Laplacian across a level

boundary. The Laplacian is then described through the fluxes of the phase function

φ. In each coordinate direction, say x for simplicity, we put:(
∂2φ

∂x2

)
i

=
(
δφi+ 1

2
− δφi− 1

2

)
/h, (A.1)

where h is as usual the grid spacing, and

δφi+ 1
2

=
1
h

(φi+1 − φi) (A.2)

δφi− 1
2

=
1
h

(φi − φi−1) . (A.3)

Fluxes across the interfaces between areas of the computational domain at different

size-grid level are computed using ghost cells: an extra-layer of nodes, placed along

85



the coarse-fine boundary regions, in which the φ values have to be calculated in a

proper way (as we are going to explain) in order to use them in the seven-points

stencil of “real” cells. In particular two cases are possible, depending on whether

one considers a point on the coarse or on the fine part of the separation plane. Let

us consider the first case (see fig. B.1). The requirement is that fluxes entering and

exiting from the fine/coarse interface must balance, therefore one obtains:(
∂2φ

∂x2

)
i

=
(
δφi+ 1

2
− δφ∗

i− 1
2

)
/hc, (A.4)

where

δφ∗
i− 1

2

=
1
2

(
δφ fup + δφ fdown

)
(A.5)

δφ fup/down =
1
hf

(
φtriquad − φ f

)
. (A.6)

The superscripts c and f refer to the coarse and fine quantities respectively. The

label triquad denotes the fact that the ghost cells of the finer level are computed

through a triquadratic (i.e. quadratic in each coordinate direction) interpolation as

described in Figure B.1 and B.2.

Figure B.1: A 2D scheme for the interpolation across a coarse-fine boundary. The values

corresponding to the positions labeled by O are obtained through quadratic interpolation ap-

plied to the values in the black points. These new values together with those in X positions

are interpolated to produce the values in *, the ghost cells of this fine level. The arrows

represents the top and bottom fluxes.
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In the second case the ghost cells can be used directly to compute the Laplacian

for the finer level, because the triquadratic interpolation guarantees the desired

accuracy. In particular places (such as corners), we obtain the same result repeating

the procedure, but shifting the stencil for the interpolation as shown in fig. B.2.

The advantages of this method over the simple linear interpolation can be seen

directly on the simulations: in the second case errors accumulate on the level inter-

faces and cannot be recovered. The following argument taken from [36], explains

the superiority of quadratic interpolation, which guarantees second order accuracy.

The finite difference approximation of the Laplacian implies a division by h2, and

so the accuracy of a p interpolation drops to hp−2 (for a quadratic interpolation it

is known that p = 3). When this process is performed only in a set of codimension

one (the interfaces), one order of accuracy is gained obtaining globally an error of

O(hp−1).

Figure B.2: The stencil for the first interpolation is shifted in presence of a corner in the

coarse-fine boundary.

We recall that, in view of the stability estimate (2.12), the maximal stable time

step decreases with the mesh size. Since time updating has to be synchronized across

the various levels, this has the unpleasant consequence that we cannot advance the

solution on the coarser area using the maximum dt allowed by (2.12), but we are

forced to use the smaller dt that guarantees stability at the finer level.
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nomena: Drops, Bubbles, Pearls, Waves, Springer, (2004)

[17] J.E. Dennis JR., R. B. Schnabel: Numerical methods for Unconstrained Op-

timization and Nonlinear Equations, 1983 by Prentice-Hall, Inc, Englewood

Cliffs, New Jersey 07632

[18] A. DeSimone, L. Fedeli, A. Turco: A phase field approach to wetting and contact

angle hysteresis phenomena. IUTAM Symposium on Variational Concepts with

Applications to the Mechanics of Materials, K. Hackl (ed.), IUTAM Bookseries

21, 51–63, Springer Science + Business Media B.V., (2010)

[19] A. DeSimone, N. Grunewald, F. Otto: A new model for contact angle hysteresis.

Networks and Heterogeneous Media 2, 211–225, (2007)

[20] P. Deufflhard: Newton Methods for Nonlinear Problems. Springer Series in Com-

putational Mathematics, Springer-Verlag Berlin heidelberg (2004)

[21] E. B. Dussan: On the ability of drops or bubbles to stick to non-horizontal

surfaces of solids. J. Fluid Mech. 151, 1–20, (1985)

[22] J. Eckstein, D. P. Bertsekas: On the Douglas-Rachford splitting method and

the proximal point algorithm for maximal monotone operators, Math. Program-

ming, Volume 55, (1992)

[23] E. Esser: Applications of Lagrangian-Based Alternating Direction Methods and

Connections to Split Bergman, (2009)

90



BIBLIOGRAPHY

[24] L. C. Evans, R. F. Gariepy: Measure theory and fine properties of functions.

CRC Press, Boca Raton, FL, 1992

[25] H. Federer:Geometric measure theory. Springer-Verlag New York Inc., New

York, (1969)

[26] R. Finn: Equilibrium Capillary Surfaces, Springer, (1986)

[27] R. Finn; Some properties of capillary surfaces, Milan J. Math., Volume 70,

1–23, (2002)

[28] H. Garcke, B. Nestler, B. Stoth: A multi-phase-field concept: numerical simula-

tions of moving phase boundaries and multiple junctions. SIAM J. Appl. Math.

60, 295–315, (1999)

[29] H. Hemmerich. The diffuse interface approach in Material Science. Thermody-

namic concepts and applications of phase-field models. Springer-Verlag Berlin

Heidelberg, (2003)

[30] D. Jamet, O. Lebaigue, N. Coutris and J.M. Delhaye: The second gradient

method for the direct numerical simulation of liquid-vapor flows with phase

change. J. Comp. Phys. 169, 624–651, (2001)

[31] T. Koishi, K. Yasuokac, S. Fujikawab, T. Ebisuzakid, X. Zenge: Coexistence

and transition between Cassie and Wenzel state on pillared hydrophobic surface.

Proc. Nat. Acad. Science U.S.A 106, 8435–8440, (2009)
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