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Introduction

In the last decades cosmologists have seen a substantial growth in the understand-
ing of the early stages and the evolution of the Universe. Major theoretical predic-
tions were either confirmed or ruled out by more and more precise observations,
thanks to modern technological progresses. This allowed the construction of a
parameterizable and measurable model, which during the years has been tightly
constrained by accurate datasets, leading to the establishment of a Cosmological
Concordance Model.

The entire picture is based upon four observational pillars: the Big Bang Nu-
cleosynthesis (BBN), the large scale structure, the accelerated expansion of the
Universe and Cosmic Microwave Background (CMB). Without committing our-
selves in providing an extensive review of these topics, letus briefly introduce
them.

The theory of BBN gives a detailed mathematical descriptionof the production
of the light elements (namely, deuterium, helium-3, helium-4, and lithium-7) in
a well defined epoch a few minutes after the Big Bang. Specifically, the theory
yields precise quantitative predictions for the mixture ofthese elements, that is,
the primordial abundances (Alpher, Bethe & Gamow, 1948). The current level
of agreement with observations, achieved by measurements of emission lines in
the galaxies, is by no means trivial or guaranteed, and represents an impressive
success of modern Cosmology: BBN extrapolates the contentsand conditions of
the present Universe back to times of about one second (Steigman, 2007).

The large scale structure is observed via redshift surveys of million of galaxies,
as the Sloan Digital Sky Survey (SDSS1) and the 2dF Galaxy Redshift Survey2.
These surveys allow to construct three dimensional maps of the Universe extending
up to hundreds of Mpc and, under the assumption that the luminous matter traces
the presence of dark matter, to constrain the spectrum of thefluctuations today,
that can be fruitfully compared to the primordial power spectrum, inferred through
the CMB. In the cold dark matter (CDM) scenario, where the latter is made by
collisionless particles with negligible kinetic energy with respect to their mass,
structure grows hierarchically, with small objects collapsing first and merging in a
continuous hierarchy to form more and more massive objects.The CDM theory

1http://www.sdss.org/dr6/
2http://www2.aao.gov.au/ TDFgg/
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makes no exact predictions about the nature of dark matter itself, which must be
looked for in specific models of the early Universe, or directly in modern particle
physics experiments.

In 1998, observations suggested that the expansion of the Universe is surpris-
ingly accelerating (Perlmutter et al., 1999; Riess, 1998).These measurements used
the Type Ia as standard candles, which are explosions of accreting carbon-oxygen
white dwarves in binary systems reaching the Chandraseker limit of approximately
1.4 solar masses. This breakthrough left cosmologists withmore open questions
then answers, since the nature of this acceleration is totally obscure and unex-
pected. Indeed, the most obvious explanation for this effect, a Cosmological Con-
stant coming from the energy density in vacuum, overestimates the measured value
of 123 orders of magnitude. The Cosmological Model still says nothing about the
fundamental physical origin of this “energy” that, according to the observations,
accounts for more then 2/3 of the all content of the Universe.

Last but not least, here it comes the main topic of this thesis:the CMB, the
relic radiation that comes from the early Universe. In the last 10 years, outstand-
ing technological improvements made it possible to measurethis signal with high
accuracy.

About 300.000 years after the Big Bang, as the Universe was cooling down,
the protons and the electrons started to combine to generateatoms, and the pho-
tons were able for the first time to decouple and free stream toward us. Since
this process was almost instantaneous, this cosmic radiation is a snapshot of the
Universe at those early times. The Friedmann-Robertson-Walker (FRW) metric,
i.e. the metric commonly used to describe the cosmological framework, naturally
leads to the existence at each time of a special scale, calledhorizon, that defines
the largest distance within causal contact is established,as a function of time. The
epoch at which a given cosmological scale is equal to the horizon is therefore spe-
cial, and referred to as thehorizon crossing. At the moment of decoupling, such
a distance subtended an angle that today is about one degree;thus, differences in
the CMB coming from greater angles are able to trace those cosmological pertur-
bations which were unaffected by causal processes, giving us directly a picture of
primordial perturbations. On the other hand, regions smaller than the horizon un-
derwent dynamical processes before decoupling, mainly resulting in oscillations
due to the opposite effect of gravitational infall and photon pressure. These acous-
tic oscillations are imprinted in the CMB and bring to us mostvaluable information
on the status and the composition of the early Universe.

Remarkably, the initial conditions and the subsequent dynamics give rise to
anisotropies as low as 10−5 on all scales. This results in a non-trivial simplification
of the treatment: metric fluctuations, as well as perturbations in the various com-
ponents, may be treated linearly. In addition the CMB decoupling occurs at about
T∼ 3000K, corresponding to an energy scale where physical processes are well
known, i.e. the electron-photon scattering may be analyzedin the Thomson limit.

Together with what we already achieved with the observations, theoretical pre-
dictions still have to be verified and tested, like the one which is the subject of
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this thesis and that we introduce now. The Thomson scattering allows a fraction
of the radiation to be linearly polarized; the CMB polarization field can be conve-
niently divided into two components: the gradient-like E modes and the curl-like
B modes. According to the linear theory of cosmological perturbations, the latter
can be activated by gravitational waves coming from the inflation, an epoch of ex-
ponential expansion that the Universe underwent just afterthe Big Bang, driven
by a negative-pressure vacuum energy density (Guth, 1981).The inflation magni-
fies the original quantum fluctuations to cosmic size, that become the seeds for the
growth of structure in the Universe. The gravitational waves produced by this pro-
cess survived until the decoupling. Then a detection of the Bmodes would be of
the most importance for Cosmology and for Physics in general: a strong prediction
of the inflation would be confirmed and, even more importantly, the existence of
the gravitational waves would be proved.

Hunting B modes is then one of the most exciting frontier in modern Cosmol-
ogy. Given the tiny level of the signal, its detection will unavoidably require that
two conditions are satisfied: the control of instrumental systematics and of the fore-
ground radiation from our own Galaxy. The present work triesto address the sec-
ond issue. The most advanced operating instrument, i.e. theWilkinson Microwave
Anisotropy Probe (WMAP3), a NASA satellite that has been observing the CMB
for 5 years, demonstrated that in the microwave band the signals emitted from our
own Galaxy may be comparable or higher than the expected CMB Bmode power
at all the angular scales and frequencies. In less than one year, another CMB satel-
lite, the ESA mission Planck4, doubling the covered frequency range and reaching
a sensitivity about ten times better than WMAP, will fly; together with the main
scientific outcome from the CMB observations, Planck will put stringent limit on
the level of B modes from primordial gravitational waves, and provide crucial in-
formation on the level and properties of the foreground Galactic emission limiting
our capability of detecting the signal. Moreover, the community of theorists and
instrumentalists which worked in these years for these missions is conceiving a
future CMB satellite aiming specifically at the detection ofB modes. As part of
this effort, a new interdisciplinary area of the CMB data analysis science is born
in recent years, concerning the application of algorithms developed in signal pro-
cessing in a CMB context, aiming at the separation of the background signal from
the foregrounds on the basis of multi-frequency data. On an instrumental side, a
relevant effort is being made for carrying out several sub-orbital experiments for
testing the new technologies for the detection of the signal, as well as applying the
new data analysis techniques mentioned above, targeting those regions of the sky
that are known to be less contaminated by the Galaxy.

This thesis contains the first steps in this framework. The ultimate goal of this
work, which extends well beyond the results exposed here, isthe assessment of the
minimum detectable level of B modes when the foregrounds aretaken into account,

3wmap.gsfc.nasa.gov
4www.rssd.esa.int/Planck



6 CONTENTS

applying the new data analysis techniques mentioned above to the incoming data.
Here is the outline of this thesis. In Chapter 1, I will introduce the current

cosmological model and review the theoretical aspects of the CMB anisotropies
and the present status of the observations. In Chapter 2, I will focus on the diffuse
emissions of our Galaxy in the microwaves, expected to be a serious contamination
for the CMB studies. The separation of these diffuse components and the CMB
cleaning will be the main topic of Chapter 3, where I will describe a few algorithms
I’ve worked on during my Phd . Finally, in Chapter 4, I will present a couple of
applications of these methods aimed at B mode recovery.



Chapter 1

Theory of CMB anisotropies

1.1 Introduction

Our current knowledge of the beginning of the Universe is mainly based upon the
successful theory of the Hot Big Bang. It states that our Universe began about
14 billion years ago as a hot, dense and very uniform sea of elementary particles,
mutually interacting and at thermal equilibrium.

After the quasi exponential inflationary expansion, baryonic matter formed
within the first second, while the nucleosynthesis lasted a few minutes as the Uni-
verse was expanding and cooling. The baryons were in this plasma status until
about 300,000 years after the Big Bang, when the Universe reached a tempera-
ture sufficiently cool to permit protons to capture free electrons andform atomic
hydrogen. This process, called recombination, lowered greatly the density of free
electrons and dropped the photon-plasma cross section by 3 orders of magnitude,
leading to the decoupling of matter and radiation, and making the Universe trans-
parent to light.

The Cosmic Background Radiation (CBR) released during thisera of decou-
pling has traveled almost unperturbed until today. We can observe the peak of this
black body emission in the microwave region, correspondingto a temperature of
2.73 K, about 1000 times smaller than the one at the recombination. This radiation
is then called Cosmic Microwave Background and brings us a snapshot of the Uni-
verse as it was 14 billion years ago. It was predicted by the Big Bang theory and
first discovered in 1964 (Penzias and Wilson, 1965).

The CMB is until now the best tool in our possess to probe the early Uni-
verse. Theories of structure formation predict small inhomogeneities in the matter
distribution at early times that later became galaxy and galaxy clusters trough grav-
itational collapse. These density inhomogeneities are imprinted in the CMB black
body as temperature anisotropies, detected for the first time by the COsmic Back-
ground Explorer (COBE) satellite on angular scales larger than 7o (Smoot et al.,
1992; Mather et al., 1992).

The importance of the CMB in modern Physics is enormous, as itis clearly

7
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confirmed by the the two Nobel prizes awarded in this researchfield to the works
cited above.

The next promise that cosmologists hope to be fulfilled comesfrom the po-
larized part of the CMB radiation. The CMB polarization anisotropy, unlike the
temperature, can discriminate between different kinds of perturbations, as we will
discuss in this Chapter. It has then the potential to reveal us the signature of pri-
mordial gravity waves and could show us the “smoking gun” of the Inflation (Zal-
darriaga, Seljak, 1997; Kamionkowski et al., 1997).

We will start this Chapter by introducing the cosmological framework in which
the model is defined. Then, we will describe the CMB phenomenology and dynam-
ics, taking advantage of the linear perturbations theory. This will naturally lead us
to the definition of the CMB power spectra. We will conclude with a short review
on the status of the CMB observations and planned experiments.

1.2 Cosmological framework

The starting point is the Cosmological Principle that states that on large spatial
scales, the Universe is homogeneous and isotropic. When applied, this principle
severely restricts the large variety of possible cosmological theories. The proper-
ties of homogeneity and isotropy assumed by the Cosmological Principle suggest
that Earth is not at a preferred place in the space and that at very large scales the
Universe is smooth (i.e. not fractal). A very strong supportto this principle comes
from the CMB itself, being isotropic to roughly one part in 100,000.

The casting of the following CMB anisotropy theory is based on the text book
by Dodelson (2003) as well as the work by Hu and White (1997).

1.2.1 The FRW metric

Homogeneity and isotropy leave essentially only two degrees of freedom to the
system. The first one is the scale factora(t), that fixes at each time the value of
physical lengths and determines the cosmological redshift, defined asz+1 = a0/a,
where the subscript 0 marks the present. The second one,K, is related to the global
space curvature, as an homogeneous metric can be more or lesscurved. Then, the
fundamental length element is:

ds2 = gµνdxµdxν = −dt2 + a(t)2
(

1

1− Kr2
dr2 + r2dθ2 + r2 sin2 θdφ2

)
, (1.0)

wherer, θ andφ are the usual spherical coordinates for radius, polar and azimuth
angle, respectively, andgµν is the metric tensor. In this expression the scale factor
a has been factored out of the spatial part. The spatial coordinates,r, θ andφ, are
then at rest with respect to the cosmological expansion and are called comoving
coordinates. Similarly we can introduce the conformal timeτ:

dτ =
dt

a(t)
. (1.0)
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Finally, the FRW metric may be easily written as:

gµν ≡ a2 ·



−1 0 0 0
0 (1− Kr2)−1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ


≡ a2γµν , (1.0)

so that the cosmic expansion can be completely factored out,defining the comoving
metricγµν. We will indicate the conformal time derivative with a dot ontop of the
quantity, while those with respect to the ordinary time are indicated with thet
subscript. It is also useful to define two different quantities describing the velocity
of the expansion, i.e.

H =
at

a
, H = ȧ

a
, (1.0)

named ordinary and conformal Hubble expansion rates, respectively.
As for the metric, also the stress energy tensor, that specifies the content of

spacetime in terms of physical entities, is simplified by theassumptions of homo-
geneity and isotropy. The relevant quantities are just the energy density,ρ, and the
pressurep.

Tν
µ ≡



−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


, (1.0)

where the minus to the energy density is due to the choice of our signature. The
stress energy tensor may also be written as

Tµν = (ρ + p)uµuν + pgµν , (1.0)

whereuµ represents the quadri-velocity of a fluid element with respect to a given
observer:

uµ =
dxµ

dτ
. (1.0)

The quadri-velocities are normalized asuµuµ = −1. In comoving coordinates,
where theua = 0, this condition implies:

uµ ≡
(
1
a
, 0, 0, 0

)
. (1.0)

The dynamics of the system is driven by:

Gµν = 8πGTµν , T;ν
µν = 0 (1.0)

respectively the Einstein and the conservation equations.Thanks to the assump-
tions of the FRW metric, they reduce to two differential equations only, with the
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conformal timeτ as independent variable; they rule the dynamics of the expansion
and the conservation of energy. They are the Friedmann equation:

H2 =
8πG

3
a2ρ − K , (1.0)

and the simplified conservation equation:

ρ̇ + 3H(ρ + p) = 0 . (1.0)

A further assumption is needed to solve these coupled equations, i.e. a relation
between pressure and energy density,p(ρ). For interesting cases, pressure is pro-
portional to the energy density:

p = wρ , (1.0)

wherew is the equation of state of the fluid.
Starting from the Friedmann equation (1.2.1), it is straightforward to define the

cosmological critical density

ρc =
3H2

8πG
, (1.0)

that is the density required to make the Universe spatially flat. The amount of
each components that make up the Universe is usually defined in terms of their
contribution to the critical density,Ωs = ρs/ρc, for each components. We will see
in the next Section how they are defined and what are the present day estimated
values for each of them.

1.2.2 The Cosmological Concordance Model

The number of parameters needed for describing a given modelvaries a bit ac-
cording to anyone’s taste and on how simple the considered model is supposed to
be. The Cosmological Concordance Model provides a minimum set of parameters
sufficient to describe the status of the observations up to date. These are:

h , Ωmh2 , Ωbh2 , ns , τ , σ8 , (1.0)

which we describe and define below. In the concordance model there is the under-
lying assumption that the Universe is flat (actually in perfect accordance with CMB
observations). Moreover, according to the inflation mechanism, there may be grav-
itational waves in the perturbation spectrum, and this is parameterized relatively to
the density perturbation. Therefore, we add two more parameters:

Ωtot , r , (1.0)

describing curvature and gravitational waves amplitude, respectively. Let’s now
take a quick look at these 8 parameters. We will provide theirbest fit values
(with 2σ errors), using the WMAP data (see Dunkley et al., 2008, and references
therein).
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- h

As introduced before, the so called Hubble constantH0 is the derivative of the Cos-
mological scale factor, measured today. Locally it provides the Hubble expansion
law, v = H0r and then is measured in units of kms−1Mpc−1. For practical conve-
nience it is sometimes defined ash = H0/100. The most recent estimation gives
h = 0.7190.026

0.027. Since the Hubble constant is a rate, its inverse defines a timescale,
that is more or less the age of the Universe (that actually depends also on other
parameters of the model).

- Ωmh2

It is the contribution given by the total mass density. Before the supernovae ob-
servations (Riess, 1998; Perlmutter et al., 1999) this parameter was thought to
be the largest among all the densities contributions. Now its best fit value is
Ωmh2 = 0.1326± 0.0063.

- Ωbh2

It defines the fraction of the matter that is accounted by baryons. In CMB obser-
vations, it influences the relative height of the acoustic peaks. Current value is
Ωbh2 = 0.02273± 0.00062.

- Ωtot

The overall curvature of the Universe depends on the sum of all the relative densi-
ties of all the components that make up it. It is defined asΩtot =

∑
Ωs. The CMB

played a crucial role in constrainingΩtot, since the position of the acoustic peaks
in the CMB strongly depends on its value. It is now measured tobe close to unity,
Ωtot = 1.02± 0.02.

- ns

Slope of the scalar power spectrum of the initial perturbations, defined as the vari-
ance of the fluctuation density in the Fourier spaces assuming the latter to be Gaus-
sian distributed,P(k) ∝ kns. Its current best fit isns = 0.963± 0.014

- τ

We know that the Universe reionized at some redshift higher than 6, probably due
to the earliest stars. The understanding of that period, known as the end of the Dark
Age, is an open issue in Cosmology and the CMB can help in the task, since the ex-
tra Thomson scattering, that occurred at that time, partially erased the anisotropies.
The parameter used to describe this effect is the optical depth, whose current value
is τ = 0.087± 0.017.
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- σ8

It is the rms mass fluctuation amplitude in spheres of size 8h−1 Mpc and measures
the normalization of the matter power spectrum. The currentestimation isσ8 =

0.796± 0.036.

- r

It is the ratio between gravitational waves and density perturbation amplitudes, ex-
pressed by means of their induced power on the CMB anisotropies at large angular
scales, as it will be discussed in the next sections.

1.2.3 Linear perturbations

The most important assumption that, for most of their evolution, perturbations
were in linear regime comes from the CMB itself, since the typical temperature
anisotropies are of the order of 10−5, with respect to the average temperature, over
the whole sky and up to very small scales. Then, the linear approximation should
be valid to describe cosmological perturbations on a large interval of time and
physical scales, before and after the CMB origin, breaking down only recently and
on scales smaller than those of galaxy clusters. In this Section we will briefly de-
scribe the cosmological perturbation theory, building thesetup for understanding
the physics of the CMB anisotropies, that will be treated later on in this Chapter.

Consider now the definition of the perturbed metric tensor:

ḡµν = gµν + δgµν = a2(γµν + hµν) , (1.0)

where the bar means background plus perturbations. Sinceγµν contains coefficients
of order 1 (in the flat FRW it coincides with the Minkowski metric), linearity is
satisfied if:

hµν ≪ 1, ∀ µ, ν. (1.0)

At the same time, the stress energy tensor is perturbed as

T̄ν
µ = Tν

µ + δT
ν
µ , (1.0)

and in this case linearity may be expressed in terms of the non-zero quantities in
the background tensor,Tµν:

δTν
µ ≪ ρ, p , ∀ µ, ν. (1.0)

Most importantly, a direct consequence of the linearity is that perturbations do
not affect the background dynamics. Therefore, any equation in cosmology splits
in two and (1.2.1) become:

Ḡµν = 8πGT̄µν ≡
{

Gµν = 8πGTµν
δGµν = 8πGδTµν

, (1.0)

T̄;ν
µν = 0 ≡

{
T;ν
µν = 0

δ(T;ν
µν) = 0

. (1.0)
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1.2.4 Decomposition and Fourier expansion

Perturbations can be classified according to their properties under spatial rotations
(Dodelson, 2003). Since we are dealing with a tensor theory,from a very general
point of view a function of the space may behave as a scalar, asa vector or as a
tensor. Now, while the physical nature of scalars is unique,each vector or tensor
function may be divided in full generality in different parts. Indeed vectors can be
divided in a scalar-type component, i.e. the part that is thederivative of a scalar,
and a vector-type divergenceless component, describing vortex-like perturbations.
Similarly, tensors can be decomposed into a scalar-type component (responsible
for the trace), a vector-type component and a tensor-type component that satisfies
the transverse and traceless conditions. The latter correspond to tensor fluctuation
modes in general relativity, i.e. gravitational waves.

Moreover these perturbations are conveniently defined in the Fourier space,
taking advantage of the fact that in linear theory any mode evolves independently
in that space. A gauge freedom allows us to choose in a family of frames that differ
among each other for coordinate change as small as the perturbations themselves.

In this work we adopt the Newtonian gauge, where the only relevant elements
areΨ andΦ, parameterizing the Fourier amplitudes of the generalizedscalar New-
tonian potentials, associated respectively toδg00, δgii , and the elementHT, associ-
ated to the gravitational waves expressed by the tensor-type component ofδgi j .
Since their evolution is suppressed by the expansion, we do not consider here
vector-type perturbations.

Similarly, the perturbations in the cosmological components are associated
with the fluctuations in the corresponding species of the stress energy tensor. For a
given speciesx, density fluctuationsδρx/ρx correspond to (δT0

0)x, peculiar veloc-
ities ~vx to the component (δT i

0)x, isotropic pressure perturbations to the diagonal
terms in (δT i

i )x, while viscosity, or shear, to the off diagonal ones.

1.3 The Cosmic Microwave Background

1.3.1 Main phenomenology

The CMB is made by photons that carry information of an epoch in which they
were interacting electromagnetically and gravitationally with the other species.
During that epoch, the Thomson cross sectionσT between electrons and photons
was large enough to keep the latter in thermal equilibrium with the rest of the
fluid (tight coupling regime). As the Universe expanded enough and the tempera-
ture dropped sufficiently, the electrons started to recombine with nucleons,forming
hydrogen and helium atoms and causing the cross section between electrons and
photons to rapidly decay. The photons stayed in thermal equilibrium until the mean
free path,λγ = 1/(neσT), got larger than the horizon:

λγ > H−1 . (1.0)
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This epoch is calleddecoupling. The physical quantities in the relation above con-
spire to set this epoch about 300, 000 years after the Big Bang, corresponding to a
redshift of about 1+ z ≃ 1100. To be noted that the decoupling process was not
instantaneous, and took an interval of about∆z≃ 100.

Soon after that time, CMB photons may be thought to be free streaming in
any direction. Therefore, they represent a sort of snapshotof their distribution at
last scattering. They bring to us a picture of the anisotropies, as they were in the
Universe at the last scattering surface (LSS).

We may expect to see two classes of records in this image. First, the intensity
coming from a given direction should be recording the energyof photons and the
metric perturbations at the LSS. Second, since the decoupling was not instanta-
neous, photons in general had time to generate an anisotropic angular distribution
around the last scattering electrons, that were then able tolinearly polarize the
light through the Thomson scattering, bringing to us extra information in terms
of cosmological perturbations. We describe these processes more in detail in the
following.

1.3.2 Linearly perturbed black body

Photons are described as a fluctuating perfect relativisticfluid at thermal equilib-
rium. At the temperatureT, the number densitydnγ of photons with energyE and
momentum~p is that of a black body obeying the Bose-Einstein distribution F with
gγ = 2 degrees of freedom:

dnγ = F(E,T)d3p =
gγ

exp(E/kBT) − 1
d3p . (1.0)

The perturbed distribution of the black body can be obtainedsimply by replac-
ing E with E + δE:

gγ

exp
(

E+δE
kBT

)
− 1
=

gγ

exp
[

E
kBT (1− Θ)

]
− 1

, (1.0)

whereΘ = −δE/E may be interpreted as the first order correction to the tempera-
tureT which would lead to an equivalent perturbation to the black body spectrum
if E was unperturbed. As we will see through this Chapter,Θ is the key quantity to
characterize the CMB anisotropies. At first order, one can write:

δF = −Θ E
kBT

d
d(E/kBT)

[
gγ

exp(E/kBT) − 1

]
=

= Θ
E

kBT

gγ exp(E/kBT)

[exp(E/kBT) − 1]2
. (1.0)

Θ may depend on a generic spacetime point (τ, ~x), as well as on the photon mo-
mentapµ. Defining n̂ as ~p = En̂, we can writeΘ = Θ(τ, ~x, n̂,E) . On the other
hand, we do not allowΘ to depend onE, as that would represent a distortion of the
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black body spectrum and the breaking of thermal equilibrium. Within this assump-
tion, the perturbed spectrum is still black blackbody for any spacetime position and
photon propagation direction,Θ = Θ(τ, ~x, n̂).

1.3.3 Polarization

An homogeneous and isotropic black body distribution is unpolarized by defini-
tion, but if the black body temperature varies with positionand photon propagation
direction, this is not true anymore. Indeed, ifΘ is measured on a given direction ˆn,
one may project the intensity onto two perpendicular axes orthogonal to ˆn forming
thepolarization plane. We can define:

Q(τ, ~x, n̂) = Θ‖ − Θ⊢ , U(τ, ~x) = Θ∦ − Θ0 , (1.0)

which are the Stokes parameters describing linear polarization, where the symbols
∦ and0 represent axes rotated by 45 degrees with respect to the onesdefiningQ.
The last Stokes parameter,V, would be needed to describe circularly polarized
radiation, but since the Thomson scattering produces linear polarization only, we
will not consider it anymore. The polarization behaves as a rank 2 tensor.

It is possible to show thatQ andU represent the amplitude of the decomposi-
tion of the polarization tensor into the Pauli matricesσ1 andσ3:

P = Qσ3 + Uσ1 =

(
Q U
U −Q

)
. (1.0)

Under a counterclockwise rotation of axes around ˆn through an angleψ, Q and
U exchange their roles; on the other hand, it is possible to show that the quantity
Q± iU transforms as

Q± iU → e∓2iψ(Q± iU ) , (1.0)

making manifest the spin 2 nature of the polarization field. Defining the matrices

M± =
1
2

(σ3 ∓ iσ1) , (1.0)

one also obtains

P = (Q+ iU )M+ + (Q− iU )M− . (1.0)

The polarization tensor is often described through its amplitude
√

Q2 + U2 and a
direction defined as:

2φ = arctan
U
Q
. (1.0)

If Q andU rotate of a given angle,φ remains unchanged, representing thepolar-
ization directionon the polarization plane.
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1.3.4 Harmonic expansion

The dependence ofΘ andQ± iU on the arguments~x andn̂ makes these quantities
suitably expandable in Fourier eigenfunctions and spherical harmonics. Concern-
ing the latter, in this Section we perform two different kind of angular expansions,
made in two different frames.

The first case is the natural expansion, made in the laboratory frame, corre-
sponding to theθ andφ directions defined in the previous Section. The second
choice is less intuitive, but extremely useful to deal with the CMB dynamics, as we
will see later. This is thêk−frame expansion, different for each Fourier wavevector
and having the direction of~k coincident with the polar axis. Let us see these two
cases separately.

Lab-frame

Spacetime dependence and harmonic expansion are completely independent. There-
fore, for any given positionx, the angular expansion ofΘ andQ± iU is

Θ(τ, ~x, n̂) =
∑

lm

Θlm(τ, ~x)Ylm(n̂) ,

(Q± iU )(τ, ~x, n̂)M± =
∑

lm

(Q± iU )lm(τ, ~x)±2Ylm(n̂)M± , (1.0)

where we notice thatQ ± iU has been expanded intensorspherical harmonics,
indicated as±2Ylm(n̂), being the components of a rank 2 tensor. This is the harmonic
expansion in the lab-frame, defined by theθ andφ directions.

The expansion coefficients in (1.3.4) fully describe the CMB observables; how-
ever, for polarization, two more quantities can be defined. The two combinations:

YE
lmM E =

1
2

(2YlmM+ + 2YlmM−) ,

YB
lmM B =

1
2

(2YlmM+ − 2YlmM−) (1.0)

turn out to be extremely useful because of their special connection with the cos-
mological perturbations. TheE and B notation has been chosen because of the
parity relations between these two quantities in analogy with the electric and the
magnetic fields. It can be showed that they represent the gradient and the curl of
a scalar and vector potential, respectively. In Fig.1.1 we sketch typicalE and B
patterns, generated by different contributions of Q and U. It is easy to see that, for
parity inversion ˆn = −n̂, wheren̂ is the direction perpendicular to the figure, only
B modes are changed.

Using this new definitions, the polarization tensor can be written:

P =
∑

lm

(ElmYE
lmM E + BlmYB

lmM B) , (1.0)
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Figure 1.1:Typical patterns forE andB modes. From Zaldarriaga, Seljak (1997).

where the new coefficient are:

Elm =
1
2

[(Q+ iU )lm + (Q− iU )lm] ,

Blm =
1
2i

[(Q+ iU )lm − (Q− iU )lm] . (1.0)

The great advantage on using these quantities, as we will seelater, is that theE
modes are excited by all kinds of cosmological perturbations, while theB modes
are activated only by the non-scalar ones.

It is now straightforward to introduce the angular power spectra of CMB anisotropies.
At any spacetime locationx, they are defined as:

C̃ΘΘl (τ, ~x) =
1

2l + 1

∑

m

|Θlm(τ, ~x)|2 ,

C̃ΘE
l (τ, ~x) =

1
2l + 1

∑

m

Θlm(τ, ~x)E∗lm(τ, ~x) ,

C̃ΘB
l (τ, ~x) =

1
2l + 1

∑

m

Θlm(τ, ~x)B∗lm(τ, ~x) ,

C̃EE
l =

1
2l + 1

∑

m

|Elm(τ, ~x)|2 ,
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C̃BB
l =

1
2l + 1

∑

m

|Blm(τ, ~x)|2 ,

C̃EB
l =

1
2l + 1

∑

m

Elm(τ, ~x)B∗lm(τ, ~x) . (1.0)

Although this represents a lossy compression of the CMB observables, (the phases
of the alm coefficients are definitely lost), it is still convenient from the point of
view of a statistical description. Moreover, if theaΘlm coefficients are Gaussian
variables with known variance, no physical information is coded into the phases of
CMB anisotropies, so the compression (1.3.4) is lossless:

< ΘlmΘl′m′ >= CΘΘl δll ′δmm′ , < ΘlmEl′m′ >= CΘE
l δll ′δmm′ ,

< ElmE∗l′m′ >= CEE
l δll ′δmm′ , < BlmBl′m′ >= CBB

l δll ′δmm′ ,

< ΘlmBl′m′ >= 0 , < ElmB∗l′m′ >= 0 . (1.0)

The vanishing spectra above are due to the difference in parity relations. It is
important to distinguish between the angular power spectrain (1.3.4), defined on
a given realization of the coefficients, and those in (1.3.4), which are supposed to
describe the averaged variance of the anisotropy power overthe whole Gaussian
statistics.

k̂−frame

We now want to perform the harmonic expansion of the temperature fluctuations
Θ(τ, ~x, n̂) in the k̂−frame, where the polar direction is parallel to~k. This expansion
has to be done after we moved into the Fourier space. Indeed, the harmonic modes
for Θ are given by:

Glm(~x,~k, n̂) = (−i)lY(~k, ~x)

√
4π

2l + 1
Ylm(n̂k̂) , (1.0)

whereYlm(n̂k̂) are the usual spherical harmonics, the subscript indicates thatn̂ is ex-
pressed in thêk−frame, and the constants in front are purely conventional;Y(~k, ~x)
represents the Fourier expansion mode, corresponding to plane waves for flat Uni-
verses.The harmonic coefficients ofΘ along the basis (1.3.4) are given by:

Θlm(τ,~k) =
∫

d3x
∫

dΩk̂
n̂Θ(τ, ~x, n̂)Glm(~k, ~x, n̂) , (1.0)

and the full expansion ofΘ is

Θ(τ, ~x, n̂) =
∫ ∑

lm

Θlm(τ,~k)Glm(~x,~k, n̂)d3k . (1.0)
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For polarization, the expansion is analogous and proceeds conceptually as out-
lined in the previous Section for theE andB modes .The polarization tensor in the
k̂−frame is given by:

P(τ, ~x, n̂) = (Q+ iU )(τ, ~x, n̂)M+ + (Q− iU )(τ, ~x, n̂)M− =

=

∫
d3k

∑

lm

[
Elm(τ,~k)GE

lm(n̂k̂)M
~k
E + Blm(τ,~k)GB

lm(n̂k̂)M
~k
B

]
, (1.0)

where all arguments have been made explicit.
The use of thêk−frame is convenient because, as we will see, cosmological

perturbations only activate a few modes in it. At the end of the treatment we will
make an explicit connection between thek̂−frame and the more intuitive lab-frame.

1.4 CMB dynamics

The CMB distribution is affected by two processes, gravity and Thomson scat-
tering. Therefore, by propagating the total time derivative in all arguments, the
Boltzmann equation for the CMB may be written as:

dF̄
dτ
=
∂F̄
∂τ
+
∂F̄
∂xi

dxi

dτ
+
∂F̄
∂E

dĒ
dτ
+
∂F̄
∂ni

dni

dτ
= Ḡ+ C̄ , (1.0)

where the two terms on the right hand side represent the gravitational and Thomson
scattering, respectively. The first simplification concerns the first term: since the
distribution does not depend explicitely on time,∂F̄/∂τ is null.

At the perturbation level, Eq.(1.4) determines the evolution ofΘ(τ, ~x, n̂). In a
flat FRW background the last term in (1.4) contributes only tosecond order and
we neglect it. Moreover, the termdxi/dτ may be directly related to the photon
propagation direction,ni , dxi/dτ = (dxi/dη) · (dη/dτ) = pi/p0 = ni . Therefore,
exploiting the perturbed expression (1.3.2) the perturbedBoltzmann equation may
be written as:

Θ̇ + n̂ · ~∇Θ = δG+ δCΘ , (1.0)

where the gravitational and Thomson scattering terms will now be defined.

Gravitational scattering

The time derivative ofĒ in (1.4) is determined by the the geodesics propagation
of photons in a linearly perturbed FRW metric. As we have introduced before, the
latter may be written as

ḡµν = a2(γµν + hµν) , (1.0)

wherehµν represents the perturbation.
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The complete computation of the gravitational term can be found in Sachs
& Wolfe (1967). We report here the final result for arbitraryhµν, useful for the
following discussion:

−dΘ
dτ
=

d(δE/E)
dτ

= −1
2

hi j,0nin j +
1
2

h00,in
i − h0i,0ni . (1.0)

These relations determine theδG term in (1.4).

Thomson scattering

The CMB temperature today isT ≃ 3K which corresponds to∼ 1 eV at decou-
pling. The most relevant interaction for photons at these energies is Compton scat-
tering onto non-relativistic electrons, indicated by the following relation:

e−(qµ) + γ(pµ)→ e−(qµ′) + γ(pµ′) , (1.0)

whereqµ, pµ, qµ′, pµ′ are the electron and photon incoming and outcoming quadri-
momenta, respectively. We are interested in the change in the photon distribution
F̄ from Compton scattering.

We don’t write explicitely the computation here and just point the reader to Hu
and White (1997). The final result for the collision term fromCompton scattering
is:

δCΘ = aneσTE
∂d
∂E

(Θ − Θ0 − n̂ · ~ve) , (1.0)

where~v represents the peculiar velocity of electrons, and we defined the differential
optical depth:

ϑ̇ = aneσT . (1.0)

Eq.(1.4) represents the Thomson scattering term in (1.4). Analogous terms, which
we do not write here explicitely, drive the evolution of theQ± iU terms, character-
izing the linear polarization of CMB photons.

1.4.1 The Boltzmann equation in the harmonic domain

We now expand the perturbed Boltzmann equation in sphericalharmonics in the
k̂−frame. This will lead us to important conclusions.

The first thing to notice is that the gradient term ˆn · ~∇ becomes a dipole term
given by

in̂ · ~k = i

√
4π
3

kY0
1 . (1.0)

The l = 1, m = 0 spherical harmonic function above multiplies the coefficients
of the k̂−frame expansion forΘ andP in the expansions (1.3.4) and (1.3.4), cou-
pling different angular terms between each other. This is actually theterm which
describes thefree streaming, i.e. the projections of local anisotropies on larger
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and larger angular scales as time goes. In the harmonic expression for the Boltz-
mann equation this means that the power is transferred dynamically from l to l + 1
(this can be seen easily applying the Clebsh-Gordan decomposition to the prod-
uct of (1.4.1) with the spherical harmonics inΘ), i.e. during the free streaming the
anisotropy power at higher and higher multipoles is populated. As we will see later,
the anisotropy pattern we see today in the sky on all angular scales is essentially
given by the monopole and dipole of the radiation field at decoupling. Similarly,
one can see that, in thêk−frame, the scalar metric perturbations activatem = 0
terms only inΘm

l andEm
l , while tensor perturbations excite inΘm

l , Em
l andBm

l the
m= ±2 modes only
The expansion of the Boltzmann equation proceeds straightforwardly with spheri-
cal harmonic algebra, becoming an infinite set of evolution equations for the har-
monic multipoles inΘ andQ± iU . Its expression forΘm

l is:

Θ̇m
l + ϑ̇Θ

m
l − k

(
0κ

m
l

2l − 1
Θm

l−1 −
0κ

m
l+1

2l + 3
Θm

l+1

)
= Sm

l , (1.0)

wheresκ
m
l+1 =

√
(l2 −m2)(l2 − s2)/l2. In this relation, the second term on the left

hand side represents the friction due to Thomson scattering, causing a damping of
anisotropies because of the scattering itself, while the third one is the free stream-
ing; the source termSm

l collects all the contribution from the metric perturbations
and the remaining ones from Thomson scattering. Let us writethem explicitely:

S0
0 = ϑ̇Θ

0
0 − Φ̇ , S0

1 = ϑ̇v0
b + kΨ , S0

2 = ϑ̇P0 , (1.0)

S±1
1 = ϑ̇v±1

b , S±1
2 = ϑ̇P±1 (1.0)

S±2
2 = ϑ̇P±2 − Ḣ±2

T , (1.0)

where:

Pm = Θm
2

1
10
−
√

6
10

Em
2 . (1.0)

An analogous computation gives the evolution equations fortheE andBmodes:

Ėm
l + ϑ̇Em

l − k

(
2κ

m
l

2l − 1
Em

l−1 −
2m

l(l + 1)
Bm

l −
2κ

m
l+1

2l + 3
Em

l+1

)
=

= −ϑ̇
√

6Pmδl2 , (1.0)

Ḃm
l + ϑ̇Bm

l − k

(
2κ

m
l

2l − 1
Bm

l−1 +
2m

l(l + 1)
Em

l −
2κ

m
l+1

2l + 3
Bm

l+1

)
= 0 . (1.0)

Several interesting features may be noticed here. First, itis evident how theB
modes may exist only for non-scalar perturbations: the anisotropy power activates
B only if m , 0 in Eq.(1.4.1), since the right hand side is null. This is nottrue for
E modes. Second, the free streaming mixesE andB dynamically for each given
pair of l andm values, as it is represented by the presence ofBm

l in (1.4.1) and
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Em
l in (1.4.1). Third, the power transfer from total intensity to polarization and

back is represented by thePm term defined in (1.4.1) and shows that the polariza-
tion perturbations are activated by the quadrupole term. Aswe shall see later, the
anisotropy power is sourced by the metric perturbations as well as the monopole
and dipole in theΘ function; by free streaming, the power is transferred to the
quadrupole and the higher moments, activating the polarization and projecting the
whole anisotropy spectrum at higher and higher multipoles.

1.4.2 Acoustic oscillations and large scale power

The integral solution to the Boltzmann equation is easily achieved in thêk−frame
(Hu and White, 1997):

Θlm(τ0,~k) = (2l + 1)
∫ τ0

0
dτeT−T0

∑

l′
Sl′m(τ,~k) j l

′m
l [k(τ0 − τ)] , (1.0)

where

T0 − T =
∫ τ0

τ

ϑ̇dτ′ , (1.0)

represents the optical depth for Compton scattering between the epoch correspond-
ing to τ and the present. Similar solutions are found for E and B modes.

This solution fully accounts for the relevant CMB anisotropy phenomenology.
The integral over the conformal time may be seen as a line of sight weighting of
the different contributions. More in detail, let us consider scalar-type perturbations.
Plugging into Eq.(1.4.2) the expressions for the sources ofthe perturbations in
Eq.(1.4.1), one obtains:

Θl0(τ0,~k)
2l + 1

=

∫ τ0

0
dτeT−T0{[ϑ̇Θ00(τ,~k) + ϑ̇Ψ(τ,~k) + Ψ̇(τ,~k) − Φ̇(τ,~k)]·

· j l[k(τ0 − τ)] + ϑ̇v0
b(τ,~k) j10

l [k(τ0 − τ)] + ϑ̇P0(τ,~k) j20
l [k(τ0 − τ)]} . (1.0)

It can be shown that the terms proportional to the combination ϑ̇eT−T0 selects con-
tributions at the last scattering only, since that is the product of ϑ̇, a sort of step
function with is non-zero at decoupling and earlier, witheT−T0, that is one up to
decoupling and then exponentially suppressed. The termj20

l is a combination of
the Bessel functions and their derivatives (Hu and White, 1997), that are sharply
peaked at multipoles,l ≃ k(τ0 − τ). The product betweenj20

l andϑ̇eT−T0 creates a
one to one link betweenl andk, l ≃ k(τ0 − τdec). This relates the particular scalek
to the angle at which it is probed, that simply corresponds tothe one subtended at
last scattering:

θ ≃ π

l
≃ k−1

τ0 − τdec
. (1.0)

For scalar-type fluctuations, the effects which are picked up at decoupling are
four. The first one is the monopole of CMB anisotropies,Θ00, that represents the
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contribution from the intrinsic photon density fluctuations at last scattering. The
second one is the gravitational potentialΨ, known as Sachs-Wolfe effect, repre-
senting the contribution from the metric fluctuations at last scattering, simply due
to the redshift or blueshift which photons undergo coming out of a gravitational po-
tential well or hill, respectively. The third one is a Doppler shift, due to the electron
peculiar velocityv0

b. Finally the fourth one is a combination of the total intensity

and polarization quadrupoles,P0 = (Θ20 −
√

6E20)/10, related to the anisotropic
character of the Thomson scattering.

A fifth term is represented by the time derivatives of the gravitational potentials,
Ψ̇ − Φ̇. Along the line of sight, this is multiplied by the quantityeT−T0, which is
essentially equal to 1 from decoupling to the present. This means thatΨ̇ − Φ̇ is
integrated along the whole line of sight of CMB photons and takes into account the
variation of the gravitational fields experienced by the photon traveling to us. It is
known as Integrated Sachs-Wolfe (ISW) effect.

As we stated above, integral solution exists also for polarization. It may be
shown that the latter contains only the first kind of contributions, i.e. the one which
comes from last scattering, as polarization is generated bythe local quadrupole in
Θ at decoupling.

Tight coupling and acoustic oscillations

Most of the phenomenology of the CMB dynamics inΘ occurs because of the
competition between gravitational infall and photon pressure. This can be easily
seen in the limit of infinitely strong coupling between photons and baryons (tight
coupling). In this regime, the hierarchical equation system (1.4.1) reduces to two
equations forΘ0

0 andΘ0
1, which correspond to the baryon-photon fluid density and

peculiar velocity perturbations, respectively (Hu and White, 1997). The equation
for Θ0

0 is simply:

Θ̈0
0 +

k2

3
Θ0

0 = −
k2

3
Ψ . (1.0)

It can be shown thatΨ is slowly varying when sub-horizon angular scales are con-
sidered. Therefore, the solution is made by a superpositionof cosine and sine
modes, with offset given byΨ. This setup corresponds precisely to acoustic oscil-
lations activated by gravity. Although in this simple example cosmological quanti-
ties remain rather hidden, these oscillations markedly depend on the various abun-
dances, density and velocity perturbations, as well as the kind of primordial fluctu-
ations inΨ, giving us important insights on the physical conditions atthose times,
as we will see later.

1.5 The CMB anisotropy angular power spectrum

In this Section, after introducing the primordial power spectrum of the perturba-
tions, we will focus on the CMB power spectra, expliciting the link between the
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k̂−frame and thelab−frame. We will then give a phenomenological description
of the different features that the power spectra show, both in total intensity and
polarization.

1.5.1 Primordial perturbation spectra

As we have seen the Boltzmann equation, Eq.(1.4.1), drives the evolution of the
photons fluid. The perturbations are activated by the sourceterm on the right hand
side. They depend on the gravity termsΨ, Φ and HT , defined in Sec.1.2.4, the
latter term being the amplitude of the gravitational waves.

The inflation excites all the metric components, but, while the vector contribu-
tions are washed away by the expansion, scalar and tensor components keep being
relevant. Historically, cosmological perturbations havebeen classified according to
two distinct families of initial conditions. In the iso-curvature scheme, the super-
horizon metric perturbations are arranged in order to nullify the linear perturbations
to the curvature. On the other hand the adiabatic (or iso-entropic) perturbations do
possess large scale curvature fluctuations and the different species are arranged
together as dictated by thermal equilibrium. In the inflationary paradigm, where
perturbations were born inside the horizon, thermalized, and stretched outside by
the expansion, a negligible or null contribution from iso-curvature perturbations is
predicted. Therefore, only adiabatic perturbation will beconsidered in this work.

In addition, assuming Gaussianity, the density perturbations are characterized
by the following relation:

< δkδk′ >= P(k)δ(~k − ~k′) , (1.0)

whereP(k) is the power spectrum and completely characterizes the fluctuations. It
may be shown that the request of having the same amount of logarithmic power
(i.e. k3P(k)) on all scales at the horizon crossing implies thatP(τ, k) ∝ k (Harrison-
Zel’dovich spectrum).

Deviations from scale invariance are parameterized through the introduction of
the scalar spectral index for perturbations,ns, such that

P(τ, k) ∝ kns , (1.0)

wherens = 1 reduces to the pure scale invariance.
The power spectrum of gravitational waves is also characterized by Gaussianity

and defined similarly:

< HT(~k)HT(~k′) >= PT(k)δ(~k − ~k′) . (1.0)

PT(k) is also a power law in most models of inflation, characterized by an ampli-
tude r and a spectral indexnt. In the simplest model, where the inflation energy
density is represented by a single scalar field with a definitemass,r andnT are
related by:

nt = r/6.8 . (1.0)
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Measuring these parameters is equivalent to constraining the inflationary mecha-
nism.

1.5.2 Total intensity, E and B mode angular power spectra

Now that we have the solution for the Boltzmann equation we can compute the
Cl of the CMB. The last step to be made is the connection between an observed
quantity in thelab−frame with the one evaluated in thek̂−frame. For the angular
expansion coefficients of the temperature anisotropy it is (Hu and White, 1997):

Cl =
2
π

∫
k2dk|Θl(τ, k)|2 . (1.0)

In Fig.1.2 we show the theoretical CMB power spectra for total intensity and po-
larization, according to the current Cosmological Concordance Model.

Let us start with the TT power spectrum (black line). At largescales (ℓ < 100)
the spectrum is almost flat because the angular scales correspond to wavelengths
which were outside the horizon at decoupling, reflecting scale invariance. At lower
multipoles, the power spectrum grows slightly because of the Integrated Sachs-
Wolfe effect, that enhances fluctuations at large scales, but rapidlydecays as con-
tributions at smaller scales tend to average out.

As the perturbations enter the horizon in the tight couplingregime, they start
to oscillate as described before. The position of the peaks correspond either to
maximum compression or maximum rarefaction in the fluid. Thephase, the height
and the relative amplitudes of the peaks of theseacoustic oscillationsin the CMB
power spectrum are most important tools to infer many parameters in the model.
Finally the damping tail of the spectrum is due to the loss of coherence in the
anisotropies because of the finite width of the LSS: small perturbations are washed
away as the different photons decoupled in different regions within the LSS.

For what concerns the EE power spectrum (red line) the first feature to note
is that the acoustic oscillations are in counterphase with respect to TT. Indeed,
in the tight coupling regime, at the time in which the acoustic oscillations take
place, it may be shown that the quadrupole is proportional tothe dipole of the local
CMB anisotropy distribution,Θ1, and that the latter is essentially the velocity of
the photon baryon fluid. The maximum of the velocity is obviously reached in
the middle of an oscillation, between compression and rarefaction, i.e. when the
temperature power spectrum is in a well (to be noted here thatΘ1 is proportional
to the derivative ofΘ0). Another feature is the bump atℓ < 10. It is due to
reionization: the photons, in their travel to us, interacted with the local reionized
medium in the Universe. With a mechanism analogous to the oneon the LSS, the
quadrupole of the photon radiation scatters with free electrons and power is then
generated on large scales (corresponding to the horizon at that time). Finally, the
TE power spectrum (blue line) expresses the high level of correlation between total
intensity and polarization. This reflects the fact that polarization is mostly due to
the temperature anisotropies.
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The BB power spectrum (green line) is actually the collage ofthree different
physical processes. First of all it shows the same bump at lowmultipoles as the EE
power spectrum. Second, there is a peak atl ∼ 100. As we know, at the decoupling
the quadrupole contains the term due to the gravitational waves,HT , that is almost
monochromatic inℓ, i.e it selects multipoles that correspond to perturbations that
were entering the horizon at the decoupling. Indeed, for scales larger then the hori-
zon no polarization is expected since super-horizon perturbations cannot interact
by definition, while, at smaller scales, once the perturbations entered the horizon
they are rapidly washed away, because they are massless and do not experience
any pressure. This explains the rising shape of the spectrumup to ℓ ∼ 100 that
is quickly damped at larger multipoles. The rise we actuallysee in the plot for
ℓ > 100 is the contribution of a third effect: the gravitational lensing. Indeed,
photons traveling to us are perturbed by local gravitational fields that twist the po-
larization patterns of the CMB. Reminding Fig.1.1, it is easy to understand that
even a small change in the patterns causes a mixing between E and B modes. Since
the former are much larger then the latter, the contamination in the BB power spec-
trum is expected to be high. The power at multipoles around 1000 is then due to
power coming from the E modes, as the evident correlation between the two lines
demonstrates. The gravitational lensing is a valuable toolto map the matter in the
Universe and probe structure formation and dark energy, as the cross section of the
lensing is exactly half a way between the LSS and us, at aboutz ∼ 1 (Lewis &
Challinor, 2005; Acquaviva et al., 2006).

1.6 Status of CMB data and future expectations

Since its discovery by Penzias and Wilson in 1965, the CMB hasbeen the target
of many experiments. The first one to find evidence for the CMB anisotropies was
the COsmic Background Explorer (COBE) satellite that observed the CMB on all
the sky on angular scales larger than 7o (Smoot et al., 1992).

While another satellite mission was being prepared, many sub-orbital experi-
ments measured the CMB radiation on limited portions of the sky. Among these
we quote here BOOMERANG (de Bernardis et al., 2000) and MAXIMA (Hanany
et al., 2000) who were the first to detect the acoustic peaks and to infer the flat-
ness of the Universe, while the first experiment to find evidence for the polarized
E modes was DASI (Kovac et al., 2002).

A second generation satellite, WMAP, was launched in 2001 and successfully
arrived to the fifth year of observations. WMAP was able to observe the whole sky
at 5 different frequencies (from 23 up to 94 GHz) with an angular resolution about
10 times better than COBE (see Tab.1.1 for more details). The5-year release of
the data is currently the best available all-sky measure of the CMB, both in total in-
tensity and polarization. In Fig.1.3, we report the currentstatus of the observations
for what concern the total intensity and E mode power spectra, compared with the
best-fit theoretical model (red line). Together with this, it is worth quoting the work
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Figure 1.2:Theoretical CMB power spectra for theλCDM model described in this Chap-
ter: TT (black line), TE (blue line), EE (red line) and BB (green line). Values for the
parameters are the current best-fit to the data. The tensor toscalar ratio isr = 0.1.
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by Reichardt et al. (2008), who saw evidence for weak gravitational lensing of the
CMB at more than 3σ significance, by comparing the likelihood for the best fit of
lensed and unlensed models to the ACBAR+WMAP 5-year data.

Currently, many CMB experiments are being prepared and planned. Let us see
into details some of them.

1.6.1 Planck

The Planck satellite is a mission of the European Space Agency aimed to provide
a measure of the microwave sky with an unprecedented sensitivity in a very broad
frequency band, both in total intensity and polarization. The launch is supposed to
be at the beginning of 2009. Once the satellite will have reached the observation
point, Planck will start a 14 months survey of the all sky, using the two instruments
on board: the Low Frequency Instrument (LFI), that uses radiometers in the range
30-70 GHz, and the High Frequency Instrument (HFI), that uses bolometers in the
range 100-857 GHz.

The Planck mission has many different objectives. The first, most obvious
one is to provide an all-sky high sensitivity CMB map, both intotal intensity and
polarization, with an angular resolution down to 5 arc-minutes and sensitivity of
∼ 10µK. This will allow to tighten the constraints on the most important cosmo-
logical parameters, as well as investigate open problems such as discriminating
between different inflation models, the nature of dark energy and dark matter. Fi-
nally it will set stringent upper limits on the presence of gravitational B modes.

Beside these important aims, Planck will also provide astrophysical informa-
tions on the Galactic and extra-galactic emissions, enormously expanding our knowl-
edges on the physics of these processes. As we will see later,this is extremely
important for the study of the CMB itself.

In Fig.1.4 and 1.5, we report the comparison of the expected Planck perfor-
mances with respect to COBE and WMAP. Compare the latter of these plots with
the one showing the current status of the observations for the power spectrum es-
timation in Fig.1.3. Planck promises to be a big leap forwardin the knowledge of
the CMB.

No. channels Frequency coverage Angular resolution Sensitivity (mK
√

s)
WMAP 5 23-94 GHz (up to) 15 arc-min (up to) 0.8

Planck LFI 3 30-70 GHz (up to) 14 arc-min (up to) 0.17
Planck HFI 6 100-853 GHz (up to) 5 arc-min (up to) 0.05

EBEX 3 150-420 GHz (up to) 8 arc-min (up to) 0.01

Table 1.1:Comparison between the nominal performances of WMAP, Planck (LFI+HFI)
and EBEX.
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Figure 1.3: Current status of the observations of the total intensity and E mode power
spectra. The solid red line is the best-fit theoretical model. From Nolta et al. (2008).
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Figure 1.4:Comparison between the expected resolution of Planck and the ones achieved
by COBE-DMR (upper panel) and WMAP (lower panel).

Figure 1.5:Reconstruction of a realization of the CMB power spectrum, for theΛCDM
model (red line), by WMAP on the left and Planck on the right.
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1.6.2 Sub-orbital B mode probes

The cosmological B modes are the holy grail of the forthcoming CMB observa-
tions. The faintness of the curl component and the presence of diffuse emission
from our own Galaxy (that will be the central topic of the nextChapter) make the
detection of this signal extremely difficult in an all-sky survey. Sub-orbital exper-
iments are being planned1 to deeply observe small, clean patches of the sky, to
achieve at the same time two important results: a high signalto noise level and a
low contaminated CMB map.

Among these experiments we cite here: Spider2, the Polarization of Back-
ground Radiation (PolarBear3), Clover4 and the E and B EXperiment (EBEX5).
Since I’m a collaborator of the last one, I will introduce it briefly. It is a NASA
funded balloon borne instrument optimized for the measurement of the linearly po-
larized component of the CMB anisotropies, and scheduled for a first flight from
North America in spring 2009, and a second one from Antarctica one year later;
the angular resolution of 8 arc-minutes, sensitivity on thesame angular scale of
about 0.5 µK, as well as the frequency coverage between 150 and 410 GHz, have
been optimized for the observation of the curl component of CMB polarization.
In the Antarctica flight, EBEX will exploit 1406 bolometer detectors to observe
an area of∼ 1% of the sky in a region expected to be have a very low Galactic
contamination (see Fig.1.6). We will talk more about EBEX inthe last Chapter.

1for a complete list: http://lambda.gsfc.nasa.gov/
2http://www.astro.caltech.edu/ lgg/spider front.htm
3http://bolo.berkeley.edu/polarbear/
4http://www-astro.physics.ox.ac.uk/research/expcosmology/groupclover.html
5http://groups.physics.umn.edu/cosmology/ebex
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Figure 1.6:Target areas of some CMB experiments. The red region show thepresence of
the Galaxy emission and is expected to be highly contaminated (see next Chapter for more
details).



Chapter 2

Foregrounds

2.1 Introduction

In this Chapter we will review the current knowledge about the Galactic emission
in the microwave band. As pointed out before, our capabilityin removing the
different emissions that cover and pollute the background signal will be one of the
ultimate limitation in the CMB science. Theseforegroundsare indeed known to be
a serious contaminant at all the frequencies of cosmological interest, both in total
intensity and in polarization.

Foregrounds can be divided into two main categories: diffuse and point-like.
The former are due to diffuse emission from our Galaxy, while the latter come
from unresolved (in the telescope beam) sources, both Galactic and extra-galactic1.
Obviously, since they enter into the game at different angular scales, these two
types of foreground have different impact on the CMB power spectrum and have
to be addressed accordingly in the data analysis. During my PhD I have mostly
focused on the diffuse foregrounds cleaning, developing and testing component
separation techniques, as I will show in the next Chapter. For this reason, we will
focus mainly on the diffuse foregrounds and point-like sources will be treated only
marginally.

We will start by introducing the physics of the most important diffuse Galactic
emissions and their observations, both in total intensity and polarization, outside
the microwave band. Then, we will review the main results of WMAP for what
concern the foregrounds: what that data-set can tell us and what is still missing.
Finally, we will conclude the Chapter with a discussion on how the diffuse fore-
grounds contaminate the CMB signal.

1N.b.: In this distinction, we are neglecting a few galaxy clusters that are still resolved in a typical
CMB experiments

33
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2.2 Diffuse Galactic foregrounds

The diffuse emission in the microwave sky, beside the CMB, comes mainly from
three Galactic components: the synchrotron radiation fromelectrons spinning in
the magnetic field, the free-free radiation associated withionized interstellar gas
and the thermal radiation of interstellar dust. Moreover, as we will see later, there
are also several clues on the existence of another diffuse Galactic component that is
still not clearly identified today but it is likely to be related to spinning dust grains.
We will conservatively call itanomalous emission.

Before entering in the discussion, it is useful to introducethe following quantity
that we are going to use to define the intensity of the signals:the antenna (or
brightness) temperature. It is the temperature at which a blackbody would have to
be in order to mimic the observed intensityIν of an object at a frequencyν in the
Rayleigh-Jeans limit:

Tb =
Iνc2

2ν2k
(2.0)

wherec is the speed of light andk is Boltzmann’s constant.

2.2.1 Synchrotron

Synchrotron emission arises from the acceleration of cosmic ray electrons in mag-
netic fields. The morphology of the observed emission depends both on the dis-
tribution of the relativistic electrons in the Galaxy and onthe Galactic magnetic
field structure. The latter is generally weak in our Galaxy (tipically of the order
of a few microgauss) and then the diffuse synchrotron emission is mostly observed
in the radio band. Another small contribution is expected from discrete supernova
remnants, but they contribute only∼ 10% of the total synchrotron emission at 1.5
GHz (Ulvestad, 1982).

Across the Galactic plane, the Galactic magnetic field exhibits a large-scale or-
dering with the field parallel to the spiral arms (regular component). Superimposed
to this, there is an irregular component with small scale structures which shows
variations between the arm and inter-arm regions and with gas phase. The regular
and irregular components seem to be of comparable magnitude. At high latitudes,
there is a contribution from the Galactic halo, and specific nearby structures, i.e.
the North Polar Spur (Rybicki & Lightman, 1979) .

One of the most important properties to characterize the synchrotron emission
is its behaviour with frequency, usually characterized by aspectral index,βs. In-
deed, over a large frequency range, the intensity, in antenna temperature, of this
component can be modeled by means of a single power law:

Ts(ν) = As

(
ν

ν0

)−βs

, (2.0)

whereAs is the synchrotron amplitude, in a given position of the sky,at the fre-
quencyν0. It exhibits a quick decrease with frequency, (typical values areβs ∼ 3),
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reflecting the energy distribution of electrons.
Variations in the frequency spectral index of the synchrotron continuum emission
arise from variations in the cosmic ray electron energy spectrum, which has a range
of distributions depending on age and the environment of origin (e.g., supernova
explosions or diffuse shocks in the interstellar medium). Reich & Reich (1988)
used radio continuum surveys of the Northern sky at 408 and 1420 MHz, from
Haslam et al. (1982)2 to demonstrate a range of spectral index values between 2.3
and 3.0. The steepest spectra were observed towards the North Polar Spur, and
there was a flattening in spectral index towards higher latitudes in the Galactic
anti-center direction. Such behavior has been confirmed over the full sky by Reich
et al. (2003), who find that the flattening is particularly pronounced in the South-
ern hemisphere. At higher frequencies, the antenna temperature spectral index is
expected to steepen by 0.5 due to electron energy losses (Platania et al., 1998).
Banday et al. (2003) derived a mean spectral index between 408 MHz and 19.2
GHz from the Cottingham (1987) survey and between 31.5, 53, and 90 GHz from
the COBE-DMR data: they found a steep spectral index of∼3.1 for Galactic lati-
tudes|b| > 15◦, consistent with expectations. Bennett et al. (2003) claimthat the
spectral break occurs near the WMAP K-band. Spectral indices above 10 GHz are
then likely between 2.7 to 3.2.

Given its physical origin, synchrotron radiation can be strongly polarized in
the direction perpendicular to the Galactic magnetic field,in principle up to 75%
(Rybicki & Lightman, 1979). The polarization has been measured at a number of
frequencies from Leiden between 408 MHz to 1.4 GHz (Wollebenet al., 2006 ),
from Parkes at 2.4 GHz (Duncan et al., 1999), and by the MediumGalactic Latitude
Survey at 1.4 GHz (Uyaniker et al., 1999). The morphology of the signal showed
a substantial power on small angular scales (Cℓ ∼ ℓ−2) and no dependence on the
Galactic latitude up intermediate latitudes. Moreover, even if the theoretical upper
limit is higher, typically measured values for the fractionof polarization reached a
few percent.

Indeed, these observations are effected by the Faraday depolarization. Elec-
trons in the Galactic magnetic field rotate the direction of polarization because the
left and right circular polarizations propagate with different velocities in the in-
terstellar medium (Faraday rotation). Such rotation is a function of the electron
density and the component of the Galactic magnetic field along the line of sight.
In our Galaxy, given the strength and properties of the Galactic magnetic field, a
typical value for the net rotation is∆θ ∼ 420◦/ν2, with the frequencyν expressed
in GHz. This means that at WMAP frequencies this effect is negligible, while it
becomes important in the radio band. For these reasons a crude extrapolation from
the low frequencies can be problematic in polarization and great care must be taken
when using low frequency maps as tracers of the synchrotron polarized emission
at microwave frequencies.

2Haslam et al. (1982) represents one of the most important synchrotron surveys, covering the all
sky, with a nominal resolution of 52 arc-minutes.
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2.2.2 Free-free

The free-free is a non thermal emission due to bremsstrahlung of free electrons in
presence of Hydrogen ions, in the so called Hα regions. The scatter of the elec-
trons produces microwaves with an antenna temperature spectrum T f f ∼ ν−2.14

(Rybicki & Lightman, 1979), given a temperature of the electrons,Te ≈ 8000K.
Radio astronomy provides no free-free emission maps because it does not domi-
nate the sky at any frequency. Nevertheless, as discussed inBennett et al. (2003),
high-resolution maps of Hα emission can serve as approximate tracers of free-free
emission and several large-area Hα surveys of the sky are indeed available. Among
them we list here: the Wisconsin H-Alpha Mapper (WHAM3) that used Fabry-
Perot spectroscopy on an angular scale of 1◦ covering the northern sky (δ > −30◦),
the Virginia Tech Spectral-Line Survey (VTSS) that exploited a filter system with
an angular resolution of 1 arc-minute and covers the southern sky (Gaustad et al.,
2001), and the Southern H-Alpha Sky Survey Atlas (SHASSA) that used a similar
approach in the northern sky on a 3 arc-minutes scale Dennison et al. (1998).

The major issue in estimating the free-free emission out of these cited surveys
is the fact that the absorption by interstellar dust must be taken properly into ac-
count; this correction is significant at intermediate and lower Galactic latitudes, as
reported by Dickinson et al. (2003).

2.2.3 Thermal Dust

The thermal dust emission that contributes to the frequencies of interest for CMB
analysis arises mostly from grains large enough to be in thermal equilibrium with
the interstellar radiation field, and is known from analysisof the Infrared As-
tronomical Satellite (IRAS) and COBE-DIRBE data to peak at awavelength of
approximately 140µm. The dust is mainly composed by a mixture of compact
graphite and silicate grains. The spectrum of the dust radiation is a so called grey
body, that is a not isolated black body warmed by the star light. At higher fre-
quencies, there is a contribution from the optically activemodes of the polycyclic
aromatic hydrocarbons (PAH) molecules, but these are not interesting for our dis-
cussion. In the Galactic plane where several clouds overlapon the line of sight,
results are easier to interpret in term of physical properties of dust. Nonetheless,
studying the dust as a CMB contaminant requires a good knowledge of dust emis-
sion also outside the Galactic plane. At these high latitudes, the determination of
the Galactic component relies on the existence of a spatial correlation between gas
and dust and thus of gas emission lines with the associated dust emission. The
correlation which has been the most extensively investigated is the one between
IR emission and the 21 cm line from atomic hydrogen. It turns out that the dust
spectrum is well fitted by a single Planck curve with an emissivity proportional to
ν2 and a temperature of 17.5 K (Draine & Lee, 1984).

3http://www.astro.wisc.edu/wham/index.html
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In the microwaves, using the Far Infrared Astronomical Satellite (FIRAS) data,
Finkbeiner et al. (1999) showed that the one temperature fit can be significantly
improved by including a second emission component with a lowtemperature (T≈9
K) and an IR/visible emissivity ratio one order of magnitude larger thanthat of
the warmer component. It is unclear yet what is the physical origin of such a cold
component and in particular if it represents the emission from grains that are cold
due to large sub-mm emissivity. This second component with atemperature of
about 9 K can be seen as a sub-mm excess with respect to the T≈17 K modified
black body. Such an excess has also been detected in the Archeops data (Benoit
et al., 2004) and confirmed by Boomerang (Masi et al., 2001) and MAXIMA (Jaffe
et al., 2004). The model by Finkbeiner gives for the dust flux,at the frequencyν:

Dust flux∝ f1(q1/q2)(ν/3000 GHz)α1+3

ehν/kT1 − 1
+

f2(ν/3000 GHz)α2+3

ehν/kT2 − 1
, (2.0)

where f1 = 0.0363, f2 = 1 − f1, α1 = 1.67, α2 = 2.70, q1/q2 = 13, T1 = 9.4 K,
T2 = 16.2 K, andh andk are the Planck and Boltzmann constants, respectively.

Lots of experimental data on dust absorption of starlight have been gathered
and show that this absorption generates polarization. The natural explanation of
this is that dust grains are aspherical and that they are mainly aligned. A compi-
lation of these measurements and a mapping of the polarization direction started
by Serkowski et al. (1975) show that this alignment is highlycorrelated with the
Galactic magnetic field and that optical polarization tendsto be aligned with the
magnetic field. It therefore implies that grains are orthogonal to the magnetic field
on average. Qualitatively, the incident radiation (optical wavelength) polarizes
the grains and generates electric dipoles that will in turn radiate. Millimetric or
sub-millimetric measurements of the Galactic dust polarization are usually con-
centrated in Galactic clouds and starforming regions with arc-minutes angular res-
olution (Hildebrand et al., 1999). They show a few per cent polarization and no
clear frequency dependence. The first observations on largeangular scales of the
polarization of the Galactic dust emission are provided by Archeops at 353GHz
(Benoit et al., 2004). The Archeops data show a significantlylarge scale polarized
emission in the Galactic Plane, with a polarization degree of 45%, with several
clouds of few square degrees appearing to be polarized at more than 10%.

2.2.4 Anomalous emission

In recent years evidence has been reported for an additional, thermal dust correlated
component called anomalous microwave emission, that may dominate, at least in
some Galactic regions, in the 20-40 GHz range where it has a frequency spectrum
similar to synchrotron. It may be caused by tiny, fast spinning, dust grains (Draine
& Lee, 1998; de Oliveira-Costa et al., 2004). Indications ofthis emission are found
by analyses of several CMB experiments (see Bonaldi et al., 2007, and eferences
therein).
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Although Bennett et al. (2003) concluded that spinning dustemission con-
tributes less than 5% of the WMAP Ka-band antenna temperature, evidence of the
anomalous emission was uncovered by combining WMAP data with other mea-
surements, especially at lower frequencies (Lagache et al., 2003; de Oliveira-Costa
et al., 2004; Finkbeiner, 2003; Watson et al., 2005 ; Davies et al., 2006; Bonaldi et
al., 2007). Moreover, according to Page et al. (2007), the polarization properties of
this dust-correlated low-frequency component differ from those of the synchrotron,
suggesting a different emission mechanism. Nevertheless, the exact nature,the
spectral properties and the spatial distribution of this foreground remain uncertain.
There is not even general agreement over its existence; a combination of free-free
emission and strongly self-absorbed synchrotron could also account for the data,
according to Hinshaw et al. (2006). In the next Chapter, we will come back on this
topic in the discussion related to the work by Bonaldi et al. (2007), in which we
found evidences of an anomalous emission, strongly correlated with thermal dust,
in the WMAP 3-year data.

2.3 WMAP observations

Up to now, the most powerful all-sky measure of Galactic foregrounds in the mi-
crowave band came from WMAP. In this Section we will review their analysis,
both in total intensity and polarization.

To disentangle the different sources that are present in a sky map, it is necessary
a dedicated study calledcomponent separation. This will be the central topic of
our discussion in the next two chapters, but we need to anticipate some of concepts
here, altough the WMAP methodology differs from the ones we will study. The
WMAP team used a Maximum Entropy Method (MEM) to separate foregrounds in
total intensity, as proposed by Bennett et al. (2003). This is a component separation
method, not specialized for cleaning the CMB, but useful in separating the different
Galactic components exploiting their different emission mechanisms and frequency
behaviours. The basic idea is to minimize aχ2 of the modelled data, combined with
some prior informations about the components.

The starting point of the method is to model the components that are expected
in the data:

Tm(ν, p) ≡ Tcmb(p) + Ss(ν, p) Ts(p) + Sff(ν, p) Tff (p) + Sd(ν, p) Td(p), (2.0)

where the subscripts cmb, s,ff, and d denote the CMB, synchrotron, free-free,
and thermal dust components, respectively.Tc(p) is the spatial distribution of the
componentc at the pixelp, andSc(ν, p) is the spectrum of the emission, which is
not assumed to be uniform across the sky.

The model is then fit in each pixel by minimizing the functional H = A+ λB,
whereA =

∑
ν[T(ν, p) − Tm(ν, p)]2/σ2

ν, is the standardχ2 of the model fit, and
B =

∑
c Tc(p) ln[Tc(p)/Pc(p)] is the so called MEM functional, that contains the
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prior informations (Press et al., 1992). The parameterλ controls the relative weight
between the data and the priors in the fit. In the functionalB, the sum overc is re-
stricted to Galactic emission components, andPc(p) is a prior estimate ofTc(p).
The form ofB ensures the positivity of the solutionTc(p) for the Galactic compo-
nents, which greatly alleviates degeneracy between the different foregrounds.

For the prior informations, Hinshaw et al. (2006) exploitedforeground tem-
plates built using observations out of the microwave band, as discussed above in
this Chapter.

A prior estimate for dust emission,Pd(p), was done using Model 8 of Finkbeiner
et al. (1999), evaluated at 94 GHz. The dust spectrum is modeled as a straight
power law,Sd(ν) = (ν/νW)+2.0. For free-free emission, the prior,Pff(p), was esti-
mated using the extinction-corrected Hαmosaic (Finkbeiner, 2003). The spectrum
was modelled as a straight power law,Sff(ν) = (ν/νK)−2.14. For the synchrotron
emission, they constructed a prior estimate,Ps(p), using the Haslam 408 MHz map
and scaling it to K-band assumingβs = −2.9.

Fig.2.1 shows the three input prior maps,Pc(p), and the corresponding output
component maps,Tc(p), obtained from the 3-year data. These maps are available to
the public as part of the WMAP 3-year data release. The maps are displayed using
a logarithmic color stretch to highlight a range of intensity levels. The morphology
and amplitude of both the thermal dust and free-free emission are well predicted
by the prior maps.

The most notable discrepancy between prior and output maps is seen in the
synchrotron emission. Specifically, the K-band signal has amuch more extended
Galactic longitude distribution than the 408 MHz emission,and it is remarkably
well correlated with the thermal dust emission. Whether this is K-band non-
thermal component due to anomalous dust emission or mostly flat-spectrum syn-
chrotron emission that dominates at microwave frequenciesis not clear. Hinshaw
et al. (2006) claim that the answer to this question was not possible with the WMAP
data alone because the covered frequency range does not extend low enough to dis-
entangle the two. We will be back on this at the end of the next Chapter.

Polarization observations are available at all the WMAP channels. The measured
polarization amplitude P and the angleγ are shown in Fig.2.2. The polarization
vectors have length that is logarithmically dependent on the magnitude ofP and
direction according toγ. These vectors are plotted whenever the signal to noise
(P/N) is greater than unity (see the figure caption).

The analysis of these data is much more difficult with respect to the total inten-
sity case. The signal to noise ratio is much lower and our prior knowledge of the
polarized foregrounds much poorer. Then, the Maximum Entropy Method could
not be used on this data set. In the analysis made by Page et al.(2007), the WMAP
team proposed a model for the polarized Galactic emission tobe used to explain
the general features in the observations.

The two dominant components of the polarized foreground emission in the
23− 94 GHz range are synchrotron and thermal dust (Bennett et al., 2003). The



40 CHAPTER 2. FOREGROUNDS

Figure 2.1:Galactic signal component maps from the Maximum Entropy Method (MEM)
analysis.top-bottom: synchrotron, free-free, and dust emission with logarithmic temper-
ature scales.left: Input prior maps for each component.right: Output maps based on
WMAP 3-year data. From Hinshaw et al. (2006).

ingredients for the polarization model are a description ofthe Galactic magnetic
field and some rule to define both the fraction of polarizationand the polarization
angle across the sky. The model can be written as:

Qc = Ic(n̂)Πc gc(n̂) cos(2γc) (2.1)

Uc = Ic(n̂)Πc gc(n̂) sin(2γc),

whereIc is the total intensity template of the componentc (either synchrotron or
dust) andΠc is its polarization fraction multiplied by an effective functiongc(n̂)
that takes into account cancellation effects along the line of sight . Finallyγc is the
polarization angle.

In order to estimate the polarization angle it is necessary to model the Galactic
magnetic field properly. As explained above, the angleγc is expected to be the same
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Figure 2.2:P andγ maps for the WMAP bands in Galactic coordinates. The polarization
vectors are plotted whenever a pixel, (roughly 4 deg×4 deg) and three of its neighbors
has a signal to noise (P/N) greater than unity. The length of the arrow is logarithmically
dependent on the magnitude ofP. From Page et al. (2007).

both for synchrotron and dust. It is computed as a function ofthe two components
of the Galactic magnetic field that are perpendicular to the line of sight. We are
not entering into details of such a model here (see Page et al., 2007, for the full
explanation), we just point out that they exploited informations from the WMAP K
band itself to partly fit such a model. In Fig.2.3, we report a comparison between
the angle of the magnetic field,γM = γc + 90◦, derived from the synchrotron
radiation in the K-band map (smoothed with a 4◦ beam) and the predicted magnetic
field direction given by the simple model adopted by Page et al. (2007).

The ultimate purpose of these foreground models was CMB cleaning, more
than extracting good templates for the Galactic emissions,because, as we will see
in the next Section, the diffuse foreground contamination turns out to be remark-
ably more severe in polarization than in total intensity. Nevertheless, some global
physical features still can be drawn out of the data and the model constructed for
them. First of all, it was possible to measure the large scalestructure of the Galac-
tic magnetic field, mainly thanks to the strong synchrotron emission in the K band,
and with that to infer the polarization angle at those scalesfor synchrotron. More-
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Figure 2.3: Left: The angle of the magnetic field,γM = γPA + 90◦, derived from the
synchrotron radiation in the K-band map (smoothed with a 4◦ beam).Right: The predicted
magnetic field direction given by the simple model adopted byWMAP. From Page et al.
(2007)

over, assuming the Galactic magnetic field is 100% efficient in determining the
polarization direction of both synchrotron and dust, the latter was also modelled
accordingly, for what concerns teh poalrization angle.

Moreover, the WMAP data provided a measure for the polarization fraction. It
turned out to beΠs ∼ 15% for the synchrotron andΠd ∼ 5 − 10% for the dust,
confirming previous results (Uyaniker et al., 1999; Benoit et al., 2004). These
measures refer mostly to low and intermediate latitudes. For synchrotron,Πs is
lower than theoretical expectation (∼ 75%) because of cancellation along the line
of sight.

2.4 Contamination to the CMB

In this Section we study the foreground properties as contaminants to the CMB.
The first, macroscopic distinction to make is the one betweentotal intensity

and polarization. In the former case, the CMB is expected to dominate the sky
emission, out of the galactic plane, at least in a certain range of frequencies. This
is no more true for polarization where, as we will see in a while, the foreground
emission highly contaminates the background signal at any frequency of interest.
Because of this difference, the WMAP team during the analysis had to cut out
two different portions of the sky to avoid the major contamination offoregrounds.
The masks they used are called Kp2 and P06, for total intensity and polarization
respectively, and are shown in Fig.2.4.

A first consideration to be made concerns the behaviour of thedifferent emis-
sions in frequency and the their relative level with respectto the CMB. In total
intensity the situation is sketched in Fig.2.5, where the spectra of the CMB and
of the other sources of contamination are shown. These levels refer to an angular
resolution of 1◦, out of the Kp2 mask. The high frequency part of the spectrum
(frequencies greater than 90 GHz) is dominated by the thermal emission of the
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Figure 2.4:Mask used in the WMAP analysis of the CMB, Kp2 for total intensity (left)
and P06 for polarization (right). The sky fraction that is cut out is 18% and 27% respec-
tively.

dust, while lower frequencies are dominated by free-free and synchrotron, show-
ing different slopes as explained above. Grey bands are the frequency coverage of
the Planck channels.

The difference in the behaviour of the components in the frequency domain is
the key feature that allows to disentangle them. Component separation techniques
exploits exactly this handle in order to separate the different emissions, as we will
see in next Chapter.

The contamination level is also a function of the angulare scale. The next two
plots, in Fig.2.6 and 2.7, report the total intensity and polarized emissions in the sky
at the different WMAP channels and their comparison with the CMB power spec-
tra, outside the Galactic plane, using the Kp2 and the P06 masks resectively. These
plots clearly show that, while in total intensity the contamination is significantly
lower outside the plane, in polarization, even if most of theforeground emission
is cut out with the mask, the Galactic contribution to the total microwave signal
is expected to highly contaminate the CMB E modes and to totally dominate the
CMB B modes at any frequency in the band.

In the work by Page et al. (2007), they propose a very simple model to parametrize
the foreground emission outside the P06 mask region:

ℓ(ℓ + 1)C f ore
ℓ

/2π = (Bs(ν/65)2βs + Bd(ν/65)2βd)ℓm. (2.0)

where we have introduced the notationBXX ≡ ℓ(ℓ + 1)CXX
ℓ
/2π to simplify the

expression. From an unweighted fit to all the rawℓ < 100 data with the dust index
fixed atβd = 1.5, they find for EEBs = 0.36 (µK)2, βs = −3.0,Bd = 1.0 (µK)2 and
m= −0.6; and for BBBs = 0.30 (µK)2, βs = −2.8,Bd = 0.50 (µK)2 andm= −0.6.
This model obviously gives an approximate guide. In Fig.2.7the dashed red line
represents this equation evaluated at the minumum (60 GHz),for B modes.

The high level of the polarized foregrounds makes it very difficult the detec-
tion of the cosmological B modes in the CMB, even at the most optimistic levels
of T/S. Cleaning two different foregrounds, that are, at least, one or two orders
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Figure 2.5: This figure, from the Planck Bluebook, shows the spectrum of CMB and
the frequency coverage of the Planck channels (grey bands).It also shows the spectra of
other known sources of fluctuations in the microwave sky. Dust, synchrotron and free-free
temperature fluctuation levels referring to an angular resolution of ∼ 1o, correspond to the
WMAP observed levels outside the Galactic plane.

of magnitude above the signal to recover is hard to believe. Fortunately, the fore-
ground level is not constant across the sky and there are a fewregions where it
drops down considerably. One of these clean patches has beenobserved in the past
(see Montroy et al., 2005, and references herein) and is the target of EBEX (Oxley
et al., 2004). This patch is centered at RA=60◦, DEC=-50◦ in Galactic coordinates
and is more or less∼ 1% of the sky.

Due to the theoretical expectations outlined in the previous Chapter, the de-
tection of CMB B modes and the challenges posed by foregrounds are one of the
main issues in modern CMB data analysis, and will be extensively discussed in the
last Chapter. We conclude here by describing the expected foreground contamina-
tion to B modes in selected areas of the sky, focusing on the one just mentioned,
sketched in Fig.2.8. It shows the spectrum of foregrounds B modes from Galactic
dust and synchrotron expected outside P06 (dashed) and in the EBEX area (solid),
as well as the CMB B modes (black, solid), atℓ = 100. The latter was obtained
simply by assuming that the dust power, as estimated by WMAP,scales down as
the ratio of the variance between the EBEX patch and the outside P06 area. Even if
the contamination from the dust is still challenging, more than two orders of mag-
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Figure 2.6: The measured foreground power spectra are shown for each WMAP band
using the Kp2 mask. The smooth red line is the CMB from the bestfit CDM model.
Contamination from unmasked point source (expected to be al2 term) are shown in the
dashed lines on the right. From Bennett et al. (2003).

nitude could be gained, simply by restricting the observations to this very clean
patch. In the last Chapter we will show how component separation codes can help
in finishing the job.
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Figure 2.7:The absolute value of the EE (solid, violet through green) and BB (dashed,
violet through green) polarization spectra for the WMAP data outside the Galactic plane.
Black lines are CMB polarization power spectra from the bestfit CDM model with a tensor
contribution of r= 0.3. The dashed red line represents Eq.(2.4) evaluated at the minumum
(60 GHz), for B modes. From Page et al. (2007).
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Figure 2.8:Comparison of power spectrum of foregrounds B modes, outside P06 (dashed)
and in the EBEX area (solid). The black solid line is the levelof CMB B modes for
r = 0.03. All the spectra are considered at the angular scale corresponding toℓ = 100. The
bands show the EBEX (yellow) and Planck (grey) frequency channels and instrumental
noise level. From the successful EBEX proposal to NASA for funding support up to the
Antartica flight.
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Chapter 3

Component separation
techniques

3.1 Introduction

In the last Chapter, our current knowledge of foregrounds has been summarized.
An important lesson that the CMB community has learnt in the past years is that
the Galactic foreground emission dangerously contaminates the cosmological sig-
nal (see for example Page et al., 2007)) and that this issue has to be addressed
as a data analysis problem. Cosmologists are now aware of thefact that a new
piece of pipeline is required for cleaning and/or separating foregrounds in the data
and an entire line of research is being dedicated to the development and testing of
algorithms for the so calledcomponent separation. The latter is a very general ex-
pression to mean any algorithm or data processing aimed at discriminating between
different physical sources of emission.

The component separation problem can be stated as follows. Let’s model the
datam as

mu = su + nu, (3.0)

wheres is the total signal andn is the instrumental noise. The subscriptu indi-
cates whatever data item these quantities depend on (timet, pixel p, multipolesℓ,
etc...). Quantities in the above equation are all vectors that have as many elements
as the number of available measuresnm. In general the signals denotes a linear
combination ofnc physical componentsc:

su = Aucu, (3.0)

whereA is called mixing matrix. The final purpose of component separation is
to invert the System (3.1) in presence of noise and recover the componentsc. To
cast the problem in a cosmological context, the componentsc play the role of the
astrophysical sources (both Galactic foregrounds and CMB), while the mixturesm
are the outputs of a multi-frequency experiment. The mixingmatrix A takes into
account the relative frequency scaling of each component inthe data.

49



50 CHAPTER 3. COMPONENT SEPARATION TECHNIQUES

Quite a number of techniques have been recently proposed. These methods
differ in many aspects and can be classified in various ways, according to any-
one’s tastes. For example, a typical distinction is the one between “blind” and
“non-blind” techniques, depending on how strong are the assumptions made by the
algorithm, i.e. what kind ofa priori knowledges are imposed to infer the mixing
matrix A.

I will use a different classification here dividing the different methods in three
main categories, depending on what part of the whole data setthey use in a single
separation process. More specifically, the rationale behind the following scheme
is the number of data items (pixels, multipoles, etc...) that are considered in the
analysis at the same time:

• All the items,

• One item,

• Some of them.

Providing an extensive presentation of all the available methods is certainly beyond
the purpose of this work and maybe found elsewhere (see Leachet al., 2008, and
references therein). I’ll mostly focus on three methods that I’ve been working on
during the PhD: the fast independent component analysis (FASTICA, Maino et al.,
2002), an approach based on the parameterization and fittingof the foreground and
background unknowns (MIRAMARE, Stompor et al., 2008b), andthe correlated
component analysis (CCA, Bonaldi et al., 2006). Each of themcan be considered a
good example of the three categories introduced above. Indeed, as we will see later,
FASTICA exploits the overall statistics of the signals to beseparated, analyzing all
the pixels together; MIRAMARE is designed to maximize the data likelihood on
a single pixel; finally CCA uses a second order statistics (spatial correlation) of
subsets of the data to infer the spectral behavior of the mixed components. Let’s
now have a closer look at these three techniques.

3.2 FASTICA

It is an application of the Independent Component Analysis (ICA), a general tech-
nique broadly used in signal processing. It was originally introduced to deal with
problems closely related to the so calledcocktail party problem, where a linear
mixture of components has to be separated into the original sources. As it will be
clear soon, ICA is a totally blind approach.

To introduce the technique, let’s take into account Eq. (3.1) and work for sim-
plicity in a space where the number of the components and number of frequency
channels are both equal to 2. Moreover let’s drop the noise term for a while.
Suppose then to measure a linear combinationm1 of two componentsc1 andc2,
m1 = a11c1 + a12c2. It is quite obvious that it is not possible to find the original
components, if the coefficient a1 j are unknown. Thus, it may be surprising that,
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under some assumptions, a solution can be found when another, independent mea-
surem2 is added to the problem (here independent means that the weights have to
be different). Then the system:

m1 = a11c1 + a12c2 (3.1)

m2 = a21c1 + a22c2

can be solved without knowing neither the weightsai j nor the componentsc j . The
ICA approach allows to solve this problem using the statistical properties of the
components. Indeed, it turns out that it is enough to assume that the quantities
c j are statistically independent and that at most one of them isGaussian. These
assumptions are not unrealistic in many practical cases andmostly important for
our purposes it can be safely assumed that the CMB is statistically independent
from foregrounds and that, as we know from observations, thelatter are highly
non-Gaussian.

3.2.1 The basic idea

Non-Gaussianity is the key point to understand ICA (Hyvärinen, 1999). The Cen-
tral Limit Theorem states that, given some assumptions, thedistribution of a sum
of independent random variables tends to be Gaussian. Thus,a sum of two (or
more) independent random variables has a distribution thatis closer to Gaussian
than any of the original random variables.

Let’s consider now a linear combination of the mixturesm, through a generic
vectork

y = kTm. (3.0)

According to the central limit theorem this variabley has to be more Gaussian than
anymi . But using Eq. (3.1),y is a linear combination of the components too:

y = kTAc = zTc, (3.0)

wherez simply represents a change of variables,z = ATk. The quantityy is then
more Gaussian than anyc j . Now, since there is full freedom on the choice of the
coefficientskT, one can pick up that combination that minimizes the Gaussianity
of y. Such a choice will set one and only one of thezj different from zero, because
any other combination ofzT

j would sum more than one componentc j causing the
Gaussianity ofy to depart from the minimum. In other words, by minimizing the
Gaussianity ofy, one selects out one of the components,y = c j . In a case where the
dimension of the space is larger than 2, once the first component has been found it
is sufficient to go to the space orthogonal to that component and perform the same
procedure again.

It is now clear why I put ICA in the first group of the component separation
techniques, as introduced at the beginning of this Chapter:ICA infers the statistical
properties of the signals by using all the available pixels in the map at the same time
(of course this do not prevent us to perform the separation ona subset of data).
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3.2.2 Measure of non-Gaussianity

To apply the ICA principle, we need a quantitative measure ofthe non-Gaussianity
of a random variable, sayy.

Kurtosis

Historically, the classical measure of non-Gaussianity isthe kurtosis, also known
as the (normalized) fourth order momentum of a distribution:

kurt(y) = E{y4}. (3.0)

Such a quantity equals to zero for a standard Gaussian variable. Typically non-
Gaussianity is measured by the absolute value of the kurtosis and has the advantage
of being very fast to compute. There are of course non-Gaussian random variables
that have zero kurtosis, but they are very few and not relevant in the present context
(Hyvärinen, 1999).

Unfortunately, kurtosis has some practical drawbacks, when its value has to
be computed from a measured sample. The main problem is that the kurtosis is
very sensitive to outliers (Huber, 1985), making it a ratherpoor estimator of non-
Gaussianity in many cases.

Neg-entropy

Entropy is an important concept in information theory. It quantifies the degree of
information that an observation of a variable can provide. The more a variable is
random and unpredictable, the larger its entropy is. For a random vectory with
density f (y), the entropyH is defined as:

H(y) = −
∫

f (y) log( f (y)) dy. (3.0)

It can be demonstrated that a Gaussian variable has the largest entropy among
all the random variables with equal variance (see e.g. Coverand Thomas , 2006).
This means that entropy could be used as a measure of non-Gaussianity. It is in-
deed small for distributions that are concentrated on certain values, i.e., when the
variable is clearly clustered, or has a probability distribution function that is very
”spiky”. To obtain a measure of non-Gaussianity that is zerofor a Gaussian vari-
able and always non-negative, it is useful to introduce a slightly modified version of
the definition of differential entropy, called neg-entropy. Neg-EntropyJ is defined
as:

J(y) = H(ygauss) − H(y) (3.0)

whereygaussis a Gaussian random variable with the same covariance matrix asy.
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The advantage of using the entropy, or equivalently the neg-entropy, for esti-
mating non-Gaussianity is that this choice is fully supported by information the-
ory, being the entropy the optimal estimator of the non-Gaussianity. On the other
hand, it results computationally demanding to compute the entropy of a variable in
practical situations, since it requires a non-parametric estimation of the probability
distribution function. Therefore it is necessary to introduce approximations of the
neg-entropy, that maintains the robustness of the estimator while being faster to
compute. These approximations are based on the maximum-entropy principle. In
general we obtain the following approximation:

J(y) ≈ {E[G(y)] − E[G(ν)]}2 (3.0)

whereG is some non-quadratic function andν is a Gaussian variable. The point
here is to choose wisely the functionG. In particular, very robust estimator are
obtained whenG does not grow too fast. These two choices proved to be very
useful for our purposes:

G1(u) =
1
a1

log cosh a1u, (3.0)

G2(u) = −exp(u2/2), (3.0)

where 1≤ a1 ≤ 2 is a suitable constant. These functions are used in the FASTICA
algorithm as contrast functions, as I will show in the next sections.

3.2.3 The algorithm

The Independent Component Analysis was initially introduced in astrophysics by
Baccigalupi et al. (2000), exploiting an adaptive technique for learning progres-
sively the independent components in a given multi-frequency mixture by consid-
ering one realization (pixel) after the other. However, most applications nowadays
in the context of CMB data analysis are based on the FASTICA algorithm (Hyväri-
nen & Oja, 2000) which provides an efficient and computationally cheap method
for the cleaning of the CMB maps, using the whole statistics at once.

At the core of the FASTICA algorithm lies an assumption that the statisti-
cal independence of the components can be measured via theirnon-Gaussianity
1. The component estimates are therefore sought for as linearcombinations of the
input data, which maximize the selected measure of the non-Gaussianity. In the
FASTICA approach, the neg-entropy is used for this purpose,and a number of
computationally efficient approximations have been proposed (Hyvärinen, 1999;
Hyvärinen & Oja, 2000); later, they were found to perform very well in the context
of the microwave sky maps, in total intensity (Maino et al., 2002) and polarization
(Baccigalupi et al., 2004).

1We anticipate here that this assumption is not fully respected in CMB analysis since the fore-
grounds are expected to be correlated within each other. We will be back on this point later in this
Chapter.



54 CHAPTER 3. COMPONENT SEPARATION TECHNIQUES

The FASTICA separation process is done in three steps, whichwe describe briefly
below.

I - Pre-processing

Our assumed input data are a set of multi-frequency maps of the sky in a microwave
band. Each map is discretized and is composed ofnpix pixels for which the relevant
amplitudes, corresponding to some or all Stokes parameters, I ,Q & U are recorded.
For each sky pixel,p, and Stokes parameter, we model the data as,

mp = Acp + np, (3.0)

where all the vectors,mp, cp andnp (i.e., measured maps, sky components, and
noise, respectively) have as many elements as the number of available maps, (≡ nm)
and which either correspond to different frequency channels or Stokes parameters,
and have to be analyzed separately. Hereafter, we always assume that a single
mixing matrix exists for all considered pixels. Whenever this is not the case, it
may be possible to limit the analysis to subsets of pixel selected in a way that the
assumption of identical mixing matrix holds for each subsetseparately and proceed
with the analysis as described below, accepting the loss of precision incurred due
to a smaller number of the data points used in each of the ICA analysis.

From the data,m, we first estimate the data correlation matrix

Σ ≡
〈
m mt

〉
, (3.0)

where〈. . . 〉 denotes the average over all the map pixels. Then, given the known
(by assumption) noise properties,N, we get the signal correlations for the input
maps as,

C ≡ Σ − N. (3.0)

Given the derived estimates of the signal correlations, theFASTICA algorithm
subsequently pre-whitens the signals in the input data. That is done by computing
a ”square root” of the signals correlation matrix,C1/2, such as,

C ≡ C1/2 C1/2. (3.0)

The input data,m, are then replaced by theirsignalprewhitened and decorrelated
version,w,

w ≡ C−1/2 m. (3.0)

Indeed, we have, 〈
w wt

〉
= 1+ C−1/2 N

(
C−1/2

) t
. (3.0)

Note that to perform this step, the signal correlation matrix, C, has to be non-
singular and positive definite. In the standard FASTICA implementation that re-
quires, for example, that the number of the input maps,nm, is equal to a number of
the independent sky components,nc, which are to be recovered. If that is not the
case and that is not due to the noisiness of the signal correlation estimator we need
to find another way to proceed. We describe a relevant approach later.
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II - Mixing matrix determination

Assuming the pre-whitened input data, the FASTICA algorithm proceeds to esti-
mating the mixing matrix,B, of the prewhitened data,

w = B c, (3.0)

and
〈w wt〉 = B 〈c ct〉Bt = B Bt = 1. (3.0)

And therefore, the matrixB has to be orthonormal, if only we fix the arbitrary
normalization of the sought-after components to unity.

The algorithm determines the matrixB, column-by-column, and is referred to
as one-unit, fixed-point algorithm (Hyvärinen & Oja, 2000). Each column is found,
as a vector maximizing the selected neg-entropy definitionsand orthogonal to all
the columns already determined earlier. The maximization of the neg-entropy is
reached iteratively, as sketched in the following table:

Algorithm 1 B FASTICA 
for every pre-whitened data setj
do

– pick a random unit vectorbj ;
while the last correction tobj not sufficiently small do

– orthogonalize it with respect to all previously processedvectorsbi wherei < j;
– find a correction tobj so the newbj is more non-Gaussian;

end while
end for

The mixing matrix,B, determined in this manner, is by construction orthonor-
mal.

III - Post-processing

Given the recovered mixing matrix the components are found applying the trans-
pose of the matrix to the pre-whitened data, i.e.,

c = Bt w. (3.0)

In general the amplitudes of the components recovered usingthe FASTICA ap-
proach are arbitrary and set to unity in Eq. (3.2.3). This freedom is due to the
degeneracy between the values of the mixing matrix parameters and the compo-
nent normalizations. Maino et al. (2002) resolves that problem by noticing that the
freedom in the normalization essentially corresponds to the choice of the physical
units for the component signal. For example, setting to the unity all the mixing
matrix elements corresponding to one of the input frequencymaps is equivalent to
choosing the component map units as those of the input map of the selected fre-
quency. Given the definition of the mixing matrix, Eq. (3.1),Maino et al. (2002)
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normalization procedure requires that every element of thefirst row ofA has to be
equal to unity, i.e.,

A0,i = 1, for everyi = 0, . . . , ns − 1, (3.0)

where given Eqs. (3.2.3) & (3.2.3) we have,

A = C−1/2 B. (3.0)

3.2.4 Achievements

Since its introduction in astrophysics, FASTICA has been successfully applied both
on simulated and real CMB data sets.

Tests on simulated observations of the microwave sky were performed with
nominal specifications of the Planck satellite both on totalintensity (Maino et al.,
2002) and polarization (Baccigalupi et al., 2004). They considered several ob-
servation channels containing the most important known diffuse signals: CMB,
synchrotron, dust and free-free emissions (the latter was actually absent in the po-
larized simulated sky). The algorithm proved to be reliableand efficient in those
conditions. In particular, the CMB angular power spectra was recovered at the per-
cent level of accuracy up toℓ ≃ 2000 for total intensity, up toℓ ≃ 1000 for the
E modes and up toℓ ≃ 1200 for the cross correlationTE. Simulations for the
recovery of theB modes were performed by Stivoli et al. (2006) and will be treated
in the next Chapter.

Beside the good results on simulations, FASTICA was able to deal with real
data also. The first application was on theCOBE-DMR 4yr data by Maino et al.
(2003). Despite the low signal to noise ratio (S/N ∼ 1) and low number of pixels
available, the approach was able to extract the CMB signal with high confidence
and to detect the foreground emission. The results were in excellent agreement with
previous ones in terms of frequency scaling, foreground morphology and CMB
power spectrum.

Another application of the code was performed by Donzelli etal. (2006) on
the Background Emission Anisotropy Scanning Telescope (BEAS T) data. After a
detailed calibration procedure, they extracted the CMB power spectrum and found
very good agreement with the one found by theBEAS Tcollaboration.

Finally, Maino et al. (2007) performed the analysis of the WMAP 3rd year data.
In that work we achieved two important results. First the CMBpower spectrum
was recovered up to degree scale. In Fig.3.1 (left panel) theblack solid line is the
WMAP 3rd year best fit while the different colored represent the different channel
combinations used in the analysis. Here the Kp2 mask has beenapplied before to
run FASTICA . The agreement is evident both on the low multipoles as well as to
higher ones up toℓ ≃ 150. Large spread in the results is present for the highest bins.
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Adopting the consistency with the WMAP power spectrum as a figure of merit, we
can judge which is the optimal combination: this is the KQVW,indicating that
the best tracer of low frequency foreground contamination at high frequencies is
represented by the K band data. On the right panel of Fig.3.2 Ishow similar results
from the full sky analysis (the Kp2 mask is here applied only before computing
the power spectrum): the agreement with WMAP results are even more evident
for both low and highℓ. This is an indication of the fact that even in presence
of strong and possibly correlated foreground on the Galactic plane, FASTICA is
not only still able to properly recover the CMB pattern at high Galactic latitudes
but it performs better than in the case of a pure Kp2 analysis.This means that
the level of signal correlation along the Galactic plane, that violates one of the ICA
assumptions, does not compromise the reconstruction at high Galactic latitudes and
that the regions near the plane included in the full sky analysis are useful for better
distinguish different signal statistics.

Figure 3.1:The binned power spectra from all WMAP channel combinationscompared
with the WMAP 3yr power spectrum for a complete Kp2 analysis (upper panel) and full sky
analysis with Kp2 mask applied when computing the power spectrum (lower panel). Chan-
nel combinations are color coded: red for KKaQVW, green for QVW, blue for KQVW,
yellow for KaQVW, brown for KKaQV, indigo for KaQV, turquoise for KQV and grey for
KKaVW. From Maino et al. (2007)

The second main result of Maino et al. (2007), already noticed independently
by several authors (see for example Hansen et al., 2006, and references therein)
is the fact that FASTICA did confirm the north-south sky asymmetry. Analyzing
the CMB power spectrum in the two hemisphere, we found the asymmetry shown
in Fig.3.2 , left panel. In a pure FASTICA analysis, one mightbe tempted to try
an explanation in terms of a difference in the overall foreground spectral indeces
in the two hemispheres, since FASTICA assumes an uniform frequency scaling
across the whole sky; but the fact that we obtained the same result with totally
independent procedures, and most importantly the following test, make this expla-
nation unlikely. Indeed, we performed the component separation on the northern
and southern hemisphere separately and derived the CMB power spectrum sepa-
rately for each of them. The spectra are reported in the rightpanel of Fig.3.2. Also
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in this case the northern spectrum is systematically lower than the southern one.
This result strongly disfavors an explanation based on foregrounds for the asym-
metry found in the FASTICA CMB maps. In addition, we point outthe remarkable
agreement between our results and those of Hansen et al. (2006) (see their Fig.8),
obtained with a completely independent technique.
On the FASTICA side, this confirms the reliability of the algorithm when exploited
to reconstruct the finest structure in the CMB pattern out of agiven dataset; on a
purely scientific side, we confirm the existence of a marked asymmetry in the CMB
anisotropy power between north and south in Galactic coordinates, which at the
moment escapes explanations in terms of difference in the foreground properties
on the corresponding two hemispheres.

Figure 3.2:The power spectra derived on the northern (dashed line) and southern (solid
line) hemisphere in the reference frame with north pole at (θ, φ) = (80◦, 57◦). The left
panel shows the spectra derived from the ICA CMB map out of Kp2. In the right panel the
CMB maps are obtained applying FASTICA separately on the twohemispheres. Colors
mark channel combinations as in previous figure. From Maino et al. (2007)

3.2.5 Extensions of the algorithm

The achieved results have been shown to be at leaston parwith, and often better
than, those obtained with the other methods. That has been motivating a further
exploration of the potential of the algorithm and its applicability in a progressively
more realistic and demanding circumstances . This task has been, however, made
significantly more difficult by a number of limitations characterizing the existing
implementations of the algorithm and which had to be resolved by ad hocmeans
devised on a case-by-case basis (Maino et al., 2007).

Stompor et al. (2008a) addressed two issues that have been outstanding in that
respect. The first one relates to a proper treatment of the redundant noisy data
provided as inputs. In fact the original FASTICA algorithm was developed with
mostly noiseless data in mind and required the user to reducethe redundant input
data to an independent set, i.e. such that the number of inputdata sets is equal
to the number of the anticipated independent components. Inother words in the
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original version of the code, the mixing matrixA was supposed to be square and
extra measurement had to be discarded. In realistic cases with the noisy data, such
an approach may unnecessarily lower the quality of the final results. The second
issue is related to a lack of a framework for incorporating priors in the method.
Though the priors may be seen as a departure from the spirit ofthe method, i.e.
its ”blindness”, however, striving for the best possible estimator, it is interesting to
investigate if some priors can be used consistently in the algorithm. In this context,
the inclusion of the CMB frequency scaling as a prior seems tobe of a particular
interest, and the one we focus on hereafter. In relation to this last aspect, we point
out that in the process of the preparation of the manuscript of the Stompor et al.
(2008a) paper, a preprint by Vio & Andreani (2008) has been published, addressing
this issue in a way which is similar to ours, and obtaining consistent results.

Lossless input data compression

As introduced in Stompor et al. (2008a), I’ll describe now the generalization of the
pre-whitening procedure, which properly treats the noisy,redundant data sets, pre-
serving all the available information. The proposed procedure combines the stan-
dard data compression and Principle Component Analysis techniques. Our goal is
to find a linear combination of the input maps which preservesall the information
concerning the sky signal,s, but which consists of the independent data.

We use the eigenvalue decomposition to define the null space of the signal
correlation matrix,C = 〈s st〉. Let U be a matrix rows of which, denotedui, corre-
spond to eigenvectors ofC and diag(ǫi) – a diagonal matrix of the corresponding
eigenvalues, i.e.,

C = U diag(ǫi) Ut . (3.0)

The null space is spanned by a subset of theui vectors, which we will callV.
We also useW to denote the remaining vectors; so we have,

Ut ≡
[
Wt , Vt

]
. (3.0)

Any signal maps,s, in thenm-dimensional space can be found only up to an un-
known arbitrary vector from the null space. Therefore, to make our solution unique
we can impose a set of additional constraints. For example, we can look for solu-
tions which have no component in the null space, i.e.,

V s = 0. (3.0)

We then have
s= Ŵt y, (3.0)

wherey is a vector of the length,nnz, which defines the number of the indepen-
dent componentsnc = nnz and we have introduced̂W = diag

(
ǫ−1/2
i

)
W (the only

non-zeroǫ value are included here), making use of the arbitrariness inthe data
normalization. Then we can plug that into Eq. (3.2.3) to obtain,

m = Ŵt y + n. (3.0)
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A minimum variance (and maximum likelihood) estimate,ŷ, of y is then given by,

ŷ =
(
Ŵ N−1 Ŵt

)−1
Ŵ N−1 m. (3.0)

ŷ is the new, by construction, non-degenerate data set to be processed by the current
FASTICA algorithm with the noise correlations respectively given by,

Nŷ =
(
Ŵ N−1 Ŵt

)−1
. (3.0)

Note that the correlations of the noise between different maps already on the input
are also introduced in the standard FASTICA algorithm due tothe pre-whitening
procedure and therefore are not a new feature of the proposedhere approach.

The signal correlation matrix for the new data,ŷ, is given by,

Cŷ = 〈̂y ŷt〉 =
(
Ŵ N−1 Ŵt

)−1
Ŵ N−1 〈m mt 〉 ×

× N−1 Ŵt
(
Ŵ N−1 Ŵt

)−1
= 1. (3.0)

We thus see that the new data set, thanks to the rescaling applied in Eq. (3.2.5),
does not require any more any pre-whitening stage.

Now, in the case with the input data compression, the normalization and fre-
quency scalings are determined in a way analogous to the one used in the standard
FASTICA technique. This time, however, one needs to accountfor the fact that the
maps on the input of the ICA procedure will, in general, not correspond now to any
particular frequency but will be a linear combination of thesingle frequency maps
as defined in Eq. (3.2.5), i.e.,

ŷ = B c, (3.0)

where the mixing matrix,B, is estimated on the ICA routine output.
From Eqs. (3.2.5) & (3.2.3), we can obtain,

ŷ = y +
(
Ŵ N−1 Ŵt

)−1
Ŵ N−1 n, (3.0)

just showing that our independent data estimator in Eq. (3.2.5) is unbiased, i.e., in
the absence of the noise, as assumed hereafter, we haveŷ = y. Given this and with
help of Eq. (3.2.5), we further have,

s= Ŵt ŷ = Ŵt B c, (3.0)

and hence
A = Ŵt B. (3.0)

Our normalization procedure requires then,

c′i = A0i ci =


∑

j

Ŵ j0 Bji

 ci , (3.0)
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where prime marks a component normalized to the same units asthe input map
corresponding to the 0 -th frequency. This generalizes the approach of Maino et al.
(2002), which corresponds to the choicêW = P−1.

Similarly, the frequency scalings of the recovered components is now given by
the generalized expression for the mixing matrix,A, Eq. (3.2.5). As before this
reduces to the standard form wheneverŴ is a square unit matrix.

CMB prior

The assumption is that the CMB is an ”independent” componentin the ICA sense.
By applying the CMB prior we want to ensure that the scaling ofthe derived CMB
component follows thea priori known law. Consequently, one of the columns of
the mixing matrix,A, which is to be computed via the ICA algorithm needs to
comply with that scaling law up to, at least, an overall, and irrelevant, constant
factor.

The columns of the matrix,A, are uniquely related to the columns of the ”com-
pressed” mixing matrix,B. The relevant relation reads as follows,

b = Ŵ a. (3.0)

Herea andb denote the corresponding columns of the matrices,A, andB, respec-
tively. Imposing the CMB prior, i.e., setting one of the columns of the matrix,A,
to reflect the CMB frequency scaling,a = aCMB , can be then formulated as fixing
the relevant column of theB matrix tobCMB , wherebCMB andaCMB are related as
in Eq. (3.2.5).

Subsequently, we need to construct the full mixing matrix,B, one column of
which is known ahead of the time. The construction is based onthe fact that the
sought-after matrix is orthonormal and therefore all the remaining columns have
to span the subspace orthogonal to the direction defined by the assumed prior. Our
amended ICA algorithm needs therefore to look for the matrixcolumns which
simultaneously maximize our measure of non-Gaussianity and fulfill the latter re-
quirement. Once all but one columns ofB are determined, the last one is bound to
coincide with the imposed prior.

The blue print of a simple numerical implementation is outlined below. Here
we just note that if only the CMB map is required, we in fact do not need to proceed
any further as the CMB map of the sky will be readily given by,

cCMB = bCMB t
ŷ, (3.0)

with the normalization expressed by Eq (3.2.5). This can become a basis to an
extremely simple2, non-iterative and therefore fast CMB cleaning algorithm.Note

2Note that if the input data set is free of any redundancies, then the Eq. (3.2.5) is equivalent to
multiplying the prior,aCMB by the input data pixel-by-pixel, i.e.,cCMB = aCMB m. Generally, this,
however, is not true as the redundant noise of the input data contained in the null space of the matrix,
C, has to be projected out before performing the dot product.



62 CHAPTER 3. COMPONENT SEPARATION TECHNIQUES

that in spite of its striking simplicity this algorithm retains all the pros and cons
of the full FASTICA algorithm as far as the determination of the CMB component
is concerned. However, as fewer sources of the uncertainty are involved in the
simplified algorithm one may expect that a simple error estimation of the final
cleaned CMB map based on the linear error propagation can provide its sufficiently
precise estimates in this case. We discuss the relevant issues later in this Chapter.

Note that if indeed the compression procedure is done properly the scaling of
the recovered component will be as imposed by the prior. Thatcan be seen as
follows. First, note that the frequency scaling of the recovered component is given
by the relevant column,a, of the matrixA and thus can be expressed as,

a = Ŵt bCMB + B V = Ŵt Ŵ aCMB + V d, (3.0)

where the second term results from the zero kernel of the ”compression” matrix,
U, andd is a vector storing arbitrary coefficients. However,

A V = aCMB V = 0, (3.0)

because the singular vectors are determined forAt A matrix and thus must be or-
thogonal to all columns of the matrixA, including the one corresponding to the
CMB components. Given that, the coefficient vector,d, has to be zero and,

a = Ŵt Ŵ aCMB = Ut U aCMB = aCMB , (3.0)

asU is a full-rank orthonormal matrix as defined in Eq. (3.2.5).
Note that in practice the rejected eigen-modes may only be approximately sin-

gular and thus some minor deviations of the posterior scaling from the prior can be
expected.

In principle that could work with any component for which thescaling is as-
sumed to be known. However, the single out component has to beknown, on
physical grounds, to be indeed independent. In particular,whenever we have mul-
tiple components with the scaling determined a priori, theyall need to be mutually
independent.

3.2.6 Pre-launch Planck simulations

One of the first application of the extended FASTICA algorithm has been done on a
Planck total intensity simulated data set. As introduced inthe last Chapter, Planck
is an experiment designed to surpass previous CMB experiments in almost every
aspect. Therefore, a complete and timely exploitation of the data will require meth-
ods that improve upon foreground removal via template subtraction and masking.
The development and assessment of such methods is coordinated within the Planck
‘Component Separation Working Group’ (WG2).

Leach et al. (2008) reported the results of the WG2 activity in the framework of
a component separation challengeusing a common set of simulated Planck data.
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The objective of such a challenge was to assess the readinessof the Planck col-
laboration to tackle component separation, based on the analysis of realistically
complex simulations. It offered an opportunity for comparing the results from dif-
ferent methods and groups, as well as to develop the expertise, codes, organization
and infrastructure necessary for this task.

Sky simulations were based on an early development version of the Planck Sky
Model, as explained in the last Chapter. This data sets were complemented by a
set of ancillary data including hit maps and noise levels, IRAS, 408 MHz, and Hα
templates, as well as catalogues of known clusters and pointsources (see Leach
et al., 2008, for more details).

A bunch of methods have been applied to this data set to test the diffuse compo-
nent separation. Table 3.1 reports the complete list of the methods with their main
characteristics. Although we report here some of the results from all the exploited
algorithms, we do not describe them. For details, see the references in the table.
In the remaining part of this Section we outline the main FASTICA results in this

Channels used Components modeled CPU time/runtime

CCA P, Haslam 408 MHz CMB, dust, sync, FF 70 hr, 1.5 day
Bedini et al. (2005)

COMMANDER WMAP, P 30–353 GHz, CMB, dust, sync, FF, 1000 hr, 2 day
Eriksen et al. (2008) monopoles, dipoles

FastICA 143–353 GHz none 21 min, 20 sec
Maino et al. (2002)

FastMEM P CMB, SZ, dust, sync, FF 256 hr, 8 hr
Hobson et al. (1998)

GMCA P CMB, SZ, sync., FF 1200 hr, 6 day
Bobin et al. (2007)

SEVEM P CMB 30 hr, 30 hr
Martı́nez et al. (2007)

SMICA P, WMAP CMB, SZ, dust, total galaxy 8 hr, 4 hr
Delabrouille et al. (2003)

WI-FIT 70–217 GHz CMB 400 hr, 8 hr
Hansen et al. (2006)

Table 3.1:A summary of methods, dataset, components and computational resources used
in the Planck simulations. From Leach et al. (2008)

particular application.
In Fig.3.3, a quantitative measure of the raw residual CMB map is shown,

provided by its RMS, calculated for 18 zonal bands, each of them 10 degrees wide
in Galactic latitude. It is clear the FASTICA is performing worse than the other
methods close to the Galactic center (see next Section for a discussion about this
issue). Nevertheless, the algorithm is able to provide the lowest residual among all
the codes at high Galactic latitudes.

FASTICA was applied to a limited range of frequencies where the diffuse emis-
sion is mostly represented by CMB and dust. The algorithm wasparticularly ef-
fective in recovering the dust emission at high frequenciesand outside the Galactic
plane. In Fig.3.4 I report a dust patch at 143 GHz as recoveredby FASTICA
(Leach et al., 2008). Although a proper characterization ofthe faithfulness of the
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Figure 3.3:RMS of the residual error of the CMB map, calculated at 45’. For comparison
σCMB = 69.8µK andσnoise= 0.7µK at 143 GHz. From Leach et al. (2008)

reconstruction was not done, the visual inspection revealsa good recover.

3.2.7 Remarks

Up to date the study of the capabilities of FASTICA is not finished and the algo-
rithm still have some evident limitations that I’m going to describe in this Section.

The first issue is represented by the fact that in a typical application, the al-
gorithm is asked to break one of its fundamental assumptions. Indeed, the ICA
approach assumes that the components to be recovered are independent, while
Galactic foregrounds are expected to be correlated with each other, as it may be
understood from what we discussed in the previous Chapter. All the tests made so
far seem to show that FASTICA fails in separating the foregrounds among them,
while it is still able to recover the CMB component that is independent on the
Galactic emission (Maino et al., 2002). Then, in practical situations in which more
than one foreground is known to be in the data, FASTICA can be seen as a fore-
ground cleaning algorithm, rather than a component separation one.

Another intrinsic limitation is represented by the assumption of a single mixing
matrix in the data. This is clearly an approximation, since we expect the foreground
properties to be different across the sky. For example, we saw in the last Chapter
that synchrotron and thermal dust emissions have different spectral indeces in dif-
ferent position in the sky. This is not a big issue for small patch experiments, where
the spatial variation are expected to be small and possibly negligible, but it becomes
important when one has to deal with all-sky surveys. At first order it is possible to
ignore this fact and force the code to look for a single mixingmatrix, but it has been
demonstrated (Baccigalupi et al., 2004) that in this case the separation is worse in
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Figure 3.4:Comparison between input and output dust patch as recoveredby FASTICA
at 143 GHz, from Leach et al. (2008).

terms of foreground residuals in the CMB recovered map. One possible solution
would be to cut the sky in different patches (given any possible driver to choose
them) and perform separation separately on each of them. An extensive study on
this possibility has not been done yet, but it is easy to foresee a couple of potential
drawbacks here. First of all, given the smaller amount of available pixels in each
separation, the statistics of the components would be harder to infer and the sepa-
ration itself could be harder (this is probably not a big issue for the analysis on the
Planck data, given the huge number of available pixels). Second, it is not trivial to
put back together all the small separated maps, without incurring in sudden jumps
at the borders.

Finally, there is a third issue that is becoming more and moreimportant inside
the CMB community: error assessment. The non-linear natureof the FASTICA al-
gorithm makes it difficult to propagate fully consistently the noise and reconstruc-
tion errors from the input all the way to the maps of the separated components.
In the past the problem have been addressed with help of numerical experiments
and simulations (Stivoli et al., 2006; Maino et al., 2007). These can be considered
as first attempts toward a better understanding of the error propagation within the
FASTICA process. Of course, the final goal would be an analytic treatment of
the problem, that would allow to properly propagate the errors to the next steps of
CMB data analysis pipeline.
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3.3 Parametric Approach

The defining premise of a parametric approach to the component separation is the
assumption that the functional form of the frequency scaling for all involve com-
ponents is known, and our ignorance can be quantified by meansof relatively few,
though non-linear, spectral parameters (see for example Stompor et al., 2008b, and
reference therein). The approach consists in modeling the behavior of all the com-
ponents in the mixing matrix and trying to recover the parameters of such a model
via a fitting procedure, that in principle can be performed ona pixel-by-pixel basis.
This aspect puts the parametric approach in the second group(”one item”) of our
category. The attractiveness of this approach lies in its simplicity, the flexibility
of the parameterization schemes and possibility of phrasing the separation prob-
lem in a coherent maximum likelihood form (Jaffe et al., 2004). Its strength lies
in exploiting nearly optimally the prior knowledge of the frequency scaling of the
components, while ignoring the information which is less known and more debat-
able. Its weakness is related to the difficulties in performing the non-linear and
high-dimensional parameter fits especially in a low signal-to-noise ratio regime
on the pixel, and numerical efficiency, given the large number of pixels,O(107),
anticipated from the next generation of the CMB experiments.

In a recent paper, Eriksen et al. (2006) reconsidered a parametric approach to
the component separation task originally introduced by Brandt et al. (1994) and
proposed a method which was shown to be both numerically efficient and stable in
the application to the nearly full-sky real (WMAP) and simulated (Planck) data. In
that method, the numerical efficacy and stability is achieved by splitting the param-
eter and component map estimations into two separate steps.The spectral param-
eter fitting is performed pixel-by-pixel on the input data which are first smoothed
and underpixelized. This preprocessing stage is found to benecessary because of
the high noise in the full resolution pixels. It also makes the procedure more nu-
merically tractable as fewer fits have to be done. The fitting criterion, employed by
Eriksen et al. (2006), uses a likelihood function (but not a maximum likelihood as
we will see later), and involves at the same time the (non-linear) spectral parameters
as well as (linear) component amplitudes of the smoothed input maps. They use a
Monte-Carlo Markov Chain sampling technique as a way to determine the best-fit
parameters. Once the non-linear parameters have been estimated at low resolution,
by marginalizing over the component amplitudes, the latterare recovered at full
resolution simply by solving the System (3.1).More detailson the method can be
found in Eriksen et al. (2006).

In the work we describe now (Stompor et al., 2008b), we modified the Eriksen’s
method, deriving analytically its maximum likelihood form, improving some of the
features outlined above, while preserving the efficency of the two steps approach.
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3.3.1 The maximum likelihood parametric approach

As introduced with Eq.(3.1), we can model the multi-frequency sky signal as

dp = Ap sp + np. (3.1)

Here,dp is a data vector containing the measured signals for allnf frequencies (but
also for thens Stokes parameters, if one wants to explicitely deal with polarized
maps), which are to be analyzed simultaneously;sp is a vector of the underlying
true values of thenc components, to be estimated from the data;Ap ≡ Ap (β) is
the mixing matrix, which hereafter will be assumed to be parameterized by a set of
unknown parameters{βi}. With these definitions and models in hand we can write
a single pixel log-likelihood which up to an irrelevant constant, K, is given by,

−2 ln L
(
sp, βi

)
= K +

(
dp − Ap sp

)t
N−1

p

(
dp − Ap sp

)
. (3.2)

Here,Np is a square, symmetric noise matrix of the frequency maps fora pixel
p. This likelihood is the basis of the Eriksen et al. (2006) approach. It is clearly
straightforward to introduce a multi-pixel version of thislikelihood:

−2 ln Ldata (s, β) = K + (d − A s)t N−1 (d − A s) , (3.3)

where all the matrices and vectors now span over many pixels.Hereafter, we will
refer to this likelihood as the full data likelihood. In the simple case of the matrix
N being block-diagonal (thus allowing for correlations between different Stokes
parameters at each pixel), Eq. (3.3) becomes:

−2 ln Ldata(s, β) = K +
∑

p

(
dp − Ap sp

)t
N−1

p

(
dp − Ap sp

)
. (3.4)

This likelihood reaches its maximum for the values ofs and βi that satisfy the
relations:

−
(
A ,β s

)t
N−1 (d − A s) = 0 (3.5)

s=
(
At N−1 A

)−1
At N−1 d, (3.6)

where,βi denotes a partial derivative with respect toβi . Solving the generally non-
linear first equations above can be potentially problematicin the case of multi-
ple spectral parameters, due to their generally non-linearcharacter (Brandt et al.,
1994). However, once the values of the spectral parameters are found the second
set of linear equations provides straightforward estimates of the pixel amplitudes.
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3.3.2 Non-linear parameters

The new idea in the work by Stompor et al. (2008b) is to marginalize the likelihood
in Eq. (3.3) over component amplitudess:

−2 lnLmarg(β) = −2 ln
∫

ds exp

[
−1

2
(d − A s)t N−1 (d − A s)

]

= K −
(
At N−1 d

)t (
At N−1 A

)−1 (
At N−1 d

)

+ ln
∣∣∣∣∣
(
At N−1 A

)−1
∣∣∣∣∣ , (3.5)

where|...| denotes the matrix determinant. This expression defines thelikelihood
function for the parameters,βi , given the data,d, and under the assumption of the
flat priors for the component amplitudes,s. Thanks to this relation, the spectral
parameters for any subset of pixels can be estimated via any of the standard meth-
ods of gridding, maximization or sampling. This approach isfully consistent with
the one proposed by Eriksen et al. (2006), apart from the factthat it does not re-
cover the components amplitudes at low resolution, something that usually is not
useful in the analysis anyway. On the other hand, this analytically derived likeli-
hood function has the advantage that it is really straightforward to incorporate in
the formalism some of the essential features of the CMB data sets, as we will see
later.

Marginalizing over the component amplitudes is not the onlyimprovement
made by Stompor et al. (2008b). Indeed, the spectral parameter estimate based
on the maximum value of the marginalized likelihood in Eq. (3.5) turns out to be
biased with respect to an ensemble of noise realizations. This can be seen by cal-
culating the first derivative of Eq. (3.5):

−2
∂ lnLmarg

∂βi
= + 2

(
At N−1 d

)t
N̂ At N−1 A ,βi N̂

(
At N−1 d

)

− 2
(
At
,βi

N−1 d
)t

N̂
(
At N−1 d

)

− 2 tr
[
N̂

(
At N−1 A ,βi

)]
, (3.4)

and taking its average over the noise realization, denoted as 〈...〉, with the spectral
parameters set to their true values,

−2〈
∂ lnLmarg

∂βi

∣∣∣∣∣∣
β=βtrue

〉 = −2 tr [N̂ At N−1 A ,βi ], (3.5)

which in general does not vanish. Here, we have introduced

N̂ ≡
(
At N−1 A

)−1
, (3.6)

and exploited the fact that̂N is symmetric. The bias is quantified by the logarithmic
term in Eq. (3.5). To avoid it we can introduce an unbiased estimator based on the
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Figure 3.5:The RMS of the signal amplitudes for the CMB (dot-dashed) andthermal dust
(dashed line) smoothed with the 8′ beam and for, left panel, total intensity,I , and, right
panel, StokesQ parameter, is shown as a function of frequency. The solid line indicates
the RMS of the total coadded signal. The noise RMS per pixel (nside= 1024) is also shown
for the three frequency channels considered in the text. From Stompor et al. (2008b).

maximization of the marginalized likelihood as before but with the logarithmic
term dropped:

−2 ln Lspec(β) ≡ K −
(
At N−1 d

)t (
At N−1 A

)−1 (
At N−1 d

)
. (3.7)

The equation above is one of the main results of the work by Stompor et al. (2008b).
The additional attractive feature is that its solution coincides, case-by-case, with
the maximum likelihood solution of the initial, non-marginalized likelihood as in
Eq. (3.3). This can be seen by comparing the first derivative of both likelihoods,
which in the case of the full data likelihood reads (see Eqs. (3.3) and (3.5)),

−2
∂ lnLdata

∂βi
= − 2

(
At N−1 d

)t
N̂ At

,βi
N−1 d

+ 2
(
At N−1 d

)t
N̂ At

,βi
N−1 A N̂ At N−1 d (3.7)

and which thus agrees with the expression in Eq. (3.4), but only when the logarith-
mic term derivative is neglected.

Numerical examples

A few examples of the applications of the formulae above willbe presented now.
To perform such a study, we simulated the CMB and thermal dustpolarized emis-
sion on a patch of sky with an area of 350 square degrees centered atRA = 60◦

andDEC = −45◦, adopting the HEALPix convention (Górski et al., 2005) , with
a pixel resolution of 3.4′ (nside=1024). Simulated sky are made at three channels
(150, 250 410GHz) at 8′ resolution, with a white noiseRMS level of 0.56, 0.66,
1.13µK respectively, in antenna (Rayleigh-Jeans) units. We stress that this setup
corresponds to a typical one for modern suborbital probes aiming at CMB polar-
ization measurements (Oxley et al., 2004). The components have been simulated
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Figure 3.6: The one dimensional likelihoods for the slope index,β, computed for the
total intensity and the StokesQ parameter (left and right panels). The histograms show the
result of the MCMC sampling of the full data likelihood, Eq. (3.3). The thick solid and
dashed lines show the result for the biased and unbiased likelihood expressions, Eqs. (3.5)
and (3.7) respectively. The dotted vertical lines show theβ value corresponding to a peak
found through a direct grid search. From Stompor et al. (2008b).

following the recipes introduced in the last Chapter with the only difference that in
order to extrapolate the dust from 65 GHz back up to our frequency range we used
‘Model 3’ of Finkbeiner et al. (1999),

sd(ν) = Ad
ν

exp hν
kTd
− 1

exp hν0
kTd
− 1

ν0

(
ν

ν0

)β
, (3.8)

with Td = 18.1K andβ = 1.65, assumed constant on the patch. In Fig.3.5 we plot
the frequency scaling of the CMB and dust RMS for total intensity and polarization,
along with the error bars from simulated noise. The dust spectral indexβ is the
non-linear parameter involved in the problem (the temperatureTd is assumed to be
known) and the following analysis will be centered on it.

Three major observations made so far are visualized in Fig. 3.6. First of
all, there is a perfect agreement between the numerical marginalization (the his-
tograms, computed via MCMC) of the full data likelihood in Eq.(3.3) and the an-
alytic formula derived, Eq.(3.5) (solid lines). Second, itis evident the presence of
the bias when these two quantities are compared to the peak ofthe full data likeli-
hood found through a direct grid search (vertical dotted line). Finally, the lack of
such a bias when the spectral likelihood, Eq.(3.7) (dashed lines), is adopted.

But let’s push the comparison a bit further. In the search forthe best estimation
of β, there are two implementations of the formalism that can be adopted. One
is thesingle-pixelapproach, as proposed by Eriksen et al. (2006), that is to first
smooth the available data and downgrade it to a lower resolution, prior to calcu-
lating the spectral likelihood for each low-resolution pixel separately. The spectral
parameters determined in this way are then applied to all thehigh resolution pixels
falling into the low resolution one. The second implementation is the one proposed
by Stompor et al. (2008b) in which, without any preprocessing, a subsets of the
available maps, for which the assumption of a single set of spectral parameters is
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Figure 3.7:The one dimensional likelihoods for the slope index,β, computed for the total
intensity and the StokesQ parameter (two left and two right panels). The solid and dotted
lines represent the unbiased and the biased cases, equations 3.7 and 3.5 respectively, com-
puted using themulti-pixel approach. The dashed and dot-dashed lines (nearly perfectly
overlapping) show the corresponding results derived for the single-pixel approach. The
homogeneous and inhomogeneous noise cases are shown by the first and the second panel,
respectively, of each pair of panels. From Stompor et al. (2008b).

physically justifiable, is analyzed. Let’s call the lattermulti-pixelapproach.
The likelihood functions (both the biased and the unbiased)calculated in the

two ways are presented in Fig. 3.7. The two left panels show the total intensity
cases for homogeneous and inhomogeneous noise distribution (the latter was ob-
tained by allowing for a

√
3 noise RMS variation across the patch, changing ran-

domly across the patch). The unbiased and the biased likelihood are represented by
the solid and dotted lines in themulti-pixelapproach, while the nearly overlapping
dashed and dot-dashed lines are for thesingle-pixelone. In the homogeneous case,
the bias in the likelihood of Eq.(3.5) is evident for themulti-pixelapproach, while
the same likelihood still performs well in thesingle-pixelapproach (I will give an
intuitive explanation for that later on). Nevertheless, inthe inhomogeneous noise
case, the difference between the two approaches as well as the biased and unbiased
likelihoods is much more evident and manifests itself as an overall shift and broad-
ening, showing the macroscopic gain in adopting the expression in equation (3.7)
throughout the analysis.

The two right panels of Fig. 3.7 show analogous cases but for the StokesQ
parameter. Here the biasedmulti-pixel likelihoods (dotted lines) are not shown as
they do not fit thex-axis ranges. Note that unlike in the total intensity case the sin-
gle and multi-pixel likelihoods differ even in the homogeneous noise case (middle
panel, the solid and dashed lines). This reflects the fact that in the simulations used
here there is more small-scale power in the dust polarization than in the total inten-
sity, which leads to the loss of constraining power as a result of smoothing in the
single pixel approach. The effect is additionally enhanced if the inhomogeneous
noise is present as shown in the right panel. In both cases thebias and the loss
of precision are small, as expected given a relatively smooth variation of the dust
foreground as adopted here.

At this point one may wonder what happens when more pixels areadded to
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the analysis. As expected, by using more pixels, the constraints can be usually
improved. However the rate at which that takes place is not trivial and will depend
on the specific, and not known a priori, magnitude of the sky component in the
newly added pixels, as well as the pixel instrumental noise levels, and therefore
may not conform with the usual,∼ 1/

√
npix, expectation. Nevertheless, for the dif-

fuse components, and in particular at high Galactic latitudes we find that once the
number of included sky pixels is large enough the uncertainty of the slope deter-
mination falls roughly as expected, i.e.,∼ 1/

√
npix. However, even in an extreme

case when the newly added pixels happen to contain no information about a given
component, the uncertainty, estimated using the multi-pixel approach, is guaran-
teed not to deteriorate. This may not be however the case withthe single pixel
approach, where including too many, for instance, dust-free pixels may suppress
the noise power less than that of the dust and consequently increase the errors of
the dust parameter determination. In a less extreme and morecommon case, the
smoothing of the rapidly varying sky components whose amplitudes change across
the low resolution pixel, will somewhat affect the precision of the spectral param-
eter determination, though will not bias the estimation result. The presence of the
inhomogeneous noise on the scales smaller than the low resolution pixel will also
have similar consequences.

In the examples considered so far, the smoothing generally leads to an im-
provement of the constraints on the spectral parameters because the noise is typ-
ically suppressed more significantly than the dust component. Anyway, in all the
cases shown, themulti-pixelapproach will produce nearly optimal constraints, in-
dependently of the actual sky distribution of the signals. It is also more flexible
as it permits arbitrary pixel subsets for which identical spectral parameter values
are assumed, and thus can better deal with the masked pixels and sky patch edge
effects. Moreover, as discussed before, it also treats more optimally cases in which
either the noise or the relative component content varies rapidly across the sky. For
all these reasons themulti-pixel approach described in Stompor et al. (2008b) is
therefore an approach of the choice here.

The evaluation of the spectral index is the first step toward the recovery of
the actual maps of the components in the data, that will be described in the next
Section.

3.3.3 Component amplitudes

We can calculate the maximum likelihood estimates of the component maps, given
the maximum likelihood estimates of the spectral parameters derived in the previ-
ous Section and expression for the peak of the data likelihood, equation (3.6). I
rewrite that equation here for simplicity:

s=
(
At N−1 A

)−1
At N−1 d. (3.8)

The above equation also corresponds to a standard general least square solution
for the components, if the spectral parameters are perfectly known ahead of the
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time. In this case the solution error is quantified by the error correlation matrixN̂,
equation (3.6):

N̂ ≡
(
At N−1 A

)−1
. (3.8)

Whenever the spectral parameters are not known perfectly, and need to be con-
strained from the data, we can get some insight into the structure of the error corre-
lation matrix from the curvature matrix computed at the peakof the likelihood.
Stompor et al. (2008b) provided a complete analysis of the solution error (see
Appendix A of the paper for the full computation). We can write explicitly this
expression for the component amplitudes:

ÑΛs s= N̂ +
[
N̂

(
At N−1 A ,β s− At

,β N−1 (d − A s)
)]
× (3.9)

ÑΛβ β
[
N̂

(
At N−1 A ,β s− At

,β N−1 (d − A s)
)]t

.

This quantity is thes−sdiagonal block of the inverse curvature matrix. It describes
the correlation pattern of the recovered sky components, while the β − β block,
NΛβ β, provides estimates of the errors, and their correlations,of the recovery of
the spectral parameters:

ÑΛβ β =
{(

A ,βi s
)t

N−1
(
A ,βj s

)
−

(
A ,βi βj s

)t
N−1 (d − A s)

−
[
At N−1 A ,β s− At

,β N−1 (d − A s)
]t

× N̂
[
At N−1 A ,β s− At

,β N−1 (d − A s)
]}−1

. (3.7)

The two relations above are clearly an important tool available in the appli-
cation of this method. One can analytically associate an error to the recovered
component maps, a fundamental step that is still missing to many other component
separation techniques.

3.4 Correlated Component Analysis

The last method we present in this work is the Correlated Component Analysis
(CCA, Bedini et al., 2005; Bonaldi et al., 2006), which is a technique that exploits
second order statistics of the data to estimate the spectralbehaviour of the mixed
components. Let’s introduce the basic idea.

3.4.1 Mixing matrix estimation with CCA

As usual, we express the data vectord in each pixel as:

d = As+ n, (3.7)

whereA is aM × N mixing matrix,s is theN-vector of sources (components) and
n the M-vector of instrumental noise (M is then the number of independent maps
used in the analysis).
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Given a generic signald, defined in a two dimensional space with coordinates
(ξ, η), the covariance matrix of this signal is:

Cd(τ, ψ) = 〈[D(ξ, η) − µ][D(ξ + τ, η + ψ) − µ]T , 〉, (3.8)

where 〈...〉 denotes expectation under the appropriate joint probability and µ is
the mean vector. Every covariance matrix is characterized by the shift pair (τ, ψ)
that links each pixel to a shifted one:τ andψ are the increments in theξ andη
coordinates.

From Eq.(3.4.1) we can easily derive a relation between the data covariance
matrix Cd at a certain lag, the source covariance matrixCs at the same lag, the
mixing matrixA, and the noise covariance matrixCn:

Cd(τ, ψ) = ACs(τ, ψ)AT + Cn(τ, ψ). (3.8)

The covariance matrixCd can be estimated from the data as

Cd(τ, ψ) =
1

Np

∑

ξ,η

[d(ξ, η) − µd][d(ξ + τ, η + ψ) − µd]T , (3.8)

whereNp is the number of pixels sampling the data. Given a noise process, we
can model the noise correlation matrixCn: for example, if noise can be assumed
to be signal-independent, white and zero-mean, then for a null lag Cn is a diagonal
matrix whose elements are the noise variances in the measured channels, while for
(τ, ψ) , (0, 0), Cn is the nullM × M matrix. If the noise process deviates signifi-
cantly from this ideal model,Cn can be computed using Monte Carlo simulations
of noise maps.

OnceCd andCn have been set, Eq. (3.4.1) can be used to identify the mixing
operatorA. The strategy of CCA is to parameterize the mixing matrix in order to
reduce the number of unknowns and then to take into account enough nonzero shift
pairs (τ, ψ) in order to estimate bothA andCs. To solve the identification problem
we perform the minimization:

(Γ,Σ(:, :)) = argmin
∑

τ,ψ

‖ A(Γ)Cs[Σ(τ, ψ)]AT (Γ) + (3.9)

−Ĉd(τ, ψ) − Cn(τ, ψ) ‖,

whereΓ is the vector of all parameters definingA andΣ(:, :) is the vector containing
all the unknown elements of matricesCs for every shift pair.

The main product of CCA is an estimate of the mixing matrixA, locally on
patches, whose dimensions can vary case by case, depending on how many pixels
are needed to have the problem in Eq.(3.9) to converge (Bonaldi et al., 2006). Once
the matrix has been estimated, it can be used to perform the source reconstruction
with standard inversion methods.
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3.4.2 The analysis on WMAP

In this Section, I will present the main results of the analysis we performed on
the WMAP 3-year data using the CCA technique. Complete details can be found
in Bonaldi et al. (2007). This work was mainly focused on the study of the fore-
grounds and the impact of the residuals of the separation on the CMB, as we will
see now.

The data set

The basic data are the WMAP 3-year maps at all the frequency channels (K, Ka,
Q, V and W bands). As requested by the algorithm, some preprocessing of the data
was necessary. First of all, the maps were smoothed to the common resolution of
1◦. Then, a proper mask had to be defined to put the code in the bestwork con-
ditions. Point sources have been masked according to the point source catalogue
provided by the WMAP team and, to mask out the most intense foreground region,
we applied a Galactic cut of±3◦. Finally, we masked a few highly contaminated
regions, namely Cen A, the Large Magellanic Cloud,ρOph, Orion A, Orion B and
Tau A.

The noise correlation matrix,Cn, has been estimated with a Monte-Carlo on
10 simulated noise maps with the nominal characteristics ofthe instrument, pre-
processed in the same way as the data.

Together with the WMAP channels, we found necessary to complement the
data set with two templates, one for the thermal dust and one for the synchrotron.
As explained in the previous Chapter, the former is obtainedextrapolating to 850
GHz the FIRAS dust map using the best-fit model of Finkbeiner et al. (1999),
while the synchrotron map is based on the Haslam et al. (1982)408 MHz map. To
avoid free-free contamination in the synchrotron template, the latter was obtained
by subtracting from the Haslam map the free-free contribution estimated from the
Hα map corrected for dust absorption (Dickinson et al., 2003).

Evidence for an extra component

The first step in the analysis was to define a conservative model for the data, con-
taining only the standard mixture of CMB, synchrotron, free-free and dust. Since
the thermal dust spectrum is only very poorly constrained bythe WMAP data, the
results are very weakly dependent on the assumed dust temperature and emissivity
index. We then fixed these quantities to the commonly used valuesTdust = 18 K
andβd = 1.67 in Eq.(3.8). Since also the free-free spectral index can be safely as-
sumed as known, we are left with only one free parameter, the synchrotron spectral
indexβs.

The distribution ofβs obtained with CCA is shown in Fig.3.8 (left panel). The
two-peak feature is evident. One peak is atβs ≃ 2.7 and has a dispersionσ ≃
0.2, which is roughly what is expected for the synchrotron emission. The second
peak, atβa = 2.3852, is extremely narrow (σ ≃ 0.0004), hinting at a different
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component. We explicitly checked that this distribution isunaffected by different
choices of the thermal dust parameters. In Fig.3.8, right panel, we show the map
of the recovered synchrotron spectral indices. The flattishcomponent is mainly
located at low Galactic latitudes, more than∼ 40◦ away from the Galactic center
and does not correlate significantly with the synchrotron template.

Figure 3.8:(Left panel) The distribution of the synchrotron spectral index recovered by
CCA. It shows the presence of an unmodeled component with a very narrow distribution
index. (Right panel) Map of the recovered spectral index. The flatter component do not
show significant correlation with the synchrotron template.

To account for this extra component, it was necessary to put it in the model.
According to de Oliveira-Costa et al. (2004) and Davies et al. (2006) the spectrum
of the anomalous emission forν > 20 GHz may be represented by a parabola in the
(logν, logS) plane:

logTA,X(ν) = const−
(

m60 logνmax

log(νmax/60 GHz)
+ 2

)
logν

+
m60

2 log(νmax/60 GHz)
(logν)2, (3.8)

with ν in GHz andνmax = 20 GHz. The free parameter,m60, is the angular coeffi-
cient at 60 GHz in the (logν, logS) plane. CCA found that the mean values ofm60

over the sky patches are in the range 3.8 ≤ m60 ≤ 4.5, and correlate withβs. The
linear best-fit relation is:

m60 = (2.1101± 0.0005)βs − (2.073± 0.002). (3.8)

The corresponding spectral shape is compatible with the anomalous emission de-
tected by Davies et al. (2006).

Last clue on the nature of this extra component came from the study of its mor-
phology, once the component maps were recovered. It turned out that it shows a
high, but not perfect, correlation with the dust component.Davies et al. (2006)
suggested that, if this component is due to spinning dust, itshould be better corre-
lated with the small grains dominating the mid-IR emission than with the big grains
dominating at far-IR to sub-mm wavelengths. The map of this component yielded
by our model could then constitute its first, albeit preliminary all-sky template.
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Recovered CMB

Even if the work by Bonaldi et al. (2007) was mostly focused onthe study of the
foregrounds, the code was able to provide, as a side product,the CMB map showed
in Fig.3.9. We did not go into a detailed analysis of this map,beside the fact that it
shows a negligible spatial correlation with all the foreground templates used in the
analysis when the extra component is considered into the model.

Figure 3.9: Recovered CMB maps, out of the WMAP 3 year data. This maps shows
negligible corelation with the foreground templates used in the analysis.

The last question we tried to address was the following: to what extent do the
different foreground modeling affect the estimates of the CMB power spectrum on
large scales? To answer this question we performed the analysis with 5 different
models for the foregrounds, including the one we introducedabove. I’m not going
into details here, but out of this 5 models, 3 provided reasonable results in terms
of foreground recovery, all of them including a different model for the anomalous
emission (see Bonaldi et al., 2007, for a complete discussion on this point). The
recovered CMB power spectrum for each model is shown in Fig. 3.10. We gen-
erally find good agreement with the WMAP power spectrum, shown by the solid
line, but there are significant differences among the various models at the lowest
multipoles, especially evident forl = 2. At large multipoles the power spectrum
seems to be unaffected by the choice of the model.

Regardless of which is the actual model we are exploiting, this result shows
that the model of the Galactic components used to perform component separation
can affect the CMB power spectrum on larger scales. Thus, large error bars are
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required to take into account possible biases at these multipoles, something that
the WMAP team never considered so far. In this analysis, as a rough estimate of
uncertainties associated to foreground modeling, it makessense to consider the
spread of our three CMB power spectra. In Fig.3.11 we report the power spectrum
as recovered by CCA, averaged on the three models, with the spread around the
mean as error bars. It is compared to the best fitΛCDM model (smooth solid line,
shaded area is the cosmic variance).

Figure 3.10: Binned CMB power spectra obtained from all models compared to the
WMAP three-year power spectrum.
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Figure 3.11:Upper panel: best fitΛCDM model (smooth solid line) compared to the
WMAP CMB power spectrum (dashed line) and to the mean final power spectrum re-
sulting from our analysis (open diamonds; the error bars show the spread of results for
different models). The shaded area shows the cosmic variance. Lower panel: uncertainties
associated to foreground modeling (dashed line) compared to the cosmic variance (solid
line).
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Chapter 4

B mode recovery

4.1 Introduction

The main target of the planned probes for measuring the polarized component
of the Cosmic Microwave Background (CMB) radiation is represented by the B
modes, also known as ‘curl’ component (Zaldarriaga, Seljak, 1997; Kamionkowski
et al., 1997). As introduced in the first Chapter, the CMB B mode signal is known
to be generated by primordial gravitational waves and the weak lensing due to
structures forming in the Universe (Zaldarriaga, Seljak, 1998), and thus contains
unique information about the early Universe, and, potentially, physics of very high
energies, beyond those reached in modern particle accelerators.
The B signal in the CMB polarization is more than one order of magnitude smaller
than the ‘gradient’ mode (E) coming from all kinds of cosmological perturba-
tions, and about two orders of magnitude lower if compared with the total intensity
anisotropies (T). The CMB E mode and theTE cross-correlation, have been de-
tected by the WMAP satellite as well as instruments operating on the ground (Ko-
vac et al., 2002; Readhead et al., 2004) and from balloons (Montroy et al., 2005).
No glimpse of the B has been seen so far and it is apparent that its detection will
represent an experimental and data analysis challenge in terms of control and treat-
ment of systematics and instrumental noise needed to attainthe required precision.
An additional important limiting factor for these experiments is related to fore-
ground emissions. In the frequency range going from 70 to 150GHz the diffuse
Galactic emission is known to be sub-dominant with respect to the total intensity
CMB signal at intermediate and high Galactic latitudes. However, the foreground,
whose polarized pattern remains quite unknown expecially at high Galactic lati-
tudes, is expected to highly contaminate the weak cosmological B signal every-
where in the sky and at any frequency (Baccigalupi, 2003).

In this context, it is crucial to develop reliable data analysis techniques and
tools which are capable of cleaning the CMB polarized emission from the fore-
ground contamination. In this Chapter, I will describe two applications of compo-
nent separation aimed to B modes recovery.

81
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4.2 FASTICA and the B modes

In Stivoli et al. (2006) we tested FASTICA performance in thereconstruction of
the CMB polarized emission on a limited region of the sky, focusing on the re-
covery of B modes. Our work represented an exploratory study, not specialized to
describe any particular operating or planned experiment, and not aiming at quanti-
fying what is the minimum level of B modes detectable in presence of foregrounds.
Our aim was rather to determine if the blind component separation techniques have
the capability to recover the B modes corresponding to a tensor to scalar ratio of
about 10%, observed on a limited patch of the sky in the presence of a substantial
foreground contamination as estimated on the basis of the models of the Galactic
emission.

4.2.1 Simulated maps

As said before, for this simulation we target a small patch inthe sky where the
foreground emission is known to be low. Such a region is centered on the po-
sition (60◦,−50◦) in right ascension and declination. It has been observed by
BOOMERANG 2K (Montroy et al., 2005), and is the target of the EBEX (Ox-
ley et al., 2004), QUAD (Bowden et al., 2004) and QUIET experiments.

Two sets of simulated polarized skies were generated, one atlow frequencies
(40 GHz and 90 GHz) and one at high frequencies (150 GHz and 350GHz). A
combination of CMB plus synchrotron and CMB plus dust are simulated in the
former and the latter pair, respectively. The sky models were based on the available
data at the time in which the work was carried out.

The CMB emission is simulated accordingly to the cosmological concordance
model (Spergel et al., 2003). The Hubble constant isH0=72 km/s/Mpc, the overall
geometry is flat, with a critical density made of baryons (4.4%), Cold Dark Matter
(CDM) (22.6%), and the cosmological constant (73%). The radiation component
consists of photons and three massless neutrino species. The optical depth to the
last scattering surface is fixed atτ = 0.11. The perturbations are Gaussian, with
a primordial power spectrum characterized by a spectral index of scalar perturba-
tionsns = 0.96. Unless otherwise specified, the primordial gravity wavecontribu-
tion was set to 10% of the scalar perturbation amplitude, with a spectral index fixed
accordingly to the single field inflationary model,nt = −ns/6.8. When explicitly
specified, we also considered the case in which no gravity waves are present. We
included the contribution due to lensing in the power spectrum, which is respon-
sible for substantial part of the power in the B modes of the CMB polarization
anisotropies.

The polarized synchrotron emission was simulated with the following recipe.
A template for the polarization angleθ was derived by exploiting the observations
in the radio band: these measures indicate a rather high fluctuation level interpreted
as the effect of the small scale structure of the Galactic magnetic field (Uyaniker
et al., 1999; Duncan et al., 1999), scaling asCθ

l ∼ l−2 on degree and sub-degree
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angular scale, up to the arc-minute (Tucci et al., 2002), consistently also with ob-
servations at medium Galactic latitudes (Carretti et al., 2005). It is worth noting
here that WMAP three year analysis showed an evidence for a shallower slope
in the polarization angle pattern, at least on large angularscales and intermediate
Galactic latitudes (Page et al., 2007). In the last few years, the latter became the
standard way to model the slope. In the Stivoli et al. (2006) paper the template for
the polarization angle was obtained by adopting the form above forCθ

l , and assum-
ing Gaussian distribution. The polarized intensity was derived using the model by
Giardino et al. (2002) who exploited the all sky template of synchrotron in total
intensity at 408 MHz (Haslam et al., 1982), assuming a theoretically synchrotron
polarization fraction of about 75%; since that template hasa resolution of about
one degree or less, they extrapolated the power to the smaller scales by exploiting
the total intensity observations in the radio band (Uyaniker et al., 1999; Duncan
et al., 1999).

The polarized emission from the diffuse thermal dust has been detected for the
first time in the Archeops data (Benoit et al., 2004), indicating a 5% polarization
fraction with respect to the total intensity emission, which is very well known at
100µm and can be extrapolated at microwave frequencies fitting for the emissivity
and temperature of two thermal components (Finkbeiner et al., 1999); in Stivoli
et al. (2006), we adopted the model 8 of that work, where dust emissivity and
temperatures do not vary across the sky. The dust polarization fraction reported
by WMAP three years is also consistent with a few percent. Thepattern of the
polarization angle is much more uncertain, and due to the magnetized dust grains
which get locally aligned along the Galactic magnetic field (Prunet et al., 1998;
Jones et al., 1995). Since the geometry and composition of the dust grains is still
very uncertain, the simplest assumption is that the Galactic magnetic field is 100%
efficient in imprinting the polarization angle pattern to the synchrotron and dust
emission (Baccigalupi, 2003).

In Figure 4.1 we show the contamination to the all sky CMB E andB spectra
from the foreground emission corresponding to the synchrotron and dust diffuse
Galactic signal after cutting out the Galactic plane up to|b| = 50◦, roughly corre-
sponding to the latitudes considered in Stivoli et al. (2006). The foreground power
has been evaluated by fitting the actual sky signal with a power law, Cl = αlβ. As
it is evident, the models of the foreground emission indicate that the contamination
to the B modes of the CMB is relevant in all cases. The lines raising asl2 represent
the levels of instrumental noise which we considered here. We point out again that
these simulations reflect the status of our knowledges and foreground modeling at
the time the work was carried out.

For simplicity, we considered a circular sky patch with a radius θC = 10◦

and 20◦, corresponding to about 0.76% and 3.04% of the entire sky, respectively.
The center in Galactic coordinates is atl = 260◦, b = −62◦, within the region
considered by different experiments as said before. The sky emission at the various
frequencies, corresponding to theQ Stokes parameter, is shown in Figures 4.2 &
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Figure 4.1:Power spectra of the different polarized sky signals relevant to the microwave
observations. The almost flat straight lines represent the foreground contamination ob-
tained by cutting out the Galactic plane up to|b| = 50◦, and fitting those with a power
law; the steep straight lines raising asl2 represent the instrumental noise assumed in this
work. The left and right panels show the predictions for the 40, 90 GHz and 150, 350
GHz frequency bands, respectively. The solid lines represent a lower frequency, while the
dashed ones a higher one. These signals are plotted against the full sky CMB power spectra
of anisotropies in thermodynamical units for E and B as assumed in Stivoli et al. (2006).
Foregrounds models changed substantially in the last years.
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Figure 4.2:The total (CMB plus foregrounds)Q Stokes parameter emission in the sky
area considered in the text, at 40 (left) and 90 GHz (right). At 90 GHz the signal appears
dominated by the CMB signal, while the synchrotron contamination is evident at 40 GHz.

Figure 4.3:The totalQ Stokes parameter emission in the sky area considered in the text,
at 150 (left) and 350 GHz (right). At 150 GHz the signal appears dominated by the CMB
emission, while the dust emission dominates at 350 GHz.

4.3. At 90 and 150 GHz the CMB signal appears relatively free of foreground
contamination, while at 40 and 350 GHz the foregrounds dominate.

4.2.2 Polarization pseudo-power spectra

Since we performed component separation on a portion of the sky, we quantify the
quality of the reconstruction with help of the angular pseudo-power spectra, which
are relevant and straightforwardly calculable for the limited sky observations as de-
scribed here. In a computation of the polarized, E and B pseudo-power spectra on a
finite portion of the sky a transfer of power between the E and Bmodes occurs (see
Chon et al., 2004, and references therein). Since the B modesare sub-dominant,
the leakage of the E-mode power alters their spectrum more substantially and con-
sequently needs to be explicitly considered in the presented analysis. We denote
the pseudo-power spectra of E and B asC̃E

l andC̃B
l , respectively, while the symbols

without a tilde will correspond to their full-sky versions.Hereafter we compute the
power spectra using a recipe adopted from Hansen et al. (2002). Consequently, we
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introduce a window function,G(θ, φ), (Gabor, 1946) which is applied to the data
prior to a computation of the spherical harmonic transformson a portion of the
sphere and a calculation of the pseudo-power spectra. The leakage between the
polarization modes may be written as

C̃E
l =

∑

l′
CE

l′K2(l, l′) +
∑

l′
CB

l′K−2(l, l′) , (4.0)

C̃B
l =

∑

l′
CB

l′K2(l, l′) +
∑

l′
CE

l′K−2(l, l′) , (4.0)

whereCE
l andCB

l are the polarization full-sky power spectra (Zaldarriaga,Seljak,
1997), while the kernelsK2(l, l′) andK−2(l, l′) depend on the form and the size of
the cut, described by a generic functionG(θ, φ) which is zero in the sky regions
which are not considered. The explicit expressions for the kernels are:

K±2(l, l′) =
∑

l′′
g2

l′′
(2l′ + 1)(2l′′ + 1)

32π2
W2(l, l′, l′′)(1± (−1)l+l′+l′′) . (4.0)

Heregl are found by the inverse Legendre transform of the Gabor window G(θ, φ)
and the Wigner symbolsW are defined as:

W(l, l′, l′′) =

(
l l ′ l′′

−2 2 0

)
. (4.0)

We exploited these formulae for circular cut sky area of different size with top
hat shape:

G(θ) =

{
1, θ ≤ θC ,

0, θ > θC .
(4.0)

As one can see from Equations (4.2.2) and (4.2.2), the sky cutmixes the polariza-
tion E and B modes, as quantified by theK−2(l, l′) kernel. Obviously, the mixing
gets reduced as the size of the window is increased. Since thecosmological fluc-
tuations are dominated by the scalar contribution in the cosmological concordance
model (Spergel et al., 2003), even if the diagonal of the kernel K2(l, l′) is one order
of magnitude larger than the diagonal ofK−2(l, l′), we expect the E mode to con-
taminate substantially the B signal even for large regions of the sky, while on the
other handC̃E

l ≃ CE
l .

In Fig.4.4 we show the pseudo-power spectrum of the B mode,C̃B
l , as defined

in (4.2.2) for a top hat window withθC = 10◦ and 20◦. In the latter case, the leakage
from the E modes is slightly weaker. (Hereafter, we limit ouranalysis to a range
of l-modes≤ 1000 in order to speed up the calculation of the pseudoCls.) For
comparison the dashed lines show the full sky B mode power spectra (with power
normalized on the patch). As we see, the shapes of the two spectra are substantially
different and the E mode contamination is relevant for the pseudoCB

l .
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Figure 4.4:Pseudo-power spectra for the B modes, in the case of a circular top hat cut
of θC = 10◦ (left panel, solid line) andθC = 20◦ (right panel, solid line). The dashed
lines in both panels represent the full skyCB

l normalized to the patch area fractions. The
contamination due to the E mode is evident.

4.2.3 B modes reconstruction and error estimation

The sky signals in the patch considered are processed by the FASTICA code, and
the outputs, in E and B, are shown in Figures 4.5, 4.6, and 4.7,4.8, respectively.
Those are plotted at 40 and 150 GHz in antenna units, as the code outputs are at
the lowest frequency by default. In each panel, the two dotted curves correspond
to the input pseudoCE,B

l of the CMB signal,±1σ whereσ represents the cosmic
variance on our patch of the sky: that is specified by a fraction fskyand binned over
∆l = 50 multipoles (Tegmark, 1997), and is given by

∆C̃E,B
l =

√
2

(2l + 1)∆l fsky
(C̃E,B

l + C̃E,B
n, l ) , (4.0)

whereC̃E,B
n, l are the contribution of the noise. We assume a Gaussian and uniformly

distributed noise over the analyzed region, withrmsequal to a half of that of the
CMB Stokes parameterQ or U on a single pixel, at each frequency. The noise
amplitude is not related to any particular experiment, and was chosen as a starting
point for the analysis performed in the next Section, where the noise amplitude is
varied.
The symbols in the figures represent the signal recovered by the FASTICA separa-
tion process averaged over the 100 MC simulations of the CMB and noise, while
the error bars show, a 1σ uncertainty derived from the simulations. Thus, they
represent the extra uncertainty due to the separation process, given the foreground
templates assumed here. At the bottom of each figure, we also plot the average
and standard deviation of the residuals, obtained by subtracting the input from the
output pseudo-power spectra for each realization. The averages provide a measure
of biases of the reconstruction on each realization, while the error bars estimate the
extra dispersion introduced due to the separation process.
The first feature to be noted is that the separation is clearlysuccessful, for E and B
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as well. Note that the B-mode pseudo-power spectra are generally comparable or
lower than the foreground and noise contamination. As we stressed before, the ICA
technique looks for the independent components into the data, assuming rigid and
different frequency scaling and a different statistics for all of them, with no other
prior; the fact that this procedure is able to extract with such a precision a signal
which is comparable or lower than the foreground contamination in presence of
noise is remarkable. Once again, the observed performance is made possible by
the large number of pixels in the map, as well as the high levelof statistical inde-
pendence between background and foreground emission. These two facts bring the
algorithm close to an ideal environment, ensuring the convergence very close to
the correct answer, with a precision represented by the errors shown in the figures.
A second, most interesting aspect to be noted is that we detect the error due to
the separation process; that is clearly visible in all the figures as the excess in the
error bars with respect to what predicted by cosmic varianceand noise. The error
from component separation is comparable or smaller, to the sample variance of the
simulated templates. The error of the separation is either due to the randomness of
the noise realizations on one hand and the fact that, for a single realization, back-
ground and foreground may not be completely independent. The latter factor can
be a source of the extra randomness in the ICA performance thus contributing to
the total error.
Although we were mainly interested in the extraction of the CMB B modes from
the data, it is interesting also to look at the foreground recovery. In Fig.4.9 we
plot the reconstructed pseudo-power spectra of the separated synchrotron com-
pared with the original ones, reported with dotted lines. Inthis case the FASTICA
is able to properly reconstruct the polarized signals of theforeground with good
precision. On the other hand, the dust reconstruction fails, as it comes out heavily
contaminated by the CMB, and with wrong normalization. Thismanifests that the
separation with dust is more problematic, as it may be also noted by looking at
Fig.4.8, which shows excess power in the recovered spectra and residuals with re-
spect to the input ones, and which is mostly concentrated at low multipoles where
the dust spectrum is highest. This occurrence should not be interpreted in terms
of the different pattern of the foreground emission for dust and synchrotron, but
in terms of the relative weight of it with respect to the background emission, as
already noticed in earlier works (Maino et al., 2002; Baccigalupi et al., 2004). Due
to the difference in the frequency scalings in the bands considered, inthe 40, 90
GHz case the foreground and background signals are closer inamplitude with re-
spect to the higher frequency combination; thus, at 150 GHz the CMB dominates
over the dust while at 350 GHz the CMB emission is negligible.Indeed, this bias
disappears if the foreground amplitude is raised by a factorof a few as we see next,
and consequently the dust template can be better reconstructed.
Note that our Monte Carlo analysis does not include varying the foreground tem-
plate, a factor that should be accounted for in order to quantify the error in the
separation process in a comprehensive way. However, our modest knowledge of
the foreground emissions does not allow to estimate their statistics to a level high
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Figure 4.5:Pseudo-power spectra of the reconstructedC̃E
l modes of the CMB in the 40,

90 GHz frequency combination, in theS/N = 2 case. The region between the dotted
lines is the input CMB signal±σ cosmic and noise variance at 40 GHz on the sky area
considered. At the bottom we show the average and standard deviation of the residuals on
each realization. From Stivoli et al. (2006).

enough to vary their template in the Monte Carlo. Finally, westress that this work
represented a first attempt to evaluate the reconstruction errors introduced by the
non-linear nature of the algorithm. As pointed out in the previous Chapter, an
analytic treatment of the component separation through FASTICA is still missing.

4.2.4 Varying noise, foreground amplitudes and analyzed area

We performed a first study of a dependence of the results on some of the key simu-
lation parameters. Specifically, we varied noise amplitude, foreground fluctuation
amplitude, and extension of the sky area considered. We explored the correspond-
ing parameter space by moving along the multiple ‘directions’ within its volume
and use the results to set constraints on the applicability of the FASTICA approach
given the assumed foreground pattern, however, still in systematic free cases.
In order to quantify the error introduced by the algorithm with respect to the one
due to the cosmic variance and noise, and focusing on the B mode reconstruction,
we introduced the quantities

dl =
∆C̃rec.

l

∆C̃B
l

, r l = 〈
C̃rec.

l − C̃B
l

C̃B
l

〉ICA , al = 〈
|C̃rec.

l − C̃B
l |

C̃B
l

〉ICA , (4.0)

meaning of which we explain now.dl is the ratio between the dispersion of the re-
covered spectra over 100 realizations and the quantity defined in (4.2.3). Generally
we expect this quantity to be larger than 1, accounting for the error introduced by
the separation itself: a number close to 1 means that the separation procedure in-
troduces an error which is negligible with respect to the input one; on the contrary,
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Figure 4.6:Pseudo-power spectra of the reconstructedC̃E
l modes of the CMB in the 150,

350 GHz frequency combination, in theS/N = 2 case. The region between the dotted
lines is the input CMB signal±σ cosmic and noise variance at 150 GHz on the sky area
considered. At the bottom we show the average and standard deviation of the residuals on
each realization. From Stivoli et al. (2006).

Figure 4.7:Pseudo-power spectra of the reconstructedC̃B
l modes of the CMB in the 40,

90 GHz frequency combination, in theS/N = 2 case. The region between the dotted
lines is the input CMB signal±σ cosmic and noise variance at 40 GHz on the sky area
considered. At the bottom we show the average and standard deviation of the residuals on
each realization. From Stivoli et al. (2006).
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Figure 4.8:Pseudo-power spectra of the reconstructedC̃B
l modes of the CMB in the 150,

350 GHz frequency combination, in theS/N = 2 case. The region between the dotted
lines is the input CMB signal±σ cosmic and noise variance at 150 GHz on the sky area
considered. At the bottom we show the average and standard deviation of the residuals on
each realization. From Stivoli et al. (2006).

a value larger than 2 means that the separation error is dominating. dl is a measure
of the extra uncertainty introduced by the algorithm.

On the other hand, as we see in a moment,dl was getting closer to 1 when the
noise is increased. This is due to the fact that in some cases,the separation qual-
ity deterioration, caused by the increase of the noise level, proceeds at the slower
rate than the noise level increase itself leading to a decrease in dl . The r l and
al quantities are respectively the residual and the absolute residual of the recov-
ered pseudo-power spectra in the single separation, averaged over 100 realizations.
These quantities gave us a measure of a bias of the reconstruction, and thus were
expected to be close to zero. Note that part of the differences in the numerators of
r l andal comes from the instrumental noise; therefore, in a highly noisy configura-
tion, their value can become large not because the separation fails, but because of
the high noise itself.
Especially if checked together for each case, these quantities allowed us to attempt
to give a definition for a ‘successful’ separation, which is when FASTICA is able
both to recover the CMB signal giving the value ofdl on one side and the values of
r l andal on the other close to, and less than unity, respectively. In tables 4.1, 4.2
and 4.3, we report the value of these quantities for some relevant multipoles as a
function of the varying parameters.
We began varying the noise with respect to the simulated dataset considered in
the previous Section. We found out the results to be quite stable up toS/N = 1.
As it may be noted by looking at the first block of four rows in the tables, the al-
gorithm performance, in terms ofdl , decreased mildly or remained constant, and
decreases nearly linearly with the noise amplitude in termsof r l andal . For values
of the noise larger than the signal, the code started failingto reconstruct the sig-
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Figure 4.9:Pseudo-power spectra of the reconstructedC̃E
l modes (left) andC̃B

l (right) of
synchrotron at 40 GHz in theS/N = 2 case. Dotted lines are the input spectra. From
Stivoli et al. (2006).
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nals, what at first showed as a residual foreground contamination persisting in the
reconstructed B modes of the CMB, then as a failure to reach the convergence or
to estimate a non-negative definite signal correlation matrix due to the large noise
sample variance.
The foreground variation was realized by keeping its mean over the considered area
unchanged and increasing solely itsrmsby a factor 2, 4, and 6 for synchrotron, and
2, 4, 6 and 10 for dust. In Figs. 4.10 and 4.11 we report the foreground B modes at
40, 90 GHz and 150, 350 GHz, respectively, for thermsconsidered. For reference,
we also plotted the theoretical CMB pseudo-spectra. At 40 and 350 GHz, the con-
tamination to the CMB is worse of course. Despite the high level of foreground
fluctuations, the method exhibited again a remarkable stability or even improve-
ment in the interval considered for this parameter, as it maybe seen by looking
at the second block of four rows in the tables; it starts failing only when the fore-
groundrms is increased by a factor of about 6 for synchrotron, and by a factor of
about 10 for dust. This can be interpreted as due to the fact that foreground recov-
ery is indeed easier and more precise given a larger foreground amplitude. Indeed,
for an ICA based component separation technique which utilizes the independence
of the components to be recovered, the quality of the reconstruction of each of them
depends on how well the other ones are extracted (Maino et al., 2002; Baccigalupi
et al., 2004).
The last row in each table shows the effect of the variation of the sky area consid-
ered, while all the other parameters are kept fixed. As expected, things got gener-
ally better after doubling the radius of the cut, but since ata resolution of about 10
arc-minutes a patch withθC = 10◦ has already a number of samples (pixels) large
enough to faithfully represent the signal statistics, increasingθC doesn’t improve
the separation dramatically. However, a wider area represents a benefit concerning
the possibility of detecting the B modes from primordial gravitational waves, as we
discuss in Section 4.2.5.

As a final remark, we noticed that increasing the noise amplitude causes the
reconstruction to be less accurate, in all cases when the dust is taken into account.
This observation, anticipated in Section 4.2.3, is due to the fact that at 150 GHz, the
dust emission is negligible with respect to CMB and noise. Indeed, as noticed in
earlier works (Maino et al., 2002; Baccigalupi et al., 2004), the separation is more
accurate when the signals are comparable in all frequency bands. This is supported
by the fact that the performance improves or remains unaltered when the dust fluc-
tuation amplitude is increased, while in the synchrotron case a clear degradation of
the separation may be seen.
As a final test to evaluate the separation we studied the recovered frequency scal-
ing indexα = log [s(ν2)/s(ν1))]/ log (ν2/ν1) of the different output componentss,
computed through the ratios between column elements in the inverse of the separa-
tion matrix (Maino et al., 2002). In all the cases we studied,this quantity resulted
to be close to the theoretical one, with dispersions∆α increasing roughly linearly
with foreground amplitude and noise; an exception was stillrepresented by the
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Figure 4.10:Pseudo-power spectra of the synchrotron B modes calculatedfor the sky
region and with the amplitudes as considered in the text, at 40 (left) and 90 GHz (right).
The different curves, with raising power, correspond to the foregroundrmsmultiplied by
1, 2, 4, and 6, respectively. In each panel the solid smooth line represents the B modes of
the CMB. From Stivoli et al. (2006).
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Figure 4.11: Pseudo-power spectra of the dust B modes calculated for the sky region
and with the amplitudes as considered in the text, at 150 (left) and 350 GHz (right). The
different curves, with raising power, correspond to the foregroundrmsmultiplied by 1, 2,
4, 6 and 10, respectively. In each panel the solid smooth linerepresents the B modes of the
CMB. From Stivoli et al. (2006).
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S/N Fore. Cut dl=100 dl=400 dl=950 dl=100 dl=400 dl=950

Ampl. Radius Sync. Sync. Sync. Dust Dust Dust

∞ 1.00 10 1.16 1.69 1.31 2.08 1.99 1.74
2.00 1.00 10 1.44 1.55 1.18 1.81 1.56 1.31
1.50 1.00 10 1.38 1.42 1.07 2.24 1.56 1.31
1.00 1.00 10 1.88 1.72 1.38 3.39 1.56 1.21

2.00 2.00 10 1.60 1.70 1.33 1.66 1.64 1.34
2.00 4.00 10 1.62 2.03 1.58 1.63 1.69 1.33
2.00 6.00 10 1.78 2.39 1.81 1.51 1.69 1.32
2.00 10.00 10 - - - 2.00 2.04 1.50

2.00 1.00 20 1.28 1.53 1.03 1.75 1.41 1.24

Table 4.1:Relative extra uncertainty,dl , evaluated for the reconstructed B mode power
spectrum of the CMB. The results are given for three different values of the multipolel and
for multiple choices of the sky and noise parameters as listed in the table.

dust case, when the dustrms is increased: as explained above, increasing the dust
rms induces an improvement in the reconstruction, which appears also in the re-
covery ofα. The relative dispersion∆α/α, evaluated over the 100 Monte Carlo
realizations both for CMB and foregrounds, is shown in table4.4.

4.2.5 Measuring the primordial tensor amplitude

As we stressed already, one of the most important goals of theforthcoming CMB
polarization experiments is the measure of the ratior between the primordial am-
plitudes of tensor and scalar cosmological perturbations,i.e. gravity waves and
density fluctuations. The most relevant question in this context is how small that
ratio can be in order to be detected when foregrounds are taken into account, and
in particular what this minimal detectable value is when theCMB background is
separated from the foregrounds with the technique considered here. Unfortunately,
the foreground simulations were (and are) still too uncertain to push the analysis
toward a complete cosmological parameter estimation pipeline and address this
question comprehensively. Nevertheless, given the importance of this topic, we
present in this Section some general though preliminary remarks and we illustrate
them with some examples.

For our purpose here the most relevant result of the previousSections is the ob-
servation that the FASTICA-based separation yields errorswhich are comparable
to those from cosmic variance and noise, for the model withr = 0.1. Therefore, in
such a case, as far as these simulations are concerned, we should be able to detect
the tensor contribution in the presence of foregrounds whenthe latter are treated
with ICA, with a confidence close to the one achievable without foregrounds.

To illustrate this issue, we compared the pseudo B mode recovery in our fidu-
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S/N Fore. Cut r l=100 r l=400 r l=950 r l=100 r l=400 r l=950

Ampl. Radius Sync. Sync. Sync. Dust Dust Dust

∞ 1.00 10 0.02 0.05 0.05 0.10 0.05 0.05
2.00 1.00 10 0.01 0.06 0.08 0.11 0.06 0.07
1.50 1.00 10 0.02 0.06 0.10 0.13 0.06 0.17
1.00 1.00 10 0.02 0.08 0.22 0.22 0.08 0.20

2.00 2.00 10 0.01 0.06 0.08 0.08 0.05 0.05
2.00 4.00 10 0.02 0.08 0.14 0.08 0.06 0.06
2.00 6.00 10 0.02 0.08 0.14 0.08 0.06 0.03
2.00 10.00 10 - - - 0.08 0.08 0.05

2.00 1.00 20 0.02 0.04 0.03 0.09 0.05 0.03

Table 4.2: Residuals of the CMB pseudo B modes recovered against synchrotron and
dust, averaged over 100 realizations of noise and CMB.

S/N Fore. Cut al=100 al=400 al=950 al=100 al=400 al=950

Ampl. Radius Sync. Sync. Sync. Dust Dust Dust

∞ 1.00 10 0.12 0.06 0.06 0.14 0.06 0.05
2.00 1.00 10 0.12 0.07 0.11 0.15 0.07 0.14
1.50 1.00 10 0.12 0.08 0.17 0.17 0.07 0.17
1.00 1.00 10 0.12 0.11 0.46 0.22 0.10 0.29

2.00 2.00 10 0.09 0.07 0.14 0.13 0.06 0.13
2.00 4.00 10 0.10 0.11 0.18 0.13 0.07 0.14
2.00 6.00 10 0.10 0.11 0.19 0.13 0.08 0.14
2.00 10.00 10 - - - 0.13 0.09 0.13

2.00 1.00 20 0.09 0.07 0.09 0.09 0.05 0.08

Table 4.3: Absolute value of residuals of the CMB pseudo B modes recovered against
synchrotron and dust, averaged over 100 realizations of noise and CMB.
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S/N Fore. Cut CMB vs. Sync. Synchrotron CMB vs. Dust Dust
Ampl. Radius

∞ 1.00 10 0.01 0.03 0.72 0.81
2.00 1.00 10 0.05 0.07 0.60 0.89
1.50 1.00 10 0.14 0.15 0.75 1.09
1.00 1.00 10 0.28 0.35 1.17 1.97

2.00 2.00 10 0.14 0.14 0.63 0.69
2.00 4.00 10 0.22 0.23 0.85 0.56
2.00 6.00 10 0.35 0.36 1.49 0.53
2.00 10.00 10 - - 3.04 0.46

2.00 1.00 20 < 0.01 0.02 0.45 0.73
1.00 1.00 20 0.18 0.20 - -

Table 4.4:Relative dispersions∆α/α around the expected values of the frequency spectral
indices, for both CMB and foregrounds.

cial model withr = 0.1 with one in which the tensors are absent,r = 0. We focused
on the spectral region where primordial tensors are most relevant, e.g.l ≃ 100. Of
course, as a result of the leakage of E modes into B due to the limited sky cover-
age, also in the latter case the amplitude of E modes on these scales matters. We
addressed this issue to some extent by considering the results for each value ofr
obtained for sky areas with different aperture. In Figure4.12 we plot the recovered
pseudo B modes in these two cases, zooming on the relevant range of multipoles.
Two different sizes for the sky cut were considered; the left and right panel refer to
θC = 10◦ andθC = 20◦, respectively. In both panels the higher amplitude spectrum
represents the model withr = 0.1. As we quoted above, we saw that in the entire
interval, the separation error is comparable to the cosmic variance, in particular in
the l-range, where the B modes from tensors have their main impact, i.e. l ≃ 100.
The central role of the leakage from E modes is also evident. When the area gets
smaller and the pollution consequently larger, the detection of B modes becomes
harder. Points on the plot are the pseudo B modes recovered bythe code against
the synchrotron template, in the case withS/N = 2, for both the models (asterisks
for r = 0 and diamondsr = 0.1).

Looking at the left panel of the figure, it is clear that, even if the algorithm
did not introduce any extra uncertainty, we could not make any claim on primor-
dial B modes detection with sufficient confidence, because the leakage is already
too high for the 10 deg cut. The situation gets better for theθC = 20◦ case (the
right panel), where the two models seem to be distinguishable statistically by our
method. For the latter case, more quantitative results are showed in table 4.5. To
define whether or not the algorithm is able to distinguish between the two models,
we compared the statistics of the recovered power spectra. In the second column,
we report the percentage of recovered power spectra (forr = 0) that fall inside the
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C̃out
r=0 vs C̃out

r=0.1 C̃in
r=0 vs C̃in

r=0.1 C̃out
r=0.1 vs C̃out

r=0 C̃in
r=0.1 vs C̃in

r=0

ℓ = 70 0% 0% 0% 0%
ℓ = 120 0% 0% 5% 2%
ℓ = 170 50% 43% 53% 46%

Table 4.5:This table reports the capability of the algorithm to distinguish between the
two models with and without the gravity wave content for theθC = 20◦ case. The second
column shows the percentage (see text for more details) of spurious detection of the ten-
sor contribution, while the fourth column shows the percentage of a false non-detection.
The other two columns report the same quantities but derivedin the ideal, CMB-only,
foreground-free case.

95% confidence region forr = 0.1 as calculated directly from the statistics of the
recovered power spectra them-self. These are the power spectra that provide a false
detection of tensor contribution. Vice-versa, the fourth column shows how many
of them miss a true presence of primordial B modes, since it reports the percentage
of recovered power spectra forr = 0.1 that fall inside the 95% confidence region
for r = 0. Third and fifth column give analogous numbers but computedfor simu-
lated, CMB-only spectra and thus not requiring any further processing. These two
columns provide an idea of the best achievable levels.

We thus conclude that, given the available foreground simulations, FASTICA
eliminates the foregrounds in the two cases ofr we consider, with a precision suffi-
cient to make them distinguishable even with the suboptimalpseudo BB estimator.
As already stressed above, this is due to the fact that the separation process induces
an error comparable to those coming from cosmic variance andnoise.

Further analysis on the recovering of the true B modes and, mostly impor-
tant, on the minimum value ofr that can be detected with this technique, could
be performed (for problems relevant to this issue and what can be expected for
the considered cases, see e.g. Lewis (2002, 2003) and reference therein). However
they could be misleading given the substantial uncertainties that still affect the fore-
ground simulations and because of the absence of systematics in this simulation.
We actually plan to address these issues in a future work, probably exploiting the
new pure power spectrum estimator from Smith (2006), in a new, more realistic
simulated environment.

4.3 A parametric approach for EBEX

I report here an application of the parametric approach to the foreground cleaning
originally introduced by Brandt et al. (1994) and further extended in total intensity
by Eriksen et al. (2006) in the context of CMB observations aiming at the mea-
surement of the cosmological B modes. It has to be noted that this work was done
before the full analytic treatment by Stompor et al. (2008a)and it can be consid-
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Figure 4.12:Comparison of the recovered pseudo B modes in two different cosmological
models withr = 0 (dashed-dotted lines and asterisks) andr = 0.1 (dotted lines and dia-
monds shifted by∆l = 10 for clarity), in the low frequency combination withS/N = 2.
Left panel refers toθC = 10◦ , while right panel toθC = 20◦. Regions between the lines are
the dispersion coming from cosmic variance and noise. From Stivoli et al. (2006).
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ered a path finder for it. It has been also used in the successful proposal submitted
by the EBEX team in 2007. An exhaustive and updated report about this work is
in preparation (Stivoli et al., 2008).

As introduced in the previous Chapter, the parametric approach gives up com-
pletely on the information stored in the spatial correlation or statistics of the dif-
ferent signals to recover, fitting for the unknowns on a pixelby pixel basis. On
the other hand, the built-in parameterization procedure allows to cast the sepa-
ration problem in a coherent maximum likelihood form, quantifying uncertainties,
achieving simplifications or even semi-analytic solutionsafter marginalization over
sub-set of parameters, as well as taking into account a number of realistic effects,
like the directionality dependence of the frequency scaling of foregrounds and the
presence of offsets and calibration errors.

4.3.1 Simulated Sky

In this Section we describe how we simulate the sky emission in which we apply
our foreground cleaning technique. Since this is a more recent work, it should be
noted that the foreground models used here are an updated version with respect to
the ones used in Sec.4.2.1.
Similarly to the previous Section, our analysis concerns the patch centered at
RA=60◦, DEC=-50◦, known to be characterized by low foreground emission (Mon-
troy et al., 2005) and which is the target of EBEX (Oxley et al., 2004); for simplic-
ity, we take it circular with 350 squared degrees area, and werefer to it in the
following as the EBEX patch.
The only source of data on polarized foregrounds at high Galactic latitudes in the
microwave band is represented by WMAP (Page et al., 2007), covering the fre-
quency range between 22 and 94 GHz. Outside the P06 mask, cutting out about
25% of the sky across the Galactic plane, the diffuse foreground emission is ob-
served on angular scales corresponding to the degree or larger. The data are con-
sistent with the physical expectations. The component of the polarized Galactic
emission which is rising in frequency is given by the thermalvibration of dust
grains, inducing a black body characterized by a temperature which is roughly
between 10 and 20 K across the sky, corrected because of the emission of stars,
which cause a steeper rise in frequency with respect to a pureblack body. In total
intensity, the Galactic thermal dust emission has been observed with high accuracy
and angular resolution at about 3000 GHz Finkbeiner et al. (1999); due to their
magnetic moment, the grains get locally aligned with the Galactic magnetic field
(Jones et al., 1995), causing a linear polarization in the emitted thermal radiation.
The polarized intensity is found to be about 10% of the total one, consistently with
the findings at low Galactic latitudes by Archeops (Ponthieu, 2005). The frequency
range in which the synchrotron and dust emission become equal is between 60 and
94 GHz (Page et al., 2007).

The polarized dust emission is the only foreground of interest in this study,
since we focus on high frequencies, larger than 150 GHz, as this is the range cov-
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ered by the EBEX channels. The dust is not observed in polarization in the area we
consider, and we adopt the following simulation strategy. First, we assume that the
dust polarized intensity is a constant fractionp of the total one. Second, in order to
construct a model for the Stokes parametersQ = Pcosθ andU = Psinθ whereθ
is the polarization angle, we simulate an all sky Gaussian template for the polariza-
tion angle using theanafast code within HEALPix, following a strategy already
adopted by Giardino et al. (2002): we generate two realizationsr1 andr2 of a power

spectrum given byCl =∝ lβ, whereβ is constant, and pose cosθ = r1/
√

(r2
1 + r2

2),

sinθ = r2/
√

(r2
1 + r2

2). Finally, as for the Galaxy the power spectra forQ, U, E and
B are expected (Zaldarriaga, 2001) and found (Page et al., 2007) to be comparable,
we determine the constantsp andβ matching their power spectra with the ones
estimated from WMAP outside the P06 mask, Eq.(25) of Page et al. (2007). The
match is found at 65 GHz, scaling the dust total intensity down from 3000 GHz ac-
cording to the two component modified black body corresponding to the model 8
of Finkbeiner et al. (1999), substantially consistent withthe WMAP data (Bennett
et al., 2003) and is

dust flux∝ f1(q1/q2)(ν/3000 GHz)α1+3

ehν/kT1 − 1
+

f2(ν/3000 GHz)α2+3

ehν/kT1 − 1
, (4.0)

where f1 = 0.0363, f2 = 1 − f1, α1 = 1.67, α2 = 2.70, q1/q2 = 13, T1 = 9.4 K,
T2 = 16.2 K, andh andk are the Planck and Boltzmann constants, respectively.
For the polarization fraction, we find good agreement forp = 11%, consistently
with the Archeops findings on the plane, which are slightly lower, 5%, because of
cancellation effects along the line of sight (Ponthieu, 2005). For what concerns
the slope of the polarization angle power spectrum, we obtain only an upper limit,
β ≃ −3.2, due to the fact that for higher values the fluctuations of the polarization
angle, plus the one in total intensity of the thermal dust, cause an excess of fluctu-
ating power in the shape of the power spectrum with respect toWMAP. Note that
this corresponds to a rather severe damping of the polarization angle fluctuations
on small angular scales with respect to the models adopted before, as in Stivoli
et al. (2006); this implies that on the scales probed by patches with an extension
comparable to the EBEX one, the polarization angle is essentially uniform com-
pared with the fluctuations of the total intensity. In other words, in the EBEX patch,
according to our modeling, theQ andU templates are essentially given by the total
intensity of the dust in that region, times a polarization fractionp = 11%, times the
large scale modulation given by the almost constant value ofcosθ and sinθ in that
region. Since, as we know, this component separation algorithm does not depend
on global properties like the average of signals on the area considered, that means
that our results are rather independent on the direction of the polarization angle
in the EBEX patch. Finally, we checked that the variation of the dust frequency
scalings across the sky, interpreted mainly at fluctuationsin the temperatures of its
components (Finkbeiner et al., 1999), does not lead to a significant effect on the
EBEX patch; the present knowledge of this feature, from the correlation of data
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at 100 and 240µm, indicates a relative fluctuation of the frequency scalingacross
the EBEX patch corresponding to the percent or less, which issubdominant with
respect to the noise level considered in this work.

The CMB emission is assumed to be Gaussian, simulated using thesynfast
routine of HEALPix, out of a power spectrum generated with the public Code for
Anisotropies in the Microwave Background (CAMB1) with Hubble expansion rate
H0 = 70.8 km/sec/Mpc, optical depth at re-ionizationτ = 0.07, cosmological
abundances given byΩb = 4.4%,Ωcdm= 22%,ΩΛ = 1−Ωb −Ωcdm, representing
the energy densities of baryons plus leptons, cold dark matter, cosmological con-
stant, respectively, divided by the critical one; the primordial power spectrum is
assumed to possess a scalar spectral indexns = −0.94, a tensor onent = −0.015,
corresponding to the simplest single field inflationary models. with a tensor am-
plitude corresponding to 10% of the scalar one,T/S = 0.1. The overall normal-
ization power has been determined using the WMAP data in total intensity and
correlation with the E mode of polarization. This set of cosmological parameters
represents that of the cosmological concordance model apart from tensors, which
are at present limited from above,T/S ≤ 30%, (Spergel et al., 2007).

In Fig.4.13, top panels, we show the pattern of theQ Stokes parameter for the
dust (left) and the CMB (right). With respect to the CMB, fluctuating mostly on the
degree scale, the dust has considerable power on larger angular scales, and follows
closely the total intensity pattern. In the lower panel we show the power spectrum
of the dust, where for simplicity the oscillations given by the underlying realization
have been averaged out, compared with the E and B modes of the CMB at various
frequencies, using again the Finkbeiner et al. (1999) recipe for scaling the dust.
As it is evident, the CMB is dominating up to the highest frequency through the
E modes. On the other hand, the curl component of CMB anisotropies, i.e. the B
modes, is always sub-dominating or at least highly contaminated.

4.3.2 Data modeling

In the following application we applied the Eriksen et al. (2006) approach de-
scribed in the last Chapter. This work was done before the improvements by Stom-
por et al. (2008a).
The signal in the EBEX patch is pixelized with HEALPix, atnside = 1024, cor-
responding to a resolution of about 3.4 arc-minutes. We takethe frequencies and
nominal noise from the EBEX experiment as reference (Oxley et al., 2004). The
signal is smoothed with a circular beam corresponding to a full width half maxi-
mum (FWHM) of 8 arc-minutes. The noise rms is 1.43, 3.96, 43.1 thermodynamic
µK at 150, 250, 410 GHz, respectively. The sky signal isMν a mixture of CMB
and dust emission, where the dust is normalized to have the same rms at 150 GHz,
and then scaled in frequency as (4.3.1). Therefore, we write

Mν = Mcmb
ν + Mdust

ν + nν (4.0)

1Seecamb.info.
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Figure 4.13:Top panels: a representation of the simulated dust (left) and CMB (right) Q
Stokes parameter patterns, in antenna units at 150 GHz. Lower panel: the angular power
spectra for the CMB B (dashed) and E (dotted) modes, in comparison with the level of
foreground contamination in the EBEX patch, at 150 (lower straight curve), 250 (middle
straight curve) and 410 (higher straight curve) GHz.
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where

Mcmb
ν = sc

(
hν
kTo

)2
e

hν
kTo

(e
hν

kTo − 1)2
, To = 2.725K , (4.0)

and
Mdust
ν = sdF(ν) (4.0)

whereF represents the parameterized dust frequency scaling, different from the
one adopted to simulate the sky in all three cases as we discuss in a moment, and
the two quantitiessc and sd are the CMB and dust amplitudes on a given pixel,
respectively. The component separation consists in estimating the amplitudes such
that they are close to the real ones,sc ≃ s̄c and sd ≃ s̄d, as well as getting the
unknowns in the dust frequency scaling, along with all the corresponding uncer-
tainties. As we stressed already, the latter has been simulated using model 8 of
Finkbeiner et al. (1999), which corresponds to a two dust grain component, with
relative abundances and different emissivities as in (4.3.1). This means more than
three parameters, so that they cannot be estimated using thepresent technique. On
the other hand, on our frequency range, the spectrum may be parameterized effi-
ciently in several simplified ways. The ones adopted here are

F1(ν) = (
ν

ν0
)β , (4.0)

F2(ν) =
ν

e
hν

kT2 − 1

e
hν0
kT2 − 1
ν0

(
ν

ν0

)β
, T2 = 18.1K , (4.0)

F3(ν) =

(
ν

ν0

)(β+1) [ 1/(ehν/kT3 − 1)+ 6.7/(ehν/kT4 − 1)

1/(ehν0/kT3 − 1)+ 6.7/(ehν0/kT4 − 1)

]
,

T3 = 20.4 K , T4 = 4.77 K . (4.-1)

with ν0 = 150GHz. They correspond respectively to a simple power law and two
versions of a modified black body, respectively model 3 by Finkbeiner et al. (1999)
and Wright et al. (1991), containing one parameter only,β, which together withsc

andsd represent the set of quantities to be recovered in each pixel.

Spectral index recovery

The modelM(θ), whereθ = (sc, sd, β), can be rewritten as

Mp(θ) = Apsp , (4.-1)

where we explicitly wrote the dependence on the pixelp. Here Ap = Ap(β) is
an estimation of the mixing matrix̄A, modeled with a single unknown parameter
β parameterizing the dust frequency scaling with one of the three recipes (4.3.2,
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4.3.2, 4.1) andsp = (sc, sd) represents the signal amplitudes on the pixel. As
showed in the last Chapter, Eq.(3.2), the logarithmic likelihood on the pixel can be
written as:

−2 ln L
(
sp, βi

)
= K +

(
dp − Ap sp

)t
N−1

p

(
dp − Ap sp

)
. (4.0)

Integrating this relation over pixel amplitudessc andsd, we get Eq.(3.5), that
we report here for simplicity:

−2 lnLmarg(β) = −2 ln
∫

ds exp

[
−1

2
(d − A s)t N−1 (d − A s)

]

= K −
(
At N−1 d

)t (
At N−1 A

)−1 (
At N−1 d

)

+ ln
∣∣∣∣∣
(
At N−1 A

)−1
∣∣∣∣∣ , (4.-1)

The likelihood above, function ofβ only, provides an estimation for the one di-
mensional marginalized probability distribution ofβ. The minimization proceeds
semi-analytically, yielding the solution forβ. It is to be noted here that this Equa-
tion is the biased estimator that we corrected in Stompor et al. (2008a). However,
in the following application, it provides an estimation of the spectral index that is
good enough for our purposes.
We will now compare the solution which is achieved in this waywith the one com-
ing out of the MCMC procedure. Beside the bias, Equation (4.-1) has the advantage
of being in principle numerically stable with respect to noisy data and faster than
the MCMC. On the other hand it has the intrinsic limitation ofbeing usable only
when a solution can be computed, i.e. when a friendly enough likelihood is used,
like Gaussian for example. For now we concentrate on the results obtained with
the parameterization (4.3.2). Before concluding this Section we will show how the
results are analogous using the other dust models.

Recovering the frequency scaling parameterβ via MCMC requires decreasing
the resolution in order to increase the signal to noise ratio(Brandt et al., 1994).
In our case, a configuration which works consists in pixels with 4 squared degrees
area. In the EBEX patch, this corresponds to 12 low resolution pixels in the map.
This means that if the frequency scaling is varying in different sky directions on
scales smaller than 4 squared degrees, the MCMC approach is unable to recover
that information. We plot the marginalized two dimensionalprobability distribu-
tions of the recovered parameters on one of the large pixels in Fig.4.14 (top and
bottom left panels). We stress that the CMB and dust amplitudes here represent the
ones on the low resolution pixels. In the bottom right panel we marginalize on both
amplitudes. The dashed solid line represents the valueβ̄ for which the scaling with
(4.3.2) corresponds exactly to the one actually used to simulate the sky, Equation
(4.3.1), between 150 and 410 GHz. The right value is recovered within 1σ. The
plots for the other large pixels in the EBEX patch are analogous. In Fig.4.15 we



4.3. A PARAMETRIC APPROACH FOR EBEX 107

Figure 4.14:MCMC results for a representative pixel. Top panels and bottom left panel:
marginalized two-dimensional probability distributions. Bottom right panel: spectral index
probability distribution, marginalized over the amplitudes. The dashed straight lines are the
input values of the parameters.
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Figure 4.15: Comparison between the spectral index probability distribution obtained
with the marginalization procedure (4.-1) and with the MCMCs described in the text.

show the comparison between the MCMC estimated probabilitydistribution forβ
versus the one obtained from the semi-analytic procedure mentioned above (4.-1),
showing substantial agreement, the bias being too small in this case. We stress
that there is no need for decreasing the resolution if the unbiased marginalization
procedure (3.7) is adopted.

Finally, we briefly discuss the results obtained using the other parameteriza-
tions, (4.3.2, 4.1). In Fig.4.16 we plot the dust rms forQ as a function of frequency
according to the best fits onβ on all parameterizations (4.3.2, 4.3.2, 4.1) versus the
scaling (4.3.1), which was used in the actual sky simulation; the error bars, which
have been artificially reduced by a factor of 10 and attached to the dust curve for
display reasons, represent the error in each pixel. The decreasing line represents
the CMB rms. The latter is dominating except at 410 GHz because the emission is
dominated by the E modes, see Fig.4.13. This plot shows that the different parame-
terizations are essentially equivalent in the frequency range of interest with respect
to the noise, as well as that the fitting procedure is effective in all cases. From now
on, we only consider the parameterization given by the model3 by Finkbeiner,
Eq.(4.3.2).

Amplitudes

Once the distribution function for the frequency scaling has been obtained, we are
left with the problem of solving a linear system for the two amplitudes, which in
the present case is still analytic. This can be done now at full resolution, either
if the frequency scaling recovery has been performed with anMCMC or semi-
analytically. Given our best value for the spectral indexβ0, that leads toA ≡ A(β0),
we get for each componentx, pixel by pixel:

s=
(
At N−1 A

)−1
At N−1 d. (4.-1)



4.3. A PARAMETRIC APPROACH FOR EBEX 109

Figure 4.16:Comparison between the frequency behavior of the dust rms inQ obtained
with the different parameterizations (4.3.2,4.3.2,4.1), versus the one actually used to sim-
ulate the sky. The CMB rms is also shown, together with the error bars in each pixels,
divided by a factor of 10 for display reasons, and attached tothe dust curve in order to
make it evident how the difference in parameterization is irrelevant in the fitting procedure.

Note that due to our simplifying assumption the noise in the recovered component
maps is Gaussian and uncorrelated.

The results are shown in Fig.4.17. The top panels show the CMBresiduals,
input minus output, forQ (left) andU (right). The middle panel show the dust
residuals. For comparison and quantification of the achieved precision, the lower
panels show the noise realization. The first and most remarkable feature is the
absence of large scale structure in the residuals, which behave as an additional and
effective noise component; as we see in a moment, this is crucialin order to remove
the large scale contamination of the dust in the CMB B modes which is apparent
in Fig.4.13. Second, the level of precision is comparable with the input noise, as it
is expected since the latter is the real limiting factor in a pixel by pixel analysis.

A proper error estimation on the component amplitudes was not performed at
the time of this analysis. As pointed out in the last Chapter it could be done ana-
lytically exploiting Eq.(3.9). Here we estimated the uncertainty in the component
separation performing a small Monte-Carlo varying the CMB and the noise real-
izations. The uncertainty on the spectral index estimationwas propagated to the
second step of the analysis by drawing 10 random values forβ out of its one dimen-
sional marginalized posterior. As a figure of merit for the separation method, we
used the B-mode power spectrum. Figure 4.18 shows the predicted EBEX errors on
the determination of CMB B-mode polarization (stars) including errors from fore-
ground subtraction. Errors on the CMB signal show less than 1/3 increase over
binned cosmic variance and instrument noise (shaded red) for ℓ < 900. Error bars
have been obtained on ten map-domain simulations varying CMB and instrument
noise. This figure was used in the successful EBEX proposal in2007.
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Figure 4.17:Separation residuals forQ (left) andU (right), CMB (top) and dust (middle).
The noise realization is shown in the bottom panels. The separation residuals appear free
of any large scale structure from any of the CMB or dust components, behaving as white
noise.
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Figure 4.18: CMB and dust recovered B modes on the EBEX patch. Error bars are
computed on 10 different realizations of CMB and noise.
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Conclusions

One of the major challenges to the present and future observations of the Cos-
mic Microwave Background (CMB) anisotropies is represented by the foreground
emission. The latest data on all sky by the Wilkinson Microwave Anisotropy Probe
(WMAP) satellite confirmed that the diffuse emission from our own Galaxy must
be controlled and possibly removed in total intensity and even more in polarization
in order to access the cosmological information contained in the CMB anisotropies.

In this work, we developed and applied some of the most advanced existing
techniques for the separation of background and foregrounds in multi-frequency
CMB experiments to simulated and real data, with a special regard to the extraction
of the curl (B) component of the CMB polarization, which might contain the signal
from primordial gravitational waves in the anisotropies ondegree angular scale.

We focused the discussion on three methods: Fast Independent Component
Analysis (FASTICA), a blind algorithm that exploits the statistics of the signals in
order to achieve separation, analyzing the signal in all resolution elements (pixels)
at once, a parametric approach, implemented in a code calledMIRAMARE, de-
signed to cast and maximize the data likelihood on each pixelsingularly by means
of a suitable parameterization of foreground and background unknowns, and the
Correlated Component Analysis (CCA) that uses spatial correlations of subsets of
the data to constrain the spectral parameters of the mixed components.

The first of these methods, FASTICA, recently underwent major theoretical
developments. In the work by Stompor et al. (2008a), we achieved two important
results; the code is now able to optimally deal with redundant noisy data, via a
lossless input data compression, as well as to include the CMB frequency scaling
as a prior, showing consistent improvements in those cases in which the data set is
not large enough to properly infer the statistics of the signals.

Several application of FASTICA have been described. First of all, the work we
have done on the WMAP 3-year data (Maino et al., 2007). In thatstudy, most of
the analysis have been carried out on the reconstructed CMB power spectrum that
we managed to recover up to degree angular scale. Taking advantage of K band,
the lowest for WMAP and the best tracer so far for assessing the CMB contamina-
tion from low frequencies, among other results we confirmed the north-south sky
asymmetry, already noticed independently by several authors, showing the relia-
bility of the algorithm when exploited to reconstruct the finest structure up to date
in the CMB pattern.

113
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A second application of FASTICA has been done in the context of the Working
Group 2 within the Planck collaboration, the group dedicated to the study and test-
ing of the component separation techniques. In a work recently submitted by Leach
et al. (2008), we reviewed the results of a challenge among all the main component
separation techniques today available within the Planck collaboration. FASTICA
was capable of providing the lowest residuals in the CMB map at high Galactic
latitudes, as well as recovering a remarkably clean dust template and to extract the
TT power spectrum up to the 6-th acoustic peak in the CMB anisotropies.

Finally, we applied FASTICA on a simulated data set, specifically tailored to
describe a typical CMB sub-orbital experiment, aiming at the detection of the B
modes (Stivoli et al., 2006). This was one of the first works specifically dedicated
to the recovery of B modes in component separation. More specifically, the aim
was to test the capabilities of the algorithm to recover the Bmodes observed on
a limited patch of the sky in the presence of a large foreground contamination.
The code proved to be quite stable for interesting values of Bmodes signal with
respect to variations in the foreground modeling as well as instrumental noise level,
showing a limited deterioration in the quality of the outputs with respect to an ideal
separation. The quantification of the additional error introduced by the foreground
cleaning stage was indeed one of the main results of that work.

For what concerns the parametric approach, starting from a pretty advanced
formulation of the method, in the work by Stompor et al. (2008b) we implemented
a new version of the algorithm, casting it in maximum likelihood framework and
healing a few problems which were present in the previous, related approaches. In
this context, our work has been mostly theoretical, exploiting the possibilities of
the method in a semi-analytical approach. Parameterization in component separa-
tion is particularly suitable for an explicit treatment of the separation error and for
modeling instrumental systematics, as calibration errorsand offsets, directly in the
likelihood.

We applied this technique to a simulated data set related to one particular sub-
orbital probe in which we are directly involved, the E and B EXperiment (EBEX),
in order to show the capabilities of the instrument to detectthe B modes in the
Antarctica flight scheduled for the end of 2009. In the simplified set up where
no instrumental systematics were considered, the results were excellent, and were
submitted as part of the successful proposal to NASA in 2007 for funding the
experiment up to the final stages of the data analysis.

The last application we considered in this thesis is the one we performed in
Bonaldi et al. (2007) on the WMAP 3-year data set. Given the particular nature of
the algorithm, this analysis, differently by the previous ones, was more foreground-
oriented. We achieved two important results. First, we provided a full sky map
of the anomalous emission, a dust correlated component thatstill evades a full
understanding. Second, we studied the impact of the foreground modeling in the
estimation of the low multipoles in the TT power spectrum, showing that extra care
has to be used in addressing the error bar to the quadrupole ofthe CMB.

We finally write down some concluding remarks here. First of all, we point out
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that, as for most of the cases when data analysis is concerned, the works presented
in this thesis are parts of a large and collaborative ongoingwork. The results sum-
marized above represent major steps forward in the understanding of the relative
techniques, in view of their application to most sophisticate simulations and most
importantly to real data, but much more has still to come. Thenext use of FAS-
TICA and CCA will probably be the analysis on the WMAP polarized data together
with the application on more and more realistic simulationson Planck, in prepara-
tion for the true data analysis of the Planck data themselves. For what concerns the
parametric approach, now that it is fully implemented in theMIRAMARE code, it
is likely to follow the same path of the other ones. It will be applied to the WMAP
data set and on the sub-orbital and Planck simulations. Thanks to its potential and
the promising results, it will probably be the baseline for the foreground cleaning
in the EBEX analysis.

Efficient and robust foreground cleaning is a requirement for the prosecution
of CMB related science. It is becoming an independent and articulated sector of
CMB data analysis, where a fruitful input from signal processing science is ex-
ploited. Probably, its most important application of this area of CMB data analysis
is the establishment of the minimum detectable level of primordial gravitational
waves, encoded in the B modes of the CMB polarization anisotropy, given the
level of Galactic foreground emission. Although a definitive answer to this issue
will have to wait until theoretical investigations match real data, the results con-
tained in thesis contain the first steps in this direction.
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