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Abstract

We review and extend in several directions recent results on the asymptotic safety ap-
proach to quantum gravity. The central issue in this approach is the search of a Fixed
Point having suitable properties, and the tool that is used is a type of Wilsonian renor-
malization group equation. This will be reviewed in chapter 2 after a general overview
in the introductory chapter 1. Then we discuss various cutoff schemes, i.e. ways of imple-
menting the Wilsonian cutoff procedure. We compare the beta functions of the gravita-
tional couplings obtained with different schemes, studying first the contribution of mat-
ter fields and then the so–called Einstein–Hilbert truncation in chapter 3, where only the
cosmological constant and Newton’s constant are retained. In this context we make con-
nection with old results, in particular we reproduce the results of the epsilon expansion
and the perturbative one loop divergences. We discuss some possible phenomenologi-
cal consequences leading to modified dispersion relations and show connections to phe-
nomenological models where Lorentz invariance is either broken or deformed. We then
apply the Renormalization Group to higher derivative gravity in chapter 4. In the case
of a general action quadratic in curvature we recover, within certain approximations, the
known asymptotic freedom of the four–derivative terms, while Newton’s constant and
the cosmological constant have a nontrivial fixed point. In the case of actions that are
polynomials in the scalar curvature of degree up to eight we find that the theory has
a fixed point with three UV–attractive directions, so that the requirement of having a
continuum limit constrains the couplings to lie in a three–dimensional subspace, whose
equation is explicitly given. We emphasize throughout the difference between scheme–
dependent and scheme–independent results, and provide several examples of the fact
that only dimensionless couplings can have “universal” behavior.
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1. Introduction

Of the four fundamental forces in nature, gravity was the first one described in mathe-
matical terms by Newton and later essentially extended by Einstein to General Relativity
(GR) describing successfully physics on macroscopic scales. The other three forces, elec-
tromagnetic, strong and weak, found their modern formulation in Quantum Field Theory
(QFT) describing with precision the physics of the microcosmos and unifying all three of
them into a common framework. The hope is that one might be able to unify all four
forces in a single theory. This would however require the application of GR on micro-
scopic scales where several severe problems occur limiting its range of validity.
In the microscopic regime, GR fails as a fundamental theory because it predicts space-
time singularities at the beginning of the universe evolving from a big bang as well as
in the stellar collapse to black holes depending only on very general conditions for the
energy-momentum tensor. This indicates a complete breakdown of GR, as then there do
not exist any boundary conditions for the field equations at the singular points and the
theory is incomplete as the continuation beyond these points is missing.
This singular behaviour happens however at scales where quantum effects should be-
come important. The question is therefore if gravity can be coupled consistently to quan-
tum matter while treating gravity classically, or if also gravity has to be quantized. The
first option is taken in semiclassical gravity. The classical gravitational part is coupled to
a source term given by the expectation value of the energy-momentum tensor of some
quantum matter contribution. This formulation gives however again rise to several se-
vere problems.
The expectation value will depend on some matter state which itself will depend on the
metric. Due to the nonlinearity of the Einstein equations, the linear superposition of two
matter states will in general not give a new solution, requiring therefore a modification
of standard quantum mechanics. Inconsistencies seem to arise from the renormalization
of the energy-momentum tensor. Classically equivalent theories give rise to different
statements about renormalizability in the quantum treatment1. Even if no definitive con-
clusion has been obtained, it seems that such a treatment goes wrong and that consistency
can only be obtained in quantizing the gravitational field as well.
How the definitive version of Quantum Gravity (QG) could look like, explaining the na-
ture of singularities and the interactions between gravity and quantum matter, is so far an
open question. Different research communities have different convictions of how much
the theoretical frameworks have to be modified to obtain a fundamental theory2. The
only way one can use so far to find this theory is physical intuition and general consid-

1See e.g. [4, 5] for further discussions on these issues.
2See e.g. [1, 2, 3] for further motivations for quantum gravity and introductions to the current approaches.
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2 Chapter 1. Introduction

erations to try to construct a complete and consistent theory which has GR as a limit for
macroscopic bodies and low curvatures of spacetime.
Experimental access to quantum gravitational effects is so far not possible as they are
strongly suppressed. This is mainly due to the fundamental weakness of gravity. Com-
paring the gravitational attraction between two electrons to the Coulomb force between
them, one sees that the gravitational attraction is by a factor 1041 weaker expressed by
the size of Newton’s gravitational constant. From dimensional analysis, one can argue
on which scales quantum gravitational effects should become important. The constants
of nature being important in that regime should be Newton’s gravitational constant G,
the Planck constant ~ for the contribution of quantum effects, and the speed of light c
fundamental for causality. Out of these three constants one can form a length, a time,
and a mass scale as

lp =

√
~G
c3

≈ 1.62× 10−35m (1.1)

tp =
lp
c

=

√
~G
c5

≈ 5.40× 10−44s (1.2)

mp =
~
lpc

=

√
~c
G
≈ 2.17× 10−8kg ≈ 1.22× 1019GeV (1.3)

which are called Planck length, time, and mass. In the units used here, where ~ = 1
and c = 1, all are expressed by the mass scale simply referred to as the Planck scale.
A further argument supports that this should be the relevant scale for quantum gravity
effects. Comparing the Compton wavelength of a particle with mass m

λc =
~
mc

, (1.4)

which gives the wavelength for massive particles for which quantum effects are no longer
negligible, to the Schwarzschild radius of an object with mass m,

RS =
2Gm
c2

, (1.5)

which is the scale where curvature effects become strong and GR effects are no longer
negligible, one sees that they equal for m = Mp/

√
2. As this is an extremely huge mass

lying 15 orders of magnitude beyond the scales accessible in accelerator experiments,
what physics is like beyond that scale is an open question.
Fortunately, it is not true that physicists are not at all able to calculate quantum grav-
itational corrections. In fact, general relativity can be treated very well as an effective
quantum field theory [11, 12, 14]. This means that it is possible to compute quantum ef-
fects due to graviton loops as long as the momentum of the particles in the loops is cut off
at some scale. For example, in this way it has been possible to unambiguously compute
quantum corrections to the Newtonian potential [12]. The results are independent of the
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structure of any “ultraviolet completion”, and therefore constitute genuine low energy
predictions of any quantum theory of gravity. When one tries to push this effective field
theory to energy scales comparable to the Planck scale, or beyond, well-known difficul-
ties appear.
It is convenient to distinguish two orders of problems. The first is that the strength of the
gravitational coupling grows without bound. For a particle with energy p the effective
strength of the gravitational coupling is measured by the dimensionless number

√
G̃,

with G̃ = Gp2. This is because the gravitational couplings involve derivatives of the met-
ric. The consequence of this is that if we let p → ∞, also G̃ grows without bound. The
second problem is the need of introducing new counterterms at each order of perturba-
tion theory. Since each counterterm has to be fixed by an experiment, the ability of the
theory to predict the outcome of experiments is severely limited.
To cure these problems, there are many different approaches. The attitude is either to
postulate new gravitational degrees of freedom which have spacetime metrics only as
a low-energy approximation like in string theory [6, 7] or emergent gravity(For recent
proposals in this context see e.g. [8, ?]), or that the calculus of QFT is not developed well-
enough, making some more rigorous procedure necessary as in Loop Quantum Gravity
[9, 10] or some discretized versions of gravity which make a numerical treatment possible
[75, 76].
However, it could be possible that a QFT, taking the gravitational field as the carrier of
the degrees of freedom seriously, got around these obstacles if one succeeded to tame
the problems of the UV divergences in some way. These divergencies are related to the
quantum fluctuations in a system. These can, within the uncertainty relation, in principle
contain arbitrarily large contributions. A way to deal with them is the effective field the-
ory approach where an average is taken over all quantum fluctuations. For gravity this
works only as long as one sets a cutoff at the Planck scale and all terms from loop cor-
rections are suppressed by the Planck scale. A method to see if one can extend a theory
beyond a certain energy scale is given by Renormalization Group methods. One consid-
ers a theory with a cutoff at some scale and then tries to see what happens as soon as the
cutoff is shifted to lower scales. So between old and new cutoff one takes into account
only the average of the quantum fluctuations, they are integrated out. In this way one
can estimate how much influence quantum fluctuations have on the system. The integral
between old and new cutoff scales is limited and therefore finite. If one takes the step
from one cutoff scale to the next one infinitesimally, one obtains a flow, the Renormal-
ization Group (RG) flow, which will be determined by a set of differential equations, the
beta functions. If the flow can be extended to infinite scales, the theory is renormalizable.
Also Newton’s constant, as any coupling constant in a QFT, must be subject to RG flow.
It is conceivable that when p → ∞, G(p) ∼ p−2, in which case G̃ would cease to grow
and would reach a finite limit, thereby avoiding the first problem. If this is the case, we
say that Newton’s constant has an UV Fixed Point (FP). More generally, if we allow the
action to contain several couplings gi with canonical mass dimension di, we say that the
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theory has a FP if all the dimensionless parameters

g̃i = gik
−di (1.6)

tend to finite values in the UV limit 3. This particular RG behaviour would therefore solve
the first of the two problems mentioned above and would guarantee that the theory has
a sensible UV limit.
In order to address the second problem we have to investigate the set of RG trajectories
that have this good behaviour. We want to use the condition of having a good UV limit
as a criterion for selecting a QFT of gravity. If all trajectories were attracted to the FP in
the UV limit, we would encounter a variant of the second problem: the initial conditions
for the RG flow would be arbitrary, so determining the RG trajectory of the real world
would require in principle an infinite number of experiments and the theory would lose
predictivity. At the other extreme, the theory would have maximal predictive power if
there was a single trajectory ending at the FP in the UV. However, this may be too much
to ask. An acceptable intermediate situation occurs when the trajectories ending at the
FP in the UV are parametrized by a finite number of parameters. A theory with these
properties is said to be “asymptotically safe” [15].
To better understand this property, imagine, in the spirit of effective field theories, a gen-
eral QFT with all possible terms in the action which are allowed by the symmetries. We
can parametrize the (generally infinite dimensional) “space of all theories”, Q, by the
dimensionless couplings g̃i. We assume that redundancies in the description of physics
due to the freedom to perform field redefinitions have been eliminated, i.e. all couplings
are “essential” (such couplings can be defined e.g. in terms of cross sections in scattering
experiments). We then consider the RG flow in this space; it is given by the beta functions

βi = k
dg̃i

dk
. (1.7)

If there is a FP, i.e. a point with coordinates g̃i∗ such that all βi(g̃∗) = 0, we call C its
“critical surface”, defined as the locus of points that are attracted towards the FP when
k →∞ 4. One can determine the tangent space to the critical surface at the FP by studying
the linearized flow

k
d(g̃i − g̃i∗)

dk
= Bij(g̃j − g̃j∗) , (1.8)

where
Bij =

∂βi

∂g̃j

∣∣∣
∗
. (1.9)

3Strictly speaking only the essential couplings, i.e. those that cannot be eliminated by field redefinitions,
need to reach a FP. See [13] for a related discussion in a gravitational context.

4RG transformations lead towards lower energies, and the trajectories lying in C are repelled by the FP
under these transformations. For this reason, C is also called the “unstable manifold”. Since we are
interested in studying the UV limit, it is more convenient to study the flow for increasing k.
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The attractivity properties of a FP are determined by the signs of the critical exponents
ϑi, defined to be minus the eigenvalues of B. The couplings corresponding to negative
eigenvalues (positive critical exponent) are called relevant and parametrize the UV crit-
ical surface; they are attracted towards the FP for k → ∞ and can have arbitrary values.
The ones that correspond to positive eigenvalues (negative critical exponents) are called
irrelevant; they are repelled by the FP and must be set to zero.
A free theory (zero couplings) has vanishing beta functions, so the origin in Q is a FP,
called the Gaußian FP. In the neighborhood of the Gaußian FP one can apply perturba-
tion theory, and one can show that the critical exponents are then equal to the canonical
dimensions (ϑi = di), so the relevant couplings are the ones that are power–counting
renormalizable 5. In a local theory they are usually finite in number. Thus, a QFT is per-
turbatively renormalizable and asymptotically free if and only if the critical surface of the
Gaußian FP is finite dimensional. Points outside C flow to infinity, or to other FPs.
A theory with these properties makes sense to arbitrarily high energies, because the cou-
plings do not diverge in the UV, and is predictive, because all but a finite number of
parameters are fixed by the condition of lying on C. Asymptotic safety is a form of non-
perturbative renormalizability. It generalizes this picture, replacing the Gaußian FP by
an arbitrary FP. An asymptotically safe theory would have the same good properties of a
renormalizable and asymptotically free one: the couplings would have a finite UV limit
and the condition of lying on C would leave only a finite number of parameters to be
determined by experiment. In general, studying the properties of such theories requires
the use of nonperturbative tools. If the nontrivial FP is sufficiently close to the Gaußian
one, its properties can also be studied in perturbation theory, but unlike in asymptotically
free theories, the results of perturbation theory do not become better and better at higher
energies.
For Newton’s constant in particular, the beta function is given by

k∂kG̃ = [d− 2− ηN ]G (1.10)

with η = k∂k lnG being the anomalous dimension. One sees that a non-Gaußian fixed
point can only exist for ηN = d − 2. The value of the anomalous dimension becomes
therefore an essential ingredient for asymptotic safety. It leads to a corrected scaling
behaviour of the propagator as (p2)−1+ηN/2 in momentum space or

√
x

2−d−ηN in config-
uration space. For the fixed point to exist, the correction from the anomalous dimension
has to be negative for d > 2, G̃ has to decrease at high energies leading to an antiscreen-
ing behaviour of gravity. In four dimensions, the requirement is ηN = 2, so the correction
by the anomalous dimension is large and perturbation theory is not applicable.
In two dimensions instead, a Gaußian fixed point is obtained for ηN = 0, in its vicinity
perturbation theory can be applied. That is why for first studies of asymptotic safety in
gravity, several authors [15, 16, 17] applied the ε expansion around two dimensions which
is the critical dimension where Newton’s constant is dimensionless. The beta function of

5The behavior of dimensionless or marginal couplings may require a more sophisticated analysis.
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Newton’s constant then has the form

βG̃ = εG̃+B1G̃
2 , (1.11)

where G̃ = Gk−ε and B1 < 0 [15, 16], so there is a FP at G̃ = −ε/B1 > 0. Unfortunately
this result is only reliable for small ε and it is not clear whether it will extend to four
dimensions.
In the effective field theory approach (in d = 4), Bjerrum-Bohr, Donoghue and Holstein
have proposed interpreting a class of one loop diagrams as giving the scale dependence
of Newton’s constant [14]. They calculate

G(r) = G0

[
1− 167

30π
G0

r2

]
,

where r is the distance between two gravitating point particles. If we identify k = 1/ar,
with a a constant of order one, this corresponds to a beta function

βG̃ = 2G̃− a2 167
15π

G̃2 . (1.12)

This beta function has the same form as (1.11) in four dimensions, and, most important,
the second term is again negative. This means that the dimensionful Newton constant
G decreases towards lower distances or higher energies, i.e. gravity is antiscreening. This
is the behavior that is necessary for a FP to exist. And indeed this beta function predicts
a FP for G̃ = 30π/167a2. This calculation was based on perturbative methods and since
the FP occurs at a not very small value of G̃, it is not clear that one can trust the result.
What we can say with confidence is that the onset of the running of G has the right sign
for asymptotic safety. Clearly in order to make progress on this issue we need different
tools.
The approach to quantum gravity described here starts from an EFT picture trying to
establish that the theory is not merely effective but applicable also to arbitrarily large
UV scales due to the asymptotic safety behaviour. What is gained compared to the pure
EFT approach is not so much the large energy range - already EFT is valid till the Planck
scale. The advantage of a fully consistent theory is rather to get control over possible
quantum gravity effects arising at the highest energies and being propagated from high
to low scales by renormalization group trajectories. The question what are the truly fun-
damental degrees of freedom becomes then secondary. If a consistent picture based on
metrical degrees of freedom exists, no quantum gravitational effects should escape by
tracing their effects to lower energies where theories based on different degrees of free-
dom have to match by the correspondence principle.
In this thesis, the application of Wilsonian renormalization group methods to the UV be-
haviour of gravity will be discussed. In section 2, first the Wilsonian RG approach will
be presented in section 2.1 mainly based on the review articles [15, 65, 66, 67], in section
2.2 a particularly convenient tool will be introduced called the “Exact Renormalization
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Group Equation” (ERGE) which can be used to calculate the “beta functional” of a QFT.
Renormalizability is not necessary and the theory may have infinitely many couplings.
In section 2.3 we illustrate the use of the ERGE by calculating the contribution of min-
imally coupled matter fields to the gravitational beta functions. In this simple setting,
the techniques that are used to extract from the full beta functional the beta functions of
individual couplings will be reviewed, emphasizing those results that are “scheme inde-
pendent” in the sense that they are the same irrespective of technical details of the calcu-
lation. In section 3 the same techniques are applied to the calculation of the beta functions
for the cosmological constant and Newton’s constant in Einstein’s theory in arbitrary di-
mensions, extending in various ways the results of earlier studies [18, 19, 20, 21, 22]. It is
also shown that the FP that is found in four–dimensional gravity is indeed the continu-
ation for ε → 2 of the FP that is found in the 2 + ε expansion. Various ways of defining
the Wilsonian cutoff are compared and find the results to be qualitatively stable. In sec-
tions 3.9 and 4.1 connection with old results from perturbation theory is made. In section
3.9 the ’t Hooft–Veltman one loop divergence in 4d is rederived from the ERGE and it is
shown to be scheme–independent. It is also discussed why the Goroff–Sagnotti two loop
divergence cannot be seen with this method and the significance of this fact. In section 4
higher derivative gravity is considered. In section 4.1 the existence of the FP is derived
in the most general truncation involving four derivatives at one loop, and we highlight
the differences between the Wilsonian procedure as in [23] and earlier calculations. In
section 4.2 higher powers of curvature are considered but restricted to polynomials in
the scalar curvature based on calculations in [24] and [25]. In section 5 the present status
of the asymptotic safety approach to quantum gravity is assessed and the various open
problems are discussed.
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2. General techniques

2.1. Kadanoff-Wilson renormalization

In Quantum Field Theory, a distinctive role is played by those actions which are renor-
malizable. In such theories, divergences appear only in a few parameters which lead
to a shift between bare and renormalized masses and coupling constants and can be ex-
pressed by the addition of a number of counterterms to the action. These values depend
on the choice of the renormalization scale. They can be fixed at one renormalization scale
so that apart from a few couplings all of them can be set to zero. Changing the scale
will however bring all other terms in the action into play which are consistent with the
symmetry principles of the theory. Their behaviour under renormalization scale changes
can be studied with Renormalization Group (RG) methods. One finds however that non-
renormalizable terms are suppressed with respect to the renormalizable ones explaining
therefore the importance of renormalizable action in the description of physical phenom-
ena. From this point of view, a theory is not defined by a specific form of action, but
instead by its field content and its symmetry principles. That means that an action will
in principal contain an infinite amount of interaction terms.
To handle such a presumably more complicated theory one performs the following steps.
First one distinguishes between fast and slow field modes. The functional integral is per-
formed piecewise such that fast modes are integrated out and slow modes are retained
while the values of observables remain fixed. This process is called “coarse graining”
and defines a flow in the space of action functionals depending on the way the “coarse
graining” is performed, see section 2.1.1.
Practically one starts from some initial form of action including all possible interaction
terms. The RG flow of the coupling constants of the interaction terms will determine
which of the couplings are relevant (or essential) and which ones are irrelevant (or inessen-
tial) (section 2.1.2). If there exists a fixed point of the RG flow, the flow determines which
couplings are relevant near the fixed point (section 2.1.3). The number of relevant cou-
plings at the fixed point gives the degree of renormalizability (section 2.1.4). This section
is essentially based on the review articles [15, 65, 66, 67].

2.1.1. The coarse graining procedure

The reason for performing the functional integral step after step is inherited from statis-
tical physics and critical phenomena. These occur where fluctuations of the dynamical
variables over a large (and possibly diverging) amount of length scales have to be taken
into account. The coarse graining serves to break up the problem into many different

9
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steps where at each coarse graining step only fluctuations in a narrow range have to be
taken into account. As an example, a macroscopic observable 〈O〉 which results from a
functional average over a functionO of the fields χ might be sensitive to the microscopic
field fluctuations over a large range of scales.
The coarse graining is then done by introducing a kernel K (χ′, χ) = Kk,δk (χ′, χ) with
support on momenta k − δk ≤ p ≤ k which is therefore limited to a certain momen-
tum range δk and which is normalized to

∫
Πp≤ΛdχpK(χ′, χ) = 1. With this kernel one

can integrate out field configurations with momentum modes below a UV scale Λ by
performing

〈O〉 =
∫

Πp≤ΛdχpO(χ)e−S[χ] =
∫

Πp≤Λ−δk dχ
′
p

∫
Πp≤ΛdχpKΛ,δk(χ, χ′)O(χ)e−S[χ]

=
∫

Πp≤Λ−δkdχ
′
pO′(χ′)e−S′[χ′] (2.1)

where the outer integration goes only till p ≤ Λ − δk and the last integration step is
performed separately with the help of the kernel which is restricted to the last momentum
step. In the final step the variables have been renamed so that the same expression is
obtained with a different form of operator, action and field. This procedure gives the
operator, action, and field at the scale Λ − δk instead of Λ. Specifying 〈O〉 = 1, S′ and
O′ are defined from the coarse graining procedure. One sees that at each scale of coarse
graining only field configurations close to the coarse graining scale will contribute. The
evaluation of the functional integral at each step should thus become easier.
One can then continue the coarse graining procedure to lower and lower resolution scales
where at each step a further small amount of the degrees of freedom is integrated out.
Thus at each coarse graining step the functional measure is modified as

dµk[χ] = Πpdχpe
−Sk[χ] . (2.2)

From this relation the modification of the measure at each step can be translated into a
modification of the action at each step. One thus obtains a flow in the actions. For the
specific form

Kk,δk = δ(χ, χ′)− δk∂δkKk,0(χ, χ′) +O((δk)2)) (2.3)

and O = 1 one obtains the flow equations

∂ke
−Sk[χ] =

∫
Πp≤Λdχ

′
p∂δk

Kk,0(χ, χ′)e−Sk[χ′] (2.4)

with the initial condition
Πp≤Λdχ

′
p∂δk

Kk,0(χ, χ′) = 0 . (2.5)

For a specific form of kernel and initial action these flow equations, known as functional
renormalization group equations of Wilsonian type, will determine the flow of actions Sk[χ].
Results obtained in this way will of course depend on the form of the kernel. We will
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use here a concept differing a bit from the original approach and described in section
2.2. We do not specify a kernel for each integration step, but rather a scale-dependent
mode-suppression function which is added to the action and is chosen in such a way that
momentum modes χp with p2 ¿ k2 are suppressed in the functional integral whereas the
modes with p2 À k2 are left unsuppressed and therefore integrated out.

2.1.2. Relevant and irrelevant couplings

In general, the action will change very much from one coarse-graining step to the other.
Therefore, the best strategy is to start from a scale dependent action functional Γk

1 which
includes all possible (or at least as many as possible) interaction monomials which are
compatible with the symmetry principles of the proposed theory

Γk(φA, gi) =
∞∑

n=0

∑

i

gi(k)Oi (φA) (2.6)

which is a functional onF×Q×R+ whereF is the field configuration space,Q an infinite
dimensional manifold spanned by all the coupling constants called coupling space, and
R+ is the positive real line parametrized by the RG scale k.
Dimensional analysis tells that this functional will be invariant under the rescaling

Γk(φA, gi) = Γbk(bdAφA, b
digi) (2.7)

where b ∈ R+ and dA is the dimension of the fieldA and di the dimension of the coupling
gi. As all the k-dependence is carried by the coupling constant, one has

∂tΓk(φA, gi) =
∞∑

n=0

∑

i

βi(k)Oi (φ) . (2.8)

where the flow of the different couplings will be determined by the beta functions,

k
dg̃i

dk
= βi(g̃) . (2.9)

and t = log k/k0 is the RG time. Each physically possible theory will be characterized by
a trajectory inQ, as obtained as a solution of the beta functions with some appropriate set
of initial values. The beta functions can be calculated as a power series in the couplings,
but only in a regime where higher order terms can be neglected. This is not necessarily
the case in the UV.
The couplings gi will in general be dimensionful and therefore also include power-counting
nonrenormalizable ones. They will be subject to RG flow and depend on the coarse-
graining scale k, the scale Λ where the bare action is defined, and a set of initial values for
the couplings. Each coupling can be measured in units of the cutoff scale k so that one

1At some fixed UV scale Λ the functional will correspond to the bare action.
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obtains the dimensionless quantities

g̃i(k) = k−digi(k) . (2.10)

Rescaling as well the fields as
φ̃A = k−dAφi(k) (2.11)

and choosing b = k−1 one obtains the dimensionless functional Γ̃k on (F ×Q×R+)/R+

as

Γ̃(χ̃A, g̃i) := Γ̃1(χ̃A, g̃i) = Γk(χA, gi)
∞∑

n=0

∑

i

gi(k)Oi (φ) . (2.12)

Also the beta functions can be made dimensionless by rescaling

βi(gj , k) = kdiai(g̃j) (2.13)

where ai(gj) = βi(g̃j , 1) so that

β̃i(g̃j , k) = ∂tg̃i = ai(g̃j)− dig̃i (2.14)

which is dimensionless and therefore does not depend on k explicitly any more, but only
implicitly via g̃j(k).
In the path integral, the φA are the integration variables and a redefinition of them does
not change the physical content of the theory which is expressed by the invariance of
F under the group G of coordinate transformations in F , the diffeomorphism group. A
similar arbitrariness exists for the choice of coordinates on Q as the freedom to redefine
the couplings.
If Γk is the most general functional on F × Q, there exists a field redefinition φ′ = φ′(φ)
and a set g′i of couplings with

Γk(φ′A(φA), gi) = Γk(φA, g
′
i) (2.15)

defining an action of G on Q. If one chooses a coordinate system adapted to these trans-
formations, one can find a subset gî of all couplings gi which transforms nontrivially and
can be used as coordinates for the orbits of G, and a subset gī which is invariant under
the action of G and therefore defining coordinates on Q/G. The couplings from the first
set are called irrelevant or inessential or redundant whereas the latter ones are called rele-
vant or essential or nonredundant. This terminology comes from the fact that there exist
locally field redefinitions φ̄(φ) giving fixed values (gî)0 to the inessential couplings from
eq. (2.15) so that the new action

Γ̄(φ̄A, gī) := Γk(φ̄A, gī, gî|0) = Γk(φA, gī, gî) (2.16)

depends only on the essential couplings. Inessential couplings are not constrained to
flow towards the fixed point. The part of the coupling space Q spanned by the essential
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couplings is called the unstable manifold, the one spanned by the inessential couplings the
stable manifold. The latter one is usually infinite dimensional and corresponds to the inter-
action monomials dying out under the coarse graining transformations. The dimension
of the unstable manifold gives the degree of renormalizability as explained below.
The distinction between the two species of couplings can be illustrated with a scalar field
in a gravitational background gµν ,

Γk(gµν , Zφ, λ2i) =
∫
d4x

√
g

[
Zφ

2
gµν∂µφ∂νφ+ λ2φ

2 + λ4φ
4 + . . .

]
(2.17)

which has the scaling invariance

Γk(cφ, gµν , c
−2Zφ, c

−2iλ2i) = Γk(φ, gµν , Zφ, λ2i) . (2.18)

So there exists a parametrization where the wave function renormalization Zφ is inessen-
tial whereas the couplings λ̄2i = λ2iZ

−i
φ are essential. Choosing c =

√
Zφφ leads to

Zφ = 1 and the essential couplings are unaffected. More complicated, nonlinear field
redefinitions are possible. The only restriction is that the field redefinitions have to be
consistent with the symmetry principles. In general, there could be an infinite number of
essential as well as inessential couplings.
Comparing equations (2.15) and (2.16) one sees that also the RG scale k can be regarded
as an inessential coupling. The invariance of k and φ under rescalings can then be used
to eliminate k and one other inessential coupling for each field multiplet, for which one
chooses usually ZφA

. For the RG flow of the inessential couplings no fixed point con-
ditions have to be imposed. Their flow is given by the so-called anomalous dimension
ηA = ∂t logZφA

. The dimensionless effective action Γ̃(φ̃A, g̃ī) will then also only depend
on the essential couplings which have to reach the fixed point.
This can be reformulated in the following way. A coupling will be called irrelevant if the
change of the couplings can be absorbed in the bare Lagrangian by a mere field redefini-
tion. Under the change of any unrenormalized coupling parameter g0 by an infinitesimal
amount ε the Lagrangian changes by

L → L+ ε
∂L
∂g0

. (2.19)

A field redefinition of the kind φA(x) → φA(x)+ εFA(φA(x), ∂µφA(x), . . .) will change the
Lagrangian by the amount

δL = ε
∑

A

[
∂L
∂φA

FA +
∂L

∂(∂µφA)
∂µFA + . . .

]

= ε
∑

A

[
∂L
∂φA

− ∂µ
∂L

∂(∂µφA)
+ . . .

]
FA + total derivative terms . (2.20)
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That means we can cancel the effect from the changes in the couplings if there exist Fn

such that

∂L
∂g0

= ε
∑

A

[
∂L
∂φA

− ∂µ
∂L

∂(∂µφA)
+ . . .

]
FA + total derivative terms. (2.21)

Thus a coupling is inessential if and only if ∂L
∂g0

= 0, or, as Fn 6= 0 in general, is a total
derivative when the Euler-Lagrange equations are used.
For gravity, one uses a derivative expansion of the form

Γk(φ, gi) =
∞∑

n=0

∑

i

g
(n)
i (k)O(2n)

i (φ) , (2.22)

where O(2n)
i =

∫
ddx

√
gM

(2n)
i with M

(2n)
i being monomials in the curvature tensor and

its derivatives where each term contains 2n derivatives of the metric. The index i labels
different operators with the same number of derivatives. The couplings g(n)

i have dimen-
sion dn = d− 2n. For the first monomial with zero derivatives exists only one possibility
M (0) = 1 and g(0) = 2ZgΛ with the cosmological constant Λ and the Newton constant
G gives Zg = 1/(16πG). Also for the term containing two derivatives there is only one
possibility, M (1) = R, the Ricci scalar, and g(1) = −Zg. For the four derivative terms there
are, neglecting the total derivative terms of the Ricci scalar and the Gauss-Bonnet term,
two possibilities, M (2)

1 = C2, the Weyl tensor squared, and M
(2)
2 = R2, the Ricci scalar

squared. These terms can be reexpressed as a combination of Ricci scalar and Ricci ten-
sor or Riemann tensor squared terms, one of them being eliminated by the Gauss-Bonnet
identity. As in Yang-Mills theories, the coupling constants of the higher-derivative terms
are defined to be the inverses of the coupling coefficients, 2λ = (g(2)

1 )−1 and ξ = (g(2)
2 )−1.

The coupling corresponding to the wave function renormalization is Zg and can be elim-
inated by constant rescalings of gµν ,

Γk(gµν , g
(n)
i ) = Γbk(b−2gµν , b

d−2ng
(n)
i ) . (2.23)

At this point, one sees that gravity has the particularity that the two invariances under
field reparametrizations and dimensional analysis are the same. So the RG scale k and
Zg cannot be eliminated at the same time, one of them has to be retained. This fixes the
choice of units. The statements that we will make about dimensionful quantities will
only be valid for a specific choice of units. The translation from one system of units to
another might be cumbersome. In the next chapters, we will retain Zg and eliminate k,
but instead one could also fix Zg = 1 and retain k thus working in Planck units.

2.1.3. Fixed point and ultraviolet critical surface

The scaling behaviour of the couplings will influence experimentally measurable quanti-
ties such as any sort of partial or total reaction rates R. If they have a mass dimension D
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they will scale as the cutoff scale,

R = kDf(
E

k
,X, g̃(k)) (2.24)

where E is the energy characterizing the process, X are all other dimensionless variables
like ratios of energies, angles et cetera. In the case of a cross section one will haveD = −2.
As R cannot depend on the arbitrary choice of the renormalization scale k where the
couplings are defined one can choose k = E and obtains therefore a scaling with respect
to the energy,

R = EDf(1, X, g̃(E)) (2.25)

whose UV behaviour will be fully determined by the UV behaviour of the couplings. For
the on-shell case, this behaviour will depend only on the relevant couplings as on-shell
the reaction rates do not depend on the field definitions. Off-shell instead the rates will
also depend on the inessential coupling parameters. So the fundamental question is if the
couplings have a well-defined behaviour up to the UV-range so that also observables like
reaction rates remain well-defined. This translates to the condition that the beta functions
should be well-behaved without poles or discontinuities. These will be absent if the beta
functions approach a fixed point in the UV.
A point g∗ in coupling space where the beta functions vanish, βi(g∗) = 0, is a fixed point
of the RG flow. It is called a UV fixed point if limt→∞ gi(t) = g∗i . Those couplings which lie
on a trajectory g̃i(k) hitting the UV fixed point form a surface in the space of all couplings
which is called the UV critical surface.
Such a fixed point will however not be approached by the inessential parameters. The
RG equations cannot change their form when each field is multiplied by an independent
constant. So if the inessential coupling parameters Zr(k) fulfill the RG equations, so
they must do also after multiplication by some arbitrary constants. Therefore, their beta
functions must be linear in Zr(k),

k
dZr

dk
= Zrγr(g̃) (2.26)

and γr can only depend on the essential coupling parameters. So, if γr does not vanish or
diverge, the solution of this equation will be Zr(k) ∝ kγr(g∗). This will give corrections to
the scaling of off-shell Green’s-functions, but not to reaction rates.
Usually, a theory has at least one fixed point, the one where all coupling constants vanish,
gi = 0, so that also βi = 0 as it is a function of all other coupling constants only. Then
all interactions are going to zero, only the kinetic term is left in the Lagrangian, and all
loop corrections vanish . This fixed point is called the Gaußian fixed point. In its vicinity,
perturbation theory can be applied because the couplings are small. This is not the case
at fixed points with non-zero couplings which are called non–Gaußian fixed points. The
position of the fixed point depends on the kind of coarse-graining operation chosen.
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2.1.4. Degree of renormalizability

The dimension of the stable and the unstable manifold and therefore of the UV critical
surface will determine the degree of renormalizability. If the dimension of the UV critical
surface is infinite, one has the same problem as in perturbation theory and nothing new
is learned. Neither can the theory be asymptotically safe if the dimension of the UV
critical surface is zero as one then has only irrelevant couplings and reaction rates will
not depend on these parameters. So the hope is that one will end up with some finite
number C so that one has C − 1 free dimensionless parameters plus the RG scale k.
Ideally C would be one, so that all couplings would be determined from the RG scale
telling when which point on the RG trajectories is reached.
The dimension of the stable and the unstable manifold and the UV critical surface can be
determined from the dimension of the corresponding tangent spaces at the fixed point
which is obtained from linearization around the fixed point

βi (k) = Bij

(
g̃j (k)− g̃∗j

)
, Bij =

∂βi (g̃)
∂g̃j

‖g̃=g̃∗ (2.27)

with solution
g̃i (k) = g̃∗i + CkV

k
i k

−ϑk

where Ck are some initial constants, V k
i the eigenvectors, and −ϑk the eigenvalues of

the stability matrix Bij . The stability matrix can be degenerate and nonsymmetric so
that the eigenvectors do not necessarily span the tangent space at the fixed point and
the eigenvalues can be complex. The stable manifold is spanned by the eigenvectors
with Re ϑk > 0 so that |gi(t) − g∗i | decreases exponentially, and the unstable manifold
is spanned by those with Re ϑk < 0 so that |gi(t) − g∗i | grows exponentially in t. The
couplings giving rise to Re ϑk = 0 are called marginal and cannot be decided to belong
to either of the manifolds in the linearized approximation.
From g̃i(k) = k−digi(k) one has

βi = k∂kg̃i = k−di(−digi + k∂kgi) = −dig̃i + k−di+1∂kgi (2.28)

and
Bij =

∂βi

∂g̃j
= −di + k−di+1∂k

∂gi

∂g̃j
. (2.29)

Here the first term in both equations comes from the canonical coupling dimension whereas
the second term, depending on higher powers of couplings, corresponds to all possible
loop contributions. These loop corrections vanish at the Gaußian fixed point as all in-
teractions go to zero when approaching it. Therefore at the Gaußian fixed point the cou-
plings scale just according to their mass dimension. Interactions with more derivatives or
more powers of fields will lower the dimension di of the respective coupling. Therefore
only a finite number of di can be positive, and all but a finite number have dimension
lower than any given negative value. So one can expect that the UV critical surface will
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be finite dimensional.
When the stability matrix is degenerated, one has to be careful. At the Gaußian fixed
point, this will be the case for the dimensionless couplings with di = 0. For these, the
Gaußian fixed point will be approached in the UV only if βi

g̃i
< 0 near g̃i = 0. This

means that the UV critical surface of the Gaußian fixed point corresponds to those theo-
ries which are renormalizable and asymptotically free. At a non-Gaußian fixed point the
loop contributions will be important as they can change the sign of the eigenvalues com-
pared to the value at the Gaußian fixed point, and this can lead to a different number of
relevant parameters. At the non-Gaußian fixed point however perturbation theory will
not be valid.
In general, trajectories not contained in the stable manifold will approach the fixed point
in the ultraviolet before being driven away from it. How close they will come is deter-
mined by the initial value, finetuning can make the trajectories pass arbitrarily close to
the fixed point. If they do come close to the fixed point, they will be for some time (nearly)
part of the stable manifold before emanating from the fixed point. These trajectories are
called renormalized.
One therefore comes to the two the definition of nonperturbative renormalizability and
asymptotic safety:

• There exists a UV fixed point

• Its unstable manifold is finite-dimensional.

The so defined coupling-trajectories are independent of any ultraviolet cutoff-scale and
independent of all irrelevant couplings (which are determined from the finite set of rel-
evant couplings). The requirement for asymptotic safety can also be formulated in the
following way. For the space Q̃ = (Q×R+)/(G×R+) of essential couplings the set C of
all points in Q̃ flowing towards a fixed point in the UV forms the UV critical surface. For
an initial point on C the whole trajectory will remain on C and flow toward the UV fixed
point. Points outside C flow either to infinity or to other fixed points. Trajectories lying
in C certify a sensible UV limit. If the dimension of C is finite, there will only be a finite
number of free parameters.
An asymptotically safe theory does not show unphysical singularities in the UV. The con-
trary is not necessarily true. A non-asymptotically safe theory does not necessarily show
singularities. We will give an example of a non-asymptotically safe theory from [15].
Consider the RG equations of the form

k∂kg̃i = ai

∑

j

(g̃j − g̃∗j )
2 (2.30)

where ai and g̃∗j are arbitrary constants. If a fixed point should be approached in the UV,
it should be possible to parameterize the couplings as a function ξ being subtracted from
the fixed point value and vanishing for k →∞, so that

g̃i = g̃∗i − aiξ . (2.31)
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This leads to a differential equation for ξ which can be solved to give

ξ =
ξ0

1 + ξ0 ln k
k0

∑
i a

2
i

(2.32)

with initial values ξ0 and k0 being greater than zero. So ξ → 0 for k →∞ and the theory
is asymptotically safe. If instead g̃i does not lie on the line parameterized by ξ, for g̃i →∞
the solution becomes

g̃i → ai


−

∑

j

a2
j ln(k/k∞)



−1

(2.33)

and g̃i →∞ for k → k∞, so trajectories not included in the UV critical surface parameter-
ized by the line will lead to singularities at the energy scale E = k∞.
In this discussion one also has to certify that a redefinition of the couplings does not lead
to problems. Defining for example g̃′i = (g̃i − g̃∗i )

−1 will make R finite for g̃i being infi-
nite. This problem can be avoided by defining the coupling constants as the coefficients
in a power-series expansion of the reaction rates around some physical renormalization
point.
This rises also the question if a redefinition of the couplings will not spoil the fixed point
properties as the beta functions as well as the stability matrix depend on the definition of
the couplings whereas the eigenvalues of the stability matrix do not. Suppose that a set
of new couplings ḡ is related to the old set g̃ by

ḡi(k̄) = ḡi(
k̄

k
, g̃i(k)) . (2.34)

As the new couplings cannot depend on the definition of the old couplings, one has

0 = k
dḡi

dk
= −k̄ ∂ḡi

∂k̄
+

∑ ∂ḡi

∂g̃j
k
dg̃j

dk
(2.35)

and one can define
β̄i(ḡ(k̄)) = k̄

∂ḡi

∂k̄
=

∑

j

∂ḡi

∂g̃j
βj(g̃) . (2.36)

That shows that if βi = 0 also β̄i = 0 and the fixed point remains. The beta functions
and their derivatives, and therefore the stability matrix, do not stay invariant. For the
stability matrix one has the transformation

B̄ij =
∑

kl

AikBklA
−1
lj (2.37)

with
Aik =

∂ḡi

∂g̃k
‖g̃=g̃∗ (2.38)
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which is just a similarity transformation and preserves the eigenvalues.

2.2. The Exact Renormalization Group Equation and its
approximations

The central lesson of Wilson’s analysis of QFT as described in the last section is that the
“effective” (as in “effective field theory”) action describing physical phenomena at a mo-
mentum scale k can be thought of as the result of having integrated out all fluctuations
of the field with momenta larger than k [26]. It is therefore an interpolation between the
bare action, valid at some UV scale, and the effective action where all field modes are
integrated out corresponding to k → 0. At this general level of discussion, it is not nec-
essary to specify the physical meaning of k: for each application of the theory one will
have to identify the physically relevant variable acting as k. A specific application where
such a choice has to be taken is discussed in section 3.10 2. Since k can be regarded as
the lower limit of some functional integration, it will usually be refered to as the infrared
cutoff. The dependence of the “effective” action on k is the Wilsonian RG flow.
There are several ways of implementing this idea in practice, resulting in several forms
of the RG equation. In the specific implementation that is used here, instead of intro-
ducing a sharp cutoff in the functional integral, the contribution of the field modes with
momenta lower than k is suppressed. This is obtained by modifying the low momentum
end of the propagator, and leaving all the interactions unaffected. Here, this procedure
is described for a scalar field. One starts from a bare action S[φ], and adds to it a sup-
pression term ∆Sk[φ] that is quadratic in the field. In flat space this term can be written
simply in momentum space. In order to have a procedure that works in an arbitrary
curved spacetime one chooses a suitable differential operator O whose eigenfunctions
ϕn, defined byOϕn = λnϕn, can be taken as a basis in the functional space one integrates
over,

φ(x) =
∑

n

φ̃nϕn(x)

where φ̃n are generalized Fourier components of the field. (A notation suitable for an
operator with a discrete spectrum is used.) Then, the additional term can be written in
either of the forms

∆Sk[φ] =
1
2

∫
dxφ(x)Rk(O)φ(x) =

1
2

∑
n

φ̃2
nRk(λn) . (2.39)

The kernel Rk(O) will also be called “the cutoff”. It is arbitrary, except for the general
requirements that Rk(z) should be a monotonically decreasing function both in z and k,
that Rk(z) → 0 for z À k and Rk(z) 6= 0 for z ¿ k. These conditions are enough to guar-
antee that the contribution to the functional integral of field modes φ̃n corresponding to

2In scattering experiments k is usually identified with some external momentum. See [27] for a discussion
of this choice in concrete applications to gravity.
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eigenvalues λn ¿ k2 are suppressed, while the contribution of field modes correspond-
ing to eigenvalues λn À k2 are unaffected. From here on one fixes Rk(z) → k2 for k → 0.
The distinction between high and low momentum modes is then implemented by defin-
ing a k-dependent generating functional of connected Green functions by

Zk [J ] = e−Wk[J ] =
∫
Dφ exp

(
−S[φ]−∆Sk[φ]−

∫
dx J(x)φ(x)

)
(2.40)

which defines the expectation value of φ in the presence of ∆S and J as

〈φ(x)〉 =
δWk [J ]
δJ(x)

(2.41)

and the k-dependent connected two-point function

Gk(x, y) =
δ2Wk

δJ(x)δJ(y)
= 〈φ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉 . (2.42)

where 〈φ(x)φ(y)〉 = Z−1
k

∫
Dφφ(x)φ(y)e−S[φ].

By a Legendre transformation one introduces

Γ̃k[φ] = Wk[J ]−
∫
dx J(x)φ(x) (2.43)

such that
δΓ̃k [φ]
δφ(x)

= J(x) . (2.44)

The differentiation of (2.41) with respect to φ and of (2.44) with respect to J gives the
identity ∫

dxGk(x, y)
δ2Γ̃k

δφ(y)δφ(z)
= δ(x− z) . (2.45)

This gives the RG scale dependence of Γ̃k for fixed φ as

∂tΓ̃k|φ = −∂tWk|φ = ∂t〈∆S〉 =
1
2

∫
dx∂tRk [Gk(x, x) + 〈φ(x)〉〈φ(x)〉] (2.46)

To absorb the last term, one defines a modified k-dependent Legendre transform

Γk[φ] = Γ̃k −∆Sk[φ] (2.47)

where ∆Sk[φ] has been subtracted. The functional Γk is sometimes called the average ef-
fective action because it can be interpreted as the effective action for fields that have been
averaged over volumes of order k−d (d being the dimension of spacetime) [28]. The “clas-
sical fields” δWk/δJ are denoted φ without brackets for notational simplicity. In the limit
k → 0, Γk tends to the usual effective action Γ[φ], the generating functional of one-particle
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irreducible Green functions. Γk is similar in spirit to the Wilsonian effective action, but
differs from it in the details of the implementation. The Legendre transformation of Γk

can be inverted to obtain
J =

δΓk

δφ
+ φRk. (2.48)

Inserting this expression into Zk, equation (2.40), and substituting φ by φ′+χ one obtains

exp(−Γk [φ]) =
∫
Dφ′ exp

(
−S [

φ′ + χ
]
+
δΓk

δχ
φ′ − 1

2
φ′Rkφ

′
)
. (2.49)

One sees that Γk approaches S for k → Λ if Rk diverges. The aim is to start with some
UV action at Γk and to continue the integration till k → 0. This would mean knowing the
action at all microscopic and macroscopic scales and solve the whole theory.
Several properties of Γk are important to note. All symmetries of the theory which are
also respected by the cutoff term ∆Sk are also symmetries of Γk. Therefore Γk can be
expanded in all terms of invariants consistent with the symmetries of the theory, ordered
for example according to the number of derivatives as we will do later on for gravity on
basis of the different curvature invariants.
The functional Γ̃k[φ] = Γk[φ] + ∆Sk[φ] is the Legendre transform of Wk[φ]. So it is convex
and all second functional derivatives δ2Γk/δφδφ + Rk are positive semi-definite. For the
modified Γk this is only true in the limit k → 0. This formalism can be easily generalized
to the case of multicomponent fields ΦA, where A may denote both internal and space-
time (Lorentz) indices. In this case the cutoff term will have the form ΦARkABΦB , and
the trace in the r.h.s. of the ERGE will also involve a finite trace over the indicesA,B. The
generalization to chiral fermionic fields is unproblematic and will occur in later sections.
In the case of gauge theories there are further complications due to the fact that the cutoff
interferes with gauge invariance. One way of dealing with this issue, which will be used
here, is to use the background field method [18, 31] (for another approach see [32]). One
defines a functional of two fields, the background field and the classical field, which is
invariant under background gauge transformations. In the end the two fields are identi-
fied and one obtains a gauge invariant functional of one gauge field only.
Note also that Γk will be the generating functional for all 1PI n-point functions which will
also be scale dependent. The interaction models will be different at different scales.
If the theory contains some reparametrization invariance of physical quantities under
field rescalings φ(x) → αφ(x) giving some wave function renormalization constant, also
the infrared cutoff term should contain this constant. This will be important in gravity
where the Newton constant plays the role of a wave function renormalization constant.
In principle one could start calculations with the integro-differential equation (2.49). How-
ever, from the RG scale dependence of Γ̃k follows also that Γk satisfies the following Exact
Renormalization Group Equation (or ERGE) [29, 30]

k
dΓk

dk
=

1
2
TrGkk

dRk

dk
=

1
2
Tr

[
Γ(2)

k +Rk

]−1
k
dRk

dk
. (2.50)
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As a functional differential equation it will be easier to handle than the integro-differential
equation. The trace in the r.h.s. is a sum over the eigenvalues of the operator O (in flat
space it would correspond to a momentum integration Tr =

∑
A

∫
ddq/(2π)d) and the

notation Γ(2)
k = δ2Γk

δφδφ is introduced for the inverse propagator of the field φ defined by the
functional Γk. Together with the cutoff term, the r.h.s. involves the full propagator of the
theory. As the equation holds exactly, effects of arbitrarily high loop order are included.
Flow equations for n-point functions can be obtained easily from equation (2.50) by dif-
ferentiating with respect to the fields at the vertex. One can represent the connection be-
tween different n-point functions by modified Feynman-diagrams with insertion points
from the cutoff function stressing the similarity of the exact equation to the perturbative
expansion. It can be shown that the k-dependent n-point function will depend only on
the n+1 and n+2 point function.
As the structure of the ERGE is similar to the perturbative expansion, the ERGE can be
seen formally as a RG improved one loop equation. To see this, recall that given a bare
action S (for a bosonic field), the one loop effective action Γ(1) is

Γ(1) = S +
1
2

Tr log
[
δ2S

δφδφ

]
. (2.51)

Then one adds to S the cutoff term (2.39); the functional

Γ(1)
k = S +

1
2

Tr log
[
δ2S

δφδφ
+Rk

]
(2.52)

may be called the “one loop average effective action”. It satisfies the equation

k
dΓ(1)

k

dk
=

1
2
Tr

[
δ2S

δφδφ
+Rk

]−1

k
dRk

dk
(2.53)

which is formally identical to (2.50) except that in the r.h.s. the renormalized running cou-
plings gi(k) are replaced everywhere by the “bare” couplings gi, appearing in S. Thus the
“RG improvement” in the ERGE consists in replacing the bare couplings by the running
renormalized couplings.
The formal derivation of the ERGE from a path integral makes use of a bare action S.
To explore the relation between S and the (renormalized) average effective action Γk for
any k requires that an ultraviolet regularization be defined (in addition to the infrared
regularization provided by Rk). This point does not need to be discussed, since the bare
action is an unphysical quantity and all the physics is encoded in the running renormal-
ized action Γk. In this connection note that the trace in the r.h.s. of (2.50), which includes
an integration over momenta, is perfectly ultraviolet convergent and does not require any
UV regulator. This is because the function k d

dkRk in the r.h.s. goes to zero for momenta
greater than k and makes the integration convergent. So, one can regard the derivations
given above as merely formal manipulations that motivate the form of the ERGE, but
then the ERGE itself is perfectly well defined, without the need of introducing an UV
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regulator. If one assumes that at a given scale k physics is described by a renormalized
action Γk, the ERGE gives a way of studying the dependence of this functional on k, and
the behavior of the theory at high energy can be studied by taking the limit of Γk for
k →∞ (which need not coincide with the bare action S).
The average effective action Γk[φ], used at tree level, gives an accurate description of pro-
cesses occurring at momentum scales of order k. In the spirit of effective field theories,
one assumes that Γk exists and is quasi–local in the sense that it admits a derivative ex-
pansion of the form 2.22.
The r.h.s. of (2.50) can be regarded as the “beta functional” of the theory, giving the k–
dependence of all the couplings of the theory. In fact, taking the derivative of (2.22) one
gets

k
dΓk

dk
=

∞∑

n=0

∑

i

β
(n)
i O(2n)

i (2.54)

where

β
(n)
i (gj , k) = k

dg
(n)
i

dk
=
dg

(n)
i

dt
(2.55)

are the beta functions of the (generally dimensionful) couplings. Here, the renormaliza-
tion group time t = log(k/k0) has been introduced, k0 being an arbitrary initial value. If
one expands the trace on the r.h.s. of (2.50) in operators O(2n)

i and compares with (2.54),
one can in principle read off the beta functions of the individual couplings.
In this connection, note that in general the cutoff function Rk may contain the couplings
gi and therefore the term k d

dkRk in the r.h.s. of (2.50) will itself contain the beta functions.
Thus, extracting the beta functions from the ERGE generally implies solving an alge-
braic equation where the beta functions appear on both sides 3. This complication can
be avoided by choosing the cutoff in such a way that it does not contain any coupling.
Then, the entire content of the ERGE is in the (RG–improved) one loop beta functions.
The result is still “exact” insofar as one is able to keep track of all possible couplings of
the theory.
There is an obvious problem as soon as one tries to solve the ERGE: one has to deal
with an infinite system of coupled nonlinear partial differential equations. Most solution
methods are based on the identification of a small expansion parameter. Using small
couplings as an expansion parameter will of course not go beyond the usual perturbative
calculations. Alternatives are the expansion in the number N of matter fields as used in
section 2.3 or in the number of dimensions, especially the 2 + ε-expansion around two
dimension where gravity is renormalizable as used in section 3.7.
In most cases it is however impossible to follow the flow of infinitely many couplings
and a common procedure is to consider a truncation of the theory, namely to retain only
a finite subset of terms in the effective action Γk. There are different procedures to collect
the retained terms. One can expand in the powers of fields and therefore in the n-point

3For example, in a scalar theory with action
R

d4x
ˆ
Z(∂φ)2 + m2φ2 + λφ4

˜
it is natural to choose the cutoff

of the form Rk(z) = Zkk2r(z/k2). Then, the r.h.s. of (2.50) will contain ∂tZ.
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functions, in the dimension of the coupling constants, or in the number of derivatives.
We will mostly work with the latter form of expansion as in (2.22) and retain all terms
up to some given order n. For each choice, one calculates the coefficients of the retained
operators in the r.h.s. of (2.50) and in this way the corresponding beta functions are com-
puted. In general the set of couplings that one chooses in this way will not be closed
under RG evolution, so one is neglecting the potential effect of the excluded couplings
on the ones that are retained. Still, in this way one can obtain genuine nonperturbative
information, and this procedure has been applied to a variety of physical problems with
good quantitative results. For reviews, see [33, 34, 35].
If one truncates the effective action in this way, there is usually no small parameter to
allow to estimate the error one is making. One indirect way to estimate the quality of
a truncation relies on an analysis of the cutoff scheme dependence. The effective action
Γk obviously depends on the choice of the cutoff function Rk. This dependence is sim-
ilar to the scheme dependence of the renormalized effective action in perturbative QFT;
only physically observable quantities derived from Γk must be independent of Rk. This
provides an indirect check on the quality of the truncation. For example, the critical ex-
ponents should be universal quantities and therefore cutoff–independent. In concrete
calculations, usually involving a truncation of the action, critical exponents do depend
on the cutoff scheme, and the observed dependence can be taken as a quantitative mea-
sure of the quality of the approximation. Ultimately, there is no substitute for performing
calculations with truncations that contain more terms. Note that a good truncation is not
necessarily one for which the new terms are small, but one for which the effect of the new
terms on the old ones is small. In other words, in search of a nontrivial FP, one wants the
addition of new terms not to affect too much the FP value of the “old” couplings, nor the
“old” critical exponents.

2.3. Matter fields and cutoff schemes

Having introduced the Exact Renormalization Group Equation (ERGE) (2.50) in the last
section, now the method used to compute the trace in the r.h.s. of (2.50) in a gravitational
setting and to evaluate the beta functions of the gravitational couplings will be illustrated.
Quite generally, one considers the contribution of fields whose inverse propagator Γ(2)

k is
a differential operator of the form

∆ = −∇2 + E (2.56)

where∇ is a covariant derivative, both with respect to the gravitational field and possibly
also with respect to other gauge connections coupled to the internal degrees of freedom
of the field, and E is a linear map acting on the quantum field. As this operator con-
tains derivatives only in combinations of Laplacians, we will be able to use heat kernel
methods for the trace evaluation in the ERGE as described in appendix A.1. In general,
E could contain mass terms or terms linear in curvature. For example, in the case of a
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nonminimally coupled scalar, E = ξR, where ξ is a coupling. A priori, nothing will be
assumed about the gravitational action and also the spacetime dimension d can be left
arbitrary at this stage.

2.3.1. Cutoff types

In order to write the ERGE one has to define the cutoff. For the operator to be used in the
definition of (2.39), several possible choices suggest themselves. One splits E = E1 + E2,
where E1 does not contain any couplings and E2 consists only of terms containing the
couplings. A cutoff will be called
• of type I, if Rk is a function of the “bare Laplacian” −∇2,
• of type II if it is a function of −∇2 + E1 and
• of type III if it is a function of the full kinetic operator ∆ = −∇2 + E.

The substantial difference between the first two types and the third is that in the latter
case, due to the running of the couplings, the spectrum changes along the flow. For this
reason these cutoffs are said to be “spectrally adjusted” [36]. 4

If one restricts to the case where E2 = 0, i.e. the kinetic operator does not depend on
the couplings, there is only a choice between cutoffs of type I and II. The derivation of
the beta functions is technically simpler with a type II cutoff. In this case one chooses a
real function Rk with the properties listed in section 2.2 and defines a modified inverse
propagator

Pk(∆) = ∆ +Rk(∆) . (2.57)

If the operator E does not contain couplings, using (A.10) the trace in the r.h.s. of the
ERGE reduces simply to

Tr
∂tRk(∆)
Pk(∆)

=
1

(4π)d/2

∞∑

i=0

Q d
2
−i

(
∂tRk

Pk

)
B2i(∆) (2.58)

whereB2i(∆) are the heat kernel coefficients of the operator ∆ and theQ-functionals, de-
fined in (A.14,A.15) are the analogues of momentum integrals in this curved spacetime
setting. The derivative with respect to the explicit dependence of Rk on k is denoted as
∂tRk; when the argument of Rk does not contain couplings this coincides with the total
derivative dRk/dt.
With a type I cutoff one uses the same profile function Rk but now with −∇2 as its argu-
ment. This implies the replacement of the inverse propagator ∆ by

∆ +Rk(−∇2) = Pk(−∇2) + E . (2.59)

Therefore the r.h.s. of the ERGE will now contain the trace Tr ∂tRk(−∇2)
Pk(−∇2)+E

. Since E is linear

4In (2.39) it was assumed for simplicity that the operatorO appearing in the argument of the cutoff function
is also the operator whose eigenfunctions are used as a basis in the evaluation of the functional trace. It
is worth stressing that this need not be the case, as discussed in appendix A.1.
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in curvature, in the limit when the components of the curvature tensor are uniformly
much smaller than k2, one can expand

∂tRk

Pk + E
=

∞∑

`=0

(−1)`E` ∂tRk

P `+1
k

.

Each one of the terms on the r.h.s. can then be evaluated in a way analogous to (A.10), so
in this case one gets a double series

Tr
∂tRk(−∇2)
Pk(−∇2) + E

=
1

(4π)d/2

∞∑

i=0

∞∑

`=0

Q d
2
−i

(
∂tRk

P `+1
k

) ∫
dx
√
g(−1)`trE`b2i(−∇2) . (2.60)

In order to extract the beta functions of the gravitational couplings one has to collect
terms with the same monomials in curvature. An example of this will be presented
shortly.
Before discussing specific examples, however, it is interesting to consider the scheme–
independent part of the trace. In general, on dimensional grounds, the functionalsQn (∂tRk/P

m
k )

appearing in (2.58) and (2.60) will be equal to k2(n−m+1) times a number depending on
the profile function. As discussed in appendix A.1, the integrals with m = n + 1 are in-
dependent of the shape of Rk. Thus, in even-dimensional spacetimes with a cutoff of type
II, and using (A.19), the coefficient of the term in the sum (2.58) with i = d

2 is

Q0

(
∂tRk

Pk

)
Bd(∆) = 2Bd(∆) . (2.61)

On the other hand with a type I cutoff, using (A.18), (A.19) and (A.5) the terms with ` =
d
2 − i add up to

d/2∑

`=0

Q`

(
∂tRk

P `+1
k

) ∫
dx
√
g(−1)`trE`b2i(−∇2)

= 2
∫
dx
√
gtr

[
bd(−∇2)−Ebd−2(−∇2) + . . .+

(−1)d/2

(d/2)!
Ed/2b0(−∇2)

]

= 2Bd(−∇2 + E) .

Therefore, in addition to being independent of the shape of the cutoff function, these
coefficients are also the same using type I or type II cutoffs.
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2.3.2. Minimally coupled matter

As an example one now specializes to four-dimensional gravity coupled to nS scalar
fields, nD Dirac fields, nM gauge (Maxwell) fields, all massless and minimally coupled

Γk(gµν , φ, ψ,Aµ) =
∫
d4x

√
g

[
1
2
∇µφ∇µφ+ ψ̄γµ∇µψ +

1
4
FµνFµν

]
. (2.62)

In addition Γk must contain a generic action for gravity of the form (2.22), which is not
written here. (For the terms with four derivatives one uses the parametrization given in
(3.74) below.) The contribution of these matter fields to the gravitational beta functions
will be computed here. The contribution of the gravitational field to its beta functions
will be calculated in the next section using the same methods; as one will see, the details
of the calculation are technically more involved, but conceptually there is no difference.
The field equation of each type of field defines a second order differential operator ∆(A) =
−∇2 + E(A), with A = S,D,M, gh and

E(S) = 0 ; E(D) =
R

d
; E(M) = Ricci ; E(gh) = 0 . (2.63)

Here “Ricci” stands for the Ricci tensor regarded as a linear operator acting on vectors
Ricci(v)µ = Rµ

νvν . For the gauge fields, the Lorentz gauge is chosen, and ∆(gh) is the
operator acting on the scalar ghost. (It can be shown that the results do not depend on
the choice of gauge [37].)
With a type II cutoff, for each type of field one defines the modified inverse propagator
Pk(∆(A)) = ∆(A) + Rk(∆(A)). Then, using the heat kernel coefficients for the different
fields, the ERGE reduces simply to

dΓk

dt
=

nS

2
Tr(S)

(
∂tRk(∆(S))
Pk(∆(S))

)
− nD

2
Tr(D)

(
∂tRk(∆(D))
Pk(∆(D))

)

+
nM

2
Tr(M)

(
∂tRk(∆(M))
Pk(∆(M))

)
− nMTr(gh)

(
∂tRk(∆(gh))
Pk(∆(gh))

)

=
1
2

1
(4π)2

∫
d4x

√
g

[
(nS − 4nD + 2nM )Q2

(
∂tRk

Pk

)

+
1
6
R (nS − 2nD − 4nM )Q1

(
∂tRk

Pk

)

+
1

180

(
(3nS + 18nD + 36nM )C2 − (nS + 11nD + 62nM )E

+5nSR
2 + 12 (nS + nD − 3nM )∇2R

)
+ . . .

]
(2.64)
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where C2 is the square of Weyl’s tensor and E = RµνρσR
µνρσ − 4RµνR

µν + R2 (in four
dimensions χ = 1

32π2

∫
d4x

√
gE is Euler’s topological invariant). The terms with zero

and one power of R depend on the profile function Rk, but using (A.19) one sees that
the coefficients of the four–derivative terms, i.e. the beta functions of g(4)

i , are scheme–
independent.
With type I cutoffs, the modified inverse propagators are ∆(A) + Rk(−∇2) = Pk(−∇2) +
E(A) and the ERGE then becomes:

dΓk

dt
=

nS

2
Tr(S)

(
∂tPk(−∇2)
Pk(−∇2)

)
− nD

2
Tr(D)

(
∂tRk(−∇2)
Pk(−∇2) + R

4

)

+
nM

2
Tr(M)

(
∂tRk(−∇2)

Pk(−∇2) + Ricci

)
− nMTr(gh)

(
∂tRk(−∇2)
Pk(−∇2)

)
. (2.65)

Expanding each trace as in (A.10), collecting terms with the same number of derivatives
of the metric, and keeping terms up to four derivatives one gets

dΓk

dt
=

1
2

1
(4π)2

∫
d4x

√
g

[
(nS − 4nD + 2nM )Q2

(
∂tRk

Pk

)

+

[
1
6
Q1

(
∂tRk

Pk

)
nS +

(
2
3
Q1

(
∂tRk

Pk

)
−Q2

(
∂tRk

P 2
k

))
nD

+
(

1
3
Q1

(
∂tRk

Pk

)
−Q2

(
∂tRk

P 2
k

))
nM

]
R

+
1

180

(
(3nS + 18nD + 36nM )C2 − (nS + 11nD + 62nM )E

+5nSR
2 + 12 (nS + nD − 3nM )∇2R

)
+ . . .

]
. (2.66)

One sees that the terms linear in curvature, which contribute to the beta function of New-
ton’s constant, have changed. However, the terms quadratic in curvature have the same
coefficients as before, confirming that the beta functions of the dimensionless couplings
are scheme–independent.
In order to have more explicit formulae, and in numerical work, one needs to calculate
also the scheme–dependent Q-functionals. This requires fixing the profile Rk. Here, in
most cases the so–called optimized cutoff (A.21) will be used in which the integrals are
readily evaluated, see equations (A.22,A.23,A.24). This cutoff has the very convenient
property that Q−n (∂tRk/Pk) = 0 for n ≥ 1. Thus, the sum over heat kernel coefficients
on the r.h.s. of (A.10) terminates. In particular, in four dimensions, there are no terms
beyond those that are explicitly written in (2.64) or (2.66) 5. For more general cutoffs a

5This had also been observed in a different context in [38].
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calculation of beta functions for curvature–polynomials of cubic and higher order would
require the knowledge of higher heat kernel coefficients.
One has to briefly comment on the spectrally adjusted (type III) cutoffs. These only occur
when the kinetic operator ∆ contains couplings, for example a mass term or, in the case
of a scalar field, a nonminimal coupling of the form ξR. In this case the last factor in (2.50)
is

dRk

dt
= ∂tRk +

∑

i

R′k
∂E
∂gi

∂tgi

where R′k denotes the derivative of Rk(z) with respect to z and the sum extends over all
couplings (this assumes that the derivative of the operator appearing in Rk commutes
with the operator itself). This introduces further nonlinearities in the system. Since the
beta functions of the couplings appear linearly in the r.h.s. of the equation, to obtain the
beta functions one has to solve a system of linear equations.
In a consistent truncation one would have to add to the terms in (2.66) or (2.64) the con-
tribution due to the gravitational field. This will be done in the next section. For the time
being one observes that if the number of matter fields is of order N → ∞, this is the
dominant contribution and constitutes the leading order of a 1/N expansion [39]. The
matter contributions by themselves have a form that leads to a gravitational FP. Com-
paring equation (2.54) with equations (2.66) or (2.64) one can read off the beta functions,
which all have the form

dg
(n)
i

dt
= a

(n)
i k4−n (2.67)

where a(n)
i are constants. Then, the beta functions of the dimensionless variables g̃(n)

i =
kn−4g

(n)
i are

dg̃
(n)
i

dt
= (n− 4)g̃(n)

i + a
(n)
i . (2.68)

This simple flow has indeed a FP for all couplings. For n 6= 4

g̃
(n)
i∗ =

a
(n)
i

4− n
, (2.69)

in particular writing g(0) = 2ZΛ and g(2) = −Z = − 1
16πG , the flow of the cosmological

constant and Newton’s constant is given by

dΛ̃
dt

=− 2Λ̃ + 8πa(0)G̃+ 16πa(2)G̃Λ̃

dG̃

dt
=2G̃+ 16πa(2)G̃2 (2.70)
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Figure 2.1.: The generic form of the flow induced by matter fields.

which, for a type II cutoff, has a FP at

Λ̃∗ = −3
4
nS − 4nD + 2nM

nS − 2nD − 4nM
, G̃∗ =

12π
−nS + 2nD + 4nM

. (2.71)

Note that the FP occurs for positive or negative Λ̃ depending on whether there are more
bosonic or fermionic degrees of freedom. The FP value of G̃, on the other hand, will be
positive provided there are not too many scalar fields. For n = 4, (2.68) gives a logarith-
mic running

g
(4)
i (k) = g

(4)
i (k0) + a

(4)
i ln(k/k0) ,

implying asymptotic freedom for the couplings 1/g(4)
i . This is the same behavior that is

observed in Yang–Mills theories and is in accordance with earlier perturbative calcula-
tions [40, 41]. As noted, it follows from (A.24) that with the optimized cutoff, for n > 4,
g̃
(n)
i∗ = 0. The critical exponents at the nontrivial FP are equal to the canonical dimen-

sions of the g(n)s, so Λ and G are UV–relevant (attractive), 1/g(4)
i are marginal and all the

higher terms are UV–irrelevant. Note that in perturbation theory G is irrelevant. At the
nontrivial FP the quantum corrections conspire with the classical dimensions of Λ and G
to reconstruct the dimensions of g(0) and g(2). This must happen because the critical expo-
nents for g(0) and g(2) are equal to their canonical dimensions and the critical exponents
are invariant under regular coordinate transformations in the space of all couplings; the
transformation between G̃ and g̃(2) is regular at the nontrivial FP, but it is singular at the
Gaußian FP where the coupling vanishes.
This simple flow is exact in the limit N → ∞, but is also a rough approximation when
graviton effects are taken into account, as will be discussed in sections 3.8 and 4.1. It is
shown in figure 2.1.
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In this section we have reviewed the Wilsonian Renormalization Group approach and
presented the idea of an asymptotically safe theory with the essential ingredient of a
nontrivial Renormalization Group flow fixed point. After that, we introduced a form of
Exact Renormalization Group Equation (ERGE) which is the necessary nonperturbative
tool to calculate the beta functions of the couplings and to study if a theory possesses
such a kind of fixed point. Then we presented the necessary techniques to calculate the
beta functions in a curved spacetime setting. With these tools at hand, we are now able to
consider gravitational actions and to see if a well-defined UV limit can exist for gravity.
This will be the matter of the next sections.
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3. Einstein-Hilbert truncation

With the preparation from the last section, we are now able to deal with gravity. As a first
step towards the inclusion of quantum gravitational effects, we discuss in this section the
Renormalization Group (RG) flow for Einstein’s gravity, with or without cosmological
constant. This truncation has been extensively discussed before [18, 20]. Here we will ex-
tend those results in various directions. Since the dependence of the results on the choice
of gauge and profile function Rk has already been discussed in [20, 21] here we shall fix
our attention on a particular gauge and profile function, and analyze instead the depen-
dence of the results on different ways of implementing the cutoff procedure. The sim-
plicity of the truncation will allow us to compare the results of different approximations
and cutoff schemes, a luxury that is progressively reduced going to more complicated
truncations.
The theory is parametrized by the cosmological constant Λ and Newton’s constant G =
1/ (16πZ), so that we set g(0) = 2ΛZ and g(2) = −Z in equation (2.22). All higher cou-
plings are neglected. Then the truncation takes the form

Γk =
∫
dx
√
g (2ΛZ − ZR(g)) + SGF + Sghost (3.1)

where SGF is a gauge–fixing term and Sghost is the ghost action. We decompose the
metric into gµν = g

(B)
µν + hµν where g(B)

µν is a background. We will refer to the field hµν

as the graviton, even though it is not assumed to be a small perturbation. We consider
background gauges of the type

SGF (g(B), h) =
Z

2α

∫
dx

√
g(B)χµg

(B)µνχν (3.2)

where
χν = ∇µhµν − 1 + ρ

d
∇νh .

All covariant derivatives are with respect to the background metric. In the following all
metrics will be background metrics, and we will omit the superscript (B) for notational
simplicity. In this section we will restrict ourselves to the de Donder gauge with parame-
ters α = 1, ρ = d

2 − 1, which leads to considerable simplification. The inverse propagator
of hµν , including the gauge fixing term, can be written in the form

1
2

∫
dx
√
ghµνΓ

(2)µνρσ
k hρσ

33
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containing the minimal operator

Γ(2)µν
k ρσ = Z

[
Kµν

ρσ (−∇2 − 2Λ) + Uµν
ρσ

]
(3.3)

where 1

Kµν
ρσ =

1
2

(
δµν
ρσ −

d

2
Pµν

ρσ

)
; δµν

ρσ =
1
2

(
δµ
ρ δ

ν
σ + δµ

σδ
ν
ρ

)
; Pµν

ρσ =
1
d
gµνgρσ ;

Uµν
ρσ = RKµν

ρσ +
1
2

(gµνRρσ +Rµνgρσ)− δ
(µ
(ρR

ν)
σ) −R(µ

(ρ
ν)

σ) .

In the derivation of these expressions, the variations of the occurring tensors given in
appendix A.6 are useful. In the following we will sometimes suppress indices for no-
tational clarity; we will use boldface symbols to indicate linear operators on the space
of symmetric tensors. For example, the objects defined above will be denoted K, 1, P,
U. Note that P and 1 − P are projectors onto the trace and tracefree parts in the space
of symmetric tensors, hµν = h

(TF )
µν + h

(T )
µν where h(T )

µν = P ρσ
µν hρσ = 1

dgµνh. Using that
K = 1

2

(
(1−P) + 2−d

2 P
)
, if d 6= 2 we can rewrite equation (3.3) in either of the following

forms

Γ(2)
k = ZK(−∇2 − 2Λ1 + W)

=
Z

2

[
(1−P)

(−∇2 − 2Λ1 + 2U
)− d− 2

2
P

(
−∇2 − 2Λ1− 4

d− 2
U

)]
(3.4)

where we have defined

Wµν
ρσ = 2Uµν

ρσ −
(d− 4)
2(d− 2)

(Rρσg
µν + gρσR

µν −Rgρσg
µν) . (3.5)

Note that the overall sign of the second term in the second line of (3.4) is negative when
d > 2. This is the famous problem of the unboundedness of the Euclidean Einstein–
Hilbert action. We shall see shortly how this is dealt with in the ERGE. Later on, we will
need the traces

tr 1 =
d(d+ 1)

2
; tr P = 1 ; tr (1−P) =

d2 + d− 2
2

; tr W =
d(d− 1)

2
R ;

tr W2 = 3RµνρσR
µνρσ +

d2 − 8d+ 4
d− 2

RµνR
µν +

d3 − 5d2 + 8d+ 4
2(d− 2)

R2 . (3.6)

The ghost action is

Sghost = −
∫ √

g C̄µ

(−∇2δµ
ν −Rµ

ν

)
Cν . (3.7)

1These definitions coincide with those of [18] except that the Λ term has been removed from U.
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On the d-dimensional sphere where

Rµν =
R

d
gµν ;Rµνρσ =

R

d(d− 1)
(gµρgνσ − gµσgνρ) (3.8)

we can write

U =
1
2

[
(1−P)

d2 − 3d+ 4
d(d− 1)

R−P
d− 2

2
d− 4
d

R

]
. (3.9)

Then, using the second line of (3.4), we have

Γ(2)
k =

Z

2

[
(1−P)

(
−∇2 − 2Λ +

d2 − 3d+ 4
d (d− 1)

R

)
− d− 2

2
P

(
−∇2 − 2Λ +

d− 4
d

R

)]
.

(3.10)
We will now discuss separately various types of cutoff schemes.

3.1. Cutoff of type Ia

This is the scheme that was used originally in [18] designed to just replace −∇2 by
Pk(−∇2) in the modified inverse propagator (3.10). It is defined by the cutoff term

∆Sk[hµν ] =
1
2

∫
dx
√
g hµνRk(−∇2)µνρσ hρσ −

∫
dx
√
g C̄µR

(gh)
k (−∇2)µ

νC
ν (3.11)

where

Rk(−∇2) = ZKRk(−∇2)

R
(gh)
k (−∇2)µ

ν = δµ
νRk(−∇2) . (3.12)

for gravitons and ghosts respectively. Defining the anomalous dimension by

η =
1
Z

dZ

dt
(3.13)

we then have
dRk

dt
= ZK

[
∂tRk(−∇2) + ηRk(−∇2)

]
. (3.14)

The calculation in [18] proceeded as follows. The background metric is chosen to be that
of Euclidean de Sitter space. Using the properties of the projectors, its inversion is trivial

(
Γ(2)

k + Rk

)−1
=

2
Z

[
(1−P)

1
Pk − 2Λ + d2−3d+4

d(d−1) R
− 2
d− 2

P
1

Pk − 2Λ + d−4
d R

]
. (3.15)
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Decomposing in the same way the term d
dtRk, multiplying and tracing over spacetime

indices one obtains

dΓk

dt
=

1
2

TrxL(1−P)
∂tRk + ηRk

Pk − 2Λ + d2−3d+4
d(d−1) R

+
1
2

TrxLP
∂tRk + ηRk

Pk − 2Λ + d−4
d R

− TrxLδ
µ
ν

∂tRk

Pk − R
d

.

One can now expand to first order in the Ricci scalar R, use the traces (3.6) and formula
(A.10) to obtain

dΓk

dt
=

1
(4π)d/2

∫
dx
√
g

{
d (d+ 1)

4
Q d

2

(
∂tRk + ηRk

Pk − 2Λ

)
− dQ d

2

(
∂tRk

Pk

)

+
[
d (d+ 1)

24
Q d

2
−1

(
∂tRk + ηRk

Pk − 2Λ

)
− d

6
Q d

2
−1

(
∂tRk

Pk

)

− d (d− 1)
4

Q d
2

(
∂tRk + ηRk

(Pk − 2Λ)2

)
−Q d

2

(
∂tRk

P 2
k

)]
R+O(R2)

}
. (3.16)

This derivation highlights two noteworthy facts. The first is that the negative sign of the
kinetic term for the trace part of h is immaterial. With the chosen form for the cutoff, any
prefactor multiplying the kinetic operator in the inverse propagator cancels out between the two
factors in the r.h.s. of the ERGE. The second fact, which we will exploit in the following,
is that the singularity occurring in the kinetic operator for the trace part in d = 2 (see equation
(3.4)) is actually made harmless by a hidden factor d − 2 occurring in U. So, the final result
(3.16) is perfectly well defined also in two dimensions.
On the other hand, an issue that is sometimes raised in connection with this calculation
is background dependence. The calculations in section 2.3 were done without choosing
a specific background, so the question arises whether the same can be done here. The
answer is positive, provided we do not decompose the field hµν into tracefree and trace
parts, and we use for the inverse propagator the form given in the first line of (3.4). Then,
the modified inverse propagator for gravitons is

Γ(2)
k + Rk = ZK

(
Pk(−∇2)− 2Λ1 + W

)
. (3.17)

On a general background Γ(2)
k + Rk cannot be inverted exactly, but remembering that W

is linear in curvature we can expand to first order

(
Γ(2)

k + Rk

)−1
=

1
Pk − 2Λ

[
1− 1

Pk − 2Λ
W +O(R2)

]

Γ(2)

CC̄
µ

ν +R
(gh)
k

µ
ν =

1
Pk

[
δµ
ν +

1
Pk
Rµ

ν +O(R2)
]
. (3.18)
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Then the ERGE becomes, up to terms of higher order in curvature,

dΓk

dt
=

1
2

TrxL
∂tRk + ηRk

Pk − 2Λ

[
1− 1

Pk − 2Λ
W

]
− TrxL

∂tRk

Pk

[
δµ
ν +

1
Pk
Rµ

ν

]
.

From here, using (A.10) one arrives again at (3.16). This alternative derivation explicitly
highlights the background independence of the results.
We are now ready to extract the beta functions. The first line of (3.16) gives the beta
function of 2ZΛ, while the other two lines give the beta function of −Z. Note the ap-
pearance of the beta function of Z in the η terms on the r.h.s. In a perturbative one loop
calculation such terms would be absent; they are a result of the “renormalization group
improvement” implicit in the ERGE. The beta functions can be written in the form

d

dt

(
2Λ

16πG

)
=

kd

16π
(A1 +A2η)

− d

dt

(
1

16πG

)
=

kd−2

16π
(B1 +B2η) (3.19)

where A1, A2, B1 and B2 are dimensionless functions of Λ, k and of d which, by dimen-
sional analysis, can also be written as functions of Λ̃ = Λk−2 and d. One can solve these
equations for dΛ̃

dt and dG̃
dt , obtaining

dΛ̃
dt

= −2Λ̃ + G̃
A1 + 2B1Λ̃ + G̃(A1B2 −A2B1)

2(1 +B2G̃)
,

dG̃

dt
= (d− 2)G̃+

B1G̃
2

1 +B2G̃
. (3.20)

The corresponding perturbative one loop beta functions are obtained by neglecting the η
terms in (3.19), i.e. setting A2 = B2 = 0, and expanding A1 and B1 in Λ̃. The leading term
is

dΛ̃
dt

= −2Λ̃ +
1
2
A1(0)G̃+B1(0)G̃Λ̃

dG̃

dt
= (d− 2)G̃+B1(0)G̃2 (3.21)

where A1 and B1 are evaluated at Λ̃ = 0. This flow has the same structure as the one
written in (2.70); we will refer to it as the “perturbative Einstein–Hilbert flow”. We will
discuss its solution in section 3.8.
The explicit form of the coefficients appearing in (3.19), with the optimized cutoff, is

A1 =
16π (d− 3 + 8 Λ̃)

(4π)
d
2 Γ(d

2) (1− 2 Λ̃)
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A2 =
16π (d+ 1)

(4π)
d
2 (d+ 2)Γ(d

2) (1− 2 Λ̃)

B1 =
−4π(−d3 + 15d2 − 12d+ 48 + (2d3 − 14d2 − 192)Λ̃ + (16d2 + 192)Λ̃2)

3(4π)
d
2 dΓ(d

2) (1− 2 Λ̃)2

B2 =
4π (d2 − 9 d+ 14− 2 (d+ 1) (d+ 2) Λ̃)

3 (4π)
d
2 (d+ 2) Γ(d

2) (1− 2 Λ̃)
2

.

A similar form of the beta functions had been given in [42] in another gauge. For the sake
of clarity we write here the beta functions in four dimensions:

βΛ̃ = −2Λ̃ +
G̃

6π
3− 4Λ̃− 12Λ̃2 − 56Λ̃3 + 107−20Λ̃

12π G̃

(1− 2Λ̃)2 − 1+10Λ̃
12π G̃

βG̃ = 2G̃− G̃2

3π
11− 18Λ̃ + 28Λ̃2

(1− 2Λ̃)2 − 1+10Λ̃
12π G̃

. (3.22)

Note the nontrivial denominators, which in a series expansion could be seen as resum-
mations of infinitely many terms of perturbation theory. They are the result of the “RG
improvement” in the ERGE.

3.2. Cutoff of type Ib

This type of cutoff was introduced in [43]. The fluctuation hµν and the ghosts are decom-
posed into their different spin components according to

hµν = hT
µν +∇µξν +∇νξµ +∇µ∇νσ − 1

d
gµν∇2σ +

1
d
gµνh (3.23)

and
Cµ = cT µ +∇µc , C̄µ = c̄Tµ +∇µc̄ , (3.24)

where hT
µν is transverse and traceless, ξ is a transverse vector, σ and h are scalars, cT and

c̄T are transverse vectors, c and c̄ are scalars. These fields are subject to the differential
constraints

hTµ
µ = 0 ; ∇νhT

µν = 0 ; ∇νξν = 0 ; ∇µc̄Tµ = 0 ; ∇µc
Tµ = 0 .

Using this decomposition can be advantageous in some cases because it can lead to a
partial diagonalization of the kinetic operator and it allows an exact inversion. This is the
case for example when the background is a maximally symmetric metric. In this section
we will therefore assume that the background is a sphere; this is enough to extract ex-
actly and unambiguously the beta functions of the cosmological constant and Newton’s
constant. Then the ERGE (2.50) can be written down for arbitrary gauge α and ρ. We
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refer to [43] for more details of the calculation. In the gauge α = 1 and without making
any approximation, the inverse propagators of the individual components are

Γ(2)

hT
µνhT

αβ

=
Z

2

[
−∇2 +

d2 − 3d+ 4
d(d− 1)

R− 2Λ
]
δµν,αβ

Γ(2)
ξµξν

= Z

(
−∇2 − R

d

)[
−∇2 +

d− 3
d

R− 2Λ
]
gµν

Γ(2)
hh = −Z d− 2

4d

[
−∇2 +

d− 4
d

R− 2Λ
]

Γ(2)
σσ = Z

d− 1
2d

(−∇2
) (
−∇2 − R

d− 1

)[
−∇2 +

d− 4
d

R− 2Λ
]

Γ(2)

c̄T
µ cT

ν
=

[
∇2 +

R

d

]
gµν

Γ(2)
c̄c = −∇2

[
∇2 +

2
d
R

]
. (3.25)

The change of variables (3.23) and (3.24) leads to Jacobian determinants involving the
operators

JV = −∇2 − R

d
, JS = −∇2

(
−∇2 − R

d− 1

)
, Jc = −∇2 (3.26)

for the vector, scalar and ghost parts. The inverse propagators (3.25) contain four deriva-
tive terms. In [43, 20] this was avoided by making the field redefinitions

ξµ →
√
−∇2 − R

d
ξµ, σ →

√
−∇2

√
−∇2 − R

d− 1
σ . (3.27)

At the same time, such redefinitions also eliminate the Jacobians. These field redefinitions
work well for truncations containing up to two powers of curvature, but cause poles
for higher truncations as the heat kernel expansion will involve derivatives of the trace
arguments. Therefore, in later sections we will not perform the field redefinitions, but
treat the Jacobians instead as further contribution to the ERGE by exponentiating them,
introducing appropriate auxiliary fields and a cutoff on these variables. Here we describe
the result of performing the field redefinitions. The ERGE is

dΓk

dt
=

1
2

Tr(2)
∂tRk + ηRk

Pk − 2Λ + d2−3d+4
d(d−1) R

+
1
2

Tr′(1)

∂tRk + ηRk

Pk − 2Λ + d−3
d R

+
1
2

Tr(0)
∂tRk + ηRk

Pk − 2Λ + d−4
d R

+
1
2

Tr′′(0)

∂tRk + ηRk

Pk − 2Λ + d−4
d R

−Tr(1)
∂tRk

Pk − R
d

− Tr′(0)

∂tRk

Pk − 2R
d

. (3.28)
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The first term comes from the spin–2, transverse traceless components, the second from
the spin–1 transverse vector, the third and fourth from the scalars h and σ. The last two
contributions come from the transverse and longitudinal components of the ghosts. A
prime or a double prime indicate that the first or the first and second eigenvalues have
to be omitted from the trace. The reason for this is explained in appendix A.2.
Expanding the denominators to first order in the Ricci scalar R, but keeping the exact
dependence on Λ as in the case of a type Ia cutoff, and using the formula (A.10), one
obtains

dΓk

dt
=

1
(4π)d/2

∫
dx
√
g

{
d(d+ 1)

4
Q d

2

(
∂tRk + ηRk

Pk − 2Λ

)
− dQ d

2

(
∂tRk

Pk

)

+R
[
−d

4 − 2d3 − d2 − 4d+ 2
4d(d− 1)

Q d
2

(
∂tRk + ηRk

(Pk − 2Λ)2

)
− d+ 1

d
Q d

2

(
∂tRk

P 2
k

)
(3.29)

+
d4 − 13d2 − 24d+ 12

24d(d− 1)
Q d

2
−1

(
∂tRk + ηRk

Pk − 2Λ

)
− d2 − 6

6d
Q d

2
−1

(
∂tRk

Pk

)]
+O(R2)

}
.

In principle in two dimensions one has to subtract the contributions of some excluded
modes. However, using the results in appendix A.2, the contributions of these isolated
modes turn out to cancel. Thus, the ERGE is continuous in the dimension also at d = 2.
The beta functions have again the form (3.20); the coefficients A1 and A2 are the same as
for the type Ia cutoff but now the coefficients B1 and B2 are

B1 = 4π
(
d(d− 1)(d3 − 15d2 − 36) + 24− 2(d5 − 8d4 − 5d3 − 72d2 − 36d+ 96)Λ̃

−16(d− 1)(d3 + 6d+ 12)Λ̃2
)/

3(4π)
d
2 d(d− 1)Γ

(
d

2

)
(1− 2Λ̃)2

B2 = 4π
d(d4 − 10d3 + 11d2 − 38d+ 12)− 2(d+ 2)(d4 − 13 d2 − 24d+ 12) Λ̃

3(4π)
d
2 (2 + d)(d− 1)d2 Γ(d

2)(1− 2Λ̃)2
. (3.30)

In four dimensions, the beta functions are

βΛ̃ = −2Λ̃ +
1

24π
(12− 33Λ̃ + 20Λ̃2 − 200Λ̃3)G̃+ 467−572Λ̃

12π G̃2

(1− 2Λ̃)2 − 29−9Λ̃
72π G̃

βG̃ = 2G̃− 1
24π

(105− 212Λ̃ + 200Λ̃2)G̃2

(1− 2Λ̃)2 − 29−9Λ̃
72π G̃

. (3.31)

In order to appreciate the numerical differences between this procedure and the one
where the fields ξµ and σ are not redefined as in (3.27), we report in appendix A.4 the
results of the alternative formulation.
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3.3. Cutoff of type IIa

Let us define the following operators acting on gravitons and on ghosts

∆2 = −∇2 + W (3.32)
∆(gh) = −∇2 − Ricci . (3.33)

The traces of the b2–coefficients of the heat kernel expansion for these operators are

trb2(∆2) = tr
(
R

6
1−W

)
=
d(7− 5d)

12
R

trb2(∆gh) = tr
(
R

6
1 + Ricci

)
=
d+ 6

6
R . (3.34)

The type II cutoff is defined to have as an argument the differential operator and the
curvature terms without couplings and therefore leads to the choice

Rk = ZKRk(∆2)

R
(gh)
k

µ
ν = δµ

νRk(∆(gh)) (3.35)

which results in

Γ(2)
k + Rk = ZK (Pk(∆2)− 2Λ)

Γ(2)

CC̄
+R

(gh)
k = Pk(∆(gh)) (3.36)

and
dRk

dt
= ZK (∂tRk(∆2) + ηRk(∆2)) . (3.37)

Collecting all terms and evaluating the traces leads to

dΓk

dt
=

1
2

TrxL
∂tRk(∆2) + ηRk(∆2)

Pk(∆2)− 2Λ
− TrxL

∂tRk(∆(gh))
Pk(∆(gh))

=
1

(4π)d/2

∫
dx
√
g

{
d(d+ 1)

4
Q d

2

(
∂tRk + ηRk

Pk − 2Λ

)
− dQ d

2

(
∂tRk

Pk

)
(3.38)

+
[
d(7− 5d)

24
Q d

2
−1

(
∂tRk + ηRk

Pk − 2Λ

)
− d+ 6

6
Q d

2
−1

(
∂tRk

Pk

)]
R+O(R2)

}
.

The beta functions are again of the form (3.20), and the coefficients A1 and A2 are the
same as in the case of the cutoffs of type I. The coefficients B1 and B2 are now

B1 = −4π(5d2 − 3d+ 24− 8(d+ 6)Λ̃)

3(4π)
d
2 Γ(d

2)(1− 2 Λ̃)
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B2 = − 4π(5d− 7)

3(4π)
d
2 Γ(d

2)(1− 2Λ̃)
. (3.39)

In four dimensions, the beta functions are

βΛ̃ = −2Λ̃ +
1
6π

(3− 28Λ̃ + 84Λ̃2 − 80Λ̃3)G̃+ 191−512Λ̃
12π G̃2

(1− 2Λ̃)(1− 2Λ̃− 13
12π G̃)

βG̃ = 2G̃− 1
3π

(23− 20Λ̃)G̃2

(1− 2Λ̃)− 13
12π G̃

. (3.40)

3.4. Cutoff of type IIb

Now we decompose the fluctuation hµν and the ghosts as for the type Ib cutoff with
the same field redefinitions, but apply the type II cutoff procedure afterwards, replacing
therefore the Laplace operator and the term proportional to the scalar curvature together
by the cutoff function with the same argument. Therefore we define the operators acting
on tensor, vector, and scalar graviton components, and vector, and scalar ghost compo-
nents as

∆TT
2 = −∇2 +

d2 − 3d+ 4
d(d− 1)

R (3.41)

∆ξµξµ

2 = −∇2 +
d− 3
d

R (3.42)

∆hh
2 = −∇2 +

d− 4
d

R (3.43)

∆σσ
2 = −∇2 +

d− 4
d

R (3.44)

∆
c̄T
µ cT

µ

2 = −∇2 − 1
d
R (3.45)

∆c̄c
2 = −∇2 − 2

d
R . (3.46)

The traces of the b2–coefficients of the heat kernel expansion for these operators are

trb2(∆TT
2 ) = tr

(
R

6
1− d2 − 3d+ 4

d(d− 1)
R1

)
=
−5 d3 + 17d2 − 26d− 48

12 d

trb2(∆
ξµξµ

2 ) = tr
(
R

6
1− d− 3

d
R1

)
=
−5 d2 + 23d− 24

6 d

trb2(∆hh
2 ) = tr

(
R

6
1− d− 4

d
R1

)
=
−5d+ 24

6 d

trb2(∆σσ
2 ) = tr

(
R

6
1− d− 4

d
R1

)
=
−5 d+ 24

6 d
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trb2(∆
c̄T
µ cT

µ

2 ) = tr
(
R

6
1 +

1
d
R1

)
=
d2 + 5d− 12

6 d

trb2(∆c̄c
2 ) = tr

(
R

6
1 +

2
d
R1

)
=
d+ 12

6 d
. (3.47)

The type II cutoff is defined to have as an argument the differential operator and the
curvature terms without couplings and therefore leads to the choice

RTT
k = ZRk(∆TT

2 )

Rξµξµ

k = ZRk(∆
ξµξµ

2 )

Rhh
k = ZRk(∆hh

2 )
Rσσ

k = ZRk(∆σσ
2 )

R
c̄T
µ cT

µ

k = Rk(∆
c̄T
µ cT

µ

2 )
Rc̄c

k = Rk(∆c̄c
2 ) (3.48)

which results in

Γ(2)TT
k + RTT

k = Z
(
Pk(∆TT

2 )− 2Λ
)

Γ(2)ξµξµ

k + Rξµξµ

k = Z
(
Pk(∆

ξµξµ

2 )− 2Λ
)

Γ(2)hh
k + Rhh

k = Z
(
Pk(∆hh

2 )− 2Λ
)

Γ(2)σσ
k + Rσσ

k = Z (Pk(∆σσ
2 )− 2Λ)

Γ
(2)c̄T

µ cT
µ

k + R
c̄T
µ cT

µ

k =
(
Pk(∆

c̄T
µ cT

µ

2 )− 2Λ
)

Γ(2)c̄c
k + Rc̄c

k =
(
Pk(∆c̄c

2 )− 2Λ
)

(3.49)

and

dRTT
k

dt
= Z

(
∂tRk(∆TT

2 ) + ηRk(∆TT
2 )

)

dRξµξµ

k

dt
= Z

(
∂tRk(∆

ξµξµ

2 ) + ηRk(∆
ξµξµ

2 )
)

dRhh
k

dt
= Z

(
∂tRk(∆hh

2 ) + ηRk(∆hh
2 )

)

dRσσ
k

dt
= Z (∂tRk(∆σσ

2 ) + ηRk(∆σσ
2 ))

. (3.50)
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Collecting all terms and evaluating the traces leads to

dΓk

dt
=

1
2

Tr(2)
∂tRk(∆TT

2 ) + ηRk(∆TT
2 )

Pk(∆TT
2 )− 2Λ

+
1
2

Tr′(1)

∂tRk(∆
ξµξµ

2 ) + ηRk(∆
ξµξµ

2 )

Pk(∆
ξµξµ

2 )− 2Λ

+
1
2

Tr(0)
∂tRk(∆hh

2 ) + ηRk(∆hh
2 )

Pk(∆hh
2 )− 2Λ

+
1
2

Tr′′(0)

∂tRk(∆σσ
2 ) + ηRk(∆σσ

2 )
Pk(∆σσ

2 )− 2Λ

−Tr(1)
∂tRk(∆

c̄T
µ cT

µ

2 )

Pk(∆
c̄T
µ cT

µ

2 )
− Tr′(0)

∂tRk(∆c̄c
2 )

Pk(∆c̄c
2 )

=
1

(4π)d/2

∫
dx
√
g

{
d(d+ 1)

4
Q d

2

(
∂tRk + ηRk

Pk − 2Λ

)
− dQ d

2

(
∂tRk

Pk

)
(3.51)

+
[
d(7− 5d)

24
Q d

2
−1

(
∂tRk + ηRk

Pk − 2Λ

)
− d+ 6

6
Q d

2
−1

(
∂tRk

Pk

)]
R+O(R2)

}
.

The last equation is exactly the same one as for type IIa cutoff. The different components
added up to the same coefficient. This is due to the simple structure of the cutoff. The
trace arguments are for all gravitational and ghost fields the same. What differs are only
the heat kernel coefficients for the different spin components. So the Q-functionals con-
taining the trace argument can be separated in the same way as for type IIa cutoff and
the coefficients in front must therefore be the same. In the next sections we will therefore
simply speak of type II cutoff without distinction.

3.5. Cutoff of type III

Finally we discuss the spectrally adjusted, or type III cutoff. This consists of defining
the cutoff function as a function of the whole inverse propagator Γ(2)

k , only stripped of
the overall wave function renormalization constants. In the case of the graviton, Γ(2)

k =
ZK(∆2−2Λ1) while for the ghosts Γ(2)

CC̄
= ∆gh, where ∆2 and ∆gh were defined in (3.32).

Type III cutoff is defined by the choice

Rk = ZKRk(∆2 − 2Λ) (3.52)

for gravitons, while for ghosts it is the same as in the case of type II cutoff. Since the
operator in the graviton cutoff now contains the coupling Λ, the derivative of the graviton
cutoff now involves an additional term

dRk

dt
= ZK

(
∂tRk(∆2 − 2Λ) + ηRk(∆2 − 2Λ)− 2R′k(∆2 − 2Λ)∂tΛ

)
(3.53)

where R′k denotes the partial derivative of Rk(z) with respect to z. Note that the use
of the chain rule in the last term is only legitimate if the t-derivative of the operator
appearing as the argument of Rk commutes with the operator itself. This is the case for
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the operator ∆2 − 2Λ, since its t-derivative is proportional to the identity. The modified
inverse propagator is then simply

Γ(2)
k + Rk = ZKPk(∆2 − 2Λ)

for gravitons, while for ghosts it is again given by equation (3.36). Collecting,

dΓk

dt
=

1
2

TrxL
∂tRk(∆2 − 2Λ) + ηRk(∆2 − 2Λ)− 2R′k(∆2 − 2Λ)∂tΛ

Pk(∆2 − 2Λ)
− TrxL

∂tRk(∆(gh))
Pk(∆(gh))

.

(3.54)
The traces over the ghosts are exactly as in the case of a cutoff of type II. As in previ-
ous cases, one should now proceed to evaluate the trace over the tensors using equation
(A.10) and the heat kernel coefficients of the operator ∆2 − 2Λ. However, the situation is
now more complicated because the heat kernel coefficients B2k(∆2 − 2Λ) contain terms
proportional to Λk and Λk−1R, all of which contribute to the beta functions of 2ΛZ and
−Z.
This is in contrast to the calculations with cutoffs of type I and II, where only the first
two heat kernel coefficients contributed to the beta functions of 2ΛZ and −Z. In order to
resum all these contributions, one can proceed as follows. We define the function

W (z) =
∂tRk(z) + ηRk(z)− 2R′k(z)∂tΛ

Pk(z)
(3.55)

and the function
W̄ (z) = W (z − 2Λ) . (3.56)

It is shown explicitly in the end of appendix A.1 (equation (A.33) and following) that
TrW = TrW̄ . Then, the terms without R and the terms linear in R (which give the beta
functions of 2ΛZ and −Z respectively) correspond to the first two lines in (A.34). In this
way we obtain

dΓk

dt
=

1
(4π)d/2

∫
dx
√
g

{
d(d+ 1)

4

∞∑

i=0

(2Λ)i

i!
Q d

2
−i

(
∂tRk + ηRk − 2∂tΛR′k

Pk

)
− dQ d

2

(
∂tRk

Pk

)

+
d(7− 5d)

24
R

∞∑

i=0

(2Λ)i

i!
Q d

2
−1−i

(
∂tRk + ηRk − 2∂tΛR′k

Pk

)
− d+ 6

6
Q d

2
−1

(
∂tRk

Pk

)
R

}
. (3.57)

The remarkable property of the optimized cutoff is that in even dimensions the sums
in those expressions contain only a finite number of terms; in odd dimensions the sum
involves an infinite number of terms but can still be evaluated analytically. Using the
results (A.22, A.23, A.24, A.29, A.30, A.31, A.32) the first sum in (3.57) gives

1
(4π)d/2

d+ 1
2

(k2 + 2Λ)d/2

Γ(d/2)

(
2 +

η
d
2 + 1

k2 + 2Λ
k2

+ 2
∂tΛ
k2

)∫
dx
√
g (3.58)
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whereas the second sum gives

1
(4π)d/2

d(7− 5d)
24

(k2 + 2Λ)
d−2
2

Γ(d/2)

(
2 +

η

d/2
k2 + 2Λ
k2

+ 2
∂tΛ
k2

) ∫
dx
√
gR . (3.59)

This resummation can actually be done also with other cutoffs. An alternative derivation
of these formulae, based on the proper time form of the ERGE is given in appendix A.3.
The beta functions cannot be written in the form (3.20) anymore, because of the presence
of the derivatives of Λ on the right hand side of the ERGE. Instead of (3.19) we have

d

dt

(
2Λ

16πG

)
=

kd

16π
(A1 +A2η +A3∂tΛ̃)

− d

dt

(
1

16πG

)
=

kd−2

16π
(B1 +B2η +B3∂tΛ̃) (3.60)

where

A1 =
16π(−4 + (d+ 1)(1 + 2Λ̃)

d
2
+1)

(4π)
d
2 Γ(d

2)

A2 =
16π(d+ 1)(1 + 2Λ̃)

d
2
+1

(4π)
d
2 (d+ 2)Γ(d

2)

A3 =
16π(d+ 1)(1 + 2Λ̃)

d
2

(4π)
d
2 Γ

(
d
2

)

B1 =
4π(−4(d+ 6) + d(7− 5d)(1 + 2Λ̃)

d
2 )

3(4π)
d
2 Γ(d

2)

B2 =
4π(7− 5d)(1 + 2Λ̃)

d
2

3(4π)
d
2 Γ(d

2)

B3 =
4πd(7− 5d)(1 + 2Λ̃)

d
2
−1

3(4π)
d
2 Γ

(
d
2

) . (3.61)

Solving (3.60) for dΛ̃/dt and dG̃/dt gives

dΛ̃
dt

= −2Λ̃ +
(A1 + 2(B1 −A3)Λ̃− 4B3Λ̃2)G̃+ (A1B2 −A2B1 + 2(A2B3 −A3B2)Λ̃)G̃2

2 + (2B2 −A3 − 2B3Λ̃)G̃+ (A2B3 −A3B2)G̃2

dG̃

dt
= (d− 2)G̃+

2(B1 − 2B3Λ̃)G̃2 + (A1B3 −A3B1)G̃3

2 + (2B2 −A3 − 2B3Λ̃)G̃+ (A2B3 −A3B2)G̃2
. (3.62)
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Figure 3.1.: The beta function of G̃ with Λ̃ = 0 and cutoffs of type Ia and Ib. The pertur-
bative one loop result in light gray, the RG improved one in darker color.

In four dimensions, the beta functions are

βΛ̃ = −2Λ̃ +
1
6π

(3 + 14Λ̃ + 8Λ̃2)G̃+ (1+2Λ̃)2

12π (191− 60Λ̃− 260Λ̃2)G̃2

1− 1
12π (43 + 120Λ̃ + 68Λ̃2)G̃+ 65

72π2 (1 + 2Λ̃)4G̃2

βG̃ = 2G̃− 1
3π

(23 + 26Λ̃)G̃2 − 51+152Λ̃+100Λ̃2

π G̃3

1− 1
12π (43 + 120Λ̃ + 68Λ̃2)G̃+ 65

72π2 (1 + 2Λ̃)4G̃2
. (3.63)

3.6. Gravity without cosmological constant

Before discussing the general case, it is instructive to consider the case Λ = 0. In terms
of the dimensionless coupling G̃ the beta functions with cutoffs of type I and II have the
form (3.20), where the constants B1 and B2 are evaluated at Λ̃ = 0. The cutoff of type III
leads instead to the more complicated beta function (3.62), with Λ̃ = 0. The beta function
of G̃ in four dimensions is shown in figures 3.1 and 3.2 (blue, dark lines) for different
cutoff types. It always has a Gaußian FP in the origin and a nontrivial FP at

G̃∗ = − d− 2
B1 + (d− 2)B2

. (3.64)

The Gaußian FP is always UV–repulsive (positive slope) whereas the non–Gaußian FP is
UV–attractive. In a theory with a single coupling constant as in this case, the slope of the
beta function at the nontrivial FP is related to ν, the mass critical exponent. For type I
and II cutoffs it is given by

ϑ =
1
ν

= −∂βG̃

∂G̃

∣∣∣∣∣
∗

= (d− 2)
(

1 + (d− 2)
B2

B1

)
. (3.65)

The leading, classical term is universally equal to d−2, the correction is scheme–dependent.
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Figure 3.2.: The beta function of G̃ with Λ̃ = 0 and cutoffs of type II and III. The perturba-
tive one loop result in light gray, the RG improved one in darker color. In the
case of cutoff type III the vertical line is the asymptote of the RG improved
beta function.

It is instructive to compare these “RG improved” results to the respective “one loop
approximations”. As discussed in section 2.2, the “unimproved” perturbative one–loop
beta functions are obtained by neglecting the derivatives of the couplings occurring in
the r.h.s. of the ERGE, in practice setting B2 = 0,

βG̃|1loop = (d− 2)G̃+B1G̃
2 . (3.66)

These beta functions are shown as the gray, light lines in figures 3.1 and 3.2. Since
B1 < 0, they are inverted parabolas, with a Gaußian FP in the origin and a nontrivial
FP at G̃∗ = −(d− 2)/B1. The slope at the nontrivial FP is always the opposite of the one
at the Gaußian FP, and therefore equal to −2. Note that both (1.11) and (1.12) are of this
form, for specific values of the constant B1.
Because B1 < B2 < 0, the “RG improved” FP occurs always at smaller values of G∗ than
the corresponding perturbative one. The Gaußian FP is always UV–repulsive (positive
slope) whereas the non–Gaußian FP is UV–attractive. In table 3.1 we report the numerical
values of the coefficients B1 and B2 and the position of the FP and the critical exponent
in four dimensions.
One can see from figure 3.1 that for cutoffs of type I the one loop approximation is quite
good up to the nontrivial FP and a little beyond. For larger values of G̃ the effect of
the denominator in (3.20) becomes important; the beta function deviates strongly from
the one loop approximation and has a negative pole at G̃ = −1/B2 > G̃∗. When one
considers type II and III cutoffs, the RG improved beta functions deviate from the per-
turbative one loop beta functions sooner and the effect is stronger; in the case of the type
III cutoff the pole occurs before the one loop beta function has the zero. We see that the
RG improvement leads to stronger effects if more terms of the operator are taken into
the definition of the cutoff. It is interesting to observe that the RG improvement always
brings the nontrivial fixed point closer to the perturbative regime. Since at low energies
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Approximation B1(0) B2(0) G̃∗ ϑ

ε exp., leading order − 19
24π 0.158 2.000

Ia − 11
3π − 1

12π 1.639 2.091
Ia - 1 loop 1.714 2.000
Ib with f.r. − 35

8π − 29
72π 1.213 2.368

Ib with f.r. - 1 loop 1.436 2.000
Ib without f.r. − 131

45π − 61
720π 2.040 2.116

Ib without f.r. - 1 loop 2.158 2.000
II − 23

3π − 13
12π 0.954 2.565

II - 1 loop 0.820 2.000
III − 23

3π − 13
12π 0.424 3.870

III - 1 loop 0.820 2.000

Table 3.1.: The fixed point for Einstein’s theory in d = 4 without cosmological constant.
The leading beta function for the ε expansion is derived in section 3.7; the one
for the cutoff of type Ib without field redefinitions is given in appendix A.4.

G̃ is close to zero, the region of physical interest is 0 < G̃ < G̃∗. Thus, the pole in the beta
functions at finite values of G̃ should not worry us.

3.7. The ε expansion.

Before discussing the four dimensional case, it is useful and instructive to consider the
situation in arbitrary dimensions. In particular, this will allow us to compare the re-
sults of the ERGE with those obtained in the ε–expansion. We have seen within the ap-
proximations of section 2.2 that in d dimensions the beta function of the dimensionless
coefficient of the Rd/2 term is scheme–independent. Therefore in two dimensions one
expects the beta function of Newton’s constant, or at least its leading term, to be scheme–
independent. This is confirmed by formula (3.66) for the one loop beta function, and the
results listed in table 3.1,

−B1 =
38
3

(3.67)

for all types of cutoff. On the other hand the coefficient B2 is scheme–dependent. This
mirrors the well known fact that in perturbation theory the leading term of the beta func-
tions of dimensionless couplings is scheme–independent and higher loop corrections are
not.
The beta function (3.20) with Λ̃ = 0 can be solved exactly for any d. The nontrivial FP
occurs at

G̃∗ = − d− 2
B1 + (d− 2)B2

. (3.68)
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Figure 3.3.: The position of G̃∗ as a function of d in the one loop approximation with cutoff
of type Ia (central line in black). The other lines are the first five orders of the
ε expansion (order n means the beta function has been expanded to order
n in ε.) The zeroth order is the light gray straight line. Higher orders are
represented by darker shades of gray. Order 1 and order 3 have singularities
at d ≈ 2.998 and d ≈ 3.609.

Knowing the solution in any dimension we can now check a posteriori how good the
ε–expansion is. To this end we have to expand the beta function in powers of ε = d − 2
and look for FPs of the approximated beta functions.
The leading term of the ε expansion consists in retaining only the constant, scheme–
independent term (3.67). Then the beta function is given by equation (1.11) and the fixed
point occurs (for any cutoff type) at

G̃∗ =
3
38
ε .

We see from table 3.1 that this value is quite small compared to the direct calculations in
four dimensions. For the higher orders of this expansion it is necessary to specialize the
discussion to a specific type of cutoff. For definiteness we will consider the case of a type
Ia cutoff, for which (setting Λ̃ to zero)

B1 =
4π

(
d3 − 15d2 + 12d− 48

)

3(4π)d/2dΓ(d
2)

. (3.69)

To order ε the beta function is

βG̃ = −38
3
G̃2 +

[
G̃+

(
1
3
− 19γ

3
+

38 log 2
3

+
19 log π

3

)
G̃2

]
ε+O(ε2) .
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Figure 3.4.: The position of the nontrivial fixed point as a function of d for cutoffs of type
Ia (left panel) and Ib (right panel).
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Figure 3.5.: The position of the nontrivial fixed point as a function of d for cutoffs of type
II (left panel) and III (right panel).

Whereas to leading order the solution exists for all d, to first order the solution has a
singularity for ε ≈ 2.99679. The occurrence of such singularities at finite values of ε is
expected. The one loop solution together with some of its approximants is plotted in
figure 3.3 for dimensions 2 < d < 4. We see that when the beta function is expanded to
even order in ε (n = 0, 2, 4 in the figure) the ε expansion significantly underestimates the
value of G̃∗ in d = 4 whereas for odd order (n = 1, 3 in the figure) it has a positive pole
at some value of the dimension. On the other hand from equations (3.68) and (3.69) one
sees that for large d, G̃∗ grows faster than exponentially.

We conclude this discussion by mentioning that when the ε expansion is used in pres-
ence of a cosmological constant, there are several FPs and even for ε very small they have
negative Λ̃∗. Thus the ε expansion is not very helpful in the presence of Λ̃. One can solve
exactly the equations dΛ̃/dt = 0 and dG̃/dt = 0 for arbitrary d and plot the position of
the FP in the Λ̃–G̃ plane as a function of d. This is shown in figures 3.4 and 3.5. The
fixed point is in the origin at d = 2; as d grows, G̃∗ grows monotonically while Λ̃∗ is
initially negative, then becomes positive. For moderately large dimensions (of order 10)
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G̃∗ becomes very large (of the order 106) while Λ̃∗ < 1/2 always.

3.8. Four dimensions

Let us now consider Einstein’s theory with cosmological constant in d = 4. The beta func-
tions for Λ̃ and G̃ for various cutoff types have been given in equations (3.22,3.31,3.40,3.63).
All of these beta functions admit a trivial (Gaußian) FP at Λ̃ = 0 and G̃ = 0 and a non-
trivial FP at positive values of Λ̃ and G̃. Let us discuss the Gaußian FP first. As usual,
the perturbative critical exponents are equal to 2 and −2, the canonical mass dimensions
of Λ and G. However, the corresponding eigenvectors are not aligned with the Λ̃ and G̃
axes. It is instructive to trace the origin of this fact. Since it can be already clearly seen in
perturbation theory, we consider the perturbative one loop Einstein–Hilbert flow (3.21).
The linearized flow is given by the matrix

M =

(
∂βΛ̃

∂Λ̃

∂βΛ̃

∂G̃
∂βG̃

∂Λ̃

∂βG̃

∂G̃

)
=

(
−2 +B1G̃+ 1

2G̃
∂A1

∂Λ̃
+ Λ̃G̃∂B1

∂Λ̃
1
2A1 +B1Λ̃

G̃2 ∂B1

∂Λ̃
2 + 2B1G̃

)
. (3.70)

At the Gaußian FP this matrix becomes

M =
( −2 1

2A1(0)
0 2

)
(3.71)

which has the canonical dimensions of Λ and G on the diagonal, as expected. However,
the eigenvectors do not point along the Λ and G axes. At the Gaußian FP the “attractive”
eigenvector is in the direction (1, 0) but the ”repulsive” one is in the direction (A1(0)/4, 1).
The slant is proportional toA1(0) and can therefore be seen as a direct consequence of the
running of the vacuum energy. This fact has a direct physical consequence: it is not con-
sistent to study the ultraviolet limit of gravity neglecting the cosmological constant. One
can set Λ̃ = 0 at some energy scale, but if G̃ 6= 0, as soon as one moves away from that
scale the RG will generate a nontrivial cosmological constant. This fact persists when one
considers the RG improved flow. The value of the constant A1(0) in four dimensions for
various cutoff types is listed in table 3.2.
Let us now come to the nontrivial FP. We begin by making for a moment the drastic ap-
proximation of treatingA1 andB1 as constants, independent of Λ̃ (this is the leading term
in a series expansion in Λ̃). Thus we consider again the perturbative one loop Einstein–
Hilbert flow (3.21). In this approximation the flow can be solved exactly:

Λ̃(t) =
(2Λ̃0 − 1

4A1G̃0(1− e4t))e−2t

2 +B1G̃0(1− e2t)
,

G̃(t) =
2G̃0e

2t

2 +B1G̃0(1− e2t)
. (3.72)
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Figure 3.6.: The flow near the perturbative region with cutoffs of type Ia and Ib. The
boundary of the shaded region is a singularity of the beta functions.
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Figure 3.7.: The flow near the perturbative region with cutoffs of type II and III. The
boundary of the shaded region is a singularity of the beta functions.
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Scheme Λ̃∗ G̃∗ Λ̃∗G̃∗ ϑ

Ia 0.1932 0.7073 0.1367 1.475±3.043i
Ia - 1 loop 0.1213 1.1718 0.1421 1.868±1.398i
Ib with fr 0.1715 0.7012 0.1203 1.689± 2.486i
Ib with fr - 1 loop 0.1012 1.1209 0.1134 1.903± 1.099 i
Ib without fr 0.2329 0.5634 0.1312 2.205 ±3.214 i
Ib without fr - 1 loop 0.2302 0.7450 0.1715 2.430±2.383 i
II 0.0924 0.5557 0.0513 2.425±1.270i
II - 1 loop 0.0467 0.7745 0.0362 2.310± 0.382 i
III 0.2742 0.3321 0.0910 1.752±2.069 i
III - 1 loop 0.0840 0.7484 0.0628 1.695± 0.504 i

Table 3.2.: The nontrivial fixed point for Einstein’s theory in d = 4 with cosmological
constant.

The FP would occur at Λ̃∗ = −A1/4B1, G̃∗ = −2/B1, where the matrix (3.70) becomes

M =
( −4 −1

4A1

0 −2

)
. (3.73)

It has real critical exponents 2 and 4, equal to the canonical dimensions of the constants
g(0) = 2ZΛ and g(2) = −Z. This should not come as a surprise, since the linearized
flow matrix for the couplings g(0) and g(2) is diagonal, with eigenvalues equal to their
canonical dimensions, and the eigenvalues are invariant under regular coordinate trans-
formations in the space of the couplings. So we see that a nontrivial UV–attractive FP in
the Λ̃–G̃ plane appears already at the lowest level of perturbation theory. It has the form
shown in figure 2.1.
All the differences between the perturbative Einstein–Hilbert flow and the exact flow are
due to the dependence of the constants A1 and B1 on Λ̃, and in more accurate treatments
to the RG improvements incorporated in the flow through the functions A2, B2, A3, B3.
Such improvements are responsible for the nonpolynomial form of the beta functions. In
all these calculations the critical exponents at the nontrivial FP always turn out to be a
complex conjugated pair, giving rise to a spiralling flow. The real part of these critical
exponents is positive, corresponding to eigenvalues of the linearized flow matrix with
negative real part. Therefore, the nontrivial FP is always UV-attractive in the Λ̃–G̃ plane.
Conversely, an infinitesimal perturbation away from the FP will give rise to a renormal-
ization group trajectory that flows towards lower energy scales away from the nontrivial
FP. Among these trajectories there is a unique one that connects the nontrivial FP in the
ultraviolet to the Gaußian FP in the infrared. This is called the “separatrix”.
An important aspect of the flow equations in the Einstein–Hilbert truncation is the ex-
istence of a singularity of the beta functions. In section 3.6, when we neglected the cos-
mological constant, they appeared at some value G̃c > G̃∗. Now, looking at equations
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(3.22,3.31,3.40,3.63), we see that there are always choices of Λ̃ and G̃ for which the de-
nominators vanish. The singularities are the boundaries of the shaded regions in figures
3.6 and 3.7. Of course the flow exists also beyond these singularities but those points
cannot be joined continuously to the flow in the perturbative region near the Gaußian
FP, which we know to be a good description of low energy gravity. When the trajectories
emanating from the nontrivial FP approach these singularities, they reach it at finite val-
ues of t and the flow cannot be extended to t → −∞. The presence of these singularities
can be interpreted as a failure of the Einstein–Hilbert truncation to capture all features
of infrared physics and it is believed that they will be avoided by considering a more
complete truncation. Let us note that for cutoffs of type I and II the singularities pass
through the point Λ̃ = 1/2, G̃ = 0. Thus, there are no regular trajectories emanating
from the nontrivial FP and reaching the region Λ̃ > 1/2. However, for type III cutoffs
the shaded region is not attached to the Λ̃ axis and there are trajectories that avoid it,
reaching smoothly the region Λ̃ > 1/2.
In table 3.2 we collect the main features of the UV–attractive FP for the Einstein–Hilbert
truncation with cosmological constant for the different cutoff schemes.

3.9. Ultraviolet divergences

The Einstein–Hilbert truncation does not give a closed set of flow equations, in the sense
that the beta functions of the higher couplings, which have been neglected in the pre-
vious section, are not zero. So, if we assume that the higher couplings vanish at some
initial scale, they will immediately appear as one integrates the flow equations. Before
discussing truncations that involve higher derivative terms, it will be instructive to see,
using the ERGE, how such terms are generated in Einstein’s theory and how this is re-
lated to the issue of ultraviolet divergences in perturbation theory.
A cautionary remark is in order here. In perturbation theory, the divergences appear in
the formulae relating bare and renormalized couplings. We recall that in our approach
we never talk of the bare action; instead, we follow the flow of the renormalized action
Γk as k → ∞. In this limit divergences can appear. However, the limit of Γk for k → ∞
cannot be simply identified with the bare action. Exploring the relation between these
two functionals would require introducing an ultraviolet cutoff. We are not going to do
this here. In the following we will simply compare the divergences of Γk to the perturba-
tive ones.
In the perturbative approach to quantum gravity, the analysis of ultraviolet divergences
plays a central role. This issue is not so prominent in the modern literature on asymp-
totic safety, but this does not mean that divergences do not occur. In an asymptotically
safe theory, the asymptotic behavior of every quantity is dictated simply by dimensional
analysis. The dimensionless “couplings in cutoff units” g̃i defined in (1.6) tend to con-
stant values, so the dimensionful couplings gi must run like kdi . The couplings with pos-
itive mass dimension diverge, and those with negative mass dimension go to zero. So,
for example, near the nontrivial FP in the Einstein–Hilbert truncation discussed in the
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previous section, the graviton wave function renormalization Z = (16πG)−1 diverges
quadratically and the vacuum energy 2ΛZ diverges quartically at the FP.
This matches the powerlike divergences that one encounters in perturbation theory when
one uses an ultraviolet cutoff. However, in the Wilsonian context these divergences have
a different physical meaning. The parameter k has not been introduced in the functional
integral as an UV regulator, rather as an IR cutoff, and in any physical application k
corresponds to some externally prescribed scale. So, in the Wilsonian approach the di-
vergences would seem to acquire almost a physical character: they are a manifestation of
the dependence of the couplings on an external parameter, and it should not be too sur-
prising that if an input parameter is allowed to tend to infinity also some output could
tend to infinity.
At a deeper level, however, one should take into account the fact that a dimensionful
quantity does not have an intrinsic value and therefore cannot be observable. In order to
give a value to a dimensionful quantity q, one has to specify a unit u, and the result of
any measurement gives only a value for the dimensionless ratio q/u. In an asymptotically
safe theory, the divergence of a coupling gi with positive mass dimension for k → ∞ is
just a restatement of the fact that gi, measured in units of k, tends to a constant. If we
choose another unit u, since u is also ultimately expressible in terms of other couplings,
it will also be subject to RG flow. Then, the limit q(k)/u(k) may tend asymptotically to
zero, to a finite limit or to infinity depending on the behavior of u. This highlights that the
divergence of a dimensionful coupling cannot have a direct physical meaning. The only
intrinsic (unit-independent) statement that one can make about a dimensionful quantity
is whether it is zero, positive or negative.
Furthermore, only dimensionless functions of the couplings have a chance of being ob-
servable. It is only for such combinations that the theory is required to give unam-
biguous answers, i.e. it is only such combinations that one could expect to be scheme–
independent. Now, very often the choice of k which is appropriate to a specific exper-
imental setup is not entirely unambiguous. Rather, k sets a characteristic scale of the
problem and is usually known only up to a factor of order one (see for example section
3.10, the discussion of equation (1.12), or [27] for some concrete examples in a gravita-
tional context). The reason why k is nevertheless a useful quantity in practice is that
dimensionless functions of k tend to depend weakly on k and so an uncertainty of or-
der one in the value of k produces only a very small uncertainty in the value of the
observable (think for example of the logarithmic running of gauge coupling constants).
However, if a coupling gi is dimensionful, the corresponding dimensionless variable g̃i

depends strongly on k, so one should not always expect the value of g̃i at a given scale to
be precisely defined. In particular, one should not expect the value of g̃i at the FP to be
scheme–independent.
These expectations are confirmed in the previous treatment of gravity in the Einstein–
Hilbert truncation. In two dimensions Newton’s constant is dimensionless; its value at
the nontrivial FP (namely zero) and the slope of the beta function are scheme–independent.
In four dimensions the position of the nontrivial FP in the Λ̃–G̃ plane is scheme–dependent.
However, for all cutoff schemes that have been tried so far Λ̃ and G̃ are always positive:
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the existence of the FP and the sign of the couplings seem to be robust features of the
theory. In fact, in order for Λ̃∗ and G̃∗ to be zero, one would have to find a cutoff function
such that the Q-functionals in front of the heat kernel coefficients B2 and B0 are zero.
Since Pk and ∂tRk are positive functions, one sees from (A.14) that no such choice exists.
The dimensionless combination ΛG is related to the on-shell effective action and is known
to be gauge–independent [16]. Numerical studies have also shown that the value of ΛG
at the FP is only very weakly dependent on the cutoff function, much less so than the
values of Λ̃ and G̃. It is expected that this residual weak dependence is only an effect of
the truncation. In fact, it has been argued in [20] that the weakness of this dependence is
a sign that the Einstein–Hilbert truncation must be stable against the inclusion of further
terms in the truncation. We will see in section 4 that this is indeed the case.
The UV behavior of dimensionless couplings (i.e. those that are marginal in power count-
ing) requires some additional clarification. According to the preceding discussion, they
have a chance of being physically measurable and asymptotic safety requires that they
have a finite limit. On the other hand in perturbation theory they generically present
logarithmic divergences. How can these two behaviors be reconciled? It is necessary
here to distinguish two possibilities: the limit could be finite and nonzero, or it could
be zero. If in a certain theory all couplings have the former behavior, then there cannot
be any logarithmic divergences. On the other hand if the coefficient g of some operator
diverges logarithmically, its inverse will go to zero. So if the coupling is the inverse of g,
it is asymptotically free. This is what happens in Yang–Mills theories, where the (square
of the) asymptotically free Yang-Mills coupling is the inverse of the coefficient of F 2.
In the derivative expansion of four dimensional gravity it is the terms with four deriva-
tives of the metric that have dimensionless coefficients. We can parametrize this part of
the action as follows:

∑

i

g
(4)
i O(4)

i [gµν ] =
∫
d4x

√
g

[
1
2λ
C2 +

1
ξ
R2 +

1
ρ
E +

1
τ
∇2R

]
(3.74)

where we use the notation introduced in (2.64). The question then arises, what is the
asymptotic behavior of these couplings, in particular what is the behavior of λ and ξ?
This issue can be addressed at various levels, the most basic one being: if we start from
Einstein’s theory, do we encounter divergences proportional to these terms?
It was shown early on by ’t Hooft and Veltman [44] using dimensional regularization that
(neglecting total derivatives) the one loop effective action contains the following simple
pole divergence

1
ε

∫
d4x

√
g

[
7
20
RµνR

µν +
1

120
R2

]
. (3.75)

Can this result be seen within the ERGE? Let us return to the Einstein–Hilbert truncation.
In the previous section we have expanded the r.h.s. of the ERGE using the heat kernel
formula (A.10) and retained only the first two terms, which are sufficient to give the
beta functions of the cosmological constant and Newton’s contant. Keeping the same
inverse propagators, we can now consider the next terms in the heat kernel expansion,
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which will give the beta functions of λ, ξ, ρ, τ or more precisely the dependence of these
beta functions on Newton’s constant and on the cosmological constant. We begin by
considering a type II cutoff; the terms O(R2) which were not computed in (3.38) are

∫
d4x

√
g

[
1
2
Q0

(
∂tRk + ηRk

Pk − 2Λ

)
trb4(∆2)−Q0

(
∂tRk

Pk

)
trb4(∆(gh))

]
. (3.76)

The b4 coefficients for the relevant operators can be computed using equation (A.8) and
the traces in (3.6):

trb4(∆2) =
7
12
C2 +

35
36
R2 +

17
36
E − 2

3
∇2R (3.77)

trb4(∆gh) =
7
60
C2 +

13
36
R2 − 8

45
E +

3
10
∇2R . (3.78)

In order to compare to the ’t Hooft–Veltman calculation we use the one loop approxima-
tion to the ERGE, which as explained in section 2.2 consists in neglecting η, and we also
set Λ = 0 in (3.76). This gives a contribution to the ERGE equal to

dΓk

dt

∣∣∣∣∣
∼R2

=
1

16π2

∫
d4x

√
g

[
7
20
C2 +

1
4
R2 +

149
180

E − 19
15
∇2R

]

=
1

16π2

∫
d4x

√
g

[
7
10
RµνR

µν +
1
60
R2 +

53
45
E − 19

15
∇2R

]
(3.79)

where in the last step we have used the identity C2 = E + 2
(
RµνR

µν − 1
3R

2
)
. From here

one can directly read off the beta functions. When one then solves for the flow, in the limit
of large k each of these couplings diverges logarithmically, with a coefficient that can be
read off (3.79). Recalling that for ’t Hooft and Veltman 1

ε corresponds to 1
8π2 log ΛUV ,

where ΛUV is an UV cutoff, we find agreement with their result in the topologically triv-
ial case. On the other hand, if we assume Rµν = 0, which is the on shell condition in
perturbation theory without cosmological constant, (3.79) agrees with the one loop di-
vergence computed in [45]. This provides an independent check on the coefficient of the
Euler term. Furthermore, our calculation shows that all these terms, being proportional
to Q0 (∂tRk/Pk), are independent of the choice of the profile function Rk. We have also
verified that calculating these terms with cutoffs of type Ia and III leads to the same re-
sults. Thus, these divergences are indeed independent of the cutoff scheme 2.
In the case of cutoffs of type Ib there is a subtlety that needs some clarification. With
these cutoffs (whether one performs a field redefinition, as in section 3.2, or not, as in
Appendix A.4) it is only possible to perform the calculation on Euclidean de Sitter space
(a 4–sphere). This provides a check on a single combination of the terms appearing in
(3.74). Specializing to the sphere and using that the volume of the sphere is 384π2/R2,

2In these calculations we stick to the de Donder gauge with α = 1.
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(3.79) becomes
dΓk

dt

∣∣∣∣∣
∼R2

=
419
45

. (3.80)

Using type Ib cutoffs one has to pay special attention to the contribution of some of the
lowest modes in the traces. This is due to the fact that the traces over vector and scalar
modes may have a prime or a double prime, meaning that some modes have to be left out.
When evaluating the ERGE without redefining the fields ξµ and σ, as in equation (D1),
the isolated modes give an overall contribution -14, which adds up to the contribution of
the rest of the spectrum, which is equal to 1049

45 , to give the correct result. The -14 comes
from the contributions to be subtracted from the ξ-vector field 10(∂tRk(0)/Pk(0)) = 20,
from the σ-scalar field 6(∂tRk(0)/Pk(0)) = 12, and from the ghost field with only one
prime ∂tRk(0)/Pk(0) = 2. The first two terms enter in the ERGE with a factor 1/2, the
last one with a factor -1, adding up to -14. This is an important consistency check on the
expression (D1). A similar result holds for the calculation when the fields ξµ and σ are
redefined, as in equation (3.29).
It is interesting to consider also the case when Λ 6= 0. In the case of a type II cutoff, it
appears from (3.76), with η = 0, and using (A.22,A.23,A.24), that the logarithmic diver-
gence will be the same as in the case Λ = 0. This is due to the fact that expanding the
fraction in Λ, terms containing Λ give rise to power–like divergences, so only the leading,
Λ–independent term contributes to the logarithmic divergence. The same will be the case
for type I cutoffs, since again Λ only appears in denominators. On the other hand for a
type III cutoff, (3.76) should be replaced by

∫
d4x

√
g

[
1
2
Q0

(
∂tRk

Pk

)
trb4(∆2 − 2Λ1)−Q0

(
∂tRk

Pk

)
trb4(∆(gh))

]
. (3.81)

Then, assuming Rµν = Λgµν , which is the on shell condition in perturbation theory with
cosmological constant,

dΓk

dt

∣∣∣∣∣
∼R2

=
1

16π2

∫
d4x

√
g

[
53
45
RµνρσR

µνρσ − 58
5

Λ2

]
. (3.82)

On the 4–sphere this gives, instead of (3.80)

dΓk

dt

∣∣∣∣∣
∼R2

= −571
45

. (3.83)

These results agree with those obtained in [46]. Note therefore that the Λ–dependent
contributions to the logarithmic divergences are scheme–dependent. This should not come
as a surprise, in view of the discussion above.
We observe here for future reference that certain authors subtract from the ghost term the
contribution of the ten lowest eigenvalues of −∇2 on vectors, which correspond to the
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ten Killing vectors of S4 [47, 48, 49], see also [50, 51] for a discussion. This amounts to
putting a prime on the ghost determinant (e.g. putting an extra prime on the last two
terms in (3.28)). This can be motivated by the observation that Killing vectors generate
global symmetries, and global symmetries are not gauge transformations. Since the ghost
contribution has a minus sign, with a cutoff of type II this corresponds to adding to (3.83)
the term 10(∂tRk/Pk) evaluated on the lowest eigenvalue of the operator−∇4− R

4 , which
is equal to zero. This is equal to 10(∂tRk(0)/Pk(0) = 20. Thus, (3.83) would be replaced
by

dΓk

dt

∣∣∣∣∣
∼R2

=
329
45

. (3.84)

We will return to this issue in section 4, when we define the ERGE for f(R)–gravity.
Having found the expected agreement with earlier one loop calculations based on the
Einstein-Hilbert action, the next level of sophistication would be to include the terms
in (3.74) in the truncation, as is required in a more accurate approximation to the exact
flow. We will discuss this in the next section. In the rest of this section we shall discuss
the possible appearance of divergences that are cubic or of higher order in curvature,
keeping the kinetic operator that comes from the Einstein–Hilbert action.
Among higher powers of curvature, of particular interest is the term cubic in the Riemann
tensor. In perturbation theory, the divergence (3.75) can be absorbed into a redefinition
of the metric and therefore does not affect the S matrix: pure Einstein theory is one loop
renormalizable. The first divergence in the effective action that cannot be eliminated
by a field redefinition in perturbation theory is proportional to Rµν

ρσRρσ
αβRαβ

µν . The
coefficient of this term was calculated by Goroff and Sagnotti in [52] at two loops.
Can this divergence be seen in the Einstein–Hilbert truncation of the ERGE, in the same
way as we have seen the ’t Hooft–Veltman divergence? Let g be the coefficient of this
operator in the Lagrangian. In the one loop approximation, neglecting Λ and using a
type II cutoff, the beta function of g will be proportional to Q−1 (∂tRk/Pk) = k−2Q̃ where
Q̃ is a scheme–dependent dimensionless number. As explained in appendix A.1, one can
choose the cutoff scheme in such a way that Q̃ = 0 (this is the case, for example, with the
optimized cutoff used in this paper). Then, the coupling g̃ will have a FP at g̃∗ = 0 3.
These facts are not surprising: they are a reflection of the fact that the ERGE has the
structure of a one loop RG equation, and of the absence of a Riemann-cube divergence
at one loop in perturbation theory. The Goroff–Sagnotti counterterm can only be seen in
perturbation theory at two loops. On the other hand, if we truncate the ERGE at higher
order, for example including all terms cubic in curvature, it is expected that the beta
function of g, though scheme–dependent, cannot be set to zero just by a choice of cutoff.
There are then two possibilities. The arguments given in the end of section 2.3 suggest
that a FP will exist for all terms in the derivative expansion, including the Riemann–cube
term; in this case the Goroff–Sagnotti divergence would be an artifact of perturbation

3If we chose another cutoff such that Q̃ 6= 0, g will go asymptotically to zero; however, as discussed before,
this is a unit–dependent statement and does not have much physical meaning.
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theory. Alternatively, it is possible that the FP will cease to exist when the Riemann–cube
term (or some other high order term) is added to the truncation. It is not yet known
whether this is the case or not; in the conclusions we give some reasons why we believe
in the former alternative.

3.10. Modified dispersion relations

3.10.1. Introduction

Having discussed in extent the possibility of finding a theory of gravity with a well-
defined ultraviolet behaviour, an important question is of course if the running of the
gravitational couplings has any consequences for current experiments. Some of the ex-
pected playgrounds for such kinds of effects have been discussed in the context of black
hole physics [85], cosmology [86, 100, 101, 102, 103, 104, 105, 107, 112, 113], and Large
Extra Dimension scenarios [27]. The running of Newton’s constant will become signifi-
cant near the Planck scale (or the size of compactified extra dimensions) MP = G−1/2 =
1.22 · 1019 GeV (we use units with c = 1, ~ = 1) and might therefore seem to be out of ob-
servational reach. However this picture has recently been changed by the realization that
several (though not all) quantum gravity models seem to predict a departure from exact
Lorentz invariance due to ultraviolet physics at the Planck scale [89]. This could lead
either to Effective Field Theories (EFTs) characterized by Planck suppressed Lorentz vio-
lations for elementary particles (see e.g. [90]) or to some new physics where the Lorentz
symmetry is deformed in order to include an extra invariant scale (the Planck scale) apart
from the speed of light [91]. The latter framework is generally called Deformed Special
Relativity (DSR).
Common to all these models is that they seem to predict a modified form of the free par-
ticle dispersion relation, exhibiting extra momentum dependent terms, apart from the
usual quadratic one occurring in the Lorentz invariant dispersion relation. In particular
one most often considers violations or deformations of the boost subgroup, leaving ro-
tational invariance unaffected and leading to an expansion of the dispersion relation in
momentum dependent terms

E2 = m2 + p2 + F (p, µ,MP)

= m2 + p2 +
∞∑

n=1

αn(µ,MP) pn, (3.85)

where p =
√
||~p||2 and µ is some particle physics mass scale. In the following, we assume

it to be equal to m, the mass of the particle4.
In the case of an EFT with Lorentz Invariance Violation (LIV), strong constraints on the
coefficients αn for the cases n = 1, 2, 3 have been obtained [89], and there is some hope

4Note that according to [88] all theories with modified dispersion relations can be formulated in a Finsler
geometry.
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that LIV with n = 4 will be constrained in the near future by forthcoming experiments
and improved observations [90].
In the case of deformed special relativity [91] constraints are more uncertain, as we are
still lacking a satisfactory understanding of the theory in coordinate space and hence of
the corresponding EFT. There are however conjectures about the phenomenological im-
plications of such a framework and some constraints have been tentatively provided (e.
g., for the GZK threshold and n = 3 [92]).
In [87], a mechanism was explored that could lead to the emergence of such Modified
Dispersion Relations (MDRs), based on the idea that the spacetime structure could be an
emergent concept. If so, it would be natural to expect that at sufficiently high energies
the effective spacetime metric could become energy dependent. We shall see that size-
able effects could occur well below the Planck scale. It is interesting to note that such a
framework closely resembles that of emergent effective geometries and Lorentz symme-
tries characterizing many condensed matter systems (see e.g. [93, 94]). There, linearized
perturbations propagate on Lorentzian geometries in the low energy (phononic) limit but
do show MDRs of the kind of Eq. (3.85) as the perturbation’s wavelength approaches the
inter-molecular distance, or coherence length, below which the background cannot be
considered a continuum. This phenomenon can be seen as an energy dependent back-
ground metric interpolating between a purely Lorentzian (and energy independent) form
at very low energies, and a pre-geometric structure present at ultra-short length scales
(sub-Planckian in the quantum gravity scenario).
Albeit intriguing, the above described phenomenology of condensed matter systems is
still an analogy after all. So one might wonder if there is a framework within known
quantum gravity models that could naturally produce such an energy dependence of the
metric. Some EFT models with this property had been discussed in [95]. There it was
argued that in certain gauge theories of gravity with torsion, the renormalization group
(RG) flow of the couplings would produce a scale dependent metric. However, those
calculations did not yield significant effects below the Planck scale. More recently, other
ideas in this direction have been advanced where an interpretation of the MDR used in
quantum gravity phenomenology was provided by arguing for an explicit dependence
of the spacetime metric on the energy at which it is probed (see e.g. [96, 97, 98] for alter-
native, but related, frameworks). For example in [97] Magueijo and Smolin proposed a
generalization of DSR where the metric becomes energy dependent. In [87] we followed
the general ideas of [18] where it was shown that within the context of an EFT of gravity,
based on the conventional Einstein–Hilbert action with a cosmological constant, it is in-
deed possible to derive an energy dependent metric from the RG flow of the couplings.
From here, with some reasonable assumptions, we will arrive at MDRs for the propaga-
tion of massive particles. We shall then analyze some constraints that can be cast on such
quantum gravity phenomenology.



3.10. Modified dispersion relations 63

3.10.2. Solving the RG flow near the Gaußian fixed point

Here, we restrict ourselves to the sub-Planckian (k2 ¿ G−1) and small curvature (k2 À
R) regime, where it is usually believed that General Relativity is a good approximation
(for different views see e.g. [99]). We therefore assume the validity of the Einstein–Hilbert
action, possibly with a cosmological constant:

Γk [g] =
1

16πGk

∫
d4x

√
g (2Λk −R) . (3.86)

The running of the gravitational couplings can be computed with the ERGE as described
earlier in the search of a UV fixed point [20, 39, 21, 42]. Let us stress, however, that, in
this section, we do not need to commit ourselves to any specific model of Planck scale
physics, in particular we do not need to assume the existence of an UV fixed point in
spite of the strong evidence for its existence described above.
In the regime we are interested in, one obtains from the RG equation the following β-
functions for Newton’s constant and the cosmological constant [18]:

k
∂Λ
∂k

= A1Gkk
4 (3.87)

k
∂

∂k

(
1
Gk

)
= B1 k

2 (3.88)

where A1 and B1 are the order one, positive coefficients from eqs. 3.19, where however
now a factor 1/2 has been absorbed in A1

5. The β-functions for gravity have also been
discussed in different approaches (see e.g. [100, 101, 102, 103, 104, 105]).
The solutions to these ordinary differential equations are

Λk = Λk0 +A1
Gk0

4
(
k4 − k4

0

)
(3.89)

1
Gk

=
1
Gk0

+
B1

2
(
k2 − k2

0

)
(3.90)

. (3.91)

Here k0 is the scale at which the initial conditions are set. In fact, G and Λ are measured
on quite different scales. The value G−1

k0
= M2

P ≈ 1.49 · 1038GeV2 is measured to be the
same from laboratory up to planetary distance scales, whereas for the cosmological con-
stant we have a value Λk0 ≈ 1.75 · 10−123M2

P measured at the Hubble scale H0 ≈ 10−42

GeV [106] .
From equation (3.90) we see that the running of G is highly suppressed below MP and
hence will be neglected for the rest of this section. We see instead from Eq. (3.89) that the

5 Note that if we allow for the presence of minimally coupled matter fields, the form of equations (3.88)
and (3.87) will not change but the values of A1 and B1 are affected [43]. We shall discuss the possible
relevance of this fact in the conclusions.
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running of Λ becomes significant at energies of order kT ≈ 10−31MP ≈ 10−3 eV or higher.
(This corresponds to the “turning point”, in the language of [107].) This significant run-
ning of the cosmological constant at relatively low scales will play a crucial role in our
analysis.
We have not yet provided a prescription to determine k0 as a function of some physical
scale. Given however that there is no strong evidence for a present running of the cosmo-
logical constant at cosmological scales, we will assume, for the moment, that k0 is placed
below kT far enough in the infrared to be always negligible. We shall check a posteriori
that such an assumption is justified in the cases of our interest.
The equations of motion (EOM) at scale k are obtained varying the effective action with
respect to the metric,

δΓk

δgµν
= 0. (3.92)

The solutions of the EOM at scale k give the metric relevant for the physical process
under consideration, with the couplings evaluated at k. In the theory with action (3.86)
the EOM are

Rµ
ν [gk] = Λkδ

µ
ν . (3.93)

SinceRµ
ν [cg] = c−1Rµ

ν (g) for any constant factor c > 0, equation (3.93) can be rewritten
as

Rµ
ν [gk0 ] = Λk0δ

µ
ν = Rµ

ν

[
Λk

Λk0

gk

]
, (3.94)

where we have used the coordinate independence of Λk. Therefore, for any solution of
equation (3.93) the inverse metric scales with the cosmological constant as [109]

gµν
k =

Λk

Λk0

gµν
k0
. (3.95)

We want now to analyze the consequences of such a scaling behaviour of the spacetime
metric on the propagation of a free particle.

3.10.3. Modified dispersion relations from a “running” metric

Starting from Eq. (3.95) we can derive a MDR by contracting it with the particle’s four
momentum and identifying k with a function of the three momentum. In the presence of
an effective cosmological constant the solution of the EOM cannot be flat space. However,
we want to work in a regime where the typical wavelength of the particle is much smaller
than the characteristic curvature radius of spacetime, in our case 1/p¿ 1/

√
R ≈ 1/

√
Λk.

We can then approximate gµν by a flat metric and equation (3.95) just results in an overall
scaling of the latter. Of course, in order to check that the above condition holds, we need
to know the relation between p and k. We shall check a posteriori that this is indeed the
case for our choice of k.
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A global rescaling of the metric can be eliminated by a choice of coordinates, but this can
only be done at a particular scale. We choose gµν

k0
= ηµν (the usual Minkowski metric

(1,−1,−1,−1)) for any k = k0 < kT . At scale k > kT , we have the metric gµν
k defined by

gµν
k =

Λk

Λk0

ηµν ; (3.96)

and contracting both sides of Eq. (3.96) with the particle four momentum we then obtain

m2 =
Λk

Λk0

ηµνpµpν =
Λk

Λk0

(E2 − p2) , (3.97)

where we have defined the mass to be m2 = gµν
k pµpν and pµ = (E,−~p). So, using

Eq. (3.89), one finally gets

E2 − p2 =
Λk0

Λk
m2 =

(
1 +

A1

4
X
k4

M4
P

)−1

m2 (3.98)

where X = M2
P /Λ0 ≈ 6 · 10122.

In order to proceed further in our analysis we now need to clarify the relation between the
RG scale k and the particle momentum. Assuming that rotational invariance is preserved,
one can predict that for a free particle the RG scale k will be generically determined by the
modulus of the particle’s three-momentum p :=

√
‖~p‖2 (or alternatively its energy given

that they are practically the same, at first order, for high energy particles), its mass m,
and possibly by the Planck scale. As we expect that any deviation from standard physics
should be Planck suppressed, we can then write the following ansatz

k =
pαmβ

Mα+β−1
P

, (3.99)

where α and β are chosen to be positive integers. The above ansatz is of course inspired
by the standard framework adopted in most of the quantum gravity phenomenology lit-
erature (see e.g. [89]) and for any α 6= 0 it will lead to dispersion relations characterized
by higher order terms in the momentum of the particle suppressed by appropriate pow-
ers of the Planck mass.
For sufficiently low momenta the dispersion relations so obtained will take the form

E2 = p2 +m2

(
1− A1

4
X

(
m

MP

)4β (
p

MP

)4α
)
. (3.100)

Note that due to the factor m2 there is no modification of the dispersion relations for
massless particles and that for a particle at rest E = m as expected. Let us also empha-
size that the above dispersion relation was derived assuming a point-like particle, as it
is not clear at this stage which quantities might enter in the relation between k and the
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physical momentum for composite particles. For this reason, we shall in what follows
focus on electrons/positrons.
In applications of the RG to high-energy physics, where one considers mainly scattering
processes, k is usually identified with one of the Mandelstam variables of the process,
a Lorentz invariant combination of the incoming particle momenta. From this point of
view the most obvious and conservative choice would be to assume that k is the unique
Lorentz invariant function of the particle momentum, namely its mass. This would imply
(α, β) = (0, 1). Of course from the perspective of this work this is an uninteresting choice,
as it implies that, for a given particle type, k is fixed once for all: an ultra–high–energy
particle would “feel” the same spacetime as one at rest. We shall then consider the case
of α 6= 0.
Conversely one might wonder if there could be some strong motivation to rule out a pri-
ori the mass dependence of relation (3.99). One possible argument can be based on the
requirement that the natural condition Λk=MP

≈ M2
P holds. This implies that the corre-

sponding physical momenta will be p = MP(MP/m)(β/α). The case β = 0 is then the only
one for which k and p would coincide at the Planck scale. Albeit appealing this feature of
the β = 0 class of models does not seem sufficient for excluding a priori the other kinds
of dispersion relations. We shall hence, for the moment, consider all the possible values
of α and β selecting them only on the basis of their phenomenological viability. However
it is interesting to note that, in the end, such analysis will indeed select for us a dispersion
relation belonging to the β = 0 class.
Before discussing the phenomenological viability of the above class of dispersion rela-
tions, it is perhaps important to stress that while the Planck scale dependence of (3.100)
does imply a departure from standard GR at this scale, as generally expected, it does
not conflict with the possible existence of an UV fixed point [20, 39, 21, 42]. In fact the
fixed–point action will not be the Einstein–Hilbert action but some general diffeomor-
phism invariant action with extra degrees of freedom affecting local Lorentz invariance
(like for example the well studied Einstein-aether theory [108]). Furthermore, note that
since the gravitons are massless, their propagation is not affected by (3.100). Thus, the
presence of Planck suppressed terms in the propagators of massive particles and their
detectability through carefully chosen experiments and observations [89] does not imply
a sizable departure from standard GR at these sub-Planckian energies. It only means that
the extra degrees of freedom characterizing the UV theory are weakly coupled to matter
fields through Planck–suppressed interactions.

Phenomenological viability

A good indicator of the phenomenological viability of the above class of dispersion rela-
tions is easily obtained by considering when, for some choice of the parameters α and β,
the Lorentz violating term becomes of the same order as the mass term, so that the ap-
proximation taken in order to derive Eq. (3.100) breaks down. This would indicate where
the Planck–suppressed term starts introducing a running mass term for the particle and
hence producing a detectable phenomenology for example via threshold reactions. Re-
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α = 1 α = 2 α = 3 α = 4
β = 0 3 · 10−15 6.1 7 · 105 3 · 108

β = 1 7 · 107 9 · 1011 2 · 1013 1 · 1014

β = 2 2 · 1030 1 · 1023 6 · 1020 4 · 1019

Table 3.3.: The critical energies for order–one deviations from standard physics given in
TeV for electrons/positrons at different combinations of α and β.

sults for such critical values of the particle momentum for different choices of α and β
are given for the case of the electron (assuming A1 ≈ O(1)) in Table 3.3. The dispersion
relations (3.100) will be of course phenomenologically acceptable if the modifications to
standard physics arise only for very high energy particles. However we do also have
to ask that the critical value of the momentum is not too high so that the correspond-
ing MDR might lead to observable effects and consequently be subject to observational
constraints. For example, in the case of QED, the most interesting MDRs will be those
for which observable effects are expected at TeV energies, as this is the scale of the most
energetic QED particles observed so far. Looking at Table 3.3 we see that the only case of
phenomenological interest seems to be (α, β) = (2, 0). Higher values of (α, β) are not a
priori incompatible with observations, but at the moment lie beyond observational reach.
Before starting to consider the case (α, β) = (2, 0) let us note however that the cases with
α = 1 are particularly interesting from a theoretical point of view as they would lead to
an MDR of the form

E2 = p2 +m2 + ηα=1
p4

M2
P

(3.101)

with ηα=1 = −A1/4X(m/MP)2+4β . What is noticeable in our case is that the dimension-
less coefficients η do indeed contain, as conjectured (see e.g. [90]), powers of the small
ratio m/MP. These are however not necessarily leading, in the present framework, to
an overwhelming suppression of the LIV term. In contrast, the presence of the huge nu-
merical factor, X , that we inherited from the initial conditions (the observed value of the
cosmological constant on cosmological scales) basically allows us to rule out the most ob-
vious case (α, β) = (1, 0) as this would lead to sizeable deviations from standard physics
for any particle above ≈ 10−3 eV. If the observed Λk0 contained also the contribution of
some quintessence-like fields, the “true” cosmological constant at k0 would be smaller
hence leading to an even larger value of X .
The choice of parameters (α, β) = (2, 0) gives

k =
p2

MP
, (3.102)

and

E2 = m2 + p2 − A1

4
X
m2p8

M8
P

, (3.103)
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which can be cast in the more suggestive form

E2 = m2 + p2 + η
p8

M6
P

, (3.104)

with η = −(A1/4)X (m/MP)2.
Let us start noting that Eq. (3.102), together with Eq. (3.89), implies that at sub-Planckian
energies (p¿MP) the de Broglie wavelength of the particle is always much smaller than
the curvature radius of spacetime as we initially assumed. Furthermore it is also much
smaller than the inverse of the RG parameter k. This can be interpreted as saying that the
particle has a somewhat lower resolution in probing spacetime than naively expected.
We shall discuss this at length in the next section. Passing to the dispersion relation
Eq. (3.103) we already saw (see Table 3.3) that it leads to order–one deviations around
10 TeV. The reason for this lies again in the presence of the huge numerical factor X
which is able to contrast the large Planck suppression. This feature makes the above
dispersion relation compatible with current (low energy) observations while at the same
time amenable to experimental constraints via high– energy astrophysics observations of
QED phenomena. From the experimental point of view, (α, β) = (2, 0) is therefore the
most interesting value. We shall argue now that theoretically it is the best motivated.

Physical motivation for the case (α, β) = (2, 0)

In order to motivate physically the choice of the set of parameters (α, β) = (2, 0) we shall
start by addressing the question of the influence of the effective cutoff on the fluctuations
of the gravitational field, which is relevant for the propagation of a free particle. As men-
tioned above, k marks the distinction between those modes that are integrated over and
those that have to be treated classically in the resulting EFT.
As before, we assume that, in the absence of the particle, spacetime would be effectively
flat (or anyway would have a curvature much smaller than m2). The particle produces a
disturbance in the gravitational field in the form of local curvature and the fluctuations
of the gravitational field will be affected by this curvature.
We have to consider the specific dynamics describing the effect of the particle on the grav-
itational field, which we have assumed to be given by Einstein’s equations. Stripped of
all indices, these equations tell us that the second derivatives of the metric, or the square
of its first derivatives, are of the order of Gρ, where ρ is a typical component of Tµν . The
solution depends on the distance from the particle, and for a classical particle becomes
singular near the origin. These issues do not arise when we take into account the quan-
tum nature of the particle. The position of the quantum particle cannot be determined
with a precision greater than the de Broglie wavelength λ = 1/p. For an order of mag-
nitude estimate, we can therefore spread the total energy and momentum p in a box of
size 1/p, so the order of magnitude of the diagonal components of the energy momentum
tensor must be ρ ≈ p4. (We observe that this is also the vacuum energy density in a box
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of size 1/p.) Einstein’s equations then give an estimate for the curvature

(∂g)2 ≈ R ≈ Gρ ≈ p4

M2
P

. (3.105)

Of course, the gravitational field will fall off away from the particle; this equation gives
just a characteristic value for the curvature very near the position of the particle. It says
that a particle of momentum p excites Fourier modes of the gravitational field with mo-
menta up to p2/MP. Gravitational modes with higher momenta are essentially unaffected
by the particle. It is therefore natural to assume that in the EFT these are the modes which
have to be integrated over, meaning that the relevant cutoff is k ≈ p2/MP ¿ p. 6

It is interesting to observe that the same argument, applied to a charged particle in an
electromagnetic field, would yield a completely different result. In fact, the order of mag-
nitude of the charge and current density is p3, and from Maxwell’s equations one gets an
estimate F ≈ p2. Since F has dimension of mass squared, we conclude that the character-
istic momentum scale of the electromagnetic field generated by a particle of momentum
p is k ≈ √

F ≈ p. This corresponds to the naive estimate α = 1. Clearly, the different
behavior is determined by the fact that the coupling constant of electromagnetism is di-
mensionless, while that of gravity has the dimension of area.
In closing this section, we observe that in the case of a Friedmann–Lemaı̂tre–Robertson–
Walker metric, our ansatz k =

√
Gρ corresponds to the Hubble scale 7. Interestingly

this choice has also been advocated for applications to cosmology on the basis that the
Bianchi-identity has to remain valid even in the presence of running coupling constants [102,
104, 105]. However, we stress that the framework presented here significantly differs
from the one above. For example, in their argument the RG scale is assumed to be a func-
tion of the cosmological time k = k(t). This would be incompatible with Eq. (3.94) which
explicitly relies on the coordinate independence of the cosmological constant. The same
is valid for the models discussed in [112, 113], where spherical symmetry of spacetime
leads to a radial dependence of the couplings giving rise to a modified action from which
also Brans–Dicke theory can be obtained. In our argument, the cutoff k is determined
by the properties of the object/apparatus that probes the spacetime metric, it does not
depend a priori on the characteristic scale of the universe.

3.10.4. Physical interpretation and phenomenology

The derived MDR has the form of a global scale transformation, so that a massless particle
ends up probing the same spacetime no matter what energy it has. However, there will be
phenomenological consequences for massive particles. To make some precise experimen-
tal predictions, we need to choose the framework in which we interpret this MDR. There

6Note that the same cutoff has been derived in other frameworks in [110, 111].
7Incidentally this confirms that our assumption of neglecting k0 in Eq. (3.89) was justified. In fact in this

case k0 ≈ H0 ≈ 10−33 eV which is definitely negligible for any particle with energies well above few
meV.
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are two main (inequivalent) candidates: EFT with LIV, or DSR. Both frameworks seem to
be a priori compatible with our MDR. The main difference between the two theories is in
the way in which momenta add up and possibly in the spacetime (non)commutativity.

Effective field theory with Lorentz invariance violation

The EFT framework has several advantages when discussing phenomenological conse-
quences of LIV. Apart from being a well known and versatile framework it is also able to
make sharp predictions as it allows to use the standard energy-momentum conservation
and requires for its applicability just locality and local spacetime translational invariance
above some length scale. In this context, one can apply the usual QFT tools, bearing
in mind that the effective action will contain explicit Lorentz breaking terms, and hence
cast constraints using experimental or observational tests. In particular for Lorentz viola-
tions at order O(p3/M) and higher (i.e. induced by nonrenormalizable operators of mass
dimension five or greater in the action) the most appropriate tests are coming from high–
energy astrophysical observations (see e.g. [90]), as these are among the highest energy
phenomena we can access nowadays.
Not all of the above–cited astrophysical tests can be applied to our framework. In par-
ticular cumulative effects based on the propagation of photons over cosmological dis-
tances [114, 90] are unavailable as no modification is induced in dispersion relations
of massless particles. Similarly some anomalous reactions, like the vacuum Čerenkov
e± → e±γ emission [115], are not allowed for “subluminal” dispersion relations of the
leptons (and unmodified photons) like the one we found in Eq. (3.103). Finally one might
consider possible constraints coming from the shifting of normally allowed threshold
reactions as the photon pair production, γγ → e+e−, or the GZK reaction, pγ → pπ0

(with γ a CMB photon, see e.g. [116, 115]). Apart from the previously mentioned caveats
related to the application of our MDR to composite particles, such a route is again un-
feasible within our framework. In fact the analysis of such scattering reactions would
require a new derivation of the relation between the RG parameter k and the physical
momenta which (missing a better understanding of the theory) would require more ar-
bitrary choices and assumptions on our side. Hence, given the above theoretical and
observational uncertainties, characterizing these scattering reactions is beyond the scope
of this paper. We can however provide very strong constraints on the MDR provided in
Eq. (3.103) by considering the so called “photon decay”, γ → e+e−, usually forbidden by
momentum conservation, and the synchrotron emission.

Photon decay Within an EFT framework the photon decay process becomes possible
above a certain threshold energy once one has dispersion relations violating Lorentz in-
variance. This threshold energy is given by the minimal momentum of the incoming
photon such that the decay could happen preserving energy–momentum conservation.
Following the steps from [115] and referring to eqs. (3.98) and (3.99), one obtains for the
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threshold momentum

pth =
(

102

A1X

)1/8 (
MP

me

)β/2

MP . (3.106)

In the case (α, β) = (2, 0), A1 = 1 and using me ≈ 0.511 MeV, the threshold energy for
this process is pth ≈ 9.75 TeV. Moreover, following the steps in [90], one can calculate the
decay rate of the photon, which turns out to be extremely fast, so much that a photon
would not be able to propagate on any distance of astrophysical relevance. We then see
that the observations of photons with energies above ≈ 10 TeV propagating on astro-
physical distances allow us to put upper bounds on the coefficient A1.
A strong constraint comes from the observation of high-energy γ-rays emitted by the
Crab nebula [90]. The γ-ray spectrum of this source is very well understood. It results
from a high–energy wind of electrons (and possibly positrons) which leads to a combina-
tion of synchrotron emission and inverse Compton scattering of (mainly the synchrotron)
photons. The inverse Compton γ-ray spectrum so produced extends up to energies of at
least 50 TeV. This implies that for these photons the threshold energy for their decay must
be above 50 TeV. We must have

A1 ≤
(

9.75 TeV
pobs

)8

, (3.107)

which for pobs = 50 TeV gives a bound on A1 of order 10−6. This is clearly a very strong
constraint since A1 is naturally of order one.

Synchrotron radiation An even stronger constraint can be provided by the observa-
tion of high–energy synchrotron emission from the Crab nebula. Cycling electrons in a
magnetic field B emit synchrotron radiation with a spectrum that sharply cuts off at a
frequency ωc given by the formula

ωc =
3
2
eB

γ3(E)
E

, (3.108)

where γ(E) = (1 − v2(E))−1/2 and v(E) is the electron’s group velocity. The formula
(3.108) is based on the electron trajectory for a given energy in a given magnetic field, the
radiation produced by a given current, and the relativistic relation between energy and
velocity (see [117, 90] for a discussion about the validity of this formula in EFT with LIV
and a detailed derivation of the constraint).
The maximum synchrotron frequency ωmax

c is obtained by maximizing ωc (3.108) with
respect to the electron energy, which amounts to maximizing γ3(E)/E. Using the MDR
(3.103) one can easily calculate the modified group velocity of the electron and from that
γ(E). Then the maximization of the synchrotron frequency yields

ωmax
c = 0.47

eB

me
[−η (me/MP)6]−2/8, (3.109)
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where η = −A1/4X (me/MP)2. This maximum frequency is attained at the energy
Emax = (−m2

eM
6
P/35η)1/8 ≈ 4.2A−1/8

1 TeV.
The rapid decay of synchrotron emission at frequencies larger than ωc implies that most
of the flux at a given frequency in a synchrotron spectrum is due to electrons for which
ωc is above that frequency. Thus ωmax

c must be greater than the maximum observed syn-
chrotron emission frequency ωobs. This yields the constraint

A1 <
4
X

(
MP

me

)8 (
0.47 eB
meωobs

)8/2

. (3.110)

Using as in [117] the observation of synchrotron emission from the Crab nebula up to
energies of about 100 MeV, and a conservative estimate of the magnetic field of 0.6 mG
(this is the largest proposed value which yields the weakest constraint) we then infer8

that A1 . 2 × 10−22. This constraint is so strong that one has to conclude that disper-
sion relations like (3.103) for leptons are ruled out by current astrophysical observations
within an EFT framework 9.

Deformed Special Relativity

It is less easy to provide experimental constraints in the DSR framework since this the-
ory still lacks a clear understanding. In particular in this approach spacetime is in gen-
eral noncommutative, although this non-commutativity can be absorbed by a coordinate
transformation in phase space [118]. Hence the form of DSR in coordinate space is still
debated. In momentum space DSR is described by a deformation of the Lorentz symme-
try so that the pµ carries a nonlinear representation of the Lorentz group. This nonlinear
representation can be constructed from a linear representation carried by a “platonic”
momentum πµ via a non-linear map U so that πµ = U−1(pµ). The πµ add linearly which
implies a nonlinear addition for pµ. It is still unclear why the latter nonlinear momenta
should be the physically measured ones and there is a rich literature now devoted to the
interpretation of DSR in momentum space. Such an interpretation should hopefully clar-
ify some of the problems pointed out in the recent literature [119].
DSR can also be seen as a natural framework for our results if one recalls its interpretation
as a new measurement theory [98]. Generally we measure the momentum πµ of a particle
in a given reference frame described by a tetrad field eαµ, so that the measurement out-
comes are pα = eαµπ

µ. If the metric is endowed with quantum gravity fluctuations, the
theory of measurement will imply an averaging procedure at some given energy scale
possibly provided by the test particle. This can naturally lead to an energy dependent

8Note that possible complications related to different MDRs between electrons and positrons in EFT with
LIV are not present here as the breakdown of Lorentz invariance is a geometric effect in our framework
and as such will not distinguish between leptons of same mass.

9One might wonder, given the strength of the synchrotron constraint for (α, β) = (2, 0), if this might also
help constraining cases which require higher, but not totally unreasonable, critical energies like the cases
(α, β) = (1, 1) and (α, β) = (3, 0). Unfortunately it is easy to check that this is not the case. For example,
for (α, β) = (1, 1), the synchrotron constraint is just b . 1017 and for (α, β) = (3, 0) it is A1 . 1029.
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tetrad field and hence to a nonlinear relation between the measurement outcomes pα and
the particle momentum πµ [98]. This is precisely what happens in Eq. (3.103). At the
scale k0, since the metric is just the Minkowski metric, πµ and pα coincide and transform
linearly under Lorentz transformations. As soon as we get to higher energies the metric,
and hence the tetrad field, becomes momentum dependent: gµν(p) = ηαβeµα(p)eνβ(p).
The nonlinear relation between πµ and pµ is then given by

πµ =

√
Λk

Λk0

pµ =

(√
1 +

A1

4
X

p8

M8
P

)
pµ. (3.111)

Clearly, if πµ undergoes linear Lorentz transformations, pµ is transformed nonlinearly,
which is characteristic of the usual DSR framework.
With regard to phenomenological constraints, the main experimental prediction of DSR
concerns γ-ray bursts [120], but photons are not affected in our framework. Even worse,
in this case we cannot resort to anomalous (normally forbidden) threshold reactions as
the latter are not allowed in DSR either. The reason for this is simply that a kinemat-
ically forbidden reaction in the “platonic” variables πµ cannot be made viable just via
a nonlinear redefinition of momenta. There have been attempts to consider constraints
provided by shifts of normally allowed threshold reactions [92]. We note here that for
such reactions the possible constraints are strongly dependent not just on kinematical
considerations, but also on reaction rates which require some working framework for
their derivation. Hence, missing a field theory description of DSR we cannot safely pose
such constraints. Similar considerations hold for constraints based on the synchrotron
emission [117].

3.10.5. Consequences

We have shown in this section how the RG of gravity could lead to MDRs for massive
minimally coupled particles due to the effects of quantum fluctuations. We have argued
that for a free particle the most plausible identification of the cutoff is k = p2/MP , where
p is the particle three momentum, leading to sizeable effects in the region of p ≈ 10 TeV
for QED processes. To do this, we had to make several assumptions: we assumed the va-
lidity of Einstein’s theory of gravity from cosmological to particle physics scales (i.e. still
much below the Planck energy), we assumed that the cutoff is a function of three momen-
tum squared rather than four momentum squared, and we took for granted the value
Λ0 ≈ 10−85 GeV2 for the cosmological constant at cosmological scales. The desribed
framework is detached from the existence of a gravitational fixed point which concerns
physics at or beyond the Planck scale.
Another implicit assumption was the identification of the components of the four mo-
mentum pµ = (E,−~p), rather than pµ = (E, ~p). The two identifications are not compati-
ble if the metric is scale dependent. Had we chosen pµ = gµν

k pν = (E, ~p), we would have
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obtained a MDR of the type

E2 = p2 +m2

(
1 +

A1

4
Xk4

M4
P

)
. (3.112)

The main difference with respect to Eq. (3.103) is the positive sign in front of the cor-
rection. From an LIV EFT perspective, the immediate consequence is that the previously
discussed synchrotron bound does not apply, so this MDR is not as constrained as the pre-
vious one (Eq. (3.103))10. There is no photon decay either, however a vacuum Čerenkov
effect may occur [89]. It can be shown that the latter can cast constraints on A1 of the
same order as the photon decay case (cf Eq. (3.107)). Thus this case would also be quite
constrained in the LIV interpretation. Note that a similar change in the sign of the LIV
term in the MDR could also be due to a change in the sign of the coefficientA1 which can
be induced by considering in the RG analysis also minimally coupled fermion fields [43].
Different initial assumptions may lead to effects that are either too strong to be compati-
ble with current data, or too small to be detectable in the foreseeable future, or, hopefully,
they might produce some interesting phenomenology.
The RG has been applied in an LIV context in [122] whose authors proved that Lorentz
invariance can arise as a low–energy symmetry in an otherwise non–Lorentz invariant
theory. Since our MDRs reduce to the standard ones at sufficiently low energies, our
results are in agreement with theirs on this point, even though the formalism is quite
different.
From the theoretical point of view, we cannot say at this point if the RG approach to grav-
ity prefers EFT with LIV or DSR. Let us stress that our model is not a priori equivalent
to any of the above frameworks. In fact in the case of EFT with LIV one assumes the
existence of some aether field which allows one to construct LIV operators in the mat-
ter Lagrangians. However in our case the departure from standard special relativistic
dynamics of matter is induced uniquely via the k dependence of the background metric
and the fact that k is chosen not to be a Lorentz invariant. This can be seen as a special
case of EFT with an aether field but it is not equivalent to it. (Note that if the aether field
is taken to be dynamical then it will affect the RG flow, but this will be equivalent to the
presence of an extra matter field.) Similarly we cannot a priori completely identify our
framework with a DSR one since we cannot say at this stage if our effective geometry will
also be accompanied by some alternative rule for the addition of momenta.
Which of the above possibilities would be actually realized within our framework could
be probably assessed only after gaining a better understanding of EFT on running geome-
tries, something that is still lacking at this time. Following the intuition that comes from
the analogue models (where the underlying microscopic physics indeed violates Lorentz
invariance), one would probably need to have some deeper understanding of the physics
above the Planck scale (quantum gravity regime) to be able to distinguish between the
two. In this sense the phenomenological analysis we have performed has to be taken as
a first try aimed at seeing what constraints could be cast once this discrimination is done.
10See however [121] for a derivation of constraints also in this case in a different way.
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In this chapter, we have worked with a simple form of truncation including only the
Newton constant and the Cosmological Constant. We applied different cutoff schemes
in d dimensions and found in each of them a non-Gaußian fixed point. Performing the
2 + ε approximation we saw that the result differs more and more from the exact cal-
culation when increasing the ε-parameter. Based on the Einstein-Hilbert truncation we
were able to calculate the curvature squared terms which are generated from this action
and found them to be in agreement with the known one loop divergences in gravity.
Einstein–Hilbert gravity had been found earlier to be renormalizable at one loop level
and we found a non-Gaußian fixed point for this case. However, as soon as matter con-
tributions are added, the loop-expansion leads to divergences which cannot be absorbed
by field redefinitions. The calculations based on the Exact Renormalization Group Equa-
tion confirm instead the existence of a non-Gaußian fixed point also in this case. The
approach therefore does not fail at the same level as perturbation theory. The question is
now what happens for theories including more couplings. This will be the matter of the
next section.
We gave here also a possible form of phenomenological consequences of the RG run-
ning of the gravitational constants which works as well in a pure effective field theory
framework and is independent of the existence of a non-Gaußian fixed point. Due to
its smallness, the gravitational coupling whose running has the most promising poten-
tial to lead to measurable phenomenological consequences is the cosmological constant.
We analyzed the consequences of this running for a test particle moving on a de Sitter
background and found that its dispersion relation will be modified. The connection to
models of Lorentz invariance violation or deformed special relativity was studied and
used to give constraints on several parameters.
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4. Higher-derivative truncations

4.1. Curvature squared truncations

In the preceding section we have seen that starting from the Einstein–Hilbert action, the
RG flow will generate terms quadratic in curvature. In particular, we have discussed the
way in which these terms diverge logarithmically when k → ∞. It is therefore not con-
sistent to neglect these terms, and a more accurate treatment will take into account the
contribution of these terms to the r.h.s. of the ERGE. In other words, we should include
the terms (3.74) in the truncation. The resulting theory is perturbatively renormalizable
[69] but has problems with unitarity. Furthermore, in the perturbative treatment the cos-
mological constant is set to zero, something we know can only be imposed at a given
scale. The corresponding Wilsonian calculation has been done within the one loop ap-
proximation, and has been briefly reported in [23]. Here we review and extend those
results.
We take the action Γk as the sum of the Einstein–Hilbert action (3.1) and the terms (3.74).
The linearized wave operator is now a complicated fourth order operator. In order to
simplify its form, following [53, 54, 55, 56] it is convenient to choose a gauge fixing of the
form

SGF =
∫
d4x

√
g χµY

µνχν

where χν = ∇µhµν + β∇νh (all covariant derivatives are with respect to the background
metric) and

Y µν =
1
α

[
gµν∇2 + γ∇µ∇ν − δ∇ν∇µ

]
.

The ghost action contains the term

Sc =
∫
d4x

√
g C̄ν(∆gh)ν

µC
µ

where
(∆gh)ν

µ = −δν
µ∇2 − (1 + 2β)∇µ∇ν +Rν

µ

as well as a “third ghost” term

Sb =
1
2

∫
d4x

√
g bµY

µνbν

due to the fact that the gauge averaging operator Y depends nontrivially on the metric.
We follow earlier authors [55] in choosing the gauge fixing parameters α, β, γ and δ in
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such a way that the quadratic part of the action is:

1
2

∫
d4x

√
g δgK∆(4)δg , (4.1)

where
∆(4) = (−∇2)2 + Vρλ∇ρ∇λ + U . (4.2)

For details of the operators K, V and U we refer the reader to [55] whose notation we
mostly follow. We choose type III cutoffs:

Rg
k(∆

(4)) = KR(4)
k (∆(4)) ; Rc

k(∆(gh))
µ

ν = δµ
νR

(2)
k (∆(gh)) ; Rb

k(Y)µν = gµνR
(2)
k (Y) .

For higher derivative operators we will use a generalized optimized cutoff of the form
R

(n)
k (z) = (akn − z)θ(akn − z), with a = 1 unless otherwise stated.

We restrict ourselves to the one loop approximation, as explained in previous sections.
Furthermore, only the contributions of the heat kernel coefficients up to B4 will be taken
into account. In this way, we will essentially neglect all RG improvements on the right
hand side of the ERGE. The beta functions of the dimensionless couplings appearing in
(3.74) turn out to be:

βλ = − 1
(4π)2

133
10

λ2 ,

βξ = − 1
(4π)2

(
10λ2 − 5λξ +

5
36

)
,

βρ =
1

(4π)2
196
45

ρ2λ . (4.3)

They form a closed system and agree with those calculated in dimensional regularization
[54, 55, 56]. It is convenient to define new couplings ω and θ by ξ = −3λ/ω and ρ = λ/θ.
In this way 1/λ is the overall strength of the terms quadratic in curvatures, and θ and ω
give the relative strength of the different invariants. Then, the beta functions become

βω = − 1
(4π)2

25 + 1098ω + 200ω2

60
λ ,

βθ =
1

(4π)2
7(56− 171 θ)

90
λ . (4.4)

The coupling λ has the usual logarithmic approach to asymptotic freedom, while the
other two couplings have the FP values ω∗ ≈ (−5.467,−0.0228) and θ∗ ≈ 0.327. Of the
two roots for ω, the first turns out to be UV–repulsive, so the second has to be chosen
[54, 55, 56].
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The beta functions of Λ̃ and G̃ are:

βΛ̃ = −2Λ̃ +
1

(4π)2

[
1 + 20ω2

256πG̃ω2
λ2 +

1 + 86ω + 40ω2

12ω
λΛ̃

]
− 1 + 10ω2

64π2ω
λ+

2G̃
π
− q(ω)G̃Λ̃ ,

βG̃ = 2G̃− 1
(4π)2

3 + 26ω − 40ω2

12ω
λG̃− q(ω)G̃2 (4.5)

where q(ω) = (83 + 70ω + 8ω2)/18π. The first two terms in each beta function exactly
reproduce the results of [54, 55, 56], the remaining ones are new. The origin of the new
terms will be discussed below.
To study the flow of Λ̃ and G̃, we set the remaining variables to their FP values ω = ω∗,
θ = θ∗, and λ = λ∗ = 0. Then, the flow takes the form of the perturbative Einstein–Hilbert
flow (3.20), with A1 = 4/π, B1 = −q∗ = −q(ω∗) ≈ −1.440, A2 = B2 = 0 (see figure 2.1). It
has two FPs: the Gaußian FP at Λ̃ = G̃ = 0 and another one at

Λ̃∗ =
1
πq∗

≈ 0.221 , G̃∗ =
2
q∗
≈ 1.389 . (4.6)

Like all one loop flows with constant A1 and B1, the critical exponents are 2 and 4. This,
however, is due to the approximation. If we were able to take into account the contribu-
tion of the heat kernel coefficients B6, B8 etc., they would contribute terms of order Λ̃2

and higher to the beta functions. We expect that these terms would produce a complex
conjugate pair of critical exponents, and the corresponding spiralling flow.
In the preceding calculation we have used, besides the truncation to four–derivative
terms, also the one loop approximation, and contributions coming from the heat ker-
nel coefficients B6 and higher have been neglected. These are also the approximations
made in earlier perturbative calculations [53, 54, 55, 56], so it is instructive to understand
the origin of the additional terms in (4.5), which are essential in generating the nontrivial
FP. The beta functions were originally derived as coefficients of 1/ε poles in dimensional
regularization, which correspond to logarithmic divergences in the effective action. In a
heat kernel derivation these terms are given by the B4 coefficient. In the old calculations
only these terms were retained. The new terms that we find come from the B2 and B0

coefficients, which in a conventional calculation of the effective action would correspond
to quadratic and quartic divergences. Such terms are discarded in dimensional regular-
ization, but we see that proceeding in this way one would throw away essential physical
information. In order to keep track of this information in dimensional regularization one
would have to take into account the contribution of the pole occurring in dimension 2.
This can be done with the 2 + ε expansion, and we have already discussed the way in
which the FP then appears. The situation is entirely analogous to the Wilson–Fisher FP
in three dimensional scalar theory, which can be seen either using a cutoff regularization
or, if dimensional regularization is used, in the 4 − ε expansion [57]. It is appropriate to
stress once more that our “Wilsonian” calculation of the beta functions does not require
any UV regularization. Accordingly, there are no regularization/renormalization ambi-
guities; the only ambiguity is in the choice of the cutoff procedure, but we have already
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seen that no choice of Rk could remove the B2 and B0 terms.
Having discussed the beta functions in the higher derivative truncation of pure gravity, it
is a simple exercise to add to them the contributions of minimally coupled matter fields,
which were discussed in section 2.3. From (4.3) and (2.64) we find

βλ = − 1
(4π)2

133
10

λ2 − 2λ2a
(2)
λ ,

βξ = − 1
(4π)2

(
10λ2 − 5λξ +

5
36

)
− ξ2a

(2)
ξ ,

βρ =
1

(4π)2
196
45

ρ2λ− ρ2a(2)
ρ , (4.7)

where

a
(2)
λ =

1
2880π2

(
3
2
nS + 9nD + 18nM

)
,

a
(2)
ξ =

1
2880π2

5
2
nS ,

a(2)
ρ =

1
2880π2

(
−1

2
nS − 11

2
nD − 31nM

)
. (4.8)

For these couplings, the new terms simply change the direction and speed of the logarith-
mic approach to asymptotic freedom. In particular, the ratios of the couplings approach
asymptotically the following FP values

ω∗ =
1

200

(
−549− 960π2a

(2)
λ ±

√
921600π4(a(2)

λ )2+ 1054080π2a
(2)
λ − 576000a(2)

ξ π2+ 296401
)

θ∗ =
8
9

49 + 180π2a
(2)
ρ

133 + 320π2a
(2)
λ

(4.9)

As before, in ω∗ the positive sign will have to be chosen for stability. On the other hand,
the beta functions of Λ̃ and G̃ are modified by the addition of 8πa(0)G̃ + 32πa(2)Λ̃G̃ and
32πa(2)G̃2 respectively, where, using a type II optimized cutoff,

a(0) =
1

32π2
(nS − 4nD + 2nM ) ,

a(2) =
1

96π2
(nS − 2nD − 4nM ) . (4.10)

Let us consider again the flow in the Λ̃–G̃ plane. Putting ω and θ to their FP values
and taking the limit λ → 0, the flow takes again the form (3.20), with the coefficients
A1 = 4/π + 16πa(0), B1 = −q(ω∗) + 16πa(2), A2 = B2 = 0.
This calculation is of some interest for the following reason. Recall that whereas applying
perturbation theory to pure Einstein theory, terms proportional to RµνR

µν and R2 can be
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absorbed by a field redefinition, this is no longer so when matter fields are present [44].
Thus, in perturbation theory, gravity coupled to matter is nonrenormalizable already at
one loop. One may fear that the non-Gaußian FP ceases to exist when one includes in the
truncation terms that correspond to nonrenormalizable divergences in the perturbative
treatment of Einstein’s theory. The preceding calculation shows, at least at one loop, that
this is not the case. We will further comment on the significance of this point in the
conclusions.

4.2. Truncation to polynomials in R

Following the scheme outlined in the previous two sections, we now extend the formal-
ism to handle truncations in the form of the so–called “f(R)–gravity” theories, where
the Lagrangian density in (2.22) is a function of the Ricci scalar only. Such theories rose
strong interest recently in cosmological applications [58]. At one loop, the quantization
of these theories has been discussed in [59]. Here we analyze the RG flow of this type of
theories where f is a polynomial of order n ≤ 8.
The (Euclidean) action is approximated by

Γk[Φ] =
n∑

i=0

gi(k)
∫
ddx

√
gRi + SGF + Sgh , (4.11)

where Φ = {hµν , Cµ, C̄ν} and the last two terms correspond to the gauge fixing and the
ghost sector [18, 43]. The gauge fixing will have the general form

SGF =
1
2

∫
ddx

√
ḡ χµG

µνχν (4.12)

where χν = ∇µhµν − 1+ρ
d ∇νh

µ
µ and Gµν =

(
α+ β∇2

)
gµν . In the following four subsec-

tions we give the second variation of the action and the ghost action, then we insert these
expressions into the ERGE and finally we discuss the choice of gauge.

4.2.1. Truncation ansatz

The second variation of
∫

ddx
√
gf (R) gives 1

δ2
∫
ddx (

√
gf (R)) =

∫
ddx

{
δ2
√
gf(R) + 2 δ

√
g δf(R) +

√
g

(
f ′(R)δ2R+ f ′′(R)(δR)2

)
}

=
∫
ddx

√
g

{
1
2
f ′′ (R)

(
hαβ∇α∇β∇µ∇νhµν − 2h∇2∇α∇βhαβ

1In the derivation of these expressions, the variations of the occurring tensors given in appendix A.6 are
useful.
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+h(∇2)2h− 2∇α∇βhαβRµνh
µν + 2∇2hRµνh

µν +RµνRαβh
µνhαβ

)

+
1
2
f ′ (R)

(
hαβ∇2hαβ + hαβ∇α∇µhβ

µ − hαβ∇µ∇αhβ
µ − h∇2h

+2Rµνh
µβhν

β −Rµνh
µνh

)
+ f (R)

(
−1

4
hµνh

µν +
1
8
h2

) }
.

All covariant derivatives are with respect to the background metric, the trace hµ
µ is abbre-

viated as h, prime denotes derivative with respect to R. It is already assumed here that
the curvature tensor of the background metric is covariantly constant. To this one has to
add the gauge fixing terms (4.12). In order to diagonalize the complete expression, we
choose a (Euclidean) de Sitter background and decompose into tensor, vector and scalar
parts as we did in section 3.2 for the cutoff of type Ib. The decompositions of the different
operators are listed in Appendix A.5. Then one obtains for the tensor part

Γ(2)

hT
µνhT

αβ

= −1
2

[
f ′

(
−∇2 − 2 (d− 2)

d (d− 1)
R

)
+ f

]
δµν,αβ , (4.13)

for the vector part

Γ(2)
ξµξν

=
(
−∇2 − R

d

)[
(α+ β∇2)

(
−∇2 − R

d

)
+

2R
d
f ′ − f

]
gµν , (4.14)

and for the scalar part (which contains a nontrivial mixing between h and σ)

Γ(2)
hh =

d− 2
4d

[
4(d− 1)2

d(d− 2)
f ′′

(
−∇2 − R

d− 1

)2

+
2(d− 1)

d
f ′

(
−∇2 − R

d− 1

)
− 2R

d
f ′ + f

]

−ρ
2

d2

[
α+ β

(
∇2 +

R

d

)]
∇2

Γ(2)
hσ =

d− 1
d2

[
(d− 1)f ′′

(
−∇2 − R

d− 1

)

+
d− 2

2
f ′ + ρ

(
α+ β

(
∇2 +

R

d

))]
∇2

(
∇2 +

R

d− 1

)

Γ(2)
σσ =

d− 1
2d

[
2(d− 1)

d
f ′′∇2

(
∇2 +

R

d− 1

)
− d− 2

d
f ′∇2 +

2R
d
f ′ − f

+
2(d− 1)

d

(
−∇2 − R

d− 1

)(
α+ β

(
∇2 +

R

d

))]
∇2

(
∇2 +

R

d− 1

)
. (4.15)

We have dropped the subscript k for typographical clarity.
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4.2.2. Ghost terms

The Fadeev–Popov ghost consists of two parts. It is calculated in the usual way from the
variation of the gauge condition and the generators of gauge transformations by

Sc =
∫
ddx

√
g C̄µG

µ
ρ
δχρ

δεν
Cν . (4.16)

From the infinitesimal gauge transformation of the gravitational field, δhµν = ∇µεν +
∇νεµ, the variation of the gauge condition under gauge transformations is given by

δχν = ∇µδhµν − 1 + ρ

d
∇νδh

= ∇2εν +Rµνε
µ +

d− 2− 2ρ
d

∇ν∇µε
µ. (4.17)

This gives

Sc =
∫
ddx

√
g C̄µ

(
α+ β∇2

) [
δµ
ν∇2 +Rµ

ν +
(d− 2− 2ρ)

d
∇µ∇ν

]
Cν (4.18)

where C̄µ and Cµ are the ghost and anti-ghost fields.
As we want to treat also higher-derivative gravity, it is natural to assume the operator
Gµ

ν can contain derivatives (for β 6= 0). In that case, one obtains a nonconstant square
root of a determinant in the Fadeev-Popov procedure which on exponentiation gives rise
to the so–called third ghost term [56]

Sb =
1
2

∫
ddx

√
ḡ bµGµνb

ν . (4.19)

For β = 0 this gives just a constant factor which can be absorbed in the normalization of
the functional integral. The full ghost action is then Sgh = Sc + Sb. The ghost, anti-ghost,
and third ghost fields are also decomposed into transverse and longitudinal parts as in
(3.24). The decompositions of the different operators are listed in Appendix A.5. Then
the operators acting on these fields are

Γ(2)

c̄T
µ cT

ν
=

(
α+ β∇2

)(
∇2 +

R

d

)
gµν

Γ(2)
c̄c = −2 (d− 1− ρ)

d

(
α+ β

(
∇2 +

R

d

))(
∇2 +

1
d− 1− ρ

R

)
∇2

Γ(2)

bT
µ bT

ν
=

(
α+ β∇2

)
gµν

Γ(2)
bb = −

(
α+ β

(
∇2 +

R

d

))
∇2 . (4.20)
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Finally, the decomposition of the ghosts gives rise to Jacobian determinants involving the
operators Jacobians

Jc = −∇2 ; Jb = −∇2 . (4.21)

4.2.3. Inserting into the ERGE

We choose a cutoff of type Ib. The inverse propagators (4.13,4.14,4.15,4.20) are all func-
tions of −∇2. Then, for each type of tensor components, the (generally matrix-valued)
cutoff function Rk is chosen to be a function of −∇2 such that

Γ(2)(−∇2) + Rk(−∇2) = Γ(2)(Pk) , (4.22)

where Pk is defined as in (2.59) for some profile function Rk. Inserting everything into
the ERGE (2.50) gives:

dΓk

dt
=

1
2

Tr(2)

d
dtRhT hT

Γ(2)

hT hT + RhT hT

+
1
2

Tr′(1)

d
dtRξξ

Γ(2)
ξξ +Rξξ

+

+
1
2

Tr′′(0)

(
Γ(2)

hh +Rhh Γ(2)
hσ +Rhσ

Γ(2)
σh +Rσh Γ(2)

σσ +Rσσ

)−1 (
d
dtRhh

d
dtRhσ

d
dtRσh

d
dtRσσ

)

+
1
2

∑

j=0,1

d
dtRhh(λj)

Γ(2)
hh (λj) +Rhh(λj)

−Tr(1)

d
dtRc̄T cT

Γ(2)

c̄T cT +Rc̄T cT

− Tr′(0)

d
dtRc̄c

Γ(2)
c̄c +Rc̄c

+
1
2

Tr(1)

d
dtRbT bT

Γ(2)

bT bT +RbT bT

+
1
2

Tr′(0)

d
dtRbb

Γ(2)
bb +Rbb

−1
2

Tr′(1)

d
dtRJV

JV +RJV

− 1
2

Tr′′(0)

d
dtRJS

JS +RJS

+Tr′(0)

d
dtRJc

Jc +RJc

− 1
2

Tr′(0)

d
dtRJb

Jb +RJb

. (4.23)

The first three lines contain the contribution from the metric fluctuation hµν , which has
been decomposed into its irreducible parts according to (3.23). Note that the trace over
the scalar components is doubly primed, since the first two modes of the σ field do not
contribute to hµν . However, the first two modes of h do contribute, and their contribution
to the trace is added separately in the third line. The fourth and fifth lines contain the
contributions of the ghosts and the third ghost, each decomposed into transverse and
longitudinal parts. Note that the first mode of the scalar (longitudinal) parts is omitted,
as it does not contribute to Cµ and bµ respectively. The sixth line is the contribution of the
Jacobians of the transformation (3.23). These have to carry the same number of primes as
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the fields in (3.23). The same is valid for the traces over the Jacobians resulting from the
split into vector and scalar parts of the ghost and third ghost field, given in the last line.
Eliminating the Jacobians by a further field redefinition, as in section 3.2, would produce
some technically undesirable poles in the heat kernel expansion. For this reason we shall
proceed as in appendix A.4 and explicitly retain the Jacobians.
In equation (4.23) we have used the convention for the primes that was used in section
3.2 and in appendix A.4. This differs from the calculation we did in [24] in having less
primes in the traces over the ghosts. We will discuss this point in some detail in the next
section.

4.2.4. Discussion of gauge choices

In the gauge fixing term (4.12) we have allowed in principle three gauge fixing parame-
ters ρ, β, and α. The choice ρ = 1, β = 0 corresponds to the familiar de Donder gauge; in
the discussion of the Einstein–Hilbert truncation we have further chosen the gauge fixing
parameter α = Z, which produces a minimal kinetic operator. Other values of α have
been treated in [20]. To avoid the issue of the RG running of α, the limit α/Z → ∞ is
sometimes invoked. A gauge fixing with β 6= 0 contains terms with four derivatives and
is natural in higher derivative gravity. We will only discuss gauge choices where either
α or β are nonzero, and not both simultaneously. We will call these “α gauges” and “β
gauges” respectively. Note that ρ and β are dimensionless but α has dimension of mass
squared. There are two ways of turning it into a dimensionless parameter: the first is to
proceed as with all other couplings and define α̃ = αk−2; then we can set a = 1/α̃. The
second is to proceed as in (3.2) for the Einstein–Hilbert truncation and set α = Z/a. In
the following, when we use α gauges we will always adopt the first method; the second
method yields similar results (up to a rescaling of a) and will not be reported. We will
also use the definition b = 1/β. We will always neglect the RG running of the dimension-
less gauge parameters ρ, a and b.
To reach the highest degree of simplification, a convenient gauge choice is to set ρ = 0
and then take either β = 0 and α→∞ or α = 0 and β →∞. We will now show explicitly
how this simplification works in the β gauges, treating tensor, vector and scalar compo-
nents separately. To write the formulae in a more compact form, in this section we will
denote ∆ = −∇2 and we define the following shorthands

∆(n) = ∆− R

n
, P

(n)
k = Pk − R

n
.

The transverse traceless tensor part is gauge independent and therefore is not affected by
the gauge choice. The vector part receives contributions from ξ, c̄Tµ , cTµ, bµ, JV :

1
2

Tr′(1)

d
dt(Γ

(2)
ξξ (Pk)− Γ(2)

ξξ (∆))

Γ(2)
ξξ (Pk)

− Tr(1)

d
dt

[
(α− βPk)P

(4)
k − (α− β∆)∆(4)

]

(α− βPk)P
(4)
k
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+
1
2

Tr(1)
∂t [−β (Pk −∆)]

(α− βPk)
− 1

2
Tr′(1)

∂t (Pk −∆)

P
(4)
k

.

In the first term, looking at (4.14) one sees that in the limit β → ∞ only the gauge fixing
term matters. In this limit the first term becomes simply

1
2

Tr′(1)

∂t

(
Pk(P

(4)
k )2

)

Pk

(
P

(4)
k

)2 =
1
2

Tr′(1)

∂tRk

Pk
+ Tr′(1)

∂tRk

P
(4)
k

.

Treating the other three terms in the same way, several simplifications occur. However,
one has to pay attention to the fact that some of the traces are primed and some are not.
Therefore, in the simplifications the contributions of some isolated modes are left out.
Using the optimized cutoff and specializing to d = 4, the final result for the vector terms
is

−1
2

Tr′(1)

∂tRk

P
(4)
k

− 5
∂tRk(R

4 )
Pk(R

4 )
− 10

∂tRk(R
4 )

P
(4)
k (R

4 )
(4.24)

where the argument of the last two terms, R/4, is the first eigenvalue of the Laplacian on
transverse vectors (see table A.4).
Let us now come to the scalar part. It receives contributions from h, σ, c̄, c, b, JS , Jc and
Jb. The contribution of h and σ is given by the second line in eq. (4.23). One sees from
(4.15) that when we set ρ = 0, only Γ(2)

σσ and Rσσ contain β. Therefore in the limit β →∞
these terms become

1
2

Tr′′(0)

Γ(2)
σσ∂tRhh − 2Γ(2)

hσ∂tRhσ + Γ(2)
hh∂tRσσ

Γ(2)
σσΓ(2)

hh −
(
Γ(2)

hσ

)2 =
1
2

Tr′′(0)

∂tRhh

Γ(2)
hh (Pk)

+
1
2

Tr′′(0)

∂tRσσ

Γ(2)
σσ (Pk)

.

The second term is equal to

1
2

Tr′′(0)

∂tRσσ

Γ(2)
σσ (Pk)

=
1
2

Tr′′(0)

(
∂tRk

P
(4)
k

+ 2
∂tRk

P
(3)
k

+
∂tRk

Pk

)
.

The longitudinal ghost fields c̄ and c give a contribution

−Tr′(0)

∂t(PkP
(3)
k P

(4)
k −∆∆(3)∆(4))

PkP
(3)
k P

(4)
k

= −Tr′(0)

(
∂tRk

P
(4)
k

+
∂tRk

P
(3)
k

+
∂tRk

Pk

)
.

The third ghost and the Jacobians together contribute

1
2

Tr′(0)

∂t(PkP
(4)
k −∆∆(4))

PkP
(4)
k

− 1
2

Tr′′(0)

∂t(PkP
(3)
k −∆∆(3))

PkP
(3)
k
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+Tr′(0)

∂t(Pk −∆)
Pk

− 1
2

Tr′(0)

∂t(Pk −∆)
Pk

=
1
2

Tr′(0)

(
∂tRk

P
(4)
k

+
∂tRk

Pk

)
− 1

2
Tr′′(0)

(
∂tRk

P
(3)
k

+
∂tRk

Pk

)
+ Tr′(0)

∂tRk

Pk
− 1

2
Tr′(0)

∂tRk

Pk
.

Thus the scalar terms together give

1
2

Tr′′(0)

∂tRhh

Γ(2)
hh (Pk)

− 1
2

Tr′′(0)

∂tRk

P
(3)
k

− 5
∂tRk(R

3 )

P
(3)
k (R

3 )
− 5

2
∂tRk(R

3 )

P
(4)
k (R

3 )
. (4.25)

The last two terms are evaluated on the second eigenvalue of the Laplacian on scalars,
R/3. Finally we can collect the tensor, vector and scalar contributions to obtain

dΓk

dt
=

1
2

Tr(2)

{
∂tPkf

′ + (Pk −∆)∂tf
′

(Pk − R
3 )f ′ + f

}
− 1

2
Tr′(1)

∂tRk

Pk − R
4

− 1
2

Tr′′(0)

∂tRk

Pk − R
3

(4.26)

+
1
2

Tr′′(0)

{
∂tPk(f ′ + 6(Pk − R

3 )f ′′) + (Pk −∆)(∂tf
′ + 3(Pk + ∆− 2

3R)∂tf
′′)

2
3f + (Pk − 2

3R)f ′ − 3f ′′(Pk − R
3 )2

}
+ Σ

where Σ is the contribution of the isolated modes. In the gauge ρ = 0, α = 0, β →∞ it is

Σ = −5
∂tRk(R

4 )
Pk(R

4 )
− 10

∂tRk(R
4 )

P
(4)
k (R

4 )
− 5

∂tRk(R
3 )

P
(3)
k (R

3 )
− 5

2
∂tRk(R

3 )

P
(4)
k (R

3 )
. (4.27)

The calculation in the gauge ρ = 0, α → ∞, β = 0 proceeds in a similar way. The final
result is the same except for the isolated modes, which give

Σ = −10
∂tRk(R

4 )

P
(4)
k (R

4 )
− 10

∂tRk(R
3 )P (6)

k (R
3 )

Pk(R
3 )P (3)

k (R
3 )

+ 5
∂tRk(R

3 )
Pk(R

3 )
. (4.28)

Using the formulae in the appendix for the trace evaluation, writing R̃ = k−2R and
f̃ = k−4f , with the optimized cutoff this equation becomes

dΓk

dt
=

384π2

30240R̃2

{
−1008(511R̃2 − 360R̃− 1080)

R̃− 3
− 2016(607R̃2 − 360R̃− 2160)

R̃− 4

+20
(311R̃3 − 126R̃2 − 22680R̃+ 45360)∂tf̃

′ − 252(R̃2 + 360R̃− 1080)f̃ ′

3f̃ − (R̃− 3)f̃ ′

+
[
1008(29R̃2 + 360R̃+ 1080)f̃ ′ + 4(185R̃3 + 3654R̃2 + 22680R̃+ 45360)∂tf̃

′

−2016(29R̃3 + 273R̃2 − 3240)f̃ ′′ − 9(181R̃4 + 3248R̃3 + 15288R̃2 − 90720)∂tf̃
′′
] /
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(
f̃ ′′(R̃− 3)2 + 2f̃ + (3− 2R̃)f̃ ′

)}
+ Σ . (4.29)

where

Σ = −10(R̃2 − 20R̃+ 54)R̃2

R̃2 − 7R̃+ 12
or Σ =

10(11R̃− 36)
R̃2 − 7R̃+ 12

(4.30)

in the β– and α–gauge respectively. The (dimensionful) beta functions can be extracted
from this function by taking derivatives:

dgi

dt
=

1
i!

1
V

∂i

∂Ri

dΓk

dt

∣∣∣∣∣
R=0

, (4.31)

where V =
∫
d4x

√
g. This we have done using algebraic manipulation software.

As already mentioned in section 3.9, different authors have different prescriptions for the
treatment of zero modes of the ghost operator. In [24] we have taken the point of view
that since in the gauge ρ = 0, α = 0, β →∞ there is a one-to-one correspondence between
the modes of the unphysical components ξµ and σ and those of the ghost field, and since
the ghost contribution is supposed to cancel the contribution of the gauge degrees of
freedom of the field, the cancellation occurs mode by mode, so that the trace over the
vector part of the ghost must have a prime and the trace over the scalar part of the ghost
must have a double prime. A similar argument applies to the third ghost. Finally, when
one makes this choice for the ghosts, then also the Jacobian determinants Jc and Jb must
have a double prime. So, altogether, all vector traces would have a prime and all scalar
traces would have a double prime. This amounts to putting Σ = 0. In the next sections
we shall begin by giving the results with this definition of the traces. Later we shall also
describe the effect of having Σ as in equation (4.30).

4.2.5. Results

We can now state our results. Table 4.1 gives the position of the nontrivial FP and table
4.2 gives the critical exponents, for truncations ranging from n = 1 (the Einstein–Hilbert
truncation) to n = 8. The same information is shown graphically in figure (4.1).

Some comments are in order. First of all, we see that a FP with the desired properties
exists for all truncations considered. When a new coupling is added, new unphysical
FPs tend to appear; this is due to the approximation of f by polynomials. A similar phe-
nomenon is known to occur in scalar theory in the local potential approximation [60, 61].
However, among the FP’s it has always been possible to find one for which the lower
couplings and critical exponents have values that are close to those of the previous trun-
cation. That FP is then identified as the nontrivial FP in the new truncation.
Looking at the columns of Tables 4.1 and 4.2 we see that in general the properties of the
FP are remarkably stable under improvement of the truncation. In particular the projec-
tion of the flow in the Λ̃-G̃ plane agrees well with the case n = 1. This confirms the claims
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n Λ̃∗ G̃∗ Λ̃∗G̃∗ 103×
g̃0∗ g̃1∗ g̃2∗ g̃3∗ g̃4∗ g̃5∗ g̃6∗ g̃7∗ g̃8∗

1 0.1297 0.9878 0.1282 5.226 -20.140
2 0.1294 1.5633 0.2022 3.292 -12.726 1.514
3 0.1323 1.0152 0.1343 5.184 -19.596 0.702 -9.682
4 0.1229 0.9664 0.1188 5.059 -20.585 0.270 -10.967 -8.646
5 0.1235 0.9686 0.1196 5.071 -20.538 0.269 -9.687 -8.034 -3.349
6 0.1216 0.9583 0.1166 5.051 -20.760 0.141 -10.198 -9.567 -3.590 2.460
7 0.1202 0.9488 0.1141 5.042 -20.969 0.034 -9.784 -10.521 -6.048 3.421 5.905
8 0.1221 0.9589 0.1171 5.066 -20.748 0.088 -8.581 -8.926 -6.808 1.165 6.196 4.695

Table 4.1.: Position of the FP for increasing order n of the truncation. To avoid writing too
many decimals, the values of g̃i∗ have been multiplied by 1000.

n Reϑ1 Imϑ1 ϑ2 ϑ3 Reϑ4 Imϑ4 ϑ6 ϑ7 ϑ8

1 2.382 2.168
2 1.376 2.325 26.862
3 2.711 2.275 2.068 -4.231
4 2.864 2.446 1.546 -3.911 -5.216
5 2.527 2.688 1.783 -4.359 -3.761 -4.880
6 2.414 2.418 1.500 -4.106 -4.418 -5.975 -8.583
7 2.507 2.435 1.239 -3.967 -4.568 -4.931 -7.572 -11.076
8 2.407 2.545 1.398 -4.167 -3.519 -5.153 -7.464 -10.242 -12.298

Table 4.2.: Critical exponents for increasing order n of the truncation. The first two critical
exponents ϑ0 and ϑ1 are a complex conjugate pair. The critical exponent ϑ4 is
real in the truncation n = 4 but for n ≥ 5 it becomes complex and we have set
ϑ5 = ϑ∗4.



90 Chapter 4. Higher-derivative truncations

-0,025

-0,020

-0,015

-0,010

-0,005

0,000

0,005

0,010

1 2 3 4 5 6 7 8 g0

g1

g2

g3

g4

g5

g6

g7

g8

-14

-12

-10

-8

-6

-4

-2

0

2

4

1 2 3 4 5 6 7 8

Retheta1

theta2

theta3

Retheta4

theta6

theta7

theta8

Figure 4.1.: The position of the fixed point (left panel) and the critical exponents (right
panel) as functions of n, the order of the truncation.

made in [20] about the robustness of the Einstein–Hilbert truncation.
The greatest deviations seem to occur in the row n = 2, and in the columns g2 and ϑ2.
The value of g2∗ decreases steadily with the truncation. The critical exponent ϑ2 appears
for the first time in the truncation n = 2 with a very large value, but it decreases quickly
and seems to converge around 1.5. This behaviour may be related to the fact that g2 is
classically a marginal variable.
The beta function of g2 due to the Einstein–Hilbert action (in the spirit of section V) was
considered first in [62]; the full truncation n = 2 has been studied in [63]. When compar-
ing our results for the case n = 2 with those of [63], one has to keep in mind that they
generally depend on the shape of the cutoff function. A significant quantity with very
weak dependence on the cutoff function is the dimensionless product ΛG. The value
0.12÷ 0.14 given in [63] for ΛG is very close to the value we find in all truncations except
n = 2. Our value for g̃2∗ in the n = 2 truncation has the same sign but is between one
half and one third of their value, depending on the cutoff function. This is another man-
ifestation of the relatively unstable behaviour of this variable. The value given in [63]
for the critical exponent ϑ′ varies in the range 2.2 ÷ 3.2 depending on the shape of the
cutoff, and is in good agreement with our results, again with the exception of the n = 2
truncation. Finally, in [63] the critical exponent ϑ2 has stably large values of the order of
25 with the compact support cutoffs, but varies between 28 and 8 with the exponential
cutoffs. The values at the high end agree well with our result in the n = 2 truncation. The
shape dependence that is observed with exponential cutoffs can be taken as a warning of
the truncation–dependence of this quantity.
Tables 4.3 and 4.4 give the position of the FP and the critical exponents in the truncation
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Λ̃∗ G̃∗ Λ∗G∗ 103×
g̃0∗ g̃1∗ g̃2∗ g̃3∗ g̃4∗ g̃5∗ g̃6∗ g̃7∗ g̃8∗

α 0.1239 0.9674 0.1199 5.096 -20.564 0.153 -6.726 -5.722 -2.981 1.980 3.305 1.631
β 0.1242 0.9682 0.1202 5.103 -20.548 0.138 -6.133 -4.621 -1.407 2.240 2.207 0.610

Table 4.3.: Position of the FP for n = 8 taking into account the contribution of the isolated
modes given in (4.30). To avoid writing too many decimals, the values of g̃i∗
have been multiplied by 1000.

gauge Reϑ1 Imϑ1 ϑ2 ϑ3 Reϑ4 Imϑ4 ϑ6 ϑ7 ϑ8

α 2.123 2.796 1.589 -4.212 -1.107 5.558 -7.321 -9.923 -12.223
β 2.049 2.511 1.438 -3.928 -0.102 7.320 -7.239 -9.664 -12.381

Table 4.4.: Critical exponents in the α– and β–gauge taking into account the contribution
of the isolated modes given in equation (4.30).

n = 8, using the definition of the traces with less primes (i.e. using for Σ the values given
in equation (4.30)). While the numerical results, especially for some of the higher cou-
plings, do change sensibly, the overall qualitative picture is not affected. In this connec-
tion we also mention that in [64] the same calculation has been independently repeated
for n ≤ 6. The slight numerical differences between their results and those reported here
is due entirely to the fact that they define the traces over the Jacobians Jc and Jb with a
single prime; it has been checked that when the same definition is used, the results agree
perfectly.

4.2.6. Ultraviolet critical surface

Possibly the most important result of this calculation is that in all truncations the opera-
tors from R3 upwards are irrelevant. One can conclude that in this class of truncations
the UV critical surface is three–dimensional. Its tangent space at the FP is spanned by
the three eigenvectors corresponding to the eigenvalues with negative real part. In the
parametrization (4.11), it is the three–dimensional subspace in R9 defined by the equa-
tion:

g̃3 = +0.0006 + 0.0682 g̃0 + 0.4635 g̃1 + 0.8950 g̃2
g̃4 = −0.0092− 0.8365 g̃0 − 0.2089 g̃1 + 1.6208 g̃2
g̃5 = −0.0157− 1.2349 g̃0 − 0.7254 g̃1 + 1.0175 g̃2
g̃6 = −0.0127− 0.6226 g̃0 − 0.8240 g̃1 − 0.6468 g̃2
g̃7 = −0.0008 + 0.8139 g̃0 − 0.1484 g̃1 − 2.0181 g̃2
g̃8 = +0.0091 + 1.2543 g̃0 + 0.5085 g̃1 − 1.9012 g̃2 (4.32)
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Figure 4.2.: The position of the nontrivial fixed point (left panel) and the critical expo-
nents (right panel) in the R3 truncation, in the gauge ρ = 0 and gauge pa-
rameter a variable in the range −1024 < a < 64. Note that the scales are
logarithmic for a > 0 and a < 0 but not at a = 0.

Unfortunately, we cannot yet conclude from this calculation that the operators O(n)
i with

n ≥ 6 would be irrelevant if one considered a more general truncation: the beta functions
that we computed here are really mixtures of the beta functions for various combinations
of powers of Riemann or Ricci tensors, which, in de Sitter space, are all indistinguishable.
However, there is a clear trend for the eigenvalues to grow with the power of R. In fact,
in the best available truncation, the real parts of the critical exponents differ from their
classical values di by at most 2.1, and there is no tendency for this difference to grow for
higher powers ofR. This is what one expects to find in an asymptotically safe theory [15].
With a finite dimensional critical surface, one can make definite predictions in quantum
gravity. The real world must correspond to one of the trajectories that emanate from the
FP, in the direction of a relevant perturbation. Such trajectories lie entirely in the critical
surface. Thus, at some sufficiently large but finite value of k one can choose arbitrarily
three couplings, for example g̃0, g̃1, g̃2 and the remaining four are then determined by
(4.32). These couplings could then be used to compute the probabilities of physical pro-
cesses, and the relations (4.32), in principle, could be tested by experiments. The linear
approximation is valid only at very high energies, but it should be possible to numerically
solve the flow equations and study the critical surface further away from the FP.

4.2.7. Scheme dependence in R3–gravity

The gauge parameters cannot be chosen totally independently. For example, if one takes
ρ = 0, α and β can be taken to infinity or zero, the limits exist and do commute. If one
takes instead ρ 6= 0, either α or β has to stay finite.
It would be very cumbersome to check the stability of the results under changes in the
gauge fixing parameters in high truncations. However, it is possible to do so for n = 3. As
we shall see, this is enough to verify that g3 is always irrelevant and therefore is a strong
indication that the dimension of the critical surface is stable under such variations.
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Figure 4.3.: The position of the nontrivial fixed point (left panel) and the critical expo-
nents (right panel) in the R3 truncation, in the gauge ρ = 1 and gauge param-
eter a variable in the range 0.5 < a < 64.
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Figure 4.5.: The position of the nontrivial fixed point (left panel) and the critical expo-
nents (right panel) in the R3 truncation, in the gauge ρ = 1 and gauge param-
eter b variable in the range 3 < b < 256.

Figures 4.2 and 4.4 show the position of the FP and the critical exponents in the gauges
ρ = 0, β = 0, α variable and ρ = 0, α = 0, β variable, respectively. It appears that one
can take the limits α → ±∞ and β → ±∞ without problems and that the results are
continuous.
We have also checked the results in the gauge ρ = 1, which was discussed extensively in
the case of the Einstein–Hilbert truncation. Figures 4.3 and 4.5 show the position of the
FP and the critical exponents in the gauges ρ = 1, β = 0, α variable and ρ = 0, α = 0, β
variable, respectively. It appears that when ρ = 1 one cannot take the limits α → ∞ and
β →∞, so we have limited ourselves to positive values of α and β.

In this section we have shown that also truncations including higher-derivative terms,
namely curvature squared truncations with different curvature invariants and polyno-
mials in the Ricci scalar till eighth order, possess a nontrivial UV fixed point. For the
first case, one had to restrict to the one loop approximation, but was also able to include
minimally coupled matter. It was found that all couplings are relevant and the curvature
squared couplings are asymptotically free.
For the second case it was found that all couplings with positive mass dimension re-
main irrelevant at the non-Gaußian fixed point so that only three relevant couplings re-
mained, the cosmological constant, Newton’s constant and the curvature squared cou-
pling. Therefore the UV critical surface remains three-dimensional in this case and has
been determined at the fixed point. The parameter dependence of the different trunca-
tions has been studied and the results have been confirmed to be stable. Especially the
fixed point values of the cosmological constant and Newton’s constant have been found
to be very stable under parameter variations and the inclusion of higher-derivative cou-
plings. This indicates that the Einstein-Hilbert truncation is a very good approximation
and leads to reliable results. In the next section we will summarize all results and discuss
several open issues.



5. Conclusions

In this thesis we have mostly reviewed and extended recent work on the asymptotic
safety approach to quantum gravity. In this approach, the metric is taken seriously as the
carrier of the fundamental degrees of freedom, relying on Quantum Field Theory with
its well-tested principles. The central hypothesis to make this procedure work in spite of
the well-known difficulties is the existence of a nontrivial FP for gravity, having finitely
many UV–attractive directions. In this way one can obtain
i) a well–defined UV scaling limit which is lost in perturbation theory because of the un-
controllable influence of higher–loop corrections, and
ii) a persistence of predictivity which is lost in perturbation theory due to the necessity
of an infinite number of counterterms.
Accordingly, most of the work has gone towards proving the existence of such a FP. Nec-
essary ingredients for its existence are that Newton’s gravitational constant becomes anti-
screening, that means diminishing, in the UV, and that it has an anomalous dimension
leading to a propagator scaling as p−4 near the fixed point. With the possible existence
of the fixed point the serious consideration of phenomenological consequences at and
beyond the Planck has become important and has been strived also in this thesis. Let us
summarize the evidence for the existence of a UV fixed point that has been obtained by
applying Wilsonian RG methods to gravity (for general reviews see also [65, 66, 67]).

Large N limit In order to start from the simplest setting, we have begun by consid-
ering the contribution of minimally coupled matter fields to the beta functions of the
gravitational couplings, which can be simply obtained from the heat kernel expansion
for Laplace–type operators and give beta functions that are just constants (see equations
(2.68,2.70)). Such beta functions produce a FP for all gravitational couplings.
This result is important for two reasons: the first reason is that in the limit when the num-
ber of matter fields is very large, this is the dominant contribution to the beta functions.
Insofar as the number of matter fields in the real world is large, and matter couplings can
be assumed to be asymptotically free, this may be a reasonably good approximation for
some purposes. The second reason is that the contribution of gravitons to the gravita-
tional beta functions, neglecting the RG improvements and considering only the leading
term in the expansion in the cosmological constant, is essentially of the same form (com-
pare equations (2.70), (3.21) and (4.5)). One may therefore see this as a bare skeleton that
can be dressed by taking into account increasingly more subtle effects.

Truncations The simplest way of approximating the ERGE consists in truncating the
form of the average effective action Γk, i.e. retaining only certain operators and neglect-
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ing all others. It is known from experience with scalar field theory that the most reliable
procedure is not to truncate on the power of the field but rather to truncate in the number
of derivatives. In the case of gravity the lowest order of the derivative expansion is the
so–called Einstein–Hilbert truncation, where one retains only the cosmological constant
and Newton’s constant. In this case one can treat the ERGE without any further approx-
imation. The results are therefore “nonperturbative”, in the sense that couplings are not
required to be small.
In section 3 we have discussed in detail several ways of implementing the cutoff proce-
dure of the ERGE and we have shown that the results are robust against such changes.
This adds to earlier studies concerning the dependence of the results under changes of
gauge and changes of the cutoff profile and increase our confidence that the FP is not an
artifact of the truncation. The results have been obtained in arbitrary dimensions d. Since
in this approach the dimension is not used as a regulator, one can follow the position of
the FP as a function of dwithout encountering singularities, and compare with the results
of the epsilon expansion. We have seen that, numerically, the epsilon expansion gives a
rather poor approximation at d = 4.

UV divergences and asymptotic safety We have then shown how to recover the per-
turbative divergences from the ERGE. In particular, we have seen that the one loop di-
vergences obtained by ’t Hooft and Veltman [44] can be reproduced starting from the
Einstein–Hilbert truncation of the ERGE, and that they are independent of the cutoff pro-
cedure and of the profile of the cutoff functions. We have also reproduced the known
(scheme–dependent) one loop divergences in the presence of a cosmological constant.
A more accurate treatment of these divergences requires that the terms quadratic in cur-
vature be retained from the start, i.e. that they are included in the truncations. Unfortu-
nately, due to technical complications, it has been impossible so far to treat the curvature–
squared truncation (which would constitute the second order in the derivative expan-
sion) in the same way as the Einstein–Hilbert truncation. The most complete available
treatment, which was described in section 4.1, requires that further approximations be
made: essentially, one is just keeping the lowest terms in the perturbative expansion.
Still, the results obtained from the ERGE differ from those that had been calculated be-
fore using more conventional methods.
The beta functions of the dimensionless couplings λ, ξ, ρ (defined in (3.74)) coincide
with those that had been computed previously. In this approximation these couplings
are asymptotically free, tending logarithmically to zero from a well–defined direction in
(λ, ξ, ρ)–space. However, the beta functions of Λ̃ and G̃ contain, in addition to the terms
that were known before, also some new terms that generate a nontrivial FP. When the
other couplings are set to their FP values, the flow in the (Λ̃, G̃)–plane has the same form
as the perturbative Einstein–Hilbert flow (3.21).
In the perturbative approach to Einstein’s theory, the one loop divergences are at most
quadratic in the curvature. But the Euler term is a total derivative and the remaining
terms vanish on shell, so, if we neglect the cosmological constant, all counterterms can
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be eliminated by a field redefinition, up to terms of higher order. One could suspect that
in pure gravity the existence of the FP in truncations involving at most terms quadratic
in curvature is in some way related to the absence of corresponding genuine divergences
in perturbation theory. If this was the case, one might expect that the FP ceases to exist
as soon as one includes in the truncation terms that correspond to nonrenormalizable di-
vergences in the perturbative treatment of Einstein’s theory.
From the point of view of the ERGE, this looks quite unlikely, for various reasons. First
of all, there exist examples of theories that are perturbatively nonrenormalizable while
asymptotically safe at a nontrivial FP [70, 71]. Second, when one truncates the action Γk,
in principle all terms that are retained could be equally important. The argument about
eliminating terms that contain the Ricci tensor only applies when the higher order terms
are considered as infinitesimal perturbations of the Hilbert action with zero cosmological
constant, for then at leading order the on shell condition is simply Rµν = 0.
However, if the higher order terms are not infinitesimal, the on shell condition is much
more complicated and there is no indication that they can still be eliminated by field re-
definitions. In fact for certain classes of terms it is known that they can only be eliminated
at the price of introducing a number of scalar fields with new interactions [68]. Finally,
the calculations reported here already provide evidence to the contrary. In the presence
of a cosmological term neitherRµνR

µν norR2 vanish on shell, so, according to the pertur-
bative reasoning, none of the FP’s discussed in section 4 should exist. If for some reason
one is willing to neglect the cosmological constant, in pure gravity the first genuine per-
turbative divergence is cubic in the Riemann tensor, but in the presence of matter fields
already the one loop logarithmic divergences, which are quadratic in curvature, do not
vanish on shell.
Does this imply that in the presence of matter the FP ceases to exist? We have seen ex-
plicitly in section 4.1 that at least at one loop this is not the case. Admittedly, this is only a
partial result, and an “exact” calculation would be necessary to definitely settle this point,
but it is very strong indication that the Wilsonian approach can handle terms that would
be troublesome in perturbation theory. For these reasons we also believe that nothing
special will happen when the Goroff–Sagnotti cubic term (which was used to prove that
pure gravity is perturbatively nonrenormalizable) will be included in the truncation.

f(R) truncations While for the time being the systematic derivative expansion cannot
be pushed beyond the fourth order, one can still consider different truncations that go be-
yond the Einstein–Hilbert one. So far, the truncation with the greatest number of free pa-
rameters that can be dealt with exactly is so–called f(R) gravity, where f is a polynomial
in the scalar curvature. The calculation of the beta functions of this theory was briefly re-
ported in [24] for polynomials up to sixth order and has been described in greater detail
in section 4.2 for polynomials of order up to eight. The most important results of these
calculations are the relative stability of the results under the increase in the number of
terms in the truncation, and the finite dimensionality of the critical surface. It appears
that the critical exponents do not deviate very strongly from the classical dimensions, as
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expected, so that the terms with six or more derivatives are irrelevant.
Further results involving infinitely many couplings were given in [72] in the two Killing
vector reduction of gravity and more recently in [73] in the conformal reduction, where
transverse degrees of freedom of the metric are ignored. There is some work showing
that the FP exists also in the presence of some types of matter [74]. Some independent
evidence in favor of a gravitational FP is also found in numerical simulations, both in the
causal dynamical triangulation approach [75] and in Regge calculus [76]. This concludes
our overview of the currently available evidence for a gravitational FP. Let us now make
a few comments and discuss future prospects.

Scheme dependence The dependence of certain results on the choice of the cutoff
scheme (which we called “scheme dependence”) is sometimes the source of worries. For
example, could the FP for Newton’s constant disappear if we chose the cutoff function in
a perverse way? This scheme dependence is the counterpart in the Wilsonian approach
of the regularization and renormalization scheme ambiguities that are encountered in
perturbation theory. As we have discussed in section 3.9, such scheme dependence is to
be expected for all results that concern dimensionful couplings. We have seen that within
certain approximations (which we called the “perturbative Einstein–Hilbert flow”) all the
terms with six or more derivatives can indeed be made to vanish by a choice of cutoff.
However, as can be seen from equations (3.16,3.29,3.38,3.57), the general properties of the
cutoff functions are such that one cannot similarly set to zero Newton’s constant and the
cosmological constant. This is the main reason for the robustness of the nontrivial FP.

Exactness of the RG equation Another point that is sometimes a source of misunder-
standings is the use of the term “exact” in relation to the ERGE, and the “nonperturba-
tive” character of these calculations. The beta functions that we have calculated in this
thesis are rational functions of the couplings g̃i. The appearance of the couplings in the
denominators suggests that they could be regarded as resummations of infinitely many
perturbative terms. Thus, the beta functions might still be considered “perturbative”, in
the sense that they are analytic in the coupling constants. We think that the ERGE is actually
capable of obtaining also results that are nonanalytic in the coupling constant, but inso-
far as the FP is present already in the lowest order of perturbation theory (see equation
(1.12)) such a degree of sophistication would be unnecessary. On the other hand, the beta
functions obtained from the ERGE can be said to be “nonperturbative” in the sense that
their validity is not limited to small couplings.
If we compare the one loop beta function (1.12) to the beta function (3.66) obtained from
the ERGE, they are seen to have the same form. However, the former calculation by hy-
pothesis is valid only for G̃¿ 1; while the latter was obtained from a completely different
procedure and is not similarly limited. (The difference in the coefficient is not important
because the result is scheme–dependent anyway.) This suggests that the perturbative re-
sult is at least qualitatively valid also for relatively large values of the coupling. Notice
that the RG improvement modifies the one loop result and produces singularities of the
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beta functions. The nontrivial FP always occurs on the side of the singularity that can be
continuously connected to the Gaußian FP.

Unitarity The appearance of higher derivative terms in the action at the FP raises the old
issue of unitarity. The Wilsonian point of view puts that problem in a slightly different
perspective. A tree–level analysis of the action (3.1) plus (3.74) shows that it generally
contains besides a massless spin two graviton other particles with a mass of the order
of Planck’s mass and a negative residue at the pole (ghosts) [69]. Some authors have
suggested that, due to RG effects, these particles may not propagate [53, 77]. From a
general Wilsonian point of view, the presence of a propagator pole at a given mass can
only be reliably established by considering the effective action at a value of k comparable
to that mass. The effective action in the FP regime is probably quite different from the
effective action at the scale of the putative ghost mass, so any conclusion about the mass
spectrum based on the FP–effective action is probably of little value.
This fact is clearly exemplified by QCD. The tree level analysis of the QCD action, which
is known to be a good description of strong interactions at high energies (i.e. near the
Gaußian FP), would suggest a spectrum of particles (quarks and gluons) none of which
is observed in nature. Since the QCD coupling becomes stronger as the energy decreases,
the description of strong interactions in terms of quarks and gluons becomes extremely
complicated long before one reaches the scale of the quark masses, and it is believed
that if one could actually do such calculations, quarks and gluons would be found not to
propagate. It is conceivable that some similar phenomenon may occur in gravity, so the
FP action (which is the analog of the QCD action) should not be expected to be a good
guide to the particle spectrum of the theory. The confinement of quarks and gluons is
one of the outstanding problems in particle physics and it is unfortunately possible that
the analogous problem in gravity may prove equally hard.
This is related to the more general question about the low energy action corresponding
to the FP action but this lies outside the scope of the present thesis. We refer the reader to
[78] for some discussions of this point.

Einstein-Hilbert versus higher-derivative truncations Another remarkable aspect of
these calculations is that the one loop flow in the Λ̃–G̃ plane is essentially the same (aside
from nonuniversal numerical coefficients) in the Einstein–Hilbert truncation (section 3.8)
and in the curvature squared truncation (section 4.1). In the latter, λ and ξ tend logarith-
mically to zero and the corresponding terms in the action diverge. Thus the dynamics
becomes dominated by the four derivative terms, while in the Einstein–Hilbert trunca-
tion it is dominated by the two derivative term. It may be somewhat surprising that the
structure of the flow should be so similar in spite of such differences in the dynamics.
This can be at least partly understood by the following argument. In gravity at low
energies (hence in the perturbative regime) one can consider all couplings to be scale–
independent, and therefore the relative importance of the terms in the action can be de-
termined simply by counting the number of derivatives of the metric. For example, at
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momentum scales p2 ¿ Z (recall that Z is the square of the Planck mass), using standard
arguments of effective field theories, the terms in the action (3.74) with four derivatives
are suppressed relative to the term with two derivatives by a factor p2/Z. This is not the
case in the FP regime. If we consider phenomena occurring at an energy scale p, then also
the couplings should be evaluated at k ≈ p. But then, if there is a nontrivial FP, Z runs
exactly as p2 and therefore both terms are of order p4. This argument can be generalized
to all terms in the derivative expansion (2.22): at a FP, the running of each coefficient g(n)

i ,
which is given by the canonical dimension, exactly matches the number of derivatives in
the operator O(n)

i , so that all terms are of order p4.
This may at least in part explain the robustness of the results. When many terms are taken
into account in the truncation, it is hard to have an intuitive feeling for the mechanism
that gives rise to the FP. For example, the beta functions which are obtained by taking
derivatives of (4.29) with respect to curvature are exceedingly complicated. In fact, they
are manipulated by the software and one does not even see them. This is why we have
strived in the first few sections of this thesis to emphasize the simplest approximations.
They give a clear and intuitive picture suggesting the emergence of a FP to all orders in the
derivative expansion.
We would therefore like to conclude by overturning a common belief: the existence of a
nontrivial FP does not require a delicate cancellation of terms. The FP appears essentially
due to the dimensionful nature of the coupling constants, and it can be seen already in
the perturbative Einstein–Hilbert flow (i.e. in the approximation where one considers just
the contribution of gravitons or matter fields with kinetic operators of the form−∇2 +E,
where E is linear in curvature). More advanced approximations dress up this simple
result with RG improvements and with the contribution of additional couplings. The ar-
gument in the preceding paragraph suggests that the new couplings will not qualitatively
change the results. And indeed, so far it seems that generically such dressing does not
spoil the FP. So, to conclude on an optimistic note, one could say that it would actually
require a special conspiracy by the new terms to undo the perturbative FP.

Phenomenology of RG in gravity There remains the question for the phenomenolog-
ical consequences of the RG effects in gravity. In section 3.10 we have analyzed the case
of a test particle in de Sitter space which would feel the scale dependence of the cosmo-
logical constant. This would lead to modified dispersion relations and therefore connect
to the phenomenology of models with Lorentz invariance violation or deformed special
relativity.
Other possible scenarios were considered in a number of papers covering the following
topics. Black hole spacetimes and black hole formation were considered in [85]. Interest-
ing questions in this context are if the running of the gravitational couplings, especially
the weakening of the Newton constant, will change the black hole formation process sig-
nificantly up to prohibiting the formation of a singularity, and how an object in a black
hole spacetime will respond to the scale dependence of the metric. This, as in other con-
crete applications, involves the identification of the appropriate momentum scale corre-
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sponding to the RG scale. Symmetry arguments suggest that the radial distance to the
black hole center might play a significant role. As the formation of black holes might be-
come possible in colliders if compactified additional space dimensions exist the influence
of the RG effects could be studied in such scenarios as done in [27].
Cosmology was addressed by different groups where the considered scenarios are not
stringently connected to the existence or nonexistence of a UV fixed point [78, 86, 100,
101, 102, 103, 104, 105]. RG effects could also arise in a general effective field theory limit.
Of phenomenological importance could be especially the Cosmological Constant which,
due to its tiny value, will start running significantly at very low RG scales. This could
lead to RG effects on large distances and could modify the evolution of the universe. Ex-
citing is the possibility to give rise to an inflationary phase from RG running in the early
universe or possible imprints on the Cosmological Microwave Background.
The possible running of the Newton constant could also give rise to a modified Newto-
nian potential on galactic distances and therefore (partially) explain the motivation for
the existence of dark matter [107, 113].
Further scenarios deal with the question what a scale dependent metric, giving rise to
scale dependent distance measurements, will admit as possible length scales, if there
could be a minimal length for example [123], or what are the consequences of the dimen-
sional reduction by the huge anomalous dimension of Newton’s constant at high energies
[109].
Altogether, in the interpretation of the exciting possible phenomenology obtainable in
the RG approach there is still much open space to explore and could push the view on
the nature of quantum gravity to new frontiers.
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A. Appendix

A.1. Trace technology

The right hand side of the ERGE (2.50) is the trace of a function of a differential operator.
To illustrate the methods employed to evaluate such traces, we begin by considering the
covariant Laplacian in a metric g, −∇2. If the fields carry a representation of a gauge
group G and are coupled to gauge fields for G, the covariant derivative ∇ contains also
these fields. We will denote ∆ = −∇21 + E a second order differential operator. E is a
linear map acting on the spacetime and internal indices of the fields. In our applications
to de Sitter space it will have the form E = qR 1 where 1 is the identity in the space of
the fields and q is a real number.
The trace of a function W of the operator ∆ can be written as

TrW (∆) =
∑

i

W (λi) (A.1)

where λi are the eigenvalues of ∆. Introducing the Laplace anti-transform W̃ (s)

W (z) =
∫ ∞

0
ds e−zsW̃ (s) (A.2)

we can rewrite (A.1) as

TrW (∆) =
∫ ∞

0
dsTrK(s)W̃ (s) (A.3)

where TrK(s) =
∑

i e
−sλi is the trace of the heat kernel of ∆. We assume that there are

no negative and zero eigenvalues; if present, these will have to be dealt with separately.
The trace of the heat kernel of ∆ has the well-known asymptotic expansion for s→ 0

Tr
(
e−s∆

)
=

1

(4π)
d
2

[
B0 (∆) s−

d
2 +B2 (∆) s−

d
2
+1 + . . .+Bd (∆) +Bd+2 (∆) s+ ...

]
(A.4)

where Bn =
∫

dd x
√
gtrbn and bn are linear combinations of curvature tensors and their

covariant derivatives containing 2n derivatives of the metric.1

Assuming that [∆,E] = 0, the heat kernel coefficients of ∆ are related to those of −∇2 by

1An alternative derivation of the heat kernel coefficients by directly suming the eigenvalues is given in
appendix A.7.
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Tre−s(−∇2+E) =
1

(4π)
d
2

∞∑

k,`=0

(−1)`

`!

∫
dd x

√
g trbk(∆)E`sk+`−2. (A.5)

The first six coefficients have the form [79]

b0 = 1 (A.6)

b2 =
R

6
1−E (A.7)

b4 =
1

180

(
RµναβRµναβ −RµνRµν +

5
2
R2 + 6∇2R

)
1

+
1
12

ΩµνΩµν − 1
6
RE +

1
2
E2 − 1

6
∇2E (A.8)

b6 =
1

180
R1

(
RµναβRµναβ −RµνRµν +

5
6
R2 +

7
2
∇2R

)

+
R

2
E2 + E3 +

1
30

E
(
RµναβRµναβ −RµνRµν +

5
2
R2 + 6∇2R

)

+
R

12
ΩµνΩµν +

1
2
EΩµνΩµν +

1
2
E∇2E− 1

2
JµJµ

+
1
30

(
2Ωµ

νΩ
ν
αΩα

µ − 2Rµ
νΩµαΩαν +RµναβΩµνΩαβ

)

+1
[
− 1

630
R∇2R+

1
140

Rµν∇2Rµν +
1

7560

(
−64Rµ

νR
ν
αR

α
µ + 48RµνRαβR

α β
µ ν

+ 6RµνR
µ
ραβR

νραβ + 17R αβ
µν R ρσ

αβ R µν
ρσ − 28Rµ ν

α βR
α β
ρ σR

ρ σ
µ ν

)]
(A.9)

where Ωµν = [∇µ,∇ν ] is the curvature of the connection acting on a set of fields in a
particular representation of the Lorentz and internal gauge group and Jµ = ∇αΩα

µ. We
neglect total derivative terms. The coefficient b8, which is also used in this work, is much
too long to write here, and can be found in [80]. These coefficients are for unconstrained
fields. The ones for fields satisfying differential constraints such as hT

µν and ξµ in the field
decompositions (3.23) are given in appendix A.2.
Let us return to equation (A.3). If we are interested in the local behaviour of the theory
(i.e. the behaviour at scales k much smaller than the typical curvature) we can use the
asymptotic expansion (A.4) and then evaluate each integral separately. Then we get

TrW (∆) =
1

(4π)
d
2

[
Q d

2
(W )B0(∆) +Q d

2
−1(W )B2(∆) + . . .

+Q0(W )Bd(∆) +Q−1(W )Bd+2(∆) + . . .
]
, (A.10)

where
Qn(W ) =

∫ ∞

0
dss−nW̃ (s) . (A.11)
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In the case of four dimensional field theories, it is enough to consider integer values of
n. However, in odd dimensions half-integer values of n are needed and we are also
interested in the analytic continuation of results to arbitrary real dimensions. We will
therefore need expressions for (A.11) that hold for any real n.
If we denote by W (i) the i-th derivative of W , we have from (A.2)

W (i)(z) = (−1)i

∫ ∞

0
ds sie−zsW̃ (s) . (A.12)

This formula can be extended to the case when i is a real number to define a notion of
“noninteger derivative”. From this it follows that for any real i

Qn(W (i)) = (−1)iQn−i(W ) . (A.13)

For n a positive integer one can use the definition of the Gamma function to rewrite (A.11)
as a Mellin transform

Qn(W ) =
1

Γ(n)

∫ ∞

0
dz zn−1W (z) (A.14)

while for m a positive integer or m = 0

Q−m(W ) = (−1)mW (m)(0) . (A.15)

More generally, for n a positive real number we can define Qn(W ) by equation (A.14),
while for n real and negative we can choose a positive integer k such that n+ k > 0; then
we can write the general formula

Qn(W ) =
(−1)k

Γ(n+ k)

∫ ∞

0
dz zn+k−1W (k)(z) . (A.16)

This reduces to the two cases mentioned above when n is integer. In the case when n is a
negative half integer n = −2m+1

2 we will set k = m+ 1 so that we have

Q− 2m+1
2

(W ) =
(−1)m+1

√
π

∫ ∞

0
dz z−1/2f (m+1)(z) . (A.17)

Let us now consider some particular integrals that are needed in this paper. As discussed
in section 2.3, there are two natural choices of cutoff function: type I cutoff is a func-
tion Rk(−∇2) such that the modified inverse propagator is Pk(−∇2) = −∇2 +Rk(−∇2);
type II cutoff is the same function but its argument is now the entire inverse propagator:
Rk(∆), such that the modified inverse propagator is Pk(∆) = ∆ +Rk(∆).
We now restrict ourselves to the case when E = q1, so that we can write ∆ = −∇2 + q1.
The evaluation of the r.h.s. of the ERGE reduces to knowledge of the heat kernel co-
efficients and calculation of integrals of the form Qn

(
∂tRk/(Pk + q)`

)
. It is convenient

to measure everything in units of k2. Let us define the dimensionless variable y by
z = k2y; then Rk(z) = k2r(y) for some dimensionless function r, Pk(z) = k2(y + r(y))
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and ∂tRk(z) = 2k2(r(y)− yr′(y)).
In general the coefficients Qn(W ) will depend on the details of the cutoff function. How-
ever, if q = 0 and ` = n+ 1 they turn out to be independent of the shape of the function.
Note that they are all dimensionless. For n > 0, as long as r(0) 6= 0:

Qn

(
∂tRk

Pn+1
k

)
=

2
Γ(n)

∫ ∞

0
dy

d

dy

[
1
n

yn

(y + r)n

]
=

2
n!
. (A.18)

Similarly, if r(0) 6= 0 and r′(0) is finite,

Q0

(
∂tRk

Pk

)
= 2 . (A.19)

Finally, for n = −m < 0

Qn

(
∂tRk

P 1−m
k

)
|y=0 = (−1)m

(
∂tRk

P 1−m
k

)(m)

(0) |y=0 =
m∑

n=0

(
m

n

) (
r − y r′

)(n) (y + r)(m−1) |y=0 = 0

(A.20)
as (r − y r′)(n) = r(n)−y r(n+1)−r(n) = −y r(n+1) which vanishes at y = 0. This concludes
the proof that Qn

(
∂tRk/P

n+1
k

)
are scheme–independent.

Regarding the other coefficients Qn

(
∂tRk/(Pk + q)`

)
whenever explicit evaluations are

necessary, we will use the so-called “optimized cutoff function” [81]

Rk(z) = (k2 − z)θ(k2 − z) . (A.21)

With this cutoff ∂tRk = 2k2θ(k2 − z). Since the integrals are all cut off at z = k2 by the
theta function in the numerator, we can simply use Pk(z) = k2 in the integrals. For n > 0
we have

Qn

(
∂tRk

(Pk + q)`

)
=

2
n!

1
(1 + q̃)`

k2(n−`+1) (A.22)

where q̃ = qk−2. For n = 0 we have

Q0

(
∂tRk

(Pk + q)`

)
=

∂tRk

(Pk + q)`

∣∣∣∣∣
z=0

=
2

(1 + q̃)`
k2(−`+1) . (A.23)

Finally, owing to the fact that the function ∂tRk(z)
(Pk(z)+q)` is constant in an open neighborhood

of z = 0, we have

Qn

(
∂tRk

(Pk + q)`

)
= 0 for n < 0 . (A.24)

This has the remarkable consequence that with the optimized cutoff the trace in the ERGE
consists of finitely many terms.
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For noninteger indices of the Q-functional let us calculate

Q− 2n+1
2

(
∂tRk

Pk

)
=

(−1)n+1

√
π

∫ ∞

0
dz z−1/2 d

n+1

dxn+1

∂tRk(z)
Pk(z)

(A.25)

where Pk(z) = z + (k2 − z)θ(k2 − z). We change the variable to x = z/k2 so we have

Q− 2n+1
2

(
∂tRk

Pk

)
=

(−1)n+1k−(2n+1)

√
π

∫ ∞

0
dxx−1/2 d

n+1

dxn+1

2xθ(1− x)
x+ (1− x)θ(1− x)

. (A.26)

We find
∫ ∞

0
dxx−1/2 d

dx
f(x) = 2

∫ ∞

0
dxx−1/2 d

2

dx2
f(x) = −5 (A.27)

so that

Q−1/2

(
∂tRk

Pk

)
= − 2√

πk
(A.28)

Q−3/2

(
∂tRk

Pk

)
= − 5√

πk3
.

We also need Q-functionals of Rk

(Pk+q)` . For n > 0 we have

Qn

(
Rk

(Pk + q)`

)
=

1
(n+ 1)!

1
(1 + q̃)`

k2(n−`+1) . (A.29)

The function Rk(z)
(Pk(z)+q)` is equal to k2−z

(k2+q)` in an open neighborhood of z = 0; therefore

Q0

(
Rk

(Pk + q)`

)
=

Rk

(Pk + q)`

∣∣∣∣∣
z=0

=
1

(1 + q̃)`
k2(−`+1) (A.30)

Q−1

(
Rk

(Pk + q)`

)
=

1
(1 + q̃)`

k−2` , Qn

(
Rk

(Pk + q)`

)
= 0 for n < −1 . (A.31)

Finally, for the type III cutoff one also needs the following

Qn

(
1

(Pk + q)`

)
=

1
n!
k2(n−`)

(1 + q̃)`
for n ≥ 0 ; Qn

(
1

(Pk + q)`

)
= 0 for n < 0 . (A.32)

In conclusion let us address a general problem concerning the choice of the operator O,
whose eigenfunctions are taken as a basis in the functional space. In some calculations
the r.h.s. of the ERGE takes the form 1

2Tr∂tRk(∆+q1)
Pk(∆+q1) where ∆ is an operator and q is a
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constant. Equation (A.10) tells us how to compute the trace of this function, regarded
as a function of the operator ∆ + q1. In the derivation of this result it was implicitly
assumed that O = ∆ + q1. However, the trace must be independent of the choice of
basis in the functional space. It is instructing to see this explicitly, namely to evaluate the
trace regarding 1

2Tr∂tRk(∆+q1)
Pk(∆+q1) as a function of ∆. Given any functionW (z) we can define

W̄ (z) = W (z + q); in general, expanding in q we then have

Qn(W̄ ) =
1

Γ(n)

∫ ∞

0
dz zn−1W (z + q)

=
1

Γ(n)

∫ ∞

0
dz zn−1(W (z) + qW ′(z) +

1
2!
q2W ′′(z) +

1
3!
q3W ′′′(z) . . .)

= Qn(W ) + qQn(W ′) +
1
2!
q2Qn(W ′′) +

1
3!
q3Qn(W ′′′) + . . .

= Qn(W )− qQn−1(W ) +
1
2!
q2Qn−2(W )− 1

3!
q3Qn−3(W ) . . . (A.33)

where in the last step we have used equation (A.13). Using (A.10) for the function W̄ we
then have

TrW̄ [∆] =
1

(4π)
d
2

[
Q d

2
(W̄ )B0(∆) +Q d

2
−1(W̄ )B2(∆) + . . .+Q0(W̄ )B2d(∆) + . . .

]

=
1

(4π)
d
2

[(
Q d

2
(W )− qQ d

2
−1(W ) +

1
2!
q2Q d

2
−2(W )− 1

3!
q3Q d

2
−3(W ) + . . .

)
B0(∆)

+
(
Q d

2
−1(W )− qQ d

2
−2(W ) +

1
2!
q2Q d

2
−3(W )− 1

3!
q3Q d

2
−4(W ) + . . .

)
B2(∆)

+ . . .

+
(
Q0(W )− qQ−1(W ) +

1
2!
q2Q−2(W )− 1

3!
q3Q−3(W ) + . . .

)
B2d(∆)

+ . . .

]
(A.34)

We can now collect the terms that have the same Q-functions. They correspond to the
anti-diagonal lines in (A.34). Using equation (A.5) one recognizes that the coefficient of
Q d

2
−k is B2k(∆ + q1). Therefore

TrW̄ [∆] =
1

(4π)
d
2

[
Q d

2
(W̄ )B0(∆ + q1) +Q d

2
+1(W̄ )B2(∆ + q1)

+ . . .+Q0(W̄ )B2d(∆ + q1) + . . .
]

(A.35)

which coincides term by term with the expansion of TrW [∆ + q] using the basis of eigen-
functions of the operator O = ∆ + q1. This provides an explicit check, at least in this
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particular example, that the trace of this function is independent of the basis in the func-
tional space.

A.2. Spectral geometry of differentially constrained fields

In this appendix we work on a sphere. Consider the decomposition of a vector field Aµ

into its transverse and longitudinal parts

Aµ → AT
µ +∇µΦ (A.36)

The spectrum of −∇2 on vectors is the disjoint union of the spectrum on transverse and
longitudinal vectors. The latter can be related to the spectrum of −∇2 − R

d on scalars
using the formula

−∇2∇µΦ = −∇µ

(
∇2 +

R

d

)
Φ . (A.37)

Therefore one can write for the heat kernel

Tr e−s(−∇2) |Aµ= Tr e−s(−∇2) |AT
µ

+Tr e−s(−∇2−R
d ) |Φ −e(s R

d ) . (A.38)

The last term has to be subtracted because a constant scalar is an eigenfunction of−∇2−
R
d with negative eigenvalue, but does not correspond to an eigenfunction of −∇2 on
vectors. The spectrum of −∇2 on scalars and transverse vectors is obtained from the
representation theory of SO(d+ 1) and is reported in table A.4.
A similar argument works for symmetric tensors, when using the decomposition (3.23).
One can use equation

−∇2 (∇µξν +∇νξµ) = ∇µ

(
−∇2 − d+ 1

d (d− 1)
R

)
ξν +∇ν

(
−∇2 − d+ 1

d (d− 1)
R

)
ξµ (A.39)

and equation

−∇2

(
∇µ∇ν − 1

d
gµν∇2

)
σ =

(
∇µ∇ν − 1

d
gµν∇2

)(
−∇2 − 2

d− 1
R

)
σ (A.40)

to relate the spectrum of various operators on vectors and scalars to the spectrum of
−∇2 on tensors. One has to observe that the d(d+1)/2 Killing vectors are eigenvectors of
−∇2− d+1

d(d−1)R on vectors but give a vanishing tensor hµν , so they do not contribute to the
spectrum of−∇2 on tensors. Likewise, a constant scalar and the d+1 scalars proportional
to the Cartesian coordinates of the embedding Rn, which correspond to the two lowest
eigenvalues of−∇2− 2

d−1R, also do not contribute to the spectrum of tensors. So one has
for the heat kernel on tensors

Tr e(−s(−∇2))
∣∣∣
hµν

= Tr e(−s(−∇2))
∣∣∣
hT

µν

+ Tr e
“
−s
“
−∇2− (d+1)R

d(d−1)

””∣∣∣
ξ
+ Tr e(−s(−∇2))

∣∣∣
h

(A.41)
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VT TT

b2
R
2 δd,2

7R
2 δd,2

b4
R2

4 δd,2 + R2

24 δd,4 4R2δd,2 + 2R2

3 δd,4

b6
R3

16 δd,2 + R3

96 δd,4 + R3

450δd,6
5R3

2 δd,2 + R3

6 δd,4 + 29R3

450 δd,6

b8
R4

96 δd,2 + R4

768δd,4 + R4

2700δd,6 + 15R4

175616δd,8
7R4

6 δd,2 + 23R4

864 δd,4 + 8R4

1125δd,6 + 345R4

87808 δd,8

Table A.1.: Excluded modes for the heat kernel coefficients.

Scalar Vector Tensor

b0 1 d 1
2d(d+ 1)

b2
1
6R

d
6R

d(d+1)
12 R

b4
6−7d+5d2

360d(d−1)R
2 −60+6d−7d2+5d3

360d(d−1) R2 −240−114d−d2−2d3+5d4

720d(d−1) R2

Table A.2.: Scalar, vector, and tensor b0, b2, and b4 heat kernel coefficients.

+Tr e(−s(−∇2− 2
d−1

R)) |σ −e(
2

d−1
sR) − (d+ 1) e(

1
d−1

sR) − d (d+ 1)
2

e
“

2
d(d−1)

sR
”
.

The last exponentials can be expanded in Taylor series as
∑∞

m=0 cmR
m and these terms

can be viewed as modifications of the heat kernel coefficients of−∇2 acting on the differ-
entially constrained fields. To see where these modifications enter, recall that the volume
of the sphere is

VdS = (4π)
d
2

(
d (d− 1)

R

) d
2 Γ

(
d
2

)

Γ (d)
(A.42)

so that ∫
ddx

√
g trbn ∝ R

n−d
2 . (A.43)

This means a coefficent cm from the Taylor series will contribute to a heat kernel coeffi-
cient for which 2m = n − d. So there are contributions to bn only if n ≥ d. The contribu-
tions of these excluded modes to the heat kernel coefficients are listed in table (A.1) for
the transverse vector and the transverse traceless tensor, in some specific dimensionality.
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T-Vector TT-Tensor

b0 d− 1 1
2 (d− 2) (d+ 1)

b2
(d+2)(d−3)+6δd,2

6d R
(d+1)(d+2)(d−5+3δd,2)

12(d−1) R

b4
5d4−12d3−47d2−186d+180+360δd,2+720δd,4

360d2(d−1)
R2 (d+1)(1440δd,2+3240δd,4−228−392d−83d2−22d3+5d4)

720d(d−1)2
R2

Table A.3.: b0, b2, and b4 heat kernel coefficients for transverse vector and transverse trace-
less tensor fields.

Spin s Eigenvalue λl(d, s) Multiplicity Dl(d, s)
0 l(l+d−1)

d(d−1) R; l = 0, 1 . . . (2l+d−1)(l+d−2)!
l!(d−1)!

1 l(l+d−1)−1
d(d−1) R; l = 1, 2 . . . l(l+d−1)(2l+d−1)(l+d−3)!

(d−2)!(l+1)!

2 l(l+d−1)−2
d(d−1) R; l = 2, 3 . . . (d+1)(d−2)(l+d)(l−1)(2l+d−1)(l+d−3)!

2(d−1)!(l+1)!

Table A.4.: Eigenvalues and their multiplicities of the Laplacian on the d-sphere.

We have discussed how the negative and zero modes from constrained scalar and vec-
tor fields affect the heat kernel coefficients of the decomposed vector and tensor fields.
These modes have to be excluded also from the traces over the constrained fields; this is
denoted by one or two primes, depending on the number of excluded modes. This can
be done by calculating the trace and subtracting the contributions to the operator trace
from the excluded modes. Thus the trace with m primes is

Tr
′...′ [W (−∇2)

]
= Tr

[
W (−∇2)

]−
m∑

l=1

Dl (d, s)W (λl (d, s)) (A.44)

where λl(d, s) are the eigenvalues, Dl(d, s) their multiplicities, both depending on the
dimension d and on the spin of the field, s. The eigenvalues and multiplicities for the
m-th mode of the Laplacian on the sphere are given in table A.4.
The expressions that we will need are those for the cases where one mode is excluded
from the transverse vector trace (s = 1, m = 1), or one or two modes from the scalar
trace (s = 0, m = 1, 2), each one in two and four dimensions. The results obtained by
calculating the corresponding multiplicity and eigenvalue from table A.4 are given in
table A.5. To see what is the relevant contribution to one of the heat-kernel coefficients,
one can expand the obtained expression in R. For the case s = 0, d = 4, m = 2 one has
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s=1 s=0
m = 1, d = 2 3W

(
R
2

)
W (0)

m = 1, d = 4 10W
(

R
4

)
W (0)

m = 2, d = 2 W (0) + 3W (R)
m = 2, d = 4 W (0) + 5W

(
R
3

)

Table A.5.:
∑m

l=1Dl (d, s)W (λl (d, s)) for s = 0, 1, d = 2, 4, m = 1, 2.

for example

2∑

l=1

Dl (4, 0)W (λl (4, 0)) = W (0) + 5W
(
R

3

)
(A.45)

=
R2

4 (4π)2

∫
dx
√
g

(
W (0) +

5R
18
W ′ (0) +

5
108

R2W ′′ (0) +
5

36 · 27
R3W ′′′ (0) + . . .

)
.

From this one sees that here the b2n receive a correction for n ≥ 2. In two dimensions,
that would be already the case for n ≥ 1. For the case of arbitrary dimension, the heat
kernel coefficients b0, b2, b4 are listed for unconstrained scalar, vector and tensor fields in
table A.2, for transverse vector and transverse traceless tensor fields in table A.3, b6 and
b8 in table A.6. For the four-dimensional case, the full list of heat kernel coefficients of
−∇2 in 4d is given in table A.7.

A.3. Proper time ERGE

Let us start from the ERGE for gravity in the Einstein–Hilbert truncation with a type III
cutoff, written in equation (3.54). Define the functions

Ak(z) =
∂tRk(z)
z +Rk(z)

Bk(z) =
Rk(z)

z + Pk(z)
Ck(z) =

∂zRk(z)
z +Rk(z)

. (A.46)

The term in equation (3.54) containing C is nontrivial. To rewrite it in a manageable form
we take the Laplace transform

Ck (z) =
∫ ∞

0
ds C̃k(s) e−sz . (A.47)

Since the operator ∂t(∆2 − 2Λ) commutes with ∆2 − 2Λ, we can write

Ck (∆2 − 2Λ) ∂t(∆2 − 2Λ) =
∫ ∞

0
ds C̃k(s) ∂t(∆2 − 2Λ) e−s(∆2−2Λ)

= −
∫ ∞

0

ds

s
C̃k(s) ∂te

−s(∆2−2Λ) . (A.48)
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b6S
R3

45360d2(d−1)2

(
96− 110d+ 187d2 − 112d3 + 35d4

)

b6V
R3

45360d2(d−1)2

(−1008 + 852d− 1370d2 + 187d3 − 112d4 + 35d5
)

b6V T
R3

45360(d−1)2d3

(−7560 + 10992d− 676d2 − 3825d3 − 331d4 − 147d5 + 35d6
)

+
(

1
8δd,2 + 1

96δd,4

)
R3

b6T
R3

90720d2(d−1)2

(−4032 + 1104d− 3542d2 − 2443d3 + 75d4 − 77d5 + 35d6
)

b6TT
(d+1)R3

90720d2(d−1)3

(
35d6 − 217d5 − 667d4

−7951d3 − 13564d2 − 10084d− 28032
)

+
(

3
2δd,2 + 5

36δd,4

)
R3

b8S
R4

5443200(d−1)3d3

(
2160− 516d+ 3304d2 − 3111d3 + 2389d4 − 945d5 + 175d6

)

b8V
R4

1360800(−1+d)3d3

(−13500 + 13884d− 5426d2 + 1929d3 − 761d4 − 945d5 + 175d6
)

b8V T
R4

75600(d−1)3d4

(
75600− 206400d+ 133924d2 + 16144d3 − 15911d4

−8531d5 − 2345d6 + 175d7
)

+
(

1
96δd,2 + 1

768δd,4 + 1
2700δd,6 + 15

175616δd,8

)
R4

b8T
R4

453600(d−1)3d3

(
172800 + 1387440d− 375636d2 − 530732d3

+554593d4 − 126722d5 + 1444d6 − 770d7 + 175d8
)

b8TT
R4

453600(d−1)4d4

(−1814400− 7018560d− 10359960d2 − 5191124d3 − 2945774d4

−2028005d5 + 478295d6 − 150566d7 + 464d8 − 945d9 + 175d10
)

+
(

1
2δd,2 + 5

288δd,4 + 7
1225δd,6 + 675

175616δd,8

)
R4

Table A.6.: b6 and b8 heat kernel coefficients for scalar, vector, transverse vector, tensor,
and transverse traceless tensor fields.
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S V VT T TT TTT

trb0
1 4 3 10 9 5

trb2
R
6

2R
3

R
4

5R
3

3R
2 −5R

6

trb4
29R2

2160
43R2

1080 − 7R2

1440
11R2

216
81R2

2160 − R2

432

trb6
37R3

54432 − R3

17010 − 541R3

362880 −1343R3

136080
−319R3

30240
311R3

54432

trb8
149R4

6531840 − 2039R4

13063680 − 157R4

2488320 − 2999R4

3265920
683R4

725760
109R4

1306368

Table A.7.: Heat kernel coefficients for S4. The columns for the transverse vector (VT)
and transverse traceless tensor (TTT) are obtained from equations (A.38) and
(A.41) in d = 4. Note that the excluded modes contribute to trbn only for
n ≥ 4.

Laplace transforming also Ak and Bk, the first term in equation (3.54) becomes

1
2

∫ ∞

0
ds

[
Ãk(s) + B̃k(s) η − 1

s
C̃k(s) ∂t

]
Tr e−s(∆2−2Λ) . (A.49)

This is the functional RG equation in “proper time” form [82, 83, 84]. Note that the first
term corresponds precisely to the one loop approximation. The trace of the heat kernel
can be expanded

Tr e−s(∆2−2Λ) = e−s(−2Λ) 1
(4π)d/2

∫
dx
√
g tr

[
1s−

d
2 +

(
1
R

6
−W

)
s−

d
2
+1 +O(R2)

]

= e−s(−2Λ) 1
(4π)d/2

∫
dx
√
g

[
d(d+ 1)

2
s−

d
2 +

d(7− 5d)
12

Rs−
d
2
+1 +O(R2)

]
(A.50)

whereas for the ghosts

Tr e−s(δµ
ν ∆−Rµ

ν ) =
1

(4π)d/2

∫
dx
√
g tr

[
δµ
ν s
− d

2 +
(
δµ
ν

R

6
+Rµ

ν

)
s−

d
2
+1 +O(R2)

]

=
1

(4π)d/2

∫
dx
√
g

[
ds−

d
2 +

d+ 6
6

Rs−
d
2
+1 +O(R2)

]
. (A.51)
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The ERGE then takes the form

∂tΓk =
1

(4π)d/2

∫
dx
√
g
{d(d+ 1)

4
Q d

2

(
Āk + ηB̄k − 2∂tΛ C̄k

)− dQ d
2
(Ak) (A.52)

+
[
d(7− 5d)

12
Q d

2
−1

(
Āk + ηB̄k − 2∂tΛ C̄k

)− d+ 6
d

Q d
2
−1 (Ak)

]
R+O(R2)

}

where W̄ (z) = W (z − 2Λ). Using an optimized cutoff one can now reproduce equations
(3.58) and (3.59). However, in this way the sums in equation (3.57) can be resumed for
any type of cutoff shape.

A.4. Cutoff of type Ib without field redefinitions

We collect here the formulae for the beta functions of Λ and G in the Einstein–Hilbert
truncation, using a cutoff of type Ib and without redefining the fields ξµ and σ. The
ERGE, including the contributions of the Jacobians, is

dΓk

dt
=

1
2

Tr(2)
∂tRk + ηRk

Pk − 2Λ + d2−3d+4
d(d−1) R

+
1
2

Tr′(1)

∂tRk

(
2Pk + d−4

d R− 2Λ
)

+ ηRk

(
Pk + z + d−4

d R− 2Λ
)− 2∂tΛRk(

Pk − R
d

) (
Pk + d−3

d R− 2Λ
)

+
1
2

Tr(0)
∂tRk + ηRk

Pk − 2Λ + d−4
d R

+
1
2

Tr′′(0)

1
(
Pk + d−4

d R− 2Λ
)
Pk

(
Pk − R

d−1

) ×
{
∂tRk

[
3P 2

k + 2Pk

(
d2 − 6d+ 4
d(d− 1)

R− 2Λ
)
− R

d− 1

(
d− 4
d

R− 2Λ
)]

+η
[
(P 3

k − z3) +
(
d2 − 6d+ 4
d(d− 1)

R− 2Λ
)

(P 2
k − z2)− R

d− 1

(
d− 4
d

R− 2Λ
)
Rk

]

−2∂tΛ
[
(P 2

k − z2)− R

d− 1
Rk

]}
−Tr(1)

∂tRk

Pk − R
d

− Tr′(0)

2
(
Pk − R

d

)
∂tRk(

Pk − 2R
d

)
Pk

−1
2

Tr′(1)

∂tRk

Pk − R
d

− 1
2

Tr′′(0).
2

(
Pk − R

2(d−1)

)
∂tRk

Pk(Pk − R
d−1)

+ Tr′(0)

∂tRk

Pk
(A.53)

which gives

dΓk

dt
=

∫
dx
√
g

{
Q d

2

(
(d+ 1) ((d+ 2) Pk − 4Λ+) ∂tRk

4Pk (Pk − 2Λ)

)

+ηQ d
2

((
+d (d+ 1)P 2

k + 2d (z − 2Λ)Pk + 2z (z − 2Λ)
)
Rk

4Pk
2 (Pk − 2Λ)

)
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−∂tΛQ d
2

(
(dPk + z)Rk

Pk
2 (Pk − 2Λ)

)

+R

[
−Q d

2

([
(d4 − 2d3 − 7d2 + 18d− 16)P 2

k + 8(d2 − d+ 1)Λ(Pk − Λ)
]
∂tRk

4d(d− 1)P 2
k (Pk − 2Λ)2

)

+ η Q d
2

([
(d4 − 4d3 + 3d2 + 12d− 16)P 3

k + 2(d− 1)2(2Λ + (d− 4)z)P 2
k

+
(
2(d2 − 6d+ 4)z2 + 4(d2 − d+ 1)zΛ + 8(d− 1)2Λ2

)
Pk

+4dz(z − 2Λ)Λ
]
Rk

/
4d(d− 1)P 3

k (Pk − 2Λ)2
)

+∂tΛQd
2


Rk

(
d

(
d2 − 5d+ 4

)
Pk

2 +
((
d2 − 6d+ 4

)
z + 2(d− 1)2Λ

)
Pk + 2dzΛ

)

d(d− 1)P 3
k (Pk − 2Λ)2




+Q d
2
−1

(((
d4 + 2 d3 − 13 d2 − 38 d+ 24

)
Pk − 4

(
d3 − 7d+ 6

)
Λ

)
∂tRk

24d (d− 1)Pk (Pk − 2 Λ)

)

+η Q d
2
−1

([
Rk

(
(d4 − 13d2 − 24d+ 12)P 2

k + 2(d3 − d2 − 6d+ 6)(z − 2Λ)Pk

+ 2d(d− 1)z(z − 2Λ))] /24d(d− 1)P 2
k (Pk − 2Λ)

)

−∂tΛ Q d
2
−1

(((
d2 − 6

)
Pk + dz

)
Rk

6 dPk
2 (Pk − 2Λ)

)]}
(A.54)

With the optimized cutoff one obtains the coefficients

A1 = −2π
d4 + 5d3 + 4d2 + 4d+ 16 + (4d3 + 12d2 − 32d− 32)Λ̃

(4π)
d
2 Γ(d

2 + 3)(2Λ̃− 1)

A2 = 16π
d3 + 13d2 + 48d+ 28− (4d2 + 44d+ 120)Λ̃

(4π)
d
2 (d+ 2)(d+ 4)(d+ 6)Γ(d

2)(1− 2Λ̃)

A3 = − 64π(d+ 5)

(4π)
d
2 (d2 + 6d+ 8)Γ(d

2)(1− 2Λ̃)

B1 = −π
(
−d7 + 8d6 + 61d5 + 48d4 + 12d3 + 16d2 − 480d− 384 + (2d7 + 4d6

−34d5 − 276d4 − 848d3 + 464d2 − 1184d+ 2688)Λ̃ + (8d6 + 16d5 − 72d4

+208d3 + 1216d2 + 832d− 3840)Λ̃2
)/

6(4π)
d
2 d(d− 1)Γ(

d

2
+ 3)(1− 2Λ̃)2

B2 = π
(
d7 + 2d6 − 49d5 − 62d4 + 84d3 − 3432d2 + 2688d+ (−2d7 − 32d6 − 142d5

+64d4 + 1728d3 + 3808d2 + 1440d− 2304)Λ̃ + (8d6 + 96d5 + 360d4

+336d3 − 1280d2 − 3456d+ 4608)Λ̃2
)/

12(4π)
d
2 d(d− 1)Γ(

d

2
+ 4)(1− 2Λ̃)2
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B3 = 2π
(
−d5 + 6d4 + 3d3 − 216d2 + 244d− 48 + (2d5 + 12d4 + 18d3 − 24d2

−176d+ 192)Λ̃
)/

3(4π)
d
2 d(d− 1)Γ(

d

2
+ 3)(1− 2Λ̃)2

and the beta functions in four dimensions

βΛ̃ = −2Λ̃ +
1

12π
(21− 105Λ̃ + 142Λ̃2 − 78Λ̃3 + 92Λ̃4)G̃+ 3334−13309Λ̃+12416Λ̃2−780Λ̃3

240π2 G̃2

(1− 2Λ̃)3 + 61−779Λ̃+1314Λ̃2

720π G̃+ −1406+1945Λ̃
5760π2 G̃2

βG̃ = 2G̃− 1
12π

(39− 130Λ̃ + 150Λ̃2 − 92Λ̃3)G̃2 + 242−373Λ̃+39Λ̃2

12π G̃3

(1− 2Λ̃)3 + 61−779Λ̃+1314Λ̃2

720π G̃+ −1406+1945Λ̃
5760π2 G̃2

. (A.55)

A.5. Diagonalization of several operators

Here we list the decompositions of the operators necessary when decomposing the sec-
ond variation of the gravitational action and its ghost part into their corresponding ten-
sor, vector, and scalar parts.

hµνh
µν = hT

µνh
T µν

+ ξµ

[
−2¤− 2R

d

]
ξµ

+σ
[
R

d
¤ +

(
1− 1

d

)
¤2

]
σ +

1
d
h2 (A.56)

hµν¤hµν = hT
µν¤hT µν

+ ξµ

[
−2¤2 − 4R

d

(
1 +

1
d− 1

)
¤− 2R2

d2

(
1 +

2
d− 1

)]
ξµ

+σ
[(

1− 1
d

)
¤3 +

3R
d

¤2 +
2R2

d2

(
1 +

1
d− 1

)
¤

]
σ +

1
d
h¤h (A.57)

h∇µ∇νh
µν =

1
d
h¤h+ h

[(
1− 1

d

)
¤2 +

R

d
¤

]
σ (A.58)

h¤∇µ∇νh
µν =

1
d
h¤2h+ h

[(
1− 1

d

)
¤3 +

R

d
¤2

]
σ (A.59)

hµν∇µ∇ρhν
ρ = ξµ

[
−¤2 − 2R

d
¤− R2

d2

]
ξµ

+σ
[(

1 +
1
d2
− 2

d

)
¤3 +

2R
d

(
1− 1

d

)
¤2 +

R2

d2
¤

]
σ
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+
1
d2
h¤h+ h

[
2
d

(
1− 1

d

)
¤2 +

2R
d2

¤
]
σ (A.60)

hµν∇µ∇ν∇α∇βhαβ = σ

[(
1 +

1
d2
− 2

d

)
¤4 +

2R
d

(
1− 1

d

)
¤3 +

R2

d2
¤2

]
σ

+
1
d2
h¤2h+ h

[
2
d

(
1− 1

d

)
¤3 +

2R
d2

¤2

]
σ (A.61)

hµν¤∇µ∇βhν
β =

1
(−1 + d) d3

ξµ
[(
d3 − d4

)
¤3 +

(
d2 − 3d3

)
R¤2 − 3d2R2¤− (1 + d)R3

]
ξµ

+
1

(−1 + d) d3
σ

[(−d+ 3d2 + 3d3 + d4
)
¤4

+
(
4d+ 8d2 + 4d3

)
R¤3 +

(
2− 10d+ 8d2

)
R2¤2 + (−2 + 5d)R3¤

]
σ

+
1
d2
h¤2h+

1
(−1 + d) d2

h
[(

2− 2d+ d2
)
¤3 + 2 (−2 + 2d)R¤2 + 2R2¤

]
σ(A.62)

bµ¤bµ = bT
µ¤bT µ − θ¤2θ − R

d
θ¤θ (A.63)

bµbµ = bT
µ
bT µ − θ¤θ (A.64)

bµ∇µ∇νbν = −θ¤2θ (A.65)

bµ¤∇µ∇νbν = −θ¤3θ − R

d
θ¤2θ (A.66)

bµ¤2bµ = bT
µ¤2bT µ − θ¤3θ − 2R

d
θ¤2θ − R2

d2
θ¤θ (A.67)

A.6. Variations

In section 3 and 4.2 we needed the second variation of the truncation ansatz after having
split the metric according to the background gauge technique into

gµν = ḡµν + hµν (A.68)
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Then the action can be expanded around the background field (without requiring that
the fluctuations around the background are small)

Γk [gµν ] = Γk [ḡµν ] +
δΓk [gµν ]

δg
‖ḡh+

1
2
δ2Γk [gµν ]
δgδg

‖ḡhh+ . . . (A.69)

To facilitate the derivation of the second variation we find it useful to give the second
variations of several tensors occurring in the calculation for reference. At least each of
the single expressions can be calculated in a few steps.
For the metric one has

δgµν = hµν (A.70)
δgµν = −gµαgνβδgαβ (A.71)
δδgµν = δgµαδg

α
ν (A.72)

δ
√
g =

√
ḡ
1
2
h (A.73)

δδ
√
g =

√
ḡ(

1
2
hµνhµν − 1

4
hh) (A.74)

For the Christoffel symbols one has

Γ λ
µ ν =

1
2
gλρ(∂µgρν + ∂νgρµ − ∂ρgµν) (A.75)

δΓ λ
µ ν =

1
2
gλρ(∂µδgρν + ∂νδgρµ − ∂ρδgµν) (A.76)

−1
2
gλρgαβδgαβ(∂µgρν + ∂νgρµ − ∂ρgµν) (A.77)

δδΓ λ
µ ν = −δgλρ(∇µδgρν +∇νδgρµ −∇ρδgµν) (A.78)

Γ µ
µ ν = −δgµρ∇νgµρ (A.79)

Γν µ
µ = −2δgνρ∇λδg

λ
ρ +∇ρδg

µ
µδg

νρ (A.80)

We use the Riemann tensor in the form

R α
µν β = ∂µΓ α

ν β − ∂νΓ α
µ β + Γ α

µ γΓ γ
ν β − Γ α

ν γΓ γ
µ β (A.81)

and the Ricci tensor is Rνβ = R µ
µν β and the Ricci scalar R = gµνRµν . Then the variations

are

δR α
µν β = ∇µδΓ α

ν β −∇νδΓ α
µ β (A.82)

δRνβ = ∇µδΓ
µ

ν β −∇νδΓ
µ

µ β (A.83)

gνβδRνβ = ∇µδΓµν
ν −∇νδΓµν

µ (A.84)

δR = δ(gµν)Rµν + gµνδRµν = −Rµνδgµν +∇µ∇νδgµν − gµν∇2δgµν (A.85)
δδRνβ = ∇µδδΓ

µ
ν β −∇νδδΓ

µ
µ β + 2δΓ µ

µ γδΓ
γ

ν β − 2δΓ γ
µ βδΓ

γ
ν β (A.86)
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A.7. Euler-Maclaurin formula for trace evaluation

From equation A.6, the heat kernel coefficients for a scalar field on the sphere can be used
to evaluate the trace using the optimized cutoff Rk = (k2 −∇2)θ(k2 −∇2) as

Tr
∂tRk

Pk
= Tr2θ(k2 −∇2) = 2V ol (1 +

1
6
R+

29
2160

R2) (A.87)

where the volume of the d-sphere is given by

V ol = 2d π
d
2

(
d(d− 1)

R

) d
2 Γ(d

2)
Γ(d)

(A.88)

and the radius r of the sphere is given by

r =

√
d(d− 1)

R
. (A.89)

On the sphere, the spectrum of the Laplacian is known completely, so the trace evalua-
tion can also be performed directly by summing over the eigenvalues weighted with the
respective multiplicities. To do so, the Euler-Maclaurin formula is used.
The eigenvalues are given by

λ(i) =
i (d+ i− 1)R
d(d− 1)

(A.90)

and the multiplicities are

m(i) =
(d+ 2 i− 1) (d+ i− 2)!

(d− 1)! i!
. (A.91)

Then the trace is evaluated as

Tr
∂tRk(−∇2)
Pk(−∇2)

=
∞∑

i=0

∂tRk(λ(i))
Pk(λ(i))

. (A.92)

For the optimized cutoff the sum goes over 2θ(λ(i)−∇2). Due to the theta-function, one
has to sum only until the n-th eigenvalue which is the last one to be smaller than k2.
Bringing the scalar curvature to the other side, one obtains k2/R = R̃ as the limit which
we fix at R̃ = 1.
The sum over the first n eigenvalues gives

d ((d+ 1) Γ(n) + 2Γ(n+ 1)) Γ(d+ n)− 2 Γ(n) Γ(d+ n+ 1)
(d− 1) Γ(d+ 1) Γ(n) Γ(n+ 1)

. (A.93)
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Here we will now restrict to d = 4. Then this sum becomes

1
12

(n+ 1)(n+ 2)2(n+ 3) . (A.94)

The leading power goes just as
n4

12
(A.95)

which on the 4-sphere scales as 12/R̃2. Obviously the end of the sum has to be adjusted
because the number of the highest eigenvalue is not an integer. For that reason we intro-
duce parameters a and b and set

n =
3

(√
a+ 16

3 r − b
)

2
(A.96)

so that the summation up to that n gives

(
2− 3 b+

√
9 a+ 48

R̃

) (
4− 3 b+

√
9 a+ 48

R̃

)2 (
6− 3 b+

√
9 a+ 48

R̃

)
R̃2

2304
. (A.97)

Series expansion to second order gives

1 +

(
4
√

3 (48 (2− 3 b) + 96 (4− 3 b)) + 192
√

3 (6− 3 b)
) √

R̃

2304

+
1

2304

(
216 a+ 4

√
3

(
18
√

3 a+ 4
√

3
(
9 a+ (4− 3 b)2

)
+ 8

√
3 (2− 3 b) (4− 3 b)

)

+ (48 (2− 3 b) + 96 (4− 3 b)) (6− 3 b)) R̃

+
1

2304

(
3
√

3 a (48 (2− 3 b) + 96 (4− 3 b))
8

+ 4
√

3
((

9 a+ (4− 3 b)2
)

(2− 3 b) + 18 a (4− 3 b)
)

+
(
18
√

3 a+ 4
√

3
(
9 a+ (4− 3 b)2

)

+8
√

3 (2− 3 b) (4− 3 b)
)

(6− 3 b)
)
R̃

3
2

+
1

2304


−81 a2

8
+

3
√

3 a
(
18
√

3 a+ 4
√

3
(
9 a+ (4− 3 b)2

)
+ 8

√
3 (2− 3 b) (4− 3 b)

)

8

+ 4
√

3


−27

√
3 a2

32
+

3
√

3 a
(
9 a+ (4− 3 b)2

)

8
+

3
√

3 a (2− 3 b) (4− 3 b)
4




+
((

9 a+ (4− 3 b)2
)

(2− 3 b) + 18 a (4− 3 b)
)

(6− 3 b)
)
R̃2 +O(R̃)

5
2 . (A.98)
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This expansion includes terms proportional to proportional to R̃1/2 and R̃3/2 which are
absent in the heat kernel expansion. They can be eliminated by choosing b = 4/3. Then
the series simplifies to

1 +
(9 a− 2) R̃

24
+
a (9 a− 4) R̃2

256
. (A.99)

This will give the right first order heat kernel coefficient when choosing a = 10/9 but the
second order one, 0.0260417, is a little bit different from the value 29/1080 ≈ 0.0268519,

1 +
R̃

3
+

5 R̃2

192
. (A.100)

So this approach is too naive and one has to think about a more accurate method to
calculate the correction terms. This is given by the Euler-Maclaurin formula.

n∑

i=0

F (i) =
∫ n

0
dxF (x) +

F (0) + F (n)
2

+
k∑

j=1

B̃2j

(2j)!
F 2j−1(n)‖n

0 + rest (A.101)

where B̃n are the Bernoulli numbers, B̃n(x) the Bernoulli polynomials, [x] is the Gauß
bracket (the next lower integer), and the rest term is given by

rest =
1

(2k + 1)!

∫ n

0
dx B̃2k+1(x− [x])F (2k+1)(x) . (A.102)

This works however only for continuous functions, so we have to approximate the step
function of the optimized cutoff in the sum over all eigenvalues by the continuous form

(x+ 1) (x+ 2) (2x+ 3)

6
(
1 + e2a( 1

12
R̃x(x+3)−1)

) (A.103)

and take the limit a → ∞ afterwards. This function has to be summed from zero to
infinity in the formula. The integration can be performed replacing x(x+ 3) = y or

x =
√

4 y + 9− 3
2

. (A.104)

This gives a Jacobian 1√
4 y+9

and the integrand simplifies to y+2
6 . Integration from 0 to

12/R̃ gives
1
6

(
72
R̃2

+
24
R̃

)
(A.105)
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reproducing the first two coefficients in the sum correctly. Now we have to calculate the
correction terms for the higher order terms. Therefore one needs

F [0] =
1

1 + e−2a
(A.106)

which in the limit a→∞ goes to 1. The correction from the first derivative term is

F ′ [0] =
13

6 (1 + e−2a)
− ae−2ar

2 (1 + e−2a)2
(A.107)

which in the limit a→∞ goes to 13/6. The correction from the third derivative term is

F ′′′ [0] = − a3e−2ar3

8 (1 + e−2a)2
+

3a3e−4ar3

4 (1 + e−2a)3
− 3a3e−6ar3

4 (1 + e−2a)4
− 17a2e−2ar2

8 (1 + e−2a)2

+
17a2e−4ar2

4 (1 + e−2a)3
− 20ae−2ar

3 (1 + e−2a)2
+

2
1 + e−2a

(A.108)

which in the limit a → ∞ goes to 2. The higher derivative terms vanish in the limit
a → ∞ as it should be for the optimized cutoff. For these, each term contains a factor
e−2a driving the expression to zero in the limit. The sum over the correction terms gives

1
2
− 13 B̃2

12
− B̃4

12
=

29
90

(A.109)

agreeing with the second order heat kernel term.
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