Scuola Internazionale Superiore di Studi Avanzati - Trieste

Survey Propagation

Thesis submitted for the degree of
Doctor Philosophiz

Candidate | Supervisor
Alfredo Braunstein Prof. Riccardo Zecchina

SISSA - Via Beirut 2-4 - 34014 TRIESTE - ITALY




R

A



Survey Propagation

Thesis submitted for the degree of
Doctor Philosophia

Candidate Supervisor
Alfredo Braunstein Prof. Riccardo Zecchina






Contents

Acknowledgements 3
Chapter 1. Introduction 4
Chapter 2. Random combinatorial problems 7
2.1. Three important combinatorial problems 7
2.2. Computational complexity 9
2.3.  An unifying formalism: factor graphs. 11
2.4. Gibbs measure and Free Energy 13
2.5. Entropy 14
2.6. Tree factor graphs 14
2.7.  Random combinatorial ensemble and typical properties 17
2.8.  Why random problems 21
Chapter 3. The statistical mechanics view: the cavity method 24
3.1.  The energy-shift algorithm 24
3.2.  The cavity method: RS solution 26
3.3. 1-step RSB solution 32
3.4. Solution of £-XORSAT by the cavity method 56
3.5. Alternative solution for k-XORSAT 58

Chapter 4. Propagation algorithms for random sparse problems 65

4.1. Warning propagation 65
4.2. Belief propagation 66
4.3. Survey propagation 7
Chapter 5. Microscopic interpretation of the SP equations 93
5.1. Local equilibrium equations 96
5.2. Entropy and complexity 98

5.3. Proof of equivalence 104



CONTENTS

5.4. Clustering and whitening
5.5. Clustering in tree factor graphs

Chapter 6. Discussion
Bibliography

Appendix A. SP with external fields and compression
A.1. SP with external fields
A.2. Conclusion

106
111

115
119

124
124
131



Acknowledgements

I thank specially Riccardo. Besides being an extraordinarily gener-
ous person, he owns one of the most creative minds I've got to know.
Working with him was simultaneously challenging and pleasant.

I'm indebted with all kind souls who patiently explained to me
what I know about the fascinating world of statistical physics. If I
know little, I blame no one but myself (and I certainly do!): Riccardo
Zecchina, Marc Mézard, Federico Ricci-Tersenghi, Michele Leone.

I also thank Vincenzo Napolano, Matteo Marsili, Silvio Franz, Brian
Hayes, Giorgio Parisi, Andrea Montanari, Roberto Mulet, Martin Weigt,
Yannet Interian, Marco Pretti, Demian Battaglia, Joel Chavas, Andrei
Agrachev, Dimitris Achlioptas for most useful discussions.

I thank Coni (of course).

I would like to thank all these fantastic persons that became dear
friends while studying here in Italy: Die & Ire, Michele, Federico, An-
drea, Martin, Vincenzo, Roberto, Demian, Joel, Yannet, Massimo, Eva.

I thank all friends who shared with me the discovery of mathematics
back then: Gabi, Emi, Mara, Mari, Sam & Gabi, José.

This thesis was written using exclusively open-source software (gcc,
ETEX, LyX, gnuplot among others). Thanks to the many people that
generously contributed to it.

And finally, I thank Fra. Without her, nothing of this would be
possible. I couldn’t even breathe (and it is hard to write a thesis
without breathing).



CHAPTER 1

Introduction

The k-SAT problems is historically a fundamental one in computer
science, as it was among the firsts to be proved to be NP-complete (for
k > 3). It can be easily stated:

DEFINITION 1.0.1. Given k,n € N, A k-SAT formula is a boolean
map F : {T,F}" — {T,F} defined by

F(xy,. . Tn) = /\Ca

acA
where Co = V/,_;_;Yar (Co is called a clause) and y,, (called a
literal) is either x;,  or —z;, for some iq, € {1,...,n}. A is some finile

index set.

Given such an F, the k—SAT problem consists in finding x €
{T,F}" such that F (x) = T.

DEFINITION 1.0.2. Given n,m € N, the random k—SAT problem
R (k,n,m) is the uniform probability space of all k-SAT formulas with
m clauses over a fixed set of variables z1, ..., z,.

The subject of random combinatorial problems and in particular
random k-SAT had a fascinating development in the last decade. Used
as quick benchmarks against solving algorithms, a preliminar classifi-
cation shows that random formulas with few clauses are easy to solve,
whereas clauses with too many are easy to prove to be unsatisfiable.
It has then been proved that in fact random k—SAT suffers a “phase
transition” when the ratio @« = m/n of clauses to variables crosses a
critical value a. below which almost all formulas are satisfiable, and
above which almost all are unsatisfiable. The precise location of a, is
still uncertain (as its independence from n), but several rigorous bounds
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1. INTRODUCTION 5

have been found [2]|. Despite all advances in the area, solving typical
realizations of random formulas close to a, has shown to be remarkably
elusive over a decade; and the possibility that random k-SAT near «,
was a concrete case of equivalence between worst-case computational
complexity hardness and average-case hardness was present (and pos-
sibly hoped, with views in applications to cryptography). In any case,
the £—SAT problem has been certainly used as test-bed for solving
algorithms.

It was in this context that the Survey Propagation (SP) algorithm
for k-SAT has been proposed in [55, 56| and has successively been
generalized to other constrain satisfaction problems [18] and shown to
achieve amazing performances in solving the random k-SAT problem
[17] and random g—coloring problem [16] (basically solving problems
several orders of magnitude bigger than was possible with known al-
gorithms in the “hardest” region of the parameters). For a kind, non-
technical introduction to SP for g-coloring, see [36].

Unfortunately, the fundaments behind the SP equations (the cav-
ity method of statistical physics) are hidden under a number of com-
plex unproven statements about the infinite-size limit (called the ther-
modynamic limit) of the underlying random combinatorial problem.
Although most results are already well understood in the statistical
physics community, most of the base propositions remain to be proved
and much worse, some important mathematical definitions remain to
be posed! Generally, much of the underlying technique (prominently
Parisi’s “replica symmetry-breaking” method) is still in an early formal-
ization stage. Remarkably, the method has shown to give predictions
in extraordinary agreement with numerical simulations, and the per-
formance of the SP algorithm itself can be seen as a strong (although
partial) numerical evidence of its accuracy. We should mention more-
over some recent rigorous proofs of the fact some of the quantities
computed in the solution of the cavity method provide a bound to the
correct equivalent quantities in some particular cases (See [31, 35, 82]).
Unfortunately, these proofs seem to be not constructive enough to allow
an useful mathematical interpretation of the SP algorithm.
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The cavity method is shown in Chapter 3 for the analysis of the
g-coloring problem (a similar derivation for the k-SAT problem was
given in [55]). In Section 3.3 the derivation of the SP equations in
their original formulation in the frame of this theory are presented (in
a statistical physics language). A mathematical-oriented reader may
look at Chapter 3 and Section 3.3 in particular as an inspiring heuris-
tic explanation. The SP algorithm and equations are defined again in
Chapter 4 under a slightly different view (independent from the origi-
nal cavity method), but with less rich interpretation. Along with SP,
Chapter 4 presents a well-known algorithm called Belief Propagation
(BP), originally introduced in the context of statistical inference and
used throughly nowadays in error-correcting codes and compression in
the context of mathematical information theory. We will later need
this definition in the following chapter.

Although the fundaments of the cavity equations in the RSB scheme
are not very well understood in mathematical terms, the SP algorithms
for k—SAT and g-coloring are however very concrete mathematical ob-
jects, and the purpose of this work was to analyze them in mathematical
terms (in the hopes of getting also some new insight about the cavity
equations). In Chapter 5 we present a result that connects SP with BP,
showing precisely that the SP equations are BP equations for an associ-
ated combinatorial problem. This result is twofold: on one hand allows
us to automatically inherit known properties of BP (prominently, this
gives an alternative algorithm based on a variational method to com-
pute the SP fixed points) and on the other hand, it gives a well-defined
mathematical interpretation of the quantities computed by SP (Sec-
tion 5.1), by means of analyzing the associated combinatorial problem.
This allows a further, in our opinion stimulating, interpretation of the
solutions of the latter in terms of “clusters”, or groups of solutions of
the original problem in Section 5.4.



CHAPTER 2

Random combinatorial problems

2.1. Three important combinatorial problems

2.1.1. k-SAT. In a notation that is more amenable to algebraic
manipulations,

(2.1.1) F:{-1,1}"— {0,1}

with F (o) def [I,c4 Co where C, defy _ H, for the local energy term
defined as

(2.1.2) HE 1 6(~Jur0i,)

r=1,...,k
and Jy» € {—1,1}. The problem thus consists in finding o € {-1,1}"
such that F (0) = 1. A generalization of this problem is called max-
SAT, and is defined as finding the minimum of H % Y uca Ha- The
SAT problem described above corresponds to finding a zero of H.

2.1.2. ¢-Coloring and restricted ¢g-Coloring. The g-coloring
problem is a generalization of a very old problem in cartography : the
one of coloring countries in a map with a predefined palette of ¢ colors
in a way such that no adjacent countries share the same color. Given
a geographic map, we can build the graph of adjacency for countries
G = (V, E) where the set of vertices V label countries and there is an
edge (v, w) whenever two countries have a common border.

The problem can be easily posed in mathematical terms in gen-
erality: given finite undirected graph G = (V,;E CV x V), find a
vector f € {1,...q}" such that f, # f, if (v,w) € E. In other
therms, the problem consists in finding f € {1,...,¢}" such that
F¥ [wes (1= Huww) = 1 for Hywy = 65,7, or equivalently that

Z(v,w)EE H(”:'w) = 0.
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The original “cartography” problem above simply corresponds to
planar graphs G.

The associated minimization problem is to find £ € {1,...,q}"
which minimizes H =) 5 He.

Given a graph G and a set of “palettes” {X,}, ¢, with

X, c{L,...,q},

the restricted g-Coloring problem is to find an f like in the plain coloring
problem but with the additional restriction that f, € X,. That is, we
are allowed to further restrict the colors in every node to belong to
some subset of {1,...,¢}. The importance of this generalization is
that the problem of coloring already partially colored graphs belong to
restricted ¢g-Coloring.

Note that for map coloring (i.e. g coloring of planar graphs), it has
been shown that every map can be colored with 4 colors (and there is
an algorithm that finds such a coloring in polynomial time) while there
is no such equivalent for generic graphs.

Graph coloring has been proved to be NP-complete, which is the
standard measure of worst-case computational “hardness”. The follow-

ing is a simple fact:

LEMMA 2.1.1. Restricted q-Coloring can be easily (polynomially)

reduced to normal g-Coloring

PrOOF. Take a graph G = (V, E) and a palette {X,} for the re-
stricted g-Coloring problem. Build the graph G = (V, E) as follows:
V =Vw{vy,...,v,} where the newly introduced vertices vy, ..., v, are

labeled by the colors {1,...,q}. Take E = EwW {(v,v,) :7 ¢ X,}. O

2.1.3. Linear systems over finite fields. Given a finite field
F =GF (p’“), a matrix B € F™ ™ and a vector ¢ € F'™, the problem
of finding a solution of the equation

(2.1.3) Bz =c

can be solved in polynomial time by standard methods, like Gauss-
ian elimination in time O (n.m?). Of particular interest is the case
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of F' = GF (2) = Z, the field of two elements 0,1. In this case, the
problem will be called XOR-SAT. The sum operation on F' (XOR of
boolean variables) will be denoted by @. Similarly to subsection 2.1.1,
it can be posed also multiplicatively as: find x € {—1,1}’ satisfying
F¥ [Tecs s (1 — H,) =1 where H, L, H?‘;l T;,,; and J, € {-1,1}
codes for the ¢ vector in th e RHS of Eq. (2.1.3). When k, = k is a
constant, the problem is called k—XOR-SAT. As usual, the associated
minimization problem is to find the minimum of )" H, and is called
min-XOR-SAT. The min-XOR-SAT problem has been proved to be
NP-hard.

If the matrix A is sparse (bounded number of non-zeros per row)
like in the case of constant or bounded k, above, there are methods
guaranteed to find a solution in time O (n?) like the Lanczos algorithm
and variants.

2.2. Computational complexity

Although not directly related to the present work, we cannot avoid
making a quick note about computational complexity. Given a com-
binatorial (or algorithmic) problem (like graph coloring) and a specific
algorithm to solve it, in many cases it is possible to compute the time
the algorithm requires at worst to solve an instance of the problem, and
thus giving an upper-bound to the “difficulty” of the problem. If the
problem can be seen as a sequence of increasing size (as for instance
finding a 4-coloring for a planar graph of size n), this can give a bound
for the asymptotic behaviour: one can say that that particular prob-
lem sequence is “easier than” O (n?) for instance, meaning that there is
an algorithm that will take at most time O (n?) to solve it. One typi-
cal such assertion is that a given problem is time-polynomial, meaning
that there is a fixed polynomial p (n) and an algorithm such that the
problem will be solved by the problem in a time bounded by p (n). The
class of all time-polynomial algorithms is called P.

Proving lower bounds to the time any algorithm would need to solve
a problem in the other hand (i.e. “harder than” bounds) has proved
to be surprisingly difficult in general. Given two problems A and B,
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such that every instance of A can be reduced (sufficiently easily) to
an instance of B, one can say that B is harder than A, as the ability
to solve every instance of B implies ability to solve every instance of
A. If the reduction considered is polynomial in time, and B is time-
polynomial, automatically so is A. So this is a lower bound to the
complexity of B, but it is not very satisfactory as it is relative to the
complexity of another problem A.

A lot of the most interesting computational problems fall in the
NP class category. The NP class is, shortly, the class of problems such
that there is a time-polynomial algorithm that, given an instance of the
problem (e.g. a given graph) and a proposed solution (i.e. a proposed
assignment of colors), can check that the proposed solution is indeed a
correct solution (i.e. a good coloring). This can be viewed again as an
upper bound to the hardness.

Complexity classes have been introduced in part to overcome the
short supply of lower bounds. In 1971 S. Cook proved that the boolean
satisfiability problem (SAT) is complete for the NP class. This means
that every problem in the NP class can be (polynomially) reduced to
SAT, or in other terms, that SAT is “harder or equal than” all other
problems in NP. This can be indeed viewed as a lower complexity
bound for the SAT problem, and in fact this is the most used strategy
to declare a problem hard: to prove that it is complete for NP. The
class of all problems complete for NP is called NPC. To prove that
some problem is NP-Complete is normally not very difficult: it suffices
1) to prove that it is in NP and 2) reduce some known problem in NPC
to it. Currently there is no proof at all that NPC problems are not
polynomial (this is the celebrated P # NP conjecture) but there is
the strong belief that this is so. Both k-SAT and g-coloring have been
proved to be NPC.

This notion of complexity hardness is clearly related to worst case:
time for an algorithm is defined as a maximum time among all instances
of the problem: for this reason this classification is often also called
worst-case complexity.
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FIGURE 2.3.1. The factor graph of a 3-SAT prob-
lem corresponding to the formula (z;VZyVz3) A
(2 VT3V Ty). Variables are represented as circles,
clauses (i.e. function nodes) as squares. A triangle-
shaped decoration can indicates here that the corre-
sponding literal is negated

Even if there is no polynomial p (n) algorithm to solve all coloring
instances of size n, there could be an algorithm that takes an aver-
age time p (n) (averaged over all instances of a given size with uniform
probability for instance), and this is the idea behind average-case com-
plexity. Of course, a problem that is worst-case easy will be average-
case easy as well, but the converse is often not true. Even if these two
methods of measuring complexity are not equivalent at all, it has been
often observed experimentally that taking some NPC problems (like
k-SAT) and restricting it to some specific sub-ensemble (like k—SAT
with n variables and 4.2n clauses), the resulting problem was very dif-
ficult to solve even in average. It is not clear (but it could be) that the
study of this difficulty could prove to be useful to gain some insight
about worst-case complexity as well.

2.3. An unifying formalism: factor graphs.

Al three combinatorial problems shown above in their simplest form
correspond to finding an x € X such that F =[] ., Q. (x) is nonzero
for some functions @, : X +— {0,1} taking each a small number of
arguments. Of course, this expression for F is far too general to say
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FIGURE 2.3.2. The original graph (left) and its factor
graph (right) corresponding to a coloring problem

something useful about the set F = 1, it is clearly important to know
how is the topology of variable dependences goes. As it turns out, a
lot can be said about the structure of F = 1 by knowing it, at least for
simple enough topologies. As a trivial example, suppose that every @),
depends only on one variable z;; then the set F # 0 can be completely
described in simple ways.

To formalize the above concepts, we will make some definitions:

For F : X — Ryg in the form F = [] ., Q. (x), its factor graph
is a bipartite undirected graph, with “variable” type nodes ¢ € I and
“function” type nodes a € A. When possible, we will use indices a, b, c
for elements of A and 4, j, k for elements of I.

Bipartiteness will mean of course that edges are only allowed be-
tween nodes of the two different types. In some important cases,
Qa (x) € {0,1}.

The space of configurations has been denoted by X. Every variable
x; has a finite range z; € X;, so X = @;e;X;. In many important cases
all X; are equal, and X =Y.

Function nodes a neighbors to ¢ will be denoted by the symbol
a € 1 and variable nodes 7 neighbors to a € A will be denoted by ¢ € a.
The symbol 7 € a \ j will mean all indices 4 which are neighbors of a,
except index j. Symmetrically, b € i \ a will mean all function nodes b
neighbors to variable node 7 except function node a. We will denote by
n; = |{a € i}| and n, = |{i € a}| the number of neighbors (or degree)
of the corresponding node.
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We have seen that in many cases F is just a characteristic func-
tion, taking values in {0,1} and the problem consists in finding some
preimage of 1, or better some kind of description of the set F~* (1).
By means of a simple normalization term we can reinterpret this F
as a probability measure P = Z7' ] .4 Qq (x) over the set X (here
Z = Y vex luea @a (x)). Then the problem becomes to characterize
this probability measure P.

In the general case we are given a probability measure in the func-
tional form P = Z7'[] .4 Qq (x) where now just @, : X — Ry and
we want to describe in some way this probability space.

2.4. Gibbs measure and Free Energy

As a reward for the generalization to @, : X — Ry instead of
just @, : X — {0,1}, minimization problems can be somewhat in-
corporated now in the same framework: by introducing an artificial
parameter S > 0 and defining P = El—l;e_ﬁH for H = ZaeA H, and
Z3g being as usual the appropriate normalization scalar constant, called
partition function and defined by

Zy Ly et
xeX

We can easily see that P def limg_, 4o P concentrates exactly on

the minimum values of H; that is, by calling

def .
- - H =
S {x (x) min H(y) }
we have that )
Foo = ’S_IXS

The inverse of the parameter S is called temperature 7. The quantity
%log Zyg is called the “free energy” and is of fundamental importance
in statistical physics. Computing the scalar function 8 +— In Zs often
warrants knowing all sort of interesting statistical properties about Ps.
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As an example, the average energy of a configuration at a given

(2.4.1) (H)y € Py (x) H ()
x€X
can be computed simply as <H)5 = —% log Z3.

There are other uses of introducing an artificial parameter 5 apart
from directly solving the minimization of E. As an interesting exam-
ple, suppose that we are given F = [] ., Qq (x) for Q, (x) € {0,1}.
Take some configuration y € {0,1}. Now for the probability measure
Py =7t [Toca Qo (%) [Lics e~Meivi it is easy to check that limy_ o0 Py
concentrates on the solution(s) of F = 1 which differ in the smallest
number of coordinates from y.

2.5. Entropy

Given a probability measure P (x) over a finite space X, the quan-
tity
(2.5.1) S ZP(X) In P (x)

xeX

is called the entropy of P (zInz is assumed to evaluate to 0 at z = 0).
S is a non-negative quantity as all terms in the sum are negative or
zero, and achieves a maximum value of log | X| for the uniform measure
P= p%l The entropy of P is 0 if only and only if P is a delta measure,
P (x) = ¢ (x,y). In general, the entropy is a measure of how “broad”
is the measure P. The following important special case may help to
understand this concept.

LEMMA 2.5.1. If P (z) is uniformly concentrated on a subset N as
e.g. in the three combinatorial problems of Section 2.1, then S = In |N]|.

PROOF. The hypothesis means that P (x) = |1me (x). A direct
evaluation of 2.5.1 gives the result. O

2.6. Tree factor graphs

Suppose we have a factor graph G which is singly connected, then
each connected component is a tree. We will assume the graph has
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only one connected component (and so is a tree), but all results here
generalize trivially to singly connected graphs.

Choosing one variable node as the root, we can make the following
definitions. The depth of a given node is its distance to the root and
will be denoted by d (-). A node a € A (resp: ¢ € I) is said to be a child
of i € I (resp: a € A) if i € a and d(a) > d (i) (resp: d(a) < d(i)).
The generated partial relations will be denoted by > and <: for two
nodes v, w (type unspecified) then v < w if every path in G from v to
the root node passes through w. We will use also the relation v < w if
and only if v < w and v # w. The v-subtree will denote the subgraph
of nodes w such that w < v.

We will introduce the following notation: We will call x, the tuple
of variables {z;},.,for some function node a. By a slight abuse (which
will prove to shorten the notation substantially) we will then call

P(x) = > P(x)
{mi}igza
and
Pa) ¥ Y P
{z}
the marginals of P (x). Given P it is very easy to obtain its marginals
(though as an exponential sum), but in general the converse is much
harder (or impossible). In the particular case of tree factor graphs,
however, the following holds.

THEOREM 2.6.1. [74] If the factor graph for the probability measure
P =1T],c1Qa is a tree, then

Px)=]]P&)]]P (=)™

a€A i€l

PRrROOF. The RHS is assumed to evaluate to 0 when P (z;) = 0
(and then P (x,) = 0). For x such that P (z;) = 0, the identity is
immediate, because P (x) = 0. For all other x, it can be recovered
by using QZ = (), + € as P is assumed to be a probability measure,
there exists x such that J[,., Qa (x) # 0, and so Zc /4 0, clearly then
lim._,q P¢ (x) = P (x) and in consequence lim._,o P (x,) = P (x,) and
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lime_,o P (z;) = P (zi), so we can assume without losing generality
that @, > 0.

We will prove by induction on the depth of the i-subtree that
(2.6.1) P (x|z;) = HP xa)HP ;) )P (2) 7t

a<i j<i

The initial step of the induction is trivial. Now take an arbitrary tree
with root variable node r. Call T; the subtree with root at ¢ and
Y = {%i}ticoer - Then

P(x[z;) = P(x[y)P(y \xr)
= [ P@y)P(yls)
i€a\r,a€r
= HP X, HP i)' "IHP z;) P(y|z,)
agr T#T ica

Where the last passage is due to the inductive hypothesis. Now
Eq. (2.6.1) holds if one notes that

P(ylz;) = [P (xalz)

acr
= H P (x, !
acr
Multiplying both sides of Eq. (2.6.1) by P (z;) and setting 7 to the root
of the tree we get Theorem (2.6.1). O

This result allows us to have also an expression of the entropy in
term of marginals:

THEOREM 2.6.2. If the factor graph for the probability measure P =
I 1aca Qa is a tree, then its entropy S = — > P (x)In P (x) can be

computed from the marginals of P as

(2.6.2)

S=- ZZP X,) In P (%, —!-ZZ (i) In P (z;)

a€EA Xq i€l x;

PrOOF. The proof is easy using Theorem 2.6.1.
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S =) Px)h (HP(XQ)HP(%)M)

xeX acA 1€l

= Y PHY P )+ P (- )P ()
x€X a€A xeX i€l

= > Y PEWPx)+D. Y P(x)(1—n)nP ()
acA xeX i€l xeX

= ZZ Z x)In P (x,) +

GEA Xa {ml}zga

i€l x; {:rj}j#
- ZZP Xg) In P (x, +Z 1 —mny) ZP z;) In P (z;)
a€EA Xa iel

0

This expression of the entropy is much more satisfactory than the
original one, as it has typically a linear number of terms instead of an
exponential one. There is a similar expression (similar easy proof but
without using Theorem. 2.6.1) for the average energy, this one even
valid in general graphs:

PROPOSITION 2.6.3. For the probability measure Py = %e'ﬂza Ha
the average energy (H)g = >, Pp(x) H (x) is given by

Hy, =YY" Py(xa) H (x,)

2.7. Random combinatorial ensemble and typical properties

2.7.1. 0-1 Laws and threshold values. The topic of Random
Graph theory was founded by Erdés and Rényi in a famous paper [29]
in 1960. They introduced two models for generating undirected random
graphs over a vertex set I, with |I| = n: G (n,m) and G (n, p).

(n— 1

e In graph G in G (n,p) each edge (among the =Y possible

ones) belongs to G with probability p
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e A graph in G (n,m) is chosen uniformly between all graphs
with exactly m edges
Both are probability spaces over the set of graphs with vertex set 1. As
there are N = (}) = 1@2;12 possible edges, this set has 2" elements.
For a graph G = (I, E), in the first case, the probability measure
explicitly reads
P (G) = p®! (1 = p)" 17

while in the second case

ef 1
Patnm) (@) & <6 (|E| — m)

(m)

It turns out that for p ~ % the spaces G (n,m) and G (n,p) are
largely equivalent in many aspects, and typical properties of one space
often hold automatically also for the other [2]. In their work, Erdds
and Rényi proved also the following

THEOREM 2.7.1. [the giant component| for a graph in G (n,p = 7%)
and any € > 0,

e if c =1 — ¢ then almost surely all connected components have
at most one cycle and O (logn) vertices. Moreover, the number
of components with cycles is o (n).

e if ¢ = 1 + € then almost surely there is a unique connected

component with many cycles and Q (n) vertices

Where the term “almost surely” means with a probability that tends
to one as n — o0.

This was the first “threshold phenomenon” result in random graphs.
The structural change in a typical graph G (n,p) when p crosses the
value % is called also “phase transition” because its similitude to the
phase transition of the chilling water at 7' = 0°C": a change that mi-
croscopically looks (and is) smooth generating a macroscopic “discon-
tinuous” global effect. Since then, this fascinating subject has received

a lot of attention.
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We have seen another property of graphs in Section (2.1.2), namely
g—colorability. A graph G is is said to be g—colorable if there exist a
g—coloring for G. The following theorem has been proved in [6]

THEOREM 2.7.2. Define for k € N and ¢ > 2 the number
g(n,q,c) def Pa(n,g) (G is q — colorable) ,
then there exists a number c(n,q) such that for any ¢ > 0

(1) hmn——)oo g (’I'L, q,cC (n7 Q) - 6) =1
(2) limpe0 9 (n,q,¢(n,q) +¢€) =0
Similarly for k-SAT, the following holds.

THEOREM 2.7.3. [32] Let’s denote by
h(n,k,a) ©p (a formula in R (k,n,m = an) is satisfiable)
then for every k > 2 there exists « (n, k) such that for any € > 0

e lim, ,wh(n,k,a(nk)—e) =1

e lim, . h(n,k,a(nk)+¢c)=0
Note that the existence of both lim,_, ¢ (n,¢) and lim,_,o, a (n, k) for
g,k > 2 is still unsettled, but largely believed to be true. The first of
the two limits was an early conjecture by Erdos.

We will consider also the problem of finding a critical value for the
k-XOR-SAT problem. The definition of the random ensemble is similar
to the k-SAT one: Given a set of n Zg-variable indices, we consider all
linear systems Bx = c with exactly m = 7yn equations over the n
variables, such that each equation has exactly k terms, with uniform
probability. This probability will be denoted by Py . In this model, the
distribution of B and c are independent, the latter is uniform among
the 2™ possible binary vectors. The probability of such a problem will
then factorize as Py, (B, c) = Py, (B)27™.

We are interested in behavior changes in the limit n — oco. In
particular, we are interested in finding a critical 7, such that

e P, (Bx = c is satisfiable) — 1 for v < .
e Py, (Bx = c is unsatisfiable) — 0 for v > =,
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2.7.2. Quenched free energy. We have seen that for an energy
function H, it can be useful to compute the free energy 8~ 'log Zs
where Zg = ) e PH(*) to compute certain useful properties of the
probability measure (we have seen the example of the average energy).

If we are interested in computing typical properties of a random
combinatorial problem, as for instance

PG(H’%) (G is k — colorable)

or

P (a formula in R (k,n, m = an) is satisfiable)
computing the following quantity can be of use:

1
F(8,n) def Blog Zg
Where the overline denotes average over the random ensemble. The
quantity above is the averaged or “quenched” free energy. Asin the non-
averaged case, knowing the function 8 — F (8,n) allows to compute
all sorts of interesting quantities. For instance the  derivative equals
to —~%10ng = (H).
Remembering that Ps (x) = Z;'e™##) and writing the expression
of the entropy Sz we get

Sg = —_ Ps(x)log P (x)

= =Y Pp(x)(—BH (x) - log Zp)
= B(H);+logZs

Remembering that (H); = % log Zz we get the simpler expression
Sg = %ﬂ log Zs of the entropy as a function of the free energy, and
thus an expression of the average entropy as a function of the quenched
free energy F.

Except from very special cases, it is much easier to compute log"Z—E
than log Zg, but the former generally typically doesn’t convey as much
information as the latter. Note that limg_,o, Z5 = [{x : H (x) = 0}].
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2.8. Why random problems

Shannon’s 1948 paper [79] on the limits of reliable transmission
over unreliable media, opened the field of information theory. That
paper formalized the concept of information and established theoretical
bounds for the maximum rate of reliable information transmission for
a given channel. A transmission channel is simply a stochastic device
that models a possibly noisy real communication channel. Examples
can be a communication protocol between two endpoints like in the
internet, or a defective storage device, like a hard drive. To fix ideas
we mention one of the most simple possible channel models, the binary
symmetric channel (BSC). Given a real number 0 < p < 1, in the
BSC with “error probability” p, every bit is transmitted correctly with
probability 1 — p, and inverted with probability p.

A (fixed length) coding scheme consists in the selection and agree-
ment between the sender and receiver of an integer number (the code-
length) and a subset of codeword vectors over the communication al-
phabet (that we may assume is the set 0,1) of size given by the code-
length. Along with this codeword set there is a map that translates
from source strings to be transmitted to codewords and back. The rate
of transmission is the fraction log, (#codewords) /codelength: it is an
indication of how much transmission are we “wasting” to ensure relia-
bility with respect to just sending the source over the channel. Using
a codeword set equal to the set of all possible words of codelength size
gives a rate of 1. Only codewords are sent to the channel, so if they
become corrupted in the transmission, the receiver can often know that
an error has occurred just by checking that what was received is not
a codeword. Error recovery (decoding) can be achieved by finding the
nearest codeword to the received string (this is the mazimum likelihood
decoder).

Shannon proved that the channel can be characterized by a number,
the capacity, such that reliable communication is possible for rates
arbitrary close (but below) and impossible for rates above. Achieving
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the communication at rates close to the capacity however, requires
using increasing codelengths (tending to infinity).

Shannon’s proof of the possibility to transmit information at rates
arbitrary close the capacity involve the use of random codes, i.e a se-
lection of an exponential (in the codelength) number of random binary
vectors. Unfortunately, random codes are unuseful for real applica-
tions, as they require an exponential amount of memory and retrieval
time. A natural way of reducing the memory needed to keep them,
is the use of a linear subspace of Z7 as codeword set, as it suffices to
keep a vector base to remember the whole subspace. This codes are
called linear codes. Shannon’s proof can be also adapted to random
linear codes, proving that random linear codes are also asymptotically
capacity-achieving. A linear code can be also characterized by a “par-
ity check” matrix H having as kernel the codeword set. Checking if a
given vector is a codeword can be achieved by a simple matrix-vector
multiplication.

Encoding with linear codes is time polynomial, but decoding with
the maximum likelihood decoder involves finding an x which minimizes
the number of non-zero coordinates of Bx — c. This problem has been
proved to be worst-case NP-Complete and it seems difficult to find
polynomial time algorithms for its random version.

An obvious approach around this difficulty is to restrict ourselves
again to a random sub-ensemble for B and c, for which capacity is
maybe not achieved but specific algorithms perform better. The study
of typical properties of the random problem is crucial to pick a good
one. Several sub-ensembles and coding/decoding schemes have been
developed in the last years. Low-density parity-check codes (LDPC),
based on sparse matrices B, are a broadly used example of this idea.

Another unrelated application of random XOR-SAT is factoriza-
tion. The most widely used integer factorization scheme (the Number
Field Sieve) involve a final step in which a huge binary linear system

must be solved.
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Information theory is however not restricted to linear codes, in Ap-
pendix A we present an experimental lossy compressor based on the
SP algorithm for random k-SAT.



CHAPTER 3

The statistical mechanics view: the cavity method

3.1. The energy-shift algorithm

As stated in Sec. (2.1.2), the question if a given graph G = (I, E)

is g-colorable can be described by the Hamiltonian

(3.1.1) H= > §(0i,0)
{i,j}€E

where {0;} € {1,2,...,q} are “color valued” variables (Potts spins in
statistical physics), and ¢ (-,-) denotes the Kronecker symbol. This
Hamiltonian counts the number of edges being colored equally on both
extremities, a proper coloring of the graph thus has H = 0. Since
this Hamiltonian cannot take negative values, the combinatorial task
of finding a coloring is translated to the task of finding a zero-energy
ground state, i.e. to the statistical physics of the above model at zero
temperature (infinite 3).

Let’s consider the Hamiltonian of Eq. (3.1.1) for a singly connected
graph. For a variable index 7 we will define H® () as the minimum
of the energy in the i-subtree conditioned to o; = 7 (recall that the
i-subtree is the subtree of descendants of 7). Given a spin oy, we are
interested in computing the variation of the energy of the system with
and without the spin, i.e. the energy-shift that was generated by the
addition of oy to the tree. Suppose og is connected to oy,...,0% (be-
longing to otherwise disconnected subtrees):

k
(3.1.2) HO(gq) = _min > d(01,00) + H(0:)}
3Ok i1
k
(3.1.3) = er;iin{é(ai,ao)JrH(i)(ai)}

24
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We define the vector ¢; with coordinates g7 & [ (1) and the
vector ¥; with coordinates v] = min, {6 (p,7) + ¢g’}. Thanks to Egs.
3.1.2, 3.1.3 the definition of v] can be coupled with gy = Zle U; to
obtain a recurrence, allowing to compute the minimal energy of the
(tree) system given by min, g7,,,.

For technical reasons we will change coordinates to energy-shifts h
instead of energies g: ; def min, g7 — 7; and ho def Zf;l 1u; . Then we
have that

k
T _ T
hy = § Uy
i=1

k k
(3.1.4) = ming! — ) o]
= A—g

for some A = Zle min, g/ who doesn’t depend on 7 (A is the energy
of the system before adding spin o) and

—

¥ = ming] —min{d(p,7)+ ¢¥}
p P

= min{-h} — min {6 (p,7) — A}
¥4 p

So we still have a recurrence between @ and k. Note that the vectors
i@ and h are equal to the corresponding —v and —g respectively except
for a constant added to all coordinates. The change of coordinates is

useful because 4; are very simple objects: u] = 47 (EJ for

(3.15) w (k) < max(n', ... ")

— —

u’ (h) ' max (hl,...,hT—l,...,hq) —w(h)
= max (hl,...,hT—-l,...,hq) — max (hl,...,hq)
where we have introduced the cavity biases 1 <H> The structure of the

cavity biases is easily understood if we distinguish among two different

Cases:
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that in step (1) we need to generate a G (n, hﬁ) graph, but we will
approximate it by G (n, £) for large n.

If we want to apply the energy-shift algorithm to a random graph,
we can make use of the above “graph-growing” process and then try
to use mathematical induction by applying the same procedure in the
previous section, calling now H® the Hamiltonian before adding node

0. The main strategy is then to find a recursion of P, ; <ﬁ) as a

function of P, (ﬁ), and then use this recursion in the limit n — oo to
obtain a closed equation for the limit probabilities.

We will suddenly face a problem: i.e. that we cannot just write
Eq. (3.1.2) as now variables o1, ...,0y are coupled (mutually depen-
dent).

With high probability (tending to one for large n) the k sites will be
far from each other in the original graph (they were randomly picked):
although an extensive number of loops is surely present for ¢ > 1 [29],
these loops have with high probability lengths of the order logn. Based
on this remark, we will just assume statistical independence of these k
sites as an hypothesis and hope for the best. This is something called
“one Boltzmann state” or replica symmetry inside the clustering propri-
ety [13] (for a more detailed discussion of this this kind of “summoning”
see |58, 57]). We certainly know that this is true on trees, and to men-
tion a trivial limit, it can be easily proved that will in consequence
be true with probability tending to one in random graphs for ¢ < 1,
thanks to Theorem. 2.7.1.

Assuming further-on the existence of a well defined thermodynamic
limit of the probability distributions of local fields (i.e. P (ﬁ) =

limy, 00 By, (ﬁ)) (for recent rigorous studies in this direction see |35,

31, 82]), the distribution of the field 7o of the newly added vertex
becomes the equal to those of the k neighbors. It is consequently de-
termined by the closed expression
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. © k . . . k .
(21) P(A) = D% / [T ki P(R) 8(7 — Y (o)

(32.2) Q@) = / a7, P(R) (il — i(R))

where we have already used that the connectivities k£ are distributed
according to a Poissonian of mean c¢. The previous equations can be
combined in order to have a closed form for the @ (%):

629 Q@=3 5 [ quu, <u_u(zu>)

From the symmetry of our model under arbitrary permutations of colors

we conclude that
(324) QE)=Q@E) =-=Q@E) =n and Q(0)=1-q

i.e. we need a single real number n with 0 < 7 < % to completely
specify the probability distribution function @ (#). Noting that the
probability P®*) (ﬁ) for a site with k£ neighbors can be expressed by

(3.2.5) P(’“)() / quuzQ ) <h iu)

and recalling that ; € {6, €Ly, é’q} it is easy to rewrite this proba-

bility distribution in a compact multinomial form
(3.2.6) pw (f?) = P® (b 2. K7

k!~ Tr=h (1 gn)F R
(k+ 320 A [y (A7)
with the agreement that 1/n! = 0 for n < 0. Note that A” be-
longs to {0,—1,...,—k} and that there are correlations among the
different components of the cavity fields such that P®) (hl,... h9) #
1_, P (h7). Now we are ready to calculate the graph average over the

(3.2.7) =
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Poissonian connectivity distribution of mean c,

(3.2.8) P (k... h9) = e—CZZ—k'P’“ (B!, ..., h9)
(3.2.9) = ¢ M H -
(3.2.10) = flpcn(hT)

It is interesting to note that after the average, correlations among the
different colors disappear and P is the product of ¢ Poissonian dis-
tributions with average cn. From Eq. (3.2.2) it is possible to derive
fixed-point equation for the order parameter noting that the probabil-
ity 1 to obtain a non-trivial cavity bias - say €, - is simply given by
the probability that the 7% component of the local field is the non-

degenerate smaller, so setting 7 = 1

B211)  p o= > > o > PR, R

hl=0h2=h14+1 hi=hl41

c I'(n l,C !
(3.2.12) = e“c"};o(zg) (1‘ é(:ﬂ)n))

where I' (n, z) is the incomplete Gamma function defined from the fol-
lowing useful relation

= gk I'(n,z)
(3.2.13) e~ kz T=1- o)
The sum in Eq. (3.2.11) converges very fast. It is therefore easy to
numerically construct a solution to this equation as a function of ¢. For
q > 2 it turns out that n jumps discontinuously from zero to a finite
value as shown in Fig. (3.2.1) where the order parameter n jumps at
¢ = 5.141 in the case of ¢ = 3.
This means that, up to ¢ = 5.141 and at the level of the replica
symmetric assumption, we only find the paramagnetic solution n = 0.
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FIGURE 3.2.1. Replica-symmetric order parameter n vs.
average connectivity ¢ for ¢ = 3, from Eq. (3.2.11)

3.2.1. The calculation of the energy. One can easily compute
the average shift in the ground state energy when a new spin is added
to the n-sites system and it is connected to k spins of the system. The
energy of the original graph is given by A = Zle min, g7 while the
energy of the n+ 1-sites system is min, gf = A—w (ﬁo) by Eq. (3.1.4),
so the average energy shift is given by

(3214) AHl = —Ze‘cck/k!/quﬂiQ(ﬁi)w <Z’IIZ>
(3.2.15) = —/d‘IﬁP(ﬁ)w(E) .

One might be tempted to conclude that Eq. (3.2.15) equals the energy
density of the system, at least for n large enough, but this is not true.
There is a correction term due to the change in the number of links
per variable in the iteration n — n + 1: the early approximation we
made of G (n, n__—(i:-l) by G (n, ﬁ) is slightly wrong. In fact, generating
links with probability ¢/n in a n + 1 system, instead of ¢/(n + 1) we
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are slightly over-generating links. So, we need to calculate the average
energy shift in a system when two sites - say spins o; and o, - are
joined by an edge.

Again, the energy of the original graph is Zi=1,2 min, gf = A; +
Ay — w(h1) — w(hs), when we join these to sites by an edge, we get an
energy ming,q, {Zi:LZ g7t + 6 (o1, 02)} which is equal to A; + Ay —
ming, 4, (—h7{" — h3* + (01, 02)). The difference between the two con-

tributions can be written as

- —

AHlink = l’IliIl(—h(l71 + min(—hgz + 5(0’1, 0'2))) -+ Cd(h1) + U)(hg)
o1 (2

= min(—h$* — u® (hy) — w(hy)) + w(hy) + w(hy)

o1

(3.2.16) = —w(hy + (k) + w(hi)
This allows us to express the average link-energy shift as
(3.217) AH, = / Ahndthy PR P(R) () — o(Fs + (7o)

It is interesting to observe that Eqs. (3.2.15) and (3.2.17) are model-
independent, in the sense that the actual Hamiltonian is encoded into
the functions w(k) and 4(h) defined by Eq. (3.1.5).

Using Eq. (3.1.5) and (3.2.8) one shows easily that Eq. (3.2.15)
reduces to:

AH, = Z Pey(h) ... Pey(h?) min(—h', —h2, ... —h9)
(3.2.18) = qZ( _Q)Zhﬂn (Z%ﬂ >
g<h

It is also not hard to prove that the average link-energy shift AHy, =
gn?. This result can be obtained either by direct computation of the
integral, or following a simple probabilistic argument: A Hj, is dif-
ferent from zero whenever the two unlinked sites have the same color,
but this happens with probability n? for each of the colors. Finally we
have the the following equation for the energy which is equivalent to
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FIGURE 3.2.2. Energy density e = H/n vs. average
connectivity ¢ for ¢ = 3 in the RS approximation from
Eq. (3.2.19)

the “replica-symmetric” approximation:

(3.2.19) H=n (AHl . EAH2> -
g—1

(3.2.20) — Y (q ° a) ZhPcn (Z% > San’
a= g<h

The behavior of the energy for ¢ = 3 as a function of the average
connectivity c is displayed in Fig. (3.2.2). Let us note that for average
connectivity 5.141 < ¢ < 5.497 the energy is negative, a particularly
baffling result if we consider that the Hamiltonian (3.1.1) is at least
positively defined. This phenomenon is analogous to what already
observed for the RS approximation in random 3-SAT [63], and is a

consequence of the approximation used.

3.3. 1-step RSB solution
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3.3.1. Pure states. The RS results show some evident patholo-
gies and are at odd with numerical simulations [4, 69] which predict
a lower threshold around ¢ = 4.7, and with the rigorous upper bound
¢ = 4.99 [40]. The main assumption we have made is the statistical
independence of the of the k cavity fields. Is it true that long distance
among spins imply statistical independence of the cavity fields i{;? This
was our central hypothesis, making the RS equations closed. In general
the answer is no. Still statistical physics have developed a theory to
overcome this difficulty.

The answer coming from this theory is that the assumption holds
only inside “pure states”. Of course, we haven’t yet defined what a
pure state is, and unfortunately there is no agreement upon such a
mathematical definition in the framework of the theory. But let’s ex-
plain informally what a “pure state” means from our understanding
of the physical point of view. Suppose we have a random Hamil-
tonian H = > ., H, with |A,| oc n over a set of configurations
x € {—1,1}" and we define as usual the Gibbs probability measure
Ps = Z e PH_ Tt can be proved that the probability Ps is the
limit probability of finding a physical system (represented as a sin-
gle configuration x; in a Markov chain whose graph is the hypercube
with vertices in {—1,1}" ) which obeys the dynamical transition law
P (x¢41|x;) = min (1, e PHEe+)=HG)))  When the time ¢ tends to in-
finity, the distribution of x; becomes Pz, and this is in fact the utility
of the Gibbs measure: be able to describe a dynamic process with a
static measure.

In Markov chains the speed of convergence (relaxation or mizing
time) to this limit probability however can be very variable, and is often
strongly dependent on the size of the system: for instance the system
requires at least O (e#5) time to cross an energy barrier of energy B,
separating the space of configurations in two. If B,, grows linearly with
the size n, we will have an exponential slowdown. Physical systems are
normally huge (may have about Avogadro’s number of coordinates)
and have normally not enough time to relaxate, and so it would seem
that the observed distribution probability for x; for a large (but finite)
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time ¢ on a huge physical system cannot be described satisfactorily by
the static measure Pg. Is in this interplay between the limit of infinite
volume and the limit of infinite time that the notion of pure states
enters into scene. The “trick” is to take the limit of n — oo before the
time limit ¢ — oo: in this way we are both capturing the notion that
the system is not able to relaxate completely to Ps (because huge size
implies terribly long time) but still maintaining the simple formalism of
a static probability measure like the Gibbs measure. Is in this limit that
“unbounded (with n) energy barriers” become infinite, and statistical
physicists settle with a partition of the probability measure of the type
P =% _ waPs where w, € [0,1] and the supports of P, are disjoint,
and there are “infinite-energy barriers” between those supports (that
is, borders are made of configurations with probabilities tending to
0). In a first approximation, they assume moreover w, = w to be
constant over a.. The probabilities P, are called “pure states”. In the
limit of 8 — oo we don’t need the concept of probability anymore and
we can simply talk about “sets”. we say that the set of solutions of
H = 0 (assuming that 0 is the ground-state) separates into “clusters”.
The quantity ¥ = 1 log (number of clusters) is called complezity and
denotes the entropy density of clusters. This differs in general from
the solution entropy since each cluster may contain as well a number
of solutions.

Note that there are several obscure points in the definition of the P,
probability measures. One of the most striking ones is that this defini-
tion is stated on the limit of infinite size (where by the way still there
is no good definition of P) even when the expression P = Y wq Py is
used at finite n. In particular, this definition is not at all satisfactory
for the definition of the SP algorithm, which makes sense only at finite
n. Another stunning peculiarity is that without a precise definition of
these P, it seems hard to write equations for propagating averages over
them. As we will see at the end (at least in our particular case), the
definition of the P, is implicit on the equations for the propagation. We
will see an alternative definition (for the case of k-SAT) in Chapter 5.
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The reader may ask what does this notion of pure states, which
seems mostly related to a physical phenomenon, has to do with solving
combinatorial problems. The answer is in the techniques developed by
physicists to address this phenomenon: the theory suggests a replace-
ment to the presumably wrong hypothesis of un-correlation of cavity
fields h; (RS hypothesis) by a much more complex un-correlation one
(1-RSB hypothesis). In other words, this partition of the probabil-
ity function may be viewed as an artifice to identify a set of random
variables which are indeed uncorrelated (or more likely to be so) but
still give enough information for our needs. Another interesting as-
pect is that the analysis of the dynamical model above is still relevant
to understand the behaviour of some “local search” algorithms, that
reproduce a dynamics similar than of the physical model.

If not yet confused, the reader may also start to worry about things
getting a bit off-hand here, as we started with a well posed problem
(say find the critical threshold) and now we have a handful of not—well—
determined definitions going on (some of them mutually-referenced).
Please keep in mind that the cavity method is a physical model and
not a formal proof. We will see in Chapter 5 a precise formulation of
these in our particular case (k-SAT in the SAT phase) by means of
interpreting the SP equations.

3.3.2. 1 RSB cavity equation . The first basic assumption we
make is that inside each pure state the clustering condition holds. Un-
der this assumption the iteration can still be applied but we have to
take into account the reshuffling of energies of different states when new
spins are added (pure states can have non-zero ground-state energy).

We proceed following the same steps of the previous section. Let us
take the new spin oy and let us connect it to k spins oy, ..., 0, in the
same state a. Thanks to the hypothesis of lack of correlations inside a
pure state the energy of state o for fixed value of the k spins is

kg

(3.3.1) Exo1,...,08) = Aa— Y > hT,0(T,040)

=1 7=1
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The optimization step within each pure state « runs still in close anal-
ogy to the RS computation: when we connect oy to o1,...,0%, we
express the minimal energy of the n + 1-sites graph with fixed op, by
minimizing the n + 1-sites system at fixed oy is thus obtained by min-
imizing E™*! with respect to the k spins:

k k

(33.2)  El(op) = Aa— Y wlhia) - 2 > i (hia)8(r, 00)

=1 =1 =1
This last equation shows that the local field acting on the new spin oy
in the state « is

k
(3.3.3) hoo = > i(hia)
i=1
and that the energy shift inside a state is
k
(3.3.4) ABp=- w (a(z‘ii,a))
i=1

All the previous equation are completely equivalent to those in the
RS case except for the fact that now we have a a-index labeling the
different pure states. One natural question is how cavity fields and the
related cavity biases are distributed for a given site among the different
pure states. This leads us to the notion of survey [56, 57, 58], i.e. the
site dependent normalized histogram over the different states of both
cavity biases and cavity fields:

Il

(3.3.5) Qi(t:) % > (i — o)

(3.3.6) Pi(hi) = — > 0(hi—hig)

In close analogy with what we have already done in the RS case, the
hypothesis of the existence of a well defined thermodynamic limit im-
plies that there must exist unique functional probability distributions
Q[Q(w@)] and P[P(i)] for all the surveys. One may wonder how could
we handle such a big functional space: Fortunately the @Q)-surveys are
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described in terms of a single real number 0 < n < 1/q, cf. Eq. (3.2.4),
and a scalar function p(n) is enough for specifying their distribution:
(3.3.7)

Q[Q(ﬂ)]=/dn p(n) 5!@( i) — (1 —gn)é( —nzé i—é)

with §[-] denoting a functional Dirac distribution. Assuming that the
survey of site 0 is distributed equally to those of all its k£ neighbors, we

can write:

k
(3.3.8) Py(h) = ‘CZMC,C/quuzQ Dere @ ol — N ;)
1=1

(3.3.9) Qol@) = / 47 Py (R)3(@ — a(R))

Note the presence of the reweighting factor exp(yw(3>F_, ;) that
arise after conditioning the probability distributions of the hs to a given
value of energy [57], the pref-actors C}, are normalization constants de-
pending on Q1(%@), ..., Qx(%). The reweighting parameter y is a number
equal to the derivative of the complexity ¥(e) of metastable states with
respect to their energy density e = H/n:

0%
(3.3.10) Y=o
Eq. 3.3.8 can be explained as follows: suppose one wants to compute
the distribution of Py(h, ) restricted to a specific value of the energy
density ¢ = H/n. This distribution depends on the distribution of
the Q; (4, €') for values of € near e (because adding one site changes
the energy only in w(3°F @), and of the relative weight of these,
i.e. the proportion of the number of solutions in the two energy levels.
Remembering that the number of solutions at a given energy level H
is exp (nX (H/n)), we have (by calling ¢ = (H +w(3r, )) /n and
¢ = H/n for shortness):
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nE( )

(3.3.1137 (R, €) /Hd Qi (s, €

k
/quUiQi Ui, € ) E(GI)_E(e))d(ﬁ“ Zﬁz)
=1

i=1

Now assuming smoothness of ¥ and continuity of ); with respect
to €, the expression in the exponent converges to %= (e) wh @) =
yw(3F, @) and Q;(i;, €) converges to Q;(il;, €). Integrating over k we
get the Equation 3.3.8 of P, at a fixed value of ¢ = H/n. Note that y
is still an unknown as we don’t have the function ¥ yet.

Another feature that is implicit in Eq. 3.3.11 is that every combina-
tion of “input” clusters in the n-spin system leads to a single “output”
cluster in the n + 1-spin system.

Intuitively, this reweighting factor can be understood as a penalty
e ¥2Fa one has to pay for positive energy shifts. Note that Egs. (3.3.8)
and (3.3.9) can be cast in the following form

Qoliie) = —CZ ) / Hduz@ )er i 5, — (Y )

(33.12) = ‘Czk,ck/dq (R)e W5 (i — a(R))

In the last line we have introduced the auxiliary distribution P(h)
which would result in Eq. (3.3.8) without reweighting (i.e. by setting
y = 0). It has no direct physical meaning in this context, but it will
be of great technical help in the following calculations.

Let us first concentrate on the colorable phase, where the ground
states are proper g-colorings and have zero energy. Consequently no
positive energy shifts are allowed, so this phase is characterized by
y = oo (this means that 22 (0) = +o0). Let us first calculate the value
of the normalization constants Cj, in this limit. Note that w(h) < 0 for
all allowed £ (each component of his non-positive as h results from a
sum over us). This means that the only surviving terms in Eq. (3.3.12)
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—

are those with zero energy shift w(h) = 0, i.e. all fields must have at
least one zero component, allowing for the selecting of at least one color
without violating an edge. Let us first specialize to the case ¢ = 3 for
clarity, the generalization to arbitrary ¢ is straightforward. Summing
over Uy both sides of Eq. (3.3.12) we have:

1 5 (71 D1l 7,2
(3.3.13) & P(0,0,0) +3g<:op(h ,0,0) +3h1§;0P(h ,h?%,0)
where the combinatorial factors 3 appearing in the r.h.s. are ob-
tained by noting that P(h,0,0) = P(0,h,0) = P(0,0,h) and that
P(h*,h?,0) = P(h',0,h?) = P(0,h',h?). Combining Egs. (3.3.8),
(3.3.9) and (3.2.4) we get

P(0,0,0) = f[u — 3m;)
> P(h',0,0) = ﬁu —2n;) — P(0,0,0)
= g(l —2m;) — ﬁ(l — 3m:)
> P(hR%0) = ﬁ(l —m) =2 P(h',0,0) - P(0,0,0)
h'h? <0 i=1 h1<0
(3.3.14) = ﬁ(l ) —2 ﬁ(l —2m;) + Q(l — 3n)

Plugging these relations into Eq. (3.3.13) we finally get

k k

k
1
(3.3.15) o= 3] —m) —3]J@—2n)+ ] - 3m)

=1 i=1 i=1
Note also that in close analogy to the analysis that lead to Eq. (3.2.11),
we can interpret (3.3.14) as the (un-normalized) probability of hav-

ing the survey in site 0 pointing in direction €3. Therefore combining
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Algorithm 1 Population dynamics algorithm for the 1RSB solution

e (i) Start with an initial population 7, ..., of size M which
can be easily chosen to be as large as 10° to generate high-
precision data.

e (ii) Randomly draw a number % from the Poisson distribution
e~°ck/k!,

e (iii) Randomly select k+ 1 indices 1, i1, ..., i from {1,..., M};

e (iv) Update the population by replacing m;, by fa(7iy, s M, );

e (v) Go to (ii) until convergence of the algorithm is reached.

Egs. (3.3.12) and (3.3.15) we obtain
(3.3.16)
[T, (1 =m) = 2715, (1 — 2m) + [Te, (1 — 3m)

315 (1 — ) — 3TTiy (L — 2m) + T2, (1~ 3m)
At this point we are ready to write the 1-RSB iterative equation for

o = felm, ... m) =

the @Q-surveys:

oo Ck k R
(3.3.17) p(n) = e‘cz H/Hdmp(ﬂi) 6(n — frlnu, - k)
k=0 =1

Eq. (3.3.16) can be easily generalized to an arbitrary number g of colors,
_ 2 D T [t = ¢+ 1
S (DI TTimalt — (+ 1))

The “self-consistency” equation (3.3.17) resembles a replica-symmetric

(3.3.18) Felney o)

equation and can be solved numerically using a population dynamics
algorithm (Algorithm 1). Note that we are implicitly assuming inde-
pendence of the n values, i.e. of the ) measures.

One obvious solution of Egs. (3.3.17) and (3.3.18) is the paramag-
netic solution §(n). For small average connectivities c it is even the only
one. The appearance of a non-trivial solution coincides with a cluster-
ing transition of ground states into an exponentially large number of
extensively separated clusters. In spin-glass theory, this transition is
called dynamical. Still, p(n) will contain a non-trivial peak in n = 0 due
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p(n)

FIGURE 3.3.1. Probability distribution function p(n) in
the case ¢ = 3 for average connectivities 4.42 < ¢ < 4.69.
Note also that a delta peak in n = 0 is always present
(but not displayed here).

to small disconnected subgraphs, dangling ends, low-connectivity ver-
tices etc. The shape of p(7) in the case ¢ = 3 is displayed in Fig. (3.3.1)
for connectivities ¢ ranging from ¢y to c,.

The weight t of this peak can be computed self-consistently. Let us
again consider first the case ¢ = 3. Keeping in mind that for y — oo
the field & has at least one vanishing component, the only possibilities
to obtain @(h) = 0 are given by & = 0 or by a field / with one single
non-zero component. So the probability that the cavity field acting on
a given site with k£ neighbors equals zero is given by the sum of the
probabilities that all neighboring cavity fields are zero (equal to t¥),
plus the probability that exactly one cavity bias among the k is non-
trivial (equal to k(1 —t)t*~!). The average over the Poissonian degree
distribution leads to

© k
(3.319) t=¢° 9—@“+m“%1—ﬂ):eﬂ%ﬁﬁ+w1-ﬂ@

!
— k!
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Generalizing Eq. (3.3.19) to a general number ¢ of colors easily gives

(3.3.20) t=e (1-0e qi (i?l-;t)l—cl :
1=0
This equation is quite interesting, since a non-trivial solution forms
a necessary condition for Eq. (3.3.17) to have a non-trivial solution.
In fact, this equation was first found in [75], the fraction of edges
belonging to the g-core is given by (1—tmin) With ¢, being the smallest
positive solution of Eq. (3.3.20). Thus, we also find that the existence
of an extensive g-core is necessary for a non-trivial p(n), and forms a
lower bound for the ¢-COL/UNCOL transition.

Unlike in the case of finite-connectivity p-spin-glasses or, equiva-
lently, random XOR-SAT problems [76, 23, 59|, the existence of a
solution t < 1 is not sufficient for a non-trivial p(n) to exist. The latter
appears suddenly at the dynamical transition cg, which can be de-
termined to high precision using the population dynamical algorithm.
This solution does not imply uncolorability, but the set of solutions is
separated into an exponentially large number of clusters. The number
of these clusters, or more precisely its logarithm divided by the graph
size m, is called the complexity ¥ and can be calculated from p(n).

3.3.3. The calculation of energy and complexity. More gen-
erally, we expect also a large number of metastable states (at non-zero
energy) to exist. Hereafter we will assume that they are exponentially
many, N (e) o exp(nX(e)), where the complexity ¥(e) is an inten-
sive function (i.e. having a finite n — oo limit) of the energy density
e = E/n. We can introduce a thermodynamic potential ¢(y) as

(3.3.21) 6(y) = ——1In ( / de en{—yew(e)})

yn
For large n, we calculate this integral by its saddle point:

(3.3.22) o(y) = mein (6 - 52(30 = €sp — éz(eszn)
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i.e. by calling ¢ (y, €) e 52 (e) we have that ¢ (y) = ¢ (v, esp (¥))-
It is easily verified that the potential ¢ calculated at the saddle point
energy e, (y) fulfills the usual Legendre relations:

(3.3.23) 8, [y 3y, esp(y))} = ey

(3.3.24) v0,0(y, ep(y)) = Llesp)

Around the saddle point the complexity can be approximated, accord-
ing to Eq. (3.3.22), by

(3.3.25) 3(e) = Xlesp) +yle — esp) = —yd(y) +ye

We will now consider a cavity argument: let us denote by £, the energy

of a system composed of n sites, the density of configurations is given
by

(3.3.26) AN, (E,) oc e ¥eWHvEn g

with ®,,(y) denoting the extensive thermodynamic potential with limit
®,(y)/n — ¢(y). Now we add a spin to the system. If we consider
that the total energy is E, 11 = E, + AF, we can express the density
of configurations in terms of £, and AE:

(3.3.27)  dNpi1(En, AE) o /2 WH(EFAE) gp  P(AE) dAE |
Integrating over 0 F we get
(3.3.28fNpi1(Epir) = Ce—y<1>n+1(y)+yEn+1dEn+1

1

1
(3.3.29) C = y / P(AE)eV EdAE = §<eyAE>p(AE)

Comparing the previous equations with (3.3.26) we can deduce that

(3.3.30) B () = B (1) — §1n<exp(yAE)>P(AE) |

In the thermodynamic limit we can thus identify

(3.3.31) B(y) = —i In(exp(yAE)) par)
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In close analogy with what we have already done in the RS case, and
using Eq. (3.3.4), we can compute ¢ as a site contribution plus a link
contribution in the 1-RSB scenario:

e Site Addition
k k 1
(3.3.32) exp(—yA¢y) = /quﬁijQij(ﬁz‘j)eXP(yw(Z U;;)) = Ch
j=1 Jj=1

k

e Link Addition

k
exp (—yAdy) = / [T @, Qs (i) exp(—ye (i) + yo(hiy + ahi,)))

j=1
= [ R (R, @) expl-y (w(F) — w(F+ D))
(3.3.33) = 1+ qmmi,(e™ — 1)

Note that in the limit y — 0 and assuming P; = P for each site, we
obtain the RS expressions. Once the functional distributions Q[Q(%)]
and P[P(h)] are known we can eventually average the energy shifts
A¢1, Agy in the usual linear combination:

(3.3.34) o(y) = By — g&%;

where the over-lines denote the average over both disorder and func-
tional distributions. One finally finds

1o _c
¢(y) = —526 E(Ak“i'Bk)
k=1 )

where

A= /HDQiQ[Qi] In(/ndqﬁiQi(ﬁi) eXP(yW(Z i;)))

and

—

Bi=y / []PrPiR)in / AR explons () —yes v+ (52)
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In the limit y — oo these relations can be written in a more explicit
form. Let us consider first the term A¢; in Eq. (3.3.32). Referring to
Eq. (3.3.15) it easy to see that:

g—1 k
3.3.35 lim e~v% = ST (=) ¢ ) 1— (1 +1)n,
(3.3.35) lim e Zﬂ:( ' g[ (L+ 1))
such that
00 k
. — _C
(3.3.36) ylgglo —yA¢p; = kz—;e HDk
for

k g—1 k
D= [ TTentmin( -1 (, 2 ) TI - 0+ v

=0

In order to compute the average link contribution A¢s(y) we need to
evaluate the large y limit of Eq. (3.3.33) which gives:

33370 lim ~yA8E) = [ dolm)dpln) 0 (1 - g

This equation has a nice probabilistic interpretation complementary to
that used in the derivation of AE, in the RS case. In fact the integrand
of (3.3.33) is different from zero for y — oo only when both sites 4; and
iy have a different color, and this happens with probability (1 — gn;,7;,)
(note that gn;,m;, is the probability that the two sites have same color).
It is now clear from Eq. (3.3.22) that taking the y — oo of —y®(y)
gives us the complexity in the COL region where e = 0:

Z s /Hdp i hljzj ( zl) ﬁ[l—(lﬂ)m])

(3:338) =5 [ dmplm)dmp(m) (1 - gy

3.3.4. Results. The previous analysis results for the g-coloring
problem in the existence of a dynamic transition, characterized by the
sudden appearance of an exponential number of clusters that discon-
nect the solutions of the problem. This is represented in figure 3.3.2 for
g = 3 and 4, where the complexity is plotted as a function of the graph
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connectivity. Note, that at a certain value average connectivity ¢ = ¢q4
the complexity abruptly jumps from zero to a positive value. Then
it decreases with growing ¢ and disappears at ¢, where the number of
solutions become zero. It is not possible any more to find a zero-energy
ground state for the system, i.e. the graph becomes uncolorable with
g colors, and its chromatic number grows by one.

In the following table, we present the results for ¢ = 3,4 and 5,
for the dynamical transition we show the corresponding values of ¢4
and the complexity ¥(c;). For the ¢-COL/UNCOL transition, only
the critical connectivity ¢, is given (X(c;) = 0).

ca | Zlca) | ¢
4.42 10.0223 | 4.69
8.27 [ 0.0553 | 8.90
12.67 | 0.0794 | 13.69

St = Wil

In Fig. (3.3.4) we display the average complexity ¥ as a function of
the energy density e in the 1-RSB approximation. Recently Montanari
and Ricci showed in [67] that in the p-spin spherical spin glass the
1-RSB scheme is incorrect above a certain critical energy density eg,
where this solution become unstable and a FRSB calculation would be
required. It is possible that such a phenomenon might happen also in
this case.

The dynamical transition is not only characterized by a sudden
clustering of ground states, at the same point an exponential num-
ber of meta-stable states of positive energy appears [58]. Such states
(besides algorithm-dependent entropic barriers which may exist even
below ¢;) are expected to act as traps for local search algorithms caus-
ing an exponential slowing down of the search process. Well known
examples of search processes that are overwhelmed by the presence of
excited states are simulated annealing or greedy algorithms based on
local information.

To test this prediction, we have applied several of the best available
solvers for Coloring and SAT problems available in the net [78, 24].

After some preliminary simulations we observed that the best results
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FIGURE 3.3.2. Top: Complexity ¥(c) vs. average con-
nectivity for ¢ = 3 and ¢ = 4. Non-zero complex-
ity appears discontinuously at the dynamical thresh-
old ¢4, and goes down continuously to zero at the g¢-
COL/UNCOL transition. The curves are calculated us-
ing the population-dynamical solution for p(n) with pop-
ulation size M = 106.

Bottom: The full line shows the chromatic number of
large random graphs vs. their connectivity ¢. The sym-
bols give results of smallk for N = 103, each averaged
over 100 samples.

could be obtained with the smallk program [24] and concentrated our
efforts on it. The simulation results, as shown in the lower half of
Fig. 3.3.2, were obtained in the following way: First a random graph
(N = 10%) was generated and we tried to color it with a small number

of colors (here ¢ = 3). If, after some cutoff time (we probed with
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FIGURE 3.3.3. Average thermodynamic potential ¢(y)
vs. y in the HARDCOL phase (¢ = 4.5) and in the UN-
COL phase (¢ = 5.0). Note that ¢(y) above the para-
magnetic region ( ¢ = 0 ) is a monotonously increasing
function of y in the first case, while it displays a maxi-
mum at finite y in the second one.

10 seconds, 1 minute and 2 minutes without substantial changes), the
graph was not colored, we stop and tried to color it with larger q. For
each connectivity we averaged over 100 samples. As it can be clearly
seen, the algorithm fails with ¢ colors slightly below the dynamical
transition, confirming our expectations. In Sec. (3.3.6) we explain how
the cavity approach helps to design an algorithm being able to deal
also with this problem.

3.3.5. The large-q asymptotic. From Eqgs. (3.3.17) and (3.3.18)
one can easily deduce the large-¢q asymptotics of p(n). For average con-
nectivities ¢ >> ¢ (the threshold ¢, is expected to scale like O(¢Ingq)),
fi is dominated by the | = O-contributions in the numerator and
in the denominator, leading to p(n) = 6(n — 1/q) in leading order.
Plugging this result into the Eq. (3.3.38) one can easily calculate the
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FIGURE 3.3.4. Average complexity ¥ as a function of
the energy density e for various average connectivities c.
In this figure we only display the physical branches (see
text).

COL/UNCOL threshold ¢, by setting the complexity to zero. Taking
care only of the dominant contribution we find

(3.3.39) cg=2qIng+o(qlng) .

This result coincides with the exact asymptotics found by Luczak [44].
Note, however, that the same dominant term can also be obtained
from the vanishing of the replica-symmetric (paramagnetic) entropy
s(c) which is expected to be exact up to the COL/UNCOL transition.
This means that, for ¢ — oo, the threshold entropy goes to zero. This
behavior could already be conjectured from the above table where the
threshold entropies are given for small q.

3.3.6. Working with single graph instances: Survey prop-
agation. Up to now we have proposed an analytical model to the col-
oring problem averaged over the set of Erdds-Rényi graphs at a given
average connectivity. In this way we derived the g-dependent threshold
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connectivities of ¢, at which the graph becomes almost surely uncol-
orable with ¢ colors, i.e. the location of the COL/UNCOL transition.
We have also shown the existence of another threshold value ¢4 above
which a clustering phenomenon takes place in the space of solutions.
However, one of the relevant consequences of this cavity approach
is that it can be naturally implemented to study single case instances,
i.e. specific non-random graphs which have to have a locally tree-like
structure to fulfill the conditions of the cavity approach. In the average-
case analysis at each step of the iteration, we selected randomly k sites
from the M possible ones to be used in Eq. (3.3.16), and we substituted
another randomly chosen entry 7, from the M possible entries. From
here on, we will assume that the iteration procedure used above is
also valid for single instances — with one significant change: For the
generation of survey for one vertex (or edge) we have to use its actual
neighbors, the connections between sites are fixed once for ever by the

specific graph under consideration.

3.3.7. The survey propagation algorithm. The SP algorithm
resembles formally the sum-product algorithm [43]. In the latter, to
each vertex arrive u-messages from k — 1 neighbors, then this messages
are transformed (become h-fields) and sent as a new message through
the link to the descendant k£ neighbors. So, at each time step, in the
links of the graphs you will have messages traveling, like in a com-
munication network. The survey propagation algorithm (SP), works
with the same principle. The basic difference is that now the mes-
sages are replaced by u — surveys of the messages (i.e. by probability
distributions of messages). SP is defined for one given value of the
reweighting parameter y that must be optimized to minimize the “free
energy” of the system. To each edge {7, j} of the graph we associate
two u-surveys Q;;(¢) and @;;(%) of messages traveling in the two
possible directions. The algorithm self-consistently determines these
surveys by a message passing procedure to be described below, and
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Algorithm 2 Survey propagation for coloring
(1) Select a graph G = (V, E).
(2) All the Q;,;(@) with {i,j} € E are randomly initialized.
(3) We sequentially consider all sites i and randomly update the
links {z, 7} to all neighbors j in the following way:
(a) For each neighbor j of i we calculate:

Pyy(R) = Gy, / TT dQumi(@)sh — 3 @) explyw( 3 )

kei\j kei\j kei\j

where with the symbol V(i) denotes all neighbors of i.
The prefactor Cj; is chosen such that P;; is properly nor-
malized to one.

(b) From Pm(h) we derive the new u-surveys of all edges

{35}
Quosli) = [t Pyy(iys (7 (i)

(4) The iteration step 3. is repeated until convergence is reached.

finds consequently all the thermodynamic properties of the model de-
fined on the specific graph. We describe in Algorithm 2 how SP works
in practice for the 3-coloring problem.

It was already shown in [58] that the free energy of the system may
be written as:

(3:340) P = | 3O ¢lr) — 3l — 1)e(y)

{i.i}eE g

where n; is the connectivity of the vertex i, and ¢7%(y) and ¢7°%(y)

represent the contributions of links and vertices which are given by:
(3.3.41)

(5 ) =~ ([ PRPy () d3Q;4(3) exp{-ylulF) — (i + )

and

(3.3.42) ¢} (y) = “gln / 1] e Qri(iin) exp{yw <Z U>

kei
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FIGURE 3.3.5. Free energies ¢ as a function of y for three

given samples of N = 10000 of connectivities ¢ =
4.60, 4.69, 4.80.

Repeating the above procedure for various values of y, Eqs. (3.3.41)
and (3.3.42) do not only provide the values of ¢(y), but also X(y) =
—1420¢(y) /0y and the energy density e(y) = 9(y®(y))/0y of states.
The parametric plot of X(y) versus e(y) gives the complexity of states
as a function of their energy. For example, Fig. (3.3.5) shows the free
energy ¢(y) of single graphs with n = 10000 vertices as a function of y
for three different values of the average connectivity c.

We observe that for high enough connectivities the maximum of
¢(y) is located at finite values of y. While decreasing c, the location
of the maximum grows and approaches y — co at the coloring thresh-
old. From these curves and by means of numerical derivatives, we may
also calculate the complexity and energy. Fig. (3.3.6) shows the two
branches obtained in the parametric plot of X(y) vs. e(y) for various
connectivities ¢. While the physical meaning of the upper branches is
not clear [57] we wanted to stress that they interpolate between the
RS solution and the maximum complexity point.
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FIGURE 3.3.6. Complexity ¥ as a function of ¢ for three
given samples of random graph with average connectivi-
ties ¢ = 4.60,4.69, 4.80 and n = 10000 sites. At odd with
Fig. (3.3.4) here we display both physical and unphysical
branches.

From the previous figure we may extract two characteristic values
of the energy: The first one, is associated with the minimal number eyn
of miscolored edges in the graph, i.e. it gives the ground state energy
of the instance. The value of e;s is determined as the positive point
where the lower branch of the complexity curve intersects the energy
axis, or it equals zero if (e = 0) > 0 on the lower branch.

The other relevant energy value is the threshold energy ey,. It is
determined by the point where the complexity reaches its maximum.
It is therefore the point where e.g. simulated annealing gets stuck.
The same remark of Sec. (3.3.4) holds here: this calculation should be
probably improved along the line of [67] in order to take into account
the FRSB instability at higher energy density as in the case of the
p-spin spherical model.
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FIGURE 3.3.7. Density of miscolored links eg vs. av-
erage connectivity of the graph ¢ (lower dotted curve)
and threshold energy density ey, vs. ¢ (upper continuous
curve) in the 1-RSB approximation.

From the practical side this is of course not the way to determine
this values, it is much more desirable to look for the value of y at which
#(y) becomes maximal, cf. Eq. (3.3.24). Fig. (3.3.7), shows a plot of
these two energies as a function of the connectivities obtained using
this single-instance algorithm.

Of course, the exact meaning of the numerical values of these quan-
tities is an open question. In principle they were defined for infinite
systems, whereas our single-instance algorithm works for systems of
finite sizes n. We expect that the numerical values give good approxi-
mations once we look to large values of n, where e.g. the scales dividing
distances of solutions inside one state from those between states are
well separated. A more detailed discussion about this may be found in
[54, 58].
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3.3.8. A polynomial algorithm to color graphs. The Survey
Propagation described above was very useful for the design of an ef-
ficient algorithm to find a solution of randomly generated £-SAT for-
mulas [56, 58] in the “hard” but satisfiable phase. Here we will show
that, with small modifications, the same idea can be extended to the
g-coloring problem.

The relevant idea in this algorithm is to fix spins which are strongly
biased toward (or away from) one color. Therefore, we have to first
determine the distributions of local magnetic fields in the system using
SP, and select those which have the strongest bias. Once these are fixed,
the problem is reduced. We can rerun SP on the reduced instance,
new spins may be biased and fixed. The procedure will be repeated
until only paramagnetic spins remain. At this point SP cannot help
any more, but surprisingly the decimated coloring problem becomes
“easy”. Using any reasonable local solver known in the literature, we
can proceed to construct a proper coloring.

In the case of g-coloring the subject is technically slightly more
complex than in k-SAT, since spins can be biased in ¢ different direc-
tions and it is hard to decide what do we mean precisely by biased.
In addition, by fixing the color of one vertex, all its neighbors have
to have different colors, i.e. they are left with ¢ — 1 colors. In the
reduction process the problem, initially being a pure ¢-coloring prob-
lem, becomes a list coloring problem where each vertex has an own
list of allowed colors. In this way the permutation symmetry of col-
ors is broken, which requires a modification of the SP given above to
non-symmetric surveys.

In order to keep the presentation as simple as possible we concen-
trate our efforts on the 3-coloring problem and hence, from now on,
all the discussion will be associated for the case ¢ = 3. The exten-
sion of the results to higher ¢ is, however, straightforward although
exponential in q.

As mentioned above, the first things we should do are a generaliza-
tion of SP to non-color-symmetric situations, and to correctly define
a biased spin. Let us start first noting that equation (3.3.7) may be
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written as
(3.3.43) QIQ(U)] = / i p(7) 6 {Q(ﬁ) —n08(id) = Y n"6(d — &)

where we simply avoid to consider the color symmetry of the problem,
and where we introduce 7° = (1 — 23:1 n"). Then, following the same
lines of reasoning that lead from Eq. (3.3.7) to Eq. (3.3.16) we may
deduce the following update of the surveys in the limit y — oo:
(3.3.44)
77'T_+j _ eri\j(l = Mhsi) — Zp;sr eri\j(ng—n‘ + Moi) + eri\j n;‘i_m

' > op Hieni (1 = misi) = 225 Tean; (Mhoi + M) + Teay Miess

for r € {1,2,3}. The value of 7}, can be calculated by imposing

the normalization condition. Using this update rule instead of the one
proposed in the above version of SP, we directly work with a reweighting
parameter y = oo which forbids any positive energy changes and thus
characterizes proper colorings.

Having 77, for all the sites of the graph, we have to define the site
dependent color polarizations
(3.3.45)
= [Liei(l=mn) = 2pur Hjei(n?—n' +75i) + [ e 05

D opmio et = m50) = 2ot 03 Tjes(mi—s + m550) + Tiei 1)

for r = 1,2,3. This equation is analogous to Eq. (3.3.44) but the
products are extended to all neighbors. The polarization II] is the

probability that vertex 7 is fixed to color r in a randomly selected
cluster of solutions. Vertices which may change their color within one
cluster are characterized by IT? = (1 — S2°_ II7).

3.4. Solution of k-XORSAT by the cavity method

In a derivation completely similar than of Sections 3.2, 3.3.1 we
give below the 1-RSB solution obtained by the cavity method for the
random 3—XOR-SAT problem.
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Binary variables allow to represent u € {—1,0,1} and h € Z, and

the equation for their distributions are

Q) = 3 3 p@)p) [ dhPO (b dnPD (1) S~ uy (h, )

PO (h) o / [T us@us)oth = 3 ) exp(=y(3_ lusl = 1D _usl))
where
p() = 78

i!
uy (h,h') = sign(JhK) (sign(0) = 0)

Numerical simulations of the population dynamics equivalent to Al-
gorithm 1 show that cavity biases spontaneously peak in only two
categories, @ (u) = ¢ (u) and Q (u) = 5(“—"1%‘&“—“1, allowing to pa-
rametrize the probability distribution Q [Q] with only one parameter ¢
corresponding to the probability of the “trivial” @ (u) = 6 (u). A direct
inspection of the equations show that obtaining a non-trivial @ (u) is
only possible if the P (h) input terns are in term non-trivial. These
in term are trivial only when all input @ (u) are trivial, giving the
additional constraint (for k£ = 3 here for simplicity)

o

1—t = > (37 (37 (1-¢) (1-¢)

i,j=0
_ (1 _ e~37(1—t))2

For v < 74 ~ 0.818469 this equation has only one solution at ¢t = 1
(the system is a paramagnet), whereas at v = 7, there appears a non-
trivial one.

By the change of variables A = 3+ (1 — ), it is possible to write
zero-energy (y = oo) complexity as a function of A

(3.4.1) ¥ (\) = log (2) [1 - % —e (1 + %A)}
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where ) satisfies the equation
(3.4.2) A=3y(1—e?)?

The identity ¥ = 0 gives the numerical threshold of v, ~ 0.917935.

3.5. Alternative solution for k-XORSAT

We will reproduce hereafter a schematic description of the exact
computation of the critical value for the k&-XORSAT problem, to be
found in [59, 23|. This is one of the few problems that have been
completely analyzed rigorously, and the result is in complete agreement
with the results given by the cavity approach.

We are interested in computing critical properties of random linear
systems

(3.5.1) Bx=c

where B is a random binary matrix with distribution P = P, and

¢ is a random uniform binary vector.

3.5.1. First moment. By calling N = Np &f |{x :Bx = c}| the
number of solutions to this system, the condition of this system to be
satisfiable could just be restated as N > 1. Calling E the average
over the random ensemble and using the fact that NV > dy>; because
N € Ny, we have

(3.5.2) P(N>1)<E(N)

This is called first moment method. Computing E (N) is fortunately

very easy: Np.= > 0px=c SO
SN PB)2™Np, = 27™> P(B)D D bpx=e
c B B X c
= 27™) P(B)2"
B

zn—m
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For m = yn and v > 1 we get that Py, (N > 1) "=°0,i.e. N =0
almost surely. That is, the critical value -, for satisfiability (if it exists)
must be < 1. This is in fact very intuitive: for v > 1, there will
be at least m — n equations linearly dependent on the others, so the
value of their correspondent coordinate of ¢ will be fixed by the others
coordinates of ¢ they depend on: then with probability 1 —2~(™=") the
assigned value of these coordinates will be wrong and the problem will
not have any solution.

3.5.2. Second moment. For an opposite bound, we can use the
Cauchy-Schwartz inequality ||N||, = [|[Nonx>1ll, < [NV, |l6n>1]ly to

obtain

&=

(N’
G SPV21)

This is an application of the second moment method. The computation
of E(N?) is more difficult:

N%,C == Z Z 5Bx:c5By=c
X y
= Z Z 5Bx=c5B(x—y):0
x y
- Z Z 5Bx:c5Bz=0

(3.5.3)

&=

S0:

E(N?) = 27> P(B)Y 00D Opxec
(3.5.4) = 2> "P(B)Y 0pan
(3.5.5) = 2™ Z Z P (B) 0pz=0

Note that the value of E (V) doesn’t depend at all on the probability
distribution P (B) and the computation of E(N?) up to Eq. (3.5.5) is
independent of the explicit form of P (B). The last term of Eq. (3.5.4)
is the average of the number of solutions Np in homogeneous systems
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Bx = 0 in the probability space of matrices B with measure P (B).
After exchanging the order of the sums, it suffices to count (the prob-
ability space is uniform) how many such matrices annihilate a given
vector z, and this number > 5 0Bz=0 depends only on the number of
zeroes of z. Even if a combinatorial expression can be easily obtained
for this number for the original distribution of matrices, it seems hard
to compute the asymptotic behaviour for such expression. Instead, the
combinatorics can be computed also for the uniform probability mea-
sure P (B) of matrices with n variables, m equations and no degree-1
nor degree-0 variables (i.e. each variable participates in two or more
equations). For the resulting the asymptotic behaviour can be com-
puted (it is a fairly hard computation in [28]), and lead to 2!~ so
the RHS of Eq. (3.5.4) goes asymptotically as 47(:=7). For v < 1 then
the LHS of Eq. (3.5.3) goes to 1, resulting in P (N > 1) "=° 1, i.e. the
system has almost surely solutions.

Given a random variable R for which %%’f 2% 1 we say that R is
“self-averaging”. This case of N being self-averaging is a very special
situation: the number of solutions of random problems is rarely self-
averaging, as the statistics are generally dominated by large deviations
tails (improbable systems with huge number of solutions). In this case
this is a special property of XOR-SAT with the additional condition

dy = di = 0. Unfortunately our original graph has an asymptotic
(ky)be
7

Poisson distribution of connectivities dy, =
is not fulfilled.

i.e., the condition

3.5.3. Leaf removal. Nodes with degree 0 and 1 however affect
the number N in a very simple and predictable way. We could “purge”
nodes of degree 1 in a preliminar stage with a simple "leaf-removal”
algorithm: in each stage a degree 1 node is erased along with its equa-
tion (removing this node does not affect the value of NV, as the variable
is completely determined by the values of the other variables in the
removed equation) and the process restarts recursively in the resulting

graph.
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Fortunately, the probability space P (B) evolves under this algo-
rithm in simple way and can be analyzed with a standard method (See
for instance |3] for a detailed derivation using this method). Define
D, (T) as the number of variables of degree £ for a particular graph at
step T in this process. It is relatively easy to prove that conditioned to
the values of D, (T') the resulting system is uniformly distributed. We
then will have

(3.5.6) E(D¢(T+1) = De(T) [{Di (T)}) =
= g0 — b1+ (b — 1) (eer1 (T) — e (T))

where E denotes expected value due to the random choice of the
leaf and of the randomness of the ensemble, and e, is the distribution
of degrees for each of the other participant nodes in the removed equa-
tion. This distribution is proportional to /D, and so by normalization
e (T) = gy ¢De (T).

A theorem of Wormald (See Thm. 3.5.1 below) ensures that in the
limit n — oo the densities d, = D,/n become self-averaging and almost
surely equal to the solution of the following ODE system of the degree
densities d; as a function of the reduced time ¢ = T'/n derived from

Eq. (3.5.6) :

kE—=1) (0+1)dpq (t) — d, (¢
=5e0“‘5e,1+( k )( )Zj)-,l_(z el

with initial condition given by the original Poisson distribution,

L —ky
de (0) = %

Note that strictly speaking, we need the system to be finite dimen-
sional to be able to apply Thm. 3.5.1, but the argument can be made
strict by grouping together all d; for £ > 2 as in [28].

The solution of this system reads
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In particular for £ > 2 the densities coincide with a Poissonian at
all times. The dynamic process ends when there are no more degree
1 variable nodes, i.e. at a time t; () defined by the first zero of the
condition d; = 0:

o) 14 (M)
3y

This defines the parameter A; () = A (tf (7)) of the resulting final
truncated Poissonian degree densities d; (t; () = e (7)52!&)( for £ >
2.

At time ¢y, we know that the number of equations of the final
system my will be (v — tf) n as we remove just one equation per step.
If we disregard nodes of degree 0 in the final system, the number of
remaining nodes ny can be computed as

’I’Lf = TLZ dg (tf)
f=1

= nh—(1+A@ﬂnyWq

The resulting system has the needed 0, 1-truncated Poissonian de-
grees densities and an effective v; = ny/my given by

1
v — iy

and can be analyzed with the results of the last two sections; with the

Vr

[1- 1+ () )]

outcome that the original system is almost surely satisfiable if v (7y) <
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1 and almost surely unsatisfiable if 7 (y) > 1. The condition 7; (7.) =
1 can be solved numerically, giving a value of 7. ~ 0.918. Note that
conditions y; (7.) =1 and X (.) = 0 in Egs. 3.4.1, 3.4.2 are identical.

THEOREM 3.5.1. [Wormald [85]] Consider a sequence {D; (T)}, ;<.
for T € Ny of real random variables such that for |D;| < Bn for a
constant B. Let H (7)) be the history of this sequence for 7" < T.
Let f; : Ryg x R¥ — R be Lipschitz functions. Let D be an open
domain containing the intersection of Ryq x R* with a neighborhood
of {(0,dy,...,dx) : P(D;(0) =nd;) # 0for some n} and suppose that
for some m = m (n) and for all i and uniformly over all T < m the
following two conditions hold:

n?

(2) PIY;(T+1) - Yi(T )l>ﬂ1/51H ()] =
Then almost surely, D; (T') = d; (T/n)-n+o(n ) umformly for0 < T <
min {on, m} where d : [0,0) — R¥ is the maximally-defined unique

(1) E(D; (T +1) - D; () |H (I DT Dk,gT>)+o (1)

solution of the ODE system inside domain D
od;
ot

with initial conditions d; (0) = D; (0) /n.

= fi(t,dy,...dy) 1<i<k

3.5.4. Clusters. The method above allows a division of the vari-
able nodes in a formula into two types:

e The core, formed by spins remaining after the leaf removal
process

e The non-core, formed of the spins which where removed in the
process

Solutions in the core can be thought as seeds to a full solution: once
the variables in the core have been fixed, the remaining problem has
a very simple structure, and all compatible solutions can be recovered
in linear time. Moreover, the following has been proved in [59, 23|.

Almost surely:

e Hamming distance between two different solutions in the core

is 2 (n).
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e Two solutions with the same seed can be joined by a path of
solutions with jumps of Hamming distance O (1).

This has an immediate effect in the space of solutions of the original

problem: solutions “clusterize”, i.e. the set of all solution can be divided

into smaller subsets with solutions close to each other inside.



CHAPTER 4

Propagation algorithms for random sparse problems

4.1. Warning propagation

As a sort of warm-up we will re-derive the energy shift-algorithm
of Section 3.1 for general problems but with binary variables z; €
{—=1,1}, as this will help us to interpret the SP equations for k-SAT
later. We will assume H = ) H, for H, > 0, and we are looking for
the minimum of H.

On a tree, every variable node i has one parent and (possibly) many
children, except for the root node that has no parent. Remember that
the i-subtree of a variable node 7 the tree of all descendants of .

Given a variable node i, call H? the minimum energy configuration
in its subtree, given that z; = 0. Let’s compute all H{ values from the
leaves to the root. Once H ;.H for all j children a, for all children a of ¢
have been computed, the computation of HY is easy:

(4.1.1) H{ = min Z H,{oj},o Z HJ

{oi} |, chmdof i j child of a

root

Once H,,n has been computed, H72, = min (H:':1 ) will be the
minimum achievable energy for the formula and one can go up in the
tree, fixing the children variables to the ones that realize the minimum
(or just chose one in case of degeneracy of the minimum), and so on
iteratively up to the leaves.

Suppose now that we are just interested in a configuration of zero
energy (or rather, in knowing if such a configuration exists). Then
we can simplify the above algorithm even further, and propagate just
{1,0, -1} instead of the energies. Define the following quantity:

65
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F; = —sign (H; — H;)

(where sign (0) = 0). If only one of H;", H; is non-zero, then the
value of F; gives the forced value for spin o;. If both are zero, then
F; = 0 and the spin is free to take any value. If both are non-zero then
we know that there is no configuration of zero energy, so we can just
give up.

We can easily see that the value of F; depends just on the values of
F; for j children of node i: by defining

F? = min{ Z H,({o;},0):0,F; > O}

a child of 7

we will have that F; = —sign (FlJr - F[). If at some point, both F."
and F;” are greater than zero, then the algorithm must stop, and we
know that there is no solution to H = 0. This algorithm, when applied
to general graphs, was called warning propagation in [17].

4.2. Belief propagation

Belief propagation (BP) is an algorithm designed to compute some
partial information about the probability measure P (x). Precisely, it
aims at computing the marginals P (x;) and P (x,). Its definition is
very simple and it is exact on a tree, or in a general factor graph if

some (generally hard to prove) ad-hoc hypothesis are assumed.

4.2.1. Definition. Given a factorized probability distribution P o
[I,c4 Go (the symbol oc means as usual that the normalization constant

is missing) with a factor graph G, consider the probability distribution

210 (S(i)) o HQ“ (S(i))
ai
corresponding to the factor graph G® where variable node i and all
factor nodes a € i were removed. We will add the (i) exponent to all
mathematical objects corresponding to the graph G i.e. disregarding
variable node ¢ and factor nodes a € 7. Suppose then that for a given
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variable node i, the joint distribution P® ({sj} ica aei) is known. Then

it’s easy to compute the marginal P (s;):

P(s) = Y. Ps)

{Sj}j;si

- Z 210 (S(i))HQa(S)
{sj}#i a€i

x Y PO [ )
{si}jcaviaci (51} j¢a,0ei act

(4.2.1) < 3 PY({sheniee) [1Q6)

{s; }jea\i,aei a€l

One would like to find a closed equation relating the same type of
quantities on the left and right side; then one can hope to establish
some kind of recursion. Eq. (4.2.1) is not closed for two main reasons:
the marginal P(® ({sj}j@\i,aeain the RHS is (a) a much more complex
object than the simple marginal P (s;) in the LHS, and (b) corresponds
to a different graph, in which a “hole” has been carved.

In the case of a simply connected factor graph G, in G® all nodes
j € a\1,a €1 belong to different connected components, and one has
that the marginal P ({Sj}an\i’aei) factorizes into [ PO (s,);

we are a step forward and (a) is solved and we get

Jj€a\i,a€r

(4.2.2) P(syoc > J[Qa(s) [T PP (sy)
{si}jeariaes 9€° jea\i

In some non-simply connected graphs, the factorization may still
be a reasonable approximation as once the variable node (i), which
was the direct connection between two of the variables is removed,
their correlation will become typically smaller. As in Section 3.1, this
un-correlation hypothesis is central.

Note that for a simply connected G, P®) (s;) = P (s;) for i, j € a,
where P corresponds to the graph G(® in which just factor node a
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has been eliminated (the extra elimination of node ¢ and other b € 7 is
irrelevant because they belong to another connected component once
a is removed). Equation 4.2.1 becomes then

(4.2.3) P(syoc > J[Qa(s) [ P (sy)
{si}icariaes 4€° je€a\i
Even if (b) has still to be addressed, Eq. (4.2.3) will still be later
useful in its own. Point (b) is easy to take care of: we will now correct
the left-hand side and instead of computing P (s;) we will compute a
RHS-like quantity. We can remove a function node a € % from both
sides of Eq. (4.2.3), i.e.:

(4.24)  PO(s) o« > J[ @6 I PYGsy)

{si}jennipeira PEING jeb\i
(4.2.5) x H Z Qu (s) H PO (s)
bei\a {s; }jeb\i jeb\i

It is interesting to identify the quantity inside the outer product:

(4.2.6) EO(@Qls) = > Qu(s) T PP (s)
{si}jeni Jeb\i

is the expected value of @, given the value of s; weighted in G®),
When @, is a constrain characteristic function, @, (s) € {0,1} then
E®) (Qy|s;) is the probability of this constrain to be satisfied, given the
value of s; (of course, always on the graph without constrain b).

These are the belief propagation equations. We then substitute
P@ (s;) by unknowns probabilities called messages fi; o and E® (Qys;)
by ftasi (5;) in Eq. (4.2.4) and Eq. (4.2.6) we get

(4.2.7) i (51) & Z Qs (s) Hﬂj—w(sj)

{Sj}jeb\i Jeb\i

(128) L2, () [ (o)

bei\a
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but for Lfﬂa (1) = pi—a (2 is the appropriate normalization scalar).
The messages ;o are probability measures over the finite space of
values s; € X; can be parametrized by a normalized vector in (RZO)‘X”;
messages [lo—; are not normalized and thus can be parametrized by
just a vector in (Rzo)‘xil. The vector {fti—a} 4¢; ic; Of 2ll messages from
variable nodes to function nodes will be denoted by p. Grouping all

the functions LY., in one single vector function we define the map L
by:

def
{L% (1)} i = Lasi (1)
We can now search for a fixed point of the form L% (1) = p. In the

case of tree factor graphs, we have shown that the correct marginals
P@ (s;) form such a fixed point.

The BP procedure consists in choosing some random initial condi-
tion po and numerically compute

w = lim (£7)™ (o)

n—ro0

where the (n) exponent above means composition. Numerically,
this amounts to compute the sequence inside the limit, defined recur-
sively by 11 L row (pg) for ¢ =0,...,n until the value ||t — pell
becomes smaller than a predetermined small constant e.

Once the fixed point p* of L has been computed, their corresponding
complete marginals approximations (called beliefs) b can be computed
also: b(s;) can be recovered using Equation 4.2.3, and b (s,) can be
computed similarly

(4.2.9) b(s;) o H)ua—n'(si)
(4.2.10) b(sa) o< > Qals) ][] rizalsi)
{sitica i€a

If the fixed point p* equals to the correct vector of “cavity” partial
marginals {P(® (s;)} then the beliefs b (s;), b (s,) will be equal to the
exact complete marginals P (s;) and P (s,) respectively. We have seen

however that convergence to the correct fixed point is only ensured for
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tree factor graphs. In the next section we will briefly show explicitly
the BP equations in the particular case of graph coloring and restricted
graph coloring.

We wish to make a brief comparison between the BP iteration in
Eq. (4.2.2) and the energy-shift or warning propagation iteration in
Eq. (4.1.1) on a tree. When they can be compared, i.e. when we
are addressing the problem of finding a zero ground-state in BP (i.e.,
when we apply BP to the problem of computing P o [], (1 — H,)
for H, (-) € {0,1}), we can easily see that the warning propagation
equations are in a sense a simplification of the BP ones: if one looks
simply at whether P (s;) # 0 in Eq. (4.2.2), we see that this depends
only on the status of P(®) (s;) # 0 for neighbors s;. This “discretization”
results in Eq. (4.1.1).

4.2.2. BP for coloring. In the case of the coloring problem, given
G = (I, A) and a coloring configuration ¢ € {1,...q}", we recall that
Eqjy = 6ce; and so B = Z(i,j)e 40c;c; and the Boltzmann measure is
P =Tlggeac .

The BP equations reduce to

(4211) Hi—sj (Cz) X H Ze ﬁsckcz‘u,k_) Ck)
(k)eA\(j1) ck

The equation for § = +o0 can be simplified a bit further: ek =
1 — d¢peqs SO

(4.2.12)  ping(a) o H Z ~ Oeyer) M (Cr)

(ki)eA\(4i) ck
X H Z i (Ck)
(k)€ A\(j1) cr e
Which has a simple interpretation: the probability that node 7 takes
a given color ¢; is proportional to the probability that this color is not
already taken by one of the neighbors of node i (note that “propor-
tional” is still needed, as the latters are not mutually exclusive). The
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missing normalization term amounts to

(4.2.13) SOIT Do swsi()

P (ki)€A\(ji) r#p

where p,7 € {1,...,q¢}.

Note that this simplified expression of the BP equations may have
singular points, i.e. the normalization term Eq. (4.2.13) may be 0.
One can obtain a well defined expression by taking correctly the limit
of f — o0 in Eq. 4.2.11, the resulting expression will be well-defined
for all p, but unfortunately will be discontinuous in the old singular
points. In many cases this second expression is not wanted anyway, as
a solution corresponding to those singular points corresponds to H > 0,
i.e. an uncorrect coloring.

The reader should note that the Equations 4.2.11, 4.2.12 are color-
symmetric, i.e. if all input probabilities x4 in the right-hand side are
uniform among colors, then clearly the output must be also uniform.
Then jp_; = (%, o %) for all (k,4) € A is a fixed point of the equa-
tions, giving marginal beliefs b (¢;) = % foralli e I and ¢; € {1,...,q}.
In fact, this is the correct solution! For the coloring problem in any
graph there is a color symmetry, every marginal cannot be anything
else than uniform among colors. Of course, this doesn’t help us at all
in solving the coloring problem: to this extent one expects to be able
to compute also marginals for a partially colored graph. Fortunately,
it is very easy to generalize the BP equations to the restricted coloring
problem, as we just have to restrict the range of ¢; variables:

ping (@) o Xeqy (@) [T DL e oy (cx)
(ki)eA\(51) crEQk
and of course the correspondent § = +oo version is
Hievg (€i) o X{aeqi (¢i) H Z te—i (Ck)
(ki)eA\(ji) chEQK\ci
4.2.3. Some known properties of BP for trees. The situation

for trees is somewhat optimal:

THEOREM 4.2.1. The BP equations are ezact for trees.
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PrOOF. We have already proved this in Section 4.2.1. O

COROLLARY 4.2.2. There exist at least one fized point for the BP

equations in a tree

PRrROOF. The correct marginals satisfy the equations and so are a
fixed point. a

THEOREM 4.2.3. For any tree, there is vector u* such that the BP
equations converge exactly to p* from any initial condition in a finite

number of steps.

ProOF. Thanks to the special tree topology, we can separate mes-
sages [lo_; in two types: “upstream” ones (from leaves to the root),
with a < i and “downstream” ones (from the root to the leaves) with
a > 1. Let’s look first at upstream messages:

We label nodes by a “distance to the leaves” function e : / — N in
this way: start with £ = 1 and for all the leaves i put e (i) = k. Then
remove all leaves from the tree, increase k by one and repeat. The
procedure stops when the remaining subgraph is void and all nodes
have been labeled. It is easy to see that e is an increasing function: if
i < j then e (i) < e(j). This procedure is similar to the “leaf removal
algorithm” used in other contexts.

It is easy to see from Eq. (4.2.4) that “upstream” messages only
depend on children “upstream” messages. It is trivial then to prove
by induction the following: after a number of steps k greater than n
the value u¥,, for a > 7 and e (1) < n will remain constant (and this
constant is independent of the initial condition).

So after a number of steps k greater to the depth of the tree D, all
upstream p¥ . remain constant. Now we can repeat a similar argument
but going downstream, using the “depth” d instead of e. Using the fact
that downstream messages depend on upstream messages and parent
downstream messages only, we can easily prove by induction that after
a number of steps k greater than D +n all downstream messages uf ,,
for a < 7 and d () < n will remain constant. Putting together both
results, we get that after a number of 2D steps or greater, all involved
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quantities will remain constant (and the constant is independent from
the initial condition). O

Proposition 4.2.3 has an easy but interesting consequence:

COROLLARY 4.2.4. For tree factor graphs, the BP fized point is

unique.
ProOOF. Trivial because of Theorem 4.2.3. O

4.2.4. Known results for general graphs. Most results in this
section come from [88].

In the following, we will assume F = [[ .4 Qa. With Q4 : X — R.g
for reasons that will be clear later. Constrains of this type will be called
“soft” constrains. As always, P = £ [ .4 Qa-

THEOREM 4.2.5. Let b be a probability measure approximation to

P. Thenb = P if and only if b achieves the minimum of the functional
G:

= Y b(x)nb(x Zb )In F (x

Moreover, this minimum value is — In 7.

ProoF. This is a standard variational argument: note first that
(4.2.14) G(b) =) b(x)lnb(x Zb )InP(z) —InZ

and that G is continuous in its range and C™ for b > 0. Taking
t € [0, 1] and the curve of interpolating measures

e (x) = (1—1t)P(x)+1tb(x)

we have trivially that ¢; > 0 for ¢ < 1. Consider f : [0,1] — R,
f € C®[0,1)NC°[0,1] defined by f(t) = G (¢;). It is easy to check
that f(0) = —InZ, f(1) = G(b). Computing derivatives we get
f/(0) =0 and f"(t) > 0 for t € [0,1)and so f is increasing and the
result holds. O



4.2. BELIEF PROPAGATION 74

The functional G in equation 4.2.14 is called Gibbs free energy in
[88]. It is composed of two terms: the first one is the negative of
the entropy of b (see Section (2.5)), and the second is the b-average
of —InF. When F = e PE_ the second term is then the average of
the energy multiplied by 8 (see Eq. 2.4.1). Theorem (4.2.5) implies
that the probability P is the one that simultaneously minimizes its
average energy and maximizes its entropy; one should keep this in
mind when proposing approximating candidates for P. Moreover, the
fact that the correct P is the one that minimizes G shows one way
to obtain approximations b for it: propose a simple functional form
approximation b and then fix all parameters by minimizing G.

The following result however is based on a slightly different ap-
proach: minimize an approximation to G. Let’s define the following
approximation to G, called Bethe free energy:

(4.2.15) Fpehe & S+ U

where
S=-3"3"b(xa)Inb(xs) + (n; — 1) Zzb(xi)lnb(:ci)

and
U=- Zzb(xa)ana (Xa)

Note that S and U are given by Eq. (2.6.2) and Prop. (2.6.3), both of
them evaluated on a set of independent variables b (x,) and b (x;).

THEOREM 4.2.6. An interior local stationary point of the Bethe free
energy, subject to the normalization conditions b{x;) = Z{xj}an\i b (xa)
and ) b(x,) = 1 are the computed beliefs Egs. (4.2.9),(4.2.10) of a
fixed point of the BP equations.
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PROOF. We add to Eq. (4.2.15) the Lagrange multipliers v, ,; (z;),
v, and -; ensuring normalization, giving the terms

MZZZV(L%(%)' b (i) — Z b (xa)

{zi}jean

N=3 %" (1 - Zxa b (Xa)) and L =3 ;% (1 - Zml b (:E,)) Then we
analyze the condition

V(S+U+M+N+L)=0

Conditions B_I/a——»@ﬁiﬁ =0, 5—‘3—; = 0 and 6(’9)/,- = 0 give of course the
normalization constraints. Then %F Bethe = IN Qg (X,) —Inb (x,) —
1 = icq Va—si — Ya SO the condition éb—&a—) = 0 gives the equation
(4.2.16) b(xa) o Qa (x4) [ [ €%

1€q )
The condition % = 0 for the the last derivative
0
mFBethe = (nz — 1) (ll'lb (flfz) -+ 1) -+ aZEi Vo—si (Iz) + Yi
gives
(4.2.17) b(z:) o [ ()™
a€l

Eq. 4.2.16, 4.2.17 plus the normalization constrains are equivalent
to the BP equations for p,_,; = e’e~i. O

This proof is reversible. Reciprocally,

THEOREM 4.2.7. If a vector u is a fixed point of the BP equations
such that the beliefs b(x;), b(x,) are positive then they form a local
(interior) stationary point of the Bethe Free energy (subject to the nor-
malization constrains).

This result suggest an alternative way of obtaining BP fixed points:
find local stationary points of Fgepe just by minimizing it directly, for

instance by a gradient descent method.
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It can be easily seen that if 7 > 0 then local minima of Fgeipe must
be interior points. This has been analyzed in [84], and the following

stronger fact is proved (by an approximate-convexity argument):

THEOREM 4.2.8. If F > 0, there is only one minimum of Fpethe
subject to the normalization constrains, and this minimum is interior
(located strictly inside the bounds 0 < b(xz;),b(xa) < 1)

PROOF. See [84]. O

This theorem in particular proves that there exists at least one
fixed point of the BP equations when F > 0, and proves also that the
gradient descent method is guaranteed to converge.

THEOREM 4.2.9. For F > 0, there exists at least one fized point of
the BP equations.

PROOF. An alternative proof to the one above is by Brower’s fixed
point theorem. For F > 0 the Equations 4.2.2 define a continuous func-
tion L : ®pepM (Xp) = DpepM (Xp) where B={a —i:a € A,i € I},
Xy is a finite set and M (X,) is the space of probability measures over
Xy. As M (X,) is homeomorphic to the power of the closed unit ball
DWPol=1 then ®uepM (X;) is homeomorphic to D* for some a € N,
and L has a fixed point by Brower’s theorem. O

The case when F is allowed to take value 0 is still most interesting,
and unfortunately there is no proof of existence of the fixed point.
The two conjectures can be found in [88].

CONJECTURE 4.2.10. BP fized points with some beliefs equal to
zero are local stationary points of the Bethe free energy subject to all
normalization constrains and subject to the condition that those beliefs

are zZero

CONJECTURE 4.2.11. Local minima of the Bethe free energy with
some b equal to zero subject to the condition that those b are zero and

normalization constraints are BP fized points.
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However, although certainly desirable, we don’t think that a proof
of existence is of particular urgency, because a proof of “accuracy” of
the equations for F > 0 will give a provable method to approximate P
by means of the approximate measures Pj.

4.3. Survey propagation

The survey propagation algorithm is in a sense a mixture of an ap-
plication of the discrete warning propagation (WP) algorithm of Sec-
tion 4.1 to general graphs with the BP algorithm. The underlying
intuition is that in random combinatorial problems in the hard region,
the solution space breaks into many separated subgroups “clusters” of
solutions. If we can restrict ourselves to some cluster, the substructure
is simple enough that WP would be able to handle it, but still WP
cannot deal with the existence of different clusters and falls into con-
tradictions. In some sense, SP is a BP algorithm that tries to ignore
fluctuations coming from near solutions, i.e. inside clusters.

4.3.1. SP for k-SAT. For simplicity we will deal first with the
k-SAT problem. Remember that @, (s) € {0,1}. Consider the BP
equations (4.2.4) in this equivalent form:

PO(s)oc > J] @6 []PY )
{57} jemipeina b€\ jeb\i
For every configuration of {s;} jen\i bwo things can happened: either
s; is forced to take one value by clause b (that is, the opposite value of
s; is canceled by @ (s)) or it’s not. Let us code these outcomes with a
function
(4.3.1)

—1 if s; is forced to take the value — 1 by @
y—i ({55 }jepni) i S s; is not forced by @y
1 if s; is forced to take the value 1 by @,

An algebraic expression of 4 for k-SAT can be easily obtained:

(4.3.2) tipmi ({5} se0ns) = Jos [ 6 (555 =)
jeb\i
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When considering all b € i\ a and all variables {s;};c;; sci0> three
things can happen for s;: it can be forced to take one value by some
clauses and free for the others, it can be free for all clauses, or it can
be forced to take two contradictory values for two different clauses.
As side note, it is easy to see that BP equations for binary variables
depend only on this outcome and not directly on the s; values.

The last of the tree outcomes is of course undesirable, and such con-

figurations {s,} must be filtered out. For the other outcomes,

jeb\ibei\a !
one can define a {—1,0, 1}-valued function A as

(4.3.3)

—1 if s; is forced to take the value — 1
- def . .
hissa({85}jep\ipeira) = 0 if s; is not forced

1 if s; is forced to take the value 1

Note that i can be expressed as a function of the @ as

]A”Li_m = sign Z U
bei\a
and the condition to be non-contradictory is

X ({'&b—)i}bei\a> =1

for the function y defined as

x({w)) € (!Zubl—zwbl)

The idea is to switch now to the propagation of statistics of three-
state variables h that reflect the A outcome for non-contradictory con-

figurations:

(43 4 a) Zd - Bi——)a) H X <{ﬁb—>i}b€i\a> H P(b)

{h;} bei\a jeb\i

where the sum runs over {h;} and the arguments of the func-

the s 75 jeb\ibei\a
tions k= hiya({h;}jepnipeira) and @ = tyi({h;}jep\s) have been elided

for shortness.
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Of course one has still to define what Eqs. 4.3.1, 4.3.3 mean when
some of the s; are 0. In the case of k-SAT this will be very simple: 4
will be zero whenever any of the s, is 0 (coinciding with the expression
already given in Eq. 4.3.2). These are the SP equations for k—SAT.
They can be split as a coupled system

Qo (u) = Z 8 (u— i) [ Piosolhy)

{hi}icon jeb\i
Prg(h)oc Y 6(h—sign(Y_ w))x ({us}) [ Qomvi (ws)
{us}oeiva bei\a beila
Where we have introduced the intermediate probability measures
Qb (u) and have denoted P@ (h;) by P,_,,. This equations simplify
substantially: if for every j € a \ ¢ we parametrize

Qoi(w) = Y nl0(u—o0)

o=-1,0,1
Pisa(h) o< > T,5(h—o0)
c=-1,0,1

Then the equation for P,_,, reduce to

(4.3.5) M, = 1 =nf,) e [ ns;
bcji\a bej\a

(4.3.6) 0., = o] n;
bej\a

where the new introduced parameter p must be set to 1. It is
interesting to note that the same equations for p = 0 are equivalent
to the BP equations for SAT. Intermediate values of the interpolation
parameter p give a mixed SP/BP algorithm that has experimentally
found to be useful in some cases (See Appendix A).

Then the equations become closed with the equation for Q,_,;,
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—Ja,j
(43.7) | L
jea\i Hj—%a+Hj—+a+Hj——>a
']Lll
(438> ng—n = 1- 770.—-)1
(4.3.9) et = 0

For the computation of the “local fields” P (h;) (i.e. for the complete
graph) we have a similar equation to the one of P;_,,, except that we
take into account all neighbors:

~p def
(4.3.10) H;‘E = H( 77b—>] PH%-U
bej bej
~o  def
(4.3.11) 9 = o[,
b

then for h; € {—1,0,1} the complete local fields can be computed

by normalizing II as

(4.3.12) P (k) = = Jj“ -
H]—-)a + Hj—m + Hj—m

Note that when there are no 1-clauses, these equations have always
a trivial fixed point, namely n;_,, = 0 (s) for all j € b and b € A.

Another thing which is useful to note for a practical implementa-
tion of SP for k—SAT is that as by Eq. (4.3.9) na_jl is always zero
(a clause cannot force a variable to not satisfy it) and 7o_,; can be
recovered by normalization, it is sufficient with only one parameter to
describe the probabilities Qq_;. That is, Qa_y; (v) = Veyi6 (u — Jos) +
(1 — vgyi) 6 (u) for voy; = n;’ifi.

4.3.1.1. Complexity. The complezity (or logarithm of the number of
“clusters”) of the SP solution for k—SAT, Eq.(25-27) in[17], obtained
with a computation at all similar to Section 3.3.3, has the following
form

(4.3.13) SEI R =D (- 1) %

a€A 1€l
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def log

— —Ja,
Ij[ (Iliaa *'112—+a'+'II¢+a) _‘IiI]Ij~+éJ
Jj€a Jj€a

2 & log [fl:' + ﬁ? + ﬂ:}

4.3.2. SP for coloring. A similar reasoning can be done to derive
the SP equations for coloring used in [16]. Given a state of all neighbors
{cjmi} jei\k I the graph G®) one wants determine which of the following
three conditions holds:

(1) Variable ¢; is forced to take some specific value p in order to
satisfy all neighboring constrains

(2) Variable ¢; is free to chose between two or more values

(3) The input configuration is contradictory, there exists no pos-
sible value of ¢; which would satisfy all neighboring constrains
simultaneously.

Let’s call C' the set {c;; : j € i\ k}. Clearly variable ¢; will be forced
to take value p (case 1) if and only if C = {1,...,q} \ {p}; the config-

uration {c;;},_, Wwill be contradictory (case 3) if C = {1,...,q} and

jei
the variable Wijﬁ ée free (case 2) in all remaining cases.

The states of ¢;_,; will be coded by ¢+ 1 values {0,1,..., ¢} where
0 will mean that the variable is free. If we assume that free neighbors
do not force any constrain on c¢;_, the conditions for case (1) above

becomes

(4.3.14) {1,...,¢}\pcC c{0,1,...,q} \ {p}

and the one for case (3) become

(4.3.15) 1,....¢4cc

We just need now to write the equations for the probabilities of the
above outcomes as always assuming independence between {cj_%'}jei.
We will parametrize the probabilities as follows 77;’_”- L p (cjmsi = D).
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To fix ideas, let’s restrict ourselves to the case of 3-coloring. For p =
1,2,3, after a quick examination of Eqs. 4.3.14, 4.3.15 we get (the r
subindex run also over 1,2, 3):

(4.3.16)

 eeny (=m0 = 2z [y (MRess + Mhs) + Tlieay Mo
2 eri\j (1 —mps) — 22, szei\j (Mess + Mhsys) + eri\j Mhi

which is identical to Eq. (3.3.44). This equation can be easily ex-

D
i

plained: first term in the numerator is the condition that no neigh-
bor takes color p, but the cases in which more than one color is not
taken must be substracted (two last terms) as they leave the variable
free. The denominator is simply the inclusion-exclusion principle to
compute the probability of non-contradiction as the probability of the
non-disjoint union of the sets

Up { color p has not been taken}

Then 79, ; can be recovered by normalization, i.e.

77?——)3’ =1- Z Uf_ﬁ
pe{1,2,3}

To compute the “complete” local fields, the equation is completely
similar, but we just consider all neighbor nodes of . For p =1,2,3 we
get
(4.3.17)

p [hci U =m0 = 2 0p e (Mo + M) + Tres Mo

II7 =
Er eri (1 - 7712—”') - Zr eri (nlg—n + M) + eri nl(c)—n'

Equations for general ¢ can be computed by noting that for inde-

pendent random variables ¢y, ...c, € D the following relation holds:
P({cl,...,ck} :D) = P({cl,...,ck_l} :D)+
+ZP({C1,...,ck_1} =D\ {d}) P(ck =d)
deD
This recurrence allows one to write the SP equations for any gq.

Of course these equations need a computation time that scales expo-
nentially with ¢, unlike BP equations for coloring (Cf. Eq. (4.2.12))
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which can be computed in a time which is linear in ¢. In all cases the
computational time is linear in k.

4.3.3. General SP equations. Consider again the BP equations
Eq. (4.2.4) in this equivalent form:

P@(syoc > T @s) H PO (s;)

{53} jepnibena bENG FEb\E

For every configuration of {s;} there is a subset of available

jeb\i
values for s;. Let us code these outcomes with a binary vector u;_,;
defined as (ug_ﬂ)qex &f Qs ({Sj}jeb\i ,q). The non-zero coordinates of
u,_,; are the values for s; that satisfy constrain a.

We can then compute what are the possible values of s; that satisfy
all constrain b € i\ a simultaneously, and we can code this with a binary

vector hi_,, that will be defined as By o = H ({0}, ) with

T def
H <{ub—>i}b€z’\a) - H up,;

bei\a

There are several possibles outcomes for h;_,,, among which:

e h; ,, = J; means that the only possible value for s; is ¢, that
is, variable s; is “forced” to take value ¢

e h; ,,=(0,...,0) means that every value of s; will violate some
constrain b € a\ ¢ (these outcome must be eliminated, as they
don’t correspond to solutions).

The idea of the SP equations is to propagate the distribution of the h
values instead of the s; ones. To this extent we have to define u,_,; as

a function of {h;_;} instead of as a function of {s;}; ,;: we will

) with

JEL\L
define it as upy; = U ({h’j—*b}jeb\i

9 def
(4318)  U({hyban) & max @ ({si}0000)
{Gslenihiln=1}
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Note that Eq.(4.3.18) reduces to the old definition @ ({Sj}jeb\i : q)
when h;_,, = J,;. Now the propagation of the distribution of h mes-
sages will become this pair of coupled equations:

(43.19) P(hisa) o D> (1= 0ny(000)) Onisartt || P (o)

{W—itpeina bei\a

and

(4.320)  P(ugs) o > Suw || Physa)
{hjsalticans jea\d

Where the arguments of H and U have been elided for shortness.
These are the general SP equations in [18]. When all variables are
binary, possible (non contradictory) h values are (1,0),(0,1) and (1, 1),
which can be coded as —1,1 and 0 as in Section 4.1. Eq. (4.3.20) can
be computed extensively for a general constrain (), in a number of
operations which is bounded by 3/{*%€3 If |{b : b € i}|is small, this is
computationally feasible. This has been implemented in a fairly flexible
program and is publicly available at [81].

4.3.4. A short note about BP and SP equations. It is easy
to see that BP and SP equations are formally very similar: both sets
of equations can be described in a general way as follows: given the
set X = @i X; of configurations, consider the vector field ¥; = R
of vectors with |X;| real coordinates with indices in X;, the space
Vit ={yeY;:y,>0,y+#0}, and the space V = @zea Pics ¥i with
coordinates p,_; € Y;. A multilinear function L : V — V is a function
which is linear in each coordinate of V. Both BP and SP equations
can be cast as the following system of equations:

(Lv)
>\a—>i € IR>0

AasilVas; 0 € AT E T

a—i

+
Va—si € Y;

for a multilinear L.
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Of course, it is doubtful that something useful can be said in this
level of generality, as the whole complexity of the problem is hidden in
the structure of L.

4.3.5. Numerical results: SID on random k-SAT . Once that
we know how to compute all local fields P (h;) for a given formula,
4.3.12, we still need some work to build a problem-solving algorithm.
This is for what the SID (survey inspired decimation) algorithm was
designed. The idea is very simple: pick a variable index 7 and fix it
to some value s; such that P (s;) # 0. Then recalculate all Ps for the
reduced formula, and go on iteratively. If at each step the computed
values P are assumed to be the exact marginals, then the reduced
subproblem will have at least one solution (otherwise P (s;) would be
0). Naturally, considering that the SP equations are only approximate,
one would chose the variable with the biggest P (s;) and fix it to the
direction of that maximum. This indeed has shown to give very good

results, which are exposed below.
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Algorithm 3 SID algorithm for £-SAT

INPUT: The factor graph of a Boolean formula in conjunctive normal
form. A maximal number of iterations t,,,, and a precision € used in
SP

OUTPUT: One assignment which satisfies all clauses, or 'SP
UNCONVERGED’, or “MAYBE UNSAT”

(1) Random initial condition for the surveys

(2) Run SP. If SP does not converge, return 'SP UNCON-
VERGED’ and stop. If SP converges, use the fixed-point
surveys 7,_,; in order to:

(3) Decimate:

(a) If non-trivial surveys ({n*(s;)} # {d(s:;)}}) are
found, then:

(i) Evaluate, for each variable node i, the marginal
{Wihi &t p (hi)} for h € {~1,0,1} defined by
Egs. (4.3.10)-(4.3.11)

(ii) Fix the variable with the largest |W;" — W,"| to the
value z; = 1 if W;* > W, to the value z; = —1
if W;* < W;. Clean the graph, which means: re-
move the clauses satisfied by this fixing, reduce the
clauses that involve the fixed variable with opposite
literal, update the number of unfixed variables.

(b) If all surveys are trivial ({n*} = {¢}) , then output
the simplified sub-formula and run on it a local search
process (e.g. walksat).

(4) If the problem is solved completely then output “SAT” and
stop. If no contradiction is found then continue the decima-

tion process on the smaller problem (go to 1.) else (if a
contradiction is reached) stop with “MAYBE UNSAT”

In step 4. an alternative is to go to 2 to continue on the smaller
subproblem (i.e. to not reinitialize all surveys). In practice this is
much faster and seems to give the same results.
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Algorithm 4 SP algorithm for k—SAT

INPUT: a set of biases {n°}, a precision number ¢ and a maximum
number of iterations m

OUTPUT: an e-quasi fixed point {n* }Hor the SP equations or
UN-CONVERGE

Apply Eq. (4.3.5)-(4.3.9) to build the iteratively sequence {n'} for
t € N, until |n**t — n¥|| , < eor¢>m . In the first case, return
{7*} = {n'}. In the second, return UN-CONVERGE

The SID Algorithm for £-SAT is exposed in Algorithm 3.

Once the system reaches the paramagnetic state (all surveys are
trivial), the following alternative to calling a local search algorithm has
been experimentally been found. Each time the trivial state is reached,
slightly decrease the BP/SP interpolation parameter p of Eq. (4.3.5)
and set the remaining messages to a random initial condition; then go
on with the decimation. This seems to allow to reduce the formula
completely, without calling any external algorithm. This result seems
to suggest that further study of the interpolating algorithm for 0 <
p < 1 may be fruitful.

We have experimented SP and SID on single instances of the ran-
dom 3-SAT problem with many variables, up to n ~ 107. In this section
we summarize these experiments and their results.

Instances of the 3-SAT problem were generated with the pseudo ran-
dom number generator "Algorithm B" on p.32 of Knuth [42]. However
we found that results are stable with respect to changes in the ran-
dom number generators. Formulas are generated by choosing k-tuples
of variable indices at random (with no repetitions) and by negating
variables with probability 0.5.

We first discuss the behavior of the SP algorithm itself. We have
use a precision parameter ¢ = 1073 (smaller values didn’t seem to
increase performance significantly). Depending on the range of o, we

have found the following behaviors, for large enough n:
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e For @ < ag ~ 3.9, SP converges toward the set of trivial
messages 7,-; = 0, for all a —i edges. All variables are under-
constrained.

e For 3.9 < a < 4.3, SP converges to a unique fixed-point set
of non-trivial messages, independently from the initial condi-
tions, where a large fraction of the messages 7,_,; are in 0, 1].

Notice that, for ‘small’ values of n, around n = 1000, one often finds
some instances in which SP does not converge. But the probability of
convergence, at a given a < 4.3, increases with n. This is exemplified
by the following quantitative measure of the performance of the SID
algorithm (which uses SP). We have solved several instances of the
random 3-SAT problem, for various values of o and n, using the SID
algorithm in which we fix at each step the fraction fn, of variables with
largest }Wf — W[I. Table 1 gives in each case the fraction of samples
which are solved by SID, in a single run of decimation (without any
restart). The algorithm fails when, either SP does not converge, or
the simplified sub-formula found by SID is not solved by walksat (this
last situation was found only in very few cases). The performance of
SID improves when n increases and when f decreases. Notice that for
n = 10% we solve all the 50 randomly generated instances at o = 4.24.
For larger values of a the algorithm often fails. Notice that in such cases
it does not give any information on whether the instance is UNSAT.
Some failures may be due to UNSAT instances, others are just real
failures of the SID for SAT instances.

As far as computational cost is concerned, we have found that the
convergence time (number of iterations) of the SP algorithm basically
does not grow with n (a growth like logn, which could be expected
from the geometrical properties of the factor graph, is not excluded).
Therefore the process of computing all the SP messages 7;_,, takes
0 (n), or maybe 0 (nlogn), operations. If SID fixes at each step only
one variable, it will thus converge in 6 (n?logn) operations. When we
fix a fraction of variables at a time, we get a further reduction of the
cost to O (n (logn)?) (the second In comes from sorting the biases).
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n=2.5-10
| [4.21 [ 422 [ 4.23 [ 4.24 |

4% | 86% | 66% [ 28% [ 8%
2% | 100% | 86% | 50% | 22%
1% 94% | 78% | 32%
0.5% 98% | 88% | 50%
0.25% 100% | 90% [ 60%
0.125% 94% | 60%
| <t>]1369 ] 2428 | 4635 | 7843 |
n=5.0-10*
4% | 98% | 84% | 52% [ 22%
2% | 100% | 98% | 86% | 48%
1% 100% | 94% | 64%
0.5% 98% | 66%
0.25% 100% | 78%
0.125% 84%
| <t>]1238] 1751 [ 3411 | 8607 |
n=10-10°
4% | 100% [ 100% | 72% [ 22%
2% 100% | 68%
1% 88%
0.5% 92%
0.25% 92%
0.125% 100%

| <t>][1204 | 1557 [ 2573 | 7461 |

TABLE 1. obtained by solving with a single decimation
run of the SID algorithm 50 random instances of 3-SAT
for different sizes for each values of a.. Samples were tried
to solve by fixing variables in blocks ﬁ%”t: with f was
taken in the progression f = 22,220 271 9272 973 and
ny being the number of unfixed variables, stopping if the
formula was solved. The maximal number of iteration
was taken equal to 10 and the precision for convergence
was taken equal to 1073, The table shows the fraction of
instances which were solved by SID (first column), the
fraction of variables which remained in the simplified in-
stance when all surveys are trivial, and the average com-
puter time requested for solving an instance in every case
(on a 2.4 GHz PC). The last row of each table indicates
the average number of SP iterations per formula along
the whole decimation process.
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A very basic yet complete version of the code which is intended
to serve only for the study on random k-SAT instances is available at
the web site [81]. A generalization of the algorithm to other binary

variable problems is also available at the same site.

4.3.6. Numerical results: SID on random g-coloring. Once
the polarizations computed in Eq. (4.3.17) are known, many strategies
can be adopted for coloring the graph. We believe that the simplest

and most intuitive one is the following:

e (i) If one spin is very biased to one color, fix that spin and
remove it from the graph. Forbid this color to all neighbors.

e (ii) If the bias of one spin toward some color is very low, forbid
that color.

Forbidding a color ¢ to a node i implies rewriting Eq. (4.3.16) using
only two colors for that particular node. This can be achieved simply
by taking Eq. (4.3.16) and (4.3.17) but setting nf,, =0 and nf_,; =1
for all £ € 4. Similarly, fixing a node 7 to a certain color ¢ can be
achieved in the same equations by fixing 7{,, =1 and n;_,; = 0 for all
k€.

In practice, we put a cutoff for the value of the bias to be used for
the previous criteria. We use rule (i) every time a bias toward some
color is greater than Cy = 0.8 and rule (ii) if the bias was lower than
Cr, = 0.15. There is no special reason for selecting specifically these
values, but we found numerically a fast convergence to solvable para-
magnetic problem instances. It could be useful to make a systematic
analysis for improving this choice, and also to discuss other selection
rules. However, this is not the objective of the present work. We have
observed that the algorithm works substantially better than every other
algorithm for random g¢-coloring known to us, even without extensive
parameter optimization. Summarizing the discussion above, the result
is shown in Algorithm 5.

An interesting point about the algorithm described above is the fact
that we can fix a certain fraction of spins in every algorithmic step,
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Algorithm 5 SID Algorithm for coloring

(1) Take the original graph and run SP in its infinite-y version
defined by Eq. (4.3.16).

(2) Calculate the biases of all spins according to (4.3.17).

(3) Select spins whose bias to one color is larger than Cy, fix and
remove these spins from the graph. Forbid the color to all
neighbors.

(4) Select spins whose bias to one color is lower than C;, and forbid
that color to these spins.

(56) Take all spins where just one color is allowed, fix these spins,
and remove then from the graph. Forbid the fixed color to all
neighbors.

(6) If the the graph is not completely paramagnetic: rerun SP and
go to 2.

(7) Run any smart program that solves the coloring sub-problem.

Actually, we did not find any free program in the web which
was able to easily handle large graphs for the coloring problem.
The best we could find was the smallk-program by Culberson
[24], but even in the easy region it exploded in memory for
graphs with sizes larger than n = 2000. So step 7 above was
changed into:

(a) Transform the resulting graph into a satisfiability prob-
lem.
(b) Run walk-SAT [78] on this satisfiability problem.

without rerunning SP every time. This drastically reduces the compu-
tational time. How many spins we may fix, depends in a non-trivial
way on the system size and on the distance from the COL/UNCOL
transition.

Figure 4.3.1 shows the success rate of our algorithm in 3-coloring
random graphs in the hard region ¢ € [4.42,4.69]. From left to right the
sample sizes increase: n = 4103, 8%103%, 16103, 32+ 103 and 64 % 103.
In all the cases we fixed the 0.5 percent of the spins in every iteration
step. Note that keeping this value fix we find a clear improvement of
the algorithm for sizes going from n = 4 % 103, 8 x 10% to n = 16 % 103
the performance is roughly the same for larger graphs suggesting that
we should reduce the fraction of spins to fix. However, note that even
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P(c)

0 ! L L s S~ —
44 445 45 455 46 465 47 475

FIGURE 4.3.1. Probability of coloring a graph using our
algorithm for different graph sizes. From left to right
n=4x%10% 8% 10% 16 % 103, 32 x 10® and 64 * 10,

within these conditions the algorithm works quite well in the hardest
region of the parameters.

Note, that strong “finite-size effects” are present, in fact the algo-
rithm doesn’t behave very well for small graph sizes. Two reasons may
explain this: First there are short loops that disappear in the thermo-
dynamic limit, second there could be some shift in the location of the
COL/UNCOL transition toward higher connectivities for larger graphs.
This point should be clarified in a forthcoming work.

Another relevant feature of the curve is the following: The closer
our graph is to the critical point, the smaller is also the fraction of
spins we may fix in one algorithmic step. However, extrapolating the
results, the worst (or best) we can do is to fix only one single spin at a
time. This would change the complexity of our algorithm from nlnn
(resulting from sorting spins with respect to their biases) to n? i.e. the
algorithm remains polynomial.



CHAPTER 5

Microscopic interpretation of the SP equations

This section is about the SP equations for the 3-SAT problem®. In
this chapter we will show how the SP equations for a 3-SAT formula
F can be reinterpreted as BP equations of an associated problem with
a certain formula G.

In SP, we want to represent the condition for a variable of “not be-
ing forced” to take any specific value (or unfrozen) in a given solution
configuration, and to this end we consider the configuration space of
3—value variables s; € {—1,%,1,} instead of just o; € {—1,1}. We
observe that C, with the expression defined in Eq. (2.1.2) can be eval-
uated also in extended variables: it behaves as if variables with the
* value could be chosen to the best of —1 or 1 and thus satisfy the
“clause”. That is, if any variable in C, is * then the clause is satisfied
(value 1), independently of the sign of the corresponding literal. This
gives the name “joker state” to the value *. For a configuration s(®*)
such that sgi’w) =z and ng‘,m) = s, for j # i call

(5.0.21) Ch (s) = C, (%)

and introduce the constraint over {—1, x, 1}1 configurations given by

som) vima,.J[ci et s X o T (1~ TTei)

aci o=+1 agi aci

What does the constraint V; enforces? If the variable s; is =1 then
V; will be 1 (second term in the above equation) if and only if a) all
surrounding clauses C, are satisfied and b) by flipping s; to 1 one
would violate at least one of them. If on the contrary, s; = % then
V; will be 1 (first term) if and only if by changing s; to any of +1

! Although we believe that most of it could be generalized to other problems
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all surrounding clauses C, would be satisfied. Note that in any case,
clauses C, have all value 1 for V; to be 1.2
The LEC formula derived from F will be defined as

(5.0.23) g=]]v

Note that V; depends only on (s;) ¢, 4es
“locality” of the structure, if any, of the original formula. A solution

and therefore preserves the

of the LEC problem is a configuration s = (s;);cr € {—1,*,1}" such
that G (s) = 1. As a particular case, a solution G(s) = 1 such that
s; € {#1} is also a solution of F.

One could think as the the factor graph of the LEC has having |/]
additional function nodes (the A; terms enforcing the joker condition)
that extend over second neighbors (inset (b) in Fig. 5.0.1).

By inspecting Eq.(5.0.23) we notice a first problem, namely that we
have lost the locally tree-likeness of the original graph. There are inter-
actions terms between every (ordered) pair of neighbors variable nodes
i,7 € a (in the original graph), and thus for instance every such pair
shares two constraints V;, V; (making an effective 2-loop). This intro-
duces an obvious problem for implementing BP over this factor graph,
and moreover would make difficult to compare both sets of equations,
as the underlying geometry is now different. Fortunately, there is an
easy (but unfortunately notationally somewhat involved) way out. We
will group together neighbor variables, effectively performing a sort of
duality transformation over the graph. We describe the procedure ex-
plicitly below (Note that this is a particularly simple case of a Kikuchi
or “generalized belief propagation”-type approximation).

2For a generalization to the non-zero energy regime, one would have to separate the
constraint V; into two pieces: terms H, that were present in the original formula
(that can be violated), and terms

Ay =05 b1 + Y G500 cpre
o=x=%1

for Hf =Y ,c; (1= C%7) enforcing the “joker condition” (that cannot be violated).
In the case of the zero energy regime this separation is not needed and we have the
more compact form of the definition of V;.



5. MICROSCOPIC INTERPRETATION OF THE SP EQUATIONS 95

() (d) .

_____

FIGURE 5.0.1. (a) Portion of the original factor graphs,
(b) LEC graph with 3-state variables and additional con-
straints A; (black nodes) (c) duality transformation (d)
dual graph

We will define: (i.) |A| multi state variables each one corresponding
to a tuple t, = {tgi)}. (¥ € {~1,%,1}) and “centered” on a clauses
and have (uniform) éocrbmectivity ne ((c) in Fig.5.0.1), and (ii.) |I]
function nodes X;ﬂ’p depending on T; = {t,},.; and enforcing both the
joker state condition of Eq. 5.0.22 as well as identifying the values of the
single variables £ shared by different tuples a € i ((d) in Fig.5.0.1).

An explicit expression of x%7 (T;) (conf. Eq.(5.0.22)) is

(5.0.24) " = Z(H(St@,sl) (6Si,*H0é"102’1+

{si} \a€t a€i
+ Y bl [ C (1 -11 Cé""))
o==x1 act aci

We shall refer to the BP equations over the dual graph as Dual BP
(DBP).
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5.1. Local equilibrium equations

5.1.1. SP equations as BP equations over the dual graph.
Basic SP and DBP iterations can be thought of as transformations
in the space of probability distributions of respectively the signs h; =
{=1,0,1} of the effective fields acting on the single spin variables and
of the tuples t, = {—1,*,1}"* in the dual graph. In the cavity notation
the quantities that are iterated refer to a graph in which a given node
and all its neighbor nodes are temporarily eliminated (see Fig. 5.0.1 (a)
and (d)) and all quantities are labeled by oriented indices of the type
a — ¢ or 1 — a where the node on the right of the arrow is the one
eliminated. Therefore the equations describe a local transformation
of some input probability distributions into an output distribution in
which a characteristic function x eliminates contributions from those
combinations of input and output fields or variables that violate some

kind of local constraints. Explicitly we have:

DBP equations:
(511)  PP(t) oo > T %57 (e {te}) 11 B (8)
{ts} jeai be€j\a

where X‘;bp was given in Eq. (5.0.24).
SP equations: Eq. (4.3.4) can be written as

(5.1.2) PP, (hy) o > xP, (h{m}) TT 11 PP ()

{hx} bej\a kEb\j
where
def j j,— o j,—0
G Tavar+ Yo, o (1- [
bej\a o==+1 - bej\a bej\a

Cy clauses are here evaluated in ((hk) keb\j o h,j).
In order to show the connection between the above equations it is

convenient to introduce an auxiliary transformation 7 of a similar type:



5.1. LOCAL EQUILIBRIUM EQUATIONS 97

7 transformation:

a.——)z Z H X]Ha tmh’ P]"’m (h)

{hj} jea\i

(5.1.3)

for

. £
Goa €Y Cabyaby , +
o==1
(5.1.4) 0,000 CITICY + D 8,0 ,CL (1= CE7)]
o==1

C, terms are evaluated here in ¢,.

We will drop now the argument dependence of the measures P;”,
P®P. and Pl , and make instead explicit the dependence on the input

probability measures { Py}, {Po;}, {Pj—a} respectively.

THEOREM b5.1.1. The connection between DBP and SP can be

written as follows:

(515) Pc:iﬁ)z ({Pkab} a—)z ( Pjsia})

where both sides of the (functional) identity in turn depend on some
arbitrary set of probability distributions {Py(hy)} where k € b\ j for
bej\a and finally j € a\ i. In short,

(5.1.6) P% o PT = PT o PSP

In order to check the validity of the above identity we observe that
a direct inspection of the composition shows that it is true if for every

Jj € a\ i the following condition among the characteristic functions
holds:

db
(5.1.7) > oxmaXha =2 TT 11 x5
{hs} {ts} b€j\a keb\j
It is not surprising that we can reduce the problem to a “discrete” iden-

tity. Remembering that, modulo a normalization factor, all equations

are multilinear, it is clear that it suffices to prove the identity over (a
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product of) vectors of a linear base. A natural base is given by delta
measures, and this result in the identity of Eq. (5.1.7).

In Section 5.3 we display the proof that this identity holds and, as a
consequence, that also identity Eq. (5.1.6) is valid. Eq. (5.1.6) in turn
implies trivially that

THEOREM 5.1.2. The following identity holds

(5.1.8) (P#")® o PT = P70 (PR)®)

where the (k) exponent means composition. This in turn implies that
we have a direct step-by-step connection between the elementary quan-
tities used in the DBP equations and those used in the SP equations:
convergence is obtained simultaneously and Eq. (5.1.6) holds for the
respective fixed points (which will be called conjugate fixed points). It
is straightforward to compute from the DBP equations the marginals
beliefs P27 (s;) of the single variables as a marginalization of P2 (t,)
for some a € 4 with respect to all other variables in the clause, (on
a fixed point, it doesn’t matter which a € 7 one chooses). One finds
that the marginals predicted by DBP are in one to one correspondence
with the local fields given by SP, that is Pidbp (s; = —1,%,1) coincides
respectively with P* (H; = —1,0,1).

5.2. Entropy and complexity

The equivalence between the DBP marginals and the SP local field
probability distributions gives also a nice interpretation for the com-
plexity ¥. In fact one may show that, if respectively evaluated in
conjugate fixed points:

THEOREM 5.2.1. The Bethe approzimation to the entropy on the
dual graph, S®P, coincides with the logarithm of the number of clusters
of solutions predicted by SP, the so-called complezity .

On general grounds the Bethe approximation to the entropy of
a problem is exact if correlations among cavity variables can be ne-
glected (i.e. the global joint probability distribution takes a factorized
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form). This is certainly true over tree graphs and it is conjectured to
be true in some cases for locally tree-like random graphs in the limit
of large size (one informal explanation is that distance between cavity
variables diverges with probability tending to one). Factorization of
marginal probabilities over our dual factor graph amounts at writing
P ({ta}) = Tlier P (T Tloes P2 (t2)' ™ where P (T;) is the joint
probability distribution of the triples connected to node i (T; = {ty},¢;)
and PP (1,) is the single triple marginal. Under this condition the en-
tropy in Formula (2.6.2) reads

(5.2.1) = =) > P (T;)log P (T;) +
i {Ti}
(5.2.2) +Z ne — 1) PP (t,)log P2 (t,)
{ta}

Showing S = X is a straightforward but long calculation. It re-
quires to express the entropy in terms of the cavity fields given by SP
exploiting both Eq.(5.1.6) and the fixed point conditions. One finds
(this boring proof is delayed to Section 5.2.1):

(5.2.3) S = Zlog c; — Z (ng — 1) logc, — Z Zlog Dy
7 a i a€i

where the three normalization constants are defined by

(5.2.4) ¢ = > ] Pusi(ta) xi (T2)

{T;} a€i

(5.2.5) Cq = ZZHPJ—)G X]—)a (hmt )

ta {h } ]E(l

(526) Da_”‘ - ZZ H P]—-m X]——m (hjata)

ta {h;} jea\i
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These constants are not independent and the explicit expressions of the
first two are sufficient for writing S in terms of SP quantities:

(6.2.7) ¢, = Z Hpj—m (hj) ZHX;—)& (hys ta)

{h;} j€a {ta} j€a

(528) = 1- ZHPj—m (hj) 1- ZHX;—-M (hJ t

{h;} i€a {ta} j€o
(52.9) = 1-][Pinaay)

Jj€a

I

(5.2.10) = 1— - =

31_6-!1: (H]—)a + H_(y)‘—m + H]——)a)

where we have borrowed the notation of Eq.(18) in[17]. For computing
¢; we first notice that

(5211) Pa—% = Dgyi E X]%a taah H Pj—m
{h; }JGa\z jea\i

so that Eq. (5.2.4) reads

¢ = HDa—HZZX'L( H H XJ_m, taah j——m (h)

a€i {H;} {T:} a j€a\i
= HDa-—)zZX z)H H Pj—m (hj)
a€i {H;} a jea\i
(52.12) = ] Daosi (H;r ) H“)
acl

in the notations of Eq. (21) in[17]. Finally, plugging these expressions
into Eq.(5.2.3) and calling
w; = T+ 100 + 117
Tisa = H;-—m + H(])—-m + H;L—m

(5.2.13) Viva = 1,

we get from Eq. (5.2.3)

(5214) S = Z]og w; — (na — 1) Zlog <1 _ H yz’——m)

jca Tisa
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In this expression, w; represents the probability the local field acting
on the spin variable ¢ does not produce a contradiction and 1 — 3%‘; is
the probability that the cavity fields satisfy clause a.

We recall that the expression of the SP complexity ¥ defined in

Eq. (4.3.13) is

Y o= Z (1 — Ty log w; + Zlog (H Tisa — H yz—m)

1€a i€a

(5.2.15% Zlogwi — Z Zlong + Zlog (H Tiya — H%—w)

a i€a 1€a 1€a

Despite their different look, it turns out that Eq. (5.2.14) and Eq. (5.2.15)
are identical if evaluated in a fixed point of the SP equations. Their
difference > — S is

(5.2.16) Z { Zlog w; + ng log (1 — H yz_’“) — Zlogxi_ﬁa}

i€a icq Tira ica
is zero since in the fixed point every term inside the curly brackets
vanishes: using Eq.(17) in[17] we have that n,; = []...., 222 | ie.

j€a\i ZTjsa
[lco &= = nyi%== for every ¢ € a and hence
1—a

J€a Tjq
yz—)a yz—)a

5.2.17 ol 1-— E | i

( ) s ( H ) jea o ( " e xz—»a)

ica Tisa

A simple calculation shows that w; = %, ; — Na—iYa—s for every a € i
and therefore we get ¥ = S as desired.

We will now proceed to prove Eq. (5.2.3):

For simplicity of notation, in what follows we will write P,(t,),
P,(T;), Passi(ts) and x;(T;) in place of PZP(t,), P™.(t,), P™(T}) and

a—1i
dbp

X; | (T;) respectively and P;_,,(h;) in place of PP _(h;).

1—a
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5.2.1. Expression of the Bethe entropy in terms of SP

quantitites. To compute the entropy (5.2.1) we first need

P,(t,) = 051 Z H Piya (hs) H Xira (tas h’l)

{h;} i€a 1€a
_1 H Z Pz—m Xz—)a (tm hl)
i€a {h;}
Thus calling
(5218) fa—n Z -Pz—m Xz—-)a (tm h )
{hi}

we have that

Z P,(t,)log P,(t,) = —c;'loge, + ZPa(ta) Zlog Jamsi

{ta} {ta} i€a
(5.2.19) = “tlogc, + Z Z P,(ty)10g fomi
i€a {ta

Writing wa_y; = Y, {ta }Pa(ta) log fo—; we get

D=1 e = NF T

i€a % a€i ]Ea,\z

S5 3)3) 3) AR

i a€l jea\i {ta}

S35 SN AR TIA

i a€i {t,} jEa\i

Y22 >, B ] logfus

i a€i {to} {tb}bei\a jea\i
(5.2.20) = > > PR(T)log [] fans
i a€i {T;} j€a\i

The term inside the logarithm above reads

(5.221) ] fawi = 3. T 2% (tar k) T] Piosalhy)

j€a\i {h;} jea\i jEa\i
1
(5.2.22) = Pt

a—i
Da—)i
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where D,_,; is an appropriate normalization constant. Going back to
Eq.(5.2.20), we have

(52.23) > =) i =
==Y logDuyi+ ZZZP ) 1og Psi(t)

i a€l 1 a€i {T;}
The second term in the right-hand side equals

ZZP logHPa——n - ZZP IOng i)HPa—)i(ta)

1 {T;} agi i {T;} acs

= ZZP ) log Q;(T3)

i (T}

= ZZP ) log P,(T;) +

i {Ti}

(5.2.24) +ZZP ) log¢;

i AT}
where in the second step above x;(T;) has been artificially multiplied

inside the logarithm (we can do it because there is a P;(7T;) outside)
and Pi(T;) = 2 Qi(T;). Eqs. (5.2.23), (5.2.24) give:

(5. 22]{71@ - 1) Zwa_,, = — ZZIOgDa——)i +

i€a i a€i

+> ) P(Ty)log A(T) —i—Zlogci

i AT}
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Going back to the first expression of the entropy Eq.(5.2.1), and
using Eq.(5.2.19) and Eq.(5.2.25) we get:

S = => Y PR(T)log A(T;) +

v {T3}
(5.2.26) —I—Z{na - 1) ZP ) log P, (t,)
{ta}
= Zlogcz Z;P ) log Qi(T3) +
(5.2.27) +Z - 12 E{fp ) log Pa(ta)
(5.2.28) = Zlogcl Z{tja—1 )logca — > Y log Doy

i a€l

where the constants are defined in Eqs. (5.2.4-5.2.6).

5.3. Proof of equivalence

For the LHS of Eq.(5.1.7) we have:

If hj =0 € {£1} then

(5.3.1) X}-—m = C’aéty),a

(5.3.2) Xre = [ G |1-]]Ci
bej\a bej\a

If h; = * then

(533 Xow = b CECH+ Y 4 O3 (1~ CE)
o==1

(534) xP. = J[ci'at

bej\a

Summing up both products and regrouping the LHS of Eq.(5.1.7)
reads:

(535) > 60, 11C” (1 -11 q{»*”) +o0  [[C7C)

o=+1 bej bej bej
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where Cj, for b € j \ a is evaluated here in ({hk}keb\j , tgj)) and C, is
evaluated in ,.
For the RHS of Eq.(5.1.7) we first notice that as the X?b” term includes

[.c i 0 s, e will simply replace all occurrences of tl(,j ) and s; variables
by %) and drop the outer sum and the product term itself. For instance,

the sum over {t;},c; thus reduces to a sum over {{tl(,k)} " {tgj)}}.
kEb\j

Let’s evaluate the RHS of Eq.(5.1.7) on the three possible values of t$:
If t&) = % then by Eq.(5.0.24) ngp = loe; C}~*Cit. Moreover, just
by looking at its definition Eq.(5.1.4), one finds that in x7_,, all C
terms are equal to 1 since their j coordinate t,()]) = ¢t is x. Then

Xhsp = 0,06) p, and the RHS of Eq.(5.1.7) becomes
b )

1,1 =1 1

(5.3.6) et [ e el 11 6w,

bes\a keb\j
which is exactly the term in Eq.(5.3.5) corresponding to t) = x (re-
member that Cj clauses here are evaluated in ;).
it =o€ {#1} then it is convenient to break X?b” in two addenda:
(5.3.7) 11c-]cci—

bej bej

so that the RHS of Eq.(5.1.7) becomes

C, H Zcb H Xhos | — CaCP7° H ZCble’“” H Xk—sb

bej\a \ {ts} keb\j bej\a \ {ts} keb\j
Finally, both sums can be computed explicitly and the result is again
exactly the corresponding term in Eq.(5.3.5). This ends the proof of
the identity Eq.(5.1.6).

As a short note, adding an interpolating parameter p to Eq. 5.0.22
as

Vi=(1—p) b, | [Ci7tCit + R | kel (1 _ pHCé,_a>

a€l o==£1 a€l a€i
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Gives the original k—SAT combinatorial problem for p =1 (in the
dual graph) and the LEC energy of Eq. 5.0.22 for p = 0. Corresponding
interpolating propagation equations where shown in Eqgs. 4.3.5, 4.3.6.

5.4. Clustering and whitening

In this section we will try to interpret what solutions of combinato-
rial problem defined by Eq.(5.0.23) mean in term of clusters (or groups)
of solutions of the original problem defined by Eq.(2.1.1).

We will first define a distance between two configurations s,t €
{1,*, —1}.

H(s,t) & | {i:s £t}

Clearly H reduces to the usual Hamming distance when s,t €

{—1,1}". We can now define a natural way of grouping the solutions

of F=1.

DEFINITION 5.4.1. [exact clustering] Given s € {—1,1}", the con-
nected component c(s) C {—1,1}" is the equivalence class of s in the set

F =1 for the equivalence relation generated by “s ~ t if H (s, t) = 1.

That is, c(s) is the set of all t € {—1,1}" such that there is a
path s = sg,...,sx = t with H(s;,s,41) = 1 and s, € {F =1}.
The connected component is the most natural way of “clustering” or
grouping configurations. A practical method to obtain c(t) is by
a “breath search”. build the sequence of sets C; C {—1,1}" with
Co = {t}, and Cyy; = C; U D; where D; = Usec,c,_, N (s) and
N(s) = {r: F(r) =1AH(s,r) =1}. That is, at each step we add
all nearest neighbors to the solutions already gathered. The process
stops when Cyy 1 = Cy , and then C; = ¢ (?).

We will now define the following partial ordering relation over three-
state configurations: if s,t € {—1,%,1}" we say that s < t if and
only if t; # s; implies that ¢; = *. For instance, (0,1) < (0,*) and
(1,1,1) < (1,%,%) but (0,1) £ (1,%). Then for s,t € {—1,%,1}" we
will also say that s is contained in t if s < t. In this sense, “clustering”
will mean, starting with some set S C {£1}" of solutions of the original
combinatorial problem, to find some set T' C {1, *, —1}" such that every
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s € S is contained in some ¢t € T'. Of course, one would like to do so
in some maximal way, but satisfying some kind of separation between
different clusters. We will now introduce one such methods.

Consider first the following (non-metric) “distance”

D (s, t) & it s # iy 80 # %, t; # %}
Note that if we associate to a configuration t € {—1,%,1}" the set
Ut) S {se{-1,1}" s, =t if t; # *}

then D (s,t) = H (U (s),U (t)) where H is the hamming distance in
its normal extension to sets, i.e.
H(A,B) E min{H (a,b) :ae Abec B}

Moreover, the relation s < t is equivalent to the relation U (s) C U (t).

DEFINITION 5.4.2. [clustering by hypercubes] Given s such that
F (s) = 1, the hypercubic hull h(s) € {—1,*,1}" of s for F is defined

as the unique configuration satisfying simultaneously

(1) s < h(s)
(2) for t such that F(t) =1, if t £ h(s) then D (t,h(s)) > 1
(3) h(s) <t for all t satisfying 1 and 2.

A method to obtain A (s) is as follows (and a proof that such h (s)
exists): build the finite sequence t = t® ... t*) in the following way:
take a solution s such that D (t®,s®) = 1. Then define t(+1) as
equal to t® except in the coordinate j where tg»i) # sg-i) but tg-i) # % in
which we define t;”l) = *. Iterate until no such s is found.

Clearly 1 and 2 hold for the last element in the sequence t*). Take
r also verifying 1 and 2 and suppose there is an i such that t® < r,
and take the first such i. There is a coordinate 7 such that tgi) = % and

(-1 = 5 and 079 =

ri=0,1t; i —o for some ¢ = £1. Now t(-D < r
so D (r,stY) < D (£0-1,s6"D) =1, so by condition 1 for r we have

that s~ < r but this is clearly absurd in view of coordinate J.
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The sequence tY may depend on the order in which the comparisons
are made but clearly the final element t*) = A (s) is unique, thanks to
property 3.

DEFINITION 5.4.3. Equivalence classes under the equivalence rela-
tion s & t if and only if h(s) = h(t) will be called “hypercubic hull
clustering”

LEMMA 5.4.4. If s,t belong to the same connected component of
F =1, then h(s) = h(t).

PROOF. We can assume that H (s,t) = 1. Then D (h(s),t) <1
and so t < h(s) by definition of h (s). Then h (s)satisfies the first two
conditions of the definition of A (t), so h(t) < h(s). By symmetry,
h(s) = h(t). O

By complete enumeration of solutions, we have numerically verified
that the two above methods are almost equivalent for random formulas
(see Figure 5.4.4).

One trivial observation about the set G = 1 is that solutions are
(weakly) separated, in the sense of the following proposition:

LEMMA 5.4.5. H(s,t) >1ifG(s)=G(t) =1 ands # t.

PROOF. Just by looking at Eq. (5.0.22), it is easy to see that
the terms A = [[,.,Co7'Co | B = [[,;Ce7' (1 - CZ') and C =
[Toe; (1 — CE71) CL' cannot be pairwise simultaneously 1 (i.e. they
have pairwise disjoint supports), and so the only the possible value for

variable s; is determined by which one of the three is. O

DEFINITION 5.4.6. [clustering by whitening] Given x such that
F(x) = 1, the whitening w(x) € {1,*,—1}" is the unique configu-
ration such that G (w(x)) = 1, x < w(x) and w (x) has the minimal

number of * .

We will prove that such configuration exists by building it: suppose
that G (x) = 0, Choose a V; such that V; = 0. It can be easily seen that
by replacing z; by *, then V; becomes 1 (because as F (x) = 1, we will



5.4. CLUSTERING AND WHITENING 109

have that the term [],., C»~'C%! in Eq. (5.0.22 is equal to 1). Then
we pick another violated constrain V; = 0 and repeat the process, until
G =1. As V; = 0 will continue to be 0 in the procedure, exactly until
we switch z; to , the result of the procedure is independent of the order
of the picked V; and is exactly w (x). Note that two configurations x,y
at Hamming distance H (x,y) = 1 will have w (x) = w (y) and so every
solution in a fixed connected component of the solution space will end
up inside the same “cluster”. An example of the whitening procedure for
some set of solutions is depicted in Figure 5.4.1. Numerical experiments
for pseudo-random formulas show the average logarithm of the number
of solutions of the whitening in Figure 5.4.2.

This procedure has been already used under the same name of

whitening in the context of graph coloring by G. Parisi [72].
LEMMA 5.4.7. Fors such that F (s) =1, s <h(s) < w(s)

PROOF. The first inequality is in the definition of A (s). Suppose
now there exist t such that F(t) = 1 and D (t,w (s)) = 1. Take the
coordinate 4 such that ¢, = o and w(s), = —o. But then the term
[Toe: Co7°C% in V; (w(s)) must be 1, and so w(s), = #, an absurd.
So for every t such that F (t) = 1 and D (t,w (s)) < 1 we have that
D (t,w(s)) =0,1ie t < w(s). We just proved that w (s) verifies the
second condition of the definition of h (s). As also s < w (s), we have
that w (s) satisfy also the first one, so by the minimality of h we get

h(s) < wl(s) O
LEMMA 5.4.8. If s < w (t), then w(s) < w(t).

PROOF. w (t) verifies conditions 1-2 of the definition of w (s), so
w(s) < w(t) 0

LEMMA 5.4.9. If h(s) = h(t) then w(s) = w (t)

PROOF. We have that s < h(s) = h(t) < w(t), so w(s) < w(t).
By symmetry, w (t) < w (s). O

DEFINITION 5.4.10. The equivalence relation s ~ t iif w (s) = w (t)
will define a third type of clustering.
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FIGURE 5.4.1. The hypercubic hull clustering procedure
(and coinciding whitening) from left to right: the original
sets of solutions {(—1,-1,-1),(1,1,-1)(1,1,1)} and
the set of clusters {(—1,—1,-1),(1,1,%)} in the first
(and final) step.

We have just shown three fairly natural different clusterization
methods (exact clusterization, hypercubic hull, and whitening), with
increasingly “loose” or large clusters. Trying to build from scratch a
local Hamiltonian to capture the outcomes of the whitening proce-
dure applied to the solutions of some SAT formula leads naturally to
Eq. (5.0.23).

The reader should note however that the presented definition of
clustering is far from perfect in the worst case: there is a number of
systematic errors produced by the whitening. For instance, in Fig-
ure 5.4.3 we can see one cluster claiming an incorrectly large volume.
And there is of course also another problem: unfortunately, there is
no warranty that there are no other solutions of G = 1 than the ones
of the whitening. Spurious ground states (i.e. configurations that are
not extensible to real solutions) do exist, however they turn out to
be always unstable fixed points of SP, that is UNSAT configurations
which seems to be disregarded by SP marginals. While such a result
may be expected to hold for tree-like graphs, it is somewhat surprising
to observe it numerically on small, loopy, random factor graphs. The
robustness of such result calls for a finite /V probabilistic analysis which
would represent another building brick for the rigorous analysis of SP
(of course, small ad-hoc counterexamples on improbable formulas can

be relatively easily constructed).
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FIGURE 5.4.2. Number of whitening clusters averaged
over 50 satisfiable pseudo random formulas with n = 100

Numerical work is being done to ascertain a quantification of these
two types of “errors” [19]. A preliminar result shows a notable agree-
ment even for small sizes; for 50 pseudo-random formulas at n = 75,
exact enumeration of the above definitions of clustering is presented in
Figure 5.4.4. We mention a related fact, that exact enumerations in
all analyzed cases (on a large number of small random 3-sat formulas)
showed that all the zero energy configurations of G which are stable
under SP iterations under small perturbations when evaluated as pure
measures can be extended to real solution of the original problem, giv-
ing good perspectives to further analysis.

5.5. Clustering in tree factor graphs

The argument turns out to be similar to the one given in an anal-
ogous “tutorial” appendix in ref. [10] for the Vertex Cover problem.

We will show that on a satisfiable tree with “boundary conditions”,
there is only one connected component of F = 1, and also one unique
solution of G = 1. We will define a boundary condition as a set of 1-
clauses attached to some of the leaves (forcing them to take one specific

value), so the equivalent “boundary conditions” for G are automatically
defined.
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FIGURE 5.4.3. A systematic “error” of the hypercubic
hull and then of the whitening w ((1, 1, —1)) (the dark so-
lution in the left). From left to right: the original sets of
solutions  {(1,1,-1),(1,1,1),(1,-1,1),(-1,-1,-1)}
and first step (1,1, —1), second step (1,1, ), third step
(1,%,*) and final step (x, *, *).

0.045 T T T T T

T T
LEC solutions —+—
connected components ---X---
hypercubic hulls ---%---
whitenings &

0.035

0.03 +

0.025

W Y
0.02 - -
.~
.»xx,
0015 | n .
“E!,_%\
&
0.01 + % 4
0.005 - -
O 1 1 1 1 1 1 1 1
2.6 2.8 3 3.2 34 3.6 3.8 4 4.2 4.4

o

FIGURE 5.4.4. £ = LlogN, (where NV, is the number
of clusters in all four different definitions) averaged over
50 satisfiable pseudo random formulas of size n = 100
versus the clause density & = m/n. Curves were con-
tinued up to where was computationally feasible (due
to the exponential proliferation of solutions). Although
not conclusive, the plot shows a remarkable agreement
between all four methods

We will first build a reference solution x, and then show that every
solution of F = 1 is connected to it. x will be built from the leaves to
the root. Suppose the variables are labeled in an ordering that respects
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distances to the root, such that the first ones are the leaves and the
last one is the root. In such an ordering, the children (resp. parent)
of 7 are neighbors with labels j < ¢ (resp. j > 4). We will fix x;
iteratively: once z; for j < ¢ are fixed, all children of j are fixed; then
for x; there are two possibilities: either its children force it to take
a specific value, or they don’t. In the first case we chose z; to take
the forced value; in the second one we chose the value that satisfy the
parent clause. Now we can show that x is connected with every other
solution s (and thus every two solution are connected). It is easy to see
that the configurations y*) defined by yg-k) =s; if j < k and yg-k) =z,
if 7 > k form a path of configurations connecting x and s. Clearly
vy = x and y™ = s. Also they are all solutions, since if y*) is a
solution, then clearly y*+1) is also a solution: if they are different it is
because y,(ifll) has been chosen to satisfy the parent clause (and it was
not forced from children in s and thus neither in y*+1).

We can now look for solutions of G = 1 on a satisfiable tree with
boundary conditions. Let’s start with a free-boundary tree with 2 and
3-clauses: it is easy to see that the solution with all x assignments
has G = 1. It is also clearly unique: suppose that there is a solution
with some variable set to ¢ # *. Then there is forcefully one of its
neighboring clauses in which the two (or one) remaining variables are
fixed in order to not satisfy the clause. Repeating again the argument
recursively for one of them, we can get a never-ending path of fixed
variables in the tree. But as a trees have no loops and our graph is
finite, this is a contradiction.

There is also exactly one such solutions for a satisfiable tree with
with boundary conditions. Note that V; constraints on the 7 variables
with assigned boundary values are automatically satisfied if we assign
them to the forced value. We will build it explicitly using the so-
called unit clause propagation (UCP). The UCP procedure consists in
removing (in this case starting from the boundary) every fixed variable
by (a) removing all clauses satisfied by the variable and (b) removing
the variable from all clauses in which it appears without satisfying

the clause (if the original tree is satisfiable, no 0-clause can appear
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in this erasure step). Then every possibly appearing 1-clause is taken
and its variable fixed in order to satisfy the clause, and the procedure
starts again from the beginning until no more 1-clauses show up. The
resulting graph is boundary-free and with no 1-clauses.

The promised solution will be built by taking all variables fixed by
UCP with their assigned value, and by assigning the value * to the
remaining ones. The resulting configuration £ has G(z) = 1. Clearly
the constraints V; (see Eq.(5.0.22)) are satisfied by & for all ¢ fixed
by UCP (because they are “frozen” by their neighbors). We easily see
that this partial assignment is the unique one that can give G = 1.
Using the fact that the subgraph produced by UCP has no boundary
condition and that the unique solution for G = 1 on that subgraph
is the all-* one, we see that the proposed configuration is indeed the
unique solution.

Note also that every solution of F = 1 will coincide with Z in
the —1, 1-assigned variables of the latter, because these variables were
fixed by UCP and thus are forced in every satisfying configuration.
Moreover, if one takes an index 7 such that Z; is %, then there is at
least one solution of F(s) =1 with s; = 1 (resp. —1): by fixing s; and
applying again UCP one cannot get any contradiction (i.e. a 0-clause)
because the subgraph has no loops nor 1-clauses. The remaining graph
is still loop-free, and thus trivially satisfiable.

NOTE. Section 5.4 is part of a joint work with V. Napolano and
R. Zecchina. After finishing this work, we became aware of two other
independent researchs [47, 7] on related subjects.



CHAPTER 6

Discussion

In a first part of this work we have studied the cavity method from
statistical physics for k-SAT and g¢-coloring, which is an heuristic prob-
abilistic method to obtain several statistical properties of the random
k-SAT and random g—coloring ensembles, including approximations to
the critical thresholds and average ground-state energy. We have shown
how to derive Survey Propagation (SP), a concrete new algorithm to
solve typical large instances of these two random combinatorial prob-
lems, by applying the “average case” cavity equations to single samples.
The version of SP for g-coloring and £k—SAT have been analyzed nu-
merically and shown unseen performances, in fact establishing solving
records several orders of magnitude bigger than what was possible to
solve with known solving algorithms (and to the authors knowledge,
most still “unbroken”).

In the second part we focused in SP for k-SAT. We have shown
by elementary means that these SP equations can be interpreted and
derived as belief propagation equations for the marginals over a mod-
ified combinatorial problem. An important consequence of this fact
is a clarification of the hypothesis behind the SP algorithm. It is to
be expected that the essential hypothesis making BP to work is the
un-correlation of the marginals of distant (or cavity) variables. Under
the shown mapping, this directly implies that the hypothesis behind
SP (and in a way, of its definition of clusters) is the un-correlation of
the cavity (or distant) variables over the solutions of G. In physical
terms, the frozen/unfrozen probabilities of distant variables, that is an
un-correlation among different “clusters” (we are using loosely the term
“clusters” for the solutions of G). The “pure states” hypothesis, which

115
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is claimed to be used by the cavity method [13], states that the un-
correlation between cavity fields h;_,, holds “inside pure states”. This
hypothesis in fact must be viewed as the definition of “pure state” or
cluster for a given (finite size) formula. More precisely, we define a
“pure state” « as a solution to the local equilibrium equation G = 1 of
Section 5.1; this definition is even more attractive from the mathemat-
ical point of view, as variables are not “directed” like the cavity fields
h;—.. Moreover, this definition gives a precise mathematical sense to
the expression in Eq. 3.3.5, it is simply the distribution of the random
variable h; among the solutions h of G = 1 (this space with uniform
probability). It strikes under this view that the cavity “directed” vari-
ables h;_,, are more an artifice of the method to describe the statistics
of h; (the BP equations) than inherent of the definition of clusters.
Under this light one can think of the SP procedure of obtaining
G from F as a way of collapsing the internal structure of pure states:
the resulting solution space G = 1 has many pure states but with
zero internal entropy (i.e. just one solution per cluster). Note that
this is a completely different limit case with respect to the “one pure
state” hypothesis in which BP (more precisely DBP) is assumed to
work correctly and to predict an accurate entropy (which we remind
is by definition the complexity of the original F). Both situations are
classified under the replica scheme as “replica-symmetric”. Intuitively,
collapsing (ignoring) the internal structure of clusters would reduce or
eliminate correlations among distant (or cavity) variables, making the
SP equations more accurate than the BP ones for the original problem.
Finally, it may be useful to compare the results for XOR-SAT in
Section 3.5 and k—SAT. We have seen that variables for the XOR-
SAT problem can be separated into two groups: the ones eliminated
during the leaf removal process (the non-core) and the ones remaining
(the core). Solutions can be thus grouped in “clusters™ each cluster is
formed by just one solution in the core (the “seed”) joined to a compati-
ble set of solutions in the non-core. Variables belonging to the non-core
are “free”, i.e. can be flipped and a new solution in the same cluster can
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be found by just adjusting O (1) other non-core variables. In the XOR-
SAT problem thus “free” variables play the role of h; = * variables in
the SAT problem; the difference is that in the latter which variables
are free do depend on the particular cluster, whereas in the former it
doesn’t (they are determined a priori by the topology of the graph).
The situation for £-SAT seems more likely to admit a generalization to
other problems.

As far as the connection between solutions of G and F is concerned,
things are particularly simple over tree factor graphs (see also [17]
for results concerning propagation of messages): Indeed, for any fixed
boundary condition (i.e. an assignment for the leaf variables), there is
at most one solution of G = 1, and it is easy to prove that all solutions
of 7 =1 correspond to the same connected component of the solution
space (i.e. every two solutions can be joined by a path of solutions in
which successive configurations in the path differ by exactly one spin
flip). The situation on loopy graphs (corresponding for instance to
random formulas) is obviously more complicated. Our interpretation is
that not only the recursive DBP/SP equations themselves are accurate
in a probabilistic sense (i.e. when the factorization of the corresponding
input joint probability is sound) to compute the statistics of the ground
states of G, but also that the accuracy of the interpretation of the
ground states of G in terms of clustering of the ground states of F
relies on this hypothesis being true. We have shown some preliminar
enumerative numerical results (unfortunately only for relatively small
formulas) that seems to support this hypothesis.

A second consequence of the link between SP and BP is that the SP
equations can benefit from known results about the BP ones. Most no-
tably, this result gives automatically a new algorithm based on the vari-
ational result of Thm. 4.2.6 to obtain fixed points of the SP equations.
Other extensions to BP, like the double-loop belief propagation[38] can
be also applied to SP. Both these methods ensure convergence to a fixed
point if 7 > 0 and in consequence, a “smooth approximation” to the SP
equations has automatically algorithms with guaranteed convergence.
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Finally we would like to mention some of the (in our opinion) most

important related “open problems” (which, fortunately or not, are quite

a few). We enumerate them in suspected order if increasing difficulty.

To formally generalize the connection between SP and DBP
in the case of finite y. The LEC “energy function” would take
the form H = AY", 4 Ho+ 3 ;c; Ai, where A plays the role of
the so called Parisi re-weighting parameter y [51].

To generalize this connection to other combinatorial problems.
To complete the identification between clusters of solutions of
F =1 and solutions of G = 1 for random k—SAT. We suspect
that (unlike the results already obtained) this will strongly
depend on the statistics of the ensemble.

To analyze rigorously the combinatorial problem of finding
solutions of G = 1 for random k-SAT. The cavity approach
suggests that this should be easier to analyze analytically than
the initial problem F = 1. One possible approach is to analyze
it with a (rigorously justified) RS method. Possibly the most
difficult step in this proof would be (unsurprisingly) to prove
the independence of the cavity variables.

Despite the fact that is widely known and used, there are un-
fortunately too few rigorous known results about Belief Prop-
agation when F is allowed to take the value 0: it would be
interesting to have conditions of convergence and of existence
of the fixed points and estimations of convergence times. All
these results would be of course automatically inherited by SP.
To use iteratively this method to interpret the k-RSB equa-
tions for £ > 2 in appropriate problems.

We believe that the strength of the SP algorithm itself gives enough

evidence that further study of the cavity method may be of great in-

terest for mathematicians and computer scientists, and we hope that

this work will help to motivate in this direction.
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APPENDIX A

SP with external fields and compression

(Joint work with D. Battaglia, J. Chavas and R. Zecchina)

A.1. SP with external fields

The standard SP algorithm described in Section 4.3 has proved to
be a powerful tool for the efficient determination of a truth value assign-
ment. Even in the case of large formulas very close to the SAT/UNSAT
transition point, the SP-inspired decimation is able to fix approxi-
mately 60% of the variables, producing as output a smaller and easily
solvable subproblem. This is enough when one is just interested in find-
ing at least one solution, but in many tasks the determination of a set
of several satisfying assignments, eventually distant among them, can
be required. The standard SP equations are often characterized by the
existence of a single fixed-point during each convergence step (multiple
runs with different random conditions seem to always fall in the same
fixed point) and due to the deterministic nature of SID is able then
to retrieve only one cluster of solutions for each given problem. The
algorithm must then be generalized if one is interested in driving the
decimation process toward a desired region of the space of the possible
assignments.

It is easy to modify the SP iterations in order to accept a fixed ex-
ternal probability preconditioning. Given an arbitrary configuration f
and a real number A, the original factor graph is modified connecting to
each variable node i an additional function node a; whose G,,depends
only on variable x; and injects into the system a constant new u-survey
NS s = A (s,2;) + (1 — ) 0 (s) of a predefined value. When updating
the ordinary u-surveys 7,-,;, these additional parameters 7,,_,; enter
the equations (4.3.5,4.3.6) together with all the others 7’s internal to
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the original factor graph, but they are never updated during the dec-
imation process and their value is kept constant in time. They are
simply “switched off” when the associated variable is fixed and the
factor graph accordingly simplified. The presence of the external prob-
ability conditionings tries to drive the evolution of the cavity biases
distributions toward the selection of clusters in which the variables are
maximally aligned with the externally imposed direction f.

The first remarkable effect of the introduction of an external forcing
is the increased efficiency of the decimation itself. The paramagnetic
collapse that takes place at a certain point when using the standard SP
is avoided by the continuous “stimulation” carried on by the condition-
ing nodes, and the algorithm becomes able to determine completely
a satisfying assignment without recurring to an auxiliary heuristics.
The reaction of the internal cavity fields will be able to “repair” even-
tual contradictions present in the external forcing, if the intensity A is
not too big. Indeed, if the local directions of the external forcing are
chosen randomly, a perfect alignment of the variables with the forcing
field f will violate some clauses with probability one, and the iterative
application of the zero temperature SP equations will never reach con-
vergence. On the other hand, the imposition of an external field equal
to a solution s with sufficiently large A will cause an instantaneous po-
larization of the system along the direction of s, and a perfect retrieval
of the solution s.

It is interesting to use the modified SP iterations (denoted by SP-
ext in the following) for probing the geometrical structure of the space
of ground state assignments of k-SAT. A first experiment can be per-
formed in which an external forcing f of random direction and of small
uniform intensity approximately equal to A = 0.1 is imposed. A so-
lution s¢ is typically retrieved, at a normalized Hamming distance

d (sg, ) ©ig (s¢,f) always significantly smaller than 0.5, signaling

n
a non-trivial correlation between s¢ and f. The distance d (s¢, ) will
be denoted in the following as dj, and referred as the a-priori distortion.
If the experiment is repeated with a number of different random

fields £, ..., ¥ one obtains in general £ different solutions se. If the
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selected k-SAT formula presents a clustered phase the a-priori distor-
tion d, between a solution and its corresponding forcing will be smaller
than the typical distance d; between two different solutions s¢iy and
Se(i) -

In the case of formulas extracted from the ensemble of random
k—SAT formulas, distance scale d; is approximately 0.39 (average value
of the inter-solution distance), smaller than 0.5, indicating that the re-
trieved solutions are concentrated along a preferential direction in the
configuration space. This is an effect due to the fact that for finite size n
the number of clauses b = |{a € i : J,; = o}| in which a variable ¢ ap-
pears with sign o is not always exactly identical to the number of times
b;? in which it appears with the opposite sign. The cluster distribution
is then concentrated preferentially in a hypercone centered around a
direction b individuated by the signs of the differences b —b; . An ex-
perimental value of g, extremely close to 0.5 can indeed be obtained by
choosing a random graph ensemble in which b} is kept strictly equal
to b; for every i (see Figure A.1.1). The resulting ensemble of bar-
balanced formulas has a phase diagram qualitatively similar to plain
random k-SAT, but different values of the critical a’s (for instance,
for k = 3, ag ~ 3.0 and a, = 3.4 only). The larger distance scale ¢;
accounts for a more uniform distribution of the (addressable) clusters
of solutions.

Another positive effect of the larger homogeneity, is the reduction
of the a-priori distortion d,: the more scattered the clusters, the more
likely will be to find a cluster close to any given random forcing vector.
The exact value of d, will depend anyway on the value of «; the larger
the complexity and the smaller d,, in general. We have been able until
now to obtain values of d, down to 0.2 (using fixed-variable-connectivity
formulas with & = 7), but we are confident that they can still be
considerably reduced by choosing appropriate graphs.

The distance scale dy typical of the solutions lying inside a same
cluster can be measured with a different experimental setup. One starts
determining a random solution s. At this point, a forcing f(¢) is gener-
ated by taking the solution s and flipping randomly nd of its spins. A
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Clustering of solutions for bar-balanced random formulas (N = 10000)
0.6

A=341 (-RSB) o
A=333(1-RSB) =

Hamming distance from Cluster center

0.7

Fraction of flipped spins

FIGURE A.1.1. Clustering of the solutions. Forcing the
decimation along a vector increasingly distant from a
specific solution s produces new satisfying assignments
that belongs initially to the same cluster than s. When
the Hamming distance between the forcing and s be-
comes too large, the obtained solutions “escape” from
the cluster. The difference between the f-RSB and the
1-RSB distribution of distances appears evident.

decimation is then performed imposing the resulting forcing with a not
too large intensity (7 = 0.1 in the present experiments), and retrieving
a new solution s(@,

The results of the experiments conducted over two bar-balanced
formulas with n = 10000 variables and a = 3.11 and 3.33 are shown in
Figure A.1.1.

The normalized Hamming distance between s(® and s is plotted
against d. When d is not too large it appears evident that s con-
tinues to belong to the same cluster of s. After a certain critical d,
the retrieved solution escapes from the cluster and the distance from
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s increases much faster (discontinuously when n is large enough). The
difference between a typical f-RSB geometry and a 1-RSB landscape
can be observed with astonishing clarity in Fig. A.1.1. For a formula
taken in the frozen f-RSB phase (bar-balanced ensemble, oo = 3.11), af-
ter a critical distance d, =~ 0.13, there is a continuum spectrum of inter-
solution distances between an intra-cluster distance scale dy < 0.05 and
the inter-cluster distance scale d; > 0.5. In the case of a formula in the
1-RSB stable region (bar-balanced ensemble, oo = 3.33), the transition
between dy < 0.05 and d; ~ 0.5 is much sharper and takes place around
d. ~ 0.4 (although some noise due to the tails of the distance proba-
bility distribution tail is present and causes a slight deviation from a
perfect step shape, in the case of finite samples).

An ulterior confirmation of the clustering hypothesis comes from the
analysis of the reciprocal distances between different solutions. Two so-
lutions s(9 taken from the “intra-cluster plateau” (d < d.) in Fig. A.1.1
are at a distance of the same scale of the measured dy; the distance be-
tween a solution s(® with d < d, and another one with d > d, is on the
other hand significantly larger than the scale dy (it is of scale d; in the
1-RSB case); the same happens when considering two solutions with
d > d., indicating that the “out-of-cluster” plateau is composed by so-
lutions belonging to many different clusters approximately equidistant
among them.

The capacity of the SP-ext iterations of probing, detecting and
addressing the cluster structure of the ground state space can be ex-
ploited for practical purposes. For formulas belonging to the 1-RSB
stable region, d, >> dy. This means that a solution vector corrupted
in no more than d, variable positions can still be used for addressing
the same cluster of the original solution s. An SP-ext decimation con-
ducted using the corrupted vector as forcing can then be performed in
order to produce a new vector s’ which will be only at distance dy from
the correct solution S. A careful choice of the factor graph will allow
to obtain quite remarkable solution-reconstruction capabilities.

The native cluster structure can also be exploited for realizing a

lossy data compressor.
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FIGURE A.1.2. Rate-distortion profile of a non-
optimized SP-ext lossy compressor. The cluster-
reconstruction capabilities of SP-ext are clearly shown by
the deviation form the random guessing rate-distortion
profile. Improvement in the codec performance can be
obtained by the use of the iterative doping stage.

Let us consider a random binary vector f and a given fixed factor
graph. Let impose a forcing field of moderate intensity (A¢om = 0.3 in
the present experiments) along the direction f. A solution s¢ will be
obtained, at the typical a-priori distance d, from the forcing f. Suppose
now to take as forcing a subvector ¢, composed of just the first nR
components of the solution s¢. If nR is larger than a certain critical
nR, and if the forcing A4, is sufficiently intense, a new vector s’ still
belonging to the same cluster of s¢ will be retrieved, lying consequently
at a distance of order dy from s¢. Instead of performing a complete
decimation in the decoding stage, one might just impose a really intense
forcing along ¢ (Agec = 0.95 in the present experiments) and fix all the
variables according to the ranking obtained after the first convergence.
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Because dy << d,, the reconstructed string f' will be still at a distance
from the original f comparable with the scale d,,.

The whole procedure can be considered as a lossy compression-
decompression (codec) cycle [45]. The initial forcing vector f can be
considered as a signal block emitted from a random uncorrelated binary
source, and the solution chunk ¢ plays the role of compressed block. Af-
ter the decoding stage, one retrieves finally f' as decompressed string. If
the critical compression rate R, and the a-priori distortion d, are small
enough, and if the algorithm parameters M., and Age. are carefully
tuned, one can obtain a large compression factor without having a too
large distortion after the codec-cycle. It should be noticed that this
algorithm, exploiting the built-in quantization of the solution-space,
makes use of message-passing techniques both in the compression and
in the decompression stage, differently from the case of LDPC and
Turbo codes in which algorithms analogue to BP are used only for the
decoding part [80, 77].

In Fig. A.1.2 it is possible to observe the rate-distortion curve ob-
tained for a random uncorrelated source and for a factor graph with
n = 33600, £ = 5 and a constant variable node connectivity v = 84.
It is quite unlikely that our choice represent an optimal one: in the
literature is known [46, 25] that the best code graphs are often highly
inhomogeneous in the connectivity of both the function and the vari-
able nodes, and that dramatic variation in the performance can be
obtained realizing a suitable code-graph optimization.

The theoretical Shannon Bound is reported in Fig. A.1.2 toghether
with the straight line referring to the rate-distortion profile of the trivial
random guessing; this strategy consists simply in taking the input block
f, “compressing” it by cutting out and disregarding its last (1 — R;)n
bits and reconstructing finally in a random way the missing informa-
tion bits. One can see that the rate-distortion curve of the SP-ext
codec deviates in a characteristic way from the random guessing line,

exhibiting in a clear way its peculiar cluster-reconstruction properties.
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The performance of the SP-ext codec can be considerably improved
constructing the subvector ¢ in a non random way, but selecting appro-
priately the most balanced variables. After the determination of s¢, SP
is run in absence of any external field and the most balanced variable
)) is individuated. The
spin value of this most balanced variable is then read from the solu-

(that is the one which maximizes min (H;", H;
tion sy and used both for fixing the variable and as first entry of the
compressed vector ¢. These steps are iterated until when the desired
length nR of ¢ has been reached.

There is no need to store information about the location of the
variables whose values in s¢ are written in the entries of ¢. In the de-
coding stage indeed, the determination of the most balanced variables
is repeated, obtaining exactly the same result than in the coding stage.
But during the decoding the way of fixing the variables is read sequen-
tially in the entries of the compressed string c. When the string ¢ has
been completely read, and the first nR most balanced variables have
then been fixed according to s¢, all variables left are fixed after just
one single convergence to the direction of max (H;, H;") according to
the standard SP decimation criterion.

This modification of the codec cycle is known as iterative doping.
The distortion of the reconstructed vector f’ is not particularly im-
proved but it is achieved at a considerable better rate (see the second
curve in Fig. A.1.2. We have empirically obtained a further improve-
ment, performing the iterative doping stage with the BP/SP interpo-
lating parameter p set at 0.4 (third curve in Fig. A.1.2), but we do not
have any rigorous argument for explaining this interesting behavior.

A.2. Conclusion

The SP algorithm has proven to be an extremely powerful tool for
the resolution of various random combinatorial optimization problems
presenting a clustered phase. While the proliferation of metastable
states is harmful for any local search heuristics, and the clustered dis-
tribution of the ground state seems to prevents ordinary BP from con-
vergence, the SP procedure, based from the very beginning on an ansatz
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equivalent to a 1-RSB description, can successfully determine the most
biased variables and construct a satisfying assignment by decimation.

SP-ext, an extension of SP making use of external probability con-
ditionings, allows to probe the geometrical structure of the solution
space at an exciting level of detail, confirming the theoretical scenarios
predicted in the past years. The capability of addressing and retriev-
ing specific cluster of states open the road toward the realization of a
new family of lossy compressors and associative memories, even if much
work has yet to be done in order to achieve the optimal performance
and to generalize the algorithms to make them compliant with more

realistic and useful applications.



