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Introduction

At first sight, Cosmology and Particle Physics seems to be completely unrelated
branches of Physics. Cosmology is the study of the physical properties of our Universe
seen as a whole of phenomena in space and time, while particle Physics deals with
the smallest constituents of matter and their interactions. However and despite the
fact that these two disciplines probe two different faces of our world: the biggest
and smallest, they can have contact points. The early Universe constitutes the arena
for such an interaction. Indeed our Universe’s evolution depends crucially on its

fundamental constituents and interactions.

As a consequence, the last few years witnessed an intense research activity in the
area at the interface of particle Physics and Cosmology, commonly called Astroparticle
Physics. This revival of interest is mainly motivated by the wealth of data available
from astrophysical observations on one hand, and by the lack of particle Physics
experimental data. Indeed, particle Physics models accounting for Physics beyond
the SM (such as neutrino masses) involve energies much beyond the ones reachable
by current terrestrial experiments. Thus, Cosmology is believed to provide the only
testing ground for these particle Physics models. This thesis is concerned of various
aspect of this connection, namely: Inflationary Cosmology and baryogenesis.

Inflation is by now a well-accepted and robust paradigm able to explain the struc-
ture of our Universe. Despite this fact, a unified theory is still lacking. In [1], G.
Tasinato and I have been studying the role and effect singlet tadpoles in F-term in-
flation scenarios. Generally the inflaton is required to be a SM singlet, to keep its
potential flat enough for successful inflation. Singlets generically have tadpole dia-
grams that would cancel out in the limit of exact SUSY. However since during the
inflationary era SUSY is effectively broken, there will be a non vanishing contribution
of the tadpole, that modify significantly the inflaton potential. As a consequence, the
standard F-term inflation scenario is modified. Our main result is that the presence
of singlets in a particle Physics models, besides providing natural candidates for the
inflaton field, can have interesting cosmological consequences.

Another particularly appealing link between particle Physics and Cosmology ap-
pears when one considers the generation of the Baryon Asymmetry of the Universe
(BAU). The generation of the BAU represents one of the most prominent puzzles of
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6 Introduction

not only Cosmology but also particle Physics. Any particle Physics model able to
give an answer to this question must contain three fundamental ingredients (The three
Sakharov conditions). One particularly appealing scenario is baryogenesis via leptoge-
nesis. This last exploits the fact that the standard model contains non perturbative
objects called sphalerons able to wash-out any B + L asymmetry while preserving
the orthogonal combination B — L. Therefore it is no more necessary to produce a
baryon asymmetry, it is enough to have some lepton number that will be reprocessed
into a baryon excess, thanks to sphalerons. The initial lepton asymmetry can be
produced in many ways. For instance, it can be produced by the out-of-equilibrium
decay of see-saw right-handed neutrinos (Fukugita-Y anagida) or by the formation of
a scalar condensate carrying non zero lepton number along some MSSM flat direction
(Affleck-Dine). The attraction of this scenario resides in its minimality; one just needs
right-handed neutrinos that explains elegantly the smallness of neutrino masses wrt
to other lepton and quarks, and sphalerons that are already present in the standard
model. As a consequence, the scenario gives constraints on the neutrino parameters

(masses and mixing).

Successful leptogenesis (FY) requires the presence of enough number of right
handed neutrinos. These can either be created via thermal scattering in the ther-
mal bath (thermal creation) or through resonance effects (preheating). A typical
problem plaguing thermal leptogenesis scenarios is the tension between the gravitino
overproduction bound and the condition for thermal production of right-handed neu-
trinos. Indeed, the former forces to have lower reheat temperatures Tri S 109 GeV,
while the later pushes to higher reheat temperatures Try > My 2 101 GeV. In [3],
motivated by the above, I have been studying leptogenesis at low scale i.e. when the
right-handed neutrino masses are of O(TeV), so they can be produced thermally at low
reheat temperatures. I focused on two specific leptogenesis scenarios: the Fukugita-
Yanagida scenario of out-of-equilibrium decay of right-handed (s)neutrinos and the
Affleck-Dine scenario (leptogenesis via the MSSM LH, flat direction). I found that
for the first mechanism (FY), one can achieve a sufficient amount of lepton number
provided right-handed neutrinos are degenerate. For the second mechanism (AD), I
found that successful BAU is achieved if CP violation coming from SUSY breaking

A-terms is maximal.

In leptogenesis scenarios, the amount of the asymmetry depends crucially on
the number density and production mechanism of right-handed neutrinos. If the
(s)neutrinos are generated thermally, in supersymmetric models there is limited pa-
rameter space leading to enough baryons. For this reason, several alternative mech-
anisms have been proposed. In [4], S. Davidson, M. Peloso, L. Sorbo and I discussed
the nonperturbative production of sneutrino quanta by a direct coupling to the in-

flaton. This production dominates over the corresponding creation of neutrinos, and
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it can easily (i.e. even for a rather small inflaton-sneutrino coupling) lead to a suf-
ficient baryon asymmetry. We then study the amplification of MSSM degrees of
freedom, via their coupling to the sneutrinos, during the rescattering phase which
follows the nonperturbative production. This process, which mainly influences the
(MSSM) D—flat directions, is very efficient as long as the sneutrinos quanta are in
the relativistic regime. The rapid amplification of the light degrees of freedom may
potentially lead to a gravitino problem. We estimated the gravitino production by
means of a perturbative calculation, discussing the regime in which we expect it to

be reliable.







Chapter 1

Standard Cosmology: Overview

1.1 Observational facts about our Universe

Much of what we know about our Universe comes from light emitted from distant
objects. Progress in spectroscopy, atomic and nuclear Physics has been crucial in
probing it at different wave lengths. During the last decade, our understanding of the
Universe changed dramatically. Many of its unexpected properties have been discov-
ered as the technological means used to probe it began to be more and more accurate.
In particular, various experiments probing the cosmic microwave background radia-
tion (Boomerang, Maxima, Dasi, COBE, WMAP) made available a new wealth of
data, that opened a new era in Cosmology: The precision era. On the theoretical
front, significant progress have been done in modeling our Universe’s properties. As
the cosmological parameters are being measured with increasing accuracy, the task
of theorists became harder. It switched from explaining a behavior (like expansion,
acceleration,...) into explaining the precise value of the parameters, starting from
first principles. This constitutes one of the most embarrassing points of contact be-
tween Cosmology and Particle Physics. Despite all this, there exist some good point
of contact between these two (Big bang nucleosynthesis for e.g.). In this section, we
will summarize the state-of-affairs of our Universe from the observational stand point,
enumerating its most known properties. Then we will give an overview of Standard
Big Bang Cosmology and its shortcomings. Finally, we will give a brief survey of

slow-roll inflation.

1.1.1 The expansion

The basic feature of our Universe is that it is expanding. This was established long
ago in 1929 by Edwin Hubble, who found a correlation between the recession velocity
v and distance 7 of a sample of nearby galaxies. This correlation take the form of the

9



10 1. Standard Cosmology: Overview

commonly known Hubble law
v=HT, (1.1)

where H is the Hubble parameter, describes the expansion rate. The most recent and

accurate value for the Hubble constant is [133]
H, = 100 h km sec”"Mpec ™', h=0.72 +0.02 & 0.07. (1.2)

As a consequence, light emitted by distant objects (supernovae, galaxies ...) is red
shifted i.e. its wave length X is stretched by the expansion. To quantify this phe-
nomenon, we define the cosmological red-shift z as

1+z= /\Obs.

(1.3)

)‘emit

In an (adiabatically) expanding FRW Universe with scale factor a(t) (See Sect. 1.2),
Eqt.(1.3) can be written as

a(tobs) o Ternit

14+2z= = .
af(temit) Tobs

(1.4)

So the more objects are distant, bigger is their red shift. Since the scale factor is an
increasing function of time, objects with high red shifts probe early moments of the

evolution of our Universe.

1.1.2 The acceleration

Recent measurements showed, contrary to the expectation, that our Universe is un-
dergoing an accelerating expansion. Indeed, gravity is expected to take over the
expansion at a certain (late) time. This observation, confirmed independently by
two groups [131, 132], is based on considerations made on high red shifts supernovae.
Said more precisely, these analyzes concluded that high red shifts supernovae appear
fainter than expected for a slowing down (decelerating) expansion. These observations
made theorists think that the Universe is now dominated by a mysterious substance
with strange properties (repellent interactions and non clustering). There exist two

candidates for such a substance: dark energy and quintessence.

1.1.3 The Cosmic Microwave Background Radiation

The cosmic microwave background (CMBR) that we observe today represents an in-
stantaneous snap-shot of our Universe when it was 300,000 years old. It was produced
when photons decoupled from the other components of the hot plasma. Starting from
the surface of last scattering, CMBR photons streamed almost freely, and arrived to us
unaltered. They are characterized by a black body spectrum of temperature 7' >~ 2.73
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K with fluctuations of one part of 10°. Thus the studying the CMBR, one can extract
a huge amount of informations about our Universe at its childhood. The CMBR tells
us two things. The first is that our Universe is extremely homogeneous and isotropic
on large scales, say at distances bigger that 100 Mpc. Of course, the distribution of
matter on smaller scales is lumpy, as structures starting from clusters, superclusters,
galaxies, the solar system, stars and planet are known to exist. The second thing
is that at the time of decoupling, at smaller (angular) scales, there existed density
perturbations, which grew to provide the seed for structure formation. Any model
of the early Universe Physics should accommodate these two seemingly contradictory
facts.

1.1.4 The cosmic mass energy budget

Combining data coming from various measurements (For a review see [135]), we
are able to reconstruct the cosmic mass energy budget i.e. the detailed balance of
the universe components that are: matter which includes ordinary matter (photons,
baryons and neutrinos) and dark matter, and possibly other exotic stuff. It turns
~out, as one can see from Fig (1.1.4) that ordinary matter only constitutes a small
fraction of the energy density of the universe and the major part of it is in the form
of dark energy. Because the different components of the mass/energy budget evolve
differently, the composition changes with time. For example, at very early times,
photons and other relativistic particles were the dominant component; from 10,000

years until a few billion years ago, matter was the dominant component, and in the

Matter and Energy in the
Universe: A Strange Recipe

Neutrinos: 0.1% — 5%

b CMB: 0.01%

Baryons: 4 +1%

Cold Dark Matter:
29 + 4%

(3
=

Dark Energy: 67+ 6

Figure 1.1: The cosmic matter/energy budget (cosmic pie). (From [134])




12 1. Standard Cosmology: Overview

future dark energy will be the dominant component.

1.2 The Friedmann-Robertson-Walker Universe

As we have seen in the previous section, astronomical observations indicate that our
Universe is highly homogeneous and isotropic. Therefore, it can be described by a
homogeneous and isotropic metric. Standard Cosmology is based on the FRW metric
which is given by

dr?
1 — kr?

ds? = dt* — a(t)? { + 7% (d6® + sin” 9d¢2)} (1.5)

where a(t) is the scale factor, ¢ is the cosmic time. The coordinate system (¢, r,
0, ¢) is called co-moving coordinates. The FRW metric describes a homogeneous,
isotropic Universe, with a constant curvature k& = 0,£1. The Einstein equation,

including a cosmological constant A
1
Gu =Ry — éRgW =87GNT + Mg (1.6)

can be cast in the following form !

a\? 87G E A
() = "5 ary a-7)
d d
g% (pas) st —p-c'i% (aB) . (18)

where the energy-momentum tensor was taken as (with the same symmetry of the
metric) T, = diag(p,p,p,p), where p and p represent the energy density and the
pressure respectively. These equations are at the basis of Standard big bang model.
If p(a) is known, one can solve for the scale factor a(t). More generally, for a fluid

with equation of state p = wp we find that
p o~ a 30T, (1.9)

If w # —1, and neglecting the curvature contribution and cosmological constant, we

can solve for the scale factor giving
a(t) ~ 3 (1.10)

For example, at early times when the Universe is taught to be radiation dominated
(RD) so that p ~ a™*, then
a(t) ~ 172, (1.11)

1Dots refer to derivative with respect to time.
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Similarly, for matter dominated (MD) Universe, where p ~ a3 one finds
a(t) ~ t*/3 (1.12)

The transition between radiation dominated to matter dominated occurs when p.q =
Pmatters t.e. T ~ few 103 K.

For a Universe dominated by a cosmological constant (w = —1), p ~ A and

a~exp+/A/3t. (1.13)

In the absence of a cosmological constant, one can define a critical energy density

pe given by
3H?

— . 1.14
p 87TGN ( )

The Friedmann equation can be written as

k p

Q—1=——, Q=-—. 1.15
a2 H?2 De ( )

From the above equation, we see clearly how the Universe energy content determines
its geometry. If the energy density is greater (smaller) that p, then the universe is
positively (negatively). In the special case where the energy density is exactly the
critical one, the spatial geometry is flat. Let’s note that in this case, that k = 0 is
an unstable solution, in the sense that if the energy density decrease or increases by
a small amount, the universe will goes inevitably into a phase of k = +1 i.e. expand
forever or recollapses. We will be back to this issue when talking about the flatness

problem.

1.3 Problems of standard Cosmology

Despite the success of standard Cosmology in explaining the large-scale isotropy and

homogeneity, it fails in giving answers to three basic questions.

1.3.1 The horizon problem

As we have seen in Sect. (1.1.3), the CMBR seen in the sky have a uniform temper-
ature with tiny fluctuations of one part in 10°. The horizon problem lies in the fact
that regions in our universe that could not talk to each other in the past have the same
temperature. To illustrate the problem, let us estimate the horizon sizes between the
recombination time up to now. The CMBR photons we observe today have decoupled
since recombination at Tge. ~ 4000 K. At that time, the horizon volume was simply
Vidgee < tﬁec, where tqe. 1S the age of the Universe at Tye.. Our present horizon volume
is Vo o 3, where t; is the age of the Universe right now. Then tge = to(To/Ttec),
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where Ty ~ 2.7 K is the temperature of the CMBR. We can now compare between
Viee and V4. The ratio

w

/.
Vace _ (T““> ~ 5 x 10 (1.16)

™

Vo To

shows clearly that there was approximately 10° causally disconnected regions at the

recombination that now appear to have the same temperature to a high accuracy.

1.3.2 Unwanted relics: The monopole problem

The standard model of strong and electroweak interactions describes successfully all
(almost) particle phenomena in our world. At very early times, when the temperature
was close to the Planck mass, particle interactions are believed to be described by a
Grand Unified Theory (GUT) (For a review see [136]). As the expansion goes, the
temperature decrease will trigger a phase transition, where the GUT gauge group is
broken down to the standard model one. This breaking will, by the Kibble mechanism
[137], generate topological defects: cosmic strings, magnetic monopoles and domain
walls, depending on topological considerations. Magnetic monopoles along with pro-
ton decay constitutes the most striking imprints of GUTs. Our Universe, as observed
today, seem to be free of such relics otherwise they would affect drastically its evo-
lution. This is the essence of the monopole problem. One can estimate how many
monopole have been created during the thermal phase transition. According to Kib-
ble, there can be at least one monopole per horizon volume. The horizon size £y scales
as H~!. Furthermore, in a radiation dominated era, the Hubble rate goes as 7%/Mp,
where Mp stands for the reduced Planck scale, namely Mp = /871Gy ~ 2.4 x 108
GeV. Assuming that the phase transition occurs at Tp ~ Mg ~ 10 GeV, one

obtains

Npg Mg ’ —9
~|—] ~107". 1.17

The overall mass density of th Universe can be used to place a constraint on the

density of monopoles. For my; ~ Mg/agur ~ 10 GeV and Q7% < 1 we get

ML < 9%, (1.18)
S

~

From the above, we see that the estimate (1.17) overweights the bound (1.18) by

several orders of magnitude. Clearly there is a monopole problem.

1.3.3 The flatness problem

Observations reveals that the value of 2 is very close to one, in other words that our

universe is spatially flat. However, as we mentioned in Sect(1.2), the & = 0 point is
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unstable. To see this, we rewrite (1.15) as

2(143w)

oc k¢ 30F9) (1.19)

QO-1=

H22
where w= 0, (1/3) for MD (RD). Eqt (1.19) tells us that, since |2 —1| is an increasing
function of time, if the present universe is so close to be flat, it have to be more flat
at early times. So it must be incredibly fine tuned. The question is how come the
energy density in our Universe is so close to the critical one? This is the flatness
problem. We will see in Sect(1.4) how inflation will be able to address this problem.

1.4 Inflationary Cosmology

All the problems discussed above can be resolved if the Universe underwent a period
where the scale factor grew exponentially (inflated) and very fast [1]. During this
inflationary era, the scale factor expands at a rate greater that velocity of light, and
so it will put in contact regions that were causally disconnected in the past, giving
thus a clear answer to the horizon problem. Similarly, the monopole relic density is
diluted by the expansion. Finally, as the universe radius grows, it will become more
and more flat. Obviously, inflation does not change the global geometry of the space,
it will just make it look more flat locally. We will quantify these statements later on.

The simplest way to make the Universe expand is to let a cosmological constant
dzjminate it. However, as can be seen from (1.13), such a A-dominated universe would
expand forever at a constant rate. So inflation never ends furthermore there will be
an unacceptably high cosmological constant. The most economical way to circumvent
this is to consider a scalar field whose potential energy serves as an effective cosmo-
logical constant that drives the expansion. This scalar field ¢, coined inflaton must
evolve slowly from a non-vanishing value of its potential down to a global minimum

where the potential vanishes.

1.4.1 The slow-roll paradigm

Let us consider a scalar field ¢ (inflaton) in a FRW space with action given by

o= / d's =g L = / d'sy/=g E% 96+ V(9) (1.20)

Neglecting the spatial gradient of the inflaton, the motion of the inflaton will be
governed by the equation
¢-+3H¢+V'(¢) =0, (1.21)

obtained from minimizing the action (1.20) with respect to ¢. The non-vanishing

components of the energy-momentum tensor, representing the inflaton pressure and
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energy density, can be readily computed

Too = py= % +V(o), (1.22)
T, = =2 V(o) (1.23)

In order to obtain expansion, the kinetic energy of the inflaton must be negligible
wrt its potential energy. Similarly, one expect that the second time derivative of the
inflaton in (1.21) to be negligible too. These requirement translates into the following
slow-roll conditions

_ MRV 1
2 V € = p -
(Slow-roll) Inflation = ¢.- < = 2 V,, (1.24)
3Hp < V' _ (VY
n = Mp v <1

where € and 1 quantify the motion of the inflaton. They are known as the slow-
roll parameters. The slow-roll paradigm makes the analysis of inflationary dynamics
straightforward. One picks a potential V' (¢), then compute the slow-roll parameters,
and look for the corresponding values of the inflaton field, namely ¢; and ¢;. The
initial value is the one where the slow-roll conditions are satisfied, while the final one
corresponds to its break-down. The number of e-folds, which characterize the amount

of inflation can be easily calculated in the slow-roll approximation, it is

N(¢i — ¢5) = log {2((2))} = t.f H dt (1.25)

To solve the cosmological problems, N must be bigger that 60.

1.4.2 Inflation and density perturbations

A complete description of the Universe should include a description of deviations from
homogeneity, at least in a statistical way. Originally, inflation has been devised to
address the three standard cosmological problems (See Sect(1.3)). It was only after-
wards that it was realized that inflation could generate density perturbations as well,
which is very important for the formation of structures we see. The mechanism for
structure formation is very simple; it is based on the attractive property of the grav-
itational force, that amplifies the primordial perturbations created by the inflaton.
This affirmed inflation as a robust paradigm, even if til now a standard model is still
lacking.

In the following, we give a brief survey of the theory of cosmological perturbations.
More details can be found in excellent reviews (See for e.g [127, 128]). In our slow-roll
analysis above, we considered the inflaton as a classical field. In general, we can write
the inflaton field as

Blt) = do(t) + 66(x, 1), (1.26)
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e e

= =
¢ (inflaton) ¢ (inflaton) ¢ (inflaton)
Large field models Small fields models Hybrid models

Figure 1.2: Classification of Inflationary potentials [140].

where ¢ () is the classical value, and §¢(x, t) is its quantum fluctuation. This is com-
pletely justified since its quantum fluctuation is negligible wrt to the classical value.
Inflation generates perturbations through the amplification of quantum fluctuations,
which are stretched to astrophysical scales by the rapid expansion. The simplest
models generate two types, density perturbations which come from fluctuations in
the scalar field and its corresponding scalar metric perturbation, and gravitational
waves which are tensor metric fluctuations. The former experiences gravitational in-
stability and leads to structure formation, while the latter can influence the cosmic
microwave background anisotropies. Using the slow-roll approximation, one can com-
pute the spectral indices of such perturbations, which are of two kinds: scalar and

tensor. They are defined as
ng~1—6e+2n ; np~—2. (1.27)

From the above equations, it is clear that slow-roll inflation generically predicts a flat
spectrum z.e. n, ~ 1 and practically no gravitational waves. These quantities (and
other) constitute smoking guns of inflationary models. As the precision in cosmologi-
cal data is improved, it will be possible to pin down the exact form of the inflationary
potential. To this end, a classification scheme have to be devised to distinguish the
different types of models.

1.4.3 Models of inflation

In Cosmology, the word model deserves a different meaning from its counterpart in
particle Physics. While in particle Physics, it means a minimal set of choices that
stem from first principles (gauge invariance for e.g.) and consistency requirement
(renormalization for e.g.), in inflationary Cosmology it just means inflaton potential.
Much work has been devoted to the construction of inflation models motivated by
particle Physics consideration (See for e.g. [4, 9, 8]). This generally proved to be a
quite difficult task.

To classify inflationary models, one can begin by counting the fields entering
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the potential. In its first and simplest version, inflation have been attributed to the
dynamics of a single scalar field. These models are called single-field models. However,
nothing forbids the potential to contain more that one inflaton. Hybrid models where
inflation is due to the dynamics of a coupled system of two or more fields have been
widely studied. They constitute the prototype of particle Physics motivated models.
Restricting to single field models, one can refine the classification according to the
shape of the potential [140]. Figures 1.4.3 show schematically the different patterns
of the potentials (See [140] for details). Large fields models have potentials of the
chaotic type (V(¢) = m2¢? or \¢*) where the inflaton starts displaced from its
minimum ¢ > Mp, probably due to quantum gravity effects, rolls towards the origin.
On the contrary, in small fields models, the inflaton rolls from an unstable local
minimum located at the origin to a stable one. This kind of potential arises typically
in models with spontaneously broken symmetries. On the other hand, hybrid models
possess a (false vacuum) minimum with non zero potential. They arise typically in

supersymmetry and supergravity models (See Appendix C for a brief review).



Chapter 2

Universal Singlets, Supergravity

and Inflation

In supersymmetric theories, the occurrence of universal singlets is a delicate issue,
because they usually induce tadpoles that destabilize the hierarchy. We study the
effects of these tadpoles in supersymmetric hybrid inflation models. The resulting
scenario is generically modified, but it is still possible to achieve inflation in a natural
way. It is argued that singlets, despite the problems associated with their presence,

can lead to interesting cosmological consequences.

2.1 Introduction

In Particle Physics, the introduction of singlet fields has been invoked in many models
to solve various problems. This is done for instance in the Standard Model to give
masses to neutrinos with the see-saw mechanism, or in the so called NMSSM for other
purposes. In other cases, their presence is actually unavoidable, like in theories that
require compactification from higher dimensions. However, it has been pointed out
that the presence of these fields induces generically new quadratic divergences at one
(or more) loop(s), in particular tadpoles (terms linear in the singlet) that destabilize
dramatically the hierarchy [13, 15, 16]. Some efforts have been done to show how
to 'tame’ these divergences in supergravity, exploiting them to solve some notorious
problems [18, 19].

Also in Cosmology, singlets have been shown to be very useful. For example,
it was pointed out that singlets can be useful to provide a strong first order phase
transition essential for a successful baryogenesis in the NMSSM [23]. In some infla-
tionary models their presence, even if less stressed, is required. However, the tadpole
contributions have never been taken into account in the cosmological context. Due
to their particular properties, singlets are sensitive to the Planck scale physics. Since
Cosmology is the study of the early stages of the universe (just after the Planck era),

19
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it is perfectly legitimate to ask whether their presence lead to some consequences.
In this chapter, we will consider the modifications required by the presence of these

tadpoles in the hybrid inflationary scenario.

By now, it is well established that the inflationary paradigm provides a successtul
and elegant solution to three essential questions of standard Cosmology: the horizon,
the flatness and the monopole problem[1, 2]. It is also widely hoped that successful
inflationary models could emerge naturally from pure Particle Physics considerations
[3, 4], in the sense that any consistent particle model may have a built-in sector
that ensures inflation. Supersymmetric hybrid inflation models appear to be the
most promising to achieve this task. Such models (and their extensions) have been
constructed and studied extensively [5]. Typically, they are based on superpotentials
of the form Wingation = £S(®® — p?), where & is a dimensionless coupling constant,
S is a singlet superfield and @, ® are superfields that are conjugate under some non
trivial representation of a group G. At a certain time, inflation is dominated by the
F-term of the singlet field (Vy = p*), and this explains the presence of the linear
term in the previous superpotential. Usually ® and d are taken to be the Higgs
fields that break the GUT gauge symmetry so that p ~ Mgaur. The resulting scalar
potential is the prototype of hybrid inflation [6] except for the mass term for S,
which is essential to drive the inflaton to its minimum. Such a slope can however be
generated, independently from soft breaking mass terms, by the one loop corrections
to the scalar potential along the inflationary trajectory [8]. This model succeed
in reproducing the correct values of density perturbation and the spectral index at
the price of a small coupling constant (x ~ 1072 — 107*). The generic problem of
inflationary models is the stability of the potential. In other words: how to keep
the inflaton potential flat enough to achieve successful inflation? Generally, without
D-term contribution, supergravity gives new terms to the effective potential of the
inflaton that usually destroy the flatness of the potential. However, it is argued
that these corrections can be brought under control via a judicious choice of the
Kahler potential and the superpotential [11, 5]. Models of inflation in which D-term
contributions are considered have been studied [7], showing that it is possible to evade

the problems associated with supergravity corrections (See however [24]).

As we have seen, many characteristics of supersymmetric models have been largely
used in building inflation models. In fact, the singlet nature of the inflaton is a crucial
feature, since it protects it from acquiring a too large mass, that will ruin inflation.
However, the particular properties of singlets have not been explored yet in inflation,
and this is the main purpose of this chapter, at least in a specific example. We will
see, in a particular model, that the presence of singlet fields provide a Particle Physics
realization of a specific version of hybrid inflation, the so called mutated hybrid in-

flation [12]. The chapter is organized as follows. In Section 2.2, we briefly review the
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properties of singlets in supergravity. In Section 2.3, we will focus our discussion on
the case of the superpotential of supersymmetric hybrid inflation, showing that the
presence of tadpoles generically changes the scalar potential that drives inflation. In
Section 2.4, without analyzing in full details the consequences of these modifications,
we notice that, in a certain regime, the modified scalar potential can provide a real-
ization of the mutated hybrid inflation scenario. Section 2.4 is devoted to the study
of the stability of the potential under one-loop and supergravity corrections. Finally,
in Section 2.6, we give our conclusions.

2.2  Universal Singlets in Supergravity

In Particle Physics models, universal singlets are fields that do not transform un-
der any gauge symmetry of the Lagrangian. Therefore, roughly speaking, in non
supersymmetric models containing a scalar singlet field s, nothing will forbid the ap-
pearance in the Lagrangian of terms such as aA®s + bA25% + cAs® + h.c. with a, b,
¢ ~ O(1). Moreover, the natural value for A is M p', so singlets will get masses and
vev’s of O(Mp). If not coupled to light fields, they will decouple from the low energy
theory. Instead, if they are coupled to light fields, they will communicate to them
their large vev, destabilizing dramatically the hierarchy.

One could think that invoking supersymmetry will ameliorate the things, but the
situation remains the same also in SUSY models [13]. Indeed, it has been shown
that, if a supergravity model contains singlets, they can destabilize the mass hierar-
chy, introducing new quadratic contributions coming from tadpoles [15, 16]. These
new quadratic terms have been used to communicate supersymmetry breaking in a
particular way [17], to generate the GUT scale [18] and to solve the p-problem [19]
(See also [20] for an early attempt).

For concreteness, let us consider a supersymmetric model with a visible sector
containing an universal singlet superfield S = s -+ 6?F,, and a hidden sector, whose
fields are denoted generically with ¥ = o + 0%Fy, responsible for supersymmetry
breaking. Following [17], tadpoles arise due to terms like

0K = |14 ——(S + s1)| £t (2.1)

Mp
in the Kédhler potential. The higher order term, proportional to ¢, 1s allowed by all the
gauge symmetries, and it is generically present in the Kihler potential just because
S'is a universal singlet.

1Th]roughout the paper, Mp stands for the reduced Planck scale, namely Mp = Mpianck /8T ~
2.4 x 1018 GeV.
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The low-energy Lagrangian contains the following D-term contribution [17] 2
Lp= / d20d%0 <IME K, (2.2)

where K here is the Kéhler potential written in terms of superfields. After integrating
out the hidden fields, the effective potential coming from the tadpole is given by

17, 18]
4

M
AViadpole = Wfi(s + s + (afF, M} +h.c.) (2.3)

where a is a parameter (See [18, 19]) related to the SUSY breaking in the hidden
sector, and 3 and 7 are loop factors that are less than one. The mass My stands
for the scale of breaking of supersymmetry in the hidden sector, i.e. AFy) = M]:Z.
The loop factors and a will be an essential ingredient for our discussion®. They
are related to ¢, to the number of hidden fields and to the detailed structure of the
Kihler potential; their typical value is in the range O(1 —107%). In the usual gravity
mediated supersymmetry breaking models, one arranges for MJ% ~ mg/sMp, where
the “gravitino mass” is chosen ma/2 O(TeV), to solve the hierarchy problem.

The full scalar potential will include, in addition to standard terms, the tadpole
contribution (cf. Bq. (2.3)). In terms of auxiliary field Fg it reads [18]

as

Since the auxiliary fields Fy are non dynamical, they can be eliminated using their

.
Vi, = (faM2Fs +h.c.) — | Fs|* - <FSQK‘_ N h.c.> | 2.0

equation of motion *

ow 9
ST :—53,—+045]V[f. (25)
At this point, to continue the discussion, we must consider a specific form of the
superpotential. In the next sectlon, we will consider the typical superpotential for

supersymmetric hybrid inflation.

2.3 The model

Within the model of the previous section, let us plug in the superpotential of super-

symmetric hybrid inflation 1.e.

Wintlation = S (2D — 11%). (2.6)

2The expression (2.2) comes from a full supergravity computation, see [15, 16] for more details.

3The values of v, 8 and 7 are model-dependent. We consider them as free parameters in their
respective allowed range.

4Notice the presence of the extra piece in the F-term of s, which is due to the tadpole; the effect
of the tadpole is to shift the vev of Fig by the amount afM f
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% is a dimensionless coupling constant, S is the singlet chiral superfield, while ® and
® are chiral superfields, belonging to the visible sector, that are conjugate under a
non trivial representation of some group G. One can always impose an appropriate
R-symmetry ° such that the superpotential (2.6) is the most general renormalizable
one. We do not specify the form of the superpotential for the hidden sector.

At tree level, the scalar potential is readily computed. It is

Ve, @,8) = 5*lop — 12> + 2[s*(|o]? + |@]?) + D—terms. (2.7)

where s, ¢ and @ are the scalar components of S, @ and . We will restrict
ourselves to the D-flat direction |p| = |@|. Minimizing the potential, one finds that
there are two sets of minima. The first is the supersymmetric one, it is located at
| = p and s = 0. The second one breaks SUSY, for s > se = p and |p| = 0.
Inflation in this scenario proceeds by assuming chaotic initial conditions for the fields
s and ¢. That is, the inflaton field s rolls from s > s, towards the true minimum
(s = 0), while the "auxiliary” field ¢ is held at the origin. The universe undergoes
an exponential expansion phase (inflation) since its energy density is then dominated
by the false vacuum one (V' = x?u*). But this will not last forever; as soon as s
reéxches the critical value s, all the fields rapidly adjust to their SUSY vacuum values
restoring supersymmetry, and inflation finishes.
Let us include the tadpole contributions to the scalar potential. Using Eqts. (2.4)
and (2.5), one obtains the scalar potential as a function of the two fields @ and s

M}
V= a25211/[;5+7ﬁ(8+§)+2/<;2]$|2]g0[2—Z/saﬁj\/fo(|g0|2—u2)+f@2(]90[2—u2)2. (2.8)

Clearly, due to the presence of the linear term in s, the minimum for s is no more at

the origin, but it is now given by

7]\/[}1
T 2k2Mplpl?

The supersymmetric minimum is recovered when v = 0. This corresponds to

(2.9)

choose ¢ exactly zero in the expression of the Kihler potential (2.1). However, a
priori, we have no obvious reason to enforce it to this value.

The result is that the values of s and || are now correlated, and while s rolls down
along the inflationary trajectory, ¢ moves away from the origin. The usual scenario
for hybrid inflation is modified, but the new characteristics of the model can still be
used in an inflationary context. For simplicity, we will set the scale y to zero in the
scalar potential. The scale My, in our case, can take any value below the Planck scale
(M; < Mp), since we do not aim to provide a phenomenologically acceptable scenario

SThese symmetries are global, they are likely to be broken by gravitational interactions, so at
the end S will not carry any quantum number.
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for supersymmetry breaking. We imagine that this is achieved by some other sector
of the model.

The resulting potential, with o set to zero, looks similar to another realization
of hybrid inflation, the mutated hybrid inflation. Indeed, some years ago, Stewart
proposed a new version of hybrid inflation based on a potential of the form [12]

. Y A2 o
/ = —— — =

V(g,$) = Vo (1 ) +5v7e (2.10)

The inflationary trajectory is obtained by minimizing on 1. Along this trajectory,
both 1 and ¢ roll. The potential, as a function of p, reads

, Vo
= - 2.
v 1 ) (2.11)

Stewart argued that such a potential can arise from an effective superpotential due
to non perturbative effects such as gaugino condensation. In the next two sections,
we will see that the addition of singlet tadpoles will provide a new particle physics

motivation to this model.

2.4 Inflating with tadpoles

Let us proceed to analyze our potential. Minimizing with respect to s, we end with
the scalar potential for the inflaton field ¢
VM5
2k2a2 32| |2 M3

V=M f? (1 > + 12|t = ka MG + o) (2.12)
The potential (2.12) looks very similar to the one of mutated hybrid inflation, except

for the two last terms. In order to ignore them we must impose

1/2
£ (_53) ; (2.13)

K

where we have defined ¢ = M. Furthermore their first and second derivatives must
also be negligible with respect to the derivatives of the first term that is supposed to

drive inflation. These requirements translate into the following condition

LN 1/3
My
. 2.14
K (KPMP> (2.14)

To satisfy the slow roll conditions

"

M? 14
=- 71 < 1, (2.15)

£ =
2

A%
(?) <1 and |n| = M7
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we must have

£> <§L) 1/2. (2.16)

ak
The number of e-folds is given by

1 Vo1, /Bar\?
N=_-"_ — o~ et ) 2.1
M}%/de’ 1 < v > (2.17)

The COBE density perturbation normalization corresponds to

V3/2 )12 M
~ 2VON3/A [ L 20 L) =6 x 107 2.1
Mp3V V2 <7> (ap) My 6 x 1077, (2.18)
and for N = 60, we obtain the following expression for A/ ¥
12 Mp
My ~ 1075 (1) P 2.19
1077 (= )T (2.19)

As in the usual mutated hybrid inflation [12], the spectral index of density perturba-
tions is given by

3
ngs~1—6e+2np>~1-—— (2.20)

2N’
For N ~ 60, it gives n ~ 0.975.
Combining Eqts. (2.19), (2.14) and (2.16) one ends with

K< 107°, (2.21)

This constraint is not surprising. In fact the smallness of the coupling constant « is
a typical prediction of hybrid inflation models [5].
Eventually, combining Eqts.(2.17) and (2.19), we obtain

My ~ 10*55%./\/113. (2.22)
To achieve inflation, the parameters of the model must obey various constraints.
However, it is possible to fulfill them in a natural way. As an example, we take o
and f to their maximal value i.e. @, 3 ~ 1: this choice allows to avoid fine tuning
for the other parameters. Taking x ~ 1075, one can consider the loop factor v in the
allowed range v ~ 10~! — 10~4. Consequently, the range for £ is 10 < £ < 10%. We
get a scale of SUSY breaking of the order My >~ 10" — 10'7 GeV, and the lower one
(My =~ 10" GeV) is the typical scale for a model of mutated hybrid inflation.
Usually, inflation finishes when the slow roll conditions are no more valid. This
happens generally before the inflaton reaches the true minimum. There the inflaton
begins oscillating coherently reheating the universe. Also in our model, the inflation
ends when the slow roll conditions, represented by formula (2.16), break down. Actu-
ally, the inflaton field energy lies between the two scales given by equations (2.16) and
(2.14): this means that nor the inflaton ¢ nor the singlet s reach the true minimum
of the scalar potential at the end of inflation.
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2.5 Stability of the potential

The tree level scalar potential usually receives corrections due to loop effects and
to supergravity contributions. Such corrections, in our case 6 are dangerous be-
cause they can destabilize the inflationary trajectory. The one-loop corrections, as
in usual superymmetric theories, depend on the mass splitting between the members
of the supermultiplet, induced by the supersymmetry breaking. More precisely, the
Coleman-Weinberg one-loop effective potential [21] shows that these corrections are
proportional to the fourth power of the mass splitting. In our case, it is easy to see
that this quantity, being proportional to the tiny coupling constant & (See Eq. (2.21),
is small enough to render these corrections negligible during the inflationary era.

Unfortunately, the situation with supergravity corrections is much more delicate.
Although tadpole contributions, which are an essential ingredient for our model, come
from a D-term, our scenario is actually an F-term inflationary one. Consequently
the scalar potential receives the usual supergravity corrections to F-terms.

As clearly explained in [11], these corrections are generically non negligible 7, and
one should expect new contributions to the scalar potential in Fq. (2.8), proportional
to Mj(lel* + |5|2)/M%. In our case, due to the fact that the scale M is so large,
these corrections are potentially important. Hopefully, other contributions, in a more
refined version of our model, would cancel or keep under control such dangerous terms.
However we will not consider this issue since it is out of the scope of the paper (See
[25, 26, 27] for interesting ideas in this direction).

2.6 Conclusions

The presence of singlets in supergravity 1s a problematic issue, because they usually
destabilize the hierarchy. Only in the past few years, it has been realized that their
properties can provide interesting phenomenological models in Particle Physics [22].
Singlet fields, in the past, have also been used in Cosmology. For example, it was
pointed out in [23] that singlets can he useful to provide a strong first order phase
transition essential for a successful baryogenesis in the NMSSM, and moreover they
are extensively used in inflationary models.

In this chapter, we have shown that these fields can have other cosmological
applications, and in a supergravity framework. Indeed, we have shown that due

to the presence of the tadpole contributions, the usual hybrid inflation scenario is

61y some models, these corrections are actively used to drive inflation (see as an example [14]),

but we will not consider this possibility.
TUnless some fine tuning in the Kéhler potential is made either by choosing the arbitrary Kahler

couplings to be very small [5] or by choosing a specific form of the Kéhler potential (and the
superpotential), that can be ascribed for example to superstrings constructions [11].
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generically modified. We point out that it is possible to use singlet tadpoles in a
simple way to provide a new realization for a different scenario of hybrid inflation:
the so called mutated hybrid inflation. In this framework, we have shown that it is
possible to obtain an inflationary regime for a natural choice of the parameters.

There is no doubt, despite the unavoidable problems associated to their presence,
that singlets tadpoles can lead to interesting cosmological implications.






Chapter 3
Baryogenesis through Leptogenesis

We know from the early days of P.A.M. Dirac that for any particle of mass m with def-
inite quantum numbers (electric charge, baryon number), there exists a corresponding
anti-particle with the same mass m and opposite quantum numbers. On the other
hand, our Universe, at least on observable scales, seems to be made of matter, more
precisely of baryons. One could think that this does not necessarily precludes a Uni-
verse where islands of antimatter could exist as well. In this case, huge burst of
gamma, rays, due to the annihilation of matter against anti-matter, would have been
observed. This possibility has been considered in [129] where on general grounds a
matter-antimatter Universe was empirically excluded.

This is not the only clue for a baryon asymmetric Universe. The computation
of light elements abundances [107] shows a complete agreement with observation
provided a small baryon excess have to be present before the nucleosynthesis epoch.
The required value is quantified by the baryon to photon ratio Np given by [59]

e = L~ (2.6 6.3) x 10-11 (3.1)
Y

In addition, recent results from the WMAP experiment give [139]
np = (6.5103) x 10710, (3.2)

in excellent agreement with the BBN constrain (3.1). Explaining this tiny value
represents a challenge. There exists many mechanisms of baryogenesis [66] that can
account for this tiny value.

3.1 Baryogenesis: Basics

As we have learned in Sect. 1.4, inflation dilutes any particle relic density, setting the
initial conditions for the big bang. Actually, the Universe must go through another
phase called reheating, where the energy stored in the inflaton field is converted

29
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into radiation. Baryogenesis is the process of generation of the baryon asymmetry
starting from the matter-antimatter symmetric Universe resulting immediately after
the reheating process. In 1976, A. Sakharov identified the three essential conditions

that any baryogenesis scenario have to satisfy in order to accomplish its task [34].

3.1.1 Baryon number violation

Although baryon number is classically conserved in the standard model, it is no
more the case at the quantum level (See Sect(3.2) for some details). Electroweak
baryogenesis (For a review see €.g. [126]) and leptogenesis are two examples of sce-
narios exploiting this observation. Baryon number is also generically violated (at
the renormalizable level) in GUT, as quarks and leptons are part of the same multi-
plets. Baryogenesis scenarios based on the decay of heavy GUT particles have been
considered long ago, however they have at least two drawbacks. The first is that
baryon number violating interactions are also responsible of proton decay, so they
are tightly constrained. Secondly, the mass of the decaying heavy particles is so high
that producing such a particle in the thermal bath, would also produce a bunch of
other harmful relics like the gravitino for example (See sect.). A possible solution to
this problem have been considered in [86], where the heavy particle are produced at

lower temperatures via preheating.

3.1.2 ( and CP violation

C and CP violation ensures that the rate of the reactions producing baryons 1is

different from the one producing anti baryons, i.€.
I'(..—B+..) £T(..—~B+..) (3.3)

This ingredient is typically present in all models and particularly in the SM. Parity
is broken in the SM by the distinction made between right-handed and left handed
fermions, while C'P violation is contained in the CKM matrix, though not in a suf-
ficient amount. A larger amount of C'P violation can be obtained in the supersym-
metric version of the SM. In scenarios based on the delayed decay of heavy particles,
C' and C'P violation occurs at one loop as a consequence of the the interference of

tree level and one loop diagrams.

3.1.3 Departure from thermal equilibrium

In order that the B, C and C'P violating reactions to be efficient, they must occur
in a state of out of equilibrium. If it were not the case, the inverse reaction would

recombinate its products, averaging the yet produced baryon number to zero. Namely

"X —B+Y) £T(B+Y — X). (3.4)
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In an expanding Universe, this is such provided the rate of particle interactions given
by Tin = (nov), where n is the number density, o is the interaction cross section,

and v is the velocity of particles, is faster than the Hubble rate.

3.2 Baryon number violation in the SM: Sphalerons

One of the great successes of the standard model of strong and electroweak interac-
tions is its ability to explain why baryon and lepton number (B and L) are conserved.
Indeed, perturbatively (and at the renormalizable level), the SM has 4 conserved
quantum numbers: L., L,, L, -leptonic numbers and B the baryon number. These
quantum numbers happen to be conserved accidentally. Their conservation can be
tracked to the conservation of the baryonic and leptonic current defined as

1 _
Jr = 3 Z (@ + dv,.d) (3.5)

colors
generations

Jf = Z (€l + veyuve) (3.6)
¢

However, due to the quantum anomaly
ny
3272

where ny is the number of families, baryon and lepton numbers are violated. From

Oty = OuTf = LT (B ), (3.7)

the above equation, it is clear that the combination B — L is still conserved, while
B + L is not. Integrating the above equation and discarding the surface term, we

obtain
NB — IVL X anCS, (38)

where Ngg is a Chern-Simmons topological charge, that labels the vacuum. Figure
(3.1) shows schematically how this configuration looks like. The system can pass
from one vacuum to the other by tunneling. Due to non perturbative nature of
this configuration (called sphaleron), the rate at which B and L are violated at zero
temperature is very small. However at non zero temperature, this rate can be higger.

One can compute such a rate, it is given by [60]

[ exp (%) ~ 107169, T'=0
I~ d (awT)! (Ze) exp (—222) | T < Tg (3.9)
\ a%VT4 T>1T¢:

where mgpn ~ My /aw is the sphaleron mass and Tt is the critical temperature at

which the electroweak phase transition takes place. Sphaleron interactions are in
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Nos = —1 Nes =0 [ A, gopn] Nes =1 [A, o]

Figure 3.1: A Schematic behavior of the energy dependence on the configuration of
the gauge and Higgs fields [ A(z), p(z)]. The minima correspond to topologically
distinct vacua with different baryon Chern-Simmons number (N¢g)

equilibrium at temperatures ranging from 10'? GeV down to the electroweak scale.
As a result, any baryon number produced in this range of temperature is inevitably
erased. This is one of the main drawbacks of GUT baryogenesis.

Since the SM describes perfectly the fundamental interactions at low energies,
the sphaleron configuration is inherent of any model of baryogenesis. Owing to its
minimality, electroweak baryogenesis [126] is one of the most popular models for
generating the baryon asymmetry of the Universe. The necessary ingredients are
built-in: the sphalerons provide the baryon number violating interactions, the C and
CP violation are naturally present in the SM (and even more in the supersymmetric
version), and finally the out-of-equilibrium condition is satisfied provided the elec-
troweak phase transition is of the strongly first order. Unfortunately electroweak
baryogenesis requires the lightest Higgs particle to be unacceptably light (See [130]
for an update). In the next section, we will be interested in an alternative baryogene-
sis scenario: leptogenesis, where lepton number is converted into a baryon asymmetry

through sphalerons.

3.3 See-Saw Phenomenology and Leptogenesis

In this section, we introduce our notation for the SUSY see-saw and outline its low-

energy implications. The aim is to make contact between realistic see-saw models,
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and the one generation toy models in which we will study the sneutrino production.
We discuss the lepton asymmetry that can be produced in (s)neutrino decay, which
implies a lower bound on the mass of the lightest r.h. (s)neutrino. Then, we briefly
review different mechanisms for r.h. neutrino production, namely thermal and non
thermal. The terms neutrino and sneutrino will be used interchangingly in discussing
‘thermal production, which is similar for bosons and fermions. Concerning the non-
thermal case, instead, different results are obtained for the two species, and in section
5.3 we review the ones for the neutrinos. Nonthermal production of sneutrinos is
instead discussed in the next chapter.

Let us consider the Minimal Supersymmetric Standard Model (MSSM) extended
with three r.h. neutrino superfields V; (sometimes called the minimal supersymmet-
ric see-saw model). The relevant couplings of the r.h. neutrinos are given by the
superpotential

Wy = hji L; - H, N; + % My N7, (3.10)

where L; and H are the lepton and the Higgs doublets, respectively, and his a 3 x 3
complex Yukawa matrix. We will neglect the phases in our analysis of N production,
because C'P violation is not required for this process. We work in the r.h. neutrino
mass basis, where the mass matrix A is diagonal, and we disregard the possibility of
nearly degenerate r.h. (s)neutrinos [90, 91, 65] (i.e. we assume that the difference of

neutrino masses is of order their mass).

3;3.1 The C'P asymmetry and the bound on M;

The lepton asymmetry produced in the decay of N; can be written

_ N, Ng Ny,

Y7 =€ —K;, (3.11)
s

s
where Ny, is the total number density of the sth heavy (s)neutrino species prior to
its decay, s is the entropy density at decay 2, k; parametrises washout effects due to
subsequent lepton number violating interactions, and ¢; arises from the C'P violation
of the N; decay. It is given by [91]

Zj F(M — gjhu) — Z]- F(Nz — vé—j]_lu)
Zj F(NZ — @hu) + Zj F(NZ — .é_jl—lu)
11 M? M?
- sy Y12 22k 2k
= s S Hev] A (35) + 5 (3E)] )

U gk

€ =

where Fy and Fg are the contributions of the vertex and self-energy respectively.
They are given by

!The superfield N written in eqn. (1) actually denotes an anti-(s)neutrino. However, for brevity
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Figure 3.2: Tree level and one-loop diagrams contributing to heavy neutrino decays.
1 2
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We suppose for the moment that some number density of N; is produced in the
early Universe, and concentrate on how large an asymmetry can be generated. The
asymmetry ¢ is determined by the masses and couplings of the r.h. (s)neutrinos,
which are given in eqn. (3.10). However, it can be related to, and therefore con-
strained by, low energy observables.

Considering hierarchical r. h. neutrinos, the CP asymmetry produced in the
decay of a r.h. (s)neutrino can conveniently be parameterized as

3 M;ms

8w (H)? cr

M; m
—6 7 3 y
10 (1010Gev> <0,05 eV> ocp- (3.14)

By using eqs. (3.18) and (3.12), it is possible to show [67, 68, 69] that for the case €,
Scp satisfies the upper bound ?

€ =

12

6cp| < 1. (3.15)

By combining the two last expressions, one finds an upper bound on the parameter

¢, which scales linearly with the r.h. (s)neutrino mass M; i.e.

’6]<i]\/fim3
H~gn (H)?

(3.16)

This bound implies the following lower bound on M; for leptogenesis to be viable

1-C [NM 3 ms r

MZs=a— |75 sty

(3.17)

3.3.2 Low-energy observables

The mass ms in equation (3.14) denotes the mass of the heaviest left-handed neutrino.

The light neutrino mass matrix is obtained by integrating out the heavy r.h. neutrinos

we will refer to it as a (s)neutrino.

2 Any subsequent entropy production leads to further dilution of the asymmetry.

3We will use the parametrisation (3.14) for all the €;, ¢ = 1..3. It is possible that dcp < 1 for €
and e; (assuming no cancellations in the formulae), although this has not been shown.
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to give the see-saw formula
my, = —h" M~ h (H®)? (3.18)

We will assume that the light neutrino masses m; are hierarchical, so mg ~ \/m
[63].

If h is written in the charged lepton mass eigenstate basis (neutrino flavour basis),
then m, is diagonalised by the MNS matrix U [92], which can be written U = V -
diag(e™**/2 e=%'/2 1), with

—10

C13C12 C13512 513€
= 23512 — §23513C12€ C23C12 — S23513512€ 523C13
i 1)
S23812 — €23813C12€"  —S23C12 — C23513512€"°  C23C13

In this matrix, ci3 = cos 2, and so on. Atmospheric [63, 93] and solar [94, 95] data
imply that 6y, and 6,3 are large, approaching 7/4. 63 is constrained to be < 0.1
by the CHOOZ experiment [96]. In a supersymmetric scenario, there is additional
information about h and M available in the slepton mass matrix. The neutrino
Yukawa h'h appear in the renormalization group equations for the soft slepton masses,
and thereby induce flavour violating slepton mass terms [97]: [m%];;. In a simple-

minded leading log approximation, these off-diagonal mass matrix elements are
_ (3mg + 47)

- . 5 My,
[} i =~ T[VL]M [VLlkihi log (MGUT> (3.19)

where h; are the eigenvalues of h, m2 and Ay are soft parameters at the GUT scale,
and we introduce a new matrix V7, which diagonalises A'h in the charged lepton mass
eigenstate basis (VLhTth = diagonal). The branching ratio for ¢; — £;y can be
roughly estimated as [97]:

a’ |l ]i|°
BR(4; — £y) o ETF—?;—%J—— tan’ 3 (3.20)

where m? is the slepton mass scale. The experimental bound BR(p — ey) <
1.2 x 107" [98] implies [m7 ], < 107372, for my ~ 100 GeV. This constrains the
angles in V7, for given neutrino Yukawas h;. It can be shown that M and A have the
same number of parameters as the weak scale neutrino and slepton mass matrices.
Furthermore, in a SUSY scenario with universal soft masses at the GUT scale, M and
h can be parametrised with m? and m, [99]. The r.h. neutrino masses and Yukawa
couplings can be therefore reconstructed (in principle, but not in practise [99]) from
the weak scale neutrino and sneutrino mass matrices, so that ¢ can be expressed

in terms of weak scale variables. An analytic approximation for ¢; can be found in

(100, 101]:
3h} S WEm3
~ I k__1k Tk 21
Uy, e m{ S 321
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where m; are the light neutrino masses, h; is the smallest eigenvalue of h, and W =
VU is the rotation from the basis where the v, masses are diagonal to the basis
where hth is diagonal. h; is in practise unmeasurable; however, if & has a hierarchy
similar to the up Yukawa matrix h,, then hf ~ 107%, and ¢; will only be large enough
if there is some enhancement from the imaginary part. There are two simple limits
for the matrix W, which are motivated by model building. The first is V; ~ 1, and
corresponds to an almost diagonal slepton mass matrix (in the charged lepton mass
eigenstate basis). This means that the large mixing observed in the MNS matrix U
must come from the r.h. sector [102]. The second option is W ~ 1, so V;, = U'. This
would arise if the large v; mixing is induced in the Lh. sector [103]. In the V; =1
case, eqn. (3.21) gives [100]:

12

2 3 2 2 _ib 3 2 2 _id 3 .2 _2i6
. 3h7 I {ml c2ycly €9 4+ my 5551, €' +my si; €
1

} (3.22)

81D My CiaCly €% + My cI352, €9 + my 57y €29
Lm0 sin(26 — ¢) — L sin(p — ¢) (3.23)
o A Mo 13 - Mo ’ )

where D = m? c25c2, +m? i3s3, +mj si;, and in the second equation, the solar and
atmospheric angles have been taken to be 7/4. If we estimate the phases to be O(1),
hy ~ the up Yukawa, and m2/m3 ~ Am?,../Am?2,,, this gives e < 107"(s13/.1)?, where
we have scaled the unmeasured angle 63 by its upper bound. * This is barely large
enough for thermal leptogenesis. However, we remind that A, is unknown and it can
well be h; > 107*. The second case, where W ~ 1, can arise if A/ and hth are almost
simultaneously diagonalisable ®>. For small angles in W, the approximation for e can
be extracted from (3.22), replacing the angles of the MNS matrix by the angles of 1,
and setting the cosines — 1. When W ~ 1, then V ~ Ut, so it is the MNS angles
that appear in equation (3.19), and BR(u — ey) < 1.2 x 107" [98] implies an upper
bound on the CHOOZ angle 6,3 < .02 (for rny, = 100 GeV, hs = 1)[104]. To conclude,
we briefly comment on the parameter ;. After the asymmetry is generated in the
out-of-equilibrium decay of the r.h. neutrino, lepton number violating interactions
which could wash out the asymmetry must be out of equilibrium. This is a fairly
straightforward requirement when considering the decay of the lightest r.h. neutrino
N, [66]; it is more complicated in the case of Ny3 decaying at T' 2 M, [105]. The

fraction of the asymmetry which survives these interactions is x; < 1.

4This estimate is not significantly changed if the angles in V7, are small compared to 8;3. CHOOZ
experiment: 15 < .1. If 013 < .1, but 613 < [Vi]i2,[Ve]ia < .1, then the formula for € is similar
to (3.23), with the replacement 613 — 6r1; and 6 — @15 (where [Vi]i2 = cosfp13 sin f10e%12,
J J
[‘/L]lg = sin 9L13€l(’013).
5The “almost” is important; if W = 1, there is no C'P violation, so € = 0.



Chapter 4
Leptogenesis at low scale

A typical problem of the leptogenesis scenario is the mismatch between the maxi-
mum reheat temperature implied by gravitino overproduction bound and the min-
imum temperature required to create thermally the lightest right-handed neutrino.
We explore the possibility of baryogenesis via leptogenesis in the presence of low scale
mass right-handed neutrino. In such a scenario, right-handed neutrinos are created
thermally at low reheat temperatures without relying on non-perturbative produc-
tion mechanisms. We focus on two specific realizations of the scenario, namely the
out-of-equilibrium decay of right-handed neutrinos (Fukugita-Yanagida) and the lep-
togenesis via the LM, flat direction (Affleck-Dine). We find that in general, the two
- scenarios are able to produce the required baryon excess for a reasonable amount of
- CP violation.

4.1 Introduction

Recent experimental results gave overwhelming evidence that neutrinos have small
but non-vanishing masses [28]. In the standard model (SM), neutrinos are exactly
massless, hence the explanation of neutrino experiments requires Physics beyond the
SM. Furthermore, neutrino masses appear to be very small with respect to the other
fermions ones. If neutrinos are Majorana particles, it is possible to accommodate
small neutrinos masses in the SM by introducing the lepton number violating effec-
tive operator [29] Oeg = oy lI o7l; H ' 7p7H /M, where ¢; and H are the lepton and
the Higgs doublet respectively. Here M is the scale where “new Physics” is expected
to occur, is usually taken as the Planck or the GUT scale. In the former case, the
presence of this lepton number violating operator is motivated by the common belief
that gravity does not respect any global quantum number [30, 31], or at least this
is what happens for example in black holes and wormholes —no hair theorems. In
the latter case (M = Mguyr), the effective operator arises via the see-saw mecha-
nism [32], when integrating-out the heavy right-handed neutrinos (RHNs hereafter).

37
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On the other hand, our Universe appears to be constituted exclusively of baryons.
In order not to spoil the Big Bang Nucleosynthesis (BBN) successful predictions
of the observed light elements abundances [33], a small baryon excess have to be
present. The required value is quantified by the baryon-to-entropy ratio and is given
by Y = ng/s = (7.2 £ 0.4) x 107 [59]. To accomplish successfully their task,
baryogenesis scenarios [57] have to satisfy three essential conditions [34], namely: (i.)
Baryon number violation, (ii.) C and C'P violation, and (i.) Departure from thermal
equilibrium. One particularly appealing scenario is the leptogenesis scenario, where
lepton number, produced either by the out-of-equilibrium decay of heavy RHN’s [35]
or by the decay of a scalar condensate carrying non-zero lepton number [36, 37|, is
reprocessed to a baryon asymmetry via the sphalerons interactions. Given the exper-
imental evidence that lepton number is violated in neutrino oscillation and the fact
that proton decay have not been observed yet, the present experimental situation
seems to favor this scenario over the other existing baryogenesis scenarios. A generic
problem of thermal leptogenesis scenarios is the mismatch between the maximum re-
heat temperature implied by gravitino overproduction and the minimum temperature
required to thermally create heavy RHNs Try 2 10'° GeV. To reconcile these two
facts, non-thermal creation of RHNs in a low reheat temperature plasma were con-
sidered. These mechanisms, however, involve non-perturbative dynamics and are in
general sensitive to inflation models. Furthermore, they lead to even more stringent
bounds on the reheat temperature, due to the non thermal production of moduli and
gravitinos [38, 39].

The aim of this chapter is to address this issue in a different perspective. We will
consider the situation where the reheat temperature is low (may be as low as the TeV)
and we will only consider thermal production of RHNs. This will naturally lead us
to consider a class of see-saw models (that we will subsequently call low-scale see-saw
models), where RHNs have TeV masses instead of the conventional unification scale.
The chapter is organized as follows. In section 4.2, we give our main motivation
for the scenario. In section 4.3, we study leptogenesis through the out-of-equilibrium
decay of low scale RHNs. In section 4.4, we turn to the Affleck-Dine scenario. Finally,

in section 4.5, we summarize our conclusions.

4.2 The gravitino problem vs. thermal leptogene-
sis
As any unwanted relic, gravitinos represents a potential danger for the thermal history

of the Universe. Gravitinos are created predominantly via 2 — 2 inelastic scatterings

of gluons and gluinos quantas. Their relic density and contribution to the energy
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density are given by [40]

T 100 GeV\?/ m; \2
Y, = 1.1x 10710 RA 5 4.1
3/2 x 10 <1O10 GeV ms /o (1 TeV) ’ (4.1)
TRH 100 GeV mg 2
Q30 h? =0.21 g 4.2
312 h 0 (1010 GGV) ( msz/2 ) (1 TGV) ’ ( )

where mj; denotes the gluino mass. The requirement that, if unstable, their late
decay do not disrupt the successful BBN predictions, and if stable, their energy density
do not overclose the Universe, put tight constraints on their relic abundance. It has
been noted that if ms/, >10 TeV or mg/; < keV, then there is no gravitino problem
[41, 42]. These requirements can be relaxed if there is a period of inflation and
the constraints apply only on post-inflation abundances. From the expression (4.1),
one sees that the gravitino abundance scales linearly with the reheat temperature,
therefore the bound on Y3/, translates onto the following bound on the maximum

allowed reheat temperature Try [43]
Tru S (10° — 10°) GeV for mg, = 100 GeV — 1 TeV | (4.3)

There exists however more stringent bounds on Ty from non-thermal production.
For generic supersymmetric inflation models, the bound can be as tight as [39] Try <
103(V1/4/10'® GeV), where V/* is the height of the inflationary potential. Let us
now see the constraints on the reheat temperature coming from leptogenesis. In the
original see-saw model [32] the mass scale of RHNs is typically of O(10'° —10'%) GeV.
In addition, the bound on the CP parameter [69] for hierarchical RHN’s in thermal
leptogenesis implies a lower bound on the mass of the lightest RHN My, = 10'% GeV.
Consequently, if the thermal leptogenesis scenario is truly the mechanism responsible
for the the generation of the Baryon Asymmetry of the Universe (BAU), RHNs of this
mass have to be produced after inflation. This means a high reheat temperature, at
least as high as the mass of the lightest RHN, i.e. 10'° GeV, potentially conflicting
with the gravitino bound discussed above. A possible way out to get around this
problem is to produce RHNs non-thermally, that is during an efficient preheating
phase [44]. Non-thermal production, however, can lead in some cases to even more
stringent bounds on the reheat temperature. Indeed, for typical hybrid inflation
models, the upper bound on the reheat temperature can be as low as 1 TeV [38].
From the above discussion, it is clear that any compelling solution to this problem
will, in one way or another, involve low reheat temperatures. After all, we dont know
the thermal history of our Universe before BBN. All we know experimentally is that
Try > Tgeen ~ MeV. In this chapter, we will consider a rather exotic solution to this
problem, namely the case for leptogenesis when RHNs have a low scale mass. The
first benefit of such an approach is that RHNs can be produced thermally with a low

reheat temperature Tgy ~ O(TeV), avoiding thus the creation of dangerous relics, like
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heavy GUT monopoles, and more importantly suppressing the creation of gravitinos.
On theoretical grounds, nothing forbids the mass of RHNs to be of O(TeV). In fact
this situation is encountered in many cases (See for e.g. [45, 46, 47, 48]). This is also
a typical situation that arises in models where the fundamental scale (the GUT scale
and/or the quantum gravity scale) is of O(TeV). In this case, the Yukawa couplings
of RHNs have to be much smaller to produce phenomenologically acceptable light
neutrino masses. Such a fine-tuning is stable under radiative corrections because that
Yukawa couplings are self renormalizable and is protected by supersymmetry. There
remains the question of how such suppressed Yukawa couplings can arise in a concrete
model. This can be achieved for example by the mean of some R-symmetry that
forbids the bare Yukawa coupling between the left and the right-handed neutrinos.
As a result the leading Yukawa couplings will be suppressed by powers of a heavy
scale [45, 46]. The Yukawa suppression can be obtained upon integrating-out some
heavy field as well [49].

4.3 Thermal Leptogenesis with TeV scale RHNs

We begin by reviewing the basics of the out-of-equilibrium decay leptogenesis scenario.
Consider the Minimal Supersymmetric Standard Model extended by three RHNs,
one for each generation. The interactions of the RHNs are given by the following

superpotential

1
Wy = Yy, LiH,N; + —2—1\/[1-Nf (4.4)
After integrating-out the RHN and electroweak symmetry breaking, the light neutri-
nos mass matrix will be given by the familiar see-saw formula
my, = YT MY (H,)?. (4.5)
In this scenario, the RHNs must decay out-of-equilibrium. A measure of the departure
from thermal equilibrium is given by the parameter K defined as

. 'y
o 2H T:]\/f]\r7

K (4.6)
where I'y is the decay rate of RHNs and H is the expansion rate of the Universe. The
decay is out-of-equilibrium when K < 1. The final baryon asymmetry reprocessed by
sphalerons is given by [60]

np _ < 8ng + dny ) ne (47)

22n,+13ny ) s’

where n, and ny counts the number of fermion generations and Higgses respectively.
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The lepton asymmetry produced by the CP-violating out-of-equilibrium decay of
the RHNs can be computed using

L= (4.8)

where g, is the effective degrees of freedom and « is the dilution factor, computed by

integrating the relevant set of Boltzmann equations [50, 51]. The parameter ¢ char-

acterizing CP violation in the RHNs decay, can be defined for each RHN separately
s [91]

>0 TNy = Lihy) = 30, T(N; — Lihy)
Z.F(N~—+€<h)+z D(N; — £;h,)

N 817T Yy Zlm {YYN))?] [FV (%) +Fy

llk 7

o)
I

) o

where Fy and Fg are the contributions of the vertex and self-energy respectively.
They are given by

Fv(l’) = \/5111 <1 + %) y Fs( ) ;\/; (410)

Now, applying the above formulae to TeV mass RHNs, one immediately sees that,
due to the smallness of the Yukawa couplings, the decay of RHNs is automatically
out-of-equilibrium. In addition to the decay processes, there can be other competing
processes that might bring the RHNs to thermal equilibrium, depleting any pre-
existing lepton number. These processes have to be out-of-equilibrium too, i.e. I' ~
(nov) < H. The first such process is the AL = 2 scattering (h, <> (h,, via both
s and ¢ channel. Other competing processes may involve the t-(s)quark, such as
Nt(b) «» (b(f). It turns out that due to the Yukawa coupling suppression all these
processes are out-of-equilibrium. Finally, it has been noted [52] that the process
W=W# — (*(* mediated by virtual left-handed neutrinos can lead to stringent
constraints on their masses. In our case, it leads to a very mild constraint. So far for
the out-of-equilibrium conditions, now we concentrate on the CP violation parameter
€. As we have seen previously, due to the smallness of the Yukawa couplings, it is very
easy to satisfy the out-of-equilibrium condition, however the resulting CP violation
parameter € is too small. This is due to the fact that the decay rate I' and the
CP-parameter ¢ are both proportional to the same Yukawa couplings combination.
From Eqts (4.9, 4.10), one sees that the two contributions to the CP parameter ¢
are sensible to two completely different patters of RHNs masses. While the vertex
contribution Fy is enhanced for large hierarchies, the self-energy contribution Fy is so
when RHNs are (quasi-)degenerate '. In order to enhance the value of ¢, one have to

1 For perturbation theory to hold, the mass splitting 0 M, = |M; — M| must satisfy M, > T,
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exploit the properties of the two functions Fy- and Fis. In the next subsection, we will
consider the case where RHNs are nearly degenerate [54, 53]. There exist however
another possibility, related to the fact that RHNs masses and soft SUSY breaking
A-terms are of the same order i.e. O(TeV).

4.3.1 Leptogenesis with quasi-degenerate TeV scale RHNs

Consider a model where two out of the three RHNs are quasi degenerate, that is /Vy,
N, and N3 have masses My, My ~ O(TeV) < M; respectively. The mass splitting
oMy = |My — M| = 6 - My, where My ~ TeV). Due to their suppressed Yukawa’s,
RHNs will be long-lived enough to eventually dominate the Universe before decay-
ing. The condition for RHNs dominance can be written I'y < I'y, where I'y is the
decay rate of the inflaton [67]. While, RHNs can hardly dominate the energy den-
sity of the Universe because of Pauli blocking, this can happen more easily for their
scalar partners the RH sneutrinos. Moreover, due to quantum de Sitter quantum
fluctuations [55] and for Hin > My ~ O(TeV), RH sneutrinos become coherent over
super-horizon scales and can be considered as classical fields with the constant value
(vev) (N?) = 3H?;/8m*M%. Therefore if the RH sneutrinos scalar potential is just
given by the mass term, they are likely to dominate quickly the energy density of
the Universe. Given the above discussion, one can compute the lepton asymmetry

produced during the decay of N, using

nr, o 3TN2

_ 31N 41
s AN, (4.11)

where Ty, is the decay temperature of Ny’s computed by equating the energy density
of RHNs with the energy density of the Universe when H ~ I';. Since N; and N, are
quasi-degenerate, we can safely ignore the vertex contribution to the CP parameter
(Fs > Fy). Using Eqts (4.9) and (4.10), we can compute the total CP parameter

€ >~ €1 + €9, glving

(4.12)

S|

1 1

= 57 2 v (0D
A rough estimate of the required degeneracy gives 0 ~ O(107% — 1077), and pertur-
bativity is clearly satisfied (See footnote 1 on page 41). Such a degeneracy could be
ascribed for example to a flavor symmetry, the parameter 6 would then characterize
its breaking. In the simplest case, the flavor group G/ is taken as a Z, and the RHNs
have different parity Z, assignments, i.e. Ny ~ odd (even) and N, ~ even (odd)
under Z,. The flavor symmetry is broken by the vev of the odd field 1. Restricting

where T is the decay rate of RHNs, otherwise one can no more trust the perturbative calculation
based on Eqts (4.9,4.10) and one have to rely on a resummation approach [53]. In the limit of exact
degeneracy, the CP parameter vanishes.
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to the 12 block, the resulting mass matrix for the RHNs is

Mp ~ M, ( 5}9 512 ) (4.13)

with 6/2 = () /A. The diagonalization of the mass matrix yields two quasi-degenerate
RHNs with a mass-splitting 0 M.

4.3.2 Leptogenesis from soft SUSY breaking A-terms

In the traditional leptogenesis scenario, the contributions of the soft SUSY breaking
A-terms to the CP parameter e are usually neglected. Indeed, SUSY breaking will
induce the following A-terms

Loote = AgymapLiN;H, + h.c.. (4.14)

Let us consider the following vertex diagrams, where in the tri-scalar vertex we put
the A-term contribution from Eqt (4.14) instead of the standard SUSY one.

Estimating the contribution of the SUSY soft breaking A-terms to € and comparing
it to the standard SUSY one for each of the two considered diagrams, we obtain

soft

€ ‘
(a) oM/ .

sogy ~ Al sindn, (4.15)
E?I?;‘t A4 m3/2 4 . 6 4

Susy A A SIN Ogofy (4.16)

where 0o is an effective soft CP phase. From (4.15), we see that in the conventional

leptogenesis scenario, where the mass of the lightest RHN is M; ~ 10'° GeV, e 1s

SUSY

suppressed with respect to € at least by a factor of 1077, However, in our scenario,

where M; ~ mgs, the CP asymmetry parameter €y 1S no more suppressed. [t can

L L,
- S
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Figure 4.1: SUSY breaking A-term contributions to the C'P parameter e.
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even dominate the over the SUSY contribution depending on the value of the soft
parameters. This means that CP violation may completely originate from the soft
SUSY breaking sector, like in the Affleck-Dine case. However, besides enhancing the
amount of CP violation, the soft SUSY breaking interactions could bring the RHNs
decay at equilibrium, erasing considerably the produced lepton number. A more
accurate analysis, requiring the integration of Boltzmann equations, is necessary to
reach a firm conclusion.

Finally, it is worth noticing from Eqt. (4.2) that gravitinos could no more con-
stitute a sizable amount of dark matter in our scenario. Indeed, Q3 /2 h? =0.01 — 1,

requires the gravitino to be lighter and/or the gluinos masses to be heavier.

4.4 AfHeck-Dine leptogenesis with TeV scale RHNs

Now, we turn to investigate the Affleck-Dine mechanism [36, 37] in the presence of
TeV scale RHNs. Consider the LH, MSSM flat direction given by 2

L _ L [0
Li“ﬁ(()), Hu_ﬂ<w> (4.17)

This flat direction is lifted by the non-renormalizable operator Wyr = AL H,)?/M =
Ap*/4M. This operator can be generated via the see-saw mechanism when integrating-
out the heavy RHNs. The evolution of the scalar condensate ¢ in the expanding
background is dictated by the classical equation of motion

oV (p)

o+3HO +
dp*

=0 (4.18)

where V' (¢) is the full potential, including the soft masses, the Hubble induced masses
and the A-terms (both from SUSY breaking and the Hubble induced ones)?.
4

V(e) = (my— enH)lpl +anH-—
(pzl h |/\|2 6
My e+ Z\—[?‘M : (4.19)

The constants cy and ag depend on the detailed structure of the Kahler potential.
In particular the sign of ¢y is crucial for the validity of the AD scenario. We assume
throughout the chapter that it is positive (cy > 0). The evolution of the scalar
condensate follows three phases. During inflation, when H >> mj), the field ¢ is

over-damped and it settles away from the origin at a distance

ey M2H2\? |
o] =~ (——wg . (4.20)

>The factor v/2 is necessary to have a canonical kinetic term for ¢ (The Kahler potential is
K =H,H} + LLt = ppt).
*Here, we are simply ignoring thermal effects [56].
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From the last equation, one sees that ¢ is displaced farther as the neutrino Yukawa,
coupling A is smaller. That is why L; in Eqt. (4.17) is usually chosen as the neutrino
with the smallest Yukawa coupling, L, say. When H ~ ms /2, the A-terms enter
into play and the condensate begins to oscillate. In general, when taking into account
thermal effects, the condensate begins to oscillate when the decreasing expansion rate
reaches a certain value denoted H,, determined when the thermal contributions are
taken into account [56]. At later times when H < mg3/z, the lepton number is
essentially conserved. The evolution of the lepton number, n; defined as

ny = 5(90 © — pp*), (4.21)

follows the equation

W(“))] (4.22)

nr +3Hny = Im [gp—%—

The generated lepton asymmetry can be approximated by integrating the equation

(4.22). This gives
m3/2

2M
In a matter dominated Universe, the expansion rate scales with time as H — 2/3t.

o~

nLN

Im(a,¢*)t (4.23)

Plugging this into the last equation, we get

o L (T (Mg (M Gen (4.24)
s 12 \ Hyee M, M, ) |\?

where M, = Mpianex/V8m = 2.4 x 10'® GeV is the reduced Planck mass and we have
dropped constants of O(1). The effective CP-violating parameter Oer is defined as

Oeft =2 sin (4 arg ¢ + arg a,,) (4.25)

Now, specializing to the low scale see-saw models [46, 45], where Yukawa couplings

come-out naturally suppressed as A ~ [Y0|2 ~ my 5 /M, we get

nr, 1 TRH
— e 4.2
s 12 <HOSC> f (4.26)

Usually the effective CP-violating parameter is assumed to be maximal i.e. Oeft ~ 1.
In our case there is no need to do so, since the reheating temperature can be as
low as ms3/, so TeV mass RHNs are produced thermally, while the gravitinos are
not. Typically, the condensate begins to oscillate at Hyse 2 ma/o. In the extreme
case when Try ~ Hog =~ m3/2, only a small amount of CP is sufficient to reproduce
the observed value, namely eg ~ 107° — 1071°. Up to now, we did not specify the
transmission mechanism of SUSY breaking. We just assumed that some hidden sector
will produce the soft breaking scalar masses and A-terms. In the gravity-mediated
scenario the A-terms are known to be of the form ams;sW + h.c.. This means that
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am = bpA and ay = by A, where by, by, ~ O(1). In this case, the resulting lepton

nr 1 TRH m3/2
L= 22 6, 4.2
S 12 (Hosc> < ]\/[* >5ff ( 7)

where now the CP violation parameter is defined as

asymmetry is given by

et =~ sin (4 arg o + arg am, + arg A) | (4.28)

For the typical values Hose ~ Maj2, TrRu ~ 10° GeV and deg ~ O(1), we obtain
the right value for the lepton asymmetry.

4.5 Conclusions

To conclude, motivated by the potential conflict between the gravitino overproduction
bound and the high reheat temperature required to produce RHNs thermally, we
investigated the baryogenesis through leptogenesis scenario in the presence of low
scale RHNs. We have seen that, in such a scenario the Yukawa couplings of RHNs
have to be suppressed, in order to give rise to acceptable light neutrino masses. This
suppression proved to be useful for many purposes, in particular in satisfying the
out-of-equilibrium condition in the FY scenario. Due to this suppression, however,
the resulting CP was too small. We used two different mechanisms to enhance the
COP parameter: the degeneracy of RHNs and soft A-terms. In the latter case, the
necessary CP violation may come entirely from the soft SUSY A-term. We also
considered leptogenesis via the LH, flat direction. We have seen that for generic
SUSY breaking scenarios, AD leptogenesis with low scale RHNs is possible, though
with reheat temperatures higher than TeV.



Chapter 5

Non thermal leptogenesis and

rescatterring

As we have seen in the previous chapters, the observed baryon asymmetry of the
Universe can be due to the B — L violating decay of heavy right handed (s)neutrinos.
The amount of the asymmetry depends crucially on their number density. If the
(s)neutrinos are generated thermally, in supersymmetric models there is limited pa-
rameter space leading to enough baryons. For this reason, several alternative mech-
anisms have been proposed. We discuss the nonperturbative production of sneutrino
quanta by a direct coupling to the inflaton. This production dominates over the
corresponding creation of neutrinos, and it can easily (i.e. even for a rather small
inflaton-sneutrino coupling) lead to a sufficient baryon asymmetry. We then study
the amplification of MSSM degrees of freedom, via their coupling to the sneutrinos,
during the rescattering phase which follows the nonperturbative production. This
process, which mainly influences the (MSSM) D—flat directions, is very efficient as
long as the sneutrino quanta are in the relativistic regime. The rapid amplification of
the light degrees of freedom may potentially lead to a gravitino problem. We estimate
the gravitino production by means of a perturbative calculation, discussing the regime
in which we expect it to be reliable. The chapter is organised as follow. First, we
will review the basics of thermal production and its drawbacks. This will bring us to
consider alternative production mechanisms and namely we will consider non thermal
production mechanism (preheating). Then, we will see what are the consequences of
SUSY on this mechanism, namely the rescattering of the flat directions. At the end

we draw our conclusions.

5.1 Introduction and summary

The generation of the Baryon Asymmetry of the Universe (BAU) [57] represents
one of the puzzles of Cosmology. Three ingredients are required [58] to achieve this
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task: baryon number violation, C' and C'P violation, and departure from thermal
equilibrium. The baryon number violation can be challenging to implement, because
1t must be consistent with the current lower bound on the proton lifetime, 7, > 1032
years [59]. The Standard Model (SM) is a C and C'P violating theory, and contains
non-perturbative B + L violating interactions (sphalerons) [60]—which are rapid in
the early Universe but unable to mediate proton decay. However, it seems difficult to
use this baryon number violation to create the asymmetry in the SM [61] and its more
popular extensions [62]. An attractive alternative is to generate a lepton asymmetry
[35] in some C, C'P and lepton number (L)-violating out-of-equilibrium interaction,
and then allow the sphalerons to reprocess part of it into a baryon asymmetry. An
appealing feature of this scenario is that while neutrino masses are experimentally
observed [63] (and are L-violating, if they are Majorana), there is still no evidence

for baryon number violation.

The above idea is naturally implemented [35] in the context of the see-saw [32],
which is a minimal mechanism for generating neutrino masses much smaller than the
ones of the charged leptons. Three right-handed (r.h.) neutrinos NV; are added to the
SM particle content, given Yukawa interactions with the lepton and Higgs doublets,
and large Majorana masses. This gives the three light neutrinos very small masses,
due to their small mixing with the heavy r.h. neutrinos through the Dirac mass.
Grand Unified Theories (GUT) and their supersymmetric versions, that constitute
natural candidates for the Physics beyond the SM, often contain r.h. neutrinos in
their particle content. In this chapter we consider the supersymmetric version of
the see-saw mechanism, which is theoretically attractive because it addresses the

hierarchy between the Higgs and r.h. neutrino masses.

The r.h. (s)neutrinos of the see-saw can generate the BAU via leptogenesis, in a
three steps process [35, 64, 65, 66]. First, some (C'P symmetric) number density of
(s)neutrinos is created in the early Universe. Then, a lepton asymmetry is generated
in their C'P violating out-of-equilibrium decay. Finally, the lepton asymmetry is
partially reprocessed into a baryon one by the B + L violating interactions, provided
it is not washed out by lepton number violating scatterings. In this chapter, we are
mostly interested in the first step, although in the next section we will also briefly
review the decay and washout processes.

The most straightforward and cosmological model-independent mechanism to gen-
erate r.h. (s)neutrinos is via scattering in the thermal bath [66]. However, as discussed
in section 3.3, the parameter space available is restricted in supergravity-motivated
models. Indeed, unless some enhancement of the C'P asymmetry characterizing the
r.h. (s)neutrino decay is present (which occurs for example if they are nearly de-
generate in mass) the generation of a sufficient lepton number poses a rather strong
lower bound on their mass [67, 68, 69] (see also [70]). For thermal production, this
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translates into a lower bound on the reheating temperature Try of the thermal bath.
On the other hand, if supergravity is assumed, Try cannot be taken arbitrarily large
without leading to an overproduction of gravitinos 71, 72, 73, 74, 75, 40]. The
two requirements are compatible only provided a nearly maximal C'P asymmetry
(again, banning any possible enhancement from mass degeneracy) is present in the
r.h. (s)neutrino decay. If this is not the case, alternative mechanisms of production
for the r.h. (s)neutrino have to be considered.

As remarked in [76], leptogenesis can be achieved if at least one r.h. sneutrino
has a smaller mass than the Hubble parameter, i.e. * My < H, during inflation.
In this case, quantum fluctuations of this sneutrino component are produced during
the inflationary expansion, and amplified to generate a classical condensate. The
decay of the condensate eventually generates the required lepton asymmetry. The
above requirement My < H is not trivially satisfied in a supergravity context, since
supergravity corrections typically provide a mass precisely of order H to any scalar
field of the model [77]. In this case, however, a suitable choice of the Kahler potential
can induce a negative mass term m?2 4, ~ —H?, so that a large expectation value will
be generated for the sneutrino component during inflation [77]. This also leads to the
formation of a condensate during inflation, and to successful leptogenesis as in the
previous case.
 Large variances can be produced during inflation if the sneutrinos are not too
strongly coupled to the inflaton field ¢, since this would generate a high effective mass
which could fix (N) = 0 during inflation. However, if one of the r.h. (s)neutrinos
is coupled to the inflaton, there is the obvious possibility that a sufficient amount of
(s)neutrino quanta is generated when the inflaton decays. Quite remarkably, for a
rather wide range of models this decay occurs in a nonperturbative way [78, 79] (this
is known in the literature as preheating [79]). In models of chaotic inflation [80], this
is due to the coherent oscillations of the inflaton field, which can be responsible for
a parametric amplification of the bosonic fields to which the inflaton is coupled 2 It
is important to remark that this resonant amplification does not require very high
couplings between the inflaton and the produced fields. For a coupling of the form
(g%/2) ¢> N? in the scalar potential, resonant amplification of the field N already
occurs for g > 1078 [84], if the mass of N is negligible at the end of inflation, and if
a massive inflaton is considered. For a massless inflaton (V' (¢) = A ¢*/4), an efficient
resonance is present also for much smaller values of ¢ (we will show this explicitly
in section 5.2), since in this case the resonance is not halted by the expansion of the

Universe [85].

IWe will use N as a shorthand for the superfield, its scalar and fermionic component. We

explicitly refer to the particle type when this could cause a confusion.
2A nonperturbative inflaton decay also occurs for hybrid inflation [81, 82, 83]. However, we will

not discuss this possibility here.
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If the produced particle is very massive (My 2 my), the effectiveness of the
resonance becomes a highly model dependent issue. A potential of the form V (¢) +
M3 N?/2 4 g% $* N?/2, has been considered in the literature mainly to discuss the
production of heavy bosons needed for GUT baryogenesis [86]. Working in the Hartree
approximation, it has been found [84] that a resonance is effective only provided
the coupling ¢* satisfies g2 > 1077 (My/mg4)*. Taking into account all the other
backreaction effects, a stronger lower bound on g has to be expected [79, 84], since
the latter typically limits the growth of the fluctuations amplified by the resonance.

Very different bounds can be expected for different potentials. Consider for exam-
ple V () + (My + g #)* N?/2. In this case, due to the high initial amplitude of the
inflaton oscillations, the total mass of IV can vanish at some discrete points even for
a coupling as small as g2 ~ 107'% (My/m,)*. Whenever My + g ¢ = 0, parametric
amplification of N occurs. Thus, the lower bound valid for the previous potential is
considerably weakened. Although this second choice of the potential may seem ad
hoc, we note that it is the one which arises in supersymmetric models if both the r.h.
sneutrino mass and interaction with the inflaton are encoded in the superpotential,
W (N) D My N?*+ g¢ N?. We regard this as a very natural possibility.

The idea of a nonperturbative production associated to the vanishing of the total
mass has been applied to leptogenesis in [44]. The analysis of [44] focused on the
production of r.h. neutrinos, with a mass term of the form (My +g¢) NN. From
the results of [44], and from the analytical computations of [87], it can be shown that
a sufficient lepton asymmetry is generated if the mass of the r.h. neutrinos is higher
than about 10" GeV, and if their coupling to the inflaton satisfies g > 0.03 (we
will derive these bounds in section 5.4). Here we note that this high coupling can
in principle destabilize through quantum effects the required flatness of the inflaton
potential. This, in addition to the strong hierarchy between the r.h. neutrino mass
and the electroweak scale, motivates the study of the supersymmetrized version of

the mechanism proposed in [44].

One of our aims is to show explicitly that, in the supersymmetrized version of the
above model, the nonperturbative production of the r.h. sneutrinos is much more
efficient than the one of the neutrinos. Due to supersymmetry, the inflaton couples
with the same strength both to the r.h. neutrinos and to the sneutrinos, so that if
the former are produced at preheating this will also occur for the latter. However,
while production of fermions is limited by Pauli blocking, the production of scalar
particles at preheating is characterized by very large occupation numbers. This high
production has typically a big impact on the dynamics of the inflaton field. The
most immediate backreaction effect is the generation of an effective potential for the
zero mode of the inflaton. This effective potential, taken into account in the Hartree

approximation [79], is typically comparable with or even dominant over the tree level
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potential V' (¢). There are however two equally important effects which are beyond
the Hartree approximation. The first is due to the scatterings of the produced quanta
against the zero mode of the inflaton. This destroys the coherence of the oscillations,
thus ending the resonant production characterizing the early stage of preheating [79].
The second is the amplification of all the other fields to which the produced quanta
are coupled. This is a very turbulent process, dominated by the nonlinear effects
caused by the very high occupation numbers of the fields involved. As a result, all
these mutually interacting fields are left with highly excited spectra far from thermal
equilibrium [88]. Both these effects are denoted as rescattering [84]. 3

Rescattering strongly affects some of the outcomes of the analytical studies of
preheating of bosons, which hardly go beyond the Hartree approximation. For this
reason, the results presented in our work are obtained with numerical simulations
on the lattice. More precisely, the code “LATTICEEASY” [89], by G. Felder and
1. Tkachev, has been used (details are given in section 5.4). Full numerical calcula-
tions on the lattice are however rather extensive. We have found that the necessary
computing time is reduced in the conformal case, that is with the inflaton potential
V(¢) = A¢*/4, and with a r.h. sneutrino mass which is negligible during the early
stages of preheating. For this reason, in our computations we fixed My = 10" GeV,
which is smaller than the Hubble parameter during inflation, but still high enough to
recjuire a nonthermal production of the sneutrinos. The numerical results show a very
efficient production of r.h. sneutrinos and inflaton quanta at preheating/rescattering.
Even for a coupling inflaton-sneutrino as small as g? ~ few x 1072 the produced
quanta come to dominate the energy density of the Universe already within about
the first 5 e-folds after the end of inflation. In particular, the energy density stored in
sneutrinos is typically found to be a fraction of order one of the total energy density,
so that a sufficient leptogenesis is easily achieved at their decay.

R.h. sneutrinos are coupled to Higgs fields and left handed (1.h.) leptons through
the superpotential term h N H L C W (responsible for the Yukawa interaction which
provides a Dirac mass to the neutrinos). Thus, one may expect that quanta of the
latter fields are amplified by the rescattering of the r.h. sneutrinos produced at pre-
heating. We study this possibility in section 5.5, showing that indeed the amplification
occurs for a wide range of values of the coupling h. Part of the analysis follows the
detailed discussion on rescattering given in [88], where the numerical code [89] used
here was also employed. However, the analysis of [88] is focused on the production
of massless particles, while we show that the non vanishing mass of the sneutrinos
can have some interesting consequences. More precisely, when the sneutrino quanta

become non relativistic (let us denote by 7 the time at which this happens) their

3In some works, the term rescattering refers only to the scatterings of the produced quanta against
the zero mode of the inflaton. Here we keep the original meaning given in [84].
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rescattering effects become much less efficient. Thus, a strong amplification of the
MSSM fields at rescattering can take place only if the coupling A is sufficiently large
so that the amplification occurs before 7. As a consequence, for massive sneutrinos
and for small values of h, the number of MSSM quanta produced at rescattering is
an increasing function of h. However, the production is actually disfavored when
the coupling h becomes too high. This is simply due to energy conservation, since
the energy associated to the interaction term between the sneutrino and the MSSM
fields cannot be higher than the energy initially present in the sneutrino distribution
(equivalently, one can say that, for a too high coupling %, the non vanishing value
of the sneutrinos gives a too high effective mass to the MSSM fields, which prevents
them from being too strongly amplified). Posing quantitative bounds on the coupling
h would require some better (analytical) understanding of the details of rescattering
than we presently have. However, the numerical results shown in section 5.5 may give
an idea of the expected orders of magnitude.

An important remark is in order. When we speak about the amplification of
MSSM fields coupled to the r.h. sneutrinos we have actually in mind amplification of
D—flat directions (let us generally denote them by X). Indeed, D—terms provide a
potential term of the form AV ~ gZ|Y|* for any scalar non flat direction Y. Since
g is a gauge coupling (g¢ = O (107')), we expect such terms to prevent a strong
amplification of Y, again from energy conservation arguments. Another important
issue which emerges when gauge interactions are considered is whether gauge fields
themselves are amplified at rescattering. We believe that, at least in the model
we are considering, also the amplification of gauge fields will be rather suppressed.
The scalar distributions amplified at rescattering break much of the gauge symmetry
of the model. This gives the corresponding gauge fields an effective mass in their
dispersion relation (analogous to the thermal mass acquired by fields in a thermal
bath) of the order m? ~ g&(X?). As we extensively discuss in the Chapter, in the
class of models we are considering the nonthermal distributions formed at rescattering
are characterized by a typical momentum several orders of magnitude smaller than
this mass scale. For this reason, one can expect that such heavy gauge fields cannot
be strongly amplified. * In our opinion, an explicit check of these conjectures by
means of numerical simulations could be of great interest, especially considering the
great importance that gauge fields could have for the thermalization of the scalar
distributions.

To conclude, we discuss the production of gravitino quanta from the scalar dis-
tributions generated at rescattering. We already mentioned that in order to avoid a

thermal overproduction of gravitinos an upper bound has to be set on the reheating

4Gange fields which are not coupled to the fields generated at rescattering will not acquire this
high effective mass. However, being uncoupled, they will not be amplified either.
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temperature Try of the thermal bath, Try < few x 101 GeV [40]. The requirement
of a low reheating temperature can be seen as the demand that the inflaton decays
sufficiently late, so that particles in the thermal bath have sufficiently low number
densities and energies when they form. If H ~ 10* GeV at the end of inflation, and
if the scale factor a is normalized to one at this time, the generation of the thermal
bath cannot occur before a ~ 107. Gravitino overproduction is avoided by the fact
that in the earlier times most of the energy density of the Universe is still stored in
the coherent inflaton oscillations. On the contrary, we have already remarked that
preheating/rescattering lead to a quick depletion of the zero mode in the first few
e-folds after the end of inflation. °

The question whether also the distributions formed at rescattering may lead to a
gravitino problem is thus a very natural one, and section 5.6 of the chapter is devoted
to some considerations on this regard. ® To provide at least a partial answer to
this question, we distinguish the period during which rescattering is actually effective
from the successive longer thermalization era. The computation of the amount of
gravitinos produced during the earlier stages of rescattering appears as a very difficult
task. The numerical simulations valid in the case of bosonic fields indicate that a
perturbative computation (with dominant 2 — 2 scatterings taken into account) can
hardly reproduce the numerical results, and that probably N — 2 processes (N > 2)
have also to be taken into account (we discuss this point in more details in section
5.5). It is expected that the same problem will arise also for the computations of the
quanta of gravitinos produced by the scalar distributions which are being forming at
this stage. The end of rescattering/beginning of the thermalization period is instead
characterized by a much slower evolution of the scalar distributions. In particular,
the total occupation number of all the scalar fields is (approximatively) conserved,
which is interpreted [88] by the fact that 2 — 2 processes are now determining the
evolution of their distributions. Motivated by this observation, we assume that 2 — 2

interactions are also the main source of production for gravitinos from this stage on.

5The situation is even more enhanced for hybrid inflationary model, in which the energy density

of the zero modes of the scalars gets dissipated within their first oscillation [81, 82, 83].
5We acknowledge very useful discussions with Patrick B. Greene and Lev Kofman on this issue.
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In the thermal case, the gravitino production is dominated by processes having a
gravitationally suppressed vertex (from which the gravitino is emitted) and a second
vertex characterized by a gauge interaction with one outgoing gaugino. However, we
believe that in the present context these interactions will be kinematically forbidden,
due to the high effective mass-squared that gauginos acquire from their interaction
with the scalar distributions (the argument follows the one already given for gauge
fields). Once again we notice that the system is still effectively behaving as a conden-
sate: the number densities of the scalar distributions are set by the quantity \/W ;
which is much higher than the typical momenta of the distributions themselves. This
generates a high effective mass for all the particles “strongly” coupled to these scalar
fields. A further comparison with the case of a thermal distribution may be useful: in
the latter case both the typical momenta and the effective masses are set by the only
energy scale present, namely the temperature of the system. As should be clear from
the above discussion (see also [88]), the thermalization of the distributions produced
at rescattering necessarily proceeds through particle fusion. Only after a sufficiently
prolonged stage of thermalization, will the system be sufficiently close to thermody-
namical equilibrium so to render processes as the one discussed above kinematically
allowed.

In section 5.6 we show that if this class of processes is indeed kinematically sup-
pressed, the production of gravitinos from the distributions formed at rescattering
is sufficiently small. However, we remark that this analysis still leaves out the grav-
itino production which may have occurred at the earlier stages of the rescattering
period. Whether this production may be sufficiently strong to overcome the limits
from nucleosynthesis remains an open problem.

Let us finally summarize the plan of the chapter. In section 5.2 we discuss lep-
togenesis with a thermal production of the r.h. (s)neutrinos. Leptogenesis with a
nonthermal production of r.h. neutrinos is reviewed in section 5.3. The supersymmet-
ric version of this model is presented in section 5.4, where we study the nonthermal
production of sneutrino quanta. Section 5.5 is devoted to the amplification of the
MSSM D-—flat directions due to the rescattering of the r.h. sneutrino quanta. The
discussion on the gravitino production is presented in section 5.6, apart from a few

technical details which can be found in the appendix A.

5.2 Thermal N; production

We now consider the case where the lightest r.h. (s)neutrino /V; is thermally produced

7

after Try . With hierarchical r.h. neutrino masses, one can typically assume the

"We assume in this work that Ty is “large”; for a discussion of baryogenesis in low-Try models,
see e.g. [106].
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lepton asymmetry to be produced by the decay of the lightest r.h. (s)neutrino NV .
As we shall see, this is a self-consistent assumption, because M, and M5 will turn out
to be larger than Try. To generate a lepton asymmetry, the decay of the N; should
proceed out of equilibrium. More quantitatively, the ratio of the thermal average of
the N; decay rate and of the Hubble parameter at the temperature T' ~ M;
Iy, m;
2H 2x1073eV '
should be less than unity to have an unambiguously out-of-equilibrium decay. The

?

lr=ns; = (5.1)

parameter m; is defined as [';(H)?/M?, where (H) is the Higgs vev. However, 7,
cannot be taken too small if N; is produced thermally [66]. Indeed the quantity 77
controls the strength of the interactions of the NV; with MSSM degrees of freedom, and
an efficient thermal production via Yukawa interactions typically requires /m; 2> 107°
eV. To account for both these effects, I'y, ~ H(T = M;) should be taken, so the
decay is only barely out of equilibrium, and the final lepton asymmetry has to be
computed by integrating the full set of relevant Boltzmann equations [64, 65]. These
computations show that a significant portion of the lepton asymmetry is erased by
lepton-number violating processes, and that only a fraction x < .1 or less typically
survives. Starting from /N; in thermal equilibrium at 7" > M, and collecting all the

above informations, the final baryon asymmetry can be estimated to be

M m K
~ 10—10 1 3 v =
Yp =10 (1010 Gev> <o.05 e\/> <0.1) ocp - (5:2)

This expression has to be compared with the baryon asymmetry required by Big
Bang Nucleosynthesis Y5 = Np/s ~ (1.7 — 8) x 107! [107, 59]. As we have antic-

ipated, we see that thermal leptogenesis can be a viable mechanism if the mass of

the r.h. neutrino Ny is sufficiently high. From eqn. (5.2) we find the lower bound
My 2 (10° — 10'%) GeV, although it is fair to say that higher values are required if the
bound (3.15) is not saturated. If V; is generated from the thermal bath, a reheating
temperature greater than A is required. In the most favorable case, the required
value is only marginally compatible with the bound imposed by gravitino overpro-
duction from the thermal bath [40]. To overcome the potential conflict between the
gravitino bound and the requirement of a reheating temperature high enough for lep-
togenesis, the possibility of producing right-handed neutrinos non thermally has been

envisaged [44]. The following considerations will be focused on this framework.

5.3 Non thermal production of right handed neu-

trinos

Many alternatives to thermal (s)neutrino production have been considered in the lit-

erature. We concentrate here on mechanisms that involve a direct coupling of N to
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the inflaton, although in the next section we will comment on differences and simi-
larities with the Affleck-Dine mechanism. The strength of this interaction, relative to
the inflaton coupling to other degrees of freedom, is a free parameter; for appropriate
values, a lepton asymmetry of the correct magnitude can be produced. The number
density of r.h. (s)neutrinos will also depend on the evolution of the inflaton between
the end of inflation and reheating. If the inflaton decays perturbatively, right-handed
neutrinos with masses less than half the inflaton mass could be produced in the decay
[108]. For heavier r.h. neutrinos, one can also envisage the possibility that a sufficient
leptogenesis is generated in processes in which they mediate a perturbative inflaton
decay [109]. In both cases, the final lepton asymmetry will be proportional to the
branching ratio of the inflaton into (either on- or off-shell) neutrinos. A branching
ratio of order one is typically required. Right-handed neutrinos with masses greater
than that of the inflaton can be produced at preheating, if their interaction with the
inflaton is strong enough. The production of heavy fermions (sneutrinos are discussed
in the next section) in an expanding Universe was first discussed in ref. [44] (fermionic
production in the conformal case was first studied in [110]), where a direct Yukawa
coupling to the inflaton ¢ was considered, and the simplest chaotic inflationary sce-
nario with a massive inflaton, V (¢) = mj ¢*/2 , mg =~ 10"* GeV, was assumed. The

relevant part of the lagrangian is

Lyo=N (M+g9) N, (5.3)

where N is any one of the r.h. neutrinos. We assume that only one r.h. neutrino
generation plays an important role in the generation of a lepton asymmetry, and
therefore we drop the r.h. neutrino generation index for the remainder of this section.
The generalization of the following analysis to three generations is straightforward,
at least as long as the r.h. neutrino—inflaton coupling matrix g is diagonal in the
r.h. neutrino mass basis (otherwise, the formalism of [111] should be used). After
the end of inflation, the inflaton condensate ¢ oscillates about the minimum of its
potential with amplitude of a fraction of the Planck mass Mp ~ 1.22-10 GeV . The
total effective mass of the fermion M + g ¢ (t) varies non adiabatically in time, and
this leads to a (non perturbative) production of quanta of V. In particular, fermion
production at preheating occurs whenever the total effective mass crosses zero. As a
consequence, fermions with a mass up to

1/2 242
mql—o) % 107 QeV, ¢ = Z % L 342100 (5.4)

=
g

Mo ~ 5 (

can be produced [44], irrespective of the value of the reheating temperature of the
thermal bath which is formed at later times. The abundance of neutrinos produced

at preheating has been computed analytically [87], and it is most conveniently given
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in terms of the ratio

Ny 1 14x107Yg L 2\ 1°"*
N log (1.7 x 10% L— , 5.5
Do 1010 GeV M110/2 8 My (5:5)

where we have defined My = M/ (10'° GeV). The above formula is valid as long
as the backreaction of the produced neutrinos on inflaton dynamics is negligible, as
it turns out to be the case as long as ¢ < 10° [44, 87]. For larger values of ¢, the
effectiveness of preheating increases (by a factor up to about 1.5), and the above
equation gives just a lower bound on Ny. In what follows, we will conservatively

8 For a massive inflaton, the ratio (5.5) is constant until the

assume ¢ < 10%.
inflaton condensate decays. If neutrinos decay before reheating has completed, the

resulting baryon asymmetry reads

8 8 3 Thn
Yo = —Ypp=— [—eNyo R
T 23(€N4p¢)

= qor07 Loppyr TR M p Tl

T 108 109GeV 0.05ev T { o8 <1'66 0 WI&E)] (56)
The ratio of Ny to the entropy is constant after reheating, unless it decreased due
to some subsequent entropy production °. For a given value of the parameter ¢, the
baryon asymmetry (18) is maximized when the mass M has its largest possible value
(16). For Try =~ 10° GeV, m,, = 0.05 eV and dcp = 1, imposing the condition (16) on
eqn. (18) it is possible to see that the generation of the observed baryon asymmetry
requires ¢ larger than about 0.03. In particular, if we assume ¢ ~ 10%, then the
observed baryon asymmetry can be obtained for a mass of the right—handed neutrino
of the order of 101*—10'® GeV. Production of r.h. neutrinos at preheating can generate
a large enough lepton asymmetry from neutrinos with My > Txry, so constraints on
Try do not translate into bounds on My. We notice however that the large inflaton-
neutrino coupling required (g 2 0.03) can in principle modify through quantum effects
the small mass or self coupling parameters characterizing the inflaton potential. This
constitutes a further motivation for considering supersymmetric models, as we do in
the remaining of this work. We will see that the production of the scalar partners of
the r.h. neutrinos can significantly affect some of the above considerations.

80ne should also consider the perturbative decay of the inflaton quanta. Comparing eqn. (5.5)
with the number of r.h. neutrinos produced perturbatively in one inflaton oscillation (i.e. the typical
timescale for preheating), one can however see that the perturbative production is subdominant when
kinematically allowed.

For instance, this is the case if the r.h. neutrinos lifetime is long enough for them to come to
dominate the energy density in the Universe, after reheating has completed.
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5.4 Supersymmetric see-saw and nonthermal pro-

duction of right handed sneutrinos

As we have seen in the previous section, preheating can have very important con-
sequences for leptogenesis through the production of r.h. neutrinos [44]. In super-
symmetric extensions of the see-saw model, the production of the supersymmetric
partners of the neutrinos is even more important. Due to supersymmetry, the infla-
ton couples with the same strength both to the r.h. neutrinos and to the sneutrinos,
so that if the former are produced at preheating this will also occur for the latter.
However, while production of fermions is limited by Pauli blocking, the production of
scalar particles at preheating is characterized by very large occupation numbers. As a
consequence, the production of r.h. sneutrinos can be expected to be more significant
than the one of neutrinos, as the numerical results presented below confirm. Pro-
duction of particles at preheating gives very model dependent results; nevertheless,
some general features can be outlined, and the whole process can be roughly divided
into three separate stages. The first of them is characterized by a very quick ampli-
fication of the fields directly coupled to the inflaton (and of the inflaton field itself,
in the case of a sufficiently strong self-interaction) to exponentially large occupation
numbers [79]. Very rapidly, the system reaches a stage in which the backreaction
of the produced quanta, customarily denoted as rescattering [84], plays a dominant
role. In the case of parametric resonance, the scatterings of the quanta against the
zero mode of the inflaton destroy the coherence of the oscillations, thus ending the
resonant production characterizing the early stage of preheating [79]. An equally
important backreaction effect is the amplification of all the other fields to which the
produced quanta are coupled. This is a very turbulent process, dominated by the
nonlinear effects caused by the very high occupation numbers of the fields involved.
As aresult, all these mutually interacting fields are left with highly excited spectra far
from thermal equilibrium. The latter is actually achieved on a much longer timescale,
through an adiabatic (slow) evolution of the spectra, which characterizes the third
and final stage of the reheating process. ! The first stage of preheating is well un-
derstood. Particle production is computed in a semi-classical approximation (for a
rather general formalism in the case of several coupled fields see [111]), and analytical
solutions have been obtained in a broad class of models [78, 79, 117, 85, 110, 87].
Analytical approximations break down when nonlinear processes become dominant.

However, the high occupation numbers of the scalar fields involved allow a classical

10The thermalization of this system is a very interesting issue, which however we do not discuss in
this work - see [88] for a more detailed study. Since in this case thermalization proceeds via particle
fusion, an important role may be played by three or five point vertices, which shorten perturbative
estimates of the thermalisation timescale [112] (other recent discussions on thermalization can be
found in [113, 114, 115, 116]).
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Inflaton vev at the end of inflation ¢o ~ Mp/3

Inflaton self-coupling (eqn. (5.7)) A~9x1074
Neutrino-inflaton coupling (eqn. (5.7)) d=g*/\

Neutrino Yukawa coupling (eqn. (5.15)) h=h2/\ (< m= ]—Lo—%ﬁz)

X number density (eqn. (5.10)) N, x = [comov. num. den.]/[v/A¢]?
X Smass” (ean. (5.9) mix = (50 = ) /1Al

Table 5.2: Translation table between quantities in plots and superpotential parame-
ters (we give the eqn. where the parameter is defined). Recall that 7 is the conformal
time coordinate, n = 0 at the end of inflation, and subsequently the scale factor is

a(n)/a(0) ~n/2+1.

study of the system. Indeed, in the limit of high occupation numbers quantum uncer-
tainties become negligible, and quantum probabilities show a classical (deterministic)
evolution [118]. The latter can be better computed by means of lattice simulations
in position space [84, 89, 83], where all the effects of backreaction and rescattering
are (automatically) taken into account. A detailed discussion of rescattering and of
the approach to thermal equilibrium has been given in [88], where the code “LAT-
TICEEASY” [89], by G. Felder and I. Tkachev, has been used. The numerical results
presented in this paper are also obtained with this code. For numerical convenience,
we consider a chaotic inflationary scenario with a quartic potential for the inflaton.

More specifically, we focus on the superpotential

) 1
T/I/’((P,N):g@?’%»i(ﬂg@+M> N? . (5.

Ut
=~
A

The second term of W reproduces the lagrangian (5.3) for the r.h. neutrinos. We de-
note the scalar components of the inflaton and of the r.h. neutrinos multiplets with ¢
and IV, respectively. To simplify the numerical computations, the imaginary compo-

nents of the scalar fields will be neglected. Therefore, after canonical normalization,

1176 embed the system in a supergravity context while preserving a flat potential for the inflaton
field, one may impose [119] a definite parity for the Kéhler potential L = IC(® — ®*). Doing so,
the inflaton is identified with the real direction of the scalar component of ®, and supergravity
corrections can be neglected.
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Figure 5.1: Time evolution of the comoving number density and of the effective masses
of the inflaton ¢ and of the r.h. sneutrino N. See table 5.2 for notation.

o) t’—> ¢/V2, N — N/\/2, we consider the scalar potential 2

1

5 9o+ M)* N? . (5.8)

A
V;cala.r - Z Cﬁl +

The size of the temperature fluctuations of the Cosmic Microwave Background sets
A=~ 9 x 107! while the neutrino mass M as well as the coupling ¢ to the inflaton
are model dependent parameters. The case M = 0 is analyzed in detail in [88]. In
figure 5.1 we show the time evolution of the comoving number density and of the
comoving effective mass of the two scalars ¢ and N, for the particular choice of the
parameters M = 10"1GeV, g = ¢?/)\ = 200. The effective mass is defined as

2 "
2, = a2<%> - (5.9)
where a is the scale factor of the Universe, normalized to one at the end of inflation,

prime indicates derivative with respect to the conformal time 7, while (...) denotes

12We neglect the term quartic in NV, subdominant with respect to the mass term M?> N? during
most of the preheating/rescattering period, as well as the mixed term o VA g ¢? N2, negligible with
respect to the mixed term present in eqn. (5.8) for g> > A. One may also be worried that, if
the right-handed sneutrino is charged under some gauge group (as it generally happens in grand
unified models) with a gauge coupling g¢ not much smaller than one, the corresponding D—term
x g& |N 14 C V could prevent the amplification of N at preheating-rescattering. However, at least as
long as (IV) is smaller than the scale at which the gauge symmetry is broken, this term gets actually
compensated by a shift of the (much heavier) field responsible for the breaking of the symmetry,
and it is thus absent from the effective potential for N [120, 76].
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average over the sites of the lattice. The term a”/a appears in eqn. (5.9) because we
are considering minimally (rather than conformally) coupled scalars, and it vanishes
in a radiation—dominated background. The comoving number density is defined as

the integral over momentum of the “occupation number”

1 1
nel) = 3 (wlfl+ - I5E) |
wi = K 4mig, (5.10)

where f; denotes the Fourier transform (to be evaluated on the lattice) of the rescaled
field a ¢ . By definition [89], the quanta stored in the oscillating inflaton condensate do
not contribute to N4 in figure 5.1. The three quantities meg , IV , and 7 are all shown
in units of VA ¢y =~ 1.25-10'2 GeV , with ¢ ~ 0.342 Mp denoting the value of ¢ at the
end of inflation, to the appropriate power. All the numerical results presented in this
work are obtained with a two dimensional lattice of size L = 20 (\/;\_ ¢0) - and with
N = 10242 sites (see [89] for details). Figure 5.1 exhibits the features that we have
outlined at the beginning of this section, namely a quick stage of exponential growth
of the occupation numbers followed by a period in which the occupation numbers
‘are nearly constant. During the first stages of the process, the results presented
reproduce very well the ones obtained in [88] for M = 0, since the “bare” mass of the
r.h. neutrinos is initially negligible. However, the presence of a non vanishing bare
mass affects the subsequent evolution of the system. Indeed, when the value of the
fluctuations in the sneutrino field becomes comparable with the amplitude of inflaton
oscillations, the second term in eqn. (5.8) shifts the minimum of the effective potential
of the inflaton, giving it an effective mass that is roughly constant in comoving units.
A stronger effect is related to the fact that the sneutrino itself is massive. In rescaled
units and for the present choice of the parameters, we have

2
Mefr N° = <<0.08a+ 14.1 %?) > : (5.11)

Numerical results show that (@) ~ ¢o/a (as one could also see by inspecting the
potential (5.8) in Hartree approximation), so that the part in the above equation that
depends on ¢ remains of order one. It follows that the r.h. neutrino mass M dominates
the effective mass (5.11) for n > 7 ~ 350, as clearly indicated by the growth of mes n
visible in figure 5.1 for n > 7. Production of sneutrinos at preheating in the present
model is strictly related to the production of fermions we have analysed in section 2.3 .
In particular, production occurs whenever the effective neutrino mass (5.11) crosses
zero. Numerical results show that preheating is terminated by rescattering effects
when the scale factor a is of the order of aese = 100. As a consequence, sneutrinos with

a bare mass up to ¢ dq/aresc =~ ¢ - 107 GeV will be efficiently produced at preheating
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Figure 5.2: Time evolution of the derivative of the scale factor with respect to con-
formal time. A constant value indicates radiation domination, while a linear growth

indicates matter domination.

and will constitute a sizable fraction of the background energy '3. Numerical results
show that after the onset of rescattering, the energy density gets roughly equiparated
between the quanta of the two species. As a consequence, in general large couplings
correspond to a large interaction energy, and therefore to a smaller number density
during the rescattering/thermalization stage [84, 88]. In particular, for this reason
a large quartic self-coupling g% |N 14 for the sneutrino would prevent it from getting
large occupation numbers, since energy conservation would impose (N?) \/m
Numerical results also indicate that soon after the beginning of rescattering most of
the r.h. neutrino quanta have a momentum of the order k, ~ 15vA¢y. ** Thus,
most of the r.h. neutrinos become non relativistic at a time not much greater than 7.
From this time on, the energy density of the system redshifts as the energy density of
matter. The transition between the two stages of matter and radiation domination is
clearly visible in figure 5.2, where we show the time evolution of the derivative of the

scale factor with respect to conformal time. As long as the neutrino mass is negligible,

13Non-adiabatic production of sneutrinos can occur for bare masses as large as g¢o/4 ~ g -
10'® GeV, but the efficiency of the process will be much lower, because redshift effects will terminate

the resonance before rescattering sets in.
14The precise value of the typical momentum k, of the distributions, as well as the time needed

for N, to saturate, are a nontrivial function of g, since different values of this parameter lead to
different positions (in momentum space) and strengths of the resonance bands [85]. However, the
rescattering stage destroys these resonance bands, making the dependence of k. on § milder.
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the energy density of the system redshifts as the one of radiation [85, 88], and the
evolution of the scale factor is very well approximated by a ~ (1 + t)l/ >~y /241,
where we have set £ = 7 = 0 at the end of inflation. Therefore, during the initial
stage of radiation domination, @' is constant. In the following matter dominated stage
a < n?, and o' grows linearly with time. To estimate the baryon asymmetry produced
from the decay of the r.h. sneutrinos, we need to know the fraction of the entropy of
the Universe that is generated in the decay. The baryon asymmetry will be [67]

8NN3NN8< 3TN)SN

12

23 SN Stot - 2_3

— TN ms SN
~ 0.3x 10710 ( 5 5.
05 % (106 Gev> 0.05 eV) S0t 0 (5.12)

where sy o< g.(Tn)T% is the entropy produced in N decay, and sy is the total entropy

Yp

— — ——

4 M

Stot

of the Universe. If the r.h. sneutrinos dominate the Universe when they decay, then
Tl is the temperature to which the Universe is reheated by the decay of the sneutrinos
N, and s;; ~ sy. This condition is satisfied if the inflaton mainly decays only into
one r.h. sneutrino family (as it is clearly the case in the one generation model we
have studied numerically). However, if the inflaton couples to other scalars (also
in particular to the other generations of sneutrinos), these could produce additional
entropy. At variance with the case of leptogenesis induced by the decay of right—
handed neutrinos, analysed in section 2.3, the baryon asymmetry (5.12) does not
depend on the r.h. (s)neutrino mass, that must only satisfy A/ > T in order to
prevent thermal regeneration of the r.h. sneutrinos after their decay. This is due the
fact that, thanks to Bose statistics, r.h. sneutrinos can get large occupation numbers
at preheating (whereas Pauli blocking makes fermion production less efficient), and
they can easily represent a substantial fraction of the energy in the Universe. '°
The generalization to the more realistic case of three neutrino families coupled to the
inflaton is obtained by considering the following superpotential, in the mass eigenstate
basis for the r.h. neutrinos,

) 1
W= %:@3 + i Li - Hy Ny + 5 (M6 + V2g;,®) Ni: N;. (5.13)

This gives a potential for the real components of the scalars

Ay, 1 _
V= Z(bl t3 Z(Qij¢ + M;6:5) (93¢ + Mibig) NN + ... (5.14)
1,9,k

5Notice that for a massless inflaton, the inflaton energy redshifts as radiation, and non-relativistic
neutrinos will easily dominate the energy in the Universe. If the inflaton in instead massive, then
the energy in sneutrinos would in any case be a fraction of order unity of the background energy,
and would start increasing after inflaton decay. As a consequence, the resulting baryon asymmetry
would still be given (at most up to factors of order one) by the expression (5.12).
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where dots include the terms involving the Yukawa h, which are not relevant for non-
thermal /V; generation. We suppose for simplicity that the neutrino-inflaton coupling
gij is diagonal. Energy considerations after rescattering [84, 88] lead to the expec-
tation that the sneutrino family that is most strongly coupled to the inflaton is also
the one that will have the smallest number density (clearly, on the assumption that
all the sneutrinos are sufficiently coupled to be amplified). This is opposite to the
scenario in which sneutrinos are produced by the perturbative decay of ¢, where Ny,
is proportional to the inflaton branching ratio to IV;. However, the presence of the r.h.
sneutrino bare masses, as well as the existence of couplings to the Standard Model
degrees of freedom (whose effects will be analysed in detail in the next sections), can
strongly affect these conclusions. Although the resulting baryon asymmetry (5.12)
has the same expression as the one reported in [67], the mechanism that led to a
sneutrino dominated Universe is different from the generation of large expectation
values considered in ref. [67] or in the Affleck-Dine [120] mechanism. Indeed, the
latter is effective if during inflation the sneutrino (or, more generally, the amplified
flat direction) has a mass much smaller than the Hubble rate. This requires (besides
a sufficiently small bare mass M < H) that the amplified field does not get a large
effective mass through its coupling to the inflaton. It is important to remark that
the mechanism we are discussing can provide a sufficient leptogenesis even if the cou-
pling g between the inflaton and the r.h. neutrino multiplets is much smaller than
the one needed in non supersymmetric models, i.e. with only the production of the
neutrinos taken into account, see eqn. (5.6). Anyhow, even couplings as small as
g*> ~ 10\ prevent the formation of a large condensate during inflation. Therefore,
the two mechanisms can lead to large occupation numbers in complementary regions
of the parameter space. Notice that the above discussion applies to every effective
mass term that can arise in the potential for a (quasi) flat direction. In particular,
it could be interesting to consider the effective mass of the order of the Hubble pa-
rameter that is generally induced by supergravity corrections [77], although in this
case amplification effects may be weakened by the quick redshift characterizing the
nonrenormalizable interactions. If supergravity corrections induce a tachyonic mass
mZg ~ —H?, a large expectation value will be generated during inflation [77], and the
dynamics of preheating will turn out to be rather different from the one considered in
the present section. This however requires a suitable nonminimal K&hler potential,
and we will not discuss this possibility in this work. Finally, it is worth stressing that
both the leptogenesis scenario described in this section and the one considered in [67],
although they are related to Affleck—Dine leptogenesis, are somehow different from it
for what concerns the fulfillment of the Sakharov C'P-violation condition [58]. In the
Affleck-Dine scenario, the latter is achieved by the motion of the Affleck-Dine con-
densate (that requires coherence over many Hubble lengths), while in the mechanism
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we are analysing, C'P-violating sneutrino decays are crucial in the generation of an

asymmetry.

5.5 Production of light degrees of freedom at rescat-
tering

The description presented above is further modified by the effects of the coupling of
the r.h. neutrino multiplets to the 1.h. leptons and Higgses, coming from the superpo-
tential (3.10). Considering for simplicity only one generation, the superpotential (5.7)

will be supplemented by
AW =hNL-H. (5.15)

The resulting scalar potential contains several interaction vertices coming from F-—
terms. In addition, there are quartic contributions from the D—terms. The presence of
the latter in the potential plays an important role for our discussion, since rescattering
mostly affects the D—flat directions. To see this, consider the case in which the
left—-handed selectron and the charged scalar Higgs vanish. The D-terms for the
neutral Higgs and sneutrino then take the familiar form of the tree level MSSM Higgs
potential, with HY replaced by 7y,

_ 9§U(2 + 932’ 2

Vp = )8

The directions that are not D-flat (i.e. the ones for which || # |H°| in the present

2

I

— |in|?

(5.16)

example) are characterized by a large (gauge) quartic coupling in the scalar potential.
Due to this coupling, they cannot be significantly amplified by rescattering effects.
On the contrary, D-flat directions have only quartic couplings coming from F-terms
as |[OW/ON|?, whose strength h? will be typically taken < 1 in all the cases con-
sidered below. Indeed these quartic interactions among the D-flat directions will be
neglected in our computation, since they can be relevant only during the thermal-
ization stage, when the variances of these fields have grown to be sufficiently large.
The most important F—terms arising from the total superpotential are of the form
~ B2 N2 (|5L]? + |H|?) . If we denote by X the D-flat combination |7y = [H°|, then
the relevant coupling of X to the sneutrino field will be simply given by h*> N* X*
(as in the previous section, we consider for numerical convenience only real direc-
tions). Besides the quartic term oc h? X*, we will also neglect the interaction term
o (gp+ M) N X% ~ M N X?, which is responsible for the late time decay of the r.h.
sneutrinos (that is, the supersymmetric counterpart of the vertex which gives the
decay of the r.L. neutrinos into Higgses and leptons). We thus consider the simplified
model characterized by the scalar potential

A 1 1
V(p N, X) =7 ¢+ 5 (M + g¢)” N?+ 5 h2 N2> X? (5.17)
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Figure 5.3: Time evolution of the comoving number density of the light quanta X .
See table 5.2 for notation.

Neglecting the imaginary directions of the scalar fields, as well as many of the in-
teraction terms, allows a considerable reduction of the computing time needed for
the numerical simulations (this is particularly welcome for the extensive computation
that we discuss in the next section). The above discussion leads us however to believe
that the simplified model should well describe the main features of the preheating and
rescattering process for the supersymmetrized see-saw model with a nonperturbative
production of the r.h. neutrinos. In figure 5.3 we show the time evolution of the
comoving number density of the quanta of X' . As in the previous section, we have
fixed M = 10"" GeV, § = 200, while different values of the parameter h = h2/\
are shown. Even if in the simplified model (5.17) the X field is not directly coupled
to the inflaton, we see that (for suitable values of the coupling h) it can be highly
amplified by the rescattering of r.h. sneutrino quanta. Figure 5.3 shows that the
growth of number of X particles is roughly exponential in time. When the effective
sneutrino mass is varying non-adiabatically in time and is not negligible with respect
to sneutrino typical momenta, the production of X particles cannot be analysed in
terms of scatterings of sneutrinos. However, after the end of the parametric resonance
period and the onset of rescattering, one can expect that a particle-like picture can
give some description of the behavior of the system [88]. In this case, if the dominant
contribution to X production process were given by the 2 — 2 scattering NN — X X,
the rate of growth of Ny should be proportional to h'. The lattice results appear to
present a milder dependence on h, suggesting that the NN — X X scatterings alone




68 5. Non thermal leptogenesis and rescatterring

le+14 B RS e T e P s
1e+13 .
1e+12 |
Te+11 |
o le+t0 b/ o i
z ;

1e+09 |/ K ]
1e+08 _/I E QU e i
16407 | N, e M:‘IOE: GeY e
- ,( ,N’ = PR i

o0 NZ'y, M=0

100000 : »- . 1 ,
100 500 1000 1500
n ( g%/ A = 200, h?/ % = 2000)

Figure 5.4: Comparison of the growth of the occupation numbers of IV and X with and
without the r.h. neutrino mass term. Notice that the amplification of X considerably
weakens when the r.h. neutrino quanta become non-relativistic, n ~ 350 .See table

5.2 for notation.

cannot account for the production of X states. In a naive perturbative analysis, the
contribution, from (m + 2) x N — XX processes, to the rate of growth of Ny, is
proportional to the mx N — X X rate times a factor roughly given by h* N3 /(47p°)
where p ~ 15v/\¢o/a is the typical momentum exchanged. Due to the high density
of sneutrinos, the expansion parameter h* N% /(4mp®) is of order unity for the values
of h we are considering. Therefore, strongly turbulent processes with many incoming
sneutrinos can contribute significantly to the rate of growth of Ny. This is confirmed
by the fact that the total number of particles decreases during the stage of genera-
tion of the X states, thus showing that particle fusion processes are dominant at this
stage [88]. The main features shown in figure 5.3 are shared by the other evolutions
with different § that we will consider in the next section, and they can be understood
at least qualitatively. As could have been easily guessed, the timescale for the growth
of N, x is a decreasing function of h. We also notice from the figure that the am-
plification of X becomes less efficient as the quanta of N become non relativistic, at
n ~ 300. This can be seen explicitly in figure 5.4, where we show the effect of the
r.h. neutrino mass term on the growth of the comoving occupation numbers of the /V
and X fields. If the two fields are both massless, the rescattering of the quanta of IV
lifts the X to (practically) the same amplification [88]. We observe that the situation
is completely different for the case in which the quanta of IV have a sufficiently high
mass. Indeed, when the amplification of X from the r.h. neutrino quanta substan-

tially decreases when the latter become non-relativistic. As a consequence of the two
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Figure 5.5: Time evolution of the effective mass of the quanta of X . See table 5.2

for notation.

effects mentioned in this paragraph, the asymptotic value of IV, x (at least in the time
interval we have considered) decreases at small . Figure 5.3 also shows a decrease
of the asymptotic N, x for high h. As discussed in [88], for sufficiently high coupling
h the two fields have comparable occupation numbers, N,y ~ N, x . Clearly, the
higher the coupling is, the sooner this (approximate) equipartition is reached. For a
very high h, the potential energy associated to the last term of (5.17) then disfavors
the production of the quanta of the two fields, in the same way as a high quartic
coupling o N* added to the potential (5.8) would have prevented the amplification
of the r.h. neutrinos in the two fields case. In figure 5.5, we show the time evolution
of the effective mass of the quanta of X . Comparing it with their distribution in
momentum space, one realizes that most of the quanta are always in a relativistic

regime.

5.6 Perturbative production of gravitinos

The light quanta X generated at rescattering can in turn be responsible for the
production of unwanted relics such as gravitinos. If unstable, gravitinos with a mass of
the order of the electroweak scale (which is what we expect in models of gravitationally
mediated supersymmetry breaking) disrupt the successful predictions of primordial

nucleosynthesis, unless their abundance is below the very stringent bound [74]

2 S 107 (TeV/mg/Q) . (5.18)
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In inflationary theories, several sources of gravitino production have been considered.
The most standard of them is the perturbative production from the thermal bath
formed at reheating. In this case, the above limit (5.18) translates into the upper
bound Ty, < few x10'® GeV on the reheating temperature [40]. Other sources of grav-
itino production can be studied. Since gravitinos arise in supersymmetric models, a
very natural “candidate” channel for their production is the decay of the inflaton into
its supersymmetric partner (the inflatino) plus a gravitino. This process is however
either kinematically forbidden [73] or strongly suppressed [121] by the fact that the
difference between the inflaton and the inflatino mass is governed by the supersym-
metry breaking scale, which is of the same order of the gravitino mass. The resulting
gravitino production is sufficiently small. Recently, the generation of gravitinos at
preheating has been extensively discussed, both concerning the relatively easier case
of the transverse component [122], and the more delicate issue of the longitudinal
component [123, 111, 124]. These studies are focused on the nonperturbative am-
plification of the gravitino field due to the coherent oscillations of the inflaton, and
this mechanism of production is found to be sufficiently limited [111] provided that
the inflationary sector of the theory is weakly (e.g. gravitationally) coupled to the
one responsible for the present supersymmetry breakdown. In this section we discuss
a different possible source of gravitinos, namely a perturbative production from the
nonthermal distributions of light MSSM quanta generated at rescattering. A com-
parison with the standard thermal production may be used as an initial motivation.
Concerning the latter, the requirement of a low reheating temperature can be seen as
the demand that the inflaton decays sufficiently late, so that particle in the thermal
bath have sufficiently low number densities and energies when they form. If H ~ 10'?
GeV at the end of inflation, and if the scale factor a is normalized to one at this time,
the generation of the thermal bath cannot occur before a ~ 107 . Gravitino overpro-
duction is avoided by the fact that in the earlier times most of the energy density
of the Universe is still stored in the coherent inflaton oscillations. As we have seen
in the previous sections, this last assumption is no longer valid if preheating and
rescattering effects are important. Indeed, in the model considered above the energy
density of the scalar distributions becomes dominant already when the scale factor is
of order 100 (the precise value being a function of the parameters of the model). 19
Although this comparison is rather suggestive, it is fair to say that the computation of
gravitino production in the context of rescattering is certainly more difficult than the
usual thermal production. While in the latter case a perturbative approach can be
adopted, and the final result can be readily estimated by computing the rate of 2 — 2

processes with one gravitino in the final state, rescattering is a highly nonlinear phe-

16The situation is even more enhanced for hybrid inflationary model, in which the energy density
of the zero modes of the scalars gets dissipated within their first oscillation [81, 82, 83].
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nomenon. In the bosonic case, we already remarked that naive perturbative estimates
poorly reproduce the initial amplification of the fields X . Only towards the end of
the rescattering stage the number densities of the amplified fields become sufficiently
small so that 2 — 2 processes become dominant, as the (approximate) conservation of
the total comoving occupation number at relatively late times signals [88]. Unluckily,
Pauli blocking forbids fermionic fields to behave classically (in the sense discussed
in section 3), and lattice simulations cannot be used. However, we may take the
numerical results for bosons as a guideline. Also for the production of fermions more
complicated processes than just 2 — 2 interactions could be relevant during most
of the rescattering stage, while they should be subdominant at sufficiently late time.
The latter is presumably set by the same timescale at which rescattering is seen to
end in the numerical simulations described in the previous sections. With this in
mind, we proceed to an estimate of the amount of gravitinos produced by 2 — 2
processes with the fields amplified at preheating/rescattering in the incoming state.
We stress once more that this estimate can be reliable only from the beginning of the
thermalization stage on, so it should provide a lower bound on the total number of
produced gravitinos. It is possible that a higher amount of gravitinos is produced at
earlier times, when nonlinear effects cannot be neglected. This computation has been
carried out in appendix, where also some details (i.e. concerning the quantization
of the system and the choice to focus on the transverse gravitino component) are
reported. As for the thermal production, the dominant 2 — 2 processes have only
one gravitino in the final state, and hence only one gravitationally suppressed vertex.
In the thermal case, the dominant processes have a gauge interaction as the second
vertex, consider e.g. the process X X — Z13/, with one higgsino in the propagator.
For the nonthermal distributions of scalars that we are considering, however, such
processes are kinematically forbidden. This is a crucial point, which poses a signif-
icant limit on the estimated production of gravitinos. We can easily understand it
using the specific process just mentioned as an example: either the Higgses are not
amplified at rescattering (so the above process is irrelevant) or the non-vanishing (H 2
provides an effective mass to the zino produced in the interaction. When the light
scalar distributions saturate (that is, when the gravitino production can be effective),
we find numerically a /(X?) ~ (1072 — 107!) ¢y . The typical comoving momenta a p
characterizing the scalar distributions are instead only about one order of magnitude
higher than the “inflaton mass” at the end of inflation, ap ~ 15v/X¢g. As a con-
sequence, the gauginos acquire a mass m;z ~ (10* — 10%) p, which shows that these
processes are kinematically forbidden. 7 We notice that, at least for this specific kind
of interactions, the system is still effectively behaving as a condensate: the number

"Processes with an additional gauge interaction and the gaugino in the propagator are allowed
but strongly suppressed. See the appendix for details.
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densities of the scalar distributions are set by the quantity \/Cﬁ , which is much
higher than the typical momenta of the distributions themselves. This generates a
high effective mass for all the particles “strongly” coupled to these scalar fields. Com-
pare this situation with a medium in thermodynamical equilibrium: in this case both
the typical momenta and the effective masses are set by the only energy scale present,
namely the temperature of the system. As should be clear by the above discussion
(see also [88]), the thermalization of the distributions produced at rescattering nec-
essarily proceeds through particle fusion. Only after a sufficiently prolonged stage of
thermalization, will the system be sufficiently close to thermodynamical equilibrium
$0 to render processes as the one discussed above kinematically allowed. As we discuss
in the appendix, kinematically allowed 2 — 2 interactions can be obtained by taking
a trilinear interaction coming from the superpotential term (5.15), also responsible
for the Dirac mass term for the neutrinos. This can lead to processes of the kind
N X — x4 /2, or X X — Ngts/y. The physical number density of (transverse)
gravitinos produced by these processes can be estimated as

[Z(g;‘))r o>, (5.19)

h? N.x N,
Naja (1) ~ [ X ’N}

M ab

=%

where 7, is the time (to be determined numerically) at which the expression in the
first parenthesis reaches its maximum, while the second parenthesis is a dilution factor
due to the expansion of the Universe at later times (see the appendix for details). 18
As we have remarked, this result is subject to the limit (5.18), where Y32 = N3j2/s,
and s is the entropy density of the Universe, computed once the dominating thermal
bath is formed. For practical use, we find that a more “convenient” bound can be
obtained if (5.18) is combined with the result for the baryon asymmetry, eqn. (5.12).
For this purpose, consider the ratio

Yajo 23 Nypp(n) 23 Nyp (1)

AL LRSIl LA 5.20
B 861 ]VN (7]) 861 NN (7’]*) ( )

The quantity ¢ has two main advantages, (i) it is independent of the entropy of the
Universe and (ii) it can be computed already at n = 7., since after this time the
two physical number densities N3/ and Ny simply rescale as a2 . While Y3/, must
satisfy the upper bound (5.18), the limit Yz > 107! poses a lower bound on the
number density of the sneutrinos, if leptogenesis is assumed to be responsible for the

baryon asymmetry of the Universe. Adopting the parameterization (3.14), we then

8The time 7, roughly corresponds at the moment at which the distribution of light quanta X
starts to saturate. This typically occurs towards the end of the rescattering stage, which guarantees
that considering only 2 — 2 processes should provide at least an order of magnitude estimate of the
gravitino quanta produced at this stage.
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Figure 5.6: Contour plot for the quantity ¢/h, where ¢ is defined in eqn. (5.22). The
contour lines range from /h = 3-107"% to {/h = 1.1 - 1010 (darker region).

see that the ratio ¢ has to satisfy
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It is important to stress that, unlike the limit (5.18), this bound cannot be ame-
liorated by an eventual entropy release which may occur between the decay of the
r.h. sneutrinos and nucleosynthesis, since both the gravitino and the baryon num-
ber densities would be diluted in the same amount. For this reason, we find in the
present context the bound (5.21) more significant than the limit (5.18) involving the
gravitino abundance alone. We wanted to verify whether the condition (5.21) is re-
spected for the choice M = 10'' GeV considered in the previous sections, and for
several values of the couplings g and A (defined in the potential (5.17)) in the range
g € [30,5000] , h € [2000,200000] (we remind that § = ¢2/), and analogously for
h). To do so, we have defined

ms

CE% (0.0SeV) ;. (5.22)
CP

and in figure 5.6 we have plotted the quantity ¢ /fz. In this way, we factor out the
explicit dependence of ¢ on h coming from the cross section of the dominant 2 — 2
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processes, see e.g. eqn. (5.19). The qualitative behavior of C/h with h (vertical
axis) is easily understood in terms of the arguments used to explain the results of
figure 5.3. For relatively low i, the amplification of the X field is weak, and so few
gravitinos quanta are produced. As h increases, the amplification becomes stronger,
both regarding the final value at which Nx saturates and the rapidity at which the
saturation occurs. As a consequence, the number density of produced gravitinos also
increases. As h further increases, the rapidity at which X saturates keeps increasing
(and so, the time 7, at which most of the gravitino quanta are produced decreases);
however, the final value of Ny starts to become smaller, leading to the decrease
of ¢ / h that we observe in the figure. For fixed values of h, the final result is also
first increasing and then decreasing with g. This behavior is presumably due to
the dependence on g of the total number of quanta of both the N and X fields
produced at preheating/rescattering (notice that it vanishes both at very small and
very high ¢g). However, the interpretation is in this case less clear. Concerning the
value of (f itself, in the range of coupling considered it reaches the maximal value at
G~ 100, h ~ 200000, where it evaluates to ¢ ~ 1075 . From what we have just said,
we expect that ¢ starts decreasing at higher h, although the numerical simulations
we have performed show that the decrease starts only at the highest value of /1 that
we have considered. From the definition (5.22), we see that the bound ¢ < 107 is
respected, provided the C'P violation encoded in the parameter dcp (see eqs. (3.14)
and (3.15)) is not too small. However, we remind that our estimates take into account
only the gravitino quanta produced from the end of the rescattering stage on, while

a higher production at earlier times cannot be excluded.



Conclusions

Despite the tremendous success of spontaneously broken gauge theories, and in par-
ticular the standard model of strong and electroweak interactions, in describing low-
energy phenomena, there still remains an important unresolved issue. This last man-
ifests itself in two equally serious aspects: experimental and mathematical. The
experimental aspect lies in the fact that the Higgs particle has not been detected yet.
However, and even if one can alleviate this problem saying that this will be completely
resolved (hopefully positively) once the LHC will be operative, the other aspect of
the problem is still present. Indeed, the presence of quadratic divergences, which are
‘inherent of theories containing scalar fields, makes the theory mathematically incon-
sistent. This problem dubbed hierarchy problem is the main source of embarrassment
in the particle Physics community. Supersymmetry is one of the most popular frame-
works to address the hierarchy problem. SUSY brings a plethora of new particles,
and as such it brings a whole new set of phenomenology.

* On the other hand, the standard big bang model, together with inflation and the
theory of cosmological perturbations provides a satisfactory description of our Uni-
verse on astronomical scales. In the last two decade, supersymmetry and supergravity
have also been used in a cosmological framework, providing attractive solutions to
several prominent problems (dark matter, baryogenesis,...). Nonetheless, there are
many other instances where the interaction between particle Physics and Cosmology
proves to be not so successful (The monopole problem, moduli, gravitinos,...). This
fact is somehow expected, since the two theories fundamentally probe different scales.
However, if some unified description of all the forces of nature exists, this should not
be the case, and the predictions in the two sides must coincide.

In this thesis, we focused on different aspects of the interface between particle
Physics and Cosmology. In particular, we were concerned with singlet tadpoles that
arise naturally supergravity theories. We showed that they modify significantly the
hybrid inflationary potential, and lead to a modified scenario. Then we were in-
terested in baryogenesis, and more precisely in leptogenesis. The attraction of this
scenario is that it is able to explain and relate two well-known experimental facts: the
baryon asymmetry of the Universe and neutrino masses. In its most simple version

(thermal leptogenesis), it suffers from the overabundance of gravitinos. We studied

5
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two alternative that provide a solution to the gravitino problem. The first is lepto-
genesis at low scale, where we found interesting link between the baryon asymmetry
and the soft SUSY breaking terms. The second is non thermal leptogenesis.

The merging of particle Physics and Cosmology in a unique and unified framework
is for sure one of the most pressing issues in modern theoretical Physics. Perhaps as
pressing as finding a unified description of gravity and quantum theory (Quantum
gravity). It goes without saying that understanding the Physics pervading in the
early Universe would probably shed light on the unified description of the fundamental
interactions of nature. We have seen in this thesis some examples of the contact points
between these two branches of modern Physics. Given the yet available dazzling
array of cosmological data, and the forthcoming ones, we must feel that we are really

fortunate to live in such an exciting era for both particle Physics and Cosmology.



Appendix A

Perturbative production of

gravitinos

In this appendix we derive eqn. (5.19) of chapter 5. We first estimate the number den-
sity of gravitinos produced by the nonthermal distributions formed at rescattering.
We remark that at this stage supersymmetry breaking is controlled by the energy den-
sity of these distributions. The longitudinal gravitino component (i.e. the goldstino,
which is “eaten” in the unitary gauge) is thus provided by a linear combination of the
fermionic superpartners of these scalars, and does not coincide with the longitudinal
gravitino at late times (at least for the standard case of a present gravitationally
mediated supersymmetry breakdown). For this reason, our discussion will be limited

to the transverse gravitino component 15/, . Its mass is given by [125]

ooz W (61|
— oKlei)/M ¢ -
m3j2 = € P ]\/[]2:- ) (A 1)

where, we remind, W and /C are, respectively, the superpotential and the Kihler
potential of the model, while {¢;} denotes the set of scalar fields amplified dur-
ing preheating and rescattering. To quantize the transverse gravitino, we define a
homogeneous mass mJ s by replacing in eqn. (A-1) the (x—dependent) values of
the fields with their (homogeneous) variances, ¢ (t, x) — /(¢?) (t). The difference
dmgja = mgjp — mg /2 will be accounted for in the interaction lagrangian. The main
production of gravitinos is expected to occur close to the point at which the number
density of light scalars X reaches its maximum, in the same way as most of the ther-
mal production occurs as soon as the thermal bath is generated. From the results
of section 4, we observe that the maximum of N,y is achieved at the end of the
rescattering phase. At this moment the thermalization stage begins, during which
the variances of the fields show an adiabatic evolution. This allows us a consistent
quantization of the gravitino component, since the mass mJ /2 (¢) is also varying only
adiabatically in this period. It is clear that the main concern with the procedure
just described is that, contrary to the thermal case, the difference 0z is now of

77




78 A. Perturbative production of gravitinos

the same order of mJ / itself, at least during the initial part of the thermalization
stage. This leads to the problem discussed in section 5, namely to the fact that the
perturbative computation of the gravitino production is presumably not as straight-
forward as in the thermal case, and more complicated processes than just 2 — 2
interactions can be expected to be relevant. However, as we have already remarked,
the latter should provide at least an order of magnitude estimate for the gravitino
produced from the end of the rescattering stage on, and should reasonably lead to a
lower bound to the total production. For this reason, we now proceed to a rough esti-
mate of their cross sections. The dominant processes with two gravitinos as outgoing
particles have two gravitationally suppressed vertices (i.e. X X — 323y with a
flat direction fermion x in the propagator; processes coming from the interaction term
0o Pajohsj2 are subdominant). Their cross section is of the order o ~ p? /M3,
where here and in the following p denotes the typical momentum exchanged in the
scattering. As in the thermal case, the distributions of the light quanta are indeed
characterized by a typical momentum; while for a thermal distribution p ~ T', we
now have p ~ /Ao /a(t), where in the cases shown below  is a coefficient of
order 10 dependent on the specific choice of the parameters. In our estimates we
will take & ~ 15. 1 Thus, o ~ 107" Mz?a~? for this class of processes. A more
efficient production is expected from scatterings with only one gravitationally sup-
pressed vertex, and hence with only one gravitino in the final state. For example, the
standard thermal production is mainly due to channels having a gauge interaction
as the second vertex, e.g. H H — 13/, 2 with an exchanged higgsino. In the present
context, however, processes with outgoing gauginos (that we generically denote with
§) are expected to be kinematically forbidden, since these particles acquire a high ef-
fective mass from their interaction with the nonthermal scalar distributions. Indeed,
if a scalar field X has a large vev, and an interaction of the form \/aX1g is present
(¢ and § are two component matter fermion and gaugino, we use Vo because we
have already used ¢ as the inflaton-neutrino coupling) then the gaugino acquires a
large Dirac mass ~ /a(X) mixing with 1). We have large variances, rather than a
large vev; by analogy with finite temperature, we expect that (X?) # 0 will generate
an effective mass square “m2 ~ (X?)” in the § and ¢ dispersion relations.> So
for kinematic purposes, we assume that gauginos which couple to the flat direction
have masses of order \/—a_(ﬁ . When the light scalar distributions saturate (that is,

1The existence of a typical momentum allows the use of the integrated Boltzmann equation to
estimate the amount of gravitinos produced. Moreover, since this momentum is much higher than
the gravitino mass, the value of the latter does not affect the cross sections for the processes with
outgoing transverse gravitinos. This is welcome, since the above (somewhat arbitrary) redefinition
Mg/ = MY /3 + 0mz 2 will not affect our estimates.

2Tt is implicit in this discussion that all the fermionic fields are quantized in the same way as
done for the gravitinos.



79

when the gravitino production we are discussing can be effective), we find numerically

(X2) ~ (1072 = 107%) ¢o/a. As a consequence, m; ~ (10 — 10%) p, and these scat-
terings are forbidden. One is immediately led to consider processes with an additional
Xi; g vertex and in which the heavy gaugino is off-shell. Their cross section can
be roughly estimated as o ~ 1072 (a/Mp) (p/mz)?, which is comparable or smaller
than the cross section for the process X X — 3,513/, considered above. Finally,
there is the possibility that the second vertex comes from the superpotential term
(5.15), also responsible for the Dirac mass term for the neutrinos. This can lead to
processes of the kind N RX — zt3y or X X — Nrs)s (z denoting the fermionic
partner of X ; all processes have in the propagator the fermionic partner of one of
the incoming scalars). The cross sections for these processes are roughly estimated
as 3 o ~ h%/M} ~ 10713 h/M% . Thus, unless of a very small coupling h, the last
class of scatterings has the highest cross section and dominates the production of the
transverse gravitinos. In particular, processes with one incoming Nz quantum are
dominant if N, x starts to saturate at a smaller value than N,y . Viceversa, scatter-
ings of the kind X X — Np )3/, will dominate. Numerical results indicate that the
former situation is more often realized. The cases in which the opposite was found
are characterized by a relatively high coupling &, so that the light degrees of freedom
are quickly amplified to values N, xy/V, v . Anyhow, in these cases the cross sections
of the two type of processes are clearly of the same order of magnitude. Hence, for
brevity of exposition we will only refer to the processes with an incoming r.h. sneu-
trino, although both the two possibilities have been considered in our estimates. The

integrated Boltzmann equation reads

dN3/2
dt

+ 3HN3/2 >~ <O'|’U,>NXNN N (A—Z)

where the “friction term” due to the expansion of the Universe can be neglected in
the estimate of the order of magnitude of gravitinos produced. The whole production
time can be then divided in a series of time intervals of duration H~! (¢;) each. During

each interval, quanta of gravitinos are generated with a density of

h? Nex (n:) New (m:)

M2 a(ﬁi)3 a(n~)3 o ) (53

(notice the presence of the scale factor, since the physical and not the comoving
occupation number has to be used in the integrated Boltzmann equation). The func-
tion (N x Neny H 'a™%) () amounts to zero at the end of inflation, and it reaches

a maximum at a time 7, , which can be determined numerically and which roughly

3In this estimate it is assumed that the exchanged momentum p is higher or at most comparable
with the mass of the r.h. neutrinos. This is certainly true when most of the gravitinos are produced,
i.e. when the distributions of light quanta X are about to saturate.
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corresponds to the moment at which the comoving number density V. x starts sat-
urating (this in turns occurs towards the end of the rescattering stage, when 2 — 2
processes start dominating). At n > n, it then quickly decreases due to the expansion
of the Universe. It thus turns out that, as for the thermal production, the gravitino
quanta are mostly generated at the time 7, , so that their “late time” physical number
density is approximatively given by

N3/2 (77) h2 NC,X (77*) Nc,N (U*)H_1 (77*) |:CL (n*):l ’ n>n,. (A—4)

Mg a(n)® a(n)’

This is eqn. (5.19) of the main text.



Appendix B

Thermodynamics

In this appendix, we define some useful concepts of equilibrium thermodynamics that
will be useful in the rest of the thesis. In thermal equilibrium, the number density
ni, energy density p; and pressure p; of the set of particles of type 7 is given by

n; = %%/fi(P)dBP, (A-1)

pi = 2‘3:3 / Eifi(p)d®p, (A-2)
, 2

o= 2 [ o nmes (A-3)

where f;(p) is the distribution function characterizing a system of particles with

momentum between p to p + dp. It is given by

1
ey =

(A-4)

where F; = \/m is the energy of particles of type i given in term of their
momenta p and mass m;. The plus (minus) sign in the denominator correspond to
fermionic (bosonic) particles.

In Table B.1, we show these quantities for the relativistic (7' >> m;) and non-
relativistic (T < m;) limits. Here, we have assumed |u;| << T and no Bose-Einstein
condensation (|u;| < m;).

Because the energy density of a non-relativistic particle is exponentially suppressed
compared with the relativistic one, the total energy density of the radiation pyaq is

given by the following simple form:
2

e ,
rad — S~ 0« T T4a A-5
Prad 309 (T) (A-5)
where
7
9:(T) = Z 9 + 3 > g (A-6)
» = boson j = fermion
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T > m; T K m;
fermion boson
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Table B.1: The number density n;, energy density p; and pressure p; of the particle 1,
which is thermal equilibrium, in the limits of 7' > m; and T' < m;. We have assumed
|| < T and || < my.

If there are particles which have different temperatures from that of the photon T,
another factor (7;/7)* should be multiplied in the above expression. (For example,
at T < MeV, neutrinos have temperature T, = (4/11)Y/3T for m, < T,.)

Notice that all leptogenesis mechanisms discussed in this thesis work at tempera-
tures far above the electroweak scale T > 1 TeV, where all the MSSM particles are

expected to be in thermal equilibrium. In this case, we obtain
g« = 228.75 for MSSM. (A-7)

In the expanding universe, it is convenient to introduce the entropy density s,

which is defined by

8 - _p—__tB
o T
4 272
= “3—?0 = EQ* (T>T3 : (A‘8)

(Again, in the presence of particles with different temperatures, a factor of (7;/ T)? is
multiplied in (A-8). In this case, the g, in (A-8) becomes slightly different from the
g. in Eqt. (A-5).) Notice that the entropy per co-moving volume sR3 is conserved as
far as no entropy production takes place. Thus it is quite convenient to take the ratio
ny/s when we discuss some number density ny. For example, if some X-number is
conserved, the ratio of the X-number density to the entropy density takes a constant
value

n /Y
s

= const, (A-9)

as long as there is no entropy production, since both nx and s scales as R73 as the
universe expands. As another example, if the X-particle is in thermal equilibrium
and relativistic (T > my), the ratio is given by

eq
ng  45¢(3) gx 3 ) :
== (T X7 for fermion | , (A-10)
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where the temperature (or time) dependence only comes from g, (7).

Before closing this section, we calculate the relations between the particle number

) _ 0 and the particle’s chemical potential y;, which can be obtained

i 1Yy

asymmetry n
by integrating Eqt. (A-1). In order to calculate the asymmetry, it is necessary to
calculate higher order terms than those in Table B.1. The results are given by

_ 1 T i i
n§+) 5 ) 6% 3 [(u ) 4. ] for fermion,

- 1 T Hi A
nEH — nﬁ : 39i ! [( | ) e } for boson, ( —11)

where ellipses denote higher order terms in the expansions of m;/T and u;/T. Here,
we have assumed no Bose-Einstein condensation |u;| < m; for boson, and relativistic
limit m; K T.







Appendix C

Supersymmetry and Supergravity

In this appendix, we review the main results of supersymmetry and supergravity.
More detailed discussion is available in excellent textbooks (See for e.g [138]). We
follow the notation of Wess and Bagger through this appendix).

C.1 N =1 Supersymmetry

Supersymmetry (SUSY from now on) is a symmetry relating bosons and fermions.

Namely a supersymmetric transformation can be written

@ |Boson) ~ |Fermion), (A-1)
@ |Fermion) ~ |Boson) (A-2)

From the above equations, it is obvious that the SUSY generator @ is fermionic, it is
called the supercharge. It follows that SUSY is a space-time symmetry, extending the
Lorentz group. Indeed, it is the maximal extension allowed by virtue of the Coleman-
Mandula theorem. The (anti-) commutation relations involving the supercharge can

be summarized as follows

{Q,.Q} = 20"P,, (A-3)
{QQ} = {@,Q}=0, (A-4)
[P*Ql = [P*,Q]=0. (A-5)

Another immediate consequence of these equations is that in order to close the
algebra the number of fermionic degrees of freedom have to be equal to the bosonic
one; that is np = np. Furthermore, as can be seen from eqn. (A-5) P? commutes
with @, and so also the masses of bosons and fermions are equal (mp = myp). Taking

the supersymmetric version of a model involves essentially doubling the spectrum.
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C.2 Superspace

For any theory, one can write its corresponding supersymmetric version. The su-
perspace formalism simplifies considerably this task. The superspace is obtained by
adding four anti-commuting spinor degrees of freedom 6, 0, to the space-time coor-
dinates z#. As a consequence, any point in the superspace, is parametrized by the
usual (bosonic) space-time coordinates z*, plus the Grassmann (fermionic) coordi-
nates (6,0), i.e. X* = (2#,0,0). The spinor index is raised and lowered with the
e-tensor and 00 = %0, = —260'0%. Similarly, 00 = 50% = 20;0;. We also have

008 = S0, Ol = —%edﬁ'éé, 040000 = L0080" . (A)

The members of the supermultiplet are gathered in a unique object called super-

field. In the off-shell formulation, some (non dynamical) auxiliary field is added to

the supermultiplet to close the algebra. A superfield is therefore a function on the

superspace, say, F(x,0,0). Since the f-coordinates are anti-commuting, the most
general N = 1 superfield can always be expanded as

F(z,0,0) = f(x)+06(x)+0%(z)+ 00m(z) + 00n(z) + 000V, (x)
4 060)(x) + 806 (z) + 0008d(z) . (A7)

where f(z), d(z), m(z) and n(z) are complex scalar fields, ¢(x) and (z) are left-
handed Weyl spinors, ¥(z) and A(x) are right-handed Weyl spinors, and A,(z) a

complex vector field.

C.3 N =1 SUSY representations

Particles transform under supersymmetry in representations containing both bosons
and fermions called supermultiplets. In the massless case, representations are labelled
by the helicity A = %, while in the massive case, they are labelled by the mass and
spin (m,.J). In its simplest version (N = 1), the supermultiplet consists of a field of
helicity ) along with its superpartner of helicity A+ 1/2. There are two useful cases.
The scalar (or chiral) supermultiplet contains a scalar field ¢(z) (spin = 0) and
its fermionic partner ¥(z) (spin = 1/2). The gauge supermultiplet: contains a
gauge field A%(z) (spin = 1) and its fermionic partner called the gaugino A (z) (spin
= 1/2) , where a is a gauge index.

As one can see from eqn. (A-7), there are a way too much degrees of freedom in
F(x,0,0). One can reduce them by imposing certain constraints which are preserved

by the SUSY transformations. To do so, we introduce the super-covariant derivatives

a — a
D' — M @ e S
D, = 504 +7U & O s &= 55 —i08,0%0, . (A-8)
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that commute with @ and @). The chiral superfield is obtained imposing the constraint
D;® = 0. The chiral superfield can be written as

D(x,0) = p(x) + V200 () + 00 F (). (A-9)
Likewise, imposing the reality condition V(z, 8, 0) = V(x, 6, 0), one obtains the gauge
superfield
_ _ __ __ 1
Vi(x,0,0) = —00"0A,(x) + i000)(z) — 1000\ (z) + 5000¢9D(x). (A-10)

It is then straightforward to generalize to arbitrary gauge group G, whose elements
satisfy the Lie algebra [T5,, Ty] = 4t%,T¢, with Tr(7,1}) = 2k84, by writing V (z, 6, 0) =
T.V®a(z,0,0). One can also construct the field strength superfield

1- - 1 _
W, = —ZDQ V' Dee¥, Wa= ——ZDQBVDde“V, (A-11)
where likewise W, = T,WS. Now, we can write the most general gauge invariant and

(global) SUSY Lagrangian for a set of chiral multiplets &, (x, §)

1
= ‘0 @le" 20 TeWv? d*0 w c. -
L %j/d@@n e dHTrTa+/ W(@,) + h.c (A-12)

where W is a gauge invariant holomorphic function of the superfields ®,, known as
the superpotential. Writing the Lagrangian (A-12) in term of the component fields
and integrating-out the auxiliary fields using their equation of motion, we obtain the

simple expressions for the scalar potential

2 1 2
‘/((bl) :Z]Fn[ +§ZtDal 3 (A_lg)
where the ' and D—term are given by
ow
F,=—— D, = LT, A-14
TR =y Z (A-14)

Using the above technology, it is now very easy to write the supersymmetric version

of any Lagrangian.

C.4 N =1 Supergravity

If one considers the SUSY parameter as a function of coordinates, one obtains the local
version of SUSY, which by construction includes gravity. That’s the reason why it is
usually called Supergravity (SUGRA). There exists one more useful representation in
this case, it is The gravitational multiplet containing a tensor field (the graviton)
field (spin = 2) and its fermionic partner the gravitino (spin = 3/2), in addition to
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other auxiliary fields. The formulation of supergravity is a complicated issue. For the
lack of space (and time) we refer to excellent reviews. We will just write the most
important formulae, which will be generalizations of the global SUSY case. Before
doing so, we need to define two more functions in addition to the superpotential: the
Kahler potential and the gauge kinetic function. The Kéhler potential K is a real
function of the chiral superfields and their complex conjugate. It describes how the

scalar components are coupled to each other, according to the relation
0?K
060

Tn the canonical case it is just given by K(¢n, @) = 3. ¢ én. The gauge kinetic
function f,p determines the kinetic terms of the gauge fields. Any supergravity theory

Lyin = (0" n) (Ou}y) (A-15)

is completely specified by the choice of the three functions W, K and f|af. The most
general gauge and SUGRA invariant. It can be written as

L= / A0 K(®le", ®,) + f d?0 Tr fapWaWs + / d’0 W(®,) +h.c. (A-16)

8k g2

The scalar potential of N = 1 supergravity takes the form

5 (o gy i gVP
‘%UGRA =eMP E ([X )jF] ]\/[2 -+ R f Dan, (f\-l?)
where now the ' and D—terms are given by
KW
= = K, 7" ¢, -
= oW + 5 9> KT (A-18)

and the index (subscript) i stands for derivatives with respect to ¢; (¢).
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