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Introduction

A reliable solution of the electronic structure problem, i.e. the quantum many-
body problem of interacting electrons, is a very important goal in several areas
of science. For instance, accurate calculations of molecular properties such as
binding energies, bond lengths, charge distributions and potential energy surfaces
are essential in Quantum Chemistry for both basic scientific understanding and
technological applications.

In Condensed Matter Physics a suitable treatment of many-body effects
is a crucial achievement, especially for studying the new high-temperature
superconductors !l and other strongly correlated systems such as Mott-Hubbard
insulators (2] and heavy fermion metals(®]. In order to attain this result one must
accurately take into account particle correlations, a very hard task when realistic
and truly interesting systems are considered. For a many-electron system the cor-
relation energy is defined as the difference between the Hartree-Fock energy, that
is the energy obtained when each electron is considered as moving in the average
field of the remaining (N — 1) electrons subject to Pauli principle, and the exact
non-relativistic energy. We point out that the correlation energy contribution is
usually very small. For example, in molecular systems, it is typically of the order
of 1%. Therefore, if one is merely interested in the total molecular energy, then
correlation represents only a slight correction. However it has an important effect

on properties like molecular binding energies which are often characterized by an
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energy scale of only a fraction of the correlation energy; for instance the O-H bond
strength in water is about 50% of the molecular correlation energy. In these cases
if correlation is not taken into account wrong results may be obtained even for

qualitative predictions.

In recent years computer power greatly increased thus opening the possibility
to attack the problem by numerical calculations. In this context various techniques

have been devised.

Ezact technigues (full Configuration Interaction (¥}, Many-Body Perturbation
Theory(3...) aim at evaluating the exact ground state of a given Hamiltonian H.
In practice, however, these methods are applicable to systems with a few electrons
only, since the computational cost required to deal with a real many-body wave
function grows exponentially with the size of the basis set and the number of

electrons.

Obviously a lot of approzimate techniques exist. We can mention the varia-
tional procedures like Hartree, Hartree-Fock (], and Jastrow "], the Random Phase
Approximation ® in Many-Body Perturbation Theory, and the Local Density Ap-
proximation (LDA) (] which is a very convenient and popular approximation to

the well-known Density Functional Theory 1012,

Unfortunately all these approximations are difficult to control and to improve
systematically: for example the variational technique results are too much depen-
dent on the choice of the form of the variational wave function, since only a small
number of parameters can practically be varied in order to minimize the ground
state estimated energy. Current approximation methods have costs ranging from
the 3*" power to the 7" power of the number of electrons and, therefore, they are

still rather cambersome. For instance the Hartree-Fock method, which is largely



pursued by quantum chemists, is already expensive enough (the required compu-
tational cost varies between the 3*" and the 4'® power of the number of electrons)
even though it completely neglects correlation. The Density Functional methods
are extensively used by condensed matter physicists and are characterized by their
applicability td large systems (hundreds of electrons with present computing ca-
pabilities). However the Density Functional approach ~is, in practice, implemented
by assuming that the exchange-correlation energy density depends locally on the
electron density (LDA), and, although the incorrect character of this assumption
is evident, no genuine and really efficient improvement has been developed till now

in the DFT framework.

Another group of methods, the stochastic techniques, simulate quantum sys-
tems and calculate their ground state properties by using classical statistical
methods: these techniques are generally called Quantum Monte Carlo (QMC)
methods['¥~21, They are both of the variational type in which the Monte Carlo
method is used to evaluate numerically expectation values obtained from a given
trial wave function 1., and of the ezact type in which the Schrédinger equation
is solved. In these latter approaches various procedures are employed to stochas-
tically sample the exact wave function of the physical system, subject only to
statistical errors. Properties of interest are “measured” as the system evolves in
imaginary time, under the action of the Schrédinger equation. When a stationary
state is obtained, averages of the measured quantities provide the desired expec-

tation values.

Monte Carlo algorithms are very promising because they treat correlation
effects, either approximately or exactly, at a numerical cost having a size depen-

dence similar to that of single-particle approaches (like Hartree or Hartree-Fock).
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However the proper inclusion of the Pauli principle is a major difficulty in the
exact QMC methods. This is so because the many-body wave function is usu-
ally described by a statistically evolving ensemble of configurations (specified by
the coordinates of each particle). The Pauli principle, which enforces a spatially
non-local relation between configurations which differ by the interchange of a pair
of fermionic particles, is thus difficult to implement in the simple local algorithms
used to evolve the ensemble.

A different Quantum Monte Carlo method is performed by introducing aux-
iliary fields to decouple the interaction and was successfully used by Hirsch,

[22-27]

Scalapino et al. to investigate finite temperature properties in the Hub-

bard model. It was recently suggested as an alternative method of approaching

the ground state electronic problem by Sugiyama and Koonin 28],

[29-40] 1y Sorella et al., and by Hamann

In this technique, which was pursued
and Fahy et al., the Hubbard-Stratonovich Transformation [*1:#2] (HST) is applied.
The ground state |1;) of the Hamiltonian H is obtained by filtering out from an
initial trial wave function |4, ) its ground state component by applying to |¥.)
the imaginary time propagator e™# H for large enough imaginary time . In fact

if H |;) = E;|1;) the exponential decay of the amplitude of higher energy states

in the imaginary time evolution: .

lim ePH fp) = lim 37 emPB i) (bbb ) = e 7P o) (ol ) o o)

B—oo
i

leaves only the lowest state |1p) in the infinite 4 limit, provided that (yo|¥,) # 0.
The HST of the propagator e~PH introduces an auziliary field o to reduce the
exponential of a two-body operator to a functional integral over an infinite set of
exponentials of one-body operators. In fact the imaginary time evolution e~FH is

convenient for numerical treatment when the Hamiltonian contains only one-body



operators and no interaction term. In practice HST transforms the many-body
problem into a functional integral over the variables o, since the two particle inter-
action termin H is replaced by one particle interactions with a set of random, time-
dependent auxiliary fields; integration over a Gaussian distribution of these fields
restores the physical interaction. After a suitable discretization the functional in-
tegral can be evaluated numerically by statistical methods (Monte Carlo, Langevin
Dynamics, Hybrid Molecular Dynamics-Monte Carlo techniques...). Therefore this
approach is especially suitable for lattice models. In fact, until now, the auxiliary
field formulation has been used extensively to study electron correlations in the

Hubbard model [29—%9],

In comparison with other Quantum Monte Carlo techniques, this new Aux-
iliary Field method is attractive for condensed matter physics applications es-
sentially because (i) it allows an easier application of the widely used one-body
techniques, (ii) general observable estimators can be calculated without any partic-
ular problem, (iii) antisymmetrization for electron wave function can be enforced
exactly, and (iv) the famous “fermion sign problem”, which is one of the main

difficulty in fermionic many-body calculations, could become less troublesome.

In this thesis the Auxiliary Field Quantum Monte Carlo (AFQMC) method
is applied, for the first time, to continuous, realistic physical systems, namely
to the Hydrogen molecules Hy and H;. For the H, ground state the “fermion
sign problem” is not present since, in this case, the wave function is nodeless.
Nevertheless the generalization from a simple and schematic Hubbard model to
a molecular system with a continuous Coulomb potential r~* is, in itself, a non
trivial task and even a fundamental step towards the application of this technique

to more interesting and complex physical systems.
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In preliminary applications to a realistic Hamiltonian, for the Hy molecule, a
serious difficulty was found: huge statistical fluctuations made an accurate calcu-
lation of physical properties practically impossible. They were mainly related to
the repulsive, long-range character of the Coulomb interaction and they increased

dramatically by using larger and larger plane wave basis sets.

We have developed a particular AFQMC scheme to master these statistical
fluctuations and we have demonstrated our technique by studying the Singlet and
Triplet ground states (for the Triplet ground state the fermion sign problem could
be important) of Hy. For this simple system the method really works since the
statistical fluctuations have been reduced to an acceptable level. Calculations for
the Hj3 molecule show that, even in this case, our AFQMC method can be success-
fully applied. However the fermion sign problem appears and this indicates that a
modified AFQMC algorithm, to cope with this difficulty, is probably required for

applications to more interesting systems, containing many electrons.’
The outline of this thesis is the following:

In Chap. 1 some of the most popular QMC methods, Variational Monte
Carlo (VMC), Green’s Function Monte Carlo (GFMC) and Diffusion Monte Carlo
(DMC) are reviewed. Then the HST formalism is presented in general terms, with
the introduction of auxiliary fields, and some arguments are put forward about the
potential advantages of the AFQMC method in comparison with other stochastic

approaches.

In Chap. 2 this technique is specifically developed in a way suitable for our

particular problem with a Coulomb electron-electron interaction.

Chap. 3 contains a brief discussion about the technicalities of our practical

algorithm and about the methods one can adopt to perform the functional integral



by efficiently sampling the auxiliary fields.

In Chap. 4 the serious fluctuation problem is illustrated, the basic causes
which give rise to this difficulty are discussed and a possible solution to the prob-
lem, i.e. a different formulation of the AFQMC technique, is introduced, together
with some technical improvements we have developed in order to make the method
really efficient and practically applicable.

In Chap. 5 we give a concise but exhaustive description of many numerical
tests performed to check the reliability of our algorithm, by comparing AFQMC
simulations results for the H, molecule with exact (full CI) corresponding data.

Finally, our calculations of several physical properties of Hy and Hj are presented.



Chapter 1

Stochastic methods for the

fermionic ground state problem

1.1 Variational Monte Carlo

The variational method has proved to be a very useful way of computing ground
state properties of many-body systems. Conceptually it is quite simple. The
variational principle tells us that, for any many-body trial function .. (R) (here
R = {ry,rs,...,r,} refers to the coordinates of the N particles), the variational

energy £, defined as:
J dRp, (R)H ¢, (R)

e = TR, (RE -

will be a minimum when |¢,) is the ground state solution of the Schrodinger
equation H |y) = Ey |y). The variational method then consists of constructing
a family of functions ¥, (R, a) and optimizing the parameters a so that the energy
(1.1) is minimized for a = a;. The variational energy is a rigorous upper bound
to the ground state energy and, if the family of functions is chosen well, then
¥, (R,ay) will be a good approximation to the ground state wave function. For

example, for Fermi liquids, the following Jastrow form for the trial wave function
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is widely used:

o (B) =%, (R) [T Fllra —rsl) =, (R)e ™ * 2ems 70270 (1)
aF

where 1, (R), the ideal Fermi gas wave function, i.e. a determinant of plane
waves, is multiplied by a product of two-particle correlation functions f (|ra — r3]).
This wave function was introduced by Jastrow!™ et al.[*** who generalized an
expression originally developed by Bijl[*®! as a good trial function for a Bose liquid
at zero temperature. We note that the square of the term eﬁé Zﬂ# I(ra=ral) o
completely equivalent to the Boltzmann distribution of a classical system with
J(r) replaced by the particle-particle interaction potential over KgT'. However, in
contrast to the classical situation, now the “potential” J(r) is varied to minimize
the energy in (1.1). Optimization of a Jastrow wave function (1.2), with respect
to some free parameters in the the “potential” J(r), by variational methods often
produces a good approximation for ground state wave functions. In practice the
main task is to evaluate multidimensional integrals to get expectation values and,
in particular, to calculate the variational energy (1.1).

The Monte Carlo algorithm *%! which was invented to calculate properties
of classical statistical systems, is an extremely powerful way to compute multi-
dimensional integrals. In particular, for quantum systems, an algorithm which
produces configurations with a probability proportional to the square of the wave
function, is required. Then any measurable quantity can be written as an average
over such configurations. Let us suppose O is an operator and we wish to compute

its expectation value defined as

A _dewT(R)OIpT(R)
O) = "R, ®P (1:3)
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Let {R;} be a set of points drawn from the probability distribution:

b, (R
PR = TRy, (R -

where the integral in the denominator serves here merely to normalize p(R). Then,

for any function f(R), the “central limit” theorem [+7) of probability gives that:

_ JdRF(R)|, (R)?
M—»oozuzf T JdRp, (R (15)

In particular one has:

A
Jim o Z¢ JO(R),(Ri) = (0). (1.6)
If O = H then "
(B)= lim — 5 B,(R:), (1.7)

where we have introduced the so-called “local energy”: E, (R;) = H, [, . We
observe that a good approximate trial function, containing whatever information
is known about the exact wave function, yields averages with low statistical un-
certainties. In fact, if 1. is a good approximation to g, then E (R) — Eq, that
is it becomes nearly independent on R.

The Monte Carlo algorithm is a biased random walk in configuration space.
Usually it is implemented by moving one particle at a time to a new position.
That move is either accepted or rejected depending on the magnitude of the trial
function at the new position R/ compared with the magnitude at the old position
R: if |4, (R')|? > |, (R)|? the new point R’ is accepted. Otherwise it is accepted
with a probability ¢ given by:

R
= T ®F (18)
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In general the VMC algorithm [+8.:49] {5 quite simple to program and test, and fol-
lows very closely a Monte Carlo simulation of a classical system. VMC calculations
typically recover about 15-80% of the correlation energy. Through this method
it is possible to optimize at most a few wave function parameters, since a single
calculation of the variational energy (1.1) takes a significant amount of computer
time and this must be repeated several times before an optimal set of parameters
is found. Recently 3V a different variational procedure was developed, wherein the
variance of the local energy E, (R;) is minimized. In this way one can optimize
wave functions with a relatively large number (~ 100) of variational parameters:
in fact the configurations over which the optimization is performed are fixed and
so a correlated sampling is used to arrive at an optimal set of parameters. Even
though this procedure allows a more efficient optimization (for instance 99% of the
correlation energy can be obtained for the Be atom), obviously a suitable choice
of the trial wave function form remains a critical ingredient in this VMC approach

too.

1.2 Diffusion and Green’s Function Monte Carlo

The history of “exact” Quantum Monte Carlo calculations to “solve” the
Schrédinger equation goes back more years than might be expected. Metropolis [31]
reported the first such computation in 1949 and gave credit to Fermi for suggest-
ing that the similarity between the Schrodinger equation and the classical diffu-
sion equation could be exploited to produce a solution of the Schrodinger equation.

Anyway the available vacuum tube computers were not up to doing anything more

substantial that a harmonic oscillator, so the field marked time until 1962.
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A publication by Kalos!®? signaled the development of what is now known
as Green’s Function Monte Carlo (GFMC). The Diffusion Monte Carlo (DMC)
method was first described by Anderson!'* and developed in parallel by
Anderson®! Kalos[®¥ and Ceperley %] in the early 1980’s. Diffusion Monte
Carlo and Green’s Function Monte Carlo are essentially equivalent. Both tech-
niques use a Green’s function to solve the Schrodinger equation with an integral
calculated by Monte Carlo. Basically the ground state properties are evaluated
by performing the imaginary time propagation e~%Hq . This can be obtained in
different ways.

The DMC method [18:21] uses the time-dependent Schrédinger equation:

N I 7
i = [—-Z-V +V(R)}¢—H¢, (1.9)

where a.u. are used and V(R) is the potential energy of the system. Eq. (1.9)

can be represented in imaginary time (7 = it):

g
—3- = [-DV?*+V(R) - E,]| ¥, (1.10)
with D = 1/2 and a constant energy offset, E,, was introduced for convenience

to alter the zero of energy without affecting the properties calculated from the

solution of the Schrodinger equation. Eq. (1.10) has solutions of the form:
P (R,7) =Y ¢a(R)e™FamEr)T, (1.11)

So, for positive real 7, the exponential factor causes the states with the larger
eigenvalues to decay away, leaving only the state with the smallest eigenvalue,
after long 7 (see also Introduction).

Solving Eq. (1.10) by a random-walk process with branching is inefficient,

because the branching rate (which is proportional to the Coulomb potential V(R))
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can diverge to fco. This leads to large fluctuations in the number of diffusers,
and to slow convergence when calculating averages such as (V(R)) and hence
the ground state energy. However the fluctuations and the consequent statistical
uncertainties, can be greatly reduced by the technique of importance sampling!t®,

Essentially the exact wave function is multiplied by a trial wave function ¢, to

obtain a new function f:
f(R,7)=¢,.(R)y (R,T). (1.12)

Substituting f/¢, for v in Eq. (1.10), we obtain the following Fokker-Planck
equation for f(R,7):
af )
O DV (B(R) - B f DV [fRR)], (113)
where E, (R) = Hé, (R)/d,(R) is the local energy obtained from the trial func-
tion, and

F,(R) = Vi |g, (R) = -2—‘7;%1;“—) ,

Q (1.14)
plays the role of a “quantum force”. The terms on the R.H.S of Eq. (1.13)
may be identified as a diffusion term, a branching (source/sink) term and a drift
(advection) term, respectively. As usual, the Monte Carlo simulation of the Fokker-
Planck Eq. (1.13) is carried out by representing the “denmsity” f by particles
that take random steps to simulate the diffusion, take directed steps to simulate
the advection (the quantum force pushes the particles toward regions of higher

importance, that is higher ¢, ), and are multiplied or eliminated to model sources

and sinks. The asymptotic solution to Eq. (1.13) is:

f(R,7) = ¢, (R)py (R, 7)™ FomFr)T. (1.15)
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Then the ground state energy may be calculated '3 by using the average value of

the local energy, at large imaginary times:

- . [dRf(R,B)E,(R) M '
(H) =By = algréo JdRf(R,B) Aose M ;EL(RL) ’ (1.16)

where M is the number of points {R;} distributed according to f(R,3). Again
statistical accuracy is greatly improved if a good trial wave function is chosen.
Obtaining the expectation value for a generic operator O, which does not commute
with I—], is somewhat more difficult and less accurate. By assuming that the trial
function ¢, is close to the ground state wave function ¥, one can consider the

approximate estimate 13331

M

<O>=;§;{Zo<m>

M

> O(Ri)} + o(e?), (1.17)
=1 ¢?r

i=1

1

M
f
where the subscripts indicate that the points {R;} are distributed according to f
or to ¢2, and € o« (Yy — ¢,.).

As far as the GFMC[3:1%] method is concerned, one considers the time-

independent Schrédinger equation:

[_%VZ + V(R)] ¥(R) = Ey(R). (1.18)
This may be rewritten in its integral form:

P(R) = E/dR’G(R,R')¢(R') , (1.19)
where G (R, R'), the Green’s function, satisfies the equation:

-3V VR GRR) = 6(R-RY) (1.20)
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and the boundary conditions of the problem. Let a succession of functions be

defined for some initial ¥(")(R) by:
H("TH(R) = E/dR’G(R,R’)z/)(")(R’). (1.21)

When the spectrum of the Hamiltonian is discrete near the ground state 1y of the
Schrédinger equation, then g (R) is the imiting value of (") (R) for large n. It is
possible to devise a Monte Carlo method (in the general sense of a random sampling
algorithm) which produces populations drawn in turn from the successive %", In
practice, in Eq. (1.21), the exact eigenvalue of the ground state is substituted
by a trial eigenvalue F, and the main technical problem lies in constructing a
method 18] for efficiently sampling G (R, R'), which, in general, does not exhibit
an analytic expression. In this case too, some importance sampling technique has
to be introduced to get small statistical errors.

In applying the DMC or GFMC approaches a serious problem arises when
fermions are considered. In fact, in this case, the wave function must be anti-
symmetric. This requirement is troublesome if we wish to solve the Schrodinger
equation as a diffusion equation, because the density of diffusers, or “walkers”,
must be positive. There are at least two ways of handling this problem.

One possibility is to fix the nodes by selecting the best possible trial wave
function and to perform a guided random walk in which no particles are allowed
to cross the nodal surfaces of the trial wave function. Within each nodal region
the problem is effectively bosonic. This “fixed-node” approximation[m’m] is vari-
ational in nature, i.e. the energy thus derived is an upper bound to the true
energy.

A second possibility, the “release-node” approach 201 is to perform a tran-

sient estimate, starting with the best fixed-node distribution and releasing the
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fixed-node restrictions. As points cross nodes cancellations will give rise to sta-
tistical errors which increase exponentially with imaginary time (the fermion sign
problem). In fact the lowest energy solution of the diffusion equation, on the space
of configurations of the system, is nodeless: this solution is the boson ground
state. Therefore the number of “positive” walkers and the number of “negative”
walkers increase exponentially compared to the difference between them, which is
the number we need to calculate. The rate of this exponential increase equals the
difference between the boson and fermion ground state energies or, alternatively,
the difference between the energy of the nodeless solution of the diffusion equation
and that of the lowest antisymmetric solution. In practice, in the release-node
method, only the early stages of the relaxation can be calculated before numerical
instability spoils the quality of the simulation.

(56,57

Other techniques have been devised to treat fermions by using the DMC

or GFMC methods, but all of them seem to contain some drawbacks, or are very

complex and expensive, so they are actually feasible only for few-body systems.

1.3 The Auxiliary Field method

1.3.1 General description

In the following we introduce a functional integral formulation for interacting
fermions. We describe a formalism to calculate ground state properties of a many-

body system by using a classical statistical method.

Let us consider the generic Hamiltonian H = K +V, where K is a one-body
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operator (generally consisting of kinetic and external potential terms), and Visa
two-body interaction term due to electron-electron correlation. We can write Hin
second quantization (for the sake of clearness we use the coordinate representation
with basis functions given by delta functions, but, obviously, the procedure holds

for a generic representation):
H= ZK” cic;+ 5 Z Vl]ch]chl , (1.22)

where V;; = V(|r; —rj]), and ¢!, ¢; are the creation and annihilation operators of
a particle at position i (for the moment we omit to explicitly write spin indices).
As we are only interested in ground state properties, instead of considering the
thermodynamic partition function Z = Tr (e"ﬁ H ) , where 8 indicates the inverse

temperature, we consider a pseudo partition function [28,58],

Q= <¢Tl e 1 Iwr) ’ (1'23)

where 1. is a trial wave function and 3 can be thought of as an imaginary time.
We have already observed (see Introduction) that, if ¢, the ground state of H,
has a non-vanishing overlap with the trial wave function %, , the imaginary time
propagator e“ﬂH, for # — oo , projects from 1, its component along 1¢; therefore

@ behaves asymptotically as the true partition function Z:

m Q = |($oltpy)|* e P (1.24)

Then, in terms of @), the ground state energy is given by

B—o0

Ep = lim <—%1n@> . (1.25)

More general expressions for other ground state expectation values can be obtained

by differentiating Eq. (1.25) with respect to appropriate external fields coupled to
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the quantity of interest. In fact, by using the Hellmann-Feynman theorem, we can
calculate the ground state expectation values of a general operator 0, (0] O |bo),
by differentiating, with respect to A, the ground state energy of the corresponding
perturbed Hamiltonian H + AO:

(0] O o) = (%EO(A)> = L ym (%m@A)A:O. (1.26)
Hence, in this scheme, the pseudo partition function @ can be considered as the
“generator” of all the ground state correlation functions. However, a direct eval-
uation of @) is actually a difficult task, since H contains two-body contributions
and v, is a many-body wave function. Now we show that, by using a suitable

transformation and introducing auxiliary fields o, @ can be rewritten as:

1 A
Q=5 [dr6(e) 5,100 br) (127

where G(c) is a Gaussian weight and ﬁ(d) is a one-body, auxiliary field-dependent,
operator. For each auxiliary field configuration o, propagation 0’(0’) |¥,) may
be easily performed because U/ does not contain two-body terms. Therefore, in
principle, @ can be explicitly computed, together with all ground state expectation
values, via Eq. (1.26).

We start by splitting the total imaginary time propagator into a product of
P short time propagators and by applying the Trotter approximation[*°! to each
of them:

- -\ P Ar s .\ P
e—,@H —_ <8—ATH) — (e—&\—z—Te—Aerce—-“-\z—- > + O(A’Ta) , (128)

with AT = 8/ P and, usually, Trotter decomposition separates the kinetic term T,

from Vtot =H -~ T, the remaining component consisting of external and electron-

%LTE-'ATV}oge—%T

electron potentials. The short time propagator e™ is clearly
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hermitian and positive definite. Then we rewrite the approximated short time
propagator of the Hamiltonian H as an ezact short time propagator of an equivalent
Hamiltonian H:

.y 7 A-r AT
e ATH — e~ T _XT‘m; =5 , (1.29)

with H = H + o(A’rz). In conclusion all the calculations obtained by using the
Trotter approximation give exact ground state properties of the effective Hamil-
tonian H which differ at most by o(A7?) from the desired ground state properties
of the true Hamiltonian H. As we have already said, the evaluation of the prop-
agation performed by operator (1.29) is numerically tractable when H contains
only one-body operators. Therefore we can introduce the Hubbard-Stratonovich
Transformation[**? (HST) which exactly aims at reducing the exponential of
a two-body operator (e.g. the term involving V;; in Eq. (1.22)) to a functional
integral, over an auxiliary field, where only exponentials of one-body operators are
present.
First of all we can rewrite Hamiltonian (1.22) by anticommuting the creation
and annihilation operators in the normal-ordered two-body interaction:
H=3 Kycle;+5 Z Viipipj — Z Viibi (1.30)
5] i,J 1
where p; is the fermion density operator and the last term is an unphysical self-
interaction contribution which can be temporarily grouped with the one-body term

K and which will be removed later: Kzf]- = K;; — %Vij&-j,
‘H ZKU zc] t 5 Z I/Up P] (131)
1,j

Now we apply the HST to the exponential of the two-body operator, which appears
AT Tes B P
in the Trotter decomposition (1.28), e ? 2 Vi bit (see Appendix A):
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oI Vbt _ N Waibias
3 da; —él Witeid A Fipi
= (ATdetVVi ‘ /H 2 i Te T2l die )

(1.32)

where W;; = —V;; and, for simplicity, we have assumed that V}; is a definite neg-
ative matrix and, therefore, W;; a positive definite one. In fact (see Appendix A)
the previous transformation can be directly applied only for negative definite two-
body operators contained in the Hamiltonian H. While this property is certainly
not true in general (for example it does not hold for the repulsive electron-electron
interaction), nevertheless HST can always be performed for quite general two-body
fermionic operators, as we will show in the following Chapter.

Eq. (1.32) introduces & variables as auxiliary fields with dimensions of po-
tentials. In order to avoid using the inverse matrix WJI it is possible to change

integration variables, by defining:

o= Wits;. (1.33)
J

Therefore o assumes the dimensions of densities and Eq. (1.32) becomes:

/ H daz-z ———é—r— i,j Wijoio; eAT Zi'j Wijoip;j '
V &1
(1.34)

AT

. I.V'.. A: s
e % 2uii PP (ArdetiV;)

nlr—a

Obviously we have to perform the transformation (1.34) at each time step of the
imaginary time propagation (1.28). Hence we introduce a discrete time index [ in

o variables and we are able to write e? Z' PR as:

C/HHJO'Z Zl 12 Wijoi(lo; (1) ATZ: 12 Wijoi(l)e; y (1.35)

=1 1
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where C is a normalization constant given by

-

ﬁ A'rdeth] )2 (1.36)

Ql*‘*

=1

Now if we consider again the complete Hamiltonian H =T + Vios, with:

ZT” fe; (1.37)

and:
Viot = Z VEp + —12— E; Vijbib; — % Z Vi
s <Viext _ %Vi’) 5 — .12.2 Wiipidi (1.38)
i ij

where V°** is a generic external potential, then we can rewrite the propagation

(1.28) by using the previous HST relations:

: P
e—ﬁH2<e ATT ~ArTie  —~ &7 )

- _/Hnddz S T Wi ()
X H{ —arp —ar (3 Va2, Waoi04) ““TT} (1.39)
=1 .

Thus, the evolution operator is the functional integral, over auxiliary fields o, of the
evolution operators for one-body, time-dependent Hamiltonians, whose potential

energy contribution is given by
Vo(l) =D VEpi - > Wijoi(1)ps » (1.40)
i i,J

and which are weighted by a Gaussian factor. In the last relation we omitted the

self-energy term, —12— 3. Viips , since it acts as a constant potential in the one-body
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propagation and this does not affect the computed estimators of ground state

properties (see the following Section).

The main potential advantages of the AFQMC method over other stochastic
techniques (DMC or GFMC) are the following:

i) - Two-body interaction terms are replaced with random auxiliary fields which
act as external potentials on the particles, therefore the interacting problem is
replaced by a sum over an ensemble of non-interacting systems in a set of ran-
dom time-varying external fields and one can easily apply all typical one-body
techniques (for instance local and non-local pseudopotentials) in a natural way.
The situation is quite different for the ordinary QMC methods in which, for ex-
ample, using non-local pseudopotentials (that destroy the diffusive character of
the Schrédinger equation) introduces serious difficulties69~62] even though, very

recently, a significant progress was made in this direction [63].

ii) ~ GFMC or DMC methods accurately describe boson systems but for fermions
a difficulty arises. In fact, as we have seen in Section 1.2, the calculation is unsta-
ble because, through a long imaginary time propagation, the fermionic component
becomes undetectable from a numerical point of view (the fermion sign prob-
lem). On the contrary, in the AFQMC method, the antisymmetric property of
the fermion wave function is preserved at any time of field evolution. In fact a
Slater determinant trial wave function evolves into another Slater determinant for
each auxiliary field configuration sampled. In this approach observables are calcu-
lated as averages over the set of auxiliary field configurations. As we will discuss
in Section 1.3.4, the difficulty here is that the quantity to be averaged is not al-
ways positive (the statistical weight may be not positive definite). In practice the

fermion sign problem reappears since, as 3 — oo, the number of positive terms
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can nearly equal the number of negative terms and the difference, which is the
quantity we are interested in, becomes very small compared to the total number
of terms. Nevertheless, in this situation, the fermion sign problem seems to be less

dramatic than in GFMC or DMC approaches. In fact one can show (this aspect

31,38] 3637 and by

was extensively studied by Sorella et al. | , by Fahy and Hamann!
Loh et al.[3%] ), by theoretic arguments and numerical evidence, that, in many non
trivial cases, the AFQMC method is stable for arbitrarily large imaginary time
and that the fermion sign problem can be often circumvented with negligible or
small errors in the calculated physical quantities.

iii) — In the AFQMC method the estimator calculation of general observables (see
next Section and Section 2.2) is a simple task, while, in the other QMC schemes,
as we discussed in Section 1.2, the estimate of properties involving operators which
do not commute with the total Hamiltonian H, cannot be done without consid-
erably degrading the statistical efficiency of the algorithm, or introducing further
approximations through the so-called eztrapolated estimate(!®:33],

Finally, the AFQMC method is exact, apart from statistical errors we can,
in principle, reduce as small as we like, but, compared with a full Configuration
Interaction approach, we expect it requires computer resources which do not grow
exponentially. In fact, in the AFQMC procedure, in practice, only the calculation
of determinants depends on the number of electrons. Therefore a cost increasing

with the 3'¢ power (or less) of the number of electrons (see Chap. 2) has to be

foreseen.
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1.3.2 Calculation of ground state properties

In the previous Section we used HST to rewrite the pseudo partition function @
as a multidimensional integral over classical auxiliary fields:

Q= (bl ) = g [0 6(0) el U@ ) . (L4D)

where G(c) indicates the Gaussian weighting factor:

Glo) = &% 2u 2ue; M eses () (1.42)
and U(c) is the one-body, field-dependent, propagator:
X P
U(e)=[]Ule()]
=1
P - rext - 3 N .
_ H {e-—élee—AT(Zi Vi ”‘"E;,j I"/ijﬂ'i(l)Pj)e—éiiT}' (1.43)
=1

At this point the quantum problem would be solved if an exact numerical eval-
uation of the multidimensional integral (1.41) were possible. Unfortunately this
is not the case because the functional @ contains a prohibitively large number of
variables. Nevertheless we can use a statistical approach by interpreting the func-
tional Q as a classical partition function of the variables o, and apply a statistical

method for evaluating @ and related physical quantities. In fact we can write:

1 S
Q= -C—;/da'e“‘ ()/KsT | (1.44)

by considering @ as a classical partition function of a system of classical fields o,

that “interact”, at an effective temperature KT = 1, through a potential:
V(e) = —InG(c) —In (¢, | U(c) |¥5) + const.

= % > Z Wijoi(1)o(1) —In (.| U(o) [, ) + const..  (1.45)
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Here we assume that (1,.|U(o) |, ) is always positive. In general this is not true
(it is the practical manifestation of the fermion sign problem - see Section 1.3.4)
because the propagated many-body wave function, U(c) |, ), may have a negative
overlap with the initial trial wave functioﬁ.

Now the ground state expectation value of a given operator O is defined as:

(0] O [tho)
(o |to)

o (e O ) s
A—oo <’¢Tle~—ﬁ %)

By applying HST into the previous expression, one easily obtains:

(0)=

JdoEy(o)e V()

(0) = 155 B (147
with the estimator E; (o) given by:
By (o) = ol Ue(8.8/2)0To(8/2,0) [¥r) (1.48)
(¥r|Us(B50) )

In practice the ground state expectation value of the quantum operator O can be
computed by calculating a well defined classical average.

An equivalent expression, which, in principle, should give better statistics for
measuring (O ) when the auxi]ia;ry field integration is carried out by stochastic
methods, may be obtained by averaging over all possible ways of inserting the 0

operator:

fo dr (¢, Ie‘(ﬂ nH(e—TH [ )
B (| e=PH i) '

In this more general case the estimator, in Eq. (1.47), becomes:

(0) = (1.49)

(0 (2] Us(8,7)OUo(7,0) [¥)
)ﬂ/ Gl 0B r) (1:50)
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The same result can be derived using directly Eq. (1.26):

(0] O [1hy) o 14d _ 41 1T
(%o |vo) —ﬁ]i{%o< B oA mQ’\),\:O“ @ 1c/d0Eo( ) , (1.51)
with:
Bole) = Jim (~ 55510 (b 9@ 1)) (1.52)
O - B—oo IB Y T T o ’ .

where the A-modified propagator U’\(a) is obtained by adding to the Hamilto-
nian (in practice one can add it to the kinetic term) a perturbation AO. Then
Es(0) can be calculated, by performing the differentiation with respect to the
external perturbation in Eq. (1.52), as an imaginary time average of independent

measurements computed at a fixed imaginary time 7:

At Zl 1 Wi <¢T]U (P l) Oﬁd (l,O) I¢T>

Es (o 1.53
o= (e U(o) [¥r) (1:59)
_ 13w | Uo (P1) OT, (4,0) [9r) 4B (o
P (%, Us (P,0) by ) B /
where the last relation holds in the limit A7 — 0, and:
. (%2 Us (8,7) OU, (7,0) [¢by)
E7 (o , 1.54
o) = 0. (5,0) ) 154
with:
l
=17 (1.55)
I'=0
P—i—
U, (P,1) = H (P -1, (1.56)

U, (0,0) = U, (P,P) = I, and the weights w; are w; = 1/2for I = 0,0or [ = P, and
w; = 1 otherwise. Actually, when one evaluates the estimator with the imaginary

time average (1.53), the contributions coming from imaginary time measurements
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close to the initial T = 0 and the final 7 = 3 imaginary time produce a slow con-
vergence of the physical quantities with respect to the inverse temperature. In fact
such measurements are too close to the trial wave function and give a contribution
which vanishes as ﬁ"l. In order to improve systematically such convergence in §,
one can consider an average over an interval which is far from the initial 7 = 0 and
final time T = £, instead of averaging over all the imaginary time slices. Therefore
one can use (n > 2):

B(1-1/n)
E,(0) = Wl—il—?ﬁ—) /B/n dr E5(0). (1.57)

i

This kind of estimator can be formally obtained by taking the logarithmic deriva-

tive of the partition function @ = (¢ e #Hrg [y ):

_‘——’1““‘— _5_ n B_ﬂH’\T 5
,3(1—2/7’1,) <BA1 <¢Ti | I¢T>>I\=O7 (1 8)

where E’\T =H+ Ay O, and now A, acts as a time-dependent perturbation:

. :{A, if B/n <7< B(1—-1/n);

0, otherwise.

This gives, for  — oo, the correct ground state expectation value with an expo-
nential convergence in 8. A good value for n could be n = 4.
In practical calculations the expectation value of the operator O is obtained

by evaluating the multidimensional integral (1.51) through a statistical method:

A ol O | doE,(c)e™ V() -
(0)= o) _ JorPolgien ™. (1.59)

i

To this end some importance sampling scheme must be used, by generating o
configurations according to the probability function e~V (%), For this purpose either

a Monte Carlo algorithm or a Molecular Dynamics strategy can be used: one
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simply considers the system with o degrees of freedom in the fictitious classical
potential V(o). The variables o are taken as functions of a formal, continuous time
variable s (the fictitious time). In this way the statistical evaluation of classical
expectation values of estimators, depending on the variables o, can be expressed

as a temporal average:

- oE(a)e V() s
(0) = fdflfiii—)V(a) = lim ——}—“/ ds'Eylo(s")] (1.60)

§—00 (3 - SO) 80

where sy is the time needed to reach equilibrium for the Molecular Dynamics
Equations, or the Monte Carlo scheme. For infinite fictitious time s, Eq. (1.60)
would lead to zero statistical uncertainty. Actually this is not feasible and one
has always to consider statistical errors. Obviously a reliable computation of these

statistical errors is a crucial ingredient of the algorithm. A naive estimate would
- (0)?)
VN, ’

where N, is the number of sampled configurations. However this is not exact since,

give:

N

(10%)

AO ~ (1.61)

usually, strong correlation exists between successive configurations. In order to
correct for this, one could measure the average interval N; between statistically

independent configurations and this should modify (1.61) in the form:

(0%)-(0)2)"
+/N,/N; '

The underlying hypothesis is that, at equilibrium, E(c) is Gaussianly distributed.

AO ~ ( (1.62)

Since this is not always the case it is practically convenient to measure statistical
error by dividing the measure into segments of sufficient length and comparing

the averages obtained in these intervals. If the segments are long compared to the
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correlation time of the simulation, then the sub-averages are roughly Gaussianly
distributed, due to the “central limit” theorem [*"]. An estimate of the error using
Eq. (1.61), where N. now represents the number of sub-averages, is therefore
correct and ensures the 68% of probability of finding the exact value of (0),

within the calculated uncertainty.

1.8.3 Jastrow Auxiliary Field method

The previous technique can also be used, within the VMC approach, to evaluate
a multidimensional integral with, for instance, a Jastrow trial wave function. In
fact we show that variational Jastrow estimates of ground state properties may
be computed by an Auxiliary Field method analogous to that we illustrated in
Section 1.3.1 for the exact many-body problem.

First of all let us define a Jastrow operator which, again, can be written as

the exponential of a two-body operator:

U, = R L 2y Jiibibi (1.63)

?

such that:
W’J) = ﬁJ W)T> ’ (1'64)

where J;; = J (|r; —rj|), ¥, is the Jastrow many-body wave function and ¥, is
a trial determinant. Now, by using Jastrow approximation, the expectation value

of a generic operator O can be obtained as:

A _ <¢J|O|¢J>
Ol =", (1.65)

According to variational principle, if O = H,then E, = (ff ), > Ey. By definition
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(1.64), relation (1.65) can be rewritten as:

(¥rle™ 304 )

(0), = (1.66)
(brle= [br)
Then it is easy to show that:
- Is) A
(0), =~ (5@ L (1.67)
where the Jastrow “partition function” Qj\ is defined as:
Q= (e 1T e e [y,) (1.68)

We note that this procedure is formally identical to the scheme previously devel-
oped by introducing the pseudo partition function @ = (1, | e—FH |4, ). Here the
BH term is simply substituted by J.

Now the HST can be performed in order to reduce the Jastrow two-body
operator to a functional integral, over two auxiliary fields 01,03, of one-body,

field-dependent operators. Therefore:

Q;\ = % /daldvz G(o'la‘72) (77[’1" I ﬁJ(Ul)eﬁAéﬁJ(U2) ]¢T> . (1'69)

Hence, by applying (1.67), we obtain:

(0), = Q;lé/dﬁd@ eI OTIE (01,0), (1.70)
where:
V,(01,02) = =In (o1, 02) = ln (¢ | U, (01)U, (02) [4s) (1.71)
and the Jastrow estimator is given by:

($,10, (Cfl)(j
(¥z] UJ (‘71)

~

( 2)|¢T> ) (1_72)

Fo,{rr02) = G, (o2) ¥
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The introduction of Jastrow auxiliary fields is a useful technique, not only
to perform a variational calculation, but also to reduce the computer CPU time
required by an exact AFQMC procedure. In fact, if the trial many-body wave
function 9, is not the usual single Slater determinant obtained by a previous self-
consistent Hartree-Fock calculation, but a Jastrow trial wave function %, which
already accounts for some particle correlations, we expect that a smaller 8 will be
necessary, in the imaginary time propagation e=” H |¥,) ,in order to attain ground
state properties. Hence we can obtain an efficient algorithm by introducing two
different kinds of auxiliary fields: the former, really time-dependent, is connected
with imaginary time propagation e=#H performed in the usual Trotter decom-
position, and the latter is due to the presence of Jastrow propagator e~J. This
procedure can save a relevant amount of computer time since, roughly speaking,
we introduce only two (Jastrow) propagation steps when, generally, a lot of imag-
inary time propagation steps would be necessary to recover the same correlation

already present in 1, .

1.3.4 The fermion sign problem

In Section 1.3.2 we have seen that HST allows us to write the pseudo partition
function Q as a multidimensional integral over classical auxiliary fields. This

integral has the schematic form:

= [iw-c-p, (1.73)

where G represents the Gaussian weight and D = (4| U(c)|#,) is the so-called
fermion determinant (if |1, ) is a trial determinant then U(c)|%,) continues to be

a determinant and the scalar product of two Slater determinants is the determinant
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of the corresponding overlap matrix). Then the ground state expectation value of

a generic operator can be expressed as:

0)- L2 2E, (174

where the estimator E in the integrand (as well as G and D, of course) is under-
stood to be a functional of the auxiliary field o.

In Section 1.3.2 we have assumed that G- D is positive and we have considered
it as a probability; in this way we can compute (C’) as a well defined classical
average. Anyway, in general, this assumption is not true. In fact D is positive
only in special cases because the many-body wave function I}'(a) |, ), after the
time-dependent propagation, can have a negative overlap with the initial trial wave
function. The standard approach[®1:3¢! is to use G - |D| as the probability to be
sampled, so:

_Jdo-G-|D|-S-E  [do-G-|D|-S-E
~ [do-G-|D|-§ (S) ’

(0) (1.75)
where S = D/|D| is the sign and (S) is its average over the probability distribu-
tion. Since our functional integrals are to be evaluated by a statistical sampling
approach, it is clear that it will be difficult to obtain accurate statistics if (5)
is small. In fact, in this case, there will be large cancellations in the numerator
and in the denominator of Eq. (1.75) and statistical fluctuations will make an
accurate evaluation of (0) extremely difficult. This is the fermion sign problem
which can be present in AFQMC calculations too. Obviously the crucial point is
the behaviour of (S) as § — oo.

S. Sorella has rigorously shown [*8] that the average sign (S) is either bounded

by a constant (depending on the trial wave function) or it vanishes exponentially

in the asymptotic § — co limit. Whenever this exponential instability occurs the
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method faces difficulties which are similar to problems found in other Quantum
Monte Carlo schemes (see Section 1.2). There are a limited number of models for
which one can provel®8! that the average sign is always bounded by a constant
equal to |(wg|¥,)[>. Some examples, by considering the Hubbard model on a
bipartite lattice, are the half-filled case with a repulsive Coulomb interaction, the
one-dimensional case and the situation in which there is an attractive Coulomb
interaction with an equal number of spin-up and spin-down particles. In all cases
the fact that (S) remains finite seems to follow from a discrete symmetry of the
model (for example the electron-hole symmetry in the half-filled Hubbard model
on a bipartite lattice [*0]).

If (S) does not go to zero exponentially at large § but approaches a constant,
then the ground state expectation values can be computed ignoring the minus
signs. In other words the quantity derived from Eq. (1.75) by setting § = 1:

s  Jdo-G-|D|-E
(o) = fdo-G-|D|

(1.76)

converges to (0) as # — co. This can be derived, for the total energy, as follows
(see ref: [36] for a general and strictly consistent derivation). First we can rewrite
(H) as (assuming 8 — oo):

() = = 1a (b | €71, )

:_E%anda-G.D). (1.77)

Multiplying and dividing by the correspondent expression, with D replaced by

|D|, gives:
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o-G-

_(H) - a‘%m(sy (1.78)

Now, if (§) goes to a constant as § — oo, we obtain that (H ) = (H)*.

On the other end, if (S) vanishes exponentially with 3 (this certainly hap-
pens, for instance, in numerical studies of the Hubbard model away from hali-
filling [*3:%8]), Eq. (1.78) indicates that one cannot expect to obtain exact results
from calculations that ignore the signs. There are numerical examples [31.33] ip
which (0)* gives a good approximation to some ground state physical quanti-
ties, but it should be emphasized that, in general, Eq. (1.76) is an uncontrolled
approximation which could lead to incorrect results (33],

If (S) goes to zero exponentially, then a wariational approximation can be
used to compute ground state properties: it is the “Positive Projection Method”,
introduced by Fahy and Hamann (see ref. [37] and Appendix E). This technique
was derived by recasting the AFQMC method as a diffusion problem and does
not exhibit the poor statistical behaviour due to vanishing sign. So far it was
only applied to two-dimensional Hubbard models (37 but it could be of consider-
able advantage in extending auxiliary field methods to atoms, molecules and solid

state systems where the effects of the fermion sign problem are, to a large extent,

unknown.



Chapter 2

Interacting Electrons

In the following we specialize our discussion to the case of a realistic physical
system: a molecule with positively charged nuclei and electrons interacting with
a repulsive Coulomb potential. Our Hamiltonian is given by (a.u. are employed

throughout this thesis):

S Z VZ + Z Ve‘ct ra + = Z v FEion , (2.1)

—rﬂl

with:

Ve (r,) = 2.2
(r era Ry’ (2.2)

1on = Z I ZIZJ (23)

I;” R;-Ry|’

and where Greek indices are used for electrons, Latin capital letters for nuclei and

Zr indicates the charge of the I*" nucleus.

2.1 The AFQMC method for realistic systems

In practice, in order to apply the AFQMC formalism to a continuous system, we

have first to discretize it. For example this may be carried out by introducing a
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spatial lattice. In second quantization Hamiltonian (2.1) becomes:

- 1 ) ) <t 1 S
H=—5 >, (ul V) clej + D V™ b+ 5 D Vibubjw o (2:4)
Gyt ! ) 1t VDT
where V;; is the Coulomb potential matrix:

1

r; — 5]’

Vij=V(lri—r;]) = (2.5)

and, for simplicity, we omitted the unphysical self-interaction contribution (see
previous Chapter) and the constant ion-ion repulsion term. Now we have explicitly
introduced the spin variable 4 =T,|, and the following relations hold for the

fermion density operator p;, = cl

iuciu:

ﬁ?u = ﬁiu ’ (26)
S i = I (2.7
iy

Here N is the total particle number operator.
In this case the difficulty is given by the fact that V;; is a positive definite
matrix. Therefore, when we consider the exponential of two-body term in the

Trotter decomposition (1.28), we have an expression of the form:

eATZf.j(—‘/""')"j"ﬁj X (2.8)

Hence we cannot directly apply the HST, since (—V;;) is a negative definite matrix
(see Appendix A). In order to solve this problem two different approaches can be
used *8]. The first is based on the same formulation described in Chapter 1, by
adding an appropriate two-body interaction term to the Hamiltonian to ensure

that the eigenvalues of the resulting effective potential matrix have the right sign
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to perform the HST. The second technique uses a slightly different formulation

involving a complex HST.

2.1.1 The Real HST

In order to use the HST with real auxiliary fields, let us consider a modified

interaction matrix:

Wi]' = AEZ']' — Vij . (29)

Obviously, for sufficiently large A, W;; is a positive definite matrix. In practice
it is convenient to choose A equal to the maximum eigenvalue of the matrix Vj;.

Now, if we define the total local density and magnetization operators:

-

di = pit + pil (2.10)
i = pit = Pil (2.11)
we can write the two-body term:
1 .. 1 s s A w 1 -
5 Z VijPitu;z’ = '2“ Z Vijdidj = -2- Edi — -2- Z Wijdidj . (2.12)
L i,j i i,j

Then, by using relations (2.6) and (2.7), it is easy to show that:

Zﬁﬁﬁil = ‘;— (N - ZT@) - (2.13)
Therefore:
STd=N+2Y papy =28 =) mi. (2.14)

And finally:

1 . 1 ce A .
5 Z ViipinPju = ~3 Z Wijdid; — ) me + AN. (2.15)
i,J

N i
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In this way:
B—T Zi,j,u.;u Vijpiwbjpr _ e%r"(zi‘j Wi didi+AZ.‘ m?—Z/\N)
_ EQZL Zi,j Wij dilijeéflA Zi m?e‘AT’\N . (216)

. . . o AT N Wyjdid;
In conclusion we have obtained two quadratic contributions, e * oM

AT -2
e 2™ , and therefore two distinct Hubbard-Stratonovich transformations are
necessary. Essentially, the presence of spin variables and the strategy used for
reducing the negative definite matrix (—V;;) to a positive definite form, implied

d

introduction of two different, time-dependent auxiliary fields: one, c¢, coupled to

total local density and the other, o™, to local magnetization. Now we can apply

the HST:

ar Wiidids —ar Wioled A Wi;old;
e’ 2,y Wi dids :const./Hdo-ie 2 i Uie Dy Wiioids (2.17)
1
Ar 1 2 : —~)\Ar m2 5, ™o
e A2 ™ :const./Hdo’}ne AR ol A ) ol (2.18)
i

Using these expressions, the two-body contribution to the imaginary time propa-

gation reads:

e_ézl fan! Vi Pinbjpt = const. / Hd07d0'21€~%1(2i,j Wi G?Uf'*‘)‘zx' U‘r"z)
i
% eAT(zi,j Wiiold; +A Zi G’,T"Thi) e——AATN ) (219)

Finally, by considering all time slices in the Trotter decomposition, our pseudo

partition function becomes:

Q= (bl ) = const. [ dr G(o) (6,10 1r) , (220)
where the Gaussian weighting factor is given by:

AT P ,4/'..0-, o’ g’.'n
Glo) = o ¥ PO O CTHOLHOESS SIS O0) (2.21)

?
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and the single particle propagator is:

- (2.22)

l

3

where we have omitted the e *2™ term which is inessential in the propagation
since, in our calculation, the total number of particles is fixed. We note that (7(0')
can be written as the product of two propagators, U(s) = U'(o) - Ul(o), each
one acting on different spin subspaces. Therefore, since we consider, for the trial
many-body wave function, a single Slater determinant made up of N T spin-up
and N! spin-down orbitals, U (o) acts independently on spin-up states ¢, and on
spin-down states ¢,|. Hence, by observing that the scalar product of two Slater
determinants is equal to the determinant of the corresponding overlap matrix, we

can write:

(r | T(0) [r) = det (ppr| TT(0) lpgt) - det {p1| U (o) [0g1) - (2.23)

As far as the non-kinetic part of the propagator [j(a) is concerned, we observe

that the one-body propagated wave function is given by:

(re] =87 (2, W =0, Wik ef (0dA Y o ()

e——ArVTeff(ri,I)SDP-TL(I.I.) . (2.24)

@pry(ri) = leptL)

In conclusion HST allows us to use a simple one-body formalism, but with an
effective external potential which becomes time-dependent, spin-dependent and

which is a function of ¢ variables:

Ve (ri,1) = Voi(x Z Wiiod (1) = Ao (1), (2.25)

VER (£,1) = Vo4(r;) Zwﬂa )+ X (1) . (2.26)
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2.1.2 The Complex HST

The second method for treating the repulsive Coulomb potential makes use of a
complex version of the HST (see Appendix A). In fact, if we consider the two-body
interaction, expressed in terms of total local density operators (see Eqgs. (2.10) and

(2.12)), we can write:

—ar Viidid; —Ar Vijoled QA Vijold;
e 2 Zi,j J P COHSt.‘/HdU’?B 2 Zi,j ijO;0; el TZ{,;’ ijO; Qj . (227)
i

In this case we introduce only one auxiliary field o%, coupled to total local den-
sity, and an imaginary factor “¢” is present inside the one-body, field-dependent
propagator. By performing this new HST the Gaussian weighting factor and the

single particle propagator of Eq. (2.20) become, respectively:

AT P .,—”a_gi g“.i
G(O') e Z,=1 (Zi,j Vijoi ()] (l)) , (2.28)

. P . cext i+ e dry . g
U(O‘) - H [E—QZ—TB—AT(ZiT; di—i Zi,j Vijo; (l)dJ)e—‘\‘TT:I . (229)
=1

Therefore we obtain the following effective potential to be used in the one-body
propagation:

Vel (v, 1) = Vi) =i Y Vil (). (2.30)
j

Comparing the previous expression with Egs. (2.25) and (2.26) we observe that,
now, V°f is a complex, spin-independent, effective potential. This second method
turns out to be much more convenient (see Chapter 4) from a numerical point of
view.

We conclude this Section by introducing another possible approach to deal

with repulsive Coulomb interaction. It is based on a different decomposition (sug-
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gested by Fahy and Hamann [®*]) of the usual two-body term:

Z Vijpinpju' = Z Vij (it + pir) (Pt + Bit) (2.31)

i, 7,0 1,5
= Z Vijpirhjr + Z ViipihjL + 5 Z Vij)mim; .

In this way the third term on the R.H.S. of Eq. (2.31) contains an interaction
matrix (—V;;) which is negative definite, so it has the right sign to perform a
standard HST (see Eq. (1.34)):

e 2, (Tdmems _ 5 D Vs (2.32)

—Ar
:const/lldo'?ne 2 Zi,i‘””‘ o ATZ:: W
* 1
i

In the other two terms, on the R.H.S. of Eq. (2.31), the interaction matrix is
positive definite, therefore the HST can be applied only by using one of the two
techniques (the modification of the two-body interaction or the introduction of a
complex HST) we have previously described. If we consider the complex HST we

obtain:

—AT o Viipiap; —ATr L Vot ot ZzAr %
e Ew ijPipPip —_ CODSt./Hdee Zz, i P z i o; PJu (233)
)

Hence, on the whole, we have:

e_%}:i,:’,ﬂ,#’ VijPinbipt const-/Hda?dd;dafte—ézi(zf,j Vijole 423, vijotaf)
% EAT(Z;,,' Vijoi mj+2i2i‘j,# ijafﬁju). (2-34)

Using this approach three kinds of auxiliary fields are to be introduced: o™ coupled
to local magnetization, o coupled to spin-up density and ot coupled to spin-
down density. By considering all Trotter time slices the Gaussian weighting factor

becomes:

ar P i (e (D! ot (ot
(o) = e ¥ Lim Xy Vi (R W7 0425 o CLAO)E (2.35)
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and the single particle propagator is

[7(0_) _ H [e“élee_Ar(zi ‘,}extd‘.-zi,j Vijolt (D —2i Z{,j,” Vi aé‘(l)pj,‘) E_%:T} .
=1 .

(2.36)
Finally we obtain an effective, time-dependent, spin-dependent, one-body potential
given by:
Ve (v, 1) = Vo)) = 3 Vi (2i0] (1) + a;n(Z)) , (2.37)
j

VI (11, 0) = V() - Y Vi (2ict () = o7() - (2.38)

As far as the correlation energy is concerned we expect that, in this approach, the
o™ auxiliary field is the most important one, since it is introduced by decoupling
the interaction term which couples electrons of opposite spins, through the local
magnetization operators. The other two auxiliary fields, o' and o!, should be less
important to recover the correlation energy, in fact they are obtained by decoupling
two-body interaction terms taking into account particles with parallel spins, on
which correlation should have only a weak effect, due to Pauli exclusion principle.

We point out that the different HST’s we have introduced, although strictly
equivalent from a formal point of view, exhibit a quite different numerical be-

haviour, when actually implemented (see Chapter 4).
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2.2 Calculation of the estimators

The ground state expectation value of an arbitrary operator O can be calculated
using the fundamental relations introduced in Section 1.3.2. Evidently the main

task is the calculation of the auxiliary field-dependent estimator Eg(cr), at a fixed

imaginary time 7. We start by deriving it for the operator O = ciuc}“. Eq. (1.54)

can be easily written as:

e}, 0s (1,0) %, )

- (2.39)
Us (7,0) % )

. (ebUe (r,8) s
- <ﬁa (1,8) ¢,

If 4, is a N-state single Slater determinant, then Eq. (2.39) involves the scalar
product of two (N 4 1)-particle determinants, due to the presence of creation
operators. Now the scalar product of two Slater determinants is the determinant

of the corresponding overlap matrix, that is:

-, detA? (4,7)
By(o) = ~—Zomn (2.40)
where A* is the (N# x N*) overlap matrix:
Al = (0 U(0) lpg) = (e (T)le7 (7)) (2.41)

in which single particle orbitals have the same spin p, and A*(i,7) is the
(N#* +1) x (N* 4 1) matrix defined by:

b < ‘Pg>(rj)
A = ; 2.42
P2 | pS(r;) Al (2.42)
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Here we have introduced the forward and backward propagated wave function for

integer times (I = 7/A7), defined by (see Egs. (1.55) and (1.56)):

S"q>(7) = [}U (1,0) pg = ‘Pq (i-A7)= Utf (1,0)wq (2.43)

o (1) =Us (1,8)pp = o5 (1 AT) =Us (1,B) p - (2.44)

At first sight the full calculation of this estimator seems to be very expensive. In
fact, by letting the indices 7 and j assume all possible values, corresponding to all
possible N, lattice sites, we obtain N? matrices of the form (2.42). Therefore we
should evaluate N? determinants of order (V# + 1) for each spin value p =T, .
However we can simplify the problem by following a procedure (32] suggested by S.
Sorella.

The N2 matrices, corresponding to different values of 7 and j, differ one from
the other simply by the exchange of one row and one column. Hence it is convenient
to introduce the quantities:

B (i,5) = )y (x;) (4%),, o5 (r:). (2.45)

p,q

Obviously a determinant remains unchanged if one adds to a column any linear
combination of the others. Hence we may add to the first column of the matrix
A* a linear combination of the other columns in order to make vanishing all the

elements of the first column but the one in the first row:
bij — Zq boey (rj) ... wg(rj)
detA* = det . 2.46
py(ri) - }: by Aj, Ap, (2:49)

Now, if we choose:

Z ) gy Po(Ti) (2.47)
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we obtain the desired result:

po(ri) — > bgAl, =0. (2.48)
g
Then, by using definition (2.45) and relations (2.46) - (2.48), we can write:
§ij — B*(i,7) ... #g(rj)
Ar — - BIg.. _ BM (4.4
det A" = det 0 A = detA* - [6;; — B (3,7)] -

(2.49)

Therefore the factor detA* cancels out in Eq. (2.40) and finally we obtain:
Bl 1+ (9) = (eqel,) =85 = B* (4,5 - (2:50)

ip jn

Now the computation of the (N, x N,) matrices BT and B! requires the in-
version of two (N* x N*) matrices A¥, amounting to =~ (NTa + N13> oper-
ations, a change of basis (A“)_1 ©< , that is = <NT2 -{—le) N, operations,
plus (N T+ N l) multiplications for each different couple of lattice sites for which
the matrices are defined. Altogether we have ) (N“3 + N#2N, + N#N?) ~
N? (NT + Nl) operations, since, usually, N, > N*. This is to be compared with
the N2 Zu (N# + 1)3 operations required by a direct evaluation of det A (2,7)-

Then, obviously, by omitting the spin variable p:

(clej) = 65 — (¢jel) = B (4,9) , (2.51)

i
where brackets mean the quantum expectation value calculated over a given con-
figuration of o fields and at a fixed time 7, according to definition (2.39).
By using standard properties of determinants it is easy to derive (see Appendix

B) another useful relation:

(clejehuen) = (cle;)(ehen) + (clea)ejel,) (2.52)
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Now, by means of Eqs. (2.49) - (2.52), we can compute all physically interesting
ground state estimators, simply by expressing their corresponding operators in

terms of ¢, ¢. In the following we give explicit formulae for some of them:

3

a) Particle density p;, = CiuCip

B} (o) = B*(i,i) = > o7 (r:) (4*)," o(r:) - (2.53)
P.q
- 1
b) Kinetic energy T = -5 Z Tijc:-r#cj#, with Ty; = (i|V2|5) :
Ly i

ZTUB (4,%) :—-ZTUZ% )(AM) Tes(ry).  (2.54)

Lk LM bp,q

c) Ezternal energy pext — Z Ve“(ri)czucm :

El..( Zve“ )B* (3,4) Zve\t ) S 02 (r) (A"); oS (ri) . (2.55)

Pg
d) Electron-electron energy V = Z V”cwcw pCiy
NN
Evidently:
t ot e e
(czuc]p’cju’czu> - (ctuczp.c]p, ) 51]6## < i Jp. >

<CLLClM><C;I_L,C]-“, > (Cjucw )(C}'#,Ci“>. (256)

Hence, by observing that ( CiuCip D)= EWI(CLCJ-’J :

El (o) = Z Vi;B* (i,3) B* (j,7) — = Z VijB* (j,1) B* (1, 1) (2.57)

7.71/“'1“‘ ,],ﬂ

Z Vi Y (AR (AM ) o (xi)em,(x)e s (x5 ()

G, p,q,p"q’

1 - -
=52 Vi D, (A (A e (rilesu(ries (xi)ey, (xs)

4 b P:q,p' ¢’
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where, for clarity, we have pointed out the spin component of the orbitals.

We note that Eq. (2.57) is a generalization of the usual electron-electron
energy, obtained in the Hartree-Fock approximation, with a “direct” and an “ex-
change” term. In fact, in the AFQMC appfoach, the ground state electron-electron
energy estimator is given by the matrix element of V between two different, aux-

iliary field-dependent, determinants.



Chapter 3

The practical algorithm

3.1 Field updating techniques

In the AFQMC method ground state expectation values can be obtained by cal-

culating functional integrals over auxiliary fields:

(0) = % / doE s (0)e V(). (3.1)
Therefore choosing a method which efficiently samples o variables is a crucial step.
In order to attain this purpose a lot of strategies are available. Obviously the
simplest one is a conventional Monte Carlo (MC) method 28:48] in which parallel
updates of the auxiliary fields are allowed (due to the large number of auxiliary
field variables, o;, the standard Monte Carlo procedure of updating a single degree
of freedom, at each step, surely would give rise to an extremely slow sampling). In
this approach the o fields, for all space points (if a spatial discretization is used),

and at all imaginary time slices are updated:
otV = g%l | fAs , (3.2)

where § is a uniformly distributed random number between —1 and 1, and Ac is a
constant factor used to fix the size of the random steps. Then a Metropolis accep-

tance/rejection test[*®l is applied: if V (¢™") <V (c°'4) the new configuration is
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r{onewy y-f old
accepted, otherwise it is accepted with a probability given by G (=],

Surely this is not the most efficient way to proceed since all the field variables are
updated by completely random movements and, usually, a very small value for Ao
has to be chosen to obtain a good Metropolis acceptance ratio (between 30 and
70%). Therefore large amounts of computer time are required to correctly sample
the auxiliary fields.

In Section 1.3.2 we anticipated that evaluation of the integrals over o variables
can be performed as a temporal average:

(O)::Hm.C;%;BF/sdyEOkdyﬂ. (3.3)

L amde o]

In this context o fields have to be suitably updated in the fictitious time s. An
average over all ¢ can be replaced by an average over a fictitious time evolution
at least in two ways.

One can introduce a Gaussian “white noise” function 7(s) and define the time
dependence of o by the Langevin equation:

do _BV(U)
ds Oo

+7(s) , (3.4)

with: |
(n(s)n(s')) =26(s—s') . (3.5)

From a physical point of view Langevin equation governs the Brownian motion of

particles. The rationale behind this approach, first suggested by Parisi (651 and

applied by Sorella et al.[?°~34 is that a Fokker-Planck equation is associated with
the stochastic evolution described by Eqgs. (3.4) and (3.5) :

) v vV P, (3.6)
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where P(c) is the probability that the stochastic trajectory, determined by the
Langevin equation, generates a configuration {¢}. In the limit s — oo then
P(a) — ¢ PV(9) and one can use this property to sample the Boltzmann factor.
Another approach (see also foﬂowing Section) is a microcanonical method.
From a Molecular Dynamics (MD) viewpoint V(o) is considered as the potential

energy for a classical dynamics (with unit mass), governed by Newton’s law, so

that:

A . (3.7)

This system conserves total energy, and time averages will agree (for s — o)
with functional averages, provided the system is ergodic and the initial conditions
are arranged to satisfy the constraint that the kinetic energy should average to
1/2 per degree of freedom. In practice, in numerical simulations, the continuous
dependence on time is replaced by a finite difference approximation, introducing
a fictitious time step As. Then, in principle, results have to be extrapolated to
As — 0, since, obviously, a finite time step introduces errors[6¢].

A more recent class of simulation techniques, the so-called Smart Monte Carlo
methods(®7=%% promises to be very eflicient. In essence one can only approximately
integrate the (Langevin or MD) equations of motion, taking some discrete sequence
of As steps. Then this entire trajectory is accepted or rejected by a Metropolis
test. It is just this global acceptance/rejection step that makes the algorithm
exact. In comparison with a simple MC approach this strategy is certainly much
more expensive (due to force computation), nevertheless it should represent a main
improvement, since the o variables are no longer randomly updated, but the force
term tends to guide the sampling of the auxiliary fields along the trajectory of the

natural motion of the system. On the other hand, due to the presence of Metropolis
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test, the truncation errors (associated with a finite time step As), affecting a pure
MD or Langevin procedure, disappear. Therefore As may be chosen as large as
possible while keeping the Monte Carlo acceptance rate satisfactorily high.

In the following Section a MD techniciue, together with its Smart Monte Carlo
improvement, the “Hybrid MC” method, is described in detail. It was extensively
used in previous applications[?%:3%! of AFQMC algorithm to Hubbard model and
was also employed in our preliminary numerical simulations. However we have
verified that, at least for the physical systems we have taken into account, a simpler
and less expensive technique, a straightforward modification of the standard MC
scheme, is considerably more efficient in sampling the auxiliary fields. It will be

introduced in Section 3.1.2 .

3.1.1 The Hybrid MC method

The Hybrid Monte Carlo approach (HMC)[ZS’“] derives from similar algorithms
that are being used in the study of lattice gauge theory (7], In the AFQMC
method Q is interpreted as a classical partition function of the variables o (see

Section 1.3.2), with a potential energy V(o) given by:
V(ie)=—-InG(c) —In (9| U(o) ) + const. . (3.8)

Therefore it is convenient to introduce a momentum variable p, conjugate to each

auxiliary field variable o, and rewrite the partition function in the form:
Z = const.‘/dpdae“Ed(”’p)/KBT , (3.9)

where KT = 1, and E (o,p) is the total classical energy for the auxiliary

field ¢ dynamics. In the following we specify our formulae for the basic HST
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defined through Egs. (1.34) - (1.39) and consider the fermion determinant
($,|U(c)|[#,) > 0; generalization to other HST’s, suitable for studying repul-
sive Coulomb interaction systems, and for the situation in which (¢,|U(c) |4, )

can be negative, is quite straightforward. Then

E% (0,p) = Eyin(p) + V(0)

1P
- 522”20) (3.10)

)

P
AT -
+ 5033 Wijou()es(1) —In (| 0o br) + const.

I=1 ij
Since ground state properties are computed by estimators which are functions of
o fields only, the introduction of the p fields has no effect on physical results. Our
task is to obtain a set of configurations of o and p fields distributed as e~ E (D),
Therefore we can adopt a microcanonical approach with the classical dynamics

governed by familiar Hamilton’s equations:

. OE(o,p) B
. O0E%(o,p)  8V(s)
P="""5¢ T fo (3.12)

where the dots over p and o signify differentiation with respect to simulation
fictitious time s. Obviously non-linear Hamilton’s equations must be integrated
numerically and this requires the introduction of a finite size, As, in fictitious

simulation time. The integration can be carried out by the leap frog method (™ :

p(s+ As/2) =p(s — As/2) — As <8g§0)> , (3.13)

o(s+As)=oc(s)+p(s+ As/2)As, (3.14)
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with initial and final half-steps:

p(8s/2) =50~ 5 (T52) (315
plar) =rlos =802 = 5 (757) (3.16)
The half-steps differ from the exact integration by errors of order As?, whereas
the intermediate steps are affected by errors of order As®. At the beginning each
p(0) field is given by a Gaussian random number distributed as exp(—p?®/2).
There are two things wrong with this procedure. First one cannot numerically
integrate the equations of motion exactly, and thus one cannot conserve E% (o, p)
exactly. Second, if one could integrate them exactly, o would be confined to one
region of its configuration space by the zeroes of (1| U(c) |1, ), since the potential
V(o) of Eq. (3.8) would have logarithmic infinities at these locations; this would
invalidate the sample. These problems are both elegantly solved by incorporating

a Metropolis rejection step based on:
g = exp [Ecl(gold,pold) - Ecl(o_new,pneW)] ) (317)

If ¢ > 1 we accept {0™V} as a new sample distribution, and if ¢ < 1 vs;'e accept
it with probability q. If we reject it, we reuse {0°¢} as a sample configura-
tion, choose a new set of random momenta, and integrate again. By repeating
the preceding procedure a set of configurations, which correctly samples the de-
sired distribution[®®, is generated. Omne has considerable latitude in applying
this scheme since one can choose both the integration step length As and the
number of Molecular Dynamics steps nM.D, between Monte Carlo rejection steps.

The effective potential for the classical problem tends to have the form of isolated

favourable “valleys” separated by large unfavourable regions, so increasing error in
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the integration almost always makes (ES.,, — ES;) more positive, and lowers the
acceptance rate. The error increases when either As or n,,, is increased, while the
statistical independence of {o°!4} and {o"®"} increases when the product n,,, As
is increased. In addition, this approach can help to overcome the second difficulty
too. In fact the logarithmic barriers are usually very “thin” on the scale of o “dis-
placements” and therefore, if a finite, relatively large As may be used (the only
practical limitation being a large enough acceptance rate), the procedure should
make the (advantageous for the sampling) “error” of going through them.

Now we explicitly derive formulae for the forces, —0V(c)/0c, which have to
be calculated for integrating the classical equations of motion. Their computation
is usually the most time-consuming phase of the auxiliary field sampling, in the
Hybrid MC scheme. Incidentally we observe (8! that, in the HMC algorithm, there
is nothing which requires the form of the potential energy V (o), which determines
the o dynamics through Eqs. (3.13) — (3.16), to be equal to expression (3.8) that
must be present in E° (o,p), when the Metropolis test is performed. This, in
principle, can introduce some further scope for optimizing the procedure, the only
condition to be satisfied being, again, to get a reasonably high acceptance rate.

As far as the Gaussian part, of the potential (3.8), is concerned, derivatives

may be performed in a straightforward way. On the contrary, for the remaining

part, —In (¢, | U(c) |9,), the task is not so trivial. If we define the force:

__0V(9)
then its non-Gaussian part is given by:
5 h .
5o (12 e 0() 1)) (3.19)

:Bai(l) (ln det <901T,[ U'(o) I(p$> +1ndet <‘P;§| U(0) I‘P$>>
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that is the problem of computing the forces is completely decoupled in spin space.
The derivative, in the last expression, affects only the propagator U'(a‘) at the time
slice [ and, in practice, can be performed in the following way. Let us consider the
usual overlap matrix 4, = (@p| U(o)|ey). Then determinants appearing in Eq.

(3.19) can be formally written as:
det A = g2+, (3.20)

Therefore:

0 oA 0A -1
———Indet A = ———trln A = {B———ZSA } = g;[ } qup . (8.21)

0
doi(1) doi(1) oi( doi(l) |,
Now the derivative 84/080;(l) can be explicitly calculated by introducing the back
and forth propagated orbitals, at intermediate times:
&> (1) = eA™Tp> (1. A7), (3.22)
GS(l) = e 2T (10 AT) (3.23)
where this formulation depends on our particular Trotter decomposition (1.28),
and >, < are the back and forth propagated orbitals for integer times, defined

in Egs. (2.43) and (2.44). Obviously 7 (0) and @5 (P - A7) = ¢7(F) are the one

particle orbitals corresponding to the trial Slater determinant %,. Then we can

write: |
0AH ) )
[ag-(z)} = AT Y Wiids,(ry Dégu(ri 1) (3.24)
t Py j
Finally we give explicit formulae for the forces by considering Gaussian contribu-
tions too:
Fi(l) = =AY Wijoi(]) | (3.25)

j

+ATZW1J Z‘P<4— r_77 (PqT(rﬂ +Z¢ql (I‘],l)lpql(l‘],l) ’
gl
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with:

ot (T ) =D (AM) ) fp(rinl). (3.26)
P

3.1.2 A simple MC algorithm

Let us consider again our pseudo partition function:
Q = const. / doG(e)D(o) = const. / doG(e)|D(e)|S(c) , (3.27)
where, as in Section 1.3.4, we have defined:

D(e) = (s | U() [b2) (3.28)
S(c) = D(e)/1D(o) . (3.29)

Essentially we need an algorithm to produce a set of auxiliary field {¢} configura-
tions distributed according to probability G(o)-|D(c)|. This can be accomplished
in a simple way by using the following procedure. First of all we generate an
initial configuration oy, with a probability G(oy), that is taking into account the
Gaussian part only. Gaussianly distributed random variables can be easily ob-
tained numerically, for instance, by adopting the Box-Muller method *7]. Then
we generate a new configuration oy, using again the Gaussian probability G(o;).

At this point we compute the quantity:

(3.30)

and we perform a standard Metropolis é.cceptance/rejection test, that is we ac-
cept o1 as a new auxiliary field configuration with probability ¢; in practice only

if ¢ > £, where £ is a random number, uniformly distributed on the interval (0,1).
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Then we repeat the previous procedure by generating the desired set of o config-
urations. One can easily verify that this algorithm really samples the distribution
G(c) - |D(c)|. In fact, if P (oy — o1) denotes the probability to reach o1, starting

from oy, in this case we have:

P(oy — 1) = G(o1) - min <1, :ﬂ:;{) . (3.31)

Now the required detailed balance condition:

P(U‘()—%O'l) G(O’]_)lD(O’l)’

- , 3.32
P (o1 — 00)  G(e0)-|D(oo)] (3-32)
is certainly satisfied. For instance, if |D(c1)| > |D(o0)|, then:

P(oy —a9)  G(oo)-|D(00)|/|1D(e1)] — G(o0) - [D(oo)]

Verification for the case |D(cy)| < |D(oy)| is analogous.

Substantially our technique differs from conventional MC scheme because we
update auxiliary fields using a Gaussian distribution in place of performing small
random displacements (see Eq. (3.2)). The advantages, with respect to previ-
ously described Hybrid MC approach, are essentially two. First, our algorithm
is much faster (at least a factor 3 in practical calculations) since no forces are to
be computed. Secondly, apart from the unavoidable correlation induced by re-
peating the Metropolis test, which selects the accepted configurations, successive
auxiliary field configurations are completely independent. In addition, obviously,
the logarithmic barriers, corresponding to zeroes of D(o), are crossed without any
problem, in this scheme.

On the contrary, using the Hybrid MC method, we have often observed a

relatively large correlation between successive configurations. Therefore very long
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simulation runs were necessary in order to obtain small enough statistical errors in
the estimated physical quantities. Finally we have verified that, with HMC tech-
nique, crossing logarithmic barriers is surely allowed but, sometimes, it happens

in a rather inefficient way.

In our calculations we updated the auxiliary fields at all time slices, always
having an acceptance rate greater than 50%. Possibly, considering longer imag-
inary time propagations, with a larger number of Trotter time slices, or more
complex physical systems, the acceptance rate could become too low, since, in
that case, the left and right propagated trial determinants can easily be orthogo-
nal, giving rise to a very small value for |D(c)|. If this difficulty were present, it
could be overcome updating the o variables not at all time slices but, for example,
only at one or a few of them, before the Metropolis acceptance/rejection test is

applied.

3.2 Calculations and sampling in Fourier space

Until now we have considered a space discretization, that is, in our formulae, we
have defined all the relevant physical quantities (wave functions, external poten-
tials, auxiliary fields) on the lattice sites of a spatial mesh. Anyway, in actual
calculations, when realistic systems are to be studied, working in Fourier compo-
nent space is more convenient.

A practical motivation to introduce Fourier components, as the basic quan-

Arm

tities, is the following. The kinetic term propagation, e~ % 7, is conveniently

performed in reciprocal space, where T'is a diagonal operator (then a Fast Fourier

[72]

Transform!’?! can be used to come back to direct space and perform the one-body,
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effective potential propagation). Thereforeit seems to be natural to expand the one
particle wave functions ¢, (r), which trial Slater determinant consists of, in plane
waves e’¥*. that form a complete set of functions. This is a well-known procedure
in Solid State calculations where the periodicity of a Bravais lattice is exploited. In
fact, if ,(r) has the periodicity of a Bravais lattice, that is ¢, (r + R) = @p(r) for
all r, and all R in the Bravais lattice, then only plane waves with the periodicity
of the Bravais lattice can occur in the expansion. Since the set of wave vectors
for plane waves with the periodicity of the lattice is just the reciprocal lattice, a

function periodic in the direct lattice will have a plane wave expansion of the form:
pp(r) =D Cp(G)e' ST, (3.34)
G

where the sum is over all reciprocal lattice vectors G. The Fourier coeflicients
Cp(G) are given by:

0(@) = 5 [ drpy(r)e e, (3.35)
where the integral is over any direct lattice primitive cell, and  is the volume
of the primitive cell. By a formal point of view this approach means that we
are studying a periodically repeated physical system. Nevertheless, if an isolated
molecule has to be considered, we can, equally well, use this method, provided
that our direct primitive cell is large enough. By choosing, for example, a cubic
box with volume Q = a?, if a is sufficiently large and the system inside the cell is
neutral, then we substantially obtain an infinite number of non-interacting copies
of the same system and, therefore, we are able to recover the properties of an
isolated molecule.

The number of plane waves involved in expansion (3.34) is determined by the

kinetic energy cutoft:

1
5G2 < Eeut - (3.36)
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Obviously the accuracy of the expansion can be improved simply by increasing
the value of the cutoff energy E.,; and, consequently, the CPU computer time
requested by numerical calculation. Working in Fourier space makes the AFQMC
algorithm significantly faster, by eh'minaﬁng the convolution integrals appearing
in the effective potential. For instance, in order to compute single particle wave
function propagation, we have to evaluate (see Section 2.1) convolution integrals

which have the basic form:
Ver(r) = Y o;Vij — / dro(x)V (r, ). (3.37)
j

Certainly, by a numerical point of view, it is convenient to calculate (3.37) in
reciprocal space:
VE(G) = QV(G)o(G). (3.38)

Then V*#(r) can be quickly recovered by using the Fast Fourier Transform.

Furthermore computational efficiency should be improved by performing the
calculations in Fourier space as far as the auxiliary field sampling is concerned (28],
In fact, if the o variables are updated by using a spatial mesh (o; = o(r;)), ex-
tremely irregular auxiliary fields are obtained. This is caused not by insufficient
resolution in space discretization, but rather is due to the Monte Carlo algorithm
itsell which produces random, uncorrelated changes of the o field at every lattice
site. The physical system is not expected to fluctuate on this scale. Moreover,
the integrability of such extremely erratic functions becomes rather questionable.
Therefore it is convenient to update Fourier components o(G) of o, rather than
their values at individual spatial mesh points, since this is equivalent to perform
“correlated” changes of the field at all space points (at a given time slice).

In conclusion it is generally profitable to use the Fourier coefficients of the

various quantities as the fundamental variables and compute ground state prop-
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erties and auxiliary field updating directly in reciprocal space. In Appendix C
the main expressions, for calculating ground state estimators and sampling the
auxiliary fields, are given in terms of Fourier components and these formulae were

actually used by our algorithm.

3.3 Gram-Schmidt orthonormalization

By performing single particle wave function propagation, as shown in Egs. (2.43),
(2.44), a problem about numerical stability may occur. In fact, since imaginary
time propagation is not unitary, the orthonormality conditions, initially satisfied by
the orbitals, are not preserved during such propagation. Therefore, after repeated
applications of the propagator over an elementary time step, an orthonormal basis
set {p,(r:)} (withp=1,...,Nandi=1,...,N,) will nolonger remain orthonor-
mal and the algorithm will become numerically instable. This can be understood
since, due to auxiliary field introduction, the orbitals are independently propa-
gated through an imaginary time, one-body propagator. Thus a direct application
of Eqs. (2.43), (2.44) results in a Slater determinant with a great deal of linear
dependence among the wave functions. In this way the numerical information
(28]

about the fermionic ground state is gradually lost. Sugiyama and Koonin !“*! were

the first to recognize this problem.
In order to have a stable propagation, one can apply the Gram-Schmidt
orthonormalization!™ every few time slices. In fact the 7-time Slater determi-

nant:

P = det @] (r:)] , (3.39)

can be rewritten in terms of an orthonormal basis set by introducing a transfor-
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mation:

wp, = Z qugo'q , (3.40)
q

where the matrix U,, is chosen in such a way that <<,a;,|go;> = 0pq. The matrix
Upq 1s not univocally determined by Eq. (3.40). A convenient choice is to use
the Gram-Schmidt orthonormalization procedure. In this case, U, is a triangular

matrix and ¥7 can be written as:

P = det

ZUPW;(”)} = det(U) - det [p,(r;)] , (3.41)

where the latter equality simply follows by expanding the determinant of the prod-
uct of two square matrices: Uy, and ¢y (r;). Therefore, once more, 97 can be
expressed by means of orthogonal orbitals. Hence we have again to propagate
a Slater determinant, made up of orthogonal orbitals, and one can proceed as
usual, until the numerical stability will require another orthonormalization. With
such a strategy we can propagate for a long imaginary time any function with-
out any numerical problem, even though the computation time increases, due to

orthonormalization of the orbitals which costs N2 N, operations.



Chapter 4

Mastering the fluctuations

As usual, even though the theoretical formulation of the AFQMC method is well
established, developing a really efficient algorithm, suitable for numerical compu-
tation, is not a trivial task.

The AFQMC technique was extensively applied to study electron correlations
in the Hubbard model (see Appendix D). The development of the methods for
carrying out those calculations has been dominated by a tendency to take advan-
tage of the simplicity of the Hubbard model to maximize computational efficiency.
In fact, in that case, various simplifications and variable transformations may be
exploited which, unfortunately, do not hold any more when realistic, continuous
systems are to be considered. Therefore a large amount of numerical tests was
necessary in order to achieve a reasonable understanding of the technique and to
develop a reliable algorithm.

In this Chapter one of the main technical problems, which can affect the
AFQMC method, the presence of large statistical fluctuations, is described. The
basic causes which give rise to huge fluctuations are illustrated, together with a
possible solution to the problem. A selection of the results we have obtained will

be presented in Chapter 5.
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4.1 A serious difficulty: large fluctuations

At the beginning we carried out AFQMC simulations using the HST presented in
Section 2.1.1, where a A parameter is introduced to make the two-body interaction
matrix negative definite As we have illustrated in Chapter 2, this is not the only
way to apply the AFQMC technique to systems with a repulsive interaction, but
surely it is the simplest one (no imaginary factors are introduced) and, in fact, it

was suggested as the best choice in ref. [28].

Our preliminary numerical tests were applications to the Hydrogen molecule
ground state, using a very small energy cutoff: G?/2 = E.; = 0.5 Ry. With
this E.y; value, expansion (3.34), for the one-body wave functions, contains only
7 plane waves (corresponding to the (0,0,0) and (1,0,0) shells in reciprocal space);
therefore a low accuracy can be obtained and the physical system actually becomes
a “toy model”. In this way the main technical features of the AFQMC method can
be readily analyzed, even though the quantitative results for ground state prop-
erties are meaningless as far as their absolute values are concerned. In addition,
in this small cutoff situation, the “exact” (with respect to the fixed energy cutofl)
ground state properties can be quickly obtained by an ezact diagonalization pro-
cedure and this is very useful since we can immediately verify the correctness and
precision of our numerical results. In this particular case, due to small energy cut-
off, the correlation energy would be much smaller than real Ho correlation energy,
so its estimate would be difficult. Therefore, to increase the correlation energy

contribution, we multiplied electron-electron interaction by a factor 4.

In Fig. 1 a typical AFQMC simulation is shown. Hydrogen nuclei were placed

at equilibrium experimental distance for H; molecule, R = 1.401 a.u.[™,



A SERIOUS DIFFICULTY: LARGE FLUCTUATIONS

65

_'1 B | ] I { | | ] | l I i I ] l [ I | | | I | | I i

_ | ]

— P& ﬁ | -

R |
- [ \ L

| b | b

_3 ﬁ————-ﬁ\-%ﬁl -ﬁ-ﬁ En \‘ﬁ"‘ﬂ‘%“‘f\“ﬁﬁ\f“\/\} P["—J][TVW—JH\F;LILT‘ qﬁ
- |

) [:

T

H.F.

5
8 L] |
> :iMMHTMM ﬂT’“ Li,’\‘i{‘*h!'? AN
- - ! |l i | i
i Tiinal) RIS 1o
= | | \ |
SRR A L
Sy T
3 L N R E
I R
_8 T !J h ’lh f!l ! ‘5“1 R B li L 1!| |'_
0 1000 2000 3000 4000 5000

Fictitious time steps

Figure 1. Fictitious time evolution for Hp at Eey:=0.5 Ry in the Hybrid MC scheme. The
fluctuating dashed line represents the energy estimator evolution while the continuous line is the

cumulative average. As

a reference Hartree-Fock and Exact results are shown.

The trial wave function was the self-consistent solution of a previous Hartree-Fock

calculation, and the imaginary propagation time was 8 = 2 a.u.. For the auxiliary

field sampling a Hybrid MC scheme was used. The Hy ground state total energy

estimator is plotted against the fictitious simulation time. The average value of

this estimator, over all field configurations gives an estimate of the ground state

energy. The Hartree-Fock energy (—0.287 a.u.) and the exact diagonalization



66 MASTERING THE FLUCTUATIONS

energy (—0.366 a.u.) are also shown: their difference is, by definition, the correla-
tion energy contribution. To appreciate the convergence of the energy estimator
average to the exact ground state value, the cumulative average (the solid line) is
drawn. With 5000 simulation steps we have obtained Ey; = —0.368 + 0.011 a.u.,
which correctly estimates the exact value, even though statistical error is rather
large due to considerable estimator fluctuations, that are evident in figure. Obvi-
ously a better precision can be achieved simply by performing longer simulations,
by taking into account that statistical error is inversely proportional to the square
root of the total number of sampled, independent, auxiliary field configurations.
Fig. 1 clearly indicates that AFQMC technique really works for the simple system

we have considered.

Unfortunately, when one uses an higher energy cutoff, in order to obtain mean-
ingful quantitative results, a serious difficulty arises. In fact, with E.,, greater than
about 1 Ry, very large fluctuations, on the scale of correlation energy, in ground
state property estimators, occur. They make the statistical error huge, actually
preventing this AFQMC scheme from getting acceptable results in a reasonable
computer time. Just to realize the severe effect of these fluctuations we show in
Fig. 2 the behaviour of the total energy estimator when E.u; = 1.5 Ry is used.
We must point out that this energy cutoff is still quite small in comparison with
the values we usually need to get realistic results for molecules and Solid State
systems. In this case, not only the local, field-dependent, estimator, but also the
cumulative average shows enormous fluctuations on the scale of the correlation en-
ergy. Obviously, in such a situation, one cannot obtain any meaningful result. To
study more precisely the energy cutoff dependence of the statistical fluctuations

the following test has been performed.
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We have used the variational Jastrow approach of the AFQMC method (see Sec-
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components which are effectively taken into account in the calculation. In Fig.
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was equal to 20, 60, 200 respectively and the corresponding total

energy statistical errors (which can be chosen as a measure of the fluctuations)

were AEy = 0.002 a.u., AFy = 0.017 a.u., AEy = 0.308 a.u..
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As one can see, the fluctuations are still acceptable for Nce;lcf = 60 but they make
the results meaningless aiready for Néﬁ = 200 (the E.y¢ = 6 Ry energy cutofl
would require about 2000 ¢ Fourier components). The reported errors show that
fluctuations are proportional, at least, to (Ngff)z. Now Ng Eflftz, so we can
conclude empirically that, as a consequence of statistical fluctuations, our errors
grow at least as E2,,. Since the statistical error is inversely proportional to the
square root of the number of independent configurations, our previous estimate
indicates that, at least 4 - 10° configurations should be sampled, in the situation
ilustrated in Fig. 2 (Ecus = 1.5 Ry), to obtain the same precision, in computed
ground state quantities, of the simulation represented in Fig. 1 (Ecu¢ = 0.5 Ry)!
Evidently this AFQMC scheme cannot be applied, except that in cases of very

small energy cutoff. Therefore its practical utility is rather limited.

4.2 A possible solution to the problem

4.2.1 A convenient HST

A considerable effort was spent in order to understand what the presence of huge
fluctuations depends on. We found that the main source of large statistical fluc-
tuations is the introduction of the A parameter, used in Section 2.1.1 to perform
a real HST, suitable for repulsive interaction systems. In principle this A factor
represents only a convenient mathematical trick, which should not affect the final
results, but, actually, its presence does give rise to a serious fluctuation problem.

This can be understood by considering (see Eqs. (2.25) and (2.26)) the effec-
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tive, auxiliary field-dependent, one-body potential, which governs wave function

propagation, at a fixed time slice:
Vif(ri) = VeSi(ry) = > Wiiol F AeT". (4.1)
J

The corresponding equation for the Fourier components is:
VEH(G) = VHG) — AW (G)oe(G) F Ae™(G). (4.2)

Now, if we remember that W;; was defined in Eq. (2.9) as W;; = A§;; — V;;, then

Eq. (4.2) can be written as:

vef(@) = ve(G) - <A - 452) Q) F Ac™(@). (4.3)

We observe that V***(G) is proportional to 1/G? and, A > 4w/G2, to make
W;; positive definite. Therefore, for G > Gnin, the effective potential Fourier

coeflicients become:
VEH(G) = =X (e%(G) £ a™(@)) . (4.4)

As far as the auxiliary field dynamics is concerned, the Gaussian factor contribu-
tion to the classical potential energy (see Egs. (2.21) and (3.10)), which is usually

the dominant one, is (always at a fixed time slice):

VGauss(U) = AT Z Wijo';'io';'i +A Z a_;nZ 3 (45)

ij i

and in terms of Fourier components:

Voass(0) = ATQ S (QW(Q)e*(Q) +Mo™(G)) = 3 Vil G).  (4.6)
G G
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Again, for the G > Gpin terms, we can write:

V(@) = a0 (3= 57 ) (@ + Mo™(@F
~ ATQA (Jo4 (G + [e™(G)]?) - (4.7)

Eq. (4.7) shows that, most of the auxiliary field components, evolve in a way
that is practically independent on the physical system one is considering. Their
dynamics depends essentially on the A parameter. As a consequence, in BEq. (4.4),
the effective one-body potential, for large G values, instead of decaying as 1/G?
(as we would expect for a Coulomb interaction), assumes a completely unphysical
behaviour (the same for all G components), governed by the A parameter. We
must also point out that, usually, X is a quite large constant. In fact Amin =
47/G2 ;. = a?/m, with a, the length of our cubic box side, which is to be chosen
sufficiently long to make the system really isolate (we have typically used a = 10
a.u.).

One can easily realize that the longer the range of the interaction is, the larger

Amin becomes and, as a consequence, the larger the statistical fluctuations we must

expect from our numerical calculation. Let us consider, for example, a Yukawa

potential:
, e BT
V(r)= . (4.8)
T
Its Fourier components are:
4
V(G)= ———r. 4.9
(@)= 507 16 (4.9)
In this case the minimum possible value for ) is:
4
Amin = ——ee— (4.10)

l‘l‘z + Gmin
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Hence the smaller the p parameter is chosen, the longer the range of the V(r)
potential is, the larger Ayin is to be introduced. In particular, if 4 — 0, we recover
the usual Coulomb interaction. If, on the contrary, u is quite large we have a small
range interaction and the A parameter becomes rather small too. For instance, in
the standard Hubbard model, with a zero range, on site, interaction, we expect
that Amin — 0. In fact (see Appendix D), in that case, a particular, real HST
can be employed, without introducing any A parameter, even though a repulsive

interaction is considered.

In conclusion this ) factor, which affects both the one-body propagation and
the auxiliary field evolution, introduces a considerable “white noise” in numerical
calculations when repulsive, long range potentials are taken into account. Obvi-

ously this negative effect increases as the energy cutoff grows.

To confirm our previous assertions we have performed two kinds of tests,
always using the variational Jastrow approach, with E.y; = 6 Ry, considered at

the end of Section 4.1.

In the first test all the parameters were the same, but the sign of the Jastrow
factor was “wrong” (the electrons were forced to come closer to each other) and
this made the introduction of a A factor useless. We found that, when A was not
present, the statistical error in the ground state energy estimate was about an

order of magnitude smaller than in the other case.

Then we used again the “correct” sign, for the Jastrow factor, but we intro-
duced a A parameter which was 5 times greater than the minimum allowed one,
Amin. In principle this should be of no consequence in final results, since a correct,
real HST only requires to make use of a sufficiently large (A > Amin) A factor.

Nevertheless the statistical error was about 4 times larger.
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At this point is clear that an AFQMC formulation which avoids using the A
parameter is to be employed in order to apply the method to realistic systems.
In Section 2.1.2 we have introduced two different HST’s which can be performed
without introducing any A factor. In particular we have seen, in Eq. (2.31), that
the two-body interaction term can be rewritten as:

1 . 1 . . ..
5 Z Vijpinhiw = =35 S Vigrng + ) Vig (punht +pinhiy) - (411)
iy 1! ,J i,J
For the H, Singlet ground state the previous expression is physically equivalent
to:

1 . 1 L
5 Z VijpinPju = 3 Z Vijmimg , (4.12)
i,j

Ly !
with mh; = pit — piy. In fact the second term on the R.H.S. of Eq. (4.11) involves
only interactions between equal spin particles and, therefore, it represents only an
unphysical self-interaction contribution, since our system contains two electrons
with opposite spins. Now the usual HST can be applied to Eq. (4.12), which has
the “right” sign (see Eq. (2.32)). In this special case only one auxiliary field is
required to decouple the interaction, through a real HST. This alternative scheme
generates an effective one-body potential (see Egs. (2.37) and (2.38)) given by (at

a fixed time slice):

VeR(e:) = Vi) F ) Viio ] (4.13)
j
and, for the Fourier components:

e ex 47r
ViH(G) = V(@) F

G) F 750" (G) (4.14)

while the Gaussian contribution to the classical potential energy, for the auxiliary

field dynamics, is:
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Vauss = AT D Vijola]" (4.15)

J

=ATQ? ) V(G)o™(G)P =D Viauss(S)
G G

with:

Véauss(G) = ATQ o™ (G)]*. (4.16)

In this case, to be compared with Eqgs. (4.4) — (4.7), the auxiliary field evolution is
connected to the real Coulomb interaction and the effective one-body potential of
Eq. (4.14) exhibits a more physical behaviour for large G values. One can expect a
small increasing of statistical fluctuations by using larger and larger energy cutoffs,
but surely it should be much less dramatic than adopting the previous AFQMC

formulation with ) factor.

We applied this new scheme to the usual variational Jastrow approach, with
Ecut = 6 Ry, for the Hy ground state, and the results were quite satisfactory. In fact
Fig. 4 shows that the situation is much better than using the old formulation (see
Fig. 2 where the energy cutoff was 4 times smaller!). Here the fluctuations of the
total energy estimator are still relatively large on the scale of the correlation energy,
anyway they are much smaller than in Fig. 2. As a consequence, the cumulative
average, after a short, transient period, becomes a smooth curve which eventually |
converges to the exact value. From a quantitative point of view the statistical error
was at least an order of magnitude smaller; obviously this improvement becomes

more and more relevant by increasing the energy cutoff.
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Hence, after theoretical considerations, numerical evidence too indicates that an
AFQMC scheme which does not require the introduction of the A parameter is
much more advantageous for dealing with realistic physical systems. Surely the
H, ground state is a rather special and favourable case. In general it is not possible
to avoid using the X factor through a real HST, and complex transformations are to

be considered (see Section 2.1). Making use of complex HST’s is generally regarded
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as a bad choice, since they imply a Monte Carlo sampling of a complex function
and this introduces a possible sign problem also in a case (the Hy ground state)
where the usual fermion sign problem is certainly absent. In fact we have applied
to Hy ground state the AFQMC method‘, described by Egs. (2.27) — (2.30) and
based on a single auxiliary field, coupled to the local total density operator, with
the field-dependent part of the one-body potential which is completely imaginary.
Using again the variational Jastrow approach, we obtained correct results, even
though the convergence was slower because the statistical errors were 2-3 times
larger than employing the real HST. Anyway the situation was much better than
introducing the A parameter. So we conclude that, applying the AFQMC technique
to general systems, with a repulsive, long-range electron-electron interaction, the
introduction of a complex HST seems to be the only practical solution to the

fluctuation problem.

4.2.2 A further improvement

Although eliminating the A parameter is a crucial step towards the reduction of
statistical fluctuations further improvements are possible. A source of spurious
fluctuations can be easily detected in the following way. Let us rewrite, schemat-
ically, the basic, single step of the imaginary time propagation (for instance that
one corresponding to the first Trotter time slice), using the HST and considering

only the potential term:

e—ATV

b)) = / 7 4G AT

-0

U
S /— doG(a)|¥7) , (4.17)

o
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where G(o) is the usual Gaussian weight, V(d) is the field-dependent part of the

one-body potential, and:
)= eV Oy, ) (4.18)
Now, by expanding the exponential in the previous expression:
47 = (1- arP(e) + JarPe) £ i) (4.19)

one can immediately realize that the odd terms give no contribution when inserted
in Eq. (4.17), as they integrate to zero. In particular this is true for the linear
term, which we expect to be the most important one (A7 is usually small):

/ ™ 4o 6(0) <—ATV(0)> ~0. (4.20)

—o0
Anyway, since we cannot compute analytically the functional integrals and we
have to perform a stochastic evaluation, the linear term in (4.19) gives rise to
spurious one-body excitations which produce harmful fluctuations. Surely their
average will be zero, but, in practical calculations, they will increase the statistical
fluctuations in a relevant way.

One solution to this difficulty is rather simple. In fact we observe (see Egs.
(4.1) and (4.13)) that the potential V(o) depends linearly on the auxiliary fields
o, that is T}(ia) = :E:V(O'). Therefore, by changing the sign of the integration
variable in Eq. (4.17), one easily obtains:

/+°° doG(o) |$37) = /mdaa(a) =)

—C0 —0o0

+oo0 +o -0
:/ daG(J)<I¢T >;|¢T >) . (421)

-
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If now we expand the quantity:

W) + v
! _

(i + %A#V?(a) +> ) (4.22)

the advantage of this new scheme is evident, since the undesirable odd terms,
particularly the linear one, are eliminated. In practice, what we have to do is, for
each time slice, to compute not only the propagated wave function Izb;), but also
the wave function obtained by changing the sign of the auxiliary field o, [z/);‘ ">.
We have applied this new “+o” scheme, using again the variational Jastrow
algorithm (with E.,; = 6 Ry), to the Hy ground state. In this simple Jastrow
case (see Eq. (1.72)) only two propagation steps, one acting “on the left” and one
“on the right”, are present, so that, by employing our “&¢” algorithm, the local,
field-dependent, estimator becomes:
5o )= TS e (T e
T T T T

We performed a simulation, generating 1500 auxiliary field configurations, and

(4.23)

we found that total energy statistical error was AFEy = 0.005 a.u. without intro-
ducing the “£o¢” scheme, while it was lowered to AEy = 0.001 a.u. using this
technique. Obviously the “4-¢” algorithm is more expensive, since a double prop-
agation is required in place of a single one, however, observing that the statisti-
cal error is inversely proportional to the square root of the number of indepen-
dent configurations, this new scheme seems to be really convenient (approximately
1500 - 25 = 37500 configurations would be necessary to reduce the 5-1072 a.u.
error to 1-1073 a.u.).

If we consider a long imaginary time propagation, where a lot of (not only
two) time slices, and therefore many propagation steps, are taken into account, the

situation is more involved. In fact one should apply the “40” technique at each
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time slice of the propagation and this would lead to an exponential increase of the
number of propagated determinants to be considered (the number of left and the
number of right determinants should be equal to 2P/2 P being the total number
of time slices). Certainly computation of estimators in such a situation would
become really a too expensive task. What we actually did, in our calculations,
was to employ a “restricted” version of the general “tc” algorithm, by computing

the local estimator in the following way:

ny - Gl Gar) o (wim) +wam))
(s3] + wan) () = [#3%)
with:
P/2
vin) = 110 =@l (4.25)

=1

= (| [ Uz (4.26)

I=P/24+1

(437
In practice we consider, for the initial trial determinant, two different one-body
propagations, which differ in the sign of the auxiliary fields. Expression (4.24)
reduces to the exact “+o¢” scheme for P = 2 (only two Trotter time slices, or a
simple Jastrow approach, see Eq. (4.23)). The larger the number of time slices is,
the less efficient our “restricted +¢” scheme becomes, in order to decrease spurious
statistical fluctuations. In fact we verified that, for example, using 8 = 2 a.u., with
AT = 0.1 a.u., that is 10 time slices on the left and 10 on the right, the advantage
of employing Eq. (4.24), in place of the ordinary expression, was practically neg-
ligible. Therefore the “restricted £¢” technique is actually convenient only when
one performs a simple variational J astrow calculation (in that case the spurious
one-body excitations are completely eliminated), or when a rather small num-

ber of propagation steps is used. Surely “intermediate” algorithms, in which the
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“+o” scheme is applied only a small number P’ (P/2 > P’ > 1) of times, during
the imaginary time propagation from 7 = 0 to 7 = 3/2, could be implemented.
Anyway, in this case, a careful investigation would be necessary to find a suit-
able compromise between the reduction of statistical fluctuations one can achieve
and the growing computer resources which are to be employed, by increasing the
number of “+o¢” applications.

Finally we observe that, if one makes use of a complex HST, where complex
propagation potentials are generated, then the propagated wave functions become,
in general, complex. However, at the end of our calculation, we want to get real
quantities, corresponding to physical properties of the system we are studying.
This can be accomplished simply by considering the real part (R) of the left and

right propagated wave functions, for each sampled auxiliary field configuration. In

fact:
T, =R (T )
=R (/:o doG(o) i¢g/2>> (4.27)
= [:Jo doG(o)R < >> .
Therefore:
+oo A
o eswring [ econ (5 09 (5

(d)T[e_%He—%HWT) - [+wdaG( R <<¢ﬁ/z

)& (|45))
[ wormotafs (s5) 2 (45|

oo (4.28)

[ st ((5,]) = (95,)]

-0
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5oy 2 UE]) OR ([93)) w0

T (el R (1v5s)

(o) =  ((95]) # (¥32)) , (4.30)
®((v5]) 2 (1432))

and l¢g/2> is to be substituted by 1/2 (]¢;—/02> +
used. In particular, if one employs the HST described by Egs. (2.27) - (2.30),

1,bﬁ_/‘72>) if the “+0” scheme is

with a completely imaginary, auxiliary field-dependent, one-body potential, then
our “restricted +¢” schemeis equivalent to consider the real part of the propagated

determinant; that is, in this special case:

3 (437 +lvan)) == (w3z)) (431
Clearly, in this approach, only “measuring” the O operator at the midpoint is
well-defined and we give up the possibility (see Section 1.3.2) to compute an esti-
mator at each time slice.
We must point out that Eqgs. (4.27) — (4.30) do not represent the only way
to recover real quantities from complex propagated wave functions. Another pos-
sibility, suggested in ref. [28], is to write:

/+°° doG(a)R ((452| O [95,2))

- 00

/_ :o doG(o)R ({9572 | 452))

) / j doG(0)Eg (o) | (¥52 | 9512, .

/ " a6y | (45 | 9512)|

hud el

(0) =
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where:
Eq(o) = %(@gﬂ ° ¢g/2>) , (4.33)
(%52 1 9352))
W(o) = % (%3 1951)) . (4.34)

‘<¢E/2 [ ¥52)

We note that, while in Eq. (4.28) S(o) = =+1, here —1 < W(o) <1, since
<¢E/2 ‘ ¢E/2> is generally a complex number Z, = pe'?, so:
R(Z,) _ pR(e”)

Wio) = = =cosf. 4.35
(@) |Z 5| p (4:35)

Obviously, considering the averages over the probability distributions

G(o)R <<1/)g/2 ]) R (‘1/}5/2>>, and G(o) 1 <¢E/2 I ¢g/2>‘, respectively, we have:
(W(o)) < (5(a)). (4.36)

In particular, even though (S(c¢)) =1, that is the fermion sign problem is com-
pletely absent, nevertheless (W (o)) < 1. Therefore, from a statistical point of view,
we expect to obtain worse results by this last scheme for which the fermion sign
problem should be more troublesome. This was confirmed by some numerical

tests, hence we have not used this approach.



Chapter 5

Results

The determination of energies of molecular systems is a problem of general inter-
est in chemistry and physics. We have chosen the Hydrogen molecule to test our
algorithm for various reasons. It is a very simple molecular system, the fermion
sign problem is not present, in its Singlet ground state, because we have two elec-
trons with opposite spins, and accurate theoretical predictions, together with high
quality experimental measurements about ground state properties (in particular

the dissociation energy), are available.

Although Hy has been the object of numerous calculations over the years, the
interest in this system, with its prototype chemical bond, remains high [75], The
history of accurate calculations of energies for Hy begins with the 1933 paper of
James and Coolidge["8]. Their work represented one of the first success in solving
the Schrédinger equation for molecules. In the 1960’s, more accurate results for
the Hydrogen molecule were obtained by Kolos and Roothaan ["7 and by Kolos
and Wolniewicz 78], who established the foundation for future calculations. They
implemented a variational approach in which the wave function is expressed in
elliptic coordinates, and, using a method of Born (7] the Hamiltonian is separated
into two parts, H = Hp + H', where Hy is the electronic Hamiltonian including
nuclear repulsion, and H' is the Hamiltonian for the nuclear motion including

coupling between the electrons and the nuclei. The adiabatic approximation is
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made by neglecting the off-diagonal contributions of H'. Their calculations have
been outlined in detail by Fischer 8], Improvements by Wolniewicz 81, including a
more flexible wave function, a variational-perturbation method to take into account
the off-diagonal contributions to the exact nonrelativistic Hamiltonian, and the
relativistic and radiative corrections, gave a better dissociation energy. In addition,
Bishop and Cheung(®? calculated the energy of H, by treating the full four-body

problem as a non-adiabatic variational problem.

In 1990 a very expensive calculation was performed by Traynor et al.[83]

, us-
ing a massively parallel supercomputer. They obtained the ground state energy
of the Hydrogen molecule by the Quantum Monte Carlo method of solving the
Schrédinger equation, without the use of the Born-Oppenhaimer or any other adi-
abatic approximation. The wave function sampling was carried out in the full
12-dimensional configuration space of the four particles (two electrons and two
protons). Both a DMC and a GFMC algorithm were used. Their result is in close
agreement with the best, experimentally determined dissociation energy of McCor-
mack and Eyler (84, that is 36118.1 + 0.2 cm™1. Recently Sanders and Banyard (89

have illustrated the correlation effects in Hs, in particular the correlation influence

on bonding and correlation-induced changes in the two-particle density.

We applied our AFQMC teéhnique by expanding single particle wave func-
tions in plane waves. Probably this basis set is not the optimum choice for the
Hydrogen molecule, anyway we adopted it since we are more interested in testing
an algorithm useful to study general Solid State systems (for which plane wave
expansion is the standard implementation) than in obtaining very accurate data

that are largely available in literature.

In Section 5.1 we used a “discretized” form (on a sparse lattice) of the H,
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Hamiltonian to accurately test the reliability of our algorithm, by comparing sim-

ulation results with exact, corresponding data.

In Section 5.2 several interesting physical quantities are shown and plotted.
They were obtained employing a plane wave expansion with realistic energy cutoffs
and give a sufficient, qualitative description of the correlation effects in the H

molecule.

Finally, in Section 5.3, an application of the AFQMC method to a more

complex physical system, the Hy molecule, is presented.

5.1 H,: discretized Hamiltonian

After developing an algorithm which makes the statistical fluctuations acceptable,
the first thing to do is to verify its actual accuracy in computing physical prop-
erties. To this end a comparison with abundant and precise literature data, for
H,, is impractical. In fact, if one uses the previously described AFQMC scheme,
where an expansion in Ny plane waves is performed and a finite imaginary time
B (divided into P time slices AT) is introduced, a meaningful comparison with
really exact values would be possible only by extrapolating simulation results to
values corresponding to Ny — 00, 8 — 00, AT — 0. In practice this would require

a large number of rather long simulations making the computer cost very high.

Actually such a quite expensive approach is not necessary. In fact, due to the
H, molecule simplicity (only two electrons are present), it is possible (in the sense
that it needs an acceptable amount of computer time) to develop an algorithm,
described in Appendix F, which is able to generate exact results, corresponding

to fixed, finite Npyw, At, B values. Therefore, in the following, by “exact” we will
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always mean: “results obtained by exactly propagating the trial wave function,
using the same Ny, A7, 8 parameters employed in the AFQMC simulation”.
We have considered a (8 x 8 x 8) spatial mesh in a cubic, periodically repeated
cell, with volume Q = a® (a was chosen équal to 10 a.u.). The N} lattice points
are given by:
i = A(ig,iy,0:) (5.1)
where A = a/N; (N; = 8 in our case), and i,,%y,%, = 0,...,N; — 1. The cor-

responding, discretized, cubic cell, in reciprocal space, is made up of G-vectors

expressed as:

2
G = = (ng,ny,ms) (5.2)
a

with ny,ny,n, = —N;/241,...,N;/2. All the relevant physical quantities (single
particle wave functions, auxiliary field variables) are defined on the lattice sites

and can be expanded in plane waves as:
Frs) = 37 F(@n)e S, (5.3)
Gn
with their Fourier coeflicients given by:
z 1 —iGn -
f(Gn) = '-]W Z f(ri)e . (5_4)

Using this scheme no spherical cﬁtoﬁ‘ in reciprocal space was introduced (all the
G-vectors in the first Brillouin zone were taken into account).

In our AFQMC simulations the auxiliary fields were updated according to
the MC sampling scheme of Section 3.1.2; the MC acceptance rate was about
60 - 70% in all the calculations. The “+o” technique was also implemented. For

the Jastrow factor we have chosen the form:

J(r) = ae /T, (5.5)
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where o and 7 are two parameters that are to be optimized to minimize the
ground state energy estimate. The Jastrow function (5.5) is different from the
most used onel*®l, J(r) = ar/ (1 + br); in particular it does not satisfy the “cusp
condition” 18], but this fact is not importdnt in our calculations where a finite,
plane wave expansion is used and, therefore, the singularity in the Coulomb po-
tential, 1/r, is never, really, taken into account. Expression (5.5) has a simple
analytical Fourier transform:

(24

ng/zrfe“k%f/*. (5.6)

J(k) =

In the practical implementation we used J(G) defined by Eq. (5.6) on reciprocal
lattice G-vectors and, then, J(r;) was obtained through Eq. (5.3).

First of all we show results for the Hy molecule ground state (Singlet state).
As we have pointed out in Section 4.2.1, in this particular case, a real HST (see Egs.
(4.11) — (4.16)) can be adopted, introducing an auxiliary field coupled to the local
magnetization operator. We performed our simulations considering two different
ionic configurations. In the first case the Hydrogen nuclei were placed at a relative
distance of Ry = 1.401 a.u. (the experimental equilibrium distance), while, in the
second case, we used Ry = 4.0 a.u.. Simulations were performed, both consider-
ing a simple variational Jastrow approach (see Section 1.3.3), and applying, to the
trial determinant, a Jastrow operator plus a §/2 long imaginary time propagation.
For the Trotter time slice A7 we used At = 0.1 a.u., and the maximum 3 value,
employed in our calculations, was § = 2.0 a.u.. In order to allow a comparison
with “exact” data we have been obliged (see Appendix F) to use a quite sparse
lattice with a relatively small (8% = 512) number of expansion plane waves. Hence
the absolute values of our computed physical quantities are not particularly mean-

ingful, the really interesting data, we have actually reported, being their difference
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with respect to initial results, obtained using the trial, Hartree-Fock (H.F.) wave
function. In particular, adopting this convention, our “total energy” results give

directly the correlation energies of the systems we have studied.
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Figure 5. H, - Singlet state. Total energy behaviour (exact results), as a function of the imaginary
time propagation 8, for R;=1.401 a.u. and Rp=4+.0 a.u.; the B=0 values correspond to Jastrow
variational estimates. The dotted, straight lines represent extrapolations for A—oco.

In Fig. 5 the behaviour of the total energies has been plotted, for the two different

ionic configurations, by increasing the length 3 of the imaginary time propagation.
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The energy zero value corresponds to initial H.F. result, while, for B = 0, we have
reported the total energy obtained by a simple variational Jastrow scheme. Here
we employed the “exact” algorithm (see Appendix F), just to check the convergence
of the propagated determinant to the ground state. As one can see, at § = 2.0 a.u.,
making use of a Jastrow correlation function too, the total energies seem to have
attained an acceptable level of convergence. The dotted, straight lines represent an
estimate for the B — co value of the total energy, obtained by extrapolating from
our available data (from 8 = 0 to 8 = 2 a.u.) and considering an exponential decay.
Even though our Jastrow correlation functions were not accurately optimized, in
order to minimize the total energy, the variational Jastrow approach was already
able to recover a large amount of correlation energy (~ 60% for the case with the
R, distance, and ~ 90% for R;). Regarding the Jastrow parameters a, rj, we have
used o = 0.45 a.u., r; = 1.75 a.u., and o = 0.80 a.u., r; = 3.1 a.u. for the R; and
R, configurations, respectively. In practice the 7y parameter (see Eq. (5.5)) gives
the range of the Jastrow correlation function. Therefore the fact that one has to
employ a larger r; value, when the nuclei are farther from each other, to minimize

the total energy, is clearly understandable.

In Table I some Hy ground state properties, total energy, kinetic energy, exter-
nal energy (due to electron-ion interaction) and electron-electron energy, computed
by AFQMC simulations and compared with corresponding exact values, are re-
ported for both R; and R, configurations, using 8 = 2.0 a.u.. Only for the R,
case, simulation results, for total and kinetic energies, employing a simple varia-
tional Jastrow scheme (@ = 0) and an intermediate 8 value (8 = 0.6 a.u.) are
also shown. In order to establish credible statistical errors and to avoid problems

due to possible correlation between successive sampled configurations, we divided
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the whole set of simulation data (a typical run being made up of 10000 - 20000
auxiliary field configurations) into long enough segments, and then we estimated

errors by using as independent data the averages computed within these intervals.

TABLE I. Hy - Singlet state: AFQMC simulation results, using two different internuclear separations,
R;=1.401 a.u. and Ry;=4.0 a.u., for some 3 values; 8=0 means a simple variational Jastrow procedure.
Statistical errors, in the last digit, are shown in square bracket. The “exact” data are also reported
(in parenthesis). All the values are given in a.u. and are referred to H.F. corresponding data.

ﬂ Etot Ekin Eext Eel

0 -0.0207[5] -0.1179[6] — —
(Ry) (-0.02032) (-0.11809)

0.6 -0.0294[8] -0.074[2] _— —
(R1) (-0.02973) (-0.07246)

2.0 -0.034[1] -0.017[2] 0.063[2] -0.0805[4]
(Ry) (-0.03496) (-0.01854) (0.06427) (-0.08069)
2.0 -0.0187[9] 0.003[1] 0.0095[4] -0.0315[1]
(R») (-0.01840) © (0.00335) (0.00972) (-0.03148)

Table I results clearly indicate a good agreement (within the statistical errors)
between simulation and exact data. We must point out that, although a relatively
small number (8°) of plane waves was used, the exact algorithm is much more ex-
pensive than the AFQMC technique (see also Appendix F). In fact, while a typical
AFQMC simulation (10000 auxiliary field configurations) required about one hour
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of CPU time, on a CRAY-2 supercomputer, a corresponding exact calculation

took, at least, ten hours of computer time.

Next we report AFQMC applications to the Hp Triplet, *Z,T, state, that is
the state at the lowest energy, which can be obtained when the two electrons are
forced to have parallel spins. In this case the two-body interaction term is given
by 1/2 Zi]- Vz]ﬁjﬁj and, therefore, one auxiliary field, coupled to up-up interac-
tion, is to be introduced through a complex HST (see Eq. (2.33)). For the Triplet
state two different calculations were carried out, always keeping the internuclear
distance fixed at R = 1.401 a.u.. First we have performed a simulation using only
the Jastrow factor (8 = 0), that is a simple variational approach (with a = 0.2
a.u., r; = 2.25 a.u.). Then we have deliberately chosen an initial Slater determi-
nant quite different from the H.F. one (the corresponding, reference total energy
being much higher than H.F. value). In this case a § = 2.0 a.u. imaginary time
propagation considerably lowers the total energy, as one can see in Fig. 6, where

the exact data are reported.

In Table II a comparison between AFQMC simulation results and exact values
is shown, considering both the Triplet calculations. In the Jastrow case (8 = 0)
the small E,.¢ value clearly indicates that, for the Triplet state, the H.F. approx-
imation, which we started from, is rather good, as one can expect, since correla-
tion between parallel spin electrons is weak. For this simple variational Jastrow
AFQMC scheme the practical advantage of using the “=0” algorithm (see Section
4.2.2) is remarkable. In fact we got a total energy statistical error equal to 8- 1073
a.u., while the corresponding error, obtained without the “+o” procedure, was

much larger: 4-107* a.u..
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Figure 8. H; - Triplet state. Total energy behaviour (exact results), as a function of the imaginary
time propagation B, for R=1.401 a.u.; the #=0 value corresponds to the initial trial determinant
(different from H.F. solution) total energy. The dotted, straight line represents an extrapolation
for f—oo0.

In the Triplet simulations, in principle (see Section 1.3.4), the fermion sign problem
could be present, since the fermion determinant can become negative. Anyway, in
our Hy tests, its average sign (the values in the last column of Table II) remained
very far from zero, so a relatively accurate estimate of physical properties was
certainly possible. Again a good agreement is found between simulation and exact

results, by taking into account the AFQMC statistical errors, which can be lowered
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TABLE II. H, - Triplet state: AFQMC simulation results, using B=1.401 a.u.; f=0 refers to a
simple variational Jastrow procedure, while the §=2.0 a.u. propagation started from an initial
Slater determinant, different from the H.F. one. Statistical errors, in the last digit, are shown in
square bracket. The “exact” data are also reported (in parenthesis). All the values are given in
a.u. and are referred to the trial determinant corresponding data. (5) represents the average sign

of fermion determinant.

,B Etot Ekin | Eext Eel <5>

0 -0.00043[8]  -0.0023[6] 0.0045(6]  -0.00254[3] 1.0
(-0.00040) (-0.00253) (0.00469)  (-0.00255)

2.0 -0.200[4] 0.17[1] -0.390[9] 0.018][1] 0.83
(-0.19750) (0.16648)  (-0.38227) (0.01829)

merely increasing the number of sampled auxiliary field configurations.
Hence, these calculations confirm that, at least for the simple H; system,
our AFQMC scheme really works, the statistical fluctuations being reduced to an

acceptable level.
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5.2 H,: continuous Hamiltonian

After the previous, preliminary tests we performed some more realistic Hj,
AFQMC calculations. We gave up the possibility of an accurate comparison with
exact data and we came back to usual Solid.State approach (see Section 3.2). We
no longer discretized the H, Hamiltonian. Simply we expanded single particle
orbitals, using plane wave basis sets whose completeness can be monitored by a
spherical kinetic energy cutoff, E.y; (all the plane waves with a squared wave vec-
tor smaller than E.y; are included in the basis set); correspondingly the Fourier
transforms of the external (nuclear) and fluctuating (auxiliary) fields are truncated
at a wave vector whose squared modulus is four times as large. Apart from this,

the same AFQMC technique, used in the preceding Section, was employed.

TABLE III H; - Singlet state: AFQMC simulation results with a 6 Ry energy
cutoff. =0 refers to a simple variational Jastrow procedure. Statistical errors, in
the last digit, are shown in square bracket. Initial H.F. determinant corresponding

data are also reported. All the values are given in a.u..

B Etot Exin

0 -1.00674] 0.8453[6]
0.2 -1.0080[5] 0.8469]7]
0.4 -1.0072]5] 0.8515[7]
0.6 -1.0088]3] 0.8525[4]
0.8 -1.0087[6] 0.8552[9)]
1.0 -1.0095(3] 0.8558]5]

H.F. -0.98427 0.83890
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First we report some results obtained with Ecy; = 6 Ry (the corresponding
basis set included 251 plane waves). In Table III H, Singlet state simulation data,
for some 8 values, together with the total and kinetic energies of the initial H.F.
solution, are shown, using the experimeﬁtal, equilibrium internuclear separation
R = 1.401 a.u.. Again 8 = 0 means a simple variational Jastrow approach. The
Jastrow parameters were o = 0.45 a.u., rj = 1.75 a.u.. Now data are given as
absolute values and they are no longer referred to initial H.F. data, which are also

reported in the last row.

TABLE IV Hj - Triplet state: AFQMC simulation results with a 6 Ry energy cutoff.
B=0 refers to a simple variational Jastrow procedure. Statistical errors, in the last digit,
are shown in square bracket. The initial Slater determinant was made up of LSDA single

particle orbitals. All the values are given in a.u..

B Etot Exin (S)

0 -0.6706(2]  0.6267[7] 1.0

0.6 -0.6712[9)] 0.6358[2] 0.99

1.0 -0.6725[4] 0.6355(9]  0.98
by = bons -0.66889 0.63783

AFQMC simulation results, for the H, Triplet state, are shown in Table IV.
In this case the initial wave function was a Slater determinant made up of sin-
gle particle orbitals, which were the solutions of a previous LSDA calculation.
B = 0 corresponds to a simple Jastrow approach, with parameters a = 0.35 a.u.,
r; = 2.75 a.u.. By increasing the 8 value the total energy shows only a little de-
crease; again, this indicates that correlation energy is very small for the Triplet

state. The average sign of the fermion determinant remained equal to 1, using the
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simple variational Jastrow scheme, and it diminished very slowly, by considering

longer and longer imaginary time propagations.

In the AFQMC method all the interesting physical properties can be com-
puted without any particular difficulty. For instance, by considering the Hy Sin-
glet state, and performing a Jastrow AFQMC approach, we have obtained the
electron charge density distribution p(z) and the two-body, squared wave func-
tion |¥(z',z)|?, plotted along the H, molecular axis, in Fig. 7. As far as p(z)
is concerned, although the energy cutoff, E.yt, is too small to distinguish the
two cusps we expect to find on top of the two nuclei, the qualitative correlation
effect is evident. In comparison with H.F. distribution, the AFQMC electronic
density is slightly decreased in the centre of the molecule, while it is correspond-
ingly increased near the nuclei. By fixing z', the |¢(m',m)]2 quantity represents
the probability of finding one electron in position z if the other one is placed in
z'. Again one can readily observe the correlated behaviour of the AFQMC result.
In particular (see lower panel), if ' is chosen as the same position of one of the
two nuclei, then the H.F. curve remains symmetric (in the H.F. approximation
no correlation is taken into account between antiparallel spin particles), while the
AFQMC one is evidently asymmetric; in fact the other electron has a tendency to
stay near the opposite nucleus. In practice the p(z) and |¢(z',z)|? functions were
computed at 100 selected positions on the molecular axis, and then, the resulting
points, were connected by a continuous line. The corresponding statistical errors

were too small to be drawn in the figure, being of the same order of the line width.

Then we considered a quite greater energy cutoff, E..; = 14 Ry (895 plane

waves were included in the single particle wave function expansion).
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Figure 7. Electron charge density distribution (p(z), upper panel) and squared wave function
(|¥(=',2)|?, lower panels) of H; molecule, calculated along the molecular axis at the experimental
internuclear separation (R=1.401 a.u.), with a 6 Ry energy cutoff. The continuous line indicates
results from Jastrow AFQMIC simulations, while Hartree-Fock results are denoted by a dashed line.

The value of one of the two electronic coordinates (z') is indicated by an arrow in the lower two
panels.

Again we studied the Singlet (at two different internuclear separations,
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TABLE V. H, - Singlet and Triplet states: AFQMC simulation results, using a 14 Ry energy cutoff.
The values in parenthesis refer to corresponding, initial, H.F. data. All the values are given in a.u..

Etot Ekin Eext Eel <S>
Singlet (R;)  -1.092(3] 0.983(5] -2.263(3] 0.2865[9] 1.0
H.F. (-1.05838)  (0.99938)  (-2.32237)  (0.36387)
Singlet (R,)  -0.954[2] 0.524[6] -1.007[5] 0.0546[3] 1.0
H.F. (-0.90957)  (0.50128)  (-1.00710)  (0.12157)
Triplet (R;)  -0.740[2] 0.756(4] -1.380[3] -0.0169[2]  0.96
H.F. (-0.73919)  (0.74392)  (-1.36832)  (-0.01553)

R; =1.401 a.u. and Ry = 4.0 a.u.) and Triplet states.

In Table V numerical results for various physical quantities are reported. In
all the cases we performed a § = 2.0 a.u. (with a Trotter time slice At = 0.1
a.u.) imaginary time propagation, starting from an initial H.F. solution. For
the Singlet state configurations only, also a Jastrow correlation function (with
parameters a = 0.45 a.u., r; = 1.75 a.u. for R, and o = 0.50 a.u., rj = 2.75 a.u.
for Ry) was introduced. Comparing these simulation results with the previous,
Ec.ut = 6 Ry, data, we can observe that statistical errors do not grow dramatically
by increasing the energy cutoff. The calculated correlation energy, for the Singlet
configuration, with Ry, is Ecory = 0.034[3] a.u., to be compared with the exact

value, quoted in literature 77, Egxect — (.04081 a.u..

Even by taking into account the statistical error there is a little discrepancy, due to
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finite energy cutoff we imposed. Again the Triplet state correlation energy is very
small, of the same order of magnitude, 1072 a.u., of the statistical uncertainty
affecting the total energy value (by performing a typical simulation with about
10000 auxiliary field configurations). In fact the initial H.F. determinant is a very
good approximation for the exact Triplet wave function. In this case the average
sign of the fermion determinant was (S) = 0.96, therefore no numerical instability,
due to the fermion sign problem, occurred. In Figures 8 and 9 we have plotted, for
the two Singlet state configurations, the electron charge density distribution and
the two-body squared wave function, along the Hy molecular axis. The qualitative
behaviours are similar to the previous ones, obtained with E.y; = 6 Ry. The
correlation effect is particularly evident when the internuclear separation is large
(Ry = 4.0 a.u.). In fact, in this Heitler-London regime, the H.F. solution is

obviously a rather poor approximation for the molecule ground state.

Finally, for the H, molecule binding energy, defined as

Ebind = Etot(H2) - 2E’cot(H) 3 (57)

where FEio1(Hz) is our calculated Singlet state total energy and Eioi(H) is
the single Hydrogen atom total energy (obtained using the same E.,: = 14 Ry
value), we found FEying = —0.136[3] a.u., smaller than the exact result (771,
Egxact — _(.17444 a.u.. Probably this is mainly due to the fact that, using a finite
energy cutoff, the equilibrium distance is different from the exact, experimental
one. In fact, Hy Local Density calculations, we have previously performed, indicate

that, at Ecy; = 14 Ry, Req was about 10% larger than Rg** = 1.401 a.u..
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Figure 8. Electron charge deusity distribution (p(z), upper panel) and squared wave function
(]1/1(:1:',:1:)[2, lower panels) of Hy molecule, calculated along the molecular axis at the experimental
internuclear separation (R1=1.401 a.u.), with a 14 Ry energy cutoff. The continuous line indicates
results from AFQMC simulations, while Hartree-Fock results are denoted by a dashed line. The
value of one of the two electronic coordinates (z') is indicated by an arrow in the lower two panels.
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Figure 9. Same as Fig. 8, but for an internuclear separation representative of the Heitler-London

regime (R2=4.0 a.u.).
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5.3 H,

The Hy system is of considerable interest in Quantum Chemistry, essentially
because, from a dynamical point of view, the Hydrogen exchange reaction,
H +H,; — Hy + H, is probably the simplest of chemical reactions. There have
been several calculations of high accuracy for this system. They include: ana-
lytic variational calculations by Siegbahn and Liul®®! (who obtained an accurate
three-dimensional potential energy surface for H3), and Liu[®"); fixed-node Quan-
tum Monte Carlo simulations by Mentch and Anderson [#8], and Barnett, Reynolds
and Lester(®°]; and release-node QMC calculations by Ceperley and Alder 2%, and

(using an improved algorithm) Anderson, Traynor and Boghosian 137,

For our AFQMC simulations we have chosen a triangular geometry (see
Fig. 10) without any particular symmetry, for which previous calculations are
available 8¢l The coordinates (in a.u.) of the three Hydrogen nuclei are, re-
spectively, Ry = (3.17,1.36,0), R, = (—0.81,0,0), R3 = (0.81,0,0). We employed
the complex HST described in Egs. (2.27) - (2.30), with an auxiliary field, o¢,
coupled to the total local density operator, and the simple MC algorithm intro-
duced in Section 3.1.2. In Table VI our AFQMC numerical results are reported,
using Ecy; = 14 Ry. We started from the initial H.F., Slater determinant, we ap-
plied a Jastrow operator (with the same parameters used for the Hs Singlet state:
a = 0.45 a.u., r; = 1.75 a.u.), and then we performed a § = 2.0 a.u. imaginary
time propagation (with A7 = 0.1 a.u. for the Trotter time slice). To reduce the
statistical errors to the same level of our previous Hj results we had to perform
a very long AFQMC simulation, made up of 65000 auxiliary field configurations.
The Hj total energy values, which are available in literature 29:88] for the partic-

ular geometry we have chosen, are not directly comparable with our simulation
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results, since we have used a plane wave expansion with a finite energy cutoff.

Figure 10. The geometry of the H3 molecule studied.

A faster convergence, with respect to the energy cutoff, could be achieved by re-
placing the Coulomb interaction with a suitable pseudopotential which reproduces
the correct electronic properties. In fact, if such a pseudopotential, Vjs(r), does
not diverge as » !, for » — 0, its Fourier transform, Vs(G), decays more rapidly
(by increasing G) than the 1/G* function, which characterizes the Coulomb po-

tential. In this way using very large energy cutoffs would be no longer necessary
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TABLE VI. Hz - AFQMC simulation results, using a 14 Ry energy cutoff. The values in
parenthesis refer to the corresponding, initial, H.F. data. All the values are given in a.u..

/6 Etot Ekin Eext Eel <5>

2.0 -1.336[4] 0.960[6] -2.094[4] 0.145[3)  0.38
H.F.  (-1.29321)  (0.85663)  (-2.00062)  (0.19750)

to perform realistic calculations.

We notice that our total energy statistical erroris an order of magnitude larger
than the corresponding ones, obtained by the best Hy, QMC simulations 2. We
have also estimated other ground state properties, with about the same accuracy
achieved for the total energy. We recall that the calculation of expectation values
of operators which do not commute with the Hamiltonian is generally performed
in an approximate way with other QMC schemes (see Section 1.2). Therefore the
estimates of quantities different from the total energy are usually affected by much
larger statistical errors.

The average sign of the fermion determinant was found to be (S) = 0.38. This
value is still not too small, although it is much smaller than in our previous H,
Triplet state simulations. This indicates that, considering longer imaginary time
propagations or more complex physical systems, the fermion sign problem could
become really troublesome. In fact we expect that, whenever the average sign
(S) becomes smaller than ~ 0.1, one has to resort to approximations like the
Positive-Projection method (see Appendix E) to get reasonable statistical errors

in practical calculations.

We have performed some Hj test simulations, making use of the complex HST
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introduced at the end of Section 2.1.2, with three different auxiliary fields, o™, ol,
o!. The results were substantially worse than adopting the HST with one auxiliary
field, o, only. In fact the average sign of the fermion determinant was (S§) =0.09
and, correspondingly, the statistical errors were larger than in the previous case.
‘Therefore this last HST seems to be less convenient.

For the Hs molecule we have also computed the pair correlation function
g(r',r). This quantity is the generalization of the function Izb(r',r)\z used for
the H, Singlet state in Section 5.2. It gives the probability that, if one particle is
observed at some point ', another particle will be found at point r. By considering
normalized quantities and taking spin variables into account, we can express the

up-up and up-down pair correlation function operators as:

1

git,j1 = m (irpjt — bijpit) > (5.8)
. 1 ..
gitgl = N yIPitPil s (5.9)

cjﬂci/l and NT(Y) represents the total number of spin-up (down) elec-

where p;, =
trons. In Eq. (5.8), we have properly subtracted the “autocorrelation”, i.e. the
correlation of a particle with itself. Obviously git,it = 0, since [)?T = p;- Now
the field-dependent estimators, for the pair correlation functions, can be readily

obtained using the definitions (5.8) — (5.9) and the formulae introduced in Section

2.2:
1
r _ - - f t f
s‘m,ﬁ(d) NT(NT —1) Z (AT)pql(AT p’%ﬂ [fgp(ri)fq'p’(rj) - fq’p(ri)fqp’(rj)]
g0
T 1 - - .
B0 = gt 2 (AN (A Ay ) (53 (5:10)
7,90 ¢
where:

1 (r) = 05 (r)pg.(r). (5.11)
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Figure 11. Electron pair correlation function for H3 molecule, calculated along the internuclear
axes, with a 14 Ry energy cutoff. The geometrical configuration is drawn in Fig. 10. One of the
two pair correlation function variables was set equal to R3 and the ry;, ry3, r3; coordinates are
defined in Eq. (5.12). The continuous lines refer to our AFQMC simulations, while Hartree-Fock

results are denoted by dashed lines. Typical error bars of the simulation are also reported.
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In Fig. 11 we have reported the behaviour of the up-down pair correlation function
g71(Ra,r,,). In practice we place a spin-up particle on top of the Hydrogen nucleus
at Ry, and we compute the probability of finding a spin-down particle at various
positions, along the internuclear axes. The coordinates r,, are defined as:

I,

S € A 5.12

r,, =Rr+ (Rs—Ry)

where 0 < r,, < |Ry— Rz|. Some typical statistical errors are shown in the
Figure. The correlation effects are evident, by taking into account the H; geometry,
illustrated in Fig. 10. In all cases the probability of finding an electron of opposite
spin is reduced, with respect to H.F., in proximity to R; and it is augmented
far from it. The corresponding up-up pair correlation function, gr1(Ra,r,,), is
not too different from the H.F. one and it has not been reported. In fact up-
up correlations are dominated by exchange effects which are already taken into

account at the H.F. level.



Conclusions and Outlook

We have described, in detail, a method for the simulation of realistic many-electron
systems. In this approach the Hubbard-Stratonovich Transformation allows us to
replace direct electron-electron interactions with couplings to external auxiliary
fields. Then, sums over these fields are performed statistically, using the fermion
determinant and the Gaussian weight to guide the importance sampling by means
of a stochastic (Monte Carlo) algorithm.

As in any other statistical method the most important problem is the mini-
mization of the statistical error. In preliminary tests a serious difficulty occurred,
by adopting the standard procedure to deal with repulsive Coulomb potentials, i.e.
a modification of the two-body interaction. In fact huge fluctuations made a prac-
tical application of the AFQMC technique impossible, except that in situations of
very small energy cutoff.

We have found a possible solution to this problem, by introducing a scheme
which substantially reduces the statistical fluctuations. It is based on a different,
generally complex, Hubbard-Stratonovich Transformation, that avoids introducing
a suitably modified two-body interaction.

We have accurately tested our technique by applying it to the Hy molecule
and studying various physical properties of its Singlet and Triplet states. The

Singlet state is a particularly favourable case, since a convenient real HST can be
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employed. Our results, for Ho, are quite satisfactory: the method works, and an
acceptable level of statistical accuracy can be achieved. We have also verified that
the statistical fluctuations grow slowly by increasing the energy cutoff, used for
the plane wave expansion of the single particle wave functions.

Applications to the H; molecule show that our technique still works, since
the statistical errors are not much larger than those affecting H, numerical results.
However the average sign of the fermion determinant tends to become rather small,
by using a relatively long imaginary time propagation. This suggests that, for more
complex systems, some suitable procedure (like the Positive-Projection technique),
which is able to cope with the fermion sign problem, will be probably necessary.

Surely further improvements are possible. In particular, making use of ap-
propriate pseudopotentials, both for the electron-electron and for the electron-ion
interaction, would avoid employing very large energy cutoffs to get realistic physi-
cal results. Moreover a more sophisticated version of the “£¢” scheme, introduced
in Section 4.2.2, could be applied to obtain an additional reduction of the statis-
tical errors. At present, in comparison with other QMC techniques, our AFQMC
method is significantly less accurate in the calculation of the total ground state
energy. However it could offer some advantages, especially for what concerns the
estimate of general observables and the introduction of non-local pseudopotentials.

The next crucial step, to establish the actual utility of our scheme, will be
testing whether it may be really applied to more interesting and complex systems.
This work is currently in progress, together with a more accurate investigation
about useful technical improvements that can be introduced and with a careful

analysis of the fermion sign problem.



Appendix A

Derivation of Hubbard-Stratonovich

Transformation

We must prove the following identity for multidimensional integrals over real

variables:

8 g—1 .. 8 Soi gz o
[det (ﬂA)]——% BEZ"J. Al’jlp‘p] — (21)£ /dw1...dmne 2 Z"i Aijz; J+‘BZ.‘ ipi
T)2

)
(4.1)

where A is a real, symmetric, positive definite, (n X n) matrix. This identity is

straightforwardly established by changing variables to reduce it to diagonal form

and using the familiar Gaussian integral:

{7 Foo 2
— dee % . A2

First of all let us perform the transformation:
yi=zi— »_ A5'p;. (A.3)
J

By using the relation >, A, A,:jl = 6;; and the symmetry of A we can rewrite

the integral on the R.H.S. of Eq. (A.1):
/dml e dmne—% Zf,‘ Aijziz;+p Z; Tipi

8 TP | LT
=/dy1 co.dyne ? Z‘.j Aijyiyi+5 E;,- AL pip; . (A.4)
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Then we introduce the variables z; = Y, Okiyi , where O is the orthogonal trans-

formation which diagonalizes A:
> 04 Ay Ojp = @mbim - (A.5)
With this transformation the R.H.S. of Eq. (A.4) becomes:
e% PINEN /dy1 . .dyne_% iy i Vi
:e%Zij At pins /dzl...dzne-%Zl stes , (A.6)

where we have used the fact that O is a unitary transformation, that is
26040k =200 Oi_klij = 6;j, and o are the eigenvalues of A. Now we can

directly apply the well-known Eq. (A.2):

g 47 pip; _8 2 ) A pip; [ 27
622;,‘"1 p'pf‘/dzl.“dzne 22131‘3’1:622i,"u p‘pJH ____ﬁ_
ay
{

Finally we can write:
H /27 ): (A.8)
a3 det ﬁA ]2

and therefore we have shown that.

_E cepe Ti0: _1 n ﬂ . _—.1 ip;
/dwl...dmne IR ULILIE DI [det (B4)] 2 (2m)2e? 2 Ai pies ,
(A.9)

and hence identity (A.1) is proved. Note that the positivity of all eigenvalues a; of
A, that is the fact that A is a positive definite matrix, is essential for convergence
of Gaussian integrals and, therefore, a crucial condition for the validity of the
proof.

If we consider a real, symmetric, negative definite, (n X n) matrix B, then the
Hubbard-Stratonovich Transformation becomes:

/dﬂ)l da;n Z B‘lewj'*"tﬁz zipi
(A.10)

[(—1)ndet (/BB)]_‘% e% Zij Bi—jlpipj —

E
2
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where an imaginary factor “s” must be introduced. This can be demonstrated in
the following way. Let us consider again the orthogonal transformation O, which

diagonalizes B, and the new variables z; = Zi Oriz;. Then:

/d$1 . .dmne% Zij B"J'"’fzi‘*‘iﬁzi Tipi
:/dzl ---dZnE%Zk bkz:+iﬂzk Cr 2k , (Alll)

where by are the (negative) eigenvalues of B, and ¢; = 3 ;O pi. Now:

/dzl . dzne% 2o buzi+iB 37, cxze
+co 2 2 .
11 (/ dzke;b,,zwrzﬂcm) (A.12)
k —_0
+oo 8 2
:H (/ dzrez%% cos (,Bckzk)> .
k — 0

At this point we use the basic formula (for b < 0):

2 +oo
(37;) e /2 = / dz /20 cos(cz) , (A.13)
to write:
+co 2
H </ dzkezbkzk cos (ﬁckzk > H IBbk ﬂck/Zbk (A.14)
k - k
_ (271')2 _ 8% kcz/bk )
[(—1)"det (8B)]?
Now: .
iy 0 073 |
Z Zf = Z ! P ,0] ZBZ] Pzp] ‘ (A15)
k ijk
Therefore:

8% k c:/bk = e% Zii Bi;lpipj (A16)

)
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and, considering Eq. (A.14), identity (A.10) is proved.
We note that (A.10) could be formally obtained from identity (A.1), simply
by using the transformation p; — ip;, and observing that B;; = —A;j, A being a

positive definite matrix.
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Higher order correlation function

estimator

Here we want to show that (see Section 2.2):

(clejehen) = (cle;)(chen) + (clen)(ejel) . (B-1)

Let us consider the quantity:

(chels (7,8) e | clela (7,0) )
(c]cncjcjn> = - - (B.2)
(O (7,8) 2| Uy (7,0) 1 )
This involves the scalar product of two (N + 2)-state determinants and we can
write: _
detA (jn,im)
.0y —
<cjcncicm> - detA, ’ (B3)
where A is the usual overlap matrix:
Apg = <‘P;]Saq>> ’ (B.4)
and: S
5]m 6nm (Pq (I‘m)
6]1 577,1 (Pq>(rz)
fipq (jn,im) = (B.5)
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Let us introduce the quantity:
B(j,m) =) ¢, (rm)Ay o5 (r) (B.6)
pq
Now, since a determinant remains unchanged if one adds to a column any linear
combination of the others, we may add to the first column of the matrix A alinear
combination of the other columns, in order to make vanishing all the elements of

the first column but the ones in the first two rows:

8jm — bobnm — 2, bep7 (Tm)
850 — bobni — 3, by (ri)

det A = det : (B.7)
‘P;(rj) - bO‘P;(rn) - Zq by Apg
We choose by = 0 and by = 3, A;ql,go;(rj). Then we obtain:
= BGm) b e 7(en)
5ji —B(],Z) 5,“' (,Dq (I‘i)
detA = det E : : (B.8)

0 ‘P;(rn) Apq

Now we can repeat the same procedure in order to make vanishing all the elements

of the second column but the ones in the first two rows and we have:

6]' “B(]:m) 6nm“B(n77:n’) <pq>(1‘m)
6;: — B (4,1) bni — B(n,i) ... w7(ri)
detA = det : : ,  (B.9)

0 0 Ay

that is:

detA = det (B(m) Cxm ) = detB - detA . (B.10)
Ovxz)  Avx
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Therefore, by using Eqgs. (B.3) and (2.50):

(cjcncjcin) = detB

= [6jm — B (4, m)] - [6ni — B (1,4)] = [8nm — B (n,m)] - [§;i — B (j,7)]

= (el (encl) = (each)iesel) (B.11)
Finally, by usual anticommutation rules for fermion operators c, ¢!, we obtain:

(clejeluen) = —(e;eqcleh) + Sinlejeh) = Sij(ench) + fnmlcle;)

= (ele;)ehen) + (elea)(eseh) (B.12)

L}
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Formulae in reciprocal space

Let us consider the plane wave expansion:
Z Cp(G)e' ™ (C.1)
with Fourier coeflicients given by:
C,(G) = %/drgap(r)e—ig'r. (C.2)

The estimator of total ground state energy, evaluated at a particular auxiliary field

configuration o and at a fixed imaginary time 7, is:
E;{(o-) = E;’(U) + E; ext( ) + E;- ee(o-) + Eion . (0'3)

Then, by using definitions (C.1), (C.2) and relations (2.54) - (2.57), we can write

the various components in the following way:

By(o) = %Z Sl LG EIG (@), (C.4)
G
1 ex: Z Z A” pq Z Vext(G)f;p(G) ’ (05)

G#0
_ 1 .. o'
"ee - Z Z AN pq AH Z a? u(G)fq',;’(G)_—
pu' pap’q G#0
1 . "
Z Z A” pq Au Z 'G'Efq'ﬁ;(G)fq;(G)’*‘
b pgp'q G50

2m 1 1

G0
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fe (|Rs — Ryl /2
Bon =270 Y 2ol G 2 ZZIZJerC<IRj-——RjI )‘\/};;Z‘g

G#£0 I;éJ
(C.7)

where:

1 =Y CrN(G)CT(G), (C.8)

G
fop(G) = %/dr‘Pq ; (r)e ¢, (C.9)
i1 & favee. -

The last term in Eq. (C.6), with Geyy = v/2Ecys, is due to the fact that a periodi-
cally repeated system is considered. Therefore, in order to obtain electron-electron
interaction per unit cell, one has to formally compute interaction between all the
electrons of all the cells, by avoiding to take self-interaction into account, and
then divide by the (infinite) number of cells. The ion-ion interaction energy, pro-
duced by repulsion of unit point charges, is conveniently computed by adding and

subtracting the interaction between Gaussianly shaped charge distributions:
3
aN 2z _ _ 2
PGauss(r) - <;r‘) * EI Zre a(r—Rs) ; (Cll)

where the a parameter, which determines Gaussian charge radius Rgauss = 1 /v,

has to be suitably chosen. We note that, in principle, EY. . (0), BT (0), Bion all
contain G = 0 terms and, theréfore, they are separately divergent, due to the
form of the Coulomb potential Fourier transform. Anyway, all these divergent
contributions cancel each other as we expect since the entire system is neutral.
As far as auxiliary field dynamics is concerned, by adopting the complex HST
introduced in Egs. (2.27) - (2.30), we can write the classical potential energy

V(e), considering real and imaginary parts of Fourier coefficients:

o(G) = %/dro(r)e—iG"‘ : (C.12)
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as independent variables:

ATQZ Z ——Ia —1In (4| U [1by) + const. . (C.13)

= 1G>O

We regard only the positive G' Fourier coeflicients as independent variables since

we keep our o fields real and therefore:

o(—G) =" (G). (C.14)
Hence, Ng, the total number of degrees of freedom, is given by:

Ny=2-P-Ng. (C.15)

It is obtained by multiplying the number Ng of positive G vectors, by the number
P of imaginary time slices, by a 2 factor for the real and imaginary components

of complex Fourier coefficients.



Appendix D

The AFQMC method applied to
Hubbard model

The AFQMC method has been used extensively to study electron correlations in
the Hubbard model 22=%01, The Hubbard model(®] is described by the Hamilto-
nian:

H=—t Y ce,+U piuhi, (D.1)
<ij>,p 1

where .., indicates nearest neighbours sum, the indices run over the N, lattice
sites, c:-ru (c;,) are the usual creation (annihilation) operators at site i with spin
Wy Pip = C:'Luciu’ and U > 0. The first term, on the R.H.S. of Eq. (D.1), is the
kinetic term which allows hopping of electrons between nearest neighbours sites,
while the second one represents the on site Coulomb repulsion.

Despite its apparent simplicity the Hubbard model embodies many features
(and difficulties) of a truly interacting system. Without interaction (U = 0) one
obtains a pure band behaviour, typical of the kinetic term; in the atomic limit
(t = 0) the particles are localized. Of course the intermediate regime (¢t ~ U) is of
particular interest, as, in this range of parameters, the competition between band
effects and localization due to correlation is most important. A major develop-

ment, in understanding the physics of the Hubbard model, has been provided by
the use of computer simulation techniques. In particular, the AFQMC method
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can be easily applied to this model. In fact we observe that:

Zﬁnﬁu = *‘;‘ > i+ j‘;f‘ ; (D-2)

i

where 7h; = p;1 — p; is the usual local magnetization operator, while N is the total
electron number operator. Therefore the HST can be readily performed, without
introducing suitably modified interactions or imaginary factors (see Section 2.1).
In this case, due to the special form of the electron-electron interaction (only
electrons with opposite spins, on the same lattice site, can interact), although it
is repulsive, it can be expressed as a sum of negative, quadratic terms, plus a

constant, irrelevant contribution. Hence (see Eq. (1.34)):

P s ¥ U B 2
e—ATU Z; Pithiy _ e——AT‘U—JZX- 6AT—"’— Z,’ m;

= counst. / dO'e_%LUZi o} eATUZi it (D.3)

In this AFQMC approach the o variables are continuous auxiliary fields which
can range from —oco to +o00. Anyway a useful feature of spin and lattice fermion
systems is the possibility of using discrete, rather than continuous, auxiliary fields.
In fact, if some operator can only assume a finite set of discrete values, it is always
possible to replace the integral over a continuous auxiliary variable, in the HST, by
a discrete sum. In our case the local magnetization operator m; can only assume

the three values {—1,0,1}, then a single sum over an Ising variable suffices:

Ar—g— mf o 1 o am;
€ Zl - 5 Z [ ; (D4:)

where:

tanh? (g) — tanh (ATU> . (D.5)
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We observe that, if A7 — 0, then Eq. (D.5) becomes:

a® ~ ATU , (D-6)
therefore:
eAT% me? ~ }_ Z eo’;vATUmi . (D7)
2 oi==%1

This discrete HST was introduced by Hirsch[?2:23] and it is particularly used to
study the Hubbard model, since Ising variables are more convenient to sample, even
though alternative, intermediate choices, with continuous but bounded auxiliary
fields [*8) can be adopted too.

Numerical simulations of the Hubbard model have been performed, both at
finite temperature, within the grand canonical ensemble!?2=27], and at zero tem-
perature, for a fixed number of electrons (2940, Applying the AFQMC method
to the Hubbard model a careful analysis of the fermion sign problem was also

35—40]

performed | , and some possible techniques, for coping with this difficulty,

were suggested.



Appendix E

The Positive-Projection method

The Positive-Projection (PP) technique was developed by Fahy and Hamann [37]

to avoid the fermion sign problem which, in some cases, can make an accurate
evaluation of physical properties extremely difficult (see Section 1.3.4). Essentially
it is a variational form of the AFQMC method, for fermions, which does not exhibit

the exponentially vanishing sign. Let us consider the usual HST:

o) = Jim s) = lim N = [doG@D(@) ) . (BD)
Since |, ) remains a Slater determinant, as it propagates through the o fields,
the Gaussian distribution G(o) of all the o’s, from 0 to 3, generates a distribution

f (;8) of determinants [¢), and:

bs) = / f(:8) [b) d (E.2)

where [ di represents integration over all normalized Slater determinants 9.

Fahy and Hamann have shown!*" that f obeys a diffusion equation with drift

and branching:

of 1

—5, = P — Vo) Vi f + Va(d)F (E.3)

where the second-order-derivative diffusion operator D, and the drift and branch-

ing potentials, V5 and V5, can be explicitly written in terms of the operators of the
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initial many-body Hamiltonian. Eq. (E.3) is to be solved with the initial condition
f(4;0) =6 (¢ — v, ) and its solution can, in principle, be expanded in terms of
eigenfunctions f' and eigenvalues ¢; of its R.H.S., as: '

F(#:B8) = cie™ P fi(y). (E.4)
Given the ordinary diffusion form of Eq. (E.3), the lowest eigenvalue must belong
to an even-parity eigenfunction f*, which therefore dominates the sum in Eq.
(E.4) at large S. However, even-parity terms in f cancel in the integral of Eq.
(E.2). These integrals are dominated by the lowest odd-parity eigenfunction f,
while their integrands are dominated by f*. Therefore statistical evaluation of the
integrals requires sufficient accuracy to extract the exponentially small physical
contribution.

The PP approximation, which was motivated by the previous analysis, con-
sists of supplementing Eq. (E.3) with the boundary condition f(0) = 0, which is
equivalent to setting V2(¢) = oo, for ¥ < 0. Hence the eigenfunction with the
lowest eigenvalue becomes f~. Let us denote as f* (¢;3) the solution of Eq. (E.3)
subject to the usual initial condition and the new PP nodal condition. Then, us-
ing f*, the average sign (see Section 1.3.4) of the overlap term <¢v’l¢>, which is
present in the estimator computation, need not be positive, however it is bounded
from below*"! and usually stays near 1. Substituting f* for f has a variational
character and gives an upper bound for the total energy. As with conventional
variational calculations, the approximate placement (in general one does not know
the exact position of the f~ distribution node) of the f* node obviates the possi-
bility of converging to a truly exact solution. Unconstrained simulation is always
to be preferred where the rate of sign decay permits an acceptable combination

of large B and small statistical errors. The PP method has a formal resemblance
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to the fixed-node approximation '8l in GFMC and DMC approaches (see Section
1.2), but the context and physical content are quite different [37.40]  In particular
the PP method removes fT without imposing any direct constraint on the nodal
structure of the many-body wave function, which may adjust with nearly complete
freedom according to the Hamiltonian.

A practical way to define the PP constraint is to set the nodal surface equal
to the hyperplane perpendicular to a “constraint” wave function ¢, ), which could
be one or a small sum of Slater determinants. Heuristically, we expect that, the

better |1, ) approximates the ground state, the closer the hyperplane will come to

the exact nodal surface of f~. If one imposes the P (P = #/Ar) conditions:

(e |T(e)T(01-1) -+ Ulo2)U (1) [¥or) >0, I=1,...,P/2, (B3

(.| U(op)0(cpoy)- Ulorp)U(o0) [9oe) >0, 1=P/2+1,...,P, (E.6)

on the stochastic process used to sample the fields o, one achieves the equivalent
of setting V, to 4oco for all ¢ on the wrong side of the constraint surface. In
practice *7) the constraining state [ ) can be chosen as a single determinant, the
same used as the trial state |1, ). The PP approach was tested "] considering
several two-dimensional Hubbard models, with periodic boundary conditions. It
is known % that the sign problem is worst when the Fermi level falls in a de-
generate set of states and such cases were deliberately chosen (37 9 x 2 with 3
electrons, 3 x 3 with 8, and 4 x 4 with 14. The results were quite encouraging (371,
while the average value of the sign was exponentially decaying, as a function of
B, for conventional simulations, it was essentially 8 independent with PP. The
variational improvement of the total energy, with an improved PP constraint, was
also verified *7).

In conclusion, even though there is no guarantee that PP will give superior
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results to a conventional variational calculation with a cleverly chosen wave func-

tion, however it should be of considerable advantage in extending applicability of

the AFQMC method.



Appendix F

The “Exact” approach

In order to test the accuracy of our AFQMC simulation results, obtained using

a fixed set of parameters (the number N, of expansion plane waves, the single
Trotter time slice Ar, the total imaginary propagation time (), an algorithm
which can produce exact data, by taking into account the same parameter values,
is required. For the simple Hs molecule, if Npw is not too large, such a scheme
can be easily implemented. In fact the basic step is to perform the short time
propagation:

l

[B) = e H ) o (e Fem Ve em AT ) [y (F.1)

where H = T + Vi, is the usual Ho Hamiltonian (f/'tot = pext 4 V) and [¢) is a

generic two-body wave function, we can expand in plane waves:

)= > C(Gm,Gr)|GmGy) . (F.2)

GnGn

Now the short time kinetic term propagation is trivial since the kinetic operator

is diagonal in Fourier space:

et E ) = ) e F(OINC0(Gn, GGG . (F3)
GG,

As far as the potential term propagation is concerned, it is convenient to consider

the following expansion:

CArtn 4 e S NI
e A Ve = ATViot + (ATVtot> T3 (ATVtot) +oee (F.4)

1
2!
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In this way we reduce the problem of applying the exponential operator e =7 tet

to repeated applications of ATV,y;. Then it is easily to verify that:

AV lp) = A7 3 {VEHG) O (G — Gty Go) + C (Grmy G — G1)]
GGGy

+V(G1) O (Gm = G, G + G1) } [GrGa) ,  (F5)

where V***(Gy) and V(G) are the Fourier coefficients of the external (electron-ion)
and electron-electron interaction potentials, respectively. In this way the basic
(F.1) propagation can be practically carried out. In actual calculation one has to
increase the number of expansion terms, in (F.4), which are taken into account,
until the stability of final results has reached the desired level.

By considering Eq. (F.5) we observe that the computation cost of this algo-

rithm grows as N3, therefore it increases quite rapidly with the size of our plane

pw?

wave basis set.
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