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Introduction

In this thesis I discuss two separate issues related to the very early Universe. The
first of them is preheating of fermions. Creation of matter from the inflaton field
is one of the most active areas of research of the inflationary scenario. In the last
ten years, it has been realized that the first stages of this process are typically
governed by relevant nonperturbative production of particles. Creation of bosons is
very efficient, since it is characterized by stimulated particle emission into energy
bands with large occupation number. It was very recently realized that preheating of
fermions can be in some cases even more relevant, despite large occupation numbers
are forbidden by Pauli principle. In the first part of the thesis I review the analyses
(first numerical and then analytical) which have lead to this conclusion. I then
discuss the possible implications for leptogenesis.

The second part of the thesis is instead devoted to eztra dimensions. The last
two and a half years have witnessed a formidable interest in models (I will simply
refer to them as to “brane models”) where the extra—dimensions manifest themselves
not too far from the electroweak scale. The initial motivation for these studies was
to provide a solution to the hierarchy problem. 1 discuss this issue in the first
chapter of this part, where brane models are introduced. While these scenarios
are compatible with the Newton law at the distances we presently probe, they can
lead to a very interesting new phenomenology both in accelerator physics and in
cosmology. Concerning the latter, I discuss possible modifications of the standard
baryogenesis scenarios and of the cosmological evolution of the Universe.






Part I

Preheating of fermions






It is commonly believed that the Universe underwent an early era of cosmological
inflation (for a recent review, see [1]). The flatness and the horizon problems of the
standard big bang cosmology are indeed elegantly solved if, during the evolution
of the early Universe, the energy density happens to be dominated by the vacuum
energy of a scalar field ¢ — the inflaton — and physical scales grow quasi-exponentially.

At the end of inflation the Universe was in a cold, low-entropy state with few
degrees of freedom, very much unlike the present hot, high-entropy Universe. The
process which leads from the former to the latter is known as reheating and it
constitutes one of the most active areas of research of inflationary cosmology.

In Guth’s original model for inflation [2] (now usually referred to as “old infla-
tion”) the period of exponential expansion occurs while the scalar field ¢ is trapped
in a metastable (positive energy) vacuum. Inflation ends when the field ¢ tunnels
towards the absolute (zero energy) minimum of its potential and bubbles of true
vacuum nucleate and expand. The energy of the false vacuum is thus converted into
kinetic energy of the walls of the bubbles which expansion speeds quickly approaches
the one of light. The universe is then thought to be reheated by the particle pro-
duction that occurs during the subsequent phase of collision of the different bubbles
which have formed (some analyses of the process can be found in refs. [3, 4, 5, 6]).

As it is well known, this old inflationary scenario suffers from the so called “grace-
ful exit problem” [7, 8] and some modifications have been considered (for a review,
see [9]). An alternative possibility is offered by the framework proposed by both
Linde [10], and Albrecht and Steinhardt [11], often referred to as “new inflation”,
or, more appropriately, “slow-rollover inflation”. In this scenario, inflation occurs
while the VEV of the inflaton field ¢ slowly evolves towards the minimum of its po-
tential. As (¢) approaches and then overshoots the minimum it begins to oscillate
about it. The vacuum energy of the field then exists in form of coherent oscillations
of the ¢ field, corresponding to a condensate of zero-momentum ¢ particles. The
decay to these particles to other, lighter fields to which ¢ couples damps the coher-
ent oscillations. Finally, the produced particles thermalize and the Universe begins
its radiation dominated stage.

While the first studies of this process considered only perturbative decays of the
quanta of ¢, it was later pointed out by Traschen and Brandenberger [12], and by
Kofman, Linde, and Starobinsky [13], that nonperturbative processes can play a very
prominent role. The condensate (¢) cannot indeed be considered just as the sum
of independent quanta, but collective effects due to the coherent oscillations give
rise to particle creation through parametric resonance [12]. This phenomenon was
named preheating in [13], since (with the exception of some very recent versions [14])
it is usually followed by a stage of (ordinary) perturbative reheating.

The first studies on preheating focused on production of bosons [13, 15, 16].
They show that in the first stage of reheating nonlinear quantum effects may lead
to extremely effective dissipative dynamics and explosive particle production, even



when single particle decay is kinematically forbidden. This production mainly occurs
as stimulated particle emissions into energy bands with large occupancy numbers.

Less attention was initially devoted to nonperturbative production of fermions,
since Pauli blocking prevents the possibility of stimulated emission. As a conse-
quence, preheating of fermions was thought unable to be as significant as the bosonic
one. However, it was first pointed out in ref. [17] that this is not the case. In that
work it is shown that fermion production in an expanding Universe can be extremely
efficient, in a mass range even broader than the one for heavy bosons: fermions may
be generated up to masses of order of 10'® GeV (two or three orders of magnitude
more than in the bosonic case [18, 19, 20]). What distinguishes the production of
very massive fermions and bosons in an oscillating background is the expression for
the total mass. For bosons, the total mass can never vanish (at least for a minimal
Yukawa coupling ¢?x? of the boson x to the inflaton) and the production reaches the
maximum when the amplitude of the inflaton goes through zero. For fermions, the
total mass can vanish for particular values of the inflaton field, rendering particle
creation much easier.

Parametric creation of spin 1/2 fermions has been the subject of several works
in the past. Pure gravitational production has been examined in refs. [21, 22], while
creation by an oscillating background field is instead considered in the works [23, 24,
25, 14, 17, 26, 27, 28]. References [23, 24] report results for creation in a Minkowski
space. Reference [25] studies the production of massless fermions after a A¢* infla-
tion, exploiting the fact that this case can also be reconducted to a static one. In
this work, production in a static Universe after chaotic inflation is also considered,
and some conjectures on the effects of the expansion are made. The full calculation
of preheating of massive fermions after chaotic inflation in an expanding Universe
has been performed numerically in ref. [17], and finally analytically in refs. [27, 28].

These last works have been followed by several recent studies. For example,
their results turned also useful to the study of gravitinos production at preheat-
ing [29, 30, 31, 32]. This issue is particularly important, since gravitinos can easily
overclose the Universe (if they are stable) or (if they decay) spoil the successful
predictions of primordial nucleosynthesis through photodissociation of the light ele-
ments. Gravitinos can be thermally produced during the stage of reheating. To avoid
this overproduction, the reheating temperature Try after inflation cannot be larger
than ~ (108—10°) GeV [33, 34, 35, 36). However, it has been realized [29, 30, 31, 32]
that the non-thermal production of helicity &1/2 gravitinos (whose equation of mo-
tion can be reconducted to the one of an ordinary spin 1/2 Dirac particle) can be
easily more efficient than the thermal one, and this in general leads to more strin-
gent upper bounds on Tru. Several papers related to the works [29, 30, 31, 32} have
recently appeared [37, 38, 39, 40, 41, 42, 43].

Another important implication of preheating of fermions is constituted by lepto-
genesis, as the work [17] and the related papers [44, 45, 46, 47, 48, 49] show. In this



scheme [50], a leptonic asymmetry is first created from the decay of right-handed
neutrinos, and then partially converted to baryon asymmetry through sphaleronic
interactions. Since leptogenesis is very sensitive to both the mechanism of creation
of the heavy neutrinos and to the neutrino mass matrices, it could constitute an
interesting link between preheating and the experiments on neutrino oscillations. In
particular, perturbative production of the right-handed neutrinos is viable only if
their mass is smaller than the inflaton one, that is 10'* GeV in chaotic inflation [51].
Creation of these particles at preheating may thus be a forced choice if their mass
overcome this limit.

Other phenomenological implications of these studies appear in refs. [52, 53], with
preheating as a possible mechanism for creating superheavy relic particles responsi-
ble for the ultrahigh energy cosmic rays, and in ref. [54], where the possible impact
of fermions produced during inflation on the microwave background anisotropies and
on the large-structure surveys is considered. Fermionic production can also play an
interesting role in hybrid inflationary models [43, 55]. Finally, fermion preheating
in presence of several scalar fields has been considered in ref. [56].

In the following we review some of these results, mainly focusing on the works [17,
28]. In the first chapter we report the numerical analysis of preheating of massive
fermions in an expanding Universe. The second chapter is instead devoted to the
analytical study. As we show, the two approaches give results which are in excellent
agreement with each other. In the third chapter we present a detailed discussion of
leptogenesis in general and leptogenesis after preheating, which constitutes, as we
said, one of the most interesting applications of these above studies.






Chapter 1

Numerical approach

In this chapter we describe the basic physics underlying the mechanism of heavy
fermions generation during the preheating stage and we perform the relevant nu-
merical calculations. As in the next chapters, we focus on the model of chaotic
inflation [51], with a massive inflaton ¢ having quadratic potential V(¢) = 3m3¢%.
Here my ~ 10" GeV is fixed by the COBE normalization of the cosmic microwave
background anisotropy.

We suppose that the inflaton field is coupled to a very massive Dirac fermion X
with bare mass my via the Yukawa coupling

Ly = gdXX. (1.1)
The total mass of the fermion X is then given by
m(t) = mx + go(t). (1.2)

From this coupling the fermions acquire a time varying mass. Nonperturbative
production occurs when this mass (and the related frequency) varies in a non adia-
batic way. In case of very massive fermions, the non-adiabaticity condition can be
satisfied only when their total mass vanishes, and the production occurs at discrete
intervals, until the inflaton oscillations become too small for the total fermionic mass
to vanish.

In the first section we review a quite standard formalism to properly define the
occupation number of created fermions. As we show, this can be related to the
Bogolyubov coeflicients of the transformation which diagonalizes the hamiltonian
of the system at any given time. In the second section we present the results of a
numerical evaluation of the occupation number. This study is performed neglecting
the backreaction of the produced particles on the evolution of the inflaton field and
on the scale factor. Despite the difficulty of a more complete treatment, backreaction
effects can be understood at least in the Hartree approximation. We do this in the
third section, where we evaluate at which coupling of the fermionic field to the
inflaton the backreaction starts to be important.

7



8 Chapter 1. Numerical approach

1.1 The basic formalism

We start (see e.g. discussion in ref. [21]) by canonically quantizing the action of a
massive fermionic field X in curved space with Friedmann-Robertson-Walker metric.
In the system of coordinates in which the line element is given by ds? = a?(n)(dn? —
d#?), where a is the scale factor of the expanding Universe and 7 is the conformal
time defined as dn = dt/a, the Dirac equation becomes

; 3
(%7“3” +i5HY m) X =0. (1.3)

Here H = (a'/a®) is the Hubble rate, the prime denotes derivative with respect
to conformal time, and the y-matrices are defined in flat space-time. By defining
x = a~%2X, eq. (1.3) can be reduced to the more familiar form

(i7", —am) x = 0. (1.4)

Since a is a function of i, but not of Z, spatial translations are symmetries of
space-time, and we can separate the variables using the decomposition

x@) = [ Goe X [wlh e ®) +oenbi-R], (19

T

where the summation is over spin, and v.(k) = CaX (k). We impose the canonical
anticommutation relations on the creation and annihilation operators

{ar(k), al(K)} = {b.(k), BL(k)} = 6,,6(F — &) (L6)

which, together with the quantization conditions, determine the normalization of
the spinors u,

ul(k, )us(k,n) = vl (k, n)vs(k,n) = 6rsy ul (K, m)vs(K,m) = 0. (1.7)

Equations:(1.7) are valid at any conformal time, since they are preserved by the

evolution.
1

In the representation in which % = ( 0 _01 ) and with the definition

U= ( Z“L >, the equation of motion (1.4) can be written as

Eﬁui:iku¢$iamui , (1.8)
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or, equivalently, as a set of uncoupled second-order differential equations,

[dd; +w? £i(a'm + am )] us(k) =0 (1.9)

w® = k* + m*d®. (1.10)
We can now write the Hamiltonian as
Ho = [@ad (-o)x = [ HONCAUICIOICR bruc)bi(k)]
+ Fi(n )br(—k) r(k) + Fy; () al (k)bE(—F) } (1.11)
By using the equations of motion, we find

Ey = 2k Re(uu-) +am (1 — 2ufuy),
B, =5k (ui — uz_) +2am uiu_,

B+ |Fl’ = w”. (1.12)
Here we have chosen the momentum k along the third axis, and selected the gamma-
matrix representation in which 73 = _01 (1)

It is always possible to choose an initial configuration with the hamiltonian in
the standard (diagonal) form. If we take, for example,

/2
U (m0) = (1 F ——) e, ¢ arbitrary phase, (1.13)

we have Eg(n) = w, Fx(m) = 0.

However, the evolution equations (1.8) drive Fj different from zero. In order to
give a “quasi-particle” interpretation, we diagonalize the Hamiltonian in eq. (1.11)
with a time-dependent Bogolyubov canonical transformation, and define the new
creation and annihilation operators

a(k,m) = a(k,m)a(k) + Bk mb! ()
b1 (b, m) = —B" (k, ma(k) + * (k, )b} (~k). (114)

Imposing canonical anticommutation relations on the operators a and b, we find
|a|?> + |8]* = 1. For

__Ek+w

g ‘Fkiz ___(_u—-E/c
B Fpo

2w(w+Ey) 2w (1.15)

BI* =
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the normal-ordered Hamiltonian in terms of the “quasi-particle” operators is diag-
onal,

B = [ @63 wm) (a0 + 5 050) (1.16)

Next, we define a “quasi-particle” vacuum, such that
al0,) = 80,) = 0. (1.17)

The total number of produced particles up to time 7 (equal to the number of pro-
duced antiparticles) is given by the vacuum expectation value of the particle number

operator IV,
1 * 2 2
() = ©O,IN10y) =~ [k 167 (118)

The density of produced particles is then computed by integrating * the equations
of motion (1.9) with initial conditions at time n = 0 given by egs. (1.13) and (1.8).
This conditions correspond to By = w, F; = 0 at 7 = 0 or, in other words, to an
initial vanishing particle density.

1.2 Numerical Results

The equations of motion (1.9) describe oscillators with time-varying complex fre-
quency. If m is constant, the time dependence enters only through the scale factor a.
The corresponding gravitational creation of heavy fermions was studied numerically
in ref. [22]. However, of particular interest is the case in which m = m(¢) is a (quasi)
periodic function of time. This is realized when the scalar field ¢, coupled to X as
in eq. (1.1), is homogeneous and oscillates in time with frequency V"(¢). It is useful
to write the equations of motion in terms of dimensionless variables. We introduce
a dimensionless time 7 = my7, as well as a dimensionless field ¢ = ¢/¢(0), so that
the scalar field is normalized by the condition ¢(0) = 1. We start the numerical
evaluation at ¢(0) = 0.28M, short after inflation, ¢'(0) = —0.15M,m, (as follows
from a numerical evaluation of the inflaton alone during inflation), and a(0) = 1.
With the above redefinitions, the equation of motion for the background field ¢ does
not contain any parameter, while the fermion mass is measured in units of m, and
the strength of the fermion coupling to the external background is determined by

In practice, one has to solve only the evolution equation for 1, since u.. is determined by the
equation u- = (amuy — vl )/k.
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Figure 1.1: The fraction of the energy density of produced fermions with respect
to the total energy density, as a function of the fermion mass myx in units of the

inflaton mass, for various values of g.

the dimensionless combination g@(0)/mg. For the sake of correspondence with the
bosonic case, we introduce the parameter

q = ¢*¢%(0)/4m.. (1.19)

By analogy with the bosonic case [16, 57, 58], it is expected that an efficient pro-
duction of very massive fermions will require a very large value of g.

The result of the numerical integration is best summarized in fig. 1.1. For dif-
ferent values of the fermion mass mx and of the g parameter, fig. 1.1 shows px /p,
the fraction of the inflaton energy density p which ends up in the fermionic energy
density px. In this simulation, the back reaction of the produced fermions on the
evolution of the inflaton field is neglected.

Fermion production is extremely efficient up to a time at which the ratio px/p
freezes out. For fixed g, the larger mx is, the earlier this freeze-out occurs. In
particular, near the cut-off of px/p at large mx (we denote with (mx ), the value of
myx at which this cut-off occurs), the production ceases just after a few oscillations
of the inflaton field. As we will show in the next section, particle production occurs
only in very short intervals about the points in which the total fermionic mass
vanishes. It is then reasonable to assume that the saturation of the production
occurs when the total mass (1.2) stops vanishing and that the sharp cut-off in the
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particle production at large my that we observe in fig. 1.1 corresponds to a situation
in which the condition m(t) = 0 cannot be satisfied even during the first oscillation
of the inflaton field.

To verify this assumption, let us write m(t), with the help of eq. (1.19), as

m=myx + 2\/§m¢gz%j ~mx + \/7?17\7% cos(2m V). (1.20)

Here we have taken into account that ¢ o ¢!, when the energy density of the
Universe is dominated by the oscillating inflaton field, and we have denoted with IV
the number of oscillations of the inflaton field N = myt/(2 7).

At large mx, the minimum of m is reached around N = 1/2. Therefore, if

2
mx > My~ V4, (1.21)
the total mass m never vanishes . The value of (mx)w given in eq. (1.21) is
already in good agreement with our numerical results. However, eq. (1.20) cannot
be trusted at small V. Actually, our numerical integration shows that the minimum
of the inflaton amplitude ¢y during the first oscillation is given by

¢o
—— o~ —().25. 1.22
5(0) (1-22)
This means that the cut-off value of the mass is at

V4 (1.23)

(mX)th = m¢—-2——,

in perfect agreement with the results presented in fig. 1.1.

While for m close to the cut-off value the production saturates very quickly, for
m <K (mx)w the total mass vanishes many times and the process is very prolonged.
Due to limited numerical resource, the curves which appear in fig. 1.1 correspond
however to an evolution up to 20 inflaton oscillations. It is thus possible that the
curves underestimate the production at mx much smaller than (my)y,. °

To qualitatively appreciate this feature we fix m, = 100 mg and we show how
the production evolves for two different values of ¢. In fig. 1.2 the case ¢ = 108
and the productions after 1 and 3 oscillations are presented. For ¢ = 10° the value
mg = 100my is quite close to (myx )y (cfr. fig. 1.1) and the fermionic production is
expected to quickly freeze-out. Indeed the distribution after 3 oscillations presented

*We are considering here the case in which g#(0) and mx have the same sign. If these two
terms have a relative minus sign, particle production can be extended to even larger values of m .

3In the next chapter, a detailed analytical study will allow us to better understand this point
and to give a limit in mx above which the results presented in fig. 1.1 can be trusted.
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Figure 1.2: The phase-space density of produced particles after n = 1 and n = 3
inflaton oscillations for ¢ = 10° and for X-fermions 100 times heavier than the
inflaton. The distribution at n = 3 coincides with the final distribution.
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Figure 1.3: The phase-space density of produced particles after n = 1 and n = 20
inflaton oscillations for ¢ = 10® and for X-fermions 100 times heavier than the
inflaton. The distribution at n = 20 coincides with the final distribution.
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Figure 1.4: The final phase-space density of produced particles for two values of the
parameter g. The X-fermions are taken to be 100 times heavier than the inflaton. At
g = 10° the freeze-out of the particle production was reached after the first inflaton
oscillation, while for ¢ = 108 it required twenty oscillations.

in the figure already coincides with the final one. In fig. 1.3 we take instead ¢ = 108
and we show the production after 1 and 20 oscillations of the inflaton field. In this
case, only after 20 oscillations the fermionic production freezes-out and this agrees
with the fact that (mx ) increases with increasing g.

Again looking at fig. 1.1 we notice that the energy density px of the produced
fermions (i) scales almost linearly with ¢ and (ii) depends very weakly on m, (at fixed
q) at least for m, not too smaller than (mx)w. These behaviors will be explained
in the next chapter, where we will give an analytical expression for px as a function
of ¢ and mx. The key point is that the whole process produces particles up to a
maximum momentum k.. and that this quantity completely determines the final
value of px. As can be already seen from figs. 1.2 and 1.3, the Pauli limit on the
occupation number n; < 1 is very well reached and almost saturated in the whole
range k < kpax- With a very good approximation, we can thus estimate the energy
density of the produced fermions as

Fig. 1.4 confirms the scaling given by eq. (1.24). In this figure we fix again
mx = 100mg, and we compare the final distribution of the produced fermions for
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the two cases ¢ = 10° and ¢ = 10%. Fig. 1.4 shows the ratio of about 100 between
the maxima momenta kmax Of the two cases. This result, together with eq. (1.24),
indicates a nearly linear scaling of px with ¢, as it was clearly indicated in fig. 1.1.

1.3 Backreaction

When the energy density in created particles is comparable to the initial inflaton
energy density, the issue of back reaction becomes relevant. From the results of the
previous section, we gather that for ¢ 2 108 the back reaction has to be considered.
In the case of bosons this can be done numerically on a lattice with full account
of all non-linear effects [59, 58]. In the fermionic case, we restrict ourselves to an
approximate treatment of the back reaction in the Hartree approximation (similar
calculations in the Bose case were performed in refs. [57, 16]).

In the Hartree approximation, the inflaton field is assumed to be homogeneous
(all of its spatial fluctuations are neglected). Correspondingly, only the average
value of the product XX is left in the equations of motion of the inflaton field,
which takes the form

¢+ 3Hp+mie+g(XX)=0. (1.25)

The product (X X) can be readily expressed through the momentum integration
of the Bogolyubov coefficients using the field decomposition in eq. (1.5). However, a
straightforward averaging leads to ultraviolet divergences, i.e. to extra powers of k at
large k in the momentum integration compared to the integral of the particle number
density, eq. (1.18). Therefore, the quantity (X X) needs to be regularized. Similarly
to the case of Minkowski space-time, the regularization amounts to the normal
ordering or, equivalently, to the subtraction of vacuum zero- point fluctuations. To
obtain a finite result, it is necessary to express the operator X X in normal form and
subtract the part due to the vacuum fluctuations. Since the vacuum defined in eq.
(1.17) is different at different times, the vacuum fluctuations subtracted during the
reduction of the operator to normal form depend on time. The normally ordered
XX operator has the form

N, (XX) = XX — 0,/ X X]0y) . (1.26)

By its very definition, the operation of normal ordering gives XX only for the
created particles. The vacuum averaging in eq. (1.25) is defined as the averaging
with respect to the original vacuum state (we remind the reader that we are working

in the Heisenberg representation)

(XX) = (0|, (XX) ]0). (1.27)
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Figure 1.5: The solid line shows the final phase-space density of produced particles
for ¢ = 10® with back-reaction effects included in the Hartree approximation. The
dotted line shows the phase-space density if the back-reaction effects are neglected.

An explicit calculation leads to

_ 2 ma
(XX) = W/d% (lu?+ = -1). (1.28)
In the case of Majorana spinors the numerical factor is twice smaller. We have used
expression (1.28) when integrating the equation of motion (1.25) for the inflaton field
. We have also consistently included the contribution from (X X) in the equation of
state when integrating Finstein equations for the scale factor.

The resulting phase-space density, with and without back-reaction, is shown in
figs. 1.5 and 1.6 for ¢ = 10® and ¢ = 10%°, respectively. We observe that at g = 108
the spectra with and without back-reaction are identical at large k, the difference
being appreciable only at small k. Since the total number density is saturated at
large momenta, nx turns out to be only slightly different when back reaction effects
are included. For ¢ = 10%, nx is larger by 5% combpared to the case without back
reaction. At smaller g, the difference is even smaller. Therefore, the results of our
calculations shown in the previous section can be trusted.

At larger g the back reaction effects become more significant. In fig. 1.6 we
present the results for ¢ = 10'° and my/my = 10% First, we note that without
back reaction nx o ¢ in accordance with the scaling law presented in fig. 1.1. Inte-
grating the phase-space over momenta, we find that the ratio px/p is approximately
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Figure 1.6: The same as fig. 1.5, but for ¢ = 10,

50% larger than the value of the same ratio when back-reaction is not included.
Therefore, the back reaction effects change the ratio of px/p by about factor of two,
increasing it. A

The time dependence of the inflaton field with and without back reaction is
shown in fig. 1.7. We see that when back reaction is included, the field ¢ does not
pass through the point at which m(t) = 0 because energy is very efficiently extracted
from the inflaton field even at the first crossing. The non-zero value of (X X) causes
a change of the potential of the inflaton field, shifting the minimum around which
the inflaton field oscillates. In particular, it changes the form of potential in such a
way that ¢ oscillates around the point m(t) = 0.* Later on, (X X) decreases because
of the expansion of the Universe. Consequently the difference between the effective
potential and the tree-level potential becomes small again and the inflaton field
starts oscillations around the original minimum at ¢ = 0, but with an amplitude
that is smaller than in the case in which back-reaction is neglected.

To summarize we can say that, up to ¢ ~ 10'°, the simplified calculations without
back-reaction effects provides us with a lower bound for px/p. Other effects like the
scattering of X particles, or their decay, will only help production since they remove
particles from the already occupied Fermi levels.

4This effect will be explained in more details in the next chapter.
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Figure 1.7: The time dependence of the inflaton field for ¢ = 10'° with back-reaction
effects included in the Hartree approximation (solid line) and without back reaction
(dotted line).



Chapter 2

Analytical approach

The aim of this chapter is to find an analytical expression for the occupation number
and the energy density of the produced fermions, as a function of their bare mass
and their coupling to the inflaton. This investigation is particularly welcome, since
it shows up to which point we can trust the numerical results of the previous chap-
ter. As we already anticipated, the numerical and the analytical results manifest an
excellent agreement for my close to the cut-off value (mx ). (see the previous chap-
ter). For smaller my the numerical evaluation becomes too long and the analytical
formulae that we provide here remain the unique way to get a reliable estimate for
the production.

As the starting point, in section 2.1 we derive the analytical formulae for the
spectra of the fermions at any generic time. Our derivation follows the one developed
in refs. {13, 16] for preheating of bosons. It exploits the fact that the production
occurs only at short discrete intervals around the zeros of the total fermionic mass:
the calculation is made possible from the fact that the occupation number can be
considered as constant outside these small regions, and that the expansion of the
Universe can be neglected inside them. As a result, the only physical quantities
relevant for the creation are the time derivative ¢’ of the inflaton field and the value
of the scale factor a at each production.

In section 2.2 we consider the production in a non-expanding Universe. In this
case the analytical formulae considerably simplify, showing the presence of resonance
bands which are anyhow limited by Pauli blocking.

In section 2.3 we study the more interesting case of production in an expanding
Universe. As it occurs also for bosons, the expansion removes the resonance bands
and the production (almost) saturates a Fermi sphere up to a maximal momentum.
In section 2.3 we finally calculate the total energy density px of produced fermions,
which may be the quantity of most physical relevance. To do this, a proper average
of the analytical formulae must be done, exploiting the fact that the expansion of
the Universe gives the production a stochastic character. In this way one can get a

19
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“mean” function that interpolates very well between the maxima and the minima
of the spectra of the produced particles. Again we derived it in close analogy with
what is done in the bosonic case, and again the results that we get are in very good
agreement with the numerical ones of the previous chapter in the region of validity
of the latter.

All this analysis neglects the backreaction of the produced fermions on the evolu-
tion of the inflaton field and of the scale factor. As we already remarked, backreac-
tion effects can be studied in the Hartree approximation. In section 2.4 we see that
the analytical formulae here provided allow to understand the effects of backreaction
observed in the numerical simulations.

2.1 Analytical evaluation of the occupation num-
ber

In this section we calculate analytically the evolution of the Bogolyubov coeffi-
cients (1.14) during the oscillations of the inflaton field after chaotic inflation.

In this derivation, we exploit the fact that, in the regime of very massive fermions
we are interested in, the creation occurs only for very short intervals about the points
¢. = —myx /g where the total fermionic mass (cfr. eq. (1.2)) vanishes. As the perfect
agreement with the numerical results will confirm, this consideration allows one to
treat the fermionic production with the same formalism adopted® in the bosonic
case [13, 16]. While far from the zeros of the total mass m the Bogolyubov coeflicients
can be treated as constant, whenever ¢ crosses ¢, a sudden variation occurs. Since
the interval of production is very narrow, one can safely neglect the expansion of
the Universe during the production and also linearize the function ¢(n) ~ ¢. +
@' (77*) (77 - 77*). As a consequence, the frequency w defined in eq. (1.10) acquires
the form

W B4 () é 2 (m) (n—n)?, (2.1)

and the whole calculation strongly resembles the one for scattering through a qua-
dratic potential.

The first step for the derivation of the analytical formulae is to consider asymp-
totic solutions of egs. (1.8) and (1.9). We look for solutions valid for ¢ not very
close to ¢., where the adiabaticity condition

W < w? (2.2)

1The derivation of the “fermionic counterpart” of the formulae obtained for preheating of bosons
in refs. [13, 16] has also been performed to a certain extent in the work [54], where the results of
a single production during inflation is given. However, when one is interested in the successive
productions, a more detailed study is necessary, as the more detailed study [27, 28] here reported
show.
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holds.
In this regime, the most general solutions of egs. (1.8) and (1.9) are

1/2 . 1/2
ue = A(1-Z5) Tl B (14 ZR) T e,

u. = -8B (1 - &nl)l/z emtHMudn 4 (1 + @)1/2 et/ wdn (2.3)
w w
with |A]2 + |B|* = 1 following from the condition |uy > + |u_|? = 2.

We can always put solutions of egs. (1.8) and (1.9) into the form (2.3), with 4
and B in general functions of n. However, in most of the evolution (whenever the
adiabaticity condition holds) it is a very good approximation to treat the coeflicients
A and B as constant.

Substituting the expressions (2.3) into egs. (1.12), one finds

F=2AB, E=uw(AP-|B]), (2.4)

from which it follows

o =L pp (25)
2w (E + w) ' -
One can thus choose (up to an irrelevant global phase)
A=a—B=p", (2.6)

where a and f§ are nothing but the Bogolyubov coeflicients we are interested in.

Notice that the initial choice A(mp) = 1, B(7) = 0 corresponds to the initial
condition (1.13) and to the zero particles state chosen in the previous section.

As we have said, these coeflicients undergo a sudden change whenever ¢ crosses ¢
and then they stabilize to new (almost) constant values. Qur aim is to find the values
at the end of the variation in terms of the ones prior to it.

We have not specified the lower limit of the integrals appearing in egs. (2.3). For
present convenience we choose it to be the time 7,; of the first production (that is
when ¢ = ¢, for the first time).

Let us consider the evolution equations (1.9) near the point 7,;. Since for high
mass mx the fermionic production is limited to a very short interval, one can neglect
the expansion of the Universe during it and write the equation for ¢(7) in a linearized
form. We can thus write

¢

CL’)TL('I’]) = Osy gqﬁ;l (77 — T 1) ) a1 = (77* 1) 3 ¢*1 = d_‘ . (27)
77 tne1
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We define (with the notation of [54])

k
—— T = Llasa (7' — 1) . 2.8
p RN V9|t (71— 741) (2.8)

In terms of these new quantities, egs. (1.9) rewrite (dot denotes derivative with
respect to 7)2

i

e+ (P4 ) us = 0. (2.10)

The point 7,; is thus mapped into the origin of 7 and the region of asymptotic
adiabaticity is at large |7].
In the asymptotic solutions (2.3) we can see the behaviors

(1 + am)m — b
w Vor'
1/2
(1 - 9—"1) s V3,
w

9 +ip?/2
e:i:i J" widn — (?) e:ti72/26:tip2/4 , (211)

for 7 — +o0, and

1/2
(1+99" g,

)
(1-2m)" o £
w —V 2T
+ip?/2
ety (2 g, (212)
—azT

for 7 — —co.
Equations (2.10) are solved by parabolic cylinder functions Dy(z) [60]. More
precisely, the combination that matches the asymptotic solution (2.3) at 7 — —co is?

1+ip? /2 5
wo(r) = AV3 ( _\% ) GG Do (— (141)7) +
c 2

—ip?/2
-2 ) .
+B V2 (%) e A= D, o (—(1 — i)7) . (2.13)

2For the production at the moment 7.,,, when the total mass vanishes for the n-th time, eq. (2.10)
must be replaced by

Gy + (p* £isign (¢,) + %) ux =0. (2.9)

The effect of this replacement on the final results is reported below.
3We deal only with the function Uy, since the study of u_ leads to the same results.
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In the above expression, A~ and B~ denote the values of the Bogolyubov co-
efficients before ¢ crosses ¢,, while the functions which multiply them are ezact
solutions of the linearized equation (2.10). The analytical approximation consists in
considering them as solutions of the true evolution equation (1.9). For 7 — +co it is
convenient to rewrite the solution (2.13) in terms of two different parabolic cylinder
functions* [60]

-npi/d 2
uy(r) = {A_mﬁpe eila—"z+

& I‘dw
) PM

In

&2

) o B=e~P%/2
T(1+%/2) TEe }X

—ip*/2
D in? —rp? .
X {\/5(—\/-_5) ep/4e p/SDiPZ/Q((l—Z)'I_)}+

—wp2/4 2 2
+ |—A"e "2 4 BT —ﬁpe ~i(E-E 4B In %)} X

T(1—ip?/2)°

D 1+ip2/2 (I pz 2
X {\/5 (ﬁ) e T ™™ BD | 2 ((1+ i)’r)} .(2.14)

In this new expression, the functions within curly brackets correspond to the
asymptotic forms at 7 = +oco of the two terms of the solution (2.3). The coefficients
in front of them give thus the new Bogolyubov coefficients in terms of the old ones.

All this derivation can be easily generalized when productions at successive zeros
of the total mass m are considered. The only important points are

(i) a difference in the values of the scale factor a and of the derivative ¢’ at
different n,;’s,

(ii) achange of sign in the transfer matrix (the one which gives the new coefficients
in terms of the old ones) whenever ¢ crosses ¢, from below to above (cfr. the
footnote just before eq. (2.10)), and

(iii) the phase e**/“* which accumulates between 7,; and the 7,; considered.

Putting all this together, one has

Oy, . Fn Hn Qp—q
(%) = (% &) () e

H, <— -—-H, for n even, (2.15)

4This rewriting is always possible since eq. (2.10) has only two linearly independent solutions.
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where a,, B, are the values of the Bogolyubbv coeflicients after the n-th production,
and where

F. = \/1_ e~ §-areTlnd/2+% In (o /2)-r2/2)

T*n

H, = e ™2 8l wedn Ry g 2=, (2.16)
We remind that p, = k/+/g|¢L,|asn-

If one starts with no fermions at the beginning, one may choose ap = 1, 83 = 0.
Then, applying successive times the “transfer” matrix (2.15), one can get the spec-
trum of fermions produced after every 7.

Our calculation reproduces the result

N, = | = e (2.17)

found in ref. [54].

The results obtained with the analytical expression (2.15) are in very good agree-
ment with the numerical ones. Just to give a couple of examples, we present here
two cases at different regimes (we show them only with illustrative purpose, and the
values of the parameters chosen have no particular importance). In figure 2.1 we
present the spectrum of the fermions after two productions, that is after one com-
plete oscillation of the inflaton field. In analogy with the bosonic case, we measure
the strength of the coupling inflaton-fermions with the quantity ¢ = g*¢2/ (4mi),
where ¢g ~ 0.28M,, is the value of the inflaton at the beginning of reheating. In
figure 2.1 we choose ¢ = 10%, while we fix the bare fermion mass to be mx = 100m,,.
In figure 2.2 we show instead the resulting spectrum after 7 productions in the case
q = 104, mx = 4m¢.

2.2 Production in a non-expanding Universe

In the bosonic case, the study of the non-perturbative production in a non-expanding
Universe has proven very useful in understanding the effects of the expansion. It is
shown in refs. [13, 16] that the bosonic wave function satisfies the Mathieu equations,
whose solutions are characterized by resonance bands (in momentum space) of very
“explosive” and efficient production. It is then shown that, due to the expansion of
the Universe, modes of a given comoving momentum & cross several resonance bands
during the evolution. This gives the creation the stochastic character described in
the works [13, 16]. In ref. [25] it is understood that an analogous behavior occurs
also for fermions. The expansion is expected also in this case to spoil the clear
picture of distinct resonance bands. This fact may help the transfer of energy to
fermions, since the resonance bands in the fermionic case are anyhow limited by
the Pauli principle. The expansion allows thus new modes to be occupied, and the
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Figure 2.1: Spectrum of the fermions after two productions for ¢ = 108 and my =
100my. The expansion of the Universe is taken into account.
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Figure 2.2: Spectrum of the fermions after seven productions for ¢ = 10* and
mx = 4mg,. The expansion of the Universe is taken into account.
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production is no longer limited to the regions of resonance. In ref. [25] it is stated
that the production should then almost completely fill the whole Fermi sphere up
to a maximal momentum k... This behavior is confirmed by the numerical results
of the work [17], which we have presented in the previous chapter. In this section
we will see that our analytical formulae can reproduce the resonance bands, while
in the next one we will discuss the effects of the expansion of the Universe.

Let us consider the matrices (we drop the index n in the matrix elements since
all the p,’s have now the same value p)

F G e?t 0 e 0
M = ( -G F* > ; Tl = ( 0 e_iﬁf ) 3 T2 = ( 0 6_1.19% ) ,(2.18)

with G = e ™"/2 and ¥ = f:] widn (F was defined in eq. (2.16)).
Without the expansion of the Universe, the inflaton field has the periodic evolu-
tion

¢(n = t) = ¢a cos (mgn), (2.19)

and all the ¥7 (2.15) are hence sums of 97 and 93 (remember the 7,; are the moments
at which the total fermionic mass vanishes).
After the generic n-th complete oscillation one thus has

o e_iﬁ%n+1 0 1
( ﬁi" > = ( 0 R )TZMTT1M~--T2MTT1M ( 0 ) (2.20)
2n et

with the combination O = T, MTT M repeated n times. ) )
One has thus simply to study the eigenvalue problem for O (notice detO = 1).
This operator has the form

- A B
O = ( _B* A* > ?
A

_ eri(ﬂ§+ﬁg) 4 Gze-i(w’-{—ﬁg) 7

B = FGe(?+%) _ prgei(#i-73) (2.21)

and its eigenvalues are A; 3 = eFA with cos A = Re A.
Rewriting the initial condition ( ® ) in terms of the eigenvectors of O and sub-
stituting in formula (2.20), one gets the number of produced fermions
|B?

BJ? . Bl .
Nn = I/BHIZ = i—_—l(lilg_;{)—iSIHZ (TLA) = ~Sm—2[{ Sll’l2 (TLA) (222)
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after the complete n-th oscillation.’
We notice the presence of the envelope function

B _ _1-]ApP

E z = P
1 —(ReA) 1—(Red)

Hi

(2.23)

which modulates the oscillating function sin?(nA).

With increasing n this last function oscillates very rapidly and can be at all
effects averaged to 1/2. One is thus left with the envelope function which shows the
presence of resonance bands. The resonance bands occur where A is real and F — 1.
It is easy to understand that their width exponentially decreases with increasing
momenta k. To see this, let us consider the behavior of £ at high momenta. In this
regime, the function A is given by

k

Valel]’

where the phase ¢4 can be read from eq. (2.21). Near to the points where cos ¢4 = 1
the envelope function behaves like®

A (1—e ™ )eiba p= (2.24)

1—(1—e™)? 1

F~ ~ :
1—(1—e™)cos?g, €™ (1—cosga)+1

(2.25)

The width of the band can be defined as the distance between the two successive
points at which E = 1/2. From the last expression it follows that the difference
between the phases of A in these two points is given by Aa = 2v/2¢~™". Since the
most rapidly varying term which contributes to the phase of 4 is (p?/2) log (p*/2),
the width of the band can be thus estimated to be

' 2\/5 —p?
P € .
plog (p?/2)

We show in figure 2.3 the envelope of the produced fermions in a static Universe
for the parameters ¢ = 10% and my = 100 mg. The peaks occur where A is real
and it is confirmed that their width decreases very rapidly at increasing momenta.
Due to the fact that the last peaks plotted are indeed very sharp, the resolution of
figure 2.3 does not allow to see their top at n; = 1.

A (2.26)

5Tn ref. [25] it is said that it is possible to extract the average over one period of the occupation
number from the knowledge of the solution of eq. (1.9) with initial conditions u (no) = 1,u/ (o) =
0. The matching of this procedure with our formulae (2.3) and (2.21) gives the average time
evolution (in our notation) N(t) = |B|? sin®[(x — A)t/T]/ sin’[ — A], where T is the period of one
oscillation. Clearly, this result coincides with our eq. (2.22) at any given complete oscillation.

8A completely analogous behavior occurs where cos¢y = —1.
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Figure 2.3: Envelope of the spectrum of the produced fermions in a static Universe.
The physical parameters are ¢ = 10° and mx = 100 mg.

2.3 Expahsion taken into account

As stated in the previous section, the resonance bands disappear when the expansion
of the Universe is taken into account. In this section we will show how the occupation
number varies when a non-vanishing Hubble parameter is considered. As we have
seen in section 2.1, egs. (2.15) and (2.16) give a very good agreement with the
numerical results. On the other hand, the presence of phases in eq. (2.16) makes
the exact analytical treatment of the occupation number impossible. Now, the same
observation made in the bosonic case [13, 16] turns very useful also to us: the
phases in eq. (2.16), when the expansion of the Universe is taken into account, are
not correlated among themselves. As a result, the final spectra present several high
frequency oscillations about some average function. The positions of the peaks of
these oscillations depend on the details of the phases. However, the “mean” function
can be understood in a surprisingly easy way. Our problem can be treated as one
customary does when dealing with the “random walk”. Imagine one has to calculate
the quantity

S=|A + As+ Az + -+ Al (2.27)

where the A; are complex numbers with random phases. The “random walk recipe”
indicates that the best estimation of the above quantity is achieved by summing the
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squares of the terms A;, since the mixed products average to zero. The chaoticity
of the final spectra for n; suggests that this may also be true in our case, and this
is confirmed by comparison with the numerical results.

With this method, egs. (2.15) and (2.16) turn into the much simpler relations

‘anlg . [Fnlg IHle |O~'71—1!2 (9 28)
812 )\ HLl? [P Bral? ) B
where we remember

IFn’Q =1 — g~ TPA ’ !Hn|2 — PR : ]Fn|2 + IHnlz —1. (2.29)

Assuming no fermions in the initial state, and applying n times this formula, it
is easy to see that the occupation number after the n-th production is given by

N, (k) = % _ %ﬁ (1 - 26_”’?> . (2.30)
i=1

A similar result holds for preheating of bosons, cfr. [13, 16] where the idea of
averaging on almost random phases is first introduced. In the bosonic case, one can
exploit the fact that, due to the high efficiency of the production, the occupation
number after the (n -4 1)-th creation is (almost) proportional to the occupation
number after the n-th one:

N1 (k) = (1 + zemﬁ) N, (k) (2.31)

where the quantity &, is analogous to our parameter p,. This simplification is not
possible in our case, since the Pauli principle forbids IV, to be sufficiently high.
However our final result, eq. (2.30), is also cast in a very simple and immediate
form.

The validity of eq. (2.30) is confirmed by our numerical investigations, as we
show here in one particular case. In figure 2.4 we compare the behavior of the
“mean” function for the spectra with respect to the numerical one. We choose the
physical parameters to be ¢ = 10, my = dmy, and we look at the results after the
7-th production (this corresponds to the choices made in figure 2.2). We see that
the “mean” function interpolates very well between the maxima and the minima
of the numerical spectrum, and that it can indeed be considered as a very good
approximation of the actual result.

This is confirmed by figure 2.5, where we plot (for the same values adopted
in figure 2.4) the quantity n;k? rather than the occupation number alone. This
quantity is of more physical relevance when one is interested in the total energy
transferred to the fermions, since the total number density of produced fermions is
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Figure 2.4: Comparison between the numerical spectrum and the “mean” function
after seven productions for ¢ = 10* and mx = 4m.

(apart from the dilution due to the expansion of the Universe, that will be considered
only in the final result)

2
Ny = ;r-z-/dk E*ny, . (2.32)

As shown in the plot, the result for Nx in the numerical and in the approximated
case are in very good agreement.

After checking the validity of the approximation given by the “mean” function,
we adopt it to understand how the production scales when different values of the
parameters g and mx are considered.

Equation (2.30) allows us to give an analytical estimate of the total amount of
energy stored in the fermions after the n-th production, and in particular after that
the whole process of non-perturbative production has been completed. Notice that

~ all the dependence on the physical parameters is in the coefficients

k (2.33)
2 = —, .
FT ()
where k is the comoving momentum, and the only part we have to determine are
the numbers

2\f (*Z)I (n*z)l (2.34)
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Figure 2.5: As in figure 2.4, but with the quantity k%n, plotted.

Here, and in what follows, we express the dimensionful quantities in units of my,
the inflaton mass, apart from the inflaton field @ that is given in units of M.

We also introduce the ratio R = 2¢%/2 /mx. This quantity is the most relevant,
since it determines the zeros of the total fermionic mass and thus the values of the
z;’s. Indeed, from eq. (1.2) we see that the total mass vanishes for ¢ = —¢o/R. Tt
is convenient to study the production in terms of the two independent parameters
q and R (rather than ¢ and my) since, at fixed R, all the spectra are the same

provided we rescale k o< g'/* (cfr. eq. (2.34)).

One can now proceed in two different ways, and we devote the next two sub-
sections to each of them. First, one can evolve the equations for the inflaton field
alone‘and find numerically the values z; for given g and R. Inserting these values in
eq. (2.30) one can get final values for the production which, as we have reported, are
very close to the numerical ones. This method allows to get results which average
the actual ones, and it has the advantage of being much more rapid than a full

numerical evolution.

Alternatively, one can proceed with a full analytical study in order to understand
the results given by the first semi-analytical method.
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Figure 2.6: Growth of Nx with the number of productions for ¢ = 10° and R = 30.

2.3.1 Semi-analytical results

In this subsection we evaluate the analytical formula (2.30), taking the coefficients
z; from a numerical evolution of the inflaton field. As we have said, this method
gives results which are very close to the numerical ones, due to the fact that the
“mean” function interpolates very well the actual spectra of the produced fermions.

The first thing worth noticing is that, for each choice of g and R, the maximum z;
occurs at about half of the whole process of non-perturbative creation. It thus
follows that fermions of maximal comoving momenta will be mainly produced at
the half of the process. Our semi-analytical evaluations support this idea: the total
energy stored in the created fermions increases slowly during the second part of the
preheating. To see this, we show in figure 2.6 the numerical results for the quantity
Nx = 2 [ dk k*ny /7 as function of the number of production. We fix the physical
parameters to be ¢ = 10° and R = 30, that is mx = 67m,. With this choice,
the total mass vanishes 10 times, and figure 2.5 shows the results after each step of
this production. We see indeed that the final productions are less efficient than the
previous ones.

From eq. (2.30) it is also possible to show the evolution of the spectra with the
number of productions. We do this in figure 2.7. We choose the same parameters as
in figure 2.6, and we show the results after each complete oscillation of the inflaton
field (that is after each two productions). We observe that the production rapidly
approaches a step function in the momentum space, i.e. there exists a maximum
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Figure 2.7: Evolution of the spectrum of produced fermions with the number of
productions for ¢ = 10° and R = 30.

momentum below which Pauli blocking is saturated (notice that the value 1/2 follows
from the average understood in the “mean” function), and above which n; ~ 0. The
fact that the last productions do not contribute much to the total energy is also
confirmed.”

We now turn our attention to the total energy transferred to fermions after the
whole preheating process is completed. We fix the parameter g to the value 10°
and we investigate how the total integral Nx changes with different values for the
parameter R.2 The results are shown in figure 2.8, for R ranging from 5 to 10000.
For the last value the total fermionic mass changes sign more than 3700 times and
a full numerical evaluation would appear very problematic. This can be done in our
case, thanks to the analytical expression (2.30) found, and our results extend the
validity region of the numerical study of the previous chapter.

In figure 2.8, the results of our semi-analytical method are also compared to the
full analytical ones of the next subsection. This comparison will be discussed below.

From the scaling of Nx with R just reported, it is now easy to estimate the total
energy transferred to fermions for generic values of ¢ and R. We are interested in
comparing these results to the numerical ones of the previous chapter. To do so, we
consider the ratio between the energy density given to fermions and the one in the

7The behavior at small k is inessential, since this region does not significantly contribute to the

total energy.
8 As reported, the scaling of the final result with ¢ at fixed R is simply understood from eq. (2.34).
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Ny, at fixed ¢ = 108.
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We present our results in figure 2.9. We report them in terms of ¢ and my, in
order to have an immediate comparison to fig. 1.1 of the previous chapter.

In figure 2.9, for any fixed g, the greatest plotted value for my corresponds to
the choice R = 5. We are not interested in extending this limit since we know
that for greater mx (actually for values greater than the bound myx ~ ,/g/2) the
production suddenly stops. The smallest value plotted for mx (at any fixed value )
corresponds instead to R = 10000, that is to considering more than 3700 productions
in the numerical evaluation of eq. (2.30).

Our final values are in good agreement with the ones of fig. 1.1 in the regime of
validity of the latter. The numerical results reported in that figure exhibit small fluc-
tuations about an average function px (mX) Our results give this average function.

9This ratio should be calculated at a time tenq at the end of preheating, when the total fermionic
mass stops vanishing. Thus in the denominator of eq. (2.35) the comoving momentum % should be
replaced by the physical one p = k/a, with a scale factor of the Universe at fena- Analogously, the
value ¢y of the beginning of reheating should be replaced by the one at tenq. However, both the
replacements cancel out in the ratio, since both p, and py redshift as energy densities of matter.
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Figure 2.9: Total final energy density produced (normalized to the inflaton one) for
different values of ¢ and mx.

This was expected, since the expression that we integrated, eq. (2.30), interpolates
between the maxima and the minima of the numerical spectra.

The numerical results of the previous chapter have a smaller range of validity
than the ones here presented. This occurs because the numerical evolution of that
work is limited to the first 20 oscillations of the inflaton field, and so fermionic
production has not come to its end for small values of mx. We confirm that at
high values of mx (actually at small values of R for any given ¢) the production
depends very weakly on myx. In addition, our results show a decrease of the energy
transferred to fermions for smaller values of mx. This behavior will be explained in
the next subsection.

2.3.2 Analytical results

We want now to show that all the results presented in the previous subsection can
be also achieved with a full analytical study of eq. (2.30).
First of all, we have to estimate the quantities z; given in eq. (2.34). To do

this, it is more convenient to work in terms of the physical time ¢: after the first
few oscillations, the inflaton evolution is very well approximated by the expression
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(remember ¢ is expressed in units of m;l, while ¢ in units of M)

1 cos(t)

o) = ="

The scale factor of the Universe follows the “matter-domination” law, and it is well
approximated by a(t) = t*/3.

The values t,; are determined by the condition of vanishing of the total mass of
the fermions, that is, by making use of eq. (2.36),

(2.36)

t*i

COS (t*z) = —ﬂ y

(2.37)
where we remind R = (2,/q)/mx. The parameter A = (V37 ¢pg) ™! is of order one
and will not play any special role in what follows. Notice that the last production
occurs at t ~ RA.

Hence, keeping only the dominant contribution to the derivative of ¢ with respect
to the physical time, we get the expression

2\/@ t*' 1/3 t , 2
2 ~ 1/3 44/3 i *i
2o YIRS Y (—R ) 1- ) : (2.38)

where we can assume %,; ™~ 7.

Equation (2.38) exhibits a very good agreement with the numerical evaluation
of the same quantity. It also shows that the maximal value for z; is reached at
t.; = AR/2, that is, at half of the whole process of non-perturbative creation. This
was anticipated in the previous section, where we showed that the most of the
fermionic production occurs in the first part of preheating.

Starting from eq. (2.38) we can also calculate the number density of produced
particles '

<MQM:%/MHMM, (2.39)

where N(k) is obtained from eq. (2.30) with n = ny., = (RA)/.
For R big enough, the product in eq. (2.30) can be written as the exponential of
an integral. Thus, we obtain

9443\ **
Ny = mx (____) PRV x (2.40)

e i

o A 1
x/ dttz{l—exp {—R—-/ dy log
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1—2exp | ———
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with the substitution t =k - /7 /(24%3¢'/2R1/3).

The integral in dy which appears in eq. (2.40) cannot be calculated analytically.
Anyhow, we can approximate it by

~ g (¢)log ’1 — el

, (2.41)

1
/ dy log
0

t2
1 —2€Xp ————
( y1/3 /1 — y2>

where g(t) is a function of order one that, for our purposes, can be approximated
by a constant ¢ in the range 0.5 S ¢ S 1.

Hence, the integrand within curly brackets in eq. (2.40) rewrites

CRA
7T

1- 11 9187 (2.42)

In the large-R limit this function approximates a step function, which evaluates to
one for

7 log 2 2RAc
1/ St/ :
2RAc ~ '~ \[%8 (w log 2) (243)

and to zero for the remaining values of .

Since the quantity (2.42) is proportional to the occupation number n;, our an-
alytical calculation confirms the usual assumption that, after few oscillations, the
fermionic production saturates the Fermi sphere up to a given maximum momentum
kmax. This is also shown in the previous figure 2.7. From eq. (2.43) it follows (apart
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from proportionality factors)

L g3 1 <q1/2> | (2.46)
max X —7= 4/log | — . 2.
m/8 & mx ‘

From egs. (2.40) and (2.43), we obtain the final expression for the number density
of the fermions created during the whole process

1 (2443 3 4Ac ¢if? 3/2
_ /4 pl/2 1 1 ) )
Nx (g, R) 372 ( 1.57 ) R [og (ﬁlog2 mx>} (247)

We can now go back to figure 2.8, where this last equation (called “analytical”
in the figure) is compared to the result with the semi-analytical method of the
previous subsection. In plotting eq. (2.47) we chose ¢ = 0.78 for the numerical
factor involved. As we can see, the final results achieved with the two methods
are in very good agreement with each other, thus confirming the validity of the
formula (2.47).

Rewriting eq. (2.47) in terms of g and mx we can draw some conclusions. First,
apart from a logarithmic correction, the scaling of the total energy

3/2
9 4Ac q1/2

10The scaling (2.46) can be also achieved from very immediate considerations. From the analyt-
ical formula (2.28), we notice that at high momenta & the occupation number is well approximated
by

No(R) = S e ¥/, (2.44)

i=1

where we remember z; o< g/%a'/2 (1.} ¢ (74i) |*/2. In this last equation, we replace all the param-
eters z; with a mean value Z, so that N, ~ nexp( — k2/2%). The scaling of Z with the physical
parameters ¢ and mx follows from the scaling of all the z;. The maximal momentum kpay is thus
expected to scale as the quantity z;(log n)!/2. Considering now the evolution of the inflaton field
in physical time ¢, we notice that both the number n of productions and the times ,; at which
they occur are proportional to the parameter R = a2/ (2m x). Moreover, we see that the z;’s
scale asg

i3

*1

dp, 1?2 1
z; o< ¢/ %A [—d%]ﬂ] o ql/‘iti_{g;———— o gH/4RYS . (2.45)

The result (2.46) then immediately follows.
11The small discrepancy between the two curves can be attributed to the fact that c is not
exactly constant.
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is linear in g, as expected from the numerical results (see the previous chapter). The
dependence of px on mx requires some more care: the threshold value for my is
given by the condition R ~ 4, that is,*?

(mx)y, ~ 5 (2.49)
For values of my not much smaller than (mx)w, the total energy depends very
weakly on my, this result being in agreement with the numerical evaluation of the
previous chapter. On the other hand, for values of mx much smaller than (my ),
the factor m}X/Z starts to dominate, and we expect it to determine the scaling of the

total energy when mx — 0.

2.4 Backreaction

The analytical results presented so far have been achieved neglecting the backre-
action of the produced fermions on the evolution of the inflaton field and on the
scale factor. As in the previous chapter, we will estimate now the effects of the
backreaction in the Hartree approximation.

We remind that for what concerns preheating of fermions, the Hartree approxi-
mation consists in taking into account the term

g(XX) (2.50)

into the evolution equations for the inflaton and the scale factor. The equation for
the field ¢ thus rewrites (in physical time)

¢+3Hp+mip+g(XX)=0. (2.51)

The numerical study of the previous chapter indicates that backreaction starts
to be important for ¢ > g, ~ 10% — 10, Figure 1.7 shows how the evolution of
the inflaton field ¢ is modified when backreaction is considered and ¢ is sufficiently
high. First, one observes that the amplitude of the oscillations of the inflaton is
very damped already after the first production. This effect is the most obvious
one, since the term (2.50) takes into account the decay of the inflaton into fermion-
antifermion pairs, while in its absence the equation for ¢ considers only the damp
due to the expansion of the Universe. The second feature that emerges from the
numerical simulations is that at the beginning the field ¢ does not oscillate about
the minimum of the potential V' = mj¢?/2, but about the point ¢. where the total

127he number 4 comes from the fact that the value of the inflaton at its first minimum is
¢ ~ —0.07Mp, while at beginning ¢g = 0.28M,.
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fermionic mass vanishes. Moreover, the frequency of these oscillations is higher than
M.

These last two effects are due to the change in the effective potential for ¢
induced by the term (2.50), and disappear when the quantity (XX is decreased by
the expansion of the Universe. Their net effect is to render the whole mechanism
of preheating more efficient, since the rise in the frequency of the oscillations of ¢
increases the number of productions of fermions. In the numerical examples of the
previous chapter it is indeed shown that for ¢ = 108 the total production is about
5% larger than the one without backreaction, while for ¢ = 10 the increase is about
50%.

We now briefly study the evolution of the inflaton ¢ under eq. (2.51) by means
of the analytical results presented above. We show that even a very approximate
analysis confirms the numerical result that indicates in g ~ 10® — 10'® the threshold
above which backreaction should be considered.

To begin on, the term (2.50) needs to be normal ordered. This gives eq. (1.28),
which, in terms of the Bogolyubov coefficients, evaluates to

(XX) = (Zfa)?, / &Pk [imﬂwﬂ +Re (a,B;kJ— ) “dﬂ>] . (2.52)

We see that (X X) vanishes for § = 0. This is obvious, since backreaction starts
only after fermions are produced. Some approximations can render eq. (2.52) more
manageable. First, we notice that the oscillating term in the exponential averages
to very small values the integral of the second term in square brackets. Second, we
see that k < |am| where By is significantly different from zero. From both these
considerations, the integrand in eq. (2.52) can be approximated (up to the sign
of m) by the occupation number |3|?, so that the whole effect is (approximatively)
proportional to the number of produced fermions.

The previous numerical analysis show that, for the values of ¢ for which the
backreaction is to be considered, its effects can be seen already in the first oscillation
of the inflaton field. Since we are only interested in estimating the order of magnitude
of q,, we thus concentrate on the first oscillation of ¢, neglecting the expansion of
the Universe in this short interval.

With all these approximations, eq. (2.51) rewrites

'y 107284 — 0, (2.53)

m|
where we have rescaled ¥y = ¢/¢o and we remind that the time is given in units
of mgl.
This equation is very similar to the one obtained in the bosonic case [16]. The last
term changes sign each time m = 0 and, when sufficiently high, forces the inflaton
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field to oscillate about the point ¢, at which the total fermionic mass vanishes. It
is also responsible for the increase of the frequency of the oscillations. To see this,
we assume that this term dominates over the second one of eq. (2.53) and we solve
it right after the first fermionic production at the time ¢,;. In the absence of the
second term, eq. (2.53) is obviously solved by a segment of parabola until the time
tey = ta + 2[y/(61)]/(¢%/#1071?) at which m vanishes again and the last term of
eq. (2.53) changes sign. As long as the second term of eq. (2.53) can be neglected,
the inflaton evolution proceeds along segments of parabola among successive zeros
of the mass m. The “time” duration of these segments is expected to be of the
same order of the first one, since the successive fermionic productions balance the
decrease of (X X) due to the expansion of the Universe.'®

The period of these oscillations can thus be roughly estimated to be T° ~
Q(t*g — t*l). We see that, for ¢ > 10° this period is smaller than the one that
the inflaton oscillations would have neglecting backreaction. Since this increase of
the frequency is the main responsible for the higher fermionic production, the result
gs ~ 10° can be considered our analytical estimate for the value of ¢ above which
backreaction should be taken into account.

This result, although obtained with several approximations, is in agreement with
the numerical one of the previous chapter.

13However, after the first part of the process, the production looses its efficiency and the expan-
sion of the Universe dominates. As we have sald, the term (XX) can then be neglected and the
inflaton starts oscillating about the minimum of the tree level potential.






Chapter 3

Leptogenesis and preheating

After the inflationary expansion, the Universe is practically empty of matter and
therefore it looks baryon symmetric. However, considerations about how the light
element abundances were formed when the Universe was about 1 MeV hot lead us
to conclude that a very tiny asymmetry between baryon and antibaryon existed at
that time. This asymmetry can be quantified to ng/s = (2-9) x 107!, where np/s
is the difference between the number density of baryons and that of antibaryons,
normalized to the entropy density of the Universe.

Until now, several mechanisms for the generation of the baryon (B) asymmetry
have been proposed (for a review, see for example [61]). Grand Unified Theories
(GUTs) unify the strong with the electroweak forces and predict baryon-number
violating interactions at tree level. In these theories, the out-of-equilibrium decay
of heavy Higgs particles can indeed explain the observed baryon asymmetry. In the
theory of electroweak baryogenesis, baryon number violation takes place at the quan-
tum level, caused by unsuppressed baryon-number violating sphaleron transitions
in the hot plasma [62].

Since B and L — where L is the lepton number — are reprocessed by sphaleron
transitions, while the anomaly-free linear combination B — L is left unchanged, the
baryon asymmetry may be generated from a lepton asymmetry [50]. Indeed, once
the lepton number is produced, thermal scatterings redistribute the charges and
convert (a fraction of) L into baryon number. In the high-temperature phase of the
standard model, the asymmetries of baryon number B and of B — L are therefore

proportional [63, 64]:
._, Sﬂg + 4?’LH
B=a(B-1I), o= (22ng n 13nH) ’
where ng is the number of Higgs doublets and n, is the number of fermion genera-

tions.
In the standard model as well as in its unified extension based on the group

SU(5), B — L is conserved and no asymmetry in B — L can be generated. However,

(3.1)

43
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adding massive right-handed Majorana neutrinos to the standard model breaks B—L
and the primordial lepton asymmetry may be generated by their out-of-equilibrium
decay. This simple extension of the standard model can be embedded into GUTs,
as in the case of SO(10). Heavy right-handed Majorana neutrinos are the key
ingredient to explain the smallness of the light neutrino masses via the see-saw
mechanism [65]. The presence of neutrino masses and mixings seems to be the most
natural explanation of the recent reports from the Super-Kamiokande and other
collaborations indicating the existence of neutrino oscillations. In light of these
considerations, the generation of the baryon asymmetry through leptogenesis looks
particularly attractive.

The leptogenesis scenario depends crucially on the mechanism that was responsi-
ble for populating the early Universe with right-handed neutrinos, and consequently
on the thermal history of the Universe, and on the fine details of the reheating
process after inflation. The goal of this chapter is to discuss several production
mechanisms of heavy right-handed neutrinos in the Universe, to compare them and
to identify the regions of the appropriate parameter space where the production
mechanism is efficient enough to explain the observed baryon asymmetry.

The simplest way to envision the reheating process after inflation is to as-
sume that the comoving energy density in the zero mode of the inflaton decays
perturbatively into ordinary particles, which then scatter to form a thermal back-
ground [66, 67]. It is usually assumed that the decay width of this process is the
same as the decay width of a free inflaton field. Of particular interest is a quantity
known as the reheat temperature, denoted as Try. This is calculated by assuming
an instantaneous conversion of the energy density in the inflaton field into radiation
when the decay width of the inflaton I'y is equal to H, the expansion rate of the
Universe. This yields

TRH jad \/Fqb]\/fp, (32)

where M, is the Planck mass.

The commonly-accepted assumption is that the heavy right-handed neutrinos
with mass My were as abundant as photons at very high temperatures. This as-
sumption requires not only that Try 2 My, but also that the heavy neutrinos are
abundantly produced by thermal scatterings during the reheating stage. This con-
dition, as we will discuss in the first section, significantly limits the allowed range
of neutrino masses compatible with leptogenesis.

There might be one more problem associated with the hypothesis that Try <
My in the old theory of reheating, and that is the problem of relic gravitinos [33,
34, 35, 36]. If one has to invoke supersymmetry to preserve the flatness of the
inflaton potential, it is mandatory to consider the cosmological implications of the
gravitino — the spin-3/2 partner of the graviton which appears in the extension
of global supersymmetry to supergravity. The slow gravitino decay rate leads to a
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cosmological problem because the decay products of the gravitino destroy light nuclei
by photodissociation and hadronic showers,thus ruining the successful predictions of
nucleosynthesis. The requirement that not too many gravitinos are produced after
inflation provides an upper bound! on the reheating temperature Try of about 108—
10" GeV, depending on the value of the gravitino mass (for a review, see [68]).
In the following, Ty will be therefore intended as the largest temperature allowed
after inflation from considerations of the gravitino problem.

In order to relax the limit on My imposed by the gravitino problem, we will
consider the possibility that the heavy neutrinos are produced directly through the
inflaton decay process. This is kinematically accessible whenever

My < my, (3.3)

where my is the inflaton mass. In the case of chaotic inflation with quadratic po-
tential, the density and temperature fluctuations observed in the present Universe
determine my and require My to be smaller than about 10'® GeV.

However, what is most interesting for us is the possibility that the right-handed
neutrinos are produced nonthermally at preheating.? As we have seen in the previous
chapters, fermions can be produced at preheating up to very high masses, even as
high as 10'® GeV. This can offer in principle an unique way to evade the limit
My < 10 GeV which was mandatory with perturbative production. We want
also to stress that the out-of-equilibrium condition is naturally achieved in this
scenario, since the distribution function of the fermionic quanta generated at the
resonance is far from a thermal distribution. We will show that the observed baryon
asymmetry may be explained by the phenomenon of leptogenesis after preheating,
with a reheating temperature compatible with the gravitino problem. As we will
see, this scenario can be successful even for to N masses as high as 10*® GeV.

This chapter is organized as follows. In section 3.1 we briefly review the leptoge-
nesis scenario. In sections 3.2, 3.3, and 3.4 we discuss leptogenesis with right-handed
neutrinos produced with the three different mechanisms listed above. A comparison
of the three different cases is finally performed in section 3.5.

3.1 Leptogenesis

The Lagrangian terms relevant for leptogenesis describe the interactions between
the massive right-handed neutrinos V, the lepton doublet £, and the Higgs doublet

1With this value, we do not consider bounds coming from the nonperturbative production [29,
30, 31, 32] since they are more model dependent.

2Preheating in connection with baryogenesis was already considered in ref. [19], where the
nonperturbative production of very heavy Higgs bosons inducing GUT baryogenesis is studied.
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H,
L:-NMHQ—%WMN+hd (3.4)

Here the Yukawa couplings h, and the Majorana mass M are 3 X 3 matrices and
generation indices are understood. We choose to work in a field basis in which M is
diagonal with real and positive eigenvalues ordered increasingly (M; < My < M3).
The mass matrix of the light, nearly left-handed, neutrinos is given by

m, = —hT M~ R, (H)?. (3.5)

The decays of the heavy neutrinos N into leptons and Higgs bosons violate lepton
number

N — H¢,
N — HE (3.6)

The interference between the tree-level decay amplitude and the absorptive part of
the one-loop diagram can lead to a lepton asymmetry of the right order of magnitude
to explain the observed baryon asymmetry, as has been extensively discussed in the
literature (for reviews, see refs. [69, 70]).

The interference with the one-loop vertex amplitude yields a CP-violating decay
asymmetry for V; equal to

ev = m};gxm [(h,,hf,)ljr f (%) , (3.7)
f(x)—_—\/z[l—(uz)ln (ﬁ‘”)] (3.8)

where, as customary,

I'(N — H¢) —T (N — HI)
T (N— HE)+T(N—HLE)

€ (3.9)

The absorptive part of the one-loop self-energy gives a contribution to the /V; asym-
metry which, in the case of only two-generation mixing, is given by

2
(honi) (nonl), LOME = M2+ DTS,
11 22

(3.10)
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Here T'y, is the total decay rate of the right-handed neutrino IV,

T = (h”/hi)ii v
Ny = Tl ;- (3.11)
The CP-violating asymmetry ¢g is enhanced when the mass difference between two
heavy right-handed neutrinos is small, although not smaller than the decay width.
The total CP asymmetry € has an involved dependence on the complete struc-
ture of the neutrino matrices h, and M. However, let us assume that the lepton
asymmetry is generated only at the decay of the lightest right-handed neutrino N;.
This hypothesis is satisfied if the N; interactions are in equilibrium at the time of
the N3 decay (erasing any produced asymmetry), or if N3 are too heavy to be
produced after inflation. As will be made clear in the following, this is a very plausi-
ble working assumption. In this case, the dynamics of leptogenesis can be described
in terms of only 3 parameters % : ¢, M, and

my = (huhl), (H)? /M. (3.12)

The parameter m;, which determines the relevant interactions of IV, coincides with
the light neutrino mass m,, only in the limit of small mixing angles, see eq. (3.5).

In the following we will be mostly concerned with the production mechanisms
of Np in the early cosmology. We will discuss a variety of these mechanisms and
identify, in the different ranges of M; and m;, the size of € required to generate the
appropriate baryon asymmetry, ng/s ~ (2-9) x 107**. Our results can be used to
check if specific particle-physics models for neutrino mass matrices are compatible
with the various leptogenesis mechanisms.

3.2 Thermal Production of the right-handed neu-
trinos

We start by considering the case in which the right-handed neutrino N; reaches
thermal equilibrium by scattering with the bath after the inflaton decay. The amount
of lepton asymmetry generated by the /V decay can then be computed by integrating
the appropriate Boltzmann equations [71, 72].

A measure of the efficiency for producing the asymmetry is given by the ratio
K of the thermal average of the INV; decay rate and the Hubble parameter at the
temperature T = M,

_I'm my

K= =
2H |7y, 2% 107% eV

(3.13)

H

3The other neutrino mass parameters come into play only for very large values of m;
(hyh}), (H)?/M; (i = 2,3), when the lepton-number violating interactions mediated by Na or

N3 can partially erase the lepton asymmetry.
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Here we have expressed the V; decay width, see eq. (3.11), in terms of the parameters
my and M; as

Ty = 2F
Nl-Z\/iw

For m; $ 2 x 1073 eV, K is less than unity and the decay process is out of equi-
librium when N; becomes non-relativistic. Under these conditions, the leptogenesis
becomes very efficient. Indeed, the produced baryon asymmetry approaches its the-
oretical maximum value obtained by assuming that each /V; in thermal equilibrium
eventually generates e baryons,

ng _135¢(3)a _3
(?)m = e =1x 10 (3.15)

my M2 (3.14)

Here a is defined in eq. (3.1) and g, counts the number of degrees of freedom (for
the standard model particle content, a = 28/79 and g, = 427/4).

For very small m;, K < 1 and N; decouples when it is still relativistic. At
temperatures T below M, the N; contribution to the energy density red-shifts like
matter and therefore py, /prota = (7TM1)/(49:T). Eventually N, matter-dominates
the Universe at a temperature

7 M,

Triom = ~ 92 x 1072 M;. )
d 1 0 X 1 (3 16)

However this can happen only if IV; does not decay beforehand. Since the decay
temperature is

I L omy 2 M, .
T, = 0.8~ /4\ /T M, = (10_6 eV) (1010 S ) 3X 0P Ge,  (317)

neutrino matter-domination occurs when

my <4x1077 eV. (3.18)

Under these conditions, the bulk of the energy of the Universe is stored in the non-
relativistic N;. At the time of decay, such energy density is converted into relativistic
degrees of freedom whose temperature coincides with T, given in eq. (3.17),

2
on, = Miny, = —g.T¢. (3.19)
30
This yields the following baryon asymmetry

n _ NN 37, _( my 1/2 5
2 =t =g = ) Bx 107 (3.20)
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In order not to reintroduce the cosmological gravitino problem one has to require
that the temperature T, after the right-handed neutrino decay is less than the max-
imum value allowed Trg. This implies

T 2
my < (%) 1072 eV. (3.21)

1

Therefore, the leptogenesis process is very eflicient also when Tgy is low enough to
suppress gravitino production.

For K > 1, the departure from thermal equilibrium is reduced, and leptogenesis
is less efficient. Larger values of € are now required. However, for m; ~ 1072 eV,
values of € of about 107° are sufficient to generate the appropriate baryon asymmetry.
Realistic neutrino mass mastrices can comfortably reproduce such values of €. Notice
that the prediction for the baryon asymmetry depends weakly on Mj, as long as
my is not too large [72]. This is because both the production and decay thermal
rates of V; at T' = M; depend only on m;, while the M, dependence arises from
lepton-violating H-£ scattering. '

Let us now turn to discuss how primordial thermal equilibrium of IV; can be
achieved. The first necessary condition is

M; < Tgrpg. (322)

This can be quite constraining, especially in view of the bound derived from the
disruptive gravitino effects on nucleosynthesis mentioned at the beginning of the
chapter. When the inequality (3.22) is not satisfied, one expects the number density
of the Ni-particles generated during the reheating stage to be quite small, making
this case marginal, as far as the generation of baryon number is concerned. We
would only like to mention here that such a number density depends upon the
fine details of the dynamics of the reheating stage itself. In particular, the reheat
temperature Tgry is not the maximum temperature obtained after inflation; the
maximum temperature is, in fact, much larger than Try [73, 74]. As a result, the
abundance of massive particles may be suppressed only by powers of the mass over
the temperature, and not exponentially.

A second condition for N; thermalization is derived from the requirement that
inverse decay or production processes of the kind EQ(Q,) — Nit (mediated by Higgs-
boson exchange) are in thermal equilibrium before NV; becomes non-relativistic. This
implies

my 21073 eV, (3.23)

This condition excludes the possibility of the most efficient leptogenesis with K < 1.
However, even if m; is somewhat smaller than the value indicated by eq. (3.23), a
sufficient number of Ny can be produced. Indeed, for m; 2 107° eV, values of € Z
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1079 can give rise to the observed baryon asymmetry. In the case of supersymmetric
models, the constraint can be even less stringent [75], and values ¢ 2 107°
sufficient for m; 2 1078 eV. '

The constraint on m; from thermalization can be evaded if new interactions,
different from the ordinary Yukawa forces, bring N; in thermal equilibrium at high
temperatures. For instance, one could use the extra U(1) gauge interactions included
in SO(10) GUTs. These interactions can produce a thermal population of M if, at
I'=Tkgg,

169 aZyr T°

(ff 2 = NN) = =0

> H. (3.24)
This requires that the mass of the extra gauge boson Mz should be close to Tgy
and significantly lower than the GUT scale,

T 3/4
]VIZI < (Tdi%\—/-) 4 x 1011 GeV. (325)

3.3 Production at Reheating

Since it is very likely that the short period of preheating does not fully extract all
of the energy density from the inflaton field, the Universe will enter a long period of
matter domination after preheating where the dominant contribution to the energy
density of the Universe is provided by the residual small amplitude oscillations of
the classical inflaton field and/or by the inflaton quanta produced during the back-
reaction processes. This period will end when the age of the Universe becomes of
the order of the perturbative lifetime of the inflaton field. At this point the Universe
will go through a period of reheating with a reheat temperature Try given by the
perturbative result in eq. (3.2).

Let us suppose that the inflaton couples to IV;, either directly or through ex-
change of other particles. In this case, the inflaton decay process can generate a
right-handed neutrino primordial population. The condition in eq. (3.22) is replaced
by the weaker constraint

M1 < My, (326)

where my is the inflaton mass.

The fate of the right-handed neutrinos produced by the inflaton decay depends
on the parameter choice. If M; < Ty and m; 2 1073 eV, the Yukawa couplings are
strong enough to bring N; into thermal equilibrium, and leptogenesis can proceed
as in the usual scenario described in the previous section.

Let us now assume that the Yukawa couplings are much smaller, and that the
right-handed neutrino decay temperature in eq. (3.17) satisfles 7. < Try, t.e. my <
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(Trer/M;)*1073 eV. After reheating, the N; behave like frozen-out, non-thermal,
relativistic particles with typical energy En, ~ mgy/2. The N; population will
become non-relativistic at a temperature Tygr = Try M1 /Ep,. At this moment, the
energy of the Universe is shared between the radiation and the NV; component, with
a ratio of the corresponding energy densities which has remained constant between
Try and Tivr,

o, - P (3.27)
PR T=Typ PR | T=Try
7T2 m
PRIT—1py = EQ*TJ%H PN ey, = Enynn, = ‘chb%- (3.28)

Here ny is the inflaton number density just before decay, obtained by requiring
energy conservation
71_29*,1—‘}!%}‘{

and By describes the average number of Ny produced in a ¢ decay. Below Tyg,
the NV; density red-shifts like matter and eventually dominates the Universe at a
temperature

B M,
Taom = ————— | — | Try. .
‘ (1= By/2) (m¢> i (330)
Therefore, if
By \°f T \°[10% GeV)? S
1 .
my > (1 — B¢/2> <1ow AT - x 107° eV, (3.31)

then 7T, > Tgom and N; decays before dominating. In this case, the baryon asym-
metry is determined to be
np nn, 3 ea B¢, TRH

s s T A= By 2Dmy (8.32)

If the inequality (3.31) is not satisfied, NV; matter-dominates the Universe and we
recover the baryon asymmetry result in eq. (3.20).

A necessary condition to be satisfied is that lepton-number violating interactions
mediated by N; (i = 1,2, 3) exchange are out of equilibrium at the temperature of
Ny decay,

4
Tar==GmiT’ <H atT=T, (3.33)
’/T
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where T, is given in eq. (3.17). This implies

2
1012 GeV\%® 1012 GeV\? (2 x 1073 V2
= ') pi1ev d < 2 eV.
™ ( M, ) ° . ™ ( M, > Zizz,s m )

(3.34)

Finally, we discuss the case T, > Ty, i.e. my > (Try/M1)*1073 €V, in which
Ny decays immediately after it is produced. In this case, the baryon asymmetry
is still given by eq. (3.32), but the out-of-equilibrium condition of lepton-violating
interactions has to be imposed at T' = Try. Therefore, eq. (3.34) is replaced by

10" Gev') '/
m; < (——e) 3eV, i=1,2,3 (3.35)
Try

"The combination of the bounds shows that lepton-violating interactions do not give
severe constraints on the parameters.

3.4 Production at Preheating

As we have seen in the previous chapters, heavy fermions are efficiently produced in
a non-thermal state during the preheating stage. We can now apply those results to
the case in which the produced fermions are the right-handed neutrinos from which
leptogenesis originate?. In the previous investigations, we have tacitly assumed that
the heavy fermions were stable. Of course, the parametric resonance is affected by a
nonvanishing decay width of the N;. However, contrary to what happens for bosons
where the presence of a large decay width removes the particles from the resonance
bands rendering the preheating less efficient [20], for fermions the presence of a
decay width might be even beneficial. Indeed, for stable right-handed neutrinos
the distribution function n(k) is rapidly saturated to unity and further particle
production is Pauli-blocked. However, if the decay width is large enough, the right-
handed neutrinos may be produced at each inflaton oscillation when m(t) ~ 0 and
then decay right away. This will give rise to a certain amount of lepton asymmetry
at each inflaton oscillation until the total mass (1.2) stops vanishing; the lepton
asymmetry would be generated in a cumulative way. Strictly speaking, however,
the calculation of fermion preheating presented in the previous chapters applies
only to the case in which the right-handed neutrinos have a decay lifetime larger
than the typical time-scale of the inflaton oscillation my*

10'° GeV 2( o
I, 10 GeV

Ty Smy = my< ( ) 8 x 1073 eV. (3.36)

4To be exact, with respect to the previous calculation the production is reduced of a factor of
2 since right-handed neutrinos are Majorana fermions.
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The right-handed neutrinos produced during preheating may annihilate into in-
flaton quanta. This back-reaction will render the final right-handed neutrino abun-
dance smaller and therefore leptogenesis more difficult. Imposing that the back-
reaction is negligible requires I'y ~ ny,04 S mg, where o4 ~ g*/(4wM;)?. Since
the energy spectrum of the right-handed neutrinos is dominated by the maximum
momentum generated at the last inflaton oscillation, we assume that the number
density of right-handed neutrinos is equal to the freeze-out value

—9 7/2
s o Ay (3.37)
M,

with L = [In (¢"*mg/my,)] as follows from eq. (2.47), and we obtain

Ml 5/6 B
Py < Mg = g< 10% (m) L 1/3 . (338)

One should also be sure that the number density of the right-handed neutrinos
is not depleted by self-annihilations before they decay. This requires

1/3 M 3/2
5.100 (™ et S -1/3 _
La<Twm = g<510° (575 0) " (g Gev) * (3.39)

Suppose now that the right-handed neutrinos V; decay before the inflaton energy
density is transformed into radiation by perturbative processes. This occurs when
I'y, > I'y, which implies

T 2
my > <—]\—1/5"[-1“1> 1x107% eV, (3.40)

A crucial point is that, after the generation of non-thermal right-handed neutrinos
at the preheating stage, the ratio of the energy densities of N; and inflaton quanta

remains constant: pn,/py = (pn/Ps)pn, Where (pn,/py)pn is the tatio generated
at the preheating stage. Since the energy density of the Universe is dominated by

inflaton oscillations, after preheating we obtain

SH2M?
P, = (f’iv—) e (3.41)
P ph 8

The analytical results of the previous chapter (2.47) indicate that

p my \ 2 gt
(_N_) ~ 10712 (___> L for MysLZ m, (3.42)
‘ Py ph Mg 2

e



54 Chapter 3. Leptogenesis and preheating |

At iy, ~ F;,i the right-handed neutrinos decay and the energy density py, is con-
verted into a thermal bath with temperature

2

7r —
36%114 = PNy, (343)

where py, is computed at H = I'y,. Using egs. (3.41) and (3.42), we find

9/8
~ . g \Yt/ my Y2 M 1/4
T-2-10“CeV (55)  (jgrew) \toweev) L G4

Before the inflaton decays, this thermal bath never dominates the energy density
of the Universe since py; < pp at H =~ I'y, and the energy density in the inflaton
field p4 is red-shifted away more slowly than the radiation. Notice that at this time
the asymmetry is still in the form of lepton number since the sphalerons which are
responsible for converting the lepton asymmetry into baryon asymmetry are still out-
of-equilibrium at T = T. One might be worried that, since T is usually larger than
Try, too many gravitinos are produced at the stage of thermalization of the decay
products of the right-handed neutrino. However, one can estimate the ratio ng//s
after reheating to be of the order of 107'5(g/10'°)%/2 (Try /10" GeV), which is quite
safe. However, we have to require that the lepton-number violating processes within
the thermal bath at temperature T are out-of-equilibrium in order not to wash out
the lepton asymmetry generated by the right-handed neutrino decays. Therefore,
we demand that '

TarL = —%G%m??ﬂ <H atT= T and at H = T'y. (3.45)
T
This implies
_ 1010\ 3% 71015 GeV\'™/**
my; < 10 2ev (—q—-) (T) L~3/10 . (3.46)

2
1010\ 32 /1015 GeV\** [2 x 10~ eV?
m, < 6x107° eV <—-) (——————Me ) 22 ) L¥33.47)
q 1 Zi:?,fimi

At H 5 Ty, the ratio ny/ng keeps constant until the time 4 ~ I‘;l when the
inflaton decays and the energy density in the inflaton field pg(t4) is transferred to
radiation. After reheating we obtain the following lepton asymmetry to entropy
density ratio

(3.48)

nL _ 3nr Try _ 3 € Try (PM)
s 4py(te) 4M \ pp ) on
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Using eq. (3.42), the baryon asymmetry can be expressed as

' 1/2
np _a. _7 TRH 1015 GeV q
s 31077 (1010 GeV) ( M, L (1010) ' (349)

The result in eq. (3.49) shows that the preheating production mechanism can lead
to a successful leptogenesis even for M as large as 10'° GeV, if eg ~ 105. Values of
q as large as 10 correspond to a perturbative coupling between NN; and the inflaton
g” ~ 0.4 and are compatible with the constraints in eqs. (3.38) and (3.39). Values
of € of the order of 10~ are quite large, but can be obtained with realistic neutrino
mass matrices. For values of M; so close to the GUT scale, we expect that all
the right-handed neutrino Majorana masses are comparable in size. Moreover, the
atmospheric neutrino results, together with the requirement of perturbative Yukawa
couplings, indicate that at least one Majorana mass is less than about 8 x 10 GeV.
This situation of comparable Majorana masses and some large Yukawa couplings
naturally leads to large values of e. Also, notice that the out-of-equilibrium condition
is automatically satisfied in the preheating scenario for all 3 right-handed neutrinos,
in a large range of parameters.

Let us finally consider the case in which N; decays after the reheating process
and the inequality (3.40) is not satisfied. Again, it is important to establish whether
N; dominates the Universe before decaying. Since the inflaton energy density is
converted into radiation and the NV, are non-relativistic, the temperature at which
pn, dominates is given by

Toom = ('DM) Try. (3.50)
Pe ph

Therefore, for T, > Tyom, i-e. for

10" GeV Ter \2/ g \2
1 —12 2 ]
my > 10 eV( M, > (1010 GeV> <1010) L (3:51)

the estimate for the baryon asymmetry in eq. (3.49) is still valid. Otherwise, for
T\ < Tyorm, we obtain the result in eq. (3.20). Notice that, in this case, the constraint
T. < Try is automatically satisfied.

3.5 Comparison of the Different Production Mech
anisms

We want to compare here the different mechanisms discussed in this section for lep-
togenesis from N; decay. We summarize their most important features and estimate
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the size of the CP-violating parameter € necessary to reproduce the observed baryon
asymmetry.

Thermal production. This is the right-handed neiitrino production mecha-
nism usually considered in the literature for conventional leptogenesis. In the range
1073 eV < mq < 1072 eV (or 1078 eV < my < 1072 €V in the case of the minimal
supersymmetric model) and for M; < Tgrg, the thermal production of unstable N is
efficient, and values of € in the range 10~7-107° can account for the present baryon
asymmetry. The boundaries of the allowed region of neutrino mass parameters are
determined as follows. For small values of m, the NV; production rate is suppressed
and larger values of € are required. For large m,, the Yukawa couplings maintain
the relevant processes in thermal equilibrium for longer times, partially erasing the
produced asymmetry. The values of M; are limited by the reheat temperature after
inflation Tgy, which in turn is bounded by cosmological gravitino considerations to
be below 108-10% GeV.

Production at reheating. If V; is directly or indirectly coupled to the inflaton,
the decay of the small amplitude oscillations of the classical inflaton field at the
time of reheating can produce a right-handed neutrino population. This production
mechanism enables us to extend the leptogenesis-allowed region to neutrino mass
parameters which correspond to non-thermal /V; populations. In particular, M; can
be as large as my =~ 10'® GeV. The observed baryon asymmetry is reproduced for
€ ~ 1078(10'° GeV/Try)(1071/B,), where By is the average number of N; produced
by a single inflaton decay.

Production at preheating. The non-perturbative decay of large inflaton os-
cillations during the preheating stage can produce a non-thermal population of very
massive right-handed neutrinos. In this case, the range of M; can be extended to
values close to the GUT scale, while m; is bounded by the condition that lepton-
number violating interactions are out of equilibrium after the V; decay, see eq. (3.47).
A successful leptogenesis requires € ~ 1074(10%0 GeV /Try)(M1/10" GeV)(10'%/q),
where ¢ is related to the initial inflaton configuration and is defined in eq. (1.19).

In conclusion, leptogenesis provides an interesting and simple way to explain
the present cosmic baryon asymmetry. The study of the different mechanisms in
which it can be realized provides us with precious information on the neutrino mass
parameters and the early history of the Universe.
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The idea of extra dimensions is not new. It dates back at least to the works by
Kaluza [76] and Klein [77] in the early twenties, in an attempt to unify gravity and
electromagnetism. More recently, physicists have got accustomed to it from string
theory. As a standard lore, these extra dimensions have been assumed compactified
on some manifold with the size of the order the inverse Planck mass, i.e. the most
natural scale for a theory of gravity. Such small dimensions are of course unaccessible
at low energy and do not play any relevant phenomenological role apart maybe at
Planck time.

The issue of extra dimensions entered a rich new phase about two years ago since
the work [78] by Arkani-Hamed, Dimopoulos, and Dvali, where it is pointed out that,
having no test of gravity below the millimeter scale, we do not really need such small
compactification radii. Of course, compactification manifolds as large as fractions
of millimeter can exist provided the whole space (usually called bulk) is accessible
only to gravity, while Standard Model fields are confined on 3 dimensional walls.
The possibility of matter and gauge fields constrained on a submanifold is again
very common in strings. This situation naturally arises from (Dirichlet) boundary
conditions which force the ends of open strings to live on lower dimensional subspaces
(branes in string terminology) °. In addition, some field theoretical mechanisms for
localizing fermions [80, 81], scalar, and gauge fields [82, 83] are also known.

Both string and quantum field theory thus provide this class of models (we will
sometimes simply refer to them as to brane models) of some fundamental motiva-
tions. However, the great attention that brane models have gained in the last two
years is due not so much to possible motivations from particle physics, but rather to
the new phenomenological implications of the scenario proposed in [78]. In this work,
the fundamental scale M of gravity is assumed to be very close to the electroweak
one. This choice seems to offer a very natural solution to the hierarchy problem.
The different strength of electroweak and gravitational interactions is then justified
by the existence of extra dimensions, where only the latter propagate. This fact can
be easily explained from flux considerations. Denoting by R the size of the extra
space (assuming all the extra dimensions of comparable size), we have

M2 ~ M*™ R™ (3.52)

The measured weakness of gravity is thus achieved at price of very large (large
compared to the “more orthodox” expectation My ', but also compared to M~ h
extra dimensions. For M ~ 1 — 10 TeV, even n = 2 is in principle possible, since
it requires R to be some fraction of millimeter; the size R then gets smaller ¢ with

SFor a review, see [79].
Just to be quantitative, inserting the measured value Mp ~ 10'° GeV in eq. (3.52) yields to

(3.53)

lTeV)HZ/"

R ~ 10-17+30/n
10 cm 7
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increasing n.

The first and most obvious consequence of this scenario is a modification of the
Newton law at distances smaller and comparable to R. This has lead to the proposal
. of several experiments to lower the distances at which gravity has been probed to
date [84, 85, 86]. There are, however, several other possible signatures. Most of
them are due to the Kaluza-Klein modes of the graviton. The possible detection
of these modes is not due to the strength of their interaction — being modes of the
graviton they interact only gravitationally — but to their large multiplicity. As an
example, R ~ 0.1 mm corresponds to a Kaluza-Klein splitting of 10=2 eV. Present
and future accelerator searches can thus pose limits on M or support the validity
of this scenario, as it is widely discussed in the recent literature (for a short review,
see [87]). In addition, brane models can have consequences of great relevance also
for astrophysics and cosmology. In most of the standard cosmological scenarios,
very high energy densities are considered. Loosely speaking, it is sometimes said
that cosmology may be our unique possibility to discuss and “probe” physics close
to the Planck scale. More prudently, an accepted (however evasible) bound for the
energy density after inflation is given by the gravitino problem, but it is still as high
as Tag S 10% — 10° GeV. [33, 34, 35, 36 '

The scenario proposed in [78] drastically changes this picture, since it consider-
ably lowers the bound (M ~ TeV rather than Mp) above which quantum gravity
manifests and our present description of spacetime becomes meaningless. The limit
Teg < M which follows from this consideration is further lowered by the phe-
nomenological ones [88], again related to the Kaluza-Klein modes of the graviton.
These modes are massive from the four dimensional point of view, and hence their
energy density redshifts only as the one of matter. Moreover, they are very long
leaving, since - due to momentum conservation in the bulk - they can decay (again
with a gravitational width) only in proximity of the branes. Both these facts render
them very serious obstacles for a successful cosmology. Not too overproduce them,
stringent bounds must be imposed on the reheating temperature. These limits can
accommodate the minimal requirement of standard primordial nucleosynthesis (typ-
ically Try S few MeV), but pose several problems for baryogenesis.

However, the strongest objection moved to the scenario [78} does not come from
the phenomenological bounds, but it is linked to a possible new appearance of the
hierarchy problem. This is due to the very large values required for the size R of the
extra dimension. While naturalness would have suggested R ~ M ™!, the measured
Mp can be achieved in [78] only for RM > 1. Asit is clear from eq. (3.53), for n = 2
we need M R ~ 10'®  which is the same distance between Mp and the Tev scale.
Only for n = 30 we can have M R ~ 10. The hierarchy problem thus translates into
the question of how the extra space can be compactified on a manifold with such an
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unnaturally large size. The situation is considerably improved in the proposal [89] by
Randall and Sundrum, which drove still more attention towards brane models. The
RS model [89] has only one extra dimension and, due to the presence of (accurately
chosen) vacuum energies in the bulk and on two branes, a nonfactorizable geometry:
the metric is again Poincaré invariant in the 4 usual dimensions, but it has a crucial
exponential dependence — the so called warp factor — on the extra coordinate. The
only fundamental scale of the model is assumed to be the observed Planck mass.
However, the warp factor present in the metric redefines the physical scales on one
of the two branes. Since this redefinition has an exponential dependence on the size
R of the extra~-dimension, the TeV scale can be achieved even for R ~ 70 My L

The first chapter of this second part is introductory to brane models, and we
analyze there in more details what we have discussed so far. Chapters 5 and 6
are then devoted to some more specific features of these scenarios. In chapter 5 we
discuss some of the physics of the branes. From a field theoretical point of view, this
discussion must start from the mechanisms which render brane themselves possible,
i.e. which force matter and gauge fields to live only in a limited portion of the total
space. We review the first and most known of these mechanism, due to Rubakov and
Shaposhnikov [80]. We discuss some implications that this mechanism could have,
when more matter fields are considered [90] and when a temperature is switched
on [91]. This may have interesting consequences for baryogenesis which, as we
already remarked, is a very difficult challenge for brane models. We stress that,
although baryogenesis is a very standard topic in cosmology, the proposal described
in chapter 5 is “intrinsically extra dimensional”, i.e. it relies on physics peculiar to
models with extra dimensions. Since brane models present more phenomenological
problems (at least in cosmology) than the standard ones, it is very interesting to
investigate if they can also provide some solutions which cannot be formulate in the
ordinary four dimensions. The analysis of the baryogenesis scenario [91] that we
present in chapter 5 should be considered only one example in this regard.

In chapter 6 we finally discuss the cosmological evolution of brane models, par-
ticularly referring to their expansion law in presence of matter on the branes. Con-
trarily to chapter 5, the specific shape of the branes is here unimportant, and they
are assumed as idealized (infinitely thin) objects. Following the chronological order,
we review some of the works which have lead to a gradual understanding of this
issue. The first of them, in agreement with the first analysis of [92], concluded that
both the scenarios [78] (with two walls and only one extra dimension) and [89] meet
serious problems in reproducing standard cosmological evolution. This is due to a
particular fine-tuning which must be imposed on the energy densities and pressures
of the matter on the two branes. The origin of this fine-tuning was fully understood
in the works [93, 94], where it was shown that it comes form the requirement of a
static extra-dimension in absence of any stabilization mechanism. Indeed, matter on
the two branes generates an effective potential for the field describing the dynamics
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of the extra space (the so called “radion”). Apart from accidental cancellations (i.e.
apart from the fine-tuning first considered in [92]), this potential is minimized when
the edges of the extra dimensions (where the two branes are fixed) move apart at
infinity. It is therefore clear that standard four dimensional evolution cannot be
achieved unless the extra space is stabilized by an additional mechanism.

As a first approach, one can perform a model independent analysis simply as-
suming that the equation which governs the dynamics of the radion is satisfied for a
static configuration. This assumption is justified for matter energy densities below
the scale of radion stabilization, which can be taken - at least in principle - very close
to the fundamental scale of the system. For what concerns the Randall-Sundrum
scenario [89], this has been done in ref. [95]. It is there shown that there exists a value
for the energy densities below which the physical quantities are clearly identified and
the system evolves as a standard (Friedmann-Robertson-Walker) four dimensional
one. This value turns out very close to the physical TeV cut-off of our brane [95].
Alternatively, one can consider some specific stabilization mechanism and discuss
the (more complicated) full set of Einstein equations of the system. This analysis
would be relevant for scales comparable to the one of the stabilization mechanism
and should give quite model dependent results. In our presentation we choose the
first approach and we discuss the results of the work [95]. Just as an “existence
proof”, we finally review the simple Goldberger and Wise mechanism [96], which
can ensure the stability of the radion in the Randall-Sundrum model.



Chapter 4

Large vs. warped extra dimensions

We devolve this chapter to an introduction to brane models. One of its main goals
is to make a clear distinction between models with large extra dimensions and fac-
torizable geometry [78], and models a & Randall and Sundrum [89], where the extra
space has a small size and cannot be factorized in the metric of the system. These
two scenarios, although introduced with the same aim to provide a solution to the
hierarchy problem, have indeed a very different geometry, which results in distinct
and clear signatures. Also the ways in which they solve the hierarchy problem are
quite different. Following the chronological order of their proposal, we first discuss
models with large extra dimensions. In these scenarios only the electroweak scale
is assumed to be the fundamental one, and the observed weakness of gravity is due
to the fact that gravity — contrarily to the other interactions which are confined to
a four dimensional subspace — can propagate in the whole space. In this way the
physical cut-off of the Standard Model is assumed not too far from its natural scale,
and this automatically solves the hierarchy problem. This is discussed in the first
section of this chapter.

For the scenario [78] to sufficiently suppress gravity, the extra dimensions have
to be quite large, especially if they are few in number. In the extreme case of
two large extra dimensions, their size has to be slightly smaller than one millime-
ter. Since the main consequence of this scenario is a modification of gravity at
distances comparable to the size of the extra space, one would first guess that they
are easily phenomenologically excluded. However, as it was pointed out in the orig-
inal work [78], we do not have any knowledge of gravity at distances smaller than
fractions of one millimeter and this leaves open even the case n = 2. There are
anyhow several other phenomenological bounds that one has to consider, coming
from accelerators, astrophysics, and cosmology. Almost all of them are due to the
possibility to excite the Kaluza-Klein modes of the graviton. Although these modes
are coupled only gravitationally, their Kaluza-Klein splitting can be even as small
as fractions of eV and this large molteplicity may in principle allow us to observe
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them. We will discuss these bounds in section 2. We will particularly concentrate
on possible cosmological consequences. The main result is that standard cosmol-
ogy can be reproduced, provided the extra space is stabilized by some (unspecified)
mechanism and provided the reheating temperature does not exceed very stringent
bounds. These strong limits can be made compatible with nucleosynthesis, but very
hardly allow successful baryogenesis scenarios. This will be also discuss in the next
chapter.

The main objection moved to the scenario [78] is that the size of the extra
dimensions must be much higher than the inverse of the fundamental scale. This
can open a new hierarchy problem, since stabilizing the radii of the extra space at
such high values may be unnatural. The Randall-Sundrum scenario [89] offers a
better solution in this respect. We will discuss it in section 3. In this model, the
only fundamental scale is assumed to be the observed Planck mass, but the presence
of vacuum energies strongly modifies the geometry of the system. Usual Poincaré
invariance is recovered in the observed space, but the physical scales result to be
ezponentially dependent on their position on the extra dimension (in this case, only
one extra dimension is sufficient). This exponential dependence allows to get the
observed Tev scale from the fundamental Mp for a size of the extra dimension not
too larger than My '. The scenario [89] does not involve any light Kaluza-Klein
mode and it meets much less severe constraints then the previous one. However,
also here there is a serious problem related to the fact that we are thought to be
confined on a negative tension wall. To overcome this difficulty, several other models
with a very similar geometry to [89] have been proposed. This new class of models
has gained strong interest by itself, and some of these proposals do not have any
connection to the hierarchy problem.

4.1 The hierarchy problem and large extra di-
mensions

The scalar sector of the Standard Model suffers from the well known hierarchy prob-
lem [97]. It arises when one calculates the corrections to the Higgs mass. Already
at one loop, one gets
’ 1

‘ 8 72
In the above expression A% and M\? are, respectively, the self-coupling of the Higgs
and its coupling to the top quark (the minus sign arising from the fermionic loop). A
has instead to be understood as the physical cut-off of the theory, which is expected
to be the Planck scale (10'® GeV) or the GUT scale (10'° GeV).

Then the theory contains two very different scales, namely A and the electroweak
one about which (from unitarity reasons) the Higgs mass is forced to be. Thus, in the

i dm2 = (M — A7) A® +log. div. + finite terms. (4.1)
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expression for the total Higgs mass (tree level value plus loops plus counterterm) a
strong fine-tuning has to occur in order to cancel the quadratic divergence appearing
in the above eq. (4.1) and to leave as a result the electroweak scale. What is worse,
this adjustment must be made at each order in perturbation theory.

The most common solution to the hierarchy problem is offered by supersymme-
try (for a review, see for example [98]). The presence of superpartners in the loop
diagrams cancel indeed the quadratic divergences, and one is left only with loga-
rithmic divergences proportional to the susy breaking scale (that is the difference of
the masses of the superpartners). The conventional alternative to supersymmetry is
offered by technicolor (for a recent review, see [99]), where fundamental scalars do
not exist.

The underlying idea common to both supersymmetry and technicolor is the
presence of an effective theory beyond the standard model which reveals itself at
about the TeV scale. It is then assumed that either a “big” desert exists up to
the Planck or the GUT scale, or that some new theories emerge at intermediate
energies, maybe explaining some other problems as the origin of flavors and the
different Yukawa couplings.

A completely new approach is suggested in the work [78], where the TeV scale
is assumed to be the only fundamental one and the weakness of gravity (or, in
other worlds, the greatness of Mp) is explained with the presence of large extra
dimensions. Let us suppose that n extra dimensions are compactified on a n—torus
with radii of comparable size ~ R. If gravity can propagate in the whole bulk, two
test masses m; and my placed within a distance r < R will feel a gravitational
potential dictated by the Gauss law in (4 + n) dimensions

My Moy 1
)~ 2 , forr< R, 4.2
O i, e )

where M(s1n) is the fundamental scale of gravity.

On the other hand, if the masses are placed at distances r > R, their gravita-
tional flux lines cannot continue to penetrate in the extra dimensions, and the usual
1/r potential is obtained,

my Mo 1
Vir)~ ——— = f R. ;
(r) M’(Tfn) T orr > (4.3)

Thus, one observer which probes gravity at distances larger than R would consider
the quantity

Mg ~ Miin R (4.4)

as the fundamental scale of gravity.
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As we said, the hierarchy problem is automatically solved if the fundamental
M44n) is assumed to be the electroweak scale and R is chosen to reproduce the
observed Mp . This yields '

1 T 1+2/n
eV ) . (4.5)

R ~ 10~17+30/11 cm (
M(4+n)

It is remarkable that, for M,y not too much larger than TeV, even the case
n = 2 is in principle acceptable, since it can lead to R $ 0.1 mm. In the next section
we will review some cosmological bounds that apply on this scenario.

4.2 Cosmological bounds

The framework described in the previous section drastically modifies physics above
the TeV scale, where it presents a new and rich phenomenology. Because of this, the
fact that we do not have so far any evidence of extra dimensions can be translated
into bounds on this class of models, as several analyses performed in the last two
years show.

The main new feature of this scenario is the presence of the Kaluza-Klein modes
of the graviton. From the four dimensional point of view, these modes interact
gravitationally with matter but present a very strong molteplicity, especially when
the number n of extra dimensions is small (for example, for M ~ 10 TeV the Kaluza-
Klein splitting is about 1072 eV for n = 2, 0.3 MeV for n = 4, and 0.1 GeV in the
case n = 6). The virtual exchange of these new particles is expected to strongly
modify the Standard Model cross sections [100]. The amplitude for the exchange
of the infinite tower of gravitons naively diverges, and it is typically regularized
considering only the ones with mass below M4 ). For what concerns the production
of real gravitons [100], the main signature would be missing energy (from the point
of view of 4 dimensional observes) carried away into the bulk.

These new features can be used to get several bounds on this scenario, from
accelerator physics, astrophysics and cosmology. For what concerns accelerators,
current experiments already force M(4,,) to be greater than about 1 TeV, while an
improvement of about one order of magnitude is expected at LHC, depending on the
number of extra dimensions. We do not discuss these bounds here, and we rather
refer the interested reader to the review [87] and to references therein. The most
stringent bounds of astrophysical origin come instead from the supernova SN1987A.
As discussed in ref. [88], nucleon-nucleon brehmstrahlung in the core of supernovae
leads to graviton overproduction unless the limit

M{g1ny 2 10(7450F18)/(n42) Ty (4.6)
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is respected. This bound is relevant only in the n = 2 case, where it reads Mg 2
30 TeV.

Let us now discuss in more details the bounds of cosmological origin [88]. Since
the fundamental scale of gravity is now M(4y,), rather than the Planck mass, it is
reasonable to assume that a field theoretical description of the Universe is mean-
ingful only below this temperature. Going at lower temperatures, one finds that
the evolution of the Universe strictly depends on the mechanism responsible for the
stability of the extra dimensions. We will discuss this issue in chapter 6. For the
moment we only assume that there exist a (so called) “normalcy” temperature T,
below which the sizes of the extra dimensions are fixed and the Universe evolves as a
four dimensional one. In the rest of the section we show that 7, cannot exceed some
upper bounds, to avoid overproduction of the Kaluza-Klein modes of the gravitons.

The rate of production of gravitons from matter on the brane can be easily
estimated. First of all, the production must be suppressed by the usual factor
1/M, &ﬁl) . Then, from dimensional considerations, the rate of production of (4 + n)
dimensional gravitons produced per relativistic species (“photons”) on the wall is
given by

d ner s

It thus follows that the total number density of gravitons produced during a Hubble
time starting at temperature 7, is ‘
’I'Lgmu T:’ +1]\/_[p

~ n-4-2
Tly M (44m)

(4.8)

On the contrary, gravitons can be very long-living, since they cannot decay in
the empty bulk. This is because, as long as the momentum in the extra dimensions
is conserved, the graviton (which is massless from the (4+n) dimensional point of
view) cannot decay into two other massless particles. Of course, interaction with
the wall breaks translational invariance and allows momentum non-conservation in
the extra dimensions, but this requires that the decay takes place on the wall. Being
more quantitative, this interaction can only take place if the graviton is within its
Compton wavelength ~ E~! from the wall. The probability that this occurs in extra
dimensions of volume R is

Pgrav. nearwall ™~ (E Rn)_n . (49)

On the other hand, when the graviton is sufficiently close to the wall, the decay

into photons has again a width suppressed by 1/M ((ij)) )

En+3

1—‘nearwall ~ W (410)

(4+n)
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The total width T is given by the product of these two factors and it simply reads *

E3

(4.11)

Let us discuss the phenomenological bounds implied by these results. First of
all we must require 7gry < 1y at T = T,. Doing so, one assures that most of
the energy of the brane does not escape into the bulk and that the expansion rate
is indeed the standard one. From eq. (4.8), this requirement rewrites 77 Mp <
M(’}Jri) . A stronger related bound applies requiring that the produced gravitons do
not significantly affect the expansion rate of the universe during BBN. The energy
density in gravitons red-shifts away as R~3 rather than R™*. This is because, from
the four dimensional point of view, the gravitons produced at temperature 7' are
massive KK modes with mass ~ T'. Alternately, from the (4 +n) dimensional point
of view, while the graviton is massless, the extra radii are frozen and not expanding,
so the component of the graviton momentum in the extra dimensions is not red-
shifting. The ratio of the energy density in gravitons versus photons by the time of

BBN is then

Pgrav. I T* T:—HMP (4
Porav. ~ : : 12)
py BBNTIMeV M2
Therefore, to insure normal expansion rate during BBN, we require
M s42)
T, < 1067=9/(+2) VeV . {4dn) )
¢ 1TeV (4.13)

A stronger limit comes from the possible over-closure of the Universe by gravi-
tons. As follows from eq. (4.11), the lifetime of a graviton of energy E is

M3 100MeV \?
7(F) ~ —= ~ 10"%r - (———-————E ¢ > . (4.14)

The gravitons produced at temperatures beneath ~ 100 MeV have lifetimes of at
least the present age of the Universe. The ratio ngq,/n, which was constrained to
be 5 1 in the above analysis must be in fact much smaller in order for the gravitons
not to overclose the Universe. As we have mentioned, most of the gravitons are
“massive” with mass ~ T, from the 4-d point, and they dramatically over-close the

I This simple result could have also been understood directly from the four dimensional point
of view: the coupling of any Kaluza-Klein mode is suppressed by 1/M4), so the width for any
individual Kaluza-Klein mode to go into Standard Model fields is suppressed by 1/M(24) . The
result (4.11) then follows from dimensional analysis.
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Universe if their abundance is comparable to the photon abundance at early times.
The energy density stored in the gravitons produced at temperature 7. is

T+ My

Y=
‘A/[(Ll—i—n)

(4.15)

Pgrav ™~ T, - Ngray =

which then red-shifts mostly as R=2. The ratio Pyrav/T 3 is invariant. The critical
density of the universe today corresponds to to (perst/T°) ~ 3 - 10~° GeV. For the
gravitons not to over-close the universe, we therefore require for critical density at
the present age of the universe. This gives

]\{[(4—}—71)

T,( < 10(6n-—15)/(n+2) MeV -
' T

(4.16)
This limit is quite strong. Assuming M ~ 10 TeV, the temperature T, is bounded
by about 1.7 MeV, 0.3 GeV, or 2 GeV in the presence of, respectively, 2, 4, or 6
extra dimensions. In particular, we notice that the case n = 2 cannot be compatible
with BBN for a fundamental scale lower than the one chosen in this example.

As we see from eq. (4.14), not all the created gravitons survive until today, since
the one with higher energy have a longer lifetime. The strongest cosmological bound
on 7, comes indeed from possible distortions of the Cosmic Microwave Background
Radiation (CMBR) caused by the photon generated in the decay of those gravitons.
Photons produced between nucleosynthesis and recombination easily photodissoci-
ates the light elements produced in the former. For some period before recom-
bination, photon number changing interactions in the thermal plasma are out of
equilibrium, so photons from graviton decay produced at this time would generate
a chemical potential for the microwave background. Finally, also photons produced
after recombination would appear as a clear distortion of the CMBR. black-body
spectrum. We do not review the calculation of the bounds in the different cases,
but we refer the reader to the careful analysis of ref. [101]. We just include here
a figure taken from that work, where the final results are summarized. Although
slightly stronger than the ones given by eq. (4.16), these bounds exhibit the same
qualitative behavior than the ones obtained from the over-closure of the Universe.

In conclusion, we can say that at least the minimal requirement of a successful
nucleosynthesis (namely 7, > MeV) can be satisfied by this class of brane mod-
els, provided M4 is above the phenomenological and astrophysical bounds. We
remark that a crucial point for this to occur is that the size of the compact dimen-
sions is stabilized, as we will discuss in chapter 6. Due to the low upper bounds
on T, , baryogenesis appears instead as a much more challenging issue. Unless the
scale M(,44) is taken very high, sphalerons are out of equilibrium and electroweak
baryogenesis and leptogenesis ? are not viable options. This problem is discussed in

?Leptogenesis in these models is discuss in details in ref. [44], where it is shown that in principle
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Figure 4.1: Maximum allowed normalcy temperature Tren as a function of the funda-
mental scale mpj(n44) for different numbers n of large extra dimensions, taken from
the work [101].

ref. [101], where it is concluded that baryogenesis models in this scenario are gener-
ically quite contrived. This is essentially due to two distinct problems. The first
is that, due to the low allowed temperatures (and the consequent slow expansion
rate), having an out of equilibrium decay from which baryogenesis could originate
is a difficult task. Second, allowing baryon number violating processes, one has to
face the problem of proton instability, mainly due to the absence of an high mass
scale which suppresses these interactions. There is maybe a possible way out, which
relies on considering some baryogenesis models which are intrinsically extra dimen-
sional, that is which make use of some features peculiar to this scenario and do not
have them only as phenomenological bounds. In the next chapter we will present
one attempt in this direction [91], which considers the possible changes at finite
temperature of the solitonic background which localizes fermions. As we will show,
these changes may strongly modify the rates of baryon number violating interac-
tions, making baryogenesis in the early Universe compatible with proton stability

the leptonic asymmetry can be converted into baryonic one from out of equilibrium sphaleron
transitions. This requires T, to be greater than at least 5 GeV, which means for example M54
greater than about 10° TeV, 10% TeV, or 100 TeV for, respectively, 2, 4, or 6 extra dimensions.
In this regime, the sphaleronic interactions are of course exponentially suppressed and only a
tiny fraction of the lepton asymmetry can be reprocessed into a baryonic one. This requires the
generation of a large lepton asymmetry, which makes the scenario quite complicated.
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now.

4.3 The Randall-Sundrum model

In the previous section we have discussed the viability of models with large extra
dimensions versus several bounds of various origin. There is however another dif-
ficulty that it is worth stressing. As we have seen, one of the main proposals of
this scenario is to solve the hierarchy problem. To do so, the compactification radii
(assuming them of comparable size) must be sufficiently large to give rise to the
observed Mp. In particular, from eq. (4.4) it must be

RM = (]\/[ 2/n __ 1n32/n TeV 2

= (Mp/M)™"" =10 573 >1. (4.17)
From naturalness reasons, R should have been expected of the size M. However
from the above equation we see that for n = 2 we must require R M ~ 10'% that is
the same distance between the Planck and the electroweak scale. A value R M ~ 10
can be recovered only for more than 30 extra dimensions. Hence, one is typically
forced to compactify on very large extra dimensions (see [102] for some proposals
in this direction) and this — at least in principle — could reintroduce the hierarchy
problem in a new guise.

A consistent improvement can be achieved if the whole space has a non factor-
izable geometry, as the model [89] by Randall and Sundrum shows. In this model
only one compact extra dimension with two four dimensional branes at its edges
is considered. The two branes are placed at positions y = 0 and y = 1/2 in the
extra coordinate, and the orbifold symmetry y <> — y is imposed 2. Finally, vacuum
energies Ay, Vo and V; are included, respectively, in the bulk and on the two branes.
The total action is thus composed on the gravitational action in the five dimensional
bulk

1/2 R
Sgravity = /d4$/ dy\/@ {"‘5‘1‘;‘2‘ - Ab} (4.18)

1/2

plus the action of the two branes
Si= [ d'x\/-G; {£i=Vi} i=0,1/2. (4.19)

3This topology is strongly inspired by string theory. In the Hofava—Witten picture [103, 104]
of the nonperturbative regime of the Eg x Eg string theory, the string coupling is interpreted
as an eleventh compact dimension with a Zs symmetry that truncates the spectrum in order
achieve an A = 1 supersymmetry in 4D after compactification on a Calabi-Yau manifold. There
is good evidence [105, 106] that over a wide range of energies the theory behaves like a 5D theory
compactified on a Zy orbifold with two 3-branes, viewed as the remnants of the 10D hypersurfaces
where the Fg gauge groups were living.
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Figure 4.2: Schematic representation of the Randall-Sundrum static configuration.

In the above equations, R is the five dimensional Ricci scalar, £~ 3/? is the funda-

mental scale of gravity, while £; denotes the matter lagrangians on the two branes.
In the work [89], the Einstein equations of the model are solved when the contri-
bution of matter on the two branes is negligible with respect to the vacuum energies
(matter becomes nonnegligible when the cosmological expansion of the model is
considered. We will turn back to this point in chapter 6). It is then shown that a
static configuration is possible, provided the vacuum energy satisfy the relation 4

Ab 6 mg
0 1/2 o PR (4.20)
with my mass parameter.
This system admits indeed the metric
ds® = e mobobly  drtdz’ — bidy? | (4.21)

which is static and Poincaré invariant in the four coordinates z*. Notice however
the presence of the exponential factor (the so called “warp factor”) which renders
the metric nonfactorizable. This is quite different from the metric

ds? = n,dztds’ — b3dy? of the scenario [78], where the ordinary and the extra

4As we will discuss in chapter 6, the relation (4.20) sets to zero the effective cosmological
constant measured by observer on the two branes and it is quite analogous to the usual fine tuning
A =0 that one has to do’in standard cosmology.
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dimensions are well separated. As we now show, this exponential warp factor allows
the model we are describing to provide a better solution to the hierarchy problem
than the one discussed in the previous section.

The first step to see this is to to identify the gravitons with the massless gravi-
tational Auctuations about the metric (4.21). The latter are given by

ds? = e"™T@EM [, + Ry, (2)] dz¥dz” + T° (z) dy® . (4.22)

Here, hy, represents tensor fluctuations about Minkowski space and is the physi-
cal graviton of the four-dimensional effective theory. The compactification radius
by appearing in the solution (4.21), is instead the vacuum expectation value of the
modulus field, T'(z). At this stage this value is arbitrary and for this reason also
T (z) is a massless fluctuation of the system. However, as we will discuss in details
in chapter 6, it is crucial that the radius is kept fixed by some stabilization mech-
anism. We thus fix T (z) = by and we postpone to chapter 6 any consideration in
this regard. Finally, notice that in compactifying extra dimensions, one frequently
encounters vector zero modes from A, dz* dy fluctuations of the metric (that is the
original Kaluza-Klein idea), corresponding to the continuous isometries of the higher
dimensions. In the case there are no such isometries due to the presence of the two
branes. So all such off-diagonal fluctuations of the metric are massive and excluded
from the low-energy effective theory.

The four-dimensional effective theory now follows by substituting eq. (4.22) into
the original action. In particular, the curvature term now reads

1/2 b o
/d‘la:/1/2dyI—ﬁ%e_g"""b"ly1 V-G R (4.23)

where R denotes the four-dimensional Ricel scalar made out of

T (%) = T + hyw () (4.24)

Integrating the expression (4.23) over the fifth coordinate we get the effective
four dimensional Planck mass

1
2 —mg b
M = [1—emob] (4.25)

This result shows that Mp depends very weakly on by in the large mq by limit.
Contrary to the framework [78], where the fundamental scale was the TeV one,
the most natural choice suggested by eq. (4.25) is to assume both mg and £~ /2 of
the order the observed Planck mass, about 10*® GeV. Although the exponential in
eq. (4.25) has very little effect in determining the Planck scale, we now show that
it plays a crucial role in the determination of the visible sector masses.
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Let us consider the lagrangian for a field in one of the two branes. In order to
gain a physical interpretation, we need to know ° the coupling of the 3-brane fields
to the low-energy gravitational fields, in particular to the metric, g, (z). Everything
is transparent for fields on the zero brane, since there the warped factor evaluates
to one and we immediately recover Minkowski space-time. This is not the case on
the brane at y = 1/2. Let us indeed consider for simplicity the action for a scalar
field on the 1/2—brane

Sz D /d4w V-g(z,y=1/2) {g"(z,y=1/2) 0u40,¢ —m’ ¢’} =
- / diz em?m™r {gmh g, 9,00, —m’ ¢’} . (4.26)

Minkowski space-time is also recovered on the 1/2 brane, but the fields and the
masses appearing in the original action (4.26) have to be redefined according to

(15——%03 = e_m°b°/2¢,
m—m = e ™2, (4.27)

As it is clear form the above discussion, only the redefined fields and masses have
to be considered the physical ones. In particular, the fundamental mass m of the
matter field can also be assumed of order the gravitational ones, ~ 10'® GeV. Then,
only a very small hierarchy between by ' and the other scales (mgby ~ 70) allows
to produce Tev physical masses from the Planck scale. This situation considerably
improves the one we had with factorized large extra dimensions [78]. We remark
that, although we explicitly showed it only for the simple case of a scalar field, this
fact is completely general, as it should be clear also from dimensional arguments.

Notice that on the zero brane the physical masses are not redefined and that their
natural value is therefore Mp. This mean that the hierarchy problem can be solved
only if we assume that we are leaving on the 1/2-brane. The fact that this brane
has a negative tension (see eq. (4.20)) opens however serious problems when one
wants to give a concrete realization of this scenario 6. For this reason, several other
models with nonfactorizable geometry have been considered, which do not aim to
solve the hierarchy problem [107], and/or include more than three branes [108, 109].

Let us conclude this section with some phenomenological remarks about the
gravitational modes of this model. A detailed analysis of their effective couplings
to matter and masses requires an explicit Kaluza-Klein decomposition, which has
performed in ref. [107]. The result is that both masses and couplings are determined

5Tn other words, we need to canonically normalize these fields; see the next egs. (4.26) and
(4.27).

8In particular, both the stability of a negative tension object and the localization of matter on
it remain unsolved questions.
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by the TeV scale. These features are quite different from the ones we encountered
in the scenario [78], where the Kaluza-Klein splittings are much smaller than the
wealk scale, possibly smaller than an eV. '

For what concerns cosmology and astrophysics, the situation is in principle con-
siderably improved, since most of the bounds discussed in section 4.2 came from
very light and long leaving modes, which are absent in the present model. Also
for what concerns collider physics, the two scenarios present very distinctive signa-
tures. For a product spacetime [78], each excited state couples with gravitational
strength, and the key for observing these states in accelerator experiments is their
large multiplicity due to their fine splittings. In the model [89], only a relatively
small number of excitations can be kinematically accessible at accelerators, being
the Kaluza-Klein mass splitting at the TeV scale. However, also the couplings of
these modes to matter are set by the weak scale rather than the Planck one. In-
stead of gravitational strength couplings ~ Energy/Mp, each excited state coupling
is indeed of order Energy/TeV [107], and therefore each can be individually detected.






Chapter 5

Localization of fermions and
baryogenesis

In this chapter we discuss some of the physics of the branes. While we can expect
branes to naturally arise in string theory from boundary conditions for open strings,
one can look at them also from the field theoretical point of view. In this regard, the
most crucial thing worth studying is maybe the mechanism which renders branes
possible, that is which forces fermions and gauge fields to live only on a limited por-
tion of the whole space. The knowledge of some specific example is very important,
since it can allow to discuss the physics of the branes, and not to consider them
only as (infinitely thin) idealized objects. In this way brane models can become a
completely new context where to study particle physics, since many new options
offered by the presence of the extra space may be explored.

The first and most known of these mechanisms is due to Rubakov and Shaposh-
nikov [80], and it consists in localizing fermions on a solitonic background given
by an additional scalar field. The underlying idea is very simple. Let us consider
only one extra dimension and an Yukawa interaction between the fermions and the
scalar field. This interaction gives the fermions a five dimensional mass m (z5) which
varies along the fifth dimension. As a consequence, the fermionic wave function is
enhanced where the total fermionic mass (given by m (zs) plus a constant term
which we refer to as “bare mass”) vanishes. This mechanism allows the localization
of only one of the modes coming from the Kaluza-Klein decomposition of the five:
dimensional initial spinor. From the four dimensional point of view, this localized
mode is a massless and chiral spinor, which is very welcome in building realistic
scenarios. We will discuss all these features in section 5.1.

In the Rubakov-Shaposhnikov mechanism the wall is therefore not an idealized
object, but its width is identify with the portion of extra space where most of the
energy density of the solitonic background is concentrated. This width - given by the
parameters of the model - is typically greater than the inverse of the fundamental

77
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scale of the theory. Due to the finite size, it is possible to localize different fermions at
slightly different positions in the extra space, just giving them different bare masses
or different couplings to the background. As a consequence, we have some freedom
in choosing the couplings between two different fermionic fields, since localizing two
fermions at a bigger distance results in suppressing the overlapping of their wave
functions and thus their mutual interaction. This can have interesting consequences,
as emphasized in ref. [90] and as we show in section 5.2.

For example, let us assume that fermions acquire mass via the usual Higgs mech-
anism. One may reproduce the entries of the Cabibbo-Kobayashi-Maskawa matrix
just placing quarks of different generations at different and appropriately chosen po-
sitions (this requires the presence of at least two extra dimensions, as shown in [110])
without assuming any hierarchy in the original Yukawa couplings of the fermions
to the Higgs field. Even more interesting, we can suppress proton decay just plac-
ing leptons and quarks at different positions in the extra space [90]. This may be
a mandatory choice: indeed the brane models we are considering have a physical
fundamental scale close to the electroweak one. Thus, allowing baryon (B) and
lepton (L) number violation, one easily meets serious problems with proton decay,
due to the absence of any large scale which could suppress it. One possibility ! is to
suppress (up to a sufficiently high dimension, see ref. [101]) operators which render
the proton unstable by appropriate symmetries. There are examples that show that
this option is indeed viable, although usually they are quite contrived.

In the last two sections we explore another possibility [91], which is based on
the works [80, 90] and it is thus “intrinsically extra dimensional”. We start from
the proposal for proton stability given in [90]. That is, we assume that quarks and
leptons are now (i.e. at zero temperature) sufficiently apart in the extra space. How-
ever, we wonder if finite temperature effects could change this picture increasing the
interactions between quarks and leptons at early times. This would render proton
stability now compatible with baryogenesis in the first instances of the Universe.
An exact computation of the corrections on a solitonic background presents some
technical difficulties. Moreover, relying on a perturbative analysis at a scale close
to the cut-off of the theory may be unsafe. For this reason, we do not give a precise
final value for the temperature necessary to achieve the observed baryon asymme-
try. We limit ourselves to a perturbative analysis made on dimensional arguments,
which anyhow indicates that finite temperature effects should indeed increase the
interactions between baryons and leptons.

As it is well known, baryon number violation alone is not sufficient for baryoge-
nesis. To present a more complete analysis, in section 5.4 we discuss a particular

1As an alternative possibility, one could be tempted to assume B conservation. In this case,
however, our Universe would be matter-antimatter symmetric. This poses several difficulties in
explaining the existence of domains of matter as large as our cluster of galaxies, and the successes
of standard nucleosynthesis.
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model reminiscent of GUT baryogenesis. In doing so, we meet another problem
typical of these brane scenarios. Due to the low energy densities involved, the ex-
pansion rate of the Universe is always very small. If baryogenesis originates from the
decay of a boson X', the out of equilibrium condition requires mx much higher than
the physical cut-off of brane models. This problem can be overcome for example if
the temperature of the Universe never exceeds my and if these bosons are created
nonthermally (for instance at preheating). This and some other options are briefly
discussed in the last section.

5.1 Localization of fermions on a solitonic back-
ground

In this section we review the mechanism for localizing fermions proposed in 1983 by
Rubakov and Shaposnikov [80]. We follow the presentation given in the works [90,
91].

We start from a five dimensional Universe and we want to localize chiral (from the
four dimensional point of view) fermionic fields on a 4 dimensional subspace 2. The
localization necessitates breaking of higher dimensional translation invariance. This
is accomplished in our construction of a thick wall by a spatially varying expectation
value for a five-dimensional scalar. We postpone to the next section an explicit
realization of this scenario and for the moment we just suppose that the scalar field
has a kink profile as in fig. 5.1.

The lagrangian for a fermionic field ¥ with an Yukawa interaction with the scalar
® reads?

e 1
Loy =T z;/?5+—,:;i-/3®(3:5)+m0 o y (52)
M,

where x5 denotes the fifth coordinate, the fields and the parameters have the fol-

2Considering more extra dimensions does not change the description of the mechanism. We
comment more on this option in section 5.3, where we discuss the thermal corrections to the

scenario that we present here.
8A convenient representation for the 4 x 4 gamma matrices in five dimensions is

i 0 O’i . - S 1 O
7—(_51- O) 1=0,..,3, = 2(0 _1>, (5.1)

where 0¥ = g% = 1, while the other o = — & are the three Pauli matrices. Notice the we indicate
with a capital letter the five dimensional fields, to distinguish them from the four dimensional ones
that we introduce below.
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LY

D

Figure 5.1: Profile of the scalar field ® and of the fermionic field ¥ along the fifth
dimension. The fermionic field, here assumed with vanishing bare five dimensional
mass, is localized where its total mass (5.4) vanishes. The figure is taken from
ref. [90].

lowing mass dimensions
[®]=3/2, [¥] =2, [mo] = [M| =1 , (5.3)

and where the suffix 0 indicates that these parameters are here considered at zero
temperature.
To simplify notation, we also denote with Mt the total five dimensional fermion

mass

1

=172
0

Mr = ¢ (z5) +mo (5.4)

given by the coupling to the scalar field and by the “bare” mass mg .
The Dirac equation following from the lagrangian (5.2)

(iv" 8, +7° 05+ Mr)p=0 , p=1,...,4, (5.5)

is separable in a part depending only on 75 and in a second part depending on the
other coordinates (we denote them generically with z). To see this, we perform the
expansion

U (z,75) = }:L (s) Prtpn ( m)+ZRn ) Prtn (z)
U(z,z5) = Z¢n ) Pr L (:E5)+Zzbn (z) PL Ry (xs) (5.6)
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with Prr = (1£147°)/2 . Let us “square” eq (5.5) multiplying it by
(—iv* 8, — v* 85 + Mr) . This gives

(D — 052 — iy’ My + M%) T=0, (5.7)

where O is the Dalambertian operation in 3+1 dimensions and dot denotes derivative
with respect to x5 . If we now perform the expansion (5.6), we can rewrite the above
eq. (5.7) as two independent equations multiplied, respectively, by P;, and Pr. In
each of them, the dependences on z and =5 can be factorized, leaving as a final result

(— 08+ M2 — M) Ly =2, Lo, ~O(Pthn) = iy (Puth)  (58)
and
(— 02+ M2+ M) Ro= 25 Re . —O(Prt) = 2 (Prhn) - (5.9)
Let us define
A=0s+Mp , Al=—05+ My . (5.10)
In terms of these operators we have
AtA = — 024+ M2 - My,
AAY = — 02+ M2+ My, (5.11)
so that egs (5.8) and (5.9) acquire the more compact form
A'AL, = pipLy, (5.12)
AA'R, = piLR,. (5.13)

We normalize the (orthogonal) eigenvectors L, and R, to form two sets of orthonor-
mal functions.

Multiplying eq. (5.12) by A, we notice that the stateA L, is an eigenfunction of
the operator A AT with eigenvalue p2;. This shows that the two sets {i,} and
{4in r} coincide. Posing pi,1, = pnr = 1, we see that the eigenstates L,, and R, are
related by

1 1
R,=-—AL, , L,=-—A'R, . (5.14)
Hn Hn

Notice that this relation does not involve the zero modes Lo and Ry corresponding
to o =0. "4

*The choice of this notation recalls the one of the simple harmonic oscillator (SHO). Indeed,
the operators A and A' become the usual SHO creation and annihilation operators (up to a
normalization factor) for a mass of the form Mt « z5. The system we are describing can be
reconducted to an analogous supersymmetric quantum mechanical one, where the functions Py, L,
and Pr R, play the role of “boson” and “fermion” eigenstates. The equality .1 = pn r is thus
interpreted as the usual boson—fermion degeneracy of supersymmetric theories. This is discussed
by Witten in refs. [111, 112].
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We can now express the fermionic action coming from the lagrangian (5.2) in
terms of the four dimensional fields ¢, . From the orthonormal relation on the sets
{L,} and {R,} and from eq. (5.14) it follows ‘

. [ o]
S = /d4:v [%Liv“ Butor + Boriv Outhor + O B (17"8u + ptn) Y| - (5.15)
n=1
The first two terms correspond to four dimensional two-component massless chiral
fermions, and arise from the zero modes of egs. (5.12) and (5.13). The third term
describes an infinite tower of Dirac fermions corresponding to the (Kaluza-Klein)
modes with non-zero u, in the expansion (5.6). If the extra space is sufficiently
small, these modes decouple from the low energy theory.
The zero mode wave functions are found by integrating the two equations A Ly =
0 and At Ry = 0. The solutions

Ly ~ exp [— /15 dyMT(y)] ,
By ~ exp [ / “dyMT@)} , (5.16)

are exponentials with support near the zeros of ®. If the field ® has a kink configu-
ration as in fig. 5.1 and if the extra dimension is infinite, only the left-handed mode
Lg is normalizable and localized about the zero of its total mass Mr. The theory
describing the four dimensional wall at low energy thus contains only one massless
chiral fermionic field. This is true even if the extra dimension is compact, since the
mode Ry (of course now normalizable) is in this case localized at the other end of
the extra dimension.

5.2 Many chiral fermions and proton decay sup-
pression

We can give a concrete realization of the localization mechanism described in the
previous section by introducing the following Z, symmetric lagrangian for the field
o

1
Lo =50,20"3 — (—p @+ 20 2% . (5.17)

We remind that the field ® has mass dimension 3/2. The parameters po and Ag
have instead mass dimension 1 and — 1, respectively.
This scalar lagrangian admits the kink solution

¢= \/%tanh(#oy) ; (5.18)
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Figure 5.2: Linearized approximation of the soliton configuration arising form the
lagrangian (5.17).

that we approximate with a straight line interpolating between the two vacua (see
figure 5.2)

¢(y) ~ \/%gy’ ly| < —
2 1
6ly) =~ %T yl> (5.19)

As we have seen in the previous section, from the four dimensional point of view
a left handed chiral massless fermionic field results from the localization mechanism,
if the scalar ® has the above configuration (5.18). Notice that the localization can
only occur if the fermionic (five dimensional) bare mass satisfies

my < ___,Lio__: , (5.20)
v/ 2 Ao My

since otherwise the total mass Mr defined in eq. (5.4) never vanishes.

The fermionic zero mode with opposite chirality remains instead delocalized.
This does not prevent the possibility to build realistic scenarios, since it is customary
to limit the Standard Model and the Minimal Supersymmetric Standard Model
fermionic content only to fields of a given chirality. A “more symmetric” situation
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can oceur if a kink—antikink solution is assumed for the scalar ®. As a result, the left
fields continue to be localized on the kink, while the right ones are confined to the
antikink. If the kink and the antikink are sufficiently far dpart, the left handed and
right handed fermions do not interact and again the model reproducing our four
dimensional world can be built by fermions of a defined chirality. The fermionic
content of the full dimensional theory is in this case doubled with respect to the
usual one, and observers on one of the two walls will refer to the other as to a
“mirror world”. The presence of a kink—antikink configuration may be required by
stability consideration if thermal effects are considered, as it is the case in the next
sections. However most of the physics in one brane is not affected by the presence
of the mirror one, and we can almost always safely concentrate only on the single
kink (5.18) configuration.

In a realistic scenario, at least another scalar field acting as a Higgs in the
four dimensional theory must be considered, in order to give mass to the (four
dimensional) fermions. As it is shown in ref. [90], the mechanism described above
could give an explanation to the hierarchy among the Yukawa, couplings responsible
for the fermionic mass matrix. If indeed one chooses different five dimensional bare
masses for the different fermionic fields, the latter are localized at different positions
in the fifth direction. As a consequence, the wave functions of different fermions
do only partially overlap, and increasing the difference between the five dimensional
bare masses of two fermions results in suppressing their mutual interactions.

The same idea can be adopted to guarantee proton stability [90]. Let us give,
respectively, leptons and baryons the “masses”

(me), =0, (mo), =mq, (5.21)

which correspond to the localizations °

mo \/ 2 /\0 Mo 1
=0, p=——7—"<—". (5.22)
Ho Ho

The shape of the fermion wave functions along the fifth dimension has been derived
(up to the normalization factor that we add now) in eq. (5.16). It can be cast in an
explicit and simple form if we consider the limit y, <1 /i, in which the effect of

5The last inequality in the next expression comes from (5.20). We assume quarks of different
generations to be located in the same y position in order to avoid dangerous FCNC mediated by
the Kaluza-Klein modes of the gluons [113].
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the plateau for y > 1/ug can be neglected: °

1/4 '
2 2.2
o 1y
i) = | === ep{-—F—
2/\0 _Z\/_[Q?T 2 2)\0 ]\([0
1/4 .
2 2 (N2
B el exp ) 1o —w) | (5.23)

fly) = — ==
\/2)\0M07T 24/2 Ao My

We assume the Standard Model to be embedded in some theory which, in general,
contains some additional bosons X whose interactions violate baryon number con-
servation. If it is the case, the four fermion interaction gg +— ¢l can be effectively
described by

[
/ z yAm%{ , (5.24)

where my is the mass of the intermediate boson X and A is a parameter of mass
dimension one related to the five-dimensional coupling of the X-particle to quarks
and leptons.

This scattering is thus suppressed by 7

1 2 2
K’"‘z‘/dy_LN exp § — ——
Mx /2 Mo My /2 N M,

- Ko exp { — — ¢ - (5.25)

A/ (2 )\0]\70>1/4

I =

Current proton stability [114] requires I S (1016 GeV)™? | that is

o \/200 — 6 Logy, (7% /Gev?)

~ —_N1/4
Ho (2 Ao MO>

(5.26)

The numerator in the last equation is quite insensitive to the mass scales of the
model, and ~ due to the logarithmic mild dependence — can be safely assumed to be

6This is also the limit in which the approximation (5.19) is valid.

"Trom the approximation (5.19), only the squared difference of the five dimensional masses
affects the suppression factor. For this reason, the above choice (mg), = 0 was only done in order
to simplify notation and does not have any physical meaning.
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of order 10. For definiteness, we will thus fix it at the value of 10 in the rest of this

chapter.
Conditions (5.20) and (5.26) give altogether

10 i Lo 9
(2 2o M0>1/4 e (2 Ao fvfo)m | o

that we can rewrite

20 M, S 107*
Mo > 102 . (5.28)

Hao

Notice that the last limit in eqs. (5.28) is stronger than the one given in ref. [90]
where proton stability is achieved if the ratio of the massive scales of the model is
of order 10. However, in ref. [90] the field @ simply scales linearly as a function of
y, while we expect that whenever a specific model is assumed, conditions analogous
to our (5.20) and (5.28) should be imposed [91].

5.3 Thermal correction to the coefficients

Once the localization mechanism is incorporated in a low energy effective theory
— as the system described above may be considered —, one can legitimately ask if
thermal effects could play any significant role. We are mainly interested in any
possible change in the argument of the exponential in eq. (5.25), that will be the
most relevant for the purpose of baryogenesis. For this reason, we introduce the
dimensionless quantity

m(T)? v

oT) =~ V2ADMT) (5.20)

From egs. (5.26) and (5.28), we can set a(0) 2 100 at zero temperature. Thermal
effects will modify this value. There are however some obstacles that one meets
in evaluating the finite temperature result. Apart from some technical difficulties
arising from the fact that the scalar background is not constant, the main problem is
that nonperturbative effects may play a very relevant role at high temperature. Asit
is customary in theories with extra dimensions, the model described by egs. (5.2) and
(5.17) is nonrenormalizable and one expects that there is a cut-off (generally related
to the fundamental scale of gravity) above which it stops holding. Our considerations
will thus be valid only for low temperature effects, and may be assumed only as an
indication for what is expected to happen at higher temperature.
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Being aware of these problems, by looking at the dominant finite-temperature
one-loop effects, we estimate the first corrections to the relevant parameters to be

T

AMT) = A ——

1) "o

M(T) = Mo“*“CﬁT

TQ

m(T) = My + Cp =

My

2 2 Te
w (Y = py+c, =, 5.30
(T) o euTr (5.30)

where the c’s are dimensionless coefficients whose values are related to the exact
particle content of the theory.

In writing the above equations, the first of conditions (5.28) has also been taken
into account. For example, both a scalar and a fermionic loop contribute to the
thermal correction to the parameter \y. While the contribution from the former is
of order A3 T', the one of the latter is of order 7/MZ and thus dominates. 8

Substituting egs. (5.30) into eq. (5.29), we get, in the limit of low temperature,

T =  2c, T T2
a(T)za(O)-[l-i-: ( A Y —6“2 )] . (5.31)
.A{[() 2)\0 ]V[O 2 mg Ho

From the smallness of the quantity Ao M (see cond. (5.28)) we can safely assume
(apart from high hierarchy between the c’s coefficients that we do not expect to
hold) that the dominant contribution in the above expression comes from the term
proportional to ¢ .

We thus simply have

a(T) ~ a(0) (1 +o éTTzT—ﬁ) | (5.32)

We notice that the parameter ¢y, being related to the thermal corrections to the
¢* coefficient due to a fermion loop, is expected to be negative [115]: the first thermal
effect is to decrease the value of the parameter a(7T"), making hence the baryon
number violating reactions more efficient at finite rather than at zero temperature.

There is another effect which may be very crucial at finite temperature, linked
to the stability of the Z; symmetry. When a temperature is turned on, we generally

8Notice also that with our choice (5.21) loops with internal leptons dominate over loops with
internal quarks, since the former have vanishing five dimensional bare mass and thus are not
Boltzmann suppressed. However, although this choice is the simplest one, one may equally consider
the most general case where all the fermions have a nonvanishing five dimensional mass.
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expect the formation of a fermion—antifermion condensate (1 ¢) # 0. If it is the
case, the Yukawa coupling @ ¥ in the lagrangian (5.2) renders one of the two vacua
unstable. While this leads to an instantaneous decay of the kink configuration, a
kink-antikink system could have a sufficiently long lifetime provided the two objects
are enough far apart. '

Let us conclude this section with an important remark. While in this discus-
sion we have considered only the localization of fermions along one extra dimension,
almost everything we have said can be generalized if two or more additional dimen-
sions are present °. The index theorem guarantees [116, 117] indeed the possibility
of localizing fermions on a topological defect of an arbitrary dimension. Just to give
an example, let us consider the localization on a Nielsen-Olesen [118] vortex in the
case of two extra—dimensions, as it is discussed in ref. [78]. Also in this case, one can
localize quarks and leptons at two different positions (actually along different circles
about the center of the vortex). Once again, proton stability requires conditions
completely analogous to conds. (5.28) here discussed. Of course the calculation of
thermal corrections gives different results, since the dimension of the couplings of
the model changes according to the number of spatial dimensions. However, also in
the case of the two dimensional vortex, the qualitative result turns out to be identi-
cal to what has been derived in the one dimensional case: the most significant effect
comes from the variation of the coefficient A of the ¢* interaction, and it is in the
direction of enhancing the quark-lepton interaction with increasing temperature.

5.4 Baryogenesis

We saw in the previous section that thermal effects may increase the rate of baryon
number violating interactions of the system. This is very welcome, since a theory
which never violates baryon number cannot lead to baryogenesis and thus can hardly
reproduce the observed Universe. Anyhow baryon number violation is only one of
the ingredients for baryogenesis, and the aim of this section is to investigate how
the above mechanism can be embedded in a more general context.

A particular scheme which may be adopted is baryogenesis through the decay
of massive bosons X. !0 This scheme closely resembles GUT baryogenesis, but
there are some important peculiarities due to the different scales of energy involved.
In GUT baryogenesis the massive boson X , coupled to matter by the interaction

9This is mandatory in the scenario [78], since the presence of only one large extra dimension is
phenomenologically excluded.
10We may think of these bosons as the intermediate particles which mediate the four fermion
interaction described by the term (5.24).
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g X 11, has the decay rate

92

= (5.33)

I'c~camg , o

An important condition is that the X boson decays when the temperature of

the Universe is below its mass (out of equilibrium decay), in order to avoid thermal
regeneration. From the standard equation for the expansion of the Universe,

T2
H o~ gt? —
g* MP

(5.34)
(where g. is the number of relativistic degrees of freedom at the temperature T),
this condition rewrites

mx 2 g7 aMp . (5.35)

If X is a Higgs particle, & can be as low as 107°. Even in this case however the
X boson must be very massive. In principle this may be problematic in the theories
with extra dimensions we are interested in, which have the main goal of having a
very low fundamental scale.

There are some possibilities to overcome this problem. One is related to a possible
deviation of the expansion of the system from the standard Friedmann law. This
is a concrete possibility, since the exact expansion law is very dependent on the
particular brane model one is considering and on the fact that the size of the compact
dimension is or is not stabilized. For example, we will show in the next chapter that
the Randall-Sundrum model [89] with a stabilized radion can have (depending on
the energy density on the zero brane) an expansion rate higher than the standard
one for temperatures close to the cut-off scale of the system (that is TeV). This
accelerated expansion could in principle favor the out of equilibrium condition for
the X bosons.

However this issue is very dependent on the specific cosmological scenario adopted,
and one may be interested in more general solutions for the out of equilibrium prob-
Jem. ' One very natural possibility is to create the X particles non thermally and
to require the temperature of the Universe to have been always smaller than their
mass my . In this way, one kinematically forbids regeneration of the X particles
after their decay. In addition, although interactions among these bosons can bring
them to thermal equilibrium, chemical equilibrium cannot be achieved.

Nonthermal creation of matter has raised a considerable interest in the last years.
In particular, the mechanism of preheating has proven quite successful, as we have
discuss in the first part of this work. The efficiency of preheating has been exploited
in the work [19] to revive GUT baryogenesis in the context of standard four dimen-
sional theories. Here, we will not go into the details of the processes that could have
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lead to the production of the X bosons. Rather, we will simply assume that, after
inflation, their number density is nx . To simplify our computations, we will also
suppose that their energy density dominates over the thermal bath produced by the
perturbative decay of the inflaton field. 1!

Just for definiteness, let us consider a very simple model where there are two
species of X boson which can decay into quarks and leptons, according to the four
dimensional effective interactions

9Xqq , ge®*Xlg (5.36)

where (remember the suppression given by the different localization of quarks and
leptons) the quantity a is defined in eq. (5.29). Again for definiteness we will
consider the minimal model where no extra fermionic degrees of freedom are added
to the ones present in the Standard Model. Moreover we will assume B — L to
be conserved, even though the extension to a more general scheme can be easily
performed.

The decay of the X bosons will reheat the Universe to a temperature that can
be evaluated to be

30 1/4
Ty = (—2 LS ”X) . (5.37)
T Js

Since we do not want the X particles to be thermally regenerated after their
decay, we require T, S mx, that can be rewritten as an upper bound on ny

nx 530 ( 190*0) md . (5.38)

Another limit comes from the necessity to forbid the B violating four fermion
interaction (5.24) to erase the B asymmetry that has been just created by the decay
of the X bosons. We thus require the interaction (5.24) to be out of equilibrium at
temperatures lower than 7},. From eq. (5.25) we see that we can parameterize the
four fermion interaction with a coupling g% e73%/8 /m% . Hence, the out of equilibrium
condition reads

3
4,-30/4 < o X [TX

1 An alternative way to overcome the bound (5.35) relies on the fact that, as observed in the
works [73, 74], the maximal temperature reached by the thermal bath during reheating can indeed
be much higher than the final reheating temperature. In this case, even if Ty}, is considerably
lower than myx, X particles can be produced in a significant amount, and the out of equilibrium
condition is easily achieved. However, the treatment of this mechanism is in our case somewhat
different from the one given in ref. [73]: due to the slowness of the expansion of the Universe, the X
bosons will decay before the freeze out of their production. The final baryon asymmetry cannot be
estimated with the use of the formulae of [73], which are valid only if the decay of the X particles
occurs well after their freeze out.
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One more upper bound on the reheating temperature comes from the out of
equilibrium condition for the sphalerons. This requirement is necessary only if one
chooses the theory to be B — L invariant, while it does not hold for B — L violating
schemes. We can approximately consider the sphalerons to be in thermal equilibrium
at temperatures above the electroweak scale. Thus, if B — L is a conserved quantity,
we will require the reheat temperature to be smaller than about 100 GeV.

If one neglects the presence of the thermal bath prior to the decay of the X
bosons, the very first decays will be only into couples of quarks, since the channel
into one quark and one lepton is strongly suppressed by the e~*T=0 factor due
to the fact that the kink is not modified by any thermal correction. However, the
decay process is not an instantaneous event. It is shown in ref. [73] that the particles
produced in the very first decays are generally expected to thermalize very rapidly,
so to create a thermal bath even when most of the energy density is still stored in
the decaying particles. ' The temperature of this bath can even be considerably
higher than the final reheating temperature. The presence of the heat bath modifies
in turn the shape of the kink, as shown in the previous section, and we can naturally
expect that this modification enhances the B violating interactions.

If the energy demsity of the Universe is dominated by the X bosons before they
decay, one has

ne = 0.1 (Nx Toy/mx) (r—7) , (5.40)

where Nx is the number of degrees of freedom associated to the X particles and
(r — 7) is the difference between the rates of the decays X — gl and X — gl.

We denote with X; and X, the two species of bosons whose interactions (5.36)
lead to baryon number violation, and parameterize by € the strength of CP-violation
in these interactions. Considering that e™2* is always much smaller than one, we get
[119]

(r—7) ~3g%e e Imlgs (Mx,/Mx,) , (5.41)
where the function ImIss(p) = [p? Log(1 + 1/p*) — 1]/ (16 ) can be estimated to

be of order 1073 — 1072. It is also reasonable to assume € ~ 1072 — 1.
Collecting all the above estimates, and assuming Ny to be of order 10, we get

I;
ng =~ (107° — 1072) gz—n-z—%e"“(Tfh)/Z . (5.42)

12As shown in ref. [73], what is called the reheating temperature is indeed the temperature of
the thermal bath when it starts to dominate. After the first decays, the temperature of the light
degrees of freedom can be even much higher than Tiy.
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From the requirement 73, < my we get an upper limit on the baryon asymmetry
ne S (1075 — 1072) g%e™*? , (5.43)

where the factor a (T') has to be calculated for a value of T of the order of the
reheating temperature.

We get a different limit on np from the bound (5.39): assuming myx ~ TeV and
g ~ 100 indeed one obtains

ne S (1078 — 10710) g?/3 e/t (5.44)

Since the observed amount of baryon asymmetry is of order 107!%, even in the
case of maximum efficiency of the process (that is, assuming maximal C'P violation
and g ~ 1), the bounds (5.43) and (5.44) imply that a (Ti,) < 40. Unfortunately,
the temperature at which the condition a (T) $ 40 occurs cannot be evaluated by
means of the expansion of eq. (5.32), that have been obtained under the assumption
la (T) — a(0)] < a(0). On the other hand, it is remarkable that our mechanism
may work with a ratio a (Ty) /a (0) of order one. We thus expect that a successful
baryogenesis may be realized for a range of the parameters of this model which —
although not evaluable through a perturbative analysis — should be quite wide and
reasonable.

As we have discussed in the previous chapter, in scenarios with large extra
dimensions and low scale gravity, the maximal temperature reached by the Uni-
verse after inflation is strongly bounded from above in order to avoid overproducing
Kaluza-Klein graviton modes, which may eventually contradict cosmological obser-
vations [88]. For instance, in models with two large extra dimensions the reheating
temperature cannot exceed much 1 MeV (unless the fundamental scale M is unnat-
urally high, see fig. 4.1). This value is too low for the scenario we are describing
since 7 is proportional to the ratio Ti,/mx, and hence the observed amount of
baryons would be reproduced at the price of an unnaturally small value of a (Tr).
However, other schemes with extra dimensions exist where the bounds on T}, are
less severe. For example, in the proposals [89, 120] the mass of the first graviton KK
mode is expected to be of order TeV. The reheating temperature can thus safely be
taken to be of order 10 — 100 GeV.

There are of course several possible baryogenesis schemes alternative to the one
just presented. A possible option which also requires a minimal extension to the
Standard Model could be to achieve the baryon asymmetry directly through the
4 fermions interactions g + g > ¢ + [ in the thermal primordial bath. The out of
equilibrium condition may be provided by the change of the kink as the temperature
of the bath decreases. ' What may be problematic is the source of C'P violation

13This condition may be easily achieved due of the exponential dependence of the rate of this
process on the temperature, see eqs. (5.25) and (5.32).
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which may lead the creation of the baryon asymmetry. A possibility in this regard
may be provided by considering a second Higgs doublet, but the whole mechanism
certainly deserves a deep analysis by itself. ‘






Chapter 6

Expansion of the Universe in
brane models

In the last decades we have gained precise and firm knowledge of many aspects
of our Universe. The observation of the Cosmic Microwave Background Radiation
(CMBR) acoustic pealks shows [121, 122] that it is highly flat and homogeneous. The
CMBR temperature, the observed abundances of the light elements, and the average
speed of the nearby galaxies allow us to trace back its evolution up to temperatures
as high as 1 MeV, when nucleosynthesis started. It is remarkable that all these (and
several other) observations strongly favor the simplest expanding four dimensional
(model of) Universe that we can think of. The requirement of four dimensional
standard evolution from nucleosynthesis on is by itself a very difficult challenge for
brane models. While 1 MeV is a very low energy if the scale of gravity is Mp,
this is certainly not true for models where the extra dimensions and possibly more
fundamental physics show up close t0 the electroweak scale.

We do not have such a clear knowledge of what happened before nucleosynthesis,
and much more room is there left for theoretical speculations. Brane models may be
seen in this regard as a completely new and atypical context, with maybe new pos-
sibilities — as well as new problems — for several cosmological issues as for example
inflation (see for instance [123, 124, 125]) and baryogenesis [91]. We have seen in the
previous chapter the difficulties in building successful baryogenesis scenarios with
only low scales at disposal. Among the other problems, the out of equilibrium con-
dition is typically hardly achieved, due to the slow expansion of the Universe at low
energy densities. Wile this last statement is certainly true for a standard expansion
law, there is the possibility that brane models have a faster then standard expansion
at temperatures above 1 MeV, which may result in a consistent improvement for
the out of equilibrium problem.

Motivated by these considerations, the cosmological evolution of brane models
has been the object of several works over the last two years. These works came to

95
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conclusions which in some cases drastically differ the one from the others, bringing
to a gradual understanding of the matter. The first relevant paper on this subject is
due to Binétruy, Deffayet, and Langlois [92], and we review it in section 6.1. These
authors studied the expansion law of models with factorizable geometry. They
solved the Einstein equations of a model with only one extra dimension and two
walls on its edges, showing that consistency of the model (or, as better realized later
in [93, 94], the requirement of a static extra dimension in absence of any form of
energy in the bulk) forces a precise fine-tuning between the energy densities and
pressures on the two branes. As a consequence of this fine-tuning, the expansion
rate of the system turns out always different from the standard one (H o p rather
than H o ,/p), completely at odd with phenomenology. In ref. [92] it was concluded
that this fine-tuning is of topological origin and that brane models cannot in general
reproduce standard cosmological evolution. These results were also soon extended
to the Randall-Sundrum model [89] with two walls, By a similar analysis (but only
in an expansion series on the matter energy density) it was shown that also in this
scenario matter on the two branes must be correlated, with a consequent wrong sign
of the term leading the expansion of the system (H? oc — p rather than H2 oc 4 0)-

The situation became clearer after the two works [93, 94], where it was realized
that the fine-tuning originates from the requirement of a static extra dimension in
absence of any stabilization mechanism. Matter on the branes generates an effective
potential for the field governing the size of the extra space (the so called “radion”).
Apart from accidental cancellations (i.e. apart from the fine-tuning first considered
in [92]), this potential is minimized when the edges of the extra dimensions (where
the two branes are fixed) move apart at infinity. It is therefore clear that standard
four dimensional evolution cannot be achieved unless the extra space is stabilized
by an additional mechanism. One can now proceed in two ways. Firstly, propose
a particular mechanism and study the Einstein equations of the system (maybe
perturbatively in the energy densities on the branes). Alternatively, one can try a
model independent analysis simply assuming that the equation which governs the
dynamics of the radion is satisfied for a static configuration. This assumption is
Justified for matter energy densities below the scale of radion stabilization, which
can be taken - at least in principle - very close to the fundamental scale of the
system.

In the work [95] this second choice is made, showing that it allows to exactly
determine the evolution of the RS model with arbitrary matter on the two branes.
With this approach, one can define and compute a value for the energy densities
below which the physical quantities are clearly identified and the system evolves as a,
standard (Friedmann—Robertson—Walker) four dimensional one. The analysis of [95]
indicates that this value is not too far from the physical TeV cut-off of our brane.
It also shows that at higher energies the expansion law of the system differs from
the standard one, although in this regime the identification of the physical relevant
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quantities results more problematic. The results of this work, as well as those of [93],
are presented in section 6.2.

We do not discuss here the problem of the stabilization of the extra space, since
it would require a detailed analysis by itself '. Only as an “existence proof”, we
report in section 6.3 a simple mechanism, due to Goldberger and Wise [96], which
can ensure the stability of the radion in the Randall-Sundrum model.” From this
mechanism, we deduce that considering the radion fixed up to (relatively) high
energy densities may indeed be a justified assumption.

6.1 Expansion law without radion stabilization

Let us consider a system with two four dimensional branes and a large transverse
dimension. It is described (cfr. egs. (4.18) and (4.19)) by the action

1 ~
5(5) - /dSCE \/—~§R+/d5$ \/—gﬁm, (6.1)

2k2

with § denoting the five dimensional metric (Minkowski space is here taken with
metric § = diag(—1, 1,1, 1, 1)), R the Ricci scalar associated to it, k=% the
fundamental scale of gravity, and £,, the matter lagrangian.

We are interested in the expansion law of the this model in absence of vacuum
energies, with only matter on the branes acting as a source for the metric g. Fol-
lowing the analysis of [92], we assume the fifth dimension compact in the interval
—1/2 < y < 1/2 and impose the orbifold symmetry y <+ —y. We place the two
branes at the endpoints ot the relevant interval, that is at y =0 and y = 1/2. We
also assume an idealized situation where the branes are infinitely thin. Rigorously,
a physical brane can be assumed to have a width in the fifth dimension close to the
inverse of the fundamental scale of the underlying theory. The thin-brane approx-
imation will thus be valid when the energy scales at which we consider the theory
are smaller than the fundamental scale. With this assumptions, the stress-energy
tensor evaluates to

' ) )
T8 = —(I-)y—)dlag (—=po,Pos Do, Pos 0) (6.2)
and to
o(y—1/2) ..
Tp = —(gb—/)dlavg (= p12, Prj2s Prj2s D1y, 0) (6.3)

on the two branes, and to zero in the bulk.

1For some considerations about this problem in superstring and supergravity and for some
proposals for its solution, see for instance [126, 127, 128] and references therein.
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We are interested in the expansion law of one of the two branes, say the one at
y = 0. We take for the metric the ansatz

ds® = —n2(t, y) d® + a? (¢, y) by duida? + 02 (¢, y) dy? . (6.4)

where it is assumed for simplicity flatness in the ordinary spatial dimensions (in
addition of course to homogeneity and isotropy).

The dynamics of the system is governed by the five-dimensional Einstein equa-
tions

éAB - /i2 TAB . (65)

Inserting the ansatz (6.4) for the metric, the non-vanishing components of the
Einstein tensor G4 g are found to be [92]

- afa b n? fa" o [(d ¥
Goo = 3{5(5*5)”?(‘5*5(5”3))}’ (6:6)

. 2 al ! ’I’LI bl TL’ al an TL”
Gij = a—éi]' — a—+2— - —+2— | +2—+ —} +
b2 a \a n b\n a a n

a2 6/ a n i b & 0 b
— i = —— 2= ) —2- 22242 ) 22 .
+ n2521{a< a+2n> a+b( 2a+n) b}, (6.7)
- na ab &
Gogs = 3(‘5;4——(;5—‘;) ) (6.8)

SN EECHY) e

In this notation, prime denotes derivative with respect to y, and dot with respect
to t.

In order to satisfy egs. (6.5), some terms of the Einstein tensor G4z have to be
non regular on the two branes, if these are assumed infinitely thin. The metric (6.4)
is of course required to be continuous everywhere to have a well defined geometry.
However its derivatives with respect to y can be discontinuous across the two branes,
and this ent::aﬂs the existence of a Dirac delta function in the second derivatives.

To take into account these singularities, let us define [92] the jump and the mean
value of a given function f across a point y by, respectively,

Fl,=f@") - F@) (6.10)
and

T+ 1)
: .

ity = (6.11)
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Concerning the metric (6.4), for the function 2 a (t, y), one has for example
o' =a"+[a'], 6 (y) + [0, 8 (v — 1/2) , (6.12)

with a” denoting the non-distributional part of the double derivative of a (i.e. the
standard derivative).

Matching the distributional part of the (00) and of the (i7) components of the
Einstein equations (6.5), one obtains the following Israel [129] junction conditions

[a'] K ], &
L , LS [ 9 ’
ab 3" b, 3 (3Pot2p0)
[a']; /2 K2 [n], /2 2
=gz s =g B2 , (613
a2 bija 3 P12 Migbis 3 (3p1j2 +2p1p2) (6.13)

where the subscript 0 (1/2) for a, b, n means that these functions are taken at

y=0 (1/2).
Let us now consider the regular part of egs. (6.5). For what concerns a”, we
make the simplest possible ansatz for the regular part, so that the whole expression

reads
a’=[a]y(0(y) — 1) +]a]p (6 (y—1/2) 1) . (6.14)

This is the simplest choice which does not preclude the possibility of having a global
solution of eqs. (6.5), since it ensures flux conservation in the compact y direction [92]

Integrating this last expression, we obtain 3

o = i)l —y (12l + []ys)
a = ag+ (%[y[ — %—yz) la'l, — %yZ [@],/5 - (6.15)

We assume the same ansatzs for the function n (¢, y), with the additional re-
quirement 19 = 1, so that ¢ is the physical time measured by observers on the zero
brane. For what concerns instead the function b, we assume a linear dependence on
y but we require it to be static. That is

b= by +2ly| (bryz— bo) - (6.16)

2The same occurs also for the function n (t, y).
3The integration constants are chosen so to satisfy [dya(t,y) = 0, as required from the
identification of the two points y = £1/2 and from the continuity of a, and a(y =0) =ag.
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With all the above choices and taking conditions (6.13) into account, the regular
part of the (00) component of eq. (6.5) acquires in i = 0 the form

) 2 2 4

aq K™ Q172 b1/2 K bl/g K* 5

—_ = —— — 0g . 6.17
2" Ban T TaR Mg (617)

Eq. (6.17) is the expansion law of the zero brane. We notice the presence of two
terms linear in the energy densities on the two branes plus a third term proportional
to p2. Let us go on with the analysis repeating the same procedure with the (i1)
component. Doing so, and summing the result with the above expression, we get

o 4 2
Qg Qg K K 61/2 ai/2 p1/2
Yo, %0 (=30 — on) + btV st
a3 + ag 36 ° (=370 = p0) 202 <p0 + ag +
%2 by /o n
- 2 30+ 200+ —L2 (3p1ja +2p1p2) | - (6.18)
6 bo 'no

Let us now look at the (55) component. Its mean value gives (notice that

if gt = #rtdat + 5 [F] [9])

- ‘2 . 4
Qg ag K
—_—_—t—= - 3 ; 6.19
7 + o 36 70 (po + 3 po) (6.19)

By the comparison of these two last expressions, one is lead to deduce [92] that
the (55) component is compatible with the others only if the relations

Polo = —P1/20G1/2, (6-20)
(2 Po -+ 3]30) g = — (2 ,01/2 -+ 3p1/2) ny/2 (621)

hold. Hence, these results indicate that — in absence of any other sources for the
Einstein equations — the matter energy density and pressure on the two branes
cannot be chosen arbitrary, but have to be fine tuned the ones to the others. Because
of the fine-tuning (6.20), in eq. (6.17) the two terms linear in p cancel, and one is
left with an expansion law H2 = (ao/aq)’ o p?, rather than the standard H?  p.
This deviation from the standard behavior does not disappear with decreasing p,
rendering the scenario here described phenomenologically excluded [92].

The only possibility not to conclude that brane models cannot generically repro-
duce standard cosmology [92] is to investigate the physical origin of egs. (6.20) and
(6.21), to see how they can evaded. As first noticed in the works [93, 94], the origin
of these fine tunings is strictly connected to the problem of dilaton stabilization. We
discuss this problem in details in the next section, which, although dealing with the
expansion law of the Randall-Sundrum model [89], contains several considerations
about brane models in general.
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6.2 Expansion law of the RS model

Right after the work [92] and the proposals of the two RS models [89, 107], the cos-
mological evolution of scenarios with nonfactorizable geometry was also investigated
[130, 131, 132, 133, 134]. The conclusions were that, while the model [107] could
reproduce standard cosmology, the scenario [89] with two walls was plagued with
some problems concerning the expansion law.

Indeed, the results were qualitatively very similar to the ones found for a factor-
izable geometry. Also in this case the problem comes from the necessity to fine-tune
the energy densities and the pressures of the two walls. In the RS [89] model this
fine-tuning acquires the form

Pz = ~Q§po,
D2 = -“Qg])l/z , QQEG—mObD/Q y (622)

where p; and p; are, respectively, the matter * density and the pressure on the i —th
brane (¢ = 0, 1/2), mp a “measure” of the strength of the vacuum energies (see
eq. (4.20)), and bo the size of the compactification radius (the so called “radion”) of
the extra dimension.

In the above works, the expansion law of the model was investigated with a
perturbation expansion in p; and p;. The square of the Hubble parameter can
also be written as an expansion series in the energy densities. However, after the

constraint py = — 02 p; /2 is imposed, again the linear term cancels and one is left
with
Q8 k2AZ K& (pry2 + Vi ? :
HYy = - ,OQg 5 b+ ( 36 2) + higher orders
1
= “3in Qg p1/2 + higher orders . (6.23)

There is a slight improvement with respect to the previous case, due to the pres-
ence of the vacuum energies A, and V;. From the fine-tuning they are subjected
to even at zero temperature, see eq (4.20), the terms proportional to the vacuum
energies cancel (as we already remarked, relation (4.20) results in a zero effective
cosmological constant from the point of view of observers on the two branes), while
the mixed term oc Vi 9 p1/2 introduces a new linear term in py/s 5. However (al-
though the absolute value is correct) there is a crucial minus sign in the coefficient,

4With matter we generically indicate any possible component which adds to the vacuum energies
Vo, V12 of the original static configuration [89].

5Notice also the presence of the Q4 factor left, which indicates that the expansion rate is indeed
proportional to the physical (i.e. redefined, see eq. (4.27)) energy density on the 1/2 brane.
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which requires an unphysical negative energy density on our brane to reproduce the
observed expansion of the Universe.

We see that the problem again originates from the necessity of fine-tuning the
energies of the two branes. In turn, this is related to the absence of any mechanism
responsible for stabilizing the compact dimension, as we discuss in the following
subsection.

6.2.1 The role of dilaton stabilization

One can obtain egs. (6.22) and (6.23) in a way very similar to what we did in section
6.1, that is trying to find a sufficiently generic ansatz for the metric, and looking at
the Einstein equations of the system as well as the junction conditions across the
two branes.

In this subsection we mostly refer to the detailed analysis performed in the
work [93], where the cosmological evolution of the RS model [89] is studied at first
order in the energy density and pressure on the two branes. In this study, the metric
is assumed to be of the form ©

ds?> =n(t, y)* d* —a(t, y)° (dz? + dz3 + dzj) — b (t)* dy? . (6.24)

The study of the Einstein and the jump conditions of the system leads to the fol-
lowing ansatz (at first order in p;, p;) [93]

2(2
n (t, y) = e |y]bo mo 1 + K ( Po + 3]70) (82 ]y‘mo bg 1) ,
12 mg

a (t 'y) = Qp (1’;) e” lylbo mo 1— _./iop_ (GQly|mo bo 1) .
’ ' 12 me

(6.25)

Inserting this ansatz back into the action of the model, eqs. (4.18) and (4.19),
and integrating over the fifth dimension, one gets the effective action

1
S =~y [ diod (1= 9) Ren (ao) + S+ Ky +
0
3 1 b
3 2 2
where
ng/dtag Lp and S, —E/dtag Q Lrev (6.27)

8Notice that a time-dependence for the radion is here allowed.
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come from the matter action for the two branes, and where

. . 2 )
Ry = 62— 6 <99> , Qp=e Mol (6.28)
Qg ag

If b is assumed to be static at the value required to solve the hierarchy problem,
b(t) = by, the gravitational part of the above expression reduces to the standard
Friedmann-Robertson-Walker action 7, and the factor Qf appearing inside S, ex-
actly reproduces TeV physical energy densities and pressures starting from the orig-
inal ones of order M3 .

To start discussing the physics of the radion, let us consider the last term of
eq. (6.26). The kinetic part is due to the fact that we are now allowing b to be
a function of time. The other term is not included in the action of the system
that we have written so far (egs. (4.18) and (4.19)), and it comes from a possible
(here unspecified) potential for the radion. We now show that indeed this term is
necessary to obtain a viable cosmological evolution of the model. To see this, let
us for the moment require for a static radion, b= 0, in absence of any potential,
V, (b) = 0. With this choices, the gravitational part of the action is the standard
FRW one, and the standard equations

ag 1 4
.2 ..
290 = - Q .
o A (po+ Qo p1y2) (6.29)

hold.

More interesting is the study of the equation of motion for 6. The point is that,
due to the dependence of ) on b, the presence of the matter generates a potential
for the radion. To see this, we compute the variation of the above action with
respect to b, noting that (we assume) S™ depends on the radion only through the
warp factor £2;. Thus, the contribution of the matter fields to the equation of motion
for b is

sSM sgM 5g“”
b SgH =~ VTwd"” Q B \/_ ob ZTQ (6.30)
where §,, = Qfdiag (1, —a?, —a®, —a?), and T is the trace of the stress tensor

in terms of the bare fields and bare masses, and is equal to p — 3p for a perfect

"Notice that eq. (6.26) was obtained with an expansion in p;, and so higher order corrections
are expected to modify this picture at higher temperature. See the next subsection.
8Thus we see that b couples to the trace of the stress tensor, and has “dilaton”-like couplings.
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fluid. Thus, the matter fields on the TeV brane generate an effective potential for
the radion that is

1 .
Verr (b) = 1 Qg (101/2 - 3]?1/2) . (6..31)

_ Taking this into account, the equation of motion for the radion is (again with
b=0and V, =0)

602 [(ay a2
o) Q= b (B0 %) .
(3P1/2 Pl/z) b= — (ao + ag> (6.32)
Using eqs. (6.29), this relation simplifies to
Qf Q2
A G ht v ACHI RO (6.33)

For generic pg and py/z the solution to this equation is )y — 0. Since £ =
e"™0b/2 h s 0o, That is, the branes want to blow apart. There is another solution,
however, and that is to allow a fine-tuning between the matter on the two branes.
This fine-tuning is precisely given by eqgs. (6.22). °

So, this demonstrates that the constraints (6.22) directly follow from requiring
that the radion modulus is static even when there is no stabilizing potential. From
this perspective it is clear that, with a radion potential, p; and p; will not need
any longer to be correlated. For uncorrelated p; and p;, the branes tend to go off
to infinity; this, however, will be balanced by the restoring force from the radion
potential. What was once a constraint equation for p; and p;, in the presence of the
radion potential V, becomes an equation determining the new equilibrium point.

Had we reproduced here the study of the system in a similar way as what we did
in section 6.1, we would have found that the above relation (6.32) is the average of
the (55) component of the Einstein equations across the TeV brane. This is exactly
what happened for models with nonfactorizable geometry. Indeed, we remark that
also in that case the fine-tuning on the energy densities and on the pressures of
the two branes were forced by an apparent inconsistency of the (55) component
with respect to the other Einstein equations of the model. Also there the problem
originated from the fact that we were asking for a static extra-dimension in absence
of a mechanism which stabilizes it.

6.2.2 Exact solutions in presence of matter

We now solve the Einstein equations of the RS model. We assume (without entering
into the details of the problem %), that a five dimensional potential U (b) has been

Tn principle, one can ask for the whole combination 3p; /s — p1/2 = —QF (3po — po) to van-
ish. However, if one also considers the energy conservation laws on the two branes, see the next
egs. (6.45), the relations (6.22) hold.

10Gee however the last section for a specific example.
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generated in the five dimensional theory by some mechanism. Then, starting from
the usual ansatz

ds* =n?(t,y) dt* —a®(t, y) &;dz' dz? — b (¢, y) dy?, (6.34)
the equations of motion in the bulk are given by

GQQ = /~’&2 n2 [A+U(b)] y Gii = —‘I€2CL2 [A+U(b)] y
G05 = 0 s G55 = —1-52 b2 [A+U(b) +bUl (b)] y (635)

with G4p given in the section 6.1.

We would like to present some general solutions, which do not depend on the
particular mechanism of localization of the radion, i. e. on U (b). We just assume
that the mass of the radion is very heavy, and that near its minimum U is expanded
into

U(b) = M? (9—;{;—@)2 , (6.36)

0

where by is the stabilized value of the radius. If M} is much higher than any other
mass in the theory, then the solution to the (55) Einstein equation (6.35) is simply
given by b = by, with no other constraint on ¢ and n. With this solution we also find
that U(by)=0. Thus in the presence of a very heavy radion field the relevant Einstein
equations are the (00), the (i), and the (05) components, with the radius fixed to
be at the stable value by. This already shows how the constraint is eliminated. One
of the equations of motion, which played a vital role in establishing the correlation
between the matter on the two branes, is simply not appearing and it is automatically
satisfied in the presence of the stable radius. ' While this is strictly true only for
zero energy density on the two branes, we expect it to be sufficiently accurate also
for pg and p1/2 not too close to he scale of radion stabilization, i.e. for py, p1/2 S M 4,

Surprisingly enough, if one fixes b = by and neglects the (55) component, the
system of the other equations (plus the two junction conditions) can be solved
ezactly [95] 2. For a static radion, the nontrivial components of the Einstein tensor

L More accurately, from this equation one can now understand which potentials U (b) are suitable
for stabilizing the radion at the values needed to solve the hierarchy problem.

12The derivation of ref. [95] is analogous to the one performed in the work [94], limited to the
case of a single brane.
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of the system take the form

a 2 n2 |a" a’ 2
Goo = 31— —3—5‘ —+ | —
a b | a a

a? a\ 2 an a a? a\? a n' a n"
0

, | (6.37)

n
Gos = 3 {ﬁﬁ_ﬂ] ) (6.39)

where again dot denotes differentiation with respect to ¢ and prime with respect to
Y.

First of all, we integrate the Einstein equation for (6.39). This is solved either
for @ = 0 (in this case one recovers a class of static solutions including the RS
solution (4.21)), or for

n(t,y)=A@)alt,y) . (6.40)

This relation introduces an unknown function of time only, and considerably sim-
plifies the remaining equations. Note that we have a complete freedom in the choice
of X, since different A’s correspond to different definitions of the time variable.
By inserting eq. (6.40) into eq. (6.37), we can eliminate the time-derivatives, and
we obtain a simple second-order differential equation for a?
2 b2

(a2 (t, y))” —4mibia®(t,y) = O (6.41)

This equation admits the solution

wp (y) +wip (y) — 1

a? (t,y) = a2 (t) wi (y) + af/2 (t) wf/z (y) + 2 (1) , (6.42)
where
2 CO .
wy (y) = cosh(2mobolyl) — 5 sinh (2mg bg |y]) ,
0
sinh (2 mg bo |y
diny = SEmelbl (6.49)

with Cy = cosh (mgbp) and Sy = sinh(mgby). Eq. (6.42) relates the value of
a(t, y) in the whole space to the values on the two branes ag () = a (¢, 0) and
a1z (t) =a(t, 1/2). These two unknown time-dependent functions are determined
below.
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Rather than the last remaining non-trivial equation associated to the compo-
nent (6.38) of the Einstein tensor, we consider — in strict analogy to what is custom-

arily done in conventional FRW cosmology — the equation associated to the identity
13

a d [ a? a?
Gii:‘aa';{snz GOD}" 32 G0 - (6.44)

Substituting in this relation the components of the Einstein tensor with the corre-
sponding components of the energy-momentum tensor, we get an expression which
is trivially satisfied in the bulk, while on the two branes it reduces to

it 3 (pitp) =0, i=0,1/2 . (6.45)
1
These two equations are nothing but the energy—conservation law in the two branes
and they are identical to the energy—conservation law of standard FRW cosmology.
We finally have to determine the functions ag () and a5 (t) appearing in ex-
pression (6.42). This can be done by solving eq. (6.37) across the two branes.
Analogously to what done in the work [92], we put this last step in form of junc-
tion conditions which relate the discontinuity of n’ and a’ to the delta-like source

(ij)bmne. From the symmetry y <+ —y, we can write the junction conditions in
the form (cfr. eqgs. (6.13))
a (¢, 0) K2
— = — — 1y (V& ,
a(t,O) 6 0(0+p0),
n' (¢, 0 K?
— = —Db[2 (W 3 (—W
7 (£, 0) 6 o[2 (Vo+po)+3 (—Vo+po)],
a(t,1/2) K2
— = = — by (W
(i, 1/2) 6 o( 1/2+P1/2) )
n'(t, 1/2) K2
—_— = —— 1}y |2 (V] 3 (=W i .
n(t,1/2) g o 12 (Vija + p1p2) +3 (= Vip +p1j2)] (6.46)
These equations lead to the following system for ag, a1/,
4P G0y B Coml
6 mq Sy So 2m6 A5,
2 2
ag K™ P12 Co 2 Co—1 -
So + [ + 6m0 S():I a1/2 277’7,% A2 SO (6 )

As expected, the system admits no solution in absence of matter on the two branes,
po = pij2 = 0 . Indeed, for this choice one recovers the static RS solution, which

1370 achieve this identity, the expression (6.40) must be used.
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is not accounted for by the relation (6.40). When matter is instead included, the
system (6.47) gives the solutions

k2mg  Po+p1ss — e (1= Q5) popiye

—2y-2

ag “A = 2 , 6.48
’ 3(1—0) 1-(1-0) 52e (6.48)
202 — K2 mg 1 o+ Qopr/2 — —“1;;0 (1 — %) popry2 (6.49)
& 3(1-98) 9 1- (52— 1) B

Since A =ng/dg = N2 /@1/2 , we can interpret these equations as the expansion laws
of the two branes. As we will see in subsection 6.2.4, eqgs. (6.45), (6.48), and (6.49)
give standard FRW evolution on both branes at low energy.

6.2.3 The effective action

In this subsection we calculate the effective action of the system in terms of the scale
factors ag (¢) , a1/ (t) on the two branes. To do this, we integrate the whole action
over the extra dimension y, making use of the result (6.42).

We first focus on the “purely gravitational” five dimensional action, that is we
integrate the RS action in the absence of matter on the two branes. The latter will
be considered eventually when we deal with the equations of motion. Our starting
point is thus

R 0 d0(y—1/2
S :4-/d%@M@-——+A+ Wy, 4 1 /%@2 (6.50)
2 k2 ’ bg bo
—1/2
= - 19/d4$dy\/§ [R~12mg+12m0 <5(y)_5(y 1/ ))} ,
2 Kk? bg bo

with the full (five dimensional) curvature scalar given by

na a a\ > n' n'a a” a\?

Since we dre interested in the evolution of the two four dimensional branes, we
rewrite n(t, y) and a (¢, y) by making use of the above results, egs. (6.40) and
(6.42). Tt is then convenient to write \/gR and /g in terms of a® and A

_ Bby [N, 1dd? A [d(at)" o d (@)
VoR = = (Aa 5 a2 | a 3(°) = |

Abo dat
Vio= e (6.52)
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With all these considerations, *the integral over y of the action (6.50) gives

1 1-02 1 |6[N,, , ,
5= g f“{ e 1A [x(x <a3+a?/2>—(aoao+a1/2a1/2>”+
24771,0
11—

By substituting A = ng/ag = n1/2/d12 in the last expression’® we get

M? fig Gy @ ao \ 2
_ 4 Al ol U hed')
S = 30+ ) /d z {no ag — i'no o <a0> + (6.54)

6 |{mipa a : 2
+ ny/2 Cbl/o V2?2 72 (a’l/Q) +
nl/g Ni/2 G2 Q1/2 ai/z

I

A [Qg (0,0 C.LD CL?/Q -+ ay/2 dl/g ag) - (Qg (1,8 (:IO -+ (J,?/Q (11/2)]} . (653)

24 m?
(1-98)°
As we will discuss in more detail in the next subsection, in the low energy limit
the equality a1,2(t) = Qo ao(t) and the related one ny/2(t) = Qong(t) hold. As
a consequence, the expansion rates of the two branes are identical and the above
action rewrites in the standard FRW form

M2 ha & (4\”
oM dmg_ﬁ_[zg_e_@”, (6.55)

[Qg (ao g af/g +aypnyys aﬁ) - (Qg ag T + a?/z n1/2>] } :

2 2

where a=ag =5 a1p , A=ng=05" n1ys .

From the effective action (6.54) we notice that the entire five dimensional system
can be (“holographically”) expressed in terms of the physics that takes place on the
boundaries at y = 0 and y = 1/2 of the extra space. Notice also that the last term
in the action (6.54) couples the metrics of the two walls.

Going back to the effective action (6.54), and including also matter on the two
walls, we obtain the equations of motion

-2 2 2 2
CLO 1 + QO 4m0 9 a’]_/z 5
= —_— 0 it S Q—
n3 a 3 M2 Aot 1-02%" "\ a o)
-2 ') 2 2
= Q - = , 6.56
aa, 3 o\ @, T w (6:36)

14The calculation can be further simplified by noticing that, from the periodicity imposed in the
extra space, the integral of a derivative of any continuous function of y vanishes.

15In this way, we substitute A(t) with the two degrees of freedom ng () and ny/s (t). The
equations of motion of the effective four dimensional theory have thus to be supported by the
constraint ng/ag = n1/2/a1/2 - This relation cannot be obtained from the action (6.54), since it is
linked to the equation Gos = 0 that has no counterpart in the four dimensional effective theory.
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in addition to the relations which give energy conservation on the two branes, egs.
(6.45).

We notice that, in the limit pg — 0, p1j2 — 0, the only solution of the above
equations is the static RS solution a1/; = Qag. Moreover, one can verify that eqgs.
(6.56) are equivalent to the equations (6.48) and (6.49) obtained in the previous
subsection.

6.2.4 Standard evolution of the system at low energy

Before interpreting the results of the previous subsections, we come back to the
static RS case. We recall that in [89] (see section 4.3) the four-dimensional metric
G on both branes is defined as

g,uu =n (y)_z Juv - (657)
The goal of this redefinition is to achieve Minkowski spacetime on both branes, in
order to gain a simple physical interpretation of the system. An analogous procedure
has to be applied also in the general case with matter on the two branes. Generally
speaking, multiplying the metric by an overall function f is not equivalent to a
change of the coordinate system. Thus, to have canonical normalization of the
fields, the function f has to be absorbed by a redefinition of the fields themselves.
In order to preserve the equations of motion of the fields, we see that we cannot
choose f to depend on the coordinates ¢t and =, but it can be at most a function of
Y.
In analogy with what was done in the static case, we now wonder whether it is
possible to rewrite the first four components of the five-dimensional metric in the
form

G (t,y)=F (Y) G (1) (6.58)

with g, of the standard FRW form diag(1, —a*, —a*, —a*). This requires the ratio
n/a to be independent on y, that is a'/a = n'/n for every value of y. From the
junction conditions (6.46) we see that this implies p+p = 0 and, consequently, p = 0
on the two branes. In other words, the above factorization is possible only if the
two branes contain exclusively cosmological constants (in particular this is the case
for the static RS solution).

Anyhow, it is natural to expect that condition (6.58) is approximately recovered
when the matter on the two branes has a sufficiently low energy density. This can
be understood from the results of the previous subsections. From egs. (6.48) and
(6.49) we have

2 2
9 1— K (l—QD)
12 2 T2moZ PO
7 =% — ) (6.59)

12mg p1/2
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If po and pi1/o are sufficiently small, the scale factors of the two branes are (approx-
imately) proportional '° by the constant factor . Since n(y,t) = A(t)a(y, t),
we have also niys (1) = Qone (t). In particular, the ratio n/a is (approximately)
independent on 3. 17

In this low-energy limit, we can thus define the four-dimensional effective theory
just as in the static RS model. First, we can choose the time coordinate so that
ng and nipp are simultaneously time-independent. This is equivalent to setting
A(t) = Ao/aG1/2(t), where Ag is an arbitrary factor. Then, we recover eq.(6.58) with

FOY=X0%  f1/2) =2, a=2"'Qao =N lay . (6.60)

We can now use the freedom to fix the time coordinate, and choose a particular
value of Ag. Choosing Ay = {}y we recover, in the limit pg, p172 — 0, the static
RS solutions as presented in [89]. With this choice, the scale factor of the effective
metric reads @ = qg = Qo_l aiz-

We can identify the five-dimensional quantities with those measured at low en-
ergy in our brane

e the fields must be redefined by a factor 5. So, for instance, the observed
density is pij2 = €25 p1j2. On the other brane the canonically normalized
density reads pp = pq -

e the total four dimensional effective action (6.54) acquires the form of the stan-
dard FRW action in terms of the scale factor @, see eq. (6.55).

¢ The Hubble parameter of the low energy theory is given by &/a. From both
eq. (6.48) and eq. (6.49) we get the standard evolution law

N\ 2
AN 1 _ _
H® = (5> REYE (o +D1p2) (6.61)

while from egs. (6.45) we recover

. a,_
po+ 3=(p+p) =0,
= po+p2 s P=EPo+Diy - (6.62)

I

Some considerations are in order. First, we would like to emphasize that at
low energy, from the point of view of observers on both branes, the effective theory
leads exactly to a standard four-dimensional FRW Universe. This follows from the

16Notice that this relation holds exactly in the static RS case.
YFrom eqgs. (6.42), (6.48), and (6.49), it is indeed possible to show that, in the low energy limit,
the quantity n'/n —a’/a is of the same order as a; 5/ (Qa0) — 1.
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fact that the standard Friedmann law is recovered, and that the energy densities on
both branes scale with the same Hubble parameter. In particular, for what concerns
observers on our brane, the matter on the O-brane is regarded as dark matter [93]
that would completely escape any direct or indirect experimental detection (apart of
course from its gravitational interactions). The gravitational effect of the matter on
the O0—brane is not suppressed by powers of €y, as it is the case for py/p . Since the
only natural mass scale of the model is the Planck scale, gy must hence be fine—tuned
to small values not to conflict with observations (see the next subsection).

Second, we remark that some care has to be paid in the interpretation of the
physically observable quantities in the low energy effective theory. For instance, the
alternative choice Mg = 1 [135] in egs. (6.40) and (6.60) is not compatible with the
identification of pijz = Qb p1 /2 as the observed energy density on our brane. This
would lead to a misinterpretation of the expansion laws of the two branes.

Then, in order to put quantitative limits on the validity of the low energy theory,
we rewrite eq. (6.59) in terms of the observed matter densities 18

1 o

2
ay T o M2 Tev2
1/2 10 M2 TeV
Lo (6.63)
a’O 1 _ P1/2
10TeV*

We see that the low energy approximation is valid as long as the observed matter
densities satisfy the bounds

fo < 10 M2 TeV? | pyjp < 10 TeV*. (6.64)

Finally, we would like to comment on Planck mass in the RS model. At low
energy, there are two possible ways to define it, one related to the five-dimensional
expansion, and one from the four dimensional effective action. These two definitions
are called, respectively, local and global in ref. [136]. We see that indeed the values
of M, obtained with these two definitions coincide once all the quantities in the four
dimensional action are properly identified.

6.2.5 Evolution at high energy

We now focus on the equations of motion when the low-energy conditions (6.64) are
not fulfilled anymore. From what we said in the previous subsection, it is clear that
in this regime it is not possible any longer to have a simple interpretation of the
effective four dimensional action in terms of observable quantities. However, this is
not important, because we make measurements only today, in the low-energy limit.
So, it is legitimate to study the evolution of the system at high energy (egs. (6.45),

18We use mo ~ &~ 2/% = M, and Mp Qo = TeV.
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(6.48), and (6.49)), and then make contact with the quantities that we observe
today.'?

We keep the previous definitions of p;, ;, Mp, and the choice A = Qq/d;/s, so
that egs. (6.49) and (6.45) rewrite

(@_/z_) 2 _ 1 Pty "‘ano (%2 — 93) odrye (6.65)
on) T TE @onzm 0 ©
- al 2 _ -
P + 3 2 (P12 +D12) =0 . (6.66)
ay/2

With our ansatz for A(t), the warp factor on our brane is constant. So, all
the Euler-Lagrange equations on our brane are the same at high and low energy
(i.e., they remain exactly identical to the standard equations of physics in four
dimensions)?®. In order to close the differential system, we need an equation of
evolution for py. It is obtained from eqgs. (6.45), (6.48), and (6.49)

-1

- aija,_ . 3(po + Do) 3(p1j2 + D1ja)
pO - —301 / (pO +p0) 1 - 12m0 QZ _ 1 - 19m /Q4 /_
1/2 2(5E = — /o) 252 =g — )

(6.67)

The differences between the evolution equations for gy and py/ (i-e., the terms in
the parentheses) show explicitly that, at high energy, py is not equivalent to dark
matter in our brane.

Since it is assumed that my =~ k= %3 ~ Mp and that Qo M, ~ TeV , the above
equations can be cast in the more transparent form

. 2 — — — - -1
a1/2 P72 Po Po Po
—L2 ) = 1+ - ]l 6.68
<a1/2 > 3 M2 ( P2 10 M TeV2> ( 10 M2 TeV? ) A )
_ 3(po + Do) ) <1 _ 3(p1y2 + Diy2) B
2(10M32 TeV? — pg) 2(10 TeV* — pys)

19This remark should be important, for instance, when looking at cosmological perturbations
in the early Universe. In this section, we derive only the evolution equations of the homogeneous
background. When studying the perturbations, one should keep in mind that a full five-dimensional
description is required at high energy.

20Since the freedom in choosing A(t) is equivalent to the freedom in fixing the time coordinate,
it is obvious from general relativity principles that all physical results would not be affected by
another choice of A(t), with the correct low-energy behavior A(t) —+ Ao/ay/2(t). It is meaningless to
wonder which choice of A(t) makes sense physically at high energy, since contact with observations
is only made at low energy. So, it is sufficient to give the set of equations that follows from the
simplest choice for A(%).

. a _
Bo = —3—L(po + o) <1
ai/2
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We now discuss the implications of these equations for the cosmological evolution
in the early Universe. First of all, it is worth noticing that the above equations (6.68)
encounter a singularity when po ~ 10M32 TeV?. It may be'possible that the presence
of such singularity puts a limit on the theory, at least as long as the dilaton is
assumed to be stabilized. However, as we now show, phenomenological bounds from
primordial nucleosynthesis indicate that this limit is hardly reached for g,/ < TeV*.

In the regime of validity of the low-energy effective theory, gy behaves as ordinary
dark matter in our brane. So, the constraints that we usually have for dark matter
apply to it. Although in principle we cannot say much about the physics on the 0-
brane (in particular “non—standard” equations of state may be expected), we assume
for simplicity that gy can be decomposed into a constant term Py (wg = —1), plus
matter pf* and radiation g components (with wy = 0,1/3).

For what concerns the constant component, the sum of the cosmological terms
75 and ,75’1‘/2 is bounded by the current value of the critical density, which is of order
10~1? M3, So, the amount of fine-tuning required here is the same as in usual
4-dimensional theories:

Py + Ply2 = P + Qg phya < 1071 My, (6.69)

The matter and radiation components also have to be fine-tuned to small values.
The best current constraint on the radiation density pj comes from nucleosynthesis:
since the observed abundances of light elements are only compatible with an effective
number of neutrinos Ngsr = 3 £ 1, we see that gy is bounded by the density of one
family of relativistic neutrinos. The matter density pg* is obviously bounded by the
value of the critical density today. So, in the five-dimensional theory, both pj and
o have to be fine-tuned to ~ 5 o} /2 and ~ Qf P12 while one may naively expect
Po ~ p1/2 in the early Universe.

Without the knowledge of the behavior of the RS model at high energy, one
may have hoped that corrections to the standard Friedmann law could have solved
this problem. For example, starting from py ~ p;/; at high energy, the equations of
motion of the system could have naturally lead to py < p1/2 at temperatures of the
order of the one at which primordial nucleosynthesis occurred. Our analysis shows
that this is not the case. Indeed, let us assume py/; ~ py at the nucleosynthesis scale
(pi ~ MeV*) and let us consider the behavior of the system when it was close to the
natural cut—off py /5 ~ TeV*. Significant deviations from the standard evolution are
expected if at that epoch the energy gy was almost of order Mg TeV? [see eq. (6.68)].
Going backwards in time, go can -increase relatively to py/2 if wy > wy/2. However,
assuming radiation domination on our brane above the nucleosynthesis scale, the
above requirement can be met only for wy > 2, which does not seem to be a
realistic possibility.

A possible solution of the problem of the fine-tuning of gy may arise from the
stabilization mechanism for the dilaton, especially if it occurs at (relatively) low
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energy. Other possibilities are briefly discussed in ref. [93].

6.3 An explicit stabilization mechanism

In this section we present a very simple mechanism for stabilizing the radion of the
Randall-Sundrum model, due to Goldberger and Wise [96].
Let us add to the RS model [89] a scalar field @ with the following bulk action

S, = % /dsz\/@_ (G*P 0,205 — m® 3?) (6.70)

and the following interaction terms
Sp = — /d%‘ V=90 2o (®* - UIQL)Q ;
Sip = — /d433\/ ~g172 A1y2 (@7 - U%/z)z : (6.71)

on the two branes .

The underlying idea is very simple. The actions we have written give a solitonic
configuration to the VEV of & along the fifth dimension. For sufficiently high
couplings A; , we can force the boundary conditions

() ~vy , D(1/2) vy . (6.72)

The first term in the action (6.70) gives the scalar a “kinetic energy” which increases
as the variation of ® becomes more pronounced, that as if the branes get closer. The
mass term gives instead a potential energy which increases with increasing distance
of the two branes. The competition between these two effects gives the radius of the
extra dimensions a static value.

The solitonic configuration for the field & is [96]

dy) = g2moblyl [A g'moblvl L B e umob{yq ;
A = Vo e~ (24+v)mp b/2 __ 'Ul/g e—l/mob ,
B = wyy (1+e"™%) -y g~ GHv)mod/2 (6.73)

where v = /4 +m?/m? and where subleading powers of e~™°%/¥l have been ne-
glected. We now suppose that m/mg < 1 so that v = 2 + ¢, with e @ m?/ (4m2) a

small quantity.

1 Notice that ® and g, 1/2 have mass dimension 3/2, while Aq ; /2 have mass dimension — 2.
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Inserting the above solution for the field ® into the original action and integrating
over y yields an effective four dimensional potential for b which, in the large mgb
limit, reads [96] ‘

€
‘/r(b) = 4m0€_2m0b (’Uo"Ul/Qe_fmub/z)z <1+Z> +

(4+€)mo b/2 (27)0 — vy e b/2) . (6.74)

— €M ’er“
In this expression, terms of order €? are neglected. This potential has a minimum

at finite value by . Ignoring terms proportional to €, we find

8 2
mo by = ( 7720) In {”ﬂ} . (6.75)

Vo

With In (vo /v /2) of order unity, we only need m? /mg of order 1/10 to get the
value mg by ~ 70 necessary to solve the hierarchy problem.

The physical mass of the radion is connected to the second derivative of V, by
the relation

. 2 V()
T 3mE M2

\]

m (1-02)° . (6.76)

The factor multiplying V. comes after the canonical normalization of b in the ac-
tion (6.26). For V. given by eq. (6.74) we have

V" (bo) = 46*? m3 3 e 2™ + O (&) (6.77)
and so
2
8 Mo V1/2
m2 = -2 — 12 Q)2 6.78
3¢ T2 (6.78)

Assuming vfg ~ Mp as all the other scales of the model, and taking m?/m2 ~
1/10, we find that the mass of the radion is about one order of magnitude below
the physical cut-off scale on our brane ( ~ TeV). It is not difficult to have m, as the
highest physical mass of the problem, just allowing vy/; to be slightly higher than
the other original parameters. Although this is just a particular example, it justifies
the analysis performed in refs. [93, 95] which assumes the radion to be stabilized up
to energy densities on the two branes not too far from the physical cut-off of the
system.
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