ISAS - INTERNATIONAL SCHOOL
FOR ADVANCED STUDIES

Some problems in the Calculus of Variations

Thesis submitted for the degree of

“Doctor Philosophiz”

CANDIDATE SUPERVISOR

Sandro Zagatti Prof. Arrigo Cellina

October 1992

TRIESTE







Il presente lavoro costituisce la tesi presentata dal Dott. Sandro Zagatti, sotto la di-
rezione del Prof. Arrigo Cellina, in vista di ottenere lattestato di ricerca post-universitaria
denominato ?Doctor Philosophiae”, settore di Analisi Funzionale e Applicazioni. Ai sensi
del Decreto del Ministro della Pubblica Istruzione 24.4.1987,n. 419, tale diploma é equipol-

lente con il titolo di Dottore di Ricerca in Matematica.

Trieste, anno accademico 1991/1992.

In ottemperanza a quanto previsto dall’art. 1 del Decreto Legislativo Luogotenenziale
31.8.1945, n. 660, le prescritte copie della presente pubblicazione sono state depositate

presso la Procura della Repubblica di Trieste e presso il Commissariato di Governo della
regione Friuli-Venezia Giulia.







Scuola Internazionale Superiore di Studi Avanzati

International School for Advanced Studies

Some problems in the Calculus of Variations

Thesis submitted for the degree of

“Doctor Philosophia”

CANDIDATE SUPERVISOR

Sandro Zagatti Prof. Arrigo Cellina

October 1992







Table of contents

Introduction

Part I. Qualitative properties (scalar case)

1.  Weakly precompact subsets of L!

1.1. Introduction
1.2. Preliminaries and notations
1.3. Kuratowski index
1.4. An extension theorem and a class of absolute retracts
2. On Lavrentiev Phenomenon and Euler-Lagrange Equations
2.1. Imtroduction . . . . . . . . o o o . .
9.2. Preliminaries and notations . . . . . . . < . . . .
9.3. Lavrentiev Phenomenon . . . . . « « « « o « -« o -
2.4. FEuler-Lagrange Equations . . . . . . . . .

3. Functional of the gradient

3.1.
3.2.
3.3.
3.4.

-------

Introduction e e e e e e e e e e e e
Preliminaries and notations . . . . . . . . .
Existence and uniqueness

Continuity with respect to boundary data . . .

10
13
15

19
20
22
23
30

39
40
42
44
48



Part II. An existence result (vectorial case)

4, An existence result in the vectorial case

of the Calculus of Variations

4.1. Introduction
4.2. Preliminaries and notations
4.3. Statement of the main result
4.4. Case of the jacobian determinant
4.5. General case
References

58
59
61
66
67
73

82



Introduction




In this thesis we study the minimum problem for integral functionals of the form
I(u) = / f(z,u(z), Vu(z))de,
N .

under given boundary conditions, where {2 is an open bounded subset of IR" and u is a
function defined on § with values in IR™ (n,m > 1).

Actually our work concerns various properties of the solutions of the minimum prob-
lem: existence, uniqueness, continuity with respect to boundary data and regularity for
certain classes of functionals, and a particular care is devoted to functionals with nonconvex
integrands since in this case, up to now, a general existence theory does not exist.

The content of Part I regards the scalar case (i.e. the case in whichn =1 andm >1
orn > 1and m = 1). In Part II it is given an existence result in the vectorial case
(n,m > 1).

The standard approach to the problem of existence of minimizers (Direct Method)

relies on the following argument:

Theorem. Let X be a topological space and let T: X — IR. If T is coercive and lower

semicontinuous on X, then T has at least a minimum point in X.

The idea of the proof is the following: the coercivity of Z means that for any real M the
set {z € X : I(¢) < M} is (sequentially) relatively compact in X, hence any minimizing

sequence &, admits a subsequence z!, converging to Z. The lower semicontinuity implies
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that .
I(z) < liminf Z(z},) = inf 7. (%)

This result finds a wide application in the Calculus of Variations since coercivity and
lower semicontinuity of integral functionals 7 can be characterized in terms of properties
of the integrand f. Indeed, by imposing suitable growth conditions on f with respect
to the last variable, the functional turns out to be coercive in the Sobolev spaces WP
(1 < p < o) endowed with the weak (weak™ if p = oo) topology. Hence, in order to apply
the direct method it is necessary to ensure the weak lower semicontinuity of Z in W12,

and this is possible, in the scalar case, according with the following

Theorem. A necessary and sufficient condition for the weak lower semicontinuity of the
functional I, under suitable regularity and growth conditions, is that the map £ — f(z,u,€)

18 convez for every ,u.

However the weak lower semicontinuity of the functional is far from being a neces-
sary conditions for the existence of a minimizer, since condition (**) is needed only on
minimizing sequences (actually it is sufficient on one minimizing sequence) and not on all
converging sequences. Hence in the last years several efforts have been produced in order
to obtain existence results in problems with nonconvex integrands.

An important device in such setting is the so called relaxed problem, consisting in the
definition of a weak lower semicontinuous functional Z, the largest lower semicontinuous
functional pointwise less or equal than Z, whose minimum coincides with the infimum of
Z. In the scalar case, under suitable growth conditions, the relaxed functional T can be

represented as the integral functional:

Tw) = [ £ (z,u(e), Vale))d,

where f** is the convex envelope of f with respect to the last variable. By the direct
method, the relaxed problem admits always at least a solution and necessary and sufficient

condition for #, minimizer of Z, to be a minimizer for 7 is
f(z,i(z), Vi(z)) = f**(z,4(z), Vi(z))

almost everywhere. For this reason, in the literature on nonconvex integral functionals,
two approaches are essentially used: to impose conditions such that any solution of the
relaxed problem is also a solutions of the original problem, or to show that there exists at

least one solution of the relaxed problem such that the above equality holds on ). These
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methods require special assumptions on f and many results in these directions have been
given. A good guide in the literature on the sub ject is [Ma2], we refer to it for a detailed
discussion of various results on nonconvex variational problems.

We stress that even when the direct method is not applied, and coercivity is not
directly considered, one is still forced to impose growth condition on f.

As far as it concerns the scalar case n = 1, m > 1, among the various results mentioned
above, we quote in particular Cellina Colombo’s theorem ([CC]) which improves the first

results on nonconvex variational problems ([Ce2], [03])

Theorem. Let g,h:[0,T] x R" — IR be such that f(-,z,2') = g(-,z) + h(-,2') satisfies

growth conditions. Assume further that ¢ — g(-,z) is concave a.e. Then problem

T
Minimize / flt,z(t),2' (t))dt, =€ wh?(0,T,R"), 2(0)=a,z(T) =50
0
admits at least a solution.

The proof is based on Liapunov theorem on the range of vector measures and the
technique used requires the notion of prirﬁitive, hence it cannot be transposed to cases in
which 7 is larger than one.

For the other scalar case we quote the results contained in [C1], [C2] which provide
necessary and sufficient conditions for the existence and for the uniqueness of solutions of

the problem
Minimize / g(Vu(z))dz, u € uy+ Wy (Q,RY)
Q

where ug is an affine boudary datum. The proof consists essentially in the explicit con-

struction of a scalar function whose gradient takes value in the set in which g coincides
with ¢g**.

In the vectorial case (n,m > 1) the application of the direct method finds a new
difficulty due to the fact that the weak lower semicontinuity cannot be characterized in a
simple way as in the scalar case. Indeed even though convexity of the integrand is still a
sufficient condition for the weak lower semicontinuity of the functional, it is not necessary,

and the analogous of the above theorem is the following:

Theorem. A necessary and sufficient condition for the weak lower semicontinuity of the
functional I, under suitable regularity and growth conditions, is that the map & — f(z,u,§)

18 quasiconvez for every T,u.



A function f, defined on the spaces of matrices, is said to be quasiconvex if, for any

matrix 4,

£(4) < /D F(A + Vu(z))de

for every bounded domain D contained in IR" and for every u € Wy (R, R™).

Actually convexity implies quasiconvexity but in the vectorial case the converse is false,
and, in general, it is difficult to ascertain if a function is quasiconvex or not. Moreover the
relaxed functional is expressed in terms of the quasiconvex envelope of f (i.e. the largest
quasiconvex function pointwise less than f) and a simple expression for the infimum of the
functional is not available. For these reasons, new convexity-type concepts, and relative
envelopes, have been introduced (policonvexity, rank-one convexity) in order to investigate
nonconvex problems through relaxation (a good exposition of these topics can be found in
[D1]). Actually, in some cases, one of which is considered in the present thesis (chapter
4), relaxation is obtained by convexification: by this way, once given a sufficiently simple

expression for the infimum of the functional, one can try to prove existence of a minimizer.
Presentation of our results

As we have remarked above, the direct method in the calculus of variations requires
essentially two kinds of independent assumptions: growth conditions (coercivity) and con-
vexity (weak lower semicontinuity).

Even dealing with nonconvex problems, i.e. when the direct method cannot be applied,
growth conditions cannot in general be dropped. Since growth conditions impy relative
weak compactness in Sobolev spaces, in chapter 1 we study relatively weakly compact

subsets of L', i.e. sets of the form

{u eIt /¢(|u|) < M}

where M is a positive constant and ¢ is a real valued function satisfying the growth

condition usually met when dealing with variational problems in Whi:

lim ib—(i)- = 400
t—oco 1

We study such sets from a metric and topological point of view, extending results

previously obtained in the context of multifunctions and differential inclusions.
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In chapter 2 we consider a problem strictly connected to the problem of regularity of
minimizers. Actually the regularity of minimum points is usually exploited by studying
the regularity of the solutions of Euler-Lagrange equations which are well known necessary
condition for a function to be a minimizer.

The derivation of Euler-Lagrange equations, which is a classical argument, requires
regularity and some upper bounds on the growth of the integrand and of its derivatives.
These bounds are not only unnecessary for the existence of the minimum point, but are in
some sense in contrast with the standard growth assumptions used in existence theorems.
The content of chapter 2 constitutes a contribution in the direction of weakening these
conditions for functionals of the scalar case n = 1, m > 1, and, incidentally, it provides a

class of functionals for which Lavrentiev Phenomenon does not occur.

In chapter 3 we consider the solutions of the problem
Minimize / g(Vu(z))de, u €+ Wy'(Q,IR)
Q .

whose existence and uniqueness are characterized in the papers [C1], [C2] quoted above,
and study their continuity with respect to the (affine) boundary data. We give a necessary
and sufficient condition, which recalls Olech’s lemma on the strong convergence of selections
of a multifunction to extreme points, for such continuity. By this way Cellina’s theorems

and the present result provide a complete well posedness theory for this problem (relatively
to affine data).

The second part (chapter 4) contains an existence result in a vectorial case in which the

relaxed functional is expressed in terms of a convex envelope. More precisely we consider

the functional

1(7) = [ o(@(VT (@)

where ® is a generic real valued quasiaffine function (in particular one can take as @
the determinant), g is lower semicontinuous and satisfies growth conditions and T' is a

transformation from 2 to IR".

We prove that the functional under consideration admits at least a minimizer in the
class Tp + W' (€,IR™) where T is an affine boundary datum.
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The contents of the various chapters are almost independent between them, hence
each chapter contains a short introduction explaining in a more precise way the aim of the

work and the results, and a section of preliminaries and notations.
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Part I

Chapter 1.

Weakly precompact subsets of L!




1.1. INTRODUCTION

Convexity is a fundamental concept in the study of Differential Inclusions and of Cal-
culus of Variations and in the last several years, in order to avoid convexity assumptions,
an effort has been produced to find classes of sets that inherit some of the properties
of convex sets from less geometric and more analytic considerations. The theory of de-
composable sets is the product of such an effort. A decomposable set D is a subset of
L' = LY(T, E), where T is a measure space and E a Banach space, having the property
that ux.4 +vxr_4 € D for every u,v € D and for every measurable subset 4 of T. One
can find in [02], [BC], [CCF] and in [F1] results in which decomposability is in some
sense a substitute of convexity. In particular the analysis of selection problems, which is
fundamental in the theory of differential inclusions, makes a large use of the concept of
decomposability since, as it turned out, a decomposable, closed and bounded set is the set
of mesurable selections of an integrably bounded multifunction (that could describe the
constraint of the problem). This means that dealing with a bounded decomposable set,
actually we deal with a set of functions pointwise a.e. bounded by some function in L.
On the contrary in variational problems this limitation is not met in general, and the tech-
niques we have mentioned above lead to consider bounds coming from growth conditions
or coercivity conditions.

In variational problems one meets so called sublevel sets which in general can be
defined as sets of functions v € L' such that [ & o ||u|| is bounded by a constant M,
possibly infinite, where the function @ : [0, co[—[0, 0o[ has the only property that & o ||u]|
is measurable for any u € L'. Indeed when ® is assumed to satisfy some growth condition

such as (s
e 200

t—oo = oo

the corresponding sublevels are weakly relatively compact subsets of L', i.e. the sets
containing the sequences of the derivatives of minimizing sequences for integral functionals.

Since the assumptions on ® are very weak, the class of sublevels contains a certain
amount of subsets of L', such as Orlicz classes, L? spaces (0 < p < o0), balls in such
spaces and so on. However these sets, denoted by ®,;, are not decomposable. Purpose of
the work reported in this section is to extend the theory developed for decomposable sets
to sets of the type @53y N D i. e. to sets which are the intersection of a sublevel and of
a set of selections of a measurable multifunction (but not necessarily bounded). By way
we cover the case of a weakly relatively compact family of functions in L', taking values

in a closed subset M of E, assuming neither the boundedness of M nor the existence of
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an integral bound for the family itself, as it would be required within the framework of
decomposable sets. It should be remarked that ®5; or D can be chosen to be the whole
space, including, as a special case, the theory for decomposable sets and for sublevels.
We present a metric and a topological result: first we prove that Kuratowski index
a of a set of the type specified above coincides with its diameter, then we give a version
of Dugundji extension theorem. In [BC] the authors give an extension theorem in which
decomposability in L' is used instead of convexity in a generic Banach space, obtaining,
as consequences, that a closed decomposable set in a separable space L! is a retract, and
that, in general, it has the compact fixed point property. We prove analogous statement

for our case.




1.2. NOTATIONS AND PRELIMINARY RESULTS

We consider a measure space (T, F,p) where F is a o-algebra of subsets of T and
p is a bounded positive nonatomic measure on T. If f : T — IR is a p-measurable
function we denote by f - the measure having density f with respect to p. E is a Banach
space with norm || - || and p > 1 L?(T, E) is the Banach space of Bochner p-integrable
E-valued functions defined on T endowed with the norm |||, = ([, | f|[Pdr)/?. If A
and B are two sets, A — B is their difference and A A B is their symmetric difference
(A—B)U(B — A). By x4 we denote the characteristic function of the set A and by S™ the
set {z = (2g,...,zn) € R"" ' 5. t. 30 |2:| = 1}. For a metric space X with distance d and
for A C X, we set d(z,A) = inf{d(z,y), y € A}, and diam(A4) = sup{d(z,y), =,y € A}.

Definition 1.2.1. A set D C L!(T, E) is called decomposable if for every A € F and for

every u, v € D it is

ux4+vxr-4 € D.

The decomposable hull of a subset S of L'(T, E) is defined as the smallest decomposable
set containing S and is denoted by dec(S).

Definition 1.2.2. Let F : T' — 2% be a multifunction. F' is said measurable if for every
closed C C E it is F71(C) € F. The set of measurable selections of F is denoted by Sp.

The following statement is a characterization of decomposable sets (see [HU]).

Theorem 1.2.1. Let S C L'(T,E) be nonempty and closed. Then S is decomposable
if and only if there exists a measurable multifunction F such that S = Sp. Moreover, if
5 is bounded, F is integrably bounded i.e. there ezists h € L'(T,IR) such that |Ju(t)|| <
h(t) p —a. e. for allu € SF.
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We now list some well known results which in some sense justify our work.

Definition 1.2.3. A family S of L'(T, E) is called absolutely equiintegrable if for any
€ > 0 there exists 6§ > 0 such that for any A € F with p(A) < § it is S llulldp < € for all
u€S.

Notice that an absolutely equiintegrable family of L*(T, E) is bounded. A bounded
decomposable subset of L! is equiintegrable.

The following theorem is well known (see for example [Cel]).

Theorem 1.2.2. Let S C L'(T,E). The following statements are equivalent:

i) § is sequentially weakly relatively compact in L*(T, E);

ii) S is absolutely equiintegrable;

i11) there exists ® : [0,4+o00[— IR nonnegative, increasing, satisfying ®(t)/t — +oo as
t — +o0, and a constant L > 0, such that [ ®(||u|)dp < L for allu € §.

Since in the literature it is not easy to find the proof of the equivalence of ii ) and of

i1) we remind it.

Proof.
Foru € S set

T(u,e,8) ={t € T: a < ||u(t)]| < B}
T(u,0) = (£ €T : ()] > ).
i)=> 111). For y > 0 define

7(y) = sup / ) dg,
wE€M JT(u,y)

¥ is a nonnegative, nonincreasing function and limy—, 10 7(y) = +0o. To prove the last

assertion suppose that there exist € > 0, and {y, }nec increasing sequence in IR with
im y, = +o0
n—00

and {un}nen in § such that fT(u ) |lun||dp > € since imp,— oo (T (wn,yn)) = 0 (other-
wise it would be supyes [ ||u[/de = +00) we get a contradiction.

Choose now two real increasing sequences {an}n>0, {yn}n>0 satisfying:

yo = 0, lim y, = 400,

n-—+00
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ap > 0, lim a, = +oo0, Z anY(yn) =L < o0

n—0o0
and define
o0
¢(y = Z anyx yn1yn+1['
n=0

¢ has the properties stated above and
=Y [ fuldp <

[ etluan = Y- | #(lul)a
T n=0 T(u!yn7yn+1) n=0 T(uyynayn-i—l)

< Zan / lullde <Y any(wn) = L.
ayn n=0

i41)=> ii) (De La Valleé Poussin).

Set ¥(y) = #(y) /y; fix € > 0, choose A > 0 such that 9(4) > 2L /e and § such that
0<b6<e/2A. For A € F with p(A) < § and u € §, define

A]_‘—“AﬂT(’LL,A), AzzAﬂT(u,O,A),

/A”””d” = /Al ulldp + A lullde <

1
< M‘Al¢(|[u][)dy + AzAdp < m—i—A(S < e

This ends the proof. O]

it is

Functions satisfying the growth conditions specified in previous theorem play an im-
portant role in functional analysis, indeed the theory of Orlicz classes is based on such

functions, the reader can found a wide exposition in [KJF).
These considerations justify the following

Definition 1.2.4. Let & : E — IR" U {0} having the property that & o u is measurable
for every u € L*(T, E). Let M € IR* U {+o0}; we set

Brr = (T, E) = {u € L}(T, E) s.t. / & oudp < M}
T

We call this set ®-sublevel. If M < oo the strict inequality in the definition of ®5; can be

replaced by the weak one without affecting our results.
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The most interesting case is that one of a function ®(u) = ¥(||u||) where ¥ satisfies
some superlinear growth condition.
Among sets which can be described as sublevels in the sense specified above we men-

tion, for example, balls in L?-spaces and in Orlicz spaces (with radius possibly infinite).

We end this section reminding the main tool used in establishing our results, that is

to say the following version of Liapunov theorem about vector measure.

Theorem 1.2.3. Let {91:--,9n} be a finite family of nonnegative functions in L'(T,1R).
Then there exists a family {A,, o € [0,1]} in F with the properties:

6) A(0) =0, A(1)=T, A()C A(B) Ve, € [0,1] a <

b) _[A(a) gndp = a [ gndp Vo € [0,1],Vn =1,...,N.

) WlAa D Ag) < | — . *

Such family is called a refinement of T' with respect to the measures g, - g, see [F1].

In what follows we shall consider sets that are intersections of decomposable sets and
of sublevel sets. A typical application is to families of functions taking values in a closed
subset M of E. To deal with such sets within the framework of bounded decomposable
sets one had to impose that either M itself is bounded or that there exists an integral
bound. In this paper we extend the theory to cover the case of a generic weakly relatively

compact set of L! of maps taking values in M.

1.3. KURATOWSKI INDEX

We now recall the definition of Kuratowski’s index a and a theorem which will be

used later.

Definition 1.3.1. Let X be a metric space, A C X bounded.
a(A) =inf{e>0: A= U A; where I is a finite set and diam(4;) < €}.
el ‘
Theorem 1.3.1. (Lusternik, Schnirelman Borsuk) Let {So, ..., S,} be a covering of closed

sets of S™. Then there is at least one set S; that contains a pair of antipodal points.
p
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For the proof see, for example, [DG].
In [CM] the following proposition is established.

Theorem 1.3.2. Let D C L'(T,FE) be decomposable and bounded. Then a(D) =
diam(D).

Corollary 1.3.1. Let S C L'(T,E) be bounded. Consider two sequences {u,}nen and

{vn}nen such that lim, o |[un — vs|y = diam(S), and suppose dec({un,v,}) C S for
every n € N. Then o(S) = diam(S).

Proof.
Take € > 0, there exists n € IN such that ||u, — v,|| > diam(S) — ¢ it follows:

diam(S) > a(S) > a(dec({un,vn}) = diam(dec{un,v,}) =

= |jup —vp|1 > diam(S) — ¢,

Since € is arbitrary we obtain the result. O

The following is the first result of this chapter.

Theorem 1.3.3. Let D C L*(T, E) be decomposable and &5y C L (T, E) be a ®-sublevel,
suppose D N ®p; nonempty and bounded. Then a(D N ®pr) = diam(D N $py).

Proof. 1t is sufficient to prove that a(D N @®a;) > diam(D N ®5/) (the converse inequality
is obvious); for this purpose take u, v € DN ®j and, using Liapunov theorem, consider a
family {4(a), a € [0,1]}, a refinement of T with respect to the measures |[u] - g, ||v] - g,
®(u) - p, ®(v) - p. Then, for j € {0,1,...,n} and z € 5™, set

pi(e) =Y loi,
No(z) = A(po(z)),
Ni(z) = A(pi(z)) — A(pi-1(z)), i 2>1,
LY ={i: z; >0}, I~ ={i: z; <0},

14



and define wy, : S® — LY(T, E) by the formula:
Wn ‘B) Z UXN; (z:) + Z VX Ni(z)-

iel,t i€l

‘Obviously w(S™) C D and

/ (@a(@))dp = 3 / Su)dp+ 3 /lz)@(v)du<§‘pi(:c)-M - .

ier+ Y/ Ni() i€l -

hence w(S™) C D N ®5;. The continuity of w,, follows easily from property ¢ ) in Theorem
2.3.

Now suppose that there exists a finite covering {Ky,..., Kn} of D N &5, where each
K; is closed, it is

S" = wn_l(Ko) U...u wn"l(Kn),

each w, !(K;) is closed and by Theorem 3 there exist z and ¢ such that wn(z) € K; and
wn(—z) € K;, since ||wn(z) — wn(—2z)|l1 = ||u —v||1, diam(K;) > ||z —v||; and this implies
a(D N &yr) > |ju — v||;. Since v and v are arbitrary we obtain the result. L

1.4. AN EXTENSION THEOREM
AND A CLASS OF ABSOLUTE RETRACTS

We recall Dugundji’s extension theorem ([Du], p. 188).

Theorem 1.4.1. Let A be a closed subset of a metric space X and K be a convez subset

of a Banach space Z. Then every continuous map f : A — K has a continuous eztension

f X - K.

In [BC] the authors prove an analogous result for Z = L(T, E) assuming K de-
composable instead of convex. Following their argument we state an extension theorem
requiring neither convexity nor decomposability. To do this we need an extended version

of Liapunov theorem due to Bressan and Colombo (see [BC]).

Lemma 1.4.1. Let {gi, k > 0} C L}(T,IR) be a sequence of nonnegative functions with
go = 1. Then there ezists a map A : IRT x [0,1] — F with the properties:
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Z) A(T7a1) .g A(Ta a2)) if (5] S Qz,
i) #(A(Tlaal) A A(Tz,az)) <la; — az|+ 2|1 — T2/,
2”) fA(r,a) gkd/" = angkdiu’ Yk S T, fO’I‘ all o, oy, Q2 € [0)1]: T, T1, T2 Z 0.

We are now ready to state our extension theorem whose proof is a slight modification
of that one of theorem 1 in [BC].

Theorem 1.4.1. Let X be a metric space with distance d and A C X be closed. Consider
D C LY(T,E) decomposable, &5y C L*(T,E) a ®-sublevel and D N &, # 0. If either
X or L)(T,E) is separable and f is a continuous function from A to LYT,E) such that
f(A) CDN®yy, then f has a continuos extension f : X — LYT, E) with f(X) C DN&,;,.

Proof. Assume L'(T,E) separable. For each z € X — A take an open ball B(z,r;)
with radius 7, < 1d(z,A4). The family {B(z,r.), ¢ € X — A} is an open covering of
the paracompact space X — A hence it admits an open neighbourhood-finite refinement
{Vi, © € I} where I is possible uncountable index set. For any i € I select two points
z; € Vi and y; € A such that d(z;,y;) < 2d(z;,4). Since L!(T,E) is separable it is
possible to define a countable set K = {un, n > 1} C f(A) dense in f(A). For every
v € I select uy,(;y € K such that |ju,u) — f(y:)lli < d(zi,3:). Consider a continuous
partition of unity {p;,7 € I'} subordinate to {V;} and define, for every n > 1 the open set
Wn = U{V;, v(i) = n} and the continuous partition of unity subordinate to the covering
{W.} given by the formula g,(z) = Zv(i)zn pi(z). Construct a sequence of continuous
functions {hn, n > 1} such that h, = 1 on supp(g,) and supp(h,) C W, and define on

X — A the continuous function
An(z) = Z gm(z), n >0
m<n

and

(@)= ) hm(z)ha(z)2m3".

m,n>1
Consider now the sequence {gz, k£ > 0} in L}(T,IR) given by:
ge(t) = {llun(t) —um(t)| if &=2m3",
S(um(t)) if k=2m3" -1,
®(un(t)) if k=2m3" -2,

1 otherwise.}
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form,n > 1.

Applying Lemma 4.1 to such sequence we obtain a family A(7, ) and define, for any

zeX - A
Xn(T) = XA(r(2),An(2)) = A(r(2),An_1(2)) "

Then we extend f to the whole space X by the formula:

- f(z) ifzeA,
Enzo Un-xn(z) fzeX-—A4,
We remark that
T(IB) >92™Mm3" Yz e .supp(qm) N S’U»Pp(qn) (4.1)

and then it is easy to show that f takes values in @1, indeed, forz € X — A4, it is

/ z)dp = Y qa(z) / (un)dp < M

n>1

since the sum is taken over the finite set of indices n such that p,(z) # 0, and for such

indices,

/ ®(uy)dp = a/ ®(un)dp Va € [0,1],
A(r(z),a) T

by property #ii) of Lemma 4.1. Hence, obviously, f(X) C @3 N D. Continuity of f in
X — A is a consequence of contunuity of A,(-) of 7(-), of property i) in Lemma 4.1 and of
the fact that the summation defining f is locally finite.

To prove continuity on A take a € A and € > 0. There exists § > 0 such that § < €/12
and ||f(y) — f(a)|l1 < ¢/2 whenever y € A and d(y,a) < 128. If d(z,a) < § and =z € V;
for some 7 € I, then diam(V;) < 26, d(z;, A) < 36 and d(z;,y;) < 66. Therefore p;(z) # 0
implies d(y;, a) < 94, || f(vi) — f(a)|l1 < /2 and |lu,(;y — f(a)|]: <e. Then

|lun — f(a)|l < € Vn such that g,(z) # 0. (4.2)

For any z € X — A with d(z,a) < §, fix j such that ¢;(z) # 0. Using (4.1), (4.2) and
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property 1) of Lemma 4.1 we have:
1£(a) = (@)l < 1f(a) = wjllx + [luj — F(2)]2 <
<e+ 2 [ s = uallxa(o)dn

n>1

=€+ Zf Gaizn Xn(z)dp
T

n>1

= €+an(m)/ g2igndp
T

n>1

=e+ Y qn(z)|un —ujls < 3e
n>1
Since € is arbitrary we obtain the result.

It is left to consider the case in which L*(T,E) is not separable. Since X — A is
separable the covering {V;,i € I'} defined as in previous case, is countable. For each i € I
choose z; € V; and y; € A such that d(zi,y:;) < 2d(z;, A). Then the analog of the set K of
the previous case can be chosen to be {f(y;), i € I} arranged in a sequence {tn, n>1}

then the proof proceeds in the same way. Ul

Then, as in [BC], we can state the following consequences.

Corollary 1.4.1. Suppose that L'(T, E) is separable. Let D C L*(T, E) be decomposable

and @5y C L'(T, E) be a ®-sublevel, then if DN &y is nonempty and closed, it is a retract
of the whole space.

The following is a generalization of results in [C3] and in [F2].

Corollary 1.4.2. Let D C L*(T, E) be decomposable and ®5; C LY (T, E) be a ®-sublevel.
If K = DN ®y is nonempty and closed it has the compact fized point property i. e. every

continuous function f : K — K with relatively compact image has a fized point.

Proof. Consider f : K — K with relatively compact image and continuous and call X the
closure of the convex hull of f(K); X is compact, hence it is separable. Using Theorem
4.2 extend the identity map ¢: X N K — X N K to a continuous function i : X — K. The
composed function f -7 maps X into X N K. By Schauder Theorem it has a fixed point
¢y which is also a fixed point of f. O
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Chapter 2.

On Lavrentiev Phenomenon

and Euler-Lagrange equations




2.1. INTRODUCTION

Euler-Lagrange Equations (EL) are well known necessary conditions for a function

to be a minimizer of the functional

b
I(z) = / F(t,2(t),2' ())dt

under given boundary conditions.
In order to prove the validity of such Equations one imposes that the Gateaux deriva-
tive in z of the functional along a certain class of directions is zero. More precisely, one

imposes:

=0,

d
— 0

for any £ with essentially bounded derivative and zero boundary conditions. This procedure
requires the differentiability of f with respect to the second and the third variable and the
integrability of f and of its derivatives along trajectories close to the minimizer . This
last requirements can be satisfied by imposing some integrable bound on the growth of f,
V:f, Vi f in a neighbourhood of the graph of z. Actually, such assumptions are strong
enough to ensure the continuity along a wider class of variations including, in particular,
lipschitzian approximations of z. In other words, the hypotheses under which Euler-
Lagrange Equations are usually derived, exclude Lavrentiev Phenomenon, which consists
in the relevant fact that the infimum of 7 on the class of admissible trajectories with
essentially bounded derivative can be strictly larger than the minimum on the class of all
admissible trajectories.

If we consider Mania’s functional, which constitutes a widely studied example in the
framework of Lavrentiev Phenomenon, we see that even though the minimizer satisfies
formally equations (EL), the standard assumptions are not fulfilled. Our work is devoted
to the study of more general hypotheses for the validity of equations (EL) and to the
problem of finding a class of functionals which do not exhibit the Lavrentiev Phenomenon.
We apply our results to the particular case of Mania’s functional.

The study of conditions excluding Lavrentiev Phenomenon was considered since the
first works on the subject ([L], [M] and [T]) and, more recently, by many authors ([A],
[BM], [CV], [CA] and [Lo]). In [T] Tonelli defined a kind of lipschitzian approximations of
the minimizer and determined a class of functionals, characterized by some assumptions
involving the differentiability properties of the integrand f, which are continuous along

such approximations. In [A] the author, with a refinement of the idea of Tonelli, gives a
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very general condition on f which excludes Lavrentiev Phenomenon. In our first result,
with a proof similar to that one of Angell, we provide a class of functionals for which the
Lavrentiev Phenomenon does not occur, that is strictly larger than the class of functionals
singled out by Tonelli.

The approximation procedure that we use in the proof of such result suggests to
consider a class of variations around the minimizer, depending on a continuous parameter,
along which the continuity of the functional is ensured. Even though such variations are not
taken along a fixed direction, we study the differentiability of Z along these variations, in
the aim of deriving Fuler-Lagrange Equations under weaker assumptions than the standard
ones. Indeed, since such variations are obtained by truncating the derivative of z, some
of the classical requirements on the behaviour of f near z can be removed. In such a way,

we obtain a result which enlarges the range of validity of Equations E L.
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2.2. PRELIMINARIES AND NOTATIONS

We consider an open subset A of IR x IR" and a compact interval of IR, I = [a,}],
and assume that, for any ¢t € I, the set {z € R" : (¢,z) € int(4)} is nonempty. Let
f: A xIR" — IR; we are interested in the study of the functional

b
I(a;)z/ f(t,z(t),z' (¢))dt

defined on the class of admissible trajectories with given boundary conditions, i.e. on the

set
Q={zeWH(I,R"): forany t €I, (,z(t)) € 4 and z(a) = z,, (b) = 3},

where z,, z; € IR" are such that (a,z,),(b,zy) belong to 4 and 2 is nonempty.

Our work mainly concerns the problem
P: Minimize {Z(z); z € }.

Given z € ) we call graph of z the set I' = {(¢,z(t)) ¢t € I} and given, ¢ > 0, we call
o-neighbourhood of the graph of z the set I'y = {(¢,y) : t € I, s. t. |y — z(¢)] < o}. We
say that the graph of z lies in the interior of A if there exists a o—neighbourhood of the
graph of z contained in A. We say that « € Q gives a strong local minimum for Z if there
exists o > 0 such that for any y € 2, with graph contained in I'y, it is Z(y) > Z(z). We
say that ¢ € Q gives a weak local minimum for 7 if there exists ¢ > 0 and 7 > 0 such
that, for any y € { with graph contained in I', and such that it is |y/(¢) — 2/(¢)] < 7 for
a.e. t € 1,it is Z(y) > I(=).

We shall use the following standard notations. By (,-) we denote the scalar product
in IR™ and by | - | the associated norm; E° is the complement of the set E and u(-) is the
Lebesgue measure. We shall denote by C(I), L?(I) and W'?(I), the spaces C(I,IR"),
LP(I,IR") and W'?(I,IR"), for 1 < p < oo, and by || - |lc(n), || - llz» and || - |[syrs the
respective norms. By V,f and V. f we denote the gradients of f with respect to the
second and the third variable. We set also, for p > 1, p' = p/(p — 1).

Definition 2.2.1. Let E C IR" be measurable, A : E — IR be measurable and «,3 € IR.
We set

Eop(h) :=A{t € E: h(}) €]a, B},
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and Ey(h) := Euo 1oo(h) . We set also w(h,a) := p(Ey(h)).
We will make use of the following theorem (see [WZ] pp. 81-83).

Theorem 2.2.1. Let E C IR" be measurable, u(E) < oo, h : E — IR be measurable,
o, €ER, a <P and ¢ :IR — IR be continuous and such that o h € L*(E). Then

ﬂ .
/ ¢(h(z))dz = ——/ ¢(o)dw(h, o) ‘ (2.1)
Ea,ﬁ(h) =]

(where the last is a Stieltjes integral). In particular

B B
/ hP = _/ o?dw(h,o) = —fPw(h,B) + cPw(h,a) +p/ ap“lw(h,a)don (2.2)
Ea,p(h) a

[0

We recall Tchebyshev inequality (see for instance [WZ] p.82).

Theorem 2.2.2. Let E CIR" be measurable and h belong to LP(E,IR™). Then

w(lh|,0) < M-L(—llpi for any o > 0.

2.3. LAVRENTIEV PHENOMENON

We say that the functional 7 exhibits the so called Lavrentiev phenomenon if

inf Z(z) > minZ(z).
ZEQNTT Lo (1) z€Q

In the study of such phenomenon it is of particular interest the following example due to
Mania (see for instance [Lo], [Cel] pp. 514-516, [D1] pp. 92-95, [BM] p.13), consisting in

the minimum problem
1

P, : Minimize {Ig(a:) ::/ g(t,z(t),2'(t))dt; = € WH([0,1],IR), z(0) =0, =(1) = 1}
0
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where g(t,z,v) = (z® — t)?|v|?. It is easy to see that the solution of P, is zo(t) = ¢3 and
Z(zo) = 0. We have the following result.

Proposition 2.3.1.

i) If 0<q< g— then inf {Zy(z); = € WH*([0,1],R), z(0) =0, 2(1) =1} = 0.

i) If ¢> g then inf {Zy(2); = € WH*([0,1],IR), z(0) = 0, =(1) =1} > 0.

Proof. We prove statement 1), for ii) see [BM].

Let us define the following sequence {zx }rew in W*°(I,1R) of lipschitzian approximations
of zy () = 13:
3kt, t€[0,(3k)"7]
zy(t) =
t3, te[(3k)"%,1]

It is, by easy computations,
1 9
Tiex) = [ glt,en(t) )it = (o=t
» 0 105
Hence imy .o Z,(zx) = 0. O

The study of Mania example leads to the investigation of general properties of the
integrand f which prevent Lavrentiev phenomenon to occur; Theorem 3.1 below provides

a result in this direction extending the original work of Tonelli [T] (see Remark 3.2 below).

We shall need the following technical lemma.

Lemma 2.8.1. Let E CIR" be measurable, u(E) < co, and let z belong to LP(E), p > 0.

Let q1,492,71,72 be positive numbers such that g, < p and v1(p—q1) = (g —p)y2. Then,

for any 6§ >0,
72

T 91 g . 22
(/(Esummcl 2 t) ([meni ) t) =
z(t)|? 2($)IPd
([Esuxmcl (t)|> (/mel)l 2 t)
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Proof. First of all the integrals in the Lh.s. do exist. For any o > 0 we set ¢(0) =

—w(|z|,0); ¥ is non decreasing, hence, if f and g are real valued continuous functions
defined on [0, +oco[ such that f < g, it is

[ #orasie) < [ serawie)

for any o, € RT. Now using formula (2.1) we have

Y2

</(Eﬁ<|xmc Im(t)lgldt) m (Amb lfc(t)]qzdt> -
(/"6 W”)) % ([ remrantn)”.

Since for 7 > § it is 72 7P < §727F and for 0 < o < § it is 5(”_1’)% < o'(qz~p)%%, the right
hand side of (3.1) can be estimated as

§ o 2
( / o‘“ahﬁ(cr)) ( / Tp5qz-Pd¢(7-)) _
0 §

/6 ot gle ——P)g,—id,(,b

0

§

(/ 0_91+(Q2~P)3—§‘d¢

0

Since g1 + (g2 — p)% = p, this ends the proof. O

(3.1)

24!

<a>) i ([ rann) Yo
@) ([

Tpd¢(r)> " .

Following Angell and Cesari ([A], [Cel] and [CA]) we give the following

Definition 2.8.1. We say that f: A x R” — IR satisfies Caratheodory condition (C)
provided that given € > 0, there is a compact subset K. C I such that u(I\ K.) < ¢,
Ar, = AN (K x IR") is closed, and the function f is continuous on Ax, x IR™.

In the main result of this section we shall assume that f satisfies one of the following

conditions.

Hy: f satisfies condition (C) and maps bounded subsets of its domain into bounded subsets

of R.
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Hy: f is continuous on its domain.

Theorem 2.3.1. Let f satisfy either Hy or Ho and let z be an element of QN Whr(I)
whose graph is contained in the interior of A (i.e. there ezists a o-neighbourhood T, of
the graph of z contained in A) and such that f(-,z(-),z'(-)) € L'(I). Assume that

Hj: there ezist m,M > 0 and v > 0 such that, for any (t,y) €T, it is

(6, 2(1)) = £t 2(8), 2" (4))] < (m + M2 (1)|%) |2(2) — y|”, where g = p(y +1) — 7.

Then, given € > 0, there ezists y € WH°(I) N Q such that
[y — el <e

1Z(y) — Z(z)| < e

Corollary 2.3.1. Under the hypotheses of theorem 3.1, if z is a solution of P, then

reanitee(n 1) = B

that is to say, the hypotheses of theorem 3.1 ezclude Lavrentiev phenomenon.

Remark2. 3.1. Hypothesis H;3 in theorem 3.1 includes as a special case, (y = 1, ¢ =
2p — 1), the following

Hy: f is continuously differentiable with respect to the second variable and there ezist

positive constants m, M such that |V, f(t,y,z'(t))] < m+ M|z' ()|~ for any (t,y) € T',.

Remark 2.3.2. Hypothesis H; provides an extension of condition (8) in [T] (see also
[Cel] Remark, p. 512): '

(B): f is continuously differentiable with respect to the second variable and there ezist

positive constants m,M such that |V, f(t,y,v)| < m + M|v| for any (t,y,v) € Ty x R".
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We emphasize that, in the case in which z is in W?(I), the proof of Tonelli can be easily
reproduced under the weaker assumption that there exist positive constants m, M such
that |V, f(¢,y,v)| < m+ M|v|P for any (¢,y,v) € ', x R".

Remark 2.3.3. Example.

Let us consider the following Mania type functionals: Z, (z) = fol gm(t,z(t), 2’ (¢))dt;
where g, (t,z,v) = (2® — t)?™|v|?, m € IN. The hypotheses of Theorem 3.1 are satisfied
for ¢ < 2 + m, while Tonelli’s condition () holds only for g < 3.

Proof of Theorem 3.1. We may assume z' € LP(I)\ L°°(I) since when z' is essen-
tially bounded there is nothing to prove. For any positive number p define the sets
I, = {teI:|2'(t)] > p}. Take R > 0 such that the complement of Ig, I, has posi-

tive measure, and for any § € IR, § > R, we set

Bs = — ‘[rﬁm'(T)dr.

Since @' belongs to L?(I) we have
5]1rn p(ls) =0 (3.2)
and, obviously,
61im Bs = 0. (3.3)
Consider, for any § > R, the function ys defined by setting
0, te€ls
yg(t) = :E'(t), telgr \ Is
and
t
s(t) = 2o + [ i(r)ar
0

Since y§ is bounded by §, ys is in W1*°(I). We have ys(a) = z, and

Ys(b) = zq +/

()i + Bou(I) = o(a) + [ &4(r)ir = o(b) = 2.
I

I

c
&
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Moreover

/I i)~ </ OFde < [ [2'(0)Pdt+ 1Bl ().

Hence, by (3.2) and (3.3), ys is arbitrarily close to z in W'?(I), and also in C(I), when §

is sufficiently large; in particular we have the estimate

lvs — zllowm < 2 / @' ()] | (3.4)

Inequality (3.4) ensures that there exists §, such that the set {(t,ys(t)), t € I} is contained
in I'; C A for every § > §y. In particular, for any § > &, ys belongs to Whee(I) N Q.

To prove the theorem we shall show that Z(ys) is arbitrarily close to Z(z) when § is
sufficiently large.

Let us write
Tl0) - Z(a) = | [ (7(605(0,0400) — Stt,000),2/(0) | <
/I |f(t,y5(2),0) — f(2,2(t), 2" (¢))] di+

£ 95(8), 2/ (8) + Bs) = £(t,2(2), &' (1) ot

)
f £t w8 (1), (1)) — f(t,(t), 2 (1))| dt =
Ip\Is
A1(8) + Ax(8) + As(6).

We claim that lims_.o A;(8) = 0,7 =1,2,3.
1.)
A(6) < / |F(t,9s(£),0)] dt + / |, 0(8), ' (1)) de. (3.5)
Is I

For any 6 > 6o, |ys(t)| < |z(¢)] + o, t € I, hence, since f maps bounded subsets of its
domain into bounded subsets of IR, the first integrand in (3.5) is bounded by a constant.
By hypothesis f(-,z(:),z'(-)) belongs to L!(I); hence, by (3.2), absolute continuity of the
integral implies that lims oo A1(6) = 0.

2.) On the set If the family {z'(:) + B5,6 > &y} is uniformly bounded by a constant.
Hence the family

{hs(t) = [F(t,ys(8), @' (2) + Bs) — £(¢,2(t),2"(t))], 62> éo}
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is integrably bounded on IF.

Assume first that f satisfies H, (i.e. f is continuous on its domain). By the point-

wise convergence of ys to = on I§, by (3.3) and by dominated convergence we have

]iIIl&...,oo Ag((S) =0.

Assume that f satisfies hypothesis H;. Given € > 0 we can take a compact set K. contained

in I such that f is continuous on Ax, x R" (Ax, = AN (K. x IR")) and such that the
measure of I \ K, is small enough so that, by the absolute equiintegrabilty of the family

{h’5}7

/ hs(t)dt < < for any 6 > éy.
(I\K NI, 2

By the continuity of f on Ag,, the pointwise convergence of ys to z and by (3.3),

there exists d. such that, by dominated convergence,

/ hs(t)dt < : for any § > 6.

KI5 2

Hence [;. hs(t)dt < € for any § > &, and, also in this case, lims_.cc A2(6) = 0.
R

3.) Hypothesis H; and (3.4) imply that

As(8) S/Ic | (tys(2),2"(£)) — £(¢,=(2), 2" ()] d¢ <

[ (m o M ()17 Iy (0) ~ (1) "t <

27 /I (m + Ml2'(£)]7) dt (ﬁ |.7;'(T)1dr>7 <

&

27m, ( [ |m'(7);d7>7 L2 (/I |m'(T)|QdT) (/I ]m'(r)]dr)v.

Applying Lemma 3.1 with g1 = ¢, ¢2 =1, 71 =1, 72 = v to the second term in the
r.h.s. of (3.6), we have '

(5.5)

As(8) < 27m ( ) |m'(7)1dT>7 +27M (ﬁ |m'(T)|PdT> ( ) |m'(7~)|PdT)v,
Hence, by (3.2), lims_ec As(6) = 0. 0
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2.4. EULER-LAGRANGE EQUATIONS

Euler-Lagrange equations are well known necessary conditions for a function z in
to be a local minimum for the functional Z, when f is assumed to be of class C! on its
domain and to satisfy some growth conditions in a neighbourhood of the graph of z.

Our aim is to weaken these growth assumption. We begin by ‘stating the classical
theorem (see for instance [Cel], Th. 2.2.i p. 30, Remark 2 pp. 40-41, and Remark 1 p.

44) in order to compare it with our result (Theorem 4.2).

Theorem 2.4.1. Let f belong to C1(AXIR",IR) and let « belong to QNWYP(I), 1 <p <
oo. Assume that the graph of « lies in the interior of A, (i.e. there ezist o positive and a o-
neighbourhood T'; of the graph of ¢ contained in A), that z gives a weak local minimum for

1 and that there exist positive constants m, M such that f satisfies the following conditions:
Ci: |f(ty,v)| S m + Mv]?,

Co: |V f(t,y,v)] Sm+ Ml?,

Cs: |V f(t,y,v)| <m+ M?

for any (t,y,v) € Ty x R".

Then

%Vm:f(t,m(t),m'(t)) = V. f(t,z(t),z'(t)) ae.tel. (EL)

Or

S At 2(0,(0) = o 0,200/ () ae. €T §=1,0m

Let us consider Mania example introduced at the beginning of section 3. The as-
sumptions C1-Cj of theorem 4.1 are satisfied only for g < %, since the solution z((¢) = t3
belongs to W2 (I) for p < % On the other hand it is easy to check, by direct inspection,
that @ satisfles equations (EL) for any g. This simple example shows that conditions
C,-Cj are far from being optimal, hence it is worth to make an effort in order to enlarge

the range of validity of equations (EL). The following theorem goes in this direction.
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Theorem 2.4.2. Let f belong to C'(A x IR",IR) and let & belong to QN WI2(I), 1 <
p < oco. Assume that the graph of = lies in the interior of A, (i.e. there exist o positive
and a o-neighbourhood T', of the graph of © contained in A), that = gives a strong local

minimum for T and that f satisfies the following conditions:
Ey: f(2(),2' (1) € LP(T);
By : Vo f(2(),2'(1) € LM (I);
Ej : there exist my, My > 0 such that, for any (t,y,v) € I'; x R",
[Var f(t,y,v)] < my + Mifol?
Ey : there exist mg, My > 0, v > 1 such that for any (¢,z) € T,
Ve f(t, 2,2 (8)) = V2 £(t,2(t), 2" (2))] < (m2 + Ma|e'(8)]7) |z — 2(2)|"
where p < g < p(y +1) —7.

Then equations (EL) hold true.

Remark 2.4.1. Comparison between hypotheses C;-Cs and E;-E,.

The proof of Theorem 4.1 is performed by taking the Gateaux derivative of the functional
along directions determined by elements of VVO1 "*(I). To do this one needs integrability
of f, Vo f, Vu f along trajectories whose graph is contained in a neighbourhood of the
graph of the solution: conditions C;-C; ensure such property since guarantee that near
the solutions f, V., f and V, f are bounded by an integrable power of the derivative. If we
consider Mania’s functional, we notice that the integrand g = g(t,z,v) and its derivatives
with respect to z and v are zero along the solution, but, if ¢ > %, they are not integrable
along trajectories contained in a neighbourhood of its graph. Hypotheses E; and F,
are intended to take into account integrands which behaves "well” along the solution =z,
disregarding the behaviour in a neighbourhood of the graph of z. |

While Fj3 is analogous to C3, we replace Cy by E, and E,;, where E, involves some
continuity of V, f and E, guarantees its integrability along the solution.

As far as it concerns Mania example it is easy to see that:
Ci, Cq, C5 are satisfied for g < %;

Ey, E; are satisfied for any g;
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Ej is satisfied for ¢ < %;

E, is satisfied for ¢ < 2.

Proof of Theoremn 4.2. Our aim is to show that, given any € € W(}’OO(I), it is

J V- F(t,20),9' (), €0 + (T £t 20,2/ (1), € ()] dt = 0.

If this is so, by integration by parts, and by a standard argument (see for example
[Cel] p. 42), it follows that

——/ Vef(s,z(s),z'(s))ds + Vo f(t,2(t),z'(t)) = const. t € [a,b]

and then, by differentiation, one obtains equations (EL).

In the following we set, for the sake of brevity,

G(t) = (Vaf(t,2(t),2 (1)), €()) + (Vaur (2, 2(2),2' (1)), €' (2)) -
Hypotheses E, and E3 imply that G € L!(J).

In the proof of Theorem 4.1 one considers variations around the solution z of the form
g —z' +0¢, and =z —z+ 68,

for a real 0 belonging to a neighbourhood of the origin. As we have already remarked,
this requires some bounds on the growth of f, V. f, V. f in a neighbourhood of the graph
of = (see hypotheses C1-C3 in Theorem 4.1). Since hypotheses E;-E; do not guarantee
such properties, we perform a different kind of variations which involve, as in the proof of
Theorem 3.1, truncation of the derivative of z; this choice weakens the requirements on f

and on V. f, and forces us to assume that z is strong local minimum.

1.) Take ¢ € W(-JI’OO(I) and a €]0,7[ such that ¢ = p + %:l_———g(p —1). We consider, as in
previous section, the family of subsets of I, I, = {t € I : |2/(¢)| > p, p > 0}, and define
6 : R\ {0} — IR™ by setting §(8) = IB\%-L: Take R > 0 such that p(If) > 0 and §, such
that §(8y) > R. For any 6 € [—6y, 6,] we define the function 7y by setting:

1
= —— z'(1)dr + 6 "NrYdr
Po = T UIM SCERAY TRAL }
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no(t) =0 for § =0

-—(B’(t), 1 e Ié(g)
ny(t) = ¢ 0E'(t) + By, telf for 6 € [—80,00] \ {0}
0¢'(¢), t € In \ I

and

ne(t) = / np(T)dr t €l =]la,b

For any 8 € [—8,60], g is in WH?(I) and, remarking that [, &' (7)dm = 0, we have

ne(b) = ——\/; g’ (t)dr + 9/ ¢(r)dr + p(If)Be = 0 = ne(a).
5(6)

)

Hence 75 € Wy ?(I).

We now list some properties useful in the following, denoting by c1, c2, ¢3 suitable positive

constants depending on 8y, ||z|/w1r, ||€]l e, R and p(I).
i) Using Tchebishev inequality:

#Is(s)) < ll2'12,6(8)7F < |l2'||E, 6] F7.

i7) By Holder inequality, (4.1) implies that, for any h € LP(I):

P

[ el < i) (/ Ih(r)l”df) < I e 7
Is9) I5(9)

iii) By (4.2)

1 -
1861 < e I/ IE0 1012 1€/ 12/ 7718 < exfof*=.
w) It is
~32'() — (1), te Iy
B g =1 2, ters

0, t EIR\I,;(@).
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By (4.1) and (4.3) we have that

v) It is, by (4.2) and (4.3),

Hence

1

;jﬁ) i‘;t—)- —-f'(t)’ =0 ae tel. (4.4)
20 _g| < [ |7 -] ar <

5 [ e [ ls'<v>xdv—+%€u<fa) < ealdl”
Is(0) Is(9)

) _
lim || — ¢]|z= =0 | (4.5)

and, in particular,

o]l < cslf] (4.6)

2.) Consider now o3 such that 0 < o1 < o and for any y € WH2(I) N Q with graph
contained in I';, (C T',) it is Z(z) < Z(y). By (4.6) there exists 6;, 0 < 8; < 8y, such
that for any 6 € [—61,0;] the graph of  + 74 is contained in I';,. Hence z + ng belongs
to 2 and Z(z + ng) > Z(z) for any 6 € [—0;,6:], and the function ¢ : [-6;,0;] — IR,

defined by ¢(6)

= I(z + n¢) has a minimum in § = 0. Our aim is to show that such a

function is differentiable in zero and that ¢'(0) coincide with f; G(t)dt. This would prove

the theorem.

Let us write

/ i ‘I(:c +19) — I(= /G t)dt‘
/5(9) f(t,z(t) + na(t ) 03 f(t,z(t),2' (1) t)‘dt+

/ t) +ne(t), @ ()+0§(;(t)+ﬂg).- ft,2(8), 2 () —G(t)ldt+
/R\Im) x(t) + 76(t), @' (¢ )+99£’(t)) — ft,a(t),2' (1) G(t)l .

) + A2(6) + As(6).

We claim that limg_,y A;(6) =0 for 2 =1,2,3.
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3.) Estimate of A1(8).

£t 22 )]+ [ 1G] e

Is0)

1 1
OEL Y UCECERODERS / |

(2)

Recalling (4.6), the set {(¢,z(t) +n¢(t),0), t € I, 8 € [~01,6:]} is contained in a fixed
compact subset of A x IR™, and since f is continuous, there exists a positive constant M
such that

|f(t,z(¢) +ne(t),0)] < M  for any t € Isg)-

Hence, recalling (4.1), (4.2) and E;

As(8) S MuTo) + 315202 O)las o' 5107+ + [ 1601t <
Is(0)

ﬂdHIWPW9ﬁ1+“”“"14—Hf(ww(ﬁ,wTJ)HLvaﬂp“lwr’+-jc |G(2)] di.
5(8)

Since G is in L*(I) we have that limg_o A;(8) = 0.

4.) Estimate of A,(6).

)
J

Ay(0) <

F(t,2(t)+ no(t), 2" (1) + 68 (1) + Bo) — f(tz(t) +7s(t), 2’ (2))
' 0

(Vs £(t,2(t), 2! (1)), € (1)) | dt+

f(t2(t) + mo(2),2' (1)) — (¢, 2(2),2' (1))
0

(V. £, 2(2), 2! (8)),€(1)) |dt.
(4.7)

By mean value theorem there exist two functions, ys, z¢, defined on If, such that:
ys(t) lies in the line segment joining z'(t) and z'(t) + 0€'(t) + B, for a.e. t € Ig, z¢(t) lies
in the line segment joining z(¢) and z(¢) +ne(t) for t € I§, and the right hand side of (4.7)
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is equal to

/I;
/I,a

We remark that both integrands in (4.8) equal a.e. measurable functions and then are
measurable. On I§ |z'|is bounded by R, hence, recalling (4.3) and (4.6) the sets {(¢,z(t)+
n0(),ye(t)), t € I, 8 € [—81,01]} and {(t,24(t),2' (), t € I, 6 € [~01,6:]} are contained
in a fixed compact subset of 4 x IR™ and, since f is of class C'(A x IR™), there exists a
positive constant L such that

(Ve 0(2) + molt) w0001, € ) + B0 — (9 flt2(0,5' (0. € 0| e

75(t)

(4.8)
<me(t,ze(t),m’(t)), T> - (me(t,w(t),w’(t)),é(t»!dt-

Ivzf(t729(t)7z,(t))| <L, |Vr’f(t7m(t) + 779(t)7y9(t))! <L forte I}fp

These inequalities and hypotheses E,, E3 imply that both integrands in (4.8) are uniformly
bounded by an integrable function. Moreover, (4.3) and (4.6) imply that they tend to zero

a.e. on I§ and, by dominated convergence, we have limg_,o A2(8) = 0.

5.) Estimate of A3(6).

J

5(0)

As(0) <

.f(t,fc(t) +ma(t), @' () +6€'(t)) — f(t,2(t) +me(t),='(2)) _
0

(Vo £(2,2(2), ' (1)), € (2))|dt+

/ ‘ f(t2(t) + mo(t), @' (1)) = (2, 2(2),2' (1))
I: g

(e)
(V. £(t,2(8), o' (£)), E(2)) |t =
As.1(0) + As.2(6).

As in point 4., we can find ys(t) belongihg, for a.e. t € Ig(e)’ to the line segment
joining z'(t) and z'(¢) 4 6¢'(t) such that

As.1(6) =/; (Vo £(£2(2) +m0(t),96(1)), €' (1)) — (Ve (£, 2(2), 2" (1)), €' (1)) | -

5(0)
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By FE;, we have

(Vo £(E,2(t) + n0(t),ws(2)), €' ()] <
(4.9)

(ma 4+ Mala (1) + 08/ ()P) ' (2)] < ml + ML= ()P,
where m/ and M| are positive constants depending on ||€'||z=. Since z' belongs to
LP(I), (4.5), (4.9) and dominated convergence imply that lims_o As.1(8) = 0.

Let zg, defined on If,, be such that zp(t) lies in the line segment joining z(t) and z(t) +
ne(t) for any ¢ € If 4. It is

As2(8) g/ <sz(t,z9(t),:v'(t)), ’7"(§t)> - <fo(t,m(t),m’(t)),-7—7—%ﬁ>|dt+

TS0y

J

A 5(6) + Ay 5(6)-

<Vrf(t, 2(2), 2 (1)), Wgt) - 5(t)> ! dt =

c
5(9)

‘Recalling F» and (4.5), we have limg_,q A} ,(6) = 0.

Using E; we have

Ma(6) = [
5(6)
/

I500)

<fo(t,z9(t),a:'(t)) - V. f(t,z(t), 2 (t)), Q%(—Q>ldt <

Q‘éﬂl (ma + Mola!(1)[7) |20(2) — o(t)]” dt.

Now, by (4.6),

Hence

20| < ¢; and |zo(t) — #(2)| < no()] < /6] for any t € I,

8y2(6) < 5 Imap(D)6] + Sl [l (0t (4.10)
5(0)
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Recalling formula (2.2) and Tchebishev inequality, we have

5(6)
[ =Gy se) va [ o ue'] o) <
15(9) 0

(4.11)

5(6) .

el [ oo = gl 010D
0

Inserting (4.11) in (4.10) and denoting by ¢’ and c¢" suitable positive constants, we

have:

Al 5(6) < ¢'16]7 + "B TETPER = ¢/|g]7 + <o),

Hence limg_.q A} ,(6) = 0 and, finally, limg—.q A3(f) = 0.

Collecting the results of points 3.), 4.) and 5.) we have the proof. Ll
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Chapter 3.

Functional of the gradient




3.1. INTRODUCTION

A well known result in the framework of integrals of multifunctions, Olech’s Lemma,
gives a condition implying strong convergence out of a very weak form of convergence
to extreme points ([O1], [AR]). Namely, if e is an extreme point of the integral of a
multifunction there is a unique integrand in the multifunction that gives e; moreover if
u and v are arbitrary selections and fu and J v are sufficiently close to e, then u and v
are close to each other in L. Hence this result exhibits a condition (extremality) which
implies both uniqueness and continuous dependence.

Purpose of the work reported in this section is to investigate a similar property in the
context of the calculus of variations. More precisely we consider the problem of minimizing

a functional of the gradient under linear boundary conditions:

P : Minimize / g(Vu(z))dz; u€ (a,") + Wy (Q); (2 CR™)
Q

and study the dependence on a € IR™ of the solutions to Pq.

Analogously to the case of Olech’s Lemma, which infers strong éonvergence of the
selections from the convergence of their integrals to the extreme points of the integral of
the multifunction, here we have a vector parameter a playing the role of the integral, in the
sense that the location of (a,g**(a)) with respect to the facial structure of the epigraph of
g** (the bipolar of g) determines whether or not continuous dependence of the solutions
of P, with respect to boundary data holds.

As shown in [C1] and in [C2] uniqueness for problem P, holds if and only if the
dimension d of the face of the epigraph of g** to whose relative interior (a, g**(a)) belongs
is strictly less than n, the dimension of the space, and in this case the solution is u, =
(a,-). Hence we might ask the following question: given a point a such that the previous
uniqueness condition holds, is it true that whenever a point @' is sufficiently close to a,
solutions of P, are close to u, in W11? This is certainly true in a special case: assume
indeed that, given a, there exists a neighbourhood U of a such that: for any point o’ in
U, Pa has the unique solution usr; in this case continuous dependence follows from the
explicit form of the solutions. ‘

Hence the problem arises whenever the point @ is such that P, admits the unique
solution u, and there are points ag, arbitrarily close to a, for which the corresponding
problem P,, has infinitely many solutions. This happens when (a,g**(ar)) belongs to

an n-dimensional face F of epi(g**) and (a,g**(a)) belongs to a face Fy of dimension less
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than n contained in the relative boundary of F. It is to this case we shall refer in our main
result, according to which the foﬂowing conditions are equivalent:

i) all the solutions u” of P,, are close to u, in W' whenever a; is close to a;

ii) (a,9**(a)) is an extreme point of the epigraph of ¢g**.

As such our result is the exact replica to Olech’s Lemma, but it is not true, in general,
that uniqueness implies always continuous dependence. Indeed uniqueness holds whenever
the dimension d of the face Fi is in {0,1,...,n — 1} while for d = 1,;..,n — 1 continuous
dependence does not hold. Hence our result proﬁdes a characterization of extreme points
in the sense that whenever P,, admits solutions different from the affine one (i.e. when
(ak,g""(ax)) belongs to an n-dimensional face) and a; — a, then a sequence {uk}ke]N of
solutions of P,, converges strongly to u, if and only if (a,g**(a)) is extremal. Moreover
our result provides a precise definition of the type of convergence (partially weak, partially
strong) that occurs for 1 <d <n — 1.

The previous analysis applies in particular to the special case of a rotationally sym-

metric function g. In Remark 4.2 we present a detailed description of this case.
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3.2. PRELIMINARIES AND NOTATIONS

In this section we study the solutions of the problems:

P, : Minimize f g(Vu(z))dz; u € ug + Wyt (Q);
Q

Pt Minimize / g (Vu(z))dz; u € ug + Wit (Q);
Q2 :

where g is a lower semicontinuous (l.s.c.), not necessarily convex, function defined on IR
with values in IR bounded from below and g** is its bipolar (see [ET] for a definition). {2
is an open, bounded subset of IR with piecewise C' boundary and u, = (a,z) (a € R™).
Here and in the following (-, -) denotes the scalar product in IR" and || the associated norm.
A point in IR™ x IR is denoted as a pair (z,z) with z € IR" and z € IR. We use the spaces
L'(Q) and Wol’l(Q) endowed with the usual norms || - ||£1(q), HUHWJ"(Q) = || Vu|ziq)-
The weak convergence in such spaces is denoted with the half arrow —.

For S subset of IR® and = € IR™, dist(z,S) is the distance of z from §, S° is the
complement, co(S) is the convex hull and p(-) is the Lebesgue measure . When 0 belongs
to S, the smallest linear manifold containing S is denoted with span(S); the dimension of
an affine set is the dimension of the subspace parallel to it, and we say that a subset S of
IR" has dimension p if the dimension of the affine hull of S is p, and write dim(S) = p.
For a scalar function f we define the negative and the positive parts f~ = max(—f,0) and
fT = max(f,0).

We make use in this paper of basic elements of convex analysis such as the notions
of face, extreme point of a convex set, relative boundary (r.b.), relative interior (r.i.) and
polytope, following the notations contained in [R]; we call extr(C) the set of extreme points
of a convex set C. )

Given a subset S of IR” x IR we denote by § the projection of S on IR, i.e.: S =
{zeR": 3zeR: (z,z) € 5}.

The study of problems P, and P:* involves the properties of the epigraph of g™,
epi(g**), which is a convex subset of IR" x IR; we recall now some properties of the

epigraph of a convex function.

Proposition 3.2.1. (see [C1], [C2]) Let h: IR" — IR be a convez function, then:
i) the collection of the relative interior of the faces of epi(h) is a partition of epi(h).
i) If F is a face of epi(h) containing a point (z,h(z)) in its relative interior, F 1s a proper
face and dim(F)< n; moreover dim(F)= dim(F).
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ii) If Fy is a proper face of a proper face F of epi(h) and r.i.(Fy) contains a point (z, h(z)),
then Fy is a proper face of F'. Moreover a point (z,h(z)) is an extreme point of epi(h)
if and only if z is an extreme point of all the projections of the faces that contain

(2,h(z)).

Proof. Statement 1) is a particular case of Theorem 18.2 of [R]. To prove i2) we simply notice
that (z,h(z)) cannot belong to the relative interior of epi(h), then diﬂi(F) < m; moreover
F cannot contain a point (z,z) with z > k() hence dim(F) = dim(F). Statement i) is
trivial. Ol

We shall need the following characterization of faces of a convex set, see [O1].

Lemma 3.2.1. Let F be a convez subset of IR" and F; a d-dimensional face of F such
that 0 belongs to r.i.(Fy). Then there exist n-d orthonormal vectors hy,...,h,—q such that

F is contained in the cone
C={z:(h,z) >0} J{z: (h1,2) =0, (ha,z) >0} .

ULz (hay2) = (hey2) = oo = (hnea1,2) = 0, (hng,2) > 0}
Az : (h1,2) = (ha,2) = ... = (hn_y,z) = 0}

and

Fy=F(\{z : (h1,2) = (h2,2) = ... = (hp_4,x) = 0}.

We remind now well known criteria of weak convergence in L'(f2) and W, ().

Theorem 3.2.1. ([D1], p. 19) Let Q be a bounded open subset of IR", and {fr}rew a
sequence in L1(Q)), then

fi = f in LY(Q)
if and only if

1) || fellre) < M,
i) fr 1s absolutely equiintegrable,
4it) imp— oo fD[fk(m) — f(z)]dz = 0 for any cube D C (.
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Theorem 3.2.2. ([B], p. 175) Let Q be a bounded open subset of R™, and {fx}rew a
sequence in Wol’l(ﬂ), then
fo = f in Wy(9Q)

if and only if
D;fr — D;f in L'(Q).

fori=1,...,n.

We end this section with a

Definition 2.1 We say that a function g : R" — IR satisfies the growth condition (C) if
there exists a function ¢ : IR — IR such that

Hmﬂﬁ:

t—+oco 1

+o0

and

g(y) > ¢(|y|) for any y € R"™.

3.3. EXISTENCE AND UNIQUENESS

In [C1] and [C2] the author gives sufficient and necessary conditions on the affine
boundary datum u, for the existence and the uniqueness of solutions of P, and P;*
investigating the facial structure of the epigraph of ¢**. The main results stated in the
quoted papers can be summarized as follows. We emphasize that a solution of P, is a

solution of P;* too.

Theorem 3.3.1. Let g : R™ — IR be l.s.c. (not necessarily convec), bounded from below,
satifying growth condition (C); let Q be a bounded open subset of IR™ with piecewise C*

boundary.
1) If P, admits a solution, then
(1.) either g(a) = g**(a) or the face of epi(g**) to whose relative interior (a,g**(a))

belongs has dimension n.
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i1) Conversely, if condition (1.) holds then P, admits at least one solution.

Theorem 3.3.2. Assume the hypotheses of Theorem 3.1. Then
i) PX* admits the unique solution u, if and only if (a,g9**(a)) belongs to the relative
interior of a face of epi(g**) of dimension strictly less than n.
1) P, admits the unique solution u, if and only if g**(a) = g(a) and (a,g**(a)) belongs

to the relative interior of a face of epi(g** ) of dimension strictly less than n.

The proof of the second part of theorem 3.1 consists essentially of the explicit con-
struction of the solution of P, in the case in which (a,g**(a)) belongs to the relative
interior of an n-dimensional face of epi(g**). Since in the proof of our main result we need
this construction, we recall it in its main steps and refer to [C2] for details.

We begin with a

Lemma 3.3.1. Let {y;, t =1,...,m} be a set of vectors in IR", and let S be the set
co{yi, i=1,...,m}. Suppose dim(S)=n, = int(S) and call S* the polar set of S. Then
there ezists a finite partition {S¥, 1 =1,...,m} of S* and a Lipschitz continuous function
w, defined on IR"™, such that:

i) w=0 on (S*)°;

i) Vw =y; a.e. in S}, i=1,...,m;

i11) there ezists an indez set I contained in {1,...,m} such that the set {y;,i € I} contains

a system of n linearly independent vectors and p(S;) > 0 fori € I.

Proof. The proof of 1) and of it) can be found in [C2]. To prove statement iii) we recall
that since 0 belongs to the interior of S, m > n, the polar S* is bounded and it can be

written as
§* = (V{e: (y2) <1}
i=1
and that the sets ST are defined by
Sz* == co {Fi*ao} )

where F* = S*N{z : (yi,z) = 1}. Since dist(0, F) > 0 for any index ¢, u(S;) > 0 if and

only if dim(F}) =n —1. S* has at least n + 1 faces of dimension n — 1, hence we may
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assume, renaming the indices, that there exists p > n + 1 such that dim(F;) = n — 1 for
i=1,..,pand dim(F¥) <n-—1fori=p+1,..,m. A face F} with j > pis a proper face

of a face F} with 7 < p, hence 57 C 57, and we can write

= {e: (we) <13

Then the set {y;,7 = 1,...,p} contains a system of n linearly independent vectors since
otherwise $* would be unbounded. » ]

Proof of Theorem 3.1 ii). Assume that (a,g**(a)) belongs to r.i.(F), the relative interior
of F, where F is an n-dimensional face of epi(¢**). Our aim is to construct a solution
of P, (different from u,). Since g satisfies the growth condition (C), F' is bounded and
is contained in a hyperplane H separating it from epi(g**). According Proposition 2.1 H
cannot be vertical i.e. H = {(z,2) e R" xIR: 2z = (h,z) +k} (h € R", k € IR) and,
since the extreme points of F are of the form (y, g(v)),

extr(F) = {y e R": (y,9(v)) € extr(F)}.

Consider a subset {y;, 1 =1,...,m} of exir(F) such that dim(co{y;, 1=1,...,m}) =n

and a € ri.(co{y;, 1 =1,. ,m}) we remark that whenever

a=> Ay, 0<Xi<1, Y A=1, (3.1)
=1 i=1
it is - .
g**(a) = (hya) + k= Ni((h,y:) + k) = Z}\,g (y:) = Z Nig(wi);  (3.2)
i=1

and define the polytope S(a) := co{y; — a, 1 =1,...,m}. We can apply Lemma 3.1, defin-
ing a partition {S*(a), i = 1,...,m} of S*(a) and a Lipschitz function w® such that w® =0
on (5*(a))® and Vw® = y; — a a.e. on Si(a).

We now consider the collection of subsets.of {2
U={z+7r5(a), z€Q, r € R, r < dist(z2,0°)},

U is a Vitali covering of {2 and we can select a countable subcovering {Q;(a), j € IN} such
that:
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1) Qj(a) =2z;+7r;5*(a) CQ, Vje€ IN;
2) Qj(a) N Qu(a) =0, if j #k;
3) Q= NUUZ, Qj(a)) where u(N) = 0;
4) Qj(a) = U, Q’(a) (disjoint union); where Qz(a) =zj +71; 5*(0,)

We set also Q%(a) = Uiz, Q%(a), obtaining 0 = |JI_, 2¥(a), and define

T — Zj

) ae.z€Qj(a), j€N

wi(e) = ("

and

= Zw;‘(z), a.e. z € ().
=1
v® belongs to W' (Q) and it is

Vv? =y; —a ae.on Q(a), 1=1,...,m

0 :/ Vo = f (y
Q ; i(a)

e ﬂ’ a
=3k QQ i

then

l.e.

We set u(z) :=v*(z) + (a,z) = v*(z) + u.(z); first of all (3.3) implies.

Vu =y; ae. on Q(a),

and by virtue of (3.1), (3.2) and (3.4) u is a solution of P,

(3.3)

(3.4)

(3.5)

We are interested in the following question: consider a sequence {a;} rem converging

to a point @ such that P, admits the unique solution u,, and a sequence {u

k}kEIN

of

solutions of P,, (P;7) (in the sense that for any k € IN, u* is a solutions of P,, (P;)):

we ask whether {uk}kem converges (in some topology) to u, as k — co. When it happens
that, for any k& € IN, (ar,g**(axr)) belongs to the relative interior of a face of dimension

strictly less than n, the question is trivial because u* = u,,, and converges to u, stron ly
q ) g g
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in W2 (Q). The interesting case is when (a,g**(a)) belongs to the relative interior of a
face Fy of epi(g**) of dimension strictly less than n, and, for an infinite number of indices
k € IN, (ag,g**(ax)) belongs to the relative interior of at least one n-dimensional face of
epi(g**) containing (a,¢**(a)) (and also Fy) in its relative boundary. According to our
main result (a,g**(a)) is an extreme point of epi(g**) if and only if any sequence {uk}kem

converges strongly to u, in Wy (Q).

3.4. CONTINUITY WITH RESPECT TO BOUNDARY DATA

We shall need the following technical lemmas.

Lemma 3.4.1. Let  be an open bounded subset of R™ and {v*}rew a sequence in
Wyl (9). Suppose that v¥ — 0 in L*(Q) and that, for some i € {1,..n} |Dp*| < M a.e.

in Q, where M is a positive constant. Then
Dy —0 in L'(Q)

Proof. We can suppose 1 = 1 and @ =1 x S, where I is an open bounded interval of IR
and S an open bounded subset of IR" ™!, since v* can be extended as zero out of 2. Let us
write v* = v*(z;,z') with z; € I and 2’ € §; the uniform boundedness of |D1v*| implies
that the sequence {D;v*}ren is bounded in L'-norm and is absolutely equiintegrable.
According to Theorem 2.1 it is sufficient to prove that for any cube D C {2

hm D]’Uk — 0.
k—o0 D

(1). Suppose first vF € CF(2) and define
(Pk(ml) = / ‘vk(mlaml)ldwla kelN, z; €1,
S .

{¢*}rew is a sequence of nonnegative continuous functions on I; They are differentiable
a.e. for any k and the sequence of derivatives is uniformly bounded, hence they are
equicontinuous and equibounded. Moreover limy— oo ¥ |21 (r) = imk—oo [[vF]lL1(0) = 0,

then ¢* — 0 uniformly on I.
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Consider a cube D C 2, D = (¢,77) X Q where {,7 € I and @ is an (n — 1)-dimensional

cube contained in S. It is
7
= ‘/ (/ Dlvk(ml,:z:')d:z:1> dz'
Q 3

< 2 sup (/ !vk(ml,m')ld:ﬂ') .
zi1€l S ‘

l/ Dyv¥(zy,2"Ydz, da' <
D

Hence D;v* — 0in LY(Q).

(2). Consider now the general case v* € W, ().

By density there exists a sequence w* € C}(Q) such that lDlwkl is uniformly bounded

in  and
1
k k
H’U —w ”W-O1,1 < E Vk € IN.
Obviously w* — 0 in L!(2) and the previous arguments show that Djw* — 0 in L*();
hence Dyv*F — 0 in W, (Q). O

Lemma 3.4.2. Let P be a polytope in IR™ and F dproper face of P. Then F is ezposed,
t.e. there ezists a supporting hyperplane w of P such that F = PN .

Proof. We can as well assume 0 € F. Set P = co{vy,...,vn} and V = max{|vi], ..., |vm|}-
Consider the collection of all nontrivial hyperplanes H,, separating F' from P. Let v, be
the number of vectors vy, ...,v,, contained in H, but not belonging to F' and call vy the
minimum, attained for some hyperplane Hy defined by Hy = {z : (hy,z) = 0}; we wish
to show that vy = 0. Assume, by contradiction, that it is positive. Set Py to be P N Hy.
Notice that there is 7 > 0 such that for every v; in P but not in Py, (ho,v;) > 7. Also,
F' N Hy is a proper face of PN Hy, so that there is a unit vector k in H, separating F' N Hy
from PN Hy i.e. (k,z) =0 for ¢ € F N Hy and for some y in P N Hy, (k,y) > 0. Since
Y € co{v1,...,m}, there is vj in PN Hy such that (k,v;) > 0. Consider h; = hy + 5k, We
have that (hy,z) = 0 for z € F, that for v; in Pbut not in PN Hy, (h1,v;) 2 n—5%|v;| > 7
and that (hy,v;) > 0, contadicting the definition of v;. [l

The following is our main result; it is convenient to introduce the following definition.
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Definition 3.4.1. Let {vk}ke]N be a sequence in Wi () and v € Wy (Q), where O
is an open bounded subset of IR™. Let d be the largest integer such that there exists a

d-dimensional subspace L of IR™ such that, given any vector e in L, it is
(VoF — Vu,e) =50 in LH(Q).

We say that {vk}kem converges d-strongly to v in WOI’I(Q).

Remark 3.4.1. In order to prove that a sequence converges d-strongly, it is sufficient to
find a system E of d independent vectors such that the condition expressed in definition
4.1 holds and that for any vector e in the orthogonal complement of E, <Vvk - Vv,e>
does not converge to zero in L'(Q).

We should also notice that {v*} reny 18 a d-strongly converging sequence in W' (Q) if
and only if there exists a nonsingular change of coordinates U such that, setting wk(z) =
v*(Uz), D;w* converges strongly in L'(UQ) for j = 1,...,d and does not converge in
LY(UQ) for j = d + 1,...,n. Obviously d-strong convergence in Wol’l(ﬂ) implies strong
convergence in L'(Q) for any d > 1 (Poincaré inequality) and it is equivalent to strong

convergence in W, () when d = n.
The following is the main result of this chapter

Theorem 3.4.1. Let g be l.s.c. satisfying the growth condition (C), let Q be a bounded
open subset of IR™ with piecewise C' boundary. Suppose that g(a) = g**(a) and that
(a,g**(a)) belongs to the relative interior of a proper face Fy of an n-dimensional face F
of epi(g**), and let {ar} o be any sequence such that (ak,g**(ar)) belongs to the relative
interior of F' for any k € IN and limy_, ax = a.

i) If any sequence {uk}ke]N of solutions of P,, converges (n — r)-strongly to u, in
Wi (Q), then dim(Fy) = r. In particular, if any sequence {”k}ke]N of solutions
of P, converges strongly to u, in Wy (Q), then (a,g**(a)) is an ecireme point of
epi(g™").

it) If dim(Fy) = r then any sequence {uk}k‘.e]N of solutions of Py converges (n — 1)-
strongly to u, in Wy (Q). In particular, if (a,g**(a)) is an eztreme point of epi(g™*),

then any sequence {uk}ken\i of solutions of P;* converges strongly to u, in Wol'l(ﬂ).

Proof. First of all, since dim(F1) < n and g(a) = g**(a), Pa, as well as P;*, admits the
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unique solution u,; moreover growth condition (C) implies that F' is bounded and we set

L = sup |y|.
yeEF

In the proof we assume, without loosing generality, a = 0.

i) Suppose that any sequence {uk}ke]N of solutions of P,, converges (n — r)-strongly to
zero. We proceed by contradiction: we assume that dim(ﬁ’l) is greater than r and show

that there exists a sequence {uk}ke of solutions of P,, that does not converge (n — r)-

N
strongly to zero in W, (Q).

(1.) Set d = v+ 1 and consider yi,...,y, € eztr(Fy) (p > d+ 1) such that a = 0 €
r.i.(co{y1,...,yp}) and dim(span{yy,...,yp}) = d. Since a; € rz(ﬁ’), for any k there are
n+ 1 extreme points of F, v;f_l_l, ...,v§+n+1 such that, setting m = p+ n + 1, the polytope
Py := co{y1,..,Yp, Vg1, 5, } has dimension n and a), € int(P). Setting yf = yi — ay
for i = 1,...,p and y¥ = ¥ — a; for i = p + 1,...,m, and considering the polytope
Py —ay = co{y¥,i = 1,...,m}, we can define the (bounded) polar S*(a;) of Py —a;, and a
solution u¥ of P,,, defined as in section 3, whose gradient, recalling (3.5), takes the values
y; or v¥ on the sets Q(ay).

(2.) Extracting if necessary subsequences, we may assume that yzl‘ converges to a vector
yi€0F fori=p+1,...,mandy; € Fifori=p+1,..,5,y; € BF\Fl fori=s5+1,...,m
where p < s < m. We define the limit polytope P := co{y;,7 = 1,...,m} and its polar S*

written as .
§* = N{e: {yia) < 13
=1

We define also

C*=(Ha:(yia) <1}, T = () {z: (yi,2) <1},
i=1 i=s-+1

so that S* = C*(T*, and remark that when s = m, T* = IR" and S* = C*; in the
following we shall consider s < m since otherwise the proof proceeds in a similar and
simpler way. Recalling the definition of the partition of a polar set (Lemma 3.1) we can
apply the same definition to C* obtaining C* = |J;_, Cf and S} C C}.

Set Ly to be span{y;,i = 1,...,s} and write IR" = Ly @ L7; the cylinder C* can be
written C* = S% @ L7, and, analogously, C} = S @ L7; where we have set §%* :=
C*( L4 and S* := Cf()Ls. We remark that S?* is the polar of the d-dimensional set
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co{y1,...,ys} N Lq and {S%*,i = 1,...,s} is the relative partition; since 0 € r.i.(co{yi,i =
1,...,8}), §%* is bounded and by point'iii) of Lemma 3.1 there exists a set I of d indices
such that {y;,7 € I} are linearly independent and, calling pq the d-dimensional measure
in Ly,
pa(SE)
pa(S%)
Moreover, boundedness of S%* implies that there exists M (M > —1) such that

>A>0 for s € I. (4.1)

8

C* = n U {z: (yi,z) = o;}]| . (4.2)

=1 | a; €[—M,1]

(3.) Consider now Py := co{y;,i = 1,...,s}: Py is a face of P and by Lemma 4.2 it
is exposed. Let w be a unit vector in Ly such that P; = P[}{z : (w,z) = 0} and

(w,z) > 0 for all z € P. Let 2441, ..., 2, be orthonormal vectors in LaL such that w = (n —

1 .. 1
d)~2 > i—ay1 2j- Forevery y € {Yst1y--e1Ym}, it 1s Z?:d—i—l (2j,y) = (n —d)? (w,y) > 0.

(4.) Let us define the family of sets
Qurira = [ {z:(z2) € [R1,Ro]} Ri, R € IR;
j=d+1

it is our purpose to show that there exist Ry > 0 and o > 1 such that for any R > Ry it is

S* n Q-ar,—g = C” ﬂ Q[—aR,~R]- (4.3)

Since S* = C*(\T* it is enough to prove that the r.h.s. is contained in the Lh.s. (when
s = m, i.e. §* = C*, this is obvious). We show that in general C*ﬂQ[_a&_R] is
contained in T*: it follows that a point in C* () Q[—qr,~g) is in C* [T = 5, hence in
5* N Q-ar,~R]- S0, let z be any point in C* N Q[-aR,-R); recalling (4.2), we have

(yi,z) € [-M,1], i=1,..,s
(zj,z) € [-aR,—R], j=s+1,..,m.

Take y € {yi,4 = s + 1,...,m}; since {y1,...,Ys;, 2d+1,-.-, 2n} contains a system of n inde-
pendent vectors, y can be written as: y = > i_, viyi + E?:d-}—l pjzj, where, by point (3.},
E?:d—l—l p; > 0. Writing p.;" = max(p;j,0) and p; = max(—p;,0) we have, recallig (4.2),

(om) =Y vily, o)+ Y pileio) S(MI+D)Y lwl+ | = Y wf+a ) uj | R
i=1 j=d+1 i=1 j=d+1 j=d+1
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By choosing o satisfying 1 < o < (Z_;-L___dﬂ ,LL}L)(Z?___d_,_l ,LL]T)"I, the term in parenthesis
becomes negative, hence, if R is greater than some Ry sufficiently large, it turns out that
(y,z) < 1. Repeat this choice for every y € {yi,z = s + 1,...,m}; take Ry as the largest
value and a as the smallest value so obtained, and have z € T*. By an analogous procedure

we have also

St (\Qi-ar,—r = Ci [ ) Qi-ar—F- | (4.4)

(5.) We take now R > R, and consider the sets $*()Q_ar, g and S7()Q[-ar,g) for
t=1,...,5. Such sets are bounded; by (4.3) and (4.4), we have

Iz (5* N Q[—aR,R]) <up (C* N Q[—aR,R}) = pa(S™) (e + 1)R)" 4,
and

Iz (5? n Q[—-aR,R]> =p (53 ﬂ Q[—aR,—R]> + p (5? n Q[—R,R}) =

p (0 N Qiarm) + 1 (ST Q-rom) 2 pa(SE) (e = )R
Hence, recalling (4.1),

(SN Q-ar,R)) . pa(5§) <a —1
1 (5*NQrarr) — wa(S¥) \a+1

for some positive ~.

n—d
> Z7>07 7:6-[7 : (45)

(6.) Consider now the sets S*(a) = JIn; S¥(ax), polars of Py — aj, and their decomposi-
tions. Given Q = Q[gr, r,) the sets §*(a;x)NQ and 57 (ar)NQ are bounded polytopes whose
vertices converge to the vertices of S*NQ and 57 N Q respectively, since the vertices of Py
converges to the vertices of P. In particular the measures of S*(ax) N @ and S¥(ax) N Q
converge to the measures of S* N Q and S N Q. Setting

kepy . P (S#(ax) N Q=ar,R))
7 £ (5*(er) N Q-ar,my)’

we have, by (4.5),

im k(R = AN Qanm)
""W%( ) 1 (S*N Q-cr,R))

The sets S*(ax) are bounded for any k, hence there exists a sequence R in IR* such that
Ry /" +o00 as k — oo and

i€, R> R,. (4.6)

_ #(S5i(ar)).
p(5*(ar))’
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this last equality and (4.6) imply that

liminf ————~——u(5i (ax)) >

mint () = v, 1€l (4.7)

(7.) Takei € I. When 1 < p, y¥ = y; —ap and Vuf = y; a.e. on Q(ax), then (4.7) implies
that, for k sufficiently large, ‘

k . T 12 =
[t@ldnz [l

: p(Si(ar)) | 2 T2
p(Q(ar)) lyil® > w() =t yil? > ()< lwil” -
(O (e il > WO (@]
When i > p, y¥ = v¥ — aj and VuFf = v} a.e. on Q¢(a); remarking that vf — y; and that

v¥| < L, we have, through similar computations, for k sufficiently large,
) b ? g g

[ (vuteotyde= [ ez u@lul,
Qi(ax) Qi(ak) 4

hence
/ <Vuk(:c),yi> de = / <Vuk(:v),v§> dz + f <Vuk(a:),yi — vf) dz >
Qi(ag) Qi(ag) . Qi(ag)

)yl — L@l — k] > G @lyil”

‘We have shown that

/QKwk(w),yi)[dmZ/Q

(ak)

(Vu(e) i) do > Lu(@)lwil?,

hence for any y;,1 € I, <Vuk,yi> does not converge in L*(f). Since {yi,7 € I} is a system
of d linearly independent vectors, u* cannot convergen —d+1=n—r strongly to zero in
Wy (Q) and part i) of the theorem is proved.

ii) Suppose now dim(F1) = r and consider a sequence {uk}kelN of solutions of P;7. We
wish to show that there exist n —r orthonormal vectors h; in IR™ such that <h,-, Vuk> goes

to zero in L!(f) as k goes to infinity.

(1.) We begin by remarking that a =0 € ri.(Fy) and ay, € ri.(F); by Theorem 1 in [C1]
(Vuk(z),g**(Vu*(z)) € F and VuF(z) € F ae. on Q, hence |VuF(z)] < L ae. on .
Recalling Lemma 2.1, let Ay, ..., hn—r be the vectors defining the cone C such that ' C.
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It is <h1,Vu’“> > 0 a.e. in §; writing Vu* = a; + Vo* with v% € WOI’I(Q) it turns out
that a.e. in Q2 A

(h1,Vo*) > — (h1,a1). (4.8)
We extend v* setting 7* = v* on Q and 4% = 0 on Q¢ 4% is in WI(IR") with compact
support. Take a basis {e1,...,e,} in IR" such that e; = h;, 4 = 1,...,n — r, and write a
point £ of IR" as = (&;,...,€,) = (£1,&') where ¢; is the component with respect to e;.

Define the functions 7
pe(é1) = 5(&1,¢);

per(+) is a function of Wh'(IR) with compact support for almost every & (see [Z] p. 44)

and this implies that the integral of its derivative is equal to zero; since

d
E@E'(El) = <h1 ) Vz—’k(§1>£l)>

this means that

/ (b, Vi (62,€))) ™ dés = / ((he, 5k (61, €))) T de.
R . R

By repeated integration and by a unitary change of variables, we obtain

fQ ((hs, Vo (2))) ™ do = /Q ((hs, Vok(2))) " da.

Remarking that the r.h.s. of (4.8) is negative, we then have

f |<h1,Vvk(:c)>’ dz = 2/ ((h1, Vv*(2))) dz < 2|a (),
Q Q

and

f |(h1, VuF(2))| dz < 3ak|p().
Q
Hence <h1,Vuk> koo i LY(Q).

(2.) Let now e > 0; by Egorov’s Theorem there exists a compact subset 2, of Q such
that p(Q\Q¢) < € and <h1,Vuk> it o) uniformly on Q.. Let k. € IN such that lak| < e
and supg, |<h1,Vuk>| < efor any k > k.. Forz € Q, and k > k., Vuk(a:) belongs
to an e-neighbourhood of F' N Hy, where H; = {z : (h1,z) = 0}. A point y in an e-
neighbourhood of ¥ N H; can be written as Y =y; +y. where y; € F'N H; and lye|l < € it
is (h2,y1) > 0 and (hy,y) = (h2,y1) + (h2,ye) > (h2,ye) > —e. Hence <h2,Vuk(m)> > —¢
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and <h2,Vvk(cc)> > —€— |ag| > —2e for any z € {c. By computations analogous to those
of point (1.), we obtain, for any k > k.

/; l(hz, V'uk(:z:)>l dz < 45“({]);

then,
/ ‘(hg,Vuk(a:»l de = / l(hg,Vuk(m)ﬂ dz +/ ]<h2,Vuk(a:)>| de < eM + 5ep(€2).
Q Q\Q. Q.

Hence <h2,Vuk> 5 0in L*(Q).

This process can be iterated in order to show that <hz,Vuk> S 0in LI(Q) for
i=1,..,n—r and this proves that {uk}kel‘N converges d-strongly to u, in Wyt (Q) for
some d > n —r. By point 1), if d > n —r it would be dim(F;) < r, a contradiction. Hence
{uk}ke]N converges (n — r)-strongly in Wot(Q). U

Corollary 3.4.1. Assume the hypotheses of Theorem 4.1. Then any sequence {uk}kem

of solutions of Py converges weakly to u,.

Proof. Take any sequence {uk} kEN of solutions of P;¥. The derivatives of u* are uniformly
bounded a.e., and by point i of Theorem 4.1, u¥ — 0in L*(R)). Then the proof is a
straightforward application of Lemma 4.1. L]

Remark 3.4.2. (Rotational symmetry) Theorem 4.2 states that in general continuous
dependence of the solutions from boundary data does not hold if the point (a,g**(a))
is not extremal. However in one special case continuous dependence holds whenever the
solution is unique: assume indeed that the function g is rotationally symmetric i.e. there
exists & : IRT — IRT such that g(Vu) = h(|Vu|). Two cases are possible: either a)
h(0) < h(r) for all » > 0 or b) there exists R > 0 such that h(R) = h(0) (assume that
R is the largest such point). In case a) there are no extremal faces of epi(¢g**) having
dimension n; hence, by the previous results, uniqueness and continuous dependence hold
for every boundary datum. In case b) there is a unique n-dimensional face, the ball of
radius R, whose relative boundary consists of its extreme points; hence both uniqueness

and continuous dependence hold if and only if |a| > R.

For a more general g one has the following result:
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Corollary 3.4.2. Assume the hypotheses of Theorem 3.2.
i) If the point {a} is such that P, (’P:*} admits the unique solution u, and there ezists a
neighbourhood U of {a} such that for any b € U (b, g**(b)) belongs to a face of epi(g**)
of dimension strictly less than n, then continuous dependence holds in U.
i) If the point {a} is such that P, (Py*) admits the unigque solution u, and (a,g**(a))
belongs to the relative bondary of an n-dimensional face of epi(g** ), then continuous

dependence holds if and only if (a,g**(a)) is an eztreme point of epi(g**).

Remark 3.4.3. In Theorem 4.1 we have assumed that the sequence {(ax,g**(ax))}rew
is entirely contained in a fized n-dimensional face F. We can suppose otherwise that, as k
goes to infinity, the sequence touches different faces of the epigraph of g**.

In this case the proof of statement 7) of theorem 4.1 does not need any modification since
to prove that dim(F;) = r it is sufficient to consider a subsequence of {(ax, ¢**(ax))} ke
entirely contained in the relative interior of one n-dimensional face.

Conversely we may assume dim(F;) = r and study the behaviour of a sequence of solutions
{u’“}keIN of P* when a* — a and (ax,g**(ar)) belongs to more than one face. In gen-
eral we may assume that there exists a finite collection {7, ..., F;} of n-dimensional faces
that contain (a,g**(a)) in their respective relative boundaries and such that (ax,g**(at))
belongs to to the relative interior of each of the F; for an infinite number of indices
k. The sequence {uk}kelN can be decomposed in the disjoint union of g + 1 subse-
quences {uFi}r. e, ¢ = 1,...,q + 1 where the indices ki,...,k; are those ones for which
(ak:, 97" (ak;) € r4.(F;) while the values (ax,,,,9**(ak,,,)) belong to faces of dimension
strictly less than n. Since u*s+1 = (ay_,,,-) it converges strongly to u, in W, (), while
the sequences {u*};. e, i = 1,...,¢ converge (n — 7)-strongly to u, in W, (Q) in the
sense that <Vuk*',e§-> kizge <Vua,e_‘;-> in L}(Q), where E* = {ei, ..., eénﬂr)} is an orthonor-
mal system in (span(F; — a))* for any i = 1,...,q. Hence the whole sequence {uk}kEN
converges (n — r)-strongly (and also weakly) to u, in W,''(Q). Hence statement i) of

Theorem 4.1 and Corollary 4.2 remain true.
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Part 11

Chapter 4.

An existence result in the vectorial case

of the Calculus of Variation



4.1. INTRODUCTION

In this section we prove existence of solutions for the problem
P: Minimize / g(B(VT(z))de; T € Tp+ W, (2,R")
Q .

where g is a lower semicontinuous real valued function defined on IR, ® is a real valued
quasiaffine function defined on the space M,, of n X n matrices, T a transformation from
Q to IR" and T an affine boundary datum.

When ®(4) = det(4) (we recall that the determinant is the simplest example of
non affine quasiaffine function) the problem, which arises in the study of equilibrium of
gases, and constitutes a typical nonconvex problem in the vectorial case of the calculus of
variations, has been considered in [D2] and in [MS]. In this case, the application of the
direct method finds a difficulty due to the fact that, although the convexity of g is still
sufficient for the weak lower semicontinuity of the integral functional, growth conditions on
g do not guarantee that the functional is coercive on WP, However, in [D2] it is proved
that the relaxed problem

Minimize/ g**(det(Vu(z))dz; ﬂE C>(Q,R%), u=muy on 90
o 4

admits at least a smooth solution provided that the boudary datum ug has positive jacobian
determinant, and satisfies some regularity conditions.
In [MS] it is given a proof, based on Moser’s Theorem on volume preserving diffeo-

morfisms (see [Mo], [DM]), of existence of a solution for the problem
Minimize/ g(det(Vu(z))dz; u € up + WH(Q,R"),
Q
for a C? homeomorfism ug with positive jacobian determinant in Q.

We show that P admits at least a solution for any quasiaffine function & and for any
affine boundary datum T'g.

Actually we treat separately the simpler case & = det (section 4) and the general case,
(section 5), since in the first one the proof can be performed by easier algebraic arguments
and provides the leading ideas for the further developement. Indeed the procedure used
for the determinant can be refined and applied to a generic ® by virtue of a representation

theorem, due to Ball [Ba], according to which a real valued function ®(A) defined on M,

59



is quasiaffine if and only if it can be expressed as an affine function of all the minors of A.
We stress that the result of section 5 includes that one of section 4, hence reading section
4 is not strictly necessary to understand the work.

We stress that the proof is easier whenever the datum 7'z is such that V7g is not
a critical point for @ (in the case of the jacobian determinant this means that the rank

of VI'p is larger or equal than n — 1); otherwise the result is obtained by solving the
equivalent problem

Minimize/ 9(®(VT(z))dz; T eT,+ W(,I’I(Q,IR”)
Q

where T, € T + W, (Q,1R™) is a piecewise affine transformation such that ®(VT,) =
®(VTp) and d®(VT}) # 0 almost everywhere in .
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4.2. PRELIMINARIES AND NOTATIONS

In this section we use the following notations: vectors (of IR") are meant to be columns,
given b € R", b’ is the transpose of b and (b)* is the orthogonal complement of span(b),
@ -bis the inner product of a and b vectors of IR™ and |- | is the associated norm. The
canonical base in IR™ is denoted by {e;,7 = 1,---,n}. A subset of R™ is said n-dimensional
if its linear span is the whole space; for a convex set K eztr(K) is the set of its extreme
points.

A n X n matrix 4 is written as

1 1 n

a @ ay

A-—-(al,...,an) b= : = . .
an ail “ e aﬁ

where the a; are its columns and & are its rows. We denote by M, the space of n X n

matrices endowed with the inner product
n

(A,B)), = z": af-.bg :Zai'bi = 2":(1], b
j=1

i,j=1 1=1

Given two vectors v,w € IR™ we denote by v®w the matrix of rank one obtained taking

the usual row-times-column product of matrices of v and wt, i.e., writing v = (v1,-**,vn)
and w = (w1, -+, Wn),
V1w, e VW mw
vR W = :(wlv,---,wnv)z
VWi ot UpWp VW

For T, a regular tranformation from an open subset of IR™ to IR", VT is the jacobian
matrix; for v, scalar valued function, v, is the derivative with respect to the i-th variable
and Vv is its gradient, seen as a row vector. By this way, given a vector b, b ® Vv is a
n X n matrix, while Vv - b is a scalar (inner product).

We use the Sobolev spaces W, (©,IR") and W, (Q,R) endowed with the usual
norms, and adopt the convention that an element of Wy (©,R) or Wy (Q,IR") is said
to be continuous if it admits a continuous representative.

An open bounded subset E of IR™ is called regular if the divergence theorem can be
applied to E and to §F; the complement of a subset E of R™ is E¢. The Lebesgue measure
is denoted by u(-).
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For a smooth function & defined on M, we denote by d'®(A4) the I-th differential of
® at 4 and, abusing the notation, by '

(d'®(4))

L ooy e dr=1,--m
(iryjt)yesGing) T PR R = 5

the tensor representing the I-th differential of ® at A with respect to the canonical base in

M. In particular
(d2(4));, 5y wsni=1-m
is the n x n matrix representing the first differential, in the sense that, for any B € My,

(d2(4)) (B) = (d®(A), B)),,-

We recall, from [D1] p. 99, the following

Definition 4.2.1. A Borel measurable and locally integrable function ® : M, — IR is
said to be quasiaffine if

B(A) = ,T(lb_) fD (A + Vu(o))de

for every bounded domain D C IR", for every A € M, and for every u € VVD1 (D, IR").
We recall also that there exists also a representation theorem for quasiaffine functions
(see [Ba] or [D1] p. 117) expressed in terms of the map

T: Mp — Mya) X My@y X o+ X Myno1) X My(n);

8

where v(s) = <n> = T:L—f)—" given by
T(A) = (A,adj2(4), - ,adjn_1(A),det A)
where adj,(A) stands for the v(s) x v(s) matrix of s X s minors of A. Roughly speaking
T(A) is a "vector” whose ”components” are square matrices of order v(s).
Theorem 4.2.1. Let & : M, — IR. Then the following conditions are equivalent:
i) ® is quasiaffine.
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it) There ezists

:3 = (:Bl7° v a:Bn) € Mu(l) X Mu(2) Xoeer X Mu(n—l) X Mu(n)

such that .
B(4) = B(0) + (B adis(A)) -

i) For any a,b € R"

(A +a®b) = B(A) + (d8(4),a ®b),,.

Remarks.
1. Point #i) implies that ® is a polynomial of degree less or equal to n; hence, in particular,
if ® is nonconstant, for every A € M, there exists [ € {1,---n} such that d'®(A4) 5 0.

2. Point ii) states that Taylor developement of ® with respect to a rank-one increment
stops at the first order.

3. When ®(A4) = detA, identifying as usual the differential with the representing matrix,
it is d®(A4) = adj,—1(4) (see [D1] p. 191). Hence a matrix A has rank k if and only
if d®(A)=0forl=1,---,n—k—1and d'®(A) £ 0forl=n—k,---,n.

4. Since the matrix representing the differential of the function determinant is the matrix
of its maximal minors, point 47) implies that each entry of the tensor representing a

differential of some order of ® at A is still a quasiaffine real valued function of A.

Lemma 4.2.1. Let E be an open bounded subset of R", and V = {v;,1 = 1,...,m} a set
of vectors of R™ such that 0 € int(co(V)). Then there ezist open regular subsets of E:
{E;,;i=1,...,m} and a continuous function w € W01’°°(E',]R) such that:

i) Bi(1E; =0, i#7;
i) E= (UL, E)UN, Nnull set
i) Vw= > 1 vixg; a.e. on {;

i) Yimy p(Ei)vi = 0.
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The proof of this lemma is also contained in the proof of Theorem 3.3.1 part ii) of

chapter 3.

Proof. Let V* be the polar set of co{vi,i = 1,...,m}. By Lemma 3.3.1 there exist a

collection of m polytopes Vi*,..., V% contained in V* and a Lipschitz continuous function

u, defined on IR" such that V* = |JIo, V*, int(V}*) int(Vy) = 0 for i = j, ul(‘.,‘)c =0,
Vu=3T7", vixvy and '
Z,LL(V,-*)U,- =0. (2.1)
i=1

Consider the following Vitali covering of F:
{z+7V*, ze€E, 0<r<dist(z,E)}
and select a denumerable subcovering {S7} e,
ST ={e;+r;V*, z;€E, r;>0}

such that:
a) nt(S7) () int(S*) = 0 for j # k,
b) E = (Ujof__l Sj> UN, N null set,
c) ME) = p(V*) Y52, r}.

For any 7 € IN we define the subsets of S7

5;7 = {:I:j —I—TjV;-*}, 1= 1,..,m,
’ T —x;
u'(:n)E'r-u( J)
j j r:
k
Uy = Zuj
Jj=1

Since u; has the same regularity of » and uj]

for any ¢ € IR", we set

and, for k£ € IN:

E

(siy: = 0, Ui belongs to W01’°°(E,IR) and

moreover, for any ! € IN,

0, forz € (U;?__.l Sj) U (U;i—k‘*" Sj)

uj(z), forze S/, j=k, . k+1.

Ukti(z) — Ur(z) =

64



By b), it is A
Jim p({e € B:Ukp(e) - Uk(z) # 0}) =0,

hence the sequence {Ux }ren is fundamental in wil(E,R).
Now set -
E; = | int(S])
j=1
and .
w=WHH(E,R)— lim U
k—co

First of all we remark that, since each E; is the union of a countable family of interior
of polytopes, it is regular in the sense specified above, moreover properties i) and ii) are

trivially satisfied. Obviously w belongs to W, (E,R), and, given j € IN it is
Ur(z) = Uj(z) = uj(z), foranyz€ §7, and for any k > j,

hence, by pointwise convergence, w(z) = uj(z) for a.e. = in S7; hence w is continuous,

belongs to Wy'*(2,IR) and

Vuw(z) = Vu ( > =vp; fora.e. z€ Sf

Tj

This implies #i1). Statement iv) is a trivial consequence of (2.1), of ¢) and of the fact that

p(E:) = w(V7) Y77
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4.3. STATEMENT OF THE MAIN RESULT

We anticipate now the main result of this chapter.

Theorem 4.3.1. Let Q) be an open bounded subset of R™ and let g : IR — IR U {400} be
a proper lower semicontinuous function satisfying
t
m I8

lij—oo |t

Then for any affine transformation Tp : R™ — IR™ such that ®(VTg) is in co(dom(g)),
the problem

P : Minimize /g(@(VT(m)))d:z:; T € Tg + W, (Q,R™)
0 .

admits at least a solution.

This theorem will be proved at the end of this chapter (Theorem 5.2). As will be clear,
whenever g(®(VTp) = g**(®(VTg), (here and in the following g** denotes the bipolar of g)
T is a solution. When g(®(VTp) is strictly larger than g**(®(VTg) growth condition on g
implies that the infimum of the functional is u(Q)g**(2(VTE)) = p(2)(Ag(a)+(1-N)g(8))
where a and § are real numbers such that (V7Tg) = Aa + (1 — A)B. Hence the proof of
the main result consists in showing that for any affine transformation Ts there exists a
transformation T € Tg + WOI’I(Q,IR.") such that ®(VT) takes the values o and 8 on two
disjoint subsets of {} whose relative measures are the coefficient A and 1 — X of the above
convex combination.

We shall prove the existence of such a transformation assuming first & = det (Theorem

4.1) and then in the general case (Theorem 5.1).
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4.4. CASE OF THE J ACOBIAN DETERMINANT

In this section we treat the case of a functional of the jacobian determinant showing
that problem P admits solutions for any affine boundary datum when ® coincides with
the determinant. The proof is divided in two steps. We begin with a lemma in which we

define a piecewise affine transformation of rank n — 1 coinciding with T on the boundary

of .

Lemma 4.4.1. Let 2 be an open bounded subset of R". Let Ip : IR®™ — IR™ to be
an affine transformation such that rank(VTg) < n — 1. Then there ezists a collection
{Q4,i =1,...,m} of open regular subsets of Q, a null set N with Q = (UL, 9)UN and a
continuous transformation T, € Tp + WOI’I(Q,]R") such that the restriction of Tr to each
Q; is affine and rank(VT,) =n—1 on U, Q.

Proof. Set k to be rank(VTg), if k =n —1 set T, = Tp (the collection of open subsets of
Q) consists of Q itself). If k <n —1 let bil‘, ...,bi, be k linearly independent columns of B.
Given j not in {i1,...,%x} there exist A(lj), ey A&cj) € IR such that

. A
b= A b,
h=1

Let ¢ # 0, cin (span{b;,,...,bi })". We are going to consider a transformation F, defined
by means of a continuous scalar function v € Wyt (9, R) by setting

Fv(a:).z Trs(z) + v(z)c, (4.1)
so that, a.e. in (2,

VF,(z) =B +c® Vo(z).
For j € {i1,...,9 } the i-th column of VF, is b; + vg, ¢, while given 4 ¢ {i1,..3k} 18
k I3 k . k -
h=1 h=1 ' h=1

hence the rank of VF, does not change if we replace the i-th column by

k
('vx,. — Z Agzl)vxih) c,
h=1

67



ie. it is £ 4+ 1 whenever

k
(”z; - Z ’\E:)vzf,.) = Vv f#0,
h=1

where we have introduced the vector f whose components are defined by

1, if j =15
fi=8 =2 i =ip, h=1,.,k
0, otherwise.

It is our purpose to define a continuous piecewise affine scalar function v such that

the previous condition holds a.e. in .

Let {s',...,s™} be the vertices of a n-symplex in (e)1 containing 0 in its relative

interior. Consider the set of 2n vectors
{si —f, S+ f, i= 1,...,n};

applying Lemma 2.1 to this set of vectors and to the open set {2, we infer the existence
of a finite collection {Q;,7 = 1,...,2n} of open regular subsets of £ and of a continuous
piecewise affine function v € W;*(Q,1R) such that

n

V”:Z(Sj_f)xﬂj +Z(5j+f)X9n+5'

j=1 j=1
From the above,
Vv f= (-—Iflz) Xur_,9; + (|f|2) XUr_ Qg

The transformation F; defined by (4.1) through this v is affine on each 1; and we have,

a.e. in {2,

rank(VF) =k + 1.

If £ =n—2 we set T, = F; and are done, otherwise for each j € {1,...,2n}, repeating
the previous procedure, we can define a finite collection {Q,1,1 =1,...,2n} of regular open
subsets of {1, a continuous piecewise affine function v; € W'°(2;,IR) and a vector cj

such that the rank of the jacobian of the transformation, defined on 1,

Fy;(z) = Fi(z) + vj(z)c;
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which is affine on each Q;;, I =1,...,2n) is k + 2. Then we extend v; by 0 on 2\ 2; and,
Js . j j
for z € 2, set

Fy(z) = Fi(z) + Z'Uj(ﬂ))Cj.

Since the last term in the r.h.s. is in Wot(Q,IR"), F» belongs to Tp + Wl (Q,IR™);
moreover it is affine on each ;;, and the rank of VF, is k + 2 a.e. on 1.

If k = n— 3 we set T, = F» and are done, otherwise the above steps can be repeated
until the desired result is reached. k Ul

Theorem 4.4.1. Let Q be an open bounded subset of R™ and let T :IR" — IR™ be an
affine transformation. Let a,8 € R (a < f8), A €]0,1[ be such that

det(VTs) = Aa + (1 — A)B-

Then there exist two open disjoint subsets % and OF of Q, a null set N, with §§ =
QP UN, and a transformation TeTp+ W&’OO(Q,IR") such that:

i) det(VT) = axqa + Bxas;

a8 =1

Proof.

a) Assume first det(VTg) # 0. Let by be the first column of VIp and, for a given
v € Wy'' (Q,IR), consider the transformation

Ty(z) = Tp(z) +v(2)b1,
so that T, belongs to WS’I(Q,IRn), a.e. in {2, it is

VT, =B + b, ® (Vv)

and
det(VT,) = det (b1(1 + Vg, )y b2 + b1Vzy, e bn + bivg, ) = det(VIB)(1 + Vg, )
Hence N
@ det(VIm) 1
det(VTy,) = if and only if v, = 5 (4.2)
g TnvTE) T
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Set

o [s4
"1 T Get(VTg)

a
—1 (vf <0) and vf:m—l ¢ > 0).

Let Sn—1 = {si,1 =1,...,n} be a (n — 1)-symplex in span{e;,i = 2,...,n} containing 0 in
its relative interior. Recall Lemma 2.1 with £ = § and V the set of 2n vectors S = {s; +
viey, si-{—vlﬂel}. By this Lemma there exist open disjoint subsets of {2, {Q2¢, Qf,i =1,..,n}
and w € W' (Q,1IR) such that, a.e. in 0, | |
n 'n
Vw = Z(si —l—vf‘el)xgg + Z (si —I-vfel) Xo?

j:l ]:1

and

D (si+ofen) w(QE) + D (si+ofer) w(0f) =0,
j=1

i=1

in particular the equality of the first component of the previous (vectorial) equality, yields:
of D u(8) +0f > u(@f) =0 (4.3)
j=1 j=1

Now set Q% = J7_,(Q25), Q=7 (Q;B) and T = Ty. Recalling (4.2), we have

Jj=1

det(VT) = axqe + Bxqs.
By (4.3) it is

a

that is to say
ap(Q%) + Bu(Q) = det(VTr)u(Q),

recalling that det(VTg) = Ao + (1 — A)B we have ).

b) Assume rank(VIp) = n — 1, so that o < det(VIB) = 0 < B. Hence there exist
J €{1,..,n} and coeflicients {7;,i # j} such that

bj = Z’yibi.

i
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Let cin (span{b;,i = 1,...,n})" be such that det(by, ..y bj—1,¢,bj41, -y bn) = 1. As before,
for a continuous v € W1 Y, R), consider the transformatlon T, € T + W, (Q,IR"),
defined by

T,(z) = Te(z) + v(z)c

so that, a.e. in (2,
VT, =VTg+c¢®Vv =

by + vz, €y b1 +'vzj_1c,z7ibi +vg;¢, . bjr1 F vz 6 b +ve,c| =
i#£j

by +’lec,---,2’)’i (b; + vgie) + | vz; — Z’y,-vz,. Cyuveybp + vz €
i#j i#j

Hence

det(VT,) =det | by + vz ¢y | Vz; — Z’yivx‘. Cyuveybpn + Vg, =
i#j

}_:'y,vz det(by, ... bj_l,c,b_,-+1,...,bn) = | vz; — Z'yiv,“ =Vv-e
i# ~ i#

where e is the vector (—71, -y —Vj—1, 1, =Vjt 1, -y —Tn )"+ Let Sn_y = {si3=1,..,n} bea
(n—1)-symplex in (e)* containing 0 in its relative interior. Recall Lemma 2.1 with £ = Q
and V the set of 2n vectors

—e€,8; + ——ﬁ—ei——-l...n .
l|2 le|? 7 T

By this lemma there exist open subsets of 2, Qf and Q? and w € WOI’I(Q,IR) such that,

a.e. in {2,
V= 32 (st ) e + 30 (o0 i)
1=1
so that o .
Vw-e=ay xas +B )Xo
i=1 i=1
and

i( H )#(Qa)"l"Z( +——'B——e)y(ﬂf):0,

i=1
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In particular, taking the inner product of both sides with e, we have
ad pOF)+8d pu0f) =0 (4.4)
i=1 i=1

Set 0% = UL, 0f, 0° = UL, 0 and T = T,. T is in W2(Q,IR"), by the above,
det(VT) = Vw - e = axqe + Bxqs,

and, by (4.3), ,
7 p(@Q2) (0
©() ©($2)

B =0.

¢) Assume rank(VTg) < n — 1. By Lemma 4.1 there exist a finite collection of regular
open subsets of 2, {Q;,7 = 1,...,k}, a null set N such that Q = N (U§=1 Qj) and a
continuous transformation T, € T + W, "' (Q,IR"™) such that

k
T = ZTJXQJ
i=1

where T} is affine and rank(VT;) = n — 1. Consider the procedure of step b) repiacing
{1 by Q; and Tp by T;. For every j we infer the existence of open disjoint subset (£2;)%,
(£2;)% of Q and of a transformation T!in T; + W, '°(9;,1R™) such that, a.e. in Q;

det(VT]{) = ax(q;)e + ﬁX(Qj)a (4.5)
and
p((25)%) , #(95)7) ,
w0 * T uy) P

We extend T} by setting Tj on Q \ Q; and define

It is

and since the last term in the r.h.s. is in Wol’_l(Q,IR"), T belongs to T + W' (Q,IR").
Moreover, by (4.5), it is, a.e. in Q, '
k k
det(VT) =a Y x(;)= + 8 x0;)-
=1 i=1
Setting 0 = U;f:l(ﬂj)"‘ and QF = | J* (92;)#, we conclude the proof. L

j=1
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This last result is sufficient to prove the main result in the case of the jacobian de-

terminant. The reader interested only to the this case can skip over next section going
directly to Theorem 5.2 setting ® = det.

4.5. GENERAL CASE

We consider now the case of a generic quasiaffine function ®. The proof follows the
ideas of previous section with the difference that the role played by the rank is now assumed
by the differentials of ®. More precisely the proof can be performed directly when VTIp is
not a critical point for ® (this corresponds to the case of rank equal n or n — 1), otherwise
the auxiliary piecewise transformation T € T + VVO1 ’1(Q,IR") is now defined in such a

way that d®(VT,) is different from zero almost everywhere and ®(VT;) = &(VTIB).

Lemma 4.5.1. Let A € M, be a nonzero matriz. Let v1,72 € IR with v1 < 0 < 72.
Then there exist a vector b € IR" and a n-dimensional polytope P C IR"™ with wvertices

{v},v?,i=1,--+,n} = extr(P), containing 0 in its relative interior, such that

((A,b@vf))n-—-'yj i1=1,---,m; 7=1,2.

Proof. Write

A=
. o

take a row o/ different from zero and choose b = e;. Let S be a symplex in (a9)* with

vertices {s;,4 =1,---,n} containing zero in its relative interior, define
1 T 2 T2
v; = 8; + —=a vl =5;+—=a’ 1=1 n
1 Ia-’lz ’ 1 ‘G,J|2 ? ?

Notice that for any vector v, e; ® v is the matrix whose rows are all zero except the j-th

one which coincides with the row vector v?. Hence
(A4,e; ® Uzj»n = a’ "Uzja
and, by the choice of vf, we have the result. ]
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Lemma 4.5.2. Let @ be a nonconstant real valued gquasiaffine function defined on M,
and let A be a critical point for ®. Let k € {0,---n — 2} such that d""*®(A) # 0 and
d'®(A) = 0 for any I = 1,---,n —k — 1. Then there ezist a vector b € R" and a n-
dimensional polytope P C IR™ with vertices {v;,i = 1,-++,2n} = extr(P), containing zero
in its interior, such that

A" FO(A+b@v)£0 i=1,---,2n,

dBA+b@v)=0 i=1,--,2n; [=1,--- n—Fk—2.
Hence, as a consequence of Theorern 2.1 111), (A +b®v;) =0 fori=1,---,2n.

Proof. Consider the tensor representing the (n — k — 1)-th differential of ® at A:

n—k—1
(@5 R 1), i)

By assumption this tensor is zero and there exists a multiindex

Jnk—1="(21,71)" ", Bn—k—1,Tn—k-1)
such that
d(d"~*1%(4)) ;

Jn—lc—l

is a nonzero matrix. By Lemma 5.1 there exist a vector b and a polytope P such that

(d(d*18(4)),  b@w), #£0

n—k—

for every v; € extr(P). Now we recall that the map A — (d"~F~1@(4)) is real

valued and quasiaffine; hence by point iii) of Theorem 2.1
(@ (@A + b @), = (@ (B(A)),_,_, +
«d (dn—k_lé(A)) jn-—k—l ’b® 'vi»,n ;é 0

Jn.—k—l

for every v; € ezir(P).
Moreover, for any I € {1,---n — k — 2}, if we denote by

d (d'2(4)) g

where J; = (41,71),---,(%1,41), a generic entry of the [-th differential of ® in A, we have,

as before:
(d'(2(A+b@wi)); = (d (2(4)), + ((d (d'B(4)) ,, ,b® vi)),, =0
for any v; € eztr(P). Hence all the differential of ® at A are zero until the (n — k — 2)-th

one while the (n — k — 1)-th one is different from zero. ]
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The following lemma is the analogous of Lemma 4.1.

Lemma 4.5.3. Let T : IR® — IR be an affine transformation such that d®(VT1p) = 0.
Then there ezists a continuous transformation T, € Tp + W, (Q,IR™), @ finite collection
of open regular subsets of Q, {Q;,1=1,---,m} a null set N with @ =N U (Ui, Q:), such
that ‘

T’r - Z TiXQu
i=1
where each T; is affine, d®(VT;) # 0 a.e. in Q and ®(VT;) = &(VTIp).

Proof. Let k (k > n — 2) be such that d"*®(VTg) # 0 and d'®(VIg) = 0 for | =
1,---,n —k —1. By Lemma 5.2 there exist b6 € IR"” and a n-dimensional polytope P

containing zero in its interior such that

A"k 1(VTE +b@wvi) #0
d'®(VIpg+b®v;)=0 I=1,---,n—k—2.

for any v; € extr(P). Let u € W' (Q,IR) be defined as in Lemma 2.1 with V = P and

E = Q. Consider the transformation

Ti(z) = T(z) + u(z)b

so that
VTi(z) =VIp+b® Vu(z), a.e. in .

T; is continuous, belongs to T/Vo1 ’l(ﬂ, IR™) and there exist a finite collection of open regular

subsets of Q: {Q},i =1,---,2n} such that @ = N |J (Ufz1 Q}) and

2n
Ty = Z TIIXQ,H
i=1
where each T} is affine and, more precisely,
VTi(z) = VT +bQuvi, i=1,-+,2n.

Hence, for any i € {1,---,2n}, d"¥71&(VIY}) # 0, d'®(VTi)=0forl=1,---,n—k -2
and ®(VT}) = &(VTg). fk=n—2 we set T, =T and ; = Q;.
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Otherwise, repeating the previous procedure, for each i € {1,---,2n}, we can define

a continuous piecewise affine transformation Tj € T} + Wy (2, IR"™) such that

d"FT2R(VTy) # 0,
d'®(VTi) =0, I=1,--,n—k—3,.

(VT]) = &(VTp)

We extend T3 on by setting 73 = Ty on 0\ ©; and define

2n
T; = ZTleQ}'
i=1
It is
2n ] .
Ty =T+ ) (T3 — T)xar.
=1

Since the second term in the right hand side is in Wy'(Q,IR™), Ty belongs to T -+
Wol’l(Q,IR") and has the same properties of 7}. This procedure can be iterated n — k — 1

times to obtain the required transformation 7} = e k—1- ]

Theorem 5.5.1. Let & : M,, —» IR be nonconstant and quasiaffine. Let Tp : IR™ — IR"
be an affine transformation. Let a,B € IR (e < B) A €]0,1] be such that

B(VTs) = Ao+ (1 — M)B.

Then there exist two open regular disjoint subsets of Q, Q% and QF, a null set N and a

continuous piecewise transformation T € Ty + I/VOI’I(Q,IR"), such that @ = N|J Q| QP
and

z) @(VT) = axqe + Bxqs.
i) [o ®(VT(z))de = p(Q)®(VTs),

or, in other words,
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Proof.

a) Suppose d®(VTg) # 0. Apply Lemma 51 with A = VTg, 11 = a — &(VIB), 72 =
B — ®(VTg) to obtain a vector b and a n-dimensional polytope P C IR™ with vertices

{vf‘,v? } containing zero in its interior such that

(d®(VTs),b @ vf)), = o« — 2(VTH)
and

(d2(VTp),b®v]), =B — 2(VT5).

Then we define u € Wg’l(ﬂ,IR) as in Lemma 2.1 with V = P and E = Q. Consider the

transformation

T(z) = Tp(z) + u(z)b.

T is continuous, piecewise affine and belongs to Tp + Wg 1(Q,IR™), moreover, by Lemma
2.1 and by Theorem 2.1 i), there exist two open regular disjoint subsets of Q, Q% and
0#, such that @ = N |JQ* U Q¥ and

$(VT) = &(VTg + b® Vu) =

&(VTg) + (d®(VTg),b ® Vu)), = axes +BFxas-

Since ® is quasiaffine, we have

[ 89Ttz = ap@%) + ) = WDR(TT5),
i.e. point ).
b) Suppose

do(VTs) =0, &&(VTp) =0,---,d" *1&(VTs) = 0,

and

d"FP(VTg) # 0

(k > n —2). By Lemma 5.3 there exist an integer m and a continuous transformation

T, € T + W' (R, R™) such that

VT, = i VTixar

i=1
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where {Q7,7 = 1,...,m} is a collection of open regular subsets of § such that {} =

NU(UZ, QF) (IV null set), each T? is affine, and, for any i = 1,---,m

d®(VT;) # 0,

(VT = &(VTg).

Repeating the procedure of point a), for each index i we can define a continuous piecewise
affine transformation 7% € T¢ + W "°(07,1R") such that

@(fo’i) = ax(ar)ea +,BX(Q::);9.

where (Q7)* and (Q7)? are open regular subsets of Q7 such that Q7 = N y@n>y@ns
(N null set). We extend T on Q by setting 7% = T on \ % and define

m
T = ZTZXQ;.
=1

Obviously T is continuous, piecewise affine and

T:Tr+§_m:(fi—T,f)in.

i=1

Since the second term in the right hand side is in W,''(Q,IR"), T belongs to Ty +
W, (Q,IR™) and
®(VT) = axa= + Bxas,

where 0% = [J2,(07)* and QF = |-, (QF)?. As before

[ #(VT(@)ds = ap(@) + 5u(07) = )BT Ty)

This ends the proof. | L
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We are ready to prove the main result of this chapter.

Theorem 5.5.2. Let ) be an open bounded subset of IR™ and let g R — IRU {+oo} be

a proper lower semicontinuous function satisfying

im M = +oo.
lt]—oo |t]

Then for any affine transformation Tp : R" — IR" such that ®(VTg) is in co(dom(g)),
the problem

P : Minimize / g(®(VT(z)))dz; T € Tg + Wy (Q,1R")
Q

admits at least a solution.

Proof. Consider g**, the bipolar of g, as defined in [ET].

a) Assume co(dom(g)) # IR (dom(g) is the set in which g is strictly less than infinity) and
consider first the case in which ®(VTp) € 8(co(dom(g))). We claim that T is a solution of
P. In the case ®(VTg) = sup(co(dom(g))) we remark that for any T € T + Wyt (9,IR")

we have, since the map A — ®(4) is quasiaffine,
/ (®(VT(z)) — ®(VTs(z))) dz = 0.
Q
If

/g)g(@(VT(a:))) dz < +o00,

for a.e. z € Q it must be (VT (z)) < ®(VTp(z)), hence (VT (z)) = ®(VTp(z)) for
a.e. ¢ € §, so that Tp is a solution and any other solution T3 of P must be such that
®(VTy) = ®(VTp). The case $(VTg) = inf(co(dom(g))) is analogous.

b) Consider now the case (VIg) € int(co(dom(g))) (where this set can be the whole IR).
There exist a line p separating the point (®(VTg),g**(2(VTs))) from the closed convex
set epi(g**). Since ®(VTp) is in the interior of dom(g**), p cannot be vertical, 1.e. there
exist 7,6 € IR such that, for ¢ € dom(g**):

g(t) > g™ (t) >yt + 6

79



and

97(¢(VT5)) = 18(VTp) + 5.
Let T € Ty + WOI’I(Q,IR."), it is, since ® is quasiaffine,

/Q g(a (v:i’(m))) dz > /Q | o (2 (V’f“(z))) de 2‘

/Q (2 (vI()) + 6) do = /Q (12 (VTs(2)) + 8) dz = /Qg**(@(VTB(m)))dm.

When g (®(VTg)) = g** (® (VTB)) the above argument shows that T is a solution,
Otherwise, by a slight modification of IX.3.3. of [ET], taking into account the superlinear
growth condition on g, we can say that there exist a,B € IR, A €]0,1] such that

& (VIs) = Aa+ (1 - ))8.

and
97" (2(VTs)) = Ag(e) + (1 - A)g(8).

In this case, it is

/Q 9" (8 (VT5(2))) do = Au(@)g(a) + (1 — A)p(D)g(B).

Hence the transformation T' given by Theorem 5.1 (Theorem 4.1) is a solution of P.

O

Remarks.

1. Since the function ® is real valued, the problem of finding a solution is underdeter-
mined, and, in general, one cannot expect uniqueness of the solution. Actually, in the
case of the jacobian determinant it is easy to see that the problem admits infinitely
many solutions. Indeed when T is not a solution, the assertion follows easily from
the construction of the solution defined in Theorem 4.1 and in Theorem 5.2, since it
depends on a scalar function v which can be defined in infinite ways (depending on
the choice of the set of vectors which constitute the range of the gradient of v). When
T’ is a solution of P we simply notice that, given a regular transformation J :  — Q,
different from the identity, such that det(VJ) =1 on 0 and I|oq = I|,, (I denotes
the identity), it is ' :

det (V (T o J)) = det(VTB)
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and

Tﬁ ° J\an = TB‘@Q'

Hence T = Tg o J is a solution. Since there exist infinitely many transformations J

with such properties (see [DM]) the assertion is proved.

. The assumptions on the boundary data can be slightly relaxed. Indeed the proof of
existence can be easily reproduced for a piecewise affine bondary datum T provided
®(VTg) is constant. '
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