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INTRODUCTION

This thesis consists of two parts: in the first a Bond Particle Model for the struc-
tural properties of group IV and III-V melts is presented and discussed; the second
part deals with some properties of a variational wave function, the Shadow wave
function, recently proposed to describe the ground state of *He both in the liquid
and the solid phase, and describes some attempt to generalize it. The common
theme between these apparently unrelated arguments consist in the usage of aux-
iliary degrees of freedom or "fictitious particles”, employed as adiabatic variables
to model a non simple classical liquid in the former case or integrated out in
the construction of a wave function for a quantum system in the latter case. In
both cases one aims to describe the solid and the liquid phases within the same
framework (model ;ﬁ variational wavefunction); moreover one makes also use of
the additional degrees of freedom to build up effective angular dependent many
body-forces, in the former case, or to reproduce many body-correlations between
He atoms without introducing them explicitly in the wave function in the latter.
The physical meaning attached to these degrees of freedom is different in the two
cases.

For group IV and III-V melts one wants to represent in a semiclassical way
the process of "localization of electrons” in bonds(*)

with a ”primitive model”, in analogy to models developed for describing the

lattice dynamics of the corresponding solids, and aims to model the effects of

(*) for a precise definition of the covalent bond in terms of charge density properties and for the
quantitative meaning of phrases like ”localization of electron pairs in covalent bond” the reader is
referred to chap. T in R. F. W. Bader: Atoms in Molecules (Oxford University Press, Oxford

(1990), pag. 332.




VI INTRODUCTION

covalent bonding and the consequent association in the melts. The Bond Charge
or Bond Particle represents that part of the valence charge density, residing in the
region of a chemical bond, that can’t be attached to any individual atom (and in -
a pictorial way represents pair of electrons in bonds although it is not only due to
a defined electron pair (*)).

In the quantum case one obtains a pictorial representation of the shadow
particles by the analogy with path integral simulations on * He, where the quantum
particle is represented by a flexible ring made of classical beads and springs, and
the shadow particle can be viewed as describing the center of mass for the beads
distribution.

Extending the similarity between the two cases one can say that like Bond
Particles represent in some sense the fermi hole attached to valence electrons (in-
teraction between them being consequence of the fermi principle), and their local-
ization in some region of space (different from an atom) is the signal of formation
of chemical bond (*) with covalent character, in a similar manner Shadow Particles
represent a sort of quantum correlation hole due to excluded volume effects, their
position being the centre of an average excluded volume region for the quantum
particles, due to the strong short range repulsion of the potential in the hamilto-
nian, and their localization in space on a regular lattice signalls the formation of
a solid crystal.

For the reader’s convenience we present here two short abstracts of content
for the two parts, leaving the detailed exposition of the motivation of each work

to the introduction of each part.

In the first part we studied by means of the integral equations of the theory

of liquids the structural properties of a Bond Charge Model applied to liquid ger-
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manium as a prototype case, and tested the accuracy of various approximations
by comparison with the results of Monte Carlo simulations. In particular from
the simulation we examined the angular correlations induced between Germanium
Atoms, which we found in agreement with those obtained from ab-initio simu-
lations. The HNC approximation, improved with the introduction of a suitable
approximation for the elementary diagrams, is fairly accurate for the liquid region,
and the structure resulting for the model is in semi-quantitative agreement with
the experimental diffraction pattern for liquid Germanium near freezing. However
this integral equations scheme fails in giving accurate results for the supercooled

region, explored in connection to the structure of the amorphous phase.

In the second part we explore by means of Variational Monte Carlo simu-
lations some issues related to a class of variational wave functions, the Shadow
Wave Function of Kalos and Vitiello, namely to what extent this wave function
reproduces three body-correlations between helium atoms, and the possibility of
parametrizing the wave function in such a way to describe liquid-solid interfaces,
without the need to fix by hand a one-body density profile or the shadow parame-
ter b, different in the two part of the interface. We present also integral equations

for this class of wavefunctions.

Some generalizations of this wave function have also been explored. First,
following a suggestion of Ceperley and Schmidt, we explored the effects of triplet
correlations in the shadow part, finding that they don’t contribute in a significant
way to improve the wavefunction. On the other hand we generalized the original
wave function in a different way, allowing each Helium atom to be correlated to
any shadow, and we wrote down integral equations and Euler equations for the

correlations. As optimization seemed to be difficult to perform through this way,
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we tested this wave function in Variational Monte Carlo simulations, which didn’
t gave us significant improvements, at least with the functional forms tried until
now for the correlations. The problem of Shadow Wave Functions optimization in
Monte Carlo simulations using correlated sampling (with and without reweighting)

and variance reduction methods is also discussed.
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Chapter 1

Introduction and overview

Simple models of interatomic forces have had an important role in advancing
qualitative and quantitative understanding of condensed matter. In relation to
properties of the liquid state, the fluids of neutral and charged hard spheres, the
classical one-component plasma and the Lennard-Jones fluid have played such a
role under two main aspects. Not only do they mimic classes of real fluids, but
also provide simple test models for progress in statistical mechanics through joint
theoretical and computer simulation studies.

Bond directionality and association are qualitative features of many real systems
which are missing in the models mentioned above. It would be interesting to have
a model of the same simplicity for describing structural properties of covalently
bonded liquids and amorphous solids. We present in this work a simple primitive
model showing both strong directional interactions and a variable degree of asso-
ciation in the liquid phase, model which is relevant for the study of the disordered

phases of IV group elemental and III-V compound semiconductors.

Increasing attention has been given in recent years to the structure of co-
valently bonded systems in disordered states, from both the theoretical and the
experimental point of view. A first class of systems extensively investigated is
represented by a number of ionic or semiconducting compound materials of type
AX, that share the common properties to be well-known glass formers: among
them('?l BeF,, ZnCly, GeO2, 5102, GeSea, SiSe;. On cooling from the melt at

relatively moderate quench-rates, they can form a network-glass, that is an open
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structure with tetrahedral local coordination around the A atom, which is sta-
bilized by the presence of strong directional interactions. As a matter of fact all
these compounds are known to form covalent bonds of more or less ionic character,
that lead in the crystalline state to the formation of tetrahedral units of X atoms
coordinated to one A atom. Such fourfold coordination can successfully be distin-
guished from others in the crystal structure classification built by Andreonil®! for
AX> compounds on the basis of quantal parameters of the component elements.
The tetrahedral units can form an extended structure by connecting either by cor-
ner sharing or by edge sharing. This leads in the crystal state to the formation
of 1D, 2D, or 3D regular networks respectively in the case of SiSe; (pure edge
sharing), GeSe, (mixed edge and corner sharing), Si0; (pure corner sharing), and
various allotropic crystalline forms distinguished by their medium range topology
may also exist for a given compound (i.e. S:0:). The glassy structure can be
viewed as a disordered network of distorted tetrahedra, and an important point
for its characterization is to understand how this units connect together to form
an extended network, and what is the medium range topology that arises by their
correlation. Interesting structural questions thus concern, the relative weight of
corner and edge sharing, the "ring” statistics, and the presence of residual traces
of low network dimensionality. From the experimental point of view the structure
of the vitreous or amorphous state is reflected not only in static properties deter-
mined by elastic scattering experiments, but also in inelastic neutron scattering
spectral*l, as well as kin Raman scattering spectral’l. As the information is not
sufficient to fully characterize the structure as in the crystal states, models have

been used to translate experimental results in structural terms.

The medium range order in these glasses is characterized by the presence of a

first sharp diffraction peak (FSDP) in the total S(k)!? in the range from 1.0 to 1.5
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A~ peak due mainly to A-A correlations!®!, and arising from the connectivity of
tetrahedral units in the network. The FSDP is present, for some compounds, also

in the Bathia-Thornton concentration-concentration structure factor Scc(k)m .

The corresponding liquids near melting A(and in the supercooled states preced-
ing the glass transition) are also thought to show a "network-like” structure, in the
sense that quite a high degree of association between A and X atom is present, due
to strong directional interactions, leading naturally to the picture of a percolating
network of bonds, yet non-rigid, subjected to continuous bond breaking and bond
forming processes. For compounds studied by scattering experiments in both the
glassy and liquid state, as ZnCl,81) and GeSe,l®*9 the diffraction pattern for
the liquid phase clearly shows the same features as for the low temperature glass,
including the FSDP that remains almost unchanged, while the other features show

the expected thermal broadening.

A second class of covalent systems of current interest is represented by the
amorphous phases of IV group and III-V compound semiconductors; they don’t
show any glass formation process when cooled from their melts at ordinary cooling
rates and are currently prepared by various kind of deposition techniques!'%l. The
- diffraction pattern of the liquid phase near freezing shows clear differences from
that of their amorphous state; indeed melting at standard pressure brings elemen-
tal and polar III-V semiconductors from tetrahedrally coordinated open structures
into metallic liquids having higher density than the solid and first-neighbour coor-

dination number close to seven!*1:12l

. Their liquid structure is nevertheless quite
distinct from that of other liquid metals!*®!. Specifically a first-neighbour coordina-
tion number of order seven is still relatively low and the second shell of neighbours

is closer to the first shell, in a region of interatomic separations where the pair

distribution function g(r) has its main minimum for other liquid metals. Similarly
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the liquid structure factor S(k) shows a distinctive shoulder on the large k-side
of its main peak, merging into a single asymmetric broad peak with increasing
temperature in the liquid phase. The FSDP observed in the amorphous state is
no longer evident in the melt. Similar structural features have been observed in

the total diffraction pattern from molten Gads!**,

Like the systems in the previous class, these elements show in the liquid phase
local density fluctuations around tetrahedral order, due to the tendency of atoms
to associate in the melt through the formation of covalent bonds. The existence
of these kind of fluctuations, with the persistence of some covalent bonding effect
in metallic system like liquid Germanium or Silicon, was shown by a recent first-
principles molecular dynamic simulation made on liquid Silicon!*?], by means of the
Car-Parrinello method that allows the simultaneous determination of structure and
electronic properties. This simulation shows, from the analysis of charge density
distributions, that temporary covalent bonds can indeed form in the liquid, the
lifetime of the covalent bond being comparable to the characteristic time scale
of lattice oscillations. Moreover it was observed that this process of forming and
breaking bonds is characterized by a well defined tendency of density fluctuations

towards local tetrahedral order.

A number of theoretical approaches have been presented in the recent litera-
ture to deal with the disordered states of the above mentioned systems. The basic
approach represented by the Car-Parrinello method, combining density functional
theory for the valence electrons with molecular dynamics for the ionic cores, has

16]

been applied to silicon®®, Gads!'%, and liquid carbon!™l. The metallic melts of

elemental semiconductors have also been investigated by means of the conventional

pseudo-atom approach used in the theory of metals(1®:1%,

A number of empirical approaches that include three-atom contributions in
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the potential energy functions in addition to pair potentials have been proposed
since the work of Stillinger and Weber on Silicon, (see ref.[20] and references
therein) among which we mention that of Vashista on molten and glassy GeSe;
and S70,1?!, and that of Tersoff on Si and Gel?2l, These model potentials are
tailored to describe a specific system by fitting their free parameters to properties
of a specific phase, by means of MD test runs, and their success depend, on a
certain extent, on the number of properties fitted and on which phase the fit was

made.

Models of a certain simplicity that can be relevant to our subject arose in
another context, in the statistical mechanical modelling of fluids with associa-
tion, mainly in the treatment of network-like liquids.‘ Wertheim developed an
approach!?® to such fluids, modelling the elementary units as hard spheres with
a fixed number of attraction sites attached on them. The directional interaction
is mediated by forces between near-peripheral sites, that can interact only if the
elementary units have the right relative orientation. This model was investigated
mainly by means of Monte Carlo simulations!?*/. Another model that has been
used in studies of hydrogen bonding in water and methanol is due to Smith and

Nezbedal?®!, and is similar to Wertheim’s scheme, with the variant that the near-

peripheral sites now act attracting the center of another unit, not another site.

In this work we shall present a model able to take into account the peculiar
density fluctuations towards local tetrahedral order that characterize the class of
materials discussed above and distinguish their behaviour from simple liquid’s one.
We considered an extension to the melts of IIT - V and IV group semiconductors
of the bond charge model adopted by Phillips(2%! to give a picture of the non uni-
form charge density distribution in crystalline semiconductors and employed by

Martin2” and Weber[28:2°] as a simple empirical model to account for the dynam-
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ical properties of these materials. A primitive pseudoclassical model for the melt
can be constructed by regarding it as a mixture of hard sphere atoms and pointlike
bond particles, with mutual attractive interactions which can induce localization
of bond particles between pairs of atoms under steric constraints limiting the co-
ordination of an atom by bond particles to a maximum of four in tetrahedral
configuration. The above model involves only pair potentials between components
and thus it can be studied by means of the approximate integral equations of
liquid state theory. A particular realization of this model has been examined in
relation to liquid germanium, for which very accurate neutron scattering data are
availablel12]; we shall show that indeed it gives a semi-quantitative description of
liquid germanium’s structure near melting, and shows the correct trends of struc-
tural features on varying temperature[w]. Equilibrium supercooled states of the
model were also investigated in this context, and their structure, as obtained by
integral equations techniques, was contrasted with the results of diffraction ex-
’ periments on amorphous germanium. The model presented here has also been
employed by Badirkhan et al.31 to study the freezing of liquid germanium in the
framework of the density functional theory of freezing. We shall present here some

empirical melting criteria for III - V semiconductors.

A considerable effort was devoted to test the accuracy of the integral equa-
tions techniques employed for the determination of the pair correlation functions
for liquid and supercooled states, by comparison with accurate Monte Carlo sim-
ulations. The HNC approximation is insufficient for a reliable determination of
the A-A correlations below the freezing temperature, and it was replaced by an
improved scheme in which a crossover approximation to the elementary diagrams
is employed. The short range part of these functions is described with an "uni-

versal” hard-sphere like behaviour, while the medium range part deviates from it.
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This scheme requires the computation of the first elementary diagrams from the
HNC pair correlation functions. The accuracy, the thermodynamic consistency
of this scheme and the self consistency in the determined pair correlation func-
tions were checked. This scheme is reliable in the region of model’s parameter
corresponding to the liquid phase, but become worse for the supercooled liquid,
in which strong association takes place. Namely for temperature just below the
melting point more effort is needed in determining the elementary diagrams, in
that one uses the improved pair correlation functions to compute again the elemen-
tary diagrams and the pair correlation functions themselves, until self consistency
is reached. Nomnetheless the obtained structure is not in full agreement with the
simulation and the situation is even worse for lower temperature were the self con-

sistency in the determination of the elementary diagrams could not be obtained.



Chapter 2

Bond Charge Models

With the advent of density functional theory the one-body charge density plays a
fundamental role in modern solid state physics and in chemistry. The energy and
other properties of a many-body system, like a crystalline solid or a molecule, in
its ground state can be determined in principle from the knowledge of its charge
density distribution. Apart from ab-initio determination of this quantity, there are
somé approximate semi-empirical theories based on modelling the charge density
of the system under study. Bond Charge Models (BCM)[?¢], which are based on
the partition of the valence charge density into two parts, around atoms and in
the bond region, have been employed in chemistry to study covalent bonds in
molecules (see ref.[32] for references) and in solid state physics for modelling the

lattice dynamics of semiconductors.

The electron density distribution in these materials is neither simply the su-
~ perposition of spherical charge densities centered on the atoms as in purely ionic
materials, nor almost uniformly distributed like in simple metals, but a certain
amount of charge is accumulated in the covalent bond between adjacent atoms.
This can be clearly seen from charge density plots of valence electrons for Ge and
for GaAs displayed in fig. 2.1, taken from band structure’s calculation of Walter
and Cohen®3]. Differential plots, in which the charge density of an ”isolated”
atom at each site is subtracted from the total charge density, clearly show that
the bond charge is due to chemical bonding and not to simple superposition of

34]

individual charge densities!**!. This pileup of charge in bonds is responsible for
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Figure 2.1

Total valence electron charge density (in units of the electronic charge, ¢) in the (15.0) plane,

for crystalline Germanium (upper figure) and Gallium Arsenide (lower figure). The insert
shows the direction of the plane in the unit cell. From Walter and Cohen, ref.[33].
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Figure 2.2

Contour plots of the valence elec tronic charge density p.(r) (left part) and difference charge

density Ape(r) between the self consistent density and the superposition of free atomic
densities (right part). (a) c-Si in the (110) plane. (1)-(i) evolution in 1-Si at time intervals
of 5.5 10~ 3 psec, from the Car-Parrinello simulation of Stich et al., ref.[13].
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the ”forbidden” reflections observed, for instance, in X-ray scattering experiments

on Sil33],

The bonding properties of liquid silicon near freezing were analyzed in ab-
initio Car-Parrinello simulations by Stich’®, who found evidence that covalent
bonding effects are present even in the melt. In figure 2.2, taken from ref.[15],
we show contour plots of the valence electronic charge density (left part) and
differential plots (as defined above, right part) which illustrate the evolution (b-
f) of the electronic denmsity for configurations in the liquid phase, taken in the
MD-simulation at interval of 5.5 1073 ps; the crystalline configuration is also
reproduced in (a) for reference. These plots clearly show the existence of transitory
covalent bonds and local tetrahedral order in 1-Si. Assigning a bond particle to each
maximum in the electronic density, the authors also analyzed the pair correlations
BP-BP and Si-BP. Persistence of transitory covalent bonding effects in the metallic
liquid phase of Ge was also suggested by Ashcroft!!®!, on the basis of qualitative

theoretical arguments.

In the first section of this chapter we review the application of BCM to the
lattice dynamics of semiconductors. The next step in modelling has been to give
bond charges the status of additional degrees of freedom, for the description of
dynamical properties. The further step, described in the second section, was to
extend the model to the liquid state for describing the process of ”localization” of
electron pairs in bonds. The last section deals about melting criteria for semicon-

ductors.

2.1 BCM IN THE LATTICE DYNAMICS OF SEMICON-
DUCTORS

11




Phillip’s idea at the basis of the BCM consists in parting the valence charge den-
sity of crystalline semiconductors in two contributions, a spherical charge density
located at the atomic sites, and a point like charge located at the bond, halfway
between nearest neighbour atoms in homopolar compounds. Figure 2.3 shows
the diamond-type structure of crystalline Germanium after decoration of covalent

bonds by bond particles.

As the band structure of Si and Ge is nearly-free-electron like, the bare ion-ion
forces are expected to be screened by the charge distribution of valence electrons,
and this screening is represented by the diagonal elements of the inverse dielectric
matrix e '(q + G,q+ G') . But because of the finite gap between valence and
conduction bands, the screening, unlike in metals, is incomplete giving rise to a
finite but quite high value for the static dielectric constant € (16 for Ge and 12
for Si), and as a result there remains a residual screened charge of value +4le|/e
at each ion. In order to preserve the charge neutrality, Phillips introduces charges
of magnitude —2|e|/€y at the bond sites. These bond charges just represent the
effect of the off diagonal elements of the inverse dielectric matrix?7%¢, The ex-
tension of this picture to III-V semiconductors, in which the bond has a partial
jonic character, is straightforward. The partial charge transfer from less to more
electronegative atom is reflected in a shift of the bond charge towards the latter,
as could be seen in fig. 2.1, and so the equilibrium position of the bond charge
in the model should be displaced in such a way to divide the bond length in the
proportion 5 : 3.

These concepts where exploited by Martinl27l in a study of the lattice dy-
namics of Silicon. He pointed out that the diagonal (metallic-like) part of the
screening, which gives rise to pair potentials between silicon atoms, is not able to

account for the stability of the open tetrahedral structure, the instability against
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shear modes being signalled by imaginary frequencies of TA modes. The introduc-
tion of bond charges constrained to remain at the midpoint of a bond even when
atoms are moving, provides a bond-bending force through their Coulomb repul-
sion, thus giving rise to an effective non central interaction between ions which
stabilizes the structure. Martin found an overall satisfactory agreement with the
experimental phonon dispersion curves, being able to reproduce at least partially
the characteristic flattening of TA modes along the [100] and [111] directions in
the Brlﬂoum zone, and the values of elastic constants. He also used a simple two
parameter model to account for the main features of the dispersion relations, al-
lowing Coulomb interactions between ion-ion, ion-BC and BC-BC and introducing
a short range force between nearest-neighbour ions only, to account for the devi-
ation from the Coulomb force due to the diagonal screening, which reaches the

asymptotic value for distances of the order of the atomic spacing.

These ideas where developed by Weber who proposed a simple empirical model
with few parameters, the Adiabatic Bond Charge Model, that reproduces in a sat-
- isfactory way describes the lattice dyﬁamics of group IV elements(28! (C- diamond,
Ge, i, a — Tin) and III-V semiconductors(?!, and has the same importance for
- the lattice dynamics of semiconductors as the shell model®7] for the lattice dy-
namics of ionic systems.

Weber removed the constraint that B. C. should follow the atomic motion instan-
taneously, allowing them to move adiabatically like the electronic shells in the shell
model, by providing an appropriate ion-B.C. force to fix their equilibrium position

at the midpoint of the bond. The four kind of interactions allowed in the model
are, as sketched in fig. 2.4:

— Coulomb forces between charges, with coupling parameter vVij = ZiZj /€.

— Short range forces between nearest-neighbours

13




(a) 1ion - ion central interaction
(b) ion - B. C. central interaction

() B. C.- B. C. non-central interaction

As previously stated, forces of type (a) account for the effects of diagonal
screening in semiconductors, while interactions of type (b) and (c) are characteris-
tic of the covalent bond, representing respectively the strength of the bond and the
interaction between neighbouring bonds, due to variation in the s-p hybridization
when the angle between bonds changes. There are only 4 parameters, related to
the couplings of the different interactions involved, that could be fitted matching
an equal number of relations. These are derived requiring that the observed fre-
quencies are reproduced at some high symmetry points in the Brillouin zone. In
the extension to III-V semiconductors 6 parameters are necessary, being present
now one interaction of type (b) and (c) for each type of ion (the charges of the
two ions are set equal, so still one parameter is necessary for Coulomb coupling).
The good agreement with the observed dispersion relations and elastic constants

obtained by the model is shown in fig. 2.5 for the case of Ge.

Weber examined also the importance of Coulomb interactions in his model,
considering the case in which they are dropped by setting v = 0, and found that
the overall agreement remains good, meaning that their effect is marginal. The
dispersion relations of this uncharged model are compared in fig. 2.6 to that of
the full model, already shown in fig. 2.5. He showed also that the characteristic
flattening of TA modes depends on the relative importance of the ion-bc and be-
bc coupling. When the former is weaker than the latter, atoms vibrate in a rigid
lattice of bond charges as almost decoupled oscillators with small force constant,
and only in the long wavelenght limit, when atoms and b.c. move in phase, the

rigidity is transferred also to the atomic motion. The variation of this ratio can
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Figure 2.3
Cubic cell of crystalline Germanium showing decoration of interatomic bonds by bond parti-
cles. In crystallography this decorated structureis known as the ideal B crystobalite structure

for Si0,.

Figure 2.4

Schematic presentation of the short ranged interactions used in the Adiabatic Bond Charge
Model by Weber. (a) ion-ion central interactions; (b) jon-BC (central); (¢) BC-BC (non
central). From Weber, ref.[28].
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thus account for the trend in TA mode flattening, which is more pronounced in
less covalent systems as o — T'in, decreases going from Ge to St and is not present
in diamond. In a recent study, Fleszar and Restal®® have shown that the BCM
gives also correct values for the real space force constants, and for the interplanar
force constants as compared with the results of first-principles calculations, and
that the presence of BC with their interactions accounts for an effective atom-atom

coupling up to the 13th neighbour.

Recently another work appeared in the literaturel®®] (inspired by Generalized
Valence Bond calculations on silicon clusters), in which ”electron pairs” in bonds
are viewed as auxiliary degrees of freedom, or classical effective particles, and used
in MD simulations of silicon clusters and surfaces. Like the model we are going
to present in the next section it employes only central pair interactions and was
tested with good results on the lattice dynamics of silicon and the prevision of
small clusters structure, but it fails to account for elastic constants or the correct
reconstruction of silicon surfaces, as the potentials employed favours too short
bond lenghts. Another model employing Bond Particles as auxiliary degrees of
freedom and only pair potentials has been analyzed by Ackland®"] to describe

bonding in Silicon clusters.

No attempt to use it for modelling also the disordered phases has been re-

ported by the authors of these papers.

It must be mentioned that Weber’s BCM has been also used in modelling
amorphous S7 and Ge in a study (see ref.[41]) in which a crystalline sample was
disordered by the introduction of a certain amount of defects, then relaxed in a

Monte Carlo simulation at room temperature, with energies determined according

to the BC Model.
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Figure 2.5
Phonon dispersion curves for Germanium. Solid lines show Weber’s results with the Adia-

batic Bond Charge Model compared with experimental values (points). From Weber, ref.[28].
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Phonon dispersion curves for Germanium as calculated from Weber’s BCM with short range
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The adiabatic bond charge model found recent application to the lattice dy-
namics of polar semiconductor superlattices[*z], of the polymorphic phases of 53
and Gel*¥], to the study of the surface phonons of the reconstructed S3(111) 2 x 1

and of the S2(111)+ H 1x1 surfaces!**].

2.2 BCM FOR SEMICONDUCTOR MELTS

As we have seen in the preceding section, the success of the BCM in reproducing
the lattice dynamics of semiconductors relies upon the simple physical representa-
tion that it gives for the forces due to the covalent bond, namely the introduction
of bond charges as centers of forces to account for the directional interactions be-
tween atoms involved in chemical bonding. We want to extend this simple picture
to treat interatomic forces in the melts of IV group and III - V semiconductors.
The underling physical assumption for this extension is that, even if these systems
show metal-like conductivity*®! in the molten state, the formation and breaking
of covalent bonds in the melt play still an important role, driving the system to-
wards density fluctuation of local tetrahedral order. It was shown by a recent
first-principle simulation on molten Silicon by the Car-Parrinello method!*?! that

this is indeed the case.

In the spirit of BCM we examined a primitive model for the melt!*"! regarding
it as a mixture of atoms and Bond Particles, in which the atom-atom interaction
is represented at the most elementary level by hard sphere repulsion, and an ap-
propriate ion-BP interaction provides a stable equilibrium position for the Bond
Particles, which are now free to leave the bond. This attractive interaction can
induce localization of bond particles between pair of atoms, constituting a "bond”

between them; the directionality in the interaction between atoms is accounted

18



for by the steric restriction that at most four BP can localize in tetrahedral con-
figuration around one atom. The main aim in examining the model as formulated
above is to follow the structural evolution of both the atomic and BP compo-
nent as the temperature is lowered from hot liquid states to strongly supercooled
states. Directionality of effective atom-atom interaction and angular interatomic
correlations are progressively built into the model as localization of BP sets in and
grows. In the liquid state this amounts in the presence of a fluctuating network of
bonds, with the occurrence of fluctuations that lead to the temporary formation
of tetrahedral open units of four atoms "bonded” t<.3 a central one. One can follow
the increasing correlation between such units on lowering the temperature, ending

eventually in the formation of a permanent network with stable bonds.

A Model for Liquid Germanium

We consider a two-component fluid of hard spheres, with component A (Ge
atoms) and B (Bond Particles) having number density ny and np = 2n 4 at tem-
perature T. The hard-sphere interactions are characterized by three distances of
closest approach (044, c4p and opB, say). In the problem at hand the relevant
values of the hard-sphere contact distances are asked to satisfy the approximate

relations

2
o414 ~204p <d oBB ~ \/; d (2.1)

where d represents the bond-length. These relations imply that, even though
the B component is essentially point-like compared with the A component, no
more than four B particles can be found in immediate contact with any A par-
ticle. This feature of the model (non-additivity in excluded volume effect) is to
be contrasted with the primitive model of a liquid alloy as a mixture of hard

spheres!*®#7] in which additivity of hard-spheres diameters is imposed by setting
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cap = (044 +0BB)/2.

We next introduce interactions which lead to strong relative ordering of the
two components in the liquid, considering two alternative cases. The first choice
(Localized Attraction Model- LAM) is similar in spirit to the Weber BCM and
introduces an attractive interaction between A and B particles in the form of a
narrow potential well centered at the distance d/2 from the centre of each A par-
ticle and uniformly spread over its surface (see fig. 2.7). The well is taken to have
a gaussian shape of half-width ¢ and depth V, with ¢ ~ d/2 — 045 is chosen
narrow so that there is a well defined bond- length d. We may explicitly note here
that the role played in Weber’s model by bond bending non-central forces between
Bond Particles is taken up in our model for the liquid; at appreciable values of
the A-B coupling strength, by the simple requirement made on the distances of
closest approach between them.

The well depth enters the model only in units of the thermal energy kg7, yielding a
coupling strength parameter V* = V/kgT which will be allowed to increase con-
tinuously from zero in order to follow the process of localization of bond particles.
For liquid germanium near freezing, estimating V from the valence-conduction

band gap of the crystal (V =~ 0.7¢V), we anticipate V* = 6.

The second alternative that we had explored®®! for the origin of relative
order of the components of the liquid is closer to Phillips’ original BCM. The
hard-spheres are assigned charges in amounts Z|e| and Zpe respectively, with
Zp=1/22,.

The A-B coupling strength is now measured by the ’plasma parameter’

I'=Z%e?/(akpT), the length a being related to the liquid density by

a= (47rn_4)‘1/3. Again this parameter will be allowed to increase continuously
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from zero. Phillips’ original estimate was |Zp| ~ 0.5 corresponding to two elec-
tronic charges screened by the dielectric constant of the material, while fits in
the BCM of Martin and Weber gives respectively values of 0.65 and 0.40. The
corresponding value for I' appropriate to Germanium near freezing is in the range

50-20.

A combination of short range attraction and Coulomb forces is also possible,
but relying on Weber’s analysis of his model, we think that also in the liquid near

freezing only short range forces are determinant for structural features.

The calculations reported in Chap. 4 refer fo two choices of the liquid density
taken from experiments. We expected the average bond-length to be different in
the melt from the value found in the solid, and this was indeed observed in the
ab-initio simulation(!3l. In our primitive model d is a parameter to be fixed,since
the narrow well considered by us doesn’t allow the bond length d to vary on tem-
perature, it is a parameter to be fixed; then we chose two different values for d one
for the liquid phase and one for the solid, taken from the Ge — Ge first- neighbour
distance in neutron scattering experiments.

For liquid Germanium at T' = 1253 K, which is above the freezing point at atmo-
spheric pressure (1210 K), one has ny = 0.046147° from rif. [45] and d = 2.634
from the neutron diffraction experiment of Gabathuler and Steebl*8]. In amor-
phous Germanium, on the other hand, the density depends on the film deposition
rate and on film thickness, being at most equal to 97% of the crystalline density
(see for instance ref. [49] ). We have considered such a value of density as our
second choice, in combination with the value d = 2.46.4 from the diffraction ex-
periment of Etherington et al.’®} on amorphous Germanium at room temperature.

This value of the bond-length is practically the same as in crystalline germanium.

Finally the various choices that we shall illustrate for the hard spheres contact

21



distances and the well half-width, are collected for convenience in table 2.1. We

shall comment later on these specific choices as the opportunity arises.

TABLE 2.1 Sets of model parameters used in the calculations

nA(A—3) d (A) 0'_4_4/d 0'_4B/d U'BB/d O’/d

Set 1 0.0461 2.63 0.94 0.475 0.80 0.050
Set 2 0.0429 2.46 0.95 0.475 0.76 0.050
Set 3 0.0429 2.46 0.98 0.475 0.81 0.050
Set 4 0.0429 2.46 0.98 0.500 0.81 —

Extension to III - V Semiconductors

Let us consider here as an example a straightforward extension of the LAM
model to the description of III-V semiconductors. We shall adopt now a three
component fluid composed by two kind of atoms, Al and A2, and one kind bond
particles B, so that six close contact distances g, have to be chosen. In the
case of Germanium only one of these distances, namely .44, is an independent
parameter, and it has been slightly adjusted in our calculations to give agreement
with the height of the first peak in S(k) in diffraction experiments, while opp
and 0_4‘3 were fixed by the relation (2.1). In 111I-V compounds the BP divides the
bond length d in two parts di1, dio with dy1/da2 = 3/5, is the ratio between the
number of valence electron in each atom. It should be noticed that the equilibrium
position of BP is given by the location of the minimum in the A-B well, while o458

essentially represents the repulsive part of the A-B potential. The distances gBa,
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gaussian well can be used, centered at d 4; for Al atoms and at d 45 for A2 atoms,

with the depth fixed again from the value of the gap.

As there is evidence that a small amount of wrong-bonds between like elements
may occur both in the liquid and amorphdus statel18] i might be necessary to
introduce two other different wells of suitable depth to account for A1-A1 and A2-
A2 bonding, and their influence on the structure might systematically be studied.
This kind of bonding should certainly be accounted for in studies of §i — Ge
systems, or other mixtures of IV group elements. Maybe the case that also for
such systems the equilibrium position for BP in unlike bonds should be shifted
towards the most electronegative atom.

Another point that can be explored by this model is whether the partial ionicity
of these compounds is completely accounted for in this scheme by the shift in the
equilibrium position of the BP in an uncharged system, or it should be necessary
to place ionic charges of different sign on atoms of different kind. One can thus

study to what extent this choice influences the structural properties.

2.3 MELTING CRITERIA

The liquid structure for the models considered here shows, as we shall see in
Chap. 4, the same qualitative structure of liquid Ge when values of the coupling
strength parameters assume approximatively values of V* ~ 7.5 for the LAM and
I' >~ 24 in the other BCM. We notice that these values are close to those anticipated
in Sec. 2.1 from the observed band-gap E, in the crystal and from the estimated
value of —2 for the bare bond charge, in the Phillip’s scheme, that leads to a
coupling 4/¢; between them.
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We now ask whether there is any generality to these results. Namely, we ask
whether for semiconductors which melts with a break-up of chemical bonding, one

can formulate empirical melting criteria in the forms

E
kBlg"m ~ constant (2.3)
or
4 2
Eﬁﬁ; ~ constant (2.4)

at the melting temperature T},. First we looked for linear correlations between
T and Eg or T, and nt/3 /€0 where n is the number of atoms per unit volume.

Figure 2.8 shows that there is an approximate linear relation in both cases.
Data for T,,, E;, € used in the figures were taken from Landolt-Bornstein
tablesl®!. The constants of proportionality are approximately equal to 10 for
(2.3) and 20 for (2.4), and are essentially in agreement with the values obtained
in our model. We note also that criteria (2.4) is well satisfied, being almost all
the values on the same line, and this line goes through the origin. In the other
case the values are more scattered around a line, and the value for E; = 0 lays at
T, ~ T40K; being the value 740/kpT of order unity at the melting temperature
" involved, we can still say that the criteria (2.3) is approximatively satisfied.

The melting criteria involving the bandgap was not unexpected, and a melting
criterion relating the melting temperature to the band gap was already proposed
by Godefroy and Aigrain(®®l. Recently a similar criterion was proposed again by
Aniyal’®l, on the basis of a tight binding analysis of cohesive energies®”, and
extended to a wide range of binary compounds from insulators, including alkali
halides and alkaline-earth halides to semiconductors and ferroelectrics. The melt-
ing criterion based on the bond charge concept is less obvious and its empirical

verification give additional support to the qualitative usefulness of Phillip’s ideas.
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A

The freezing properties of the BCM presented in sect 2.2 have been studied

in detail by means of the density functional theory of freezing for binary mixtures

by Bahdirkhan et al.**, who found that this model liquid freezes indeed in a open

tetrahedral structure.

Figure 2.8

Correlation of the melting temperature T,, of elemental semiconductors and III-V com-
pounds with the valence conduction band-gap E, (left) and with the quantity n1/3/eo (right),

where n is the number of atoms per unit volume and eq the static dielectric constant of the
crystal.
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Chapter 3

Methods for the Study of
the Model

We present here a summary of concepts from the theory of liquids, including
the definitions of the relevant structural quantities (i.e. pair correlation functions
and structure factors), and a description of the statistical mechanical methods we
employed in the study of our model, namely integral equations and Monte Carlo
simulations. In order to make the presentation of results in the following chapters
as simple as possible, we include here for later reference all the technical details
about numerical calculations. A general reference for this chapter is the book
by Hansen and McDonald[®®, for liquid state theory, and the book of Allen and
Tildesley(5°! for Monte Carlo Simulations.

3.1 DEFINITIONS

Notations for the Fourier Transforms

We shall adopt the following notation to indicate the 3D-Fourier transform for a

function of a vector

f0) = [ ) i ar (3.1a)

If f depends only on the modulus of r, one can write the integral in polar coordi-
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nates as

f(k):/:wdqﬁ/:c drf_lldcoserzf(r) gthreost

) rf(r)sin kr dr
k Jy

(3.18)

In the same way we can express the inverse fourier transform when f depends only

on the modulus of k

f(r) = (_271? / Flk) e kT dk = 27:% /U "k F(k) sin kor d (3.2)

Number Density

In what follows we shall always denote with n the number density of an homo-
geneous system, that is the number of atoms per unit volume measured in A73.
On the contrary the mass density, i.e. mass per unit volume will be denoted with
p. Dealing with m-component systems, n is the total number density, while n,
(e =1,2,...,m) are the partial number densities, and z, = n,/n are the molar

fractions or relative concentrations for the component of type a.

Pair Correlation Functions and Structure Factors

At present the only structural quantities directly measurable by experiment for
disordered homogeneous systems like a liquid, a glass or an amorphous solid are
the static pair correlation function (or radial distribution function) g(r) and the
static structure factor S(k). They are related in the former system to the average
(time average) equilibrium local fluctuations of density, and to the correlations
between the positions of particles, averaged over the sample, in the latter. These
functions give some information about the spatial correlations of pairs of particles

in the range of few (from 0 to 10-12) Angstrom.
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In a X-ray scattering experiment, and in a neutron scattering experiment
under certain conditions, the coherent scattered intensity at a given angle is pro-
portional to S(k), k being the transferred momentum in the scattering process. In
Statistical Mechanics the structure factor describes the correlation between density
fluctuations of wavelenght A = %E in two different points at equal time

S(k) = — <§;iez k- (r; —rj)>
N i=1 j=1
where the brackets indicate a statistical average over a canonical ensemble of N
particles.

The pair correlation function for an homogeneous system can be defined as
the probability distribution function for finding any particle around any other par-
ticle at a distance r. It describes at a pair level the average local arrangement of
atoms in the system. It’s useful to introduce another function, called also pair
correlation function or total correlation function h(r) = g(r) — 1, describing the
spatial deviation from the uniform mean density.

The link between the pair correlation function and the density-density autocorre-
lation function at equal time G(r,t = 0), describing spatial density fluctuations is
given by

N N
G(r,t) = _‘% <Z >y /5[r' +r—r;(t)] 6[r —r;(0)] dr'>

i=1 j=1

(3.3)
G(r,0) = ng(r) + §(r)
The structure factor is related to the pair correlation function by a fourier trans-

form, giving for k = 0 the relation
S(k) =1+ nh(k) (3.4)

Dealing with a multi-component system we need more than one pair distribution

function to describe its structure; for a two component fluid with particles of type
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3.2 INTEGRAL EQUATIONS

Integral equation theories of liquids provide a simple way for determining the
structure, at the level of pair correlations, and the thermodynamic properties
for the equilibrium states of fluids. In the simplest version we shall sketch here,
the theory apply to model fluids composed by ”simple” particles, regarded as
isotropic, structureless objects (i.e. ”atomic” or "jonic” liquids), interacting with
pair potentials only. Generalizations also exists to deal with molecular fluids/®®
and fluids with association[®*! or with polymers[sul, nonspherical objectsl®l, or to
obtain the three body correlations functions(®2:%3; however in general they are
more demanding from the computational point of view.

For studying our model we are interested in the case of a two component
system of particles interacting with pair potentials only, that is a system whose
potential energy V is factorizable as a sum of pair interaction vag(rij).

We have two sets of equations connecting the unknown functions g, 3 and cqap with
the pair interactions vag.

— one is the set of integral equations (3.10)relating cqp and hag, which general-
izes the 0.Z. equation cog and hag

— the other is an exact relation, called closure relation

gop(r) =€~ ®os(r) + hag(r) — cap(r) — Bags(r) (3.12)

where ®,5(7) = Buaa(r) is the pair potential in thermal units. This relation has
originally been derived by diagrammatic methods(®*! (see also ref.[65]), from the
‘formal series expansions of g and c in powers of the density, but it can be derived
also by means of a density functional formalism(66167{68) | The functions B,g(r) are
expressed in the diagrammatic derivation as the sum of the so called "elementary

diagrams” or "bridge diagrams”, which have a precise topological characterization
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(see ref.[58]); on the other hand also in the density functional derivation the bribdge

functions can be expressed by means of a series

Bas(r) = D BL3(r) (3.13)

For a one-component system, the generic term in this sum takes the expression

nk

B (r) = B (r) = -2

/c(k"'l)(r,r1...rk)h(r1)...h(rk) dry..dry  (3.14)

the first term of the series being

2
BY(r) = —%—— /c(?’)(r,rl,rz)h(rl)h(rg) dridrs (3.15)

We shall deal extensively with the bridge functions in a later section. The two sets
of equations (3.10) and (3.12) constitute a closed set of three coupled nonlinear
integral equations, usually expressed in the unknown functions v43(r) = hag(r) —
cap(r), that can be solved from the knowledge of the potential ®,4(r), provided
that we have chosen a suitable analytical expression or an approximation for the
bridge functions. The advantage in casting the equations in terms of v,4(r) is that
these functions are smooth even for discontinuous potentials, like the hard-sphere
one, while both gos(r) and cog(r) are discontinuous at the points of discontinuity
in the potential (see ref.[58]).

Different kinds of approximate integral equations can be obtained assigning
to Bag(r) a specific functional form in terms of y,4(r). We present here a list
of approximate closure relations that are relevant for our work, classifying them
from the functional form that they show for the bridge functions.

HNC EQUATIONS - the simplest choice for the bridge functions, i.e.
neglecting completely the contribution of the elementary diagrams, by setting

B.g(r) = 0, gives rise to the Hyper-Netted-Chains equations
gop(r) =€ Dap(r) + hap(r) — cap(r) (3.16)
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It is superior to other closures in the treatment of charged systems, where it is
accurate for a wide range of parameters, as this approximation maintains some
sum rules, involving correlation functions, that ensure the overall charge neutral-
ity of the system(®® (for extensive refs. on this closure see the review article of
Ichimarul®®).

MSA APPROXIMATION - The Mean Spherical Approximation deals

with system of hard-spheres plus a potential tail and corresponds to the choice

[ —In(has(r) + 1)+ has(r) if 7> cas(r)
Bag(r) = { +0oo otherwise. (3.17a)
that substituted in (3.12) gives a more familiar relation
gas(r) =0 if T <oap(r);
{ Do5(r) = —cap(r) otherwise. (3.176)

that is motivated on the physical ground by the requirement of excluded volume
effect and correct asymptotic behaviour of co5(r). It found extensive applications
asin many cases it can be solved analytically. It can be generalized to soft repulsive
potentials plus an attractive part (Soft MSA).

PY EQUATIONS - The Percus-Yevick closure (PY) corresponds to the

choice
Bap(r) = Yap(r) — In[l + vas(r)] (3.18a)

that when substituted into eq. (3.12) gives
9ap(r) = [1 + Ya(r)e ~ F3(7) (3.180)
or alternatively
_ '@afi(r)
cap(r) = gap(r) {1 —e @ . (3.18¢)

It was derived by diagrammatic methods by neglectiﬁg a particular class of bridge

diagrams, and resumming the remainder. It is superior to other closures in the case
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of hard spheres, for which it reduces to the MSA, and it is analytically solvable for
one-component hard-sphere and two component additive hard-spheres systems. As
the g.p(r) are not positive definite in this approximation, they can show negative
values at the position of deep minima for attractive potentials at strong coupling

strength.

As a consequence of the approximations made on the bridge functions, one
obtains an approximate theory for the structure that can be still accurate over a
wide range of parameters for a certain class of systems, but one as to check the
limits of validity of the chosen approximations contrasting its predictions with "ex-
act” results provided by computer simulations. The exploration of the accuracy
of various approximate closures in the case of the LAM is reported in the fol-
lowing chapter. Another consequence of the approximations is a certain amount
of thermodynamic inconsistency, due to the violation of some sum rules between
correlation functions. This means that some thermodynamic quantities can have
different values if one computes them through different routes. The amount of
thermodynamic consistency can be used to judge the goodness of the approxima-

tion.

Empirically mixed Integral Equations

The observation that HNC solution and PY solution bracket the exact solution
for simple liquids, as it emerges from simulations, gave rise to the Roger-Young

mixed closurel™]

, that interpolates between the PY closure at short distances and
the HNC one at long range. As a statement on the bridge functions, it can be

expressed as

1+

Bap(r) = Yap(r) —In (3.19a)

fa,ﬁ’(r)

efaﬁ(r).)'aﬁ(r) — 1}
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that gives the closure relation

(3.195)

3 (") efaﬂ(r)"l'aﬁ(r) — 1
Gap(r) = eFan () |1 4
a(r) o)

where f represents a mixing function of the form fas(r) =1—e "/ and €np are
parameters that can be fixed by the requirement of Thermodynamic Counsistency
(TC) of the theory. In the same spirit another mixed closure have been proposed
by Hansen and Zerah ["1; it interpolates between the HNC closure at long range,
and the Soft-MSA approximation (a generalization of the MSA closure) at short
range. It is expressed by

efaa (N(ras(N=20)(r) _

Bag(r) = Yap(r) = 0g5(r) —In |1+ >0 (3.200)

Fan (1) (Yas(r) =22 (1))
’@Lg(” . gfan ) {(Vas(r 2(r) _ 4

faﬂ(r)

gap(r) = (3.206)

where @Sg(r) and @Ef;(r) are respectively the repulsive and the attractive parts

of the potential, defined by

(1) _ q’af)(r) - q’aﬁ("'min) Zf T < Tmin;
®aplr) = { 0 otherwise.
(2) i @uﬂ("'min) Zf T < Tmin;
(I)“ﬂ(r) - { ®,5(r) otherwise.
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3.3 BRIDGE FUNCTIONS AND MODIFIED-HNC or
IMPROVED-HNC EQUATIONS

RHNC and MHNC Equations

Rosenfeld and Ashcroft!™! and Lado (™! proposed to solve the closure relation
(3.12) with the Bridge functions of a reference hard-sphere system with a packing
ratio optimized to give Thermodynamic Consistency. This approach is based on
the assumption that the bridge functions have a universal behaviour at short
range, for any potential, so that they can adequately be represented by the bridge
functions of a hard-sphere reference system of a suitable density, evaluated in the
PY approximation. Two equivalent schemes were devised to enforce TC in the
solution: one minimizes an expression for the free energy of the system (RHNC
or Reference-HNC), and the other requires the equality of the compressibility
computed from the equation of state (virial route) with that computed from the

fluctuation route (Modified-HNC).

Improved;HNC Equations and Bridge Functions
It was realized by Ichimaru that non-universal features at medium range in the
bridge functions could be important to describe the actual structure in some sys-
tems, i.e for the OCP at strong coupling. He obtained a formulal®®! that relates the
first term in the expansion (3.13) with the h,g(r). Substituting in the expression

(3.15) for BM™) the following approximation for the ¢(®)
¢ (r1,r2,r3) = h(|rs = r2|)h(|rz — ra|)h(|rs — rs)) (3.21)

one obtains

n?

B(*)(r) = —— [ h(r1)h(r2)h(|r1 — r2|)h(Jry — r|)h(|rz — r|) dry dro  (3.22)
2
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The corresponding expression for a two component system is

2
n .
BU)(r) = -5 > zws EX5(r) (3.23)

B14(0) = [ hastrsVhas(raYhoa(fr = walas(les = eDhan(lrs = 1) draces
(3.23a)
The integral that we denoted with E;{%(T) can be represented graphically by the

following "elementary” diagram.

Y
A line in this diagram gives the correlation between two particles as represented by
the total pair correlation function ha 4(r), and black vertices represent variables to
be integrated, namely rs, T4, while white vertices are the variables not integrated
and r = |rz — r1| is the distance 7 where the bridge function is evaluated. Ichi-
maru and Iyétomi[T*] solved the closure relation using bridge functions determined
through these relations, where the total correlation function h(r) from the HNC
solution was used. They rescaled the computed function at low rin order to repro-
duce the 'universal’ repulsive behaviour at short distances and obtained a certain
degree of thermodynamic consistency. They named this approach improved-HNC,
as it starts from the knowledge of the HNC solution to evaluate the approximate

bridge function used to obtain the improved solution.
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Crossover Approximation for the Bridge Functions

An approximation that is thermodynamic consistent and that retains both the
universal behaviour of the bridge function at low r and the structural information
present in the B*) | was employed by Pastore Ballone and Tosi in an extensive work
on the structure and the thermodynamics of molten salts{™l. Its is based on the
idea of interpolating between the short range behaviour of the HS bridge functions,
and the values given by B(*) at intermediate distances. A similar idea has been
used in a work by Ashcroft, Foiles and Reattol™!, who interpolated between the
"universal’ behaviour at short range, and the expression given by the MSA at long
range.

The crossover between the Hard-spheres bridge functions and B((jﬂ) employed

by us has the following form

Bag(r) = [1 — fas(r)] B (r) + fap(r)BES (r) (3.24)

where the fop(r) is the mixing function that specify the region in which one
observes the crossing from the behaviour of one function to that of the other. We

chose here for our work the same form chosen in ref.[75] that is

fap(r) = exp—(r/&ap)” (3.25)

where £, are the parameters that determine the crossover region and have been
fixed from the peaks’ positions in the HNC result for g,s(r). The exponent n has
been fixed at a value 2, except when the elementary diagram B(f)\(r) presented
a deep and narrow throat of negative value just above the distance o4y, where
a value of 12 has been used in fix(r) in order to make narrower the region of
crossover. The thermodynami‘c consistency is to be enforced by the appropriate
choice of the parameters of the reference HS-system. We used as HS bridge func-

tions those determined by a numerical solution of the PY closure for a reference
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system of hard spheres with the same ratio of diameters d,o/d12 as the ratio in
the the peaks’ positions of gap(r) in the HNC solution. In this way we have only
one parameter dis to vary to look for Thermodynamic Consistency. We didn’t
use as reference the analytical bridge functions of a one component system at a
suitable density (as in ref.[75]) because the B.ix determined in such a way is very
different from that obtained from the numerical solution of the PY equations for
the full mixture.

The inverse isothermal compressibility 1/pkpTxT = (ng) was calculated

T
from the fluctuation route as

(Qg;L =t ”Za: ;%‘”ﬂaaﬁ(’“ =0) (3.26)

while the inverse compressibility from the virial route was determined by numerical
differentiation of the virial equation of state @;P—, after repeating the calculation at
a slightly higher value of density (we used p1/py = 1.002).

88P\ _ AP
SN 20

In finding the solution at higher density we also increased the density of the refer-
~ ence system used for the bridge functions, and also B™) was scaled according to
the density factor that appears in front of the integral (3.23).

The scheme we employed, that we call TC-IHNC (Thermodynamic Consistent
Improved HNC), consist in solving the HNC approximation, calculating the bridge
function Bffﬁ) from formula (3.23) and use in equation (3.12) the resulting crossover
with the hard sphere part obtained from (3.24) to find a new solution.

We also explored the self consistency of the solution obtained in this scheme;
that is after having obtained a solution and pair correlation function from the

TC-IHNC scheme described above, we computed the next approximation for the
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elementary diagrams ng and using them we iterate again the TC-IHNC scheme
computing the next approximation for pair correlation functions and bridge func-
tions. We found that one iteration is enough at low couplings, but around the
freezing coupling strength two iteration are needed. In the supercooled region
then more and more iteration are needed to reach the self-consistency. For the

strongly supercooled region no convergence in this procedure is found.

3.4 NUMERICAL METHODS

Solution of the Integral Equations

The integral equations for the HNC and the TC-IHNC were solved using the
algorithm of Gillanl™™. It consists of a mixed iterative Newton-Rapson Method
that is rather stable and accurate, and doesn’t require as many iterations as a
pure iterative methods. It projects the unknown function onto a small basis, to
represent its coarse shape, giving rise to a system of nonlinear coupled algebraic
equations that can be solved by a Newton-Rapson method. The fine variation

of the function is then determined iterating the coarse solution in the integral

equations. The cycle is repeated until convergence in the solution is attained.

We used in the calculations 512 points for doing the fourier transforms in-
volved in the algorithm, with a mesh in real space of Ar = 0.02a, and we employed
9 basis functions to project the y,g(r) for obtaining the coarse part. A particular
care has to be taken in the treatment of the hard core discontinuity of 9ap(T),
which is determined by both the value of the potential and the bridge function at

contact.

Numerical Evaluation of the Bridge Functions
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The integrals expressed by equation (3.23a) have been computed reducing them
to double integrals by means of Legendre polinomial expansions”s'”]. Choosing
r as the polar axis and denoting the angular coordinates of r; and rz by (61,01)

and (2, p2) one can expand

hog(jrs — T = 2 H 4(r,1)Pi(cos 1), (3.28)
l
with
H’IY,B(T’”) =(l+4) [_1 hys(lr: — r|)Pi(cos 1) d(cos 61). (3.29)

A similar expression holds also for hsp(|r2 — r|) and for
h'ré(‘m —ril) = z Hia(rlarz)Pl(COS 612), (3.30)
1

where ;o denotes the angle between T1 and ro. Substitution of these expansions
in the integrals (3.23a), expressed in polar coordinates (r1,01,%1) and (r2,02,92),
and use of the addition theorem of spherical harmonics and of the orthogonality

relation to perform the angular integrations leads to the result

E;?i('f‘) ‘—Z/ T%dﬁ/ rdrs ha'v(rl)haé(rz)
0 v

4 2
zl:<2l+1> H 5(ryr ) Hig(ryr2) Hyg(ra,72): (3.31)

The integration required in formula (3.29) has been performed by a discrete trans-
form, introduced by Attard[7®8%), based on a Gauss-Legendre quadrature for-
mula, which preserves the orthogonality of Legendre polynomials. Denoting with
F(jry —r|) the function to expand, with @ the cosine of the angle between r and
ry, and with F I(r,r1) the expansion coefficients, one has the N-point discrete

transform corresponding to (3.28) and (3.29)

N-1

Flrr,3i) = D Fl(r,m1)Pi(z:) (3.32)
=0
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.
Flryry) = (I+ 1) Z Flryr1, ) Pi(z:) w; (3.33)

where the nodes z; are the zeros of Py(z) and w; are weights associated with the

Gauss-Legendre quadraturel8t,

Once N was fixed from the numerical accuracy
required, we found that truncating the sum in (3.31) at [, = 18 was sufficient
for our purposes. As we are dealing with discontinuous functions discretized on a
mesh, and we need to locate exactly the hard core discontinuity without having
an indetermination of the order of the mesh size, we found necessary to transform
by (3.29) (3.33) a continuous function, obtained from h,p(r) by eliminating the
discontinuity at contact, then subtracting analitically the transform of the added
term to recover the transform of the original function. This procedure is also
required because integration formulae give their best performances with continuous

functions and the convergence with [ in (3.31) is faster. We followed a procedure

similar to that adopted by Attard["®:®"), We transformed

hap(r) = hap(r) = gap(oas) fas(r), (3.34)

Here f denotes the Mayer function

_ -1 r<ou3
faﬂ(r) - { 0 otherwise

whose discrete transform is, when r = |r; — 1]
Fl(rirj) = (L4 4) [Paa(Xy) — XijPi(X35)]

for I > 1 and F'(r;,7;) = 0.5 (X;; — 1), where we denoted the cosine of the angle

of contact with

2 2 2
'I‘i +T] —O-a[)‘
o Iri—ril <o
Xij = TiTj .
1 |I‘i——I‘j| Zo'aﬁ

-1 i +71; < 0oap
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From 40 to 80 points N has been used in performing the transform (3.33), together
with a linear interpolation to evaluate the function h,g(r) outside the tabulated
points; the double integral in (3.31) was carried out by a trapezoidal rule using

from 101 to 141 points, with a cutoff at half of the tabulation interval.

These numerical parameters were optimized in some test cases, contrasting the
results for the computed elementary diagrams with Monte Carlo evaluation of the
integrals (3.23a), expressed in polar coordinates, by means of the code Vegas(®2l,
Tests made using a trapezoidal integration to evaluate also the integrals in (3.29)
showed that for the functions considered by us, for the same order | and number
of points in the integrations, our method was definitively more accurate. The code
to compute the elementary diagrams is easily vectorizable and parallelizable. A
tipical computation of a set of elementary diagrams B ((jﬁ) required 10 min. of Cpu

time on a Cray Y-MP/4 using all four processors.

3.5 MONTE CARLO SIMULATION

The scope of our Monte Carlo simulation is to provide us with an ” exact” result
for the structural properties of the model (within the statistical error), in order
to assess the accuracy of what is obtained from approximate integral equations
theory. A preliminary set of simulations, reported by us in ref.[83], was repeated
here to a greater accuracy; moreover we measured directly from the generated
configurations to what extent the model shows the expected angular correlations.
We made canonical ensemble Monte Carlo simulations of the LAM, employing the
standard Metropolis algorithm(®°!, with 64 atoms and 128 bond particles inside

a cubic simulation box of side 11.42635 A, with periodic boundary conditions,

and parameters of the model taken as in set 2 of table 2.1. We started with an
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initial configuration corresponding to a diamond-type lattice for atoms, decorated
with bond. particles as shown in figure 2.3., and performed simulations at different
values of the coupling parameter V*, namely 0, 1, 3, 5, 6, obtaining a system
in the liquid state. The system was equilibrated from the initial configuration
for 10000 MCS (Monte Carlo steps, or attempted move per particles is the unit
of ” simulation time” in MC simulations). During the simulation the acceptance
ratio was 1/3 and we monitored both the istantaneous values and the accumulated
values (running averages) for the internal energy per particle, the virial pressure
and modulus and phase of the order parameter p{c} for atoms and bond particles,
choosing the reciprocal lattice vectors G that belong to the family of lattice planes
{111}corresponding to the first Bragg reflection for atoms in a diamod-type lattice.

Precisely the average value of the order parameter was measured according to

Ny
() _ 1 —i G-r2
Pig) = <Numc; Z 2 e > (3.34)

=1 GE{G}

where r{ is the position of the particle of kind « referred to the center of mass
for the particles of the same kind in that configuration, mg is the multiplicity
of the star {G}. The value of this order parameter fluctuates around zero with
a variance 1/N, in the liquid state, while for a solid it assumes a non zero real
value. We also monitored the average position of particles during the simulation.
As stated above, the system is in the liquid state up to a value of V* = 6, as
confirmed by the order parameter and from the observation that particles freely
move in the simulation box. At V* = 7.5 a sample equilibrated for a long time
starting from the initial crystal remains in the crystalline state. From this ob-
servation we infer that, for the parameters chosen in the simulation, the melting
coupling strenght is comprised between 6 and 7.5. In order to prepare the sys-

tem in a disordered state, for couplings greater than 6, we quenched the system

45




to the desired value (7.5, 10 and 14) starting from a configuration obtained at
V* — 5 and annealed it for equilibration for about 40000 MCs, monitoring also
the pair correlation functions every 10000 MCs, looking for systematic drifts in
the structure. After the annealing we made longer runs to collect statistics; we
refer to these samples as "amorphous”, as we didn’t observe crystallization in any
sample, neither during the annealing, nor during data collection. The particles
are seen to move around fixed equilibrium positions, as results from the measure
of the Lindemann parameter, showing that we are sampling a restricted portion of
configuration space that corresponds to a disordered solid. We measured also the
correlation time between subsequent configurations, which is needed to determine
precisely the statistical error in the simulation from the knowledge of the number
of statistically independent configurations. The method proposed by Rahman and
Jacuccil®¥ was applied to examine the istantaneous values of the internal energy
at the first 100000 configurations (one for each MCS) after the equilibration or the

annealing, and the values of 7o 50O obtained are listed in table 3.1.

TABLE 3.1 Correlation time 7¢orr

v Teorr (MCS)
5 500

6 880

7.5 2700

10 4800

14 >5000

From the table we see that the statistics collected in the precedent preeliminary

simulation ~ 8000 MCS was insufficient at large couplings.
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We performed simulations of about 500000 MCS at the values of V* indi-
cated in the table 3.1. Pair correlation functions of accuracy better than 1% were
obtained. We checked the statistical errors in the pair correlation functions from
their variance, computed considering the g(r) accumulated from scratch every
10000 MCS. We did also simulations at V* = 22, but now the system is sticky,
and the Markov-chain sampling slow and with a long autocorrelation, thus the
pair correlation function obtained have a mlllch larger error.

A smarter sampling algorithm than the simple one employed here is required
at high couplings, in order to sample efficently the phase space. A method that
allows easily "bond forming and breaking” and changes the numbers of bonds
efficently is needed. Some kind of umbrella sampling, with a large probability

distribution might work.
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Chapter 4

Results

4.1 LIQUID GERMANIUM

Localization of Bond Particles and Structural Trends

First we examine here the behaviour of the LAM model at constant density on
varying the temperature, i.e. on increasing the coupling strength V*, as it results
from the analysis of structural trends in the partial pair correlation functions and
structure factors. Our major aim in this presentation is to follow the process -
of localization of bond particles in bonds and to show that the degree of BP
localization induce increasing directionality in the effective atom-atom interaction,
leading to peculiar features in the structure. The calculations reported here were
made solving the model in the liquid state by means of the HNC-integral equations,
at a density and values of parameters, reported in table 2.1 as set 1, appropriate
to liquid germanium.

On increasing the coupling strength, the atomic component A manifests a
strong attraction to the BP component through the potential well present on its
surface (see fig. 2.7), and one can gauge the degree of BP localization in this well
from the values assumed by the main minimum of the pair correlation function
gip(Ras) (see fig. 4.1). A main sharp minimum with value zero in this function,

together with a first narrow and quite high peak signals the creation of a well
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defined first coordination shell of BP around each A atom, and a slow exchange
of particles from this shell with the rest of the fluid. In this sense we can say
that these BP are temporary localized in the potential well at the surface of the
A particle, the coordination number N,3(R) being the number of BP trapped in
it. They thus provide a preferred site of attraction to another A particle, that
can form a bond by sharing the bond particle. This is what we mean saying that
the model shows association. Directionality in the resultant A-A interaction is

enforced when four BP are localized around that atom.

Figure 4.2 shows the partial pair distribution functions and the partial struc-
ture factors for coupling strength V* equal to zero. These results can be compared
with liquid structure in additive models for mixtures of hard spheres with very dif-

ferent diameters, for both neutral fluids(*®] and charged fluids(®).

In both these cases, some degree of relative order of the two components is
marked by a valley in Sp(k) in approximate correspondence with the main peak
in S4.4(k), while Spp(k)(the structure factor of the small-sized component) is
essentially featureless. As is evident from fig. 4.2, our choice of ogp by a tetrahe-
dron rule (see formula 2.1) builds sharp structure in Sgp(k)and in gBB(r), while
it preserves and somewhat strengthens the relative order of the two components.

Localization of BP is nevertheless absent.

Figure 4.1 illustrate, starting from the A-B and A-A pair distribution function
at V* = 0, how localization of bond particles proceeds on increasing V*, and shows
the structural changes that it induces in the atomic component, down to strongly
supercooled (V* > 7.5) liquid states.

Bond particle localization starts to appear at (V* = 2) and grows rapidly, with the
exchange of bond particles between localized states and free states being rapidly

suppressed and the atom-bond coordination number increasing towards 4. This is
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Fig. 4.1 — Schematic representation of bond particle localization and induced atomic

structure changes with increasing coupling strenght V'™ in the LAM. The top drawings
show the atom-bond (left) and atom-atom (right) pair distribution functions at zero cou-
pling strenght. The evolution of special features of these functions, as defined in the top
drawings, is shown at constant liquid density in the bottom drawings. The dashed por-
tion in the curve for IV 4 4 shows the effect of reducing the density from that of freezing

Germanium to that of compacted amorphous Germanium. The value V* = Eg/kBTm
is marked on the bottom axes.

L5

Fig. 4.2 —  Partial structure factors Saﬁ(k) (left) and pair distribution functions
gaﬁ(r) (right) for the LAM (set 1) at V* =0 in the HNC approximation. Full curves,
A-A correlations; dotted curves, A-B correlations; broken curves, B-B correlations. Values
of the peaks in go3(T) are: 3.65 (A-A); 3.04 (A-B); 6.02 (B-B).
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signalled at (V* = 2) by the rapid drop in R4p and N.4pB.

From V* = 2 to V* ~ 5 the potential well acts mainly as an ordering inter-
action between the components, as only g.p is affected, showing the formation of
well defined shells of BP around A atoms by a rapid drop in the value attained at
its majn minimum. Thus we can say, in a pictorial way, that in this range of cou-
plings there is a certain amount of association of A atoms, although exchange of
bond particles with the surrounding liquid is still consistent (948 ~ 0.8 — 0.3) and
doesn’t allow the formation of bonds with a lifetime longer than the characteristic

time needed for diffusion.

The next rapid change in structural behaviour occurs for V* in the range 6-7.
Here the localization of BP becomes quite strong (gap = 0.1), as its also shown
by the appearance in gap of a quite sharp and high first peak, with an height of
~ 10 (to be compared with the value of 3 at V* = 0) right at the position of the
well minimum. This means that rather stable (with respect to the characteristic
time of diffusion) bonds are forming between A atoms, the number of bonds being
roughly proportional to Nug(R), with an average of 3 bonds for each atom. The
fact of having three BP localized on average means that there is a certain amount
of atoms which have got four BP, and can form a number of bonds from 2 to 4.
At this point a strong directionality in thg Atom-Atom interaction is present for
those atoms that are fourfold coordinated to BP. This is apparent in the changes
occurring in g.4.4, where the first coordination shells splits, with the appearance
of a structure that grows on increasing coupling to constitute a second peak just
in the place where the pair correlation function showed a minimum at V* = 0.
This is marked in fig. 4.1 by the sudden drop in the position of the main minimum
R4 at V* ~ 8. The ratio between the position of this second growing peak, that

develops in strongly supercooled states, and that of the main peak ranges from
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1.5 and 1.6, and it compares well with the ratio between first and second neighbor
atomic distance in a tetrahedrally bonded structure, that is the ratio between the
edge of the tetrahedron and the length of the A-A bond (see fig 2.4) \/—%' = 1.63.

Upon further increase of V* the coordination number N 4B slowly moves towards

the value 4, while the localization of BP becomes essentially complete.

We can see from fig. 4.3 how the structural trends that we have followed
from the pair correlation functions are reflected in the partial structure factors,
on increasing coupling. Upon incipient localization of BP at V* =~ 2, the valley in
S 1p(k) is shifted towards the position of the main peak in Spp(k), and a pre-peak
grows in correspondence with the main peak in S1.4(k). These features, together
with the increasing depth of the valley, mark the increz;sing ordering between the

components illustrated above.

More remarkable is the behaviour of the atom-atom structure factor S 14(k)
that first becomes slightly asymmetric (V* up to 5), then develops a shoulder
at its right side for V* in the range 6-7.5, where the splitting of the first A-A
coordination shell occurs. On further increase this shoulder grows into a strong
peak at essentially unshifted position, while the former main peak is reduced to a

pre-peak at lower and lower wavenumbers.

We want to compare these trends with those observed experimeﬁtally in liquid
germanium. A well known qualitative feature in the observed structure factor of
liquid germanium near freezing is the presence of such a shoulder which is smoothed
to an asymmetry in the peak shape at higher temperatures[*sl. In figure 4.4 we
show the structure factors for liquid germanium above freezing and amorphous ger-
manium at room temperature from neutron diffraction experiments[lz’SO], plotted
in units of the nearest-neighbour distance. The positions of the reciprocal lattice

stars (Bragg reflections) of the diamond lattice are also displayed in the figure.

52



2.5

2.0

1.5

1.0

0.5

0.0

L ! L | . |

0. 2. 4. 6. 0. 2. 4. 6. 8.

ka ka

Fig. 4.3 — Partial structure factors SAA(IC) (left), SAB(k) (right, dotted curves) and
SBB(k) (right, full curves) for the LAM (set 1) in the HNC at a series of values of the
coupling strenght V'* (V™ =0, 3, 5, 7.5, 14, 24, the first and the last value being marked
in the figures). The broken lines give the HMSA (with b = 1) results for V* = 24
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FIG. 4.4 Atomic structure factor of liquid Ge near freezing (triangles. from neutron scatroer-
ing data of Salmon. ref.{12]) and of amorphous Ge at room temperature (solid line. from neurron
scattering data of Etherington et al.. ref.[50]). The vertical bars at the top show the location of
the allowed Bragg reflections from the diamond structure. for each state of the material. the wave

number k has been scaled with the appropriate value of the first-neighbour distance rg.
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The shoulder in the structure factor of the liquid is in approximate corrispondence
with the (220) and (311) reflections, and in corrispondence the structure factor
of the amorphous phase has its stronger peak. The position of the main peak in
the liquid structure factor doesn’t correspdnd to any Bragg reflection; it would
approximately be near the (200) star of an f.c.c. lattice, which is a forbidden
reflection in the diamond lattice. The amorphous phase shows its first peak just
in corrispondence with the (111) Bragg reflection.

As one can see comparing figures 4.4 and 4.3 our model is able to reproduce the
qualitative trends in the structure factors passing from the liquid to an amorphous
phase that we represent on lowering the temperature as a supercooled liquid, but
we are unable to describe in a qualitative manner with HNC theory the first peak
in the structure factor of the amorphous phase. The same trend with temperature
was also followed in the ab-initio Car-Parrinello simulation of Stich[*3, with similar
results.

As we can see in detail in the following sections we can make contact with the
observed structure for the liquid near freezing and the result at (V* = 7.5) while
the structure of the supercooled liquid at V* ~ 20 — 24 qualitatively resembles

that observed in amorphous germanium.

Quantitative Comparison with Experiment

The partial structure factor of the model S4.4(k) should be directly compared to
the structure factor of Germanium as measured by neutron diffraction, as they
are scattered only by the ”atomic” component (scattering off nuclei), while X-ray

[30]

are also sensitive to the electronic component. In a previous work we made

the comparison between the structure factor displayed by the model at V" = 7.5
and the X-ray scattering data of Wasedall!l, which were the only accurate data

available to us in numerical form® at that time. Now accurate neutron scattering
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FIG. 4.5 (a) Partial structure factor S 4 (k) and (b) pair correlation function g4 (r) of the
LAM (set 1) at 77*=7.5 in the HNC (triangles) compared with experimental data for Germanium
near freezing (solid line, neutron scattering work of Salmon, ref.[12]; dashed line, X-ray diffraction

work of Waseda, refs.[11,13]. Lenghts are scaled with density, by a factor a=1.204 for the former

and a=1.200 for the latter.).
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data are available from the experiment of Salmon!!?!, thus we can compare our
model directly with them. Figure 4.5 shows the data from both X-ray e neutron

scattering experiments compared with our results.

From the figure it’s apparent that there are slight differences between neutron
and X-ray data, mainly in the height and the position of the first peak and its
shoulder, and a little phase shift of the oscillations at high values of k. This differ-
ence can be only partially accounted for by the different data reduction algorithms
employed in the two experiments, and should be attributed to the contribution of

valence electron to the observed X-ray diffracted intensity!®®l.

From the figure we can see that thereis a good qualitative agreement between
our results and experiment, but we also notice that differénces between the model’s
ctructure factor and the neutron scattering result amount to a scale factor. Then
our result for S4.4(k), contracted of a factor 1.037, were compared to the same
neutron scattering data, and now the model fits quite well not only the first peak
but also the overall shape of the observed results. Such a comparison is shown in
fig. 4.6 for the partial structure factor S.4.4(k).

Thus in order to account for the experimental results in a quantitative way,
we should repeat our calculation with values of the hard-sphere diameter A-A
in reduced units o | = r44d/a (where 744 is the value expressed in the first
column of tab 2.1 and a is related to the density as explained in the previous
section) enhanced by the factor 1.037. If we fix the bond length as d = 2.684 from
Salmon’s experiment, discarding the previous value d = 2.63A quoted in table
2.1, we need a density of nge = 0.0479473, that is 5% higher than the value of

0.0456 4% found from experiment.

In conclusion the density required for the model to be in agreement with the

diffraction data, once we have taken the bond length from the same experiment,
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FIG. 4.6 Comparison of the experimental Structure factor of Germanium (triangles), from
the neutron scattering work of Salmon, ref.[6], with Partial Structure Factor 5.4 .4 (k) of the LAM in
the HNC (dashed line) and in the TC-IHNC scheme at the second iteration for the self consistent
determination of the elementary diagrams (solid line); the latter has been scaled by a factor 1.037,
as explained in the text.

is higher than the experimental density of Ge. As the equilibrium density of a
fluid at a given pressure is the result of a delicate balance between repulsive and
attractive forces, it isn’t strange at all that the rough schematization of repulsive
interactions adopted in the model doesn’t allow to predict the correct equilibrium
density. It requires the adoption of more realistic repulsive potential to predict
also the correct equilibrium density of Germanium.

We proceeded further on, asking whether the solution of the model by a

more accurate approximation than the HNC closure could further improve the
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agreement with experiment. We employed the scheme outlined in sec. 3.3, already
used with success in previous work on molten salts(™] .and we solved the integral
equations derived from the closure relation (3.12). The bridge functions were
determined as a crossover (see eq. 3.24, 3.25) between the bridge functions of an
hard-spheres reference system (found in the PY approximation), and the first term
in the expansion (3.13) B(;g (r) computed by the integral in formula (3.23) using
as input the total correlation functions hop(r) of the HNC-solution. The mixing
parameters £,5 where fixed at the main peak’s position in the HNC solution.
The ratio of diameters dy;/di2 and di1/dy2 for the hard-sphere reference system
was fixed as well from the ratio in the peak’s position. The only free parameter
di» was varied to enforce Thermodynamic Consistency (TC) between virial and
fluctuation compressibility. From the solution obtained (I iteration) we computed
again BE:‘[;(T) and solved again the integral equations with it, to obtain a new TC
solution (II iteration).

This solution is show in comparison with the HNC solution and neutron scat-
tering data in fig. 4.6, and one can see that indeed a better agreement in S(k) is
reached. We can make it even better by choosing a coupling of V* ~ 6.5 — 7, in
order to have less a marked shoulder.

We can conclude this section by stating that this model can fit the structure
factor of liquid Germanium as well as the hard- sphere system is known to fit the
structure factors of simple liquid metals and alloys!*®). We think that a better
modelling of the real system can be achieved using A-A interactions more realistic

than hard sphere repulsions.
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4.2 Angular correlations

In the preceding discussion we inferred from the evolution of structural features
shown in the pair correlation functions obtained with integral equation methods
that effective many body-interactions among atoms set in due to the association
of bond particles to Ge Atoms and consequently of atoms to atoms, caused by
sharing a common bond particle. In particular from the observation that a second
peak in g.4.4(r) appears and grows at a position correspondent to that of the second
neighbours in a tetrahedral configuration, where the reference system (at V* = 0)
instead shows a minimum, we concluded that our model describes effective angular

interactions among Atoms.

Additional informations on the short-range order can be obtained from
higher correlation functions. In our case the triplet correlation function

(3)

g 3‘4‘4(1'12, ri13,T23) is particularly important since we supposed that angular cor-
relations arising from covalent bonding effectrs, which show angular dependence,
are reproduced in our model. We gauged the amount of angular correlations by
measuring the bond angle distribution function g3(6,7.) from the configurations
generated in our Monte Carlo simulation. Here 6§ is the angle between the two
vectors that join a central particle with two neighbours at a distance less than a
defined cutoff r.. In figure 4.7 we see that the bond angle distribution function for
the reference system which has no angular correlations, is rather broad, showing
a peak around 60 deéree, which is expected from a close packed sistemation of
the atoms in the first coordination shell. At a value V* = 5 where association
is already important, as indicated by the high values of the peak in g.x at the

distance d, the peak at low angle decreases. A better understanding is obtained

taking as cutoff the value of the bond length 2d in the model.
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FIG. 4.7 Effect of the association in the angular distribution of Ge Atoms: the bond angle
distribution function gs(8,7c) is shown for a value of the cutoff at the minimum of the corresponding

pair distribution function (solid line) and to the covalent cutoff (defined as ~2d). The left panel

corresponds to the hard spheres reference system obtained when we set the coupling 17" =0, the

o

right panel to a value where association of Germanium atoms through bond particles has already
set in.

This is indicated in figure 4.8 by the dashed lines. As a consequence of an
increasing probability of bonding two atoms by a shadow, triplets of atoms A-
X-A-X-A are formed, with a preferred bond angle angle around the tetrahedral
angle ~ 109 degrees. We can follow the evolution of bond angles with lowering the
temperature in figure 4.8. At progressively lower temperature the tetrahedral local
disposition of atoms is preferred, ending in an amorphous solid with tetrahedral
local coordination. The close packed fluctuations are signalled by the peak at 60
degrees, which is absent in models where explicit three body angular forces are
included. In the same figure we show the temperatﬁre dependence of the angular
correlations detected in the ab-initio simulation of Stich et al.l!%] on Silicon. The
observed trends in our model are the same as in the ab-initio simulation.

We notice that also pair potentials used in the treatment of liquid metals can

give some preference to tetrahedral local coordination in the liquid, by adjusting
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the position of the repulsive core and the attractive well minimum in a suitable
way, and can reproduce angular correlation similar to the upper left panel in fig.
4.8 as in ref.[18], but they can’t give rise to true angular correlations, and don’t

stabilize a tetrahedral structure on lowering temperature.

4.3 Accuracy of the Integral Equation Method

We shall discuss here the work done to test the quality of the structural pre-
dictions made by the liquid-structure theory in the LAM, for values of coupling
corresponding to liquid states down to values in the supercooled- liquid region, and
our attempts to improve the approximations involved by the use of empirically-
mixed closures or the inclusion of bridge functions, in order to predict the structure
with the best accuracy.

At this purpose, we made some Monte Carlo simulations in the canonical
ensemble of the LAM at different values of coupling (V* = 1, 5, 7.5, 10, 14, 22)
‘choosing the parameters of the model as set 2 in table 2.1, where the tetrahedron
rule has been somewhat relaxed, and the density was fixed to a lower value than
in the liquid near freezing (it is precisely the density of the compacted amorphous
phase). This choice for the density and for ogp is motivated by the need to
accelerate the equilibration rate and to reduce the length of the sampling runs
in the simulation. Further details on the simulation were given in chap. 3. The
localization process of bond particles shows the same features as shown before at
liquid density, but the splitting of the first coordination shell, that is the emergence
of a new closer second coordination shell appears before, at V* = 6 — 6.5 with

respect to V* = 7 — 7.5 for parameters at liquid density.

Figure 4.9 shows the HNC and Monte Carlo results for g,g(r) at two different
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values of the coupling strength, V* = 5 in the liquid region that correspond to the
onset of strong association, and V* = 10 in the supercooled region. It is seen that
the HNC solution is still in full quantitative agreement with the simulation up to
the value V* = 5, except that the value at contact in gpp is slightly higher in the
HNC. The TC solution found in the HMSA approximation is very similar to the
HNC and to the data over this range of V*.

On the other hand we found that from this value of V* on, some quantitative
discrepancies between HNC and simulation arise. Let’s summarize with the help of
the case V* = 10, shown also in fig. 4.9, the other work done for greater couplings.
We find in general that a good agreement between HNC and simulation persists
up to large values of V* for gip(r), gB(r), except for the height of the first
peak (lower in HNC for A-B correlation, and higher for B-B correlations than in
MC) slight asymmetries in the first peak of g.4p(r) and in II peak of gpp(r) (that
show also a lower value) for the HNC solutions. However there is a discrepancy,
increasing with coupling, for g.4.4(r) in that the HNC seriously underestimates the
structure of its second peak, that is gives too high a value of the main minimum,
and too low a value of the II peak. Thus the HNC poorly predicts the progressive
formation of the second shell of neighbours arising from the correlations of two

atoms bonded to the same atom.

In parallel with the progressive underestimation of the A-A structure, another
discrepancy is observed in the prediction of the A-B association as measured by
the value of the first peak in the A-B pair correlation function. In table 4.1 we
compare the values obtained from HNC with the results of the MC simulation. For
couplings greater than 5, the amount of A-B association is underestimated in the
HNC, and as a consequence also the amount of A-A bonding due to this association

results lower, and A-A correlations are depressed. This fact clearly suggests that
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Accuracy of the HNC approximation: Partial pair distribution functions gag(r) for
the LAM (set 2) in the HNC (broken line) compared with Monte Carlo results (solid line). The HNC
is still accurate in the medium range at 1"*=5 (upper panel), while for values greater than 6 it is
inaccurate, mainly for A-A correlations; The lower panel corresponds to 1 =10.

at variance with simple liquids some further attraction must be present at least in

the Bridge function B 4p.
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Table 4.1

Value of the first peak in g, air
v HNC MC . P gan P
correlation function for different

temperatures, as given by HNC

5. 104 10.8 theory and measured in MNC simu-
10 18. 20.9 lations .
14 23. 26.

Defects of the HNC approximation are not remedied by the HMSA, that in
the supercooled region performs worse that the HNC, predicting even higher values
of the main minimum in g..4; in addition it shows the disappointing feature of
yielding a negative value for g4p(r) at its main minimum; PY approximation
performs in a similar way.

A major drawback of the HNC approximation is shown in fig. 4.10 for the
LAM at liquid density (set 1), in relation with the behaviour of the compress-
ibility £7 evaluated from the fluctuation formula (3.26) and from the virial route,
by numerical differentiation of the virial equation of \state (see eq. 3.27). The
increasing degree of thermodynamic inconsistency between the two routes showed
by the HNC solution is evident from the fact that, while the virial compressibility
increases only slowly up to V* ~ 20, the fluctuation compressibility shows first a
more rapid linear increase and then seems to diverge at values of V* a 22 for the
parameters quoted; the same behaviour is shown by the HNC solution at V* ~ 14
for the parameters chosen in the Monte Carlo simulation (set 2).

It seems that the HNC somewhat misplaces the location of the spinodal line
between the liquid and the solid phase in the (p, P) thermodynamic plane, that is
the loci of points in which the the second derivatives of the free energy with respect

to volume (or density) is zero, lines at which the compressibility diverges and that
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FIG. 4.10 Thermodynamic consistency in the HNC: inverse isothermal compressibility
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marks the region of mechanical stability of the liquid state in the supercooled -
metastable region. This prevents to obtain solutions in the HNC approximation for

larger values of coupling in the supercooled region, due to the intrinsic sensibility

66



to the value of the fluctuation compressibility shown by the numerical algorithm of
solution, that becomes unstable when this value is high enough. It can be largely
remedied by the adoption of any TC empirical-mixed closure like the HMSA or
by the inclusion in the closure relation of the bridge functions of hard spheres like

in the thermodynamic consistent MHNC approach.

As we have assessed the importance of including the hard-sphere bridge func-
tion for the thermodynamic consistency, and in essence for the possibility of finding
solutions for the LAM in the extreme supercooled region, we turn to the accuracy

on the prediction of the structure.

For this analysis we solved the TC-IHNC equations, iterating the scheme
to self consistence in the determination of Bridge functions, for the couplings
V* = 6,7.5,10. The iterative process was stopped when the difference between
the old and new determined bridge functions was comparable to the numerical

accuracy of our algorithm for computing them from the hqog(7).

In the first case we found a good agreement with MC simulations both in the
amount of A-B association and in the A-A structural features, and reached the
consistency in two iterations, the first one being very close to the final result. In the
second case the amount of association is again good, but four iteration are needed
to get the self consistency in the elementary diagrams, and stopping at the first step
of the procedure accounts only for half of the final result. The agreement in the
predicted A-A structure is less satisfactory as the second coordination shell splits,
and it has slightly less structured than in MC simulations. We shall comment
these discrepancies, and the main features presented by the Bridge functions of

this model presenting the results for the latter case examined, namely V* = 10.

The resulting structure at convergence on g,s(r) is shown in fig. 4.1la-c
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FIG. 4.11a Results for the TC-IHNC approximation at convergence on bridges (IV iteration)
applied to the LAN (set 2): upper panel: Pair correlation function g.a.a; the solid line is the
"TC-IHNC result, dashed line the HNC and triangles MC data. lower panel: BM)(7) computed
from eq. (3.23), triangles; PY bridge functions for the reference system, dashed line (the hard sphere

diameter for the reference system is also displayed); crossover between them (eq. 3.24), solid line.
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FIG. 4.11b The same as in the fig. 4.11a for: upper panel: Pair correlation function g.p.
lower panel: the corresponding Bridge functions.
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FIG. 4.11c The same as in the fig. 4.11a for: upper panel: Pair correlation function ggp.
lower panel: the corresponding Bridge functions.

70



together with the bridge functions, where also the crossover between the com-
puted elementary diagrams B(*) and the short range ”universal part is displayed.
The three bridge functions are characterized by a strong structure at intermediate
range, with an attractive part at the position of the first peak, which is particu-
larly marked in g,g(r), followed by a peak in the region of the main minimum,

particularly evident in ggg(r).

Let’s analyze the consequences of these features on the structui‘e. The effect
of the bridge functions on g p and gpp is to eliminate the residual discrepancies
with the simulation; the discrepancy remains in the value for the B-B peak that
now is too low (3.51) in comparison with MC (5.28) and even worse than in HNC
(4.19). The degree of association is not completely récovered since the peak in
A-B is now 19.7, and this results also from the examination of the gy, where the
structure is not fully recovered and in particular the second coordination shell is

not well accounted for.

The TC-IHNC gives an overall improvement over the HNC, which could not
be obtained with other integral equation schemes. It seems that the largest dis-
crepancies of HNC can be also roughly accounted for if one simply rescales the
A-B well depth, and one puts some repulsive hard-spheres like bridges in A-A and
B-B only.

As the present determination of the bridge functions was quite accurate, and
the discrepancies are outside the statistical error in our simulation, we should con-
clude that they are entirely due to terms neglected in the scheme that replaces
B,gs(r) with B((:[; as given by formula (3.23). To trace the origin of the remaining
discrepancy, we should remind now that B®*)(r) is only the first term in the ex-
pansion (3.13) of B(r), whose expression is given in formula (3.15), involving the

¢®)(ry,r2,r3) and that the relation used by us (eq. (3.22), (3.23) ) can be derived
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from it making the approximation (3.21). This simple factorization of ¢!®) might
result inaccurate in our case. It is likely that higher order correlations are equally
important, leading to some non negligible contributions of higher order terms in
the expansion (3.13) at intermediate range. We shall give here an argument that

strongly supports this conclusion.

The bridge functions B((jﬂ) take into account correlations between four par-
ticles, as one can see by the considerations of the diagram that correspond to
the integral in the expression (3.23a). Now let’s consider the kind of correlations
present in a limiting case, that is in the solid phase. Rings of 6-atoms are present
in the tetrahedral structure of the crystal, and it is evident that similar correla-
tions are also strong in the amorphous phase. These correlations in the ring are
described by terms in the bridge function’s expansion (3.13) of order higher than
4.

It is very likely that to treat sticky interactions like our A-B potential it is
better to take into account steric hinderance from the beginning in the derivation
of the integral equations through an appropriate topological reduction, like it is

done in Wertheim’s scheme for associating objects[?%l.

4.3 STRUCTURE OF THE SUPERCOOLED STATES

We want to contrast here the results obtained in the LAM for high values of the
coupling parameter V*, to the experimental structure of amorphous Germanium.
Usually amorphous Germanium is prepared by non-equilibrium techniques, like
deposition from a gaseous phase onto a cold substrate. It’s not possible to prepare
it by fast cooling from the melt by usual fast-cooling-techniques'], because it

has a strong tendency to crystallize. Nevertheless one can think of obtaining it
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by pulsed laser techniques as it was done for Silicon, by means of a short laser
pulse that melts a portion of the solid, that is suddenly cooled very fast by the
surrounding material. To this kind of experiment do correspond the simulation
studies, made with various techniques and potentials, quoted in the introduction.
It’s likely that a well annealed sample prepared by deposition techniques tends
towards the structure of a quenched ’glassy’ material, that is essentially a system
out of equilibrium because of long time-scale of its relaxation processes. Such a
system is like a liquid with an arrested dynamics, and its average (spatial average)
structure can be compared with the average structure of the ideal metastable-state
of a supercooled liquid at the same temperature, as determined for example by
the integral equations method. In this spirit, we make here such a comparison

between a supercooled liquid and the actual structure of amorphous Germanium.

We saw in section 4.1 that the supercooled state of the LAM at liquid density
reaches an high degree of localization of BP, being the number of bonded atoms
slightly smaller (N.4p being 3.7), with a number of atoms in the first coordination
shell (not yet sharply distinguished from the arising second coordination shell, as
one can see from the value at the main minimum of g4 not yet zero) of =~ 5.
In order to make contact with the observed coordination number, one as to take
into account the reduced density of Amorphous Germanium, and we solved the
integral equations at this reduced density (set 3) in the HNC down to last value
of coupling at which the HNC has solutions ( V* = 22 ). The high degree of
association present in the system due to bonding of atoms, is signalled by the
sharp, high first peaks in g4 and g.p, of values 13 and 25 respectively, to be
compared with the value 3 of the hard sphere liquid at zero coupling strength.
The coordination number atom-atom N4 now tends towards the value 4, while

the bond-bond Npp reaches the value 7, not too far from the value corresponding
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to a tetrahedral structure (Npp =6).

In Fig. 4.12 we show the structure predicted by the HNC for S14(k) and
g14(r) in comparison with the S(k) and g(r) from the neutron scattering data of
Etherington®’l. The HNC result represent only qualitatively the features in g(r),
with peaks in the correct positions but too low structure, and in S(K), the main
discrepancy being the height of the first diffraction peak, and the position of the
pre-peak. It’s also evident the effect of the thermodynamic inconsistency, in the
low k part, that can be remedied by the adoption of any TC closure, like in the
case shown in fig. 4.3 for liquid densities, where the HMSA solution is illustrated,

showing a better behaviour at low k, and a more marked separation between peaks

than the HNC solution.

The next step was to use a bridge function obtained from the crossover be-
tween a reference hard-sphere bridge function at low r and the BSB), determined
from the HNC solution. The comparison with experiment for S(k) (see fig. 4.12)
shows that the structure of the pre-peak is better resolved, but the solution doesn’t
achieve yet quantitative accuracy. This is connected to the fact that the g(r) in the
solutions determined until now with the integral equation method doesn’t show a
second peak clearly resolved from the first one. The pre-peak and the main peak
in the structure factor essentially arise from the presence of the main peak and
the second peak, that is from correlations connected to the short range tetrahedral
order, as can be shown by back transforming the g(r) truncated after the second
minimum(®’]. Thus the failure of integral equation method in providing an ac-

curate descriptions of the second peak in g(r) explains its failure in providing an

accurate description of the pre-peak position in S(k).

At the present state of our investigations it seems that only resorting to Monte

Carlo simulations an accurate quantitative comparison with experiment can be
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attempted. TC-IHNC provide at the first iteration too deep a valley in A-B

elementary diagram that doesn’t allow us to solve the integral equations.
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Chapter 5

Conclusions

In this thesis we presented an elementary, primitive statistical mechanical model
showing in the liquid phase both association and directionality in the interactions
in a variable degree on varying the temperature, which is meant to represent in
a semiclassical way the structural consequences of the incipient electronic local-
ization process that occurs near freezing in the melts of IV group and III- IV

semiconductors.

This aim was achieved introducing, in analogy with BCM used in the solid
state, a Bond Particle component in addition to the atomic one, subjected to
localization between two different atoms with the constraint that the maximum
coordination number possible is of 4 BP around an atom, an 2 atoms around a BP.
In particular we explored a representation of the model, the Localized Attraction
Model, consisting essentially of a mixture non-additive hard spheres where the
atomic component shows on his surface adhesion to the BP component, in the
form on a narrow, spherically symmetric well. This permits to represent the
characteristic fluctuations towards local tetrahedral configurations present in the
liquid near freezing, due to the process of forming and breaking of covalent bonds,
that was shown to be present by the recent first principle molecular dynamics
simulation of Stich and Car on liquid Silicon(*]

The inclusion of the BP component permits to treat an effective directional,
many body interaction between atoms by the introduction of only pair interactions

between components, and allowed us to employ the formalism of standard liquid
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state theory (integral equation method) to explore the structural features of the

model.

We showed that this model shows quantitative agreement in describing the
structure of liquid Germanium near freezing, as results from the form of the neu-
tron scattering structure factor. A picture of a restructuring network of bonds
in the liquid emerges from the model, that is similar to ideas arose in the past
in the study of water. The peculiar features of the structure factor arise from
correlations between atoms belonging to tetrahedral units temporary forming in
the liquid. The model offers the possibility to follow the build up of a disordered
network by the connection of these units on cooling, towards the formation of a

disordered solid-like fourfold coordinated network structure.

The importance of the effective angular correlation in the melt an their vari-
ation with temperature have been studied by Monte Carlo simulations. A point
of interest for further work on the model is & connected to a better modelling of
germanium that could be obtained substituting the hard-sphere atom-atom inter-
action with more realistic repulsions. The development of Monte Carlo methods
to sample in an efficient way the configuration space of the primitive version of

the model constitutes another point that deserves further investigations.

From the statistical mechanical point of view, we explored the accuracy of
the structural prevision made by the HNC closure, and we can conclude that it is
able to give semi-quantitative agreement in the liquid state up to freezing when
compared with the results of a restricted set of Monte Carlo runs (made mainly in
the liquid region and partially in the supercooled region). The agreement can be
made quantitative in the liquid state, until the association is low, by the inclusion
of appropriate bridge functions in the closure relation. This method, even if rep-

resent a valuable tool in the exploration of the accuracy of the model, demands
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an higher computational effort than common algorithms for solving integral equa-
tions. Other commonly used closure relations were found to be inadequate. Thus
it should be interesting to explore the possibility of obtaining quantitative results
for structure and thermodynamics by means of integral equations for associating

liquids like in Wertheim’s scheme.

The accurate numerical evaluation of elementary bridge diagram for the sys-
tem of interest, that involves a five-dimensional integration over functions with
one very high and narrow peak, was a delicate point that required a considerable
effort. It was shown that in case of medium and strong association the elemen-
tary diagrams departs consistently from the simple "universal” behaviour at short

range, and for high association higher order diagrams became also important.

It was explored, for the first time to our knowledge, the achievement of self-
consistency in the determination of the elementary diagrams, by means of subse-
quent iterations in the solution of the integral equations, and the approximation
of the first iteration commonly employed was found not to be very accurate for

our model, but for very low association.

Moreover we showed that, connected to the increasing directionality built in
in the model, the integral equation method based on the closure relation, supple-
mented by the elementary diagrams B is not adequate to describe with accuracy
the structural features connected to the second atomic coordination shell, in the
supercooled state, and we strongly suggest that this is due to the neglect of higher
order terms in the expansion of the bridge functions, due to the increasing im-
portance of many-body correlations in the supercooled states. This indicate that
future investigation of the supercooled region should rely on computer simulation

methods, performed with appropriate sampling algorithms.

The model found also an application in the calculation of the possibility of

78



freezing from the melt in a tetrahedral open structure, with consequent increas-
ing in volume. Calculation by Badhirkan et al.l®}lbased on the density functional

theory of freezing, showed that indeed it seems possible to achieve the freezing in

such an open structure.

79




The Bibliography

[1] J.A.E. Desa, A.C. Wright, J. Wong, R.N. Sinclair: J. Non-Cryst. Sol. 51, 57
(1982).

9] $.C. Moss, D.L. Price: in Physics of disordered Materials , edited by D. Adler,
H. Fritsche, S.R. Ovshinsky, (Plenum, N.Y. 1985), pag. 77.

3] W. Andreoni: Helv. Phys. Acta 58, 226 (1985).

[4] U. Walter, D.L. Price, S. Susman, K.J. Volin: Phys. Rev. B 37, 4232 (1988).

[5] See, for istance, S. Sugai: Phys. Rev B 35, 1345 (1987) and references

therein.
6] 1.T Penfold, P.S. Salmon: Phys. Rev. Lett. 67,97 (1991).
[7] P.S. Salmon: Proc. R. Soc. London A 437, 591 (1992).
8] S. Biggin, J.W. Enderby: J. Phys. C 14, 3129 (1981).
[9] O. Uemura, Y. Sagara, D. Muno, T. Satow: J. Non-Cryst. Sol. 30, 155
(1978).
[10] S.R. Elliot: Physics of Amorphous Materials, (Longman, London 1983).
[11] Y. Waseda, K. Suzuky: Z. Physik B 20, 339 (1975).
[12] P.S. Salmon: J. Phys. F: Met. Phys. 18, 2345 (1988).
[13] Y. Waseda: The Structure of non crystalline Materials: Liquids and amor-
phous Solids (McGraw Hill, New York 1980).
[14] C. Bergman, C. Bichara, P. Chieux, J.P. Gaspard: J. de Phys. (Paris) 12,
C8-97 (1985).
[15] L Stich, R.Car, M. Parrinello: Phys. Rev. Lett. 63, 2240 (1989); Phys. Rev.
B 44, 4262 (1991); 44, 11092 (1991).
[16] Q. Zhang: Phys. Rev. B 42, 5071 (1990).

80



[17]
18]

[19]
[20]

[21]

[25]

27

]
28]
[29)

]

[30

G. Galli, R. M. Martin, R. Car, M. Parrinello: Phys. Rev. B bf 42, 7470
(1990).

see, A. Arnold, N. Mauser, J. Hafner: J. Phys.: Cond. Matt. 1, 965 (1989)
and references therein.

N.W. Ashcroft: Nuovo Cimento D 12, 597 (1990).

W. D. Luedtke, U. Landman: Phys. Rev B 37, 4656 (1988); M.D. Kluge,
J.R. Ray, A. Rahman: Phys. Rev B 86, 4234 (1987).

P. Vashishta, R.K. Kalia, G.A. Antonio, I. Ebbsjo: Phys. Rev. Lett. 62,
1651 (1989); P. Vashishta, R.K. Kalia, J.P. Rino: Phys. Rev B 41, 12197
(1990).

see, J. Tersoff: Phys. Rev B 39, 5566 (1989) and references therein.

M. S. Wertheim: J. Chem. Phys. 88, 1145 (1988) and references therein.
C.G. Joslin, C.G. Gray, W.G. Chapman, K.E. Gubbins: Mol. Phys. 62,
843 (1987); G.J. Jackson, W.G. Chapman, K.E. Gubbins: Mol. Phys. 65, 1
(1988); Mol. Phys. 65,1057 (1988).

W.R. Smith, I. Nezbeda: J. Chem. Phys. 81, 3694 (1984); J. Kolafa, I.
Nezbeda: Mol. Phys. 61,161 (1987); J. Kolafa, I. Nezbeda, Y.V. Kalyuzhnyi:
Mol. Phys. 68, 1 (1989); 1. Nezbeda, G.A. Iglesias-Silva: Mol. Phys. 69,
767 (1990); J. Kolafa, I. Nezbeda: Mol. Phys. 72, 777 (1991).

J.C. Phillips: Covalent Bonding in Crystals ‘and Molecules (University of
Chicago Press, Chicago Ill. 1969); Bonds and Bands in Semiconductors (Aca-
demic Press, New York 1973) and references therein.

R.M. Martin: Phys. Rev. 186, 871 (1969).

W. Weber: Phys. Rev. Lett. 33, 371 (1974); Phys. Rev. B 15,4789 (1977).
K.C. Rustagi, W. Weber: Sol. State Comm. 18, 673 (1976).

A. Ferrante, M.P. Tosi: J. Phys.: Cond. Matter 1, 1679 (1989).

81



[31] Z. Badirkhan, A. Ferrante, M. Rovere, M.P. Tosi: Nuovo Cimento D 12, 619

(32]

[33]
[34]

[38]

(1990); Z. Badirkhan, M. Rovere, M.P. Tosi: Phil. Mag. B 65,921 (1992).
R. G. Parr, W. Yang: Density-Functional Theories of Atoms and Molecules
(Oxford University Press, Oxford 1989), pag. 229

7.P. Walter, M.L. Cohen: Phys. Rev. B 4, 1877 (1971).

O.H. Nielson, R.M. Martin: Phys. Rev. B 32, 3792 (1985); for experimen-
tal determination by electron scattering see: J.M. Zuo, J.C.H. Spence, M.
O’Kneefe: Phys. Rev. Lett. 61, 353 (1988).

U.Pictsch, V.G. Tsirelson, R.P. Ozerov: Phys. Stat. Sol. B 137, 441 (1986).
C.M. Bertoni, V. Bartolani, C. Calandra, F. Nizzoli: J. Phys. C 6, 3612
(1973).

B.G. Dick Jr., A.W. Overhauser: Phys. Rev. 112, 90 (1958);

for references about its application to the lattice dynamics of ionic systems
by Cochran see Peter Briiesch: Phonons: Theory and Experiments,

Vol.I, ch.4 (Springer, Berlin, 1982).

A. Fleszar, R. Resta: Phys. Rev B 34, 7140 (1986); see also the same
comparison for GaAs in

_ L. Miglio, L. Colombo: Physica Scripta 40, 238 (1989).

R.P. Messmer, W.X. Tang, H.X. Wang: Phys. Rev. B 42, 9241 (1990).

G.J. Ackland: Phys. Rev. B 44, 3900 (1991); 40, 10351 (1989).

F. Wooten, K. Winer, D. Weaire: Phys. Rev. Lett. 54, 1392 (1985); K.
Winer: Phys. Rev. B 35, 2366 (1987). '

L. Miglio, L. Colombo: Surf. Sci. 221, 486 (1989); L. Miglio, L. Colombo:
to appear in Surf. Sci. (1990).

A. Goldberg, M. Batanouny, F. Wooten: Phys. Rev B 28, 6661 (1982); K.
Winer, F. Wooten: Phys. Stat. Sol. (b) 136, 519 (1986).

82



[44]

[45]

[46]
47

]
]
[49]
1
51
(52
]
(54
(55

[56]
[57]

[58]
[59]

[60]

L. Miglio, P. Santini, P. Ruggerone, G. Benedek: Phys. Rev. Lett. 62, 3070
(1989); U. Harten, J.P. Toennies, Ch. Wéll, L. Miglio, P. Ruggerone, L.
Colombo, G. Benedek: Phys. Rev B 38, 3305 (1988).

V.M. Glazov, S.N. Chizhevskaya, N.N. Glagoleva: Liquid Semiconductors
(Plenum, New York, 1969).

N.W. Ashcroft, D.C. Langreth: Phys. Rev. 156, 685 (1967).

J.E. Enderby, D. North: Phys. Chem. Liquids 1,1 (1968).

J.P. Gabathuler, S. Steeb: Z. Naturf. a 34, 1314 (1979).

P. Viscor: J. Non-Cryst. Sol. 101,170 (1988).

G. Etherington, A.C. Wright, J.T. Wentzel, J.C. Dore, J.H. Clark,

R.N. Sinclair: J. Non-Cryst. Sol. 48, 265 (1982).

D. Gazzillo, G. Pastore, R. Frattini: J. Phys.: Cond. Matter 2, 8463 (1990).
D.Gazzillo, G. Pastore, S. Enzo: J. Phys.: Cond. Matter 1, 3469 (1989).

P. Ballone, G. Pastore, J.S. Thakur, M.P. Tosi: Physica B 142, 294 (1986).
Landolt-Bornstein: Numerical Data; Group IV and III-V Semiconductors,
vol. 17a (Springer, New York, 1982).

L.R. Godefroy, P. Aigrain: Proc. Int. Conf. Physics of Semiconductors (Ex-
eter), pag. 234, (1962).

M. Aniya: J. Chem. Phys. 96, 2054 (1992).

W.A. Harrison: Electronic Structure and the properties of Solids (Freeman,
San Francisco 1980); Phys. Rev. B 24, 5835 (1981); 41, 6008 (1990).

J.P. Hansen, I.R. McDonald: Theory of Simple Liquids (2nd Ed., Academic
Press, London 1986).

M.P. Allen, D.J. Tildesley: Computer Simulation of liquids (Oxford University
Press, Oxford 1987).

D. Chandler, Y. Singh, D.M. Richardson: J. Chem. Phys. 81, 1975 (1984);

83



K S. Schweitzer, J.G. Curro: Phys. Rev. Lett. 58, 246 (1987).

[61] J.M. Caillol: Chem. Phys. Lett. 156, 357 (1989).

[62] P. Attard: J. Chem. Phys. 95, 4471 (1991).

(63] 7. Barrat, J.P. Hansen, G. Pastore: Mol. Phys. 63, 747 (1988).

[64] J.M.J. van Leeuwen, J. Groeneveld, J. DeBoer: Physica 25, 792 (1959) for
+ systematic and detailed exposition of the diagrammatic techniques see also
the article by Stell in the following ref.

(65] G. Stell, aticle in: The equilibrium Theory of classical Fluids, edited by H.
L. Frisch, J.L. Lebowitz, p.1I-171 (Benjamin, New York 1964).

(66] J.K. Percus, article in: The equilibrium Theory of classical Fluids, edited by
H. L. Frisch, J. L. Lebowitz, (Benjamin, New York 1964).

[67) G. Stell, article in: Phase Transitions and Critical Phenomena, Vol 5b, edited
by C.Domb, M.S. Green, p.205 (Academic, London 1976).

[68] S.Ichimaru, H.Iyetomi, S.Tanaka: Phys. Rep., 149 , 91 (1987)

(69] H.I¥etomi: Progr. on Theor. Phys. 71,427 (1084); L.Blum, C.Gruber, J.L.
Lebowitz, P. Martin: Phys. Rev. Lett. 26,1769 (1982).

[70] J.R.Forrest, D.A. Young: Phys. Rev. A 30, 999 (1984).

[71] J.P.Hansen, G. Zerah: J. Chem. Phys. 84, 2336 (1986).

| Y. Rosenfeld, N.W. Asheroft: Phys. Rev. A 20, 1208 (1979).

[73] F. Lado: Phys. Rev. A 8 2548 (1973).

74] S.Ichimaru, H.Iyetomi: Phys. Rev. A 25, 2434 (1982); Phys. Rev. A 27,
3241 (1983).

[75] P. Ballone, G. Pastore, M.P. Tosi: J. Chem. Phys. 81, 3174 (1984).

(76] S.M. Foiles, N.W. Ashcroft, L. Reatto: J. Chem. Phys. 80, 4441 (1984).

77) M. J. Gillan: Mol. Phys. 38,1781 (1979); Mol. Phys. 39, 839 (1980).

78] J.A. Barker, J.J. Monagham: J. Chem. Phys. 36 2564 (1962); A.D. Haymet,

84



S.A. Rice, W.G. Madden: J. Chem. Phys. 74, 3033 (1981).
[79] P. Attard: J. Chem. Phys. 91, 3072 (1989).
[80] P. Attard, G.N. Patey: J. Chem. Phys. 92, 4970 (1990).
[81] W.H. Press, B.P. Flannery, S.A Teukolsky, W.T. Vetterling: Numerical
Recipes (Cambridge Univers. Press, 1989), chap. 4.
[82] G.P. Lepage: J. Comp. Phys. 27, 192 (1978).
[83] A. Ferrante, Wang Li, M. P. Tosi: Phil. Mag. A 58, 13 (1988).
84] G. Jacucci, A. Rahman: Nuovo Cimento D 4, 341 (1984).
85 M.Gillan, B. Larsen, M.P. Tosi, N.H. March: J. Phys. C: Sol. St. Phys. 9,
889 (1976).
[86] J. Chirara: J. Phys. F: Met. Phys. 17, 295 (1987).

85






PART TWO

On Shadow Wave Functions

for Helium 4.



Chapter 6

Introduction and overview

The physics of *He and +He has always been a subject of great interest in
quantum statistical mechanics and many-body theory1:?l; quantum effects are
essential here as they are responsible for these systems to be in the liquid state,
at standard pressure, even at temperatures very close to 0 K. A transition to
the crystalline state can only occur at higher pressure. At low temperature both
systems undergo a phase transition to a superfluid phase, of different origin. *He 4
" a Bose system, undergoes a Bose-Einstein condensation in the liquid phase at the
\ temperature (2.17 K at standard pressure), while the transition occurs in 3He/

a Fermi liquid, at a much lower temperature (some mK) due to a mechanism of
pairing that can be described by BCS theory; the phase diagram of this system is

richer and more complicated than that of +He and will not be considered here.

Realistic pair potentials have been extracted from experiments and simula-
tion data to represent the interaction between helium atoms in the condensed
system, from the Lennard-Jones potential adopted in early studies to the class
of pseudopotentials developed and refined by Aziz and coworkers®*%. Ground
state properties of *He homogeneous phases have been well described by Green
Functions Monte Carlo (GFMC) simulations of the liquid and the solid phase[s’T’S]
that with modern potentials well reproduce experimental data. Also at finite tem-
perature a satisfactory description has been given by exact Path Integral Monte

Carlo (PIMC) simulations!®, even at low temperature where the statistics and

exchanges play an important role. From PIMC simulations the A-transition!!"],



the momentum distribution and the condensate fraction have been studied with
precision[!1:12],

13,14] and response function of the ground state!!® have

Freezing properties!
also been extracted from Diffusion Monte Carlo simulations. At higher temper-
ature the melting line on pressure as also been subject of PIMC studies(!fl, but
there exist still some controversy and discrepancy with experiment regarding the
behaviour at higher pressures and the importance of statistics for the melting

temperature[”].

For ®He the situation is less satisfactory as Quantum Monte Carlo results are
not as accurate as for *He ; GFMC simulations for the unpolarized system have
been performed in the fixed node approximation!!®] (employing nodes from accu-
rate variational wave functions), which gives an upper bound to the exact energies,
and very recently a PIMC method to treat Fermi systems has been developed by

Ceperley!®]

, who employs a fixed node approximation for the high temperature
density matrix, and has been used to study *He down to 0.5 K taking into account

also the statistics.

Current interest is focussed, both from the experimental and the theoretical
point of view, on ground state and finite temperature properties of inhomogeneous
systems like droplets and clusters of different sizes[?’] (see ref.[21] and references
therein), low dimensional systems adsorbed on a substrate, free surfaces and in-

terfaces between liquid and solid phases.

Variational methods have been employed from the beginning (for a review
see refs[1,2]), first in HNC calculations(??23:24 | then in Variational Monte Carlo

simulations!2%:26]

, and wave function of increasing sophistication have been devel-
oped. Today VMC studies are also the first necessary step in performing QMC

simulations. The simplest wave function is represented as a product of pair correla-

3




tions and takes into account correlations due to the excluded volume effect caused

[22,25]

by the short range repulsion between helium atoms. Triplet correlations and

backflow correlations(27:22:25]

have also shown to play an important role. The cru-
cial part of a variational method lies in parameters or functional form optimization
for the correlations employed in the wave function. Both HNC methods (Euler
Equations)!?®] and VMC optimization methods!?22%! have been developed to this
scope. The existing optimal variational wave functions for *He give a ground
state energy that is still somewhat higher than that obtained by "exact” QMC
methods, i.e. at the equilibrium density p = 0.3650 the best variational result ob-

tained in VMC with a Jastrow plus Triplets trial wave function[?! gives an energy

of —6.86 (1) K versus —7.12 (2) K of the GFMC study in ref.[6]).

The solid phase has been usually described with variational wave functions
that assume particle localization around lattice sites by means of a one- body term
which associate one particle to a gaussian orbital centered at each lattice site,
and breaks both the translational and the Bose symmetry of the wave function.
Recently a new class of wave functions, the shadow wave functions have been
introduced by Kalos and Vitiellol*®] to study the ground state of *He , and have

been subsequently investigated by Reatto et. al. [31,32]

with respect to the presence
of a condensate in both the liquid and the solid phase and employed by Kalos
and Reattol*?®# to describe also excitations (rotons and vortices) by means of a
Feynman-like[® ansatz. The original motivation was to define a wave function
able to describe both the liquid and the solid phase within the same functional
form, and without breaking explicitly the symmetries of the wave function with
one- body terms. Moreover these functions were able to recover a great part of

the energy obtained with the best variational wave functions, without introducing

triplet terms explicitly.



Our aim in this work has been twofold: from one hand to study some prop-
erties of SWF, like the effective-three body correlations built in it by the use of
the auxiliary shadow particles, and on the other hand to investigate some gener-
alization of it with the final objective to find a good variational wave function for
the ground state of inhomogeneous systems. As a first step, tests of reliability for
these new wave functions were made on the homogeneous phases by means of Vari-
ational Monte Carlo simulations. Part of our effort has been dedicated to extend
the shadow form originally suggested by Kalos and Vitiello, allowing each shadow
to interact with each particle (Extended SWF)2%] or including triplet correlations
among the shadow particles. Some work has also been done to develop integral
equations for both SWF and ESWF. Finally, a new parametrization of the SWF
that could be employed to describe solid-liquid interfaces have been tested in the
homogeneous case.

Although SWF can reproduce both phases, the problem is that they actually
do it by means of different parameters for each phase. The key parameter, in the
original formulation of ref.[30], is the effective diameter of shadow particles, which
controls the crystallization of the shadow particles and thus induces localization
of particles and the effective breaking of translational symmetry. An interface
between solid and liquid phase at the freezing density could only be described by
changing continuously the value of these parameters from the liquid to the solid
phase, a way that would correspond in usual wave functions to the introduction of
a self-consistent one-body term for the surface profile. The parametrization here
explored follows a suggestion by Reattol*], of evaluating the shadow parameters

according to the local density around each particle.



Chapter 7

Variational Studies on liquid

and solid He

Variational methods in quantum mechanics are based on the variational princi-
ple for the Schrodinger equation that can be considered the Euler equation of a
suitable functional®. The exact ground state solution of this equation for fixed
boundary conditions minimize the functional < ¥ |H|¥ >/ < ¥|¥ >. Thus for
any wave function (continuous with first continuous derivative) that satisfies the

given boundary conditions the following inequality holds
<O, |H|¥; >
< Uy ‘ U, >

> Ey, (7.1)

where E, is the exact ground state energy. One can obtain an approximation to
the ground state energy (upper bound) by minimizing the parameters of a chosen
class of trial wave functions. A similar principle holds also for the excited states,
provided that one can project out exactly from the trial wave function (i.e by
symimetry considerations) the ground state and other eigenfunctions with lower
eigenvector than that considered.

Another variational principle holds for the variance of the energy (see ref.[38]
and references therein). Consider the residue vector |re, >= (H — Eg,) [ ¥t >,
where |¥; > is a trial wave function and Eyg, its energy expectation value; the
norm of the residue vector equals the variance of the energy. Expanding | ¥ > in

an orthonormal set gives

ok =< rg,|ry, >=<¥: |(H - Ev, V| >= z lei|? (Ei — Eg,)?. (7.2)

6



For instance if By, ~ Ey, O‘?E/ < ¥, | ¥; > expresses in a quantitative manner the
projection of ¥, on the subspace orthogonal to Wy; it is exactly zero for the exact
ground state wave function. Minimizing the variance of the energy one increases
the overlap of the trial wave function with the chosen eigenfunction.

It should be noticed that a trial wave function which gives a good variational
energy is not guaranteed to be a good wave function for describing other properties
of the system than the energy, although this is certainly true if the ground state
wave function is contained in the space spanned by the trial wave functions, or
at least it has a substantial overlap with it. In this respect the minimization of
the energy variance gives a better way to gauge the best wave function, measuring
directly its overlap with the ground state. Techniques to minimize the variance of
the energy in VMC simulations will be described later in this chapter.

Apart from simple cases the evaluation of the integrals in (7.1) is impossible
from direct numerical integration, and one has to resort HNC equations or to
Monte Carlo methods. In the following sections we review the VMC method and
applications to *He. For a broad review of VMC studies in many-body systems see
the review articles of Kalos and Ceperley!?l and Lewart and Pandharipandel®®.

The hamiltonian which describes a system of N particles of He is

2 N

A i
H:T+V:—%;Ari +;wrﬁ). (7.3)

In recent work, and also in the calculation presented here, the potential HFDHE2

developed by Azizl®* was employed. The recent paper of Ceperley and Schmidt!!]

provide an updated review of QMC simulations on *He and 3He.



7.1 Variational Monte Carlo
Tt is convenient to reformulate the integral in (7.1) introducing |T,(R)?

/ 4(R)[? Eroe(R) dR

Eyg, : (7.4)
[ ar
where R represents a set of positions (r1, .y Ty) and
HY (R T?,;(R
Bu(R) = B2 T |y g, (73)

T, (R)  Ty(R)

defines the local energy. Now one can evaluate the integral (7.4) (and the expecta-
tion value of any operator expressed as a function of the coordinates) by a Monte

Carlo method, that is by sampling configurations according to the normalized

probability density defined by

() = — B
f 7, (R)[2 dR

(7.6a)

This is equivalent to simulate a classical system in the canonical ensemble, whose

probability density is
e~ V(R)

P(R) = /e—"(R) dR7 (76b)

The sampling is usually done by means of the standard Metropolis algorithm (for

details on it see ref.[40]). Its simplest implementation consists in generating a new
configuration in the Markov-chain by moving one particle at random in a box of
size A (choosing A according to a fixed acceptance ratio). Then one evaluates the

quantity
(R

v g (R (-1

8



and accepts the attempted move according to the transition probability min(1,w;).
The ”time” for the generated Markov-chain of configurations is represented by the
number M of attempted moves per particle (MCS). The required average is given,

according to the central limit theorem of statistics,

Ly
< A®R) >~ — Y A(R)). (7.8)

i=1
To obtain the energy per particle one averages A(R) = Ejo.(R)/N. Since the
generated configurations are correlated, instead of averaging over the whole chain
of configurations one can sum in (7.8) the configurations only every 7-steps,where
T represents the correlation time for the quantity considered.

Generalizations to improve the sampling have been used in VMC studies of
atoms(*!l based on biased sampling!*’], that is one generates the attempted move
according to some biased distribution, then the transition probability is corrected
to take this bias into account. It is also possible to sample configurations according
to a distribution broader than |¥;(R)|?, doing the same as "umbrella sampling”

2] A similar idea has been employed by Coldwelll*3lin

in classical simulationsl
variational studies of atoms and molecules.

The scheme outlined above is valid also for simulating Fermi system, once
an antisymmetric wave function is employed; a convenient algorithm for fermionic
simulations is described in ref.[44].

As the result of the simulation is exact apart from statistical errors and sys-
tematic biases, one should be very careful in equilibrating correctly the system and
evaluating the statistical errors. Technical details are similar to that employed for
classical simulations!*"]. We shall emphasize here only those peculiar of quantum

simulations.

Periodic boundary conditions are employed to represent an infinite system

9



by means of few particles, and the continuity of the logarithmic derivative of the
wave function must be imposed in order to have a meaningful variational estimate.
To this purpose if only short range correlations are present in the wave function,
they should be cut off with continuity at a distance equal to half the simulation
box side, and the minimum image convention has to be used in computing the
interactions; if long range correlations are taken into account, Ewald sums must
be used. The value of the potential energy must be corrected by a tail correction,

evaluated as the integral

277pf 'er(r)dr.

L/2

Different estimators can be employed to define the local energy, as different
form of the kinetic energy operator are possible. The simplest form, called the
Pandharipande-Bethe form, is obtained from the direct evaluation of Ay on ¥y,

namely

Tpp U, 2 XAL T, -
tpp = ———— = — - = —— Ay, InU Ve In ¥ 2 7.
PB 7 om 22, 5 4 [Ar In ¢+ (Ve InTy) 1 (7.9)

=1 =1

Another form can be obtained by means of Green’s integral theorems
- / AR dR = /V 9,.- V¥, dR = / w2 (V In¥,)? dR. (7.10)

The kinetic energy estimator obtained through the application of this formula to

the average < tpp > is called the Jackson-Feenberg form

Tir3 -
tp = —t = —TmZAn In ¥y, (7.11)
=

Uy

and was extensively used in early simulations (i.e by the Orsay group), because
of its simplicity. However the best estimator for the total energy, in terms of
lower variance for a fixed number of MCS5, is obtained using the PB kinetic en-

ergy. For e it is true that the JF kinetic energy t7r has a lower variance that

10



the corresponding PB form, but it turns out that there is a negative covariance
cov(tpp, V)that lowers quite a lot the variance of the sum tpp + V. In the Fermi
case even tr itself can have a variance greater than the corresponding PB form,
as the transformed form is unbound near the nodes. Nevertheless it’s useful to
monitor both values during the simulation, as they should converge to the same
value if the sampling is correct.

As in the classical case it’s easy to obtain from the simulation radial distri-
bution function, the pressure (the virial theorem is valid for the wave function
that minimizes the energy, see ref.[44,2]); the momentum distribution can be also

measured (see refs.[11,12]).

7.2 Trial wave functions

Jastrow Wave Functions

The simplest wave function for the Helium system can be written as a product of

pair correlations as

¥(R) =[] f(rij) @15, (7.12)

i<j
where ®,p is a one-body term which is 1 for liquid *He, a Slater Determinant of
plane waves for liquid *He and is related to the one-body density in inhomogeneous
systems, like in crystal, as we shall see later. This form was first considered by
Bijl*®! and then reinvented by Dingle[‘m], Jastrow*”l and Mott!*®] and first used
in a Variational calculation by McMillan®9). The correlation f is often expressed,

along the classical analogy, by means of a pseudopotential u(r) as
flrij) = emri)/2, (7.13)
The long-range part of the correlation f is analytically known, as its asymptotic

11




behaviour at infinity is connected to the long wavelenght limit of the Structure
Factor, which at T =0 K must go to zerol®] as

i S _ B

k-0 k 2mec (7.14)

(where c is the sound velocity). Reatto and Chester have shown!®Y! that asymptot-
ically u(r) ~ me/pr?h r?. However it has been shown that neglecting the correct
long range behaviour has little influence on the ground state energy, and almost all
VMC calculations use a short range form, thus avoiding Ewald sums, while there
is no difficulty in retaining such term in HNC calculations. The pseudopotential
must be parametrized and its parameters optimized. A simple parameterization is
the McMillan form u(r) = (b/r)?, arising from the exact short range behaviour of
the wave function for a Lennard-Jones potential. Optimal form for the correlation
can be obtained with the methods described in sect. 7.3. The physical meaning of
the Jastrow wave function is that, due to the sharp repulsive part of the interaction
potential V(r) in the hamiltonian, He atoms prefer to avoid each other.

In order to simplify the presentation of the local energy expression, its useful
to introducel**!, exploiting the classical analogy, the classical potential energy of
one particle in the field of the others, and the classical Pseudoforce on particle i

UG) =Y ulrij), F() ==V, U(®).
=t

The kinetic energy in the PB form is

jas hz al . . ;
e = 1S (aiwt) - R ) - F ) (7.150)
=1
and in the JF form .
Gos) _ B2 < :



Triplet Correlations

The simple Jastrow form is insufficient to describe accurately the correlations
present in the exact wave function, as one can see in table 6.1 from the com-
parison of variational energies obtained from this wave function and the "exact”
GFMC results. A better trial wave function that includes also the effects of triplet
correlations in the ground state of Helium was employed both in VMCE3! and
HNC studies®?51 (with LJ potential; corresponding work with Aziz potential:
vMC28l HNC[23:24), Tt is obtained multiplying the Jastrow form (7.12) by a

triplet term of the form

1 CVE(rir) roiere
Ty =e I8 = H fa(rijyrie) = H e 2 Zucye ST JE(Tik) wijoxik, (7.16)
i<j<k i<j<k

The exponent in the right part of eq. (7.16) can be as

l\f

2 Z 5 ng zk Tij-Tip = ZG -z Zé z] z]’ (717)

cyc l<]

where
1\7’

G(i) = Y rij &(rij)- (7.18)

i=1

J#i
This expression is more convenient for the computation because the first term in
the Lh.s of eq. (7.17) is a true three body term, but involves only updating the
pair form G(z), while the second term is simply a pair correlation which modifies

the Jastrow pseudopotential. There are two parametrized forms for the functions

£(r;;) used in VMC simulations. One parameterization is that employed in refs.[25]

E(rij) = VA e () ("""“)3, (7.19)

Te
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in which a cutoff term has been used to ensure the continuity of the logarith-
mic derivative of the wave function. The other form, quoted in ref.[52], can be

expressed as a sum of reflected correlations

£.(rij) = €(r) + £(2L — ) — 26(L) (7.20)

and was employed by us in some calculation reported later. Here L is the simulation

box side an we have used for { the same functional form as before

Erif) =Vie (r ”wR())z (7.21)

The two forms represent two different way of implementing in a VMC the expres-
sion (7.21) used in HNC simulation, and differ in the way they are smoothed to
zero at some cutoff distance 7¢; actually they represent two different parameteriza-
tions as in eq. (7.21) the cutoff term also renormalizes the other parameters, which
are very sensible to the value of 7.. There are three parameters in the triplet cor-
relation, namely the strength ), the position and the width of the gaussian. The
cutoff value 7, should be chosen equal to L/3 in order to avoid counting different
images of the same triplet in eq (7.17), but as the correlation (7.21) is very short
range and already is almost zero at L/3, even values larger than that, as those
reported in literature, can be used without troubles. The figure 7.1 illustrates the

form of the correlation ¢ adopted for the VMC study of *He (eq. 7.19);

O_llllllll‘llll TT
5 ’ - Figure 7.1

-0.5 -:-_ The same correlation &(7) represented
—~ u by the parametrized form (7.19), solid
\:-3 -1 _: line and by the parameterization (7.20),
- daslhed line. Parameters values are given

15 - in table 7.1.
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the same correlation can be fitted with the second form (eq. 7.20), with parameters

reported in the table 7.1.

Ao? Ry/c wlo R /o
-14.0 0.82 0.5 3.0
-2.56 0.66 0.49 2.0

Table 7.1

Optimal Triplet parameters for the parameterization (7.19) from
ref.[26] and values corresponding to the same correlation £(r) but
with the parameterization (7.20).

The expression of the local energy is the same as for the Jastrow form, plus a
term due to triplet correlations, but is too complicated to be reported here and can
be found in ref.[25]. The triplet wave function was proposed by Pandharipandel??
from studies of a 3He impurity in +11el53] in which state dependent (k-dependent)
correlations where employed to take into account the backflow of *He atoms around
the impurity (which is responsible of its effective mass being different from the bare

mass)?7. In the long wavelenght limit one obtains a wave function that takes into

account backflow correlations as
v=|S[[Fy] @, (7.22)
i<j
which is of the Jastrow form, with pair correlations fj(ri;) substituted by Corre-

lation Operators

Fi; = fi(rij) +n(rij) vy - Vi (7.23)

When one adopts this kind of wave function for *He the operatbr V;; acts only on
the correlations f7(r), and truncating the expression (7.22) to the terms of order

n, one gets triplet terms(?2] of the form (7.16,7.17) taking &(r) = V() fa(r)
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and approximating V;; In fy with 7£(r). The physical interpretation given by
Pandharipandel??] to this wave function for *He was that the three-body corre-
lations primarily takes into account the Feynmann-Cohen backflows produced by
two particle recoiling from each other in the liquid.

A different justification for the triplet term can be given in the following way.
If one applies powers of the hamiltonian to a trial wave function, one can partially
project it on the ground state; thus looking at the terms arising in the expression of
the local energy for a Jastrow trial wave function, one can guess a better variational
form. Relaying on the minimum variance principle stated at the beginning, one
notices that the term (V, In ¥;)? contains three body contributions of the kind
Vo, In(fij) - Ve In(fix). Since its fluctuation cannot be cancelled by any pair
term one introduces triplet correlations of the form (7.16,7.17) and, once again
approximating V;; In f; with r {(r), one obtains the requested cancellation with
an appropriate choice of £(r) that minimizes the variance of the local energy. A
reasonable parametrized choice is simply the gaussian form (7.21) since the short
range behaviour of ¢ is cutoff by the repulsive two-body potential and the long
range behaviour can also be cutoff since it should decay like 7~* in 3D because the
Jong range part of the Jastrow correlation decays as r~2 due to zero point phonon
excitations.

A remarkable property of the triplet term is that the optimal values of its
parameters, apart from A, have a weak dependence on the density p.

A more general form of f3 has been employed in the HNC study in ref.[?],
There f; has been expanded in Legendre polynomial Py(r;j - rix), with the result
that the term with [ = 1, i.e that of (7.17), gives the leading contribution to the

energy.

‘Wave Functions for Solids
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The simple Jastrow form is not able to describe a quantum crystal. Let’s take
for instance the McMillan pseudopotential; when a suitable value of b is chosen,
the corresponding classical system of particle f]?eezes but the quantum total en-
ergy corresponding to this situation is very high, always higher then the liquid
phasel®¥. A trial wave function to describe properly a quantum crystal has been
proposed by Nosanow!®?! and Saunders®® and first employed in VMC simulations
by McMillan!*®! and Hansen and Levesquel®”). It consists of a product of a cor-
relation term, which can be either Jastrow or Jastrow plus Triplets, and a one
body term ®;p which explicitly breaks the translational invariance of the wave

Vezt corresponds to an external periodic

function; in the classical analogy ®%5 = e~
potentials imposed to the system, which in turn induces a periodically modulated

one-body density. The localized Nosanow form is given by
N .
&1 =[] ¢(ri - Ri),, (7.24)
=1
where R; are the lattice sites and ¢(r; — R;) are single-particle orbital localized

around lattice sites, usually taken to be a Gaussian function
o(r; — Ry) = e~ Fmi=R)", (7.25)

This form of the wave function breaks also the Bose symmetry. A symmetrized

form that maintains this symmetry
N
&5 =Y |] ¢(ri = Rpy), (7.26)
P =1

has been studied for bosons interacting with Yukawa potentialsi®®l and for *He
with the Aziz potentiall®®, and in both cases the energy didn’t change very much

(actually resulted to be slightly higher). As the frequency of exchanges in the
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solid is very low!6%1] due to the sharp repulsion at short distances, even a non
symmetric wave function can safely be used in a variational calculation.
jas (nos)

Writing the PB estimator for the local kinetic energy as tpp = tﬁ»B +1trp

the contribution from the one-body Nosanow term is

2 N
(nos) _ Ve 4 SR A V() — (Vi V()
thy @ = - 2_:1 {AZV(rl) -+ —2—F(7,) A V() —Z-(V, V(ri)) |, (7.27a)
Where V(r;) = —2lnp(r;) is the part of the "external potential” due to the

localized orbital in site R;. For a gaussian orbital it takes the form

2 2 N
(nos) __ h .
tiy " =3aNo—+ > e F@): (ri—Ri) — 2a% (r; — Ry)?] (7.27b)

4dm

i=1

7.3 Wave function optimization

A crucial point in each variational method is to actually find the best trial wave
function of a given class. One approximate method relies on the solution of the
Euler equation obtained in the HNC approximation[zs] the other uses VMCI29:261,

Optimization in VMC

Once a parametrized functional form is given for the pseudopotential, the ”direct”
approach often followed®®] consist in repeating many simulations at different val-
ues of the parameters and then one fits the energy to a quadratic form of the
parameters in order to locate the minimum of the energy. This is a long and
painful procedure, and becomes impracticable when the number of parameters is
too large; moreover the statistical error in the energy values makes difficult to

locate precisely the minimum.
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A more efficient way, the correlated sampling and reweighting techniques!??],

makes maximal use of the information contained in a single simulation correspond-
ing to a given set of parameters {\A}, to obtain the behaviour of the energy (or the
variance) in the neighbourhood of {A}. This method, together with the principle
of minimum variance is currently used in the optimization of many-parameters
(30-100) in the variational wave functions employed for the electronic structures
studies on atoms and molecules??]. Recently, Schmidt and Vitiellol*®! used these
techniques together an appropriate choice of the basis function to span the space
of Jastrow correlations in the optimization of a Jastrow +Triplets wave function
for *He.

Correlated sampling techniques give a practical way of computing differences
between the mean value of some operator O on a trial wave function ¥(A) at

1,29] 1t is also an

different values of A, from a simulation made at one value only!
accurate way of determining the derivative of the mean value with respect to A.
Denoting for convenience with W,;q = ¥(Ay) the wave function used to generate
the Markov-chain in the simulation done at the value Ay of the parameter and

with U, = ¥(Ay + A) the wave function at a different value, it follows from the

definition of averages that one can obtain averages at a different value Ay + A as

/ (9\1%%")) w(R)p(R)dR

< \I]new O ‘Ilneu; >= 7.28
7! J w(R) () 4R (729
where the probability used in the sampling is that of the function at Ay
[Wora(R)?
p(R) = flqlold(R)lz dR' (728&)
and the weights are
I‘Ilnew(R)lz
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This techniques can be exploited to minimize the variance of the energy as fol-
lows: one writes on tape some hundreds of independent configurations sampled
from |¥,14(R) |2 and uses them later to minimize the variance. The values obtained
for the parameters are used to perform another simulation and so on; usually a
few iteration are sufficient. When only linear parameters in the pseudopotential
are varied, the method greatly simplifies as there is no need to store configura-
tion to perform the reweighting, and the minimization can be done in a single
simulation as in ref.[61]. When the starting point is not close to the optimal or
there is the need to span a larger portion of the parameter space, the reweighting
gets into trouble as the weights w; becomes too large or too small, then minimiz-
ing the unreweighted variance is more appropriate. Schmidt and Vitiellol?®) used
correlated sampling with variance minimization to optimize Jastrow+Triplets and
Jastrow+Nosanow+Triplets wave functions for liquid and solid *He, employing
the following form for the pair Jastrow correlation

f(r) = Z a; fi(r) (7.29)

=1
where a; are variational parameters and f,,(r) are the eigenfunctions of the 2-body

Schrédinger equation!?!

—— Afalr) + o) falr) = A ful) (7.30)

with boundary condition such that the solutions goes smoothly to 1 at some reson-
able healing distance d. The advantage of the correlation given by (7.29) is that it
automatically satisfies the correct short range behaviour for f; This is very difficult
to achieve with a general free parameterization, as the long range tail contributes
little to the energy, and short distances are poorly sampled when using |¥|? as

importance function.
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Chapter 8
Shadow wave functions

A new class of wave functions, the Shadow wave functions, have been recently
proposed by Vitiello and Kalos!®% to represent the physical correlations in the
ground state of *He, and have been subsequently investigated by Reatto, Vitiello
et all31:32] SWF have been employed also to describe the excited states3%%4 by
means of a Feynman-ansatz. A variational density matrix of the Shadow form has
been recently proposed by Reatto et all®l to describe properties of *He at finite
temperature. An attempt to use SWF as guiding functions in GFMC calculation
has also been reported!®*. In this chapter we present this wave function and review

the work done on it. We also report some original work done by us.

8.1 Shadow Wave Functions

The shadow wave function can be expressed as a product of two parts
o r (R) = 0pp(R)2s(R), (8.1)

where the first part is written as a product of pair correlations among Helium

atoms, like in the Jastrow wave function (7.12)

N
ppp(R) = H e upp(rij), (8.2)

i<j

and the second part assumes the following convolution form
bs(R) = / 0,+(S) B(R,S) dS, (8.3)
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where S represents the integration variables (s1, ..., sn). The convolution kernel
associates each Helium atom to one integration coordinate by means of a gaussian

correlation(®V]

N .
3(R,S) = [[e =V, (8.4)
=1

where C is a variational parameter. The integration coordinates represent a set
of auxiliary degrees of freedom denoted as Shadow pa.rticles[w]; the correlations
among shadow particles are taken into account by the Jastrow term present inside

the integral
1\7

00s(S) = H o~ Uss(5if), (8.5)

where u,, is a suitable pseudopotential. Due to the integration made on the
subsidiary variables, one has to take into account two kind of shadow particles in
writing averages, as it is easily seen by writing, for instance, the normalization

integral
(919) = [ (R 8RS B(R,S) (S ps(87) AR AS™AS". (55)

In the classical analogy, eq .(8.6) is equivalent to the partition function for a system
of N flexible moleculesll, composed of three kind of atoms, let’s say P (central
Helium Atom) and R (right), L (left) shadows, with harmonic intramolecular in-
teractions PR, PL , and intermolecular interactions given by upp between Helium
atoms and ., respectively between shadows RR and LL; notice that no interaction
is present between one shadow R and one L. Operators that depend on particles

coordinates A(R) are averaged as in
_JERAR) ¥R
< U |0y >
integrating over the probability density
_ ‘PPP(R)Z ®(R,S") 2(R, S*) pss(S™) ©ss(S")
(e | W) '

< A(R) > JdR _ /A(R)p(R,SR',SL) dR dS"dS", (8.7)

p(R,S",8") (8.8)
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The total energy is obtained by averaging the ”local energy” expression
1/ H(R R)®(R,S* H(R R)®(R,S*
EIOC(R’SR,SL): L ( ( )SOPP( ){)( Ra )+ ( )‘Ppp( ) ( L, ) )
2 vpp(R) (R, S%) 0,p(R) @(R, S%)
=tpp + V(R).

(8.9)
The simmetrization of this expression with respect to shadow R and L is
convenient for the computations since in VMC simulations the estimator (8.9) has

a lower variance than the unsymmetrized form. The kinetic energy part of this

operator, in the PB form, is given by the expression tpp = tggs) + t(s’md), where
shad . .
tpp' = Z Fyp(3) - [Fpr(i) + Fyr (i) + [Fa(i) + FZ (). (8.10)

Here we adopted the same pseudoclassical notation as in chap.7, and Fp,(z)
is the (pseudo)force acting on the particle i, due to the other particles while
Fpr(1) = 2C(r; — s}) is the (pseudo)force acting on it due to shadow Left; substi-
tuting in (8.10) this expression and the corresponding one for shadow Right one

obtains

sha 3N0h2 h2
thpe? = Z {C Fpp(i) st) + (ri — s%)]

(8.100)
—4C% [(ri = s{)* + (v — s{')?]} .

Two motivations have been given!*?:*! for the introduction of shadow particles and
for the functional form expressed by equations (8.1) (8.2), in terms of analogies
based upon specific features of PIMC and GFMC methods.

One motivation[??:31:32] adopts a similarity to PIMC methods employed in
the study of quantum systems at finite temperatures (see refs.[1,9] for a review of
PIMC techniques). The equilibrium properties of a quantum system of particle at

temperature 1" are specified by its density matrix

p(R,R;B) = (R|e7H|R") pr Ui (R') e P En (8.11).
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Here {¥,} is the set of exact eigenstates for the Hamiltonian H. The density

matrix satisfies the following convolution identity

p(R,R';8) pr(R,R1;T) p(Rl,Rg;T)....p(RI\I,RI;T) dR;:....dRas
,  (8.12)
= / gS(Ri-Bar) R, ....dRyy

where S is the Action and 7 = U\'[%-l—) corresponds to an higher temperature.
The simplest algorithm to make a simulation of a Feynman path-integral, for

the case of Boltzmann particles, exploits the mapping to a classical system(®,

corresponding to the following choice for the Action

Iy 2
R;—Ri_
S(Ri..Rar) =Y (__#_4_;_1_)*

=1

+ 7 V(Ry), (8.13)

(with A = k% /2m) where a system of quantum particle is represented by interacting
ring polymers, necklaces of N beads connected by springs. The distribution of
beads describes the delocalization of the quantum particle around its ”classical”
position represented by the center of mass of each chain. As a result of the hard
core repulsion among particles and of the rather large density in liquid and solid
Helium, the probability of exchange is low, and only a few percent of the chains are
cross-linked (see refs.[1,60]), and the major part of paths are rather compact. The
idea is that, as an approximation, each chain can be represented by means of its
center of mass position and of the distribution of beads around it. The extension of
this picture to the ground state leads to the SWF form (8.1,8.2) where the chains
centers of mass in PIMC are represented by the shadow particles, which are in
essence pseudoclassical variables which represent the combined effect of quantum
delocalization and of the excluded volume due to hard core repulsions. Shadow
particles play the role of a "quantum correlation hole” that particles carry around

them.
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The other motivation[*! makes reference to the Diffusion Monte Carlo (DMC)
method (see the article by Schmidt and Kalos in ref.[66], chap. 4). We shall show
here, following ref.[1], that the Green’s function Projector technique can be em-
ployed to give a more precise justification of the SWF form, opening the way to im-
provements and generalizations. When one writes the time-dependent Schrédinger
equation in imaginary time 7 = 7f, one can propagate the wave function from one

"time” 7 to a subsequent interval 7/ = 7 + AT by means of
(R, T+ A1) = /G(R,S,AT) B(S,7) dS = Y an Un(R)e™En=Fo)™ - (8.14)
where '
G(R,S,A7) = (R|e™>TH[8) = (R|e-27[T+V) g} (8.15)

is the short time approximation to the Green’s function (or propagator). In the
DMC technique one iterates many times the relation (8.14), starting from an initial
wave function ®(R,0), and projects it until, after a time long enough, one ends
up with the ground state.

The idea now is to use as a variational ansatz the wave function ® which is
obtained just after the propagation over one time slice in eq. (8.14); one can safely
approximate the propagator (8.15) inserting some variational parameters, ending
up with a variational wave function that has a greater overlap with the ground
state than the initial one. Starting from the simple Jastrow form

¥y = &(R,0) =[] folrij),
i<j
as initial choice and performing just one iteration by means of eq. (8.14), one
obtains a wave function of the shadow form (8.1, 8.2), when one takes for the
Green’s function (8.15) the following approximation
G(R,S) = p(R) [[ e =t y(s), (8.16)
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(where now C is a variational parameter) obtained by "dressing” with Jastrow
terms ¢ = J];; f1(ij) the Green’s function Go(R,S) =< R|e 27T|S > of the
non-interacting system. Comparing the expression (8.1) to (8.14) after these sub-

stitutions one has

SDPP(R) = o(R) and pss(S) = ¢(S) Wy(S),

that employing a McMillan pseudopotential (b/r)® in all the Jastrow terms
amounts to rescale the parameter b,. In the original work of Kalos and Vitiello®’]
only McMillan pseudopotential were employed for both uy, and uss. It was sug-
gested by Reatto 31] on the basis of the PIMC analogy that the bead-bead in-
teraction 7V could induce an effective potential of the same kind, with an at-
tractive part, among centers of mass of the different polimers, that is to say the
pseudopotential u,, for shadows must have also an attractive part. One possi-
ble parametrization is the simple rescaling of the Aziz potential present in the
hamiltonian, like in

ugs(8ij) = Y—(djfil, (8.17)
where d and A are variational parameters. This was tested by MacFarland, Vi-
tiello and Reattol®?] and the wave function with the attractive pseudopotential
of eq. (8.17) was shown to be superior to the sirﬁple McMillan form. We sum-
marize in table 8.1 some results for the SWF with both the parametrizations at
various densities, from the liquid density at standard pressure (po® = 0.365),
to the equilibrium freezing density (po® = 0.438) and the equilibrium melting
density(po® = 0.491) (as indicated by GFMC workl®]) and one value of density
corresponding to the high pressure solid (po® = 0.55). In the same table we also

show some results obtained by us as a test of our code. For comparison we show

in table 8.2 values of the total energies and potential energies at each density as
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obtained from GFMC workl(®:12],

pa? b, C par. of uss < E/N > ref.
0365 113 40  (a) 120, 9  -6.24 (3) [30]

” " ” o -6.20 (2) present work

» » » » 140, 5  -6.06 (3) [30]

” 7 7 o7 -6.03 (2) present work
0.365 1.13 5.5 (b) 10.5,0.94 -6.52 (2) present work

” 1.12 ” o7 -6.62 (2) [32]

” 7 7 (b) ? -6.53 (2) [63]

»” OPT 55  (b) 10.5,0.94 -6.69 (36]
0.438 1.12 4 (a) 1.55, 5 -5.36 (3) [30]

” 7 ” oo -5.34 (2) present work
0.491 1.10 4.8 (a) 1.70, 5 -5.00 (6) [30]

” ” 7 o7 -4.97 (2) present work
055 110 57  (a) 135, 9 -3.53(3) [30]

” ” ” oo -3.58 (2) present work

Table 8.1

Optimal parameters and variational energies for SWF at various densities. For ss pseudopoten-
tial (a) is the McMillan parametrization with b,, (b) is the attractive pseudopotential (8.17).
OPT indicates an optimized form of the correlation. Energies in Kelvin and length in 0=2.556 1.

pa? < E/N > <T/N > <V/N >
0.365 712 (3)* 14.47 (9)* -21.59 (9)**
0.438 -6.56 (6)* 20.1 (2)** -26.7 (1)**
0.491 -5.61 (3)* 25.70 (7)** -31.31 (7)**
0.55 -4.23 - -
0.559 -3.87 (3)* 31.8"* -35.7 (1)
Table 8.2

GFMC results for *He at various densities: equilibrium density, freezing density, melting
density and two values of the crystal density. The fourth row is a result interpolated from
the energy curve fit of GFMC results given in ref.[6]. Energies are in Kelvin. Results
marked * are from ref.[6]; * from ref.[12].
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We want to point out here that the need for a pseudopotential us, with an
attractive part, of the form indicated in eq. (8.17) can be also derived from the
DMC argument, by making a better approximation for the propagator (8.15) than

the free particle one. A step further is given by the approximation
<R‘e—Af<T+"> |s> ~ (R|e>7T 27V |S) = Gy(R,S) e V54, (8.18)

where the approximation consists in neglecting the commutator [T, V] (see eq.
- 4.29 in the article by Kalos and Schmidt in ref.[66]); in fact this is the same
approximation used in deriving the simple primitive action of eq. (8.13). Now
one dresses as before this approximate propagator with Jastrow correlations and
applies it to the initial Jastrow wave function. One ends with a Shadow correlation

of the following form
By, =e UYos = eV 8/ (8)B(S,0). (8.19)

The resulting pseudopotential is the sum of the Aziz potential with two repulsive
terms of the McMillan form, and has an attractive part. One can approximate this
pseudopotential writing down the simple parametrization (8.17), where another
variational parameter d has been introduced to take into account the shift of the
minimum in uss caused by the addition of repulsive terms. As a matter of fact
it turns out from VMC that the optimal d is lower than one, meaning that the
minimum occurs at larger distances.

As we shall comment in depth later, the presence of an attractive part in us,
is very useful in inhomogeneous systems, where it allows for the description of self-

bounded systems without the need of introducing a confining external one-body

term.

8.2 SWF and the solid phase
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One important feature of the SWF is that they allow for the description of both
liquid and solid phases within the same functional form. We want to make here
some remark about this property.

As it was already stated in sect. 7.2 one can break the translational invariance
and obtain a crystal phase even with a simple Jastrow wave function, but this
procedure will give too high an energy and a crystal of the classical type, with
very localized particles, that doesn’t correspond to the quantum crystal. In SWF
the crystal phase is obtained at a suitable value of the parameter b, that makes
the shadow particles crystallize. The spontaneous crystallization of the shadow
component in turn induces the crystallization of the Helium atoms into a quantum
crystal; particles move around fixed positions provided by the localized shadows,
but have a greater mean square displacement due to the gaussian coupling. This is
confirmed indeed by the measurement of the order parameter (defined as the first
fourier component of the one body-density, or first Bragg reflection, and measured
by means of formula (3.34)) of both the components and from the values of the

corresponding Lindemann parameters

7= ;1; <—;V— Z(rf - Ri)2>, (8.20)

=1

where R; are the lattice sites and a is the nearest-neighbour distance. The crystal-
lization is still due to excluded volumes effect like in the classical case, but in the
quantum crystal it is not the true hard core diameter of the potential responsible
for that but the much higher effective excluded volume represented by the shadow
particle.

One can verify that freezing is indeed driven by shadows crystallization, by
comparing the values for the optimal choice of b, and that obtained from the

freezing (and melting) parameter of a classical system of particles interacting with
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pa® = 0.365 pad = 0.438 pa® = 0.491 po? = 0.550

n=06 1.811, 1.822 1.707, 1.714 1.643, 1.650 1.582, 1.589
n—=9 1.540, 1.555 1.449, 1.464 1.395, 1.458 1.343, 1.357
n=12 1.466, 1.507 1.379, 1.397 1.328, 1.366 1.279, 1.295
Table 8.3

Values of the freezing and melting parameters byrecz, bmer: (in scaled units b/0) at various
densities, for the potential (b/r)". They have been calculated from the freezing parameters
for soft sphere potentials published by Hoover et. al., ref.[67].

(b/r)" potential. This comparison is shown in table 8.3 for various densities. We
also verified in some exploration of parameters that the value of b, at which the
system stays in a crystalline state in VMC simulations is very close to the value
expected for the classical freezing of shadows. One can always obtain both phases
at any density, but whether the system remains solid or becomes a liquid depends
on the value of the optimal parameter 6%?* (for which we have the minimum of the

energy), being higher or lower of the critical value for shadow crystallization.

The value %' depends on the density, as it will be shown in detail in sect.
9.1. As a consequence, the main disadvantage of this SWF parametrization is
that, because the densities of the solid at melting and the liquid at freezing are
different, one needs different values of the parameter b, for each phase. This poses
problems if one wants to describe an interface between the liquid and the solid
phases at coexistence in that one must use different values of the parameters,
namely different wave functions, in regions of different density. Similar problems

arise in the treatment of clusters or free surfaces. A way out of this problem will

be described in sect (9.1).
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We want to make here a remark about an observation made by Ceperley and
Schmidt in ref.[1], stating that SWF in the solid phase (the realization made in
a VMC simulation) are equivalent to a Nosanow wave function. Comparing the
expressions (7.27b) and (8.10b) for the local energies due to the one-body term
(set a = 2C) we see that this is indeed true provided that we localize both shadows
R and L strictly on a lattice site; this limit is reached only when b, — oo, that’s
usually not the case. It is true only in the sense that they both break translational

symmetry one by construction and the other spontaneously.

To be more precise, once the shadow have crystallized, they provide a rigid
reference frame and ®(R) of eq. (8.2) describes the one body density of a crystal,
in that |®(R)|? = e~ ' is not translational invariant any more if measured in this
special reference frame (which is not the reference frame of the simulation box, in
which for small enough systems the crystal center of mass can freely move) and

corresponds to an external periodic field Viz+.

The difference between the SWF description of a solid and the Nosanow one
lies in that the lattice sites are fixed (with respect to the simulation box) in the
latter and coincide with equilibrium position” for Helium particles while in SWF
Shadows also move around some lattice sites (apart for trivial translations of the
crystal center of mass with respect to the simulation box) and the baricenter of
R and L position provides the positions around which particle move. Physically
this means that the ”quantum correlation hole” represented by shadows fluctuates
around the lattice sites in the solid phase. This behaviour represents true correla-
tions in the system, as it has been shown in GFMC simulations on quantum solids,
where the walkers representative of the wave function show a similar behaviour!®.
The average of the center of vibration for particles coincides with the lattice sites

showing a motion around them.
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In principle one can also observe exchange in SWF due to the preserved Bose
symmetry, but actually it’s hopeless to observe exchange in VMC simulations with
the usual sampling driven by |¥|?, even if exchange moves are explicitly coded, and
particular sampling techniques are needed to this scope, similar to that employed
in classical simulations for sampling rare events*'l. This feature might explain
why in the simulations reported in ref.[30] no condensate was observed in the solid
phase, although theoretically it was expected that SWF give a finite non zero value

even in the solid phasel®!].

8.3 Angular correlations in SWF

Let us discuss in this section the angular correlations embodied in the following
trial wave functions:
a) simple Jastrow-McMillan form

b) the same plus triplet correlations

c) SWF with McMillan u,, and Aziz rescaled as (8.17) for us.

The energy upperbounds provided by the above trial wave functions are-5.69
(2) K for (a);6.68 (1) K for (b)s6.52 (2) K for (c), where the number in parenthe-
ses indicates the error in the last digit (details of the simulations are given below
in this section). It follows that the SWF form has built in some effective three
body correlations among the particles; this is not unexpected, as integrating over
the shadow particles must give rise in principle to many-body correlations among
particles although their importance depends from the detailed form of the pseu-
dopotentials involved. Due to the one to one correspondence between shadow and

particles it’s not easy to see which diagrams in the cluster expansion contributes
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to three body terms; the simplest of these diagrams is the one in which three

particles interact through their shadows.

In order to study the angular correlations built in SWF, we measured the
following angular distribution functions, P(6,7y1 < E,m02 < R) obtained sitting
on a particle 0 and measuring the probability distribution of the angle between
the position vectors of two other particles, say 1 and 2 that lies inside a sphere of
radius r centered in 0, and the probability distribution of the angle between the
position vectors of other two particles comprised in a spherical shell Ry <7 < R»
P(0,R; <ry1 < Ra; Ry < rpz2 < R,). They are related to integrals of the three
body distribution function g(3)(r01 ,Ty2). We analyzed the configurations generated
in VMC and dumped on tape for the three cases a) b) and c). In a) we used
the parameter b = 1.21¢ to perform a simulation of 30.000 MCS, saving 6000
configurations; in b) the same McMillan correlation was supplemented by a triplet
term of the form (7.16); the parametrization (7.20) was employed together with the
triplet parameters values shown in tab. (7.1) dumping 5000 configurations out of
20.000 generated. The SWF with the parametrization (8.17) and parameters d =
0.94 and A = 10.5K for the shadow-shadow correlations and b, = 1.130, C =55
for the other were used in a simulation of 120.000 MCS saving 3000 configurations.
The simulations were planned to achieve roughly the same statistical error in the
energy; the difference between the number of steps used for J+T and SWF is due
to the larger variance and autocorrelation in the latter case. We show in fig.8.1the
overall shapes of the angular distribution P(6,Ry <7p1 < Ra; Ry <rmp2 < R,) for
five selected shells inside the first peak in the gpp for the three cases considered;
in fig. 8.2we compare the three angular distributions obtained in a) b) c) for shells
lying below the maximum in gpp, on the maximum and between the maximum

and the first minimum.
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Figure 8.1
The angular distribution function P(6) (see text) for five selected shells (r; <r<rz) inside
the first coordination shell for a) McMlillan trial wave function b) McMillan plus Triplets
¢) SWF with attractive shadow-shadow pseudopotential. The selected shells are (0,1.1),
(1.1,1.2) (1.2,1.3), (1.3,1.4),(1.4,1.5)
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Figure 8.2

Comparison of the angular distribution functions P(#) for the three wave functions: MeMil-
lan. solid line, NcMillan plus Triplets, dotted line and SWF with attractive shadow-shadow
pseudopotential, dashed line. They are displayed for three different shells: a) (0,1.1) before
the first peak in g(r); b) (1.3,1.4) in the region of the peak; ¢) (1.7,1.8) between the peak
and the first minimum.




We see that the main difference between a) J and b)J+T is for shells before the
main peak in g(r) with a peak around 100 degrees for a) and 70 degrees for b) that
signals triplet formation at low r; the SWF form recovers most of the correlation
in this region; At larger distances there is a small difference in the height of the
peak at 50 degrees that the shadow form c) overshoots. Results for SWF with the
McMillan correlation is u,s are intermediate between those presented here c) and

the jastrow case a).

8.4 Notes on SWF optimization

Tt has been stated by Ceperley and Schmidt(! that the minimum variance principle
for the local energy is not valid for SWF. We want to show here some considerations
related to the optimization of this kind of wave functions in VMC simulations.
The argument in ref.[1] is that even when the true ground state is used as
initial guess in the variational procedure derived by (8.14), the noise due to the
integration over shadow variables causes always a finite value for the variance
of the local energy. Fist of all one has to distinguish between the local energy
previously defined in eq. (8.9) and the true local energy
E,(R) = /EIOC(R,SR,SL) ds®ds”, (8.21)
which is expressed as an integral over shadow configurations compatible with a
fixed particle configurations, and clearly is not measured in actual VMC simula-
tions. The minimum variance principle strictly holds for this local energy, provided
one takes enough MC steps in performing the average (8.21) for an ensemble of
particle configurations, in order to reduce the noise due to shadow fluctuations.

What one can actually measure in VMC simulations is the variance of the

local energy (8.9) that contains also the effect of shadow fluctuations, and nothing
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is known for this case. We shall show in the following that also the variance of
this estimator is minimum for the optimal wave function, but only with respect
to some parameters in the wave function, namely those explicitly contained in
the local energy (8.9). We performed some parameters explorations around the
optimal solution at the solid density (po® = 0.55), using the McMillan form for
the u,, pseudopotential. We varied b,, bs and C around the optimal parameters,
measuring the energy < E/N > and the variance of the local energy Var(Eloc)
given by eq.(8.9). a well defined minimum is found in both of them, centered
around the optimal parameter, when b, is varied and also when C is varied (see
fig. 8.3), on the contrary no minimum at all was detected in Var(Eloc) with
respect to variations of by, even if energy has one (see fig. 8.4). Our conclusion
is that one can resort to correlated sampling methods, described in chap. 7, to

optimize the wave function only with respect of variational parameters b, and C.

We found that the method without reweighting is particularly convenient in
case of C, due to the presence of the gaussian correlation that make the weights
(7.28b) to vary widely. One alternative choice is to perform a simulation with a
Markov chain guided not by |¥|? but by a wider function, like in classical umbrella
sampling methods(*?*}], In particular as (b,)"» and C are linear parameters in
the pseudopotential a simple efficient optimization procedure like that used in
ref.[61] could be employed to optimize those parameters in one single simulation,
at fixed b,. Correlated sampling is of no use in optimizing b, as the variance
has no minimum, and the reweighting method applied to the energy fails; the
unreweighted energies are always constant as u,, doesn’t enter in the expression

of the local energy (8.9).

At the present stage it seems that the only way to optimize the wave function

with respect to b, is to actually perform a different simulation for each value of
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Figure 8.3

We show how (a) the variational energy (per particle) for SWF and (b) the variance of the
local energy (per particle) changes on varying the parameter C in the wave function. The
sizes of the symbols are of the order of the statistical error.
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Figure 8.4
We show how (a) the variational energy (per particle) for SWF and (b) the variance of the

local energy (per particle) changes on varying the parameter C in the wave function. The
sizes of the symbols are of the order of the statistical error.,
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the parameter b,. One possibility, still unexplored, is to measure of measuring the

overlap of |¥; > with the ground state |GS > by means of

<‘I}t|GS>_ 0'%-

-1-—E 8.22),
< U | Ty > < Uy |9y > (8.22)

taking into account also the variation of the normalization with the parameter
varied, and to see if this estimator is minimum for optimal wave functions. The
difficulty is that one needs to estimate < W;|¥,; > which is analogous to the
partition function in classical simulations, and can’t be sampled with the usual
Boltzmann transition probability. Techniques similar to those employed in free

energy estimation would be needed.

8.5 Integral Equations for SWF

Exploiting the mapping to a classical system of flexible molecules, Reatto and

([31]

Masserinit®*! derived integral equations based on Chandler’s RISM equations for

molecular fluids!®8.

We derived a different set of integral equations(®® by writing each pair cor-
relation function g,3 as a sum of different terms, defined in terms of diagrams
contributing to their cluster expansion with an appropriate definition of points
and lines, and resumming some diagrams with topological reduction techniques to
obtain integral equations. In the following we adopt a different notation from our

work in ref.[35] in order to use the same standard notation as in Part I, chap. 3.

In particular we draw the reader’s attention to the fact that in this section
the symbol f,3 doesn’t indicate a correlation e™"*? (Mayer e-bond) but denotes

the Mayer f-bond f,3 = e™"*# —1 following a convention widely used in statistical
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mechanics. ©-bonds are defined as the correlation Particle-Shadow
Ol — sif) = ="

We examined both the case of SWF for a Bose homogeneous system given by
equations (8.1) (8.2) than the case for a Fermisystem defined simply by multiplying
equation (8.1) by a Slater determinant ®rg of plane waves.

The cluster expansions of the distribution functions for the SWF are based on
the reference state ¥ ;r which is 1 for Bose systems and U rrp = ®pg for Fermi
systems. The cluster expansion of a particular distribution function is obtained
by expanding it in power of fp,(z) = e7*r*(z) — 1 and fss(z) = e %2 (z) — 1.
Each term of the cluster expansion is called cluster term and is more conveniently
represented by a diagram made up of bonds and points. The limitation due to the
one to one correspondence between shadow and real particles in eq. (8.2)leadstoa
variety of topologically different points in the cluster diagrams and, consequently,
to a quite involved HNC scheme which, however, can- be handled numerically.

Bose case

In the Bose case one must distinguish five types of bonds in correspondence
to the five functions fpp(z), fii(z), fa(), ©F(z) and ©L(z), where f]} and oF
come from ¥; while f£ and ©%(z) from ¥;. Although I — fL and OF = ok,
diagrammatically they need to be distinguished. Correspondingly, there are eight
different types of points:

(i) four types of particle-points, denoted as p; (i = 0,3); po is reached by fpp-
bonds only (p-points of diagrams (1a) and (1d)), p1 is also reached by OF
(p-points of diagrams (1b), (1e) and (1f)), p2 by O©L and ps by both OFf and
©L (p-points of diagram (1c));

(ii) two types of right (left) shadow-points, denoted as s%(E) (i = 0,1); SUR’L is
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reached by fﬁ(L) only (s-point of diagram (1b)), and sf(L) is also reached by
OF(L) (s-points of diagrams (1c), (1e) and (1f)).

The following diagrammatical rules result from the properties of the cluster ex-

pansion:

(a) a point p can be reached by an unlimited number of f,,-bonds;

(b) a point sTL) can be reached by an unlimited number of fﬁ(L)—bonds. An
f.s-bonds can never join s® with s points;

(c) fpp-bonds are never connected to s-points as well as fss-bonds are never con-
nected to p-points;

(d) ©FL) connects a p-point with its associate sT(L) _point; there may be at most
one OFL) reaching s™%) and at most one OF and one O connected to a
point p.

Few examples of cluster diagrams of the nodal (diagrams (la), (1b) and (le)),

composite (diagram (1c)) and bridge (diagrams (1d) and (1f)) type are displayed

in Fig.8.5. One can see from diagrams (le) and (1f) that triplet correlations are
induced by pair correlations with shadow particles.
The diagrammatical rules listed above lead to the following HNC equations:

we have the nodal equations corresponding to the usual Ornstein-Zernicke equa-

tions
Yoi8; (Z12) = O Acysy / (95.8; (m32) — 75.8; (232) — 6106j0)
€r Oy (823)
(gaier(@13) — bivbro) dxs,
where the indices a;,3j,... denote the particular type of external point of the

nodal (7y) or distribution (g) functions. The greek letters e, f3, ... are here used to
indicate p, s® or s, whereas the latin letters are used for the subindices and run

from 0 to 3 for p and from 0 to 1 for both s and st. The matrix A embodies the
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Fig.8.5-Cluster diagrams contributing to gpp(rij) for SWF. The solid, dashed
and wavy lines represent fpp, fss and © bonds respectively. The particle vari-

ables are represented by circles and the shadow by squares.
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diagrammatical rules. It is given by

P P P P
— . — p o0 O 0@
Ay =Ty= |0 0 0 0], (8.24)
p p o o
_g. (P 1
ALL:ARH:Si]: 1 0 3 (825)

and it vanishes elsewhere. Here p denotes the number density. The 64 distribution

functions ga,,(z) may be written in the following highly compact form (closure

relations):
gao,ﬁo(m) = (1 + 5aﬂfaa(ic)) esaﬂ'BU(m), (826)
ga;,@j( gaoﬁo Z H &i(n)B;(n ’ (827)
<ij> n

with the functions Sa,5,(z) given by

Saiﬂj (:z:) = (5(“{171.5‘3}'31 -+ 5aisl‘5ﬁjp1) @(m) + ’Yafﬂj(f”) + Eaiﬁj(m)’ (8'28)

where the functions E,,g;(z) denotes the bridge (or elementary) diagrams. In
€q.(8.27) the summation ), is extended over all the possible products of S-
functions, with the exclusion of S,,3,(z), under the conditions » i(n) = ¢ and
3" j(n) = j, where each set {i(n)}, {i(n)} may contain the values 1 and 2 at
most once. For instance, i(n) = {0,0,3} or {0,1,2} are allowed combinations,
whereas {0,1,1} is not. Such an algebraic rule ensures that the superposition of
subdiagrams S, satisfies the diagrammatical rules (a) — (b).

Considering the symmetry 745 = 7sa and that f& = fL and of = of,
one ends up with only 21 different distribution functions. Therefore, the HNC

scheme requires the solution of 21 coupled integral equations, which is a completely

feasible numerical problem. In fact the main difficulty with this method is on the
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approximation of the bridge diagrams, which are expected to be not negligible.
However, it should be noted that, already at the level of HNC/0 approximation
(Eap = 0), the effect of the induced triplet and higher order correlations is taken
into account (see diagram (le)).

Following ref.[23] a reasonable approximation for the bridge functions may
consist on taking Ejqp, = .sEI(,ﬁg,n y Esysy = tE,E‘jL(, and Eqg, ~ Et(j.)ﬁ, for (aiff;) #
(popu ), (susy) where the elementary diagrams El(jg are calculated using the g —
1 bonds. The scaling factors s and t are calculated by equating the Jackson-
Feenberg (JF), the Pandharipande-Bethe (PB) and the Clark-Westhaus (CW)
kinetic energy expectation values among themselves.

The full particle-particle distribution function gpp(z) is obtained by summing

up all the distribution functions of the pp-type:

gpp(@) = Z pip; (T)- (8.29)

1,j=0,3

.
Fermai case

In addition to the bosonic links, previously discussed, one has to include
also the fermionic exchange link 3/(kpz), where kp is the Fermi momentum and
I(z) = 271(x) is the Slater function. This link connects only the points p; among
themselves. As in standard FHNC theory!®®:™"] the points p; reached by exchange
lines (at most two) need to be distinguished from those connected to bosonic bonds
only. |

We denote such points with e; or ¢; whether the related exchange loop is closed
or not. Obviously, the exchange loops in any cluster diagrams are always closed.
However, as it is well known, FHNC theory introduces subdiagrams which may

have open exchange loops and that is where the point ¢; come in. The subindex ¢
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in both e; and ¢; runs from 0 to 3 as in p;. The extra-diagrammatical rules due
to the exchange bonds trivially follows from FHNC theory.

The nodal equations have the same structure as in eq. (2.1). The indices
a@;,Bj, ... run here over a larger class of points, namely p; (i = 0,3); e; (i = 0,3);

ci (1=0,3), s (i=0,1), st (: =0,1) so that 4 is a 16x16 matrix, given by

12 4

T T 0 0 0
T 0 0 0 0
Aag=|0 0 T 0 0|, (8.30)
00 0 S 0
00 0 0 S

where the 4x4 matrix T' and the 2x2 matrix S are given in eqns. (8.24) and (8.25)
respectively.

The distribution functions g4, (z) have the same structure as in eqns. (8.26)
and (8.27). In addition to the 21 distribution functions 9pps 9ss, gps of the Bose
case, there are here 38 new functions having e or ¢ as indices, namely Gpes Jees Jee
and g.s. The explicit expressions of these distribution functions can be trivially
obtained by generalizing eq. (8.26) to the Fermi case by using standard FHNC
theoryl™! and will not be reported here for the sake of brevity.

The above FHNC scheme for SWF, although feasible, is quite involved nu-

merically.
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Chapter 9

Generalizations of SWEF

9.1 SWF for inhomogeneous systems

The optimal values of the variational parameters b,, C, and b, vary with the
density of the system. As we can see in figure 9.1 where the optimal parameters
determined in ref.[30] are shown, the dependence of b, on the density is roughly

linear and can be represented by
by = b\ +b{p, (9.1)

with ') different from zero, and similar relations hold for the other parameters.

1.16 T T T T[T T 1
- 7 Figure 9.1
1.14 - ] Variation with density of the optimal pa-
‘ L A - rameters by, C and b, for standard SWF;
,.DQ. 112 T A —E data from ref.[30].
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In the case of Jastrow wave functions it is known that b in the McMillan
parametrization varies as 1/p® for a Lennard-Jones potentiall®” and also for the
Aziz potential this scaling property is approximatively valid/?!. The scaling of « in
the Nosanow wave function is known®” to be a ~ p(2/3). Thus the linear scaling

of figure 9.1 is somewhat surprising.

We have already illustrated in sect. 8.2 the difficulties that arise from the
change of variational parameters with density if one wants to describe a solid-
liquid interface. Similar difficulties are met if one studies the free surface of the
crystal and also when one studies small clusters there are big variations of the
density profile, and the usage of SWF with values of the variational parameters
taken optimizing the homogeneous phases, at a suitable average density, as it was

done in refs.[71,72] is questionable.

An inhomogeneous system is characterized by a one-body density which is
not constant in space, and could be considered as composed by many small ho-
mogeneous regions of density given according to the density profile. In describing
such a system one has two problems: the optimal wave function parameters of
the corresponding homogeneous system should be used for each subregion, and

moreover one must determine the density profile itself.

In the usual simulations with Jastrow or Jastrow plus Triplets wave functions
one parametrizes the density profile by imposing an external one-body density.
This is necessary for system with one free surface, like clusters or surfaces as the
pseudopotentials in the Jastrow factors are purely repulsive and the external one-
body density is needed to confine the system. Its parameters are now variational
parameters. For this kind of wave function no attempt has been made to use

pseudopotentials parameters which are density dependent.

A better procedure is to let the system determine self-consistently the density
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profile and to use density dependent correlations that implies a measure of the local
density in the simulation. Considering a solid-liquid interface, a SWEF with density
dependent u,, of the McMillan form can be safely employed; on the contrary, to
describe a system with free surfaces one must use the parametrization given in eq.
(8.17) in order to have a bounded system.

Following a suggestion by Reatto [36] we have considered a parametrization
of the SWF, in which the shadow-shadow pseudopotential u,s depends on the
local density and have tested it on the homogeneous system in order to check its
feasibility and to refine technical details.

As a first step to a procedure in which all the three parameters are varied we
fixed b, and C to obtain the best compromise in the energy of both the liquid and
the solid phase, and examined only the variation of b, on the Shadow local density
(as Shadow particles are responsible for setting the local density profile).

Consider the SWF given by the equations (8.1,8.2) with the factor
‘Pss(s) = H e—u”(ij)y (92),
1<j

and the pseudopotential given by the McMillan form

sty = () (9.3),

|si — s;

with the shadow variational parameter expressed, like in eq. (9.1) as a function

given by

by(i5) = B + 81 ol (i), (9.4)
of the local density of Shadows as defined by the expressions

(=)

Pioe = 5 Le(i) + ()], (9.5a)

[NCRE
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(8) — 6(7') C(_]) 9.5
Pioc m ( )’

where we the ”local density estimator” that is defined through

N
> ve(lsi—si))
=1

47r/ r? vp (r) dr
0

is meant to measure the local density of shadows around a particular shadow 1.

cr (i) = ) (9.6)

The function v,, is a suitable function used for counting neighbour shadows, which

we choose as the Fermi-function

1

= (9.7)

vy (r)

where 7. is a cutoff parameter and g describes the steepness of the function. We
used a steep function with po? = 3 that is displayed in figure 9.2. In principle

bi‘” ,bgl), p are variational parameters and we will reéuire them to be density-

independent.
1.5 [TT T T[T T[T [TTTT] Figure 9.2
r “0-1 =3 Fermi function v(r) (9.7) employed in the
- . computation of the local density estima-
— 1 — ] tor (9.6). A value po?=3 as been used
\F-'/ - - by us.
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O—lllllllllllll 1]
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r/r.

The estimator (9.6) is based on the fact that for 7, — co the quantity

47 crz r) dr
ey 4 / 9(r)

v 1% ’

N

(9.8)
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is proportional to the average density, giving as result (N — 1)/V when the g(r)
is defined in the canonical ensemble as it is the case for a simulation in a finite
volume at constant number of particles.

In order to measure the local density one wants to cutoff after the first or the
second shell of neighbours, then one introduces the estimator (9.6); notice that
the sum is not restricted to 7 # [ to correct for the bias (N — 1)/N that would
occur in the canonical ensemble.

We verified indeed that the estimator defined as in eq. (9.6) is unbiased and
converges correctly to the macroscopic density in an homogeneous system.

The computation of (9.4) (9.6) can be done at each elementary move in the
Monte Carlo simulation when we need to compute |Winho|2 " and if tables are
introduced to compute v(r) and provided the normalization in (9.6) is stored
in a variable, it doesn’t introduce a substantial computational overhead, as the
distances |s; — si|? are computed anyway at each step. It is convenient to store
the values c(4) in tables that are updated at each elementary move; one can even
update only every few steps with a procedure similar to that employed for updating
Verlet’s neighbour-tables*'.

The estimator defined through (9.6) is the local density at the i-shadow lo-
cation in a given configuration and it fluctuates even in an homogenous system,
around the average macroscopic density at i, and as a consequence if it is used
in (9.4) the resulting parameter b, also fluctuates even in homogeneous systems.
To avoid this, since we want to probe the density profile, that is the mean den-
sity at location i, one can use in (9.4,9.5) the value of ¢(i) averaged over some

configurations like in

(i) = = > ol (9:9)

t=1

and maintained in tables, where M is a number of elementary moves equal, let’s
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say, to ten times the characteristic interval of variation for ¢(z), which is about
2MC S (for 108 particles), so every 20 MCS should be enough.

This should be equivalent to consider a larger cutoff 7. in v(r), and allows to
reduce of one or two orders of magnitude the variance of ¢(z) and b;. As we shall
see later, it is recommended to use (9.9) instead of (9.6) with a larger cutoff in the
computation of b, through eq. (9.4).

However, in all the tests we shall report later, we have used the simpler
expression (9.6) and we have measured the influence of the fluctuations of ¢(i) on
the energy, and the influence of the cutoff . on the determination of the local

density.

Dependence of b; on density.

First we have determined precisely the coefficients ") and bﬁ” needed in equation

(9.4). We fixed b, = 1.12 and m, = 5 to give the best results in the liquid phase
and examined three different values for C, namely 4, 4.8, 5.7. For each value of C
and each of the three densities

po® = 0.365 (equilibrium density),

po® = 0.438 (freezing density),

po® = 0.550 (solid density),
we performed many Monte Carlo Simulations with the standard SWF of equations
(8.1,8.2), changing the parameter b;.

We employed 108 particles and started always from the FCC lattice as initial
condition, running for 10000 MCS (after a suitable equilibration) and monitoring
the values of the order parameter for the first Bragg reflection of FCC as defined
in eq. (3.34). We obtained the energy curves versus b, for the standard SWF
the energy curves show a jump near the critical value of b, predicted in table 8.3

for the crystallization of shadows, except for the freezing density. A remarkable
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point is that the energy curve for the solid displays a true minimum only for
C = 5.7 while in the other cases show a large flat region. This is means that for a
better representation of the solid phase a combined variation of C with density is
required.

The energy curves were fitted by a 3rd-order polynomial (using points of the
same phase near the minimum) and the optimal parameter for each C and each

density was determined; their values are summarized in table 9.1.

pa’ C bort < E/N >  confidence level
0365 40  1.21  -6.17(5) 1.0 131
»” 48 113 -6.13(5) 1.04 1.21
” 57 105 -6.19(3) 0.99 1.10
0.438 40 135  -5.46 (5) 107 143
» 48 128  -5.51(4) 1.21 1.34
” 5.7 1.18 -5.33 (3) 1.11 1.25
0550 40  1.70°  -3.30 (3) 1.50 >3
” 48  1.45°  -3.40(3) 1.35 1.65
» 57 133 -3.44(3) 1.28 1.38
Table 9.1

Optimal value for b, and the minimum energy for SVWF at three densities for three fixed values
of C. Confidence levels are defined as the variation of b, which gives an Energy within two
standard deviations around the fitted energy curve; the statistical error of the simulation near
the minimum is employed in this procedure. The asterisk indicated the mean point of a flat

energy region, not a true minimuin.

From the values of b, determined at the equilibrium and freezing densities, the
coefficients b and b{") in eq. (9.1) are simply found by solving a linear system.
If many other density were explored one could have performed a Least Square

Fit and could have determined how good is the linear variation hypothesis, and

51



confidence interval on the parameters. The parameters needed in (9.4) at each

value of C are reported in table 9.2.

Table 9.2
A it o e parameters 5(®) and b{!)
C bgU) bgl) :freqiz:ilio: (9.1) f(t)r tshbraee diﬁ('ier;nt
values of C.
4.0 0.51 1.91
4.8 0.39 2.02
5.7 0.53 1.46

In Figures 9.3a, 9.3b, 9.3c we show the relation (9.1) for the three values of C

considered; the full symbols mark the optimal parameters found, and the interval

shown with error bars indicates the width of the energy curve minimum, which

was precisely defined as a confidence interval.
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Figure 9.3

Fit of the parameters bgo) and bg” from equation (9.1) for three different values of C. a) C=4, b)
C=+.8, b) C=5.7. Triangles are the optimal parameters b, at cach density for fixed C, displayed
in table 9.1, the error bars are confidence levels (sse text). The circle in a) corresponds to the
optimal value at the melting density, not included in the initial fit. Solid lines correspond to
the values of b(au)avud b(sl) reported in table 9.2.
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It is the interval of values of b, that gives an Energy inside two standard
deviations o<g> from the optimal one. As one can see the fit for C = 4 and
C = 4.8 gives a value of energy in the "flat region” of the energy curve for the
solid. A remarkable event is that for C = 5.7 the line passes also through the solid
minimum. In fig. 9.3a, for C = 4 it is also shown the minimum determined for the
melting density, that one see is in good agreement with the linear relation (9.4).

As a final comment the values for the optimal energy in the liquid phase found
with this parametrization compare well with the optimal found in ref.[30], while
in the solid phase the value is 0.15-0.25 K higher. This could be improved if a

combined variation of C' and b, with density is allowed.

Test of the procedure on homogeneous systems

We did a test of the procedure based on the evaluation of the parameter by ac-
cording to the local density on each shadow computed by eq.(9.6). We selected
the parametrization at C = 4 for our test, as at the freezing density the minimum
in the energy curve is about the freezing parameter for shadows, so this density is
particularly sensitive to fluctuations in the local density estimator.

During the simulation we monitored the instantaneous value and the fluctua-

tion of the average of ¢(i) over all the shadow (of the same kind) in a configuration,

defined as
1 <
e= > ). (9.10)
i=1
As the system is homogeneous ¢(i) ~ N ¢ and var(c(i)) = N?var(c); one can also

compute the average value of b, over the run as
< by >=b + b1 <>, (9.11)
and the variance of the local instantaneous values of b,(17)
var[bs(i7)] = (6!1)? var[c(3)]. (9.12)
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(It should not be confused with the error on < b, > which is related to the variance
of the average < ¢ >, not to var[c(i)].)

The cutoff was fixed at the first minimum in the g(r) at each density, which
is the minimal cutoff to obtain a meaningful evaluation of the local density, and

for all the densities considered it satisfies the relation
rept/® x 1.5 (9.13).

We performed simulations at four densities; the results are shown in table 9.3
together with the average value of the parameter < b; > to which they pertain; in
the same table values of the energy obtained with the standard SWF at the same
value by =< by > are displayed for comparison, and the measured average density

< € > 1s also shown.

po bort < by > T, E.f Erpo <c>
0.365 121 121 037 6.17(5) -6.23(5) 0.3671(6)
0.438 135 134 054 547 (4) -527(5)  0.4364 (5)
0.491 145 146 024  -4.96(3) -4.93 (4)  0.4961 (2)
0.550 170 153 041 -3.28(3) -3.20(4)  0.5313 (6)

Table 9.3

Test of the SWF parametrized with the local density operator (9.5-9.7) by means of the linear
dependence (9.4) of b, on density. The parameters C=4 and b,=1.12 have been kept fixed.
Here we show at each density the results for runs done with this w.{. ELDOa in comparison the
values of energy E,.if obtained with runs at the same density and a value b;=<b,> using the
standard SWF. Here we display also the average parameter bs, the average macroscopic density
< € > and the standard deviation for the distribution of the local values bs(’l,]) (eq. 9.4).
The optimal parameter at each density from (9.1) is also shown.

The average parameters < b, > obtained are close to the optimal one at all
densities but the solid one, in which case it falls anyway in the "flat region” of
the energy. The values for the energy obtained are in fair agreement with the

reference case, within the statistical errors (the worse case being the solid), at all
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densities but the freezing density where a serious discrepancy OCCUr. Moreover
at this density we observe fluctuations of the order parameters larger than that
pertaining to the liquid phase. It seems that fluctuations implying the formation
of crystalline regions occur. The average value of the density < ¢ > estimated is
in reasonable agreement with the macroscopic value. It should be noticed that the
variation of the local instantaneous values bs(1j), indicated by o5, , is fairly large.
This can be responsible for the failure at the freezing density, as with such a large
dispersion of values in the simulation, part of the sample can easily correspond to
b,(17) in the crystalline region. That this is indeed the case was verified with a
simulation with a larger cutoff R = 3.4o, corresponding to the second minimum
in the g(r), which gives a lower dispersion oy, = 0.31, due to the lower variance
of c(i), a good value for the energy Erpo = —5.36 (6) and order parameter

corresponding strictly to a liquid.

Moreover in all the simulations indicated in the table the ”correlation time” for
the energy, estimated with the block variance method of Rahman and Jacucail™!,
is 2-3 time larger then the reference case with standard SWF. This is again due
to the fluctuations of bs(ij) and could be remedied changing the way to propose
moves; insted of an homogeneous distribution in a box of side § one can try a

gaussian probability with a certain width.

The conclusion is that it’s advisable to keep the fluctuation of bs(2J ) around
its average local value as lower as possible adopting (9.9) instead of (9.6) in the
computation of by(ij) through eq. (9.4). This corresponds to adapt the value of b,
to the average local density in one point, not to the instantaneous value of the local
density, which fluctuates even in a homogeneous system and expecially fluctuates
too much in the coexistence region. Too large fluctuations of the estimator pj,c May

be a problem in the coexistence region as they can mask and wash out completely
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the spatial variation of the one body density, that actually determine in each point
the local value of b;. The kind of ”time” average defined by eq. (9.9) is better than
smoothing the fluctuation by increasing the cutoff r., that corresponds to a spatial
average, as the latter procedure looses information about the spatial variations of
the local density inside the simulation cell, for values of cutoff required to obtain
the same reduction of fluctuations.

As a second check we verified at the freezing and at the melting density that
varying the parameter 5\ now in (9.4) one obtains the best energy at the value
0.51 given by the fit. The values showed in table 9.4 confirm that, inside the
statistical errors this is the case; all values in this table correspond to a cutoff
r. pt1/?) = 1.50, so all the precedent observations apply to the freezing density
case.

The last check regards the sensitivity of the results to the cutoff value r.. It
appears that the optimal choice is at the position of the first or second minimum
in g(r), with a lower value of the variance ¢(z) for the latter choice, and a lower
bias in the average value of the density < ¢ >, expecially in the solid case. One
should anyway avoid to put the cutoff in correspondence to the peaks positions.

The results obtained varying the cutoff at the liquid and the solid density are

summarized in table 9.5.

9.2 Triplets in the Shadow part

There are essentially two routes one can follow to generalize the SWF when one
considers the discussion of cap.7 about the GFMC argument given as a justification
of the SWF functional form. One way consists in improving the approximation

(8.18) for the propagator present in the convolution integral (8.14); this is the
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pa® b\ < E/N > <c> <bs > phase
0.438 0.41 479 (7) 0.436 124 Tiquid
” 0.46 -5.01 (6) 0.436 1.29 ”
” 0.51 -5.27 (5) 0.436 1.34 ”
” 0.56 -5.28 (5) 0.435 1.39 »
g 0.61 -5.29 (5) 0.434 1.43 »
” 0.66 -4.14 (4) 0.467 1.55 solid
”? 0.71 -4.05 (4) 0.465 1.60 7
0.491 0.41 "3.52 (6) 0.477 1.32 Tiquid
» 0.46 -4.95 (5) 0.496 1.41 solid
» 0.51 -4.92 (5) 0.496 1.46 ”
» 0.56 -4.94 (5) 0.495 1.50 ”
” 0.61 -4.86 (5) 0.491 1.55 7
Table 9.4

Energies obtained with the SWF emploving the dependence (9.4) of bs on the local de asi ty
operator (9.6), when the value b_(,n) has been varied around the value given by the fit.

subject of the next section. The other way we want to discuss here comnsists in
applying the approximate propagator in (8.14) to a better wave function than a
simple Jastrow form, using as ®(5,0) in (8.14) a Jastrow-Triplet wave function.

The new wave function differs from the standard SWF of eq. (8.1) in that
the integrand in eq. (8.2) contains also a Triplet term W3(S) of the same form as
given by eq. (7.16). Now one has also to optimize the variational parameters A,
R, and w, that might be different from the values in table 7.1 as (8.14) is not an
exact propagation of the wave function, but a variational argument.

We explored many sets of parameters starting with b, =1130,n,=5C =4,
the parameters optimal for a McMillan + Triplets wave function by, = 1.200 m, = 5

and triplet parameters of table 7.1. The Triplet parameters were varied as follows:
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pa? re p1/?) < EJ/N > <Eé> var[c(i)] o5, (27) notes
0.365 129  587(5) 03738 (6) 0.0787 054 < Imin

” 1.50 -6.23 (5)  0.3671 (3) 0.0379 0.37 I min.

” 1.86 -6.17 (5) 0.3566 (3) 0.0208 0.28 IT max.
0550 147 320 (4) 05313 (6) 01121 064 I min.

» 1.80  -3.25(3) 0.4789 (1)  0.0042 012  II min.

” 9.0  -3.20(3) 0.5578 (1)  0.0038 0.2  III min.
Table 9.5

Influence of the cutoff r. on the total energy. the measured average density var[ ¢(i)] the variance
of the local density estimator ¢(i) and the standard deviation for the distribution of local values
b,(ij), at the liquid and solid densities. Last column indicates the cutoff position with respect
to the positions of the minima in the pair correlation function g,,(r).

r¢ in the range from 0.66¢ to 0.930, w from 0.40 to 0.550 and Ao? from -1 to
-14. The parameters C b, were also varied and we tried a value m, = 9 and
variations of b, starting from b, = 1.200. We observed that starting from values of
) greater than 8, the triplet term could interfere in the crystallization properties
of shadows, making them crystallize in a structure different from FCC as the
preferred lattice. Moreover at these values of A we in some cases observe an
enormous slowing of the shadow "dynamics ” in VMC with the appearance of
long-lived ”metastable” configurations during the Markow-chain sampling, that
greatly increases the statistical errors and the computational time. For values less
than Ao? = 8 the best result we obtained is E = —6.38(5)K in correspondence of

the parameters in the following table

b,/o my bs/c M C o? P w/o Ry/o

1.13 5 1.12 5) 4.0 -5.0 0.5 0.8
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which is a marginal improvement over the SWF with a McMillan parametrization
but it is still worse than the energy obtained by using the attractive pseudopoten-

tial (8.17) in standard SWF or than the McMillan+Triplet energy.

In conclusion the insertion of triplets terms in the shadow part is of marginal
importance, and in case it should be done in a consistent way by taking the
correspondent order in the approximation of the propagator which enters the ex-
pression of Gy and in the dressing terms. This procedure however will introduce
also Triplets among particles and will take us to a quite involved form for the wave

function.

Triplets term in the Shadow part can be of some use if one wants to study with
SWF crystal structures other than the close-packed lattices FCC, BCC or HCP,
in which shadows can form a stable crystal structure by means of pseudopotential
of the form (bs/s;;)™ . In particular Triplets term might stabilize open structures
like the Diamond lattice, which can be studied with a Nosanow wave function that
fixes a-priori the lattice structure, but can’t be obtained with the standard SWF

form.

9.3 Systematic improvements of SFW

It is known from work connected to GFMC and PIMC (see refs.[1 ,9]), that the
short-time approximation form of the propagator G, given by (8.18) can be im-
proved. It is our scope here, following an indication by Ceperleyl!l, to briefly
indicate how these improved form reflect on subsequent generalizations of the

SWF analytical form. The next approximation, derived from the usage of the
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Feynman-Kac formula (see sect 2.2 in ref.[9]), gives

— ZU(Tij,Sij;T)

G2(R,S;7) = G;(R,S;T) e < (9.14)

J

COYVECTERTC

<

where u(r;j, s;;;7) is Hhe exact two particle propagator. The next approximation
is |

AT
-5 > Viulrie,sinsT) - Viu(rij, sij;7)
Gs(R,S;7) = G2(R,S;m) e <k  (9:19)

We notice that (9.14) is equivalent to take in addition to the gaussian correlation
between particle and shadows a pseudopotential u,,(|r; — s;|) connecting each
particle with each shadow (different from its own shadow, i.e i # j), which heals
to zero at large separations. It might be that the form of the exact two-body
propagator suggests an analytical form for this pseudopotential. Moreover from
(9.15) Triplets terms arise, which are distinct from those employed by us in the
preceding section since they now involve Triplets among particle and shadows.
Similar terms were also suggested by Reatto et al.l®!!, who analyzed in terms of

Fourier representation the usual Triplet term of a Jastrow+Triplet wave function.

9.4 Extended Shadow Wave Fuhctions

The relation (9.14) suggested us some considerations; the wave function corre-
sponding to it is equivalent to a classical system of triatomic molecules, always
bounded by harmonic interactions, in which now each Helium atom interacts with
all the shadows of the other molecules, and all the shadows interact among them,
with the usual restriction that right and left shadows don’t interact. Now in clas-

sical statistical mechanics one can describe molecules even without the need of a
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binding harmonic interaction; it’s just a first approximation to a potential going
to zero at long distances. We asked whether the same situation is realized here,
namely if a particle shadow interaction of the form

- Z ups(|ri — s5)

®,.(R,S)=¢ (9.16)

where now the sum is not restricted, is able to account for both the "intermolec-
ular” interaction and the ”intramolecular” binding interaction, the short range
part of the ups pseudopotential providing the latter. It is not sufficient that this
happens for the classical system; also the resulting quantum total energy should
behave properly, and our hope was that one could reach a variational minimum
of energy as good as (if not better) than the standard SWEF. The advantage of
this formulation is that now the integral equations greatly simplify with respect
to those presented in sect. 8.4. Moreover in principle one is not restricted any
more to consider shadows and particles in equal number, and can study systems,
ie. crystals with vacancies, inserting an additional shadow, which is not labelled
to any particle and has a finite probability of interaction with other particles so
that it could be easily exchanged.

We explored such wave functions by means of VMC; the local energy is still of
the form (8.10), but now the pseudofofce acting on a particle is due to all shadows.
We employed as a starting point a pseudopotential ups of the form of a gaussian
well, in order to mimic as closely as possible at short range the correlation given
by the harmonic term. From an extensive exploration of parameters, mainly in
the liquid phase, at equilibrium density, and also some trials in the solid phase, we
couldn’t find any substantial improvement over the standard SWF form, although
we could reach the "molecular ” limit previously described. At present we are not

in the position to say if this attempt to represent the harmonic interactions of one
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shadow with its particle in this way is meaningless or whether the form we tried
for the particle-shadow pseudopotential is poor. In particular we still have not
fully investigated the effects of the interaction of one shadows with all the other
particles, since actually with the pseudopotentials employed in our system, in the
limit of particles localized in the wells centered on the shadows, one shadows feels

only its own particle.

In an attempt to obtain analytical hints on the form for the optimal pseu-
dopotential to employ in our formulation, we also derived Euler equations for these
Extended SWF. We do not report here the explicit form of these equations as they
are lengthy and at the end we made little use of them. The cluster diagrams are
characterized by only three different types of points p, s© and s* (which coincide

with py,sft st of the SWF case).

9.5 Integral Equations for ESWF

Due to the fact that the Extended Shadow form of the wave function is symmetric
under the exchange of the shadow variables s;, irrespective of rj, there are only
four independent HNC quantities, i.e., 55, Ypsk = Ypsks Vshsh = YsLsL, Ysh st for
the Bose case plus four extra quantities Ypes Vses Yee, Yee for the Fermi case, that is
obtained here only antisymmetrizing ¢, since here on variance with the standard
SWF case any Slater determinant inside the convolution integral vanishes. This
implies the solution of four (Bose) or eight (Fermi) coupled integral equations, to
compute pair correlation functions and the energy expectation value. Now the
normalization integral coincides with the partition function of a classical three-
component (p,s”,s") system interacting via the (pseudo)potentials Upy = —Inf?

pp?

Ughgr = Ugr,e = —Infgq,
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Upsh = Upsl = —Infps, usrse = 0,, where here the f;; stands for the correlations

in the Jastrow factors. The integral equations to calculate the distribution func-
tions are well known(™ and has been reported in chap 3. The nodal (3.10) and
closure equations (3.12) have a much simpler structure than the corresponding
eqns. (8.23-8.28). Similarly, in the Fermi case, one has a mixture of two Bose flu-
ids (s%,sT) and one Fermi fluid (p), whose FHNC treatment can be easily derived
from that proposed by Fabrocini and Pollsl™! for the case of the Boson-Fermion
mixture.

The energy per particle
B @) W)
N N N’

can be written in terms of the two and three-body distribution functions only. This

(9.17)

differs from the case of the Jastrow-Triplet trial wave function, which requires the
evaluation of up to the five-body distribution functions if the PB form of kinetic
energy is employed. We give in the following the expressions of < Tyr >, < Tpp >

and < V > for the Bose case. The potential energy expectation value is given by

B =2 [ gt (9.18)

where v(r) is the interatomic potential. The kinetic energy expectation value can

be split into a two-body plus a three body term

(T)
2L =T 1
N 2B + T3B7 (9 9)
where

Trp = / [pp top(T)gpp(T) + s tps(r)gps(r)]dr, (9.20)
and the two-body kinetic energy operators ¢,,(r) and tps(r) are given by

h? 2

HE ) =g futlr) + 2wt} (0.21)

IF K’ 2 2

GE () =2 Lutt(r) 4 Zutyelr) = el | (9.22)
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in the case of the JF kinetic energy expression, and by
o (r) =Im ullpp(r) + ;“’pp(r) ) [whpp(r)]” ¢ s (9.23)
tFB(r) =275 (r), (9.24)
for the PB kinetic energy expression. The three-body terms are given by:

R2p?
Ts']f; = “ZT%/ [g}(,z)L,sR(r].Z)rlii) - Q;ilsn(rlzarla) ] u/ps(T12)

(9.25)
ulps(r13) T12 - F13drizdrys,
52
Tiy = “ % f[ P2 g8 (r12, Ras) ulpy(r1z)ulpy(71s)
+ 4p§ g;(fs)s(rliz)rl?t) u,ps(rl.?)u,ps(rm) (926)

+ 4pspp g‘g,?;,)s(l‘m,rw) wlpp(r12)ulps(r13) } fy2: T1adriadris.

Similar expressions are found for the Fermi case.

The three-body terms of eqns. (9.25),(9.26) can be integrated directly devel-
oping the three particle correlation functions in Abe Diagrams, and retaining the
lowest order diagram but could be most conveniently evaluated by first calculating
the quantities [ #13 'LL/(T‘lg)gEi;,Y(I']_z,I‘]_a)dl‘lg, and then performing the last inte-
gration on drys. Such "effective” distribution functions can be obtained by using
HNC theory, as shown in ref. [76] or more recently by Ladol™,

Reliable approximations to the elementary diagrams are needed in order to
obtain a true variational estimate of the energy; three approaches are the most
successfully used for classical liquid-mixtures, that is (i) resorting to some kind
of interpolating closurel™!, or (ii) parametrizing F,g from a suitable reference

hard-spheres system[79=801

, or, finally, (iii) evaluating directly El(jﬁ) with g — 1 links
and then scaling or correcting them at short range in a proper way (81.82] " The
free parameters present in these approaches can be fixed by imposing convenient

consistency relations, satisfied by the exact distribution functions, like for instance

< Tpp >=<TyF >.
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Chapter 10

Conclusions

Various parametrization recently proposed for SWF have been analyzed in terms
of the amount of triplet correlation contained in them. The three body correla-
tion function has been calculated for different geometries in correspondence of the
J+T wave, in standard SWF-MM (McMillan form) and SWF-A (attractive pseu-
dopotential). It has been found that the SWF-A provides triplet correlation with
an angular dependence very similar to those included in the J+T wave, whereas

SWF-(MM) show significative differences.

Several possible extensions of SWF have been studied for the following two
purposes: (1) to generalize the SWF to treat inhomogeneous systems; (2) to op-
timize the SWF type of trial wave functions for homogeneous systems. As far as
the first point is concerned, we have verified that the dependence of the optimal
variational parameter of SWF on the density for homogeneous systems, is linear
to a large extent. In order to study inhomogeneous systems we would like to have
a trial function in which the parameters are density-independent. To this aim we
have numerically verified the possibility of treating the density pin a = ay + aip
as an operator rather then as a number. The results obtained for the parameter
b, in s — s pseudooperator are encouraging.

Possible optimizations of SWF for homogeneous systems may be suggested
by the DMC argument employed in a variational fashion. The suggested im-
provements consist in including triplet correlations between shadows, or between

particles, or between particles and shadows.
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We have studied SWF with Triplets between shadows, minimizing the energy
upper und under variation of the pair - and triplet correlation parameters. It has
been found that the of triplet between shadows do not lead to any significative
improvement in the energy upper bound. An energy upper bound of 6.38 K was
found which is higher than that of SWF-A.

Finally, a HNC scheme for calculating the distribution function and the one-
body density matrix with SWF have been presented and discussed. This HNC
scheme greatly simplifies if SWF are extended to incorporate correlations between
all the particles and the shadows (ESWF'). This class of trial functions allow for
the use of the HNC previously developed for the quantum mixtures and therefore

also for the corresponding Euler equations.
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