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SUNTO

La tesi tratta di sistemi di controllo non lineari, sebbene affini rispetto al controllo,
del tipo

¢= f(q) +ugl(g), u € [-1,1], (L)

dove f e g sono due campi vettoriali definiti su una varieta differenziabile M. Si suppone
che f, g ed M siano lisci (C*).

I primi tre capitoli sono rivolti allo studio di proprieta di regolarita locale del sistema
(4A). T metodi usati coniugano strumenti classici della teoria del controllo ottimale, quali il
principio di massimo di Pontryagin e le sue generalizzazioni note sotto il nome di proprieta
sufficienti del secondo ordine, e tecniche piu specificamente non lineari, che mettono in
relazione proprietd geometriche locali di (A) con strutture algebriche, come ad esempio la
configurazione delle parentesi di Lie del sistema.

Le proprieta di regolarita locale di (A) sono intese come segue: si vogliono trovare
condizioni stabili sulla struttura differenziale del sistema ad un dato punto ¢ di M, tali
che ogni traiettoria di (A) che non si discosti troppo da g e che minimizzi il tempo
necessario a congiungerne gli estremi, sia liscia a tratti. Si vogliono inoltre stabilire delle
limitazioni quantitative sul numero delle componenti lisce, dette archi, di una traiettoria
di questo tipo, e altre, qualitative, sul tipo di controllo corrispondente a ciascun arco. In
modo particolare, si cercano criteri che garantiscano 1’assenza di fenomeni di tipo Fuller,
ovvero di traiettorie minimizzanti il cui corrispondente controllo commuti infinite volte,
in un tempo finito, da un estremo all’altro del segmento [—1,1].

L’ultimo capitolo della tesi & dedicato allo studio di un problema piu specifco, che
ammette una formulazione del tipo (A). Si tratta di un’estensione del classico problema di
Dubins al caso di superfici Riemanniane non omogenee. In termini concreti, si immagina di
controllare, per mezzo del solo sterzo, un mezzo meccanico m che viaggi a velocita costante
su una superficie V. Dati due punti di N ed assegnata a ciascuno di essi una direzione,
si vuole stabilire se essi siano o meno congiungibili da una traiettoria percorribile da m e
tangente alle direzioni scelte. Risultati negativi sono noti nel caso in cui N abbia curvatura
negativa. Il nostro contributo consiste nel mostrare che, viceversa, se la curvatura di N ¢
nonnegativa, per lo meno al di fuori di un compatto, allora, a prescindere dalle limitazioni
sulla capacita sterzante di m, il problema ammette una soluzione. In assenza di un agente
localizzante su N, quale ad esempio una struttura di gruppo di Lie, 'approccio proposto
consiste nel coordinare, in un’ottica discreta, le descrizioni locali del comportamento del
sistema. E nostro auspicio che il metodo si riveli adatto ad ulteriori applicazioni.
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Introduction

Single-input control systems of the type

d=f(g) +uglq), u € [-1,1], (L1)

where f and g are smooth vector fields on a manifold M, always attracted a special
attention among nonlinear control theorists, since they represent a sort of laboratory,
where nonlinear features appear in great purity.

Of course, systems in the form (I.1) are of far more than purely theoretical interest, as
they offer, at least in first approximation, a convenient modeling of many ‘real’ single-input
control systems.

Our attention is mainly devoted to the study of local regularity properties of trajecto-
ries of (I.1). For the moment, let us focus on trajectories of (I.1) which are time-optimal,
that is, which minimize the time needed to join two given points. Our viewpoint is local
in the following sense: Given gy € M, we study whether there exist a neighborhood U
of go and a time T' > 0, such that any control function corresponding to a time-optimal
trajectory of the system (I.1), contained in U and defined on a time-interval of length less
than T', is piecewise smooth. Moreover we are interested in finding an integer k > 1, if
one exists, such that the number of smooth pieces of any such control function can be
bounded by k.

Notice that control functions are defined up to modification on zero measure sets,
and their smoothness should be understood accordingly. A piece of trajectory where the
control is smooth is called an arc. Bang arcs correspond to constant control equal to +1
or —1. An arc which is not bang is called singular. If two bang arcs are concatenated, we
call switching time the instant at which the control changes sign. A finite concatenation
of bang arcs is called a bang-bang trajectory. If U, T and k, with the property described
above, exist, then we say that all short trajectories near qo are concatenations of at most k
arcs. The first tool which is used in order to restrict the family of candidate time-optimal
trajectories is the Pontryagin maximum principle, which states that, if ¢:[0,7] — M is a
time-optimal trajectory of (I.1), then there exists a nontrivial lift A(-) of ¢(-) in T*M such
that, for almost every ¢ € [0, T1,

At) = =A(@)(Df(a(®) + u(t)Dg(a()))

and

(A®); (f +u(®)g)(g(t)) = min (A(2), (f +wvg)(a(t))) <O.

ve[-1,1]

We call extremal trajectory any solution of (I.1) which satisfies the Pontryagin maximum
principle.




As it is well-known (see Sussmann [57]), no irregularity of the optimal control can
be apriori excluded. Fixed any measurable control function u(-), there always exists a
control system of the type (I.1), a time-optimal trajectory of which corresponds to u(-).
The correct question is: What kind of behavior can we expect for time-optimal trajectories
of a generic system? Agrachev in [1] proved that, for a generic system, the union of bang
and singular arcs is a dense set in the domain of definition of any extremal trajectory.
Moreover, he showed that the set of discontinuities of a boundary control, that is, a control
function with values in {—1, +1}, contains generically an isolated point (if it is not empty).
A complementary result by Bonnard and Kupka [12], proves that, for a generic system,
an extremal trajectory has only singular arcs of minimal order. Even without entering
in the details of the definition of minimal order singular arcs, we can say that they are
the easiest to compute, as they are projections on M of the trajectories in T"M of an
explicitly defined Hamiltonian system.

Many natural questions still have to be answered. Fuller first proposed [26] a control
problem, which admits a polynomial formulation of the type (I.1), having a time-optimal
solution corresponding to a chattering control function. We call chattering a boundary
control whose switching times form a monotone convergent sequence. Since then, many
efforts have been made in order to understand whether this phenomenon is typical - that is,
stable with respect to small perturbations of the system — or not. When M has dimension
two, for a generic system, chattering controls do not show up, as was first pointed out by
Sussmann [55]. On the other hand, in big enough dimension the chattering phenomenon
most likely is typical: stable chattering extremals were constructed by Kupka [32], though
the optimality of these extremals is not proved. Other results of the same nature can be
found in the monograph on chattering control by Zelikin and Borisov [65]. In particular,
it is shown that stable chattering behavior appear when the dimension of M is greater
than or equal to seven. As for the stability of chattering in dimension three, neither a
positive nor a negative answer is known.

Another open problem is whether Fuller phenomenon is the worst possible typical
behavior. Proposition 1.5 gives a partial answer to this question, proving that, generically,
an extremal trajectory corresponding to a boundary control is either bang-bang or such
that its restriction to a subinterval is chattering. Therefore, any possible bad behavior
which is stable is built up, in some sense, by chattering modes. This result still allows
very complicated behaviors of the control function, but it can be used to show that, if in a
certain region chattering can be excluded, then a time-optimal trajectory passing through
that region is bang-bang or contains at least one singular arc.

Beside these fascinating theoretical challenges, a finite bound on the number of arcs
of time-optimal trajectories has a clear role in applications, since it restricts drastically
— from infinite to finite dimension — the family of candidate open loop optimal strate-
gies. Moreover, an apriori restriction on the local structure of optimal trajectories is a
crucial step in order to prove the existence and to get a topological characterization of
an optimal feedback flow. Such kind of results can be obtained by means of the so-called
Boltyansky-Brunovsky synthesis, whose idea is that, under certain regularity properties,
an extremal feedback flow is actually optimal. The first attempt in this direction was
made by Boltyansky [11]; after then, his work has been considerably refined (Brunovsky
[18]; Sussmann [54]). One of the regularity properties which plays an essential role in the
construction of regular syntheses is precisely a local upper bound on the number of arcs



of extremal trajectories, even if some recent results open the perspective of enlarging the
analysis to chattering controls as well (Piccoli and Sussmann [42]).

Transversality theory gives us adequate instruments for investigating generic properties
of the system. Let k > 0 and denote by J** the vector bundle on M of all k-jets of
pairs of vector fields on M. Let A be a stratified subset of J>*M such that J; M A
is of codimension larger than m in qu Y , for every ¢ € M. Then, generically, the set of
points ¢ € M such that JqE’k(f,g), the k-jet of (f,g) at ¢, belongs to A, has codimension
larger than m in M.

In particular, if m = dim M, then, generically, Jg‘ ok (f,g) does not belong to A, for every
g € M. Therefore, if we find A such that, for every f, g, and g such that qu’k(f,g) g A,
all short time-optimal trajectories near ¢ are finite concatenations of bang and singular
arcs, and if m = dim M, then, generically, chattering does not occur. More generally,
for any m < dim M, if we can show that no chattering appears near points for which
Jq2 *(f,g) € A, then we actually give a bound on the dimension of the set of points near
which chattering cannot be excluded.

Subsets of J**M are conveniently defined in terms of so-called “non-resonance condi-
tions” on the configuration of iterated Lie brackets between f and g, that is, by means
of relations of linear independence of tangent vectors chosen between f(g), 9(q), [f, 9](q),
I/ 0f, 911(@), [g,1f,gll(q). .. Indeed, Lie brackets bear the intrinsic relations between the
derivatives of the jet. Moreover, they potentially contain all informations about the sys-
tem. In fact, the family of all relations between iterated Lie brackets form a complete set
of differential invariants of an analytic system (see Sussmann [54]).

The origin of the local analysis of (I.1) by means of Lie bracket relations dates back
. to the pioneering work by Lobry [34]. Lobry pointed out that, if f, g, and [f,g] are
~linearly independent at a point gy of a three-dimensional manifold, then there exists a
--neighborhood U of gy such that the set R of points of U which are attainable from gg with
trajectories staying in U, has the following structure. Its boundary is given by the union
of 8U N R and of two surfaces S; and Sy. Each Sj, j = 1,2, is obtained as the support of
_the family of two-bang trajectories leaving qq, staying in U, for which the control switches
from (—1)7 to (—1)7+1,

Sussmann started his analysis of local regularity properties of generic planar systems
[65] with the remark that, if a two-dimensional system is non-degenerate at a point, then
the augmented system where the time is considered as a third component verifies the
hypothesis under which Lobry’s result holds. Even if the existence of an upper bound on
the number of arcs of short time-optimal trajectories of a generic planar system is stated
n [55], the announced sequel of the paper never appeared. Further analysis of smooth
systems is contained in [58], while [59] provides a generic bound for analytic systems. In
the final paper of the series [60], Sussmann proves the existence of a regular synthesis
for analytic systems, under mild non-explosion assumptions. An upper bound for generic
smooth systems in dimension two was given by Piccoli in [40]. For a new and shorter proof
see [16], where many further advances in the classification of planar optimal syntheses are
collected.

The three dimensional situation, as it is reasonable to expect, is more complicated, and
our knowledge of its generic features is still considerably incomplete. Sussmann proves in
[56] that any short time-optimal bang-bang trajectory, near a point at which

fAgNlf,gl#0 (I.2)




and
gNf gl A If £9, 1,9l #0, (1.3)

has at most two switchings. The result is based on the second order necessary condition for
optimality know as enwvelope theory. The theory extends the classical envelope technique
of calculus of variations, and is based on the idea of testing the optimality of an extremal
trajectory by embedding it in a field of admissible ones. A subfamily is extracted among
these trajectories, whose elements have the same length and the same initial and final
point as the reference curve. Therefore, if we can show that at least one of the elements
of the family is not optimal, then neither the reference trajectory is.

In a later work [17], Bressan shows that, if ¢ is an equilibrium point for f and the two
conditions (I.3) hold at g, then there exists a neighborhood U of g such that any time-
optimal trajectory steering a point of U to ¢ is the concatenation of at most three between
bang and singular arcs. Schéttler analyzes the local structure of time-optimal trajectories
far from equilibria of f, under generic conditions [48, 49]. The computational techniques
used in this thesis are similar in nature to the ones introduced by Schéttler, although
the two approaches differ substantially at the level of identification of obstructions to
optimality.

In [31], Krener and Schéttler return somehow to Lobry’s intuition and to the spirit
in which Sussmann applied it to planar problems. Indeed, they consider a system of the
type (I.1) in dimension four, and they analyze the structure of a small-time attainable
set from a non-degenerate point. As a consequence, they derive that, in dimension three,
near a point where (I.3) holds, short time-optimal trajectories are concatenations of at
most three arcs. The same result is proved, for bang-bang trajectories only, by Agrachev
and Gamkrelidze [4], while developing another kind of second order optimality condition,
the so-called indez theory. A third proof of the result, valid for bang-bang trajectories
only, is given by Sussmann in [61], in the framework of envelope theory. A generalization
of the procedure adopted by Krener and Schéttler is contained in a paper by Schéttler
and Jankovic [51], where a local optimal synthesis is derived for trajectories steering to
an equilibrium point g of f at which only one of the two conditions (I.3) holds. A bound
on the number of concatenated bang and singular arcs of a short time-optimal trajectory
steering to ¢ is given by four. In particular it is shown that saturated singular controls are
a typical phenomenon in dimension three.

This thesis shares the viewpoint of [4], assigning to index theory a fundamental role,
and, in some sense, developing its possible means of implementation. The idea behind
the method shares the same spirit as the Pontryagin maximum principle, that is, non-
optimality is proved through conditions which ensure the openness of the endpoint map-
ping. What is done in practice, is the evaluation of the asymptotics of the endpoint
mapping at the reference control function. In the case of bang-bang controls, the compu-
tations take place in a suitable finite dimensional space, and become rather explicit. An
important property of index theory is that it provides not only necessary, but also sufficient
conditions for local optimality (see Sarychev [47] and Agrachev, Stefani and Zezza [9]).
Chapter 1 discusses different formulations of this index optimality criterion. In the same
chapter, it is also recalled another fundamental second order condition for optimality, the
so-called generalized Legendre condition, which embodies the same kind of principle, for
the case of singular controls.

Our first contribution to the understanding of generic properties of three dimensional



systems is the analysis of the case in which one of the two conditions in (I1.3) fails to
hold. Let g A[f, 9] A[f+g,[f.9]] =0and g A[f,9) Alf —g,[f,9]] # 0 at ¢g. Assume in
addition that g A [f,g] AN [f + g,[f + g.[f,9]]](¢) # 0. Then, we are able to prove that
short time-optimal trajectories near ¢ are concatenation of at most four arcs. As already
remarked, a result of this kind can be read as an apriori bound on the dimension of the
(possible) chattering phenomena of a generic three-dimensional system.

The study of order two singularities is started in chapter 3. Some of these singularities
can be treated by refinements of the reasonings applied in lower order cases, and corre-
sponding bounds are eventually given. The complete understanding of codimension two
singularities is reduced to the case in which both conditions in (1.3) fail to hold. We pro-
pose an analysis of the local behavior of the system near points at which such conditions
are violated, by means of some sort of nilpotent approximation, in the same spirit as [5]
and [10]. The approximation which we adopt seems to acknowledge the fact — suggested
by the previous results — that the direction of f has not a special role in determining local
regularity properties of optimal trajectories.

When the dimension of M is equal to four, we give a local finite bound on the number
of arcs of time-optimal trajectories in dimension four, near points at which

7

gALL g NI+ g, al AN —g,1f,9] # 0
# 07
0

gNILG NI + 9,1 gl AN +9,1f + 9,115 9]]]
gNIf g AN =gl gl A =9 f —g.0f9]] #

Actually, this bound, as well as the ones which we discussed for the three-dimensional
.case, is formulated in a more general contest. Indeed, let S be a codimension s submani-
fold of M. We will call manifold-to-point time-optimal problem the control problem with
-dynamics (I.1), where the goal is to connect S with points of M in minimal time.

The results appeared in the literature dealing with the general manifold-to-point prob-
»lem are, up to our knowledge, scarcer than the ones devoted to the point-to-point problem,
where S reduces to a point. The main contributions are given by the works by Bon-
nard, Launay and Pelletier [13] and Launay and Pelletier [33]. The two articles furnish
a classification of time-optimal syntheses for the manifold-to-point problem, when s = 1
and M has dimension two or three, for generic analytic systems. In [33] the analysis is
extended to the case in which the dimension of M is any, still for s = 1. The synthesis is
obtained near all points of S where the system has a singularity of codimension smaller
than three. Another situation which is studied is the case of g everywhere tangent to S,
as it is motivated by applications to control problems for batch reactors (see also Bonnard
and de Morant [14]).

The results which are obtained in chapter 2 hold for source manifolds S of codimension
less than or equal to four, with no restriction on the dimension of M. We are able to give
a bound on the number of arcs of short time-optimal trajectories near all points of S
at which the system has singularities of codimension smaller than 5 — s. The results are
partially new for codimension zero, one, and two singularities, when s = 1, since we require
the system just to be smooth and not necessarily analytic. They are completely new in
all the other cases. )

Second order necessary conditions for optimality are conveniently reformulated, in
chapter 1, in order to make them apply to the manifold-to-point problem.




Beyond time-minimality, another interesting optimality notion for systems with drift
is given by time-maximality. If, for instance, S represents the boundary of a safety region
outside which every trajectory is driven by the drift, and if the scope of the controller
is to make the trajectories stay imside such region, then the strategy which should be
implemented is the one which maximizes the time needed to steer the starting point to
S. A class of trajectories which includes time-optimal and time-maximal ones, the class
of quasi optimal trajectories, is introduced in chapter 1. All local regularity properties are
stated in terms of this class.

Chapter 4 deals with a specific geometric problem, which can be described by a three-
dimensional control system in the form (I.1). Let N be a connected Riemannian oriented
two-dimensional complete manifold and M = T!N its unit tangent bundle. Denote by
7 the bundle projection from M to N. Let f be the geodesic vector field on M, ie.,
the restriction on M of the vector field on TN whose flow, projected on IV, gives the
usual geodesic low. Define g as the vector field whose flow is the fiberwise rotation of
constant angular velocity equal to one. Remark that, since 7.(f(g)) = ¢ and m,(g(g)) = 0,
there is a one-to-one correspondence between admissible trajectories of (I.1) and curves
in N obtained by their projection. The inverse operation is obtained just by pairing
state and velocity of curves in N. If N is the Euclidean plane, then the control problem
(I.1) is classically known as the Dubins’ problem. Dubins’ original formulation [25] is the
following: Which is the shortest curve in the Euclidean plane, with geodesic curvature
bounded by one, which joins two given points, being tangent to two prescribed directions
at that points? In the robotics literature, the system obtained on M models the motion of a
unicycle (or rolling penny) in the plane. Dubins himself determined the global structure of
the solutions of the problem: he showed that length-minimizing curves are concatenations
of at most three pieces made of circles of radius one or straight lines. Further restrictions
on the length of the arcs of an optimal concatenation have been proved by Sussmann and
Tang [63].

Even when N is not necessarily the Euclidean plane, trajectories of (I.1) correspond
to curves in N with geodesic curvature bounded by one, and the time-optimal control
problem can be reformulated exactly in Dubins’ terms. For this reason, we will continue
to call it Dubins’ problem. Notice that, while the original Dubins’ formulation extends
directly to the case in which the dimension of N is any — and, in fact, it was stated for N
being any Euclidean space R"™ —, the same is not true for its expression in the form (I.1).

From the viewpoint of local regularity properties, the system is highly non-degenerate,
since, at every point of M, both (I.2) and (I.3) hold, as it can be easily computed. Our
idea is to exploit what we know about the local behavior of the system, in order to obtain
results of global nature. An important step for this kind of approach is the estimate of
the size of the subsets of M in which a description d la Lobry of small-time attainable
sets applies. We will focus on controllability properties, and we will try, in particular, to
address the following question: Which kind of geometric conditions on N guarantee that
the system

g=f(q) +ug(a), u € [—¢,¢], (I.4)

is completely controllable for every € > 07 If such controllability property holds, we say
that the Dubins’ problem on N is unrestrictedly controllable.

The first example of condition on N which ensures unrestricted controllability is of
topological nature: If N is compact, then the Dubins’ problem is unrestrictedly control-



lable. The result follows from some Poisson stability argument, or can be directly deduced
from a much more general theorem by Lobry on control systems defined by conservative
vector fields [35].

Let us assume that N is noncompact. A geometric quantity which seems to play
a crucial role in the characterization of controllable Dubins’ problems is the Gaussian
curvature K of N. The curvature appears quite soon in the study of the Lie bracket
configuration of the problem; indeed, [f, [, g]](¢) = =K (7(q))g(q), for every point g € M.
This relation suggests the role of K, at least for what concerns the local behavior of the
system. On the other hand, if K is identically equal to zero on N, then N is isometrically
diffeomorphic to a cylinder, possibly degenerating into a plane. A controllability strategy
on a N is therefore obtained by projecting the one valid on the plane, seen as the universal
covering of N. This simple idea of applying strategies which are valid on local or global
covering of the manifold plays a special role in our approach.

The unrestricted controllability property extends to manifolds N on which K tends
to zero at infinity. A key remark, that we use in the proof, is that the uniform decay
of K guarantees the existence of almost flat disks of any prescribed size, which are local
covering of far enough subsets of V. On these disks one can approximate flat control
strategies, and the controllability of (1.4) follows.

An example of Riemannian manifold for which the controllability property fails to
hold is the Poincaré half-plane: If K = —1 and ¢ < 1, then attainable sets of (I.4) are
proper subsets of M, as it was first shown by Monroy-Perez in [38]. Roughly speaking,
this happens because the negativeness of K, not only prevents the geodesics to have
conjugate points, but actually is an obstacle for the controlled turning action to overcame
the spreading of the geodesics.

It is reasonable to try to understand what happens when the curvature of NV is non-
negative. If K > 0 and K is not identically equal to 0, then M is homeomorphic to the
plane R? and, due to Cohn-Vossen theorem [23],

/ KdA < o,
M

where dA is the surface element in M. In particular, K decays at infinity in integral
sense. The same is true, in general, if K > 0 outside a compact subset of N, even if
the topology of N can be more complicated. The integral decay of K may be exploited,
under the assumption that K is bounded from above, in order to estimate the behavior
of trajectories of the system, at a local level. After that, we glue together families of
subsets of N on whose unit bundle local estimates apply, and we obtain covering domains
of prescribed size. The design of approximated control strategies in these domains, as well
as the proof of the existence of exact ones, are now possible, although more delicate than
in the case in which K is uniformly small at infinity. Finally, we prove that, if both K
and the subset of N where K is negative are bounded, then the Dubins’ problem on N is
unrestrictedly controllable.







Chapter 1

First and second order necessary
conditions for optimality

The present chapter is mostly an introduction to the language employed in the thesis and
a presentation of index theory, the framework in which regularity properties of optimal
trajectories are discussed in chapters 2 and 3. Section 1.1 fixes some notations of chrono-
logical calculus, a tool first developed by Agrachev and Gamkrelidze in [3], which allows
intrinsic description and manipulation of nonlinear objects and dynamics.

Section 1.2 discusses the application of Pontryagin maximum principle [44] to single-
input control-affine systems. The notion of extremal pair is introduced, together with the
one of transversality condition for the manifold-to-point problem. '

Proposition 1.5 (first appeared in our paper [7]) is obtained from simple properties of
differentiation of the switching function. It is an improvement of Proposition 2 in [1].

Section 1.4 contains the formulation of various second order necessary conditions for
optimality. Theorems 1.6 and 1.8 present the results on single-input control-affine systems
which are at the theoretical core of our approach. Theorem 1.6, in a much more general
setting, was first proved in [4]. The proof which is provided here deals more specifically
and with more details with single-input control-affine system. Theorem 1.8 applies index
theory to the case of general initial value conditions. Its original formulation is contained
in our work [8].

Finally, the generalized Legendre condition on optimal singular trajectories is recalled.
Its first formulation and mathematical proof date back, respectively, to [29] and [2].

1.1 Chronological calculus

Fix a smooth finite dimensional manifold M and denote by VecM the space of smooth
vector fields on M. We will assume that all differential objects which are considered are
C, unless otherwise specified. A vector field X € VecM is said to be complete if, for
every qo € M, the solution of the Cauchy problem

4(t) = X(q(t)),
{ q(0) = qo, (1.1)

is defined for every ¢t € R. If X is complete, then the map which associates with any
go € M the value of the solution of (1.1) evaluated at a fixed time ¢ is a diffeomorphism




from M into itself, denoted by

e go = e (qo),

and called the flow of X at time t. Consider now a non-autonomous vector field 7 — Xy,
that is, a measurable function from R into the space VecM. It is well known that, for every
go € M and tg € R, there exists a local Caratheodory solution of the Cauchy problem

q(t) = Xi(q(?))
{ q(to) = qo, (12)

that is, there exist a neighborhood I of ¢y and a unique absolutely continuous curve
q:T — M such that g(tg) = qo and, for almost every t € I, 4(t) = X¢(q(t)). 1 Xiis
complete, that is, if, for every tp and go, (1.2) has a solution defined for all ¢ € R, then
we denote by .
1
exp | Xydt: M — M
to
the flow which associates with gg € M the solution of (1.2) at time ¢;. Remark that, by
definition,
— [ — [P -
exp Xidt = (exp / Xtdt> .
to t1
Here and in the sequel, we assume that all the vector fields which are taken into account
are complete. This is justified by.the fact that our attention is mainly devoted to local
results. In chapter 4, where a global viewpoint is adopted, completeness of the vector
fields is explicitly discussed.
A vector field X can be identified in a natural way with an operator on C*°(M): Given
a smooth function ¢ on M and a point ¢ € M, we define (Xa)(g) as the derivative of a in
the direction X (q) at the point ¢. From this viewpoint the Lie bracket (or commutator)
of two vector fields X; and X5 is given by

(aXm)Xg = [Xl,XQ] - Xl ] X2 - XQ o Xl 5 (13)
that is, for every a € C*°(M),
[Xl, Xg]a, = X]_(XQCL) - XQ(Xla) .

This relation indeed defines a vector field, which can be represented — with respect to any
fixed system of coordinates — as follows,

[X1, X2)(q) = (DX3)X1(q) — (DX1)X2(q),

where [X1, X5](g), X1(q), and X(g) are identified with column vectors, and DX; denotes
the Jacobian matrix of X; evaluated at the point ¢, i = 1,2. Remark that the Lie bracket
operation equips VecM with a Lie algebra structure.

Any diffeomorphism P: M — M acts on VecM, associating with X € VecM the vector
field Ad P(X), according to the formula

AdP(X)(q) = (P7Y), (X(P(9))),
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where ( ). denotes the standard push-forward operator. From (1.3), one easily gets
Ad P[X1, X5] = [Ad P(X;), Ad P(X5)]. (1.4)

The relation

% ((Ad exp /t:XTdT) y) (q) = ((Ad exp /t:XTdT> [Xt’Y]> (q),

which holds, at ¢ fixed, for almost every ¢, justifies the notation

t t
ex”YD/ ad X.dr = Ad exp | X.dr. (1.5)
to ) to

For the particular case of autonomous vector fields, we write

otadX _ A g etX

Let ¢,7:R — R be two smooth functions and fix gy € M and X,Y € VecM. Consider
the smooth curve in M defined by ¢(t) = e?®¥X o e7®Y (g4). A consequence of all what
has been said since now is that the following chain rule holds

2 a(t) = $OOX (a(6)) +5(0) (7= 1Y) (). (16)

1.2 The Pontryagin maximum principle

Let f,g be chosen in VecM and consider the associated control system

¢= f(q)+ug(g), u € [~1,1]. (L.7)

A control function is a measurable map ¢ — u(t) with values in the interval [-1,1]. A
Caratheodory solution of (1.7), corresponding to an admissible control function, is called
a trajectory of the system:.

For all T' > 0 and go € M, the attainable set from qy at time T is defined as follows,

A(T,q0) ={¢(T) | ¢:[0,T] — M is a trajectory of (1.7) such that ¢(0) = qo}.

From the classical Filippov’s theorem, it follows that A(T), o) is compact.

Given a point ¢ € M, the action on T, M of a covector A € T, M is denoted by (A,-).
We say that A is orthogonal to a linear subspace W of T, M, and we write ALW, when
(A, w) =0 for every w € W.

Let ¢:[0,T] — M be a trajectory of (1.7) and u(-) the corresponding control function.
Assume that ¢(-) minimizes the time needed to steer ¢(0) to ¢(T'), i.e., (T") ¢ A(t, q(0)) for
every t < T. In this case, we say that g(-) is time-optimal (or, equivalently, time-minimal).
By the Pontryagin maximum principle, there exist ¢ < 0 and an absolutely continuous
covector trajectory A:[0,T] — T*M such that

A(t) € TyyM \ {0} for every t € [0,T], (1.8)

and which verify for almost every ¢ the equation

-

A(t) = By (A(2)) (1.9)

11




and the relation
huey (A(2)) = 11[1%11] hy(A(t)) = ¢, (1.10)
vel—1,

where the family of Hamiltonians h, is defined by

hy (A1) = (A(2), (f +vg)(a(D))) (L.11)

and hy € Vec(T* M) denotes the Hamiltonian vector field associated with k. If a system
of coordinates is fixed and covectors are identified with row vectors, then (1.9) can be
written as

At) = =A1)(Df(g(t)) + ult)Dg(q(t))) - (1.12)

If g(-) is, instead of time-minimal, time-maximal, i.e., (1) ¢ A(t,q(0)) for every t > T,
then A(-) and c as above still exist, with the only difference that in this case ¢ verifies the
opposite inequality ¢ > 0.

An extremal pair for (1.7) is a pair (A(:),q(-)), where ¢(-) is a trajectory of (1.7) and
A(+) verifies (1.8-1.10). If (A(-),g¢(+)) is an extremal pair, then we say that g(-) is an
extremal trajectory and that A(-) is an extremal lift of g(:).

Let S be a submanifold of M. We can associate with S the attainable set from S at
time T

A(T,S) = {q(T) | q:[0,T] — M is a trajectory of (1.7) such that ¢(0) € S},

and, as above, we can define time-minimal and time-maximal trajectories for the control
problem
¢ = flq) +uglq), u € [-1,1],
{ g0 e S, (1.13)

It is clear that, if ¢:[0,7] — M is time-minimal or time-maximal in this sense, then
it also minimizes or maximizes the time needed to steer ¢(0) to ¢(7"), and, therefore, it
admits an extremal lift A(-). The Pontryagin maximum principle, applied to (1.13), states
that A(-) can be assumed to verify, in addition,

M0) L Ty0)S .- (1.14)

We will call S the source of the control problem (1.13). A time-minimal or time-
maximal trajectory q:[0,T] — M of (1.7) can be seen as a solution of a control problem of
the type (1.13), where S reduces to the singleton {g(0)}. In this case we have T;()S = (0)
and so, not surprisingly, (1.14) does not give any extra information on the extremal lifts

of g(-).

Definiton 1.1 Let S be a submanifold of M. An eztremal pair (\(-),q(:)) for (1.7) is
called S-extremal if ¢(0) € S and X\(0) satisfies (1.14). If (A(-),q(-)) is an S-extremal
pair, then we say that q(-) is an S-extremal trajectory and that A(-) is an S-extremal

lift of q(-).
The proof of Pontryagin maximum principle, as in [44], implies that not only time-

minimizing and time-maximizing trajectories are extremal, but all the elements of a wider
class, which we will call quasi optimal trajectories. It is easier to define them negatively:
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Definiton 1.2 Let ¢:[0,T] — M be a trajectory of (1.7) (respectively, (1.18)). We say
that q(-) is essential (respectively, S-essential) if and only if there exists a neighborhood
O of (f,g) in VecM x VecM, with respect to the Ct-topology, such that, for every (f',g') €
O, q(T) belongs to the interior of the attainable set from q(0) (respectively, from S) at
teme T for the system

¢ =1"(q) +ug'(q).

If q(-) is not essential (respectively, not S-essential), then it is called quasi optimal
(respectively, S-quasi optimal).

Remark 1.3 Time-minimal and time-maximal trajectories of (1.13) are S-quasi optimal.
Indeed, fix a trajectory ¢:[0,T] — M of (1.7), and notice that, on a compact neighborhood
of A(T,q(0)), time-rescaled systems with scaling factor close to one are C!-close to the
original one. Therefore, if ¢(-) is S-essential, then ¢(7') € A(t, S) for ¢ close to T, which
means that ¢(-) is not the fastest trajectory connecting S with ¢(7") neither the slowest.

Remark 1.4 A property which is shared by quasi optimality and time-optimality (and,
in general, by any optimality defined through an integral cost) is the fact that the time-
reversed of a quasi optimal trajectory is quasi optimal for the time-reversed system

d=~f(q) —uglq). (1.15)

Indeed, if ¢ : [0,7] — M is essential for the control system (1.7), then there exist a
neighborhood U of ¢(0) and a neighborhood W of (f,g) in VecM x VecM such that, for
any (f',¢') € W and for any ¢ € U, ¢(T) belongs to the attainable set from ¢ at time
T for the system ¢ = f'(q) + ug'(g), as we can derive by a reparameterization argument
similar to the one above. Thus, ¢(0) belongs to the interior of the attainable set from ¢(T)
at time T for any system in a C!'-neighborhood of (1.15). In the case of control problems
whose optimality notion gives asymmetric roles to the initial and the final condition, as
it happens for S-quasi optimality, a property of this kind makes no sense. As we will see
in remark 1.9, this lack of symmetry is partially recovered in the applications of index
theory.

The notion of quasi optimality is wide and flexible and happens to be appropriate
for getting necessary conditions which are even stronger than the Pontryagin maximum
principle.

Let us now introduce the terminology in terms of which the regularity of a trajectory,
or, equivalently, of a control function, is expressed. It is reasonable to consider every
control function as defined up to modifications on a set of measure zero, since two control
functions which are equal almost everywhere lead to equal solutions of (1.7). Given an
admissible trajectory ¢:[0,7] — M, its restriction q|[7.1’72] to a subinterval [y, 75] of [0, 7]
is called an arc if the corresponding control function u][T1 1rs) 18 C*°. We will use the word
arc also to refer to the interval 7, 73] itself. We will assume that any arc is maximal,
i.e., that, [11,72] is an arc when, for every interval [ty,to] with [r1, 7] C [t1,12] C [0,T],
ul, 4,1 is smooth if and only if [11, 72] = [t1,72]. We say that two distinct arcs [y, 75] and
[t1,%2] are concatenated if 79 = t1 or 7y = t5. Special arcs are the so-called bang arcs, for
which u(-) is constantly equal to —1 or +1. Depending on the sign of the control, a bang
arc is called a — arc or a + arc. The time-instant between two concatenated bang arcs is
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called a switching time. A trajectory which is a finite concatenation of bang arcs is called
a bang-bang trajectory. We say that a control function is a boundary control if it takes
values in {—1,+1}. An arc which is not bang is said to be singular. A finite concatenation
of arcs is described by juxtaposition of letters S and B, each S corresponding to a singular
arc, each B to a bang one. A BSB trajectory, for instance, is the concatenation of a bang,
a singular, and a bang arc. The letter B is sometimes replaced by a + or a —, depending
on the sign of the corresponding control.
With an extremal pair (A(-),q(+)), it is classically associated the switching function

o(t) = (A1), 9(q(®))), (1.16)

which has the property, easily deducible from (1.10), that

u(t) = —sign(p(t)) ,

for every ¢ such that ¢(t) # 0.
Equation (1.12) implies that, given X € VecM, for almost every ¢ in [0, T, the function
s — (A(s),X(q(s))) is differentiable at ¢t and

%(/\(t%X(q(t))) = (M), DX (f(q(1)) +u(t)g(q(1))))
= (M) (D f(g(t)) +u(t)Dg(g(t))), X (a(8)))
= (), [f +u(t)g, X](q(1))) - (1.17)

In particular, for almost every t € [0,T] we have

o(t) = (M), [f, 9l(a(®))) -

This equality holds, moreover, for every ¢t € [0, T]. Indeed, being ¢ absolutely continuous,
it is everywhere equal to the primitive of its derivative. From the fundamental theorem
of calculus, it follows that ¢(t) is equal to (A(t), [f,g](g(t))) for every t. Thus, ¢ is a C!
function, its derivative is absolutely continuous and

@(t) = (A@), [f +ult)g, [, 9ll(a(®) (1.18)

almost everywhere. In the interior of bang and singular arcs, the right hand side of (1.17) is
absolutely continuous with respect to ¢. The higher order derivatives of ¢ can be computed
iterating (1.17), showing that ¢ is C*° along any arc.

Let X € VecM and fix #, ¢ € [0,T]. According to (1.5), we have
(e, (s | o (§ +u(r)o)drX ) a(t))
= (e (s | f(f Fulrigdr ) (X(a(e))
- (=] (¢ +atrlg)dr) * At X(g(t2) )

2

Since A(+) is solution of (1.9), it turns out (see [6, Proposition 11.3]) that

(&5 /: (f + U(T)g)d7’> * Altr) = Alta) -
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Therefore,
ta
(Mt2). X(q(t2))) = <A<t1>, (‘xia / ad (f + u(r)g)dr X) <q<t1>>>. (1.19)
In particular,

ottz) = (M) (5 | Tad(f e u(r)g)dr g) (a(e2))- (1.20)

t1

1.3 A regularity result on extremal trajectories of a generic
system

Let Lie(f,g) be the subalgebra of VecM generated by f and g and denote by I(g) the
ideal of Lie(f, g) generated by g. It was proved by Agrachev in [1, Proposition 1] that, if

{X(@| X el(g)} =TyM for every g € M,

then the control function corresponding to an extremal trajectory ¢:[0,7] — M is smooth

on an open dense set O of [0,77]. This section investigates, under suitable additional

assumptions, what else can be said on O when it is known that it contains no singular arc.
For the sake of concision we set

X:t:[fig7[f)g]]:

and, in general, for every word w with letters in {+, —}, we define
Xiw = [f £ 9, Xu]. (1.21)
We find also useful to write

X(my = (ad (f £ 9))" [/, 9],

and, for every qp € M,

Vilqo) = span{g(qo), [, 9](0), Xx(q0); - - -, X(mw) (q0), - - -} -

Proposition 1.5 Fiz f,g € VecM. Assume that, for every go € M, Vi.(q) = V_(q) =
TyM. Let q:[0,T] = M be an eztremal trajectory of (1.7) such that the corresponding
control function u verifies |u| = 1 on an open dense subset of [0,T) and let & be the set of
discontinuities of u (not avoidable by changing u on a set of measure zero). Then either
¥ 15 discrete or it contains a monotone sequence {t,}neN of isolated points such that, for
every n € N, the open interval identified by t, and t,11 does not intersect 3.

Proof. Let O be the maximal open dense subset of [0,7"] on which u is smooth. Thus,
Y U{0,T} = 00. By hypothesis, u has only bang arcs, which are exactly the connected
components of O.

We say that two distinct points of ¥ U {0,T'} are subsequent if the open interval which
they identify does not intersect X (that is, as it follows from the density of O, if it is an arc).
Assume by contradiction that neither ¥ is discrete, nor it contains an infinite sequence
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of subsequent isolated points. With each bang arc [71, 7o] we associate the smallest point
of ¥ which is larger than or equal to 7o and which is not isolated, unless there exists a
finite sequence of subsequent points of £ U {0,7'} including 7 and T'. Denote by A the
set, of all points which can be associated with some arc following the described procedure.
By our assumptions A is nonempty and preperfect, i.e., each point of A is a density point
for A. We define a partition A = A, U A_ by the following rule: a € A if and only if
u is equal to +1 on a left neighborhood of a. It turns out that there exist x € {+,—}
and a subset B of A, which is nonempty and preperfect. Indeed, if a € Ay is not a
density point for A, then there exists a neighborhood U of a such that (U \ {a}) N A is
a preperfect nonempty subset of A_. Thus, either A, is nonempty and preperfect or A_
has a preperfect nonempty subset.

Let A(-) be an extremal lift of ¢(-). To complete the argument we want to prove
that at each point 7 € B the covector A(7) annihilates Vi(g(7)). It is clear that ¢(7) =
(M(7),g(q(T))) = 0 for each 7 € ¥. Within the interval identified by two subsequent
points of B, ¢'(-) = (A(:),[f,gl(g())) has at least one zero, and thus, by continuity,
((r), [f, gl(a(r)) = 0 for every 7 € A.

Remark that, given a smooth function 9:[71,72] = R such that

P(r) = (1) = 1h(rg) = -+ =™ (7)) =0,
there exists 7 € (71, 72) such that 4™ (7) = 0. From the preperfectness of B, it follows
that (A(T), X(ms) (g(7))) = 0 for every 7 € B. O

1.4 Second order optimality conditions

Let V be a linear finite dimensional space and consider a quadratic form @:V — R. The
indez of Q is classically defined as the dimension of the maximal subspace W of V' such
that the restriction of Q to W is negative definite.

Theorem 1.6 Let (\(-),q(")) be an estremal pair for (1.7) and let u : [0,T] — [-1,1]
be the corresponding control function. Assume that u(-) is bang-bang, with K + 1 bang
arcs. Denote by (0 <)11 < 72 < -+ < g (< T) its K switching times and by v its value
on [0,71]. Assume that A(-) is the unique extremal lift of q(-), up to multiplication by a
positive scalar. Fiz 7 € [0,T] and define

= (& [Taalr+ w)g)dr) (4 (1)), im0 K. (12D
Let QQ be the quadratic form
Q)= > oy (M@, [hi hi)(a(D)) (1.23)
0<i<j<K

defined on the space

H= {az(ao,...,aK) e REH!

K K
D=0, Y aihi(q(T)) = o}. (1.24)
1=0

=0

If q(-) is quasi optimal, then the index of Q is equal to zero.
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Proof. Define, for every control function v:[0,T] — [—1,1],

o) = (5 / (f +u(r)g )d7>_10 (5 [ T(f+v(7)g)d7'> (4(0)).

Notice that, up to the composition with the diffeomorphism

P= <e‘§f> /:(f—i—u(T)g)d'r> - , (1.25)

which is independent of v, the function v — G(v) is the endpoint mapping from the point
q(0) of the system (1.7). Our aim is to prove that, if the index of @) is positive, then
G is locally open at u(-) and, moreover, that this property is stable with respect to C*
perturbations of the system.

For any a = (ag,...,ax) € RE*! such that Ef—.o a; = 0 and for s small enough, we
can define v¥(-) as the bang-bang control with switching times

K-1
(0<)m +sap <2+ s(ap+ar) <--- <TK+sZozi(<T),
i=0

satisfying v?‘][o,n +sag) = V- Remark that s — G(vf), defined in a neighborhood of zero,
is a curve contained in the set P(A(T,¢(0))). The tangent vector to this curve at zero is
given by

d

Vi(e) = =G

-3

as it follows from the chain rule (1.6).

If a belongs to the space H defined in (1.24), that is, if V3 («) = 0, then the second
order derivative of G with respect to s at s = 0 is an intrinsically defined element of
Ty7M, given by

d2

Va(0) = =G

K K
Z Z ajhi, hij)(q(T)) -
=0 j=i+1

The expression of V,(a) can be computed, for instance, by fixing a local system of coor-
dinates.

Roughly speaking, if V1(a) = 0, then Vy(a) is the direction of the curve of attainable
points s — G(v$). Assume that the index of @ is positive. Therefore, there exists « € H
such that

(A(7), Va(a)) > 0.

Define
wy = Va(a).

Associate with every ¢ € [0, 7] the operator

¢
Fy =éxp / ad(f + u(r)g)dr : VecM — VecM .
7
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The extremality condition (1.10) implies that

(AT), B (f +u®)g)a(T)) = ¢,
(A@), B (f —ut)g)(a(T))) = ¢,

for every t € [0,7), as it follows from (1.19). Moreover, the uniqueness of A(-) implies
that the closed convex cone generated by {u(t)Fi(g)(¢(7))| ¢t € [0,T]} is equal to {w €
Ty M| (A7), w) < 0}. Therefore there exist t1,...,tn € [0, T] such that the convex cone
generated by wp and

’LUZ:U('[}'L)F&(Q)(Q(?)), 7;:17"'777'7

is equal to Ty, M. Since t — u(t)Fi(g)(q(7)) is continuous along the bang arcs, we can
assume that t1,...,%, € (0,7) \ {71,.... 7k}
Introduce the family of admissible controls

) = —u(t) if te Ul [ti,t+ si,
Usoss1,8m) 8 = e (4) otherwise
50 3
defined for sg, s1,...,8, > 0 small enough. Fix ag,a1,...,an > 0 and remark that

=0.
s=0-

d
EG('U(aos,alsQ/Q,...,an52/2))

Moreover, it is intrinsically defined

d? <
—G(v 2 2 l = a;w; .
ds2 ( (a08,a15%/2,...,ans /2)) s=04 ; 1Ws

A standard application of the Brower fixed point theorem implies that, for any con-

tinuous map which is C° close to (sg, 81, .., 8n) — G(v(/85,51,...,sn))» the image of a small
neighborhood of 0 in [0, +00)"*! contains a neighborhood of ¢(7) in M. O

Remark 1.7 The second order necessary condition which is provided by Theorem 1.6
is actually independent of the choice of 7. Varying 7, we obtain a family of equivalent
formulations of the same principle. In applications, we will choose 7 with the scope of
making the statement computationally simpler to handle.

Let us see how Theorem 1.6 can be strengthened when quasi optimality is replaced by
S-quasi optimality. Let ¢:[0,7] — M be an S-extremal trajectory of (1.13). Assume that
q(") has a unique S-extremal lift A(-), up to multiplication by a positive scalar.

Suppose that u, the control function corresponding to ¢(-), is bang-bang on a subin-
terval [7g, 7i+1] of [0,T), and let (19 <)71 < T2 < --+ < Tk (< Ti41) be its K switching
times. Denote by v the value of u on [7g, T1].

Fix a time 7 € [0,7] and define h; as in (1.22). Choose a family of n = dim S vector
fields Y7, ...,Y;, which span T'S in a neighborhood of ¢(0) on S. Choosing moving initial
values on S, we produce new types of variations of the reference trajectory ¢(-). In our
approach the starting point is perturbed following from ¢(0) the flows of the vector fields
Yi,...,Y,. In this way, we obtain what can be seen as a new control problem, where the
starting point is fixed, but the directions Y; initially are admissible.
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In detail, for every pair (a, ) in

1=0

W = {(C\! = (CL’(),.. - 7()5[{)75 - (515--' )/671)) € R]{—'—l x R"

and for every s € R, with |s| small enough, let v$(-) be the control function which is equal
to u(-) outside [T, Ti+1), is bang-bang on [7g, Tx 1], with switching times
K-1
(‘7'0 <)7’1+SO£0 <7'2+8(Ozo+041) < - <T]{+SZO&¢(< TK-l-l);

1=0

1 [s3 — .
and verifies v§ ][To,n+sao] = v. Define, moreover,

Glasp.s) = (&b /:K“<f+u(r>g>df)_lo (s [ g

oefn¥n 0. 0 111 (¢(0)).

Let P be defined as in (1.25). The derivative of s = G(a, B, ) at s = 0 is given by

K

Vi(e,B) =) BiAdP(Y))(a(7) + ) ashi(a(7)) -

J=1 1=0

If (o, B) € W is such that Vi(e, 8) = 0, then it is well defined

d2
T/Q(aaﬁ) = ES_Q_G(O!:/BHS) s=0
n K
= Y ABAP(G YD) + 3 S assi{Ad P(Y)), hl(g(7)
1<i<j<n j=1i=0
+ Y aajlhihil(a(T).
0<i<j<K

Geometrically, the kernel of V; can be described as follows: Let o € RX*! be such
that 5 o = 0; then, Vi(a, 8) = 0 has a solution § € R™ if and only if

K 7
> (o) € (?ﬁ / (f+u(T)g)d'r> (TS).

*

Moreover, if 8 exists, it is unique.

The same reasonings as in the proof of Theorem 1.6 imply that, if there exists (, 8) €
ker V; such that (A(7), Va(a, B)) < 0, then ¢(-) is S-essential.

Since S is an integral leaf for the distribution generated by the Y;, then [Y;,Y;](¢(0)) €
Ty(0)S for every 14, j; therefore, due to the transversality condition (1.14),

(MT),Ad P([Y;,Y;))(q(7))) =0, for every 4,7 =1,...,n,
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as 1t can be deduced from (1.19). Thus,

(A7), Vale, B)) Zzalﬁg ) [Ad P(Y]), hi)(¢(7)))

7j=1 =0
+ > o (AT, b hyl(a(7)
0<i<j<K
Let B
Q)= Y, aia; (M), [k hil(a(D)) (1.26)
0<i<j<K
and
R= Zzazﬂy ), [Ad P(Y), hi](q(7))) -
7=11i=0

Fix a system of coordinates (z1,...,Zn+s) in a neighborhood of ¢(7), in such a way that

<e¥f> /OT(f + u(T)g)dT> (S) = {(z1, .., Tnss)| Tnp1 =0, ..., Tnys = 0}.

Due to the freedom in the choice of Y;, we can assume that AdP(Y;) = 0p;, 1 =1,...,n.

Therefore,
[Ad P(Y;), hi](q(T)) = 8z, hi(q(T)) -

We can associate with every X € VecM, its horizontal and vertical part X and XV,
verifying, at every point of the neighborhood,

X® e span{8s,,---, 01, }s X" e span{0s,.1s---»0gnis - (1.27)

Notice, in particular, that (A(7), X (¢(T))) = (A (7), XV (q(7))). For every j=1,...,n and
every i =0,..., K, let H}} € R be defined by

7)) = iﬂha
g=1

If (o, B) is in the kernel of Vj, then

n K
> BAAP(Y;)(g(7) = =) aih Z ;b (g(7))
j=1 i=0 i=0
and so
K
—ZaiHh
=0
Finally
K
R=R(a) = Zﬂ] (Zaz (7), Oz; hi (q(T ))>)
1=0
K K
= —Z(Zaz )(Z (/\('T'),é‘xjhzy(Q(?)»)? (1.28)
=0

We proved the following result,
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Theorem 1.8 Let (A(:),q(-)) be an S-extremal pair for (1.7) and let u(-) be the corre-
sponding control function. Assume that u(-) is bang-bang on a subinterval [1g, Ti 1] of the
domain of definition of q(-), with K + 1 bang arcs. Denote by (10 <)11 < 79 < -+ < T (<
Tr+1) s K switching times and by v its value on [1g,71]. Assume that \(-) is the unique
S-extremal lift of q(-), up to multiplication by a positive scalar. Fiz T in the domain of
definition of q(-) and let h; be defined as in (1.22), 1 =0,...,K. Let Q be the quadratic
form

. /K K
Q)= > aia; (AF), [k hsl(g(7)) = > <Z Olzﬂg) (Z o </\('T')a9mjh¥(Q(7>)>)

0<i<j<K j=1 \i=0 =0
(1.29)

defined on the space

K K
H= {O_'-:(C\{o,...,aK) e REHL Zai—:—o, Zaihf(q(?))=0} . (1.30)
=0 7=0

If q(-) is quasi optimal, then the index of Q is equal to zero.

Remark 1.9 Let ¢:[0,7] — M be an admissible trajectory of (1.7) such that ¢q(7") € S. If
g(-) is a time-minimal (respectively, time-maximal) trajectory connecting ¢(0) with S, then
its time-reversed trajectory ¢'(¢) = g(7" — t) is time-minimal (respectively, time-maximal)
among the trajectories of the time-reversed system joining S to g(0). As already noticed in
remark 1.4, the time-reversed system, which we will denote by (1.7)’, is a control problem
in the form (1.7), in which f and g are replaced by —f and —g. It is possible to obtain
second order optimality conditions verified by ¢(-) thanks to the S-quasi optimality of ¢'(-)
for (1.7)".

Assume that ¢:[0,7] — M is a trajectory of (1.7) and that ¢'(-) is S-extremal for
(1.7)". There is a one-to-one correspondence between extremal lifts of ¢(-) and of ¢'(+).
Indeed, t — (A\(f),q(¢)) is an extremal pair for (1.7) if and only if t — (—A(T —t),¢'(t)) is
an extremal pair for (1.7)". Therefore, there exists an extremal lift A(-) of ¢(-) verifying

MT) L TypS. (1.31)

Assume, as in the statement of Theorem 1.6, that g(-) is bang-bang on [79, Tx+1] C
[0,T1, and denote by (19 <)11 < T2 < -+ < 7g(< Ti+1) its K switching times. Assume in
addition that ¢(-) has a unique extremal lift A(-) which verifies (1.31), up to multiplication
by a positive scalar. Fix 7 € [0,7] and define h; as in (1.22), i =0,..., K.

The trajectory ¢'(+) of (1.7)’, restricted to the interval [T'—Tg 41, T — 70, ], is bang-bang.
Associate with its K + 1 bang arcs the corresponding vector fields A;. According to the
definition (1.22), for every 1 =0, ..., K,

T-7

. (‘x’f) / e ad(—f—u(T—T)g)dT) (~f = (~1)%~ug)

7

= —hg_i. (1.32)

= (& [T ad(f +ulng)dr) (=f - (~1)K~vg)
(= )
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Associate @ and H with hg,...,hx as in (1.29) and (1.30), where the horizontal-
vertical splitting is given by a system of coordinates which rectifies

(ac‘?a / e umg)ch) (s)

T

in a neighborhood of ¢(7). In the same way associate @' and H' with hy,..., hi. It
follows from (1.32) that H = H' and Q = Q'. Therefore, if the index of @ is positive,
then Theorem 1.8 implies that ¢'(-) is S-essential.

Let us recall the more classical second order necessary condition for optimal singular
trajectories.

Theorem 1.10 (Generalized Legendre condition) Let (A(-),q(-)) be an eztremal pair
for (1.7). Assume that X\(-) is uniquely defined, up to multiplication by a positive scalar,
and let I be a singular arc contained in the domain of definition of q(-), such that @ is
identically equal to zero on I. Then (A(t),[g,[f,9]l(g(t))) <O for everyt € I.

A proof of Theorem 1.10 can be found in [6, Chapter 20]. We point out that the sign
condition in Theorem 1.10 is formulated in the opposite way than in [6]. This is due to
the fact that, in the present statement of the Pontryagin maximum principle, condition
(1.10) is given in terms of minimization of the Hamiltonian, whereas in [6] it has the more
standard maximization form.

The proof of Theorem 1.10, as it is given in [6], extends to the case of S-extremal
trajectories, where A(-) is maybe not unique among all extremal lifts, but it is when also
(1.14) is taken into account. For the sake of clarity we state such extension autonomously.

Theorem 1.11 Let (A(-),q(-)) be an S-extremal pair for (1.7). Assume that A(-) is
uniquely defined, up to multiplication by a positive scalar, and let I be a singular arc con-
tained in the domain of definition of ¢(-), such that ¢|; = 0. Then (A(t),[g, [f,g]](q(t))) <
0 for everyt € I.
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Chapter 2

Finite bounds for the
manifold-to-point problem

In this chapter we shall be mainly concerned with the manifold-to-point problem. For an-
alytic systems and codimension one sources, an analysis of small codimension singularities
has been proposed in [13] and [33]. The methods and the perspective of these earlier works
are different from ours, since they deal with the whole local synthesis of the problem, in
whose regards an upper bound on the number of arcs of optimal trajectories represents a
preliminary step. Our contribution extends the domain of application of upper bounds to
the non analytic case, to higher codimension sources and singularities.

Section 2.1 gives a classification of Lie bracket configuration, which are studied in
sections 2.2 2.7, mainly by means of general asymptotic considerations and second order
optimality conditions. Section 2.8 collects the corresponding local regularity results, and
gives their interpretation in terms of properties of generic systems. The original results
are contained in [8]. Special attention is given to the special case of the point-to-point
problem. The corresponding bounds obtained in dimension two are a slight improvement
of the ones available in the literature [16, 40, 55]. The dimension three case was originally
studied in a joint work with A. A. Agrachev [7].

Section 2.9 discusses the sharpness of the results. In particular, it is show that the
bound obtained for the point-to-point three dimensional problem, is sharp. The proof is
based on the sufficiency counterpart of Theorems 1.6 and 1.8, deduced form the results
in [9]. The general picture of sharp bounds is still incomplete and can be the object of
further analysis.

2.1 Classification of the singularities

Let M be a finite dimensional manifold and S an embedded submanifold of M of codi-
mension s. Let n + s be the dimension of M.

From now on, go will denote a fixed point in S. Our purpose is to study (1.13) near
go, under some nondegeneracy conditions on the relative positions of S and the pair of
vector fields (f,g) € VecM x VecM. We will express these conditions as transversality
properties between T,,.S and the iterated Lie brackets of f and g, evaluated at go.

The triples (qgo, S, Lie(f, g)) which are going to be covered by our analysis are identified
by means of a classification of singularities up to order 4 — s of the relative positions of
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Ty S and Lie(/f, o). That is, exhibiting a stratified subset of codimension 5 — s of the
qo 5 :9)\4 g
jet fiber Jq“(;kM . k > 3. For the sake of concision, we introduce the notation

V = span {g(qo), [f, 9](q0) } + T4oS -

Given two subspaces Wy and Wy of Ty, S, we write Wy h Wy to denote that they intersect
transversally, i.e., that Wy + Wy = T,,S. With a slight abuse of notation, if w; € Ty, S is
such that span {wy} th Wa, then we write wy M Wy. The notation X, introduced in (1.21)
is also widely used.

We label the singularities of the classification by means of the codimension of the source
and the codimension of the singularity: An (s, d)-point is a codimension d singularity on
a codimension § source.

(1,0) | g(qo) Ty, S;

—~~
)
=

~

9(q0) € TgoS and [f, g](qo) th Ty S;

—~~
f—
oo

~

9(q0), [, 9)(q0) € Ty S and X1 (g0), X~ (g0) M Ty 55

9(q0), [f, 91(g0), X+(q0) € TgoS and X_(go), X4+(qo) th Ty S;
(2,0)|  span{g(qo),[f,gl(q0)} M Ty, S;

(2,1)| codimV =1 and span{g(qo), X+(q0)},span{g(qo), X—(g0)} M Tg,S;

I ~
-

w

~

(2,2a)| codimV =1, X (q) € V, and the intersection of span {g(qo0), X—(q0)},
span {g(qo), X++(qgo)} with Ty, S is transversal;

(2,2b) | g(qo) € TgoS and span{[f, g](q0), X+(q0)},span {[f, gl(q0), X (go)} h Tg,.S;

[(3,0)]  span{g(g0); [f, 9)(q0): X+ (a0)}, span {g(a0), [£, g)(a0), X~ (@0)} h T S;

codimV =1, X (go) € V, and X_(qo), X++(q0) h V;

~~
w
=
N’

(4,0)|  span{g(qo),[/, 9](0),X+(g0),X - (g0)},span{g(go).[f, 9)(q0). X+(g0),X++(q0)},
and span {g(go0), [f, 9](g0), X-(qo0), X——(qo)} intersect T,,S transversally.

The classification omits to consider singularities which can be obtained from the ones
listed above by performing a transposition between + and —, that is, by replacing each
vector field Xy, by X7 (), with the agreement that 7 () = + and 7 (+w) = F7 (w). This
is justified, since the substitution of g by —g in (1.7) preserves the nature of the control
system, reversing the formal roles of + and —.

In order to shorten the formulation of local properties which hold near the fixed point
qo, we find it useful to introduce the following agreement: We say that all short trajectories
of a certain class (for instance, S-extremal trajectories) have a given property (P) if there
exist T' > 0 and a neighborhood U of gy such that all trajectories in the class, which are
contained in U and have time-length smaller than T', satisfy (P).
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Section 2.8 provides a detailed picture of the bounds which we are able to give on the
number of arcs of short S-quasi optimal trajectories near (s, d)-points.

2.2 Preliminary results

Lemma 2.1 Fiz an open, relatively compact, subset U of M and an Fuclidean structure
on the cotangent bundle T*U, that is, fiz an Euclidean structure on each I;M, q€ U,
smoothly varying with respect to q. Let X be a vector field on M. Then, for every T > 0
there exists a constant L such that, for every interval I of time-length smaller than T,
for every extremal trajectory q : I — U and for every corresponding extremal lift A(-),
normalized in such a way that [A(t)] =1 at some t € I, the function t — (A\(t), X (q(t)))
is L-Lipschitz continuous.

Proof. From Gronwall inequality applied to (1.12), it follows that, fixed T > 0, there exists
C > 0 such that, for every g(-) and A(-) as in the hypothesis of the lemma, |A\(t)] < C
for every ¢t € I. Thus, the derivative of ¢t — (A(¢), X(g(t))), whose expression is given in
(1.17), is uniformly bounded. O

Corollary 2.2 Let U be an open, relatively compact, subset of M and consider a family
Y1,...,Ynys of vector fields on M, linearly independent at every point of U. Let, for every
g €U and ) € T; M, the norm |A| be given by max{|(\,Yi(g))|| i =1,...,n+ s}. Let
X € VecM be linearly independent of Y1,...,Ynis—1 at every point of U. Then, there
exist g € (0,1) and two nonincreasing functions T,6 : [0,e0] — (0,+00) such that, for
every € € [0,e0] and every extremal pair (A(-),q(:)) defined on a domain I of time-length
smaller than T'(e), normalized in such a way that |A\(T)| = 1 at some T € I, if each of the
Sfunctions t — [(A(¢),Yi(q(t)))], i =1,...,n+s—1, attains at least one value smaller than
or equal to € in I, then [(\(t), X (¢(t)))| > 6(g) for everyt € I.

Proof. The value of

Hlf{’(/\)X(q»' I qe U’ A€ T(;M7 I)" =1, <)‘7Y1(Q)> == <>‘7Yn+s-1(Q)> = 0}
is larger than zero, due to the compactness of U. Fix €; > 0 such that
61 = inf{|(A, X (@) | 4 € U, A € T;M, A = 1, [N Ya(@)s -, O Yigomr(@)] < 1)
(2.1)

is positive as well.

Lemma 2.1 implies that there exists L > 0 such that, for every extremal pair (A(+),q("))
defined on a domain I of time-length smaller than one, normalized in such a way that
IA(T)] =1 at some 7 € I, the functions z(t) = (A(t), X(q(t))) and y;(t) = (\(t),Yi(q(2))),
t=1,...,n+ s, are L-Lipschitz continuous.

Fix e > 0 and 0 < T < 1 such that ¢ +TL < ¢;. Assume that I has length smaller
than T and that, for every ¢ = 1,...,n+ s — 1, the function ¢ — |y;(g(t))| attains at least
one value smaller than or equal to € in I. Then

]yz(t)| <eg <1,

for every t € I and every i =1,...,n+ s — 1. It follows from (2.1) that |z(7)| > 6;. The
lemma is proved with g = min {—g—lL-, %1—}, T(e) = min {1, %72} and 6(¢) = 6; — LT(e). O
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2.3 The very small codimension cases: s+d < 2

Assume that gg is a (1,0)-point. Fix n vector fields Y1, ...,Y; € VecM such that, for every
point ¢ in a neighborhood of gg in S,

span{Y1(q),...,Yn(q)} =TS (2.2)

Let, in addition, ¥, 41 = X = g. Due to the transversality condition (1.14), we can apply
Corollary 2.2 on a conveniently small neighborhood of ¢q, with € = 0. We deduce that the
switching function corresponding to a short S-extremal pair has constant sign. Therefore,
a short S-extremal trajectory is made of a single bang arc. In particular, it does not
contain singular arcs.

The same reasoning as above, applied to the case (1,1), with the choice Y41 = X =
[f,g], implies that, for every short S-extremal pair, the derivative of the corresponding
switching function does not change sign. In the case (2,0), we fix Y11 = g and Y40 =
X = [f,g], and the same conclusion holds for every short S-extremal pair such that the

~corresponding switching function has at least one zero. In both situations (1,1) and (2,0),
along a short S-extremal trajectory which is not made of a single bang arc, the switching
function is monotone. Therefore, a short S-extremal trajectory does not contain singular
arcs and is the concatenation of at most two bang arcs.

2.4 Intermediate considerations for cases of higher codi-
mension

We start the section with some general remarks which apply to all but one higher codi-
mension cases. If s # 4 and s + d = 3,4, then V has codimension one in T, M and
X_(qo) M V. From now on, let, as in section 2.3, {Y¥1,...,Y,} be a family of vector fields
spanning T, S at every g € S close to gp.

We want to complete {¥7,...,Y,} to a full rank distribution on a neighborhood of gy.
Choose Yyt1,- .-, Ynts—1 between g,[f, g] in such a way that

span{Y1(qo), ..., Yn+s—1(q0)} =V, (2.3)

and set ¥,.s = X_. Let U be a relatively compact neighborhood of gg, such that {Y; ?;rf
is a moving basis in U. Associate with this moving basis the corresponding Euclidean
structure | - | on 7*U, as in the statement of Corollary 2.2. We can always assume that
T > 0 is such that, for every admissible control function u : [0,7] — [-1,1], for every
t€[0,7]) and g € SNT, we have

t
(égfa /0 (f+U(T)g)dT) (TyS) hspan {Yn11(¢), - - -, Yars(d)}, (2.4)
where

(= (& [[(7+uaer) @

Once a moving basis and its corresponding Euclidean structure are fixed, we say that
an extremal pair (A\(+), ¢(+)) is a normalized extremal pair if, at some point, |A(t)] = 1.
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If the switching function has at least two distinct zeros (this is true, for instance, if it
contains a singular arc or a compactly contained bang one), then its derivative annihilates
at least once. Due to (1.14), we can apply Corollary 2.2 (with ¢ = 0) and we obtain that
for any vector field X which is transversal to V' at qp, there exists a positive constant
dx, such that, for every short normalized S-extremal pair (A(-), ¢(-)) whose corresponding
switching function ¢ has at least two zeros, we have

[{(A(), X (a())] = bx

for all t. A possible choice of X is given by X = X_. Whenever s + d = 3, as well as in
the case (2,2b), the role of X can also be played by X,. In all the other cases studied
here, the alternative choice of X is allowed.

Therefore, we can assume that the class = of short normalized S-extremal pairs with
at least two zeros of ¢ (a class which depends on the choice of T and U) satisfies one of
the following conditions

(A) there exists § > 0 such that [(A(¢), X+ (g(t)))] > ¢ for every (A(-),q(-)) € E, for all ¢

(B) there exists 6 > 0 such that [(A(¢), X_(q(¢)))], |[(A(t), X4t (g(t)))| > & for every
(A(),q(")) € E, for all t.

Remark 2.3 In the case in which dim S = 0, where the transversality condition (1.14)
gives no information, the assumption can be further strengthened; indeed, we can suppose
that (A) or (B) hold for the class of all normalized extremal pairs with at least two zeros
of w. That is, we can neglect the requirement that the initial point of the trajectory lies
in S. We will omit to mention at each step this kind of extension, which applies to all
regularity properties of S-extremal or S-quasi optimal trajectories which are going to be
stated. We will come back to the consequences of this fact in section 2.8.

The case (4,0) is reduced to subproblems sharing one of the properties (A) or (B), as
follows. Complete {Y7,...,Y,} to a local moving basis by taking Y,+1 =g, Yn+2 = [/, 9],
Yn+s = X4, and Y, 4 = X_. This choice defines, as above, an Euclidean structure in
the cotangent bundle over a compact neighborhood of gy. Keep on calling = the class of
short normalized S-extremal pairs whose switching function annihilates at least twice. By
Lemma 2.1 we can assume that |[(A(¢),Y;(g(¢)))| is smaller than any prescribed positive
constant, for every i = 1,...,n + 2 and every pair (A(-),q(-)) in =. Given any n € (0, 1),
we split = in three subclasses: the class 5117 of pairs (A(-), ¢(-)) for which

[(A(0), X4 (g0 <, (2.5)

the class 5727 defined by
[(A(0), X—(q(0))}] <, (2.6)

and the complement Ef’l of E}, U E% in E. If n is fixed and small enough, then it follows
from Lemma 2.1 and Corollary 2.2 that there exists a common 7' = T'(n) such that 5717
satisfies property (B), E% satisfies property (A), and E% satisfies the analogous of property
(B), where the role of + is played by — and viceversa. Since the definition of (4,0)-point
is symmetric in 4+ and —, the the regularity properties which are satisfied by E,l) apply to

Eg) as well. Therefore, we will essentially neglect E%, and restrict our attention to 5717 and
Ep-
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In order to fix 1, we impose an additional requirement whose importance will be clear
in section 2.7. Since [g, [f,g]] is transversal to span{Y1,...,Yn4s—1}, we can again apply
Corollary 2.2 and assume that all functions [(A(-),[g, [/, 9]](¢(-)))| are separated from zero,
uniformly in 3717 Moreover, due to the monotonicity of the function ¢ appearing in the
statement of Corollary 2.2, we can choose 77 small enough, in such a way that the sign of

(AC), X-(a()) = (AC), X4(g())) = 2(A0), g [f: llg(-))

is equal to the sign of —(A(),[g,[f,9]}(¢(-))) along the trajectory. Finally, we choose 7
such that 3,17 satisfies (B) and

(B) Sil%n(wt),X—(q(t)))) = —sign ((A(t),[g, [f, 9]l(a(2)))) for every (A(-),q(")) € Ej, for
all <.

Notice that, for all (s, d)-points with s # 4, s +d = 3,4, if £ does not satisfy (A), then
the same reasoning as above shows that E can be assumed to verify both (B) and (B’).

The crucial step toward a full understanding of the behavior of S-quasi optimal tra-
jectories is given by the following result, which focuses on bang-bang regularity.

Proposition 2.4 There ezists an integer-valued function k(s,d) such that, if qo is an
(s,d)-point with s + d < 4, then there exist a neighborhood U of gy and a time T > 0 for
which a trajectory in U of (1.18), of time-length smaller than T, which contains more that
k(s,d) concatenated bang arcs, is S-essential.

Notice that the proposition has already been proved for (s, d)-points such that s +d < 2.
We showed that a possible choice of k is given by k(1,0) = 1,k(1,1) = k(2,0) = 2.

Next two sections are devoted to the proof of Proposition 2.4 in the remaining cases,
that is, when s + d is equal to three or four.

2.5 Bounds on the number of arcs of S-quasi optimal bang-
bang trajectories when s < 4

2.5.1 General facts

Throughout this section we assume that s +d = 3,4 and s # 4. Fix Y7,...,Yn1s-1,
Yn+s = X_, and the corresponding Euclidean structure on the cotangent bundle over a
small enough neighborhood of qg, as in section 2.4.

In order to apply Theorem 1.8, a corank one condition on S-extremal lifts must be
recovered.

Lemma 2.5 A short S-extremal trajectory which has at least one compactly contained +
arc and one compactly contained — arc admits a unique covector lift, up to multiplication
by a positive scalar.

Proof. Let (A(+),q(-)) be an S-extremal pair and assume that it has at least one compactly
contained + arc and one compactly contained — arc. Denote the compactly contained +
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arc by (to,to + t1). The equations ¢(tg) = 0 and ¢(tg + t1) = 0 can be written, according
to (1.20), as

{(Alto) 9(q(to))) = 0, (2.7)
(Alto), e 9 g(q(t0))) = 0. (2.8)
Let A(-) be normalized in such a way that
(ko) = 1. 2.9)
Define
a; = (A(to), Yi(g(to))) (2.10)
for every i = 1,...,n + s. We can reformulate (2.9) as follows
max{|a;||i=1,...,n+s}=1.
We also set
g = <A(t0)7 [fvg](Q(t0)>> ) (211)
and, for every word w with letters in {—,+},
Tw = (Alto), Xw(q(to))) - (2.12)

Notice that a,4s = 7, while apt1,...,an+s—1 are taken among ¢(tp) = 0 and mp.

We want to describe the asymptotic behavior, as T goes to zero, of real valued functions
of the trajectory and of the chosen + arc. One example of this kind of functions is given
by t1, which associates with the trajectory the length of the chosen + arc.

We say that a function of this type is a O(1) if its absolute value can be bounded
uniformly on the set of all + arcs of trajectories which lift in Z. Clearly ¢; = O(1). We
write that a function is an O(#]) or an O(T') to express that its quotient with, respectively,
t7 or the total length of the trajectory is an O(1).

From (1.14) we deduce that, for every ¢ =1,...,n,

n-+s
0= a; + (A(to), (Ad P~ = Id)¥;(q(to))) = ai + Y  a;O(T), (2.13)
Jj=1
where
— [t
P =exp / (f +u(r)g)dr, (2.14)
0
and Id denotes the identity operator on VecM. Similarly, from (2.8) we get
n-t+s
mo =Y a;O(t1). (2.15)
J=1

Thus,
max{|a;||i=1,...,n+s -1} <O(T),

and, in particular, we can assume that |a,+s| = 1. Recall now that, since (A) or (B) holds,
(A(t), X_(q(t))) does not change sign along the trajectory. Along the compactly contained
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— arc of (), o(t) is nonnegative and () = (A(t), X_(g(t))). Thus, ¢ must be negative
and so Gpys = 71— = —L.

We can single out a system of n+ s — 1 linear equations for ay, ..., Gn4s—1, associating
with any 7 = 1,...,n the corresponding equation (2.13) and, eventually, adding some
extra equations chosen between (2.7) and (2.15), depending on which vector fields, if any,
have been chosen as Y41, .., Yp+s—1. The matrix of the coefficients of the system is of
the type,

THO(T)  O(T) v o(T)
oy
[01(7 1) [T o(T) 1;_0('11) o(T)
D ..................................................... O 1

and its determinant is equal to 1+ O(T'). The system has a unique solution, provided that
T is small enough. U

Assume now that (A(+),¢(:)) is a short S-extremal pair and that ¢(-) contains a bang-
bang concatenation of the type —+—+. Lemma (2.5) guarantees that we can apply
Theorem 1.8 to the trajectory q(-).

Let ¢ be the second switching time and denote by ¢; and ¢s the length of, respectively,
the second and the third bang arc. The switching times tg — 1, tg, and £y + to are
characterized by the equations

(Ato) e U g(q(10))) = 0, (2.16)
(A(to), 9lalte)) = 0, (2.17)
(Ato), €29 g(q(to))) = 0. (2.18)

Renormalize, if necessary, A(-), in order to have |A(¢p)| = 1. Let a; and 7, be defined
as in (2.10), (2.11) and (2.12). Lemma 2.5 states that they can be considered functions
of the trajectory and of the choice of the bang-bang concatenation. Moreover, we can

assume that 7_ = —1. Equalities (2.16) and (2.17) imply that
t t2
o = glm_ - —6—7r++ +0 (&) . (2.19)

From (2.18) and (2.19), analogously, we deduce that

ty = 2m+ O (t3)

2
= tymy - t”;’* +720 () + 0 (&) . (2.20)

Remark that to = O(t1).
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The role of the time 7 which appears in the statement of Theorem 1.8 will be played
by tp. According to (1.22), we have

ho = e UTI(f—g) = f-g+2m[fg] -HX +0 (),
hi = [f+g,
hy = f-gy,
hy = €2MU=9(f4+g) = f+g+2,(f,g]+0 (1) .
Let
oij = (A(to), [hi, hy](a(t0))), 0<i<y<3. (2.21)
From the above asymptotic expressions for hq,..., hs, we get ‘
oo = 2m —2hwy +timy + 0 (t))
o2 = 2t1+0(8]),
o12 = —2m,
oos = 001+ 093 — 2mg + O (tits)
o3 = 2ty +0 (),
o93 = 2mp— 2ty + O (t%) .

A system of coordinates which rectify P(S) can be obtained from the coordinate map-
ping

M(ZEl, o >$n+s) — emn+sYn+s 0.4 -0 emn+1Yn+1 ° eznAdP—l(yn) 6.0 emlAdPhl(}/l)(q(to)) ’
(2.22)
which is non-degenerate at (0,...,0), since we assume that (2.4) holds. Associate with
(z1,...,2n) a horizontal-vertical splitting as in (1.27).

There is a point here which should be clarified, in order to avoid confusion. The im-
portant ingredient, in the definition of the horizontal-vertical splitting, is the rectification
of S. The vector fields Y7,...,Y, appearing in (2.22) are not the same as the ones bearing
the same name which are used in chapter 1, through the intermediate steps toward the
recovery of (1.28). In particular, we do not claim, as it would be in general false, that
AdPYY)=08y,i=1,...,n.

From the definition of M it follows that

0z;Y;" (q(to)) = 0 and Y (g(to)) =0, (2.23)

for every j =1,...,n and every i =n +1,...,n+ s. It is important to remark that, for
every fixed vector field X, for every j = 1,...,n, the j-th component of X" (q(tp)), as well
as (A(to), 8ijV(q(to))>, are O(1) functions of the trajectory and of the choice of .

In section 2.5.2 we will treat separately the different (s, d) situations. When convenient,
we will consider second order variations of the switching times on a shorter part of the
bang-bang piece of ¢(-), that is, on the concatenation of three instead of four bang arcs.
Denote by K the number of switching times which are involved in the variation.

Let H, Q(a), and R(a) be defined as in (1.30), (1.26), and (1.28). Recall that H
consists of all (ag,...,ax) € REF! such that

K
> =0, (2.24)

1=0
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and

K
Z aihig(to)) € (2.25)
=0
where
S =P, (Tyo)S) - (2.26)

We will find it convenient, in most situations, to replace (2.25) by

K
> ai(hi — f)(a(to) €2, (2.27)
1=0

as it is justified by (2.24).

We claim that the codimension of H in RE*! is equal to s, for T small enough. Indeed,
let
K

Zai:o} —>Tq(t0)M/E

A: {(ao,...,aK) e REH!
=0

be the linear function which maps (ag,...,ax) into the class Zfio a;hi(g(0)) + . Since
g(-) is an S-extremal trajectory, then there exists A € To, ) \ {0} which is orthogonal to &
and to (h; — hi—1)(q(to)), for i = 1,..., K. The previous assertion is just a reformulation,
obtained through (1.19), of (1.14) and of the fact that ¢ is equal to zero at the switching
times.

In the proof of Lemma 2.5 it is shown that these orthogonality relations identify A
uniquely, up to multiplication by a scalar. Therefore, the codimension of the image of A

in ToyM / Y is equal to one. Since H is equal to the kernel of A, its dimension is equal

to K — s + 1. Finally, as claimed, H has codimension s in RX+1,

2.5.2 Case analysis

In this section the different types of (s, d)-points are considered separately. Each paragraph
deals with one or two classes of points, specified by the opening framed declaration.

(1,2)-(1,3) | We compute the second order variation of ¢(-) with respect to its —+—

concatenation. It means that K = 2 and that H is a codimension one subspace of R3.
An explicit expression for H is given by (2.24), as follows,

H = { (a0, a1, 02) ER3|a0 =—o1 — o} .

The quadratic form Q, defined in (1.26), is given by

Qar,a0) = (27‘(0 —2t17y + O (t%)) (—a1 — ag)oy
+ (2t1 +0 (t%)) (—og — ag)as — 2mpai 0

= (~timy + O (£2)) & + (—2t1 + 7. O(t1) + O (1)) cye
- (2t1 + 0 (t%)) Oé% .

32



Let G; be the j-th component of g(q(to)) and n; be equal to (A(to), dx; 9% (q(t0))), for
7=1,...,n. Then

hgla(to)) = f(glto) — g"(a(to)) + O(t1) = f™(q(to)) — 11(Gs + O(t1))0a, ,
mlalto) = fMalto) +¢"alte)) = fMalte)) + Xy Gibs,
h(ato)) = faqlte)) — g™(alto)) Malto)) = 351 Gy0s;

(Alto), 8z;h8(g(t0))) =
(Mto), Bz;h1 (g(t0))) = (A(t0),8a; ¥ (q(t0))) + 15,
(A(to), Oz; h3(q(t0))) = :

o
~—
~—

for j=1,...,n. Thus

R(og,00) = Y (2G5 + O(t1))ar + O(t1)e) ((2n; + O(t1))en + O(t1)en)
j=1

= O(l)ai +O(t)aras + O(t) a3

Whenever #; is small enough, the coefficient of oz% of @ = @ + R is negative. Notice

that, even if we computed the variation only on a smaller part of the bang-bang piece,
our reasoning assumes that m_ = —1, which was justified by the presence of a compactly
contained — arc. It follows from Theorem 1.8 that a short trajectory which contains a
~+—+ or a -+—-— concatenation cannot be S-quasi optimal. Proposition 2.4 is proved
for (s,d) = (1,2),(1,3), with k(1,2) = (1, 3) = 3.
(2,1)-(2,2a) | Let, as above, K = 2. The space H has codimension two, and can be
described by (2.24) and by another independent linear relation, deduced from (2.27).
Notice, for instance, that the component of Zfio a;(h; — f)(g(to)) in the direction g(g(tg)),
with respect to the basis

P, (Y1(q(0))) , -, P (Yn(4(0))) , 9(a(to)), X—(q(t0)) ,

is equal to zero. Thus,

—(14+0(t1))ao+ a1 —az = 0. (2.28)
From (2.24) and (2.28) and we obtain

o = O(t1)ap,
Qo = -—(1+O(t1))ag

The transversality of g and % also implies, as follows from (2.23), that R(ag) =
O(t%) a?. The quadratic form @ is easily computed, and, finally, Q can be written as

Q(ao) = Qlan) + Rlag) = — (2t + 0 (£)) o2

Thus, @ is negative definite for small ¢;. We conclude, as above, that a short trajectory
with four concatenated bang arcs is S-essential. This proves Proposition 2.4 in the cases
(2,1) and (2,2a), with k(2,1) = k(2,2a) = 3.
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(2,2b) | Let, here as in the next cases, K = 3. Denote by -y the component of g(g(to)) in
the direction [f, ¢](g(t0)), with respect to the basis

P, (Y1(g(0))), ..., P (Ya(q(0))) , [f, 9)(q(t0)), X—(q(ta))-

The space H is characterized by (2.24) and by the component of the relation

3

D ai(hi— f+9)(g(to)) €T

i=0
in the direction [f, g](q(to)), that is, by the system

ag+ oy +a+ag = 0, (2.29)
(2t; + O(£2)) ap + 2701 + (27 + 262+ O (83)) a3 = 0, (2.30)

from which we obtain

ap = (—% —%—')'O(l)) o + <—7

Qg = —Qp— Q] —0Qa3. (2.32)

+ 19

+~v0(1) + O(t1)> o3, (2.31)

Consider the linear change of variables on H,
f1 = oa1+as,
fo = o1—oa3.
The quadratic form Q(B1,82) turns out to have the following expression

1
3 [ (472 + 2y(my — 2ty — 7wy (mp+ 4 +20(t1) + 70 #E)+0(8)) 87

+2 (timi(t = 7) + 7°0(t1) + 70 (1) + O (t1)) B1B2
+ (128 410 (8) +0 () 6]

Q(B1,B2) =

Let G; be the j-th component of g(g(to)) and n; be equal to (A(to), Bwjgv(q(to)», for
j=1,...,n. Then

R(Br,B) = =) ((2G;+O(t))Br+ O(t1)B2) ((2n; + O(t1))B1 + O(t1)B2)

=1

= O(1)B; + O(t1)BrB2+ O(t]) B3 .
Finally, the coefficient of 82 of the quadratic form

Q(B1,B2) = Q(P1, B2) + R(B1, B2)

is given by m2¢; + yO(t1) + O (t3). Since property (A) ensures that 72 is uniformly
separated from zero, then g(-) cannot be S-quasi optimal for T and U (consequently, ¢;
and |y|) small enough.
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Due to the symmetry in + and —, we conclude that Proposition 2.4 holds in the case
(2,2b), with k(2,2b) = 3.
We describe A, which has codimension equal to three, by (2.24) and by the com-
ponents of (2.27) in the directions g(g(¢)) and [f, g](g(t0)),

&0 +ar +ay +as = 0,
—(1+0 () a0+ —as +(1+0(#))as = 0,
(2t1 + O (t7)) a0 + (2 +0())as = 0

From the last relation we obtain
iy
Qp — (%— -+ O(t1)> asg, (233)
1

while, replacing this last expression of asg in the first two, we have

t
oy = — <—2 + O(t1)> o3,
i1
] = —(1"}'0(15%))013.
Therefore, computing () according to its definition, one gets
Qas) = =2 (tim2 + O () o

It suffices to take into account (2.23) for what concerns Y,.+1 = g in order to get that
R(ag) = O(t%) o3. Since (A) holds, @ is negative definite, at least for short trajectories.
The symmetry in + and — implies that Proposition 2.4 holds for the case (3,0), with
k(3,0) = 3.

(8,1) | The computations made for the case (3,0) are still valid, but, since property (A)
fails to hold, we cannot conclude as above. We need to take into account higher order terms
in the expansion of @). In particular, it is no more true that ¢; = O(¢3), while we find it
convenient to replace, in the estimate of the remainders, the still valid relation ¢ = O(#1)
by the more accurate one t; = m.O(t1) + O(t?). We re-write the parameterization of H
obtained for the case (3,0), distinguishing between the roles of ¢; and to,

- (i—f + O(t2)) o3,
—(1+ O(tite))as,
Qy = (%— -+ O(tg)) o3 .

Qo

I

ay

Recalling that (2.23) holds for Y41 = g and Y42 = [f, g], it follows that R(a3) =
O(t3t3). On the other hand,

Qas) = =2t (14 + 1.0(t1) + O (7)) 03 .

Assume that @) is nonnegative definite. Notice that, since mp = ¢(#p) > 0, the following
inequality holds
m— 40 () 2 0.
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From this last relation and the sign condition on ¢J, we deduce that
tim iy + 74 0(t) + O (#) <0.

Since (B) holds, 744 is uniformly bounded away from 0. A necessary condition for
@ to be nonnegative definite is that 74 < 0, provided that 7" and U are small. In
particular, if X_(qo) and X4 (go) point on the opposite side of the hyperplane V', then a
short trajectory is S-essential if it contains a —+—+ concatenation of arcs.

We already noticed that the time-reversed of a trajectory of (1.7) is admissible for
the system ¢ = —f(q) — ug(g). In remark 1.9 we pointed out a second order necessary
condition for optimality which is tested on the time-reversed system. If we replace f
and g by —f and —g, then the roles of X1 and X.;(qo) are played, respectively, by
—X+(qo) and X, (go). Notice, in particular, that gg is a (3,1)-point for the time-reversed
system as well. Remark that, in obtaining all the asymptotic relations for (1.7), we never
used the fact that the transversality condition (1.14) holds at the starting point of the
trajectory. We used it only to get that a; = O(T) for i = 1,...,n. The same relations
can be recovered for trajectories attaining S at their final point T, replacing (1.14) by
the symmetric transversality condition (1.31). It turns out that, if X_(go) and X4 (qo)
point on the same side of V, then the quadratic form associated with a short trajectory
of the time-reversed system which contains a —+—+ concatenation is negative definite,
and thus a short trajectory of the original system which contains a +—+— concatenation
is S-essential.

Finally, a short S-quasi optimal trajectory of the original system has at most four
concatenated bang arcs, i.e., we proved Proposition 2.4 in the case (3,1), with k(3,1) = 4.

2.6 A bound on the number of arcs of S-quasi optimal bang-
bang trajectories in the case (4,0)

Throughout this section we assume that gp is a (4,0)-point. As for the cases treated in
section 2.5, the preliminary step is to investigate the uniqueness of S-extremal lifts.

Lemma 2.6 A short S-extremal trajectory which has at least two concatenated compactly
contained bang arcs admits a unique S-extremal lift, up to multiplication by a positive
scalar.

Proof. Let (A(-),q(:)) be an S-extremal pair and assume that it has two concatenated
compactly contained bang arcs. Denote by ¢p the switching time between them. Let
Y1,..., Y14 be chosen as in section 2.4 and define

a; = <A(t0)7K(Q(tO))> 3
for i = 1,...,n+4. Normalize A(-) in such a way that
max{|a;||1=1,...,n+4} =1.

Due to the transversality condition (1.14), we get

n-+4
CLZ'ZZCL]'O(T), i=1,...,n. (2.34)
=1
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Define 7, as in (2.11) and (2.12). Notice that
ant1 = ¢(to) =0, (2.35)

Qnio = 7o, Gpe3 = T4, and apyq = m—. Since (A(4),[f,9](¢(?))) = @(t) has at least
one zero along the trajectory, then we can assume that |a,12| is smaller than one. The
presence of compactly contained + and — arcs implies, for 7" small, that either ap43 =1
Or Gp4a = —1.

Without loss of generality the control switches at ¢y from +1 to —1. Denote by ¢; and
ty the lengths of the + and the — arc, respectively. From the relation ¢(tg —t2) = ¢(tg) =
o(to +t1) = 0 we get

t n+4

Mo = 5 M- + Zl a;O (t%) = 0, (2.36)
N

o+ Sy + ;l a0 (t3) = 0. (2.37)

Collecting (2.34), (2.35), (2.36), and (2.37), we obtain a linear system of n + 3 homo-
geneous linear equations satisfied by a1,...,an+4. The coeflicient matrix of the system
has the form

JLOT)  O(T) oot o)
o(T)
O(T) v O(T)  T4OMT)  O(T) oo o)
0 e o . 0 o 0
O(H3) v o) 1+0(8B) -2+01)  O@)
O(£2) vt o(2) 1+0(12) o) 410(2)

and its rank, for T small, is equal to n + 3. Therefore, the solutions of the linear system
form a one-dimensional subspace of R4, Its intersection with

{(b1,...,bpra)| |bi]| <lforeveryi=1,...,n+4; bpyg =1 or bpys = —1}

has cardinality one. O

Fix an S-extremal pair (A(-),¢(-)) and assumes that it contains a +—+—+ concatena-
tion. Let tg be the second switching time of the bang-bang concatenation and denote by
t1, to, and t3 the length of, respectively, the second, the third, and the fourth bang arc.
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Thus, the following equations are satisfied

<)\(to) —tiad (f-9) = 0, (2.38)
(Alto), (( ))) = 0, (2.39)

<)\(t0) taad (f+9) ¢ > = 0, (2.40)
<>\(t0) 2d (f+9) gtaad (f=0) g > = 0 (2.41)

Assume that (A(-),q(-)) belongs to E}] U 5737, where E% and 7 are defined as in section
2.4. If T'is small enough, then, as follows from Lemma 2.1, we have

[(A(), X (q(t))| =2 n/2 (2.42)

along the trajectory. The presence of a compactly contained — arc implies that the sign
of (A(t),X_(q(t))) is negative. Possibly renormalizing A(-), we may assume that

(Ato), X-(g(t0))) = —1.

Remark that, applying this renormalization, it is possible that we exit from the class
of normalized pairs, as it was defined in section 2.4.

Let, for i =1, 3, :’ be the classes of S-extremal pairs containing a +—-+—+ concate-
nation which are obtamed from :’ by means of this renormalization. Remark that, since
(2.42) holds, the rescaling factor is bounded from below by 2/n. Therefore, for any vector
field X, (A(to), X (q(t0))) = O(1) as a function of the pair chosen in J U=y 3 and of the
choice of the bang-bang concatenation.

Define 7., x = 0,+,+-+, as in (2.11) and (2.12) and notice that we can still assume
that E}’ satisfies (B) and f’;% satisfies (A).

From equations (2.38 —2.40) we obtain that

to t%
T = —571',;_ - 'é-TF++ +0 (tz) )
t1 = —2m+ O(t3)
£2
= fomy + -327T++ + Wﬁ_O(tg) + O(t%) .
Equation (2.41), in turns, implies
t2
0= mp + tamy — 5 + §7r++ + O(3) + O(tats) + O(t3) ,
and so 5
i3 = tg'/T..;. + gt%?r++ + 7T+O(t%) + O(t%) . (243)

We find it useful to introduce another agreement on how to express asymptotic re-
lations. We say that a function is an §2(f9) if it can be expressed as a sum of the type
74+0(1) + O(t2). In short,

Q(tQ) = 7T+O(1) -+ O(tz) . (244)
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Notice that ¢, %3 = t282(¢2). In order to recover @), we compute

ho
/11
ha

hs3
hy

frog-2mlfgl + 65X +0(8)

-9,

f+g,

f—g=2t[f,g] -t3X+ + 0O (3) ,
f+g+2ts[f,g] + 2tats Xy +15X_ + O (t3ts) .

Asymptotic expansions for 057, 0 <4 < j < 4, defined as in (2.21), are obtained from
the above relations, as follows,

oo1
002
012
003
013
093
004
014
024

034

f

I

I

Il

—2mg 4+ 2t17_ + O (t%) ,

2t1m + O (t%) ,

2m,

o1 + 023 + 21 + O (t113) ,

—2tom_ + O (13) ,

—2mg — 2ty — 3wy + O (£3)

ooz + 024 + O(t1tats),

21y + 2tzm_ + O(tats),

2t3my + 2atsmiq + O(t3) + O(t3ts)
o14 — 093 — 2mg + O(t5t3) .

In analogy with what was done in section 2.5.1, one can derive from Lemma 2.6 that,
for T small enough, the space H has codimension four in R5. A system of equations for
H is given by (2.24) and the components of (2.27) in the directions g, [f,g] and X, as

follows,

1+0#)w—ar+ar— (1+0(8)) s + (1 + tat3Q(t2))oy =
- (2t1 + O (t%)) o — (Qtz + 0 (tg)) o3 + (2t3 + tot3Q(te))ay =
O(8) ag— (5 +0 (3)) s + (2tats + tatzQ(t2)) s =

From (2.48) we deduce that

2
a3 =0 (3 ) oo+ (22 +0(2) () ) . (2.49)
i3 to t2

Using this relation in (2.47) we get

agt+oayt+oaptFoagt+ay =

o O O O

N N TN N
b
S
(o))

13
ap = i (1+9Q(t2)) cua,

and from (2.49), in turns, we obtain

1
Qg = 2%(1 + Q(t2)) g -
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Therefore, from (2.45) and (2.46) it follows that

a; = —Q3+ tgtg,ﬂ(ig)a&; ,
oy = —ap—(1+ tgtg,ﬂ(tg))@q .

Finally, mixing together all the ingredients, we get

— 2t
Q(as) = —3—; (ts (6773r + Btomimyy + ey ) + 150 (£3)) o (2.50)

Let us derive now an asymptotic expression for R(ay4). Due to (2.23), we have

hB(g(to)) = f™(qlte)) +O(8) ,
h(a(to)) = f™(a(to)),
hS(g(to)) = f™(a(t0)),
hS(g(to)) = f™(a(to)) +O(83) ,
Ki(g(te)) = f"(a(to)) + O(tsts) ,

and so, for every 0 <1 < 4,

A2 (q(to))es = f™(q(to))os + O (t3t3) as -

Similarly, for every 1 < 57 < n, we have
(A(to), Oz, hY ((t0))) 0 = (A(to), Oz, £ (a(t0))) i + O(t513) 04 .

Thus, R(as) = O(t4t2)e? and, finally, Q has the same asymptotic expression as Q in
(2.50). )
On the class E%, the quantity 7 is uniformly separated from zero, for T' small. It

follows from Theorem 1.8 that a short S-extremal pair in E% which contains a +-—+—+
concatenation is S-essential. By symmetry in 4+ and —, we actually proved that a short

S-extremal pair in E,?; with five concatenated arcs is S-essential.

Lemma 2.7 If q(-) is short and S-quasi optimal, then the pair (7m4,m44) lies in the
interior of the second or of the fourth quadrant of R?.

Proof. 1If g(-) is S-quasi optimal, then > 0. Taking into account the asymptotic
expression for £3 given in (2.43), we get from (2.50) that

0 > (6+O0(t2))md + (10 + O(ta))mimeqts + (5 + Ofta))mym? 15

+ (—g + O(t2)> ™t (2.51)

Notice that the leading term of (2.51) is an homogeneous polynomial inequality in
(74, tamy4). Tts set of solutions in R? is given by the cone-

C = {(z,y)€R2
= {(rcosf,rsinf)|r €[0,+c0), 0 €S', P(§) <0},

622 + 1022y + 5z1° + %ys < 0}
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Figure 2.1: the set C'N D.

where 5
P(#) = 6 cos®(0) + 10 cos®(0) sin(6) + 5 cos(f) sin®(6) + 3 sin®(6) .

Fix a cone C' such that C C C" and 8C N C" = {0}. Taking t5 small enough we
have that (74, t37m44) € C'. Indeed, the trigonometric polynomial which defines C has six
simple zeros on S!, which are stable by small perturbations of the coefficients.

Let

D= {(x,y)]x—F% ZO},

and consider a cone D' which contains the half-plane D and such that 8D N dD’" = {0}.
Since the condition mp < 0 must also be satisfied, then (n4,tom14) € D' for ¢ small. If
we choose C' and D’ close enough to C and D, then C' N D’ is contained in the union of
the second and the fourth quadrant and the lemma is proved. |

Let
T = (Mo — t1), X+ (g(to — 21)))

‘We have that
fr= lim @t —t) = ¢(to) — t10® (o - 1),

t—t]

where ¢ € [0,;]. Since

sup [p®)(tg —1)] = sup |(A(to — 1), X1 (qlto — 1)) = O(1),
te[0,t1] t€[0,t1]
then
Ty = My + t2Q(t2) .
For the same reason,
'ﬁ'_H_ = Tt -+ tQQ(tZ) .

In particular, an inequality in the form (2.51) is still true if we replace 7o and 7 4
by, respectively, 74+ and 7. Analogously, the relation t3 > 0 can be rewritten, in terms
of 74 and 744, as

.2,
Ty + §t27r++ + tQQ(tQ) > 0.
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Thus, for 7' small enough, (7, ,t274 1) € C'N D', where C' and D' are chosen as in the
proof of Lemma 2.7. In particular, for short pairs in E},, (74, to7ry ) lies in the interior of
the second or of the fourth quadrant.

Consider now a short S-extremal pair (A(+),¢(-)) which contains seven concatenated
bang arcs, the first and the last one corresponding to control +1. Let m; < -+ < 73
be the boundary points of such arcs. Notice that q‘{n,m] and Q|[¢3,T8] are both +—+—+
restrictions of ¢(-), and that ¢(74) is both the first switching point of q|[ and the
second switching point of

T3,78)

[T1,76] Dt g(T1 + 76 — 1), (2.52)

which is a +—+—+ piece of trajectory for the time-reversed system (1.15).

Normalize A(-) according to the choice of the +—+—+ concatenation |, . Denote
by ¢'(-) the time-reversed trajectory of g(-) and by \'(-) an extremal lift of ¢'(-) for (1.15),
which satisfies (1.31). Assume that A\'(:) is normalized according to the choice of the
+—+4—+ concatenation given in (2.52).

Choosing T small enough (depending on 7), we can assume that either one between
these lifts is in é% or they both belong to §717 or to 5727 In the first case we already proved
that the trajectory is S-essential.

Assume that they both are in g% The role of (74, 74+4) for (A(-),q(+)) is played by a
pair which is positively proportional to

p1 = ((Ao, X+ (q(70))) s (Ao, X (a(74))))

where A\g = A(74). Similarly, the role of (7, 7y) for (A'(+),¢'()) is played by a pair which
is positively proportional to

p2 = ({(—=20),= X4 (g(74))) ((=20), X1t (a(74)))) = ({0, X4 (q(74))),— (Ao, X411 (a(74)))) -

If ¢(-) were S-quasi optimal, then p; and ps should both lie in the interior of the second
or of the fourth quadrant of R?, which is, clearly, impossible.
Proposition 2.4 is proved, with k(4,0) = 7.

2.7 Regularity of non-bang-bang trajectories

Let go be an (s,d)-point, s + d < 4. Fix a short S-extremal pair (A(-),¢(-)). We can
assume that (A(-), g(-)) belongs to a class (2 or some =}) which satisfies (A) or (B-B'). In
particular, A(-) never annihilates X_(g(-)). The same is true for X (g(-)) when (A) holds,

and for X__(q(-)) in the situation (B).

Lemma 2.8 Given a subinterval I of the domain of definition of g(-), if q|; does not
contain bang arcs, then @ is identically equal to zero on I and wu|; is smooth.

Proof. If ¢(t) # 0 at some ¢ € I, then the maximal neighborhood J of ¢ in I on which
u(+) is smooth is nonempty. It cannot be a bang arc, by hypothesis, and therefore it must
be singular. The set 5

J = int{r € J|p(r) = 0}
is a proper nonempty subset of J. Let 7 be in the boundary of J and in the interior of
J. By definition, 7 is both a density point for J, where (™) = 0 for every n > 0, and
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for {7 € J|p(r) # 0}, where |u| = 1. Since v and ¢ are smooth on J, it follows that
|u(7)| = 1 and @™ (F) = 0 for every n > 0. As already remarked in section 2.1, however,
©")(F) can be computed iterating (1.17). We reach a contradiction both with COlldlthll
(A) and with condition (B). It follows that ¢|, = 0.

Thus, also ¢ and the further derivatives of ¢ are identically equal to zero on I. In
particular,

At) L og(q(t), [f,9l(a(?),

and, for almost every ¢ € I,

(A@), 17,17, 9ll(a(8))) + u() (M), 19, [ 9]l (a(2))) = 0. (2.53)

In both cases (A) and (B), (A(¢), g, [f,9]](q(¢))) # O for every ¢ for which (2.53) holds,
otherwise (\(t), X_(q(t))) would be equal to zero. If, however,

NORIRIRIICIONE

for some ¢ € I, we would have that near ¢ the function ¢ — |[(A(¢),[f,[f,9]](g(?))) ] is
uniformly separated zero and, consequently, |u(¢)| > 1 for some ¢ at which (2.53) holds.

Thus, for every ¢t € I, (A(¢),]g,[f,9]](¢(t))) # 0 and

), 1, 1, 9](a())
ROATATICONR (2.54)

Substituting (2.54) in (1.9), we find that A|; is a solution of the smooth (autonomous)
Hamiltonian system generated by the Hamiltonian

NI Ll
(A lgs [f gl

and, in particular, it is smooth. Thus, ¢|; is also smooth and, according to (2.54), the
same is true for u/;. O

u(t) = —

h(A) =\ F) - A a) s

Remark 2.9 The lemma implies, in particular, that the union of bang and singular arcs
is dense in the domain of definition of ¢(-). A property of this kind turns out to be more
general, and provides an extension of the one recalled at the beginning of section 1.3.
Indeed, a straightforward generalization of the proof of Proposition 1 in [1] shows that,
independently of the dimension of M and of S, if

{X(q0)| X € I(g)} + TyoS = Tyo M,

then the control function corresponding to a short S-extremal trajectory is smooth on an
open dense set of its domain of definition.

A consequence of Lemma 2.8 is that, along any singular arc, ¢ = 0. In particular, if ¢
is such that ¢(t) = 0 and ¢(¢) # 0, then it is the switching time between two concatenated
bang arcs. In both cases (A) and (B), the second derivative of ¢ has constant sign along
all — arcs. Therefore, ¢ is different from zero at the boundary points of each compactly
contained — arc. It follows that each compactly contained — arc is concatenated to two
+ arcs. If (A) holds, a symmetric reasoning for + arcs leads to the conclusion that if g(-)
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has at least one compactly contained bang arc, then it is purely bang-bang, because of
Proposition 2.4. On the other hand, if ¢(-) does not have compactly contained bang arcs,
then it follows from Lemma 2.8 that it is the concatenation of at most a bang, a singular,
and a bang arc.

If (B) holds, the situation is slightly more complicated. Nevertheless, it is still true
that a compactly contained — arc cannot be concatenated to a singular arc. The condition
(A(), X414 (-)) # 0 implies that the third derivative of the switching function along + arcs
has constant sign. Therefore ¢ can change sign only once along a + arc, and always in
the same direction (from negative to positive or the other way round). In particular, g(-)
cannot have a bang, a singular, and a bang concatenated compactly contained arcs. In
addition, a compactly contained bang arc is always concatenated to at least another bang
arc.

We want to prove that, if ¢(-) has a singular arc, then it cannot have more than
one compactly contained bang arc. Assume by contradiction that it has two. Without
loss of generality they are concatenated; indeed, if they are not, they identify a bounded
nonempty interval I, situated between the two. If I contains no bang arc, then, due to
Lemma 2.8, we detected a BSB compactly contained concatenation, which is impossible.
If it contains one, this one is concatenated to another bang arc, compactly contained as
well. As it was proved in Lemma 2.5 and Lemma 2.6, the existence of two compactly
contained concatenated bang arcs arc implies (at least for T small) the uniqueness of
the corresponding covector trajectory. Thus, from the generalized Legendre condition,
Theorem 1.11, it follows that

(A(t), [g, [, gll(a(2))) <0 (2.55)

along the singular arcs of the trajectory. Since we assumed that also (B') holds, we have
that (2.55) is satisfied for every ¢ and that ¢ is positive along each — arc, as ¢ is. It
follows that ¢(-) cannot have compactly contained — arcs. We reached a contradiction,
and, therefore, we have proved that, if ¢(-) is not purely bang-bang, then it admits at
most one compactly contained bang arc.

Finally, either a short S-quasi optimal trajectory is bang-bang or it is of the type
~+S+ or £5+— (allowing some arc to have length zero). In the cases in which property
(A) holds, we further restricted the possible S-quasi optimal concatenations to bang-bang
and +S+ trajectories.

2.8 Properties of generic quasi optimal control problems

The following table collects all upper bounds on the number of arcs of short S-quasi
optimal trajectories, which were obtained in the previous sections.

Every row corresponds to one class of (s, d)-points. The second column associates the
corresponding bound for short trajectories which have at least one singular arc of positive
length, and accounts for the maximal non-bang-bang concatenations which are candidate
to be S-quasi optimal. The third column contains the bound which applies to purely
bang-bang trajectories, that is, the value of k at (s, d).
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(s,d) non-bang-bang | bang-bang | general
bound bound bound
(1,0) |0 / 1 1
(1,1) |0 / 2 2
(1,2) |3 BSB 3 3
(1,3) | 4 | BSBB, BBSB 3 4
(2,00 |0 / 2 2
(2,1) |3 BSB 3 3
(2,2a) | 4 | BSBB, BBSB 3 4
(2,2b) | 3 BSB 3 3
(3,0) |3 BSB 3 3
(3,1) | 4 | BSBB, BBSB 4 4
(4,0) | 4 | BSBB, BBSB 7 7

The whole of the bounds contained in the table, due to the transversality considerations
recalled in the introduction, can be summarized as follows.

Theorem 2.10 Let M be a finite dimensional manifold and S a submanifold of M. For
a generic pair of vector fields f,g € VecM, there exists a stratified set W of codimension
five in M such that, for every point gy of S\ W, every short S-quasi optimal trajectory
of (1.13), contained in a sufficiently small neighborhood of qo, is the concatenation of at
most seven bang and singular arcs.

If the dimension of M is less than or equal to four, then W is fact empty.

As remark 2.3 pointed out, when the dimension of S is equal to zero the above regu-
larity results admit a stronger formulation. Indeed, if S = {qo}, the class of trajectories
which verify the asymptotic relations found in sections 2.5 and 2.6 does not reduce to
S-extremal ones, since the initial condition ¢(0) € S stops having any role in the expan-
sion. The same is true for what concerns section 2.7, whose arguments apply to all quasi
optimal trajectories contained in a small enough neighborhood of gp. Taking into account
these considerations, the following three propositions specify the general bounds to the
point-to-point problem.

Proposition 2.11 Let M be a two-dimensional manifold. Then, for a generic pair of
vector fields f,g € VecM, for every point qo € M, there ezist a neighborhood U of qo and
a time T > 0, such that a quasi optimal trajectory of the system (1.7) contained in U and
of time-length smaller than T is the concatenation of at most four bang and singular arcs.
The only possible mazimal concatenations are of the type BBB, BSBB, BBSB.

Proposition 2.12 Let M be a three-dimensional manifold. For a generic pair of vector
fields f,g € VecM, there ezist a one-dimensional and o two-dimensional stratified sets W1
and Wy in M, such that,

@ Wl(:WQCM,'

e for every point qu in M \ Wy, there exist a neighborhood U of qo and a time T > 0,
such that a quasi optimal trajectory of the system (1.7) contained in U and of time-
length smaller than T is the concatenation of at most three bang and singular arcs,
with possible mazimal concatenations of the type BBB, BSB;
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e for every point qg in Wo \ W1, there exist a neighborhood U of gy and a time T > 0,
such that a quasi optimal trajectory of the system (1.7) contained in U and of time-
length smaller than T is the concatenation of at most four bang and singular arcs,
with possible mazimal concatenations of the type BBBB, BSBEB, BBSB.

Proposition 2.13 Let M be a four-dimensional manifold. Then, for a generic pair of
vector fields f,g € VecM, there exists a three-dimensional stratified set W C M, such
that, for every point qo in M \ W, there ezist a neighborhood U of qo and a time T > 0,
such that a quasi optimal trajectory of the system (1.7) contained in U and of time-length
smaller than T is the concatenation of at most seven bang and singular arcs. The only
possible mazimal concatenations including singular arcs are of the type BSBB, BBSB.

2.9 Sharpness of the results

We already noticed that our results partially overlap the ones of [33] for the cases (1,0),
(1,1) and (1,2). The restrictions given here, namely, that the maximal possible concatena-
tions for a short S-quasi optimal trajectory are of the type BBB or BSB, are sharp, since
in the classification of time-optimal syntheses given in [33] these kind of concatenations
actually appear.

For what concerns the case s = 2, both BBB and BSBB short time-optimal trajectories
can be observed in the regular syntheses of a generic time-optimal flow in the plane,
classified in [16].

In order to prove the sharpness of the bounds given for s = 3, we apply the sufficiency
condition for optimality proved in [9]. The same reasonings applied to the present case
imply that, if the quadratic form @ is positive definite, then the corresponding trajectory
q:[0,T] — M is (state,time)-locally time-optimal, that is, there exists a neighborhood W
of the graph {(¢,q(t)) | t € [0,7]} in [0,T] x M such that g(-) is time-optimal among all
the admissible trajectories whose graph is contained in W (see also [43]).

We work in the point-to-point setting and we fix M = R3 and S = {0}.

Proposition 2.14 Let Jg"le3 be the space of 4-jets at 0 of elements VecR3? x VecR3
and denote by C; C Jg’4R3 the set of all J§’4(f, g) such that 0 is a (8,1)-point for the
system determined by f and g. Then, there exists an open nonempty subset A1 of C1 such
that, if the 4-jet of (f,g) belongs to Ay, then, for every T > 0 there exists a trajectory
made of four bang arcs, passing through 0 and of time-length smaller than T, which is
(state,time)-locally time-optimal.

Proof. Fix f,g € VecR? such that Jg’4(f,g) € C;. Let ¢:[0,7] — R?® be a +—+—
extremal trajectory and denote by tg < tg +t1 < tg+ 1 + 2 its switching times. Assume,
moreover, that g(tp) = 0. We already know that, for T small enough, ¢(-) has a unique
extremal lift A(-) normalized is such way that

|A(to)| = max{|(A(to), [f, g](O))]; [{A(Z0), X-(O))[} = 1.

The equations satisfied by the switching times are

0 = (Alto),9(0)), (2.56)
0 = (Ato),e*U9g(0)), (2.57)
0 = <)\(t0),etla'd(f_g)etzad(f+g)g(0)>. (2.58)
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Define 7, as as in (2.11) and (2.12). Notice that my = ¢(tp) is nonnegative, and, as
follows from the usual considerations, 7 = —1. We can assume, moreover, that |7| is
uniformly bounded from below by a positive constant. Equation (2.57) implies that
ti_ 4§ 3
mo=—=— =1+ O(&) . (2.59)
2 6
For every word w with letters in {—, +}, denote by ¢,, and 7,, the components of X, (0)
in the directions [f, g](0) and X _(0), with respect to the basis g(0),[f, ¢](0), X- (0). Notice
that 7y = —ny + 0y mg = —nyw + O(t1). In particular, since ny =0, 74 = O(¢1).
From (2.58) we get

2

t—‘
0 = mp—t; + €27T+,|_ + O0(#2) + O(tita) + O(23)
- hiB o@)+o O(#
= -5t Tt (t1) + Ol(t1ta) + O(t3) .
Therefore,
3
2=-"t; + O(ti’/z) :
Tt

We have

hU = f+g7

h'l = f -39,

hy = fHg+2ulfgd+8X_+0(),

t3

hs = f—g—2b[f,g] — 53Xy — 210X — ‘32X++ +0(4) ,
and

o1 = —2m,

ogg2 = —2t1+ t%m__ + O(t%) ;

o1 = 2mg— 2t + t%ﬂ'__ -+ O(f%) s

43
gp3 = —-—271'0 - 2t2‘7’(‘+ - t%ﬂ'_}_.*_ - 2t1t2’ﬂ’+_ - '52'71'.’__;__]_ -+ O(t%) 3
43

013 = 2ty — t%w-+ — 2tqtom__ — —32—7I'_++ + O(t%) ,

Goy = o0y — 012 + 2mg — 2ty t2my + O(ti‘/z) ,
where

Tx = ()\(1}0), [[f: 9]7X+](0)) .
The space on which @ is defined turns out to be described by the system

ag = —(1-2—0(15‘;’/2))042,
t 6r titg [ 62
a; = <“5+t1—%+7<j§t“‘§‘“7+>+0(t%)) Qg ,

t1 o  tity (644 02 .
as = <g“t1—2""—-2“<*§““‘2“ +0(t7) ) ez,
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where ~y4 is the component of X1 (0) in the direction ¢(0). Finally, we get

2
2

S ) 2
Qo) = <7§%t2 (L;U‘_E_“r_"' — 0% — MOy — e — 27y + §7r_|_+7r__> + O(t%)) a

To conclude the proof of Lemma 2.14 it suffices to exhibit a system on R? for which
the origin is a (3,1)-point and the following sign conditions hold

N+ < 0,
Mgt = 0gt

2
3 + 5-2|- — N0 T 7+ — 27x — oH+1-- < 0,

where 7y denotes the component of [[f,g], X+](0) in the direction X_(0).
This is the case, for instance, of the control system

0 1
f(CL‘,y,Z): , a_x 3 g(-T,y,Z): 0 )
LTttty 0
for which we get 74y = —2 and
17 5 3\ 2
Q=Q(x) = 5 2+ O(t) ) o3 O

Also the non-bang-bang part of the bound which we gave for s = 3 turns out to be
sharp. Indeed, in [51] it is shown that short time-optimal concatenations of two bang, one
singular, and one bang arc, exiting from a (3,1)-point are structurally stable (dim S = 0).
We stress that the optimality notion considered in [51] is global, and not only (time-state)-
local.

The sharpness issue for the bounds given in the case s = 4 has not yet been investigated.
Its study could be the object of some further research, linked with the classification of
generic optimal syntheses in dimension four.
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Chapter 3

Codimension two singularities for
the three dimensional
point-to-point problem

The positive regularity results of chapter 2 ask, in some sense, for a negative counterpart.
As it was recalled in the introduction, chattering phenomena are stable for single-input
control-affine systems in manifolds of large enough dimension. This chapter gets a little
closer to the border between the chattering territory and the non-chattering one.

The first four sections present results which are contained in our work [53]. A classifi-
cation of codimension two singularities for the three-dimensional point-to-point problem
is proposed. For two of the three classes which have been introduced, a local bound on the
numbers of arcs of quasi optimal trajectories is proved. The language and the methods
are very much in the style of the ones used in chapter 2, although new technical problems
arise. ]

The remaining part of the chapter deals with the singularity classified in section 3.1
and not treated in [53]. The aim is to show why the previous approach is not sufficient
to give a complete understanding, and to propose some method which we hope could
be useful for a further research in the subject. In particular, a non-standard nilpotent
approximation of the system is discussed.

3.1 Classification of codimension two singularities

Let M be a three-dimensional manifold. In the previous chapter we obtained local regular-
ity properties which apply, in particular, at codimension zero and one singularities of the
point-to-point problem on M. Let us recall how (3,0)- and (3,1)-points were characterized,
adapting the definitions to the case S = {qo},

(3,0) | g(g0) A[f,9](g0) A X (o) # 0 and g(go) A [f,9](q0) A X—(g0) # 0;

(3,1)| glgo) A1f,9l(g0) A X(q0) =0, g(go) A[f,g)(g0) A X++(go0) # 0 and
9(q0) N[5 9)(g0) A X—(g0) # 0.

The definition of the vectors fields X, is given in (1.21).
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Define (3,2a)- and (3,2b)-points as follows,

(3,2a) | g(qo) ALf, gl(q) A X+(g0) = g(g0) A 9)(q0) A X44(g0) = 0,
9(q0) NS, 9)(q0) A X(34y(q0) # 0 and g(go) A [f, g](q0) A X—(q0) # O;

(3,2b) | g(go) A[f.gl(g0) =0, g(go) N Xy(g0) N X_(qo) # 0,
9(go) N X4 (q0) N X44(qo) # 0 and g(qo) A X_(q0) A X—_(qo) # 0.

Local regularity results for (3,2a)- and (3,2b)-points are given in sections 3.2, 3.3
and 3.4. In order to give a complete picture of codimension two singularities, we should
consider points at which

gAlfgInXy = 0 (3.1)
gA[fglNX_ = 0, (3.2)

and find appropriate non-degeneracy conditions, independent of (3.1) and (3.2), which
allows to describe the behavior of (1.7) near such points. This will be the subject of
sections 3.5 and 3.6.

Since we do not consider the general manifold-to-point situation, a more explicit notion
of local regularity can be adopted, which expressly accounts for the size of the neighbor-
hood in which the bound holds. That is, given a (3,2a)- (respectively, (3,2b)- ) point gq,
we will say that a neighborhood U of qp is (3,2a)-adapted (respectively, (3,2b)-adapted)
if it is relatively compact, connected and the relations in inequality form characterizing
the (3,2a) (respectively, (3,2b)) configuration hold throughout U. Once qq is fixed, we say
that all short trajectories of a certain class have a given property (P) if, for any adapted
neighborhood U of ¢qq, there exist T' > 0 such that all trajectories in the class, which are
contained in U and have time-length smaller than T, satisfy (P).

3.2 A bound on the number of arcs of quasi optimal bang-
bang trajectories in the (3,2a) case

Let gg € M be a (3,2a)-point and fix a (3,2a)-adapted neighborhood U of gp. A moving
basis in U is given by the triple of vector fields Y, = g, Y> = [f, g] and Y3 = X_. Associate
with Y7, Y3,Y3; an Euclidean structure on 7*U as in the statement of Corollary 2.2.

3.2.1 Short —+—+ trajectories

Let (A(-),q(-)) be a short extremal —+—+ pair. Its switching times, denoted by t; <
to +t1 < tg +t1 + to, verify

0 = (M), g(a(to))) (3.3)
0 = (Alto),e"™Ug(q(to))), (3.4)
0 = <)\(t0)7etlad(f+g)etzad(f—g)g(q(to))>. (3.5)

In analogy with what was done in chapter 2, define, for every i = 1,2, 3,

a; = (A(to), Yi(q(to))) »
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and normalize A(+) in such a way that
IA(to)] = max{]au, las], Jas]} = 1.
Equality (3.3) implies that a; = 0, while from (3.4) we obtain
‘ ag = asO(T) + azO(T) . (3.6)

The normalization of A(-) implies that |as| = 1. Moreover, since g(-) has a compactly
contained — arc, we can assume that ag = —1. Therefore, (3.6) defines uniquely as. This
proves the uniqueness, up to normalization, of the extremal lift of ¢(-).

Following (2.11) and (2.12), we define mp = ag and my, = (A(tg), Xy (q(to))), for any
word w with letters in {—,+}. From (3.4) we get

2! t% ti’ 4
o= Ty T g T T g e T O(t) -

From (3.5), in turns, we obtain

t3
ty = 2mo+ 2ty + Ty + —?—)1-7r(3+) +O(t1) + O(t1t) + O(£3)
2 £
= t17T+ + gt%ﬂ'.H_ -+ Zl‘ﬂ'(g_H -+ 7T+O(f%) + 7T++O(t?) + O(tlll) .
In order to express asymptotic relations concisely, we find it useful to introduce, as it

was done for () in (2.44),
w(tl) — 7T+O(1) + 7r++0(t1) + O(t%) .

For example, 7y, t2 = tiw(t1)-
Define h; as in (1.22), 0 <4 < 3, and let, as in (2.21),

We have
ho = f -9,
hi = f +3g,
2 £ 4
hy = f—9—2t1[f,9]—751X+—§X+++O(t1) ;
hs = f+g+2t[f,g]+2tita Xy + 315X\ + titpw(tl),
and so
ogp1 = 27707
og2 = 241+ O(t%) s
t3
g19 = —271'0 - 2t17r+‘ - t%ﬂ——l— - 3171'(3_” + O(t%) 5
oo3 = 2mp — 2ty + O(t1t2),
g1z = 2t27l'+ + 2t1t27r++ + t%tzﬂ'(;ﬂ.) + tltzw(tl) ,
o953 = 0Op3 — 012 — 27 + O(t%tg) .
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The space H, defined in (1.24), can be described by

and by the components of

3
S ailhi — f)(ato)) = 0 (3.7)

1=

0
in the directions g(q(t)) and [f, g](q(t0)), with respect to the basis

9(a(t0)), [f,9l(a(ta)), X—(a(to)).

That is, by the following system

ag +a; +oan + a3 = 0,
—ag +ar —(1+0(#)) oz +(1+O0(t1t2))s = 0,
- (2t1 +0 (t%)) as  + (2t + O(tltf))) = 0.
from which we deduce
@ = - (% + O(tQ)) o3,
a; = —(14 O(t1ta))as,

ay = (% + O(h)) as

Thus,
2

t
Qlas) = —2t; <7T+ + Tt + 517T<s+> + 751w(751)> a3 (3.8)
If Q is nonnegative definite, then
2

i
O o A I ’é‘ﬂ-(z—!—) + tlw(tl) <0.

Assume that ¢(-) is quasi optimal. We can associate with ¢(:) a system of inequalities
which accounts for the sign conditions @ > 0, mp < 0 and t3 > 0, as follows

t?'
Ty + t17r++ + 7 2,7 (3+) +tw(t) < 0,
T+ + 3 T+ + 127T(3+) + tlw(tl) > 0 ) (39)
T+ + t17T++ + 2 T (3+) + tlw(tl) > 0.

Reasoning as in Lemma 2.7, we get that, for 7' small enough, (7, 744, T(s.y) belongs
to one of the octants (+-+—), (+—=) and (—+—), with the agreement that the (vy v v3)
octant of R? is the set {(z1,72,z3)| viz; > 0, i =1,2,3}.

3.2.2 Short +—+—+ trajectories

Let us repeat the previous scheme of computations for a short quasi optimal +—+—+
pair (A(-),q(-)). Denote by o the first switching time of ¢(-) and by %1, 2,3 the length of,
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respectively, the second, the third, and the fourth bang arc. It follows that

(Alto), 9(g(t0)))
(Ato), e U9 g(q(t0)))
<>\ ptrad (f~0) tzad(f+9)g(q(t0))>,

<)\(t0>, et1ad (f—g) gtead (f+9) gtaad (f'g)g(q(to))> .

(3.12)

(3.13)

Remark that A(-) is unique, up to the normalization |A(tg)| = 1, as it has been proved in
section 3.2.1. From (3.10-3.13), we get

Therefore,
hy =

hy =
hy =

and

op1
002

g12

003

013
023
004

014

024

034

m = 2+0(),
t2 t3

b= Ty Ty 127T<s+> +t3w(ta),
2 5 t3

t3 = t‘)7T_|_ + 3t27T+_|_ + 4 7T(3+) + tQUJ(t‘))

f+g+2tlf.g)+0(),

t3
f=g-2b[fg) - 65Xy - 2X s+ tuw(ta),
f+g+2(t + tg)[f, Q] + 20913 X + t%th.H_ + t%w(tg)w(tg) ,

—2m,

2t1ms + O(t1)

2mo — 2t + O(83)

—2my — 2pmy — tamyy — %g-w(3+> + tw(ty),

2t, + O(t3) ,

o3 — 012 + 27y + O(tltg) ,

2(ty +t3) My + 2otamiy + tata M sy, + taw(tz)w(ta),
2my — 2(t; + t3) + tiw(ta),

004 — 002 + taw(ta)w(te)

o14 — Op3 — 2o + taw(ts) .

The space H is characterized by the system

0 = ay+a;+ay+a3+ay,

ap — o1 + (1 -+ O(t%)) o — (1 + O(t%)) os -+ (1 +t§w(t2)) oy,
0 = (2t1+0(8)) az — (262 + O(t3)) a3 + (2(t1 + t3) + t3w(ta)) cua.
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(3.14)
(3.15)

(3.16)

(3.17)
(3.18)
(3.19)




From the (3.19) we obtain

t tp + ¢
Qg = <t_l ~}—tgw(t2)> oy + (“L_‘t““‘?" + th(t2)> Q4
2

2

which we can plug in (3.17) and (3.18), getting

g = — (1 + t%w(tg)) Qg — (1 + t%w(tg)) oy

t t1+1
o1 = — <é~ -+ tg&)(tg)) Qg — < L t 3 + tg&)(tz)) oy .

and

Thus, after some computations,

Q = Qan, aa) = (—2m4(t1 + t3) — 2tatamiq — tytamay + taw(te)w(ts)) f
+ (=4t my + Bw(t)w(te)) avas — (2174 + Bw(t)w(ts)) o .

If ) is nonnegative definite then, in particular, the coefficient of o2 must be nonnegative.
Using the relations (3.15) and (3.16), it turns out that
4 5 7 tome
477—%+47527T+7T+++§f§77?+++‘§t%"+7f(s+)+gt§7T++7T(s+)+ 2 f+) +iaw(ta)w(tz) < 0. (3.20)

Since t1,t3 > 0, then the following inequalities are also satisfied

t t2
T + 2?* + 27;(23“ +tow(ty) > 0, (3.21)
2 t2
T+ Stomey + -2-7%@ +tw(ts) > 0. (3.22)

Again, we can interpret (3.20), (3.21), (3.22) as a necessary condition on g(-) to be
quasi optimal, expressed as a set of constraints on the position of the triple (74, 74+, Ta1y)
in R3. The leading terms of the three inequalities can be put together to define the closed
cone 2

—4m2—4xy—f§—y2——gmz—%yz~-z4—20
C =< (z,y,2z) € R® :c—%—%—i—l%zO
T+ 3y -+ i >0

Fix a cone C' which contains C and such that 0C N 9C" = {0}. Taking T small
enough, whenever g(-) is quasi optimal the triple (my,%om 4, t3msy,) is contained in C'.
Elementary calculations show that C’ can be chosen in such a way that it intersects only
the octants (+—+) and (£+-).

3.2.3 Conclusions for the bang-bang (3,2a) case

Let (A(+),q(-)) be a short bang-bang extremal pair with seven arcs, the first and the last
one corresponding to control +1. Let 7 < --- < 73 denote the boundary points of the
seven arcs. Then, g(74) is the first switching point of the +—+—+ trajectory QI[Ts,Ts] and,
at the same time, the first switching point of

[11,75] 2 t —> q(11 + 75 — 1),
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which is an admissible —+—+ trajectory of the time-reversed system.
Define

ﬂ—ij) = <A(Tj)aX*(Q(Tj))>7

for every 7 = 1,...,8 and for x = +,++,(3+). Assume that ¢(-) is quasi optimal.
Then the triple (7{, 7}, (3,,) necessarily belongs to one of the three octants (+—-),
(£=+—), while the triple (7', 7, 7{s},) must lie in one of the octants (++-), (+—=),
(—=+—). The only possibility is that (Wﬂf), Wifﬂr, ﬂ((;li)) is in the (++-—) octant. By symime-
try, (7,7, m(s},) must belong to the (+——) octant.

According to Corollary 2.2, (A(¢), X (3+)(q(t))> can be bounded uniformly away from
zero and, as follows from (1.17), it is the derivative of (A(¢), X1+ (q(¢))) with respect to

¢ along + arcs. Since m(s,, is negative, then ¢t — (A(t), X4.4(g(t))) is decreasing along all

+ arcs. In particular, (7, 7%, 7(5},) belongs to one of the octants (++—) or (—+-).
Therefore, g(73) could not be the fourth switching point of a short quasi optimal bang-bang
extension of ¢(-) with nine arcs. It means that a short bang-bang trajectory contained in
U with nine arcs, the first and the last one corresponding to control +1, is essential. We

proved the following result.

Proposition 3.1 Let gg € M be a (3,2a)-point. Then, a short bang-bang quasi optimal
trajectory of (1.7) has at most nine bang arcs.

Remark 3.2 There is no evidence at all that this result is sharp. On the contrary, it is
reasonable to expect the bound to be overestimated. Proposition 3.1 allows us, anyhow,
to exclude the existence of chattering quasi optimal trajectories, a property which will be
crucial, in section 3.4, for obtaining general regularity properties.

3.3 A bound on the number of arcs of quasi optimal bang-
bang trajectories in the (3,2b) case

Let q¢ € M be a (3,2b)-point and fix a (3,2b)-adapted neighborhood U of ¢gp. Fix
Y1 =g,Ys = X4, and Y3 = X_, and associate with this moving basis the corresponding
Euclidean structure in 7*U. For every T > 0, let = be the class of extremal —+—+
pairs (A(+),q(-)) of time-length smaller than 7', normalized in such a way that |A(%)| = 1.
Choose (A(+),¢(+)) € E and denote by tp < tg+t1 < to + t1 + to its switching times, which
verify

0 = (A(to),gla(t0))), (3.23)
0 = (Alto),e"* U g(q(k0)) ), (3.24)
0 = (o), UF9eia(=ag(g(1g)) ) . (3.25)

Let 7, be defined as in the previous section. Notice that, due to (3.23),
max{|my|, [1-[} = [A(to)[ = 1.

Since ¢(-) has both a compactly contained + arc and a compactly contained — one,
then either 74 = 1 or m_ = —1. In our standard notation, a; = 74 and a3 = m_. From
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(3.23), (3.24), and (3.25), we get
0 = m+ %-CLQ +a O(t7) +as O(£3) ,
0 = m+tias+ %‘-as +az (O(tats) + O(t3)) + as (O(tat2) + O(t3)) -
Therefore,
0= ap (t1+ O(tF) + Oltate) + O(85)) + as (t2 + O(#]) + O(tatz) + O(83)) - (3.26)

For T small enough, (3.26) can be solved either in ag or in ag, that is, at least one of the
coefficients multiplying as and a3 is different from zero, as it can be seen, for instance, by
considering separately the case in which ¢; < ¢5 and the opposite one. Therefore, (ag,as)
is uniquely determined up to multiplication. It follows that A(:) is the unique extremal
lift of ¢(+), up to normalization.

For every n in the open interval (0, 1), we split = in three subclasses, 5117, 5727, and Eg’,,
as follows: B} and =2 are characterized, respectively, by 74| < 7 and |7_| < 7, while =}
is defined as =\ (5717 U 5727)

Lemma 3.3 There ezist 0 < n < 1 and T > 0 such that, if (A(-),q(")) € E}] and q(-) 1is
quasi optimal, then iy < 0.
Proof. Assume that (A(-),q(-)) € E; and notice that 7_ = —1. From (3.4) we have

t 2 5
T = -—-577_;. - —6-7T++ + O(tl) .

Remark that, since 7y is the derivative of the switching function at time ¢y, then the
following inequality holds,

t
T+ —31—7r++ +0(#) > 0. (3.27)
From (3.5) we get
ty = 2m+ 2wy + Emyy + O(8) + O(tata) + O(23)

2
= {174+ gt%ﬁ_f._'. + 77_4.0(?5%) + O(t?) .

We have

hy = f-g-2t[f,g] -iX, +0(t3),

hy = f+g+26[f, ]+ 2tita X4 + O(tits) + O(83) ,
and so

agpr = 27TO P

oy = 261 +O(t%) ,

Jg12 = ——27T0 - 27§17I'+ —t%7r++ + 7T+O(t%) + O(t?) ,

ooz = 2my — 2ty + O(t1ta),

o3 = 2wy + 2titemy + O(84) + O(83) |

U935 = 0Op3 — 01 — 27y + O(t%h) .
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The space H, defined in (1.24), is determined by a system of the form

oap+a;+ar+as = 0, (3.28)
—ag + oy — (l+0(t1))&2+(1+0(t2))0{3 = 0, (329)
—t1 Aoy + oAz = 0 , (330)

where

Ay = 25+t +0(8),
A = 25+2t1+0(t%)+0(tg),

and ¢ is the component of [f, g](¢(¢0)) in the direction g(g(tg)), with respect to the basis

9(q(t0)), X+ (g(to)), X—(q(to))-
If T and n are small, then O(#3) and O(ty) are small with respect to ¢;. Choose 7" and

7 in such a way that As — As > t—?} Then, one of the following two condition holds,

‘Agt > —, (331)

|As] > —. (3.32)
Consider the covering of B} = Q1 U Qy, defined as follows: An element of E, belongs to
; (respectively, Qo) if (3.31) (respectively, (3.32)) holds.
The ratio F' = Az/A; is well defined on §2; and, moreover, seen as a function from Q;
to R,
t1 + O(t2) + O(t2)
Az

Assume that (A(-),¢(-)) is in Q4. The space H is described by

F=1+

= 0(1).

t
oy = — (%‘%F+O(t2)> a3,
1
a; = —(1+4+0(ty))as,
Qg = :t-Z—Fag.
3]

The asymptotic expression for () turns out to be

Q(Ozg) = 2t2 (F+(F - F2 - 1) + §t1W++ (F - F2 - %) -+ 7T+O(t1) + O(t%)) Oé% .

If g(-) is quasi optimal, then
2
mutJﬂ—n+?m%<F—ﬁ~g)+m0myum@20. (3.33)

Remark that, independently of the value of F, F — F? —1 is negative and separated from
zero. From (3.27) and (3.33) we obtain that

(F? — F+ 2}ty + 14 0(t1) + O(t2) > 0,
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and we conclude, for 7, and T small enough, that 7y is negative. In a similar way, the
same property is established for pairs in (2, as well. O

When 0 < n < 1 is fixed, we can assume, by taking 7' small enough, that if (A(), ¢(-)) €
5717, then the time-reversed of ¢(-) has lift in the class E%n corresponding to the time-
reversed system. It follows from Lemma 3.3 that, if 7 is small enough and ¢(-) is quasi
optimal, then ¢(-) cannot be extended to a short concatenation of five bang arcs, preserving
quasi optimality. By symmetry, we can assume that the same is true when (A(-),¢(-)) € E%

From now on, let n be fixed so that these two properties hold, and assume that
(M), q(1)) € E;o; To prove that g(-) cannot be quasi optimal we can follow a proce-
dure very similar to the one described in Lemma 3.3. We just give, for completeness, a
sketch of the intermediate passages.

Remark that |7, | and |7_| can be assumed to be bounded from below by 7/2. From

(3.24) and (3.25) we obtain

t
M = ~—21—7r++0(t§),
o = tlﬂ++0(t%).

The asymptotic expressions for hg, h1, hg, hs can be easily computed and yield

o1 = 2mg,
ooz = 2hm—+ O(8),
o1 = —2mg—2t1m4 + O(t%) ,

og3 = 2mg — 2tom- + O('[J%) )
013 2tom + O(t1),
O3 = 27r0—2t27r_+2t17r++0(t%).

The space H is characterized by the following system,

ag+or+as+ag = 0,
—0pg + o1 — (1 + O(tl))az + (1 + O(tl))ag = 0,
—t1Ag09 + toAzas = 0,

where
Ay = 20+t +O0(t2),
Az = 20+2t +0(8).

Let ©1 and Q9 be defined as in the proof of Lemma 3.3. On 1, F = A3/A, is well defined
and it is an O(1). The quadratic form @ has the expression

Qlas) = 2tomy (F = F* —1+0(1)) of,

and thus it is negative definite for 7' small enough. The analogue of these computations
in Q) allow us to conclude that ¢(-) is not quasi optimal.

Symmetry considerations extend the result to short +—+— trajectories.

Proposition 3.4 Let qo € M be a (8,2b)-point. Then, a short bang-bang quasi optimal
trajectory of (1.7) has at most four bang arcs.
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3.4 Regularity of non-bang-bang trajectories in both (3,2a)
and (3,2b) case

Let gg € M be a (3,2a)- or a (3,2b)-point and fix an adapted neighborhood U of gg. With a
slight abuse of notation with respect to section 3.3, denote by Z the class of short extremal
pairs (A(-), ¢(-)), normalized in order to have |A(7)| = 1 at some time, and such that the
corresponding switching function has at least two zeros. Recall the definition of properties
(A), (B), and (B') given in section 2.4. In the case in which gp is a (3,2a)-point, the class =
does not verify, in general, neither (A), nor (B), nor (B’). Anyhow, as we already remarked
in section 3.2, we can assume that [(A(), X_(g()))| and [(A(-), X(34)(q(-)))| are uniformly
separated from zero, as (A(-),q(-)) varies in Z.

As for the (3,2b) case, we split Z, as we did in section 3.3, into three subclasses 5717, E%,
and E3. A pair (A(),¢(")) € E belongs to E} (respectively, 22) if [(A(F), X+ (g(F))| < n
(respectively, |(A(7), X_(g(F)))| < n). The complement of Z; UE2 in E gives =j. Taking 7
small enough, we can assume that (B) and (B') are verified by E%, (A) by E%, and that E%
satisfies the symmetric properties to (B) and (B’), where + is replaced by — and viceversa.

Notice that the statement of Lemma 2.8 is valid for trajectories in =. Indeed, the
crucial property which makes the proof of Lemma 2.8 work, is that Ty, S and

span {g(qo), [f> 9](q0), X1 (q0), X - (q0)}

are transversal. Here, the condition is satisfied everywhere in U, in the sense that g, [f, g,
X, and X_ span the tangent space to M at every point of U.

When qo is a (3,2b)-point, all the reasoning which applied in section 2.7 to quasi
optimal trajectories near (3,0)-points can be used for quasi optimal trajectories which
lift in 3. Analogously, quasi optimal pairs in E} can be studied as it was done near

U
(3,1)-points. A symmetric analysis applies to :,27. We end up with the following result.

Theorem 3.5 Let gqg € M be a (8,2b)-point and fiz a (8,2b)-adapted neighborhood U of
go. Then, there exists T > 0 such that a quasi optimal trajectory of (1.7) contained in U,
of time-length smaller than T, is the concatenation of at most four arcs. The only possible
mazimal concatenations are of the type BBBB, BSBB, BBSB.

o

The case of (3,2a)-points presents some new phenomena. Let (A(-),¢(-)) € E and
denote by ¢ its corresponding switching function. Define, for every word w with letters
in {—,+}, Y () = (A(), Xwlg())):

Assume that ¢() is quasi optimal. Therefore, due to propositions 1.5 and 3.1, either
q(+) is bang-bang or it contains at least one singular arc. Assume that ¢(-) is not bang-
bang and denote by [0,7] its domain of definition. If no bang arc is compactly contained
in [0, 7], then g(-) is the concatenation of at most a bang a singular and a bang arc. On
the other hand, since |¢—(-)| is separated from zero, then each compactly contained — arc
is concatenated to two + ones. Therefore, if a compactly contained bang arc exists, then
we can assume that it is a -+ arc and that at one of its boundary points ¢ = 0. Thus, the
restriction of 94(-) to the + arc has at least one zero. Define E as the subclass of 2 made
of extremal pairs for which A(-) annihilates X1 (g(-)) at least once. It follows from Lemma
2.1 that = can be assumed to satisfy (B').

Since (A(-),q()) is in Z, then the generalized Legendre condition implies that ¢ is
positive along — arcs. In particular, g(-) does not have compactly contained — arcs. If
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¢(-) has only one singular arc, then it is a concatenation of the type —+S+—, where
possibly some of the bang arcs have length zero.

Assume that it has two distinct singular arcs. Then, there exists at least one + arc
[t1,t2] contained in the interval which they identify. Since [t1,?2] cannot be concatenated
to — arcs, then ¢(t1) = ¥(t2) = 0. It follows that ¥, is equal to zero at some point of
(t1,t2).

Since a4, (-) has constant sign on [0, 7] and it is equal to ¢®*)(-) on (t,%2), then it
follows that 9 s.,(+) is negative and that ¥4 (t1) > 0 > ¥4 (f2).

According to Lemma 2.8, the control u(-) corresponding to ¢(-) is given by (2.54).
Since (A(-),q(")) € E, we can assume that u(-) is uniformly as close to +1 as required
along singular arcs. In particular, we can assume that 1, (-) is decreasing not only on
+ arcs, but also on singular ones.

We want to show that [¢1, t2] is the only bang arc compactly contained in [0,7"]. Assume
that there is a second one. Without loss of generality, it is contained in [tg,T]. Let t3 > to
be the smallest density point of the union of bang arcs contained in [t2,T]. Then (¢9,t3)
is a singular arc, possibly empty. Therefore, 911 (t3) < 0. It follows that there exists
a compactly contained + arc (t4,%5) such that t3 < t4, ¢(t4) = 0 and ¢++{(t47t5) < 0.
It follows that |y, ) = Pty ts) < 0 and thus ¢t5 = T. Therefore, ({4,t5) was not
compactly contained in [0, 7] and we reached a contradiction.

We proved the following result.

Theorem 3.6 Let go € M be a (3,2a)-point and fiz a (3,2a)-adapted neighborhood U of
qo- Then, there exists T > 0 such that a quasi optimal trajectory of (1.7) contained in
U, of time-length smaller than T, is the finite concatenation of at most nine bang and
singular arcs. The only possible mazimal concatenations including singular arcs are of the
type —+S5+—, £5+5+.

3.5 First attempt for the (3,2c) case

Assume that gy € M is such that

9(q0) A [f,9l(q0) A X(q0) = O, (3.34)
9(g0) A[f, 9)(g0) A X—(g0) = 0. (3.35)

We look for appropriate conditions of linear independence between elements of
Lie(f,9)(go), which allow to investigate the behavior of the system near g5. We call
go & (3,2c)-point if, in addition to (3.34) and (3.35), the following relations hold,

9(q0) A [f19(g0) A X14(q0) # O, (3.36)
9(q0) A [f,9)(q0) AN X——(q0) # 0. (3.37)

The first approach, described in this section, is to apply index theory. Fix a (3,2c)-
adapted neighborhood U of gp, that is, in analogy with the analogous definitions given
in section 3.1, a relatively compact, connected neighborhood of gy such that (3.36) and
(3.37) hold at every point of U.

Fix V1 = ¢,Y2 = [f,g], and Y3 = X__, and associate with this moving basis the

corresponding Euclidean structure in T*U.
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Cousider a short —+—+ extremal pair (A(:),¢(-)). Let ¢; and ¢ be the length of,
respectively, the second and the third bang arc. Denote by ?y the second switching time
and define a; = (\(tp), Yi(q(to))), i = 1,2,3. Assume that A(-) is normalized in such a way
that |A(tg))| = 1. The switching times verify,

(Ato), e U9g(q(t0))) = 0, (3.38)
(A(to), glalto))) = O, (3.39)
(Atto), e =9)g(q(t0))) = 0. (3.40)

From (3.39) and (3.40) we obtain that a; = 0 and
ag = CLQO(tQ) -+ agO(tg) .

In particular, |ag| = 1 and ag is a function of ag. The sign of a3 is uniquely determined
by the remark that the first nonzero right derivative of ¢ at % is positive. Therefore, A(-)
is unique up to multiplication by a positive scalar.

Let 7, be defined as in (2.11) and (2.12). Equalities (3.38) and (3.39) imply that

t 2
Ty = —2*1-'7'(.*_ - —61‘7T++ —+ O (1}%) . (341)
From (3.40), analogously, we deduce that
t 13
™o = —-237r_ —gm-+ 0 (&) . (3.42)

Remark that it is not true that t5 = O(t1), nor that ¢t; = O(ty). This lack of a priori
asymptotic hierarchy between the length of the bang arcs is, as we will see below, the
technical gap which makes index theory ineffective in the case studied here.

According to (1.22) we have

ho = f—g+2tlf,g —8X,+0(#),
hi = f+g,
ho = f-g,
hy = f+g+2t[f,g +83X_+0(8),

from which we get

oo = 2my— 2ty +timey + O (),

o = —2tim_ +t3m_y + O (1),

o12 = —2m,

oos = 001+ 093 — 2mo + O (HHt2) + O (t183) |
o13 = 2tamy+tmi_ +0 (8),

o935 = 27mg+ 2tom_ + t%w__ + O (tg) .

The space H is given by the solutions of the system

o +a1 +an o3 =0,
—-(1—%—0(1&%)) og ‘o —as -i—(l—l—O(t%)) as =0,
(2t1 + O(2)) o + (2t +0(3)) s = 0,
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which leads to the following set of relations,

to t%
o = [—=2+0[2)+0(t) ] s,
'151 tl

a1 = (=1+0(tit2) + 0(£3)) a3,
to 12
Qg = = 4+0|-= +O(t2) as .
131 1
Thus,
(%)
Q(Qg) = —Qt-— [—-271'() + 75171'_;_ — tom_ + t1t27r+_
1
+7_0(t1ts) + 70 (t3) + O(tit2) + O(t:123) + O(¢3)] o
t 12 t2
S— [t17r+ —tgm  Emy bty + 2w
t1 3 3

+O(8) + 7-Oltrts) + 7-O(8) + O(t2) + O(t223) + O(23) |3

The expression of ) does not allow to determine its sign. On the other hand, it is not
clear how to compute the asymptotic behavior of the quadratic form corresponding to a
trajectory with more than four arcs, because of the lack of hierarchy relations between the
length of the arcs. We are enforced to look for a completely different approach.

3.6 An approximating system at (3,2c)-points

3.6.1 The approximation procedure

Time-rescaling gives a one-to-one correspondence between trajectories of (1.7) of time-
length equal to € > 0 and trajectories of

q=e(f(q) +ug(q), lul <1, (3.43)

of time-length equal to one. In particular, quasi optimal trajectories of (1.7) of time-length
smaller than 7" are in one-to-one correspondence with quasi optimal trajectories of (3.43)
of time-length equal to one, for € varying between zero and T

We study now (3.43), thinking at € > 0 as small but fixed. Let g(-) be the solution of
(3.43) corresponding to control u:[0,1] — [—~1,1]. Then

o) = (& [ etr +ulogat) (0 = (& [ cuter7gat) o c(4(0).

Since €°7 is independent of u(-), it can be seen as a simple change of coordinates. It is
worth to concentrate on the non-autonomous control system

g=uee™g(q), ul <1. (3.44)

The expansion of the non-autonomous vector field ee®®®d/g with respect to ¢ and ¢
gives
£k

t2
e g =eg+*f gl + Ef [, gl + o+ Gad g4
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In general, we will study control system of the type
¢ = uge(q) lul <1, (3.45)

such that g, has an expansion of the type
2 tk‘,

2 ,
ger =g+ eltgr et Sgst e T g 4

near a point go at which the family of vector fields gy satisfy some relations of mutual
(in)dependence. Let, for every k > 0,

E), =span{adg; - -adgi,gj(q)| m > 0,41 4+ -+ +im +j <k}

Consider the flag £ = {E; C E; C --- B C -+ } associated with the system (3.45). We
say that € has length k if Ey = Ty M and dim Ex_; < 3, and, such being the case, we
call growth vector of £ the k-tuple (dim B4, ...,dim E}). It is easy to check that the flag
corresponding to the system (3.44) has length three when go is a (3,0)-, (3,1)-, (3,2a)-, or
a (3,2b)-point. Assume now that the growth vector of £ is equal to (1,2,2,3). This is the
case, for instance, of the system (3.44) when ¢ is a (3,2c)-point.

We want to find a convenient coordinate description of (3.45) in a neighborhood U of
go. Let ©:U — R3 be a local system of coordinates such that 1(go) = (0,0,0). Denote
by (z,y,z) the coordinates of R? and assume that 1 rectifies g, that is,

0
Pi(g1) = 9z
We can, moreover, suppose that aa—y € 1¥4(E5), so that
o 0
.(F2) = span {—8—:;, 5—@;}, (3.46)
o 0
Y.«(F3) = span {b—x—, 5&}, (3.47)
o 0 0 :
’l,b*(E4) = Span {55, 5&, a—z'} . (348)

Define, for every s > 0, the dilation

05 : R? — RS

(z,y,2) > (scc,sz,s‘lz). (3.49)

Given m > —4, we say that X € VecM is m-homogeneous if
Adds(X)=s"TX,

where we identify VecM and VecR? by v. The choice of coordinates induces a filtration
on the algebra VecM. Every vector field X can be written as X = X 8 4 X3 4.4
X(m) 4 ... where, for every m > —4, X (m) is m-homogeneous.

Notice that all terms of order —3 and —4 are, respectively, multiples of z% and of 3@5.
Due to (3.46), we know that 95_4), the term of order —4 of g, is equal to zero. Moreover
we can normalize the coordinates in such a way that

g2(a0) = 92(0,0,0) = -gf;; (3.50)
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Therefore,

_ 8 5) 2 a (177.)
N — m>-—1

-3 -
9" 95>

Equality (3.47) implies that [g1,g2)("% = 0 and g§_4) = 0. Thus, @ =0 and

_ 0 2 9 (m)

ge = 8y+(am —l—by)az—{—m;lgz , (3.52)
8 m )

g5 = cxp-+ D o™, (3.53)

m>-—2

1,

g = dz+ ST (3.54)
Z m>—3 ’

Notice that the change of coordinates (z',y',2') = (z,y,z — bz?/2), being such that
g Y g

o _ 0 09 _ 39 8 8 _ 8 o I
55 = dz0 3y = By T0U%: 57 = 5z Preserves the rectification of g; and the normalization

(3.50). Therefore, without loss of generality, we can set b = 0.
If £ is associated with (3.44) and go is a (3,2c)-point, then (3.36) and (3.37) imply
that,

2a+2c+d # 0,
2a —2c+d # 0.

If we assume, in addition, that

g(q()) A [fag](q()) A [fa [fa [f7g]]](QO) 7é 07

then we have d £ 0 and, by renormalization, we can set d = 1.
Applying the change of coordinates 01 to (3.45) we obtain
n

- e L Et( (2 () e -8, (-2)
g = U[;91+n—2<92 + 195 +"‘>+§;3—<93 + 193 +>
e a9
+—6E4—(g4 + N9y +>+]

In particular, taking € = n we get

2 3
. —2) 1% (-3)  t° (-4
g = U[91+tg§ )+-2—9§ )+g9§ )
t2
‘2"9

3
(-2) , £
3 + 6

+e (tgé_l) + —2—4~g5

gyt
a5 + =g ‘”) +0(52)}. (3.55)
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3.6.2 General properties of the first order approximating system

Consider the first order approximation of (3.55) with respect to the rescaling factor €. In
the coordinates (z,y, z) the corresponding non-autonomous system is given by

T = u, (3.56)
g = ut, (3.57)
. 9 CTt t2 .

z = ut|az®+ 5" + ) (3.58)

Let, for every p € R? and for every tg, ¢ € R such that ty < ¢, A4 (p) be the set of
points which are attainable from p by admissible trajectories of (3.56 ~3.58) defined on
the time interval [tg,t]. Let, moreover, for every ¢ > 0, A; = Agy(0), .

The final part of the section collects some properties of the set A;. We stress the study
of (3.56—3.58) is, unfortunatly, still at the stage of work in progress.

If s — q(s) = (z(s),y(s),2(s)) is an admissible trajectory of (3.56-3.58) such that
(z(0),y(0), z(0)) = (0,0,0), then, for every a > 0, the same is true for s — daq (£).
Therefore,

Aw = 00 A )
for every t,a > 0. Moreover, since u = 0 is an admissible control, then A;; C A;, for
every 11 < to.

Another remark which can be done, is that the control system (3.56-3.58) is small
time locally controllable, that is, for every py € R3 and every tq < t, pp belongs to the
interior of Ay, +(po). Indeed, let G be the non-autonomous vector field

1

Gs(z,y,2) = 5 ,
s (a:UQ + 9”2”—5 + —56~>

Then the differential of u(-)— exp fti u(s)Gsds at u = 0 is onto for every choice of ¢ and
t.

Therefore,
0A1 C A\ (Uo<i<14t) .

Let us apply Pontryagin maximum principle to the system (3.56 —3.58). Denote cov-
ectors by (\,u,v)T. Define

t t?
H(ﬂ?,y,Z,A,‘u,I/,t) :/\+/Lt+yt <am2+-c;—+_6.> X

Let ¢:[to,t1] — R? be a trajectory of (3.56—3.58) and denote its components by z(-),
y(-), and 2(+)). If g(t1) € OAs 1 (g(to)), then there exist A, u,v:[tg, 1] — R such that, for
almost every t € [to,t1],

w(t) H (z(t), y(t), 2(¢), AMt), p(t), v (t),t) = —H (2(t), (), 2(2), A(£), p(2), v (£), 1)

and .
A= —uvt (2a:c+ %t) ,
p=0,
r=20.
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0.5 T

Figure 3.1: the set A.

In particular, 4 = pg and v = 1.

Remark that the evolution of the coordinates (z,y) in the system (3.56 —3.58) is in-
dependent of z. That is, (3.56 —3.57) is a well defined non autonomous control system on
the (z,y) plane, independent of the parameters a and c¢. The attainable set A from the
origin (0,0) at time one can be explicitly described and gives the projection of A; on the
(z,vy) plane. Trajectories ¢ — (z(t), y(¢)) steering (0,0) to 0.4 have at most one bang. It

follows that
1 2 9 1
OA = 1——23,5—3 se0,1]p U 28~1,S‘—§
Z(z1,y1) = {z € R| (z1,41,2) € A1}.

se[O,l]}.

Fix now (z1,y1) € A and let

For every z € Z(z1,y1), for every control function u : [0,1] — [—1,1] such that the
corresponding trajectory (z(-),y(:),z(-)) steers the origin to (z1,y1,2), we have

1 1t
T =/ u(t)dt, ylz/ /u(T)det, (3.59)
0 o Jo '
and
t 3 t 2
3 2 1 Jo u(r)dr ¢ [y u(r)dr 21t d
z:aﬂ+cﬁ+ﬂ—/ a< 2 ) +e s ) L Blyutdr ) (3.60)
3 27% 7, 3 2 2

where (3.60) is obtained using integration by parts. Since the constraints in (3.59) are
linear in u(-), we have that Z(z1,y;) is connected, since it is the image of a connected
set through a continuous functional. Finally, if (z(-),y(-),2(-)) steers the origin to the
boundary of A;, then u(-) is solution of a maximization or minimization problem.

Let us finally discuss singular trajectories for (3.56-3.58). Associate with an extremal
trajectory g:[t1,t2] — R? the function

¢(t) = H(x(t)7y(t)7z(t)’ A(t)» K0, VOat) ’

and assume that ¢ = 0. Then, for every t € (1, t2),

. 2
0=¢=pn+1o (aa:2+cact+—é—> .
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Moreover, from the relation ¢ = 0 we get that, for almost every t € (ty, ),

u(t)(2az(t) + ct) + (cx(t) +t) = 0. (3.61)
and so o
u(t) = “Ser it (3.62)

unless cz + t = 2az + ¢t = 0. Assume that a,c? — 2a # 0. Then v is given by (3.62) and
equation (3.56) can be integrated. We obtain

ct £ +/2aK + (2 — 2a)t?
2a ’

a(t) =

with K = 12 + 2ctyz(t1) + 2az(t1)?. The explicit expressions of the other components of
q(+) can be obtained from (3.62).
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Chapter 4

Controllability of the Dubins’
problem on Riemannian surfaces

Dubins’ problem appears in many textbooks in optimal control theory, as a nontrivial
example of how to design globally optimal strategies. Furthermore, it is a popular issue
from the viewpoint of mechanical applications, which has inspired many extensions and
generalizations. The scope of these extensions is usually to rectify, to some extent, the
naivety of the so-called Dubins’ car, the moving object modeled by Dubins’ problem. (A
paradigmatic example is given by the Reeds-Shepp car [45].) Our approach is different,
since we rather focus on the terrain where the Dubins’ car moves. Generalizations of the
Dubins’ problem to Riemannian manifolds different from the Euclidean plane have already
been studied (see [15, 28, 36, 37, 38, 39, 64]). In all the cited papers, global results are
obtained in the presence of a Lie group structure. The method proposed in this chapter,
whose first formulation is contained in a joint work with Y. Chitour [22], has the advantage
to apply to non-homogeneous situations.

Section 4.2 proves the controllability of the Dubins’ problem for manifolds in which
the Gaussian curvature K tends to zero at infinity. The result is not new, having been
first proved by Chitour in [21]. Our presentation more precisely defines the covering
domains’ construction, which makes the proof work and which plays a fundamental role
also in the latter part of the chapter, where new results are proved. Namely, in section
4.3, controllability of the Dubins’ problem is shown to hold when K is bounded and
nonnegative outside a compact subset of N.

The boundedness hypothesis on K seems to be unavoidable for the approach adopted
here. Nevertheless, no counterexample or clear geometric motivation suggests the existence
of obstacles to controllability in the unbounded case. Removing this apparent gap could
lead to a more complete understanding of the Dubins’ problem on surfaces, and seems to
be a suitable subject for further research.

4.1 Basic notations and first results

4.1.1 Differential geometric notions

Let (N,g) be a complete, connected, oriented, two-dimensional Riemannian manifold.
Denote by K its Gaussian curvature and by M the unit tangent bundle T'N. Let 7 :
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M — N be the canonical bundle projection of M onto N. We will usually denote by p a
point in NV and by ¢ = (p,v) one in M, where p = n(q) and v € T, N, g(v,v) = 1. Given
v € TN, we write vt for the counterclockwise rotation in 7,N of angle 7/2, i.e., vt is
the unique element of T, N such that g(v+,v") = g(v,v) and the oriented angle between
v and v is equal to /2. For every ¢ = (p,v) € M, we set ¢= = (p,v') and ¢~ = (p, —v).

Given p1,p2 € N, d(p1,p2) denotes the geodesic distance between p; and p;. When
no confusion is possible, we simply write ||p|| (respectively, ||g||) to denote the distance
d(p, po) (respectively, d(7(q),pp)) from a fixed point py € N.

Notice that M is a three-dimensional Riemannian manifold, equipped with the Sasaki
metric inherited from g (see [46] for more details).

Let f € VecM be the geodesic spray on T'N, whose restriction to M (still denoted
by f) is a well defined vector field on M. Recall that f is characterized by the following
property: p(-) is a geodesic on N if and only if (p(-),p(-)) is an integral curve of f. In
particular, f satisfies the relation

m(f(q)) =q. (4.1)

Denote by g the smooth vector field on M, whose exponential flow at time ¢ is the
fiberwise rotation of angle ¢. In terms of the local horizontal-vertical splitting of T'(T'N)
described in [46, Chapter 4], f and g are, respectively, an horizontal and a vertical vector
field, whose expressions are given by f(p,v) = (v,0) and g(p,v) = (0,vF).

In terms of the covariant derivative on IV, the equations satisfied by the integral curves
of f and g have, respectively, the following expressions,

p=v, p=0,
{Vvv:0, and {VU'U:’U'L.
The construction of geodesic (or Fermi) coordinates introduced below will be used, in

the sequel, to obtain a wide class of local covering domains of N.
Given g € M, consider the map

¢: R — N
(z,y) +— m(ete3%(q)).

Fix R = [z1,72] X [y1,y2] C R? and assume that the origin (0,0) belongs to R. If ¢, is
a local diffeomorphism at every point of R, then R can be endowed with the Riemannian
structure lifted from N, in such a way that ¢, becomes a local isometry. If this happens,
we denote by R(g) the manifold with boundary which is obtained. The geodesic segment
in R(q) given by [z1,z2] x {0} is called the base curve of R(g). The Gaussian curvature
of R(q) at a point (z,y) is given by K(¢q(z,v)), and, where no confusion is possible, will
be denoted by K(z,y). If R is a neighborhood of (0,0) and ¢, is injective, then ¢, is
in fact a geodesic chart on IV, and we have

s(z,y) = B(z,y)dz* + dy?,

with
B(z,0) =1, By(z,0)=0, and By, +KB=0, : (4.2)
where the index y in By, By, stands for the partial differentiation with respect to y. (See,

for instance, [30].) For every point ¢ € M, for every small enough R of (0,0), ¢4|p is a
geodesic chart on N.
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In general, if B is the solution of (4.2) on R, with K = K o¢,, then R(g) is well defined
as soon as B is everywhere positive in R.
The unit bundle 7? R(g) can be identified with the following subset of R,

{(z,y,vs,v)| (z,y) € R, B*(z,y)v2 + vy =1}.

Equivalently, a set of coordinates in T'R(q) is given by (z,y,0) € R x S, with the

identification
Bvg = cos b, vy = sinf. (4.3)

Notice that, for all points in the unit bundle such that y = 0, the coordinate # measures
the Riemannian angle between the corresponding unit vector and the base curve of R(g).
Moreover, a unit vector of coordinates (z,y,0) or (z,y, ) is always g-orthogonal to the

segment {z} X [y1,y2].
In geodesic coordinates, f and g are given by

cosf | T T
f(xayﬁg) = <m,smﬂ9,0(9§,y) COs 9) ) 9(5071/79) = (Oo 0) 1) ’ (44)
where B, (z.9)
z,Y

The Lie bracket configuration of the pair (f, g) € VecM x VecM can be easily computed
from (4.4), and is characterized by the relations

i) [fal=h, (i) [g,h]=f, (iii) [h, f]= Ky, (4.6)
- where h is defined by h(q) = f(g"), that is, in geodesic coordinates,

_sinf_
B(z,y)

Equivalently, (4.6) could have been recovered, without passing through geodesic co-
ordinates, directly from Cartan’s formula (see [21]). Notice that, for every ¢ € M,
f(2),9(q),h(q) form an orthonormal basis of T,M, with respect to the Sasaki metric.
In particular, the pair of vector fields (f,g) defines a contact distribution on M.

h(z,y,0) = ( ,—cos8,C(z,y) sinQ)T. (4.7)

4.1.2 The control system
For every € > 0, let (D.) be the control system given by

(De) : ¢=flq) +ugle), q€M, wu€cl-¢e].

It follows form (4.1) and the definition of g that, for every admissible trajectory g :
[0,T] = M of (D), d(m(g(0)),m(qg(T))) < T. Therefore, being N complete, for every
control function u:R — [—¢, €], the non-autonomous vector field f + u(t)g is complete.

Relation (i) in (4.6) ensures that, for every € > 0, the control system (D.) is bracket
generating, i.e., such that the iterated Lie brackets of f and g span the tangent space to
M at every point. An important consequence is that, for every ¢t > 0 and ¢ € M, €'f(q)
belongs to Int(A,), the interior of A,. This follows, for instance, from the description
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of small-time attainable sets for single-input non degenerate three dimensional control
systems given by Lobry in [34] and recalled in the introduction.

Notice that, in the language of the previous chapters, X+ = —Kg =+ f, which implies
that each point of M is a (3,0)-point. ’

For every ¢ € M, let Ay = Ur>0A(T,q) be the attainable set from g for (D.). The
control system (D,) is called completely controllable if Ay = M for every q € M.

We say that the Dubins’ problem for N has the unrestricted controllability property if,
for every € > 0, the control system (D.) is completely controllable.

In local geodesic coordinates, (D, ) can be written as follows,

cos @

& = (4.8)
y = sind, (4.9)
f = u+Ccosd. (4.10)

More intrinsically, we can rewrite system (4.8 -4.10) in the form

{220 (11)

QU = UV,

which accounts for a clear geometric interpretation of the unrestricted controllability prop-
erty: The Dubins’ problem on N is unrestrictedly controllable if and only if, for every
(p1,v1), (p1,v1) € M, for every € > 0, there exists a curve p: [T1,T3] — N with geodesic
curvature smaller than e such that p(T3) = p;, p(T3) = v;, 1 = 1, 2.

Remark 4.1 If ¢:[0,7] — M is an admissible trajectory of (D) corresponding to some
control function w: [0,7] — [—¢,¢], then the trajectory ¢(T — -)~ obtained from g(-) by
reflection and time-reversion is itself an admissible trajectory of (D.) and steers ¢(T)~
to g(0)~. Its corresponding control function is equal to —u(T" — ). Therefore, for every
q,qd € M, ¢ belongs to A, if and only if ¢~ belongs to A(y-.

Remark 4.2 Assume that, for every g in M, ¢~ € A,. Then, due to remark 4.1, ¢' € 4,
if and only if A; = Ay . Since the system is bracket generating, then every attainable set
A, has a nonempty interior and one immediately recovers that A, itself must be open.
Therefore, {Aq}q € M is an open partition of M. It follows from connectedness of N that
(De) is completely controllable.

Thanks again to remark 4.1, we have the following equivalence: (D) is completely
controllable if and only if, for every g € M, there exists ¢’ € A, such that (¢')” € Ay.

Remark 4.3 If N is not oriented, then the vector field g is not well defined. Anyhow,
the control problem still makes sense, since, locally, g can be defined fixing arbitrarily an
orientation, and the system is independent of this choice. Formally, the Dubins’ problem
can be defined as a control-affine system with multiple controls, using a partition of unity
on N in order to glue the local definitions of g together. Since N admits an oriented double
covering, and since the hypothesis under which we get unrestricted controllability for the
Dubins’ problem are shared by any finite covering, the results of this chapter extend to
non-oriented manifolds.
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A condition which ensures unrestricted controllability is the compactness of N. This
fact is a consequence of a more general result on controllability of bracket generating
systems made of conservative vector fields due to Lobry [35]. We give below a stronger
formulation of Lobry’s result, adapted to the specific control system (D), which implies
also that every attainable set is unbounded when N is open. The proof is a variation on
the classical one of Poincaré’s theorem on volume preserving flows.

Lemma 4.4 If there ezists g € M such that A, is relatively compact in M, then N is
compact and Ag = M.

Proof. Fix ¢ € M and assume that F' = A_q is compact in M. We already remarked that,
for every ¢ > 0 and ¢’ € M, e/ (¢') € Int(Ay). The compactness of F and the continuous
dependence of A(T,¢') on ¢ imply that there exists p > 0 such that, for every ¢’ € F,

B,(el(d") c Ay, (4.12)

where B,(ef(¢')) denotes the ball in M of center e/ (¢') and radius p, with respect to the
Sasaki metric. We want to prove that 0A, is empty. Let, by contradiction, r € 94,.
A well-known theorem by Krener states that any attainable set of a bracket generating
system is contained in the closure of its interior. Therefore, V = A,NB,(r) has nonempty
interior and, in particular, its volume is strictly positive. Since e/ is a volume preserving
diffeomorphism of M (see, for instance, [46]) and A, has finite volume (it is bounded), then
{e" (V) }nen cannot be a disjoint family, being €™ (V') C A4, for every n € N. Therefore,
there exist nq < ng such that e™f (V) N e™f (V) is not empty. Equivalently, there exists
a point in e(™~"1=1f(V) whose image by ef lies in V. Due to (4.12), it follows that
r € Int(A,) and the contradiction is reached. O

Corollary 4.5 If N is compact, then Dubins’ problem has the unrestricted controllability
property property.

In the rest of the chapter N is assumed to be non compact.

4.2 Asymptotic flat manifolds
Throughout this section, we assume that N is asymptotically flat, that is,

lim K(p) =0. (4.13)

{Ipl]—o0

For every L > 0, let Q1 = [0,2L]x[—L, L]. According to the notation introduced in section
4.1.1, if the map ¢gq, go € M, is a local diffeomorphism at every point of [0,2L] x [~L, L],
then Qr(gg) denotes the Riemannian manifold with boundary Qr(go), obtained endowing
Q1 with the Riemannian structure lifted from N.

Let us characterize the values of L for which the construction of Qr(go) can be carried
out. Let B be the solution of (4.2) on Qp, with K = K o ¢g,. S

§ = max |K o ¢g,] . (4.14)
QL
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Figure 4.1

By Sturm-Liouville theory, we can compare B with the solution of (4.2) corresponding
to K constantly equal to 6, obtaining that, if v/§|y| < %, then B(z,y) > cos(+v/dy) > 0 for
every z € [0,2L]. Thus, Qr(go) is defined as soon as

vis
L < Wik (4.15)

In particular, since N is asymptotically flat, then, for every L > 0, for every gy outside
a compact set of M (depending, in general, on L), Q@1(qo) is defined.

We stress that no global finiteness property is stated (nor needed) for the projection
$go from Qr(go) onto its image. In general, for L fixed, the cardinality of the set of
preimages 45(;]1(110) can be unbounded when ¢ varies in N, as illustrated by the example
in figure 4.2. The situation will be different in section 4.3.

Together with g, the control problem (D) as well can be lifted from M to T Qr(qo)-
Let us stress the trivial, but crucial, property that every admissible trajectory of the lifted
control system is projected by ¢4, to an admissible trajectory of (D¢). In the coordinates
(z,v,0) of T*Qr(qo), the dynamics of the lifted system is described by (4.8 -4.10). Due to
remark 4.2, the proof of the complete controllability of (D, ) reduces to show that g; € Ay,
if 6 is small enough. This will be done by designing an admissible trajectory for the control
problem lifted to T Q1 (qq) which steers (0,0,0) to (0,0, 7).

Fix gg € M, L > 0 and assume that

m
< — .
Vo< oz, (4.16)
where § is defined as in (4.14). Sturm-Liouville theory implies not only that @ (qo) is
well defined, but also that

cos(V6y) < B(z,y) < cosh(vVdy), (4.17)
and
0] = [T < vpml ), (418)
for every (z,y) € Qr(go). An upper bound for |C| in Qr(go) is given by 55—22%((———\/‘/%.
Then, we can assume that .
Joax, ICl<3, (4.19)
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Figure 4.2

by taking
Vi< —S . 4.20
~ 4sinh (3) (4.20)
Consider now the control system (D,/;) on the unit bundle of the Euclidean plane. Let
T(-) be the control function corresponding to the trajectory whose projection on R?%isa
teardrop of size 2/¢ which leaves the origin horizontally and arrives at the origin with the
opposite direction (see figure 4.2). Thus, u(-), is piecewise constant, switching between
—e/2 and £/2. Denote by (Z(-),7(-),0(-)) the coordinates in R? x S* of the teardrop
trajectory. It follows from straightforward computations that (Z(-),7(+)) takes values in
the rectangle [0,2(v/3 + 1)/e] x [~2/¢,2/e] and that the length of the trajectory is equal
to ¥Z. Fix :
3e

r=2
€
The idea is to apply to the lifted system the time-variant feedback control
u(t) =a(t) — C(z,y) cosh. (4.21)

The control strategy is admissible, since (4.19) holds.

Consider the solution () = (z(-),y(+),0(:)) of (4.8 -4.10) corresponding to u(-), with
initial condition (0) = (z0,0,0). As long as (z(t),y(t)) stays in Qr, we have y(t) = 7(¢)
and 0(t) = 6(t). Therefore,

t
1
t) —T(t) — < 0 —— —1|d
o) -30) ~ 20l < [ Ieos(b( | gy - 1|
lam max L. 1
3¢ Qu(e) | B .
It follows from (4.17) that, for every a € (0, §), if
VL < a, (4.22)
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then
cosh(a) — 1
max |— — —_—

Q(g0) | B
Therefore, it is possible to fix «, independent of ¢, such that, for every ¢ which satisfies
(4.22),

cos(a)

1 1
Tl
Assume that (4.22) is satisfied and fix zg = ;le Then «y(-) is defined for the entire time
duration of %(+). At its final point it has coordinates of the type (z1,0,7). Concatenating
~ with two trajectories corresponding to control equal to zero, we obtain an admissible
trajectory for the Dubins’ problem lifted to T Qr(qo), steering (0,0,0) to (0,0,7). We
proved the following theorem.

Theorem 4.6 If N is asymptotically flat, then the Dubins’ problem is unrestrictedly con-
trollable.

Actually, from the nature of the above argument, a stronger result follows:

Proposition 4.7 There ezists a constant u > 0, independent of N and €, such that, if
lim Sup)p|| 00 K ()] < pe?, then (D.) is controllable.

Indeed, Proposition 4.7 can be recovered from the smallness conditions (4.16), (4.20), and
(4.22) imposed on 6, where L should be replaced by 3/¢ and « can be given explicitly.

4.3 Manifolds with nonnegative curvature outside a com-
pact set

4.3.1 Construction of the covering domain

In addition to the general assumptions on N made in section 4.1, let, from now on, K be
nonnegative outside a compact subset of N. Since [ ~ KdA, the so-called total curvature
of N, is well defined (allowing extended values), and larger than —oo, then it follows from
a result by Huber [27], that N is finitely connected. Therefore, Cohn-Vossen theorem [23]
applies, i.e.,

/ KdA < 2nx(N), (4.23)
N

where x(IN) is the Euler characteristic of N. In particular, for every R > 0,
lim KdA=0. (4.24)
leli—+o0 J By (p)

In the sequel, we assume that K is bounded on N and we set

Koo = sup K(p) .
peEN

For every L,d > 0, let Qg = [-L, L] x [=d,d]. As already remarked, if d is smaller
than - \/% , then the local covering Qr, 4(qo) is well defined. Fix

(4.25)



Lemma 4.8 For every L > 0, lim)g 00 fQL (@) KdA =0.

Before starting the proof of Lemma (4.8), we need to recall some facts from the general
theory of Riemannian manifolds. The injectivity radius at a point p of N is defined as the
least upper bound of all » > 0 such that the exponential map exp,, restricted to the disk
B,(p) C T,N, is injective. It is denoted by ip(N), while i(N) = infyen ip(V) is called
the injectivity radius of N. It is clear that the lemma holds whenever (V) > 0, since we
already remarked that N satisfies (4.24). In the case where 0 < K < K, a theorem by
Sharafutdinov [52] states that i(NN) is, indeed, positive. (It actually states that (V) is
larger than or equal to the minimum between 7/ V'K o and the injectivity radius of the
Cheeger-Gromoll soul of N. It follows from the proof of Sharafutdinov’s result, as in [24],
that, in the case in which the soul reduces to a point, its injectivity radius can be replaced
by +oc0.)

A general result due to Cheeger and Ebin [20, Lemma 5.6], which holds for any com-
plete Riemannian manifold, states that, for every p € N,

ip(N) = min{t > 0] ¢ is a conjugate time for a geodesic «:[0, +-c0) — N, v(0) = p,
or 2t is the length of a closed geodesic passing through p}. (4.26)

Proof of Lemma 4.8. Fix a compact set Ny of N such that {p € N| K < 0} C Np.
We can assume that N \ Ny is a finite union of tubes of N, that is, according to the
definition of Busemann [19], subsets of N which are homeomorphic to half-cylinders with
smooth boundary. Moreover, due to Cohn-Vossen theorem, we can suppose that the total
curvature of each tube is strictly smaller than 2.

Fix one of these tubes and denote it by 7. We have to prove that

lim / KdA=0. (4.27)
9€T, llall=o0 J Q1 a(g)
If infper ip(N) > 0, then we are done. Assume that infyez iy(NV) = 0. Since K < Koo,
... the first conjugate time for any half geodesic contained in N is bounded from below by
7/v/Koo. Therefore, due to (4.26), there exists a sequence {yn|n € N} of simple closed
geodesics contained in T', whose length goes to zero as n tends to infinity. Each vy, identifies
two connected regions of T, a bounded and an unbounded one. The bounded region
Q, must contain the boundary of T, otherwise Gauss-Bonnet theorem would constrain
the total curvature of £, to be equal to 27, contradicting the assumptions made on 7'.
Therefore, the unbounded region of T'\ 7y, is itself a tube, denoted by T,,. We can assume
that Ty1 C T3 for every n. Applying Gauss-Bonnet theorem, we obtain that K must be
identically equal to zero on T), \ T}. Since -y, goes to infinity with n, we have that K =0
on T4, and (4.27) is proved. O

Let us show how the smallness of K, in integral sense, on the ‘lifted rectangles’ @1, 4(q)
can be used to derive estimates on the behavior of geodesics. Let p(-) be a geodesic in
Qr,4(g); then p(-) is a curve in T*Qr, 4(g), whose coordinates satisfy the following system
of equations (which is a particular case of (4.8—-4.10)),

. cosf

& = 5, (4.28)
7 = sinf, (4.29)
§ = Cecosf. (4.30)
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Consider L as a function of € and K, whose explicit expression will be given later. Let
M° = {g € M| d(n(q), K~} ((~00,0))) > L +d},

and remark that the complement of M° in M is compact. The set M? is defined in such
a way that, for every go € M?, K is nonnegative on Qr, 4(qo).
Denote by o,(+) the triple which is solution of the system (4.28-4.30), with initial
condition 0,(0) = z € T'Qr 4lg), and let [T} ;, T5 ;] be its maximal interval of definition.
Fix 7 < 0 < 5. The role of @ is purely technical and its choice can be made indepen-
dently of all the parameters of the problem; for instance we could take 8 = 2—747r.

Lemma 4.9 There exists 09 > 0, depending only on € and Ko, such that, for every gg €
MY, if Q = Qr.a(g0) and § > 0 verify fQ KdA < 6 < by, then, for every zo = (0,yo,00)

with yo € [—£, 2] and 0y € [—0,0], the corresponding o, (-) = (z(-),y(-),0()) satisfies the
following condition,

(3) for every t in [—T1 2, T2 2],

|z(t) — cos(bp)t] < (2L +d)J, (4.31)
y(t) — yo —sin(6o)] < 2L3, (4.32)
0(t) —6o] < 6. (4.33)

Moreover, if |0o] < &, then
(44) m(_Tl,zo) =—L and a:(TQ,ZO) = L.

Proof. As it was done for the estimate (4.17) of section 4.2, one obtains from (4.25) that,
for every (z,y) € Q,

< B(z,y) <1. (4.34)

[SR I

Fix yo, 0o and z5 = (0,70,6p) as in the statement of the lemma. Let [—T%,Ts] =
[—T1 20, T%,2,) be the maximal interval of definition of o, () = (z(-),y(),0(-)) and (—t1,12)
the maximal open neighborhood of zero (in [—T1,7T%]) such that, for every ¢t € (—t1,12),

6(£)] < -g (4.35)
Using (4.34) and (4.35) in (4.28), one deduces that, for every ¢ € (—t1,12),
1
5 < z(t) < 2. (4.36)

Thus, t1,t2 < 2L. Furthermore, we can define a map 7: (z(—t1),z(t2)) — (—t1,%2) by
means of the relation z(7(£)) = £. Notice that 7 is continuous, as well as the function

n:(z(—t1), z(t2)) — [—d, d] given by n(£) = y(7(£)).
We define an open region G C @ by

G = Uge(a(~t1),a(t)) L ((£))

where I(I) denotes the open interval with 0 and [ as boundary points.
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Using (4.28) and (4.30), we have, for every t € (—t1,12),

0(t) = 6o = 16(7(x(t))) - o

9(7(5))d
Iw(e) T(7(£))

By(ﬁaﬁ(ﬁ))dﬁ < /I(I(t)) /3 (/I(n(g))“Byy(gy’U)dU)

- / / B¢, v)dv de,

where the last equality follows from (4.2). Notice that the above computations are justified
by the assumption that gg € M?. Since the surface element of Q is given by B(£,v)dv d¢,
we have

10(2) — 60| < /G KdA <6 (4.37)

If 6o is small enough, i.e., 6y < I — 6, then |#(-)| is bounded by 7/3 on (—t1,2) and,
therefore, t; = 11 and t5 = T5.
Integrating (4.29) leads to

ly(t) — yo — sin(6o)| < <|tls.

/ (8(s) — bp)ds
()

Then, for every t € [T, T3],
d d
y(6)| < 5 + 1610601 +6) < 5 +2L(160] + 5),
which implies that the endpoints of o,, must be characterized by the relations z(—77) =

—L and z(Ty) = L, provided that |6p],0 < 8%. Point (47) is thus proved. It remains to
establish (4.31). Integrating (4.28) we get, for every ¢ € [T, Th],

N B(£n(§))
/z(z(t)) (1 COS(HO)COS(G(T(O))) @

< / (1 - B(&,n(€)))de +2 / lcos(60) — cos(8(r(€)))] d .
I(z(t)) I(z(2))

|z(t) — cos(@p)t|] = |z(t) — cos(bp)T(z(t))| =

The second integral is bounded by 2L maxe¢e(z(—11),2(13)] 10(7(£)) —0ol, itself being bounded
by 2L4§. As for the first term

/ (1= B n(6)))de < / dt / B, (£, v)dv
I(z(t)) I(z(t)) I(n(£))

where the last inequality can be recovered by performing the same computations as in
the estimate of 8 — 6y done previously. Gathering all the partial estimates, we obtain, for
every t € [—T1,Ta),

<dd,

|z(t) — cos(bp)t] < (2L + d)é. O
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For every ¢ > 0, for every ¢ outside a compact subset of M,

K >0 on Qr4lq) and / KdA <9. (4.38)
Qr.,a(a)

We can choose § < dg (defined as in Lemma 4.9), and fix ¢y € M such that (4.38) holds
for every ¢ verifying d(m(q), 7(qo)) < 2L. We next build a Riemannian two-dimensional
manifold, which will be a finite covering of a region of N close to gg. The covering domain
will glue together several rectangles of the type Qr 4(q). The purpose is to track a teardrop
of size r /e, r > 1 to be fixed, for the lifted Dubins’ problem and to eventually obtain that
gy € Ago. In this perspective, since L will measure the size of the covering domain, we fix
4r

L (4.39)

€

The unrestricted controllability property will follow, as in the asymptotic flat case,
from the property that the tracking operation can be performed for gp outside a big
enough compact subset of M (depending, in general, on ¢).

From now on, we assume, sometimes implicitly, that ¢ is as small as needed with
respect to € and Ko,. We will denote by C(e, K ) any constant which is a function of €

and K. Fix
__d
V=16
For every g verifying (4.38), let o(q,") = (z(g,"),y(q,-),0(q,-)) be the solution in
T'Qy 4(g) of the system (4.28—4.30), with initial condition

(w(% 0)7 y(Qv O)’ G(Qa 0)) = (07 =7, O) .

Denote by [~T1(g),T2(q)] the maximal interval of definition of o(g,-). If ¢ is small
enough, then we can assume that y(g,-) takes only negative values. Let W(g) be the
region of Qr 4(¢) defined by

W(q) = {(z(q,5),2)] s€[-Ti(q), Ta(g)], t € [y(g,5), 0]}, (4.40)

whose boundary is given by [~L, L] x {0}, {-L} x [y(q, —T1(q)), 0], {L} x [y(g, T2(q)), 0],
and by I'(g), the support of the curve s — (z(q, s),¥(q, 5)).

Set
I = {é] : (4.41)
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where by [-] we denote the integer part. For every k = 1,...,[, define
gr = €29 (V¥ (gp)), (4.42)

and, correspondingly, @ = Qr.a(qk), ok() = olgr. ), [=Tik Ton] = [-T1(qk). To(qx)],
Wy = Wiq) and 'y, = I'(gx). Set, moreover, I'g as the segment [—L, L] x {0} contained
in Wi,

Let k € {1,...,01 = 1}. For every s € (=L,L) N (=T1x,To ), we want to identify
the points (z(s),yx(s)) € I'x C Wi and (s,0) € Wyy1. By construction, there exist
a neighborhood Uf of (zx(s),yx(s)) in Qg, a neighborhood U} of (s,0) in Qg11, and an
isometry % : Uff — U (with respect to the metric induced by N) such that J*(UFNOW}) =
U¥ N 0Wy1. Consider the Riemannian two-dimensional manifold with boundary D(gp),
obtained from the abstract union Uj<j<;Wj by identification of (zx(s), yx(s)) € Wi with
(5,0) € Wi, for every k € {1,...,1—1} and every s € [-L, L]N [T} x,T5 ;]. The metric
on D(qq) is the one induced by N on each Wy. The Riemannian structure obtained in this
way is well defined, because the gluing of two adjacent strips Wy and W1 is rendered
isometric by o*.

Let us assume, from now on, that

KdA <§. (4.43)
D(go)

4.3.2 The fundamental tessellation

Our purpose is to define a tessellation on D(qp), that is, to subdivide the domain by
geodesic polygons, in a checked pattern. Any such subdivision can be seen as a discrete
system of coordinates on D(gp), assigning to any point the polygon which contains it.

A tessellation is determined by a grid of vertical and horizontal lines. We choose as
vertical lines the curves I'y, defined above. Next lemma provides the estimates which allow
to complete the construction of the desired tessellation.

Lemma 4.10 There exist C(e, Koo) > 0 and a positive 8 < &y depending only on ¢
and Ko such that the following holds: Let § € M wverify (4.38) with 6 < 6. Take
to € R,00 € S' such that |to| < L — 7/2 and |6y — 2] < 0. Let zp = (to,0,—6p),
05 () = (z(-),y(-),0(:)) and denote by [0,T] its mazimal interval of definition in W (q).
Then (z(T),y(T)) € T'(@) and |T — 7] < C(e,Ks)d. Moreover, for every s € [0,T],
lz(s)| + y(s) + 5| + |0(s) + 5| < C(e, Koo)d.

Proof. As it was done for estimates (4.17) and (4.18) of section 4.2, we have, for every

(z,y) € W(9), .
Let [0,Tp) be the largest interval (in [0, T]) so that |6(s) + §| < %. Since 6(0) = —6q,

then Ty > 0. The function v(s) = 6(s) + 7/2 verifies the differential inequality

5] < v/Roalol, (4.44)

which clearly implies that
’9(5) + g} < 6eVEws, (4.45)
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Since 7 = cosv and |#] < 2|sinv|, we have, for every s € [0,Tp),

8§
yls) + sl < | wlr)dr < 825 (4.46)
0
and
|z(s)| < 26seVKee® (4.47)

It is clear from (4.45)—(4.47) that, if ¢ is small enough with respect to d, then Ty =T
and o(T) € (7). Moreover, |7 — 5| < C(e, Ko )d. The estimates on z(-), y(-), and 6()
follow. O

Let, for every j € {1 +1,...,0 — 1}, A; be the support of the geodesic in D(go)
which starts at (57,0) € 'y C Wy, making an oriented angle —7/2 with I'y. Assume that
(4.43) holds, with § < &. For every j € {—l+1,...,1 — 1}, a repeated application of
Lemma 4.10 to A; and the successive I'y, shows that, for every k € {0,...,1}, A; intersects
I', transversally. Indeed, at every step of the iteration, the angle determined by A; and I'y
at their point of intersection differs from /2 by |, Dy KdA <6, where D, is the geodesic
quadrilateral of D(qo) bounded by Ag, Aj, I'y and T. For every j € {=l+1,...,1-1}
and k € {0,...,1}, denote by z; the point of intersection of A; and I'y. Due to Lemma
4.10, the length of the portion of A; connecting z;; with z; ;.1 differs from ¥ by at most
C(e, Ko)6. For the same reason, applying the argument to horizontal, instead of vertical,
strips, the length of the portion of I'y which joins z;; and z;11 ; differs from 7 by at most
Cle, Kwo)d.

Denote by P; 1, the geodesic quadrilateral with vertices z;k, Zjk+15 Zj+1,k+1; and zj41k
for all pairs (5,k) in {-1+1,...,0 =2} x {0,...,I —1}. The edges of P are portions
of the horizontal and vertical lines Aj;, Aji1, I'y, and I'g41. The family of all such Pj is
called a tessellation on D(qo).

Consider the tessellation on the Euclidean plane which covers the rectangle [0,[7] x
[—(l = 1)7,( — 1)7], given by the family of squares

Cix = 57,5 + 1)7) x [k7, (k + 1)7], (G,k) € {=1+1,...,1 -2} x{0,...,1 —1}.

Define 7 as the union of all 0C;; C R?, that is,

T = (U2 100,18) x 437} U (Uheo{kT} X [-0 = 17, (= D7)

and, similarly, 77 as the union of all 8P} C D(qo)-

Consider a teardrop of size £, starting from the point (0,0) € R? in the direction (1,0),
contained in the Euclidean rectangle [0, (I + 1)7] x [-(I — 1)7, (I — 1)7]. The trajectory
designing the teardrop intersects 7 in a sequence of points p, = (ZmyYm), 0 < m <V,
numbered according to the order of intersection (see figure 4.3.2). Notice that

po = pv = (0,0). (4.48)

The idea is now to pullback the points p,, on 7', to equip them with a direction, and to
construct a control strategy steering go to g; , passing through all these intermediate states.
Each elementary control problem corresponding to the passage between two subsequent
states will be eventually stated and solved in a proper coordinate strip.
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Figure 4.4

4.3.3 Reduction to the elementary problem

In the following discussion, it simplifies the presentation to assume that 7 is small with
respect to the size /e of the teardrop. If this is the case, then each portion of teardrop
which is contained in a square of the tessellation, considered as a planar curve, does not
change direction much. To this extent, we will ask ¢ to be small with respect to . This
is not restrictive, because d, and consequently 7, are fixed, and our final goal is to prove
the unrestricted controllability property for the Dubins’ problem.

In detail, take w > 0 and assume that, for every r > 1, the teardrop of size r/e
intersects the grid of step 7 in a sequence of points p,,, 0 < m <V, such that

(a) the total variation of the angle component of the portion of teardrop connecting py,
with pp,41 is smaller than w, for every 0 <m <V — 1.

Fix w > 0 small enough, such that, from every sequence which satisfies (a) we can
extract a subsequence, still denoted by pp,, 0 < m <V, such that

(b) (4.48) holds;

(c) the Euclidean distance between p,, and pp,41 is larger than 7/2, for every 0 < m <
V-1,

(d) the portion of teardrop connecting p,, with pp,41 intersects the interior of at most two
squares of the tessellation, for every 0 < m <V — 1.

Notice that (d) implies

(a') the total variation of the angle component of the portion of teardrop connecting pm
with pp,41 is smaller than 2w, for every 0 <m <V — 1.

With any p,, we associate a point p/, in 7', as follows: assume that py, lies in the
segment [§7, (7 + 1)7] x {ky} (respectively {57} x [k7, (k + 1)7]). Then we choose p;, in
the portion of 'y (respectively A;) joining z; and zj.1; (respectively z;; and z;p41), in
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such a way that the proportion between the lengths of the two geodesic segments in which
pm and p;, split the tessellation edges which they belong to is the same.

We want now to identify a geodesic segment in D(gg) which joins p, and p;, ;. Con-
sider the segment S, in R? connecting p,, with ppyy1. Its slope can be measured by an
angle a,, € S', such that ppy1 — pm € el“mR . Assume that I <an <% (The other
cases, when (2k + 1)% < am < (26 +3)%, & = 0,1,2, can be treated in an analogous
way.) Choose j such that p,, and pm41 belong to the strip [0, (I + 1)7] x [j7 — %,j’y‘ + —g—].
Then pj,, and p,, ., are identifiable with two points of @) d (g5), as it can be easily deduced

from Lemma 4.10. Let (z),,y,,) and (z7,_;,¥r,41) be the coordinates in QLJ%(QJ‘) of, re-

spectively, pl, and pl, ;. Then, as follows from the estimates of Lemma 4.9 and Lemma
4.10,

(@11 = Zm) = (@Ema1 = Zm)| + 1Yt = Ym) — (Uma1 = ym)| < Ole, Koo)d .

Therefore,

! /
Yint1 =V

7 ;
Tmr1 — Tm

—tan an,| < C(e, K)o,

and so

Yms1 — Y
arctan (m—“————?> —am| < Ce, Kx)d .

!

Lemma 4.9 estimates the coordinate behavior of geodesics starting from p,, or, to be
more precise, of solutions of the system (4.28-4.30) with initial conditions of the type
(zh,, Yy 00), with |6g| far from 7/2. By standard continuity considerations, there exists a
geodesic segment S, joining p, and p, ;, whose initial direction, is given by (27, Yp,, &, )5
with |al, — am| < C(e, Ko ).

Denote by fB,, be the oriented angle determined by the teardrop passing through p,,
and the segment S, (with the agreement that the teardrop is oriented in its running sense
and the segment from p,, t0 pm+1). The m-th intermediate state of the aimed teardrop in
D(qo) can be defined as the point p, equipped with the direction which makes an angle
Bm with S! . This direction can be represented by a unit vector v, € Tpl,mN . When
m =V, let (p},,v},) = q5. We call elementary problem the task of designing a control
strategy which steers (p,,v},) to (P41, Vme1)-

The elementary problem is conveniently formulated in the geodesic coordinates of the
rectangle whose base curve is S,. In these coordinates p,, = (0,0) and p},_; = (|S7,/,0),
where |S/,| denotes the length of S;,. Remember that, at the points of the base curve
S!., the coordinate angle measures the true Riemannian angle between the corresponding
unitary vector and Sj,,. Therefore, what has to be solved is the control problem (4.8 -4.10)
with initial condition (0,0, 8r) and final condition (]S}, |,0, Bmt1 + Vrur1), Where v, is
the angle between S}, and S),,; at p;,.;, with the agreement that Sy, is oriented from
Pl t0 plyq and S} from pp ) to ), 5. In order to estimate the value of 7, 4, let us
go back to the coordinate strip @, d (g;) which contains p;,, and p;,. ;. As follows from
the assumptions (a')—(d), pl,,, as well stays in the strip, and the coordinate slope of the
geodesic segment 57, can be estimated with the same technique as before. That is, there
exists an angle o, ,; such that o), — amt1| < C(e, Ko)d and Sy, is the projection
on N of the solution of (4.28-4.30) with initial condition (27, 1,41, ¥pi1)-
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The angle between S}, and S], ., measured in coordinates, is given by ¢, , — &,
where &, is the angle coordinate of the tangent vector to Sy, at pl,_ ;.

Let 11 be the angle between Sy, and Sy,11, with respect to the orientation agreement
introduced above. Since ym+1 = Qm+t1 — &m, We have that

|1 = Gy = Ymr1] < Cle, Koo)d - (4.49)

The angle vy, ; is not, in general, equal to o, ,; — &,,. We need to take into account
a correction due to the fact that o}, ,, and &, are expressed in coordinates. However, we
can prove the following fact:

Lemma 4.11 The sign of o, 1 —ay, and the sign of v}, are equal, and |al, —a,| <
Va1l < 2]om 1 — Q-

Proof. Remark that the angle @ made by a unitary vector with coordinates (21, 1, ¥, 1, @)
with the horizontal line {(z,v)| y = y;,,.,} verifies the relation

tana = B(Z,, 1, Ypme) tana, (4.50)

as follows from (4.3). In particular the sign of @ and @ is the same. As already re-
marked in (4.34), we have & < B(z], . ,v,.1) < 1. The lemma follows from (4.50) and
straightforward computations. O

. Therefore, by taking (4.49) into account,

"Yv/n+1 — Ym+1] < | Vma1] +C(e, Koo)d .

" To complete our estimate of Yini1, let us make a remark on the size of vy y1. The length
' |Sml|, due to (c), is bounded by +/57. Thus, Yy,.1 is maximized when Sy, and Sp,41 are
~ two concatenated cords of length /57 of a circle of radius /e (see figure 4.3.3). By easy
__trigonometric considerations,

5
sl < axcsin (£y> < ClKw)E. @s1)
Therefore, we can assume that

g
|")’;n+1 - ’Ym—i—l‘ < C(Koo); .

Finally, we are left with a control problem of the type (4.8 —4.10), with initial condition
(0,0, By) and final condition (|Sy,| + €1,0, Bm+1 + Ym+1 + €2), where

]€1| < (O, Kw)d, (4.52)
ool < O(Keo)=. (4.53)

Let us fix the constant appearing in (4.53) and denote it by Cp.

The triple (Bm, |Smls Bm+1 + Ym+1) characterizes the boundary conditions of the cor-
responding portion of teardrop in the Euclidean plane. Such curve is the concatenation
of at most two pieces of circular trajectory, with geodesic curvature equal to 7/c. When

85




Figure 4.5

it reduces to a single circular arc — which is the case for all but at most two elementary
problems — we have

S,
Bm+1 + Ym+1 = —Bm = L arcsin <—l 2”;]6> .

In any case, an estimate of the following type holds,

[l < C(Koc) (454)

4.3.4 Solution of the elementary problem

Consider, in the Euclidean plane, the control problem

T = cos@,
g i ng’ u € [—e,€]. (4.55)

(z,4,6)(0) = (0,0, Bm),

Recall that |Sy,| € [g, \/Sy] . If £ is small enough with respect to d, then every solution
of (4.55) intersects the surface

{(z,,0) € R? x S|z = |Sp|}

in a time close to 7. Fix T > 0 such that every admissible trajectory intersects transversally
{z = |Sp|} within time T". Let E(-) be the map which associates with an admissible control
u:[0,T] — [~¢, €] the coordinates (y, ) of the trajectory corresponding to u(-), evaluated
at the first point of intersection with {z = |Sp|}. Notice that E is a continuous map from
the space of admissible control functions, endowed with the L! topology, into R x § Lor,
equivalently, R?.

The family of bang-bang control functions which are concatenation of two arcs, the first
one corresponding to control +¢ and the second one to control —¢, form a continuous curve
in L'([0,T7), joining the two constant control functions v = e and u = —e. Taking into
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account also the two-bang concatenations where the controls are applied in the reversed
order, it turns out that the family of all bang-bang control functions with at most two arcs
forms a closed curve in the set of admissible controls. Choose a parametrization of such
curve of the type {us:[0,7] — [—¢,€]}ses:. Then v:s — E(us) is a continuous closed
curve in R2. Let, for every ¢ < |S,,| and for v = —1,1,

u¢ = ve (Lo g = Liery) -

Integrating the system (4.55) we get

2

S P2
B(ut) = (Bl + ve (Z2h — (1501 = €7) + O, -+ ve(2€ - ISm) + O )
(4.56)
Recall that vy;m+1, Om, and Bp41 can be estimated using (4.51) and (4.54). It is easy
to check that if r is large enough, then the distance from the support of v to

- - €
Y= {(Oa/Bm—H + Ym1 + 62) I 162‘ < CO;}

can be bounded from below by a constant C(e, Koo) > 0, uniformly in |S,,|. The expression
of the leading term of (4.56) shows, moreover, that the curve s — (s) from S! to R?\ &
is not contractible.

Consider now the non-flat elementary problem

_ g
i=E
y=sind,
0=u+Ccosb u€l-eel. (4.57)

(x’ y‘l 9) (0) = (0’ 07 5777:) 7

Fix any admissible control function u:[0,7] — [—¢,&]. Denote by (z(-),y(-),8(-)) (re-
spectively, (z'(-),y'(-),0'(-))) the solution of (4.55) (respectively, of (4.57)) corresponding
to u(-). The same computations as in Lemma, 4.9 imply that

|z(t) — 2" (B)] + y(t) — ¥/ ()] + 10(£) — 0'(1)] < Cle, Koo)S -

In particular we can assume that (z'(-),y'(-),0'(-)) intersects transversally {z = |Sy,| +e1}
within time 7". Define E'(u) as the pair of coordinates (y'(-),(-)) evaluated at the first
point of intersection. The map E' verifies

|E(u) = E'(u)] < Cle, Koo)6 -

Thus, the curve 7':s — E'(us), which is closed and continuous, encloses a region which
contains X, at least for ¢ small with respect to € and K.,. By standard degree theory
considerations, the image of E' contains X, and the elementary problem is solved.
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