SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI
INTERNATIONAL SCHOOL FOR ADVANCED STUDIES

The Konishi Anomaly Approach
to Effective Superpotentials

Thesis submitted for the degree of
“Doctor Philosophis”

Candidate: Supervisors:
Michele Cirafici Prof. Edi Gava

Prof Kumar S. Narain

October 2004



[N



Contents

Introduction 5

1 Supersymmetric Gauge Theories 9

1.1 Supersymmetry in Superspace . . . . . . . . ... 9

1.2 Extended Supersymmetry: N =2 .. ... ... .. ... ........ 14

1.3 Elements of Supergravity . . . . . . . .. ... ..o L. 15

1.4 Wilsonian Effective Actions . . . . . . ... .. .. ... ........ 16

1.5 Non-renormalization theorems . . . . . . . . .. .. ... .. ...... 17

1.6 Anomalies . . . . . . . . . 19

17 The Dynamics of Gauge Theories . . . . . .. .. .. . ... ... ... 23

2 The Dijkgraaf—Vafa conjecture 27

2.1 A Perturbative Window into Non Perturbative Physics . . . . . . . .. 27

2.2 Gauge Theory Derivation . . . . . . . . . . . .. . ... ... ...... 31

221 TheChiral Ring. . . . . . . .. ... ... .. .. ........ 32

2.2.2 Planar Diagrams . . . . . . . . . . .. . ... . e 34

2.2.3 The Generalized Konishi Anomaly . . .. ... ... ...... 36

2.2.4 The Effective Superpotential . . . . . . . ... ... ... .... 37

2.3 The Konishi Anomaly for other Gauge Groups . . . ... ....... 42

2.4 The Effective Superpotential . . . . . . . . . ... . ... ... ..... 46

2.4.1 Quartic Superpotential . . . . .. .. ... ... ... 46

2.4.2 Cubic Superpotential . . . . . .. ... ... ... ... ... 49

2.4.3 On Supersymmetric Sp(N) theories . . . . . .. ... ...... 51

3 Gravitational Corrections 53

31 TheChiral Ring . . . . . . . . . . . ... . 54

3.2 Anomaly Equations and Matrix Model Loop Equations . . . . ... .. 56
3.2.1 Equations for the Connected Two Point Functions in the Pres-

ence of Gravitational Fields . . ... ... ... ..... . ... 59

3.2.2 Uniqueness of the Solutions for the Connected T'wo Point Functions 61

3.2.3 Solutions for the Connected Two Point Functions . . . .. . . . 64

3.2.4 Comparison with the Matrix Model Results . . . ... ... .. 66

3.3 Genus One Solution for Other Gauge Groups . . . . . . ... ... ... 68

3.3.1 SO(N) with Matter in the Adjoint Representation . . ... .. 68

3.3.2 SO(N) with Matter in the Symmetric Representation . . . . . . 71

3



3.3.3

3.4 Comparison with the Matrix Model

3.4.1
3.4.2

Sp(N) Gauge Theory

SO(N) with Adjoint Matter
SO(N) with Symmetric Matter

4 Gravitational F—terms at All Genera

4.1 The Chiral Ring

4.1.1

Chiral Ring Identities from Gauge Theory

4.1.2  Chiral Ring Identities from Closed String Dual . .
4.2 Genus One Analysis . . ... ... ... ... ... ...
4.2.1 Connected Two Point Functions . . . . . .. ...
4.2.2  One Point Functions at Genus One . . . . . . ..
4.3 Solution at All Genera, . . . . . . .. ... ... .....
4.3.1 Generating Functionals for Connected Correlators
4.3.2 Solutions for the One Point Functions. . . . . . .
4.3.3 Shift Invariance of the Anomaly Equations . . . .
4.3.4 Comparison with the Matrix Model Results. . . .
Conclusions
Acknowledgements

A Conventions

B Estimates of Connected Part of Correlators

C Other two Point Correlators

CONTENTS

99

101

103

105

111



Introduction

The understanding of the low energy dynamics of Yang-Mills gauge theories is one
of the most interesting open problems in theoretical physics. Their strongly coupled
infrared dynamics exhibits a variety of interesting phenomena: external sources are
confined by strings of gauge field strength, a mass gap arises, thus forbidding massless
excitations, and so on. What makes this subject even more fascinating is that, while
the physical picture is (supposed to be) quite clear, and confirmed by experiment and
numerical analysis, the gauge theory itself is strongly coupled and thus completely
outside of any analytic control. The best one can do is to take QCD, the physical
realization of Yang—Mills theory, make some physically motivated guess for its low
energy behavior and check it against experiment.

However, there is another point of view, that has demonstrated to be extremely
useful in physics: change the theory in such a way that it is more tractable, without
spoiling the interesting features of the original theory. At first sight, even this can be a
difficult problem. However, usually it can be accomplished by following an old tradition
of theoretical physics: to increase the symmetries of the problem. And here is the point
where Supersymmetry comes in the play. This character, was actually introduced a
long time ago in a completely different context. Supersymmetry is supposed to play
a key role in the understanding of the high energy properties of our world, where it
is conjectured to be an exact symmetry. Its origin is deeply connected with String
Theory. The relevant point is that the minimal (N = 1) supersymmetric extension of
Yang-Mills theory, is expected to share some of the non perturbative features of the
original Yang-Mills theory. Due to these facts, it is worth to study the low energy
dynamics of supersymmetric theories by themselves. Moreover, the fact that a theory
is supersymmetric, usually makes it easier to control it. Unfortunately, a complete
solution of the theory is still far from reach.

An important step towards the solution of supersymmetric Yang-Mills theory, was
recently made by Dijkgraaf and Vafa in [1] summarizing their previous works [2], [3].
These authors conjectured a precise rule to obtain the low energy ezact effective su-
perpotential for a wide range of N/ = 1 gauge theories in four dimensions, in terms
of the relevant degrees of freedom in the infrared. These are conjectured to be the so
called glueballs and not the gluons arising from the usual quantization of the gauge
field (precisely in the same way as in QCD, where quarks are the relevant variables in
the high energy theory while mesons and pions describe the low energy dynamics), and
the effective superpotential constrains their dynamics.

Originally the conjecture regarded an N = 1 U(N) gauge theory with matter in
the adjoint representation of the gauge group and arose from arguments coming from
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6 INTRODUCTION

String Theory. Namely the gauge theory was embedded in String Theory due to a
particular D-brane configuration and its low energy dynamics was related, through a
chain of dualities, to an auxiliary matrix model. Then the effective superpotential is
extracted from the planar limit of the free energy of the auxiliary matrix model. The
surprising point is that, the perturbative (diagrammatic) analysis of this matrix model,
gives information on the gauge theory effective superpotential, that being an infrared
concept, is non perturbative by its own nature. The effective superpotential is given
by two contributions: the first is the Veneziano-Yankielowicz superpotential [4] (see [5]
for a complete discussion), the second is a sum of instanton corrections to the former
that arises when integrating out the matter fields.

The conjecture was then proved in a purely gauge theoretical context in [6], by
means of super—Feynman diagrams techniques, and in [8] by using the concepts of the
chiral ring, which encodes the information about the holomorphic sector of the theory,
and of the generalized Konishi anomaly, to fix the form of the low energy superpotential.
This is the approach we will follow along this thesis.

The basic idea of [8] is to identify the subsector of the theory, the chiral ring, that
is relevant to the computation of the effective superpotential. Then, by considering a
generalized form of the Konishi anomaly, they proved the conjecture and introduced a
practical and purely gauge theoretical method to compute the effective superpotential,
without relying on String Theory and on the auxiliary matrix model. This method was
further generalized by the author in collaboration with L.F. Alday, in [9] to theories with
other gauge (classical Lie) groups and matter in various representations, not necessarily
the adjoint. There, the method of the Konishi anomaly, showed to be more suited for
practical computations, while the diagrammatic evaluation of the related matrix model
increases in complexity in going to higher orders.

The String Theory insight relates the effective superpotential of the gauge theory
to the planar limit of the auxiliary matrix model. This leads immediately to wonder
what non planar contributions correspond to. This problem was already addressed in
[1] where the authors conjectured that the non planar corrections to the free energy are
related in the gauge theory side to gravitational corrections to the effective superpoten-
tial. This conjecture was proved by [10, 11] using diagrammatic techniques, extending
to the gravitational case the super-Feynman diagram techniques of [6]. Crucial ingredi-
ent in the proof was the modification of the chiral ring relations due to the coupling of
the gauge theory to supergravity. In particular, if one restricts to the first non-trivial
gravitational F-term contribution, corresponding to the genus one correction in the re-
lated matrix model, one needs to take into account just the modification which follows
from standard N = 1 supergravity tensor calculus. Further works on the genus one
corrections include {13, 14, 15, 17, 18].

The problem of understanding F-terms which describe the coupling of A/ = 1 gauge
theories to A/ = 1 supergravity from a purely gauge theoretical point of view, was
solved in [12], extending the Konishi anomaly method of [8] for U(NN) gauge theories
with adjoint matter, to include gravity. This method is modified in the presence of
gravity by three ingredients, namely the modification of the chiral ring relations, already
pointed out in [10, 11}, a direct gravitational contribution to the Konishi anomaly and
finally, the lack of factorization of the chiral ring correlators. In the following this
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method was extended by the author in collaboration with L.F. Alday in [16] to include
a generic classical Lie group and other representations for the matter field.

The coupling of the gauge theory to standard N = 1 supergravity, corresponds just
to the genus one correction in the auxiliary matrix model. The problem of how to
implement the higher genera corrections to the matrix model in the gauge theory, is a
difficult one and requires insights from the stringy point of view. In the language of the
dual closed string theory side [19], one needs to introduce a more drastic modification
in the chiral ring relation, to account for a non-trivial vacuum expectation value of
the (self-dual) graviphoton field strength F,g of the parent N = 2 string theory. This
requires a non standard analysis since the graviphoton is part of the N/ = 2 gauge
multiplet. The theory has to be understood as rigid ' = 1 supersymmetric gauge
theory coupled to a non dynamical N' = 2 gravitational background. The graviphoton
field strength F2 plays the role of the genus counting parameter on the gauge theory
side and thus needs to be non zero in order to compare with the matrix model genus
expansion. In [20] L.F. Alday, J.R. David, E. Gava, K.S. Narain and the author,
showed how the Konishi anomaly method can be extended to take into account the
matrix model corrections at all genera, by properly using the modified chiral ring and
its properties. The gauge theory genus expansion was showed to match the matrix
model expansion, provided the graviphoton field strength F? is identified with the
genus counting parameter. Finally in [21] the needed modification of the chiral ring
was:proved without any reference to String Theory, but by analyzing the spontaneous
partial breaking of N = 2 to N = 1 supergravity coupled to a vector multiplet and
thentaking a rigid limit which results in the above mentioned non trivial gravitational
background.

This thesis is organized as follows. In the first Chapter we will give a basic intro-
duction to supersymmetric gauge theories maily focusing on the superspace formalism
for N/ = 1 theories. Within this formalism we will introduce the concept of Wilsoni-
nan Effective Action, that will be constantly used throughout this thesis. This action
allows one to get information on the low energy limit of a known ultraviolet theory, by
means of the renormalization group analysis. Moreover, for supersymmetric theories,
the low energy effective action is further restricted by important tools that display
the full power of supersymmetry. Namely, by using the ultraviolet symmetries of the
theory, as well as the holomorphic dependence on the parameters that is manifest in
the superspace formalism, one can constrain the form of the low energy action. Other
important tools that can give us a better understanding on the gauge theory dynamics
are anomalies, namely classical symmetries of the action that are broken by quantum
effects. One of these anomalies, the Konishi anomaly, will play a prominent role in this
thesis. Finally we add some qualitative comments on the expected low energy dynamics
of Yang-Mills theories and their supersymmetric extensions, namely confinement and
chiral symmetry breaking.

In the second Chapter, we will enter in the main body of the thesis by stating
the Dijkgraaf-Vafa conjecture. This conjecture allows one to compute the effective
superpotential for a U(N) supersymmetric gauge theory with adjoint matter by means
of an auxiliary bosonic matrix model. We re—formulate the conjecture in purely gauge
theoretical terms, by introducing the ring generated by the chiral operators in the gauge
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theory and a generalized form of the Konishi anomaly. When restricted to the chiral
ring, the Konishi anomaly gives a set of Ward identities that can be solved due to
the factorization property of operators in the chiral ring: this allows one to determine
the effective superpotential. Finally we show how all this can be generalized to other
N =1 supersymmetric gauge theories by introducing the appropriate generalization of
the Konishi anomaly. We also show explicitly some computations.

The third Chapter is devoted to the introduction of the topic of gravitational cor-
rections to the low energy effective action. We begin to study the coupling of the A = 1
theory to A = 1 supergravity. This can be understood by generalizing the chiral ring
relations and the Konishi anomaly to include also gravity. We show that this analysis
encodes the information of the genus one contribution to the matrix model free en-
ergy. A key point is that correlators in the chiral ring do not factorize anymore due
to the presence of the gravitational background as well as matrix model correlators do
not factorize anymore if genus one corrections to the planar limit are included. This
analysis is then extended to theories based on other gauge groups and with matter in
various representation; we comment on the comparison with matrix model result.

Finally in the last Chapter we study the N' = 1 supersymmetric gauge theory
coupled to a non dynamical graviphoton background. In presence of this background,
the chiral ring identities are modified non trivially and this modification reflects in
the Konishi anomaly analysis. First of all, we explain how to compute the genus one
corrections. Then, we give a full treatment of the all genera solution by introducing
appropriate generating functionals for the connected part of the correlators. Finally
we compare our result with the matrix model.



Chapter 1

Supersymmetric Gauge Theories

The aim of this Chapter is to briefly review the dynamical properties of supersymmetric
N =1 gauge theories. We will mainly follow [25] and [22]. We further collect argument
explained in [31, 23, 32, 24] that are nicely summarized in [33]. To begin with, we will
outline the construction of four dimensional A/ = 1 supersymmetric gauge theories
in the superspace formalism, assuming the reader is familiar with the supersymmetry
algebra in four dimensions and its representations. We include some comment on the
N =2 theories and on supergravity. We will then introduce the concept of Wilsonian
effective action that is a basic ingredient in the study of the low energy dynamics of
gauge theories. The Wilsonian effective action is the proper tool to describe a physics
at a-determined energy scale. It is basically obtained by averaging over the short
distance fluctuations of the fields. The study of the Wilsonian effective action for
supersymmetric theories is simplified by the non-renormalization theorems. These are
selection rules derived from the symmetries of the high energy theory, that can be
used to constrain the form of the low energy action. Finally, some insight on the non
perturbative dynamics of gauge theories can come from anomalies. In particular, we
will introduce the Konishi anomaly that we will extensively use throughout this thesis.
Finally we end this Chapter with some general comment on the expected low energy
dynamics of gauge theory.

1.1 Supersymmetry in Superspace

In this section we will introduce N/ = 1 theories and the superspace formalism. This
presentation follows [22] and [25]; we refer the reader to these works and to [26] for a
more complete treatment of the subject. Our conventions, those of [25] are summarized
in the Appendix A.

As usual symmetries have a natural interpretation in terms of the action of a group
on local fields defined on the space-time manifold, supersymmetry can be defined
through its action on an extension of usual space—time, namely the superspace. Su-
persymmetry transformations are interpreted as translation in superspace. To clarify
this concept, let us consider ordinary translation of an ordinary scalar field ¢. They

9



10 CHAPTER 1. SUPERSYMMETRIC GAUGE THEORIES

are induced by an operator F, such that
d(z + ) = e Fegp(z)e™ Pr. (1.1)
For ¢ infinitesimal, this relation can be expanded giving

[P P(z)] = i0,0(z); (1.2)

this relation can be rephrased by saying that 0, is the representation of the operator
P, in field space.

Let us follow the same idea in the A/ = 1 superspace. This is obtained by adding
four Grassman coordinates #* and 6, to the usual space-time coordinate z*. Then a
superfield is defined as a generic function on the superspace F' (:13, o, 5) Given the anti-
commuting nature of the Grassman coordinate, the field F' can be always be expanded
as

F(z,0,0) = f(z)+0¢(x)+ 0x(z) + 00m(x) + 80n(z) + 60*0A,(z) +
600N (z) + 006v(z) + 0080d(z). (1.3)

Then the natural generalization of the concept of translation is given by

¢ — gt +e* +ifotE —ifoth
0o — Oo+&a (1.4)
b, — 9_0'4 + f—d,

where the additional terms in the transformation law for z are needed so that the com-

position of two fermionic transformations is a translation in z. These transformations
are induced by operators P,, @, and Q% such that

F(IL'M —+ gk + 7:60-#5 - i‘ga‘ﬂéa 901 + fa: éo'z -+ Ea) =
o~ iEPHEQ+HEQ F(z*,04,0,) e P—£Q-EQ (1.5)

thus extending (1.1) to the full superspace. One can check that the operators P,, Qq
and Q¢ are given by ’

P, =10,
C_)a = aa_— 10,00, (1.6)
Qd = —04+ ieaazd(‘)“.

and obey the N = 1 supersymmetry algebral

{cha Qd} = ZUZdP#
{Qm Qﬁ} =0 (17>
{Qas, @z} = 0. (1.8)

11t’s worth mentioning that this algebra can be extended by including central charges, giving thus
rise to theories with extended supersymmetry.




1.1. SUPERSYMMETRY IN SUPERSPACE 11

A good candidate for a manifestly invariant Lagrangian is the integral of a superfield
over the full superspace

L= / d*d*4d*0F (z, 0, 0). (1.9)

This follows from the fact that supersymmetry transformations are interpreted as trans-
lations in the superspace (one can easily check that the integration measure is trans-
lation invariant); thus Lagrangian densities can be constructed by taking the highest
dimension component, called d(z) in (1.3), of a superfield or even a generic function of
it.

Usually it is useful to introduce superfields with less degrees of freedom than (1.3);
this can be accomplished by imposing a constraint on the form of the superfield itself
leading to the chiral and vector superfields.

To define the chiral superfield let us introduce the super—covariant derivatives

Dy = 0, +i0k,8%0,, D4 = —0s+10%c% .0, (1.10)

They satisfy {D,, D} = —2ic%,0, and anticommute with the supercharges. Then &

is a chiral superfield if
Ds® =0 (1.11)

This equation is solved by
P = ¢(z) +i05"00,¢(z) + -}Ieeéémgb(x) + V200 (z) — %968“7,&(3:)0“9_ +60f(z) (1.12)

The field content of ® includes a complex scalar ¢(z) and a Weyl spinor 9(z), giving a
local representation of the so called A/ = 1 scalar multiplet (f(z) is an auxiliary field
required for the off—shell closure of the algebra). Again, one can obtain a manifestly
supersymmetric invariant Lagrangian by integrating a chiral superfield over the chiral
superspace

/ d*zd®9 @ (1.13)

thus Lagrangian densities can be constructed by taking the highest component, called
f(z) in (1.12), of a chiral superfield . A term like (1.13) that cannot be written as
an integral over the full superspace, is called an F—term. All other possible terms are
named D-terms 2. Moreover, one can easily show that if @ is a chiral superfield, then
a generic holomorphic function of it W(®) will be a chiral superfield. Then the general
F-term

/ d4zd20 W(®) + / d*zd20 W (®) (1.14)

is a supersymmetric interaction and the function W (®) is called superpotential. Finally,
the most general N/ = 1 Lagrangian for the scalar multiplet is given by

L= / déod20d%F K(®, B) + / dizd?0 W(3) + / dizd?0 W (&), (1.15)

Note that, if F is generic superfield, a term like [ d4zd?0 D2F is not an F-term as it can be
rewritten as [ d*zd26d?0 F.
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where the non holomorphic function K is called the Kahler potential, since the metric
on the scalar field space is given by ¢ = %—{&;. These terms can also be restricted by
requiring their invariance under the R—symmetry group U(1)g (for N' = 1 theories, R~
symmetry is only a phase rotation of the supersymmetry generators). By normalizing
the R-symmetry generator R such that the supercharge generator @ has charge —1
(i.e. R(Q) = —1) it can be shown that the overall supercharge of the superpotential
must be +2 while K should be R-neutral.

Vector superfield are used to introduce gauge fields and are defined by a superfield

satisfying V = V1. In components,
Ve = C%z)+1i0x*(z) — ibx*(z) + —;—00 (M®(z) +iN*(z))
—%éé (M°(z) — iN°(z)) — 80*BA% ()
+i060 (5\“(33) + %a@;f@)) _ 60 (A“(m) + %a#auya(@)
%999@ (D“(:c) + %DC“($)> | (1.16)

where o is a Lie algebra index (V = V*T* belongs to the adjoint representation of a
gauge group). This superfield can be put in a simpler form by using a gauge transforma-
tion " — e’ = e~™eV e, where A is a chiral superfield, toset C =M = N = y =0
(the so called Wess—Zumino gauge), resulting in

Ve = —00*GA2 (z) + 99X () — 0067 () + %999‘@3@@:). (1.17)

Note that this gauge breaks supersymmetry but not the gauge symmetry of A%, The
vector superfield is a local representation of the A/ = 1 vector multiplet, given by a
gauge massless vector boson A,(z) and a Weyl spinor A(z) (as for the chiral superfield,
D(z) is an auxiliary field necessary for the supersymmetry algebra to close off-shell).
The gauge field strength is defined by

W, = —%DD(&"V(DaeV)), (1.18)
and transforms as
W, — W, = e AW, e (1.19)
In components W, reads
Wa = ~iXa(y) + 8aD(y) — 10" 205 F,u () + 060", DX (1), (1.20)

where F,, is the usual gauge field strength and D, the covariant derivative. With W,
one can write the pure gauge theory action

—— [ d*zd20 TeWeW, + — | d*zd?8 T W We, (1.21)
167 167
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where 7 = i—’i -+ 2'59— contains the gauge coupling g and the ©-angle. In component it
reads

1 1 .
=Tt <_§F“”FW — 2iX6* D, + D2> P T Fy Fpa, (1.22)

g 3272
as expected. It is useful to introduce new derivative operators

Vo = Dy (1.23)
Vo = e VDue".

By using (1.24) we define
{Va,Va} =iV 0a. (1.24)
that can be used to rewrite the gauge field strength (1.18) as

W, = -%Wd, Vol (1.25)

Finally, the most general action® including both the scalar and the vector N' = 1
multiplet, is given by

S = 5 GW d*zd20 Tr WeW, +— / d4zd®0 Te W, We (1.26)

/ d*zd%0d%0 K (eV®, @) + / d*zd%0 W (®) + / d*zd20 W (®)

where the form of the Kahler potential is dictated by gauge invariance. Let us consider
the classical scalar potential for the field ¢(z); this is the only possible contribution to
the vacuum energy, since in a relativistic quantum field theory, fields that transform non
trivially under Poincaré group cannot have a vacuum expectation value. By expanding
(1.26) in components, one finds

P (0K ($,8) rani 2 LOW(¢) oW ()
U = Z( 36 T)jqb]-}—c.c.) +g FY S

— a NHa iaf; fz

(1.27)

where the second line is evaluated on the equations of motion for the auxiliary fields
D and f. Supersymmetric vacua are characterized by the vanishing of the vacuum
energy, .. we must have U = 0, that requires simultaneously the vanishing of the D
(D-flatness) and f (F-flatness) term. In particular, one can show that (if the Fayet—
Tliopoulos term is absent) the F—flatness condition is necessary and sufficient in order to
find supersymmetric vacua. In other words, to gain information on the supersymmetric
vacua, one only needs to know the holomorphic sector of the theory (governed by the
superpotential).

3Strictly speaking one could also introduce the Fayet-Iliopoulos term, if the gauge group has an
abelian factor. We will not consider these kind of terms.
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The space of all supersymmtric inequivalent vacua of the theory is know as classical
moduli space. This is a complex manifold parametrized by inequivalent solutions of
the flatness equations and endowed with the (pull-back of the) Kéhler metric. More
precisely, one has to solve the D-flatness equation modulo gauge transformations. It can
be proven that the solutions of the D-flatness equation modulo gauge transformations
span the space {¢'}/Gc, where G¢ is the complexified gauge group (i.e. the gauge
transformations parameters are complex numbers). In other words, the orbit of the
complexified gauge group through any point ¢' contains a solution to the D—flatness
equations. This space can be parametrized by a set of independent holomorphic gauge
invariants X, (¢). Finally, the complete moduli space is simply obtained by restricting
the moduli X, (¢*) by the conditions coming from F-flatness. Of course, this picture
will be modified once taking into account quantum effects. The problem of determining
explicitly the quantum moduli space of a theory can be very hard.

1.2 Extended Supersymmetry: N =2

Theories with extended supersymmetry are a fascinating subject of theoretical physics.
Since this work is mainly concerned with A/ = 1 theories, we will only give some small
comment on N = 2 theories; a complete introduction can be found in [28] and in
the original works of Seiberg and Witten [30, 29]. The only role played by extended
supersymmetry in this thesis, is that some of the theories we will encounter can be
thought of as arising from an A = 2 softly broken to N = 1 by the presence of a tree
level superpotential. We will simply show the most general renormalisable lagrangian
for the /' = 2 massless gauge multiplet. This consists of a gauge field Ay, two Weyl
spinors, A and v, and a complex scalar ¢, all in the adjoint representation of a gauge
group G. Note that, we have precisely the field content of an N = 1 theory with a
gauge multiplet W, and a chiral multiplet ®, but with the constraint that they have to
be in the same representation of the gauge group. The N = 2 lagrangian for these fields
can be obtained by taking the A = 1 lagrangian and impose the extra supersymmetry.
We simply state the result and then add some comment:

5= Tg;'ﬂ ( / d‘zd20 WoW, + 2 / d*zd?0d%0 échI>> (1.28)

First of all we note that no superpotential is allowed. In fact, the N = 2 theory as an
R-symmetry that exchanges the two fermions

b A Ao~ (1.29)

A superpotential term, containing only one fermion, is not invariant under this sym-
metry. The addition of a tree level superpotential, in fact breaks NN = 2 to N = 1
However note that in the A/ = 1 theory obtained in this way, the gauge superfield
and the chiral matter superfield are in the same representation of the gauge group.
Moreover, the relative normalization between the gauge and the chiral superfield terms
is fized by supersymmetry.
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1.3 Elements of Supergravity

In this section we want to introduce some basic elements of supergravity. A full treat-
ment of supergravity is completely outside the scope of this thesis and can be found, for
example, in [25]. However, in the following we will encounter some non trivial gravita-
tional non dynamical backgrounds. More precisely, we will study theories with a rigid
supersymmetry, but coupled to an A/ = 1 or A = 2 gravitational background. There-
fore we just want to comment on the supergravity field content in four dimensions. By
no means we intend this section to be exhaustive; since all gravitational fields that we
will mention will be intended as background fields, we don’t need to develop the full
formulation of supergravity in superspace. We refer the interested reader to [25, 27].

The basic idea is to promote the rigid transformations (1.5) to local transforma-
tions, where the parameter £ depends on the space—time coordinates. As is known
from General Relativity, invariance under local space—time transformation, requires
the presence of gravity. Then one builds the usual formalism of General Relativity by
defining the vielbein, the connection, the curvature tensor and so on. However, since
the local version of (1.5) involves also Grassmann variables, these concepts need the
appropriate generalization to superspace. The requirement of invariance under N = 1
supersymmetry implies that the spin 2 graviton, has a spin % superpartner, the grav-
itino. Then all the General Relativity concepts have to be covariantized to superspace.
All the ideas of last section, can be extended to a theory with gravity with simple (but
qulte technical) modifications: covariant derivatives will include the spin connection,
ete. In order to construct invariant actions, one can again extract the highest compo-
nent.of superfields. The graviton and the gravitino determine the N = 1 supergravity
multlplet and can be used to construct the N’ = 1 Weyl superfield Gop,, whose lowest
component is the gravitino field strength

% = Datpg — Dyyg, (1.30)

where

Datgt = 8t + vf el (131)

and wg, is the spin connection. Strictly speaking, one should include also auxiliary
fields. Since we are interested only in the basic concepts of supergravity, we will assume
to be on shell and set all auxiliary fields to zero.

Since the main results showed in this thesis can be traced back to an A/ = 2 theory
broken down to N = 1, we will comment also on the N = 2 supergravity theory. This
can be basically constructed using an appropriate extension of the formalism outlined
above. The main difference is that the A/ = 2 gravity multiplet, containing the graviton,
will enter in the game. Since the theory has extended N = 2 supersymmetry, this
multiplet contains two gravitinos @bf, with A = 1, 2. In order to have a supersymmetric
multiplet, we then must add to the bosonic sector another U(1) gauge field, called the
graviphoton. This field will play a fundamental role in Chapter 4.
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1.4 Wilsonian Effective Actions

One of the most intriguing open problem in theoretical physics is to determine the
low energy physics resulting from an asymptotically free gauge theory. In general, this
is an hard problem, since the infrared (IR) regime is strongly coupled. This means
that the relevant degrees of freedom that describe the ultraviolet (UV) theory, can be
completely different from the IR degrees of freedom. This is the case, for example,
in (massless) QCD, where, while the UV theory is a theory of quarks and gluons, the
IR theory is described in terms of pions and massive glueballs. The emergence of new
degrees of freedom can be easily understood, since in the strongly coupled regime, it
is often impossible to determine asymptotic states, that characterize the UV degrees
of freedom in the perturbative quantization of the theory. Thus, the study of the
low energy dynamics, is usually based on physically motivated but formally arbitrary
assumptions. The basic strategy to understand the IR physics is to begin with a guess
for the low energy degrees of freedom and their symmetries and write down an effective
action, consistent with the symmetries and the weak coupling (perturbative) limits. Of
course, predictions of the effective action, should be used to check the original guess.
We shall introduce these ideas following [31].

The starting point is the Wilsonian effective action. Let us consider a quantum field
theory described by a Lagrangian £(¢). Then, the Wilsonian effective action

S, = / d*z L, (o) (1.32)

is obtained by integrating out the fields with energy above the mass scale u. Since
high-energy degrees of freedom have been integrated out, the tree level action S, is an
accurate description of the physics at energies E ~ u. Of course physical processes at
energies B/ < u will receive quantum corrections due to propagating degrees of freedom
with energy between £ and u, but these corrections can be absorbed in the couplings
to define a new effective action at the energy scale E. The two effective theories are
related by the action of the renormalization group. Let us assume for the action at the
energy scale u the general form

S, = /d‘lngi(u)@ (1.33)

The evolution of the couplings is given by the renormalization group equations

ﬁ%’-—(ﬁ@ = Bi(o(u), 1) (1.34)

that describe the flow of the theory in the space of all couplings. One can show that,
A
in going from a scale pg to a scale u < up the operators O; scale as (f—o) , Where A; is

the classical scaling dimension of the operator. Then an operator is called* relevant if

4The factor of 4 is coming from the integration measure d4z. This number changes when considering
superfields in superspace, depending on the scaling properties of the superspace integration measure.
In particular it is equal to 3 for chiral superfield interactions and to 2 for a generic superfield interaction.
This follows from the fact that for a superfield the scaling dimension is defined as the scaling of its
lowest component.
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A; < 4, corresponding to a growing of the coupling along the flow, irrelevant if A; > 4,
corresponding to a damping of the coupling, and marginal if A; = 4. Of course,
quantum effects can modify this picture and one as to identify the correct quantum
scaling of an operator.

The same ideas translate in a simple way to the supersymmetric case: the super-
symmetric effective action at some scale p will be composed by an effective Kéhler term
Koq, an effective superpotential Weg and an effective gauge coupling 7.g. Suppose that
the effective theory is the low energy limit of an UV theory which depends on the UV
couplings {\;, 7} and a given superpotential Wyy = Wyv(®, 7). Then one can use
the so—called localization trick: this consists in promoting the parameters of the the-
ory to background fields such that their expectation value exactly match the original
coupling. This trick is familiar from elementary quantum field theory when proving
Noether theorem where constant parameters of global symmetries are treated as posi-
tion dependend, i.e. classical fields. In the supersymmetric case the only difference is
that we have to promote the parameters to superfields and not to ordinary fields. Thus,
we simply promote J; to the chiral superfield (since it enters in the same place as chiral
superfields) \;(z, ) such that the vacuum expectation value of its scalar component is
exactly ); (and the vacuum expectation value of all the other components is zero); and
similarly for 7. But, since chiral superfields can only enter holomorphically in Weg and
Tet, We conclude that the bare coupling constants can only enter holomorphically as
well.

1:5 Non—renormalization theorems

Non-renormalization theorems in supersymmetric theories are basically selection rules
that can be used to constraint the form of low energy effective actions [23]. In particular
in this section, we want to show that the effective superpotential is not renormalized
perturbatively, following [31].

There are several techniques developed to constraint as much as possible the form
of the effective superpotential. Of course, one has to propose a precise guess for the
relevant IR degrees of freedom. Once this guess is given, one can use the power of
holomorphy (in the fields and in the bare couplings) to constraint the effective super-
potential, as well as the weak coupling limits (where the theory should match the known
perturbative description). Another powerful method is the use of the localization trick
explained above; assigning to the bare parameters of the UV lagrangian, promoted to
fields, transformation properties under global symmetries, one can enlarge the global
symmetry group of the theory. If these symmetries are not anomalous, they should
be shared even by the effective action, thus giving further constraints on its form.
However, is important to remember that the K&hler potential is not an holomorphic
function and thus these techniques are not of any help in computing it.

Let us give a concrete example. Let us suppose we have the following UV theory
at the scale uo

Spo = / d*zd%0dd o + / d*zd?6 %)\2@2 + %/\9@3 (1.35)
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and let us try to determine the effective superpotential at some lower scale u < pg.

Symmetry | U(1) | U(1)r
® +1 +1
0 0 +1
dé 0 -1
Wy 0 +2
Ao -2 0
As -3 -1

Table 1.1: Charge assignment of fields and parameters

We assign to the flelds and couplings some charges under the symmetries of the
theory as explained in Table 1.1. There U(1)g is the R-symmetry group of the theory,
that rotates the supercharges and consequently the superspace coordinate 6 (as is
immediate from the form of the supercharges (1.7)). The auxiliary U(1) is the symmetry
of the kinetic term that is enlarged to a symmetry of the full theory by assigning charges
to the bare couplings Ay 3. Then, assuming the U(1) ® U(1)g global symmetry is not
anomalous, the effective superpotential at the scale p, Weg(®, Az, A3), is constrained to
be of the form

Wag = Aoy <@) (1.36)
Ay
where, by now, g is an arbitrary function. Now let us take the A3 — 0 limit keeping
Ay fixed. This limit should match with the perturbative expansion in A3, i.e. only non
negative powers of A3 can appear:

We = 3 _ gn A5 " A3 (1.37)

n>0

Similarly, by appropriately taking the limit where the theory is perturbative in Ag,
we find that negative powers of Ay cannot appear. Thus the effective superpotential
assume the final form

Wt = goro®? + g1 23®* (1.38)

A more precise matching with perturbation theory actually shows that the coefficents
go and g; should be equal to the classical coefficient appearing in the UV superpotential,

multiplied by the appropriate power of the classical scaling factor (i—") in going from

the UV scale yg to the IR scale p.

Let us give now a more general argument on the perturbative non-renormalization
of the effective superpotential. Let W,, = W,,(®,) be the UV superpotential with an
arbitrary number of chiral superfields ®,. For the moment let us suppose no vector
superfield is present. Now the idea is to localize ... 1! That is to say, replace the super-
potential with YW,,, where Y is a chiral superfield such that the vacuum expectation
value of its lowest component is precisely 1. The theory is now invariant under the
U(1)r R-symmetry given by the charge assignment R(Y) = +2 and R(®,) = 0. This
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symmetry and holomorphy constrain the effective superpotential at a lower scale u to

assume the form
W, =Yg(®,) (1.39)

where ¢ is a, by now, arbitrary but holomorphic function. Finally the condition that
the IR action should match the UV action in the weak coupling limit (that is to say
for Y — 0 appropriately, since this makes the theory free) implies that

9(Pr) = Wy (2n) (1.40)

In the end, we set ¥ = 1 to recover the original theory and conclude that W,, = W,,.

One could wander what happens if we include also vector superfields, or, more
precisely, if the effective superpotential could depend also on their coupling constant 7.
This is not the case as the theory have to be invariant under shiftings of 7 corresponding
to the periodicity of the ¥—angle. This shift cannot be absorbed by a rigid translation
of the fields ®, these being not gauge fields (we will return on the J-angle in the next
section).

In a similar way, one can also prove a more general non-renormalization theorem for
the generalized effective superpotential, given by the effective superpotential and the
gauge field kinetic term with the effective coupling. We will not enter in the details, but
give only the conclusion: the effective superpotential is not perturbatively renormalized,
as above, while the effective gauge coupling gets only perturbative contributions at one—
loop.

Let us conclude this section with a few more comments. Since the effective super-
potential of the theory still depends on the bare coupling, one could take the (wrong)
conclusion that the couplings do not run and the theory is trivial. However this is not
the case. In fact, the kinetic term, being not protected by these arguments, will get
quantum corrections. In particular, the fields will get a wave function renormalization

8, — \/Zn(1)®. (1.41)

Thus, to get a canonically normalized kinetic term, one has to rescale all the fields
and consequently to define new canonically normalized couplings that will depend on
the wave function renormalization. Clearly, these new couplings are running. More
precisely, their beta functions will depend on the anomalous dimension of the fields @,

() = L2228,

Unfortunately, the anomalous dimensions are not under control since they come from
the renormalization of the Kahler term, for which, as explained before, wa cannot use
the powerful machinery introduced in this section.

Tiny (1.42)

1.6 Anomalies

In this section we will briefly summarize some known fact about anomalies and their
role in the dynamics of quantum gauge theories, as explained in [32, 31, 23, 33]. This
will lead us to the Konishi anomaly that will play a fundamental role in this thesis.
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As is well known, anomalies are symmetries of the classical theory that are broken
by quantum effects. This is usually observed in perturbation theory, where observable
are computed in some regularization scheme. It may happen that the regularization
procedure breaks some of the symmetries of the classical theory; but an anomaly ap-
pears when the symmetry remains broken even if the regulator is removed.

An important example of an anomaly, is the trace anomaly. It is associated with
scale invariance: classically the dilation current D, is conserverd

8D, =TF=0 (1.43)

since the trace of the energy—momentum tensor T/ vanishes in classically scale invariant
theories. But in Yang-Mills theories, as well as their supersymmetric extensions, the
scale symmetry is violated quantum mechanically. This is reflected in the emergence
of a strong—coupling scale

—82
|A| = peds™® (1.44)
(to one loop order; this phenomenon is also called dimensional transmutation). The
coefficient b is given by

b= —T (adj) —-}:T - %ZQ:T(RG) (1.45)

where the index i runs over the Weyl fermions in the representation R; of the gauge
group and the index a runs over the complex scalars in the representation R, of the
gauge group and T'(R) is the index of the representation defined by

_ G
T(R) = & (fund) (1.46)
where C(R) is the quadratic Casimir of the representation R
Trg (T°T") = C(R)5% (1.47)

In terms of |A|, the RG equations for the running of the coupling can be solved by

sir-sen ()

From (1.48) we see that the effective gauge coupling g(u) diverges as the scale p ap-
proaches the strong coupling scale |A|, hence its name. Moreover, we easily see that
the sign of b determines if the theory is strongly or weakly coupled in the IR and in
the UV.

By considering also the f—angle term in the theory, it is customary to define the
complexified gauge coupling

471

(1.49)

T(p) = —b—.ln <é> (1.50)
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where A is the complex RG invariant scale

A= |Ale® = pe™F (1.51)
All the above discussion can be immediately applied to the supersymmetric extensions
of Yang—Mills theories, since these can be simply understood as usual gauge theories
with a particular prescription for the matter content.

Other important symmetries that can be anomalous are chiral symmetries, in which
the left-handed fermions transform differently than the right—handed fermions. In four
dimensions, left and right Majorana—Weyl fermions transform in complex conjugate
representations and thus they can give rise to chiral anomalies. This means that, given
a chiral symmetry, the associated current is non conserved quantum mechanically,

(OuJ*) # 0 (1.52)

The basic strategy to compute the anomaly is to think of the chiral symmetry as a gauge
symmetry, that is to couple the chiral current J* to a background gauge field (this can
be thought of using the localization trick to promote the chiral symmetry transforma-
tion parameter to a gauge field). The anomaly can be computer perturbatively via the
one loop triangle diagrams of figure (1.1) obtaining

(0uTE) o< 3 Tr g, (Te{ T, To}) FE Frae (1.53)
A LA
AN d
I K \/
Ja Ja P2
7 N
_——— A N A

Figure 1.1: Triangle diagrams contributing to the chiral anomaly.

This result is perturbatively exact, since higher loop do not contribute (by the
Adler-Bardeen theorem). Now, let us suppose that the symmetry group of the theory
consists in the product of a global (chiral) group G and a gauge group H. Then, the
symmetry generators split as T¢ = {T§,T#}. Let us suppose that the chiral current
generators are in G while the external background fields are in H, then

1 ) =
<a#‘]5> = 3—2—;‘3 Z Tr G:®@H; (Tgi{THi’ T’}Izll}) Fcij' uvb

1 . .
- ].671'2 ZT\IQI (ng) ’TrHi (THiT"IZli) Fclli pvb (154)

1 —~
— > 6:C (Ry) I Fua

1672
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where the index ¢ runs over the (massless) fermions. Since the anomaly depends on
Trg, (Tg,), it can only be in the abelian factors of the chiral symmetry group. Without
any lack of generality we can thus assume that G = U(1). In the last line of (1.55)
we have introduced the charge of the i*"—fermion under this U(1): ¢; = Trg, (Tg,).
The anomaly is proportional to the term Fcf“’ﬁ we that in the gauge theory action is
precisely the ¥—term:

v

Sy = —
v 1672

/ 4o Tr (FWEW) = (1.55)

The J-term is quantized in units of 9 and n is an integer that label the winding number
of the gauge configuration (seen as a Lie algebra valued function). This term contributes
as "% to the path integral and thus the theory is invariant for ¥ — ¢ + 2, hence the
name Y-angle. In terms of the complex gauge coupling (1.49), this corresponds to
the shift 7 — 7 4+ 1. The interpretation of the ¥—term is that the theory as infinite
homotopically inequivalent vacua. These are related by gauge field configurations that
correspond to instantons (in the Euclidean theory).

From these results, we can see that the chiral symmetry group is not completely
broken, but a Z,, symmetry survives, corresponding to the transformation

,d)i _ 6iqi6’¢1i
9 — 9+2 > gC(R) (1.56)

for values of € such that 2¢ ) . ¢;C(R;) € 27Z.

It is now easy to extend these result to the /' = 1 supersymmetric gauge theory.
Its field content is given by the superfield ® in some representation R of a gauge
group, that encodes a complex scalar and a Weyl spinor, and the gauge field W, in
the adjoint representation of the gauge group, that encodes the gauge boson A, and a
Weyl fermion, the gaugino ),. The classical action

_ _7____ 4,32 (a4 ___;’:__ 4,.329 7. e
S = 167r/d:vd9TrW Wa+167r d*zd®6 Tr W W (1.57)

+ / d*zd?0d2%0 ®e¥ ® + / d*zd?0 W(®) + / d*zd*0 W ()
has a chiral symmetry ‘
D — D~ P+ ied (1.58)

broken classically by the superpotential. By rewriting the kinetic term as
/ d*zd?0d%0 de¥'® = / d*zd?¢ D*(®e" @) (1.59)

and using the superspace version of Noether theorem, we get the classical equation

ow

_...—-2—V —_— —
D¥(3e"®) = oz

(1.60)
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where the LHS is the supersymmetric version of the divergence of the current 8, J#, that
can be obtained by taking the #? component, and the RHS is the classical symmetry
breaking caused by the superpotential. But, quantum mechanically, an anomaly is
expected, precisely given by (the superspace version of) (1.55)

ow 1

DBV P) = P + —— VA s
D (®e” @) @8@ +32W2T&(M W,)

This equation is known as the Konishi anomaly [34, 35].

(1.61)

1.7 The Dynamics of Gauge Theories

We will conclude this chapter by briefly reviewing the dynamical properties of gauge
theories, and in particular of AV = 1 theories. When giving explicit formulas, we will
generically refer to SU(N) gauge theories, in order to simplify the notation. However
the results explained are expected to be valid also for other gauge groups. A more
general and complete discussion can be found in [23, 24].

The dynamical properties of a gauge theory are strictly dependent on the phase
the theory is in. The main tool to study the different phases of gauge theories, at
least for supersymmetric theories, the low energy effective action introduced in the
previous sections. As the energy scale is modified, gauge theories can undergo phase
transition and thus exhibit drastically differen behaviors. The phases of gauge theories
can be characterized by the potential V(r) between electric test charges separated
.by a large distance 7. The main phases as well as the conjectured behavior of their
_potential are summarized in table 1.2. The theories can be given both an electric and

Phase Electric potential | Magnetic potential
Coulomb = L
Free electric FT{]%FB olrh)
R In(rA
Free magnetic %)- ?'1?{1?&7
Higgs constant or
Confining or constant

Table 1.2: Charge assignment of fields and parameters

a magnetic description, as well as free quantum electrodynamics. This property is
conjectured to be shared by non—-Abelian gauge theories with sources and is usually
called Electric-Magnetic duality. As far as we know, there is not any convincing prove
of this statement, but an increasing amount of evidence. In terms of the electric
potential, the first three phases have massless gauge fields and potentials of the form
e(r)/r where e(r) is the renormalized electric charge. This charge is constant for the
Coulomb phase (hence its name) while in the free electric phase it is renormalized to
zero as r — 0o by the massless charged particles and in the free magnetic phase it is
renormalized to infinity as r — oo by massless monopoles. In terms of the magnetic
potential, this behavior can be understood as a consequence of Dirac quantization
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condition e(r)g(r) ~ 1 that relates the electric to the magnetic (renormalized) charge
g(r). The Higgs phase is pretty similar to the Meissner effect in superconductivity.
Flectrically charged particles condense giving a mass gap to the gauge field by the
Higgs mechanism, while the flux between two magnetic sources is confined into a thin
flux-tube with constant tension p, resulting in a linear potential. This reminds us of
condensed matter physics where charged electrons can condense in Cooper pairs on top
of which magnetic flux is confined.

Finally, the most intriguing situation is the confining phase. This is expected to be
a description of real world QCD®. Roughly speaking, given two electric test charges, the
potential between them is a linear function of the distance and consequently the force is
a constant, independent on the distance. Thus the particles are confined. This can be
equivalently stated by looking at the properties of the electric field; this is confined in a
flux tube, or string, between the two sources. Actually, this is a more precise definition
of confinement, that now is stated relying only on the properties of the Yang—Mills
fields. It is conjectured that this picture of confinement can be given a dual description
in terms of magnetic variables. Just like the electric Higgs phase, where condensation
of electrically charged particles imply that magnetic field is confined in flux tubes,
we may conjecture that electric confinement can be described by the condensation of
monopoles. Again, there is no proof of this statement but only some evidence .

Consider pure Yang-Mills theory. We know it is a strongly coupled theory in the
infrared, at the dynamically generated scale A. More precisely, this theory in the
IR develops a mass gap and becomes confining. Let us explain better what these
statements mean. Physically, the existence of a mass gap, implies that there are no
massless.fields in the spectrum, but only a discrete set of states with mass of order
A. This may appear a bit weird, since the UV theory is a theory of massless fields,
the gluons. The key point is that gluons are not the correct variables to describe
the IR physics. Actually, they emerge in the perturbative quantization of the theory
as asymptotic states; this is possible since the theory is asymptotically free and thus
weakly coupled in the UV. But in the IR, simply we cannot apply this quantization
scheme and new (massive) degrees of freedom emerge, the glueballs. These do not
consist of a bound state of gluons (gluon number is not a conserved quantity); they are
simply the real objects that characterize the low energy physics. Moreover the theory
becomes confining, meaning, as we have already said, that the electric field itself is
confined in flux tubes: it cannot spread out in space over regions larger than about
A~!in radius. There is a deep relation between the confinement of the electric field and
the generation of a mass gap. This picture is perfectly fitting in the “dual” description
we have given above, where condensation of magnetically charged object implies the
confinement of electric field. In fact, as is well known from condensed matter physics,
particle condensation can be associated with the generation of a mass gap via the Higgs
mechanism.

SNote however that QCD is not formally a real confining theory, since quarks can escape from
hadrons as seen in deep inelastic scattering processes. This is because there exist quark lighter than
the energy scale at which confinement occurs and pair production can overcome the confining potential.
However this mechanism is in some sense ”accidental” and the low energy dynamics is captured by
confinement.



1.7. THE DYNAMICS OF GAUGE THEORIES 25

Most of the statements made until know, do not have a formal proof. They come

mainly from physical intuition and from direct (computational) evidence in some cases.
Actually the dynamics of gauge theories is an hard subject. A lot of insight has come
with the aid of computer simulations. The idea is to discretize space time, so that the
theory is defined on a lattice. Then gauge fields are not anymore continuous functions
but can only take values in a finite set (this can be interpreted as a regularization of the
theory). Then one can compute correlators analytically or with the aid of a calculator
(with an high precision). In this way, most of the conjectures we have encountered can
be confirmed, pointing out that the physical picture given is probably correct. However,
this cannot be regarded as a proof. In fact, in defining the theory on a lattice, one
is actually changing the theory, simply because one needs to introduce another scale,
i.e. the lattice spacing. It turns out that all the correlators will now depend on this
new scale. To give a formal proof of the above stated conjectures, one finally needs
to show that these properties survive when the lattice spacing is taken to zero, or in
other words that the theory does not undergo a phase transition. But this task is
as difficult as the direct approach to gauge theories. However, lattice computations
agree with all analytical computations one can do in the continuum theory. Thus it is
widely believed that the lattice description is correct and that the lattice answers can
be trusted. Actually lattice gauge theories provide the most powerful method we have
to get physical insight on the dynamics of gauge theories.
’ Another possible technique to study gauge theories is to consider their supersym-
- metric version. This is in a sense quite similar to the lattice approach, in that you
.- change the theory in a “controlled” way to make it easier®. Let us now consider pure
i N =1 Yang-Mills. This theory is very interesting since it exhibits the same proper-
- ties of pure Yang—Mills, confinement and mass gap generation, but is easier to study
. since it is supersymmetric. The strategy is then to “solve” this theory and then break
supersymmetry to recover ordinary Yang—Mills theory and get a clear understanding
of its dynamics. But even N = 1 Yang-Mills is too difficult to be solved exactly;
however the Dijkgraaf—Vafa conjecture has definitely been a progress in this direction.
The main difference between pure and supersymmetric Yang—Mills is the presence of
the gluino (or gaugino) A,; however to ensure supersymmetry, the gaugino has to be
in the adjoint representation of the gauge group as well as the gauge field, and fields
in the adjoint representation cannot break electric flux tubes. Thus we expect that the
confinement mechanism is the same as in pure Yang-Mills (and this is true even if we
add other adjoint matter, for example a chiral superfield in the adjoint representation,
like in (1.26)). But this theory exhibit also another remarkable phenomenon, gaugino
condensation. The theory has an U(1)g chiral R-symmetry (phase rotations of the
gaugino); as explained in the previous section, chiral symmetries are broken by quan-
tum effects. However, as seen in eq. (1.56) a discrete symmetry survives the anomaly.
Since C(adj) = h where h is the dual Coxeter number

Tt og (T29T3 %) = héa (1.62)

6 Again, if one could show some dynamical property of the supersymmetric theory, then one would
need to break supersymmetry in order to extend it to the original theory. But this introduces a new
energy scale, the one at which supersymmetry is broken. This is the same problem encountered in
lattice gauge theories
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we see that U(1)g is broken down to Zs, or, explicitly, the remaining symmetry is

. : 27
Aa — €%, with &= aﬁn , N E Lo, (1.63)
This fact has a clear interpretation in terms of instanton calculus. In fact the first non
zero correlator in an instanton background is obtained by soaking the zero modes of
the Dirac operator in an instanton background (of course, a Wick rotation to Euclidean
space is understood when talking about instantons)

(ON)") ~ A3 (1.64)

where the RHS can be understood by dimensional analysis and by the fact that being
a non perturbative evaluation it has to depend on A.

At strong coupling, this discrete symmetry is further broken down to Z,. Actually
this means that gaugino bilinear get a vacuum expectation value

(AX) ~ A3e?™k/h =0, h—1 (1.65)

together with A inequivalent (confining) vacua, related by a rotation in the ¥-angle
¥ — 1 + 27k. This phenomenon is called gaugino condensation and is deeply related
to the generation of the mass gap (intuitively chiral symmetry breaking allows a mass
term for the gaugino).

Now it is possible to write down an effective action for the low energy theory that

captures the phenomenon of gaugino condensation Let us introduce the glueball super-

field 1 1

Tr (WeW,) = A%Aa + .1 ). .
3272 W ) 16W?ﬂ( o) (1.66)
this is the chiral superfield whose lowest component is the gaugino bilinear; because of
this gaugino condensation can be described as S getting a non zero expectation value.
The dynamic of the glueball superfield is captured by the Veneziano—Yankielowicz

effective superpotential [4]

S=-

Wyy = NS <1 —In %) (1.67)
This effective action was simply derived as the most general potential compatible with
the symmetries of the theory and that comprises the gaugino condensation (this in fact
can be easily obtained by taking the equation of motion for the field S in (1.67)).

Let us pause a moment to clarify the implications of all this. Actually, the Veneziano—
Yankielowicz effective superpotential is based on the highly non trivial assumption that
S is the correct low energy degree of freedom. This guess is not in contradiction with
any known property of the theory and moreover seems to capture correctly the low
energy dynamics of the theory. Then, it is reasonable to conclude that it is true. How-
ever, it would be very interesting, and probably could shed some light on the mechanism
through which confinement arises, to understand exactly how S comes in the game.
Unfortunately, this task is presently out of reach.



Chapter 2

The Dijkgraaf—Vafa conjecture and
its field theoretical derivation

The Dijkgraaf-Vafa conjecture [1] allows one to compute the exact effective superpo-
tential for an A = 1 gauge theory with chiral matter in some representation of a given
gauge group. It is based on an auxiliary matrix model associated with the original gauge
theory. The outstanding feature of the conjecture is that it gives a non perturbative
information (the resulting superpotential is exact, meaning that it includes instantonic
contributions) relying only on perturbative techniques (the derivation is entirely dia-
grammatic). The original motivation for the conjecture is arising from String Theory
[1,2, 3]. However it can be given also a purely gauge theoretical derivation [6, 8]. To
explain this derivation, we will introduce the concept of the chiral ring, namely a ring
structure constructed by all chiral operators of the theory. The restriction to the chiral
ring of a generalized form of the Konishi anomaly will allow us to compute the effective
superpotential. This way of reasoning can be extended to other supersymmetric theo-
ries based on other gauge groups and with chiral matter in other representations than
the adjoint [9]. We will give some explicit examples and comment on some subtleties
that arise when computing superpotentials for Sp(IN) gauge theories.

2.1 A Perturbative Window into Non Perturbative
Physics

The Dijkgraaf-Vafa conjecture is a striking result that allows one to compute the exact
effective superpotential for A/ = 1 supersymmetric gauge theories with chiral matter
in some representation of the gauge group and a tree level superpotential that is a
polynomial in the chiral superfield. The obtained superpotential is the sum of the
Veneziano—Yankielowicz superpotential and instanton correction arising from integrat-
ing out the chiral matter. The basic strategy is to associate to the gauge theory a matriz
model whose action is given by the tree level superpotential of the gauge theory. Then,
one can extract the effective superpotential for the gauge theory from the partition
function of the matrix model, given a correct identification between the gauge theory
and the matrix model parameters. More precisely, the measure of the matrix model

27
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partition function gives the Veneziano—Yankielowicz superpotential while the instanton
corrections can be extracted from the planar limit of the matrix model. The remarkable
fact is that the planar evaluation of the matrix model is entirely perturbative.

The original formulation of the conjecture is based on a chain of dualities based
on String Theory [1, 2, 3], that have their origin in [36, 37, 38]. We will not enter
in the details of how String Theory suggest the emergence of the matrix model, but
only give a general idea. Basically one can engineer the gauge theory on a D5 branes
configuration wrapping a 2—cycle of a Calabi~Yau manifold. The four dimensional part
of the branes where the gauge theory lives is outside of the Calabi~Yau manifold. The
key point is that the topological string theory living inside the Calabi-Yau manifold
is controlling the holomorphic sector of the gauge theory. Finally, topological string
theory correlators can be computed by an auxiliary matrix model (that basically arises
as the topological string theory localizes to its zero modes). At the end, one can simply
forget the String Theory behind all this ending up with a prescription to associate
a matrix model to the original gauge theory. For related work inspired from String
Theory see [39, 40, 41, 42, 43, 44, 45, 46]

There exists a purely gauge theoretical derivation of this result, that we will describe
in the next section [8]. In this section we will describe the matrix model approach,
following [1, 22]. For a more accurate discussion, see [7]. A complete introduction to
matrix models can be found in [47, 48, 49].

Since [1] has appeared, a lot of literature followed. The interested reader can consult
some work on the application of the conjecture to various theories, namely theories with
extended supersymmetry such A = 2 [50] or N = 4 [51] and their breaking to A/ = 2*
and N = 1* introduced in [52]. Some attempts to understand the Argyres-Douglas
points [54] were made in [53], while Seiberg duality [56] was studied in [55], both in
the framework of the matrix model techniques and of the purely gauge theoretical
approach of [8]. Furthermore, the original conjecture was generalized to include flavor
[57] and baryons [58] and even multi-trace deformations [60]. Some works on chiral
theories can be found in [61, 82]. Some authors have used these techniques to study
field theories arising from orbifolds and quiver theories in [59]. Finally, there have been
some attempts to generalize the conjecture to lower or higher dimensions [62]. We will
not introduce any of these subjects; to explain the material exposed in this thesis, a
simpler setup will be enough. We refer the interested reader to the original literature

Let us state in a more precise way the conjecture in the case of a U(N) gauge group
with chiral matter in the adjoint representation. The action is given by

T
167
+ / d*zd%0d%6 deV @ + / A*2d%0 Wizeo(®) + / d*2d%0 Wieo (D)

S = d*zd?¢ Tr WoW, + 2_1—6% / dzd?0 Tr W,W* (2.1)

with -
9k k+1
Wiree = ——Trd 2.2
" ; k+1 (22)
Classical vacua are determined by the extrema of Wie. (seen as a holomorphic function
of a complex variable). In a classical vacuum, the field ® is a diagonal matrix whose
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eigenvalues are in the set of critical point a; with multeplicity IN;. One can describe a
generic vacuum by picking out a partition

N =N+ -+ N, (2.3)

that corresponds to distributing N; eigenvalues at the critical point a;. This configu-
ration corresponds to the symmetry breaking pattern

U(N)— U(Ny) x -+ x U(Ny) (2.4)

The low energy degrees of freedom are the glueball superfield

1 (s 1 [s3
— 555 Tt (W) Tr (A + ... ) (2.5)

5= T 1672

corresponding to the symmetry breaking pattern. For later use, we also introduce the

abelian (thus IR free) fields

1
o = =5 Tr (Wia 2.
Wia = = 5Tt (Wia) (2.6)

Now, we associate with the gauge theory, the bosonic one matrix model given by the
partition function

Zma.tl'ixz/‘DMe——g—n’WtrEE(]\/I) (27>

“ where M is an N’ x N’ hermitian matrix and N’ has no relation with N; ZJ]—\E = g, can

‘be seen as a parameter (actually it is the string coupling, the only remnant of String
“ Theory acting behind the conjecture). The vacua of the matrix model are chosen, as
for the gauge theory, by picking out a partition

N' =N +--+N, (2.8)

where we demand that the symmetry breaking pattern of the matrix model and the
one of the gauge theory are the same. Now we can evaluate the matrix model partition
function by taking the ’t Hooft large N’ limit that gives an expansion in terms of double
line diagrams. The partition function admits the topological expansion in the genus g

Zmatrix = € 9m

— ezgzogfg_zfg(gst) (29)

where F is called the free energy of the matrix model and F, are the coefficients of
its genus expansion. The main contribution to the path integral is given by the planar
limit F,—o. The connection with the gauge theory arises when identifying S; = g.IVj, as
we will explain later. Note that this identification is non trivial, since S; are dynamical
fields while g, and N are simply parameters of the matrix model. Now we can finally
state the conjecture. The effective superpotential of the gauge theory is given by two
contributions. The first one is the Veneziano—Yankielowicz superpotential, that can be
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derived from the measure of the matrix model partition function; the second is given
by the perturbative evaluation of the matrix model?

Sz: gk a2-7:5;—'0 Smgl) a
T/Vl:oert (Sh Wicrs gk Z N 9 Z 85’ 8,5’ w; ’LUja. (210)

Note that it is only the planar limit of the matrix model that contributes to the super-
potential. The rank of the matrix N’ is disappeared in S; while the ranks of the gauge
groups NV; simply appear linearly. One could ask what is the physical interpretation of
the non planar contribution; we will show in the next chapters that they correspond to
gravitational corrections to the effective superpotential.

The planar free energy of the matrix model can be explicitly worked out by using
the loop equations of the matrix model. These are simply Ward identities following
from the variations

M = eM™!, (2.11)
These variations give the identities
0= / dMTr ( ai/an) = g Weree (M) (2.12)
that can be summarized by the following relation
0= / dMTr ( 82 - = M> ¢~ o Weree M) (2.13)

Evaluating this expression, one gets

(5" ((m2y) ) - oo (Mimli) "

Let us now define the matrix model resolvent

Bn(2) = &2 <TT - _1M> (2.15)

Now, by substituting (2.15) in (2.14), we find

(R (2 = (W' (2) B (2)) + () (2.16)
where
f ( ) 4-‘?\7; <r1'1r I/Vtree( Z?—Mvvtree( )> (217)

is an unknown polynomial of degree n — 1. Let us now take the large N’ limit of
equation (2.16): correlators in the matrix model factorize as

(Rm(2)?) = (Rm(2))®. (2.18)

1This rather peculiar form of the superpotential is actually quite natural from the String Theory
point of view, where it is motivated by special geometry.
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Note that this is exactly the point where the planar limit enters; if we had not taken
the large N’ 't Hooft limit, the correlators would have not factorized. Finally, after the
limit, equation (2.16) reads

B2 = W W Ren(2) + 112 (219

where the expectation value of R,,(z) is understood. In the matrix model, the choice of
the function f,,(z) corresponds to the choice of how to distribute N’ eigenvalues of the
matrix M among the n critical points of Wiee. By taking the derivative of the matrix
model free energy with respect to the coupling constants of the tree level potential, one

learns that aF )
— k1
30, <k — T M > (2.20)
f

that is, the matrix model resolvent (2.15) is the generating functional for g-. Note
that this relation hold order by order in the genus expansion of the matrix model
free energy, i.e. the planar limit of the free energy is obtained by the planar limit of
the resolvent. The function f,(z) in the matrix model has a well known effect on the
analytic structure of R(z): it opens n cuts over the z—plane. By now R(z) can be solved
in terms of the coefficients of the polynomial f,,(z). Let us now perform a change of
variables that will give us a more deep physical insight on what is happening. If C; is
a contour in the complex z—plane surrounding the 7** cut, we define

Si=5— ?{ dzRp(2) (2.21)

If we plug in (2.15) we get

1 gm NV}

where N! is the number of eigenvalues of M near the ** critical point. Now R(z) and
hence the free energy F can be expressed in term of the variables S;. Now, the key
point is that in writing (2.10), we interpret .S; not simply as matrix model variables,
but as the physical glueball superfield.

2.2 Gauge Theory Derivation

In this section we will explain how the Dijkgraaf—Vafa conjecture can be derived from
the gauge theory point of view, without any reference to String Theory. Actually it is
worth mentioning that there exist two ways to prove the conjecture: one is based on
the use of anomalies [8] and the other is purely diagrammatic [6]. Here we will only
discuss the first one, following [8, 22]; the diagrammatic derivation was nicely reviewed
in [33]. The work in [8] was further generalized in a series of subsequent papers by the
same authors where fundamental matter was added [65] and a detailed study of the
phases of gauge theories was begun [63, 64]. For further extensions along this line, see

[66].
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The key ingredients are the concepts of the chiral ring, that encodes the information
on the holomorphic sector of the theory, and the already mentioned Konishi anomaly.
Once these two character come into the play, one can obtain Ward identities descending
from the Konishi anomaly relating operators of the chiral ring. Remarkably, these Ward
identities are enough to constraint the form of the effective superpotential and to write
down an explicit formula for it.

2.2.1 The Chiral Ring

The chiral ring is a key object in the study of supersymmetric gauge theories. It is a
mathematical structure that encodes all the chiral operators of the theory. But, it also
has a nice physical interpretation. In referring to supersymmetric gauge theory, we
always assume to be in a supersymmetric vacuum. This means that the vacuum state
is annihilated by the supersymmetry generators. It is natural, from a physical point of
view to identify operators that have the same expectation value in a supersymmetric
vacuum.
Chiral operators are defined as being gauge invariant operators annihilated by the
supercharge Qq
[Qs, 0} =0 (2.23)

The chiral ring is then the set of all gauge invariant chiral operator modulo Q, com-
mutators. That is B
O1(z) = Oy(z) + [Q%, Xa(2)}, (2.24)

where X;(z) is a local gauge invariant operator. Clearly, since we are assuming the
vacuum state to be supersymmetric, O;(z) and Os(z) have the same vacuum expecta-
tion value. Eq. (2.24) can be easily translated in superspace language (since the lowest
component of a chiral superfield is a chiral operator): two chiral field are in the same
equivalence class if their difference is of the form DY where Y is a local and gauge
invariant superfield.

Let us assume that the operators O are bosonic to simplify the notation (actually all
the statements we will show are completely general). Chiral operators are independent
of position z in the chiral ring, that is, discarding (vacuum expectation values of) Qg
commutators:

(52:0(2) = ([P*, O(@)]) = 5[ @a [, OL}) = 0 (2.25)

up to numerical factors. Actually one can prove in a similar way the more general
relation

(2 0@OWw) .. Ofy.) = 0 (2.26)

The idea behind this relation is to use the supersymmetry algebra to write the space—
time derivative in terms of supersymmetry generators and then commute these until
they act on the invariant vacuum, using the fact that the operators are chiral. Using
this result, we can separate the operators by an arbitrary large distance in space—time
and then use the cluster decomposition principle to factorize any correlator

(O1(z1) ... On(n)) = (O1(z1)) .. . {Op(z)) (2.27)
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As we will see in the next chapters, this property does not hold anymore when the theory
is considered in a gravitational background. So far, all this can sound a bit abstract.
To be more concrete, let us specialize to the chiral ring of the N = 1 theory (2.1).
The basic element of the theory are the gauge field strength W, and the chiral matter
superfield ®. Let us begin by considering the gauge field. By an explicit computation,
one can show that '

) — . — 1. -
(W, W5} = —%vavadw - —iva{vd, ValWp=—7ViVaValy  (228)

where we have used the fact that W, is a chiral superfield (i.e. VW = 0) and the
definition of W, (1.25) as well as the definition of Ve (1.24). This relation means that
gauge field strength anticommute in the chiral ring,

Tr (W WeW., ... W, )= ~Tr (WsW,W,, ... W,,) — %D%Ifr (V WWo,, ... W,,.)

(2.29)
Hence, the only non trivial object in the chiral ring that can be made by taking trace
of a product of gauge field strength is the glueball superfield S. In fact, since W's
anticommute in the chiral ring, we may assume that the trace of any string of W’ is
antisymmetric in the exchange of the gauge fields. But, since supersymmetry indices
a’s can only assume two values, traces of three or more W’s vanish in the chiral ring.
By following the same strategy as for equation (2.28), one can also show

[W,,®] =0 mod D (2.30)
" Hence a complete list of independent (single-trace) chiral operators is
TTd* Trorw, Trd*Wwew, (2.31)

Strictly speaking, these argument should apply only to an SU(N) gauge theory; one
actually can prove they are true for all classical Lie groups (by now the extension to
exceptional groups is a conjecture, that has been proven only for Gs). Let us note that,
due to algebraic relations, ® being an N x N matrix, operators like Tr ®* with k > N
can be expressed in terms of operators Tr ® with [ < N.

The chiral ring as defined in (2.24) is a classical object; it could (and actually does)
receive quantum corrections. The following relation holds in the classical chiral ring

St =0 (2.32)

where h is the dual Coxeter number of the gauge group. This relation was proven
in [67] by means of group theory relations for all classical groups and in [68] for G
and is conjectured to hold even for the others exceptional groups. But if this were an
exact quantum statement, it would follow that the vacuum expectation value of Sh,
and hence of S by factorization, would vanish in any supersymmetric vacuum. The
only possible correction to this relation arises non perturbatively, since the instanton
factor A3" has the same chiral properties of S*. Moreover, we know that instantons
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lead to an expectation value (S") = A3" Therefore, we conclude that the quantum
chiral ring generalization of (2.32) is

St = A% (2.33)

Let us stress once more that all these relations hold in the chiral ring, that is up to Q
commutators.

We note here, and we will comment on this later, that, since chiral ring operators
get quantum corrections, they should be handed carefully. In particular, all operators
like S* with k > h will get corrections; this will imply some subtle modification to the
original Dijkgraaf—Vafa conjecture.

Since we have observed that the chiral ring has an important physical interpretation,
it would be useful to have an easy way to handle all chiral ring operators. This can be
accomplished by defining the following three operators:

R =g (105),  AO-TRE
o ss(7) = = (Ia@)ij, wal2) = T pa()
T(2)y = (z ! @>ij, T(z) = e T(2) (2.34)

The idea behind this definition is that the coefficients of the expansion of the operators
R(2), wa(z) and T(z) in powers of 2, are precisely the operators of the chiral ring. Then,
all the information on the chiral ring is encoded in (2.34). As a remark, the function
R(z) is also called resolvent, in analogy with the matrix model resolvent (2.15).

2.2.2 Planar Diagrams

In this section we will give some argument to show that only planar diagrams in ’
Hooft’s double line notation can contribute to the effective superpotential in the gauge
theory. Following the ideas outlined in the Chapter 1, let us try to constrain the form
of the quantum effective action by means of symmetries. For simplicity, we will restrict
ourselves to the case of unbroken gauge group, but our conclusions hold for the more
general case of a symmetry breaking as well. The free N = 1 lagrangian has two UV
symmetries, the R—symmetry U(1)g and the chiral U(1)

D — P~ P+ icd (2.35)

already encountered in the last Chapter. These symmetries are also symmetries of the
interacting theory with a superpotential (2.2), if we allow the couplings to transform non
trivially, by the localization trick. Let us assign to the fields and couplings charges as
in table 2.1. These symmetries are anomalous. In particular, the chiral U(1) anomaly
is the Konishi anomaly already mentioned in Chapter 1. However, the anomaly is
a one loop effect, that leaves invariant higher loop contributions. If we demand these
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U | 00
o | L 1
Wa 1 0
9 22D -(+1

Table 2.1: Charge assignment of fields and couplings under the R-symmetry U(1)r
and the chiral U(1)

symmetries to be symmetries of the quantum superpotential, we see that it must depend
on the couplings and on the gauge field as

k—1
a Wy
(k+1)

.9712

Weg = W2F (2.36)

except at one loop. We have used a schematic notation, just to indicate the overall

power of W, but actually W? could mean S as well as w?.

Figure 2.1: This diagram has A = 3 index loops and two ordinary loops.

If we consider a planar Feynman diagram in double line 't Hooft notation with
vertices of degree k; + 1, then the number of index loops is

h=2+ -;- Z(k —1) (2.37)

To convince ourselves that this formula is true, let us look at the diagram in figure (2.1):
the diagram has two vertices, each with k; = 2 and three index loops, as predicted by
(2.37). Now, if we add a propagator, we add one index loop and increase k; — 1 by one
at each end of the propagator. Then, (2.37) is still valid. In this way one can prove by
induction that (2.37) holds for any planar diagram.

Equation (2.37) together with (2.36) means that in the effective superpotential the
power of W, coming from an h-index loop planar diagram is 2h — 2. Since S ~ w2,
this implies a term like S*~! if A — 1 index loops each have two W, insertions and one
has none, or a term like S*~w? if h — 2 index loops each have two W, insertions and
the remaining two loops have one W, insertion each. Actually, any index loop in a
Feynman diagram can contribute with a factor of S, w, or N depending on how many
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gauge field insertions are one the loop. In fact no other operator can enter in the game
since more insertions of the gauge field are trivial in the chiral ring and thus cannot
contribute to F-terms. The generalization of (2.37) to a non planar diagrams of genus
g is
1
h=2+3 Z(k —1) (2.38)

Then, the power of W, coming from an h-index loop non planar diagram is 2k +4g — 2.
But this means that for an index loop with g # 0 would have more that two W,
insertions. Since this contributions are trivial in the chiral ring, they cannot contribute
to the superpotential. Thus, only the planar diagrams are relevant for the computation
of F—terms.

2.2.3 The Generalized Konishi Anomaly

In this section we will introduce the basic tool to prove the Dijkgraaf-Vafa conjecture,
that is a generalized form of the Konishi anomaly (1.61). As we already seen, the
Konishi anomaly is the relation

ow _ 1
o0® 3272

Clearly, the LHS vanish in the chiral ring. Thus by taking the vacuum expectation
value, we have a quantum relation between operators in the chiral ring.
Now let us consider the most general variation of ® in the chiral ring

50 = f(B, W) (2.40)

D*(®eV®) = —

Tr (WeW,,) (2.39)

where f is a general holomorphic function of the chiral superfields ® and W,,. This
leads to a generalized form of the Konishi anomaly?

D*Tr eV £(®, W,) = Tr £(B, W, )8W(d>) + Ay kl ®, Wa)s: (2.41)
17kl ’ aékl

where we have emphasized that V' is in the adjoint representation:

(AdV ®)F; = V4 ®F, — @4 VF). (2.42)
and
L
3272
Tyx being the generators of the gauge group (U(N) in this case). Note that at this

point this is quite general and a change in the gauge group will reflect only in the
explicit form of the generators Tj,. We will use this fact later. For U(N) we have

(Ti)s; = (ew)ij = 6a0;1 and

A = W*, [Wa, Tix]);; (2.43)

D& (2, W,) = Tr £ (@, Wo) 22 (2 32,”22[”/“[ ;%—H (244)

*Here and in the following we will consider W (®) as a matrix every time it appears inside a trace.
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Finally, taking the vacuum expectation value, we find

<Trf(q>, Wa)%%f> - _ﬁ <Z qwa, {Wa, WH)) L (245)

i’j

where the have used the fact that terms of the form D of something gauge invariant
annihilate a supersymmetric vacuum. Then the equation (2.45) is an ezact relation
between quantum operators. Let us anticipate that, in the next section, we will take
for the function f(®,W,) the generators of the chiral ring (2.34). This will give us
equations containing all the information of the chiral ring; solving these equations will
allow us to find the effective superpotential.

2.2.4 The Effective Superpotential

In this section we will finally explain how to derive the effective superpotential for an
U(N) gauge theory [8, 22]. In the following sections we will generalize this to a general
classical Lie group and give some explicit examples.

To begin with, let us consider the classical variation of the field ® in the chiral ring

1 Wew,
- ( L >ij = Ry(2) (2.46)

5@,5_7' -

.+ Then, by looking at the generalized form of the Konishi anomaly (2.44), we see that
the RHS contains

Ofu(®Wa) 1 8 (WW,
0d,; T 32720%,; \ 20/,
1 (WeW, 1
YL ( z—® )ki <Z - q’>jz (247)

Next we note the algebraic relation

9 xixe . X1X2 2

i’j

which holds if x? = x2 = 0 and [®, xo] = 0. Then, by applying (2.48) with x. = W,
(2.44) looks like

(o (0225 - (28 ) e

Let us now rewrite this expression in a more useful form. First of all by adding and
subtracting W’(z) inside the trace, the LHS looks like

s (T (@) cwi R ) 250
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where
f2) = o5 T <(W’(z) - r/v'(@))‘fi”;“> . (2.51)
Let us note that f(z) is a polynomial of degree n — 1
n—1
F(2) =" fud; (2.52)
k=0

moreover it cancels all the non negative powers in z of W/(z)R(z) such that the RHS

of (2.50) has the same large z behavior of the LHS, i.e. l Up to know, the coefficients

[ are only unknown parameters; we will comment later on their physical significance.
On the RHS, we can use the factorization properties of the chiral ring to write

<R2(z)> = (R(z))2 (2.53)
We note that the same relation was used in the matrix model setup, but there it was

justified by the large N’ limit; here it is simply a property of the chiral ring. Finally,
we can write the generalized Konishi anomaly as

R(=)? = W'(2)R(2) + 2 (2 (2.54)

(equation (2.54) has to be intended as a vacuum expectation value). Note that this
equation is identical to the matrix model loop equation (2.19). Equation (2.54) can
easily be solved to yield

R(z) = % (W'(e) - VW GR+ 7(2)) (2.55)

where the sign of the square root has been chosen in order to get the right > L behavior
at infinity.

From (2.55) we see that the function R(z) (better, its vacuum expectation value),
has, in principle, n branch cuts in the complex z—plane. This is because of the presence
of the function f(z) in the square root. Its effect is to split some of the n zeros of
W'(2) (eventually all) into branch cuts; these cuts can be seen as a sort of quantum
resolution of the zeros of the tree level superpotential. If C; is a contour going around
the i** branch cut, we have

S; = ! dzR(z ]{ dz/W'(2)2 + f(2) (2.56)

omi e

where we have used the solution for R(z) (2.55). In the classical limit this equation
gives precisely the glueball superfield. Quantum mechanically, it has to be interpreted
as a quantum definition of the glueball.

Equation (2.56) has to be understood as follows. Semiclassically, to evaluate the
integral, we set ® to its vacuum value, that is a diagonal matrix with diagonal entries
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&1, ..., ¢y (which are equal to the a; with multiplicity N;). Then, for any matrix M,
we have
N
1 M M,
— ¢ dz T = d~ e
2mi Je, z— @ 2 Z — Om
= Z My, = Tr PM = Tr M;. (2.57)
Am€C;

Here )\, € C; means that A, is inside the contour C;, and F; is the projector onto
eigenspaces of ® corresponding to eigenvalues that are inside this contour. Since pro-
jectors should not receive quantum corrections, this relations hold even at the quantum
level. Then we see that (2.56) is proper quantum definition of the glueball superfield.

In general, the choice of the function f(z) determines the gauge symmetry breaking
pattern and selects the vacuum: as we have seen, it is in fact a statement on the low
energy degrees of freedom S; of the theory. Moreover we see that, if we set f(z) to
zero, we get the classical expression (1.66) for S.

Let us now take the variation in the chiral ring

1
P e 'Lj
By repeating the same steps that led to (2.54), we find
QR(2)T(2) = W'(2)T(z) + %;c(z) (2.59)

where c(z), like f(z), is a polynomial of degree n — 1, defined by

o(z) = 4Tt ((W’(z) _ W’(@));—;l—(—f> . (2.60)

Equation (2.59) can be used together with (2.55) in order to derive a closed equation
for T'(z)

1 c(z)

N e .
where again, the vacuum expectation value is intended everywhere. Equation (2.61)
is a quantum relation that relates the operator T'(z) to two unknown polynomials of
degree n — 1. However, as we have already explained, the function f(z) is completely
determined by the choice of the vacuum and of the gauge symmetry breaking pattern.
Moreover, also the function c(z) can be fixed by some "boundary condition”. In fact,
if we take equation (2.57) with the matrix M equal to the identity, we get

! )
N; = d T(z 2.62
i * 8 _74 \/ W!(z (2.62)
that can be used to fix ¢(z) = Y_r—q cxz®. Then, the (quantum expectation value) of the

function T'(z) is completely determined once the vacuum and the symmetry breaking
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pattern have been chosen. This is enough to derive the effective superpotential for the
theory. In fact, the tree level superpotential is assumed to be of the form

—~ gk k+1
W=> —“LTrd (2.63)
k1

It can be shown, using the power of holomorphy and the localization trick, that this
relation extends to the quantum level to the set of relations

== Tr F+1 ) | 2.64
A9k <k‘+1 > ( )

But the RHS of this equation contains precisely the coefficients of the expansion of
T(z) in powers of z

T(z) = Tr L _ > T ek, (2.65)

z— @
o k>0

From this we can derive a simple rule. Given a tree level superpotential of the form (2.2),
choose a vacuum, hence the function f(z), and use (2.61) to find the quantum value
of the function T'(z) in that vacuum. Then, expand T'(z) in powers of z to get a set of
partial differential equations that contain the derivative of the quantum superpotential
with respect to the coupling constants. Finally, simply integrate this set of equations to
get the quantum superpotential itself, up to an integration constant, independent of the
coupling constants. But we already know this constant, it is the pure gauge part, the
Veneziano—Yankielowicz superpotential, that depends only on the glueball superfield
S and on the dynamically generated scale A. Actually, the Veneziano—Yankielowicz
superpotential cannot be derived in the framework of the Konishi anomaly. This is
only equivalent to the diagrammatic part of the matrix model planar free energy. The
Veneziano-Yankielowicz term, that in the matrix model setup arises from the measure,
is not contained in the Konishi anomaly approach to the superpotential. It can be
derived, by the heuristical method outlined in the previous chapter, or by the more
formal method of integrating in. But actually, all these methods rely on unjustified,
even if physically reasonable, assumptions. By now, there does not exists a purely
gauge theoretical derivation of the Veneziano—Yankielowicz superpotential from first
principles.

We have just seen how to use practically the generalized Konishi anomaly equations
to compute the intanton corrections to the Veneziano—Yankielowicz superpotential gen-
erated by integrating out the chiral matter. Now let us turn to a more formal derivation
of this statement, for a U(NV) gauge group and matter in the adjoint representation.
First of all, we remark that the overall U(1) factor of U(N) is free. This is reflected
in an exact symmetry of shifting W, by a constant Weyl spinor 9,. In the low energy
theory with gauge group [], U(V;), this symmetry still acts as a simultaneous shift of
all the gaugino superfields as w, — W, — 4m),. The low energy fields transform as

1
Si = Si+yUwe — §Ni VP,
wy —  wi — N;¢°. (2.66)

1
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The idea behind all this is that the low energy superpotential, whatever its form is,
has to be invariant under this shift symmetry, since it cannot depend on the decoupled
overall U(1); hence we can use this shift symmetry to constraint its form. Now, we pro-
mote the symmetry parameter ¢, to an auxiliary Grassmann coordinate and introduce

the Y—superfield
1 we o\ [ Wai
S = —§Tr <47T — ) (47r ¢a> (2.67)

1
= S+ wis — ENmazpa.

Translations of the Grassmann variable ¢ induce the transformations (2.66). Invariance
under this transformation implies that the effective action has to be of the form?

Wt = — / PYF(S:, 0e), (2.68)

Then, by doing the ¢ integral, we find that
oF 1
Weg = Ny— + = —— W Wg ;. :
w =2 Nigg * 2 2 agas; v (2.69)

:that has the general structure (2.10) claimed by Dijkgraaf and Vafa, with F still to be
wdetermined. We can easily see that equation (2.64) in this formalism reads

0 1
/d2¢5§;-7:(5i791) == <m'ﬁ @k+l> (2.70)

but since

1 y 1 1. N\,
m(i[‘r@’"“} =—m/d2¢ <’ﬁ (Z;W — 1 ) ®k+l>, (2.71)

we can conclude that

afs o Tr 1W“ °‘2c1>k+1 2.72
B o 0) =~ (Zv? _¢> ' (272)

Let us make some comments on this equation. First of all, it is not restrictive to take
the 1) = 0 component, since in the superspace formalism all the superfield components
can be derived from the lowest one by applying a supersymmetry transformation. So,
no information is lost. This means that the full information about the function F is
encoded in the gauge theory resolvent R(z), that is obtained from the RHS of (2.72)
by taking the lowest component.

3We have already mentioned that the kind of theories we are studying can be thought of an N = 2
theory broken down to N = 1 by turning on the tree level superpotential. In this interpretation, v
can be seen as a remnant of the N/ = 2 superspace.
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Finally, to complete the prove, we show that the matrix model free energy is equal
to the ¢ = 0 component of the function F. Since the matrix model resolvent R,,(z) and
the gauge theory resolvent R(z) obey the same loop equation, it is natural to identify
them. This identification is obtained if the two functions f,,(z) an f(z) entering the
loop equations, are the same. But, finally, this identification, implies, by (2.21) and
(2.56) that the identification between the matrix model parameters g,N; and the gauge
superfleld \5; is indeed correct. However, note that the identification of the resolvents,
implies the identifications of the derivatives of the matrix model free energy and the
gauge function F, with respect to the couplings. This means that we still have the
freedom of adding a function of S independent of the couplings. By demanding this
equivalence to be a full equivalence, we finally have to add, as expected, to the gauge
theory superpotential (2.69), the Veneziano—Yankielowicz term.

2.3 The Konishi Anomaly for other Gauge Groups

In this section, we will derive the Konishi anomaly and the equation for T'(z) for SO(N)
(in some detail) and Sp(N) with matter in the adjoint and symmetric (antisymmetric
for Sp(N)), both traceful and traceless, representations and finally for SU(N) with
matter in the adjoint representation. We will then use these results in the next section
following the outlined approach to compute effective superpotentials in some specific
cases for SU(N), SO(N) and Sp(N)* with matter in various representations. Some
superpotentials for SO(N) and Sp(N) have already been computed in the framework
of [1, 6], see for example [69, 70, 71, 75, 77, 78, 79, 80]. For adjoint matter, the results
obtained reflect the charge of the orientifold plane used in the geometric engineering
of the gauge theory. For discussions on SU(N) see for example [82]. For related works
on SO(N)/Sp(N) gauge theories, see for example [72, 73, 74, 76]

Again, the main idea is to use the generalized Konishi anomaly to write down
Ward identities that allow us to write closed expressions for the generating functions
of correlators. These Ward identities are the analog of (2.61) for other gauge groups.

Let us begin with the case of an SO(N) gauge theory with adjoint matter and
evaluate explicitly (2.41). We take the generators of SO(N) to be Ty = (e — ex)
with (ex)i; = 0ad;r. First of all, we note that the identity (2.48) holds due to the
spinorial properties of x, and is independent of the generators up to numerical factors.
As can be easily checked the equation for R(z) (2.54) then becomes

%Rz(z) — W(2)R(2) + }I £(2) (2.73)
whose solution is
2R(z) = 2W'(2) — 2\/W’(z)2 -+ f—(;—) (2.74)

Now let us focus on the equation for T'(z) (2.59) and restrict ourselves to variations of

“Here we use conventions such that N is an even number, i.e. the rank of the group is %
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the form® ) .

Then the equation for the anomaly gives
1 1 oW (@)
3272 z—® 0D
1 1

> W, [Wa, (en — en)]l; <~ (ext — eu) - ) (2.76)
ikl z-2 2=/

D? (Tr eV F(®,W,)) =
11
3272 4

+

Let us focus on the second term on the right hand side

11 1 1
— Vas . — e B L — — )
374 2 (W, [Wa, (ew — er)ll;; (z —5 (er — en) — @>ﬁ (2.77)
11 Wew. 1 1 1 \7T we W,
—_—— & - /—a . e
32W24<4'1*rz_®rﬁz_® 8Tr (M Waz_q)(z_q)) ) 4’I‘rz_q)’l‘rz_®>

where we have used the commutation properties of the operators in the chiral ring.
Now, being ® an antisymmetric matrix, we have

1 \" 1
= 2.7
(z—@) z+ @ (2.78)
Next we use the identity
1 1 1 1 1
z—@z+@_§;<z—©+z+§>> (279)
in order to write
. 1 1 \T 1 1
TTW Waz-—cb (z——@) = ;TrW Wa;—:g (2.80)

Taking expectation values of (2.76) and using the definitions (2.34) we have
R(z)

W (2)T(2) + zll-c(z) = R(:T(z) ~ 2 (2.81)
Using the relation (2.74) we finally obtain the equation for T'(z)
T(z) = 1 c(2) _2W'(2) = VW'(2)* + f(2) (2.82)

AWERT () 2 AWEE+ ()

Here we absorbed a factor of § in a redefinition of f(z) ( we will always use this
convention when speaking about SO(N) and Sp(IN)). As previously explained, from

5Properly speaking one should add also the term z_,%@ since 0® has to be an element of SO(N) in
the adjoint representation, that is to say an antisymmetric matrix. However it can be checked that
it will contribute exactly as the previous, giving only an overall factor of 2. Because of this it will be
omitted in the following analysis.
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(2.82) we can obtain the effective superpotential for an S O(N) gauge theory with
adjoint matter and tree level superpotential (2.2).

Now let us consider the same gauge theory but with matter in the symmetric repre-
sentation (that is, ® is now a symmetric matrix and we use a symmetric representation
for the SO(IN) basis). In this case (2.78) becomes

(;@)T: 2_1@ (2.83)

and

Tr WeW, ! 1 ' = TrW*W, ! 2
C2—P\z—® o “Nz—90

- _% (’I‘rVV"‘WQz _1 @) (2.84)
Again, from (2.44), (2.34) and using now (2.84) one finds
W ()T(z) + %c(z) — R(2)T(z) — 2R'(2) (2.85)
and the equation for 7T'(z) becomes
1 o) £ (W' - VWEP+ 1)

T(z) = (2.86)

-z -2
4 /WP + f(2) V() + f(2)

'To complete our discussion about SO(N), let us consider now ® in the traceless sym-
metric representation. All we have to do is to take the previous results and subtract
the trace of ®. For instance, (2.75) will now become

1 1 1 1
00 = (%) = 3272 (z — % thﬂ z— @) (2.:87)

This will not produce any change in (2.78) (since the trace part is proportional to the
identity matrix and it is entering in the commutator); the only modifications will arise
in the left hand side of (2.45) which now becomes

_321%?% (z - o %ﬁ (z - @)) agfé@) (2:88)

and in the equation for R(z) (2.54) which now reads®

R(z) = <W’(z) - %W’(@)) R(z) + ;11- £(2) (2.89)

6Remember that we are taking vacuum expectation values; properly speaking W’(®) has to be
understood as (W/(®)).
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Now equation (2.85) becomes

T(z) (W”(z) - %W’(Q))) + i—c(z) = R(2)T(2) — 2R'(2) (2.90)

Finally we can write the equation for T'(z) for matter in the symmetric traceless rep-
resentation

1 c(2)
T(z)= — =
LY W(e) - @) + ()
4 ((W’(z) — AW(@)) — 1/ (W'(z) — EW(@) + £ (Z>>
L (2.91)

VW(2) - ]—{,-W'(CD))2 + £(2)

Now we will focus on an Sp(N) gauge theory with matter in the adjoint (symmetric)
and in the antisymmetric (both traceful and traceless) representations. With symmetric
(antisymmetric) we mean that ® has to be considered as a matrix MJ where M is
a symmetric (antisymmetric) matrix and J is the invariant antisymmetric tensor of
Sp(N). We take the generators of Sp(N) as (ex + ew) with (en)i; = 0udj. The
analysis for the Sp(IV) case is almost identical to the one for the SO(N) case, the only
change being the sign in the generators (and of course the different properties of the
matrices representing the field @, since the antisymmetric invariant J will enter in the
intermediate steps). Because of this we will only state our results. For matter in the
symmetric representation the equation for T'(z) becomes

1 c(z) 2W'(2) — /W'(2)2 + f(2)
T = T s T i
for matter in the antisymmetric traceful representation
z) = _1 c(z) (W’ (2) - VW'(z) )>
e RN (e 259

and finally for matter in the antisymmetric traceless representation
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L c(2)
4 \/(T/VI(Z> - %W/(q))f + f(2)
& <(W "(2) = §W'(2)) - \/ (W(z) — 2 W(®))* + f@)

VW1(2) = AW(@)) + f(2)

49 (2.94)

As a last example, let us consider the SU(N) gauge group with matter in the adjoint
representation. This is basically equivalent to consider an U(NN) gauge theory sub-
tracting the trace as in (2.87) (remember that the term containing the trace will not
produce any modification when entering in a commutator). Then, one can easily find

_1 c(z)
L W) - EW(@) + (2)

T(z) = (2.95)

2.4 The Effective Superpotential

In this section we apply the previous results in order to find the effective superpotential
for SO(N), Sp(N) and SU(N) gauge theories with quartic and cubic superpotential
and matter in various representations. This section will show how to use in practice the
set up built in the previous sections. Moreover, the derivation of the effective super-
potentials, will appear as a completely straightforward, even if technical, computation.
In fact, computing effective superpotentials by the Konishi anomaly method, is simpler
that by using the diagrammatic method. The key point is that the Konishi anomaly
method is completely algorithmic. On the other hand, when drawing Feynman dia-
grams for the matrix model, one has to compute the combinatorial factor; this, going
to higher orders in perturbation theory, can become a very difficult task.

As already mentioned, the general strategy is to write down the equation for T'(z)
for every particular case, expand it in powers of % and extract the vacuum expectation
values of the operators (Tr ®*), from where the effective superpotential can be obtained
by using equation (2.64). The result contained in these sections are in agreement with,
and extend, previous literature on the Dijkgraaf—Vafa conjecture. However, in some
cases, there is a mismatch with results obtained by means of other methods [83, 84].
This mismatch, already noted in [80] and subsequently confirmed in [85], led to a
refinement of the conjecture in [86, 87, 88]. We will comment on this in the next
section.

2.4.1 Quartic Superpotential
Sp(N)/SO(N) with Matter in the Antisymmetric/Symmetric Representation

Let us suppose the following tree level superpotential:

W (®) = -";L-ﬂ o+ %’I& o4 (2.96)
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As seen in the previous section we obtain the following equation for 7'(z)

gl e T Y
T(~) - 4\/T/V’(Z)2 +f<;) +2 \/w/’ ,:, 4)

Where € = +1 for Sp(N)/SO(N) and ¢(z) and f(z) are polynomials of degree 2

= fie' (2.98)

i=0

(2.97)

and
D)
= Z ¢zt (2.99)
i=0

The denominator of both terms in equation (2.97) can be factorized as explained pre-
viously. We impose (see for example [79]):

W'(z2)® + f(2) = ¢*(2* = k)’ (2" — 4us”) (2.100)

From this condition we arrive to the following expressions:

2
. /_m+_._g._2___9“ (2.101)

+ /g% (=3f5 + m?

Imposing condition (2.100) gives a system of equations for k£ and p with a set of so-

lutions. Note that we choose the particular k¥ and p tending to 1/——’;1 and 0 for fo

going to zero (that is the classical limit). This means we place the branch cut around
zero. In order to have the correct asymptotic behavior of R(z) for large z ( R(2) ~ £
, see eq. (2.34)) it can be shown that” fo = —2¢S. Similarly the correct asymptotic
behavior of T'(z) for large z ( T(2) ~ £ ) sets c; = —4gN. ¢ and ¢; can be found by
asking the condition that T'(z) has no poles in k and —k (i.e. we choose our vacuum

around ® = 0 and the gauge group remains unbroken) or, equivalently:

1

57—1'—.’1;_ G dz T(Z) =0

1
¢ dzT(z) = -
i b 2T(z) =0 (2.103)

For the present case we obtain:

co = <26<m+gk<3k 2m>)+gk2 )

¢ =0 (2.104)

"The difference with [8] is due to our redefinition of f(z).
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Next, we expand T'(z) in powers of % and obtain:

OW.pr 2
= ?E (m + 8g15% + +/(m + 691%) (m + 207) ) + 12N (2.105)

This expression can be expanded in powers of S and integrated in order to obtain the
effective superpotential up to any given order; for instance up to fourth order, it reads

1 g 2
Wep = =(—2€+N)Slogm+ —2— (—10¢ +
WVers 2(2 € ) Slogm g 23( 10e+3N) S

g (—38¢+9N)S® + -2

- 4
T 55 (—662¢ +135N) §* + ... (2.106)

Several comments are in order. Having obtained W,;; integrating with respect to m,
the result is correct up to a function of g and S (a part of which is the Veneziano-
Yankielowicz superpotential); we could have chosen the coefficient of the term :%1 and
integrated with respect to g. As the perturbative part of the potential depends only on
the ratio % as seen in (2.36), a function of only one of the coupling constants cannot
contribute. For the same reason, from now on, we will only consider the % term.

z

Sp(N)/SO(N) with Matter in the Adjoint Representation

This case is completely analogous to the case studied before. Now the equation for
T'(z) reads:

1 dy) | 2We) - VTP
LWEPHIE 2 JWERE+IG)

Where again c(z) and f(z) are polynomials of degree 2. The denominator of both
terms can be factorized as before (since it is the same) and we obtain the same values
for the parameters k and u. Again fo = —2¢S and c; = —4¢N and the conditions
(2.103) must be imposed. The values obtained for ¢y and ¢; are:

T(z) =

(2.107)

co = 4(2e(gk* +m)+ gk*>N)
& = 0 (2.108)

Again, expanding T'(z) in powers of % and and extracting the coefficient of z% we obtain:

aWeff .
om

that can be expanded in powers of S and integrated with respect to m, to give:

PP (N + 2€) (2.109)

395% 9¢%°5% 45g35%  5674*S®  5103g°S°
8m?  16m¢ 32m$ 128m?8 320m10

(2.110)
This result agrees with the one of [81], where the effective superpotentials were evalu-
ated using both matrix model techinques and in terms of closed strings on Calabi-Yau
geometry with fluxes.

Wesr = (N + 2¢) <i§-logm+
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2.4.2 Cubic Superpotential
SO(N)/Sp(N) with Traceful Symmetric/Antisymmetric Matter

Now the superpotential under consideration takes the form:

W () = ?2111 o2+ %rﬁ g (2.111)

The equation for T'(z) reads exactly as in (2.97) but now ¢(z) and f(z) are polynomials
of degree 1. Again we factorize the denominator of both terms, now as follows:

W'(2)%+ f(z) = ¢*(z — k)*(z+a+b)(z+a—b) (2.112)

In this case, the parameters a, b and k are complicated functions of m, g and f;; because
of this we will only write their expansion in powers of S:

k= —Z g

g
11 13

(2.113)

g g’ g° g’ g° g g
o = Z55+3258%+16=55° + 105-=75* 4 768-2775° + 600675 + 491525557 + ...
m m m m m m

1m20

S Sg? S%gt G3g8 1547 S%g® 11799 S5¢0 189805 S6g*?
b = ¢/—|2+2—=
2m< R ~‘Lgfmf" 90 0 T Td w2 T T4 mB TR T

Note that in the classical limit (that is S — 0 ) the parameters a and b go to zero,
- while & tends to its classical value —2'. Again the asymptotic behavior of R(z) and
T(z) imposes f; = —2¢S and ¢; = —4gN, and, as before, ¢y is set by the condition
that T'(z) does not have a pole at z = k:

1
il d2T(2) =0 (2.114)

and from this
co =8¢ (20k+ gv/[@— b+ k) (a+ b+ k)+m> + dgkN (2.115)

As before, T'(z) can be expanded in powers of * and we can integrate the coefficient of
;1?; with respect to m in order to obtain the effective superpotential.

We stress that without too much difficult one can obtain the result up to the desired
order. For instance, up to seventh order:

1 92 0 1 g4 2
—_— — — — — — — ——— p— —
Wess 1( 626—!—N)Slogm 5 3(13€:-N)i'77512 = (—=59e+16N) S
_ g 4 g _ 5
A8 (—591 €+ 140N) S Temi < 5 €+ 512N) S (2.116)
L g" (—80763 € + 16016NV) S8 L ————912 (—704809 ¢ + 131072N) ST+
80 m15 06 m18 €

Note that our results are in perfect agreement, up to S°, with the ones of [80] found
using the matrix model perturbative approach of [6].

o)
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SO(N)/Sp(N) with Traceless Symmetric/Antisymmetric Matter
In the case of matter in the traceless representation, the equation of T'(z) reads:
1 20

L 7(2) — 2w (@) + £(2)
4 <(W’(z) — &W'(®)) — \/(T/V’(z) - %VV’(@))2 + f(z))

VW(z) = EW(@)* + £(2)

Here, as we will see, the strategy we follow is different, due to the fact that we are
considering the traceless representation and that Tr (®2) appears explicitly in the de-
nominator of T'(z). First we factorize the denominator in the usual way:

SW(@)) + £(2) = 6*(z — K)*(=* + az + b (2.118)

As we are in the traceless representation we have:

T(z) =

4+ 2e

(2.117)

(W'(z) -

Trd = 0
W(®) = gTr®? (2.119)

The polynomial c¢(z) can be fixed as before, and again f; = —2¢S. The condition of
Tr® = 0 implies that the coefficient of % in the expansion of T'(z) must be zero. We
can use this condition together with the conditions of factorization in order to obtain
a system of equations from where Tr & can be evaluated. Equivalently the traceless
condition can be used to determine ¢ and equation (2.114) together with the conditions
from factorization can be used to determine Tr ®2. As before we obtain from this the
effective superpotential. It should be stressed that such evaluation can be done at
any desired number of loops, without many technical complications. For the effective
superpotential one finds:

S g*(—e N +4)5?

= (N=20)2 .
Wess (N — 2¢) 5 logm + SN (2.120)

L 9160 — 24N — N?)S® | g%(3584 — 256 €N — 36N° — e N¥)S"

12mS N2 24m° N3

g® (67584 € — T04N? ¢ — 48N — N ¢) §°
+
32mi2 N4
4 7g' (1171456 -+ 79872 N — 8320N2 — 1280eN3 — 60N% — eN®) 58 +
240m15 N5

Note that these results agree with the ones of [80]; however using this method is easier
to compute higher loop corrections.

SU(N) with Adjoint Matter

The authors of [80] showed that for a cubic potential, like (2.111), the perturbative
part of the effective superpotential is zero up to terms of order S*, due to cancelations
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in the diagrammatic evaluation. In this paragraph we will show that the generalized
Konishi anomaly implies that the perturbative part of W,y is exactly vanishing to all
orders. Let us consider equation (2.95) and expand it in powers of %

T(z) = _i Co+C12 2
V(W) = 2w (@) + £(2)
_ c 1 1 com\ 1 1
49z 4 ( T ) 22+O(z3)
N (Tr®) 1
= 7 + o +0 <;§> (2.121)
From the terms of order % we find the familiar condition ¢; = —4gN. Considering the
term z% and imposing the tracelessness of ® in SU(N) we obtain the relation ¢ = &%
Again the denominator of (2.121) can be factorized as in (2.118)
1
(W'(z) — NVV’(CID))2 + f(2) = ¢*(z — k)*(2* + az +b) (2.122)
then the condition (2.114) gives the following relation
a=0 (2.123)

With this condition only odd powers of 1 will be present in the expansion of T'(z); in

particular
Wery _

9y
from which we see that the perturbative part of the effective superpotential is identically
zero (remember that the perturbative part depends only on a specific ratio of m and
g, in this case 53—)
We stress that the vanishing of the superpotential is a particular characteristic of the
cubic superpotential. One can easily check that for a quartic tree level superpotential,
a non zero result is obtained.

0 (2.124)

2.4.3 On Supersymmetric Sp(N) theories

We have just shown how to compute effective superpotential for gauge theories with
various gauge groups, namely SO(N), Sp(N) and SU(N), with matter in various rep-
resentations. We have already mentioned these result agree with and extend previous
literature based on the Dijkgraaf—Vafa diagrammatic approach.

In this section we want to add some comment on supersymmetric Sp(N) theories
with matter in the antisymmetric representation. These theories were studied in the
90’s; by means of holomorphy several effective superpotentials were determined in [83,
84]. It is natural to aspect that in the IR, where all fields have been integrated out,
the two approaches give the same answer. However, in [80] a discrepancy was found
for several examples, namely Sp(4), Sp(6) and Sp(8) in the unbroken classical vacuum
with a cubic superpotential. The difference always sets in at order A%, where the dual
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Coxeter number 4 is N/2+1 for Sp(N). The results in [80] were obtained using matrix
model techniques, and were confirmed and extended in [9] by using the Konishi anomaly
method as reported in the previous section, and subsequently in [85]. This result, was
puzzling; the Konishi anomaly method is completely derived in a gauge theory setup,
how can then give a different result from other gauge theoretical calculations?

A possible explanation to this discrepancy was suggested in [86]. There it was
discovered an ambiguity in the terms of the superpotential of order A or higher, if one
allows for supergroups. A prescription to “F-term complete” a theory was given by
thinking about the gauge group G(IV) as embedded in a supergroup G(N + k|k) with
k — oco. Moreover, the matrix model, glueball superpotential, or Konishi anomaly
computations, were claimed to be computing the superpotential of the F-completion
G(N + k|k). This completion can give different result compared with the standard
gauge completion. In fact there may be residual instanton effects in the broken part
of the group in the Higgsing G(N + k|k) — G(N). This possibility depends on the
geometric structure of the gauge group®. Therefore, the analysis of [80, 9, 85], which
was compared to the standard Sp(NV) field theory calculations give in [83, 84], had
actually being done for Sp(N) x Sp(0). Here Sp(0) is a remnant of the F-completion
Sp(N + k1 + ka|k1 + ky) broken down to Sp(N + k;|k;) x Sp(ky|ks). This completion
produces residual instantons that are not present in the standard UV completion of
Sp(N).

In [63] a purely gauge theoretical derivation of the correct gauge superpotential was
given. This derivation is based on the properties of the generating function T(z). In
fact, there it is shown that quantum mechanically T'(z)dz becomes a meromorphic dif-
ferential on a (hyperelliptic) Riemann surface. Then, remarkably, the simple condition
of the integrality of its periods (on-shell) on the Riemann surface, accounts for the
full IR dynamics. In the process of imposing the integrality condition of the periods of
T(z)dz in the Sp(N) theory the author of [63] found a very precise map to a U(N +2n)
theory, where n + 1 is the degree of the tree level superpotential. This map may hint
to a new duality.

80ne can show that a necessary condition for instantons to be present is the non vanishing of the
third homotopy group associated with the breaking w3 (G(N + k|k)/G(N)).



Chapter 3

Gravitational Corrections

In the Dijkgraaf~Vafa conjecture, the quantum effective superpotential is computed
with a simple formula, whose basic ingredient is the planar limit of an associated
matrix model. In this Chapter we will face the problem of the physical interpreta-
tion of the non planar diagrams, following mainly [12]. It was argued already in [1]
that these non planar diagrams describe the coupling of N' = 1 gauge theories to
N = 1 supergravity. This statement was subsequently proved by [10] using diagram-
matic techniques, extending to the gravitational case the super-Feynman diagram tech-
niques of [6]. Crucial ingredient in the proof was the modification of the chiral ring
~ relations due to the coupling of the gauge theory to supergravity. In particular, if
one restricts to the first non-trivial gravitational F-term contribution, corresponding
" to the genus one correction in the related matrix model, one needs to take into account
" just the modification which follows from standard A = 1 supergravity tensor calculus,
' namely taking into account also the N/ = 1 Weyl multiplet Gup,. The corrections
corresponding to higher genera in the matrix model, are more subtle, and will be the
subject of next Chapter. For all this Chapter, we will restrict ourselves only to the
genus one corrections. For related work on the genus one corrections, see [13, 14, 15].

The main problem we want to face is to understand the genus one corrections from
the viewpoint of generalized Konishi anomaly relations in the chiral ring. This problem
was solved in [12] by extending to the case of N = 1 gauge theories coupled to N =1
supergravity the strategy of [8], explained in the previous Chapter. Since it is relevant
to the following discussion, we will follow the procedure outlined in [12] in detail. The
key point in our analysis will be, together with the modification of the chiral ring
mentioned above, the observation that in the presence of a non-trivial supergravity
background the usual factorization property of chiral correlators does not hold. In
particular connected two point functions are generically non-vanishing, much like in
matrix models, where connected correlators receive a subleading 1/N? contribution, in
the 1/N expansion. Then, the basic idea is to derive generalized loop equations that
contain the information on the connected correlators. Once these are known, one can
derive and solve equations constraining the form of the effective superpotential. Finally,
we will generalize these results to SO(N) and Sp(IN) gauge groups and comment on the
differences. We will work out the SO(N) case in some detail, showing how the Konishi
anomaly equations have to be generalized for adjoint and symmetric matter. Then we

53
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will compare our results with the matrix model. For a treatment of the SU (N) case,
see [17, 18].

3.1 The Chiral Ring

As we have seen, a basic tool in the Konishi anomaly approach to effective superpo-
tentials, is the chiral ring, since D exact terms do not contribute to F terms. For the
U(N) N =1 gauge theory with adjoint matter considered in the previous Chapter, the
chiral ring relations are given by equations (2.28) and (2.30)

[Wa,®] =0 mod D, {W,, Wz} =0 mod D. (3.1)

The chiral ring relations given above are modified in the presence of a curved back-
ground [10]. We review here the derivation of the modified chiral ring in presence of
background NV = 1 gravity. Consider the following D exact quantity

{de[DadnT/Vﬁ]} = {[Dd’DadLWﬁ} (3'2)

whereD,, is the full covariant derivative containing the gauge field and the spin con-
nection. We used the Jacobi identity and the fact that Wp is chiral to obtain the second
term in the above equality. From the Bianchi identity [25] for covariant derivatives one
has

[D%, Dys) = 4iW,, — 8iG op, MP (3.3)
where Gop, is the N = 1 Weyl multiplet. From [25] the lowest component of the A" = 1
Weyl multiplet starts off as the gravitino field strength and is given by

1, . N N
GQIB’Y = E(Ua%wab’y + Uﬁ:waba + U—yzwabﬁ)a (34)

where we have set the auxiliary field in the above formula to zero, as we are working on
shell and a, b refer to the local Lorentz indices. The gravitino field strength is defined
by

ffb = Dalbf,l - Dzﬂﬁf, Da¢l? = awl? + ¢b wgﬁv (35)
where wgj is the spin connection. As we are working with an on shell background,
equations of motion for the gravitino imply 024%ay, = 02 aps. Therefore on shell, the
lowest component of the Weyl multiplet is given by

1 a
Gopy = Zaal;gwa,n (3.6)

In (3.3), M°? refers to the Lorentz generator on spinors whose action on a spinor is
given by

[23 1 (23 (a3
Substituting the Bianchi identity (3.3) in (3.2) and using the action of the Lorentz
generator we find the deformed chiral ring given below

W, Ws} = 2G o3, W mod D, W &} =0 mod D. (3.8)
B Sy
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The second equation is obtained by replacing the Wp in (3.2) by ®. For the conventional
N = 1 supergravity theory, in the first equation above, only the SU(N) part of the
gauge field W7 appears in the right hand side. In [10], the modification of the ring
involved the U(1) part of the gauge field as well, which corresponds to a non-standard
N = 1 supergravity theory relevant to D-brane gauge theories. In this Chapter we will
always be restricting ourselves to the standard N = 1 supergravity. In order to avoid
explicitly including the SU(N) projectors in all the formulae below, we shall always
take gauge field backgrounds to be in the SU(N) part of U(N).

Using the deformed chiral ring we can derive many identities valid in the ring which
are used crucially in the next sections. From the definition of W? and (3.8) we have

W W5 = Eg-ﬂ-wzJrc:aﬁ,,vm, (3.9)

1 1
W WsW, = 5eaﬁW2W1,+5Gaﬁ.,wg+c;aﬁ§c;5wvv"f,

using the above identities we are led to the following relations

1 1

W, W? = --2—W2Wﬂ — -2—G2Wa, (3.10)
W2W, = —%WQW2 - %sza,
W2 W,] =0, W2W,, = —%cﬂwa, W2W? = —%G2W2,

I T 6
(G = GGG, G,

These identities imply that the gauge invariant combination of certain chiral operators
vanish in the chiral ring. The following chiral operator vanishes in the chiral ring.

Gap, Tt (W'®®...) =0 mod D. (3.11)

It is clear that if there are no ®’s in the trace, the above equation is true for the
gauge group SU(N). To proof the above identity for arbitrary number of ® we use the
following equation

Tr (WaWpdd...) = —Tr(WaWa0d...), (3.12)

1
= SeagTr (W20d...).

To obtain the first equation above we have used the cyclic property of trace and (3.8).
Now multiplying the first equation of (3.10) with arbitrary number of ®’s and using
(3.12) we obtain (3.11). Multiplying (3.11) by G**7 and using (A.10) we obtain

G*Tr (W,@®...) =0, mod D. (3.13)

Another important identity in the chiral ring is

G*=(G*?=0, modD (3.14)
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The proof goes along the same lines as the derivation of the deformed chiral ring.
Consider the following D exact quantity

{D%, [Dag, Gpysl} = {[D%, Dag), Gprs} (3.15)

As G5 is uncharged with respect to gauge field the covariant derivative D, 4 contains
only the spin connection. The Bianchi identity for covariant derivatives now implies

[D%, Dos) = —8iGop, M (3.16)

Substituting the above equation in (3.15) we obtain the following equation in the chiral
ring
Multiplying this equation by G”‘"’PG’MP so that all the free indices are contracted and us-

ing the last equation in (3.11) and (A.10) we obtain (3.14). As a result the gravitational
corrections to the F-terms truncate at order G2.

3.2 Anomaly Equations and Matrix Model Loop
Equations

In this section we will use the generalized Konishi anomaly to extract the gravita-
tional corrections to the effective superpotential. We recall that the anomaly equations
obtained in [8] in the absence of gravitational fields are as follows

(R(z)R(2)) — (Tr(W'(®)R(2))

)=
2(R(2)wa(z)) — (Tr (W'(®)pal2))) =
2R()T(2) — (Tr (W(®)T(2)) + ( “(2)wa(2)) = 0 (3.18)

Here W denotes the classical superpotential of degree n + 1. We have indicated above
the full two point functions that include the disconnected and connected two point
functions. The latter vanish in the absence of gravitational field but as we will show in
the following do not vanish in the presence of the gravitational field. These equations
were obtained by the generalized Konishi anomalies upon transforming the adjoint
chiral field ® as 6®;; equal to R;;(2), n°pa 1i(2) and T;;(2) respectively, with n* being
an arbitrary field independent spinor. In general for the infinitesimal transformation
0®;; = fi;, the generalized Konishi anomaly is given by

0 fji
5®k£ Az],ké (319)
In the absence of gravitation
Aijre = W)ii6i0 + 15 (W2)ig — 2WEWoase (3.20)

Using the above anomaly and the equation {W,Wg} = 0 in the chiral ring, one obtains
the equation (3.18). This was explained in detail in Chapter 2.
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In the presence of the gravitational field Gyg,, these equations are modified for two
reasons: firstly there is a direct gravitational anomaly (ie. even in the absence of gauge
fields, in other words when chiral multiplets couple only to gravitational fields) and
secondly due to the modification of the ring (3.8).

The Konishi anomaly equation including the pure gravitational contribution in su-
perspace is given by [94, 93]

D*(PeV®) =

1
W?) + a——G? 3.21
32 W5+ Y3052 ( )
Here o is an unknown normalization constant which we will fix below. The 62 compo-
nent of the above equation together with its anti-holomophic counterpart should reduce
to the familiar equation of the chiral anomaly including the gravitational contribution
given below:

_ - 1 1 1 z

The coeflicients in the above equation have been obtained from [95] Our strategy to

fix the normalization constant o will be to extract the contribution of R A R from the

superspace equation in (3.21) and require it to agree with the coefficient in (3.22).
The supersymmetric transformation on the gravitino field strength is given by

5wa - "'E Rmnabgaba vt (323)

The dots in the above equation all refer to terms that involve the fermions, which
are not of interest for the present purpose of determining the coefficient of R A R.
Substituting this variation in (3.6) we obtain

1
4

The 62 component of G? contains the R A R term, which is imaginary and thus con-
tributes to the anomaly. This is given by

G2|92 - %116 IblabRa.’b’cdRab (325)

The total contribution to the anomalous current is obtained by subtracting this out

with the G, > the anti-holomorphic contributions. Therefore the coefficient of the

RAR term from W? is 1/8. Comparing with the coefficient of R A R in (3.22) we

see that ¢ = 1/3 in (3.21) in order to reproduce the chiral anomaly, including the
gravitational contribution.

Then, the infinitesimal transformation d®;; = f;; the pure gravitational contribution

to the anomaly is

6Ga’57 QB0—67£ Rabcd (324)

0fji 1
S 3O Onidi (3.26)

where from now on G? will denote 75G**'G,p,. This changes

1
Az‘j,ke — A'i,j,kf + '?;Gzékjfsié (3.27)
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It is easy to see that the pure gravitational anomaly and the modification of
the chiral ring (3.8) together with the consequent identities given in the equations
(3.11),(3.13),(3.14), give rise to the following modification of the equations (3.18):

(R(z)R(z)) — (Tr(W'(®)R(2))) =0
2(R(2)wa(2)) — (Tr(W'(2)Wa(z))) =0
2R(2)T(z)) — (Tr

5
(W'(®)T (= )))
+ (w(2)wal(z ))——G2< (2)T(2)) =0 (3.28)

Note that in the first two equations above the pure gravitational anomaly cancels with
the contributions coming from the modification of the chiral ring via eq(3.11). This
happens due to the remarkable fact that the pure gravitational anomaly (3.27) comes
with a factor of % !l' We have also used the fact that G?w, vanishes in the chiral
ring. In the last equation however there is no contribution due to the modification of
the ring and hence the last two terms on the left hand side arise solely from the pure
gravitational anomaly. Here again, a priori, the two point functions are the sum of
connected and disconnected parts.
For later purposes let us write the first equation in (3.28) more explicitly

(R(2))? = W'(2)(R(2)) — %f (2) = —(R(2)R(2)). (3.29)
where f(z) is a polynomial of degree n — 1 defined by

(Tx (W'(8) = W' (2)R(2)) = £ f(2) (3.30)
and the subscript ¢ denotes the connected part of the correlation function. In fact, as
shown in [10, 11], the gravitational corrections enter at genus one in the related matrix
model; thus correlators in the matrix model do not factorize anymore. This implies
that even in the gauge theory side correlators do not factorize as a consequence of the
gravitational background. Indeed this is shown in Appendix B, where we collect the
estimates of the connected correlators as performed in [12]. This analysis shows that
the RHS of (3.29) goes as G* and therefore is trivial in the chiral ring. As a result
the equation for R is unmodified by the gravitational field. Since the finite polynomial
f is determined completely by the periods of R, i.e. the contour integrals around the
various branch cuts C;, i =1, ..., n,

1

7 |, 2R =S (3.31)

we conclude that R does not receive any gravitational corrections.

The strategy now is to expand all of the quantities appearing above in a perturbation
series in G%. Of course, this series ends at order G2 since G* is trivial. Thus for example
we write

(T) =TO + g2>7™ (3.32)
and similarly for the connected parts of the 2-point functions appearing in the above
equations. As discussed in the last section, the latter start from order G2, and therefore
the equations for 7©® and wS are the same as in [8]. To go beyond thls we need to
solve for the connected two point functions.
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3.2.1 Equations for the Connected Two Point Functions in the
Presence of Gravitational Fields

We will now derive equations for the connected two point functions that appear in
eq.(3.28). Although, in eq.(3.28) the connected 2-point functions are of the form
(R(2)T(z)), i.e. both the operators are at same z, it turns out to be more conve-
nient to consider the two operators at different points in the complex plane (say z and
w). The reason is that we can impose conditions on a connected 2-point function, like
(R(2)T'(w)) that their integrals around various branch cuts in z and w plane vanish sep-
arately. As a result, we will be able to solve completely the corresponding generalized
Konishi anomaly equations.

We illustrate the general method of obtaining the generalized Konishi anomaly
equations for the connected 2-point functions in one example and then give the complete
set of equations which can easily be derived following the methods given below.

Consider the infinitesimal transformation (local in superspace coordinates (z*, 6, 9))

The Jacobian of this transformation has two parts

5(5%5) _ 5Rji(Z)T(w) + 3 Ris(2) T (w) Tim () (3.34)

0@ 00

* The first term in the equation above together with the variation of the classical super-
.. potential gives rise to

((R(z)R(z) — Tr(W(®)R(2)))T(w))
= ((R(2)R(2) — Tr (W'(2)R(2))) (T (w)) + 2(R(2)) (R(2)T (w))e
— (Tr (W(@)R(2))) T (w))e + (R(2) R(2)T (w))e (335)

where the subscript ¢ denotes completely connected 2 or 3 point functions as indicated.
The first term on the right hand side vanishes by virtue of the first equation of (3.28).

The second term in the Jacobian when combined with the anomaly (3.20,3.27) gives
rise to a single trace contribution

R(z)) - (R(w)) 536

zZ—w

—%G’2(Tr (R(2)T (w)T (w))) = —%G25’w<

Combining eqs.(3.35),(3.36) and the first equation of (3.28), one obtains the follow-
ing equation for the connected correlation functions:

(BURE) - TN REAT W)+ BERET ).~ 260, T = ED) _ g (547

Here the integral operator I(z) denotes the following:

W'(y)A(y)
Yy—2z

[(2)A(z) = — /C dy (3.38)

271
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with the contour C, encircling z and oco. It is clear that for A equal to R, p, or T, the
integral operator reduces to

I(2)A(z) = W'(®)A(2) (3.39)

as is familiar in the matrix model works.

Since the last term in the eq.(3.37) is of order G and involves one point function of
R which is certainly not zero, we conclude that the sum of the remaining terms which
involve connected correlations functions cannot all vanish at order G?. This proves
our basic assertion. In fact the connected 3-pt. function (R(z)R(2)T(w)). vanishes, as
argued in eq.(B.13) in the Appendix B, so eq.(3.37) implies that the connected 2-pt
function (R(2)T'(w)). does not vanish at order G2.

In order to completely solve the relevant connected correlation functions, we need
to consider all transformations of the form

where Ais R, p, or T and B is R, wg or T. The resulting generalized Konishi anomaly
equations can be derived in the same way as above and can be summarized in the
following matrix equation:

~

M(z) 2(T(z)) 0 (T(2)T(w))e (T(2)R(w))e (T(2)wg(w))e
0 M3 0 REHTW). (R()RW)). (R(ws(w)). | =
0 0 M(z) (wa(2)T(w))e (Wal2)R(w))e (wal2)wp(w))e
1 T(z,w) R(z,w) 0 }
==G%0, | R(z,w) 0 0 (3.41)
3 0 0 SeapR(2, w)
We have dropped various connected 3-pt functions that vanish via eq.(B.13). M(z)

denotes the integral operator (2(R(z)) — I(z)), M(z) denotes M(z) — 2G*(T(z)) and
finally R(z,w) and T'(z, w) denote ((R(2))—(R(w)))/(z—w) and ((T'(2))—(T(w)))/(z—
w) respectively.
There are a few points to note about these equations:

1) Chiral ring equations are consistent with the above matrix equation. For example,
if one takes the equation for (w.(z)B(w)). and multiplies by G* one finds that the
equation identically vanishes in the chiral ring.

2) We have used the estimates given in the Appendix B only to drop all the completely
connected 3-pt. functions as they were shown to go as G% The estimates for the
connected 2-pt. functions given in the Table B, says that (R(2)R(w))e, (R(2)wa(w))e,
and (T(z)wa(w)). all vanish in the chiral ring. We have not used these estimates in
the above equation but we note that the (1,3), (2,2), (2,3), (3,1) and (3,2) matrix
elements on the right hand side vanish. Thus the estimates given in the table are
indeed consistent with the matrix equation above. In fact, in the next subsection, we
will show that the solutions to this equation are unique thereby proving that these
connected 2-pt. functions vanish. Similarly had we used the estimate for the 2-pt.
function (T'(2)T(w)). which was shown in the last section to go as G2, we could have
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replaced M by M in the above equation.
3) The integrability condition is satisfied: the above equation is of the form

M(2)N(z,w) = 0,K(z,w) (3.42)

where M (z) is the first matrix operator appearing on the left hand side of eq(3.41),
N(z,w) and K(z,w) satisfy N(z,w) = N'(w, z) and K(z,w) = K*(w, z). The non-
trivial consistency condition then is

(0uK (z,w)) Mt (w) = M(2)0,K(z,w) (3.43)

The crucial identity needed for this is the one involving the integral operator I(z) and
is as follows:

M = (8, — By)

I(2)A(z) — I(w)A(w) (3.44)

—w

I(2)8. — I(w)0y
(1(2)6. ~ I(w)8,) =2 =2
for any function A which is smooth at z and w. This can be proved by using the
definition of the contours involved in I(z) and I(w). It follows that the (1,2), (2,1) and
(3,3) components of the integrability condition (3.43) implies the following equation:

G*((R(2))* — I(2)(R(2))) = 0 (3.45)

This equation is just G2 times the first equation of (3.28) if one takes into account the
fact that the connected part of the correlation function appearing in the latter already
is of order (G?)2. The only other non-trivial part of the integrability condition is its
(1,1) component:

G?[(2(R(2)) — I(2))(T(2)) — %GQ(T(Z)V] =0 (3.46)

which is just G2 times the disconnected part of the third equation of (3.28) thereby
proving the integrability condition for the (1,1) component. This is because all the
connected parts appearing in that equation will be trivial when multiplied by G2. Note
also that the last term in eq.(3.46) could have been dropped as it is trivial. Its origin
comes from the extra term in M appearing in the (1,1) component of M which as
argued in the point 2) above could have been dropped.

3.2.2 Uniqueness of the Solutions for the Connected Two Point
Functions

Since the integrability conditions are satisfied, solution to eq.(3.41) exists. However the
solution has a finite ambiguity which will be fixed by the physical requirement that the
contour integrals around all the branch cuts of the connected two point functions in
the the z and w planes must vanish separately. The reason for this is that the following
operator equations hold:

1 1 1

é"ﬁ o dZR(Z) = Si, '2?’; o dwT(w) = Ni, ‘2;[_‘?: o dZ’LUa(Z> = Wy - (347>
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where \5; is the chiral superfield whose lowest component is the gaugino bilinear in the i**
gauge group factor in the broken phase U(N) — [[°_; U(N;) and w,, ; is the U(1) chiral
gauge superfield of the U(N;) subgroup. Since these fields are background fields, in the
connected correlation functions the contour integrals around the branch cuts must
vanish. Similarly since these background fields are independent of the gravitational
fields, order G? corrections to the one point functions of R, w, and T must also have
vanishing contour integrals around the branch cuts.

For later use, we can write a complete set of normalized differentials using eq. (3.29)
up to order G? as

1 dz 0 1
YT IREE -wEes Y T (49

To illustrate the method, we will again focus on (R(z)T(w)).. The action of the
operator I(z) is given as:

I(z)(R(2)T(w))e = W' (2)(R(2)T(w))e + Y cx(w)2" (3.49)

where the first term on the right hand side comes from the contour integral around z
and the second term from that around oo, with n being the order of W'(z). Here we
have used the fact that R(z) asymptotically vanishes as 1/z 1. The coefficients cx(w)
are arbitrary functions of w which asymptotically vanish as 1/w?. Similarly we have

IW)(RET (W) = W (w) (RET(w))e + 3 (=)t (3.50)

with ¢ (z) being arbitrary functions of z that vanish asymptotically as 1/22.
From (3.41), the two equations that this two point function satisfies are as follows:

CRE) - I REATW). = 560, w)
1

(2(R(w)) — I(w)){(R(2)T (w)). = —§G2BZR(z, w) (3.51)
The solutions to these two equations are
1 1 =
R(2)T(w)), = —[=G*0,R(z,w) + Y cp(w)z*
RETW): = gy 5® e w) + L)'
1 1, .
= TR ) [5G°0:R(z,w) + gck(z)wk] (3.52)

! Actually the coefficient of 1/z is Tr W2 and hence in the connected 2-pt function it vanishes. As
a result the connected 2-pt function goes as 1/z% (and for similar reasons 1/w? asymptotically in w)
which means that the sum over k is between 0 and n — 2. However in the above expression we have
kept the sum up to n — 1 since, as it will turn out, the condition of vanishing contour integrals around
all the branch cuts will in particular imply that ¢,—; =0
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Equating the two right hand sides , we see that ¢, and ¢, are not arbitrary functions
of the respective arguments but are fixed up to a finite polynomial ambiguity in z as
well as w. They must be of the form

S (w) = 1 G2 (W/(0) = W'(2) 4 (2 = )W (w)
;__:;Ck(w” = GR@) W) 3 [(R(w)) e
. i (f(w) - f((zz :r 5022— wf'w)) | ”2‘: o
k.£=0
G(z) = c(2)+ > (cre —co)2® (3.53)

where ¢y are arbitrary coefficients to be determined later. In deriving the above equa-
tion we have used the equation (3.29) with the right hand side set to zero. This is
because the correction coming from the right hand side is of order G* and hence trivial.

Substituting this expression in eq.(3.52) and repeatedly using eq.(3.29), we obtain
after some algebra:

G2 1 k£
T = 5 B W) — W] o,
(RERW) = WEAW) = )+ vl

(z —w)

Note that the second term in the bracket is symmetric in z + w.
As mentioned earlier, the connected two point function must obey the following
conditions:

/ d2(R(2)T(w)), = / dw(R(2)T(w))e = 0 (3.55)
C; C;

A

for all 7, where C; is the contour around the i-th branch cut.

Let us first consider contour integrals around the branch cuts in w-plane. To this
end we can use the first equation in (3.52). The first term on the right hand side is
a total derivative in w and therefore its contribution to the contour integral vanishes.
Thus we arrive at the condition:

/ cr(w) =0 (3.56)
C;

Using the expression (3.53) for cx, and the fact that w®/(2(R(w)) + W'(w)) for £ =
0,...,m — 1 form a complete basis of holomorphic 1-forms in the present case, these
equations determine ¢y, completely. Very explicitly if

00— [ g 1 oy V(@) = W'(2) + (2 = w)W"(w))
2 A = /cid @) — W) ) (= —w)

1(f(w) = f(2) + (2 — w)f'(w))
; oy ] (3.57)

+
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then using the basis of normalized differentials eq.(3.48),

n n—1 . a
k;OCuA ’LU = ——;;tétkas (358)

We will now show that cg, are symmetric in & and £ exchange. Let us define a
matrix Gy; by the following equation

1 1 = (8) _k
= 3t Jo, VARG - W) 22 (3:59)
We first simplify eq.(3.57) by using (3.29)
n—1
@k _ 1 2W'(2)W'(w) + f(2) + f(w)
25 = / M R Rw) - W w)) iz —wy (360)

where we have omitted a total derivative term with respect to w since it does not
contribute to the contour integral. Substituting this in eq.(3.59) and noting that the
residue of the first order pole 1/(z — w) vanishes due to eq.(3.29), we find that G;; is

symmetric. Eq.(3.59) can be solved explicitly for t,(:) as

n—1 n .

@k _ 1 9 ..
Yot = ZZGij—agjm (3.61)
k=0 7j=1

Plugging this equation in eq.(3.58) and using the fact that G;; is symmetric, we find
that the coefficients cye are symmetric in & and £ exchange as claimed above.

Finally note that the symmetry of ¢k, implies that (R(2)T(w)), is symmetric in z
and w. This will be crucial in the following. In particular this also implies that the
contour integrals around the branch cuts in the z-plane vanish.

To summarize this subsection, although we have discussed in detail the example of
(R(2)T(w))e, it is easily seen that the eq.(3.41) and the conditions like eq.(3.55) fix the
solutions for all the connected two point functions uniquely.

3.2.3 Solutions for the Connected Two Point Functions

Note that the right hand side of equation (3.41) vanishes for all components except
(1,1),(1,2),(2,1) and (3,3) (the last being proportional to €,5). The uniqueness of the
solution then implies

(R(2)R(w))e = (wa(2)T(w))e = (wa(2)R(w))e = (w(a(2)wp) (w))e = 0 (3.62)

This is in accordance with the estimates given in the Table B. We have already obtained
the solution for (R(z)T'(w)). in equations (3.54,3.57,3.58). Let us denote this solution
as G2H(z,w).
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The remaining two equations are:
M) (Jwa(w))e = 5 G 0uR(z,w)
M()(T()T(w)). + 2(T(z))(R(z)T(w))C:%GzawT(z,w) (3.63)

Comparing the first equation with that of (R(z)T(w)). namely eq.(3.51) we conclude
that

(w*(2)wa(w))e = 10G*H (2, w) (3.64)
Finally taking the derivative of eq.(3.51) with respect to N; 2 35> and using the fact that

to the leading order (i.e. order(1)) (T'(2)) = (V, 135 + SWPWe Jasfasj)(R( z)), we obtain
the following equation:

Mgt (RET(w)e + 2T REATW)e = 36°0T(w)  (369)

where we have used the fact that G%w, ; is trivial. This equation is the same as the
second equation of (3.63). Uniqueness of the solution then implies that up to order G2,

0
'oS;

We are now in a position to compute the gravitational corrections to the one point
functions of R(z), w,(z) and T'(z) from eq.(3.28). Note that in this equation the two
point functions contain both the disconnected and connected pieces. Since (R(z)R(2)).
and (R(z)wa(z)). vanish, the first two equations do not contain any connected parts.
Uniqueness then implies that one point function of R and w, = W}, 5= 35, 2R do not get any
gravitational correction. The non-trivial equation is the third one. Usmg the results of
this subsection we get

(T(2)T(w))e = G N;—=H(z,w) (3.66)

(M(2) — %Gz(T(z)))(T(z)) +12G2H(z, 2) = 0 (3.67)

Expanding (T(2)) = TO + G?°TW, with T® = N, 2 a5, 1t + SUf Way 66511 agj

M(2)TH(z) + [-;;(Tm)(z))?] +12H(z,2) =0 (3.68)

Here the term indicated in the square bracket goes as N? (note that only the N;
dependent term in T® contribute since G2w, is trivial) and therefore represents genus
0 contribution. On the other hand the term proportional to H(z, z) does not come with
any factors of V; as is seen from the explicit solution given in (3.54), (3.57) and (3.58).
This contribution therefore comes from genus 1. Writing 7 = Tél) + Tl(l) where the
subscript denotes the genus, we have the following solution to the above equation:

0

Ty(2) = ——N5§T°><)
00 = —GEeE ) + O (3.69)
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where cM(z) is a polynomial of degree n— 2 and is uniquely determined by the require-
ment that the contour integrals of Tl( )(4) around every branch cut vanishes. In the
next subsection we will show that this is exactly the answer the Matrix model provides.

Let us note that the genus 0 contribution Tél) above can be absorbed in 7 by a
field redefinition

Si— S+ %GQM (3.70)

In particular this means that the contribution of To(l) to the effective superpotential
can be absorbed by the above field redefinition into the original genus 0 effective su-
perpotential in the absence of the gravitational field. This also implies that this term
does not contribute to the superpotential when evaluated at the classical solution of S;
in agreement with the statement made in [10, 11].

3.2.4 Comparison with the Matrix Model Results

In the Matrix model a systematic approach to computing higher genus contributions
has been developed in [96, 97|, however in the following we will rederive their results
in a way parallel to the gauge theory discussion above. This will make the comparison
between the two very transparent. Consider a hermitian matrix model with action
given by § = g]:’n D ETrM k= N =W, Where M is a hermitian N x N matrix. In

Matrix model the resolvent Q(z) = g’”Tr M satisfies a loop equation similar to gauge
theory R(z):
(Q(2))? = I(2)(2(2)) + (22)Q2))c = 0 (3.71)

Here I(z) is the same integral operator as in the gauge theory discussion above. In the
large N limit, the two point function factorizes. However in the subleading order in
1/N? the connected part of the two point function (in fact the planar connected graph)
contributes and yields the genus 1 contribution to the resolvent via the above equation.
By definition

1< k 0
(Q2)2(w))e = ﬁkgo'z‘,;ﬁa—gk@(w»
= Lommw
= 0()(0w) (3.72)
Let us expand the 1-point function as :
(@2)) = o (@) + 50 (2) + - (3.73)

where dots represent terms of higher order in 1/ N2, Inserting these expansions in the
above equations we get:

Qo (2)? = I(2)Q0)(2) = 0
(2@(0)(2) - I(z))Q(l)(z) + O(Z)Q(o)(z) =0 (3.74)
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Now we need to solve for O(w)$oy(2). This can be done by applying the differential
operator O(w) on the first equation of (3.74). To this end we need the following identity:

w)W' (y Z

k=1

o0

Sk

Ly =
2y = o (3.75)

which is valid for |w| > |y|. It follows that

/Cwowmwwﬁm@)z AlMI@( 1 Q@)

y—z w—y)? y—=z
Q(g) (Z) — Q(o) (’LU)

zZ—w

= Oy

(3.76)

Using this, we obtain the following equation by applying O(w) on the first equation of
(3.74)

=0. (3.77)

(220)(2) — 1(2))O(w) o) (2) — B

Since {2y of the matrix model is the same as the R© for the gauge theory, we see that
O(w)$oy(2) satisfies the same equation (3.51) as 3(R(z)T(w)).. We now impose the
conditions

/ 420(w)0) (2) = / w0 (w) Qg (w) = 0 (3.78)
C; C;

which are the analogues of the equations (3.55). It follows from the discussion of
uniqueness that O(w)Qo)(z) is equal to 3H(z,w). Note that as we showed in the
last subsection, H(z,w) is symmetric in z and w. This is consistent with the fact that
O(w)$0)(2) is symmetric in z and w. Finally, substitution of O(2))(2) in the second
equation of (3.74), results in an equation for {(1)(z) which is identical to that for the
genus 1 part of the gauge theory equation (3.68) for Tl(l). Using the fact that the
integral of €(1y(z) around every branch cut is zero, we conclude, from the uniqueness

of the solution, that
1

Qy(2) = 711" (@), (3.79)
with the right hand side being the genus 1 part of the solution given in (3.69). While in
the matrix model the 7\,15 correction to the effective potential is obtained by integrating
the asymptotic expansion of Q1)(z) with respect to the couplings gi, the order G?
correction to the effective superpotentlal in gauge theory is obtained by integrating
the asymptotic expansion of T (z) with respect to the coupling constants g (we
already argued in the last subsection that the genus 0 contribution coming from T(l)
can be absorbed by a field redefinition of S;). Eq.(3.79) implies therefore that the
genus 1 contribution to the effective potential in matrix model is equal to the genus 1
contribution to the order G? term in the gauge theory effective superpotential. In fact,
the relative coefficient 4 in eq.(3.79) is exactly reproduced if one follows the numerical
factors in the diagrammatic computations given in [10].
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3.3 Genus One Solution for Other Gauge Groups

In this section we will generalize to other gauge groups the previous results, exactly as
we have done in the last Chapter. We will derive the generalized loop equations in the
case of SO(N) and Sp(IN) gauge groups. From these we will derive the gravitational
corrections to the effective superpotential, given by the N' = 1 Weyl multiplet. We
will present the derivation for an SO(N) gauge theory with matter in the adjoint
representation in some detail and then simply state the results for other groups and
representations.

3.3.1 SO(N) with Matter in the Adjoint Representation

Let us begin with the SO(IV) theory with for matter in the adjoint representation; in
presence of the gravitational background field G,g, the anomaly equation is modified
as [93] [94]

1
Aij,kg = (WQ)kjc?ig + 5ch (T/Vz)ig — QW;?J-WQM -+ §G25kj5i£ - (k‘ — f) . (3.80)

Now, following a familiar strategy, we take variations in the chiral ring of the form
09;; = R(z)ij, 6@y = n%pa(2)i; and 69;; = T (2);, to derive the following Ward
identities

S(RE)RE) - ;o Ty om0

(a2} — (T W @) ) = (3.1

(RE)T(2)) — (T (W(@)T <>>>——G2<T<z> (2)
S LB L@@ —o.

r

where W (®) is the tree level superpotential. As for the U(N) case, two point functions
do not factorize because of the non trivial gravitational background, but in general
contain a non vanishing connected piece. Then we need a set of equations for the
connected two point functions, that again can be obtained by considering variations of
the form

where A can be R, 7%p,, or T and B can be R, n®w, or T. The reason for considering
two point functions in different points w and z is that we can impose conditions on them
that their integrals around various branch cuts in w and z planes vanish separately.
The Jacobian of this transformation has two pieces

5(62) _ Au(2)

o = 501, B(w) + ZAji(Z) (B (W) Tim (W) — Bt (W) T (w)) ~ (3.83)

_ 5?355 )+ 3 As(2) (B 10) i) F B ()T~ 0)
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where the plus sign holds when B..(w) = n%pa(W)mr and the minus sign in all the
other cases. This is a consequence of the symmetry properties of the field ®, so that

T(w)' = ~T(—w), Wo(w)" = wa(—w), Rw) = —R(~w) (3.84)

Where to simplify the notation we have indicated with T'(z)* the trace of the transpose
Tr 7%(z), etc. Considering these variations together with the classical variation of the
superpotential, one obtains a set of equations for the two point connected functions
that can be summarized in the following matrix equation

M(z) (T(z))-% 0 (T()T(w))e (T(z)RB(w))e (T(2)wp(w))e
0 M(z) 0 (B(z)T(w))e (R(2)R(w)). (R(z)wp(w)).
0 0 M(z) | | (wa(2)T(w))e (wa(2)B(w))e (walz)wp(w))e
o T(z,w) R(z,w) 0
= 8 R(z,w) 0 0 (3.85)
0 0 SeqpR(z, w)

where we have introduced the operator M(z) = (R(z2)) — I(z) and B(z,w) = B(z, w) +
B(z, —w) where

Bo.) = LEG) = (Bw) 556
z—w
The integral operator I(z) was defined in equation (3.38).
The equation in (3.85) is of the form

M(2)N(z,w) = 8K (2, w) (3.87)

with M(2) the matrix operator appearing on the left hand side of eq. (3.85), and
N(z,w) and K(z,w) satisfying N(z,w) = N*(w,z) and K(z,w) = K*(w,z). The
non-trivial consistency condition (integrability condition) is then given by

(0K (2, w))M*(w) = M(2)8,.K (2, w). (3.88)

as in (3.43). Using the methods of [12], as explained in section 3.2, it can be shown that
the above integrability condition is satisfied, and this fact guarantees the existence of
solutions for the connected two point functions, equation (3.85); all this was explained
in detail in the previous sections. However these solutions suffer from ambiguities, in
the form of a finite set of parameters. These ambiguities will be fixed by the physical
requirement that the contour integrals around the branch cuts of the connected two
point-functions, both in the z and w planes, vanish separately. The reason for this is
that the following operator equations hold:

2#2% dzR(z) = S;, 2#2?{ dwT(w) = N;, 27”% dzwe(z) = we ;. (3.89)

where S; is the chiral superfield whose lowest component is the gaugino bilinear in
the i-th gauge group factor in the broken phase SO(N) — SO(No) x [Ti; U(V;) and
Wy ; is the U(1) chiral gauge superfield of the U(N;) subgroup. Since these fields are
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background fields, in the connected correlation functions the contour integrals around
the branch cuts must vanish:

f d2(A(2) B(w)). = ]{ dw(A(z) B(w))e = 0 (3.90)
o2 c;

This requirement makes the solution of the equations of (3.85) unique (see section 3.2).
We can express such solutions in term of one function H(z, w), whose explicit form will
not be needed for the analysis done here. The two point functions we will need are

(R(z)R(w)). = O
(R(2)T(w)). = %GQH(z,w) (3.91)

(W(awp())e = TCH(zw)eus

Now we could plug these solutions into (3.81) and solve for the one point functions.
However note that we can instead perform the following rescaling

G2 G21
R(z) = R(z) + —T'(2) + —~ (3.92)
6 6 z
Note that such rescaling changes the boundary conditions (3.89) in a non trivial way.
This rescaling simplifies equations (3.81) to

LR R - (1 (W @)R())) = 0, ' (3.93)

2

(R(= 162 1 o
(RET()) — (T W@ () 2T 20 L ez = 0
To derive equations (3.93), we have used the chiral ring relations and the equations of
motion. We have not included the equation for w,(z) since it can be set consistently
to zero. In order to find the corrections to the zero order one point functions, let us
expand the functions R(z) and T'(z) into a zeroth order and a first order term in G2

(R(2)) = RO(2) + RM(2), (T(2)) = TO(2) + TO(2). (3.94)

Note that, since G* terms are trivial in the chiral ring, this expansion is exact. Substi-
tuting the above expansions in (3.93) we obtain for the zeroth order

RO(2)RO(z) - I()RV(z) = 0
RO)TO () = I(z)TO(z) —i—R(O)(z) —0 (3.95)

Note that these equations are consistent with (3.29) and (2.82). More interesting is the
result at order one

M(z)RY(z) = 0
M()TD(z) = -;:G2;15——G2H(z,z) (3.96)

Note that, as expected, the genus zero contribution (i.e. going with N?) has been
adsorbed with the redefinition (3.92).
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3.3.2 SO(N) with Matter in the Symmetric Representation

If now we add matter in the symmetric representation to the SO(N) gauge theory, the
anomaly equation gets modified to

1
Aigre = W)i0s0 + 615 (W?)ig — 2W5 Waie + §G25kj5ie + (k= £) (3.97)

while the loop equations for the generating functions of the chiral ring become

L RE)EE) - 3620 e (W@)R()) =0,
(R(zwa(2)) — (T (W (@)pa(2))) =0 (3.98)
(RE)T(2)) ~ (Tx (W(@)T (=) — 2CHT(AT(=))

2228y e P ey =0

However note that, unlike as for the previous case, the contribution at genus zero cannot
be reabsorbed by a field redefinition, the obstruction being the differential operators
appearing in (3.98). The existence of such redefinition is expected for theories that can
be obtained by softly breaking A/ = 2 to N = 1, and this is not our case since in the
N = 2 theory matter has to be in the same representation of the gauge field.

Again the two point functions will contain a non vanishing connected piece, and we
need equations for such pieces. This can be obtained as before by taking variations in
the chiral ring of the form

The result is

M(z) (T(2)-2g O (T(2)T(w))e (T(2)R(w))e (T(2)wp(w))e
0 M(z) 0 (R(z)T(w))e (R(z)R(w))e (R(2)wp(w))e | =
0 0 M(z) | | (wa(2)T(w))e (wa(2)R(w))e (walz)wp(w))e
1 T(z,w) R(z,w) 0

= =G0, | R(z,w) 0 0 (3.100)
3 0 0 5R(z, w)eqp

As before, the solution to such equations is unique, and can be expressed in terms of
one function J(z,w). The relevant two point functions are finally

(R(z)R(w)). = 0
(R(2)T(w))e = %GQJ(z,w) (3.101)

(waleyupw))e = 3G2(zw)eas

Now, following the same ideas of the last section, we insert this results into (3.98) and
expand in a genus zero and a genus one contribution. The zeroth order equations hold
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precisely the loop equations found in the previous Chapter without gravity, while the
first order equations are

1 _,0R®
ARM z
M(z)RM(z2) 2(; e
G2
M)TW(z) = TOGE)R <1>(z)+?(T<O>)2+ (3.102)
5‘R“( ) GPoTO)(z) 2
2 9z 6 0z __G I(zw)

Note that in these equations, there is a genus zero contribution that cannot be elimi-
nated by a field redefinition.

3.3.3 Sp(N) Gauge Theory

Now we will focus on an Sp(NN) gauge theory with matter in the adjoint (symmetric)
and in the antisymmetric representations. We use the same conventions of the sec-
ond Chapter, that is: in the symmetric (antisymmetric) representation, ® has to be
considered as a matrix MJ where M is a symmetric (antisymmetric) matrix and J is
the invariant antisymmetric tensor of Sp(IV). We take the generators of Sp(N) to be
(e + ew) with (en)i; = i0;5- The analysis for the Sp(IV) case is almost identical to
the one for the SO(NV) case, the only change being the sign in the generators (and of
course the different properties of the matrices representing the field ®, that are relevant
since the antisymmetric invariant J will enter in the intermediate steps). Because of
this the only difference with the case of SO(N) will be a change of sign in front of
the terms 1 < for matter in the adjoint representation and of the terms al;iz and BTiZ)
for antisymmetric matter, as we have already seen in the second Chapter. The results
obtained can be expressed in terms of a single function H°? when matter is in the
adjoint representation

M(2)RP(z) = 0
MHTW(z) = %G2;12-—-G2HSP(Z,Z) (3.103)

(note that the genus zero contributions have been absorbed) and a function J°° when
matter is in the antisymmetric representation

1_,0R©
(1) i
M(z)R™M(z) 2G %
2
M(2)TW(z) = T<°>(Z)R<1>(z)+%(T<°>)2 (3.104)
ORW(z)  G*OTO(2) 1 _, o
T e teTa 3¢ 7ER)

We remark that, while in the case of adjoint matter, the genus zero contribution to the
genus one loop equation has been absorbed with a field redefinition, this has not been
done for antisymmetric matter. However, we don’t aspect this to be possible, since this
theory does not arise as a soft breaking of an N = 2 theory to N = 1.
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3.4 Comparison with the Matrix Model

In this section we will finally show that our loop equations agree with the matrix model
results. In particular, we will focus on the case of SO(N) with adjoint and symmetric
matter (an analogous treatment can also be done for Sp(N)).The planar limit of the
matrix model for SO(N) was studied in [77, 70, 71, 81].

3.4.1 SO(N) with Adjoint Matter

Let us consider the following one-matrix model with action

Gk k
S = — —Tr® 3.105
9s M ( )

where ® is now an M x M matrix in the adjoint representation of SO(M). The matrix
model resolvent is defined as

Q(z)z—g]\—} 2—1@ (3.106)

and satisfies the loop equation
L)) = 1(2)(Q L1 L0 =0 3.107
S(0()? = 1(2)(Q(2)) = 725-(02) + 5 (202, = (3107)

The connected part of the correlator (Q(z)€)(z)). goes like 37z and is usually neglected
in the planar large M limit; it corresponds to non planar contributions that capture
the gravitational background. In order to show the M dependence explicitly, we will
write it as 1(Q(2)Q(2)). = 728(z, z). Note that this loop equation is analogous to the
equation fulfilled by the generator R(z) in the corresponding gauge theory, equation
(3.81), provided we identify G* with .

Next we expand the resolvent in powers of —]\17 to identify the higher genus corrections
to the planar limit

(=) = 20(2) + 100(2) + 7750(2) + - (3.108)

Plugging (3.108) into the loop equation, we find

(%Q(O)(z) - I(z)) QO(2) = 0
(QO(2) - I()) QD (2) - 2—1Z§2(°)(z) ~0 (3.109)
(20(2) — 1(2)) 0P () = =00 (z) + 5OV () +(z,2) = 0

In order to compare these equations with their gauge theory counterpart let us
perform the following rescaling on the gauge theory side
G2

R(z) — R(z) + ——6-—T(z) (3.110)
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After this, equations (3.81) become

S (RE)RE) - 2P wrere) = o
(R(=)T(2)) — (T (W/(@)T(2)) (3111)
-9 <R(:)> . 1G2 <T(Z > + 1(wa(z)w°‘(:)) =0

We can see that Q@ and R, as well as Q) and R® follow the same equations. in
order to make the identifications more precise, let us now introduce the operator

d
D = Ni—— . 2
; 35, (3.112)
We can split the function T'(z) as
TO(z) = DRO(2) + TO(2),  TW(z) = DRV (z) + TW(2) (3.113)

By plugging these in the loop equation, we obtain equations for 7 (z) and TW(z)

M()TO(2) — ZRO(z) = 0 (3.114)
¢

5 T (2) + connected = 0

With “connected” we mean the connected two point functions. Comparing with (3.109)
we see that 70 (z) and T®)(z) satisfy (up to some factors) the same equations that
Q) and Q@) Note that, for a precise identification, not only the equations but also
the boundary conditions (3.89) should be the same; this is the reason for using 7 (z)
and T™W(z) instead of T®(z) and T(z2).

The results obtained here are consistent with the diagrammatic analysis. In cal-
culating the effective superpotential a given diagram of L quantum loops, contributes
with a power of W, equal to 2h + 4g + 2¢ — 2 with A the number of index loops, ¢
the genus of the diagram and ¢ the number of crosscaps.?. On the other hand, the
maximun number of W, depends on the chiral ring. In absence of gravitation

2h+4g+2c—2<2h=4dg+2 —2 <0, (3.115)

implying that only diagrams with g = ¢ = 0 and g = 0, ¢ = 1 will contribute to the
effective superpotential. In presence of the gravitational background under considera-
tion, since for non trivial gravitational backgrounds we can put more than two W, in
one index loop,

2h+4g+2c—2<2h+2=4g+2c<4 (3.116)

Now diagrams with g = 1, ¢ = 0 and g = 0, ¢ = 2 will contribute. In order to study
which diagrams will contribute to R(z) one should take into account that it contains
already two W,,.

2The relation L = h + 2g + ¢ — 1 holds
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3.4.2 SO(N) with Symmetric Matter

In this case, the analysis is completely analogous to the latter section. The only differ-
ence is that now in the matrix model ® is in the symmetric representation of SO(M).
The loop equation for the resolvent turns out to be

1 1,0 1
S(0(2))? ~ 1()(0(2) - 7{5-22) + F@HUN =0 (3117)
Again, note that this loop equation is analogous to the equation fulfilled by the
generator R(z) in the corresponding gauge theory, equation (3.98), provided we identify
G? with 4.
Expanding as in (3.108) and plugging the expansion in the loop equation, we finally
obtain

(-;—Q(O)(z) — I(z)) 0O0(z)=0 (3.118)
(QO(2) — I(2)) QW (z) — gzﬂ(o)(z) =0 (3.119)
(QO(2) — I(2)) Q@ () — ;%Q“)(z) + %(Q(l)(z))2 +Q(z,2) =0 (3.120)

The same rescaling (3.110) can be done here and again the same analysis following
equations (3.109) holds.
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Chapter 4

Gravitational F—terms at All
(Genera

In this Chapter we will complete the treatment of the gravitational corrections to
the effective superpotential, by including all the non planar contribution to the matrix
model free energy in the gauge theory setup. We have seen in the previous Chapter how
this task is accomplished when the theory is coupled to standard A = 1 supergravity:
namely loop equations get a direct gravitational contribution and the chiral ring rela-
tions have to be modified. However, as explained in [11, 10], higher genera in the matrix
model are more subtle. They showed that in order to capture genus g > 2 contribu-
tions, in the language of the dual closed String Theory side [19], one needs to introduce
a more drastic modification in the chiral ring relation, to account for a non-trivial vac-
uum expectation value of the (self-dual) graviphoton field strength F,5 of the parent
N = 2 String Theory. In this case the relation reads {Wy, Ws} = Fop + 2Gop,W". In
particular, one is modifying the Grassmann nature of the fermionic superfield W,. In
this case one has to face ordering ambiguities in manipulating W’s in the generalized
Konishi anomaly equations, somewhat similar to the base point dependence in path
ordered exponentials found in [11, 10]. We fix the ambiguities by requiring that traces
of (graded) commutators be trivial in the chiral ring. This requirement will lead us to
get identities involving gauge invariant and gravitational operators, which will be very
important when analyzing the anomaly equations. We will then first, following the
strategy outlined in Chapter 3, reconsider the g = 1 case in the presence of both Fiz
and Gup, and find that the order F? and G? superpotential terms have the expected
structure and agree with the g = 1 matrix model result.

In order to proceed with arbitrary genus analysis, for which a non-trivial F,p is
essential, we will need to further generalize the strategy of [12], explained in the last
Chapter, to derive anomaly equations for the generating functional of (connected)
correlators, by coupling the relevant chiral gauge invariant operators to external sources.
From these equations we will extract the correlators which are required to determine
the one-point functions of R(z), T(z) and w,(z) to all orders in F2. From these one
can determine the effective superpotential. The connection with the matrix model will
be proved by generalizing the loop equation of the latter to a full generating functional
of connected correlators of resolvents, by coupling the matrix model resolvent ,,(z)

7
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to an external source. We will prove that, in fact, the gauge theory (R(z)) coincides
with the matrix model (,,(z)), to all orders, if we identify F2 with the matrix model
genus-expansion parameter 1/ N2, More precisely, there is a full class of gauge theory
correlators, (Tr W2®*) whose expansion in powers of F?2 coincides with the 1 / N?
expansion of (Tr M*), where M is a N x N hermitian random matrix, whose expectation
value is computed with the measure exp(——g;ﬁ W(M)).

It is also worth mentioning that lower genus contributions to a given genus term
can be gotten rid of by an operator redefinition, R — R + %GQT, thereby generalizing
the shift S — S+ 1G?N needed to remove the genus zero contribution to the order G2
term.

It is interesting to note that, by following [8] and introducing an auxiliary Grassman
coordinate 1,, which can be thought of as a second supercoordinate of the broken A =
2 parent theory, we can rewrite the anomaly equations in a shift-invariant way, if, in
addition to assembling R, w, and T in R (7)) like we have done in Chapter 2, we assemble
also Fland G as H = Faﬁ——%w”Gag.y. This suggests that the effective superpotential can
be formally written in a manifest shift-invariant way, [ d>yH?9F,(S + ¢*w, — Ty2N).
However, it will turn out that, due to the modified chiral ring relations the g > 2
terms are all trivial from the N' = 1 point of view. We should stress, nevertheless once
again, that the all-orders identification of the gauge theory (R(z)) with the matrix
model (Qn,(2)), implying the exact identity of an infinite family of correlators on the
two sides, survives the chiral ring relations, since on the gauge theory side it involves
powers of % only.

4.1 The Chiral Ring

The chiral ring in /' = 1 gauge theories consists of all operators which are annihilated
by the covariant derivative Dg, which is conjugate to the supercharge @4, modulo D,
exact terms, where the exact terms should be gauge invariant and local operators. All
relations in the chiral ring are therefore defined modulo D, exact terms. The chiral
ring and the various relations in it play an important role in deriving the effective
F-terms in /' = 1 gauge theory obtained by integrating out the adjoint matter 18].
This is because the contributions to the effective action of all D, exact terms can be
written as an integral involving both holomorphic and anti-holomorphic integrations
in superspace, [ d*zd®0d?05(9,6). Thus they do not contribute to the F-terms, which
involve only either a holomorphic or anti-holomorphic integrations in the superspace
co-ordinates.

For the /' = 1 gauge theory with a single adjoint field on R* the chiral ring relations
are given by [8] *

[Wa,® =0mod D, {W,, Wz} =0mod D, (4.1)

where W, is the N/ = 1 gauge chiral superfield and & is the chiral matter superfield
in the adjoint representation of the gauge group. We are interested in studying the F-

LAl relations in the chiral ring are modulo D, for the rest of paper this will not be explicitly
mentioned, but understood wherever necessary.
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terms in N = 1 U(IV) gauge theory obtained by integrating out a single adjoint scalar
in presence of gravity as well as the self-dual graviphoton field strength Fig, using the
generalized anomaly equations approach. The chiral ring relations in the presence of
these backgrounds are given by [11, 10]

Wa,®] =0, {Wa, Wa} = Fap+ 2Gap,W". (4.2)

These relations were proved in [21]. There, the partial supersymmetry breaking of an
N = 2 to an N = 1 theory was considered and relations (4.2) were showed to be a
consequence of the standard N = 2 supergravity Bianchi identities. It was pointed
out in [11] that the modification of ring relations in the presence of F,s seems to
require a non-traditional interpretation: the classical Grassmanian nature of the N/ =1
gauge multiplet apprently no longer holds. However, as discussed in [21] within the
framework of A/ = 1 theories obtained from spontaneously broken N = 2 theories,
the presence of the graviphoton in (4.2) follows from traditional supergravity tensor
calculus. This implies that there is no drastic change in the Grassmann nature of
the gaugino superfield. The basic idea developed in [21] to prove equations (4.2) is
to begin with A/ = 2 supergravity, that encodes the graviphoton in the supergravity
multiplet. The fields in the gravity multiplet can be splitted in a background term and
a fluctuation. Then, the authors of [21] rescaled the gravity fields by the appropriate
Planck mass m, power so as to retain a non dynamical gravity background, while the
fluctuations were scaled in order to decouple from the matter sector in the m, — oo
limit. In this way one obtains a theory with only rigid supersymmetry but coupled
to a supergravity background. Finally in [21] they found a vacuum which partially
breaks supersymmetry and performed a tensor calculus analysis of the Bianchi identities
expanded around that vacuum. This analysis reproduces (4.2) up to a field redefinition.
It was then showed that this field redefinition does not spoil the usual Konishi anomaly
treatment of F—terms.

All the gauge invariant operators constructed out of the basic fields of the N =1
gauge multiplet and the chiral multiplet can be arranged into the operators (2.34) that
here we recall:

R(2)i; = —3-2—17-5 (ZW_/ @>ij, R(z) = TrR(2), (4.3)

s = g (725) 0 el =Tl

T(2) = (z . @)ij, T(z) = T+ T ().

As we have explained in the second Chapter, the above set of operators is exhaustive in
the chiral ring: placing more W’s in the trace does not yield any more gauge invariant
operators, as they can be converted to one of the above operators by the ring relations
in (4.2). In the next sub-section we will derive various identities from the relations
(4.2), with a motivated ansatz that the adjoint action with W, on gauge invariant
operators vanishes. In the subsequent sub-section we will re-derive these identities
from the closed string dual using the N = 2 Bianchi identities.
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4.1.1  Chiral Ring Identities from Gauge Theory

From the definition of W? and the basic ring equations in (4.2) we can derive the
following identities using simple algebraic manipulations,

Wa, W?] = —2F,sW? (4.4)
(W, W?} = ~-§- (CPWo + Gag, FP7),

adding the above equations we find
1 1
W W? = —F,sW* — §G2Wa — gaaﬁvFﬁW. (4.5)

Considering the equation (4.2) with a product of arbitrary number of scalars ® and
taking trace on both sides of the equation, we obtain

Tr ({Wa, Wp}08...) = Tr((Fap+ 2Gus,W")3...), (4.6)
= Tr(Adw, Ws03...).

We see that on the left hand side of the equation we have the adjoint action on the
operator Ws®®. ... For ordinary Grassman W,, the trace of the adjoint action is Zero,
but here, from the algebra in (4.2), it is not clear that this will still hold. However if
the trace of the adjoint action is not zero, then in any gauge Invariant operator, like the
one considered in (4.6), there will be an ambiguity in the ordering of W, such that the
cyclic property of the trace will not be obeyed. This is the base point ambiguity noted
in [11]. To remove such ambiguities we demand that the trace of the adjoint action is
trivial in the chiral ring. This leads us to the following equation

Tr ((Faﬁ —+ 2Gaﬂ,yW’y)@ .. ) = 0. (47)

We can write the above equation compactly in terms of the operators in (4.3). After
performing the following convenient redefinitions, Fps — 327722\/§Faﬂ and Gag, —
V3272 Gopy, (4.7) can be written as 2

2FaﬂT -+ G’aﬁ,wa = (. (48)

This equation, introduced here to remove the above mentioned ambiguity, was rigor-
ously proven in [21] in the framework of N = 2 theories spontaneously broken down to
N =1 by using the generalized Konishi anomaly and the precise relation between the
superpotential and the gauge function 7 that hold for A/ = 2 theories. This relation
excludes any dependence on the chiral field ® of the gauge function, dependence that
would modify the Konishi anomaly relation.

A similar equation can be obtained by considering the first equation in (4.4) with
products of ®’s and a trace on both sides, we obtain

T (We, W3@...) = —2F,5Tr (WP®. . ). (4.9)

?From now on we will use these scaled variables for the rest of the paper.
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Again demanding that the adjoint action is trivial in the chiral ring we get
FosTr (WFP®...) =0, (4.10)
that written in terms of the operators in (4.3) becomes
Fpw? =0, (4.11)

Using Bianchi identities of A/ = 1 supergravity it was shown in [12], that the spin 2
combination of a product of two N = 1 Weyl multiplet was trivial in the ring. This
combination is given by

GapoGs + Caye G4 + Gaso G = 0. (4.12)

This ensures that the gravitational corrections to the F-terms truncate at order G2. If
a similar Bianchi identity were applied on the symmetric tensor F,z we would obtain
the following product of the graviphoton and the A" = 1 Weyl multiplet

Gagan’Ya + GamyF'yﬁ, (4.13)

which should therefore vanish in the chiral ring. The product of G and F' in (4.13)
contains both a spin 3/2 and a spin 1/2 part, but we make the minimal ansatz that the
spin 3/2 combination in the tensor product is trivial in the chiral ring as given below

Gaﬂ'yF’Z; -+ Gaa'sz; -+ Ga‘/BryF’é ={ (4.14)

From the basic identities in the chiral ring, (4.8), (4.11), (4.12) and (4.14), we derive
other identities which are used at several instances in this Chapter. The first identity
is obtained by multiplying the equation (4.11) by F_*, which gives

1 1
Fa/aFaﬁ’w’B = §€a/gF’Y’5F75’wﬁ = §F2wa: =0 (4.15)
Another important identity is given by
G?F,5=0. (4.16)

In order to prove this identity, we first multiply (4.14) by G;"ﬁ to obtain
1 {e3
§G2F50 — 2G5paG%, F7P =0 (4.17)

The product GspaGY,., contains both the spin 0 and the spin 2 part. The spin 2 part
vanishes by (4.12), therefore this product contains only the spin 0 part, which is given
by

1
Gg/jaGC:,,y = s (65,,6,3», + 650657) G? (4.18)
Substituting the above equation in (4.17) gives (4.16). We also have the identity

FopGF” = (F-G),F" = 0. (4.19)
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This equation is obtained by simply multiplying (4.14) by F,s, the last two terms
vanish due to the symmetry of Gag, in all the indices. Finally, using (4.8) and (4.11)
we can show that

(F Glawg = —(F - G)pwe (4.20)

The identities (4.15), (4.16), (4.18) and (4.19) imply that terms containing G? do not
admit any expansions in higher powers of either F' or G. And the terms containing
(F-G) also do not admit any higher powers of either F' or G. From these considerations
we can conclude that the only expansion which admits arbitrary powers is an expansion
purely in F.

4.1.2 Chiral Ring Identities from Closed String Dual

It is instructive to understand the previous analysis from the point of view of the
open/closed string duality conjectured in [19]. The basic conjecture of [19] is that
N =1, U(N) gauge theory with a single adjoint chiral superfield ®, realized, for
instance, by N Db5-branes wrapped on a two-cycle of a local Calabi Yau threefold, is
dual to closed String Theory on a CY threefold which is related by a conifold transition
to the previous one. On the closed string side NV = 2 supersymmetry is broken down
to ' = 1 by the presence of three-form fluxes on the CY space [90]. The tree level
superpotential for ® is related to the geometry of the CY manifold. More precisely, the
duality identifies the lowest moment of the gauge theory operators of (4.3) with the
components of an U(1) N = 2 vector multiplet on the closed string side

~

V(0,0) = S(6) + G°w, () + 62N. (4.21)

S is the closed string field dual to Tr (W*W,)/327? | and it corresponds to the complex
structure modulus of the CY threefold, w, is dual to Tt (W,)/47 and N, the auxiliary
field corresponding to the three-form flux on the closed string side, is dual to Tr (1) of
the gauge theory. 6 is the usual A/ = 1 superspace coordinate and § is the additional
superspace coordinate for N' = 2 superspace. The duality is expected to still hold after
coupling the gauge theory on one side and the vector multiplet on the other side, to the
supergravity background given by F,s and Gug,. In particular, a class of gravitational
F-terms, usually called F, [91, 92] are expected to match on the two sides, with the
above identification of fields.

We can also organize the background fields, the AV = 1 Weyl multiplet and the
graviphoton field strength as an N = 2 Weyl multiplet as follows.

Hop5(0,0) = Fop(8) + 67Gop, (6) (4.22)

In the above equation F,s stands for the NV = 1 self-dual graviphoton multiplet and
Gopy refers to the N/ = 1 Weyl multiplet which contains the self-dual part of the
Riemann curvature. We have set the auxiliary field of the Weyl multiplet to be zero
as it does not play any role in deriving the ring relations discussed in the previous
sub-section.

Our strategy to prove the basic ring relations in (4.8), (4.11) and (4.14) would be
to use the A = 2 Bianchi identities to show that these equations are D exact. Here D
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refers to the derivative of the N/ = 1 superspace coordinate. This is the same method
used to obtain the ring relations in (4.1). Consider the following D exact quantity

D*(DasV) = [D%, Dos )V (4.23)

In writing the equality we have used the fact that V, the N = 2 vector multiplet, is
annihilated by D. From the definition of covariant derivatives in superspace we have
the following (see for instance [25] )

(DD — (=1)*DpDg)VHidz-) (4.24)
— ___Ré1BDv(DA2...) _ RéZBDV(AlD"') L TGDBDDV(AlAz'")

Here A, B, C, D, etc. refer either to bosonic or fermionic coordinates in superspace, b, ¢
refer to their grading, a bosonic coordinate having grade 0 and a fermionic one grade 1.
R and T stand for the curvature and the torsion in superspace coordinates respectively.
For N = 2 superspace, the complete solution for the Bianchi identities has been given
in [27] and one can read out the required curvature and torsion symbols. The equation
in (4.23) can then be written as

D*(DaeV) = Tou, D"V = Ho DV (4.25)
There are no curvature contributions as V' is a scalar in N' = 2 superspace, there are
other contributions to this Bianchi identity, but they vanish on shell 3. The zeroth and
the first component in 6 reduces to

Fow’ = 0, (4.26)
ZFQﬁN-{—Gaﬁ»Y’LU’Y = 0

The 62 component is identically zero. These operator equations verify the lowest mo-
ment of the ring relations in (4.8) and (4.11) from the closed string side. To verify
all the moments of these relations we need map which relates all the gauge invariant
operators of the gauge theory to closed string fields; at present such a detail map is
lacking, though it is obvious they will all be mapped to vector multiplets on the closed
string side. To prove the relation in (4.14) consider the following D exact quantity

D%(DasHP") = [D?% Do) H?, (4.27)
= R% H" +R*, HP + T, DHP.

Substituting the required curvature and torsion symbols we get *
D¥(DosHP") = G H" + G, H? + H,,D°H? (4.28)

There are other terms in this Bianchi identity, but they all vanish on shell. From the
lowest component in § of the above equation we obtain the relation (4.14). Note that
on lowering the § and - indices, the combination is entirely symmetric, thus containing
only the spin 3/2 part of the tensor product of G and F. This completes the proof of
(4.14) from the closed string side. The linear term in 6 of (4.28) reduces to (4.12)

3This is the holomorphic counterpart of equation (7.6) in [27].
4We have used the holomorphic counterpart of equations (4.25) and (7.6) of [27].
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4.2 (Genus One Analysis

The chiral ring relations (4.1) ensures that only planar graphs contribute to the compu-
tation of the superpotential in the absence of gravity or the graviphoton field strength.
The diagrammatic analysis of [11] and [10] show that higher genus diagrams contribute
when either gravity or the graviphoton background is turned on. In fact the contribu-
tion of gravity alone enters at genus one in the superpotential, and as we have shown in
the previous Chapter the genus one correction to the loop equation in the corresponding
matrix model agrees with the gravitational corrected anomaly equations in the gauge
theory [12]. In this Chapter we extend this to the situation when the graviphoton field
strength is also turned on. The graviphoton affects the gauge theory loop equations at
all genera. In this section as an important preliminary step to the analysis at all genera
and we will analyze the anomaly equations of the gauge theory with the graviphoton
also turned on at genus one.

To derive the Ward identities constraining the gauge invariant generating func-
tions of (4.3) in the presence of gravity and the graviphoton field strength we need
three ingredients. Firstly, the background modifies the ring to (4.2) and the associ-
ated ring equations discussed in the last section play a crucial role. The generalized
Konishi anomaly [34] forms the second ingredient: one can derive the Ward identities
constraining the functions R(z), w.(z) and T'(z) by considering an infinitesimal varia-
tion 6®;; = fi; where f;; is the matrix elements of the operators given in (4.3). This
variation is anomalous and, in absence of gravity, the anomaly is given by

0 s
L, 42
5q)k£ 7.kt ( 9)
with
Agje = (W)kjbie + i (W2 )i — 2Wii Wi (4.30)

When a gravitational background is turned on, there is a direct contribution to the
Konishi anomaly This is just the generalized gravitational contribution of the chiral
anomaly [94, 93]. To include this contribution we replace A;;x; in (4.30) with

1
Az’j,kl - Aij,]gz + 5025kj5i€ (4.31)

We expect that the presence of a graviphoton background will not affect the Konishi
anomaly. The graviphoton field strength is of dimension 3 and all terms in the Konishi
anomaly equation are Lorentz scalars and of dimension 3. Thus there is no Lorentz
invariant term which can be constructed out of the graviphoton field strength which
is of dimension 3. Therefore, the effect of the graviphoton in the anomaly equations
can be seen only through the ring (4.2). Using these two ingredients, the equations
determining the gauge invariant operators of (4.3) are given by

(REIR(:)) + £GP (2)wal2)) — (T (W(@)R(=)) =,

2(R(2)wa(2)) — 5G*wa(2)T(2)) — (Tt (W'(@)pa(2))) = 0, (4.32)



4.2. GENUS ONE ANALYSIS 85

To arrive at these equations we have repeatedly used the identities in the chiral ring
derived in the previous section . Had we not used those identities, we would have found
ambiguities in various terms, due to the fact that cyclic property of the trace is not
obeyed. Note that the above equations reduce to the same equations derived in the
last Chapter (and in [12]) in absence of the graviphoton fields strength. To see this, we
have to use the chiral ring equation G*w, = 0 in the first equation of (4.32). Finally,
the third ingredient in solving for the gauge invariant operators is that the above Ward
identities involve two point functions of the gauge invariant operators. In absence of
either gravity or the graviphoton field strength these operators factorize in the chiral
ring [8]. However, in the presence of these background there is no apriori reason for
factorization; in fact the correspondence of the gauge theory with the matrix model and
the diagrammatic calculations of [11, 10] imply that these operators do not factorize.
Therefore, we need a further set of Ward identities determining the connected two-point
functions. For the case of the gravitational background alone, this was done in [12] and
explained in the last Chapter, and it was shown there that the corrections to the gauge
invariant operator T' is precisely that of genus one correction to the resolvent of the
matrix model. We will repeat the same analysis for the case where the graviphoton
field strength is turned on.

Before we proceed, we note that the equations of (4.32) simplify if we perform the
following field redefinition

R(z) — R(2) + %G2T(z) (4.33)

This field redefinition shifts all moments in the generating functional, and it is therefore
a generalization of the field redefinition (3.70) noted in [12], which removed the genus
zero contribution of the gravitational correction to the superpotential. In fact we
will see that this field redefinition does the same job in the general case. Using this
redefinition in (4.32) we obtain

(R(Z)R(Z)) I(2)(R(2))) =0
2(R(2)wa(2)) — I(2)(wa(2)) = 0 (4.34)
2(R(2)T(2)) = 1(2)(T(2)) + (w*(2)wa(2)) = 0

In obtaining these equations we have used the chiral ring identities as well as (4.32).
The integral operator I(z) was introduced in equation (3.38) as

I(2)A(z) = o j’{ W y)““ WyAw) (4.35)

4

with the contour C, encircling z and co. We recall that if A is equal to R, p, or 7,
the integral operator reduces to

I(2)A(z) = W'(®)A(z) (4.36)

With the field redefinition above, the Ward identities reduce exactly to those with no
gravitational or graviphoton background derived in Chapter 2; in fact the first equation
of (4.34) is identical to the equation for the matrix model resolvent.
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4.2.1 Connected Two Point Functions

Now we will derive a set of equations for the connected two point functions. We see
that, to solve for the one point functions from (4.34), it is sufficient to determine the
connected two-point functions evaluated at coincident points in the z plane. However,
it is more convenient to determine the connected two point functions at two different
points in the complex plane say z and w, for example (R(z)T'(w)). This turns out be
useful as we can impose conditions on the connected two point function, such as their
contour integrals around various branch cuts in z and w plane vanish separately, which
enable us to solve the corresponding generalized Konishi anomaly equations completely.

We will briefly review the method used in [12] using the example of the two point
function (R(z)T'(w)). Consider the infinitesimal transformation which is local in su-
perspace coordinates (z*, 6, 8),

The Jacobian of this transformation has two pieces

5(0®;)  SRyi(z
o = 5% +2Rﬂ T (w) (4.38)

The first term in the equation above together with the variation of the classical super-
potential gives rise to

((R(2)R(2) Tr (W/(2)R(2)))T (w))
= (( (2)R(2) — Tr (W(R)R(2))(T'(w)) + 2(R(2))(R(2) T (w))e
—(Tr (W(2)R(2)))T (w))e + (R(2) B(2)T (w))e (4.39)

where the subscript ¢ denotes completely connected 2- or 3-point functions. The first
term on the right hand side vanishes when we use the first equation of (4.34). From the
second term in the Jacobian, when combined with the anomaly (3.20,4.31), we obtain
the following single trace contribution

L (R T () T (w)) = — 2620, TN = BW) _ _Loog pew)  (440)
3 3 zZ—w 3

Here we have introduced the notation A(z,w) = (A(z) — A(w))/(z — w) for A equal to
R, w, and T'. Note that the field redefinition of (4.33) does not affect the single trace
contribution, as it already comes with order G2. The field redefinition introduces a
correction of order G* for the above single trace quantity, which vanishes in the chiral
ring. Combining (4.39), (4.40) and the first equation of (4.34), one obtains the following
equation for the connected correlation functions:

(2(R(2)) — I(2))(R(2)T(w))c + (R(2) R(2)T (w))c — %GQ&UR(Z’ w)=0  (441)

Using estimates as the ones performed in [12] and discussed in Appendix B, shows
that the completely connected three-point functions vanish. We will not need these
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estimates when we discussing the solution for all genera, as will be seen in the next
section. The method to obtain the other relevant connected correlation functions is
similar. We need to consider a general variation of the form

where A can be R, p, or 7 and B can be R, w, or T. The resulting generalized Konishi
anomaly equations can be derived in the same way as above and are written as the
following matrix equation:

M(z) 2(T'(z)) 2(w*(z)) (T(z)T(w))e (T(z)R(w))e (T(2)wp(w))e
0 Mz 0 (R(z)T(w)e (R(z)R(w))e (R(2)wp(w)). | =
0 2wa(z)) M(z) (we(2)T(w))e (wa(z)R(w))e (walz)ws(w))e
$1G*T(z,w) 1G?R(z,w) 1GPwp(z,w
= 0, 1G2 R(z,w) 16F?R(z,w) —8(F' - G)g R(z,w) (4.43)
%GQ’LUQ( Z, w ) —8 (F'G)a R(va) ,Qaﬁ

Where we have introduced the operators M (z) = (2(R(2))—1(z)) and Qop = 2G?eapR(z, w)—
8 (F - G),ws(z,w), here the second term is also proportional to €ap using the chiral
ring equation (4.20). To obtain such equations we have used the chiral ring relations
extensively. We have also dropped all connected three-point functions. The order at
which they occur can be inferred using the estimates of [12]: they either vanish in the
chiral ring or occur at a higher order. For genus one we are interested in the solution
at order G?, F? or (F - G). The equation in (4.43) is of the form

M(2)N(z,w) = 8,K (2, w) (4.44)

with M(z) the first matrix operator appearing on the left hand side of eq. (4.43),
N(z,w) and K(z,w) satisfy N(z,w) = N*(w,z) and K(z,w) = K*(w,z). The non-
trivial consistency condition (integrability condition) is then given by

(0K (2, w)) MY (w) = M(2)0,K (2, w). (4.45)

By using the same ideas outlined in the last Chapter, it can be shown that the above
integrability condition is satisfied. The existence of solutions for the connected two
point functions, equation (4.43), is guaranteed by the fulfillment of the integrability
conditions (4.45). However, as familiar also in matrix models, these solutions suffer
from ambiguities, in the form of a finite set of parameters. These ambiguities will be
fixed by the physical requirement that the contour integrals around the branch cuts of
the connected two point-functions, both in the z and w planes, vanish separately. The
reason for this is that the following operator equations hold:

dzR(z) = S;, dwT (w) = N;, =

d o = Wq 4. 44
2mi c; omi c; 2mi Jo, 2Wa(2) = w (4.46)

where S; is the chiral superfield whose lowest component is the gaugino bilinear in the
i-th gauge group factor in the broken phase U(N) — [T, U(N;) and w, ; is the U(1)
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chiral gauge superfield of the U(N;) subgroup. Since these fields are background fields,
in the connected correlation functions the contour integrals around the branch cuts
must vanish. This requirement makes the solutions of the equations of (4.43) unique.

We now write the solution of all connected two-point functions in terms of a single
function. Consider the equation for the correlation function (R(z)R(w)). from the
matrix equation (4.43)

M(R(2)R(w)) — 16F28,R(z,w) = 0. (4.47)

The above equation is a linear equation with an inhomogeneous term which is propor-
tional to F2. Let the solution be given by

(R(2)R(w))e = —16 F2HW (2, w) (4.48)
where H)(z, w) solves the following equation ®
MH®(z w) + 8,R(z,w) =0, (4.49)

here the superscript in H refers to the fact that we are working at genus one. It is
possible to define such a function, as the inversion of operator M is unambiguous. In
[12] it was shown that the function H(z,w) is symmetric in z and w. We now illustrate
how the connected two point function (T'(z)T'(w))., can be expressed in terms of the
function H®(z,w). From (4.43), the equation satisfied by this correlator is given by

G2

M ()T ()T (w))e + 2(T(2)) (R(2)T (w))e + 2w*(2)) (wa(2)T (w))e = 5-0uT(2,w)
(4.50)
Now let us define the following operators:
D= Ni'é%‘;, 504 = Wgq 15%—1 (451)

Applying the operator (D + §2/2) on equation (4.49) we see that it reduces to (4.50)
if one uses the relations (7'(z)) = (D + $62)(R(z)) , and (wa(z)) = 64(R(z)). Though
these relations are valid only to the zeroth order, it is possible to use them here since
corrections occur at higher order than G? in (4.50). Therefore, using the uniqueness of
solutions of the equations involving the operator M, we find

(T(2)T(w))e = —%2(1) + -;-52)1'{(1) (4.52)

We can find all other two point functions in a similar manner, at genus one order they
are given by

(R(2)R(w)). = —16F2HW, (R(z)T(w))c=~—-é-G2H(1), (4.53)

(wa(z)wg(w))e = (——ngH(l) +8F?2DHM)e g, (R(2)Wa(w))e = 8(F - G)oHW,
1

(T(2)wa(w))e = —%G"léaH O, (TE@TwW)e=-3

G*D + -;-52)1—10).

5This definition of H differs from the one given in Chapter 3 by a sign.
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4.2.2 One Point Functions at Genus One

"To solve for the corrections to the one point functions we first expand the one point
functions as

(R(2)) = RO(2) + RU(z), (wa(2)) = wl(z) + wP(2), (T(2)) =TO(z) + TW(2),
(4.54)
where the terms with the superscript 0 denote the zeroth order contribution in F?
G? and (F - G) and terms with the superscript 1 denote the first order contribution.
Substituting the above expansions in (4.34) we obtain the following equations for the
genus one contributions

2RO(z) — I(2)) RV (2) + 16 F2HYV (2,2) = 0
2RO(z) — I(2))wP (2) — 16(F - Q) HD (2, 2) + 2RD(2)w®(z) =0 (4.55)

)
)
(2R (2) — I(2))TD(2) + 4G2HD (2, z) —
—16F?DHW(z, z) + 2w %(2)w®(z) + 2RM ()T (2) = 0

All the above equations are linear in the one point functions with different inhomo-
geneous terms. The linear operator is M = (2R — I(z)), therefore we consider the
equation

2RO (2) — I(2)QW(z) = HD(z, 2) (4.56)
From the definition of the operator I(z) the solution of this equation is given by
HM(z, 2) 4+ D (z)
QW (z) = ’ 4,
&)= Zm - Wi(z) (4.57)

here ¢! is the finite ambiguity in the solution, a polynomial of degree n — 2. This
ambiguity is again fixed by the physical requirement that the contour integral of 910N
which is proportional to the genus one correction to anyone one-point function of in-
terest, vanishes around branch cuts. This requirement ensures that operator equations
(4.46) are valid and the background fields S;, N; and wg; do not receive any G2, F?
or (F - G) corrections. Using these inputs, the genus one corrections to the one-point
functions of interest are given by

RW(z) = 16F*Q0(z) (4.58)
w®(z) = ~16(F - )W (2)

TO(2) = 4G%QW(2) — 16F2DOM(z)

At this juncture it is worthwhile to point out the difference in the results had we not used
the field redefinition in (4.33). We would, in fact, be left with genus zero contributions,
in addition to the corrections found in (4.58). This is seen as follows: without the field
redefinition there will be additional terms proportional to G2, multiplying products of
one point functions at the zeroth order. For example, in the last equation of (4.32)
there is a term proportional to G?(T(9(2))? which, since it goes like N? | it represents
a genuine genus 0 contribution,
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4.3 Solution at All Genera

In this section we obtain the complete solution for the one point functions R, w, and
T for all genera. From (4.34) we see that we need the connected two point functions
(RR)., (Rwga)e, (RT). and (w*w,). to solve for the one point functions. Our strategy
in this section is to first obtain equations for generating functionals for any arbitrary
correlator using the generalized Konishi anomaly. This can be done by introducing
sources coupled to the operators of interest. The equations constraining the generating
functionals turn out to be a set of integro-differential equations. From these we solve
for the relevant two-point functions which in turn enables us to obtain the one point-
functions of interest. We then compare the results with the matrix model. In the
appendix we demonstrate that the integro-partial differential equations constraining
the generating functional are consistent and provide the details of the solution for all
connected two point functions.

4.3.1 Generating Functionals for Connected Correlators.

To obtain equations for the generating functionals for connected correlators we extend
the method used to obtain equations for the connected two point functions. Consider
the following generating functional for the operators of our interest

(Z) = (exp [ / dw (jr(w)R(w) + j(w)wa(w) + jr(w)T(w))}) (4.59)

The generating functional is a function of three variables jr, jg, jr- There are three
equations which constrain Z which are obtained by considering the following three
variations

(5@3'1' = R].L(Z)Z, (5@_7,, = napaji(z)Z, 5@3'1' == ’Z}z(z)Z, (460)

here n* is an arbitrary spinor. We will now derive the constraint imposed by the Konishi
anomaly for the first variation. The derivation proceeds along the lines followed to
derive the equations for the connected two-point functions. The Jacobian of the first
variation in (4.60) is given by

6(6@s)  ORy VA
5@kl - 5@“ Z + R.?"(Z) 5@“ (461)
where
1 67 _ .
7550 - Z/dw (W) Rk (0) i (w) + 52 (W) Wamp (W) Iim (w)  (4.62)

m

+ jT(w)ka(w),ﬂm(w))

Note that the expression contains terms similar to the Jacobians in (4.38). Therefore,
we can use the anomaly equations constraining the two-point functions in order to
obtain the equations constraining the generating functional. The first term of the Ja-
cobian in (4.62) gives rise to a term which is the product of the first anomaly equation
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in (4.34) times Z, while the second term of the Jacobian in (4.62) gives rise to inhomo-
geneous single trace terms similar to those in (4.40). Using these considerations, the
anomaly equation for the above variation can be shown to reduce to

(R(2)ER(2)Z) — I(2)(R(2)Z) (4.63)
- </ dw <16F2jRawR(z, w) + %:—-jTawR(z,w) —8jo(F - G)aOuR(z, w)) Z> =0
where R(z,w) = (R(2) — R(w))/(z — w), T(z,w) = (T(2) — T(w))/(z — w). We can

write the above equation as an integro-differential equation by introducing functional
derivatives with respect to the sources on the generating functional. We define

0 ) )
o= pa—— o = , 4.64
2= 5 T e 5720 (4.64)
) 1 [ 6 5
Op"" =0 <z —w {5]3(2) §jr(w)| )’

1 ) )
(zw) _ -
Os Ou (z —w {m(z) 678 (w)

Now writing (4.63) in terms of these derivatives gives
G2
[5% — I(2)0 — /dw <16F2jROR + 5 J10R — 81 (F - G)QORH Z=0 (4.65)

here we have suppressed the superscripts z,w in the derivatives for clarity of notation.
The generalized Konishi anomaly constraints from the other two variations in (4.60)
are given by

200 — 1(2)8a (4.66)
+ [ aw ((smw C)at 26%ua)On — (Soip + 875(F Gmoa)} Z=0

G2
[231251* — I(2)0r + 0%0, — T dw (jrOg + jrO7 + Jﬁoa)} Z=0

The above equations form a set of closed integro-partial differential equations which
determine Z

For the connected two point functions of our interest it is sufficient to consider the
following ansatz for the generating functional

) X . o i 1., )
Z = exp(M) = exp <MR(JR) + jrMr(jr) + joMa(jr) + 5Jw.75Maﬂ(JR)> . (4.67)

Here the product jrMr is understood to mean [ dzjr(z)Mr(z), similarly for other
products in the above expression. In a following section we will generalize this to



92 CHAPTER 4. GRAVITATIONAL F-TERMS AT ALL GENERA

include all two point functions. Note that for the various cumulants in the ansatz we
have allowed an arbitrary dependence of jr while we allow only a finite set of moments
in jr and j%. As we will see subsequently, it is possible that higher moments in jg are
non vanishing, but higher moments in the other currents truncate in the chiral ring.
An indication of this is clear form the nature of the two point functions at genus one
in (4.53). Only the (RR), correlator is a function of F* alone, all the others involve
powers of G, thus they will truncate at some order in the chiral ring. With this ansatz
the connected two-point functions of interest are given by

(R(2)R(w)). = 0508 MR(jr),  (R(z)wa(w))e = 8zMa(w, jr), (4.68)
(R(2)T(w))e = 0pMr(w,jr),  (wal2)ws(w))e = Map(z, w, jr)-

The three equations of (4.65) and (4.66) in terms of the cumulant generating functional
M become

(4.69)

(5}2.7\4)2 + [8122 — I(Z)BR

2
— /dw (16F2jROR + %jTOR — 8o (F - G)QOR>} M=290
20RMOLM + [2055a — 1(2)Ba (4.70)
G2

+ / dw ((SJR(F . G)a -+ -g—G‘?jwa)OR — (-—3—_7'1" -+ 8jg(F . G),@)Oa>:| M=0

(4.71)

20RMOrM + 3> MO M
A A G2
+ {zaRaT — I(2)0r + 0700 — = / dw (jrOg + jrO7 + jﬁiOa)} M =0

As My is only a function of jg, the equation determining Mg can be obtained from
(4.69), by setting jr = jo, = 0. This is given by

(BRMR)Z + [3123 — I(z)0r — 16F? / d’ijOR:l Mrp=20 (4.72)

We will see in the following that the above equation is identical to the generating
functional equation for the resolvent of the matrix model. In fact the F? expansion of
the above equation can be identified with the 1/ N? expansion of the equation of the
resolvent of the matrix model. We now find the solutions of the connected two-point
functions of interest, by performing a similar analysis to that of the genus one case. In
fact, the solution is a direct generalization of that case. To obtain the connected two
point function (RR). differentiate (4.69) by 0%, where w refers to another point in the
complex plane and set jr = j, = 0. We obtain the following equation

(205Mp — 1(2))0508 Mg + (85)°08 Mz — 16 F205™ My (4.73)
—16F” / dw' jrROE™) 98 My = 0
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This forms a basic equation out of which the solutions for the other cumulant generating
functions in (4.67) will be constructed. The equation is linear in 959%Mp with an
inhomogeneous proportional to F2, therefore the solution is proportional to F?2. Let
the solution of (4.73) be given by

(R(z)R(w)), = 008 Mp = —16FH(z, w), (4.74)

where H(z,w) is the solution of the following equation

(205Mz — I(2))H (2, w) + 85H (2, w) (4.75)
+O5™ My — 16F? / dw' B ( = i_ w,(w w>) =0

By this definition H(z,w) is symmetric in z and w. We have assumed that the solutions
of these equations are unique. An argument in favour of this is as follows. For the lowest
order in the genus expansion (setting jr = 0, and 83H(z,w) = 0) these equations
reduce to the ones of section 3.3, which were studied in [12]. Tt was shown there that,
by demanding the vanishing of the integrals of the the various connected two-point
functions around the branch cuts both in the z and w plane, the solution is unique.
The equation in (4.75) is a generalization of those equations. One can envisage a
generalization of those arguments for these equations, proving that the solution of (4.75)
is unique. To obtain the connected two point function (R(z)ws(w)). we differentiate
(4.69) with respect to 8% and then set jr = j. = 0, to obtain

(205 Mp — I(2))05Ma(w) + 8505My(w) + 8(F - G)o O™ My (4.76)
—16F? / dw' 0% M, (w) = 0

Again comparing (4.75) and (4.76) we obtain
(R(z)wa(w))e = 05 Ma(w) = 8(F - G)oH (2, w) (4.77)

At this point one might wonder if the equation for the above correlator obtained by
differentiating (4.70) by 0% will reduce to (4.76). In Appendix C we show that this
is indeed the case and that the set of integro-differential equations in (4.69), (4.70)
and (4.71) is in fact consistent. In order to obtain the correlator (R(z)T(w)). we
differentiate (4.69) by 0% and then set jr = j, = 0, obtaining

G2 zZ,w
(205 M — 1(2))0Mr(w) + 003 Mr(w) ~ 5~ O™ My(w) (4.78)

—16F? / dw'jrO$™" M (w) =

Comparing (4.78) and (4.75) yields

(R()T (). = OpMr(w) = — - H(z, ) (4.79)
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Now we differentiate (4.70) with respect to 3 and then set ja,jr = 0 to obtain the
connected correlator (wq(z)wg(w)).. We get

(205 MR — I(2))Map(z, w) + 205 Ma(w) M (2) (4.80)
+ 205Mup(z,w) — 8(F - G)a/dw'jROg’w/)]\éfg(w) - g—GQEQgOR(w, z)Mpg
M,(z) — Ma(w)> _0

zZ—w

— 8(F - G)p0y <
The last term in the above equation can be written as

_8(F - G)30% (M“(z) — M“(w>> = 8casFd, (MT('ZZ — MT(“’)) . (4.81)

z - w zZ—Ww

= 8esF2PDOY™ My

In the last equality we have used the relation, T' = (D + 1/26%) R which is valid at the
zeroth order and the chiral ring relation (4.11) and (4.20). The second term in (4.80)
contains 05 Mpg(w). Substituting (4.77) for this we and using the equation (4.11) we
see that this term vanishes. Using (4.77) we see that term containing the integral in
(4.80) is proportional to (F - G)o(F - G)g, which also vanishes using (4.12). For clarity
we write down (4.80) after dropping these terms

(205 MR — I(2))Map(z, w) + 205 Map(z,w) (4.82)
- EaBgG2OR(’W, 2)Mp + 8easF?DO™ My = 0

There are two inhomogeneous terms in the above equation which motivates the follow-
ing ansatz

Mop(z,w) = €up <—§-G2H(z, w) + 8F?DH(z, w)) (4.83)

With this ansatz the term containing the connected three-point function vanishes,
because it contains the derivative 8% which contains an extra factor of F2. This is
seen as follows: (4.75) is identical to the corresponding matrix model equation for the
connected two point function of the resolvent, and from a t’Hooft counting analysis,
the connected three point function is down by a factor of 1/ N2, which in the gauge
theory implies that there is an extra factor of F? since the F* expansion of (4.72) and
(4.75) is identical to the 1/N? expansion of the matrix model. Comparing (4.75), we
see that (4.83) solves equation (4.82), as with this ansatz the connected three point
function in (4.75) also vanishes, since it occurs with an extra factor of F?.

4.3.2 Solutions for the One Point Functions.

Having obtained the required connected two point functions we can now solve for the
corrections to the one point functions. The analysis is identical to the genus one case.
We first expand the one point functions about the zeroth order as

(R(2)) = RO(2)+R(2), (wa(2)) = wd (2)+Tal2), (T(2)) =T (2)+T (). (4.84)
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here R, @ and T denote corrections to the zeroth order solution. Now substituting the
above expansion in (4.34) we obtain the same equations as (4.55) but with H((z, z)
replaced with the full connected two point function H(z, z), which is the solution of
(4.75). These are given below

(2R® — I(2))R(z) — 16F2H(z, z) = 0, (4.85)
2RO — I(2)a(2) + 16(F - Q)oH(z, z) + 2Rw® =0,
z) —

(2RO — I(2))T(2) ~ 4GP H(z, 2) + 16F*DH z, 2) + 20°w® + 2TOR = 0

The corrections are given by

R(z) = 16F%Q(z2), 1 = —16(F - @)a(z), (4.86)
T(z) = 4G2Q(z) — 16 F2DQ(2)
where
1

2RO — W'(2)
where c(z) is a polynomial of degree n—2 and is uniquely determined by the requirement
that the contour integrals of {2(z) around each branch cut vanishes. Note that the last
term of the second equation in (4.85) vanishes, because after substituting the solution

for R, we see that that term is proportional to F?w,, which is trivial in the chiral ring.
In the section 4.3.4 we show that this is exactly the answer obtained from the matrix

model.

Qz) = (H(z,2) +c(2)) (4.87)

4.3.3 Shift Invariance of the Anomaly Equations

In this section we show that we can assemble all the equations for the generating
functions given in (4.69), (4.70) and (4.71) into one superfield equation by introducing
the auxiliary fermionic coordinate ,. We first assemble the loop variables as

R(z,%) = R(:) + $°walz) — 59°T(2) (4.88)

that generalize equation (2.67) Note that with this notation the generalized Konishi
anomaly equations (4.34) is given by

(R*(z,9)) — I(z)(R(z,4)) = 0 (4.89)

These generalized Konishi anomaly equations are the same as in the case of N = 1 gauge
theories in flat space with no graviphoton background. In that case, the connected two-
point functions in (4.89) vanish, and this shift symmetry of the equations implied that
the superpotenial could be written as the integral [8]

Wi = / PUF, (51. + e — %¢2m> (4.90)

We would like to demonstrate that this is also true for the case of N/ = 1 theories
studied here.
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We first show that the equations for the connected correlators can be written as a
supermultiplet in the 7 space. The background fields, the N' = 1 Weyl multiplet and
the A =1 spin 3/2 multiplet can be assembled as

Hap(t) = Fap — 38" Gapy (4.9

To write the generating functional in the superspace 1 we introduce the multiplet of

the sources as follows \

J(z,9) = Jr + %ja — %“J'R- (4.92)

Then the generating functional can be written as

7 = exp (/ dzwdwj(w,w)R(w,¢)> , (4.93)

here we have normalized [ d*py? = —2. To obtain the various correlators from the
generating functional we introduce the following derivative in the supermultiplet space

O = 0% + 0% — —;—8} (4.94)
With this notation the set of equations (4.69), (4.70) and (4.71) reduce to
(002 - 193 - 50°00) [ dur(w. )0§™ (4.95)
+8 / dwﬁ2(H"ﬁj(w,¢))HQﬂO§§’w)} Z =0

where

o0 0

OYP o=
In (4.95) Og is defined using the super derivative of (4.94). In deriving (4.95) we have
used the identities (4.8), (4.11) and (4.20). This implies that the solutions of the loop
equations can be written in a shift invariant way. It is easy to verify this from the

solutions we have found in the previous subsection. The corrections to the one point
functions can be written as

D?=¢

(4.96)

- 1
R(w, Z) = ].67'{29(51 + w“wai - §¢2Ni, H2), (497)
= 16F%Q(S;, F?) — 16¢°(F - G)o82(S;, 0)
— %W (4G*Q(S;,0) — 16F2DQ(S;,0))
To obtain the expansion in the second line we have used the chiral ring relation F2wy; =

0 and 2F,gN; + Gap,w? = 0. Here the dependence of F in the last two terms are set
to zero as the expansion in F' truncates in the chiral ring for these terms. Since the
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solutions to the correlators in R can be written as a supermulitplet in 1, the corrections
to the super potential must be written as

T/Veff = /deHQF <Sz -+ wo‘wm - %w2]\fz> (498)

This motivates the completion of the gravitational corrections to the superpotential to
as

W = / CYH™F, <Sz- + P We; — %WM) (4.99)

which is in agreement with what is obtained from the closed string duality with v
playing the role of the second N = 2 superspace coordinate. However because of the
identities in the chiral ring all terms for g > 1 are trivial form A = 1 point of view.
Nevertheless, the generating functional (R(z)) sees the complete genus expansion and is
identified with the matrix model genus expansion as we will see in the next subsection.

4.3.4 Comparison with the Matrix Model Results.

Consider a hermitian matrix model with an action given by

S=— =—TrM" = —W, 4.1
gmzk: k gmm’ (4.100)

‘where M is a hermitian N x N matrix. The basic loop equations for the resolvent is
given by

(2 (2)0m(2)) = I(2)(Qn(2)) = 0 (4.101)
here (2, is the matrix model resolvent given by
Qu(z) = Iy (2 (4.102)
TN z2—M '

We now obtain the loop equations satisfied by the variation
OMj; = Qo ji €XP (/ de(w)Qm(w)) = O jiZm (4.103)

here Z,, is the generating functional for the n-point functions for the resolvent of the
matrix model. The loop equations for the variation in (4.103) is given by

Qm(2) = O (w)

Z—w

([an(z) — H2)m(z) + (227 / dwJd, < )] Z)=0  (4104)

Writing this loop equation by introduction functional derivatives in the current J we
get

[83 — I(2)0; + (%\%‘-)2 / dwjoj} Zm =0 (4.105)
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To obtain equations for the connected correlators we introduce the cumulant generating
functional Z,, = exp(M,,). The cumulant generating functional satisfies the following
equation

(O M2 + |03 — I(2)8; + (-’1]:7-’1)2 / dwjoj} My =0 (4.106)

This equation is identical to the equation (4.72) which is satisfied by cumulant gen-
erating functional Mg of the gauge theory. The F? expansion in the gauge theory is
analogous to the 1/ N? expansion in the matrix model. The equation for the connected
two point function is obtained by differentiating the above equation with 8%, which is
given by

(205 M., — I(2))550% My, + 050%0% My + (gj-v"i)?o(;’w) (4.107)
+(-9]-Vi2)2 / dw' JOS*) 8% My, = 0

By comparison with (4.75) we see that the solution of the connected two point function
of the matrix model resolvent is given by

(o (2) o (w)) = 858 M, = (%"-)?H(z, w). (4.108)

Here again we have used the fact that the inversion of the operator (205M, — I(z))
is unambiguous if the ambiguity is fixed by demanding that contour integrals of the
two point function around the branch cuts vanish. Note that in (4.107) using a t'Hooft
counting analysis one finds that the contribution of a [ loop planar Feynman graph
to the three point function 85830¥M,, is proportional to (gm/ N)@+) | Therefore its
contribution is subleading compared to the other two terms; this and the fact that
(4.106) and (4.72) are identical was used in the gauge theory analysis to drop certain
three point functions in the chiral ring. To find the the solution of the one point
function of the resolvent we expand Qn,(z) = Q@ (2) + Qm(z), and substitute it in
(4.104). Q is the contribution of the planar graphs to the resolvent. The correction
Qm(z) satisfies the following equation

(209 (2) — 1(2))0m(2) + (-Q—NTVH(z, 2)=0 (4.109)

Demanding that the contour integral of Q,,(2) around the branch cuts are vanishing en-
sures that the correction is identical to (4.86), therefore proving the all-orders matching
between gauge theory and matrix model correlators claimed in the beginning.



Conclusions

In this thesis we have described the Konishi anomaly approach to the study of the
exact effective superpotential that characterizes the low energy behavior of an A = 1
supersymmetric gauge theory coupled with chiral matter. Moreover, we have explained
how this effective superpotential is modified if the theory is defined on a gravitational,
non—dynamical background. In particular, we have considered an N = 1 background,
encoding the information about the A = 1 gravity multiplet, that is the graviton and
its superpartner, the gravitino, as well as a graviphoton background, whose origin lies
in the N' = 2 gravity multiplet.

‘The Konishi anomaly method, is completely equivalent to the Dijkgraaf-Vafa matrix
model derived from String Theory, apart from the Veneziano~Yankielowicz superpoten-
tial, that, however, can be consistently added by hand, or, more formally “integrated
in”. Moreover, it provides a more satisfying approach to gauge theories, since it does
.. not rely on any auxiliary concept, as the matrix model. Finally, it is simpler, since it
o is completely algorithmic while in the matrix model perturbative evaluation, in going
up with the order of the diagrams, one has to compute the combinatorial factors by
which the planar diagrams are weighted. Practically, one simply needs the Konishi
anomaly that express the operator T'(z) in terms of the polynomial f(z). The factor-
ization properties of f(z) determine the symmetry breaking pattern, since it is related
by a change of variables to the glueball superfield. Then all the physical information
enters in T'(z) through f(z) and in some sense, holomorphy does the rest of the job
(and that is perfectly consistent with the fact that we are computing F-terms). While
* the original conjecture referred to a U(V) gauge theory coupled to chiral matter in the
adjoint representation, that can be understood as an N = 2 theory broken down to
N =1 by a tree level superpotential, this procedure can be easily extended to all the
classical Lie groups. We have explicitly computed effective superpotentials for SO(N),
Sp(N) and SU(N) given a tree level superpotential and some specific representation
for the chiral matter. To fully exhibit the power of the Konishi anomaly techniques,
we have easily computed some superpotentials up to six or seven loops. These results
first appeared in [16] done in collaboration with L.F. Alday. Moreover, we showed that
even from the gauge theory side it is present the ambiguity already noted in [80]; these
results lead to a refinement of the conjecture in [86, 87, 88].

The second part of this thesis consists in a complete treatment of the gravitational
corrections to the effective superpotential within the Konishi anomaly method. These
corrections arise from two sources: the N/ =1 Weyl multiplet, including the graviton
and its superpartner, and corresponding on the matrix model side to genus one cor-
rections to the planar free energy, and the graviphoton field, that is a remnant of the
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N = 2 origin of the theory, and corresponds to all genera corrections to the planar
free energy of the matrix model. The first problem was already solved in [21] in purely
gauge theoretical terms: in this analysis gravity enters only through a modification
of the chiral ring relations that follow from standard supergravity tensor calculus and
a direct gravitational contribution to the Konishi anomaly. The main characteristic
of the gravitational background is the lack of factorization of correlators of the chiral
ring operators, the connected part being proportional to a gravitational term. This is
in perfect agreement with the matrix model expectations since there, the correlators
do not factorize anymore due to non planar contributions. These ideas were further
generalized in [9] in collaboration with L.F. Alday to include also the cases where the
gauge theory is based on a SO(N) or Sp(N) gauge group and coupled to chiral matter
non necessarily in the adjoint representation. These theories showed a slightly different
behavior depending on their having an N/ = 2 origin or not.

The problem of encoding the all genera non planar corrections to the matrix model
free energy in the gauge theory, was solved by L.F. Alday, J.R. David, E. Gava, K.S.
Narain and the author in [20], where it was showed how to take into account the
effect of a non trivial graviphoton background, that basically plays the role of the
genus counting parameter in the gauge theory (more precisely the matrix model genus
counting parameter gets identified with the square of the graviphoton field strength F?).
In the gauge theory side, the graviphoton enters only through a non trivial modification
of the chiral ring relations, that was proved in [12]. This is reflected in the graviphoton
corrections to the connected part of the correlators, which hold at every genus. We
have determined the one point functions R(z), T(z) and w,(2) to all orders in F?
that can be used to determine the superpotential. The gauge theory resolvent (R(z))
coincides with the matrix model resolvent (€,,(z)), provided we identify F? with the
matrix model genus expansion parameter 1/ N2. This shows that the gauge theory in
a non trivial graviphoton background encodes all the information of the full matrix
model free energy.
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Appendix A

Conventions

In this thesis we have used the Wess and Bagger conventions [25]). Here we collect some
useful formula. The reader is referred to [25] for a more complete treatment.

We use a “mostly plus” space-time metric, 7, = diag (—1, +1, +1, +1).

Spinors with dotted indices transform under the (O, %) representation of the Lorentz
group while spinors with undotted indices transform under (1,0). Raising and lowering
of spinor indices are done by the ¢ tensor as follows

W =Ws, W= euWP?, (A1)

eaﬁeﬁa =2, eo‘ﬂeﬁa/ = 0.

Gamma matrices v* satisfy the Clifford algebra {y*,+} = 27 and are always intended

in the Weyl basis
0 o
where the oc—matrices

-1 0 01 0 —i 1 0
0 _ 1_ 2 _ 3 _

7=(05) 2=(0) #-(7) -G L) e
connect the Lorentz group with SL(2,C). o* has the index structure ¢*,. Its indices

are raised with the e-tensor ‘
—pac __ _&f _af_p
o = eMeMop .
The generators of the Lorentz group in the spinor representation are given by

1

o = 7 (080" — gt5he) (A.4)
. 1 . .

=pre T Dpoo Vo zvee

oy = 4(0 Oop— 0 Uaﬁ). (A.5)

We use the following spinor summation convention:

PX = PXa = —Pax” = X"Ya = x¥
VX = YaX® = Ve = XV = ¥ (A.6)
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We define complex conjugation on Weyl spinors as

Wa) =t (%) =197 (A7)

il

that implies o ~ _
(x¥)" = (X"¥a)” = YaX”™ = ¥X = X¢. (A.8)

Integration in superspace is defined as follows

/dO:O

/ a6 = —1 (A.9)
We also define the following products of the N = 1 gauge multiplet and the M =1

Weyl multiplet

W? = Wew, =-W,W¢, (A.10)
G2 = G*P1GYp,, CopaG™ 5 = —GspgG, = ff‘zﬁc;?

In the main text, the fields have been sometimes rescaled by factors such as v 327
this is explained throughout the text.



Appendix B

Estimates of Connected Part of
Correlators

In this Appendix we give, following [12] an estimate of the connected part of the gauge
theory correlators in an A' = 1 gravitational background. This analysis complete the
study of correlators at genus one performed in Chapter 3.

In the absence of gravity correlators of gauge invariant operators factorize in the
chiral ring [8]. This factorization enabled one to show that the loop equations satisfied
by the resolvent on the gauge theory agreed with the loop equations of the matrix model
in the large N limit. On the matrix model side factorization in the loop equations was
due to the the large IV limit. However the correspondence of the gauge theory with
the matrix model proposed by Dijkgraaf and Vafa in [1] goes beyond the large N
approximation. If the A = 1 gauge theory is placed in a background gravitational field
then the gravitational corrections to the F terms of the gauge theory is of the form

r, = / dizd20G2F (), (B.1)

The Dijkgraaf and Vafa proposal states that the one can calculate F; from the genus
one diagrams of the corresponding matrix model. It has been shown in [10] that the
modification of the chiral ring in the presence of gravity allows the computation of
the gravitational corrections to the F-term. The gravitational corrections enter at
genus one on the gauge theory side and they reduce to the genus one diagrams of the
corresponding matrix model. This implies that the loop equations of the gauge theory
would not factorize in presence of gravity, as the loop equations of the matrix model do
not factorize at genus one. Therefore a priori we expect that gauge invariant operators
do not factorize in the presence of gravity. In this section we estimate the gravitational
corrections to the connected parts of various correlators that can appear in the loop,
equations using the deformation of the chiral ring in presence of gravity (3.8).

To estimate the gravitational corrections to the F-term obtained by integrating out
the chiral multiplet we require the two point function the chiral scalars (®®). This is
obtained after integrating out the antichiral scalar and it is given by

m

| Sz —)2(0—0) (B2
O IDW, - WD, F . & T 0=6) (B2

<(I)($7 9)¢($lv 9,» =

105



106 APPENDIX B. ESTIMATES OF CONNECTED PART OF CORRELATORS

This propagator in the presence of a gravitational background was derived in [26] and
in writing the above equation we have assumed that the gravitational background is
on shell which allows one to set the other terms which occur in the propagator to
zero, O in (B.2) stands of the full gauge and gravitational covariant derivative. The
action of W, is dictated by the representation of ®, in this paper we will restrict
ourselves to the adjoint action. The delta functions in (B.2) refer to the full covariant
delta function in curved superspace. In order to obtain the leading estimates for the
connected component of various correlators due to the modification of the chiral ring it
is sufficient to use the free d’ Alembertian operator and a constant gaugino background.
We argue this as follows, we can expand the propagator of (B.2) in a weak field as

—O0+iD*W, +mm —0Og +iWeD, + mm '

M 1

0-—0ad
+ —DD+iW°‘Da+mm( 0)——E10+ﬂ/V°‘Da+mm +

here g refers to the free d’Alembertian operator. We have also dropped the terms
D*W,, in (B.2) as we have considered a covariantly constant gaugino background. From
the expansion we see that the corrections in using the free d’ Alembertian operator in
the propagator always occur with the factor (O — Og), which is proportional to the
gravitational background and therefore subleading to the estimate obtained using the
free d’ Alembertian operator in the first term. One has to make a similar expansion
for the covariant delta function in (B.2) and again one can see corrections in using the
flat space delta function are subleading. However we will see later that if there is no
gravitational contribution form the deformed chiral ring the leading estimate for the
connect part of correlators arise from corrections in the propagator due to the presence
of the full covariant O and the covariant delta function. For the free d’Alembertian
operator in the propagator it is possible to go over to momentum space and to write a
Schwinger parameterization of the propagator as follows.

(®(z,0)®(c,8)) = / dsd*pd?me?===) g7 P+ W Tatmm) (B.4)

where ¢ = iD®. In the above equation we have restricted to the superspace variable
6 to be the same at z and z’ as we will be interested in correlators at the same point
in the superspace variable . We will now use this propagator and the modified chiral
ring (3.8) to make estimates for the connected part of various correlators. The modified
ring allows more than two insertions of W, in a given index loop, using the identities
in (3.11) such contributions can be converted to gravitational corrections. At this
point one might wonder if contributions to the connected diagrams of gauge invariant
operators in presence of a gravitational background are in contradiction with the result
found in [89]. There it was found that on an arbitrary Kéhler manifold gauge invariant
operators of the N = 1 theory factorize. The background considered in [89] was entirely
bosonic, and we find that the estimates of contribution to the connected diagram indeed
vanish for a purely bosonic background; thus there is no contradiction with [89]. We
will indicate this as we evaluate the estimates of various correlators.
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The various operators involved in the correlators of interest are those of equation
(2.34) that we recall here

R(z2)y = _3217T2 <~Tf2@>ij’ R(z) = Tr R(2)
el = e (105), el =T
T(2)i; = (Z—”}E) S TE=TTE (B.5)

The contour integrals of R, w, and T" around ¢-th branch cut define the gaugino bilinear
Si, the U(1) gauge field wa; and N; respectively in U(NV;) subgroup of U(N) as in [8].
The fact that we are here restricting the background gauge field to be in SU (N) rather
than U(N) implies that ), we; = 0. The chiral ring relation G?w4(z) = 0 implies that
G*wa,; = 0 for all 4.

We first consider estimates of the connected part of two point function, we will
discuss in detail the estimate for the follow correlator

(R(z,z,0), R(w,y,8)), (B.6)

where the subscript stands for the connected part and out line the derivation of the
estimates for the other two point functions. The various contribution to this correlator
“in (4.74) can be found by expanding in z and w, by definition of the connected correlator
the expansion starts of with the power 1/z?w?. Let us focus on a Feynman diagram
cons{iéting of [ loops, there will be /4-1 bosonic and fermionic momentum integrations in
this diagram. The extra momentum integral comes from the final Fourier transform to
convert to the position space representation for the above correlator. We can organize
this diagram into index loops due to the adjoint action of W,. The fermionic momentum
integral forces us to bring down 2(I + 1) powers of W from the propagator in (B.4).
To obtain the leading gravitational correction we would like the number of index loops
to be as large as possible so that we can avoid having more than two W’s in a given
index loop. The number of index loops 7 and the number of loops are related by
[ = h —1+ 2g, where g is the genus of the diagram. For a given number of Feynman
loops the number of index loops is largest for genus zero, thus the leading estimate to
the connected graph arises from the planar diagram. For a planar diagram we need
to saturate the fermionic momentum integrals by bringing down 2k W’s. This can be
done by inserting W? in h index loops. We still have two more external W2 in (B.6).
This can at best be inserted in two different index loops. Thus we have two index loops
with (W?)? insertions. Using the identities in (3.11) we see that each of them reduces
to G*W?2. Thus there is a term proportional to G*W? on one of the index loops. Note
that if one had a purely bosonic background both G and W would start at @ in the
superspace expansion, thus G*W? would vanish in agreement with [89]. In fact G4W?,
as is trivial in the chiral ring by (3.14), the leading estimate for the correlator in (B.6)
vanishes. In the next section it is shown that the two point function in (B.6) in fact
vanishes. Next we consider the following two point function

(R(z,z, ) wo(w, ', 6))., (B.7)
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we can apply the same counting again, finally in the planar diagram we will be left
with at best with one index loop with (W?)? and one with W?W, insertions. This
reduces to a G?W?2 insertion and a G?W, insertions, which implies that the leading
gravitational contribution to (B.7) is proportional to G*. Now we have seen in (3.13)
that G2W,, is zero in the chiral ring, thus this leading estimate in fact vanishes in the
chiral ring. Similarly, consider the correlator

(R(z,z,0)T(w,z',0))e. (B.8)

Here we will be left with (W?2)? in a single index loop, which reduces to G*W?. Thus
the above correlator is proportional to G?W?2. For a purely bosonic background we see
that this contribution again vanishes, consistently with [89]. For the case of

(w*(z,z, N)wa(w, 2, 0))e, (B.9)

we will be left with either WeW? insertion in two different index loops or a (W?)>?
insertion in a single index loop. The former case vanishes in the chiral ring, but the
latter case survives, with a contribution proportional to G*W?. For the following two
point function

(walz,z,0)T(w, 2, 0))e, (B.10)

there is a WeW? insertion in a single index loop, which is proportional to G?*W,. Note
that this leading contribution vanishes in the chiral ring due to (3.13) and also for a
purely bosonic background. Finally, we have the two point function

(T(z,z,0)T (w, ', 0)) (B.11)

For this case all the h index loops are saturated with one W? and there are extra
insertions of W? for any of the h index loops, as there is no external W. Thus we
have no contribution for the connected part of this correlator from the modified ring.
However we will see later that there is a direct gravitational contribution to the above
correlator. This can be seen roughly as follows: the d’ Alembertian in (B.2) carries the
covariant derivatives which can possibly contribute to the connected two point function,
as seen in the expansion of the propagator in (B.4). This fact can be further justified
by the evaluation of the 1-loop effective action obtained by integrating out the chiral
multiplet in the absence of the gauge field background, which gives a term proportional
to G2In(m) [26]. Therefore we expect the leading term in the correlator in (B.11) to be
proportional to G? and this will be shown explicitly in the next section. Again we see
that for a purely bosonic background G? is proportional to 62, which implies that the
lowest components of the superfields in (B.11) factorize consistently with [89] *. We
summarize the estimates of the various connected two point correlators in the table B
for future reference where S represents schematically any of the S;’s, and we have used
the chiral ring relations G* = 0 and G?w,; = 0.

Now we provide estimates for the fully connected part of various three point func-
tions. All the fully connected part of the three point functions are proportional to

1Note that the fact that the lowest component factorize cannot be used to promote it to a superfield
equation as the is no @, which preserves the background.
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Table B.1: Estimate of connected two point functions

at least G*, therefore using (3.14) they all vanish in the chiral ring. We discuss the
method of arriving at the estimates for one case in detail and just outline the results
for the others. Consider the following fully connected three point function.

(R(z,z,0)R(w, 2, 0)R(u, z", 6)).. -~ (B.12)

By the definition of the full connected three point function, the first possibly non zero
term of the expansion in z,w,u starts at 1/(zwu)?. Consider a contribution to any of
the correlators appearing in this expansion. A Feynman diagram consisting of [ loops
will now have [ 4 2 bosonic and fermionic momentum integrations. This is because a
three point function in momentum space will in general have two external independent
momenta, and then converting that to position space will involve these additional
momentum integrals. As we have argued earlier for the case of the two point function,
the leading contribution will be from the genus zero graphs. For a planar graph then
there are 2(h + 1) fermionic momentum integrals to be done. Therefore in addition
to“inserting h index loops by W?, at best four different index loops will have (W/2)2
insertions (we assume [ is large enough). Using the identities in (3.11) we see that
each (W?)? insertion is proportional to G?W?2. Thus the above three point function
is proportional to G%, but G is fermionic and has 4 independent components, thus G8
vanishes due to Fermi statistics. Similar arguments show that the following correlators
vanish

(R(z,z,0)R(w, ', 0)wa(u, z",0)). = 0, (B.13)
(R(z,z,0)R(w, ', 0)T (u,z",6)). = 0,
(R(z,z,)w*(w,z’, ) wy(u,z",0)) . = 0,
(R(z,z, )w*(w, ', 0)T(u, 2", 6)). = 0,

The first correlator in (B.13) is proportional to G® and the rest are proportional to
G®, thus they vanish due to Fermi statistics. Now consider the following three point
function

(w*(z,z,0)T(w,z’,0)T (u, 2", 0)).. (B.14)

We have seen that in a planar graph the fermionic momentum integrations force one to
insert at least one factor of W?2 in all of the h index loops and there is at least one index



110 APPENDIX B. ESTIMATES OF CONNECTED PART OF CORRELATORS

loop with a (WW?2)? insertion. Using the identities in (3.11) this can be manipulated to a
gravitational contribution proportional to G*W?2. For the above correlator there is one
more index loop with an insertion of W2W*® and again using the identities in (3.11),
this term is proportional to G*W¢e. Thus the leading gravitational contribution to the
three point function in (B.14) is proportional to G*W,, and thus it is zero in the chiral
ring using (3.13). Next we consider the following three point function

(R(z,z,0)T(w,z',0)T(u,z",0)),

As discussed above, since there are 2(h+1) momentum integration, all the A index loops
have at least a W? insertion with one having a (W?2)? insertions, the above correlator
has an external W2. Therefore the leading gravitational contribution arises with two
different index loops each with a (W?)? insertion and using the identities in (3.11) this
can be manipulated in the chiral ring to give a factor of G*. The following three point
function is also proportional to G*

(W*(z,z,0)Wy(w, ', 0)T (u, 2", 6))e,

Here again due to the momentum integrations there is already a factor of G2, the
two external W’s can be inserted in another index loop, but this loop already has an
insertion of W2, which gives rise to a contribution proportional to G?. Thus the three
point function in (B.15) is proportional to G*. Therefore the correlators in (B.15) and
(B.15) vanish in the chiral ring due to (3.14). Finally, let us consider the following
three point function

(T(z,z,0)T(w,z',0)T (u,z",0))..

As in the case for (B.11) we can not estimate the G dependence of this correlator solely
using the chiral ring. But from the fact that the correlator in (B.11) is proportional
to G2 and since there is at least one index loop with (W?)? insertion, we can arrive at
the conclusion that the above three point function will be proportional to G*. To sum
up we have examined all possibly non-vanishing full connected three point fully and
found them to be least proportional to G*, and therefore using (3.14) they vanish in
the chiral ring.



Appendix C

Other two Point Correlators and
Integrability Conditions

For completeness in this Appendix we derive the connected two point functions (T'(2)T (w)).
and (wa(z)T'(w))e. These are not used in evaluating the full one-point functions, but
serve to demonstrate the consistency of the constraints on the generating functional
given by the equations (4.69), (4.70) and (4.71). For convenience we define the following

moments

OF LM |jr=jg=0 = Mar(z, w) = (wa(2)T (w))e, (C.1)
0707 M |jp=ja =0 = Mry(z, w) = (T(2)T(w)).

“We proceed as in section 4.2, to determine the correlator (w,(2)T'(w)). We differentiate
“(4.70) by 8% and then set jr = j, = 0 which gives

(205 Mp — I1(2))Mar (2, w) + 205 Mp(w) Mo (2) + 205 Myr(z, w) (C.2)
2 - w
_,_S(F . G)a/dwljROg,w/)MT(w) _ G 8 (Ma(z) Ma( )) — 0

zZ —w

First note that the term containing the integral drops out as it involves a 8% Mrp(w)
which, using (4.79), is proportional to G*(F - G) and thus is trivial in the chiral ring.
The solution of the above equation can also be related to the function H(z,w), and
this can be seen as follows: differentiate (4.75) by 6., to obtain

(205 Mg — I(2))00H (2, w) + 26,05 M H (2, w) + 2boH (2, w) (C.3)
_16F? / dw'jrd, (5“H(Z’ wi = f;‘,H(w ’w)> 5,05 Mp = 0

Now we note that for the one point functions we have the following relations
8u0pMp = Ma(2), 6.05™ Mp = Ma(z,w) (C.4)

These relations are valid at the zeroth order, but it is sufficient for our purpose as
we will consider a solution which is proportional to G? . Therefore the higher order
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corrections are trivial in the chiral ring. By comparing (C.2) and (C.3) we see that the
ansatz
GZ

Mz (w, z) = ——?;*5QH(Z,w) (C.5)
solves (C.2), as it reduces to (C.3). To show this one uses (C.4), the fact that the
term containing the integral vanishes in the chiral ring for both the equations and that
the three point functions in (C.2) and (C.3) vanish with the ansatz of (C.5), as they
come with a higher power of F2. Finally, to obtain the correlator (T'(2)T(w)). we take
the derivative of (4.71) with respect to 0% and set jr = jo = 0, giving the following
equation

(C.6)
(205 Mp — I(2)) Mpr(w, 2) + 20305 MMy (2) + 2M*(2) Mar (2, w) + 205 Mrr(2, w)

A a G2 . w',z G2 M — M
R B Ml somo - [ 03O Mr(2) = T ( - T(W)> -

—w

On substituting the value of 'O%wl’z)MT(z) from (4.79) in the term containing the inte-
gral, we see that it is proportional to G* and therefore trivial in the chiral ring. We
can also substitute the solutions of 6%0%Mpg and Myt obtained in (4.79) and (C.5) in
the above equations. With this substitution it is easy to see that the solution of (C.9)
equation can be written in terms of H(z, w), by differentiating (4.75) by the operator
D + §2/2. We obtain

i (205Mp — 1(2))(D + %52)}1(2, w) + 2(D + %52)3§MRH(2, w) (C.7)

2O MidoH (2,) + (D SE)GRH (2,) + (D + 505 ™ M
H(z,w) ——H(w’,w)> _0

z—w

—16F2(D + %52)/dw,jRaw’ (
We also have the following relation at the zeroth order
1
(D -+ 552)8122MR = MT(Z), (08)

Again it is sufficient to use the relation at the zeroth order, since we will be interested
in a solution which is proportional to G2, therefore higher order corrections to the
above relation vanish in the chiral ring. From comparing (C.6) and (C.7) and using
the relations (C.4) and (C.8), we see that the following ansatz satisfies (C.6)
G2 1,
MTT(’LU, 2) == —-—é—(D + -2'5 )H(Z, w). (CQ)
Note that, with this ansatz, the terms containing the integral and the three-point
functions in both (C.6) and (C.7) vanish, so that they reduce to the same equation.
To verify that the equations constraining the generating functionals are consistent,
we obtain the correlators (R(2)wq(w))e, (R(2)T(w))e, (wa(2)T(w)). by a different route
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and show that they lead to the same results as discussed earlier. It is possible to obtain
these correlators by a different route, as partial derivatives commute and it is not
obvious that the results for the correlators (4.69), (4.70) and (4.71) will be the same.

First consider the correlator (R(z)wa(w))., in (4.76) we had obtained it by differen-
tiating (4.69) by d%; we could also obtain the same correlator by differentiating (4.70)
by 0%. Here we verify that we get the same result. On performing the differentiation
and setting jr = jo = 0 we obtain

(20RM — 1(2))8% Mo (z) + 20505 MpMa(z) (C.10)
20405 M, (2) + / dw'8jr(F - @)u0%™ ) Mu(w) + 8(F - G)aOF™ Mg = 0

The following ansatz solves the equation (4.77)
0p Moy (z) = 8(F.G)oH(z,w). (C.11)

To see this, note that with this ansatz the term containing 93505 MgM,(2) is trivial in
the chiral ring as it is proportional to F?w,, and that the term containing the integral
also vanishes. Therefore comparing (4.75) and (C.10) we see that the above ansatz
satisfies the latter equation. The solution is consistent with the one obtained in (4.77)
as H(z,w) is a symmetric function in z and w. Consider the two point function (RT),:
we now obtain this correlator by differentiating (4.71) with % and verify that the result
is consistent with (4.79). On performing the differentiation and setting jr = j, = 0 we
obtain

(205 — 1(2))8% M (z) + 20505 MM (z) + 202 M*(2) Ma(2) (C.12)
2 , 2
20805 ME + FEM® (2, 2) — %- / dw' jr0E 8y M — %_ogw Mg =0

The'combination of the second and third terms in the above equation is trivial in the
chiral ring as shown below

20505 MpMr(2) + 205M%(2)M,(z) (C.13)
= 2(16F°Mr(2) — 8(F - G)aM®(2))H(z,w) = 0
Here we have used (4.8). Now comparing (C.12) and (4.75), it is clear that the following

ansatz solves (C.12)
2

8% My (z) = ——%—H(z, w) (C.14)

The terms containing the integral and the connected three point functions are trivial
in the chiral ring, with the ansatz in (C.14) for both (C.12) and (4.75) as they come
with a higher power of F2. This solution is consistent with the one obtained in (4.79)
because H(z,w) is a symmetric function. Finally we consider the two-point function
(T'wg), we obtain this by differentiating (4.71) by 6% and setting jr = j, = 0

(205 MR — 1(2))Mur(w, 2) + 205 My (w) Mp(2) + 2M P (2, w) Mp(z) (C.15)
2 '
+20p Mo (2, w) + 820705 M |jrejo—0 — %- / dw'jr0%™) M (w)

._%2_31“ <Ma(zz = i\v/fa(w)> _0
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Again the second and third term of the above equation can be further simplified in the
chiral ring, by substituting the correlators from (4.77) and (4.83)

20% M (w) Mg (2) + 2M P (2, w) Mp(2) (C.16)
5)
= 2 <8(F @) oH (z,w)Mp(z) + ~3—G2H(z, w)M,(z) — 8F*DH (z, w)Ma(:)>
- —-§G2J\4fa(z)H(z,w)
Here we have used the chiral ring equations (4.8) and (4.11). Now comparing (C.15)
and (C.3) we see that the the solution can be written as
2

Myr(z,w) = —%—%H(w, z) (C.17)

The terms containing the three point functions and the integrals in (C.15) and (C.3)
vanish with the above solution. This concludes the proof of the integrability of the
constraints on the generating functional.
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