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Introduction

This thesis deals with two strongly nonlinear evolution Partial Differential Equa-
tion (in the following named P.D.E.) arising from mathematical physics. The
first one was introduced first by Fokas and Fuchssteiner [28] as a bi-Hamiltonian
equation, and then was rediscovered by R. Camassa and D.D. Holmas [13] as
an higher order level of approximation of the unidirectional shallow water wave
equation than the Korteweg-de Vries equation [38]. It can be written as

u(t,z) : RxR—R
(1)

Ut + 26Ug — Ugzr + SUUL = 2UgUzy + Ulzgy,

here the unknown u(t, z) represents the water’s free surface over a flat bed and
Kk is a constant related to the critical shallow-water wave speed (see also [37]
for an alternative derivation as an hyperelastic-rod wave equation). We refer
to this equation as to the Camassa-Holm equation, in honour to the first two
authors which found a physical meaning stemming from the Euler equation.

The second PDE we want to study is a system of hyperbolic equations with
quadratic source

(u1,...,un)(t z) : R x R? = RY
@)

(Ui)t -+ C;- V:,;'U,i = Zaijkujuk, foralli=1...N
ik

which is a discretization of the velocities in the plane R? for the Boltzmann
equation
flt,z,&) :RT xRExR¥ =R

Ouf(t,2,8) + & Vaf(t,2,8) = Q(f, /) t, z,8) -

The nonlinear nature of these equations leads to the possibility of blow up
in finite time either for the solution itself, or for the gradient of the solution.
The typical situation of blow up in finite time is given by the following Ordinary
Differential Equation (O.D.E.)

d 2

ZV= "V v(0) = v
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where v should be either the solution u or the gradient u,, possibly computed
along the characteristic curves of the equation. It is well known that the solution
of this equation has the behaviour =~ ﬁ, where T depends on the initial data
and it is the time of blow-up whenever vg < 0.

This situation can occur for the solutions of the Camassa-Holm equation in
the limit case x = 0. With this condition, the equation (1) may be rewritten in
nonlocal form as

1] _ uZ
ut-{-uuzz—i [e lml*(uz-}—?)}z. (3)

Since the H'norm is conserved for regular solutions, the L™ norm of u is
bounded, namely ||u|z= < ||ulz: < VE. Arguing as in the Steepening Lemma
(see [14]), in [20, theorem 4.1] the authors prove that smooth solution to (3) may
not be globally defined. Let start from an odd initial data @ € H*(R) which
has an inflection point in 0, %(0) < 0 and consider the evolution of the slope at
the inflection point s(t) = u,(¢,0) < 0. The computation of the function s gives
the differential inequality

ds 1
=< g2 = G,(0).
7 S 58 5(0) = 1-(0)

If 4, (0) is sufficiently small, we get

BSOS
s@) = 5(0) 2

and then the slope becomes vertical at finite time. However, the singularities
thus can occur only in form of wave breaking (see also [39, 18]), in fact even if
its slope can become unbounded at finite time, the solution remains bounded,
because of the inequality ||u(t)||r-~ < VE.

The aim of Part I of this thesis (see also [10, 29]) is to construct a continuous
semigroup of global solutions in two main cases:

1. on the space Hp,, of spatially periodic functions, locally in H!(R);
2. on a domain of H! functions with a certain exponential decay at z — %c0.

Result of existence of solutions can be found in [48, 49], and [17, 16] where the
authors added a small diffusion term to the right hand side of 3 and obtained
solution of the original equation as a vanishing viscosity limit. On the other
hand, in [7] was developed an alternative technique, which relies on a new set
of dependent and independent variables with the specific purpose to resolve all
the singularities. With this change of variable the solution can be obtained as
the unique fixed point of a contractive transformation. In Chapter 2 we present
yet another approach based on the Hamiltonian structure of the Camassa-Holm
equation. We shall construct the semigroup of global solution starting from



explicit solutions of the Camassa-Holm equation with initial condition in form
of multipeakon function

N
uo(z) = > pe vl
j=1

The motivation of this choice is given by the form of traveling wave solution
(see [13, 20, 21, 22]). Looking for solution of the equation (3) in the traveling
wave form u(t,z) = U(z — ct), with a function U that vanishes at infinity, one
obtains the function U = ce~!1®=¢! which is a peaked soliton (from this fact
derives the shortened term peakon). The multipeakon functions are stable, in
fact not only a single peakon subject to (3) evolves with this form, but also the
evolution of a superposition of traveling wave (e.g. initial data like up) remains
of the same shape

N
ult,z) = 3 py(t)elm 1,
j=1

The reader can see also [2] for a recursive reconstruction of the multipeakon
solutions, and [24] which prove that multipeakon solutions are orbitally stable,
i.e. stable under a general nature of perturbations.

In [33] the authors prove the existence of a global multipeakon solution
when the strengths p; are positive for all 1 = 1...N. In this case the crucial
fact is that no interaction between the peakons occurs, and then the gradi-
ent remains bounded, which yields existence and uniqueness of the coefficients
p1(t),...,pn(t) and ¢1(t),. .., qn(t) that are solutions of the Hamiltonian sys-

tem
N
i =Y _pelumal,
=y (4)
Pi=ps p_ p;sign(q; — g;)e” 14791,
g==1
with Hamiltonian H =37, . pipje 1l

However, a general initial data contains both positive and negative peakons,
as in the example of the peakon-antipeakon interaction: one positive peakon
with strength p, centered in —¢q, moves forward and one negative anti-peakon in
g, with strength —p moves backward. The evolution of the system produces the
overlapping of the two peakons at finite time t = 7, so that ¢ — 0 (see Figure
1).

There are infinitely many ways to extend the solution after the time 7 of the
interaction, for example the vanishing viscosity approach in [17, 16] singles out
the dissipative solutions. As far as the example of peakon-antipeakon interaction
is concerned, the vanishing viscosity approach selects the solution that, after
the time 7, is = 0: all the energy F is lost. In section 2.1 we shall construct
a conservative solution, i.e. a solution for which the quantity E is constant
for a.e. time t. At the interaction time the energy E = ||lu||%, is described
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t<T t=7

, 2
‘-L‘p y

Figure 1: Peakon-antipeakon interaction.

by a Dirac measure entirely concentrated at the single interaction point. After
the interaction, a positive and a negative peakon emerge, whose strengths are
uniquely determined by imposing the conservation of the total energy.

In Chapter 3 we shall discuss the issue of the uniqueness and the stability.

Stability. The multipeakon solutions form a continuous semigroup whose do-
main is dense either in H*(R) or in ngr. The main novel feature in our approach
is the construction of a metric J(-,-) on the space H' (or H},,) determined by
an optimal transportation problem. While the semigroup generated by (3) is
not eve continuous w.r.t. the H! distance, we show that it is Lipschitz contin-
uous w.r.t. our new distance functional J. The reader can see [47] for earlier
applications of distances defined in term of optimal transportation problems,
and [8], in which the authors recover a semigroup of dissipative solution for the
Hunter-Saxton equation [34] (see also [11] for a fixed-point approach for both
conservative and dissipative solutions).

The main well-posedness result is provided by a Gronwall-type lemma, stem-
ming from the inequality

%J(u, v) <C(t) - J(u,v)

whenever u and v are two multipeakon solutions (see Section 3.1.2).

Uniqueness. Example 3.1 in Section 3.5 shows that a solution of 3 need not
be unique. Roughly speaking, every shifted antipeakon-peakon couple is also
a conservative solution. A conservative solution can be characterized by an
additional linear transport equation, accounting for the conservation of the total
energy. It can be done by the following heuristic idea.

We can think that the absolutely continuous measure p;, which satisfies
du; = (u? 4+ u2)dL tends, as t — T, to a Dirac measure with support in 0.
We introduce thus a further equation for the measure p;, whose absolutely
continuous part is u? + u2, in the following way. Since whenever u? + u2 is
regular it satisfies the equation

u2 .
(W +ul); + [u(u® + uﬁ)]gC = {ug' — 2uelol (uz + Em-)] = f(u)
z
it suggests that u; provides a measure-valued solution of

Opp 4 (up)e = f(u). (5)
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Figure 2: Two particle interaction

Our result (Theorem 1.3) shows that every solution (u, u:) of (3)-(5), such that
the absolutely continuous part of y; has density u?+u2, must coincide with the
one provided by multipeakon approach.

Part II of the thesis is devoted to the analysis of blow-up for the discrete
Boltzmann equation (2). Such a equation is obtained by considering a rarefied
gas for which is supposed that the particles can move only along a finite number
of direction characterized by the vectors c¢i,...,cy. The unknowns u; repre-
sent, the densities of particles which travel at speed c;. By a collision, a pair
of incoming particles with speeds c;, ¢; is replaced by a new pair of particles
say ck, cg. The rate at which such collision occur is given by a;jzu;ur, The con-
«“centration u; is thus increasing (or at least is constant) when interact particles
< of speed different to c;, decreasing when an i—particle collides with someone

other. Then, the coefficients a;;x are non negative when j, k # i and negative
~when either j =i or k = 1.

If the initial data is suitably small, the solution remains uniformly bounded
for all times [4]. For large initial data, on the other hand, the global existence
and stability of solutions are known only in the one-dimensional case [3, 32, 45].
Since the right hand side has quadratic growth, it might happen that the solution
blows up in finite time. Examples where the L° norm of the solution becomes
arbitrarily large as t — oo are easy to construct [35].

In Chapter 5 (see [9]) we focus our analysis on the two-dimensional Broadwell
model (see, for example, [12, 46, 15] for a description of the model) and examine
the possibility that blow-up actually occurs in finite time. In this model the
permitted direction are

Cy = (1a1)) Co = (11 _1)7 C3 = (_17 _1)a Cq4 = (_171)

and the particles have a diamond-shape (see Figure 2).

As we will show with the theory developed in Chapter 4, since the equations
(2) admit a natural symmetry group (see Section 4.3, and [42] for a more general
theory), one can perform an asymptotic rescaling of variables and ask whether
there is a blow-up solution which, in the rescaled variables, converges to a steady
state. This technique has been widely used to study blow-up singularities of
reaction-diffusion equations with superlinear forcing terms [30, 31]. See also
[36] for an example of self-similar blow-up for hyperbolic conservation laws.
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Our main results show is an a-priori bound on the blow up rate in the L®®
norm. Namely, if blow-up occurs at time T, then one has

In | In(T —t)]

@l > 5 g

This means that the blow-up rate must be different from the natural growth
rate ”u(t) “Lw = O(1)- (T —t)~! which would be obtained in case of a quadratic
equation @ = C u?.

In the final section of Chapter 5 we discuss a possible scenario for blow-
up. The analysis highlights how carefully chosen should be the initial data, if
blow-up is ever to happen. This suggests that finite time blow-up is a highly non-
generic phenomenon, something one would not expect to encounter in numerical
simulations.



Part 1

The Camassa-Holm
equation






Chapter 1

The Camassa-Holm
equation

The Camassa-Holm equation
Ug + 2KUz — Uget + 3UUs = 2UglUse + Ulgee

arises from a higher order level of approximation of the asymptotic expansion of
the Euler’s equations for a shallow water wave theory. Here we do not enter into
deep details of the interpretation of such a equation, for the physical motivations
we refer to [13], [22], [23], [37].

In the following we focus our attention and we refer to Camassa-Holm equa-
tion the previous equation with x = 0.

1.1 Non-local formulation

The Camassa-Holm equation can be written as a scalar conservation law with
an additional integro-differential term:

ug + (u?/2)s + Po =0, (1.1)

where P is defined as a convolution:
1 2
P(z) = 56"“ * <u2 + %) . (1.2)

Earlier results on the existence and uniqueness of solutions can be found in [48],
[49]. One can regard (1.1) as an evolution equation on a space of absolutely con-
tinuous functions with derivatives u, € L2. In the smooth case, differentiating
(1.1) w.r.t. z one obtains

2
Ugt + Wlbgg + U3 — (u2+%ﬂ>+P=0. (1.3)
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Multiplying (1.1) by u and (1.3) by u, we obtain the two conservation laws with

source term
u? w o up P 1.4
(%), (F+er) =wr -4

2 2 3
(%) +(=-%) —-wr. (15)
13 T

As a consequence, for regular solutions the total energy

E(t) = / [W(t,z) +u2(t, z)] dz

remains constant in time.

As in the case of scalar conservation laws, by the strong nonlinearity of
the equations, solutions with smooth initial data can lose regularity in finite
time. For the Camassa-Holm equation (1.1), however, the uniform bound on
luz||z2 guarantees that only the L* norm of the gradient can blow up, while
the solution v itself remains Hélder continuous at all times.

In order to construct global in time solutions, two main approaches have
recently been introduced. On one hand, one can add a small diffusion term in
the right hand side of (1.1), and recover solutions of the original equations as
a vanishing viscosity limit [17, 16]. An alternative technique, developed in [7],
relies on a new set of independent and dependent variables, specifically designed
with the aim of “resolving” all singularities. In terms of these new variables,
the solution to the Cauchy problem becomes regular for all times, and can be
obtained as the unique fixed point of a contractive transformation.

In the present chapter, we implement yet another approach to the Camassa-
Holm equation. As a starting point we consider all multi-peakon solutions, of
the form

N
u(t,) = 3 pi(t)e= 1. (16)
i=1

These are obtained by solving the system of O.D.E’s

G = ij€_|4i_Qj[,

. ! . lai—g] (1.7)
Bi = > pipjsign(q —g;)e 19Ul
J#i

It is well known that this can be written in hamiltonian form:

0
q"i = H(p7 q)a 1
. Op; H(p,q) = 9 Zpipje"IQi—le .
i = —8q,H(p, ), ij

If all the coeflicients p; are initially positive, then they remain positive and
bounded for all times. The solution v = wu(t,z) is thus uniformly Lipschitz
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continuous. We stress, however, that here we are not making any assumption
about the signs of the p;. In a typical situation, two peakons can cross at a
finite time 7. As ¢t — 7— their strengths p;, p; and positions g;, g; will satisfy

pi(t) — +oo,  pi(t) = —o0,  pi(t) +ps(t) =P, (1.8)

for some p,q € R. Moreover, H“z (t)” 1w —* 00. In this case, we will show
that there exists a unique way to extend the multi-peakon solution beyond the
interaction time, so that the total energy is conserved.

Having constructed a set of “multi-peakon solutions”, our main goal is to
show that these solutions form a continuous semigroup, whose domain is dense
in the space H!(R). Taking the unique continuous extension, we thus obtain a
continuous semigroup of solutions of (1.1), defined on the entire space H'.

One easily checks that the flow map ®; : u(0) — u(t) cannot be continuous
as a map from H! into itself, or from L? into itself. Distances defined in terms of
convex norms perform well in connection with linear problems, but occasionally
fail when nonlinear features become dominant. In the present setting, we con-
struct a new distance J(u,v) between functions u,v € H', defined by a problem
of optimal transportation. Roughly speaking, J(u,v) will be the minimum cost
in order to transport the mass distribution with density 1 + u2 located on the
graph of u onto the mass distribution with density 1-v2 located on the graph of
v. See Section 3.1 for details. With this definition of distance, our main result
shows that

%J(u(t), 'u(t))' < C-J(ult), v(t))

for some constant C and any couple of multi-peakon solutions u,v. Moreover,
J(tn,u) — 0 implies the uniform convergence ||u, — u||r~ — 0. The distance
functional J thus provides the ideal tool to measure continuous dependence on
the initial data for solutions to the Camassa-Holm equation. Earlier applications
of distances defined in terms of optimal transportation problems can be found in
the monograph [47]. The issue of uniqueness of solutions must here be discussed
in greater detail. For a multi-peakon solution, as long as all coefficients p; remain
bounded, the solution to the system of ODE’s (1.7) is clearly unique. For each
time ¢, call u; the measure having density u?(t)+u2(t) w.r.t. Lebesgue measure.
Consider a time 7 where a positive and a negative peakon collide, according to
(1.8)-(1.9). Ast — 7—, we have the weak convergence u; — p, for some positive
measure i, which typically contains a Dirac mass at the point §. By energy
conservation, we thus have

/ [w? (7, 2) +ul(r, z)] dz+p. ({7}) = tggl_/ [u?(r, ) +ul(r,z)] dz = BE(T—).

There are now two natural ways to prolong the multi-peakon solution beyond
time 7: a conservative solution, such that

B(t) = / W2 (t, 2) + w2 (t, 2)] dz = B(r—) t>r,
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or a dissipative solution, where all the energy concentrated at the point 7 is lost.
In this case

E(t) = / [W?(t,z) + u2(t,z)] dz = B(r—) - p. ({q}) t>T.

For ¢ > 7, the dissipative solution is obtained by simply replacing the two
peakons p;, p; with one single peakon of strength P, located at x = §. On the
other hand, as we will show in Section 2.1, the conservative solution contains two
peakons emerging from the point §. As ¢ — 7+, their strengths and positions
satisfy again (1.8), while (1.9) is replaced by

a(t) — a7, g¢;i(t)— 4, qi(t) > g;(t) for t> 7. (1.10)

The vanishing viscosity approach in [17, 16] singles out the dissipative solutions.
These can also be characterized by the Oleinik type estimate

ug(t,z) < C(1 +t_1) ,

valid for ¢ > 0 at a.e. z € R. On the other hand, the coordinate transformation
approach in [7] and the present one, based on optimal transport metrics, appear
to be well suited for the study of both conservative and dissipative solutions.

In the following chapters we focus on conservative solutions to the Camassa-
Holm equation. We start with the study of the spatially periodicity because
it allows us to concentrate on the heart of the matter, i.e. the uniqueness and
stability of solutions beyond the time of singularity formation. It will spare us
some technicalities, such as the analysis of the tail decay of u,u; as z — +oo.
In this respect we shall discuss the decay analysis of solutions in Section 3.2 of
Chapter 3.

The main ingredients can already be found in the paper [8], devoted to
dissipative solutions of the Hunter-Saxton equation.

As initial data, we take

u(0,z) = 4(z), (1.11)

with % in the space H' of absolutely continuous functions u with derivative
uz € L2 To fix the ideas, we assume that the period of a spatially periodic

function in the space ngr is 1, so that
u(z + 1) = u(x) zeR.
On H],, we shall use the norm

”““Héer - (/01 Iu(x)IQ dg:_l_/ol luz(x)lz da:) 1/2.

1.1.1 The main results

In this section we state the main results of Part I of this thesis. We shall write
them for the spatially periodic case.
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Theorem 1.1. For each initial data @ € HY_, there exists a solution u(-) of the
Cauchy problem (1.1), (1.11). Namely, the map t — u(t) is Lipschitz continuous
from R into L2, satisfies (1.11) at time t = 0, and the identity

per’

d
EZU = —Uly — Py (1.12)

is satisfied as an equality between elements in Lf,er at a.e. timet € R. This
same map t — u(t) is continuously differentiable from R into LB, and satisfies
(1.12) at a.e. time t € R, for all p € [1,2[. The above solution is conservative

in the sense that, for a.e. t € R,

1 1
E(t) = /O [W3(t,2) + w2 (t, 2)] dz = B = /0 [@(c) + 82(2)] do.  (1.13)

Theorem 1.2. Conservative solutions to (1.1) can be constructed so that they

constitute a continuous flow ®. Namely, there exists a distance functional J on
Hl  such that

per

1
o e=vlry, < J(u0) <C-flu—vlm, (1.14)

for all u,v € H;er and some constant C uniformly valid on bounded sets of

" Hl... Moreover, for any two solutions u(t) = @@, v(t) = ®: of (1.1), the
map t — J(u(t), v(t)) satisfies

J(u(t), @) < Ci -], (1.15)
J(u(t), v(t)) < J(@,7)- M (1.16)
for a.e. t € R and constants C1,Ca, uniformly valid as u,v range on bounded

sets of H},, .

The previous results can be extended to the following space of functions
which exponential decay: let @ €]0, 1|, then

Xo = {u e HR) s.t. /R[uz(x) + uf,(cc)]e"‘lwl} .

It is not so restrictive one can think, in fact the peakon functions (see Section
2.1), the natural solitary waves of the Camassa-Holm equation which have the
soliton properties, belong to it.

Somewhat surprisingly, all the properties stated in Theorem 1.1 are still
not strong enough to single out a unique solution. To achieve uniqueness, an
additional condition is needed. '
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Theorem 1.3. Conservative solutions t — u(t) of (1.1) can be constructed with
the following additional property:

For eacht € R, call py the absolutely continuous measure having density u?+u?
w.r.t. Lebesgue measure. Then, by possibly redefining p; on a set of times of
measure zero, the map t — L, is continuous w.r.t. the topology of weak conver-
gence of measures. It provides a measure-valued solution to the conservation
law

wy + (vw), = (u® — 2uP™); .

The solution of the Cauchy problem (1.1), (1.11) satisfying the properties
stated in Theorem 1.1 and this additional condition is unique.

In Section 2.1 we derive some elementary properties of multi-peakon solu-
tions and show that any initial data can be approximated in H;er by a finite
sum of peakons. In Section 3.1 we introduce our distance functional J(u,v) and
study its relations with other distances defined by Sobolev norms. The conti-
nuity of the flow (1.1), together with the key estimates (1.15)-(1.16) are then
proved in the following two sections. The proofs of Theorems 1.1 and 1.2 are
completed in Section 3.4. The uniqueness result stated in Theorem 1.3 is proved
in Section 3.5. As a corollary, we also show that in a multi-peakon solution the
only possible interactions involve exactly two peakons: one positive and one
negative. In particular, no triple interactions can ever occur.

Now we dedicate the rest of this chapter to exhibit an example which will be
the start point of the technique we shall develop in Chapter 3. In particular, we
shall see how the optimal transportation theory can be useful nonlinear equation
like Camassa-Holm equation. The key point is to define a Monge-Kantorovich
like metric for a space of Radon measures. In Section 1.2 we start from the
Hunter-Sazton equation [8] for give a brief heuristic idea for how this technique
is involved in.

1.2 The Hunter-Saxton equation

The Hunter-Saxton equation describes the propagation of waves in a massive
vector field of a nematic liquid crystal. Since the physical interpretation and its
derivation are beyond to the description of this thesis, we refer to [34, 8]. It can
be written in a non-local formulation as a conservation law with a source term:

vt (%) ([ - [Dueevazews  am

e t > 0 is the time variable,

where
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e 1 € R is the space variable in a reference frame,

e u(t,z) € R is related to the orientation of the liquid crystal molecules in
the position z at time t.

Suppose that there exists a smooth solution to (1.17). To the Hunter-Saxton
equation we can associate the following two conservation laws

(u:c)t + (uuz)x = u—;‘y (1.18)
(u2)e + (vul)s =0, (1.19)

which are obtained by computing the derivative of the equation (1.17) w.r.t.
the = variable and then multiplying it by u, to achieve the second one.

A further conservation law is satisfied by the source term Q*(¢, ). Since for
smooth solutions (1.19) yields the conservation of the energy

Ey=E(t) = /}Rui(t, z)dx

the function Q™ can be expressed in the following way

E 1 [*
Q(t1m) = —TO + 5/ U’i(ta y) dy

By deriving w.r.t. ¢ we obtain

Qi +uQz = 0. (1.20)

The function Q™ is constant along the characteristic curves &,(¢,y) defined b,
Yy Yy

el =uh b)), GO¥) =y (1.21)

Let us remark that the previous equations holds for all the time ¢ in which
is a classical solution. It can be seen by the method of characteristics that if
ug % 0 is a smooth initial data and for some zp we have ug,(zo) < 0, along its
outgoing characteristic the gradient blows up in finite time. Since the quantity
E(t) remains bounded also at the time of blow up, we can think that a finite
amount of energy will be concentrated at the point of blow-up. In [8] the authors
focus their attention on solutions that dissipate this quantity of energy. As far
as the conservative solution is concerned, equation (1.19) will be satisfied in
sense of measures, i.e. it means that thinking at a measure p; with absolutely
continuous part which satisfies du; = u2(t,-)dL (here with £ we indicate the
Lebesgue measure), it satisfies

gty + Oz (upe) =0 in D'.

To find a conservative solution to the Cauchy problem (1.17) with finite energy
smooth initial condition up means then to find a couple (u(t), u¢) which satisfies



18 The Camassa-Holm equation

the following system of conservation laws: let 1o be the absolutely continuous
measure w.r.t. Lebesgue measure defined by dug = uo2dL, then

2 1 1
O + Oz (%‘) = _Zﬂt(R) + é‘,ut(] — 00, :L‘]) u(07m) = ﬂ(m)v (1_22)
Opas + O (ups) =0 Htl—o = Ho-

Due to the nonlinearity of the problem, as shows [8, Example 2] for the dis-
sipative solution of the Hunter-Saxton equation, we can aspect that the usual
“strong” distance stemming from convex norm is not useful in order to construct
a continuous semigroup of solutions. In the following section, we give a sketch
of the construction of a metric which yields continuity of solution with respect
to the initial data.

1.2.1 A transportation map

Let uo and v be two initial data whose associated measures u§ and u2 have
the same total mass pd(R) = p2(R). Suppose that such a initial data are not
constant in any interval of R, so that the functions Q*° and Q™ are absolutely
continuous and increasing.

Figure 1.1: The map ¥,

We can thus define a continuous map ¥y for which at every = € R it asso-
ciates the unique point ¥o(z) such that

Q% (z) = Q™ (Yo(x)) (1.23)

(see Figure 1.1). Let us Remark that the ¥y is an increasing function, in fact
since Q*° and 0 are increasing, then z < y implies

Q™ (Yo(z)) = @™ (x) < Q™ (y) = Q™ (To(y)),

so ¥o(z) < ¥o(y) holds.
Now we want to see how the map ¥ evolves in time. Since by (1.20) Q¥,
Q" are conserved along the caracteristic curves (1.21), the equalities

Q" (t, &u(t, 7)) = Q™ (z), QV(t, &t z)) =Q"(x) forallz€R
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yields the definition of the transportation map
y(6u(t, 7)) = &u(t, To()). (1.24)

1.2.2 The stability issue of a system of ODE

As in [7, Section 3], we compute a change of variables in order to obtain a system
of ODE with Lipschitz vector fleld. Let suppose that the initial data ug is in
H(R). Let set

w = 2 arctan(u,),

then w belong to the unit circle T = [0, 27|, with 0 and 27 identified. Computing
the derivative of w along the characteristics, having in mind the equation (1.18)
for u; we have

(uz)t + wl(ug)g —u? —tan?(w/2)

d _ _ _ w2
(—i—t—w(t,'s(t,y)) =2 T4z “ 15 T Thtan?(w/2) sin®(w/2).

It is thus natural to consider the new unknowns which take values in the space
RZx T,
&ult,y)
X = Xu(t: y) = 'U,(t,fu(t,y))
wu(t7£U(t»y))

and write the corresponding Cauchy problem

; u(t, 60(6,9))
FXty) =1 @ ¢&ty) | =fXCy) (1.25)
wu(t, gu(ta y))

with initial data

Y
wuwz( uo(y) )- - (.26)
2 arctan(uo,(y))

We remark that by definition, Q" is far from to be Lipschitz continuous, then
we cannot suppose that in the previous system of ODE the function f is a
Lipschitz vector field. Hence, to overcome this lack of Lipschitz continuity, we
shall make use of the function ¥; introduced in 1.2.1. Let X* and X" be two
solution of the Cauchy problem (1.25)-(1.26), corresponding to the initial data
ug, v respectively. We allow ourselves to make an abuse of notation by defining
the map V; in the following way:

T3 (X*(t,y)) = X"(t, o(y))-

We gain a sort of Lipschitz continuity for the function f if we restrict it on
the manifold located by ¥;. Let us compute the difference of the vector field f
evaluated in the points X*(¢,y) and ¥(X"(¢,v)).

’Ll,(t, gu(ta y)) - ’U(t, ‘E’u(tv lI’O(y)))
|F(X(ty) — F(R(X ) = || Q" &u(ty) — QV(E & (E, Yo(y)))
w‘u,(ty &u(t; y)) - w‘v(t7 g’u(ty ‘I’O(ZJ)))
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since by definition of the map W¢ and by the equation (1.20) we have the identity
Q*(t,&u(t,y)) — QY (¢, &u(t, To(y))) =0
we deduce the following estimate for the vector field f
|F (X (2, 9)) = F(Te(XH(E9)))] < [XM(8y) ~ XU (2, 9)]-

From the previous inequality we can prove that the difference of the two solutions
X*(t,y) and X" (¢, ¥o(y)) can be estimated by the initial data. In fact, Gronwall
Lemma applied to the inequality

() = X8 Bo(u))] < 1X(0,) — X¥(0, Wo(y)
+ [ 1K s00) = FOX s, Wo(w) ds
0
yields the estimate
X (t, ) — X7 (2, To(y))] < X (y) — X¥ (To(y))]

The previous inequality suggests how to introduce a new distance in order to
obtain a stability result for solutions of the Hunter-Saxton equation. For every
u € H'(R) let define the measure

p) = [ u2(z) do
{z€R: (z,u(z),w(z))€A}

for every Borel set A C R? x T. The function ¥y can be regarded as a trans-
portation map which transports the measure p* into the measure p¥. The
distance we shall introduce in Chapter 3 will be thus a sort of Wasserstein
distance between measure [47].



Chapter 2

Comnservative multi-peakon
solution

“] was observing the motion of a boat which was rapidly drawn
along a narrow channel by a pair of horses, when the boat suddenly
stopped - not so the mass of water in the channel which it had put
in motion; it accumulated round the prow of the vessel in a state
of violent agitation then suddenly leaving it behind, rolled forward
with great velocity, assuming the form of large solitary elevation, a
rounded, smooth and well defined heap of water, which continued
its course along the channel apparently without change of form or
diminution of speed. I followed it on horseback and overtook it still
rolling on at a rate of some eight or nine miles an hour, preserving
its original figure some thirty feet long and a foot to a foot and a
half in height. its height gradually diminished and after a chase of
one or two miles I lost it in the windings of the channel. Such in
the month of August 1834 was my first chance interview with that
singular and beautiful phenomenon which I have called the Wave of
Translation...”

John Scott Russell, 1844

It was Scott Russell [44] who introduces the concept of solitary waves to indicate
no more than wave which propagate without change of form and have some
localized shape (see also, [26, 27]). His experiment is described in fig. 2.1. For
more than sixty years it was only a pure scientific curiosity, until Korteweg
and de Vries [38] derived the equation for the propagation of waves in one
direction on the surface of a shallow canal. The profile of the travelling wave
solution with permanent shape found by Miura [40] is precisely the shape of
the wave which Scott Russel observed in his experiments. The term soliton is
substantially different from solitary wave, it was introduced in 1965 by Zabusky
and Kruskal [50] to indicate waves that whenever collide each other they do not
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T~

Figure 2.1: Diagram of Scott Russell’s experiment to generate a solitary wave

break up and disperse, but remains almost identical to a solitary wave solution.
In this chapter we investigate the shape of solitary waves for the Camassa-Holm
equation (1.1).

2.1 Multi-peakon solution in the real line

In this section we shall construct a solution of the Camassa-Holm equation
starting from an initial condition ug of the form

N
’u,o(l‘) = ije—lz_‘b't .
ji=1

The motivation of this choice is given by the shape of traveling wave solution
(see [13] and [20, Example 5.2]). Looking for solution of the equation (1.1) in
the traveling wave form u(t, z) = U(z — ct), with a function U that vanishes at
infinity, the limit of kK — 0 leads to the function U = ce~®~¢t|, This is not a
solitary wave in the sense introduced by Scott Russell because of the presence of
the cuspid at the position z = ct. However, the evolution of an initial data like
ug remains of the same shape [13, 24]. It is a superposition of peaked solitary
waves, which evolves as

N
'U:(t, a)) = ij(t)e_lz”Qj(t)[ .
J=1

Hence we term peakon a peaked solitary wave to emphasize the soliton properties
of such a function.
As long as the classical solution of the problem

N
¢ = ije_!q"_q"l ,

—

=y (2.1)

Pi=pi ) pjsign(g; — g;)e %%
Jj=1
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exists, the solution of this system gives the coefficients p(¢t) = (p1,...,pn) and
q(t) = (q1,-- ., qn) for the solution u(t,z) to the Camassa-Holm equation. Let
us observe that the previous system can be viewed as an Hamiltonian system
with Hamiltonian function H(q, p) = % >, p pipje”1%ail,

In [33] the authors prove the existence of a global multipeakon solution
when strengths p; are positive for all i = 1...N and the convergence of the
sequence of multipeakon solution. If wg is an initial data such that the dis-
tribution ug — uggg is a positive Radon measure, there exists a sequence of
multipeakons that converges in L% (R, HL .(R)). In this case the crucial fact is
that no interaction between the peakons occurs, and then the gradient remains
bounded. However, a general initial data contains both positive and negative
peakons, as in the so called peakon-antipeakon interaction: one positive peakon
with strength p, centered in —¢, moves forward and one negative anti-peakon
in ¢, with strength p moves backward (fig. 2.2). The evolution of the system
produces the overlapping of the two peakons at finite time ¢ = 7, so that g — 0.
The conservation of the energy E = H(q(t), p(t)) yields

E= lim p2(1 — e~ 2dly, (2.2)

and then the quantity p blows up in finite time. At the point (7,0) occurs
thus a singularity for the solution u. To extend the solution also after the
interaction time with a solution which conserves the energy E we can think that
at the interaction point an antipeakon/peakon couple emerge, the first, negative,
moving backward and the second, positive, moving forward with coefficients
(—q,—p) and (g, p). According to the conservation of the energy, the choice of ¢
and p must satisfy (2.2) as t — 7. It yields a change of variables which resolves
~ the singularity at (7, 0)

¢ =p?q w = arctan(p)

with this choice, the Hamiltonian system leads to the ODE

(o) =rew (§)o=(

[NEN O]
N——’

with

f(Gw) = < SinQ(w)e_CCth W)

[1 — g=¢eot’ (@) _ ¢ cot? (w)e‘gco“z(‘*’)] tan3(w) )
and f is a Lipschitz vector field in a neighborhood of the point (%, %). The
solution (¢(t),w(t)) of this problem provides then the unique couple (g(t), p(t))
which coincides with the classical solution of the Hamiltonian system for £ < 7
and extends it for £ > 7.

This example suggests the way to construct the multipeakon solution when-
ever an interaction between peakons occurs (see also [10] for an “energetic”
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t<T

.....................................................................................................

30 O~ -

Figure 2.2: Peakon-antipeakon interaction

motivation). Suppose that two or more peakons with strengths p1,...,px an-
nihilate at the position g at time 7 and produce a blow up of the gradient u,.
The conservation of the energy yields that there exists and is positive the limit
0]
e; = lim u2(t,z) dz
t=TT JE ()

where £~ and £* are the smallest and the largest characteristic curve passing
through the point (7,7). Assume that after the interaction two peakons appear
with strengths p;, p2 and placed at the position g1, g2. Let consider the change
of variables

z=p2+p1 w=2arctan(pz —p1) N=@+aqa (= @—m)*(ez—q),
then the system (2.1) turns out to be

W= — [sin(w) cosh (Wgﬁm) + 2zsinh (m)] LY premeton
i2k+1

+[2% cos?(w/2) — sinQ(w/Q)]e_t_a??gWﬁ

= — {% sin(w) sinh (——Q——Q tan2<w/2)> + z cosh (_g—’uan?(w/m)} : _>§:+1pje_qj
iz

= z[l4e @w/AD]+2cosh (ﬁarTc(wm) 2, pjeT 9
J>k+1
__25_

. z2 — —
(= 15/2)6 tanZ(w/2) — tan3(w/2) (1 — ¢ tanZ(w/z) — “tanz(cw/Z)) +

. tan®(w/2
+2¢ [Smh (Ztanzc(w/Z)) : ( = gw/ s - tan(fu/z)) +

— Cosh m_zg(w_/zj . . Z p] e_Qj +77/2
j2k+1
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pi= pe=%tn/2 [z cosh (m) + tan(w/2) sinh (W)] +

+ X pipjsign(g; — gj)e 1]
Py

G = e autn/2 [z cosh <ﬁgn_§(w—/2)) + tan(w/2) sinh (ch(w/‘z‘j)] +

PRyl

which is a system of ODE with locally Lipschitz continuous right hand side that
can be extended smoothly also at the value w = w. The initial data become

k
an)=lm Yop)  wn =7 () =2 (=
i=1

pi(T) =tEI:1_Pi(t) q:(T) =££1~qi(t) i=k+1,...,N

Thus there exists a unique solution of such a system which provides a mul-
tipeakon solution defined on some interval [r,7’[, up to the next interaction
time. As we will show in Corollary 3.1, since Camassa-Holm equation is time
reversible, once we prove the uniqueness of the solution of a Cauchy problem,
we have that maximal the number of peakons interaction is actually k = 2, one
with positive strength the other with negative one.

2.2 Approximation of the initial data

In this section we shall construct an approximation with initial data with a
multipeakon function. Qur aim is to approximate it with a sequence u. which
has an exponential decay at infinity uniformly w.r.t e.

o Lemma 2.1. Let f € X,. Then for every € > 0 there exists a multipeakon
“ function g of the form

N
g(z) = pieloml
i=1
such that
If —gllzm <e (2.3)
[ 1@ + g2(@)e dz < Gy (2.4
R
for some constant Co > 0 which does not depend on €.
Proof. Let p(z) € C§° be a cut-off function such that
e p(z) =0
o p(z) =1 for every |z| <1, p(z) =0 for every [z]| > 2

o [ppl@)dr=1
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1

and pe(z) = 2p(£) be a mollifiers sequence. Observe that for every € > 0,

fe(z) = pe * f(x) is a smooth function which approximates the function f in
H'—norm
I f — fell e m) < Ce (2.5)

moreover it belongs to X, indeed
| R+ 2@ < [ [ [ 0w + 2otz —v) dy] eolel gy
R R R
[1£26)+ 21 [ pulo—ypetl dzay
R R

/R[fz(y) + F2()]CoeW dy = CoC*/ < o0

IA

IN

and Cp is a constant which does not depend on £. From the previous inequality
we can assert that for every B > 0 one has ||fellpim\—r,r)) < CoCoe
uniformly in £ > 0. We can choose thus R, big enough in order to have

| fell 2 @\~ R R]) < €72 (2.6)

In the space H!([~Re, R.]) we can approximate f. with a multipeakon func-
tion. By using the identity

2
% (I — g—g) eTltl=5  inD
T

the function f. can be rewritten in convolution form
— ozl Je — fEa:z - —lz—y| | fe(y) — f€:z::c(y)
et () [t L,

In the interval [— R, R.] the previous integral can now be approximated with a
Riemann sum

i
N ) )
Ey 2€zzy dy

Gi—1

N
9(z) = Y peml=mal,

i=—N b=

Choosing N sufficiently large we obtain || fe — gl| g1 (- r.,r.]) < &. Together with
(2.5) and (2.6) this last estimate yields the result. 0

2.3 Periodic multi-peakon

By a periodic peakon we mean a function of the form

u(z) =px(z —q), x(@) =) elenl, (2.7)

nez
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Observe that the periodic function x satisfies

x(~=2) = x(x) = x(z+1) z €R,
x(a) = SEE— ze0,1]. (2:8)

For future use, we observe that for every periodic function u, the convolution
P, defined in (1.2), takes the form

1 ’Ll,2
Pw) =3 [ xte-u) (w0)+ 252 a (2.9)

We begin this section by observing that also any periodic initial data can be
approximated by periodic multi-peakons.

Lemma 2.2. Let f € ngr. Then for any € > 0 there exists periodic multi-
peakon g, of the form

N N
i=1 nez i=1

such that
Nf—gllm, <e.

per

Proof. By taking a suitable mollification, we can approximate f with a periodic
function f € C*, so that

If = Fllas, <e/2. (2.10)

1/ _ 8% .
'2‘(8 lxl‘—-a—‘;:—z-e ‘ l)26—0:

where o denotes the Dirac distribution concentrating a unit mass at the origin.
We can thus write f as a convolution:

f=6oxf= % (e“l-‘ﬂl _ aa_;e—lxl) « F=elol (f—zf”) ,

1 ry _
f@)= [ xa-v 2T,

The above integral can now be approximated with a Riemann sum

5 N ) - )
9@ = ;pl o a), Bi= /(1—1)/1\1 2 dy.

Next, we observe that

Choosing N sufficiently large we obtain || f —g|| 3, < &/2. Together with (2.10)
this yields the result. O
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Next, we show how to construct a unique conservative solution, for multi-
peakon initial data. As long as the locations g; of the peakons remain distinct,
this can be obtained by solving the Hamiltonian system of O.D.E’s (1.7).

However, at a time 7 where two or more peakons interact, the correspond-
ing strengths p; become unbounded. A suitable transformation of variables is
needed, in order to resolve the singularity and uniquely extend the solution
beyond the interaction time.

Lemma 2.3. Let @ be any periodic, multi-peakon initial data. Then the Cauchy
problem (1.1), (1.11) has a global, conservative multi-peakon solution defined for
allt € R. The set T of times where two or more peakons interact is at most
countable. Moreover, for all t ¢ I, the energy conservation (1.13) holds.

Proof. The solution can be uniquely constructed by solving the hamiltonian
system (1.7), up to the first time 7 where two or more peakons interact. We
now show that there exists a unique way to prolong the solution for ¢ > 7, in
terms of two outgoing peakons. To fix the ideas, call

q-——tgr_rn_qi(t) i=1,...,k,

the place where the interaction occurs, and let py(¢),...,px(t) be the strengths
of the interacting peakons. Later in Section 3.5 we will show that only the case
k = 2 can actually occur, but at this stage we need to consider the more general
case. We observe that the strengths pgy1,...,pn of the peakons not involved
in the interaction remain continuous at time 7. Moreover, by (1.7) there exists
the limit

k
p= t}il;l_zgpi(t) ’
g=

We can thus write

N N

- % () e lT—a®)] — 5o—lz—dl , —lz—aqi(7)|

une) = Jim 3O = ey 3 pnerteacol,
= =

For t > 7, we shall prolong the solution with two peakons emerging from the
point ¢. The strength of these two peakons will be uniquely determined by the
requirement of energy conservation (1.13).

Call £~ (t), £™(t) respectively the position of the smallest and largest char-
acteristic curves passing through the point (7, 7), namely

€7 (t) = min {é(t); &(r) =q, £(s) =u(s,&(s)) for all s € [ — b, 7 + h]} ,
£+ (t) = max {g(t); £(r) = q, £(s) = u(s,£(s)) for all s € [r — h, 7 + h]} .
(2.11)
Moreover, define
£t
€(r,g) = lim ul(t,z)dz.
2T e
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The existence of this limit follows from the balance law (1.5). This describes how
much energy is concentrated at the interaction point. For ¢t > 7 the solution
will contain the peakons pgi1,---,PnN, located at gry1,...,qn, together with
the two outgoing peakons pi,pa, located at g; < go. The behavior of p;,g; for
i€ {k+1,...,N} is still described by a system of O.D.E’s as in (1.7).

However, to describe the evolution of p1, s, ¢1, g2 one has to use a different
set of variables, resolving the singularity occurring at (7,§). As t — 7+ we
expect (1.8), (1.10) to hold. To devise a suitable set of rescaled variables, we
observe that, by (1.3),

d 1 2
EE ua:(ta g(t)) - —511,2(15, ‘E(t)) + ['U. - P]

along any characteristic curve ¢ — £(t) emerging from the point g. Since u, P
remain uniformly bounded, one has

2

Ug (¢, ) = Py

t>1, z€[q), ).

_ The total amount of energy concentrated in the interval between the two peakons
.is given by :

/qz(t) [uQ(t,.’E) + ul(t, .’1:)] dr =~ (M)Z (g2 — q1)
q

1(8) g2 —qQ1 )
{(pz — pl)(]- — e—iQ2"QI1)]
- g2 —q1

~ (p2 — p1)%(g2 — @) M e(rq) -

The previous heuristic analysis suggests that, in order to resolve the singu-
larities, we should work with the variables

z=p1+p2, w=2arctan(po—p1), N=q+aq, (=@2-p1)*(ez—a),

together with Pk+1,---3»PNs Qktly---5, 4dN-

To simplify the following calculations we here assume 0 < q1 < g2 < gr41 <
... < gy < 1, which is not restrictive.

Let x defined in (2.7) and x(z) = —_‘i_;ell-z, z € (0,1). From the original
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system of equations (1.7) it follows

2=cosh<gcot2w/2)/.cos w/2 Z pix (g5 —n/2)

j=k+1

N
— sinh (-g— cot? w/2> tanw/2 Z piX (g —n/2)
k41
W = (2% cos® w/2 — sin® w/2) x (Q‘Z:ot2 w/2)

+2cosh(gcot2w/2> Z pix (g5 —1/2)

Jj= k+l

-i—2smh<C cot2w/2> sinw Z ;X (g5 —1/2)

j=k+1
N
7=z [x(0) + x (¢ cot® w/2)] + cosh (C cot? w/2) > pix(g —n/2)
j=k+1
2
¢ = [x(0) — x (¢ cot? w/2)] (tan®w/2 + x (% w/2) 2%¢ cotw/2
N
—sinh (g cot? w/2) tan? w/2 Z pix {g; —n/2)
j=k+1
+2¢ cotw/2 l:cosh (C cotzw/2> zcotw/2 Z pix (g; —n/2)
J=k+1

—sinh (C cot? w/2> Z piX (g n/2)}

j=k+1

=p; [cosh (g cot? w/2> zx (g; —n/2) + sinh (C cot? w/2> tanw/2% (¢ 7;/2)]
N

+pi Y pisign(q — g;)x (la: — g51)
=kt

¢; = cosh ( g cot? w /2) zx (g; —n/2) + sinh (_C_ cot? w/2> tanw/2% (¢; — 1/2)

+ Z pix (I9: — g;)

j=k+1

with initial data
Z(T) =P, ’LU(’T) =7, 77(7—) = 2(_7, C(T) = 6(7'7‘7) !

pi(r) = lim pi(t), gi(7) = lim g;(t) i=k+1,...,N.

t—7—

For the above system of O.D.E’s, a direct inspection reveals that the right
hand side can be extended by continuity also at the value w = =, because all
singularities are removable. This continuous extension is actually smooth, in a
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neighborhood of the initial data. Therefore, our Cauchy problem has a unique
local solution. This provides a multi-peakon solution defined on some interval
of the form [r, 7'[, up to the next interaction time.

The case where two or more groups of peakons interact exactly at the same
time 7, but at different locations within the interval [0,1], can be treated in
exactly the same way. Since the total number of peakons (on a unit interval
in the z-variable) does not increase, it is clear that the number of interaction
times is at most countable. The solution can thus be extended to all times £ > 0,
conserving its total energy. ]
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Chapter 3

Distance defined by optimal
transportation problem

3.1 A distance functional in the spatially peri-
odic case

In this section we shall construct a functional J(u, v) which controls the distance
between two solutions of the equation (1.1). All functions and measures on R
are assumed to be periodic with period 1. Let T be the unit circle, so that
T = [0,2n] with the endpoints 0 and 27 identified. The distance |§ — €|,
between two points 8,6’ € T is defined as the smaller between the lengths of
the two arcs connecting  with 6’ (one clockwise, the other counterclockwise).
‘We now consider the product space

X=RxRxT
with distance
a° ((:c, u,w), (Z, uw)) = (|:1: —F| 4 u— |+ | — wl*) AT, (3.1)

where a A b = min{a,b}. Let M(X) be the space of all Radon measures on X
which are 1-periodic w.r.t. the z-variable. To each 1-periodic function uw € H},,
we now associate the positive measure ¢* € M(X) defined as

a“(A) (1+ui(z)) dx (3.2)

- AzGR: (z,u(z), 2arctan um(z))eA}

for every Borel set A C R? x T. Notice that the total mass of o™k over one
period is

1
o*([0,1] x R x T) = 1+/ u2(z)dz.
0
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On this family of positive, 1-periodic Radon measures, we now introduce
a kind of Kantorovich distance, related to an optimal transportation problem.
Given the two measures o* and o*, their distance J(u, @) is defined as follows.

Call F the family of all strictly increasing absolutely continuous maps 1 :
R + R which have an absolutely continuous inverse and satisfy

Yz +n) =n+9P(z) for every n €Z. (3.3)
For a given ¢ € F, we define the 1-periodic, measurable functions ¢y, ¢ : R —

[0,1] by setting

b =swp {0015 0- (1412@) < (1+2@)) ¥@) |
¢a(z) =sup <0 €[0,1]; 1+u(z)>9- (1 +ﬂ§(1/1(:1:))) 'g/)’(:c)} .
Observe that the above definitions imply max {¢1(z), ¢2(z)} = 1 together with

91(2) (1+12@) = 62 (¥(2)) (1+ 32 (4(2) ) ¥ (2) (3.5)

for a.e. x € R. We now define

JY (u, @) '/do((m u(z), 2 arctan ug(z)) , (¥(z), 4(y(z)), Qarctanﬂz(i,b(z)))
$1(z) (1 + u3(z)) de

/ll—l—u :n) - (1 + E(W(@) ¥ (@) da-

(3.6)
Of course, the integral is always computed over one period. Observe that the
map x — (z) can be regarded as a transportation plan, in order to transport
the measure o“ onto the measure o%. Since these two positive measures need
not have the same total mass, we allow the presence of some excess mass, not
transferred from one place to the other. The penalty for this excess mass is
given by the second integral in (3.6). The factor ¢; < 1 in the first integral
indicates the percentage of the mass which is actually transported. Integrating
(3.5) over one period, we find

1 1
| @0+ @) do= [ 60+ iw)a.
We can thus transport the measure ¢; o* onto ¢3 c® by a map
U : (z, u(z) arctanuy(z)) — (y, 4(y), arctan iy (y)),

where y = 1(z). The associated cost is given by the first integral in (3.6).
Notice that in this case the measure ¢ 0™ is obtained as the push-forward
of the measure ¢; 0. We recall that the push-forward of a measure o by a
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mapping ¥ is defined as (U#0)(A) = o(T~1(A)) for every measurable set A.
Here U=1(A) = {z; ¥(z) € A}.

Our distance functional J is now obtained by optimizing over all transporta-
tion plans, namely

J(u, @) = ilelf}_ J¥(u, ). (3.7)

To check that (3.7) actually defines a distance, let u,v,w € H(R) be given.

1. Choosing ¥(z) = z, so that ¢1(zx) = ¢a2(z) = 1, we immediately see that
J(u,u) = 0. Moreover, if J(u,%) = 0, then by the definition of d® we have
U = U.

2. Given 9 € F, define ) = 1!, so that ¢; = ¢o, o = ¢1. This yields

J¥ (0, u) = J¥(u, @).
Hence J(@,u) = J(u, 4).
3. Finally, to prove the triangle inequality, let ¥, 4! : R — R be two increas-

ing diffeomorphisms satisfying (3.3), and let qb‘i,qﬁ%,gb%,q&g : R +— [0,1] be the
corresponding functions, defined as in (3.4). We now consider the composition

- ah = ¥ 0 4p* and define the functions ¢1, ¢ according to (3.4). Observing that

S

$1(z) > ¢ (z) - 4k (v* (),

b2 (@) = b2 (¥ (¥ (2)) ) 2 44 (2)) - b (W} (¥*(2)) ),

“and recalling that the distance d® at (3.1) is always < 1, we conclude

J¥ (u,w) < Jv (u,v) + Jv (v, w).

This implies the triangle inequality J(u,v) + J(v,w) > J(u,w). (N
In the remainder of this section we study the relations between our distance
functional J and the distances determined by various norms.

Lemma 3.1. For any u,v € Hy,, one has

1
= lu =2l

5 1 < J{u,v) <C- ”u_v”Héeu

with a constant C uniformly valid on bounded subsets of Hé

er-

Proof. We shall use the elementary bound

|arctana — arctanb| - a® < 4w (la| + |b]) |a — ],
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Figure 3.1: Infinitesimal area between u and v

valid for all a,b € R. In connection with the identity mapping 1(z) = z we now
compute

1
JY (u,v) g/ {Iu(x)—v(m)l+2|arctanuz~arctanvm|}(1+u§)d:r:
0
1
—l—/ [ui—vﬂda:
0 1
< fhu = 1+ 2+ 87 +1) [z vl i — 5]

< (87 +3) (1 + llullgs + ol ) - o~ ol

proving the second inequality in (3.8).

To achieve the first inequality, choose any ¥ € F. For z € [0,1], call ¥* the
segment joining the point P* = (z,u(z)) with Q° = (4(z),v(1(z))). Clearly,
the union of all these segments covers the region between the graphs of u and
v. Moving the base point from z to z + dz, the corresponding segments sweep
an infinjtesimal area dA estimated by (fig.3.1)

Al <IP*-Q7- (4Pl +1Q7)
< (ke =@V + Jul@) = v@@)[*) [+ w22 + (1 +02) 2 (z)] de.

Integrating over one period we obtain

1 1
[ ) —v@lde < [ (lo= o @] + fulo) - v @)
@+ u2@) "+ (142 @) Py (0)] do

< @+ llulls + ollm) - [T (,0) + 7% (v, 0)]
<C-J(u,v),

completing the proof of (3.8). (]
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Lemma 3.2. Let (un)n>1 be a Cauchy sequence for the distance J, uniformly

bounded in the H.. norm. Then

i) There exists a limit function uw € H _ such that u, — u in L™ and the
per

sequence of derivatives un 5 converges to uz in LB, for 1 <p < 2.
(it) Let p, be the absolutely continuous measure having density ufm with re-
spect to Lebesgue measure. Then one has the weak convergence p, — L,
for some measure p whose absolutely continuous part has density u2.

Proof. 1. By Lemma 3.1 we already know the convergence u,, — u, for some
limit function u € Llljer. By a Sobolev embedding theorem, all functions uy, u
are uniformly Hoélder continuous. This implies |jun, — ¢z — 0. To establish

the convergence of derivatives, we first show that the sequence of functions
v, = exp{2iarctanuy, 5}

is compact in Llljer .

Indeed, fix € > 0. Then there exists N such that J(um,, u,) < e form,n > N.
We can now approximate uy in H;er with a piecewise affine function 4y such
that J(uy,un) < e. By assumption, choosing suitable transport maps 1, we

obtain

1
/ t exp {2i arctan un - (z) } — exp {2i arctan iy, 2 (Yn(z)) } l dz < 2 J(un,in)
0
< 4e

~for all n > N. We now observe that all functions

z — exp {21 arctan i,z (¥n(z)) }

are uniformly bounded, piecewise constant with the same number of jumps:
namely, the number of subintervals on which @y is affine. The set of all such
functions is compact in Lll,er. This argument shows that the sequence v, =
exp{2i arctan u,  } eventually remains in an e-neighborhood of a compact subset
of Lll)er. Since € > 0 can be taken arbitrarily small, by possibly choosing a
subsequence we obtain the strong convergence v, — v for some v € Léer.
2. From the uniform H' bounds and the L! convergence of the functions vy,
we now derive the LP convergence of the derivatives. For a given € > 0, define

M = sup|fun| g, A= {015 |una(®)| > M/e}.

The above definitions imply

meas(An) < g2
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‘We now have

1/p
m, _un,z —_ m,r n,:z:p
iz — tn el <(/ i = naP )
A, UA L

1/p
+ / |Um,z — Un g|P dz
[0,1\(AnUAR)
=11+ 1.

(2—p)/2p ) 1/2
1-dzx . / Um,z| + |Un,z dw}
-/AmuAn ] [ AmUA, ([ |+ fun l) (3.8)
<e@=P/P . 9pr.

I

IN

Next, choosing a constant C. such that

|e2iarctana _ eQiarctanbl > Cala _ bl whenever la'lv |b| < M/E,

sl

Taking & > 0 small, we can make the right hand side of (3.8) as small as we
like. On the other hand, choosing a subsequence such that v, = e?!arctanuy,q

converges in Léer, the right hand side of (3.9) approaches zero. Hence, for this
subsequence,

we obtain

1/p
622' arctan Um,z __ 627: arctan un,z [p d:E:I B (3.9)

lim sup ||tm,z — un,m”Lger =0
™m,n—00

Since u, — u uniformly, in this case we must have
lwn,z — 'Uwr:”Lf,er — 0. (3.10)

We now observe that from any subsequence we can extract a further subsequence
for which (3.10) holds. Therefore, the whole sequence (un z)n>1 converges to
ug in LB, .

3. To establish (ii), we consider the sequence of measures having density 1+u2
w.r.t. Lebesgue measure. This sequence converges weakly, because our distance
functional is stronger than the Kantorovich-Waserstein metric which induces
the topology of weak convergence on spaces of measures. Therefore, p, — u for
some positive measure p.

Since the sequence 1+uy, ; converges to 1+ug in L., by possibly choosing a
subsequence we achieve the pointwise convergence uy () — uz(z), for a.e. x €
[0,1]. For any € > 0, by Egorov’s theorem we have the uniform convergence
Un,z(T) — ug(z) for all z € [0,1] \ V, for some set with meas(V.) < e. Since
€ > 0 can be taken arbitrarily small, this shows that the absolutely continuous
part of the measure p has density u? + u2 w.r.t. Lebesgue measure. O
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3.1.1 Continuity in time of the distance functional

Here and in the next section we examine how the distance functional J(-,-)
evolves in time, in connection with multi-peakon solutions of the Camassa-
Holm equation (1.1). We first provide estimates valid on a time interval where
no peakon interactions occur. Then we show that the distance functional is
continuous across times of interaction. Since the number of peakons is locally
finite, this will suffice to derive the basic estimates (1.15)-(1.16), in the case of
multi-peakon solutions.

Lemma 3.3. Let t — u(t) € HL,., be a multi-peakon solution of (1.1). Assume
that no peakon interactions occur within the interval [0,7]. Then

J(u(s), u(s")) <C-|s—¢], for all 5,8 € [0,7], (3.11)

for some constant C, uniformly valid as v ranges on bounded subsets of Hg

er *

Proof. Assume 0 < s < s’ < 7. By the assumptions, the solution u = u(t, )
remains uniformly Lipschitz continuous on the time interval [0, 7]. Therefore,
for each s € [0,7] and z € R, the Cauchy problem

%g(t} = u(t, £(8)), £(s) ==z, (3.12)

** determines a unique characteristic curve t — £(¢; s, £) passing through the point
“(s,x). Given s’ € [0,7], we can thus define a transportation plan by setting

P(z) = £(s';5,2) (3.13)

... Of course, moving mass along the characteristics is the most natural thing to
do. We then choose ¢1, ¢2 to be as large as possible, according to (3.4). Namely:

¢1(z) = sup {9 €0,1]; 6- (1 +ui(s,m)) <y'(z)- (1 +u§(s', w(m)))},

$2(z) = sup {a €0,1]; @- (1 +u2 (s, w(m))) YP(z) <1+ ug(s,x)} )
The cost of this plan is bounded by
T, w() < [ {le €50+ fuls,2) - s 055 ,)
+|2 arctan ug (s, 7) — 2 arctan ug(s', £(s'; s, :c))l*} (1 +u2(s, 7)) dz
+ /01 (1—$1(@) (1 +(s,2)) de

+ [ (1= datw@) 1+ 9(0) # (o) do.
(3.14)
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To estimate the right hand side of (3.14), we first observe that, for all u € H}

per?

1 1
1wl Lo S/o [u(:z:)lda:-i—/o |uz(z)| dz

(3.15)
< ullzz + lusllzz < 2lullas,, =2(B4)Y2.
Using (3.15) in (3.12) we obtain
|€(s) —&(s)| < 2(B") - |s - &|. (3.16)
Next, from the definition of the source term P at (1.2) it follows
1 —|z| 2 ui 2 u
[Pllze < §||e ”Lw(]m) By < lullz, = E*. (3.17)
L([o,1])
Similarly, .
[Pallzee < llullfy, = B*. (3.18),
Using (3.18) we obtain v
! el ¥ d
[u(e', €) —u(s, )| < [ |Gl €0)| at
L (3.19)

/SI
S

Concerning the term involving arctangents, recalling (1.3) we obtain

Po(t, €®)|dt < B )5 .

d __ 2 s ug
E[2arctanu$(t,§(t,$)):' =172 [u iy _P] X

The bounds (3.17) and (3.19) thus yield

)2 arctan ug (s, £(s")) — 2 arctanus (s, f(s))!
*
< (2Mullde +1+20P) 1) - |s' — 5] (3:20)
< (10E*+1)-]s' —s|.
This already provides a bound on the first integral on the right hand side of

(4.4).
Next, call Iy, I the last two integrals on the right hand side of (4.4). Notice

that
1
L+ = /
0

Indeed, I; + I measures the difference between the measure (1 +ul(s’ ,y)) dy
and the push-forward of the measure (1 + u2(s,z))dz through the mapping
z— (858, ).

(1 + ui(s,y)) — & (8';8,y) (1 +u2 (s, &(s's s, y))) ‘ dy
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Since the push-forward of the measure u2 dy satisfies the linear conservation
law

wy + (uw)z =0, (3.21)
comparing (3.21) with (1.5) we deduce

1

u(s,y) — &y(s, ?J)U (s s,9)) ldy < / / 2|(u - umldxdt

<2 [ (lulle + 1Plo) fuclls dé < 2(4B% + B%) 5|5/ —s],
s

because of (3.15), (3.17) and (1.13). Finally, we need to estimate the remaining
terms, describing by how much the Lebesgue measure fails to be conserved by
the transformation z — £(s’; s, ). Observing that

aat (t y) x(t’ E(tvy)) fy(t: y) ) fy(o:y) =1 9

we find
/ ll—fy(s 5,9) | dy < €yt8y)]Idydt

/ / &, sy)[uztgtsy) )| dy d .

(3.22)
To estimate the right hand side of (3.22), we use the decomposition [0,1] =
YUY 'UY"”, where
Y = {y; Ey(t;s,y) € [(1/2), 2] forallt € [s,s] },

Y = {y; &(t;s,y) <1/2 for some t € [s, 8] },

Y = {y; &y(t;s,y) > 2 for some ¢ € [s,5'] }
Integrating over Y one finds

s’ s’ ~
/ /ny(t;s,y) |uz(t, E(t; s,y)) | dydt < 2/ ”um(t)HL1 dt < 2E%.|s' — 3.
S S

Next, if y € Y’ we define

m(y) =inf {t >s; &(t;s,y) <1/2}.

Observe that y € Y’ implies

/T(y)
S

um(t, §(t;5,y))|dt >1n2.
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Therefore

1 T(y)
dy < —
/y, Y= e v /s

2 S' 1 i
< E—i_/s ./o |uz(t,z)|dzdt < 4E®-|s' —s|.

The estimate for the integral over Y is entirely analogous, Indeed, the push-
forward of the Lebesgue measure along characteristic curves from ¢t = stot = s
satisfies exactly the same type of estimates as the pull-back of the Lebesgue
measure from ¢t = s’ to t = s. All together, these three estimates imply

ug (t, £(t;5,9)) ] dt} dy

/ |1 —¢&(s"s5,9) |dy <10 E® - |s' — ] (3.23)
Yuy'uy”

Putting together the estimates (3.16), (3.19), (3.20), (3.13) and (3.23), the
distance in (4.4) can be estimated by

T (u(s), u(s")) < [2(1 £ EY 4+ B+ (10E" +1) +10 (E%)2+10 Eu] s’ — 5.
This establishes (3.11). O

According to Lemma 3.3, as long as no peakon interactions occur, the map
t — u(t) remains uniformly Lipschitz continuous w.r.t. our distance functional,
with a Lipschitz constant that depends only on the total energy E®. Since in-
teractions can occur only at isolated times, to obtain a global Lipschitz estimate
it suffices to show that trajectories are continuous (w.r.t. the distance J) also
at interaction times.

Lemma 3.4. Assume that the multi-peakon solution u(-) contains two or more
peakons which interact ot a time 7. Then

hlirg_l’ J(u(r — h), u(t + h)) =0.

Proof. To fix the ideas, call z = g the place where the interaction occurs, and
let p1,...,pr be the strengths of the peakons that interact at time 7. We here
assume that 0 < § < 1. The case where two or more groups of peakons interact
exactly at the same time 7, within the interval [0, 1], can be treated similarly.

For |t —7| < h, call £~ (t), £1(t) respectively the position of the smallest and
largest characteristic curves passing through the point (7,q), as in (2.11). We
observe that u is Lipschitz continuous in a neighborhood of each point (7,z),
with = # §. Hence, for z € [0,1]\ {g} there exists a unique characteristic curve
t — £(t; 7, z) passing through z at time 7. For a fixed h > 0, the transport map
v is defined as follows. Consider the intervals I_j, = [~ (7 —h), £¥(7 — k)] and
In = [¢€= (T + h), £X (7 + h)]. On the complement [0,1]\ I, we define

B(E(r — by 7,3)) = E(T + hiy3)
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so that transport is performed along characteristic curves. It now remains to
extends v as a map from I_p onto I. Toward this goal, we recall that our
construction of multi-peakon solutions in Section 2.1 was specifically designed
in order to achieve the identity

P i 2 —_ = i 2
€(.,4) h1_1+%1+ - ug(T — h,z)dz h1_1+I‘I)1+ /Ih uz (T + h,z)dz. (3.24)

For h > 0 we introduce the quantities
E(—h) i/ (1+ui(r—h, z)) dz, E(h) i/ (1+ui(r+h, ) dz,
]-h Ih.

e(h) = 2min { E(—h), E(h)} — max { E(—h), E(h)} .
Notice that (3.24) implies e(h) > 0 and
E(—h) - e(.,.,q) s E(h) — e(mj) s e(h) — E(T’q) , (3.25)
as h — 0+. Consider the point z* = z*(h) inside the interval
I—h = [5_(7- - h)7 £+(T - h)};
implicitly defined by

*

/: (14 ui(z)) dz = e(h).

~(r—h)
For « € [£7(7 — h), z*] we define 9(z) as the unique point such that
P(z) T
/ (1+ui(r+h, 7)) dz = / (L4+ui(r—h,z))dz. (3.26)
£~ (7+h) £ (r—h)
We then extend 4 as an affine map from [z*, £¥(7—h)] onto [1(z*), £+ (T+h)],
namely

$(0-67(r—h)+(1=0)-2%) =0-*(r+h)+(1-0) - Y(z") oeo,1].

~ Finally, we prolong v to the whole real line according to (3.3).

As usual, the 1-periodic functions ¢1, ¢ are then chosen to be as large as
possible, according to (3.4). As h — 0+, we claim that the following quantity
approaches zero:

JY (UI(T = h), u(r +h))
- / d® ((x, u(T — h, z), 2arctanu (t — h, 7)),
0

(’l/’(x), u(T + h, ¥(z)), 2 arctaniiz (7 + h, ¢($))))
¢1(2) (1 +ul(t — h, 7)) dz (3.27)

—{—/O (1-¢1(z) (1 +ui(r —h, 2)) do
+/O (1 = ¢2(1b(z))) (1 +uZ(r+h, w(m))) Y (z)dx.
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It is clear that the restriction of all the above integrals to the complement
[0,1] \ I-, approaches zero as h — 0. We now prove that their restriction to
I_};, also vanishes in the limit. As h — 0+, for z € I_p we have

d® ((x, u(t — h,x), 2arctanug (T — h,z)) ,
(¥(z), u(r + h,9(z)), 2arctan uq (7 + h, w(x)))) — 0,

because all points approach the same limit (g, u(7,q), 7). The first integral in
(3.27) thus approaches zero as h — 0+.
Concerning the last two integrals, by (3.26) it follows

¢1(z) = ¢2(p(z)) =1 for all z € [6 (T — h), =*] .

Moreover, our choice of z* implies

£F(r—h) £F (r+h)
/ (1+ u(1 — h, z)) dz + / (1 + ui(f + h, 1/;@))) ' (z) dz
z* P(z*
< 2max{E(—h), E(h)} — 2min({E(—h), E(h)}.

(3.28)
By (3.25), as h — 0+ the right hand side of (3.28) approaches zero. Hence the
same holds for the last two integrals in (3.27). This completes the proof of the
lemma. O

3.1.2 Continuity w.r.t. the initial data

We now consider two distinct solutions and study how the distance J(u(t) v(t))
evolves in time. To fix the ideas, let ¢ +— u(t) and ¢ — v(t) be two multi-peakon
solutions of (1.1), and assume that no interaction occurs within a given time
interval [0, T]. In this case, the functions u, v remain Lipschitz continuous. We
can thus define the characteristic curves t — £(t,y) and t — ((¢,7) as the
solutions to the Cauchy problems

f_- = ’U,(t,g), E(O):yy
¢ = 'U(taC)7 C(O)Zﬂ,

respectively. Let now 1) € F be any transportation plan at time ¢ = 0. For
each ¢t € [0,T] we can define a transportation plan v(;) € F by setting

Yy (€t ) = ¢t Yoy ()

The corresponding functions ¢§t), ¢g:)

in(3.4), namely

are then defined according to definitions

gt) (z) = sup {0 €[0,1]; @- (1 +ui(t,:c)) < (1 + 02 (t, Y@ (x))) 1/)Et)(m)} ,
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g)(a:) = gup {9 €[0,1]; 1+ui(t,z) > 0- (1 +vi(t, w(t)(m))> 1/12,5)(3:)} .

If initially the point y is mapped into § = %(0)(y), then at a later time ¢ > 0 the
point £(Z,y) along the u-characteristic starting from y is sent to the point {(¢,§)
along the v-characteristic starting from 7. We thus transport mass from the

point (5 (t,y), w(t,&(t,y)), 2arctanus(t, € (t,y))) to the corresponding point

(C(t, 7), v(t,¢(t,9)), 2arctanvg (t, (¢, ﬂ))),
In the following, our main goal is to provide an upper bound on the time
derivative of the function

1
J¥® (u(t), v(t)) = /O 4 ((w, u(t,z), 2arctan ug (¢, z)) ,

(0o (@), v(t, Yoy (2)), 2arctanvs(t, Yy (@) ) - ¢ (2) (1 + w2 (2, 3)) do

+/o (1= 60@) (1+02(,2) da

+ /0 (1= 68 (W (@) (1492 (t Yy (@)) ) 9y () do

(3.29)
Differentiating the right hand side of (3.29) one obtains several terms, due to

e Changes in the distance d® between the points (¢, u, 2arctanu,) and
(¢, v, 2arctanvy).

e Changes in the base measures (1 + u2)dz and (1 + v2) d.

Throughout the following, by O(1) we denote a quantity which remains uni-
formly bounded as u, v range in bounded subsets of Héer Using the elementary
estimate

lu —v| < (1 + Ju|+|v|) min{|ju—v|, 1},
we begin by deriving the bound

Il

I /0 |z — ¥ ()] - gb(t)(m) 1+ui(t,z)) do

/ !u(t z) —v(t, Y (z ))' 9 (z) (1+u2(t,z)) dz

(1 + [l o + 0@ e ) - T4 (w(2), 0(2))
O(1) - J¥ (u(t), u(t)).

AN

IA

Here and in the sequel, the time derivative is computed along characteristics.
Next, recalling the basic equation (1.1), we consider

. [td RO
B [ Glute) - ot vo@)] 60 @) (0 +ud) da
0
s ]P;‘(t, z) — P2 (t, 9 (m))} (1 +u2(t,3)) do.

IA
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In the spatially periodic case, by (1.2) and (2.8) we can write the source terms
P, P as

U — _1_ ’ N — (t y)
Prt,z) = ?/ml_lx( - [ + 208
Pt vo@) = 3 [ X (W@ -1) 260

+ / X' (% () = Y (¥)) - —(-wzp—@lwét) () dy,
z—1
where, according to (2.8),
T __ pl—zx
x'(m):i—;—_el— 0<z<1, X(z)=x(z+1) =zeR.

In the next computation, we use the estimate

1
J
which holds because of the last two terms in the definition (3.6). Observing that

x' is Lipschitz continuous on the open interval |0, 1[, we now compute (omitting
explicit references to the time t)

dy = O(1) - J¥ (u,v).

(1+ui(w) — (1 +v (w(y)))@b’(y)

1 1
Piz) — Py (¥(z)) I <3 / X' (z — ) - v?(y) — x' (¥(z) —v) - v*(v)| dy
1]

+0(1) - : - (Y(=) - ¢(y))| : M ¥ (y) dy
1| [ X - (20) - 20) vo) @)

= 0(1) - (Jo = ¥(@)| + lu? - v?|12)
+0(1) - Ir—w(w)l+/ ly — ()] - vV y))¢(y)dy)

+0(1) - i X' (z—v)- [¥'(y) —1] dy})
=0(1) - |z — p(z)| + O(1) -:EJ’/’(u,v)
+00)- (Je=v@| + [ x'@=1)- ) -] i)

=0(1) - |z —¥(z)| + (9(1)$-_.}‘/’(u, v).

(3.30)
Integrating over one period we conclude

=0(1) - J¥(u(t), v(t)) .

For future use, we observe that a computation entirely similar to (3.30) yields

PY(z) = P*((a))| = O(1) - [z — ()] + O1) - T*(wv).  ~ (331)
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Next, we look at the term
1
I3 = / %12 arctan ug(t, z) — 2 arctan vz (¢, 9z (z))l 4 (z) (1+u(t,2)) da.
0

Along a characteristic, according to (1.3) one has

d 2 5 Ul
g2 aetanus(t €0)) = 10 [u - PU] .
Call 8* = 2arctanu, , 8¥ = 2 arctan v, , so that
1 5 0 Ug 1 u2 o™
- i T g eu T — qj 27 .
11wz % g 1+u2  2°070 Ttuz o073

‘We now have

/01 (1+1ii(x)) :

= / (1 +ui(z)) - lsin

uz(z) _ vi(¥(=)

T+u2(@) ~ 1+e2(e@)| ™
2 0@) sin® ————0 (%) td:r

0, (3.32)
s/ (1 + u2()) - [6(z) — 6* ((z)) 'dm
—0(1) - J(u,v) .
Next, using (3.31) we compute
! u?(z) — P¥(z) v*(v(z)) — P¥(v(x
/0 (1+u2(2)) - gluz( )( ) (1+))vz( x())( ) e
/ { 2z) —v?(p !dx—f—/ P%(z) — P*(¢(x)) idm
row- [ '1 I TG l () da

= 0(1) - I (u,0),
where the last term was estimated by observing that

1 1
T+u2 1402

< |2 arctanu, — 2 arctanv, |

Putting together all previous estimates we conclude

L+ T+ 13 =001) - J%(u,v).

To complete the analysis, we have to consider the terms due to the change
in base measures. From (1.5) it follows that the production of new mass in the
base measures is described by the balance laws

{ (1 -I—ug),: + [u(l+u2)], = [2u® +1 - 2P¥Jugy = f*,
(14202 + [v (1+v2)} =[20% +1—2P"v, = f7.
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This leads us to consider two further integrals I4, Is :

1
I, = / do((m u(z), 2arctanug(z)) , (¥(z), v(¥(z)), 2arctanvm(1/)(m))>

|2u (z) + 1 —2P%(z)| |uz(z)| da

= 0Q1)- / d<> (z, u(z), 2arctanuz(z)), (¥(z), v(¥(x)), 2 arctanvg (v (m)))
(14 ui(z)) dz

dz

1
Is = /0 [26%(2) + 1 - 2P* (&) ua(2) — [202(0(2)) + 1~ 2P* ($()) |02 (1(a)) ¥/ (@)
1
<z {1u2<w>—v2(¢<z>)}+ P“(w)—P”(¢($))|}qu(m)ldm
0

+ /1 |2112 (¥(z) +1— 2P”(1,b(a:))| .
= L

a(2) = v ($(@)) ¥/ (@) | do

Using (3.31) we easily obtain

1
/ {W(w) —o*(w(@)) |+

= 0Q1)-J%(u,v).

I5

IN

P'(z) — P* (4/()) !} (1+u3(2)) dz

On the other hand, recalling (3.32) and using the change of variable y = ¥(z),
z =1~ (y), we find

1)-/1
- o[

"
15

a(2) — va ((2)) ¥ ()| do

1+u2(z)  1+02(v(z))

(1+ui(z)) dz

) 1+ui(z)
o [[utvi e ‘ (T EG@) 7@ ’
1
< 0O(1)- J‘p(u, v) —I—/o I(l + ui(x)) — (1 + vg(d)(az))) 1,0’(3:)\ dx
- 01)- J(u,v).

All together, the previous estimates show that
d
Eﬂm (u(t), v(t)) < L+L+ I+ L+ I+ = O(1)-J%® (u(t), v(t)), (3.33)

where O(1) denotes a quantity which remains uniformly bounded as u,v range

on bounded sets of H}.,. As an immediate consequence we obtain
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Lemma 3.5. Let t — u(t), t — v(t) be two conservative, spatially periodic
maultipeakon solutions, as in Lemma 2. Then there exists a constant k, depending
only on max { ||u|l g, , |[vlla, }, such that

J(u(t), v(t)) < el J(u(s), v(s)) s,teR. (3.34)

Proof. For t > s the estimate (3.34) follows from (3.33), taking the infimum
among all transportation plans 1, at time s. The case ¢ < s is obtained
simply by observing that the Camassa-Holm equations are time-reversible. [J

3.2 A priori bounds

In [19] the author discusses the finite propagation speed property for the Camassa-
Holm equation. Due to the nonlocal nature of the equation 1.1, it is not a priori
clear that the evolution of an initial data with compact support will remains
with compact support. On the contrary, [19] prove that the finite propagation
speed property is valid only for the function © — u;, and not for u. In this
section we start from this result, and we want to estabilish what is the “right”
decay at the infinity of solutions to 1.1. For this purpose, we introduce the
following functional space. Let o €]0, 1], then we set

Xo={ue H? (R) st. C*™ = / [uQ(w) + ui(m)] elel g < +oco}.  (3.35)
R

The present section is devoted to the study of some useful properties of the
functions v € X,. We start recalling an estimate for the L®—norm of the
H(R) functions. We have

12l < ||f“12111(1m)- (3.36)

This estimate give us a bound on the L®®—norm of the conservative solution u
of (3), in fact the conservation of the energy yields

lu@®llze < lu®) g @ = VER for every t > 0. (3.37)

Let us consider now the behaviour of the functions u € X, as |z| goes to infinity.
If we denote with C** the constant [p(u? + u2)e®®! dz, the following holds

sup u?(z)e?l®l < 20, (3.38)
z€R

Indeed, the function
f(z) = u(t,z)e? !

belongs to H(R), moreover

Jo = uge?l® 4 %sign(a:)ue%Iﬂcl
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and then, by using (3.36), we have
F@PF < 1y < [ 202+ (1 + e dy < 2c=.
R

Now we study the behaviour at infinity of the multipeakon solutions of the
Camassa-Holm equation.

Lemma 3.6. (A-priori bounds) Let u be a multi-peakon solution to (1.1), with
initial data U which belongs to the space X, defined in (3.835). Then for every
t € R there exists a continuous function C(t), which depends on C** and on
the energy E%, such that

° /[uZ(t,x) + u2(t, z)]e® dz < C(t), (3.39) |
' R
o sup |PX(¢t,z)|e*® < C@), (3.40)
z€R
o |uzllziw < C() (3.41)

Proof. Since |P¥| = P*, it is sufficient to prove the second inequality with P}
replaced bu P,. Setting

I(t) = /[uz(t, z) + ul(t, z)]el®l dx
R
we want to achieve a differential inequality of the form
d
B?I(t) <A+ B-I{),

for some constants A and B which depend on the initial data 4. We start the
discussion proving a preliminary estimate for the function P*. By applying the
Fubini theorem to the identity

2
/P“(t,z)e"'xI dz = E/e""z' d:z:'/e"l"“_’d’I {uz(t,y)er dy (3.42)
R 2 Jr R 2

we have to compute the following integral

2 2
/Re"‘[""e_'z‘y' dx = 7 _O;Z eIl 4 T eolv! forevery y e R. (3.43)

For future use, we observe that the equality (3.43) holds for o € (—1,1). Sub-
stituting (3.43) in (3.42) and using the definition of the energy E* we have

ET 1
U alz| <
/RP(t,z)e dx_(l_a2)+1_a21(t).
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Having in mind the previous inequality, we are able to estimate the time deriva-
tive of the function I. From the equations (1.1) and (1.5) we have

'Ci—r(t) = / [QUUt -+ (ui)t] el dg
dt A
= / [—2’“(% + P+ %(us)x — (wu)s — ZUIP“} el dz
R

< -—2/(uP” +uul), el de < —2u(P¥ + u2) el ”
= z/T —_ z

. -0
a/ [ul(P* + u3) e dz
< 2611”__%”& (B +21) < 2 \/F 7 [B"+21(t)]

the previous inequality gives then a bound on the function I, that is

I(t) < (C** + E"/2)exp <f\fi—i t) .

To achieve the estimate (3.40), set

K(t) = |

Proceeding as before, fixed z € R we compute the derivative w.r.t the time  of
the function =%l x u2.

0 [ _im ul 10 e
EE(eH*Z) —_—Zb—z/ l==vly2 (¢, ) dy

P o],

3 2
S35 -5 ) ] a
R T
UHLw

< fuflgee P+ =P ) dy
< ”U”L Pu(t $)+ ” ”L°° (t)/ —alz] e~ lz—ul dy

< o Pt 2) + 125 e“"""”'HUJIleK(t)

in the same way, the derivative of e~!! % 42 is
2 e
G(ee ) < [+ e dy

<= (2P*(6,0)+ [ vipe(s ) dy)
R

< [lufl = ( 2P

1
—¢ alel g (t))
Multiplying the previous two inequalities with e®l*! we get

9K (t)<< _2a2> VERK(t)
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which yields (3.40).
To achieve the last inequality, we write

[ ruewlay = [ wwlas [ e

{y:luz(y)lexlvi<1} {y:|uz(y)lexlvi>1}

< [eetay [ty <2 +10)
R R (24

where the last estimate is given by (3.39). O

3.3 Definition of the distance in the real line

In this section we define a metric in order to control the distance between two
solutions of the equation (3) whenever we take initial data in the subspace X,
of HY(R). It is constructed as in the spatially periodic case by resolving an
appropriate optimal transportation problem. Let T = [0, 27| be the unit circle
with the end points 0 and 7 identified.

Figure 3.2: “Periodic” vs. “non-periodic” transportation map

Consider the metric spalce (R? x T,d®), with distance
d°((z,u,w), (z',v/,w")) = min{|z — 2’| + |[u — &'| + |w — '|s, 1}

and for every function u € X4, let us define the Radon measure on RZ2xT

o) = [ L+ u2(2) do
{z€R:(z,u(z),2arctan uz (z))EA}

for every Borel set A of R? x T.

Definition 3.1. The set F of transportation plans consists of the functions 1
with the following properties: -
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1. 1 is absolutely continuous, is increasing with its inverse;

2. sup |z — P(x)|e/ 2l < oo;
zER

3. Jgll =9/ (z)]dz < co.

Figure 3.3: Transportation plan.

The conditions 2 and 3 are not restrictive. Indeed, thanks to the exponential
decay of functions u,v € X, the measures o* and o¥ located on the graph of
u and v respectively, have small mass at the infinity, and then a transportation
plan which transports mass from one to the other can be almost the identity
¥(z) =~ z (see fig. 3.3). In order to define a distance in the space X,, we
consider an optimization problem over all possible transportation plans. Given
two functions u, v in X,,, we introduce two further measurable functions, related
to a transportation plan 1):

$1(z) =sup {0 € [0,1] st. - (1+u2(z)) < (1+v2(¥(x))) (m)} (3.44)
¢a(z) =sup {0 € [0,1] s.t. 14+ul(z) <O-(1+v2(¥(2)) ¥ (x)}. (3.45)

The functions ¢;, ¢2 can be seen as weights that take into account the difference
of the masses of the measure 0™ and o”. In fact, from the definitions (3.44)-
(3.45) one has

$1(2)(1 + u3(2)) = $2((2))(1 +v2(9(2))y'(z)  forae. z€R.

According to the definitions, the identity max{¢1(z), #2(z)} = 1 holds. Altough
the two measures ¢10" and ¢20” have not finite mass, they satisfy ¢10%(A) =
$20” (A) for every bounded Borel set A C R2 x T. Thus, the functions ¢; and ¢
represent the percentage of mass actually transported from one measure to the
other. A distance between the two functions u, v in X, can be characterized in
the following way.

For every transport map v € F, let define X" = (z,u(z),2arctanu,(z))
and X? = (¢(x),v(y(z)), 2 arctan v, (1(z))) and consider the functional

T (u,v) = / d®(X*, X")¢1 (z)(1+u (z)) d-’ﬁ+/ 11+ () — (1 + 07 (@) (2)] do.
R R
Since the above functional is well defined for every ¥ € F, we can define

J(u,v) iﬂi}relg_J‘p(u,v).



54 Distance defined by optimal transportation problem

The functional J here defined is thus a metric on the space X, (see the previous
Section 3.1).

3.3.1 Comparison with other topologies

Lemma 3.7. For every u, v € X, one has
1
5 . Hu - ’U“LI(R) < J(’U,, ’U) < C- ||u - 'UHHl(]R)~ (346)

Let (un) be a Cauchy sequence for the distance J such that C*%~ < Cp for
every n € N. Then

1) There exists a limit function u € X, such that u, — u in L™ and the
sequence of derivatives u,5 converges to u, in LP(R) for p € [1,2].

ii) Let u, be the absolutely continuous measure having density u,2 with re-
spect to Lebesgue measure. Then there exists a measure p whose absolutely
continuous part has density u2 such that pn, — p.

Proof. The first inequality of (3.46) can be achieved by estimating the area
between the two functions v and v. For every ¥ € F we can write

/lu——v|dz=/ lu-—v!da:—i—/ lu —v|dz
R S1 Sa

where the two subsets 51 and S; are

e 51 ={z:|z—¢(zx)| < 1} =Uj[zsj-1,Z2;], where in this union we have
to take into account that these intervals may be either finite or infinite,
possibly having z; = £oo for some j,

o o= {z:lz— (@) > 1}.

The integral over S3 can be estimate in the following way:

/ lu(z) — v(z)| dz < (|lullz- + Hvlle)/ |z — ()| dz < (B + E7)J (u,v).
Sa R

(3.47)
The last inequality is given by the definition of the functional J.

As far as the integral over Sy is concerned, the integral over S; can be
viewed as a sum of the area of the regions A; in the plane R?, bounded by
the graph of the curves u, v and by the segments with slope +1 that join the
points Qu(z2;j-1) = (T2j—1,u(z2;-1)) and Qu(z2;) = (Y(x2;), v(1(2;))), where
{z;} = 851. We have

/s lu(z) — v(z)|dz < Zmeas(Aj) i
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Zo a1 Sy T2k T2k+1

S1
Figure 3.4: L'—distance between two functions.

The measure of the subset A; is the area sweeped by the segment Q,,(z) Q. (z).
Recalling that in every set A; the function ¢ satisfies |z] — 1 < |3 (z)| < |z +1,
a bound on this area is given by

Z2j

meas(4;) < / (lz — (@) + [u(z) = v@)DIL +uf + (1 + v2(¥))y] dz

T2j—-1

and then

[ @) =@l < [ (o= )|+ fule) ~ o@D+ 02 + (L 2] o

S
< JP(u,v) + J¥ (u, v)

this inequality, together with (3.47), yields to
lu—vl|z1@ < C(,v)J(u,v).

Concerning the second part of the lemma, let us observe that even if the em-
bedding of H'(R) in L*(R) is not compact, the uniform exponential decay of
the function u,, (C**" < Cp uniformly in n) allows us to extract a subsequence
which converges to a function u in L'-norm and, by the unformly Héder conti-
nuity od such functions, [Jun, —u|[ze — 0. This allow us to prove the property
ii) by dealing with analogous arguments to those developed in the periodic case.
The proof of the second part of the lemma is thus perfectly similar to the one
of the periodic case, once we take into account the exponential decay of the
sequence us,. O
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3.3.2 Stability of solutions w.r.t initial data

Let ug and vg be two multipeakon initial data. The technique developed in
Section 2.1 ensures the existence of two multipeakon solutions wu(t),v(t) for
(1.1) which conserve the energy unless interaction of peakon occurs. Suppose
then that within a given interval [0, 7] no interaction occurs neither for u(t) nor
for v(t). The aim of this section is to prove the continuity of the functional J
w.r.t. the initial data, namely we prove that there exists a continuous, positive
function C(t) such that for ¢ € [0,T] one has

J(u(t), v(t)) < C(t)J (uo, vo)-

Lemma 3.8. Ifu(t) and v(t) are two multipeakon solutions defined in the inter-
val [0, T] in which no interaction occurs, then there exists a positive, continuous
function c(t) which depends only on the energies E*, E¥ of the two solutions,
such that

%J(u(t),v(t)) < e(t)J(u(t), v(t)) for allt € 0,T). (3.48)

Proof. We compute the time derivative of the function J¥(u(t),v(t)) with a
particular choice of the transportation plan 9 = ). Given any 1o € F, at
every time ¢ € [0,T] we construct 1 by transporting the function o along
the characteristic curves. More precisely, since no interaction between peakon
occurs in the interval [0, T'], the functions u(t,-), v(t, -) are Lipschitz continuous,
then the flows %, ! solutions of the Cauchy problems

4 i) =ultphl@) o) =2,

D pb) = vl b)) =,

which are the characteristics curves associated to the equation (1.1), are well
defined. Now, let x € R. 1) is defined as the composition

Yy (@) = 0 oo 0 (9h) 7 (=), (3.49)
that is
Py (u(¥)) = @5 (Yo (¥))-
The function ;) belongs to F, and hence J Y is well defined, in fact

1. By the Property 1 of Definition 3.1 for the function 1y, and uniqueness of
solution of ODE, the function ;) is an increasing function.

2. Let z € R and ¢! (y) be the characteristic curve passing through z at
time ¢. Evaluating |z — () (z)|e®/?" along this characteristic curve, and
computing the derivative w.r.t. ¢ we obtain

d .
el w) - ok (Yo (y))|e*/21eu¥)]

< [futt, 2) — ot, b @) + 5 [u(t, )] - |s — vy (@] /2
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by properties (3.38), (3.39), and since u, v are Lipschitz continuous in
[0, T, there exists two L* functions c;(t), cz(t) such that

Lo~ wo @] < a1 (O~ i @] + )

by Gronwall Lemma and the hypothesis |z — 1o(2)|e*/?®l < Cj, the pre-
vious inequality gives the Property 2 of Definition 3.1 for Pe)

1
|z — ()€ < Oy (t) = (Co + / ca(s) cls) elo cr(s) ds (3.50)
0

3. The last property can be achieved by choosing the change of integration
variable z = ¢! (y)

/ - g@)|de = / 11— ey (@)1 (24)' (4) dy
R
= [ 1LY () — (h) (o)) ¥ ()| dy
< [ (et (@) — 1) dy + / (0t () — 1] dy
R R

+ /R 11— ()| dy.

Since
(b)Y (W) — 1] < /0 e (5, 3] - () () — 1] ds + /0 [ua(s, 2)] ds

(and a similar estimate for ¢f) and u,,v; € L®, by the Gronwall lemma,
the first two integrals of the previous formula are bounded by an absolutely
continuous function C(¢) in the interval [0, 7] and then also Property 3 of
Definition 3.1 holds.

At the transportation plan 1, we associate the functions ¢§t), ¢§t) defined
according to (3.44), (3.45), the functional J¥® is thus

¥ (u(t), u(t)) = /R 4O (X(8), X* (5)6 (2)(1 + u2(2))da

+ /R |1+ 02(2) = (1 + 92y @)y (@) da

By deriving J¥® (u(t), v(t)) w.r.t. t and computing the change of variables along
the characteristics, the previous derivative can be estimate by the sum of the
following terms (we leave out the dependence on the integrable variable when
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it is not essential)

I = [ lute) = olt Yo @I @)1 +u2(6,2)) do
< (1 u(®)ll = + lo(8) o) TV (u(e), ()

I = /R | Pz (t ) — Py (6 ¥ (:B))lqﬁgt) (x)(1 +u2(t,z))dz,

Iy = / 2u2(t) - Ug(t) —2P"(t) —2'1)2(7’,‘, ¢(t)) — 'U:%(t,'l,b(t)) —2PY(t, w(t)) ‘
3= R 1‘*"11:%(75) 1+U%(t,’(,b(t))

S0 (1 + () de,

the term due to the variation of the base measure

Ii=2 /R 4O (X (1), X¥ (1)) - ua (£) (u2(t) — P*(2)) d,

and the terms due to the variation of the excess mass
d
G |1 - @ o vy do.

Let us start to estimate the term I,. By definition, the difference of P* and P
is written in convolution form

/R {e_"'”_yl sign(z — y) [UQ(t, y) + u_g(_;_,@] dy

e sign(ya) 10 ) [17(6 o) + E O]

Voo

by this inequality, we can estimate the term I, by the sum of the following
integrals

A———/ (1+ul(t :v))/ e~ =2 (8, y) — v2(t,y)| dy dz
B= /(1 +ug(t,z)) /6 o=l sign(z — y)[(t, y) — v2(t, Yy (W) W) dy
o= [araaa [ [ oo+ 220,

Ie lz—y] sign(z — y)—e""”(‘)(z) 1"<‘>(y)|81gn(¢(t)(x) ¢(t) )] ¢(t) (v) dy dz
D=1 [tz | [ el smte - 0l - e vy Wl do

A. Switching the order of the two integrals, the term A is bounded by the

dz

Ll-norm of the difference between v and v:

A < (ullze + lollm) [ )=o) [ 0+l 2) oy
< @+ B)ull= + ollo=)lfu(®) ~ (e



3.3 Definition of the distance in the real line 59

and then, by Lemma 3.7, A < C(,%)J (u(t), v(t)).

B. Define

F) = [ 076) - 2oy (2 dz = / U (2ds

Py (y)

we have, integrating by parts

[ &= signe - ) ) ay [ <2/P(@)+ [ e F IR dy
R R
< ol ez — ()] + /R &=y _y(y)|dy

moreover, substituting the previous expression into the term B we obtain
B <2810 (u(t), oe) + [ (1+u2(6.0)) [ ey — gy o) dy e
R R

— oE" {ﬂw (w(®),00) + [ Iy =00} [yt dy}
< 2E°(3+ E%) - J¥O(u(t), v(t)).

C. Observe that since the function y Y (y) is non decreasing, the quantities

z —y and Yy (T) — P (y) have the same sign, and since the function ¢ —s e~ ¢!
is Lipschitz continuous either in (—oo,0) or in (0, +00) we have

e7177vl _ e lPm @) =bay | < o= min{lo—yll¥e (=)~ @)1} Hx —y| = [y (z) — v (y)l[
< e~ min{lz—y|, [P (@) =) (W)} (Iz — Yy (z)] + |y — Py (v)])

—min{|z — y|, [ (2) — by W)} < —|z —y| +2C1(2),

where C(t) is the function (3.50), related to the Property 2 of Definition 3.1
’gb(t), then

2
C< &0 1y -9()| [ (& %o () + i‘f;‘ﬂ] Vo)

: / (1+u2(t,z))e 1* Y dz dy + +2E7 / (1 +ul(t,z))|z — Py ()| dz
R R

< [@+ B0 + ul ) + 257 T (u(t), v(t))

D. Here we can use the estimate given by the change in base measure. Since

| e = (14026 v @)l )] de < 40 (o), vt
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we obtain

D< %/ﬂ{(l%—ui(t,m))/e_'z'y'

(L4 u2(9)) — (1 + 2 B )by )| dy de

R
+-;— /R (1 +ul(t, ) - /}R e =Y sign(z — y) [wit)(y)—l] dy| dz
—lz—y
< [a+ia) wo@ -2 - 5 [ oW —v | b

+(1+ B JYO (u(t), u(t))
2(2 + E%)J% (u(t), v(t))

IA

where in the last estimate we integrated by part as in the term B.

The control for the terms I3, Iy and Is can be obtained exactly as the ones in
[10], whom we refer the reader to. The previous estimates implies that there
exists a smooth function C = C%?(t) which depends only to the variable ¢ and
to the initial data %, ¥ such that

97 u,) < O ()% u,0)
which yields

J(u(t),v(t)) < J(U(s),v(s))elf; G (o) do| for every s,t € R.

3.4 Proof of the main theorems

Thanks to the analysis in the previous sections (3.1 for the spatially periodic
case, 3.2 and 3.3 in the whole real line), we now all the ingredients toward a
proof of Theorems 1.1 and 1.2. Since the two cases are analogous, we prove them
in the periodic case. The estimates in (1.14) follow from Lemma 3.1. Given an
initial data @ € Héer, to construct the solution of the Camassa-Holm equation
we consider a sequence of multi-peakons @, converging to % in ngr. Then we
consider the corresponding solutions t + uy(t), defined for alln > 1 and ¢ € R.
This is possible because of Lemmas 2.2 and 2.3.

We claim that the sequence un(t) is Cauchy in L2, . Indeed, by Lemma 3.1
and Lemma 3.3,

||um () — u"(t)HL})er < C - J(um(t), un(t))
< C- e J(um(0), un(0)) < C? - el (t) — un(®)|| s -

Therefore, un,(t) — u(t) in L., for some function u : R +— HJ, . By interpo-
lation, the convergence u, — u also holds in all spaces Lf,,, 1 < p < co. The
continuity estimates (1.15)-(1.16) now follow by passing to the limit in Lemma

3.3 and 3.4.
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It remains to show that the limit function u(-) is actually a solution to the
Camassa-Holm equation and its energy E(t) in (1.13) is a.e. constant. Toward
these goals, we observe that all solutions u, are Lipschitz continuous with the

same Lipschitz constant, as maps from R into L2, . Indeed

1 _
lneli, < ol sz, + |

L2

As a consequence, the map ¢ — u(t) has uniformly bounded H],. norm, and is
Lipschitz continuous with values in Lger. In particular, u is uniformly Hélder
continuous as a function of ¢,z and the convergence un,(t,z) — u(t,z) holds
uniformly for ¢ in bounded sets. Moreover, since Lger is a reflexive space, the

time derivative u.(t) € L2_, is well defined for a.e. t € R.

per

‘We now observe that, for each n > 1, both sides of the equality
= Up U pyn 3.51
dt Up — n Un,z z ( . )

are continuous as functions from R into L;l)er’ and the identity holds at every
time ¢ € R, with the exception of the isolated times where a peakon interaction
occurs.

At any time ¢ where no peakon interaction occur in the solution u,, we
define ,LLE") to be the measure with density u2(t,-) + 2un 4 (t,-) w.r.t. Lebesgue

measure. By Lemmas 3.3 and 3.2, the map £ — u,ﬁ“) can be extended by weak
continuity to all times ¢ € R. We can now redefine

N I P n " N A T
Pirto) = [ e aud ), Prta) = [ 2o du(y).

(3.52)
where p; is the weak limit of the measures ugn). Because of the convergence
J(un(t), u(t)) — 0, by Lemma 3.2 the map t — p, is well defined and continuous
w.r.t. the weak topology of measures. Using again Lemma 3.2, we can take the
limit of (3.51) as n — oo, and obtain the identity (1.12), for every ¢ € R and
P = P* defined by (3.52).

For each n, the total energy ui™ (J0,1]) = E® is constant in time and
converges to E% as n — oco. Therefore we also have

. 1
(0, 1]) = E® = /o [@%(z) + 82(z)] dz teR.

To complete the proof of Theorem 1.1, it now only remains to prove that
the measure j; is absolutely continuous with density

w(t,) + 5020)

w.r.t. Lebesgue measure, for a.e. time £ € R.
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In this direction, we recall that, by (1.5), the function w = u,zw satisfies the
linear transport equation with source

wi + (vw)z = (U2 — P up ;.
Moreover, along any characteristic curve t — £(¢) by (1.3) one has

2
2 _ Unz _ pun

2 1
—— | U,
T+u2, | " 2

d
E[Qarctanun,z(t,f(t,m))] = < -3 (3.53)

2

whenever u, . is sufficiently large. Fore >0 small, consider the piecewise affine,

2mr-periodic function (see fig. 3.5)

f if 0<6<1
1 if 1<f<m—¢,
p@) =< (m—0)/e if r—e<f0<n+e,
-1 f n+e<d<2n-1,
0 — 2w if 2n—-1<60<2r.
1L ©(0)

AR
AN

Figure 3.5: Definition of function ¢

and define L
Bn(t) = / p(2arctanun ¢ (t, z)) ul ,(t,z) dz.
0

By (1.3) and (3.53) we now have

d 1

—Bn(t) = — / u2 (t,z) dz—C- u2 dz

dt 4e {2arctan un, 5 €[r—e,w|U[—7,—m-+e]} ’ {2arctan un,z €[—1,1]} ’
54)

for some constant C, independent of €,n. Since all functions (3, remain uni-
formly bounded, by (3.54) for any time interval [, 7] we obtain

/ / w2 (t,z)dzdt <eC'- (147 —7), (3.55)
T {2 arctan un, g €[r—e,7|U[—7,—7+e]} '
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where the constant C’ depends only on the H ;er norm of the functions u,, hence
is uniformly valid for all n,e. Because of (3.55), the sequence of functions ul .
is equi-integrable on any domain of the form [r,7'] x [0,1]. Namely

lim / / ul ,(t,z)dzdt =0, (3.56)
K=00 Jr {z€[0,1], u%yz>n}

uniformly w.r.t. n. By Lemma 3.2 we already know that Huﬁym(t) —uP (t)” L,

0 for every fixed time ¢ and 1 < p < 2. Thanks to the equi-integrability condition
(3.56) we now have

ufm —ul in L! ([r, '] x [0, 1]).

By Fubini’s theorem, this implies

1 1

lim ul (t,z)de = / ul(t, z) dz

n—00 fq ! 0
for a.e. t € [1,7']. At every such time ¢, the measure y; is absolutely continu-
ous and the definition (3.52) coincides with (1.2). This completes the proof of
Theorem 1.1. O

3.5 Uniqueness

Before proving Theorem 1.3, we remark that the solution satisfying all condi-
tions in Theorem 1.1 need not be unique.

Example 3.1. Let u = u(¢t,z) be a solution containing exactly two peakons
of opposite strengths p;(t) = —pa(t), located at points g1 (t) = —ga(t) (see fig.
3.6). We assume that initially p1(0) > 041(0) < 0. At a finite time T' > 0, the
two peakons interact at the origin. In particular, as ¢ — T~ there holds

pi(t) oo,  paft) = —oo,  @i(t) =0,  ga(t) —0.

Moreover, ”u(t)” Lo — 0, while the measure y; approaches a Dirac mass at the
origin. We now have various ways to extend the solution beyond time T

i(r,z) =0,

u(r,z) = —u(r — T, —x), (3.57)
Clearly, @ dissipates all the energy, and does not satisfy the identity (1.13).
The function v in (3.57) is the one constructed by our algorithm in Section 2.1.
However, there are infinitely many other solutions that still satisfy (1.13), for
example

(T, z) = u(r,z —b)

where u is as in (3.57) and b # 0. The additional condition in Theorem 1.3 rules
out all of them, because as 7 — T+, the corresponding measures ji, approach
a Dirac mass at the point z = b, not at the origin.
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w(T)

Figure 3.6: Two solutions of the peakon-antipeakon interaction

We can now give a proof of Theorem 1.3. As a first step, we extend our
distance J to a larger domain D, consisting of couples (u, u), where u € Hl
and u is a positive (spatially periodic) measure whose absolutely continuous
part has density u? + u2 w.r.t. Lebesgue measure. This extension is achieved
by continuity:

T ((u, ), (3, 7)) == lim inf J (t, i)

where the infimum is taken over all couple of sequences (un,@n)n>1 such that

lun — ullLe — 0, |tin, — Gl|p — 0,
u’?},zé/‘lﬂ ﬁ’?z,z__&ﬁ'

We observe that the flow ® constructed in Theorem 1.2 can be continuously ex-
tended to a locally Lipschitz continuous group of transformations on the domain
D.

Now let ¢ +— i(t) be a solution of the Cauchy problem (1.1), (1.11), satisfying
all the required conditions. In particular, the map ¢ — (ﬁ(t), p,t) is Lipschitz
continuous w.r.t. the distance J, with values in the domain D.

Calling t — (%(t), fie) = ®;(&, u2) the unique solution of the Cauchy problem
obtained as limit of multi-peakon approximations, we need to show that @(t) =
u(t) for all t. To fix the ideas, let ¢ > 0. By the Lipschitz continuity of the flow,
we can use the error estimate

T((a(8), ) 5 (u(t), ) ) < e /0 timinf 37 ((@(r+h), firsn) @ (), ir) ) dr
(3.58)
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For a proof of (3.58), see [6, pp. 25-27]. The conditions stated in Theorem 1.1
now imply that, at almost every time 7, the measure ji; is absolutely continuous
and the integrand in (3.58) vanishes. Therefore %(t) = u(t) for all t. O

We can now prove that, in multi-peakon solutions, interactions involving
exactly two peakons are the only possible ones.

Corollary 3.1. Let t = u(t,-) be a multi-peakon solution of the form (1.6),
which remains regular on the open interval 10,T[. Assume that at time T > 0
an interaction occurs, say among the first k peakons, so that

t_l_l}r%lgqi(t)::q i1=1,...,k.

Then k = 2.

Proof. We first observe that the Camassa-Holm equations (1.1) are time re-
versible. In particular, our proof of Theorem 1.3 shows that the solution to a
Cauchy problem is unique both forward and backward in time.

Now consider the data (u(T), ur) € D, where ug is the weak limit of the
measures fi; having density u?(t) + u2(¢) w.r.t. Lebesgue measure, as t — T—.
By the analysis in Section 2.1, we can construct a backward solution of this
Cauchy problem in terms of exactly two incoming peakons. By uniqueness, this
must coincide with the given solution u(-) for all ¢ € [0, 7). (
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Part 11

The discrete Boltzmann
equation






Chapter 4

Symmetry groups of
differential equations

In this chapter we introduce the theory of the symmetry groups applied to
differential equation, which is a tool that will fits in the study of evolutionary
equations. The goal of this Chapter is to develop a useful method that will
explicitly determine the symmetry group for the system of discrete Boltzmann
equation, which will be the starting point of the discussion of Chapter 5 for
the blow-up issue. The key point is to transform the equation which has an
asymptotic blow-up at a time T into an equation, related to a rescaling of the
first equation, which approach a steady state as 7 goes to infinitive (see Section
4.2).

4.1 Group and differential equations

The symmetry group of a system of differential equations is the largest local
group of transformations acting on the independent and dependent variables
with the property that it transforms solution of the system to other solution.
In the first part of this section we review a general computational method for
(almost) any given system of differential equations. For more information about
the application of group theory to the differential equation, we refer the reader
to [42, 43].

We start recalling some useful definition in the abstract theory of Transfor-
mation Group.

Definition 4.1. Let M be o smooth manifold. A local group of transformations
acting on M given by a (local) Lie group G is the couple (% ,¥) where

e 7 is an open subset {1} X M C¥% CGx M
o U a smooth map ¥ : % — M
satisfy the properties
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(a) If (h,z) € %, (9,¥(h,z)) € % and (g-h,x) € % then

(b) Forallz e M, U(1,z) = z.
(c) If (9,z) € % then (97", ¥(g,2)) € % and ¥(¢~',¥(g,2)) ==
For brevity, when it does not make confusion, we denote ¥(g,z) by g- x.

Definition 4.2. Let G be a local group of transformation acting on a manifold
M. A subset S C M is called G—invariant, and G is called a symmetry group
of S if whenever x € S and g € G are such that g - = is defined, then g-x € S.

Remark 4.1. In our applications, as far as the differential equation is con-
cerned, the subset S will be usually the graph of the solution of the differential
equation

o(z,u,...,D%,...) =0, (4.1)

where i.e. set of solutions determined by the common zeros of collection of
smooth functions ® = (®1,...,®;), where ®; = ®;(z,u,...,p%,...) depends

on the variables z and the unknowns and their derivatives u, D*u,..., and
where, for every multi-index a = (ay,...,an), D* indicates the differential
operator

o —, 6 a1 6 Qm,
= (8:1:1) (ﬁ)

In this context, it is thus useful to introduce the graph of a function u : & — R"
defined on a open set 2 C R™

Ty = {(z,u(z)) : z € Q}

which is a smooth submanifold of R™ xR™. The action of a given transformation
g € G maps the graph I',, into the subset g-T'y, = {(Z, %) = 9-(z,u) : (z,u) € [y}
which is not necessarily the graph of a function 4. However, since G acts
smoothly and the identity ¢ € G leaves I', unchanged, by restricting the domain
Q for every g € G near the identity the transformation g-T', is the graph I'y of
a function .

As an example of action on the graph of a function, let consider a vector
field v(£,m) : M = R™t" — R™*" which can be seen in local coordinate
(T, s Ty ULy e oy Up) BS

- 0 | w i}
v = Zfz(xvu)‘a‘a‘c: + an(m,u)ng
i=1 j=1

it acts on a smooth scalar function ¢ : R™t" — R as a derivation
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The most important operation on vector fields is their Lie bracket or commuta-
tor. Whenever we think that two vector field v, w act as a derivation, their Lie
bracket [v, w] is the unique vector field satisfying

[Vv,wjeg=ve(wep)—we (veq) for all smooth functions ¢ (4.3)

The integral curve of the vector field v is a smooth parametrized curve P(f) =
(z,u) whose tangent vector at any point coincides with the value of v at the
same point:

d

Starting from a given initial data P(0) = P = (Z,) the corresponding integral
curve is often denoted by the suggestive exponential notation

exp(6v)P.

From the existence and uniqueness of solution to systems of ordinary differential
equations we easily obtain the semigroup property for the flow generated by v:

exp(0v)P = P (4.4)

exp[(61 + 02)v] P = exp(61v)[exp(fav)P). (4.5)
From these formulas, compared with the property (a)-(b) of definition 4.1, we
see that the flow generated by a vector field is the same as a local action of
the Lie group R on the manifold M which is called a one-parameter group of
transformations. The vector field v is called the infinitesimal generator of the
action. v is also called an infinitesimal symmetry generator for (4.1) if the map

P — exp(6v)P transforms the graph of a solution u into the graph of another
solution.

Remark 4.2. Recall that if § is sufficiently small, there exists a neighborhood
V such that the set

Ty = {exp(0v)(z,u) : (z,u) € T}

coincides on V' with the graph I' ;s of a smooth function u?. By using a Taylor
expansion, the flow exp(fv) maps the point (x,u) into the point

exp(0v)(z,u) = (z + 0&(z,u) + o(F), u + On(z, u) + o(6))
therefore, the differentiation w.r.t. § at the origin yields the useful formula

e =n-Vul)& (46)

The previous formula gives a necessary condition in order to prove that a
particular vector field v = (£, 7) is an infinitesimal symmetry generator for the
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differential equation (4.1). If the function u® another solution to this equation,

then ®(z,u?,...,D*u?,...) = 0. Differentiating w.r.t. 6 in 0 we get

Zaq: 4 peys)| = g;ipa(n_vU(z>-§)=o (4.7

In the following we shall prove that the previous condition is sufficient in order
to construct an infinitesimal symmetry generator v.

Proposition 4.1. Let G be a connected group of transformation acting on the
manifold M. A smooth real-valued function ¢ : M — R is an invariant function
for G if and only if

ve(=0 forallz e M (4.8)

and every infinitesimal generator v of G.

Proof. Suppose that ¢ is an invariant function for G. According to (4.2), if
xeM

%Q(exp(@v)m) = v e ([exp(0v)z]

since ¢ is invariant, setting § = 0 it proves the necessity of (4.8). Conversely, if
(4.8) holds then ¢(exp(v)z) is a constant for the connected subgroup {exp(6v)}
of Gz = {g € G : g - z is defined}. But by the properties of the Lie group, every
element of G, can be written as a finite product g = exp(8vy, ) - - - exp(6*v;,)
for some infinitesimal generator v; of G, hence ((g - z) = {(z) for all g € G,.

In a similar way we can prove the following theorem which gives an infinites-
imal criterion of invariance for a general equation

O(z) =0 zEM
that will be useful whenever we are concerning a differential equation
o(z,u,...,D%,...) =0.

Theorem 4.1. Let G be a connected local Lie group of transformations acting
on a p—dimensional manifold M. Let ® : M — R!, 1 < p, define a system of
equations

B,()=0 wv=1,...,1 (4.9)

and assume that the system has mazimal rank at every solution x of the system,
namely

Z‘i% (@) - S
rank : =1 o(z) =0.
S—S—i(z) S
Then G is a symmetry group of the system if and only if
ved,(z)=0 v=1,...,l, ®(xz)=0 (4.10)

for every infinitesimal generator v of G.
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Proof. Let zo be a solution of the system (4.9). As in Proposition 4.1, the
necessary condition follows from differentiating w.r.t. ¢ the identities

. (exp(ev)zo) =0

and setting € = 0. Conversely, by using the maximal rank condition, we can
choose local coordinates y = (y?,...,y™) such that zg = 0 and ® has the simple
form ®(y) = (y1,...,%"). Let v be an infinitesimal generator of G, which can
be expressed in the new coordinates as

0 3}
=t 1 —_— . m —
v=¢ (y)ayl +- 4 (y)aym'
The condition (4.10) turns to be

v(y)=¢€"(y) =0 forallv=1...1

whenever y' = ... = ¢! = 0. Since the flow ¢(4) = exp(0v)zy satisfies the
system of ODE

t=1...m,

{%w=éw@)
$'(0) =0

the uniqueness of the solution yields to conclude that #*(6) = 0 for 4 sufficiently
small. exp(fv)zo is thus again a solution to ®(z) = 0. As in Proposition 4.1,
by the properties of the connected local Lie group G we gain the result.

O

The previous theorem can be adapted for the differential equation in order

to get sufficient condition for obtain an infinitesimal symmetry generator. The

equation (4.1) contains not only the unknowns u but also its derivatives, so

in order to use Theorem 4.1 we can think that the solution is a point which

contains all of these functions. To do this we need to prolong the basic space

representing the independent and dependent variables under consideration to

a space which also represents the various partial derivatives occurring in the
system.

If we consider function u : & C R™ — R™, the number of derivatives of order

k is
_ . m+tk-1
p’c“‘n k

If N is the maximum order of the derivatives involved in the differential equation
(4.1), we introduce thus the N—th jet space @ x UIN] = Q x R™ x RP* x - - . x RP¥ |
whose coordinates represent all the derivatives of the function u from 0 to N.
If u is a function whose graph lies in a manifold M C Q x R™, we define its
prolongation

pI‘(N)’u, = (’u,, (Dalu)|a1|=p1 yeeny (DQNU)|QN|=:DN)
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whose graph lies in the N—th jet space MW = M x RP* x --- x RPY, From
this point of view, a smooth solution of the given system (4.1) is a function u(z)
such that

3, (z, prMu(z)) =0 v=1,...,1,

whenever z lies in the domain of u. It means that the graph of the prolongation
of u must lie entirely within the subvariety of the zeroes of the system.

Now suppose that G is a local group of transformations acting on M. The
prolongation of G' as a local action group on the prolonged manifold M@
is defined so that if ¢ € G, pr™)g transforms the derivatives of u into the
corresponding derivatives of the transformed g - (z,u). To evaluate the action
of the prolonged pr®™)g on a couple (:co,u(()N)) we simply choose a particular
function f whose derivatives agree, up to N—th order, to the point (zo, u(()N)),
apply the action g to f and then prolong g - f. Last, we have to define also the
prolongation of a vector field up to the order N. It follows by viewing it as the
infinitesimal generator of the corresponding action group pr™lexp(8v)]:

. d
priMy = ¥ prMlexp(8v)).
0=0

Writing 5 5
v =&z, u) 5 + 0@ w5,

the general formula of such a vector field is given by [42, Theorem 2.36] and it
is the following formal expression

0
(N)yy — o (N)y_“
pr*v=v+ Z % (z,u )Bu"‘ (4.11)
1<|al<N

where

u® = D%,

¢ =D (n—£-Vu) +&- Vu®.
For future use, the prolongation of the Lie bracket vector field is

pr™ v, w] = [prMv, priMw]. (4.12)

By applying Theorem 4.1 to the equation ®(z, pri™u(z)) = 0 we obtain the
following theorem, which agree with the formula (4.7)

Theorem 4.2. Suppose
@, (z, pr(N)u(x)) =0 v=1,...,1,

is a system of differential equations of mazimal rank defined over M C w X R™.
If G is a local group of transformations acting on M, and

priMv e &, (z, pr™My) =0, forallv=1,...,l,

for every infinitesimal generator v of G, then G is a symmetry group of the
system.
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4.2 Symmetries and blow-up

In this section we enter in deep detail of the application of local symmetry
groups to the blow-up issue. For a more complete description, the reader can
see [5]. Our goal is to apply the theory previously developed in order to choose
an appropriate infinitesimal symmetry generator which describes the asymptotic
behaviour of a solution which has blow-up in finite time.

We shall consider an evolution problem on a Banach space (-1, )

T = f(z). (4.13)
Assume that there exists trajectories that blow-up in finite time
I 1) = .
Jm e (@) = 40

Suppose that there exists a second vector field g such that

e Trajectories of § = f(y) — g(y) do not blow-up. Instead, they approach a
steady state ¥ as time goes to infinity.

e There is an explicit computable transformation that maps a trajectory
s+ y(s), s € [so, +oo] into a trajectory ¢ — z(t), t € [to, T].

In this case we could first accurately study the asymptotic behaviour of y(s)
as s — -+0o, and then recover information on the behaviour of the blowing-up
solution z(t). To implement this approach, it is clear that the auxiliary vector
field g must be carefully selected.

According to the theory developed in the previous section, we shall look for
condition on

%ze = g(z%) (4.14)

in order to have that u? = exp(fg)u gives another solution to the equation
(4.13), provided that we have existence and uniqueness of solution to the Cauchy
problem (4.14).

As the following analysis will show, the crucial assumption on g is the relation

f+[f.9l=0. (4.15)

Lemma 4.1. Let g be a vector field such that 4.15 holds. Then the vector field
. 0 0

v = —tgt- —l—g(x)b; (4.16)

is an infinitesimal generator of symmetry group. In other words, if t — z(t) is
a solution of (4.18) then

{exp(Ov)(t,z(t)) : t € I}
is the graph of another solution

z°(t) = exp(0g)(z(e’t)).
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Proof. To check that z9 is indeed a solution, we write

)
%— = e% Jac[exp(89)] f (exP(_gg)me) ’

We claim that the right hand side of the previous formula coincides with f(z?),
and this can be done by proving

v() = Jac[exp(8g)] f (exp(—09)y) = e °f(¥) forally € E. (4.17)

Trivially, v(0) = f(y). As far as the derivative of v is concerned, let use the Lie
bracket property (see [25])

Jac[exp(eg)] g(exp(ef)) — 9

and the hypothesis (4.15)

4}% — lim Jac[exp[(e+6)]9)] f (exp[(—8—&)gly) — Jaclexp(0g)] f (exp(—Og)y)
e—0 €

= — Jac[exp(fg)] - g, f]exp(—0g)y = —v(0).
The function v(f) is thus

v(0) = e%(0) = e’ f(y).

]

Theorem 4.3. (Blow-up rescaling) Consider two vector fields f, g satisfying
(4-15). Let y: [0,00[— E be a solution to

9(s) = f(y(s)) —g(y(s))-
Then the function  : [0,1[— E defined by
o(t) = exp(sq) (s) 5 =In (4.18)
is a solution of (4.13).
Proof. Notice that
g(exp(sg)y) = ggexp(eg)(exp(sg)y) - Jaclexp(sg)lg(v)

Let compute the derivative w.r.t. s of the function exp(sg)y(s). By the previous
identity and by (4.17) we have

g(exp(sg)y(s)) + Jaclexp(sg)]y(s)

9 exp(sg)u(s)

ds
= g(exp(sg)y(s)) + Jaclexp(sg)lf(y(s)) — Jaclexp(sg)lg(y(s))
= Jaclexp(sg)lf(exp(—s9)z)
— i)
now we can check that (4.18) is a solution to (4.13).

%x(t) = &% exp(sg)y(s) - %ts_ =e °f(z)- e’ = f(x).
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Figure 4.1: Connection between y(-) and z(-)

We shall apply the above theory to a special case of partial differential equa-
tions. Inside the equation (4.1) we highlight the time variable z ~» (t,x), ob-
taining the evolution equation

F(z, pr'y) —u, = F(z,u,...,D%,...) —u; =0 (4.19)

where the derivatives on D® involves only derivatives with respect to the spatial
variable z. In the following, we indicate with [u] the prolonged function w in
the space M x UN). Thus, the total derivative of a function F[u(t)] takes the
form VF - [u;], where [u] = (u¢, ..., D%q4,...).

The main tool is Theorem 4.2, which gives characterization on the symmetric
vector field. From this theorem we obtain

Theorem 4.4. An evolutionary vector field

. 0 0 0
VS b £ )+ 0 u) o

is an infinitesimal symmetry generator for (4.19) if and only if for every function
u one has

(F+ [F, G])[u] =0 (4.20)
where
Flu] = F(z, pr(N)u), Glu} = —¢&(z, u)Vu + ¢(z, u),
Glu + eFlu]] — Glu] — Flu+ eGu]] + F[u]

[F, G][u] = lim . . (4.21)

Proof. Given any smooth solution u, let 6 sufficiently small and uf be the trans-
formed function by the vector field v, according to Remark 4.2. As Theorem
4.2 states, the thesis follows once we prove (4.7). By formula (4.6), substituting
(&7 77) with ((_t7 5)7 ¢) we have

du?

— = ¢ +tuy — & - Vu = tu + Glu.
df oo
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Thus, formula (4.7) becomes

d®[u’) _dF[u]  duf
6 |, ~ do dp VMl [t Glul] —u - tuy - VO ful,

= VFu] - [tus + Gu]] — Flu] — tVFu] - [us] — VG - [u];
= —Fu] + VF[u] - [G[u]] — VG[u] - [F[u]].

thus

if and only if [F,G|[u] = —F. 0

4.3 A group of symmetry for the discrete Boltz-
mann equation

The work plan presented in the previous two sections fits in the study of the
blow-up rate of discrete Boltzmann equation. Let consider the system of PDE
(see [41])

Osu; + ¢;Vgu; = Zaijkuj‘uk i=1,...,1 (4.22)
ik
where
o (t,z) € Rx R?,
e c; € R3 plays the role of velocity,
e u;(t,z) is the density of particles having speed c;,

e a;;; are the coefficients of the quadratic collision term, with a;;, = 0 if
j=k.

‘We implement Theorem 4.4 in order to recover an evolutionary vector field which
generates a group of symmetry for the system (4.22). Looking for a vector field
of the form

0 0
b +E(@) Vot 9(0) - 5

v.o(29 9 98 o_.(06 o0 9
7\ 0z, Ozy’ Ozs )’ Ou  \Oup Ouy’ " Ouy

we have to find condition for which (4.20) holds. Note that in this case the two
maps F and G are

where

1...10

(Plul)i = —ei- Vot agpujus  (Glul)s = ~€(@) Vouitei(u)
5.k
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Theorem 4.5. Setting

flz)=—z  ¢i(u) =u,,
the identity
[F,Gl[u] + Flu] =0
holds for every u solution to (4.22).
Proof. Let compute (4.21).

(Glu + eFlu]] — Glu)); z-Vy (ui —€c¢; - Vzu; +€ij aiijj'U,k>

¢ u; — ¢ - Vyu; + Egzjk QijkUjUE — T Vgl — Uy
€
+ Z aijk (UrT - Vau; + ujz - Vyug)
ik
(4.23)
(F['U, + EG[’LLH — F[’LLD,, . —C; - qui - sciVm(a: . Vmuz) - scivmui
€

€
ij aijk(uj + €z - Vauy + euj) (v +ex - Vyug, + cug)

£
—c;Vaeu; + ij Ok Ui UL

-+

B €
= —C;- qu, — Civz(ll . Vzuz)
+ Z @ijk (2u5ug + Uz - Vaug + ug - Voug) + O(€)

ik
(4.24)
Note that
z - Vg(c; - Vyu;) = ij Z(Ci)k“mﬂk
J k
Ci- Va(z - Vaui) =c¢; - Vouy + Z(ci)k Z Tz, -
k j
Hence, the limit of the difference of the formulas (4.23), (4.24) yields
([F, Gllu]): = —2(Flul)s + (Flul): = —(F[u])s.
O

Corollary 4.1. If u(t,z) = (u1(t,z),...,w(t, ) is a solution, then
ul(t,z) = ePu(elt, e'z)

is another solution to the system of PDE (4.22). Hence, by performing the
change of variables

(4.25)
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blow-up to (4.22) occurs if a solution to
(wi)f - “‘(Ci + T]) - Vnwi + Z Ak WjWE — W4
ik
approach o steady state as T goes to infinity.

Proof. By Theorem 4.5 the vector field
. 0
vm—ta—mvz-l-u%

is the generator of symmetry associated to G, hence fixed , the graph of the
solution is mapped by v in the graph of another solution:

% = {exp(6v)(t, z,u) : u = u(t,z)}

that is
t(0) = e %t
z(0) = e 'z
u(t(6),z(0)) = e®u(t, z)

thus, the new solution is u®(t, z) = eu(e’t, e’z).

As far as the second part of the corollary is concerned, we shall use Theorem
4.3. Suppose that there exists a solution w = (wi(7,7),...,wi(7,n)) to the
system

Orw = Flw] — Gw]

which approach a steady state as T — co. Then the transformation by exp(7v)
with 7 =1In ﬁ is the graph of the solution

u(t, ) = exp(rG)w(r,n)

which corresponds to the change of variables

which yields (4.25). 4



Chapter 5

The two dimensional
Broadwell model

5.1 The discrete Boltzmann equation

Consider the simplified model of a gas whose particles can have only finitely
many speeds, say €i1,...,cx € R™ Call u; = u;(¢,z) the density of particles
with speed c;. The evolution of these densities can then be described by a
semilinear system of the form

8tu,~+ci -Vui:Zaijk UjUg 1= 1,...,N. (51)
7,k
Here the coefficient a;j; measures the rate at which new i-particles are created,
as a result of collisions between j- and k-particles. In a realistic model, these
coefficients must satisfy a set of identities, accounting for the conservation of
mass, momentum and energy.
Given a continuous, bounded initial data

u;(0,z) = 4;(z), (5.2)

on a small time interval ¢ € [0, 7] a solution of the Cauchy problem can be con-
structed by the method of characteristics. Indeed, since the system is semilinear,
this solution is obtained as the fixed point of the integral transformation

t
u;i(t, z) = Uy(z — cit) + / Zaiﬂc UjU (s, T —ci(t— 5)) ds.
0 N
gk

For sufficiently small time intervals, the existence of a unique fixed point fol-
lows from the contraction mapping principle, without any assumption on the
constants a;j.

If the initial data is suitably small, the solution remains uniformly bounded
for all times [4]. For large initial data, on the other hand, the global existence
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and stability of solutions is known only in the one-dimensional case [3, 32, 45].
Since the right hand side has quadratic growth, it might happen that the solution
blows up in finite time. Examples where the L* norm of the solution becomes
arbitrarily large as t — oo are easy to construct [35]. In the present chapter we
focus on the two-dimensional Broadwell model and examine the possibility that
blow-up actually occurs in finite time.

Since the equations (5.1) admit a natural symmetry group, one can perform
an asymptotic rescaling of variables and ask whether there is a blow-up solution
which, in the rescaled variables, converges to a steady state. This technique
has been widely used to study blow-up singularities of reaction-diffusion equa-
tions with superlinear forcing terms [30, 31]. See also [36] for an example of
self-similar blow-up for hyperbolic conservation laws. Our results show, how-
ever, that for the two-dimensional Broadwell model no such self-similar blow-up
solution exists.

If blow-up occurs at a time T', our results imply that for times £ — T'— one
has In | In(T —t)|

1In|In(1 —
le®lloee > 5 =75
This means that the blow-up rate must be different from the natural growth
rate ”u(t)“ 1w =0(1) (T —t)~! which would be obtained in case of a quadratic
equation i = C u?.

In the final section of this chapter we discuss a possible scenario for blow-
up. The analysis highlights how carefully chosen should be the initial data, if
blow-up is ever to happen. This suggests that finite time blow-up is a highly non-
generic phenomenon, something one would not expect to encounter in numerical
simulations.

5.2 Coordinate rescaling
In the following, we say that P* = (t*,z*) is a blow-up point if

limsup w;i(t,z) = o0

T—x*, t—t*—
for some i € {1,..., N}. Define the constant
C = max|c;] .
T

We say that (t*,z*) is a primary blow-up point if it is a blow-up point and the
backward cone

r={(tz); |z—z*|<2C @ —1)}
does not contain any other blow-up point.

Lemma 5.1. Let u = u(t, ) be a solution of the Cauchy problem (5.1)-(5.2)
with continuous initial data. If no primary blow-up point exist, then u is con-
tinuous on the whole domain [0, co] xR™.
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Proof. If u is not continuous, it must be unbounded in the neighborhood of
some point. Hence some blow-up point exists. Call B the set of such blow-up
points. Define the function

)= inf {7+Clz—¢€|}.
o) = nf {r+Clo—¢])
By Ekeland’s variational principle (see [1], p.254), there exists a point z* such
that
o C .
plz) 2 p(z") = 5 |z — "]
for all z € R%. Then P* = (¢(z*), z*) is a primary blow-up point. O
Let now (t*,z*) be a primary blow-up point. One way to study the lo-

cal asymptotic behavior of u is to rewrite the system in terms of the rescaled
variables w; = w;(7,7), defined by

o= —lIn(t* —t),

_ o, E—a 5.3
n T = (5-3)
w; = e'Tui = (t*—t)ul

The corresponding system of evolution equations is
Orwi +(ci+n) - Vyw; = —w; + Za’ijk W, W i=1,...,n. (5.4)
gk
Any nontrivial stationary or periodic solution w of (5.4) would yield a solution
u of (5.1) which blows up at (t*,z*). On the other hand, the non-existence

of such solutions for (5.4) would suggest that finite time blow-up for (5.1) is
unlikely.

5.3 The two-dimensional Broadwell model

Consider a system on R? consisting of 4 types particles (fig. 5.1), with speeds
¢ =(1,1), co = (1,-1), c3 =(—1,-1), cqg = (-1,1).

The evolution equations are

Oguy +c1 - Vug = ugug — ujug,
Bf,ua + Cc3 - V?.Lg = UgUg4 — ULUZ,
Opug + ¢ - Vuy = ujus — usuy,
Orug + cq4 - Vug = uruz — uguy .

(5.5)

After renaming variables, the corresponding rescaled system (5.4) takes the form

Oywy + (z + 1)0z w1 + (y + 1)0ywy = wowy — wiws — wy ,
Oqws + (z — 1)0zwz + (y — 1)0yws = wewg — wywz — w3,
Oywz + (z + 1)0zws + (y — 1)0yw2 = wiws — wewy — wo,
Oywy + (x — 1)0;ws + (y + 1)Gyws = wiws — wawy — wy .

(5.6)
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C4q

A =
AR e,

Figure 5.1: Moving particles with prescribed speeds

Our first result rules out the possibility of asymptotically self-similar blow-up
solutions. A sharper estimate will be proved later.

Theorem 5.1. The system (5.6) admits no nontrivial positive bounded solution
which is constant or periodic in time.

Proof. Assume

0 <wi(t,z,y) <k (5.7)

for all t,z,y, i = 1,2. Choose € = e~2%/2, so that

1
< —, g T <

€ |—1,1j.
. ze[-1,1]

N

Define

1
Qua(t,y) = ‘/»1 [(1 —ee?\wy (t,7,y) + (1 — ce” 2 wy(t, z, y)] dz .

Q14(t) = sup Qua(t,v),
lyl<1

Restricted to any horizontal moving line y = y(¢) such that y = y+1 (fig.5.2),
the equations (5.6) become

Oywy + (z + 1)0;w1 = wowys — Wi w3 — W1,
Bywy + (z — 1)0,ws = wrwW3 — Waws — Wy .
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(-1,1) y (1,1)

// ‘& y(t)

N

(_1’_1) (17—1)

Figure 5.2: Interaction on a moving line

A direct computation now yields

d
EQM( y(t) 1
< 25/4/ [62’“ (1+z)wy +e257(1 — )w4:{ dz

i 1
+/ (66 2'”) (w1w3 — w2w4) dz
0

< 5/{,/ [ 2RE(1 + z)wr + e 2F0(1 —-x)w4} cl:z——sf-c/ e™? (1 — z)wy da
-1

0 1
—ek / e* (1 + z)w dz + / exe™ 2w, dx + / eke* Ty, d
0 -1 0

1
< —sn/ [62“(1 +z)wy + e 22(1 — a:)w4] dz.
-1

Call
1
1) = [ wtoy)do.
-1

The definition of € and the bound (5.7) on w; imply

1
/ (1 + z)w dx > 26/ 1+ z)w; dz

-1

-—1—!—]//{
225/ (1+z)kdz
-1
=el?/x
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From this, and a similar estimate for w4, we obtain

1 £ 1 2 & !
[ et an e s e 2 ([ ma) o2 ([ wiee)
. K 1 K -1

>
> £QL
Tk 2
Since € < k71, this yields
d e
EZQM(t’y(t)) -3 Q14 y(®)) . (5.8)
Observing that the Cauchy problem
2
z= —% 22, z(0) = 4k

has the solution
1 2 \7!
)= ——+ =t
0= (3+5t)
by a comparison argument from (5.8) we deduce
1 2\t
By <t —+ —t .
Q14()_(4K+ g )
Since
1 1
[ [ witay) dedy < 4Quate),
~1J-1

and since a similar estimate can be performed for all components w;, we conclude

1 1 1 6_4,C -1
i(t,z,y)dedy <4 — + t . 5.9
/_1/_1?”(wy)$y (% 5 ) (5.9)
The right hand side of (5.9) approaches zero as t — co. Therefore, nontrivial
constant or time-periodic L™ solutions of (5.6) cannot exist. O

5.4 Refined blow-up estimates

If (t*,z*) is a blow-up point, our analysis has shown that in the rescaled coor-
dinates 7, £ the corresponding functions w; must become unbounded as 7 — oo.
In this section we refine the previous result, establishing a lower bound for the
rate at which such explosion takes place.

Theorem 5.2. Let u be a continuous solution of the Broadwell system (5.3).
Fiz any point (t*,z*) and consider the corresponding rescaled variables T, &, w;.
If

max w;(7,&1,&2) <OlnTt i=1,2,3,4,
e i )

2
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for some 8 < 1/4 and all T sufficiently large, then
lim w;(r, &) =0 i=1,2,3,4,
T—+00

uniformly for £ € R? in compact sets. Therefore (t*,z*) is not a blow up point.

Since w; = (t* — t)u; and 7 = | In(t* — t)|, the above implies
Corollary 5.1. If (t*,z*) is a primary blow-up point, then

. t*—t 1
e Iu(t’z)]'lnlln(t*—t)l Z 1

Proof of Theorem 5.2.

Let w; = w;(t,z,y) provide a solution to the system (5.6), with
0 <wi(t,z,y) <0 1Int = k(t) (5.10)

for all t > to and z,y € [—1,1]. The proof will be given in two steps. First
we show that the L1 norm of the components w; approaches zero as t — 0.
Then we refine the estimates, and prove that also the L norm asymptotically
vanishes.

STEP 1: Integral estimates. Consider the function
1 2k (1) (z—1) o= 2k(t)(z+1)
Qua(t,y) = / {(1 - —————~2————> wi{t, z,y) + <1 -~ —2—~> wy (¢, T, y)} dz

-1
with k(t) as in (5.10). As in the proof of Theorem 5.1, let ¢ - y(t) be a solution
to gy =y -+ 1. Then
1
%Qm(?% y(®) = / [~ (& = DRFOEDy, 4 (34 1)k'e2OEDy,] dp
-1

1 2k(t)(z—1)
+/ 1—-— [—(x+1)w13+w2w4—w1w3~w1] dz

- 2
t e 2k(t)(@+D)
+/ (1 — ————é——~—-) [— (x — 1wy + wiws — wowy — w4] dz
-1
To estimate the right hand side, we notice that
o2k(t)(z—1) 1
A= / ) (14 2)wiz + wi|dz > k() / (z + 1) Dy, dg
—2k(t)(m+1)
B = / (1 - ——2—-> [(z — 1)way + wy|dz > K( t)/ (1 — z)e” k@D, dr
Sy Zk(z—l) e—2k(z+1)
C = (w1w3 — w2w4) dx
-1 2 2

1 e2k(z—-1) 0 6—219(:1:—!—1)
S k(t)/ ’wldIL' -+ k(t) / W4 dx.
o 2 . 2
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Therefore,

1
%Qm(t, y(t)) = / [ (z —1)k'e 2k(8) (3= 1) gy, + (m+1)kle—2k(t)(z+1),w4] dz
B ~A-B+C
< kl(t)/ 2k(t)(:1: l)w +(1+.’L‘) —2k:(t)(:1:+1),w ] dz

t)/ [(1+ 2)2HOE Dy, 4 (1 — z)e= 2O, da,

If k(t) > 1/2, we claim that the following two inequalities hold:

(1 _ m)e2k(t)(:z:—l) <1-— 6215:(t)(:1:—1) ,

(5.11)
il 4 g)e WG < o2kt (@ +1)

To prove the first inequality we need to show that
hi(s) =1 — €% 4 se?** > 0 for all s€[-2,0].
This is clear because hg(0) =0 and
Rl (s) = e?**(1 — 2k + 2ks) <0 s € [-2,0]
if k > 1/2. Hence hi(s) is positive for s € [-2,0], as claimed. The second

inequality in (5.11) is proved similarly.
When t > to = /() one has k(t) > % and hence

%Qm(t, y(t)) < K'(t)Qua— () [(1+ )eZEOE=Dy, (1 z)e” 2RO EF Dy dr .

Setting I = f_ll wydz, we obtain
1 —1+I/k(t) 2
/ (142)e2*OE Dy dy > / (1+z)e ¥ Okt)dr = e 4O —.
-1 1 2k(t)
Using the above, and a similar estimate for the integral of w4, we obtain

1
lf_(2_tl / (1 + 2)e2EOE D, 4 (1 — 2)e~ KOy ldz
2

[(/_iwldﬂ (foa)] e

o~ 4k(t)
Q-

Calling
Qua(t) = maX Q14(t v),
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from (5.12) we deduce
e—4k(t)
8

Recalling that k(t) = 0Int for some 0 < § < 1/4, the previous differential
inequality can be written as

%Qm(t) < K(6)Qualt) - Qua(t)*.

d 6 1,
7914 < Q- 740 1 (5.13)
Notice that Q14(to,y(t0)) < 2k(to), and define the constant
Ao = max {2k(to)t; ", 8(1—30)}.

Then the function
z(t) = Agt4!

satisfies 9 )
az(t) > e Wz2 z(to) > Q1a(to,y(to)). (5.14)
Comparing (5.13) with (5.14) we conclude
Q14(t) S Z(t) t Z to .

This implies the estimate

1
/ wi(t,x, yo) dz S 2Q14(t) S 2A0 t49_1
-1
for ¢ > to, 1 € {1,4} and any yo € [~1,1]. An entirely similar argument applied
to Q12, @23, ... yields the estimates

1 1
/ wi(t, T, yo)dz < 2408471, / w;(t, zo,y)dy < 240t29°1. (5.15)
1 ~1

fori=1,2,3,4, zo,yo € [-1,1] and ¢ > ¢,.

STEP 2: Pointwise estimates. Using the integral bounds (5.15), we now seek a
uniform bound of the form

w;(t, z,y) < Co (5.16)
for some constant Cp and all z,y € [~1, 1], £ > 0.

To prove (5.16), let t + z(t), t — y(t)) € [~1,1] be solutions of
g=z+1, J=y+1.

Call
1

A(t) = o (w1 +wa) (¢, 2, y(t)) dz.
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From our previous estimates (5.15) it trivially follows
A(t) < 4Apt*1
The time derivative of A(t) is computed as

%i:i = —(z(t) + 1) (w1 + wa)(t, z(t), y(1))
1

+ /( ) [6tw1 + (y(t) + 1)0yw1 + Opwa + (y(t) + 1)Byw4} dz
-(x(lt) + 1) (w1 + wa) (£, 2(2), y(1))
_ /( ) [w1 +(z +1)0zw1 +ws + (z — 1)8xw4] dz

1

~(alt) + Dfos +w0) (20, 9(0) — [ (w1 -+ wa)de

z(t)
—2wr (£, 1,y(t)) + (z(t) + Dws (¢, z(), y () + /2) wy dz

z

I

—2wq(t,1,y(8)) + (z(t) — Dwa(t, z(t),y(t)) + o wyq dz
< [z() — 1 (z(t) + D] wa(t,2(t), () = —2ws (t,z(t), y(t)) -
This implies

1dA
t,z(t),y(t) £ —=—. a7
wa (t, 2(t), y(t)) < —5 (5.17)
The total derivative of w; along a characteristic line is now given by

d 1 —dA
pri] (t,z(t),y(t)) = waws — wiwz — w1 < Wows — W1 < JW2 ( ) —w

t dt
oy B0 (=
Ty dt )

In turn, for £ > tg this yields the inequality

IA

wi(t,z(t),y(t) < e~ (t=t0) [WI(tO)+/t es_t°k(s)(—A'(s))dsj|
< &7 [un (t0) + Alto) ()] (5.18)
temU=t0) [ A(s)(et0k(s))  ds.

to

The first term on the right hand side of (5.18) approaches zero exponentially
fast. Concerning the second, we have

t ¢
e~ (tto) / A(s)e¥ ™ (k(s) + k' (s)) ds < / e~ (=9 94,501 (0 Ins+ g—) ds.

to to

This also approaches zero as t — oo. Repeating the same computations for all
components, we conclude that for some time ¢; sufficiently large there holds

1
w;(t1,Z,Y) < 3 for all z,y € [-1,1]. (5.19)
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By continuity, the inequalities in (5.19) remain valid for all z,y in a slightly
larger square, say [—-1 —¢, 14 ¢€]. For t > t; we now define

M (t) = max {wi(t,a:, y); 1=1,2,3,4, mye[-1—eThe, 14 et—“e]}.

From the equations (5.6) and (5.19) it now follows

1
iM(t) < —M(t) + M?(t) < %(—t—), M(t]) < =.
dt 2 2
1 -1
M(r) < {1 +eh (“" - 1)] <eT.eh for all 7> t;.
M,

Returning to the original variables u; = e"w;, this yields

Uj _<_ etl
in a whole neighborhood of the point P* = (¢*,z*). Hence P* is not a blow-up
‘point. O
5.5 A tentative blow-up scenario

For a solution of the rescaled equation (5.5), the total mass

1 1 4
m(t) = /_ 1 /_ D sl ) dedy

may well become unbounded as ¢ — co. On the other hand, the one-dimensional
integrals along horizontal or vertical segments decrease monotonically. Namely,
if t — y(t) satisfies y = y + 1, then

d
G [ e u@) + watt.2,96)] de <0,
-1
Similarly, if £ = z — 1, then
d 1
E/ [wg(t,m(t),y) + wa(t, x(t),y)] dy <0.
-1

Analogous estimates hold for the sums w; +ws and wa +wz. Therefore, a bound
on the initial data

w;(0,z,y) € [0, M] for all z,y € [-1,1],

yields uniform integral bounds on the line integrals of all components:

1 1
-1 1
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(1,1)

(-1,-1) (1,-1)

Figure 5.3: A possible interaction between particles

If finite time blow-up is to occur, the mass which is initially distributed along
each horizontal or vertical segment must concentrate itself within a very small
region, thus forming a narrow packet of particles with increasingly high density.
A possible scenario is illustrated in fig. 5.3. A packet of 1-particles is initially
located at P;. In order to contribute to blow-up, this packet must remain
within the unit square Q. At P these l-particles interact with 3-particles and
produce a packet of 4-particles. In turn, at Ps these interact with 2-particles and
produce again a packet of 1-particles. After repeated interactions, the packet of
alternatively 1- and 4-particles eventually enters within the smaller square Q.
After this time, it interacts with a packet of 2-particles at Ps (transforming it
into a packet of 1-particles) and eventually exits from the domain Q.

To help intuition, it is convenient to describe a packet as being “young”
until it enters the smaller square @', and “old” afterwards. To maintain a
young packet inside @, one needs the presence of old packets interacting with it
near the points Py, P3, Py... On the other hand, after it enters Q’, our packet
can in turn be used to hit another young packet, say at Ps, and preventing it
from leaving the domain Q.

As t — oo, the density of the packets must approach infinity. One thus
expects that most of the mass will be concentrated along a finite number of one-
dimensional curves. Say, the packet of alternatively 1- and 4-particles should be
located along a moving curve v14(t, ), where 0 is a parameter along the curve.
The time evolution of such a curve is of course governed by the equations
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0 0

— = or - =
3t’)’14 S at’}’m 4

depending on whether 7:4(t,0) consists of 1- or 4-particles. The presence of
interactions impose highly nonlinear constraints on these curves. For example,
the interaction occurring in Ps at time ¢ implies the crossing of the two curves
714 and 12, namely _

T14(t, 0) = 712(t,0) = Ps

for some parameter values 6, 8. The complicated geometry of these curves re-
sulting from the above constraints has not been analyzed.
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